

Institut für Architektur von Anwendungssystemen

Universität Stuttgart
Universitätsstraße 38
D - 70569 Stuttgart

Bachelorarbeit Nr. 42

Konzept und Implementierung einer
generischen Service Invocation

Schnittstelle für Cloud Application
Management basierend auf TOSCA

Michael Zimmermann

Studiengang: Softwaretechnik

Prüfer: Prof. Dr. Frank Leymann

Betreuer: Dipl.-Inf. Uwe Breitenbücher

Beginn am: 02.01.2013

Beendet am: 04.07.2013

CR-Nummer: C.2.4, D.2.11, D.2.12, J.0

Kurzfassung

Cloud Computing ist ein viel diskutiertes Thema in der Informations- und

Kommunikationstechnologie. Es ermöglicht Unternehmen sich auf ihr Kernge-

biet zu konzentrieren ohne dabei auf professionelle IT-Infrastruktur verzichten

zu müssen. Allerdings besteht demgegenüber die Gefahr eines Vendor-Lock-in,

also die Abhängigkeit eines bestimmten Cloud Anbieters. Diesem Problem

nimmt sich TOSCA [29] an. TOSCA ist ein Standard zur Beschreibung von in-

teroperablen Cloud Anwendungen. TOSCA ermöglicht unter anderem die Be-

schreibung des Aufbaus, Deployments und Managements. Die Universität Stutt-

gart entwickelt eine Laufzeitumgebung namens OpenTOSCA [23] für diesen

Standard. Eine erste prototypische aber dennoch funktionelle Implementierung

ist bereits fertiggestellt. In dieser werden Aufrufe von Services allerdings außer-

halb des Sichtbarkeitsbereichs des OpenTOSCA Containers ausgeführt.

In der vorliegenden Bachelorarbeit wird deshalb ein Konzept zum generischen

Aufruf von Services durch eine zentrale Komponente des OpenTOSCA Contai-

ners vorgestellt. Dabei wird auf gestellte Anforderungen und getroffene Ent-

wurfsentscheidungen ebenso eingegangen wie auf die Architektur und Möglich-

keiten des erarbeiteten Lösungskonzepts. Weiterhin ist eine prototypische Im-

plementierung des Konzepts Teil dieser Arbeit. Es werden daher wichtige sowie

interessante Punkte der Implementierung dargestellt und erläutert.

Inhaltsverzeichnis

I

Inhaltsverzeichnis

1 Einleitung ... 1

2 Thematische Grundlagen und verwandte Arbeiten 3

2.1 Cloud Computing ... 3

2.2 TOSCA .. 5

2.3 OSGi... 6

2.4 OpenTOSCA .. 8

2.5 Plan Invocation Engine ... 10

2.6 ESB ... 11

2.7 Camel .. 13

3 Anforderungen ... 16

3.1 Funktionale Anforderungen .. 16

3.2 Nichtfunktionale Anforderungen ... 20

4 Konzept & Architektur ... 22

4.1 Entwurfsentscheidungen .. 22

4.2 Architektur .. 29

4.3 Beschreibung des gewählten Lösungskonzeptes .. 32

5 Implementierung ... 50

5.1 Service Invocation Enum .. 50

5.2 Service Invocation SOAP API .. 51

5.3 Service Invocation OSGi-Event API ... 54

5.4 Service Invocation Engine .. 57

5.5 Service Invocation Plug-in Interface .. 62

5.6 Service Invocation SOAP/HTTP-Plug-in .. 63

5.7 Service Invocation REST/HTTP-Plug-in ... 66

6 Annahmen ... 69

7 Überprüfung des Konzepts und der Implementierung 73

8 Zusammenfassung und Ausblick ... 76

Abbildungsverzeichnis .. 78

Listingsverzeichnis ... 79

Abkürzungsverzeichnis... 80

Literaturverzeichnis ... 81

Anhang WSDL/XSD der SOAP-API .. 84

1 Einleitung

1

1 Einleitung

Cloud Computing ist einer Umfrage des Bundesverband Informationswirtschaft,

Telekommunikation und neue Medien e.V. (BITKOM) zufolge das wichtigste

Hightech-Thema der ITK-Branche 2013 [15]. Es ermöglicht unter anderem eine

hohe Verfügbar- sowie Anpassungsfähigkeit, Kostenreduzierungen und die Nut-

zung leistungsfähiger IT-Ressourcen ohne Wissen über Administration und ähn-

lichem. Ein Problem des Cloud Computing ist allerdings der Lock-in-Effekt, also

die Abhängigkeit des Kunden von einem bestimmten Cloud-Anbieter.

Demgegenüber wurde mit Topology and Orchestration Specification for Cloud

Applications (TOSCA) [29] ein Standard zur Beschreibung von interoperablen

und portablen Cloud Anwendungen geschaffen. Mit OpenTOSCA [23] wurde an

der Universität Stuttgart weiterhin eine erste Open Source Implementierung

einer Laufzeitumgebung für TOSCA entwickelt, welche aktuell kontinuierlich

verbessert und erweitert wird.

In dem momentanen Entwicklungsstand von OpenTOSCA werden Services zum

Management der Cloud Anwendung, wie Pläne oder Implementation

Artifacts direkt und damit außerhalb des Sichtbarkeitsbereichs des Contai-

ners aufgerufen, was beispielsweise ein Logging oder Monitoring der ausgeführ-

ten Aufrufe unmöglich macht. Weiterhin steht dem Aufrufer kein einheitliches

Interface zur Verfügung. Dadurch ist der Aufrufer gezwungen, sich mit den Be-

sonderheiten verschiedenster Techniken wie zum Beispiel SOAP oder REST aus-

einander setzen zu müssen. Darüber hinaus wird zudem ein extra Programm

zum Aufruf von Plänen benötigt.

Um diese Einschränkungen zu beseitigen, soll im Rahmen dieser Bachelorarbeit

ein Konzept für eine zentrale Komponente - Service Invocation Schnittstelle ge-

nannt - für OpenTOSCA zum Aufruf von in TOSCA spezifizierten Services erar-

1 Einleitung

2

beitet werden. Weiterhin soll im praktischen Teil dieser Arbeit diese Funktiona-

lität implementiert sowie in OpenTOSCA integriert werden.

Die Ausarbeitung ist folgendermaßen strukturiert: In Kapitel 2 werden dem Le-

ser zuerst einige Grundlagen zum Verständnis dieser Arbeit nähergebracht. Da-

bei wird auf Cloud Computing, TOSCA, OSGi, OpenTOSCA sowie eine Erweite-

rung dazu, die Plan Invocation Engine [18] eingegangen. Außerdem werden mit

Abschnitten über ESBs sowie Camel Möglichkeiten zur Integration verschiede-

ner Komponenten und Services betrachtet. Anschließend werden in Kapitel 3 die

an die Service Invocation Schnittstelle gestellten Anforderungen erarbeitet und

dokumentiert. Daraufhin wird in Kapitel 4 unter Berücksichtigung der getroffe-

nen Entwurfsentscheidungen das Konzept und die Architektur der Service

Invocation Schnittstelle vorgestellt sowie die Möglichkeiten des gewählten Lö-

sungskonzepts aufgezeigt. Im Anschluss daran wird in Kapitel 5 die Implemen-

tierung vorgestellt. In Kapitel 6 folgt eine Übersicht an getroffenen Annahmen

zur Umsetzung der Service Invocation Schnittstelle. Anschließend wird in Kapi-

tel 7 das Konzept beziehungsweise die Implementierung der Service Invocation

Schnittstelle anhand der gestellten Anforderungen evaluiert, bevor in Kapitel 8

die Arbeit nochmals zusammengefasst und ein Ausblick auf weitere Optimie-

rungsmöglichkeiten gegeben wird.

2 Thematische Grundlagen und verwandte Arbeiten

3

2 Thematische Grundlagen und verwandte Arbeiten

In diesem Kapitel werden zum Verständnis der Arbeit benötigte Grundlagen

erläutert. Zuerst wird auf Cloud Computing und dessen Möglichkeiten einge-

gangen. Anschließend werden Grundlagen zu TOSCA erläutert und das Frame-

work OSGi vorgestellt. Daraufhin wird der OpenTOSCA Container und eine

Erweiterung dazu, die Plan Invocation Engine, betrachtet. Zum Ende des Kapi-

tels wird auf Integrationsmöglichkeiten wie Enterprise Service Buse sowie Integ-

rationsframeworks eingegangen.

2.1 Cloud Computing

Cloud Computing ist eine an die jeweils aktuellen Benutzeranforderungen elas-

tisch anpassbare und über ein Netzwerk durch standardisierte Techniken er-

reichbare IT-Infrastruktur. Sie stellt sowohl Infrastruktur (Hardware wie z.B.

Server), Plattformen als auch Software als Service bereit. [25]

Es wird zwischen vier wesentlichen Bereitstellungsmodellen (Deployment Mod-

els) unterschieden. Diese sind Public-, Private-, Community-, sowie Hybrid

Cloud und werden folgend vorgestellt.

Public Cloud. Die Public Cloud ist eine von meist einem IT-Unternehmen an-

gebotene und für beliebige Personen und Organisationen zugängliche Cloud.

Der Kunde der Public Cloud kann dabei die für seine momentanen Bedürfnisse

geeigneten Angebote wählen ohne teure Anschaffungen tätigen zu müssen. [25]

Private Cloud. Die Private Cloud ist eine für eine Organisation speziell einge-

richtete Cloud. Benutzung sowie Zugang sind auf die Organisation und gegebe-

nenfalls zusätzlich einen autorisierten Personenkreis wie zum Beispiel Kunden

beschränkt. Die Hardware der Private Cloud befindet sich oftmals innerhalb der

Organisation selbst und die Verwaltung erfolgt in der Regel intern. [25]

2 Thematische Grundlagen und verwandte Arbeiten

4

Community Cloud. Die Community Cloud ist der Private Cloud ähnlich, mit

dem Unterschied, dass sich hier mehrere Organisationen eine Cloud teilen.

Gründe dafür können die Reduzierung von Kosten oder gemeinsame Interessen

sein. [24]

Hybrid Cloud. Die Hybrid Cloud ist eine beliebige Kombination aus herkömm-

lichen IT-Umgebungen sowie den vorherig vorgestellten Cloud-Arten. [25]

Weiterhin wird bei Cloud Computing zwischen drei typischen Service Arten

unterschieden: IaaS, PaaS und SaaS.

IaaS (Infrastructure-as-a-Service). Bei IaaS wird dem Kunden vom IT-

Dienstleister eine Infrastruktur (z.B. Server) bereitgestellt. Der Kunde muss zur

Arbeit benötigte Software selbst installieren und verwalten. Ein Beispiel für IaaS

ist Amazons EC2 [14]. [25]

PaaS (Platform-as-a-Service). Bei PaaS stellt der IT-Dienstleister dem Kunden

eine komplette und betriebsbereite Plattform, bestehend aus Hard-, Middle- und

gegebenenfalls Software zur Verfügung und kümmert sich auch um deren Ad-

ministration. Auf dieser bereitgestellten Plattform kann der Kunde selbst Soft-

ware betreiben und verwalten. Ein Beispiel für PaaS ist Microsofts Windows

Azure [26]. [25]

SaaS (Software-as-a-Service). Bei SaaS stellt der IT-Dienstleister dem Kunden

eine bestehende Software über das Internet oder Intranet zur Verfügung und

kümmert sich darüber hinaus auch um deren Administration. Der Kunde kann

beispielsweise per Web-Browser darauf zugreifen und die Software damit nut-

zen. Ein Beispiel für eine SaaS Anwendung ist Google Mail [20]. [25]

Gemeinsam haben alle drei Service-Arten, dass dem Kunden der Kauf von

Hardware und gegebenenfalls auch Software erspart bleibt. Weiterhin bieten

diese Konzepte eine hohe Skalierbarkeit und nehmen dem Kunden die Komple-

xität von Installationen sowie Administration ab.

2 Thematische Grundlagen und verwandte Arbeiten

5

Cloud Anwendungen bestehen typischerweise jedoch aus mehreren Cloud Ser-

vices. Die Provisionierung der heterogenen Komponenten ist weiterhin auf-

grund verschiedener Technologien (z.B. REST [19], SOAP [40], Chef [32], Puppet

[38], AWS API, Azure API, usw.) nicht einfach automatisierbar. Hierfür müssen

die verwendeten Technologien sowie verschiedene Arten von

Provisionierungstools integriert werden. Zu diesem Zweck sind in TOSCA (siehe

nächstes Kapitel) sogenannte Pläne vorgesehen. Pläne beschreiben

Workflows und nutzen Managementoperationen verschiedener Services zum

Management von Cloud Anwendungen und ermöglichen dadurch eine Automa-

tisierung. Allerdings ist das Schreiben dieser Pläne aufgrund den verschiede-

nen genutzten Technologien sowie unterschiedlichen Interfaces sehr schwierig.

Aus diesem Grund wird eine einheitliche Schnittstelle zum Aufruf der Manage-

mentoperationen benötigt, welche die verschiedenen Technologien dem Plan

gegenüber verbirgt. Dadurch können Pläne einfacher erstellt werden und sind

zudem weniger komplex.

2.2 TOSCA

In diesem Kapitel werden die für diese Arbeit wichtigsten Grundlagen von

TOSCA [29] erläutert.

Die Topology and Orchestration Specification for Cloud Applications (TOSCA)

ist eine Sprache zur Beschreibung von Cloud Anwendungen. Sie wurde von ei-

ner Initiative der OASIS (Organization for the Advancement of Structured In-

formation Standards) [28] entwickelt und liegt aktuell in Version 1.0 [29] vor.

Das Ziel von TOSCA ist es, einen Standard zur Interoperabilität und Portabilität

von Cloud Umgebung zu definieren, der sowohl die automatische Provisionie-

rung als auch Management ermöglicht. Dafür lassen sich mittels TOSCA die

einzelnen Service-Komponenten einer Cloud Anwendung, deren Beziehungen

zueinander sowie deren Managementoperationen unabhängig von einer konkre-

2 Thematische Grundlagen und verwandte Arbeiten

6

ten Cloud Umgebung beschreiben. Ein Dokument, das eine solche Beschreibung

enthält wird TOSCA Definition genannt. [29]

Für diese Arbeit von besonderer Bedeutung sind die beiden TOSCA Elemente

Implementation Artifacts (IAs) und Pläne, welche Services nach

außen anbieten und folgend genauer betrachtet werden.

Implementation Artifacts bieten Managementoperationen einer Kom-

ponente einer Cloud Anwendung an. So ermöglicht ein Implementation

Artifact zum Beispiel das Erstellen einer Datenbank auf einem Server oder

das Installieren von dort benötigten Treibern. TOSCA erlaubt dabei die Imple-

mentierung verschiedenster Implementation Artifact Arten. So sind

beispielsweise Web Archive (WAR), welche einen SOAP Web Service anbieten,

ebenso möglich wie komplexe Skripte, welche auch über andere Technologien

wie Chef [32] oder Puppet [38] verwaltet werden können und auf der Zielinfra-

struktur ausgeführt werden.

Pläne, oder auch Managementpläne genannt, nutzen die von den

Implementation Artifacts bereitgestellten Operationen zum Manage-

ment der Service-Komponenten und damit der Cloud Anwendung. Äquivalent

zu Implementation Artifacts können auch Pläne mittels verschiedens-

ter Plansprachen, wie zum Beispiel BPMN (Business Process Model and Notati-

on) [31] oder BPEL (Web Services Business Process Execution Language) [30]

realisiert werden.

2.3 OSGi

Dieser Abschnitt stellt das OSGi Framework vor, welches zur Implementierung

von OpenTOSCA (siehe nächstes Kapitel) genutzt wird.

Das OSGi Framework ist eine auf Java basierende Softwareplattform und ermög-

licht eine Modularisierung von Anwendungen. Die OSGi Spezifikation [35] wird

2 Thematische Grundlagen und verwandte Arbeiten

7

von der OSGi Alliance [37] entwickelt. Es bestehen mehrere, sowohl kommerzi-

elle als auch Open Source Implementierungen des OSGi Standards. Für die Im-

plementierung von OpenTOSCA sowie der Service Invocation Schnittstelle wird

Eclipse Equinox [17] genutzt.

Im Kontext von OSGi wird zwischen Softwarekomponenten – Bundles genannt

– und Diensten – Services genannt – unterschieden. Bundles sind möglichst in

sich abgeschlossene Einheiten, bestehend aus Klassen und Ressourcen, sind als

JAR Archive gepackt und lassen sich im OSGi Framework deployen. Services

implementieren Interfaces und bieten dessen Funktionalitäten anderen Kompo-

nenten als Service an. Ein Bundle kann mehrere Services anbieten. Weiterhin

können mehrere Implementierungen (also Services) eines Interfaces sowie ver-

schiedene Versionen eines Bundles innerhalb einer OSGi Umgebung vorhanden

sein. Desweiteren wird Hot Deployment (das Hinzufügen und Starten zur Lauf-

zeit) von OSGi ermöglicht.

Von besonderer Wichtigkeit zum Verständnis der Implementierungen von

OpenTOSCA sowie der Service Invocation Schnittstelle sind Declarative Ser-

vices. Declarative Services ermöglichen das konfigurieren von Services per

XML-Konfigurationsdatei. Damit lässt sich für Komponenten definieren, welche

Services angeboten und/oder benötigt werden. Dies ermöglicht unter anderem

eine automatische Auflösung von Abhängigkeiten verschiedener Komponenten.

Benötigte Services können auch als optional gekennzeichnet werden und müs-

sen somit beim Start der Komponente nicht vorhanden sein. Weiterhin kann der

Konsument eines Services durch bind- und unbind-Methoden dynamisch auf das

Starten oder Stoppen eines Services reagieren und ermöglicht somit zum Bei-

spiel die Umsetzung eines Plug-in-Systems wie es auch in OpenTOSCA, was im

nächsten Kapitel vorgestellt wird, genutzt wird.

2 Thematische Grundlagen und verwandte Arbeiten

8

2.4 OpenTOSCA

In diesem Kapitel wird der aktuelle Implementierungsstand von OpenTOSCA

[23], einem an der Universität Stuttgart entwickelten Open Source TOSCA Con-

tainers, beschrieben.

Mittels OpenTOSCA können Cloud Service Archives (CSARs) [29] installiert

werden. CSARs beinhalten neben der TOSCA Definition alle benötigten Arte-

fakte wie zum Beispiel Implementation Artifacts oder Pläne.

Abbildung 1 zeigt die Architektur von OpenTOSCA. Hauptkomponenten des

Containers sind OpenTOSCAControl, IA-Engine und Plan-Engine.

Aufgabe der OpenTOSCAControl Komponente ist es, den Ablauf der Bearbei-

tung einer CSAR-Datei zu dirigieren. Sie bietet zudem Funktionen an, die durch

die OpenTOSCA Container API mittels einer REST-Schnittstelle nach außen hin,

unter anderem einer grafischen Benutzerschnittstelle, zur Verfügung gestellt

werden.

Die IA-Engine ist für das Deployment von Implementation Artifacts

zuständig, welche in der CSAR enthaltenen sind. Da Implementation

Artifacts, wie in Kapitel 2.2 beschrieben, verschiedenster Art sein können,

ist die IA-Engine mittels eines Plug-in-Systems realisiert. Dadurch können neue

Plug-ins, welche das eigentliche Deployment der Implementation

Artifacts ausführen, zur Laufzeit hinzugefügt werden. Die Endpunkte der

erfolgreich deployten Implementation Artifacts werden in einer End-

punktdatenbank gespeichert. Aktuell wird das Deployment von Web Archives

(WAR) auf Tomcat [6] sowie Axis Archives (AAR) auf Apache Axis [1] unter-

stützt.

2 Thematische Grundlagen und verwandte Arbeiten

9

ModelsEndpoints Instance Data

IA-Engine

OpenTOSCA
Control

IA-Plug-in

…

OpenTOSCA Container API

Modeling
Tool

Admin
Interface …

Plan-Engine
Plan-Plug-in

…

Plan Portability API

Abbildung 1: Architektur von OpenTOSCA (nach [23])

Äquivalent zur IA-Engine ermöglicht die Plan-Engine das Deployment von

Plänen. Ebenfalls ist die Plan-Engine, um die Anzahl an unterstützten Plan-

Arten einfach erweitern zu können, mit einem Plug-in-System ausgestattet.

Ebenso speichert die Plan-Engine die Endpunkte der deployten Pläne in der

Endpunktdatenbank. Der momentane Stand des OpenTOSCA Containers unter-

stützt lediglich das Deployment von BPEL Plänen auf dem WSO2 Business

Process Server (BPS) [45]. Weiterhin werden in der aktuellen Implementierung

vor dem Deployment die Pläne von der Plan-Engine an die von den

Implementation Artifacts angebotenen Managementoperationen ge-

bunden. Dafür wird der Plan zuerst analysiert und anschließend an die sich in

der Endpunktdatenbank befindlichen Endpunkte gebunden.

