
Institut für Architektur von Anwendungssystemen

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit Nr. 44

RESTful BPEL - Erweiterung von
BPEL zur Orchestrierung von

RESTful Web Services

Markus Fischer

Studiengang: Softwaretechnik

Prüfer/in: Prof. Dr. Frank Leymann

Betreuer/in: Dipl.-Inf. Florian Haupt

Beginn am: 04.02.2013

Beendet am: 06.08.2013

CR-Nummer: C.2.4, H.4.1, H.5.4

Kurzfassung

Die Web Service Business Process Execution Language ist eine Sprache zur Modellierung
von Geschäftsprozessen, die es ermöglicht Web Services zu orchestrieren, die durch eine
WSDL-Schnittstelle definiert sind [TC07]. REST, die Kurzform von „REpresentational State
Transfer“, ist ein Architekturstil für Webanwendungen, der bei Einhaltung unter anderem
bessere Skalierbarkeit, einfachere System-Architektur und bessere Erweiterbarkeit verspricht
[Fie00].
In dieser Arbeit wird untersucht, welche Möglichkeiten bestehen, BPEL zur Orchestrierung
von RESTful Web Services zu verwenden, oder inwiefern BPEL zu diesem Zweck erweitert
werden muss. Dazu werden verschiedene Konzepte beschrieben, analysiert und bewertet.
Anschließend wird ein Konzept entworfen und implementiert, das alle notwendigen Anfor-
derungen erfüllt, BPEL zur Orchestrierung von RESTful Web Services zu nutzen.

3

Inhaltsverzeichnis

1 Einleitung 9

2 Grundlagen 13
2.1 Geschäftsprozesse . 13

2.2 Workflow . 14

2.3 Workflow-Management-Systeme . 14

2.4 BPEL . 16

2.5 Was ist REST? . 17

3 Orchestrierung von REST Services mit BPEL 21
3.1 Anforderungen . 21

3.2 Analyse bestehender Ansätze zur Orchestrierung von REST Services mit BPEL 22

3.2.1 RESTful BPEL mit WSDL 1.1 . 22

3.2.2 RESTful BPEL mit WSDL 1.1 Extension for REST 24

3.2.3 RESTful BPEL mit WSDL 2.0 . 28

3.2.4 RESTful BPEL Wrapped in SOAP . 31

4 Konzept zur Erweiterung von BPEL um RESTful Web Services zu orchestrieren 33
4.1 Allgemeines . 33

4.2 Konventionen . 34

4.3 XML-Erweiterung von BPEL . 34

4.3.1 Generelle Syntax . 35

4.3.2 Das <requestParameters> Element . 36

4.3.3 Das <responseParameters> Element . 38

4.3.4 Das <context> Element . 39

4.3.5 Das <responseHeader> Element . 41

4.4 Evaluierung des Konzepts anhand der Anforderungen aus 3.1 42

5 BPEL4REST - Implementierung 45
5.1 Verwendete Technologien - Entwicklungsumgebung 45

5.1.1 Apache ODE . 45

5.1.2 Apache Tomcat . 45

5.1.3 Apache HttpComponents Client . 46

5.1.4 Eclipse . 46

5.2 Architektur . 47

5.2.1 Übersicht . 47

5.2.2 Komponente Model . 47

5

5.2.3 Komponente Control . 48

5.3 Ablauf der Erweiterung . 51

5.4 Einschränkungen . 52

6 Verwandte Arbeiten 55
6.1 „RESTful Web service composition with BPEL for REST“ - Cesare Pautasso . . 55

6.1.1 Abgrenzung zu BPEL4REST . 59

6.2 BPEL light . 60

6.3 Towards Resource-Oriented BPEL . 60

6.4 Bite: Workflow Composition for the Web . 61

7 Zusammenfassung und Ausblick 63

Literaturverzeichnis 67

6

Abbildungsverzeichnis

2.1 Prozesse und Workflows, nach [LR00, Abbildung 1.2 Processes and Workflows] 15

2.2 Komponenten eines Workflow Management Systems, nach [LR00, Abbildung
3.1] . 16

5.1 Übersicht der Architektur von BPEL4REST . 47

5.2 Architektur des Models im Detail . 48

5.3 Architektur der Control-Komponente . 49

5.4 Ablauf der Erweiterung . 52

6.1 Referenz Architektur für die BPEL for REST Erweiterung nach[Pau09, Abbil-
dung 6.] . 59

6.2 Wie BPEL zur Modellierung von Ressourcen-Status genutzt werden kann,
nach [Ove, Abbildung 3.] . 61

Verzeichnis der Listings

2.1 Syntax der Definition eines Partnerlink-Typs in WSDL 17

2.2 Syntax der Definition eines Partnerlinks in BPEL 18

3.1 Syntax des HTTP-Bindings in WSDL 1.1, Auszug aus der Spezifikation 23

3.2 Beispiel der Syntax der WSDL 1.1 Extension for REST [wsd] 25

3.3 Beispiel der Syntax der WSDL 1.1 Extension for REST mit http:urlReplacement
[wsd] . 26

3.4 Beispiel der Syntax der WSDL 1.1 Extension for REST mit Headern [wsd] . . . 27

3.5 Beispiel der Definition von Fehlern in WSDL 1.1 for REST[wsd] 28

3.6 Übersicht der Syntax des HTTP-Bindings von WSDL 2.0 [wsd06b] 30

4.1 Generelle Syntax der Erweiterung anhand von POST 35

4.2 Detaillierte Syntax des requestParameters Element 36

4.3 Detaillierte Syntax des <responseParameters> Element 38

4.4 Detaillierte Syntax des context Elements . 39

4.5 Beschreibung . 41

7

6.1 Struktur der neuen BPEL Aktivitäten nach [Pau09, Abbildung 3.] 57

6.2 Struktur der Deklaration von Ressourcen in BPEL-Prozessen nach [Pau09,
Abbildung 4.] . 58

8

1 Einleitung

Fast jede Firma nutzt Computer um ihr Geschäft zu unterstützen. Sei es zum einfachen
Erstellen von Rechnungen oder Kostenvoranschlägen bei sehr kleinen Betrieben, bis zu
hoch-digitalisierten Konzernen, bei denen Computer sehr viele Aufgaben übernehmen.
Beispielsweise der gesamte Ablauf vom Entgegennehmen einer Bestellung bis zum Zusam-
menstellen und Verpacken der Lieferung. Nach dem Versand wird die Rechnungsstellung
und der Einzug des fälligen Betrages per Lastschriftverfahren zumeist wieder von Compu-
tern übernommen, während der menschliche Mitarbeiter nur kontrollierende Tätigkeiten
übernimmt.
Wie eine bestimmte Leistung zu erbringen ist, ist in vielen Unternehmen, zur Maximierung
der Effizienz, genau definiert. Durch sogenannte Geschäftsprozesse ist beschrieben, welche
Aktivitäten in welcher Reihenfolge durchgeführt werden müssen (siehe Kapitel 2.1) um
ein bestimmtes Ziel zu Erreichen. Ein Geschäftsprozess kann, als Aktivität, Teil eines über-
geordneten Geschäftsprozesses sein, sodass die gesamten Leistungen eines Unternehmens
in einem einzigen Geschäftsprozess mit vielen Teil-Prozessen dargestellt werden können.
Geschäftsprozesse modellieren demnach, wie der Prozess zur Erbringung einer Leistung, in
der Realität durchgeführt werden muss. Teile dieser Prozesse können dabei, wie oben bereits
beschrieben, allein von Computern ausgeführt werden. Sie werden Workflows genannt, siehe
Kapitel 2.2, und werden von sogenannten Workflow-Management-Systemen ausgeführt.
Workflow-Management-Systeme unterstützen zum Einen die Definition von Workflows,
zum Anderen liefern sie auch die Funktionalität, Instanzen dieser Workflows tatsächlich
auszuführen, siehe Kapitel 2.3.
Damit ein Workflow ausgeführt werden kann, muss er in erster Linie auch von einem System
verstanden werden. Dazu wurden Beschreibungssprachen definiert, die es ermöglichen,
Workflows mit allen benötigten Informationen zu modellieren.
Große Firmen begannen bereits in den frühen 90er-Jahren damit, ihre eigenen Workflow-
Systeme zu entwickeln, während Anbieter von Anwendungssoftware erst mitte der 90er-Jahre
begannen, ebenfalls eigene Workflow-Systeme zu entwickeln. Bis zu diesem Zeitpunkt hatte
sich kein System als Standard durchgesetzt.
1993 wurde die Workflow Management Coalition1 gegründet, mit dem Ziel Standards
zu schaffen, die das Workflow Management vereinheitlichen, sodass auch verschiedene
Workflow-Management-Systeme interoperabel sind. Das dient dem Zweck Anwendern Si-
cherheit zu geben, dass ihre Investitionen in Workflow-Management geschützt sind. Zu den
veröffentlichten Standards gehört beispielsweise das Workflow Referenz Modell, welches
allgemein ein Workflow-Management-System, sowie seine Komponenten und deren Schnitt-

1http://www.wfmc.org/

9

1 Einleitung

stellen untereinander, beschreibt (nähere dazu Informationen finden sich unter [Coa]).
Mit dem Aufkommen von Web Services als plattformunabhängige Softwareanwendungen,
deren Implementierung hinter einer WSDL-Schnittstelle verborgen ist, veröffentlichten IBM
und Microsoft im Jahr 2002 die Sprache BPEL zur Beschreibung von Geschäftsprozessen.
Die Aktivitäten der beschriebenen Geschäftsprozesse werden dabei ausschließlich durch
Web Services(mit WSDL 1.1-Schnittstellenbeschreibung) implementiert, siehe BPEL - 2.4.
Seit dem Jahr 2007 ist BPEL ein offizieller Standard der OASIS2.
Bereits im Jahr 2000 veröffentlichte Roy Fielding seine Dissertation mit dem Titel „Archi-
tectural Styles and the Design of Network-based Software Architectures“[Fie00], in der er
unter Anderem den Architektur Stil REST ableitet, siehe 2.5. REST ist ein Architekturstil für
Webanwendungen, der sich an der Architektur des WWW orientiert. Im folgenden werden
diese Web Anwendungen als REST Services oder RESTful Web Services bezeichnet.
Der OASIS Standard WS-BPEL 2.0 ist allerdings nur bedingt geeignet, solche Webanwen-
dungen zu nutzen. Siehe dazu Kapitel 3. Ziel dieser Arbeit ist es, diesen Umstand zu
ändern.

Ziel der Bachelorarbeit

Die Ziele der Bachelorarbeit sind folgende:

• Erhebung, Analyse, Vergleich und Bewertung verschiedener Ansätze, REST Ser-
vices für BPEL nutzbar zu machen.

• Entwurf eines Konzepts zur Erweiterung von BPEL, um RESTful Web Services
nutzbar zu machen.

• Prototypische Implementierung des entwickelten Konzepts.

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Grundlagen: In Kapitel 2 werden die grundlegenden Begriffe erläutert: Ge-
schäftsprozesse, Workflows, Workflow-Management, BPEL und REST.

Kapitel 3 – Orchestrierung von REST Services mit BPEL: Dieses Kapitel beschäftigt sich
mit bestehenden Möglichkeiten, REST Services mit BPEL zu orchestrieren und deren
Evaluation.

Kapitel 4 – Konzept zur Erweiterung von BPEL um RESTful Web Services zu orchestrieren:
In diesem Kapitel wird das Konzept zur Erweiterung von BPEL definiert und bespro-
chen.

2www.oasis-open.org

10

Kapitel 5 – BPEL4REST - Implementierung: Im Kapitel „BPEL4REST - Implementierung“
wird die tatsächliche Realisierung von BPEL4REST dokumentiert.

Kapitel 6 – Verwandte Arbeiten: Dieses Kapitel zeigt verwandte Arbeiten, beschreibt deren
Ansätze und grenzt sie von dieser Arbeit ab.

Kapitel 7 – Zusammenfassung und Ausblick: In diesem Kapitel werden die Ergebnisse die-
ser Arbeit zusammengefasst und bewertet. Anschließend wird noch ein Ausblick
gegeben.

11

2 Grundlagen

Im diesem Kapitel werden verschiedene Begriffe erklärt, die zum Verständnis dieser Arbeit
wichtig sind. Zunächst werden Geschäftsprozesse, Workflows und Workflow-Management-
Systeme kurz erläutert, danach wird erklärt auf BPEL und REST eingegangen.

2.1 Geschäftsprozesse

Für den Begriff des Geschäftsprozesses gibt es viele verschiedene Definitionen. Das GABLER
WIRTSCHAFTSLEXIKON definiert:

„ Folge von Wertschöpfungsaktivitäten (Wertschöpfung) mit einem oder mehreren Inputs
und einem Kundennutzen stiftenden Output. Geschäftsprozesse können auf verschiedenen
Aggregationsebenen betrachtet werden, z.B. für die Gesamtunternehmung, einzelne Sparten-
oder Funktionalbereiche. Der Geschäftsprozess ist zentraler Betrachtungsgegenstand des
Business Process Reengineering. “ [GWSS]

Thomas Davenport definiert einen Geschäftsprozess als strukturierte Menge von Aktivitäten
mit dem Ziel eine bestimmtes Ergebnis für einen bestimmten Kunden oder Markt herzustel-
len. Er folgert weiter, dass ein Geschäftsprozess eine bestimmte Ordnung dieser Aktivitäten
in Zeit und Raum darstellt, mit einem Anfang und einem Ende sowie klar definierten Ein-
und Ausgaben. [Dav93]

Hammer und Champy definieren den Geschäftsprozess als eine Sammlung von Aktivitäten,
die eine oder mehrere verschiedene Eingaben nimmt und daraus eine Ausgabe herstellt, die
einen Wert für den Kunden darstellt. [HC93]

Wenn man diese drei Definitionen „übereinanderlegt“ und die Gemeinsamkeiten extrahiert,
kann man folgende Definition ableiten:

Ein Geschäftsprozess ist eine vorgegebene Menge von Aktivitäten, die in einer bestimm-
ten Reihenfolge ausgeführt werden, um aus einer definierten Eingabe eine definierte
Ausgabe zu erzeugen, welche für einen bestimmten Empfänger einen höheren Wert hat
als die Eingabe.

13

2 Grundlagen

In der Realität sind diese Eingaben beispielsweise Rohstoffe, die in einzelnen Aktivitä-
ten schrittweise verarbeitet werden, bis ein Endprodukt entstanden ist, das für jemanden
einen höheren Wert darstellt. Als Beispiel sei hier bspw. die Autoproduktion genannt, bei
der, grob gesagt, aus Erzen ein Auto entsteht, das für den Kunden einen höheren Wert dar-
stellt, als das zugrunde liegende Erz. Der Kunde muss nicht zwingend ein Endverbraucher
sein. Auch ein interner Kunde, beispielsweise eine andere Abteilung, kann Empfänger der
Endprodukte von Geschäftsprozessen sein.

2.2 Workflow

Leymann und Roller schreiben in Ihrem Buch „Production Workflow“, dass Prozessmodelle
die Struktur eines Geschäftsprozesses der realen Welt darstellen. Sie werden nicht zwangs-
läufig von einem Computer ausgeführt.
Teile dieser Prozessmodelle können von Computern ausgeführt werden, andere Teile wieder-
um nicht. Die von Computern ausführbaren Teile bennenen sie mit dem Begriff „workflow
model“, siehe Abbildung 2.1. Workflows sind demnach, durch Computer ausführbare,
Geschäftsprozesse, und somit eine echte Untermenge der Geschäftsprozesse.
Ein Workflow hat drei Dimensionen [LR00]:

1. Prozesslogik: Aus der Prozesslogik geht hervor, was für die Durchführung eines
Workflows erforderlich ist. Das heisst: Welche Aktivitäten müssen in welcher Sequenz
ausgeführt werden.

2. Organisation: Die Organisations-Dimension beschreibt, wer welche Aktivität durch-
führen muss. Das heisst: Welche Rolle, Abteilung, Person muss welche Aktivität
ausführen.

3. IT-Infrastruktur: Die IT-Infrastruktur-Dimension zeigt welche IT-Ressourcen von wel-
cher Aktivität benötigt werden.

[LR00]

2.3 Workflow-Management-Systeme

Workflows sind Geschäftsprozesse, die von Computern ausgeführt werden. Um Workflows
auszuführen, müssen sie zunächst in all ihren Dimensionen definiert werden, um anschlie-
ßend von einem geeigneten System ausgeführt zu werden. Zu diesem Zweck kommen
„Workflow-Management-Systeme (WFMS)“ zum Einsatz. Workfow-Management-Systeme
haben die Aufgabe, Funktionalität bereitzustellten Workflows zu modellieren, zu verwalten,
Instanzen von Workflows zu erstellen und diese auszuführen. Dazu verfügen sie über Edito-
ren, aber auch über Komponenten, die in der Lage sind, alle Anwendungen anzusteuern,
die ein Workflow zur Ausführung benötigt.
Leymann und Roller beschreiben den Aufbau eines Workflow-Management-Systems aus
vier Hauptkomponenten [LR00]:

14

2.3 Workflow-Management-Systeme

REAL WORLD COMPUTER

Process Model Workflow Model

WorkflowProcess

In
st

an
ce

In
st

an
ce

Abbildung 2.1: Prozesse und Workflows, nach [LR00, Abbildung 1.2 Processes and Work-
flows]

1. Metamodell: Das Metamodell definiert allgemein die Konstrukte und Funktionen, die
von einem Workflow Management System unterstützt werden. Dazu gehört beispiels-
weise die Struktur von Prozessmodellen, sowie Operationen, die auf Prozessinstanzen
ausgeführt werden können. Ein wichtiger Teil des Metamodells ist die Sprache, in der
Workflows definiert werden.

