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Kurzfassung

In dieser Arbeit geht es um die praktische Umsetzung des F.A.S.T.-Modells als Framework
zur Fufigangersimulation auf mobilen Tablet-Computern. Zuséatzliche Komponenten sind in
das Modell eingebaut worden, um die Ergebnisse noch realistischer zu gestalten. Dazu zdhlen
unter anderem die Erweiterung des Simulationsgebiets um weitere Stockwerke, sowie die
Simulation von Treppen. Eine Sensitivitdtsanalyse soll die Moglichkeit bieten, die Ergebnisse
noch besser auswerten zu konnen. Die Implementierung des Modells und der angesprochenen
Erweiterungen wird ebenso detailliert beschrieben, wie die Ergebnisse von Testsimulationen
des Frameworks. Neben Tests zu Durchfiihrungszeiten und Speicherverbrauch, wurde auch
eine Sensitivitdtsanalyse durchgefiihrt und getestet, wo die Grenze fiir simulierbare Szenarien
mit dem vorgelegten System liegt.
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1 Einleitung

Computersimulationen von Gebdude- oder Verkehrsmittelevakuierungen konnen einen
grofSen Beitrag zur Verbesserungen bestehender oder neuer Fluchtpline leisten. Denn Ubun-
gen mit echten Menschen vor Ort sind teuer, zeitaufwéndig und bringen selbst bestimmte
Gefahren fiir die beteiligten Personen mit sich. Neben vielen anderen Modellen, die solche
Simulationen beschreiben, wurde das sogenannte ,F.A.S.T.”-Modell entwickelt. Damit konnen
recht unkompliziert Evakuierungsszenarien simuliert und die Ergebnisse analysiert werden.
Mein Ziel ist es gewesen, dieses Modell in einem Framework umzusetzen und auf mobilen
Tablet-Computern lauffihig zu machen. Dadurch soll zum einen die Moglichkeit fiir Experten
erdffnet werden, die Optimierung ihrer Evakuierungspliane direkt vor Ort durchfiihren zu
konnen und den Verantwortlichen vorzufiihren. Sie sind somit auch in der Lage, Ideen und
Verbesserungen direkt zu testen und einzuarbeiten. Aber nicht nur Experten soll der mobile
Einsatz der Simulationssoftware dienen. Die Demonstration der Software kann Motivation
fiir jlingeres Publikum sein, sich mit der Thematik zu beschiftigen, oder kann ihr Interesse
fiir die Technik und Mathematik hinter dem Programm wecken.

Das folgende Kapitel befasst sich ausschliefilich mit dem F.A.S.T.-Modell. Denn bevor es um
die Erweiterung und Implementierung des Modells gehen kann, muss das Modell vorgestellt
werden. Da es sich bei dem Modell um einen zelluldaren Automaten handelt, muss vor allem
die Funktionsweise ndher beschrieben. Aber auch Details werden angesprochen. So widmet
sich ein Abschnitt den sogenannten Floor-Fields, deren gespeicherte Informationen Zeit bei
der Simulationsdurchfiihrung sparen. Auch die Regeln, nach denen eine Simulationsrunde
aufgebaut ist, sind Teil dieses Kapitels. Hier liegt ein Hauptaugenmerk auf den Wahrscheinlich-
keitsformeln, mit denen es zu den Anderungen im Automaten kommt. Zuséatzlich widmet sich
ein Abschnitt den Statistiken und Ausgaben, die eine Simulation mittels F.A.S.T. produziert
und wie man sie darstellen kann.

In Kapitel drei geht es um Erweiterungen und Anpassungen, die am F.A.S.T.-Modell vorge-
nommen wurden. Zu ihnen zdhlen unter anderem spezielle Treppen- und Teleportzellen, mit
deren Hilfe die Simulationsergebnisse realitdtsnaher werden sollen. Ein entscheidender Zusatz
fur die Simulation, ist der Einsatz einer Sensitivitdtsanalyse, mit deren Hilfe die Ergebnisse
der Simulationen besser eingeschitzt und die simulierten Szenarios besser bewertet werden
konnen. Die Umsetzung des Modells als Framework fiir einen mobilen PC machte allerdings
auch manche Anpassungen notig, vor allen in der Art und Weise, wie die Simulationsregeln
Einfluss auf die Bewegungen der Personen haben, oder wie mit mehreren Ebenen in einem
Simulationsgebiet verfahren werden soll.

Das vierte Kapitel befasst sich mit der tatsdchlichen Implementierung des Modells. Zu Anfang
des Kapitels wird erldutert, welche Plattform und Programmiersprache fiir die Programmie-
rung verwendet wurde. Nachdem ein Uberblick iiber die Programmteile der Anwendung
erfolgt ist, gliedert sich der Rest des vierten Kapitels in drei Teile. Zuerst wird ein detaillierter



1 Einleitung

Blick auf die Initialisierung einer Simulation geworfen. Er enthélt auch eine Beschreibung
des Aufbaus der Konfigurationsdateien, die ein Szenario definieren. Als nidchstes wird die
Durchfiihrung einer Simulation beschrieben. Dabei wird vor allem auf die Bewegung der
Objekte und deren Suche nach besetzbaren Zellen eingegangen. Zusitzlich wird das gesamte
Kapitel mit Algorithmen, erklirenden Bildern und Codeausschnitten unterstiitzt. Der letzte
Teil des Kapitels legt den Blickpunkt auf die Programmierung der Ergebnisspeicherung und
-darstellung.

Im letzten Kapitel sind Testergebnisse des Frameworks dargestellt. Das Programm wurde mit
unterschiedlichen Szenarien auf dem mobilen Tablet-PC getestet, um dessen Leistung und
Grenzen aufzuzeigen. So soll vor allem eine Einschdtzung moglich gemacht werden, welche
Faktoren die Simulationszeit und den Verbrauch an Arbeitsspeicher beeinflussen. Ein weiterer
Test soll zeigen, wie die vorliegende Hardware die Grofse der zu simulierenden Gebiete
eingrenzt. Es werden auch zwei Probleme angesprochen, die im direkten Zusammenhang
mit langeren Simulationszeiten stehen. Ein abschlieffendes Beispiel einer Sensitivitdtsanalyse
soll ihre Moglichkeiten im Bewerten der eingesetzten Simulationsparameter und den daraus
resultierenden Ergebnissen aufzeigen.



2 Uberblick iiber das F.A.S.T.-Modell

F.AS.T. steht fiir ,Floor field- and Agentbased Simulation Tool”. Es ist ein Modell zur
Fufigiangersimulation und wurde 2007 an der Universitat Duisburg-Essen von Tobias Kretz
entwickelt [Kre06]. Es baut auf einigen fritheren Simulationswerkzeugen auf ([KKN*03],
[Gat05]). In diesem Kapitel will ich das F.A.S.T.-Modell vorstellen. Dabei gehe ich auf einige
Teilaspekte nédher ein, wie z. B. die Floor-Fields, den Aufbau einer Simulationsrunde und die
Ausgaben.

2.1 Grundprinzip

Das Modell basiert auf einem zelluldren Automaten. Somit sind sowohl die Zeit, als auch der
Raum diskretisiert. Es gibt unterschiedliche Typen von Zellen, sowie Agenten, die in einzelne
Gruppen aufgeteilt werden konnen. Als ,Agent” wird in diesem Modell eine Personen
bezeichnet. Ein Agent besetzt immer genau eine Zelle. Im Gegensatz zu normalen Zellen
oder Ausgangszellen, konnen die speziellen Wandzellen nicht durch Agenten besetzt werden.
Sie dienen als eine Art Hindernis fiir die Agenten auf ihren Wegen tiber das Zellenfeld.
Mit Verweis auf [Dre67], wird die Zellengrofle mit ,ungefahr 40 x 40cm?, der kleinsten
Flache, die ein Fufigdnger einnimmt”, angegeben. Ein Zeitschritt wird hier als ,Runde”
bezeichnet. Mit jeder Runde bewegen sich die Agenten {iber das Feld der Zellen. Dabei wird
ihre Bewegung von mehreren randomisierten Regeln beeinflusst. Auf Grund individueller
Parameter jedes Agenten, wirken sich die Regeln unterschiedlich auf die Bewegungen aus.
Die eben angesprochenen Gruppen fassen alle Agenten mit denselben Parameterwerten
zusammen. Jeder Agent kann sich trotzdem unabhédngig von Gruppenzugehorigkeiten
bewegen. Das Ziel jedes Agenten ist es am Ende einer Runde eine Ausgangszelle zu besetzen.
Uber diese Art von Zellen kann ein Agent das Simulationsgebiet verlassen und hat somit auch
keinen Einfluss mehr auf die {ibrigen Agenten. Bezogen auf die Realitdt kann man davon
sprechen, dass er ,erfolgreich entkommen” ist. Das Ziel der Simulation ist erreicht, wenn der
letzte verbliebene Agent eine Ausgangszelle besetzt hat und mit dem Ende der Runde keine
Agenten mehr im Simulationsgebiet iibrig sind.

2.2 Floor-Fields

Im F.A.S.T.-Modell werden sogenannte Floor-Fields eingesetzt. Sie wurden bereits in fritheren
Modellen zur Fufigiangersimulation verwendet ([BKSZ01], [KS02], [NKNS04]). Die urspriing-
liche Idee ist, dass diese Felder durch die Agenten auf bestimmte Weise verdndert werden und
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es dadurch zu einer Anderung der Ubergangswahrscheinlichkeiten des Automaten kommt.
Die Bewegung der Agenten wird dadurch gesteuert, indem Zellen bevorzugt werden, deren
Eintrag im Floor-Field grofSer ist [BKSZ01].

Fiir das FEA.S.T.-Modell wurde dieses Prinzip tibernommen. Vereinfacht kann man sagen, dass
ein Floor-Feld Informationen zu jeder einzelnen Zelle speichert. Sie sind damit genauso grof3
wie das Simulationsgebiet. Je nachdem, welchem Zweck ein Floor-Field in der Simulation
dient, bleiben die Werte in ihm {iber die Zeit hinweg konstant, oder werden durch die Agenten
und globale Einfliisse in jeder Runde aktualisiert. Gerade die Floor-Fields, die Informationen
bereithalten, die sich nicht mehr dndern, fithren zu einer deutlichen Beschleunigung der
Simulationszeit. Im Folgenden sind drei unterschiedliche Floor-Fields aufgefiihrt, die zum
Teil im F.A.S.T.-Modellbenutzt werden und in meiner Implementierung eingebaut sind.

2.2.1 Statisches Floor-Field

In [Kre06, S. 20 ff.] und [Kre06, S. 37 ff.] wird das statische Floor-Field beschrieben. Es speichert
Distanzwerte zwischen Zellen. Fiir jede Zelle werden die kiirzesten Entfernungen zu jedem
Ausgang berechnet und im entsprechenden Feld des Floor-Fields gespeichert. Gemessen wird
die Distanz in ,,Anzahl Zellen”, wobei die Wertemenge nicht auf die Ganzen Zahlen beschrankt
ist. Da es im Simulationsgebiet auch Wandzellen geben kann, die eine direkte Verbindung
zweier Zellen verhindern, werden diese Hindernisse in den Berechnungen miteinbezogen. Die
kiirzeste Entfernung zwischen zwei Zellen setzt sich folglich oftmals aus mehreren Teilstrecken
zusammen, welche um die Hindernisse herum fiithren. Die Distanzwerte miissen ein Mal zu
Beginn der Simulation berechnet werden. Danach wird auf nur noch lesend auf sie zugegriffen.
Eine detaillierte Beschreibung der Distanzberechnungen, sowie den Modifikationen der
Algorithmen ist in Kapitel 3.5 und 4.3.3 vorhanden. Abbildung 2.1 zeigt eine Visualisierung
eines statischen Floor-Fields fiir eine der Ausgangszellen.

2.2.2 Dynamisches Floor-Field

InFA.S.T. wird aufSerdem das sogenannte ,, dynamische Floor-Field” eingesetzt ([Kre06, S. 24 f.]
und [Kre06, S. 28 £.]). Wahrend die Werte des statischen Floor-Fields konstant tiber die Zeit der
Simulation hinweg bleiben, verdndern sich die Daten dieses Floor-Fields entsprechend der
Agentenbewegungen. Jeder Agent hinterldsst durch seine Bewegung eine ,Spur”. Dies driickt
sich durch eine erhohte Besetzungshdufigkeit der besuchten Zellen aus. Das dynamische
Floor-Field speichert Vektoren, die diese Bewegungen in x- und y-Richtung aufsummieren. Je
mehr Agenten mit hoher Geschwindigkeit und anndhernd derselben Richtung iiber eine Zelle
laufen, desto grofler werden die Vektorkomponenten. Abbildung 2.2 zeigt eine Situation, in der
sich zwei Agenten nacheinander von einer Zelle wegbewegen und damit den entsprechenden
Vektoreintrag verdndern. Der gezeigten Berechnung liegt folgende Vorschrift zu Grunde: Ein
Agent, der sich von einer Zelle an Position (a,b) zu einer Zelle an Position (x,y) bewegt,
addiert (x —a, y — b) auf das Feld im dynamischen Floor-Field an Position (a,b) [Kre06, S. 24].
Das dynamische Floor-Field wird nicht nur durch die Agenteninteraktionen beeinflusst, son-
dern auch durch das Verwischen (,,diffusion”) und Verblassen (,,decay”). Beides sorgt dafiir,

10



2.2 Floor-Fields

Lt

Abbildung 2.1: Beispiel fiir ein statisches Floor-Field. Wandzellen sind rot eingefarbt. Je weiter
eine Nicht-Wandzelle vom Ausgang entfernt ist, desto heller ist ihr Grauwert.

dass die Agentenspuren mit der Zeit verwaschen und irgendwann komplett verschwinden,
wenn sich keine weiteren Agenten mehr iiber die entsprechenden Zellen fortbewegen. In
F.A.S.T. gibt es deshalb zwei globale Parameter, die mit a (Verwischung) und 6 (Verblassen)
bezeichnet werden. Sie geben die Wahrscheinlichkeit an, mit der ,,alle Werte beider Kompo-
nenten” [Kre06, S. 24] des dynamischen Floor-Field diffundieren bzw. zerfallen. Eine Diffusion
findet nur zwischen den entsprechenden x- und y-Komponenten benachbarter Zellen statt. Es
gelten in diesem Fall nur horizontal und vertikal gelegene Zelle als benachbart. Eine Diffusion
zwischen diagonal benachbarter Zellen ist folglich nicht moglich. Ist die Vektorkomponente
der einen Zelle negativ, fithrt die Diffusion zu einer Verringerung des Wertes der anderen
Zelle, unabhingig, ob ihr Wert positiv oder negativ ist und umgekehrt, fiir einen positiven
Ausgangswert. Beim Verblassen gilt allgemein, dass sich der Betrag der Komponente verrin-
gert. Ein negativer Wert ndhert sich somit gleichermafien der Null an, wie ein positiver.
Nachdem alle Agenten ihre Bewegungen fiir die Runde abgeschlossen haben, wird das
dynamische Floor-Field entsprechend den Wahrscheinlichkeitswerten von o und 6 verdndert.
Abbildung 2.8 zeigt eine Momentaufnahme des dynamischen Floor-Fields wihrend einer
Simulation.

2.2.3 Floor-Field fiir Wanddistanzen

Wainde bzw. Wandzelle haben einen Einfluss auf die Bewegung der Agenten (siehe 2.3.2).
Deshalb ist es notwendig, von einer Zelle zu wissen, wie nahe sie an einer Wandzelle liegt. Ein
Floor-Field, das diese Distanzen speichert, ist im F.A.S.T.-Modell nicht explizit beschrieben.
Eine Verwendung bei der Implementierung des Modells liegt allerdings nahe, betrachtet man
vor allem die zeitlichen Vorteile von Floor-Fields. Die Distanzen dndern sich im Verlaufe der
Simulation nicht und kénnen deshalb wie die Werte des statischen Floor-Fields zu Beginn der
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2 Uberblick tber das F.A.S.T.-Modell

Abbildung 2.2: Beispiel fiir eine Anderung des dynamischen Floor-Fields: Zwei Agenten
bewegen sich in unterschiedliche Richtung von derselben Zellen weg. Ihre
Bewegungsvektoren werden auf den Eintrag an der Position der hellgrauen
Zelle im dynamischen Floor-Field addiert.

Simulation einmalig berechnet werden. In Abbildung 2.10 sieht man eine Darstellung dieses
Feldes und in Kapitel 4.3.3 sind weitere Details zur Implementierung verfiigbar.

2.3 Aufbau einer Simulationsrunde

Eine Simulationsrunde besteht aus drei Abschnitten:
1. Die Agenten wahlen einen Ausgang.
2. Sie entscheiden sich fiir eine Zielzelle, die sie nach dieser Runde besetzen wollen.
3. Alle Agenten fiihren ihre Bewegungen aus.

Abbildung 2.3 zeigt das Schema einer Runde. Es basiert auf der Abbildung in [Kre06, S. 12].
Zuerst wihlt jeder Agent einen Ausgang aus. Da er meistens aus einer Gruppe von Ausgangs-
zellen besteht, wird nicht nur der Ausgang selbst ausgewéhlt, sondern auch gezielt eine seiner
Ausgangszellen. Diese Zelle dient dem Agenten als Fernziel, dem er Runde fiir Runde niher
kommen will. Im nichsten Schritt wéhlt jeder Agent eine Zielzelle fiir sich aus. Diese stammt
aus der Menge aller Zellen, die ein Agent mit seiner aktuellen Geschwindigkeit und von
seiner derzeitigen Position aus in dieser Runde erreichen kann. Die Auswahl des Ausgangs
und der Zielzelle kann unabhéngig von den anderen Agenten erfolgen. Das Modell erlaubt
hier den Einsatz nebenldufiger Prozesse zur Beschleunigung der beiden Abschnitte. Die
Bewegungen jedes Agenten zu seiner Zielzelle finden allerdings sequentiell statt (siehe dazu
auch Kapitel 2.3.3). Im Gegensatz zu den ersten beiden Abschnitten, in denen die Auswahl
durch wahrscheinlichkeitsbasierte Formeln getroffen wird, ist der dritte Abschnitt rein deter-
ministisch. Wie [Kre06, S. 28 ff.] zeigt, gibt es verschiedene Ansitze die Agentenbewegungen
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2.3 Aufbau einer Simulationsrunde

. Reihenfolge wahlen,
Agenten wahlen ’ Agenten wahlen &

- N\ ’
| Runde beginnt —— , ———in der sich die
N / ihren Ausgang ihre Zielzelle Agenten bewegen
_ )

| nein _

I | g

| \ 4

| .
, N ja Alle Agenten Agent fiihrt
L\\\Runde endet/;‘ haben sich . ‘ Bewegung aus

— bewegt?

Abbildung 2.3: Schematischer Aufbau einer Simulationsrunde

durchzufiihren. Es muss grundsitzlich eine Reihenfolge der Agenten festgelegt werden, in
der sie ihre Schritte durchfiihren. Erst wenn alle Agenten ihre Bewegungen vollendet haben,
endet die Runde und die nédchste kann beginnen.

2.3.1 Wahl eines Ausgangs

Die Wahl eines Ausgangs folgt bei F.A.S.T. einem randomisierten Prozess [Kre06, S. 11 f.]: Es
werden die Wahrscheinlichkeiten fiir jeden einzelnen Ausgang berechnet. Aus dieser Menge
wird einer, entsprechend der Gewichtung der Einzelwahrscheinlichkeiten ausgewahlt. Zur
Berechnung der einzelnen Wahrscheinlichkeiten, gibt das F.A.S.T.-Modell folgende Formel
vor ([Kre06, S. 12]):

1) pf =N —(15135)“2’5 )

Die einzelnen Variablen und Terme haben folgende Bedeutung;:
o A steht fiir den aktuellen Agenten.
o E bezeichnet den Ausgang, der gerade betrachtet wird.

e 54 = 1, wenn A den Ausgang E in der Runde zuvor bereits gewéhlt hatte. Sonst ist
Oag =0

e «r ist eine Eigenschaft von A und gibt an, wie beharrlich der Agent bei einer einmal
getroffenen Entscheidung fiir einen Ausgang bleibt. Das ,E” bezeichnet in diesem
Fall nicht den Ausgang, sondern dient zur Unterscheidung der anderen xx (siehe die
Formeln 2.3 bis 2.8).

e S(A,E) gibt die Entfernung zwischen der aktuellen Position von A und E an. Dieser
Wert ist im statischen Floor-Field S gespeichert.

e N dient als Normalisierungskonstante. Sie soll sicherstellen, dass } r pr = 1 gilt.

13



2 Uberblick tber das F.A.S.T.-Modell

In Kapitel 4.4.2 wird eine Anpassung der Formel 2.1 beschrieben, die durch die Gruppierung
von Ausgangszellen zu Ausgidngen notig wird.

2.3.2 Wahl einer Zielzelle

Die Geschwindigkeit eines Agenten hat entscheidenden Einfluss auf die Anzahl der Zellen,
zwischen denen er sich fiir eine Zielzelle entscheiden kann. Deshalb soll sie hier kurz definiert
werden. In [Kre06, S. 13] entspricht die , dimensionlose Geschwindigkeit, der Anzahl an
Zellen, die er (der Agent) sich wihrend einer Runde fortbewegen darf”. Die Grof3e einer Zelle
ist vom Modell mit circa 40 x 40cm? vorgegeben (vgl. 2.1). Somit hangt die Geschwindigkeit
einzig von der Definition des Zeitschritts einer Runde ab. Soll beispielsweise eine Runde 1s
lang sein, entspricht eine Geschwindigkeit von 4% einer realen Geschwindigkeit von 1,6%.
Ist der Zeitschritt dagegen 10ms, gilt fiir die reale Geschwindigkeit 1604 .

Wie auch schon die Wahl des Ausgangs, ist die Wahl der Zielzelle ein wahrscheinlichkeits-
basierter Prozess. In diesem Fall werden allerdings die Wahrscheinlichkeiten aller Zellen
gesammelt, die vom Agenten erreichbar sind. Aus dieser Menge wihlt er eine Zelle aus. Es
gibt drei Kriterien, nach denen eine Zelle als erreichbar gilt:

e Sie ist keine Wandzelle. Wandzellen konnen nicht besetzt werden.

e Sie liegt im Bereich der Zellen, die mit der aktuellen Geschwindigkeit des Agenten
besetzt werden konnen.

e Sie ist nicht bereits durch einen anderen Agenten besetzt.

Die folgende Formel und alle darin enthalten Teilformeln sind aus [Kre06, S. 24] entnommen
und im Folgenden beschrieben. Die Wahrscheinlichkeit p.,, mit welcher der Agent A die Zelle
an Position (x, y) als Zielzelle auswihlt, wird berechnet durch:

(22) Pry = NP3y ProyPryPrPrys

wobei die pffy fiir die einzelnen Faktoren stehen, welche die Wahrscheinlichkeit der Zelle
beeinflussen. Sie sind alle nachfolgend erklért. N ist eine Normalisierungskonstante, die
garantieren soll, dass ), pxy = 1 gilt.

Einfluss des statisches Floor-Fields

Das statische Floor-Field speichert die kleinsten Distanzen aller Zellen zu allen Ausgangszellen
(siehe 2.2.1). Die folgende Formel beschreibt den Einfluss, indem sie die Entfernung einer
Zelle zum gewdhlten Ausgang des Agenten miteinbezieht ([Kre06, S. 24]):

(23) p, = eSSy

Die Variable «s ist eine Agentenkonstante. Alle Teilformeln von (2.2) und die Formel fiir
die Wahl des Ausgangs (2.1) benutzen verschiedene Agentenkonstanten xx. Sie konnen
individuell fiir jeden Agenten oder jede Agentengruppe zu Beginn der Simulation gesetzt
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2.3 Aufbau einer Simulationsrunde

werden. Jeder Agent speichert sich fiir sich ab. Die Aufgabe dieser Konstanten ist es, die
Einfliisse auf die Gesamtwahrscheinlichkeit von Formel (2.2) untereinander zu gewichten. SEy
ist der Eintrag im statischen Floor-Field, der die Entfernung zwischen der Zelle an Position
(x, y) und dem Ausgang E speichert. E entspricht dem Ausgang, den der Agent im Schritt
zuvor ausgewdhlt hat.

Mit dieser Formel werden Zellen, die ndher am Ausgang liegen, attraktiver fiir den Agenten.
Zellen, die ihn weiter vom gewdahlten Ausgang wegfiihren wiirden, erhalten eine geringere
Attraktivitat.

Einfluss des dynamischen Floor-Fields

Das dynamische Floor-Field speichert die Bewegungensspuren der Agenten iiber die einzelnen
Zellen ab (siehe 2.2.2). Es speichert sowohl die Richtung, als auch implizit den Geschwin-
digkeitsbetrag. Das Floor-Field kann damit die Richtung der Agenten steuern: Zellen, tiber
die sich viele, schnelle Agenten in der gleichen Richtung bewegt haben, besitzen grofie
Komponentenwerte im dynamischen Floor-Field. Sie sind damit attraktiver fiir neue Agenten,
als Zellen, iiber die nur wenige oder langsame Agenten gelaufen sind bzw. bei denen jeder
Agent eine andere Laufrichtung hatte.