2 Thematische Grundlagen und verwandte Arbeiten

10

Darüber hinaus gibt es noch weitere Komponenten, wie zum Beispiel einen

InstanceDataService zur Haltung von Instanzdaten oder eine TOSCAEngine zur

Verwaltung des TOSCA Modells.

Die Entwicklung von OpenTOSCA als erste Open Source Referenzimplementie-

rung der TOSCA Spezifikation ist zum Zeitpunkt dieser Arbeit noch nicht abge-

schlossen und wird unter anderem durch verschiedene Studienarbeiten vorange-

trieben. Das nächste Kapitel stellt eine solche Erweiterung von OpenTOSCA vor.

2.5 Plan Invocation Engine

Dieser Abschnitt stellt die Plan Invocation Engine [18], eine Erweiterung des

OpenTOSCA Containers vor.

Die Plan Invocation Engine wurde in einer parallel laufenden Bachelorarbeit

entwickelt und ermöglicht dem Nutzer das Management von Plänen bezie-

hungsweise Planinstanzen. Sie übernimmt unter anderem die Verwaltung von

CSAR-sowie Prozessinstanzen und bietet auch eine Historie dieser an. Weiterhin

erlaubt die Plan Invocation Engine das Erstellen der zum Aufruf eines Plans

benötigten Nachricht mittels einer grafischen Benutzerschnittstelle (siehe Abbil-

dung 2), zur Eingabe benötigter Parameter. Zum Aufrufen des Plans soll von

der Plan Invocation Engine die in dieser Arbeit entwickelte Service Invocation

Schnittstelle genutzt werden. [18]

Abbildung 2 zeigt einen Screenshot der grafischen Benutzeroberfläche der Plan

Invocation Engine. Im Vordergrund sieht man unten rechts im Bild das Fenster

zur Eingabe von Parametern. Im Hintergrund sieht man weitere Informationen

über den Plan wie beispielsweise eine History über ausgeführte Aufrufe oder

wann der Plan erstellt wurde.

2 Thematische Grundlagen und verwandte Arbeiten

11

Abbildung 2: GUI der Plan Invocation Engine

2.6 ESB

In diesem Kapitel wird der sogenannte Enterprise Service Bus (ESB) behandelt.

Auf eine detaillierte Erläuterung der Technologie wird an dieser Stelle verzichtet

und ausschließlich die zum Verständnis grundlegenden Konzepte dargestellt. Für

eine ausführliche Behandlung des Themas wird auf [16] verwiesen.

Für den Begriff ESB existiert eine Vielzahl an verschiedenen Definitionen.

Exemplarisch wird an dieser Stelle die Definition von David A. Chappell aus

seinem Buch Enterprise Service Bus [16, Seite 1] verwendet:

An ESB is a standards-based integration platform that combines messaging,

web services, data transformation, and intelligent routing to reliable con-

nect and coordinate the interaction of significant numbers of diverse appli-

cations across extended enterprises with transactional integrity.

2 Thematische Grundlagen und verwandte Arbeiten

12

Nach Chappell ist ein Enterprise Service Bus also eine auf Standards beruhende

Integrationsplattform, die sowohl Nachrichtenaustausch, Web Services, Daten-

transformation als auch intelligentes Routing miteinander verbindet. Ein ESB

verbindet sowie koordiniert laut Chappell, Interaktionen verschiedenster An-

wendungen eines Unternehmens zuverlässig (bezüglich der Transaktionssicher-

heit) miteinander.

Abbildung 3 illustriert eine beispielhafte Architektur, bestehend aus fünf ver-

schiedenen Komponenten, einerseits ohne den Gebrauch eines ESBs (links) so-

wie andererseits mit einem ESB (rechts). Ohne die Nutzung eines ESBs kommu-

nizieren die einzelnen Komponenten auf direktem Wege miteinander. Dies er-

fordert bei abweichenden Datenformaten oder Transportprotokollen, viele ein-

zelne Schnittstellen der Komponenten untereinander. Mittels eines ESBs dage-

gen wird eine zentrale Kommunikationskomponente geschaffen, welche die ver-

schiedenen Komponenten miteinander verbindet und die Kommunikation ver-

einfacht.

Abbildung 3: Beispiel-Architektur aus fünf Komponenten ohne (links)
und mit (rechts) ESB

ESB

2 Thematische Grundlagen und verwandte Arbeiten

13

2.7 Camel

Dieser Abschnitt stellt das Open Source Integrations-Framework Apache Camel

[2], welches zur Implementierung der Service Invocation Schnittstelle genutzt

wird, vor.

Das Projekt Camel wurde 2007 gestartet und befindet sich aktuell in Version

2.11.0. Es ermöglicht zur Integration verschiedener Komponenten und Services

sowohl das Routing von Nachrichten, das Konvertieren von Datenformaten als

auch die Implementierung einer Vielzahl an Enterprise Integration Patterns

(EIPs) [3]. Camel bietet dafür verschiedene domänenspezifische Sprachen (do-

main-specific languages, DSLs) wie zum Beispiel Java oder XML an. Aufgrund

seines modularen Aufbaus und einer Vielzahl an vorhandenen Komponenten, ist

Camel einerseits leichtgewichtig und flexibel sowie andererseits dennoch mäch-

tig bezüglich des Funktionsumfangs. Weiterhin kann es sowohl als standalone

Anwendung als auch eingebettet in beispielsweise einen OSGi Container genutzt

werden. [2]

Zusammengefasst ermöglicht Camel also, analog zu einem ESB, die Integration

verschiedener Komponenten zu einem Gesamtsystem. Bezüglich der Ähnlichkeit

zu einem EBS, beschreiben die Verantwortlichen Camel auf der einen Seite

selbst als:

[…] a rule based routing & mediation engine which can be used inside a full

blown ESB, a message broker or a web services smart client. Though if you

want to, you could consider that Camel is a small, lightweight embeddable

ESB since it can provide many of the common ESB services like smart rou-

ting, transformation, mediation, monitoring, orchestration etc. [11]

Also ist gemäß der Entwickler Camel eine regelbasierte Routing- und Verbin-

dungs-Engine, welche in einem „vollendeten“ ESB, einem Message-Broker oder

einem Web Service Smart Client genutzt werden kann. Man könnte Camel je-

doch auch aufgrund von vielen üblichen gebotenen ESB Funktionalitäten wie

2 Thematische Grundlagen und verwandte Arbeiten

14

intelligentes Routing, Transformation, Vermittlung, Monitoring, Orchestrierung

usw. als einen kompakten, leichtgewichtigen und einbettungsfähigen ESB be-

trachten.

Allerdings stellen sie auf der anderen Seite auch fest, dass ein ESB ihrer Ansicht

nach eher ein aus Integrationskomponenten bestehender Container sei. So sehen

sie etwa Apache ServiceMix [4], welcher auf OSGi (und optional JBI1) basiert

und damit eine standardisierte Integrationsplattform bietet, als einen richtigen

ESB an:

However our view is that an ESB is more of a container of integration

components, so we view Apache ServiceMix to be a true ESB based around

OSGi (and optionally JBI) to provide a standards based integration platform

of components. [11]

Zusammenfassend ist es ihrer Meinung nach also durchaus zulässig Camel als

ESB zu bezeichnen, sie selbst würden Camel allerdings nicht als kompletten ESB

betiteln.

Im Folgenden werden einige zum Verständnis dieser Arbeit wichtige Konzepte

von Camel vorgestellt.

Endpoint. Ein Endpoint wird durch eine URI identifiziert und beschreibt in

Camel einen Endpunkt eines Kommunikations-Kanals. Beispielsweise beschreibt

jetty://http://localhost:9080/myservice einen durch die Camel-Jetty-Komponente

[12] realisierten Endpoint. [10]

Message und Exchange. Eine Message repräsentiert in Camel die Daten, die

zwischen den verschiedenen Endpoints übergeben werden. Eine Message kann

dabei aus Headern, einem Body sowie Attachments bestehen. Die Header sind in

Camel per HashMap, der Body vom Typ Object implementiert. Exchange ist der

Container einer Message und beinhaltet neben ihr unter anderem während der

Bearbeitung aufgetretene Fehler oder Routing-Informationen. [10]

1 Java Business Integration: Standard zur Beschreibung von Integrationssystemen.

2 Thematische Grundlagen und verwandte Arbeiten

15

Processor. Mittels eines Prozessors kann eine Message bearbeitet werden. Bei-

spielsweise können weitere Daten hinzugefügt oder anhand der bestehenden

Daten die Route geändert werden. Es können sowohl vorhandene Processors

genutzt als auch eigene implementiert werden. [10]

Route. Eine Route besteht aus hintereinander hängenden Processors und End-

points und repräsentiert den Bearbeitungsablauf einer Message [10]. Dieses Ar-

chitekturmuster zur Beschreibung von Datenströmen wird als Pipes und Filter

[21] bezeichnet. Abbildung 4 zeigt eine schematische Darstellung des Pipes und

Filter Architekturmusters. Filter sind die Verarbeitungseinheiten. In ihnen wer-

den die eingehenden Daten be- bzw. verarbeitet. Pipes sind Verbindungen zwi-

schen den einzelnen Filtern.

Abbildung 4: Pipes und Filter Architekturmuster

Filter Filter Filter
PipePipePipe Pipe

Eingehende
Daten

Ausgehende
Daten

3 Anforderungen

16

3 Anforderungen

In diesem Kapitel werden die an die Service Invocation Schnittstelle gestellten

Anforderungen beschrieben. Zunächst werden in 3.1 funktionale Anforderungen

benannt. Anschließend folgen in 3.2 an die Service Invocation Schnittstelle ge-

stellte nichtfunktionale Anforderungen.

3.1 Funktionale Anforderungen

Dieser Abschnitt stellt die an die Service Invocation Schnittstelle gestellten funk-

tionalen Anforderungen vor. Die Service Invocation Schnittstelle wird mit Hin-

blick auf diese Anforderungen konzipiert und entwickelt.

Möglichkeit zum Aufrufen von IAs sowie Plänen

Sowohl Implementation Artifacts als auch Pläne stellen ausführbare

Services im Kontext von TOSCA dar. Aufgrund des Ziels der Service Invocation

Schnittstelle, alle in TOSCA vorkommenden Services generisch aufrufbar zu

machen, muss die Service Invocation Schnittstelle sowohl das Aufrufen von be-

liebigen Implementation Artifacts als auch von Plänen unterstützen.

Hauptsächlich werden mittels der Service Invocation Schnittstelle

Implementation Artifacts durch Pläne aufgerufen werden. Aller-

dings sind zum Beispiel auch Aufrufe von Implementation Artifacts

durch andere Implementation Artifacts, Aufrufe von Plänen durch

Implementation Artifacts oder andere Varianten denkbar und müssen

von der Service Invocation Schnittstelle unterstützt werden.

Des Weiteren muss insbesondere der Aufruf von Plänen durch die Plan

Invocation Engine (siehe Kapitel 2.5) unterstützt werden.

3 Anforderungen

17

Möglichkeit Asynchroner Aufrufe

Dem Aufrufer (Client) der Service Invocation Schnittstelle muss es möglich sein,

diese asynchron aufrufen zu können. Dadurch muss der Aufrufer nicht warten,

bis die Service Invocation Schnittstelle antwortet, und wird somit nicht an der

Weiterarbeit blockiert.

Vor allem Pläne, welche die Mehrheit der Clients der Service Invocation

Schnittstelle ausmachen werden, können stark von asynchronen Aufrufen be-

züglich ihrer Bearbeitungsdauer profitieren. Sie können dadurch langläufige

Prozesse frühzeitig initiieren und parallel andere notwendige Arbeitsschritte

ausführen. Einem Plan ist es somit beispielsweise möglich die Aufträge zur

Erstellung aller benötigten Datenbanken direkt zu Anfang des Plans zu ertei-

len und anschließend, während parallel die Datenbanken erstellt werden, auf

einer, von den Datenbanken unabhängigen, virtuellen Maschine benötigte Trei-

ber zu installieren.

Natürlich können neben Plänen auch alle anderen Aufrufer mit langläufigen

und parallelen Prozessen von der Asynchronität der Kommunikation profitieren.

Dynamische Bestimmung der zum Aufruf von IAs/Plänen benötigten
Informationen

Die Service Invocation Schnittstelle muss die Informationen, welche zum Aufru-

fen von Implementation Artifacts und Pläne benötigt werden, dyna-

misch beschaffen können. Dies verringert zum Einen die Anzahl an benötigten

Übergabeparametern des Aufrufers an die Service Invocation Schnittstelle und

ermöglicht zum Anderen das Erstellen deutlich generischer, beziehungsweise

dynamischerer Pläne oder auch Implementation Artifacts.

3 Anforderungen

18

Benötigte Informationen sind unter Anderem in der Endpunkt Datenbank ge-

speicherte Endpunkte2 der jeweiligen Implementation Artifacts oder

Pläne sowie die jeweilige Invocation-Art3 des Implementation

Artifacts oder Plans. Diese Daten können entweder aus der TOSCA Defi-

nition stammen oder zur Laufzeit vom OpenTOSCA Container zur Verfügung

gestellt werden.

Darüber hinaus muss die Service Invocation Schnittstelle die Funktion bieten,

weitergehende Informationen aus anderen Quellen beschaffen zu können. Ein

Beispiel hierfür ist Informationen über eine bestimmte Operation eines

Implementation Artifacts, aus der WSDL eines SOAP-Web-Services zu

beschaffen.

Unterstützung verschiedener Invocation-Arten

Die Service Invocation Schnittstelle muss es ermöglichen, die sich in einer CSAR

(siehe Grundlagen TOSCA, 2.2) befindlichen und in der zugehörigen TOSCA

definierten Implementation Artifacts oder Pläne generisch aufrufbar

zu machen.

Dies Umzusetzen setzt eine große Vielfalt an unterstützten Protokollen, Stan-

dards, Datenformaten usw. voraus. Aufgrund dessen muss die Service

Invocation Schnittstelle so konzipiert sein, dass sie sich bezüglich ihrer unter-

stützten Invocation-Arten erweitern lässt.

Übergabe der Input-Parameter als Key/Value-Paare und XML-Document

Die für den letztendlichen Aufruf der Implementation Artifacts benö-

tigten Parameter müssen der Service Invocation Schnittstelle als Key/Value-

2 Endpunkte sind Adressen, unter der die, durch die IA-Engine deployten, Implementation
Artifacts oder die, durch die Plan-Engine deployten, Pläne erreichbar sind.
3 Die Invocation-Art beschreibt, welches Protokoll, Datenformat usw. zum Aufruf des
Implementation Artifacts oder Plans nötig ist.

3 Anforderungen

19

Paare (Schlüssel/Wert Paare) sowie als XML-Document übergeben werden kön-

nen. Dies stellt zum Einen eine festgelegte und somit bekannte Übergabeform

für die Parameter dar und ermöglicht zum Anderen eine einfache Bearbeitung

dieser.

Verwendung des Instance Data Services

Die Service Invocation Schnittstelle muss mit dem Instance Data Service kom-

munizieren können.

Die Instanzdatenhaltung verfügt unter Anderem über eine Web Service Schnitt-

stelle, die es Plänen und Implementation Artifacts ermöglicht, dort

Instanz-Daten ablegen zu können. Dadurch können für einen späteren Gebrauch

benötigte Daten, für andere Pläne, Implementation Artifacts und der

Service Invocation Schnittstelle, zugänglich gemacht werden. Dies ermöglicht

der Service Invocation Schnittstelle das Aktualisieren von Input-Parametern

durch aktuellere, in dem Instance-Data-Service abgelegte, Werte und dadurch

zum Beispiel den Plänen wiederrum eine deutlich flexiblere und effektivere

Verwendung.

Anbindung an Container

Die Service Invocation Schnittstelle muss Teil des OpenTOSCA Containers (sie-

he 2.4) werden. Sie muss dementsprechend so implementiert sein, dass sie auf

bestehende Komponenten des Containers zugreifen kann und beim Starten des

Containers automatisch mit startet.

Dies bedeutet konkret, dass die Service Invocation Schnittstelle mit Hilfe von

OSGi (siehe 2.3) oder einer dazu kompatiblen Technik implementiert werden

muss, da sie ansonsten keinen Zugriff auf die vorhandenen und als OSGi Ser-

vices implementierten Komponenten hätte.

3 Anforderungen

20

3.2 Nichtfunktionale Anforderungen

In diesem Kapitel werden die nichtfunktionalen Anforderungen an die Service

Invocation Schnittstelle vorgestellt. Diese Anforderungen stellen wichtige Ei-

genschaften der Service Invocation Schnittstelle dar und müssen bei der Ent-

wicklung berücksichtigt werden.

Einfache Erweiterbarkeit

Die Service Invocation Schnittstelle muss so konstruiert sein, dass sie sich ohne

größere Umbauarbeiten oder Änderungen der Architektur in ihrem Funktions-

umfang erweitern lässt. Diese Erweiterungen beziehen sich dabei zum Einen auf

die Möglichkeiten zum Aufrufen verschiedenster Implementation

Artifacts und Pläne und zum Anderen auf die Möglichkeiten zum Aufru-

fen der Service Invocation Schnittstelle selber.

Darüber hinaus müssen aber auch weitere funktionserweiternde Komponenten,

wie beispielsweise eine Logging-Komponente, einfach in die Service Invocation

Schnittstelle integriert werden können.

Leistungsfähigkeit

Die Service Invocation Schnittstelle muss fähig sein, mehrere Aufrufe, auch ver-

schiedenster Aufrufer, gleichzeitig bearbeiten zu können. Diese parallele Bear-

beitung darf dabei jedoch, seitens der Service Invocation Schnittstelle, keine

deutlich merkbaren Leistungseinbußen hinsichtlich der Bearbeitungsdauer ver-

ursachen.

3 Anforderungen

21

Flexibilität

Aufgrund der Möglichkeit der Service Invocation Schnittstelle des Aufrufens

verschiedenster Implementation Artifacts, ist eine Vorhersage über die

verschiedenen von den aufgerufenen Implementation Artifacts zurück-

kommenden Datenformate nicht machbar. Die Service Invocation Schnittstelle

muss deshalb flexibel im Umgang mit verschiedenen Datenformaten sein und

eine große Anzahl an Datenformaten unterstützen und damit umgehen können.

4 Konzept & Architektur

22

4 Konzept & Architektur

In diesem Kapitel wird das entwickelte Konzept, sowie die Architektur der Ser-

vice Invocation Schnittstelle veranschaulicht und erläutert. Zuerst werden, auf-

grund der im vorherigen Kapitel formulierten Anforderungen, getroffene Ent-

scheidungen dargelegt und begründet. Darauf folgend wird die Architektur der

Service Invocation Schnittstelle beschrieben und anschließend Möglichkeiten

des Lösungskonzepts aufgezeigt.

4.1 Entwurfsentscheidungen

Dieser Abschnitt legt wichtige Entscheidungen betreffend der Konzeption und

Implementierung der Service Invocation Schnittstelle dar. Diese sind zum Einen

Entscheidungen bezüglich genutzten Technologien und zum Anderen Entschei-

dungen bezüglich Interfaces von Komponenten, also der konkreten Implemen-

tierung.

Eine der zentralen Entscheidungen bei der Konzeption der Service Invocation

Schnittstelle ist die Frage, mit welcher Art von Integrationstechnik sie realisiert

werden sollte. Mit Hilfe eines fertigen ESB-Systems, einem Integrations-

Frameworks oder einer kompletten Eigenentwicklung.

Abbildung 5 zeigt eine Übersicht der drei Möglichkeiten sowie eine Einschät-

zung der Verwendbarkeit dieser bezüglich der Integration der Service Invocation

Schnittstelle in den OpenTOSCA Container und der damit verbundenen Kom-

plexität. Im Folgenden wird dies detailliert erklärt.

Für die Wahl eines ESBs spricht, dass es sich dabei um ein mächtiges und je

nach Wahl des ESBs, für seine Anwendungszwecke auch um ein bewehrtes und

ausgereiftes Softwareprodukt handelt, dass es nur noch zu konfigurieren gilt.

