
Institut für Architektur von Anwendungssystemen

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit Nr. 37

Konzept und Entwicklung eines
generischen File Service für

OpenTOSCA

Rene Trefft

Studiengang: Softwaretechnik

Prüfer: Prof. Dr. Frank Leymann

Betreuer: Dipl.-Inf. Sebastian Wagner

Beginn am: 2012-12-11

Beendet am: 2013-06-12

CR-Nummer: E.5, H.3.2, H.3.5



Kurzfassung

Die Topology and Orchestration Specification for Cloud Applications (TOSCA) defi-
niert eine Sprache, mit der Cloud-Anwendungen und deren Management portabel und
interoperabel beschrieben werden können. Zur Verteilung einer TOSCA-Anwendung
kommt das Cloud Service Archive (CSAR) zum Einsatz.

OpenTOSCA ist eine an der Universität Stuttgart entwickelte Laufzeitumgebung für
TOSCA-Anwendungen, die als CSAR-Datei bereitgestellt werden. Der File Service,
eine Komponente von OpenTOSCA, ist für die Speicherung, Verwaltung und den
Zugriff auf übergebene CSAR-Dateien zuständig.

Im Rahmen dieser Bachelorarbeit wird der File Service um ein Plug-in-System
erweitert, mit dem CSAR-Dateien in verschiedenen Umgebungen gespeichert werden
können. Plug-ins werden für das lokale Dateisystem und den Cloud-Storage-Anbieter
Amazon S3 bereitgestellt. Hierzu kommt die Multi-Cloud-Bibliothek jclouds zum
Einsatz. Es werden Funktionen realisiert, mit denen CSAR-Dateien auf mehrere
Umgebungen verteilt werden können. Auch wird eine Export-Funktion bereitgestellt,
mit der eine gespeicherte CSAR wieder als CSAR-Datei abgerufen werden kann. Zur
Speicherung und Verwaltung von Zugangsdaten, die Plug-ins benötigen, wird ein
Credentials Service entwickelt.

Die neuen Funktionalitäten des File Service und Credentials Service werden über die
Container API bereitgestellt. Die Container API stellt die externe REST-Schnittstelle
von OpenTOSCA dar.

Dieses Dokument befasst sich im Wesentlichen mit der Konzeption und dem Ent-
wurf für die angesprochene Weiterentwicklung von OpenTOSCA. Auch wird auf
implementierungsspezifische Details eingegangen.



Inhaltsverzeichnis

Inhaltsverzeichnis

Abkürzungsverzeichnis 4

Abbildungsverzeichnis 6

Tabellenverzeichnis 7

Verzeichnis der Listings 8

1 Einleitung 9
1.1 Motivation und Aufgabenstellung . . . . . . . . . . . . . . . . . . . . 9
1.2 Gliederung der Arbeit . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Grundlagen 11
2.1 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Topology and Orchestration Specification for Cloud Applications

(TOSCA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Konzepte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Cloud Service Archive (CSAR) . . . . . . . . . . . . . . . . . 15

2.3 OSGi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Representational State Transfer (REST) . . . . . . . . . . . . . . . . 18
2.5 OpenTOSCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.1 Architektur und Features . . . . . . . . . . . . . . . . . . . . 20
2.6 Cloud Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.7 Blobstore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.8 jclouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.8.1 Blobstore API . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Anforderungen 28

4 Konzept und Implementierung 31
4.1 Überblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 File Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Auswahl eines Storage Provider . . . . . . . . . . . . . . . . . 34
4.2.2 Storage Provider Manager . . . . . . . . . . . . . . . . . . . . 35
4.2.3 Speichern einer CSAR . . . . . . . . . . . . . . . . . . . . . . 37

2



Inhaltsverzeichnis

4.2.4 Abrufen einer CSAR . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.5 Exportieren einer CSAR . . . . . . . . . . . . . . . . . . . . . 38
4.2.6 Verschieben einer Datei oder Ordner einer CSAR . . . . . . . 40
4.2.7 Verschieben einer CSAR . . . . . . . . . . . . . . . . . . . . . 42
4.2.8 Löschen einer CSAR oder aller CSARs . . . . . . . . . . . . . 42

4.3 CSAR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Artifact Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.1 CSAR Artefakte . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5 Storage Providers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5.1 Schnittstelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5.2 Realisierung mit jclouds . . . . . . . . . . . . . . . . . . . . . 53
4.5.3 Entwicklung eines neuen Storage Providers . . . . . . . . . . 56

4.6 Credentials Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.7 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.7.1 Container API . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.7.1.1 Storage Providers . . . . . . . . . . . . . . . . . . . 63
4.7.1.2 Credentials . . . . . . . . . . . . . . . . . . . . . . . 65
4.7.1.3 CSARs . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.7.2 Weitere Komponenten . . . . . . . . . . . . . . . . . . . . . . 68

5 Zusammenfassung und Ausblick 70

Literaturverzeichnis 72

A Anhang 75
A.1 Verwendete Software . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.2 Inhalt der DVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3



Abkürzungsverzeichnis

Abkürzungsverzeichnis

AAR Axis Archive

Amazon S3 Amazon Simple Storage Service

API Application programming interface

Blob Binary large object

BPEL Business Process Execution Language

BPMN Business Process Model and Notation

BSN Bundle Symbolic Name

CPU Central Processing Unit

CS Committee Specification

CSAR Cloud Service Archive

DA Deployment Artifact

DVD Digital Versatile Disc

FMC Fundamental Modeling Concepts

FTP File Transfer Protocol

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IA Implementation Artifact

IaaS Infrastructure as a Service

IAAS Institut für Architektur von Anwendungssystemen

IDE Integrated development environment

IPVS Institut für Parallele und Verteilte Systeme

IT Informationstechnik

JAR Java Archive

4



Abkürzungsverzeichnis

Java EE Java Platform, Enterprise Edition

JAXB Java Architecture for XML Binding

JAX-RS Java API for RESTful Web Services

JPA Java Persistence API

JSP Java Server Pages

NIST National Institute of Standards and Technology

ORM Object-relational mapping

PaaS Platform as a Service

POM Project Object Model

REST Representational State Transfer

SaaS Software as a Service

SLF4J Simple Logging Facade for Java

SQL Structured Query Language

TOSCA Topology and Orchestration Specification for Cloud Applications

UI User Interface

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

US United States

VALESCA Visual Editor for TOSCA

WAR Web Archive

WSDL Web Services Description Language

WSO2 BPS WSO2 Business Process Server

XML Extensible Markup Language

XSD XML Schema Definition

5



Abbildungsverzeichnis

Abbildungsverzeichnis

2.1 Beispiel einer TOSCA-Topologie, die mit VALESCA modelliert wurde. 14
2.2 Beispiel einer gültigen CSAR. . . . . . . . . . . . . . . . . . . . . . . 16
2.3 FMC-Diagramm zur Architektur von OpenTOSCA. . . . . . . . . . 20
2.4 OpenTOSCA JSP UI . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 FMC-Diagramm zu den neuen und veränderten Komponenten der
OpenTOSCA Core-Komponente. . . . . . . . . . . . . . . . . . . . . 32

4.2 UML-Sequenzdiagramm zum Speichern einer Datei über den Storage
Provider Manager. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 UML-Sequenzdiagramm zur Auswahl des Storage Providers über den
Storage Provider Manager. . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 UML-Sequenzdiagramm zum Speichern einer CSAR. . . . . . . . . . 37
4.5 UML-Sequenzdiagramm zum Exportieren einer CSAR. . . . . . . . . 39
4.6 UML-Sequenzdiagramm zum Verschieben eines Ordners zu einem

anderen Storage Provider. . . . . . . . . . . . . . . . . . . . . . . . . 40
4.7 UML-Sequenzdiagramm zum InputStream-basierten Verschieben ei-

ner Datei zu einem anderen Storage Provider. . . . . . . . . . . . . . 41
4.8 UML-Sequenzdiagramm zum Löschen einer CSAR. . . . . . . . . . . 43
4.9 UML-Klassendiagramm zum Artifact Model und deren Beziehung mit

CSARContent des CSAR Model. . . . . . . . . . . . . . . . . . . . . . 46
4.10 UML-Klassendiagramm zur Artifact Model-Implementierung für CSAR-

Artefakte bzw. relative Artefakt-Referenzen. . . . . . . . . . . . . . . 49
4.11 UML-Klassendiagramm zur Schnittstelle der Storage Providers. . . . 52
4.12 UML-Klassendiagramm zur Realisierung der Dateisystem- und Amazon

S3-Storage Providers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.13 UML-Sequenzdiagramm zum Speichern von Zugangsdaten. . . . . . 60
4.14 Neue und veränderte Ressourcen der Container API. . . . . . . . . . 63
4.15 Struktur der CSAR Browsing API. . . . . . . . . . . . . . . . . . . . 67

A.1 Struktur der mitgelieferten DVD. . . . . . . . . . . . . . . . . . . . . 77

6



Tabellenverzeichnis

Tabellenverzeichnis

2.1 Ergebnisse der Evaluation von Multi-Cloud-Bibliotheken. . . . . . . 25

7



Verzeichnis der Listings

Verzeichnis der Listings

2.1 Aufbau einer TOSCA Metadatei. . . . . . . . . . . . . . . . . . . . . 15
2.2 Beispiel einer OSGi Bundle Manifest. . . . . . . . . . . . . . . . . . . 17
2.3 Erzeugen eines jclouds BlobStoreContext-Objekts. . . . . . . . . . . 26
2.4 Erzeugen eines jclouds BlobStore-Objekts und Erstellen eines Con-

tainers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Speichern einer Datei mit jclouds. . . . . . . . . . . . . . . . . . . . . 27
2.6 Abrufen einer Datei mit jclouds. . . . . . . . . . . . . . . . . . . . . 27

4.1 Maven-Befehl zum Beziehen der Abhängigkeiten eines Maven-Projekts. 58
4.2 XML-Repräsentation der Ressource /StorageProviders/Available. 64
4.3 XML-Repräsentation von Zugangsdaten. . . . . . . . . . . . . . . . . 65
4.4 XLink-Repräsentation einer CSAR Browsing API-Ressource. . . . . 67

8



1 Einleitung

1 Einleitung

Die Entwicklungen der letzten Jahre zeigen, dass Cloud-Anwendungen immer be-
liebter werden. Viele IT-Unternehmen migrieren mit ihren bestehenden Produkte zu
einem Cloud-Anbieter, da sie nicht mehr mit der Bereitstellung und Wartung von
erforderlicher Hard- und Software konfrontiert sein möchten, die sich als teuer und
kompliziert herausgestellt hat [sal]. Stattdessen werden diese Aufgaben vom Cloud-
Anbieter übernommen, der hierfür spezialisiertes Personal und Software vorhält.

Aufgrund von strategischen Änderungen des IT-Unternehmens ist es oftmals erforder-
lich, dass mit einer Cloud-Anwendung zu einem anderen Cloud-Anbieter umgezogen
werden muss. Aber auch tarifliche Änderungen des Cloud-Anbieters können einen
Anlass für diese Maßnahme darstellen. Ein Umzug zwischen mehreren Anbietern ist
jedoch mit einem hohen Aufwand für das IT-Unternehmen verbunden, da von der
Anwendung und deren Aufbau in der Regel keine anbieterübergreifende Beschreibung
existiert.

Aus diesem Problem heraus ist die Topology and Orchestration Specification for Cloud
Applications (TOSCA) entstanden. Sie ermöglicht die portable und interoperable
Beschreibung von Cloud-Anwendungen und deren Management. Anwendungen kön-
nen so bei verschiedenen Anbietern betrieben und deren Management automatisiert
werden. [TOS13]

OpenTOSCA ist eine Laufzeitumgebung für TOSCA-Anwendungen. Eine erste Ver-
sion wurde im Rahmen eines Studienprojekts an der Universität Stuttgart entwickelt
und soll im Rahmen dieser Bachelorarbeit nun in einem bestimmten Bereich weiter-
entwickelt werden, auf den im folgenden Abschnitt näher eingegangen wird.

1.1 Motivation und Aufgabenstellung

Das Cloud Service Archive (CSAR) ist ein Archivformat zur Verteilung von TOSCA-
Anwendungen und wird von OpenTOSCA verstanden. Momentan kann der Inhalt
einer solchen Datei, die OpenTOSCA übergeben wurde, jedoch ausschließlich auf
dem lokalen Dateisystem gespeichert werden. Wünschenswert wären alternative
Speicherorte, insbesondere Cloud-Storage-Anbieter. Diese bieten eine sichere und
zuverlässige Infrastruktur für Daten. Die Speicherung erfolgt in der Regel repliziert,

9



1 Einleitung

um eine hohe Datensicherheit zu gewährleisten [Sei10]. Weiterhin steht bei den
meisten Cloud-Storage-Anbietern für Unternehmen eine theoretisch unbegrenzte
Speicherkapazität zu Verfügung.

Im Rahmen dieser Bachelorarbeit wird ein generischer File Service entworfen und
implementiert, der eine einheitliche Schnittstelle bietet, um CSAR-Dateien in ver-
schiedenen Umgebungen zu speichern und zu verwalten. Es werden zwei Implemen-
tierungen der Schnittstelle bereitgestellt: Eine Implementierung (Plug-in) ermöglicht
weiterhin das Speichern auf dem lokalen Dateisystem, eine weitere Implementierung
erlaubt die Speicherung auf dem Cloud-Storage-Anbieter Amazon Simple Storage
Service (S3) (siehe Abschnitt 2.6). Der generische File Service, der in dieser Arbeit
entsteht, stellt eine Weiterentwicklung des bisherigen File Service von OpenTOSCA
dar.

1.2 Gliederung der Arbeit

In Kapitel 2 werden zunächst Begrifflichkeiten erläutert, die für das Verständnis
dieser Arbeit relevant sind.
Im Anschluss werden in Kapitel 3 die Anforderungen genannt, die der generische
File Service erfüllen muss. Dies impliziert auch Anforderungen, die nicht direkt der
Aufgabenstellung zu entnehmen sind, sondern sich aus dieser ergeben haben.
Kapitel 4 beschreibt das Konzept des generischen File Service und erläutert, wie
dieser implementiert wurde. Dabei wird in 4.1 einführend zunächst ein Überblick
über die Architektur gegeben. Anschließend werden in den weiteren Abschnitten
auf die einzelnen Komponenten und Datenmodelle eingegangen, die entwickelt bzw.
weiterentwickelt worden sind. Abschnitt 4.7 thematisiert die Integration.
Den Abschluss bildet Kapitel 5, in dem die Arbeit zusammengefasst wird und Anre-
gungen für konkrete Weiterentwicklungen gegeben werden, die im Zusammenhang
mit der Entwicklung im Rahmen dieser Arbeit stehen.

10



2 Grundlagen

2 Grundlagen

In diesem Kapitel werden grundlegende Begriffe erläutert, die in den weiteren Kapiteln
als vorausgesetzt angenommen werden. Zunächst setzen wir uns in Abschnitt 2.1 mit
dem Begriff „Cloud Computing“ auseinander, da dieser die Basis für die meisten der
darauf folgenden Begriffe darstellt.

2.1 Cloud Computing

Bisher konnte sich für „Cloud Computung“ keine allgemeingültige Definition durchset-
zen. In Fachkreisen wird jedoch meist die Definition der US-amerikanischen Standar-
disierungsstelle NIST (National Institute of Standards and Technology) herangezogen
[Bun], im Folgenden aus dem Englischen übersetzt:

Cloud Computing ist ein Modell, das es erlaubt bei Bedarf, jederzeit
und überall bequem über ein Netzwerk auf einen geteilten Pool von
konfigurierbaren Rechnerressourcen (z. B. Netze, Server, Speichersysteme,
Anwendungen und Dienste) zuzugreifen, die schnell und mit minima-
lem Managementaufwand oder geringer Serviceprovider-Interaktion zur
Verfügung gestellt werden können. [MG11]

Prinzipiell geht es also darum, IT-Ressourcen effizient in und über Netzwerke be-
reitzustellen [M1̈2]. Für einen Nutzer der IT-Ressourcen bleibt dabei die zugrunde
liegende Infrastruktur (u. a. Hard- und Software) verborgen. Diese Einschränkung
hat den Begriff der Cloud (deutsch „Wolke“) geprägt.

IT-Ressourcen werden durch Cloud-Computing als Dienste zur Verfügung gestellt.
Man unterscheidet drei verschiedene Servicemodelle: Infrastructure as a Service (IaaS)
stellt Rechenleistung, Datenspeicher und Netzwerkkapazität zur Verfügung. Auf einer
virtuellen Rechnerinstanz kann bspw. ein Betriebssystem mit Anwendungen installiert
und betrieben werden. Platform as a Service (PaaS) stellt eine Ausführungsumgebung
für Anwendungen bereit, auf der mittels standardisierter Schnittstellen zugegriffen
und Anwendungen installiert werden können [MG11]. Der Nutzer erhält keinen Zugriff
auf die Infrastruktur (u. a. Server und Betriebssystem) [MG11]. Software as a Service
(SaaS) stellt eine konkrete Cloud-Anwendung zur Verfügung. [Bun]

11



2 Grundlagen

Meist werden Cloud-Dienste von Anbietern bereitgestellt, die sich auf diesem Gebiet
spezialisiert haben. Dadurch wird eine hohe Zuverlässigkeit und Sicherheit der Dienste
ermöglicht.

2.2 Topology and Orchestration Specification for Cloud
Applications (TOSCA)

Die Topology and Orchestration Specification for Cloud Applications (TOSCA) ist
ein Standard, mit dem Cloud-Anwendungen und deren Management portabel und
interoperabel beschrieben werden können, also unabhängig von einem bestimmten
Cloud-Anbieter oder einer Hosting-Technologie. Zur Repräsentation eines TOSCA-
Modells kommt die Auszeichnungssprache bzw. das Datenformat XML zum Einsatz.
[TOS13]

In Abschnitt 2.2.1 wird auf die wesentlichen Konzepte von TOSCA eingegangen. Das
Cloud Service Archive (CSAR), das ebenfalls durch TOSCA spezifiziert ist, wird
in Abschnitt 2.2.2 separat behandelt, da dieses eine zentrale Rolle in dieser Arbeit
einnimmt.

Wir beziehen uns in diesem Dokument auf TOSCA in der Version CS011 (vom
2013-03-18).

2.2.1 Konzepte

In einem TOSCA-Modell wird die Struktur einer Cloud-Anwendung durch ein
Topology Template beschrieben, das sich aus Node Templates und Relationship
Templates zusammensetzt. Ein Node Template repräsentiert eine Komponente der
Anwendung und ist durch ein Node Type typisiert. Ein Beziehung zwischen zwei Node
Templates wird durch ein Relationship Template modelliert, das ein Relationship
Type referenziert. [TOS13]

Sowohl Node Types als auch Relationship Types definieren (insbesondere) Schnitt-
stellen mit Management-Operationen. Node Type Implementation bzw. Relationship
Type Implementation repräsentiert die Implementierung eines referenzierten Node Ty-
pe bzw. Relationship Type und definiert dazu Implementation Artifacts (IAs), welche
die Schnittstellen realisieren. In einer Node Type Implementation können weiterhin
Deployment Artifacts (DAs) definiert werden, die ein zugehöriges Node Template

1TOSCA Spezifikation Version CS01: http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/
TOSCA-v1.0-cs01.pdf

12

http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf


2 Grundlagen

bzw. eine Komponente der Anwendung repräsentieren. Auch ist die Definition von
DAs direkt in einem Node Template möglich. [TOS13]

Beispielsweise könnte es ein Node Template geben, das einen Application Server
repräsentiert. Das zugehörige Deployment Artifact wäre dann das Image des Applica-
tion Servers. Ein Implementation Artifact könnte eine Anwendung (z. B. WAR-Datei)
sein, die Operationen bereitstellt, mit denen der Application Server gestartet und
heruntergefahren werden kann. Mittels einem „hostedOn“-Relationship Template
könnte der Application Server mit einem Linux, das ein weiteres Node Template
darstellt, verbunden sein.

In einer Node Type Implementation, Relationship Type Implementation oder einem
Node Template erfolgt die Definition eines Artefakts durch eine Referenz auf ein
Artifact Template. In einem Artifact Template kann ein konkretes Artefakt direkt
oder durch Referenzen spezifiziert werden. Ein Referenz ist dabei eine URI, die auf
eine einzelne Datei oder einen Ordner verweist. In letzterem Falle sind Patterns
erlaubt, mit denen Dateien an der Referenz ausgeschlossen werden können. Eine
Komponente einer TOSCA-Laufzeitumgebung, die den Inhalt an einer Artefakt-
Referenz verfügbar macht, muss folglich überprüfen, welche Dateien den Patterns
entsprechen und lediglich diese zurückliefern. Ein Artifact Template referenziert ein
Artifact Type, dass die Menge der erlaubten Artefakte durch Typisierung einschränkt.
Beispielsweise wäre ein Artifact Type für WAR-Dateien denkbar. [TOS13]

Node Templates und Relationship Templates können auch Eigenschaften (Properties)
besitzen, deren Struktur bzw. Schema im referenzierten Node Type bzw. Relationship
Type definiert sein muss. Ein Node Template einer virtuellen Maschine könnte z. B.
deren Hardwarezusammenstellung (Anzahl der CPUs, Größe der Festplatte etc.) als
Eigenschaften enthalten. [TOS13]

Das Management einer Cloud-Anwendung wird in einem TOSCA-Modell durch
Pläne (Plans) umgesetzt. Ein Plan ist ein Prozess-Modell, d. h. ein Workflow, der
Management-Operationen, die durch Implementation Artifacts bereitgestellt werden,
zu höherwertigen Management-Funktionalitäten orchestriert (kombiniert). Beispiels-
weise könnte es einen Plan geben, der die Cloud-Anwendung instanziiert (Build
Plan). Pläne können direkt oder mittels einer Referenz (URI) spezifiziert werden.
TOSCA definiert keine Sprache für Pläne, sondern erlaubt die Verwendung von
existierenden Standards zur Beschreibung von Prozessen, insbesondere BPEL und
BPMN. [TOS13]

Ein Service Template setzt sich aus einem Topology Template und Plänen zusammen.
Durch Ausführung eines Build Plans wird das Service Template bzw. deren Topology
Template instanziiert und repräsentiert damit einen konkreten Service. Definitions

13



2 Grundlagen

besteht aus Service Templates und den angesprochenen Types, die zur Definition der
Service Templates benötigt werden. [TOS13]

Alle angesprochenen Konstrukte von TOSCA sind auf XML-Elemente abgebildet
und bilden nach beschriebener Hierarchie (Definitions ist das Wurzelelement) ein
TOSCA Definitions-Dokument. [TOS13]

TOSCA sieht auch eine Import-Funktionalität vor, mit der die Beschreibung einer
Cloud-Anwendung auf mehrere Dokumente verteilt werden kann. In einem Definitions-
Dokument können dazu XML Schema Definitions (XSDs), WSDL Definitions oder
weitere TOSCA Definitions-Dokumente spezifiziert werden, die importiert bzw. als
Abhängigkeit deklariert werden sollen. Beispielsweise könnte es in einem Definitions-
Dokument eine Referenz auf einen Node Type geben, das in einem anderen Definitions-
Dokument definiert ist. Ersteres Definitions-Dokument müsste dann das Definitions-
Dokument mit dem Node Type importieren. [TOS13]

VALESCA ist ein Modellierungswerkzeug für TOSCA, mit dem u. a. Topology
Templates grafisch erstellt werden können [CLO]. Abbildung 2.1 zeigt eine Topologie,
die mit VALESCA modelliert wurde.