2. Buildtime: Die Buildtime stellt Funktionalität bereit, mit der Anwender Workflows in
allen drei Dimensionen definieren können.

3. Runtime: Die Runtime ist dafür verantwortlich, Workflows nach den Regeln des
Metamodells auszuführen. Dazu gehört beispielsweise das Erstellen, Verwalten und
Ausführen von Prozessinstanzen.

4. Datenbank: Aufgabe der Datenbank ist es, sämtliche Daten zu speichern, die von
der Runtime und der Buildtime verwaltet werden. Sie enthält also zum einen Daten
der Buildtime, wie beispielsweise Prozessmodelle, aber auch Daten der Runtime, wie
beispielsweise Prozessinstanzen.

Siehe Abbildung 2.2 zum Aufbau einer WFMS nach [LR00].

15

2 Grundlagen

Buildtime

Runtime

Modellierungswerkzeug

Workflow Management System

Datenbank

Prozessmodell

Applikationen
und IT-

Werkzeuge

Abbildung 2.2: Komponenten eines Workflow Management Systems, nach [LR00, Abbildung
3.1]

2.4 BPEL

Das Akronym BPEL ist die Kurzform für WS-BPEL und steht für Web Services Business
Process Execution Language. Im weiteren wird nur das Akronym BPEL verwendet. Die
aktuelle Version von BPEL ist die Version 2.0, die am 11.04.2007 als OASIS Standard 1

veröffentlich wurde. BPEL ist eine, auf XML basierende, Sprache, mit der es möglich ist, das
Verhalten von Geschäftsprozessen zu modellieren.
BPEL ist damit eine Sprache um Workflows zu modellieren und auszuführen, die insofern
eingeschränkt sind, dass sie ausschließlich Web Services zur Interaktion mit der Außenwelt
nutzen. Im weiteren wird dennoch der Begriff „Geschäftsprozess“ aufgrund seiner Nähe
zum Begriff „Business Process“ verwendet.
BPEL wurde entworfen, um Web Services zu orchestrieren, die Aktivitäten implementieren,
die von Geschäftsprozessen genutzt werden. Diese Web Services werden dabei durch den
W3C Standard WSDL 1.1[CCMW01] beschrieben, so dass BPEL selbst keine Details der
Implementierung oder der technischen Realisierung des Nachrichtentransports kennen muss.
Ebenfalls sieht BPEL vor, dass durch BPEL definierte Prozesse ebenfalls über WSDL 1.1
angeboten werden und somit wiederum in anderen BPEL-Prozessen genutzt werden können.
BPEL selbst kennt 2 verschiedene Arten von Prozessen. Zum einen gibt es ausführbare

1https://www.oasis-open.org/

16

2.5 Was ist REST?

Listing 2.1 Syntax der Definition eines Partnerlink-Typs in WSDL
<wsdl:definitions name="NCName" targetNamespace="anyURI" ...>

...

<plnk:partnerLinkType name="NCName">

<plnk:role name="NCName" portType="QName" />

<plnk:role name="NCName" portType="QName" />?

</plnk:partnerLinkType>

...

</wsdl:definitions>

Prozesse, die darauf ausgelegt sind, von einer BPEL-Engine, auch nebenläufig, ausgeführt
zu werden und die deshalb detaillierte Informationen enthalten müssen. zum anderen gibt
es Abstrakte Prozesse, die eine beschreibende Rolle haben und deshalb oft technische, zur
Ausführung notwendige, Details verbergen. Eine BPEL-Engine ist eine Software, die das
Ausführen von BPEL-Prozess-Instanzen ermöglicht. Dazu müssen die BPEL-Prozesse in die
Engine gebracht werden (deployed). Ein Beispiel für eine BPEL-Engine ist Apache ODE 2.
Zur Modellierung von Geschäftsprozessen stehen in BPEL verschiedene Konzepte zur Verfü-
gung.
Es gibt in BPEL die Möglichkeit Nachrichten synchron oder asynchron mit Web Services
zu kommunizieren. Empfangene Nachrichten können innerhalb von BPEL in Variablen
gespeichert werden. Da BPEL eine XML-basierte Sprache ist und auch das interne Da-
tenmodell auf XML aufbaut, sind auch die Variablen auf XML-Strukturen beschränkt. So
gespeicherte Nachrichten können innerhalb von BPEL mittels XPath 1.1 manipuliert werden.
Das Versenden, Empfangen und Verarbeiten von Nachrichten geschieht in BPEL durch
Aktivitäten(activities).
Notwendig um mit Web Services zu kommunizieren sind auch sogenannte Partnerlinks.
Partnerlinks stellen die Verbindung zu Web Services dar. Dazu müssen in Web Services in
ihrer WSDL Schnittstelle sogenannte partnerLinkTypes definieren. In diesen Partnerlink-
Typen können dann Rollen definiert werden, die einem bestimmten portType zugeordnet
sind (Listing 2.1). Die Rollen, die von Web Services angeboten werden, können dann einem
Partnerlink zugewiesen und der Web Service kann in BPEL aufgerufen werden(Listing 2.2).
Als weiteres Konstrukt stehen in BPEL noch sogenannte Scopes zur Verfügung. Scopes
sind in BPEL Aktivitäten, die unter anderem ihre eigene Variablen und Partnerlinks haben
können. Sie eignen sich dazu, Aktivitäten logisch zu gruppieren, um sie beispielsweise
transaktional auszuführen[LLN11]. Die Spezifikation von BPEL ist hier zu finden: [TC07].

2.5 Was ist REST?

REST, kurz für Representational State Transfer ist ein Architekturstil, der von Roy Fielding im
Jahr 2000 im Rahmen seiner Dissertation definiert wurde[Fie00]. Fielding nennt REST einen
hybriden Stil, der von verschiedenen netzwerk-basierten Architekturstilen abgeleitet und

2ode.apache.org

17

2 Grundlagen

Listing 2.2 Syntax der Definition eines Partnerlinks in BPEL
<partnerLinks>

<partnerLink name="NCName"

partnerLinkType="QName"

myRole="NCName"?

partnerRole="NCName"?

initializePartnerRole="yes|no"? />+

</partnerLinks>

mit zusätzlichen Einschränkungen, die eine einheitliche Verbindungsschnittstelle (uniform
connector interface) definieren, kombiniert ist [Fie00].
Um REST zu definieren, beschreibt Fielding den Null-Stil, der nur eine leere Menge von
Einschränkungen enthält. Anschließend erweitert er diese Menge inkrementell um sechs
Einschränkungen, bis REST letztendlich definiert ist.

Die erste Einschränkung ist die Beschränkung von REST auf die Client-Server-Architektur.
Das Kernprinzip der Client-Server-Architektur ist die Trennung von Zuständigkeiten. Durch
das Trennen der Zuständigkeit für Benutzerschnittstellen und der Zuständigkeit für Da-
tenhaltung wird die Portabilität der Benutzerschnittstelle über verschiedene Plattformen
verbessert und die Skalierbarkeit verbessert sich durch einfachere Serverkomponenten. Der
vielleicht wichtigste Aspekt im Web, nach Fielding, ist jedoch die Tatsache, dass verschiedene
Komponenten unabhängig voneinander entwickelt werden können.

Die zweite Einschränkung, die Fielding seinem neuen Architekturstil auferlegt, ist das
Gebot der Statuslosigkeit in der Client-Server-Interaktion. Die Kommunikation zwischen
Client und Server muss immer statuslos sein. Jede Anfrage vom Client an den Server muss
alle notwendigen Informationen beinhalten, damit der Server die Anfrage versteht und
verarbeiten kann.
Diese Einschränkung beeinflusst laut Fielding die Eigenschaften von REST in Bezug auf
Sichtbarkeit, Zuverlässigkeit und Skalierbarkeit.
Die Sichtbarkeit wird laut Fielding dadurch verbessert, dass ein Monitoring-System auf
nicht mehr schauen muss, als das Datum von Anfragen, um die Natur einer Anfrage zu
bestimmen.
Die Zuverlässigkeit verbessert sich, weil teilweise Ausfälle leichter repariert werden können.
Die Skalierbarkeit verbessert sich deshalb, weil kein Status zwischen verschiedenen Anfragen
gespeichert werden muss.
Nachteil der statuslosen Kommunikation ist laut Fielding eine verschlechterte Netz-
Performanz, weil der Nachrichten-Overhead zunimmt. Zusätzlich verliert der Server an
Kontrolle über die Konsistenz des Applikationsverhaltens, weil der Applikationsstatus allein
beim Client gehalten wird. Daher ist die gesamte Applikation von der semantisch korrekten
Implementierung des Clients abhängig.

Fielding definiert das Layered System als dritte Einschränkung. Diese Einschränkung
ist eine Weiterentwicklung der Client-Server Einschränkung. Das Layered System soll laut
Fielding die Internet-Skalierbarkeit verbessern. Der Layered System Stil erlaubt es einer

18

2.5 Was ist REST?

Architektur aus hierarchischen Schichten aufgebaut zu werden indem das Verhalten einzel-
ner Komponenten eingeschränkt wird, so dass sie nicht über direkt angrenzende Schichten
„sehen“ können.

Die vierte Einschränkung, betrifft Caching. Das Ziel ist es, dadurch die Netzwerk-Effizienz
zu verbessern. Notwendig dazu ist, dass Daten innerhalb von Antworten für bestimmte
Anfragen implizit oder explizit als cacheable oder non-chacheable gekennzeichnet werden.
Sollte eine Antwort cacheable sein, kann der Cache des Clients diese Antwort für spätere,
äquivalente Anfragen wiederverwenden. Die so gewonnen Vorteile sind, das manche Interak-
tionen zwischen Client und Server teilweise oder komplett entfallen können. Das verbessert
die Effizienz, Skalierbarkeit und die vom Nutzer empfundene Performanz dadurch, dass die
durchschnittliche Latenz einer Serie von Interaktionen zwischen Client und Server reduziert
wird. Der Nachteil ist, dass Caching die Zuverlässigkeit verschlechtern kann, wenn sich
veraltete Daten innerhalb des Caches signifikant von den Daten unterscheiden, die von einer
bestimmten Anfrage direkt an den Server, geliefert würden.

Die fünfte Einschränkung ist das Gebot der einheitlichen Schnittstelle. Fielding beschreibt
die einheitliche Schnittstelle als „zentrales Feature“, mit dem sich der REST Architektur-
stil am deutlichsten von anderen netzwerk-basierten Stilen unterscheidet. Laut Fielding
vereinfacht sich dadurch die gesamte System-Architektur und die Sichtbarkeit von Inter-
aktionen verbessert sich. Nachteil der einheitlichen Schnittstelle ist eine Verschlechterung
der Effizienz, da Informationen in standardisierter Form übertragen werden anstelle von
applikations-spezifischer Form. Laut Fielding ist die REST Schnittstelle dafür entworfen,
bei großen Hypermedia Daten-Transfers effizient zu sein, um für das Internet optimiert
zu sein. Das Resultat aber ist eine Schnittstelle, die nicht optimal ist für andere Formen
architekturieller Interaktion.[Fie00, 5.1.5]
Um eine einheitliche Schnittstelle für REST zu beschreiben legt Fielding vier weitere
Schnittstellen-Einschränkungen fest: Identifikation von Ressourcen, Manipulation von Res-
sourcen durch Repräsentationen, selbst-beschreibende Nachrichten und Hypermedia as the
engine of applicationen state (HATEOAS). Diese Einschränkungen werden im folgenden
Abschnitt erklärt.

Eine grundlegende Abstraktionseinheit in REST, ist die Ressource. Innerhalb von REST
kann eine Ressource alles darstellen, was einen Namen bekommen könnte. Beispielsweise
ein Dokument, ein Service, eine Zusammenfassung anderer Ressourcen etc.
Wichtig ist, dass jede Ressource eindeutig referenziert werden kann. Das entspricht der
Schnittstellen-Einschränkung Identifikation von Ressourcen. Um dies zu gewährleisten,
werden Uniform Resource Identifier3 , kurz URI, verwendet, die einen globalen Namens-
raum bilden.
Fielding beschreibt Ressourcen als Mapping auf eine Menge von Entitäten. Um Ressourcen
zu nutzen, brauchen die Ressourcen auch Repräsentationen ihrer selbst, die von Kom-
ponenten einer REST-Anwendung, bspw. ein Client, genutzt werden können. Dabei zeigt

3http://www.ietf.org/rfc/rfc3986.txt

19

2 Grundlagen

eine Repräsentation, die vom Server verwaltet wird, den aktuellen Stand einer Ressource
an. Um Ressourcen zu verändern, also zu manipulieren, verändert ein Client die Reprä-
sentation nach seinen Wünschen und schickt sie zurück an den Server. Dieser führt dann
eine Aktualisierung seiner Ressource gemäß der, vom Client manipulierten, empfangenen
Repräsentation durch. Das beschreibt die Schnittstellen-Einschränkung Manipulation von
Ressourcen durch Repräsentationen. Eine Repräsentation besteht hauptsächlich aus Daten
und Meta-Daten, die die Daten beschreiben. Als Beispiel hierzu sei ein konkret existierendes
Auto genannt, das über einen Webshop verkauft wird. Die Ressource ist in diesem Beispiel
das Auto, das durch verschiedene Repräsentationen dargestellt wird. Diese Repräsentationen
können vom Bild des Autos bis zu detaillierten Informationen über das Auto im XML-Format
reichen.
Vor allem textuelle Repräsentationen, wie bspw. im XML-Format, können auch Referen-
zen auf weitere Ressourcen enthalten. Als Beispiel sei hier eine Online-Auktions-Plattform
genannt, bei der beispielsweise Repräsentationen von einzelnen Artikeln nicht nur Infor-
mationen zum Artikel selbst, sondern auch Referenzen zu anderen Ressourcen enthalten,
die mit der repräsentierten Ressource in Verbindung stehen. Beispielsweise den Verkäufer
des Artikels, andere Artikel die ähnlich sind oder auch andere Artikel des Verkäufers.
Diese Referenzen und Verknüpfungen von Objekten beschreiben HATEOAS. Die selbst-
beschreibenden Nachrichten resultieren in erster Linie aus der Beschränkung auf statuslose
Interaktion zwischen Client und Server. Das bedeutet, wie weiter oben zum Teil beschrieben,
dass Nachrichten alle notwendigen Informationen enthalten müssen, damit der entge-
gennehmende Server die Nachricht versteht und verarbeiten kann. Dazu werden auch
Standardmethoden verwandt, die von jeder Ressource verstanden werden.
Im HTTP Umfeld sind diese Standardmethoden vor allem GET, PUT, POST und DELETE,
die dem CRUD-Architekturstil ähneln.
REST-Systeme sind also vor allem eine Menge von eindeutig identifizierbaren Einheiten, die
alle dieselben Methoden verstehen, und jeweils durch unterschiedliche Repräsentationen
dargestellt und manipuliert werden können. REST-konforme Anwendungen sind in diesem
Sinne Anwendungen, die sich den Regeln des REST Architekturstils unterwerfen.

Als sechste Einschränkung nennt Fielding noch Code-On-Demand. Diese Einschränkung ist
aber optional. Mit Code-On-Demand ist gemeint, dass die Client-Funktionalität erweitert
werden kann, indem Clients Code, in Form von Applets oder Skripten, herunterladen und
ausführen können. Das vereinfacht laut Fielding die Clients, indem die Anzahl der vorher
zu implementierenden Features verkleinert wird.

20

3 Orchestrierung von REST Services mit BPEL

Unter der Orchestrierung von REST Services mit BPEL wird im folgenden Kapitel die Nut-
zung von REST Services in BPEL-Prozessen verstanden. Nachfolgend wird „Orchestrierung
von REST Services mit BPEL“ durch „RESTful BPEL“ abgekürzt.
Als REST Services gelten alle Services, die ihre Dienste, über eine REST Schnittstelle, mittels
HTTP-Protokoll und HTTP-Verben zur Verfügung stellen.

3.1 Anforderungen

Um RESTful BPEL zu praktizieren müssen bestimmte Anforderungen erfüllt sein. Ein zentra-
les Prinzip der REST-Architektur, ist das Prinzip der Einheitlichen Schnittstelle[Fie00, 5.1.5
Uniform Interface]. Wichtige Aspekte der einheitlichen Schnittstelle sind die Identifikation
von Ressourcen, Manipulation von Ressourcen durch Repräsentationen, selbst-beschreibende
Nachrichten und HATEOAS. Folgende Anforderungen werden an RESTful BPEL gestellt:

1. Die URI von HTTP-Anfragen muss zur Laufzeit eines BPEL-Prozesses manipulier-
bar sein.

Begründung: Die Identifikation von Ressourcen erfolgt im HTTP Umfeld über Uni-
form Resource Identifier1. Laut HATEOAS können Ressourcen auch auf andere
Ressourcen verweisen. Aus diesem Grund kann die URI bestimmter HTTP-Anfragen
erst zur Laufzeit eines BPEL-Prozesses bekannt sein.

2. Die Content-Negotiation muss für alle REST-Aufrufe in vollem Umfang unterstützt
werden.

Begründung: REST Ressourcen können über viele verschiedene Repräsentationen
verfügen. Es ist möglich, dass ein BPEL-Prozess mehrere verschiedene Repräsenta-
tionen der selben Ressource benötigt, beispielsweise, wenn zunächst eine formale
Beschreibung und anschließend eine technische Beschreibung benötigt wird. Es muss
also möglich sein bei gleichbleibendem Endpunkt einer Ressource den angeforderten
Datentyp zu ändern.

