
Visualisierungsinstitut der Universität Stuttgart

Universität Stuttgart
Allmandring 19

D–70569 Stuttgart

Bachelorarbeit Nr. 36

Analyse poröser Medien auf
Basis von Kristalliten

Alexander Straub

Studiengang: Informatik

Prüfer: Prof. Dr. Thomas Ertl

Betreuer: Dr. Guido Reina

Dipl.-Inf. Daniel Kauker

Beginn am: 2012-12-03

Beendet am: 2013-06-04

CR-Nummer: E.1, F.2.2, G.2.2, I.3.5

Kurzfassung

Eine Möglichkeit zur Simulation poröser Medien sind Modelle. Diese haben den Vorteil,
dass sie computergestützt erstellt werden können und somit auch größere, aussagekräftigere
Datensätze hervorbringen. In dieser Bachelor-Arbeit wird ein neuer Ansatz zur Bestimmung
des Volumens und der Porösität vorgestellt, basierend auf einem Modell für Sandsteine. Dies
war mit bisherigen Algorithmen nur unzureichend möglich, da durch Annäherung große
Fehler entstehen.

Der neue hier vorgestellte Ansatz wird direkt auf der Geometrie des Modells ausgeführt,
somit werden fast keine Rechenfehler begangen. Dieser Ansatz lässt sich zudem durch
Aufteilen in Unterprobleme und durch die Benutzung von Heuristiken effizient auf große
Datensätze anwenden. Die Messergebnisse und die Folgerungen für Effizienz und Effektivität
des Algorithmus werden anschließend aufgeführt und erläutert.

Abstract

A possibility to simulate porous media are models. These models have the advantage of
being computer-generated and thus, huge and more significant datasets can be produced. In
this bachelor thesis, a new approach to calculate the volume and the porosity of such media
is introduced, based on a model for sandstone. In this case, previous algorithmic approaches
had the problem of producing too large errors using methods for approximation.

The newly introduced approach is directly executed on the geometry of the model. Thus,
there is nearly no calculation error. Furthermore, this approach uses a divide-and-conquer
strategy and additionaly uses heuristics to efficiently process large datasets. Measurement
results and conclusions regarding efficiency and effectiveness of the algorithm are then given
and discussed.

3

Inhaltsverzeichnis

1 Einleitung 9

2 Related Works 11
2.1 Poröse Medien . 11

3 Problemstellung 13
3.1 Modell . 13

3.2 Idee für neuen Ansatz . 13

4 Datenstrukturen 15
4.1 Repräsentation der Geometrie . 15

4.2 Graphen . 15

4.2.1 Allgemeine Graphen . 16

4.2.2 Bäume . 16

5 Erstellen räumlich disjunkter Polyeder 21
5.1 Problembeschreibung . 21

5.2 Algorithmen auf BSP-Bäumen . 22

5.2.1 Zusammenführung (Merge) . 22

5.2.2 Aufteilen (Split) . 25

5.3 Veranschaulichung in 3D . 26

6 Anwendung auf große Datensätze 29
6.1 Aufteilung in Gruppen . 29

6.1.1 Schnitt am Gitternetz . 29

6.1.2 Erstellen eines Rasters fester Größe . 30

6.1.3 Dynamische Raumaufteilung durch Rekursion 30

6.2 Bearbeitung in lokalen Gruppen . 32

6.2.1 Bearbeitung mit Überschneidungs-Graphen 32

6.3 Heuristiken zur Optimierung . 33

6.3.1 Überflüssige Kanten eliminieren . 33

6.3.2 Knoten sortieren . 34

6.4 Zukünftige Arbeiten . 36

6.4.1 Optimierung: Auswahl des besten Ergebnis 37

7 Messwerte und Ergebnisse 39
7.1 Messergebnisse des Testdatensatzes . 39

7.2 Qualität der Volumenberechnung . 42

5

7.3 Auswirkungen der Heuristiken . 46

8 Zusammenfassung und Ausblick 51

Literaturverzeichnis 53

6

Abbildungsverzeichnis

2.1 Modell des Fontainebleau Sandsteins [LBFH][HZL] 12

3.1 Modell mit 10.000 Kristallen aus 100 Kristalldefinitionen 14

4.1 Beispiele für je einen einfachen Graphen und einen Baum 16

4.2 Raumaufteilung mit Hilfe eines Quadtree . 17

4.3 Einfaches Beispiel für einen BSP-Baum . 18

4.4 Suche auf einem BSP-Baum . 19

5.1 Ziel disjunkte Polyeder zu erhalten und wenn möglich konvexe 21

5.2 Einfacher Fall mit zwei Schnittpunkten und komplexer Fall mit vielen 22

5.3 Durchlauf des Merge-Algorithmus für ein Beispiel 24

5.4 Durchlauf des Split-Algorithmus für ein Beispiel 27

5.5 Einfaches Beispiel in 3D . 28

6.1 Schnitt des Modells am Gitternetz . 30

6.2 Beispiel für Optimierung durch Kanten-Elimination 34

6.3 Problem der Kantenvererbung . 35

6.4 Optimierung durch Sortierung nach Größe des Polyeders 36

7.1 Anzahl der Polyeder nach der Raumaufteilung durch den Octree 40

7.2 Dauer der Algorithmus-Ausführung . 40

7.3 Anzahl Polyeder nach der Anwendung des Algorithmus 41

7.4 Dauer der Tetraedisierung und der Volumenberechnung 42

7.5 Dauer der Gesamtausführung . 43

7.6 Berechnetes Volumen . 43

7.7 Berechnetes und erwartetes Volumen . 44

7.8 Berechnete und erwartete Porösität . 44

7.9 Berechnete und erwartete Porösität ohne Randbereich (letzter Wert mit Rand) 46

7.10 Auswirkung der Heuristiken auf die Algorithmus-Ausführung (Anzahl Poly-
eder) . 48

7.11 Auswirkung der Heuristiken auf die Algorithmus-Ausführung (Zeit) 48

7.12 Auswirkung der Heuristiken auf die Dauer der Tetraedisierung 49

7.13 Auswirkung der Heuristiken auf die Gesamtdauer 49

7.14 Auswirkung der Heuristiken auf das berechnete Volumen 50

7

Tabellenverzeichnis

7.1 Dauer der Octree-Erstellung . 41

7.2 Berechnete und erwartete Werte . 45

7.3 Berechnetes und erwartetes Volumen ohne Randbereich 47

Verzeichnis der Algorithmen

5.1 Merge Algorithmus . 23

5.2 Split Algorithmus . 25

6.1 Bearbeitung der Gruppen mit Graph . 33

6.2 Bearbeitung der Gruppen mit Graph und Optimierungsschritten 37

8

1 Einleitung

Die Erforschung poröser Medien ist ein aktuelles Thema in der Physik. Die Erkenntnisse
die hier gewonnen werden können, beeinflussen wiederum andere Naturwissenschaften,
wie die Biologie, Materialwissenschaften und Geowissenschaften. Durch diese Relevanz
zur aktuellen Forschung ist es umso wichtiger Erkenntnisse und Informationen aus bereits
vorhandenen Daten zu ziehen. Zu diesen Daten gehört auch ein computergestützt erstelltes
Modell zur möglichst genauen Repräsentation poröser Medien.

Dieses Modell ist eine geometrische Darstellung poröser Medien, zum Beispiel von Sandstei-
nen. Es besteht aus vielen sich überschneidenden Polyedern. Das Verfahren zur Bestimmung
des Stein-Volumens, welches Thema dieser Bachelor-Arbeit ist, ist somit ein geometrisches
Problem. Dieses Problem soll hier mit Hilfe von BSP-Bäumen algorithmisch gelöst werden.
Diese Baumstrukturen werden bereits vielfältig in den Bereichen der Computergrafik ver-
wendet und sind dadurch schon großteils erforscht. Ein Algorithmus zum Erstellen räumlich
getrennter Polyeder, wie er für diesen Zweck benötigt wird, gab es bisher jedoch noch nicht.

Somit verbindet dieses Thema die Interessen und Forschungsthemen von Physik und
Informatik und ist für beide Bereiche relevant.

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Related Works
Gibt einen Überblick über relevante wissenschaftliche Arbeiten zum Thema der Porösen
Medien

Problemstellung
Beschreibt das benutzte Sandstein-Modell und die Idee für einen Ansatz zum Lösen
des Problems

Datenstrukturen
Beschreibt die Datenstrukturen, die in dieser Arbeit zum Einsatz kommen

Erstellen räumlich disjunkter Polyeder
Führt die verwendeten Algorithmen ein, um aus je zwei konvexen Polyedern räumlich
disjunkte konvexe Polyeder zu erstellen

9

1 Einleitung

Anwendung auf große Datensätze
Stellt Strategien und Heuristiken zur Lösung auf großen Datensätzen vor

Messwerte und Ergebnisse
Präsentiert Messergebnisse zur Effizienz und Effektivität der Algorithmen und der
verwendeten Heuristiken

Zusammenfassung und Ausblick
Fasst die Ergebnisse der Arbeit zusammen und gibt entsprechend einen Ausblick

10

2 Related Works

In diesem Kapitel werden Informationen gegeben, um das Thema dieser Bachelorarbeit in ein
konkretes Andwendungsgebiet einzuordnen, jedoch nicht, um es auf dieses zu beschränken.
Dabei gelten die poröse Medien und deren algorithmische Erforschung als Motivation und
Anlass für diese Arbeit.

