
Institut für Parallele und Verteilte Systeme

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit Nr. 29

Framework zur
Fußgängersimulation

Stephan Herb

Studiengang: Informatik

Prüfer: Prof. Dr. Marc Alexander Schweitzer

Betreuer: Dr. Stefan Zimmer

Beginn am: 10. September 2012

Beendet am: 12. März 2013

CR-Klassifikation: G.3, I.6.8, J.2





Kurzfassung

In dieser Arbeit geht es um die praktische Umsetzung des F.A.S.T.-Modells als Framework
zur Fußgängersimulation auf mobilen Tablet-Computern. Zusätzliche Komponenten sind in
das Modell eingebaut worden, um die Ergebnisse noch realistischer zu gestalten. Dazu zählen
unter anderem die Erweiterung des Simulationsgebiets um weitere Stockwerke, sowie die
Simulation von Treppen. Eine Sensitivitätsanalyse soll die Möglichkeit bieten, die Ergebnisse
noch besser auswerten zu können. Die Implementierung des Modells und der angesprochenen
Erweiterungen wird ebenso detailliert beschrieben, wie die Ergebnisse von Testsimulationen
des Frameworks. Neben Tests zu Durchführungszeiten und Speicherverbrauch, wurde auch
eine Sensitivitätsanalyse durchgeführt und getestet, wo die Grenze für simulierbare Szenarien
mit dem vorgelegten System liegt.
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1 Einleitung

Computersimulationen von Gebäude- oder Verkehrsmittelevakuierungen können einen
großen Beitrag zur Verbesserungen bestehender oder neuer Fluchtpläne leisten. Denn Übun-
gen mit echten Menschen vor Ort sind teuer, zeitaufwändig und bringen selbst bestimmte
Gefahren für die beteiligten Personen mit sich. Neben vielen anderen Modellen, die solche
Simulationen beschreiben, wurde das sogenannte „F.A.S.T.“-Modell entwickelt. Damit können
recht unkompliziert Evakuierungsszenarien simuliert und die Ergebnisse analysiert werden.
Mein Ziel ist es gewesen, dieses Modell in einem Framework umzusetzen und auf mobilen
Tablet-Computern lauffähig zu machen. Dadurch soll zum einen die Möglichkeit für Experten
eröffnet werden, die Optimierung ihrer Evakuierungspläne direkt vor Ort durchführen zu
können und den Verantwortlichen vorzuführen. Sie sind somit auch in der Lage, Ideen und
Verbesserungen direkt zu testen und einzuarbeiten. Aber nicht nur Experten soll der mobile
Einsatz der Simulationssoftware dienen. Die Demonstration der Software kann Motivation
für jüngeres Publikum sein, sich mit der Thematik zu beschäftigen, oder kann ihr Interesse
für die Technik und Mathematik hinter dem Programm wecken.
Das folgende Kapitel befasst sich ausschließlich mit dem F.A.S.T.-Modell. Denn bevor es um
die Erweiterung und Implementierung des Modells gehen kann, muss das Modell vorgestellt
werden. Da es sich bei dem Modell um einen zellulären Automaten handelt, muss vor allem
die Funktionsweise näher beschrieben. Aber auch Details werden angesprochen. So widmet
sich ein Abschnitt den sogenannten Floor-Fields, deren gespeicherte Informationen Zeit bei
der Simulationsdurchführung sparen. Auch die Regeln, nach denen eine Simulationsrunde
aufgebaut ist, sind Teil dieses Kapitels. Hier liegt ein Hauptaugenmerk auf den Wahrscheinlich-
keitsformeln, mit denen es zu den Änderungen im Automaten kommt. Zusätzlich widmet sich
ein Abschnitt den Statistiken und Ausgaben, die eine Simulation mittels F.A.S.T. produziert
und wie man sie darstellen kann.
In Kapitel drei geht es um Erweiterungen und Anpassungen, die am F.A.S.T.-Modell vorge-
nommen wurden. Zu ihnen zählen unter anderem spezielle Treppen- und Teleportzellen, mit
deren Hilfe die Simulationsergebnisse realitätsnaher werden sollen. Ein entscheidender Zusatz
für die Simulation, ist der Einsatz einer Sensitivitätsanalyse, mit deren Hilfe die Ergebnisse
der Simulationen besser eingeschätzt und die simulierten Szenarios besser bewertet werden
können. Die Umsetzung des Modells als Framework für einen mobilen PC machte allerdings
auch manche Anpassungen nötig, vor allen in der Art und Weise, wie die Simulationsregeln
Einfluss auf die Bewegungen der Personen haben, oder wie mit mehreren Ebenen in einem
Simulationsgebiet verfahren werden soll.
Das vierte Kapitel befasst sich mit der tatsächlichen Implementierung des Modells. Zu Anfang
des Kapitels wird erläutert, welche Plattform und Programmiersprache für die Programmie-
rung verwendet wurde. Nachdem ein Überblick über die Programmteile der Anwendung
erfolgt ist, gliedert sich der Rest des vierten Kapitels in drei Teile. Zuerst wird ein detaillierter
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1 Einleitung

Blick auf die Initialisierung einer Simulation geworfen. Er enthält auch eine Beschreibung
des Aufbaus der Konfigurationsdateien, die ein Szenario definieren. Als nächstes wird die
Durchführung einer Simulation beschrieben. Dabei wird vor allem auf die Bewegung der
Objekte und deren Suche nach besetzbaren Zellen eingegangen. Zusätzlich wird das gesamte
Kapitel mit Algorithmen, erklärenden Bildern und Codeausschnitten unterstützt. Der letzte
Teil des Kapitels legt den Blickpunkt auf die Programmierung der Ergebnisspeicherung und
-darstellung.
Im letzten Kapitel sind Testergebnisse des Frameworks dargestellt. Das Programm wurde mit
unterschiedlichen Szenarien auf dem mobilen Tablet-PC getestet, um dessen Leistung und
Grenzen aufzuzeigen. So soll vor allem eine Einschätzung möglich gemacht werden, welche
Faktoren die Simulationszeit und den Verbrauch an Arbeitsspeicher beeinflussen. Ein weiterer
Test soll zeigen, wie die vorliegende Hardware die Größe der zu simulierenden Gebiete
eingrenzt. Es werden auch zwei Probleme angesprochen, die im direkten Zusammenhang
mit längeren Simulationszeiten stehen. Ein abschließendes Beispiel einer Sensitivitätsanalyse
soll ihre Möglichkeiten im Bewerten der eingesetzten Simulationsparameter und den daraus
resultierenden Ergebnissen aufzeigen.
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2 Überblick über das F.A.S.T.-Modell

F.A.S.T. steht für „Floor field- and Agentbased Simulation Tool“. Es ist ein Modell zur
Fußgängersimulation und wurde 2007 an der Universität Duisburg-Essen von Tobias Kretz
entwickelt [Kre06]. Es baut auf einigen früheren Simulationswerkzeugen auf ([KKN+03],
[Gat05]). In diesem Kapitel will ich das F.A.S.T.-Modell vorstellen. Dabei gehe ich auf einige
Teilaspekte näher ein, wie z. B. die Floor-Fields, den Aufbau einer Simulationsrunde und die
Ausgaben.

2.1 Grundprinzip

Das Modell basiert auf einem zellulären Automaten. Somit sind sowohl die Zeit, als auch der
Raum diskretisiert. Es gibt unterschiedliche Typen von Zellen, sowie Agenten, die in einzelne
Gruppen aufgeteilt werden können. Als „Agent“ wird in diesem Modell eine Personen
bezeichnet. Ein Agent besetzt immer genau eine Zelle. Im Gegensatz zu normalen Zellen
oder Ausgangszellen, können die speziellen Wandzellen nicht durch Agenten besetzt werden.
Sie dienen als eine Art Hindernis für die Agenten auf ihren Wegen über das Zellenfeld.
Mit Verweis auf [Dre67], wird die Zellengröße mit „ungefähr 40 × 40cm2, der kleinsten
Fläche, die ein Fußgänger einnimmt“, angegeben. Ein Zeitschritt wird hier als „Runde“
bezeichnet. Mit jeder Runde bewegen sich die Agenten über das Feld der Zellen. Dabei wird
ihre Bewegung von mehreren randomisierten Regeln beeinflusst. Auf Grund individueller
Parameter jedes Agenten, wirken sich die Regeln unterschiedlich auf die Bewegungen aus.
Die eben angesprochenen Gruppen fassen alle Agenten mit denselben Parameterwerten
zusammen. Jeder Agent kann sich trotzdem unabhängig von Gruppenzugehörigkeiten
bewegen. Das Ziel jedes Agenten ist es am Ende einer Runde eine Ausgangszelle zu besetzen.
Über diese Art von Zellen kann ein Agent das Simulationsgebiet verlassen und hat somit auch
keinen Einfluss mehr auf die übrigen Agenten. Bezogen auf die Realität kann man davon
sprechen, dass er „erfolgreich entkommen“ ist. Das Ziel der Simulation ist erreicht, wenn der
letzte verbliebene Agent eine Ausgangszelle besetzt hat und mit dem Ende der Runde keine
Agenten mehr im Simulationsgebiet übrig sind.

2.2 Floor-Fields

Im F.A.S.T.-Modell werden sogenannte Floor-Fields eingesetzt. Sie wurden bereits in früheren
Modellen zur Fußgängersimulation verwendet ([BKSZ01], [KS02], [NKNS04]). Die ursprüng-
liche Idee ist, dass diese Felder durch die Agenten auf bestimmte Weise verändert werden und
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2 Überblick über das F.A.S.T.-Modell

es dadurch zu einer Änderung der Übergangswahrscheinlichkeiten des Automaten kommt.
Die Bewegung der Agenten wird dadurch gesteuert, indem Zellen bevorzugt werden, deren
Eintrag im Floor-Field größer ist [BKSZ01].
Für das F.A.S.T.-Modell wurde dieses Prinzip übernommen. Vereinfacht kann man sagen, dass
ein Floor-Feld Informationen zu jeder einzelnen Zelle speichert. Sie sind damit genauso groß
wie das Simulationsgebiet. Je nachdem, welchem Zweck ein Floor-Field in der Simulation
dient, bleiben die Werte in ihm über die Zeit hinweg konstant, oder werden durch die Agenten
und globale Einflüsse in jeder Runde aktualisiert. Gerade die Floor-Fields, die Informationen
bereithalten, die sich nicht mehr ändern, führen zu einer deutlichen Beschleunigung der
Simulationszeit. Im Folgenden sind drei unterschiedliche Floor-Fields aufgeführt, die zum
Teil im F.A.S.T.-Modellbenutzt werden und in meiner Implementierung eingebaut sind.

2.2.1 Statisches Floor-Field

In [Kre06, S. 20 ff.] und [Kre06, S. 37 ff.] wird das statische Floor-Field beschrieben. Es speichert
Distanzwerte zwischen Zellen. Für jede Zelle werden die kürzesten Entfernungen zu jedem
Ausgang berechnet und im entsprechenden Feld des Floor-Fields gespeichert. Gemessen wird
die Distanz in „Anzahl Zellen“, wobei die Wertemenge nicht auf die Ganzen Zahlen beschränkt
ist. Da es im Simulationsgebiet auch Wandzellen geben kann, die eine direkte Verbindung
zweier Zellen verhindern, werden diese Hindernisse in den Berechnungen miteinbezogen. Die
kürzeste Entfernung zwischen zwei Zellen setzt sich folglich oftmals aus mehreren Teilstrecken
zusammen, welche um die Hindernisse herum führen. Die Distanzwerte müssen ein Mal zu
Beginn der Simulation berechnet werden. Danach wird auf nur noch lesend auf sie zugegriffen.
Eine detaillierte Beschreibung der Distanzberechnungen, sowie den Modifikationen der
Algorithmen ist in Kapitel 3.5 und 4.3.3 vorhanden. Abbildung 2.1 zeigt eine Visualisierung
eines statischen Floor-Fields für eine der Ausgangszellen.

2.2.2 Dynamisches Floor-Field

In F.A.S.T. wird außerdem das sogenannte „dynamische Floor-Field“ eingesetzt ([Kre06, S. 24 f.]
und [Kre06, S. 28 f.]). Während die Werte des statischen Floor-Fields konstant über die Zeit der
Simulation hinweg bleiben, verändern sich die Daten dieses Floor-Fields entsprechend der
Agentenbewegungen. Jeder Agent hinterlässt durch seine Bewegung eine „Spur“. Dies drückt
sich durch eine erhöhte Besetzungshäufigkeit der besuchten Zellen aus. Das dynamische
Floor-Field speichert Vektoren, die diese Bewegungen in x- und y-Richtung aufsummieren. Je
mehr Agenten mit hoher Geschwindigkeit und annähernd derselben Richtung über eine Zelle
laufen, desto größer werden die Vektorkomponenten. Abbildung 2.2 zeigt eine Situation, in der
sich zwei Agenten nacheinander von einer Zelle wegbewegen und damit den entsprechenden
Vektoreintrag verändern. Der gezeigten Berechnung liegt folgende Vorschrift zu Grunde: Ein
Agent, der sich von einer Zelle an Position (a, b) zu einer Zelle an Position (x, y) bewegt,
addiert (x− a, y− b) auf das Feld im dynamischen Floor-Field an Position (a, b) [Kre06, S. 24].
Das dynamische Floor-Field wird nicht nur durch die Agenteninteraktionen beeinflusst, son-
dern auch durch das Verwischen („diffusion“) und Verblassen („decay“). Beides sorgt dafür,
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2.2 Floor-Fields

Abbildung 2.1: Beispiel für ein statisches Floor-Field. Wandzellen sind rot eingefärbt. Je weiter
eine Nicht-Wandzelle vom Ausgang entfernt ist, desto heller ist ihr Grauwert.

dass die Agentenspuren mit der Zeit verwaschen und irgendwann komplett verschwinden,
wenn sich keine weiteren Agenten mehr über die entsprechenden Zellen fortbewegen. In
F.A.S.T. gibt es deshalb zwei globale Parameter, die mit α (Verwischung) und δ (Verblassen)
bezeichnet werden. Sie geben die Wahrscheinlichkeit an, mit der „alle Werte beider Kompo-
nenten“ [Kre06, S. 24] des dynamischen Floor-Field diffundieren bzw. zerfallen. Eine Diffusion
findet nur zwischen den entsprechenden x- und y-Komponenten benachbarter Zellen statt. Es
gelten in diesem Fall nur horizontal und vertikal gelegene Zelle als benachbart. Eine Diffusion
zwischen diagonal benachbarter Zellen ist folglich nicht möglich. Ist die Vektorkomponente
der einen Zelle negativ, führt die Diffusion zu einer Verringerung des Wertes der anderen
Zelle, unabhängig, ob ihr Wert positiv oder negativ ist und umgekehrt, für einen positiven
Ausgangswert. Beim Verblassen gilt allgemein, dass sich der Betrag der Komponente verrin-
gert. Ein negativer Wert nähert sich somit gleichermaßen der Null an, wie ein positiver.
Nachdem alle Agenten ihre Bewegungen für die Runde abgeschlossen haben, wird das
dynamische Floor-Field entsprechend den Wahrscheinlichkeitswerten von α und δ verändert.
Abbildung 2.8 zeigt eine Momentaufnahme des dynamischen Floor-Fields während einer
Simulation.

2.2.3 Floor-Field für Wanddistanzen

Wände bzw. Wandzelle haben einen Einfluss auf die Bewegung der Agenten (siehe 2.3.2).
Deshalb ist es notwendig, von einer Zelle zu wissen, wie nahe sie an einer Wandzelle liegt. Ein
Floor-Field, das diese Distanzen speichert, ist im F.A.S.T.-Modell nicht explizit beschrieben.
Eine Verwendung bei der Implementierung des Modells liegt allerdings nahe, betrachtet man
vor allem die zeitlichen Vorteile von Floor-Fields. Die Distanzen ändern sich im Verlaufe der
Simulation nicht und können deshalb wie die Werte des statischen Floor-Fields zu Beginn der
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2 Überblick über das F.A.S.T.-Modell
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Abbildung 2.2: Beispiel für eine Änderung des dynamischen Floor-Fields: Zwei Agenten
bewegen sich in unterschiedliche Richtung von derselben Zellen weg. Ihre
Bewegungsvektoren werden auf den Eintrag an der Position der hellgrauen
Zelle im dynamischen Floor-Field addiert.

Simulation einmalig berechnet werden. In Abbildung 2.10 sieht man eine Darstellung dieses
Feldes und in Kapitel 4.3.3 sind weitere Details zur Implementierung verfügbar.

2.3 Aufbau einer Simulationsrunde

Eine Simulationsrunde besteht aus drei Abschnitten:

1. Die Agenten wählen einen Ausgang.

2. Sie entscheiden sich für eine Zielzelle, die sie nach dieser Runde besetzen wollen.

3. Alle Agenten führen ihre Bewegungen aus.

Abbildung 2.3 zeigt das Schema einer Runde. Es basiert auf der Abbildung in [Kre06, S. 12].
Zuerst wählt jeder Agent einen Ausgang aus. Da er meistens aus einer Gruppe von Ausgangs-
zellen besteht, wird nicht nur der Ausgang selbst ausgewählt, sondern auch gezielt eine seiner
Ausgangszellen. Diese Zelle dient dem Agenten als Fernziel, dem er Runde für Runde näher
kommen will. Im nächsten Schritt wählt jeder Agent eine Zielzelle für sich aus. Diese stammt
aus der Menge aller Zellen, die ein Agent mit seiner aktuellen Geschwindigkeit und von
seiner derzeitigen Position aus in dieser Runde erreichen kann. Die Auswahl des Ausgangs
und der Zielzelle kann unabhängig von den anderen Agenten erfolgen. Das Modell erlaubt
hier den Einsatz nebenläufiger Prozesse zur Beschleunigung der beiden Abschnitte. Die
Bewegungen jedes Agenten zu seiner Zielzelle finden allerdings sequentiell statt (siehe dazu
auch Kapitel 2.3.3). Im Gegensatz zu den ersten beiden Abschnitten, in denen die Auswahl
durch wahrscheinlichkeitsbasierte Formeln getroffen wird, ist der dritte Abschnitt rein deter-
ministisch. Wie [Kre06, S. 28 ff.] zeigt, gibt es verschiedene Ansätze die Agentenbewegungen
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2.3 Aufbau einer Simulationsrunde

Runde beginnt

Runde endet
ja

nein

Agenten wählen 

ihren Ausgang
Agenten wählen

ihre Zielzelle

Reihenfolge wählen,

in der sich die

Agenten bewegen

Agent führt

Bewegung aus

Alle Agenten

haben sich

bewegt?

Abbildung 2.3: Schematischer Aufbau einer Simulationsrunde

durchzuführen. Es muss grundsätzlich eine Reihenfolge der Agenten festgelegt werden, in
der sie ihre Schritte durchführen. Erst wenn alle Agenten ihre Bewegungen vollendet haben,
endet die Runde und die nächste kann beginnen.

2.3.1 Wahl eines Ausgangs

Die Wahl eines Ausgangs folgt bei F.A.S.T. einem randomisierten Prozess [Kre06, S. 11 ff.]: Es
werden die Wahrscheinlichkeiten für jeden einzelnen Ausgang berechnet. Aus dieser Menge
wird einer, entsprechend der Gewichtung der Einzelwahrscheinlichkeiten ausgewählt. Zur
Berechnung der einzelnen Wahrscheinlichkeiten, gibt das F.A.S.T.-Modell folgende Formel
vor ([Kre06, S. 12]):

(2.1) pA
E = N ·

(1 + δAEκE)

S(A, E)2

Die einzelnen Variablen und Terme haben folgende Bedeutung:

• A steht für den aktuellen Agenten.

• E bezeichnet den Ausgang, der gerade betrachtet wird.

• δAE = 1, wenn A den Ausgang E in der Runde zuvor bereits gewählt hatte. Sonst ist
δAE = 0

• κE ist eine Eigenschaft von A und gibt an, wie beharrlich der Agent bei einer einmal
getroffenen Entscheidung für einen Ausgang bleibt. Das „E“ bezeichnet in diesem
Fall nicht den Ausgang, sondern dient zur Unterscheidung der anderen κX (siehe die
Formeln 2.3 bis 2.8).

• S(A, E) gibt die Entfernung zwischen der aktuellen Position von A und E an. Dieser
Wert ist im statischen Floor-Field S gespeichert.

• N dient als Normalisierungskonstante. Sie soll sicherstellen, dass
∑

E pE = 1 gilt.
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2 Überblick über das F.A.S.T.-Modell

In Kapitel 4.4.2 wird eine Anpassung der Formel 2.1 beschrieben, die durch die Gruppierung
von Ausgangszellen zu Ausgängen nötig wird.

2.3.2 Wahl einer Zielzelle

Die Geschwindigkeit eines Agenten hat entscheidenden Einfluss auf die Anzahl der Zellen,
zwischen denen er sich für eine Zielzelle entscheiden kann. Deshalb soll sie hier kurz definiert
werden. In [Kre06, S. 13] entspricht die „dimensionlose Geschwindigkeit, der Anzahl an
Zellen, die er (der Agent) sich während einer Runde fortbewegen darf“. Die Größe einer Zelle
ist vom Modell mit circa 40× 40cm2 vorgegeben (vgl. 2.1). Somit hängt die Geschwindigkeit
einzig von der Definition des Zeitschritts einer Runde ab. Soll beispielsweise eine Runde 1s
lang sein, entspricht eine Geschwindigkeit von 4 Zellen

Runde einer realen Geschwindigkeit von 1, 6 m
s .

Ist der Zeitschritt dagegen 10ms, gilt für die reale Geschwindigkeit 160 m
s .

Wie auch schon die Wahl des Ausgangs, ist die Wahl der Zielzelle ein wahrscheinlichkeits-
basierter Prozess. In diesem Fall werden allerdings die Wahrscheinlichkeiten aller Zellen
gesammelt, die vom Agenten erreichbar sind. Aus dieser Menge wählt er eine Zelle aus. Es
gibt drei Kriterien, nach denen eine Zelle als erreichbar gilt:

• Sie ist keine Wandzelle. Wandzellen können nicht besetzt werden.

• Sie liegt im Bereich der Zellen, die mit der aktuellen Geschwindigkeit des Agenten
besetzt werden können.

• Sie ist nicht bereits durch einen anderen Agenten besetzt.

Die folgende Formel und alle darin enthalten Teilformeln sind aus [Kre06, S. 24] entnommen
und im Folgenden beschrieben. Die Wahrscheinlichkeit pxy, mit welcher der Agent A die Zelle
an Position (x, y) als Zielzelle auswählt, wird berechnet durch:

(2.2) pxy = NpS
xypD

xypI
xypW

xypP
xy,

wobei die pX
xy für die einzelnen Faktoren stehen, welche die Wahrscheinlichkeit der Zelle

beeinflussen. Sie sind alle nachfolgend erklärt. N ist eine Normalisierungskonstante, die
garantieren soll, dass

∑
xy pxy = 1 gilt.

Einfluss des statisches Floor-Fields

Das statische Floor-Field speichert die kleinsten Distanzen aller Zellen zu allen Ausgangszellen
(siehe 2.2.1). Die folgende Formel beschreibt den Einfluss, indem sie die Entfernung einer
Zelle zum gewählten Ausgang des Agenten miteinbezieht ([Kre06, S. 24]):

(2.3) pS
xy = e−κSSE

xy .

Die Variable κS ist eine Agentenkonstante. Alle Teilformeln von (2.2) und die Formel für
die Wahl des Ausgangs (2.1) benutzen verschiedene Agentenkonstanten κX. Sie können
individuell für jeden Agenten oder jede Agentengruppe zu Beginn der Simulation gesetzt
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2.3 Aufbau einer Simulationsrunde

werden. Jeder Agent speichert sich für sich ab. Die Aufgabe dieser Konstanten ist es, die
Einflüsse auf die Gesamtwahrscheinlichkeit von Formel (2.2) untereinander zu gewichten. SE

xy
ist der Eintrag im statischen Floor-Field, der die Entfernung zwischen der Zelle an Position
(x, y) und dem Ausgang E speichert. E entspricht dem Ausgang, den der Agent im Schritt
zuvor ausgewählt hat.
Mit dieser Formel werden Zellen, die näher am Ausgang liegen, attraktiver für den Agenten.
Zellen, die ihn weiter vom gewählten Ausgang wegführen würden, erhalten eine geringere
Attraktivität.