1http://www.ietf.org/rfc/rfc3986.txt

21

3 Orchestrierung von REST Services mit BPEL

3. HTTP-Header müssen für alle REST-Aufrufe eines BPEL-Prozesses manipulierbar
sein.

Begründung: REST beschränkt die Kommunikation zwischen seinen Komponenten
auf selbst-beschreibende Nachrichten. Um Nachrichten mit Meta-Daten zu beschreiben,
verwendet HTTP Header-Felder. Weiterhin werden von den Header-Feldern wichtige
Daten übermittelt. Zum Beispiel Angaben zum Caching oder zur Authentifizierung.

3.2 Analyse bestehender Ansätze zur Orchestrierung von REST
Services mit BPEL

In diesem Kapitel werden verschiedene Ansätze, RESTful BPEL zu praktizieren, besprochen.
Möglichkeiten, RESful BPEL zu praktizieren, werden dabei zunächst aufgezeigt und be-
schrieben. Anschließend werden sie anhand der Anforderungen, definiert in 3.1, untersucht
und danach wird ein Fazit über die Eignung, auf diese Weise RESTful BPEL zu praktizieren,
gezogen. Als geeignet wird eine Möglichkeit nur angesehen, wenn alle Anforderungen aus
3.1 erfüllt sind.

3.2.1 RESTful BPEL mit WSDL 1.1

Quelle:[CCMW01]

Beschreibung

Die WSDL 1.1 Spezifikation beinhaltet ein Binding für HTTP 1.1 für die Verben GET und
POST. Es können aber alle HTTP-Verben verwendet werden. Ursprünglich waren diese beiden
HTTP-Bindings gedacht, um die Interaktion zwischen Webseiten und Internet-Browsern zu
beschreiben. Die Syntax ist in Listing 3.1 zu sehen.

Beschreibung der wichtigsten Elemente aus Listing 3.1

http:adress: Das location Attribut im http:address Element spezifiziert die Basis-URI für
den port.

http:binding: Das http:binding Element zeigt an, dass dieses Binding das HTTP Protokoll
nutzt, das Attribut verb beschreibt, welches HTTP-Verb genutzt werden soll. Die
WSDL 1.1 Spezifikation [CCMW01] sagt aus, dass GET und POST übliche Werte
sind. Es können weiterhin aber auch andere Werte verwendet werden, sodass alle
HTTP-Verben mittels WSDL 1.1 nutzbar sind.

22

3.2 Analyse bestehender Ansätze zur Orchestrierung von REST Services mit BPEL

Listing 3.1 Syntax des HTTP-Bindings in WSDL 1.1, Auszug aus der Spezifikation
<definitions >

<binding >

<http:binding verb="nmtoken"/>

<operation >

<http:operation location="uri"/>

<input >

<-- mime elements -->

</input>

<output >

<-- mime elements -->

</output>

</operation>

</binding>

<port >

<http:address location="uri"/>

</port>

</definitions>

http:operation: Im http:operation Element kann über das location Attribut eine relative
URI für die Operation spezifiziert werden. Die URI aus den location Attributen von
http:address und http:operation werden zusammengefasst und bilden die komplette
URI.

http:urlEncoded: Das http:urlEncoded Element zeigt an, dass alle Nachrichtenteile (mes-
sage parts), mittels standard URI-Encoding-Regeln(name1=value&name2=value...) in
die URI der HTTP-Anfrage kodiert werden. Informationen zum URI-Encoding: [uri99,
17.13/ 17.13.4/ B2.2]

http:urlReplacement: Das http:urlReplacement Element zeigt an, dass alle Nachrichten-
teile (message parts), mittels einem Replacement-Algorithmus in die URI der HTTP-
Anfrage kodiert werden. Dieser Algorithmus funktioniert wie nachfolgend beschrieben.

Funktionsweise des Replacement-Algorithmus:

• Die relative URI des location Attributs von http:operation wird nach einer
Menge von Suchmustern abgesucht, bevor der Wert des location Attributs von
http:operation mit dem Wert des location Attributs von http:address kombiniert
wird.

• Es gibt ein Suchmuster je Nachrichtenteil. Der Suchstring ist der Name des
Nachrichtenteils, der durch „(“ und „)“ eingeklammert ist.

• Für jeden Treffer, wird der Wert des korrespondierenden Nachrichtenteils in die
URI an den Ort des Treffers geschrieben. Die Suche nach Treffern findet statt
bevor Werte ersetzt werden (ersetzte Werte lösen keine zusätzlichen Treffer aus).

• Nachrichtenteile dürfen KEINE, sich wiederholende, Werte haben.

23

3 Orchestrierung von REST Services mit BPEL

Analyse

1. Die URI wird in WSDL 1.1 jeweils durch das location-Attribut der http:address
und http:operation gebildet. Mittels des http:urlReplacement Elements und des
http:urlEncoding Elements lassen sich Teile der relativen URI des location Attributs
aus dem http:operation durch Werte des Inputs ersetzen. Allerdings werden dazu
immer alle Nachrichtenteile verwendet. Es ist also nicht möglich Teile der URI ersetzen
zu lassen und dennoch eine Nachricht an den Server zu senden. Weiterhin ist die
Unterstützung von http:urlReplacement und http:urlEncoding nur bedingt gegeben.
Oracle bzw. damals noch Sun Microsystems erlaubt sowohl urlReplacement als auch
urlEncoding nur bei HTTP-GET[Mic08]. Um allerdings Links zu folgen, die evtl. zu
einem anderen Host gehören, muss entweder server-seitigen redirects gefolgt werden
oder während der Laufzeit des BPEL-Prozesses, bestehende WSDL-Dateien mittels
„Endpunkt-Injektion“ verändert werden, da Partnerlinks in BPEL zur Deploy-Zeit
definiert sein müssen. Ansonsten müssen alle benötigten Endpunkte schon vor der
tatsächlichen Ausführung bekannt sein.

2. Die WSDL 1.1 Spezifikation beinhaltet ein MIME Binding [CCMW01, 5. MIME Binding],
mit welchem der MIME Type von Input und Output angegeben werden kann. Diese
Informationen können zur Content-Negotiation verwendet werden. Das MIME Binding
wird auch im binding Element definiert.

3. Der Zugriff auf HTTP-Header ist mit WSDL 1.1 nicht möglich.

Fazit

Um mit WSDL 1.1 RESTful BPEL zu praktizieren ist es nötig, innerhalb der WSDL-Datei
für jede einzelne Ressource(also für jede URI), pro HTTP-Methode die genutzt werden soll,
bindings zu definieren. Grund dafür ist die starke Einschränkung von http:urlReplacement
und http:urlEncoding. Sollten also auf einer Ressource 5 HTTP-Verben (GET, HEAD, PUT,
POST, DELETE) genutzt werden, müssen 5 Bindings, und damit auch 5 portTypes und 5 ports
definiert werden. Bei RESTful Web Services, die dem HATEOAS-Prinzip folgen, müssten
zudem noch zur Laufzeit Pfade geändert werden. Weiterhin ist die Content-Negotiation sehr
stark eingeschränkt und der Zugriff auf HTTP-Header gar nicht möglich. Damit ist WSDL
1.1 für RESTful BPEL nicht geeignet.

3.2.2 RESTful BPEL mit WSDL 1.1 Extension for REST

Quelle:[wsd]

24

3.2 Analyse bestehender Ansätze zur Orchestrierung von REST Services mit BPEL

Beschreibung

Um die Nutzung von REST innerhalb der ODE zu verbessern, wird innerhalb der ODE eine
Erweiterung für WSDL 1.1 angeboten. Dafür wurde WSDL 1.1 um vier spezifische Punkte
erweitert bzw. verändert.

Erweiterungen an WSDL 1.1 durch Apache ODE

1. Ein HTTP-Verb pro Operation.

2. Eindeutiges URI Template für alle Operationen.

3. Zugriff auf HTTP-Header.

4. Fehlerbehandlung.

Ein Verp pro Operation: Anstatt das HTTP-Verb im http:binding Element zu definieren
wird das Verb eine Ebene tiefer im http:operation Element definiert. Dies führt dazu,
dass pro Ressource nur noch ein binding und somit auch nur ein portType und ein
port benötigt wird (Listing 3.2).

Listing 3.2 Beispiel der Syntax der WSDL 1.1 Extension for REST [wsd]
<definitions ...xmlns:odex="http://www.apache.org/ode/type/extension/http"/>

<!-- many wsdl elements are ommited to highlight the interesting part -->

<binding name="blogBinding" type="blogPortType">

<operation name="GET">

<odex:binding verb="GET" />

</operation>

<operation name="DELETE">

<odex:binding verb="DELETE"/>

</operation>

</binding>

</definitions>

Eindeutiges URI Template für alle Operationen: ODE definiert 3 Probleme, die mit der
Adressierung des WSDL 1.1 HTTP-Bindings auftreten:

1. Das location Attribut der http:operation ist für die ODE erst sichtbar, wenn der
Service aufgerufen wird.

2. http:urlReplacement wird nur für HTTP-Get unterstützt.

3. http:urlReplacement setzt voraus, dass alle Teile der Input-message in der
http:operation location vorkommen. Mögliche ids müssen also Teil der Nachricht
sein. Im HTTP-Body dürfen diese Daten teilweise nicht vorkommen.

25

3 Orchestrierung von REST Services mit BPEL

Apache ODE WSD L1.1 Extension for REST löst diese Probleme dadurch, dass das
http:operation Element aus- oder leergelassen werden kann. Die komplette Ressourcen-
URI wird im http:address Element gesetzt. Weiterhin ist das http:urlReplacement
gelockert. Es müssen nicht alle Teile der Input-message Teil des URI-Templates sein.
Ein Teil kann für die URI, ein anderer für den Message-Body verwendet werden. Ein
Beispiel dafür ist in Listing reflst:wsdl11extbsp zu sehen.
Im http:operation Element wird die URI im Attribut location mit einem Platzhalter
definiert: http://blog.org/post/ Durch die Lockerung von urlReplacement kann dieser
Platzhalter vor der Ausführung ersetzt werden. Das HTTP-Verb wird in diesem Beispiel
erst im Element odex:binding angegeben, was, wie zu Beginn des Kapitels beschrieben,
dazu führt, dass weniger bindings, portTypes und ports definiert werden müssen.

Listing 3.3 Beispiel der Syntax der WSDL 1.1 Extension for REST mit http:urlReplacement
[wsd]
<definitions ... xmlns:odex="http://www.apache.org/ode/type/extension/http"/>

<service name="blogService">

<port name="blogPort" binding="blogPortType">

<!-- here is the full URI template, using curly brackets -->

<http:address location="http://blog.org/post/{post_id}"/>

</port>

</service>

<binding name="blogBinding" type="blogPortType">

<operation name="PUT">

<odex:binding verb="PUT" />

<!-- location attribute intentionally blank -->

<http:operation location=""/>

<input>

<http:urlReplacement/>

<!-- an additional part can be mapped to the request body even if

urlReplacement is used-->

<mime:content type="text/xml" part="post_content"/>

</input>

<output/>

</operation>

</binding>

</definitions>

Zugriff auf HTTP-Header Da HTTP sehr viel Informationen über Header austauscht,
erlaubt Apache ODE WSDL 1.1 Extension for REST sowohl Request-, als auch Response-
Header in den Input bzw. Output Elementen zu definieren. Siehe dazu Listing 3.4

Fehlerbehandlung

Für diverse Status-Codes werden von der ODE automatisch Fehler ausgelöst:

• 3xx Redirections(erst ab 100 redirects)

• 401 Unauthorized

• 408 Request Timeout

26

3.2 Analyse bestehender Ansätze zur Orchestrierung von REST Services mit BPEL

Listing 3.4 Beispiel der Syntax der WSDL 1.1 Extension for REST mit Headern [wsd]
<definitions ... xmlns:odex="http://www.apache.org/ode/type/extension/http"/>

<binding name="blogBinding" type="blogPortType">

<operation name="PUT">

<odex:binding verb="PUT" />

<http:operation location=""/>

<input>

<http:urlReplacement/>

<mime:content type="text/xml" part="post_content"/>

<!-- set a standard request header from a part -->

<odex:header name="Authorization" part="credentials_part"/>

<!-- set a custom request header with a static value -->

<odex:header name="MyCustomHeader" value="ode@apache.org" />

</input>

<output>

<mime:content type="text/xml" part="post_content"/>

<!-- set 1 response header to a part -->

<odex:header name="Age" part="age_part"/>

</output>

</operation>

</binding>

</definitions>

• 503 Service Unavailable

• 504 Gateway Timeout

Für weitere Status-codes werden Fehler ausgelöst wenn:

• Die operation mindestens einen Fehler im abstrakten Teil und ein Fehler-Binding
hat,

• der Content-Type (der Response) Header ein XML-Dokument beschreibt,

• der Response-Body nicht leer ist.

Eine Liste der weiteren Status-Codes ist zu finden unter: [wsd, Fault Support]. Ein
Beispiel für die Definition eines Fehlers ist in Listing 3.5 zu sehen.
Definition der HTTP-Status-Codes: [htt99, 10 Status Code Definitions].

Analyse

1. Mit Hilfe der Apache ODE WSDL 1.1 Extension for REST ist es möglich mittels
http:urlReplacement sehr dynamisch auf URI-Veränderungen zu reagieren. Allerdings
ist es auch bei dieser Erweiterung nicht möglich die komplette URI zur Laufzeit zu
ändern, so dass ein anderer REST Service oder Host schon zur Deploy-Zeit bekannt
sein muss.

2. Die Content-Negotiation ist unverändert zu WSDL 1.1.

27

3 Orchestrierung von REST Services mit BPEL

Listing 3.5 Beispiel der Definition von Fehlern in WSDL 1.1 for REST[wsd]
<definitions ... xmlns:odex="http://www.apache.org/ode/type/extension/http"/>

<portType name="BlogPortType">

<operation name="PUT">

<input message="..."/>

<output message="..."/>

<fault name="UpdateFault" message="tns:UpdateFault"/>

</operation>

</portType>

<binding name="blogBinding" type="blogPortType">

<operation name="PUT">

<odex:binding verb="PUT" />

<http:operation location=""/>

<input> ... </input>

<output> ... </output>

<!-- fault binding -->

<fault name="UpdateException">

<!-- name attribute is optional if there is only one fault for this operation

-->

<!-- <odex:fault name="UpdateFault"/> -->

<odex:fault/>

</fault>

</operation>

</binding>

</definitions>

3. Die Unterstützung für HTTP-Header ist gegeben. Probleme die sich hierbei aber
stellen, sind zum Beispiel Authorization-Header. Für Basic Auth ist es recht einfach
die richtigen Credentials „von Hand“ zu berechnen. Bei aufwändigeren Verfahren wie
bspw. DIGEST-Authentifizierung ist die Extension nicht ausreichend.

Fazit

Die Apache ODE WSDL 1.1 Extension for REST erhöht den Komfort, für RESTful BPEL
deutlich im Vergleich zum Standard WSDL 1.1.
Hauptkritikpunkt dieser WSDL-Erweiterung ist, dass der Nachteil eines statischen Hosts
von WSDL 1.1 erhalten bleibt.
Ein weiterer Kritikpunkt ist die Unterstützung für Header, die zwar weitgehend ausreicht,
aber nicht vollständig ist (bspw. bei der Authentifizierung). Somit ist die Apache ODE WSDL
1.1 Extension for REST für RESTful BPEL nicht geeignet.

3.2.3 RESTful BPEL mit WSDL 2.0

WSDL 2.0 bietet deutlich mehr Funktionalität zur Verwendung von HTTP als WSDL 1.1. Die
wichtigsten Unterschiede in Bezug auf RESTful BPEL werden im Folgenden besprochen.
Quellen: [wsd06a][wsd06b][CCMW01]

28

3.2 Analyse bestehender Ansätze zur Orchestrierung von REST Services mit BPEL

Beschreibung

Wesentliche Unterschiede zwischen WSDL 1.1 und WSDL 2.0.:

• HTTP-Methoden: Die Angabe des HTTP-Verbs erfolgt in WSDL 2.0 auf der Ebene des
operation Elements. Dies verringert die Anzahl der benötigten Interfaces(PortTypes),
Endpoints(Ports) und Bindings signifikant im Vergleich zur Vorgängerversion WSDL
1.1.

• Fehlerbehandlung: WSDL 2.0 erlaubt es Fehler im binding mittels fault Element zu
definieren, die zu HTTP-Status-Codes korrespondieren und ausgelöst werden, wenn
dieser Status-Code zurückgegeben wird.

• HTTP-Header-Unterstützung: WSDL 2.0 erlaubt es HTTP-Header zu setzen. Dies
kann sowohl im Element fault direkt im Binding, aber auch in den Elementen input
und output in der operation deklariert werden.

• Authentifizierungs-Unterstützung: WSDL 2.0 unterstützt HTTP-Authentifizierung
für die Authentifizierungsarten basic und digest access. Dies kann in end-
points mit den beiden optionalen Attributen whttp:authenticationType und
whttp:authenticationType realisiert werden.

• Content-Negotiation: Die Content-Negotiation mittels MIME-Binding wurde in
WSDL 2.0 entfernt und ersetzt durch drei neue Attribute im operation Element:
whttp:inputSerialization, whttp:outputSerialization und whttp:faultSerialization.