WebShop
(WAR)

Created with Java 1.7.

Servlet Container
(Tomcat)

Customer Database
CustomerDatabase
(Derby Database)

OperatingSystem
(UbuntuLinux)

Virtual Server
(AWS EC2 Server)

Type: On‐Demand

Connection
(JDBCConnection)

(hosted on) (hosted on)

(hosted on)

(hosted on)

Abbildung 2.1: Beispiel einer TOSCA-Topologie, die mit VALESCA modelliert wurde.
Node Templates werden durch abgerundete Rechtecke repräsentiert.
Pfeile, die Node Templates miteinander verbinden, stellen Relation-
ship Templates dar.

14



2 Grundlagen

2.2.2 Cloud Service Archive (CSAR)

Ein Cloud Service Archive (CSAR) wird zur Verteilung einer TOSCA-Anwendung
eingesetzt. Es handelt sich um eine ZIP-Datei (üblicherweise komprimiert) mit der
Dateiendung „csar“, die alle Artefakte enthält, die zur Instanziierung und zum
Management der Cloud-Anwendung bzw. Service benötigt werden. Dazu gehören
Definitions-Dokumente, Implementation Artifacts, Deployment Artifacts und Plä-
ne. In dieser Form kann eine Cloud-Anwendung einer TOSCA-Laufzeitumgebung
übergeben werden. [TOS13]

Das Wurzelverzeichnis einer CSAR muss zumindest die Ordner „Definitions“ und
„TOSCA-Metadata“ enthalten. In „Definitions“ liegen eine oder mehrere Definitions-
Dokumente der Cloud-Anwendung. Beispielsweise wäre es denkbar, dass eine CSAR
zur Wiederverwendung lediglich Node Types und Relationship Types spezifiziert. In
weiteren CSARs könnten dann Node Templates bzw. Relationship Templates definiert
sein, die auf diese Node Types bzw. Relationship Types referenzieren. In diesem
Fall müssten die Definitions-Dokumente mit den Types importiert werden (siehe
Abschnitt 2.2.1). Falls eine Cloud-Anwendung dagegen vollständig in einer CSAR
verteilt wird, so muss mindestens ein Definitions-Dokument ein Service Template
enthalten. [TOS13]

Der Ordner „TOSCA-Metadata“ enthält die TOSCA Metadatei „TOSCA.meta“
(auch CSAR Manifest genannt), in der Metadaten der CSAR als Schlüssel-Wert-Paare
hinterlegt sind. Abbildung 2.1 veranschaulicht den Aufbau der TOSCA Metadatei.

1 TOSCA-Meta-Version: 1.0
2 CSAR-Version: 1.0
3 Created-By: string
4 Entry-Definitions: string ?
5 Topology: string ?
6

7 Name: <relFilePathToCSARRootOrPattern1>
8 Content-Type: type/subtype1
9 <key11>: <value11>

10 ...
11 <key1n>: <value1n>
12

13 ...

Listing 2.1: Aufbau einer TOSCA Metadatei. Der erste Block, der Metadaten über
die CSAR selbst enthält, ist Pflicht.

Die Datei teilt sich in Blöcken auf, die durch Leerzeilen voneinander getrennt sind. Im
ersten Block („block_0“) stehen Metadaten über die CSAR selbst, wie z. B. der Autor
der CSAR. Unter dem optionalen Attribut „Entry-Definitions“ kann der relative Pfad

15



2 Grundlagen

zum Haupt-Definitions-Dokument definiert werden, um einem TOSCA-Container eine
effizientere Verarbeitung der Definitions-Dokumente zu ermöglichen. Auch “Topology“
ist optional und referenziert auf ein Bild, dass die Topologie der Cloud-Anwendung
veranschaulicht. Letzteres Attribut ist dabei nicht durch TOSCA spezifiziert. Es wird
lediglich vom TOSCA-Container OpenTOSCA (siehe Abschnitt 2.5) verstanden und
verwendet.

In weiteren Blöcken können Metadaten zu Dateien in der CSAR definiert werden,
z. B. der Hash einer Datei. Falls Metadaten zu einer Datei definiert werden sollen, so
muss neben dem relativen Pfad der Datei mindestens ihr Content-Type2 angegeben
werden. Statt dem relativen Pfad der Datei können auch Pattern definiert werden,
um Metadaten direkt mehreren Dateien zuzuweisen. [TOS13]

Die übrige CSAR-Struktur ist dem Ersteller der CSAR überlassen [TOS13]. Abbil-
dung 2.2 zeigt ein Beispiel einer gültigen CSAR.

/
Definitions

MyWebAppDefinitions.xml .......Definitions-Dokument
TOSCA-v1.0-cs01.xsd..............TOSCA XSD CS01

TOSCA-Metadata
TOSCA.meta.........................TOSCA Metadatei

DAs
MyWebApp.zip.....................Deployment Artifact
MyWebApp_manual.pdf

IAs
Deployer.war..................Implementation Artifact

Plans
BuildPlan.zip.................Instanziiert Anwendung

Abbildung 2.2: Beispiel einer gültigen CSAR. Vorgaben durch die Spezifikation sind
fett gedruckt.

2.3 OSGi

OSGi spezifiziert eine dynamische Softwareplattform für Java, die als OSGi Service
Platform bezeichnet wird. Im Wesentlichen stellt diese ein Komponenten- und Service-
Modell für Java bereit. Komponenten und Services können zur Laufzeit dynamisch
verwaltet („Hot Deployment“), d. h. installiert, gestartet, gestoppt, aktualisiert und
deinstalliert werden. Dies ermöglicht insbesondere die Installation von Updates
ohne einen Neustart der Anwendung. Auch kann eine nicht-primäre Funktionalität

2Der Content-Type muss der Typ/Subtyp-Struktur entsprechen. Ein existierender Content-Type
ist bspw. „text/plain“.

16



2 Grundlagen

ausfallen oder (temporär) deaktiviert werden ohne das die gesamte Anwendung nicht
mehr funktionsfähig ist. Beides führt zu einer höheren Verfügbarkeit. Denkbar wäre
es auch, dass man eine Anwendung in verschiedenen Varianten bereitstellt. Jede
Variante zeichnet sich durch einen bestimmten Funktionsumfang aus, der sich aus
einer Zusammenstellung von Komponenten ergibt. Weiterhin unterstützt die OSGi
Service Platform Versionierung, d. h. mehrere Versionen einer Komponente können
gleichzeitig in Betrieb sein. Komponenten, die Abhängigkeiten zu verschiedenen
Versionen der selben Bibliothek haben, führen somit zu keinen Problemen. [WHKL09,
Vog13, Hor12a, SC09]

Eine Komponente wird in OSGi durch ein Bundle repräsentiert. Dabei handelt es
sich um eine klassische JAR-Datei mit zusätzlichen Metadaten, die in einem Bundle
Manifest „MANIFEST.MF“ hinterlegt sind. Dieses muss im Ordner „META-INF“
relativ zum Wurzelverzeichnis der JAR abgelegt sein. Listing 2.2 zeigt beispielhaft
ein Bundle Manifest. [Vog13]

1 Manifest-Version: 1.0
2 Bundle-ManifestVersion: 2
3 Bundle-Name: My Application.
4 Bundle-SymbolicName: org.example.myapp
5 Bundle-Version: 1.0.0
6 Bundle-RequiredExecutionEnvironment: JavaSE-1.7
7 Import-Package: org.example.myapp1,
8 org.example.myapp2
9 Export-Package: org.example.myapp

Listing 2.2: Beispiel einer OSGi Bundle Manifest.

In der Datei muss insbesondere der Bundle Symbolic Name (BSN) definiert wer-
den, der die eindeutige Kennung des Bundles darstellt. Im Beispiel ist der BSN
„org.example.myapp“. Gemäß einer Konvention sollten die Namen aller Pakete
(„packages“), die zu einem Bundle gehören, mit dem BSN beginnen. Weiterhin
muss explizit angegeben werden, welche Pakete das Bundle veröffentlicht („Export-
Package“) und importiert bzw. aus anderen Bundles verwendet („Import-Package“).
Auf diese Weise erhält man eine effektive Kontrolle über die Schnittstelle und Abhän-
gigkeiten des Bundle. Grundsätzlich setzen Bundles das Konzept der Modularisierung
um. In der Entwicklungsumgebung Eclipse kann ein Bundle durch ein „Plug-in
Project“ erstellt werden. [Vog13]

Ein Bundle kann Services (Dienste) mit einer definierten Schnittstelle bereitstel-
len (Service Provider) bzw. nutzen (Service Consumer). Zur Bereitstellung eines
Service muss zunächst deren Schnittstelle in einem Bundle definiert werden. Ein
weiteres Bundle stellt den Service bereit, indem es die Schnittstelle implementiert
und die Service-Implementierung in der OSGi Service Plattform registriert. Letzteres

17



2 Grundlagen

erfolgt über eine Component Definition-Datei (Declarative Services3). Diese XML-
Datei enthält insbesondere die „fully qualified names“4 der Schnittstelle und der
Implementierungsklasse. Analog können weitere Services mit selbiger Schnittstelle
bereitgestellt werden. Die Schnittstelle und Implementierungen werden somit durch
separate Bundles5 repräsentiert.

Eine Bundle bindet sich gegen die Schnittstelle, um auf alle Implementierungen
bzw. Services mit dieser Schnittstelle zugreifen zu können. Hierzu muss ebenfalls
eine Component Definition-Datei erstellt werden, die die „fully qualified names“ der
Schnittstelle und der Klasse enthält, in der die Instanzen der Implementierungsklassen
bereitgestellt werden sollen. Für letztere Klasse müssen weiterhin Namen für „bind“-
und „unbind“-Methoden spezifiziert werden, die von der OSGi Service Plattform
aufgerufen werden, falls ein Service mit der Schnittstelle verfügbar bzw. nicht mehr
verfügbar ist. Wird ein Service verfügbar, so wird das entsprechende Objekt über
einen Parameter der „bind“-Methode bereitgestellt und kann damit einer globalen
Variable zugewiesen werden. Weiterhin muss das Paket, das die Schnittstelle enthält,
im Bundle Manifest importiert werden. Die Verwendung von Services ermöglicht eine
lose gekoppelte Architektur.

Die Referenz-Implementierung der OSGi-Spezifikation ist Eclipse Equinox [Vog13].
OpenTOSCA, auf das in Abschnitt 2.5 eingegangen wird, läuft auf dieser OSGi-
Implementierung. Sie besteht momentan aus ca. 50 Bundles6, die größtenteils mittels
Services interagieren. Im Übrigen erfolgt der Zugriff auf Bundles direkt, d. h. durch
Importieren des Pakets mit der benötigten Klasse. Eclipse stellt ein weiteres Beispiel
dar, das auf Eclipse Equinox basiert.

2.4 Representational State Transfer (REST)

Representational State Transfer (REST) ist ein Architekturstil für Webanwendungen.
Durch eine Anfrage an eine URI, die zu einer entsprechenden Anwendung gehört,
können Daten zurückgeliefert und Änderungen hervorgerufen werden. Man redet
hierbei auch von einer Ressource, die durch eine URI identifiziert und mittels einer
Anfrage abgerufen, verändert oder erstellt werden kann. Im Normalfall kommt hierzu
das Protokoll HTTP (Hypertext Transfer Protocol) zum Einsatz. [Hor12b, Rod08]

3Neben dem deklarativen Ansatz per XML kann auch der ServiceTracker verwendet werden, siehe
[Hor12a].

4Der „fully qualified name“ der Java File-Klasse bspw. ist java.io.file.
5Die Verteilung der Schnittstelle und Implementierungen als separate Bundles stellt eine Konvention
dar, die während der Entwicklung von OpenTOSCA eingeführt wurde.

6Exklusive Bundles, die zu benötigten Bibliotheken gehören.

18



2 Grundlagen

Eine HTTP-Anfrage besteht aus zwei Teilen, dem Header (Nachrichtenkopf) und
Body (Nachrichtenkörper). Es existieren verschiedene Anfrage-Methoden (Anfrage-
Varianten), u. a. GET, POST und DELETE. Mittels einer GET-Anfrage wird eine
Ressource angefordert. Die Ressource bzw. der Zustand der Anwendung sollte hierbei
nicht verändert werden. Über eine POST-Anfrage kann eine neue Ressource erzeugt
werden. Die Ressource wird unterhalb der Ressource erstellt, an deren URI die
Anfrage gesendet wurde. Zurückgegeben werden sollte die URI der neuen Ressource.
Auch kann POST für Operationen verwendet werden, die durch keine andere Methode
abgedeckt werden. Mit einer DELETE-Anfrage kann eine Ressource gelöscht werden.
[Hor12b, Rod08]

Im Body einer Anfrage können beliebige Daten übergeben werden, die z. B. zum
Erstellen einer Ressource benötigt werden. Durch die Angabe eines „Content-Type“
im Header der Anfrage kann das Format des Body in der Typ/Subtyp-Struktur (z. B.
„text/plain“) spezifiziert werden. [Hor12b, Rod08]

Weitere Methoden und Headerfelder sollen an dieser Stelle nicht angesprochen werden,
da sie im Rahmen dieser Arbeit nicht relevant sind.

Die Funktionalitäten von OpenTOSCA (siehe Abschnitt 2.5) werden über eine
REST-Schnittstelle, die von der Container API bereitgestellt wird, nach außen
kommuniziert.

2.5 OpenTOSCA

OpenTOSCA7 ist eine webbasierte Java-Implementierung einer Laufzeitumgebung
für TOSCA-Anwendungen (TOSCA-Container). Cloud-Anwendungen bzw. Services,
welche als Cloud Service Archive (CSAR; siehe Abschnitt 2.2.2) dem TOSCA-
Container übergeben werden, können instanziiert und verwaltet werden.

Eine erste Version von OpenTOSCA wurde im Rahmen eines Studienprojekts der
Institute IAAS und IPVS der Universität Stuttgart entwickelt und im Oktober
2012 fertiggestellt. OpenTOSCA soll demnächst als Open-Source-Software unter der
Apache 2.0 Lizenz8 veröffentlicht werden.

In Abschnitt 2.5.1 soll nun auf die Architektur und Features von OpenTOSCA
eingegangen werden. Dabei wird der Stand des TOSCA-Containers vor der Entwick-
lung im Rahmen dieser Arbeit betrachtet. Die entwickelten bzw. weiterentwickelten
Komponenten werden in Kapitel 4 angesprochen.

7Website von OpenTOSCA: http://www.iaas.uni-stuttgart.de/OpenTOSCA
8Apache 2.0 Lizenz: http://www.apache.org/licenses/LICENSE-2.0

19

http://www.iaas.uni-stuttgart.de/OpenTOSCA
http://www.apache.org/licenses/LICENSE-2.0


2 Grundlagen

2.5.1 Architektur und Features

Abbildung 2.3 veranschaulicht die Architektur von OpenTOSCA, die im Wesentlichen
aus den Komponenten Container API, Control, TOSCA Engine, Implementation
Artifact Engine (IA Engine), Plan Engine und Core besteht. Im Folgenden soll nun
auf diese Komponenten und deren Zusammenhänge näher eingegangen werden. Dazu
wird u. a. der Ablauf eines CSAR Deployments im Container beschrieben. Wie bereits

A

OpenTOSCA Container

A

A

A

A

Core

A

A

A

Plan Engine

*.planengine Plugins

IA Engine

*.iaengine Plugins

A

ATOSCA Engine

*.toscaengine

A

Control

*.opentoscacontrol

 R

Container API TOSCA-Traversal CSAR-BrowsingDeployment

 R  R

*.file *.endpoint*.deployment.tracker *model.repository ...

 R

 R

 R

 R

 R

 R

 R

Abbildung 2.3: FMC9-Diagramm zur Architektur von OpenTOSCA.

in Abschnitt 2.4 erwähnt, stellt die Container API die externe REST-Schnittstelle
von OpenTOSCA dar, mit der über HTTP-Anfragen kommuniziert werden kann.
Sie ermöglicht den Aufruf aller Funktionen, die für den Benutzer vorgesehen sind.
Eine CSAR muss über diese Schnittstelle zunächst gespeichert werden, damit sie
im Container vorhanden ist. Das eigentliche Speichern erfolgt dabei im File Service
der Core-Komponente, der die CSAR-Datei u. a. entpackt, damit auf deren Inhalt
leichter zugegriffen werden kann. Das Löschen einer CSAR ist ebenfalls über den
File Service möglich. Eine gespeicherte CSAR kann über die CSAR Browsing API
durchsucht werden. Auch ist es möglich, eine Datei der CSAR herunterzuladen.
Weiterhin können die Definitons-Dokumente der CSAR angezeigt und über diese
traversiert werden (entsprechend der XML-Struktur; TOSCA Traversal API). Mittels

9Fundamental Modeling Concepts (Website: http://www.fmc-modeling.org)

20

http://www.fmc-modeling.org


2 Grundlagen

der Deployment API können verschiedene Operationen (je nach Deployment-Status10)
auf einer CSAR aufgerufen werden. Die möglichen Operationen sowie der Deployment-
Status können ausgegeben werden. Wird eine Operation auf einer CSAR aufgerufen,
so wird der Aufruf an die Control weitergereicht, die schließlich die zuständige
Komponente aufruft. Weiterhin ist die Control für das Setzen des Deployment Status
im Deployment Tracker der Core-Komponente zuständig. Der Deployment Tracker
verwaltet die Deployment Status aller CSARs, die sich im Container befinden.

Die Verarbeitung der Definitions-Dokumente ist die erste Operation, die auf einer
gespeicherten CSAR aufgerufen werden kann. Hierzu kommt die TOSCA Engine
zum Einsatz. Die Verarbeitung besteht dabei in erster Linie aus dem Auflösen von
Importen und Referenzen. Zur Vereinfachung wurde festgelegt, dass eine Datei, die
in einem Definitions-Dokument importiert wird, im Ordner „IMPORTS“ in einer
CSAR abgelegt sein muss. Die verarbeiteten Definitions-Dokumente werden im Model
Repository der Core-Komponente gespeichert.

Anschließend können die Implementation Artifacts (IAs) (siehe Abschnitt 2.2.1)
deployed werden, damit dessen Management-Operationen von Plänen aufgerufen
werden können. Dieser Prozess wird durch die IA Engine umgesetzt, die auf einem
Plug-in-System basiert. Jeder unterstützte Implementation Artifact-Typ wird durch
ein Plug-in repräsentiert. Momentan existieren Plug-ins für WARs, die Java Servlets
oder Java Server Pages (JSP) enthalten und AARs (Axis Archives). WARs werden
auf einen lokalen Apache Tomcat11, AARs auf einen lokalen Apache Axis212 deployed.
Benötigte Daten aus Definitions und die Artefakte selbst werden von der TOSCA
Engine bezogen, die wiederum mit dem File Service interagiert. Nach dem Deployment
eines IAs wird der zugehörige Endpunkt im Endpoint Service der Core-Komponente
gespeichert.

Nachdem die IAs deployt wurden, kann abschließend das Deployment der Pläne
(siehe Abschnitt 2.2.1) initiiert werden. Dies stellt die Aufgabe der Plan Engine dar,
die ebenfalls auf Plug-ins basiert. Momentan werden BPEL-Pläne unterstützt, die als
ZIP-Datei bereitgestellt sind. Diese werden auf einem lokalen WSO2 Business Process
Server (BPS) deployt. Beim Deployment eines Plans werden die benötigten Artefakte
vom File Service bezogen. Anschließend werden die aufzurufenden Management-
Operationen analysiert und gebunden, d. h. erhalten ihren korrekten Endpunkt.
Hierfür werden die Endpunkt-Daten der IAs aus dem Endpoint Service benötigt.

Zur Speicherung und Verwaltung der Daten, die während der Nutzung von
OpenTOSCA erzeugt werden, kommt eine lokale Derby-Datenbank zum Einsatz.

10Im ersten Deployment-Status „CSAR gespeichert“ bspw. kann (lediglich) die Verarbeitung der
Definitions-Dokumente initiiert werden.

11Website von Apache Tomcat: http://tomcat.apache.org
12Website von Apache Axis2: http://axis.apache.org/axis2/java/core

21

http://tomcat.apache.org
http://axis.apache.org/axis2/java/core


2 Grundlagen

Die Interaktion mit dieser Datenbank erfolgt über Eclipse Link13, der Referenz-
implementierung der Java Persistence API (JPA) 2.014 [Hor13]. Die Inhalte von
CSAR-Dateien und BPEL-Plänen (ZIP-Dateien) werden direkt auf dem lokalen
Dateisystem abgelegt.

Zu OpenTOSCA gehört neben dem Container auch eine grafische Benutzerschnitt-
stelle, die auf Java Server Pages basiert (siehe Abbildung 2.4). Sie fungiert als REST
Client, der mit der Schnittstelle der Container API kommuniziert. Container und
GUI sind somit lose gekoppelt.

Abbildung 2.4: OpenTOSCA JSP UI. Die Definitions-Dokumente der gespeicherten
CSAR wurden bereits verarbeitet. Nun kann das Deployment der
IAs (eines bestimmten Service Template) initiiert werden.

2.6 Cloud Storage

Unter einem Cloud Storage versteht man einen Verband von verteilten Datencentern,
die dem Benutzer eine Schnittstelle zur Verfügung stellen, um Daten bei diesen zu
speichern. Die Basis bildet dabei Cloud-Computing (siehe Abschnitt 2.1). [Wil12,
Sei10]

13Website von Eclipse Link: http://www.eclipse.org/eclipselink
14Die Java Persistence API (JPA) definiert eine Schnittstelle für objektrelationales Mapping (ORM)

[Hor13]. Mit ORM können Objekte in einer Datenbank gespeichert und verwaltet werden [Hor13].
Die hierzu notwendigen SQL-Anweisungen werden von der ORM-Bibliothek generiert.

