Visualisierungsinstitut der Universitit Stuttgart
Universitdt Stuttgart

Allmandring 19
D-70569 Stuttgart

Bachelorarbeit Nr. 36

Analyse pordser Medien auf
Basis von Kristalliten

Alexander Straub
Studiengang: Informatik
Priifer: Prof. Dr. Thomas Ertl
Betreuer: Dr. Guido Reina

Dipl.-Inf. Daniel Kauker

Beginn am: 2012-12-03

Beendet am: 2013-06-04

CR-Nummer: E.1,E22,G.2.2,1.35

Kurzfassung

Eine Moglichkeit zur Simulation pordser Medien sind Modelle. Diese haben den Vorteil,
dass sie computergestiitzt erstellt werden konnen und somit auch grofiere, aussagekréftigere
Datensétze hervorbringen. In dieser Bachelor-Arbeit wird ein neuer Ansatz zur Bestimmung
des Volumens und der Pordsitédt vorgestellt, basierend auf einem Modell fiir Sandsteine. Dies
war mit bisherigen Algorithmen nur unzureichend moglich, da durch Annédherung grofse
Fehler entstehen.

Der neue hier vorgestellte Ansatz wird direkt auf der Geometrie des Modells ausgefiihrt,
somit werden fast keine Rechenfehler begangen. Dieser Ansatz ldsst sich zudem durch
Aufteilen in Unterprobleme und durch die Benutzung von Heuristiken effizient auf grofse
Datensitze anwenden. Die Messergebnisse und die Folgerungen fiir Effizienz und Effektivitat
des Algorithmus werden anschliefsend aufgefiihrt und erldutert.

Abstract

A possibility to simulate porous media are models. These models have the advantage of
being computer-generated and thus, huge and more significant datasets can be produced. In
this bachelor thesis, a new approach to calculate the volume and the porosity of such media
is introduced, based on a model for sandstone. In this case, previous algorithmic approaches
had the problem of producing too large errors using methods for approximation.

The newly introduced approach is directly executed on the geometry of the model. Thus,
there is nearly no calculation error. Furthermore, this approach uses a divide-and-conquer
strategy and additionaly uses heuristics to efficiently process large datasets. Measurement
results and conclusions regarding efficiency and effectiveness of the algorithm are then given
and discussed.

Inhaltsverzeichnis

1 Einleitung

2 Related Works
2.1 Pordse Medien e

3 Problemstellung

3.1 Modell
3.2 Ideeflirneuen Ansatz

4 Datenstrukturen

4.1 Représentation der Geometrie L.
42 Graphen e
4.2.1 Allgemeine Graphen
422 Baume

5 Erstellen raumlich disjunkter Polyeder

5.1 Problembeschreibung. 0 0.
5.2 Algorithmen auf BSP-Bdumen,
5.2.1 Zusammenfithrung (Merge)
5.2.2 Aufteilen (Split) o
5.3 Veranschaulichungin3D.
6 Anwendung auf groBe Datensétze
6.1 Aufteilungin Gruppen
6.1.1 Schnitt am Gitternetz L oo oo
6.1.2 Erstellen eines Rasters fester Grofse
6.1.3 Dynamische Raumaufteilung durch Rekursion
6.2 Bearbeitung in lokalen Gruppen,
6.2.1 Bearbeitung mit Uberschneidungs-Graphen
6.3 Heuristiken zur Optimierung
6.3.1 Uberfliissige Kanten eliminieren
6.3.2 Knotensortieren
6.4 Zukinftige Arbeiten L oL o
6.4.1 Optimierung: Auswahl des besten Ergebnis
7 Messwerte und Ergebnisse
7.1 Messergebnisse des Testdatensatzes
7.2 Qualitdt der Volumenberechnung

11
11

13
13
13

15
15
15
16
16

21
21
22
22
25
26

29
29
29
30
30
32
32
33
33
34
36
37

39

39
42

7.3 Auswirkungen der Heuristiken
8 Zusammenfassung und Ausblick

Literaturverzeichnis

Abbildungsverzeichnis

2.1

3.1

4.1
4.2
43
44

5.1
5.2
53
5-4
55

6.1
6.2
6.3

7.1
7.2
7-3
7-4
7-5
7.6
77
7.8
79
7.10

7.11
7.12
7-13
7-14

Modell des Fontainebleau Sandsteins [LBFH][HZL] 12
Modell mit 10.000 Kristallen aus 100 Kristalldefinitionen 14
Beispiele fiir je einen einfachen Graphen und einen Baum 16
Raumaufteilung mit Hilfe eines Quadtree 17
Einfaches Beispiel fiir einen BSP-Baum 18
Suche auf einem BSP-Baum 19
Ziel disjunkte Polyeder zu erhalten und wenn moglich konvexe 21
Einfacher Fall mit zwei Schnittpunkten und komplexer Fall mit vielen 22
Durchlauf des Merge-Algorithmus fiir ein Beispiel 24
Durchlauf des Split-Algorithmus fiir ein Beispiel 27
Einfaches Beispiel in3D 28
Schnitt des Modells am Gitternetz 30
Beispiel fiir Optimierung durch Kanten-Elimination 34
Problem der Kantenvererbung, 35
Optimierung durch Sortierung nach Grofle des Polyeders 36
Anzahl der Polyeder nach der Raumaufteilung durch den Octree 40
Dauer der Algorithmus-Ausfithrung 40
Anzahl Polyeder nach der Anwendung des Algorithmus 41
Dauer der Tetraedisierung und der Volumenberechnung 42
Dauer der Gesamtausfithrung, 43
Berechnetes Volumen 43
Berechnetes und erwartetes Volumen 44
Berechnete und erwartete Porositat L. 44

Berechnete und erwartete Porositdt ohne Randbereich (letzter Wert mit Rand) 46
Auswirkung der Heuristiken auf die Algorithmus-Ausfithrung (Anzahl Poly-

eder) . ..o 48
Auswirkung der Heuristiken auf die Algorithmus-Ausfiihrung (Zeit) 48
Auswirkung der Heuristiken auf die Dauer der Tetraedisierung 49
Auswirkung der Heuristiken auf die Gesamtdauer 49
Auswirkung der Heuristiken auf das berechnete Volumen 50

Tabellenverzeichnis

7.1 Dauer der Octree-Erstellung 41
7.2 Berechnete und erwartete Werte 45
7.3 Berechnetes und erwartetes Volumen ohne Randbereich 47

Verzeichnis der Algorithmen

51 Merge Algorithmus o oo o 23
5.2 Split Algorithmus 25
6.1 Bearbeitung der Gruppen mit Graph, 33
6.2 Bearbeitung der Gruppen mit Graph und Optimierungsschritten 37

1 Einleitung

Die Erforschung pordser Medien ist ein aktuelles Thema in der Physik. Die Erkenntnisse
die hier gewonnen werden konnen, beeinflussen wiederum andere Naturwissenschaften,
wie die Biologie, Materialwissenschaften und Geowissenschaften. Durch diese Relevanz
zur aktuellen Forschung ist es umso wichtiger Erkenntnisse und Informationen aus bereits
vorhandenen Daten zu ziehen. Zu diesen Daten gehort auch ein computergestiitzt erstelltes
Modell zur moglichst genauen Reprasentation pordser Medien.

Dieses Modell ist eine geometrische Darstellung pordser Medien, zum Beispiel von Sandstei-
nen. Es besteht aus vielen sich iiberschneidenden Polyedern. Das Verfahren zur Bestimmung
des Stein-Volumens, welches Thema dieser Bachelor-Arbeit ist, ist somit ein geometrisches
Problem. Dieses Problem soll hier mit Hilfe von BSP-Baumen algorithmisch geldst werden.
Diese Baumstrukturen werden bereits vielfdltig in den Bereichen der Computergrafik ver-
wendet und sind dadurch schon grofiteils erforscht. Ein Algorithmus zum Erstellen raumlich
getrennter Polyeder, wie er fiir diesen Zweck benotigt wird, gab es bisher jedoch noch nicht.

Somit verbindet dieses Thema die Interessen und Forschungsthemen von Physik und
Informatik und ist fiir beide Bereiche relevant.

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Related Works
Gibt einen Uberblick iiber relevante wissenschaftliche Arbeiten zum Thema der Pordsen
Medien

Problemstellung
Beschreibt das benutzte Sandstein-Modell und die Idee fiir einen Ansatz zum Losen
des Problems

Datenstrukturen
Beschreibt die Datenstrukturen, die in dieser Arbeit zum Einsatz kommen

Erstellen rdaumlich disjunkter Polyeder
Fiihrt die verwendeten Algorithmen ein, um aus je zwei konvexen Polyedern raumlich
disjunkte konvexe Polyeder zu erstellen

1 Einleitung

Anwendung auf grofie Datensitze
Stellt Strategien und Heuristiken zur Losung auf grofien Datensitzen vor

Messwerte und Ergebnisse
Prasentiert Messergebnisse zur Effizienz und Effektivitdt der Algorithmen und der

verwendeten Heuristiken

Zusammenfassung und Ausblick
Fasst die Ergebnisse der Arbeit zusammen und gibt entsprechend einen Ausblick

10

2 Related Works

In diesem Kapitel werden Informationen gegeben, um das Thema dieser Bachelorarbeit in ein
konkretes Andwendungsgebiet einzuordnen, jedoch nicht, um es auf dieses zu beschranken.
Dabei gelten die porose Medien und deren algorithmische Erforschung als Motivation und
Anlass fiir diese Arbeit.

2.1 Porose Medien

Pordse Medien spielen eine grofie Rolle in der Physik und werden gerade im Gebiet der
computergestiitzten Berechnungen genutzt, um mithilfe von Modellen Eigenschaften zu
erforschen. Zu diesen Eigenschaften zdhlen unter anderem auch die Durchléssigkeit von
Fliissigkeiten und Gasen und deren Einschlussvolumen. Um dabei gute und aussage-
kréftige Ergebnisse zu erhalten bedarf es ausreichend grofSer Datensitze. Dies ist jedoch
problematisch, da fiir das Erstellen dieser Datensédtze mit Rontgenaufnahmen und Compu-
tertomographie zum heutigen Stand der Technik Jahre benotigen wiirden.

An dieser Stelle kommt ein Modell ins Spiel, welches durch seine Einfachheit die Er-
forschung mithilfe von Algorithmen zuldsst. Dieses Modell wurde erstmals von Latief et al.
[LBFH] fiir Fontainebleau Sandsteine eingefiihrt. Auf dieses Modell und Teile des Datensat-
zes, von der Webseite des Institute for Computational Physics der Universitat Stuttgart [HZL],
wird sich diese Bachelor-Arbeit beziehen. In Abbildung 2.1 wird dieses Modell visualisiert
dargestellt.