• URI: Die URI wird im endpoint Element im Attribut address deklariert und mit dem
whttp:location Attribut aus dem operation kombiniert. Die bei WSDL 1.1 (und ODE
Extension) vorhandenen Relemente http:urlEncoded und http:urlReplacement gibt es
in WSDL 2.0 nicht mehr. Dafür erlaubt es WSDL 2.0, dass zusätzliche Verarbeitung des
Werts von whttp:location durch die Input-Serialisierung stattfinden kann, bevor der
Wert mit der Endpunkt-Adresse kombiniert wird.

• Weiterhin bietet WSDL 2.0 noch Unterstützung für TransferCoding und Cookies.

Für eine komplette Darstellung der Syntax des HTTP-Bindings von WSDL 2.0 siehe Listing
3.6.

Analyse

Neue Funktionalität von WSDL 2.0 wird in vielen Fällen bereits von der Apache ODE WSDL
1.1 Extension for REST angeboten.

1. Wie bei WSDL 1.1 und Apache ODE WSDL 1.1 Extension for REST, ist es auch mit
WSDL 2.0, nicht möglich die URI eines genutzten REST Service zur Laufzeit zu ändern,
ohne die neue URI bereits zur Deploy-Zeit zu kennen.

29

3 Orchestrierung von REST Services mit BPEL

Listing 3.6 Übersicht der Syntax des HTTP-Bindings von WSDL 2.0 [wsd06b]
<description>

<binding name="xs:NCName" interface="xs:QName"?

type="http://www.w3.org/2006/01/wsdl/http"

whttp:methodDefault="xs:string"?

whttp:queryParameterSeparatorDefault="xs:string"?

whttp:cookies="xs:boolean"?

whttp:transferCodingDefault="xs:string"? >

<documentation />?

<fault ref="xs:QName"

whttp:code="union of xs:int, xs:token"?

whttp:transferCoding="xs:string"? >

<documentation />*

<whttp:header name="xs:string" type="xs:QName"

required="xs:boolean"? >

<documentation />*

</whttp:header>*

[<feature /> | <property />]*

</fault>*

<operation ref="xs:QName"

whttp:location="xs:anyURI"?

whttp:method="xs:string"?

whttp:inputSerialization="xs:string"?

whttp:outputSerialization="xs:string"?

whttp:faultSerialization="xs:string"?

whttp:transferCodingDefault="xs:string"? >

<documentation />*

<input messageLabel="xs:NCName"?

whttp:transferCoding="xs:string? >

<documentation />*

<whttp:header ... />*

[<feature /> | <property />]*

</input>*

<output messageLabel="xs:NCName"?

whttp:transferCoding="xs:string? >

<documentation />*

<whttp:header ... />*

[<feature /> | <property />]*

</output>*

<infault ref="xs:QName"

messageLabel="xs:NCName"? >

<documentation />*

[<feature /> | <property />]*

</infault>*

<outfault ref="xs:QName"

messageLabel="xs:NCName"? >

<documentation />*

[<feature /> | <property />]*

</outfault>*

[<feature /> | <property />]*

</operation>*

[<feature /> | <property />]*

</binding>

<service>

<endpoint name="xs:NCName" binding="xs:QName" address="xs:anyURI"?

whttp:authenticationType="xs:token"?

whttp:authenticationRealm="xs:string"? >

<documentation />*

[<feature /> | <property />]*

</endpoint>

[<feature /> | <property />]*

</service>

</description>

30

3.2 Analyse bestehender Ansätze zur Orchestrierung von REST Services mit BPEL

2. In WSDL 2.0 kann durch neue Attribute des operation Elements, whttp:inputSerialization
und whttp:outputSerialization, die Input- und Output-Serialisierung festgelegt wer-
den. Diese Informationen können auch zur Content-Negotiation verwandt werden,
da der Wert dieser Attribute, mit kleinen Ausnahmen, die gleichen Werte annehmen
kann wie der Accept-Header aus HTTP [htt99, 14.1][wsd06a, 6.4.3]. Durch die Defini-
tion im operation Element müssen aber auch hier 2 operations definiert werden, um
verschiedene Medientypen der selben Ressource abzurufen.

3. Die Unterstützung für HTTP-Header ist gegeben. Das Problem der Authentifizierung
bei der Apache ODE WSDL 1.1 Extension for REST ist bei WSDL 2.0 zumindest für die
Authentifizierungsarten Basic und Digest Access gelöst.

Fazit

Abgesehen vom WSDL-bedingten Problem, dass alle REST Service Endpunkte schon vor der
Laufzeit einer BPEL-Prozess-Instanz bekannt sein müssen und dass für jeden Medientyp
eine oeration notwendig ist, wäre WSDL 2.0 eine gute Möglichkeit um RESTful BPEL zu
praktizieren. Leider ist nicht abzusehen, ob WSDL 2.0 jemals mit BPEL eingesetzt werden
kann.

In der WS-BPEL FAQ [bpeb] auf der OASIS-Seite befassen sich die Fragen 6 und 7 zum Teil
mit WSDL 2.0.
Frage 6 befasst sich damit, welche Web Services in einem BPEL-Prozess genutzt werden
können, und ob BPEL auch mit RESTful Web Services arbeiten könnte. Als Antwort darauf
steht, dass BPEL jeden Web Service nutzen kann, der einen WSDL 1.1 Vertrag anbietet. BPEL
sei aber nicht dafür entworfen mit RESTful Web Services zu arbeiten, weil diese kein WSDL
nutzen.
Frage 7 beschäftigt sich damit, welche Auswirkungen es hätte, wenn auch WSDL 2.0 Web
Services von einem BPEL-Prozess genutzt werden müssen. Die Antwort darauf ist knapp
formuliert, dass BPEL nicht dazu gedacht ist, WSDL 2.0 zu nutzen.
Auf der OASIS-Seite des BPEL-Komitees steht unter dem Stichwort Übersicht, dass der
Zweck dieses Komitees darin bestand, an der 2002 veröffentlichte Busines Process Executi-
on Language for Web Services (BPEL4WS) weiterzuarbeiten. Die Mitglieder des Komitees
beschlossen, dass sie ihre Aufgabe 2007 abgeschlossen haben.[bpea]
Demnach wurden die Arbeiten am BPEL Standard 2007 abgeschlossen und es ist nicht zu
Erwarten, dass es bald eine neue Version von BPEL geben wird, die WSDL 2.0 unterstützt.
Demnach ist WSDL 2.0 ist also ebenfalls für RESTful BPEL nicht geeignet.

3.2.4 RESTful BPEL Wrapped in SOAP

Auch ohne Veränderungen an WSDL 1.1 oder WS-BPEL 2.0 wäre es möglich RESTful BPEL
zu praktizieren. Der Kunstbegriff „RESTful BPEL Wrapped in SOAP“ ist die Idee, einen
ganzen RESTful Web Service hinter WSDL 1.1 zu „verstecken“ und ihn somit für BPEL

31

3 Orchestrierung von REST Services mit BPEL

nutzbar zu machen. Dazu müssten weder Änderungen an WSDL 1.1, noch an WS-BPEL 2.0
durchgeführt werden. Aufgrund der Tatsache, dass bei jedem Versuch REST in SOAP zu
wrappen, neue Software implementiert werden muss, ist es hier nicht nötig, anhand der
Anforderungen aus 3.1 zu analysieren.

Beschreibung

Es gibt verschiedene Ansätze einen RESTful Web Service hinter einem WSDL 1.1 Web
Service zu verstecken. Die Ausarbeitung und Evaluation einer solchen Aufgabenstellung ist
allerdings sehr umfangreich, weshalb hier nur ein einfacher Ansatz erläutert wird.

Eine Möglichkeit REST in WSDL zu wrappen ist, einen WSDL Web Service mit nur ei-
ner Operation zu implementieren, der als Middleware zwischen BPEL und REST fungiert.
Dazu nutzt eine BPEL-Prozess-Instanz diese eine Operation und übermittelt als Nachricht
alle Angaben, die nötig sind eine korrekte HTTP-Anfrage durchzuführen. Die Middleware
ist in diesem Szenario auch dafür zuständig, die Antworten von aufgerufenen REST Services
wieder umzuwandeln und an die BPEL-Prozess-Instanz zurückzusenden. Auf diese Weise
könnten aus BPEL heraus beliebige REST Services angesteuert werden. Um beliebige REST
Services zu nutzen muss ein sehr generisches Datenmodell gewählt werden. Eine einfache
Variante wäre es , komplette HTTP-Nachrichten, also incl. Meta-Daten zu nutzen. Die Im-
plementierung der Middleware beschränkt sich dann auf HTTP-Funktionalität und einer
Transformation von HTTP-Nachrichten in ein XML-Format.

Fazit

Ein Nachteil dieser Variante ist, dass durch die strenge Typisierung von BPEL-Variablen sehr
viel zusätzliche Datenmanipulation vorgenommen werden muss. Beispielsweise müsste für
eine GET-Anfrage, die sowohl text/xml als auch application/xml akzeptiert, zunächst über-
prüft werden, ob die Anfrage erfolgreich war. Dazu müsste mittels XPath ermittelt werden,
ob der Status-Code der Antwort dem erwarteten Status-Code entspricht. Danach müsste,
ebenfalls mit XPath der Content-Type der Antwort überprüft werden, um anschließend durch
ein if-Statement zu unterscheiden, in welche Variable der EntityBody der HTTP-Antwort ge-
schrieben wird. Für eine solche Anfrage bräuchte es also mindestens drei Assign-Aktivitäten,
sowie eine if-Aktivität. Bei einem BPEL-Prozess mit mehreren REST-Aufrufen steigt so die
Komplexität stark an.
Weiterhin wird für diese Variante eine zusätzliche Software benötigt, die Ressourcen ver-
braucht und zusätzlichen Konfigurationsaufwand bedeutet.
Diese Variante ist demnach in technischer Hinsicht zwar für RESTful BPEL geeignet, der
Komfort für den Anwender wird aber, durch die erhöhte Komplexität und damit verbun-
denen Aufwand, stark beeinträchtigt. Diese Möglichkeit ist also für RESTful BPEL nicht
geeignet.

32

4 Konzept zur Erweiterung von BPEL um
RESTful Web Services zu orchestrieren

In Kapitel 3 wurden verschiedene Ansätze für RESTful BPEL vorgestellt und anhand der
Kriterien aus 3.1 analysiert und bewertet. Von den vorgestellten Ansätzen erfüllt keiner die
gestellten Anforderungen, die nachfolgend nochmal aufgelistet sind:

1. Die URI von HTTP-Anfragen muss zur Laufzeit eines BPEL-Prozesses manipulier-
bar sein.

2. Die Content-Negotiation muss für alle REST-Aufrufe in vollem Umfang unterstützt
werden.

3. HTTP-Header müssen für alle REST-Aufrufe eines BPEL-Prozesses manipulierbar
sein.

Um dennoch „RESTful“ mit BPEL zu Arbeiten wird in Kapitel 4 ein Konzept beschrieben,
wie eine Erweiterung für BPEL aussehen kann, die sich die BPEL eigene Möglichkeit der
Erweiterung, durch eine extensionActivity [TC07, 10.9], verfügbar macht.
Zunächst werden einige allgemeine Informationen zur Erweiterungen gegeben, danach
werden Konventionen definiert, die in Kapitel 4.3 - XML-Erweiterung von BPEL zur
Anwendung kommen. Zuletzt wird das Konzept ebenfalls anhand obiger Anforderungen
evaluiert.

4.1 Allgemeines

Allgemeine Informationen zur Erweiterung:

• BPEL kann erweitert werden durch Definition neuer Aktivitäten in einem BPEL-
Prozess, die nicht Teil der Spezifikation sind. BPEL ermöglicht diese Erweiterung
durch das Element <extensionActivity>, welches Teil der Spezifiktaion ist [TC07,
10.9].

• Für jedes angebotene HTTP-Verb wird eine ExtensionActivity definiert. Die ange-
botenen HTTP-Verben sind GET, HEAD, PUT, POST und DELETE.

• Um global HTTP-Meta-Daten (HTTP-Header) für mehrere REST-Aufrufe zu defi-
nieren, wird ein manipulierbarer Kontext eingeführt.

33

4 Konzept zur Erweiterung von BPEL um RESTful Web Services zu orchestrieren

• Dieser Kontext wird durch die Bereitstellung eines XML-Schemas für BPEL-
Variablen realisiert.

• Der grundlegende Aufbau der ErweiterungsAktivitäten (ExtensionActivities) wird
für alle HTTP-Verben gleich sein, mit der Ausnahme von bestimmten Elemen-
ten, die nicht konform sind zur Semantik bestimmter Verben. Diese Elemente
werden deshalb nicht bei allen Verben vorkommen; beispielsweise Elemente zur
Beschreibung des HTTP-message-body bei GET-Anfragen.

• Zur Ausführung von ErweiterungsAktivitäten muss ebenfalls die ausführende
BPEL-Engine erweiterbar sein.

4.2 Konventionen

Folgenden Konventionen gelten für den Entwurf dieses Konzepts:

In HTTP unterscheiden sich Message-Body und Entity-Body nur, wenn ein Transfer-Coding
angewandt wurde [htt99, 4.3]. In den folgenden Kapiteln werden die Begriffe Message-
Body und Entity-Body gleichbedeutend für die Präsenz einer Nachrichten-Entität(also
die Repräsentation einer Ressource), innerhalb einer HTTP-Nachricht, verwandt.

Variablenreferenz: In manche Attribute kann ein Verweis auf eine Variable des ausführen-
den BPEL-Prozesses geschrieben werden. Ist dies der Fall, wird dies durch einschlie-
ßende $-Zeichen gekennzeichnet. Beispiel: var=„$myBPELVariable$“

Elemente und Attribute werden mit folgenden Multiplizitäten angegeben:

optional: Ein optionales Element kann nicht oder einmal vorhanden sein.

verpflichtend: Ein verpflichtendes Element muss genau einmal vorhanden sein.

beliebig: Ein beliebiges Element kann nicht oder beliebig oft vorhanden sein.

Beschreibung von einzelnen Elementen und Attributen:

Bei der Erklärung von Attributen steht nach dem Doppelpunkt zunächst der Typ, dann
die Multiplizität, nach dem Semikolon folgt die Beschreibung.

Bei der Erklärung von Elementen steht nach dem Doppelpunkt die Multiplizität, nach dem
Semikolon folgt die Beschreibung.

4.3 XML-Erweiterung von BPEL

Das Konzept für die Erweiterung wird im Folgenden anhand des XML-Elements der REST-
Extension für das HTTP-Verb POST erläutert.

34

4.3 XML-Erweiterung von BPEL

4.3.1 Generelle Syntax

Listing 4.1 Generelle Syntax der Erweiterung anhand von POST
<post host="" path="">

<context ref="">

...

<context/>

<requestParameters>

...

</requestParameters>

<responseParameters>

...

</responseParameters>

</post>

Erläuterung der einzelnen Elemente der generellen Syntax der Erweiterung, Listing 4.1.

• post: verpflichtend; Das <post> Element des XML-Beispiels ist das Wurzel-
Element der Erweiterung. Es zeigt in erster Linie an, welches HTTP-Verb aus-
geführt werden soll. Für die anderen vier Verben heißt dieses Element analog
zum Beispiel <get>, <put>, <delete> oder <head>. Desweiteren ist das Wurzel-
Element für den „Endpunkt“ des REST-Services zuständig, also für die URI. Diese
wird aus den Attributen berechnet.

Attribute:

– host: host ist vom Typ XSD String und kann entweder eine URI als String
enthalten, oder aber einen Verweis auf eine Variable, ebenfalls vom Typ XSD
String, die ihrerseits eine URI enthält. Wichtig ist, dass dieser String als letztes
Zeichen keinen Schrägstrich enthält.

– path: path ebenfalls vom Typ XSD String und enthält entweder eine Varia-
blenreferenz oder einen relativen Pfad. Dieser relative Pfad, der ggf. in der
Variable des Typs XSD String steht, darf keinen anführenden Schrägstrich
haben.

Aus den beiden Attributen host und path setzt sich die URI zusammen, an die
die HTTP-Anfrage gesendet wird.

Jedes Wurzel-Element der Erweiterung hat drei direkte Kind-Elemente.

• context: verpflichtend; Das <context> Element ist ein verpflichtendes Element, das
für alle Header zuständig ist, die sich nicht auf die Content-Negotiation beziehen.
Dieses Element ist eine Erweiterung des eigentlichen <context> Elements um das
<ref> Attribut. Der Inhalt des ursprünglichen <context> Elements wird in der
detaillierten Erläuterung besprochen.

Attribute:

35

4 Konzept zur Erweiterung von BPEL um RESTful Web Services zu orchestrieren

– ref: String, Variablenreferenz, optional; Die, hier angegebene, BPEL-Variable
muss vom Typ XSD Element sein und eine Instanz von context beinhalten.

Die Verarbeitung des context-Elements beginnt mit der Variablenreferenz. Ist eine
Variablenreferenz vorhanden, wird das <context> Element, in dieser Variable
eingelesen und gespeichert. Erst dann werden die Kind-Elemente des eigentlichen
<context> Elements gelesen. Sollte es dabei dazu kommen, dass aus der Variable
und dem vorliegendem <context> Element unterschiedliche Werte für den selben
HTTP-Header eingelesen werden, wird der Wert aus der Variable mit dem Wert
aus dem vorliegendem <context> Element überschrieben. Die detaillierte Syntax
des <context>Elements wird in 4.3.4 beschrieben.