Einige der ESB Produkte sind allerdings auf ein bestimmtes Technologiegebiet

4 Konzept & Architektur

23

Komplexität der Integration

Niedrig Hoch

Eigenentwicklung

Integrations-
Framework

Enterprise Service Bus
(ESB)

spezialisiert und eignen sich daher nicht für die Umsetzung der Service

Invocation Schnittstelle. Der auf Apache Axis2 [13] basierte Apache Synapse

ESB [5] zum Beispiel ist vorwiegend auf eine Web Service Umgebung speziali-

siert [44]. Ohne Anpassungen bestehender (OSGi) Komponenten des OpenTOS-

CA Containers würde dies jedoch möglicherweise zu Problemen führen. Da die

Komponenten per OSGi implementiert sind und keine Web Service Schnittstelle,

wie zum Beispiel für SOAP bieten, können sie von Synapse ESB nicht direkt auf-

gerufen und damit nicht benutzt werden. Eine Möglichkeit zur Lösung des Prob-

lems ist das Umwandeln der Komponenten in Web Services oder das Erstellen

einer Web Service Schnittstelle zum Aufruf der Komponenten. Dies würde aller-

dings einen erheblichen Umbauaufwand verursachen. Des Weiteren sind ESBs

im Vergleich zu den beiden anderen Möglichkeiten zur Realisierung der Service

Invocation Schnittstelle die deutlich schwergewichtigste und komplexeste Al-

ternative und bringen teilweise nicht benötigte und damit überflüssige Funktio-

nen mit sich [43].

Abbildung 5: Möglichkeiten der Integrationstechnologien (nach [43] S.3)

4 Konzept & Architektur

24

Diesen Nachteil der überflüssigen Funktionen, hat die Entwicklung eines kom-

pletten eigenen Systems, ohne Integrationswerkzeuge, nicht zur Folge. Es kann

hier eine ganz flexible und komplett nach den konkreten Bedürfnissen angepass-

te Lösung realisiert werden. Allerdings bringt diese Alternative entweder, bei

einer kompletten Eigenentwicklung mit Standard Java API, einen großen und

noch wichtiger, vor allem größtenteils unnötigen Implementierungsaufwand mit

sich. Für viele Kommunikationsstandards und Protokolle gibt es bereits fertige

Bibliotheken die verwendet werden können und auch sollten. Denn eine selbst

entwickelte Lösung wird mit einer relativen hohen Wahrscheinlichkeit nicht so

ausgereift, wie eine bereits bewehrte Fremdbibliothek sein. Darauf zu verzichten

resultiert also in überflüssiger Arbeit. Oder aber es besteht die Gefahr, bei der

Verwendung einer Vielzahl solcher Bibliotheken, den Überblick über die Abhän-

gigkeiten und den genauen Funktionalitäten der einzelnen Bibliotheken zu ver-

lieren oder von Kompatibilitätsproblemen bei vielen Fremdbibliotheken ver-

schiedenster Hersteller.

Ein mögliches Problem durch verschiedene Quellen der Bibliotheken hat die

dritte Variante zur Realisierung der Service Invocation Schnittstelle nicht. Die

Verwendung eines Integrations-Frameworks vereint die bisher bei den anderen

beiden Realisierungsmethoden erwähnten Vorteile, ohne jedoch die vorherigen

Nachteile mit sich zu bringen. So bieten Integrations-Frameworks zwar, ähnlich

wie ESBs, Unterstützung für eine große Anzahl von Standards und Protokollen,

lassen sich jedoch aufgrund dessen, dass es sich dabei de facto um kein eigen-

ständiges Produkt, sondern Java Bibliotheken handelt, in bestehende Projekte

leicht integrieren und in der Funktionalität einfach ergänzen. Zudem lassen In-

tegrations-Frameworks, aufgrund ihres architektonischen Aufbaus aus einzelnen

Funktionskomponenten, eine gleichermaßen leichtgewichtige wie flexible und

individuell anpassbare Lösung des Problems zu. Des Weiteren besteht der große

Vorteil eines Produktes aus einer Hand, was unter anderem aufeinander abge-

stimmte und damit hochgradig kompatible Komponenten, sowie eine einheitli-

che Art der Verwendung dieser, mit sich bringt.

4 Konzept & Architektur

25

Aufgrund der oben dargelegten Argumentation, wird die Möglichkeit des Integ-

rationsframeworks in dieser Arbeit in Form von Apache Camel [2] gewählt.

Grund dafür ist unter Anderem eine große Anzahl an Komponenten (über 125,

siehe [7]), welche viele verschiedene Techniken und Standards unterstützen.

Beispielweise gibt es eine FTP-Komponente [9] zum versenden und empfangen

von Dateien per FTP oder eine CXF-Komponente [8] zur Integration von SOAP

Web Services. Weiterhin bietet Camel die Möglichkeit eigene Komponenten zur

Funktionserweiterung unkompliziert entwickeln und benutzen zu können. Ein

weiterer Grund für die Wahl von Camel ist die Möglichkeit, anders wie zum

Beispiel bei den beiden alternativen Integrations-Frameworks Spring Integration

[39] und Mule ESB [27], neben einer XML DSL auch eine Java DSL nutzen zu

können [43]. Dies bringt die üblichen Vorteile einer IDE4, wie zum Beispiel die

automatische Vervollständigung von Code und damit ein effizienteres Arbeiten

mit sich. Des Weiteren unterstützt Camel, im Gegensatz zu Mule ESB, OSGi und

ermöglicht somit eine einfache Integration der Service Invocation Schnittstelle

in den bestehenden OpenTOSCA Container [43]. Darüber hinaus ist Camel das

in Apache ServiceMix [4], einem auf OSGi basierenden ESB Container, genutzte

Integrations-Framework. Dies ermöglicht es, falls später ESB Funktionalitäten

benötigt oder gewünscht werden, OpenTOSCA in Apache ServiceMix zu betrei-

ben.

Um eine einfache Ergänzung des Funktionsumfangs der Service Invocation

Schnittstelle hinsichtlich der unterstützten Invocation-Arten zu ermöglichen,

wird ein Erweiterungssystem benötigt. Dies wird in Form eines Plug-In-Systems

realisiert.

In der IA-Engine und Plan-Engine (siehe Grundlagen OpenTOSCA, 2.4) hat sich

die Technik der OSGi Declarative Services (siehe Grundlagen OSGi, 2.3) zur

Plug-in Verwaltung bewährt. Aufgrund dessen, wird die Service Invocation

Schnittstelle in ihrem Kern ebenfalls als Engine, zur Verwaltung der durch

4 Integrierte Entwicklungsumgebung (integrated development environment).

4 Konzept & Architektur

26

Declarative Services realisierten Plug-ins, konzipiert. Diese Beibehaltung einer

einheitlichen Mechanik führt außerdem zu einer einheitlichen Architektur des

Containers und damit zu einer höheren Wartbarkeit.

Eine weitere zu entscheidende Frage ist, ob für jede Invocation-Art eines

Implementation Artifacts eine eigene Endpoint-Datenbank erstellt

wird. Also beispielsweise eine eigene Datenbank für SOAP Web Service

Implementation Artifacts und eine eigene Datenbank für REST Web

Service Implementation Artifacts. Anhand der Datenbank kann dann

von der Service Invocation Schnittstelle erkannt werden, wie das jeweils darin

befindliche Implementation Artifact aufgerufen werden muss. Aller-

dings wird das Deployment der Implementation Artifacts und damit

auch das Abspeichern der Endpoints durch die IA-Engine und deren Plug-ins

erledigt. Die IA-Engine unterscheidet die Implementation Artifacts je-

doch nicht anhand deren Invocation-Art (siehe Kapitel 3.1), wie die SI-Engine,

sondern anhand ihrer Implementation Artifact-Art. Beispielsweise

werden ein SOAP Web Service Implementation Artifact und ein REST

Web Service Implementation Artifact, sofern beide als Web Application

Archive (WAR) gepackt sind, zur selben Implementation Artifact-Art

zugeordnet und damit auch durch das gleiche IA-Plug-in deployt5. Zum Aufru-

fen dieser beiden Implementation Artifacts sind jedoch zwei verschie-

dene SI-Schnittstellen Plug-ins notwendig: ein Rest- und ein SOAP-fähiges Plug-

in. Zusammengefasst unterscheiden IA-Engine und SI-Engine

Implementation Artifacts unterschiedlich (vgl. Invocation-Art und

Implementation Artifact-Art). Daher bringt die Trennung der

Endpoint-Datenbank keine Vorteile. Es können aber äquivalent zu Endpunkt-

Informationen für die IA-Engine, auch die Invocation-Art eines

Implementation Artifacts innerhalb der TOSCA Definition vermerkt

5 Vereinfachte Darstellung. Die Wahl des IA-Plug-ins wird nicht ausschließlich durch die IA-Art
bestimmt. IAs können Anforderungen an ein Plug-in stellen, die von diesem erfüllt werden
müssen. Für weitergehende Informationen wird auf die TOSCA Spezifikation ([25] Kapitel 3.4
„Requirements & Capabilities“) verwiesen.

4 Konzept & Architektur

27

werden. Diese wird von der SI-Engine ausgelesen und damit das passende Plug-

in bestimmt. Aufgrund dessen werden die Endpoints in einer gemeinsamen Da-

tenbank gespeichert.

Weiterhin ist das Design des Interfaces der SI-Plug-ins, eine wichtige zu treffen-

de Entscheidung. Die Plug-ins benötigen zum Aufrufen von Implementation

Artifacts oder Plänen deren Endpoint, die aufzurufende Operation und die

zu übergebenden Daten. Außerdem werden im Falle von asynchronen Aufrufen,

wie sie zum Beispiel bei SOAP Web Services vorkommen, eine Correlation ID

zur Bestimmung der zum Aufruf gehörenden Antwort benötigt. Das Design des

Interfaces lässt sich auf verschiedene Arten umsetzen. Listing 1 und Listing 2

zeigen die zwei zur Wahl stehenden Alternativen.

Listing 1: Plug-in Interface Alternative 1

In der ersten Alternative (Listing 1) erfolgt die Übergabe der oben genannten

Parameter mittels Standard Java Objekten wie Strings oder einer Map. Dadurch

wird ein klar definiertes Interface festgelegt. Als Rückgabewert ist nur Object

möglich, weil dies die Rückgabe verschiedenster Datentypen ermöglicht und

dadurch die Flexibilität erhöht. Allerdings muss die Correlation ID ebenfalls mit

zurück gegeben werden. Jedoch sind zwei einzelne Rückgabewerte in Java nicht

möglich. Es muss dafür extra ein eigenes Objekt erstellt werden, welches den

eigentlichen Rückgabewert plus die Correlation ID beinhaltet. Ein weiterer Kri-

tikpunkt dieser Alternative ist die starre Form des Interfaces. Eine einfache Er-

weiterung dieses ist nicht möglich. Muss das Interface beispielsweise aufgrund

geänderter Anforderungen angepasst werden, werden alle bis dahin bestehen-

den Plug-ins fehlerhaft und müssen angepasst werden. Eine solche Änderung

public Object invoke(String endpoint, String operationName,
 HashMap<String, String> params, String correlationID);

4 Konzept & Architektur

28

kann zum Beispiel ein weiterer benötigter (oder sogar optionaler) Parameter

sein. Auch ist mit dieser Alternative die Übergabe der an das

Implementation Artifact oder den Plan gerichteten Daten nur in Form

einer HashMap [34] möglich. Dies ist nicht optimal, da zum Beispiel die Plan

Invocation Engine ihre zum Aufruf eines Plans erzeugte Nachricht in Form

eines org.w3c.dom.Document [33] Objekts übergibt. Dieses muss, damit es dem

Plug-in übergeben werden kann, zuerst in eine HashMap umgewandelt werden.

Allerdings muss zum Aufruf eines SOAP Web Service diese HashMap anschlie-

ßend wieder zurück in eine SOAP Nachricht (also XML) transferiert werden.

Listing 2: Plug-in Interface Alternative 2

Das zweite zur Wahl stehende Interface (Listing 2) nutzt zur Übergabe der Pa-

rameter das zu Camel gehörende Exchange Objekt (siehe Grundlagen Camel,

2.7). Das Exchange Objekt wird als Container für Message Objekte mit beliebi-

gem Inhalt genutzt. Im Gegensatz zur ersten Alternative, stellt Alternative 2 so-

mit kein klar definiertes Interface bezüglich der zur Übergabe der Parameter

genutzten Objekte dar. Das Exchange Objekt ermöglicht jedoch eine flexible

Entwicklung sowie Nutzung der Plug-ins, also genau das, was für die Service

Invocation Schnittstelle notwendig ist. In die Header der Message des Exchange

Objekts können die Parameter wie Endpoint, Name der Operation usw. abgelegt

werden, wohingegen die zu übergebenden Daten, in welcher Form auch immer,

in den Body gelegt werden können (detailliertere Erläuterungen hierzu folgen in

Kapitel 4.3). Dies ermöglicht zugleich auch eine einfache Erweiterung von Plug-

ins ohne das Interface dafür anpassen zu müssen. Benötigt ein Plug-in bei-

spielsweise weitere Daten, können diese einfach als neuer Header innerhalb des

Message Objekts definiert werden. Plug-ins, die von den neuen Headern wissen

und darauf vorbereitet sind, können diese nutzen. Alte Plug-ins jedoch, ohne

public Exchange invoke(Exchange exchange);

4 Konzept & Architektur

29

Wissen von den neuen Headern, funktionieren auch weiterhin problemlos. Ein

weiterer Grund der für die Verwendung des Exchange Objekts und damit für

Alternative 2 spricht ist die Tatsache, dass dieses ohnehin von Camel selbst als

Container zum Transport von Messages genutzt wird und damit wiederum eine

einheitliche Mechanik gewährleistet wird.

Aufgrund der dargelegten Argumentation, wird Alternative 2 (Listing 2) ge-

wählt. Detailliertere Erläuterungen zur Verwendung des Exchange Objekts, wie

zum Beispiel die Nutzung der Header, folgen in Kapitel 4.3.

4.2 Architektur

In diesem Kapitel wird die Architektur der Service Invocation Schnittstelle ver-

anschaulicht und erläutert. Da sie Teil des OpenTOSCA Containers ist, wird sie

entsprechend im Rahmen dessen dargestellt.

Abbildung 6 zeigt die Architektur der Service Invocation Schnittstelle. Eine der

Hauptkomponenten der Service Invocation Schnittstelle ist, neben den bereits in

Kapitel 2.4 vorgestellten Komponenten TOSCA Engine, Endpoint Service und

Instance Data Service, die SI-Engine (siehe Kapitel 5.4). Sie bildet, durch ihre

Verbindung zu anderen wichtigen Komponenten innerhalb des OpenTOSCA

Containers, die zentrale Einheit der Service Invocation Schnittstelle. Weiterhin

sind auch die Service Invocation APIs (siehe Kapitel 5.2 sowie 5.3), auf die später

noch genauer eingegangen wird, ein wichtiger Bestandteil der Service

Invocation Schnittstelle.

4 Konzept & Architektur

30

ModelsInstance Data

OpenTOSCA
Control

SI-Engine
SI-Plug-in

…

Plan Plan
Invoker …

Endpoints

Plan Portability API

IA-Engine

Plan-Engine

OpenTOSCA Container API

Modeling
Tool

Admin
Interface

Plan-Plug-in

…

IA-Plug-in

…

Service Invocation Schnittstelle

TOSCA Engine

Endpoint Service

Instance Data Service

…

…

SI- … -APISI-REST-APISI-SOAP-API

Abbildung 6: Architektur des OpenTOSCA Containers mit Service
Invocation Schnittstelle

Die SI-Engine hat unter Anderem die Aufgabe, das zum Invoke-Request passen-

de Implementation Artifact, sowie weitere benötigte Informationen, wie

die Invocation-Art des Implementation Artifacts, mittels der TOSCA

Engine zu bestimmen (äquivalent für Pläne). Weiterhin nutzt die SI-Engine

den Endpoint Service zur Beschaffung der Endpunkte der Implementation

Artifacts beziehungsweise der Pläne. Auch bietet eine Schnittstelle zum

Instance Data Service der SI-Engine die Möglichkeit, dort von beispielsweise

bereits ausgeführten Plänen gespeicherte Instanzdaten abzurufen und zu ver-

wenden.

Die Aufrufe der Implementation Artifacts oder Pläne geschehen dann

durch die so genannten SI-Plug-ins (siehe Kapitel 5.5). Diese Plug-ins bieten da-

4 Konzept & Architektur

31

bei jeweils Unterstützung für verschiedene Protokolle und Standards

(Invocation-Arten), wie zum Beispiel das Versenden einer Message mittels SOAP

über HTTP oder der Aufruf eines OSGi Implementation Artifacts und

können bei Bedarf auch während der Laufzeit hinzugefügt und gestartet werden.

Die Verwaltung der SI-Plug-ins übernimmt dabei, durch ein extra dafür konzi-

piertes OSGi basiertes Plug-in-System, ebenfalls die SI-Engine.

Die Funktionalität der Service Invocation Schnittstelle wird durch verschiedene

Service Invocation APIs, wie z.B. eine SI-SOAP-API oder eine SI-REST-API zur

Verfügung gestellt. Durch sie können andere Komponenten, Anwendungen,

Implementation Artifacts und vor allem auch Pläne die Service

Invocation Schnittstelle nutzen. Beispielsweise möchte ein Plan eine in TOSCA

deklarierte Management Operation aufrufen, welche durch ein SOAP/HTTP

Implementation Artifact implementiert ist. Dafür schickt der Plan der

Service Invocation SOAP API eine Nachricht, welche alle benötigten Informatio-

nen enthält. Der Inhalt dieser Nachricht wird der SI-Engine weitergegeben. Dort

werden weitere Daten wie z.B. der Endpunkt besorgt und anschließend alle In-

formationen an ein passendes Plug-in weitergegeben, wo der Aufruf schließlich

ausgeführt wird. Der genaue Bearbeitungsablauf wird im folgenden Kapitel er-

läutert.

4 Konzept & Architektur

32

4.3 Beschreibung des gewählten Lösungskonzeptes

In diesem Kapitel wird detailliert auf das Konzept der Service Invocation

Schnittstelle eingegangen und Möglichkeiten des Konzepts aufgezeigt.

Abbildung 7 zeigt den Aufbau der Komponenten der Service Invocation Schnitt-

stelle samt deren Abhängigkeiten und Verbindungen sowie die Schnittstellen zu

Services wie Plänen und Implementation Artifacts. Außerdem wird

die Nutzung des Camel Exchange Objekts innerhalb der Service Invocation

Schnittstelle dargestellt. Die Abbildung zeigt beispielhaft die Service Invocation

SOAP API zum Aufruf der Service Invocation Schnittstelle mittels SOAP Nach-

richten, wie sie zum Beispiel durch BPEL Pläne getätigt werden.

Abbildung 7: Konzeptioneller Aufbau der Komponenten

ToscaEngine

EndpointService

SI-SOAP
Plug-in

SI-REST
Plug-in

…

Bsp_IA2
.war
(REST)

Bsp_IA1
.war
(SOAP)

SI
-

Engine

Plan

Se
rv

ic
e

In
vo

ca
tio

n
SO

AP
 A

PI

unmarshal reqProcessor

resProcessormarshal


payload


payload


Jaxb

gen obj


Jaxb

gen obj

 = Camel Exchange Object
(Container für Messages)



Enum
Definiert
Header

InstanceData
Service





4 Konzept & Architektur

33

Plan

Service Invocation API

SI-Engine

Instance
Data

Service

Endpoint
Service

TOSCA
Engine

SI-REST
Plug-in

SI-SOAP
Plug-in …

Implementation ArtifactsEndpoints Instance
DataModels

Abbildung 7 zeigt, dass die SI-Engine die zentrale Komponente innerhalb der

Service Invocation Schnittstelle darstellt. Sie ermöglicht zum Einen die Kommu-

nikation mit bestehenden und benötigten Komponenten des OpenTOSCA Con-

tainers (TOSCA Engine, Endpoint Service, Instance Data Service) und stellt zum

Anderen die Verbindung zwischen den Service Invocation APIs und den ver-

schiedenen SI-Plug-ins her (siehe auch Abbildung 8), übernimmt somit das Rou-

ting der Nachrichten innerhalb der Service Invocation Schnittstelle. Abbildung 8

verdeutlicht dies durch die Darstellung der Komponenten der Service Invocation

Schnittstelle mittels eines Schichtendiagramms.

Abbildung 8: Service Invocation Schnittstelle als Schichtendiagramm

Abbildung 7 zeigt des Weiteren die Verwendung des Exchange Objekts. Inner-

halb der Service Invocation Schnittstelle und deren Komponenten wird zur

Übergabe der Daten und Nachrichten das von Camel bereitgestellte Exchange

4 Konzept & Architektur

34

Objekt genutzt. Die Kommunikation zwischen SI-Engine (und damit der Service

Invocation Schnittstelle) und den restlichen Komponenten des OpenTOSCA

Containers dagegen erfolgt per Übergabe einzelner Parameter. Dies hat unter

Anderem den Vorteil, dass innerhalb der Service Invocation Schnittstelle zwar

die Vorzüge des Exchange Objekts genutzt werden können, die restlichen Kom-

ponenten des Containers jedoch von Camel und dadurch auch von der Service

Invocation Schnittstelle unabhängig bleiben und zudem nicht angepasst werden

müssen.