11

2 Related Works

Abbildung 2.1: Modell des Fontainebleau Sandsteins [LBFH][HZL]

12

3 Problemstellung

Die Aufgabe ist es, das Volumen von pordosen Medien zu berechnen. Fiir diese Medien
existiert bereits ein Modell, jedoch noch kein effektiver Algorithmus, um das Volumen zu
bestimmen. In den folgenden Kapiteln wird darum nach der Vorstellung dieses Modells die
Idee fiir einen neuen Algorithmus vorgestellt.

3.1 Modell

Das Modell fiir porose Medien, eingefiihrt von Latief et al. [LBFH], besteht aus einer Vielzahl
an Kristallen. Diese Kristalle sind konvexe Polyeder und konnen auf mehrere Kristalldefini-
tionen zuriickgefiihrt werden. Somit gibt es im Modell nur k Kristalltypen, welche durch
Instanziierung gedreht, skaliert und verschoben werden. Dadurch erhélt man n Kristalle
mit k << n. In dieser Bachelorarbeit werden dabei alle Versuche mit Beispielmodellen
gerechnet. In diesen gibt es k = 100 Kristalldefinitionen und im ersten Datensatz n = 10.000
Kristallinstanzen, im zweiten n = 25.000 Kristallinstanzen.

Das Problem des Volumenbestimmens ist nun jedoch, dass die Kristalle - im Folgenden als
konvexe Polyeder bezeichnet - sich gegenseitig {iberschneiden konnen. Daraus folgt, dass

das Gesamtvolumen nicht durch Aufsummieren der Volumen der Polyeder bestimmt werden
kann:

(3~1) Vges 7’é ZV(Ki)
i=1

Dabei sind K; die im Raum verteilten Kristalle, miti € {1,...,n}.

In Abbildung 3.1 wird das Modell visualisiert dargestellt. Dabei kann man gut erkennen,
dass sich die Polyeder meist mehrfach tiberschneiden.

3.2 Idee fluir neuen Ansatz

Gesucht ist ein Algorithmus, der die urspriinglichen Kristalle so aufteilt, dass diese rdumlich
disjunkt sind:

(3.2) f : {Kl,..., Kn} — {Pl,..., Pm}

13

3 Problemstellung

Abbildung 3.1: Modell mit 10.000 Kristallen aus 100 Kristalldefinitionen

wobei folgendes gilt
(3:3) {Ki, o, Ku} N{Py, ..., P} = {Ky, ..., Kp} PNP=Q,Yi,je{l,.,m},i#]

Dabei bezieht sich der Schnitt und die leere Menge auf die rdumliche Uberschneidung, nicht
auf Mengen.

Daraus folgt, dass
m

(3-4) Vges = Z V(P;)
i=1

Anschliefsend kann dann das Volumen berechnet werden, indem die Polyeder tetraedisiert
werden. Die Berechnung des Volumen eines Tetraeders ist nun die folgende

1

(3'5) VTetrueder = gGh

mit Grundfliche G und Hoéhe h.

14

4 Datenstrukturen

Fiir die Verwendung der Algorithmen, die in den Kapiteln 5 und 6 eingefiihrt werden, bedarf
es einiger Datenstrukturen. Diese werden hauptsdchlich fiir die geometrische Reprasentation
benotigt und werden nun vorgestellt.

4.1 Reprasentation der Geometrie

Fiir die einfache Darstellung konvexer Polygone und Polyeder werden Geraden und Ebe-
nen benétigt. Diese miissen jedoch {iiber ihre Normalen definiert werden, damit die in
Abschnitt 4.2.2 auf Seite 17 eingefiihrte Datenstruktur der BSP-Baume verwendet werden
kann.

Daraus ergeben sich folgende Definitionen fiir
e 2D
(4.1) Gerade ¢ = (p, 1) mit p beliebiger Punkt auf ¢ und # Normale

Das Polygon wird somit definiert durch eine Menge von Geraden, wobei Aufien- und
Innenseite durch die Richtung der Normalen festgelegt ist.

e 3D
(4.2) Ebene E = (p,71) mit p beliebiger Punkt auf E und 7i Normale

Das Polyeder wird definiert durch eine Menge von Ebenen, wobei wie im 2D-Fall die
Aufien- und Innenseite durch die Richtung der Normalen festgelegt wird.

4.2 Graphen

An mehreren Stellen in den Algorithmen wird auf Graphen zurtickgegriffen. Dabei spielt
gerade der BSP-Baum eine zentrale Rolle. Dieser soll hier, zusammen mit allgemeinen
Graphen und Baumen, eingefiihrt und erldutert werden.

15

4 Datenstrukturen

Graph Baum

Abbildung 4.1: Beispiele fiir je einen einfachen Graphen und einen Baum

4.2.1 Allgemeine Graphen

Ein Graph G wird als Tupel seiner Knoten und Kanten definiert:

(4.3) G = (V,E), mit V Menge der Knoten und E Menge der Kanten

Dabei reprasentieren die Knoten meist Objekte. Die Kanten, die jeweils zwei Knoten mitein-
ander verbinden, reprasentieren die Relationen zwischen den Knoten. Diese Kanten konnen
gerichtet oder ungerichtet sein. In dieser Bachelorarbeit werden jedoch nur ungerichtete
Graphen bendétigt, da die Relation zwischen zwei Knoten hier immer kommutativ ist.

4.2.2 Baume

Ein Baum ist ein spezieller Graph, mit den Eigenschaften, dass dieser eine Wurzel hat und
keine Zyklen. Bei Baumen werden die Knoten unterteilt in Wurzel, innere Knoten und
Blétter. Die Wurzel ist dabei das einzige Element, welches keinen Vaterknoten hat. Blatter
hingegen sind die Knoten ohne Kinder. Alle anderen Knoten werden als innere Knoten
bezeichnet, da diese sowohl einen Vaterknoten als auch Kinder haben. In Abbildung 4.1
wird zur Veranschaulichung je ein einfaches Beispiel fiir einen Graphen und einen Baum
dargestellt.

Quad- und Octree

Quad- und Octrees werden meist zur rdumlichen Aufteilung verwendet, um den Raum in
gleich grofe Teile aufzuspalten, wie in Abbildung 4.2 gezeigt wird.

Hier kann man zwischen 2D und 3D unterscheiden:

16

4.2 Graphen

Abbildung 4.2: Raumaufteilung mit Hilfe eines Quadtree

e 2D
Ein Baum mit maximal 4 Kindern pro Knoten; teilt einen endlichen zwei-dimensionalen
Raum in vier Unterrdume auf.

e 3D
Ein Baum mit maximal 8 Kindern pro Knoten; teilt einen endlichen drei-dimensionalen
Raum in acht Unterrdaume auf.

BSP-Baume

Bei BSP-Baumen handelt es sich um Bindrbaume. Das heifst, dass ein Knoten maximal
zwei Kinder hat. Im Gegensatz zu Quad- und Octrees wird der BSP-Baum jedoch nicht
verwendet um den Raum in gleich grofle, am Raster ausgerichtete Unterraume aufzuteilen.
Er wird dazu verwendet, um durch einen Partitionierer den Raum in zwei Halbrdume zu
unterteilen. Zudem wird hier nicht vorausgesetzt, dass der Raum begrenzt ist. Somit sind
zwei Halbraume erstmal nur in eine Richtung begrenzt. Erst durch viele Unterteilungen und
durch Unterscheidung zwischen innen und aufien konnen geometrische Figuren entstehen.

Wiederum kann je nach Dimension unterschieden werden:

e 2D
Aufteilung der Flache durch Geraden

e 3D
Aufteilung des Raums durch Ebenen

Um an dieser Stelle zwischen Innen- und AufSenseite unterscheiden zu konnen, kommt die
Geraden- bzw. Ebenendefinition aus Abschnitt 4.1 ins Spiel. AufSerdem wird jetzt auch die

17

4 Datenstrukturen

Abbildung 4.3: Einfaches Beispiel fiir einen BSP-Baum

Reihenfolge der Kanten entscheidend: Zusétzlich zu der Relation zwischen den Knoten muss
zwischen linker und rechter Kante unterschieden werden, um eine Aussage iiber Innen- und
Aufsenseite treffen zu konnen.

In dieser Bachelorarbeit wird dazu die Konvention eingefiihrt, dass die linke Kante die
Innenseite reprasentiert und die rechte Kante entsprechend die Auflenseite. Weiterhin wird
immer angenommen, dass die Normalen der Geraden oder Ebenen nach aufsen zeigen.

In Abbildung 4.3 wird eine einfache Aufteilung des Raums im Zwei-Dimensionalen vorge-
nommen. Dabei gibt es keinen Unterschied zur Aufteilung im 3D-Raum, aufier dass andere
Partitionierer verwendet werden.

Im ersten Schritt wird durch die Gerade A der Raum in zwei Teile partitioniert. Der Halb-
raum mit der Bezeichnung 1 ist dabei aufsen, der Halbraum mit der Bezeichnung 2 ist
innen. Dies folgt aus der oben eingefiihrten Konvention fiir die Normalenrichtung und der
Kantenreihenfolge. Die nédchsten Schritte laufen analog ab, bis alle Partitionierer abgearbeitet
wurden.

Abbildung 4.4 zeigt hingegen eine Suche auf einem BSP-Baum. Dabei ist die Eingabe der
blaue Punkt. Nun soll ermittelt werden, in welcher Flache dieser Punkt liegt. Dazu wird
bei der Wurzel beginnend abgestiegen und in jedem Schritt tiberpriift, ob der Punkt auf
der Innen- oder auf der AufSenseite des Partitionierers liegt. Dieser Schritt wird solange
wiederholt bis ein Blatt erreicht wurde.

Ein Sonderfall wére es jedoch, wenn der Punkt auf einem Partitionierer liegen wiirde. In
diesem Fall wire es nicht offensichtlich klar, welcher Seite der Punkt zugeordnet werden
sollte.

18

4.2 Graphen

Abbildung 4.4: Suche auf einem BSP-Baum

Anwendungsgebiete BSP-Baume werden hédufig im Kontext von Computergrafik benutzt.
Der Baum enthélt dabei Informationen tiber den Raum, wie es zum Beispiel fiir Kollisions-
abfragen bei Graphic Engines notwendig ist. Weiter konnen BSP-Bdume allerdings auch
fiir boolsche Operationen zwischen zwei Objekten verwendet werden, wie es Naylor et al.
[NAT] beschreiben.