Einfluss des dynamischen Floor-Fields

Das dynamische Floor-Field speichert die Bewegungensspuren der Agenten über die einzelnen
Zellen ab (siehe 2.2.2). Es speichert sowohl die Richtung, als auch implizit den Geschwin-
digkeitsbetrag. Das Floor-Field kann damit die Richtung der Agenten steuern: Zellen, über
die sich viele, schnelle Agenten in der gleichen Richtung bewegt haben, besitzen große
Komponentenwerte im dynamischen Floor-Field. Sie sind damit attraktiver für neue Agenten,
als Zellen, über die nur wenige oder langsame Agenten gelaufen sind bzw. bei denen jeder
Agent eine andere Laufrichtung hatte.
Die Formel, die hinter dieser Überlegung steckt, ist folgende ([Kre06, S. 24 f.]):

(2.4) pD
xy = eκD(Dx(x,y)(x−a)+Dy(x,y)(y−b))

Dabei ist κD eine der Agentenkonstanten, mit der dieser Einfluss gewichtet wird. (a, b)
bezeichnet die Position des Agenten, während (x, y) für die Position der potenziellen Zielzelle
steht. Dx(x, y) bzw. Dy(x, y) gibt die X- bzw. Y-Komponente des Vektors im dynamischen
Floor-Field für die Zelle (x, y) an.

Einfluss der Trägheit

An dieser Stelle spielt die Physik und der Bewegungsapparat der Menschen eine entschei-
dende Rolle. Nach [Kre06, S. 25] ist das Beschleunigen und Verzögern für einen Menschen
praktisch sofort möglich; geht man von 1-Sekunden-Zeitschritten aus. Dagegen ist eine
Richtungsänderung um 90◦ bei gleichbleibender Geschwindigkeit sehr viel schwieriger für
einen Menschen durchführbar. Die folgende Formel soll diese Überlegungen umsetzen und
den Einfluss der Trägheit auf die Zielzellenwahl widerspiegeln:

(2.5) pI
xy = e−κIF

xy
c ,

wobei κI für eine der Agentenkonstanten steht und Fxy
c die Fliehkraft für die Zelle an Position

(x, y) beschreibt. Durch diese Formel werden Zellen, die in der aktuellen Laufrichtung
des Agenten liegen, attraktiver, als solche, die einen größeren Winkel zur Laufrichtung
aufweisen. Zur Berechnung der Fliehkraft wird die Geschwindigkeit des Agenten während
der aktuellen Runde benötigt. Sie ist zu diesem Zeitpunkt allerdings nicht bekannt. Das liegt
an der Diskretisierung des Raumes und der Zeit ([Kre06, S. 25]: Eine Geschwindigkeit ist
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2 Überblick über das F.A.S.T.-Modell

nur definiert, wenn sich der Agent tatsächlich bewegt. Sie hängt von der Zielzelle ab, die
in diesem Schritt erst noch gesucht wird. Es wird deshalb der Durchschnittswert aus der
letzten Agentengeschwindigkeit und der wahrscheinlichen Geschwindigkeit am Ende der
Runde genommen. Die Formel zur Berechnung der Fliehkraft lautet dementsprechend wie
folgt ([Kre06, S. 25 ff.]):

(2.6) Fxy
c = (vnext + vlast)

√√√√√√√√√√√√√√√1
2

1−

(
∆xt+1

∆yt+1

) (
∆xt

∆yt

)
∣∣∣∣∣∣
(

∆xt+1

∆yt+1

)∣∣∣∣∣∣
∣∣∣∣∣∣
(

∆xt

∆yt

)∣∣∣∣∣∣

,

wobei

• vlast die Geschwindigkeit ist, mit der sich der Agent in der vergangenen Runde bewegt
hat,

• vnext die Geschwindigkeit des Agenten bezeichnet, mit der er die Zelle (x, y) erreichen
kann,

• ∆xt+1 bzw. ∆yt+1 die relative Entfernung angibt, zwischen der in dieser Runde theoretisch
erreichbaren Zelle und der aktuellen Position des Agenten (in x- und y-Richtung
getrennt),

• ∆xt bzw. ∆yt die relative Entfernung angibt, zwischen der aktuellen Agentenposition
und der in der vergangenen Runde (in x- und y-Richtung getrennt).

In Abbildung 2.4 sieht man die Ergebnisse der Formel (2.5) für einen Teil der Zellen mit
Geschwindigkeit vlast = 3.

Einfluss benachbarter Wände

In [Kre06, S. 27] wird der Einfluss benachbarter Wände als „Sicherheitsabstand“ beschrieben,
den die Agenten zu Wänden einhalten. Somit werden Zellen, die in der Nähe von Wandzellen
liegen, unattraktiver für Agenten. Menschen wollen vor allem in Fluchtsituationen nicht nahe
an Wänden oder anderen Hindernissen entlanglaufen ([Kre06, S. 27], [NKNS04, S. 7]). Beide
Quellen führen folgende Formel zur Berechnung dieses Einflusses auf:

(2.7) pW
xy = e−κWWxy .

κW ist eine weitere Agentenkonstante und Wxy gibt die Entfernung zu der Wandzelle an, die
am nächsten an der Zelle (x, y) liegt. Ist die Zelle weiter als Wmax von einer Wandzelle entfernt,
gilt pW

xy = 1 und die Wandzellen haben keinen Einfluss mehr auf die Wahl dieser Zelle.
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Abbildung 2.4: Ergebnisse von pI
xy (Formel 2.5) für Agent mit Geschwindigkeit vlast = 3. Der

Agent bewegte sich von (0,−3) nach (0, 0) in der Runde zuvor. Es ist nur ein
Quadrant darstellt.

Einfluss benachbarter Agenten

Ähnlich wie die Nähe zu Wänden und Hindernissen, meiden Menschen in Fluchtsituationen
größere Menschenmengen; sofern sie eine Wahl haben [Kre06, S. 27 f.]. Die folgende Formel
macht Zellen unattraktiv, wenn ihre Nachbarschaft durch viele Agenten besetzt ist:

(2.8) pP
xy = e−κPNP(x,y)

Die Agentenkonstante κP dient auch hier der Gewichtung des Einflusses. NP(x, y) gibt die
Anzahl der Agenten an, die sich in der unmittelbaren Nachbarschaft der Zelle (x, y) befinden.
Der Agent, von dem die Zielzellensuche ausgeht, wird hier nicht mitgezählt. Deshalb wird
dieser Einfluss auch ignoriert, wenn keine Agenten in der Nähe sind (NP(x, y) = 0⇒ pP

xy = 1).
Auch in einer Situation, in der alle erreichbaren Zellen von vielen Agenten umgeben sind
verschwindet dieser Einfluss aus der Zielzellensuche: Alle Zellen werden durch die Formel
gleichermaßen unattraktiv gemacht. Die Wahl der Zielzelle hängt damit von anderen Faktoren
ab.
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2 Überblick über das F.A.S.T.-Modell

2.3.3 Bewegung zur Zielzelle

Haben alle Agenten ihre Zielzelle ausgewählt, werden sie in diesem Schritt versuchen, sich zu
ihr zu bewegen. In [Kre06, S. 28 ff.] werden verschiedene Möglichkeiten beschrieben, dies zu
realisieren:

• Direktes Hinspringen: Der Agent springt direkt von seiner jetzigen Zelle zur Zielzelle.
Dazwischenliegende Zellen haben keinen Einfluss auf die Bewegung des Agenten und
werden umgekehrt von ihm auch nicht verändert. Dieses Vorgehen ist vergleichsweise
einfach umzusetzen. Allerdings gibt es auch ein Problem: Wenn zwei oder mehr Agenten
dieselbe Zielzelle ausgewählt haben, kann nur einer von ihnen am Ende der Runde auf
diese besetzen. Es entsteht ein sogenannter „Konflikt“. Mit der Wahrscheinlichkeit µ
bleibt er ungelöst und keiner der betroffenen Agenten darf sich zur Zielzelle bewegen.
Andernfalls wird einer von ihnen per Zufall ausgewählt. Dieser darf sich als einziger
auf die Zielzelle bewegen. Alle anderen bleiben auf ihrer aktuellen Zelle stehen.

• Zelle für Zelle hinbewegen: Bei dieser Vorgehensweise bewegt sich ein Agent zu
seiner Zielzelle, indem er eine Reihe einzelner Sprünge zu direkt angrenzenden Zellen
ausführt. Die Zellen, die er auf dem Weg zur Zielzelle besucht, gelten bis zum Abschluss
der Runde als besetzt. Sie können nicht von anderen Agenten betreten werden. Diese
Art der Agentenbewegung gilt als realistischer, ist allerdings komplizierter in der
Umsetzung [Kre06]. Zudem können Konflikte hier auf zweierlei Weise entstehen: Zum
einen durch gemeinsame Zielzellen verschiedener Agenten (wie zuvor), aber auch durch
sich kreuzende Pfade zu unterschiedlichen Zielzellen.
Das Modell schlägt eine etwas abgewandelte Form dieses Vorgehens vor. Da ich in
meiner Implementierung von diesem Vorschlag abgewichen bin und stattdessen eine
leicht modifizierte Version der ersten Variante umgesetzt habe, verweise ich für weitere
Details zum Modell-Vorgehen auf die entsprechende Literaturstelle [Kre06, S. 28 ff.].

Die Bewegungen der Agenten ist ein sequentieller Teil der Runde. Aus diesem Grund gibt es
verschiedene Möglichkeiten eine Reihenfolge der Agenten zu bestimmen. Die folgenden vier
sind aus [Kre06, S. 30] entnommen.

Konstante Reihenfolge: Zu Beginn der Simulation wird die Reihenfolge festgelegt. Sie bleibt
danach über die gesamte Länge der Durchführung hinweg dieselbe.

Verschobene Reihenfolge: Es existiert eine feste Reihenfolge für die Bewegungen der einzel-
nen Agenten. Sie wird vor Beginn der Simulation festgelegt. Allerdings wird jede Runde die
Nummer des Agenten, der beginnen darf, durch einen festen oder zufälligen Wert verschoben.
Aus der Reihenfolge 1,2,3,4 wird in der nächsten Runde z. B. 3,4,1,2 gemacht.

Zufällige Reihenfolge: Die Reihenfolge wird in jeder Runde neu, zufällig bestimmt.

Vollkommen zufällige Reihenfolge: Diese Variante unterscheidet sich nur dann von der
vorhergehenden, wenn sich die Agenten schrittweise zu ihrer Zielzelle bewegen. In allen
vorherigen Varianten führt ein Agent alle seine Schritte aus, bevor der nächste Agent an der
Reihe ist. Bei dieser Variante wird nicht nur die Agentenreihenfolge in jeder Runde zufällig
gewählt, sondern auch die Anzahl der ausgeführten Schritte eines Agenten. Bis ein Agent
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2.4 Ausgaben

seine Zielzelle erreicht hat, kann er folglich mehrmals an der Reihe gewesen sein. In [Kre06,
S. 30] wurde dieses Schema als Standard für alle Berechnungen verwendet.

2.4 Ausgaben

Eine Simulation, wie sie hier nach dem F.A.S.T.-Modell durchgeführt wird, erzeugt eine
Vielzahl Daten und Ergebnisse. Einen wichtigen Teil stellt daher auch die Visualisierung und
Aufbereitung dieser Ergebnisse dar. Viele Resultate können in Form von Graphen und Bildern
dargestellt werden, andere Statistiken benötigen eine schlichte Textform. Eine grafische
Darstellung der Simulation macht es möglich, einige der Ausgaben bereits zur Laufzeit
anzuzeigen. Die folgende Auflistung ist aus [Kre06, S. 83-92] entnommen und enthält die,
meiner Meinung nach, wichtigsten Ausgaben einer Simulation.

2.4.1 Statistiken

Nach jedem einzelnen Durchlauf wird die Anzahl der Runden dokumentiert, bis 95% und
100% der Agenten entkommen sind. Abschließend wird aufgeführt, wie viele Runden
es mindestens, höchstens und durchschnittlich pro Durchlauf gedauert hat, bis alle 95%
bzw. 100% der Agenten fliehen konnten. Zusätzlich wird die Standardabweichung vom
Durchschnittswert ausgegeben.
Für jeden Ausgang wird dokumentiert, wie viele Agenten über ihn während den einzelnen
Durchläufen entkommen sind. Nach Beendigung der Simulation gibt es eine Auflistung
der Ausgänge, sortiert nach ihrer ID, mit der Angabe der Minimum-, Maximum- und
Durchschnittswerte. In [Kre06, S. 90] wird diese Ausgabe in Form eines Graphen beschrieben,
bei dem die ID der Ausgänge auf der Abszisse verteilt sind und die Anzahl, der über die
Ausgänge geflüchteten Agenten, auf der Ordinate aufgetragen sind.
Ein weiterer Vorschlag von [Kre06] ist die Ausgabe der Namen von Agentengruppen, deren
Mitglieder zu den letzten drei noch nicht entkommenen Agenten zählen.

2.4.2 Graphen

Der Evakuierungsgraph ist ein sehr aussagekräftiger Graph in der Analyse einer Simulation.
Er spiegelt den Verlauf der Evakuierung wider, indem er für jede Runde die Anzahl der
bereits entkommenen Agenten anzeigt. Je größer die Steigung der Kurve ist, desto mehr
Agenten entkommen pro Runde. Die Kurve ist monoton steigend. Gewöhnlich ist der Verlauf
zu Beginn eines Durchlaufs sehr flach, da sich nur wenig Agenten in der Nähe von Ausgängen
aufhalten. Das gleiche gilt für das Ende eines Durchlaufs, wenn nur noch wenige Agenten im
Gebiet unterwegs sind und damit die Dichte abnimmt. Abbildung 2.5 zeigt einen exemplari-
schen Evakuierungsgraphen nach mehreren vollendeten Simulationsdurchläufen. Wie auch in
[Kre06, S. 88], kann der Graph mit zwei zusätzlichen Kurven dargestellt werden: Den Maximal-
und Minimalwerten. Sie sind im Beispielgraph grün bzw. rot eingefärbt. Die Maximalwerte
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2 Überblick über das F.A.S.T.-Modell

geben an, wie viele Agenten zu der entsprechenden Runde, über alle bisherigen Durchläufe
gerechnet, maximal entkommen sind. Analoges gilt für die Minimalwerte. Man kann im
Beispielgraph sehen, dass die grüne Kurve nicht monoton ist. Das liegt an der Definition der
Maximalwerte: Wenn zu einer Runde x in einem Durchlauf alle Agenten entkommen sind, hat
die Kurve dort ihr Maximum erreicht, der Durchlauf ist nach Definition des Modells beendet
und es werden auch keine neuen Werte mehr für diesen Graph aufgenommen. Wenn nun in
einer Runde x + 1 in jedem der nachfolgenden Durchläufen die Anzahl die entkommenen
Agenten kleiner als 100% ist, ist der Maximalwert an dieser Stelle kleiner als der in Runde
x. Das Modell gibt an dieser Stelle nicht explizit vor, wie die Maximal- und Minimalwerte
aufzunehmen sind, so dass auch eine Darstellungsvariante möglich ist, in der die grüne Kurve
konstant fortläuft, sobald der Maximalwert erreicht wurde. Dadurch ist auch die Monotonie
dieser Kurve sichergestellt.
Ein weiterer wichtiger Graph ist der Verlauf des Durchschnittsflusses. Er zeigt für jede Runde
den aktuellen durchschnittlichen Fluss der Agenten an. Er kann laut [Kre06, S. 88 ff.] auf
unterschiedliche Arten berechnet werden. Eine davon bezieht den Fortschritt der Agenten
im statischen Floor-Field mit ein. Im Modell ist keine Variable zum Speichern des Durch-
schnittsflusses angegeben. Ich habe mich für f̃ entschieden. Mit der folgenden Formel kann
der durchschnittliche Fluss berechnet werden:

(2.9) f̃ = max
(
0,

∑
a∈A (∆S) · |A|
|freie Zellen|

)
,

wobei ∆S den angesprochenen Fortschritt im statischen Floor-Field bezeichnet, d. h. die
Differenz aus alter und neuer Distanz zwischen der Ausgangszelle und dem Agenten.
Die Anzahl, der noch in der Simulation befindlichen Agenten, ist mit |A| bezeichnet und
|freie Zellen| gibt die Differenz von besetzbaren und durch Agenten besetzte Zellen an. Siehe
Abbildung 2.6 für einen entsprechenden Beispielgraphen.

2.4.3 Bilder

Die aktuelle Geschwindigkeit der Agenten zählt zu den Ausgaben, die jederzeit während
der Simulation aktualisiert und angezeigt werden können. Die Agenten werden entsprechend
ihrer aktuellen Geschwindigkeit eingefärbt. Eine grüne Farbe entspricht dabei der individuel-
len Maximalgeschwindigkeit eines Agenten. Rot dagegen dem Stillstand des Agenten. Alle
Werte dazwischen werden linear von Rot nach Gelb und von Gelb nach Grün interpoliert. In
Abbildung 2.7 ist ein Beispiel zu sehen.
Das dynamische Floor-Field (siehe Kapitel 2.2.2) kann ebenfalls visualisiert werden. Da es
Vektoren speichert, kann man bei der Visualisierung auf einen Trick zurückgreifen, der in
[Kre06, S. 43] beschrieben ist: Die Farbe der Zelle richtet sich nach der Richtung und der
relativen Länge des Vektors, im Vergleich zum längsten Vektor des dynamischen Floor-Fields.
Die Richtung gibt den Farbton vor, während die Länge die Farbhelligkeit und -sättigung
bestimmt. Diese beiden Werte eignen sich hervorragend für den Einsatz des HSV-Farbraumes
(Hue, Saturation, Value). Ein Beispiel für solch eine Visualisierung ist in Abbildung 2.8 zu
betrachten.
Eine weitere Ausgabe, die bereits während der Simulationsdurchführung angezeigt werden
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Abbildung 2.5: Ein Beispiel für einen Evakuierungsgraphen. Die grüne Kurve zeigt die Maxi-
malwerte, die rote die Minimalwerte und die gelbe die Durchschnittswerte.
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Abbildung 2.6: Ein exemplarischer Graph des Durchschnittsflusses der Agenten. Die grüne
Kurve zeigt die Maximalwerte, die rote die Minimalwerte und die gelbe die
Durchschnittswerte.
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2 Überblick über das F.A.S.T.-Modell

Abbildung 2.7: Dieses Beispiel zeigt eine Visualisierung der Agentengeschwindigkeiten.
Der Farbverlauf von Rot über Gelb nach Grün entspricht der relativen
Geschwindigkeit eines Agenten von 0 bis vmax.

kann, ist die Visualisierung der lokalen Dichte der Agenten. Hier gibt die Farbe einer Zelle
die Besetzung der jeweils direkten Nachbarzellen an. Entscheidend ist der Quotient aus
der „Anzahl direkt angrenzender besetzter Zellen“ und den „insgesamt besetzbaren Zellen“.
Wandzellen werden dabei ignoriert. Als direkte Nachbarzelle gelten die diagonal, horizontal
und vertikal anliegenden Zellen um die betrachtete Zelle herum. Ist der Quotient 0, wird die
Zelle grün eingefärbt, denn alle benachbarten Zellen sind frei. Rot wird die Zelle eingefärbt,
wenn der Quotient bei 1 liegt, denn das bedeutet, dass alle Zellen um die betrachtete Zelle
herum durch Agenten besetzt sind. Für die entsprechenden Zwischenwerte wird der Farbwert
linear interpoliert. Ein Beispiel ist in Abbildung 2.9 zu sehen.
Auch das Floor-Field der kürzesten Wanddistanzen, kann dargestellt werden. Ist das Maxi-
mum aller Werte dieses Floor-Fields bekannt (greatestWallDist), können die Farbwerte für
jede einzelne Zelle mit folgender Formel berechnet werden:

RGBcolor = (0, 0,
cellWallDist

greatestWallDist
· 255),

wobei cellWallDist die Wanddistanz der aktuellen Zelle ist und RGBcolor ein Tripel mit den
Farbkomponenten (Rot, Grün, Blau), jeweils mit Werten im Intervall [0, 255]. Je weiter eine
Zelle von einer Wandzelle entfernt liegt, desto blauer wird sie dargestellt. Zellen, welche direkt
an eine Wandzelle angrenzen, sind annähernd schwarz eingefärbt. Die dazwischen liegenden
Zellen erhalten einen linear interpolierten Farbwert. Abbildung 2.10 zeigt ein Beispielbild.

1
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Abbildung 2.8: Beispiel für ein dynamisches Floor-Field. Wandzellen sind weiß eingefärbt.
Der Farbton der anderen Zellen hängt von der Richtung des Vektors ab, die
Helligkeit vom Betrag des Vektors.

Abbildung 2.9: Eine exemplarische Visualisierung der lokalen Agentendichte. Grün sind
Zellen, bei denen alle besetzbaren Nachbarzellen unbesetzt sind. Je mehr von
ihnen durch Agenten belegt sind, desto roter werden sie eingefärbt.
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2 Überblick über das F.A.S.T.-Modell

Abbildung 2.10: Beispiel für ein Floor-Field für Wanddistanzen. Wandzellen sind je nach
Typ mit einem unterschiedlichen Grauwert eingefärbt(siehe 3.2). Für alle
anderen Zellen gilt: Je weiter entfernt sie von einer Wandzelle sind, desto
bläulicher ist ihre Farbe.
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3 Erweiterungen

Das F.A.S.T.-Modell soll dazu beitragen realistische Simulationen durchzuführen. Die Er-
gebnisse wurden mit echten Experimenten verglichen, um die Wahl der Parameter und
das Verhalten der Agenten zu optimieren [Kre06, S. 97-148]. Dennoch kann es in manchen
Szenarien notwendig sein, zusätzliche Elemente in die Simulation hineinzubringen, um
die Ergebnisse realistischer zu gestalten. Einige Ideen sind bereits in der Beschreibung des
Modells genannt, wie z. B. Treppen, zusätzliche Stockwerke oder Anziehungspunkte ([Kre06,
S. 30 ff.]). Ich habe diverse Erweiterungsideen in meinem Programm umgesetzt. Zusätzlich
implementierte ich die Möglichkeit einer Sensitivitätsanalyse, mit deren Hilfe die Resultate
besser eingeschätzt werden können. In diesem Kapitel will ich diese Erweiterungen einzeln
vorstellen. Manche von ihnen führten dazu, dass auch grundsätzliche Teile des Modells
angepasst werden mussten, wie z. B. die Distanzberechnungen. Diese Änderungen werden
ebenfalls in diesem Kapitel thematisiert.

3.1 Treppen

In der Beschreibung des F.A.S.T.-Modells werden Treppen als eine von vielen Möglichkeiten
vorgestellt, um die Ergebnisse realistischer zu gestalten [Kre06, S. 30 ff.]. Sie sollen „das
Grundverhalten der Agenten nicht beeinflussen“, sondern dienen lediglich zur Verbesserung
der Realitätsnähe von Szenarien. Bis jetzt wurden Wandzellen, Ausgangszellen und normale
Zellen (durch Agenten besetzbare Zellen, ohne spezielle Eigenschaften) vorgestellt; nun
erweitern Treppenzellen das Modell.
Eine Treppenzelle wirkt sich auf die Geschwindigkeit der Agenten aus. In [Kre06, S. 30 f.]
wird von einer Reduktion um ca. 50% gesprochen, basierend auf vorhandenen ([Wei92]) und
selbst durchgeführten Messungen ([Kre06, S. 103-110]). Die Geschwindigkeitsänderung eines
Agenten tritt ein, wenn er zu Beginn einer Runde eine Treppenzelle besetzt. Der kleinste Wert,
den die Agentengeschwindigkeit durch eine Treppenzelle annehmen kann, ist allerdings 1.
Würde diese Untergrenze nicht existieren, könnte sich ein Agent, dessen Geschwindigkeit
durch die Treppenzelle 0 erreicht, nie mehr von ihr wegbewegen.
Die Eigenschaften einer Treppenzelle, die im Modell vorgegeben sind, wurden zum Teil geän-
dert, um eine Flexibilisierung des Einsatzes des Zelltyps zu erreichen: Die starre Reduktion der
Agentengeschwindigkeiten um 50% wurde aufgehoben und stattdessen ein neuer Parameter
eingeführt. Dessen beliebig setzbarer Wert steuert die Veränderung der Agentengeschwindig-
keit. Zusätzlich ist es möglich, jeder Treppenzelle einen individuellen Wert zuzuweisen. Ich
nenne diesen Parameter fstair. Dieser Faktor wird mit der aktuellen Agentengeschwindigkeit
(vcur) beim Betreten von Treppenzellen multipliziert. Für 0 ≤ fstair < 1 wird vcur reduziert,
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allerdings mit der Untergrenze: vcur ≥ 1. Für fstair = 1 wird die Geschwindigkeit nicht
beeinflusst, während es für fstair > 1 zu einer Beschleunigung des Agenten kommt; auch
über dessen Maximalgeschwindigkeit vmax hinweg. Sobald ein Agent die beschleunigenden
Treppenzellen verlässt, ist auch der Effekt zu Ende und der Agent wird in seinen Bewegungen
wieder von seiner Maximalgeschwindigkeit begrenzt.
Die Vorteile des dynamischen Parameters sind folgende: Auf Grund der freien Wahl des
Wertes, kann von der starren Interpretation einer „Treppe“ abgewichen werden. Treppenzellen
könnten beispielsweise eine Notfallrutsche ( fstair � 1), eine Rolltreppe ( fstair > 1), einen
Erdwall ( fstair < 1) oder eine Leiter ( fstair � 1) simulieren. Und da es möglich ist für einzelne
oder Gruppen von Treppenzellen die Parameter individuell zu setzen, kann es die eben
aufgezählten „Treppenobjekte“ gleichzeitig in einem Szenario geben.