2.1 Poröse Medien

Poröse Medien spielen eine große Rolle in der Physik und werden gerade im Gebiet der
computergestützten Berechnungen genutzt, um mithilfe von Modellen Eigenschaften zu
erforschen. Zu diesen Eigenschaften zählen unter anderem auch die Durchlässigkeit von
Flüssigkeiten und Gasen und deren Einschlussvolumen. Um dabei gute und aussage-
kräftige Ergebnisse zu erhalten bedarf es ausreichend großer Datensätze. Dies ist jedoch
problematisch, da für das Erstellen dieser Datensätze mit Röntgenaufnahmen und Compu-
tertomographie zum heutigen Stand der Technik Jahre benötigen würden.

An dieser Stelle kommt ein Modell ins Spiel, welches durch seine Einfachheit die Er-
forschung mithilfe von Algorithmen zulässt. Dieses Modell wurde erstmals von Latief et al.
[LBFH] für Fontainebleau Sandsteine eingeführt. Auf dieses Modell und Teile des Datensat-
zes, von der Webseite des Institute for Computational Physics der Universität Stuttgart [HZL],
wird sich diese Bachelor-Arbeit beziehen. In Abbildung 2.1 wird dieses Modell visualisiert
dargestellt.

11

2 Related Works

Abbildung 2.1: Modell des Fontainebleau Sandsteins [LBFH][HZL]

12

3 Problemstellung

Die Aufgabe ist es, das Volumen von porösen Medien zu berechnen. Für diese Medien
existiert bereits ein Modell, jedoch noch kein effektiver Algorithmus, um das Volumen zu
bestimmen. In den folgenden Kapiteln wird darum nach der Vorstellung dieses Modells die
Idee für einen neuen Algorithmus vorgestellt.

3.1 Modell

Das Modell für poröse Medien, eingeführt von Latief et al. [LBFH], besteht aus einer Vielzahl
an Kristallen. Diese Kristalle sind konvexe Polyeder und können auf mehrere Kristalldefini-
tionen zurückgeführt werden. Somit gibt es im Modell nur k Kristalltypen, welche durch
Instanziierung gedreht, skaliert und verschoben werden. Dadurch erhält man n Kristalle
mit k << n. In dieser Bachelorarbeit werden dabei alle Versuche mit Beispielmodellen
gerechnet. In diesen gibt es k = 100 Kristalldefinitionen und im ersten Datensatz n = 10.000
Kristallinstanzen, im zweiten n = 25.000 Kristallinstanzen.

Das Problem des Volumenbestimmens ist nun jedoch, dass die Kristalle - im Folgenden als
konvexe Polyeder bezeichnet - sich gegenseitig überschneiden können. Daraus folgt, dass
das Gesamtvolumen nicht durch Aufsummieren der Volumen der Polyeder bestimmt werden
kann:

(3.1) Vges 6=
n

∑
i=1

V(Ki)

Dabei sind Ki die im Raum verteilten Kristalle, mit i ∈ {1, ..., n}.

In Abbildung 3.1 wird das Modell visualisiert dargestellt. Dabei kann man gut erkennen,
dass sich die Polyeder meist mehrfach überschneiden.

3.2 Idee für neuen Ansatz

Gesucht ist ein Algorithmus, der die ursprünglichen Kristalle so aufteilt, dass diese räumlich
disjunkt sind:

(3.2) f : {K1, ..., Kn} → {P1, ..., Pm}

13

3 Problemstellung

Abbildung 3.1: Modell mit 10.000 Kristallen aus 100 Kristalldefinitionen

wobei folgendes gilt

(3.3) {K1, ..., Kn} ∩ {P1, ..., Pm} = {K1, ..., Kn} Pi ∩ Pj = ∅, ∀i, j ∈ {1, ..., m}, i 6= j

Dabei bezieht sich der Schnitt und die leere Menge auf die räumliche Überschneidung, nicht
auf Mengen.

Daraus folgt, dass

(3.4) Vges =
m

∑
i=1

V(Pi)

Anschließend kann dann das Volumen berechnet werden, indem die Polyeder tetraedisiert
werden. Die Berechnung des Volumen eines Tetraeders ist nun die folgende

(3.5) VTetraeder =
1
3

Gh

mit Grundfläche G und Höhe h.

14

4 Datenstrukturen

Für die Verwendung der Algorithmen, die in den Kapiteln 5 und 6 eingeführt werden, bedarf
es einiger Datenstrukturen. Diese werden hauptsächlich für die geometrische Repräsentation
benötigt und werden nun vorgestellt.

4.1 Repräsentation der Geometrie

Für die einfache Darstellung konvexer Polygone und Polyeder werden Geraden und Ebe-
nen benötigt. Diese müssen jedoch über ihre Normalen definiert werden, damit die in
Abschnitt 4.2.2 auf Seite 17 eingeführte Datenstruktur der BSP-Bäume verwendet werden
kann.

Daraus ergeben sich folgende Definitionen für

• 2D

(4.1) Gerade g = (~p,~n) mit ~p beliebiger Punkt auf g und ~n Normale

Das Polygon wird somit definiert durch eine Menge von Geraden, wobei Außen- und
Innenseite durch die Richtung der Normalen festgelegt ist.

• 3D

(4.2) Ebene E = (~p,~n) mit ~p beliebiger Punkt auf E und ~n Normale

Das Polyeder wird definiert durch eine Menge von Ebenen, wobei wie im 2D-Fall die
Außen- und Innenseite durch die Richtung der Normalen festgelegt wird.

4.2 Graphen

An mehreren Stellen in den Algorithmen wird auf Graphen zurückgegriffen. Dabei spielt
gerade der BSP-Baum eine zentrale Rolle. Dieser soll hier, zusammen mit allgemeinen
Graphen und Bäumen, eingeführt und erläutert werden.

15

4 Datenstrukturen

Abbildung 4.1: Beispiele für je einen einfachen Graphen und einen Baum

4.2.1 Allgemeine Graphen

Ein Graph G wird als Tupel seiner Knoten und Kanten definiert:

(4.3) G = (V, E), mit V Menge der Knoten und E Menge der Kanten

Dabei repräsentieren die Knoten meist Objekte. Die Kanten, die jeweils zwei Knoten mitein-
ander verbinden, repräsentieren die Relationen zwischen den Knoten. Diese Kanten können
gerichtet oder ungerichtet sein. In dieser Bachelorarbeit werden jedoch nur ungerichtete
Graphen benötigt, da die Relation zwischen zwei Knoten hier immer kommutativ ist.

4.2.2 Bäume

Ein Baum ist ein spezieller Graph, mit den Eigenschaften, dass dieser eine Wurzel hat und
keine Zyklen. Bei Bäumen werden die Knoten unterteilt in Wurzel, innere Knoten und
Blätter. Die Wurzel ist dabei das einzige Element, welches keinen Vaterknoten hat. Blätter
hingegen sind die Knoten ohne Kinder. Alle anderen Knoten werden als innere Knoten
bezeichnet, da diese sowohl einen Vaterknoten als auch Kinder haben. In Abbildung 4.1
wird zur Veranschaulichung je ein einfaches Beispiel für einen Graphen und einen Baum
dargestellt.

Quad- und Octree

Quad- und Octrees werden meist zur räumlichen Aufteilung verwendet, um den Raum in
gleich große Teile aufzuspalten, wie in Abbildung 4.2 gezeigt wird.

Hier kann man zwischen 2D und 3D unterscheiden:

16

4.2 Graphen

Abbildung 4.2: Raumaufteilung mit Hilfe eines Quadtree

• 2D
Ein Baum mit maximal 4 Kindern pro Knoten; teilt einen endlichen zwei-dimensionalen
Raum in vier Unterräume auf.

• 3D
Ein Baum mit maximal 8 Kindern pro Knoten; teilt einen endlichen drei-dimensionalen
Raum in acht Unterräume auf.

BSP-Bäume

Bei BSP-Bäumen handelt es sich um Binärbäume. Das heißt, dass ein Knoten maximal
zwei Kinder hat. Im Gegensatz zu Quad- und Octrees wird der BSP-Baum jedoch nicht
verwendet um den Raum in gleich große, am Raster ausgerichtete Unterräume aufzuteilen.
Er wird dazu verwendet, um durch einen Partitionierer den Raum in zwei Halbräume zu
unterteilen. Zudem wird hier nicht vorausgesetzt, dass der Raum begrenzt ist. Somit sind
zwei Halbräume erstmal nur in eine Richtung begrenzt. Erst durch viele Unterteilungen und
durch Unterscheidung zwischen innen und außen können geometrische Figuren entstehen.

Wiederum kann je nach Dimension unterschieden werden:

• 2D
Aufteilung der Fläche durch Geraden

• 3D
Aufteilung des Raums durch Ebenen

Um an dieser Stelle zwischen Innen- und Außenseite unterscheiden zu können, kommt die
Geraden- bzw. Ebenendefinition aus Abschnitt 4.1 ins Spiel. Außerdem wird jetzt auch die

17

4 Datenstrukturen

Abbildung 4.3: Einfaches Beispiel für einen BSP-Baum

Reihenfolge der Kanten entscheidend: Zusätzlich zu der Relation zwischen den Knoten muss
zwischen linker und rechter Kante unterschieden werden, um eine Aussage über Innen- und
Außenseite treffen zu können.

In dieser Bachelorarbeit wird dazu die Konvention eingeführt, dass die linke Kante die
Innenseite repräsentiert und die rechte Kante entsprechend die Außenseite. Weiterhin wird
immer angenommen, dass die Normalen der Geraden oder Ebenen nach außen zeigen.

In Abbildung 4.3 wird eine einfache Aufteilung des Raums im Zwei-Dimensionalen vorge-
nommen. Dabei gibt es keinen Unterschied zur Aufteilung im 3D-Raum, außer dass andere
Partitionierer verwendet werden.
Im ersten Schritt wird durch die Gerade A der Raum in zwei Teile partitioniert. Der Halb-
raum mit der Bezeichnung 1 ist dabei außen, der Halbraum mit der Bezeichnung 2 ist
innen. Dies folgt aus der oben eingeführten Konvention für die Normalenrichtung und der
Kantenreihenfolge. Die nächsten Schritte laufen analog ab, bis alle Partitionierer abgearbeitet
wurden.

