
Institut für Architektur von Anwendungssystemen

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit Nr. 53

Verwaltung von Instanzdaten
eines TOSCA Cloud Services

Marcus Eisele

Studiengang: Softwaretechnik

Prüfer/in: Prof. Dr. Frank Leymann

Betreuer/in: Dipl.-Inf. Florian Haupt

Beginn am: 30. April 2013

Beendet am: 30. Oktober 2013

CR-Nummer: C.2.4, H.0

Kurzfassung

Die Topology and Orchestration Specification for Cloud Applications (TOSCA)
ermöglicht die portable und interoperable Beschreibung von Cloud Anwendungen,
deren Deployment und deren Verwaltung. Die Abfolge der ausgeführten Operatio-
nen innerhalb der Anwendungsstruktur kann hierbei durch Management-Pläne
modelliert werden.

Die Beschreibungen der Anwendung alleine sind jedoch nicht ausreichend um
Instanzen einer solchen sinnvoll zu verwalten. Während der Ausführung der
Management-Pläne fallen komponentenspezifische Daten an, deren persistente
Speicherung und Bereitstellung gewährleistet sein muss. Die Pläne benötigen wäh-
rend ihrer Ausführung, neben den Instanzdaten, den Zugriff auf anwendungs-
spezifische Dateien. Zur Sicherstellung der Portabilität der Pläne, muss dieser
Zugriff möglichst unabhängig von der eingesetzten TOSCA-Laufzeitumgebung
sein. Die Verwaltung von Instanzdaten und Sicherstellung der Portabilität sind
beides Aufgaben einer TOSCA-Laufzeitumgebung.

Diese Arbeit identifiziert Anforderungen an einen Dienst, der diese Aufgaben
realisiert, und zeigt den Entwurf und die Implementierung eines solchen. Dies
wird exemplarisch am Beispiel des OpenTOSCA-Containers, der eine an der Uni-
versität Stuttgart entwickelte TOSCA-Laufzeitumgebung ist, durchgeführt. Dieser
wird im Zuge dieser Arbeit um eine Instanzdatenverwaltungs- und Portabilitäts-
Schnittstelle erweitert.

3

Inhaltsverzeichnis

Abkürzungsverzeichnis 7

Abbildungsverzeichnis 8

Tabellenverzeichnis 9

Verzeichnis der Listings 10

1 Einleitung 11

2 Grundlagen 15
2.1 Cloud . 15
2.2 REST . 17
2.3 TOSCA . 18

2.3.1 Verschiedene Ebenen des Modells 18
2.3.2 Templates und Types . 19
2.3.3 Instanzen, Properties und State 21
2.3.4 CSAR . 22

2.4 OpenTOSCA . 22
2.4.1 Architektur . 23

3 Anforderungen an einen Dienst zur Instanzdatenverwaltung 27
3.1 Theoretische Annahmen . 27
3.2 ServiceInstance-spezifische Anforderungen 28

3.2.1 Erstellen einer ServiceInstance 28
3.2.2 Löschen einer ServiceInstance 30
3.2.3 Abfragen von ServiceInstance-Informationen 30
3.2.4 Finden von ServiceInstance-IDs anhand von Filtern 30
3.2.5 Prüfung der Existenz einer ServiceInstance 31

3.3 NodeInstance-spezifische Anforderungen 31
3.3.1 Erstellen einer NodeInstance 31
3.3.2 Löschen einer NodeInstance 31

5

3.3.3 Abfragen von NodeInstance-Informationen 31
3.3.4 Ändern von NodeInstance-Informationen 32
3.3.5 Abfragen des NodeTypes einer NodeInstance 32
3.3.6 Finden von NodeInstance-IDs anhand von Filtern 33
3.3.7 Prüfung der Existenz einer NodeInstance 33

3.4 NodeTemplate-spezifische Anforderungen 33
3.4.1 Link zu einem oder mehreren Artefakten eines NodeTempla-

tes erhalten . 33
3.5 Weitere funktionale Anforderungen 34

3.5.1 Persistenz . 34
3.5.2 Integration in bestehende Dienste 34

4 Entwurf 35
4.1 Einschränkungen . 35
4.2 Ist- / Sollzustand . 36
4.3 Schnittstellen . 38
4.4 Interaktion . 39
4.5 Analyse der Beschaffenheit von Artefakten in TOSCA 48
4.6 Erweiterung der TOSCA-Engine . 50
4.7 Persistenz . 51
4.8 REST . 53

5 Implementierung 63
5.1 OSGi . 64
5.2 Implementierung der Persistenz- und Filteranforderung 66
5.3 Erweiterung TOSCA-Engine . 68
5.4 Erweiterung der bestehenden REST-Schnittstelle 70

6 Validierung des Konzepts und der Implementierung 75

7 Zusammenfassung und Ausblick 79

Literaturverzeichnis 81

6

Abkürzungsverzeichnis

API application programming interface
BPEL WS-Business Process Execution Language
BPMN Business Process Model and Notation
CMS Content-Management-System
CSAR Cloud Service Archive
DA DeploymentArtifact
FMC Fundamental Modeling Concepts
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IA ImplementationArtifact
IAAS Institut für Architektur von Anwendungssystemen
IaaS Infrastructure-as-a-Service
ID Identifier
IDC International Data Corporation
IPVS Institut für Parallele und Verteilte Systeme
IT Informationstechnik
JAXB Java Architecture for XML Binding
JPA Java Persistence API
NIST National Institute of Standards and Technology
ODE Orchestration Director Engine
PaaS Platform-as-a-Service
PHP PHP: Hypertext Preprocessor
QName qualified Name
REST Representational State Transfer
SaaS Software-as-a-Service
SOA service-oriented architecture
SQL Structured Query Language
TOSCA Topology and Orchestration Specification for Cloud Applications
UML Unified Modeling Language
URI Uniform Resource Identifier

7

URL Uniform Resource Locator
VM virtuelle Maschine
W3C World Wide Web Consortium
WAR Web application ARchive
XLink XML Linking Language
XML Extensible Markup Language

Abbildungsverzeichnis

2.1 TOSCA Drei-Schichten-Modell . 19
2.2 Zusammenhang zwischen verschiedenen Template-Typen 20
2.3 Beispielstruktur einer gültigen CSAR-Datei 22
2.4 FMC-Aufbaudiagramm der OpenTOSCA-Struktur 25

4.1 Erweitertes FMC-Aufbaudiagramm der OpenTOSCA-Struktur . . 36
4.2 UML-Klassendiagramm der beiden Interfaces IInstanceDataService

und IPortabilityService . 38
4.3 Beispielhafter Ablauf eines Build-Plans 41
4.4 UML-Sequenzdiagramm: ServiceInstance-Erstellung innerhalb des

OpenTOSCA-Containers . 45
4.5 UML-Sequenzdiagramm: Abruf von Instanzdaten innerhalb des

OpenTOSCA-Containers . 46
4.6 UML-Sequenzdiagramm: Abruf von Links zu Artefakten innerhalb

des OpenTOSCA-Containers . 47
4.7 Referenzierung von DAs, IAs und deren ArtifactSpecificContent . . 49
4.8 UML-Klassendiagramm der TOSCA-Engine Schnittstelle nach der

Erweiterung im Zuge der Entwicklung 52
4.9 UML-Klassendiagramm der ServiceInstance- und NodeInstance-Klasse 53
4.10 Erweiterung der REST-Schnittstelle des OpenTOSCA-Containers . 54