22

http://www.eclipse.org/eclipselink


2 Grundlagen

Um eine hohe Datensicherheit und Verfügbarkeit zu gewährleisten, werden die Daten
repliziert und an verschiedenen Orten redundant abgelegt. Fällt ein Datencenter
aus, so wird automatisch zu einem anderen gewechselt und der Dienst kann weiter
genutzt werden. [Sei10]

Es existieren zurzeit eine Vielzahl von Anbietern, die einen Cloud Storage zur
Verfügung stellen. Generell unterscheidet man zwischen zwei Arten von Anbietern:
Dienste wie der Amazon Simple Storage Service (S3)15 stellen ihre Ressourcen in erster
Linie für Unternehmen (Business-to-Business) zur Verfügung. Da diese einen hohen
Speicherbedarf haben, existiert in der Regel keine Begrenzung des Speicherplatzes.
Die Abrechnung erfolgt nutzungsbasiert. Bei Amazon S3 bspw. unterscheidet man
zwischen Speicher-, Anfrage- und Datenübertragungsgebühren [Ama]. Den anderen
Bereich bilden Dienste, deren Kundenstamm vorzugsweise aus privaten Nutzern
besteht (Business-to-Consumer). Diese bieten einen meist kostenlosen Basistarif
mit begrenzter Speicherkapazität und u.U. weiteren Einschränkungen. Verschiedene
Bezahlmodelle ermöglichen eine Erweiterung der Leistungen. Ein sehr bekannter
Anbieter, der in diese Kategorie fällt, ist Dropbox16. [Wil12]

2.7 Blobstore

Ein Blobstore ist ein Key-Value-Store, d. h. ein Speicher, auf dem ein Schlüssel
auf einen Wert abgebildet wird. Der Wert ist bei einem Blobstore ein Binary large
object (Blob). Dabei handelt es sich um ein binäres Objekt, meist eine Datei. Die
Schlüssel-Wert-Paare befinden sich in Containern, die eine Art von Namensraum für
die Daten darstellen. Ein Container kann Ordner enthalten, wobei es sich um keine
echten Ordner wie bei einem Dateisystem handelt. Beispielsweise befindet sich ein
Blob mit dem Schlüssel my-dir/my-sub-dir/my-picture.jpg im virtuellen Ordner
my-dir/my-sub-dir. Blobs können auch mit Metadaten versehen werden, bspw.
können Zugriffsrechte definiert werden. Diese Metadaten werden ebenfalls durch
Schlüssel-Wert-Paare repräsentiert. Grundsätzlich können auf Blobs eines Blobstores
über HTTP-URLs zugegriffen werden. [jcl]

Ein Beispiel für einen Blobstore stellt der Cloud-Storage-Anbieter Amazon S3 dar,
den wir bereits im vorherigen Abschnitt 2.6 angesprochen haben. Container werden
dort als Buckets bezeichnet und müssen global eindeutig sein, d. h. ein Bucket-Namen
darf Benutzerkonto-übergreifend nur einmal vorkommen [jcl]. Weiterhin dürfen pro
Benutzerkonto maximal 100 Buckets erstellt werden [jcl]. Ein Blob wäre bei Amazon
S3 bspw. unter der URL http://opentosca.s3.amazonaws.com/my-dir/app.war

15Website von Amazon S3: http://aws.amazon.com/de
16Website von Dropbox: https://www.dropbox.com

23

http://aws.amazon.com/de
https://www.dropbox.com


2 Grundlagen

zu finden. In diesem Fall wäre opentosca der Name des Buckets und my-dir/app.war

der Schlüssel des Blobs bzw. der Datei.

2.8 jclouds

jclouds ist eine Java-Bibliothek, welche die APIs von Cloud-Anbietern abstrahiert.
Prinzipiell teilt sich jclouds in zwei Bereiche auf: Die Blobstore API, auf die im
folgenden Abschnitt 2.8.1 näher eingegangen wird, ermöglicht den Zugriff auf Cloud-
Storage-Anbieter, die einen Blobstore bereitstellen. Mit der Compute API können
IaaS und PaaS Anbieter angesprochen werden. Es können u. a. Rechnerinstanzen
erstellt und gestartet werden und Anwendungen auf diesen installiert werden. Da die
Compute API für diese Bachelorarbeit nicht relevant ist, wird auf sie nicht weiter
eingegangen. [jcl]

Die Anbieter, die zurzeit von jclouds unterstützt werden, können der jclouds Web-
site entnommen werden17. Dabei sollte beachtet werden, dass jclouds zwischen
Providers und APIs unterscheidet. Eine Provider-Implementierung nutzt eine API-
Implementierung und enthält zusätzliche Eigenschaften, die nur für den Provider gel-
ten (z. B. der Endpunkt). Beispielsweise wird die S3 API von den Providern Amazon
S3 und Google Cloud Storage verwendet. Provider- und API-Implementierungen
werden grundsätzlich in separaten JARs verteilt.

jclouds unterstützt seit Version 1.0 OSGi [Hig11]. Alle jclouds-JARs sind Bundles.
Weiterhin werden Bundle Listeners mitgeliefert, die zum Benachrichtigen eingesetzt
werden können, falls ein Provider- oder API-Bundle verfügbar bzw. nicht mehr
verfügbar ist.

In dieser Arbeit wird jclouds zur Realisierung der Amazon S3- und Dateisystem-
Storage-Plug-ins eingesetzt (siehe Abschnitt 4.5.2).

Alternativen zu jclouds sind Apache Deltacloud18, Apache Libcloud19, die Dasein
Cloud API20, JetS3t21 und typica22.

17Unterstützte Providers und APIs:
http://www.jclouds.org/documentation/reference/supported-providers

18Website von Apache Deltacloud: http://deltacloud.apache.org
19Website von Apache Libcloud: http://libcloud.apache.org
20Website der Dasein Cloud API: http://www.dasein.org
21Website von JetS3t: http://jets3t.s3.amazonaws.com
22Website von typica: http://code.google.com/p/typica

24

http://www.jclouds.org/documentation/reference/supported-providers
http://deltacloud.apache.org
http://libcloud.apache.org
http://www.dasein.org
http://jets3t.s3.amazonaws.com
http://code.google.com/p/typica


2 Grundlagen

Die Entscheidung für jclouds ist aus einer Evaluation hervorgegangen, in der jclouds
und die genannten Alternativen auf folgende Anforderungen überprüft wurden:

(1) Java-Bibliothek, damit sie problemlos in OpenTOSCA eingesetzt werden kann.

(2) Unterstützung für das lokale Dateisystem, da entsprechend den Anforderungen
(siehe Abschnitt 3) hierfür ein Storage-Plug-in bereitgestellt werden muss.

(3) Unterstützung für Amazon S3 aus selbigem Grund.

(4) JAR-Dateien der Bibliothek Bundles, da OpenTOSCA auf der OSGi Service
Plattform läuft (andernfalls müssten aus den JARs selbst Bundles erzeugt
werden, z. B. mit dem OSGi-Werkzeug bnd23).

(5) Implementierung von Bundle Listener, die benachrichtigen, falls ein unterstütz-
ter Anbieter verfügbar bzw. nicht mehr verfügbar ist.

(6) Unter Apache 2.0 Lizenz (oder kompatibler Lizenz) lizenziert, da OpenTOSCA
ebenfalls unter dieser Lizenz veröffentlicht werden soll.

Tabelle 2.1 zeigt die Ergebnisse der Evaluation. Wie zu erkennen ist, erfüllt (ausschließ-
lich) jclouds alle aufgestellten Anforderungen. Daher erübrigt sich die Aufzählung
von Anforderungen, die lediglich wünschenswert wären bzw. nicht zwingend erfüllt
sein müssen.

Bibliothek Version (1) (2) (3) (4) (5) (6)
Apache Deltacloud [Apaa] 1.1.3 7 (Ruby) 7 3 7 7 3

Apache Libcloud [Apab] 0.12.4 7 (Python) 7 3 7 7 3

Dasein Cloud API [enS] 2013.04 3 7 3 7 7 3

jclouds [jcl] 1.6.0 3 3 3 3 3 3

JetS3t [Mur] 0.9.0 3 7 3 7 7 3

typica [Kav] 1.7.2 3 7 7 7 7 3

Tabelle 2.1: Ergebnisse der Evaluation von Multi-Cloud-Bibliotheken.

23Website des OSGi-Werkzeugs bnd: http://www.aqute.biz/Bnd/Bnd

25

http://www.aqute.biz/Bnd/Bnd


2 Grundlagen

Anmerkungen zur Evaluation:

• Apache Deltacloud stellt eine REST API zur Verfügung, über welche die
Bibliothek genutzt werden kann [Apaa]. Folglich kann sie also auch in Java
eingesetzt werden. Aus Gründen des Aufwands und da explizit eine Java-
Bibliothek gefordert ist, definieren wir Anforderung (1) als nicht erfüllt.

• Die Blobstore API von jclouds unterstützt das lokale Dateisystem, da hierfür
ein Dateisystem-basierter Blobstore bereitgestellt wird [jcl].

• Alle Bibliotheken, die nicht in Java entwickelt wurden, erfüllen die Anforderun-
gen (4) und (5) implizit nicht (OSGi ist eine Softwareplattform für Java).

2.8.1 Blobstore API

Die Blobstore API von jclouds bietet eine portable Möglichkeit zur Verwaltung von
Blobstores, die von Cloud-Storage-Anbietern bereitgestellt werden. Im Folgenden
wird beispielhaft beschrieben, wie ein Blob bzw. eine Datei mit der Blobstore API
gespeichert und wieder abgerufen werden kann. Wir gehen dabei davon aus, dass die
jclouds Bibliotheken bereits im Java-Klassenpfad vorhanden sind. Falls dies noch
nicht der Fall ist, wird an dieser Stelle an den jclouds Installation Guide verwiesen.

Für den Zugriff auf einen Blobstore muss zunächst ein BlobStoreContext-Objekt
erzeugt werden, siehe Listing 2.3. Hierzu sind die Provider bzw. API ID24 und die
Zugangsdaten erforderlich.

1 BlobStoreContext context = new BlobStoreContextFactory().createContext("
anbieterOderApiID", identitaet, credential);

Listing 2.3: Erzeugen eines jclouds BlobStoreContext-Objekts.

Die Zugangsdaten setzen sich aus identitaet und credential zusammen. Ersteres
Attribut identifiziert ein konkretes Benutzerkonto auf dem Anbieter. Das credential

bestätigt, das man berechtigt ist, auf dieses zugreifen zu dürfen. Im Falle von Amazon
S3 bspw. sind die genannten Attribute der Access Key und Secret Access Key. Falls
die entsprechende Provider- bzw. API-JAR und deren Abhängigkeiten nicht im
Klassenpfad vorhanden sind, so wird eine entsprechende Exception geworfen.

Zur Verwaltung des Blobstore muss daraufhin ein BlobStore-Objekt25 erzeugt werden.
Mit diesem wird zunächst der Container erstellt. Beide Operationen sind in Listing
2.4 dargestellt.

24Unterstützte Providers und APIs: http://www.jclouds.org/documentation/reference/
supported-providers (ID stimmt mit der „Maven Artifact ID“ überein)

25Neben dem BlobStore bietet die Blobstore API weitere Möglichkeiten zur Verwaltung eines
Blobstore, siehe [jcl].

26

http://www.jclouds.org/documentation/userguide/installation-guide
http://www.jclouds.org/documentation/reference/supported-providers
http://www.jclouds.org/documentation/reference/supported-providers


2 Grundlagen

1 BlobStore blobStore = context.getBlobStore();
2 blobStore.createContainerInLocation(null, "my-container");

Listing 2.4: Erzeugen eines jclouds BlobStore-Objekts und Erstellen eines
Containers.

Der erste Parameter der Methode createContainerInLocation(...) steht für
den Ort des Containers. Ein Anbieter eines Blobstore ermöglicht in der Regel die
Erstellung eines Containers an verschieden Orten bzw. Regionen (Bezeichnung bei
Amazon S3). null steht für den Standard-Ort, der vom Anbieter vorgegeben wird.
Falls der Container bereits von einem anderen Benutzerkonto erstellt wurde, wird
eine Exception geworfen. Selbiges passiert, falls kein Internetzugang besteht.

Das Speichern einer Datei erfolgt durch Erzeugen eines Blob-Objekts, welches zu-
sammen mit dem Container-Namen der Methode putFile(...) übergeben werden
muss, siehe Listing 2.5.

1 File file = new File("C:\\test.txt");
2 InputStream fileInputStream = new FileInputStream(file);
3 Blob blob = blobStore.blobBuilder("my-dir/test.txt").payload(fileInputStream).

contentLength(file.length()).build();
4 blobStore.putBlob("my-container", blob);

Listing 2.5: Speichern einer Datei mit jclouds.

my-dir/test.txt steht für den Schlüssel, unter dem der Blob gespeichert werden soll.
Statt einem InputStream kann der Methode payload(...) auch ein File-Objekt
übergeben werden. Die Angabe der Dateigröße (contentLength) ist dann nicht
erforderlich.

Das Abrufen der Datei erfolgt mit der Methode getBlob(...). Es kann der
InputStream der Datei bezogen oder die Datei in einen OutputStream geschrie-
ben werden. Beide Varianten sind in Listing 2.6 dargestellt.

1 Blob blob = this.blobStore.getBlob("my-container", "my-dir/test.txt");
2 Payload payload = blob.getPayload();
3 InputStream fileInputStream = payload.getInput();
4 OutputStream fileOutputStream = new FileOutputStream("C:\\fetchedTest.txt");
5 payload.writeTo(fileOutputStream);

Listing 2.6: Abrufen einer Datei mit jclouds.

27



3 Anforderungen

3 Anforderungen

Im Rahmen dieser Arbeit soll ein generischer File Service für den TOSCA-Container
OpenTOSCA (siehe Abschnitt 2.5) entworfen und implementiert werden, der eine
Weiterentwicklung des aktuellen File Service darstellt.

Momentan können CSAR-Dateien bzw. deren Inhalt lediglich auf dem lokalen Datei-
system abgelegt werden. Der Aufwand für eine Erweiterung um zusätzliche Speicheror-
te ist hoch, da die eigentliche Logik zum Speichern nicht als Erweiterung bereitgestellt
wird, sondern sich im File Service selbst befindet. Dieser architekturbedingte Nachteil
soll durch den generischen File Service gelöst werden.

Analog zur IA Engine und Plan Engine soll er auf einem Plug-in System basieren.
Ein Plug-in soll die Logik bereitstellen, die zum Speichern von Dateien in einer
bestimmten Umgebung benötigt wird. Es soll eine Schnittstelle definiert werden, die
von jedem Plug-in implementiert werden muss. Diese sollte insbesondere Methoden
zum Speichern, Abrufen und Löschen von Dateien bereitstellen. Das Beziehen des
InputStream einer Datei sowie Speichern einer Datei, die als InputStream gegeben
ist, soll ebenfalls möglich sein. Auch soll die Größe einer Datei soll bestimmt werden
können. Weiterhin sollen Methoden vorgesehen werden, mit denen Zugangsdaten im
Plug-in hinterlegt bzw. aus dem Plug-in gelöscht werden können. Dies ist erforderlich,
da die Plug-ins in den meisten Fällen die Speicherung bei externen Anbietern
ermöglichen werden. Im Normalfall erfordern diese eine Authentifizierung.

Methoden zum Erstellen von Verzeichnissen sollen nicht vorgesehen werden. Es ist
ausreichend, wenn die relativen Pfade der Verzeichnisse einer CSAR lokal als Metada-
ten vorliegen bzw. gespeichert sind. Zudem enthalten Dateipfade Verzeichnisnamen
implizit, sodass Verzeichnisse in der Regel beim Speichern der Dateien mit angelegt
werden. Eine Ausnahme stellt lediglich ein leeres Verzeichnis dar. Das Speichern von
Verzeichnisattributen ist nicht erforderlich.

OpenTOSCA läuft auf der OSGi Service Platform. Diese stellt Konzepte bereit, mit
der eine Plug-in-Architektur realisiert werden kann. Die Plug-in-Systeme der IA
Engine und Plan Engine bspw. basieren bereits auf OSGi. Auch das Plug-in-System
des generischen File Service soll auf Basis von OSGi entworfen werden. In einem
Bundle soll die Schnittstelle der Plug-ins definiert werden. Die eigentlichen Plug-ins

28



3 Anforderungen

sollen weitere Bundles darstellen, welche die Schnittstelle implementieren und ihre
Implementierung als deklarativen Service bereitstellen (siehe auch Abschnitt 2.3).

Im Rahmen dieser Arbeit sollen zwei Plug-ins entwickelt werden: Eine Implementie-
rung soll weiterhin das Speichern von CSAR-Dateien auf dem lokalen Dateisystem
erlauben. Mit der zweiten Implementierung sollen CSAR-Dateien auf dem Cloud-
Storage-Anbieter Amazon S3 (siehe Abschnitt 2.6) gespeichert werden können.

Zum Speichern einer CSAR gehören (insbesondere) auch die folgenden Vorgänge, die
vom File Service weiterhin übernommen werden müssen:

• Entpacken der CSAR und Ermitteln der entpackten Dateien und Ordner.

• Validieren des Inhalts der CSAR.

• Validieren und Parsen der TOSCA Metadatei.

• Speichern der Metadaten der CSAR in der lokalen Datenbank.

Neben dem Speichern soll das Verschieben einer bereits gespeicherten CSAR zu einem
anderen Plug-in bzw. Speicherort möglich sein. Auch soll lediglich eine einzelne Datei
oder ein Ordner einer CSAR verschoben werden können. Eine CSAR soll folglich auf
mehrere Speicherorte verteilt werden können. Weiterhin soll eine Export-Funktion
realisiert werden, mit der eine CSAR wieder als CSAR-Datei abgerufen werden kann.
Das Löschen einer sowie aller gespeicherten CSAR-Dateien soll (wie bisher) ebenfalls
möglich sein.

Wird aktuell eine CSAR über den File Service abgerufen, so wird diese über ein
Datenmodell bereitgestellt, das auf den lokal gespeicherten Metadaten der CSAR
basiert. Dieses Datenmodell stellt Methoden bereit, mit denen strukturiert auf den
Inhalt der CSAR zugegriffen werden kann. Beispielsweise gibt es eine Methode,
die alle Definitions-Dokumente im „Definitions“-Ordner der CSAR zurückgibt. Für
die Container API bzw. deren CSAR Browsing API muss dieses Datenmodell um
Methoden erweitert werden, mit denen die CSAR vollständig durchsucht werden kann.
Die CSAR Browsing API bezieht momentan den absoluten Pfad des Entpack-Ordners
der CSAR und ermittelt anschließend selbstständig den Inhalt der Ordners, den der
Nutzer über eine entsprechende HTTP-Anfrage anfordert. Diese Vorgehensweise ist
nicht optimal, da Dateisystemoperationen nicht in den Zuständigkeitsbereich der
Container API fallen. Durch den generischen File Service können CSAR-Dateien
nun an prinzipiell beliebigen Orten abgelegt sein, sodass Dateisystemoperationen
nicht mehr möglich sind. Aus diesem Grund werden Methoden zum Durchsuchen der
CSAR benötigt.

29



3 Anforderungen

Das CSAR-Datenmodell stellt eine Methode zur Verfügung, mit der auf Artefakt-
Referenzen26 zugegriffen werden kann. Aktuell werden relative Referenzen unterstützt,
die auf eine Datei bzw. einen Ordner in der CSAR verweisen. Dieser Artefakt-Referenz-
Typ muss auch weiterhin unterstützt werden. Eine Einschränkung ist, dass momentan
lediglich Dateien, die sich an einer Artefakt-Referenz befinden, zurückgegeben wer-
den. Die Ordnerstruktur geht folglich verloren. Diese Einschränkung soll durch die
Realisierung eines entsprechenden Datenmodells zum Durchsuchen eines Artefakts
aufgehoben werden. Das zu entwerfende Modell soll dabei nicht nur bei der Methode
zum Zugriff auf Artefakte zum Einsatz kommen, sondern auch bei allen weiteren
Methoden des CSAR-Datenmodells, die Dateien oder Ordner einer CSAR zurücklie-
fern, z. B. den bereits angesprochenen Methoden zum Durchsuchen der CSAR. Die
Dateien eines Artefakts bzw. einer CSAR müssen über dieses Datenmodell abgerufen
bzw. heruntergeladen werden können.

Zur Verwaltung von Zugangsdaten für Plug-ins soll eine separate Komponente mit
einem passenden Datenmodell entwickelt werden. Diese soll insbesondere Methoden
zum Speichern, Abrufen und Löschen von Zugangsdaten vorsehen. Gespeicherte
Zugangsdaten sollen in einem (verfügbaren) Plug-in gesetzt bzw. aus einem Plug-in
gelöscht werden können. Zugangsdaten für Plug-ins, die nicht verfügbar sind, sollen
ebenfalls gespeichert werden können.

Im Rahmen der Integration sollen (insbesondere) die neuen Funktionalitäten über
die Container API bereitgestellt werden. Wichtige Methoden der entwickelten bzw.
weiterentwickelten Komponenten sollen zusätzlich über OSGi Konsolen Kommandos
aufgerufen werden können.

26In der Regel aus einem Artifact Template eines Definitions-Dokuments (siehe Abschnitt 2.2.1).

30



4 Konzept und Implementierung

4 Konzept und Implementierung

Dieses Kapitel befasst sich mit der Realisierung der Anforderungen, die im vorhe-
rigen Kapitel definiert worden sind. Dazu setzen wir uns mit der Architektur der
entwickelten bzw. weiterentwickelten Komponenten auseinander und erläutern deren
Funktionalitäten sowie Zuständigkeiten. Zu wichtigen Methoden gehen wir auf die
konkreten Abläufe in der Implementierung ein. Dadurch decken wir mit diesem
Kapitel zugleich den Implementierungsteil ab.

Jeder der folgenden Abschnitte repräsentiert eine Komponente oder ein Datenmodell,
wobei einführend in 4.1 zunächst ein Überblick über die Architektur gegeben wird.
In Abschnitt 4.7 werden die Arbeiten erläutert, die im Rahmen der Integration
durchgeführt wurden. Insbesondere gehören dazu die Erweiterungen und Anpassungen
in der Container API, damit die neuen Funktionen über die externe Schnittstelle von
OpenTOSCA aufgerufen werden können. Aus Gründen der Verständlichkeit und um
Unklarheiten zu vermeiden, behandeln wir in diesem Kapitel auch Aufgaben und
Abläufe, die bereits der bisherige File Service angeboten hat, wobei diese nicht den
Schwerpunkt darstellen sollen.

In Abschnitt 4.1 kommt zur grafischen Veranschaulichung der Architektur ein FMC-
Diagramm zum Einsatz. Mit Ausnahme der Datenmodelle sind alle dort dargestellten
Akteure (aktive Komponenten) OSGi-Services. Zur Vereinfachung fassen wir die
Schnittstelle eines OSGi-Service und deren Implementierungen in diesem Diagramm
zusammen. Weiterhin kommen UML-Klassendiagramme zum Einsatz, um die Klas-
senhierarchie einzelner Komponenten zu veranschaulichen. Die Abläufe von Methoden
und die damit verbundene Interaktion zwischen Komponenten werden durch UML-
Sequenzdiagramme verdeutlicht. Sofern nicht anders angegeben, werden Fehlerfälle
und verschiedene Abläufe einer Methode aus Gründen der Übersichtlichkeit nicht
dargestellt. Diese können dem zugehörigen Text entnommen werden.

4.1 Überblick

Abbildung 4.1 veranschaulicht die Komponenten der Core-Komponente von
OpenTOSCA, die im Rahmen dieser Arbeit entstanden bzw. weiterentwickelt wor-
den sind. Die zentrale Komponente stellt der File Service dar, der wie bisher zur

31



4 Konzept und Implementierung

Core

Derby Database

 R

 R

 R

Credentials Model

*.core.model.credentials

CSAR Model

*.core.model.csar

 R

Artifact Model

*.core.model.artifact

 R

Proxy Pattern

Eclipse
Link

 R

Internal Credentials Service

*.core.internal.credentials.service

Credentials Service

*.core.credentials.service

 R

File Service

*.core.file.service

Storage Providers (Plug-ins)

*.core.internal.file.storage.providers.
name.service

 R

Internal File Service

*.core.internal.file.service

Abbildung 4.1: FMC-Diagramm zu den neuen und veränderten Komponenten der
OpenTOSCA Core-Komponente.

Verwaltung von CSAR-Dateien verwendet wird, nun allerdings generisch realisiert
ist und um zusätzliche Funktionen erweitert wurde. CSAR-Dateien können durch
den Einsatz von Plug-ins, die im Folgenden Storage Provider genannt werden, in
verschiedenen Umgebungen gespeichert werden. Die eigentliche Implementierung des
File Service befindet sich im zugehörigen Internal File Service. Erstere Komponente
weist lediglich die gleiche Schnittstelle auf und leitet alle Methodenaufrufe an den
Internal File Service weiter (Proxy Pattern). Dieser Entwurf ermöglicht die Änderung
der Schnittstelle des Internal File Service, ohne das die Schnittstelle des File Ser-
vice, die für die Nutzung durch andere Komponenten gedacht ist, verändert werden
muss. Der File Service kümmert sich lediglich um die Konvertierung zwischen den
Schnittstellen. Dieser Ansatz kommt in allen Komponenten der Core-Komponente
zum Einsatz und wurde daher im Rahmen dieser Arbeit beibehalten bzw. fortgeführt.
Zur Vereinfachung führen wir beide Komponenten zusammen und bezeichnen diese
im weiteren Verlauf der Arbeit als File Service.

