Institut fiir Architektur von Anwendungssystemen
Universitdt Stuttgart

Universititsstrafse 38
D-70569 Stuttgart

Bachelorarbeit Nr. 37

Konzept und Entwicklung eines

generischen File Service fiir

OpenTOSCA
Rene Trefft
Studiengang: Softwaretechnik
Priifer: Prof. Dr. Frank Leymann
Betreuer: Dipl.-Inf. Sebastian Wagner
Beginn am: 2012-12-11
Beendet am: 2013-06-12

CR-Nummer: E.5, H.3.2, H35

Kurzfassung

Die Topology and Orchestration Specification for Cloud Applications (TOSCA) defi-
niert eine Sprache, mit der Cloud-Anwendungen und deren Management portabel und
interoperabel beschrieben werden kénnen. Zur Verteilung einer TOSCA-Anwendung
kommt das Cloud Service Archive (CSAR) zum Einsatz.

OpenTOSCA ist eine an der Universitdt Stuttgart entwickelte Laufzeitumgebung fiir
TOSCA-Anwendungen, die als CSAR-Datei bereitgestellt werden. Der File Service,
eine Komponente von OpenTOSCA, ist fiir die Speicherung, Verwaltung und den
Zugriff auf iibergebene CSAR-Dateien zustindig.

Im Rahmen dieser Bachelorarbeit wird der File Service um ein Plug-in-System
erweitert, mit dem CSAR-Dateien in verschiedenen Umgebungen gespeichert werden
konnen. Plug-ins werden fiir das lokale Dateisystem und den Cloud-Storage-Anbieter
Amazon S3 bereitgestellt. Hierzu kommt die Multi-Cloud-Bibliothek jclouds zum
Einsatz. Es werden Funktionen realisiert, mit denen CSAR-Dateien auf mehrere
Umgebungen verteilt werden kénnen. Auch wird eine Export-Funktion bereitgestellt,
mit der eine gespeicherte CSAR wieder als CSAR-Datei abgerufen werden kann. Zur
Speicherung und Verwaltung von Zugangsdaten, die Plug-ins benétigen, wird ein

Credentials Service entwickelt.

Die neuen Funktionalitaten des File Service und Credentials Service werden tUber die
Container API bereitgestellt. Die Container API stellt die externe REST-Schnittstelle
von OpenTOSCA dar.

Dieses Dokument befasst sich im Wesentlichen mit der Konzeption und dem Ent-
wurf fiir die angesprochene Weiterentwicklung von OpenTOSCA. Auch wird auf

implementierungsspezifische Details eingegangen.

Inhaltsverzeichnis

Inhaltsverzeichnis

Abkiirzungsverzeichnis
Abbildungsverzeichnis
Tabellenverzeichnis
Verzeichnis der Listings

1 Einleitung
1.1 Motivation und Aufgabenstellung
1.2 Gliederung der Arbeit L oo

2 Grundlagen
2.1 Cloud Computing e
2.2 Topology and Orchestration Specification for Cloud Applications
(TOSCA)
2.2.1 Konzepte

2.3 OSGi. e
2.4 Representational State Transfer (REST)
2.5 OpenTOSCA e

2.5.1 Architektur und Features
2.6 Cloud Storage e
2.7 Blobstore
2.8 jeloudso

2.8.1 Blobstore API,

3 Anforderungen

4 Konzept und Implementierung
4.1 Uberblick
4.2 File Service
4.2.1 Auswahl eines Storage Provider
4.2.2 Storage Provider Manager
4.2.3 Speichern einer CSAR L.

Inhaltsverzeichnis

4.2.4 Abrufen einer CSAR
4.2.5 [Exportieren einer CSAR
4.2.6 Verschieben einer Datei oder Ordner einer CSAR
4.2.7 Verschieben einer CSAR
4.2.8 Loschen einer CSAR oder aller CSARs

4.3 CSAR Model e
4.4 Artifact Model
4.4.1 CSAR Artefakte

4.5 Storage Providers Lo Lo
4.5.1 Schnittstelle
4.5.2 Realisierung mit jcloudso
4.5.3 Entwicklung eines neuen Storage Providers

4.6 Credentials Service
4.7 Integration
4.71 Container API
4.7.1.1 Storage Providers

4.7.1.2 Credentials

4.71.3 CSARs

4.7.2 Weitere Komponenten

5 Zusammenfassung und Ausblick
Literaturverzeichnis

A Anhang
A.1 Verwendete Software
A.2 Inhalt der DVD

Abkiirzungsverzeichnis

Abkiirzungsverzeichnis

AAR Axis Archive

Amazon S3 Amazon Simple Storage Service

API Application programming interface
Blob Binary large object

BPEL Business Process Execution Language
BPMN Business Process Model and Notation
BSN Bundle Symbolic Name

CPU Central Processing Unit

CS Committee Specification

CSAR Cloud Service Archive

DA Deployment Artifact

DVD Digital Versatile Disc

FMC Fundamental Modeling Concepts
FTP File Transfer Protocol

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

1A Implementation Artifact

laaS Infrastructure as a Service

IAAS Institut fiir Architektur von Anwendungssystemen
IDE Integrated development environment
IPVS Institut fiir Parallele und Verteilte Systeme
IT Informationstechnik

JAR Java Archive

Abkiirzungsverzeichnis

Java EE
JAXB
JAX-RS
JPA
JSP
NIST
ORM
PaaS
POM
REST
SaaS
SLF4J
SQL
TOSCA
ul

uML
URI
URL
us
VALESCA
WAR
WSDL
WSO02 BPS
XML

XSD

Java Platform, Enterprise Edition
Java Architecture for XML Binding
Java API for RESTful Web Services
Java Persistence API

Java Server Pages

National Institute of Standards and Technology
Object-relational mapping

Platform as a Service

Project Object Model
Representational State Transfer
Software as a Service

Simple Logging Facade for Java
Structured Query Language
Topology and Orchestration Specification for Cloud Applications
User Interface

Unified Modeling Language
Uniform Resource Identifier
Uniform Resource Locator

United States

Visual Editor for TOSCA

Web Archive

Web Services Description Language
WSO2 Business Process Server
Extensible Markup Language

XML Schema Definition

Abbildungsverzeichnis

Abbildungsverzeichnis

2.1
2.2
2.3
2.4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8
4.9

4.10

4.11
4.12

4.13
4.14
4.15

Al

Beispiel einer TOSCA-Topologie, die mit VALESCA modelliert wurde.

Beispiel einer gultigen CSAR.
FMC-Diagramm zur Architektur von OpenTOSCA.
OpenTOSCA JSP UIL.

FMC-Diagramm zu den neuen und verdnderten Komponenten der
OpenTOSCA Core-Komponente.
UML-Sequenzdiagramm zum Speichern einer Datei {iber den Storage
Provider Manager.
UML-Sequenzdiagramm zur Auswahl des Storage Providers iiber den
Storage Provider Manager.
UML-Sequenzdiagramm zum Speichern einer CSAR.
UML-Sequenzdiagramm zum Exportieren einer CSAR.
UML-Sequenzdiagramm zum Verschieben eines Ordners zu einem
anderen Storage Provider.
UML-Sequenzdiagramm zum InputStream-basierten Verschieben ei-
ner Datei zu einem anderen Storage Provider.
UML-Sequenzdiagramm zum Loéschen einer CSAR.
UML-Klassendiagramm zum Artifact Model und deren Bezichung mit
CSARContent des CSAR Model.
UML-Klassendiagramm zur Artifact Model-Implementierung fiir CSAR-
Artefakte bzw. relative Artefakt-Referenzen.
UML-Klassendiagramm zur Schnittstelle der Storage Providers. . . .
UML-Klassendiagramm zur Realisierung der Dateisystem- und Amazon
S3-Storage Providers.
UML-Sequenzdiagramm zum Speichern von Zugangsdaten.
Neue und verédnderte Ressourcen der Container APL.
Struktur der CSAR Browsing API.

Struktur der mitgelieferten DVD.

14
16
20
22

32

36

36

37

39

40

41
43

46

49
52

Tabellenverzeichnis

Tabellenverzeichnis

2.1 Ergebnisse der Evaluation von Multi-Cloud-Bibliotheken.

Verzeichnis der Listings

Verzeichnis der Listings

2.1
2.2
2.3
2.4

2.5
2.6

4.1
4.2
4.3
4.4

Aufbau einer TOSCA Metadatei. 15
Beispiel einer OSGi Bundle Manifest. 17
Erzeugen eines jclouds BlobStoreContext-Objekts. 26
Erzeugen eines jclouds BlobStore-Objekts und Erstellen eines Con-

tainers. L. Ll 27
Speichern einer Datei mit jclouds. 27
Abrufen einer Datei mit jelouds. 27

Maven-Befehl zum Beziehen der Abhéngigkeiten eines Maven-Projekts. 58
XML-Repréasentation der Ressource /StorageProviders/Available. 64
XML-Reprasentation von Zugangsdaten. 65
XLink-Repréasentation einer CSAR Browsing API-Ressource. 67

1 FEinleitung

1 Einleitung

Die Entwicklungen der letzten Jahre zeigen, dass Cloud-Anwendungen immer be-
liebter werden. Viele IT-Unternehmen migrieren mit ihren bestehenden Produkte zu
einem Cloud-Anbieter, da sie nicht mehr mit der Bereitstellung und Wartung von
erforderlicher Hard- und Software konfrontiert sein mochten, die sich als teuer und
kompliziert herausgestellt hat [sal]. Stattdessen werden diese Aufgaben vom Cloud-

Anbieter iibernommen, der hierfiir spezialisiertes Personal und Software vorhélt.

Aufgrund von strategischen Anderungen des IT-Unternehmens ist es oftmals erforder-
lich, dass mit einer Cloud-Anwendung zu einem anderen Cloud-Anbieter umgezogen
werden muss. Aber auch tarifliche Anderungen des Cloud-Anbieters kénnen einen
Anlass fiir diese Mafinahme darstellen. Ein Umzug zwischen mehreren Anbietern ist
jedoch mit einem hohen Aufwand fiir das IT-Unternehmen verbunden, da von der
Anwendung und deren Aufbau in der Regel keine anbieteriibergreifende Beschreibung

existiert.

Aus diesem Problem heraus ist die Topology and Orchestration Specification for Cloud
Applications (TOSCA) entstanden. Sie ermoglicht die portable und interoperable
Beschreibung von Cloud-Anwendungen und deren Management. Anwendungen kén-
nen so bei verschiedenen Anbietern betrieben und deren Management automatisiert
werden. [TOS13]

OpenTOSCA ist eine Laufzeitumgebung fiir TOSCA-Anwendungen. Eine erste Ver-
sion wurde im Rahmen eines Studienprojekts an der Universitdt Stuttgart entwickelt
und soll im Rahmen dieser Bachelorarbeit nun in einem bestimmten Bereich weiter-

entwickelt werden, auf den im folgenden Abschnitt nidher eingegangen wird.

1.1 Motivation und Aufgabenstellung

Das Cloud Service Archive (CSAR) ist ein Archivformat zur Verteilung von TOSCA-
Anwendungen und wird von OpenTOSCA verstanden. Momentan kann der Inhalt
einer solchen Datei, die OpenTOSCA iibergeben wurde, jedoch ausschlieilich auf
dem lokalen Dateisystem gespeichert werden. Wiinschenswert wéren alternative
Speicherorte, insbesondere Cloud-Storage-Anbieter. Diese bieten eine sichere und

zuverlissige Infrastruktur fiir Daten. Die Speicherung erfolgt in der Regel repliziert,

1 FEinleitung

um eine hohe Datensicherheit zu gewéhrleisten [Seil0]. Weiterhin steht bei den
meisten Cloud-Storage-Anbietern fiir Unternehmen eine theoretisch unbegrenzte

Speicherkapazitiat zu Verfiigung.

Im Rahmen dieser Bachelorarbeit wird ein generischer File Service entworfen und
implementiert, der eine einheitliche Schnittstelle bietet, um CSAR-Dateien in ver-
schiedenen Umgebungen zu speichern und zu verwalten. Es werden zwei Implemen-
tierungen der Schnittstelle bereitgestellt: Eine Implementierung (Plug-in) erméglicht
weiterhin das Speichern auf dem lokalen Dateisystem, eine weitere Implementierung
erlaubt die Speicherung auf dem Cloud-Storage-Anbieter Amazon Simple Storage
Service (S3) (siehe Abschnitt 2.6). Der generische File Service, der in dieser Arbeit
entsteht, stellt eine Weiterentwicklung des bisherigen File Service von OpenTOSCA

dar.

1.2 Gliederung der Arbeit

In Kapitel 2 werden zunéchst Begrifflichkeiten erldutert, die fiir das Verstdndnis
dieser Arbeit relevant sind.

Im Anschluss werden in Kapitel 3 die Anforderungen genannt, die der generische
File Service erfiillen muss. Dies impliziert auch Anforderungen, die nicht direkt der
Aufgabenstellung zu entnehmen sind, sondern sich aus dieser ergeben haben.
Kapitel 4 beschreibt das Konzept des generischen File Service und erlautert, wie
dieser implementiert wurde. Dabei wird in 4.1 einfithrend zunéchst ein Uberblick
iiber die Architektur gegeben. Anschliefend werden in den weiteren Abschnitten
auf die einzelnen Komponenten und Datenmodelle eingegangen, die entwickelt bzw.
weiterentwickelt worden sind. Abschnitt 4.7 thematisiert die Integration.

Den Abschluss bildet Kapitel 5, in dem die Arbeit zusammengefasst wird und Anre-
gungen fiir konkrete Weiterentwicklungen gegeben werden, die im Zusammenhang

mit der Entwicklung im Rahmen dieser Arbeit stehen.

10

2 Grundlagen

2 Grundlagen

In diesem Kapitel werden grundlegende Begriffe erldutert, die in den weiteren Kapiteln
als vorausgesetzt angenommen werden. Zunéchst setzen wir uns in Abschnitt 2.1 mit
dem Begriff ,,Cloud Computing* auseinander, da dieser die Basis fiir die meisten der

darauf folgenden Begriffe darstellt.

2.1 Cloud Computing

Bisher konnte sich fiir ,,Cloud Computung® keine allgemeingiiltige Definition durchset-
zen. In Fachkreisen wird jedoch meist die Definition der US-amerikanischen Standar-
disierungsstelle NIST (National Institute of Standards and Technology) herangezogen

[Bun|, im Folgenden aus dem Englischen tibersetzt:

Cloud Computing ist ein Modell, das es erlaubt bei Bedarf, jederzeit
und tiberall bequem iiber ein Netzwerk auf einen geteilten Pool von
konfigurierbaren Rechnerressourcen (z. B. Netze, Server, Speichersysteme,
Anwendungen und Dienste) zuzugreifen, die schnell und mit minima-
lem Managementaufwand oder geringer Serviceprovider-Interaktion zur

Verfligung gestellt werden kénnen. [MG11]

Prinzipiell geht es also darum, I'T-Ressourcen effizient in und tiber Netzwerke be-
reitzustellen [M12]. Fiir einen Nutzer der IT-Ressourcen bleibt dabei die zugrunde
liegende Infrastruktur (u.a. Hard- und Software) verborgen. Diese Einschriankung
hat den Begriff der Cloud (deutsch ,Wolke“) geprégt.

IT-Ressourcen werden durch Cloud-Computing als Dienste zur Verfiigung gestellt.
Man unterscheidet drei verschiedene Servicemodelle: Infrastructure as a Service (IaaS)
stellt Rechenleistung, Datenspeicher und Netzwerkkapazitit zur Verfiigung. Auf einer
virtuellen Rechnerinstanz kann bspw. ein Betriebssystem mit Anwendungen installiert
und betrieben werden. Platform as a Service (PaaS) stellt eine Ausfiihrungsumgebung
fiir Anwendungen bereit, auf der mittels standardisierter Schnittstellen zugegriffen
und Anwendungen installiert werden kénnen [MG11]. Der Nutzer erhélt keinen Zugriff
auf die Infrastruktur (u.a. Server und Betriebssystem) [MG11]. Software as a Service

(SaaS) stellt eine konkrete Cloud-Anwendung zur Verfigung. [Bun]

11

2 Grundlagen

Meist werden Cloud-Dienste von Anbietern bereitgestellt, die sich auf diesem Gebiet
spezialisiert haben. Dadurch wird eine hohe Zuverlassigkeit und Sicherheit der Dienste

ermoglicht.

2.2 Topology and Orchestration Specification for Cloud
Applications (TOSCA)

Die Topology and Orchestration Specification for Cloud Applications (TOSCA) ist
ein Standard, mit dem Cloud-Anwendungen und deren Management portabel und
interoperabel beschrieben werden konnen, also unabhingig von einem bestimmten
Cloud-Anbieter oder einer Hosting-Technologie. Zur Repréisentation eines TOSCA-
Modells kommt die Auszeichnungssprache bzw. das Datenformat XML zum Einsatz.
[TOS13]

In Abschnitt 2.2.1 wird auf die wesentlichen Konzepte von TOSCA eingegangen. Das
Cloud Service Archive (CSAR), das ebenfalls durch TOSCA spezifiziert ist, wird
in Abschnitt 2.2.2 separat behandelt, da dieses eine zentrale Rolle in dieser Arbeit

einnimmt.

Wir beziehen uns in diesem Dokument auf TOSCA in der Version CS01! (vom
2013-03-18).

2.2.1 Konzepte

In einem TOSCA-Modell wird die Struktur einer Cloud-Anwendung durch ein
Topology Template beschrieben, das sich aus Node Templates und Relationship
Templates zusammensetzt. Ein Node Template reprasentiert eine Komponente der
Anwendung und ist durch ein Node Type typisiert. Ein Beziehung zwischen zwei Node
Templates wird durch ein Relationship Template modelliert, das ein Relationship
Type referenziert. [TOS13]

Sowohl Node Types als auch Relationship Types definieren (insbesondere) Schnitt-
stellen mit Management-Operationen. Node Type Implementation bzw. Relationship
Type Implementation reprisentiert die Implementierung eines referenzierten Node Ty-
pe bzw. Relationship Type und definiert dazu Implementation Artifacts (IAs), welche
die Schnittstellen realisieren. In einer Node Type Implementation kénnen weiterhin

Deployment Artifacts (DAs) definiert werden, die ein zugehoriges Node Template

'TOSCA Sperzifikation Version CSO1: http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/
TOSCA-v1.0-cs01.pdf

12

http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf

2 Grundlagen

bzw. eine Komponente der Anwendung reprasentieren. Auch ist die Definition von
DAs direkt in einem Node Template moglich. [TOS13]

Beispielsweise konnte es ein Node Template geben, das einen Application Server
reprasentiert. Das zugehorige Deployment Artifact wéire dann das Image des Applica-
tion Servers. Ein Implementation Artifact konnte eine Anwendung (z. B. WAR-Datei)
sein, die Operationen bereitstellt, mit denen der Application Server gestartet und
heruntergefahren werden kann. Mittels einem ,,hostedOn“-Relationship Template
kénnte der Application Server mit einem Linux, das ein weiteres Node Template

darstellt, verbunden sein.

In einer Node Type Implementation, Relationship Type Implementation oder einem
Node Template erfolgt die Definition eines Artefakts durch eine Referenz auf ein
Artifact Template. In einem Artifact Template kann ein konkretes Artefakt direkt
oder durch Referenzen spezifiziert werden. Ein Referenz ist dabei eine URI, die auf
eine einzelne Datei oder einen Ordner verweist. In letzterem Falle sind Patterns
erlaubt, mit denen Dateien an der Referenz ausgeschlossen werden kénnen. Eine
Komponente einer TOSCA-Laufzeitumgebung, die den Inhalt an einer Artefakt-
Referenz verfiigbar macht, muss folglich iiberpriifen, welche Dateien den Patterns
entsprechen und lediglich diese zuriickliefern. Ein Artifact Template referenziert ein
Artifact Type, dass die Menge der erlaubten Artefakte durch Typisierung einschréankt.
Beispielsweise wére ein Artifact Type fiir WAR-Dateien denkbar. [TOS13]

Node Templates und Relationship Templates konnen auch Eigenschaften (Properties)
besitzen, deren Struktur bzw. Schema im referenzierten Node Type bzw. Relationship
Type definiert sein muss. Ein Node Template einer virtuellen Maschine kénnte z. B.
deren Hardwarezusammenstellung (Anzahl der CPUs, Grofle der Festplatte etc.) als
Eigenschaften enthalten. [TOS13]

Das Management einer Cloud-Anwendung wird in einem TOSCA-Modell durch
Plane (Plans) umgesetzt. Ein Plan ist ein Prozess-Modell, d. h. ein Workflow, der
Management-Operationen, die durch Implementation Artifacts bereitgestellt werden,
zu hoherwertigen Management-Funktionalitédten orchestriert (kombiniert). Beispiels-
weise konnte es einen Plan geben, der die Cloud-Anwendung instanziiert (Build
Plan). Plane kénnen direkt oder mittels einer Referenz (URI) spezifiziert werden.
TOSCA definiert keine Sprache fiir Pldne, sondern erlaubt die Verwendung von
existierenden Standards zur Beschreibung von Prozessen, insbesondere BPEL und
BPMN. [TOS13]

Ein Service Template setzt sich aus einem Topology Template und Plinen zusammen.
Durch Ausfithrung eines Build Plans wird das Service Template bzw. deren Topology

Template instanziiert und repréasentiert damit einen konkreten Service. Definitions

13

2 Grundlagen

besteht aus Service Templates und den angesprochenen Types, die zur Definition der

Service Templates benotigt werden. [TOS13]

Alle angesprochenen Konstrukte von TOSCA sind auf XML-Elemente abgebildet
und bilden nach beschriebener Hierarchie (Definitions ist das Wurzelelement) ein
TOSCA Definitions-Dokument. [TOS13]

TOSCA sieht auch eine Import-Funktionalitéit vor, mit der die Beschreibung einer
Cloud-Anwendung auf mehrere Dokumente verteilt werden kann. In einem Definitions-
Dokument kénnen dazu XML Schema Definitions (XSDs), WSDL Definitions oder
weitere TOSCA Definitions-Dokumente spezifiziert werden, die importiert bzw. als
Abhéngigkeit deklariert werden sollen. Beispielsweise kdnnte es in einem Definitions-
Dokument eine Referenz auf einen Node Type geben, das in einem anderen Definitions-
Dokument definiert ist. Ersteres Definitions-Dokument miisste dann das Definitions-

Dokument mit dem Node Type importieren. [TOS13]

VALESCA ist ein Modellierungswerkzeug fiir TOSCA, mit dem u.a. Topology
Templates grafisch erstellt werden kénnen [CLO]. Abbildung 2.1 zeigt eine Topologie,
die mit VALESCA modelliert wurde.

WebShop
(WAR)

(hosted on)

Created with Java 1.7.

v

Servlet Container
(Tomcat)

&

Connection
(JDBCConnection)

>

Customer Database
CustomerDatabase
(Derby Database)

(hosted on)

(hosted on)

@

(UbuntuLinux)

OperatingSystem

| (hosted on)

v

Virtual Server
(AWS EC2 Server)

Type: On-Demand

Abbildung 2.1: Beispiel einer TOSCA-Topologie, die mit VALESCA modelliert wurde.
Node Templates werden durch abgerundete Rechtecke reprasentiert.
Pfeile, die Node Templates miteinander verbinden, stellen Relation-
ship Templates dar.