5.1 SOA-Dreieck, beschreibt die Beziehungen zwischen den Rollen einer
service-oriented architecture . 63

5.2 Struktur der zum Instanzdatenverwaltungsdienst gehörenden OSGi-
Projekte . 65

8

5.3 UML-Klassendiagramm der ResolvedArtifacts und beteiligten Klassen 69

Tabellenverzeichnis

3.1 Identifikation und Beziehung von TOSCA-Elementen 29
3.2 Modifizierte Identifikation und Beziehung von TOSCA-Elementen 29

Verzeichnis der Listings

2.1 Mit JPA-Annotationen versehene Beispielklasse 26

4.1 Beispielhafte Definition eines DA mit artifactSpecificContent, einer
NodeTypeImplementation und eines ArtifactTemplates, das von dem
DA und dem IA der NodeTypeImplementation referenziert wird . 50

4.2 Beispielhafte Umsetzung der XLink-Spezifikation 56
4.3 Beispielhafte Rückgabe der GET-Operation auf dem NodeInstances-

Pfad . 57
4.4 Beispielhafte Rückgabe der GET-Operation auf dem dynamischen

NodeInstances-ID-Pfad . 58
4.5 Beispielhafte Rückgabe der GET-Operation auf dem Properties-Pfad

einer NodeInstance mit spezifiertem List-Parameter 59
4.6 Beispielhafte Rückgabe der GET-Operation auf dem ServiceInstances-

Pfad . 59
4.7 Beispielhafte Rückgabe der GET-Operation auf dem dynamischen

ServiceInstance-Pfad . 60
4.8 Beispielhafte Rückgabe der GET-Operation auf dem Artifact-Pfad . 61
4.9 Beispielhafte Konvertierung einer relativen Pfadreferenz in eine ab-

solute Referenz . 61

9

5.1 Pseudo SQL-Anweisung, die einen externen optionalen Parameter
beinhaltet. 68

5.2 Gekürzte Implementierung der InstanceDataRoot-Klasse inklusive
Jersey-Annotationen . 72

5.3 Implementierung der NodeInstanceList inklusive JAXB-Annotationen 73

10

1 Einleitung

Die Entwicklung und Prognosen der letzten Jahre zeigen, dass Cloud-Computing
einer der wichtigsten Zweige der Informationstechnik (IT) ist und auch zukünftig
bleiben wird. Mitte des Jahres 2012 prognostizierte die International Data Cor-
poration (IDC) bis ins Jahre 2016 eine Annäherung der Ausgaben für öffentliche
Cloud-Dienste an die 100 Milliarden Dollar Marke, was einem jährlichem Wachs-
tum von 26,4% in diesem Zeitraum entsprechen würde.[IDC] Einer der Gründe
für dieses starke Wachstum ist, dass immer mehr Unternehmen Bereiche ihrer
IT-Infrastruktur auslagern. Dieser Vorgang wird als Outsourcing bezeichnet und ist
besonders beliebt, wenn die ausgelagerten Bereiche nicht Teil des Kerngeschäfts
sind.

Hat sich ein Unternehmen erstmals für einen Cloud-Anbieter entschieden, so ist es
zunächst an diesen gebunden. Ein Wechsel des Anbieters ist in vielen Fällen für das
Unternehmen sehr schwer und nur mit hohen Kosten verbunden möglich. Dieser
Sachverhalt wird in der Literatur als vendor-lockin bezeichnet.

Gründe für diesen vendor-lockin sind vielfältig. Es existieren wenige oder kaum
Standards zur Definition der Dienste von Cloud-Anbietern, deshalb bestehen viele
Lösungen der Cloud-Anbieter aus proprietären Komponenten. Aus diesem Grund
müssen Cloud-Anwendungen häufig, speziell für einen gewissen Anbieter, maß-
geschneidert werden. In Folge dessen können bestehende Daten oder gesamte
Cloud-Anwendungen häufig nicht, oder nur in Verbindung mit hohen Kosten,
migriert werden.

Die Gründe für eine solche Migration sind allerdings vielfältig. Einer dieser Gründe
ist die dynamische Preisgestaltung vieler Anbieter, welche zur Folge hat, dass ein
Unternehmen, das auf den Anbieter angewiesen ist, keine mittel- oder langfristige
Kontrolle über seine eigenen IT-Kosten hat. An dieser Stelle erkennen wir die
Notwendigkeit für ein Unternehmen, die Cloud permanent zu überwachen um
ggf. sehr zeitnah den Anbieter wechseln zu können.[SHI+13, S. 69ff] Topology and
Orchestration Specification for Cloud Applications (TOSCA) soll unter anderem
genau dieses Problem angehen und lösen.

11

1 Einleitung

Motivation von TOSCA ist es Cloud-Computing wertvoller zu machen, in-
dem es gelingt die halb-automatische Erstellung und Verwaltung von An-
wendungsschicht (application layer) Diensten zwischen verschiedenen Cloud-
Implementierungsumgebungen zu portieren, ohne die Zusammenarbeitsfähigkeit
(interoperability) einzuschränken. TOSCA stellt eine Sprache zur Verfügung, welche
ermöglicht Cloud-Dienste und Verwaltungsabläufe zum Erstellen oder Modifizie-
ren dieser Dienste einheitlich zu beschreiben. Ein in TOSCA beschriebener Dienst
ist so unter Umständen zu einer Vielzahl von Anbietern kompatibel. Diese Tatsache
stellt einen großen Mehrwert für die bisherige Situation des Cloud-Computing dar,
denn bisher war es selten oder nur schwer möglich von einem Cloud-Anbieter
zu einem anderen zu wechseln oder sogar Dienste dieser beiden zu kombinieren.
[OAS13, S.7]

Motivation und Ziel

Bei der Durchführung des Studienprojektes LeGO4TOSCA, das sich mit der Imple-
mentierung von TOSCA-konformen Bausteinen, sogenannte NodeTypes, beschäf-
tigte, haben wir einige wichtige Erkenntnisse über die Automatisierung des Le-
benszyklus von Cloud-Anwendungen erlangen können. Einige der dort erkannten
Anforderungen sind nun in diese Bachelorarbeit eingeflossen.

Während des Betriebs von Cloud-Anwendungen existieren und entstehen wichtige
komponentenspezifische Daten. Beispielsweise besitzt eine virtuelle Maschine (VM)
eine zugewiesene IP-Adresse und ein gestartetes Image hat zugehörige Anmelde-
daten (Credentials). Wir nennen diese Daten, da sie einer eindeutigen Instanz zu-
zuordnen sind, Instanzdaten. Außerdem muss regelmäßig bei der automatisierten
Installation und Verwaltung einer Cloud-Anwendungen auf anwendungsspezifi-
sche Dateien jeglicher Art zugegriffen werden.

Bei der Erstellung der TOSCA wurden diese Anforderungen bereits identifiziert
und berücksichtigt. Es gibt sogenannte Properties um Instanzdaten zu spezifizie-
ren. Die Funktionalität um auf anwendungsspezifische Daten zuzugreifen wird in
TOSCA durch das Prinzip der ImplementationArtifacts (IAs) und DeploymentArti-
facts (DAs) abgedeckt.