Das CSAR Model repräsentiert die Metadaten einer CSAR und stellt Methoden
bereit, mit denen strukturiert auf eine gespeicherte CSAR zugegriffen werden kann.
Es wird vom File Service instanziiert und mittels Eclipse Link in der Datenbank von
OpenTOSCA (siehe auch Abschnitt 2.5.1) gespeichert. Unter anderem kann über das
CSAR Model auf Artefakte zugegriffen werden. Unterstützt werden weiterhin relative

32



4 Konzept und Implementierung

Artefakt-Referenzen, die auf eine Datei oder einen Ordner in der CSAR verweisen
(z. B. IAs/deployer.war). Bisher wurden jedoch lediglich die Dateien an der Artefakt-
Referenz zurückgegeben. Die Ordnerstruktur ist folglich verloren gegangen. Durch das
Artifact Model, das im Rahmen dieser Arbeit entstanden ist, können Artefakte nun
unter Beibehaltung der Verzeichnisstruktur durchsucht werden. Es stellt abstrakte
Klassen bereit, die vom einem Artefakt-Referenz-Typ implementiert werden müssen.
Damit auch weiterhin relative Artefakt-Referenzen bzw. CSAR-Artefakte unterstützt
werden, wurde hierfür eine entsprechende Implementierung bereitgestellt. Die Klasse,
die eine Datei einer CSAR repräsentiert, stellt Methoden bereit, mit denen die Datei
oder deren InputStream abgerufen werden kann. Dazu kommt der entsprechende
Storage Provider zum Einsatz.

Auch stehen im CSAR Model u. a. Methoden bereit, mit denen z. B. eine CSAR durch-
sucht werden kann (von der Container API benötigt) oder lediglich alle Definitions-
Dokumente zurückgegeben werden können. Generell werden alle Dateien und Ordner
einer CSAR, die von Methoden des CSAR Model zurückgegeben werden, nun durch
Klassen des Artifact Model bzw. derer Implementierung für CSAR-Artefakte reprä-
sentiert.

Der Credentials Service dient der Speicherung und Verwaltung der Zugangsdaten, die
ein Storage Provider zum Zugriff auf die entsprechende Umgebung benötigt. Analog
zum File Service befindet sich deren Implementierung im zugehörigen Internal
Credentials Service. Auch diese Komponenten sollen im Folgenden nur noch als
Credentials Service bezeichnet werden. Zugangsdaten werden durch das Credentials
Model repräsentiert und mittels Eclipse Link in der Datenbank gespeichert.

Für alle Methoden, die in diesem Kapitel vorgestellt werden, gilt, das diese mit
einer entsprechenden Exception abbrechen, falls es zu einem Fehler kommt. Undo-
Operationen wurde im Rahmen dieser Arbeit nicht realisiert. Ausnahmen stellen
lediglich die Methoden zum Speichern und Exportieren einer CSAR dar (siehe
Abschnitte 4.2.3 und 4.2.5).

Generell kommen für Dateisystem-Operationen nun Klassen aus der Java NIO.2-
Bibliothek (Java-Paket java.nio.file) zum Einsatz, die seit Java 7 existiert. Im
Rahmen der Entwicklung wurde u. a. die File-Klasse aus Java IO, die im bisherigen
File Service verwendet wurde, durch die Path-Klasse ersetzt. Die Entscheidung zum
Wechsel auf NIO.2 wurde in erster Linie deswegen getroffen, da diese deutlich mehr
Methoden zur Manipulation von Pfaden anbietet. Besonders im File Service und
Artifact Model werden entsprechende Hilfsmethoden benötigt. Weiterhin bietet sie
eine höhere Performance, da jegliche Lese- und Schreiboperationen gepuffert und
nicht blockierend ausgeführt werden [Jen].

33



4 Konzept und Implementierung

4.2 File Service

Der File Service stellt Funktionalitäten zur Speicherung und Verwaltung von CSAR-
Dateien zur Verfügung. Der Inhalt von CSAR-Dateien kann in Umgebungen ge-
speichert werden, für die entsprechende Storage Provider verfügbar sind. Neben
dem Speichern sowie Löschen einer CSAR bzw. aller CSARs können auch bereits
gespeicherte CSARs von einem Storage Provider zu einem anderen Storage Provider
verschoben werden. Ebenso kann lediglich eine einzelne Datei oder ein Ordner ver-
schoben werden. Weiterhin steht eine Export-Funktion zur Verfügung, mit der eine
gespeicherte CSAR (wieder) als CSAR-Datei abgerufen werden kann.

In den folgenden Unterabschnitten soll nun näher auf die Funktionalitäten bzw.
Methoden des File Service eingegangen werden, wobei in 4.2.1 und 4.2.2 zunächst
erläutert wird, wie ein Storage Provider ausgewählt wird und welche Aufgaben vom
Storage Provider Manager übernommen werden, der einen Teil des File Service
darstellt.

Entsprechend den Anforderungen sind die meisten Methoden des File Service auch
über OSGi Konsolen Kommandos aufrufbar.

4.2.1 Auswahl eines Storage Provider

Ein Storage Provider muss zunächst als aktiv definiert werden, damit er zum Speichern
einer CSAR sowie als Ziel einer Verschiebe-Operation ausgewählt ist. Ein nicht
existierender bzw. nicht verfügbarer Storage Provider kann grundsätzlich nicht als
aktiv selektiert werden. Falls ein aktiver Storage Provider nicht mehr verfügbar ist,
so ist kein Storage Provider als aktiv festgelegt. Wird er wieder verfügbar, so muss
er erneut als aktiv definiert werden.

Damit der aktive Storage Provider schließlich auch verwendet wird, muss er zu-
sätzlich einsatzbereit („ready“) sein. Dies bedeutet, dass alle Anforderungen des
Storage Providers erfüllt sein müssen. Die Schnittstelle der Storage Providers (siehe
Abschnitt 4.5.1) sieht zur Abfrage dieses Status eine entsprechende Methode vor.
Ein Storage Provider auf Basis von jclouds (siehe Abschnitt 4.5.2) ist grundsätzlich
einsatzbereit, falls er über den Credentials Service (siehe Abschnitt 4.6) Zugangsdaten
erhalten hat und das benötigte jclouds Provider- bzw. API-Bundle verfügbar ist,
wobei erstere Bedingung lediglich zutrifft, falls der Storage Provider Zugangsdaten
benötigt. Ist der aktive Storage Provider nicht einsatzbereit, so wird auf den Default
Storage Provider ausgewichen (durch entsprechende Logging-Meldung signalisiert27),

27Gegebenenfalls können zukünftig Klassen eingeführt werden, deren Instanzen die Ergebnisse von
Operationen repräsentieren.

34



4 Konzept und Implementierung

der fest definiert ist (lokales Dateisystem). Falls dieser nicht verfügbar oder ebenfalls
nicht einsatzbereit ist, so schlägt die Operation fehl. Direkt nach dem Start des
Containers ist kein Storage Provider als aktiv definiert. Es wird in diesem Fall direkt
der Default Storage Provider gewählt.

Mit diesem zweistufigen Konzept soll das Risiko, dass eine Operation aufgrund eines
fehlenden Storage Provider fehlschlägt, möglichst gering gehalten werden.

4.2.2 Storage Provider Manager

Im File Service erfolgt der Aufruf eines Storage Provider grundsätzlich über den
Storage Provider Manager. Konkret handelt es sich dabei um eine Klasse des File
Service, die sich gegen die Schnittstelle der Storage Providers bindet, um Zugriff auf
die deklarativen Services bzw. Implementierungen der Storage Provider-Schnittstelle
zu erhalten. Die Verwaltung der verfügbaren Storage Provider erfolgt in einer Map,
in der die ID des Storage Providers auf die Storage Provider-Referenz (zeigt auf die
Instanz der Implementierungsklasse) abgebildet ist.

Der Storage Provider Manager stellt entsprechend der Storage Provider-Schnittstelle
(siehe Abschnitt 4.5.1) Methoden bereit, mit denen Dateien auf einem Storage
Provider gespeichert, abgerufen und gelöscht werden können. Auch kann die Größe
einer Datei zurückgegeben werden. Weiterhin existieren Methoden, mit denen z. B. der
aktive Storage Provider gesetzt, der Default Storage Provider ausgegeben werden kann
oder ermittelt werden kann, ob ein Storage Provider verfügbar und einsatzbereit ist.
Hierbei sollte erwähnt werden, dass im Storage Provider Manager der aktive Storage
Provider gespeichert und der Default Storage Provider definiert ist. Letztere Methoden
sind auch über die (öffentliche) Schnittstelle des File Service zu erreichen. Die
entsprechenden Methoden des File Service leiten hierzu Aufrufe an die (gleichnamigen)
Methoden des Storage Provider Manager weiter (Proxy Pattern).

Abbildung 4.2 zeigt den Ablauf der Methode zum Speichern einer Datei. Neben dem
absoluten Pfad muss der relative Pfad der Datei zum Wurzelverzeichnis der CSAR, die
CSAR ID28 sowie die ID des Storage Provider übergeben werden, auf dem die Datei
gespeichert werden soll. Zunächst wird überprüft, ob der entsprechende Storage Provi-
der verfügbar und einsatzbereit ist. Ist dies der Fall, so wird daraufhin der vollständige
Pfad bestimmt, unter dem die Datei auf dem Storage Provider gespeichert werden soll.
Der Pfad wird dabei wie folgt gebildet: „<csarID>/<relativePathToCSARRoot>“.
Für eine WAR-Datei „IAs/deploy.war“ einer CSAR „myCSAR.csar“ würde sich
folglich „myCSAR.csar/IAs/deploy.war“ ergeben. Mit dieser Information und dem

28Die CSAR ID identifiziert eine CSAR in OpenTOSCA. Es handelt es um eine Klasse, die
(momentan) mittels dem Dateinamen der CSAR instanziiert wird.

35



4 Konzept und Implementierung

File Service
File Service

Storage Provider Manager
Storage Provider

Build file path to store file on 
storage provider.

storeFile(absPath, relPathOnStorageProvider)

storeFileOfCSAR(absPath, csarID, 
fileRelToCSARRoot, storageProviderID)

Storage Provider is available.

isStorageProviderReady()

true

Abbildung 4.2: UML-Sequenzdiagramm zum Speichern einer Datei über den Storage
Provider Manager.

absoluten Pfad der Datei wird schließlich die entsprechende Methode des Storage
Provider aufgerufen. Die ersten beiden Schritte gelten analog für die weiteren Metho-
den des Storage Provider Manager zum Speichern (Datei gegeben als InputStream),
Abrufen und Löschen einer Datei sowie Ermitteln der Dateigröße.

Zur Bestimmung des Storage Providers, auf dem eine CSAR gespeichert wird bzw. der
das Ziel einer Verschiebe-Operation darstellt, kommt ebenfalls der Storage Provider
Manager zum Einsatz. Abbildung 4.3 veranschaulicht den Ablauf der Methode, die das
in Abschnitt 4.2.1 beschriebene Konzept zur Auswahl des Storage Providers umsetzt.
Dargestellt ist der Fall, dass die ID des Default Storage Provider zurückgegeben wird,
da der aktive Storage Provider gesetzt und verfügbar, allerdings nicht einsatzbereit
ist.

Active
Storage Provider

Active storage provider is set.

isStorageProviderReady()

Active storage provider is available.

false

Default
Storage Provider

Default storage provider is 
available.

isStorageProviderReady()

true

File Service
Storage Provider ManagerFile Service

chooseStorageProvider()

Default Storage Provider ID

Abbildung 4.3: UML-Sequenzdiagramm zur Auswahl des Storage Providers über den
Storage Provider Manager.

36



4 Konzept und Implementierung

4.2.3 Speichern einer CSAR

Der Ablauf der Methode storeCSAR(csarFile) ist in Abbildung 4.4 dargestellt.
Zunächst wird überprüft, ob die übergebende Datei existiert und eine Datei mit

File Service

Existent file with 
extension „csar“?

File Service
Storage Provider Manager

chooseStorageProvider()

storageProviderID

File Access Service
(with ZIP Manager)

getTemp()

unzip(csarFile, tempDirectory)

Create csarID and check if 
CSAR is already stored.

tempDirectory

Get files and directories in unpack 
directory (tempDirectory).

loop

[for each file in 
unpack directory]

storeFileOfCSAR(absPath, csarID, 
fileRelToUnpackDir, storageProviderID)

Determine file path relative to 
unpack directory. 

loop

[for each directory
in unpack directory]

Determine directory path 
relative to unpack directory. 

storeCSARMetaData(csarID, 
directories, files, toscaMetaFile)

Validate CSAR content and parse / 
validate TOSCA Meta File.

Delete tempDirectory.

Stores file on storage 
provider, see figure 4.2. 

Chooses storage 
provider to store CSAR, 
see figure 4.3.

Abbildung 4.4: UML-Sequenzdiagramm zum Speichern einer CSAR.

der Endung csar ist. Ist dies der Fall, wird die CSAR ID (mittels dem Dateinamen
der CSAR) erzeugt. Anschließend wird überprüft, ob die CSAR bereits gespeichert
ist, indem ermittelt wird, ob bereits Metadaten unter der entsprechenden CSAR
ID in der Datenbank gespeichert sind. Ist die CSAR nicht bereits gespeichert, so
wird der Storage Provider ausgewählt, der zum Speichern der CSAR eingesetzt wird.
Die Auswahl erfolgt mittels der in Abbildung 4.3 dargestellten Methode. Nach der
Bestimmung des Storage Provider wird die CSAR-Datei in einem temporären Ordner
entpackt und die Dateien und Ordner der CSAR ermittelt. Generell kommt für die
Bereitstellung eines Temp-Ordners als auch dem Entpacken einer ZIP-Datei der File
Access Service zum Einsatz. Zur rekursiven Bestimmung der Dateien und Ordner

37



4 Konzept und Implementierung

wurde eine Implementierung des SimpleFileVisitor29 (aus der NIO.2-Bibliothek)
erstellt. Um das Speichern einer ungültigen CSAR (möglichst) zu verhindern, wird
der Inhalt der CSAR validiert. Des Weiteren wird die TOSCA Metadatei geparst.
Die Daten aus dieser Datei werden durch ein Objekt der Klasse TOSCAMetaFile

repräsentiert. Ist die CSAR als auch deren TOSCA Metadatei gültig, so erfolgt
schließlich das Speichern der Dateien über den zuvor ausgewählten Storage Provider.
Jede Datei der CSAR30 wird dazu zusammen mit der Storage Provider ID und der
CSAR ID der entsprechenden Methode (siehe Abbildung 4.2) des Storage Provider
Manager übergeben, der wiederum mit dem Storage Provider interagiert (siehe
Abschnitt 4.2.2). Nachdem alle Dateien auf dem Storage Provider gespeichert wurden,
werden die Metadaten der CSAR in der Datenbank abgelegt. Die Metadaten einer
CSAR werden durch eine Instanz des CSAR Model bzw. deren Klasse CSARContent

(siehe Abschnitt 4.3) repräsentiert und bestehen aus der CSAR ID, den Dateien und
Ordnern der CSAR (relative Pfade zum Wurzelverzeichnis) und dem TOSCAMetaFile-
Objekt. Jeder Datei wird auf die ID des Storage Providers abgebildet, auf dem diese
gespeichert wird. Abschließend wird der nicht mehr benötigte Temp-Ordner gelöscht
und die CSAR ID zurückgegeben.

Kommt es während des gesamten Vorgangs zu einem Fehler (z. B. CSAR-Datei bereits
gespeichert oder ungültige TOSCA Metadatei), so wird zunächst der Temp-Ordner
gelöscht (sofern erforderlich) und daraufhin eine entsprechende Exception geworfen.

4.2.4 Abrufen einer CSAR

Eine gespeicherte CSAR kann durch die Methode getCSAR(csarID) abgerufen wer-
den. Hierbei wird die CSAR allerdings nicht heruntergeladen, sondern durch eine
Instanz des CSAR Model bzw. deren Klasse CSARContent bereitgestellt, die beim
Speichern der CSAR erzeugt und in der Datenbank gespeichert wurde. Folglich wird
also lediglich die entsprechende CSARContent-Instanz aus der Datenbank abgerufen
und zurückgegeben. CSARContent stellt Methoden bereit, mit denen strukturiert
auf den Inhalt der CSAR zugegriffen werden kann. Näheres zum CSAR Model in
Abschnitt 4.3.

4.2.5 Exportieren einer CSAR

Eine gespeicherte CSAR kann über den File Service exportiert bzw. als CSAR-Datei
abgerufen werden. Der Ablauf der Methode exportCSAR(csarID) ist in Abbildung 4.5

29Weitere Informationen zum SimpleFileVisitor: http://docs.oracle.com/javase/tutorial/
essential/io/walk.html

30Absoluter Pfad und relativer Pfad zum Wurzelverzeichnis der CSAR.

38

http://docs.oracle.com/javase/tutorial/essential/io/walk.html
http://docs.oracle.com/javase/tutorial/essential/io/walk.html


4 Konzept und Implementierung

dargestellt. Zu Beginn werden die Metadaten zu den Dateien der CSAR (relative

File Service
Storage Provider ManagerFile Service

Get files metadata of CSAR.

loop

[for each storage provider
of the CSAR]

Determine storage providers where 
CSAR is stored.

isStorageProviderReady(storageProviderID)

getFileOfCSAR(csarID, fileRelToCSARRoot, 
storageProviderID, targetFile)

true

loop

[for each file in CSAR]

   

Get directories metadata of CSAR.

File Access Service
(with ZIP Manager)

getTemp()

zip(directory, targetFile)

Create directory structure of CSAR 
in tempDirectory/content.

tempDirectory

   

Delete tempDirectory/content.

Similiar to figure 4.2.
targetFile is
tempDirectory/content/fileRelToCSARRoot

directory is 
tempDirectory/content
targetFile is
tempDirectory/csarID

Abbildung 4.5: UML-Sequenzdiagramm zum Exportieren einer CSAR.

Pfade mit zugehöriger Storage Provider ID) aus der Datenbank abgerufen. Die
Storage Provider IDs werden nacheinander dem Storage Provider Manager (siehe
Abschnitt 4.2.2) übergeben, der überprüft, ob die Storage Providers, auf denen
die CSAR verteilt ist, verfügbar und einsatzbereit sind. Hiermit soll das Risiko,
dass das Abrufen der Dateien fehlschlägt, minimiert werden. Sind alle Storage
Providers einsatzbereit, so werden auch die Metadaten zu den Ordnern der CSAR
aus der Datenbank bezogen. Über den File Access Service wird ein Temp-Ordner
geholt, in dem ein Unterordner „content“ angelegt wird. In diesem wird zunächst
die Ordnerstruktur der CSAR angelegt und schließlich alle Dateien der CSAR über
den Storage Provider Manager von den entsprechenden Storage Providern abgerufen.
Nachdem dies erfolgreich abgeschlossen wurde, wird mit dem Inhalt des Ordners
„content“ die CSAR-Datei (Dateiname ist die CSAR ID) direkt im Temp-Ordner
erzeugt. Hierzu kommt erneut der File Access Service zum Einsatz. Abschließend
wird der nicht mehr benötigte Ordner „content“ gelöscht und der absolute Pfad der
CSAR-Datei als Path-Objekt zurückgegeben.

39



4 Konzept und Implementierung

In einem Fehlerfall (z. B. benötigter Storage Provider nicht einsatzbereit) wird der
Ordner „content“ ebenfalls gelöscht (sofern erforderlich) und eine entsprechende
Exception geworfen.

4.2.6 Verschieben einer Datei oder Ordner einer CSAR

Abbildung 4.6 zeigt den Ablauf der Methode moveFileOrDirectoryOfCSAR(csarID,

relPathToCSARRoot) zum Verschieben einer Datei oder Ordner einer CSAR zu einem
anderen Storage Provider. Dargestellt ist das Verschieben eines Ordners, was den
komplexeren Fall darstellt. In einem ersten Schritt wird über den Storage Provider

File Service
Storage Provider ManagerFile Service

chooseStorageProvider()

storageProviderID

Get metadata of files and 
directories of CSAR csarID.

Found files in directory that are not 
already on target storage provider.

Given relative path to move is a 
directory in CSAR.

loop

[for each file to move]

Move file to storage provider (see figure 4.7).

Chooses target 
storage provider for 
move operation, 
see figure 4.3.

Abbildung 4.6: UML-Sequenzdiagramm zum Verschieben eines Ordners zu einem
anderen Storage Provider.

Manager (siehe Abschnitt 4.2.2) der Storage Provider bestimmt, der das Ziel des
Verschiebe-Vorgangs darstellt. Daraufhin werden die Metadaten der entsprechenden
CSAR aus der Datenbank abgerufen. Es genügen die Metadaten zu den Dateien
(relative Pfade mit zugehöriger Storage Provider ID) und Ordnern der CSAR (relative
Pfade). Obwohl lediglich Dateien einer CSAR verschoben werden, sind dennoch die
Metadaten der Ordner erforderlich, da wir andernfalls nicht unterscheiden können, ob
der Nutzer der Methode einen nicht existierenden Ordner übergeben hat (Fehlerfall)
oder ob es sich dagegen um einen Ordner handelt, der existiert, jedoch leer ist. Falls
der Nutzer den relativen Pfad eines existieren Ordners übergeben hat, so werden

40



4 Konzept und Implementierung

alle Dateien bestimmt, die verschoben werden müssen, d. h. jene Dateien, die sich
im Ordner befinden und nicht bereits auf dem Ziel-Storage Provider abgelegt sind.
Sofern eine oder mehrere Dateien verschoben werden müssen, so erfolgt dies im
Folgenden für jede Datei nach der in Abbildung 4.7 dargestellten Vorgehensweise.
Zunächst wird der InputStream und die Größe der Datei vom aktuellen Storage

File Service
Storage Provider ManagerFile Service

fileInputStream

getFileOfCSARAsInputStream(csarID, 
fileRelToCSARRoot, sourceStorageProviderID)

fileSize

getFileOfCSARSize(csarID, fileRelToCSARRoot, 
sourceStorageProviderID)

Store / update targetStorageProviderID in 
metadata of file.

storeFileOfCSAR(csarID, fileInputStream, fileSize, 
fileRelToCSARRoot, targetStorageProviderID)

deleteFileOfCSAR(csarID, fileRelToCSARRoot, 
sourceStorageProviderID)

   

   

   

   

Similiar to figure 4.2.

Abbildung 4.7: UML-Sequenzdiagramm zum InputStream-basierten Verschieben ei-
ner Datei zu einem anderen Storage Provider.

Provider abgerufen. Mit diesen Daten wird die Datei anschließend auf dem Ziel-
Storage Provider gespeichert. Ist der Speichervorgang erfolgreich abgeschlossen, so
werden die Metadaten der Datei in der Datenbank aktualisiert. Die ID des bisherigen
Storage Provider wird hierbei mit der ID des neuen Storage Providers überschrieben.
Abschließend wird die Datei auf dem bisherigen Storage Provider gelöscht. Alle
Operationen, die auf einem Storage Provider ausgeführt werden, erfolgen über den
Storage Provider Manager (siehe Abschnitt 4.2.2).