14

-

w

w

w

I

oo

©

2 Grundlagen

2.2.2 Cloud Service Archive (CSAR)

Ein Cloud Service Archive (CSAR) wird zur Verteilung einer TOSCA-Anwendung
eingesetzt. Es handelt sich um eine ZIP-Datei (iiblicherweise komprimiert) mit der
Dateiendung ,csar“, die alle Artefakte enthélt, die zur Instanziierung und zum
Management der Cloud-Anwendung bzw. Service bendtigt werden. Dazu gehoren
Definitions-Dokumente, Implementation Artifacts, Deployment Artifacts und Pla-
ne. In dieser Form kann eine Cloud-Anwendung einer TOSCA-Laufzeitumgebung
ibergeben werden. [TOS13]

Das Wurzelverzeichnis einer CSAR muss zumindest die Ordner , Definitions“ und
»TOSCA-Metadata“ enthalten. In ,,Definitions“ liegen eine oder mehrere Definitions-
Dokumente der Cloud-Anwendung. Beispielsweise wére es denkbar, dass eine CSAR
zur Wiederverwendung lediglich Node Types und Relationship Types spezifiziert. In
weiteren CSARs konnten dann Node Templates bzw. Relationship Templates definiert
sein, die auf diese Node Types bzw. Relationship Types referenzieren. In diesem
Fall miissten die Definitions-Dokumente mit den Types importiert werden (siehe
Abschnitt 2.2.1). Falls eine Cloud-Anwendung dagegen vollstdndig in einer CSAR
verteilt wird, so muss mindestens ein Definitions-Dokument ein Service Template
enthalten. [TOS13|

Der Ordner ,,TOSCA-Metadata* enthélt die TOSCA Metadatei ,TOSCA.meta*
(auch CSAR Manifest genannt), in der Metadaten der CSAR als Schliissel-Wert-Paare
hinterlegt sind. Abbildung 2.1 veranschaulicht den Aufbau der TOSCA Metadatei.

TOSCA-Meta-Version: 1.0
CSAR-Version: 1.0
Created-By: string
Entry-Definitions: string 7

Topology: string 7

Name: <relFilePathToCSARRootOrPatterni>
Content-Type: type/subtypel
<keyl1>: <valuell>

10| ...

1

—

12

<keyln>: <valueln>

13| ...

Listing 2.1: Aufbau einer TOSCA Metadatei. Der erste Block, der Metadaten iiber
die CSAR selbst enthalt, ist Pflicht.

Die Datei teilt sich in Blécken auf, die durch Leerzeilen voneinander getrennt sind. Im
ersten Block (,,block_0“) stehen Metadaten iiber die CSAR selbst, wie z. B. der Autor

der CSAR. Unter dem optionalen Attribut ,Entry-Definitions“ kann der relative Pfad

15

2 Grundlagen

zum Haupt-Definitions-Dokument definiert werden, um einem TOSCA-Container eine
effizientere Verarbeitung der Definitions-Dokumente zu ermoglichen. Auch “Topology*
ist optional und referenziert auf ein Bild, dass die Topologie der Cloud-Anwendung
veranschaulicht. Letzteres Attribut ist dabei nicht durch TOSCA spezifiziert. Es wird
lediglich vom TOSCA-Container OpenTOSCA (siehe Abschnitt 2.5) verstanden und

verwendet.

In weiteren Blocken konnen Metadaten zu Dateien in der CSAR definiert werden,
z. B. der Hash einer Datei. Falls Metadaten zu einer Datei definiert werden sollen, so
muss neben dem relativen Pfad der Datei mindestens ihr Content-Type? angegeben
werden. Statt dem relativen Pfad der Datei konnen auch Pattern definiert werden,

um Metadaten direkt mehreren Dateien zuzuweisen. [TOS13]

Die iibrige CSAR-Struktur ist dem Ersteller der CSAR iiberlassen [TOS13]. Abbil-
dung 2.2 zeigt ein Beispiel einer giiltigen CSAR.

/
| Definitions
MyWebAppDefinitions.xml Definitions-Dokument
TOSCA-v1.0-csOl.xsd.............. TOSCA XSD CS01
| TOSCA-Metadata
| TOSCA.meta............c.oiiiiii... TOSCA Metadatei
| DAs
tMyWebApp Zip.oooooon Deployment Artifact
MyWebApp_manual.pdf
| IAs
L Deployer.war..........oouuu... Implementation Artifact
| Plans
L BuildPlan.zip......ccovvvvennn Instanziiert Anwendung

Abbildung 2.2: Beispiel einer giiltigen CSAR. Vorgaben durch die Spezifikation sind
fett gedruckt.

2.3 0OSGi

OSGi spezifiziert eine dynamische Softwareplattform fiir Java, die als OSGi Service
Platform bezeichnet wird. Im Wesentlichen stellt diese ein Komponenten- und Service-
Modell fiir Java bereit. Komponenten und Services kénnen zur Laufzeit dynamisch
verwaltet (,,Hot Deployment“), d. h. installiert, gestartet, gestoppt, aktualisiert und
deinstalliert werden. Dies ermoéglicht insbesondere die Installation von Updates

ohne einen Neustart der Anwendung. Auch kann eine nicht-primére Funktionalitéit

2Der Content-Type muss der Typ/Subtyp-Struktur entsprechen. Ein existierender Content-Type
ist bspw. ,text/plain®

16

-

»

w

'y

ot

[=2]

]

2 Grundlagen

ausfallen oder (temporér) deaktiviert werden ohne das die gesamte Anwendung nicht
mehr funktionsfiahig ist. Beides fithrt zu einer hoheren Verfiigbarkeit. Denkbar wére
es auch, dass man eine Anwendung in verschiedenen Varianten bereitstellt. Jede
Variante zeichnet sich durch einen bestimmten Funktionsumfang aus, der sich aus
einer Zusammenstellung von Komponenten ergibt. Weiterhin unterstiitzt die OSGi
Service Platform Versionierung, d.h. mehrere Versionen einer Komponente kénnen
gleichzeitig in Betrieb sein. Komponenten, die Abhéngigkeiten zu verschiedenen
Versionen der selben Bibliothek haben, fithren somit zu keinen Problemen. [WHKLO09,
Vog13, Hor12a, SC09]

Eine Komponente wird in OSGi durch ein Bundle reprasentiert. Dabei handelt es
sich um eine klassische JAR-Datei mit zusétzlichen Metadaten, die in einem Bundle
Manifest ,MANIFEST.MF* hinterlegt sind. Dieses muss im Ordner ,META-INF*
relativ zum Wurzelverzeichnis der JAR abgelegt sein. Listing 2.2 zeigt beispielhaft
ein Bundle Manifest. [Vogl3]

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: My Application.
Bundle-SymbolicName: org.example.myapp
Bundle-Version: 1.0.0
Bundle-RequiredExecutionEnvironment: JavaSE-1.7
Import-Package: org.example.myappl,
org.example.myapp2

Export-Package: org.example.myapp

Listing 2.2: Beispiel einer OSGi Bundle Manifest.

In der Datei muss insbesondere der Bundle Symbolic Name (BSN) definiert wer-
den, der die eindeutige Kennung des Bundles darstellt. Im Beispiel ist der BSN
yorg.example.myapp®. Geméfl einer Konvention sollten die Namen aller Pakete
(,packages“), die zu einem Bundle gehoren, mit dem BSN beginnen. Weiterhin
muss explizit angegeben werden, welche Pakete das Bundle veroffentlicht (,,Export-
Package®) und importiert bzw. aus anderen Bundles verwendet (,,Import-Package®).
Auf diese Weise erhilt man eine effektive Kontrolle iiber die Schnittstelle und Abhén-
gigkeiten des Bundle. Grundsétzlich setzen Bundles das Konzept der Modularisierung
um. In der Entwicklungsumgebung Eclipse kann ein Bundle durch ein ,,Plug-in

Project® erstellt werden. [Vogl3]

Ein Bundle kann Services (Dienste) mit einer definierten Schnittstelle bereitstel-
len (Service Provider) bzw. nutzen (Service Consumer). Zur Bereitstellung eines
Service muss zunéchst deren Schnittstelle in einem Bundle definiert werden. Ein
weiteres Bundle stellt den Service bereit, indem es die Schnittstelle implementiert

und die Service-Implementierung in der OSGi Service Plattform registriert. Letzteres

17

2 Grundlagen

erfolgt iiber eine Component Definition-Datei (Declarative Services®). Diese XML-
Datei enthélt insbesondere die ,fully qualified names“* der Schnittstelle und der
Implementierungsklasse. Analog kénnen weitere Services mit selbiger Schnittstelle
bereitgestellt werden. Die Schnittstelle und Implementierungen werden somit durch

separate Bundles® reprisentiert.

Eine Bundle bindet sich gegen die Schnittstelle, um auf alle Implementierungen
bzw. Services mit dieser Schnittstelle zugreifen zu kénnen. Hierzu muss ebenfalls
eine Component Definition-Datei erstellt werden, die die ,fully qualified names“ der
Schnittstelle und der Klasse enthélt, in der die Instanzen der Implementierungsklassen
bereitgestellt werden sollen. Fiir letztere Klasse miissen weiterhin Namen fiir ,,bind“-
und ,,unbind“-Methoden spezifiziert werden, die von der OSGi Service Plattform
aufgerufen werden, falls ein Service mit der Schnittstelle verfiigbar bzw. nicht mehr
verfligbar ist. Wird ein Service verfiigbar, so wird das entsprechende Objekt iiber
einen Parameter der ,,bind“-Methode bereitgestellt und kann damit einer globalen
Variable zugewiesen werden. Weiterhin muss das Paket, das die Schnittstelle enthélt,
im Bundle Manifest importiert werden. Die Verwendung von Services ermoglicht eine

lose gekoppelte Architektur.

Die Referenz-Implementierung der OSGi-Spezifikation ist Eclipse Equinox [Vogl13].
OpenTOSCA, auf das in Abschnitt 2.5 eingegangen wird, lauft auf dieser OSGi-
Implementierung. Sie besteht momentan aus ca. 50 Bundles®, die groBtenteils mittels
Services interagieren. Im Ubrigen erfolgt der Zugriff auf Bundles direkt, d. h. durch
Importieren des Pakets mit der benotigten Klasse. Eclipse stellt ein weiteres Beispiel

dar, das auf Eclipse Equinox basiert.

2.4 Representational State Transfer (REST)

Representational State Transfer (REST) ist ein Architekturstil fiir Webanwendungen.
Durch eine Anfrage an eine URI, die zu einer entsprechenden Anwendung gehort,
kénnen Daten zuriickgeliefert und Anderungen hervorgerufen werden. Man redet
hierbei auch von einer Ressource, die durch eine URI identifiziert und mittels einer
Anfrage abgerufen, verdndert oder erstellt werden kann. Im Normalfall kommt hierzu
das Protokoll HTTP (Hypertext Transfer Protocol) zum Einsatz. [Hor12b, Rod08|

3Neben dem deklarativen Ansatz per XML kann auch der ServiceTracker verwendet werden, siche
[Hor12a].

“Der ,fully qualified name® der Java File-Klasse bspw. ist java.io.file.

SDie Verteilung der Schnittstelle und Implementierungen als separate Bundles stellt eine Konvention
dar, die wiahrend der Entwicklung von OpenTOSCA eingefiihrt wurde.

SExklusive Bundles, die zu benétigten Bibliotheken gehéren.

18

2 Grundlagen

Eine HTTP-Anfrage besteht aus zwei Teilen, dem Header (Nachrichtenkopf) und
Body (Nachrichtenkérper). Es existieren verschiedene Anfrage-Methoden (Anfrage-
Varianten), u.a. GET, POST und DELETE. Mittels einer GET-Anfrage wird eine
Ressource angefordert. Die Ressource bzw. der Zustand der Anwendung sollte hierbei
nicht verindert werden. Uber eine POST-Anfrage kann eine neue Ressource erzeugt
werden. Die Ressource wird unterhalb der Ressource erstellt, an deren URI die
Anfrage gesendet wurde. Zuriickgegeben werden sollte die URI der neuen Ressource.
Auch kann POST fiir Operationen verwendet werden, die durch keine andere Methode
abgedeckt werden. Mit einer DELETE-Anfrage kann eine Ressource geléscht werden.
[Hor12b, Rod08]

Im Body einer Anfrage konnen beliebige Daten iibergeben werden, die z. B. zum
Erstellen einer Ressource benétigt werden. Durch die Angabe eines ,,Content-Type*
im Header der Anfrage kann das Format des Body in der Typ/Subtyp-Struktur (z. B.
wtext/plain®) spezifiziert werden. [Hor12b, Rod08]

Weitere Methoden und Headerfelder sollen an dieser Stelle nicht angesprochen werden,

da sie im Rahmen dieser Arbeit nicht relevant sind.

Die Funktionalititen von OpenTOSCA (sieche Abschnitt 2.5) werden {iber eine
REST-Schnittstelle, die von der Container API bereitgestellt wird, nach auflen

kommuniziert.

2.5 OpenTOSCA

OpenTOSCAT ist eine webbasierte Java-Implementierung einer Laufzeitumgebung
fir TOSCA-Anwendungen (TOSCA-Container). Cloud-Anwendungen bzw. Services,
welche als Cloud Service Archive (CSAR; siehe Abschnitt 2.2.2) dem TOSCA-

Container iibergeben werden, konnen instanziiert und verwaltet werden.

Eine erste Version von OpenTOSCA wurde im Rahmen eines Studienprojekts der
Institute IAAS und IPVS der Universitiat Stuttgart entwickelt und im Oktober
2012 fertiggestellt. OpenTOSCA soll demnéchst als Open-Source-Software unter der

Apache 2.0 Lizenz® veréffentlicht werden.

In Abschnitt 2.5.1 soll nun auf die Architektur und Features von OpenTOSCA
eingegangen werden. Dabei wird der Stand des TOSCA-Containers vor der Entwick-
lung im Rahmen dieser Arbeit betrachtet. Die entwickelten bzw. weiterentwickelten

Komponenten werden in Kapitel 4 angesprochen.

"Website von OpenTOSCA: http://www.iaas.uni-stuttgart.de/0penTOSCA
8 Apache 2.0 Lizenz: http://www.apache.org/licenses/LICENSE-2.0

19

http://www.iaas.uni-stuttgart.de/OpenTOSCA
http://www.apache.org/licenses/LICENSE-2.0

2 Grundlagen

2.5.1 Architektur und Features

Abbildung 2.3 veranschaulicht die Architektur von OpenTOSCA, die im Wesentlichen
aus den Komponenten Container API, Control, TOSCA Engine, Implementation
Artifact Engine (IA Engine), Plan Engine und Core besteht. Im Folgenden soll nun
auf diese Komponenten und deren Zusammenhénge ndher eingegangen werden. Dazu

wird u. a. der Ablauf eines CSAR Deployments im Container beschrieben. Wie bereits

OpenTOSCA Container
Deployment Container API TOSCA-Traversal || CSAR-Browsing
[i{e)
Control
R»
*.opentoscacontrol O
(@)
O RO RO IA Engine
TOSCA Engine * jaengine 5’ Plugins
.t i « n
oscaengine A Plan Engine
R»
*.planengine|— O |Plugins“
(@]
(@)
Core
* file *.deployment.tracker *model.repository *.endpoint

Abbildung 2.3: FMC?-Diagramm zur Architektur von OpenTOSCA.

in Abschnitt 2.4 erwahnt, stellt die Container API die externe REST-Schnittstelle
von OpenTOSCA dar, mit der iiber HTTP-Anfragen kommuniziert werden kann.
Sie ermoglicht den Aufruf aller Funktionen, die fiir den Benutzer vorgesehen sind.
Eine CSAR muss iiber diese Schnittstelle zunédchst gespeichert werden, damit sie
im Container vorhanden ist. Das eigentliche Speichern erfolgt dabei im File Service
der Core-Komponente, der die CSAR-Datei u. a. entpackt, damit auf deren Inhalt
leichter zugegriffen werden kann. Das Loschen einer CSAR ist ebenfalls iiber den
File Service moglich. Eine gespeicherte CSAR kann tiber die CSAR Browsing API
durchsucht werden. Auch ist es moglich, eine Datei der CSAR herunterzuladen.
Weiterhin kénnen die Definitons-Dokumente der CSAR angezeigt und iiber diese
traversiert werden (entsprechend der XML-Struktur; TOSCA Traversal API). Mittels

“Fundamental Modeling Concepts (Website: http://www.fmc-modeling.org)

20

http://www.fmc-modeling.org

2 Grundlagen

der Deployment API kénnen verschiedene Operationen (je nach Deployment-Status'?)
auf einer CSAR aufgerufen werden. Die méglichen Operationen sowie der Deployment-
Status kénnen ausgegeben werden. Wird eine Operation auf einer CSAR aufgerufen,
so wird der Aufruf an die Control weitergereicht, die schliellich die zustédndige
Komponente aufruft. Weiterhin ist die Control fiir das Setzen des Deployment Status
im Deployment Tracker der Core-Komponente zusténdig. Der Deployment Tracker

verwaltet die Deployment Status aller CSARs, die sich im Container befinden.

Die Verarbeitung der Definitions-Dokumente ist die erste Operation, die auf einer
gespeicherten CSAR aufgerufen werden kann. Hierzu kommt die TOSCA Engine
zum Einsatz. Die Verarbeitung besteht dabei in erster Linie aus dem Auflésen von
Importen und Referenzen. Zur Vereinfachung wurde festgelegt, dass eine Datei, die
in einem Definitions-Dokument importiert wird, im Ordner ,IMPORTS® in einer
CSAR abgelegt sein muss. Die verarbeiteten Definitions-Dokumente werden im Model

Repository der Core-Komponente gespeichert.

Anschlieflend konnen die Implementation Artifacts (IAs) (siehe Abschnitt 2.2.1)
deployed werden, damit dessen Management-Operationen von Pldnen aufgerufen
werden konnen. Dieser Prozess wird durch die IA Engine umgesetzt, die auf einem
Plug-in-System basiert. Jeder unterstiitzte Implementation Artifact-Typ wird durch
ein Plug-in reprasentiert. Momentan existieren Plug-ins fiir WARs, die Java Servlets
oder Java Server Pages (JSP) enthalten und AARs (Axis Archives). WARs werden
auf einen lokalen Apache Tomcat!', AARs auf einen lokalen Apache Axis2!'? deployed.
Benoétigte Daten aus Definitions und die Artefakte selbst werden von der TOSCA
Engine bezogen, die wiederum mit dem File Service interagiert. Nach dem Deployment
eines [As wird der zugehérige Endpunkt im Endpoint Service der Core-Komponente

gespeichert.

Nachdem die TAs deployt wurden, kann abschliefend das Deployment der Pline
(siehe Abschnitt 2.2.1) initiiert werden. Dies stellt die Aufgabe der Plan Engine dar,
die ebenfalls auf Plug-ins basiert. Momentan werden BPEL-Plane unterstiitzt, die als
ZIP-Datei bereitgestellt sind. Diese werden auf einem lokalen WSO2 Business Process
Server (BPS) deployt. Beim Deployment eines Plans werden die benotigten Artefakte
vom File Service bezogen. Anschlielend werden die aufzurufenden Management-
Operationen analysiert und gebunden, d.h. erhalten ihren korrekten Endpunkt.

Hierfiir werden die Endpunkt-Daten der TAs aus dem Endpoint Service benétigt.

Zur Speicherung und Verwaltung der Daten, die wéihrend der Nutzung von

OpenTOSCA erzeugt werden, kommt eine lokale Derby-Datenbank zum Einsatz.

%Tm ersten Deployment-Status ,,CSAR gespeichert“ bspw. kann (lediglich) die Verarbeitung der
Definitions-Dokumente initiiert werden.

HYWebsite von Apache Tomcat: http://tomcat.apache.org

12Website von Apache Axis2: http://axis.apache.org/axis2/java/core

21

http://tomcat.apache.org
http://axis.apache.org/axis2/java/core

2 Grundlagen

Die Interaktion mit dieser Datenbank erfolgt iiber Eclipse Link'?, der Referenz-
implementierung der Java Persistence API (JPA) 2.0' [Horl3]. Die Inhalte von
CSAR-Dateien und BPEL-Plénen (ZIP-Dateien) werden direkt auf dem lokalen
Dateisystem abgelegt.

Zu OpenTOSCA gehort neben dem Container auch eine grafische Benutzerschnitt-
stelle, die auf Java Server Pages basiert (siehe Abbildung 2.4). Sie fungiert als REST
Client, der mit der Schnittstelle der Container API kommuniziert. Container und
GUI sind somit lose gekoppelt.

Deploy CSAR

SugarCRM3.csar
Some description...

Process TOSCA

invoke 1A Deployment

{http:/fwww. example.com/demo}SugarCRM_CSPRD01_ServiceTemplate ~

Upload new CSAR Delete CSAR

~

Abbildung 2.4: OpenTOSCA JSP UL Die Definitions-Dokumente der gespeicherten
CSAR wurden bereits verarbeitet. Nun kann das Deployment der
IAs (eines bestimmten Service Template) initiiert werden.

2.6 Cloud Storage

Unter einem Cloud Storage versteht man einen Verband von verteilten Datencentern,
die dem Benutzer eine Schnittstelle zur Verfligung stellen, um Daten bei diesen zu
speichern. Die Basis bildet dabei Cloud-Computing (siche Abschnitt 2.1). [Will2,
Seil0]

3 Website von Eclipse Link: http://wuw.eclipse.org/eclipselink

Die Java Persistence API (JPA) definiert eine Schnittstelle fiir objektrelationales Mapping (ORM)
[Hor13]. Mit ORM kénnen Objekte in einer Datenbank gespeichert und verwaltet werden [Hor13).
Die hierzu notwendigen SQL-Anweisungen werden von der ORM-Bibliothek generiert.

22

http://www.eclipse.org/eclipselink

2 Grundlagen

Um eine hohe Datensicherheit und Verfiigharkeit zu gewéhrleisten, werden die Daten
repliziert und an verschiedenen Orten redundant abgelegt. Féillt ein Datencenter
aus, so wird automatisch zu einem anderen gewechselt und der Dienst kann weiter

genutzt werden. [Seil0]

Es existieren zurzeit eine Vielzahl von Anbietern, die einen Cloud Storage zur
Verfiigung stellen. Generell unterscheidet man zwischen zwei Arten von Anbietern:
Dienste wie der Amazon Simple Storage Service (S3)!° stellen ihre Ressourcen in erster
Linie fiir Unternehmen (Business-to-Business) zur Verfiigung. Da diese einen hohen
Speicherbedarf haben, existiert in der Regel keine Begrenzung des Speicherplatzes.
Die Abrechnung erfolgt nutzungsbasiert. Bei Amazon S3 bspw. unterscheidet man
zwischen Speicher-, Anfrage- und Dateniibertragungsgebiihren [Ama]. Den anderen
Bereich bilden Dienste, deren Kundenstamm vorzugsweise aus privaten Nutzern
besteht (Business-to-Consumer). Diese bieten einen meist kostenlosen Basistarif
mit begrenzter Speicherkapazitdt und u. U. weiteren Einschrédnkungen. Verschiedene
Bezahlmodelle ermdéglichen eine Erweiterung der Leistungen. Ein sehr bekannter
Anbieter, der in diese Kategorie fillt, ist Dropbox!6. [Wil12]

2.7 Blobstore

Ein Blobstore ist ein Key-Value-Store, d.h. ein Speicher, auf dem ein Schliissel
auf einen Wert abgebildet wird. Der Wert ist bei einem Blobstore ein Binary large
object (Blob). Dabei handelt es sich um ein binédres Objekt, meist eine Datei. Die
Schliissel-Wert-Paare befinden sich in Containern, die eine Art von Namensraum fiir
die Daten darstellen. Ein Container kann Ordner enthalten, wobei es sich um keine
echten Ordner wie bei einem Dateisystem handelt. Beispielsweise befindet sich ein
Blob mit dem Schliissel my-dir/my-sub-dir/my-picture. jpg im virtuellen Ordner
my-dir/my-sub-dir. Blobs kénnen auch mit Metadaten versehen werden, bspw.
konnen Zugriffsrechte definiert werden. Diese Metadaten werden ebenfalls durch
Schliissel-Wert-Paare reprasentiert. Grundsétzlich kénnen auf Blobs eines Blobstores
tiber HTTP-URLs zugegriffen werden. [jcl]

Ein Beispiel fiir einen Blobstore stellt der Cloud-Storage-Anbieter Amazon S3 dar,
den wir bereits im vorherigen Abschnitt 2.6 angesprochen haben. Container werden
dort als Buckets bezeichnet und miissen global eindeutig sein, d. h. ein Bucket-Namen
darf Benutzerkonto-tibergreifend nur einmal vorkommen [jcl]. Weiterhin diirfen pro
Benutzerkonto maximal 100 Buckets erstellt werden [jcl]. Ein Blob wére bei Amazon

S3 bspw. unter der URL http://opentosca.s3.amazonaws.com/my-dir/app.war

15Website von Amazon S3: http://aws.amazon.com/de
6Website von Dropbox: https://www.dropbox.com

23

http://aws.amazon.com/de
https://www.dropbox.com

2 Grundlagen

zu finden. In diesem Fall wéire opentosca der Name des Buckets und my-dir/app.war
der Schliissel des Blobs bzw. der Datei.

