Institut fir Architektur von Anwendungssystemen

Universitat Stuttgart
Universitatsstral3e 38
D - 70569 Stuttgart

Bachelorarbeit Nr. 42

Konzept und Implementierung einer
generischen Service Invocation
Schnittstelle fur Cloud Application
Management basierend auf TOSCA

Michael Zimmermann

Studiengang: Softwaretechnik

Prifer: Prof. Dr. Frank Leymann
Betreuer: Dipl.-Inf. Uwe Breitenblcher
Beginn am: 02.01.2013

Beendet am: 04.07.2013

CR-Nummer: C.2.4,D.2.11,D.2.12,J.0

Kurzfassung

Cloud Computing ist ein viel diskutiertes Thema in der Informations- und
Kommunikationstechnologie. Es ermoglicht Unternehmen sich auf ihr Kernge-
biet zu konzentrieren ohne dabei auf professionelle IT-Infrastruktur verzichten
zu missen. Allerdings besteht demgegeniiber die Gefahr eines Vendor-Lock-in,
also die Abhingigkeit eines bestimmten Cloud Anbieters. Diesem Problem
nimmt sich TOSCA [29] an. TOSCA ist ein Standard zur Beschreibung von in-
teroperablen Cloud Anwendungen. TOSCA ermoglicht unter anderem die Be-
schreibung des Aufbaus, Deployments und Managements. Die Universitat Stutt-
gart entwickelt eine Laufzeitumgebung namens OpenTOSCA [23] fiir diesen
Standard. Eine erste prototypische aber dennoch funktionelle Implementierung
ist bereits fertiggestellt. In dieser werden Aufrufe von Services allerdings aufler-

halb des Sichtbarkeitsbereichs des OpenTOSCA Containers ausgefiihrt.

In der vorliegenden Bachelorarbeit wird deshalb ein Konzept zum generischen
Aufruf von Services durch eine zentrale Komponente des OpenTOSCA Contai-
ners vorgestellt. Dabei wird auf gestellte Anforderungen und getroffene Ent-
wurfsentscheidungen ebenso eingegangen wie auf die Architektur und Moglich-
keiten des erarbeiteten Losungskonzepts. Weiterhin ist eine prototypische Im-
plementierung des Konzepts Teil dieser Arbeit. Es werden daher wichtige sowie

interessante Punkte der Implementierung dargestellt und erlautert.

Inhaltsverzeichnis

Inhaltsverzeichnis

1 Einleitung

2 Thematische Grundlagen und verwandte Arbeiten

2.1 Cloud COMPULINGcuevieiriiiriieireieireieseietreietreie ettt ettt sseaesaes 3
2.2 TOSCA ..ottt 5
2.3 OSGluueriiieicieitieic ettt 6
2.4 OPENTOSCA ..ottt 8
2.5 Plan Invocation ENGINe........cccviriiriiinicinicnicscseeseesees s 10
2.6 ESB ettt ettt 11
2.7 CAIMEL .. 13
3 Anforderungen
3.1 Funktionale Anforderungen ... 16
3.2 Nichtfunktionale Anforderungen.........ccocovceneeneenerneenesnerneeeeens 20
4 Konzept & Architektur
4.1 Entwurfsentscheidungen ... 22
4.2 ATCHITEREUT ..o 29
43 Beschreibung des gewiahlten Losungskonzeptes.........cccoooerecrecerecinenncn. 32
5 Implementierung
5.1 Service Invocation ENUm........cccccoviiiiiiiiiniiiiiiccccce 50
5.2 Service Invocation SOAP APL........cccccooviiniccc, 51
5.3 Service Invocation OSGi-Event APL........ccccccccooiiinic, 54
5.4 Service Invocation ENGINe.......c.ccccoceeiiieiniiinninnnrn e 57
5.5 Service Invocation Plug-in Interface.........cococovveurverncinncnncncncncnee 62
5.6 Service Invocation SOAP/HTTP-Plug-in......ccocccovveurivericrnneenincncnecnenees 63
5.7 Service Invocation REST/HTTP-PlUug-in.....ccccocoeveurnirrincrnncnicncrnecnenens 66

6 Annahmen
7 Uberpriifung des Konzepts und der Implementierung
8 Zusammenfassung und Ausblick
Abbildungsverzeichnis
Listingsverzeichnis
Abkiirzungsverzeichnis
Literaturverzeichnis
Anhang WSDL/XSD der SOAP-API

69
73
76
78
79
80
81
84

1 Einleitung

1 Einleitung

Cloud Computing ist einer Umfrage des Bundesverband Informationswirtschaft,
Telekommunikation und neue Medien e.V. (BITKOM) zufolge das wichtigste
Hightech-Thema der ITK-Branche 2013 [15]. Es ermdglicht unter anderem eine
hohe Verfiigbar- sowie Anpassungsfahigkeit, Kostenreduzierungen und die Nut-
zung leistungsfiahiger IT-Ressourcen ohne Wissen iiber Administration und dhn-
lichem. Ein Problem des Cloud Computing ist allerdings der Lock-in-Effekt, also

die Abhéngigkeit des Kunden von einem bestimmten Cloud-Anbieter.

Demgegeniiber wurde mit Topology and Orchestration Specification for Cloud
Applications (TOSCA) [29] ein Standard zur Beschreibung von interoperablen
und portablen Cloud Anwendungen geschaffen. Mit OpenTOSCA [23] wurde an
der Universitat Stuttgart weiterhin eine erste Open Source Implementierung
einer Laufzeitumgebung fiir TOSCA entwickelt, welche aktuell kontinuierlich

verbessert und erweitert wird.

In dem momentanen Entwicklungsstand von OpenTOSCA werden Services zum
Management der Cloud Anwendung, wie Plane oder Implementation
Artifacts direkt und damit auflerhalb des Sichtbarkeitsbereichs des Contai-
ners aufgerufen, was beispielsweise ein Logging oder Monitoring der ausgefiihr-
ten Aufrufe unmoglich macht. Weiterhin steht dem Aufrufer kein einheitliches
Interface zur Verfiigung. Dadurch ist der Aufrufer gezwungen, sich mit den Be-
sonderheiten verschiedenster Techniken wie zum Beispiel SOAP oder REST aus-
einander setzen zu miissen. Dariiber hinaus wird zudem ein extra Programm

zum Aufruf von Planen benétigt.

Um diese Einschrankungen zu beseitigen, soll im Rahmen dieser Bachelorarbeit
ein Konzept fiir eine zentrale Komponente - Service Invocation Schnittstelle ge-

nannt - fiir OpenTOSCA zum Aufruf von in TOSCA spezifizierten Services erar-

1 Einleitung

beitet werden. Weiterhin soll im praktischen Teil dieser Arbeit diese Funktiona-

litat implementiert sowie in OpenTOSCA integriert werden.

Die Ausarbeitung ist folgendermaflen strukturiert: In Kapitel 2 werden dem Le-
ser zuerst einige Grundlagen zum Verstandnis dieser Arbeit ndhergebracht. Da-
bei wird auf Cloud Computing, TOSCA, OSGi, OpenTOSCA sowie eine Erweite-
rung dazu, die Plan Invocation Engine [18] eingegangen. Aulerdem werden mit
Abschnitten iiber ESBs sowie Camel Méoglichkeiten zur Integration verschiede-
ner Komponenten und Services betrachtet. Anschlieffend werden in Kapitel 3 die
an die Service Invocation Schnittstelle gestellten Anforderungen erarbeitet und
dokumentiert. Darauthin wird in Kapitel 4 unter Beriicksichtigung der getroffe-
nen Entwurfsentscheidungen das Konzept und die Architektur der Service
Invocation Schnittstelle vorgestellt sowie die Moglichkeiten des gewahlten Lo-
sungskonzepts aufgezeigt. Im Anschluss daran wird in Kapitel 5 die Implemen-
tierung vorgestellt. In Kapitel 6 folgt eine Ubersicht an getroffenen Annahmen
zur Umsetzung der Service Invocation Schnittstelle. Anschlieend wird in Kapi-
tel 7 das Konzept beziehungsweise die Implementierung der Service Invocation
Schnittstelle anhand der gestellten Anforderungen evaluiert, bevor in Kapitel 8
die Arbeit nochmals zusammengefasst und ein Ausblick auf weitere Optimie-

rungsmoglichkeiten gegeben wird.

2 Thematische Grundlagen und verwandte Arbeiten

2 Thematische Grundlagen und verwandte Arbeiten

In diesem Kapitel werden zum Verstindnis der Arbeit bendtigte Grundlagen
erlautert. Zuerst wird auf Cloud Computing und dessen Moglichkeiten einge-
gangen. AnschlieSend werden Grundlagen zu TOSCA erlautert und das Frame-
work OSGi vorgestellt. Daraufhin wird der OpenTOSCA Container und eine
Erweiterung dazu, die Plan Invocation Engine, betrachtet. Zum Ende des Kapi-
tels wird auf Integrationsmoéglichkeiten wie Enterprise Service Buse sowie Integ-

rationsframeworks eingegangen.

2.1 Cloud Computing

Cloud Computing ist eine an die jeweils aktuellen Benutzeranforderungen elas-
tisch anpassbare und tiber ein Netzwerk durch standardisierte Techniken er-
reichbare IT-Infrastruktur. Sie stellt sowohl Infrastruktur (Hardware wie z.B.

Server), Plattformen als auch Software als Service bereit. [25]

Es wird zwischen vier wesentlichen Bereitstellungsmodellen (Deployment Mod-
els) unterschieden. Diese sind Public-, Private-, Community-, sowie Hybrid

Cloud und werden folgend vorgestellt.

Public Cloud. Die Public Cloud ist eine von meist einem IT-Unternehmen an-
gebotene und fiir beliebige Personen und Organisationen zugangliche Cloud.
Der Kunde der Public Cloud kann dabei die fiir seine momentanen Bediirfnisse

geeigneten Angebote wihlen ohne teure Anschaffungen tétigen zu missen. [25]

Private Cloud. Die Private Cloud ist eine fiir eine Organisation speziell einge-
richtete Cloud. Benutzung sowie Zugang sind auf die Organisation und gegebe-
nenfalls zusétzlich einen autorisierten Personenkreis wie zum Beispiel Kunden
beschrénkt. Die Hardware der Private Cloud befindet sich oftmals innerhalb der

Organisation selbst und die Verwaltung erfolgt in der Regel intern. [25]

2 Thematische Grundlagen und verwandte Arbeiten

Community Cloud. Die Community Cloud ist der Private Cloud &hnlich, mit
dem Unterschied, dass sich hier mehrere Organisationen eine Cloud teilen.
Griinde dafiir konnen die Reduzierung von Kosten oder gemeinsame Interessen

sein. [24]

Hybrid Cloud. Die Hybrid Cloud ist eine beliebige Kombination aus herkdmm-

lichen IT-Umgebungen sowie den vorherig vorgestellten Cloud-Arten. [25]

Weiterhin wird bei Cloud Computing zwischen drei typischen Service Arten

unterschieden: IaaS, PaaS und SaaS.

IaaS (Infrastructure-as-a-Service). Bei laaS wird dem Kunden vom IT-
Dienstleister eine Infrastruktur (z.B. Server) bereitgestellt. Der Kunde muss zur
Arbeit benétigte Software selbst installieren und verwalten. Ein Beispiel fiir IaaS

ist Amazons EC2 [14]. [25]

PaaS (Platform-as-a-Service). Bei PaaS stellt der IT-Dienstleister dem Kunden
eine komplette und betriebsbereite Plattform, bestehend aus Hard-, Middle- und
gegebenenfalls Software zur Verfiigung und kiimmert sich auch um deren Ad-
ministration. Auf dieser bereitgestellten Plattform kann der Kunde selbst Soft-
ware betreiben und verwalten. Ein Beispiel fiir PaaS ist Microsofts Windows

Azure [26]. [25]

SaaS (Software-as-a-Service). Bei SaaS stellt der IT-Dienstleister dem Kunden
eine bestehende Software iiber das Internet oder Intranet zur Verfiigung und
kiimmert sich dariiber hinaus auch um deren Administration. Der Kunde kann
beispielsweise per Web-Browser darauf zugreifen und die Software damit nut-

zen. Ein Beispiel fiir eine SaaS Anwendung ist Google Mail [20]. [25]

Gemeinsam haben alle drei Service-Arten, dass dem Kunden der Kauf von
Hardware und gegebenenfalls auch Software erspart bleibt. Weiterhin bieten
diese Konzepte eine hohe Skalierbarkeit und nehmen dem Kunden die Komple-

xitat von Installationen sowie Administration ab.

2 Thematische Grundlagen und verwandte Arbeiten

Cloud Anwendungen bestehen typischerweise jedoch aus mehreren Cloud Ser-
vices. Die Provisionierung der heterogenen Komponenten ist weiterhin auf-
grund verschiedener Technologien (z.B. REST [19], SOAP [40], Chef [32], Puppet
[38], AWS API, Azure API, usw.) nicht einfach automatisierbar. Hierfiir miissen
die verwendeten Technologien sowie verschiedene Arten von
Provisionierungstools integriert werden. Zu diesem Zweck sind in TOSCA (siehe
nachstes Kapitel) sogenannte Plane vorgesehen. Plane beschreiben
Workflows und nutzen Managementoperationen verschiedener Services zum
Management von Cloud Anwendungen und ermdglichen dadurch eine Automa-
tisierung. Allerdings ist das Schreiben dieser Plane aufgrund den verschiede-
nen genutzten Technologien sowie unterschiedlichen Interfaces sehr schwierig.
Aus diesem Grund wird eine einheitliche Schnittstelle zum Aufruf der Manage-
mentoperationen benétigt, welche die verschiedenen Technologien dem Plan
gegeniiber verbirgt. Dadurch kénnen Pl&ane einfacher erstellt werden und sind

zudem weniger komplex.

2.2 TOSCA

In diesem Kapitel werden die fiir diese Arbeit wichtigsten Grundlagen von

TOSCA [29] erlautert.

Die Topology and Orchestration Specification for Cloud Applications (TOSCA)
ist eine Sprache zur Beschreibung von Cloud Anwendungen. Sie wurde von ei-
ner Initiative der OASIS (Organization for the Advancement of Structured In-
formation Standards) [28] entwickelt und liegt aktuell in Version 1.0 [29] vor.
Das Ziel von TOSCA ist es, einen Standard zur Interoperabilitat und Portabilitat
von Cloud Umgebung zu definieren, der sowohl die automatische Provisionie-
rung als auch Management erméglicht. Dafiir lassen sich mittels TOSCA die
einzelnen Service-Komponenten einer Cloud Anwendung, deren Beziehungen

zueinander sowie deren Managementoperationen unabhangig von einer konkre-

2 Thematische Grundlagen und verwandte Arbeiten

ten Cloud Umgebung beschreiben. Ein Dokument, das eine solche Beschreibung

enthalt wird TOSCA Definition genannt. [29]

Fir diese Arbeit von besonderer Bedeutung sind die beiden TOSCA Elemente
Implementation Artifacts (1As) und Plane, welche Services nach

auflen anbieten und folgend genauer betrachtet werden.

Implementation Artifacts bieten Managementoperationen einer Kom-
ponente einer Cloud Anwendung an. So ermoglicht ein Implementation
Artifact zum Beispiel das Erstellen einer Datenbank auf einem Server oder
das Installieren von dort benétigten Treibern. TOSCA erlaubt dabei die Imple-
mentierung verschiedenster Implementation Artifact Arten. So sind
beispielsweise Web Archive (WAR), welche einen SOAP Web Service anbieten,
ebenso moglich wie komplexe Skripte, welche auch iiber andere Technologien
wie Chef [32] oder Puppet [38] verwaltet werden konnen und auf der Zielinfra-

struktur ausgefiithrt werden.

Plane, oder auch Managementpl&ne genannt, nutzen die von den
Implementation Artifacts bereitgestellten Operationen zum Manage-
ment der Service-Komponenten und damit der Cloud Anwendung. Aquivalent
zu Implementation Artifacts konnen auch Plane mittels verschiedens-
ter Plansprachen, wie zum Beispiel BPMN (Business Process Model and Notati-
on) [31] oder BPEL (Web Services Business Process Execution Language) [30]

realisiert werden.

2.3 0SGi
Dieser Abschnitt stellt das OSGi Framework vor, welches zur Implementierung
von OpenTOSCA (siehe néichstes Kapitel) genutzt wird.

Das OSGi Framework ist eine auf Java basierende Softwareplattform und ermég-

licht eine Modularisierung von Anwendungen. Die OSGi Spezifikation [35] wird

2 Thematische Grundlagen und verwandte Arbeiten

von der OSGi Alliance [37] entwickelt. Es bestehen mehrere, sowohl kommerzi-
elle als auch Open Source Implementierungen des OSGi Standards. Fiir die Im-
plementierung von OpenTOSCA sowie der Service Invocation Schnittstelle wird

Eclipse Equinox [17] genutzt.

Im Kontext von OSGi wird zwischen Softwarekomponenten — Bundles genannt
- und Diensten - Services genannt — unterschieden. Bundles sind méglichst in
sich abgeschlossene Einheiten, bestehend aus Klassen und Ressourcen, sind als
JAR Archive gepackt und lassen sich im OSGi Framework deployen. Services
implementieren Interfaces und bieten dessen Funktionalitdten anderen Kompo-
nenten als Service an. Ein Bundle kann mehrere Services anbieten. Weiterhin
konnen mehrere Implementierungen (also Services) eines Interfaces sowie ver-
schiedene Versionen eines Bundles innerhalb einer OSGi Umgebung vorhanden
sein. Desweiteren wird Hot Deployment (das Hinzufiigen und Starten zur Lauf-

zeit) von OSGi ermoglicht.

Von besonderer Wichtigkeit zum Verstandnis der Implementierungen von
OpenTOSCA sowie der Service Invocation Schnittstelle sind Declarative Ser-
vices. Declarative Services ermoglichen das konfigurieren von Services per
XML-Konfigurationsdatei. Damit lasst sich fiir Komponenten definieren, welche
Services angeboten und/oder benétigt werden. Dies ermdglicht unter anderem
eine automatische Auflésung von Abhangigkeiten verschiedener Komponenten.
Benotigte Services konnen auch als optional gekennzeichnet werden und miis-
sen somit beim Start der Komponente nicht vorhanden sein. Weiterhin kann der
Konsument eines Services durch bind- und unbind-Methoden dynamisch auf das
Starten oder Stoppen eines Services reagieren und ermoglicht somit zum Bei-
spiel die Umsetzung eines Plug-in-Systems wie es auch in OpenTOSCA, was im

nachsten Kapitel vorgestellt wird, genutzt wird.

2 Thematische Grundlagen und verwandte Arbeiten

2.4 OpenTOSCA

In diesem Kapitel wird der aktuelle Implementierungsstand von OpenTOSCA
[23], einem an der Universitat Stuttgart entwickelten Open Source TOSCA Con-

tainers, beschrieben.

Mittels OpenTOSCA konnen Cloud Service Archives (CSARS) [29] installiert
werden. CSARS beinhalten neben der TOSCA Definition alle benétigten Arte-

fakte wie zum Beispiel Implementation Artifacts oder Plane.

Abbildung 1 zeigt die Architektur von OpenTOSCA. Hauptkomponenten des
Containers sind OpenTOSCAControl, IA-Engine und Plan-Engine.

Aufgabe der OpenTOSCAControl Komponente ist es, den Ablauf der Bearbei-
tung einer CSAR-Datei zu dirigieren. Sie bietet zudem Funktionen an, die durch
die OpenTOSCA Container API mittels einer REST-Schnittstelle nach auf3en hin,
unter anderem einer grafischen Benutzerschnittstelle, zur Verfiigung gestellt

werden.

Die IA-Engine ist fiir das Deployment von Implementation Artifacts
zustandig, welche in der CSAR enthaltenen sind. Da Implementation
Artifacts, wie in Kapitel 2.2 beschrieben, verschiedenster Art sein kénnen,
ist die IA-Engine mittels eines Plug-in-Systems realisiert. Dadurch kénnen neue
Plug-ins, welche das eigentliche Deployment der Implementation
Artifacts ausfithren, zur Laufzeit hinzugefiigt werden. Die Endpunkte der
erfolgreich deployten Implementation Artifacts werden in einer End-
punktdatenbank gespeichert. Aktuell wird das Deployment von Web Archives
(WAR) auf Tomcat [6] sowie Axis Archives (AAR) auf Apache Axis [1] unter-

stitzt.

2 Thematische Grundlagen und verwandte Arbeiten

/-[OpenTOSCA Container API]-\

IA-Plug-in

IA-Engine

OpenTOSCA

Control Plan-Plug-in

Plan-Engine

[Plan Portability API]

_

Abbildung 1: Architektur von OpenTOSCA (nach [23])

Aquivalent zur IA-Engine erméglicht die Plan-Engine das Deployment von
Planen. Ebenfalls ist die Plan-Engine, um die Anzahl an unterstiitzten Plan-
Arten einfach erweitern zu konnen, mit einem Plug-in-System ausgestattet.
Ebenso speichert die Plan-Engine die Endpunkte der deployten Pl&ane in der
Endpunktdatenbank. Der momentane Stand des OpenTOSCA Containers unter-
stiitzt lediglich das Deployment von BPEL Planen auf dem WSO2 Business
Process Server (BPS) [45]. Weiterhin werden in der aktuellen Implementierung
vor dem Deployment die Pl&ne von der Plan-Engine an die von den
Implementation Artifacts angebotenen Managementoperationen ge-
bunden. Dafiir wird der Plan zuerst analysiert und anschlieffend an die sich in

der Endpunktdatenbank befindlichen Endpunkte gebunden.