Die Formel, die hinter dieser Uberlegung steckt, ist folgende ([Kre06, S. 24 £.]):

(2.4) pjl?y — o*(Dx(xy) (x=a)+Dy(x,y) (y-b))

Dabei ist kp eine der Agentenkonstanten, mit der dieser Einfluss gewichtet wird. (a,b)
bezeichnet die Position des Agenten, wihrend (x, y) fiir die Position der potenziellen Zielzelle
steht. Dy(x, y) bzw. Dy (x,y) gibt die X- bzw. Y-Komponente des Vektors im dynamischen
Floor-Field fiir die Zelle (x, y) an.

Einfluss der Tragheit

An dieser Stelle spielt die Physik und der Bewegungsapparat der Menschen eine entschei-
dende Rolle. Nach [Kre06, S. 25] ist das Beschleunigen und Verzogern fiir einen Menschen
praktisch sofort moglich; geht man von 1-Sekunden-Zeitschritten aus. Dagegen ist eine
Richtungsdanderung um 90° bei gleichbleibender Geschwindigkeit sehr viel schwieriger fiir
einen Menschen durchfiihrbar. Die folgende Formel soll diese Uberlegungen umsetzen und
den Einfluss der Tragheit auf die Zielzellenwahl widerspiegeln:

(2.5) pfcy = e_KIFZy;

wobei «; fiir eine der Agentenkonstanten steht und ny die Fliehkraft fiir die Zelle an Position
(x,y) beschreibt. Durch diese Formel werden Zellen, die in der aktuellen Laufrichtung
des Agenten liegen, attraktiver, als solche, die einen grofseren Winkel zur Laufrichtung
aufweisen. Zur Berechnung der Fliehkraft wird die Geschwindigkeit des Agenten wiahrend
der aktuellen Runde benétigt. Sie ist zu diesem Zeitpunkt allerdings nicht bekannt. Das liegt
an der Diskretisierung des Raumes und der Zeit ([Kre06, S. 25]: Eine Geschwindigkeit ist
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2 Uberblick tber das F.A.S.T.-Modell

nur definiert, wenn sich der Agent tatsachlich bewegt. Sie hangt von der Zielzelle ab, die
in diesem Schritt erst noch gesucht wird. Es wird deshalb der Durchschnittswert aus der
letzten Agentengeschwindigkeit und der wahrscheinlichen Geschwindigkeit am Ende der
Runde genommen. Die Formel zur Berechnung der Fliehkraft lautet dementsprechend wie

folgt ([Kre06, S. 25 ff.]):
[ )
AYi1 Ayy

1
(2.6) ng = (vnext + Ulast) E 1- ,

[ o)
Ay Ay;

o vy, die Geschwindigkeit ist, mit der sich der Agent in der vergangenen Runde bewegt
hat,

wobei

e U, die Geschwindigkeit des Agenten bezeichnet, mit der er die Zelle (x, y) erreichen
kann,

o Ax;y1bzw. Ay, dierelative Entfernung angibt, zwischen der in dieser Runde theoretisch
erreichbaren Zelle und der aktuellen Position des Agenten (in x- und y-Richtung
getrennt),

o Ax; bzw. Ay, die relative Entfernung angibt, zwischen der aktuellen Agentenposition
und der in der vergangenen Runde (in x- und y-Richtung getrennt).

In Abbildung 2.4 sieht man die Ergebnisse der Formel (2.5) fiir einen Teil der Zellen mit
Geschwindigkeit vj,5; = 3.

Einfluss benachbarter Wande

In [Kre06, S. 27] wird der Einfluss benachbarter Wande als ,,Sicherheitsabstand” beschrieben,
den die Agenten zu Wanden einhalten. Somit werden Zellen, die in der Ndhe von Wandzellen
liegen, unattraktiver fiir Agenten. Menschen wollen vor allem in Fluchtsituationen nicht nahe
an Wanden oder anderen Hindernissen entlanglaufen ([Kre06, S. 27], [NKNS04, S. 7]). Beide
Quellen fiihren folgende Formel zur Berechnung dieses Einflusses auf:

(2.7) pz\; = o WWay,

K ist eine weitere Agentenkonstante und W, gibt die Entfernung zu der Wandzelle an, die
am ndchsten an der Zelle (x, y) liegt. Ist die Zelle weiter als W,,x von einer Wandzelle entfernt,
gilt p% = 1 und die Wandzellen haben keinen Einfluss mehr auf die Wahl dieser Zelle.
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2.3 Aufbau einer Simulationsrunde

Abbildung 2.4: Ergebnisse von pfcy (Formel 2.5) fiir Agent mit Geschwindigkeit vj,; = 3. Der
Agent bewegte sich von (0, —3) nach (0,0) in der Runde zuvor. Es ist nur ein
Quadrant darstellt.

Einfluss benachbarter Agenten

Ahnlich wie die Nihe zu Wanden und Hindernissen, meiden Menschen in Fluchtsituationen
grofiere Menschenmengen; sofern sie eine Wahl haben [Kre06, S. 27 £.]. Die folgende Formel
macht Zellen unattraktiv, wenn ihre Nachbarschaft durch viele Agenten besetzt ist:

(2.8) P:l:y = ¢ PNe(xY)

Die Agentenkonstante xp dient auch hier der Gewichtung des Einflusses. Np(x, y) gibt die
Anzahl der Agenten an, die sich in der unmittelbaren Nachbarschaft der Zelle (x, y) befinden.
Der Agent, von dem die Zielzellensuche ausgeht, wird hier nicht mitgez&dhlt. Deshalb wird
dieser Einfluss auch ignoriert, wenn keine Agenten in der Nihe sind (Np(x,y) =0 = pfy =1).
Auch in einer Situation, in der alle erreichbaren Zellen von vielen Agenten umgeben sind
verschwindet dieser Einfluss aus der Zielzellensuche: Alle Zellen werden durch die Formel
gleichermafien unattraktiv gemacht. Die Wahl der Zielzelle hangt damit von anderen Faktoren
ab.
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2 Uberblick tber das F.A.S.T.-Modell

2.3.3 Bewegung zur Zielzelle

Haben alle Agenten ihre Zielzelle ausgewihlt, werden sie in diesem Schritt versuchen, sich zu
ihr zu bewegen. In [Kre06, S. 28 ff.] werden verschiedene Moglichkeiten beschrieben, dies zu
realisieren:

e Direktes Hinspringen: Der Agent springt direkt von seiner jetzigen Zelle zur Zielzelle.
Dazwischenliegende Zellen haben keinen Einfluss auf die Bewegung des Agenten und
werden umgekehrt von ihm auch nicht verdndert. Dieses Vorgehen ist vergleichsweise
einfach umzusetzen. Allerdings gibt es auch ein Problem: Wenn zwei oder mehr Agenten
dieselbe Zielzelle ausgewdhlt haben, kann nur einer von ihnen am Ende der Runde auf
diese besetzen. Es entsteht ein sogenannter ,,Konflikt”. Mit der Wahrscheinlichkeit u
bleibt er ungeldst und keiner der betroffenen Agenten darf sich zur Zielzelle bewegen.
Andernfalls wird einer von ihnen per Zufall ausgewihlt. Dieser darf sich als einziger
auf die Zielzelle bewegen. Alle anderen bleiben auf ihrer aktuellen Zelle stehen.

o Zelle fiir Zelle hinbewegen: Bei dieser Vorgehensweise bewegt sich ein Agent zu

seiner Zielzelle, indem er eine Reihe einzelner Spriinge zu direkt angrenzenden Zellen
ausfiihrt. Die Zellen, die er auf dem Weg zur Zielzelle besucht, gelten bis zum Abschluss
der Runde als besetzt. Sie konnen nicht von anderen Agenten betreten werden. Diese
Art der Agentenbewegung gilt als realistischer, ist allerdings komplizierter in der
Umsetzung [Kre06]. Zudem kénnen Konflikte hier auf zweierlei Weise entstehen: Zum
einen durch gemeinsame Zielzellen verschiedener Agenten (wie zuvor), aber auch durch
sich kreuzende Pfade zu unterschiedlichen Zielzellen.
Das Modell schlédgt eine etwas abgewandelte Form dieses Vorgehens vor. Da ich in
meiner Implementierung von diesem Vorschlag abgewichen bin und stattdessen eine
leicht modifizierte Version der ersten Variante umgesetzt habe, verweise ich fiir weitere
Details zum Modell-Vorgehen auf die entsprechende Literaturstelle [Kre06, S. 28 ff.].

Die Bewegungen der Agenten ist ein sequentieller Teil der Runde. Aus diesem Grund gibt es
verschiedene Moglichkeiten eine Reihenfolge der Agenten zu bestimmen. Die folgenden vier
sind aus [Kre06, S. 30] enthommen.

Konstante Reihenfolge: Zu Beginn der Simulation wird die Reihenfolge festgelegt. Sie bleibt
danach tiber die gesamte Lange der Durchfithrung hinweg dieselbe.

Verschobene Reihenfolge: Es existiert eine feste Reihenfolge fiir die Bewegungen der einzel-
nen Agenten. Sie wird vor Beginn der Simulation festgelegt. Allerdings wird jede Runde die
Nummer des Agenten, der beginnen darf, durch einen festen oder zufalligen Wert verschoben.
Aus der Reihenfolge 1,2,3,4 wird in der ndchsten Runde z. B. 3,4,1,2 gemacht.

Zufillige Reihenfolge: Die Reihenfolge wird in jeder Runde neu, zufallig bestimmt.

Vollkommen zufillige Reihenfolge: Diese Variante unterscheidet sich nur dann von der
vorhergehenden, wenn sich die Agenten schrittweise zu ihrer Zielzelle bewegen. In allen
vorherigen Varianten fiihrt ein Agent alle seine Schritte aus, bevor der ndchste Agent an der
Reihe ist. Bei dieser Variante wird nicht nur die Agentenreihenfolge in jeder Runde zuféllig
gewihlt, sondern auch die Anzahl der ausgefiihrten Schritte eines Agenten. Bis ein Agent
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2.4 Ausgaben

seine Zielzelle erreicht hat, kann er folglich mehrmals an der Reihe gewesen sein. In [Kre06,
S. 30] wurde dieses Schema als Standard fiir alle Berechnungen verwendet.

2.4 Ausgaben

Eine Simulation, wie sie hier nach dem F.A.S.T.-Modell durchgefiihrt wird, erzeugt eine
Vielzahl Daten und Ergebnisse. Einen wichtigen Teil stellt daher auch die Visualisierung und
Aufbereitung dieser Ergebnisse dar. Viele Resultate konnen in Form von Graphen und Bildern
dargestellt werden, andere Statistiken benotigen eine schlichte Textform. Eine grafische
Darstellung der Simulation macht es moglich, einige der Ausgaben bereits zur Laufzeit
anzuzeigen. Die folgende Auflistung ist aus [Kre06, S. 83-92] entnommen und enthilt die,
meiner Meinung nach, wichtigsten Ausgaben einer Simulation.

2.4.1 Statistiken

Nach jedem einzelnen Durchlauf wird die Anzahl der Runden dokumentiert, bis 95% und
100% der Agenten entkommen sind. Abschlieffend wird aufgefiihrt, wie viele Runden
es mindestens, hochstens und durchschnittlich pro Durchlauf gedauert hat, bis alle 95%
bzw. 100% der Agenten fliehen konnten. Zuséatzlich wird die Standardabweichung vom
Durchschnittswert ausgegeben.

Fiir jeden Ausgang wird dokumentiert, wie viele Agenten tiber ihn wahrend den einzelnen
Durchldufen entkommen sind. Nach Beendigung der Simulation gibt es eine Auflistung
der Ausginge, sortiert nach ihrer ID, mit der Angabe der Minimum-, Maximum- und
Durchschnittswerte. In [Kre(06, S. 90] wird diese Ausgabe in Form eines Graphen beschrieben,
bei dem die ID der Ausgénge auf der Abszisse verteilt sind und die Anzahl, der iiber die
Ausgidnge gefliichteten Agenten, auf der Ordinate aufgetragen sind.

Ein weiterer Vorschlag von [Kre06] ist die Ausgabe der Namen von Agentengruppen, deren
Mitglieder zu den letzten drei noch nicht entkommenen Agenten zdhlen.

2.4.2 Graphen

Der Evakuierungsgraph ist ein sehr aussagekriftiger Graph in der Analyse einer Simulation.
Er spiegelt den Verlauf der Evakuierung wider, indem er fiir jede Runde die Anzahl der
bereits entkommenen Agenten anzeigt. Je grofier die Steigung der Kurve ist, desto mehr
Agenten entkommen pro Runde. Die Kurve ist monoton steigend. Gewohnlich ist der Verlauf
zu Beginn eines Durchlaufs sehr flach, da sich nur wenig Agenten in der Ndhe von Ausgangen
aufhalten. Das gleiche gilt fiir das Ende eines Durchlaufs, wenn nur noch wenige Agenten im
Gebiet unterwegs sind und damit die Dichte abnimmt. Abbildung 2.5 zeigt einen exemplari-
schen Evakuierungsgraphen nach mehreren vollendeten Simulationsdurchldufen. Wie auch in
[Kre06, S. 88], kann der Graph mit zwei zusdtzlichen Kurven dargestellt werden: Den Maximal-
und Minimalwerten. Sie sind im Beispielgraph griin bzw. rot eingefdrbt. Die Maximalwerte
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2 Uberblick tber das F.A.S.T.-Modell

geben an, wie viele Agenten zu der entsprechenden Runde, iiber alle bisherigen Durchlédufe
gerechnet, maximal entkommen sind. Analoges gilt fiir die Minimalwerte. Man kann im
Beispielgraph sehen, dass die griine Kurve nicht monoton ist. Das liegt an der Definition der
Maximalwerte: Wenn zu einer Runde x in einem Durchlauf alle Agenten entkommen sind, hat
die Kurve dort ihr Maximum erreicht, der Durchlauf ist nach Definition des Modells beendet
und es werden auch keine neuen Werte mehr fiir diesen Graph aufgenommen. Wenn nun in
einer Runde x + 1 in jedem der nachfolgenden Durchldufen die Anzahl die entkommenen
Agenten kleiner als 100% ist, ist der Maximalwert an dieser Stelle kleiner als der in Runde
x. Das Modell gibt an dieser Stelle nicht explizit vor, wie die Maximal- und Minimalwerte
aufzunehmen sind, so dass auch eine Darstellungsvariante moglich ist, in der die griine Kurve
konstant fortlauft, sobald der Maximalwert erreicht wurde. Dadurch ist auch die Monotonie
dieser Kurve sichergestellt.

Ein weiterer wichtiger Graph ist der Verlauf des Durchschnittsflusses. Er zeigt fiir jede Runde
den aktuellen durchschnittlichen Fluss der Agenten an. Er kann laut [Kre06, S. 88 ff.] auf
unterschiedliche Arten berechnet werden. Eine davon bezieht den Fortschritt der Agenten
im statischen Floor-Field mit ein. Im Modell ist keine Variable zum Speichern des Durch-
schnittsflusses angegeben. Ich habe mich fiir f entschieden. Mit der folgenden Formel kann
der durchschnittliche Fluss berechnet werden:

Yaea (AS) - IAI)

@9) f= max(O, freie Zellen|

wobei AS den angesprochenen Fortschritt im statischen Floor-Field bezeichnet, d. h. die
Differenz aus alter und neuer Distanz zwischen der Ausgangszelle und dem Agenten.
Die Anzahl, der noch in der Simulation befindlichen Agenten, ist mit |A| bezeichnet und
freie Zellen| gibt die Differenz von besetzbaren und durch Agenten besetzte Zellen an. Siehe
Abbildung 2.6 fiir einen entsprechenden Beispielgraphen.

2.4.3 Bilder

Die aktuelle Geschwindigkeit der Agenten zdhlt zu den Ausgaben, die jederzeit wahrend
der Simulation aktualisiert und angezeigt werden konnen. Die Agenten werden entsprechend
ihrer aktuellen Geschwindigkeit eingefarbt. Eine griine Farbe entspricht dabei der individuel-
len Maximalgeschwindigkeit eines Agenten. Rot dagegen dem Stillstand des Agenten. Alle
Werte dazwischen werden linear von Rot nach Gelb und von Gelb nach Griin interpoliert. In
Abbildung 2.7 ist ein Beispiel zu sehen.

Das dynamische Floor-Field (siehe Kapitel 2.2.2) kann ebenfalls visualisiert werden. Da es
Vektoren speichert, kann man bei der Visualisierung auf einen Trick zuriickgreifen, der in
[Kre06, S. 43] beschrieben ist: Die Farbe der Zelle richtet sich nach der Richtung und der
relativen Lange des Vektors, im Vergleich zum langsten Vektor des dynamischen Floor-Fields.
Die Richtung gibt den Farbton vor, wihrend die Lange die Farbhelligkeit und -séttigung
bestimmt. Diese beiden Werte eignen sich hervorragend fiir den Einsatz des HSV-Farbraumes
(Hue, Saturation, Value). Ein Beispiel fiir solch eine Visualisierung ist in Abbildung 2.8 zu
betrachten.

Eine weitere Ausgabe, die bereits wahrend der Simulationsdurchfithrung angezeigt werden
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#escaped agents
N
1
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rounds

Abbildung 2.5: Ein Beispiel fiir einen Evakuierungsgraphen. Die griine Kurve zeigt die Maxi-
malwerte, die rote die Minimalwerte und die gelbe die Durchschnittswerte.

0 20 40 60 80 100 120 140

rounds

Abbildung 2.6: Ein exemplarischer Graph des Durchschnittsflusses der Agenten. Die griine
Kurve zeigt die Maximalwerte, die rote die Minimalwerte und die gelbe die
Durchschnittswerte.
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2 Uberblick tber das F.A.S.T.-Modell

Abbildung 2.7: Dieses Beispiel zeigt eine Visualisierung der Agentengeschwindigkeiten.
Der Farbverlauf von Rot iiber Gelb nach Griin entspricht der relativen
Geschwindigkeit eines Agenten von 0 bis 0yy.

kann, ist die Visualisierung der lokalen Dichte der Agenten. Hier gibt die Farbe einer Zelle
die Besetzung der jeweils direkten Nachbarzellen an. Entscheidend ist der Quotient aus
der ,, Anzahl direkt angrenzender besetzter Zellen” und den ,insgesamt besetzbaren Zellen”.
Wandzellen werden dabei ignoriert. Als direkte Nachbarzelle gelten die diagonal, horizontal
und vertikal anliegenden Zellen um die betrachtete Zelle herum. Ist der Quotient 0, wird die
Zelle griin eingefdrbt, denn alle benachbarten Zellen sind frei. Rot wird die Zelle eingefarbt,
wenn der Quotient bei 1 liegt, denn das bedeutet, dass alle Zellen um die betrachtete Zelle
herum durch Agenten besetzt sind. Fiir die entsprechenden Zwischenwerte wird der Farbwert
linear interpoliert. Ein Beispiel ist in Abbildung 2.9 zu sehen.

Auch das Floor-Field der kiirzesten Wanddistanzen, kann dargestellt werden. Ist das Maxi-
mum aller Werte dieses Floor-Fields bekannt (greatestWallDist), konnen die Farbwerte fiir
jede einzelne Zelle mit folgender Formel berechnet werden:

cellwaipist

RGBcolor = (0,0, greatestWallDist |

255),

wobei cellwgipist die Wanddistanz der aktuellen Zelle ist und RGBcolor ein Tripel mit den
Farbkomponenten (Rot, Griin, Blau), jeweils mit Werten im Intervall [0, 255]. Je weiter eine
Zelle von einer Wandzelle entfernt liegt, desto blauer wird sie dargestellt. Zellen, welche direkt
an eine Wandzelle angrenzen, sind anndhernd schwarz eingefarbt. Die dazwischen liegenden
Zellen erhalten einen linear interpolierten Farbwert. Abbildung 2.10 zeigt ein Beispielbild.

1
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Abbildung 2.8: Beispiel fiir ein dynamisches Floor-Field. Wandzellen sind weif$ eingefarbt.
Der Farbton der anderen Zellen hdngt von der Richtung des Vektors ab, die
Helligkeit vom Betrag des Vektors.

|'I+L
Abbildung 2.9: Eine exemplarische Visualisierung der lokalen Agentendichte. Griin sind

Zellen, bei denen alle besetzbaren Nachbarzellen unbesetzt sind. Je mehr von
ihnen durch Agenten belegt sind, desto roter werden sie eingefarbt.
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Abbildung 2.10: Beispiel fiir ein Floor-Field fiir Wanddistanzen. Wandzellen sind je nach
Typ mit einem unterschiedlichen Grauwert eingefarbt(siehe 3.2). Fiir alle
anderen Zellen gilt: Je weiter entfernt sie von einer Wandzelle sind, desto
blaulicher ist ihre Farbe.
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3 Erweiterungen

Das F.A.S.T.-Modell soll dazu beitragen realistische Simulationen durchzufiihren. Die Er-
gebnisse wurden mit echten Experimenten verglichen, um die Wahl der Parameter und
das Verhalten der Agenten zu optimieren [Kre06, S. 97-148]. Dennoch kann es in manchen
Szenarien notwendig sein, zusédtzliche Elemente in die Simulation hineinzubringen, um
die Ergebnisse realistischer zu gestalten. Einige Ideen sind bereits in der Beschreibung des
Modells genannt, wie z. B. Treppen, zusitzliche Stockwerke oder Anziehungspunkte ([Kre06,
S. 30ff.]). Ich habe diverse Erweiterungsideen in meinem Programm umgesetzt. Zusatzlich
implementierte ich die Moglichkeit einer Sensitivitdtsanalyse, mit deren Hilfe die Resultate
besser eingeschitzt werden konnen. In diesem Kapitel will ich diese Erweiterungen einzeln
vorstellen. Manche von ihnen fiithrten dazu, dass auch grundsétzliche Teile des Modells
angepasst werden mussten, wie z. B. die Distanzberechnungen. Diese Anderungen werden
ebenfalls in diesem Kapitel thematisiert.

3.1 Treppen

In der Beschreibung des F.A.S.T.-Modells werden Treppen als eine von vielen Moglichkeiten
vorgestellt, um die Ergebnisse realistischer zu gestalten [Kre06, S. 30ff.]. Sie sollen ,das
Grundverhalten der Agenten nicht beeinflussen”, sondern dienen lediglich zur Verbesserung
der Realitdtsndhe von Szenarien. Bis jetzt wurden Wandzellen, Ausgangszellen und normale
Zellen (durch Agenten besetzbare Zellen, ohne spezielle Eigenschaften) vorgestellt; nun
erweitern Treppenzellen das Modell.

Eine Treppenzelle wirkt sich auf die Geschwindigkeit der Agenten aus. In [Kre06, S. 301.]
wird von einer Reduktion um ca. 50% gesprochen, basierend auf vorhandenen ([Wei92]) und
selbst durchgefiihrten Messungen ([Kre06, S. 103-110]). Die Geschwindigkeitsdnderung eines
Agenten tritt ein, wenn er zu Beginn einer Runde eine Treppenzelle besetzt. Der kleinste Wert,
den die Agentengeschwindigkeit durch eine Treppenzelle annehmen kann, ist allerdings 1.
Wiirde diese Untergrenze nicht existieren, konnte sich ein Agent, dessen Geschwindigkeit
durch die Treppenzelle 0 erreicht, nie mehr von ihr wegbewegen.

Die Eigenschaften einer Treppenzelle, die im Modell vorgegeben sind, wurden zum Teil geédn-
dert, um eine Flexibilisierung des Einsatzes des Zelltyps zu erreichen: Die starre Reduktion der
Agentengeschwindigkeiten um 50% wurde aufgehoben und stattdessen ein neuer Parameter
eingefiihrt. Dessen beliebig setzbarer Wert steuert die Verdnderung der Agentengeschwindig-
keit. Zusétzlich ist es moglich, jeder Treppenzelle einen individuellen Wert zuzuweisen. Ich
nenne diesen Parameter fs,;,. Dieser Faktor wird mit der aktuellen Agentengeschwindigkeit
(veur) beim Betreten von Treppenzellen multipliziert. Fiir 0 < fyi, < 1 wird v, reduziert,
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3 Erweiterungen

allerdings mit der Untergrenze: vy, > 1. Fur fu,, = 1 wird die Geschwindigkeit nicht
beeinflusst, wahrend es fiir fs; > 1 zu einer Beschleunigung des Agenten kommt; auch
iiber dessen Maximalgeschwindigkeit v,,,, hinweg. Sobald ein Agent die beschleunigenden
Treppenzellen verlasst, ist auch der Effekt zu Ende und der Agent wird in seinen Bewegungen
wieder von seiner Maximalgeschwindigkeit begrenzt.

Die Vorteile des dynamischen Parameters sind folgende: Auf Grund der freien Wahl des
Wertes, kann von der starren Interpretation einer , Treppe” abgewichen werden. Treppenzellen
konnten beispielsweise eine Notfallrutsche (fsir > 1), eine Rolltreppe (fstair > 1), einen
Erdwall (fsir < 1) oder eine Leiter (fsui» << 1) simulieren. Und da es moglich ist fiir einzelne
oder Gruppen von Treppenzellen die Parameter individuell zu setzen, kann es die eben
aufgezihlten , Treppenobjekte” gleichzeitig in einem Szenario geben.