19

5 Erstellen raumlich disjunkter Polyeder

Fiir die Berechnung des Gesamtvolumens mdiissen alle Polyeder raumlich disjunkt zueinander
sein. Aufierdem soll die gute Eigenschaft der Ausgangspolyeder beibehalten werden, namlich
dass diese konvex sind. Dass diese Eigenschaft wichtig ist fiir den Algorithmus wird mit
dessen Einfithrung in Abschnitt 5.2.2 auf Seite 25 verdeutlicht. Im folgenden werden nun die
notwendigen Algorithmen vorgestellt.

5.1 Problembeschreibung

Es soll ein Algorithmus gefunden werden, der zwei sich tiberschneidende konvexe Polyeder
in raumlich disjunkte aufteilt. Da Uberschneidungen von mehr als zwei Polyedern méglich
sind, soll eine weitere Voraussetzung sein, dass die entstandenen Polyeder wiederum konvex
sind. Abbildung 5.1 zeigt ein mogliches Vorgehen.

Dass das Aufteilen der Polyeder nicht trivial ist, verdeutlicht Abbildung 5.2. Der zweite,
komplexere Fall zeigt hier deutlich, dass durch naives Aufteilen mehr Erzeugnisse entstehen
konnen als unbedingt notwendig.

Aus diesem Grund, werden in den nédchsten Abschnitten Algorithmen vorgestellt, durch die
sich diese Aufgabe auf BSP-Baumen 16sen lasst.

ey
\\/ —)
)~ Ag\/

Abbildung 5.1: Ziel disjunkte Polyeder zu erhalten und wenn méglich konvexe

21

5 Erstellen raumlich disjunkter Polyeder

Abbildung 5.2: Einfacher Fall mit zwei Schnittpunkten und komplexer Fall mit vielen

5.2 Algorithmen auf BSP-Baumen

Fiir BSP-Baume gibt es viele Algorithmen. Die wichtigsten sind dabei die zum Ermitteln
des Schnittbereichs zweier Objekte und des gemeinsamen Raums. Letzteres wird von [NAT]
beschrieben und im folgenden Abschnitt eingefiihrt und erldutert.

5.2.1 Zusammenfiihrung (Merge)

Ziel ist es zwei beliebige Polyeder zusammenzufiigen, die jeweils durch einem BSP-Baum
reprasentiert werden. Das neu entstandene Polyeder deckt also den Raum ab, der von
mindestens einem der Ausgangsobjekte abgedeckt wird. Der Baum des zusammengesetzten
Polyeders wird deshalb aus den beiden Bdumen der Ausgangspolyeder so erstellt, dass
dieser fiir jeden Punkt, der sich in mindestens einem der beiden Polyeder befindet IN ausgibt,
ansonsten OUT.

Nachfolgend wird der Algorithmus zum Zusammenfiihren zweier BSP-Baume und damit
zum Berechnen des gemeinsamen Raums als Pseudocode eingefiihrt. Siehe Algorithmus 5.1
auf der nichsten Seite. Dieser ist aus der Arbeit von Naylor, Amanatides und Thibault [NAT]
entnommen. Der Algorithmus funktioniert dabei fiir beliebige Polyeder, insbesondere fiir
konvexe. Zusitzlich zum Pseudocode wird ein Durchlauf des Algorithmus als Beispiel in
Abbildung 5.3 gezeigt.

22

5.2 Algorithmen auf BSP-Baumen

Algorithmus 5.1 Merge Algorithmus

Merge_Bspts : (T1, T2 : Bspt) -> Bspt

Types
PartitionedBspt : (inNegHs, inPosHs : Bspt)

Imports
Merge_Tree_With_Cell : (T1, T2 : Bspt) > Bspt
Partition_Bspt : (T : Bspt, P : Bp) -> PartitionedBspt

Definition
IF Tl1.is_a_cell OR T2.is_a_cell
VAL := Merge_Tree_With_Cell(T1, T2)
ELSE
Partition_Bspt(T2, Tl.root_region.bp) -> T2_partitioned

VAL .neg_subtree : Merge_Bspts(T1.neg_subtree, T2_partitioned.inNegHs)
VAL.pos_subtree := Merge_Bspts(Tl.pos_subtree, T2_partitioned.inPosHs)
VAL.root_region := Tl.root_region

END IF

RETURN VAL
END Merge_Bspts

Beschreibung des Algorithmus Fiir den Algorithmus werden anfangs zwei zusétzliche
Funktionen Merge_Tree_With_Cell und Partition_Bspt definiert. Auf deren Funktionsweise
wird spdter genauer eingegangen. Fiir den Algorithmus im Allgemeinen ist hier erstmal
nur wichtig, dass Merge_Tree_With_Cell eine benutzerdefinierte Handhabung beim Erreichen
des Abbruchkriteriums zuldsst und Partition_Bspt anhand eines bindren Partitionierers, im
2D-Fall einer Geraden und im 3D-Fall einer Ebenen, den als weiteren Parameter tibergebenen
Baum in linken und rechten Unterbaum aufteilt.

Der Algorithmus geht rekursiv vor. Als Abbruchkriterium nimmt er die Situation, wenn von
einem der beiden Baume ein Blatt erreicht wurde. Ansonsten wird der als zweiter Parameter
iibergebene Baum am Partitionierer des Wurzelknotens des ersten Baums aufgeteilt. Das
Resultat dieses Vorgangs wird nun als Parameter fiir den rekursiven Aufruf verwendet. Dabei
wird nun der linke Unterbaum des partitionierenden Baums mit dem linken Unterbaum des
partitionierten Baums zusammengefiihrt, wie auch analog fiir die rechte Seite. Als Wert fiir
den aktuellen Knoten wird der verwendete Partitionierer selbst eingesetzt.

Naylor et al. [NAT] schlagen zusatzlich vor, dass durch eine zusétzliche Funktion in je-
dem Schritt ermittelt werden kann, welcher der beiden Baume partitioniert wird oder den
Partitionierer stellt. In diesem Fall stellt immer der gleiche Baum den Partitionierer, um
nachfolgend den Algorithmus zum Aufteilen des Baums anwenden zu kénnen, welcher im
Abschnitt 5.2.2 auf Seite 25 eingefiihrt wird.

Merge_Tree_With_Cell Durch Ausgliedern dieser Methode stellen Naylor et al. [NAT] die
Moglichkeit zur Verfiigung einen benutzerdefinierten Operator zu verwenden. In unserem

23

5 Erstellen raumlich disjunkter Polyeder

Abbildung 5.3: Durchlauf des Merge-Algorithmus fiir ein Beispiel

Fall ist dies jedoch nicht notwendig, da der Baum nur zur geometrischen Reprasentation
verwendet wird, nicht zur logischen.

Partition_Bspt Diese Funktion liefert nach Ubergabe eines BSP-Baums und eines Partitio-
nierers einen rechten und einen linken Unterbaum zurtick. Diese neuen Biume werden durch
Partitionieren des tibergebenen BSP-Baums erstellt. Die Implementierung hdngt dabei von
den benutzten Datenstrukturen zur Représentation des Polyeders ab. Wenn beispielsweise
der Partitionierer als Ebene in Punkt-Normalen-Form vorliegt und zu jeder Ebene im Baum
die Eckpunkte bekannt sind, kann durch die Normale und die Position der Eckpunkte
festgestellt werden, ob eine Fliche komplett innen, aufien oder auf beiden Seiten liegt.

24

5.2 Algorithmen auf BSP-Baumen

Algorithmus 5.2 Split Algorithmus

Split_Bspts : (T : Bspt) -> Bsptl[]
out_val : Bspt[]
right_step_taken : bool := false

DO
right_step_taken := false
currentNode : BsptNode := T.root
out_val.Add(T.root)

WHILE currentNode IS NO LEAF
IF currentNode.hasPosSubtree AND currentNode.pos_subtree.notYetVisited
out_val.last.InvertNormal ()
out_val.last.AppendNegSubtree(currentNode.pos_subtree.node)

currentNode = currentNode.pos_subtree.node
right_step_taken := true
ELSE
out_val.last.AppendNegSubtree(currentNode.neg_subtree.node)

currentNode = currentNode.neg_subtree.node
END IF
END WHILE
WHILE right_step_taken

RETURN out_val
END Split_Bspts

5.2.2 Aufteilen (Split)

Die Funktion dieses Algorithmus ist es, einen zuvor zusammengefiigten Polyeder in neue,
konvexe Polyeder aufzuteilen. Der Algorithmus funktioniert dabei jedoch nur auf BSP-
Bdaumen, welche durch oben beschriebene Methode zusammengefiigt wurden. Nur durch
diese besondere Form des Baums, konnen daraus schnell konvexe Polyeder erstellt werden.
Da wir wissen, dass in unserem Modell nur konvexe Polyeder vorhanden sind und durch
diesen Schritt wiederum konvexe Polyeder entstehen, kann dieser Algorithmus hier ange-
wendet werden.

Der Algorithmus wird im Folgenden in Algorithmus 5.2 als Pseudocode beschrieben und als
Beispiel in Abbildung 5.4 veranschaulicht.

Beschreibung des Algorithmus Als Eingabe bekommt dieser Algorithmus einen BSP-Baum
und gibt nach dem Aufteilen mehrere BSP-Baume zurtick. Das Aufteilen selber wird in einer
Schleife vorgenommen. Diese wird so oft durchlaufen, wie neue BSP-Baume und somit
Polyeder entstehen. Am Anfang dieser Schleife wird die Abbruch-Variable right_step_taken
wieder auf false gesetzt. So wird nach jedem Durchlauf tiberpriift, ob es noch einen weiteren
Baum gibt. Weiterhin wird der Liste der neuen BSP-Baume ein neues Element hinzugefiigt,

25

5 Erstellen raumlich disjunkter Polyeder

das bis dahin nur aus der Wurzel besteht, namlich der gleichen Wurzel wie der des Eingabe-
Baums.