• requestParameters: Das <requestParameters> Element wird in 4.3.2 besprochen.

• responseParameters: Das <responseParameters> Element wird in 4.3.3 bespro-
chen.

4.3.2 Das <requestParameters> Element

In dieser Sektion wird das <requestParameters> Element besprochen. Siehe dazu Listing
4.2.

requestParameters: verpflichtend; Dieses Element enthält vor allem Informationen, die für
den Empfänger der HTTP-Anfrage wichtig sind. Dazu gehören Angaben zur Content-
Negotiation und Angaben zu einer etwaigen Request-Entity(HTTP-Message-Body).

Listing 4.2 Detaillierte Syntax des requestParameters Element
<requestParameters>

<contentNegotiation>

<acceptEntity type="" priority=""/>

<acceptLanguage priority="">value</acceptLanguage>

</contentNegotiation>

<requestEntity type="" entity="">

<language>value</language>

</requestEntity>

</requestParameters>

• contentNegotiation: optional; Dieses Element befasst sich mit HTTP-Content-
Negotiation.

• acceptEntity: beliebig; Mit Hilfe des <acceptEntity> Elements kann der Wert des
Accept-Headers[htt99, 14.1] konfiguriert werden.

Attribute:

– type: String, verpflichtend; in diesem Attribut wird der Medientyp eingetra-
gen, der dem Accept-Header hinzugefügt werden soll.

36

4.3 XML-Erweiterung von BPEL

– priority: FloatingPoint zwischen 0 und 1, optional; mit diesem Attribut las-
sen sich die Medientypen priorisieren gemäß [htt99, 3.9]. Dazu kann dieses
Attribut Werte zwischen 0 und 1 annehmen. Als Dezimaltrennzeichen ist ein
Punkt zu verwenden und es sind maximal 3 Nachkommastellen erlaubt.

Der gesamte Accept-Header wird von der Erweiterung aus allen vorhanden
<acceptEntity> Elementen berechnet und gesetzt.

• requestEntity: optional; kann aber maximal einmal vorhanden sein. Es wird zum
Beschreiben und Setzen des HTTP-Message-Body verwendet.

Attribute:

– type: String, verpflichtend; In diesem Attribut steht der Medientyp, der später
in den Content-Type-Header geschrieben wird.

– entity: String, Variablenreferenz, verpflichtend; Der Inhalt der, in diesem
Attribut angegebenen, Variable wird anhand des vorgegebenen Medientyps
in die HTTP-Message serialisiert.

• language: optional; Das Kind-Element von <requestEntity> ist das <language>
Element. Der Wert dieses Elements wird in den Content-Language-Header ge-
schrieben.

Unterschiede des <requestParameters> Elements bei verschiedenen HTTP-Verben

Beim <requestParameters> Element gibt es Unterschiede zwischen den einzelnen HTTP-
Verben der Erweiterung. Das <requestEntity> Element ist nur bei Verwendung von PUT
und POST erlaubt. Bei HEAD, GET und DELETE ist es nicht vorhanden. Die HTTP 1.1
Spezifikation [htt99] verbietet Message-Bodies nicht explizit für HEAD, GET und DELETE.
Die Semantik dieser Verben ist aber in der Spezifikation klar definiert.
GET bedeutet, jegliche Information abzufragen, die von einer URI identifiziert wird. Die
Semantik von GET kann nur durch „If-...-Header“ zu einem „conditional Get“, oder durch
einen Range-Header zu einem „partial Get“ geändert werden. Ein evtl. vorhandener Messa-
geBody macht aber nur Sinn, wenn die Semantik von Get abweichend von der spezifizierten
Semantik geändert werden soll [htt99, 9.3].
HEAD ist identisch zu GET, mit der Ausnahme, dass der verarbeitende Server, keinen
message-body zurücksenden darf [htt99, 9.4].
DELETE verlangt, dass der Server die Ressource löscht, die von der URI identifiziert wird.
Laut Spezifikation kann diese Methode überschrieben werden. In [htt99, 4.3] steht, dass ein
Server den Entity-Body ignorieren sollte, wenn die Definition der anfragenden Methode
keine definierte Semantik für einen Entity-Body beinhaltet.

37

4 Konzept zur Erweiterung von BPEL um RESTful Web Services zu orchestrieren

4.3.3 Das <responseParameters> Element

In dieser Sektion wird das <responseParameters> Element besprochen. Siehe dazu Listing
4.3.

responseParameters: verpflichtend; Dieses Element enthält vor allem Informationen ent-
halten, die zur Verarbeitung von Antworten auf HTTP-Anfragen durch die Erweite-
rung benötigt werden. Dazu gehören unter anderem Angaben zur Übertragung von
HTTP-Message-Bodies in BPEL und Angaben zu Verhalten beim Empfang bestimmter
HTTP-Status-Codes.

Listing 4.3 Detaillierte Syntax des <responseParameters> Element
<responseParameters>

<responseHeader variable=""/>

<acceptEntityMapping type="" variable=""/>

<catch status="" faultName=""/>

</responseParameters>

• responseHeader: optional; Im <responseHeader> Element kann angegeben wer-
den, wo die Header-Felder einer Antwort gespeichert werden. Um die Daten
in BPEL nutzbar zu machen, werden die Header-Felder in Form eines XML-
Dokuments der Form ResponseHeader 4.3.5 in eine BPEL-Variable geschrieben.

Attribute:

– variable: String, Variablenreferenz, verpflichtend; In die, in diesem Attribut
angegebene, Variable wird das <ResponseHeader> 4.3.5 Element geschrieben
wird.

• acceptEntityMapping: beliebig; Da Variablen in BPEL streng typisiert sind, kön-
nen nicht alle Entitäten verschiedener Medientypen in die selbe BPEL-Variable
geschrieben werden. Das <acceptEntityMapping> dient der Zuordnung von ak-
zeptierten Medientypen zu bestimmten BPEL-Variablen. Dabei wird mittels einem
<acceptEntityMapping> einer BPEL-Variable genau ein Medientyp zugeordnet.

Attribute:

– type: String, verpflichtend; in dieses Attribut wird der Medientyp geschrieben.

– variable: String, Variablenreferenz, verpflichtend; in die, in diesem Attri-
but angegebene, Variable wird der empfangene Message-Body des gleichen
Medientyps, wie im Attribut <type>, geschrieben.

• catch: beliebig; Das <catch> Element ist ein Element, das bestimmten HTTP-
Status bestimmte BPEL-Fehler zuordnet, die dann von der Erweiterung ausgelöst
werden.

Attribute:

38

4.3 XML-Erweiterung von BPEL

– status: String, in diesem Attribut kann angegeben werden für welche Status
ein Fehler ausgelöst werden soll. Als Beispiel kann in diesem Feld 4xx stehen
um z.B. für alle Fehler-Status den gleichen BPEL-Fehler auszulösen. Ebenfalls
können so auch einzelne Status zugeordnet werden.

– faultName: String, in diesem Attribut steht der Name des BPEL-Fehlers, der
beim Empfang des zugeordneten Status ausgelöst werden soll.

Unterschiede der <responseParameters> bei verschiedenen HTTP-Verben

Beim <responseParameters> Element gibt es Unterschiede zwischen den einzelnen HTTP-
Verben der Erweiterung. Beim Verb HEAD ist das Element <acceptEntityMapping> nicht
erlaubt. Bei allen anderen Verben ist es vorhanden. Die HTTP-Spezifikation verbietet explizit
einen Message-Body in Antworten auf HEAD Anfragen [htt99, 4.3].

4.3.4 Das <context> Element

Listing 4.4 Detaillierte Syntax des context Elements
<context>

<date value="boolean"/>

<closeConnection value="boolean"/>

<authentication>

<user>...value</user>

<pass>...value</pass>

</authentication>

<cachecontrol>...value</cachecontrol>

<conditionals>

<ifMatch>value</ifMatch>

<ifModifiedSince>value</ifModifiedSince>

<ifNoneMatch>value</ifNoneMatch>

<ifRange>value</ifRange>

<ifUnmodifiedSince>value</ifUnmodifiedSince>

</conditionals>

<additionalHeaders>

<header name="" value=""/>

</additionalHeaders>

</context>

Erläuterung der Elemente und Attribute von context, siehe Listing 4.4

• date: optional; Dieses Element zeigt an, ob ein Date-Header gesetzt werden soll.
Ist das Element vorhanden, das zugehörige Attribut value aber nicht vorhanden,
wird ein Date-Header gesetzt. Kein Date-Header wird gesetzt, wenn das Element
entweder nicht vorhanden ist, oder das Attribut <value> mit false belegt ist.

Attribute:

39

4 Konzept zur Erweiterung von BPEL um RESTful Web Services zu orchestrieren

– value: Boolean, optional; zeigt an, falls vorhanden ob der Date-Header gesetzt
wird.

• closeConnection: optional; Dieses Element korrespondiert zum Connection-
Header. (HTTP-spec 14.2). In HTTP 1.1 wird im Gegensatz zu früheren Versionen
von HTTP jede Verbindung als persistent betrachtet (HTTP-spec 8-1-2). Das <clo-
seConnection> Element zeigt an, ob ein Connection-Header mit dem Wert „close“
gesetzt wird. Die Funktionsweise ist dabei die gleiche, wie beim <date> Element.

Attribute:

– value: Boolean, optional; zeigt an, falls vorhanden, ob der Connection-Header
mit dem Wert „close“ gesetzt wird.

• authentication: optional; Dieses Element korrespondiert zum WWW-Authenticate-
Header [htt99, 14.47] und ist für die Authentifizierung zuständig. Ist dieses
Element vorhanden, müssen auch die beiden Kind-Elemente <user> und <pass>
vorhanden sein. Diese beiden Elemente sind für die Angabe eines Benutzernamens
(<user>) und des zugehörigen Passworts (<pass>) zuständig. Diese Angaben
stehen jeweils in den Elementen. Die Authentifizierung selbst wird mit Hilfe der
Authentifizierungsdaten von der Erweiterung übernommen.

• cachecontrol: optional; Dieses Element korrespondiert direkt zum Cache-Control-
Header [htt99, 14.9]. Der Text-Inhalt des Elements wird von der Erweiterung direkt
in einen Cache-Control-Header geschrieben und muss daher HTTP-spezifikations-
konform sein.

• conditionals: optional; Mit diesem Element und den dazugehörigen Kind-
Elementen lassen sich Conditional-Gets ausführen [htt99, 9.3]. Die Kind-Elemente
von conditionals sind: <ifMatch>, <ifModifiedSince>, <ifNoneMatch>, <ifRan-
ge> und <ifUnmodifiedSince>. Der Text-Inhalt dieser Elemente wird, wie bei
<cacheControl>, direkt in die entsprechenden Header-Felder geschrieben und
muss daher HTTP-spezifikations-konform sein.

• additionalHeaders: optional; Das Element <additionalHeaders> ist ein Element,
um alle weiteren Header zu gruppieren. Das Element <additionalHeaders> kann
dazu beliebig viele (0..n) <header> Elemente als Kinder haben.

• header: beliebig; Dieses Element ist dafür vorgesehen, alle möglichen Header-
Felder setzen zu können, die nicht bereits durch andere Kind-Elemente des
<context> Elements abgedeckt sind.

Attribute:

– name: String, verpflichtend; in diesem Attribut steht der Name des Header-
Felds.

– value: String, verpflichtend; in diesem Attribut steht der Wert, der direkt in
das entsprechende Header-Feld gesetzt wird.

40

4.3 XML-Erweiterung von BPEL

Listing 4.5 Beschreibung
<responseHeader>

<status></status>

<content>

<type>value</type>

<language>value</language>

<location>value</location>

</content>

<date>value<date>

<header name="" value=""/>

</responseHeader>

4.3.5 Das <responseHeader> Element

In dieser Sektion wird das <responseHeader> Element besprochen. Siehe Listing 4.5.
Das <responseHeader> Element dient dem Zweck, auch Meta-Daten einer etwaigen HTTP-
Antwort verfügbar zu machen.

Erläuterung der einzelnen Elemente aus Listing 4.5.

• status: verpflichtend; Dieses Element dient Zum Speichern des HTTP-Antwort-
Status.

• content: optional; Dieses Element enthält über seine Kind-Elemente Informationen
zur Content-Negotiation.

• type: optional; Dieses Element enthält den Medientyp aus dem Content-Type-
Header der HTTP-Antwort.

• language: optional; Dieses Element enthält den Wert des Content-Language-
Headers der HTTP-Antwort.

• location: optional; Dieses Element enthält den Wert des Content-Location-Headers
der HTTP-Antwort.

• date: optional; Dieses Element enthält den Wert des Date-Headers der HTTP-
Antwort.

• header: beliebig; Dieses Element ist dafür vorgesehen, alle möglichen Header-
Felder verfügbar zu machen, die nicht bereits durch andere Kind-Elemente des
<responseHeader> Elements abgedeckt sind.

Attribute:

– name: String, verpflichtend; in diesem Attribut steht der Name des Header-
Felds.

– value: String, verpflichtend; in diesem Attribut steht der Wert aus dem ent-
sprechenden Header der HTTP-Antwort.

41

4 Konzept zur Erweiterung von BPEL um RESTful Web Services zu orchestrieren

4.4 Evaluierung des Konzepts anhand der Anforderungen aus 3.1

Evaluierung

1. Kontrolle über die URI, an die die HTTP-Anfragen geschickt werden
Die URI wird in der Extension durch die Attribute <host> und <path> berechnet.
Der Vorteil ist, dass das Berechnen der URI zur Laufzeit geschieht und somit der
Endpunkt nicht bereits zur Deploy-Zeit bekannt sein muss. Es ist also möglich
die Endpunkte genutzter REST Services zur Laufzeit von BPEL-Prozess-Instanzen
zu ändern.

2. Unterstützung für Content-Negotiation
Server-driven Content-Negotiation [htt99, 12.1] in HTTP funktioniert in erster
Linie durch die Auswertung gesendeter Accept-Header durch den Server. Dabei
errechnet der Server, anhand der akzeptierten Medientypen und deren Prioritäten,
den optimalen Content-Type und sendet seine Antwort mit diesem Content-
Type. Zu den Accept-Headern gehören Accept, Accept-Charset, Accept-Encoding,
Accept-Language und User-Agent. Die Header-Felder Accept-Charset und Accept-
Encoding sind hauptsächlich technisch relevant. D.h. dem letztlichen Nutzer der
Erweiterung wird es weitestgehend egal sein, welches character set [htt99, 3.4]
oder welches content-coding verwendet wird. Diese beiden Felder werden deshalb
von der Erweiterung automatisch gesetzt.
Das Header-Feld User-Agent Feld [htt99, 14.43] enthält Informationen über den
Client, der eine HTTP-Anfrage ursprünglich absendet. Er ist daher nicht für
einzelne Anfragen wichtig, sondern wird für viele Anfragen genutzt. Dieser Hea-
der kann im <context> im Element <additionalHeaders> als einzelnes <header>
Element gesetzt werden.
Die Header-Felder Accept und Accept-Language, sind die Header-Felder, die
wirklich relevant sind für den Nutzer. Da sie sich oft, von Anfrage zu Anfrage,
unterscheiden, können sie innerhalb des contentNegotiation Elements mit Hilfe
der Elemente acceptEntity und acceptLanguage in vollem Umfang, also incl.
Prioritäten gemäß [htt99, 3.9], genutzt werden.

Bei der Agent-driven Content-Negotiation entscheidet der Client darüber, nach
initialem Empfang einer Antwort vom Server, welche Repräsentation er akzeptie-
ren will. Die Auswahl basiert auf Informationen in den Header-Feldern oder im
Entity-Body der initialen Antwort. Zumindest die Header-Felder der Antwort kön-
nen mittels responseHeader in BPEL nutzbar gemacht werden. Der Entity-Body
kann in diesem Fall innerhalb von BPEL nur genutzt werden, wenn das Format
des Entity-Body von der Erweiterung untertützt wird und wenn die agent-driven
Content-Negotiation innerhalb des BPEL-Prozesses „von Hand“ durchgeführt
wird.

3. Unterstützung für HTTP-Header
Mit dem <context> Element, lassen sich alle möglichen HTTP-Header-Felder set-

42

4.4 Evaluierung des Konzepts anhand der Anforderungen aus 3.1

zen. Dabei kann es zu Einschränkungen kommen, da manche Header automatisch
gesetzt werden, z.B. Content-Length, oder aber Implementations-spezifisch sind,
wie z.B. Accept-Charset.
Mit dem <responseHeader> Element können alle Header-Felder in BPEL gelesen
werden.

Fazit
Durch die Möglichkeit, während der Laufzeit von BPEL-Prozess-Instanzen, die End-
punkte genutzter REST Services zu ändern, durch die Unterstützung von Content-
Negotiation und durch die Unterstüztung aller HTTP-Header, werden alle Anforde-
rungen für RESTful BPEL erfüllt. Die Erweiterung ist somit dafür geeignet RESTful
BPEL zu praktizieren.

43

5 BPEL4REST - Implementierung

In Kapitel 5 wird die Implementierung der Erweiterung für BPEL, mit dem Namen
BPEL4REST, dokumentiert. Zunächst werden verwendete Technologien kurz vorgestellt,
anschließend folgt die Erläuterung der Architektur, der interne Ablauf von BPEL4REST und
zuletzt werden noch Einschränkungen von BPEL4REST erläutert.