3.2 Dynamische Wandparameter

Es gibt einen Einfluss benachbarter Wande auf die Wahrscheinlichkeit einer Zelle bei der Ziel-
zellensuche (siehe 2.3.2). Man kann dabei von einem ,,Sicherheitsabstand” [Kre06, S. 27] reden,
den die Agenten zwischen sich und einer Wand einhalten wollen. Wie grofd dieser Abstand
ist, regelt zum einen die globale Variable W, aber auch die individuelle Agentenkonstante
xkw. Das Problem der ersten Variablen ist, dass sie grundsétzlich fiir jeden Agenten gilt. Die
zweite Variable hat das Problem, dass sie nicht unterscheidet, um welche Art von Wandzelle
es sich handelt.

Erweiterungen sollen dazu dienen, dass die Szenarien und damit auch die Ergebnisse rea-
listischer werden. Zu einem realistischen Szenario gehoren fiir mich unter anderem auch
verschiedene Arten von Wanden. Um nur ein paar Beispiele zu nennen: Diinne, halbhohe
Biirotrennwiande, Glasfassaden, Balkongeldnder, Hecken, Zdune und viele andere mehr.
Grundsitzlich haben alle Wandzellen gemein, dass sie als einziger Zelltyp nicht von Agenten
besetzt werden konnen. Diese Forderung eroffnet Spielraum fiir weitere Interpretationen:
Auch Autos, Schrianke, Stithle und andere Gegenstande lassen sich mittels Wandzellen reali-
sieren. Sie miissen nur grofd genug sein, um in das Zellenschema zu passen und unbeweglich
genug, um ihre starre Position zu rechtfertigen.

Meine Erweiterung ist ein dynamischer Parameter fiir Wandzellen ( f,,;1). Er verdndert die
Auswirkung der Teilwahrscheinlichkeit py benachbarter Wande. Somit lassen sich die ver-
schiedenen Typen von Wénden realisieren, die unterschiedlichen Einfluss auf das Verhalten
eines Agenten haben sollen. Der Parameter fliefit direkt in die Formel (2.7) ein und verandert
sie zu folgender, neuer Formel:

(31) p = s,

Fur fu. < 1 wird pw verstarkt; die entsprechende Zelle also attraktiver gemacht. Fiir f,,,; > 1
wird sie unattraktiver fiir einen Agenten.

Wihrend xy individuell fiir den Agenten gilt, egal um welche Wand es sich handelt, ist es bei
fwann genau umgekehrt: Hier kann jede Wandzelle einen anderen Faktor bekommen; dieser
wirkt sich auf jeden Agenten gleichermafien aus. Der Standardparameter W, ist hiervon
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allerdings nicht betroffen. Ist ein Agent weiter als Wy, von einer Wandzelle entfernt, gilt
immer py = 1, unabhingig vom Wandzellenfaktor.

3.3 Mehrere Stockwerke

Eine weitere Idee von [Kre06, S. 32] ist die Einfithrung weiterer Stockwerksebenen. Eine
notwendige Erweiterung des Simulationsgebiets in die dritte Dimension (ein , diskretisiertes
Volumen”[Kre06, S. 32]), kam aus damaliger Sicht nicht in Frage, da es ,,zu teuer im Hinblick
auf den Arbeitsspeicherverbrauch” sei. Der Einsatz meiner Software auf Tablet-PCs ldsst
dieses Argument weiterhin bestehen (siehe 4.1). Die Erweiterung des Simulationsgebiets um
zusiatzliche Stockwerke, ist auch im zweidimensionalen Raum durchfiihrbar. Die Idee von
F.A.S.T. ist es, bestimmte Stockwerks-Ausgangszellen zu platzieren, die einen Agenten eine
Ebene nach oben oder unter beférdern und Stockwerks-Eingangszellen, die - als Gegenpart
dazu - Agenten in die entsprechende Ebene aufnehmen. Weitere Details, z. B. wie man sich
eine Ebene vorzustellen hat, sind nicht genannt. Ich habe mich fiir diese Erweiterung in
meiner Implementierung entschieden. Allerdings ist die Umsetzung eine etwas andere, als
vom Modell vorgeschlagen; auch bedingt durch die knappen Ausfiihrungen in [Kre06]. Meine
Idee ist folgende:

Das Simulationsgebiets wird in verschiedene Bereiche aufgeteilt. Ein Bereich entspricht somit
einem Stockwerk oder einer Ebene, um es allgemein zu formulieren. Zuvor hat eine Ebene
das gesamte Gebiet eingenommen. Nun kann es beispielsweise sein, dass das erste Stockwerk
den linken, oberen Bereich einnimmt, das zweite Stockwerk den rechten, unteren und die
dritte Ebene den linken, unteren Bereich. Ein viertes Stockwerk existiert nicht und somit
bleibt der rechte, obere Bereich ungenutzt. Eine Ebene ist so konzipiert, dass man sie nur
durch bestimmte Zellen erreichen und verlassen kann. Diese Verbindungszellen erhielten
von mir den Namen "Teleportzellen". Das hat folgenden Hintergrund: Sieht man sich das
gesamte Zellenfeld an, stellt man fest, dass ein Agent beim Betreten einer Teleportzelle, direkt
in einen anderen Teil des Gebiets ,teleportiert” wird, auch wenn er sich theoretisch gar
nicht bewegt hat. Eine Teleportzelle hat immer genau eine Partnerzelle (ebenfalls vom Typ
,/Teleportzelle”). Bewegt sich ein Agent tiiber eine Teleportzelle, wird er zu deren Partnerzelle
verschoben, ungeachtet seiner Geschwindigkeit. Die Distanz zwischen den beiden Zellen ist
mit Null definiert, da sie im Grunde genommen denselben realen Platz einnehmen. Ein Agent
kann somit innerhalb einer Bewegung, tiber diese Zellen, Stockwerke betreten und/oder
verlassen. Durch die Nulldistanz zwischen den verbundenen Teleportzellen, fliefien bei der
Zielzellensuche des Agenten die Zellen des neuen Stockwerks direkt mit ein. Kann ein Agent
folglich die Teleportzelle seines aktuellen Stockwerks erreichen, kann er auch die Teleportzelle
des anderen Stockwerks erreichen.

Die Einfiihrung der Teleportzelle als neuen Zellentyp, fiihrt viele weitere Veranderungen mit
sich. Vor allem die Distanzberechnungen und die Zielzellensuche musste ich dementsprechend
anpassen. Fiir Details dazu siehe Kapitel 3.5 und 3.6.
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3.4 Sensitivitatsanalyse

Neben den bereits beschriebenen Erweiterungen, welche die Ergebnisse einer Simulation
realistischer gestalten sollen, habe ich mich dazu entschlossen, auch eine Erweiterung im
Hinblick auf die Ergebnisanalyse in meine Applikation einzubauen. Es handelt sich dabei
um die Moglichkeit einer Sensitivitdtsanalyse. Mit ihr ist es moglich, die Auswirkungen von
Parameterdnderungen am Ergebnis nachzuverfolgen. Das kann zum einen Aufschluss dariiber
geben, wie gut die Parameter fiir das simulierte Szenario gewéahlt wurden, zum anderen zeigt
es aber auch, wie robust das Simulationsgebiet fiir andere Situationen ausgelegt ist. Es kann
z.B. sein, dass ein Stadion sehr schnell evakuiert werden kann, wenn sich alle Personen mit
gleicher, langsamer Geschwindigkeit zu den Ausgangen bewegen. Wenn es allerdings grofere
Schwankungen in den Geschwindigkeiten gibt, kann es zu Staus und damit Verzégerungen
kommen. Diese Schwankungen konnen mit der Sensitivitdtsanalyse erzeugt werden. Der
resultierende Evakuierungsgraph und andere Ergebnisse geben daraufhin Aufschluss dartiber,
wie gut oder schlecht diese Storungen von den Fluchtwegen aufgefangen werden konnen.
Die Sensitivitdtsanalyse ist ein optionaler Teil der Simulation. So kann der Benutzer wihlen,
ob er das Szenario im Demonstrationsmodus (,,Demo-Modus”) simulieren lassen mochte,
oder mit der Sensitivitdtsanalyse verkniipfen mochte (sogenannter , Experten-Modus”). Die
Analyse wird konfiguriert, indem eine beliebige Anzahl an Regeln definiert wird. Vor jedem
Simulationsdurchlauf werden diese auf die entsprechenden Parameter angewendet, so dass
neue Parameterwerte fiir jeden Durchlauf zur Verfiigung stehen. Um eine genaue Analyse der
Ergebnisse zu gewdhrleisten, werden alle Regelanwendungen und Parameterwahlen in einer
Datei dokumentiert. Grundsétzlich konnen mit Hilfe der Regeln fast alle Simulationsparameter
verandert werden: Die Entfernungsgrenze von Wandzellen fiir den entsprechenden Einfluss
auf die Zielzellensuche (W,4y), die Parameter @ und 6 zum Andern des dynamischen Floor-
Fields, samtliche Agentenparameter, sowie die Faktoren einzelner Treppen- oder Wandzellen.
Eine Regel besteht selbst aus verschiedenen Parametern die vom Benutzer bei ihrer Erstellung
gesetzt werden. Sie sind nachfolgend aufgelistet:

e Typ: Eine erste grobe Filterung, um welche Gruppe von Parametern es sich handelt.
Hier hat der Benutzer die Wahl zwischen , Allgemein”, ,, Agent”, , Treppe” und , Wand”

e Gruppe: Aufler fiir den Typ , Allgemein” gibt dieser Wert an, fiir welche Gruppe von
Objekten die Regel gelten soll. Bei Agenten bezieht sich die Gruppe auf die in der
Konfigurationsdatei (4.3.1) definierten Gruppen. Bei Treppen und Wanden werden die
Einzelobjekte nach ihren Farbwerten gruppiert (4.3.2).

e Wahrscheinlichkeitsverteilung: Die Wahl des Parameters hangt von der verwendeten
Wahrscheinlichkeitsverteilung ab. Hier hat der Benutzer die Wahl zwischen vier Funktio-
nen: Gleichverteilung, Normalverteilung, log-Normalverteilung und Dreiecksverteilung
(auch Simpson-Verteilung).

¢ Funktionsparameter: Sie geben der Funktion der Wahrscheinlichkeitsverteilung vor,
in welchem Bereich ein Wert gewihlt werden soll. Fiir die Gleichverteilung muss ein
Minimal- und Maximalwert angegeben werden. Fiir die beiden Normalverteilungen
muss der Erwartungswert und die Varianz angegeben werden. Die Dreiecksverteilung
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benotigt sowohl einen Minimal- und Maximalwert, als auch einen dazwischenliegenden
,wahrscheinlichsten” Wert, der sozusagen die Spitze des Dreiecks bildet.

Die Abbildungen 3.1 bis 3.4 zeigen die Dichte- und Verteilungsfunktion aller vier verwendeten
Wahrscheinlichkeitsverteilungen.

a) b)
0.24 - "
020 0.8
016 06,
042
. 041
0.08 -
004: 0.2
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

Abbildung 3.1: Gleichverteilung. Dichtefunktion (a) und Verteilungsfunktion (b) fiir min = 2
und max = 6.

a) b)
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Abbildung 3.2: Normalverteilung. Dichtefunktion (a) und Verteilungsfunktion (b) fiir Erwar-
tungswert y = 3 und Varianz o = 1,4.
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Abbildung 3.3: Logarithmische Normalverteilung. Dichtefunktion (a) und Verteilungsfunkti-
on (b) fiir Erwartungswert p = 0 und Varianz ¢ = 1.
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Abbildung 3.4: Dreiecks- oder Simpsonverteilung. Dichtefunktion (a) und Verteilungsfunkti-
on (b) fiir min = 2, max = 9 und dem wahrscheinlichsten Wert bei 7.

3.5 Modifizierte Distanzberechnungen

In Kapitel 2.2.1 wurde bereits die Wichtigkeit des statischen Floor-Fields angesprochen. In jeder
Runde werden fiir die Ausgangs- und Zielzellensuche jedes Agenten sehr hdufig Distanzen zu
Ausgangszellen benotigt. Wiirde man diese Berechnungen jedes Mal neu durchfiihren, verlan-
gert sich die Zeit fiir die Durchfiihrung einer Simulation sehr stark. Da Zellen mit Ausnahme
der Agenten ihre Positionen nicht verdndern, bleiben auch die Distanzen untereinander und
zu den Ausgangszellen, iiber die gesamte Simulationsdauer hinweg, konstant. Deshalb ist
das statische Floor-Field von so entscheidender Bedeutung im Hinblick auf die Zeitersparnis.
Damit die Zeit, die am Anfang zur Berechnung des statischen Floor-Fields benétigt wird,
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moglichst kurz gehalten wird, sind bereits in [Kre06, S. 20 ff.] viele Losungen vorgeschlagen.
Einige davon habe ich in meiner Implementierung iibernommen.

Die Hinzunahme der Teleportzellen erfordert zusatzliche Veranderungen an den Distanzbe-
rechnungen. In den folgenden Abschnitten gehe ich deshalb auf die einzelnen Algorithmen
ein und erklére, was ich an ihnen im Vergleich zum vorgeschlagenen Algorithmus des FA.S.T.-
Modells verdndert habe. In Kapitel 4.3.3 gibt es weitere Details zur Implementierung dieser
Algorithmen.

3.5.1 Grundidee

Bevor es um die Modifizierungen der einzelnen Algorithmen geht, soll dargestellt werden,
welcher Algorithmus grundsétzlich hinter der Berechnung der Distanzen steckt und wie ich
ihn fiir meine Implementierung aufgeteilt habe.

Das Hauptziel des Algorithmus [Kre06, S. 20 ff.] ist die Berechnung der kiirzesten Entfernung
aller Zellen zu allen Ausgangszellen. Als Nebeneffekt erhalten die normalen Zellen auch
Distanzen zwischen sich und sogenannten Knotenzellen. Darauf gehe ich gleich genauer ein.
All diese Informationen werden letztlich im statischen Floor-Field gespeichert, so dass ein
schneller Zugriff wahrend des Simulationsverlaufs garantiert wird. In [Kre06] wird Dijkstras
Algorithmus [Dij59] dazu verwendet. Normalerweise bedeutet dies, dass man aus dem
Simulationsgebiet einen Graphen erstellen miisste. Jede Zelle ist dabei ein Knoten. Eine Kante
wird dort hinzugefiigt, wo sich zwei Zellen gegenseitig ,sehen” konnen. Mit , sichtbar” ist hier
gemeint, dass auf der geraden Linie zwischen den beiden Zellen keine Wandzelle liegt. Dieser
sogenannte ,Sichtbarkeitsgraph” dient als Ausgangspunkt fiir den Algorithmus. Nach [Kre06]
gibt es eine effizientere Moglichkeit, den Algorithmus einzusetzen: Anstatt aus jeder Zelle
einen Knoten zu machen, reicht es, sich auf bestimmte ,, Knotenzellen” zu reduzieren. Es muss
allerdings sichergestellt werden, ,dass jede Zelle, von mindestens einer korrekt gewé&hlten
Knotenzelle aus, sichtbar ist”[Kre06, S. 21]. Die Bestimmung dieser Knotenzellen ist in Kapitel
3.5.2 und 4.3.3 beschrieben. Sind alle notwendigen Knotenzellen gefunden, ist garantiert, dass
jede Nicht-Knotenzelle von mindestens einem Knoten aus sichtbar ist. Versucht nun ein Agent
sich auf kiirzestem Weg um eine Wandzelle zu bewegen, existiert an jeder Stelle, an der der
Agent seine Richtung dndern muss, eine Knotenzelle. Somit enthélt der Sichtbarkeitsgraph
der Knotenzellen die kiirzesten Wege vorbei an Hindernissen (Wéanden) [Kre06, S. 22]. Die
Distanzberechnungen werden damit in zwei Teile gespalten: Zuerst werden die kiirzesten
Entfernungen zwischen den Knotenzellen und den Ausgingen berechnet. Danach ergibt sich
die kiirzeste Entfernung einer Nicht-Knotenzelle zu einer Ausgangszelle als die kleinste aller
moglichen Distanzen iiber seine sichtbaren Knotenzellen, d. h. (Distanz zur Knotenzelle) +
(Distanz der Knotenzelle zur Ausgangszelle).

Der gesamte Algorithmus wird bei mir in verschiedene Teilalgorithmen aufgespalten:

1. Die Knotenzellen werden bestimmt.

2. Alle Zellen werden mit ihren sichtbaren Knotenzellen verkniipft, d. h. jede Zelle speichert
intern die Referenz und Distanz zu allen sichtbaren Knotenzellen ab.
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3. Die kiirzesten Distanzen zwischen allen Knotenzellen und allen Ausgangszellen werden
berechnet.

4. Fur jede Nicht-Knotenzellen wird ihre Entfernung zu allen Ausgangszellen berechnet.

3.5.2 Bestimmung der Knotenzellen

Ziel des ersten Teilalgorithmus ist es, die Knotenzellen korrekt zu bestimmen. Um die opti-
male, d. h. minimale, Anzahl von Knotenzellen zu bestimmen, miisste man eine Analyse der
Geometrie des Gebiets durchfiihren [Kre06, S. 21]. Daraus entsteht ein minimaler Sichtbar-
keitsgraphen, bei dem ,,die Knoten die konvexen Ecken der Hindernisse sind”. Hier schldgt
[Kre06] eine Idee fiir eine einfachere Umsetzung vor: Nimmt man eine leicht grofiere Zahl
von Knotenzellen in Kauf, konne man in diesem Fall viel schneller vorgehen. Es gentige,
immer nur die direkten Nachbarzellen jeder Wandzelle zu untersuchen. Der Zelltypen al-
ler Nachbarzellen (normale oder Wandzellen) entscheiden dartiiber, welche der normalen
Nachbarzellen Knotenzellen sein konnen[Kre06, S. 21]. Zusétzlich wird vorgeschlagen, das
Simulationsgebiet mit weiteren Voraussetzungen zu versehen. Es sollen Wandzellen verboten
werden, die ausschliefdlich diagonal mit mindestens einer weiteren Wandzelle verbunden sind.
Dies fiithrt zu inkorrekt platzierten Knotenzellen. Meiner Ansicht nach ist diese Forderung vor
allem im Hinblick fiir die Zielzellensuche wichtig. Ansonsten konnte sich ein Agent durch die
,Liicke” in der Wand bewegen, die in der Realitdt natiirlich nicht vorhanden ist. Auch wenn
dieses Vorgehen nicht zu Fehlern in der Simulation fiihrt, widerspricht es dem zu erwartenden
Verhalten der Agenten. Dies sollte man beim Erstellen der Wandzellen eines Szenarios immer
bedenken.

Mit diesen Vereinfachungen und Forderungen im Hintergrund, erhdlt man einen einfachen
und schnellen Algorithmus, um die Knotenzellen zu bestimmen. Seine Implementierung habe
ich in 4.3.3 beschrieben und ist auch in [Kre06, S. 21 f.] nachzuschlagen. Eine Erweiterung
von mir ist folgende: Zusatzlich zu den Knotenzellen, die mit diesem Algorithmus gefunden
werden, fiige ich alle Teleportzellen der Menge hinzu. Der oberen Definition nach, sieht eine
Teleportzelle ihre Partnerzelle normalerweise nicht, da meistens Wande zwischen den Ebenen
vorhanden sind (vgl. 3.3). Fiir die Zellen einer Ebene ohne Ausgangszelle gilt dann: Ohne
verbindende Knotenzelle, haben sie keine Entfernung zu den Ausgangszellen. Das ist nicht
moglich. Um zu garantieren, dass fiir jede Ebene die Distanzen zu allen Ausgangszellen
berechnet werden konnen, miissen die Teleportzellen zu Knotenzellen gemacht werden.

3.5.3 Verkniipfung sichtbarer Knotenzellen

Dieser Teilalgorithmus soll dafiir sorgen, dass jede Zelle eine Liste von sichtbaren Knotenzellen
samt Distanzen zu ihnen enthélt. Das Modell bietet keinen Hinweis, wie dies bewerkstelligt
werden soll. Deshalb beschreibe ich meinen Algorithmus an dieser Stelle etwas ausfiihrlicher.
Konkrete Details zur Implementierung in Java finden sich in Kapitel 4.3.3.

Das Ergebnis des Algorithmus ist im Prinzip ein Sichtbarkeitsgraph. Die Zellen bzw. Knoten,
die sich gegenseitig sehen, sind mit einer Kante verbunden. Die Kantengewichte entsprechen
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den Distanzen zwischen den Zellen. Die Ebenen des Simulationsgebiets sind Teilgraphen, die
wiederum durch die Teleport-Knotenzellen miteinander verbunden sind. Der Algorithmus
wird deshalb eine Ebene nach der anderen bearbeiten. Das hat auch den Grund, dass in einer
separaten Menge Referenzen auf die Randzellen der Ebene gespeichert werden und diese
Menge moglich klein sein sollte, damit der Algorithmus effizient arbeitet. Eine Randzelle ist
hier eine Zelle, die auf mindestens einer Seite den Rand der Ebene bildet. Der Algorithmus
iteriert tiber die Knotenzellen der Ebene. Von jeder Knotenzelle ausgehend, wird ein ,Strahl”
zu jeder Randzellen geschossen. Ein fiir diesen Einsatz angepassten Bresenham-Algorithmus
[Cun], untersucht zellenweise die Linie von Knoten- zu Randzelle. Sollte eine Wandzelle
erreicht werden, bricht er ab. Bei jedem Erreichen einer Nicht-Wandzelle, wird ihr das aktuelle
(Knotenzelle, Distanz)-Paar hinzugefiigt. Nachdem alle Randzellen ,beschossen” wurden, ist
eindeutig bestimmt, welche Zellen diese Knotenzelle sieht und welche nicht. Wurde tiber
alle Knotenzellen gezahlt, existiert diese Information auch fiir alle weiteren Zellen der Ebene.
Der Teilgraph ist damit komplett abgearbeitet und der Algorithmus geht zur nachsten Ebene
uber.

3.5.4 Kirzeste Distanzen zu Ausgangszellen

Der Vollstandigkeit halber seien hier noch die beiden Teilalgorithmen zusammengefasst,
die letztendlich die kiirzesten Distanzen aller Knoten- und Nicht-Knotenzellen zu den
Ausgangszellen berechnen. Sie orientieren sich allerdings vollstdndig an den Ideen von
[Kre06] sowie des Dijkstra-Algorithmus und besitzen keine Modifikationen von mir.

Fiir jede Ausgangszelle wird der Algorithmus von Dijkstra gestartet. Die Ausgangszelle ist
dabei jeweils der Startknoten. Die restlichen Knoten des zu durchlaufenden Graphen, sind die
Knotenzellen. Auf die Funktionsweise des Dijkstra-Algorithmus mdchte ich hier nicht ndher
eingehen; es sei auf entsprechende Literatur, z. B. [Dij59], verwiesen. Nachdem er fiir jede
Ausgangszelle abgeschlossen ist, kennen bereits alle Knotenzellen ihre kiirzesten Distanzen zu
jeder Ausgangszelle.

Der letzte Teilalgorithmus sorgt dafiir, dass auch alle Nicht-Knotenzellen die kleinsten
Distanzen zu den Ausgangszellen bekommen. Fiir jede Ausgangszelle, iteriert er tiber alle
Nicht-Knotenzellen des gesamten Simulationsgebiets. Die minimale Distanz einer solchen
Zelle zur Ausgangszelle berechnet sich dann folgendermafsen: Bilde jeweils die Summe aus
(Distanz von Zelle zu einer ihrer sichtbaren Knotenzellen) und (Distanz dieser Knotenzelle zur
Ausgangszelle). Das Minimum aus allen Einzelsummen ist gleichbedeutend mit der geringsten
Entfernung der Zelle zur Ausgangszelle. In Kapitel 4.3.3 und dem darauffolgenden gibt es
weitere Details zur ihrer Implementierung.

3.6 Modifizierte Zielzellensuche

Das Ziel des Algorithmus ist es, alle Zellen zu bestimmen, die vom Agenten in der aktuellen
Runde erreicht werden konnen. Die Menge der Zellen hdngt dabei von seiner derzeitigen
Position und aktuellen Geschwindigkeit ab.
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Da die Agentengeschwindigkeit eine entscheidende Rolle bei der Suche nach Zielzellen hat,
folgen einige wichtige Definitionen. Sie weichen zum Teil von den im Modell beschriebenen
ab. Das hat zum einen den Grund, dass die Erweiterung der Treppenzellen eine Anpassung
der neuen Geschwindigkeit notig macht, zum anderen die Geschwindigkeit hier grundsétzlich
anders berechnet wird, als im Modell vorgeschlagen.