Um TOSCA-Anwendungen zu interpretieren wird eine TOSCA-Laufzeitumgebung
benötigt, die diese Anforderungen erfüllt und diese Prinzipien umsetzt. Eine Imple-
mentierung einer solchen Laufzeitumgebung ist der, an der Universität Stuttgart
entwickelte, OpenTOSCA-Container. Dieser hatte zu Beginn dieser Bachelorarbeit

12

jedoch nicht die Möglichkeit diese beiden Anforderungen ausreichend abzude-
cken und soll durch die Ergebnisse der Arbeit um diese Anforderungen erweitert
werden.

Im Rahmen dieser Bachelorarbeit werden deshalb theoretische Anforderungen an
einen solchen Dienst zur Instanzdatenverwaltung und Bereitstellung von IAs und
DAs identifiziert. Die identifizierten Anforderungen werden als Grundlage für den
Entwurf einer internen Schnittstelle für den OpenTOSCA-Container dienen. Diese
Schnittstelle wird im Laufe der Arbeit in Form eines OSGi-Bundles realisiert werden.
Die Funktionalität der internen Schnittstelle soll auch außerhalb des Containers zur
Verfügung stehen, weshalb die bereits bestehende Representational State Transfer
(REST)-Schnittstelle des OpenTOSCA-Containers erweitert werden wird.

Gliederung

Im Folgenden werden die Kapitel der Arbeit in chronologischer Reihenfolge darge-
stellt:

Kapitel 2 – Grundlagen: Hier werden die grundlegenden Begrifflichkeiten, die für
das Verständnis der Arbeit erforderlich sind, erläutert. Besonders wird hierbei
auf die Zusammenhänge der TOSCA-Spezifikation sowie auf die Architektur
des OpenTOSCA-Containers eingegangen.

Kapitel 3 – Anforderungen an einen Dienst zur Instanzdatenverwaltung: Dieses
Kapitel beschäftigt sich mit der Identifikation der Anforderungen an die
Schnittstellen. Diese Schnittstellen werden besonders hinsichtlich ihres späte-
ren Einsatzes betrachtet.

Kapitel 4 – Entwurf: Entwurf der internen und REST-Schnittstelle, sowie Konzept
der Integration in den OpenTOSCA-Container unter Berücksichtigung der,
im vorherigem Kapitel identifizierten, Anforderungen.

Kapitel 5 – Implementierung: Dieses Kapitel beschreibt, die für die Implementie-
rung der Schnittstellen notwendigen Details und Besonderheiten. Es stellt
eine Ergänzung der vorhergehenden Kapitel dar und baut auf diesen auf.

Kapitel 6 – Validierung des Konzepts und der Implementierung: Prüfung des ent-
worfenen Konzepts und der Implementierung hinsichtlich der Erfüllung der
Anforderungen.

13

1 Einleitung

Kapitel 7 – Zusammenfassung und Ausblick: In diesem Kapitel werden die Er-
gebnisse der Arbeit zusammengefasst und Ausblicke auf die weitere Entwick-
lung aufgezeigt.

Verwendung der englischen Sprache

An vielen Stellen dieser Arbeit werden englische Fachbegriffe benutzt werden.
Diese Begriffe werden, sofern es sich nicht um allgemein bekannte Wörter handelt,
im Text erklärt oder übersetzt werden. Eine Ausnahme hiervon bilden die Begriffe
der englischsprachigen TOSCA-Spezifikation. Um Mehrdeutigkeiten zu vermeiden
wurde von einer Übersetzung dieser Begriffe in die deutsche Sprache abgesehen.

14

2 Grundlagen

Dieses Kapitel soll die für das Verständnis der Arbeit relevanten Grundlagen
vermitteln. Hierzu werden sowohl allgemeine Begrifflichkeiten als auch, mit der
Thematik verwandte, Technologien erklärt.

2.1 Cloud

Der Begriff des Cloud-Computing ist ein weitreichender und es wurde vielmals
versucht den Begriff klar und präzise zu definieren. Eine der häufig verwendeten
und anerkannten Definitionen ist die Definition nach dem National Institute of
Standards and Technology (NIST), die wie folgt von mir in die deutsche Sprache
übersetzt wurde:

Cloud-Computing ist ein Modell um zu jeder Zeit bei Bedarf Netz-
werkzugriff zu einem geteilten Pool von Rechenressourcen (z.B. Netz-
werk, Server, Speicher, Anwendungen und Dienste) zu erhalten, die
mit minimalem Verwaltungsaufwand oder Eingriff seitens des Dienst-
leisters schnell bereitgestellt oder freigegeben werden können. Dieses
Cloud-Modell fördert die Verfügbarkeit und besteht aus fünf essen-
tiellen Charakteristika, drei Dienstmodellen (service models) und vier
Betriebsmodellen (deployment models).[PM11]

Im Wesentlichen unterscheidet sich diese Definition von anderen Definitionen
indem hier einerseits auf die drei gängigen Abstraktionsebenen (Infrastructure-
as-a-Service (IaaS), Platform-as-a-Service (PaaS) und Software-as-a-Service (SaaS))
und andererseits auf die möglichen Liefermodelle (Private, Public, Hybrid und
Community Cloud) eingegangen wird. [MRV11]

Generell stellt ein Cloud-Anbieter, welcher auch die interne IT-Abteilung sein kann,
Dienste zur Verfügung. Abhängig von der Art des vorliegenden Dienstmodells
handelt es sich dabei um unterschiedliche Ressourcen. Die verschiedenen Dienstmo-
delle sollen anhand des Beispiels einer weitverbreiteten Art von Webanwendung,

15

2 Grundlagen

eines Content-Management-System (CMS)-Systems, erklärt werden. In diesem Bei-
spiel wird davon ausgegangen, dass es sich dabei um eine auf PHP: Hypertext
Preprocessor (PHP)-basierende Webanwendung handelt, welche die Datenhaltung
mittels eines angebundenen Datenbanksystems erledigt.

Bei IaaS wird Rechnerinfrastruktur, wie VMs, Speicher und Netzwerke, zur Verfü-
gung gestellt, die der Anwender abhängig von seinen Nutzerrechten selbstständig
verwalten kann. In den meisten Fällen erhält der Anwender Administratorrech-
te und ist dann selbst für die Installation, Verwaltung und Pflege der von ihm
benötigten Software verantwortlich. In unserem Beispiel bedeutet dies, dass der
Anwender nach der Provisionierung einer VM selbstständig einen Webserver und
eine Datenbank auf dem System installieren muss. Im Anschluss muss auch die
Webanwendung, die unter Umständen noch konfiguriert werden muss, installiert
werden.

PaaS hingegen wählt den Ansatz, anstatt der Infrastruktur, die Plattform zur Ver-
fügung zu stellen. Plattformen sind oft Laufzeitumgebungen, Datenbanken oder
Serveranwendungen unterschiedlicher Art. Bei dieser Art des Dienstangebots pro-
fitiert der Anbieter davon, dass sich mehrere Kunden eine dieser Installationen
der Plattformen teilen können. Im Beispiel der Webanwendung sucht sich der
Anwender einen Anbieter, der ihm einen Webserver-Dienst mit Datenbank zur
Verfügung stellt und installiert auf dieser Plattform dann die Webanwendung, die
er im Anschluss nur noch konfigurieren muss.

Bei SaaS gibt es einen Anbieter, der diese Webanwendung als Dienst zur Verfügung
stellt. Nach Erhalt der Zugangsdaten kann der Kunde diesen Dienst, im Anschluss
an eine ggf. kurze Konfiguration, direkt benutzen.