5.1 Verwendete Technologien - Entwicklungsumgebung

Im Unterkapitel 5.1 werden, für BPEL4REST eingesetzte und verwendete, Technologien
kurz beschrieben. Diese sind Apache ODE, Apache Tomcat, Apache HttpComponents Client
und Eclipse.

5.1.1 Apache ODE

Die Apache ODE (Orchestration Director Engine) ist eine BPEL-Engine, die von der Apache
Software Foundation [apa] entwickelt und betreut wird.
ODE kommuniziert mit Web Services, sendet und empfängt Nachrichten, kümmert sich
um Datenmanipulation und Fehlerbehebung gemäß der Beschreibung durch BPEL-Prozess-
Definitionen. ODE unterstützt sowohl kurz, als auch langlaufende Prozesse.[odea]

Für BPEL4REST wird die WAR Distribution „experimental branch 2.0-beta8“1 verwen-
det. Nur in diesem Branch ist die Funktionalität enthalten, die nötig ist, ODE durch eine
ExtensionActivity zu erweitern.

5.1.2 Apache Tomcat

Apache Tomcat ist eine OpenSource Implementierung der Java Servlet und JavaServer
Pages Technologie. Apache Tomcat gehört ebenfalls zur Apache Software Foundation [apa].
Apache Tomcat wird als Servlet container für Apache ODE benötigt.
Für BPEL4REST kommt die Version 7.0(.40) zum Einsatz, verfügbar unter: [tom].

1http://ode.apache.org/getting-ode.html

45

5 BPEL4REST - Implementierung

5.1.3 Apache HttpComponents Client

Apache HttpComponents [htta] ist ebenfalls ein Projekt der Apache Software Foundati-
on [apa]. Der Apache HttpComponents Client ist eine HTTP 1.1 konforme Open Source
Implementierung eines HTTP 1.1 Clients. Apache HttpComponents wird im Rahmen von
BPEL4REST dazu eingesetzt, HTTP-Anfragen zu Senden und zu Empfangen.
BPEL4REST verwendet die Version HttpClient 4.2.5 (GA), verfügbar unter: [httb].

5.1.4 Eclipse

Eclipse ist eine Open Source Entwicklungsumgebung von der Eclipse Foundation [ecla].
Für die Entwicklung von BPEL4REST wurde Eclipse Juno 4.2 Service Release 2 verwendet.
Aktuelle Versionen von Eclipse sind verfügbar unter:[eclb], ältere Versionen unter: [eclc]

46

5.2 Architektur

5.2 Architektur

In 5.2 wird die Architektur von BPEL4REST beschrieben. Zunächst wird in der Übersicht die
grobe Struktur gezeigt, und beschrieben. Anschließend werden die einzelnen Komponenten
detailliert beschrieben.

5.2.1 Übersicht

BPEL4REST

Model Control
nutzt

Apache ODE

ruft auf

Abbildung 5.1: Übersicht der Architektur von BPEL4REST

In Abbildung 5.1 ist die Grob-Architektur von BPEL4REST zu sehen. Die Architektur
von BPEL4REST ist in zwei Komponenten aufgeteilt, die nur durch eine klar definierte
Schnittstelle miteinander kommunizieren. Aufgerufen wird BPEL4REST direkt durch Apache
ODE. Aufgabe des Models ist einzig die Datenhaltung. Die Aufgabe der Control-Komponente
ist die Steuerung der Extension, das Senden und Empfangen von HTTP-Nachrichten, sowie
die zugehörige Datentransformation und der Datenaustausch mit dem ausführendem BPEL-
Prozess. Details zu den einzelnen Komponenten werden in 5.2.2 und 5.2.3 erläutert.

5.2.2 Komponente Model

Die Detail-Architektur der Modelkomponente, Abbildung 5.2, ist so ausgelegt, dass die
tatsächliche Implementierung schnell ausgetauscht werden kann. Die Funktionalität
des Models wird dabei über drei Schnittstellen definiert:

47

5 BPEL4REST - Implementierung

Model
ModelImpl

AbstractModel

ContextInterface ModelInterface ResponseHeaderInterface

implementiert

erbt von

Abbildung 5.2: Architektur des Models im Detail

1. ContextInterface: Das ContextInterface definiert die Schnittstelle zum Speichern
aller Informationen für das context Element der Erweiterung.

2. ResponseHeaderInterface: Das ResponseHeaderInterface definiert die Schnitt-
stelle zum Speichern aller Informationen für das responseHeader Element der
Erweiterung.

3. ModelInterface: Das ModelInterface definiert die Schnittstelle zum Speichern
aller Informationen, für das Extension Element, das der BPEL4REST-Erweiterung
von der ODE übergeben wird.

Die Klasse AbstractModel stellt eine abstrakte Klasse dar. In dieser Klasse wird keine
zusätzliche Funktionalität definiert. Sie dient nur dem Zweck die drei Schnittstellen
(ContextInterface, ResponseHeaderInterface und ModelInterface) zusammenzuführen.

Die Klasse ModelImpl wird von der Klasse AbstractModel abgeleitet. Sie liefert also
letztlich sämtliche Funktionalität zur Verwaltung der benötigten Informationen der
Erweiterung.

5.2.3 Komponente Control

Die Detail-Architektur der Control-Komponente, Abbildung 5.3, ist zweigeteilt. Auf der
einen Seite stehen Controller-Klassen, die den Kontrollfluss der Erweiterung steu-

48

5.2 Architektur

Control
Controller

ExtensionController

HttpController

I/O

Parser

BpelBroker

EntityHandler

nutzt

nutzt

nutzt

nutztstartet

Abbildung 5.3: Architektur der Control-Komponente

ern, auf der anderen Seite steht die I/O, die sich um die Kommunikation mit dem
aufrufendem BPEL-Prozess kümmert.

Wichtige Klassen:

• Controller:

– ExtensionController: Die Klasse ExtensionController ist die hauptsächliche
Controller-Klasse. Zur Instanziierung benötigt diese Klasse Objekte folgender
Klassen:

1. ExtensionMode: ExtensionMode ist ein enum der anzeigt, welche Metho-
de ausgeführt werden soll. Er kann folgende Werte annehmen: HEAD,
GET, PUT, POST, DELETE.

2. ExtensionContext: ExtensionContext ist eine Klasse der ODE. Mit der
Klasse ExtensionContext ist es möglich auf Daten der ODE zuzugreifen.

3. org.w3c.dom.Element: Das ExtensionElement, also die XML-Repräsentation,
siehe 4.3, wird als Instanz der Klasse org.w3c.dom.Element übergeben.

ExtensionController-Objekte steuern den Ablauf der Erweiterung. Sie sind
dafür verantwortlich, alle erfoderlichen Klassen zu instanziieren und entspre-
chend zu steuern. Diese Klassen sind: ModelImpl, BpelBroker, ExtensionPar-
ser, HttpController und EntityHandler.

49

5 BPEL4REST - Implementierung

– HttpController: Die Klasse HttpController übernimmt die Steuerung und Ver-
arbeitung der HTTP Kommunikation. Zu ihren Aufgaben gehört das Erstellen
und Absenden von HTTP-Anfragen, sowie das Empfangen und Verarbeiten
von HTTP-Antworten. Zur Instanziierung benötigt der HttpController Objekte
der Klassen Model und EntityHandler.

• I/O:

– BpelBroker: Die Klasse BpelBroker stellt die Schnittstelle zwischen
BPEL4REST und ODE dar. BpelBroker liefert beispielsweise Methoden zum
Lesen und Setzen von Variablen in BPEL. Zur Instanziierung benötigt der
BpelBroker ein Objekt der Klasse ExtensionContext.

– ExtensionParser: Die Aufgabe des ExtensionParsers ist es, das übergebene
org.w3c.dom.Element einzulesen und in ein Objekt der Klasse ModelImpl zu
speichern. Der ExtensionParser muss mit einem Objekt der Klasse ModelImpl
und dem, von ODE übergebenem, org.w3c.dom.Element instanziiert werden.

– EntityHandler: Die Klasse EntityHandler kann BPEL-Variablen auslesen und
anhand des übergebenen Medientyps in eine HttpEntity umwandeln. Eben-
falls kann sie übergebene Objekte der Klasse HttpEntity wieder anhand des
Medientyps umwandeln und in eine BPEL-Variable schreiben. Zur Instan-
ziierung benötigt der EntityHandler Objekte der Klassen ModelImpl und
BpelBroker. Für Details zur Implementierung siehe 5.2.3.

Der EntityHandler im Detail

Der EntityHandler verwendet Implementierungen der abstrakten Klasse EntityTransformer.
Diese abstrakte Klasse verfügt über drei abstrakte Methoden, die implementiert werden
müssen:

1. HttpEntity getEntityFromBpel(RequestEntity req): In dieser Methode wird die BPEL-
Variable gelesen und in eine Instanz von HttpEntity umgewandelt, die letztlich vom
HttpController verwendet werden kann, um die HTTP Anfrage zu erstellen. Informa-
tionen über die BPEL-Variable werden durch das RequestEntity-Objekt übergeben.

2. void writeEntityToBpel(HttpEntity entity, BPELVariable var) In dieser Methode wird
eine HttpEntity in eine BPEL-geeignete Datenstruktur umgewandelt(org.w3c.dom.Element)
und in die übergebene BPELVariable geschrieben.

3. String[] providedMediatypes() Von dieser Methode wird ein String-Array zurückge-
geben, das alle Medientypen beinhaltet, die von dieser Implementierung verarbeitet
werden können. Die unterstützten Medientypen können auch als Regex-Ausdruck
angegeben werden.

50

5.3 Ablauf der Erweiterung

Der EntityHandler registriert bei seiner Instanziierung alle angegebenen Implementierungen
von EntityTransformer und ordnet sie ihren, mittels providedMediatypes() definierten, Me-
dientypen zu. Wird nun eine der beiden öffentlichen Methoden getEntityFromBpel() und
writeEntityToBpel() der Klasse EntityHandler aufgerufen, wählt der EntityHandler eine
geeignete Implementierung von EntityTransformer aus, instanziiert sie und führt mit ihrer
Hilfe die geforderte Funktion aus.

Dieser Mechanismus macht es sehr einfach, die Erweiterung um neue Medientypen zu
ergänzen.

Verarbeitung von Daten, die nicht dem XML-Format entsprechen

Die Typisierung von Variablen erfolgt in BPEL über XML-Schema. Da im REST-Umfeld
auch andere Formate verwendet werden, beispielsweise JSON oder CSV, ist es nötig, diese
gesondert zu behandeln.
BPEL4REST löst dieses Problem dadurch, dass Implementierungen von EntityTransformer
für Datenformate die nicht XML-basiert sind, eine bijektive Abbildung zwischen XML und
dem von XML abweichenden Datenformat definiert.
BPEL4REST betrachtet dabei in erster Linie den Fall, dass eine REST-Ressource keine XML-
Repräsentation anbietet und ein BPEL-Prozess nur deshalb ein abweichendes Format wählt.
Es ist also nicht im Sinne von BPEL4REST komplexe XML-Strukturen in ein anderes Format
abzubilden. Im Falle von JSON als abweichendem Format, implementiert der zugehörige
EntityTransformer also eine Abbildung von JSON nach XML nach JSON. Diese Einschrän-
kung ist deshalb wichtig, da XML oftmals komplexer ist, als ein abweichendes Format
(Extrembeispiel: CSV).
BPEL4REST nutzt zur Implementierung des EntityTransformer für „application/json“ die
externe Java-Bibliothek JSON-lib2, die unter der Apache Software License, Version 2.0
steht.

5.3 Ablauf der Erweiterung

Der Kontrollfluss (Abbildung 5.4) der Erweiterung beginnt mit einer Implemen-
tierung der Klasse AbstrctSyncExtensionOperation, indem ODE die Methode run-
Sync(ExtensionContext context, Element element) aufruft.
Hier wird dann der ExtensionController mit dem entsprechendem ExtensionMode instanzi-
iert und anschließend gestartet.
Der ExtensionController kümmert sich zunächst um die Instanziierung des Models und
des BpelBrokers. Diese werden anschließend vom Parser benötigt, der zunächst vom Ex-
tensionController instanziiert wird, dann die übergebenen Daten einliest und in das Model

2http://json-lib.sourceforge.net/

51

5 BPEL4REST - Implementierung

AbstractSyncExtensionOperation ExtensionController Parser HttpController

AbstractSyncExtensionOperation ExtensionController Parser HttpController

instanziieren

instanziieren

instanziieren

starten

parsen

parsen fertig

HTTP Anfrage durchführen

HTTP Anfrage durchgeführt

beenden

Abbildung 5.4: Ablauf der Erweiterung

speichert.
Nach Abschluss des Parsens instanziiert der ExtensionController den HttpController und
startet ihn anschließend. Nach Abschluss der HTTP-Kommunikation beendet schließlich der
ExtensionController die Erweiterung.

5.4 Einschränkungen

In diesem Kapitel werden die Einschränkungen beschrieben, denen die BPEL4REST-
Implementierung unterliegt:

• Modellierung: BPEL4REST wird von keinem Modellierungstool unterstützt. Das ex-
tensionActivity Element muss also „von Hand“ modelliert werden.

• Laufzeit-Umgebung: BPEL4REST kann nur mit einer speziellen Version der BPEL-
Engine Apache ODE genutzt werden. Diese Version ist der Experimental Branch beta
2.0.

• Medientypen: Derzeit beherrscht BPEL4REST die Medientypen „text/plain“, „applica-
tion/json“ und alle XML-Typen.

• Validierung: Derzeit findet keine Validierung des übergebenen Extension-XML-
Elements statt.

52

5.4 Einschränkungen

• HTTP-Header: Derzeit werden manche HTTP-Header noch von BPEL4REST ignoriert.
Beispielsweise Content-Encoding.

53

6 Verwandte Arbeiten

Dieses Kapitel beschreibt Arbeiten, die thematisch mit dieser Arbeit verwandt sind. Bei der
Recherche nach BPEL und REST stößt man dabei stets auf den Namen Cesare Pautasso und
JOpera. JOpera [jop] ist ein Werkzeug zur Service Komposition für Eclipse[ecla]. JOpera
bietet eine visuelle Modellierungsumgebung und eine Engine zur Ausführung von Service-
Kompositionen. Laut User Manual1 werden die Service-Kompositions-Modelle in JOpera
auf einer höheren Abstraktionsebene als traditionelle „BPM/BPEL Sprachen“ definiert und
decken dabei sowohl strukturelle, als auch Verhaltens-Aspekte ab.
Cesare Pautasso ist Assistenzprofessor der Fakultät Informatik der Universität von Lugano.
Er verfasste unter anderem die Arbeiten „BPEL for REST“[Pau08] und „RESTful Web service
composition with BPEL for REST“[Pau09], die nachfolgend erläutert werden.
Weiterhin werden noch die Arbeiten „BPEL light“, „Towards Resource-Oriented BPEL“ und
„Bite: Workflow Composition for the Web“ kurz vorgestellt.

6.1 „RESTful Web service composition with BPEL for REST“ -
Cesare Pautasso

Dieser Abschnitt befasst sich mit den Arbeiten [Pau08] und [Pau09] von Cesare Pautasso.
Inhaltlich weichen diese beiden Arbeiten nur unwesentlich voneinander ab, weshalb nachfol-
gend die neuere Arbeit, RESTful Web service composition with BPEL for REST von 2009,
die auch im Druck erschienen ist, erläutert wird.
Pautasso beschreibt darin, wie BPEL erweitert werden muss, um die Komposition von
RESTful Web Services und traditionellen (WSDL) Web Services innerhalb von BPEL zu
ermöglichen. Weiterhin zeigt er auch ein Konzept, Teile von BPEL-Prozessen als RESTful
Web Service zu veröffentlichen (wie dies für WSDL bereits der Fall ist).
Im Kapitel Introduction erläutert Pautasso, dass BPEL derzeit als Standardsprache zu Kom-
position von Web Services verwendet wird und geht darauf ein, dass BPEL-Prozesse zum
einen Web Services konsumieren, aber auch selbst als Web Service konsumiert werden
können.
Als „andere Art der Abstraktion, basierend auf REST“ beschreibt er RESTful Web Services
als Technologie, die die Annahmen von BPEL herausfordern. Er führt weiter aus, dass
die meisten RESTful Web Services nicht durch WSDL beschrieben werden und es somit
nicht möglich ist, existierende Sprachen und Werkzeuge für sie zu benutzen, die WSDL zur

1http://www.jopera.org/docs/help/jop_1.html#1.1

55

6 Verwandte Arbeiten

Grundlage haben. Er benennt verschiedene Sprachen, WADL2, WRDL3, NSDL4, WDL5, die
zur Beschreibung von RESTful Web Services vorgeschlagen wurden, mit dem Einwand, dass
die meisten tatsächlich existierenden APIs auf Dokumentation für menschliche Adressaten
angewiesen sind.

Im Kapitel Motivation beschreibt Pautasso zunächst die enge Kopplung zwischen BPEL
und WSDL und zeigt, dass diese Einschränkung viele Erweiterungen für BPEL begründet
hat. Beispielsweise BPEL4People zur Interaktion mit menschlichen Partnern und weitere.
Er geht auf den existierenden Ansatz ein, REST-Aufrufe aus BPEL durch eine WSDL 2.0
Schnittstelle zu leiten, führt aber auch an, dass BPEL nur WSDL 1.1 unterstützt, und diese
Lösung von einem theoretischen Standpunkt aus unbefriedigend ist, weil diese Lösung
Prinzipien von REST, wie die Ressourcen-Abstraktion und deren Interaktions-Mechanismen
hinter einem SOA-Ansatz versteckt. Pautasso führt weiterhin an, das WSDL 2.0 zum Einen
noch nicht weit verbreitet ist, vor allem nicht zur Beschreibung von RESTful Web Services.