® Uy ist die maximale Geschwindigkeit, die ein Agent von alleine erreichen kann. Sie ist
ein individueller Agentenparameter.

o v ist die aktuelle Geschwindigkeit eines Agenten. Fiir sie gilt im Normalfall: 1 < v, <
Unmax- Ist der Geschwindigkeitsfaktor einer Treppenzelle grofSer als 1, kann dies einmalig
dazu fithren, dass vy > Uy ist, sollte der Agent zu Beginn einer Runde auf ihr stehen

und fsqir > 1 sein.

® Upext = max(1, (min(veyr + 1, Upax)) - fotair) bezeichnet die Geschwindigkeit des Agenten
zu Beginn der Zielzellensuche.

Axpiq
Ayt
zur Zelle (x, y), mit der Differenz der Position der Zielzelle und des Agenten (Ax;11 bzw.
Ayi41). Da die Geschwindigkeit eines Agenten ganzzahlig ist, wird der entsprechende
Wert gerundet: Upext = [Upext + 0, 5].

® Upext = ist die tatsdchliche Geschwindigkeit des Agenten bei einer Bewegung

Zu Beginn des Algorithmus wird gepriift, ob sich der Agent auf einer Treppenzelle befindet.
Ist dies der Fall, wird seine Geschwindigkeit entsprechend des Faktors fs der Treppenzelle
angepasst (siehe Formel fiir Uyeyt). Dieser Wert entspricht der maximalen Distanz, die eine
potenzielle Zielzelle zur Startzelle haben darf.

Die Stockwerkserweiterung im F.A.S.T.-Modell sieht vor, dass Agenten, die am Ende einer
Runde auf einer Stockwerks-Ausgangszelle stehen, eine Ebene nach oben oder unten transpor-
tiert werden [Kre06, S. 32]. Dies handhabe ich in meiner Implementierung anders: Agenten
konnen sich innerhalb einer Runde iiber Stockwerksgrenzen hinaus bewegen. Dies erfordert
allerdings einen komplexeren Algorithmus zum Finden der giiltiger Zielzellen. Er funktioniert
nach folgendem Prinzip: Ausgehend von der Startzelle des Agenten, werden stufenweise die
direkten Nachbarzellen untersucht. Sollten die Zellen vom Agenten aus sichtbar sein, wird die
euklidische Distanz zwischen ihnen berechnet und in der Nachbarzelle zwischengespeichert.
Ist die betrachtete Zelle nicht sichtbar, wird die Distanz von ihr zur letzten sichtbaren Zelle,
tiber welche die Suche zu ihr gelangt ist, berechnet und auf die Distanz jener sichtbaren
Zelle zur Startzelle addiert. Mit dieser Technik werden Hindernisse (sprich: Wandzellen)
auf kiirzestem Weg umgangen. Der, nach aufSen hin steigende, Distanzwert ist gleichzeitig
das Abbruchkriterium fiir die Suche. Sollte eine Zelle eine grofiere Distanz zur Startzelle
aufweisen, als Uyeyt, wird sie nicht in die Menge der zu untersuchenden Zellen aufgenommen.
Auf Grund dessen, dass einmal besuchte Zellen fiir die weitere Suche ignoriert werden, kann
es zu keinen Endlosschleifen oder Umwegen kommen. Irgendwann ist die Menge der zu
untersuchenden Zellen leer und die Suche endet. Der Algorithmus baut gewissermafien
einen Sichtbarkeitsgraphen auf, wendet allerdings noch im Aufbau den Dijkstra-Algorithmus
darauf an.

Eine Besonderheit bilden nun die Teleportzellen. Die Distanz zwischen einer Teleportzelle
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Abbildung 3.5: Ergebnis der Zielzellensuche fiir Agent auf Zelle A: Seine eigene Zelle, die
beiden tiirkisfarbenen Teleportzellen und alle grauen Zellen kann der Agent
mit seiner Geschwindigkeit v = 7 in dieser Runde erreichen. WeifSe Zellen
sind Wandzellen, schwarz sind normale, aber fiir den Agenten in dieser
Runde unerreichbare Zellen.

und ihrer Partnerzelle ist Null (siehe 3.3). Wird nun eine Teleportzelle vom Algorithmus in
die Menge der zu betrachtenden Zellen aufgenommen, wird ihre Partnerzelle ebenfalls hinzu-
gefiigt. Der Algorithmus merkt, wenn die Distanz zwischen zwei verkniipften Teleportzellen
berechnet wird und addiert somit 0 auf den Distanzwert. Damit ist es problemlos moglich
auch Zellen auf anderen Stockwerken als Zielzellen zu erkennen, obwohl sie auf Grund ihrer
absoluten Positionswerte weit voneinander entfernt liegen. Abbildung 3.5 zeigt das Ergebnis
einer Zielzellensuche mit vyery = 7 von Zelle A aus startend. Die grauen Zellen wurden in die
Menge der moglichen Zielzellen aufgenommen.

Das dynamische Floor-Field (2.3.2), sowie die Berechnung des Einflusses der Tragheit (2.3.2)
benotigen einen Vektor mit der relativen Bewegung des Agenten in x- und y-Richtung.
Die Zielzellensuche summiert deshalb nicht nur den Distanzwert auf, sondern auch den
Bewegungsvektor. Da die Distanz zwischen verkniipften Teleportzellen Null betragt, wird der
Nullvektor auf den Bewegungsvektor addiert. Der Distanzwert entspricht der euklidischen
Norm des Bewegungsvektors. Es wiirde somit ausreichen, nur den Bewegungsvektor zu
speichern. Da der Betrag allerdings an vielen Stellen des Programms benétigt wird, speichern
ihn die Zelle gesondert ab und verzichten auf ein regelméfiiges Neuberechnen. Der zusétzliche
Speicherplatzverbrauch ist im Vergleich zu der benotigten Rechenzeit vernachlédssigbar klein.
Am Ende des Algorithmus existiert eine Menge von Zellen. Jede von ihnen konnte theoretisch
vom Agenten in dieser Runde besetzt werden. Die Zuweisung der Wahrscheinlichkeiten an
die einzelnen Zellen, sowie die tatsdchliche Wahl der endgiiltigen Zielzelle, wird als néchster
Schritt vom Programm ausgefiihrt. Fiir Details zu diesen beiden Aktionen siehe 4.4.2.
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Wahrend sich Kapitel 3 ausschliefilich mit den Erweiterungen und Modifikationen des EA.S.T.-
Modells in meinem Programm befasst hat, widmet sich dieses Kapitel der Implementierung
im Detail. Neben der Beschreibung aller Programmteile, will ich auch die Algorithmen,
Datenstrukturen und Denkweisen genauer vorstellen, welche die einzelnen Aufgaben der
Simulation und des Benutzerinterfaces tibernehmen. Neben Pseudocode habe ich deshalb
auch Ausziige aus dem echten Java-Programmcode integriert.

4.1 Auswahl der Entwicklungsplattform

Die Implementierung des Frameworks soll auf einem mobilen Tablet-PC lauffahig sein. Die
Auswahl des Betriebssystems wurde von mir frithzeitig auf Windows (Microsoft) und An-
droid (Google) reduziert, sowie die moglichen Programmiersprachen auf C++ und Java.
Hauptsachlich deshalb, weil ich bereits einige Erfahrung mit beiden Sprachen gesammelt
hatte und deshalb einschidtzen konnte, dass eine Umsetzung des Projekt mit einer von ihnen
gut moglich ist.

An den Tablet-PC wurden verschiedene Anspriiche gestellt: Ein Multicore-Prozessor zur
Beschleunigung der intensiven Rechenvorgiange wurde gefordert. Da die Simulation sehr viele
Daten bereithalten muss, lag ein besonderes Augenmerk auf dem Hauptspeicher. Seine Kapa-
zitét sollte am oberen Limit des derzeit angebotenen liegen, mindestens aber 512 Megabyte.
Details, wie die Akkulaufzeit, die Eingabemoglichkeiten oder das Datenspeichervolumen
wurden grofitenteils vernachlissigt. Bei der Displaygrofie wurde lediglich auf eine ,iibliche”
Grofle fiir Tablet-PCs geachtet (> 7 Zoll in der Bildschirmdiagonalen).

Ich entschied mich schlussendlich fiir das ,Samsung Galaxy Note 10.1 WiFi” mit Android
Betriebssystem (Version 4.1.2) [Sam] Zum Zeitpunkt der Entscheidung waren die Tablet-PCs,
auf denen Windows als Betriebssystem laufen, technisch gesehen im Riickstand. Dagegen
besitzt das Samsung Tablet einen NVidia Tegra 3 1,4 GHz Prozessor mit 4 Kernen, sowie 2 GB
RAM und ein Display mit 10,1 Zoll in der Bildschirmdiagonalen.

Mit dem Entschluss fiir den Samsung Tablet-PC stand auch das darauf installierte Andro-
id als Betriebssystem fest. Um eine ,,App” - wie die Anwendungen auf Android-Gerédten
meistens genannt werden - zu erstellen, wird von der Systemseite aus vorgeschlagen das
Android Software-Development-Kit (SDK) zu benutzen, welches unter anderem das ,, Android
Developer Tool” (ADT) Plugin fiir Eclipse enthilt. Es ist eine vollstandige integrierte Entwick-
lungsumgebung (IDE) fiir Java fiir die Programmierumgebung Eclipse. Sowohl das ADT, als
auch Eclipse werden von Android zum Erstellen und Debuggen von Android-Anwendungen
empfohlen. Vor allem das ADT soll vieles vereinfachen [An2].
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Neue Simulation Durchlauf beendet
starten Abbrechen

Simulations-
einstellungen

Hauptmen Simulation

Abbrechen Im Demo-Modus starten

"FASTframework" . Szenario
Ordner laden

Simulation
beendet

Ergebnisse
anzeigen

Simulation
starten

Experten-

Sensitivitats-
analyse

Ergebnisse

Simulation neustarten

Zuriick zum Hauptmenu

Abbildung 4.1: Ubersicht iiber das Programm. Die Boxen entsprechen den , Aktivititen”, die
beschrifteten Pfeile kennzeichnen Aktionen des Benutzers

Der Einsatz von C++ oder einer anderen Programmiersprache als Java gestaltet sich auf
Android-Gerédten schwierig. Das hat mehrere Griinde: Zum einen laufen Android-Programme
auf einer virtuellen Maschine. Diese akzeptiert nur ihren spezifischen Code, der wiederum
praktisch nur durch das Android SDK erstellt und kompiliert werden kann. Um nativen Code
in einem Programm unterzubringen, stellt Android das sogenannte NDK (Native Develo-
pement Kit) zur Verfligung. Mit dessen Hilfe konnen Komponenten in nativem Fremdcode
unter Android lauffihig gemacht werden. Damit konnte man also C++-Code einbringen.
Dies eignet sich aber nur, wenn der Fremdcode sehr hardwarenah und effizient ist, denn die
Optimierungen des Compilers und der virtuellen Maschine sorgen auch bei normalem Java-
Code fiir eine effiziente Ausfiihrung. So beschreibt es zumindest Android [An1]. Gleichzeitig
nimmt man sich mit dem NDK die Moglichkeit, bestimmte Funktionalitdten der Android API
verwenden zu kénnen. Da die Anwendung zum Teil notwendigerweise mit Java geschrieben
werden muss und der mogliche C++-Teil, ebenfalls mit Java realisiert werden kann, kam ich
zu der Entscheidung alles komplett in Java zu schreiben.

4.2 Ubersicht iiber Programmteile

In diesem Abschnitt will ich einen Einblick in die Struktur und den Aufbau meines Programms
geben. Abbildung 4.1 zeigt ein Schema der Programmteile und der Aktionen, die zu einem
Wechsel des aktiven Programmteils fiihren. Im folgenden beschreibe ich ihre Funktionen
innerhalb des Programms und welche Interaktion durch den Benutzer moglich sind. Im
Android-Sprachgebrauch handelt es sich bei den einzelnen Meniis um , Aktivitidten”. Diesen
Begriff werde ich im weiteren Verlauf ebenfalls verwenden. Die ,Hauptmenii”-Aktivitdt ist
der Ausgangspunkt des Programms. Neben der Moglichkeit sich Informationen tiber die
Anwendung anzeigen zu lassen, kann man hier eine neue Simulation beginnen und die ,, App”
beenden. Jede Simulation beginnt in der Aktivitdt der ,Simulationseinstellungen”. Bevor ein

38



4.3 Initialisierung der Simulation

Szenario gestartet werden kann, miissen ein paar Einstellungen vorgenommen werden. Die
wichtigste ist die Auswahl eines Simulationsgebiets und der entsprechenden Konfiguration.
Dies geschieht in der ,,Szenario laden”-Aktivitat. Eine Liste enthélt dort alle XML-Dateien,
die das Programm im anwendungsspezifischen Ordner ,FASTframework” findet. Dieser
Ordner wird vom Programm angelegt, sollte er noch nichts existieren. Er beinhaltet alle
Benutzerdaten: Sowohl die Bild- und Konfigurationsdateien der Szenarien, als auch die
gespeicherten Resultate der einzelnen Simulationen. Neue Dateien fiir Szenarien miissen vom
Benutzer in diesen Ordner kopiert werden. Wahlt der Benutzer eine Datei in der Liste aus,
wird der Inhalt der Konfigurationsdatei eingelesen und analysiert. Handelt es sich um ein
gliltiges Szenario wird ein Vorschaubild des Simulationsgebiets angezeigt.

Neben der Wahl des Szenarios, ist die Anzahl der Durchldufe eine essentielle Angabe. Sie
legt fest, wie oft die Simulation mit den gewédhlten Parametern durchgefiihrt werden soll,
bevor sie als beendet gilt. Zusétzlich gibt es zwei optionale Einstellungen: Wenn eine grafische
Ausgabe gewiinscht wird, sieht der Benutzer wiahrend der Simulation die Agenten, wie sie
sich tiber das aktuell ausgewihlte Stockwerk bewegen. Der Benutzer hat die Moglichkeit, sich
durch die einzelnen Stockwerke zu schalten. Die zweite Option unterscheidet zwischen einem
Demonstrationsmodus (kurz Demo-Modus) und einem Expertenmodus. Der letztgenannte
Modus beinhaltet eine Sensitivitdtsanalyse (siehe 3.4). In der ,Sensitivititsanalyse”-Aktivitat,
kann der Benutzer fiir den eben angesprochenen Expertenmodus die Regeln zur Parameter-
wahl definieren. Eine Liste speichert die Regeln und zeigt sie fiir den Benutzer an. Sie konnen
auch einzeln wieder entfernt werden. Uber diese Aktivitit wird die Simulation auch gestartet.
Die Hauptaktivitat ist die ,Simulations”-Aktivitat. Hier wird der Fortschritt der aktuellen
Simulation angezeigt. Hat der Benutzer die grafischer Ausgabe als Option gewahlt, wird
hier das aktuell von ihm gewdhlte Stockwerk angezeigt, auf dem die Agenten zu sehen sind.
Unabhiéngig von der grafischen Ausgabe, kann die Simulation in dieser Aktivitét jederzeit
pausiert oder vorzeitig beendet werden. Sowohl wahrend der Simulation, als auch am Ende,
kann der Benutzer die (Zwischen-)Ergebnisse in einer gesonderten Aktivitdt betrachten: Die
, Ergebnis”-Aktivitat zeigt eine Reihe verschiedener Statistiken in Form von Graphen und
Bildern zur aktuellen Simulation. Sie sind tiber eine Liste auswéahlbar. Statistiken, die nur
textuell darstellbar sind, werden in einer extra Datei gespeichert und konnen mit einem
externen Textprogramm betrachtet werden. Daneben kann der Benutzer wieder zur Simulation
zuriickkehren und diese fortsetzen, sofern sie noch nicht beendet ist, oder eine neue starten.
Die Riickkehr zum Hauptmentii ist ebenfalls moglich.

4.3 Initialisierung der Simulation

Jede Simulation muss vor dem Start initialisiert werden. Ihre Erstellung gliedert sich in
drei bis vier Teile: Zuerst muss die Konfigurationsdatei eingelesen werden. Danach wird
das Simulationsgebiet, das durch ein Bild definiert ist, eingelesen und daraus die Zellen
erstellt. Fiir das statische Floor-Field miissen die kiirzesten Distanzen aller Zellen zu allen
Ausgangszellen berechnet werden. Auflerdem muss fiir jede Zelle die ndchstgelegene Wand-
zelle gefunden werden. Dies geschieht im dritten Teil der Initialisierung. Der vierte und letzte
Part wird zusitzlich auch vor jedem einzelnen Durchlauf durchgefiihrt: Wird die Simulation
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im Expertenmodus ausgefiihrt, miissen vor jedem Durchlauf (und damit auch vor dem ersten)
die Regeln der Sensitivitdtsanalyse angewandt werden. Dieser Schritt fallt im Demo-Modus
weg.

Die folgenden Abschnitte behandeln diese vier Unterteilungen der Initialisierungsphase im
Detail.

4.3.1 Konfigurationsdatei

Die Konfiguration einer Simulation besteht aus zwei Teilen: Einer Bilddatei, in der der Aufbau
des Simulationsgebiets beschrieben ist (4.3.2) und einer XML-Datei, in der verschiedene
Parameter und zusétzliche Informationen zum Gebiet definiert sind: Globale Simulationspa-
rameter, die Agentenkonstanten, die Faktoren der einzelnen Treppen- und Wandzellen, aber
auch die Position und Grofse der einzelnen Stockwerke, sowie Lage der Teleportzellen und
ihrer Partnerzellen. Mit dieser Datei befasse ich mich in diesem Abschnitt.

Das Listing 4.1 stellt eine Beispieldatei dar. Hier ist jeder Parameter exemplarisch mit min-
destens einem Wert vertreten. Auch wenn vieles in der Datei selbsterklarend ist, will ich im
Folgenden die einzelnen Tags nédher erldutern.

® <FASTframework>: Dieser umschlieffende Tag muss vorhanden sein, sonst wird die Datei
als ungiiltig bezeichnet und es wird nichts eingelesen.

e <common>: Hier sind vier allgemeine Einstellungen gesammelt: <area> speichert den
relativen Pfad und Dateinamen, der zu dieser Simulation gehorenden Bilddatei. Das
Waurzelverzeichnis ist dabei der FASTframework-Ordner. <maxwalldist> verlangt einen
Wert fiir den maximalen Sicherheitsabstand der Agenten gegeniiber von Wanden (2.3.2).
Die Tags <alpha> und <delta> entsprechen den gleichnamigen Variablen zur Anderung
des dynamischen Floor-Fields (2.2.2). Sie benétigen einen Wert im Bereich [0, 1].

e <floors>: Innerhalb dieses Tags werden die Definitionen der einzelnen Stockwerke
gesammelt. Diese sind jeweils in <floor>-Tags gespeichert. Zu den Definitionen gehort
der Name des Stockwerks. Er macht das Stockwerk fiir den Benutzer identifizierbar.
Auflerdem muss die Angabe der Position (<position>) und Grofie (<dimension>) definiert
sein. Die Position entspricht dem linken oberen Pixel des Stockwerks in der Bilddatei,
mit (0,0) als oberster, linker Pixel. Die Dimension entspricht der Anzahl Pixel des
Stockwerks in jeweils beiden Richtungen.

e <agents>: Die Definitionen der Agentengruppen werden innerhalb dieses Tags gespeichert.
Eine Gruppe wiederum, wird mittels des <group>-Tags definiert, deren Anzeigename im
Attribut name angegeben wird. Die einzelnen Parameter der entsprechenden Agenten
sind als Attribute des <params>-Tags definiert. Die Attributnamen entsprechen den
Agentenkonstanten, bzw. v_max und v_start der Maximal- bzw. Startgeschwindigkeit der
Agenten. Die Zuordnung der Parameter an die Agenten, erfolgt durch den Farbwert,
den ein Agent in der Bilddatei erhilt. Alle Agenten mit derselben Farbe gehoren zur
selben Gruppe. Die Farbwerte werden aufsteigend sortiert und nacheinander den hier
definierten Gruppen zugewiesen. Das hat den Grund, dass der Ersteller der Bilddatei
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mehr Freirdume beim Vergeben der Farben hat und eine Anderung der Farbe nicht
unbedingt zu einer Anderung der Konfigurationsdatei fiihren muss.

e <teleports> (optional): Hier werden die Teleportzellen definiert. Zwei Zellen werden
jeweils innerhalb eines <teleport>-Tags definiert: <from> gibt die Position der einen Zelle
an, wobei dieselbe Regel gilt, wie bei der Stockwerkskonfiguration: (0, 0) ist der oberste,
linke, giiltige Pixel. <to> gibt entsprechend die Position der Partnerzelle an.

e Das Framework bietet die Moglichkeit der dynamischen Parameterwahl fiir Treppen-
und Wandzellen. Das kann mittels der Sensitivitdtsanalyse geschehen, oder direkt hier
in der Konfigurationsdatei. <stairs> bzw. <walls>: Der Wert fiir das default-Attribut

Listing 4.1: Beispiel einer Konfigurationsdatei

<?xml version="1.0" encoding="UTF-8"7>

<FASTframework>

<common> <!-- common settings -->
<area name="area.png" />
<maxwalldist value="4.0" />
<alpha value="0.05" />
<delta value="0.10" />

</common >

<floors> <!-- floor configuration -->
<floor name="1st floor: Foyer">
<position x="0" y="0" />
<dimensions w="50" h="40" />
</floor>
<floor name="2nd floor: A&amp;B Electronics">
<position x="50" y="0" />
<dimensions w="35" h="70" />

</floor>
</floors>
<agents> <!-- agent configuration -->
<group name="employees">
<params v_max = "4" v_start = "1" k_e = "6.0" k_s = "2.5" k.d = "1.0" k_i = "0.4" k_w =
"9.2" k.p = "0.3" />
</group>
<group name="security">
<params v_max = "6" v_start = "3" k_e = "6.0" k_s = "2.5" k_.d = "0.5" k_i = "1.2" k_w =
"9.01" k_p = "0.0" />
</group>
</agents>
<teleports> <!-- teleportation cells configuration --> <!-- optional -->
<teleport>

<from x="49" y="2" />
<to x="50" y="17" />
</teleport>
</teleports>
<stairs default="0.5"> <!-- stair configuration --> <!-- optional -->
<id color="0x006600" factor="0.15" />
<id color="#00FF00" factor="2.5" />
</stairs>
<walls default="1.0"> <!-- wall configuration --> <!-- optional -->
<id color="0xFFFFFF" factor="1.5" />
<id color="#888888" factor="0.5" />
</walls>
</FASTframework >
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entspricht dem Standardfaktor. Er wird allen Treppen- bzw. Wandzellen zugewiesen,
tiir die es keine explizite Definition gibt. Eine solche Definition kann mit dem <id>-Tag
erfolgen: Das Attribut color spezifiziert den Farbwert der Zellen in der Bilddatei und
das Attribut factor den entsprechenden Wert, der diesen Zellen zugewiesen werden
soll. So bekommen z. B. alle Wandzellen, die OxFFFFFF als Farbwert in der Bilddatei
bekommen haben, den Faktor 1,5 zugewiesen, wahrend Treppenzellen, die als Farbwert
#005400 haben, den Standardfaktor 2,0 bekommen, da fiir sie keine Definition vorliegt.
Zubeachten ist folgendes: Giiltige Werte fiir das color-Attribut sind hexadezimale Zahlen,
die mit ,,0x” oder ,#“ beginnen und normale dezimale Ganzzahlen. Der Farbwert ist als
RGB-Code zu interpretieren.

Alle XML-Dateien, die im ,, FASTframework”-Ordner liegen, werden in der ,,Szenario-Laden”-
Aktivitdt in einer Liste aufgefiihrt. Wahlt man einen Eintrag aus, wird die XML-Datei geladen
und ausgewertet. Alle eingelesenen Werte werden auf Existenz und Giiltigkeit hin tiberpriift.
Sollten wichtige Parameter fehlen, wird das Einlesen gestoppt und eine Fehlermeldung mit
entsprechenden Hinweisen ausgegeben. Es kann allerdings nicht alles tiberpriift werden: Da zu
diesem Zeitpunkt lediglich die Existenz der Bilddatei gepriift wurde, das Bild selbst aber noch
nicht verarbeitet wurde, kann die Giiltigkeit der Stockwerks- und Teleportzellenangaben nicht
gepriift werden. Auch ein Vergleich der Anzahl von Agentengruppen und Agentenfarbwerten
kann erst spéter erfolgen. Somit kann es passieren, dass ein Szenario scheinbar erfolgreich
geladen wird, obwohl es mit dieser Konfiguration nicht oder nur fehlerhaft simuliert werden
kann. Der Benutzer muss an dieser Stelle selbst die entsprechende Sorgfalt aufbringen. Ist mit
der Konfigurationsdatei (vorerst) alles in Ordnung, erscheint ein Vorschaubild des Simulati-
onsgebiets auf der rechten Seite der Aktivitit. Die eingelesen Werte werden im Erfolgsfall
in einem Paket (Bundle) gespeichert und zu den nachfolgenden Aktivitdten transportiert. In
der ,Sensitivitdtsanalyse”-Aktivitdt werden die Informationen zum Teil weiterverarbeitet, in
der ,Simulations”-Aktivitat schliefSlich, werden alle Informationen gebraucht, um z. B. die
Zellen-Objekte zu erstellen.