Alternativ wäre es auch möglich gewesen, die Datei zunächst komplett herunterzula-
den, bevor sie schließlich auf dem neuen Storage Provider gespeichert wird. Für den
InputStream-basierten Ansatz sprechen jedoch folgende Vorteile:

41



4 Konzept und Implementierung

• Die Datei wird in einer geringfügig kürzeren Zeit verschoben.

• Verbrauch von weniger Speicherplatz.

• Es wird keine Datei auf dem Dateisystem erstellt, die nach Abschluss des
Vorgangs gelöscht werden muss bzw. sollte.

Da das Löschen der Datei erst nach dem Speichern auf dem neuen Storage Provider
erfolgt, kann es durch einen Ausfall der Internetverbindung während des Speichervor-
gangs nicht zu einem Verlust von Dateien der CSAR kommen. Dies trifft natürlich
nur zu, falls der entsprechende Storage Provider Internetzugriff erfordert. Weiterhin
wird das Aktualisieren der Metadaten vor dem Löschen ausgeführt. Das Fehlschlagen
von Datenbank-Operationen kann also nicht dazu führen, dass eine Datei in einer
CSAR aufgrund fehlerhafter bzw. veralteter Metadaten nicht mehr abrufbar ist.

4.2.7 Verschieben einer CSAR

Mit der Methode moveCSAR(csarID) kann mit einer kompletten CSAR zu einem
anderen Storage Provider umgezogen werden. Ihr Ablauf entspricht im Wesentlichen
der Methode zum Verschieben einer einzelnen Datei oder Ordner, auf die in Ab-
schnitt 4.2.6 näher eingegangen wurde. Zunächst wird mittels des Storage Provider
Managers der Storage Provider ermittelt, zu dem die CSAR bzw. deren Dateien ver-
schoben werden sollen. Anschließend werden die Metadaten zu den Dateien der CSAR
aus der Datenbank abgerufen. Die zu verschiebenden Dateien werden ermittelt und
schließlich zum entsprechenden Storage Provider verschoben (siehe Abbildung 4.7).

4.2.8 Löschen einer CSAR oder aller CSARs

Der Ablauf der Methode deleteCSAR(csarID) zum Löschen einer CSAR ist in
Abbildung 4.8 veranschaulicht. Zu Beginn werden die Metadaten zu den Dateien
der CSAR (relative Pfade mit zugehöriger Storage Provider ID) aus der Datenbank
abgerufen. Um möglichst zu vermeiden, dass der Löschvorgang fehlschlägt und damit
ggf. nicht alle Dateien gelöscht sind, wird überprüft, ob alle benötigten Storage
Provider verfügbar und einsatzbereit sind. Trifft dies zu, wird jede Datei auf ihrem
jeweiligen Storage Provider gelöscht. Abschließend werden die Metadaten der CSAR
gelöscht.

Sollte es während dem Löschen einer CSAR zum einem Fehler kommen (z. B. aufgrund
eines Ausfalls der Internetverbindung), so kann die Methode für selbige CSAR
nochmals aufgerufen werden, da die zugehörigen Metadaten nach wie vor vollständig
vorhanden sind. Bereits gelöschte Dateien werden in diesem Fall ignoriert.

42



4 Konzept und Implementierung

File Service
Storage Provider ManagerFile Service

Get files metadata of CSAR.

loop

[for each storage provider
of the CSAR]

Determine storage providers where 
CSAR is stored.

isStorageProviderReady(storageProviderID)

deleteFileOfCSAR(csarID, 
fileRelToCSARRoot, storageProviderID)

true

loop

[for each file in CSAR]

deleteCSARMetaData(csarID)

   

Similiar to figure 
4.2.

Abbildung 4.8: UML-Sequenzdiagramm zum Löschen einer CSAR.

Weiterhin wird eine Methode deleteCSARs() bereitgestellt, mit der alle CSARs
gelöscht werden können. Diese ermittelt aus der Datenbank die IDs aller gespeicherten
CSARs und ruft für jede ID die Methode zum Löschen einer CSAR auf.

4.3 CSAR Model

Das CSAR Model besteht im Wesentlichen aus den Klassen CSARContent und
TOSCAMetaFile. Eine Instanz von CSARContent repräsentiert eine CSAR im Contai-
ner und stellt Methoden bereit, mit denen strukturiert auf deren Inhalt zugriffen
werden kann. Sie enthält hierzu die Metadaten der CSAR, die sich aus der CSAR ID,
den relativen Pfaden aller Dateien und Ordner der CSAR sowie einem TOSCAMetaFile-
Objekt, welches den Inhalt der TOSCA-Metadatei repräsentiert, zusammensetzen.
Die relative Pfade der Dateien werden in einer Map gespeichert, die auf die ID des
Storage Provider abbildet, auf dem die jeweilige Datei gespeichert ist. Dadurch
kann prinzipiell jede Datei der CSAR auf einem anderen Storage Provider abgelegt
sein. Die relativen Pfade der Ordner werden in einem Set verwaltet. Wie bereits
angesprochen, wird CSARContent beim Speichern einer CSAR (siehe Abschnitt 4.2.3)
instanziiert und in dieser Form in der Datenbank gespeichert. Wird eine gespeicherte

43



4 Konzept und Implementierung

CSAR abgerufen, so wird die entsprechende CSARContent-Instanz aus der Datenbank
geholt und zurückgegeben (siehe Abschnitt 4.2.4).

Im Rahmen dieser Arbeit wurde CSARContent um Methoden erweitert, mit denen die
CSAR vollständig durchsucht werden kann. Zurückgegeben werden AbstractFile-
bzw. AbstractDirectory-Objekte des Artifact Model (siehe Abschnitt 4.4), die
Dateien bzw. Ordner repräsentieren. Erstere Klasse stellt Methoden bereit, mit denen
die Datei (schließlich) heruntergeladen werden kann. Hierzu kommt der entsprechen-
de Storage Provider zum Einsatz. Wie bereits erwähnt, werden die Methoden zum
Durchsuchen der CSAR von der Container API bzw. deren CSAR Browsing API
benötigt, die das Durchsuchen einer CSAR nach außen hin bereitstellt. Bisher hat die
Container API den Entpack-Ordner der CSAR über eine Methode des entsprechenden
CSARContent-Objekt geholt und anschließend mittels Dateisystemoperationen selbst-
ständig den Inhalt des Ordners bestimmt, den der Benutzer über eine HTTP-Anfrage
anfordert. Da eine CSAR nun jedoch nicht mehr lokal gespeichert sein muss, ist diese
Vorgehensweise nicht mehr möglich. Dementsprechend musste die Methode, die den
Entpack-Ordner der CSAR zurückgibt, entfernt werden.

Methoden, die dagegen bereits bisher von CSARContent angeboten wurden, stellen
z. B. für die TOSCA Engine die Definitions-Dokumente im Definitions-Ordner bereit
oder liefern jene Dateien zurück, die im Element Import eines Definitions-Dokument
referenziert sind. Hierbei sollte erwähnt werden, dass während der Entwicklung
von OpenTOSCA (zur Vereinfachung) festgelegt wurde, dass importierte Dateien
grundsätzlich im Ordner „IMPORTS“ abgelegt sein müssen, sodass lediglich Dateien
in diesem Ordner zurückgegeben werden müssen. Zusätzlich existieren Methoden,
mit denen auf die Werte von Attributen aus der TOSCA Metadatei (z. B. Autor der
CSAR) zugegriffen werden können. Generell gilt, das alle Methoden in CSARContent,
die Dateien zurückliefern, diese nun als AbstractFile-Objekte zurückliefern. Bisher
wurden File-Objekte zurückgegeben.

Weiterhin stellt CSARContent eine Methode bereit, mit der auf Artefakte zugegriffen
werden kann. Hierzu muss die entsprechende Referenz übergeben werden, die in
der Regel aus einem Artifact Template eines Definitions-Dokument stammt. Nach
wie vor werden (ausschließlich) relative Artefakt-Referenzen unterstützt, die auf
eine Datei oder Ordner in der CSAR verweisen. Bisher jedoch wurden lediglich die
Dateien an einer Artefakt-Referenz zurückgegeben. Die Ordnerstruktur ist folglich
verloren gegangen. Nun wird stattdessen ein AbstractArtifact-Objekt des Artifact
Model (siehe Abschnitt 4.4) zurückgegeben, mit dem das Artefakt durchsucht werden
kann. Falls die Artefakt-Referenz auf einen Ordner zeigt, sind entsprechend der
TOSCA-Spezifikation zusätzlich Include Patterns und Exclude Patterns erlaubt,
die zusammen mit der Artefakt-Referenz übergeben werden können. Alle Dateien

44



4 Konzept und Implementierung

an der Artefakt-Referenz, die den Include Patterns entsprechen, werden in das
Artefakt aufgenommen. Dateien, die zu den Exclude Patterns passen, werden aus dem
Artefakt ausgeschlossen. Auf Ordner werden Patterns grundsätzlich nicht angewendet,
sodass die Ordnerstruktur an einer Artefakt-Referenz unberührt bleibt. Da die
TOSCA-Spezifikation (bisher) keine Notation für Pattern definiert, verwenden wir
reguläre Ausdrücke31. Nehmen wir an, die Methode würde mit dem Include Pattern
^.*\.(war|WAR)$ und Exclude Pattern ^.*(deploy).*$ aufgerufen werden. In
diesem Fall würde das Artefakt lediglich aus Dateien bestehen, die als Dateiendung
„war“ oder „WAR“ besitzen und nicht in ihrem Dateinamen „deploy“ enthalten. Die
Methode zum Zugriff auf Artefakte wird momentan von der IA Engine, Plan Engine
und TOSCA Engine verwendet, wobei erstere diese nicht direkt, sondern über die
TOSCA Engine aufruft.

4.4 Artifact Model

Grundsätzlich dient das Artifact Model, das im Rahmen dieser Arbeit entwickelt
wurde, zum Durchsuchen ein Artefakts. Ein Artefakt kann dabei ein Ordner oder
eine Datei sein, die sich prinzipiell an einem beliebigen Ort befinden kann. Falls
Dateien aus dem Artefakt benötigt werden, so können diese direkt heruntergeladen
bzw. abgerufen werden. Beim Entwurf, der in Abbildung 4.9 dargestellt ist, wurde auf
Erweiterbarkeit geachtet. Für jeden Artefakt-Referenz-Typ (z. B. Ordner bzw. Datei
auf einem FTP-Server), der unterstützt werden soll, muss eine Implementierung der
Klassen AbstractArtifact, AbstractDirectory und AbstractFile bereitgestellt
werden.

AbstractArtifact repräsentiert ein ganzes Artefakt und stellt das Wurzelverzeichnis
des Artefakts dar. Dem Konstruktor von AbstractArtifact können neben der
Artefakt-Referenz Include- und Exclude-Patterns übergeben werden. Wie bereits in
Abschnitt 4.3 erwähnt, sind Patterns lediglich erlaubt, falls die Artefakt-Referenz
auf einen Ordner verweist. Dementsprechend werden übergebene Patterns nur
in diesem Fall beachtet. Weiterhin dürfen Patterns nur auf Dateien im Ordner
angewendet werden. Zur Implementierung von AbstractArtifact müssen die
Methoden fitsArtifactReference(artifactReference), getArtifactRoot()

und isFileArtifact() realisiert werden.
Erstere Methode ist statisch und soll true zurückliefern, falls die übergebene
Artefakt-Referenz zu der Implementierung von AbstractArtifact passt. In der
entsprechenden Methode der Klasse CSARContent, mit der auf Artefakte zugegriffen
werden kann (CSAR Model, siehe Abschnitt 4.3), kann so bestimmt werden, welche
31Informationen zu regulären Ausdrücken: https://de.wikipedia.org/wiki/Regul%C3%A4rer_

Ausdruck

45

https://de.wikipedia.org/wiki/Regul%C3%A4rer_Ausdruck
https://de.wikipedia.org/wiki/Regul%C3%A4rer_Ausdruck


4 Konzept und Implementierung

1

0..* 1

0..*

PatternMatcher

+ getFile(relPathOfFile: String): AbstractFile
+ getFiles(): Set<AbstractFile>
+ getFilesRecursively(): Set<AbstractFile>
+ getDirectory(relPathOfDirectory: String): AbstractDirectory
+ getDirectories(): Set<AbstractDirectory>

<<interface>>
IBrowseable

+ fitsArtifactReference(artifactReference: String): boolean
# getArtifactRoot(): AbstractDirectory
+ isFileArtifact(): boolean
+ getFile(relPathOfFile: String): AbstractFile
+ getFiles(): Set<AbstractFile>

AbstractArtifact

+ getFilesRecursively(): Set<AbstractFile>
+ getDirectory(relPathOfDirectory: String): AbstractDirectory
+ getDirectories(): Set<AbstractDirectory>
+ getArtifactReference(): String
+ getIncludePatterns(): Set<String>
+ getExcludePatterns(): Set<String>

# getFileNotConsiderPatterns(relPathOfFile: String): AbstractFile
# getFilesNotConsiderPatterns(): Set<AbstractFile>
+ getDirectory(relPathOfDirectory: String): AbstractDirectory
+ getName(): String
+ getFile(relPathOfFile: String): AbstractFile

AbstractDirectory

+ getFiles(): Set<AbstractFile>
+ getFilesRecursively(): Set<AbstractFile>
+ getPath(): String

# getIncludePatterns(): Set<String>
# getExcludePatterns(): Set<String>

# isFileArtifact(): boolean

+ getFile(): Path
+ getFileAsInputStream(): InputStream
+ getName(): String
+ getPath(): String

AbstractFile

1

1

1 0..*

CSARContent CSAR Model

Abbildung 4.9: UML-Klassendiagramm zum Artifact Model und deren Beziehung
mit CSARContent des CSAR Model. Die Methoden von CSARContent
sind nicht dargestellt.

Implementierung von AbstractArtifact korrekt ist und damit instanziiert werden
muss bzw. ob die Artefakt-Referenz nicht unterstützt wird. Falls eine passende
Implementierung gefunden wurde, die Referenz jedoch auf eine Datei bzw. einen

46



4 Konzept und Implementierung

Ordner verweist, der nicht existiert, so soll beim Erzeugen des Objekts eine Exception
geworfen werden.
Die Methode getArtifactRoot() muss eine Instanz der zugehörigen
AbstractDirectory-Implementierung zurückliefern, die das Wurzelverzeichnis
repräsentiert. Jede Methode von AbstractArtifact, die zum Durchsuchen gedacht
sind, delegiert an die gleichnamige Methode des AbstractDirectory-Objekts, das
von getArtifactRoot() zurückgegeben wird, weiter. Ein AbstractArtifact soll
also größtenteils durch ein AbstractDirectory realisiert werden, da wir davon
ausgehen, dass die Logik zum Durchsuchen des Wurzelverzeichnisses und eines
Ordners identisch ist.
Die Methode isFileArtifact() soll true zurückgeben, falls die Artefakt-Referenz
auf eine Datei zeigt (Datei-Artefakt). In diesem Fall besteht das Artefakt lediglich
aus dieser einen Datei.

Dem Konstruktor eines AbstractDirectory werden die Referenz des Ordners, Pat-
terns (optional) und ein boolean übergeben, der definiert, ob die ursprüngliche
Artefakt-Referenz auf eine Datei gezeigt hat. Letzterer Parameter ergibt sich durch
die Methode isFileArtifact() von AbstractArtifact bzw. deren Implementie-
rung.

Die Methoden zum Durchsuchen werden in einer Schnittstelle IBrowseable definiert,
die von AbstractDirectory, AbstractArtifact und CSARContent implementiert
werden (siehe Abbildung 4.9). Letztere Klasse implementiert die Schnittstelle zum
Durchsuchen der kompletten CSAR (siehe Abschnitt 4.3). Folgende Methoden werden
in IBrowseable definiert:

• getFile(relPathOfFile): Liefert ein AbstractFile-Objekt zurück, das die
Datei repräsentiert, die sich am übergebenen Pfad (relativ zum aktuellen
Ordner) befindet. Existiert die Datei nicht, so wird null zurückgegeben. Im
Falle eines Datei-Artefakts wird unabhängig vom übergebenen String das einzige
AbstractFile-Objekt zurückgeliefert.

• getFiles(): Liefert eine Menge von AbstractFile-Objekten zurück, die Da-
teien repräsentieren, die sich im aktuellen Ordner befinden (nicht rekursiv). Im
Falle eines Datei-Artefakts ist die Kardinalität der Menge eins.

• getFilesRecursively(): Liefert eine Menge von AbstractFile-Objekten zu-
rück, die Dateien repräsentieren, die sich im aktuellen Ordner und deren
Unterordnern befinden (rekursiv).

• getDirectory(relPathOfDirectory): Liefert ein AbstractDirectory-
Objekt zurück, das den Ordner repräsentiert, der sich am übergebenen
Pfad (relativ zum aktuellen Ordner) befindet. Existiert der Ordner nicht, so

47



4 Konzept und Implementierung

wird null zurückgegeben. Im Falle eines Datei-Artefakts wird immer null

zurückgegeben.

• getDirectories(): Liefert eine Menge von AbstractDirectory-Objekten zu-
rück, die Ordner repräsentieren, die sich im aktuellen Ordner befinden (nicht
rekursiv). Im Falle eines Datei-Artefakts ist die Menge leer.

Eine weitere Methode getDirectoriesRecursively(), die rekursiv alle
AbstractDirectory-Objekte ausgehend vom aktuellen Ordner zurückgibt, steht
nicht zur Verfügung, da diese momentan nicht erforderlich ist. Falls sie zukünf-
tig benötigt werden sollte, so kann sie mit geringem Aufwand realisiert werden
(Implementierung überwiegend analog zu getFilesRecursively()).

Alle genannten Methoden mit Ausnahme von getDirectory(...) und
getDirectories() sind bereits in AbstractDirectory implementiert und
berücksichtigen Patterns. In einer Implementierung von AbstractDirectory

müssen die protected-Methoden getFileNotConsiderPatterns(...)

und getFilesNotConsiderPatterns(...) sowie die public-Methoden
getDirectory(...) und getDirectories() realisiert werden, die keine Pat-
terns beachten sollen. Weiterhin muss die Methode getName() implementiert werden,
die den Dateinamen des Ordners zurückgibt. In der Oberklasse AbstractDirectory

werden die zurückgegebenen AbstractFile-Objekte der beiden protected-Methoden
dem PatternMatcher übergeben, der bestimmt, welche AbstractFile-Objekte den
Patterns (reguläre Ausdrücke) entsprechen. Diese werden schließlich zurückgegeben.
Falls dem Konstruktor von AbstractDirectory keine Patterns übergeben werden,
so wird der PatternMatcher nicht aufgerufen.

Grundsätzlich wird das Pattern Matching also erst zum spätestmöglichen Zeitpunkt
und nur für jene AbstractFile-Objekte durchgeführt, die der Nutzer anfordert. Wür-
de man das Pattern Matching dagegen bspw. bereits beim Instanziieren einer Imple-
mentierung von AbstractArtifact ausführen, so müssten sofort alle AbstractFile-
Objekte des Artefakts erzeugt werden, was u.U. unnötig ist, falls der Nutzer nur
bestimmte AbstractFile-Objekte benötigt (ggf. unnötige Internetzugriffe).

Bisher wurde das Pattern Matching in der TOSCA Engine durchgeführt. Aus folgen-
den Gründen ist die Entscheidung gefallen, die Verarbeitung von Patterns nun im
Artifact Model durchzuführen:

• Die IA Engine greift, wie bereits angesprochen, über die TOSCA Engine
auf Artefakte zu. Letztere Komponente hat keine Informationen darüber,
welche Dateien die IA Engine bzw. deren Plug-in aus einem Artefakt be-
nötigt. Die TOSCA Engine müsste somit für das Pattern Matching immer alle
AbstractFile-Objekte des Artefakts abrufen, was u.U. unnötig sein kann.

48



4 Konzept und Implementierung

• Damit die TOSCA Engine AbstractFile-Objekte, die nicht den Patterns ent-
sprechen, aus einem AbstractArtifact-Objekt löschen kann, müssten hierfür
Methoden bereitgestellt werden.

AbstractFile repräsentiert eine Datei eines Artefakts, wobei das Instanziieren
einer Implementierung von AbstractFile noch nicht mit dem Herunterladen der
Datei verbunden ist. Dem Konstruktor von AbstractFile muss die Referenz der
Datei übergeben werden. Wird die Klasse implementiert, so müssen Methoden zum
Zurückgeben des Dateinamens und Herunterladen der Datei sowie Abrufen ihres
InputStream realisiert werden.

4.4.1 CSAR Artefakte

Damit auch weiterhin auf relative Artefakt-Referenzen bzw. CSAR-Artefakte zuge-
griffen werden kann, musste im Artifact Model eine entsprechende Implementierung
bereitgestellt werden, die durch die Klassen CSARArtifact, CSARDirectory und
CSARFile (siehe Abbildung 4.10) repräsentiert wird. Da wir bereits die Metadaten

AbstractArtifact

AbstractDirectory

AbstractFile

CSARArtifact

CSARDirectory

CSARFile

1

0..*

1

0..* 1

0..*

1

0..*

1 0..*

1 0..*

PatternMatcher

1

1

Implementation for 
CSAR artifacts.

<<interface>>
IBrowseable

Uses appropriate storage 
provider for fetching file.

Abbildung 4.10: UML-Klassendiagramm zur Artifact Model-Implementierung für
CSAR-Artefakte bzw. relative Artefakt-Referenzen.

einer CSAR lokal gespeichert haben, sollen diese auch zum Durchsuchen verwen-
det werden. Dementsprechend konnten die Konstruktoren von CSARArtifact und
CSARDirectory nicht unverändert aus AbstractArtifact bzw. AbstractDirectory

49



4 Konzept und Implementierung

übernommen werden, sondern mussten zusätzlich um entsprechende Parameter für
CSAR-Metadaten erweitert werden. Dazu gehören die Map, die einen relativen Pfad
einer Datei der CSAR auf die zugehörige Storage Provider ID abbildet, das Set, das
relative Pfade von Ordnern der CSAR enthält und die CSAR ID (siehe Abschnitt 4.3).
Der Konstruktor von CSARFile musste lediglich um die CSAR ID ergänzt werden.

Instanziiert man CSARArtifact mit allen Metadaten der entsprechenden CSAR und
der Artifakt-Referenz, so werden im Konstruktor jene Dateien und Ordner aus den
Metadaten herausgesucht, die sich an der Artefakt-Referenz befinden. Mit diesen
Daten wird ein CSARDirectory erzeugt, das von der Methode getArtifactRoot()

zurückgeliefert wird und damit das Wurzelverzeichnis des Artefakts repräsentiert.
Die Implementierung der Methode fitsArtifactReference(artifactReference)

überprüft, ob die URI relativ ist und damit passend zu diesem Artefakt-Referenz-Typ
ist. Falls dies der Fall ist, die Referenz jedoch auf eine Datei bzw. einen Ordner
verweist, der nicht in der CSAR existiert, so wird (wie im vorherigen Abschnitt
gefordert) eine Exception bei der Instanziierung von CSARArtifact geworfen.

Die implementierten Methoden in CSARDirectory zum Durchsuchen eines Ordners
suchen sich die entsprechenden Metadaten heraus und erzeugen entsprechend eine
oder mehrere CSARDirectory bzw. CSARFile, die zurückgeliefert werden.