2 Thematische Grundlagen und verwandte Arbeiten

Dariiber hinaus gibt es noch weitere Komponenten, wie zum Beispiel einen
InstanceDataService zur Haltung von Instanzdaten oder eine TOSCAEngine zur

Verwaltung des TOSCA Modells.

Die Entwicklung von OpenTOSCA als erste Open Source Referenzimplementie-
rung der TOSCA Spezifikation ist zum Zeitpunkt dieser Arbeit noch nicht abge-
schlossen und wird unter anderem durch verschiedene Studienarbeiten vorange-

trieben. Das néchste Kapitel stellt eine solche Erweiterung von OpenTOSCA vor.

2.5 Plan Invocation Engine

Dieser Abschnitt stellt die Plan Invocation Engine [18], eine Erweiterung des

OpenTOSCA Containers vor.

Die Plan Invocation Engine wurde in einer parallel laufenden Bachelorarbeit
entwickelt und ermoglicht dem Nutzer das Management von Planen bezie-
hungsweise Planinstanzen. Sie ibernimmt unter anderem die Verwaltung von
CSAR-sowie Prozessinstanzen und bietet auch eine Historie dieser an. Weiterhin
erlaubt die Plan Invocation Engine das Erstellen der zum Aufruf eines Plans
benotigten Nachricht mittels einer grafischen Benutzerschnittstelle (siehe Abbil-
dung 2), zur Eingabe benotigter Parameter. Zum Aufrufen des Plans soll von
der Plan Invocation Engine die in dieser Arbeit entwickelte Service Invocation

Schnittstelle genutzt werden. [18]

Abbildung 2 zeigt einen Screenshot der grafischen Benutzeroberfldche der Plan
Invocation Engine. Im Vordergrund sieht man unten rechts im Bild das Fenster
zur Eingabe von Parametern. Im Hintergrund sieht man weitere Informationen
tiber den Plan wie beispielsweise eine History tiber ausgefithrte Aufrufe oder

wann der Plan erstellt wurde.

10

2 Thematische Grundlagen und verwandte Arbeiten

&) Instances of CSAR: Available Management Plans:

refresh -) (org.opentosca.demo TestLifeCycleDemoManagementPlanl)

Upload new CSAR Delete CSAR Instance 1 .) (_ org.opentosca.demo TestLifeCycleDemoManagementPlan2 _)

Build Informations:
build date: 2013/04/25 11:57:00

Running Plans:

* 2013/04/25 12:28:18 {org.opentosca.demo]TestLifeCycleDemoManagementPlan2

History of Plans: Put in plan parameter details.

2013/04/25 11:57:00: TestlifeCych TestLifeCycleDemoManagementPlani
2013/04/25 12:01:08: TestLifeCycl

input parameter: input: test management

input : test management

CorrelationlD : 1366884068927-0

output parameter: < K | C I
result : test management HIVOKE ot ance

CorrelationlD : 1366884068927-0

Abbildung 2: GUI der Plan Invocation Engine

2.6 ESB

In diesem Kapitel wird der sogenannte Enterprise Service Bus (ESB) behandelt.
Auf eine detaillierte Erlauterung der Technologie wird an dieser Stelle verzichtet
und ausschlieBllich die zum Verstdndnis grundlegenden Konzepte dargestellt. Fiir

eine ausfiihrliche Behandlung des Themas wird auf [16] verwiesen.

Fir den Begriff ESB existiert eine Vielzahl an verschiedenen Definitionen.
Exemplarisch wird an dieser Stelle die Definition von David A. Chappell aus

seinem Buch Enterprise Service Bus [16, Seite 1] verwendet:

An ESB is a standards-based integration platform that combines messaging,
web services, data transformation, and intelligent routing to reliable con-
nect and coordinate the interaction of significant numbers of diverse appli-

cations across extended enterprises with transactional integrity.

11

2 Thematische Grundlagen und verwandte Arbeiten

Nach Chappell ist ein Enterprise Service Bus also eine auf Standards beruhende
Integrationsplattform, die sowohl Nachrichtenaustausch, Web Services, Daten-
transformation als auch intelligentes Routing miteinander verbindet. Ein ESB
verbindet sowie koordiniert laut Chappell, Interaktionen verschiedenster An-
wendungen eines Unternehmens zuverldssig (beziiglich der Transaktionssicher-

heit) miteinander.

Abbildung 3 illustriert eine beispielhafte Architektur, bestehend aus fiinf ver-
schiedenen Komponenten, einerseits ohne den Gebrauch eines ESBs (links) so-
wie andererseits mit einem ESB (rechts). Ohne die Nutzung eines ESBs kommu-
nizieren die einzelnen Komponenten auf direktem Wege miteinander. Dies er-
fordert bei abweichenden Datenformaten oder Transportprotokollen, viele ein-
zelne Schnittstellen der Komponenten untereinander. Mittels eines ESBs dage-
gen wird eine zentrale Kommunikationskomponente geschaffen, welche die ver-
schiedenen Komponenten miteinander verbindet und die Kommunikation ver-

einfacht.

Ng/—

Abbildung 3: Beispiel-Architektur aus fiinf Komponenten ohne (links)
und mit (rechts) ESB

12

2 Thematische Grundlagen und verwandte Arbeiten

2.7 Camel

Dieser Abschnitt stellt das Open Source Integrations-Framework Apache Camel
(2], welches zur Implementierung der Service Invocation Schnittstelle genutzt

wird, vor.

Das Projekt Camel wurde 2007 gestartet und befindet sich aktuell in Version
2.11.0. Es ermdglicht zur Integration verschiedener Komponenten und Services
sowohl das Routing von Nachrichten, das Konvertieren von Datenformaten als
auch die Implementierung einer Vielzahl an Enterprise Integration Patterns
(EIPs) [3]. Camel bietet dafiir verschiedene doménenspezifische Sprachen (do-
main-specific languages, DSLs) wie zum Beispiel Java oder XML an. Aufgrund
seines modularen Aufbaus und einer Vielzahl an vorhandenen Komponenten, ist
Camel einerseits leichtgewichtig und flexibel sowie andererseits dennoch méach-
tig beziiglich des Funktionsumfangs. Weiterhin kann es sowohl als standalone
Anwendung als auch eingebettet in beispielsweise einen OSGi Container genutzt

werden. [2]

Zusammengefasst ermoglicht Camel also, analog zu einem ESB, die Integration
verschiedener Komponenten zu einem Gesamtsystem. Beziiglich der Ahnlichkeit
zu einem EBS, beschreiben die Verantwortlichen Camel auf der einen Seite

selbst als:

[...] a rule based routing & mediation engine which can be used inside a full
blown ESB, a message broker or a web services smart client. Though if you
want to, you could consider that Camel is a small, lightweight embeddable
ESB since it can provide many of the common ESB services like smart rou-

ting, transformation, mediation, monitoring, orchestration etc. [11]

Also ist gemaf3 der Entwickler Camel eine regelbasierte Routing- und Verbin-
dungs-Engine, welche in einem ,vollendeten® ESB, einem Message-Broker oder
einem Web Service Smart Client genutzt werden kann. Man konnte Camel je-

doch auch aufgrund von vielen iiblichen gebotenen ESB Funktionalititen wie

13

2 Thematische Grundlagen und verwandte Arbeiten

intelligentes Routing, Transformation, Vermittlung, Monitoring, Orchestrierung
usw. als einen kompakten, leichtgewichtigen und einbettungsfahigen ESB be-

trachten.

Allerdings stellen sie auf der anderen Seite auch fest, dass ein ESB ihrer Ansicht
nach eher ein aus Integrationskomponenten bestehender Container sei. So sehen
sie etwa Apache ServiceMix [4], welcher auf OSGi (und optional JBI') basiert
und damit eine standardisierte Integrationsplattform bietet, als einen richtigen

ESB an:

However our view is that an ESB is more of a container of integration
components, so we view Apache ServiceMix to be a true ESB based around
OSGi (and optionally JBI) to provide a standards based integration platform

of components. [11]

Zusammenfassend ist es ihrer Meinung nach also durchaus zulédssig Camel als
ESB zu bezeichnen, sie selbst wiirden Camel allerdings nicht als kompletten ESB

betiteln.

Im Folgenden werden einige zum Verstidndnis dieser Arbeit wichtige Konzepte

von Camel vorgestellt.

Endpoint. Ein Endpoint wird durch eine URI identifiziert und beschreibt in
Camel einen Endpunkt eines Kommunikations-Kanals. Beispielsweise beschreibt
jetty://http://localhost:9080/myservice einen durch die Camel-Jetty-Komponente
[12] realisierten Endpoint. [10]

Message und Exchange. Eine Message reprasentiert in Camel die Daten, die
zwischen den verschiedenen Endpoints iibergeben werden. Eine Message kann
dabei aus Headern, einem Body sowie Attachments bestehen. Die Header sind in
Camel per HashMap, der Body vom Typ Object implementiert. Exchange ist der
Container einer Message und beinhaltet neben ihr unter anderem wahrend der

Bearbeitung aufgetretene Fehler oder Routing-Informationen. [10]

! Java Business Integration: Standard zur Beschreibung von Integrationssystemen.

14

2 Thematische Grundlagen und verwandte Arbeiten

Processor. Mittels eines Prozessors kann eine Message bearbeitet werden. Bei-
spielsweise konnen weitere Daten hinzugefiigt oder anhand der bestehenden
Daten die Route gedndert werden. Es konnen sowohl vorhandene Processors

genutzt als auch eigene implementiert werden. [10]

Route. Eine Route besteht aus hintereinander hdngenden Processors und End-
points und reprasentiert den Bearbeitungsablauf einer Message [10]. Dieses Ar-
chitekturmuster zur Beschreibung von Datenstromen wird als Pipes und Filter
[21] bezeichnet. Abbildung 4 zeigt eine schematische Darstellung des Pipes und
Filter Architekturmusters. Filter sind die Verarbeitungseinheiten. In ihnen wer-
den die eingehenden Daten be- bzw. verarbeitet. Pipes sind Verbindungen zwi-

schen den einzelnen Filtern.

. Pipe Pipe R Pipe - Pipe .

Eingehende Ausgehende
Daten Daten

A
A

Abbildung 4: Pipes und Filter Architekturmuster

15

3 Anforderungen

3 Anforderungen

In diesem Kapitel werden die an die Service Invocation Schnittstelle gestellten
Anforderungen beschrieben. Zunachst werden in 3.1 funktionale Anforderungen
benannt. Anschlieflend folgen in 3.2 an die Service Invocation Schnittstelle ge-

stellte nichtfunktionale Anforderungen.

3.1 Funktionale Anforderungen

Dieser Abschnitt stellt die an die Service Invocation Schnittstelle gestellten funk-
tionalen Anforderungen vor. Die Service Invocation Schnittstelle wird mit Hin-

blick auf diese Anforderungen konzipiert und entwickelt.

Moglichkeit zum Aufrufen von IAs sowie Plinen

Sowohl Implementation Artifacts als auch Plane stellen ausfithrbare
Services im Kontext von TOSCA dar. Aufgrund des Ziels der Service Invocation
Schnittstelle, alle in TOSCA vorkommenden Services generisch aufrufbar zu
machen, muss die Service Invocation Schnittstelle sowohl das Aufrufen von be-

liebigen Implementation Artifacts als auch von Pl&anen unterstiitzen.

Hauptsdachlich werden mittels der Service Invocation Schnittstelle
Implementation Artifacts durch Plane aufgerufen werden. Aller-
dings sind zum Beispiel auch Aufrufe von Implementation Artifacts
durch andere Implementation Artifacts, Aufrufe von Planen durch
Implementation Artifacts oder andere Varianten denkbar und miissen

von der Service Invocation Schnittstelle unterstiitzt werden.

Des Weiteren muss insbesondere der Aufruf von Planen durch die Plan

Invocation Engine (siehe Kapitel 2.5) unterstiitzt werden.

16

3 Anforderungen

Moglichkeit Asynchroner Aufrufe

Dem Aufrufer (Client) der Service Invocation Schnittstelle muss es moglich sein,
diese asynchron aufrufen zu kénnen. Dadurch muss der Aufrufer nicht warten,
bis die Service Invocation Schnittstelle antwortet, und wird somit nicht an der

Weiterarbeit blockiert.

Vor allem Plane, welche die Mehrheit der Clients der Service Invocation
Schnittstelle ausmachen werden, konnen stark von asynchronen Aufrufen be-
ziiglich ihrer Bearbeitungsdauer profitieren. Sie kénnen dadurch langlaufige
Prozesse frithzeitig initiieren und parallel andere notwendige Arbeitsschritte
ausfithren. Einem Plan ist es somit beispielsweise moglich die Auftrage zur
Erstellung aller benétigten Datenbanken direkt zu Anfang des Plans zu ertei-
len und anschliefend, wahrend parallel die Datenbanken erstellt werden, auf
einer, von den Datenbanken unabhéngigen, virtuellen Maschine benétigte Trei-

ber zu installieren.

Natiirlich konnen neben Planen auch alle anderen Aufrufer mit langliaufigen

und parallelen Prozessen von der Asynchronitdt der Kommunikation profitieren.

Dynamische Bestimmung der zum Aufruf von IAs/Plinen benétigten
Informationen

Die Service Invocation Schnittstelle muss die Informationen, welche zum Aufru-
fen von Implementation Artifacts und Pl&ne benétigt werden, dyna-
misch beschaffen konnen. Dies verringert zum Einen die Anzahl an benétigten
Ubergabeparametern des Aufrufers an die Service Invocation Schnittstelle und
ermoglicht zum Anderen das Erstellen deutlich generischer, beziehungsweise

dynamischerer Plane oder auch Implementation Artifacts.

17

3 Anforderungen

Benotigte Informationen sind unter Anderem in der Endpunkt Datenbank ge-
speicherte Endpunkte’ der jeweiligen Implementation Artifacts oder
Plane sowie die jeweilige Invocation-Art” des Implementation
Artifacts oder Plans. Diese Daten konnen entweder aus der TOSCA Defi-
nition stammen oder zur Laufzeit vom OpenTOSCA Container zur Verfiigung

gestellt werden.

Dariiber hinaus muss die Service Invocation Schnittstelle die Funktion bieten,
weitergehende Informationen aus anderen Quellen beschaffen zu kénnen. Ein
Beispiel hierfiir ist Informationen tiiber eine bestimmte Operation eines
Implementation Artifacts, aus der WSDL eines SOAP-Web-Services zu
beschaffen.

Unterstiitzung verschiedener Invocation-Arten

Die Service Invocation Schnittstelle muss es erméglichen, die sich in einer CSAR
(siehe Grundlagen TOSCA, 2.2) befindlichen und in der zugehorigen TOSCA
definierten Implementation Artifacts oder Plane generisch aufrufbar

zu machen.

Dies Umzusetzen setzt eine grofie Vielfalt an unterstiitzten Protokollen, Stan-
dards, Datenformaten usw. voraus. Aufgrund dessen muss die Service
Invocation Schnittstelle so konzipiert sein, dass sie sich beziiglich ihrer unter-

stutzten Invocation-Arten erweitern lasst.

Ubergabe der Input-Parameter als Key/Value-Paare und XML-Document

Die fiir den letztendlichen Aufruf der Implementation Artifacts bens-

tigten Parameter miissen der Service Invocation Schnittstelle als Key/Value-

2 Endpunkte sind Adressen, unter der die, durch die IA-Engine deployten, Implementation
Artifacts oder die, durch die Plan-Engine deployten, Pline erreichbar sind.

® Die Invocation-Art beschreibt, welches Protokoll, Datenformat usw. zum Aufruf des
Implementation Artifacts oder Plans nétig ist.

18

3 Anforderungen

Paare (Schliissel/Wert Paare) sowie als XML-Document iibergeben werden kon-
nen. Dies stellt zum Einen eine festgelegte und somit bekannte Ubergabeform
fiir die Parameter dar und erméglicht zum Anderen eine einfache Bearbeitung

dieser.

Verwendung des Instance Data Services

Die Service Invocation Schnittstelle muss mit dem Instance Data Service kom-

munizieren konnen.

Die Instanzdatenhaltung verfiigt unter Anderem iiber eine Web Service Schnitt-
stelle, die es Planen und Implementation Artifacts ermoglicht, dort
Instanz-Daten ablegen zu kénnen. Dadurch kénnen fiir einen spéteren Gebrauch
benoétigte Daten, fiir andere Pl&ane, Implementation Artifacts und der
Service Invocation Schnittstelle, zuganglich gemacht werden. Dies ermoglicht
der Service Invocation Schnittstelle das Aktualisieren von Input-Parametern
durch aktuellere, in dem Instance-Data-Service abgelegte, Werte und dadurch
zum Beispiel den Planen wiederrum eine deutlich flexiblere und effektivere

Verwendung,.

Anbindung an Container

Die Service Invocation Schnittstelle muss Teil des OpenTOSCA Containers (sie-
he 2.4) werden. Sie muss dementsprechend so implementiert sein, dass sie auf
bestehende Komponenten des Containers zugreifen kann und beim Starten des

Containers automatisch mit startet.

Dies bedeutet konkret, dass die Service Invocation Schnittstelle mit Hilfe von
OSGi (siehe 2.3) oder einer dazu kompatiblen Technik implementiert werden
muss, da sie ansonsten keinen Zugriff auf die vorhandenen und als OSGi Ser-

vices implementierten Komponenten hitte.

19

3 Anforderungen

3.2 Nichtfunktionale Anforderungen

In diesem Kapitel werden die nichtfunktionalen Anforderungen an die Service
Invocation Schnittstelle vorgestellt. Diese Anforderungen stellen wichtige Ei-
genschaften der Service Invocation Schnittstelle dar und miissen bei der Ent-

wicklung beriicksichtigt werden.

Einfache Erweiterbarkeit

Die Service Invocation Schnittstelle muss so konstruiert sein, dass sie sich ohne
groflere Umbauarbeiten oder Anderungen der Architektur in ihrem Funktions-
umfang erweitern ldsst. Diese Erweiterungen beziehen sich dabei zum Einen auf
die Moglichkeiten zum Aufrufen verschiedenster Implementation
Artifacts und Plane und zum Anderen auf die Moglichkeiten zum Aufru-

fen der Service Invocation Schnittstelle selber.

Dariiber hinaus miissen aber auch weitere funktionserweiternde Komponenten,
wie beispielsweise eine Logging-Komponente, einfach in die Service Invocation

Schnittstelle integriert werden kénnen.

Leistungsfihigkeit

Die Service Invocation Schnittstelle muss fahig sein, mehrere Aufrufe, auch ver-
schiedenster Aufrufer, gleichzeitig bearbeiten zu konnen. Diese parallele Bear-
beitung darf dabei jedoch, seitens der Service Invocation Schnittstelle, keine
deutlich merkbaren Leistungseinbufien hinsichtlich der Bearbeitungsdauer ver-

ursachen.

20

3 Anforderungen

Flexibilitat

Aufgrund der Moglichkeit der Service Invocation Schnittstelle des Aufrufens
verschiedenster Implementation Artifacts, ist eine Vorhersage iiber die
verschiedenen von den aufgerufenen Implementation Artifacts zurick-
kommenden Datenformate nicht machbar. Die Service Invocation Schnittstelle
muss deshalb flexibel im Umgang mit verschiedenen Datenformaten sein und

eine grofle Anzahl an Datenformaten unterstiitzen und damit umgehen koénnen.

21

4 Konzept & Architektur

4 Konzept & Architektur

In diesem Kapitel wird das entwickelte Konzept, sowie die Architektur der Ser-
vice Invocation Schnittstelle veranschaulicht und erldutert. Zuerst werden, auf-
grund der im vorherigen Kapitel formulierten Anforderungen, getroffene Ent-
scheidungen dargelegt und begriindet. Darauf folgend wird die Architektur der
Service Invocation Schnittstelle beschrieben und anschlieffend Moglichkeiten

des Losungskonzepts aufgezeigt.

4.1 Entwurfsentscheidungen

Dieser Abschnitt legt wichtige Entscheidungen betreffend der Konzeption und
Implementierung der Service Invocation Schnittstelle dar. Diese sind zum Einen
Entscheidungen beziiglich genutzten Technologien und zum Anderen Entschei-
dungen beziiglich Interfaces von Komponenten, also der konkreten Implemen-

tierung.

Eine der zentralen Entscheidungen bei der Konzeption der Service Invocation
Schnittstelle ist die Frage, mit welcher Art von Integrationstechnik sie realisiert
werden sollte. Mit Hilfe eines fertigen ESB-Systems, einem Integrations-

Frameworks oder einer kompletten Eigenentwicklung.