Abbildung 4.4 zeigt hingegen eine Suche auf einem BSP-Baum. Dabei ist die Eingabe der
blaue Punkt. Nun soll ermittelt werden, in welcher Fläche dieser Punkt liegt. Dazu wird
bei der Wurzel beginnend abgestiegen und in jedem Schritt überprüft, ob der Punkt auf
der Innen- oder auf der Außenseite des Partitionierers liegt. Dieser Schritt wird solange
wiederholt bis ein Blatt erreicht wurde.
Ein Sonderfall wäre es jedoch, wenn der Punkt auf einem Partitionierer liegen würde. In
diesem Fall wäre es nicht offensichtlich klar, welcher Seite der Punkt zugeordnet werden
sollte.

18

4.2 Graphen

Abbildung 4.4: Suche auf einem BSP-Baum

Anwendungsgebiete BSP-Bäume werden häufig im Kontext von Computergrafik benutzt.
Der Baum enthält dabei Informationen über den Raum, wie es zum Beispiel für Kollisions-
abfragen bei Graphic Engines notwendig ist. Weiter können BSP-Bäume allerdings auch
für boolsche Operationen zwischen zwei Objekten verwendet werden, wie es Naylor et al.
[NAT] beschreiben.

19

5 Erstellen räumlich disjunkter Polyeder

Für die Berechnung des Gesamtvolumens müssen alle Polyeder räumlich disjunkt zueinander
sein. Außerdem soll die gute Eigenschaft der Ausgangspolyeder beibehalten werden, nämlich
dass diese konvex sind. Dass diese Eigenschaft wichtig ist für den Algorithmus wird mit
dessen Einführung in Abschnitt 5.2.2 auf Seite 25 verdeutlicht. Im folgenden werden nun die
notwendigen Algorithmen vorgestellt.

5.1 Problembeschreibung

Es soll ein Algorithmus gefunden werden, der zwei sich überschneidende konvexe Polyeder
in räumlich disjunkte aufteilt. Da Überschneidungen von mehr als zwei Polyedern möglich
sind, soll eine weitere Voraussetzung sein, dass die entstandenen Polyeder wiederum konvex
sind. Abbildung 5.1 zeigt ein mögliches Vorgehen.

Dass das Aufteilen der Polyeder nicht trivial ist, verdeutlicht Abbildung 5.2. Der zweite,
komplexere Fall zeigt hier deutlich, dass durch naives Aufteilen mehr Erzeugnisse entstehen
können als unbedingt notwendig.

Aus diesem Grund, werden in den nächsten Abschnitten Algorithmen vorgestellt, durch die
sich diese Aufgabe auf BSP-Bäumen lösen lässt.

Abbildung 5.1: Ziel disjunkte Polyeder zu erhalten und wenn möglich konvexe

21

5 Erstellen räumlich disjunkter Polyeder

Abbildung 5.2: Einfacher Fall mit zwei Schnittpunkten und komplexer Fall mit vielen

5.2 Algorithmen auf BSP-Bäumen

Für BSP-Bäume gibt es viele Algorithmen. Die wichtigsten sind dabei die zum Ermitteln
des Schnittbereichs zweier Objekte und des gemeinsamen Raums. Letzteres wird von [NAT]
beschrieben und im folgenden Abschnitt eingeführt und erläutert.

5.2.1 Zusammenführung (Merge)

Ziel ist es zwei beliebige Polyeder zusammenzufügen, die jeweils durch einem BSP-Baum
repräsentiert werden. Das neu entstandene Polyeder deckt also den Raum ab, der von
mindestens einem der Ausgangsobjekte abgedeckt wird. Der Baum des zusammengesetzten
Polyeders wird deshalb aus den beiden Bäumen der Ausgangspolyeder so erstellt, dass
dieser für jeden Punkt, der sich in mindestens einem der beiden Polyeder befindet IN ausgibt,
ansonsten OUT.

Nachfolgend wird der Algorithmus zum Zusammenführen zweier BSP-Bäume und damit
zum Berechnen des gemeinsamen Raums als Pseudocode eingeführt. Siehe Algorithmus 5.1
auf der nächsten Seite. Dieser ist aus der Arbeit von Naylor, Amanatides und Thibault [NAT]
entnommen. Der Algorithmus funktioniert dabei für beliebige Polyeder, insbesondere für
konvexe. Zusätzlich zum Pseudocode wird ein Durchlauf des Algorithmus als Beispiel in
Abbildung 5.3 gezeigt.

22

5.2 Algorithmen auf BSP-Bäumen

Algorithmus 5.1 Merge Algorithmus
Merge_Bspts : (T1, T2 : Bspt) -> Bspt
Types
PartitionedBspt : (inNegHs, inPosHs : Bspt)

Imports
Merge_Tree_With_Cell : (T1, T2 : Bspt) -> Bspt
Partition_Bspt : (T : Bspt, P : Bp) -> PartitionedBspt

Definition
IF T1.is_a_cell OR T2.is_a_cell
VAL := Merge_Tree_With_Cell(T1, T2)

ELSE
Partition_Bspt(T2, T1.root_region.bp) -> T2_partitioned

VAL.neg_subtree := Merge_Bspts(T1.neg_subtree, T2_partitioned.inNegHs)
VAL.pos_subtree := Merge_Bspts(T1.pos_subtree, T2_partitioned.inPosHs)
VAL.root_region := T1.root_region

END IF

RETURN VAL
END Merge_Bspts

Beschreibung des Algorithmus Für den Algorithmus werden anfangs zwei zusätzliche
Funktionen Merge_Tree_With_Cell und Partition_Bspt definiert. Auf deren Funktionsweise
wird später genauer eingegangen. Für den Algorithmus im Allgemeinen ist hier erstmal
nur wichtig, dass Merge_Tree_With_Cell eine benutzerdefinierte Handhabung beim Erreichen
des Abbruchkriteriums zulässt und Partition_Bspt anhand eines binären Partitionierers, im
2D-Fall einer Geraden und im 3D-Fall einer Ebenen, den als weiteren Parameter übergebenen
Baum in linken und rechten Unterbaum aufteilt.

Der Algorithmus geht rekursiv vor. Als Abbruchkriterium nimmt er die Situation, wenn von
einem der beiden Bäume ein Blatt erreicht wurde. Ansonsten wird der als zweiter Parameter
übergebene Baum am Partitionierer des Wurzelknotens des ersten Baums aufgeteilt. Das
Resultat dieses Vorgangs wird nun als Parameter für den rekursiven Aufruf verwendet. Dabei
wird nun der linke Unterbaum des partitionierenden Baums mit dem linken Unterbaum des
partitionierten Baums zusammengeführt, wie auch analog für die rechte Seite. Als Wert für
den aktuellen Knoten wird der verwendete Partitionierer selbst eingesetzt.

Naylor et al. [NAT] schlagen zusätzlich vor, dass durch eine zusätzliche Funktion in je-
dem Schritt ermittelt werden kann, welcher der beiden Bäume partitioniert wird oder den
Partitionierer stellt. In diesem Fall stellt immer der gleiche Baum den Partitionierer, um
nachfolgend den Algorithmus zum Aufteilen des Baums anwenden zu können, welcher im
Abschnitt 5.2.2 auf Seite 25 eingeführt wird.

Merge_Tree_With_Cell Durch Ausgliedern dieser Methode stellen Naylor et al. [NAT] die
Möglichkeit zur Verfügung einen benutzerdefinierten Operator zu verwenden. In unserem

23

5 Erstellen räumlich disjunkter Polyeder

Abbildung 5.3: Durchlauf des Merge-Algorithmus für ein Beispiel

Fall ist dies jedoch nicht notwendig, da der Baum nur zur geometrischen Repräsentation
verwendet wird, nicht zur logischen.

Partition_Bspt Diese Funktion liefert nach Übergabe eines BSP-Baums und eines Partitio-
nierers einen rechten und einen linken Unterbaum zurück. Diese neuen Bäume werden durch
Partitionieren des übergebenen BSP-Baums erstellt. Die Implementierung hängt dabei von
den benutzten Datenstrukturen zur Repräsentation des Polyeders ab. Wenn beispielsweise
der Partitionierer als Ebene in Punkt-Normalen-Form vorliegt und zu jeder Ebene im Baum
die Eckpunkte bekannt sind, kann durch die Normale und die Position der Eckpunkte
festgestellt werden, ob eine Fläche komplett innen, außen oder auf beiden Seiten liegt.

24

5.2 Algorithmen auf BSP-Bäumen

Algorithmus 5.2 Split Algorithmus
Split_Bspts : (T : Bspt) -> Bspt[]
out_val : Bspt[]
right_step_taken : bool := false

DO
right_step_taken := false
currentNode : BsptNode := T.root
out_val.Add(T.root)

WHILE currentNode IS NO LEAF
IF currentNode.hasPosSubtree AND currentNode.pos_subtree.notYetVisited
out_val.last.InvertNormal()
out_val.last.AppendNegSubtree(currentNode.pos_subtree.node)

currentNode = currentNode.pos_subtree.node
right_step_taken := true

ELSE
out_val.last.AppendNegSubtree(currentNode.neg_subtree.node)

currentNode = currentNode.neg_subtree.node
END IF

END WHILE
WHILE right_step_taken

RETURN out_val
END Split_Bspts

5.2.2 Aufteilen (Split)

Die Funktion dieses Algorithmus ist es, einen zuvor zusammengefügten Polyeder in neue,
konvexe Polyeder aufzuteilen. Der Algorithmus funktioniert dabei jedoch nur auf BSP-
Bäumen, welche durch oben beschriebene Methode zusammengefügt wurden. Nur durch
diese besondere Form des Baums, können daraus schnell konvexe Polyeder erstellt werden.
Da wir wissen, dass in unserem Modell nur konvexe Polyeder vorhanden sind und durch
diesen Schritt wiederum konvexe Polyeder entstehen, kann dieser Algorithmus hier ange-
wendet werden.