In der Regel empfiehlt es sich eine umso höhere Abstraktionsebene zu wählen (von
IaaS zu SaaS) desto anspruchsloser die Anwendung an ihre Umgebung ist. Wenn
eine Anwendung nur in einer sehr speziellen Umgebung läuft, ist es oft unvermeid-
lich diese Umgebung mittels eines IaaS-Dienstes selbstständig herzustellen.IaaS
bietet im Gegensatz zu SaaS zwar viel mehr Möglichkeiten der Konfiguration an,
aber mit großer Macht folgt große Verantwortung. Als Kunde ist man bei IaaS für
die Konfiguration des Betriebssystems, der Firewall und vieler anderer Dinge selbst
verantwortlich. Bei SaaS ist dies Aufgabe des Anbieters.

Die vier Auslieferungsmodelle unterscheiden sich weitgehend darin wer auf die
geteilten Ressourcen Zugriff hat.
Die Private Cloud stellt den typischen Fall da, wenn ein Unternehmen alleinig auf die
in der Cloud existierenden Ressourcen zugreifen kann. Die Public Cloud hingegen

16

2.2 REST

ist für die Allgemeinheit geöffnet und prinzipiell jeder kann Ressourcen der Cloud
benutzen. Die Community Cloud ist typisch für Anwendungen bei den Zusammen-
arbeit zwischen Unternehmen oder Personen notwendig ist und Datenaustausch
zwischen diesen stattfinden muss. Zwischen diesen drei Formen gibt es noch vie-
lerlei Mischformen, die unter dem Überbegriff Hybrid Cloud zusammengefasst
werden.

2.2 REST

Roy Fielding hat in seiner Dissertation "Architectural Styles and the Design of
Network-based Software Architectures" REST als einen Architekturstil für verteilte
Hypermedia Systeme vorgestellt. REST definiert eine Menge von architektonischen
Einschränkungen (constraints) die, wenn sie als Ganzes eingehalten werden, positive
Eigenschaften der entwickelten Anwendung betonen. [Fie00]

Diese positiven Eigenschaften kann man auch als Grundkonzepte von REST anse-
hen. Diese Grundkonzepte umfassen:

Anwendungsübergreifend standardisierte Identifikation Verwenden von men-
schenlesbaren Uniform Resource Identifiers (URIs) um Instanzen von re-
levanten Ressourcen der Anwendung zu identifizieren

Hypermedia Verwenden von Links um Ressourcen miteinander zu verbinden.
Steuern des Funktionsflusses mittels Links.

Schnittstelle mit fest definierten Mengen von Operationen Jede Ressource unter-
stützt die gleichen Operationen (GET, POST, PUT, DELETE, HEAD und
OPTIONS)

Unterschiedliche Ressourcenpräsentationen Unterschiedliche Repräsentationen
für unterschiedliche Anforderungen. Beispielsweise kann für ein und die-
selbe URI eine Hypertext Markup Language (HTML)-Datei für die Browser
geliefert werden aber auch eine Extensible Markup Language (XML) für
Anwendungen, die diese URI aufrufen.

Statuslose Kommunikation Die Kommunikation mit dem Client ist frei von einem
Sitzungszustand (stateless). Als Konsequenz davon ist ein Client ungebunden
von einem speziellen Server und jede zukünftige Anfrage kann auch von

17

2 Grundlagen

einem anderem Server bearbeitet werden. Dies ist unter Anbetracht der Ska-
lierbarkeit und der Ausfallsicherheit interessant, da jegliche Zugriffe nun frei
verteilt werden können.

[Til11]

2.3 TOSCA

Topology and Orchestration Specification for Cloud Applications (TOSCA) ist ein
auf XML basierendes Metamodel für die Beschreibung des strukturellen Aufbaus
von Cloud-Anwendungen. Diese Struktur kann durch das Ausführen von Plänen
in einer geeigneten Laufzeitumgebung (runtime enviroment) oder das Interpretieren
der definierten Anwendungsstruktur ausgeführt und verwaltet werden. Zu die-
sen verwaltenden Aufgaben gehören generell Instanziierung, Management und
die Terminierung der Instanzen. Je nach Anwendung handelt es sich dabei um
unterschiedliche Managementoperationen.

Der folgende Abschnitt basiert auf der TOSCA [OAS13] und soll auf die Konzepte
dieser eingehen. Er soll es dem Leser ermöglichen die weiteren Kapitel in einem
klarem Kontext zu sehen. Dieses Kapitel erhebt keinerlei Anspruch auf Vollstän-
digkeit, es sollen lediglich die für die Ausarbeitung relevanten Themen erläutert
werden.

2.3.1 Verschiedene Ebenen des Modells

TOSCA modelliert auf zwei konzeptionellen Ebenen, auf Type- und Template-
Ebene. Zur Laufzeit existiert noch eine dritte Abstraktionsebene, die Instanz-Ebene,
welche nicht Teil des Modells der TOSCA ist. Der Zusammenhang zwischen den
einzelnen im Folgenden genannten Entitäten ist in Abbildung 2.1 auf der nächs-
ten Seite illustriert. Der folgende Abschnitt erläutert dies anhand der NodeTypes,
das Prinzip ist in TOSCA generell anwendbar. Auf RelationshipTypes, Relationship-
Templates und RelationshipInstances soll an dieser Stelle nicht explizit eingegangen
werden, sie werden im Abschnitt 2.3.2 erklärt, wenn es um die Beschreibung der
Beziehungen geht.

NodeTypes sind wiederverwendbare Entitäten, sie beschreiben abstrakt Komponen-
ten einer Cloud-Anwendung, wie beispielsweise Anwendungen, VMs oder Spei-
cherkomponenten, und definieren so den Typ eines oder mehrerer NodeTemplates.

18

2.3 TOSCA

NodeType RelationshipType Types

NodeTemplate RelationshipTemplate Templates

NodeInstance RelationshipInstance Instances

D
e
fi
n

e
d

 i
n

 T
O

S
C

A

<instance-of> <instance-of>

<instance-of><instance-of>

Abbildung 2.1: TOSCA Drei-Schichten-Modell nach [BBLS12]

Die Definition eines NodeTypes spezifiziert die beobachtbaren Eigenschaften. Diese
Eigenschaften umfassen die Struktur der Properties, die vom NodeType benötigten
Requirements, die zur Verfügung gestellten Capabilities sowie das Interface der
unterstützen Management-Operationen des NodeTypes.[OAS13]

NodeTemplates sind Instanziierungen dieser NodeTypes, hierbei werden unter ande-
rem konkrete Werte für die im NodeType definierten Properties gesetzt. Node-
Templates sind konkrete Vorlagen für erzeugbare Instanzen. Wenn ein Node-
Template instanziiert wird sprechen wir von einer NodeInstance. Diese Instanzen
repräsentieren reale, instanziierte Komponenten, beispielsweise einen konkreten
Apache Webserver.

2.3.2 Templates und Types

Die in diesem Abschnitt beschriebenen Beziehungen zwischen Template und Type
sowie NodeTemplate und RelationshipTemplate werden in Abbildung 2.2 auf der
nächsten Seite anhand eines Beispiels erläutert.