In der inneren Schleife wird nun der Baum traversiert bis ein Blatt erreicht wurde. In
der Schleife werden dabei folgende Unterscheidungen getroffen: der aktuelle Knoten hat
ein noch nicht besuchtes rechtes Kind, oder es gibt keine Abzweigung oder das rechte Kind
wurde bereits besucht. Im ersten Fall wird der letzte Knoten des neu erstellten Baums inver-
tiert und als dessen linkes Kind das rechte Kind des aktuell traversierten Knotens angehangt.
Zudem wird der Baum als nédchstes an diesem rechten Knoten weiter traversiert und das
Abbruchkriterium auf false gesetzt (dazu wird die Variable right_step_taken auf true gesetzt).
Zu diesem Zeitpunkt ist sicher, dass noch ein weiterer Baum erstellt werden kann, da erst im
letzten Durchlauf ohne rechts ab zu zweigen der letzte mogliche Baum erstellt wird und
somit das Abbruchkriterium true bleibt (right_step_taken bleibt false). In den anderen Fallen
wird der linke Knoten des traversierten Baums dem neuen Baum hinzugefiigt und dieser
auch als ndchstes Element traversiert.

Korrektheit Um zu zeigen, dass der Algorithmus korrekt ist, sind folgende drei Eigenschaf-
ten zu zeigen

1. die erstellten Polyeder sind raumlich disjunkt zueinander,
2. der gleiche Raum wie vom zusammengesetzten Polyeder wird abgedeckt und

3. die erstellten Polyeder sind konvex.

Die Eigenschaft der raumlichen Disjunktheit folgt aus der Definition des BSP-Baums. Zwei
erstellte Polyeder A, B miissen demnach disjunkt sein, da sie einen gemeinsamen Knoten X
haben dessen Kind Y zu A gehort und Kind Z zu B. Da diese zwei Unterrdume darstellen,
die durch X getrennt sind, sind diese beiden Rdume disjunkt und somit auch die Polyeder.

Die vollstindige Abdeckung folgt direkt aus der Korrektheit des Merge-Algorithmus,
da der ganze Raum abgedeckt wird und aus dem BSP-Baum, da alle Bldtter mit der Ei-
genschaft IN auch in den neuen BSP-Bdumen existieren und den selben Unterraum abdecken.

Wird ein konvexer Polyeder durch einen Partitionierer geteilt, sind die beiden resultie-
renden Polyeder wiederum konvex. Da der nédchste Partitionierer dann nur noch auf diese
Subprobleme angewendet wird, wird die konvexe Eigenschaft weitervererbt. Dadurch sind
alle erstellten Polyeder konvex.

5.3 Veranschaulichung in 3D

In Abbildung 5.5 wird ein einfaches Beispiel fiir die Ausfithrung der beiden Algorithmen
dargestellt. Dabei werden aus zwei sich tiberschneidenden Wiirfeln vier Polyeder erstellt.
Einer dieser erstellten Polyedern entspricht dabei einem der Ausgangspolyeder. Alle erstellten

26

5.8 Veranschaulichung in 3D

Abbildung 5.4: Durchlauf des Split-Algorithmus fiir ein Beispiel

Polyeder sind disjunkt zueinander und decken den ganzen auch zuvor abgedeckten Raum
ab.

27

5 Erstellen raumlich disjunkter Polyeder

Abbildung 5.5: Einfaches Beispiel in 3D

28

6 Anwendung auf groBe Datensatze

Der Algorithmus in der Form wie er im vorherigen Kapitel eingefiihrt wurde, funktioniert an-
gewendet auf zwei konvexe Polyeder. Fiir mehrere, sich mehrfach tiberschneidende Polyeder
jedoch wird eine komplexere Vorgehensweise benoétigt. Da in dem benutzten Testdaten-
satz 10.000 Polyeder verwendet werden bedarf es zusitzlich einer Strategie, die es erlaubt
die Aufgaben parallel abzuarbeiten. Dies ist umso wichtiger, da das vollstindige Modell,
zu finden auf der Instituts-Homepage von Hilfer et al. [HZL], tiber 1 Million Polyeder enthailt.

Um diese grofie Anzahl von Polyedern zu bewiltigen, wird erst die Aufteilung in Grup-
pen beschrieben, wodurch Parallelisierbarkeit gewihrleistet wird. Anschlieffend werden
Strategien zur lokalen Bearbeitung dieser Gruppen gegeben, sowie Heuristiken um diese
Bearbeitung weiter zu optimieren.

6.1 Aufteilung in Gruppen

Eine Aufteilung in geographische Gruppen ist aus mehreren Griinden ein sinnvolles Vorge-
hen. Einerseits wird dadurch ermdglicht diese Gruppen parallel abzuarbeiten. Andererseits
miissten sonst alle Polyeder paarweise auf Uberschneidungen tiberpriift werden. Das wiirde
somit in quadratischer Laufzeit enden und auf ein Modell mit mehreren hunderttausend
Polyedern nicht mehr anwendbar sein.

6.1.1 Schnitt am Gitternetz

Ein grofser Vorteil des Modells ist es, dass die Polyeder in beliebig kleine Polyeder aufgeteilt
werden diirfen, ohne dass dies die Eigenschaften und die Aussagekréftigkeit des Modells in
Bezug auf das Volumen verletzt. Einzig zu beachten ist, dass durch alle Polyeder der gleiche
Raum wie zuvor abgedeckt werden muss. Deshalb ist es moglich alle Polyeder an einem
Gitter zu schneiden, um diese anschliefiend eindeutig den lokalen Gruppen zuweisen zu
konnen. In Abbildung 6.1 wird dies verdeutlicht. Es ist gut zu sehen, dass die entstandenen
acht Gruppen zueinander rdumlich unabhéngig sind.

Durch diesen Schnitt sind alle Polyeder betroffen, die ansonsten Raum auf beiden Seiten der
Gitterebene belegen wiirden. Sie werden dadurch in zwei neue rdumlich disjunkte Polyeder
aufgeteilt. Dadurch, dass diese Aktion auf alle Polyeder angewendet wird, wird sichergestellt,
dass die dadurch entstandenen Gruppen ebenfalls zueinander rdumlich disjunkt sind. Somit
fallt eine rechenintensive Nachbarschaftsbetrachtung weg und die lokalen Gruppen konnen

29

6 Anwendung auf groBBe Datensétze

Abbildung 6.1: Schnitt des Modells am Gitternetz

parallel bearbeitet werden, ohne dass Informationen aus einer Nachbargruppe benotigt
werden. Dies alles erleichtert die Implementation erheblich, da Rechnerknoten, auf denen
die Gruppen abgearbeitet werden sollen nicht miteinander kommunizieren miissen und als
Ergebnis nur das berechnete Volumen ihre Gruppe zuriickgeben miissen.

6.1.2 Erstellen eines Rasters fester GroBe

Ein naiver Ansatz zur Umsetzung des Schnitts am Gitter ist einfach alle Polyeder mit allen
Gitterebenen zu schneiden. Dieser Ansatz hat jedoch zwei entscheidende Nachteile. Bei
einer Aufteilung in kleine Gruppen werden viele Gitterebenen benétigt. Dadurch wéchst
die Laufzeit zur Erstellung der Gruppen auf O(k * n) mit k Anzahl der Gitterebenen und n
Anzahl der Polyeder. Der andere Nachteil ist, dass durch stures Aufteilen keine Reaktion
auf die Polyeder-Dichte vorgenommen werden kann. Gerade weniger dichte Auflenbereiche
werden somit weiter aufgeteilt als notwendig.

6.1.3 Dynamische Raumaufteilung durch Rekursion

Um die im vorherigen Abschnitt angesprochenen Nachteile zu verlieren, ist eine rekursive
Raumaufteilung sinnvoll. Dabei kann durch geschickte Parameterwahl erreicht werden, dass
dichte Regionen starker aufgeteilt werden als weniger dichte. Zudem wird der Schnitt am
Gitternetz nicht mehr auf alle Polyeder angewandt, sondern nur auf die lokalen Subprobleme.
AufSerdem lassen sich die Subprobleme parallelisieren, da diese einen raumlich disjunkten
Bereich abdecken.

Die Laufzeit der dynamischen Rekursion ist somit

(6.1) O(2x*1%n)

30

6.1 Aufteilung in Gruppen

mit / maximaler Rekursionstiefe und n Anzahl der Polyeder.
Im Vergleich dazu die Laufzeit fiir die feste Aufteilung, bei gleich vielen Gitterebenen:

6.2) O ((g 21‘) *n)

Octree

Zur Implementierung der dynamischen Aufteilung eignet sich die Datenstruktur des Octree.
Auf ihm kann die Aufteilung einfach und effizient ausgefiihrt werden. Dabei sind die
aufgeteilten Riume in den Bldttern des Baums zu finden. Fiir die dynamische Aufteilung
wird jedoch noch ein Abbruchkriterium benétigt. Im Folgenden wird deshalb nun ein
mogliches Abbruchkriterium eingefiihrt.

Abbruchkriterium

Die Idee hinter dem Abbruchkriterium ist, dass abgebrochen wird, sobald die Dichte hinrei-
chend gering ist, um den eigentlichen Algorithmus effizient anwenden zu konnen. Fiir dieses
Modell bietet es sich an, die Anzahl der Uberschneidungen der Polyeder in der Gruppe zu
tiberpriifen. Ubersteigt diese Anzahl einen Schwellwert, wird weiter aufgeteilt. Ansonsten
wird die aktuelle Gruppe als Blatt dem Baum hinzugefiigt. Da jedoch die Berechnung der
Uberschneidungen gerade in sehr groen Gruppen sehr viel Zeit kostet, weil alle Polyeder
miteinander tiberpriift werden miissen, bietet es sich an, einen weiteren Schwellenwert fiir
die Anzahl der Polyeder in der Gruppe einzufiihren. Dieser ist zwar weniger aussagekréftig,
kann allerdings als erstes tiberpriift werden und nur wenn die Anzahl der Polyeder geringer
als der Schwellenwert ist, wird auf die Uberschneidungen zuriickgegriffen.

Parameterwahl Die Wahl der Parameter hingt dabei vom gegebenen Modell ab. In Ta-
belle 7.1 auf Seite 41 werden die Auswirkungen der Parameter auf die Erstellung des
Octree dargestellt, in den darauf folgenden Schaubildern die Auswirkungen auf die Ausfiih-
rung des Algorithmus. Das dazu verwendete Beispielmodell und die Folgerungen aus den
Messergebnissen werden in Kapitel 7 ndher erldutert.

Tiefenlimit Bei strenger Wahl der Schwellwerte kann es jedoch passieren, dass trotz weiterer
Aufteilung der Wert nicht unter die Parameterwerte sinkt. Dadurch kann es zu sehr tiefen
Stellen im Baum kommen. In diesem Fall wiirde die Erstellung des Baums viel zu lange
dauern, es wire also ineffizient. Darum kann es sinnvoll sein, ein Tiefenlimit fiir den Baum
einzufiihren. Die Auswirkungen dieses zusitzlichen Parameters werden ebenfalls in der
Tabelle 7.1 auf Seite 41 aufgezeigt und in Kapitel 7 erldutert.