2.8 jclouds

jclouds ist eine Java-Bibliothek, welche die APIs von Cloud-Anbietern abstrahiert.
Prinzipiell teilt sich jclouds in zwei Bereiche auf: Die Blobstore API, auf die im
folgenden Abschnitt 2.8.1 niher eingegangen wird, ermdglicht den Zugriff auf Cloud-
Storage- Anbieter, die einen Blobstore bereitstellen. Mit der Compute API kénnen
laaS und PaaS Anbieter angesprochen werden. Es kénnen u. a. Rechnerinstanzen
erstellt und gestartet werden und Anwendungen auf diesen installiert werden. Da die
Compute API fiir diese Bachelorarbeit nicht relevant ist, wird auf sie nicht weiter

eingegangen. [jcl]

Die Anbieter, die zurzeit von jclouds unterstiitzt werden, kénnen der jclouds Web-
site entnommen werden!”. Dabei sollte beachtet werden, dass jclouds zwischen
Providers und APIs unterscheidet. Eine Provider-Implementierung nutzt eine API-
Implementierung und enthéalt zusétzliche Eigenschaften, die nur fiir den Provider gel-
ten (z.B. der Endpunkt). Beispielsweise wird die S3 API von den Providern Amazon
S3 und Google Cloud Storage verwendet. Provider- und API-Implementierungen

werden grundsétzlich in separaten JARs verteilt.

jclouds unterstiitzt seit Version 1.0 OSGi [Higl1]. Alle jclouds-JARs sind Bundles.
Weiterhin werden Bundle Listeners mitgeliefert, die zum Benachrichtigen eingesetzt
werden koénnen, falls ein Provider- oder API-Bundle verfiighar bzw. nicht mehr

verfiigbar ist.

In dieser Arbeit wird jclouds zur Realisierung der Amazon S3- und Dateisystem-

Storage-Plug-ins eingesetzt (siche Abschnitt 4.5.2).

Alternativen zu jclouds sind Apache Deltacloud'®, Apache Libcloud!'?, die Dasein
Cloud API??| JetS3t?! und typica??.

"Unterstiitzte Providers und APIs:
http://www.jclouds.org/documentation/reference/supported-providers

8Website von Apache Deltacloud: http://deltacloud.apache.org

19Website von Apache Libcloud: http://libcloud.apache.org

20Website der Dasein Cloud API: http://www.dasein.org

21Website von JetS3t: http://jets3t.s3.amazonaws . com

22Website von typica: http://code.google.com/p/typica

24

http://www.jclouds.org/documentation/reference/supported-providers
http://deltacloud.apache.org
http://libcloud.apache.org
http://www.dasein.org
http://jets3t.s3.amazonaws.com
http://code.google.com/p/typica

2 Grundlagen

Die Entscheidung fiir jclouds ist aus einer Evaluation hervorgegangen, in der jclouds

und die genannten Alternativen auf folgende Anforderungen iiberpriift wurden:

(1) Java-Bibliothek, damit sie problemlos in OpenTOSCA eingesetzt werden kann.

(2) Unterstiitzung fiir das lokale Dateisystem, da entsprechend den Anforderungen

(siehe Abschnitt 3) hierfiir ein Storage-Plug-in bereitgestellt werden muss.
(3) Unterstiitzung fiir Amazon S3 aus selbigem Grund.

(4) JAR-Dateien der Bibliothek Bundles, da OpenTOSCA auf der OSGi Service
Plattform lauft (andernfalls miissten aus den JARs selbst Bundles erzeugt
werden, z. B. mit dem OSGi-Werkzeug bnd?3).

(5) Implementierung von Bundle Listener, die benachrichtigen, falls ein unterstiitz-

ter Anbieter verfiigbar bzw. nicht mehr verfiigbar ist.

(6) Unter Apache 2.0 Lizenz (oder kompatibler Lizenz) lizenziert, da OpenTOSCA

ebenfalls unter dieser Lizenz veroffentlicht werden soll.

Tabelle 2.1 zeigt die Ergebnisse der Evaluation. Wie zu erkennen ist, erfiillt (ausschlief3-
lich) jclouds alle aufgestellten Anforderungen. Daher eriibrigt sich die Aufzédhlung
von Anforderungen, die lediglich wiinschenswert wéren bzw. nicht zwingend erfiillt

sein miissen.

Bibliothek Version (1) (2) 3) (4 (5) (6)
Apache Deltacloud [Apaa] 1.1.3 X (Ruby) X v x x Vv
Apache Libcloud [Apab] 0.12.4 X (Python) X v X v
Dasein Cloud API [enS] 2013.04 v Xx v x X /
jclouds [jel] 1.6.0 v v v v v
JetS3t [Mur] 0.9.0 v X v X X v
typica [Kav] 1.7.2 v Xx x x X /

Tabelle 2.1: Ergebnisse der Evaluation von Multi-Cloud-Bibliotheken.

23Website des OSGi-Werkzeugs bnd: http://www.aqute.biz/Bnd/Bnd

25

http://www.aqute.biz/Bnd/Bnd

2 Grundlagen

Anmerkungen zur Evaluation:

e Apache Deltacloud stellt eine REST API zur Verfiigung, iiber welche die
Bibliothek genutzt werden kann [Apaa)]. Folglich kann sie also auch in Java
eingesetzt werden. Aus Griinden des Aufwands und da explizit eine Java-

Bibliothek gefordert ist, definieren wir Anforderung (1) als nicht erfiillt.

« Die Blobstore API von jclouds unterstiitzt das lokale Dateisystem, da hierfiir

ein Dateisystem-basierter Blobstore bereitgestellt wird [jcl].

o Alle Bibliotheken, die nicht in Java entwickelt wurden, erfiillen die Anforderun-

gen (4) und (5) implizit nicht (OSGi ist eine Softwareplattform fiir Java).

2.8.1 Blobstore API

Die Blobstore API von jclouds bietet eine portable Méglichkeit zur Verwaltung von
Blobstores, die von Cloud-Storage-Anbietern bereitgestellt werden. Im Folgenden
wird beispielhaft beschrieben, wie ein Blob bzw. eine Datei mit der Blobstore API
gespeichert und wieder abgerufen werden kann. Wir gehen dabei davon aus, dass die
jclouds Bibliotheken bereits im Java-Klassenpfad vorhanden sind. Falls dies noch

nicht der Fall ist, wird an dieser Stelle an den jclouds Installation Guide verwiesen.

Fiir den Zugriff auf einen Blobstore muss zunéchst ein BlobStoreContext-Objekt
erzeugt werden, siehe Listing 2.3. Hierzu sind die Provider bzw. API ID?* und die

Zugangsdaten erforderlich.

BlobStoreContext context = new BlobStoreContextFactory().createContext ("

anbieterOderApiID", identitaet, credential);

Listing 2.3: Erzeugen eines jclouds BlobStoreContext-Objekts.

Die Zugangsdaten setzen sich aus identitaet und credential zusammen. Ersteres
Attribut identifiziert ein konkretes Benutzerkonto auf dem Anbieter. Das credential
bestétigt, das man berechtigt ist, auf dieses zugreifen zu diirfen. Im Falle von Amazon
S3 bspw. sind die genannten Attribute der Access Key und Secret Access Key. Falls
die entsprechende Provider- bzw. API-JAR und deren Abhéngigkeiten nicht im

Klassenpfad vorhanden sind, so wird eine entsprechende Exception geworfen.

Zur Verwaltung des Blobstore muss daraufhin ein BlobStore-Objekt?® erzeugt werden.
Mit diesem wird zunéchst der Container erstellt. Beide Operationen sind in Listing
2.4 dargestellt.

#Unterstiitzte Providers und APIs: http://www.jclouds.org/documentation/reference/
supported-providers (ID stimmt mit der ,Maven Artifact ID“ {iberein)

%»Neben dem BlobStore bietet die Blobstore API weitere Mdoglichkeiten zur Verwaltung eines
Blobstore, siehe [jcl].

26

http://www.jclouds.org/documentation/userguide/installation-guide
http://www.jclouds.org/documentation/reference/supported-providers
http://www.jclouds.org/documentation/reference/supported-providers

2 Grundlagen

BlobStore blobStore = context.getBlobStore();

blobStore.createContainerInlocation(null, "my-container");

Listing 2.4: Erzeugen eines jclouds BlobStore-Objekts und FErstellen eines

Containers.

Der erste Parameter der Methode createContainerInLocation(...) steht fiir
den Ort des Containers. Ein Anbieter eines Blobstore ermdglicht in der Regel die
Erstellung eines Containers an verschieden Orten bzw. Regionen (Bezeichnung bei
Amazon S3). null steht fiir den Standard-Ort, der vom Anbieter vorgegeben wird.
Falls der Container bereits von einem anderen Benutzerkonto erstellt wurde, wird

eine Exception geworfen. Selbiges passiert, falls kein Internetzugang besteht.

Das Speichern einer Datei erfolgt durch Erzeugen eines Blob-Objekts, welches zu-
sammen mit dem Container-Namen der Methode putFile(...) iibergeben werden

muss, siehe Listing 2.5.

File file = new File("C:\\test.txt");

InputStream fileInputStream = new FileInputStream(file);

Blob blob = blobStore.blobBuilder("my-dir/test.txt") .payload(fileInputStream).
contentLength(file.length()) .build();

blobStore.putBlob("my-container", blob);

Listing 2.5: Speichern einer Datei mit jclouds.

my-dir/test.txt steht fiir den Schliissel, unter dem der Blob gespeichert werden soll.
Statt einem InputStream kann der Methode payload(...) auch ein File-Objekt
iibergeben werden. Die Angabe der Dateigrofie (contentLength) ist dann nicht

erforderlich.

Das Abrufen der Datei erfolgt mit der Methode getBlob(...). Es kann der
InputStream der Datei bezogen oder die Datei in einen OutputStream geschrie-

ben werden. Beide Varianten sind in Listing 2.6 dargestellt.

Blob blob = this.blobStore.getBlob("my-container", "my-dir/test.txt");
Payload payload = blob.getPayload();

InputStream fileInputStream = payload.getInput();

OutputStream fileOutputStream = new FileOutputStream("C:\\fetchedTest.txt");
payload.writeTo(fileOutputStream) ;

Listing 2.6: Abrufen einer Datei mit jclouds.

27

3 Anforderungen

3 Anforderungen

Im Rahmen dieser Arbeit soll ein generischer File Service fiir den TOSCA-Container
OpenTOSCA (siehe Abschnitt 2.5) entworfen und implementiert werden, der eine

Weiterentwicklung des aktuellen File Service darstellt.

Momentan kénnen CSAR-Dateien bzw. deren Inhalt lediglich auf dem lokalen Datei-
system abgelegt werden. Der Aufwand fiir eine Erweiterung um zusétzliche Speicheror-
te ist hoch, da die eigentliche Logik zum Speichern nicht als Erweiterung bereitgestellt
wird, sondern sich im File Service selbst befindet. Dieser architekturbedingte Nachteil

soll durch den generischen File Service gelost werden.

Analog zur TA Engine und Plan Engine soll er auf einem Plug-in System basieren.
Fin Plug-in soll die Logik bereitstellen, die zum Speichern von Dateien in einer
bestimmten Umgebung bendtigt wird. Es soll eine Schnittstelle definiert werden, die
von jedem Plug-in implementiert werden muss. Diese sollte insbesondere Methoden
zum Speichern, Abrufen und Loéschen von Dateien bereitstellen. Das Beziehen des
InputStream einer Datei sowie Speichern einer Datei, die als InputStream gegeben
ist, soll ebenfalls moglich sein. Auch soll die Gréfe einer Datei soll bestimmt werden
kénnen. Weiterhin sollen Methoden vorgesehen werden, mit denen Zugangsdaten im
Plug-in hinterlegt bzw. aus dem Plug-in geléscht werden kénnen. Dies ist erforderlich,
da die Plug-ins in den meisten Féllen die Speicherung bei externen Anbietern

ermdglichen werden. Im Normalfall erfordern diese eine Authentifizierung.

Methoden zum Erstellen von Verzeichnissen sollen nicht vorgesehen werden. Es ist
ausreichend, wenn die relativen Pfade der Verzeichnisse einer CSAR lokal als Metada-
ten vorliegen bzw. gespeichert sind. Zudem enthalten Dateipfade Verzeichnisnamen
implizit, sodass Verzeichnisse in der Regel beim Speichern der Dateien mit angelegt
werden. Eine Ausnahme stellt lediglich ein leeres Verzeichnis dar. Das Speichern von

Verzeichnisattributen ist nicht erforderlich.

OpenTOSCA lauft auf der OSGi Service Platform. Diese stellt Konzepte bereit, mit
der eine Plug-in-Architektur realisiert werden kann. Die Plug-in-Systeme der TA
Engine und Plan Engine bspw. basieren bereits auf OSGi. Auch das Plug-in-System
des generischen File Service soll auf Basis von OSGi entworfen werden. In einem

Bundle soll die Schnittstelle der Plug-ins definiert werden. Die eigentlichen Plug-ins

28

3 Anforderungen

sollen weitere Bundles darstellen, welche die Schnittstelle implementieren und ihre

Implementierung als deklarativen Service bereitstellen (siehe auch Abschnitt 2.3).

Im Rahmen dieser Arbeit sollen zwei Plug-ins entwickelt werden: Eine Implementie-
rung soll weiterhin das Speichern von CSAR-Dateien auf dem lokalen Dateisystem
erlauben. Mit der zweiten Implementierung sollen CSAR-Dateien auf dem Cloud-

Storage-Anbieter Amazon S3 (siehe Abschnitt 2.6) gespeichert werden konnen.

Zum Speichern einer CSAR gehoren (insbesondere) auch die folgenden Vorgénge, die

vom File Service weiterhin iibernommen werden miissen:
e Entpacken der CSAR und Ermitteln der entpackten Dateien und Ordner.
e Validieren des Inhalts der CSAR.
e Validieren und Parsen der TOSCA Metadatei.
e Speichern der Metadaten der CSAR in der lokalen Datenbank.

Neben dem Speichern soll das Verschieben einer bereits gespeicherten CSAR zu einem
anderen Plug-in bzw. Speicherort méglich sein. Auch soll lediglich eine einzelne Datei
oder ein Ordner einer CSAR verschoben werden kénnen. Eine CSAR soll folglich auf
mehrere Speicherorte verteilt werden kénnen. Weiterhin soll eine Export-Funktion
realisiert werden, mit der eine CSAR wieder als CSAR-Datei abgerufen werden kann.
Das Loschen einer sowie aller gespeicherten CSAR-Dateien soll (wie bisher) ebenfalls

moglich sein.

Wird aktuell eine CSAR iiber den File Service abgerufen, so wird diese iiber ein
Datenmodell bereitgestellt, das auf den lokal gespeicherten Metadaten der CSAR
basiert. Dieses Datenmodell stellt Methoden bereit, mit denen strukturiert auf den
Inhalt der CSAR zugegriffen werden kann. Beispielsweise gibt es eine Methode,
die alle Definitions-Dokumente im , Definitions“-Ordner der CSAR, zuriickgibt. Fiir
die Container API bzw. deren CSAR, Browsing API muss dieses Datenmodell um
Methoden erweitert werden, mit denen die CSAR vollstédndig durchsucht werden kann.
Die CSAR Browsing API bezieht momentan den absoluten Pfad des Entpack-Ordners
der CSAR und ermittelt anschliefend selbststéndig den Inhalt der Ordners, den der
Nutzer iiber eine entsprechende HTTP-Anfrage anfordert. Diese Vorgehensweise ist
nicht optimal, da Dateisystemoperationen nicht in den Zusténdigkeitsbereich der
Container API fallen. Durch den generischen File Service kénnen CSAR-Dateien
nun an prinzipiell beliebigen Orten abgelegt sein, sodass Dateisystemoperationen
nicht mehr moglich sind. Aus diesem Grund werden Methoden zum Durchsuchen der
CSAR benétigt.

29

3 Anforderungen

Das CSAR-Datenmodell stellt eine Methode zur Verfiigung, mit der auf Artefakt-

Referenzen?

6 zugegriffen werden kann. Aktuell werden relative Referenzen unterstiitzt,
die auf eine Datei bzw. einen Ordner in der CSAR verweisen. Dieser Artefakt-Referenz-
Typ muss auch weiterhin unterstiitzt werden. Eine Einschrinkung ist, dass momentan
lediglich Dateien, die sich an einer Artefakt-Referenz befinden, zuriickgegeben wer-
den. Die Ordnerstruktur geht folglich verloren. Diese Einschrankung soll durch die
Realisierung eines entsprechenden Datenmodells zum Durchsuchen eines Artefakts
aufgehoben werden. Das zu entwerfende Modell soll dabei nicht nur bei der Methode
zum Zugriff auf Artefakte zum Einsatz kommen, sondern auch bei allen weiteren
Methoden des CSAR-Datenmodells, die Dateien oder Ordner einer CSAR zurticklie-
fern, z. B. den bereits angesprochenen Methoden zum Durchsuchen der CSAR. Die
Dateien eines Artefakts bzw. einer CSAR miissen {iber dieses Datenmodell abgerufen

bzw. heruntergeladen werden koénnen.

Zur Verwaltung von Zugangsdaten fiir Plug-ins soll eine separate Komponente mit
einem passenden Datenmodell entwickelt werden. Diese soll insbesondere Methoden
zum Speichern, Abrufen und Léschen von Zugangsdaten vorsehen. Gespeicherte
Zugangsdaten sollen in einem (verfiigbaren) Plug-in gesetzt bzw. aus einem Plug-in
geloscht werden kénnen. Zugangsdaten fiir Plug-ins, die nicht verfiigbar sind, sollen

ebenfalls gespeichert werden kénnen.

Im Rahmen der Integration sollen (insbesondere) die neuen Funktionalitdten iiber
die Container API bereitgestellt werden. Wichtige Methoden der entwickelten bzw.
weiterentwickelten Komponenten sollen zusétzlich iber OSGi Konsolen Kommandos

aufgerufen werden konnen.

26Tn der Regel aus einem Artifact Template eines Definitions-Dokuments (siehe Abschnitt 2.2.1).

30

4 Konzept und Implementierung

4 Konzept und Implementierung

Dieses Kapitel befasst sich mit der Realisierung der Anforderungen, die im vorhe-
rigen Kapitel definiert worden sind. Dazu setzen wir uns mit der Architektur der
entwickelten bzw. weiterentwickelten Komponenten auseinander und erldutern deren
Funktionalitdten sowie Zustédndigkeiten. Zu wichtigen Methoden gehen wir auf die
konkreten Abldufe in der Implementierung ein. Dadurch decken wir mit diesem

Kapitel zugleich den Implementierungsteil ab.

Jeder der folgenden Abschnitte repréisentiert eine Komponente oder ein Datenmodell,
wobei einfithrend in 4.1 zunéchst ein Uberblick iiber die Architektur gegeben wird.
In Abschnitt 4.7 werden die Arbeiten erldutert, die im Rahmen der Integration
durchgefithrt wurden. Insbesondere gehoren dazu die Erweiterungen und Anpassungen
in der Container API, damit die neuen Funktionen iiber die externe Schnittstelle von
OpenTOSCA aufgerufen werden kénnen. Aus Griinden der Verstédndlichkeit und um
Unklarheiten zu vermeiden, behandeln wir in diesem Kapitel auch Aufgaben und
Abléufe, die bereits der bisherige File Service angeboten hat, wobei diese nicht den

Schwerpunkt darstellen sollen.

In Abschnitt 4.1 kommt zur grafischen Veranschaulichung der Architektur ein FMC-
Diagramm zum Einsatz. Mit Ausnahme der Datenmodelle sind alle dort dargestellten
Akteure (aktive Komponenten) OSGi-Services. Zur Vereinfachung fassen wir die
Schnittstelle eines OSGi-Service und deren Implementierungen in diesem Diagramm
zusammen. Weiterhin kommen UML-Klassendiagramme zum Einsatz, um die Klas-
senhierarchie einzelner Komponenten zu veranschaulichen. Die Abldufe von Methoden
und die damit verbundene Interaktion zwischen Komponenten werden durch UML-
Sequenzdiagramme verdeutlicht. Sofern nicht anders angegeben, werden Fehlerfille
und verschiedene Abliufe einer Methode aus Griinden der Ubersichtlichkeit nicht

dargestellt. Diese konnen dem zugehorigen Text entnommen werden.

4.1 Uberblick

Abbildung 4.1 veranschaulicht die Komponenten der Core-Komponente von
OpenTOSCA, die im Rahmen dieser Arbeit entstanden bzw. weiterentwickelt wor-

den sind. Die zentrale Komponente stellt der File Service dar, der wie bisher zur

31

4 Konzept und Implementierung

Core
File Service Credentials Service
| *.core file.service | | *.core.credentials.service
Proxy Pattern < RO rRO
Internal File Service Internal Credentials Service
| *.core.internal file.service | *.core.internal.credentials.service

Eclipse

80 Link

Storage Providers (Plug-ins) 5
R
*.core.internal.file.storage.providers.
name.service
RO
ORr
Artifact Model CSAR Model Credentials Model
4R
*.core.model.artifact C | *.core.model.csar | | *.core.model.credentials

Abbildung 4.1: FMC-Diagramm zu den neuen und verdnderten Komponenten der
OpenTOSCA Core-Komponente.

Verwaltung von CSAR-Dateien verwendet wird, nun allerdings generisch realisiert
ist und um zuséatzliche Funktionen erweitert wurde. CSAR-Dateien kénnen durch
den Einsatz von Plug-ins, die im Folgenden Storage Provider genannt werden, in
verschiedenen Umgebungen gespeichert werden. Die eigentliche Implementierung des
File Service befindet sich im zugehorigen Internal File Service. Erstere Komponente
weist lediglich die gleiche Schnittstelle auf und leitet alle Methodenaufrufe an den
Internal File Service weiter (Proxy Pattern). Dieser Entwurf erméglicht die Anderung
der Schnittstelle des Internal File Service, ohne das die Schnittstelle des File Ser-
vice, die fiir die Nutzung durch andere Komponenten gedacht ist, verdndert werden
muss. Der File Service kiimmert sich lediglich um die Konvertierung zwischen den
Schnittstellen. Dieser Ansatz kommt in allen Komponenten der Core-Komponente
zum FEinsatz und wurde daher im Rahmen dieser Arbeit beibehalten bzw. fortgefiihrt.
Zur Vereinfachung fiihren wir beide Komponenten zusammen und bezeichnen diese

im weiteren Verlauf der Arbeit als File Service.