3.2 Dynamische Wandparameter

Es gibt einen Einfluss benachbarter Wände auf die Wahrscheinlichkeit einer Zelle bei der Ziel-
zellensuche (siehe 2.3.2). Man kann dabei von einem „Sicherheitsabstand“ [Kre06, S. 27] reden,
den die Agenten zwischen sich und einer Wand einhalten wollen. Wie groß dieser Abstand
ist, regelt zum einen die globale Variable Wmax, aber auch die individuelle Agentenkonstante
κW. Das Problem der ersten Variablen ist, dass sie grundsätzlich für jeden Agenten gilt. Die
zweite Variable hat das Problem, dass sie nicht unterscheidet, um welche Art von Wandzelle
es sich handelt.
Erweiterungen sollen dazu dienen, dass die Szenarien und damit auch die Ergebnisse rea-
listischer werden. Zu einem realistischen Szenario gehören für mich unter anderem auch
verschiedene Arten von Wänden. Um nur ein paar Beispiele zu nennen: Dünne, halbhohe
Bürotrennwände, Glasfassaden, Balkongeländer, Hecken, Zäune und viele andere mehr.
Grundsätzlich haben alle Wandzellen gemein, dass sie als einziger Zelltyp nicht von Agenten
besetzt werden können. Diese Forderung eröffnet Spielraum für weitere Interpretationen:
Auch Autos, Schränke, Stühle und andere Gegenstände lassen sich mittels Wandzellen reali-
sieren. Sie müssen nur groß genug sein, um in das Zellenschema zu passen und unbeweglich
genug, um ihre starre Position zu rechtfertigen.
Meine Erweiterung ist ein dynamischer Parameter für Wandzellen ( fwall). Er verändert die
Auswirkung der Teilwahrscheinlichkeit pW benachbarter Wände. Somit lassen sich die ver-
schiedenen Typen von Wänden realisieren, die unterschiedlichen Einfluss auf das Verhalten
eines Agenten haben sollen. Der Parameter fließt direkt in die Formel (2.7) ein und verändert
sie zu folgender, neuer Formel:

(3.1) pW
xy = e−κWWxy fwall .

Für fwall < 1 wird pW verstärkt; die entsprechende Zelle also attraktiver gemacht. Für fwall > 1
wird sie unattraktiver für einen Agenten.
Während κW individuell für den Agenten gilt, egal um welche Wand es sich handelt, ist es bei
fwall genau umgekehrt: Hier kann jede Wandzelle einen anderen Faktor bekommen; dieser
wirkt sich auf jeden Agenten gleichermaßen aus. Der Standardparameter Wmax ist hiervon
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allerdings nicht betroffen. Ist ein Agent weiter als Wmax von einer Wandzelle entfernt, gilt
immer pW = 1, unabhängig vom Wandzellenfaktor.

3.3 Mehrere Stockwerke

Eine weitere Idee von [Kre06, S. 32] ist die Einführung weiterer Stockwerksebenen. Eine
notwendige Erweiterung des Simulationsgebiets in die dritte Dimension (ein „diskretisiertes
Volumen“[Kre06, S. 32]), kam aus damaliger Sicht nicht in Frage, da es „zu teuer im Hinblick
auf den Arbeitsspeicherverbrauch“ sei. Der Einsatz meiner Software auf Tablet-PCs lässt
dieses Argument weiterhin bestehen (siehe 4.1). Die Erweiterung des Simulationsgebiets um
zusätzliche Stockwerke, ist auch im zweidimensionalen Raum durchführbar. Die Idee von
F.A.S.T. ist es, bestimmte Stockwerks-Ausgangszellen zu platzieren, die einen Agenten eine
Ebene nach oben oder unter befördern und Stockwerks-Eingangszellen, die - als Gegenpart
dazu - Agenten in die entsprechende Ebene aufnehmen. Weitere Details, z. B. wie man sich
eine Ebene vorzustellen hat, sind nicht genannt. Ich habe mich für diese Erweiterung in
meiner Implementierung entschieden. Allerdings ist die Umsetzung eine etwas andere, als
vom Modell vorgeschlagen; auch bedingt durch die knappen Ausführungen in [Kre06]. Meine
Idee ist folgende:
Das Simulationsgebiets wird in verschiedene Bereiche aufgeteilt. Ein Bereich entspricht somit
einem Stockwerk oder einer Ebene, um es allgemein zu formulieren. Zuvor hat eine Ebene
das gesamte Gebiet eingenommen. Nun kann es beispielsweise sein, dass das erste Stockwerk
den linken, oberen Bereich einnimmt, das zweite Stockwerk den rechten, unteren und die
dritte Ebene den linken, unteren Bereich. Ein viertes Stockwerk existiert nicht und somit
bleibt der rechte, obere Bereich ungenutzt. Eine Ebene ist so konzipiert, dass man sie nur
durch bestimmte Zellen erreichen und verlassen kann. Diese Verbindungszellen erhielten
von mir den Namen "Teleportzellen". Das hat folgenden Hintergrund: Sieht man sich das
gesamte Zellenfeld an, stellt man fest, dass ein Agent beim Betreten einer Teleportzelle, direkt
in einen anderen Teil des Gebiets „teleportiert“ wird, auch wenn er sich theoretisch gar
nicht bewegt hat. Eine Teleportzelle hat immer genau eine Partnerzelle (ebenfalls vom Typ
„Teleportzelle“). Bewegt sich ein Agent über eine Teleportzelle, wird er zu deren Partnerzelle
verschoben, ungeachtet seiner Geschwindigkeit. Die Distanz zwischen den beiden Zellen ist
mit Null definiert, da sie im Grunde genommen denselben realen Platz einnehmen. Ein Agent
kann somit innerhalb einer Bewegung, über diese Zellen, Stockwerke betreten und/oder
verlassen. Durch die Nulldistanz zwischen den verbundenen Teleportzellen, fließen bei der
Zielzellensuche des Agenten die Zellen des neuen Stockwerks direkt mit ein. Kann ein Agent
folglich die Teleportzelle seines aktuellen Stockwerks erreichen, kann er auch die Teleportzelle
des anderen Stockwerks erreichen.
Die Einführung der Teleportzelle als neuen Zellentyp, führt viele weitere Veränderungen mit
sich. Vor allem die Distanzberechnungen und die Zielzellensuche musste ich dementsprechend
anpassen. Für Details dazu siehe Kapitel 3.5 und 3.6.
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3.4 Sensitivitätsanalyse

Neben den bereits beschriebenen Erweiterungen, welche die Ergebnisse einer Simulation
realistischer gestalten sollen, habe ich mich dazu entschlossen, auch eine Erweiterung im
Hinblick auf die Ergebnisanalyse in meine Applikation einzubauen. Es handelt sich dabei
um die Möglichkeit einer Sensitivitätsanalyse. Mit ihr ist es möglich, die Auswirkungen von
Parameteränderungen am Ergebnis nachzuverfolgen. Das kann zum einen Aufschluss darüber
geben, wie gut die Parameter für das simulierte Szenario gewählt wurden, zum anderen zeigt
es aber auch, wie robust das Simulationsgebiet für andere Situationen ausgelegt ist. Es kann
z. B. sein, dass ein Stadion sehr schnell evakuiert werden kann, wenn sich alle Personen mit
gleicher, langsamer Geschwindigkeit zu den Ausgängen bewegen. Wenn es allerdings größere
Schwankungen in den Geschwindigkeiten gibt, kann es zu Staus und damit Verzögerungen
kommen. Diese Schwankungen können mit der Sensitivitätsanalyse erzeugt werden. Der
resultierende Evakuierungsgraph und andere Ergebnisse geben daraufhin Aufschluss darüber,
wie gut oder schlecht diese Störungen von den Fluchtwegen aufgefangen werden können.
Die Sensitivitätsanalyse ist ein optionaler Teil der Simulation. So kann der Benutzer wählen,
ob er das Szenario im Demonstrationsmodus („Demo-Modus“) simulieren lassen möchte,
oder mit der Sensitivitätsanalyse verknüpfen möchte (sogenannter „Experten-Modus“). Die
Analyse wird konfiguriert, indem eine beliebige Anzahl an Regeln definiert wird. Vor jedem
Simulationsdurchlauf werden diese auf die entsprechenden Parameter angewendet, so dass
neue Parameterwerte für jeden Durchlauf zur Verfügung stehen. Um eine genaue Analyse der
Ergebnisse zu gewährleisten, werden alle Regelanwendungen und Parameterwahlen in einer
Datei dokumentiert. Grundsätzlich können mit Hilfe der Regeln fast alle Simulationsparameter
verändert werden: Die Entfernungsgrenze von Wandzellen für den entsprechenden Einfluss
auf die Zielzellensuche (Wmax), die Parameter α und δ zum Ändern des dynamischen Floor-
Fields, sämtliche Agentenparameter, sowie die Faktoren einzelner Treppen- oder Wandzellen.
Eine Regel besteht selbst aus verschiedenen Parametern die vom Benutzer bei ihrer Erstellung
gesetzt werden. Sie sind nachfolgend aufgelistet:

• Typ: Eine erste grobe Filterung, um welche Gruppe von Parametern es sich handelt.
Hier hat der Benutzer die Wahl zwischen „Allgemein“, „Agent“, „Treppe“ und „Wand“

• Gruppe: Außer für den Typ „Allgemein“ gibt dieser Wert an, für welche Gruppe von
Objekten die Regel gelten soll. Bei Agenten bezieht sich die Gruppe auf die in der
Konfigurationsdatei (4.3.1) definierten Gruppen. Bei Treppen und Wänden werden die
Einzelobjekte nach ihren Farbwerten gruppiert (4.3.2).

• Wahrscheinlichkeitsverteilung: Die Wahl des Parameters hängt von der verwendeten
Wahrscheinlichkeitsverteilung ab. Hier hat der Benutzer die Wahl zwischen vier Funktio-
nen: Gleichverteilung, Normalverteilung, log-Normalverteilung und Dreiecksverteilung
(auch Simpson-Verteilung).

• Funktionsparameter: Sie geben der Funktion der Wahrscheinlichkeitsverteilung vor,
in welchem Bereich ein Wert gewählt werden soll. Für die Gleichverteilung muss ein
Minimal- und Maximalwert angegeben werden. Für die beiden Normalverteilungen
muss der Erwartungswert und die Varianz angegeben werden. Die Dreiecksverteilung
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3.4 Sensitivitätsanalyse

benötigt sowohl einen Minimal- und Maximalwert, als auch einen dazwischenliegenden
„wahrscheinlichsten“ Wert, der sozusagen die Spitze des Dreiecks bildet.

Die Abbildungen 3.1 bis 3.4 zeigen die Dichte- und Verteilungsfunktion aller vier verwendeten
Wahrscheinlichkeitsverteilungen.
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Abbildung 3.1: Gleichverteilung. Dichtefunktion (a) und Verteilungsfunktion (b) für min = 2
und max = 6.
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Abbildung 3.2: Normalverteilung. Dichtefunktion (a) und Verteilungsfunktion (b) für Erwar-
tungswert µ = 3 und Varianz σ = 1, 4.
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Abbildung 3.3: Logarithmische Normalverteilung. Dichtefunktion (a) und Verteilungsfunkti-
on (b) für Erwartungswert µ = 0 und Varianz σ = 1.
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Abbildung 3.4: Dreiecks- oder Simpsonverteilung. Dichtefunktion (a) und Verteilungsfunkti-
on (b) für min = 2, max = 9 und dem wahrscheinlichsten Wert bei 7.

3.5 Modifizierte Distanzberechnungen

In Kapitel 2.2.1 wurde bereits die Wichtigkeit des statischen Floor-Fields angesprochen. In jeder
Runde werden für die Ausgangs- und Zielzellensuche jedes Agenten sehr häufig Distanzen zu
Ausgangszellen benötigt. Würde man diese Berechnungen jedes Mal neu durchführen, verlän-
gert sich die Zeit für die Durchführung einer Simulation sehr stark. Da Zellen mit Ausnahme
der Agenten ihre Positionen nicht verändern, bleiben auch die Distanzen untereinander und
zu den Ausgangszellen, über die gesamte Simulationsdauer hinweg, konstant. Deshalb ist
das statische Floor-Field von so entscheidender Bedeutung im Hinblick auf die Zeitersparnis.
Damit die Zeit, die am Anfang zur Berechnung des statischen Floor-Fields benötigt wird,
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möglichst kurz gehalten wird, sind bereits in [Kre06, S. 20 ff.] viele Lösungen vorgeschlagen.
Einige davon habe ich in meiner Implementierung übernommen.
Die Hinzunahme der Teleportzellen erfordert zusätzliche Veränderungen an den Distanzbe-
rechnungen. In den folgenden Abschnitten gehe ich deshalb auf die einzelnen Algorithmen
ein und erkläre, was ich an ihnen im Vergleich zum vorgeschlagenen Algorithmus des F.A.S.T.-
Modells verändert habe. In Kapitel 4.3.3 gibt es weitere Details zur Implementierung dieser
Algorithmen.

3.5.1 Grundidee

Bevor es um die Modifizierungen der einzelnen Algorithmen geht, soll dargestellt werden,
welcher Algorithmus grundsätzlich hinter der Berechnung der Distanzen steckt und wie ich
ihn für meine Implementierung aufgeteilt habe.
Das Hauptziel des Algorithmus [Kre06, S. 20 ff.] ist die Berechnung der kürzesten Entfernung
aller Zellen zu allen Ausgangszellen. Als Nebeneffekt erhalten die normalen Zellen auch
Distanzen zwischen sich und sogenannten Knotenzellen. Darauf gehe ich gleich genauer ein.
All diese Informationen werden letztlich im statischen Floor-Field gespeichert, so dass ein
schneller Zugriff während des Simulationsverlaufs garantiert wird. In [Kre06] wird Dijkstras
Algorithmus [Dij59] dazu verwendet. Normalerweise bedeutet dies, dass man aus dem
Simulationsgebiet einen Graphen erstellen müsste. Jede Zelle ist dabei ein Knoten. Eine Kante
wird dort hinzugefügt, wo sich zwei Zellen gegenseitig „sehen“ können. Mit „sichtbar“ ist hier
gemeint, dass auf der geraden Linie zwischen den beiden Zellen keine Wandzelle liegt. Dieser
sogenannte „Sichtbarkeitsgraph“ dient als Ausgangspunkt für den Algorithmus. Nach [Kre06]
gibt es eine effizientere Möglichkeit, den Algorithmus einzusetzen: Anstatt aus jeder Zelle
einen Knoten zu machen, reicht es, sich auf bestimmte „Knotenzellen“ zu reduzieren. Es muss
allerdings sichergestellt werden, „dass jede Zelle, von mindestens einer korrekt gewählten
Knotenzelle aus, sichtbar ist“[Kre06, S. 21]. Die Bestimmung dieser Knotenzellen ist in Kapitel
3.5.2 und 4.3.3 beschrieben. Sind alle notwendigen Knotenzellen gefunden, ist garantiert, dass
jede Nicht-Knotenzelle von mindestens einem Knoten aus sichtbar ist. Versucht nun ein Agent
sich auf kürzestem Weg um eine Wandzelle zu bewegen, existiert an jeder Stelle, an der der
Agent seine Richtung ändern muss, eine Knotenzelle. Somit enthält der Sichtbarkeitsgraph
der Knotenzellen die kürzesten Wege vorbei an Hindernissen (Wänden) [Kre06, S. 22]. Die
Distanzberechnungen werden damit in zwei Teile gespalten: Zuerst werden die kürzesten
Entfernungen zwischen den Knotenzellen und den Ausgängen berechnet. Danach ergibt sich
die kürzeste Entfernung einer Nicht-Knotenzelle zu einer Ausgangszelle als die kleinste aller
möglichen Distanzen über seine sichtbaren Knotenzellen, d. h. (Distanz zur Knotenzelle) +
(Distanz der Knotenzelle zur Ausgangszelle).
Der gesamte Algorithmus wird bei mir in verschiedene Teilalgorithmen aufgespalten:

1. Die Knotenzellen werden bestimmt.

2. Alle Zellen werden mit ihren sichtbaren Knotenzellen verknüpft, d. h. jede Zelle speichert
intern die Referenz und Distanz zu allen sichtbaren Knotenzellen ab.
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3. Die kürzesten Distanzen zwischen allen Knotenzellen und allen Ausgangszellen werden
berechnet.

4. Für jede Nicht-Knotenzellen wird ihre Entfernung zu allen Ausgangszellen berechnet.

3.5.2 Bestimmung der Knotenzellen

Ziel des ersten Teilalgorithmus ist es, die Knotenzellen korrekt zu bestimmen. Um die opti-
male, d. h. minimale, Anzahl von Knotenzellen zu bestimmen, müsste man eine Analyse der
Geometrie des Gebiets durchführen [Kre06, S. 21]. Daraus entsteht ein minimaler Sichtbar-
keitsgraphen, bei dem „die Knoten die konvexen Ecken der Hindernisse sind“. Hier schlägt
[Kre06] eine Idee für eine einfachere Umsetzung vor: Nimmt man eine leicht größere Zahl
von Knotenzellen in Kauf, könne man in diesem Fall viel schneller vorgehen. Es genüge,
immer nur die direkten Nachbarzellen jeder Wandzelle zu untersuchen. Der Zelltypen al-
ler Nachbarzellen (normale oder Wandzellen) entscheiden darüber, welche der normalen
Nachbarzellen Knotenzellen sein können[Kre06, S. 21]. Zusätzlich wird vorgeschlagen, das
Simulationsgebiet mit weiteren Voraussetzungen zu versehen. Es sollen Wandzellen verboten
werden, die ausschließlich diagonal mit mindestens einer weiteren Wandzelle verbunden sind.
Dies führt zu inkorrekt platzierten Knotenzellen. Meiner Ansicht nach ist diese Forderung vor
allem im Hinblick für die Zielzellensuche wichtig. Ansonsten könnte sich ein Agent durch die
„Lücke“ in der Wand bewegen, die in der Realität natürlich nicht vorhanden ist. Auch wenn
dieses Vorgehen nicht zu Fehlern in der Simulation führt, widerspricht es dem zu erwartenden
Verhalten der Agenten. Dies sollte man beim Erstellen der Wandzellen eines Szenarios immer
bedenken.
Mit diesen Vereinfachungen und Forderungen im Hintergrund, erhält man einen einfachen
und schnellen Algorithmus, um die Knotenzellen zu bestimmen. Seine Implementierung habe
ich in 4.3.3 beschrieben und ist auch in [Kre06, S. 21 f.] nachzuschlagen. Eine Erweiterung
von mir ist folgende: Zusätzlich zu den Knotenzellen, die mit diesem Algorithmus gefunden
werden, füge ich alle Teleportzellen der Menge hinzu. Der oberen Definition nach, sieht eine
Teleportzelle ihre Partnerzelle normalerweise nicht, da meistens Wände zwischen den Ebenen
vorhanden sind (vgl. 3.3). Für die Zellen einer Ebene ohne Ausgangszelle gilt dann: Ohne
verbindende Knotenzelle, haben sie keine Entfernung zu den Ausgangszellen. Das ist nicht
möglich. Um zu garantieren, dass für jede Ebene die Distanzen zu allen Ausgangszellen
berechnet werden können, müssen die Teleportzellen zu Knotenzellen gemacht werden.

3.5.3 Verknüpfung sichtbarer Knotenzellen

Dieser Teilalgorithmus soll dafür sorgen, dass jede Zelle eine Liste von sichtbaren Knotenzellen
samt Distanzen zu ihnen enthält. Das Modell bietet keinen Hinweis, wie dies bewerkstelligt
werden soll. Deshalb beschreibe ich meinen Algorithmus an dieser Stelle etwas ausführlicher.
Konkrete Details zur Implementierung in Java finden sich in Kapitel 4.3.3.
Das Ergebnis des Algorithmus ist im Prinzip ein Sichtbarkeitsgraph. Die Zellen bzw. Knoten,
die sich gegenseitig sehen, sind mit einer Kante verbunden. Die Kantengewichte entsprechen
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den Distanzen zwischen den Zellen. Die Ebenen des Simulationsgebiets sind Teilgraphen, die
wiederum durch die Teleport-Knotenzellen miteinander verbunden sind. Der Algorithmus
wird deshalb eine Ebene nach der anderen bearbeiten. Das hat auch den Grund, dass in einer
separaten Menge Referenzen auf die Randzellen der Ebene gespeichert werden und diese
Menge möglich klein sein sollte, damit der Algorithmus effizient arbeitet. Eine Randzelle ist
hier eine Zelle, die auf mindestens einer Seite den Rand der Ebene bildet. Der Algorithmus
iteriert über die Knotenzellen der Ebene. Von jeder Knotenzelle ausgehend, wird ein „Strahl“
zu jeder Randzellen geschossen. Ein für diesen Einsatz angepassten Bresenham-Algorithmus
[Cun], untersucht zellenweise die Linie von Knoten- zu Randzelle. Sollte eine Wandzelle
erreicht werden, bricht er ab. Bei jedem Erreichen einer Nicht-Wandzelle, wird ihr das aktuelle
(Knotenzelle, Distanz)-Paar hinzugefügt. Nachdem alle Randzellen „beschossen“ wurden, ist
eindeutig bestimmt, welche Zellen diese Knotenzelle sieht und welche nicht. Wurde über
alle Knotenzellen gezählt, existiert diese Information auch für alle weiteren Zellen der Ebene.
Der Teilgraph ist damit komplett abgearbeitet und der Algorithmus geht zur nächsten Ebene
über.

3.5.4 Kürzeste Distanzen zu Ausgangszellen

Der Vollständigkeit halber seien hier noch die beiden Teilalgorithmen zusammengefasst,
die letztendlich die kürzesten Distanzen aller Knoten- und Nicht-Knotenzellen zu den
Ausgangszellen berechnen. Sie orientieren sich allerdings vollständig an den Ideen von
[Kre06] sowie des Dijkstra-Algorithmus und besitzen keine Modifikationen von mir.
Für jede Ausgangszelle wird der Algorithmus von Dijkstra gestartet. Die Ausgangszelle ist
dabei jeweils der Startknoten. Die restlichen Knoten des zu durchlaufenden Graphen, sind die
Knotenzellen. Auf die Funktionsweise des Dijkstra-Algorithmus möchte ich hier nicht näher
eingehen; es sei auf entsprechende Literatur, z. B. [Dij59], verwiesen. Nachdem er für jede
Ausgangszelle abgeschlossen ist, kennen bereits alle Knotenzellen ihre kürzesten Distanzen zu
jeder Ausgangszelle.
Der letzte Teilalgorithmus sorgt dafür, dass auch alle Nicht-Knotenzellen die kleinsten
Distanzen zu den Ausgangszellen bekommen. Für jede Ausgangszelle, iteriert er über alle
Nicht-Knotenzellen des gesamten Simulationsgebiets. Die minimale Distanz einer solchen
Zelle zur Ausgangszelle berechnet sich dann folgendermaßen: Bilde jeweils die Summe aus
(Distanz von Zelle zu einer ihrer sichtbaren Knotenzellen) und (Distanz dieser Knotenzelle zur
Ausgangszelle). Das Minimum aus allen Einzelsummen ist gleichbedeutend mit der geringsten
Entfernung der Zelle zur Ausgangszelle. In Kapitel 4.3.3 und dem darauffolgenden gibt es
weitere Details zur ihrer Implementierung.

3.6 Modifizierte Zielzellensuche

Das Ziel des Algorithmus ist es, alle Zellen zu bestimmen, die vom Agenten in der aktuellen
Runde erreicht werden können. Die Menge der Zellen hängt dabei von seiner derzeitigen
Position und aktuellen Geschwindigkeit ab.
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Da die Agentengeschwindigkeit eine entscheidende Rolle bei der Suche nach Zielzellen hat,
folgen einige wichtige Definitionen. Sie weichen zum Teil von den im Modell beschriebenen
ab. Das hat zum einen den Grund, dass die Erweiterung der Treppenzellen eine Anpassung
der neuen Geschwindigkeit nötig macht, zum anderen die Geschwindigkeit hier grundsätzlich
anders berechnet wird, als im Modell vorgeschlagen.

• vmax ist die maximale Geschwindigkeit, die ein Agent von alleine erreichen kann. Sie ist
ein individueller Agentenparameter.