Abbildung 5 zeigt eine Ubersicht der drei Moglichkeiten sowie eine Einschit-
zung der Verwendbarkeit dieser beziiglich der Integration der Service Invocation
Schnittstelle in den OpenTOSCA Container und der damit verbundenen Kom-

plexitét. Im Folgenden wird dies detailliert erklart.

Fir die Wahl eines ESBs spricht, dass es sich dabei um ein méachtiges und je
nach Wahl des ESBs, fiir seine Anwendungszwecke auch um ein bewehrtes und
ausgereiftes Softwareprodukt handelt, dass es nur noch zu konfigurieren gilt.

Einige der ESB Produkte sind allerdings auf ein bestimmtes Technologiegebiet

22

4 Konzept & Architektur

spezialisiert und eignen sich daher nicht fiir die Umsetzung der Service
Invocation Schnittstelle. Der auf Apache Axis2 [13] basierte Apache Synapse
ESB [5] zum Beispiel ist vorwiegend auf eine Web Service Umgebung speziali-
siert [44]. Ohne Anpassungen bestehender (OSGi) Komponenten des OpenTOS-
CA Containers wiirde dies jedoch moglicherweise zu Problemen fithren. Da die
Komponenten per OSGi implementiert sind und keine Web Service Schnittstelle,
wie zum Beispiel fiir SOAP bieten, konnen sie von Synapse ESB nicht direkt auf-
gerufen und damit nicht benutzt werden. Eine Moglichkeit zur Losung des Prob-
lems ist das Umwandeln der Komponenten in Web Services oder das Erstellen
einer Web Service Schnittstelle zum Aufruf der Komponenten. Dies wiirde aller-
dings einen erheblichen Umbauaufwand verursachen. Des Weiteren sind ESBs
im Vergleich zu den beiden anderen Moglichkeiten zur Realisierung der Service
Invocation Schnittstelle die deutlich schwergewichtigste und komplexeste Al-
ternative und bringen teilweise nicht bendtigte und damit iiberfliissige Funktio-

nen mit sich [43].

—

Niedrig Hoch

Abbildung 5: Moglichkeiten der Integrationstechnologien (nach [43] S.3)

23

4 Konzept & Architektur

Diesen Nachteil der iiberfliissigen Funktionen, hat die Entwicklung eines kom-
pletten eigenen Systems, ohne Integrationswerkzeuge, nicht zur Folge. Es kann
hier eine ganz flexible und komplett nach den konkreten Bediirfnissen angepass-
te Losung realisiert werden. Allerdings bringt diese Alternative entweder, bei
einer kompletten Eigenentwicklung mit Standard Java API, einen groflen und
noch wichtiger, vor allem grotenteils unnétigen Implementierungsaufwand mit
sich. Fiir viele Kommunikationsstandards und Protokolle gibt es bereits fertige
Bibliotheken die verwendet werden kénnen und auch sollten. Denn eine selbst
entwickelte Losung wird mit einer relativen hohen Wahrscheinlichkeit nicht so
ausgereift, wie eine bereits bewehrte Fremdbibliothek sein. Darauf zu verzichten
resultiert also in tiberflissiger Arbeit. Oder aber es besteht die Gefahr, bei der
Verwendung einer Vielzahl solcher Bibliotheken, den Uberblick iiber die Abhén-
gigkeiten und den genauen Funktionalitidten der einzelnen Bibliotheken zu ver-
lieren oder von Kompatibilitdtsproblemen bei vielen Fremdbibliotheken ver-

schiedenster Hersteller.

Ein moégliches Problem durch verschiedene Quellen der Bibliotheken hat die
dritte Variante zur Realisierung der Service Invocation Schnittstelle nicht. Die
Verwendung eines Integrations-Frameworks vereint die bisher bei den anderen
beiden Realisierungsmethoden erwahnten Vorteile, ohne jedoch die vorherigen
Nachteile mit sich zu bringen. So bieten Integrations-Frameworks zwar, dhnlich
wie ESBs, Unterstiitzung fiir eine grofie Anzahl von Standards und Protokollen,
lassen sich jedoch aufgrund dessen, dass es sich dabei de facto um kein eigen-
stindiges Produkt, sondern Java Bibliotheken handelt, in bestehende Projekte
leicht integrieren und in der Funktionalitdt einfach ergdnzen. Zudem lassen In-
tegrations-Frameworks, aufgrund ihres architektonischen Aufbaus aus einzelnen
Funktionskomponenten, eine gleichermaflen leichtgewichtige wie flexible und
individuell anpassbare Losung des Problems zu. Des Weiteren besteht der grofle
Vorteil eines Produktes aus einer Hand, was unter anderem aufeinander abge-
stimmte und damit hochgradig kompatible Komponenten, sowie eine einheitli-

che Art der Verwendung dieser, mit sich bringt.

24

4 Konzept & Architektur

Aufgrund der oben dargelegten Argumentation, wird die Moglichkeit des Integ-

rationsframeworks in dieser Arbeit in Form von Apache Camel [2] gewahlt.

Grund dafiir ist unter Anderem eine grofie Anzahl an Komponenten (iiber 125,
siehe [7]), welche viele verschiedene Techniken und Standards unterstiitzen.
Beispielweise gibt es eine FTP-Komponente [9] zum versenden und empfangen
von Dateien per FTP oder eine CXF-Komponente [8] zur Integration von SOAP
Web Services. Weiterhin bietet Camel die Moglichkeit eigene Komponenten zur
Funktionserweiterung unkompliziert entwickeln und benutzen zu kénnen. Ein
weiterer Grund fiir die Wahl von Camel ist die Moglichkeit, anders wie zum
Beispiel bei den beiden alternativen Integrations-Frameworks Spring Integration
[39] und Mule ESB [27], neben einer XML DSL auch eine Java DSL nutzen zu
konnen [43]. Dies bringt die tiblichen Vorteile einer IDE*, wie zum Beispiel die
automatische Vervollstandigung von Code und damit ein effizienteres Arbeiten
mit sich. Des Weiteren unterstiitzt Camel, im Gegensatz zu Mule ESB, OSGi und
ermoglicht somit eine einfache Integration der Service Invocation Schnittstelle
in den bestehenden OpenTOSCA Container [43]. Dariiber hinaus ist Camel das
in Apache ServiceMix [4], einem auf OSGi basierenden ESB Container, genutzte
Integrations-Framework. Dies ermoglicht es, falls spater ESB Funktionalitaten
benotigt oder gewiinscht werden, OpenTOSCA in Apache ServiceMix zu betrei-

ben.

Um eine einfache Ergdnzung des Funktionsumfangs der Service Invocation
Schnittstelle hinsichtlich der unterstiitzten Invocation-Arten zu ermdglichen,
wird ein Erweiterungssystem benoétigt. Dies wird in Form eines Plug-In-Systems

realisiert.

In der IA-Engine und Plan-Engine (siehe Grundlagen OpenTOSCA, 2.4) hat sich
die Technik der OSGi Declarative Services (sieche Grundlagen OSGi, 2.3) zur
Plug-in Verwaltung bewéhrt. Aufgrund dessen, wird die Service Invocation

Schnittstelle in ihrem Kern ebenfalls als Engine, zur Verwaltung der durch

¢ Integrierte Entwicklungsumgebung (integrated development environment).

25

4 Konzept & Architektur

Declarative Services realisierten Plug-ins, konzipiert. Diese Beibehaltung einer
einheitlichen Mechanik fithrt aulerdem zu einer einheitlichen Architektur des

Containers und damit zu einer hoheren Wartbarkeit.

Eine weitere zu entscheidende Frage ist, ob fiir jede Invocation-Art eines
Implementation Artifacts eine eigene Endpoint-Datenbank erstellt
wird. Also beispielsweise eine eigene Datenbank fiir SOAP Web Service
Implementation Artifacts und eine eigene Datenbank fiir REST Web
Service Implementation Artifacts. Anhand der Datenbank kann dann
von der Service Invocation Schnittstelle erkannt werden, wie das jeweils darin
befindliche Implementation Artifact aufgerufen werden muss. Aller-
dings wird das Deployment der Implementation Artifacts und damit
auch das Abspeichern der Endpoints durch die IA-Engine und deren Plug-ins
erledigt. Die IA-Engine unterscheidet die Implementation Artifacts je-
doch nicht anhand deren Invocation-Art (siehe Kapitel 3.1), wie die SI-Engine,
sondern anhand ihrer Implementation Artifact-Art. Beispielsweise
werden ein SOAP Web Service Implementation Artifact und ein REST
Web Service Implementation Artifact, sofern beide als Web Application
Archive (WAR) gepackt sind, zur selben Implementation Artifact-Art
zugeordnet und damit auch durch das gleiche IA-Plug-in deployt’. Zum Aufru-
fen dieser beiden Implementation Artifacts sind jedoch zwei verschie-
dene SI-Schnittstellen Plug-ins notwendig: ein Rest- und ein SOAP-fahiges Plug-
in. Zusammengefasst unterscheiden IA-Engine und SI-Engine
Implementation Artifacts unterschiedlich (vgl. Invocation-Art und
Implementation Artifact-Art) Daher bringt die Trennung der
Endpoint-Datenbank keine Vorteile. Es konnen aber dquivalent zu Endpunkt-
Informationen fiir die IA-Engine, auch die Invocation-Art eines

Implementation Artifacts innerhalb der TOSCA Definition vermerkt

® Vereinfachte Darstellung. Die Wahl des IA-Plug-ins wird nicht ausschlieflich durch die IA-Art
bestimmt. IAs kénnen Anforderungen an ein Plug-in stellen, die von diesem erfiillt werden
miissen. Fiir weitergehende Informationen wird auf die TOSCA Spezifikation ([25] Kapitel 3.4
~Requirements & Capabilities®) verwiesen.

26

4 Konzept & Architektur

werden. Diese wird von der SI-Engine ausgelesen und damit das passende Plug-
in bestimmt. Aufgrund dessen werden die Endpoints in einer gemeinsamen Da-

tenbank gespeichert.

Weiterhin ist das Design des Interfaces der SI-Plug-ins, eine wichtige zu treffen-
de Entscheidung. Die Plug-ins benétigen zum Aufrufen von Implementation
Artifacts oder Planen deren Endpoint, die aufzurufende Operation und die
zu iibergebenden Daten. Auflerdem werden im Falle von asynchronen Aufrufen,
wie sie zum Beispiel bei SOAP Web Services vorkommen, eine Correlation ID
zur Bestimmung der zum Aufruf gehérenden Antwort benétigt. Das Design des
Interfaces lasst sich auf verschiedene Arten umsetzen. Listing 1 und Listing 2

zeigen die zwei zur Wahl stehenden Alternativen.

public Object invoke(String endpoint, String operationName,
HashMap<String, String> params, String correlationID);

Listing 1: Plug-in Interface Alternative 1

In der ersten Alternative (Listing 1) erfolgt die Ubergabe der oben genannten
Parameter mittels Standard Java Objekten wie Strings oder einer Map. Dadurch
wird ein klar definiertes Interface festgelegt. Als Riickgabewert ist nur Object
moglich, weil dies die Riickgabe verschiedenster Datentypen ermoglicht und
dadurch die Flexibilitdt erhoht. Allerdings muss die Correlation ID ebenfalls mit
zuriick gegeben werden. Jedoch sind zwei einzelne Riickgabewerte in Java nicht
moglich. Es muss dafiir extra ein eigenes Objekt erstellt werden, welches den
eigentlichen Riickgabewert plus die Correlation ID beinhaltet. Ein weiterer Kri-
tikpunkt dieser Alternative ist die starre Form des Interfaces. Eine einfache Er-
weiterung dieses ist nicht méglich. Muss das Interface beispielsweise aufgrund
geanderter Anforderungen angepasst werden, werden alle bis dahin bestehen-

den Plug-ins fehlerhaft und miissen angepasst werden. Eine solche Anderung

27

4 Konzept & Architektur

kann zum Beispiel ein weiterer benétigter (oder sogar optionaler) Parameter
sein. Auch ist mit dieser Alternative die Ubergabe der an das
Implementation Artifact oder den Plan gerichteten Daten nur in Form
einer HashMap [34] moglich. Dies ist nicht optimal, da zum Beispiel die Plan
Invocation Engine ihre zum Aufruf eines Plans erzeugte Nachricht in Form
eines org.w3c.dom.Document [33] Objekts iibergibt. Dieses muss, damit es dem
Plug-in iibergeben werden kann, zuerst in eine HashMap umgewandelt werden.
Allerdings muss zum Aufruf eines SOAP Web Service diese HashMap anschlie-

Bend wieder zuriick in eine SOAP Nachricht (also XML) transferiert werden.

public Exchange invoke(Exchange exchange);

Listing 2: Plug-in Interface Alternative 2

Das zweite zur Wahl stehende Interface (Listing 2) nutzt zur Ubergabe der Pa-
rameter das zu Camel gehorende Exchange Objekt (siehe Grundlagen Camel,
2.7). Das Exchange Objekt wird als Container fiir Message Objekte mit beliebi-
gem Inhalt genutzt. Im Gegensatz zur ersten Alternative, stellt Alternative 2 so-
mit kein klar definiertes Interface beziiglich der zur Ubergabe der Parameter
genutzten Objekte dar. Das Exchange Objekt ermoglicht jedoch eine flexible
Entwicklung sowie Nutzung der Plug-ins, also genau das, was fiir die Service
Invocation Schnittstelle notwendig ist. In die Header der Message des Exchange
Objekts konnen die Parameter wie Endpoint, Name der Operation usw. abgelegt
werden, wohingegen die zu iibergebenden Daten, in welcher Form auch immer,
in den Body gelegt werden konnen (detailliertere Erlauterungen hierzu folgen in
Kapitel 4.3). Dies ermoglicht zugleich auch eine einfache Erweiterung von Plug-
ins ohne das Interface dafiir anpassen zu missen. Bendtigt ein Plug-in bei-
spielsweise weitere Daten, konnen diese einfach als neuer Header innerhalb des
Message Objekts definiert werden. Plug-ins, die von den neuen Headern wissen

und darauf vorbereitet sind, konnen diese nutzen. Alte Plug-ins jedoch, ohne

28

4 Konzept & Architektur

Wissen von den neuen Headern, funktionieren auch weiterhin problemlos. Ein
weiterer Grund der fiir die Verwendung des Exchange Objekts und damit fiir
Alternative 2 spricht ist die Tatsache, dass dieses ohnehin von Camel selbst als
Container zum Transport von Messages genutzt wird und damit wiederum eine

einheitliche Mechanik gewahrleistet wird.

Aufgrund der dargelegten Argumentation, wird Alternative 2 (Listing 2) ge-
wiahlt. Detailliertere Erlauterungen zur Verwendung des Exchange Objekts, wie

zum Beispiel die Nutzung der Header, folgen in Kapitel 4.3.

4.2 Architektur

In diesem Kapitel wird die Architektur der Service Invocation Schnittstelle ver-
anschaulicht und erlautert. Da sie Teil des OpenTOSCA Containers ist, wird sie

entsprechend im Rahmen dessen dargestellt.

Abbildung 6 zeigt die Architektur der Service Invocation Schnittstelle. Eine der
Hauptkomponenten der Service Invocation Schnittstelle ist, neben den bereits in
Kapitel 2.4 vorgestellten Komponenten TOSCA Engine, Endpoint Service und
Instance Data Service, die SI-Engine (siehe Kapitel 5.4). Sie bildet, durch ihre
Verbindung zu anderen wichtigen Komponenten innerhalb des OpenTOSCA
Containers, die zentrale Einheit der Service Invocation Schnittstelle. Weiterhin
sind auch die Service Invocation APIs (siehe Kapitel 5.2 sowie 5.3), auf die spater
noch genauer eingegangen wird, ein wichtiger Bestandteil der Service

Invocation Schnittstelle.

29

4 Konzept & Architektur

OpenTOSCA

Control

IA-Plug-in
IA-Engine

TOSCA Engine
Plan-Plug-in
Endpoint Service Plan-Engine

Instance Data Service

| Plan Portability API]

-

Abbildung 6: Architektur des OpenTOSCA Containers mit Service
Invocation Schnittstelle

J

Die SI-Engine hat unter Anderem die Aufgabe, das zum Invoke-Request passen-
de Implementation Artifact, sowie weitere bendtigte Informationen, wie
die Invocation-Art des Implementation Artifacts, mittels der TOSCA
Engine zu bestimmen (dquivalent fiir Plane). Weiterhin nutzt die SI-Engine
den Endpoint Service zur Beschaffung der Endpunkte der Implementation
Artifacts beziehungsweise der Plane. Auch bietet eine Schnittstelle zum
Instance Data Service der SI-Engine die Moglichkeit, dort von beispielsweise
bereits ausgefithrten Planen gespeicherte Instanzdaten abzurufen und zu ver-

wenden.

Die Aufrufe der Implementation Artifacts oder Plane geschehen dann

durch die so genannten SI-Plug-ins (siehe Kapitel 5.5). Diese Plug-ins bieten da-

30

4 Konzept & Architektur

bei jeweils Unterstiitzung fiir verschiedene Protokolle und Standards
(Invocation-Arten), wie zum Beispiel das Versenden einer Message mittels SOAP
iiber HTTP oder der Aufruf eines OSGi Implementation Artifacts und
konnen bei Bedarf auch wahrend der Laufzeit hinzugefiigt und gestartet werden.
Die Verwaltung der SI-Plug-ins ibernimmt dabei, durch ein extra dafiir konzi-

piertes OSGi basiertes Plug-in-System, ebenfalls die SI-Engine.

Die Funktionalitat der Service Invocation Schnittstelle wird durch verschiedene
Service Invocation APIs, wie z.B. eine SI-SOAP-API oder eine SI-REST-API zur
Verfiigung gestellt. Durch sie konnen andere Komponenten, Anwendungen,
Implementation Artifacts und vor allem auch Pl&ne die Service
Invocation Schnittstelle nutzen. Beispielsweise mochte ein Plan eine in TOSCA
deklarierte Management Operation aufrufen, welche durch ein SOAP/HTTP
Implementation Artifact implementiert ist. Dafiir schickt der Plan der
Service Invocation SOAP API eine Nachricht, welche alle benétigten Informatio-
nen enthalt. Der Inhalt dieser Nachricht wird der SI-Engine weitergegeben. Dort
werden weitere Daten wie z.B. der Endpunkt besorgt und anschlieffend alle In-
formationen an ein passendes Plug-in weitergegeben, wo der Aufruf schlieB8lich
ausgefithrt wird. Der genaue Bearbeitungsablauf wird im folgenden Kapitel er-

lautert.

31

4 Konzept & Architektur

4.3 Beschreibung des gewahlten Losungskonzeptes

In diesem Kapitel wird detailliert auf das Konzept der Service Invocation

Schnittstelle eingegangen und Moglichkeiten des Konzepts aufgezeigt.

Abbildung 7 zeigt den Aufbau der Komponenten der Service Invocation Schnitt-
stelle samt deren Abhangigkeiten und Verbindungen sowie die Schnittstellen zu
Services wie Planen und Implementation Artifacts. Auflerdem wird
die Nutzung des Camel Exchange Objekts innerhalb der Service Invocation
Schnittstelle dargestellt. Die Abbildung zeigt beispielhaft die Service Invocation
SOAP API zum Aufruf der Service Invocation Schnittstelle mittels SOAP Nach-

richten, wie sie zum Beispiel durch BPEL P l&ne getitigt werden.

Plan Bsp_IA1

.war
M (SOAP)
nmarshal reqPr r Enum
unmarsha s eqProcesso St
gen obj Header

ToscaEngine

InstanceData
Service

EndpointService

marshal Ja56 resProcessor
gen obj

Service Invocation SOAP API

= Camel Exchange Object
(Container fir Messages)

Abbildung 7: Konzeptioneller Aufbau der Komponenten

32

4 Konzept & Architektur

Abbildung 7 zeigt, dass die SI-Engine die zentrale Komponente innerhalb der
Service Invocation Schnittstelle darstellt. Sie ermdglicht zum Einen die Kommu-
nikation mit bestehenden und benétigten Komponenten des OpenTOSCA Con-
tainers (TOSCA Engine, Endpoint Service, Instance Data Service) und stellt zum
Anderen die Verbindung zwischen den Service Invocation APIs und den ver-
schiedenen SI-Plug-ins her (siehe auch Abbildung 8), ibernimmt somit das Rou-
ting der Nachrichten innerhalb der Service Invocation Schnittstelle. Abbildung 8
verdeutlicht dies durch die Darstellung der Komponenten der Service Invocation

Schnittstelle mittels eines Schichtendiagramms.

|)

Service Invocation API

SI-Engine

Endpoint [SI-SOAP | SI-REST
Service Dat_a Plug-in Plug-in
Service

Implementation Artifacts

Abbildung 8: Service Invocation Schnittstelle als Schichtendiagramm

Abbildung 7 zeigt des Weiteren die Verwendung des Exchange Objekts. Inner-
halb der Service Invocation Schnittstelle und deren Komponenten wird zur

Ubergabe der Daten und Nachrichten das von Camel bereitgestellte Exchange

33

4 Konzept & Architektur

Objekt genutzt. Die Kommunikation zwischen SI-Engine (und damit der Service
Invocation Schnittstelle) und den restlichen Komponenten des OpenTOSCA
Containers dagegen erfolgt per Ubergabe einzelner Parameter. Dies hat unter
Anderem den Vorteil, dass innerhalb der Service Invocation Schnittstelle zwar
die Vorziige des Exchange Objekts genutzt werden konnen, die restlichen Kom-
ponenten des Containers jedoch von Camel und dadurch auch von der Service
Invocation Schnittstelle unabhangig bleiben und zudem nicht angepasst werden

missen.