Ein TopologyTemplate definiert die Struktur eines Dienstes. Dafür werden Node-
Template und RelationshipTemplates benutzt, die zusammen das Topologie-Modell
(topology model) als einen gerichteten Graphen beschreiben. NodeTemplates und
RelationshipTemplates sind hierbei Instanzen von NodeTypes und Relationship-
Types. Ein NodeTemplate spezifiziert so das Vorkommen eines NodeTypes als

19

2 Grundlagen

ServiceTemplate

TopologyTemplate

hosted-

on

hosted-

on

NodeTypes

NodeType

type for

RelationshipType

type for

Plans

NodeTemplate

RelationShip-

Template

P
ro

p
er

tie
s In

te
rfa

c
e

P
ro

p
er

tie
s In

te
rfa

c
e

Abbildung 2.2: Zusammenhang zwischen verschiedenen Template-Typen nach
[BBLS12]

Servicekomponente. RelationshipTemplates werden dann genutzt um die einzel-
nen NodeTemplates logisch miteinander zu verknüpfen. [OAS13]

NodeTypes sind deshalb stark auf Wiederverwendbarkeit ausgelegt und enthalten
zusätzlich ImplementationArtifacts (IAs) und DeploymentArtifacts (DAs). IAs sind
Artefakte, die Operationen des NodeTypes implementieren. [OAS13]

Ein Betriebssystem-NodeType könnte beispielsweise eine Operation zum Absetzen
eines Kommandozeilenbefehls besitzen. Das IA dieser Operation könnte als eine
REST-Operation implementiert sein und in Form einer Web application ARchive
(WAR)-Datei zur Verfügung stehen.

DAs werden benötigt um ein NodeType bzw. ein konkretes NodeTemplate zu
instanziieren. In dem vorherigem Beispiel könnte ein typisches DA ein Abbild des
verwendeten Betriebssystems sein. Damit ein NodeType mit einem bestimmten
TOSCA-Container eingesetzt werden kann muss dieser sowohl IAs als auch DAs
unterstützen.

20

2.3 TOSCA

Das ServiceTemplate vereint alle diesen Templates und Typen, inklusive der darin
enthaltenen Artefakte, zusammen mit den Plänen zu einer ganzheitlichen Service-
beschreibung. Die TOSCA beschreibt im ServiceTemplate lediglich die Struktur
der Anwendung. Die Verwaltung, besonders die Erstellung und Terminierung, der
Service- und NodeInstances wird von sogenannten Plänen gehandhabt. Diese Pläne
sind durch ein Prozessmodell, beispielsweise durch einen ein- oder mehrstufigen
Arbeitsablauf (Workflow), definiert. Die TOSCA definiert hierfür keine neue Mo-
dellierungssprache sondern benutzt bestehende Technologien, wie beispielsweise
Business Process Model and Notation (BPMN)[OMG11] oder WS-Business Process
Execution Language (BPEL)[OAS07]. [OAS13]

2.3.3 Instanzen, Properties und State

Instanzen sind in dem Kontext dieser Bachelorarbeit instanziierte NodeTemplates.
Dies sind die für die Instanzdatenverwaltung relevanten Instanzen. Sie haben
konkrete Properties, bei denen es sich um in TOSCA definierte XML-Dokumente
handelt, auf die an vielen Stellen zugegriffen werden muss. Properties können
prinzipiell als Variablen im Kontext einer Instanz benutzt und angesehen werden,
sie können Daten wie IP-Adressen, Passwörter, Installationsordner und sonstige
spezifische Werte repräsentieren. IAs benötigen Zugriff auf diese Daten, genauso
ist denkbar, dass Pläne diese Daten gezielt lesen und auch manipulieren müssen.

Es ist nicht garantiert, dass immer dasselbe IA zur Ausführung einer Operation
genutzt wird oder das jeweilige IA in der Zwischenzeit nicht neu deployed wurde.
Deshalb wurde während der Durchführung des LeGO4TOSCA-Projekts die Erfah-
rung gemacht, dass es sich anbietet den Zustand eines IAs in den Properties der
zugehörigen Instanz zu speichern.

Der State ist ein in TOSCA definierter Wert, der den Zustand einer Instanz eines
NodeTemplates angibt, beispielsweise könnten für eine Webanwendung die Zu-
stände "deployed","running","stopped" und "undeployed" definiert sein. An dieser
Stelle sei aber daraufhingewiesen, dass der State aus Sicht des TOSCA-Containers
lediglich eine Textrepräsentation ist. TOSCA-Container besitzen keine definierte
Logik, wie beispielsweise Monitoring, um diesen Zustand automatisch zu ändern.
Für das Modifizieren des States sind also Pläne und IAs verantwortlich.

21

2 Grundlagen

/

TOSCA-Metadata

TOSCA.meta

Definitions

myAppTypes.tosca

myApp.tosca

WARs

myWebApp.war

Plans

setup.bpel

terminate.bpel

Abbildung 2.3: Beispielstruktur einer gültigen CSAR-Datei

2.3.4 CSAR

Ein Cloud Service Archive ist ein im Zuge der TOSCA spezifiziertes Zip-Archiv mit
der Endung ∗.csar. Es paketiert Metadaten und benötigte Artefakte einer Cloud-
Anwendung zusammen zu einer Datei. Ein Cloud Service Archive (CSAR) muss
mindestens einen TOSCA-Metadata Ordner und einen Definitions Ordner enthal-
ten, darüber hinaus gibt es keine weiteren Einschränkungen an den Aufbau des
Archives. [OAS13] Ein Beispiel für eine gültige CSAR stellt die Abbildung 2.3 dar.

2.4 OpenTOSCA

OpenTOSCA1 ist eine an der Universität Stuttgart entwickelte Open Source
TOSCA-Laufzeitumgebung. Eine erste Version dieses TOSCA-Containers entstand
2012 während eines Studienprojekts der beiden Institute Institut für Architektur
von Anwendungssystemen (IAAS)2 und Institut für Parallele und Verteilte Syste-
me (IPVS)3 an der Universität Stuttgart und wird seitdem weiterentwickelt.

1Webseite des OpenTOSCA-Containers: http://www.iaas.uni-stuttgart.de/OpenTOSCA/
2Webseite des IAAS: http://www.iaas.uni-stuttgart.de/
3Webseite des IPVS: http://www.ipvs.uni-stuttgart.de/

22

http://www.iaas.uni-stuttgart.de/OpenTOSCA/
http://www.iaas.uni-stuttgart.de/
http://www.ipvs.uni-stuttgart.de/

2.4 OpenTOSCA

2.4.1 Architektur

Der folgende Abschnitt soll auf die Architektur und grundlegende Funktionsweise
des OpenTOSCA-Containers eingehen, spezieller Fokus soll hierbei auf der Kom-
munikation zwischen den einzelnen Komponenten der TOSCA-Engine liegen. Dazu
werden zuerst die einzelnen Komponenten und deren Funktionen und im An-
schluss daran der Ablauf eines Deployment-Vorgangs einer CSAR beschrieben.

Grob lässt sich die Architektur des OpenTOSCA-Containers in 6 Komponen-
ten unterteilen. Dies sind die Container-API (application programming interface),
TOSCA-Engine, IA-Engine, Plan-Engine, sowie die Control- und Core-Komponenten.
Einen groben Überblick vermittelt das dazugehörige Fundamental Modeling Con-
cepts (FMC)-Aufbaudiagramm (s. Abbildung 2.4 auf Seite 25) [BBH+13].