Das CSAR Model reprisentiert die Metadaten einer CSAR und stellt Methoden
bereit, mit denen strukturiert auf eine gespeicherte CSAR zugegriffen werden kann.
Es wird vom File Service instanziiert und mittels Eclipse Link in der Datenbank von
OpenTOSCA (siehe auch Abschnitt 2.5.1) gespeichert. Unter anderem kann tiber das
CSAR Model auf Artefakte zugegriffen werden. Unterstiitzt werden weiterhin relative

32

4 Konzept und Implementierung

Artefakt-Referenzen, die auf eine Datei oder einen Ordner in der CSAR verweisen
(z.B. IAs/deployer.war). Bisher wurden jedoch lediglich die Dateien an der Artefakt-
Referenz zuriickgegeben. Die Ordnerstruktur ist folglich verloren gegangen. Durch das
Artifact Model, das im Rahmen dieser Arbeit entstanden ist, konnen Artefakte nun
unter Beibehaltung der Verzeichnisstruktur durchsucht werden. Es stellt abstrakte
Klassen bereit, die vom einem Artefakt-Referenz-Typ implementiert werden miissen.
Damit auch weiterhin relative Artefakt-Referenzen bzw. CSAR-Artefakte unterstiitzt
werden, wurde hierfiir eine entsprechende Implementierung bereitgestellt. Die Klasse,
die eine Datei einer CSAR représentiert, stellt Methoden bereit, mit denen die Datei
oder deren InputStream abgerufen werden kann. Dazu kommt der entsprechende

Storage Provider zum Einsatz.

Auch stehen im CSAR Model u. a. Methoden bereit, mit denen z. B. eine CSAR durch-
sucht werden kann (von der Container API benétigt) oder lediglich alle Definitions-
Dokumente zuriickgegeben werden kénnen. Generell werden alle Dateien und Ordner
einer CSAR, die von Methoden des CSAR Model zuriickgegeben werden, nun durch
Klassen des Artifact Model bzw. derer Implementierung fiir CSAR-Artefakte repra-

sentiert.

Der Credentials Service dient der Speicherung und Verwaltung der Zugangsdaten, die
ein Storage Provider zum Zugriff auf die entsprechende Umgebung benotigt. Analog
zum File Service befindet sich deren Implementierung im zugehérigen Internal
Credentials Service. Auch diese Komponenten sollen im Folgenden nur noch als
Credentials Service bezeichnet werden. Zugangsdaten werden durch das Credentials

Model reprasentiert und mittels Eclipse Link in der Datenbank gespeichert.

Fir alle Methoden, die in diesem Kapitel vorgestellt werden, gilt, das diese mit
einer entsprechenden Exception abbrechen, falls es zu einem Fehler kommt. Undo-
Operationen wurde im Rahmen dieser Arbeit nicht realisiert. Ausnahmen stellen
lediglich die Methoden zum Speichern und Exportieren einer CSAR dar (siehe
Abschnitte 4.2.3 und 4.2.5).

Generell kommen fiir Dateisystem-Operationen nun Klassen aus der Java NIO.2-
Bibliothek (Java-Paket java.nio.file) zum Einsatz, die seit Java 7 existiert. Im
Rahmen der Entwicklung wurde u. a. die File-Klasse aus Java 10, die im bisherigen
File Service verwendet wurde, durch die Path-Klasse ersetzt. Die Entscheidung zum
Wechsel auf NIO.2 wurde in erster Linie deswegen getroffen, da diese deutlich mehr
Methoden zur Manipulation von Pfaden anbietet. Besonders im File Service und
Artifact Model werden entsprechende Hilfsmethoden benétigt. Weiterhin bietet sie
eine hohere Performance, da jegliche Lese- und Schreiboperationen gepuffert und

nicht blockierend ausgefithrt werden [Jen].

33

4 Konzept und Implementierung

4.2 File Service

Der File Service stellt Funktionalitdten zur Speicherung und Verwaltung von CSAR-
Dateien zur Verfiigung. Der Inhalt von CSAR-Dateien kann in Umgebungen ge-
speichert werden, fiir die entsprechende Storage Provider verfiighbar sind. Neben
dem Speichern sowie Loschen einer CSAR bzw. aller CSARs kénnen auch bereits
gespeicherte CSARs von einem Storage Provider zu einem anderen Storage Provider
verschoben werden. Ebenso kann lediglich eine einzelne Datei oder ein Ordner ver-
schoben werden. Weiterhin steht eine Export-Funktion zur Verfligung, mit der eine
gespeicherte CSAR (wieder) als CSAR-Datei abgerufen werden kann.

In den folgenden Unterabschnitten soll nun ndher auf die Funktionalititen bzw.
Methoden des File Service eingegangen werden, wobei in 4.2.1 und 4.2.2 zunéchst
erlautert wird, wie ein Storage Provider ausgewéhlt wird und welche Aufgaben vom
Storage Provider Manager iibernommen werden, der einen Teil des File Service
darstellt.

Entsprechend den Anforderungen sind die meisten Methoden des File Service auch

iber OSGi Konsolen Kommandos aufrufbar.

4.2.1 Auswahl eines Storage Provider

Ein Storage Provider muss zunéchst als aktiv definiert werden, damit er zum Speichern
einer CSAR sowie als Ziel einer Verschiebe-Operation ausgewéhlt ist. Ein nicht
existierender bzw. nicht verfiigbarer Storage Provider kann grundsétzlich nicht als
aktiv selektiert werden. Falls ein aktiver Storage Provider nicht mehr verfiigbar ist,
so ist kein Storage Provider als aktiv festgelegt. Wird er wieder verfiighar, so muss

er erneut als aktiv definiert werden.

Damit der aktive Storage Provider schliellich auch verwendet wird, muss er zu-
satzlich einsatzbereit (,ready®) sein. Dies bedeutet, dass alle Anforderungen des
Storage Providers erfiillt sein missen. Die Schnittstelle der Storage Providers (siehe
Abschnitt 4.5.1) sieht zur Abfrage dieses Status eine entsprechende Methode vor.
Ein Storage Provider auf Basis von jclouds (siehe Abschnitt 4.5.2) ist grundsétzlich
einsatzbereit, falls er iiber den Credentials Service (siehe Abschnitt 4.6) Zugangsdaten
erhalten hat und das benétigte jclouds Provider- bzw. API-Bundle verfiigbar ist,
wobei erstere Bedingung lediglich zutrifft, falls der Storage Provider Zugangsdaten
benotigt. Ist der aktive Storage Provider nicht einsatzbereit, so wird auf den Default

Storage Provider ausgewichen (durch entsprechende Logging-Meldung signalisiert?”),

2TGegebenenfalls konnen zukiinftig Klassen eingefiihrt werden, deren Instanzen die Ergebnisse von
Operationen reprisentieren.

34

4 Konzept und Implementierung

der fest definiert ist (lokales Dateisystem). Falls dieser nicht verfiighar oder ebenfalls
nicht einsatzbereit ist, so schligt die Operation fehl. Direkt nach dem Start des
Containers ist kein Storage Provider als aktiv definiert. Es wird in diesem Fall direkt

der Default Storage Provider gewéhlt.

Mit diesem zweistufigen Konzept soll das Risiko, dass eine Operation aufgrund eines

fehlenden Storage Provider fehlschlagt, moglichst gering gehalten werden.

4.2.2 Storage Provider Manager

Im File Service erfolgt der Aufruf eines Storage Provider grundsétzlich tiber den
Storage Provider Manager. Konkret handelt es sich dabei um eine Klasse des File
Service, die sich gegen die Schnittstelle der Storage Providers bindet, um Zugriff auf
die deklarativen Services bzw. Implementierungen der Storage Provider-Schnittstelle
zu erhalten. Die Verwaltung der verfiighbaren Storage Provider erfolgt in einer Map,
in der die ID des Storage Providers auf die Storage Provider-Referenz (zeigt auf die

Instanz der Implementierungsklasse) abgebildet ist.

Der Storage Provider Manager stellt entsprechend der Storage Provider-Schnittstelle
(siehe Abschnitt 4.5.1) Methoden bereit, mit denen Dateien auf einem Storage
Provider gespeichert, abgerufen und geléscht werden kénnen. Auch kann die Grofie
einer Datei zuriickgegeben werden. Weiterhin existieren Methoden, mit denen z. B. der
aktive Storage Provider gesetzt, der Default Storage Provider ausgegeben werden kann
oder ermittelt werden kann, ob ein Storage Provider verfiighar und einsatzbereit ist.
Hierbei sollte erwdhnt werden, dass im Storage Provider Manager der aktive Storage
Provider gespeichert und der Default Storage Provider definiert ist. Letztere Methoden
sind auch tiber die (6ffentliche) Schnittstelle des File Service zu erreichen. Die
entsprechenden Methoden des File Service leiten hierzu Aufrufe an die (gleichnamigen)

Methoden des Storage Provider Manager weiter (Proxy Pattern).

Abbildung 4.2 zeigt den Ablauf der Methode zum Speichern einer Datei. Neben dem
absoluten Pfad muss der relative Pfad der Datei zum Wurzelverzeichnis der CSAR, die
CSAR ID?® sowie die ID des Storage Provider iibergeben werden, auf dem die Datei
gespeichert werden soll. Zunéchst wird iiberpriift, ob der entsprechende Storage Provi-
der verfiighar und einsatzbereit ist. Ist dies der Fall, so wird daraufhin der vollstdndige
Pfad bestimmt, unter dem die Datei auf dem Storage Provider gespeichert werden soll.
Der Pfad wird dabei wie folgt gebildet: ,,<csarID>/<relativePathToCSARRoot>*.
Fiir eine WAR-Datei ,IAs/deploy.war® einer CSAR ,,myCSAR.csar“ wiirde sich
folglich ,,myCSAR.csar/IAs/deploy.war® ergeben. Mit dieser Information und dem

2Die CSAR ID identifiziert eine CSAR in OpenTOSCA. Es handelt es um eine Klasse, die
(momentan) mittels dem Dateinamen der CSAR instanziiert wird.

35

4 Konzept und Implementierung

. . File Service .
File Service e Eoe s ey Storage Provider
T

T
I
I
I
I
I
Storage Provider is available. }
I
I
I

isStorageProviderReady()

T
} storeFileOfCSAR(absPath, csarID, }
| fileRelToCSARRoot, storageProviderlD) !

-
Latl
true ‘ ‘

T
I
Build file path to store file on }
storage provider. |
I
I
1

storeFile(absPath, relPathOnStorageProvider) g
Ll

N N :

Abbildung 4.2: UML-Sequenzdiagramm zum Speichern einer Datei iiber den Storage
Provider Manager.

absoluten Pfad der Datei wird schliellich die entsprechende Methode des Storage
Provider aufgerufen. Die ersten beiden Schritte gelten analog fiir die weiteren Metho-
den des Storage Provider Manager zum Speichern (Datei gegeben als InputStream),

Abrufen und Loéschen einer Datei sowie Ermitteln der Dateigréfie.

Zur Bestimmung des Storage Providers, auf dem eine CSAR gespeichert wird bzw. der
das Ziel einer Verschiebe-Operation darstellt, kommt ebenfalls der Storage Provider
Manager zum Einsatz. Abbildung 4.3 veranschaulicht den Ablauf der Methode, die das
in Abschnitt 4.2.1 beschriebene Konzept zur Auswahl des Storage Providers umsetzt.
Dargestellt ist der Fall, dass die ID des Default Storage Provider zuriickgegeben wird,
da der aktive Storage Provider gesetzt und verfiigbar, allerdings nicht einsatzbereit

ist.

File Service File Service Active Default
Storage Provider Manager Storage Provider Storage Provider

T
} chooseStorageProvider() . }

Active storage provider is set.

I
I
I
I
I
I

Active storage provider is available‘}
I
I
I

isStorageProviderReady()

.
false T ‘

:| Default storage provider is

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
) I
available. |
I
I
I

isStorageProviderReady()

-

Default Storage Provider ID true

Abbildung 4.3: UML-Sequenzdiagramm zur Auswahl des Storage Providers iiber den
Storage Provider Manager.

36

4 Konzept und Implementierung

4.2.3 Speichern einer CSAR

Der Ablauf der Methode storeCSAR(csarFile) ist in Abbildung 4.4 dargestellt.

Zunéchst wird tberpriift, ob die iibergebende Datei existiert und eine Datei mit

File Service File Access Service
Storage Provider Manager (with ZIP Manager)
T

I
I

Existent file with }
extension ,csar“? I

I

I

I

I

I

Create csarlD and check if
CSAR is already stored.

File Service

Chooses storage
] provider to store CSAR,

chooseStorageProvider() g 1 see figure 4.3.

storageProviderID 'u

getTemp() >

tempDirectory ‘ ‘
[

unzip(csarFile, tempDirectory) . }

Get files and directories in unpack
directory (tempDirectory).

Validate CSAR content and parse /
validate TOSCA Meta File.

loop Determine file path relative to
unpack directory.

[for each file in
unpack directory]

storeFileOfCSAR(absPath, csarlD,
fileRelToUnpackDir, storageProvider|D)

Stores file on storage
provider, see figure 4.2.

loop Determine directory path
:‘ relative to unpack directory.

[for each directory

in unpack directory]

storeCSARMetaData(csarID,
directories, files, toscaMetaFile)
Delete tempDirectory.
T:‘

Abbildung 4.4: UML-Sequenzdiagramm zum Speichern einer CSAR.

der Endung csar ist. Ist dies der Fall, wird die CSAR ID (mittels dem Dateinamen
der CSAR) erzeugt. Anschliefend wird tiberpriift, ob die CSAR bereits gespeichert
ist, indem ermittelt wird, ob bereits Metadaten unter der entsprechenden CSAR
ID in der Datenbank gespeichert sind. Ist die CSAR nicht bereits gespeichert, so
wird der Storage Provider ausgewéhlt, der zum Speichern der CSAR eingesetzt wird.
Die Auswahl erfolgt mittels der in Abbildung 4.3 dargestellten Methode. Nach der
Bestimmung des Storage Provider wird die CSAR-Datei in einem temporaren Ordner
entpackt und die Dateien und Ordner der CSAR ermittelt. Generell kommt fiir die
Bereitstellung eines Temp-Ordners als auch dem Entpacken einer ZIP-Datei der File

Access Service zum Einsatz. Zur rekursiven Bestimmung der Dateien und Ordner

37

4 Konzept und Implementierung

wurde eine Implementierung des SimpleFileVisitor?® (aus der NIO.2-Bibliothek)
erstellt. Um das Speichern einer ungiltigen CSAR (moglichst) zu verhindern, wird
der Inhalt der CSAR validiert. Des Weiteren wird die TOSCA Metadatei geparst.
Die Daten aus dieser Datei werden durch ein Objekt der Klasse TOSCAMetaFile
reprasentiert. Ist die CSAR als auch deren TOSCA Metadatei giiltig, so erfolgt
schliefllich das Speichern der Dateien {iber den zuvor ausgewéhlten Storage Provider.
Jede Datei der CSAR?® wird dazu zusammen mit der Storage Provider ID und der
CSAR ID der entsprechenden Methode (siehe Abbildung 4.2) des Storage Provider
Manager tbergeben, der wiederum mit dem Storage Provider interagiert (siehe
Abschnitt 4.2.2). Nachdem alle Dateien auf dem Storage Provider gespeichert wurden,
werden die Metadaten der CSAR in der Datenbank abgelegt. Die Metadaten einer
CSAR werden durch eine Instanz des CSAR Model bzw. deren Klasse CSARContent
(sieche Abschnitt 4.3) reprasentiert und bestehen aus der CSAR ID, den Dateien und
Ordnern der CSAR (relative Pfade zum Wurzelverzeichnis) und dem TOSCAMetaFile-
Objekt. Jeder Datei wird auf die ID des Storage Providers abgebildet, auf dem diese
gespeichert wird. Abschlieend wird der nicht mehr ben6tigte Temp-Ordner geléscht
und die CSAR ID zuriickgegeben.

Kommt es wihrend des gesamten Vorgangs zu einem Fehler (z. B. CSAR-Datei bereits
gespeichert oder ungiiltige TOSCA Metadatei), so wird zunéchst der Temp-Ordner

geloscht (sofern erforderlich) und daraufhin eine entsprechende Exception geworfen.

4.2.4 Abrufen einer CSAR

Eine gespeicherte CSAR kann durch die Methode getCSAR(csarID) abgerufen wer-
den. Hierbei wird die CSAR allerdings nicht heruntergeladen, sondern durch eine
Instanz des CSAR Model bzw. deren Klasse CSARContent bereitgestellt, die beim
Speichern der CSAR erzeugt und in der Datenbank gespeichert wurde. Folglich wird
also lediglich die entsprechende CSARContent-Instanz aus der Datenbank abgerufen
und zuriickgegeben. CSARContent stellt Methoden bereit, mit denen strukturiert
auf den Inhalt der CSAR zugegriffen werden kann. Ndheres zum CSAR Model in
Abschnitt 4.3.

4.2.5 Exportieren einer CSAR

Eine gespeicherte CSAR kann {iber den File Service exportiert bzw. als CSAR-Datei
abgerufen werden. Der Ablauf der Methode exportCSAR (csarID) ist in Abbildung 4.5

29Weitere Informationen zum SimpleFileVisitor: http://docs.oracle.com/javase/tutorial/
essential/io/walk.html
30 Absoluter Pfad und relativer Pfad zum Wurzelverzeichnis der CSAR.

38

http://docs.oracle.com/javase/tutorial/essential/io/walk.html
http://docs.oracle.com/javase/tutorial/essential/io/walk.html

4 Konzept und Implementierung

dargestellt. Zu Beginn werden die Metadaten zu den Dateien der CSAR (relative

File Service File Access Service
Storage Provider Manager (with ZIP Manager)
T T

Get files metadata of CSAR.

I

I

I

I

I

. ’ |
Determine storage providers where |
I

I

I

[

I

I

I

File Service

T
o

CSAR is stored.

loop I

isStorageProviderReady(storageProviderID)
[for each storage provider P>
of the CSAR] true " ‘
Get directories metadata of CSAR.
getTemp() -
L

Create directory structure of CSAR
in tempDirectory/content.

I
I
I
I
I
I
I
I
T
tempDirectory }
i
I
I
I
I
|
T
I

loop getFileOfCSAR(csarlD, fileRelToCSARRoot, —y—|—|

[for each file in CSAR] P Similiar to figure 4.2.
targetFile is
tempDirectory/content/fileRelToCSARRoot

[zip(directory, targetFile)

L

directory is
tempDirectory/content

targetFile is Delete tempDirectory/content.
tempDirectory/csarlD

Abbildung 4.5: UML-Sequenzdiagramm zum Exportieren einer CSAR.

Pfade mit zugehoriger Storage Provider ID) aus der Datenbank abgerufen. Die
Storage Provider IDs werden nacheinander dem Storage Provider Manager (siehe
Abschnitt 4.2.2) iibergeben, der iiberpriift, ob die Storage Providers, auf denen
die CSAR verteilt ist, verfiigbar und einsatzbereit sind. Hiermit soll das Risiko,
dass das Abrufen der Dateien fehlschlagt, minimiert werden. Sind alle Storage
Providers einsatzbereit, so werden auch die Metadaten zu den Ordnern der CSAR
aus der Datenbank bezogen. Uber den File Access Service wird ein Temp-Ordner
geholt, in dem ein Unterordner ,,content* angelegt wird. In diesem wird zunéchst
die Ordnerstruktur der CSAR angelegt und schliefilich alle Dateien der CSAR {iber
den Storage Provider Manager von den entsprechenden Storage Providern abgerufen.
Nachdem dies erfolgreich abgeschlossen wurde, wird mit dem Inhalt des Ordners
scontent“ die CSAR-Datei (Dateiname ist die CSAR ID) direkt im Temp-Ordner
erzeugt. Hierzu kommt erneut der File Access Service zum Einsatz. Abschlieend
wird der nicht mehr bendtigte Ordner ,,content® geloscht und der absolute Pfad der
CSAR-Datei als Path-Objekt zuriickgegeben.

39

4 Konzept und Implementierung

In einem Fehlerfall (z. B. benotigter Storage Provider nicht einsatzbereit) wird der
Ordner ,content® ebenfalls geloscht (sofern erforderlich) und eine entsprechende

Exception geworfen.

4.2.6 Verschieben einer Datei oder Ordner einer CSAR

Abbildung 4.6 zeigt den Ablauf der Methode moveFileOrDirectory0fCSAR(csarID,
relPathToCSARRoot) zum Verschieben einer Datei oder Ordner einer CSAR zu einem
anderen Storage Provider. Dargestellt ist das Verschieben eines Ordners, was den

komplexeren Fall darstellt. In einem ersten Schritt wird {iber den Storage Provider

File Service

Fil i
ile Service Storage Provider Manager
T

Chooses target

chooseStorageProvider() ————— storage provider for

move operation,
storageProviderID see figure 4.3.

Get metadata of files and
< directories of CSAR csarlD.

Given relative path to move is a
< directory in CSAR.

Found files in directory that are not
< already on target storage provider.

[for each file to move]

loop J Move file to storage provider (see figure 4.7).:

Abbildung 4.6: UML-Sequenzdiagramm zum Verschieben eines Ordners zu einem
anderen Storage Provider.

Manager (siche Abschnitt 4.2.2) der Storage Provider bestimmt, der das Ziel des
Verschiebe-Vorgangs darstellt. Darauthin werden die Metadaten der entsprechenden
CSAR aus der Datenbank abgerufen. Es geniigen die Metadaten zu den Dateien
(relative Pfade mit zugehoriger Storage Provider ID) und Ordnern der CSAR (relative
Pfade). Obwohl lediglich Dateien einer CSAR verschoben werden, sind dennoch die
Metadaten der Ordner erforderlich, da wir andernfalls nicht unterscheiden kénnen, ob
der Nutzer der Methode einen nicht existierenden Ordner iibergeben hat (Fehlerfall)
oder ob es sich dagegen um einen Ordner handelt, der existiert, jedoch leer ist. Falls

der Nutzer den relativen Pfad eines existieren Ordners iibergeben hat, so werden

40

4 Konzept und Implementierung

alle Dateien bestimmt, die verschoben werden miissen, d. h. jene Dateien, die sich
im Ordner befinden und nicht bereits auf dem Ziel-Storage Provider abgelegt sind.
Sofern eine oder mehrere Dateien verschoben werden miissen, so erfolgt dies im
Folgenden fiir jede Datei nach der in Abbildung 4.7 dargestellten Vorgehensweise.

Zunichst wird der InputStream und die Groéfle der Datei vom aktuellen Storage

File Service
Storage Provider Manager
T

T
I getFileOfCSARAsInputStream(csarliD,
: fileRelToCSARRoot, sourceStorageProviderID)

File Service

fileInputStream

getFileOfCSARSize(csarlID, fileRelToCSARRoot,
sourceStorageProviderID)

fileSize Similiar to figure 4.2.%
e —————

storeFileOfCSAR(csarlD, filelInputStream, fileSize,
fileRelToCSARRoot, targetStorageProviderID)

Store / update targetStorageProviderID in
metadata of file.

deleteFileOfCSAR(csarlD, fileRelToCSARRoot,
sourceStorageProviderlID)

e |

Abbildung 4.7: UML-Sequenzdiagramm zum InputStream-basierten Verschieben ei-
ner Datei zu einem anderen Storage Provider.

Provider abgerufen. Mit diesen Daten wird die Datei anschlieend auf dem Ziel-
Storage Provider gespeichert. Ist der Speichervorgang erfolgreich abgeschlossen, so
werden die Metadaten der Datei in der Datenbank aktualisiert. Die ID des bisherigen
Storage Provider wird hierbei mit der ID des neuen Storage Providers iiberschrieben.
Abschlielend wird die Datei auf dem bisherigen Storage Provider geloscht. Alle
Operationen, die auf einem Storage Provider ausgefiihrt werden, erfolgen iiber den
Storage Provider Manager (siche Abschnitt 4.2.2).

Alternativ wére es auch moglich gewesen, die Datei zunédchst komplett herunterzula-
den, bevor sie schliellich auf dem neuen Storage Provider gespeichert wird. Fiir den

InputStream-basierten Ansatz sprechen jedoch folgende Vorteile:

41

4 Konzept und Implementierung

e Die Datei wird in einer geringfiigig kiirzeren Zeit verschoben.
e Verbrauch von weniger Speicherplatz.

e Es wird keine Datei auf dem Dateisystem erstellt, die nach Abschluss des

Vorgangs geloscht werden muss bzw. sollte.