4.3.2 Bilddatei des Simulationsgebiets

Die Bilddatei soll der Definition des Simulationsgebiets dienen. Jeder Pixel mit seinem
Farbwert entspricht dabei einer Zelle. Damit die Bilddatei korrekt eingelesen werden kann,
muss sie folgende Voraussetzungen erfiillen:

e Datenformat: PNG (RGBA 32-Bit, unkomprimiert)
1 Pixel = 1 Zelle (~ 40cm?)

Stockwerke miissen immer rechteckig sein, bedingt durch die Definitionen in der
Konfigurationsdatei.

Nicht benétigte Teile des Bildes sollten zur Beschleunigung der Simulation in Wandzel-
lenfarben angemalt werden.

Eine Wandzelle sollte nach Moglichkeit im Norden, Stiden, Westen oder Osten an eine
andere Wandzelle angrenzen (3.5.2).
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Zellentyp Spektrum der giiltigen Farben
in RGB in hexadezimal in Worten
Normal (0,0,0) 0x000000 Schwarz

Wand (1,1, 1) bis (255, 255, 255) | 0x010101 bis OxFFFFFF Grauwerte von 1 bis 255

Treppe (0, 1, 0) bis (0, 255, 0) 0x000100 bis 0x00FF00 Griinwerte von 1 bis 255

Teleport (0, 255, 255) O0xO0FFFF Ttirkis (Cyan)

Ausgang | (0,0, 255) bis (255, 0, 255) | 0x0000FF bis 0xFFOOFF Blau mit Rotwerten von 0
bis 255

Agent (255, 0, 0) bis (255, 255, 0) | 0xFF0000 bis 0xFFFF0O Rot mit Griinwerten von
0 bis 255

Tabelle 4.1: Farbtabelle: Welcher Zelltyp bzw. welche Zellengruppe benétigt welchen Farbwert

Tabelle 4.1 enthdlt die Vorschriften fiir die Vergabe der Farbwerte in der Bilddatei. Alle
Farben, die von den hier definierten abweichen, gelten als ungiiltig. Die entsprechenden
Zellen werden zu Wandzellen der Farbe OxFFFFFF (weifs). Nachdem die Konfigurationsdatei
eingelesen wurde, offnet die ,Szenario-Laden”-Aktivitit die Bilddatei. Diese liest der Reihe
nach die einzelnen Farbwerte der Pixel ein und speichert sie in einem normalen Integer-Array,
das ich nachfolgend als Farb-Array bezeichnen mochte. Die Reihenfolge des Einlesens ist
dabei von links oben nach rechts unten zu interpretieren. Die tatsdchliche Verarbeitung der
Farbwerte, um daraus entsprechende Zellen zu generieren, wird erst beim Erstellen der
,Simulations”-Aktivitdt vorgenommen. Bis dahin werden die Informationen tiber das Bild
- die Abmessungen und das Farb-Array - in einem Paket (Android-Datenstruktur Bundle)
weitergereicht. Das hat den Hintergrund, dass ich die Erstellung der Simulationsobjekte an
einer zentralen Stelle haben wollte. Da viele Teile der Simulation erst zum spateren Zeitpunkt
initialisiert werden konnen, habe ich die Generierung der Zellen ebenfalls nach hinten verscho-
ben. Bei der spéteren Verarbeitung, wird tiber das Farb-Array iteriert. Fiir einen einfacheren
Zugriff im spéteren Simulationsverlauf, werden die aus den Farbwerten erstellten Zellen in
einem zweidimensionalen Array (,,Zellen-Array”) gespeichert (Vgl. 4.3.3).

Je nach Farbe, werden unterschiedliche Zellen erstellt. Mit Ausnahme von Agenten und
Ausgangszellen, geschieht dies direkt im aktuellen Iterationsschritt. Zuséatzlich wird die Posi-
tion und die Farbe der Zelle gesetzt. Das Objekt wird nach Fertigstellung an entsprechender
Position im Zellen-Array gespeichert. Agenten- und Ausgangszellenobjekte konnen nicht
direkt erstellt werden, weil sie meistens in Gruppen zusammengefasst sind. Eine Gruppe
wird (wie schon in 4.3.1 angesprochen) durch die gemeinsame Farbe im Bild definiert. Da
beim ersten Durchlauf {iber die Farbwerte die Reihenfolge der Gruppen noch ermittelt wird,
konnen die Agenten und Zielzellen noch nicht ihren entsprechenden Gruppen zugeordnet
werden. Deshalb wird zuerst folgendes gemacht: Die Farbwerte der Agenten- und Aus-
gangsgruppen werden jeweils getrennt in einer aufsteigend sortierten Menge gespeichert,
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in der Mehrfacheintrdge nicht vorkommen konnen. In Java erledigt diese Aufgabe eine
TreeSet<Integer>-Datenstruktur. Die Anzahl der Elemente dieser Menge entspricht damit der
Anzahl der unterschiedlichen Gruppen. Daneben wird der Farbwert zusammen mit der
Position als Tripel in einer Liste gespeichert (ArrayList<int[3]>); jeweils getrennt fiir Agenten
und Ausgangszellen. Es wird implizit angenommen, dass ein Agent initial auf einer leeren
Zelle steht. Deshalb wird fiir diesen Typ zusatzlich eine solche leere Zelle an der Position des
Agenten erstellt und dem Zellenarray hinzugefiigt. Falls eine Farbe ungiiltig ist, wird an ihrer
Position eine Wandzelle mit dem Standardfaktor erstellt. Der Faktor richtet sich nach dem
Standardwert, der in der Konfigurationsdatei vergeben wurde. Ist dort keiner vorhanden
oder ungiiltig, gilt 1,0 als Standardwert.

Wenn der Durchlauf durch das Farb-Array vollendet ist, miissen die Agenten und Aus-
gangszellen erstellt und ihren jeweiligen Gruppen zugeordnet werden. Als erstes werden die
Ausgangsobjekte (Exit-Klasse) erstellt. Jede Ausgangszelle speichert eine Referenz auf ein
solches Ausgangsobjekt, das damit die Gruppe fiir mehrere Ausgangszellen darstellt. Thre
Identifikationsnummer (ID) entspricht dabei der Position des Farbwertes in der sortierten
Menge. Danach wird tiber die Tripel-Liste der Ausgangszellen hochgezahlt. Die Zelle wird
generiert und ihre Position und Farbe an Hand der Werte des Tripels gesetzt. Mit Hilfe des
Farbwertes wird die ID der entsprechenden Ausgangsgruppe ermittelt und die Referenz
auf das Ausgangsobjekt gesetzt. Zum Abschluss wird die Ausgangszelle im Zellenarray
gespeichert. Listing 4.2 zeigt hierfiir den entsprechenden Quellcodeausschnitt. Agenten

Listing 4.2: Erstellung der Ausgangszellen

ArraylList<int[]> exit_pixelvalues = new ArrayList<int[]>Q);

// Co.2)
for (int[] it : exit_pixelvalues)
{

// it[0] = y-position, it[1] = x-position, it[2] = color
Cell_Exit cell = new Cell_Exit(new Point(it[0], it[1]));
cell.setColor(it[2]);

int exit_id = exit_map.get(it[2]);

cells.get(it[1]) .put(it[0], cell);
cell.setExitReference(exits.get(exit_id));

werden nicht im Zellenarray gespeichert. Da sie permanent ihre Position verdndern und
gesondert auf sie zugegriffen wird, werden sie in einem assoziativen Array gespeichert
(SparseArray<ArrayList<Agent>>), wobei der Schliissel die ID der Agentengruppe und der Wert
eine Liste der Agentenobjekte der entsprechenden Gruppe ist. Beim Iterieren iiber die Agenten-
Tripel wird nun ein Agentenobjekt erstellt. Die Position ist im Tripel definiert. Der ebenfalls dort
gespeicherte Farbwert, dient zum Ermitteln der Agentengruppe. Ihre ID gibt den Speicherort
des Agenten im SparseArray vor. Aufierdem werden die, in der Konfigurationsdatei definierten
und in der Agentengruppe gespeicherten, Parameter gesetzt. Siehe dazu auch Listing 4.3. Als
letzten Schritt miissen die Teleportzellen mit ihren Partnerzellen verkniipft werden. Auch
wenn sie bereits alle erstellt wurden, die Referenzen auf ihre Partner kénnen erst jetzt gesetzt
werden. Hier helfen die Definitionen aus der Konfigurationsdatei. Sie werden der Reihe
nach durchgegangen. Es wird auf die Teleportzelle im Zellen-Array an der ,,from”-Position
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Listing 4.3: Erstellung der Agenten (Ausschnitt)

ArraylList<int[]> agent_pixelvalues = new ArrayList<int[]>(Q);

/7 o)
for (int[] it : agent_pixelvalues)
{

int agentgroup_id = agent_map.get(it[2]);
double[] params = agentgroups.get(agentgroup_id).params;

// parameters for Agent-constructor:

// position, ID of agent group, agent-parameters, reference to cell-array and
underlying cell

Agent cell = new Agent(new Point(it[®], it[1]), agentgroup_id, params, cells,
cells.get(it[1]).get(it[0]));

cell.setColor(it[2] | OxFF0O00000);

ArrayList<Agent> temp = agents.get(agentgroup_id);

if (temp == null)

{
temp = new ArraylList<Agent>();
agents.put(agentgroup_id, temp);

}

temp.add(cell);

zugegriffen und ihr die Referenz auf die Teleportzelle an der ,to”-Position zugewiesen. Das
gleiche gilt in umgekehrter Richtung.

An vielen Stellen kann es dazu kommen, dass die Informationen aus der Bilddatei nicht mit
denen aus der Konfigurationsdatei iibereinstimmen. Die Angaben der Teleportzellen kénnen
falsch sein, so dass an den definierten Positionen keine Teleportzellen erstellt wurden. Ein
Verkniipfen der Teleportzellenpartner ist damit unmoglich. Es kann auch sein, dass mehr
Agentengruppen im Bild vorhanden sind, als in der XML-Datei definiert wurden. Oder es
wurden z. B. keinerlei Ausgangszellen im Bild definiert. Alle diese Griinde fiihren zu einem
Abbruch der Initialisierung, da ein korrektes Ausfithren des Simulation unméglich oder
fehlerhaft ist. Der Abbruch wird dem Benutzer tiber Fehlermeldungen mitgeteilt und er wird
zuriick zur , Simulationseinstellungen”-Aktivitat gefiihrt.

4.3.3 Distanzberechnungen

In Kapitel 3.5 ging ich bereits auf die Algorithmen zur Distanzberechnung ein. Der Fokus
lag allerdings auf den Modifikationen der Originalalgorithmen. In diesem Abschnitt will ich
detaillierter auf die Implementierung der Algorithmen eingehen.

Wichtige Datenstrukturen

Im Vorfeld traten bereits oft abstrakte Objekte wie das Zellen-Array, die Knotenzellenmenge
oder die einzelnen Stockwerksebenen auf. Fiir die Implementierung des F.A.S.T.-Modells
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miissen diese abstrakten Gebilde als konkrete Datenstrukturen definiert werden. Deshalb will
ich in diesem Teil des Kapitels die wichtigsten Datenstrukturen préasentieren und erldutern,
warum ich mich fiir sie entschieden habe. Da Java die Programmiersprache der Wahl war,
fiihre ich auch direkt Datenstrukturen auf, die in dieser Sprache vorhanden sind.
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SparseArray<T>: Eine neue Datenstruktur von Android. Vergleichbar mit Java-HashMaps,
allerdings sind die Keys primitive Integer-Werte (ints). Dadurch entfdllt der Aufwand
von Wrapper-Variablen, wodurch Zugriffe auf Elemente von SparseArrays schneller
sind, als bei HashMaps. Daneben gibt es noch weitere neue Datenstrukturen, wie z. B.
SparseIntArray, SparseBooleanArray und LongSparseArray. Eine ausfiihrliche Beschreibung
dieser, sowie aller anderen Objekte, findet man in [An3].

class Cell: Die Oberklasse aller Zelltypen. Sie enthilt allgemeine Eigenschaften und
Funktionen aller Zellen. Davon abgeleitet sind alle folgenden Zelltypen: cell_Exit,
Cell_Wall, Cell_Teleport, Cell Stair, Agent extends Cell. Die Agent-Objekte nehmen eine
besondere Rolle dabei ein: Sie werden auf Grund ihrer Beweglichkeit gesondert gespei-
chert und besitzen eine Vielzahl spezifischer Funktionen, unter anderem zum Finden
von Zielzellen oder eines neuen Ausgangs.

SparseArray<SparseArray<Cell>> cells: Ein zweidimensionales assoziatives Array (row-
first). Es speichert die Zellobjekte des Simulationsgebiets. Nach der Erstellung des
Arrays wahrend der Initialisierung der Simulation, gibt es keine Verdnderungen mehr.
Es finden nur noch lesende Zugriffe statt, diese allerdings auf beliebige Indizes. Der
Zugriff wird durch die primitiven Integer-Keys und das Hashing der Elemente allerdings
beschleunigt.

SparseArray<ArrayList<Agent>> agentsById: Dieses assoziative Array verkniipft die Agen-
tengruppen mittels ihrer Identifikationsnummern mit einer Liste der Agenten, die zu
der Gruppe gehoren. Jeder Agent gehort zu genau einer dieser Listen. Die direkte
Filterung der Agenten nach Gruppe, erspart in vielen Situationen im Programm ein
vollstindiges Durchlaufen aller Agenten, wenn z. B. Parameter gruppenweise gedndert
werden miissen oder die Anzahl der Agenten einer Gruppe gefragt ist.

HashSet<Cell> nodeCells: Die Menge der Knotenzellen. Hier werden Referenzen auf Zellen
aus dem vorigen cells-Array gespeichert. Oftmals muss entschieden werden, ob ein
Element in dieser Menge enthalten ist. Dies wird durch das Hashen der Elemente sehr
schnell erledigt. Gleichzeitig garantiert das HashSet, dass nur jeweils ein Exemplar eines
Objekt in der Menge enthalten ist. Eine vorherige Priifung fallt damit weg, was zur
Ubersichtlichkeit des Programmcodes beitrédgt. Da die Reihenfolge der Objekte keine
Rolle spielt, kann hier auf den Einsatz von SparseArrays oder HashMaps verzichtet werden.

HashSet<Cell> exitCells: Die Menge der Ausgangszellen. Hier sprechen dieselben Ar-
gumente fiir den Einsatz der HashSet-Datenstruktur, wie auch schon fiir nodecells. Da
an manchen Stellen im Programmcode gesondert auf die Ausgangszellen zugegriffen
werden muss, habe ich sie gesondert gespeichert, obwohl die originalen Ausgangszelle-
nobjekte in cells gesichert sind.
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e xML_Floor: Eine Container-Klasse fiir Ebenen. Ein Objekt dieser Klasse speichert den
Namen (String), die Position und die Abmessungen (Point-Objekte) der Ebene. Die
Werte der Position und Abmessung sind als Pixelpositionen im Bild zu interpretieren.
Die Informationen werden aus der Konfigurationsdatei herausgelesen und fiir spétere
Zugriffe aus anderen Teiles des Programms in diesen Klassenobjekten gespeichert.

® ArrayList<XML_Floor> floors: Dieses Array sammelt alle Stockwerksinformationen. Der
Array-Index entspricht dabei der Reihenfolge ihres Auslesens aus der Konfigurations-
datei und damit auch gleichzeitig der ID der Ebene. Vor allem die Distanzberechnungs-
algorithmen benétigen diese Informationen, um entweder tiber die einzelnen Ebenen
zu iterieren, oder um die Lage zweier Zellen zu vergleichen.

Finden von Knotenzellen

Der erste Teilalgorithmus fiir die Distanzberechnungen bestimmt die Knotenzellen im Simula-
tionsgebiet. Siehe dazu auch 3.5.2. Als erstes wird iiber alle Zellen iteriert und fiir jede Zelle die
Nachbarzellen untersucht. Das hat zur Folge, dass fiir die Randzellen eine Sonderbehandlung
notwendig ist, denn hier liegen manche Nachbarzellen aufSerhalb des giiltigen Array-Bereichs.
Achtet man nicht darauf, wirft das Programm sofort IndexoutofBounds-Exceptions. Um dem
vorzubeugen wird der obere, untere, linke und recht Zellenrand, sowie die mittleren Zellen
jeweils gesondert untersucht. Ein weiteres Problem ist die Ubersetzung der Forderung, wann
eine Zelle eine Knotenzelle ist, in Programmcode: Wenn eine Zelle n 1 gemeinsame Kante
mit der Wandzelle c hat und weniger als 2 gemeinsame Ecken mit anderen Nachbarzellen
von ¢ hat, dann ist n eine Knotenzelle. In Java-Code tibersetzt, ergibt dies mehrere boolsche
Ausdriicke, in denen die entsprechenden Kombinationen auf Wandzellen-Zugehorigkeit
mittels instanceof gepriift werden. Als letzten Schritt in diesem Algorithmus muss nochmals
tber alle Zellen iteriert werden und alle Zellen, die (,,instanceof”) Teleportzellen sind, in
die Menge der Knotenzellen aufgenommen werden. Der dazugehorige Pseudocode steht in
Algorithmus 4.1.

Verkniipfe Zellen mit sichtbaren Knotenzellen

Wie bereits in 3.5.3 beschrieben, dient dieser Algorithmus zwei Zwecken: Zum einen werden
Referenzen auf alle sichtbaren Knotenzellen in allen Zellen gespeichert. Zum anderen werden
auch die Distanzen zu den referenzierten Knotenzellen berechnet und gespeichert.

In einer dufSeren Schleife wird tiber die einzelnen Stockwerke iteriert. Die floors-Datenstruktur
liefert die Informationen iiber sie, so dass nur der Bereich des Stockwerks in cells angeschaut
wird. Erstes Ziel des Algorithmus ist es, eine Menge mit Referenzen auf die Randzellen der
Ebene zu fiillen; eine Randzelle, bildet mindestens an einer Seite den Rand des Stockwerks. Das
geschieht durch einfache For-Schleifen und Zugriffe auf das Zellen-Array. Sind die Randzellen
bestimmt, wird {iber alle Knotenzellen iteriert. Da jede Zelle die Nummer des Stockwerks
speichert, auf der sie liegt, kann ein einfacher Vergleich dafiir sorgen, dass Knotenzellen
ignoriert werden, die nicht im aktuellen Stockwerk liegen. Die verbleibenden Knotenzellen
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Algorithmus 4.1 Bestimme Knotenzellen

function DeTerMINENoODECELLS(CElls, nodeCells)
h « |cells|, w « |cells[0]]
for(y=0—-h-1)do
for(x=0—->w-1)do
¢ « cells[y][X]
if (c type of Cellwg) then
for all (neighbor cell n of ¢) do
if (nshares 1 edge with c and < 2 corners with surrounding cells of ¢) then
nodeCells <« nodeCells U n
end if
end for
end if
end for
end for
nodeCells < nodeCells U {t e cells : t type of CeIITe|eport}
end function

dienen als Startpunkt fiir eine weiter For-Schleife, die nun tiber die Randzellen iteriert. Auf
diese werden die Sichtstrahlen von der Knotenzelle ausgehend geschossen. Dieser ,,Schuss”
ist im Programmcode als Funktionsaufruf eines angepassten Bresenham-Algorithmus zu
sehen. Listing 4.4 zeigt genau diesen Programmausschnitt, der gesamte Algorithmus ist in
Pseudocode 4.2 schematisch dargestellt.

Listing 4.4: Verkniipfe sichtbare Zellen

for (Iterator<Cell> n_it = nodeCells.iterator(); n_it.hasNext(); )
{
Cell nodeCell = n_it.next();
if (nodeCell.getFloorLvl() != fnmb) //fnmb = current floor number
continue;
for (Cell bCell : borderCells)
bresenhamNode (nodeCell, bCell, cells, nodeCells);

Erweiterter Bresenham-Algorithmus

Der Pseudocode 4.4 zeigt den Standard-Bresenham-Algorithmus [Cun]. Diesen habe ich
erweitert, so dass er Auskunft dartiiber gibt, ob sich zwei Zellen gegenseitig sehen. Zusatzlich
wird die Distanz zwischen der Startzelle und den auf dem Weg befindlichen Zellen berechnet.
Da die Startzelle eine Knotenzelle ist, wird die Distanz mit der Referenz auf die Knotenzelle
als Paar in der anderen Zelle gespeichert. Diesen Zusatzcode habe ich an das Ende der inneren
For-Schleife angefiigt. Dort sind die Berechnungen der neuen Zellenposition abgeschlossen
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Algorithmus 4.2 Verkniipfe Zellen mit sichtbaren Knotenzellen

function LinkCerLDists(floors, cells, nodeCells)
for all (f € floors) do
borderCells « {c € cells : cis in boundary belt of cells of f}
for all (n € nodeCells) do
if (n not located in f) then
continue with next n
end if
for all (b € borderCells) do
BresenunaMNoODE(N, b, cells, nodeCells)
end for
end for
end for
end function

Algorithmus 4.3 Bresenham-Algorithmus fiir Knotenzellen

function BresenuamNobpEe(src, dest, cells, nodeCells)
initialize variables for Bresenham’s algorithm (see 4.4)
while (src # dest) do
move pixel by pixel towards dest
¢ « cells[src.y][src.x]
if (c type of Cellyg) then
return
else
if (src not a node cell of ¢) then
dist « ||src — ||
add (src, dist)to ¢
end if
end if
end while
end function

und ein weiterer Zahlschritt steht bevor. Sollte eine Wandzelle auf dem Weg der beiden
Grenzzellen liegen, wird der Algorithmus ohne weitere Berechnungen an der Stelle des
Fundes abgebrochen. Denn dann ist klar, dass es keinen Sichtkontakt zwischen den folgenden
Zellen und der Startzelle geben kann.

Bestimmung der Distanzen von Knotenzellen zu Ausgangen
Wenn dieser Algorithmus eingesetzt wird, kennt jede Zelle ihre sichtbaren Knotenzellen und

die Distanzen zu ihnen. Es fehlen aber noch die endgiiltigen Distanzberechnungen zu den
Ausgangszellen. Fiir die Knotenzellen wird dies nun hier erledigt. Der Pseudocode 4.5 zeigt
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Algorithmus 4.4 Algorithmus von Bresenham

function BrReseNHAM(srC, dst)
dy « |dsty —srcy|, dy « |dst, —src,|

-1 d, <0
incy —<0 dy=0
de >0

-1 d,<0
incy <40 dy,=0
1 d,>0

dy — ldl, dy — |dy|
if (dy > d,) then
pdy < incy, pdy, < 0
ef «dy
es « dx
else
pdy < 0, pd, « inc,
ef «dx
es « dy
end if
ddy < incy, ddy « inc,
err «—es/2
for(i=0—>es—1)do
err «err—ef
if (err < 0) then
err «— err +es
srcy < srey +ddy, srcy « srcy +dd,
else
Srcy < srcy + pdy, srcy < srcy + pdy,
end if

here the current cell on the line can be accessed

end for
end function
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diesen Algorithmus in einer schematischen Darstellung.

Der Algorithmus iteriert {iber die Ausgangszellen. Somit erhalten alle Knotenzellen ihre
kiirzesten Entfernungen zu jeweils einer Ausgangszelle. Der innere Teil der Schleife implemen-
tiert Dijkstras Algorithmus [Dij59]. Der Startknoten jeder Suche ist die aktuelle Ausgangszelle
e € exitCells. Die Menge Q speichert die Knotenzellen, deren finale Distanz noch unbekannt
ist. Bei mir wird Q von einer HashSet<Cell> reprdsentiert. Es miissen an beliebigen Stellen
Elemente hinzugefiigt werden, an bestimmten Stellen Elemente geloscht werden und sehr oft
entschieden werden, ob ein Element in Q enthalten ist. Daher bietet sich diese Datenstruktur
hervorragend an. D ist ein assoziatives Array, das Knotenzellen (Key) mit ihrer aktuell
minimalen Distanz (Value) zu e speichert. Eine effiziente und einfach handhabbare Daten-
struktur stellt Java mit der HashMap<Cell, Double> zur Verfiigung. Der Vorteil beim Hinzufiigen
neuer Elemente ist folgender: Ist der Schliissel noch nicht vorhanden, wird das neue Paar
einfach hinzugefiigt. Ist er dagegen schon vorhanden, wird sein Wert durch den neuen Wert
tiberschrieben. Es muss im Vorfeld nichts abgefragt oder geloscht werden, was Operationen
und Zeit spart.

Den Ablauf des Algorithmus von Dijkstra will ich hier nicht beschreiben, aber auf ein paar
Details eingehen. Die Vorbelegung der Distanzwerte der Nicht-Startzellen ist mit Java ein-
fach moglich: Double.POSITIVE_INFINITY ist ein exklusiver Status der Double-Objekte, das dem
mathematischen ,00” entspricht. Die Zelle in D, deren Distanz zu Beginn der While-Schleife
am geringsten ist, gilt als vollstandig bearbeitet. Ihre Distanz ist minimal und somit wird das
Distanz-Paar (e, disty,;, ) in ihr gespeichert: Jede Zelle hilt eine HashMap<Cell, Double>, dhnlich
zu D, bereit. Dort wird eine Ausgangszellenreferenz mit einer Entfernung verkniipft. Am
Ende dieses Teilalgorithmus enthalten die Maps aller Knotenzellen die gewiinschten minima-
len Distanzen zu den Ausgangszellen. Die Menge N der Nicht-Wand-Nachbarzellen von u
entspricht in meiner Version einer schlichten set<cell>, da lediglich eine Iteration iiber ihre
Elemente notwendig ist. Wie der Algorithmus von Dijkstra es vorsieht, ist die neue minimale
Distanz zwischen n € N und e : dist,;;, = min (D[u] + |[u — n||, D[n]).