Weiterhin ist in Abbildung 7 ein Enum dargestellt. Dieses Enum (siehe Kapitel
5.1) ist fest definiert und spezifiziert die Keys der Header des Message Objekts.
Damit wird sichergestellt, dass die von den Service Invocation APIs an die SI-
Engine und die von der SI-Engine an die SI-Plug-ins ibergebenen Messages ei-
nen einheitlichen Aufbau beziiglich den in den Headern befindlichen Parame-
tern haben. Dadurch koénnen benétigten Informationen, wie zum Beispiel
CsarlD oder ServiceTemplatelD, komponenteniibergreifend identisch
und zuverldssig ausgelesen werden. Man konnte zu diesem Zweck auch ein Ob-
jekt mit Feldern fir die bendtigten Parameter (CsarlD,
ServiceTemplatelD, OperationName, ...) anlegen. Die HashMap als Ob-
jekt fiir die Header ,simuliert” zusammen mit dem Enum so gesehen ein solches
Objekt zur Ubergabe der erforderlichen Parameter. Allerdings ist die Losung mit
dem Enum, welches die Keys der benétigten Parameter in der Header-HashMap

festlegt, flexibler und zudem so von Camel vorgesehen.

Abbildung 9 zeigt die Reihenfolge eines beispielhaften Bearbeitungsablaufs in-
nerhalb der Service Invocation Schnittstelle vom Aufruf durch einen Plan, tber
die Bearbeitung der Anfrage in der SI-Engine und den Aufruf des

Implementation Artifacts, bis zur Antwort zuriick an den Plan.

34

4 Konzept & Architektur

Plan

P1s optional '
! 2= entfillt bei ,invokePlan” i

unmarshal reqProcessor

synchron
oder
asynchron

M
NG

Camel
Exchange

()
N

Service Invocation SOAP API

marshal resProcessor

Enum
definiert
Header

Abbildung 9: Bearbeitungsablauf zum Aufruf eines Services

Zuerst ruft der Plan die Service Invocation SOAP API mit den zum Aufruf des
Implementation Artifacts bendétigten Daten per SOAP Message auf
(siehe 1). Die Service Invocation SOAP API unmarshallt diese SOAP Message,
liest die ibergebenen Daten aus, schreibt diese in ein Exchange Objekt und leitet
dieses an die SI-Engine weiter (siehe 2). Durch das definierte Enum sind die im
Header befindlichen Parameter zur Bestimmung des Implementation

Artifacts in einem fiir die SI-Engine versténdlichen Format.

Die SI-Engine holt sich darauthin (siehe 3), mittels der TOSCA Engine und den
bekommenen Daten, Informationen tiber das aufzurufende Implementation
Artifact, wie Namen und Invocation-Art, ein. Auflerdem bestimmt sie das
message exchange pattern (MEP) [41] des Implementation Artifacts,
anhand den in der TOSCA Definition fiir die aufzurufende Operation angegebe-

nen Werten.

35

4 Konzept & Architektur

Im Rahmen der Service Invocation Schnittstelle werden nur die beiden an die
WSDL 2.0° angelehnten In-Out sowie In-Only MEPs unterschieden. Das In-Out
pattern gibt an, dass bei einer eingehenden Nachricht (Input) eine Antwort ge-
geben werden muss (Output). Listing 3 zeigt ein Beispiel des In-Out pattern in
einer TOSCA Definition. Demgegentiiber gibt das In-Only pattern an, dass auf
eine Anfrage keine Antwort gesendet wird. Ein Beispiel hierfiir wird in Listing 4

dargestellt.

01 <Operation name="createDB">

02 <InputParameters>

03 <InputParameter name="Size" type="xs:string"/>

o4 <InputParameter name="Host" type="xs:string"/>

05 <InputParameter name="User" type="xs:string"/>

06 <InputParameter name="Password" type="xs:string"/>
o7 </InputParameters>

08 <OutputParameters>

09 <OutputParameter name="URL" type="xs:string"/>

10 </OutputParameters>
11 </Operation>

Listing 3: Beispiel In-Out Pattern

01 <Operation name="deleteDB">

02 <InputParameters>

03 <InputParameter name="URL" type="xs:string"/>

o4 <InputParameter name="User" type="xs:string"/>

05 <InputParameter name="Password" type="xs:string"/>
06 </InputParameters>

07 </Operation>

Listing 4: Beispiel In-Only Pattern

Anschlieflend ermittelt die SI-Engine anhand der zusitzlich gewonnenen Infor-
mationen den Endpunkt des Implementation Artifacts mit Hilfe des

Endpoint Services (siehe 4).

° Web Services Description Language Version 2.0 (http://www.w3.org/TR/wsdl20/)

36

http://en.wikipedia.org/wiki/Request-response

4 Konzept & Architektur

Optional, falls beim Aufruf der Service Invocation SOAP API eine ID einer
CSAR-Instanz mitgegeben wurde, priift die SI-Engine, ob fiir diese CSAR-Instanz
gespeicherte Instanz Daten vorhanden sind und verwendet (eine genauere Er-
klarung folgt spater) sie in diesem Falle (siehe 5). Die Instanz Daten kénnen da-
bei von einem beliebigen Plan jederzeit vorher abgespeichert worden sein (siehe

X in Abbildung 9).

Anschliefend bestimmt die SI-Engine anhand der Invocation-Art des
Implementation Artifacts das dazu passende SI-Plug-in und sendet die-

sem alle gesammelten Daten wiederum per Exchange Objekt zu (siehe 6).

Das Plug-in erstellt dann seinerseits aus den bekommenen Informationen eine
Request-Message und sendet diese an das Implementation Artifact (sie-
he 7). Der Aufruf kann dabeli, je nach Implementierung des Implementation
Artifacts, synchron oder auch asynchron erfolgen und liegt in der Verant-

wortung des jeweiligen Plug-ins.

Die Antwort des Implementation Artifacts wird dann iber das SI-
Plug-in an die SI-Engine und von dort weiter an die Service Invocation SOAP
API geleitet (siehe 8). Dort wird sie unmarshallt und in eine SOAP Message um-
gewandelt. Zum Schluss sendet die Service Invocation API schliellich diese
SOAP Message zuriick an den Plan (siehe 9), der nun mit den, von dem

Implementation Artifact, erhaltenen Daten weiterarbeiten kann.

In diesem Beispiel erfolgte der Aufruf eines als SOAP Web Service implemen-
tierten Implementation Artifacts durch einen Plan. Natirlich sind
aber auch andere Aufrufszenarien moglich. Zum Beispiel der Aufruf eines als
RESTful Web Service oder OSGi-Service implementierten Implementation
Artifacts. Weiterhin besteht auch die Moglichkeit des Aufrufens eines
Plans, initiiert durch die Plan Invocation Engine (siehe Kapitel 2.5) oder an-

deren Plan.

37

4 Konzept & Architektur

DBCsar/5/.../Properties/Host: AWS
TestCsar/2/TestNT/Properties/String : Test

Plan
N DB-
O Creator
war
5 (SOAP)
‘E createDB
createDB Size: 5
Csar : DBCsar unmarshal reqProcessor Host : AWS
Csarlnstanz : 5 : N
User : admin
Pw : admin

URL:
http://s3.a

Pw : admin mazonaws...

Size: 5
() Host : Azure
User : admin

getEndpoint(DBCsar,
|AName,...

-

D<

O URL:

http://s3.a marshal resProcessor
mazonaws...

Service Invocation SOAP API

Abbildung 10: Beispielhafte Nachrichten / Aufrufe

Abbildung 10 zeigt das beschriebene Szenario - der Aufruf eines SOAP Web Ser-
vice Implementation Artifacts durch einen Plan - an einem Beispiel
mit konkreten Nachrichten und Werten. Die Nachrichten und Aufrufe sind in-
nerhalb der Abbildung verkiirzt dargestellt. Die kompletten Nachrichten sowie

Aufrufe werden im Folgenden erlautert.

Listing 5 zeigt den ausfithrlichen SOAP Aufruf des Plans an die Service
Invocation SOAP API. Ziel des Aufrufs ist es, das durch die Zeilen acht bis 18
spezifizierte Implementation Artifact, mit der Operation createDB (siehe
Zeile 18) und den von Zeile 22 bis 40 angegebenen Parametern aufzurufen. Die
Angabe von ReplyTo in Zeile 19 teilt der Service Invocation Schnittstelle mit, an

welche Adresse sie den Callback mit der Antwort an den Plan zuriick schicken

38

4 Konzept & Architektur

soll. Die MessagelD (Zeile 20) wird von der Service Invocation Schnittstelle an

den Plan zuriick gesendet, da diese von der Workflow Engine benétigt wird,

um die Antwort der Anfrage sowie der richtigen Planinstanz zuordnen zu kon-

nemn.

01 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.

02
03
04
05
06
o7
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

org/soap/envelope/" xmlns:
sch="http://siserver.
org/schema">

<soapenv:Header/>
<soapenv:Body>
<sch:invokeOperation>

<CsarID>DBCsar</CsarID>
<!--Optional:-->
<ServiceInstanceID>Instance5</ServiceInstanceID>
<ServiceTemplateIDNamespaceURI>
http://CsarDBCreator.org/DB/
</ServiceTemplateIDNamespaceURI>
<ServiceTemplateIDLocalPart>
DBCreator_ServiceTemplate
</ServiceTemplateIDLocalPart>
<NodeTemplateID>DB_NodeTemplate</NodeTemplateID>
<OperationName>createDB</OperationName>
<ReplyTo>http://localhost:1337/callback</ReplyTo>
<MessageID>A7ZD70AH< /MessageID>
<!--Optional:-->
<Params>
<!--1 or more repetitions:-->
<Param>
<key>Size</key>
<value>5</value>
</Param>
<Param>
<key>Host</key>
<value>Azure</value>
</Param>
<Param>
<key>User</key>
<value>admin</value>
</Param>
<Param>
<key>Password</key>
<value>p8il1R6N9</value>
</Param>
</Params>

</sch:invokeOperation>
</soapenv:Body>

43 </soapenv:Envelope>

Listing 5: SOAP Nachricht eines Plans an die Service Invocation
Schnittstelle zur Erstellung einer Datenbank

39

4 Konzept & Architektur

Die SOAP Nachricht wird von der Service Invocation SOAP API, wie in Abbil-
dung 11 dargestellt, umgewandelt und an die SI-Engine weitergeleitet. Hierfiir
wird das in Kapitel 2.7 erlduterte Exchange Objekt genutzt, welches von Camel
angeboten wird. Die fiir das Implementation Artifact bestimmten Para-
meter (Size, Host, User, Password) werden im Body der Message abgelegt. Die
zur Bestimmung des Implementation Artifacts sowie zum Aufruf des-
sen benoétigte Daten dagegen, werden im Header (mit den durch das Enum defi-
nierten Strings als Keys) des Message Objekts abgelegt. Weitere iibergebene
Werte wie ReplyTo oder MessagelD werden ebenfalls im Header abgelegt. Diese
Werte sind allerdings nicht durch das SI-Enum definiert, da sie nur von der

SOAP-API selbst und nicht den anderen SI-Komponenten benétigt werden.

CSARID : DBCsar
SERVICEINSTANCEID_STRING : Instance5
SERVICETEMPLATEID_QNAME :
{http://CsarDBCreator.org/DB/}DBCreator_ServiceTemplate

Header

NODETEMPLATEID_STRING :

OPERATIONNAME_STR
ReplyTo :

DB_NodeTemplate
ING - createDB

http://localhost:1337/cal lback

MessagelD : A7ZD70AH
Body Size : 5
Host : Azure
User : admin
Password : p8ilR6N9

Abbildung 11: Von der Service Invocation SOAP API an die SI-Engine
gesendete Message

Anschlieflend holt sich die SI-Engine benétigte Daten aus dem Header, bestimmt
mit diesen und der Zuhilfenahme der TOSCA Engine das Implementation
Artifact und besorgt sich mittels Endpoint Service den dazu gespeicherten
Endpunkt. Dieser wird anschlieffend ebenfalls unter dem im SI-Enum definier-
tem Key (ENDPOINT _URI, siehe Kapitel 5.1) als Header des Message Objekts
abgelegt.

40

4 Konzept & Architektur

Weiterhin tiberpriift die SI-Engine per Instance Data Service ob Instanz Daten
fiir diese Anfrage gespeichert sind und holt sich diese gegebenenfalls von dort.
Dies ist allerdings optional und erfolgt nur bei durch den Aufrufer angegebener
ServicelnstancelD. Anschliefend werden die sich im Body befindlichen Input-
Parameter durch die jeweiligen Werte aus der Instanz Datenbank ersetzt und
damit aktualisiert. So kénnen beispielsweise IP Adressen einer zuvor angelegten

Virtuellen Maschine genutzt werden.

SchlieBllich wird anhand der durch die TOSCA Engine ermittelten Invocation-
Art des Implementation Artifacts, das dazu passende Plug-in gew#hlt
und die inzwischen, zum Aufruf des Implementation Artifacts, mit al-

len bendtigten Daten versehene Exchange Message dorthin weitergereicht.

. Endpoint InstanceData
ToscaEngine a A
Service Service

| | | |
I I
————getNodeType(csarID, serviceTemplateID, nodeTemplateID)—— i
K —————————————————— nodeTypeID———————————————————}
‘,7getNodeTypeImplementations(csar‘ID, nodeTypeID)4>}

|

e - nodeTypeImpls (List)-——————————————-

|
For nodeTypelmpl ;
———getImplementationArtifactNames(csarlD, nodeTypeImpl)H}

‘K —————————————————— iAs (List)-——— -~~~ -

For IA

|
]
|
T |
} ; Implementiertes Interface/Operation bestimmen }
T
IF benétigtes Interface/Operation angeboten |

|

T
—————————getArtifactTemplate(csarID, nodeTypeImpl, ia)—————»
}< 7777777777777777 artifactTemplatef777777777777777{

| I
——getPropertiesOfArtifactTemplate(csarID, artifactTemplate)—»
K- properties—— - - - - - - -~ -~ -

)
{<—_| Invocation-Art bestimmen
|

|
|
|
|
|
|
|
|
t
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
IF Plug-in fiir Invocation-Art vorhanden |
|
>

|
|
I
|
T
|
|
t getEndpoint(csarID, nodeTypeImpl, ia) t
et e i endpoint ————————————~ e -

IF Endpoint vorhanden (= IA deployt)

|
|
|
|
|
|
|
|
t
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
;
|
|
\; Aufrufbares IA gefunden, welches geforderte Operation anbietet I
| |
|
|

|
I
|
|
‘ l
IF ServicelnstancelD gesetzt ;
; getInstanceData(csarID, servicelnstancelD, noHeTemplateID)—v—N
T
|

Ko m s e s instanceData ——————
EInput-Par‘ameter mit Instanzdaten aktualisieren
)

]
; invoke (requestExchange)
S e responseExchange— ——————————

|
|
|
|
|
|
|
|
|
t
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>
|

|
|
|
|
I
|
7777777777 T T
t

Abbildung 12: Sequenzdiagramm SI-Engine

41

4 Konzept & Architektur

Abbildung 12 stellt die Kommunikation der SI-Engine mit TOSCA Engine,
Endpoint Service, Instance Data Service sowie eines SI-Plug-ins nochmals, mit-
tels eines Sequenzdiagramms dar. Es zeigt unter anderem wie die SI-Engine mit-
tels den tibergebenen Parametern und der Hilfe der TOSCA Engine ein aufrufba-
res Implementation Artifact bestimmt. Dafiir wird zuerst der zu den
iibergebenen Parametern CsarlD, ServiceTemplatelD und
NodeTemplatelD gehérende NodeType bestimmt (NodeTypes typisieren
NodeTemplates). Anschliefend werden fir diesen NodeType alle entspre-
chenden NodeTypelmplementations abgefragt. Uber die zuriickbekom-
mene Liste der NodeTypelmplementations wird anschlieffend iteriert und
alle jeweiligen Implementation Artifacts ermittelt. Uber diese Liste der
Implementation Artifacts wird wiederrum iteriert und fir jedes
Implementation Artifact uberprift, ob es die geforderte Operation an-
bietet. Falls der Name der Operation innerhalb eines NodeTypes dabei eindeu-
tig ist, langt die Angabe des Namens der Operation. Falls allerdings eine Opera-
tion nicht nur in einem Interface eines NodeTypes angeboten wird, muss zur
eindeutigen Identifizierung zudem der Name des Interfaces angegeben werden.
Wird die geforderte Operation angeboten, wird weiterhin tberpriift, ob in der
TOSCA Definition eine Invocation-Art spezifiziert wurde und ein dafiir entspre-
chendes Plug-in verfiigbar ist. Ist dies der Fall, wird per Endpoint Service iiber-
priift, ob ein Endpunkt fiir dieses Implementation Artifact abgespeichert
und es somit vom Container deployt wurde. Trifft dies ebenso zu, ist ein aufruf-
bares Implementation Artifact gefunden. Das Sequenzdiagramm zeigt
weiterhin die Kommunikation mit dem Instanz Data Service (falls eine

ServicelnstancelD angegeben wurde) sowie den Aufruf eines SI-Plug-ins.

In Abbildung 13 sieht man die durch die SI-Engine angereicherte Nachricht (An-
derungen fett markiert) im Vergleich zu Abbildung 11. Zum Einen wurde der
Endpunkt des Implementation Artifacts bestimmt und als Header hin-
zugefiigt, zum Anderen wurde im Body ein Parameter durch einen Wert aus der

Instanz Datenbank ersetzt. In diesem Beispiel wird dem Implementation

42

4 Konzept & Architektur

Artifact mitgeteilt, anstelle bei Microsoft Azure, bei Amazon Web Services
(AWS) eine Datenbank zu erstellen. Ein zuvor ausgefithrter Plan kann dies zum
Beispiel abgespeichert haben, nachdem er tiberpriift hat, dass die Preise fiir Da-

tenbanken bei AWS besser als bei Azure sind.

CSARID : DBCsar
SERVICEINSTANCEID_STRING : Instance5
SERVICETEMPLATEID_QNAME :
{http://CsarDBCreator.org/DB/}DBCreator_ServiceTemplate

Header

NODETEMPLATEID_STRING :

OPERATIONNAME_STRING :

DB_NodeTemplate
createDB

ReplyTo :

http://localhost:1337/cal lback

ENDPOINT_URI

MessagelD :

A7ZD70AH

: http://localhost:8080/DB/services/DBCreator

Body Size : 5
Host : AWS
User : admin
Password : p8ilR6N9

Abbildung 13: Durch die SI-Engine angereicherte und an ein SI-Plug-in
gerichtete Message

Nachdem die Message an das zur Invocation-Art passende SI-Plug-in iibergeben
wurde, liest dieses die fiir den Aufruf des Implementation Artifact benos-
tigten Information (OperationName, Endpoint) aus dem Header aus und holt die
Ubergabe-Parameter aus dem Body. Was weiterhin mit diesen Daten passiert
und wie der eigentliche Aufruf des Implementation Artifacts (oder auch
eines Plans) vonstattengeht ist Plug-in-spezifisch und kann sich somit von
Plug-in zu Plug-in unterscheiden. Im Falle des SOAP/HTTP Plug-ins (Details in
Kapitel 4.4.5) beispielsweise, werden weitere Informationen aus der zum
Implementation Artifact gehérenden WSDL gelesen, eine der WSDL
entsprechende SOAP Message erstellt (siehe Listing 6) und diese dann an das
Implementation Artifact verschickt. Aus der Antwort, was im Falle ei-

ner SOAP Message der Body dieser darstellt, werden anschlieffend die Output-

43

4 Konzept & Architektur

Parameter entnommen und diese wiederum in den Body des Message Objekts

gelegt und an die SI-Engine zuriickgegeben.

01 <soap:Envelope

02 xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope”

03 soap:encodingStyle="http://www.w3.0rg/2001/12/soap-encoding">
o4 <soap:Body xmlns:m="http://www.DBIA.org/DBCreator">

05 <m:CreateDBRequest>

06 <m:Size>5</m:Size>

o7 <m:Host>AWS</m:Host>

o8 <m:User>admin</m:User>

09 <m:Password>p8ilR6N9</m:Password>
10 </m:CreateDBRequest>

11 </soap:Body>
12 </soap:Envelope>

Listing 6: Durch das SOAP/HTTP Plug-in erstellte SOAP Message

Listing 7 zeigt die Antwort des Implementation Artifacts. In diesem
Beispiel wurde als Antwort, auf die Anfrage zur Erstellung einer Datenbank, die

Adresse dieser Datenbank zuriickgegeben.