Weiterhin ist in Abbildung 7 ein Enum dargestellt. Dieses Enum (siehe Kapitel

5.1) ist fest definiert und spezifiziert die Keys der Header des Message Objekts.

Damit wird sichergestellt, dass die von den Service Invocation APIs an die SI-

Engine und die von der SI-Engine an die SI-Plug-ins übergebenen Messages ei-

nen einheitlichen Aufbau bezüglich den in den Headern befindlichen Parame-

tern haben. Dadurch können benötigten Informationen, wie zum Beispiel

CsarID oder ServiceTemplateID, komponentenübergreifend identisch

und zuverlässig ausgelesen werden. Man könnte zu diesem Zweck auch ein Ob-

jekt mit Feldern für die benötigten Parameter (CsarID,

ServiceTemplateID, OperationName, …) anlegen. Die HashMap als Ob-

jekt für die Header „simuliert“ zusammen mit dem Enum so gesehen ein solches

Objekt zur Übergabe der erforderlichen Parameter. Allerdings ist die Lösung mit

dem Enum, welches die Keys der benötigten Parameter in der Header-HashMap

festlegt, flexibler und zudem so von Camel vorgesehen.

Abbildung 9 zeigt die Reihenfolge eines beispielhaften Bearbeitungsablaufs in-

nerhalb der Service Invocation Schnittstelle vom Aufruf durch einen Plan, über

die Bearbeitung der Anfrage in der SI-Engine und den Aufruf des

Implementation Artifacts, bis zur Antwort zurück an den Plan.

4 Konzept & Architektur

35

Abbildung 9: Bearbeitungsablauf zum Aufruf eines Services

Zuerst ruft der Plan die Service Invocation SOAP API mit den zum Aufruf des

Implementation Artifacts benötigten Daten per SOAP Message auf

(siehe 1). Die Service Invocation SOAP API unmarshallt diese SOAP Message,

liest die übergebenen Daten aus, schreibt diese in ein Exchange Objekt und leitet

dieses an die SI-Engine weiter (siehe 2). Durch das definierte Enum sind die im

Header befindlichen Parameter zur Bestimmung des Implementation

Artifacts in einem für die SI-Engine verständlichen Format.

Die SI-Engine holt sich daraufhin (siehe 3), mittels der TOSCA Engine und den

bekommenen Daten, Informationen über das aufzurufende Implementation

Artifact, wie Namen und Invocation-Art, ein. Außerdem bestimmt sie das

message exchange pattern (MEP) [41] des Implementation Artifacts,

anhand den in der TOSCA Definition für die aufzurufende Operation angegebe-

nen Werten.

Tosca
Engine

Endpoint
Service

SI-SOAP
Plug-in

Bsp_IA1
.war
(SOAP)

SI
-

Engine

Plan

Se
rv

ic
e

In
vo

ca
tio

n
SO

AP
 A

PI

Enum
definiert
Header

Instance
Data

resProcessormarshal

unmarshal reqProcessor


SOAP


SOAP


SOAP


Camel

Exchange

7

6
3²

2

X¹

4

5¹

1

8
9

¹ = optional
² = entfällt bei „invokePlan“

synchron
oder
asynchron

4 Konzept & Architektur

36

Im Rahmen der Service Invocation Schnittstelle werden nur die beiden an die

WSDL 2.06 angelehnten In-Out sowie In-Only MEPs unterschieden. Das In-Out

pattern gibt an, dass bei einer eingehenden Nachricht (Input) eine Antwort ge-

geben werden muss (Output). Listing 3 zeigt ein Beispiel des In-Out pattern in

einer TOSCA Definition. Demgegenüber gibt das In-Only pattern an, dass auf

eine Anfrage keine Antwort gesendet wird. Ein Beispiel hierfür wird in Listing 4

dargestellt.

01 <Operation name="createDB">
02 <InputParameters>
03 <InputParameter name="Size" type="xs:string"/>
04 <InputParameter name="Host" type="xs:string"/>
05 <InputParameter name="User" type="xs:string"/>
06 <InputParameter name="Password" type="xs:string"/>
07 </InputParameters>
08 <OutputParameters>
09 <OutputParameter name="URL" type="xs:string"/>
10 </OutputParameters>
11 </Operation>

Listing 3: Beispiel In-Out Pattern

01 <Operation name="deleteDB">
02 <InputParameters>
03 <InputParameter name="URL" type="xs:string"/>
04 <InputParameter name="User" type="xs:string"/>
05 <InputParameter name="Password" type="xs:string"/>
06 </InputParameters>
07 </Operation>

Listing 4: Beispiel In-Only Pattern

Anschließend ermittelt die SI-Engine anhand der zusätzlich gewonnenen Infor-

mationen den Endpunkt des Implementation Artifacts mit Hilfe des

Endpoint Services (siehe 4).

6 Web Services Description Language Version 2.0 (http://www.w3.org/TR/wsdl20/)

http://en.wikipedia.org/wiki/Request-response

4 Konzept & Architektur

37

Optional, falls beim Aufruf der Service Invocation SOAP API eine ID einer

CSAR-Instanz mitgegeben wurde, prüft die SI-Engine, ob für diese CSAR-Instanz

gespeicherte Instanz Daten vorhanden sind und verwendet (eine genauere Er-

klärung folgt später) sie in diesem Falle (siehe 5). Die Instanz Daten können da-

bei von einem beliebigen Plan jederzeit vorher abgespeichert worden sein (siehe

X in Abbildung 9).

Anschließend bestimmt die SI-Engine anhand der Invocation-Art des

Implementation Artifacts das dazu passende SI-Plug-in und sendet die-

sem alle gesammelten Daten wiederum per Exchange Objekt zu (siehe 6).

Das Plug-in erstellt dann seinerseits aus den bekommenen Informationen eine

Request-Message und sendet diese an das Implementation Artifact (sie-

he 7). Der Aufruf kann dabei, je nach Implementierung des Implementation

Artifacts, synchron oder auch asynchron erfolgen und liegt in der Verant-

wortung des jeweiligen Plug-ins.

Die Antwort des Implementation Artifacts wird dann über das SI-

Plug-in an die SI-Engine und von dort weiter an die Service Invocation SOAP

API geleitet (siehe 8). Dort wird sie unmarshallt und in eine SOAP Message um-

gewandelt. Zum Schluss sendet die Service Invocation API schließlich diese

SOAP Message zurück an den Plan (siehe 9), der nun mit den, von dem

Implementation Artifact, erhaltenen Daten weiterarbeiten kann.

In diesem Beispiel erfolgte der Aufruf eines als SOAP Web Service implemen-

tierten Implementation Artifacts durch einen Plan. Natürlich sind

aber auch andere Aufrufszenarien möglich. Zum Beispiel der Aufruf eines als

RESTful Web Service oder OSGi-Service implementierten Implementation

Artifacts. Weiterhin besteht auch die Möglichkeit des Aufrufens eines

Plans, initiiert durch die Plan Invocation Engine (siehe Kapitel 2.5) oder an-

deren Plan.

4 Konzept & Architektur

38

Abbildung 10: Beispielhafte Nachrichten / Aufrufe

Abbildung 10 zeigt das beschriebene Szenario - der Aufruf eines SOAP Web Ser-

vice Implementation Artifacts durch einen Plan - an einem Beispiel

mit konkreten Nachrichten und Werten. Die Nachrichten und Aufrufe sind in-

nerhalb der Abbildung verkürzt dargestellt. Die kompletten Nachrichten sowie

Aufrufe werden im Folgenden erläutert.

Listing 5 zeigt den ausführlichen SOAP Aufruf des Plans an die Service

Invocation SOAP API. Ziel des Aufrufs ist es, das durch die Zeilen acht bis 18

spezifizierte Implementation Artifact, mit der Operation createDB (siehe

Zeile 18) und den von Zeile 22 bis 40 angegebenen Parametern aufzurufen. Die

Angabe von ReplyTo in Zeile 19 teilt der Service Invocation Schnittstelle mit, an

welche Adresse sie den Callback mit der Antwort an den Plan zurück schicken

Tosca
Engine

Endpoint
Service

SI-SOAP
Plug-in

DB-
Creator
.war
(SOAP)

SI
-

Engine

Plan
Se

rv
ic

e
In

vo
ca

tio
n

SO
AP

 A
PI

Instance
Data

resProcessormarshal

unmarshal reqProcessor


createDB

Csar : DBCsar
CsarInstanz : 5

…
Size : 5

Host : Azure
User : admin
Pw : admin

…
DBCsar/5/…/Properties/Host: AWS
TestCsar/2/TestNT/Properties/String : Test
…


createDB

Size : 5
Host : AWS

User : admin
Pw : admin 

URL:
http://s3.a

mazonaws...


URL:

http://s3.a
mazonaws...

4 Konzept & Architektur

39

soll. Die MessageID (Zeile 20) wird von der Service Invocation Schnittstelle an

den Plan zurück gesendet, da diese von der Workflow Engine benötigt wird,

um die Antwort der Anfrage sowie der richtigen Planinstanz zuordnen zu kön-

nen.

01 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.
02 org/soap/envelope/" xmlns:
03 sch="http://siserver.
04 org/schema">
05 <soapenv:Header/>
06 <soapenv:Body>
07 <sch:invokeOperation>
08 <CsarID>DBCsar</CsarID>
09 <!--Optional:-->
10 <ServiceInstanceID>Instance5</ServiceInstanceID>
11 <ServiceTemplateIDNamespaceURI>
12 http://CsarDBCreator.org/DB/
13 </ServiceTemplateIDNamespaceURI>
14 <ServiceTemplateIDLocalPart>
15 DBCreator_ServiceTemplate
16 </ServiceTemplateIDLocalPart>
17 <NodeTemplateID>DB_NodeTemplate</NodeTemplateID>
18 <OperationName>createDB</OperationName>
19 <ReplyTo>http://localhost:1337/callback</ReplyTo>
20 <MessageID>A7ZD70AH</MessageID>
21 <!--Optional:-->
22 <Params>
23 <!--1 or more repetitions:-->
24 <Param>
25 <key>Size</key>
26 <value>5</value>
27 </Param>
28 <Param>
29 <key>Host</key>
30 <value>Azure</value>
31 </Param>
32 <Param>
33 <key>User</key>
34 <value>admin</value>
35 </Param>
36 <Param>
37 <key>Password</key>
38 <value>p8ilR6N9</value>
39 </Param>
40 </Params>
41 </sch:invokeOperation>
42 </soapenv:Body>
43 </soapenv:Envelope>

Listing 5: SOAP Nachricht eines Plans an die Service Invocation
Schnittstelle zur Erstellung einer Datenbank

4 Konzept & Architektur

40

Die SOAP Nachricht wird von der Service Invocation SOAP API, wie in Abbil-

dung 11 dargestellt, umgewandelt und an die SI-Engine weitergeleitet. Hierfür

wird das in Kapitel 2.7 erläuterte Exchange Objekt genutzt, welches von Camel

angeboten wird. Die für das Implementation Artifact bestimmten Para-

meter (Size, Host, User, Password) werden im Body der Message abgelegt. Die

zur Bestimmung des Implementation Artifacts sowie zum Aufruf des-

sen benötigte Daten dagegen, werden im Header (mit den durch das Enum defi-

nierten Strings als Keys) des Message Objekts abgelegt. Weitere übergebene

Werte wie ReplyTo oder MessageID werden ebenfalls im Header abgelegt. Diese

Werte sind allerdings nicht durch das SI-Enum definiert, da sie nur von der

SOAP-API selbst und nicht den anderen SI-Komponenten benötigt werden.

Abbildung 11: Von der Service Invocation SOAP API an die SI-Engine
gesendete Message

Anschließend holt sich die SI-Engine benötigte Daten aus dem Header, bestimmt

mit diesen und der Zuhilfenahme der TOSCA Engine das Implementation

Artifact und besorgt sich mittels Endpoint Service den dazu gespeicherten

Endpunkt. Dieser wird anschließend ebenfalls unter dem im SI-Enum definier-

tem Key (ENDPOINT_URI, siehe Kapitel 5.1) als Header des Message Objekts

abgelegt.

CSARID : DBCsar
SERVICEINSTANCEID_STRING : Instance5

SERVICETEMPLATEID_QNAME :
{http://CsarDBCreator.org/DB/}DBCreator_ServiceTemplate

NODETEMPLATEID_STRING : DB_NodeTemplate
OPERATIONNAME_STRING : createDB

ReplyTo : http://localhost:1337/callback
MessageID : A7ZD70AH

Size : 5
Host : Azure
User : admin

Password : p8ilR6N9

Header

Body

4 Konzept & Architektur

41

Weiterhin überprüft die SI-Engine per Instance Data Service ob Instanz Daten

für diese Anfrage gespeichert sind und holt sich diese gegebenenfalls von dort.

Dies ist allerdings optional und erfolgt nur bei durch den Aufrufer angegebener

ServiceInstanceID. Anschließend werden die sich im Body befindlichen Input-

Parameter durch die jeweiligen Werte aus der Instanz Datenbank ersetzt und

damit aktualisiert. So können beispielsweise IP Adressen einer zuvor angelegten

Virtuellen Maschine genutzt werden.

Schließlich wird anhand der durch die TOSCA Engine ermittelten Invocation-

Art des Implementation Artifacts, das dazu passende Plug-in gewählt

und die inzwischen, zum Aufruf des Implementation Artifacts, mit al-

len benötigten Daten versehene Exchange Message dorthin weitergereicht.

Abbildung 12: Sequenzdiagramm SI-Engine

SI-Engine Endpoint
ServiceToscaEngine

getNodeType(csarID, serviceTemplateID, nodeTemplateID)

getNodeTypeImplementations(csarID, nodeTypeID)

getImplementationArtifactNames(csarID, nodeTypeImpl)

nodeTypeID

nodeTypeImpls (List)

iAs (List)

getArtifactTemplate(csarID, nodeTypeImpl, ia)
artifactTemplate

getPropertiesOfArtifactTemplate(csarID, artifactTemplate)
properties

getEndpoint(csarID, nodeTypeImpl, ia)
endpoint

getInstanceData(csarID, serviceInstanceID, nodeTemplateID)
instanceData

InstanceData
Service

invoke(requestExchange)

SI
Plug-in

Invocation-Art bestimmen

responseExchange

For nodeTypeImpl

For IA

IF Plug-in für Invocation-Art vorhanden

IF Endpoint vorhanden (= IA deployt)

IF ServiceInstanceID gesetzt

Input-Parameter mit Instanzdaten aktualisieren

Aufrufbares IA gefunden, welches geforderte Operation anbietet

IF benötigtes Interface/Operation angeboten

Implementiertes Interface/Operation bestimmen

4 Konzept & Architektur

42

Abbildung 12 stellt die Kommunikation der SI-Engine mit TOSCA Engine,

Endpoint Service, Instance Data Service sowie eines SI-Plug-ins nochmals, mit-

tels eines Sequenzdiagramms dar. Es zeigt unter anderem wie die SI-Engine mit-

tels den übergebenen Parametern und der Hilfe der TOSCA Engine ein aufrufba-

res Implementation Artifact bestimmt. Dafür wird zuerst der zu den

übergebenen Parametern CsarID, ServiceTemplateID und

NodeTemplateID gehörende NodeType bestimmt (NodeTypes typisieren

NodeTemplates). Anschließend werden für diesen NodeType alle entspre-

chenden NodeTypeImplementations abgefragt. Über die zurückbekom-

mene Liste der NodeTypeImplementations wird anschließend iteriert und

alle jeweiligen Implementation Artifacts ermittelt. Über diese Liste der

Implementation Artifacts wird wiederrum iteriert und für jedes

Implementation Artifact überprüft, ob es die geforderte Operation an-

bietet. Falls der Name der Operation innerhalb eines NodeTypes dabei eindeu-

tig ist, langt die Angabe des Namens der Operation. Falls allerdings eine Opera-

tion nicht nur in einem Interface eines NodeTypes angeboten wird, muss zur

eindeutigen Identifizierung zudem der Name des Interfaces angegeben werden.

Wird die geforderte Operation angeboten, wird weiterhin überprüft, ob in der

TOSCA Definition eine Invocation-Art spezifiziert wurde und ein dafür entspre-

chendes Plug-in verfügbar ist. Ist dies der Fall, wird per Endpoint Service über-

prüft, ob ein Endpunkt für dieses Implementation Artifact abgespeichert

und es somit vom Container deployt wurde. Trifft dies ebenso zu, ist ein aufruf-

bares Implementation Artifact gefunden. Das Sequenzdiagramm zeigt

weiterhin die Kommunikation mit dem Instanz Data Service (falls eine

ServiceInstanceID angegeben wurde) sowie den Aufruf eines SI-Plug-ins.

In Abbildung 13 sieht man die durch die SI-Engine angereicherte Nachricht (Än-

derungen fett markiert) im Vergleich zu Abbildung 11. Zum Einen wurde der

Endpunkt des Implementation Artifacts bestimmt und als Header hin-

zugefügt, zum Anderen wurde im Body ein Parameter durch einen Wert aus der

Instanz Datenbank ersetzt. In diesem Beispiel wird dem Implementation

4 Konzept & Architektur

43

Artifact mitgeteilt, anstelle bei Microsoft Azure, bei Amazon Web Services

(AWS) eine Datenbank zu erstellen. Ein zuvor ausgeführter Plan kann dies zum

Beispiel abgespeichert haben, nachdem er überprüft hat, dass die Preise für Da-

tenbanken bei AWS besser als bei Azure sind.

Abbildung 13: Durch die SI-Engine angereicherte und an ein SI-Plug-in
gerichtete Message

Nachdem die Message an das zur Invocation-Art passende SI-Plug-in übergeben

wurde, liest dieses die für den Aufruf des Implementation Artifact benö-

tigten Information (OperationName, Endpoint) aus dem Header aus und holt die

Übergabe-Parameter aus dem Body. Was weiterhin mit diesen Daten passiert

und wie der eigentliche Aufruf des Implementation Artifacts (oder auch

eines Plans) vonstattengeht ist Plug-in-spezifisch und kann sich somit von

Plug-in zu Plug-in unterscheiden. Im Falle des SOAP/HTTP Plug-ins (Details in

Kapitel 4.4.5) beispielsweise, werden weitere Informationen aus der zum

Implementation Artifact gehörenden WSDL gelesen, eine der WSDL

entsprechende SOAP Message erstellt (siehe Listing 6) und diese dann an das

Implementation Artifact verschickt. Aus der Antwort, was im Falle ei-

ner SOAP Message der Body dieser darstellt, werden anschließend die Output-

CSARID : DBCsar
SERVICEINSTANCEID_STRING : Instance5

SERVICETEMPLATEID_QNAME :
{http://CsarDBCreator.org/DB/}DBCreator_ServiceTemplate

NODETEMPLATEID_STRING : DB_NodeTemplate
OPERATIONNAME_STRING : createDB

ReplyTo : http://localhost:1337/callback
MessageID : A7ZD70AH

ENDPOINT_URI : http://localhost:8080/DB/services/DBCreator

Size : 5
Host : AWS
User : admin

Password : p8ilR6N9

Header

Body

4 Konzept & Architektur

44

Parameter entnommen und diese wiederum in den Body des Message Objekts

gelegt und an die SI-Engine zurückgegeben.

01 <soap:Envelope
02 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
03 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
04 <soap:Body xmlns:m="http://www.DBIA.org/DBCreator">
05 <m:CreateDBRequest>
06 <m:Size>5</m:Size>
07 <m:Host>AWS</m:Host>
08 <m:User>admin</m:User>
09 <m:Password>p8ilR6N9</m:Password>
10 </m:CreateDBRequest>
11 </soap:Body>
12 </soap:Envelope>

Listing 6: Durch das SOAP/HTTP Plug-in erstellte SOAP Message

Listing 7 zeigt die Antwort des Implementation Artifacts. In diesem

Beispiel wurde als Antwort, auf die Anfrage zur Erstellung einer Datenbank, die

Adresse dieser Datenbank zurückgegeben.