Die Core-Komponenten bilden den Kern der Architektur und beschäftigen sich pri-
mär mit den grundlegenden Aufgaben wie Persistenz, Dateiverwaltung und der
Speicherung von Informationen der anderen Komponenten.

Die IA-Engine und Plan-Engine haben recht ähnliche Funktionsweisen allerdings
unterschiedliche Zuständigkeiten, die IA-Engine kümmert sich um das Deployment
von IAs und die Plan-Engine um das Deployment von Plänen. Beide Engines
bedienen sich hierbei an auf sie zugeschnitte Plugins, die für eine gewisse Art von
Datei (z.B. eine WAR-Datei) Logik zur Verfügung stellen, durch dieses dynamische
Plugin-System sind die beiden Engines beliebig erweiterbar.

Die TOSCA-Engine ist die Komponente, die sich mit der Verarbeitung der in der
CSAR enthaltenden ServiceTemplates beschäftigt. Sie liest, validiert und löst Re-
ferenzen innerhalb des TOSCA-XMLs auf und stellt die daraus resultierenden
Informationen anderen Komponenten zur Verfügung.

Für den Ablauf des Deployments einer CSAR-Datei ist die Control-Komponente
verantwortlich, sie stößt Operationen anderer Komponenten an und überprüft zu
jeder Zeit ob eine vom Benutzer gestartete Operation im aktuellem Deployment-
Zustand auch ausgeführt werden darf.

Als letzte Komponente bildet die Container-API die Schnittstelle nach außen. Sie
ist eine in Jersey4 implementierte REST-Schnittstelle und stellt so die für das Ver-
arbeiten einer CSAR notwendige Logik mittels eines Webservices zur Verfügung.

4Webseite der Jersey-API: https://jersey.java.net/

23

2 Grundlagen

Auf diese Schnittstelle wird in Abschnitt 4.8, wenn es um die Erweiterung dieser
Schnittstelle geht, noch genauer eingegangen.

Der Ablauf des Deployment einer CSAR sieht beim OpenTOSCA-Container wie
folgt aus. Er lässt sich logisch in 4 Schritte unterteilen: Das Hochladen der CSAR-
Datei, das anschließende Verarbeiten der hochgeladenen CSAR, das Deployment
der IAs und das Deployment der Pläne.

Das Hochladen einer CSAR kann auf mehreren Wegen geschehen. Im Anschluss an
das Hochladen veranlasst die Container-API das Entpacken und die nachfolgende
Speicherung der in der CSAR enthaltenen Dateien. Das Speichern kann mittels
sogenannter StorageProvider angepasst werden, je nach ausgewähltem StoragePro-
vider können diese Dateien entweder auf dem lokalem Dateisystem des Containers
oder in einem Cloud-Dateisystem gespeichert werden. Wenn weder die CSAR noch
die in der CSAR enthalten Definitionen fehlerhaft sind, wird im Anschluss der
Deployment-State in der Control-Komponente auf STORED gesetzt.

Der nächste Schritt im Ablauf ist das Anstoßen der Verarbeitung (processing) der
in dem CSAR enthaltenen TOSCA-Definitionen. Dafür muss eine Anfrage an einen,
für das CSAR-spezifischen, CSARControl-Pfad der Container-API gesendet werden.
Daraufhin wird die Core-Komponente von der Container-API dazu veranlasst die
TOSCA-Definitionen zu verarbeiten. Bei der Verarbeitung ist wie bereits vorher
erwähnt die TOSCA-Engine maßgeblich beteiligt, sie liest die Definitions ein und
löst dabei Referenzen auf und speichert in den Definitions enthaltene Dokumente
und Pläne. Nach dem Einlesen ist die TOSCA-Engine bereit Operationen betreffend
des CSAR entgegen zu nehmen.

Nun ist es möglich die in den Definitions enthaltenen IAs zu deployen, dies
wird mittels REST-Aufruf an den bereits beim Verarbeiten des CSAR benutzten
CSARControl-Pfads angestoßen. Dieser Aufruf wird von der Container-API über
die Core-Komponente zur IA-Engine delegiert, diese wählt aufgrund der Art des
IAs das dazu passende Plugin aus, welches dann das Deployment übernimmt. Dies
kann beispielsweise die Installation einer WAR-Datei auf einem lokalen Tomcat-
Server sein.

Als letzten Schritt müssen nun noch die Managementpläne auf eine passende Lauf-
zeitumgebung ausgeliefert (deployed) werden. Diese Operation wird mittels eines
Aufrufs auf den bereits bekannten CSARControl-Pfad ausgeführt. Bei OpenTOSCA

24

2.4 OpenTOSCA

OpenTOSCA Container

Container API

CSARs

Control

TOSCA Engine

R

R

Plan Engine

*.planengine PluginsPlugins

R

Core

CSARControl StorageProviders

*.file *.deployment *.endpoint

*.opentoscacontrol

*.toscaengine

IA Engine

*.iaengine PluginsPlugins

R

R

R

*.model

R

R
R

Abbildung 2.4: FMC-Aufbaudiagramm der OpenTOSCA-Struktur nach [BBH+13]

werden dabei als BPEL vorliegende Pläne auf eine lokale Apache Orchestration
Director Engine (ODE)5 deployed.

Nach Ausführung dieser Schritte sind alle IAs korrekt installiert und die durch die
deployten Managementpläne zur Verfügung gestellten Funktionalitäten können
korrekt verwendet werden.

5Apache ODE: http://ode.apache.org/

25

http://ode.apache.org/

2 Grundlagen

Listing 2.1 Mit JPA-Annotationen versehene Beispielklasse
1 @Entity
2 public class Mitarbeiter {
3
4 @Id
5 private int id;
6
7 @Column(name = "fullName", columnDefinition = "VARCHAR(128)")
8 private name;
9

10 private String getName(){...}
11 private void setName(String name){...}
12 }

26

3 Anforderungen an einen Dienst zur
Instanzdatenverwaltung

Dieses Kapitel setzt sich mit den Anforderungen auseinander, die an einen Dienst
zur Instanzdatenverwaltung und zur Bereitstellung von IAs und DAs gestellt
werden. Diese Anforderungen werden weitgehend aus Sicht eines Nutzers eines
TOSCA-Containers (speziell OpenTOSCA-Nutzer) betrachtet werden und beruhen
stark auf Erfahrungen, die während des Studienprojektes LeGO4TOSCA bei der
Entwicklung von NodeTypes gemacht wurden.

Ein OpenTOSCA-Nutzer kann jeder sein, der einen Webservice benutzen kann,
weitgehend werden diese Schnittstellen aber von automatischen Build- bzw. Ma-
nagementplänen und von IAs benutzt werden um zur Laufzeit Informationen
bezüglich NodeInstances oder NodeType-spezifischen Dateien zu erlangen.

Die folgenden Anforderungen konnten im Laufe der Arbeit identifiziert werden
und werden in diesem Kapitel an entsprechender Stelle weiter erläutert:

Die Anforderungen im Einzelnen sind unterteilt in Serviceinstanz-spezifische,
Nodeinstanz-spezifische, Nodetemplate-spezifische und weitere funktionale An-
forderungen. Bevor diese im Detail betrachtet werden, wird nun noch auf die
theoretischen Annahmen, die für die folgenden Anforderungen notwendig sind,
eingegangen.