Da das Loschen der Datei erst nach dem Speichern auf dem neuen Storage Provider
erfolgt, kann es durch einen Ausfall der Internetverbindung wéihrend des Speichervor-
gangs nicht zu einem Verlust von Dateien der CSAR kommen. Dies trifft natiirlich
nur zu, falls der entsprechende Storage Provider Internetzugriff erfordert. Weiterhin
wird das Aktualisieren der Metadaten vor dem L&schen ausgefiihrt. Das Fehlschlagen
von Datenbank-Operationen kann also nicht dazu fithren, dass eine Datei in einer
CSAR aufgrund fehlerhafter bzw. veralteter Metadaten nicht mehr abrufbar ist.

4.2.7 Verschieben einer CSAR

Mit der Methode moveCSAR(csarID) kann mit einer kompletten CSAR zu einem
anderen Storage Provider umgezogen werden. Thr Ablauf entspricht im Wesentlichen
der Methode zum Verschieben einer einzelnen Datei oder Ordner, auf die in Ab-
schnitt 4.2.6 ndher eingegangen wurde. Zunéchst wird mittels des Storage Provider
Managers der Storage Provider ermittelt, zu dem die CSAR bzw. deren Dateien ver-
schoben werden sollen. Anschliefend werden die Metadaten zu den Dateien der CSAR
aus der Datenbank abgerufen. Die zu verschiebenden Dateien werden ermittelt und

schlielich zum entsprechenden Storage Provider verschoben (sieche Abbildung 4.7).

4.2.8 Loschen einer CSAR oder aller CSARs

Der Ablauf der Methode deleteCSAR(csarID) zum Ldschen einer CSAR ist in
Abbildung 4.8 veranschaulicht. Zu Beginn werden die Metadaten zu den Dateien
der CSAR (relative Pfade mit zugehoriger Storage Provider ID) aus der Datenbank
abgerufen. Um moglichst zu vermeiden, dass der Loschvorgang fehlschligt und damit
ggf. nicht alle Dateien geléscht sind, wird tiberpriift, ob alle benétigten Storage
Provider verfiighar und einsatzbereit sind. Trifft dies zu, wird jede Datei auf ihrem
jeweiligen Storage Provider geloscht. AbschlieBend werden die Metadaten der CSAR
gelbscht.

Sollte es wahrend dem Loschen einer CSAR zum einem Fehler kommen (z. B. aufgrund
eines Ausfalls der Internetverbindung), so kann die Methode fiir selbige CSAR
nochmals aufgerufen werden, da die zugehorigen Metadaten nach wie vor vollstandig

vorhanden sind. Bereits geloschte Dateien werden in diesem Fall ignoriert.

42

4 Konzept und Implementierung

File Service

File Service Storage Provider Manager
T

Get files metadata of CSAR.
<«

< CSAR is stored.

loop I

|

|

|

|

|

. . |
Determine storage providers where |
|

|

|

|

|

|

|

[for each storage provider

isStorageProviderReady(storageProviderlD)

of the CSAR] true
l
|
T
loop I |
deleteFileOfCSAR(csarlID, !
[for each file in CSAR] fileRelToCSARRoot, storageProviderID) |

Similiar to figure
4.2

T
I

deleteCSARMetaData(csarlD) |

:‘ I
I

|

Abbildung 4.8: UML-Sequenzdiagramm zum Loschen einer CSAR.

Weiterhin wird eine Methode deleteCSARs () bereitgestellt, mit der alle CSARs
geloscht werden kénnen. Diese ermittelt aus der Datenbank die IDs aller gespeicherten
CSARs und ruft fiir jede ID die Methode zum Loschen einer CSAR auf.

4.3 CSAR Model

Das CSAR Model besteht im Wesentlichen aus den Klassen CSARContent und
TOSCAMetaFile. Eine Instanz von CSARContent reprisentiert eine CSAR im Contai-
ner und stellt Methoden bereit, mit denen strukturiert auf deren Inhalt zugriffen
werden kann. Sie enthélt hierzu die Metadaten der CSAR, die sich aus der CSAR ID,
den relativen Pfaden aller Dateien und Ordner der CSAR sowie einem TOSCAMetaFile-
Objekt, welches den Inhalt der TOSCA-Metadatei reprisentiert, zusammensetzen.
Die relative Pfade der Dateien werden in einer Map gespeichert, die auf die ID des
Storage Provider abbildet, auf dem die jeweilige Datei gespeichert ist. Dadurch
kann prinzipiell jede Datei der CSAR auf einem anderen Storage Provider abgelegt
sein. Die relativen Pfade der Ordner werden in einem Set verwaltet. Wie bereits
angesprochen, wird CSARContent beim Speichern einer CSAR (siehe Abschnitt 4.2.3)

instanziiert und in dieser Form in der Datenbank gespeichert. Wird eine gespeicherte

43

4 Konzept und Implementierung

CSAR abgerufen, so wird die entsprechende CSARContent-Instanz aus der Datenbank
geholt und zuriickgegeben (siehe Abschnitt 4.2.4).

Im Rahmen dieser Arbeit wurde CSARContent um Methoden erweitert, mit denen die
CSAR vollsténdig durchsucht werden kann. Zuriickgegeben werden AbstractFile-
bzw. AbstractDirectory-Objekte des Artifact Model (siehe Abschnitt 4.4), die
Dateien bzw. Ordner reprisentieren. Erstere Klasse stellt Methoden bereit, mit denen
die Datei (schliefllich) heruntergeladen werden kann. Hierzu kommt der entsprechen-
de Storage Provider zum Einsatz. Wie bereits erwahnt, werden die Methoden zum
Durchsuchen der CSAR von der Container API bzw. deren CSAR Browsing API
bendtigt, die das Durchsuchen einer CSAR nach auflen hin bereitstellt. Bisher hat die
Container APT den Entpack-Ordner der CSAR iiber eine Methode des entsprechenden
CSARContent-Objekt geholt und anschlieBend mittels Dateisystemoperationen selbst-
stdndig den Inhalt des Ordners bestimmt, den der Benutzer iiber eine HTTP-Anfrage
anfordert. Da eine CSAR nun jedoch nicht mehr lokal gespeichert sein muss, ist diese
Vorgehensweise nicht mehr moglich. Dementsprechend musste die Methode, die den
Entpack-Ordner der CSAR zuriickgibt, entfernt werden.

Methoden, die dagegen bereits bisher von CSARContent angeboten wurden, stellen
z. B. fiir die TOSCA Engine die Definitions-Dokumente im Definitions-Ordner bereit
oder liefern jene Dateien zuriick, die im Element Import eines Definitions-Dokument
referenziert sind. Hierbei sollte erwdhnt werden, dass wéhrend der Entwicklung
von OpenTOSCA (zur Vereinfachung) festgelegt wurde, dass importierte Dateien
grundsétzlich im Ordner ,IMPORTS* abgelegt sein miissen, sodass lediglich Dateien
in diesem Ordner zuriickgegeben werden miissen. Zusatzlich existieren Methoden,
mit denen auf die Werte von Attributen aus der TOSCA Metadatei (z. B. Autor der
CSAR) zugegriffen werden kénnen. Generell gilt, das alle Methoden in CSARContent,
die Dateien zuriickliefern, diese nun als AbstractFile-Objekte zuriickliefern. Bisher

wurden File-Objekte zuriickgegeben.

Weiterhin stellt CSARContent eine Methode bereit, mit der auf Artefakte zugegriffen
werden kann. Hierzu muss die entsprechende Referenz iibergeben werden, die in
der Regel aus einem Artifact Template eines Definitions-Dokument stammt. Nach
wie vor werden (ausschlieflich) relative Artefakt-Referenzen unterstitzt, die auf
eine Datei oder Ordner in der CSAR verweisen. Bisher jedoch wurden lediglich die
Dateien an einer Artefakt-Referenz zuriickgegeben. Die Ordnerstruktur ist folglich
verloren gegangen. Nun wird stattdessen ein AbstractArtifact-Objekt des Artifact
Model (siehe Abschnitt 4.4) zurtickgegeben, mit dem das Artefakt durchsucht werden
kann. Falls die Artefakt-Referenz auf einen Ordner zeigt, sind entsprechend der
TOSCA-Sperzifikation zusétzlich Include Patterns und Exclude Patterns erlaubt,

die zusammen mit der Artefakt-Referenz iibergeben werden kénnen. Alle Dateien

44

4 Konzept und Implementierung

an der Artefakt-Referenz, die den Include Patterns entsprechen, werden in das
Artefakt aufgenommen. Dateien, die zu den Exclude Patterns passen, werden aus dem
Artefakt ausgeschlossen. Auf Ordner werden Patterns grundsétzlich nicht angewendet,
sodass die Ordnerstruktur an einer Artefakt-Referenz unberiihrt bleibt. Da die
TOSCA-Spezifikation (bisher) keine Notation fiir Pattern definiert, verwenden wir
reguliire Ausdriicke®!. Nehmen wir an, die Methode wiirde mit dem Include Pattern
~.*\. (war |[WAR)$ und Exclude Pattern ~.*(deploy).*$ aufgerufen werden. In
diesem Fall wiirde das Artefakt lediglich aus Dateien bestehen, die als Dateiendung
swar® oder ,WAR" besitzen und nicht in ihrem Dateinamen ,deploy* enthalten. Die
Methode zum Zugriff auf Artefakte wird momentan von der IA Engine, Plan Engine
und TOSCA Engine verwendet, wobei erstere diese nicht direkt, sondern iiber die
TOSCA Engine aufruft.

4.4 Artifact Model

Grundsétzlich dient das Artifact Model, das im Rahmen dieser Arbeit entwickelt
wurde, zum Durchsuchen ein Artefakts. Ein Artefakt kann dabei ein Ordner oder
eine Datei sein, die sich prinzipiell an einem beliebigen Ort befinden kann. Falls
Dateien aus dem Artefakt benotigt werden, so kénnen diese direkt heruntergeladen
bzw. abgerufen werden. Beim Entwurf, der in Abbildung 4.9 dargestellt ist, wurde auf
Erweiterbarkeit geachtet. Fiir jeden Artefakt-Referenz-Typ (z. B. Ordner bzw. Datei
auf einem FTP-Server), der unterstiitzt werden soll, muss eine Implementierung der
Klassen AbstractArtifact, AbstractDirectory und AbstractFile bereitgestellt

werden.

AbstractArtifact repriasentiert ein ganzes Artefakt und stellt das Wurzelverzeichnis
des Artefakts dar. Dem Konstruktor von AbstractArtifact kénnen neben der
Artefakt-Referenz Include- und Exclude-Patterns iibergeben werden. Wie bereits in
Abschnitt 4.3 erwahnt, sind Patterns lediglich erlaubt, falls die Artefakt-Referenz
auf einen Ordner verweist. Dementsprechend werden iibergebene Patterns nur
in diesem Fall beachtet. Weiterhin diirfen Patterns nur auf Dateien im Ordner
angewendet werden. Zur Implementierung von AbstractArtifact miissen die
Methoden fitsArtifactReference(artifactReference), getArtifactRoot()
und isFileArtifact() realisiert werden.

Erstere Methode ist statisch und soll true zuriickliefern, falls die tibergebene
Artefakt-Referenz zu der Implementierung von AbstractArtifact passt. In der
entsprechenden Methode der Klasse CSARContent, mit der auf Artefakte zugegriffen
werden kann (CSAR Model, siehe Abschnitt 4.3), kann so bestimmt werden, welche

3nformationen zu reguldren Ausdriicken: https://de.wikipedia.org/wiki/Regul?C3%A4rer_
Ausdruck

45

https://de.wikipedia.org/wiki/Regul%C3%A4rer_Ausdruck
https://de.wikipedia.org/wiki/Regul%C3%A4rer_Ausdruck

4 Konzept und Implementierung

AbstractArtifact

+ fitsArtifactReference(artifactReference: String): boolean AbstractFile
getArtifactRoot(): AbstractDirectory
+ isFileArtifact(): boolean

+ getFile(relPathOfFile: String): AbstractFile Ko——
+ getFiles(): Set<AbstractFile>

+ getFilesRecursively(): Set<AbstractFile>

+ getDirectory(relPathOfDirectory: String): AbstractDirectory
+ getDirectories(): Set<AbstractDirectory>

+ getArtifactReference(): String 0.*
+ getincludePatterns(): Set<String>
+ getExcludePatterns(): Set<String>

+ getFile(): Path

+ getFileAsInputStream(): InputStream
+ getName(): String

+ getPath(): String

PatternMatcher

AbstractDirectory

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| # getFileNotConsiderPatterns(relPathOfFile: String): AbstractFile
: # getFilesNotConsiderPatterns(): Set<AbstractFile>
| o.x| +getDirectory(relPathOfDirectory: String): AbstractDirectory 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

+ getName(): String kK>—
+ getFile(relPathOfFile: String): AbstractFile
+ getFiles(): Set<AbstractFile>
+ getFilesRecursively(): Set<AbstractFile>
+ getPath(): String
isFileArtifact(): boolean
getincludePatterns(): Set<String>
getExcludePatterns(): Set<String>
T

v

<<interface>>
IBrowseable

— ——— > +getFile(relPathOfFile: String): AbstractFile

+ getFiles(): Set<AbstractFile>

+ getFilesRecursively(): Set<AbstractFile>

+ getDirectory(relPathOfDirectory: String): AbstractDirectory
+ getDirectories(): Set<AbstractDirectory>

CSARContent CSAR Model

Abbildung 4.9: UML-Klassendiagramm zum Artifact Model und deren Beziehung
mit CSARContent des CSAR Model. Die Methoden von CSARContent
sind nicht dargestellt.

Implementierung von AbstractArtifact korrekt ist und damit instanziiert werden
muss bzw. ob die Artefakt-Referenz nicht unterstiitzt wird. Falls eine passende

Implementierung gefunden wurde, die Referenz jedoch auf eine Datei bzw. einen

46

4 Konzept und Implementierung

Ordner verweist, der nicht existiert, so soll beim Erzeugen des Objekts eine Exception
geworfen werden.

Die Methode getArtifactRoot() muss eine Instanz der zugehdrigen
AbstractDirectory-Implementierung zuriickliefern, die das Wurzelverzeichnis
repréasentiert. Jede Methode von AbstractArtifact, die zum Durchsuchen gedacht
sind, delegiert an die gleichnamige Methode des AbstractDirectory-Objekts, das
von getArtifactRoot () zuriickgegeben wird, weiter. Ein AbstractArtifact soll
also grofitenteils durch ein AbstractDirectory realisiert werden, da wir davon
ausgehen, dass die Logik zum Durchsuchen des Wurzelverzeichnisses und eines
Ordners identisch ist.

Die Methode isFileArtifact () soll true zuriickgeben, falls die Artefakt-Referenz
auf eine Datei zeigt (Datei-Artefakt). In diesem Fall besteht das Artefakt lediglich

aus dieser einen Datei.

Dem Konstruktor eines AbstractDirectory werden die Referenz des Ordners, Pat-
terns (optional) und ein boolean iibergeben, der definiert, ob die urspriingliche
Artefakt-Referenz auf eine Datei gezeigt hat. Letzterer Parameter ergibt sich durch
die Methode isFileArtifact() von AbstractArtifact bzw. deren Implementie-

rung.

Die Methoden zum Durchsuchen werden in einer Schnittstelle IBrowseable definiert,
die von AbstractDirectory, AbstractArtifact und CSARContent implementiert
werden (siche Abbildung 4.9). Letztere Klasse implementiert die Schnittstelle zum
Durchsuchen der kompletten CSAR (siehe Abschnitt 4.3). Folgende Methoden werden

in IBrowseable definiert:

o getFile(relPathOfFile): Liefert ein AbstractFile-Objekt zuriick, das die
Datei représentiert, die sich am iibergebenen Pfad (relativ zum aktuellen
Ordner) befindet. Existiert die Datei nicht, so wird null zuriickgegeben. Im
Falle eines Datei- Artefakts wird unabhéangig vom iibergebenen String das einzige
AbstractFile-Objekt zuriickgeliefert.

e getFiles(): Liefert eine Menge von AbstractFile-Objekten zuriick, die Da-
teien reprasentieren, die sich im aktuellen Ordner befinden (nicht rekursiv). Im

Falle eines Datei-Artefakts ist die Kardinalitdt der Menge eins.

e getFilesRecursively(): Liefert eine Menge von AbstractFile-Objekten zu-
rick, die Dateien reprisentieren, die sich im aktuellen Ordner und deren

Unterordnern befinden (rekursiv).

o getDirectory(relPathOfDirectory): Liefert ein AbstractDirectory-
Objekt zurtick, das den Ordner repréasentiert, der sich am ibergebenen
Pfad (relativ zum aktuellen Ordner) befindet. Existiert der Ordner nicht, so

47

4 Konzept und Implementierung

wird null zuriickgegeben. Im Falle eines Datei-Artefakts wird immer null

zuriickgegeben.

e getDirectories(): Liefert eine Menge von AbstractDirectory-Objekten zu-
riick, die Ordner repréisentieren, die sich im aktuellen Ordner befinden (nicht

rekursiv). Im Falle eines Datei-Artefakts ist die Menge leer.

Eine weitere Methode getDirectoriesRecursively(), die rekursiv alle
AbstractDirectory-Objekte ausgehend vom aktuellen Ordner zuriickgibt, steht
nicht zur Verfiigung, da diese momentan nicht erforderlich ist. Falls sie zukiinf-
tig bendtigt werden sollte, so kann sie mit geringem Aufwand realisiert werden

(Implementierung iiberwiegend analog zu getFilesRecursively()).

Alle genannten Methoden mit Ausnahme von getDirectory(...) und
getDirectories() sind bereits in AbstractDirectory implementiert und
beriicksichtigen Patterns. In einer Implementierung von AbstractDirectory
miissen die protected-Methoden getFileNotConsiderPatterns(...)
und getFilesNotConsiderPatterns(...) sowie die public-Methoden
getDirectory(...) und getDirectories() realisiert werden, die keine Pat-
terns beachten sollen. Weiterhin muss die Methode getName () implementiert werden,
die den Dateinamen des Ordners zuriickgibt. In der Oberklasse AbstractDirectory
werden die zuriickgegebenen AbstractFile-Objekte der beiden protected-Methoden
dem PatternMatcher iibergeben, der bestimmt, welche AbstractFile-Objekte den
Patterns (regulidre Ausdriicke) entsprechen. Diese werden schlieflich zuriickgegeben.
Falls dem Konstruktor von AbstractDirectory keine Patterns iibergeben werden,

so wird der PatternMatcher nicht aufgerufen.

Grundsatzlich wird das Pattern Matching also erst zum spétestmoglichen Zeitpunkt
und nur fiir jene AbstractFile-Objekte durchgefiihrt, die der Nutzer anfordert. Wiir-
de man das Pattern Matching dagegen bspw. bereits beim Instanziieren einer Imple-
mentierung von AbstractArtifact ausfithren, so miissten sofort alle AbstractFile-
Objekte des Artefakts erzeugt werden, was u. U. unnétig ist, falls der Nutzer nur

bestimmte AbstractFile-Objekte benotigt (ggf. unnétige Internetzugriffe).

Bisher wurde das Pattern Matching in der TOSCA Engine durchgefiihrt. Aus folgen-
den Griinden ist die Entscheidung gefallen, die Verarbeitung von Patterns nun im
Artifact Model durchzufiihren:

e Die TA Engine greift, wie bereits angesprochen, iiber die TOSCA Engine
auf Artefakte zu. Letztere Komponente hat keine Informationen dariiber,
welche Dateien die TA Engine bzw. deren Plug-in aus einem Artefakt be-
notigt. Die TOSCA Engine miisste somit fir das Pattern Matching immer alle

AbstractFile-Objekte des Artefakts abrufen, was u. U. unnétig sein kann.

48

4 Konzept und Implementierung

e Damit die TOSCA Engine AbstractFile-Objekte, die nicht den Patterns ent-
sprechen, aus einem AbstractArtifact-Objekt 16schen kann, miissten hierfir

Methoden bereitgestellt werden.

AbstractFile reprisentiert eine Datei eines Artefakts, wobei das Instanziieren
einer Implementierung von AbstractFile noch nicht mit dem Herunterladen der
Datei verbunden ist. Dem Konstruktor von AbstractFile muss die Referenz der
Datei {ibergeben werden. Wird die Klasse implementiert, so miissen Methoden zum
Zuriickgeben des Dateinamens und Herunterladen der Datei sowie Abrufen ihres

InputStream realisiert werden.

4.4.1 CSAR Artefakte

Damit auch weiterhin auf relative Artefakt-Referenzen bzw. CSAR-Artefakte zuge-
griffen werden kann, musste im Artifact Model eine entsprechende Implementierung
bereitgestellt werden, die durch die Klassen CSARArtifact, CSARDirectory und
CSARFile (siehe Abbildung 4.10) représentiert wird. Da wir bereits die Metadaten

1 0..*
AbstractArtifact AbstractFile
T
A | N
1 v 0.*
<<interface>>
PatternMatcher
IBrowseable
4 1
! 1
1
0.*% 1

AbstractDirectory K>———

CSARDirectory Ko>—

> Implementation for
CSAR artifacts.

CSARArtifact CSARFile

Uses appropriate storage
provider for fetching file.

Abbildung 4.10: UML-Klassendiagramm zur Artifact Model-Implementierung fiir
CSAR-Artefakte bzw. relative Artefakt-Referenzen.

einer CSAR lokal gespeichert haben, sollen diese auch zum Durchsuchen verwen-
det werden. Dementsprechend konnten die Konstruktoren von CSARArtifact und

CSARDirectory nicht unverdndert aus AbstractArtifact bzw. AbstractDirectory

49

4 Konzept und Implementierung

iibernommen werden, sondern mussten zusitzlich um entsprechende Parameter fiir
CSAR-Metadaten erweitert werden. Dazu gehoren die Map, die einen relativen Pfad
einer Datei der CSAR auf die zugehorige Storage Provider ID abbildet, das Set, das
relative Pfade von Ordnern der CSAR enthélt und die CSAR ID (siche Abschnitt 4.3).
Der Konstruktor von CSARFile musste lediglich um die CSAR ID ergénzt werden.

Instanziiert man CSARArtifact mit allen Metadaten der entsprechenden CSAR und
der Artifakt-Referenz, so werden im Konstruktor jene Dateien und Ordner aus den
Metadaten herausgesucht, die sich an der Artefakt-Referenz befinden. Mit diesen
Daten wird ein CSARDirectory erzeugt, das von der Methode getArtifactRoot ()
zuriickgeliefert wird und damit das Wurzelverzeichnis des Artefakts reprisentiert.
Die Implementierung der Methode fitsArtifactReference(artifactReference)
iiberpriift, ob die URI relativ ist und damit passend zu diesem Artefakt-Referenz-Typ
ist. Falls dies der Fall ist, die Referenz jedoch auf eine Datei bzw. einen Ordner
verweist, der nicht in der CSAR existiert, so wird (wie im vorherigen Abschnitt

gefordert) eine Exception bei der Instanziierung von CSARArtifact geworfen.

Die implementierten Methoden in CSARDirectory zum Durchsuchen eines Ordners
suchen sich die entsprechenden Metadaten heraus und erzeugen entsprechend eine

oder mehrere CSARDirectory bzw. CSARFile, die zuriickgeliefert werden.