01 <soap:Envelope
02 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
03 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
04 <soap:Body>
05 <CreateDBResponse>
06 <URL>http://s3.amazonaws.com/my-5GB-DB</URL>
07 </CreateDBResponse>
08 </soap:Body>
09 </soap:Envelope>

Listing 7: Antwort des Implementation Artifacts

Abbildung 14 stellt die an die SI-Engine und von dort an die Service Invocation

SOAP API weitergeleitete Exchange Message dar. Im Body befinden sich die von

dem Implementation Artifact erhaltenen Informationen, welche von

dem SOAP-Plug-in als HashMap kodiert werden. Dafür wird bei eingehenden

4 Konzept & Architektur

45

CSARID : DBCsar
SERVICEINSTANCEID_STRING : Instance5

SERVICETEMPLATEID_QNAME :
{http://CsarDBCreator.org/DB/}DBCreator_ServiceTemplate

NODETEMPLATEID_STRING : DB_NodeTemplate
OPERATIONNAME_STRING : createDB

ReplyTo : http://localhost:1337/callback
MessageID : A7ZD70AH

ENDPOINT_URI : http://localhost:8080/DB/services/DBCreator

URL : http://s3.amazonaws.com/my-5GB-DB

Header

Body

SOAP Nachrichten der Name eines Elementes als Key und der Inhalt des Ele-

mentes als Value genommen. Es wird dabei angenommen, dass die Namen der

von den Implementation Artifacts zurückgegebenen Elementen, mit

den in der TOSCA Definition angegebenen Rückgabewerten überein stimmen.

Abbildung 14: Rückgabe des SI-Plug-ins mit enthaltenen Informationen
des Implementation Artifacts

Die Service Invocation SOAP API (siehe Kapitel 5.2) übernimmt anschließend

den Body der Exchange Message und die MessageID aus dem Header in die an

den Plan gerichtete SOAP Message (siehe Listing 8). Die im Body befindliche

HashMap mit den zurückgegebenen Daten des aufgerufenen

Implementation Artifacts wird dabei wie folgt konvertiert: Die Key-

Value Paare der HashMap werden paarweise als Key- sowie Value-Elemente der

SOAP Message überführt (siehe Listing 8). Der Plan bekommt dadurch eine

einheitliche Antwort zurück, welche mit den in TOSCA spezifizierten Parame-

tern (siehe Listing 3) übereinstimmt und unabhängig von der Technologie des

aufgerufenen Implementation Artifacts ist. Da bereits der Aufruf der

Service Invocation Schnittstelle (siehe Listing 5) durch die in der TOSCA spezifi-

zierten Parameter (Listing 3) erfolgt, ergibt sich insgesamt eine für den Aufrufer

generische und einheitliche Schnittstelle zum Aufruf von Services. Ein Plan

benötigt somit zum Aufruf eines Implementation Artifacts lediglich

4 Konzept & Architektur

46

die in der TOSCA angegebenen Informationen und muss nichts über die konkre-

te Implementierung dessen wissen.

Zum Schluss wird die erstellte SOAP Message (Listing 8) an die zu anfangs vom

Plan an die Service Invocation Schnittstelle übergebene und sich im Header

befindliche Adresse (ReplyTo) gesendet.

01 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.
02 org/soap/envelope/" xmlns:
03 sch="http://siserver.
04 org/schema">
05 <soapenv:Header/>
06 <soapenv:Body>
07 <sch:invokeResponse>
08 <MessageID>A7ZD70AH</MessageID>
09 <Params>
10 <Key>URL</Key>
11 <Value>http://s3.amazonaws.com/my-5GB-DB</Value>
12 </Params>
13 </sch:invokeResponse>
14 </soapenv:Body>
15 </soapenv:Envelope>

Listing 8: Nachricht der SOAP API zurück an den Aufrufer

Bisher wurde das Konzept der Service Invocation Schnittstelle ausschließlich

mittels Service Invocation SOAP API und SOAP/HTTP SI-Plug-in erläutert. Das

das Konzept der Service Invocation Schnittstelle jedoch weit mehr Möglichkei-

ten bietet, wird im folgenden Abschnitt verdeutlicht.

Abbildung 15 veranschaulicht die Möglichkeit zur Realisierung eines OSGI SI-

Plug-ins. Dieses Plug-in ermöglicht den Aufruf von als OSGi Services implemen-

tierten Implementation Artifacts. Es sei angemerkt, dass der momenta-

ne Stand des OpenTOSCA Containers, aufgrund des Fehlens eines passenden IA-

Plug-ins, noch keine OSGi Implementation Artifacts deployen kann, sie

somit also vom Container noch nicht unterstützt werden. Die Service Invocation

4 Konzept & Architektur

47

SI
-

Engine

SI-OSGI
-IA-Plug-in

Bsp_OSGI
-IA-1

Bsp_OSGI
-IA-3

Bsp_OSGI
-IA-2

OSGI-IA-
Interface

provides

Schnittstelle wurde jedoch auch mit Blick auf zukünftige Implementation

Artifact Arten konzipiert und hält Konzepte dafür bereit.

Abbildung 15: Beispiel für die Umsetzungsmöglichkeit eines weiteren
Plug-in Types

Das OSGi-SI-Plug-in macht sich, äquivalent zur SI-Engine und dessen Plug-ins,

die Möglichkeit von Declarative Services von OSGi zu Nutze. Dies bedeutet, dass

OSGi Implementation Artifacts ein vorgegebenes Interface implemen-

tieren und dieses als Service anbieten müssen. Dies ist für die Umsetzung von

Declarative Services nötig, ermöglicht aber das Hinzufügen und Starten der

Implementation Artifacts zur Laufzeit (siehe Grundlagen OSGi, 2.3).

Anhand des implementierten Interfaces und des dadurch spezifizierten Services,

kann das OSGi-SI-Plug-in das OSGi Implementation Artifact an sich

binden und dadurch nutzen. Als Endpoint des Implementation Artifacts

muss in diesem Fall, die ID des jeweiligen OSGi Services gegeben sein. Listing 9

zeigt die vorgegebenen Methoden des Interfaces.

4 Konzept & Architektur

48

01 public void invoke(String operationName, HashMap<String,
02 String> params);
03
04 public Object invoke(String operationName, HashMap<String,
05 String> params);
06
07 public getID();

Listing 9: Methoden des OSGi Implementation Artifact Interface

Die beiden invoke Methoden werden benötigt, um die zwei MEPs request-

response und one-way zu untersetzen. Per Methode getID wird beim binden des

OSGi Implementation Artifacts dessen ID abgerufen und anschließend

abgespeichert. Das SI-Plug-in kann anhand des übergebenen Endpunkts dann

den richtigen OSGi Service wählen und aufrufen.

Wie bereits erwähnt wurde ist es auch möglich die Service Invocation Schnitt-

stelle mit weiteren Service Invocation APIs zu erweitern. Dadurch kann die

Funktionalität der Service Invocation Schnittstelle für weitere Techniken nutz-

bar gemacht werden. Das Hinzuschalten der Service Invocation APIs kann,

äquivalent zu den Plug-ins, ebenfalls zur Laufzeit getätigt werden.

Abbildung 16 zeigt die Service Invocation Schnittstelle beispielhaft mit parallel

betriebener Service Invocation SOAP sowie Service Invocation REST API. Da-

durch wird, wie die Namen der APIs bereits verraten, der Aufruf der Service

Invocation Schnittstelle und damit gleichzeitig auch der Aufruf von

Implementation Artifacts und Plänen per SOAP sowie per REST er-

möglicht.

4 Konzept & Architektur

49

Abbildung 16: Beispiel für eine weitere Service Invocation API

Die im Rahmen dieser Bachelorarbeit implementierten Komponenten der Service

Invocation Schnittstelle werden im folgenden Kapitel dargestellt.

Tosca
Engine

Endpoint
Service

SI-SOAP
Plug-in

SI-REST
Plug-in

…

SI
-

Engine

Plan

Service
Invocation

SOAP
API


SOAP


SOAP


Camel

Exchange

Service
Invocation

REST
API


REST


REST


Camel

Exchange


Camel

Exchange
SI-OSGi
Plug-in

5 Implementierung

50

5 Implementierung

In diesem Kapitel wird auf die Implementierung der Service Invocation Schnitt-

stelle und deren Komponenten eingegangen. Zuerst wird das Enum zur Spezifi-

zierung der Header der Exchange Message dargestellt. Danach folgen Darstel-

lungen der Service Invocation API für SOAP sowie OSGi Events. Daraufhin wird

die SI-Engine genauer erläutert und anschließend auf die SI-Plug-ins und deren

Interface detaillierter eingegangen.

5.1 Service Invocation Enum

Dieser Abschnitt veranschaulicht das SI-Enum. Es wird benutzt, um die zum

Aufruf eines Implementation Artifacts oder Plans benötigten Parame-

ter in einer festgelegten Art und Weise übergeben zu können.

Listing 10 zeigt das festgelegte SI-Enum und die damit definierten Werte. Die

Werte dienen als Key der Key/Value Paare der Header. Dadurch ist es den Kom-

ponenten der Service Invocation Schnittstelle möglich, benötigte Parameter aus-

zulesen. CSARID dient der Identifikation der richtigen CSAR-Datei.

SERVICEINSTANCEID_STRING wird benötigt, falls Daten per Instance Data

Service abgerufen werden sollen und bestimmt dabei die Instanz. Per

NODEINSTANCEID_STRING wird, falls angegeben, ebenfalls eine ID einer be-

stimmten Instanz übermittelt. Allerdings dient dieser Wert nicht der SI-Engine

zur Abfrage von Instanz Daten mittels Instance Data Service, sondern wird ei-

nem Implementation Artifact als Parameter übergeben. Das

Implementation Artifact besorgt sich damit benötigte Daten selbst per

Instance Data Service. SERVICETEMPLATEID_QNAME dient der Bestimmung

des Service Templates einer TOSCA Definition. Äquivalent

bestimmt NODETEMPLATEID_STRING das Node Template.

5 Implementierung

51

OPERATIONNAME_STRING gibt die aufzurufende Operation des

Implementation Artifacts oder Plans an. Falls der Name der Opera-

tion innerhalb eines NodeTypes nicht eindeutig ist, muss zudem der Name des

zugehörigen Interfaces angegeben werden. Dies wird mittels INTERFACENA-

ME_STRING gemacht. PLANID_QNAME wird benötigt, falls ein Plan aufgeru-

fen werden soll und dient dabei der Identifikation des Plans.

public enum SIEnum {
CSARID, SERVICEINSTANCEID_STRING, NODEINSTANCEID_STRING,
SERVICETEMPLATEID_QNAME, NODETEMPLATEID_STRING,
INTERFACENAME_STRING, OPERATIONNAME_STRING, PLANID_QNAME,
ENDPOINT_URI, SPECIFICCONTENT_DOCUMENT

}

Listing 10: SI-Enum

Alle bisher genannten Werte werden der SI-Engine bereits von der entsprechen-

den Service Invocation API bei Bedarf übergeben. Ausschließlich die Werte von

ENDPOINT_URI sowie gegebenenfalls SPECIFICCONTENT_DOCUMENT wer-

den in der SI-Engine gesetzt. ENDPOINT_URI wird per Endpoint Service ermit-

telt und spezifiziert den Endpunkt des aufzurufenden Implementation

Artifacts oder Plans. SPECIFICCONTENT_DOCUMENT wird über die

TOSCA Engine ermittelt (falls in TOSCA Definition spezifiziert) und kann wich-

tige Informationen für das Plug-in, wie zum Beispiel über das Mapping der Pa-

rameter enthalten (siehe Kapitel 5.7).

5.2 Service Invocation SOAP API

In diesem Kapitel wird die Service Invocation SOAP API zum Aufruf der Service

Invocation Schnittstelle per SOAP Messages erläutert. Weiterhin wird dabei auf

die Nutzung von Camel eigegangen.

5 Implementierung

52

Listing 11 zeigt konzeptionell die implementierte Route und ihre Endpunkte

(siehe Camel Grundlagen, Kapitel 2.7) der Service Invocation SOAP API. Die in

den Zeilen eins bis 16 definierten Strings INVOKE, CALLBACK, ENGINE_IA

und ENGINE_PLAN stellen die Endpunkte der Route dar. Die Route selbst, wird

von Zeile 17 bis 22 definiert.

Der von Zeile eins bis sechs definierte String INVOKE dient als Endpunkt zum

Aufruf der Service Invocation SOAP API. Durch ihn wird ein SOAP Web Service

per CXF Komponente [8] auf http://localhost:8081/invoker gestartet. Als WSDL

des Web Services dient die invoker.wsdl (siehe Anhang A1). Außerdem werden

Service sowie Port aus der WSDL definiert.

01 String INVOKE = "cxf:http://localhost:
02 8081/invoker?wsdlURL=META-INF/invoker.
03 wsdl&serviceName={http://siserver.org/wsdl}
04 SIServerInvokeService&portName={http:
05 //siserver.org/wsdl}
06 SIServerInvokePort";

07 String CALLBACK = "cxf:${header[ReplyTo]}?wsdlURL=META-
08 INF/invoker.wsdl&serviceName={http:
09 //siserver.org/wsdl}
10 SIServerCallback&portName={http://siserver.
11 org/wsdl}CallbackPort";

12 String ENGINE_IA = "bean:siengineinterface.
13 SIEngineInterface?method=invokeOperation";

14 String ENGINE_PLAN = "bean:siengineinterface.
15 SIEngineInterface?method=invokePlan";

16 from(INVOKE).unmarshal(requestJaxb).process(requestProcessor)
17 .choice().when(this.header(CxfConstants.OPERATION_NAME).
18 isEqualTo("invokeOperation")).to(ENGINE_IA).when(this.header(
19 CxfConstants.OPERATION_NAME).isEqualTo("invokePlan")).
20 to(ENGINE_PLAN).end().process(responseProcessor).
21 marshal(responseJaxb).recipientList(this.simple(CALLBACK));

Listing 11: Route der Service Invocation SOAP API

5 Implementierung

53

Der String CALLBACK (Zeile sieben bis elf) definiert den Endpunkt, der bei

asynchronen Aufrufen zum Versenden der Antwortnachricht an den Aufrufer

benötigt wird. Es wird dafür ebenfalls die CXF Komponente sowie die

invoker.wsdl genutzt. Weiterhin ist der entsprechende Service sowie Port ange-

geben. Allerdings wird die Adresse, wohin die SOAP Message geschickt werden

soll, jeweils dynamisch bestimmt. ${header[ReplyTo]} bedeutet, dass aus der Ex-

change Message der Wert des Headers ReplyTo ausgelesen und als Adresse der

Antwortnachricht benutzt werden soll. Dieser Wert muss beim Aufruf der Ser-

vice Invocation SOAP API vom Aufrufer mitgeteilt werden. Die Service

Invocation SOAP API unterstützt dabei die Übergabe, wie in dem im Kapitel 4.3

Listing 5 gezeigten Beispiel per Parameter im Body als auch per WS-Addressing

Header [42]. Entsprechend kann auch die MessageID mit diesen beiden Mög-

lichkeiten übergeben werden.

In den Zeilen zwölf und 13 sowie 14 und 15 werden die beiden Methoden der SI-

Engine (siehe 5.4) als Endpunkte festgelegt. Ein Endpunkt zum Aufruf von

Implementation Artifacts (ENGINE_IA) und ein Endpunkt zum Aufruf

von Plänen (ENGINE_PLAN).

Zeile 16 bis 21 zeigt die Route, die nach einem Aufruf abgearbeitet wird.

From(INVOKE) definiert den oben bereits erklärten INVOKE Endpunkt als

Einstiegspunkt der Route. Die SOAP Message eines Aufrufs wird unmarshallt

(unmarshal(requestJaxb)) und anschließend im requestProcessor

prozessiert. Beim Prozessieren werden die durch das SI-Enum definierten Para-

meter sowie alle in der eingegangen SOAP Message definierten Header als Hea-

der der Exchange Message angelegt. Daraufhin wird der Header OPERATI-

ON_NAME ausgelesen und anhand dessen bestimmt, ob ein

Implementation Artifact oder ein Plan aufgerufen werden soll und die

dementsprechende Methode der SI-Engine aufgerufen (ENGINE_IA oder ENGI-

NE_PLAN). Nachdem die SI-Engine beziehungsweise ein passendes Plug-in den

Aufruf ausgeführt und die Exchange Message samt Antwort des

Implementation Artifacts oder Plans an die Service Invocation SOAP

5 Implementierung

54

API zurückgegeben haben, wird diese erneut prozessiert (pro-

cess(responseProcessor)). Dabei wird die Antwort aus dem Body der

Exchange Message ausgelesen und – falls möglich – in ein marshall-fähiges Ob-

jekt umgewandelt. Anschließend wird das Antwort-Objekt marshallt

(marshal(responseJaxb)) und als SOAP Message an den CALLBACK-

Endpunkt geschickt.

5.3 Service Invocation OSGi-Event API

Dieses Kapitel stellt die Implementierung der Service Invocation OSGi-Event

API vor. Insbesondere wird dabei die allgemeine Funktionsweise von OSGi

Events sowie speziell die Zusammenarbeit mit der Plan Invocation Engine (siehe

Kapitel 2.5) betrachtet.

Die Service Invocation OSGi-Event API ermöglicht die Nutzung der Service

Invocation Schnittstelle per OSGi Event Admin Service [31, Kapitel 113]. Mittels

des OSGi Event Admin Services können Events nach dem publish and subscribe

Pattern [22] versendet und empfangen werden. Diese Technik ermöglicht eine

asynchrone Kommunikation zwischen der Service Invocation Schnittstelle und

beispielsweise der Plan Invocation Engine.

Abbildung 17 zeigt die Service Invocation Schnittstelle mit Service Invocation

OSGi-Event API und Plan Invocation Engine. Desweiteren zeigt die Abbildung

die Funktion des publish and subscribe-Patterns. Die Plan Invocation Engine sen-

det seine mit den benötigten Informationen angereicherte Nachricht an eine

Liste (Request Topic). Die Service Invocation OSGi-Event API empfängt - da sie

diese List abonniert (subscribed) hat - die Nachricht und kann sie weiterverar-

beiten. Übergebene Informationen wie zum Beispiel CSAR-ID oder Plan-ID

werden, wie bereits von der Service Invocation SOAP API bekannt, als Header

und der übergebene Payload als Body eines Exchange Message Objekts gesetzt.

Der Payload kann dabei beispielsweise eine HashMap mit Parametern als

5 Implementierung

55

Plan

Service
Invocation
OSGi-Event

API

Plan
Invocation

Engine

Tosca
Engine

Endpoint
Service

SI-SOAP
Plugin

SI
-

Engine

…

…

Camel

Exchange

Response
Topic

Request
Topic

subscribes

subscribes

Key/Value Paaren oder wie im Falle der Plan Invocation Engine vom Typ

org.w3c.dom.Document [33] sein. Anschließend wird die Exchange Message der

SI-Engine zur weiteren Bearbeitung weitergereicht. Nachdem die Antwort von

der SI-Engine zurück gekommen ist, sendet die Service Invocation OSGi-Event

API die Antwortnachricht an eine weitere Liste (Response Topic). Diese wiede-

rum ist von der Plan Invocation Engine abonniert, welche dadurch die Antwort-

nachrichten empfangen und ihrerseits weiter bearbeiten kann.

Abbildung 17: Aufruf eines Plans initiiert durch Plan Invocation Engine

Listing 12 zeigt anhand der Service Invocation OSGi-Event API, wie OSGi Event

Services angewandt werden. Zuerst werden wie in jeder OSGi XML-

Konfigurationsdatei (Component Description [36, Kapitel 112.2]) der Name (Zei-

le 02 bis 04) sowie die implementierende Klasse (Zeile 05 bis 06) der jeweiligen

Komponente festgelegt. Damit die Komponente Events an Listen senden kann,

muss der EventAdmin-Service gebunden werden (Zeile 07 bis 11).

bindEventAdmin (Zeile 07) gibt die Methode zum Binden des Services an und

muss in org.opentosca.siengine.api. osgievent.SIEventHandler, der in Zeile 05 bis 06

spezifizierten Klasse vorhanden und entsprechend implementiert sein. Zeile 12

5 Implementierung

56

bis 15 gibt an, dass die oben genannte Klasse den Service EventHandler anbietet.

Dafür muss sie das Interface EventHandler und die dazugehörige Methode zum

Empfangen von Events handleEvent(Event event) implementieren. Außerdem

müssen die Namen der von der Komponente abonnierten Listen (event.topics,

Zeile 16 bis 17) spezifiziert werden. In diesem Beispiel handelt es sich dabei um

die Liste org_opentosca_plans/requests, welche zum Beispiel von der Plan

Invocation Engine zum Verschicken von Anfragen zum Aufruf von Plänen

genutzt wird.

01 <scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.
02 0" immediate="false" name="org.
03 opentosca.siengine.api.osgievent.
04 SIEventHandler">
05 <implementation class="org.opentosca.siengine.api.
06 osgievent.SIEventHandler"/>
07 <reference bind="bindEventAdmin" cardinality="1..1"
08 interface="org.osgi.service.event.
09 EventAdmin" name="EventAdmin"
10 policy="static"
11 unbind="unbindEventAdmin"/>
12 <service>
13 <provide interface="org.osgi.service.event.
14 EventHandler"/>
15 </service>
16 <property name="event.topics" type="String"
17 value="org_opentosca_plans/requests"/>
18 </scr:component>

Listing 12: Anwendung des OSGi Event Services

Äquivalent dazu abonniert die Plan Invocation Engine die Liste

org_opentosca_plans/responses, über welche die Antwortnachrichten durch die

Service Invocation OSGi-Event API verschickt werden. Das Senden eines Events

erfolgt dabei über die von dem EventAdmin- Service angebotene Methode post-

Event(Event event).