CSARFile bindet sich analog zum Storage Provider Manager des File Service (siehe
Abschnitt 4.2.2) gegen die Schnittstelle der Storage Providers, damit die Datei mittels
dem entsprechenden Storage Provider heruntergeladen bzw. deren InputStream ab-
gerufen werden kann. Wird eine Methode zum Beziehen der Datei aufgerufen, so wird
zunächst überprüft, ob der benötigte Storage Provider verfügbar und einsatzbereit
ist. Falls dies zutrifft, wird der relative Pfad gebildet, unter dem die Datei auf dem
Storage Provider abgelegt ist (siehe Abschnitt 4.2.2) und mit dieser Information
schließlich die entsprechende Methode auf dem Storage Provider aufgerufen.

Die Implementierung für CSAR-Artefakte kommt in der Klasse CSARContent sowohl
bei der Methode zum Zugriff auf Artefakte als auch bei allen weiteren Methoden zum
Einsatz, die eine bzw. mehrere AbstractDirectory-Objekte oder AbstractFile-
Objekte zurückliefern. Für letztere Methoden wird bei einer Instanziierung von
CSARContent ein CSARDirectory-Objekt mit einem leeren String als Referenz (voll-
ständige CSAR), allen Metadaten der CSAR, ihrer CSAR ID und keinen Patterns
erzeugt. Der boolean, der definiert, ob es sich um ein Datei-Artefakt handelt, ist
auf false gesetzt. Die Methoden zum Durchsuchen der CSAR bspw. delegieren
(lediglich) an die gleichnamigen Methoden des erzeugten CSARDirectory-Objekts
weiter.

50



4 Konzept und Implementierung

4.5 Storage Providers

Die Storage Providers (Storage Plug-ins) bilden die Basis des File Service, da mit
diesen der Inhalt von CSAR-Dateien in verschiedenen Umgebungen gespeichert
werden kann. Entsprechend den Anforderungen musste zunächst eine Schnittstelle
für Storage Providers definiert werden, auf die in Abschnitt 4.5.1 eingegangen wird.
Implementierungen dieser Schnittstelle (Storage Providers) mussten für Amazon S3
und das lokale Dateisystem bereitgestellt werden. In Abschnitt 4.5.2 wird erläutert,
wie diese mit der Bibliothek jclouds realisiert wurden. Abschnitt 4.5.3 erklärt, wie
ein neuer Storage Provider entwickelt werden muss.

4.5.1 Schnittstelle

Abbildung 4.11 zeigt die Schnittstelle, die von einem Storage Provider implementiert
werden muss. Beispielhaft ist zusätzlich ein Storage Provider dargestellt, der diese
implementiert. Entsprechend den Anforderungen definiert die Schnittstelle Methoden,
mit denen Dateien auf dem Storage Provider gespeichert, abgerufen und gelöscht
werden können. Zum Speichern kann eine Datei entweder als Path-Objekt oder
als InputStream übergeben werden. In letzterem Falle muss zusätzlich die Größe
der Datei spezifiziert werden, da die meisten Anbieter diese Information benöti-
gen. Dementsprechend gibt es eine Methode, mit welcher die Dateigröße bestimmt
werden kann. Eine Datei kann ebenso als Path-Objekt heruntergeladen oder deren
InputStream bereitgestellt werden. Falls eine der genannten Methoden fehlschlägt32,
so soll eine entsprechende Exception geworfen werden.

Für einen Storage Provider können Voraussetzungen definiert werden, die erfüllt
sein müssen, damit dieser einsatzbereit ist (siehe auch Abschnitt 4.2.1). Sind alle
Voraussetzungen erfüllt, so soll isStorageProviderReady() true zurückliefern. Vor-
aussetzungen können bspw. Zugangsdaten sein, die im Storage Provider hinterlegt
sein müssen oder das Vorhandensein eines (weiteren) Bundle, welches das Storage
Provider Bundle benötigt.

Eine ID ist zur eindeutigen Identifizierung eines Storage Providers unerlässlich und
muss daher im Storage Provider spezifiziert werden. Wie bereits angesprochen, wird
in den Metadaten einer CSAR (siehe Abschnitt 4.3) der relative Pfad einer Datei
zusammen mit der ID des Storage Providers gespeichert, auf dem die Datei abgelegt
ist. Des Weiteren kann im File Service ein Storage Provider mittels seiner ID als aktiv
definiert werden. Auch liefern einige Getter im File Service (z. B. zum Zurückgeben
der ID des Default Storage Provider) und Credentials Service eine oder mehrere

32Beispielsweise aufgrund eines Ausfalls der Internetverbindung.

51



4 Konzept und Implementierung

<<interface>>
ICoreInternalFileStorageProviderService

+ storeFile(absFilePath: Path, relFilePathOnStorageProvider: String)
+ storeFile(fileInputStream: InputStream, fileSize: long, relFilePathOnStorageProvider: String)
+ getFile(relFilePathOnStorageProvider: String, targetAbsFilePath: Path)
+ getFileAsInputStream(relFilePathOnStorageProvider: String): InputStream
+ getFileSize(relFilePathOnStorageProvider: String): long
+ deleteFile(relFilePathOnStorageProvider: String)
+ getStorageProviderID(): String
+ getStorageProviderName(): String
+ isStorageProviderReady(): boolean
+ setCredentials(credentials: Credentials)
+ getCredentialsID(): long

+ getCredentialsIdentityName(): String
+ getCredentialsKeyName(): String

+ deleteCredentials()
+ needsCredentials(): boolean

CoreInternalFileStorageProviderNameServiceImpl

<<interface>>
ICoreInternalFileStorageProviderService

Abbildung 4.11: UML-Klassendiagramm zur Schnittstelle der Storage Providers.

Storage Provider IDs zurück. Neben der ID muss auch ein Name vergeben werden,
der z. B. zukünftig zur Ausgabe auf der GUI verwendet werden kann. ID und Name
des Storage Providers können über entsprechende Getter abgefragt werden.

Weiterhin stehen Methoden zur Verfügung, die ausschließlich vom Credentials Service
(siehe Abschnitt 4.6) verwendet werden. Mit diesen können Zugangsdaten (Creden-
tials) gesetzt bzw. aus dem Storage Provider gelöscht werden. Falls Zugangsdaten
gesetzt sind, kann deren ID zurückgegeben werden. Die Credentials ID wird beim
Speichern von Zugangsdaten im Credentials Service künstlich erzeugt und dient
lediglich zur Identifizierung im Container. Für den Fall, das keine Zugangsdaten
gesetzt sind, soll die entsprechende Methode null zurückliefern. Dementsprechend
ist eine separate Methode hasCredentials() nicht erforderlich. Zugangsdaten be-
stehen neben Credentials ID, Storage Provider ID und einer optionalen Beschreibung
aus Identität und Schlüssel (siehe Abschnitt 4.6). Damit z. B. auf der GUI statt

52



4 Konzept und Implementierung

diesen generischen Begriffen die für den Storage Provider spezifischen Bezeichnungen
ausgegeben werden können, müssen letztere im Storage Provider definiert werden.
Zur Abfrage stehen entsprechende Methoden zur Verfügung. Des Weiteren kann zu-
rückgegeben werden, ob der Storage Provider Zugangsdaten benötigt. Das Speichern
von Zugangsdaten für einen Storage Provider, der keine benötigt, ist im Credentials
Service nicht möglich.

Die Methodensignaturen der Schnittstelle enthalten keine CSAR ID. Der Aufrufer
einer Methode ist folglich selbst dafür verantwortlich, aus der CSAR ID und dem
relativen Pfad einer Datei der CSAR den Pfad zu bilden, unter dem die Datei auf
dem Storage Provider abgelegt ist bzw. gespeichert werden soll. Diese Entwurfsent-
scheidung wurde aus folgenden Gründen getroffen:

• Konsistenz ist gegeben. Die Bildung des Pfads erfolgt für alle Storage Provider
auf die gleiche Weise. Eine bestimmte Datei einer CSAR würde man folglich
auf verschiedenen Storage Providern unter dem gleichen Pfad finden.

• Reduktion der Codemenge und ggf. Coderedundanz. Die Bildung des Pfads
muss lediglich der Aufrufer eines Storage Provider durchführen und nicht jeder
Storage Provider selbst.

• Falls zukünftig der File Service auch zum Speichern von Dateien eingesetzt
werden soll, die nicht Teil einer CSAR sind, so ist zumindest die Schnittstelle
hierfür bereits passend.

Gemäß einer Konvention, die während der Entwicklung von OpenTOSCA eingeführt
wurde, sollen Schnittstelle und deren Implementierungen (in diesem Fall Storage
Provider) in separaten Bundles verteilt werden (siehe auch Abschnitt 2.3). Diese
Konvention wurde auch im Rahmen dieser Arbeit eingehalten. Damit auf einen
Storage Provider zugegriffen werden kann, muss dieser einen deklarativen Service
bereitstellen (siehe Abschnitt 4.5.3).

4.5.2 Realisierung mit jclouds

Entsprechend den Anforderungen mussten zwei Implementierungen der Schnittstelle
für Storage Providers bereitgestellt werden: Eine Implementierung soll das Speichern
auf dem lokalen Dateisystem ermöglichen. Mit einer weiteren Implementierung soll
auf Amazon S3 gespeichert werden können.

Zur Verringerung des Implementierungsaufwands und der Codemenge wurde nach
einer Bibliothek gesucht, mit der Dateien in verschiedenen Umgebungen gespeichert
werden können. Im Rahmen einer Evaluation (siehe Abschnitt 2.8) wurden verschie-
dene Multi-Cloud-Bibliotheken miteinander verglichen. Die Wahl ist auf jclouds

53



4 Konzept und Implementierung

gefallen, da diese die einzige Bibliothek ist, die alle aufgestellten Anforderungen
erfüllt.

Da jclodus bzw. deren Blobstore API, die APIs von Blobstore-Anbietern abstrahiert,
wurde eine abstrakte Klasse implementiert, welche die Storage Provider-Schnittstelle
realisiert. In den implementierten Methoden der abstrakten Klasse werden die ent-
sprechenden Methoden der Blobstore API aufgerufen. Im Rahmen dieser Arbeit kam
jclouds in Version 1.6.0 zum Einsatz.

Ein Storage Provider, der das Speichern von Dateien in einer Umgebung erlauben
soll, welche auch von jclouds unterstützt wird, kann so einfach durch Erben von der
abstrakten Klasse realisiert werden. Dementsprechend wurden die Dateisystem- und
Amazon S3-Storage Provider auf diese Weise realisiert. Abbildung 4.12 veranschau-
licht den Entwurf mit jclouds. Die abstrakte Klasse implementiert alle Methoden

<<interface>>
ICoreInternalFileStorageProviderService

AbstractJCloudsFileStorageProvider

CoreInternalFileStorageProviderFileSystemServiceImpl CoreInternalFileStorageProviderAWSS3ServiceImpl

Uses

Blobstore API.
Local filesystem

(Filesystem‐based Blobstore)

...

...

Abbildung 4.12: UML-Klassendiagramm zur Realisierung der Dateisystem- und
Amazon S3-Storage Providers mittels einer abstrakten jclouds Im-
plementierung.

der Schnittstelle bis auf die Getter zum Abfragen der ID und des Namens des Sto-
rage Provider, der spezifischen Bezeichnungen für Identität und des Schlüssel der
Zugangsdaten sowie der Methode, die zurückgibt, ob der Storage Provider Zugangs-
daten benötigt. Ein Storage Provider, der durch Ableiten von dieser Klasse realisiert
werden soll, muss also lediglich die genannten Methoden implementieren. Dabei
können die Rückgabewerte der Methoden frei gewählt werden mit Ausnahme der
Methode, welche die Storage Provider ID zurückgibt. Diese muss mit der ID eines
jclouds Provider oder einer jclouds API übereinstimmen. Falls kein jclouds Provider
/ API für den benötigten Anbieter existiert, so kann der Storage Provider nicht auf
Basis von jclouds realisiert werden. In diesem Fall muss die komplette Schnittstelle
implementiert werden.

54



4 Konzept und Implementierung

In einer privaten Initialisierungs-Methode in der abstrakten Klasse wird der jclouds
BlobStoreContext (siehe auch Abschnitt 2.8.1) mit der Storage Provider ID und
den Zugangsdaten, die im Storage Provider gesetzt sind, erzeugt. Weiterhin wird der
Container33 auf dem entsprechenden Anbieter erzeugt. Als Name für den Container ist
standardmäßig „org.opentosca.csars“ definiert. Durch Überschreiben einer Methoden
in einer Implementierung der abstrakten Klasse kann ein anderer Container-Namen
definiert werden. Näheres hierzu und zu weiteren Parametern, die verändert werden
können, in Abschnitt 4.5.3. Falls die gesetzten Zugangsdaten falsch oder der Container
bereits mit anderen Zugangsdaten erstellt wurde, wird eine entsprechende Exception
geworfen und die Initialisierung schlägt fehl. Selbiges passiert, falls keine Internetver-
bindung vorhanden oder ein anderer Fehler auftritt (z. B. temporäres Problem mit
dem Anbieter). Die Intialisierungs-Methode wird grundsätzlich aufgerufen, falls die
Initialisierung nicht bereits stattgefunden hat und der Storage Provider einsatzbereit
ist.

Ein Storage Provider, der auf Basis der abstrakten Klasse realisiert wurde, ist
einsatzbereit, falls er Zugangsdaten besitzt und das benötigte jclouds Provider- bzw.
API-Bundle verfügbar ist, wobei erstere Bedingung lediglich zutrifft, falls der Storage
Provider Zugangsdaten benötigt. Zur Benachrichtigung, wenn ein entsprechendes
jclouds Bundle verfügbar bzw. nicht mehr verfügbar ist, werden Bundle Listeners
eingesetzt, die jclouds mitliefert (siehe auch Abschnitt 2.8). Die abstrakte Klasse
implementiert hierzu die Schnittstellen ProviderListener und ApiListener. In den
implementierten Methoden wird eine globale boolean-Variable entsprechend gesetzt,
falls das benötigte Provider- bzw. API-Bundle verfügbar bzw. nicht mehr verfügbar
ist. Die Bundle Listeners werden im Konstruktor der abstrakten Klasse gestartet.

Die Initialisierung wird aufgehoben bzw. der jclouds BlobStoreContext geschlossen,
falls Zugangsdaten aus dem Storage Provider gelöscht, neue Zugangsdaten im Storage
Provider gesetzt oder zur Laufzeit einer neuer Container-Namen definiert wird. Ist
ein Storage Provider nicht mehr verfügbar, so ist implizit die Initialisierung verloren
gegangen.

Zum Ändern des Container-Namens zur Laufzeit wurde in der abstrakten Klasse eine
entsprechende Methode implementiert, die durch ein OSGi Konsolen Kommando
aufgerufen werden soll. Leider konnte die Definition des Kommandos nicht in der
abstrakten Klasse erfolgen. Eine Klasse, die OSGi Konsolen Kommandos bereitstellen
soll, muss grundsätzlich einen deklarativen Service bereitstellen, dessen Schnittstelle
mit dem OSGi Framework mitgeliefert wird. Die Klasse, die einen Service anbietet,
wird vom OSGi Framework instanziiert, was jedoch mit einer abstrakten Klasse
nicht möglich ist. Das angesprochene OSGi Konsolen Kommando musste daher in

33Bezeichnung für Amazon S3: Bucket

55



4 Konzept und Implementierung

den Implementierungsklassen der Storage Providers bzw. den Klassen, die von der
abstrakten Klasse erben, definiert werden.

In den Metadaten einer CSAR (CSAR Model, siehe Abschnitt 4.3) wird momentan
zu einer Datei die Storage Provider ID gespeichert, nicht aber zusätzlich auch der
Name des Containers, in dem die Datei gespeichert ist. Falls eine CSAR somit auf
mehrere Container verteilt wurde und eine Datei dieser CSAR abgerufen werden soll,
so muss hierzu folglich der Namen des Containers, in dem die Datei abgelegt ist,
im entsprechenden Storage Provider gesetzt sein. Andernfalls wird die Datei nicht
gefunden. Folgender Ablauf veranschaulicht diese Einschränkung (X und Y stehen
für beliebige, verschiedene Dateien einer CSAR):

1. Speichern einer CSAR mit dem Dateisystem-Storage Provider.

2. Verschieben einer Datei X der CSAR mit dem Amazon S3-Storage Provider.

3. Ändern des Container-Namens im Amazon S3-Storage Provider.

4. Verschieben einer Datei Y der CSAR mit dem Amazon S3-Storage Provider.

Die Dateien X und Y befinden sich nun in verschiedenen Containern (Buckets) auf
Amazon S3. Falls Datei X abgerufen wird, so schlägt dies fehl, da in jenem Container
nach der Datei gesucht wird, in der Y abgelegt ist. Ändert man daraufhin den Namen
des Containers wieder auf den ursprünglichen Namen, so wird X gefunden, jedoch
nicht mehr Y.

Ebenfalls aufgrund fehlender Metadaten (in diesem Fall die Identität der Zugangs-
daten) ist das Verschieben einer Datei bzw. eines Ordners zwischen verschiedenen
Benutzerkonten eines Anbieters (mit selbigen Storage Provider) nicht möglich.

Da die Erweiterung der Metadaten mit größeren Anpassungen (insbesondere im File
Service und Credentials Service) verbunden ist, konnte dies aus zeitlichen Gründen
im Rahmen dieser Arbeit nicht mehr erledigt werden.

4.5.3 Entwicklung eines neuen Storage Providers

In Folgenden wird beschrieben, wie ein neuer Storage Provider entwickelt werden muss,
damit er in OpenTOSCA zur Verfügung steht. Als Entwicklungsumgebung kommt
Eclipse zum Einsatz. Kenntnisse mit diesem Werkzeug werden dementsprechend
vorausgesetzt.

Wir gehen davon aus, dass bereits alle Projekte des TOSCA-Containers im Eclipse
Workspace vorhanden sind. Zunächst muss ein neues „Plug-in Project“ angelegt
werden, das den Storage Provider repräsentiert. Entsprechend der Konvention sollte
als Projektnamen „org.opentosca.core.internal.file.storage.providers.x.service.impl“

56



4 Konzept und Implementierung

gewählt werden, wobei „x“ durch eine selbstgewählte Bezeichnung des Storage
Providers ersetzt wird. Unter „Target Platform“ wird „an OSGi framework“ und
„standard“ ausgewählt. Im zweiten Schritt des Assistenten kann unter „Name“ ein
Bundle-Name definiert werden. Eine Activator-Klasse wird nicht benötigt und sollte
daher nicht erstellt werden. Nachdem das Projekt angelegt ist, öffnen wir deren
Bundle Manifest „META-INF/MANIFEST.MF“. Im erscheinenden Plug-in Manifest
Editor wechseln wir zur Registerkarte „Dependencies“ und fügen unter „Imported
Packages“ folgende Pakete hinzu:

• org.opentosca.core.internal.file.storage.providers.service

• org.jclouds.logging.config

• org.jclouds.domain

• com.google.inject

• org.opentosca.core.model.credentials

• org.opentosca.exceptions

In einem Paket, das als Namen den zuvor gewählten Projektnamen erhält, wird
eine Klasse CoreInternalFileStorageProviderXServiceImpl erstellt, welche die
Implementierung des Storage Provider repräsentiert. X wird durch eine Bezeichnung
des Storage Provider ersetzt.

Nun sollte ermittelt werden, ob der benötigte Anbieter von jclouds unterstützt
wird und damit die abstrakte Klasse (siehe Abschnitt 4.5.2) zur Realisierung her-
angezogen werden kann. Hierzu existiert auf der Website von jclouds eine Liste
der unterstützten Providers und APIs. Auf dieser Seite ist lediglich der Abschnitt
„Blobstore API“ relevant. Die „Maven Artifact ID“ des entsprechenden jclouds
Provider bzw. API wird zum Beziehen der Bundles benötigt. Falls jclouds den be-
nötigten Anbieter nicht unterstützt, so muss die erstellte Klasse die Schnittstelle
ICoreInternalFileStorageProviderService vollständig implementieren. Hierzu
kann ggf. eine Anbieter-spezifische Bibliothek verwendet werden. Da sich die APIs
solcher Bibliotheken von Anbieter zu Anbieter stark unterscheiden, kann an dieser
Stelle keine allgemeingültige Anleitung zur Realisierung der Schnittstelle dargelegt
werden. Stattdessen wird auf die Dokumentation verwiesen. Dropbox bspw. wird
nicht von jclouds unterstützt, da dieser Anbieter keinen Blobstore bereitstellt. Falls
die Realisierung nicht auf Basis der abstrakten jclouds Implementierung erfolgt, so
können die folgenden zwei Abschnitte übersprungen werden.

Im Folgenden muss das benötigte jclouds Provider- bzw. API-Bundle heruntergeladen
werden. Auch die zugehörige POM wird benötigt. Dazu gehen wir auf das zentrale
Maven Repository, geben die „Maven Artifact ID“ in das Suchfeld ein und laden

57

http://www.jclouds.org/documentation/reference/supported-providers
http://www.jclouds.org/documentation/reference/supported-providers
http://search.maven.org
http://search.maven.org


4 Konzept und Implementierung

die JAR und POM des Maven-Artefakts in Version 1.6.0 herunter. Anschließend
wechseln wir in der Kommandozeile in den Ordner, in dem die beiden Dateien
abgelegt sind und führen den in Listing 4.1 dargestellten Maven-Befehl aus, mit dem
alle Abhängigkeiten des Bundle (weitere Bundles) heruntergeladen werden. Hierzu
muss das Build-Management-Werkzeug Apachen Maven34 installiert sein.

1 mvn dependency:copy-dependencies -DincludeScope=runtime

Listing 4.1: Maven-Befehl zum Beziehen der Abhängigkeiten eines Maven-Projekts.

Die heruntergeladenen JARs bzw. Bundles müssen in Eclipse zur Target Platform35

hinzugefügt werden. Dazu wird das Projekt „org.opentosca.targetplatform.container“
geöffnet und die Dateien im Ordner „JClouds“ abgelegt. In diesem Ordner befinden
sich bereits das Amazon S3 Provider-Bundle, das Dateisystem API-Bundle und deren
Abhängigkeiten. Zu letzteren gehören auch die jclouds Hauptkomponenten. Diese
wurden durch vorherigen Maven-Befehl erneut heruntergeladen, sodass beim Ablegen
der Dateien eine Meldung erscheint, ob bereits existierende Dateien überschrieben
werden sollen. Grundsätzlich sollte dies verneint werden. Damit Eclipse die neu hinzu-
gefügten Bundles sofort erkennt, muss die Datei „OpenToscaTargetPlatform.target“
geöffnet und im erscheinenden Target Definition Editor auf „Set as Target Platform“
geklickt werden.

Im Storage Provider-Projekt öffnen wir anschließend die zuvor erstellte Klasse und
lassen diese von der abstrakten Klasse AbstractJCloudsFileStorageProvider

erben. Fünf Getter müssen nun noch implementiert werden. Die Methode
getStorageProviderID() muss dabei die jclouds Provider bzw. API ID zurücklie-
fern. Diese entspricht der „Maven Artifact ID“. Weiterhin können folgende Methoden
überschrieben werden, die durch die abstrakte Klasse bereitgestellt werden:

• getContainerName(): Gibt den Namen des Containers zurück, in dem die
Dateien abgelegt werden. Wird die Methode nicht überschrieben, so wird als
Name „org.opentosca.csars“ verwendet.