Der Algorithmus wird im Folgenden in Algorithmus 5.2 als Pseudocode beschrieben und als
Beispiel in Abbildung 5.4 veranschaulicht.

Beschreibung des Algorithmus Als Eingabe bekommt dieser Algorithmus einen BSP-Baum
und gibt nach dem Aufteilen mehrere BSP-Bäume zurück. Das Aufteilen selber wird in einer
Schleife vorgenommen. Diese wird so oft durchlaufen, wie neue BSP-Bäume und somit
Polyeder entstehen. Am Anfang dieser Schleife wird die Abbruch-Variable right_step_taken
wieder auf f alse gesetzt. So wird nach jedem Durchlauf überprüft, ob es noch einen weiteren
Baum gibt. Weiterhin wird der Liste der neuen BSP-Bäume ein neues Element hinzugefügt,

25

5 Erstellen räumlich disjunkter Polyeder

das bis dahin nur aus der Wurzel besteht, nämlich der gleichen Wurzel wie der des Eingabe-
Baums.

In der inneren Schleife wird nun der Baum traversiert bis ein Blatt erreicht wurde. In
der Schleife werden dabei folgende Unterscheidungen getroffen: der aktuelle Knoten hat
ein noch nicht besuchtes rechtes Kind, oder es gibt keine Abzweigung oder das rechte Kind
wurde bereits besucht. Im ersten Fall wird der letzte Knoten des neu erstellten Baums inver-
tiert und als dessen linkes Kind das rechte Kind des aktuell traversierten Knotens angehängt.
Zudem wird der Baum als nächstes an diesem rechten Knoten weiter traversiert und das
Abbruchkriterium auf f alse gesetzt (dazu wird die Variable right_step_taken auf true gesetzt).
Zu diesem Zeitpunkt ist sicher, dass noch ein weiterer Baum erstellt werden kann, da erst im
letzten Durchlauf ohne rechts ab zu zweigen der letzte mögliche Baum erstellt wird und
somit das Abbruchkriterium true bleibt (right_step_taken bleibt f alse). In den anderen Fällen
wird der linke Knoten des traversierten Baums dem neuen Baum hinzugefügt und dieser
auch als nächstes Element traversiert.

Korrektheit Um zu zeigen, dass der Algorithmus korrekt ist, sind folgende drei Eigenschaf-
ten zu zeigen

1. die erstellten Polyeder sind räumlich disjunkt zueinander,

2. der gleiche Raum wie vom zusammengesetzten Polyeder wird abgedeckt und

3. die erstellten Polyeder sind konvex.

Die Eigenschaft der räumlichen Disjunktheit folgt aus der Definition des BSP-Baums. Zwei
erstellte Polyeder A, B müssen demnach disjunkt sein, da sie einen gemeinsamen Knoten X
haben dessen Kind Y zu A gehört und Kind Z zu B. Da diese zwei Unterräume darstellen,
die durch X getrennt sind, sind diese beiden Räume disjunkt und somit auch die Polyeder.

Die vollständige Abdeckung folgt direkt aus der Korrektheit des Merge-Algorithmus,
da der ganze Raum abgedeckt wird und aus dem BSP-Baum, da alle Blätter mit der Ei-
genschaft IN auch in den neuen BSP-Bäumen existieren und den selben Unterraum abdecken.

Wird ein konvexer Polyeder durch einen Partitionierer geteilt, sind die beiden resultie-
renden Polyeder wiederum konvex. Da der nächste Partitionierer dann nur noch auf diese
Subprobleme angewendet wird, wird die konvexe Eigenschaft weitervererbt. Dadurch sind
alle erstellten Polyeder konvex.

5.3 Veranschaulichung in 3D

In Abbildung 5.5 wird ein einfaches Beispiel für die Ausführung der beiden Algorithmen
dargestellt. Dabei werden aus zwei sich überschneidenden Würfeln vier Polyeder erstellt.
Einer dieser erstellten Polyedern entspricht dabei einem der Ausgangspolyeder. Alle erstellten

26

5.3 Veranschaulichung in 3D

Abbildung 5.4: Durchlauf des Split-Algorithmus für ein Beispiel

Polyeder sind disjunkt zueinander und decken den ganzen auch zuvor abgedeckten Raum
ab.

27

5 Erstellen räumlich disjunkter Polyeder

Abbildung 5.5: Einfaches Beispiel in 3D

28

6 Anwendung auf große Datensätze

Der Algorithmus in der Form wie er im vorherigen Kapitel eingeführt wurde, funktioniert an-
gewendet auf zwei konvexe Polyeder. Für mehrere, sich mehrfach überschneidende Polyeder
jedoch wird eine komplexere Vorgehensweise benötigt. Da in dem benutzten Testdaten-
satz 10.000 Polyeder verwendet werden bedarf es zusätzlich einer Strategie, die es erlaubt
die Aufgaben parallel abzuarbeiten. Dies ist umso wichtiger, da das vollständige Modell,
zu finden auf der Instituts-Homepage von Hilfer et al. [HZL], über 1 Million Polyeder enthält.

Um diese große Anzahl von Polyedern zu bewältigen, wird erst die Aufteilung in Grup-
pen beschrieben, wodurch Parallelisierbarkeit gewährleistet wird. Anschließend werden
Strategien zur lokalen Bearbeitung dieser Gruppen gegeben, sowie Heuristiken um diese
Bearbeitung weiter zu optimieren.

6.1 Aufteilung in Gruppen

Eine Aufteilung in geographische Gruppen ist aus mehreren Gründen ein sinnvolles Vorge-
hen. Einerseits wird dadurch ermöglicht diese Gruppen parallel abzuarbeiten. Andererseits
müssten sonst alle Polyeder paarweise auf Überschneidungen überprüft werden. Das würde
somit in quadratischer Laufzeit enden und auf ein Modell mit mehreren hunderttausend
Polyedern nicht mehr anwendbar sein.

6.1.1 Schnitt am Gitternetz

Ein großer Vorteil des Modells ist es, dass die Polyeder in beliebig kleine Polyeder aufgeteilt
werden dürfen, ohne dass dies die Eigenschaften und die Aussagekräftigkeit des Modells in
Bezug auf das Volumen verletzt. Einzig zu beachten ist, dass durch alle Polyeder der gleiche
Raum wie zuvor abgedeckt werden muss. Deshalb ist es möglich alle Polyeder an einem
Gitter zu schneiden, um diese anschließend eindeutig den lokalen Gruppen zuweisen zu
können. In Abbildung 6.1 wird dies verdeutlicht. Es ist gut zu sehen, dass die entstandenen
acht Gruppen zueinander räumlich unabhängig sind.

Durch diesen Schnitt sind alle Polyeder betroffen, die ansonsten Raum auf beiden Seiten der
Gitterebene belegen würden. Sie werden dadurch in zwei neue räumlich disjunkte Polyeder
aufgeteilt. Dadurch, dass diese Aktion auf alle Polyeder angewendet wird, wird sichergestellt,
dass die dadurch entstandenen Gruppen ebenfalls zueinander räumlich disjunkt sind. Somit
fällt eine rechenintensive Nachbarschaftsbetrachtung weg und die lokalen Gruppen können

29

6 Anwendung auf große Datensätze

Abbildung 6.1: Schnitt des Modells am Gitternetz

parallel bearbeitet werden, ohne dass Informationen aus einer Nachbargruppe benötigt
werden. Dies alles erleichtert die Implementation erheblich, da Rechnerknoten, auf denen
die Gruppen abgearbeitet werden sollen nicht miteinander kommunizieren müssen und als
Ergebnis nur das berechnete Volumen ihre Gruppe zurückgeben müssen.

6.1.2 Erstellen eines Rasters fester Größe

Ein naiver Ansatz zur Umsetzung des Schnitts am Gitter ist einfach alle Polyeder mit allen
Gitterebenen zu schneiden. Dieser Ansatz hat jedoch zwei entscheidende Nachteile. Bei
einer Aufteilung in kleine Gruppen werden viele Gitterebenen benötigt. Dadurch wächst
die Laufzeit zur Erstellung der Gruppen auf O(k ∗ n) mit k Anzahl der Gitterebenen und n
Anzahl der Polyeder. Der andere Nachteil ist, dass durch stures Aufteilen keine Reaktion
auf die Polyeder-Dichte vorgenommen werden kann. Gerade weniger dichte Außenbereiche
werden somit weiter aufgeteilt als notwendig.

6.1.3 Dynamische Raumaufteilung durch Rekursion

Um die im vorherigen Abschnitt angesprochenen Nachteile zu verlieren, ist eine rekursive
Raumaufteilung sinnvoll. Dabei kann durch geschickte Parameterwahl erreicht werden, dass
dichte Regionen stärker aufgeteilt werden als weniger dichte. Zudem wird der Schnitt am
Gitternetz nicht mehr auf alle Polyeder angewandt, sondern nur auf die lokalen Subprobleme.
Außerdem lassen sich die Subprobleme parallelisieren, da diese einen räumlich disjunkten
Bereich abdecken.