Bestimmung der Distanzen normaler Zellen zu Ausgangszellen

Es fehlen vor der Ausfiihrung dieses Algorithmus fiir die endgiiltigen Distanzberechnungen
noch die Distanzen aller Nicht-Knotenzellen zu allen Ausgangszellen. Dies wird von diesem
letzten Teilalgorithmus erledigt. Wie bereits im vorherigen Abschnitt 4.3.3, wird in einer
dufleren Schleife tiber die Ausgangszellen iteriert (e € exitCells). Siehe dazu auch Pseudocode
4.6. Innerhalb dieser Schleife wird tiber alle Elemente des Zellen-Arrays iteriert (cell € cells).
Sollte cell eine Wandzelle oder Knotenzelle sein, wird direkt zur ndchsten Zelle gesprungen,
denn fiir erstere werden keine Distanzwerte benottigt und fiir letztere sind sie bereits im
vorigen Schritt berechnet worden. Mittels eines Vergleichs durch instanceof Cell_wWall bzw.
der Abfrage nodeCells.contains(cell) ist dies sehr schnell moglich. Im anderen Fall wird tiber
alle Knotenzellen iteriert, die fiir cell sichtbar sind. Sie sind in einer HashMap<Cell, Double> im
Zellenobjekt gespeichert und wurden im Algorithmus zur Verkniipfung der Zellen hinzuge-
fiigt (Algorithmus 4.2). Da es in Java keinen Iterator fiir HashMaps gibt, musste ich mit MapEntry
arbeiten. Listing 4.5 zeigt den entsprechenden Ausschnitt. Die For-Schleife iteriert tiber die
Paare der Map. Innerhalb dieser Schleife, wird die minimale Distanz zwischen cell und e stets
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Algorithmus 4.5 Distanzen zwischen Knoten- und Ausgangszellen

function DerermINEEXxITDI1sTS(NOdeCells, exitCells)
for all (e € exitCells) do
for all (v € nodeCells) do
D « DU (v, )
end for
D « DU (e,0)
Q « nodeCells
while (Q # 0) do
(u, distyiy) < pair with minimum distance in D
Q<Q\u
add (e, distyy) tou
N « {n : nis direct neighbor of u}
forall (n € N) do
if (n € Q) then
alt « D[u] + ||u—n]|
if (alt < D[n]) then
D « DU (n,alt)
end if
end if
end for
end while
end for
end function

aktualisiert, indem das Minimum der bereits existierenden Distanz und der Summe der beiden
Distanzen [|cell- Knotenzelle || und || Knotenzelle —e|| genommen wird. Das resultierende Paar
aus Ausgangszelle e und Distanz dist,,;, wird in der Ausgangszellen-Map von cell gespeichert.
Auch diese Map ist eine HashMap<Cell, Double>.

Ist die dufserste For-Schleife beendet, kennen alle Nicht-Wandzellen ihre kiirzesten Ausgangs-
distanzen und haben diese intern gespeichert. Betrachtet man die gespeicherten Daten isoliert,
so erhdlt man das statische Floor-Field.

Listing 4.5: Kiirzeste Entfernung fiir eine Zelle berechnen

for (Map.Entry<Cell, Double> nodeEntry : cell.getNodeDists().entrySet())
{
double new_dist = nodeEntry.getValue() + nodeEntry.getKey().getExitDist(exit);
if (new_dist < min_dist)
min_dist = new_dist;
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Algorithmus 4.6 Distanzen normaler Zellen zu Ausgangszellen

function DetermiNEALLExITD1sTs(cells, nodeCells, exitCells)
for all (e € exitCells) do
for all (c € cells) do
if (c type of Cellwg V ¢ € nodeCells) then
continue with next c
else

distyiy — min_(llc = nll + I — el)
nec.nodes

add (e, dist,yin) to c
end if
end for
end for
end function

Bestimmung der Distanz zur nachstgelegenen Wandzelle

Es gibt einen weiteren Algorithmus zur Distanzberechnung, den ich fiir meine Implementie-
rung brauche. Er wird nicht fiir die Berechnung der Entfernungen zu den Ausgangszellen
benotigt, sondern zur Ermittlung der nachstgelegenen Wandzellen und deren Distanz.

Das Grundprinzip dieses Algorithmus ist, um die betrachtete Zelle Kreise zu ziehen. Sollte
eine Wandzelle in einem solchen Kreis vorhanden sein, wird kein weiterer gezogen, sondern
nur noch die restlichen Zellen des aktuellen Kreises untersucht. Fiir jede gefundene Wand-
zelle wird die Distanz zwischen ihr und der Zentrumszelle berechnet. Ist sie kleiner als das
bisherige Minimum, wird die Distanz und Referenz auf die Wandzelle zwischengespeichert.
Die Abtastrate des Kreises, d. h. die Anzahl der Punkte, die einen Kreis bilden, werden in
Abhingigkeit des Radius mit folgender Formel bestimmt: points = |r - 2(3t%0810()) |, Damit
wird sichergestellt, dass es keine Liicken in den Kreisen gibt, die z. B. durch Rundungsfehler
entstehen konnten. Da allerdings W,,,x (maximaler Sicherheitsabstand der Agenten (2.3.2))
meist recht klein gehalten wird, sind die Groflenordnungen, ab der die Formel ungenau wird,
vernachlassigbar. Es wird iiber die Punkte des eben beschriebenen Zellenkreises iteriert und
mit Hilfe des Winkels angle = -22— und den Winkelfunktionen die Koordinaten der Zellen

points
berechnet:

coord, = x + |cos(angle - i) -r+0,5]coord, = y + [sin(angle-i) -r 4 0,5],

wobei i die Laufvariable iiber die Punkte ist. Wenn eine Wandzelle im aktuellen Kreis enthalten
ist, konnen nur noch Zellen dieses Kreises die minimale Distanz unterbieten. Das liegt daran,
dass es auf Grund der ganzzahligen Zellenpositionen zu Rundungen kommt. Die Zellen des
nédchst grofleren Kreises haben aber eine um mindestens 1 grofiere Distanz zur Zentrumszelle.
Diese ist, abziiglich Rundung, immer grofer als die grofste Distanz einer Zelle des kleineren
Kreises. Deshalb wird der Algorithmus bei Fund einer Wandzelle nach Uberpriifung aller
Kreiszellen abgebrochen. Eine kleine Optimierung des Algorithmus besteht darin, dass er
im Falle dist,;;, < r sofort unterbrochen wird. Wenn eine Wandzelle eine Distanz kleiner oder
gleich dem Radius zur Zentrumszelle hat, konnen selbst die Zellen desselben Kreises dies
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Algorithmus 4.7 Distanz zur ndchstgelegenen Wandzelle

function DerermiNeWarLDist(src, floor, cells)
next « true
re1
distpiny <« o0
while (next = true) do
points —|r- 2(3+10810(”))J
angle « pﬁi'r’fts
for (i = 0 — points — 1) do
coord, « src.x + cos(angle i) - r
coord, « src.y +sin(angle -i) - r
if (coordinates inside simulation area A cells[coord,][coord.]type of Cellw,y) then
next « false
disthew < lIsrc — cells[coord ] [coord,]||
if (disthew < distmin) then
distmin « distpew
nearestWall < cells[coord,|[coord,]
exit loop if (distmin < )
end if
end if
end for
re—r+1
end while
src.setWallDist(distmin)
src.setWallReference (nearestWall)
end function

nicht weiter unterbieten. Deshalb wird in diesem Fall, sofort die For-Schleife beendet. In
jedem Fall steht am Ende sowohl die kleinste Distanz, als auch die betreffende Wandzelle
fest. Sowohl der Wert, als auch die Referenz auf die Wandzelle werden in der Zentrumszelle
gespeichert.

4.3.4 Anwenden der Regeln

In der ,Sensitivitdtsanalyse”-Aktivitit werden die Regeln definiert, die spater vor jedem
Durchlauf auf die entsprechenden globalen Variablen, Agenten- oder Zellparameter ange-
wandt werden. Eine solche Regel wird in einem Container-Objekt gespeichert. Alle Container
werden wiederum separat fiir jeden Typus (Allgemein, Agenten, Treppen, Wande) in eigenen
Datenstrukturen gespeichert. Das ist notwendig, weil die Position in der Datenstruktur
gleichzeitig als Angabe der Parameter-ID oder z. B. der Agentengruppe dient. Ein gemein-
sames Speichern aller Regeln in einer einzigen Datenstruktur, wiirde zusétzliche Angaben
im Regel-Container und eine anschliefSend grofiere Filterung erfordern. Listing 4.6 zeigt
die RuleContainer-Klasse, deren Objekte die einzelnen Regeln speichern. Jeder RuleContainer
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Listing 4.6: Klasse fiir Regeln

public class RuleContainer
{
public final DISTRIB_FUNCTION_ID functionID;
public final double a;
public final double b;
public final double c;

private RuleContainer (DISTRIB_FUNCTION_ID funcID, double a, double b, double c)
{

this. functionID = funcID;

this.a a;

this.b b;

this.c C;

beinhaltet die Angabe iiber die zu verwendende Wahrscheinlichkeitsverteilung, sowie die
Werte fiir den Minimalwert (bzw. den Erwartungswert), den Maximalwert (bzw. die Varianz),
sowie den wahrscheinlichsten Wert, falls die Dreiecksverteilung ausgewédhlt wurde. In allen
anderen Fallen bleibt dieser Wert 0 und wird ignoriert.

Innerhalb der kleineren Initialisierungsphase vor einem Simulationsdurchlauf wird eine
Funktion aufgerufen, die neue Parameter entsprechend der Regeln erzeugt und zuweist (siehe
Listing 4.7). Da die Regeln nach Klassen getrennt gespeichert wurden, wird nacheinander
durch die verschiedenen Regellisten durchgegangen. Mit den Parametern, die in einem
Regel-Container gespeichert sind, wird ein neuer Wert bestimmt. Dazu gibt es eine weitere
Funktion, die je nach Funktions-ID eine andere Wahrscheinlichkeitsverteilung mit den zwei
bzw. drei Funktionsparametern verwendet. Der neu bestimmte Wert wird anschlieflend dem
Simulationsparameter, allen Agenten der Agentengruppe oder allen Wand- bzw. Treppenzel-
len der entsprechenden Farbgruppe zugewiesen. Zusatzlich wird der neue Wert zusammen
mit der Angabe der Regel in der Statistik-Ausgabedatei (siehe 4.5.2) gespeichert.

4.4 Simulationsdurchfihrung

Nachdem zuvor die Konfigurationsdaten und andere Einstellungen (unter anderem auch
die Regeldefinitionen fiir die Sensitivitdtsanalyse) in den vorherigen Meniis eingelesen bzw.
erstellt wurden, ist die Simulation initialisiert. Nun soll es in diesem Abschnitt um die
Durchfiihrung der Simulation gehen.

Ausgangspunkt ist die ,Simulation”-Aktivitdt. Der Benutzer kann dort die Simulation
starten, pausieren, abbrechen, zu den bisherigen bzw. endgiiltigen Statistiken schalten und
- wenn eine grafische Ausgabe existiert - zwischen den einzelnen Stockwerken wechseln.
Die Simulation besteht aus einer vorher festgelegten Anzahl einzelner Durchldufe. In der
,Simulationseinstellungen”-Aktivitdt kann diese Zahl vom Benutzer eingestellt werden. Ein
Durchlauf startet, nachdem die Simulation zum ersten Mal initialisiert wurde bzw. nach
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Listing 4.7: Ausschnitt aus Regelanwendungsfunktion

// Co.)
if (commonRules != null && commonRules.size() > 0)
{

RuleContainer rCon = commonRules.get(0);
if (rCon != null)

this.maxWallDist = SimHelpers.giveNewValue(rCon.functionID, rCon.a, rCon.b,
rCon.c);
/7 Coo2)
}
if (agentRules != null && agentRules.size() > 0)
{
for (int i = 0; i < agentsById.size(); i++)
{
SparseArray<RuleContainer> rules = agentRules.get(i);
/7 Cool)
}
}
if (stairRules != null && stairRules.size() > 0)
{
/7 Coo)
}
if (wallRules != null && wallRules.size() > 0)
{
/7 Col)
}
/7 Coon)

erfolgtem Durchlauf reinitialisiert wurde und endet, wenn alle Agenten das Simulationsgebiet
verlassen haben. Ist ein Durchlauf beendet, gibt es zwei Moglichkeiten: War es der letzte
Durchgang, ist die gesamte Simulation zu Ende. Es kann kein weiterer Durchlauf gestartet
werden, so dass sich der Benutzer zwischen dem Anzeigen der Resultate, dem Starten einer
neuen Simulation und dem Abbruch (Riickkehr zum Hauptmenti) entscheiden kann. War der
beendete Durchlauf nicht der letzte, startet ein weiterer. Hierfiir muss die Simulation zum Teil
neu initialisiert werden. Allerdings ist dafiir sehr viel weniger Zeit notwendig, als beim ersten
Mal. Es werden lediglich folgende Schritte unternommen: Die Agenten werden neu erstellt, so
dass sie identisch sind, mit denen des letzten Durchlaufs. In diesem Zusammenhang werden
auch die Bilder der Stockwerke neu gezeichnet, so dass die Agenten auf ihnen wieder zu
sehen sind. Das dynamische Floor-Field wird zuriickgesetzt, genauso wie die Agentenzdhler
der Ausgidnge. Der Rundenzéhler wird ebenfalls auf 0 zuriickgesetzt. Sollte die Simulation
im Experten-Modus ausgefiihrt werden, wird an dieser Stelle die Zuweisung der Parameter,
die durch die Regeln der Sensitivitdtsanalyse neue Werte bekommen, an die entsprechenden
Objekte durchgefiihrt. Wenn eine grafische Ausgabe der Simulation in den Einstellungen
gewiinscht wurde, muss der Benutzer selbststindig den neuen Durchlauf starten. Andernfalls
startet der nidchste automatisch, sobald alle gerade beschriebenen Aufgaben erledigt sind.
Dieses Verhalten hat folgenden Hintergrund: Ist die grafische Ausgabe nicht gewtinscht,
versucht das Programm die Simulation so schnell wie moglich durchzufiihren, damit die
Ergebnisse rasch vorhanden sind. Ein Pausieren zwischen den Durchldufen und die manuelle
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Fortsetzung ist hier hinderlich. Bei der grafischen Ausgabe achtet das Programm darauf, nicht
mehr als 2 Runden pro Sekunde zu simulieren, so dass die Bewegungen der Agenten auf dem
Feld beobachtbar bleiben. Die langsame Geschwindigkeit, sowie das Pausieren der Simulation
zwischen zwei Durchldufen kann hier niitzlich sein, um dem interessierten Publikum etwas
zu erkldren, die Zwischenergebnisse zu betrachten oder sich Notizen machen zu kénnen.
Die tatsachliche Durchfiihrung der Simulation, sowie die Anzeige der Stockwerke und das
Aktualisieren des Benutzerinterfaces iibernehmen zwei von mir erstellte Klassen. Diese beiden
werden im folgenden Abschnitt detaillierter beschreiben.

4.4.1 SimView- und SimViewThread-Klasse

Die Klasse simview habe ich abgeleitet von einer neuen Android-Klasse surfaceview. Diese
Standardkomponente sorgt dafiir, dass ein fester Zeichenbereich in der Aktivitidt entsteht.
In ihr geschieht die grafische Ausgabe. Das tatsdchliche Zeichnen der Ausgabe tibernimmt
das View eigenstindig. Meine abgeleitete Klasse erbt diese Funktionalitit, dient aber auch
mehreren Aufgaben vor, wiahrend und nach der Simulation: Einerseits implementiert die
simview-Klasse einen sogenannten Surfacetolder. Uber ihn bekommen auch Nicht-UI-Threads
Zugriff auf die Zeichenfldche. Das ist wichtig, denn Android verbietet Threads, die nicht fiir
die Anzeige und Interaktion mit dem Benutzer zustandig sind (UI-Threads), die Anderungen
von Mentikomponenten. Der spater noch ndher beschriebene SimviewThread kann damit die
grafische Ausgabe realisieren, obwohl er nicht zu den UI-Threads gehort. Zusitzlich kiimmert
sich SimView um die Erstellung und Zerstérung des eben angesprochenen SimViewThreads
und verarbeitet die Nachrichten, die es von ihm erhilt. Dies bewerkstelligt eine sogenannte
Handler-Klasse, der man die Nachrichten zuschicken kann. Als Teil der Aktivitiat kann SimView
somit Einfluss auf die anderen Views der Aktivitat nehmen und z. B. Meldungen beziiglich
des Simulationsstatus anzeigen lassen. Dazu dndert es die Texte der entsprechenden Textviews
ab. Auflerdem kiimmert es sich um die erforderlichen Mafinahmen, wenn sich der Bildschirm
andert, die App pausiert, gestoppt oder neu geladen wird. Dazu zdhlen unter anderem:
Herunterfahren des SimViewThreads, Neuinitialisierung der Simulation, Neuzeichnen der
Grafiken.

Die simviewThread-Klasse habe ich von der Standard Thread-Klasse abgeleitet. Ihre Aufgabe ist
es, die Simulation voranzutreiben und eine Ausgabe (falls gewiinscht) auf den Bildschirm
zu zeichnen. Es existiert nur ein Objekt dieser Klasse, das wiederum im einzigen SimView-
Objekt instanziiert ist. Die Existenz des Threads ist unabhéngig von der Simulation: Wird das
SimView-Objekt erstellt, generiert dieses automatisch auch ein SimViewThread-Objekt. Wird
die ,,Simulation”-Aktivitit verlassen, wird der SimViewThread gestoppt und zerstort, die
Ergebnisse der Simulation und vor allem auch der aktuelle Fortschritt bleiben aber erhalten.
Wird die Aktivitat wieder betreten, wird ein neues SimViewThread-Objekt erstellt und die
Simulation kann dort weitergefiihrt werden, wo sie pausiert wurde. Das liegt daran, dass
das Simulationsobjekt global existiert und somit erst geloscht wird, wenn explizit eine neue
Simulation erstellt wird oder die Anwendung komplett beendet wird. Dieses Vorgehen belastet
zwar den Hauptspeicher des Gerdts mehr, weil die Daten auch bei Inaktivitit der Anwendung
vorgehalten werden, aber das Programm ist dafiir sehr viel schneller wieder benutzbar, wenn
man es wieder aktiviert.
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Je nach Status der Simulation, sorgt der Thread fiir unterschiedliche Arbeiten: Zu Beginn
initialisiert er die Simulation (siehe 4.3), innerhalb der einzelnen Durchldufe fiihrt er die
Simulationsaktualisierungen durch, nach Beendigung eines Durchlaufs bereitet er den ndchsten
vor und fiihrt die Regeln der Sensitivitdatsanalyse durch. Ist der letzte Durchlauf beendet,
wird der Thread ebenfalls durch das SimView-Objekt gestoppt. Auch der SimViewThread
kann verschiedene Zustinde haben: Direkt nach seiner Erstellung befindet er sich im [READY]-
Zustand. In ihm versucht er die Simulation endgiiltig zu initialisieren, so fern dies nicht bereits
frither geschehen ist; es kann der Fall eintreten, dass die Anwendung noch vor dem ersten
Update der Simulation inaktiv und wieder reaktiviert wurde. Direkt aus diesem Zustand
heraus, setzt er sich selbst auf [paUSE]. Auch durch den Benutzer, der im Benutzerinterface auf
,Pause” driickt, kann der Thread in diesen Zustand gelangen. In ihm wird die Simulation
nicht weiter vorangetrieben. Der Thread kiimmert sich aber weiterhin um die Anzeige
der Grafiken, so dass ein Wechsel der Stockwerke auch im Pause-Modus moglich bleibt.
Ist der Thread im [RUNNING]-Zustand, wird die Simulation so lange vorangetrieben, bis der
aktuelle Durchlauf zu Ende ist, oder bis durch den benutzerbedingten Abbruch oder die
Pausierung der Thread zerstort oder wieder pausiert wird. Listing 4.8 zeigt einen Ausschnitt
der SimviewThread.run-Funktion, die so lange ausgefiihrt wird, bis der Thread gestoppt wird.

4.4.2 Simulationsschritt

Ist der SimViewThread im Status [RUNNING], fiihrt er in einer Endlosschleife, die Simulati-
onsrunden durch. Eine Simulationsrunde besteht in meiner Implementierung, wie auch im
FE.A.S.T.-Modell aus drei Teilen: Zuerst entscheidet sich jeder Agenten fiir einen Ausgang,
danach wéhlt jeder Agent aus der Menge seiner giiltigen Zielzellen eine Zelle aus, die er am
Ende der Runde besetzen mdchte und zum Schluss werden die entsprechenden Bewegungen
der Agenten durchgefiihrt. All dies geschieht in der Simulation.update-Funktion, die vom Sim-
ViewThread aufgerufen wird. Zusitzlich werden in ihr die Graphen und Bilder aktualisiert,
die spater Teile der Ergebnisse der Simulation beinhalten sollen. Dazu gehort auch, dass zum
Ende der Runde tiberpriift wird, ob die Simulation bzw. der einzelne Durchlauf beendet ist
und eventuell ein neuer gestartet werden soll. Die folgenden Abschnitte widmen sich den
einzelnen Teilen dieser Update-Funktion.

Ausgangssuche der Agenten

Im ersten Teil der Runde werden die Fernziele der Agenten aktualisiert. Je nachdem, wie der
Prozess der Ausgangssuche eines Agenten endet, bleibt dieser bei seiner letzten Wahl, oder
entscheidet sich fiir einen anderen Ausgang. Die Suche gliedert sich dabei in zwei Teile: Das
Simulationsobjekt aktualisiert in seiner Update-Funktion einen Agenten nach dem anderem. Es
ruft fiir jeden die agenteneigene Funktion auf, die dann die Ausgangssuche durchfiihrt. Listing
4.9 zeigt diese Funktion in einer verkiirzten Version. Folgendes ist bei der Ausgangswahl zu
beachten: Ausgidnge konnen aus mehr als einer Ausgangszelle bestehen. Es reicht daher nicht
nur einen Ausgang zu wahlen, sondern es muss auch eine Ausgangszelle gewdhlt werden.
Ansonsten kann nicht eindeutig eine Distanz zum Ausgang berechnet werden, was Folgen fiir
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Listing 4.8: run-Funktion des SimViewThreads (Ausschnitt)

public void run()

{ 77 ¢...)
while (running)
{
if (mode == STATE_READY)
{
if (simulation.isTotallyFinished())
{
// send message "Simulation finished"
/7 Cool)
running = false; // stop thread by leaving endless-loop
b
else
{
simulation.Init();
simulation.prepareNewRun();
if (graphicalmode)
updateBackgroundImage () ;
mode = STATE_PAUSED;
h
/7 Coa)
}
else
{ /77 ..
if (mode == STATE_RUNNING)
updatePhysics();
doDraw(c);
}
if(graphicalmode)
{
// if update cycle was shorter than 500 ms then sleep for the difference
time
Thread.sleep(sleepTime);
}

den Teileinfluss des statischen Floor-Fields hétte (siehe 2.3.2). Die Wahrscheinlichkeitsformel
(2.1) fiir die Ausgangssuche habe ich somit fiir ihre Implementierung leicht abgedndert:

(l%—éAEKE)
S(A,e)

Dabei steht e nun fiir eine Ausgangszelle anstatt eines Ausgangs. Fiir 54f gilt: 54 = 1, wenn e
zum Ausgang E gehort und dieser in der letzten Runde gewihlt wurde, auch wenn der Agent
zuvor eine andere Zelle dieses Ausgangs als Fernziel hatte.

Es gibt zwei assoziative Arrays: HashMap<Exit, Double> pe und HashMap<Exit, Cell Exit> ec.Im
ersten werden die Ausgidnge mit einem Wahrscheinlichkeitswert verkntipft, im zweiten mit
einer Ausgangszelle. Verkniipft wird immer diejenige Zelle des Ausgangs, deren Wahrschein-
lichkeit am grofiten ist. Nachdem alle Einzelwahrscheinlichkeiten berechnet wurden, enthalt

41) pl=N-
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Listing 4.9: Agentenfunktion zum Wihlen eines Ausgangs

public void chooseNewExit ()

{
HashMap<Exit, Double> pe new HashMap<Exit, Double>();
HashMap<Exit, Cell_Exit> ec new HashMap<Exit, Cell_Exit>(Q);
for (Map.Entry<Cell, Double> e : curCell.exitDists.entrySet())
{

Cell_Exit eCell (Cell_Exit)e.getKey();
Exit exitRef = eCell.getExitReference();
int delta_exit = 0;
if (lastExit == exitRef)
delta_exit = 1;
double probability = (1.0 + (delta_exit
Math.scalb(e.getValue(), 2);
if (!pe.containsKey(exitRef) || pe.get(exitRef) < probability)
{

*

params[Constants.K_E])) /

pe.put(exitRef, probability);
ec.put(exitRef, eCell);
}

}
// (...) normalization of the values
Exit choice chooseProbability(pe);
lastExit nextExit;
nextExit choice;
nextExitCell = ec.get(choice);

ec Verkniipfungen zwischen allen Ausgidngen und ihren jeweiligen Ausgangszellen, die unter
allen anderen Zellen des Ausgangs am wahrscheinlichsten sind. Aus diesen wird in einem
letzten Schritt der tatsdchliche Ausgang und damit die Ausgangszelle gewahlt.