5 Implementierung

57

5.4 Service Invocation Engine

In diesem Abschnitt wird die Implementierung der SI-Engine vorgestellt. Dabei

wird verstärkt auf die von der SI-Engine angebotenen Methoden sowie das Sys-

tem zur Verwaltung der SI-Plug-ins eingegangen.

Die SI-Engine bietet zwei Methoden an. Zum Einen InvokeOperation(Exchange

exchange) zum Aufruf von Implementation Artifacts und zum Anderen

invokePlan(Exchange exchange) zum Aufruf von Plänen. Obwohl

Implementation Artifacts als auch Pläne als Services gesehen werden

können, müssen die Anfragen zum Aufruf dieser beiden Fälle unterschiedlich

behandelt werden. In Abbildung 18 werden die Abläufe der beiden Methoden

dargestellt.

Identisch haben beide angebotenen Methoden, dass sie zuerst die für sich rele-

vanten durch das SI-Enum (siehe 5.1) definierten Header aus der Exchange Mes-

sage auslesen. Im Falle von invokeOperation wären dies die Werte für CSARID,

SERVICEINSTANCEID_STRING, NODEINSTANCEID_STRING,

SERVICETEMPLATEID_QNAME, NODETEMPLATEID_STRING, INTERFACE-

NAME_STRING und OPERATIONNAME_STRING. Im Falle von invokePlan

CSARID, SERVICEINSTANCEID_STRING, NODETEMPLATEID_STRING und

PLANID_QNAME. Im Anschluss daran wird – falls invokeOperation aufgerufen

wurde – mithilfe der TOSCA Engine ein passendes Implementation

Artifact, dessen Message Exchange Pattern sowie die dazugehörigen Proper-

ties bestimmt. In Kapitel 4.3 wurde bereits das entsprechende Sequenzdiagramm

(Abbildung 12) vorgestellt. Das Abfragen von Instanz Daten bei vorhandener

ServiceInstanceID und einer HashMap als Payload geschieht in beiden Fällen.

Bei invokeOperation wird weiterhin überprüft, ob eine NodeInstanceID spezifi-

ziert wurde. Wenn dies der falls ist und zudem der Payload in Form einer Hash-

Map gegeben ist, wird die NodeInstanceID als Parameter in die HashMap über-

nommen. Damit können Implementation Artifacts aktuelle Werte aus

5 Implementierung

58

invokeOperation

Header auslesen

Implementation
Artifact & dessen

Endpunkt
bestimmen

Instanz Daten
holen & einsetzen

Payload
= HashMap &

ServiceInstanceID
gesetzt

Payload
= HashMap &

NodeInstanceID
gesetzt

NodeInstanceID in
HashMap kopieren

Properties
holen & MEP
bestimmen

Plug-in anhand
Properties
bestimmen

Plug-in aufrufen

invokePlan

Header auslesen

Instanz Daten
holen & einsetzen

Payload
= HashMap &

ServiceInstanceID
gesetzt

Endpunkt
bestimmen

Plug-in aufrufen
Nein

Nein

Ja

Ja

Nein

Ja

den Instanzdaten selbst bestimmen. Unabhängig der Methode wird anschließend

der jeweilige Endpunkt des Implementation Artifacts oder Plans per

Endpoint Service bestimmt. Für den Aufruf von Implementation

Artifacts wird weiterhin die Invocation-Art zur Bestimmung des passenden

Plug-ins anhand den vorherig abgefragten Properties bestimmt.

Abbildung 18: Flussdiagramme der beiden SI-Engine Methoden
invokeOperation und invokePlan

5 Implementierung

59

Da der OpenTOSCA Container bisher ausschließlich BPEL Pläne unterstützt,

wird beim Aufruf eines Plans die Exchange Message direkt an das SOAP Plug-

in (siehe Kapitel 5.6) übergeben. Sollten zukünftig weitere Plan-Arten unter-

stützt werden, muss die Invocation-Art und damit die Wahl des Plug-ins anhand

der Managementplan-Sprache bestimmt werden.

Listing 13 zeigt wie innerhalb der TOSCA Definition die Invocation-Art eines

Implementation Artifacts angegeben wird. Dafür wird die von

Artifact Templates gebotene Möglichkeit zur Definition von Properties

(Zeile 03 bis 12) genutzt. Für die Service Invocation Schnittstelle sind in diesem

Beispiel die Zeilen 08 bis 10 relevant. Per InvocationType-Element wird die

Invocation-Art des Implementation Artifacts festgelegt. In diesem Fall

ist dies SOAP/HTTP. Die SI-Engine würde somit die Anfrage zum Aufruf dieses

Implementation Artifacts an ein SOAP/HTTP-fähiges Plug-in weiter-

leiten.

01 <p:ArtifactTemplate id="EC2VMService" type="toscatypes:
02 WAR">
03 <p:Properties>
04 <opentosca:WSProperties>
05 <opentosca:ServiceEndpoint>
06 /services/EC2VMIAService
07 </opentosca:ServiceEndpoint>
08 <opentosca:InvocationType>
09 SOAP/HTTP
10 </opentosca:InvocationType>
11 </opentosca:WSProperties>
12 </p:Properties>
13 <p:ArtifactReferences>
14 <p:ArtifactReference reference=
15 "IAs/EC2VMService/EC2-VM-Service.war" />
16 </p:ArtifactReferences>
17 </p:ArtifactTemplate>

Listing 13: Beispiel ArtifactTemplate mit Invocation-Art Angabe

5 Implementierung

60

Desweiteren ist in Listing 13 eine weitere Property (ServiceEndpoint) definiert.

Diese wird von der IA-Engine zur Bestimmung des korrekten Endpunktes des

Implementation Artifacts benötigt. Dadurch wird sichergestellt, dass

die IA-Engine einen für die Service Invocation Schnittstelle nutzbaren Endpunkt

per Endpoint Service abspeichert.

Eine wichtige Anforderung an die Service Invocation Schnittstelle ist die Mög-

lichkeit, das Spektrum unterstützter Invocation-Arten erweitern zu können. Dies

wird mittels eines Plug-in Systems erreicht, das nun genauer vorgestellt wird.

Das Plug-in-System wird mittels Declarative Services (siehe Kapitel 2.3) reali-

siert. Die SI-Plug-ins implementieren dafür das vorgegeben Interface

SIPluginInterface (siehe Kapitel 5.5) und bieten jeweils den Service

ISIEnginePluginService an. Dies ist in Zeile 04 bis 05 in Listing 14 zu sehen.

01 <scr:component ...>
02 <implementation class= .../>
03 <service>
04 <provide interface="org.opentosca.siengine.plugins.
05 service.ISIEnginePluginService"/>
06 </service>
07 </scr:component>

Listing 14: Anbieten eines Services per OSGi XML-Konfigurationsdatei

01 <scr:component ...>
02 <implementation class= .../>
03 <reference bind="bindPluginService" cardinality="0..n"
04 interface="org.opentosca.siengine.plugins.
05 service.ISIEnginePluginService"
06 name="SIPluginInterface" policy="dynamic"
07 unbind="unbindPluginService"/>
08 </scr:component>

Listing 15: Binden eines Services per OSGi XML-Konfigurationsdatei

5 Implementierung

61

Da die SI-Engine alle diese Services bindet (siehe Listing 15, Zeile 03 bis 07),

wird beim Start eines SI-Plug-ins in der SI-Engine automatisch eine Methode

zum binden dieses Plug-ins aufgerufen. In diesem Beispiel lautet die Methode

bindPluginService (siehe Zeile 03 in Listing 15).

Des Weiteren haben SI-Plug-ins per Interface eine Methode getType(), welche

die Invocation-Art als String zurück gibt, vorgegeben. Diese Methode wird von

der SI-Engine aufgerufen wenn ein Plug-in gebunden wird und der Rückgabe-

wert (die Invocation-Art) zusammen mit dem jeweiligen Plug-in in einer Map

abgelegt (siehe Listing 16, Zeile 03 bis 06). Zeile 01 und 02 zeigen die Map zur

Verwaltung der SI-Plug-ins. Als Key dient die jeweilige Invocation-Art und ent-

sprechend als Value das dazugehörige Plug-in. Beim Stoppen eines SI-Plug-ins,

wird die unbind-Methode ausgeführt und dort das Plug-in aus der Map entfernt

(Zeile 08 bis 11). Durch dieses System besitzt die SI-Engine jederzeit eine aktuel-

le Liste der verfügbaren SI-Plug-ins und kann damit anhand der Invocation-Art

eines Implementation Artifacts, das dazu passende Plug-in wählen.

01 Map<String, ISIEnginePluginService> pluginServicesMap =
Collections.
02 synchronizedMap(new HashMap<String, ISIEnginePluginService >());

. . .

03 public void bindPluginService(ISIEnginePluginService plugin) {
04
05 pluginServicesMap.put(plugin.getType(), plugin);
06 }
07
08 public void unbindPluginService(ISIEnginePluginService plugin) {
09
10 pluginServicesMap.remove(plugin.getType());
11 }

Listing 16: Implementierung des Plug-in-Systems

5 Implementierung

62

5.5 Service Invocation Plug-in Interface

Dieses Kapitel stellt das Interface für SI-Plug-ins vor. Wie im vorherigen Kapitel

bereits erläutert, müssen alle für die Service Invocation Schnittstelle nutzbaren

Plug-ins dieses Interface implementieren und den Service ISIEnginePluginService

anbieten.

01 public interface ISIEnginePluginService {
02
03 public Exchange invoke(Exchange exchange);
04
05 public String getType();
06
07 }

Listing 17: Interface der SI-Plug-ins

Listing 17 zeigt das für die SI-Plug-ins vorgegebene Interface. Das Interface defi-

niert zwei Methoden. Die im vorangegangen Kapitel erläuterte Methode

getType() (Zeile 05), welche die unterstützte Invocation-Art des Plug-ins zurück

gibt und eine Methode invoke(Exchange exchange) (Zeile 03), zur Übergabe der

Exchange Message an das SI-Plug-in. Weiterhin gibt die invoke-Methode die

Exchange Message, mit der sie aufgerufen wurde, mit der Antwortnachricht des

aufgerufenen Implementation Artifacts oder Plans im Body als

Rückgabewert zurück.

5 Implementierung

63

5.6 Service Invocation SOAP/HTTP-Plug-in

In diesem Kapitel wird eine Implementierung des im Kapitel zuvor vorgestellten

SI-Plug-in Interfaces vorgestellt. Konkret handelt es dabei um das SOAP/HTTP-

Plug-in, also einem SI-Plug-in, welches Implementation Artifacts und

Pläne per SOAP Message über HTTP aufrufen kann.

Nach dem Aufruf der invoke-Methode und der Übergabe der Exchange Message

durch die SI-Engine liest das SOAP/HTTP-Plug-in den im Header angegebenen

Endpunkt des Implementation Artifacts oder Plans aus. Es wurde im

Verlauf dieser Arbeit bereits erklärt, dass sich die Endpunkte je nach benötigtem

Plug-in unterscheiden können. Im Falle des SOAP/HTTP-Plug-ins muss der

Endpunkt entweder direkt auf die WSDL Definition des Implementation

Artifacts beziehungsweise Plans verweisen oder aber dies durch das An-

hängen von „?wsdl“ tun. Falls zum Beispiel die WSDL-Definition eines aufzuru-

fenden Implementation Artifacts unter der Adresse

http://localhost:8080/EC2IA/services/EC2Service?wsdl erreichbar ist, muss entwe-

der diese Adresse oder http://localhost:8080/EC2IA/services/EC2Service als End-

punkt gegeben sein. Dies ist notwendig, da die WSDL-Definition die Schnittstel-

le zum Aufruf des Webservices beschreibt und die darin enthaltenen Informati-

onen zum Erstellen sowie zum Verschicken der Aufrufnachricht benötigt und

deshalb durch das Plug-in ausgelesen werden. So wird beispielsweise das MEP

bestimmt oder, falls eine HashMap mit den Input Parametern als Body der Ex-

change Message übergeben wird, anhand der WSDL-Definition eine korrekte

SOAP Message daraus generiert.

Das SOAP/HTTP-Plug-in unterstützt in der aktuellen Implementierung drei

Austauscharten von Nachrichten. Diese werden nun folgend erklärt sowie in

Abbildung 19 veranschaulicht.

5 Implementierung

64

One-Way (In-Only): Der Service wird per Soap Message aufgerufen, sendet

aber keine Antwortnachricht zurück. Listing 18 zeigt beispielhaft eine One-Way

Operation in einer WSDL-Definition.

01 <wsdl:operation name="one-wayOperation">
02 <wsdl:input message="tns:inputMessage">
03 </wsdl:input>
04 </wsdl:operation>

Listing 18: One-Way Operation

Request-Response (In-Out): Der Client (also das Plug-in) sendet eine SOAP

Message an den Service und wartet bis die Antwortnachricht eintrifft. Ein Bei-

spiel einer Request-Response Operation ist in Listing 19 zu sehen.

01 <wsdl:operation name="request-responseOperation">
02 <wsdl:input message="tns:requestMessage">
03 </wsdl:input>
04 <wsdl:output message="tns:responseMessage">
05 </wsdl:output>
06 </wsdl:operation>

Listing 19: Request-Response Operation

Request-Callback (asynchrones Request-Response): Der Client sendet eine

SOAP Message an den Service, erwartet aber keine direkte Antwort. Stattdessen

wird er informiert wenn die Antwort des Services eintrifft. Hierfür muss dem

Service eine Adresse für den Callback sowie eine MessageID mitgegeben wer-

den. Die MessageID muss in der Antwortnachricht des Services wieder enthalten

sein, um eine Korrelation der Aufrufnachricht mit der Antwortnachricht herstel-

len zu können. Das SOAP/HTTP-Plug-in ermöglicht dabei die Übergabe von

Callback-Adresse und MessageID per Parameter im SOAP-Body der Message

sowie per WS-Addressing Header. Allerdings wird Request-Callback aus WSDL-

Sicht mittels zwei One-Way Operationen realisiert und ist alleine aus der

WSDL-Definition nicht spezifizierbar. Daher müssen zur endgültigen Bestim-

5 Implementierung

65

mung zu den aus der WSDL erworben Informationen noch zusätzlich die in Ka-

pitel 4.3 erklärten MEPs (In-Only & In-Out) aus der TOSCA Definition hinzuge-

nommen werden. Dementsprechend ergibt eine In-Only Operation (aus der

TOSCA Definition) und eine In-Only Operation (aus der WSDL-Definition), eine

One-Way SOAP Message (also ohne Antwortnachricht) an den Service. Demge-

genüber ergibt sich aus einer In-Out Operation (aus der TOSCA Definition) und

einer In-Only Operation (aus der WSDL-Definition) ein Nachrichtenaustausch

per Request-Callback.

Abbildung 19: Darstellung der drei von dem SOAP/HTTP-Plug-in
unterstützten MEPs

Client Service

One-Way

Request-Response

Request-Callback

5 Implementierung

66

5.7 Service Invocation REST/HTTP-Plug-in

Dieser Abschnitt erläutert die Umsetzung des REST/HTTP-Plug-ins. Insbesonde-

re wird dabei darauf eingegangen, wie Mapping-Informationen der zu überge-

benden Parameter in der TOSCA Definition angegeben werden können.

HTTP erlaubt die Übergabe von Parametern sowohl innerhalb der URL (query

string) als auch im Body der Nachricht. Um dem Plug-in zu ermöglichen, die

Nachricht entsprechend der Implementierung des Implementation

Artifacts aufzubauen, können Informationen über das Mapping der Parame-

ter in der TOSCA Definition angegeben werden. Diese Informationen werden in

der SI-Engine mittels der TOSCA Engine bestimmt und dem Plug-in übergeben.

Listing 20 zeigt das Schema zur Beschreibung der Mapping-Informationen, wel-

che innerhalb des Implementation Artifact-Elements (als artifact specific

content7) definiert werden müssen.

01 <DataAssign>
02 <Operations>
03 <Operation name="String" ?
04 interfaceName="String" ?
05 endpoint="no | yes" ?
06 params="queryString | payload" ?
07 contentType="urlencoded | xml" ?
08 method="POST | GET" ? >
09 </Operation> +
10 </Operations>
11 </DataAssign>

Listing 20: Schema zur Beschreibung des Parameter-Mappings

Implementation Artifacts implementieren die von einem NodeType

angebotenen Interfaces und Operationen. Da ein Implementation

Artifact neben einer einzelnen Operation eines Interfaces auch alle Operati-

onen eines Interfaces oder alle Interfaces samt Operationen implementieren

kann, werden die beiden Attribute name (Zeile 03) sowie interfaceName (Zeile

7 Siehe [29] Kapitel 7.

5 Implementierung

67

04) benötigt. Sie spezifizieren, für welche Operation die jeweils angegebenen

Mapping-Informationen gelten. Implementiert das Implementation

Artifact jedoch ohnehin nur eine Operation, ist die Angabe von name sowie

interfaceName nicht nötig. Dementsprechend ist auch die Angabe von interface-

Name nur dann nötig, falls das Implementation Artifact mehrere Inter-

faces implementiert. Per endpoint-Attribut (Zeile 05) kann angegeben werden,

dass der Name der Operation sowie des Interfaces an den von dem Endpoint

Service erhaltenen Endpunkt angehängt (mit „/“ als Trennzeichen) werden soll.

Das params-Attribut (Zeile 06) spezifiziert, ob die zu übergebenden Parameter

als Teil der URL (queryString) oder im Body (payload) der Nachricht angegeben

werden sollen. Falls sie im Body übergeben werden, kann zudem der gewünsch-

te Content-Type (Zeile 07) spezifiziert werden. Aktuell werden die beiden Con-

tent-Types application/x-www-form-urlencoded (urlencoded) sowie applicati-

on/xml (xml) unterstützt. Weiterhin kann mittels method-Attribut (Zeile 08) die

geforderte HTTP-Methode (POST oder GET) angegeben werden.

Zusätzlich zu den Mapping-Informationen hat das Plug-in eigene Annahmen

bzw. Anforderungen bezüglich des Aufbaus einer Nachricht. So werden bei-

spielsweise falls die Übergabe der Parameter per Query String erfolgt, die ein-

zelnen Key-Value-Paare mittels „&“ und die Key-Value-Werte per „=“ voneinan-

der getrennt. Weiterhin steht vor dem ersten Key-Wert ein „?“ zur Abgrenzung

des Endpunktes von den Parametern. Listing 21 zeigt ein Beispiel8 für die Anga-

be einer solchen Mapping-Definition und die daraus resultierende Anfrage. Iden-

tisch (mit „&“ und „=“ Zeichen zur Trennung) werden auch die Parameter im

Body kodiert, falls sie urlencoded übergeben werden. Für die Übergabe per XML

werden die Parameter wie folgt umgewandelt: Die Namen der einzelnen Para-

meter werden zu Elementen mit dem Wert des jeweiligen Parameters als Con-

tent. Weiterhin wird der Name der Operation als Root Element verwendet. Ein

Beispiel hierfür wird in Listing 22 gezeigt.

8 Als Grundlage für die in Listing 21 und 22 gezeigten Beispiele, wird die in Abbildung 13
dargestellte Exchange Message angenommen. Die eigentlich darin mit zu übergebenden
Mapping-Informationen werden im jeweiligen Beispiel angegeben.

5 Implementierung

68

<DataAssign>
 <Operations>
 <Operation name="createDB"
 endpoint="yes"
 params="queryString"
 method="GET" >
 </Operation>
 </Operations>
</DataAssign>

 GET /DB/services/DBCreator/createDB?Size=5&Host=AWS&User=
 admin&Password=p8ilR6N9 HTTP/1.1
 Host: localhost:8080

 …

Listing 21: Beispiel für Parameterübergabe per Query String

<DataAssign>
 <Operations>
 <Operation name="createDB"
 params="payload"
 contentType="xml" >
 </Operation>
 </Operations>
</DataAssign>

 POST /DB/services/DBCreator HTTP/1.1
 Host: localhost:8080

 …

 <createDB>

 <Size>5</Size >
 <Host>AWS</Host >
 <User>admin</User >

 <Password>p8ilR6N9</Password >
 </createDB>

Listing 22: Beispiel für Parameterübergabe mit Content-Type xml

Zukünftig könnte man auch die Web Application Description Language

(WADL), äquivalent zur WSDL im SOAP-Plug-in, zur Beschaffung von benötig-

ten Informationen nutzen. Da diese aber selten genutzt wird und zudem un-

gleich komplexer ist, wurde sich in dieser ersten prototypischen Implementie-

rung des Plug-ins für ein eigenes, für diese spezielle Aufgabe ausgelegtes,

Schema zur Angabe der Informationen entschieden.