31

6 Anwendung auf groBBe Datensétze

6.2 Bearbeitung in lokalen Gruppen

Der naive Vorgang zum Bearbeiten der nun erstellten lokalen Gruppen wiére, dass in jedem
Schritt ein Polyeder aus der Liste genommen wird und mit allen anderen Polyedern in
dieser Liste geschnitten wird. Das Ergebnis dieses Schnitts wird dann wiederum in die Liste
aufgenommen. Der Algorithmus wére dann fertig, wenn kein Polyeder mehr in der Liste ist.
Dieser naive Ansatz ist jedoch ineffizient und fiihrt zu sehr vielen vermeidbaren Abfragen.
Zusitzlich wird es schwieriger auf so einer Datenstruktur mit Heuristiken zur Optimierung
zu arbeiten. Deswegen werden im Folgenden Ansétze zur besseren Bearbeitung der Gruppen
gezeigt.

6.2.1 Bearbeitung mit Uberschneidungs-Graphen

Eine sehr effiziente Moglichkeit der Bearbeitung der lokalen Gruppen ist die Verwendung
eines Graphen als Datenstruktur. In diesem Graphen entspricht jeder Knoten einem Polyeder
und jede Kante zwischen zwei Knoten bedeutet, dass diese Polyeder sich hochstwahrschein-
lich tiberschneiden. Dabei besteht die Moglichkeit, dass eine Kante zwischen zwei Knoten
existiert, obwohl diese sich nicht tiberschneiden. Dies ist auf die Kantenvererbung im Al-
gorithmus zurtickzufiihren, die in den ndchsten Abschnitten erklart wird. Jedoch kann nie
vorkommen, dass sich zwei Polyeder tiberschneiden aber keine Kante dazwischen existiert.
Die Bearbeitung der Gruppe wird somit iiber den Algorithmus 6.1 vorgenommen.

Im Pseudocode werden anfangs die beiden Algorithmen eingebunden, welche die eigentli-
che Arbeit des paarweise Aufteilens der Polyeder verrichten. Diese werden spéter aufgerufen.

Am Anfang des Algorithmus wird zundchst der Graph aufgebaut. Dies geschieht, in-
dem alle Polyeder aus der lokalen Gruppe erst in einen Knoten verwandelt und anschliefSend
in den Graphen hinzugefiigt werden. Dabei wird angenommen, dass die Add-Funktion des
Graphen die Aufgabe des Erstellens der Kanten {ibernimmt. Nach dem Hinzufiigen aus der
lokalen Gruppe, wird dieser Polyeder aus der Gruppe vorldufig entfernt, da die Gruppe
spdter im Algorithmus zum Speichern der fertig bearbeiteten Polyeder verwendet wird.

In der Haupt-Schleife wird nun der jeweils ndchste Knoten aus dem Graphen genom-
men und in die Ausgabeliste aufgenommen. Dies ist moglich, da durch die Ausfiihrung
des Merge-And-Split-Algorithmus dieser nicht verdndert wird, sondern lediglich der jeweils
andere Polyeder durch diesen geschnitten wird. Dieser Schnitt wird nun im néchsten Schritt
ausgefiihrt, indem jeder tiber eine Kante erreichbarer Polyeder geschnitten wird. Das Er-
gebnis dieses Schnitts ersetzt nun den urspriinglichen, geschnittenen Polyeder. Hier wird
zudem angenommen, dass die Replace-Funktion des Graphen alle Kanten des zu ersetzenden
Polyeders 16scht und diese allen seinen Kindern weitervererbt. Dadurch wird sichergestellt,
dass die neuen Polyeder auch nur mit denen verglichen werden, die vom urspriinglichen
ebenfalls geschnitten wurden. Anschliefend wird der erste Polyeder aus dem Graphen
entfernt und damit alle seine Kanten geltscht, da diese bereits abgearbeitet wurden. Die

32

6.3 Heuristiken zur Optimierung

Algorithmus 6.1 Bearbeitung der Gruppen mit Graph

Intersect_Using Graph : (G : Group) -> Group

Types
Node : (Value : Polyhedra, Edges : PointerToNodel[])

Imports
Merge_Bspts : (T1, T2 : Bspt) -> Bspt
Split_Bspts : (T : Bspt) -> Bsptl]

Definition
Graph : Graph_Structure

FOR EACH P : Polyhedra IN G DO
Graph.Add (NEW Node (P))
G.Remove (P)

END FOR

FOR EACH N1 : Node IN Graph DO
G.Add (Ni.Value)

FOR EACH E : PointerToNode IN N1.Edges DO
Graph.Replace (E.Node, Split_Bspts (Merge_Bspts (Nl.tree, E.Node.tree)))
END FOR

Graph.Remove (N1)
END FOR

RETURN G
END Intersect_Using_Graph

Schleife wird nun solange durchlaufen, bis der Graph leer ist. Dann wird die Ausgabegruppe
zuriickgegeben.

6.3 Heuristiken zur Optimierung

Durch das Wissen iiber das Modell konnen Heuristiken abgeleitet werden mit denen sich
der Algorithmus weiter verbessern ldsst. Die Ergebnisse zu der Wirkung dieser Heuristiken
werden im Kapitel 7 dargelegt.

6.3.1 Uberfliissige Kanten eliminieren

Die neu erstellten Polyeder bekommen jeweils alle Kanten von dem Polyeder vererbt, aus
denen sie erstellt wurden. Dadurch kann es dazu kommen, dass Kanten eine Uberschneidung
anzeigen, die gar nicht existiert. Darum kann es sich lohnen schon friih solche Kanten zu
eliminieren. In der Abbildung 6.2 wird so eine Situation verdeutlicht. Werden die Kanten
nicht frithzeitig entfernt, kommt es nach mehreren Runden zu einer Vielzahl tiberfliissiger

33

6 Anwendung auf groBBe Datensétze

Kanten entfernt: ~ Ag A,

Abbildung 6.2: Beispiel fiir Optimierung durch Kanten-Elimination

Kanten und dadurch zu erhhtem Aufwand. Der Eliminierungsprozess muss sich dabei nur
auf die jeweils neuen Polyeder erstrecken, da alle anderen Polyeder spétestens im letzten
Schritt genau so behandelt wurden und deshalb keine unnétigen Kanten haben konnen. Wie
sich dieser Optimierungsschritt in den Algorithmus einfiigt, wird in der erweiterten Fassung
des Algorithmus im Pseudocode 6.2 gezeigt.

6.3.2 Knoten sortieren

Im Graphen gibt es mehrere Moglichkeiten nach denen Knoten sortiert werden konnen.
Im Folgenden werden zwei Moglichkeiten vorgestellt, durch welche sich gewisse Vorteile
erhoffen lassen. Dabei wird dieser Sortierschritt immer vor der ndchsten Runde ausgefiihrt,
sodass das grofste bzw. kleinste Element als ndchstes behandelt wird. Zusétzlich hilft es zu
wissen, dass es nicht entscheidend ist, dass die ganze Liste sortiert ist. Benotigt wird jeweils
nur das grofite oder kleinste Element. Somit kann eine einfache Suche ausgefiihrt werden,
die auf einer Liste angewendet in O(n) ablduft. Bei der Wahl grofler lokaler Gruppen wire
es jedoch sinnvoller die Knoten in einer such-freundlichen Datenstruktur zu verwalten,
um die Suche auf die Laufzeit O(logn) zu verringern. Die Reihenfolge der paarweisen
Anwendung des Merge-And-Split-Algorithmus auf den ausgewihlten Polyeder und jeweils
damit verbundenen spielt hier keine Rolle, da diese sich gegenseitig nicht beeinflussen.

Nach Anzahl der Kanten

Durch diesen Sortiervorgang werden die Knoten so angeordnet, dass diese absteigend nach
der Anzahl ihrer Kanten sortiert sind. Von diesen Knoten wird dann der mit den meisten
Kanten als nidchstes Element ausgewdhlt. Durch diese Auswahl wird erreicht, dass in jedem
Schritt moglichst viele Kanten abgebaut werden, die dadurch nicht mehr an mehrere Kinder

34

6.3 Heuristiken zur Optimierung

G\ /B
F A C
Fall 1: A schneidet B / \ Fall 2: B schneidet A
E D

G B G
1 BZ \
\ B,
/&
F A C F 7>\/C
\ A;
/ \
E D E D

Abbildung 6.3: Problem der Kantenvererbung

vererbt werden konnen.

Ein extremes Beispiel wird in Abbildung 6.3 gezeigt. Im ersten Fall teilt A hier B auf.
Da B jedoch nur diese Kante zu A hatte, haben alle resultierenden By, By, ..., B, auch keine
Kanten. Diese gute Reihenfolge, dass erst A verarbeitet wird, fithrt zu einer Laufzeit von
O(k) mit k Anzahl der Kanten in der Ausgangssituation. Im zweiten Fall jedoch wird A
von B geschnitten und aufgeteilt. Nun werden alle iibrigen Kanten von A an dessen Kinder
vererbt, somit belduft sich nach nur einem Schritt die Anzahl der Kanten auf m * (k — 1) mit
m Anzahl der erstellten Kinder von A. Geht man nun von dem Worst-Case-Szenario aus,
wird in jedem folgenden Schritt die schlechteste Wahl getroffen.

Fiir den schlechtesten Fall erhdlt man bei k Anzahl der urspriinglichen Kanten und m
Anzahl der durchschnittlichen pro Schnitt erstellten neuen Polyedern demnach nach der
i-ten Runde folgende Anzahl an verbleibenden Kanten:

6.3) m' (k—1i)

Benotigte paarweise Schnitte sind insgesamt dann

k=1
(6.4) Y m' e O(m* 1)
=0

1

Im Vergleich dazu die Anzahl der benétigten Schritte fiir die gut gewéahlte Reihenfolge

(6.5) k € O(k)

35

6 Anwendung auf groBBe Datensétze

=

B SChneldy w‘neidet B

Abbildung 6.4: Optimierung durch Sortierung nach Grofie des Polyeders

GroBe des Polyeders

Eine andere Moglichkeit zu Sortieren ist nach der Grofie des reprasentierten Polyeders
des Knoten. Am einfachsten lasst sich diese Wahl anhand eines Beispiels erldutern. Dieses
Beispiel in 2D, in Abbildung 6.4, zeigt wie aus einem Worst-Case ein Best-Case werden
kann. In der unsortierten Liste kdme es demnach zu der Moglichkeit, dass durch den Schnitt
zweier Polyeder, wobei das kleinere ein n-Eck ist, n neue Polyeder entstehen konnen. In der
sortierten Liste hingegen kommt es zum Best-Case, dass der kleinere Polyeder komplett
tiberdeckt wird und somit kein neues Polyeder entsteht. Im allgemeinen Fall wiirde hingegen
erreicht werden, dass in jedem Schritt durchschnittlich weniger neue Polyeder entstehen.
Aus diesem Grund wird in jedem Zyklus der Knoten des grofiten Polyeders ausgewdhlt.