01 <soap:Envelope

02 xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope”

03 soap:encodingStyle="http://www.w3.0rg/2001/12/soap-encoding">
o4 <soap:Body>

05 <CreateDBResponse>
06 <URL>http://s3.amazonaws.com/my-5GB-DB</URL>
o7 </CreateDBResponse>

08 </soap:Body>
09 </soap:Envelope>

Listing 7: Antwort des Implementation Artifacts

Abbildung 14 stellt die an die SI-Engine und von dort an die Service Invocation
SOAP API weitergeleitete Exchange Message dar. Im Body befinden sich die von
dem Implementation Artifact erhaltenen Informationen, welche von

dem SOAP-Plug-in als HashMap kodiert werden. Dafiir wird bei eingehenden

44

4 Konzept & Architektur

SOAP Nachrichten der Name eines Elementes als Key und der Inhalt des Ele-
mentes als Value genommen. Es wird dabei angenommen, dass die Namen der
von den Implementation Artifacts zuriickgegebenen Elementen, mit

den in der TOSCA Definition angegebenen Riickgabewerten iiberein stimmen.

CSARID : DBCsar
SERVICEINSTANCEID_STRING : Instanceb
SERVICETEMPLATEID_QNAME :
{http://CsarDBCreator.org/DB/}DBCreator_ServiceTemplate
NODETEMPLATEID_STRING : DB_NodeTemplate
OPERATIONNAME_STRING : createDB
ReplyTo : http://localhost:1337/callback
MessagelD : A7ZD70AH
ENDPOINT_URI : http://localhost:8080/DB/services/DBCreator

Header

Body

URL : http://s3.amazonaws.com/my-5GB-DB

Abbildung 14: Riickgabe des SI-Plug-ins mit enthaltenen Informationen
des Implementation Artifacts

Die Service Invocation SOAP API (siehe Kapitel 5.2) iibernimmt anschlieend
den Body der Exchange Message und die MessageID aus dem Header in die an
den Plan gerichtete SOAP Message (siehe Listing 8). Die im Body befindliche
HashMap mit den zuriickgegebenen Daten des aufgerufenen
Implementation Artifacts wird dabei wie folgt konvertiert: Die Key-
Value Paare der HashMap werden paarweise als Key- sowie Value-Elemente der
SOAP Message uberfithrt (siehe Listing 8). Der Plan bekommt dadurch eine
einheitliche Antwort zuriick, welche mit den in TOSCA spezifizierten Parame-
tern (siehe Listing 3) iibereinstimmt und unabhingig von der Technologie des
aufgerufenen Implementation Artifacts ist. Da bereits der Aufruf der
Service Invocation Schnittstelle (siehe Listing 5) durch die in der TOSCA spezifi-
zierten Parameter (Listing 3) erfolgt, ergibt sich insgesamt eine fiir den Aufrufer
generische und einheitliche Schnittstelle zum Aufruf von Services. Ein Plan

benétigt somit zum Aufruf eines Implementation Artifacts lediglich

45

4 Konzept & Architektur

die in der TOSCA angegebenen Informationen und muss nichts iiber die konkre-

te Implementierung dessen wissen.

Zum Schluss wird die erstellte SOAP Message (Listing 8) an die zu anfangs vom
Plan an die Service Invocation Schnittstelle ibergebene und sich im Header

befindliche Adresse (ReplyTo) gesendet.

01 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.

02 org/soap/envelope/" xmlns:
03 sch="http://siserver.

o4 org/schema">

05 <soapenv:Header/>

06 <soapenv:Body>

o7 <sch:invokeResponse>

08 <MessageID>A7ZD70AH< /MessageID>

09 <Params>

10 <Key>URL</Key>

11 <Value>http://s3.amazonaws.com/my-5GB-DB</Value>
12 </Params>

13 </sch:invokeResponse>

14 </soapenv:Body>
15 </soapenv:Envelope>

Listing 8: Nachricht der SOAP API zuriick an den Aufrufer

Bisher wurde das Konzept der Service Invocation Schnittstelle ausschlie3lich
mittels Service Invocation SOAP API und SOAP/HTTP SI-Plug-in erlautert. Das
das Konzept der Service Invocation Schnittstelle jedoch weit mehr Moglichkei-

ten bietet, wird im folgenden Abschnitt verdeutlicht.

Abbildung 15 veranschaulicht die Moglichkeit zur Realisierung eines OSGI SI-
Plug-ins. Dieses Plug-in ermdglicht den Aufruf von als OSGi Services implemen-
tierten Implementation Artifacts. Es sei angemerkt, dass der momenta-
ne Stand des OpenTOSCA Containers, aufgrund des Fehlens eines passenden IA-
Plug-ins, noch keine OSGi Implementation Artifacts deployen kann, sie

somit also vom Container noch nicht unterstiitzt werden. Die Service Invocation

46

4 Konzept & Architektur

Schnittstelle wurde jedoch auch mit Blick auf zukiinftige Implementation

Artifact Arten konzipiert und halt Konzepte dafiir bereit.

Bsp_OSGlI

SI-0SG I BSp_OSG| provides_ _ _: OSGlI-IA-
-1A-Plug-in -1A-2 Interface

Bsp_OSGlI
-1A-3

Abbildung 15: Beispiel fiir die Umsetzungsmoglichkeit eines weiteren
Plug-in Types

Das OSGi-SI-Plug-in macht sich, dquivalent zur SI-Engine und dessen Plug-ins,
die Moglichkeit von Declarative Services von OSGi zu Nutze. Dies bedeutet, dass
OSGi Implementation Artifacts ein vorgegebenes Interface implemen-
tieren und dieses als Service anbieten miissen. Dies ist fiir die Umsetzung von
Declarative Services noétig, ermoglicht aber das Hinzufiigen und Starten der
Implementation Artifacts zur Laufzeit (siehe Grundlagen OSGi, 2.3).
Anhand des implementierten Interfaces und des dadurch spezifizierten Services,
kann das OSGi-SI-Plug-in das OSGi Implementation Artifact an sich
binden und dadurch nutzen. Als Endpoint des Implementation Artifacts
muss in diesem Fall, die ID des jeweiligen OSGi Services gegeben sein. Listing 9

zeigt die vorgegebenen Methoden des Interfaces.

47

4 Konzept & Architektur

01 public void invoke(String operationName, HashMap<String,

02 String> params);

03

04 public Object invoke(String operationName, HashMap<String,
05 String> params);

06

07 public getID();

Listing 9: Methoden des OSGi Implementation Artifact Interface

Die beiden invoke Methoden werden bendtigt, um die zwei MEPs request-
response und one-way zu untersetzen. Per Methode getID wird beim binden des
OSGi Implementation Artifacts dessen ID abgerufen und anschliefend
abgespeichert. Das SI-Plug-in kann anhand des iibergebenen Endpunkts dann

den richtigen OSGi Service wahlen und aufrufen.

Wie bereits erwahnt wurde ist es auch moglich die Service Invocation Schnitt-
stelle mit weiteren Service Invocation APIs zu erweitern. Dadurch kann die
Funktionalitat der Service Invocation Schnittstelle fiir weitere Techniken nutz-
bar gemacht werden. Das Hinzuschalten der Service Invocation APIs kann,

aquivalent zu den Plug-ins, ebenfalls zur Laufzeit getatigt werden.

Abbildung 16 zeigt die Service Invocation Schnittstelle beispielhaft mit parallel
betriebener Service Invocation SOAP sowie Service Invocation REST APIL Da-
durch wird, wie die Namen der APIs bereits verraten, der Aufruf der Service
Invocation Schnittstelle und damit gleichzeitig auch der Aufruf von
Implementation Artifacts und Planen per SOAP sowie per REST er-
moglicht.

48

4 Konzept & Architektur

Plan

Service

() Invocation

SOAP
API

Service
Invocation
REST

Exchange

Exchange

>

Camel

N
0@\‘\6‘90
&

SI-SOAP
Plug-in

SI-REST
S|

Plug-in
- >< :
Camel

Engine [Jiiws¥l S|_-OSGi
Plug-in

Endpoint

Service

Abbildung 16: Beispiel fiir eine weitere Service Invocation API

Die im Rahmen dieser Bachelorarbeit implementierten Komponenten der Service

Invocation Schnittstelle werden im folgenden Kapitel dargestellt.

49

5 Implementierung

5 Implementierung

In diesem Kapitel wird auf die Implementierung der Service Invocation Schnitt-
stelle und deren Komponenten eingegangen. Zuerst wird das Enum zur Spezifi-
zierung der Header der Exchange Message dargestellt. Danach folgen Darstel-
lungen der Service Invocation API fiir SOAP sowie OSGi Events. Darauthin wird
die SI-Engine genauer erlautert und anschlieflend auf die SI-Plug-ins und deren

Interface detaillierter eingegangen.

5.1 Service Invocation Enum

Dieser Abschnitt veranschaulicht das SI-Enum. Es wird benutzt, um die zum
Aufruf eines Implementation Artifacts oder Plans benétigten Parame-

ter in einer festgelegten Art und Weise tibergeben zu kénnen.

Listing 10 zeigt das festgelegte SI-Enum und die damit definierten Werte. Die
Werte dienen als Key der Key/Value Paare der Header. Dadurch ist es den Kom-
ponenten der Service Invocation Schnittstelle moglich, bendtigte Parameter aus-
zulesen. CSARID dient der Identifikation der richtigen CSAR-Datei.
SERVICEINSTANCEID_STRING wird benétigt, falls Daten per Instance Data
Service abgerufen werden sollen und bestimmt dabei die Instanz. Per
NODEINSTANCEID_STRING wird, falls angegeben, ebenfalls eine ID einer be-
stimmten Instanz iibermittelt. Allerdings dient dieser Wert nicht der SI-Engine
zur Abfrage von Instanz Daten mittels Instance Data Service, sondern wird ei-
nem Implementation Artifact als Parameter ibergeben. Das
Implementation Artifact besorgt sich damit bendtigte Daten selbst per
Instance Data Service. SERVICETEMPLATEID_QNAME dient der Bestimmung
des Service Templates einer TOSCA Definition. Aquivalent
bestimmt NODETEMPLATEID_STRING das Node Template.

50

5 Implementierung

OPERATIONNAME_STRING gibt die aufzurufende Operation des
Implementation Artifacts oder Plans an. Falls der Name der Opera-
tion innerhalb eines NodeTypes nicht eindeutig ist, muss zudem der Name des
zugehorigen Interfaces angegeben werden. Dies wird mittels INTERFACENA-
ME_STRING gemacht. PLANID_QNAME wird benoétigt, falls ein Plan aufgeru-

fen werden soll und dient dabei der Identifikation des Plans.

public enum SIEnum {
CSARID, SERVICEINSTANCEID STRING, NODEINSTANCEID STRING,
SERVICETEMPLATEID QNAME, NODETEMPLATEID STRING,
INTERFACENAME _STRING, OPERATIONNAME_STRING, PLANID QNAME,
ENDPOINT_URI, SPECIFICCONTENT_DOCUMENT

Listing 10: SI-Enum

Alle bisher genannten Werte werden der SI-Engine bereits von der entsprechen-
den Service Invocation API bei Bedarf tibergeben. Ausschliefilich die Werte von
ENDPOINT_URI sowie gegebenenfalls SPECIFICCONTENT_DOCUMENT wer-
den in der SI-Engine gesetzt. ENDPOINT_URI wird per Endpoint Service ermit-
telt und spezifiziert den Endpunkt des aufzurufenden Implementation
Artifacts oder Plans. SPECIFICCONTENT DOCUMENT wird tber die
TOSCA Engine ermittelt (falls in TOSCA Definition spezifiziert) und kann wich-
tige Informationen fiir das Plug-in, wie zum Beispiel iiber das Mapping der Pa-

rameter enthalten (siehe Kapitel 5.7).

5.2 Service Invocation SOAP API

In diesem Kapitel wird die Service Invocation SOAP API zum Aufruf der Service
Invocation Schnittstelle per SOAP Messages erldutert. Weiterhin wird dabei auf

die Nutzung von Camel eigegangen.

51

5 Implementierung

Listing 11 zeigt konzeptionell die implementierte Route und ihre Endpunkte
(siehe Camel Grundlagen, Kapitel 2.7) der Service Invocation SOAP API. Die in
den Zeilen eins bis 16 definierten Strings INVOKE, CALLBACK, ENGINE_IA
und ENGINE_PLAN stellen die Endpunkte der Route dar. Die Route selbst, wird
von Zeile 17 bis 22 definiert.

Der von Zeile eins bis sechs definierte String INVOKE dient als Endpunkt zum
Aufruf der Service Invocation SOAP API. Durch ihn wird ein SOAP Web Service
per CXF Komponente [8] auf http://localhost:8081/invoker gestartet. Als WSDL
des Web Services dient die invoker.wsdl (sieche Anhang A1l). Auflerdem werden

Service sowie Port aus der WSDL definiert.

01 String INVOKE = "cxf:http://localhost:

02 8081/invoker?wsdlURL=META-INF/invoker.

03 wsdl&serviceName={http://siserver.org/wsdl}
04 SIServerInvokeService&portName={http:

05 //siserver.org/wsdl}

06 SIServerInvokePort";

07 String CALLBACK = "cxf:${header[ReplyTo]}?wsdlURL=META-

08 INF/invoker.wsdl&serviceName={http:

09 //siserver.org/wsdl}

10 SIServerCallback&portName={http://siserver.
11 org/wsdl}CallbackPort”;

12 String ENGINE_IA = "bean:siengineinterface.
13 SIEngineInterface?method=invokeOperation”;

14 String ENGINE_PLAN = "bean:siengineinterface.
15 SIEngineInterface?method=invokePlan";

16 from(INVOKE).unmarshal(requestJaxb).process(requestProcessor)

17 .choice().when(this.header(CxfConstants.OPERATION NAME).

18 iskEqualTo("invokeOperation")).to(ENGINE_ IA).when(this.header(
19 CxfConstants.OPERATION NAME).isEqualTo("invokePlan")).

20 to(ENGINE_PLAN).end().process(responseProcessor).

21 marshal(responseJaxb).recipientList(this.simple(CALLBACK));

Listing 11: Route der Service Invocation SOAP API

52

5 Implementierung

Der String CALLBACK (Zeile sieben bis elf) definiert den Endpunkt, der bei
asynchronen Aufrufen zum Versenden der Antwortnachricht an den Aufrufer
benétigt wird. Es wird dafiir ebenfalls die CXF Komponente sowie die
invoker.wsdl genutzt. Weiterhin ist der entsprechende Service sowie Port ange-
geben. Allerdings wird die Adresse, wohin die SOAP Message geschickt werden
soll, jeweils dynamisch bestimmt. ${header[ReplyTo]} bedeutet, dass aus der Ex-
change Message der Wert des Headers ReplyTo ausgelesen und als Adresse der
Antwortnachricht benutzt werden soll. Dieser Wert muss beim Aufruf der Ser-
vice Invocation SOAP API vom Aufrufer mitgeteilt werden. Die Service
Invocation SOAP API unterstiitzt dabei die Ubergabe, wie in dem im Kapitel 4.3
Listing 5 gezeigten Beispiel per Parameter im Body als auch per WS-Addressing
Header [42]. Entsprechend kann auch die MessagelD mit diesen beiden Mog-

lichkeiten tibergeben werden.

In den Zeilen zwolf und 13 sowie 14 und 15 werden die beiden Methoden der SI-
Engine (siche 5.4) als Endpunkte festgelegt. Ein Endpunkt zum Aufruf von
Implementation Artifacts (ENGINE_IA) und ein Endpunkt zum Aufruf
von Planen (ENGINE_PLAN).

Zeile 16 bis 21 zeigt die Route, die nach einem Aufruf abgearbeitet wird.
From(INVOKE) definiert den oben bereits erklirten INVOKE Endpunkt als
Einstiegspunkt der Route. Die SOAP Message eines Aufrufs wird unmarshallt
(unmarshal (requestJaxb)) und anschliefend im requestProcessor
prozessiert. Beim Prozessieren werden die durch das SI-Enum definierten Para-
meter sowie alle in der eingegangen SOAP Message definierten Header als Hea-
der der Exchange Message angelegt. Darauthin wird der Header OPERATI-
ON_NAME ausgelesen und anhand dessen bestimmt, ob ein
Implementation Artifact oder ein Plan aufgerufen werden soll und die
dementsprechende Methode der SI-Engine aufgerufen (ENGINE_IA oder ENGI-
NE_PLAN). Nachdem die SI-Engine beziehungsweise ein passendes Plug-in den
Aufruf ausgefilhrt und die Exchange Message samt Antwort des

Implementation Artifacts oder Plans an die Service Invocation SOAP
53

5 Implementierung

APl zuriickgegeben haben, wird diese erneut prozessiert (pro-
cess(responseProcessor)). Dabei wird die Antwort aus dem Body der
Exchange Message ausgelesen und - falls moglich - in ein marshall-fahiges Ob-
jekt umgewandelt. AnschliefBend wird das Antwort-Objekt marshallt
(marshal (responseJaxb)) und als SOAP Message an den CALLBACK-
Endpunkt geschickt.

5.3 Service Invocation OSGi-Event API

Dieses Kapitel stellt die Implementierung der Service Invocation OSGi-Event
API vor. Insbesondere wird dabei die allgemeine Funktionsweise von OSGi
Events sowie speziell die Zusammenarbeit mit der Plan Invocation Engine (siehe

Kapitel 2.5) betrachtet.

Die Service Invocation OSGi-Event API ermdglicht die Nutzung der Service
Invocation Schnittstelle per OSGi Event Admin Service [31, Kapitel 113]. Mittels
des OSGi Event Admin Services konnen Events nach dem publish and subscribe
Pattern [22] versendet und empfangen werden. Diese Technik erméglicht eine
asynchrone Kommunikation zwischen der Service Invocation Schnittstelle und

beispielsweise der Plan Invocation Engine.

Abbildung 17 zeigt die Service Invocation Schnittstelle mit Service Invocation
OSGi-Event API und Plan Invocation Engine. Desweiteren zeigt die Abbildung
die Funktion des publish and subscribe-Patterns. Die Plan Invocation Engine sen-
det seine mit den bendtigten Informationen angereicherte Nachricht an eine
Liste (Request Topic). Die Service Invocation OSGi-Event API empfangt - da sie
diese List abonniert (subscribed) hat - die Nachricht und kann sie weiterverar-
beiten. Ubergebene Informationen wie zum Beispiel CSAR-ID oder Plan-ID
werden, wie bereits von der Service Invocation SOAP API bekannt, als Header
und der tibergebene Payload als Body eines Exchange Message Objekts gesetzt.

Der Payload kann dabei beispielsweise eine HashMap mit Parametern als

54

5 Implementierung

Key/Value Paaren oder wie im Falle der Plan Invocation Engine vom Typ
org.w3c.dom.Document [33] sein. Anschlieflend wird die Exchange Message der
SI-Engine zur weiteren Bearbeitung weitergereicht. Nachdem die Antwort von
der SI-Engine zuriick gekommen ist, sendet die Service Invocation OSGi-Event
API die Antwortnachricht an eine weitere Liste (Response Topic). Diese wiede-
rum ist von der Plan Invocation Engine abonniert, welche dadurch die Antwort-

nachrichten empfangen und ihrerseits weiter bearbeiten kann.

Plan

subscribes

Service
Invocation

0OSGi-Event

API
O

-
subscribes ()

Abbildung 17: Aufruf eines Plans initiiert durch Plan Invocation Engine

Listing 12 zeigt anhand der Service Invocation OSGi-Event API, wie OSGi Event
Services angewandt werden. Zuerst werden wie in jeder OSGi XML-
Konfigurationsdatei (Component Description [36, Kapitel 112.2]) der Name (Zei-
le 02 bis 04) sowie die implementierende Klasse (Zeile 05 bis 06) der jeweiligen
Komponente festgelegt. Damit die Komponente Events an Listen senden kann,
muss der EventAdmin-Service gebunden werden (Zeile 07 bis 11).
bindEventAdmin (Zeile 07) gibt die Methode zum Binden des Services an und
muss in org.opentosca.siengine.api. osgievent.SIEventHandler, der in Zeile 05 bis 06

spezifizierten Klasse vorhanden und entsprechend implementiert sein. Zeile 12

55

5 Implementierung

bis 15 gibt an, dass die oben genannte Klasse den Service EventHandler anbietet.
Dafiir muss sie das Interface EventHandler und die dazugehorige Methode zum
Empfangen von Events handleEvent(Event event) implementieren. Auflerdem
missen die Namen der von der Komponente abonnierten Listen (event.topics,
Zeile 16 bis 17) spezifiziert werden. In diesem Beispiel handelt es sich dabei um
die Liste org_opentosca_plans/requests, welche zum Beispiel von der Plan
Invocation Engine zum Verschicken von Anfragen zum Aufruf von Planen

genutzt wird.

01 <scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.

02 0" immediate="false" name="org.
03 opentosca.siengine.api.osgievent.
o4 SIEventHandler">

05 <implementation class="org.opentosca.siengine.api.

06 osgievent.SIEventHandler"/>

07 <reference bind="bindEventAdmin" cardinality="1..1"
08 interface="org.osgi.service.event.

09 EventAdmin" name="EventAdmin"

10 policy="static"

11 unbind="unbindEventAdmin"/>

12 <service>

13 <provide interface="org.osgi.service.event.