Die Laufzeit der dynamischen Rekursion ist somit

(6.1) O (2 ∗ l ∗ n)

30

6.1 Aufteilung in Gruppen

mit l maximaler Rekursionstiefe und n Anzahl der Polyeder.
Im Vergleich dazu die Laufzeit für die feste Aufteilung, bei gleich vielen Gitterebenen:

(6.2) O
((

l

∑
i=1

2i

)
∗ n

)

Octree

Zur Implementierung der dynamischen Aufteilung eignet sich die Datenstruktur des Octree.
Auf ihm kann die Aufteilung einfach und effizient ausgeführt werden. Dabei sind die
aufgeteilten Räume in den Blättern des Baums zu finden. Für die dynamische Aufteilung
wird jedoch noch ein Abbruchkriterium benötigt. Im Folgenden wird deshalb nun ein
mögliches Abbruchkriterium eingeführt.

Abbruchkriterium

Die Idee hinter dem Abbruchkriterium ist, dass abgebrochen wird, sobald die Dichte hinrei-
chend gering ist, um den eigentlichen Algorithmus effizient anwenden zu können. Für dieses
Modell bietet es sich an, die Anzahl der Überschneidungen der Polyeder in der Gruppe zu
überprüfen. Übersteigt diese Anzahl einen Schwellwert, wird weiter aufgeteilt. Ansonsten
wird die aktuelle Gruppe als Blatt dem Baum hinzugefügt. Da jedoch die Berechnung der
Überschneidungen gerade in sehr großen Gruppen sehr viel Zeit kostet, weil alle Polyeder
miteinander überprüft werden müssen, bietet es sich an, einen weiteren Schwellenwert für
die Anzahl der Polyeder in der Gruppe einzuführen. Dieser ist zwar weniger aussagekräftig,
kann allerdings als erstes überprüft werden und nur wenn die Anzahl der Polyeder geringer
als der Schwellenwert ist, wird auf die Überschneidungen zurückgegriffen.

Parameterwahl Die Wahl der Parameter hängt dabei vom gegebenen Modell ab. In Ta-
belle 7.1 auf Seite 41 werden die Auswirkungen der Parameter auf die Erstellung des
Octree dargestellt, in den darauf folgenden Schaubildern die Auswirkungen auf die Ausfüh-
rung des Algorithmus. Das dazu verwendete Beispielmodell und die Folgerungen aus den
Messergebnissen werden in Kapitel 7 näher erläutert.

Tiefenlimit Bei strenger Wahl der Schwellwerte kann es jedoch passieren, dass trotz weiterer
Aufteilung der Wert nicht unter die Parameterwerte sinkt. Dadurch kann es zu sehr tiefen
Stellen im Baum kommen. In diesem Fall würde die Erstellung des Baums viel zu lange
dauern, es wäre also ineffizient. Darum kann es sinnvoll sein, ein Tiefenlimit für den Baum
einzuführen. Die Auswirkungen dieses zusätzlichen Parameters werden ebenfalls in der
Tabelle 7.1 auf Seite 41 aufgezeigt und in Kapitel 7 erläutert.

31

6 Anwendung auf große Datensätze

6.2 Bearbeitung in lokalen Gruppen

Der naive Vorgang zum Bearbeiten der nun erstellten lokalen Gruppen wäre, dass in jedem
Schritt ein Polyeder aus der Liste genommen wird und mit allen anderen Polyedern in
dieser Liste geschnitten wird. Das Ergebnis dieses Schnitts wird dann wiederum in die Liste
aufgenommen. Der Algorithmus wäre dann fertig, wenn kein Polyeder mehr in der Liste ist.
Dieser naive Ansatz ist jedoch ineffizient und führt zu sehr vielen vermeidbaren Abfragen.
Zusätzlich wird es schwieriger auf so einer Datenstruktur mit Heuristiken zur Optimierung
zu arbeiten. Deswegen werden im Folgenden Ansätze zur besseren Bearbeitung der Gruppen
gezeigt.

6.2.1 Bearbeitung mit Überschneidungs-Graphen

Eine sehr effiziente Möglichkeit der Bearbeitung der lokalen Gruppen ist die Verwendung
eines Graphen als Datenstruktur. In diesem Graphen entspricht jeder Knoten einem Polyeder
und jede Kante zwischen zwei Knoten bedeutet, dass diese Polyeder sich höchstwahrschein-
lich überschneiden. Dabei besteht die Möglichkeit, dass eine Kante zwischen zwei Knoten
existiert, obwohl diese sich nicht überschneiden. Dies ist auf die Kantenvererbung im Al-
gorithmus zurückzuführen, die in den nächsten Abschnitten erklärt wird. Jedoch kann nie
vorkommen, dass sich zwei Polyeder überschneiden aber keine Kante dazwischen existiert.
Die Bearbeitung der Gruppe wird somit über den Algorithmus 6.1 vorgenommen.

Im Pseudocode werden anfangs die beiden Algorithmen eingebunden, welche die eigentli-
che Arbeit des paarweise Aufteilens der Polyeder verrichten. Diese werden später aufgerufen.

Am Anfang des Algorithmus wird zunächst der Graph aufgebaut. Dies geschieht, in-
dem alle Polyeder aus der lokalen Gruppe erst in einen Knoten verwandelt und anschließend
in den Graphen hinzugefügt werden. Dabei wird angenommen, dass die Add-Funktion des
Graphen die Aufgabe des Erstellens der Kanten übernimmt. Nach dem Hinzufügen aus der
lokalen Gruppe, wird dieser Polyeder aus der Gruppe vorläufig entfernt, da die Gruppe
später im Algorithmus zum Speichern der fertig bearbeiteten Polyeder verwendet wird.

In der Haupt-Schleife wird nun der jeweils nächste Knoten aus dem Graphen genom-
men und in die Ausgabeliste aufgenommen. Dies ist möglich, da durch die Ausführung
des Merge-And-Split-Algorithmus dieser nicht verändert wird, sondern lediglich der jeweils
andere Polyeder durch diesen geschnitten wird. Dieser Schnitt wird nun im nächsten Schritt
ausgeführt, indem jeder über eine Kante erreichbarer Polyeder geschnitten wird. Das Er-
gebnis dieses Schnitts ersetzt nun den ursprünglichen, geschnittenen Polyeder. Hier wird
zudem angenommen, dass die Replace-Funktion des Graphen alle Kanten des zu ersetzenden
Polyeders löscht und diese allen seinen Kindern weitervererbt. Dadurch wird sichergestellt,
dass die neuen Polyeder auch nur mit denen verglichen werden, die vom ursprünglichen
ebenfalls geschnitten wurden. Anschließend wird der erste Polyeder aus dem Graphen
entfernt und damit alle seine Kanten gelöscht, da diese bereits abgearbeitet wurden. Die

32

6.3 Heuristiken zur Optimierung

Algorithmus 6.1 Bearbeitung der Gruppen mit Graph
Intersect_Using_Graph : (G : Group) -> Group
Types
Node : (Value : Polyhedra, Edges : PointerToNode[])

Imports
Merge_Bspts : (T1, T2 : Bspt) -> Bspt
Split_Bspts : (T : Bspt) -> Bspt[]

Definition
Graph : Graph_Structure

FOR EACH P : Polyhedra IN G DO
Graph.Add (NEW Node (P))
G.Remove (P)

END FOR

FOR EACH N1 : Node IN Graph DO
G.Add (N1.Value)

FOR EACH E : PointerToNode IN N1.Edges DO
Graph.Replace (E.Node, Split_Bspts (Merge_Bspts (N1.tree, E.Node.tree)))

END FOR

Graph.Remove (N1)
END FOR

RETURN G
END Intersect_Using_Graph

Schleife wird nun solange durchlaufen, bis der Graph leer ist. Dann wird die Ausgabegruppe
zurückgegeben.

6.3 Heuristiken zur Optimierung

Durch das Wissen über das Modell können Heuristiken abgeleitet werden mit denen sich
der Algorithmus weiter verbessern lässt. Die Ergebnisse zu der Wirkung dieser Heuristiken
werden im Kapitel 7 dargelegt.

6.3.1 Überflüssige Kanten eliminieren

Die neu erstellten Polyeder bekommen jeweils alle Kanten von dem Polyeder vererbt, aus
denen sie erstellt wurden. Dadurch kann es dazu kommen, dass Kanten eine Überschneidung
anzeigen, die gar nicht existiert. Darum kann es sich lohnen schon früh solche Kanten zu
eliminieren. In der Abbildung 6.2 wird so eine Situation verdeutlicht. Werden die Kanten
nicht frühzeitig entfernt, kommt es nach mehreren Runden zu einer Vielzahl überflüssiger

33

6 Anwendung auf große Datensätze

Abbildung 6.2: Beispiel für Optimierung durch Kanten-Elimination

Kanten und dadurch zu erhöhtem Aufwand. Der Eliminierungsprozess muss sich dabei nur
auf die jeweils neuen Polyeder erstrecken, da alle anderen Polyeder spätestens im letzten
Schritt genau so behandelt wurden und deshalb keine unnötigen Kanten haben können. Wie
sich dieser Optimierungsschritt in den Algorithmus einfügt, wird in der erweiterten Fassung
des Algorithmus im Pseudocode 6.2 gezeigt.