3.1 Theoretische Annahmen

In Abbildung 2.2 auf Seite 20 wurde bereits auf die unterschiedlichen Abstrak-
tionsebenen von TOSCA eingegangen. Da hier nun immer konkrete Instanzen
dieser Abstraktionsebenen betrachtet werden, muss zuerst überlegt werden mittels
welcher Werte eine solche Instanz genau identifiziert werden kann. In der Tabel-
le 3.1 auf Seite 29 wird auf das Verhältnis zwischen diesen Instanzen und deren
Identifiern eingegangen.

27

3 Anforderungen an einen Dienst zur Instanzdatenverwaltung

Für die Betrachtung der Tabelle 3.1 auf der nächsten Seite ist vorausgesetzt, dass es
sich bei qualified Name (QName) um einen fully qualified Name handelt, bei dem ein
Namespace-Element und ein lokaler Teil (localpart) angegeben sein muss. An Stellen
an denen ein QName nicht explizit einen Namespace benötigt, da dieser implizit
aufgrund des Kontexts bereits bekannt ist, wird nur der notwendige localpart als
Zeichenkette modelliert.
Dies ist bei jeder Operation, bei dem ein NodeTemplate innerhalb eines Service-
Templates identifiziert wird, der Fall. Das NodeTemplate befindet sich immer im
Namensraum (namespace) des umschließenden ServiceTemplates — eine Angabe
des Namensraums des NodeTemplates ist so überflüssig.

Für den vorliegenden Anwendungsfall der Instanzdatenverwaltung lässt sich die
Identifikation aber leicht abwandeln. NodeTemplates sind in ServiceTemplates ge-
schachtelt, sie befinden sich immer im selben Namespace. Bei der Installation einer
Cloud-Anwendung werden zuerst die ServiceInstances (die ihr zugehöriges Tem-
plate kennen) und im Anschluss daran die einzelnen NodeInstances erstellt, durch
diese temporale Abhängigkeit kann bei der Instanziierung eines NodeTemplates
auf die Angabe des Namespaces verzichtet werden und stattdessen die zugehörige
ServiceInstance angegeben werden, die bei der Erstellung sowieso benötigt wird.
Im weiteren Verlauf soll also immer wenn es um Identifikation einer NodeInstance
geht, der Namespace aus der zugehörigen ServiceInstance bezogen werden. In
Tabelle 3.2 auf der nächsten Seite wird der bei der Erstellung einer NodeInstance
angepasste und in der Arbeit als Grundlage verwendete Zustand der Beziehung
zwischen den Templates und Instanzen aufgezeigt.

3.2 ServiceInstance-spezifische Anforderungen

3.2.1 Erstellen einer ServiceInstance

Eine ServiceInstance ist eine Instanz eines ServiceTemplates welches durch eine
ServiceTemplateID identifizierbar ist. Die ToscaEngine des OpenTOSCA-Containers
benötigt jedoch zusätzlich die ID der CSAR, die das ServiceTemplate enthält. Ein
Nutzer der späteren Schnittstelle muss also die Möglichkeit haben mittels diesen
Parametern eine Instanz eines ServiceTemplates zu erzeugen.

Beim Erstellen eines ServiceTemplates hat man die Möglichkeit Kardinalitäten zu
spezifizieren, welche die minimale und maximale Anzahl der Vorkommen von
NodeTemplates festlegen. Um das Aufsetzen von Topologien zu vereinfachen soll

28

3.2 ServiceInstance-spezifische Anforderungen

Instanz eindeutiger Identifier Identifier, die bei Erstellung
der Instanz angegeben wer-
den müssen

ServiceTemplate ServiceTemplateID (QName) —

NodeTemplate NodeTemplateID (QName) —

ServiceInstance ServiceInstanceID (generiert
bei Erstellung)

ServiceTemplateID (QName)

NodeInstance NodeInstanceID (generiert
bei Erstellung)

ServiceInstanceID, NodeTem-
plateID (QName)

Tabelle 3.1: Identifikation von TOSCA-Elementen und Beziehung zwischen Instan-
zen und Templates

Instanz eindeutiger Identifier Identifier, die bei Erstellung
der Instanz angegeben wer-
den müssen

ServiceTemplate ServiceTemplateID (QName) —

NodeTemplate NodeTemplateID (QName);
alternativ:
ServiceTemplateID (QName),
NodeTemplateID (String)

—

ServiceInstance ServiceInstanceID (generiert
bei Erstellung)

ServiceTemplateID (QName)

NodeInstance NodeInstanceID (generiert
bei Erstellung)

ServiceInstanceID , NodeTem-
plateID (String)

Tabelle 3.2: Angepasste Identifikation von TOSCA-Elementen und Beziehung zwi-
schen Instanzen und Templates

29

3 Anforderungen an einen Dienst zur Instanzdatenverwaltung

bei der Instanziierung eines ServiceTemplates zusätzlich für jedes vorhandene
NodeTemplate eine Instanz, bzw. eine NodeInstance, erzeugt werden. Nach Erstel-
lung der ServiceInstance müssen Informationen bezüglich dieser und aller während
des Erstellungsprozesses erzeugten NodeInstances mittels eindeutiger IDs abrufbar
sein.

3.2.2 Löschen einer ServiceInstance

Für die Löschung einer ServiceInstance muss lediglich die ServiceInstance-ID
angegeben werden. Bei dem Löschvorgang müssen außer der Serviceinstance selbst
auch noch alle zur Serviceinstance dazugehörigen NodeInstances gelöscht werden.
Im Anschluss an die Löschung sollen keinerlei Informationen bezüglich dieser
Instanzen mehr existieren. Diese Art von Löschung, bei der abhängige Elemente
gelöscht werden, nennt man cascading delete.

3.2.3 Abfragen von ServiceInstance-Informationen

Es muss die Möglichkeit bestehen, Informationen bezüglich einer bestimmten
ServiceInstance, von der die ID bekannt ist, zu erhalten. Diese Informationen
müssen Aufschluss über folgende Details geben:

• Zeitpunkt der Erstellung der Instanz

• zugehörige CSAR-ID

• QName des ServiceTemplates, das als Vorlage für die ServiceInstance diente

• Name des ServiceTemplates, das als Vorlage diente

• Referenzen auf alle NodeInstances, die zu dieser ServiceInstance gehören

3.2.4 Finden von ServiceInstance-IDs anhand von Filtern

Neben der Informationsabfrage zu einer bestimmten ServiceInstance muss auch die
Möglichkeit bestehen, mittels der Angabe von Filtern, spezielle ServiceInstances
bzw. die IDs der ServiceInstances zu finden. Mögliche Filterkriterien sollten hierbei
vor allem der Name des verwendeten ServiceTemplates sein, sowie dessen ID.

30

3.3 NodeInstance-spezifische Anforderungen

Ein gängiger Anwendungsfall für die Verwendung dieser Filter, ist die Frage nach
allen Instanzen eines gewissen ServiceTemplates. Die Funktionalität des Findens
von ServiceInstances anhand des verwendeten Templates wird dann eine Antwort
auf genau diese Frage liefern.

3.2.5 Prüfung der Existenz einer ServiceInstance

Neben der Abfrage von Informationen bezüglich ServiceInstances ist es notwendig
auch eine Möglichkeit zu haben, welche die Existenz einer ServiceInstance prüft.