14 EventHandler"/>

15 </service>

16 <property name="event.topics" type="String"

17 value="org_opentosca_plans/requests"/>

18 </scr:component>

Listing 12: Anwendung des OSGi Event Services

Aquivalent dazu abonniert die Plan Invocation Engine die Liste
org_opentosca_plans/responses, iber welche die Antwortnachrichten durch die
Service Invocation OSGi-Event API verschickt werden. Das Senden eines Events
erfolgt dabei iiber die von dem EventAdmin- Service angebotene Methode post-

Event(Event event).

56

5 Implementierung

5.4 Service Invocation Engine

In diesem Abschnitt wird die Implementierung der SI-Engine vorgestellt. Dabei
wird verstarkt auf die von der SI-Engine angebotenen Methoden sowie das Sys-

tem zur Verwaltung der SI-Plug-ins eingegangen.

Die SI-Engine bietet zwei Methoden an. Zum Einen InvokeOperation(Exchange
exchange) zum Aufruf von Implementation Artifacts und zum Anderen
invokePlan(Exchange exchange) zum Aufruf von Planen. Obwohl
Implementation Artifacts als auch Plane als Services gesehen werden
konnen, miissen die Anfragen zum Aufruf dieser beiden Félle unterschiedlich
behandelt werden. In Abbildung 18 werden die Ablaufe der beiden Methoden
dargestellt.

Identisch haben beide angebotenen Methoden, dass sie zuerst die fiir sich rele-
vanten durch das SI-Enum (siehe 5.1) definierten Header aus der Exchange Mes-
sage auslesen. Im Falle von invokeOperation waren dies die Werte fiir CSARID,
SERVICEINSTANCEID_STRING, NODEINSTANCEID_STRING,
SERVICETEMPLATEID_QNAME, NODETEMPLATEID_STRING, INTERFACE-
NAME_STRING und OPERATIONNAME STRING. Im Falle von invokePlan
CSARID, SERVICEINSTANCEID_STRING, NODETEMPLATEID_STRING und
PLANID_QNAME. Im Anschluss daran wird — falls invokeOperation aufgerufen
wurde - mithilfe der TOSCA Engine ein passendes Implementation
Artifact, dessen Message Exchange Pattern sowie die dazugehorigen Proper-
ties bestimmt. In Kapitel 4.3 wurde bereits das entsprechende Sequenzdiagramm
(Abbildung 12) vorgestellt. Das Abfragen von Instanz Daten bei vorhandener
ServiceInstancelD und einer HashMap als Payload geschieht in beiden Fallen.
Bei invokeOperation wird weiterhin iiberpriift, ob eine NodelnstancelD spezifi-
ziert wurde. Wenn dies der falls ist und zudem der Payload in Form einer Hash-
Map gegeben ist, wird die NodelnstanceID als Parameter in die HashMap iiber-

nommen. Damit konnen Implementation Artifacts aktuelle Werte aus

57

5 Implementierung

den Instanzdaten selbst bestimmen. Unabhangig der Methode wird anschlieend
der jeweilige Endpunkt des Implementation Artifacts oder Plans per
Endpoint Service bestimmt. Fir den Aufruf von Implementation
Artifacts wird weiterhin die Invocation-Art zur Bestimmung des passenden

Plug-ins anhand den vorherig abgefragten Properties bestimmt.

invokePlan

invokeOperation

Header auslesen Header auslesen

Implementation
Artifact & dessen
Endpunkt
bestimmen

Endpunkt
bestimmen

Properties
holen & MEP
bestimmen

Payload
= HashMap & Instanz Daten
ServicelnstancelD holen & einsetzen
gesetzt

Payload
=HashMap & Instanz Daten
ServicelnstancelD holen & einsetzen
gesetzt

Plug-in aufrufen

Payload
= HashMap & NodelnstancelD in
NodelnstancelD HashMap kopieren
gesetzt

Plug-in anhand
Properties
bestimmen

Plug-in aufrufen

Abbildung 18: Flussdiagramme der beiden SI-Engine Methoden
invokeOperation und invokePlan

58

5 Implementierung

Da der OpenTOSCA Container bisher ausschliefflich BPEL Plane unterstiitzt,
wird beim Aufruf eines Plans die Exchange Message direkt an das SOAP Plug-
in (siehe Kapitel 5.6) iibergeben. Sollten zukiinftig weitere Plan-Arten unter-
stiitzt werden, muss die Invocation-Art und damit die Wahl des Plug-ins anhand

der Managementplan-Sprache bestimmt werden.

Listing 13 zeigt wie innerhalb der TOSCA Definition die Invocation-Art eines
Implementation Artifacts angegeben wird. Dafiir wird die von
Artifact Templates gebotene Moglichkeit zur Definition von Properties
(Zeile 03 bis 12) genutzt. Fir die Service Invocation Schnittstelle sind in diesem
Beispiel die Zeilen 08 bis 10 relevant. Per InvocationType-Element wird die
Invocation-Art des Implementation Artifacts festgelegt. In diesem Fall
ist dies SOAP/HTTP. Die SI-Engine wiirde somit die Anfrage zum Aufruf dieses
Implementation Artifacts an ein SOAP/HTTP-fahiges Plug-in weiter-

leiten.

o1 <p:ArtifactTemplate id="EC2VMService" type="toscatypes:
02 WAR" >

03 <p:Properties>

04 <opentosca:WSProperties>

05 <opentosca:ServiceEndpoint>

06 /services/EC2VMIAService

07 </opentosca:ServiceEndpoint>

08 <opentosca:InvocationType>

09 SOAP/HTTP

10 </opentosca:InvocationType>

11 </opentosca:WSProperties>

12 </p:Properties>

13 <p:ArtifactReferences>

14 <p:ArtifactReference reference=

15 "IAs/EC2VMService/EC2-VM-Service.war" />
16 </p:ArtifactReferences>

17 </p:ArtifactTemplate>

Listing 13: Beispiel ArtifactTemplate mit Invocation-Art Angabe

59

5 Implementierung

Desweiteren ist in Listing 13 eine weitere Property (ServiceEndpoint) definiert.
Diese wird von der IA-Engine zur Bestimmung des korrekten Endpunktes des
Implementation Artifacts benétigt. Dadurch wird sichergestellt, dass
die IA-Engine einen fiir die Service Invocation Schnittstelle nutzbaren Endpunkt

per Endpoint Service abspeichert.

Eine wichtige Anforderung an die Service Invocation Schnittstelle ist die Mog-
lichkeit, das Spektrum unterstiitzter Invocation-Arten erweitern zu konnen. Dies

wird mittels eines Plug-in Systems erreicht, das nun genauer vorgestellt wird.

Das Plug-in-System wird mittels Declarative Services (sieche Kapitel 2.3) reali-
siert. Die SI-Plug-ins implementieren dafiir das vorgegeben Interface
SIPluginInterface (siehe Kapitel 5.5) und bieten jeweils den Service
ISIEnginePluginService an. Dies ist in Zeile 04 bis 05 in Listing 14 zu sehen.

@1 <scr:component ...>

02 <implementation class= .../>

03 <service>

o4 <provide interface="org.opentosca.siengine.plugins.
05 service.ISIEnginePluginService"/>
06 </service>

07 </scr:component>

Listing 14: Anbieten eines Services per OSGi XML-Konfigurationsdatei

@1 <scr:component ...>

02 <implementation class= .../>

03 <reference bind="bindPluginService" cardinality="0..n"

o4 interface="org.opentosca.siengine.plugins.
05 service.ISIEnginePluginService"

06 name="SIPluginInterface" policy="dynamic"
o7 unbind="unbindPluginService"/>

08 </scr:component>

Listing 15: Binden eines Services per OSGi XML-Konfigurationsdatei

60

5 Implementierung

Da die SI-Engine alle diese Services bindet (siehe Listing 15, Zeile 03 bis 07),
wird beim Start eines SI-Plug-ins in der SI-Engine automatisch eine Methode
zum binden dieses Plug-ins aufgerufen. In diesem Beispiel lautet die Methode

bindPluginService (siehe Zeile 03 in Listing 15).

Des Weiteren haben SI-Plug-ins per Interface eine Methode getType(), welche
die Invocation-Art als String zuriick gibt, vorgegeben. Diese Methode wird von
der SI-Engine aufgerufen wenn ein Plug-in gebunden wird und der Riickgabe-
wert (die Invocation-Art) zusammen mit dem jeweiligen Plug-in in einer Map
abgelegt (siehe Listing 16, Zeile 03 bis 06). Zeile 01 und 02 zeigen die Map zur
Verwaltung der SI-Plug-ins. Als Key dient die jeweilige Invocation-Art und ent-
sprechend als Value das dazugehorige Plug-in. Beim Stoppen eines SI-Plug-ins,
wird die unbind-Methode ausgefiihrt und dort das Plug-in aus der Map entfernt
(Zeile 08 bis 11). Durch dieses System besitzt die SI-Engine jederzeit eine aktuel-
le Liste der verfiigbaren SI-Plug-ins und kann damit anhand der Invocation-Art

eines Implementation Artifacts, das dazu passende Plug-in wahlen.

01 Map<String, ISIEnginePluginService> pluginServicesMap =
Collections.
02 synchronizedMap(new HashMap<String, ISIEnginePluginService >());

03 public void bindPluginService(ISIEnginePluginService plugin) {
04

05 pluginServicesMap.put(plugin.getType(), plugin);

86 }

o7

08 public void unbindPluginService(ISIEnginePluginService plugin) {
09

10 pluginServicesMap.remove(plugin.getType());

1}

Listing 16: Implementierung des Plug-in-Systems

61

5 Implementierung

5.5 Service Invocation Plug-in Interface

Dieses Kapitel stellt das Interface fiir SI-Plug-ins vor. Wie im vorherigen Kapitel
bereits erlautert, miissen alle fiir die Service Invocation Schnittstelle nutzbaren
Plug-ins dieses Interface implementieren und den Service ISIEnginePluginService

anbieten.

01 public interface ISIEnginePluginService {

02

03 public Exchange invoke(Exchange exchange);
04

05 public String getType();

06

07 }

Listing 17: Interface der SI-Plug-ins

Listing 17 zeigt das fiir die SI-Plug-ins vorgegebene Interface. Das Interface defi-
niert zwei Methoden. Die im vorangegangen Kapitel erlduterte Methode
getType() (Zeile 05), welche die unterstiitzte Invocation-Art des Plug-ins zuriick
gibt und eine Methode invoke(Exchange exchange) (Zeile 03), zur Ubergabe der
Exchange Message an das SI-Plug-in. Weiterhin gibt die invoke-Methode die
Exchange Message, mit der sie aufgerufen wurde, mit der Antwortnachricht des
aufgerufenen Implementation Artifacts oder Plans im Body als

Riickgabewert zuriick.

62

5 Implementierung

5.6 Service Invocation SOAP/HTTP-Plug-in

In diesem Kapitel wird eine Implementierung des im Kapitel zuvor vorgestellten
SI-Plug-in Interfaces vorgestellt. Konkret handelt es dabei um das SOAP/HTTP-
Plug-in, also einem SI-Plug-in, welches Implementation Artifacts und
Plane per SOAP Message tiber HTTP aufrufen kann.

Nach dem Aufruf der invoke-Methode und der Ubergabe der Exchange Message
durch die SI-Engine liest das SOAP/HTTP-Plug-in den im Header angegebenen
Endpunkt des Implementation Artifacts oder Plans aus. Es wurde im
Verlauf dieser Arbeit bereits erklért, dass sich die Endpunkte je nach benétigtem
Plug-in unterscheiden koénnen. Im Falle des SOAP/HTTP-Plug-ins muss der
Endpunkt entweder direkt auf die WSDL Definition des Implementation
Artifacts beziehungsweise Plans verweisen oder aber dies durch das An-
héngen von ,,?wsdl“ tun. Falls zum Beispiel die WSDL-Definition eines aufzuru-
fenden Implementation Artifacts unter der Adresse
http://localhost:8080/EC2IA/services/EC2Service?wsdl erreichbar ist, muss entwe-
der diese Adresse oder http://localhost:8080/EC2IA/services/EC2Service als End-
punkt gegeben sein. Dies ist notwendig, da die WSDL-Definition die Schnittstel-
le zum Aufruf des Webservices beschreibt und die darin enthaltenen Informati-
onen zum Erstellen sowie zum Verschicken der Aufrufnachricht benétigt und
deshalb durch das Plug-in ausgelesen werden. So wird beispielsweise das MEP
bestimmt oder, falls eine HashMap mit den Input Parametern als Body der Ex-
change Message iibergeben wird, anhand der WSDL-Definition eine korrekte
SOAP Message daraus generiert.

Das SOAP/HTTP-Plug-in unterstiitzt in der aktuellen Implementierung drei
Austauscharten von Nachrichten. Diese werden nun folgend erklart sowie in

Abbildung 19 veranschaulicht.

63

5 Implementierung

One-Way (In-Only): Der Service wird per Soap Message aufgerufen, sendet
aber keine Antwortnachricht zuriick. Listing 18 zeigt beispielhaft eine One-Way
Operation in einer WSDL-Definition.

o1 <wsdl:operation name="one-wayOperation">

02 <wsdl:input message="tns:inputMessage">
03 </wsdl:input>

04 </wsdl:operation>

Listing 18: One-Way Operation

Request-Response (In-Out): Der Client (also das Plug-in) sendet eine SOAP
Message an den Service und wartet bis die Antwortnachricht eintrifft. Ein Bei-

spiel einer Request-Response Operation ist in Listing 19 zu sehen.

o1 <wsdl:operation name="request-responseOperation”>
02 <wsdl:input message="tns:requestMessage">
03 </wsdl:input>

o4 <wsdl:output message="tns:responseMessage">
05 </wsdl:output>

06 </wsdl:operation>

Listing 19: Request-Response Operation

Request-Callback (asynchrones Request-Response): Der Client sendet eine
SOAP Message an den Service, erwartet aber keine direkte Antwort. Stattdessen
wird er informiert wenn die Antwort des Services eintrifft. Hierfir muss dem
Service eine Adresse fiir den Callback sowie eine MessagelD mitgegeben wer-
den. Die MessageID muss in der Antwortnachricht des Services wieder enthalten
sein, um eine Korrelation der Aufrufnachricht mit der Antwortnachricht herstel-
len zu konnen. Das SOAP/HTTP-Plug-in erméglicht dabei die Ubergabe von
Callback-Adresse und MessagelD per Parameter im SOAP-Body der Message
sowie per WS-Addressing Header. Allerdings wird Request-Callback aus WSDL-
Sicht mittels zwei One-Way Operationen realisiert und ist alleine aus der

WSDL-Definition nicht spezifizierbar. Daher miissen zur endgiiltigen Bestim-
64

5 Implementierung

mung zu den aus der WSDL erworben Informationen noch zusétzlich die in Ka-
pitel 4.3 erkldarten MEPs (In-Only & In-Out) aus der TOSCA Definition hinzuge-
nommen werden. Dementsprechend ergibt eine In-Only Operation (aus der
TOSCA Definition) und eine In-Only Operation (aus der WSDL-Definition), eine
One-Way SOAP Message (also ohne Antwortnachricht) an den Service. Demge-
geniiber ergibt sich aus einer In-Out Operation (aus der TOSCA Definition) und
einer In-Only Operation (aus der WSDL-Definition) ein Nachrichtenaustausch

per Request-Callback.

e

| One-Way

| Request-Callback

Abbildung 19: Darstellung der drei von dem SOAP/HTTP-Plug-in
unterstiitzten MEPs

65

5 Implementierung

5.7 Service Invocation REST/HTTP-Plug-in

Dieser Abschnitt erlautert die Umsetzung des REST/HTTP-Plug-ins. Insbesonde-
re wird dabei darauf eingegangen, wie Mapping-Informationen der zu tberge-

benden Parameter in der TOSCA Definition angegeben werden kénnen.

HTTP erlaubt die Ubergabe von Parametern sowohl innerhalb der URL (query
string) als auch im Body der Nachricht. Um dem Plug-in zu ermdglichen, die
Nachricht entsprechend der Implementierung des Implementation
Artifacts aufzubauen, konnen Informationen tiber das Mapping der Parame-
ter in der TOSCA Definition angegeben werden. Diese Informationen werden in
der SI-Engine mittels der TOSCA Engine bestimmt und dem Plug-in tibergeben.
Listing 20 zeigt das Schema zur Beschreibung der Mapping-Informationen, wel-
che innerhalb des Implementation Artifact-Elements (als artifact specific

7 . .
content’) definiert werden miissen.

01 <DataAssign>

02 <Operations>

03 <Operation name="String" ?

04 interfaceName="String" ?

05 endpoint="no | yes" ?

06 params="queryString | payload" ?
o7 contentType="urlencoded | xml" ?
08 method="POST | GET" ? >

09 </Operation> +

10 </Operations>

11 </DataAssign>

Listing 20: Schema zur Beschreibung des Parameter-Mappings

Implementation Artifacts implementieren die von einem NodeType
angebotenen Interfaces und Operationen. Da ein Implementation
Artifact neben einer einzelnen Operation eines Interfaces auch alle Operati-
onen eines Interfaces oder alle Interfaces samt Operationen implementieren

kann, werden die beiden Attribute name (Zeile 03) sowie interfaceName (Zeile

7 Siehe [29] Kapitel 7.
66

5 Implementierung

04) benotigt. Sie spezifizieren, fiir welche Operation die jeweils angegebenen
Mapping-Informationen gelten. Implementiert das Implementation
Artifact jedoch ohnehin nur eine Operation, ist die Angabe von name sowie
interfaceName nicht nétig. Dementsprechend ist auch die Angabe von interface-
Name nur dann nétig, falls das Implementation Artifact mehrere Inter-
faces implementiert. Per endpoint-Attribut (Zeile 05) kann angegeben werden,
dass der Name der Operation sowie des Interfaces an den von dem Endpoint
Service erhaltenen Endpunkt angehangt (mit ,,/“ als Trennzeichen) werden soll.
Das params-Attribut (Zeile 06) spezifiziert, ob die zu iibergebenden Parameter
als Teil der URL (queryString) oder im Body (payload) der Nachricht angegeben
werden sollen. Falls sie im Body iibergeben werden, kann zudem der gewiinsch-
te Content-Type (Zeile 07) spezifiziert werden. Aktuell werden die beiden Con-
tent-Types application/x-www-form-urlencoded (urlencoded) sowie applicati-
on/xml (xml) unterstiitzt. Weiterhin kann mittels method-Attribut (Zeile 08) die
geforderte HTTP-Methode (POST oder GET) angegeben werden.

Zusétzlich zu den Mapping-Informationen hat das Plug-in eigene Annahmen
bzw. Anforderungen beziiglich des Aufbaus einer Nachricht. So werden bei-
spielsweise falls die Ubergabe der Parameter per Query String erfolgt, die ein-
zelnen Key-Value-Paare mittels ,&“ und die Key-Value-Werte per ,=“ voneinan-
der getrennt. Weiterhin steht vor dem ersten Key-Wert ein ,,?“ zur Abgrenzung
des Endpunktes von den Parametern. Listing 21 zeigt ein Beispiel® fiir die Anga-
be einer solchen Mapping-Definition und die daraus resultierende Anfrage. Iden-
tisch (mit ,&“ und ,=* Zeichen zur Trennung) werden auch die Parameter im
Body kodiert, falls sie urlencoded iibergeben werden. Fiir die Ubergabe per XML
werden die Parameter wie folgt umgewandelt: Die Namen der einzelnen Para-
meter werden zu Elementen mit dem Wert des jeweiligen Parameters als Con-
tent. Weiterhin wird der Name der Operation als Root Element verwendet. Ein

Beispiel hierfiir wird in Listing 22 gezeigt.

® Als Grundlage fiir die in Listing 21 und 22 gezeigten Beispiele, wird die in Abbildung 13
dargestellte Exchange Message angenommen. Die eigentlich darin mit zu iibergebenden
Mapping-Informationen werden im jeweiligen Beispiel angegeben.

67

5 Implementierung

<DataAssign>
<Operations>
<Operation name="createDB"
endpoint="yes"
params="queryString"
method="GET" >
</Operation>
</Operations>
</DataAssign>

[::i} GET /DB/services/DBCreator/createDB?Size=5&Host=AWS&User=
admin&Password=p8i1R6N9 HTTP/1.1
Host: localhost:8080

Listing 21: Beispiel fiir Parameteriibergabe per Query String

<DataAssign>
<Operations>
<Operation name="createDB"
params="payload"
contentType="xml" >
</Operation>
</Operations>
</DataAssign>

POST /DB/services/DBCreator HTTP/1.1
Host: localhost:8080

<createDB>
<Size>5</Size >
<Host>AWS</Host >
<User>admin</User >
<Password>p8ilR6N9</Password >
</createDB>

Listing 22: Beispiel fiir Parameteriibergabe mit Content-Type xml

Zukinftig konnte man auch die Web Application Description Language
(WADL), dquivalent zur WSDL im SOAP-Plug-in, zur Beschaffung von benétig-
ten Informationen nutzen. Da diese aber selten genutzt wird und zudem un-
gleich komplexer ist, wurde sich in dieser ersten prototypischen Implementie-
rung des Plug-ins fiir ein eigenes, fiir diese spezielle Aufgabe ausgelegtes,

Schema zur Angabe der Informationen entschieden.