• getContainerLocation(): Gibt den Ort zurück, an dem der Container angelegt
werden soll. Bei Amazon S3 bspw. wird der Ort als Region bezeichnet. Wird
die Methode nicht überschrieben, so wird der Standard-Ort verwendet, der
vom Anbieter vorgegeben wird.

34Website von Apache Maven: http://maven.apache.org
35Die Target Platform besteht aus Bundles (Bibliotheken), die zur Entwicklung und Laufzeit einer

Anwendung auf Basis von OSGi zur Verfügung stehen.

58

http://maven.apache.org


4 Konzept und Implementierung

• getJCloudsModules(): Gibt jclouds Module zurück, die geladen werden sollen.
Das SLF4J36 Logging Modul wird immer geladen, da OpenTOSCA diese
Logging Facade zusammen mit dem Logging Framework Logback37 verwendet.

• overwriteJCloudsProperties(): Ermöglicht das Überschreiben von vordefi-
nierten jclouds Properties. Für die jclouds Dateisystem-Implementierung bspw.
muss ein Property überschrieben werden, in dem der Pfad hinterlegt wird, unter
dem der Blobstore erstellt werden soll. Wird die Methode nicht überschrieben,
so werden keine jclouds Properties verändert.

Nähere Informationen zu jclouds Module sowie Properties finden sich auf der jclouds
Website38.

Der letzte Schritt besteht darin, den Storage Provider als deklarativen Service bereit-
zustellen. Dazu wird im Storage Provider-Projekt zunächst ein Ordner „OSGI-INF“
angelegt, in dem anschließend eine Component Definition-Datei erstellt wird. Letzte-
res erfolgt über „New. . . “ → „Other. . . “ → „Plug-in Development“ → „Component
Definition“. Im erscheinenden Assistenten wird unter „Component Definition Infor-
mation“ → „Class“ die zuvor erstellte Klasse definiert, welche die Implementierung
repräsentiert. Nach der Erstellung der Datei erscheint der Declarative Services Editor,
in dem zur Registerkarte „Services“ gewechselt wird. Unter „Provided Services“ wird
die Storage Provider-Schnittstelle ICoreInternalFileStorageProviderService

hinzugefügt. Für OSGi Konsolen Kommandos muss zusätzlich die Schnittstelle
CommandProvider in die Liste eingetragen werden. Analog zum Amazon S3- und
Dateisystem-Storage Provider kann bspw. ein OSGi Konsolen Kommando zur Ände-
rung des Container-Namens zur Laufzeit definiert werden. Die Vorgehensweise zum
Erstellen eines entsprechenden Kommandos kann den Implementierungsklassen der
angesprochenen Storage Providern entnommen werden.

4.6 Credentials Service

Entsprechend den Anforderungen musste eine Komponente zur Verwaltung von
Zugangsdaten („Credentials“) für Storage Provider entwickelt werden. Zugangsdaten
sollen mit dieser Komponente direkt in einem passenden Storage Provider gesetzt
bzw. aus dem Storage Provider gelöscht werden können. Aus diesen Anforderungen
heraus ist der Credentials Service entstanden, der Zugangsdaten in der Datenbank
speichert. Zum Zugriff auf die verfügbaren Storage Provider bindet er sich gegen die
Schnittstelle der Storage Providers.

36Website der Simple Logging Facade for Java (SLF4J): http://www.slf4j.org
37Website von Logback: http://logback.qos.ch
38Website von jclouds: http://www.jclouds.org

59

http://www.slf4j.org
http://logback.qos.ch
http://www.jclouds.org


4 Konzept und Implementierung

Zugangsdaten werden durch das Credentials Model bzw. deren Klasse Credentials re-
präsentiert und bestehen aus (1) Identität („identity“, z. B. Benutzername), (2) Schlüs-
sel („key“, z. B. Passwort), (3) einer optionalen Beschreibung („description“), (4) der
ID des Storage Provider, für den die Zugangsdaten gedacht sind sowie einer (5) ID,
welche die Zugangsdaten identifiziert („credentialsID“). Im Falle von Amazon S3
bspw. wäre die Identität der Access Key und der Schlüssel der Secret Access Key.
Bei Bedarf kann die Klasse zukünftig um weitere Attribute ergänzt werden.

Die Entscheidung zur Einführung von IDs für Zugangsdaten wurde aus folgenden
Gründen getroffen:

• Eine ID ist stabiler gegenüber Änderungen an der Identifikation von Zugangs-
daten. Nehmen wir an, Zugangsdaten würden über die Identität identifiziert
werden. Nun kommt ein weiteres Attribut hinzu und Zugangsdaten sollen über
dieses und der Identität identifiziert werden. Hierfür müssten dann ggf. größere
Anpassungen am Credentials Service vorgenommen werden.

• Die gespeicherten Zugangsdaten sollen über die Container API des Containers
abgefragt werden können. Es ist für einen Nutzer der REST API verständlicher,
wenn Zugangsdaten unter .../<id>/ statt z. B. unter /<identity>;<key>/ zu
finden sind. Bezugnehmend zum ersten Punkt ist ersteres URI-Design zudem
stabiler.

Abbildung 4.13 zeigt den Ablauf der Methode storeCredentials(credentials),
mit der Zugangsdaten im Credentials Service gespeichert werden können. In einem

Credentials Service Storage Provider

Credentials are valid.

true

Storage provider is available.

Get storage provider ID in credentials.

needsCredentials()

storeCredentials(Credentials)

getCredentialsID()

null

setCredentialsInStorageProvider(Credentials)

Storage provider
has currently no 
credentials.

Abbildung 4.13: UML-Sequenzdiagramm zum Speichern von Zugangsdaten.

ersten Schritt wird überprüft, ob die übergebenen Zugangsdaten gültig sind. Ein

60



4 Konzept und Implementierung

Credentials-Objekt, in dem kein Schlüssel, keine Identität oder keine Storage
Provider ID definiert wurde, wird nicht akzeptiert. Falls die Zugangsdaten korrekt
sind, so wird ermittelt, ob der entsprechende Storage Provider Zugangsdaten benötigt.
Dies ist nur möglich, falls der Storage Provider verfügbar ist. Entsprechend den
Anforderungen können im Credentials Service auch Zugangsdaten für Storage Provider
gespeichert werden, die nicht verfügbar sind. Daraus folgt, das wir das Speichern
von Zugangsdaten für einen Storage Provider, der keine Zugangsdaten benötigt
und (gerade) nicht verfügbar ist, nicht verhindern können. Benötigt der Storage
Provider Zugangsdaten bzw. ist dieser nicht verfügbar, so werden die Zugangsdaten
daraufhin in der Datenbank gespeichert. Während diesem Vorgang wird überprüft,
ob bereits Zugangsdaten mit gleichem Schlüssel und gleicher Identität existieren. Ist
dies der Fall, so schlägt die Speicheroperation fehl. Hierzu wurden die genannten
Attribute als „unique constraint“39 im Credentials Model definiert. Weiterhin wird,
wie bereits erwähnt, eine künstliche ID generiert und den Zugangsdaten zugewiesen.
Falls der entsprechende Storage Provider verfügbar ist und nicht bereits Zugangsdaten
besitzt40, so werden die Zugangsdaten nach dem Speichern direkt im Storage Provider
gesetzt (Fall, der in Abbildung 4.13 dargestellt ist). Abschließend wird die erzeugte
ID der Zugangsdaten zurückgegeben.

Zugangsdaten werden nicht nur beim Speichern automatisch im Storage Provider
gesetzt, sondern auch, falls ein Storage Provider verfügbar wird, für den bereits
Zugangsdaten im Credentials Service gespeichert sind. Es sollte dabei beachtet werden,
dass dies nur geschieht, falls nicht mehrere Zugangsdaten für den Storage Provider
gespeichert sind und dieser auch Zugangsdaten benötigt. Erstere Bedingung wurde
eingeführt, da wir andernfalls zufällig bestimmen müssten, welche Zugangsdaten
gesetzt werden sollen.

Mit der Methode deleteCredentials(credentialsID) können Zugangsdaten ge-
löscht werden. Zunächst werden die Zugangsdaten mit der übergebenen ID aus der
Datenbank abgerufen, um die ID des Storage Providers zu erhalten, für den die
Zugangsdaten gedacht sind. Sofern der Storage Provider verfügbar ist, wird ange-
fragt, ob er Zugangsdaten mit der übergebenen ID besitzt. Falls dies zutrifft, werden
diese aus dem Storage Provider gelöscht, der dadurch nicht mehr einsatzbereit ist.
Abschließend werden die Zugangsdaten aus der Datenbank gelöscht.

Mit deleteAllCredentials() können alle gespeicherten Zugangsdaten gelöscht
werden. Hierzu wird deleteCredentials(...) wiederverwendet.

Mit den Methoden setCredentialsInStorageProvider(credentialsID) bzw.
deleteCredentialsInStorageProvider(credentialsID) können bereits gespei-
39Ein „unique constraint“ definiert eine Menge von eindeutigen Spalten in einer Datenbanktabelle.
40Wir nehmen dabei an, dass das automatische Überschreiben von Zugangsdaten in einem Storage

Provider unerwünscht ist.

61



4 Konzept und Implementierung

cherte Zugangsdaten (manuell) in einem Storage Provider gesetzt bzw. aus dem
Storage Provider gelöscht werden, sofern der entsprechende Storage Provider verfüg-
bar ist. Erstere Methode überprüft, ob der Storage Provider Zugangsdaten benötigt
und überschreibt bereits gesetzte Zugangsdaten. Wie bereits in Abschnitt 4.5.1 ange-
sprochen, definiert die Schnittstelle der Storage Providers eine Methode, über die
angefragt werden kann, ob Zugangsdaten erforderlich sind.

getCredentials(credentialsID) bzw. getAllCredentials() stellt Zugangsdaten
bzw. alle gespeicherten Zugangsdaten bereit.

Weiterhin stehen Methoden für folgende Aufgaben zur Verfügung:

• Bereitstellen aller gespeicherten Zugangsdaten für einen bestimmten Storage
Provider.

• Bestimmen der IDs aller gespeicherten Zugangsdaten.

• Ermitteln, ob ein Storage Provider Zugangsdaten bzw. Zugangsdaten mit einer
bestimmten ID besitzt.

• Bestimmen, ob ein Storage Provider Zugangsdaten benötigt.

• Abfragen der Storage Provider-spezifischen Bezeichnungen für Identität und
Schlüssel.

Entsprechend den Anforderungen können die meisten Methoden auch über OSGi
Konsolen Kommandos aufgerufen werden.

Zurzeit kann der Credentials Service lediglich Zugangsdaten für Storage Provider ver-
walten. Zukünftig wäre es denkbar, dass er auch Zugangsdaten weiterer Komponenten
verwaltet und somit eine zentrale Rolle in OpenTOSCA einnimmt.

4.7 Integration

4.7.1 Container API

Im Rahmen der Integration mussten insbesondere die neuen Funktionalitäten des
File Service und Credentials Service über die Container API, der externen REST-
Schnittstelle von OpenTOSCA, bereitgestellt werden. Die Container API wurde
mittels der JAX-RS41 Referenzimplementierung Jersey42 realisiert und läuft auf dem
HTTP-Webserver und Servlet/JSP-Container Jetty43.

41Java API for RESTful Web Services (JAX-RS) spezifiziert eine Java-API zur Entwicklung von
REST-basierten Anwendungen.

42Website von Jersey: https://jersey.java.net
43Website von Jetty: http://www.eclipse.org/jetty

62

https://jersey.java.net
http://www.eclipse.org/jetty


4 Konzept und Implementierung

Die Stammressource („root resource“) der Container API wird durch die URI
http://localhost:1337/containerapi repräsentiert. Alle im folgenden genann-
ten URIs, die Ressourcen identifizieren, werden relativ zu dieser URI angegeben.
Abbildung 4.14 veranschaulicht die hierarchische Struktur der Container API, wobei
lediglich Ressourcen dargestellt sind, die im Rahmen dieser Arbeit hinzugefügt wur-
den (blau umrandet) bzw. an denen Anpassungen vorgenommen wurden (schwarz
umrandet). In den folgenden Unterabschnitten soll nun näher auf die dargestellten
Ressourcen eingegangen werden.

.../containerapi

/CSARs

/<csarID1>

...

/Content

/TopologyPicture

...

/StorageProviders

/Default

/Available

/<csarID2>

/<storageProviderID1>

/<storageProviderID2>

...

/Credentials

/<credentialsID1>

...

/<credentialsID2>

...

/download

CSAR Browsing API
(see figure 4.15)

image/*

application/octet‐
stream

Abbildung 4.14: Neue und veränderte Ressourcen der Container API.

4.7.1.1 Storage Providers

Mittels GET-Anfragen an die URIs /StorageProviders/Available und
/StorageProviders/Default werden Ressourcen bereitgestellt, die Informatio-
nen zu allen verfügbaren Storage Providern bzw. dem Default Storage Provider
enthalten. Als Repräsentationsformat kommt XML zum Einsatz. Die zu einem Sto-
rage Provider zurückgegeben Daten bestehen aus (1) ID und (2) Namen des Storage
Provider sowie den Informationen, ob der Storage Provider (3) als aktiv gesetzt ist,
(4) einsatzbereit ist, der (5) Default Storage Provider ist, (6) Zugangsdaten benötigt

63

http://localhost:1337/containerapi


4 Konzept und Implementierung

und (7) zurzeit Zugangsdaten besitzt. Auch werden die spezifischen Bezeichnungen
für (8) Identität und (9) Schlüssel der Zugangsdaten zurückgegeben. Listing 4.2 zeigt
beispielhaft XML-Code der Ressource /StorageProviders/Available.

1 <StorageProviders>
2 <StorageProvider id="aws-s3" name="Amazon Simple Storage Service (S3)">
3 <Active>false</Active>
4 <Ready>true</Ready>
5 <Default>false</Default>
6 <NeedsCredentials>true</NeedsCredentials>
7 <CredentialsIdentityName>Access Key ID</CredentialsIdentityName>
8 <CredentialsKeyName>Secret Access Key</CredentialsKeyName>
9 <HasCredentials>true</HasCredentials>

10 </StorageProvider>
11 </StorageProviders>

Listing 4.2: XML-Repräsentation der Ressource /StorageProviders/Available. In
diesem Fall ist lediglich der Amazon S3-Storage Provider verfügbar.

Die Unterteilung in zwei Ressourcen ist erforderlich, da es, wie bereits erwähnt,
möglich sein kann, dass der Default Storage Provider (siehe Abschnitt 4.2.1) nicht
verfügbar ist. In diesem Fall soll zumindest seine ID ausgegeben werden können.

In der Ressource /StorageProviders/Available stehen zusätzlich Filterfunktionen
zur Verfügung:

• .../Available?type=active: Gibt Informationen zum aktiven Storage Pro-
vider zurück.

• .../Available?type=default: Gibt Informationen zum Default Storage Pro-
vider zurück (sofern verfügbar).

• .../Available?type=ready: Gibt Informationen zu Storage Providern zurück,
die einsatzbereit und damit auch verfügbar sind.

Unter der URI /StorageProviders/Available/<StorageProviderID> werden die
genannten Daten zu einem einzelnen, verfügbaren Storage Provider bereitstellt.
Mittels einer POST-Anfrage an diese URI kann der Storage Provider als aktiv
gesetzt oder Zugangsdaten aus diesem gelöscht werden. Hierzu muss der Body der
Anfrage das Schlüsselwort „activate“ bzw. „unset“ enthalten. Besteht der Body
aus einem anderen Inhalt, so wird der HTTP-Statuscode 400 (fehlerhafte Anfrage)
zurückgeliefert.

Zur Repräsentation der Storage Provider-Informationen in XML musste ein JAXB-
Modell entworfen und implementiert werden. Dieses besteht aus den Klassen
StorageProvidersJaxb und StorageProviderJaxb. Ein StorageProvidersJaxb-
Objekt enthält eine beliebige Anzahl von StorageProviderJaxb-Objekten, die jeweils

64



4 Konzept und Implementierung

die genannten Daten zu einem Storage Provider enthalten. In einer JaxbFactory, die
statische Methoden bereitstellt, werden die Klassen des JAXB-Modells instanziiert.
Hierbei werden die benötigten Informationen aus dem File Service und Credentials
Service abgerufen.

4.7.1.2 Credentials

Eine GET-Anfrage an die URI /Credentials liefert alle im Credentials Service
gespeicherten Zugangsdaten zurück. Zu Zugangsdaten werden die Werte aller Attri-
bute ausgegeben, die im Credentials Model (siehe Abschnitt 4.6) definiert wurden.
Zusätzlich wird angegeben, ob Zugangsdaten in ihrem zugehörigen Storage Provider
gesetzt sind. Als Datenformat kommt XML zum Einsatz.

Analog dazu liefert /Credentials/<credentialsID> die Zugangsdaten mit einer
bestimmten ID zurück. Sendet man eine POST-Anfrage mit „set“ bzw. „unset“ im
Body an diese URI, so werden die Zugangsdaten im zugehörigen Storage Provider
gesetzt bzw. aus dem Storage Provider gelöscht. Falls das Setzen von Zugangsdaten
fehlschlägt, da der entsprechende Storage Provider nicht verfügbar ist oder keine
Zugangsdaten benötigt, so wird der HTTP-Statuscode 500 (interner Serverfehler)
zurückgegeben. Der Code 400 wird zurückgeliefert, falls die Zugangsdaten nicht aus
dem Storage Provider gelöscht werden, da dieser keine oder andere Zugangsdaten
besitzt.

Mittels einer POST-Anfrage an /Credentials können Zugangsdaten gespeichert
werden. Der Body der Anfrage muss die zu speichernden Zugangsdaten in XML
enthalten, wobei die in Abbildung 4.3 dargestellte Syntax eingehalten werden muss.
Weiterhin muss im Header das Attribut „Content-Type“ mit dem Wert „appli-
cation/xml“ spezifiziert sein. Andernfalls wird der HTTP-Statuscode 415 (nicht
unterstützter Medientyp) zurückgegeben. Im Erfolgsfall wird die URI der erzeugten
Credentials-Ressource /Credentials/<credentialsID> zurückgeliefert. Kommt es
dagegen während dem Speichern der Zugangsdaten zu einem Fehler (z. B. unvollstän-
dige Zugangsdaten), so wird stattdessen der Code 500 zurückgegeben.

1 <Credentials>
2 <StorageProviderID>aws-s3</StorageProviderID>
3 <Identity>amazon_access_key</Identity>
4 <Key>amazon_secret_key</Key>
5 <Description>Optional Description.</Description>
6 </Credentials>

Listing 4.3: XML-Repräsentation von Zugangsdaten.

65



4 Konzept und Implementierung

Das Löschen von Zugangsdaten mit einer bestimmten ID erfolgt durch Senden
einer DELETE-Anfrage an /Credentials/<credentialsID>. Auch ist das Löschen
aller im Credentials Service gespeicherten Zugangsdaten möglich. Hierzu muss eine
DELETE-Anfrage an /Credentials gesendet werden.

Für die Repräsentation von Zugangsdaten in XML musste ein weiteres JAXB-Modell
erstellt werden. Ein AllCredentialsJaxb-Objekt repräsentiert eine Menge von Zu-
gangsdaten. Es enthält eine beliebige Anzahl von CredentialsJaxb-Objekten, die
einzelne Zugangsdaten darstellen. Da die Attribute von Zugangsdaten im Credentials
Model (siehe Abschnitt 4.6) bzw. deren Klasse Credentials definiert sind, wurde
CredentialsJaxb von Credentials abgeleitet. Zusätzlich musste CredentialsJaxb

noch um ein Attribut erweitert werden, das angibt, ob die Zugangsdaten im zuge-
hörigen Storage Provider gesetzt sind. Die Instanziierung des JAXB-Modells für
Zugangsdaten erfolgt ebenfalls in einer JaxbFactory, welche die benötigten Informa-
tionen aus dem Credentials Service bezieht.

4.7.1.3 CSARs

Das Speichern einer CSAR erfolgt durch Senden einer POST-Anfrage an /CSARs.
Der Body der Anfrage muss aus dem Quellpfad der CSAR-Datei bestehen. Wurde
eine CSAR erfolgreich gespeichert, so wird die URI /CSARs/<csarID> der erzeugten
Ressource zurückliefert, welche die gespeicherte CSAR repräsentiert. Falls es während
dem Speichern zu einem Fehler kommt, der in den Verantwortungsbereich des Nutzers
fällt (z. B. keine gültige CSAR), so wird der HTTP-Statuscode 400 zurückgegeben. Bei
anderen Fehlern besteht die Antwort aus dem Code 500. Zum Löschen einer CSAR
muss eine DELETE-Anfrage an /CSARs/<csarID> gesendet werden. Der Export
einer CSAR erfolgt mittels einer GET-Anfrage an /CSARs/<csarID>/download.
Zurückgeliefert werden Daten vom Medientyp „application/octet-stream“.

Eine gespeicherte CSAR kann über die Container API durchsucht werden (CSAR
Browsing API). Die URI /CSARs/<csarID>/Content repräsentiert hierzu das Wur-
zelverzeichnis der CSAR. Eine GET-Anfrage liefert Referenzen (URIs) zu al-
len untergeordneten Ressourcen, die jeweils Dateien oder Ordner im Wurzel-
verzeichnis der CSAR repräsentieren. Analog dazu kann z.B. eine Anfrage an
/CSARs/<csarID>/Content/IA gerichtet werden, um entsprechende Referenzen von
Dateien und Ordnern zu erhalten, die sich im Ordner „/IA“ der CSAR befinden. Falls
„/IA“ dagegen eine Datei ist, so wird lediglich eine Selbstreferenz zurückgegeben.
Unter der URI /CSARs/<csarID>/Content/IA/download kann in diesem Fall die Da-
tei heruntergeladen werden (Daten als „application/octet-stream“). Abbildung 4.15
veranschaulicht die Struktur der CSAR Browsing API.

66



4 Konzept und Implementierung

/<nameOfFile1>

/<nameOfDir1>

....../Content

... /<nameOfSubDir1>

/<nameOfFile1>

...

...

/download

/download

application/octet‐stream

Abbildung 4.15: Struktur der CSAR Browsing API.

Zur Darstellung von Referenzen wird grundsätzlich XLink eingesetzt. Dabei handelt
es sich um eine Syntax zur Darstellung von Links in XML. Listing 4.4 veranschaulicht
diese Notation.

1 <References>
2 <Reference xlink:type="simple" xlink:href="http://localhost:1337/containerapi/

CSARs/Test.csar/Content/IAs/EC2LinuxService" xlink:title="EC2LinuxService"/>
3 <Reference xlink:type="simple" xlink:href="http://localhost:1337/containerapi/

CSARs/Test.csar/Content/IAs/EC2VMService" xlink:title="EC2VMService"/>
4 <Reference xlink:type="simple" xlink:href="http://localhost:1337/containerapi/

CSARs/Test.csar/Content/IAs" xlink:title="Self"/>
5 </References>

Listing 4.4: XLink-Repräsentation einer CSAR Browsing API-Ressource. Die
Ressource enthält zwei Referenzen zu untergeordneten Ressourcen, die
Dateien oder Ordner repräsentieren können und eine Selbstreferenz.