CSARFile bindet sich analog zum Storage Provider Manager des File Service (siehe
Abschnitt 4.2.2) gegen die Schnittstelle der Storage Providers, damit die Datei mittels
dem entsprechenden Storage Provider heruntergeladen bzw. deren InputStream ab-
gerufen werden kann. Wird eine Methode zum Beziehen der Datei aufgerufen, so wird
zunéchst iberprift, ob der bendtigte Storage Provider verfiigbar und einsatzbereit
ist. Falls dies zutrifft, wird der relative Pfad gebildet, unter dem die Datei auf dem
Storage Provider abgelegt ist (siche Abschnitt 4.2.2) und mit dieser Information

schlieBlich die entsprechende Methode auf dem Storage Provider aufgerufen.

Die Implementierung fiir CSAR-Artefakte kommt in der Klasse CSARContent sowohl
bei der Methode zum Zugriff auf Artefakte als auch bei allen weiteren Methoden zum
Einsatz, die eine bzw. mehrere AbstractDirectory-Objekte oder AbstractFile-
Objekte zuriickliefern. Fiir letztere Methoden wird bei einer Instanziierung von
CSARContent ein CSARDirectory-Objekt mit einem leeren String als Referenz (voll-
standige CSAR), allen Metadaten der CSAR, ihrer CSAR ID und keinen Patterns
erzeugt. Der boolean, der definiert, ob es sich um ein Datei-Artefakt handelt, ist
auf false gesetzt. Die Methoden zum Durchsuchen der CSAR bspw. delegieren
(lediglich) an die gleichnamigen Methoden des erzeugten CSARDirectory-Objekts

weiter.

20

4 Konzept und Implementierung

4.5 Storage Providers

Die Storage Providers (Storage Plug-ins) bilden die Basis des File Service, da mit
diesen der Inhalt von CSAR-Dateien in verschiedenen Umgebungen gespeichert
werden kann. Entsprechend den Anforderungen musste zunéchst eine Schnittstelle
fiir Storage Providers definiert werden, auf die in Abschnitt 4.5.1 eingegangen wird.
Implementierungen dieser Schnittstelle (Storage Providers) mussten fiir Amazon S3
und das lokale Dateisystem bereitgestellt werden. In Abschnitt 4.5.2 wird erldutert,
wie diese mit der Bibliothek jclouds realisiert wurden. Abschnitt 4.5.3 erklart, wie

ein neuer Storage Provider entwickelt werden muss.

4.5.1 Schnittstelle

Abbildung 4.11 zeigt die Schnittstelle, die von einem Storage Provider implementiert
werden muss. Beispielhaft ist zusatzlich ein Storage Provider dargestellt, der diese
implementiert. Entsprechend den Anforderungen definiert die Schnittstelle Methoden,
mit denen Dateien auf dem Storage Provider gespeichert, abgerufen und geloscht
werden kénnen. Zum Speichern kann eine Datei entweder als Path-Objekt oder
als InputStream {ibergeben werden. In letzterem Falle muss zuséatzlich die Grofie
der Datei spezifiziert werden, da die meisten Anbieter diese Information bend6ti-
gen. Dementsprechend gibt es eine Methode, mit welcher die Dateigrofie bestimmt
werden kann. Eine Datei kann ebenso als Path-Objekt heruntergeladen oder deren
InputStream bereitgestellt werden. Falls eine der genannten Methoden fehlschligt??,

so soll eine entsprechende Exception geworfen werden.

Fiir einen Storage Provider kénnen Voraussetzungen definiert werden, die erfiillt
sein miissen, damit dieser einsatzbereit ist (siche auch Abschnitt 4.2.1). Sind alle
Voraussetzungen erfiillt, so soll isStorageProviderReady () true zuriickliefern. Vor-
aussetzungen kénnen bspw. Zugangsdaten sein, die im Storage Provider hinterlegt
sein missen oder das Vorhandensein eines (weiteren) Bundle, welches das Storage

Provider Bundle benétigt.

Eine ID ist zur eindeutigen Identifizierung eines Storage Providers unerlésslich und
muss daher im Storage Provider spezifiziert werden. Wie bereits angesprochen, wird
in den Metadaten einer CSAR (siche Abschnitt 4.3) der relative Pfad einer Datei
zusammen mit der ID des Storage Providers gespeichert, auf dem die Datei abgelegt
ist. Des Weiteren kann im File Service ein Storage Provider mittels seiner ID als aktiv
definiert werden. Auch liefern einige Getter im File Service (z. B. zum Zuriickgeben

der ID des Default Storage Provider) und Credentials Service eine oder mehrere

32Beispielsweise aufgrund eines Ausfalls der Internetverbindung.

51

4 Konzept und Implementierung

*.core.internal.file.storage.providers.service

<<interface>>
ICorelnternalFileStorageProviderService

+ storeFile(absFilePath: Path, relFilePathOnStorageProvider: String)

+ storeFile(filelnputStream: InputStream, fileSize: long, relFilePathOnStorageProvider: String)
+ getFile(relFilePathOnStorageProvider: String, targetAbsFilePath: Path)

+ getFileAsInputStream(relFilePathOnStorageProvider: String): InputStream
+ getFileSize(relFilePathOnStorageProvider: String): long

+ deleteFile(relFilePathOnStorageProvider: String)

+ getStorageProviderID(): String

+ getStorageProviderName(): String

+ isStorageProviderReady(): boolean

+ setCredentials(credentials: Credentials)

+ getCredentialsID(): long

+ deleteCredentials()

+ needsCredentials(): boolean

+ getCredentialsldentityName(): String

+ getCredentialsKeyName(): String

* core.internal.file.storage.providers.name.service.impl

CorelnternalFileStorageProviderNameServicelmpl ~-+---—-——-—-—- -

Abbildung 4.11: UML-Klassendiagramm zur Schnittstelle der Storage Providers.

Storage Provider IDs zuriick. Neben der ID muss auch ein Name vergeben werden,
der z. B. zukiinftig zur Ausgabe auf der GUI verwendet werden kann. ID und Name

des Storage Providers kénnen iiber entsprechende Getter abgefragt werden.

Weiterhin stehen Methoden zur Verfiigung, die ausschliellich vom Credentials Service
(sieche Abschnitt 4.6) verwendet werden. Mit diesen konnen Zugangsdaten (Creden-
tials) gesetzt bzw. aus dem Storage Provider geloscht werden. Falls Zugangsdaten
gesetzt sind, kann deren ID zuriickgegeben werden. Die Credentials ID wird beim
Speichern von Zugangsdaten im Credentials Service kiinstlich erzeugt und dient
lediglich zur Identifizierung im Container. Fiir den Fall, das keine Zugangsdaten
gesetzt sind, soll die entsprechende Methode null zuriickliefern. Dementsprechend
ist eine separate Methode hasCredentials() nicht erforderlich. Zugangsdaten be-
stehen neben Credentials ID, Storage Provider ID und einer optionalen Beschreibung
aus Identitdt und Schliissel (sieche Abschnitt 4.6). Damit z. B. auf der GUI statt

02

4 Konzept und Implementierung

diesen generischen Begriffen die fiir den Storage Provider spezifischen Bezeichnungen
ausgegeben werden koénnen, miissen letztere im Storage Provider definiert werden.
Zur Abfrage stehen entsprechende Methoden zur Verfiigung. Des Weiteren kann zu-
riickgegeben werden, ob der Storage Provider Zugangsdaten bendtigt. Das Speichern
von Zugangsdaten fiir einen Storage Provider, der keine benétigt, ist im Credentials

Service nicht moglich.

Die Methodensignaturen der Schnittstelle enthalten keine CSAR ID. Der Aufrufer
einer Methode ist folglich selbst dafiir verantwortlich, aus der CSAR ID und dem
relativen Pfad einer Datei der CSAR den Pfad zu bilden, unter dem die Datei auf
dem Storage Provider abgelegt ist bzw. gespeichert werden soll. Diese Entwurfsent-

scheidung wurde aus folgenden Griinden getroffen:

o Konsistenz ist gegeben. Die Bildung des Pfads erfolgt fiir alle Storage Provider
auf die gleiche Weise. Eine bestimmte Datei einer CSAR. wiirde man folglich

auf verschiedenen Storage Providern unter dem gleichen Pfad finden.

e Reduktion der Codemenge und ggf. Coderedundanz. Die Bildung des Pfads
muss lediglich der Aufrufer eines Storage Provider durchfithren und nicht jeder

Storage Provider selbst.

o Falls zukiinftig der File Service auch zum Speichern von Dateien eingesetzt
werden soll, die nicht Teil einer CSAR sind, so ist zumindest die Schnittstelle

hierfiir bereits passend.

Geméf einer Konvention, die wihrend der Entwicklung von OpenTOSCA eingefiihrt
wurde, sollen Schnittstelle und deren Implementierungen (in diesem Fall Storage
Provider) in separaten Bundles verteilt werden (sieche auch Abschnitt 2.3). Diese
Konvention wurde auch im Rahmen dieser Arbeit eingehalten. Damit auf einen
Storage Provider zugegriffen werden kann, muss dieser einen deklarativen Service
bereitstellen (sieche Abschnitt 4.5.3).

4.5.2 Realisierung mit jclouds

Entsprechend den Anforderungen mussten zwei Implementierungen der Schnittstelle
fiir Storage Providers bereitgestellt werden: Eine Implementierung soll das Speichern
auf dem lokalen Dateisystem ermdoglichen. Mit einer weiteren Implementierung soll

auf Amazon S3 gespeichert werden konnen.

Zur Verringerung des Implementierungsaufwands und der Codemenge wurde nach
einer Bibliothek gesucht, mit der Dateien in verschiedenen Umgebungen gespeichert
werden konnen. Im Rahmen einer Evaluation (siehe Abschnitt 2.8) wurden verschie-
dene Multi-Cloud-Bibliotheken miteinander verglichen. Die Wahl ist auf jclouds

o3

4 Konzept und Implementierung

gefallen, da diese die einzige Bibliothek ist, die alle aufgestellten Anforderungen
erfiillt.

Da jclodus bzw. deren Blobstore API, die APIs von Blobstore-Anbietern abstrahiert,
wurde eine abstrakte Klasse implementiert, welche die Storage Provider-Schnittstelle
realisiert. In den implementierten Methoden der abstrakten Klasse werden die ent-
sprechenden Methoden der Blobstore API aufgerufen. Im Rahmen dieser Arbeit kam

jclouds in Version 1.6.0 zum Einsatz.

Ein Storage Provider, der das Speichern von Dateien in einer Umgebung erlauben
soll, welche auch von jclouds unterstiitzt wird, kann so einfach durch Erben von der
abstrakten Klasse realisiert werden. Dementsprechend wurden die Dateisystem- und
Amazon S3-Storage Provider auf diese Weise realisiert. Abbildung 4.12 veranschau-

licht den Entwurf mit jclouds. Die abstrakte Klasse implementiert alle Methoden

<<interface>>
ICorelnternalFileStorageProviderService

A\

amazon
webservices™

@rackspace n
e pnciovs ooy

openstack

]
|
|
1

Uses
AbstractiCloudsFileStorageProvider
4| Blobstore API.

CorelnternalFileStorageProviderFileSystemServicelmpl CorelnternalFileStorageProviderAWSS3Servicelmpl

Local filesystem
(Filesystem-based Blobstore)

Abbildung 4.12: UML-Klassendiagramm zur Realisierung der Dateisystem- und
Amazon S3-Storage Providers mittels einer abstrakten jclouds Im-
plementierung.

der Schnittstelle bis auf die Getter zum Abfragen der ID und des Namens des Sto-
rage Provider, der spezifischen Bezeichnungen fiir Identitdt und des Schliissel der
Zugangsdaten sowie der Methode, die zuriickgibt, ob der Storage Provider Zugangs-
daten bendtigt. Fin Storage Provider, der durch Ableiten von dieser Klasse realisiert
werden soll, muss also lediglich die genannten Methoden implementieren. Dabei
kénnen die Riickgabewerte der Methoden frei gewéhlt werden mit Ausnahme der
Methode, welche die Storage Provider ID zuriickgibt. Diese muss mit der ID eines
jclouds Provider oder einer jclouds API iibereinstimmen. Falls kein jclouds Provider
/ API fiir den benétigten Anbieter existiert, so kann der Storage Provider nicht auf
Basis von jclouds realisiert werden. In diesem Fall muss die komplette Schnittstelle

implementiert werden.

54

4 Konzept und Implementierung

In einer privaten Initialisierungs-Methode in der abstrakten Klasse wird der jclouds
BlobStoreContext (siehe auch Abschnitt 2.8.1) mit der Storage Provider ID und
den Zugangsdaten, die im Storage Provider gesetzt sind, erzeugt. Weiterhin wird der
Container?? auf dem entsprechenden Anbieter erzeugt. Als Name fiir den Container ist
standardméBig ,,org.opentosca.csars® definiert. Durch Uberschreiben einer Methoden
in einer Implementierung der abstrakten Klasse kann ein anderer Container-Namen
definiert werden. Néaheres hierzu und zu weiteren Parametern, die verdndert werden
koénnen, in Abschnitt 4.5.3. Falls die gesetzten Zugangsdaten falsch oder der Container
bereits mit anderen Zugangsdaten erstellt wurde, wird eine entsprechende Exception
geworfen und die Initialisierung schlagt fehl. Selbiges passiert, falls keine Internetver-
bindung vorhanden oder ein anderer Fehler auftritt (z. B. temporares Problem mit
dem Anbieter). Die Intialisierungs-Methode wird grundsétzlich aufgerufen, falls die
Initialisierung nicht bereits stattgefunden hat und der Storage Provider einsatzbereit

ist.

FEin Storage Provider, der auf Basis der abstrakten Klasse realisiert wurde, ist
einsatzbereit, falls er Zugangsdaten besitzt und das bendtigte jclouds Provider- bzw.
API-Bundle verfiigbar ist, wobei erstere Bedingung lediglich zutrifft, falls der Storage
Provider Zugangsdaten bendétigt. Zur Benachrichtigung, wenn ein entsprechendes
jclouds Bundle verfiigbar bzw. nicht mehr verfiigbar ist, werden Bundle Listeners
eingesetzt, die jclouds mitliefert (sieche auch Abschnitt 2.8). Die abstrakte Klasse
implementiert hierzu die Schnittstellen ProviderListener und ApiListener. In den
implementierten Methoden wird eine globale boolean-Variable entsprechend gesetzt,
falls das benétigte Provider- bzw. API-Bundle verfiigbar bzw. nicht mehr verfiighar

ist. Die Bundle Listeners werden im Konstruktor der abstrakten Klasse gestartet.

Die Initialisierung wird aufgehoben bzw. der jclouds BlobStoreContext geschlossen,
falls Zugangsdaten aus dem Storage Provider geléscht, neue Zugangsdaten im Storage
Provider gesetzt oder zur Laufzeit einer neuer Container-Namen definiert wird. Ist
ein Storage Provider nicht mehr verfiighar, so ist implizit die Initialisierung verloren

gegangen.

Zum Andern des Container-Namens zur Laufzeit wurde in der abstrakten Klasse eine
entsprechende Methode implementiert, die durch ein OSGi Konsolen Kommando
aufgerufen werden soll. Leider konnte die Definition des Kommandos nicht in der
abstrakten Klasse erfolgen. Eine Klasse, die OSGi Konsolen Kommandos bereitstellen
soll, muss grundsétzlich einen deklarativen Service bereitstellen, dessen Schnittstelle
mit dem OSGi Framework mitgeliefert wird. Die Klasse, die einen Service anbietet,
wird vom OSGi Framework instanziiert, was jedoch mit einer abstrakten Klasse

nicht moéglich ist. Das angesprochene OSGi Konsolen Kommando musste daher in

33Bezeichnung fiir Amazon S3: Bucket

95

4 Konzept und Implementierung

den Implementierungsklassen der Storage Providers bzw. den Klassen, die von der

abstrakten Klasse erben, definiert werden.

In den Metadaten einer CSAR (CSAR Model, siche Abschnitt 4.3) wird momentan
zu einer Datei die Storage Provider ID gespeichert, nicht aber zusétzlich auch der
Name des Containers, in dem die Datei gespeichert ist. Falls eine CSAR somit auf
mehrere Container verteilt wurde und eine Datei dieser CSAR abgerufen werden soll,
so muss hierzu folglich der Namen des Containers, in dem die Datei abgelegt ist,
im entsprechenden Storage Provider gesetzt sein. Andernfalls wird die Datei nicht
gefunden. Folgender Ablauf veranschaulicht diese Einschrénkung (X und Y stehen
fir beliebige, verschiedene Dateien einer CSAR):

1. Speichern einer CSAR mit dem Dateisystem-Storage Provider.

2. Verschieben einer Datei X der CSAR mit dem Amazon S3-Storage Provider.
3. Andern des Container-Namens im Amazon S3-Storage Provider.

4. Verschieben einer Datei Y der CSAR mit dem Amazon S3-Storage Provider.

Die Dateien X und Y befinden sich nun in verschiedenen Containern (Buckets) auf
Amazon S3. Falls Datei X abgerufen wird, so schlagt dies fehl, da in jenem Container
nach der Datei gesucht wird, in der Y abgelegt ist. Andert man daraufhin den Namen
des Containers wieder auf den urspriinglichen Namen, so wird X gefunden, jedoch
nicht mehr Y.

Ebenfalls aufgrund fehlender Metadaten (in diesem Fall die Identitét der Zugangs-
daten) ist das Verschieben einer Datei bzw. eines Ordners zwischen verschiedenen

Benutzerkonten eines Anbieters (mit selbigen Storage Provider) nicht moglich.

Da die Erweiterung der Metadaten mit gréferen Anpassungen (insbesondere im File
Service und Credentials Service) verbunden ist, konnte dies aus zeitlichen Griinden

im Rahmen dieser Arbeit nicht mehr erledigt werden.

4.5.3 Entwicklung eines neuen Storage Providers

In Folgenden wird beschrieben, wie ein neuer Storage Provider entwickelt werden muss,
damit er in OpenTOSCA zur Verfiigung steht. Als Entwicklungsumgebung kommt
Eclipse zum Einsatz. Kenntnisse mit diesem Werkzeug werden dementsprechend

vorausgesetzt.

Wir gehen davon aus, dass bereits alle Projekte des TOSCA-Containers im Eclipse
Workspace vorhanden sind. Zunéichst muss ein neues ,,Plug-in Project® angelegt
werden, das den Storage Provider repréasentiert. Entsprechend der Konvention sollte

als Projektnamen ,org.opentosca.core.internal.file.storage.providers.x.service.impl*

o6

4 Konzept und Implementierung

gewdhlt werden, wobei ,x“ durch eine selbstgewéhlte Bezeichnung des Storage
Providers ersetzt wird. Unter ,, Target Platform* wird ,an OSGi framework* und
ystandard“ ausgewéhlt. Im zweiten Schritt des Assistenten kann unter ,Name* ein
Bundle-Name definiert werden. Eine Activator-Klasse wird nicht bendtigt und sollte
daher nicht erstellt werden. Nachdem das Projekt angelegt ist, 6ffnen wir deren
Bundle Manifest , META-INF/MANIFEST.MF“. Im erscheinenden Plug-in Manifest
Editor wechseln wir zur Registerkarte ,Dependencies® und fiigen unter ,Imported

Packages® folgende Pakete hinzu:
e org.opentosca.core.internal.file.storage.providers.service
e org.jclouds.logging.config
e org.jclouds.domain
e com.google.inject
e org.opentosca.core.model.credentials
e org.opentosca.exceptions

In einem Paket, das als Namen den zuvor gewéhlten Projektnamen erhalt, wird
eine Klasse CoreInternalFileStorageProviderXServiceImpl erstellt, welche die
Implementierung des Storage Provider représentiert. X wird durch eine Bezeichnung

des Storage Provider ersetzt.

Nun sollte ermittelt werden, ob der bendtigte Anbieter von jclouds unterstiitzt
wird und damit die abstrakte Klasse (siehe Abschnitt 4.5.2) zur Realisierung her-
angezogen werden kann. Hierzu existiert auf der Website von jclouds eine Liste
der unterstitzten Providers und APIs. Auf dieser Seite ist lediglich der Abschnitt
»,Blobstore API“ relevant. Die ,Maven Artifact ID*“ des entsprechenden jclouds
Provider bzw. API wird zum Beziehen der Bundles bendétigt. Falls jclouds den be-
notigten Anbieter nicht unterstiitzt, so muss die erstellte Klasse die Schnittstelle
ICoreInternalFileStorageProviderService vollstindig implementieren. Hierzu
kann ggf. eine Anbieter-spezifische Bibliothek verwendet werden. Da sich die APIs
solcher Bibliotheken von Anbieter zu Anbieter stark unterscheiden, kann an dieser
Stelle keine allgemeingiiltige Anleitung zur Realisierung der Schnittstelle dargelegt
werden. Stattdessen wird auf die Dokumentation verwiesen. Dropbox bspw. wird
nicht von jclouds unterstiitzt, da dieser Anbieter keinen Blobstore bereitstellt. Falls
die Realisierung nicht auf Basis der abstrakten jclouds Implementierung erfolgt, so

konnen die folgenden zwei Abschnitte tibersprungen werden.

Im Folgenden muss das benétigte jclouds Provider- bzw. API-Bundle heruntergeladen
werden. Auch die zugehorige POM wird benétigt. Dazu gehen wir auf das zentrale

Maven Repository, geben die ,Maven Artifact ID* in das Suchfeld ein und laden

o7

http://www.jclouds.org/documentation/reference/supported-providers
http://www.jclouds.org/documentation/reference/supported-providers
http://search.maven.org
http://search.maven.org

4 Konzept und Implementierung

die JAR und POM des Maven-Artefakts in Version 1.6.0 herunter. Anschliefend
wechseln wir in der Kommandozeile in den Ordner, in dem die beiden Dateien
abgelegt sind und fiithren den in Listing 4.1 dargestellten Maven-Befehl aus, mit dem
alle Abhéngigkeiten des Bundle (weitere Bundles) heruntergeladen werden. Hierzu

muss das Build-Management-Werkzeug Apachen Maven?? installiert sein.

mvn dependency:copy-dependencies -DincludeScope=runtime

Listing 4.1: Maven-Befehl zum Beziehen der Abhéngigkeiten eines Maven-Projekts.
Die heruntergeladenen JARs bzw. Bundles miissen in Eclipse zur Target Platform?>
hinzugefiigt werden. Dazu wird das Projekt ,org.opentosca.targetplatform.container*
geoffnet und die Dateien im Ordner ,,JClouds® abgelegt. In diesem Ordner befinden
sich bereits das Amazon S3 Provider-Bundle, das Dateisystem API-Bundle und deren
Abhéngigkeiten. Zu letzteren gehoéren auch die jclouds Hauptkomponenten. Diese
wurden durch vorherigen Maven-Befehl erneut heruntergeladen, sodass beim Ablegen
der Dateien eine Meldung erscheint, ob bereits existierende Dateien iiberschrieben
werden sollen. Grundsétzlich sollte dies verneint werden. Damit Eclipse die neu hinzu-
gefligten Bundles sofort erkennt, muss die Datei ,,OpenToscaTargetPlatform.target
geoffnet und im erscheinenden Target Definition Editor auf ,Set as Target Platform*

geklickt werden.

Im Storage Provider-Projekt 6ffnen wir anschliefend die zuvor erstellte Klasse und
lassen diese von der abstrakten Klasse AbstractJCloudsFileStorageProvider
erben. Fiinf Getter miissen nun noch implementiert werden. Die Methode
getStorageProviderID() muss dabei die jclouds Provider bzw. API ID zuriicklie-
fern. Diese entspricht der ,Maven Artifact ID“ Weiterhin kénnen folgende Methoden

iiberschrieben werden, die durch die abstrakte Klasse bereitgestellt werden:

e getContainerName(): Gibt den Namen des Containers zuriick, in dem die
Dateien abgelegt werden. Wird die Methode nicht {iberschrieben, so wird als

Name ,,org.opentosca.csars” verwendet.

e getContainerLocation(): Gibt den Ort zuriick, an dem der Container angelegt
werden soll. Bei Amazon S3 bspw. wird der Ort als Region bezeichnet. Wird
die Methode nicht tiberschrieben, so wird der Standard-Ort verwendet, der

vom Anbieter vorgegeben wird.