68

6 Annahmen

6 Annahmen

Damit das in den vorherigen Abschnitten erlauterte Konzept und die darauf be-
ruhende Implementierung korrekt funktionieren kann, miissen einige Annah-
men getroffen und Anforderungen an den Plan- beziehungsweise TOSCA De-
finition-Ersteller sowie Plug-in Entwickler (der Service Invocation Schnittstelle)

gestellt werden. Diese werden in diesem Kapitel dargelegt und erlautert.

Richtigkeit der iibergebenen Parameter

Die an die Service Invocation Schnittstelle iibergebenen Parameter lassen sich in
zwei verschiedene Gruppen einteilen. Einerseits die zur Bestimmung des ge-
winschten Implementation Artifacts beziehungsweise Plans bendtig-
ten Daten und andererseits die fiir den Aufruf des Implementation

Artifacts oder Plans geforderten Daten.

Die zur Bestimmung des passenden Implementation Artifacts bezie-
hungsweise des passenden Plans an die Service Invocation Schnittstelle tiber-
gebenen Parameter, miissen korrekt und innerhalb des OpenTOSCA Containers
bekannt sein. Innerhalb des OpenTOSCA Containers bekannt bedeutet dabei,
dass diese Daten, wie zum Beispiel CSARID oder ServiceTemplatelD, iber
die TOSCA Engine abrufbar und damit als Java Objekte abgebildet sind. Ist dies
nicht der Fall, kénnen zwingend erforderliche Informationen wie zum Beispiel
der Name des Implementation Artifacts und damit dessen Endpunkt

nicht bestimmt und damit der gewiinschte Aufruf nicht getatigt werden.

Weiterhin miissen die, fir den Aufruf des Implementation Artifacts
beziehungsweise des Plans, bendétigten Input-Parameter den durch das
Implementation Artifact oder den Plan geforderten Parametern ent-
sprechen. Dies bedeutet, dass zum Einen die Namen der iibergebenen Parameter

sowie zum Anderen die Anzahl der Parameter (nachdem zusatzliche Parameter
69

6 Annahmen

wie z.B. Instanzdaten hinzugefiigt wurden) identisch sein miissen. Auflerdem
muss die angegebene auszufithrende Operation ebenfalls zu Implementation
Artifact beziehungsweise Plan sowie deren Input-Parametern passen. Des
Weiteren muss, falls eine Operation innerhalb eines NodeTypes in verschiede-
nen Interfaces vorhanden ist, der Name des Interfaces angegeben werden. Wird
dieser nicht angegeben, wird davon ausgegangen, dass die Operation innerhalb
des NodeTypes eindeutig ist und das Implementation Artifact nur

anhand dessen bestimmt.

Vorhandensein eines Endpunktes

Ohne Informationen unter welchem Namen oder welcher Adresse ein bestimm-
tes Implementation Artifact erreichbar ist kann dieses nicht aufgerufen
werden. Daher miissen durch die IA-Engine beziehungsweise deren Plug-ins
deployte Implementation Artifacts sowie dquivalent deployte Plane

einen korrekten Endpunkt mittels des Endpoint Services gespeichert haben.

Diese Endpoints konnen dabei je nach Art des Implementation
Artifacts unterschiedlich aussehen. Der Endpoint eines als SOAP Web Ser-
vice implementierten Implementation Artifacts wirde beispielsweise
als eine URL, welche die Adresse zur WSDL-Datei des SOAP Web Services an-
gibt, gespeichert sein. Ein Endpunkt eines als OSGi-Service implementiertes
Implementation Artifact wirde dagegen, wie bereits in 4.3 dargestellt,
durch die ID dieses OSGi-Services dargestellt werden. Die verschiedenen Plug-
ins der Service Invocation Schnittstelle wissen dann, wie diese verschiedenen

Endpoints interpretiert werden miissen.

Des Weiteren miissen die deployten Implementation Artifacts und
Plane (zum Aufrufen) aus der OpenTOSCA Container Umgebung erreichbar

sein.

70

6 Annahmen

Nutzung vorgegebener Interfaces

Neue, zu entwickelnde SI-Plug-ins miissen entsprechend den vorhandenen Plug-
ins das dafiir vorgegebene Interface (sieche Kapitel 5.5) implementieren. Dieses
ist fiir die korrekte Funktionsweise des durch OSGi realisierten Plug-in Systems

notwendig (siehe OSGi Grundlagen 2.3).

Auflerdem miissen sich die angegebenen Invocation-Arten, welche gleichzeitig

zur Identifizierung der Plug-ins genutzt werden, voneinander unterscheiden.

Weiterhin miissen, fiir das im vorigen Abschnitt dargestellte Konzept (siehe Ka-
pitel 4.3) eines fir OSGi-Implementation Artifacts entwickelten Plug-
ins, diese Implementation Artifacts ebenfalls das dafiir vorgesehene

Interface implementieren.

Benotigte Informationen innerhalb der TOSCA Definition

Benotigte Informationen, wie zum Beispiel die Invocation-Art eines
Implementation Artifacts, miissen in der TOSCA Definition angegeben
sein. Diese Informationen werden von der Service Invocation Schnittstelle unter
anderem zur Bestimmung des passenden SI-Plug-ins benutzt. Ohne diese Daten
kann kein passendes Plug-in gefunden werden und das Aufrufen des gewiinsch-

ten Implementation Artifacts schlagt fehl.

Weiterhin sollten auch die optionalen Input und Output Werte der Operationen
der NodeTypes zur Bestimmung des message exchange patterns (MEP) ange-
geben sein. Falls nicht angegeben, wird ansonsten standardméaflig von request-

response ausgegangen.

71

6 Annahmen

Gebrauch des Enums

Das in Kapitel 4.4.1 vorgestellte SI-Enum ist zum Austausch der benétigten In-
formationen zwingend notwendig. Es definiert die Header der Exchange Messa-

ge und stellt somit ein standardisiertes Format sicher.

Neue Service Invocation APIs miissen deshalb, dquivalent der bestehenden Ser-
vice Invocation SOAP API, dieses Enum nutzen. Andernfalls kann die SI-Engine
benétigte Informationen nicht auslesen und der gewiinschte Aufruf des

Implementation Artifacts oder Plans kann nicht ausgefithrt werden.

72

7 Uberpriifung des Konzepts und der Implementierung

7 Uberpriifung des Konzepts und der Implementierung

In diesem Kapitel wird beschrieben, ob und wie die in Kapitel 3 gestellten An-
forderungen in Konzept sowie Implementierung der Service Invocation Schnitt-

stelle umgesetzt wurden.

Die erste aufgestellte Anforderung war, dass per Service Invocation Schnittstelle
sowohl Implementation Artifacts als auch Plane aufgerufen werden
konnen. Dass diese Anforderung umgesetzt wurde, zeigt beispielsweise Kapitel
5.4. Dort wird die Implementierung der SI-Engine vorgestellt und gleichzeitig
gezeigt wie Aufrufe von Implementation Artifacts als auch Planen
bearbeitet werden. Weiterhin sollte die Service Invocation Schnittstelle der, in
einer anderen Bachelorarbeit entwickelten, Plan Invocation Engine (siehe Kapi-
tel 2.5) nutzbar gemacht werden. Dies wurde durch die OSGi-Event-API umge-

setzt, welche in Kapitel 5.3 vorgestellt wurde.

Eine weitere gestellte Anforderung war, asynchrone Aufrufe zu ermdglichen.
Eine beispielhafte Bearbeitung eines asynchronen Aufrufes der SOAP-API samt
funktionsweise von MessagelD sowie ReplyTo (Callback-Adresse) wurde in Ka-
pitel 4.3 gezeigt. Dariiber hinaus wurde in Kapitel 5.3 dargestellt, wie die Plan
Invocation Engine mittels Publish-Subscribe Pattern asynchron mit der Service

Invocation Schnittstelle kommunizieren kann.

Weiterhin sollten zum Aufruf eines Services benétigte Informationen dynamisch
beschafft werden kénnen. Diese Anforderung wurde durch die Anbindung von
TOSCA Engine sowie Endpoint Service umgesetzt. Das in Kapitel 4.3 abgebildete
Sequenzdiagramm zeigt die Anbindung der genannten Komponenten an die Ser-
vice Invocation Schnittstelle. Auflerdem wird in Kapitel 5.6 dargelegt, wie das
SOAP/HTTP-Plug-in anhand der WSDL eines Web Services beispielsweise das
MEP bestimmt.

73

7 Uberpriifung des Konzepts und der Implementierung

Eine grofle Anzahl an unterstiitzten Invocation-Arten, beziehungsweise die
Moglichkeit diese einfach erweitern zu kénnen, war eine weitere gestellte An-
forderung. Um dies zu ermoglichen, wurde die SI-Engine mit einem Plug-in Sys-
tem (siehe Kapitel 5.4) ausgestattet, welches das Hinzufiigen und Starten von
Plug-ins zur Laufzeit erméglicht. Weiterhin wurde Camel, welches eine Vielzahl
an Komponenten fiir verschiedene Standards und Protokollen bietet (siehe Kapi-

tel 2.7), zur Implementierung der Service Invocation Schnittstelle genutzt.

Eine andere Anforderung war, die Ubergabe der Input-Daten sowohl per Hash-
Map [34] als auch (XML-)Document [33] zu erméglichen. In unter anderem Ka-
pitel 4.1 sowie Kapitel 5.3 wird auf die Moglichkeit zur Ubergabe von verschie-
denen Datentypen eingegangen sowie in Kapitel 4.3 ein Beispielaufruf fir die

Ubergabe einer HashMap dargestellt.

Dartiber hinaus sollte die Service Invocation Schnittstelle, um zuvor abgelegte
Instanzdaten abfragen und damit die ibergebenen Parameter aktualisieren oder
erganzen zu konnen, mit dem Instanz Data Service kommunizieren konnen. Die
Anbindung des Instanz Data Service wird in Kapitel 4.3 gezeigt sowie anhand

eines Beispiels beschrieben.

Des Weiteren sollte die Service Invocation Schnittstelle in den bestehenden
OpenTOSCA Container (siehe Kapitel 2.4) integriert werden. Um dies zu erméog-
lichen, wurde sie per OSGi (siehe Kapitel 2.3) realisiert (siehe beispielsweise Ka-

pitel 5.4).

Eine weitere Anforderung war, dass sich die Service Invocation Schnittstelle
einfach erweitern lassen soll. Dies wird unter anderem durch die Verwendung
von Camel und des damit verbundenen Pipes-Filter Pattern (siehe Kapitel 2.7),
wodurch sich weitere Verarbeitungsschritte einfach in eine Route integrieren
lassen, sowie des Plug-in Systems (siehe Kapitel 5.4) ermoglicht. Zudem lassen
sich neue APIs einfach integrieren, da alle Daten zwischen den einzelnen SI-
Komponenten durch die Nutzung des Exchange Objekts und SI-Enums einheit-
lich iibergeben werden (siehe Kapitel 4.3 sowie Kapitel 5.1).
74

7 Uberpriifung des Konzepts und der Implementierung

Weiterhin sollte die Service Invocation Schnittstelle Aufrufe verschiedener Auf-
rufer parallel und ohne merkbare Leistungseinbuflen bewerkstelligen konnen.
Dies wird zum Einen durch die Mdoglichkeit von asynchronen Aufrufen (siehe
Kapitel 4.3) sowie durch die Implementierung der einzelnen SI-Komponenten als
OSGi-Services (siehe Kapitel 4.2) und zum Anderen durch die Nutzung von

Camel als Integrationsframework (siehe Kapitel 4.1) realisiert.

Die letzte aufgestellte Anforderung war, die Service Invocation Schnittstelle
moglichst flexibel beziiglich Datenformate umzusetzen. Dies wird ebenfalls
durch die Verwendung von Camel erreicht. Camel bietet durch die Vielzahl an
Komponenten (siehe Kapitel 2.7) bereits nativ eine grofie Anzahl an unterstiitz-
ten Datenformaten sowie Typ-Konverter an, welche sich zudem noch durch ei-
gene erweitern lasst. Zudem lassen sich im Body des verwendeten Message Ob-

jekts beliebige Datentypen ablegen. Kapitel 4.3 zeigt dies anhand eines Beispiels.

75

8 Zusammenfassung und Ausblick

8 Zusammenfassung und Ausblick

Im Folgenden werden die wichtigen Erkenntnisse dieser Arbeit nochmals zu-
sammengefasst sowie einen Ausblick auf Aspekte zur weiteren Bearbeitung ge-

gebenen.

Ziel der vorliegenden Bachelorarbeit war es, ein Konzept fiir eine Erweiterung
des OpenTOSCA Containers zum generischen Aufruf von in TOSCA referen-
zierten Services zu erarbeiten und dieses in die Praxis umzusetzen. Zu diesem
Zweck wurde nach der Erarbeitung der zum Verstdndnis benétigten Grundlagen
(Kapitel 2) ein Anforderungskatalog (Kapitel 3) erstellt. Unter Beriicksichtigung
dessen wurde ein Uberblick iiber mégliche Techniken und konkrete Implemen-
tierungen zur Integration verschiedenster Komponenten geschaffen sowie da-
rauf beruhende Entwurfsentscheidungen getroffen (Kapitel 4.1). Dabei hat sich
ergeben, dass aufgrund der vorgestellten Vorteile, Apache Camel die beste Al-

ternative zur Umsetzung darstellt.

Darauf aufbauend wurde die Architektur der zu entwickelnden Komponente
entworfen (Kapitel 4.2) und das dazugehorige Konzept erarbeitet (Kapitel 4.3).
Von besonderer Bedeutung hierfiir war die Integration der benétigten bestehen-
den Komponenten in die zu entwickelnde Erweiterung. Anhand der im weiteren
Verlauf dieser Arbeit aufgezeigten Moglichkeiten konnte dargelegt werden, dass
das zuvor erarbeitete Losungskonzept den geforderten Anforderungen ent-

spricht.

Im anschlielenden Implementierungsteil (Kapitel 5) wurden die bis dahin abs-
trakten Beschreibungen der einzelnen Komponenten und deren Funktionalitat
durch ausgewihlte Code- beziehungsweise XML-Ausziige oder Abbildungen
konkretisiert und erlautert. Dabei konnte ebenfalls beispielhaft gezeigt werden,
wie einfach andere Erweiterungen von OpenTOSCA die in dieser Arbeit entwi-

ckelte Komponente nutzen kénnen (Kapitel 5.3).

76

8 Zusammenfassung und Ausblick

Jedoch mussten auch, um die korrekte Funktionsweise der entworfenen Kompo-
nente zu sichern, einige Annahmen beziiglich TOSCA Definitionen, Planen

oder Komponenten-Erweiterungen getroffen werden (Kapitel 6).

Insgesamt kann festgestellt werden, dass mit dieser Arbeit ein Konzept sowie
eine erste prototypische Implementierung davon zum Aufruf von Services im
Kontext von TOSCA geschaffen wurde. Aktuell wurden sowohl eine SOAP-
HTTP-API (Kapitel 5.2) als auch eine OSGi-Event-API (Kapitel 5.3) zum Aufruf
der Service Invocation Schnittstelle implementiert. Weiterhin wurde ein
SOAP/HTTP-Plug-in (Kapitel 5.6) zum Aufruf von SOAP Web Services sowie ein
REST/HTTP-Plug-in (Kapitel 5.7) umgesetzt. Um eine grofler Anzahl an Stan-
dards und Protokollen zu unterstiitzen, miissen weitere Plug-ins und APIs im-
plementiert werden. Aufgrund der darauf ausgerichteten Konzeption, stellt das

Einbinden von neuen Komponenten allerdings keine grofie Schwierigkeit dar.

77

Abbildungsverzeichnis

Abbildungsverzeichnis

Abbildung 1: Architektur von OpenTOSCA (nach [23])...cccooerverrcrncncnercrererceenes 9
Abbildung 2: GUI der Plan Invocation ENGinecccoveeveeneenieinienienieneeeneecineeeneiennee 11
Abbildung 3: Beispiel-Architektur aus fiinf Komponenten ohne (links) und mit (rechts)
ESB ettt 12
Abbildung 4: Pipes und Filter ArchiteKturmustercoceveeneeneenienieneneenceseieenee 15
Abbildung 5: Moglichkeiten der Integrationstechnologien (nach [43] S.3).....ccccceveueee. 23
Abbildung 6: Architektur des OpenTOSCA Containers mit Service Invocation
SCRNIEESEELLE. ... 30
Abbildung 7: Konzeptioneller Aufbau der Komponentenccoceoveeeveeneenecneeneennee 32
Abbildung 8: Service Invocation Schnittstelle als Schichtendiagramm...........c.ccccccco....... 33
Abbildung 9: Bearbeitungsablauf zum Aufruf eines Services.........coccevenenecneceneennee 35
Abbildung 10: Beispielhafte Nachrichten / Aufrufe..........cccooevininincncncncneenee 38
Abbildung 11: Von der Service Invocation SOAP API an die SI-Engine gesendete
MESSAGE.....c.oviiiiiiii e 40
Abbildung 12: Sequenzdiagramm SI-ENgIne..........cooceveeeinienienienieenieneeneeeneeeneeeseiennes 41

Abbildung 13: Durch die SI-Engine angereicherte und an ein SI-Plug-in gerichtete
MESSAGE.....c.oviiiiiiii e 43
Abbildung 14: Rickgabe des SI-Plug-ins mit enthaltenen Informationen des
Implementation ATIACES........ccccociirieicierirc e 45

Abbildung 15: Beispiel fiir die Umsetzungsmoglichkeit eines weiteren Plug-in Types 47

Abbildung 16: Beispiel fiir eine weitere Service Invocation APIL..........cccccccveririerncrncnnee 49
Abbildung 17: Aufruf eines Plans initiiert durch Plan Invocation Engine....................... 55

Abbildung 18: Flussdiagramme der beiden SI-Engine Methoden invokeOperation und

INVOREPIAN. ..ottt 58
Abbildung 19: Darstellung der drei von dem SOAP/HTTP-Plug-in unterstiitzten MEPs
... 65

78

Listingsverzeichnis

Listingsverzeichnis

Listing 1: Plug-in Interface AIternative L.......c.ccccnniniecnenieeeeeeeeeeeenenseneanns 27
Listing 2: Plug-in Interface AIternative 2..........cccccooeicncinininicicnenieeeeeeeeeenenseneans 28
Listing 3: Beispiel IN-Out Patternccocviurieieiniiniinieiecneneeieciseineieeeesese e nsesseseans 36
Listing 4: Beispiel In-Only Pattern ..o 36
Listing 5: SOAP Nachricht eines Plans an die Service Invocation Schnittstelle zur

Erstellung einer Datenbankcc.occviriiriinicinicniceecieee et ssesenne 39
Listing 6: Durch das SOAP/HTTP Plug-in erstellte SOAP Message........ccoceveveuneveereunnee 44
Listing 7: Antwort des Implementation Artifacts..........cccocveecnninciccnenieceneenes 44
Listing 8: Nachricht der SOAP API zuriick an den Aufrufer..........c.ccoccvcnininicvcncnnnnes 46
Listing 9: Methoden des OSGi Implementation Artifact Interfacecccccooevvervcincnncanes 48
Listing 10: SI-ENUINL.....c.ooiiiiiii s 51
Listing 11: Route der Service Invocation SOAP AP ... 52
Listing 12: Anwendung des OSGi Event Services.........cccocuveierneneininicrnceneinieeenensenneans 56
Listing 13: Beispiel ArtifactTemplate mit Invocation-Art Angabe.........cccccocovevierccunirnnnnee 59
Listing 14: Anbieten eines Services per OSGi XML-Konfigurationsdatei..........ccccccco...... 60
Listing 15: Binden eines Services per OSGi XML-Konfigurationsdatei...........ccccccceeuueenee 60
Listing 16: Implementierung des PIug-in-SyStemsccocvueuercinininicrceneninicncnnenenes 61
Listing 17: Interface der SI-PIUG-INS........ccoveiciniiniiniiicencneccneeieeieeeee e 62
Listing 18: One-Way OPerationccccceiviiieieucieeeieiereieieieieieesisessesessseeeesseeesesesesenes 64
Listing 19: Request-Response Operation...........cccoviciviiiiiinicniiiciiccecennns 64
Listing 20: Schema zur Beschreibung des Parameter-Mappings.........ccoceveueeveeeenereeneuennee 66
Listing 21: Beispiel fiir Parameteriibergabe per Query String...........ccocevevveeneeeneennee 68
Listing 22: Beispiel fiir Parameteriibergabe mit Content-Type xml.......cccocoevevvnevineuennee 68

79

Abkiirzungsverzeichnis

Abkiirzungsverzeichnis

API
AWS
BPEL
BPMN
BPS
CSAR
DSL
EIP
ESB
GUI
HTTP
IA
IaaS

Axis Archive

Application Programming Interface
Amazon Web Services

WS-Business Process Execution Language
Business Process Model and Notation
Business Process Server