Das Verschieben einer Datei bzw. eines Ordners zum aktiven Storage Provider (sie-
he Abschnitt 4.2.1) erfolgt ebenfalls über die CSAR Browsing API. Hierzu muss
eine POST-Anfrage mit dem Schlüsselwort „move“ an die URI, welche die zu ver-
schiebende Datei bzw. den zu verschiebenden Ordner repräsentiert, gesendet wer-
den. Zum Verschieben einer kompletten CSAR muss selbige POST-Anfrage an
/CSARs/<csarID>/Content gesendet werden.

Wie bereits erwähnt, muss zum Durchsuchen einer CSAR nun das Artifact Model
eingesetzt werden. Dementsprechend mussten Anpassungen an der CSAR Browsing
API vorgenommen werden, sodass statt Dateisystemoperationen nun die entspre-
chenden Methoden des Artifact Model verwendet werden. Falls der Nutzer eine Datei
herunterlädt, so erfolgt dies direkt vom entsprechenden Anbieter (z. B. Amazon
S3).

67



4 Konzept und Implementierung

Unter /CSARs/<csarID>/TopologyPicture wird das Topologie-Bild der CSAR be-
reitgestellt. Sofern der relative Pfad in der TOSCA Metadatei spezifiziert ist (sie-
he Abschnitt 2.2.2) und auf eine existierende Datei verweist, werden Daten vom
Medientyp „image/*“ zurückgeliefert. Andernfalls besteht die Antwort aus dem
HTTP-Statuscode 404 (nicht gefunden). Das Abrufen des Bilds erfolgt nun analog
über das Artifact Model.

4.7.2 Weitere Komponenten

Im Rahmen der Umstellung auf das Artifact Model (siehe Abschnitt 4.4) muss-
ten weiterhin Anpassungen an der TOSCA Engine, IA Engine und Plan Engine
vorgenommen werden.

Die TOSCA Engine ist u. a. für das Verarbeiten von Definitions-Dokumenten und Auf-
lösen von Importen zuständig. Für den Zugriff auf die entsprechenden Dateien werden
Methoden des CSAR Models bzw. deren Klasse CSARContent (siehe Abschnitt 4.3)
verwendet. Wie bereits angesprochen, lieferten diese bisher File-Objekte zurück.
Nun werden stattdessen AbstractFile-Objekte zurückgegeben, sodass entsprechende
Anpassungen vorgenommen werden mussten.

Weiterhin stellt die TOSCA Engine eine Methode bereit, die alle Dateien zurückliefert,
die sich an Artefakt-Referenzen eines Artifact Template befinden. Diese Methode hat
bisher alle Dateien an den Artefakt-Referenzen über CSARContent geholt, Pattern
Matching durchgeführt und schließlich die zutreffenden Dateien zurückgeliefert. Nun
liefert CSARContent nach Übergabe einer Artefakt-Referenz keine Dateien mehr
zurück, sondern ein AbstractArtifact-Objekt. Dementsprechend musste die Signa-
tur und Implementierung der Methode auf AbstractArtifact angepasst werden.
Zurückgegeben werden nun eine Menge von AbstractArtifact-Objekten, die die
Artefakt-Referenzen eines Artifact Template repräsentieren. Weiterhin wurde das
Pattern Matching entfernt, da dieses nun vom Artifact Model übernommen wird.
Verwendet wird die Methode der TOSCA Engine von der IA Engine, sodass auch in
dieser Komponente Anpassungen vorgenommen werden mussten.

AbstractArtifact-Objekte werden in der IA Engine bis zum Plug-in weitergereicht.
Momentan existieren in der IA Engine Plug-ins zum Deployment von WAR-Dateien
und AAR-Dateien. Beide Plug-ins benötigen lediglich die Dateien eines Artefakts und
keine Informationen über dessen Verzeichnisstruktur, sodass wir in jedem Plug-in
direkt die Methode getFilesRecursively() auf allen AbstractArtifact-Objekten
aufrufen können. Diese Methode liefert rekursiv alle AbstractFile-Objekte zurück.
Mit der Methode getFile() auf einem AbstractFile-Objekt kann die Datei schließ-
lich heruntergeladen werden. Um ein unnötiges Herunterladen zu vermeiden, wird

68



4 Konzept und Implementierung

diese Methode erst aufgerufen, nachdem überprüft wurde, ob die Endung der zu
deployenden Datei korrekt ist.

Analog zur IA Engine mussten auch in der Plan Engine Anpassungen für
AbstractArtifact vorgenommen werden. Die Plan Engine kommuniziert im Gegen-
satz zur IA Engine direkt mit dem CSAR Model bzw. CSARContent, um benötigte
Dateien zu erhalten.

69



5 Zusammenfassung und Ausblick

5 Zusammenfassung und Ausblick

Bisher konnten CSAR-Dateien, die der TOSCA-Laufzeitumgebung OpenTOSCA
übergeben werden, ausschließlich auf das lokale Dateisystem gespeichert werden.
Damit eine Speicherung in verschiedenen Umgebungen möglich ist, wurde der File
Service um ein Plug-in-System erweitert. Zunächst musste hierfür eine Schnittstelle
definiert werden. Implementierungen der Schnittstelle bzw. konkrete Plug-ins wurden
daraufhin für das lokale Dateisystem sowie den Blobstore-Anbieter Amazon S3
bereitgestellt.

Die Realisierung der Plug-ins erfolgte mittels der Multi-Cloud-Bibliothek jclouds bzw.
deren Blobstore API. Da diese die APIs von Blobstore-Anbietern abstrahiert, wurde
eine abstrakte Implementierung der Schnittstelle auf Basis der jclouds Blobstore API
bereitgestellt. Ein Plug-in, welches das Speichern auf einem Blobstore-Anbieter, der
von jclouds unterstützt wird, ermöglichen soll, kann so einfach und mit minimalen
Aufwand durch Verwendung der abstrakten Implementierung realisiert werden. Die
angesprochenen Plug-ins für Amazon S3 und das lokale Dateisystem (Dateisystem-
basierter Blobstore) wurden auf diese Weise erstellt.

Eine gespeicherte CSAR kann mit dem File Service in eine andere Umgebung, für die
ein entsprechendes Plug-in existiert, verschoben werden. Auch ist es möglich, lediglich
eine Datei oder ein Ordner einer CSAR zu verschieben. Folglich kann eine CSAR also
auf mehrere Umgebungen verteilt werden. Weiterhin wurde eine Export-Funktion
realisiert, mit der eine gespeicherte CSAR wieder als CSAR-Datei abgerufen werden
kann.

Das Verschieben zwischen verschiedenen Benutzerkonten des selben Anbieters ist
momentan nicht möglich. In den Metadaten zu einer Datei wird lediglich die ID
des Plug-ins hinterlegt, mit dem die Datei gespeichert wurde. Damit jedoch ein
Verschieben zwischen verschiedenen Benutzerkonten möglich wird, müsste zusätzlich
auch die Identität der entsprechenden Zugangsdaten gespeichert werden. Da die
Erweiterung der Metadaten mit größeren Anpassungen (insbesondere im File Service
und Credentials Service) verbunden ist, konnte dies aus zeitlichen Gründen im
Rahmen dieser Arbeit nicht mehr erledigt werden.

Falls es während einer Operation zu einem Fehler kommt, so wird diese aktuell
mit einer entsprechenden Exception sofort abgebrochen. Wiederholungen nach z. B.

70



5 Zusammenfassung und Ausblick

einer fehlgeschlagenen Speicheroperation werden vom File Service selbst bisher nicht
durchgeführt. jclouds allerdings sieht mehrere Wiederholungsversuche vor, die auch
ausgeführt werden. Des Weiteren ist weitestgehend keine Logik vorgesehen, die
bereits durchgeführte Änderungen nach einem Fehler wieder zurücknimmt bzw. zu
zurücknehmen versucht (Undo-Operationen oder transaktionale Konzepte). Eine
Ausnahme bilden lediglich Datenbankoperationen, die mittels Eclipse Link (JPA-
Implementierung) innerhalb von Transaktionen ausgeführt werden.

Zur Speicherung und Verwaltung von Zugangsdaten für Plug-ins wurde der Credenti-
als Service entwickelt. Gespeicherte Zugangsdaten können über diese Komponente
direkt im entsprechenden Plug-in gesetzt werden. Momentan bestehen Zugangsdaten
aus Identität und Schlüssel. Für alle Anbieter, die von jclouds unterstützt werden,
reichen diese Informationen aus. Falls jedoch Plug-ins entwickelt werden sollten,
die zusätzliche bzw. andere Parameter zur Authentifizierung benötigen, müsste das
Datenmodell der Zugangsdaten entsprechend erweitert werden. Grundsätzlich wäre
es denkbar, dass der Credentials Service zukünftig auch von weiteren Komponenten
zur Verwaltung von Zugangsdaten eingesetzt wird.

Das Artifact Model wurde für den Zugriff auf Artefakt-Referenzen entwickelt. Mo-
mentan werden relative Referenzen unterstützt, die gemäß TOSCA-Spezifikation auf
eine Datei oder Ordner in einer CSAR verweisen. Das Durchsuchen erfolgt in diesem
Fall auf Basis der lokal gespeicherten Metadaten der CSAR. Zum Herunterladen
einer Datei kommt das entsprechende Plug-in zum Einsatz. Da beim Entwurf der
Komponente auf Erweiterbarkeit geachtet wurde, kann eine Unterstützung für wei-
tere Arten von Artefakt-Referenzen leicht hinzugefügt werden. Das Artifact Model
ersetzt das bisherige Datenmodell, mit dem lediglich die Dateien an einer Artefakt-
Referenz zurückgegeben werden konnten. Die Verzeichnisstruktur ist folglich verloren
gegangen.

Über die Container API bzw. REST API von OpenTOSCA kann eine CSAR durch-
sucht und Dateien der CSAR heruntergeladen werden. Bisher führte die Container
API hierzu selbstständig Dateisystemoperationen aus. Eine CSAR muss jetzt jedoch
nicht mehr lokal gespeichert sein, sodass dieser Ansatz nicht mehr möglich ist. Zum
Durchsuchen der gesamten CSAR kommt nun ebenfalls das Artifact Model zum
Einsatz.

Im Rahmen der Integration wurden u. a. die neuen Funktionalitäten des File Ser-
vice und Credentials Service über die Container API bereitgestellt. Die GUI von
OpenTOSCA wurde noch nicht erweitert. Dies müsste zukünftig noch erledigt wer-
den.

71



Literaturverzeichnis

Literaturverzeichnis

[Ama] Amazon Web Services, Inc. Amazon S3 – Preise. URL http://aws.

amazon.com/de/s3/pricing. Abgerufen am 2013-04-19.

[Apaa] Apache Software Foundation. Apache Deltacloud Website. URL http:

//deltacloud.apache.org. Abgerufen am 2013-05-30.

[Apab] Apache Software Foundation. Apache Libcloud Website. URL http:

//libcloud.apache.org. Abgerufen am 2013-05-30.

[Bun] Bundesamt für Sicherheit in der Informationstechnik. Cloud Com-
puting Grundlagen. URL https://www.bsi.bund.de/DE/Themen/

CloudComputing/Grundlagen/Grundlagen_node.html. Abgerufen am
2013-04-17.

[CLO] CLOUDCYCLE. VALESCA - Visual Editor for TOSCA. URL http:

//www.cloudcycle.org/valesca. Abgerufen am 2013-04-26.

[enS] enStratus Networks, Inc. Dasein Cloud API Website. URL http://www.

dasein.org. Abgerufen am 2013-05-30.

[Hig11] R. Hightower. Adrian Cole Announces JClouds 1.0 Release, 2011. URL
http://www.infoq.com/news/2011/07/jclouds_release_1_0. Abge-
rufen am 2013-04-22.

[Hor12a] T. Horn. OSGi: Dynamisches Komponentensystem für Java, 2012. URL
http://www.torsten-horn.de/techdocs/java-osgi.htm. Abgerufen
am 2013-04-28.

[Hor12b] T. Horn. RESTful Web Services mit JAX-RS und Jersey, 2012. URL
http://www.torsten-horn.de/techdocs/jee-rest.htm. Abgerufen
am 2013-05-17.

[Hor13] T. Horn. JPA (Java Persistence API), 2013. URL http://www.

torsten-horn.de/techdocs/java-jpa.htm. Abgerufen am 2013-06-
07.

[jcl] jclouds, Inc. jclouds Website. URL http://www.jclouds.org. Abgeru-
fen am 2013-04-25.

72

http://aws.amazon.com/de/s3/pricing
http://aws.amazon.com/de/s3/pricing
http://deltacloud.apache.org
http://deltacloud.apache.org
http://libcloud.apache.org
http://libcloud.apache.org
https://www.bsi.bund.de/DE/Themen/CloudComputing/Grundlagen/Grundlagen_node.html
https://www.bsi.bund.de/DE/Themen/CloudComputing/Grundlagen/Grundlagen_node.html
http://www.cloudcycle.org/valesca
http://www.cloudcycle.org/valesca
http://www.dasein.org
http://www.dasein.org
http://www.infoq.com/news/2011/07/jclouds_release_1_0
http://www.torsten-horn.de/techdocs/java-osgi.htm
http://www.torsten-horn.de/techdocs/jee-rest.htm
http://www.torsten-horn.de/techdocs/java-jpa.htm
http://www.torsten-horn.de/techdocs/java-jpa.htm
http://www.jclouds.org


Literaturverzeichnis

[Jen] J. Jenkov. Java NIO vs. IO. URL http://tutorials.jenkov.com/

java-nio/nio-vs-io.html. Abgerufen am 2013-05-12.

[Kav] D. Kavanagh. typica Website. URL http://code.google.com/p/

typica. Abgerufen am 2013-05-30.

[M1̈2] M. Müller. Sichere Nutzung von Cloud-Storage in Datenban-
ken. Diplomarbeit, Technische Universität Dresden, 2012. URL
http://www.rn.inf.tu-dresden.de/uploads/Studentische_

Arbeiten/Diplomarbeit_M%C3%BCller_Mario.pdf. Abgerufen
am 2013-04-22.

[MG11] P. M. Mell, T. Grance. SP 800-145. The NIST Definition of Cloud
Computing. Technischer Bericht, National Institute of Standards & Tech-
nology, Gaithersburg, MD, United States, 2011. URL http://csrc.

nist.gov/publications/nistpubs/800-145/SP800-145.pdf. Abge-
rufen am 2013-04-21.

[Mur] J. Murty. JetS3t Website. URL http://jets3t.s3.amazonaws.com.
Abgerufen am 2013-05-30.

[Rod08] A. Rodriguez. RESTful Web services: The basics, 2008. URL http://www.

ibm.com/developerworks/webservices/library/ws-restful. Abge-
rufen am 2013-05-18.

[sal] salesforce.com Germany. Was ist Cloud Computing? URL http://www.

salesforce.com/de/cloudcomputing. Abgerufen am 2013-04-18.

[SC09] C. Schmidt-Casdorff. OSGi: Anwendungsszenarien, Auswahlkriterien
und Ausblick, 2009. URL http://www.iks-gmbh.com/files/pdf/03_

OSGi_Anwendungsszenarien_Ausblick. Abgerufen am 2013-06-01.

[Sei10] R. Seiger. Entwurf eines mehrseitig sicheren Cloud Storage
Dienstes. Studienarbeit, Technische Universität Dresden, 2010.
URL http://www.rn.inf.tu-dresden.de/uploads/Studentische_

Arbeiten/Belegarbeit_Seiger_Ronny.pdf. Abgerufen am 2013-04-22.

[TOS13] TOSCA Technical Committee. Topology and Orchestration Specification
for Cloud Applications (TOSCA) – Committee Specification 01. Tech-
nischer Bericht, OASIS, 2013. URL http://docs.oasis-open.org/

tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf. Abgerufen am 2013-
04-26.

[Vog13] L. Vogel. OSGi Modularity – Tutorial, 2013. URL http://www.vogella.

com/articles/OSGi/article.html. Abgerufen am 2013-04-28.

73

http://tutorials.jenkov.com/java-nio/nio-vs-io.html
http://tutorials.jenkov.com/java-nio/nio-vs-io.html
http://code.google.com/p/typica
http://code.google.com/p/typica
http://www.rn.inf.tu-dresden.de/uploads/Studentische_Arbeiten/Diplomarbeit_M%C3%BCller_Mario.pdf
http://www.rn.inf.tu-dresden.de/uploads/Studentische_Arbeiten/Diplomarbeit_M%C3%BCller_Mario.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://jets3t.s3.amazonaws.com
http://www.ibm.com/developerworks/webservices/library/ws-restful
http://www.ibm.com/developerworks/webservices/library/ws-restful
http://www.salesforce.com/de/cloudcomputing
http://www.salesforce.com/de/cloudcomputing
http://www.iks-gmbh.com/files/pdf/03_OSGi_Anwendungsszenarien_Ausblick
http://www.iks-gmbh.com/files/pdf/03_OSGi_Anwendungsszenarien_Ausblick
http://www.rn.inf.tu-dresden.de/uploads/Studentische_Arbeiten/Belegarbeit_Seiger_Ronny.pdf
http://www.rn.inf.tu-dresden.de/uploads/Studentische_Arbeiten/Belegarbeit_Seiger_Ronny.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf
http://www.vogella.com/articles/OSGi/article.html
http://www.vogella.com/articles/OSGi/article.html


Literaturverzeichnis

[WHKL09] G. Wütherich, N. Hartmann, B. Kolb, M. Lübken. Einführung in die OS-
Gi Service Platform, 2009. URL http://www.it-agile.de/fileadmin/

docs/Vortragsfolien/OSGi-Powerworkshop-JAX2009.pdf. Abgeru-
fen am 2013-04-28.

[Wil12] K. Wilhelmi. CloudRaid – Ein sicherer Raid-Manager für freie Cloud
Storages. Bachelorarbeit, Technische Universität Darmstadt, 2012.
URL http://www.informatik.tu-darmstadt.de/fileadmin/user_

upload/Group_SIT/Publications/Thesis/CloudRaid-final.pdf.
Abgerufen am 2013-04-21.

74

http://www.it-agile.de/fileadmin/docs/Vortragsfolien/OSGi-Powerworkshop-JAX2009.pdf
http://www.it-agile.de/fileadmin/docs/Vortragsfolien/OSGi-Powerworkshop-JAX2009.pdf
http://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_SIT/Publications/Thesis/CloudRaid-final.pdf
http://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_SIT/Publications/Thesis/CloudRaid-final.pdf


A Anhang

A Anhang

75



A Anhang

A.1 Verwendete Software

Folgende Software wurde für die Erstellung dieses LATEX-Dokuments und der darin
enthaltenen Diagramme eingesetzt:

• TeXstudio 2.5.244 (LATEX-Editor)

• JabRef 2.10b45 (Literaturverwaltung für BIBTEX)

• LibreOffice 3.6.4.346 mit den FMC OpenOffice Templates 1.047 zur Erstellung der
FMC-Diagramme

• Microsoft Visio 201348 zur Erstellung aller weiteren Diagramme

Im Rahmen der Entwicklung wurden folgende Software bzw. Werkzeuge verwendet:

• Eclipse IDE for Java EE Developers Juno (4.2) SR249

• Subclipse 1.8.2050 (Subversion-Client für Eclipse)

• Apache Maven 3.0.551 (Build-Management-Werkzeug) zum Herunterladen der
jclouds Bundles und deren Abhängigkeiten

44Website von TeXstudio: http://texstudio.sourceforge.net
45Website von JabRef: http://jabref.sourceforge.net
46Website von LibreOffice: http://de.libreoffice.org
47Download der FMC Stencils: http://www.fmc-modeling.org/fmc_stencils
48Website von Microsoft Visio: http://office.microsoft.com/de-de/visio
49Website von Eclipse: http://www.eclipse.org
50Website von Subclipse: http://subclipse.tigris.org
51Website von Apache Maven: http://maven.apache.org

76

http://texstudio.sourceforge.net
http://jabref.sourceforge.net
http://de.libreoffice.org
http://www.fmc-modeling.org/fmc_stencils
http://office.microsoft.com/de-de/visio
http://www.eclipse.org
http://subclipse.tigris.org
http://maven.apache.org


A Anhang

A.2 Inhalt der DVD

Abbildung A.1 zeigt die Struktur der mitgelieferten DVD, die im Wesentlichen alle
Dokumente und praktischen Ergebnisse enthält, die im Rahmen dieser Bachelorarbeit
entstanden sind. Hierzu gehört auch eine lauffähige Version von OpenTOSCA mit
Dokumentation, erforderlicher Software („Requirements“) und CSAR-Dateien zum
Testen.

/
CSARs ...........................................................CSAR-Dateien
Implementation....................................Quellcode (Eclipse-Projekte)
Implementation-Test..................Quellcode der Testfälle (Eclipse-Projekte)
OpenTOSCA..................................OpenTOSCA Container und JSP UI
OpenTOSCA-Docs...................................OpenTOSCA Dokumentation

Credentials_internal.pdf.......................Erforderliche Zugangsdaten
Deploying_a_CSAR.pdf...........How-To: CSAR-Deployment mit der JSP UI
Installation_Guide.pdf .............................. Installationsanleitung
Uninstalling_Guide.pdf............................Deinstallationsanleitung

OpenTOSCA-Requirements................Erforderliche Software für OpenTOSCA
Generischer_File_Service_fuer_OpenTOSCA.pdf............Diese Ausarbeitung
abstract.txt.....................................Kurzfassung der Ausarbeitung
readme.txt

Abbildung A.1: Struktur der mitgelieferten DVD.

Im Ordner Implementation befinden sich die Eclipse-Projekte von allen Kompo-
nenten von OpenTOSCA, die im Rahmen dieser Arbeit entstanden oder wesentlich
weiterentwickelt worden sind. Dazu gehört auch die Container API, da diese während
der Integration erheblich erweitert und angepasst wurde.

77



Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben.
Ich habe keine anderen als die angegebenen Quellen be-
nutzt und alle wörtlich oder sinngemäß aus anderen Werken
übernommene Aussagen als solche gekennzeichnet. Weder
diese Arbeit noch wesentliche Teile daraus waren bisher Ge-
genstand eines anderen Prüfungsverfahrens. Ich habe diese
Arbeit bisher weder teilweise noch vollständig veröffentlicht.
Das elektronische Exemplar stimmt mit allen eingereichten
Exemplaren überein.

Ort, Datum, Unterschrift


	Abkürzungsverzeichnis
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Verzeichnis der Listings
	Einleitung
	Motivation und Aufgabenstellung
	Gliederung der Arbeit

	Grundlagen
	Cloud Computing
	Topology and Orchestration Specification for Cloud Applications (TOSCA)
	Konzepte
	Cloud Service Archive (CSAR)

	OSGi
	Representational State Transfer (REST)
	OpenTOSCA
	Architektur und Features

	Cloud Storage
	Blobstore
	jclouds
	Blobstore API


	Anforderungen
	Konzept und Implementierung
	Überblick
	File Service
	Auswahl eines Storage Provider
	Storage Provider Manager
	Speichern einer CSAR
	Abrufen einer CSAR
	Exportieren einer CSAR
	Verschieben einer Datei oder Ordner einer CSAR
	Verschieben einer CSAR
	Löschen einer CSAR oder aller CSARs

	CSAR Model
	Artifact Model
	CSAR Artefakte

	Storage Providers
	Schnittstelle
	Realisierung mit jclouds
	Entwicklung eines neuen Storage Providers

	Credentials Service
	Integration
	Container API
	Storage Providers
	Credentials
	CSARs

	Weitere Komponenten


	Zusammenfassung und Ausblick
	Literaturverzeichnis
	Anhang
	Verwendete Software
	Inhalt der DVD