In Kapitel 3 Composing RESTful Web services geht Pautasso auf grundlegende Regeln von
REST ein und erläutert Probleme die dadurch in BPEL auftreten:

• Ressourcen Addressierung durch URI: Pautasso schreibt, dass die Schnittstelle eines
RESTful Web Services aus einer Menge von Ressourcen besteht, die durch URIs
identifiziert werden, die nicht immer im Voraus bekannt sind. Er folgert, dass ein
spätes Binding von URIs im REST-Umfeld eine wichtige Rolle spielt und BPEL for
REST deshalb auch Binding zur Laufzeit unterstützen muss.

• Einheitliche Schnittstelle: Pautasso erläutert, dass mit allen identifizierten Ressoucen,
durch die selben 4 Methoden: PUT, GET, POST und DELETE, interagiert werden kann.
Weiterhin erklärt er die Semantik dieser Methoden und dass sie durch synchrone HTTP
Anfrage-Antwort Kommunikation aufgerufen werden können.

• Selbst-beschreibende Nachrichten: Nach einer kurzen Erklärung selbst-beschreibender
Nachrichten folgert Pautasso, dass HTTP-Header eine Anforderung an die BPEL for
REST Erweiterung darstellen.

• HATEOAS6: Nach kurzer Erläuterung von HATEOAS extrahiert Pautasso die Anfor-
derung an BPEL for REST, dass die Ressourcen URI eines BPEL-Prozesses dynamisch
generiert werden kann. Weiterhin formuliert er, dass es möglich sein muss URIs von
empfangenen HTTP-Nachrichten zu extrahieren und für weitere REST-Aufrufe zu
verwenden.

In Kapitel 4 BPEL for REST extension stellt Pautasso die Erweiterungen und Veränderungen
von BPEL vor, die von BPEL for REST definiert werden. Diese teilt er auf in Erweiterungen

2Web Application Description Language
3Web Resource Description Language
4Norm’s Service Description Language
5Web Description Language
6Hypermedeia as the engine of application state

56

6.1 „RESTful Web service composition with BPEL for REST“ - Cesare Pautasso

zum Aufrufen von RESTful Web Services, Erweiterungen zum Veröffentlichen von Prozessen
als RESTful Web Services und kleine BPEL-Erweiterungen und Veränderungen.
Pautasso definiert zum Aufruf von REST Services 4 neue Aktivitäten, <get>, <post>, <put>
und <delete>. Diese neuen Aktivitäten sind auch in der Lage mit Fehlern in der Kommuni-
kation umzugehen, indem sie bei bestimmten HTTP-Status-Codes BPEL-Faults auslösen, die
von Fault-Handlern verarbeitet werden können. Die Struktur für diese 4 Aktivitäten ist in
Listing 6.1 dargestellt.
Mit Hilfe des catch Elements lassen sich bestimmte FaulHandler mit bestimmten Status-
Codes assoziieren. Sollte im Attribut response_headers eine Variable angegeben sein, wird
diese genutzt um die HTTP-Header der HTTP-Antwort zu speichern. Die Attribute request
und response sind für Variablenreferenzen vorgesehen, in denen die request und response-
payloads, gespeichert sind oder gespeichert werden sollen. HTTP-Header können durch das
header Element definiert werden.

Listing 6.1 Struktur der neuen BPEL Aktivitäten nach [Pau09, Abbildung 3.]
<get uri="" response="" response_headers=""?>

<header name="">*value</header>

<catch code="">*...</catch>

<catchAll>?...</catchALL>

</get>

<post uri="" request="" response="" response_headers=""?>

...

</post>

<put uri="" request="" response=""? response_headers=""?>

...

</put>

<delete uri="" response=""? response_headers=""?>

...

</delete>

Zum Veröffentlichen eines Prozesses als RESTful Web Service definiert Pautasso das resour-
ce Element, welches Prozessen erlauben soll, abhängig vom Erreichen ihrer Deklaration,
dynamisch Ressourcen zu veröffentlichen. Sobald das resource Element erreicht ist, soll
die zugehörige URI veröffentlicht werden. Sollte der BPEL-Scope, in dem das resource
Element sichtbar ist, von der Prozessausführung verlassen werden, sollen Anfragen an die
bereits veröffentlichte URI mit 404, Not Found, beantwortet werden. Innerhalb des resource
Elements können wie in einem Scope Variablen deklariert werden. Diese Variablen sollen
dabei nur innerhalb des resource Elements sichtbar sein.
Um auf Anfragen zu Antworten, definiert Pautasso die Request Handler Elemente onGet,
onPut, onDelete und onPost als Kind-Elemente von resource. Sollte eine Anfrage stattfinden
und das entsprechende Element nicht vorhanden sein, soll die BPEL-Engine mit 405, Method
Not Allowed, antworten. Innerhalb dieser Elemente können die in BPEL vorhandenen struk-
turellen Aktivitäten zur Berechnung der Antwort verwendet werden. Ihre Anfragen können
diese Elemente mit Hilfe des respond Elements beantworten, wobei das code Attribut zur

57

6 Verwandte Arbeiten

Definition des HTTP-Status-Codes bestimmt ist. Die Struktur dieser Erweiterungen ist in
Listing 6.2 dargestellt. Um HTTP-Verb-Semantik zu garantieren definiert Pautasso noch
folgende Einschränkungen:

• Um Sicherheit zu garantieren hat der onGet-Request Handler nur Leserechte auf
Variablen.

• Da nur POST nicht idempotent is, kann das onPost Element mit dem isolated Attribut
markiert werden. Dieses Attribut funktioniert ähnlich zu dem isolated Attribut von
Scopes.

Die Struktur dieser Erweiterungen ist in Listing 6.2 ersichtlich. Zu den kleinen Erweiterun-

Listing 6.2 Struktur der Deklaration von Ressourcen in BPEL-Prozessen nach [Pau09, Abbil-
dung 4.]

<resource uri="">

<variable>*

<onGet>? ...</onGet>

<onPut>? ...</onPut>

<onDelete>? ...</onDelete>

<onPost isolated="false"? >? ...</onPost>

</resource>

<respond code=""?>

<header name="">*value</header>

payload

</respond>

gen und Veränderungen definiert Pautasso, dass die exit-Aktivität zusätzlich zum Beenden
der Prozessausführung auch noch den Status mit allen assoziierten Ressourcen verwirft.
Weiterhin soll die statische Variablentypisierung optional werden und das messageType-
Attribut, das WSDL-basiert ist, wird nicht mehr genutzt.

In Kapitel 5 Reference architecture zeigt Pautasso wie die Referenzarchitektur einer BPEL
for REST-Engine aussieht. Diese ist dargestellt in Abbildung 6.1. Pautasso schreibt, dass
die vorgeschlagenen Aktivitäten als BPEL extension activities gesehen werden können, für
die im Back-End ein spezielles Ausführungsmodul bereitgestellt wird. Die Verwaltung des
Status von Prozess-Ressourcen kann laut Pautasso von Mechanismen zur Status-Haltung
übernommen werden, die bereits in einer BPEL-Engine vorhanden sind. Das Veröffentlichen
von Prozess-Ressourcen und deren URIs soll von einem „servlet-ähnlichem“ Mechanismus
übernommen werden, der zusammen mit der BPEL-Engine im zugehörigen Applikations-
Container betrieben wird. Dieses Servlet soll HTTP-Anfragen von Clients bearbeiten, indem
es sie an die entsprechenden Request Handler weiterleitet. In Kapitel 6 Example zeigt
Pautasso anhand eines Beispiels, wie die vorgeschlagenen Erweiterungen genutzt werden
können, in Kapitel 7 Discussion bewertet und bespricht Pautasso die vorgeschlagenen
Erweiterungen. Kapitel 8 Related work befasst sich mit verwandten Arbeiten und in Kapitel
9 Conclusion wird noch ein Fazit gezogen.

58

6.1 „RESTful Web service composition with BPEL for REST“ - Cesare Pautasso

Clients RESTful
Web Services

BPEL for REST Engine

H
TTP

 Server

R
eso

u
rce

P
u

b
lish

er Servlet

Process
Execution

R
ESTfu

ln
vo

catio
n

A
ctivities

H
TTP

 C
lien

t

Persistent
Execution

State

Back-EndFront-End

BPEL Engine

Abbildung 6.1: Referenz Architektur für die BPEL for REST Erweiterung nach[Pau09, Abbil-
dung 6.]

6.1.1 Abgrenzung zu BPEL4REST

BPEL4REST unterscheidet sich in mehreren Punkten wesentlich von BPEL for REST. Ziel
von BPEL4Rest ist es, die Orchestrierung von RESTful Web Services durch BPEL zu er-
möglichen. Der Ansatz, den BPEL4REST dabei verfolgt ist, dass der Benutzer nicht über
detaillierte Kenntnisse von HTTP verfügen muss. Durch die umfangreichere Gestaltung der
XML-Struktur der einzelnen Aktivitäten, ist es für Nutzer leichter Meta-Daten nach ihren
Wünschen zu beeinflussen, ohne dabei die Namen von HTTP-Headern genau zu wissen.
Weiterhin übernimmt BPEL4REST weitere Aufgaben, wie beispielsweise die Berechnung des
Authentifizierungs-Headers und kümmert sich um die Serialisierung und Deserialisierung
von gesendeten bzw. empfangenen Daten.
Ein weiterer Unterschied ist, dass BPEL4REST nur die Orchestrierung von RESTful Web
Services ermöglicht. Nicht aber die Veröffentlichung von BPEL-Prozessen als REST-Service.
Diese Entscheidung wurde getroffen, weil BPEL sehr eng an WSDL 1.1 gekoppelt ist. Die
Motivation hinter BPEL4REST ist, es überhaupt erst möglich zu machen, mit RESTful Web
Services zu arbeiten. Die Funktionalität einen BPEL-Prozess zu veröffentlichen, so dass er
von anderen BPEL-Prozessen konsumiert werden kann, ist aber bereits in BPEL enthalten.
Die Veröffentlichung als REST-Service ist deshalb redundant und erhöht die Komplexität
ohne einen entscheidenden Vorteil zu bringen.
Pautasso erweitert BPEL nicht nur um weitere Konstrukte, sondern ändert auch die Semantik
von existierenden Elementen. Um diese Erweiterungen zu realisieren muss eine existierende

59

6 Verwandte Arbeiten

BPEL-Engine erweitert werden. BPEL4REST nutzt den Mechanismus der extensionActivity,
der bereits in BPEL vorhanden ist, was dazu führt, dass keine Änderungen an einer BPEL-
Engine selbst durchgeführt, sondern nur zusätzliche Funktionalität implementiert werden
muss.

6.2 BPEL light

Der Konferenzbeitrag „BPELlight“ ([NLKL07]) von Jörg Nitzsche, Tammo van Lessen, Dim-
ka Karastoyanova und Frank Leyman, behandelt die Idee eines WSDL-losen BPEL. Dazu
erweitern die Autoren BPEL um neue „WSDL-lose“ Sprach-Elemente, analog zu den WSDL-
basierten Aktivitäten und Partnerlinks.
[NLKL07] identifiziert zunächst zwei wichtige Defizite von BPEL: Zum einen die einge-
schränkte Wiederverwendbarkeit von (Teilen von) Prozessen, zum anderen die mangelnde
Flexibilität in Bezug auf Schnittstellen, die sie beide von der engen Kopplung von WSDL
und BPEL ableiten.
BPELlight definiert ein neues Interaktionsmodell durch zwei neue Elemente namens conver-
sation und interactionActivity. Das conversation Element bildet das WSDL-lose Äquivalent
zum partnerLink. Die interactionActivity, ist von den Autoren so konzipiert, dass sie alle
BPEL-eigenen Interaktions-Aktivitäten darstellen kann. Dazu benötigte Informationen, wer-
den durch Attribute des interactionActivity Elements bereitgestellt.
Weiterhin führt [NLKL07] ein neues Element ein, das bereits, in ähnlicher Form, in BPEL 1.1
vorhanden war, in BPEL 2.0 aber nicht mehr. Das partner Element erlaubt es verschiedene
conversation Elemente zu gruppieren und einem bestimmten Partner zuzuordnen.
Zuletzt definiert BPELlight noch eine Erweiterung der Assign-Aktivität, die es erlaubt eine
Partner-Identifikation in das partner Element zu kopieren. Dazu wird das to Element um
ein partner Attribut erweitert.
In ihrer Beurteilung schreiben die Autoren, dass BPELlight die Prozesslogik von den Schnitt-
stellenbeschreibungen trennt. Die Schnittstellen werden separat von BPELlight definiert und
an Prozess-Aktivitäten gebunden. Weiterhin können die Schnittstellen auch in jeder IDL7

beschrieben werden.

6.3 Towards Resource-Oriented BPEL

Der Artikel „Towards Resource-Oriented BPEL“ ([Ove]) von Hagen Overdick befasst sich
damit, BPEL zur Modellierung von Ressourcen zu erweitern.
Overdick befasst sich zunächst mit der Beschreibung der einheitlichen Schnittstelle8 von
HTTP, indem er die Verben GET, PUT, POST und DELETE erklärt. Anschließend zeigt er
anhand eines komplexeren Beispiels, wie diese Schnittstelle ressourcen-orientiert eingesetzt

7Interface Description Language
8Uniform Interface

60

6.4 Bite: Workflow Composition for the Web

werden kann.
Laut Overdick hat BPEL zwar keine expliziten Möglichkeiten Ressourcen-Status zu modellie-
ren, dafür aber durch das scope Element eine implizite. Er beschreibt, dass eine Statustransi-
tion durch POST-Nachrichten ausgelöst werden kann. GET-, PUT- und DELETE-Nachrichten
können nach Overdick jedoch beliebig oft verarbeitet werden, aufgrund ihrer spezifizierten
Eigenschaften Sicherheit(nur GET) und Idempotenz. Er schlägt also vor BPEL-Prozesse zur
Ressourcen-Modellierung einzusetzen, indem Prozesse als Ressourcen angesehen werden.
Der Status dieser Ressourcen wird durch Scopes modelliert. Die Interaktion mit der Umge-
bung find durch Event Handler statt, die auf GET, PUT und DELET reagieren. Weiterhin
schlägt Overdick einen „POST Empfänger“ vor, der bei Empfangen von POST-Anfragen
eine Status-Transition durchführen kann. Das von Overdick vorgeschlagene Prinzip ist in
Abbildung 6.2 dargestellt. Overdicks Ansatz ist mehr oder weniger mit Pautassos Arbeit
vergleichbar, da auch Pautasso Prozesse nach einem Ähnlichen Prinzip als Ressource zur
Verfügung stellt.

POST Empfänger

Scope
(= aktueller Status)

Event HandlerUmgebung

Scope
(= neuer Status)

POST

GET

DELETE

PUT

Abbildung 6.2: Wie BPEL zur Modellierung von Ressourcen-Status genutzt werden kann,
nach [Ove, Abbildung 3.]

6.4 Bite: Workflow Composition for the Web

Der Artikel „Bite: Workflow Composition for the Web“ ([CDKL]) definiert die Sprache Bite.
Bite ist eine Sprache zur Komposition von Workflows in einer REST-basierten Umgebung.

61

6 Verwandte Arbeiten

Ziel der Autoren ist es, die Sprache so zu entwerfen, dass Prozess-Instanzen, als Ressource
angeboten werden und dass diese Prozess-Instanzen auch mit anderen Ressourcen interagie-
ren können. Die Funktionalität ist also letztendlich analog zu BPEL, mit dem Unterschied,
dass Bite auf eine REST-basierte Umgebung ausgelegt ist. Weiterhin erlaubt es Bite seine
Variablen mit content-types zu assoziieren. Dadurch wird die Content-Negotiation in Bite
automatisiert und vereinfacht.
Wie BPEL kann auch Bite um neue Aktivitäten erweitert werden und liefert dazu auch einen
Mechanismus, wie diese neuen Aktivitäten implementiert und registriert werden können.
Im Gegensatz zu BPEL gibt es in Bite keine Scopes und keine FaultHandler. Von den struk-
turellen BPEL-Aktivitäten sind lediglich die Elemente while und pick in Bite übernommen
worden. Um ein leichtgewichtiges Prozessmodell zu realisieren versucht Bite „Workflow
scripting“ zu ermöglichen. Damit sind hauptsächlich folgende Konventionen gemeint:

• „use implies definition“: Damit is gemeint, dass Variablen auch genutzt werden
können, ohne sie vorher zu deklarieren oder explizit zu typisieren.

• „convention over configuration“: Bite gibt vor, dass Rückgabewerte von Aktivitäten
durch implizit typisierte Variablen, mit dem selben Namen wie die Aktivität, realisiert
werden.

• „Radical reduction of extraneous constructs while eliminating levels of indi- recti-
on“: Aufrufziele von Aktivitäten werden als URL oder als Variablen definiert. Es wird
keine Typisierung der Ressourcen benötigt. Das steht im radikalen Gegensatz zu BPEL,
bei dem Aufrufziele durch Partnerlinktypen definiert sein müssen, die deutlich mehr
Informationen benötigen.

Zuletzt ermöglicht Bite noch eine flexible Konfiguration von Prozessen, indem es erlaubt,
Werte von Variablen auch außerhalb der Workflow-Definition zu setzen. Dies ist ähnlich zu
dem Konzept von Properties in java.