• vcur ist die aktuelle Geschwindigkeit eines Agenten. Für sie gilt im Normalfall: 1 ≤ vcur ≤

vmax. Ist der Geschwindigkeitsfaktor einer Treppenzelle größer als 1, kann dies einmalig
dazu führen, dass vcur > vmax ist, sollte der Agent zu Beginn einer Runde auf ihr stehen
und fstair > 1 sein.

• ṽnext = max(1, (min(vcur + 1, vmax)) · fstair) bezeichnet die Geschwindigkeit des Agenten
zu Beginn der Zielzellensuche.

• vnext =

∥∥∥∥∥∥ ∆xt+1

∆yt+1

∥∥∥∥∥∥ ist die tatsächliche Geschwindigkeit des Agenten bei einer Bewegung

zur Zelle (x, y), mit der Differenz der Position der Zielzelle und des Agenten (∆xt+1 bzw.
∆yt+1). Da die Geschwindigkeit eines Agenten ganzzahlig ist, wird der entsprechende
Wert gerundet: vnext = bvnext + 0, 5c.

Zu Beginn des Algorithmus wird geprüft, ob sich der Agent auf einer Treppenzelle befindet.
Ist dies der Fall, wird seine Geschwindigkeit entsprechend des Faktors fstair der Treppenzelle
angepasst (siehe Formel für ṽnext). Dieser Wert entspricht der maximalen Distanz, die eine
potenzielle Zielzelle zur Startzelle haben darf.
Die Stockwerkserweiterung im F.A.S.T.-Modell sieht vor, dass Agenten, die am Ende einer
Runde auf einer Stockwerks-Ausgangszelle stehen, eine Ebene nach oben oder unten transpor-
tiert werden [Kre06, S. 32]. Dies handhabe ich in meiner Implementierung anders: Agenten
können sich innerhalb einer Runde über Stockwerksgrenzen hinaus bewegen. Dies erfordert
allerdings einen komplexeren Algorithmus zum Finden der gültiger Zielzellen. Er funktioniert
nach folgendem Prinzip: Ausgehend von der Startzelle des Agenten, werden stufenweise die
direkten Nachbarzellen untersucht. Sollten die Zellen vom Agenten aus sichtbar sein, wird die
euklidische Distanz zwischen ihnen berechnet und in der Nachbarzelle zwischengespeichert.
Ist die betrachtete Zelle nicht sichtbar, wird die Distanz von ihr zur letzten sichtbaren Zelle,
über welche die Suche zu ihr gelangt ist, berechnet und auf die Distanz jener sichtbaren
Zelle zur Startzelle addiert. Mit dieser Technik werden Hindernisse (sprich: Wandzellen)
auf kürzestem Weg umgangen. Der, nach außen hin steigende, Distanzwert ist gleichzeitig
das Abbruchkriterium für die Suche. Sollte eine Zelle eine größere Distanz zur Startzelle
aufweisen, als ṽnext, wird sie nicht in die Menge der zu untersuchenden Zellen aufgenommen.
Auf Grund dessen, dass einmal besuchte Zellen für die weitere Suche ignoriert werden, kann
es zu keinen Endlosschleifen oder Umwegen kommen. Irgendwann ist die Menge der zu
untersuchenden Zellen leer und die Suche endet. Der Algorithmus baut gewissermaßen
einen Sichtbarkeitsgraphen auf, wendet allerdings noch im Aufbau den Dijkstra-Algorithmus
darauf an.
Eine Besonderheit bilden nun die Teleportzellen. Die Distanz zwischen einer Teleportzelle
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A

Abbildung 3.5: Ergebnis der Zielzellensuche für Agent auf Zelle A: Seine eigene Zelle, die
beiden türkisfarbenen Teleportzellen und alle grauen Zellen kann der Agent
mit seiner Geschwindigkeit v = 7 in dieser Runde erreichen. Weiße Zellen
sind Wandzellen, schwarz sind normale, aber für den Agenten in dieser
Runde unerreichbare Zellen.

und ihrer Partnerzelle ist Null (siehe 3.3). Wird nun eine Teleportzelle vom Algorithmus in
die Menge der zu betrachtenden Zellen aufgenommen, wird ihre Partnerzelle ebenfalls hinzu-
gefügt. Der Algorithmus merkt, wenn die Distanz zwischen zwei verknüpften Teleportzellen
berechnet wird und addiert somit 0 auf den Distanzwert. Damit ist es problemlos möglich
auch Zellen auf anderen Stockwerken als Zielzellen zu erkennen, obwohl sie auf Grund ihrer
absoluten Positionswerte weit voneinander entfernt liegen. Abbildung 3.5 zeigt das Ergebnis
einer Zielzellensuche mit ṽnext = 7 von Zelle A aus startend. Die grauen Zellen wurden in die
Menge der möglichen Zielzellen aufgenommen.
Das dynamische Floor-Field (2.3.2), sowie die Berechnung des Einflusses der Trägheit (2.3.2)
benötigen einen Vektor mit der relativen Bewegung des Agenten in x- und y-Richtung.
Die Zielzellensuche summiert deshalb nicht nur den Distanzwert auf, sondern auch den
Bewegungsvektor. Da die Distanz zwischen verknüpften Teleportzellen Null beträgt, wird der
Nullvektor auf den Bewegungsvektor addiert. Der Distanzwert entspricht der euklidischen
Norm des Bewegungsvektors. Es würde somit ausreichen, nur den Bewegungsvektor zu
speichern. Da der Betrag allerdings an vielen Stellen des Programms benötigt wird, speichern
ihn die Zelle gesondert ab und verzichten auf ein regelmäßiges Neuberechnen. Der zusätzliche
Speicherplatzverbrauch ist im Vergleich zu der benötigten Rechenzeit vernachlässigbar klein.
Am Ende des Algorithmus existiert eine Menge von Zellen. Jede von ihnen könnte theoretisch
vom Agenten in dieser Runde besetzt werden. Die Zuweisung der Wahrscheinlichkeiten an
die einzelnen Zellen, sowie die tatsächliche Wahl der endgültigen Zielzelle, wird als nächster
Schritt vom Programm ausgeführt. Für Details zu diesen beiden Aktionen siehe 4.4.2.
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Während sich Kapitel 3 ausschließlich mit den Erweiterungen und Modifikationen des F.A.S.T.-
Modells in meinem Programm befasst hat, widmet sich dieses Kapitel der Implementierung
im Detail. Neben der Beschreibung aller Programmteile, will ich auch die Algorithmen,
Datenstrukturen und Denkweisen genauer vorstellen, welche die einzelnen Aufgaben der
Simulation und des Benutzerinterfaces übernehmen. Neben Pseudocode habe ich deshalb
auch Auszüge aus dem echten Java-Programmcode integriert.

4.1 Auswahl der Entwicklungsplattform

Die Implementierung des Frameworks soll auf einem mobilen Tablet-PC lauffähig sein. Die
Auswahl des Betriebssystems wurde von mir frühzeitig auf Windows (Microsoft) und An-
droid (Google) reduziert, sowie die möglichen Programmiersprachen auf C++ und Java.
Hauptsächlich deshalb, weil ich bereits einige Erfahrung mit beiden Sprachen gesammelt
hatte und deshalb einschätzen konnte, dass eine Umsetzung des Projekt mit einer von ihnen
gut möglich ist.
An den Tablet-PC wurden verschiedene Ansprüche gestellt: Ein Multicore-Prozessor zur
Beschleunigung der intensiven Rechenvorgänge wurde gefordert. Da die Simulation sehr viele
Daten bereithalten muss, lag ein besonderes Augenmerk auf dem Hauptspeicher. Seine Kapa-
zität sollte am oberen Limit des derzeit angebotenen liegen, mindestens aber 512 Megabyte.
Details, wie die Akkulaufzeit, die Eingabemöglichkeiten oder das Datenspeichervolumen
wurden größtenteils vernachlässigt. Bei der Displaygröße wurde lediglich auf eine „übliche“
Größe für Tablet-PCs geachtet (> 7 Zoll in der Bildschirmdiagonalen).
Ich entschied mich schlussendlich für das „Samsung Galaxy Note 10.1 WiFi“ mit Android
Betriebssystem (Version 4.1.2) [Sam] Zum Zeitpunkt der Entscheidung waren die Tablet-PCs,
auf denen Windows als Betriebssystem laufen, technisch gesehen im Rückstand. Dagegen
besitzt das Samsung Tablet einen NVidia Tegra 3 1, 4 GHz Prozessor mit 4 Kernen, sowie 2 GB
RAM und ein Display mit 10,1 Zoll in der Bildschirmdiagonalen.
Mit dem Entschluss für den Samsung Tablet-PC stand auch das darauf installierte Andro-
id als Betriebssystem fest. Um eine „App“ - wie die Anwendungen auf Android-Geräten
meistens genannt werden - zu erstellen, wird von der Systemseite aus vorgeschlagen das
Android Software-Development-Kit (SDK) zu benutzen, welches unter anderem das „Android
Developer Tool“ (ADT) Plugin für Eclipse enthält. Es ist eine vollständige integrierte Entwick-
lungsumgebung (IDE) für Java für die Programmierumgebung Eclipse. Sowohl das ADT, als
auch Eclipse werden von Android zum Erstellen und Debuggen von Android-Anwendungen
empfohlen. Vor allem das ADT soll vieles vereinfachen [An2].

37



4 Programmaufbau

Ergebnisse
anzeigen

Hauptmenü
Simulations-
einstellungen Simulation

Ergebnisse
Sensitivitäts-

analyse
Szenario

laden

NeueMSimulation
starten

Abbrechen

Abbrechen

ImMDemo-ModusMstarten

DurchlaufMbeendet

Szenario
auswählen

Bestätigen/
Abbrechen

Experten-
Modus

Simulation
starten

Zurück
zur

Simulation

Simulation
beendet

SimulationMneustarten

ZurückMzumMHauptmenü

wFASTframeworkw
Ordner

Abbildung 4.1: Übersicht über das Programm. Die Boxen entsprechen den „Aktivitäten“, die
beschrifteten Pfeile kennzeichnen Aktionen des Benutzers

Der Einsatz von C++ oder einer anderen Programmiersprache als Java gestaltet sich auf
Android-Geräten schwierig. Das hat mehrere Gründe: Zum einen laufen Android-Programme
auf einer virtuellen Maschine. Diese akzeptiert nur ihren spezifischen Code, der wiederum
praktisch nur durch das Android SDK erstellt und kompiliert werden kann. Um nativen Code
in einem Programm unterzubringen, stellt Android das sogenannte NDK (Native Develo-
pement Kit) zur Verfügung. Mit dessen Hilfe können Komponenten in nativem Fremdcode
unter Android lauffähig gemacht werden. Damit könnte man also C++-Code einbringen.
Dies eignet sich aber nur, wenn der Fremdcode sehr hardwarenah und effizient ist, denn die
Optimierungen des Compilers und der virtuellen Maschine sorgen auch bei normalem Java-
Code für eine effiziente Ausführung. So beschreibt es zumindest Android [An1]. Gleichzeitig
nimmt man sich mit dem NDK die Möglichkeit, bestimmte Funktionalitäten der Android API
verwenden zu können. Da die Anwendung zum Teil notwendigerweise mit Java geschrieben
werden muss und der mögliche C++-Teil, ebenfalls mit Java realisiert werden kann, kam ich
zu der Entscheidung alles komplett in Java zu schreiben.

4.2 Übersicht über Programmteile

In diesem Abschnitt will ich einen Einblick in die Struktur und den Aufbau meines Programms
geben. Abbildung 4.1 zeigt ein Schema der Programmteile und der Aktionen, die zu einem
Wechsel des aktiven Programmteils führen. Im folgenden beschreibe ich ihre Funktionen
innerhalb des Programms und welche Interaktion durch den Benutzer möglich sind. Im
Android-Sprachgebrauch handelt es sich bei den einzelnen Menüs um „Aktivitäten“. Diesen
Begriff werde ich im weiteren Verlauf ebenfalls verwenden. Die „Hauptmenü“-Aktivität ist
der Ausgangspunkt des Programms. Neben der Möglichkeit sich Informationen über die
Anwendung anzeigen zu lassen, kann man hier eine neue Simulation beginnen und die „App“
beenden. Jede Simulation beginnt in der Aktivität der „Simulationseinstellungen“. Bevor ein
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Szenario gestartet werden kann, müssen ein paar Einstellungen vorgenommen werden. Die
wichtigste ist die Auswahl eines Simulationsgebiets und der entsprechenden Konfiguration.
Dies geschieht in der „Szenario laden“-Aktivität. Eine Liste enthält dort alle XML-Dateien,
die das Programm im anwendungsspezifischen Ordner „FASTframework“ findet. Dieser
Ordner wird vom Programm angelegt, sollte er noch nichts existieren. Er beinhaltet alle
Benutzerdaten: Sowohl die Bild- und Konfigurationsdateien der Szenarien, als auch die
gespeicherten Resultate der einzelnen Simulationen. Neue Dateien für Szenarien müssen vom
Benutzer in diesen Ordner kopiert werden. Wählt der Benutzer eine Datei in der Liste aus,
wird der Inhalt der Konfigurationsdatei eingelesen und analysiert. Handelt es sich um ein
gültiges Szenario wird ein Vorschaubild des Simulationsgebiets angezeigt.
Neben der Wahl des Szenarios, ist die Anzahl der Durchläufe eine essentielle Angabe. Sie
legt fest, wie oft die Simulation mit den gewählten Parametern durchgeführt werden soll,
bevor sie als beendet gilt. Zusätzlich gibt es zwei optionale Einstellungen: Wenn eine grafische
Ausgabe gewünscht wird, sieht der Benutzer während der Simulation die Agenten, wie sie
sich über das aktuell ausgewählte Stockwerk bewegen. Der Benutzer hat die Möglichkeit, sich
durch die einzelnen Stockwerke zu schalten. Die zweite Option unterscheidet zwischen einem
Demonstrationsmodus (kurz Demo-Modus) und einem Expertenmodus. Der letztgenannte
Modus beinhaltet eine Sensitivitätsanalyse (siehe 3.4). In der „Sensitivitätsanalyse“-Aktivität,
kann der Benutzer für den eben angesprochenen Expertenmodus die Regeln zur Parameter-
wahl definieren. Eine Liste speichert die Regeln und zeigt sie für den Benutzer an. Sie können
auch einzeln wieder entfernt werden. Über diese Aktivität wird die Simulation auch gestartet.
Die Hauptaktivität ist die „Simulations“-Aktivität. Hier wird der Fortschritt der aktuellen
Simulation angezeigt. Hat der Benutzer die grafischer Ausgabe als Option gewählt, wird
hier das aktuell von ihm gewählte Stockwerk angezeigt, auf dem die Agenten zu sehen sind.
Unabhängig von der grafischen Ausgabe, kann die Simulation in dieser Aktivität jederzeit
pausiert oder vorzeitig beendet werden. Sowohl während der Simulation, als auch am Ende,
kann der Benutzer die (Zwischen-)Ergebnisse in einer gesonderten Aktivität betrachten: Die
„Ergebnis“-Aktivität zeigt eine Reihe verschiedener Statistiken in Form von Graphen und
Bildern zur aktuellen Simulation. Sie sind über eine Liste auswählbar. Statistiken, die nur
textuell darstellbar sind, werden in einer extra Datei gespeichert und können mit einem
externen Textprogramm betrachtet werden. Daneben kann der Benutzer wieder zur Simulation
zurückkehren und diese fortsetzen, sofern sie noch nicht beendet ist, oder eine neue starten.
Die Rückkehr zum Hauptmenü ist ebenfalls möglich.

4.3 Initialisierung der Simulation

Jede Simulation muss vor dem Start initialisiert werden. Ihre Erstellung gliedert sich in
drei bis vier Teile: Zuerst muss die Konfigurationsdatei eingelesen werden. Danach wird
das Simulationsgebiet, das durch ein Bild definiert ist, eingelesen und daraus die Zellen
erstellt. Für das statische Floor-Field müssen die kürzesten Distanzen aller Zellen zu allen
Ausgangszellen berechnet werden. Außerdem muss für jede Zelle die nächstgelegene Wand-
zelle gefunden werden. Dies geschieht im dritten Teil der Initialisierung. Der vierte und letzte
Part wird zusätzlich auch vor jedem einzelnen Durchlauf durchgeführt: Wird die Simulation
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im Expertenmodus ausgeführt, müssen vor jedem Durchlauf (und damit auch vor dem ersten)
die Regeln der Sensitivitätsanalyse angewandt werden. Dieser Schritt fällt im Demo-Modus
weg.
Die folgenden Abschnitte behandeln diese vier Unterteilungen der Initialisierungsphase im
Detail.

4.3.1 Konfigurationsdatei

Die Konfiguration einer Simulation besteht aus zwei Teilen: Einer Bilddatei, in der der Aufbau
des Simulationsgebiets beschrieben ist (4.3.2) und einer XML-Datei, in der verschiedene
Parameter und zusätzliche Informationen zum Gebiet definiert sind: Globale Simulationspa-
rameter, die Agentenkonstanten, die Faktoren der einzelnen Treppen- und Wandzellen, aber
auch die Position und Größe der einzelnen Stockwerke, sowie Lage der Teleportzellen und
ihrer Partnerzellen. Mit dieser Datei befasse ich mich in diesem Abschnitt.
Das Listing 4.1 stellt eine Beispieldatei dar. Hier ist jeder Parameter exemplarisch mit min-
destens einem Wert vertreten. Auch wenn vieles in der Datei selbsterklärend ist, will ich im
Folgenden die einzelnen Tags näher erläutern.

• <FASTframework>: Dieser umschließende Tag muss vorhanden sein, sonst wird die Datei
als ungültig bezeichnet und es wird nichts eingelesen.

• <common>: Hier sind vier allgemeine Einstellungen gesammelt: <area> speichert den
relativen Pfad und Dateinamen, der zu dieser Simulation gehörenden Bilddatei. Das
Wurzelverzeichnis ist dabei der FASTframework-Ordner. <maxwalldist> verlangt einen
Wert für den maximalen Sicherheitsabstand der Agenten gegenüber von Wänden (2.3.2).
Die Tags <alpha> und <delta> entsprechen den gleichnamigen Variablen zur Änderung
des dynamischen Floor-Fields (2.2.2). Sie benötigen einen Wert im Bereich [0, 1].

• <floors>: Innerhalb dieses Tags werden die Definitionen der einzelnen Stockwerke
gesammelt. Diese sind jeweils in <floor>-Tags gespeichert. Zu den Definitionen gehört
der Name des Stockwerks. Er macht das Stockwerk für den Benutzer identifizierbar.
Außerdem muss die Angabe der Position (<position>) und Größe (<dimension>) definiert
sein. Die Position entspricht dem linken oberen Pixel des Stockwerks in der Bilddatei,
mit (0, 0) als oberster, linker Pixel. Die Dimension entspricht der Anzahl Pixel des
Stockwerks in jeweils beiden Richtungen.

• <agents>: Die Definitionen der Agentengruppen werden innerhalb dieses Tags gespeichert.
Eine Gruppe wiederum, wird mittels des <group>-Tags definiert, deren Anzeigename im
Attribut name angegeben wird. Die einzelnen Parameter der entsprechenden Agenten
sind als Attribute des <params>-Tags definiert. Die Attributnamen entsprechen den
Agentenkonstanten, bzw. v_max und v_start der Maximal- bzw. Startgeschwindigkeit der
Agenten. Die Zuordnung der Parameter an die Agenten, erfolgt durch den Farbwert,
den ein Agent in der Bilddatei erhält. Alle Agenten mit derselben Farbe gehören zur
selben Gruppe. Die Farbwerte werden aufsteigend sortiert und nacheinander den hier
definierten Gruppen zugewiesen. Das hat den Grund, dass der Ersteller der Bilddatei
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mehr Freiräume beim Vergeben der Farben hat und eine Änderung der Farbe nicht
unbedingt zu einer Änderung der Konfigurationsdatei führen muss.

• <teleports> (optional): Hier werden die Teleportzellen definiert. Zwei Zellen werden
jeweils innerhalb eines <teleport>-Tags definiert: <from> gibt die Position der einen Zelle
an, wobei dieselbe Regel gilt, wie bei der Stockwerkskonfiguration: (0, 0) ist der oberste,
linke, gültige Pixel. <to> gibt entsprechend die Position der Partnerzelle an.

• Das Framework bietet die Möglichkeit der dynamischen Parameterwahl für Treppen-
und Wandzellen. Das kann mittels der Sensitivitätsanalyse geschehen, oder direkt hier
in der Konfigurationsdatei. <stairs> bzw. <walls>: Der Wert für das default-Attribut

Listing 4.1: Beispiel einer Konfigurationsdatei
<?xml version="1.0" encoding="UTF-8"?>
<FASTframework >
<common> <!-- common settings -->
<area name="area.png" />
<maxwalldist value="4.0" />
<alpha value="0.05" />
<delta value="0.10" />
</common>
<floors> <!-- floor configuration -->
<floor name="1st floor: Foyer">
<position x="0" y="0" />
<dimensions w="50" h="40" />
</floor>
<floor name="2nd floor: A&amp;B Electronics">
<position x="50" y="0" />
<dimensions w="35" h="70" />
</floor>
</floors>
<agents> <!-- agent configuration -->
<group name="employees">
<params v_max = "4" v_start = "1" k_e = "6.0" k_s = "2.5" k_d = "1.0" k_i = "0.4" k_w =

"0.2" k_p = "0.3" />
</group>
<group name="security">
<params v_max = "6" v_start = "3" k_e = "6.0" k_s = "2.5" k_d = "0.5" k_i = "1.2" k_w =

"0.01" k_p = "0.0" />
</group>
</agents>
<teleports > <!-- teleportation cells configuration --> <!-- optional -->
<teleport >
<from x="49" y="2" />
<to x="50" y="17" />
</teleport >
</teleports >
<stairs default="0.5"> <!-- stair configuration --> <!-- optional -->
<id color="0x006600" factor="0.15" />
<id color="#00FF00" factor="2.5" />
</stairs>
<walls default="1.0"> <!-- wall configuration --> <!-- optional -->
<id color="0xFFFFFF" factor="1.5" />
<id color="#888888" factor="0.5" />
</walls>
</FASTframework >
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entspricht dem Standardfaktor. Er wird allen Treppen- bzw. Wandzellen zugewiesen,
für die es keine explizite Definition gibt. Eine solche Definition kann mit dem <id>-Tag
erfolgen: Das Attribut color spezifiziert den Farbwert der Zellen in der Bilddatei und
das Attribut factor den entsprechenden Wert, der diesen Zellen zugewiesen werden
soll. So bekommen z. B. alle Wandzellen, die 0xFFFFFF als Farbwert in der Bilddatei
bekommen haben, den Faktor 1, 5 zugewiesen, während Treppenzellen, die als Farbwert
]005400 haben, den Standardfaktor 2, 0 bekommen, da für sie keine Definition vorliegt.
Zu beachten ist folgendes: Gültige Werte für das color-Attribut sind hexadezimale Zahlen,
die mit „0x“ oder „]“ beginnen und normale dezimale Ganzzahlen. Der Farbwert ist als
RGB-Code zu interpretieren.

Alle XML-Dateien, die im „FASTframework“-Ordner liegen, werden in der „Szenario-Laden“-
Aktivität in einer Liste aufgeführt. Wählt man einen Eintrag aus, wird die XML-Datei geladen
und ausgewertet. Alle eingelesenen Werte werden auf Existenz und Gültigkeit hin überprüft.
Sollten wichtige Parameter fehlen, wird das Einlesen gestoppt und eine Fehlermeldung mit
entsprechenden Hinweisen ausgegeben. Es kann allerdings nicht alles überprüft werden: Da zu
diesem Zeitpunkt lediglich die Existenz der Bilddatei geprüft wurde, das Bild selbst aber noch
nicht verarbeitet wurde, kann die Gültigkeit der Stockwerks- und Teleportzellenangaben nicht
geprüft werden. Auch ein Vergleich der Anzahl von Agentengruppen und Agentenfarbwerten
kann erst später erfolgen. Somit kann es passieren, dass ein Szenario scheinbar erfolgreich
geladen wird, obwohl es mit dieser Konfiguration nicht oder nur fehlerhaft simuliert werden
kann. Der Benutzer muss an dieser Stelle selbst die entsprechende Sorgfalt aufbringen. Ist mit
der Konfigurationsdatei (vorerst) alles in Ordnung, erscheint ein Vorschaubild des Simulati-
onsgebiets auf der rechten Seite der Aktivität. Die eingelesen Werte werden im Erfolgsfall
in einem Paket (Bundle) gespeichert und zu den nachfolgenden Aktivitäten transportiert. In
der „Sensitivitätsanalyse“-Aktivität werden die Informationen zum Teil weiterverarbeitet, in
der „Simulations“-Aktivität schließlich, werden alle Informationen gebraucht, um z. B. die
Zellen-Objekte zu erstellen.