6.3.2 Knoten sortieren

Im Graphen gibt es mehrere Möglichkeiten nach denen Knoten sortiert werden können.
Im Folgenden werden zwei Möglichkeiten vorgestellt, durch welche sich gewisse Vorteile
erhoffen lassen. Dabei wird dieser Sortierschritt immer vor der nächsten Runde ausgeführt,
sodass das größte bzw. kleinste Element als nächstes behandelt wird. Zusätzlich hilft es zu
wissen, dass es nicht entscheidend ist, dass die ganze Liste sortiert ist. Benötigt wird jeweils
nur das größte oder kleinste Element. Somit kann eine einfache Suche ausgeführt werden,
die auf einer Liste angewendet in O(n) abläuft. Bei der Wahl großer lokaler Gruppen wäre
es jedoch sinnvoller die Knoten in einer such-freundlichen Datenstruktur zu verwalten,
um die Suche auf die Laufzeit O(log n) zu verringern. Die Reihenfolge der paarweisen
Anwendung des Merge-And-Split-Algorithmus auf den ausgewählten Polyeder und jeweils
damit verbundenen spielt hier keine Rolle, da diese sich gegenseitig nicht beeinflussen.

Nach Anzahl der Kanten

Durch diesen Sortiervorgang werden die Knoten so angeordnet, dass diese absteigend nach
der Anzahl ihrer Kanten sortiert sind. Von diesen Knoten wird dann der mit den meisten
Kanten als nächstes Element ausgewählt. Durch diese Auswahl wird erreicht, dass in jedem
Schritt möglichst viele Kanten abgebaut werden, die dadurch nicht mehr an mehrere Kinder

34

6.3 Heuristiken zur Optimierung

Abbildung 6.3: Problem der Kantenvererbung

vererbt werden können.

Ein extremes Beispiel wird in Abbildung 6.3 gezeigt. Im ersten Fall teilt A hier B auf.
Da B jedoch nur diese Kante zu A hatte, haben alle resultierenden B1, B2, ..., Bn auch keine
Kanten. Diese gute Reihenfolge, dass erst A verarbeitet wird, führt zu einer Laufzeit von
O(k) mit k Anzahl der Kanten in der Ausgangssituation. Im zweiten Fall jedoch wird A
von B geschnitten und aufgeteilt. Nun werden alle übrigen Kanten von A an dessen Kinder
vererbt, somit beläuft sich nach nur einem Schritt die Anzahl der Kanten auf m ∗ (k− 1) mit
m Anzahl der erstellten Kinder von A. Geht man nun von dem Worst-Case-Szenario aus,
wird in jedem folgenden Schritt die schlechteste Wahl getroffen.

Für den schlechtesten Fall erhält man bei k Anzahl der ursprünglichen Kanten und m
Anzahl der durchschnittlichen pro Schnitt erstellten neuen Polyedern demnach nach der
i-ten Runde folgende Anzahl an verbleibenden Kanten:

(6.3) mi (k− i)

Benötigte paarweise Schnitte sind insgesamt dann

(6.4)
k−1

∑
i=0

mi ∈ O(mk−1)

Im Vergleich dazu die Anzahl der benötigten Schritte für die gut gewählte Reihenfolge

(6.5) k ∈ O(k)

35

6 Anwendung auf große Datensätze

Abbildung 6.4: Optimierung durch Sortierung nach Größe des Polyeders

Größe des Polyeders

Eine andere Möglichkeit zu Sortieren ist nach der Größe des repräsentierten Polyeders
des Knoten. Am einfachsten lässt sich diese Wahl anhand eines Beispiels erläutern. Dieses
Beispiel in 2D, in Abbildung 6.4, zeigt wie aus einem Worst-Case ein Best-Case werden
kann. In der unsortierten Liste käme es demnach zu der Möglichkeit, dass durch den Schnitt
zweier Polyeder, wobei das kleinere ein n-Eck ist, n neue Polyeder entstehen können. In der
sortierten Liste hingegen kommt es zum Best-Case, dass der kleinere Polyeder komplett
überdeckt wird und somit kein neues Polyeder entsteht. Im allgemeinen Fall würde hingegen
erreicht werden, dass in jedem Schritt durchschnittlich weniger neue Polyeder entstehen.
Aus diesem Grund wird in jedem Zyklus der Knoten des größten Polyeders ausgewählt.

Für die Ermittlung der Größe eines Polyeders wird dabei auf Genauigkeit verzichtet, es
reicht eine grobe Approximation. Dies ist begründet darin, dass zwei in etwa gleich große
Polyeder beim Schnitt keinen erkennbaren Unterschied zulassen. Dafür ist der Aufwand für
eine genauere Bestimmung der Polyedergröße nicht gerechtfertigt.

6.4 Zukünftige Arbeiten

Abschließend sollen weitere Ideen zur Anwendung der Algorithmen auf große Datensätze
vorgestellt werden. Diese sind im Rahmen dieser Bachelor-Arbeit nicht implementiert und
getestet worden, bieten aber eine Grundlage, um den Algorithmus weiter zu verbessern.

36

6.4 Zukünftige Arbeiten

Algorithmus 6.2 Bearbeitung der Gruppen mit Graph und Optimierungsschritten
Intersect_Using_Graph_Optimized : (G : Group) -> Group
Types
Node : (Value : Polyhedra, Edges : PointerToNode[])

Imports
Merge_Bspts : (T1, T2 : Bspt) -> Bspt
Split_Bspts : (T : Bspt) -> Bspt[]

Definition
Graph : Graph_Structure

FOR EACH P : Polyhedra IN G DO
Graph.Add (NEW Node (P))
G.Remove (P)

END FOR

DO UNTIL Graph.IsEmpty
N1 : Node := Graph.Best_Node
G.Add (N1.Value)

FOR EACH E : PointerToNode IN N1.Edges DO
Graph.Replace (E.Node, Split_Bspts (Merge_Bspts (N1.tree, E.Node.tree)))

END FOR

Graph.Remove (N1)

FOR EACH REPLACEMENT N1 : Node IN GRAPH DO
FOR EACH E : PointerToNode IN N1.Edges DO
IF NOT Intersects (N1, E.Node) THEN Remove_Edge (N1, E.Node)

END FOR
END FOR

END DO

RETURN G
END Intersect_Using_Graph_Optimized

6.4.1 Optimierung: Auswahl des besten Ergebnis

Eine weitere Idee zum Verbessern des Algorithmus ist, dass beim paarweisen Schneiden der
Polyeder beide Schnitt-Reihenfolgen durchgeführt werden. Somit würde einmal der erste
den zweiten Polyeder schneiden und als nächstes der zweite den ersten. Aus diesen beiden
Ergebnissen wird dann das vielversprechendere Ergebnis verwendet. Die Entscheidung nach
der besseren Auswahl könnte dann nach der Anzahl der erstellten Polyeder geschehen,
sodass wiederum weniger Kinder entstehen. Dies wäre eine Möglichkeit, die zur Anwendung
kommen kann, wenn sich zwei in etwa gleich große Polyeder schneiden und das Ergebnis
trotzdem stark variiert. Als weiteres Auswahlkriterium wäre möglich, dass die erstellten
Polyeder auf deren Größe untersucht werden und die Gruppe weiter benutzt wird, durch
die man sich eine höhere numerische Genauigkeit beim späteren Triangulieren und beim
Berechnen des Volumens erhofft.

37

6 Anwendung auf große Datensätze

Die Vermutung ist jedoch, dass diese Heuristik trotz des Produzierens besserer Ergeb-
nisse die Nachteile der doppelten Ausführung des Algorithmus nicht ausgleichen kann.
Zumal durch die vorherig angeführten Optimierungsmöglichkeiten die relevanten Fälle
bereits optimiert wurden.

38

7 Messwerte und Ergebnisse

Im Folgenden werden nun Messwerte und Ergebnisse dargestellt und erläutert. Dabei sind
alle Messungen der ersten beiden Abschnitte Messergebnisse des Testdatensatzes und Qualität
der Volumenberechnung auf Rechner-Knoten mit zwei Xeon E5620@2.4GHz (insgesamt 8

Kerne), 24 GB Arbeitsspeicher und Windows 7 64 Bit ausgeführt worden. Die Messungen
im Abschnitt Auswirkungen der Heuristiken auf einem Intel(R) Core(TM)2 Duo CPU T6400 @
2.00GHz (insgesamt 2 Kerne), 4 GB Arbeitsspeicher und Windows 7 64 Bit.

7.1 Messergebnisse des Testdatensatzes

Alle in diesem Abschnitt vorgelegten Messergebnisse wurden auf einem Testdatensatz
mit 10.000 Polyedern erstellt. Von diesem ist jedoch nicht bekannt, welches Volumen zu
erwarten ist. Darum wird vorwiegend auf die Effizienz des Algorithmus eingegangen. Erst
im nächsten Abschnitt wird auf die Effektivität, also die Qualität der Ergebnisse eingegangen.

In Tabelle 7.1 wird die Dauer der Octree-Erstellung mit verschiedenen Parametern auf-
gezeigt. Wie auch in den Schaubildern werden die Parameter immer in folgender Form
angegeben: Als erstes steht der Datensatz, gekennzeichnet durch die Anzahl der Polyeder,
danach kommt der Parameter für die maximale Anzahl Polyeder pro Gruppe, anschließend
der Parameter für die maximale Anzahl der Überschneidungen pro Gruppe. In dieser Tabelle
ist die Angabe in den Spalten die jeweilige Ausführungsdauer in Sekunden bei angegebener
maximalen Tiefe des Baums.

Diese gemessenen Zeiten zur Erstellung des Baums sind sehr gering, sodass auch die
dreifache Erstelldauer für eine höhere Stufe nicht ins Gewicht fällt. Selbst bei der Octree-
Erstellung für den Millionen Polyeder Datensatz, würde sich die Zeit auf weniger als eine
Stunde belaufen.