Fiir die Ermittlung der Grofle eines Polyeders wird dabei auf Genauigkeit verzichtet, es
reicht eine grobe Approximation. Dies ist begriindet darin, dass zwei in etwa gleich grofle
Polyeder beim Schnitt keinen erkennbaren Unterschied zulassen. Dafiir ist der Aufwand fiir
eine genauere Bestimmung der Polyedergrofie nicht gerechtfertigt.

6.4 Zukulnftige Arbeiten

Abschliefiend sollen weitere Ideen zur Anwendung der Algorithmen auf grofse Datensitze
vorgestellt werden. Diese sind im Rahmen dieser Bachelor-Arbeit nicht implementiert und
getestet worden, bieten aber eine Grundlage, um den Algorithmus weiter zu verbessern.

36

6.4 Zuklnftige Arbeiten

Algorithmus 6.2 Bearbeitung der Gruppen mit Graph und Optimierungsschritten

Intersect_Using_Graph_Optimized : (G : Group) -> Group

Types
Node : (Value : Polyhedra, Edges : PointerToNodel[])

Imports
Merge_Bspts : (T1, T2 : Bspt) -> Bspt
Split_Bspts : (T : Bspt) -> Bsptl]

Definition
Graph : Graph_Structure

FOR EACH P : Polyhedra IN G DO
Graph.Add (NEW Node (P))
G.Remove (P)

END FOR

DO UNTIL Graph.IsEmpty
N1 : Node := Graph.Best_Node
G.Add (Ni.Value)

FOR EACH E : PointerToNode IN N1.Edges DO
Graph.Replace (E.Node, Split_Bspts (Merge_Bspts (Nl.tree, E.Node.tree)))
END FOR

Graph.Remove (N1)

FOR EACH REPLACEMENT N1 : Node IN GRAPH DO
FOR EACH E : PointerToNode IN N1.Edges DO
IF NOT Intersects (N1, E.Node) THEN Remove_Edge (N1, E.Node)
END FOR
END FOR
END DO

RETURN G
END Intersect_Using_Graph_Optimized

6.4.1 Optimierung: Auswahl des besten Ergebnis

Eine weitere Idee zum Verbessern des Algorithmus ist, dass beim paarweisen Schneiden der
Polyeder beide Schnitt-Reihenfolgen durchgefiihrt werden. Somit wiirde einmal der erste
den zweiten Polyeder schneiden und als ndchstes der zweite den ersten. Aus diesen beiden
Ergebnissen wird dann das vielversprechendere Ergebnis verwendet. Die Entscheidung nach
der besseren Auswahl kénnte dann nach der Anzahl der erstellten Polyeder geschehen,
sodass wiederum weniger Kinder entstehen. Dies wire eine Moglichkeit, die zur Anwendung
kommen kann, wenn sich zwei in etwa gleich grofse Polyeder schneiden und das Ergebnis
trotzdem stark variiert. Als weiteres Auswahlkriterium wéare moglich, dass die erstellten
Polyeder auf deren Grofie untersucht werden und die Gruppe weiter benutzt wird, durch
die man sich eine hohere numerische Genauigkeit beim spéteren Triangulieren und beim
Berechnen des Volumens erhofft.

37

6 Anwendung auf groBBe Datensétze

Die Vermutung ist jedoch, dass diese Heuristik trotz des Produzierens besserer Ergeb-
nisse die Nachteile der doppelten Ausfithrung des Algorithmus nicht ausgleichen kann.
Zumal durch die vorherig angefiihrten Optimierungsmdoglichkeiten die relevanten Félle
bereits optimiert wurden.

38

7 Messwerte und Ergebnisse

Im Folgenden werden nun Messwerte und Ergebnisse dargestellt und erldutert. Dabei sind
alle Messungen der ersten beiden Abschnitte Messergebnisse des Testdatensatzes und Qualitit
der Volumenberechnung auf Rechner-Knoten mit zwei Xeon E5620@2.4GHz (insgesamt 8
Kerne), 24 GB Arbeitsspeicher und Windows 7 64 Bit ausgefiihrt worden. Die Messungen
im Abschnitt Auswirkungen der Heuristiken auf einem Intel(R) Core(TM)2 Duo CPU Té6400 @
2.00GHz (insgesamt 2 Kerne), 4 GB Arbeitsspeicher und Windows 7 64 Bit.

7.1 Messergebnisse des Testdatensatzes

Alle in diesem Abschnitt vorgelegten Messergebnisse wurden auf einem Testdatensatz
mit 10.000 Polyedern erstellt. Von diesem ist jedoch nicht bekannt, welches Volumen zu
erwarten ist. Darum wird vorwiegend auf die Effizienz des Algorithmus eingegangen. Erst
im ndchsten Abschnitt wird auf die Effektivitat, also die Qualitdt der Ergebnisse eingegangen.

In Tabelle 7.1 wird die Dauer der Octree-Erstellung mit verschiedenen Parametern auf-
gezeigt. Wie auch in den Schaubildern werden die Parameter immer in folgender Form
angegeben: Als erstes steht der Datensatz, gekennzeichnet durch die Anzahl der Polyeder,
danach kommt der Parameter fiir die maximale Anzahl Polyeder pro Gruppe, anschlieffend
der Parameter fiir die maximale Anzahl der Uberschneidungen pro Gruppe. In dieser Tabelle
ist die Angabe in den Spalten die jeweilige Ausfithrungsdauer in Sekunden bei angegebener
maximalen Tiefe des Baums.

Diese gemessenen Zeiten zur Erstellung des Baums sind sehr gering, sodass auch die
dreifache Erstelldauer fiir eine hohere Stufe nicht ins Gewicht fillt. Selbst bei der Octree-
Erstellung fiir den Millionen Polyeder Datensatz, wiirde sich die Zeit auf weniger als eine
Stunde belaufen.

Was weitaus mehr ins Gewicht fillt, ist die Anzahl der erstellten Polyeder durch das
Aulfteilen am Gitternetz. In Abbildung 7.1 werden diese in einem Schaubild dargestellt. Hier
wird sehr gut deutlich, dass durch zu héufiges Aufteilen des Raums sehr viele Polyeder
entstehen. Auf der anderen Seite heifst dies jedoch auch, dass die lokalen Gruppen weniger
Polyeder enthalten und somit sich schneller bearbeiten lassen. Dadurch wird ndamlich der
Unabhiéngigkeits-Graph, oder eine dhnliche Datenstruktur die zur Verwaltung der Polyeder
eingesetzt wird, weniger komplex. Dies lohnt sich jedoch nur bis zu einer bestimmten Stufe,
wie in Abbildung 7.2 erkennbar ist. Anschlieffend ist die Tendenz, dass durch die stark
steigende Gesamtzahl der Polyeder mehr Zeit in Anspruch genommen wird.

39

7 Messwerte und Ergebnisse

Octree-Erstellung
800000

e

700000 /
600000

S
3 »
S 500000 / /
=
& 400000 /
= / /
=
© 300000
2 //
w
200000

100000 %
.

0 T

Maximale Octree-Tiefe

4 5 6 7 8 9

——10000,12,5
-=-10000, 12, 10
—+—-10000, 12, 15
—-10000, 50, 30
—-10000, 100, 50
-e-10000, 200, 100

Abbildung 7.1: Anzahl der Polyeder nach der Raumaufteilung durch den Octree

Anwendung des Algorithmus
140

—

120

o\
o\

Zeit (s)

o \\

\
40 %//
20
0
4 5 6 7 8 9

Maximale Octree-Tiefe

——10000,12,5
-=-10000, 12, 10
—+—-10000, 12, 15
—=10000, 50, 30
—-10000, 100, 50
-e-10000, 200, 100

Abbildung 7.2: Dauer der Algorithmus-Ausfithrung

40

7.1 Messergebnisse des Testdatensatzes

Stufe 4 Stufes Stufe6 Stufe7 Stufe8 Stufeg

10000, 12, 5 5 8 15

10000, 12, 10 4 7 13

10000, 12, 15 4 7 11 13 14 16
10000, 50, 30 5 9 10 9 9

10000, 100, 50 7 10 10 9

10000, 200, 100 8 8

Tabelle 7.1: Dauer der Octree-Erstellung in Sekunden

Anwendung des Algorithmus

400000

350000 //

300000 //’

250000 ——10000,12, 5

500000 // -=-10000, 12, 10

W 10000, 12, 15

150000 —— —<10000, 50, 30

—~10000, 100, 50
10000, 200, 100

Erstellte Polyeder

100000

50000

0

4 5 6 7 8 9
Maximale Octree-Tiefe

Abbildung 7.3: Anzahl Polyeder nach der Anwendung des Algorithmus

Eine weitere interessante Beobachtung ist, wenn man die Abbildungen 7.1 und 7.3 vergleicht.
Hier kommt es zu dem Phanomen, dass nach Ausfiihrung des Algorithmus weniger Polyeder
vorhanden sind als davor. Dies ldsst darauf schlieflen, dass durch vielmaliges Aufteilen des
Raums auch sehr viele kleine Polyeder entstehen, die vollstindig von anderen Polyedern
umschlossen werden. Somit kommt es dazu, dass diese Polyeder einfach entfernt werden
konnen. Trotz dieser Riicklaufigkeit der Anzahl der Polyeder, ist diese Zahl weiterhin mit
steigender Octree-Stufe signifikant hoher. Dies wirkt sich somit negativ auf die Dauer der
Tetraedisierung und die Volumenberechnung aus. Diese beiden Schritte sind in Abbildung
7.4 zusammengefasst. Vergleicht man diese Ergebnisse mit denen in Abbildung 7.3, wird dies
deutlich. Gut zu sehen ist dies am Beispiel der Parameter 12, 5 (dunkelblau) bei Baumtiefe 6
und 12, 15 (griin) bei Tiefe 9. Die Werte an diesen Stellen sind in beiden Diagrammen jeweils
in etwa gleich.