4.3.2 Bilddatei des Simulationsgebiets

Die Bilddatei soll der Definition des Simulationsgebiets dienen. Jeder Pixel mit seinem
Farbwert entspricht dabei einer Zelle. Damit die Bilddatei korrekt eingelesen werden kann,
muss sie folgende Voraussetzungen erfüllen:

• Datenformat: PNG (RGBA 32-Bit, unkomprimiert)

• 1 Pixel ≡ 1 Zelle (≈ 40cm2)

• Stockwerke müssen immer rechteckig sein, bedingt durch die Definitionen in der
Konfigurationsdatei.

• Nicht benötigte Teile des Bildes sollten zur Beschleunigung der Simulation in Wandzel-
lenfarben angemalt werden.

• Eine Wandzelle sollte nach Möglichkeit im Norden, Süden, Westen oder Osten an eine
andere Wandzelle angrenzen (3.5.2).
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Zellentyp Spektrum der gültigen Farben

in RGB in hexadezimal in Worten

Normal (0, 0, 0) 0x000000 Schwarz

Wand (1, 1, 1) bis (255, 255, 255) 0x010101 bis 0xFFFFFF Grauwerte von 1 bis 255

Treppe (0, 1, 0) bis (0, 255, 0) 0x000100 bis 0x00FF00 Grünwerte von 1 bis 255

Teleport (0, 255, 255) 0x00FFFF Türkis (Cyan)

Ausgang (0, 0, 255) bis (255, 0, 255) 0x0000FF bis 0xFF00FF Blau mit Rotwerten von 0
bis 255

Agent (255, 0, 0) bis (255, 255, 0) 0xFF0000 bis 0xFFFF00 Rot mit Grünwerten von
0 bis 255

Tabelle 4.1: Farbtabelle: Welcher Zelltyp bzw. welche Zellengruppe benötigt welchen Farbwert

Tabelle 4.1 enthält die Vorschriften für die Vergabe der Farbwerte in der Bilddatei. Alle
Farben, die von den hier definierten abweichen, gelten als ungültig. Die entsprechenden
Zellen werden zu Wandzellen der Farbe 0xFFFFFF (weiß). Nachdem die Konfigurationsdatei
eingelesen wurde, öffnet die „Szenario-Laden“-Aktivität die Bilddatei. Diese liest der Reihe
nach die einzelnen Farbwerte der Pixel ein und speichert sie in einem normalen Integer-Array,
das ich nachfolgend als Farb-Array bezeichnen möchte. Die Reihenfolge des Einlesens ist
dabei von links oben nach rechts unten zu interpretieren. Die tatsächliche Verarbeitung der
Farbwerte, um daraus entsprechende Zellen zu generieren, wird erst beim Erstellen der
„Simulations“-Aktivität vorgenommen. Bis dahin werden die Informationen über das Bild
- die Abmessungen und das Farb-Array - in einem Paket (Android-Datenstruktur Bundle)
weitergereicht. Das hat den Hintergrund, dass ich die Erstellung der Simulationsobjekte an
einer zentralen Stelle haben wollte. Da viele Teile der Simulation erst zum späteren Zeitpunkt
initialisiert werden können, habe ich die Generierung der Zellen ebenfalls nach hinten verscho-
ben. Bei der späteren Verarbeitung, wird über das Farb-Array iteriert. Für einen einfacheren
Zugriff im späteren Simulationsverlauf, werden die aus den Farbwerten erstellten Zellen in
einem zweidimensionalen Array („Zellen-Array“) gespeichert (Vgl. 4.3.3).
Je nach Farbe, werden unterschiedliche Zellen erstellt. Mit Ausnahme von Agenten und
Ausgangszellen, geschieht dies direkt im aktuellen Iterationsschritt. Zusätzlich wird die Posi-
tion und die Farbe der Zelle gesetzt. Das Objekt wird nach Fertigstellung an entsprechender
Position im Zellen-Array gespeichert. Agenten- und Ausgangszellenobjekte können nicht
direkt erstellt werden, weil sie meistens in Gruppen zusammengefasst sind. Eine Gruppe
wird (wie schon in 4.3.1 angesprochen) durch die gemeinsame Farbe im Bild definiert. Da
beim ersten Durchlauf über die Farbwerte die Reihenfolge der Gruppen noch ermittelt wird,
können die Agenten und Zielzellen noch nicht ihren entsprechenden Gruppen zugeordnet
werden. Deshalb wird zuerst folgendes gemacht: Die Farbwerte der Agenten- und Aus-
gangsgruppen werden jeweils getrennt in einer aufsteigend sortierten Menge gespeichert,
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in der Mehrfacheinträge nicht vorkommen können. In Java erledigt diese Aufgabe eine
TreeSet<Integer>-Datenstruktur. Die Anzahl der Elemente dieser Menge entspricht damit der
Anzahl der unterschiedlichen Gruppen. Daneben wird der Farbwert zusammen mit der
Position als Tripel in einer Liste gespeichert (ArrayList<int[3]>); jeweils getrennt für Agenten
und Ausgangszellen. Es wird implizit angenommen, dass ein Agent initial auf einer leeren
Zelle steht. Deshalb wird für diesen Typ zusätzlich eine solche leere Zelle an der Position des
Agenten erstellt und dem Zellenarray hinzugefügt. Falls eine Farbe ungültig ist, wird an ihrer
Position eine Wandzelle mit dem Standardfaktor erstellt. Der Faktor richtet sich nach dem
Standardwert, der in der Konfigurationsdatei vergeben wurde. Ist dort keiner vorhanden
oder ungültig, gilt 1, 0 als Standardwert.
Wenn der Durchlauf durch das Farb-Array vollendet ist, müssen die Agenten und Aus-
gangszellen erstellt und ihren jeweiligen Gruppen zugeordnet werden. Als erstes werden die
Ausgangsobjekte (Exit-Klasse) erstellt. Jede Ausgangszelle speichert eine Referenz auf ein
solches Ausgangsobjekt, das damit die Gruppe für mehrere Ausgangszellen darstellt. Ihre
Identifikationsnummer (ID) entspricht dabei der Position des Farbwertes in der sortierten
Menge. Danach wird über die Tripel-Liste der Ausgangszellen hochgezählt. Die Zelle wird
generiert und ihre Position und Farbe an Hand der Werte des Tripels gesetzt. Mit Hilfe des
Farbwertes wird die ID der entsprechenden Ausgangsgruppe ermittelt und die Referenz
auf das Ausgangsobjekt gesetzt. Zum Abschluss wird die Ausgangszelle im Zellenarray
gespeichert. Listing 4.2 zeigt hierfür den entsprechenden Quellcodeausschnitt. Agenten

Listing 4.2: Erstellung der Ausgangszellen
ArrayList <int[]> exit_pixelvalues = new ArrayList <int[]>();
// (...)
for (int[] it : exit_pixelvalues)
{
// it[0] = y-position , it[1] = x-position , it[2] = color
Cell_Exit cell = new Cell_Exit(new Point(it[0], it[1]));
cell.setColor(it[2]);
int exit_id = exit_map.get(it[2]);
cells.get(it[1]).put(it[0], cell);
cell.setExitReference(exits.get(exit_id));

}

werden nicht im Zellenarray gespeichert. Da sie permanent ihre Position verändern und
gesondert auf sie zugegriffen wird, werden sie in einem assoziativen Array gespeichert
(SparseArray<ArrayList<Agent>>), wobei der Schlüssel die ID der Agentengruppe und der Wert
eine Liste der Agentenobjekte der entsprechenden Gruppe ist. Beim Iterieren über die Agenten-
Tripel wird nun ein Agentenobjekt erstellt. Die Position ist im Tripel definiert. Der ebenfalls dort
gespeicherte Farbwert, dient zum Ermitteln der Agentengruppe. Ihre ID gibt den Speicherort
des Agenten im SparseArray vor. Außerdem werden die, in der Konfigurationsdatei definierten
und in der Agentengruppe gespeicherten, Parameter gesetzt. Siehe dazu auch Listing 4.3. Als
letzten Schritt müssen die Teleportzellen mit ihren Partnerzellen verknüpft werden. Auch
wenn sie bereits alle erstellt wurden, die Referenzen auf ihre Partner können erst jetzt gesetzt
werden. Hier helfen die Definitionen aus der Konfigurationsdatei. Sie werden der Reihe
nach durchgegangen. Es wird auf die Teleportzelle im Zellen-Array an der „from“-Position
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Listing 4.3: Erstellung der Agenten (Ausschnitt)
ArrayList <int[]> agent_pixelvalues = new ArrayList <int[]>();
// (...)
for (int[] it : agent_pixelvalues)
{
int agentgroup_id = agent_map.get(it[2]);
double[] params = agentgroups.get(agentgroup_id).params;

// parameters for Agent-constructor:
// position , ID of agent group, agent-parameters , reference to cell-array and

underlying cell
Agent cell = new Agent(new Point(it[0], it[1]), agentgroup_id , params, cells,

cells.get(it[1]).get(it[0]));
cell.setColor(it[2] | 0xFF000000);
ArrayList <Agent> temp = agents.get(agentgroup_id);
if (temp == null)
{
temp = new ArrayList <Agent >();
agents.put(agentgroup_id , temp);

}
temp.add(cell);

}

zugegriffen und ihr die Referenz auf die Teleportzelle an der „to“-Position zugewiesen. Das
gleiche gilt in umgekehrter Richtung.
An vielen Stellen kann es dazu kommen, dass die Informationen aus der Bilddatei nicht mit
denen aus der Konfigurationsdatei übereinstimmen. Die Angaben der Teleportzellen können
falsch sein, so dass an den definierten Positionen keine Teleportzellen erstellt wurden. Ein
Verknüpfen der Teleportzellenpartner ist damit unmöglich. Es kann auch sein, dass mehr
Agentengruppen im Bild vorhanden sind, als in der XML-Datei definiert wurden. Oder es
wurden z. B. keinerlei Ausgangszellen im Bild definiert. Alle diese Gründe führen zu einem
Abbruch der Initialisierung, da ein korrektes Ausführen des Simulation unmöglich oder
fehlerhaft ist. Der Abbruch wird dem Benutzer über Fehlermeldungen mitgeteilt und er wird
zurück zur „Simulationseinstellungen“-Aktivität geführt.

4.3.3 Distanzberechnungen

In Kapitel 3.5 ging ich bereits auf die Algorithmen zur Distanzberechnung ein. Der Fokus
lag allerdings auf den Modifikationen der Originalalgorithmen. In diesem Abschnitt will ich
detaillierter auf die Implementierung der Algorithmen eingehen.

Wichtige Datenstrukturen

Im Vorfeld traten bereits oft abstrakte Objekte wie das Zellen-Array, die Knotenzellenmenge
oder die einzelnen Stockwerksebenen auf. Für die Implementierung des F.A.S.T.-Modells
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müssen diese abstrakten Gebilde als konkrete Datenstrukturen definiert werden. Deshalb will
ich in diesem Teil des Kapitels die wichtigsten Datenstrukturen präsentieren und erläutern,
warum ich mich für sie entschieden habe. Da Java die Programmiersprache der Wahl war,
führe ich auch direkt Datenstrukturen auf, die in dieser Sprache vorhanden sind.

• SparseArray<T>: Eine neue Datenstruktur von Android. Vergleichbar mit Java-HashMaps,
allerdings sind die Keys primitive Integer-Werte (ints). Dadurch entfällt der Aufwand
von Wrapper-Variablen, wodurch Zugriffe auf Elemente von SparseArrays schneller
sind, als bei HashMaps. Daneben gibt es noch weitere neue Datenstrukturen, wie z. B.
SparseIntArray, SparseBooleanArray und LongSparseArray. Eine ausführliche Beschreibung
dieser, sowie aller anderen Objekte, findet man in [An3].

• class Cell: Die Oberklasse aller Zelltypen. Sie enthält allgemeine Eigenschaften und
Funktionen aller Zellen. Davon abgeleitet sind alle folgenden Zelltypen: Cell_Exit,
Cell_Wall, Cell_Teleport, Cell_Stair, Agent extends Cell. Die Agent-Objekte nehmen eine
besondere Rolle dabei ein: Sie werden auf Grund ihrer Beweglichkeit gesondert gespei-
chert und besitzen eine Vielzahl spezifischer Funktionen, unter anderem zum Finden
von Zielzellen oder eines neuen Ausgangs.

• SparseArray<SparseArray<Cell>> cells: Ein zweidimensionales assoziatives Array (row-
first). Es speichert die Zellobjekte des Simulationsgebiets. Nach der Erstellung des
Arrays während der Initialisierung der Simulation, gibt es keine Veränderungen mehr.
Es finden nur noch lesende Zugriffe statt, diese allerdings auf beliebige Indizes. Der
Zugriff wird durch die primitiven Integer-Keys und das Hashing der Elemente allerdings
beschleunigt.

• SparseArray<ArrayList<Agent>> agentsById: Dieses assoziative Array verknüpft die Agen-
tengruppen mittels ihrer Identifikationsnummern mit einer Liste der Agenten, die zu
der Gruppe gehören. Jeder Agent gehört zu genau einer dieser Listen. Die direkte
Filterung der Agenten nach Gruppe, erspart in vielen Situationen im Programm ein
vollständiges Durchlaufen aller Agenten, wenn z. B. Parameter gruppenweise geändert
werden müssen oder die Anzahl der Agenten einer Gruppe gefragt ist.

• HashSet<Cell> nodeCells: Die Menge der Knotenzellen. Hier werden Referenzen auf Zellen
aus dem vorigen cells-Array gespeichert. Oftmals muss entschieden werden, ob ein
Element in dieser Menge enthalten ist. Dies wird durch das Hashen der Elemente sehr
schnell erledigt. Gleichzeitig garantiert das HashSet, dass nur jeweils ein Exemplar eines
Objekt in der Menge enthalten ist. Eine vorherige Prüfung fällt damit weg, was zur
Übersichtlichkeit des Programmcodes beiträgt. Da die Reihenfolge der Objekte keine
Rolle spielt, kann hier auf den Einsatz von SparseArrays oder HashMaps verzichtet werden.

• HashSet<Cell> exitCells: Die Menge der Ausgangszellen. Hier sprechen dieselben Ar-
gumente für den Einsatz der HashSet-Datenstruktur, wie auch schon für nodeCells. Da
an manchen Stellen im Programmcode gesondert auf die Ausgangszellen zugegriffen
werden muss, habe ich sie gesondert gespeichert, obwohl die originalen Ausgangszelle-
nobjekte in cells gesichert sind.
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• XML_Floor: Eine Container-Klasse für Ebenen. Ein Objekt dieser Klasse speichert den
Namen (String), die Position und die Abmessungen (Point-Objekte) der Ebene. Die
Werte der Position und Abmessung sind als Pixelpositionen im Bild zu interpretieren.
Die Informationen werden aus der Konfigurationsdatei herausgelesen und für spätere
Zugriffe aus anderen Teiles des Programms in diesen Klassenobjekten gespeichert.

• ArrayList<XML_Floor> floors: Dieses Array sammelt alle Stockwerksinformationen. Der
Array-Index entspricht dabei der Reihenfolge ihres Auslesens aus der Konfigurations-
datei und damit auch gleichzeitig der ID der Ebene. Vor allem die Distanzberechnungs-
algorithmen benötigen diese Informationen, um entweder über die einzelnen Ebenen
zu iterieren, oder um die Lage zweier Zellen zu vergleichen.

Finden von Knotenzellen

Der erste Teilalgorithmus für die Distanzberechnungen bestimmt die Knotenzellen im Simula-
tionsgebiet. Siehe dazu auch 3.5.2. Als erstes wird über alle Zellen iteriert und für jede Zelle die
Nachbarzellen untersucht. Das hat zur Folge, dass für die Randzellen eine Sonderbehandlung
notwendig ist, denn hier liegen manche Nachbarzellen außerhalb des gültigen Array-Bereichs.
Achtet man nicht darauf, wirft das Programm sofort IndexOutOfBounds-Exceptions. Um dem
vorzubeugen wird der obere, untere, linke und recht Zellenrand, sowie die mittleren Zellen
jeweils gesondert untersucht. Ein weiteres Problem ist die Übersetzung der Forderung, wann
eine Zelle eine Knotenzelle ist, in Programmcode: Wenn eine Zelle n 1 gemeinsame Kante
mit der Wandzelle c hat und weniger als 2 gemeinsame Ecken mit anderen Nachbarzellen
von c hat, dann ist n eine Knotenzelle. In Java-Code übersetzt, ergibt dies mehrere boolsche
Ausdrücke, in denen die entsprechenden Kombinationen auf Wandzellen-Zugehörigkeit
mittels instanceof geprüft werden. Als letzten Schritt in diesem Algorithmus muss nochmals
über alle Zellen iteriert werden und alle Zellen, die („instanceof“) Teleportzellen sind, in
die Menge der Knotenzellen aufgenommen werden. Der dazugehörige Pseudocode steht in
Algorithmus 4.1.

Verknüpfe Zellen mit sichtbaren Knotenzellen

Wie bereits in 3.5.3 beschrieben, dient dieser Algorithmus zwei Zwecken: Zum einen werden
Referenzen auf alle sichtbaren Knotenzellen in allen Zellen gespeichert. Zum anderen werden
auch die Distanzen zu den referenzierten Knotenzellen berechnet und gespeichert.
In einer äußeren Schleife wird über die einzelnen Stockwerke iteriert. Die floors-Datenstruktur
liefert die Informationen über sie, so dass nur der Bereich des Stockwerks in cells angeschaut
wird. Erstes Ziel des Algorithmus ist es, eine Menge mit Referenzen auf die Randzellen der
Ebene zu füllen; eine Randzelle, bildet mindestens an einer Seite den Rand des Stockwerks. Das
geschieht durch einfache For-Schleifen und Zugriffe auf das Zellen-Array. Sind die Randzellen
bestimmt, wird über alle Knotenzellen iteriert. Da jede Zelle die Nummer des Stockwerks
speichert, auf der sie liegt, kann ein einfacher Vergleich dafür sorgen, dass Knotenzellen
ignoriert werden, die nicht im aktuellen Stockwerk liegen. Die verbleibenden Knotenzellen
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Algorithmus 4.1 Bestimme Knotenzellen
function DetermineNodeCells(cells, nodeCells)

h← |cells|, w← |cells[0]|
for (y = 0→ h− 1) do

for (x = 0→ w− 1) do
c← cells[y][x]
if (c type of CellWall) then

for all (neighbor cell n of c) do
if (n shares 1 edge with c and < 2 corners with surrounding cells of c) then

nodeCells← nodeCells ∪ n
end if

end for
end if

end for
end for
nodeCells← nodeCells∪

{
t ∈ cells : t type of CellTeleport

}
end function

dienen als Startpunkt für eine weiter For-Schleife, die nun über die Randzellen iteriert. Auf
diese werden die Sichtstrahlen von der Knotenzelle ausgehend geschossen. Dieser „Schuss“
ist im Programmcode als Funktionsaufruf eines angepassten Bresenham-Algorithmus zu
sehen. Listing 4.4 zeigt genau diesen Programmausschnitt, der gesamte Algorithmus ist in
Pseudocode 4.2 schematisch dargestellt.

Listing 4.4: Verknüpfe sichtbare Zellen
for (Iterator<Cell> n_it = nodeCells.iterator(); n_it.hasNext(); )
{
Cell nodeCell = n_it.next();
if (nodeCell.getFloorLvl() != fnmb) //fnmb = current floor number
continue;

for (Cell bCell : borderCells)
bresenhamNode(nodeCell , bCell, cells, nodeCells);

}

Erweiterter Bresenham-Algorithmus

Der Pseudocode 4.4 zeigt den Standard-Bresenham-Algorithmus [Cun]. Diesen habe ich
erweitert, so dass er Auskunft darüber gibt, ob sich zwei Zellen gegenseitig sehen. Zusätzlich
wird die Distanz zwischen der Startzelle und den auf dem Weg befindlichen Zellen berechnet.
Da die Startzelle eine Knotenzelle ist, wird die Distanz mit der Referenz auf die Knotenzelle
als Paar in der anderen Zelle gespeichert. Diesen Zusatzcode habe ich an das Ende der inneren
For-Schleife angefügt. Dort sind die Berechnungen der neuen Zellenposition abgeschlossen
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Algorithmus 4.2 Verknüpfe Zellen mit sichtbaren Knotenzellen
function LinkCellDists(floors, cells, nodeCells)

for all ( f ∈ floors) do
borderCells← {c ∈ cells : c is in boundary belt of cells of f}
for all (n ∈ nodeCells) do

if (n not located in f ) then
continue with next n

end if
for all (b ∈ borderCells) do

BresenhamNode(n, b, cells, nodeCells)
end for

end for
end for

end function

Algorithmus 4.3 Bresenham-Algorithmus für Knotenzellen
function BresenhamNode(src, dest, cells, nodeCells)

initialize variables for Bresenham’s algorithm (see 4.4)
while (src , dest) do

move pixel by pixel towards dest
c← cells[src.y][src.x]
if (c type of CellWall) then

return
else

if (src not a node cell of c) then
dist← ‖src− c‖
add (src, dist)to c

end if
end if

end while
end function

und ein weiterer Zählschritt steht bevor. Sollte eine Wandzelle auf dem Weg der beiden
Grenzzellen liegen, wird der Algorithmus ohne weitere Berechnungen an der Stelle des
Fundes abgebrochen. Denn dann ist klar, dass es keinen Sichtkontakt zwischen den folgenden
Zellen und der Startzelle geben kann.

Bestimmung der Distanzen von Knotenzellen zu Ausgängen

Wenn dieser Algorithmus eingesetzt wird, kennt jede Zelle ihre sichtbaren Knotenzellen und
die Distanzen zu ihnen. Es fehlen aber noch die endgültigen Distanzberechnungen zu den
Ausgangszellen. Für die Knotenzellen wird dies nun hier erledigt. Der Pseudocode 4.5 zeigt
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Algorithmus 4.4 Algorithmus von Bresenham
function Bresenham(src, dst)

dx ← |dstx − srcx|, dy ← |dsty − srcy|

incx ←


−1 dx < 0

0 dx = 0

1 dx > 0

incy ←


−1 dy < 0

0 dy = 0

1 dy > 0
dx ← |dx|, dy ← |dy|

if (dx > dy) then
pdx ← incx, pdy ← 0
e f ← dy
es← dx

else
pdx ← 0, pdy ← incy
e f ← dx
es← dy

end if
ddx ← incx, ddy ← incy
err← es/2
for (i = 0→ es− 1) do

err← err− e f
if (err < 0) then

err← err + es
srcx ← srcx + ddx, srcy ← srcy + ddy

else
srcx ← srcx + pdx, srcy ← srcy + pdy

end if

here the current cell on the line can be accessed

end for
end function
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diesen Algorithmus in einer schematischen Darstellung.
Der Algorithmus iteriert über die Ausgangszellen. Somit erhalten alle Knotenzellen ihre
kürzesten Entfernungen zu jeweils einer Ausgangszelle. Der innere Teil der Schleife implemen-
tiert Dijkstras Algorithmus [Dij59]. Der Startknoten jeder Suche ist die aktuelle Ausgangszelle
e ∈ exitCells. Die Menge Q speichert die Knotenzellen, deren finale Distanz noch unbekannt
ist. Bei mir wird Q von einer HashSet<Cell> repräsentiert. Es müssen an beliebigen Stellen
Elemente hinzugefügt werden, an bestimmten Stellen Elemente gelöscht werden und sehr oft
entschieden werden, ob ein Element in Q enthalten ist. Daher bietet sich diese Datenstruktur
hervorragend an. D ist ein assoziatives Array, das Knotenzellen (Key) mit ihrer aktuell
minimalen Distanz (Value) zu e speichert. Eine effiziente und einfach handhabbare Daten-
struktur stellt Java mit der HashMap<Cell, Double> zur Verfügung. Der Vorteil beim Hinzufügen
neuer Elemente ist folgender: Ist der Schlüssel noch nicht vorhanden, wird das neue Paar
einfach hinzugefügt. Ist er dagegen schon vorhanden, wird sein Wert durch den neuen Wert
überschrieben. Es muss im Vorfeld nichts abgefragt oder gelöscht werden, was Operationen
und Zeit spart.
Den Ablauf des Algorithmus von Dijkstra will ich hier nicht beschreiben, aber auf ein paar
Details eingehen. Die Vorbelegung der Distanzwerte der Nicht-Startzellen ist mit Java ein-
fach möglich: Double.POSITIVE_INFINITY ist ein exklusiver Status der Double-Objekte, das dem
mathematischen „∞“ entspricht. Die Zelle in D, deren Distanz zu Beginn der While-Schleife
am geringsten ist, gilt als vollständig bearbeitet. Ihre Distanz ist minimal und somit wird das
Distanz-Paar (e, distmin) in ihr gespeichert: Jede Zelle hält eine HashMap<Cell, Double>, ähnlich
zu D, bereit. Dort wird eine Ausgangszellenreferenz mit einer Entfernung verknüpft. Am
Ende dieses Teilalgorithmus enthalten die Maps aller Knotenzellen die gewünschten minima-
len Distanzen zu den Ausgangszellen. Die Menge N der Nicht-Wand-Nachbarzellen von u
entspricht in meiner Version einer schlichten Set<Cell>, da lediglich eine Iteration über ihre
Elemente notwendig ist. Wie der Algorithmus von Dijkstra es vorsieht, ist die neue minimale
Distanz zwischen n ∈ N und e : distmin = min (D[u] + ‖u− n‖, D[n]).