Was weitaus mehr ins Gewicht fällt, ist die Anzahl der erstellten Polyeder durch das
Aufteilen am Gitternetz. In Abbildung 7.1 werden diese in einem Schaubild dargestellt. Hier
wird sehr gut deutlich, dass durch zu häufiges Aufteilen des Raums sehr viele Polyeder
entstehen. Auf der anderen Seite heißt dies jedoch auch, dass die lokalen Gruppen weniger
Polyeder enthalten und somit sich schneller bearbeiten lassen. Dadurch wird nämlich der
Unabhängigkeits-Graph, oder eine ähnliche Datenstruktur die zur Verwaltung der Polyeder
eingesetzt wird, weniger komplex. Dies lohnt sich jedoch nur bis zu einer bestimmten Stufe,
wie in Abbildung 7.2 erkennbar ist. Anschließend ist die Tendenz, dass durch die stark
steigende Gesamtzahl der Polyeder mehr Zeit in Anspruch genommen wird.

39

7 Messwerte und Ergebnisse

Abbildung 7.1: Anzahl der Polyeder nach der Raumaufteilung durch den Octree

Abbildung 7.2: Dauer der Algorithmus-Ausführung

40

7.1 Messergebnisse des Testdatensatzes

Stufe 4 Stufe 5 Stufe 6 Stufe 7 Stufe 8 Stufe 9

10000, 12, 5 5 8 15

10000, 12, 10 4 7 13

10000, 12, 15 4 7 11 13 14 16

10000, 50, 30 5 9 10 9 9

10000, 100, 50 7 10 10 9

10000, 200, 100 8 8

Tabelle 7.1: Dauer der Octree-Erstellung in Sekunden

Abbildung 7.3: Anzahl Polyeder nach der Anwendung des Algorithmus

Eine weitere interessante Beobachtung ist, wenn man die Abbildungen 7.1 und 7.3 vergleicht.
Hier kommt es zu dem Phänomen, dass nach Ausführung des Algorithmus weniger Polyeder
vorhanden sind als davor. Dies lässt darauf schließen, dass durch vielmaliges Aufteilen des
Raums auch sehr viele kleine Polyeder entstehen, die vollständig von anderen Polyedern
umschlossen werden. Somit kommt es dazu, dass diese Polyeder einfach entfernt werden
können. Trotz dieser Rückläufigkeit der Anzahl der Polyeder, ist diese Zahl weiterhin mit
steigender Octree-Stufe signifikant höher. Dies wirkt sich somit negativ auf die Dauer der
Tetraedisierung und die Volumenberechnung aus. Diese beiden Schritte sind in Abbildung
7.4 zusammengefasst. Vergleicht man diese Ergebnisse mit denen in Abbildung 7.3, wird dies
deutlich. Gut zu sehen ist dies am Beispiel der Parameter 12, 5 (dunkelblau) bei Baumtiefe 6
und 12, 15 (grün) bei Tiefe 9. Die Werte an diesen Stellen sind in beiden Diagrammen jeweils
in etwa gleich.

41

7 Messwerte und Ergebnisse

Abbildung 7.4: Dauer der Tetraedisierung und der Volumenberechnung

Diese Ergebnisse über die Dauer der Ausführung, werden in Abbildung 7.5 nochmals
zusammengefasst. So ist für jeden Parameter die beste Baumtiefe offensichtlich gleich.
Vergleicht man dieses Ergebnis jedoch mit dem berechneten Volumen in Abbildung 7.6, muss
davon ausgegangen werden, dass das bessere Ergebnis jedoch schon bei einer niedrigeren
Octree-Stufe gewonnen wird. Auf diese Theorie wird verstärkt im nächsten Abschnitt
eingegangen.

7.2 Qualität der Volumenberechnung

In diesem Abschnitt wird nun auf die Qualität der Volumenberechnung eingegangen. Dazu
wird ein Datensatz mit 25.000 Polyedern verwendet. Für diesen existiert ein Referenzwert
für die Porösität. Um jedoch aus dem Volumen die Porösität berechnen zu können, muss
eine Box um den Stein gesetzt werden. Somit ist das Einschlussvolumen des Steins

(7.1) VEinschluss = VBox −VStein.

Dementsprechend ist die Porösität P das Verhältnis vom Einschlussvolumen zum Volumen
der Box:

(7.2) P =
VEinschluss

VBox
=

VBox −VStein

VBox

Die Ergebnisse für diesen Datensatz sind in den beiden Abbildungen 7.7 und 7.8 zusam-
mengefasst. Zusätzlich ist der erwartete Wert eingezeichnet. Gut erkennbar ist, dass der

42

7.2 Qualität der Volumenberechnung

Abbildung 7.5: Dauer der Gesamtausführung

Abbildung 7.6: Berechnetes Volumen

43

7 Messwerte und Ergebnisse

Abbildung 7.7: Berechnetes und erwartetes Volumen

Abbildung 7.8: Berechnete und erwartete Porösität

berechnete Wert genauer ist, wenn das Volumen aus weniger und somit größeren Polyedern
berechnet wird. Dies ist genau nicht der Fall, wenn der Octree stark weiter unterteilt wird,
wie für die Parameter 12, 15 und 50, 30 bei Tiefe 6 und höher.

Nachfolgend werden die absoluten und relativen Fehler berechnet. Dazu werden die Werte
aus der Tabelle 7.2 verwendet.

44

7.2 Qualität der Volumenberechnung

Wert

Erwartete Porösität 6,00%
Berechnete Porösität 6,59%
Erwartetes Volumen 7518829527,04

Bestes berechnetes Volumen 7471519629,178760

Box-Volumen 7998754816,000000

Tabelle 7.2: Berechnete und erwartete Werte für den 25.000 Polyeder Datensatz

Für den besten berechneten Volumenwert ist der absolute Fehler

(7.3)
eV

absolut = |Verwartet −Vberechnet| = 7518829527, 04− 7471519629, 178760 = 47309897, 86124

Somit ist der relative Fehler:

(7.4) eV
relativ =

eV
absolut

Verwartet
=

47309897, 86124
7518829527, 04

≈ 0, 00629 < 1%

Für eine ungefähre Volumenberechnung wäre dies ein akzeptabler Fehler. Jedoch wirkt sich
dieser Fehler sehr stark auf die berechnete Porösität aus.

(7.5)

ePabsolut = |
(

VBox −VStein

VBox

)
−
(

VBox −V∗Stein
VBox

)
|

ePabsolut ∗VBox = |VBox −VStein −VBox + V∗Stein|
ePabsolut ∗VBox = |− (VStein −V∗Stein)|
ePabsolut ∗VBox = eV

absolut

ePabsolut =
eV

absolut
VBox

Es ergibt sich der absolute Fehler:

(7.6) ePabsolut =
eV

absolut
VBox

=
47309897, 86124

7998754816, 000000
≈ 0, 00591

Somit ist der relative Fehler:

(7.7) ePrelativ =
ePabsolut
Perwartet

≈ 0, 00591
0, 06

≈ 0, 099 ≈ 10%

45

7 Messwerte und Ergebnisse

Abbildung 7.9: Berechnete und erwartete Porösität ohne Randbereich (letzter Wert mit Rand)

Jedoch kann der Fehler weiter reduziert werden. Was bisher nicht beachtet wurde, ist, dass
der Randbereich eine geringere Dichte hat als der innere Bereich. Um ein genaueres Ergebnis
zu erhalten, muss also der Randbereich weggeschnitten werden. Dazu wird wie oben eine
Box erstellt, die etwas kleiner als der Stein ist. An dieser Box wird wie an einer Bounding-Box
so geschnitten, dass die Polyeder an dieser Box aufgeteilt werden und nur alle Polyeder in
die Ausführung des Algorithmus einfließen, die in der Box liegen.

Durch diese Modifikation erhält man die Ergebnisse, die in der Abbildung 7.9 und in
der Tabelle 7.3 dargestellt werden. Die Ergebnisse wurden alle mit dem 25.000 Polyeder
Datensatz erstellt, mit den Parametern 50, 30, bei maximaler Tiefe 5 des Baums.

Die berechneten Werte für die verschieden großen Würfel, die aus dem Gesamtdatensatz
herausgeschnitten wurden, zeigen, dass es Stellen gibt an denen der Fehler sehr gering ist.
Bei zu kleinen Würfeln kommt es jedoch zu großen Fehlern, da die Zufälligkeit der Dichte
hier zu hoch ist. Auf der anderen Seite stellen sich bei großen Würfeln durch die hohe
Anzahl der Polyeder auch wiederum größere Fehler ein.

Durch mehrere Durchläufe des Algorithmus mit unterschiedlichen Parametern für die
Würfelgröße können also gute Ergebnisse erzielt werden.

7.3 Auswirkungen der Heuristiken

Die am Ende des letzten Kapitels (6.3 auf Seite 33) eingeführten Heuristiken werden im
Folgenden auf ihre Auswirkung auf die Ausführung des Algorithmus hin untersucht. Darum

46

7.3 Auswirkungen der Heuristiken

Größe des Ausschnitts Berechnetes Erwartetes Relativer Fehler
(in Achsenrichtung) Volumen Volumen

5% 993.092,78266 939.853,65394 0,056646

10% 7.708.909,11643 7.518.829,23149 0,025281

15% 25.871.972,81493 25.376.048,65629 0,019543

20% 61.448.804,96672 60.150.633,85195 0,021582

25% 119.302.660,64233 117.481.706,74209 0,015500

30% 204.779.139,47767 203.008.389,25032 0,008723

35% 323.252.543,66710 322.369.803,30028 0,002738

40% 481.222.044,71953 481.205.070,81558 0,000035

45% 683.253.352,02296 685.153.313,71984 0,002773

50% 939.735.256,68549 939.853.653,93668 0,000126

55% 1.252.560.426,35491 1.250.945.213,38972 0,001291

60% 1.626.751.979,92204 1.624.067.114,00258 0,001653

65% 2.069.053.893,39243 2.064.858.477,69888 0,002032

70% 2.585.197.234,91499 2.578.958.426,40224 0,002419

75% 3.183.076.081,46473 3.172.006.082,03629 0,003490

80% 3.867.985.774,72098 3.849.640.566,52463 0,004765

85% 4.645.901.799,03830 4.617.501.001,79090 0,006151

90% 5.517.970.205,99205 5.481.226.509,75872 0,006704

95% 6.488.315.106,89169 6.446.456.212,35168 0,006493

100% (mit Rand) 7.471.364.525,72715 7.518.829.527,04000 0,006313

Tabelle 7.3: Berechnetes und erwartetes Volumen, sowie Fehler bei abgeschnittenen Rand

gibt es für jeden Abschnitt in der Gesamtausführung, den die Heuristiken beeinflussen
ein Schaubild mit Messergebnissen. Jedoch existieren keine konkreten Ergebnisse für die
Ausführung nur mit Kantenentfernung und für die Ausführung ohne Heuristik. Diese
Durchläufe sind so ineffizient, dass die Ausführungszeit ein Vielfaches von der Dauer der
hier aufgeführten Messungen ist und nicht bis zum Ende gerechnet wurden.