34Website von Apache Maven: http://maven.apache.org
35Die Target Platform besteht aus Bundles (Bibliotheken), die zur Entwicklung und Laufzeit einer
Anwendung auf Basis von OSGi zur Verfiigung stehen.

o8

http://maven.apache.org

4 Konzept und Implementierung

e getJCloudsModules (): Gibt jclouds Module zuriick, die geladen werden sollen.
Das SLF4J% Logging Modul wird immer geladen, da OpenTOSCA diese

Logging Facade zusammen mit dem Logging Framework Logback®” verwendet.

o overwriteJCloudsProperties(): Erméglicht das Uberschreiben von vordefi-
nierten jclouds Properties. Fiir die jclouds Dateisystem-Implementierung bspw.
muss ein Property iiberschrieben werden, in dem der Pfad hinterlegt wird, unter
dem der Blobstore erstellt werden soll. Wird die Methode nicht iiberschrieben,

so werden keine jclouds Properties verdndert.

Néhere Informationen zu jclouds Module sowie Properties finden sich auf der jclouds
Website?®.

Der letzte Schritt besteht darin, den Storage Provider als deklarativen Service bereit-
zustellen. Dazu wird im Storage Provider-Projekt zunéchst ein Ordner ,,OSGI-INF*
angelegt, in dem anschlieBend eine Component Definition-Datei erstellt wird. Letzte-
res erfolgt iiber ,New...“ — | Other...“ — ,Plug-in Development“ — , Component
Definition“. Im erscheinenden Assistenten wird unter ,Component Definition Infor-
mation“ — | Class“ die zuvor erstellte Klasse definiert, welche die Implementierung
reprasentiert. Nach der Erstellung der Datei erscheint der Declarative Services Editor,
in dem zur Registerkarte ,,Services“ gewechselt wird. Unter ,,Provided Services“ wird
die Storage Provider-Schnittstelle ICoreInternalFileStorageProviderService
hinzugefiigt. Fiir OSGi Konsolen Kommandos muss zusétzlich die Schnittstelle
CommandProvider in die Liste eingetragen werden. Analog zum Amazon S3- und
Dateisystem-Storage Provider kann bspw. ein OSGi Konsolen Kommando zur Ande-
rung des Container-Namens zur Laufzeit definiert werden. Die Vorgehensweise zum
Erstellen eines entsprechenden Kommandos kann den Implementierungsklassen der

angesprochenen Storage Providern entnommen werden.

4.6 Credentials Service

Entsprechend den Anforderungen musste eine Komponente zur Verwaltung von
Zugangsdaten (,Credentials“) fiir Storage Provider entwickelt werden. Zugangsdaten
sollen mit dieser Komponente direkt in einem passenden Storage Provider gesetzt
bzw. aus dem Storage Provider geldscht werden kénnen. Aus diesen Anforderungen
heraus ist der Credentials Service entstanden, der Zugangsdaten in der Datenbank
speichert. Zum Zugriff auf die verfiigbaren Storage Provider bindet er sich gegen die

Schnittstelle der Storage Providers.

36Website der Simple Logging Facade for Java (SLF4J): http://www.s1f4j.org
3TWebsite von Logback: http://logback.qos.ch
38Website von jclouds: http://www.jclouds.org

29

http://www.slf4j.org
http://logback.qos.ch
http://www.jclouds.org

4 Konzept und Implementierung

Zugangsdaten werden durch das Credentials Model bzw. deren Klasse Credentials re-
prasentiert und bestehen aus (1) Identitét (,,identity“, z. B. Benutzername), (2) Schliis-
sel (,key“, z. B. Passwort), (3) einer optionalen Beschreibung (,description), (4) der
ID des Storage Provider, fir den die Zugangsdaten gedacht sind sowie einer (5) ID,
welche die Zugangsdaten identifiziert (,,credentialsID*). Im Falle von Amazon S3
bspw. wire die Identitdt der Access Key und der Schliissel der Secret Access Key.

Bei Bedarf kann die Klasse zukiinftig um weitere Attribute ergénzt werden.

Die Entscheidung zur Einfihrung von IDs fiir Zugangsdaten wurde aus folgenden

Griinden getroffen:

« Eine ID ist stabiler gegeniiber Anderungen an der Identifikation von Zugangs-
daten. Nehmen wir an, Zugangsdaten wiirden iiber die Identitéit identifiziert
werden. Nun kommt ein weiteres Attribut hinzu und Zugangsdaten sollen iiber
dieses und der Identitdt identifiziert werden. Hierfiir miissten dann ggf. groflere

Anpassungen am Credentials Service vorgenommen werden.

¢ Die gespeicherten Zugangsdaten sollen iiber die Container API des Containers
abgefragt werden konnen. Es ist fiir einen Nutzer der REST API versténdlicher,
wenn Zugangsdaten unter . ../<id>/ statt z. B. unter /<identity>;<key>/ zu
finden sind. Bezugnehmend zum ersten Punkt ist ersteres URI-Design zudem

stabiler.

Abbildung 4.13 zeigt den Ablauf der Methode storeCredentials(credentials),

mit der Zugangsdaten im Credentials Service gespeichert werden kénnen. In einem

Credentials Service Storage Provider

T
Credentials are valid.

i Get storage provider ID in credentials.

Storage provider is available.

needsCredentials()

A 4

true

storeCredentials(Credentials)

S B getCredentialsID()

torage provider
has currently no
credentials.

v

null

|
| T

|
setCredentialsinStorageProvider(Credentials) |
|

Abbildung 4.13: UML-Sequenzdiagramm zum Speichern von Zugangsdaten.

ersten Schritt wird {iberpriift, ob die {ibergebenen Zugangsdaten giiltig sind. Ein

60

4 Konzept und Implementierung

Credentials-Objekt, in dem kein Schliissel, keine Identitdt oder keine Storage
Provider ID definiert wurde, wird nicht akzeptiert. Falls die Zugangsdaten korrekt
sind, so wird ermittelt, ob der entsprechende Storage Provider Zugangsdaten benétigt.
Dies ist nur moglich, falls der Storage Provider verfiigbar ist. Entsprechend den
Anforderungen kénnen im Credentials Service auch Zugangsdaten fiir Storage Provider
gespeichert werden, die nicht verfiighar sind. Daraus folgt, das wir das Speichern
von Zugangsdaten fiir einen Storage Provider, der keine Zugangsdaten bendétigt
und (gerade) nicht verfiigbar ist, nicht verhindern kénnen. Benétigt der Storage
Provider Zugangsdaten bzw. ist dieser nicht verfiigbar, so werden die Zugangsdaten
darauthin in der Datenbank gespeichert. Wahrend diesem Vorgang wird tiberpriift,
ob bereits Zugangsdaten mit gleichem Schliissel und gleicher Identitét existieren. Ist
dies der Fall, so schlagt die Speicheroperation fehl. Hierzu wurden die genannten
Attribute als ,,unique constraint“?? im Credentials Model definiert. Weiterhin wird,
wie bereits erwihnt, eine kiinstliche ID generiert und den Zugangsdaten zugewiesen.
Falls der entsprechende Storage Provider verfiigbar ist und nicht bereits Zugangsdaten

40 so werden die Zugangsdaten nach dem Speichern direkt im Storage Provider

besitz
gesetzt (Fall, der in Abbildung 4.13 dargestellt ist). Abschliefend wird die erzeugte

ID der Zugangsdaten zuriickgegeben.

Zugangsdaten werden nicht nur beim Speichern automatisch im Storage Provider
gesetzt, sondern auch, falls ein Storage Provider verfiigbar wird, fiir den bereits
Zugangsdaten im Credentials Service gespeichert sind. Es sollte dabei beachtet werden,
dass dies nur geschieht, falls nicht mehrere Zugangsdaten fiir den Storage Provider
gespeichert sind und dieser auch Zugangsdaten benétigt. Erstere Bedingung wurde
eingefiihrt, da wir andernfalls zuféllig bestimmen miissten, welche Zugangsdaten

gesetzt werden sollen.

Mit der Methode deleteCredentials(credentialsID) konnen Zugangsdaten ge-
16scht werden. Zunéchst werden die Zugangsdaten mit der {ibergebenen ID aus der
Datenbank abgerufen, um die ID des Storage Providers zu erhalten, fiir den die
Zugangsdaten gedacht sind. Sofern der Storage Provider verfiighar ist, wird ange-
fragt, ob er Zugangsdaten mit der {ibergebenen ID besitzt. Falls dies zutrifft, werden
diese aus dem Storage Provider geloscht, der dadurch nicht mehr einsatzbereit ist.

Abschlielend werden die Zugangsdaten aus der Datenbank gel6scht.

Mit deleteAllCredentials() konnen alle gespeicherten Zugangsdaten geldscht

werden. Hierzu wird deleteCredentials(...) wiederverwendet.

Mit den Methoden setCredentialsInStorageProvider(credentialsID) bzw.

deleteCredentialsInStorageProvider(credentialsID) koénnen bereits gespei-

39Fin ,unique constraint“ definiert eine Menge von eindeutigen Spalten in einer Datenbanktabelle.
49Wir nehmen dabei an, dass das automatische Uberschreiben von Zugangsdaten in einem Storage
Provider unerwiinscht ist.

61

4 Konzept und Implementierung

cherte Zugangsdaten (manuell) in einem Storage Provider gesetzt bzw. aus dem
Storage Provider geléscht werden, sofern der entsprechende Storage Provider verfiig-
bar ist. Erstere Methode iiberpriift, ob der Storage Provider Zugangsdaten benotigt
und tiberschreibt bereits gesetzte Zugangsdaten. Wie bereits in Abschnitt 4.5.1 ange-
sprochen, definiert die Schnittstelle der Storage Providers eine Methode, iiber die

angefragt werden kann, ob Zugangsdaten erforderlich sind.

getCredentials(credentialsID) bzw. getAllCredentials () stellt Zugangsdaten

bzw. alle gespeicherten Zugangsdaten bereit.
Weiterhin stehen Methoden fiir folgende Aufgaben zur Verfiigung:

o Bereitstellen aller gespeicherten Zugangsdaten fiir einen bestimmten Storage

Provider.
¢ Bestimmen der IDs aller gespeicherten Zugangsdaten.

o Ermitteln, ob ein Storage Provider Zugangsdaten bzw. Zugangsdaten mit einer
bestimmten ID besitzt.

e Bestimmen, ob ein Storage Provider Zugangsdaten benétigt.

e Abfragen der Storage Provider-spezifischen Bezeichnungen fiir Identitdt und
Schliissel.

Entsprechend den Anforderungen kénnen die meisten Methoden auch tiber OSGi

Konsolen Kommandos aufgerufen werden.

Zurzeit kann der Credentials Service lediglich Zugangsdaten fir Storage Provider ver-
walten. Zukiinftig wére es denkbar, dass er auch Zugangsdaten weiterer Komponenten

verwaltet und somit eine zentrale Rolle in OpenTOSCA einnimmt.

4.7 Integration

4.7.1 Container API

Im Rahmen der Integration mussten insbesondere die neuen Funktionalitaten des
File Service und Credentials Service iiber die Container API, der externen REST-
Schnittstelle von OpenTOSCA, bereitgestellt werden. Die Container API wurde
mittels der JAX-RS*' Referenzimplementierung Jersey*? realisiert und liuft auf dem
HTTP-Webserver und Servlet/JSP-Container Jetty®3.

4 Java API for RESTful Web Services (JAX-RS) spezifiziert eine Java-API zur Entwicklung von
REST-basierten Anwendungen.

42Website von Jersey: https://jersey.java.net

“BWebsite von Jetty: http://www.eclipse.org/jetty

62

https://jersey.java.net
http://www.eclipse.org/jetty

4 Konzept und Implementierung

Die Stammressource (,root resource”) der Container API wird durch die URI
http://localhost:1337/containerapi représentiert. Alle im folgenden genann-
ten URIs, die Ressourcen identifizieren, werden relativ zu dieser URI angegeben.
Abbildung 4.14 veranschaulicht die hierarchische Struktur der Container API, wobei
lediglich Ressourcen dargestellt sind, die im Rahmen dieser Arbeit hinzugefiigt wur-
den (blau umrandet) bzw. an denen Anpassungen vorgenommen wurden (schwarz
umrandet). In den folgenden Unterabschnitten soll nun néher auf die dargestellten

Ressourcen eingegangen werden.

application/octet-
stream

/download
/<csarlD1> > —C /Content }%——
—C /CSARs /<csarlD2> >——< /TopologyPicture > CSAR Browsing API
(see figure 4.15)

/<storageProvider|D1>
—C /Available D—{kstorageProviderlDb)

(.../containerapi }—(/StorageProviders } — e

/Default

image/*

N

/<credentialsID1>

—C /Credentials }—(/<credentialsID2>)

Abbildung 4.14: Neue und verénderte Ressourcen der Container APIL.

4.7.1.1 Storage Providers

Mittels GET-Anfragen an die URIs /StorageProviders/Available und
/StorageProviders/Default werden Ressourcen bereitgestellt, die Informatio-
nen zu allen verfiigharen Storage Providern bzw. dem Default Storage Provider
enthalten. Als Reprisentationsformat kommt XML zum Einsatz. Die zu einem Sto-
rage Provider zurtickgegeben Daten bestehen aus (1) ID und (2) Namen des Storage
Provider sowie den Informationen, ob der Storage Provider (3) als aktiv gesetzt ist,

(4) einsatzbereit ist, der (5) Default Storage Provider ist, (6) Zugangsdaten benotigt

63

http://localhost:1337/containerapi

10

11

4 Konzept und Implementierung

und (7) zurzeit Zugangsdaten besitzt. Auch werden die spezifischen Bezeichnungen
fir (8) Identitét und (9) Schlissel der Zugangsdaten zuriickgegeben. Listing 4.2 zeigt
beispielhaft XML-Code der Ressource /StorageProviders/Available.

<StorageProviders>

<StorageProvider id="aws-s3" name="Amazon Simple Storage Service (83)">
<Active>false</Active>
<Ready>true</Ready>
<Default>false</Default>
<NeedsCredentials>true</NeedsCredentials>
<CredentialsIdentityName>Access Key ID</CredentialsIdentityName>
<CredentialsKeyName>Secret Access Key</CredentialsKeyName>
<HasCredentials>true</HasCredentials>

</StorageProvider>

</StorageProviders>

Listing 4.2: XML-Reprasentation der Ressource /StorageProviders/Available. In
diesem Fall ist lediglich der Amazon S3-Storage Provider verfiigbar.

Die Unterteilung in zwei Ressourcen ist erforderlich, da es, wie bereits erwdhnt,
moglich sein kann, dass der Default Storage Provider (siche Abschnitt 4.2.1) nicht

verfiigbar ist. In diesem Fall soll zumindest seine ID ausgegeben werden kdnnen.

In der Ressource /StorageProviders/Available stehen zusétzlich Filterfunktionen

zur Verfligung:

e .../Available?type=active: Gibt Informationen zum aktiven Storage Pro-

vider zurtick.

e .../Available?type=default: Gibt Informationen zum Default Storage Pro-

vider zuriick (sofern verfiigbar).

e .../Available?type=ready: Gibt Informationen zu Storage Providern zurtick,

die einsatzbereit und damit auch verfiigbar sind.

Unter der URI /StorageProviders/Available/<StorageProviderID> werden die
genannten Daten zu einem einzelnen, verfiigharen Storage Provider bereitstellt.
Mittels einer POST-Anfrage an diese URI kann der Storage Provider als aktiv
gesetzt oder Zugangsdaten aus diesem geloscht werden. Hierzu muss der Body der
Anfrage das Schliisselwort ,activate“ bzw. ,unset“ enthalten. Besteht der Body
aus einem anderen Inhalt, so wird der HTTP-Statuscode 400 (fehlerhafte Anfrage)

zuriickgeliefert.

Zur Repréasentation der Storage Provider-Informationen in XML musste ein JAXB-
Modell entworfen und implementiert werden. Dieses besteht aus den Klassen
StorageProvidersJaxb und StorageProviderJaxb. Ein StorageProvidersJaxb-

Objekt enthélt eine beliebige Anzahl von StorageProviderJaxb-Objekten, die jeweils

64

-

'y

=]

4 Konzept und Implementierung

die genannten Daten zu einem Storage Provider enthalten. In einer JaxbFactory, die
statische Methoden bereitstellt, werden die Klassen des JAXB-Modells instanziiert.
Hierbei werden die bendtigten Informationen aus dem File Service und Credentials

Service abgerufen.

4.7.1.2 Credentials

Eine GET-Anfrage an die URI /Credentials liefert alle im Credentials Service
gespeicherten Zugangsdaten zuriick. Zu Zugangsdaten werden die Werte aller Attri-
bute ausgegeben, die im Credentials Model (siehe Abschnitt 4.6) definiert wurden.
Zusatzlich wird angegeben, ob Zugangsdaten in ihrem zugehérigen Storage Provider

gesetzt sind. Als Datenformat kommt XML zum Einsatz.

Analog dazu liefert /Credentials/<credentialsID> die Zugangsdaten mit einer
bestimmten ID zuriick. Sendet man eine POST-Anfrage mit ,set“ bzw. ,unset* im
Body an diese URI, so werden die Zugangsdaten im zugehorigen Storage Provider
gesetzt bzw. aus dem Storage Provider geloscht. Falls das Setzen von Zugangsdaten
fehlschldgt, da der entsprechende Storage Provider nicht verfiighar ist oder keine
Zugangsdaten benotigt, so wird der HT'TP-Statuscode 500 (interner Serverfehler)
zuriickgegeben. Der Code 400 wird zuriickgeliefert, falls die Zugangsdaten nicht aus
dem Storage Provider geloscht werden, da dieser keine oder andere Zugangsdaten
besitzt.

Mittels einer POST-Anfrage an /Credentials kénnen Zugangsdaten gespeichert
werden. Der Body der Anfrage muss die zu speichernden Zugangsdaten in XML
enthalten, wobei die in Abbildung 4.3 dargestellte Syntax eingehalten werden muss.
Weiterhin muss im Header das Attribut ,Content-Type“ mit dem Wert ,appli-
cation/xml“ spezifiziert sein. Andernfalls wird der HTTP-Statuscode 415 (nicht
unterstiitzter Medientyp) zuriickgegeben. Im Erfolgsfall wird die URI der erzeugten
Credentials-Ressource /Credentials/<credentialsID> zuriickgeliefert. Kommt es
dagegen wihrend dem Speichern der Zugangsdaten zu einem Fehler (z. B. unvollstan-

dige Zugangsdaten), so wird stattdessen der Code 500 zuriickgegeben.

<Credentials>
<StorageProviderID>aws-s3</StorageProviderID>
<Identity>amazon_access_key</Identity>
<Key>amazon_secret_key</Key>
<Description>Optional Description.</Description>

</Credentials>

Listing 4.3: XML-Représentation von Zugangsdaten.

65

4 Konzept und Implementierung

Das Loschen von Zugangsdaten mit einer bestimmten ID erfolgt durch Senden
einer DELETE-Anfrage an /Credentials/<credentialsID>. Auch ist das Loschen
aller im Credentials Service gespeicherten Zugangsdaten moéglich. Hierzu muss eine
DELETE-Anfrage an /Credentials gesendet werden.

Fur die Reprasentation von Zugangsdaten in XML musste ein weiteres JAXB-Modell
erstellt werden. FEin Al1CredentialsJaxb-Objekt reprisentiert eine Menge von Zu-
gangsdaten. Es enthélt eine beliebige Anzahl von CredentialsJaxb-Objekten, die
einzelne Zugangsdaten darstellen. Da die Attribute von Zugangsdaten im Credentials
Model (siehe Abschnitt 4.6) bzw. deren Klasse Credentials definiert sind, wurde
CredentialsJaxb von Credentials abgeleitet. Zusétzlich musste CredentialsJaxb
noch um ein Attribut erweitert werden, das angibt, ob die Zugangsdaten im zuge-
horigen Storage Provider gesetzt sind. Die Instanziierung des JAXB-Modells fiir
Zugangsdaten erfolgt ebenfalls in einer JaxbFactory, welche die bendtigten Informa-

tionen aus dem Credentials Service bezieht.

4.7.1.3 CSARs

Das Speichern einer CSAR erfolgt durch Senden einer POST-Anfrage an /CSARs.
Der Body der Anfrage muss aus dem Quellpfad der CSAR-Datei bestehen. Wurde
eine CSAR erfolgreich gespeichert, so wird die URI /CSARs/<csarID> der erzeugten
Ressource zuriickliefert, welche die gespeicherte CSAR, représentiert. Falls es wahrend
dem Speichern zu einem Fehler kommt, der in den Verantwortungsbereich des Nutzers
fallt (z. B. keine giiltige CSAR), so wird der HTTP-Statuscode 400 zuriickgegeben. Bei
anderen Fehlern besteht die Antwort aus dem Code 500. Zum Loschen einer CSAR
muss eine DELETE-Anfrage an /CSARs/<csarID> gesendet werden. Der Export
einer CSAR erfolgt mittels einer GET-Anfrage an /CSARs/<csarID>/download.

Zurtickgeliefert werden Daten vom Medientyp ,application/octet-stream®.

Eine gespeicherte CSAR kann tiber die Container API durchsucht werden (CSAR
Browsing API). Die URI /CSARs/<csarID>/Content reprasentiert hierzu das Wur-
zelverzeichnis der CSAR. Eine GET-Anfrage liefert Referenzen (URIs) zu al-
len untergeordneten Ressourcen, die jeweils Dateien oder Ordner im Wurzel-
verzeichnis der CSAR repréisentieren. Analog dazu kann z.B. eine Anfrage an
/CSARs/<csarID>/Content/IA gerichtet werden, um entsprechende Referenzen von
Dateien und Ordnern zu erhalten, die sich im Ordner ,,/TIA“ der CSAR befinden. Falls
»/TA“ dagegen eine Datei ist, so wird lediglich eine Selbstreferenz zuriickgegeben.
Unter der URI /CSARs/<csarID>/Content/IA/download kann in diesem Fall die Da-
tei heruntergeladen werden (Daten als ,application/octet-stream®). Abbildung 4.15
veranschaulicht die Struktur der CSAR Browsing API.

66

4 Konzept und Implementierung

application/octet-stream lﬁ

{ /<nameOfFile1> >—< /download T
e
-

L ... /<nameOfSubDir1> fJ:rﬂ

/<nameOfFile1>

/download

Abbildung 4.15: Struktur der CSAR Browsing API.

Zur Darstellung von Referenzen wird grundsétzlich XLink eingesetzt. Dabei handelt
es sich um eine Syntax zur Darstellung von Links in XML. Listing 4.4 veranschaulicht

diese Notation.

<References>
<Reference xlink:type="simple" xlink:href="http://localhost:1337/containerapi/
CSARs/Test.csar/Content/IAs/EC2LinuxService" xlink:title="EC2LinuxService"/>
<Reference xlink:type="simple" xlink:href="http://localhost:1337/containerapi/
CSARs/Test.csar/Content/IAs/EC2VMService" xlink:title="EC2VMService"/>
<Reference xlink:type="simple" xlink:href="http://localhost:1337/containerapi/
CSARs/Test.csar/Content/IAs" xlink:title="Self"/>

</References>

Listing 4.4: XLink-Représentation einer CSAR Browsing API-Ressource. Die
Ressource enthélt zwei Referenzen zu untergeordneten Ressourcen, die

Dateien oder Ordner reprasentieren kénnen und eine Selbstreferenz.

Das Verschieben einer Datei bzw. eines Ordners zum aktiven Storage Provider (sie-
he Abschnitt 4.2.1) erfolgt ebenfalls iiber die CSAR Browsing API. Hierzu muss
eine POST-Anfrage mit dem Schliisselwort ,,move* an die URI, welche die zu ver-
schiebende Datei bzw. den zu verschiebenden Ordner représentiert, gesendet wer-
den. Zum Verschieben einer kompletten CSAR muss selbige POST-Anfrage an
/CSARs/<csarID>/Content gesendet werden.