62

7 Zusammenfassung und Ausblick

BPEL4REST ermöglicht es der Sprache BPEL, nicht nur WSDL-basierte, sondern auch REST-
ful Web Services zu orchestrieren. Im Verlauf der Arbeit wurden zunächst wichtige Begriffe
erläutert, die zum Verständnis der Arbeit wichtig sind. Diese sind: Geschäftsprozesse, Work-
flows, Workflow-Management-Systeme, BPEL und REST.
Anschließend wurden Möglichkeiten und Ideen aufgezeigt inwiefern es bereits möglich ist,
oder möglich wäre, RESTful Web Services durch BPEL zu orchestrieren. Diese Ideen wurden
dann anhand von Anforderungen, die aus den REST-Prinzipien abgeleitet sind, analysiert
und bewertet.
Bei der Analyse wurde festgestellt, dass vor allem die erste Anforderung, zur Laufzeit eines
BPEL-Prozesses die URI eines HTTP-Aufrufs zu manipulieren, durch durch die vorgestellten
Ansätze nicht ausreichend erfüllt wird.
Die Nutzung von WSDL 1.1 (siehe Kapitel 3.2.1) oder der WSDL 1.1 Extension for REST
(siehe Kapitel 3.2.2) zur Beschreibung von REST Schnittstellen ist dadurch zur Orchestrie-
rung von RESTful Web Services durch BPEL nicht geeignet.
Weiterhin wurde auf WSDL 2.0 (siehe Kapitel 3.2.3) eingegangen. Diese Möglichkeit schei-
tert an der Tatsache, dass BPEL sehr eng an WSDL 1.1 gekoppelt ist. Es ist unwahrscheinlich,
dass BPEL zukünftig auch WSDL 2.0 unterstützt, da das OASIS Kommittee seine Arbeit an
BPEL als abgeschlossen erachtet.
Ebenfalls wurde noch ein Konzept vorgestellt, bei dem ein WSDL 1.1 Web Service die Kom-
munikation mit RESTful Web Services übernimmt (siehe Kapitel 3.2.4). Diese Möglichkeit
hat aber den Nachteil, dass die Komplexität von BPEL-Prozessen erhöht wird, weil viele
zusätzliche Aktivitäten in BPEL nötig sind, die Nachrichten zu verarbeiten, die von diesem
Web Service empfangen werden.

Im folgenden Kapitel wurde ein Konzept entworfen, das mit Hilfe eines existierenden
BPEL-Konstrukts, eine Erweiterung für BPEL definiert. Diese Erweiterung verfolgt das Ziel,
allen Anforderungen, RESTful Web Services durch BPEL zu orchestrieren, zu entsprechen.
Kern des Konzepts ist es, die Struktur einer extensionActivity [TC07, 10.9] zu definieren,
die alle geforderten Funktionalitäten abbildet. Die Erweiterung beherrscht 5 HTTP-Verben:
GET, PUT, POST, DELETE und HEAD.
Zur vereinfachten Anwendung von HTTP-Headern, definiert die Erweiterung das context
Element (siehe 4.3.4), mit dem es möglich ist, allgemeine Header-Felder für mehrere Aufrufe
zu setzen.
Weiterhin wurden XML-Elemente eingeführt, die die HTTP-Content-Negotiation unterstüt-
zen. Ebenfalls definiert die Erweiterung XML-Elemente, die es erleichtern, BPEL-Variablen
mit den korrekten Medientypen zu assoziieren. Mit dem neu definierten responseHeader
Element, wurde die Möglichkeit geschaffen, alle empfangenen Meta-Daten einer HTTP-

63

7 Zusammenfassung und Ausblick

Antwort in eine BPEL-Variable zu schreiben und sie somit für BPEL-Prozesse verfügbar zu
machen.
Durch die anschließende Evaluierung des Konzepts, wurde festgestellt, dass die Erweiterung
alle gestellten Anforderungen erfüllt, wenngleich eine Form der HTTP-Content-Negotiation,
die „agent-driven Content-Negotiation“, trotzdem „von Hand“ durchgeführt werden muss.

Im Kapitel BPEL4REST - Implementierung wurde die prototypische Implementierung des
Konzepts dokumentiert. Dazu wurden zunächst Technologien vorgestellt, die zur Entwick-
lung dieser Erweiterung eingesetzt wurden.
Im weiteren Verlauf des Kapitels wurde zunächst die grobe Architektur, die aus den beiden
Komponenten „Model“ und „Control“ besteht, dargestellt und erläutert. Anschließend
folgten detaillierte Beschreibungen der Komponenten und ihrer einzelnen Bestandteile,
sowie eine Beschreibung des internen Ablaufs der Erweiterung.
Zuletzt wurden in diesem Kapitel noch die Einschränkungen beschrieben, denen die Imple-
mentierung von BPEL4REST unterliegt.

Das Kapitel 6, befasste sich mit verwandten Arbeiten. Dazu gehört die Arbeit mit dem Titel
„RESTful Web service composition with BPEL for REST“ von Cesare Pautasso, die sich mit
der Komposition von RESTful Web Services in BPEL beschäftigt.
Die Arbeit „RESTful Web service composition with BPEL for REST“ (siehe Kapitel 6.1)
schlägt eine Erweiterung von BPEL vor, geht dabei aber noch einen Schritt weiter als
BPEL4REST. Pautasso definiert zum Einen neue Aktivitäten, zur Orchestrierung von RESTful
Web Services, zum Anderen definiert er aber auch Konstrukte, die es ermöglichen, Teile
eines BPEL-Prozesses als RESTful Web Service zu veröffentlichen. Da Pautassos Vorschlag
signifikante Änderungen an BPEL bedeuten, sodass Änderungen an BPEL-Engines nötig
wären, macht er auch einen Vorschlag, wie die Architektur, einer für REST erweiterten
BPEL-Engine, aussehen kann.
BPEL light beschreibt ein Konzept die Kopplung von WSDL und BPEL zu lösen, während
die Arbeit [Ove] von Overdick einen Vorschlag macht, BPEL-Prozesse als Ressourcen zu
veröffentlichen, ohne die Orchestrierung von RESTful Web Services mit einzubeziehen.
Mit der Sprache Bite wird in der Arbeit [CDKL] eine an BPEL-angelehnte Workflow-Sprache
definiert. Bite ist eine leichtgewichtige Sprache mit „Scripting Konventionen“, die es er-
möglicht, Prozesse als Ressourcen zu veröffentlichen, aber auch dass Prozesse mit anderen
Ressourcen interagieren können.

Ausblick

In dieser Bachelorarbeit wurde BPEL4REST entworfen und implementiert: Eine Erweiterung
für BPEL, die das extensionActivity Element nutzt, um BPEL zur Orchestrierung von
RESTful Web Services zu befähigen.
Die Implementierung von BPEL4REST ist als Prototyp anzusehen und bietet daher noch
viele Möglichkeiten zur Verbesserung:

64

• Zur frühzeitigen Vermeidung von Fehlern, in der Ausführung von BPEL4REST, kann
eine Validierung des übergebenen XML-Elements gegen ein XML Schema implemen-
tiert werden. Damit verbunden kann ein automatisiertes Parsing des übergebenen
XML-Elements implementiert werden, indem beispielsweise Model-Klassen aus dem
XML Schema generiert werden.

• Derzeit beherrscht BPEL4REST den Umgang mit den Medientypen text/plain, applica-
tion/json und allen XML-Typen. Weitere Medientypen, die noch nicht von BPEL4REST
untertützt werden, sind beispielsweise CSV-Typen oder text/html.

BPEL4REST wurde für die OpenSource BPEL-Engine Apache ODE implementiert, ist aber
derzeit nur mit dem Experimental Branch nutzbar. Laut [odeb] sind keine weiteren Veröf-
fentlichungen dieses Branches geplant. Allerdings sollen Features dieses Branches in die 1.x
Veröffentlichungen der ODE integriert werden.
Da das extensionActivity Element Teil der Spezifikation von BPEL ist, ist anzunehmen, dass
auch die Funktionalität, die von BPEL4REST genutzt wird, irgendwann in den aktuellen
Veröffentlichungen der ODE enthalten sein wird.

65

Literaturverzeichnis

[apa] The Apache Software Foundation. URL http://www.apache.org/. (Zitiert auf
den Seiten 45 und 46)

[bpea] OASIS Web Services Business Process Execution Language (WSBPEL) TC. URL
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel.
(Zitiert auf Seite 31)

[bpeb] WS-BPEL FAQ. URL https://www.oasis-open.org/committees/download.

php/23858/. (Zitiert auf Seite 31)

[CCMW01] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana. Web Services Descrip-
tion Language (WSDL) 1.1, 2001. URL http://www.w3.org/TR/wsdl. (Zitiert
auf den Seiten 16, 22, 24 und 28)

[CDKL] F. Curbere, M. Duftler, R. Khalaf, D. Lovell. Bite: Workflow Composition for the
Web. (Zitiert auf den Seiten 61 und 64)

[Coa] W. M. Coalition. The Workflow Reference Model. URL http://www.wfmc.org/

reference-model.html. (Zitiert auf Seite 10)

[Dav93] T. Davenport. Process Innovation: Reengineering Work Through Information Techno-
logy. Harvard Business School Press, Boston, 1993. (Zitiert auf Seite 13)

[ecla] Eclipse. URL http://www.eclipse.org/. (Zitiert auf den Seiten 46 und 55)

[eclb] Eclipse Downloads. URL http://www.eclipse.org/downloads/. (Zitiert auf
Seite 46)

[eclc] Older Versions Of Eclipse. URL http://wiki.eclipse.org/Older_Versions_

Of_Eclipse. (Zitiert auf Seite 46)

[Fie00] R. T. Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures, 2000. URL http://www.ics.uci.edu/~fielding/pubs/

dissertation/top.htm. (Zitiert auf den Seiten 3, 10, 17, 18, 19 und 21)

[GWSS] P. D. R. L. GABLER WIRTSCHAFTSLEXIKON, D. M. Siepermann, P. D. G. Sche-
we. Geschäftsprozess. URL http://wirtschaftslexikon.gabler.de/Archiv/

5598/geschaeftsprozess-v10.html. (Zitiert auf Seite 13)

[HC93] M. Hammer, J. Champy. Reengineering the Corporation: A Manifesto for Business
Recolution. Harper Business, 1993. (Zitiert auf Seite 13)

[htta] Apache HttpComponents. URL http://hc.apache.org/. (Zitiert auf Seite 46)

67

http://www.apache.org/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
https://www.oasis-open.org/committees/download.php/23858/
https://www.oasis-open.org/committees/download.php/23858/
http://www.w3.org/TR/wsdl
http://www.wfmc.org/reference-model.html
http://www.wfmc.org/reference-model.html
http://www.eclipse.org/
http://www.eclipse.org/downloads/
http://wiki.eclipse.org/Older_Versions_Of_Eclipse
http://wiki.eclipse.org/Older_Versions_Of_Eclipse
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://wirtschaftslexikon.gabler.de/Archiv/5598/geschaeftsprozess-v10.html
http://wirtschaftslexikon.gabler.de/Archiv/5598/geschaeftsprozess-v10.html
http://hc.apache.org/

Literaturverzeichnis

[httb] HttpComponents Downloads. URL http://hc.apache.org/downloads.cgi.
(Zitiert auf Seite 46)

[htt99] Hypertext Transfer Protocol – HTTP/1.1, 1999. URL https://tools.ietf.org/

html/rfc2616. (Zitiert auf den Seiten 27, 31, 34, 36, 37, 39, 40 und 42)

[jop] JOpera for Eclipse. URL www.jopera.org. (Zitiert auf Seite 55)

[LLN11] T. van Lessen, D. Lübke, J. Nitzsche. Geschäftsprozesse automatisieren mit BPEL.
dpunkt.verlag GmbH, 2011. URL http://www.bpelbuch.de. (Zitiert auf Seite 17)

[LR00] F. Leymann, D. Roller. Production Workflow Concepts and Techniques. Prentice Hal,
Inc, 2000. (Zitiert auf den Seiten 7, 14, 15 und 16)

[Mic08] S. Microsystems. Using the HTTP Binding Component, 2008. URL http://

docs.oracle.com/cd/E19182-01/820-0595/cnfg_http-bc-get-processing_

r/index.html. (Zitiert auf Seite 24)

[NLKL07] J. Nitzsche, T. van Lessen, D. Karastoyanova, F. Leymann. BPEL light. In 5th
International Conference on Business Process Management (BPM 2007). Springer,
2007. (Zitiert auf Seite 60)

[odea] Apache ODE. URL http://ode.apache.org/. (Zitiert auf Seite 45)

[odeb] Getting ODE. URL http://ode.apache.org/getting-ode.html. (Zitiert auf
Seite 65)

[Ove] H. Overdick. Towards Resource-Oriented BPEL. (Zitiert auf den Seiten 7, 60, 61

und 64)

[Pau08] C. Pautasso. BPEL for REST. Proc. of the 6th International Conference on Business
Process Management (BPM 2008), Milan, Italy, 2008. (Zitiert auf Seite 55)

[Pau09] C. Pautasso. RESTful Web service composition with BPEL for REST. Data and
Knowledge Engineering, Volume 68, Issue 9, 2009. (Zitiert auf den Seiten 7, 8, 55,
57, 58 und 59)

[TC07] O. W. S. B. P. E. L. W. TC. Web Services Business Process Execution Lan-
guage Version 2.0, 2007. URL http://docs.oasis-open.org/wsbpel/2.0/OS/

wsbpel-v2.0-OS.html. (Zitiert auf den Seiten 3, 17, 33 und 63)

[tom] Tomcat 7 Downloads. URL http://tomcat.apache.org/download-70.cgi. (Zi-
tiert auf Seite 45)

[uri99] HTML 4.01 Specification, 1999. URL http://www.w3.org/TR/html401. (Zitiert
auf Seite 23)

[wsd] WSDL 1.1 Extensions for REST. URL ode.apache.org/extensions/

wsdl-11-extensions-for-rest.html. (Zitiert auf den Seiten 7, 24, 25, 26, 27

und 28)

68

http://hc.apache.org/downloads.cgi
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
www.jopera.org
http://www.bpelbuch.de
http://docs.oracle.com/cd/E19182-01/820-0595/cnfg_http-bc-get-processing_r/index.html
http://docs.oracle.com/cd/E19182-01/820-0595/cnfg_http-bc-get-processing_r/index.html
http://docs.oracle.com/cd/E19182-01/820-0595/cnfg_http-bc-get-processing_r/index.html
http://ode.apache.org/
http://ode.apache.org/getting-ode.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://tomcat.apache.org/download-70.cgi
http://www.w3.org/TR/html401
ode.apache.org/extensions/wsdl-11-extensions-for-rest.html
ode.apache.org/extensions/wsdl-11-extensions-for-rest.html

Literaturverzeichnis

[wsd06a] Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language,
2006. URL http://www.w3.org/TR/2006/CR-wsdl20-20060327/. (Zitiert auf
den Seiten 28 und 31)

[wsd06b] Web Services Description Language (WSDL) Version 2.0 Part 2: Adjuncts, 2006.
URL http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060327/. (Zitiert
auf den Seiten 7, 28 und 30)

Alle URLs wurden zuletzt am 01. 08. 2013 geprüft.

69

http://www.w3.org/TR/2006/CR-wsdl20-20060327/
http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060327/

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wörtlich oder sinngemäß aus anderen Wer-
ken übernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Prüfungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollständig
veröffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

	1 Einleitung
	2 Grundlagen
	2.1 Geschäftsprozesse
	2.2 Workflow
	2.3 Workflow-Management-Systeme
	2.4 BPEL
	2.5 Was ist REST?

	3 Orchestrierung von REST Services mit BPEL
	3.1 Anforderungen
	3.2 Analyse bestehender Ansätze zur Orchestrierung von REST Services mit BPEL
	3.2.1 RESTful BPEL mit WSDL 1.1
	3.2.2 RESTful BPEL mit WSDL 1.1 Extension for REST
	3.2.3 RESTful BPEL mit WSDL 2.0
	3.2.4 RESTful BPEL Wrapped in SOAP

	4 Konzept zur Erweiterung von BPEL um RESTful Web Services zu orchestrieren
	4.1 Allgemeines
	4.2 Konventionen
	4.3 XML-Erweiterung von BPEL
	4.3.1 Generelle Syntax
	4.3.2 Das <requestParameters> Element
	4.3.3 Das <responseParameters> Element
	4.3.4 Das <context> Element
	4.3.5 Das <responseHeader> Element

	4.4 Evaluierung des Konzepts anhand der Anforderungen aus 3.1

	5 BPEL4REST - Implementierung
	5.1 Verwendete Technologien - Entwicklungsumgebung
	5.1.1 Apache ODE
	5.1.2 Apache Tomcat
	5.1.3 Apache HttpComponents Client
	5.1.4 Eclipse

	5.2 Architektur
	5.2.1 Übersicht
	5.2.2 Komponente Model
	5.2.3 Komponente Control

	5.3 Ablauf der Erweiterung
	5.4 Einschränkungen

	6 Verwandte Arbeiten
	6.1 "RESTful Web service composition with BPEL for REST" - Cesare Pautasso
	6.1.1 Abgrenzung zu BPEL4REST

	6.2 BPEL light
	6.3 Towards Resource-Oriented BPEL
	6.4 Bite: Workflow Composition for the Web

	7 Zusammenfassung und Ausblick
	Literaturverzeichnis