Zielzellensuche der Agenten

Die Wahl einer Zielzelle ist, genauso wie die Wahl eines Ausgangs, ein Prozess, der unab-
hédngig von anderen Agenten durchgefiihrt werden kann. Die Wahl der Zielzelle findet in
meinem Programm deshalb im gleichen Iterationsschritt iiber die Agenten statt, wie die
Ausgangssuche.

Der Status der Zelle, die im Moment vom Agenten besetzt wird, gilt wiahrend der Zielzellensu-
che als ,, unbesetzt”. Dadurch wird diese Zelle ebenfalls in die Menge der giiltigen Zielzellen
aufgenommen. Bevor die Suche nach den Zielzellen gestartet wird, muss die Geschwindigkeit
des Agenten aktualisiert werden. Zuerst wird sie um 1 erhoht, aufler es wurde bereits die
maximale Geschwindigkeit (v,,y) erreicht. Danach wird gepriift, ob sich der Agent auf
einer Treppenzelle befindet. In diesem Fall wird die neue Geschwindigkeit mit dem Faktor
der Treppenzelle multipliziert. Dabei wird sichergestellt, dass sie nicht kleiner als 1 wird.
Ansonsten wiirde der Agent permanent auf der Treppenzelle verharren und somit nie eine
Ausgangszelle erreichen. Das wiederum wiirde dazu fiihren, dass die Simulation nicht enden
kann, weil nicht alle Agenten das Simulationsgebiet verlassen haben (vgl. 3.1).

60



4.4 Simulationsdurchflihrung

Im nédchsten Schritt findet nun die Suche nach den erreichbaren Zellen statt. Den Aufbau des
Algorithmus stellt 4.8 dar. In der Ergebnismenge C sind alle Zellen enthalten, die theoretisch in
dieser Runde vom Agenten von seiner jetzigen Position und mit seiner derzeitigen Geschwin-
digkeit aus erreichbar sind. Neben der Menge C, die bei mir eine einfache ArrayList<Cell> ist,
gibt es noch die Menge M und U. In M werden alle Zellen gespeichert, die bereits untersucht
wurden. Da hier sehr oft Mengenzugehorigkeiten gepriift werden miissen, habe ich mich fiir
eine HashSet<Cell> entschieden. Mit dieser Menge will ich verhindern, dass Zellen mehrfach
besucht werden und somit eventuelle Endlosschleifen entstehen. Die dritte Menge U beinhal-
tet alle Zellen, die noch untersucht werden miissen. In meiner Implementierung ist U eine
Warteschlange (Queue<cell>). Neue Elemente werden am Ende der Liste angehdngt. Das élteste
Element steht somit ganz vorne in der Liste und wird als erstes bearbeitet.

Ausgehend von der Startzelle, auf der sich der Agent befindet, breitet sich die Suche nach Ziel-
zellen im Gebiet aus. Alle Nachbarzellen der Startzelle werden in U aufgenommen. Von jeder
dieser Zellen werden wieder alle Nachbarzellen in U aufgenommen und so weiter. Das Kriteri-
um, ob eine Nachbarzelle aufgenommen wird, ist die ihre Distanz zur Startzelle. Ist sie grofSer
als der Geschwindigkeitsbetrag des Agenten, scheidet sie als erreichbare Zielzelle aus. Da das
Simulationsgebiet so aufgebaut sein kann, dass potentielle Zielzellen keine direkte Verbindung
zur Startzelle haben (d.h. ,nicht sichtbar” fiir die Startzelle sind), miissen ihre Distanzen
durch Teildistanzen aufsummiert werden. Hierfiir gibt es die 1astDest-Variable, die jede Zelle
besitzt. In ihr wird die Referenz auf die letzte sichtbare Zelle auf dem Weg zur Startzelle
hinterlegt. Gibt es keine direkte Verbindung zwischen einer Zelle und der Startzelle, berechnet
sich die Distanz wie folgt: ||Zelle — Startzelle|| = ||Zelle — lastDest|| +- ||lastDest — Startzelle||. Der
zweite Summand ist bekannt, denn die lastDest-Zelle wurde vom Suchalgorithmus bereits
zuvor besucht (weiter vorne in U gelegen). Abbildung 4.2 zeigt nochmals ein Beispiel fiir
den Einsatz dieser Hilfsvariable. Die Ergebnismenge ist in keinem Fall leer, da sie zumindest
die Startzelle enthalt. Sollte die Ergebnismenge nach Beendigung der Suche lediglich diese
eine Zelle enthalten, tritt ein Sonderfall ein. Das bedeutet, dass sich der Agent zu keiner
anderen Zelle bewegen kann. Eine Auswahl der Zielzelle ist damit bereits getroffen. Die
Geschwindigkeit des Agenten wird auf 0 gesetzt, die Zelle wird als , besetzt” markiert und es
wird mit dem nédchsten Agenten fortgefahren. Enthélt die Ergebnismenge mehr als eine Zelle,
muss nun eine Auswahl getroffen werden. Dazu wird der entsprechenden Agentenfunktion
die Menge der potenziellen Zielzellen tibergeben. Diese arbeitet dhnlich, wie die Funktion zur
Ausgangssuche: Eine For-Schleife iteriert {iber die Zellen der Menge. Fiir jede Zelle wird ein
Wahrscheinlichkeitswert nach Formel (2.2) berechnet. Eine zusatzliche Funktion wéhlt aus den
normalisierten Wahrscheinlichkeiten eine aus, die fiir den Agenten dann als neue Zielzelle
gilt. Zum Abschluss wird die vom Agenten besetzte Zelle, die wiahrend der Zielzellensuche
als ,,unbesetzt” galt, wieder als ,besetzt” markiert.

Bewegen der Agenten

Zu aller erst wird eine Liste (ArrayList<Agent> pleaseRemove) erstellt. Inihr werden die Referenzen
auf diejenigen Agenten gespeichert, die durch ihre folgende Bewegung eine Ausgangszelle
erreichen und damit erfolgreich aus der Simulation ausscheiden. Die Liste dient am Ende der
Runde dafiir, die entsprechenden Agenten aus ihrer Datenstruktur zu entfernen.
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Algorithmus 4.8 Finde giiltige Zielzellen

function DeTerMiNEDESTCELLS(a, cells)
C,M, U<« 0
v « current speed of a
if (2 stands on Cellgtyir) then
v « max(1, [v - stairCell.factor])
end if
start < cell, a stands on
start.lastDest « start
U <« UUstart, M «— MU start
while (U # 0) do
u « first element from U
C « CUu (if not blocked)
N « neighbor cells of u
if (u type of Celltgieport) then
add u.partnerCell to N
end if
forall (ne NAn¢M)do
if (u.lastDest is visible for 1) then
dist « ||n — u.lastDest|| + ||ju.lastDest — ||
n.lastDest « u.lastDest
else
dist « ||n — u|| + ||lu — al|
n.lastDest « u
end if
if (dist <v) then
U< UUn
lIn —a|| = dist
end if
M~ MUn
end for
end while
return C
end function
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[n-a][= [n-u+|u-al
la-al[=llg-n|+|n-a

Abbildung 4.2: Distanzberechnung bei der Zielzellensuche. In diesem Beispiel wird die
Distanz der Zellen n und q zu a gesucht. Die Berechnung mit Hilfe von
Teildistanzen ist unter dem Bild dargestellt. Entscheidend ist die Hilfe der
lastDest-Variablen (siehe 4.4.2)

In meiner Implementierung habe ich den Vorschlag des direkten Hinspringens zur Zielzelle
umgesetzt (siehe 2.3.3). Es gibt aber eine Anderung, was die auftretenden Konflikte angeht:
Bei mir bewegen sich die Agenten zu ihrer Zielzelle, sobald sie an der Reihe sind und dies
moglich ist. Ist sie durch jemand anderen bereits besetzt, bleibt der Agent auf seiner aktuellen
Zelle stehen. Fin Konflikt wird aufgelost, indem immer der Agent gewinnt, der als erster
die gemeinsame Zielzelle besetzt. Da die Reihenfolge der Agenten fiir jede Runde zufillig
gesetzt wird, realisiert mein Programm in gewisser Weise das direkte Hinspringen mit u = 0;
denn ein Konflikt wird hier immer aufgelost. Bevor die Agentenbewegungen stattfinden
konnen, muss noch die zufillige Reihenfolge fiir die Agenten festgelegt werden. Dazu fiige
ich einem Array (ArrayList<Agent> agentOrder) alle vorhandenen Agenten hinzu und wende
auf diese Menge eine Misch-Funktion an, die fiir die zuféllige Anordnung der Elemente
im Array sorgt. Java stellt eine solche Funktion durch die collections-Klasse zur Verfligung;:
Collections.shuffle(agentOrder). Sie erreicht die zuféllige Durchmischung der Elemente in
linearer Zeit, d. h. dieser Schritt ist somit effizient durchfiihrbar.

Danach wird iiber die Agenten in der eben festgelegten Reihenfolge iteriert. Unabhingig von
einer grafische Ausgabe, wird das Bild der Ebene, auf der sich der Agent befindet, erneuert.
Der Bildpunkt, der bisher die Farbe des Agenten hatte, soll die urspriingliche Farbe der
belegten Zelle erhalten. Beim Erstellen der Zellenobjekte (wiahrend der Initialisierung), wurde
sie als Eigenschalft fiir jede Zelle gespeichert. An dieser Stelle wird darauf nun zurtickgegriffen.
Die eigentliche Bewegung des Agenten erfolgt durch einen Aufruf einer agenteninternen
Funktion. Dort wird zuerst tiberpriift, ob die Zielzelle noch unbelegt ist. Ist sie das nicht, kann
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sich der Agent nicht bewegen und seine Geschwindigkeit wird auf 0 gesetzt. Andernfalls
werden folgende Schritte ausgefiihrt: Die bisher besetzte Zelle wird freigegeben (NOT_BLOCKED),
die Position des Agenten wird angepasst, der Bewegungsvektor wird auf das Feld des
dynamischen Floor-Fields addiert, die Referenz auf die besetzte Zelle wird gedndert und
es wird gepriift, ob der Agent nun eine Ausgangszelle besetzt. Ist der letzte Vergleich
negativ, muss die neue Zelle nun als besetzt gelten. Aufierdem wird die Geschwindigkeit des
Agenten entsprechend seiner eben ausgefiihrten Bewegung gesetzt; v,,,, gilt dabei wieder
als Obergrenze. Schliefilich erhélt der Bildpunkt an der Stelle der neu besetzten Zelle, die
Farbe des Agenten. Wenn der Agent erfolgreich eine Ausgangszelle erreicht hat und damit
,gefltichtet” ist, wird zum einen der Zahler des Ausgangs inkrementiert und zum anderen der
Agent zu der am Anfang beschriebenen Liste (pleaseRemove) hinzugefiigt.

Sind alle Agentenbewegungen durchgefiihrt, ist bekannt, welche Agenten in dieser Runde
entkommen sind. Thre Referenzen stehen in der , Entfernen”-Liste. Mit Hilfe der von Java
zur Verfiigung gestellten Mengenoperationen, konnen die betreffenden Agenten aus der
Gesamtagentenmenge leicht entfernt werden (.removeAll(pleaseRemove)). In Listing 4.10 ist eine
verkiirzte Version des Abschnitts der Agentenbewegungen zu sehen.

Listing 4.10: Reihenfolge aufstellen und Bewegungen durchfiihren

ArrayList<Agent> pleaseRemove = new ArraylList<Agent>();

ArraylList<Agent> agentOrder = new ArraylList<Agent>();

for (int i = 0; i < agentsById.size(); i++)
agentOrder.addAll (agentsById.get(i));

Collections.shuffle(agentOrder);

for (Agent a : agentOrder)

{
// reset pixel color
a.moveToDest(); // internal agent movement function
if (a.hasEscaped())
pleaseRemove.add(a);
else
// set new pixel color
}
for (int i = 0; i < agentsById.size(); i++)
{

ArrayList<Agent> temp = agentsById.get(i);
temp.removeAll (pleaseRemove) ;
remain += temp.size();

Ende der Runde

Das Ende der Runde besteht aus einer Vielzahl von Aktualisierungsvorgangen. So wird als
erstes das dynamische Floor-Field bearbeitet. Je nach Grofie der Simulationsparameter a (fiir
Verwischung) und 6 (fiir Verblassen) kommt es zu einer Diffusion unter den Komponenten
bzw. einer Abschwiéchung der absoluten Betrdge der einzelnen Vektorfelder (siehe dazu auch
Kapitel 2.2.2). Zusétzlich werden alle Graphen aktualisiert: Der Evakuierungsgraph, der den
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Verlauf der entkommenen Agenten dokumentiert, der Graph fiir den durchschnittlichen
Fluss der Agenten und auch die Ausgangsstatistiken (die nicht als Graph, sondern textuell
ausgegeben werden). In Abschnitt 4.5 gibt es weitere Details zum Aufbau und zur Speicherung
von Graphen in meinem Framework. Die Bilder (z. B. die aktuelle Dichte der Agenten) werden
hier nicht aktualisiert. Dies geschieht erst, wenn die , Ergebnis”-Aktivitdt besucht wird. Dies
wiirde sonst unnotig Zeit vergeuden.

Daran anschliefend folgt eine Uberpriifung der Anzahl der verbliebenen Agenten in der
Simulation. Hier gibt es verschiedene Kriterien, ab wann zusitzliche Schritte eingeleitet werden:
Hat die Zahl die 95%-Marke erreicht bzw. tiberschritten, miissen dafiir die entsprechenden
Statistiken fiir die Evakuierungszeiten aufgenommen werden. Liegt die Anzahl bei weniger
als 4, werden die Namen der Agentengruppen, zu denen die verbliebenen Agenten gehoren,
gesichert, so dass sie am Ende der Simulation in den Ergebnissen dokumentiert werden
konnen. Sollten alle restlichen Agenten in dieser Runde das Simulationsgebiet verlassen haben,
geht der aktuelle Durchlauf mit dieser Runde zu Ende. In diesem Fall wird eine Markierung
in der Simulation gesetzt (finished = true), auf die anschlieflend vom SimViewThread reagiert
wird. Sollte mit dieser Runde sogar der letzte Durchlauf beendet werden, wird zusétzlich
die Variable overallFinished auf true gesetzt. Denn das Ende der gesamten Simulation zieht
weitere Mafsnahmen fiir den Thread und die umgebende Aktivitdt nach sich (siehe 4.4.1).

4.5 Ergebnisspeicherung und -anzeige

Wihrend der Simulation werden fortlaufend Daten tiber die Fortschritte gesammelt. Zur
spateren Analyse sind diese Daten entscheidend und deshalb habe ich auch bei meinem
Programm auf eine Speicherung und Ausgabe dieser Statistiken geachtet. Ich habe einige der
in [Kre06] vorgeschlagenen und in Kapitel 2.4 beschriebenen Ausgaben implementiert. Sie
konnen allesamt in der , Ergebnis”-Aktivitdt und in einer separater Textdatei betrachtet werden.
Die Speicherung von fortlaufenden Daten als Graph habe ich mittels eigener generischer
Klassen realisiert, wiahrend eine von Androids ,ImageView” abgeleitete Klasse (Graphview)
sich um die korrekte Anzeige dieser Graphen auf dem Bildschirm kiimmert. Im Folgenden
will ich genauer auf diese beiden Klassen eingehen.

4.5.1 Graph- und GraphView-Klasse

Die Anzahl der gefliichteten Agenten, die pro Runde in einem Graphen gespeichert wird, ist
eine Ganzzahl (Integer), wahrend der durchschnittliche Fluss der Agenten eine FliefSkom-
mazahl ist (Double). Ich wollte deshalb eine Klasse erstellen, die es moglich macht, jegliche
Arten von numerischen Datentypen aufzunehmen und in Form eines Graphen zu speichern.
Herausgekommen ist die Graph-Klasse. Sie ist generisch, d. h. eine Instanziierung dieser Klasse
erfordert die Angabe eines Datentyps. Da sich nicht jedes Objekt dafiir eignet, beschrankt
sich die Wahl des Datentyps auf Objekte, die von Javas Number-Klasse abgeleitet sind und das
Interface Comparable implementieren. Dazu zdhlen unter anderem die Standarddatentypen
Integer, Float, Double, Long. Damit ist es moglich, die Klasse unverdandert zu lassen, auch
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wenn zu einem spéteren Zeitpunkt ein neuer Datentyp fiir eine Speicherung als Graph wichtig
wird.

Die Klasse speichert einen Namen zur Identifizierung des Graphen und die beiden Ach-
senbeschriftungen als String-Typ. Daneben gibt es mehrere assoziative Arrays, welche die
gespeicherten Werte verwalten:

e SparseArray<T> data_min: Dieses Array speichert die minimalen Werte an den entspre-
chenden Indizes. Der Index ist die Position des Wertes auf der Abszisse. Aus diesem
Grund habe ich darauf verzichtet eine normale List<T> oder ein simples Array (T[]) zu
verwenden, da sonst der Index immer bei 0 beginnt, die Abszissenwerte aber durchaus
negativ sein konnen. Dies hitte zu weiteren Variablen gefiihrt und Umrechnungen, die
bei meiner Variante wegfallen.

® SparseArray<T> data_max: Analog zu data_min speichert dieses Array die maximalen Werte
der entsprechenden Abszissenpositionen.

e SparselntArray data_numbers: Hierin wird gespeichert, wie viele Werte fiir einen bestimm-
ten Wert auf der Abszisse vorhanden sind. Es ist ein Hilfsarray, um spater die Durch-
schnittswerte besser und schneller berechnen zu kénnen.

e SparseArray<Double> data_sum: Ein weiteres Hilfsarray, das die Werte an den entsprechen-
den Positionen der Abszisse des Graphs aufsummiert. Hier habe ich den Datentyp
Double fest vergeben. Da die Durchschnittswerte ebenfalls Double-Werte sind, spare ich
spatere Typkonvertierungen ein.

e SparseArray<Double> data_avg: Dieses Array speichert schliefllich die Durchschnittswerte
des Graphen, die sich mittels data_sum und data_numbers berechnen lassen.

Aufierdem wird der insgesamt kleinste und grofite Wert gesondert gespeichert, so dass die
Abfrage dieser beiden Werte schnell erfolgen kann. Neben verschiedenen Funktionen zur
Riickgabe einzelner oder aller Werte des Graph-Objekts, gibt es auch eine Funktion, mit der
man einen neuen Wert hinzufiigen kann. Listing 4.11 zeigt eine verkiirzte Version von ihr.
Bei der Speicherung des Wertes wird folgendermafien vorgegangen: Es wird verglichen, ob
der Wert kleiner als der aktuell kleinste Wert an dieser Position ist. Ist dies der Fall, wird das
Minimum angepasst. Dasselbe geschieht fiir den aktuell grofiten Wert. Zusétzlich wird der
Zidhler inkrementiert, wie oft an der entsprechenden Position ein Wert aufgenommen wurde.
Zum Schluss wird der Wert auf die Summe aller Werte fiir diese Position addiert.

Eine effiziente Losung habe ich fiir die Speicherung der Durchschnittswerte entwickelt: Da
sich bei jedem Hinzufiigen eines neuen Wertes das arithmetische Mittel d&ndert, miisste man
es auch jedes Mal neu berechnen. Um diese Zeit zu sparen, wird beim Hinzufiigen eines
neuen Wertes lediglich eine boolsche Variable gesetzt, die anzeigt, ob die aktuellen Durch-
schnittswerte aktuell sind oder nicht. Wird nun das arithmetische Mittel von aufierhalb des
Graph-Objekts angefordert, tiberpriift die Funktion diese Variable und gibt entweder sofort
die Durchschnittszahlen zurtick (Variable ist ,,falsch”), oder berechnet alle Durchschnittswerte,
setzt die Variable auf ,falsch” und gibt danach die Werte zuriick (Variable war ,,wahr”).
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Listing 4.11: Neuen Wert einem Graph hinzufiigen

public void addData(int where, T data)
{
data_numbers.put (where, data_numbers.get(where) + 1);
T cur = data_min.get(where);
if (cur == null || cur.compareTo(data) > 0)
{
data_min.put (where, data);
if (minimum == null || minimum.compareTo(data) > 0)
minimum = data;
}
// analog for data_max (...)
Double value = data_sum.get(where);
if (value == null)
value = data.doubleValue();
else
value += data.doubleValue();
data_sum.put (where, value);
noUpdate = false;

Die Graphview-Klasse ist von Imageview abgeleitet. Diese Komponente dient normalerweise dem
Laden und Anzeigen eines Bildes, sowie dessen Einfarbung und Skalierung. Meine Klasse
implementiert davon die Funktion neu, die fiir das Zeichnen des Bildes zustdandig ist: onDraw.
Daneben gibt es eine Reihe weiterer Funktionen, die das Hinzuftigen, Loschen und Anzeigen
der Graphen und Bilder regeln.

In der GraphView-Klasse wird je eine Liste dieser Graphen (ArrayList<Graph<T>>) und Bilder
(ArrayList<Bitmap>) gespeichert. Das Simulationsobjekt fiigt sie der Instanz hinzu, sobald sie
initialisiert wird. Die Namen der gespeicherten Graphen und Bilder erscheinen in einer
Auswahlliste des Benutzerinterfaces (,,Ergebnis”-Aktivitdt). Die dort getroffene Auswahl wird
an das GraphView-Objekt weitergegeben, das dann die Ausgabe einleitet. Eine Bitmap dient
als Leinwand, auf die der Graph oder das Bild gezeichnet wird. Damit ist es moglich auch
zusatzliche Dinge auszugeben, wie z. B. die Achsenbeschriftungen oder eine Markierung
am aktuell angewidhlten Abszissenwert, wenn der Benutzer auf den Bildschirm klickt. Das
Grafikobjekt wird so skaliert, dass es den Bildschirm optimal ausfiillt. Angezeigt wird bei
einem Graph jeweils der Verlauf der Minimal- und Maximalwerte (in roter bzw. griiner
Farbe), sowie der Durchschnittswerte (in gelber Farbe). Die Bilder, z. B. der aktuelle Status des
dynamischen Floor-Fields, geben ihre Darstellung selbst vor und miissen deshalb lediglich
skaliert werden. Das Seitenverhiltnis der Bilder wird dabei beachtet.

4.5.2 Speicherung in Textdatei

Nicht alle Statistiken kénnen in Form von Graphen und Bildern angezeigt werden. Entweder,
weil es einfach nicht geht (z. B. Namen von Agentengruppen), oder die Ubersichtlichkeit
darunter leiden wiirde. Dies gilt besonders im Hinblick auf die Parameterauswahl bei der
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Sensitivitatsanalyse: Es miisste fiir jeden Durchlauf einen Evakuierungsgraphen geben, der
mit der entsprechenden Regel bezeichnet wire. Bei vielen Durchldufen wiirde dabei die
Ubersichtlichkeit so sehr leiden, dass eine Analyse der Ergebnisse nicht mehr gut durchfiihrbar
wire. Auch aus diesem Grund wird, parallel zur Erstellung der Graphen und Bilder, eine
Textdatei mit Ergebnissen gefiillt. Vor jedem Durchlauf werden die Parameter mit ihren neuen
Werten aufgelistet, die auf Grund von Regeln der Sensitivitdtsanalyse angepasst wurden.
Ebenfalls fiir jeden Durchlauf werden die Rundenanzahlen dokumentiert, zu denen 95%
bzw. 100% der Agenten gefliichtet sind. Zum Abschluss der Simulation werden Ergebnisse
dokumentiert, die tiber alle Durchldufe hinweg ermittelt wurden: Es wird gespeichert, wie
viele Runden es mindestens und hochstens gedauert hat, bis die beiden Agenten-Grenzen
erreicht wurden. Zusétzlich wird der Durchschnittswert sowie die Standardabweichung fiir
beide Falle dokumentiert. Den Abschluss der Datei bildet eine Information tiber die jeweils
zuletzt entkommenen Agenten: Es werden die Namen der Agentengruppen aufgelistet, aus
denen mindestens ein Agent zu den letzten drei verbliebenen eines Durchlaufs gezéhlt hat.
Zusétzlich gibt eine Zahl dahinter an, wie oft diese Gruppe bei allen Durchldufen dieses
Kriterium erfiillt hat. Zur spateren Identifizierung wird die Datei mit dem aktuellen Datum
und Uhrzeit zu Simulationsbeginn benannt. Dies soll auch verhindern, dass eine Datei eine
altere mit demselben Namen tiberschreibt.
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In diesem Kapitel will ich die Ergebnisse einiger Testldufe des Programms vorstellen. Sie
sollen zeigen, welchen Einfluss die Grofie des Simulationsgebiets und die Anzahl der Agenten
auf die Simulationszeiten und den Speicherverbrauch haben. Wahrend der Entwicklung habe
ich das Programm nur mit relativ kleinen Szenarien getestet, hauptsdchlich um bestimmte
Situationen nachzustellen. Der Test mit grofien Szenarien hat allerdings zwei grofse Probleme
offenbart, deren Losung bis zur Veroffentlichung dieser Arbeit nicht komplett behoben werden
konnten:

1. Standardmaiflig erlaubt Android auf dem Entwicklungsgerit ,,Samsung Galaxy Note
10.1” jeder Benutzeranwendung maximal 64 MB vom Hauptspeicher zu nutzen. Das
fuhrt bereits bei maflig groflen Szenarien dazu, dass diese Grenze erreicht wird und das
Programm mit Speicherfehlern beendet werden muss.