Bestimmung der Distanzen normaler Zellen zu Ausgangszellen

Es fehlen vor der Ausführung dieses Algorithmus für die endgültigen Distanzberechnungen
noch die Distanzen aller Nicht-Knotenzellen zu allen Ausgangszellen. Dies wird von diesem
letzten Teilalgorithmus erledigt. Wie bereits im vorherigen Abschnitt 4.3.3, wird in einer
äußeren Schleife über die Ausgangszellen iteriert (e ∈ exitCells). Siehe dazu auch Pseudocode
4.6. Innerhalb dieser Schleife wird über alle Elemente des Zellen-Arrays iteriert (cell ∈ cells).
Sollte cell eine Wandzelle oder Knotenzelle sein, wird direkt zur nächsten Zelle gesprungen,
denn für erstere werden keine Distanzwerte benötigt und für letztere sind sie bereits im
vorigen Schritt berechnet worden. Mittels eines Vergleichs durch instanceof Cell_Wall bzw.
der Abfrage nodeCells.contains(cell) ist dies sehr schnell möglich. Im anderen Fall wird über
alle Knotenzellen iteriert, die für cell sichtbar sind. Sie sind in einer HashMap<Cell, Double> im
Zellenobjekt gespeichert und wurden im Algorithmus zur Verknüpfung der Zellen hinzuge-
fügt (Algorithmus 4.2). Da es in Java keinen Iterator für HashMaps gibt, musste ich mit MapEntry
arbeiten. Listing 4.5 zeigt den entsprechenden Ausschnitt. Die For-Schleife iteriert über die
Paare der Map. Innerhalb dieser Schleife, wird die minimale Distanz zwischen cell und e stets
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Algorithmus 4.5 Distanzen zwischen Knoten- und Ausgangszellen
function DetermineExitDists(nodeCells, exitCells)

for all (e ∈ exitCells) do
for all (v ∈ nodeCells) do

D← D∪ (v,∞)
end for
D← D∪ (e, 0)
Q← nodeCells
while (Q , ∅) do

(u, distmin)← pair with minimum distance in D
Q← Q \ u
add (e, distmin) to u
N← {n : n is direct neighbor of u}
for all (n ∈ N) do

if (n ∈ Q) then
alt← D[u] + ‖u− n‖
if (alt < D[n]) then

D← D∪ (n, alt)
end if

end if
end for

end while
end for

end function

aktualisiert, indem das Minimum der bereits existierenden Distanz und der Summe der beiden
Distanzen ‖cell− Knotenzelle ‖ und ‖ Knotenzelle −e‖ genommen wird. Das resultierende Paar
aus Ausgangszelle e und Distanz distmin wird in der Ausgangszellen-Map von cell gespeichert.
Auch diese Map ist eine HashMap<Cell, Double>.
Ist die äußerste For-Schleife beendet, kennen alle Nicht-Wandzellen ihre kürzesten Ausgangs-
distanzen und haben diese intern gespeichert. Betrachtet man die gespeicherten Daten isoliert,
so erhält man das statische Floor-Field.

Listing 4.5: Kürzeste Entfernung für eine Zelle berechnen
for (Map.Entry<Cell, Double> nodeEntry : cell.getNodeDists().entrySet())
{
double new_dist = nodeEntry.getValue() + nodeEntry.getKey().getExitDist(exit);
if (new_dist < min_dist)
min_dist = new_dist;

}
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Algorithmus 4.6 Distanzen normaler Zellen zu Ausgangszellen
function DetermineAllExitDists(cells, nodeCells, exitCells)

for all (e ∈ exitCells) do
for all (c ∈ cells) do

if (c type of CellWall ∨ c ∈ nodeCells) then
continue with next c

else
distmin ← min

n∈c.nodes
(‖c− n‖+ ‖n− e‖)

add (e, distmin) to c
end if

end for
end for

end function

Bestimmung der Distanz zur nächstgelegenen Wandzelle

Es gibt einen weiteren Algorithmus zur Distanzberechnung, den ich für meine Implementie-
rung brauche. Er wird nicht für die Berechnung der Entfernungen zu den Ausgangszellen
benötigt, sondern zur Ermittlung der nächstgelegenen Wandzellen und deren Distanz.
Das Grundprinzip dieses Algorithmus ist, um die betrachtete Zelle Kreise zu ziehen. Sollte
eine Wandzelle in einem solchen Kreis vorhanden sein, wird kein weiterer gezogen, sondern
nur noch die restlichen Zellen des aktuellen Kreises untersucht. Für jede gefundene Wand-
zelle wird die Distanz zwischen ihr und der Zentrumszelle berechnet. Ist sie kleiner als das
bisherige Minimum, wird die Distanz und Referenz auf die Wandzelle zwischengespeichert.
Die Abtastrate des Kreises, d. h. die Anzahl der Punkte, die einen Kreis bilden, werden in
Abhängigkeit des Radius mit folgender Formel bestimmt: points = br · 2(3+log10(r))c. Damit
wird sichergestellt, dass es keine Lücken in den Kreisen gibt, die z. B. durch Rundungsfehler
entstehen könnten. Da allerdings Wmax (maximaler Sicherheitsabstand der Agenten (2.3.2))
meist recht klein gehalten wird, sind die Größenordnungen, ab der die Formel ungenau wird,
vernachlässigbar. Es wird über die Punkte des eben beschriebenen Zellenkreises iteriert und
mit Hilfe des Winkels angle = 2π

points und den Winkelfunktionen die Koordinaten der Zellen
berechnet:

coordx = x + bcos(angle · i) · r + 0, 5ccoordy = y + bsin(angle · i) · r + 0, 5c,

wobei i die Laufvariable über die Punkte ist. Wenn eine Wandzelle im aktuellen Kreis enthalten
ist, können nur noch Zellen dieses Kreises die minimale Distanz unterbieten. Das liegt daran,
dass es auf Grund der ganzzahligen Zellenpositionen zu Rundungen kommt. Die Zellen des
nächst größeren Kreises haben aber eine um mindestens 1 größere Distanz zur Zentrumszelle.
Diese ist, abzüglich Rundung, immer größer als die größte Distanz einer Zelle des kleineren
Kreises. Deshalb wird der Algorithmus bei Fund einer Wandzelle nach Überprüfung aller
Kreiszellen abgebrochen. Eine kleine Optimierung des Algorithmus besteht darin, dass er
im Falle distmin ≤ r sofort unterbrochen wird. Wenn eine Wandzelle eine Distanz kleiner oder
gleich dem Radius zur Zentrumszelle hat, können selbst die Zellen desselben Kreises dies
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Algorithmus 4.7 Distanz zur nächstgelegenen Wandzelle
function DetermineWallDist(src, floor, cells)

next← true
r← 1
distmin ←∞

while (next = true) do
points← br · 2(3+log10(r))c

angle← 2 ·π
points

for (i = 0→ points− 1) do
coordx ← src.x + cos(angle · i) · r
coordy ← src.y + sin(angle · i) · r
if (coordinates inside simulation area∧ cells[coordy][coordx]type of CellWall) then

next← f alse
distnew ← ‖src− cells[coordy][coordx]‖
if (distnew < distmin) then

distmin ← distnew
nearestWall← cells[coordy][coordx]
exit loop if (distmin ≤ r)

end if
end if

end for
r← r + 1

end while
src.setWallDist(distmin)
src.setWallReference(nearestWall)

end function

nicht weiter unterbieten. Deshalb wird in diesem Fall, sofort die For-Schleife beendet. In
jedem Fall steht am Ende sowohl die kleinste Distanz, als auch die betreffende Wandzelle
fest. Sowohl der Wert, als auch die Referenz auf die Wandzelle werden in der Zentrumszelle
gespeichert.

4.3.4 Anwenden der Regeln

In der „Sensitivitätsanalyse“-Aktivität werden die Regeln definiert, die später vor jedem
Durchlauf auf die entsprechenden globalen Variablen, Agenten- oder Zellparameter ange-
wandt werden. Eine solche Regel wird in einem Container-Objekt gespeichert. Alle Container
werden wiederum separat für jeden Typus (Allgemein, Agenten, Treppen, Wände) in eigenen
Datenstrukturen gespeichert. Das ist notwendig, weil die Position in der Datenstruktur
gleichzeitig als Angabe der Parameter-ID oder z. B. der Agentengruppe dient. Ein gemein-
sames Speichern aller Regeln in einer einzigen Datenstruktur, würde zusätzliche Angaben
im Regel-Container und eine anschließend größere Filterung erfordern. Listing 4.6 zeigt
die RuleContainer-Klasse, deren Objekte die einzelnen Regeln speichern. Jeder RuleContainer
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Listing 4.6: Klasse für Regeln
public class RuleContainer
{
public final DISTRIB_FUNCTION_ID functionID;
public final double a;
public final double b;
public final double c;

private RuleContainer(DISTRIB_FUNCTION_ID funcID, double a, double b, double c)
{
this.functionID = funcID;
this.a = a;
this.b = b;
this.c = c;

}
}

beinhaltet die Angabe über die zu verwendende Wahrscheinlichkeitsverteilung, sowie die
Werte für den Minimalwert (bzw. den Erwartungswert), den Maximalwert (bzw. die Varianz),
sowie den wahrscheinlichsten Wert, falls die Dreiecksverteilung ausgewählt wurde. In allen
anderen Fällen bleibt dieser Wert 0 und wird ignoriert.
Innerhalb der kleineren Initialisierungsphase vor einem Simulationsdurchlauf wird eine
Funktion aufgerufen, die neue Parameter entsprechend der Regeln erzeugt und zuweist (siehe
Listing 4.7). Da die Regeln nach Klassen getrennt gespeichert wurden, wird nacheinander
durch die verschiedenen Regellisten durchgegangen. Mit den Parametern, die in einem
Regel-Container gespeichert sind, wird ein neuer Wert bestimmt. Dazu gibt es eine weitere
Funktion, die je nach Funktions-ID eine andere Wahrscheinlichkeitsverteilung mit den zwei
bzw. drei Funktionsparametern verwendet. Der neu bestimmte Wert wird anschließend dem
Simulationsparameter, allen Agenten der Agentengruppe oder allen Wand- bzw. Treppenzel-
len der entsprechenden Farbgruppe zugewiesen. Zusätzlich wird der neue Wert zusammen
mit der Angabe der Regel in der Statistik-Ausgabedatei (siehe 4.5.2) gespeichert.

4.4 Simulationsdurchführung

Nachdem zuvor die Konfigurationsdaten und andere Einstellungen (unter anderem auch
die Regeldefinitionen für die Sensitivitätsanalyse) in den vorherigen Menüs eingelesen bzw.
erstellt wurden, ist die Simulation initialisiert. Nun soll es in diesem Abschnitt um die
Durchführung der Simulation gehen.
Ausgangspunkt ist die „Simulation“-Aktivität. Der Benutzer kann dort die Simulation
starten, pausieren, abbrechen, zu den bisherigen bzw. endgültigen Statistiken schalten und
- wenn eine grafische Ausgabe existiert - zwischen den einzelnen Stockwerken wechseln.
Die Simulation besteht aus einer vorher festgelegten Anzahl einzelner Durchläufe. In der
„Simulationseinstellungen“-Aktivität kann diese Zahl vom Benutzer eingestellt werden. Ein
Durchlauf startet, nachdem die Simulation zum ersten Mal initialisiert wurde bzw. nach
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Listing 4.7: Ausschnitt aus Regelanwendungsfunktion
// (...)
if (commonRules != null && commonRules.size() > 0)
{
RuleContainer rCon = commonRules.get(0);
if (rCon != null)
this.maxWallDist = SimHelpers.giveNewValue(rCon.functionID , rCon.a, rCon.b,

rCon.c);
// (...)

}
if (agentRules != null && agentRules.size() > 0)
{
for (int i = 0; i < agentsById.size(); i++)
{
SparseArray <RuleContainer > rules = agentRules.get(i);
// (...)

}
}
if (stairRules != null && stairRules.size() > 0)
{
// (...)

}
if (wallRules != null && wallRules.size() > 0)
{
// (...)

}
// (...)

erfolgtem Durchlauf reinitialisiert wurde und endet, wenn alle Agenten das Simulationsgebiet
verlassen haben. Ist ein Durchlauf beendet, gibt es zwei Möglichkeiten: War es der letzte
Durchgang, ist die gesamte Simulation zu Ende. Es kann kein weiterer Durchlauf gestartet
werden, so dass sich der Benutzer zwischen dem Anzeigen der Resultate, dem Starten einer
neuen Simulation und dem Abbruch (Rückkehr zum Hauptmenü) entscheiden kann. War der
beendete Durchlauf nicht der letzte, startet ein weiterer. Hierfür muss die Simulation zum Teil
neu initialisiert werden. Allerdings ist dafür sehr viel weniger Zeit notwendig, als beim ersten
Mal. Es werden lediglich folgende Schritte unternommen: Die Agenten werden neu erstellt, so
dass sie identisch sind, mit denen des letzten Durchlaufs. In diesem Zusammenhang werden
auch die Bilder der Stockwerke neu gezeichnet, so dass die Agenten auf ihnen wieder zu
sehen sind. Das dynamische Floor-Field wird zurückgesetzt, genauso wie die Agentenzähler
der Ausgänge. Der Rundenzähler wird ebenfalls auf 0 zurückgesetzt. Sollte die Simulation
im Experten-Modus ausgeführt werden, wird an dieser Stelle die Zuweisung der Parameter,
die durch die Regeln der Sensitivitätsanalyse neue Werte bekommen, an die entsprechenden
Objekte durchgeführt. Wenn eine grafische Ausgabe der Simulation in den Einstellungen
gewünscht wurde, muss der Benutzer selbstständig den neuen Durchlauf starten. Andernfalls
startet der nächste automatisch, sobald alle gerade beschriebenen Aufgaben erledigt sind.
Dieses Verhalten hat folgenden Hintergrund: Ist die grafische Ausgabe nicht gewünscht,
versucht das Programm die Simulation so schnell wie möglich durchzuführen, damit die
Ergebnisse rasch vorhanden sind. Ein Pausieren zwischen den Durchläufen und die manuelle
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Fortsetzung ist hier hinderlich. Bei der grafischen Ausgabe achtet das Programm darauf, nicht
mehr als 2 Runden pro Sekunde zu simulieren, so dass die Bewegungen der Agenten auf dem
Feld beobachtbar bleiben. Die langsame Geschwindigkeit, sowie das Pausieren der Simulation
zwischen zwei Durchläufen kann hier nützlich sein, um dem interessierten Publikum etwas
zu erklären, die Zwischenergebnisse zu betrachten oder sich Notizen machen zu können.
Die tatsächliche Durchführung der Simulation, sowie die Anzeige der Stockwerke und das
Aktualisieren des Benutzerinterfaces übernehmen zwei von mir erstellte Klassen. Diese beiden
werden im folgenden Abschnitt detaillierter beschreiben.

4.4.1 SimView- und SimViewThread-Klasse

Die Klasse SimView habe ich abgeleitet von einer neuen Android-Klasse SurfaceView. Diese
Standardkomponente sorgt dafür, dass ein fester Zeichenbereich in der Aktivität entsteht.
In ihr geschieht die grafische Ausgabe. Das tatsächliche Zeichnen der Ausgabe übernimmt
das View eigenständig. Meine abgeleitete Klasse erbt diese Funktionalität, dient aber auch
mehreren Aufgaben vor, während und nach der Simulation: Einerseits implementiert die
SimView-Klasse einen sogenannten SurfaceHolder. Über ihn bekommen auch Nicht-UI-Threads
Zugriff auf die Zeichenfläche. Das ist wichtig, denn Android verbietet Threads, die nicht für
die Anzeige und Interaktion mit dem Benutzer zuständig sind (UI-Threads), die Änderungen
von Menükomponenten. Der später noch näher beschriebene SimViewThread kann damit die
grafische Ausgabe realisieren, obwohl er nicht zu den UI-Threads gehört. Zusätzlich kümmert
sich SimView um die Erstellung und Zerstörung des eben angesprochenen SimViewThreads
und verarbeitet die Nachrichten, die es von ihm erhält. Dies bewerkstelligt eine sogenannte
Handler-Klasse, der man die Nachrichten zuschicken kann. Als Teil der Aktivität kann SimView
somit Einfluss auf die anderen Views der Aktivität nehmen und z. B. Meldungen bezüglich
des Simulationsstatus anzeigen lassen. Dazu ändert es die Texte der entsprechenden TextViews
ab. Außerdem kümmert es sich um die erforderlichen Maßnahmen, wenn sich der Bildschirm
ändert, die App pausiert, gestoppt oder neu geladen wird. Dazu zählen unter anderem:
Herunterfahren des SimViewThreads, Neuinitialisierung der Simulation, Neuzeichnen der
Grafiken.
Die SimViewThread-Klasse habe ich von der Standard Thread-Klasse abgeleitet. Ihre Aufgabe ist
es, die Simulation voranzutreiben und eine Ausgabe (falls gewünscht) auf den Bildschirm
zu zeichnen. Es existiert nur ein Objekt dieser Klasse, das wiederum im einzigen SimView-
Objekt instanziiert ist. Die Existenz des Threads ist unabhängig von der Simulation: Wird das
SimView-Objekt erstellt, generiert dieses automatisch auch ein SimViewThread-Objekt. Wird
die „Simulation“-Aktivität verlassen, wird der SimViewThread gestoppt und zerstört, die
Ergebnisse der Simulation und vor allem auch der aktuelle Fortschritt bleiben aber erhalten.
Wird die Aktivität wieder betreten, wird ein neues SimViewThread-Objekt erstellt und die
Simulation kann dort weitergeführt werden, wo sie pausiert wurde. Das liegt daran, dass
das Simulationsobjekt global existiert und somit erst gelöscht wird, wenn explizit eine neue
Simulation erstellt wird oder die Anwendung komplett beendet wird. Dieses Vorgehen belastet
zwar den Hauptspeicher des Geräts mehr, weil die Daten auch bei Inaktivität der Anwendung
vorgehalten werden, aber das Programm ist dafür sehr viel schneller wieder benutzbar, wenn
man es wieder aktiviert.
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Je nach Status der Simulation, sorgt der Thread für unterschiedliche Arbeiten: Zu Beginn
initialisiert er die Simulation (siehe 4.3), innerhalb der einzelnen Durchläufe führt er die
Simulationsaktualisierungen durch, nach Beendigung eines Durchlaufs bereitet er den nächsten
vor und führt die Regeln der Sensitivitätsanalyse durch. Ist der letzte Durchlauf beendet,
wird der Thread ebenfalls durch das SimView-Objekt gestoppt. Auch der SimViewThread
kann verschiedene Zustände haben: Direkt nach seiner Erstellung befindet er sich im [READY]-
Zustand. In ihm versucht er die Simulation endgültig zu initialisieren, so fern dies nicht bereits
früher geschehen ist; es kann der Fall eintreten, dass die Anwendung noch vor dem ersten
Update der Simulation inaktiv und wieder reaktiviert wurde. Direkt aus diesem Zustand
heraus, setzt er sich selbst auf [PAUSE]. Auch durch den Benutzer, der im Benutzerinterface auf
„Pause“ drückt, kann der Thread in diesen Zustand gelangen. In ihm wird die Simulation
nicht weiter vorangetrieben. Der Thread kümmert sich aber weiterhin um die Anzeige
der Grafiken, so dass ein Wechsel der Stockwerke auch im Pause-Modus möglich bleibt.
Ist der Thread im [RUNNING]-Zustand, wird die Simulation so lange vorangetrieben, bis der
aktuelle Durchlauf zu Ende ist, oder bis durch den benutzerbedingten Abbruch oder die
Pausierung der Thread zerstört oder wieder pausiert wird. Listing 4.8 zeigt einen Ausschnitt
der SimViewThread.run-Funktion, die so lange ausgeführt wird, bis der Thread gestoppt wird.

4.4.2 Simulationsschritt

Ist der SimViewThread im Status [RUNNING], führt er in einer Endlosschleife, die Simulati-
onsrunden durch. Eine Simulationsrunde besteht in meiner Implementierung, wie auch im
F.A.S.T.-Modell aus drei Teilen: Zuerst entscheidet sich jeder Agenten für einen Ausgang,
danach wählt jeder Agent aus der Menge seiner gültigen Zielzellen eine Zelle aus, die er am
Ende der Runde besetzen möchte und zum Schluss werden die entsprechenden Bewegungen
der Agenten durchgeführt. All dies geschieht in der Simulation.update-Funktion, die vom Sim-
ViewThread aufgerufen wird. Zusätzlich werden in ihr die Graphen und Bilder aktualisiert,
die später Teile der Ergebnisse der Simulation beinhalten sollen. Dazu gehört auch, dass zum
Ende der Runde überprüft wird, ob die Simulation bzw. der einzelne Durchlauf beendet ist
und eventuell ein neuer gestartet werden soll. Die folgenden Abschnitte widmen sich den
einzelnen Teilen dieser Update-Funktion.

Ausgangssuche der Agenten

Im ersten Teil der Runde werden die Fernziele der Agenten aktualisiert. Je nachdem, wie der
Prozess der Ausgangssuche eines Agenten endet, bleibt dieser bei seiner letzten Wahl, oder
entscheidet sich für einen anderen Ausgang. Die Suche gliedert sich dabei in zwei Teile: Das
Simulationsobjekt aktualisiert in seiner Update-Funktion einen Agenten nach dem anderem. Es
ruft für jeden die agenteneigene Funktion auf, die dann die Ausgangssuche durchführt. Listing
4.9 zeigt diese Funktion in einer verkürzten Version. Folgendes ist bei der Ausgangswahl zu
beachten: Ausgänge können aus mehr als einer Ausgangszelle bestehen. Es reicht daher nicht
nur einen Ausgang zu wählen, sondern es muss auch eine Ausgangszelle gewählt werden.
Ansonsten kann nicht eindeutig eine Distanz zum Ausgang berechnet werden, was Folgen für
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Listing 4.8: run-Funktion des SimViewThreads (Ausschnitt)
public void run()
{ // (...)
while (running)
{
if (mode == STATE_READY)
{
if (simulation.isTotallyFinished())
{
// send message "Simulation finished"
// (...)
running = false; // stop thread by leaving endless-loop

}
else
{
simulation.Init();
simulation.prepareNewRun();
if (graphicalmode)
updateBackgroundImage();

mode = STATE_PAUSED;
}
// (...)

}
else
{ // (...)
if (mode == STATE_RUNNING)
updatePhysics();

doDraw(c);
}
if(graphicalmode)
{
// if update cycle was shorter than 500 ms then sleep for the difference

time
Thread.sleep(sleepTime);

}
}

}

den Teileinfluss des statischen Floor-Fields hätte (siehe 2.3.2). Die Wahrscheinlichkeitsformel
(2.1) für die Ausgangssuche habe ich somit für ihre Implementierung leicht abgeändert:

(4.1) pA
e = N ·

(1 + δAEκE)

S(A, e)2 .

Dabei steht e nun für eine Ausgangszelle anstatt eines Ausgangs. Für δAE gilt: δAE = 1, wenn e
zum Ausgang E gehört und dieser in der letzten Runde gewählt wurde, auch wenn der Agent
zuvor eine andere Zelle dieses Ausgangs als Fernziel hatte.
Es gibt zwei assoziative Arrays: HashMap<Exit, Double> pe und HashMap<Exit, Cell_Exit> ec. Im
ersten werden die Ausgänge mit einem Wahrscheinlichkeitswert verknüpft, im zweiten mit
einer Ausgangszelle. Verknüpft wird immer diejenige Zelle des Ausgangs, deren Wahrschein-
lichkeit am größten ist. Nachdem alle Einzelwahrscheinlichkeiten berechnet wurden, enthält
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Listing 4.9: Agentenfunktion zum Wählen eines Ausgangs
public void chooseNewExit()
{
HashMap<Exit, Double> pe = new HashMap<Exit, Double >();
HashMap<Exit, Cell_Exit > ec = new HashMap<Exit, Cell_Exit >();
for (Map.Entry<Cell, Double> e : curCell.exitDists.entrySet())
{
Cell_Exit eCell = (Cell_Exit)e.getKey();
Exit exitRef = eCell.getExitReference();
int delta_exit = 0;
if (lastExit == exitRef)
delta_exit = 1;

double probability = (1.0 + (delta_exit * params[Constants.K_E])) /
Math.scalb(e.getValue(), 2);

if (!pe.containsKey(exitRef) || pe.get(exitRef) < probability)
{
pe.put(exitRef, probability);
ec.put(exitRef, eCell);

}
}
// (...) normalization of the values
Exit choice = chooseProbability(pe);
lastExit = nextExit;
nextExit = choice;
nextExitCell = ec.get(choice);

}

ec Verknüpfungen zwischen allen Ausgängen und ihren jeweiligen Ausgangszellen, die unter
allen anderen Zellen des Ausgangs am wahrscheinlichsten sind. Aus diesen wird in einem
letzten Schritt der tatsächliche Ausgang und damit die Ausgangszelle gewählt.