41

7 Messwerte und Ergebnisse

Tetraedisierung
500

450 /
400

——10000,12, 5

-=-10000, 12, 10
350

10000, 12, 15

—=10000, 50, 30

300

—=10000, 100, 50

‘é_{//é/x\x 10000, 200, 100
250 — =

200

Zeit (s)

Maximale Octree-Tiefe

Abbildung 7.4: Dauer der Tetraedisierung und der Volumenberechnung

Diese Ergebnisse iiber die Dauer der Ausfiihrung, werden in Abbildung 7.5 nochmals
zusammengefasst. So ist fiir jeden Parameter die beste Baumtiefe offensichtlich gleich.
Vergleicht man dieses Ergebnis jedoch mit dem berechneten Volumen in Abbildung 7.6, muss
davon ausgegangen werden, dass das bessere Ergebnis jedoch schon bei einer niedrigeren
Octree-Stufe gewonnen wird. Auf diese Theorie wird verstarkt im nédchsten Abschnitt
eingegangen.

7.2 Qualitat der Volumenberechnung

In diesem Abschnitt wird nun auf die Qualitdt der Volumenberechnung eingegangen. Dazu
wird ein Datensatz mit 25.000 Polyedern verwendet. Fiir diesen existiert ein Referenzwert
tiir die Porositat. Um jedoch aus dem Volumen die Porositdt berechnen zu konnen, muss
eine Box um den Stein gesetzt werden. Somit ist das Einschlussvolumen des Steins

(7:1) VEinschiuss = VBox — Vstein-
Dementsprechend ist die Porositdat P das Verhiltnis vom Einschlussvolumen zum Volumen
der Box:

(7 2) P = VEinschluss _ VBox - VStein
VBox VBox

Die Ergebnisse fiir diesen Datensatz sind in den beiden Abbildungen 7.7 und 7.8 zusam-
mengefasst. Zusitzlich ist der erwartete Wert eingezeichnet. Gut erkennbar ist, dass der

42

7.2 Qualitat der Volumenberechnung

Gesamtausfiihrung
550

/A

500 /’
450

L

/S

= ——10000, 12, 5
® 400 — -=-10000, 12, 10
N ~+-10000, 12, 15
350
—<10000, 50, 30
300 —+10000, 100, 50
~e-10000, 200, 100
250
200
4 5 6 7 8 9
Maximale Octree-Tiefe
Abbildung 7.5: Dauer der Gesamtausfithrung
Volumenberechnung
30.800.000
30.700.000 K\
30.600.000 N
30.500.000
S ——10000,12, 5
€ 30400000 \ e N ~ 2 -=-10000, 12, 10
2 30.300.000 —+-10000,12, 15
\ —<10000, 50, 30
30.200.000 —+10000, 100, 50
30.100.000 -e-10000, 200, 100
30.000.000
29.900.000
4 5 6 7 8 9
Maximale Octree-Tiefe

Abbildung 7.6: Berechnetes Volumen

43

7 Messwerte und Ergebnisse

Berechnetes Volumen
7.550.000.000

7.500.000.000

c
g 7.450.000.000 - =iz 15
=}
S =50, 30
S
7.400.000.000 - 100,50, 5
—Erwartet
7.350.000.000 -
7.300.000.000 -
5 6
Maximale Tiefe des Octree
Abbildung 7.7: Berechnetes und erwartetes Volumen
Berechnete Porositat
8,000
7,500
— 7,000
X
< mm12,15
Hy
‘5 6,500 w50, 30
'g 100,50, 5
e 6,000 —Erwartet
5,500
5,000 -
5 6
Maximale Tiefe des Octree

Abbildung 7.8: Berechnete und erwartete Porositat

berechnete Wert genauer ist, wenn das Volumen aus weniger und somit grofseren Polyedern
berechnet wird. Dies ist genau nicht der Fall, wenn der Octree stark weiter unterteilt wird,
wie fiur die Parameter 12, 15 und 50, 30 bei Tiefe 6 und hoher.

Nachfolgend werden die absoluten und relativen Fehler berechnet. Dazu werden die Werte
aus der Tabelle 7.2 verwendet.

44

7.2 Qualitat der Volumenberechnung

Wert
Erwartete Porositit 6,00%
Berechnete Porositit 6,59%
Erwartetes Volumen 7518829527,04
Bestes berechnetes Volumen 7471519629,178760
Box-Volumen 7998754816,000000

Tabelle 7.2: Berechnete und erwartete Werte fiir den 25.000 Polyeder Datensatz

Fir den besten berechneten Volumenwert ist der absolute Fehler

(7.3)
e oiut = |Verwartet — Vierechmet| = 7518829527, 04 — 7471519629, 178760 = 47309897, 86124

Somit ist der relative Fehler:

Capsotut __ 47309897, 86124
Vorwartet 7518829527, 04

(7-4) €Vtatio = ~ 0,00629 < 1%

Fiir eine ungefdhre Volumenberechnung wére dies ein akzeptabler Fehler. Jedoch wirkt sich
dieser Fehler sehr stark auf die berechnete Porositét aus.

EP — | VBOX - VStein . VBOX - V;tein ‘
absolut VBox VBox

P _ *
eapsotut * VBox = |VBox — Vstein — VBox + Vijein

(7.5) eZz)bsolut * VBox = | = (Vstein — Vitein)|

P _ Vv
Cabsolut * VBox = Cabsolut

absolut ‘ 7
e =

Es ergibt sich der absolute Fehler:

eV 47309897, 86124
6) e _ Cabsolut __ 4 ~ 0,00591
76) Cavsore = 7y, = 7998754816, 000000

Somit ist der relative Fehler:

el olut . 0,00591
Perwartet 0/ 06

(7.7) €htatio = ~ 0,099 ~ 10%

45

7 Messwerte und Ergebnisse

Berechnete Porositat ohne Randbereich
7,0

6,0 Jaa /

5,0 / /
4,0 Ay
f —e—Gemessen

3,0
/ —Erwartet

2,0 /
1,0

I

Porositat (%)

0,0

5% 15% 25% 35% 45% 55% 65% 75% 85% 95%
GroRBe des Datensatzes in jede Achsenrichtung (%)

Abbildung 7.9: Berechnete und erwartete Pordsitdt ohne Randbereich (letzter Wert mit Rand)

Jedoch kann der Fehler weiter reduziert werden. Was bisher nicht beachtet wurde, ist, dass
der Randbereich eine geringere Dichte hat als der innere Bereich. Um ein genaueres Ergebnis
zu erhalten, muss also der Randbereich weggeschnitten werden. Dazu wird wie oben eine
Box erstellt, die etwas kleiner als der Stein ist. An dieser Box wird wie an einer Bounding-Box
so geschnitten, dass die Polyeder an dieser Box aufgeteilt werden und nur alle Polyeder in
die Ausfithrung des Algorithmus einfliefSen, die in der Box liegen.

Durch diese Modifikation erhdlt man die Ergebnisse, die in der Abbildung 7.9 und in
der Tabelle 7.3 dargestellt werden. Die Ergebnisse wurden alle mit dem 25.000 Polyeder
Datensatz erstellt, mit den Parametern 50, 30, bei maximaler Tiefe 5 des Baums.

Die berechneten Werte fiir die verschieden grofsen Wiirfel, die aus dem Gesamtdatensatz
herausgeschnitten wurden, zeigen, dass es Stellen gibt an denen der Fehler sehr gering ist.
Bei zu kleinen Wiirfeln kommt es jedoch zu grofsen Fehlern, da die Zufélligkeit der Dichte
hier zu hoch ist. Auf der anderen Seite stellen sich bei grofien Wiirfeln durch die hohe
Anzahl der Polyeder auch wiederum grofsere Fehler ein.

Durch mehrere Durchldufe des Algorithmus mit unterschiedlichen Parametern fiir die
Wiirfelgrofie konnen also gute Ergebnisse erzielt werden.

7.3 Auswirkungen der Heuristiken

Die am Ende des letzten Kapitels (6.3 auf Seite 33) eingefiihrten Heuristiken werden im
Folgenden auf ihre Auswirkung auf die Ausfithrung des Algorithmus hin untersucht. Darum

46

7.3 Auswirkungen der Heuristiken

Grofie des Ausschnitts Berechnetes Erwartetes Relativer Fehler
(in Achsenrichtung) Volumen Volumen

5% 993.092,78266 939.853,65394 0,056646
10% 7.708.909,11643 7.518.829,23149 0,025281
15% 25.871.972,81493 25.376.048,65629 0,019543
20% 61.448.804,96672 60.150.633,85195 0,021582
25% 119.302.660,64233 117.481.706,74209 0,015500
30% 204.779.139,47767 203.008.389,25032 0,008723
35% 323.252.543,66710 322.369.803,30028 0,002738
40% 481.222.044,71953 481.205.070,81558 0,000035
45% 683.253.352,02296 685.153.313,71984 0,002773
50% 939.735.256,68549 939.853.653,93668 0,000126
55% 1.252.560.426,35491 1.250.945.213,38972 0,001291
60% 1.626.751.979,92204 1.624.067.114,00258 0,001653
65% 2.069.053.893,39243 2.064.858.477,690888 0,002032
70% 2.585.197.234,91499 2.578.958.426,40224 0,002419
75% 3.183.076.081,46473 3.172.006.082,03629 0,003490
80% 3.867.985.774,72098 3.849.640.566,52463 0,004765
85% 4.645.901.799,03830 4.617.501.001,79090 0,006151
90% 5.517.970.205,99205 5.481.226.509,75872 0,006704
95% 6.488.315.106,89169 6.446.456.212,35168 0,006493
100% (mit Rand) 7.471.364.525,72715 7.518.829.527,04000 0,006313

Tabelle 7.3: Berechnetes und erwartetes Volumen, sowie Fehler bei abgeschnittenen Rand

gibt es fiir jeden Abschnitt in der Gesamtausfiithrung, den die Heuristiken beeinflussen
ein Schaubild mit Messergebnissen. Jedoch existieren keine konkreten Ergebnisse fiir die
Ausfiithrung nur mit Kantenentfernung und fiir die Ausfithrung ohne Heuristik. Diese
Durchldufe sind so ineffizient, dass die Ausfithrungszeit ein Vielfaches von der Dauer der
hier aufgefiihrten Messungen ist und nicht bis zum Ende gerechnet wurden.