2. Die Grofle des Programm-Heaps wird so klein wie moglich gehalten. Jede Speicherallo-
kationen 16st einen Aufruf des nebenldufigen , Garbage-Collectors” aus, der versucht
Platz zu schaffen. Bis er dies gemacht hat, bzw. bis die Heap-Grofie erweitert wurde,
vergehen unnotige Sekundenbruchteile, da der Haupt-Thread derweil warten muss.
Je mehr Speicher bereits allokiert ist, desto langer werden die Wartezeiten. Dieses
Problem fallt vor allem bei der Initialisierung auf, in der die grofSen Datenstrukturen
mit Objekt-Instanzen gefiillt werden.

Eine erste Losung fiir Problem 1 konnte ich schnell finden: Ein zusatzlicher Eintrag in der
Manifest-Datei der Applikation (siehe Listing 5.1) sorgt fiir eine Anhebung der Grenze von 64
MB auf 256 MB. Wie die Ergebnisse zeigen, ist dies allerdings nicht ausreichend, um wirklich
grofse Gebiete im Speicher zu halten. Das zweite Problem konnte ich bis zum Zeitpunkt dieser
Veroffentlichung nicht 16sen oder einddmmen. Vor allem jenes Problem spiegelt sich in den
Ergebnissen wider.

Listing 5.1: Erweiterung des maximal nutzbaren Hauptspeicheranteils

<manifest ...>
<l-- (C...) -->
<application

android:largeHeap="true"
<l-- (...) --—>
<l-- (...) -—>
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5.1 Ergebnisse

Neben der Messung des Speicherverbrauchs wurden verschiedene Zeiten erfasst: Die In-
itialisierungszeit, die durchschnittliche Zeit pro Durchlauf, sowie die durchschnittliche Zeit
pro Runde, bis zu dem Zeitpunkt, zu dem der erste Agent gefliichtet ist. Ich habe verschie-
den grofie Gebiete simuliert: Angefangen bei einem sehr kleinen Gebiet von 40 X 20 Zellen
(16 x 8 Meter?), bis hin zu einem Gebiet mit 160 x 80 Zellen (64 x 32 Meter?). Jedes Areal ist
vertikal in der Mitte in zwei gleich grofie Stockwerke aufgeteilt, die tiber eine Treppe am
unteren Rand mittels Teleportzellen verbunden sind. Fiir jedes Gebiet gab es ein Szenario
mit 30, 60 und 90 Agenten, welche alle relativ homogen tiiber das Gebiet verteilt waren.
Bei der Erhohung der Agentenanzahl wurden die zusétzlichen Agenten jeweils neben den
bereits vorhandenen platziert. Jedes Szenario wurde 5 Mal simuliert, mit 50 Durchldufen
pro Simulation, so dass ein guter Mittelwert fiir die Durchschnittszeiten entstand. Die Agen-
tenkonstanten und auch die maximale Geschwindigkeit der Agenten waren fiir alle Tests
dieselben: vy = 4,k = 5.0,k = 1.5, x5 = 0.5,x; = xy = x, = 0. Alle Ergebnisse sind in
Tabelle 5.1 zu finden, Abbildung 5.1 zeigt die Simulationsgebiete.

Ein weiterer Test soll verdeutlichen, wo die Grenze des simulierbaren auf dem Entwicklungs-
gerdt liegt. Ein erster Versuch mit einem Szenario der Grofie 200 x 200Zellen fiihrte zu einer
Uberschreitung der 256 MB Speichergrenze. Die Ergebnisse des Tests mit einem Szenario der
Grofle 177 x 185 Zellen (= 71 X 74 Meter?) sind in Tabelle 5.2 dargestellt. Auf Grund der sehr
langen Durchlaufzeiten, beschrankte ich die Anzahl der Durchldufe auf 5 pro Szenario.

Ein letzter Test wurde mit einer Sensitivititsanalyse durchgefiihrt. Dazu habe ich das mittlere
Szenario mit 30 Agenten gewdhlt. Die Regel zur Analyse lautete: , Verteile die Maximal-
geschwindigkeit aller Agenten gleich zwischen 1 und 7”. Die Simulation bestand aus 50
Durchldufen, vor deren Start jeweils ein neuer, gleichverteilter Wert fiir v,y gewahlt und
allen Agenten zugewiesen wurde. Der resultierende Evakuierungsgraph ist in Abbildung 5.2
dargestellt.

5.2 Analyse

Einfluss der GebietsgroBe und Agentenanzahl

In den Ergebnissen des ersten Tests (5.1) ist deutlich zu erkennen, dass die Anzahl der Agenten
nur sehr geringen Einfluss auf die Initialisierungszeit und den Speicherplatzverbrauch hat.
Das liegt vor allem daran, dass zur Erstellung eines Agentenobjekts keine grofien Operationen,
wie z. B. Distanzberechnungen oder Zellverkniipfungen, notig sind. Da die Agenten kleinere
Datenmengen in sich speichern miissen, tragen sie auch wenig zum Speicherverbrauch bei
bzw. erhohen diesen bei steigender Anzahl nur geringfiigig.

Die Erhohung der Agentenanzahl spiegelt sich allerdings in einem Anstieg der Durchlaufzeiten
wider. Hier kann man eine lineare Zunahme von ihnen erkennen. Man muss allerdings
bedenken, dass hier bereits das Problem des Garbage-Collectors mit den Wartezeiten zum
Tragen kommt. Besonders deutlich ist dies beim Anstieg der Initialisierungszeiten zu sehen:
Die meiste Zeit wahrend der Initialisierung wird fiir die Verkniipfung der Zellen und
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kleines Szenario mittleres Szenario grofies Szeanrio
Gebietsgrofie 20x40 Zellen 40x80 Zellen 80x160 Zellen
Anzahl Agenten 30 60 90 30 60 90 30 60 90

Zeit zur Initialisie- | 0,40 s 0,42 s 0,42s 143s 141s 147 s 10,74s 10,72s 10,74s

rung

@ Zeit pro Durchlauf | 1,40s 321s 6,52's 3,12s 6,43 s 10,13s | 10,70s 20,03s 30,81s

@ Zeit pro Runde, bis | 66,5 119,5 159,9 91,2 1670 2239 1658 2973  393,6

1. Agent entkommen
ist

Speicherplatzver- | 9,58 9,61 9,68 10,44 10,51 10,63 24,47 24,67 24,69
MB MB MB MB MB MB MB MB MB

brauch

Tabelle 5.1: Ergebnisse der Simulations-Tests. Einfluss von Gebietsgrofie und Agentenanzahl
auf Zeiten und Speicherverbrauch.

sehr grofies Szeanrio

Gebietsgrofie 177x185 Zellen
Anzahl Agenten 1315 2747
Zeit zur Initialisierung 184,3 s 189,8 s
@ Zeit pro Durchlauf 1350 s 2490 s

@ Zeit pro Runde, bis 1. 13,44 s 16,49 s

Agent entkommen ist

Speicherplatzverbrauch 111,6 MB 114,6 MB

Tabelle 5.2: Ergebnisse der Simulations-Tests. Grenze fiir Simulationen auf aktuellem Ent-
wicklungsgerit.
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Abbildung 5.1: Verwendete Szenarien (von links nach recht und oben nach unten): kleines,
mittleres, grofies und sehr grofses Szenario
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Abbildung 5.2: Evakuierungsgraph mit Sensitivitdtsanalyse. Grauer Bereich: Die ersten 15
entkommenen Agenten sind diejenigen, die im 1. Stock starteten.
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Knotenzellen, sowie fiir die Distanzberechnung zwischen den Ausgangszellen und den
Knotenzellen bendtigt. Alle Gebiete besitzen die gleiche Anordnung der Wandzellen. Die
Anzahl der Knotenzellen unterscheidet sich fiir jedes Szenario somit nur geringfiigig. Die
Anzahl der Nicht-Wandzellen verfiinffacht sich vom kleinen zum mittleren Gebiet und
vervierfacht sich vom mittleren zum grofSen Gebiet. Wahrend sich die Initialisierungszeit
vom kleinen zum mittleren Gebiet ebenfalls fast verfiinffacht (etwas weniger), liegt sie beim
grofien Gebiet beim 7, 5-fachen der mittleren Zeit. Dieser ungewohnliche Anstieg der Zeit
ist durch das oben beschriebene Problem zu erkldren. Der Test mit dem sehr grofien Gebiet
verdeutlicht diese Annahme nochmals: Auch wenn das Gebiet anders aufgebaut ist und
damit die Anzahl der Knotenzellen stirker variiert, nimmt die Zeit zur Initialisierung um der
17-fache zu, wihrend die Anzahl der Nicht-Wandzellen nur verdoppelt wird.

Um zu gewdhrleisten, dass die Berechnung der durchschnittlichen Rundenzeiten fiir alle
Szenarien fair ist, habe ich den Durchschnitt nur von Rundenzeiten genommen, bis der erste
Agent entkommen ist. Die Zunahme der Zeiten bei einer steigenden Anzahl Agenten ist
nachvollziehbar: Mit der Anzahl der Agenten steigen auch die Zielzellensuchen pro Runde.
Die Zielzellensuche hat den grofiten Einfluss auf die Rundenzeit. Von 30 auf 60 Agenten liegt
die Zeitzunahme bei allen Gebieten zwischen dem 1, 79- und 1, 83-fachen, wihrend sie von 60
auf 90 Agenten zwischen dem 1,32- und 1, 34-fachen liegt. Hier hat die Grofle des Gebiets
keinen Einfluss. Allerdings nehmen die Zeiten bei gleicher Agentenzahl und grofierem Gebiet
zu: Die Rundenzeiten aller Agentenzahlen des mittleren Gebiets liegen zwischen dem 1, 37-
und 1, 4-fachen tiber denen des kleinen Gebiets. Beim grofsen Gebiet liegt die Zunahme der
Zeit im Vergleich zum mittleren Gebiet zwischen dem 1, 76- und 1, 82-fachen. Obwohl hier
ebenfalls eine Linearitidt zu erkennen ist, erschlief3t sich der Grund fiir die Zunahme nicht
direkt. Ein Vergleich der Anzahl an Zielzellen, zwischen denen sich alle Agenten wéhrend
den ersten Runden entscheiden miissen, gibt hier einen Hinweis: Die Zahl liegt beim mittleren
Gebiet circa 1,5-mal tiber der des kleinen Gebiets und circa 1,7-mal unter der des grofien
Gebiets. Diese Verhéltnisse dhneln denen der Rundenzeiten. Die unterschiedliche Anzahl
potenzieller Zielzellen bei gleicher Anzahl Agenten rithrt vom Aufbau der Gebiete her: Beim
jeweils kleineren Gebiet liegen die Wande dichter an den Agenten, so dass sich die Zielzellen
auf einer kleineren Fldche verteilen. Da die Geschwindigkeit in jedem Test gleich grofd war,
dnderte sich die Ausdehnung der Zielzellensuche in das Gebiet nicht. Ein weiteres Argument
fur die Zeitzunahme kann das Problem des Speicherallokierens sein, das sich bei grofserem
Gesamtspeicherverbrauch auch starker auswirkt. Der Speicherplatzverbrauch ist beim grofsen
Gebiet deutlich grofier als bei den anderen beiden Gebieten.

Test der Systemgrenzen

Die Ergebnisse des Tests mit dem sehr grofien Szenario zeigen die momentanen Grenzen.
Die Initialisierung der Simulation liegt bei mehr als 3 Minuten, die Zeit fiir einen Durchlauf
zwischen 20 und 40 Minuten, je nachdem, wie viele Agenten simuliert werden. Die gemittelte
Zeit pro Runde, bis der erste Agent das Gebiet verlassen hat, liegt bei 13,4 bzw. 16,5
Sekunden. Hier wirkt sich das Problem mit den Wartezeiten fiir die Speicherbereinigung
gleich doppelt aus: Zum einen in der Initialisierungsphase und zum anderen in jeder Runde
fiir die Zielzellensuche der tausenden Agenten. Die Speichergrenze liefSe noch mehr Agenten
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zu, allerdings wiirde damit die Zeit eines einzigen Durchlaufs schnell {iber 60 Minuten
klettern.

Test der Sensitivitatsanalyse

Die Abbildung 5.2 zeigt das Ergebnis der durchgefiihrten Sensitivitdtsanalyse in Form des
Evakuierungsgraphen. Auf den ersten Blick fillt sofort der grofie Abstand zwischen den
Maximal- und Minimalwerten und der Einbruch der Maximalwerte bei Runde 90 (circa) auf. In
jedem Stockwerk starteten 15 Agenten. Alle Ausgangszellen lagen im 1. Stockwerk. Aus dem
Graph kann man schliefien, dass trotz der Variierung der maximalen Agentengeschwindigkeit
(Umax € [1,7]), es alle Agenten des unteren Stockwerks als erstes schafften zu entkommen, bevor
ihre Kollegen aus dem zweiten Stockwerk eine Ausgangszelle erreichten. Die Auswertung
der Textdatei hilft bei der weiteren Bewertung des Evakuierungsgraphen. Fiir jeden der
50 Durchldufe wurde der gewédhlte Parameterwert fiir v, sowie die Anzahl der Runden
des gesamten Durchlaufs dokumentiert. Man kann beide Werte miteinander verkntipfen.
Fiir den Fall, dass vy,x > 2 war, schafften es sogar alle 30 Agenten bis maximal zur 93.
Runde das Gebiet zu verlassen. In den Durchldufen, in denen < v,,, = 1 war, schafften es
bis zu diesem Zeitpunkt maximal die Hélfte der Agenten, denn im Graph ist zu erkennen,
dass die Maximalwerte kurz nach Runde 93 bei genau 15 entkommenen Agenten liegen.
Diese Sensitivitdtsanalyse zeigt damit deutlich, welchen Einfluss die Wahl des Zeitschritts
einer Simulation auf deren Ergebnisse hat. Wahlt man die simulierte Zeit pro Runde sehr
gering (Millisekunden), muss sich auch der Wert von v, reduzieren, wenn die reale
Geschwindigkeit in der Umrechnung gleich bleiben soll. Wahlt man den Zeitschritt zu klein,
kann dies zu vollkommen anderen Ergebnissen fithren, wie man in diesem Beispiel gut
sehen kann. Fiir einen Zeitschritt, der zu Werten von v, > 2 fiihrt, sind die Ergebnisse
dichter beisammen. Der Grund, warum bei v,,,, = 1 die Ergebnisse so weit von den anderen
entfernt liegen, kann verschiedene Griinde haben: Geringere Geschwindigkeiten fithren
generell auch zu einer kleineren Menge potenzieller Zielzellen, aus denen der Agent wahlen
kann. Bei ungtinstiger Wahl der Agentenkonstanten kénnen die Wahrscheinlichkeiten der
einzelnen Zellen dichter beisammen liegen. Somit kann es passieren, dass die Agenten sehr
oft ihre Richtung @&ndern oder Situationen entstehen, in denen sie im Kreis oder sogar vom
Ausgang weglaufen. Vor allem, wenn - wie im Beispiel - der Einfluss der Tragheit keine
Rolle spielt und Richtungsdnderungen damit alle gleich wahrscheinlich sind, kann so etwas
passieren. Auch wenn der Einfluss des statischen Floor-Fields im Vergleich zu den anderen
Agentenkonstanten zu gering ist, kann ein unkontrolliertes Verhalten der Agenten beobachtet
werden. Die Sensitivitdtsanalyse kann deshalb auch dabei helfen, die Wahl dieser Parameter
zu verbessern. Andert man in diesem Beispiel den Wert von ks von 1.5 auf 5.0, ndhern sich
die Ergebnisse fiir v,,,c = 1 denen der grofieren Geschwindigkeitswerte bereits sichtbar an.
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6 Zusammenfassung und Ausblick

F.A.S.T. ist ein méchtiges Modell fiir Fuigangersimulationen. Gebaude-, Schiffs-, oder Flugzeu-
gevakuierungen lassen sich problemlos entwerfen und realitdtsnah simulieren. Optimierungen
von bestehenden Fluchtwegen oder Planungen und Konzepte neuer Gebdude sind ebenso
moglich. Mit meiner Arbeit will ich nicht nur eine Implementierung dieses Modells beschrei-
ben, sondern vor allem dessen Einsatz auf mobilen Computern vorstellen. Die Idee dahinter
war zum einen, die Simulation und Analyse aus den Planungsbiiros zum Ort des Geschehens
zu transportieren, so dass Experten und Verantwortliche sich vor Ort die Simulationen
ansehen und daraus Schliisse ziehen konnen. Eine andere Richtung kann der Einsatz dieser
mobilen Software in Universitdten und Schulen sein. Junge Menschen konnen fiir die Thematik
und die verwendete Technik und Mathematik motiviert werden. Die grafische Ausgabe der
Simulationen trégt hier viel zu Demonstrationszwecken bei.

Um mein Framework stichhaltig erkldren zu konnen, diente das zweite Kapitel der Einfithrung
in das F.A.S.T.-Modell. Neben den Grundprinzipien, wie dem Aufbau einer Simulationsrunde
und den Floor-Fields, ging es auch um Details: Die Formeln zur Wahl eines Ausgangs und
einer Zielzelle, die Bewegungsmoglichkeiten der Agenten und die Varianten zur Erstellung
der Agentenreihenfolge wurden von mir thematisiert. Die verschiedenen Arten der Ergebnis-
darstellung habe ich im letzten Abschnitt des Kapitels angesprochen.

Obwohl das Modell bereits sehr umfanglich ist, wollte ich fiir meine Implementierung
zusatzliche Simulationskomponenten einbauen. Zu den im Modell bereits vorgestellten Er-
weiterungen zédhlen die zusétzlichen Stockwerke und die Treppenzellen. Letztere habe ich
mit einem dynamischen Parameter versehen, so dass unterschiedliche Arten von Treppen
entstehen konnen, die sich verschieden stark auf die Geschwindigkeit der Agenten auswirken
konnen. Nach demselben Prinzip erweiterte ich die Wandzellen um einen Parameter, der die
Zellen, die vor einer Wandzelle liegen, mehr oder weniger attraktiv fiir Agenten machen.
Damit sind verschiedene Typen von Wénden realisierbar. Das Erweitern des Gebiets um
zusétzliche Stockwerksebenen, brachte einen weiteren Zellentyp hervor: Teleportzellen. Sie
sind notig, um Agenten zwischen den Ebenen hin- und her transportieren zu kénnen, denn
auf Grund der Zweidimensionalitdt der Gebiete, liegen die Stockwerke nicht tiber- sondern
nebeneinander. Damit mussten aber auch fast alle Distanzberechnungen und die Zielzellen-
suche der Agenten modifiziert werden, um diesen verdnderten Bewegungen Rechnung zu
tragen. Eine weitere wichtige Erweiterung ist die Moglichkeit eine Sensitivitdtsanalyse mit
dem Programm durchzufiihren. So ist es moglich zu Simulationsbeginn Regeln zu erstellen,
die vor jedem Durchlauf ausgefiihrt werden. Sie weisen den angegebenen Parametern neue
Werte zu, die durch eine Vielzahl verschiedener Wahrscheinlichkeitsverteilungen gewéahlt
werden konnen.

Der Fokus des vierten Kapitels lag auf der Beschreibung der Umsetzung des Modells und der
Erweiterungen. Neben dem grundlegenden Aufbau des Programms und seiner einzelnen
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6 Zusammenfassung und Ausblick

Komponenten, galt es auch die drei Hauptteile der Simulation detailliert zu beschreiben:
Initialisierung, Durchfithrung und Ergebnisspeicherung. Bei der Initialisierung lag der Fokus
vor allem auf den Konfigurationsdateien, welche die Szenarien definieren. Die Erklarung
ihres Aufbaus und ihrer internen Verarbeitung wurden von zusétzlichen Codeausschnitten
und Beispielen unterstiitzt. Aber auch die Algorithmen fiir die vielen Distanzberechnungen
wurden von mir ausfiihrlich thematisiert. Der Abschnitt tiber die Simulationsdurchfiihrung
widmete sich der Umsetzung der Ausgangs- und Zielzellensuche, dem Finden einer Agen-
tenreihenfolge fiir die Bewegungen und den Aktualisierungsvorgéangen der Statistiken am
Ende der Runde. Die gesammelten Resultate waren der Mittelpunkt des letzten Abschnitts.
Dort wurde die interne Speicherung und die Moglichkeiten ihrer Darstellung in Form von
Graphen, Bildern und Text vorgestellt.

Abschliefsend zeigte das fiinfte Kapitel Ergebnisse von verschiedenen Simulationstests. Die
sollten zum einen aufzeigen, welchen Einfluss die Grofie der Gebiete und die Anzahl der
eingesetzten Agenten auf die Durchfiihrungszeiten und den verbrauchten Speicherplatz haben.
Ein zusatzlicher Test offenbarte die Grenze des derzeit simulierbaren mit dem vorliegenden
System. Der abschlieflenden Test beinhaltete eine Sensitivitdtsanalyse. Mit ihr konnte man die
Auswirkung der Anderung der Maximalgeschwindigkeit von Agenten auf die Ergebnisse
einer Simulation sehr gut sehen.

Ausblick

Dieses Framework soll nicht als abschlieflende Losung fiir die Umsetzung des F.A.S.T.-Modells
auf mobilen Rechnern gesehen werden. Ganz im Gegenteil: Der Aufbau der Konfigurationsda-
teien und ihrer Verarbeitung, die Art, wie die Wahrscheinlichkeiten fiir eine Zielzelle berechnet
werden und wie die Agenten sich bewegen ist absichtlich offen von mir implementiert worden.
Meine Arbeit soll Ausgangspunkt fiir zusdtzliche Erweiterungen und Anpassungen des
Modells sein. Vor allem was die grafische Darstellung von Ergebnissen betrifft, ist in meinem
Programm Ausbaumdoglichkeit gegeben. In [Kre06, S. 86 f.] sind noch weitere Ausgaben
beschrieben, wie z.B. Frustration und Blockierung der Agenten oder die Verteilung der
Evakuierungszeiten [Kre06, S. 88]. Auch die Art, wie sich Agenten zur Zeit bewegen, kann
modifiziert werden. Das zellenweise Bewegen zur Zielzelle, ist bereits detailliert beschrieben
worden ([Kre06, S. 28 ff.]). Eine grofie Erweiterung wire der Einbau eines Grafikeditors, mit
dessen Hilfe im Programm selbst die Simulationsgebiete bearbeitet werden konnen. So konnen
schnelle Ideen direkt umgesetzt und getestet werden. Auch der Bau komplett neuer Szenarien
kann damit vereinfacht werden, da die Vergabe der Farben fiir der entsprechenden Zelltypen
besser gesteuert und verwaltet werden kann. Programmiertechnisch muss fiir die in 5.1
angesprochenen Probleme eine Losung gefunden werden. Vor allem das zweite Problem ist
von grofler Bedeutung: Die vielen einzelnen Speicherallokationen beim Befiillen der grofsen
Datenstrukturen, wie z. B. dem Zellenarray oder den einzelnen Arrays fiir die Ausgangs-
und Knotenzellendistanzen jeder Zelle sind Ausgangspunkte dieses Problem. Die Erzeugung
der vielen Integer- oder Double-Objekte fithren zu den Einsdtzen des automatischen Garbage-
Collectors, der fiir die minimalen, aber in der Summe trotzdem langen, Wartezeiten des
Hauptprogramms sorgt. Eine Losung ist sicherlich, die Arrays auf ein Mal zu initialisieren und
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erst dann die einzelnen Zell-Objekte zu erstellen. Dies ist aber mit den derzeit verwendeten
Datenstrukturen nicht moglich. Hier muss entweder auf andere Datenstrukturen umgestellt
werden, oder nativer Code (z. B. in C++) fiir die Speicherreservierungen eingesetzt werden.

Alles in allem ist dieses Framework fiir die Simulation kleiner bis mittlerer Szenarien sehr
leistungsstark. Auf Grund der Erweiterungen sind die Ergebnisse realitdtsndher geworden
und mit der Sensitivitdtsanalyse lassen sich die Resultate genauer untersuchen.
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