Zielzellensuche der Agenten

Die Wahl einer Zielzelle ist, genauso wie die Wahl eines Ausgangs, ein Prozess, der unab-
hängig von anderen Agenten durchgeführt werden kann. Die Wahl der Zielzelle findet in
meinem Programm deshalb im gleichen Iterationsschritt über die Agenten statt, wie die
Ausgangssuche.
Der Status der Zelle, die im Moment vom Agenten besetzt wird, gilt während der Zielzellensu-
che als „unbesetzt“. Dadurch wird diese Zelle ebenfalls in die Menge der gültigen Zielzellen
aufgenommen. Bevor die Suche nach den Zielzellen gestartet wird, muss die Geschwindigkeit
des Agenten aktualisiert werden. Zuerst wird sie um 1 erhöht, außer es wurde bereits die
maximale Geschwindigkeit (vmax) erreicht. Danach wird geprüft, ob sich der Agent auf
einer Treppenzelle befindet. In diesem Fall wird die neue Geschwindigkeit mit dem Faktor
der Treppenzelle multipliziert. Dabei wird sichergestellt, dass sie nicht kleiner als 1 wird.
Ansonsten würde der Agent permanent auf der Treppenzelle verharren und somit nie eine
Ausgangszelle erreichen. Das wiederum würde dazu führen, dass die Simulation nicht enden
kann, weil nicht alle Agenten das Simulationsgebiet verlassen haben (vgl. 3.1).
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Im nächsten Schritt findet nun die Suche nach den erreichbaren Zellen statt. Den Aufbau des
Algorithmus stellt 4.8 dar. In der Ergebnismenge C sind alle Zellen enthalten, die theoretisch in
dieser Runde vom Agenten von seiner jetzigen Position und mit seiner derzeitigen Geschwin-
digkeit aus erreichbar sind. Neben der Menge C, die bei mir eine einfache ArrayList<Cell> ist,
gibt es noch die Menge M und U. In M werden alle Zellen gespeichert, die bereits untersucht
wurden. Da hier sehr oft Mengenzugehörigkeiten geprüft werden müssen, habe ich mich für
eine HashSet<Cell> entschieden. Mit dieser Menge will ich verhindern, dass Zellen mehrfach
besucht werden und somit eventuelle Endlosschleifen entstehen. Die dritte Menge U beinhal-
tet alle Zellen, die noch untersucht werden müssen. In meiner Implementierung ist U eine
Warteschlange (Queue<Cell>). Neue Elemente werden am Ende der Liste angehängt. Das älteste
Element steht somit ganz vorne in der Liste und wird als erstes bearbeitet.
Ausgehend von der Startzelle, auf der sich der Agent befindet, breitet sich die Suche nach Ziel-
zellen im Gebiet aus. Alle Nachbarzellen der Startzelle werden in U aufgenommen. Von jeder
dieser Zellen werden wieder alle Nachbarzellen in U aufgenommen und so weiter. Das Kriteri-
um, ob eine Nachbarzelle aufgenommen wird, ist die ihre Distanz zur Startzelle. Ist sie größer
als der Geschwindigkeitsbetrag des Agenten, scheidet sie als erreichbare Zielzelle aus. Da das
Simulationsgebiet so aufgebaut sein kann, dass potentielle Zielzellen keine direkte Verbindung
zur Startzelle haben (d. h. „nicht sichtbar“ für die Startzelle sind), müssen ihre Distanzen
durch Teildistanzen aufsummiert werden. Hierfür gibt es die lastDest-Variable, die jede Zelle
besitzt. In ihr wird die Referenz auf die letzte sichtbare Zelle auf dem Weg zur Startzelle
hinterlegt. Gibt es keine direkte Verbindung zwischen einer Zelle und der Startzelle, berechnet
sich die Distanz wie folgt: ‖Zelle− Startzelle‖ = ‖Zelle− lastDest‖+ ‖lastDest− Startzelle‖. Der
zweite Summand ist bekannt, denn die lastDest-Zelle wurde vom Suchalgorithmus bereits
zuvor besucht (weiter vorne in U gelegen). Abbildung 4.2 zeigt nochmals ein Beispiel für
den Einsatz dieser Hilfsvariable. Die Ergebnismenge ist in keinem Fall leer, da sie zumindest
die Startzelle enthält. Sollte die Ergebnismenge nach Beendigung der Suche lediglich diese
eine Zelle enthalten, tritt ein Sonderfall ein. Das bedeutet, dass sich der Agent zu keiner
anderen Zelle bewegen kann. Eine Auswahl der Zielzelle ist damit bereits getroffen. Die
Geschwindigkeit des Agenten wird auf 0 gesetzt, die Zelle wird als „besetzt“ markiert und es
wird mit dem nächsten Agenten fortgefahren. Enthält die Ergebnismenge mehr als eine Zelle,
muss nun eine Auswahl getroffen werden. Dazu wird der entsprechenden Agentenfunktion
die Menge der potenziellen Zielzellen übergeben. Diese arbeitet ähnlich, wie die Funktion zur
Ausgangssuche: Eine For-Schleife iteriert über die Zellen der Menge. Für jede Zelle wird ein
Wahrscheinlichkeitswert nach Formel (2.2) berechnet. Eine zusätzliche Funktion wählt aus den
normalisierten Wahrscheinlichkeiten eine aus, die für den Agenten dann als neue Zielzelle
gilt. Zum Abschluss wird die vom Agenten besetzte Zelle, die während der Zielzellensuche
als „unbesetzt“ galt, wieder als „besetzt“ markiert.

Bewegen der Agenten

Zu aller erst wird eine Liste (ArrayList<Agent> pleaseRemove) erstellt. In ihr werden die Referenzen
auf diejenigen Agenten gespeichert, die durch ihre folgende Bewegung eine Ausgangszelle
erreichen und damit erfolgreich aus der Simulation ausscheiden. Die Liste dient am Ende der
Runde dafür, die entsprechenden Agenten aus ihrer Datenstruktur zu entfernen.
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Algorithmus 4.8 Finde gültige Zielzellen
function DetermineDestCells(a, cells)

C, M, U← ∅
v← current speed of a
if (a stands on CellStair) then

v← max(1, dv · stairCell.factore)
end if
start← cell, a stands on
start.lastDest← start
U← U ∪ start, M←M∪ start
while (U , ∅) do

u← first element from U
C← C∪ u (if not blocked)
N← neighbor cells of u
if (u type of CellTeleport) then

add u.partnerCell to N
end if
for all (n ∈ N ∧ n <M) do

if (u.lastDest is visible for n) then
dist← ‖n− u.lastDest‖+ ‖u.lastDest− a‖
n.lastDest← u.lastDest

else
dist← ‖n− u‖+ ‖u− a‖
n.lastDest← u

end if
if (dist ≤ v) then

U← U ∪ n
‖n− a‖ = dist

end if
M←M∪ n

end for
end while
return C

end function
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|| n - a || =  || n - u || + || u - a ||
|| q - a || =  || q - n || + || n - a ||

q n
u

a

Abbildung 4.2: Distanzberechnung bei der Zielzellensuche. In diesem Beispiel wird die
Distanz der Zellen n und q zu a gesucht. Die Berechnung mit Hilfe von
Teildistanzen ist unter dem Bild dargestellt. Entscheidend ist die Hilfe der
lastDest-Variablen (siehe 4.4.2)

In meiner Implementierung habe ich den Vorschlag des direkten Hinspringens zur Zielzelle
umgesetzt (siehe 2.3.3). Es gibt aber eine Änderung, was die auftretenden Konflikte angeht:
Bei mir bewegen sich die Agenten zu ihrer Zielzelle, sobald sie an der Reihe sind und dies
möglich ist. Ist sie durch jemand anderen bereits besetzt, bleibt der Agent auf seiner aktuellen
Zelle stehen. Ein Konflikt wird aufgelöst, indem immer der Agent gewinnt, der als erster
die gemeinsame Zielzelle besetzt. Da die Reihenfolge der Agenten für jede Runde zufällig
gesetzt wird, realisiert mein Programm in gewisser Weise das direkte Hinspringen mit µ = 0;
denn ein Konflikt wird hier immer aufgelöst. Bevor die Agentenbewegungen stattfinden
können, muss noch die zufällige Reihenfolge für die Agenten festgelegt werden. Dazu füge
ich einem Array (ArrayList<Agent> agentOrder) alle vorhandenen Agenten hinzu und wende
auf diese Menge eine Misch-Funktion an, die für die zufällige Anordnung der Elemente
im Array sorgt. Java stellt eine solche Funktion durch die Collections-Klasse zur Verfügung:
Collections.shuffle(agentOrder). Sie erreicht die zufällige Durchmischung der Elemente in
linearer Zeit, d. h. dieser Schritt ist somit effizient durchführbar.
Danach wird über die Agenten in der eben festgelegten Reihenfolge iteriert. Unabhängig von
einer grafische Ausgabe, wird das Bild der Ebene, auf der sich der Agent befindet, erneuert.
Der Bildpunkt, der bisher die Farbe des Agenten hatte, soll die ursprüngliche Farbe der
belegten Zelle erhalten. Beim Erstellen der Zellenobjekte (während der Initialisierung), wurde
sie als Eigenschaft für jede Zelle gespeichert. An dieser Stelle wird darauf nun zurückgegriffen.
Die eigentliche Bewegung des Agenten erfolgt durch einen Aufruf einer agenteninternen
Funktion. Dort wird zuerst überprüft, ob die Zielzelle noch unbelegt ist. Ist sie das nicht, kann

63



4 Programmaufbau

sich der Agent nicht bewegen und seine Geschwindigkeit wird auf 0 gesetzt. Andernfalls
werden folgende Schritte ausgeführt: Die bisher besetzte Zelle wird freigegeben (NOT_BLOCKED),
die Position des Agenten wird angepasst, der Bewegungsvektor wird auf das Feld des
dynamischen Floor-Fields addiert, die Referenz auf die besetzte Zelle wird geändert und
es wird geprüft, ob der Agent nun eine Ausgangszelle besetzt. Ist der letzte Vergleich
negativ, muss die neue Zelle nun als besetzt gelten. Außerdem wird die Geschwindigkeit des
Agenten entsprechend seiner eben ausgeführten Bewegung gesetzt; vmax gilt dabei wieder
als Obergrenze. Schließlich erhält der Bildpunkt an der Stelle der neu besetzten Zelle, die
Farbe des Agenten. Wenn der Agent erfolgreich eine Ausgangszelle erreicht hat und damit
„geflüchtet“ ist, wird zum einen der Zähler des Ausgangs inkrementiert und zum anderen der
Agent zu der am Anfang beschriebenen Liste (pleaseRemove) hinzugefügt.
Sind alle Agentenbewegungen durchgeführt, ist bekannt, welche Agenten in dieser Runde
entkommen sind. Ihre Referenzen stehen in der „Entfernen“-Liste. Mit Hilfe der von Java
zur Verfügung gestellten Mengenoperationen, können die betreffenden Agenten aus der
Gesamtagentenmenge leicht entfernt werden (.removeAll(pleaseRemove)). In Listing 4.10 ist eine
verkürzte Version des Abschnitts der Agentenbewegungen zu sehen.

Listing 4.10: Reihenfolge aufstellen und Bewegungen durchführen
ArrayList <Agent> pleaseRemove = new ArrayList <Agent >();
ArrayList <Agent> agentOrder = new ArrayList <Agent >();
for (int i = 0; i < agentsById.size(); i++)
agentOrder.addAll(agentsById.get(i));

Collections.shuffle(agentOrder);
for (Agent a : agentOrder)
{
// reset pixel color
a.moveToDest(); // internal agent movement function
if (a.hasEscaped())
pleaseRemove.add(a);

else
// set new pixel color

}
for (int i = 0; i < agentsById.size(); i++)
{
ArrayList <Agent> temp = agentsById.get(i);
temp.removeAll(pleaseRemove);
remain += temp.size();

}

Ende der Runde

Das Ende der Runde besteht aus einer Vielzahl von Aktualisierungsvorgängen. So wird als
erstes das dynamische Floor-Field bearbeitet. Je nach Größe der Simulationsparameter α (für
Verwischung) und δ (für Verblassen) kommt es zu einer Diffusion unter den Komponenten
bzw. einer Abschwächung der absoluten Beträge der einzelnen Vektorfelder (siehe dazu auch
Kapitel 2.2.2). Zusätzlich werden alle Graphen aktualisiert: Der Evakuierungsgraph, der den
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Verlauf der entkommenen Agenten dokumentiert, der Graph für den durchschnittlichen
Fluss der Agenten und auch die Ausgangsstatistiken (die nicht als Graph, sondern textuell
ausgegeben werden). In Abschnitt 4.5 gibt es weitere Details zum Aufbau und zur Speicherung
von Graphen in meinem Framework. Die Bilder (z. B. die aktuelle Dichte der Agenten) werden
hier nicht aktualisiert. Dies geschieht erst, wenn die „Ergebnis“-Aktivität besucht wird. Dies
würde sonst unnötig Zeit vergeuden.
Daran anschließend folgt eine Überprüfung der Anzahl der verbliebenen Agenten in der
Simulation. Hier gibt es verschiedene Kriterien, ab wann zusätzliche Schritte eingeleitet werden:
Hat die Zahl die 95%-Marke erreicht bzw. überschritten, müssen dafür die entsprechenden
Statistiken für die Evakuierungszeiten aufgenommen werden. Liegt die Anzahl bei weniger
als 4, werden die Namen der Agentengruppen, zu denen die verbliebenen Agenten gehören,
gesichert, so dass sie am Ende der Simulation in den Ergebnissen dokumentiert werden
können. Sollten alle restlichen Agenten in dieser Runde das Simulationsgebiet verlassen haben,
geht der aktuelle Durchlauf mit dieser Runde zu Ende. In diesem Fall wird eine Markierung
in der Simulation gesetzt (finished = true), auf die anschließend vom SimViewThread reagiert
wird. Sollte mit dieser Runde sogar der letzte Durchlauf beendet werden, wird zusätzlich
die Variable overallFinished auf true gesetzt. Denn das Ende der gesamten Simulation zieht
weitere Maßnahmen für den Thread und die umgebende Aktivität nach sich (siehe 4.4.1).

4.5 Ergebnisspeicherung und -anzeige

Während der Simulation werden fortlaufend Daten über die Fortschritte gesammelt. Zur
späteren Analyse sind diese Daten entscheidend und deshalb habe ich auch bei meinem
Programm auf eine Speicherung und Ausgabe dieser Statistiken geachtet. Ich habe einige der
in [Kre06] vorgeschlagenen und in Kapitel 2.4 beschriebenen Ausgaben implementiert. Sie
können allesamt in der „Ergebnis“-Aktivität und in einer separater Textdatei betrachtet werden.
Die Speicherung von fortlaufenden Daten als Graph habe ich mittels eigener generischer
Klassen realisiert, während eine von Androids „ImageView“ abgeleitete Klasse (GraphView)
sich um die korrekte Anzeige dieser Graphen auf dem Bildschirm kümmert. Im Folgenden
will ich genauer auf diese beiden Klassen eingehen.

4.5.1 Graph- und GraphView-Klasse

Die Anzahl der geflüchteten Agenten, die pro Runde in einem Graphen gespeichert wird, ist
eine Ganzzahl (Integer), während der durchschnittliche Fluss der Agenten eine Fließkom-
mazahl ist (Double). Ich wollte deshalb eine Klasse erstellen, die es möglich macht, jegliche
Arten von numerischen Datentypen aufzunehmen und in Form eines Graphen zu speichern.
Herausgekommen ist die Graph-Klasse. Sie ist generisch, d. h. eine Instanziierung dieser Klasse
erfordert die Angabe eines Datentyps. Da sich nicht jedes Objekt dafür eignet, beschränkt
sich die Wahl des Datentyps auf Objekte, die von Javas Number-Klasse abgeleitet sind und das
Interface Comparable implementieren. Dazu zählen unter anderem die Standarddatentypen
Integer, Float, Double, Long. Damit ist es möglich, die Klasse unverändert zu lassen, auch
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wenn zu einem späteren Zeitpunkt ein neuer Datentyp für eine Speicherung als Graph wichtig
wird.
Die Klasse speichert einen Namen zur Identifizierung des Graphen und die beiden Ach-
senbeschriftungen als String-Typ. Daneben gibt es mehrere assoziative Arrays, welche die
gespeicherten Werte verwalten:

• SparseArray<T> data_min: Dieses Array speichert die minimalen Werte an den entspre-
chenden Indizes. Der Index ist die Position des Wertes auf der Abszisse. Aus diesem
Grund habe ich darauf verzichtet eine normale List<T> oder ein simples Array (T[]) zu
verwenden, da sonst der Index immer bei 0 beginnt, die Abszissenwerte aber durchaus
negativ sein können. Dies hätte zu weiteren Variablen geführt und Umrechnungen, die
bei meiner Variante wegfallen.

• SparseArray<T> data_max: Analog zu data_min speichert dieses Array die maximalen Werte
der entsprechenden Abszissenpositionen.

• SparseIntArray data_numbers: Hierin wird gespeichert, wie viele Werte für einen bestimm-
ten Wert auf der Abszisse vorhanden sind. Es ist ein Hilfsarray, um später die Durch-
schnittswerte besser und schneller berechnen zu können.

• SparseArray<Double> data_sum: Ein weiteres Hilfsarray, das die Werte an den entsprechen-
den Positionen der Abszisse des Graphs aufsummiert. Hier habe ich den Datentyp
Double fest vergeben. Da die Durchschnittswerte ebenfalls Double-Werte sind, spare ich
spätere Typkonvertierungen ein.

• SparseArray<Double> data_avg: Dieses Array speichert schließlich die Durchschnittswerte
des Graphen, die sich mittels data_sum und data_numbers berechnen lassen.

Außerdem wird der insgesamt kleinste und größte Wert gesondert gespeichert, so dass die
Abfrage dieser beiden Werte schnell erfolgen kann. Neben verschiedenen Funktionen zur
Rückgabe einzelner oder aller Werte des Graph-Objekts, gibt es auch eine Funktion, mit der
man einen neuen Wert hinzufügen kann. Listing 4.11 zeigt eine verkürzte Version von ihr.
Bei der Speicherung des Wertes wird folgendermaßen vorgegangen: Es wird verglichen, ob
der Wert kleiner als der aktuell kleinste Wert an dieser Position ist. Ist dies der Fall, wird das
Minimum angepasst. Dasselbe geschieht für den aktuell größten Wert. Zusätzlich wird der
Zähler inkrementiert, wie oft an der entsprechenden Position ein Wert aufgenommen wurde.
Zum Schluss wird der Wert auf die Summe aller Werte für diese Position addiert.
Eine effiziente Lösung habe ich für die Speicherung der Durchschnittswerte entwickelt: Da
sich bei jedem Hinzufügen eines neuen Wertes das arithmetische Mittel ändert, müsste man
es auch jedes Mal neu berechnen. Um diese Zeit zu sparen, wird beim Hinzufügen eines
neuen Wertes lediglich eine boolsche Variable gesetzt, die anzeigt, ob die aktuellen Durch-
schnittswerte aktuell sind oder nicht. Wird nun das arithmetische Mittel von außerhalb des
Graph-Objekts angefordert, überprüft die Funktion diese Variable und gibt entweder sofort
die Durchschnittszahlen zurück (Variable ist „falsch“), oder berechnet alle Durchschnittswerte,
setzt die Variable auf „falsch“ und gibt danach die Werte zurück (Variable war „wahr“).
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Listing 4.11: Neuen Wert einem Graph hinzufügen
public void addData(int where, T data)
{
data_numbers.put(where, data_numbers.get(where) + 1);
T cur = data_min.get(where);
if (cur == null || cur.compareTo(data) > 0)
{
data_min.put(where, data);
if (minimum == null || minimum.compareTo(data) > 0)
minimum = data;

}
// analog for data_max (...)
Double value = data_sum.get(where);
if (value == null)
value = data.doubleValue();

else
value += data.doubleValue();

data_sum.put(where, value);
noUpdate = false;

}

Die GraphView-Klasse ist von ImageView abgeleitet. Diese Komponente dient normalerweise dem
Laden und Anzeigen eines Bildes, sowie dessen Einfärbung und Skalierung. Meine Klasse
implementiert davon die Funktion neu, die für das Zeichnen des Bildes zuständig ist: onDraw.
Daneben gibt es eine Reihe weiterer Funktionen, die das Hinzufügen, Löschen und Anzeigen
der Graphen und Bilder regeln.
In der GraphView-Klasse wird je eine Liste dieser Graphen (ArrayList<Graph<T>>) und Bilder
(ArrayList<Bitmap>) gespeichert. Das Simulationsobjekt fügt sie der Instanz hinzu, sobald sie
initialisiert wird. Die Namen der gespeicherten Graphen und Bilder erscheinen in einer
Auswahlliste des Benutzerinterfaces („Ergebnis“-Aktivität). Die dort getroffene Auswahl wird
an das GraphView-Objekt weitergegeben, das dann die Ausgabe einleitet. Eine Bitmap dient
als Leinwand, auf die der Graph oder das Bild gezeichnet wird. Damit ist es möglich auch
zusätzliche Dinge auszugeben, wie z. B. die Achsenbeschriftungen oder eine Markierung
am aktuell angewählten Abszissenwert, wenn der Benutzer auf den Bildschirm klickt. Das
Grafikobjekt wird so skaliert, dass es den Bildschirm optimal ausfüllt. Angezeigt wird bei
einem Graph jeweils der Verlauf der Minimal- und Maximalwerte (in roter bzw. grüner
Farbe), sowie der Durchschnittswerte (in gelber Farbe). Die Bilder, z. B. der aktuelle Status des
dynamischen Floor-Fields, geben ihre Darstellung selbst vor und müssen deshalb lediglich
skaliert werden. Das Seitenverhältnis der Bilder wird dabei beachtet.

4.5.2 Speicherung in Textdatei

Nicht alle Statistiken können in Form von Graphen und Bildern angezeigt werden. Entweder,
weil es einfach nicht geht (z. B. Namen von Agentengruppen), oder die Übersichtlichkeit
darunter leiden würde. Dies gilt besonders im Hinblick auf die Parameterauswahl bei der
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Sensitivitätsanalyse: Es müsste für jeden Durchlauf einen Evakuierungsgraphen geben, der
mit der entsprechenden Regel bezeichnet wäre. Bei vielen Durchläufen würde dabei die
Übersichtlichkeit so sehr leiden, dass eine Analyse der Ergebnisse nicht mehr gut durchführbar
wäre. Auch aus diesem Grund wird, parallel zur Erstellung der Graphen und Bilder, eine
Textdatei mit Ergebnissen gefüllt. Vor jedem Durchlauf werden die Parameter mit ihren neuen
Werten aufgelistet, die auf Grund von Regeln der Sensitivitätsanalyse angepasst wurden.
Ebenfalls für jeden Durchlauf werden die Rundenanzahlen dokumentiert, zu denen 95%
bzw. 100% der Agenten geflüchtet sind. Zum Abschluss der Simulation werden Ergebnisse
dokumentiert, die über alle Durchläufe hinweg ermittelt wurden: Es wird gespeichert, wie
viele Runden es mindestens und höchstens gedauert hat, bis die beiden Agenten-Grenzen
erreicht wurden. Zusätzlich wird der Durchschnittswert sowie die Standardabweichung für
beide Fälle dokumentiert. Den Abschluss der Datei bildet eine Information über die jeweils
zuletzt entkommenen Agenten: Es werden die Namen der Agentengruppen aufgelistet, aus
denen mindestens ein Agent zu den letzten drei verbliebenen eines Durchlaufs gezählt hat.
Zusätzlich gibt eine Zahl dahinter an, wie oft diese Gruppe bei allen Durchläufen dieses
Kriterium erfüllt hat. Zur späteren Identifizierung wird die Datei mit dem aktuellen Datum
und Uhrzeit zu Simulationsbeginn benannt. Dies soll auch verhindern, dass eine Datei eine
ältere mit demselben Namen überschreibt.
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In diesem Kapitel will ich die Ergebnisse einiger Testläufe des Programms vorstellen. Sie
sollen zeigen, welchen Einfluss die Größe des Simulationsgebiets und die Anzahl der Agenten
auf die Simulationszeiten und den Speicherverbrauch haben. Während der Entwicklung habe
ich das Programm nur mit relativ kleinen Szenarien getestet, hauptsächlich um bestimmte
Situationen nachzustellen. Der Test mit großen Szenarien hat allerdings zwei große Probleme
offenbart, deren Lösung bis zur Veröffentlichung dieser Arbeit nicht komplett behoben werden
konnten:

1. Standardmäßig erlaubt Android auf dem Entwicklungsgerät „Samsung Galaxy Note
10.1“ jeder Benutzeranwendung maximal 64 MB vom Hauptspeicher zu nutzen. Das
führt bereits bei mäßig großen Szenarien dazu, dass diese Grenze erreicht wird und das
Programm mit Speicherfehlern beendet werden muss.