6 Annahmen

69

6 Annahmen

Damit das in den vorherigen Abschnitten erläuterte Konzept und die darauf be-

ruhende Implementierung korrekt funktionieren kann, müssen einige Annah-

men getroffen und Anforderungen an den Plan- beziehungsweise TOSCA De-

finition-Ersteller sowie Plug-in Entwickler (der Service Invocation Schnittstelle)

gestellt werden. Diese werden in diesem Kapitel dargelegt und erläutert.

Richtigkeit der übergebenen Parameter

Die an die Service Invocation Schnittstelle übergebenen Parameter lassen sich in

zwei verschiedene Gruppen einteilen. Einerseits die zur Bestimmung des ge-

wünschten Implementation Artifacts beziehungsweise Plans benötig-

ten Daten und andererseits die für den Aufruf des Implementation

Artifacts oder Plans geforderten Daten.

Die zur Bestimmung des passenden Implementation Artifacts bezie-

hungsweise des passenden Plans an die Service Invocation Schnittstelle über-

gebenen Parameter, müssen korrekt und innerhalb des OpenTOSCA Containers

bekannt sein. Innerhalb des OpenTOSCA Containers bekannt bedeutet dabei,

dass diese Daten, wie zum Beispiel CSARID oder ServiceTemplateID, über

die TOSCA Engine abrufbar und damit als Java Objekte abgebildet sind. Ist dies

nicht der Fall, können zwingend erforderliche Informationen wie zum Beispiel

der Name des Implementation Artifacts und damit dessen Endpunkt

nicht bestimmt und damit der gewünschte Aufruf nicht getätigt werden.

Weiterhin müssen die, für den Aufruf des Implementation Artifacts

beziehungsweise des Plans, benötigten Input-Parameter den durch das

Implementation Artifact oder den Plan geforderten Parametern ent-

sprechen. Dies bedeutet, dass zum Einen die Namen der übergebenen Parameter

sowie zum Anderen die Anzahl der Parameter (nachdem zusätzliche Parameter

6 Annahmen

70

wie z.B. Instanzdaten hinzugefügt wurden) identisch sein müssen. Außerdem

muss die angegebene auszuführende Operation ebenfalls zu Implementation

Artifact beziehungsweise Plan sowie deren Input-Parametern passen. Des

Weiteren muss, falls eine Operation innerhalb eines NodeTypes in verschiede-

nen Interfaces vorhanden ist, der Name des Interfaces angegeben werden. Wird

dieser nicht angegeben, wird davon ausgegangen, dass die Operation innerhalb

des NodeTypes eindeutig ist und das Implementation Artifact nur

anhand dessen bestimmt.

Vorhandensein eines Endpunktes

Ohne Informationen unter welchem Namen oder welcher Adresse ein bestimm-

tes Implementation Artifact erreichbar ist kann dieses nicht aufgerufen

werden. Daher müssen durch die IA-Engine beziehungsweise deren Plug-ins

deployte Implementation Artifacts sowie äquivalent deployte Pläne

einen korrekten Endpunkt mittels des Endpoint Services gespeichert haben.

Diese Endpoints können dabei je nach Art des Implementation

Artifacts unterschiedlich aussehen. Der Endpoint eines als SOAP Web Ser-

vice implementierten Implementation Artifacts würde beispielsweise

als eine URL, welche die Adresse zur WSDL-Datei des SOAP Web Services an-

gibt, gespeichert sein. Ein Endpunkt eines als OSGi-Service implementiertes

Implementation Artifact würde dagegen, wie bereits in 4.3 dargestellt,

durch die ID dieses OSGi-Services dargestellt werden. Die verschiedenen Plug-

ins der Service Invocation Schnittstelle wissen dann, wie diese verschiedenen

Endpoints interpretiert werden müssen.

Des Weiteren müssen die deployten Implementation Artifacts und

Pläne (zum Aufrufen) aus der OpenTOSCA Container Umgebung erreichbar

sein.

6 Annahmen

71

Nutzung vorgegebener Interfaces

Neue, zu entwickelnde SI-Plug-ins müssen entsprechend den vorhandenen Plug-

ins das dafür vorgegebene Interface (siehe Kapitel 5.5) implementieren. Dieses

ist für die korrekte Funktionsweise des durch OSGi realisierten Plug-in Systems

notwendig (siehe OSGi Grundlagen 2.3).

Außerdem müssen sich die angegebenen Invocation-Arten, welche gleichzeitig

zur Identifizierung der Plug-ins genutzt werden, voneinander unterscheiden.

Weiterhin müssen, für das im vorigen Abschnitt dargestellte Konzept (siehe Ka-

pitel 4.3) eines für OSGi-Implementation Artifacts entwickelten Plug-

ins, diese Implementation Artifacts ebenfalls das dafür vorgesehene

Interface implementieren.

Benötigte Informationen innerhalb der TOSCA Definition

Benötigte Informationen, wie zum Beispiel die Invocation-Art eines

Implementation Artifacts, müssen in der TOSCA Definition angegeben

sein. Diese Informationen werden von der Service Invocation Schnittstelle unter

anderem zur Bestimmung des passenden SI-Plug-ins benutzt. Ohne diese Daten

kann kein passendes Plug-in gefunden werden und das Aufrufen des gewünsch-

ten Implementation Artifacts schlägt fehl.

Weiterhin sollten auch die optionalen Input und Output Werte der Operationen

der NodeTypes zur Bestimmung des message exchange patterns (MEP) ange-

geben sein. Falls nicht angegeben, wird ansonsten standardmäßig von request-

response ausgegangen.

6 Annahmen

72

Gebrauch des Enums

Das in Kapitel 4.4.1 vorgestellte SI-Enum ist zum Austausch der benötigten In-

formationen zwingend notwendig. Es definiert die Header der Exchange Messa-

ge und stellt somit ein standardisiertes Format sicher.

Neue Service Invocation APIs müssen deshalb, äquivalent der bestehenden Ser-

vice Invocation SOAP API, dieses Enum nutzen. Andernfalls kann die SI-Engine

benötigte Informationen nicht auslesen und der gewünschte Aufruf des

Implementation Artifacts oder Plans kann nicht ausgeführt werden.

7 Überprüfung des Konzepts und der Implementierung

73

7 Überprüfung des Konzepts und der Implementierung

In diesem Kapitel wird beschrieben, ob und wie die in Kapitel 3 gestellten An-

forderungen in Konzept sowie Implementierung der Service Invocation Schnitt-

stelle umgesetzt wurden.

Die erste aufgestellte Anforderung war, dass per Service Invocation Schnittstelle

sowohl Implementation Artifacts als auch Pläne aufgerufen werden

können. Dass diese Anforderung umgesetzt wurde, zeigt beispielsweise Kapitel

5.4. Dort wird die Implementierung der SI-Engine vorgestellt und gleichzeitig

gezeigt wie Aufrufe von Implementation Artifacts als auch Plänen

bearbeitet werden. Weiterhin sollte die Service Invocation Schnittstelle der, in

einer anderen Bachelorarbeit entwickelten, Plan Invocation Engine (siehe Kapi-

tel 2.5) nutzbar gemacht werden. Dies wurde durch die OSGi-Event-API umge-

setzt, welche in Kapitel 5.3 vorgestellt wurde.

Eine weitere gestellte Anforderung war, asynchrone Aufrufe zu ermöglichen.

Eine beispielhafte Bearbeitung eines asynchronen Aufrufes der SOAP-API samt

funktionsweise von MessageID sowie ReplyTo (Callback-Adresse) wurde in Ka-

pitel 4.3 gezeigt. Darüber hinaus wurde in Kapitel 5.3 dargestellt, wie die Plan

Invocation Engine mittels Publish-Subscribe Pattern asynchron mit der Service

Invocation Schnittstelle kommunizieren kann.

Weiterhin sollten zum Aufruf eines Services benötigte Informationen dynamisch

beschafft werden können. Diese Anforderung wurde durch die Anbindung von

TOSCA Engine sowie Endpoint Service umgesetzt. Das in Kapitel 4.3 abgebildete

Sequenzdiagramm zeigt die Anbindung der genannten Komponenten an die Ser-

vice Invocation Schnittstelle. Außerdem wird in Kapitel 5.6 dargelegt, wie das

SOAP/HTTP-Plug-in anhand der WSDL eines Web Services beispielsweise das

MEP bestimmt.

7 Überprüfung des Konzepts und der Implementierung

74

Eine große Anzahl an unterstützten Invocation-Arten, beziehungsweise die

Möglichkeit diese einfach erweitern zu können, war eine weitere gestellte An-

forderung. Um dies zu ermöglichen, wurde die SI-Engine mit einem Plug-in Sys-

tem (siehe Kapitel 5.4) ausgestattet, welches das Hinzufügen und Starten von

Plug-ins zur Laufzeit ermöglicht. Weiterhin wurde Camel, welches eine Vielzahl

an Komponenten für verschiedene Standards und Protokollen bietet (siehe Kapi-

tel 2.7), zur Implementierung der Service Invocation Schnittstelle genutzt.

Eine andere Anforderung war, die Übergabe der Input-Daten sowohl per Hash-

Map [34] als auch (XML-)Document [33] zu ermöglichen. In unter anderem Ka-

pitel 4.1 sowie Kapitel 5.3 wird auf die Möglichkeit zur Übergabe von verschie-

denen Datentypen eingegangen sowie in Kapitel 4.3 ein Beispielaufruf für die

Übergabe einer HashMap dargestellt.

Darüber hinaus sollte die Service Invocation Schnittstelle, um zuvor abgelegte

Instanzdaten abfragen und damit die übergebenen Parameter aktualisieren oder

ergänzen zu können, mit dem Instanz Data Service kommunizieren können. Die

Anbindung des Instanz Data Service wird in Kapitel 4.3 gezeigt sowie anhand

eines Beispiels beschrieben.

Des Weiteren sollte die Service Invocation Schnittstelle in den bestehenden

OpenTOSCA Container (siehe Kapitel 2.4) integriert werden. Um dies zu ermög-

lichen, wurde sie per OSGi (siehe Kapitel 2.3) realisiert (siehe beispielsweise Ka-

pitel 5.4).

Eine weitere Anforderung war, dass sich die Service Invocation Schnittstelle

einfach erweitern lassen soll. Dies wird unter anderem durch die Verwendung

von Camel und des damit verbundenen Pipes-Filter Pattern (siehe Kapitel 2.7),

wodurch sich weitere Verarbeitungsschritte einfach in eine Route integrieren

lassen, sowie des Plug-in Systems (siehe Kapitel 5.4) ermöglicht. Zudem lassen

sich neue APIs einfach integrieren, da alle Daten zwischen den einzelnen SI-

Komponenten durch die Nutzung des Exchange Objekts und SI-Enums einheit-

lich übergeben werden (siehe Kapitel 4.3 sowie Kapitel 5.1).

7 Überprüfung des Konzepts und der Implementierung

75

Weiterhin sollte die Service Invocation Schnittstelle Aufrufe verschiedener Auf-

rufer parallel und ohne merkbare Leistungseinbußen bewerkstelligen können.

Dies wird zum Einen durch die Möglichkeit von asynchronen Aufrufen (siehe

Kapitel 4.3) sowie durch die Implementierung der einzelnen SI-Komponenten als

OSGi-Services (siehe Kapitel 4.2) und zum Anderen durch die Nutzung von

Camel als Integrationsframework (siehe Kapitel 4.1) realisiert.

Die letzte aufgestellte Anforderung war, die Service Invocation Schnittstelle

möglichst flexibel bezüglich Datenformate umzusetzen. Dies wird ebenfalls

durch die Verwendung von Camel erreicht. Camel bietet durch die Vielzahl an

Komponenten (siehe Kapitel 2.7) bereits nativ eine große Anzahl an unterstütz-

ten Datenformaten sowie Typ-Konverter an, welche sich zudem noch durch ei-

gene erweitern lässt. Zudem lassen sich im Body des verwendeten Message Ob-

jekts beliebige Datentypen ablegen. Kapitel 4.3 zeigt dies anhand eines Beispiels.

8 Zusammenfassung und Ausblick

76

8 Zusammenfassung und Ausblick

Im Folgenden werden die wichtigen Erkenntnisse dieser Arbeit nochmals zu-

sammengefasst sowie einen Ausblick auf Aspekte zur weiteren Bearbeitung ge-

gebenen.

Ziel der vorliegenden Bachelorarbeit war es, ein Konzept für eine Erweiterung

des OpenTOSCA Containers zum generischen Aufruf von in TOSCA referen-

zierten Services zu erarbeiten und dieses in die Praxis umzusetzen. Zu diesem

Zweck wurde nach der Erarbeitung der zum Verständnis benötigten Grundlagen

(Kapitel 2) ein Anforderungskatalog (Kapitel 3) erstellt. Unter Berücksichtigung

dessen wurde ein Überblick über mögliche Techniken und konkrete Implemen-

tierungen zur Integration verschiedenster Komponenten geschaffen sowie da-

rauf beruhende Entwurfsentscheidungen getroffen (Kapitel 4.1). Dabei hat sich

ergeben, dass aufgrund der vorgestellten Vorteile, Apache Camel die beste Al-

ternative zur Umsetzung darstellt.

Darauf aufbauend wurde die Architektur der zu entwickelnden Komponente

entworfen (Kapitel 4.2) und das dazugehörige Konzept erarbeitet (Kapitel 4.3).

Von besonderer Bedeutung hierfür war die Integration der benötigten bestehen-

den Komponenten in die zu entwickelnde Erweiterung. Anhand der im weiteren

Verlauf dieser Arbeit aufgezeigten Möglichkeiten konnte dargelegt werden, dass

das zuvor erarbeitete Lösungskonzept den geforderten Anforderungen ent-

spricht.

Im anschließenden Implementierungsteil (Kapitel 5) wurden die bis dahin abs-

trakten Beschreibungen der einzelnen Komponenten und deren Funktionalität

durch ausgewählte Code- beziehungsweise XML-Auszüge oder Abbildungen

konkretisiert und erläutert. Dabei konnte ebenfalls beispielhaft gezeigt werden,

wie einfach andere Erweiterungen von OpenTOSCA die in dieser Arbeit entwi-

ckelte Komponente nutzen können (Kapitel 5.3).

8 Zusammenfassung und Ausblick

77

Jedoch mussten auch, um die korrekte Funktionsweise der entworfenen Kompo-

nente zu sichern, einige Annahmen bezüglich TOSCA Definitionen, Plänen

oder Komponenten-Erweiterungen getroffen werden (Kapitel 6).

Insgesamt kann festgestellt werden, dass mit dieser Arbeit ein Konzept sowie

eine erste prototypische Implementierung davon zum Aufruf von Services im

Kontext von TOSCA geschaffen wurde. Aktuell wurden sowohl eine SOAP-

HTTP-API (Kapitel 5.2) als auch eine OSGi-Event-API (Kapitel 5.3) zum Aufruf

der Service Invocation Schnittstelle implementiert. Weiterhin wurde ein

SOAP/HTTP-Plug-in (Kapitel 5.6) zum Aufruf von SOAP Web Services sowie ein

REST/HTTP-Plug-in (Kapitel 5.7) umgesetzt. Um eine größer Anzahl an Stan-

dards und Protokollen zu unterstützen, müssen weitere Plug-ins und APIs im-

plementiert werden. Aufgrund der darauf ausgerichteten Konzeption, stellt das

Einbinden von neuen Komponenten allerdings keine große Schwierigkeit dar.

Abbildungsverzeichnis

78

Abbildungsverzeichnis

Abbildung 1: Architektur von OpenTOSCA (nach [23]) ...9

Abbildung 2: GUI der Plan Invocation Engine ... 11

Abbildung 3: Beispiel-Architektur aus fünf Komponenten ohne (links) und mit (rechts)

ESB .. 12

Abbildung 4: Pipes und Filter Architekturmuster ... 15

Abbildung 5: Möglichkeiten der Integrationstechnologien (nach [43] S.3) 23

Abbildung 6: Architektur des OpenTOSCA Containers mit Service Invocation

Schnittstelle... 30

Abbildung 7: Konzeptioneller Aufbau der Komponenten ... 32

Abbildung 8: Service Invocation Schnittstelle als Schichtendiagramm 33

Abbildung 9: Bearbeitungsablauf zum Aufruf eines Services ... 35

Abbildung 10: Beispielhafte Nachrichten / Aufrufe .. 38

Abbildung 11: Von der Service Invocation SOAP API an die SI-Engine gesendete

Message .. 40

Abbildung 12: Sequenzdiagramm SI-Engine ... 41

Abbildung 13: Durch die SI-Engine angereicherte und an ein SI-Plug-in gerichtete

Message .. 43

Abbildung 14: Rückgabe des SI-Plug-ins mit enthaltenen Informationen des

Implementation Artifacts... 45

Abbildung 15: Beispiel für die Umsetzungsmöglichkeit eines weiteren Plug-in Types 47

Abbildung 16: Beispiel für eine weitere Service Invocation API .. 49

Abbildung 17: Aufruf eines Plans initiiert durch Plan Invocation Engine....................... 55

Abbildung 18: Flussdiagramme der beiden SI-Engine Methoden invokeOperation und

invokePlan... 58

Abbildung 19: Darstellung der drei von dem SOAP/HTTP-Plug-in unterstützten MEPs

 ... 65

Listingsverzeichnis

79

Listingsverzeichnis

Listing 1: Plug-in Interface Alternative 1... 27

Listing 2: Plug-in Interface Alternative 2... 28

Listing 3: Beispiel In-Out Pattern .. 36

Listing 4: Beispiel In-Only Pattern .. 36

Listing 5: SOAP Nachricht eines Plans an die Service Invocation Schnittstelle zur

Erstellung einer Datenbank .. 39

Listing 6: Durch das SOAP/HTTP Plug-in erstellte SOAP Message 44

Listing 7: Antwort des Implementation Artifacts .. 44

Listing 8: Nachricht der SOAP API zurück an den Aufrufer... 46

Listing 9: Methoden des OSGi Implementation Artifact Interface 48

Listing 10: SI-Enum ... 51

Listing 11: Route der Service Invocation SOAP API ... 52

Listing 12: Anwendung des OSGi Event Services .. 56

Listing 13: Beispiel ArtifactTemplate mit Invocation-Art Angabe 59

Listing 14: Anbieten eines Services per OSGi XML-Konfigurationsdatei 60

Listing 15: Binden eines Services per OSGi XML-Konfigurationsdatei 60

Listing 16: Implementierung des Plug-in-Systems .. 61

Listing 17: Interface der SI-Plug-ins .. 62

Listing 18: One-Way Operation ... 64

Listing 19: Request-Response Operation.. 64

Listing 20: Schema zur Beschreibung des Parameter-Mappings .. 66

Listing 21: Beispiel für Parameterübergabe per Query String ... 68

Listing 22: Beispiel für Parameterübergabe mit Content-Type xml 68

Abkürzungsverzeichnis

80

Abkürzungsverzeichnis

AAR Axis Archive
API Application Programming Interface
AWS Amazon Web Services
BPEL WS-Business Process Execution Language
BPMN Business Process Model and Notation
BPS Business Process Server
CSAR Cloud Service Archive
DSL Domain Specific Language
EIP Enterprise Integration Pattern
ESB Enterprise Service Bus
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
IA Implementation Artifact
IaaS Infrastructure as a Service
ID Identifikationsbezeichnung
IDE Integrated Development Environment
IT Informationstechnik
ITK Informations- und Kommunikationstechnik
JAR Java Archive
MEP Message Exchange Pattern
OASIS Organization for the Advancement of Structured Information Standards
PaaS Platform as a Service
REST Representational State Transfer
SaaS Software as a Service
SIS Service Invocation Schnittstelle
TOSCA Topology and Orchestration Specification for Cloud Applications
URI Uniform Resource Identifier
URL Uniform Resource Locator
WADL Web Application Description Language
WAR Web Application Archive
WSDL Web Services Description Language
XML Extensible Markup Language
XSD XML Schema Definition

Literaturverzeichnis

81

Literaturverzeichnis

[1] Apache Software Foundation: Apache Axis, URL: http://axis.apache.org/

[2] Apache Software Foundation: Apache Camel , URL: http://camel.apache.org/

[3] Apache Software Foundation: Apache Camel: Enterprise Integration Patterns,
URL: http://camel.apache.org/enterprise-integration-patterns.html

[4] Apache Software Foundation: Apache ServiceMix, URL:
http://servicemix.apache.org/