Wie bereits erwdhnt, muss zum Durchsuchen einer CSAR nun das Artifact Model
eingesetzt werden. Dementsprechend mussten Anpassungen an der CSAR Browsing
API vorgenommen werden, sodass statt Dateisystemoperationen nun die entspre-
chenden Methoden des Artifact Model verwendet werden. Falls der Nutzer eine Datei

herunterladt, so erfolgt dies direkt vom entsprechenden Anbieter (z.B. Amazon
S3).

67

4 Konzept und Implementierung

Unter /CSARs/<csarID>/TopologyPicture wird das Topologie-Bild der CSAR be-
reitgestellt. Sofern der relative Pfad in der TOSCA Metadatei spezifiziert ist (sie-
he Abschnitt 2.2.2) und auf eine existierende Datei verweist, werden Daten vom
Medientyp ,image/*“ zuriickgeliefert. Andernfalls besteht die Antwort aus dem
HTTP-Statuscode 404 (nicht gefunden). Das Abrufen des Bilds erfolgt nun analog
iiber das Artifact Model.

4.7.2 Weitere Komponenten

Im Rahmen der Umstellung auf das Artifact Model (siehe Abschnitt 4.4) muss-
ten weiterhin Anpassungen an der TOSCA Engine, IA Engine und Plan Engine

vorgenommen werden.

Die TOSCA Engine ist u. a. fiir das Verarbeiten von Definitions-Dokumenten und Auf-
l6sen von Importen zustdndig. Fir den Zugriff auf die entsprechenden Dateien werden
Methoden des CSAR Models bzw. deren Klasse CSARContent (siche Abschnitt 4.3)
verwendet. Wie bereits angesprochen, lieferten diese bisher File-Objekte zuriick.
Nun werden stattdessen AbstractFile-Objekte zuriickgegeben, sodass entsprechende

Anpassungen vorgenommen werden mussten.

Weiterhin stellt die TOSCA Engine eine Methode bereit, die alle Dateien zuriickliefert,
die sich an Artefakt-Referenzen eines Artifact Template befinden. Diese Methode hat
bisher alle Dateien an den Artefakt-Referenzen {iber CSARContent geholt, Pattern
Matching durchgefithrt und schliellich die zutreffenden Dateien zuriickgeliefert. Nun
liefert CSARContent nach Ubergabe einer Artefakt-Referenz keine Dateien mehr
zuriick, sondern ein AbstractArtifact-Objekt. Dementsprechend musste die Signa-
tur und Implementierung der Methode auf AbstractArtifact angepasst werden.
Zuriickgegeben werden nun eine Menge von AbstractArtifact-Objekten, die die
Artefakt-Referenzen eines Artifact Template repriasentieren. Weiterhin wurde das
Pattern Matching entfernt, da dieses nun vom Artifact Model iibernommen wird.
Verwendet wird die Methode der TOSCA Engine von der IA Engine, sodass auch in

dieser Komponente Anpassungen vorgenommen werden mussten.

AbstractArtifact-Objekte werden in der TA Engine bis zum Plug-in weitergereicht.
Momentan existieren in der IA Engine Plug-ins zum Deployment von WAR-Dateien
und AAR-Dateien. Beide Plug-ins bendtigen lediglich die Dateien eines Artefakts und
keine Informationen iiber dessen Verzeichnisstruktur, sodass wir in jedem Plug-in
direkt die Methode getFilesRecursively() auf allen AbstractArtifact-Objekten
aufrufen kénnen. Diese Methode liefert rekursiv alle AbstractFile-Objekte zuriick.
Mit der Methode getFile() auf einem AbstractFile-Objekt kann die Datei schlief3-

lich heruntergeladen werden. Um ein unnotiges Herunterladen zu vermeiden, wird

68

4 Konzept und Implementierung

diese Methode erst aufgerufen, nachdem tberpriift wurde, ob die Endung der zu

deployenden Datei korrekt ist.

Analog zur TA Engine mussten auch in der Plan Engine Anpassungen fiir
AbstractArtifact vorgenommen werden. Die Plan Engine kommuniziert im Gegen-
satz zur IA Engine direkt mit dem CSAR Model bzw. CSARContent, um bendtigte

Dateien zu erhalten.

69

5 Zusammenfassung und Ausblick

5 Zusammenfassung und Ausblick

Bisher konnten CSAR-Dateien, die der TOSCA-Laufzeitumgebung OpenTOSCA
iibergeben werden, ausschliefllich auf das lokale Dateisystem gespeichert werden.
Damit eine Speicherung in verschiedenen Umgebungen moglich ist, wurde der File
Service um ein Plug-in-System erweitert. Zunéchst musste hierfiir eine Schnittstelle
definiert werden. Implementierungen der Schnittstelle bzw. konkrete Plug-ins wurden
daraufhin fiir das lokale Dateisystem sowie den Blobstore-Anbieter Amazon S3

bereitgestellt.

Die Realisierung der Plug-ins erfolgte mittels der Multi-Cloud-Bibliothek jclouds bzw.
deren Blobstore API. Da diese die APIs von Blobstore-Anbietern abstrahiert, wurde
eine abstrakte Implementierung der Schnittstelle auf Basis der jclouds Blobstore API
bereitgestellt. Ein Plug-in, welches das Speichern auf einem Blobstore-Anbieter, der
von jclouds unterstiitzt wird, ermoglichen soll, kann so einfach und mit minimalen
Aufwand durch Verwendung der abstrakten Implementierung realisiert werden. Die
angesprochenen Plug-ins fiir Amazon S3 und das lokale Dateisystem (Dateisystem-

basierter Blobstore) wurden auf diese Weise erstellt.

Eine gespeicherte CSAR kann mit dem File Service in eine andere Umgebung, fiir die
ein entsprechendes Plug-in existiert, verschoben werden. Auch ist es moglich, lediglich
eine Datei oder ein Ordner einer CSAR zu verschieben. Folglich kann eine CSAR also
auf mehrere Umgebungen verteilt werden. Weiterhin wurde eine Export-Funktion
realisiert, mit der eine gespeicherte CSAR wieder als CSAR-Datei abgerufen werden

kann.

Das Verschieben zwischen verschiedenen Benutzerkonten des selben Anbieters ist
momentan nicht moglich. In den Metadaten zu einer Datei wird lediglich die ID
des Plug-ins hinterlegt, mit dem die Datei gespeichert wurde. Damit jedoch ein
Verschieben zwischen verschiedenen Benutzerkonten moglich wird, miisste zusétzlich
auch die Identitdt der entsprechenden Zugangsdaten gespeichert werden. Da die
Erweiterung der Metadaten mit groferen Anpassungen (insbesondere im File Service
und Credentials Service) verbunden ist, konnte dies aus zeitlichen Grinden im

Rahmen dieser Arbeit nicht mehr erledigt werden.

Falls es wéahrend einer Operation zu einem Fehler kommt, so wird diese aktuell

mit einer entsprechenden Exception sofort abgebrochen. Wiederholungen nach z. B.

70

5 Zusammenfassung und Ausblick

einer fehlgeschlagenen Speicheroperation werden vom File Service selbst bisher nicht
durchgefiihrt. jclouds allerdings sieht mehrere Wiederholungsversuche vor, die auch
ausgefithrt werden. Des Weiteren ist weitestgehend keine Logik vorgesehen, die
bereits durchgefiihrte Anderungen nach einem Fehler wieder zuriicknimmt bzw. zu
zuriicknehmen versucht (Undo-Operationen oder transaktionale Konzepte). Eine
Ausnahme bilden lediglich Datenbankoperationen, die mittels Eclipse Link (JPA-

Implementierung) innerhalb von Transaktionen ausgefithrt werden.

Zur Speicherung und Verwaltung von Zugangsdaten fiir Plug-ins wurde der Credenti-
als Service entwickelt. Gespeicherte Zugangsdaten konnen iiber diese Komponente
direkt im entsprechenden Plug-in gesetzt werden. Momentan bestehen Zugangsdaten
aus Identitdt und Schliissel. Fiir alle Anbieter, die von jclouds unterstiitzt werden,
reichen diese Informationen aus. Falls jedoch Plug-ins entwickelt werden sollten,
die zuséatzliche bzw. andere Parameter zur Authentifizierung bendtigen, miisste das
Datenmodell der Zugangsdaten entsprechend erweitert werden. Grundsétzlich wére
es denkbar, dass der Credentials Service zukiinftig auch von weiteren Komponenten

zur Verwaltung von Zugangsdaten eingesetzt wird.

Das Artifact Model wurde fiir den Zugriff auf Artefakt-Referenzen entwickelt. Mo-
mentan werden relative Referenzen unterstiitzt, die gemafl TOSCA-Spezifikation auf
eine Datei oder Ordner in einer CSAR verweisen. Das Durchsuchen erfolgt in diesem
Fall auf Basis der lokal gespeicherten Metadaten der CSAR. Zum Herunterladen
einer Datei kommt das entsprechende Plug-in zum Einsatz. Da beim Entwurf der
Komponente auf Erweiterbarkeit geachtet wurde, kann eine Unterstiitzung fiir wei-
tere Arten von Artefakt-Referenzen leicht hinzugefiigt werden. Das Artifact Model
ersetzt das bisherige Datenmodell, mit dem lediglich die Dateien an einer Artefakt-
Referenz zuriickgegeben werden konnten. Die Verzeichnisstruktur ist folglich verloren

gegangen.

Uber die Container API bzw. REST API von OpenTOSCA kann eine CSAR durch-
sucht und Dateien der CSAR heruntergeladen werden. Bisher fiihrte die Container
API hierzu selbststandig Dateisystemoperationen aus. Eine CSAR muss jetzt jedoch
nicht mehr lokal gespeichert sein, sodass dieser Ansatz nicht mehr mdéglich ist. Zum
Durchsuchen der gesamten CSAR kommt nun ebenfalls das Artifact Model zum

Einsatz.

Im Rahmen der Integration wurden u.a. die neuen Funktionalitdten des File Ser-
vice und Credentials Service {iber die Container API bereitgestellt. Die GUI von
OpenTOSCA wurde noch nicht erweitert. Dies miisste zukiinftig noch erledigt wer-

den.

71

Literaturverzeichnis

Literaturverzeichnis

[Amal

[Apaal

[Apab]

[Bun]

[CLO]

[enS]

[Hig11]

[Hor12a]

[Hor12b]

[Hor13]

Amazon Web Services, Inc. Amazon S3 — Preise. URL http://aws.
amazon.com/de/s3/pricing. Abgerufen am 2013-04-19.

Apache Software Foundation. Apache Deltacloud Website. URL http:
//deltacloud.apache.org. Abgerufen am 2013-05-30.

Apache Software Foundation. Apache Libcloud Website. URL http:
//libcloud.apache.org. Abgerufen am 2013-05-30.

Bundesamt fiir Sicherheit in der Informationstechnik. Cloud Com-
puting Grundlagen. URL https://www.bsi.bund.de/DE/Themen/
CloudComputing/Grundlagen/Grundlagen_node.html. Abgerufen am
2013-04-17.

CLOUDCYCLE. VALESCA - Visual Editor for TOSCA. URL http:
//www.cloudcycle.org/valesca. Abgerufen am 2013-04-26.

enStratus Networks, Inc. Dasein Cloud API Website. URL http://www.
dasein.org. Abgerufen am 2013-05-30.

R. Hightower. Adrian Cole Announces JClouds 1.0 Release, 2011. URL
http://www.infoq.com/news/2011/07/jclouds_release_1_0. Abge-
rufen am 2013-04-22.

T. Horn. OSGi: Dynamisches Komponentensystem fiir Java, 2012. URL
http://wuw.torsten-horn.de/techdocs/java-osgi.htm. Abgerufen
am 2013-04-28.

T. Horn. RESTful Web Services mit JAX-RS und Jersey, 2012. URL
http://wuw.torsten-horn.de/techdocs/jee-rest.htm. Abgerufen
am 2013-05-17.

T. Horn. JPA (Java Persistence API), 2013. URL http://www.
torsten-horn.de/techdocs/java-jpa.htm. Abgerufen am 2013-06-
07.

jclouds, Inc. jclouds Website. URL http://www.jclouds.org. Abgeru-
fen am 2013-04-25.

72

http://aws.amazon.com/de/s3/pricing
http://aws.amazon.com/de/s3/pricing
http://deltacloud.apache.org
http://deltacloud.apache.org
http://libcloud.apache.org
http://libcloud.apache.org
https://www.bsi.bund.de/DE/Themen/CloudComputing/Grundlagen/Grundlagen_node.html
https://www.bsi.bund.de/DE/Themen/CloudComputing/Grundlagen/Grundlagen_node.html
http://www.cloudcycle.org/valesca
http://www.cloudcycle.org/valesca
http://www.dasein.org
http://www.dasein.org
http://www.infoq.com/news/2011/07/jclouds_release_1_0
http://www.torsten-horn.de/techdocs/java-osgi.htm
http://www.torsten-horn.de/techdocs/jee-rest.htm
http://www.torsten-horn.de/techdocs/java-jpa.htm
http://www.torsten-horn.de/techdocs/java-jpa.htm
http://www.jclouds.org

Literaturverzeichnis

IMG11]

[Mur]

[Rod08]

[sal]

[SCO9]

[Seil0]

[TOS13]

[Vog13]

J. Jenkov. Java NIO vs. I0. URL http://tutorials. jenkov.com/
java-nio/nio-vs-io.html. Abgerufen am 2013-05-12.

D. Kavanagh. typica Website. URL http://code.google.com/p/
typica. Abgerufen am 2013-05-30.

M. Miiller. Sichere Nutzung wvon Cloud-Storage in Datenban-
ken. Diplomarbeit, Technische Universitdt Dresden, 2012. URL
http://www.rn.inf.tu-dresden.de/uploads/Studentische_
Arbeiten/Diplomarbeit_MJ,C3%BCller_Mario.pdf. Abgerufen
am 2013-04-22.

P. M. Mell, T. Grance. SP 800-145. The NIST Definition of Cloud
Computing. Technischer Bericht, National Institute of Standards & Tech-
nology, Gaithersburg, MD, United States, 2011. URL http://csrc.
nist.gov/publications/nistpubs/800-145/SP800-145.pdf. Abge-
rufen am 2013-04-21.

J. Murty. JetS3t Website. URL http://jets3t.s3.amazonaws. com.
Abgerufen am 2013-05-30.

A. Rodriguez. RESTful Web services: The basics, 2008. URL http://www.
ibm.com/developerworks/webservices/library/ws-restful. Abge-

rufen am 2013-05-18.

salesforce.com Germany. Was ist Cloud Computing? URL http://www.
salesforce.com/de/cloudcomputing. Abgerufen am 2013-04-18.

C. Schmidt-Casdorff. OSGi: Anwendungsszenarien, Auswahlkriterien
und Ausblick, 2009. URL http://www.iks-gmbh.com/files/pdf/03_
0SGi_Anwendungsszenarien_Ausblick. Abgerufen am 2013-06-01.

R. Seiger. Entwurf eines mehrseitig sicheren Cloud Storage
Dienstes. Studienarbeit, Technische Universitdt Dresden, 2010.
URL http://www.rn.inf.tu-dresden.de/uploads/Studentische_
Arbeiten/Belegarbeit_Seiger_Ronny.pdf. Abgerufen am 2013-04-22.

TOSCA Technical Committee. Topology and Orchestration Specification
for Cloud Applications (TOSCA) — Committee Specification 01. Tech-
nischer Bericht, OASIS, 2013. URL http://docs.oasis-open.org/
tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf. Abgerufen am 2013-
04-26.

L. Vogel. OSGi Modularity — Tutorial, 2013. URL http://www.vogella.
com/articles/0SGi/article.html. Abgerufen am 2013-04-28.

73

http://tutorials.jenkov.com/java-nio/nio-vs-io.html
http://tutorials.jenkov.com/java-nio/nio-vs-io.html
http://code.google.com/p/typica
http://code.google.com/p/typica
http://www.rn.inf.tu-dresden.de/uploads/Studentische_Arbeiten/Diplomarbeit_M%C3%BCller_Mario.pdf
http://www.rn.inf.tu-dresden.de/uploads/Studentische_Arbeiten/Diplomarbeit_M%C3%BCller_Mario.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://jets3t.s3.amazonaws.com
http://www.ibm.com/developerworks/webservices/library/ws-restful
http://www.ibm.com/developerworks/webservices/library/ws-restful
http://www.salesforce.com/de/cloudcomputing
http://www.salesforce.com/de/cloudcomputing
http://www.iks-gmbh.com/files/pdf/03_OSGi_Anwendungsszenarien_Ausblick
http://www.iks-gmbh.com/files/pdf/03_OSGi_Anwendungsszenarien_Ausblick
http://www.rn.inf.tu-dresden.de/uploads/Studentische_Arbeiten/Belegarbeit_Seiger_Ronny.pdf
http://www.rn.inf.tu-dresden.de/uploads/Studentische_Arbeiten/Belegarbeit_Seiger_Ronny.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf
http://www.vogella.com/articles/OSGi/article.html
http://www.vogella.com/articles/OSGi/article.html

Literaturverzeichnis

[WHKL09] G. Wiitherich, N. Hartmann, B. Kolb, M. Libken. Einfithrung in die OS-

[Wil12]

Gi Service Platform, 2009. URL http://wuw.it-agile.de/fileadmin/
docs/Vortragsfolien/0SGi-Powerworkshop-JAX2009.pdf. Abgeru-
fen am 2013-04-28.

K. Wilhelmi. CloudRaid — Ein sicherer Raid-Manager fir freie Cloud
Storages. Bachelorarbeit, Technische Universitdt Darmstadt, 2012.
URL http://www.informatik.tu-darmstadt.de/fileadmin/user_
upload/Group_SIT/Publications/Thesis/CloudRaid-final.pdf.
Abgerufen am 2013-04-21.

74

http://www.it-agile.de/fileadmin/docs/Vortragsfolien/OSGi-Powerworkshop-JAX2009.pdf
http://www.it-agile.de/fileadmin/docs/Vortragsfolien/OSGi-Powerworkshop-JAX2009.pdf
http://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_SIT/Publications/Thesis/CloudRaid-final.pdf
http://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_SIT/Publications/Thesis/CloudRaid-final.pdf

A Anhang

A Anhang

75

A Anhang

A.1 Verwendete Software

Folgende Software wurde fiir die Erstellung dieses IXTEX-Dokuments und der darin

enthaltenen Diagramme eingesetzt:

« TeXstudio 2.5.2%* (IATEX-Editor)
o JabRef 2.10b* (Literaturverwaltung fiir BIBTEX)

« LibreOffice 3.6.4.3%6 mit den FMC OpenOffice Templates 1.0*7 zur Erstellung der
FMC-Diagramme

« Microsoft Visio 20138 zur Erstellung aller weiteren Diagramme
Im Rahmen der Entwicklung wurden folgende Software bzw. Werkzeuge verwendet:

o Eclipse IDE for Java EE Developers Juno (4.2) SR24
« Subclipse 1.8.20°° (Subversion-Client fiir Eclipse)

o+ Apache Maven 3.0.5°! (Build-Management-Werkzeug) zum Herunterladen der
jclouds Bundles und deren Abhéngigkeiten

44 Website von TeXstudio: http://texstudio.sourceforge.net

45Website von JabRef: http://jabref.sourceforge.net

46Website von LibreOffice: http://de.libreoffice.org

“"Download der FMC Stencils: http://www.fmc-modeling.org/fmc_stencils
“®Website von Microsoft Visio: http://office.microsoft.com/de-de/visio
49Website von Eclipse: http://www.eclipse.org

50Website von Subclipse: http://subclipse.tigris.org

51Website von Apache Maven: http://maven.apache.org

76

http://texstudio.sourceforge.net
http://jabref.sourceforge.net
http://de.libreoffice.org
http://www.fmc-modeling.org/fmc_stencils
http://office.microsoft.com/de-de/visio
http://www.eclipse.org
http://subclipse.tigris.org
http://maven.apache.org

A Anhang

A.2 Inhalt der DVD

Abbildung A.1 zeigt die Struktur der mitgelieferten DVD, die im Wesentlichen alle

Dokumente und praktischen Ergebnisse enthélt, die im Rahmen dieser Bachelorarbeit

entstanden sind. Hierzu gehort auch eine lauffihige Version von OpenTOSCA mit

Dokumentation, erforderlicher Software (,,Requirements“) und CSAR-Dateien zum

Testen.

/

OO AR S & ittt et CSAR-Dateien
Implementation . oo.eee vttt e eneenenneennnn. Quellcode (Eclipse-Projekte)
Implementation-Test.................. Quellcode der Testfille (Eclipse-Projekte)
OpenTOSCA ... vvi it i OpenTOSCA Container und JSP Ul
0penTOSCA-DOCS .o vvviiiiii i OpenTOSCA Dokumentation
Credentials_internal.pdf....................... Erforderliche Zugangsdaten
Deploying_a CSAR.pdf........... How-To: CSAR-Deployment mit der JSP UI
Installation_Guide.pdfcooiiiiiiiiiiiiin, Installationsanleitung
Uninstalling Guide.pdf................ ..., Deinstallationsanleitung
OpenTOSCA-Requirements Erforderliche Software fiir OpenTOSCA
Generischer_File_Service_fuer_OpenTOSCA.pdf............ Diese Ausarbeitung
abstract . txt....oooviiiiiiiiii i Kurzfassung der Ausarbeitung
readme.txt

Abbildung A.1: Struktur der mitgelieferten DVD.

Im Ordner Implementation befinden sich die Eclipse-Projekte von allen Kompo-

nenten von OpenTOSCA, die im Rahmen dieser Arbeit entstanden oder wesentlich

weiterentwickelt worden sind. Dazu gehort auch die Container API, da diese wéahrend

der Integration erheblich erweitert und angepasst wurde.

7

Erklarung

Ich versichere, diese Arbeit selbststiandig verfasst zu haben.
Ich habe keine anderen als die angegebenen Quellen be-
nutzt und alle wortlich oder sinngeméfl aus anderen Werken
iibernommene Aussagen als solche gekennzeichnet. Weder
diese Arbeit noch wesentliche Teile daraus waren bisher Ge-
genstand eines anderen Priifungsverfahrens. Ich habe diese
Arbeit bisher weder teilweise noch vollstéindig verdffentlicht.
Das elektronische Exemplar stimmt mit allen eingereichten

Exemplaren iiberein.

Ort, Datum, Unterschrift

	Abkürzungsverzeichnis
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Verzeichnis der Listings
	Einleitung
	Motivation und Aufgabenstellung
	Gliederung der Arbeit

	Grundlagen
	Cloud Computing
	Topology and Orchestration Specification for Cloud Applications (TOSCA)
	Konzepte
	Cloud Service Archive (CSAR)

	OSGi
	Representational State Transfer (REST)
	OpenTOSCA
	Architektur und Features

	Cloud Storage
	Blobstore
	jclouds
	Blobstore API

	Anforderungen
	Konzept und Implementierung
	Überblick
	File Service
	Auswahl eines Storage Provider
	Storage Provider Manager
	Speichern einer CSAR
	Abrufen einer CSAR
	Exportieren einer CSAR
	Verschieben einer Datei oder Ordner einer CSAR
	Verschieben einer CSAR
	Löschen einer CSAR oder aller CSARs

	CSAR Model
	Artifact Model
	CSAR Artefakte

	Storage Providers
	Schnittstelle
	Realisierung mit jclouds
	Entwicklung eines neuen Storage Providers

	Credentials Service
	Integration
	Container API
	Storage Providers
	Credentials
	CSARs

	Weitere Komponenten

	Zusammenfassung und Ausblick
	Literaturverzeichnis
	Anhang
	Verwendete Software
	Inhalt der DVD