2. Die Größe des Programm-Heaps wird so klein wie möglich gehalten. Jede Speicherallo-
kationen löst einen Aufruf des nebenläufigen „Garbage-Collectors“ aus, der versucht
Platz zu schaffen. Bis er dies gemacht hat, bzw. bis die Heap-Größe erweitert wurde,
vergehen unnötige Sekundenbruchteile, da der Haupt-Thread derweil warten muss.
Je mehr Speicher bereits allokiert ist, desto länger werden die Wartezeiten. Dieses
Problem fällt vor allem bei der Initialisierung auf, in der die großen Datenstrukturen
mit Objekt-Instanzen gefüllt werden.

Eine erste Lösung für Problem 1 konnte ich schnell finden: Ein zusätzlicher Eintrag in der
Manifest-Datei der Applikation (siehe Listing 5.1) sorgt für eine Anhebung der Grenze von 64
MB auf 256 MB. Wie die Ergebnisse zeigen, ist dies allerdings nicht ausreichend, um wirklich
große Gebiete im Speicher zu halten. Das zweite Problem konnte ich bis zum Zeitpunkt dieser
Veröffentlichung nicht lösen oder eindämmen. Vor allem jenes Problem spiegelt sich in den
Ergebnissen wider.

Listing 5.1: Erweiterung des maximal nutzbaren Hauptspeicheranteils
<manifest ...>
<!-- (...) -->
<application

android:largeHeap="true"
<!-- (...) -->

<!-- (...) -->
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5.1 Ergebnisse

Neben der Messung des Speicherverbrauchs wurden verschiedene Zeiten erfasst: Die In-
itialisierungszeit, die durchschnittliche Zeit pro Durchlauf, sowie die durchschnittliche Zeit
pro Runde, bis zu dem Zeitpunkt, zu dem der erste Agent geflüchtet ist. Ich habe verschie-
den große Gebiete simuliert: Angefangen bei einem sehr kleinen Gebiet von 40× 20 Zellen
(16× 8 Meter2), bis hin zu einem Gebiet mit 160× 80 Zellen (64× 32 Meter2). Jedes Areal ist
vertikal in der Mitte in zwei gleich große Stockwerke aufgeteilt, die über eine Treppe am
unteren Rand mittels Teleportzellen verbunden sind. Für jedes Gebiet gab es ein Szenario
mit 30, 60 und 90 Agenten, welche alle relativ homogen über das Gebiet verteilt waren.
Bei der Erhöhung der Agentenanzahl wurden die zusätzlichen Agenten jeweils neben den
bereits vorhandenen platziert. Jedes Szenario wurde 5 Mal simuliert, mit 50 Durchläufen
pro Simulation, so dass ein guter Mittelwert für die Durchschnittszeiten entstand. Die Agen-
tenkonstanten und auch die maximale Geschwindigkeit der Agenten waren für alle Tests
dieselben: vmax = 4,κE = 5.0,κs = 1.5,κd = 0.5,κi = κw = κp = 0. Alle Ergebnisse sind in
Tabelle 5.1 zu finden, Abbildung 5.1 zeigt die Simulationsgebiete.
Ein weiterer Test soll verdeutlichen, wo die Grenze des simulierbaren auf dem Entwicklungs-
gerät liegt. Ein erster Versuch mit einem Szenario der Größe 200× 200Zellen führte zu einer
Überschreitung der 256 MB Speichergrenze. Die Ergebnisse des Tests mit einem Szenario der
Größe 177× 185 Zellen (≈ 71× 74 Meter2) sind in Tabelle 5.2 dargestellt. Auf Grund der sehr
langen Durchlaufzeiten, beschränkte ich die Anzahl der Durchläufe auf 5 pro Szenario.
Ein letzter Test wurde mit einer Sensitivitätsanalyse durchgeführt. Dazu habe ich das mittlere
Szenario mit 30 Agenten gewählt. Die Regel zur Analyse lautete: „Verteile die Maximal-
geschwindigkeit aller Agenten gleich zwischen 1 und 7“. Die Simulation bestand aus 50
Durchläufen, vor deren Start jeweils ein neuer, gleichverteilter Wert für vmax gewählt und
allen Agenten zugewiesen wurde. Der resultierende Evakuierungsgraph ist in Abbildung 5.2
dargestellt.

5.2 Analyse

Einfluss der Gebietsgröße und Agentenanzahl

In den Ergebnissen des ersten Tests (5.1) ist deutlich zu erkennen, dass die Anzahl der Agenten
nur sehr geringen Einfluss auf die Initialisierungszeit und den Speicherplatzverbrauch hat.
Das liegt vor allem daran, dass zur Erstellung eines Agentenobjekts keine großen Operationen,
wie z. B. Distanzberechnungen oder Zellverknüpfungen, nötig sind. Da die Agenten kleinere
Datenmengen in sich speichern müssen, tragen sie auch wenig zum Speicherverbrauch bei
bzw. erhöhen diesen bei steigender Anzahl nur geringfügig.
Die Erhöhung der Agentenanzahl spiegelt sich allerdings in einem Anstieg der Durchlaufzeiten
wider. Hier kann man eine lineare Zunahme von ihnen erkennen. Man muss allerdings
bedenken, dass hier bereits das Problem des Garbage-Collectors mit den Wartezeiten zum
Tragen kommt. Besonders deutlich ist dies beim Anstieg der Initialisierungszeiten zu sehen:
Die meiste Zeit während der Initialisierung wird für die Verknüpfung der Zellen und
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kleines Szenario mittleres Szenario großes Szeanrio

Gebietsgröße 20x40 Zellen 40x80 Zellen 80x160 Zellen

Anzahl Agenten 30 60 90 30 60 90 30 60 90

Zeit zur Initialisie-

rung

0,40 s 0,42 s 0,42 s 1,43 s 1,41 s 1,47 s 10,74 s 10,72 s 10,74 s

∅ Zeit pro Durchlauf 1,40 s 3,21 s 6,52 s 3,12 s 6,43 s 10,13 s 10,70 s 20,03 s 30,81 s

∅ Zeit pro Runde, bis

1. Agent entkommen
ist

66,5
ms

119,5
ms

159,9
ms

91,2
ms

167,0
ms

223,9
ms

165,8
ms

297,3
ms

393,6
ms

Speicherplatzver-

brauch

9,58
MB

9,61
MB

9,68
MB

10,44
MB

10,51
MB

10,63
MB

24,47
MB

24,67
MB

24,69
MB

Tabelle 5.1: Ergebnisse der Simulations-Tests. Einfluss von Gebietsgröße und Agentenanzahl
auf Zeiten und Speicherverbrauch.

sehr großes Szeanrio

Gebietsgröße 177x185 Zellen

Anzahl Agenten 1315 2747

Zeit zur Initialisierung 184,3 s 189,8 s

∅ Zeit pro Durchlauf 1350 s 2490 s

∅ Zeit pro Runde, bis 1.

Agent entkommen ist

13,44 s 16,49 s

Speicherplatzverbrauch 111,6 MB 114,6 MB

Tabelle 5.2: Ergebnisse der Simulations-Tests. Grenze für Simulationen auf aktuellem Ent-
wicklungsgerät.
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Abbildung 5.1: Verwendete Szenarien (von links nach recht und oben nach unten): kleines,
mittleres, großes und sehr großes Szenario
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Abbildung 5.2: Evakuierungsgraph mit Sensitivitätsanalyse. Grauer Bereich: Die ersten 15
entkommenen Agenten sind diejenigen, die im 1. Stock starteten.
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5.2 Analyse

Knotenzellen, sowie für die Distanzberechnung zwischen den Ausgangszellen und den
Knotenzellen benötigt. Alle Gebiete besitzen die gleiche Anordnung der Wandzellen. Die
Anzahl der Knotenzellen unterscheidet sich für jedes Szenario somit nur geringfügig. Die
Anzahl der Nicht-Wandzellen verfünffacht sich vom kleinen zum mittleren Gebiet und
vervierfacht sich vom mittleren zum großen Gebiet. Während sich die Initialisierungszeit
vom kleinen zum mittleren Gebiet ebenfalls fast verfünffacht (etwas weniger), liegt sie beim
großen Gebiet beim 7, 5-fachen der mittleren Zeit. Dieser ungewöhnliche Anstieg der Zeit
ist durch das oben beschriebene Problem zu erklären. Der Test mit dem sehr großen Gebiet
verdeutlicht diese Annahme nochmals: Auch wenn das Gebiet anders aufgebaut ist und
damit die Anzahl der Knotenzellen stärker variiert, nimmt die Zeit zur Initialisierung um der
17-fache zu, während die Anzahl der Nicht-Wandzellen nur verdoppelt wird.
Um zu gewährleisten, dass die Berechnung der durchschnittlichen Rundenzeiten für alle
Szenarien fair ist, habe ich den Durchschnitt nur von Rundenzeiten genommen, bis der erste
Agent entkommen ist. Die Zunahme der Zeiten bei einer steigenden Anzahl Agenten ist
nachvollziehbar: Mit der Anzahl der Agenten steigen auch die Zielzellensuchen pro Runde.
Die Zielzellensuche hat den größten Einfluss auf die Rundenzeit. Von 30 auf 60 Agenten liegt
die Zeitzunahme bei allen Gebieten zwischen dem 1, 79- und 1, 83-fachen, während sie von 60
auf 90 Agenten zwischen dem 1, 32- und 1, 34-fachen liegt. Hier hat die Größe des Gebiets
keinen Einfluss. Allerdings nehmen die Zeiten bei gleicher Agentenzahl und größerem Gebiet
zu: Die Rundenzeiten aller Agentenzahlen des mittleren Gebiets liegen zwischen dem 1, 37-
und 1, 4-fachen über denen des kleinen Gebiets. Beim großen Gebiet liegt die Zunahme der
Zeit im Vergleich zum mittleren Gebiet zwischen dem 1, 76- und 1, 82-fachen. Obwohl hier
ebenfalls eine Linearität zu erkennen ist, erschließt sich der Grund für die Zunahme nicht
direkt. Ein Vergleich der Anzahl an Zielzellen, zwischen denen sich alle Agenten während
den ersten Runden entscheiden müssen, gibt hier einen Hinweis: Die Zahl liegt beim mittleren
Gebiet circa 1, 5-mal über der des kleinen Gebiets und circa 1, 7-mal unter der des großen
Gebiets. Diese Verhältnisse ähneln denen der Rundenzeiten. Die unterschiedliche Anzahl
potenzieller Zielzellen bei gleicher Anzahl Agenten rührt vom Aufbau der Gebiete her: Beim
jeweils kleineren Gebiet liegen die Wände dichter an den Agenten, so dass sich die Zielzellen
auf einer kleineren Fläche verteilen. Da die Geschwindigkeit in jedem Test gleich groß war,
änderte sich die Ausdehnung der Zielzellensuche in das Gebiet nicht. Ein weiteres Argument
für die Zeitzunahme kann das Problem des Speicherallokierens sein, das sich bei größerem
Gesamtspeicherverbrauch auch stärker auswirkt. Der Speicherplatzverbrauch ist beim großen
Gebiet deutlich größer als bei den anderen beiden Gebieten.

Test der Systemgrenzen

Die Ergebnisse des Tests mit dem sehr großen Szenario zeigen die momentanen Grenzen.
Die Initialisierung der Simulation liegt bei mehr als 3 Minuten, die Zeit für einen Durchlauf
zwischen 20 und 40 Minuten, je nachdem, wie viele Agenten simuliert werden. Die gemittelte
Zeit pro Runde, bis der erste Agent das Gebiet verlassen hat, liegt bei 13, 4 bzw. 16, 5
Sekunden. Hier wirkt sich das Problem mit den Wartezeiten für die Speicherbereinigung
gleich doppelt aus: Zum einen in der Initialisierungsphase und zum anderen in jeder Runde
für die Zielzellensuche der tausenden Agenten. Die Speichergrenze ließe noch mehr Agenten
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5 Ergebnisse und Analyse

zu, allerdings würde damit die Zeit eines einzigen Durchlaufs schnell über 60 Minuten
klettern.

Test der Sensitivitätsanalyse

Die Abbildung 5.2 zeigt das Ergebnis der durchgeführten Sensitivitätsanalyse in Form des
Evakuierungsgraphen. Auf den ersten Blick fällt sofort der große Abstand zwischen den
Maximal- und Minimalwerten und der Einbruch der Maximalwerte bei Runde 90 (circa) auf. In
jedem Stockwerk starteten 15 Agenten. Alle Ausgangszellen lagen im 1. Stockwerk. Aus dem
Graph kann man schließen, dass trotz der Variierung der maximalen Agentengeschwindigkeit
(vmax ∈ [1, 7]), es alle Agenten des unteren Stockwerks als erstes schafften zu entkommen, bevor
ihre Kollegen aus dem zweiten Stockwerk eine Ausgangszelle erreichten. Die Auswertung
der Textdatei hilft bei der weiteren Bewertung des Evakuierungsgraphen. Für jeden der
50 Durchläufe wurde der gewählte Parameterwert für vmax, sowie die Anzahl der Runden
des gesamten Durchlaufs dokumentiert. Man kann beide Werte miteinander verknüpfen.
Für den Fall, dass vmax ≥ 2 war, schafften es sogar alle 30 Agenten bis maximal zur 93.
Runde das Gebiet zu verlassen. In den Durchläufen, in denen ≤ vmax = 1 war, schafften es
bis zu diesem Zeitpunkt maximal die Hälfte der Agenten, denn im Graph ist zu erkennen,
dass die Maximalwerte kurz nach Runde 93 bei genau 15 entkommenen Agenten liegen.
Diese Sensitivitätsanalyse zeigt damit deutlich, welchen Einfluss die Wahl des Zeitschritts
einer Simulation auf deren Ergebnisse hat. Wählt man die simulierte Zeit pro Runde sehr
gering (Millisekunden), muss sich auch der Wert von vmax reduzieren, wenn die reale
Geschwindigkeit in der Umrechnung gleich bleiben soll. Wählt man den Zeitschritt zu klein,
kann dies zu vollkommen anderen Ergebnissen führen, wie man in diesem Beispiel gut
sehen kann. Für einen Zeitschritt, der zu Werten von vmax ≥ 2 führt, sind die Ergebnisse
dichter beisammen. Der Grund, warum bei vmax = 1 die Ergebnisse so weit von den anderen
entfernt liegen, kann verschiedene Gründe haben: Geringere Geschwindigkeiten führen
generell auch zu einer kleineren Menge potenzieller Zielzellen, aus denen der Agent wählen
kann. Bei ungünstiger Wahl der Agentenkonstanten können die Wahrscheinlichkeiten der
einzelnen Zellen dichter beisammen liegen. Somit kann es passieren, dass die Agenten sehr
oft ihre Richtung ändern oder Situationen entstehen, in denen sie im Kreis oder sogar vom
Ausgang weglaufen. Vor allem, wenn - wie im Beispiel - der Einfluss der Trägheit keine
Rolle spielt und Richtungsänderungen damit alle gleich wahrscheinlich sind, kann so etwas
passieren. Auch wenn der Einfluss des statischen Floor-Fields im Vergleich zu den anderen
Agentenkonstanten zu gering ist, kann ein unkontrolliertes Verhalten der Agenten beobachtet
werden. Die Sensitivitätsanalyse kann deshalb auch dabei helfen, die Wahl dieser Parameter
zu verbessern. Ändert man in diesem Beispiel den Wert von κS von 1.5 auf 5.0, nähern sich
die Ergebnisse für vmax = 1 denen der größeren Geschwindigkeitswerte bereits sichtbar an.
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6 Zusammenfassung und Ausblick

F.A.S.T. ist ein mächtiges Modell für Fußgängersimulationen. Gebäude-, Schiffs-, oder Flugzeu-
gevakuierungen lassen sich problemlos entwerfen und realitätsnah simulieren. Optimierungen
von bestehenden Fluchtwegen oder Planungen und Konzepte neuer Gebäude sind ebenso
möglich. Mit meiner Arbeit will ich nicht nur eine Implementierung dieses Modells beschrei-
ben, sondern vor allem dessen Einsatz auf mobilen Computern vorstellen. Die Idee dahinter
war zum einen, die Simulation und Analyse aus den Planungsbüros zum Ort des Geschehens
zu transportieren, so dass Experten und Verantwortliche sich vor Ort die Simulationen
ansehen und daraus Schlüsse ziehen können. Eine andere Richtung kann der Einsatz dieser
mobilen Software in Universitäten und Schulen sein. Junge Menschen können für die Thematik
und die verwendete Technik und Mathematik motiviert werden. Die grafische Ausgabe der
Simulationen trägt hier viel zu Demonstrationszwecken bei.
Um mein Framework stichhaltig erklären zu können, diente das zweite Kapitel der Einführung
in das F.A.S.T.-Modell. Neben den Grundprinzipien, wie dem Aufbau einer Simulationsrunde
und den Floor-Fields, ging es auch um Details: Die Formeln zur Wahl eines Ausgangs und
einer Zielzelle, die Bewegungsmöglichkeiten der Agenten und die Varianten zur Erstellung
der Agentenreihenfolge wurden von mir thematisiert. Die verschiedenen Arten der Ergebnis-
darstellung habe ich im letzten Abschnitt des Kapitels angesprochen.
Obwohl das Modell bereits sehr umfänglich ist, wollte ich für meine Implementierung
zusätzliche Simulationskomponenten einbauen. Zu den im Modell bereits vorgestellten Er-
weiterungen zählen die zusätzlichen Stockwerke und die Treppenzellen. Letztere habe ich
mit einem dynamischen Parameter versehen, so dass unterschiedliche Arten von Treppen
entstehen können, die sich verschieden stark auf die Geschwindigkeit der Agenten auswirken
können. Nach demselben Prinzip erweiterte ich die Wandzellen um einen Parameter, der die
Zellen, die vor einer Wandzelle liegen, mehr oder weniger attraktiv für Agenten machen.
Damit sind verschiedene Typen von Wänden realisierbar. Das Erweitern des Gebiets um
zusätzliche Stockwerksebenen, brachte einen weiteren Zellentyp hervor: Teleportzellen. Sie
sind nötig, um Agenten zwischen den Ebenen hin- und her transportieren zu können, denn
auf Grund der Zweidimensionalität der Gebiete, liegen die Stockwerke nicht über- sondern
nebeneinander. Damit mussten aber auch fast alle Distanzberechnungen und die Zielzellen-
suche der Agenten modifiziert werden, um diesen veränderten Bewegungen Rechnung zu
tragen. Eine weitere wichtige Erweiterung ist die Möglichkeit eine Sensitivitätsanalyse mit
dem Programm durchzuführen. So ist es möglich zu Simulationsbeginn Regeln zu erstellen,
die vor jedem Durchlauf ausgeführt werden. Sie weisen den angegebenen Parametern neue
Werte zu, die durch eine Vielzahl verschiedener Wahrscheinlichkeitsverteilungen gewählt
werden können.
Der Fokus des vierten Kapitels lag auf der Beschreibung der Umsetzung des Modells und der
Erweiterungen. Neben dem grundlegenden Aufbau des Programms und seiner einzelnen

75



6 Zusammenfassung und Ausblick

Komponenten, galt es auch die drei Hauptteile der Simulation detailliert zu beschreiben:
Initialisierung, Durchführung und Ergebnisspeicherung. Bei der Initialisierung lag der Fokus
vor allem auf den Konfigurationsdateien, welche die Szenarien definieren. Die Erklärung
ihres Aufbaus und ihrer internen Verarbeitung wurden von zusätzlichen Codeausschnitten
und Beispielen unterstützt. Aber auch die Algorithmen für die vielen Distanzberechnungen
wurden von mir ausführlich thematisiert. Der Abschnitt über die Simulationsdurchführung
widmete sich der Umsetzung der Ausgangs- und Zielzellensuche, dem Finden einer Agen-
tenreihenfolge für die Bewegungen und den Aktualisierungsvorgängen der Statistiken am
Ende der Runde. Die gesammelten Resultate waren der Mittelpunkt des letzten Abschnitts.
Dort wurde die interne Speicherung und die Möglichkeiten ihrer Darstellung in Form von
Graphen, Bildern und Text vorgestellt.
Abschließend zeigte das fünfte Kapitel Ergebnisse von verschiedenen Simulationstests. Die
sollten zum einen aufzeigen, welchen Einfluss die Größe der Gebiete und die Anzahl der
eingesetzten Agenten auf die Durchführungszeiten und den verbrauchten Speicherplatz haben.
Ein zusätzlicher Test offenbarte die Grenze des derzeit simulierbaren mit dem vorliegenden
System. Der abschließenden Test beinhaltete eine Sensitivitätsanalyse. Mit ihr konnte man die
Auswirkung der Änderung der Maximalgeschwindigkeit von Agenten auf die Ergebnisse
einer Simulation sehr gut sehen.

Ausblick

Dieses Framework soll nicht als abschließende Lösung für die Umsetzung des F.A.S.T.-Modells
auf mobilen Rechnern gesehen werden. Ganz im Gegenteil: Der Aufbau der Konfigurationsda-
teien und ihrer Verarbeitung, die Art, wie die Wahrscheinlichkeiten für eine Zielzelle berechnet
werden und wie die Agenten sich bewegen ist absichtlich offen von mir implementiert worden.
Meine Arbeit soll Ausgangspunkt für zusätzliche Erweiterungen und Anpassungen des
Modells sein. Vor allem was die grafische Darstellung von Ergebnissen betrifft, ist in meinem
Programm Ausbaumöglichkeit gegeben. In [Kre06, S. 86 f.] sind noch weitere Ausgaben
beschrieben, wie z. B. Frustration und Blockierung der Agenten oder die Verteilung der
Evakuierungszeiten [Kre06, S. 88]. Auch die Art, wie sich Agenten zur Zeit bewegen, kann
modifiziert werden. Das zellenweise Bewegen zur Zielzelle, ist bereits detailliert beschrieben
worden ([Kre06, S. 28 ff.]). Eine große Erweiterung wäre der Einbau eines Grafikeditors, mit
dessen Hilfe im Programm selbst die Simulationsgebiete bearbeitet werden können. So können
schnelle Ideen direkt umgesetzt und getestet werden. Auch der Bau komplett neuer Szenarien
kann damit vereinfacht werden, da die Vergabe der Farben für der entsprechenden Zelltypen
besser gesteuert und verwaltet werden kann. Programmiertechnisch muss für die in 5.1
angesprochenen Probleme eine Lösung gefunden werden. Vor allem das zweite Problem ist
von großer Bedeutung: Die vielen einzelnen Speicherallokationen beim Befüllen der großen
Datenstrukturen, wie z. B. dem Zellenarray oder den einzelnen Arrays für die Ausgangs-
und Knotenzellendistanzen jeder Zelle sind Ausgangspunkte dieses Problem. Die Erzeugung
der vielen Integer- oder Double-Objekte führen zu den Einsätzen des automatischen Garbage-
Collectors, der für die minimalen, aber in der Summe trotzdem langen, Wartezeiten des
Hauptprogramms sorgt. Eine Lösung ist sicherlich, die Arrays auf ein Mal zu initialisieren und
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erst dann die einzelnen Zell-Objekte zu erstellen. Dies ist aber mit den derzeit verwendeten
Datenstrukturen nicht möglich. Hier muss entweder auf andere Datenstrukturen umgestellt
werden, oder nativer Code (z. B. in C++) für die Speicherreservierungen eingesetzt werden.

Alles in allem ist dieses Framework für die Simulation kleiner bis mittlerer Szenarien sehr
leistungsstark. Auf Grund der Erweiterungen sind die Ergebnisse realitätsnäher geworden
und mit der Sensitivitätsanalyse lassen sich die Resultate genauer untersuchen.
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