In Abbildung 7.10 wird schon sehr deutlich, dass die Sortierung nach Polyedergrofie
im Vergleich zu den anderen Heuristiken sehr effizient ist und sogar in Kombination mit
dem Entfernen der Kanten keine Verbesserungen mehr zuldsst. Das Gegenteil ist der Fall,
wie in Abbildung 7.11 aufgezeigt wird. Durch zusitzliches Kantenentfernen wird nur mehr
Zeit in Anspruch genommen, aber kein Mehrwert erzielt. Im Gegensatz dazu ldsst sich
das Sortieren nach Anzahl der Kanten noch deutlich verbessern, indem unnétige Kanten
frithzeitig entfernt werden.

Aber erst im Tetraedisierungs-Schritt wird die Verbesserung durch die Heuristiken sehr
deutlich. In Abbildung 7.12 sieht man dabei den Einfluss der Anzahl der Polyeder auf

47

7 Messwerte und Ergebnisse

Anwendung des Algorithmus
300000
250000
M Nach Anzahl Kanten sortiert
5 200000
b -]
g. M Nach PolyedergroRe sortiert
[}
& 150000 |
= M Kanten entfernt & nach Anzahl
] Kanten sortiert
7
o 100000 - M Kanten entfernt & nach
PolyedergroRRe sortiert
50000 -
O ,

Abbildung 7.10: Auswirkung der Heuristiken auf die Algorithmus-Ausfiihrung (Anzahl

Polyeder)
Anwendung des Algorithmus
800
700
600 -
M Nach Anzahl Kanten sortiert
» 500
; M Nach PolyedergrofRRe sortiert
3]
N 400 -
I Kanten entfernt & nach Anzahl
Kanten sortiert
300 -
M Kanten entfernt & nach
PolyedergroRRe sortiert
200 -
100 -
O ,

Abbildung 7.11: Auswirkung der Heuristiken auf die Algorithmus-Ausfithrung (Zeit)

7.3 Auswirkungen der Heuristiken

3000

2500

2000

Zeit (s)

1500

1000

500

Tetraedisierung

W Nach Anzahl Kanten sortiert

M Nach PolyedergroRe sortiert

I Kanten entfernt & nach Anzahl
Kanten sortiert

M Kanten entfernt & nach
PolyedergroRRe sortiert

Abbildung 7.12: Auswirkung der Heuristiken auf die Dauer der Tetraedisierung

4000

3500

3000

2500

Zeit (s)

2000

1500

1000

500

Gesamtausfiihrung

M Nach Anzahl Kanten sortiert

M Nach PolyedergroRe sortiert

I Kanten entfernt & nach Anzahl
Kanten sortiert

M Kanten entfernt & nach
PolyedergroRRe sortiert

Abbildung 7.13: Auswirkung der Heuristiken auf die Gesamtdauer

die Dauer der Tetraedisierung. Da dieser Schritt die langste Zeit im Gesamtdurchlauf in
Anspruch nimmt, Vergleich dazu Abbildung 7.13, wird bewusst, dass nur nach Anzahl der
Kanten zu sortieren nicht effizient genug ist.

Weiterhin wird durch das berechnete Volumen in Abbildung 7.14 gezeigt, dass es grofien
Einfluss auf das Ergebnis gibt, ob kleine Polyeder entfernt werden oder diese verwendet

49

7 Messwerte und Ergebnisse

Volumenberechnung

30.685.000

30.680.000

30.675.000

30.670.000 B Nach Anzahl Kanten sortiert
S
§ 30.665.000 M Nach PolyedergrofRRe sortiert
°
= 30.660.000
] M Kanten entfernt & nach Anzahl
E 30.655.000 Kanten sortiert
S W Kanten entfernt & nach
g 30.650.000 - PolyedergréRe sortiert
-]

30.645.000 -

30.640.000 -

30.635.000 -

Abbildung 7.14: Auswirkung der Heuristiken auf das berechnete Volumen

werden um grofiere Polyeder aufzuteilen. Ersteres ist ofter der Fall, wenn nach Grofle
der Polyeder sortiert wird und nicht nach Anzahl der Kanten. Da jedoch nicht bekannt
ist, welcher der erzielten Werte ndher am tatsachlichen Wert liegt, kann hier wiederum
nur Auskunft tiber die Effizienz, jedoch nicht tiber die Effektivitit gegeben werden. Nur
unter Berticksichtigung der Effizienz ist zumindest deutlich, dass die Ausfithrung mit dem
Sortieren nach der Polyedergrofie am sinnvollsten ist.

50

8 Zusammenfassung und Ausblick

In dieser Bachelor-Arbeit wurde ein neuer Ansatz zur Berechnung des Volumens sich
tiberschneidender konvexer Polyeder vorgestellt. Dazu wurde ein neuer Algorithmus fiir
BSP-Baume eingefiihrt. Durch diesen ist es moglich zwei im vorangegangenem Schritt
zusammengefiigte Polyeder so aufzuteilen, dass diese neu erstellten Polyeder nicht den
selben Raum abdecken und ebenfalls konvex sind. Dieser Algorithmus funktioniert jedoch
immer nur paarweise auf konvexen Polyedern.

Aus diesem Grund wurden Methoden zur Anwendung auf grofien Datensidtzen vorge-
stellt. Diese erlauben es durch geschickte Aufteilung des Raums und Verwalten der Polyeder
in Unabhédngigkeitsgraphen, dass die Algorithmen auch auf grofien Datensétzen einsetzbar
sind. Jedoch wird die Ausfiihrung erst richtig effizient, wenn zudem Heuristiken eingesetzt
werden. Durch diese Heuristiken ldsst sich die Anzahl der erstellten Polyeder weiter senken.
Somit wird die Laufzeit stark reduziert und das Ergebnis genauer.

Bei diesem Ansatz ist der numerische Fehler sehr gering, da die meisten Aktionen auf
den BSP-Biaumen ablaufen. Diese Aktionen sind dabei meist nur, dass Ebenen zu einem
Polyeder hinzugefiigt oder von ihm entfernt werden. Dabei kann kein Fehler entstehen. Le-
diglich beim Zusammenfiihren der Biume ist ein kleiner Fehler moglich, da hier berechnete
Eckpunkte des Polyeders in Relation zu einer Ebene tiberpriift werden miissen.

Grofiere numerische Fehler treten somit erst bei der Tetraedisierung der Polyeder auf.
Jedoch trotz dieser Fehler ist das Ergebnis der Volumenberechnung sehr gut. Lediglich bei
der Bestimmung der Porositdat macht sich dieser Fehler starker bemerkbar, ldsst sich aber
durch Ausfiihrung mit verschiedenen Parametern handhaben.

Ausblick

Das Verfahren kann durch mehrere Modifikationen und durch das Hinzuftigen weiterer
Heuristiken verbessert werden. Eine dieser moglichen Heuristiken wird bereits in Kapitel 6,
Abschnitt 6.4 beschrieben, wurde aber bisher noch nicht getestet.

Die wichtigste Verbesserung ist jedoch eine bessere Methode zur Berechnung des Volumens.
Diese kann in diesem Verfahren problemlos die Tetraedisierung ersetzen. Dadurch kann die
Qualitdt des Verfahrens weiter erhoht werden und auch die Berechnung der Pordositdt weiter
verbessert werden.

51

Literaturverzeichnis

[LBFH] E. D. E. Latief, B. Biswal, U. Fauzi, R. Hilfer. Continuum reconstruction of the pore
scale microstructure for Fontainebleau sandstone. Physica A: Statistical Mechanics and
its Applications, 389(8):1607-1618, 2010. doi:10.1016/j.physa.2009.12.006. URL http:
//www.sciencedirect.com/science/article/pii/S0378437109010024. (Zitiert auf
den Seiten 7, 11, 12 und 13)

[HZL] R. Hilfer, T. Zauner, A. Lemmer. Worldwide largest threedimensional strongly
correlated microstructure. Institute for Computational Physics, 2011. URL http://wuw.
icp.uni-stuttgart.de/microct/info.php. (Zitiert auf den Seiten 7, 11, 12 und 29)

[CS] J.L.D.Comba, C.T. Silva. Automatic Convexification of Space using BSP-trees.

[NAT] B. Naylor, J. Amanatides, W. Thibault. Merging BSP trees yields polyhedral set
operations. SIGGRAPH Comput. Graph., 24(4):115-124, 1990. doi:10.1145/97880.
97892. URL http://doi.acm.org/10.1145/97880.97892. (Zitiert auf den Seiten 19,
22 und 23)

Alle URLs wurden zuletzt am 23. 05. 2013 gepriift.

53

http://www.sciencedirect.com/science/article/pii/S0378437109010024
http://www.sciencedirect.com/science/article/pii/S0378437109010024
http://www.icp.uni-stuttgart.de/microct/info.php
http://www.icp.uni-stuttgart.de/microct/info.php
http://doi.acm.org/10.1145/97880.97892

Erkldarung

Ich versichere, diese Arbeit selbststindig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wortlich oder sinngeméf aus anderen Wer-
ken tibernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Priifungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollstandig
verdffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einleitung
	2 Related Works
	2.1 Poröse Medien

	3 Problemstellung
	3.1 Modell
	3.2 Idee für neuen Ansatz

	4 Datenstrukturen
	4.1 Repräsentation der Geometrie
	4.2 Graphen
	4.2.1 Allgemeine Graphen
	4.2.2 Bäume

	5 Erstellen räumlich disjunkter Polyeder
	5.1 Problembeschreibung
	5.2 Algorithmen auf BSP-Bäumen
	5.2.1 Zusammenführung (Merge)
	5.2.2 Aufteilen (Split)

	5.3 Veranschaulichung in 3D

	6 Anwendung auf große Datensätze
	6.1 Aufteilung in Gruppen
	6.1.1 Schnitt am Gitternetz
	6.1.2 Erstellen eines Rasters fester Größe
	6.1.3 Dynamische Raumaufteilung durch Rekursion

	6.2 Bearbeitung in lokalen Gruppen
	6.2.1 Bearbeitung mit Überschneidungs-Graphen

	6.3 Heuristiken zur Optimierung
	6.3.1 Überflüssige Kanten eliminieren
	6.3.2 Knoten sortieren

	6.4 Zukünftige Arbeiten
	6.4.1 Optimierung: Auswahl des besten Ergebnis

	7 Messwerte und Ergebnisse
	7.1 Messergebnisse des Testdatensatzes
	7.2 Qualität der Volumenberechnung
	7.3 Auswirkungen der Heuristiken

	8 Zusammenfassung und Ausblick
	Literaturverzeichnis