Cloud Service Archive

Domain Specific Language

Enterprise Integration Pattern

Enterprise Service Bus

Graphical User Interface

Hypertext Transfer Protocol
Implementation Artifact

Infrastructure as a Service
Identifikationsbezeichnung

Integrated Development Environment
Informationstechnik

Informations- und Kommunikationstechnik
Java Archive

Message Exchange Pattern

Organization for the Advancement of Structured Information Standards
Platform as a Service

Representational State Transfer

Software as a Service

Service Invocation Schnittstelle

Topology and Orchestration Specification for Cloud Applications
Uniform Resource Identifier

Uniform Resource Locator

Web Application Description Language
Web Application Archive

Web Services Description Language
Extensible Markup Language

XML Schema Definition

80

Literaturverzeichnis

Literaturverzeichnis

(1] Apache Software Foundation: Apache Axis, URL: http://axis.apache.org/

(2] Apache Software Foundation: Apache Camel , URL: http://camel.apache.org/

(3] Apache Software Foundation: Apache Camel: Enterprise Integration Patterns,
URL: http://camel.apache.org/enterprise-integration-patterns.html

(4] Apache Software Foundation: Apache ServiceMix, URL:
http://servicemix.apache.org/

(5] Apache Software Foundation: Apache Synapse Enterprise Service Bus (ESB),
URL: http://synapse.apache.org/

(6] Apache Software Foundation: Apache Tomcat, URL: http://tomcat.apache.org/

[7] Apache Software Foundation: Components, URL:
http://camel.apache.org/component.html

(8] Apache Software Foundation: CXF Component, URL:
http://camel.apache.org/cxf

(9] Apache Software Foundation: FTP/SFTP/FTPS Component, URL:
http://camel.apache.org/ftp2.html

[10] Apache Software Foundation: Getting Started with Apache Camel, URL:
http://camel.apache.org/book-getting-started.html

[11] Apache Software Foundation: Is Camel an ESB?, URL:
http://camel.apache.org/is-camel-an-esb.html

[12] Apache Software Foundation: Jetty Component, URL:
http://camel.apache.org/jetty

[13] Apache Software Foundation: Welcome to Apache Axis2/Java, URL:
http://axis.apache.org/axis2/java/core/

[14] AWS: Amazon EC2, URL: http://aws.amazon.com/de/ec2/

[15] BITKOM: Die wichtigsten Hightech-Themen 2013, URL:
http://www.bitkom.org/de/presse/30739 74757.aspx

[16] Chappell, David A. : Enterprise Service Bus, O'Reilly Media 2004

81

http://axis.apache.org/
http://camel.apache.org/
http://camel.apache.org/enterprise-integration-patterns.html
http://servicemix.apache.org/
http://synapse.apache.org/
http://tomcat.apache.org/
http://camel.apache.org/component.html
http://camel.apache.org/cxf
http://camel.apache.org/ftp2.html
http://camel.apache.org/book-getting-started.html
http://camel.apache.org/is-camel-an-esb.html
http://camel.apache.org/jetty
http://axis.apache.org/axis2/java/core/
http://aws.amazon.com/de/ec2/
http://www.bitkom.org/de/presse/30739_74757.aspx

Literaturverzeichnis

Eclipse: Equinox, URL: http://www.eclipse.org/equinox/

Endres, Christian: Management von Cloud Applikationen in OpenTOSCA.
Cloud Application Management in OpenTOSCA, Bachelorarbeit, 03.05.2013

Fielding, Roy Thomas: Architectural Styles and the Design of Network-based
Software Architectures URL:
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Google: Gmail, URL: https://mail.google.com/

Hohpe , Gregor/ Woolf , Bobby: Pipes and Filters, URL:
http://www.eaipatterns.com/PipesAndFilters.html

Hohpe , Gregor/ Woolf , Bobby: Publish-Subscribe Channel, URL:
http://www.eaipatterns.com/PublishSubscribeChannel.html

IAAS Universitat Stuttgart: OpenTOSCA - Open Source Laufzeitumgebung fiir
TOSCA, URL: http://www.iaas.uni-stuttgart.de/OpenTOSCA/

IT Wissen: Community Cloud, URL:
http://www.itwissen.info/definition/lexikon/Community-Cloud-community-
cloud.html

Manhart, Klaus: Cloud Dienste - Das miissen Sie wissen! Cloud Computing -
SaaS, PaaS$, IaaS, Public und Private (02.08.2011), URL:
http://www.tecchannel.de/server/cloud computing/2030180/cloud computing

das muessen sie wissen saas paas iaas/

Microsoft: Windows Azure, URL: http://www.windowsazure.com/de-de/

Mule Community: Mule ESB - The easiest way to integrate
anything, anywhere, URL: http://www.mulesoft.org/

OASIS: Advancing open standards fort he information society, URL:
https://www.oasis-open.org

OASIS: Topology and Orchestration Specification for Cloud Applications
Version 1.0, URL: http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-
v1.0.html

OASIS: Web Services Business Process Execution Language, URL:
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

OMG: Business Process Model and Notation , URL: http://www.bpmn.org/

Opscode: Chef, URL: http://www.opscode.com/chef/

82

http://www.eclipse.org/equinox/
http://www.ics.uci.edu/%7Efielding/pubs/dissertation/top.htm
https://mail.google.com/
http://www.eaipatterns.com/PipesAndFilters.html
http://www.eaipatterns.com/PublishSubscribeChannel.html
http://www.iaas.uni-stuttgart.de/OpenTOSCA/
http://www.itwissen.info/definition/lexikon/Community-Cloud-community-cloud.html
http://www.itwissen.info/definition/lexikon/Community-Cloud-community-cloud.html
http://www.tecchannel.de/server/cloud_computing/2030180/cloud_computing_das_muessen_sie_wissen_saas_paas_iaas/
http://www.tecchannel.de/server/cloud_computing/2030180/cloud_computing_das_muessen_sie_wissen_saas_paas_iaas/
http://www.windowsazure.com/de-de/
http://www.mulesoft.org/
https://www.oasis-open.org/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.bpmn.org/
http://www.opscode.com/chef/

Literaturverzeichnis

Oracle: Document (Java Platform SE 6), URL:
http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Document.html

Oracle: HashMapURL (Java Platform SE 6), URL:
http://docs.oracle.com/javase/6/docs/api/java/util/HashMap.html

OSGi Alliance: OSGi Service Platform Core Specification (Release 4, Version
4.2, June 2009), URL: http://www.osgi.org/download/r4v42/r4.core.pdf

OSGi Alliance: OSGi Service Platform Service Compendium (Release 4, Version
4.2, August 2009), URL: http://www.osgi.org/download/r4v42/r4.cmpn.pdf

OSGi Alliance: OSGi - The Dynamic Module System for Java, URL:
http://www.osgi.org/Main/HomePage

Puppet Labs: IT Automation Software for System Administrators, URL:
https://puppetlabs.com/

Spring: Spring Integration, URL: http://www.springsource.org/spring-
integration

W3C: SOAP Specifications, URL: http://www.w3.org/TR/soap/

W3C: Web Services Description Language (WSDL) Version 2.0 Part 2:
Predefined Extensions, URL: http://www.w3.org/TR/2004/WD-wsdI20-
extensions-20040803/#patterns

W3C: Web Services Addressing (WS-Addressing), URL:
http://www.w3.org/Submission/ws-addressing/

Wihner, Kai: Mittler zwischen den Welten. Freie Integrations-Frameworks auf
der Java-Plattform (13.08.2012), URL:

http://www .heise.de/developer/artikel/Freie-Integrations-Frameworks-auf-der-
Java-Plattform-1666403.html

Wissmeier, Jorg / Kraus, Adrian: Top Ten ESB: Viele ESBs, viele Moglichkeiten,
URL: http://jaxenter.de/artikel/Top-Ten-ESB-Viele-ESBs-viele-Moeglichkeiten

WSO02: WSO2 Business Process Server , URL:
http://wso2.com/products/business-process-server/

Alle aufgefithrten Weblinks wurden das letzte Mal am 1.07.2013 gepriift.

83

http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Document.html
http://docs.oracle.com/javase/6/docs/api/java/util/HashMap.html
http://www.osgi.org/download/r4v42/r4.core.pdf
http://www.osgi.org/download/r4v42/r4.cmpn.pdf
http://www.osgi.org/Main/HomePage
https://puppetlabs.com/
http://www.springsource.org/spring-integration
http://www.springsource.org/spring-integration
http://www.w3.org/TR/soap/
http://www.w3.org/TR/2004/WD-wsdl20-extensions-20040803/%23patterns
http://www.w3.org/TR/2004/WD-wsdl20-extensions-20040803/%23patterns
http://www.w3.org/Submission/ws-addressing/
http://www.heise.de/developer/artikel/Freie-Integrations-Frameworks-auf-der-Java-Plattform-1666403.html
http://www.heise.de/developer/artikel/Freie-Integrations-Frameworks-auf-der-Java-Plattform-1666403.html
http://jaxenter.de/artikel/Top-Ten-ESB-Viele-ESBs-viele-Moeglichkeiten
http://wso2.com/products/business-process-server/

Anhang

Anhang A. WSDL der SOAP-API

01 <?xml version="1.0" encoding="UTF-8"?>
02 <wsdl:definitions xmlns:xsd="http://www.w3.

03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

org/2001/XMLSchema”
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:
tns="http://siserver.org/wsdl”
xmlns:ns="http://siserver.org/schema" xmlns:soap="http:
//schemas.xmlsoap.org/wsdl/soap/"
name="SIServerImplService" targetNamespace="http://siserver.
org/wsdl">

<wsdl:types>
<xsd:schema xmlns="http://www.w3.0rg/2001/XMLSchema">
<xsd:import namespace="http://siserver.org/schema"
schemalLocation="invoker.xsd" />
</xsd:schema>
</wsdl:types>
<wsdl:message name="invokeOperationMessage">
<wsdl:part element="ns:invokeOperation”
name="invokeOperation">
</wsdl:part>
</wsdl:message>
<wsdl:message name="invokeOperationAsyncMessage">
<wsdl:part element="ns:invokeOperationAsync"
name="invokeOperationAsync">
</wsdl:part>
</wsdl:message>
<wsdl:message name="invokeOperationSyncMessage">
<wsdl:part element="ns:invokeOperationSync"
name="invokeOperationSync">
</wsdl:part>
</wsdl:message>
<wsdl:message name="invokePlanMessage">
<wsdl:part element="ns:invokePlan" name="invokePlan">
</wsdl:part>
</wsdl:message>
<wsdl:message name="invokeResponse">
<wsdl:part element="ns:invokeResponse"
name="invokeResponse">
</wsdl:part>
</wsdl:message>
<wsdl:portType name="InvokePortType">
<wsdl:operation name="invokeOperation">
<wsdl:input message="tns:invokeOperationMessage">
</wsdl:input>
</wsdl:operation>
<wsdl:operation name="invokeOperationAsync">
<wsdl:input message="tns:invokeOperationAsyncMessage">
</wsdl:input>
</wsdl:operation>
<wsdl:operation name="invokeOperationSync">
<wsdl:input message="tns:invokeOperationSyncMessage">
</wsdl:input>
<wsdl:output message="tns:invokeResponse">
</wsdl:output>

84

Anhang

55 </wsdl:operation>

56 <wsdl:operation name="invokePlan">

57 <wsdl:input message="tns:invokePlanMessage">
58 </wsdl:input>

59 </wsdl:operation>

60 </wsdl:portType>

61 <wsdl:portType name="CallbackPortType">

62 <wsdl:operation name="callback">

63 <wsdl:input message="tns:invokeResponse">
64 </wsdl:input>

65 </wsdl:operation>

66 </wsdl:portType>

67 <wsdl:binding name="InvokeBinding" type="tns:

68 InvokePortType">

69 <soap:binding style="document"

70 transport="http://schemas.xmlsoap.org/soap/http" />
71 <wsdl:operation name="invokeOperation">

72 <soap:operation soapAction="http://siserver.
73 org/invokeOperation”

74 style="document"” />

75 <wsdl:input>

76 <soap:body use="literal" />

77 </wsdl:input>

78 </wsdl:operation>

79 <wsdl:operation name="invokeOperationAsync">

80 <soap:operation soapAction="http://siserver.
81 org/invokeOperationAsync"

82 style="document"” />

83 <wsdl:input>

84 <soap:body use="literal" />

85 </wsdl:input>

86 </wsdl:operation>

87 <wsdl:operation name="invokeOperationSync">

88 <soap:operation soapAction="http://siserver.
89 org/invokeOperationSync"

90 style="document"” />

91 <wsdl:input>

92 <soap:body use="literal" />

93 </wsdl:input>

94 <wsdl:output>

95 <soap:body use="literal" />

96 </wsdl:output>

97 </wsdl:operation>

98 <wsdl:operation name="invokePlan">

99 <soap:operation soapAction="http://siserver.
100 org/invokePlan"

101 style="document" />

102 <wsdl:input>

103 <soap:body use="literal" />

104 </wsdl:input>

105 </wsdl:operation>

106 </wsdl:binding>
107 <wsdl:binding name="CallbackBinding" type="tns:

108 CallbackPortType">

109 <soap:binding style="document"

110 transport="http://schemas.xmlsoap.org/soap/http" />
111 <wsdl:operation name="callback">

112 <wsdl:input>

113 <soap:body use="literal" />

114 </wsdl:input>

85

Anhang

115 </wsdl:operation>

116 </wsdl:binding>

117 <wsdl:service name="InvokerService">

118 <wsdl:port binding="tns:InvokeBinding" name="InvokePort">

119 <soap:address location="http://localhost:8081/invoker" />
120 </wsdl:port>

121 <wsdl:port binding="tns:CallbackBinding"

122 name="CallbackPort">

123 <soap:address location="http://localhost:8088/callback" />
124 </wsdl:port>

125 </wsdl:service>

126 </wsdl:definitions>

Anhang B. XSD der SOAP-API

01 <?xml version="1.0" encoding="UTF-8"?>
02 <xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"

03 xmlns:ns="http://siserver.org/schema"

04 attributeFormDefault="unqualified"

05 elementFormDefault="unqualified" targetNamespace="http:
06 //siserver.org/schema">

07 <xs:complexType name="ParamsMapItemType">

08 <XS:sequence>

09 <xs:element name="key" type="xs:string" />
10 <xs:element name="value" type="xs:string" />
11 </Xs:sequence>

12 </xs:complexType>

13 <xs:complexType name="ParamsMap">

14 <XS:sequence>

15 <xs:element maxOccurs="unbounded" name="Param"
16 type="ns:ParamsMapItemType" />

17 </Xs:sequence>

18 </xs:complexType>

19 <xs:complexType name="Doc">

20 <XS:sequence>

21 <Xs:any minOccurs="0" maxOccurs="1"

22 processContents="skip"/>

23 </Xs:sequence>

24 </xs:complexType>

25 <xs:element name="invokeOperation" type="ns:

26 invokeOperationAsync" />

27 <xs:element name="invokeOperationAsync" type="ns:

28 invokeOperationAsync" />

29 <xs:complexType name="invokeOperationAsync">

30 <XS:sequence>

31 <xs:element minOccurs="1" maxOccurs="1" name="CsarID"
32 type="xs:string" />

33 <xs:element minOccurs="0" maxOccurs="1"

34 name="ServiceInstanceID"

35 type="xs:string" />

36 <xs:element minOccurs="0" maxOccurs="1"

37 name="NodeInstanceID"

38 type="xs:string" />

39 <xs:element minOccurs="1" maxOccurs="1"

86

Anhang

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
920
91
92
93
94
95
96
97
98
99

name="ServiceTemplateIDNamespaceURI" type="xs:string"
<xs:element minOccurs="1" maxOccurs="1"
name="ServiceTemplateIDLocalPart" type="xs:string" />
<xs:element minOccurs="1" maxOccurs="1"
name="NodeTemplateID"
type="xs:string" />
<xs:element minOccurs="0" maxOccurs="1"
name="InterfaceName"
type="xs:string" />
<xs:element minOccurs="1" maxOccurs="1"
name="0OperationName"
type="xs:string" />
<xs:element minOccurs="1" maxOccurs="1" name="ReplyTo"
type="xs:string" />
<xs:element minOccurs="1" maxOccurs="1" name="MessageID"
type="xs:string" />
<xs:choice>
<xs:element minOccurs="0" name="Params" type='"ns:
ParamsMap" />
<xs:element minOccurs="0" name="Doc" type="ns:Doc" />
</xs:choice>
</Xs:sequence>
</xs:complexType>
<xs:element name="invokeOperationSync" type="ns:
invokeOperationSync" />
<xs:complexType name="invokeOperationSync">
<Xs:sequence>
<xs:element minOccurs="1" maxOccurs="1" name="CsarID"
type="xs:string" />
<xs:element minOccurs="0" maxOccurs="1"
name="ServiceInstanceID"
type="xs:string" />
<xs:element minOccurs="0" maxOccurs="1"
name="NodeInstanceID"
type="xs:string" />
<xs:element minOccurs="1" maxOccurs="1"
name="ServiceTemplateIDNamespaceURI" type="xs:string"
<xs:element minOccurs="1" maxOccurs="1"
name="ServiceTemplateIDLocalPart" type="xs:string" />
<xs:element minOccurs="1" maxOccurs="1"
name="NodeTemplateID"
type="xs:string" />
<xs:element minOccurs="0" maxOccurs="1"
name="InterfaceName"
type="xs:string" />
<xs:element minOccurs="1" maxOccurs="1"
name="0OperationName"
type="xs:string" />
<xs:choice>
<xs:element minOccurs="0" name="Params" type='"ns:
ParamsMap" />
<xs:element minOccurs="0" name="Doc" type="ns:Doc" />
</xs:choice>
</Xs:sequence>
</xs:complexType>
<xs:element name="invokePlan" type="ns:invokePlan" />
<xs:complexType name="invokePlan">
<Xs:sequence>
<xs:element minOccurs="1" maxOccurs="1
type="xs:string" />

87

name="CsarID"

/>

/>

Anhang

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

<xs:element minOccurs="0" maxOccurs="1"
name="ServiceInstanceID"
type="xs:string" />
<xs:element minOccurs="1" maxOccurs="1"
name="PlanIDNamespaceURI"
type="xs:string" />
<xs:element minOccurs="1" maxOccurs="1"
name="PlanIDLocalPart"
type="xs:string" />
<xs:element minOccurs="1" maxOccurs="1"
name="OperationName"
type="xs:string" />
<xs:element minOccurs="1" maxOccurs="1" name="ReplyTo"
type="xs:string" />
<xs:element minOccurs="1" maxOccurs="1" name="MessageID"
type="xs:string" />
<xs:choice>
<xs:element minOccurs="0" name="Params" type='"ns:
ParamsMap" />
<xs:element minOccurs="0" name="Doc" type="ns:Doc"
</xs:choice>
</Xs:sequence>
</xs:complexType>
<xs:element name="invokeResponse" type="ns:invokeResponse"
/>
<xs:complexType name="invokeResponse">
<Xs:sequence>
<xs:element minOccurs="0" maxOccurs="1" name="MessageID"
type="xs:string" />
<xs:choice>
<xs:element minOccurs="0" name="Params" type='"ns:
ParamsMap" />
<xs:element minOccurs="0" name="Doc" type="ns:Doc"
</xs:choice>
</Xs:sequence>
</xs:complexType>

136 </xs:schema>

88

/>

/>

Erkliarung

Ich versichere, diese Arbeit selbststandig verfasst zu haben. Ich habe keine ande-
ren als die angegebenen Quellen benutzt und alle wortlich oder sinngeméfS aus
anderen Werken iibernommene Aussagen als solche gekennzeichnet. Weder
diese Arbeit noch wesentliche Teile daraus waren bisher Gegenstand eines ande-
ren Priifungsverfahrens. Ich habe diese Arbeit bisher weder teilweise noch voll-
standig veroffentlicht. Das elektronische Exemplar stimmt mit allen eingereich-

ten Exemplaren iiberein.

Ort, Datum, Unterschrift

	1 Einleitung
	2 Thematische Grundlagen und verwandte Arbeiten
	2.1 Cloud Computing
	2.2 TOSCA
	2.3 OSGi
	2.4 OpenTOSCA
	2.5 Plan Invocation Engine
	2.6 ESB
	2.7 Camel

	3 Anforderungen
	3.1 Funktionale Anforderungen
	3.2 Nichtfunktionale Anforderungen

	4 Konzept & Architektur
	4.1 Entwurfsentscheidungen
	4.2 Architektur
	4.3 Beschreibung des gewählten Lösungskonzeptes

	5 Implementierung
	5.1 Service Invocation Enum
	5.2 Service Invocation SOAP API
	5.3 Service Invocation OSGi-Event API
	5.4 Service Invocation Engine
	5.5 Service Invocation Plug-in Interface
	5.6 Service Invocation SOAP/HTTP-Plug-in
	5.7 Service Invocation REST/HTTP-Plug-in

	6 Annahmen
	7 Überprüfung des Konzepts und der Implementierung
	8 Zusammenfassung und Ausblick
	Abbildungsverzeichnis
	Listingsverzeichnis
	Abkürzungsverzeichnis
	Literaturverzeichnis
	Anhang A. WSDL der SOAP-API