[5] Apache Software Foundation: Apache Synapse Enterprise Service Bus (ESB),
URL: http://synapse.apache.org/

[6] Apache Software Foundation: Apache Tomcat, URL: http://tomcat.apache.org/

[7] Apache Software Foundation: Components, URL:
http://camel.apache.org/component.html

[8] Apache Software Foundation: CXF Component, URL:
http://camel.apache.org/cxf

[9] Apache Software Foundation: FTP/SFTP/FTPS Component, URL:
http://camel.apache.org/ftp2.html

[10] Apache Software Foundation: Getting Started with Apache Camel, URL:
http://camel.apache.org/book-getting-started.html

[11] Apache Software Foundation: Is Camel an ESB?, URL:
http://camel.apache.org/is-camel-an-esb.html

[12] Apache Software Foundation: Jetty Component, URL:
http://camel.apache.org/jetty

[13] Apache Software Foundation: Welcome to Apache Axis2/Java, URL:
http://axis.apache.org/axis2/java/core/

[14] AWS: Amazon EC2, URL: http://aws.amazon.com/de/ec2/

[15] BITKOM: Die wichtigsten Hightech-Themen 2013, URL:
http://www.bitkom.org/de/presse/30739_74757.aspx

[16] Chappell, David A. : Enterprise Service Bus, O'Reilly Media 2004

http://axis.apache.org/
http://camel.apache.org/
http://camel.apache.org/enterprise-integration-patterns.html
http://servicemix.apache.org/
http://synapse.apache.org/
http://tomcat.apache.org/
http://camel.apache.org/component.html
http://camel.apache.org/cxf
http://camel.apache.org/ftp2.html
http://camel.apache.org/book-getting-started.html
http://camel.apache.org/is-camel-an-esb.html
http://camel.apache.org/jetty
http://axis.apache.org/axis2/java/core/
http://aws.amazon.com/de/ec2/
http://www.bitkom.org/de/presse/30739_74757.aspx

Literaturverzeichnis

82

[17] Eclipse: Equinox, URL: http://www.eclipse.org/equinox/

[18] Endres, Christian: Management von Cloud Applikationen in OpenTOSCA.
Cloud Application Management in OpenTOSCA, Bachelorarbeit, 03.05.2013

[19] Fielding, Roy Thomas: Architectural Styles and the Design of Network-based
Software Architectures URL:
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

[20] Google: Gmail, URL: https://mail.google.com/

[21] Hohpe , Gregor/ Woolf , Bobby: Pipes and Filters, URL:
http://www.eaipatterns.com/PipesAndFilters.html

[22] Hohpe , Gregor/ Woolf , Bobby: Publish-Subscribe Channel, URL:
http://www.eaipatterns.com/PublishSubscribeChannel.html

[23] IAAS Universität Stuttgart: OpenTOSCA - Open Source Laufzeitumgebung für
TOSCA, URL: http://www.iaas.uni-stuttgart.de/OpenTOSCA/

[24] IT Wissen: Community Cloud, URL:
http://www.itwissen.info/definition/lexikon/Community-Cloud-community-
cloud.html

[25] Manhart, Klaus: Cloud Dienste - Das müssen Sie wissen! Cloud Computing -
SaaS, PaaS, IaaS, Public und Private (02.08.2011), URL:
http://www.tecchannel.de/server/cloud_computing/2030180/cloud_computing_
das_muessen_sie_wissen_saas_paas_iaas/

[26] Microsoft: Windows Azure, URL: http://www.windowsazure.com/de-de/

[27] Mule Community: Mule ESB - The easiest way to integrate
anything, anywhere, URL: http://www.mulesoft.org/

[28] OASIS: Advancing open standards fort he information society, URL:
https://www.oasis-open.org

[29] OASIS: Topology and Orchestration Specification for Cloud Applications
Version 1.0, URL: http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-
v1.0.html

[30] OASIS: Web Services Business Process Execution Language, URL:
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[31] OMG: Business Process Model and Notation , URL: http://www.bpmn.org/

[32] Opscode: Chef, URL: http://www.opscode.com/chef/

http://www.eclipse.org/equinox/
http://www.ics.uci.edu/%7Efielding/pubs/dissertation/top.htm
https://mail.google.com/
http://www.eaipatterns.com/PipesAndFilters.html
http://www.eaipatterns.com/PublishSubscribeChannel.html
http://www.iaas.uni-stuttgart.de/OpenTOSCA/
http://www.itwissen.info/definition/lexikon/Community-Cloud-community-cloud.html
http://www.itwissen.info/definition/lexikon/Community-Cloud-community-cloud.html
http://www.tecchannel.de/server/cloud_computing/2030180/cloud_computing_das_muessen_sie_wissen_saas_paas_iaas/
http://www.tecchannel.de/server/cloud_computing/2030180/cloud_computing_das_muessen_sie_wissen_saas_paas_iaas/
http://www.windowsazure.com/de-de/
http://www.mulesoft.org/
https://www.oasis-open.org/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.bpmn.org/
http://www.opscode.com/chef/

Literaturverzeichnis

83

[33] Oracle: Document (Java Platform SE 6), URL:
http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Document.html

[34] Oracle: HashMapURL (Java Platform SE 6), URL:
http://docs.oracle.com/javase/6/docs/api/java/util/HashMap.html

[35] OSGi Alliance: OSGi Service Platform Core Specification (Release 4, Version
4.2, June 2009), URL: http://www.osgi.org/download/r4v42/r4.core.pdf

[36] OSGi Alliance: OSGi Service Platform Service Compendium (Release 4, Version
4.2, August 2009), URL: http://www.osgi.org/download/r4v42/r4.cmpn.pdf

[37] OSGi Alliance: OSGi - The Dynamic Module System for Java, URL:
http://www.osgi.org/Main/HomePage

[38] Puppet Labs: IT Automation Software for System Administrators, URL:
https://puppetlabs.com/

[39] Spring: Spring Integration, URL: http://www.springsource.org/spring-
integration

[40] W3C: SOAP Specifications, URL: http://www.w3.org/TR/soap/

[41] W3C: Web Services Description Language (WSDL) Version 2.0 Part 2:
Predefined Extensions, URL: http://www.w3.org/TR/2004/WD-wsdl20-
extensions-20040803/#patterns

[42] W3C: Web Services Addressing (WS-Addressing), URL:
http://www.w3.org/Submission/ws-addressing/

[43] Wähner, Kai: Mittler zwischen den Welten. Freie Integrations-Frameworks auf
der Java-Plattform (13.08.2012), URL:
http://www.heise.de/developer/artikel/Freie-Integrations-Frameworks-auf-der-
Java-Plattform-1666403.html

[44] Wissmeier, Jörg / Kraus, Adrian: Top Ten ESB: Viele ESBs, viele Möglichkeiten,
URL: http://jaxenter.de/artikel/Top-Ten-ESB-Viele-ESBs-viele-Moeglichkeiten

[45] WSO2: WSO2 Business Process Server , URL:
http://wso2.com/products/business-process-server/

 Alle aufgeführten Weblinks wurden das letzte Mal am 1.07.2013 geprüft.

http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/Document.html
http://docs.oracle.com/javase/6/docs/api/java/util/HashMap.html
http://www.osgi.org/download/r4v42/r4.core.pdf
http://www.osgi.org/download/r4v42/r4.cmpn.pdf
http://www.osgi.org/Main/HomePage
https://puppetlabs.com/
http://www.springsource.org/spring-integration
http://www.springsource.org/spring-integration
http://www.w3.org/TR/soap/
http://www.w3.org/TR/2004/WD-wsdl20-extensions-20040803/%23patterns
http://www.w3.org/TR/2004/WD-wsdl20-extensions-20040803/%23patterns
http://www.w3.org/Submission/ws-addressing/
http://www.heise.de/developer/artikel/Freie-Integrations-Frameworks-auf-der-Java-Plattform-1666403.html
http://www.heise.de/developer/artikel/Freie-Integrations-Frameworks-auf-der-Java-Plattform-1666403.html
http://jaxenter.de/artikel/Top-Ten-ESB-Viele-ESBs-viele-Moeglichkeiten
http://wso2.com/products/business-process-server/

Anhang

84

Anhang A. WSDL der SOAP-API

01 <?xml version="1.0" encoding="UTF-8"?>
02 <wsdl:definitions xmlns:xsd="http://www.w3.
03 org/2001/XMLSchema"
04 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:
05 tns="http://siserver.org/wsdl"
06 xmlns:ns="http://siserver.org/schema" xmlns:soap="http:
07 //schemas.xmlsoap.org/wsdl/soap/"
08 name="SIServerImplService" targetNamespace="http://siserver.
09 org/wsdl">
10
11 <wsdl:types>
12 <xsd:schema xmlns="http://www.w3.org/2001/XMLSchema">
13 <xsd:import namespace="http://siserver.org/schema"
14 schemaLocation="invoker.xsd" />
15 </xsd:schema>
16 </wsdl:types>
17 <wsdl:message name="invokeOperationMessage">
18 <wsdl:part element="ns:invokeOperation"
19 name="invokeOperation">
20 </wsdl:part>
21 </wsdl:message>
22 <wsdl:message name="invokeOperationAsyncMessage">
23 <wsdl:part element="ns:invokeOperationAsync"
24 name="invokeOperationAsync">
25 </wsdl:part>
26 </wsdl:message>
27 <wsdl:message name="invokeOperationSyncMessage">
28 <wsdl:part element="ns:invokeOperationSync"
29 name="invokeOperationSync">
30 </wsdl:part>
31 </wsdl:message>
32 <wsdl:message name="invokePlanMessage">
33 <wsdl:part element="ns:invokePlan" name="invokePlan">
34 </wsdl:part>
35 </wsdl:message>
36 <wsdl:message name="invokeResponse">
37 <wsdl:part element="ns:invokeResponse"
38 name="invokeResponse">
39 </wsdl:part>
40 </wsdl:message>
41 <wsdl:portType name="InvokePortType">
42 <wsdl:operation name="invokeOperation">
43 <wsdl:input message="tns:invokeOperationMessage">
44 </wsdl:input>
45 </wsdl:operation>
46 <wsdl:operation name="invokeOperationAsync">
47 <wsdl:input message="tns:invokeOperationAsyncMessage">
48 </wsdl:input>
49 </wsdl:operation>
50 <wsdl:operation name="invokeOperationSync">
51 <wsdl:input message="tns:invokeOperationSyncMessage">
52 </wsdl:input>
53 <wsdl:output message="tns:invokeResponse">
54 </wsdl:output>

Anhang

85

55 </wsdl:operation>
56 <wsdl:operation name="invokePlan">
57 <wsdl:input message="tns:invokePlanMessage">
58 </wsdl:input>
59 </wsdl:operation>
60 </wsdl:portType>
61 <wsdl:portType name="CallbackPortType">
62 <wsdl:operation name="callback">
63 <wsdl:input message="tns:invokeResponse">
64 </wsdl:input>
65 </wsdl:operation>
66 </wsdl:portType>
67 <wsdl:binding name="InvokeBinding" type="tns:
68 InvokePortType">
69 <soap:binding style="document"
70 transport="http://schemas.xmlsoap.org/soap/http" />
71 <wsdl:operation name="invokeOperation">
72 <soap:operation soapAction="http://siserver.
73 org/invokeOperation"
74 style="document" />
75 <wsdl:input>
76 <soap:body use="literal" />
77 </wsdl:input>
78 </wsdl:operation>
79 <wsdl:operation name="invokeOperationAsync">
80 <soap:operation soapAction="http://siserver.
81 org/invokeOperationAsync"
82 style="document" />
83 <wsdl:input>
84 <soap:body use="literal" />
85 </wsdl:input>
86 </wsdl:operation>
87 <wsdl:operation name="invokeOperationSync">
88 <soap:operation soapAction="http://siserver.
89 org/invokeOperationSync"
90 style="document" />
91 <wsdl:input>
92 <soap:body use="literal" />
93 </wsdl:input>
94 <wsdl:output>
95 <soap:body use="literal" />
96 </wsdl:output>
97 </wsdl:operation>
98 <wsdl:operation name="invokePlan">
99 <soap:operation soapAction="http://siserver.
100 org/invokePlan"
101 style="document" />
102 <wsdl:input>
103 <soap:body use="literal" />
104 </wsdl:input>
105 </wsdl:operation>
106 </wsdl:binding>
107 <wsdl:binding name="CallbackBinding" type="tns:
108 CallbackPortType">
109 <soap:binding style="document"
110 transport="http://schemas.xmlsoap.org/soap/http" />
111 <wsdl:operation name="callback">
112 <wsdl:input>
113 <soap:body use="literal" />
114 </wsdl:input>

Anhang

86

115 </wsdl:operation>
116 </wsdl:binding>
117 <wsdl:service name="InvokerService">
118 <wsdl:port binding="tns:InvokeBinding" name="InvokePort">
119 <soap:address location="http://localhost:8081/invoker" />
120 </wsdl:port>
121 <wsdl:port binding="tns:CallbackBinding"
122 name="CallbackPort">
123 <soap:address location="http://localhost:8088/callback" />
124 </wsdl:port>
125 </wsdl:service>
126 </wsdl:definitions>

Anhang B. XSD der SOAP-API

01 <?xml version="1.0" encoding="UTF-8"?>
02 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
03 xmlns:ns="http://siserver.org/schema"
04 attributeFormDefault="unqualified"
05 elementFormDefault="unqualified" targetNamespace="http:
06 //siserver.org/schema">
07 <xs:complexType name="ParamsMapItemType">
08 <xs:sequence>
09 <xs:element name="key" type="xs:string" />
10 <xs:element name="value" type="xs:string" />
11 </xs:sequence>
12 </xs:complexType>
13 <xs:complexType name="ParamsMap">
14 <xs:sequence>
15 <xs:element maxOccurs="unbounded" name="Param"
16 type="ns:ParamsMapItemType" />
17 </xs:sequence>
18 </xs:complexType>
19 <xs:complexType name="Doc">
20 <xs:sequence>
21 <xs:any minOccurs="0" maxOccurs="1"
22 processContents="skip"/>
23 </xs:sequence>
24 </xs:complexType>
25 <xs:element name="invokeOperation" type="ns:
26 invokeOperationAsync" />
27 <xs:element name="invokeOperationAsync" type="ns:
28 invokeOperationAsync" />
29 <xs:complexType name="invokeOperationAsync">
30 <xs:sequence>
31 <xs:element minOccurs="1" maxOccurs="1" name="CsarID"
32 type="xs:string" />
33 <xs:element minOccurs="0" maxOccurs="1"
34 name="ServiceInstanceID"
35 type="xs:string" />
36 <xs:element minOccurs="0" maxOccurs="1"
37 name="NodeInstanceID"
38 type="xs:string" />
39 <xs:element minOccurs="1" maxOccurs="1"

Anhang

87

40 name="ServiceTemplateIDNamespaceURI" type="xs:string" />
41 <xs:element minOccurs="1" maxOccurs="1"
42 name="ServiceTemplateIDLocalPart" type="xs:string" />
43 <xs:element minOccurs="1" maxOccurs="1"
44 name="NodeTemplateID"
45 type="xs:string" />
46 <xs:element minOccurs="0" maxOccurs="1"
47 name="InterfaceName"
48 type="xs:string" />
49 <xs:element minOccurs="1" maxOccurs="1"
50 name="OperationName"
51 type="xs:string" />
52 <xs:element minOccurs="1" maxOccurs="1" name="ReplyTo"
53 type="xs:string" />
54 <xs:element minOccurs="1" maxOccurs="1" name="MessageID"
55 type="xs:string" />
56 <xs:choice>
57 <xs:element minOccurs="0" name="Params" type="ns:
58 ParamsMap" />
59 <xs:element minOccurs="0" name="Doc" type="ns:Doc" />
60 </xs:choice>
61 </xs:sequence>
62 </xs:complexType>
63 <xs:element name="invokeOperationSync" type="ns:
64 invokeOperationSync" />
65 <xs:complexType name="invokeOperationSync">
66 <xs:sequence>
67 <xs:element minOccurs="1" maxOccurs="1" name="CsarID"
68 type="xs:string" />
69 <xs:element minOccurs="0" maxOccurs="1"
70 name="ServiceInstanceID"
71 type="xs:string" />
72 <xs:element minOccurs="0" maxOccurs="1"
73 name="NodeInstanceID"
74 type="xs:string" />
75 <xs:element minOccurs="1" maxOccurs="1"
76 name="ServiceTemplateIDNamespaceURI" type="xs:string" />
77 <xs:element minOccurs="1" maxOccurs="1"
78 name="ServiceTemplateIDLocalPart" type="xs:string" />
79 <xs:element minOccurs="1" maxOccurs="1"
80 name="NodeTemplateID"
81 type="xs:string" />
82 <xs:element minOccurs="0" maxOccurs="1"
83 name="InterfaceName"
84 type="xs:string" />
85 <xs:element minOccurs="1" maxOccurs="1"
86 name="OperationName"
87 type="xs:string" />
88 <xs:choice>
89 <xs:element minOccurs="0" name="Params" type="ns:
90 ParamsMap" />
91 <xs:element minOccurs="0" name="Doc" type="ns:Doc" />
92 </xs:choice>
93 </xs:sequence>
94 </xs:complexType>
95 <xs:element name="invokePlan" type="ns:invokePlan" />
96 <xs:complexType name="invokePlan">
97 <xs:sequence>
98 <xs:element minOccurs="1" maxOccurs="1" name="CsarID"
99 type="xs:string" />

Anhang

88

100 <xs:element minOccurs="0" maxOccurs="1"
101 name="ServiceInstanceID"
102 type="xs:string" />
103 <xs:element minOccurs="1" maxOccurs="1"
104 name="PlanIDNamespaceURI"
105 type="xs:string" />
106 <xs:element minOccurs="1" maxOccurs="1"
107 name="PlanIDLocalPart"
108 type="xs:string" />
109 <xs:element minOccurs="1" maxOccurs="1"
110 name="OperationName"
111 type="xs:string" />
112 <xs:element minOccurs="1" maxOccurs="1" name="ReplyTo"
113 type="xs:string" />
114 <xs:element minOccurs="1" maxOccurs="1" name="MessageID"
115 type="xs:string" />
116 <xs:choice>
117 <xs:element minOccurs="0" name="Params" type="ns:
118 ParamsMap" />
119 <xs:element minOccurs="0" name="Doc" type="ns:Doc" />
120 </xs:choice>
121 </xs:sequence>
122 </xs:complexType>
123 <xs:element name="invokeResponse" type="ns:invokeResponse"
124 />
125 <xs:complexType name="invokeResponse">
126 <xs:sequence>
127 <xs:element minOccurs="0" maxOccurs="1" name="MessageID"
128 type="xs:string" />
129 <xs:choice>
130 <xs:element minOccurs="0" name="Params" type="ns:
131 ParamsMap" />
132 <xs:element minOccurs="0" name="Doc" type="ns:Doc" />
133 </xs:choice>
134 </xs:sequence>
135 </xs:complexType>
136 </xs:schema>

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich habe keine ande-

ren als die angegebenen Quellen benutzt und alle wörtlich oder sinngemäß aus

anderen Werken übernommene Aussagen als solche gekennzeichnet. Weder

diese Arbeit noch wesentliche Teile daraus waren bisher Gegenstand eines ande-

ren Prüfungsverfahrens. Ich habe diese Arbeit bisher weder teilweise noch voll-

ständig veröffentlicht. Das elektronische Exemplar stimmt mit allen eingereich-

ten Exemplaren überein.

__
Ort, Datum, Unterschrift

	1 Einleitung
	2 Thematische Grundlagen und verwandte Arbeiten
	2.1 Cloud Computing
	2.2 TOSCA
	2.3 OSGi
	2.4 OpenTOSCA
	2.5 Plan Invocation Engine
	2.6 ESB
	2.7 Camel

	3 Anforderungen
	3.1 Funktionale Anforderungen
	3.2 Nichtfunktionale Anforderungen

	4 Konzept & Architektur
	4.1 Entwurfsentscheidungen
	4.2 Architektur
	4.3 Beschreibung des gewählten Lösungskonzeptes

	5 Implementierung
	5.1 Service Invocation Enum
	5.2 Service Invocation SOAP API
	5.3 Service Invocation OSGi-Event API
	5.4 Service Invocation Engine
	5.5 Service Invocation Plug-in Interface
	5.6 Service Invocation SOAP/HTTP-Plug-in
	5.7 Service Invocation REST/HTTP-Plug-in

	6 Annahmen
	7 Überprüfung des Konzepts und der Implementierung
	8 Zusammenfassung und Ausblick
	Abbildungsverzeichnis
	Listingsverzeichnis
	Abkürzungsverzeichnis
	Literaturverzeichnis
	Anhang A. WSDL der SOAP-API