In Abbildung 7.10 wird schon sehr deutlich, dass die Sortierung nach Polyedergröße
im Vergleich zu den anderen Heuristiken sehr effizient ist und sogar in Kombination mit
dem Entfernen der Kanten keine Verbesserungen mehr zulässt. Das Gegenteil ist der Fall,
wie in Abbildung 7.11 aufgezeigt wird. Durch zusätzliches Kantenentfernen wird nur mehr
Zeit in Anspruch genommen, aber kein Mehrwert erzielt. Im Gegensatz dazu lässt sich
das Sortieren nach Anzahl der Kanten noch deutlich verbessern, indem unnötige Kanten
frühzeitig entfernt werden.

Aber erst im Tetraedisierungs-Schritt wird die Verbesserung durch die Heuristiken sehr
deutlich. In Abbildung 7.12 sieht man dabei den Einfluss der Anzahl der Polyeder auf

47

7 Messwerte und Ergebnisse

Abbildung 7.10: Auswirkung der Heuristiken auf die Algorithmus-Ausführung (Anzahl
Polyeder)

Abbildung 7.11: Auswirkung der Heuristiken auf die Algorithmus-Ausführung (Zeit)

48

7.3 Auswirkungen der Heuristiken

Abbildung 7.12: Auswirkung der Heuristiken auf die Dauer der Tetraedisierung

Abbildung 7.13: Auswirkung der Heuristiken auf die Gesamtdauer

die Dauer der Tetraedisierung. Da dieser Schritt die längste Zeit im Gesamtdurchlauf in
Anspruch nimmt, Vergleich dazu Abbildung 7.13, wird bewusst, dass nur nach Anzahl der
Kanten zu sortieren nicht effizient genug ist.

Weiterhin wird durch das berechnete Volumen in Abbildung 7.14 gezeigt, dass es großen
Einfluss auf das Ergebnis gibt, ob kleine Polyeder entfernt werden oder diese verwendet

49

7 Messwerte und Ergebnisse

Abbildung 7.14: Auswirkung der Heuristiken auf das berechnete Volumen

werden um größere Polyeder aufzuteilen. Ersteres ist öfter der Fall, wenn nach Größe
der Polyeder sortiert wird und nicht nach Anzahl der Kanten. Da jedoch nicht bekannt
ist, welcher der erzielten Werte näher am tatsächlichen Wert liegt, kann hier wiederum
nur Auskunft über die Effizienz, jedoch nicht über die Effektivität gegeben werden. Nur
unter Berücksichtigung der Effizienz ist zumindest deutlich, dass die Ausführung mit dem
Sortieren nach der Polyedergröße am sinnvollsten ist.

50

8 Zusammenfassung und Ausblick

In dieser Bachelor-Arbeit wurde ein neuer Ansatz zur Berechnung des Volumens sich
überschneidender konvexer Polyeder vorgestellt. Dazu wurde ein neuer Algorithmus für
BSP-Bäume eingeführt. Durch diesen ist es möglich zwei im vorangegangenem Schritt
zusammengefügte Polyeder so aufzuteilen, dass diese neu erstellten Polyeder nicht den
selben Raum abdecken und ebenfalls konvex sind. Dieser Algorithmus funktioniert jedoch
immer nur paarweise auf konvexen Polyedern.

Aus diesem Grund wurden Methoden zur Anwendung auf großen Datensätzen vorge-
stellt. Diese erlauben es durch geschickte Aufteilung des Raums und Verwalten der Polyeder
in Unabhängigkeitsgraphen, dass die Algorithmen auch auf großen Datensätzen einsetzbar
sind. Jedoch wird die Ausführung erst richtig effizient, wenn zudem Heuristiken eingesetzt
werden. Durch diese Heuristiken lässt sich die Anzahl der erstellten Polyeder weiter senken.
Somit wird die Laufzeit stark reduziert und das Ergebnis genauer.

Bei diesem Ansatz ist der numerische Fehler sehr gering, da die meisten Aktionen auf
den BSP-Bäumen ablaufen. Diese Aktionen sind dabei meist nur, dass Ebenen zu einem
Polyeder hinzugefügt oder von ihm entfernt werden. Dabei kann kein Fehler entstehen. Le-
diglich beim Zusammenführen der Bäume ist ein kleiner Fehler möglich, da hier berechnete
Eckpunkte des Polyeders in Relation zu einer Ebene überprüft werden müssen.

Größere numerische Fehler treten somit erst bei der Tetraedisierung der Polyeder auf.
Jedoch trotz dieser Fehler ist das Ergebnis der Volumenberechnung sehr gut. Lediglich bei
der Bestimmung der Porösität macht sich dieser Fehler stärker bemerkbar, lässt sich aber
durch Ausführung mit verschiedenen Parametern handhaben.

Ausblick

Das Verfahren kann durch mehrere Modifikationen und durch das Hinzufügen weiterer
Heuristiken verbessert werden. Eine dieser möglichen Heuristiken wird bereits in Kapitel 6,
Abschnitt 6.4 beschrieben, wurde aber bisher noch nicht getestet.

Die wichtigste Verbesserung ist jedoch eine bessere Methode zur Berechnung des Volumens.
Diese kann in diesem Verfahren problemlos die Tetraedisierung ersetzen. Dadurch kann die
Qualität des Verfahrens weiter erhöht werden und auch die Berechnung der Porösität weiter
verbessert werden.

51

Literaturverzeichnis

[LBFH] F. D. E. Latief, B. Biswal, U. Fauzi, R. Hilfer. Continuum reconstruction of the pore
scale microstructure for Fontainebleau sandstone. Physica A: Statistical Mechanics and
its Applications, 389(8):1607–1618, 2010. doi:10.1016/j.physa.2009.12.006. URL http:
//www.sciencedirect.com/science/article/pii/S0378437109010024. (Zitiert auf
den Seiten 7, 11, 12 und 13)

[HZL] R. Hilfer, T. Zauner, A. Lemmer. Worldwide largest threedimensional strongly
correlated microstructure. Institute for Computational Physics, 2011. URL http://www.
icp.uni-stuttgart.de/microct/info.php. (Zitiert auf den Seiten 7, 11, 12 und 29)

[CS] J. L. D. Comba, C. T. Silva. Automatic Convexification of Space using BSP-trees.

[NAT] B. Naylor, J. Amanatides, W. Thibault. Merging BSP trees yields polyhedral set
operations. SIGGRAPH Comput. Graph., 24(4):115–124, 1990. doi:10.1145/97880.
97892. URL http://doi.acm.org/10.1145/97880.97892. (Zitiert auf den Seiten 19,
22 und 23)

Alle URLs wurden zuletzt am 23. 05. 2013 geprüft.

53

http://www.sciencedirect.com/science/article/pii/S0378437109010024
http://www.sciencedirect.com/science/article/pii/S0378437109010024
http://www.icp.uni-stuttgart.de/microct/info.php
http://www.icp.uni-stuttgart.de/microct/info.php
http://doi.acm.org/10.1145/97880.97892

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wörtlich oder sinngemäß aus anderen Wer-
ken übernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Prüfungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollständig
veröffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

	1 Einleitung
	2 Related Works
	2.1 Poröse Medien

	3 Problemstellung
	3.1 Modell
	3.2 Idee für neuen Ansatz

	4 Datenstrukturen
	4.1 Repräsentation der Geometrie
	4.2 Graphen
	4.2.1 Allgemeine Graphen
	4.2.2 Bäume

	5 Erstellen räumlich disjunkter Polyeder
	5.1 Problembeschreibung
	5.2 Algorithmen auf BSP-Bäumen
	5.2.1 Zusammenführung (Merge)
	5.2.2 Aufteilen (Split)

	5.3 Veranschaulichung in 3D

	6 Anwendung auf große Datensätze
	6.1 Aufteilung in Gruppen
	6.1.1 Schnitt am Gitternetz
	6.1.2 Erstellen eines Rasters fester Größe
	6.1.3 Dynamische Raumaufteilung durch Rekursion

	6.2 Bearbeitung in lokalen Gruppen
	6.2.1 Bearbeitung mit Überschneidungs-Graphen

	6.3 Heuristiken zur Optimierung
	6.3.1 Überflüssige Kanten eliminieren
	6.3.2 Knoten sortieren

	6.4 Zukünftige Arbeiten
	6.4.1 Optimierung: Auswahl des besten Ergebnis

	7 Messwerte und Ergebnisse
	7.1 Messergebnisse des Testdatensatzes
	7.2 Qualität der Volumenberechnung
	7.3 Auswirkungen der Heuristiken

	8 Zusammenfassung und Ausblick
	Literaturverzeichnis