3.3 NodeInstance-spezifische Anforderungen

3.3.1 Erstellen einer NodeInstance

Das Erstellen einer NodeInstance wird einerseits implizit beim Erstellen einer
ServiceInstance aufgerufen und kann andererseits auch explizit nach Erstellung
einer ServiceInstance veranlasst werden. Bei der Erstellung müssen Parameter
angegeben werden, die einen eindeutigen Rückschluss auf die zugehörige Ser-
viceInstance und auf das zu instanziierende NodeTemplate liefern. NodeInstances
haben im Gegensatz zu ServiceInstances noch Instanzdaten, für diese Daten können
in TOSCA Standardwerte im Template definiert werden, die beim Erstellen einer
NodeInstance auch gesetzt werden müssen.

3.3.2 Löschen einer NodeInstance

Die Löschung einer NodeInstance erfordert, dass diese eindeutig identifiziert ist,
dafür wird die NodeInstanceID als Parameter benötigt. Nach der Löschung der
NodeInstance dürfen keinerlei Informationen dieser mehr verfügbar sein.

3.3.3 Abfragen von NodeInstance-Informationen

Bei NodeInstance Informationen handelt es sich einerseits, ähnlich wie bei der
Abfrage von ServiceInstance-Daten, um Meta-Informationen zur Erstellung und
andererseits um den sogenannte State und die Properties einer NodeInstance. Was

31

3 Anforderungen an einen Dienst zur Instanzdatenverwaltung

man unter dem State und den Properties einer NodeInstance versteht wurde bereits
in Abschnitt 2.3.3 auf Seite 21 erläutert.

Diese Abfrage muss also folgende Informationen liefern:

• Zeitpunkt der Erstellung der Instanz

• QName des NodeTemplates, das als Vorlage für die NodeInstance diente

• Name des NodeTemplates, das als Vorlage diente

• Referenzen auf die zugehörige ServiceInstance

• State der NodeInstance

• Properties der NodeInstance

3.3.4 Ändern von NodeInstance-Informationen

Das Modifizieren von Instanzdaten ist Hauptaufgabe dieses Dienstes, es muss
also gewährleistet sein, dass er diese Aufgabe erledigen kann. Um Instanzdaten
ändern zu können muss einerseits die Instanz identifiziert werden und andererseits
müssen neue Werte der Informationen in der Anfrage enthalten sein. Nach der
Durchführung der Änderungen der Daten einer Instanz müssen die neuen Daten
unter der bisher verwendeten Adresse zur Verfügung stehen.

3.3.5 Abfragen des NodeTypes einer NodeInstance

Bei der Entwicklung von IAs im LeGO4TOSCA Studienprojekt wurde an vie-
len Stellen eine Möglichkeit zur Bestimmung des NodeTypes einer bestimmte
NodeInstance benötigt. Besonders wichtig war die Unterscheidung der NodeTy-
pes von Microsoft Windows1 und Ubuntu2 um anderen IAs (vor allem IAs von
Anwendungs-NodeTypes) eine Information für die interne Entscheidung der ein-
zusetzenden Logik zu bieten. Dies ist ein sicherlich häufiger Anwendungsfall, da
sich durch die Unterscheidung in den IAs selbst, Pläne generischer schreiben und
vielseitiger einsetzen lassen.

1Microsoft Windows: http://windows.microsoft.com/en-us/windows/home
2Ubuntu: http://www.ubuntu.com/

32

http://windows.microsoft.com/en-us/windows/home
http://www.ubuntu.com/

3.4 NodeTemplate-spezifische Anforderungen

3.3.6 Finden von NodeInstance-IDs anhand von Filtern

Neben der Abfrage von Informationen bezüglich NodeInstances muss auch die
Möglichkeit bestehen eine NodeInstance, bzw. die ID der NodeInstance, aufgrund
von Parametern zu finden. Denkbar ist, dass nach der Erstellung einer ServiceIn-
stance und der impliziten Erstellung der dazugehörigen NodeInstances die ID
einer bestimmten NodeInstance unbekannt ist. Nun kann mittels der bekannten
ServiceInstance-ID und des NodeTemplates in Erfahrung gebracht werden wie die
ID dieser bestimmten Instanz ist.

3.3.7 Prüfung der Existenz einer NodeInstance

Neben der Abfrage von Informationen bezüglich NodeInstances muss auch eine
allgemeine Möglichkeit existieren, die überprüft ob eine NodeInstance überhaupt
existiert. Dies kann zu Validierungszwecken und zur Fehlerbehandlung sehr wich-
tig sein.

3.4 NodeTemplate-spezifische Anforderungen

3.4.1 Link zu einem oder mehreren Artefakten eines NodeTemplates
erhalten

Diese Anforderung bezieht sich nun auf die Komponente des Diensts, die sich mit
dem Bereitstellen von Artefakten beschäftigt. Im LeGO4TOSCA Projekt wurden IAs
entwickelt, die jeweils eine Installationsmethode bereit stellten. Bei der Implemen-
tierung wurde deutlich, dass diese Methoden die Möglichkeit benötigen auf Daten,
die in dem zugehörigem CSAR enthalten sind, zuzugreifen. Problematisch war dies,
weil in den TOSCA-Definitionen nur relative Pfade zu den DAs angegeben werden.
Für die effektive Verwendung muss aber eine Möglichkeit bestehen absolute, d.h.
direkt herunterladbare, Referenzen für bestimmte Artefakte zu ermitteln.

Denkbar wäre ein Szenario in dem ein Anwendungs-NodeType die ent-
sprechende Anwendung mittels einer Installations-Methode installiert. Ab-
strakt betrachtet wird die Installation einen Download einer *.zip-Datei, so-
wie das Entpacken dieser Datei beinhalten. Für den Download benötigt

33

3 Anforderungen an einen Dienst zur Instanzdatenverwaltung

das IA nun eine Adresse an der diese Datei heruntergeladen werden kann.
Um die häufigsten Anwendungsfälle abzudecken müssen folgende Filtermöglich-
keiten bestehen:

• serviceTemplateID

• nodeTemplateID

• Art des gesuchten Artefaktes (DA oder IA)

• Name des Artefaktes

3.5 Weitere funktionale Anforderungen

3.5.1 Persistenz

Die Lebensdauer einer Cloud-Anwendung kann sehr lange sein, es ist also eine sehr
realistische Annahme, dass sowohl die Maschine auf der der TOSCA-Container
läuft als auch der TOSCA-Container selbst einmal abstürzt oder neugestartet wer-
den muss. Die Instanzdaten müssen nach so einem Vorfall natürlich weiterhin
verfügbar sein, da ohne diese Daten die Verwaltung des Dienstes mit hoher Wahr-
scheinlichkeit unmöglich wird. Der Dienst zur Instanzdatenverwaltung muss seine
Daten also persistent speichern.

3.5.2 Integration in bestehende Dienste

Der zu entwickelnde Dienst muss sich in die bisherige Architektur des OpenTOSCA-
Containers integrieren und sich so weit wie möglich ähnlicher Technologien wie
bereits implementiere Komponenten bedienen. Es muss generell auf Konsistenz zur
bestehenden Architektur geachtet werden, besonders wenn es um die Entwicklung
der REST-Schnittstelle geht um den späteren Nutzern eine einheitliche Erfahrung
mit der Container-API zu ermöglichen. Was dies im Einzelnen bedeutet soll im
nachfolgendem Kapitel Entwurf aufgezeigt werden.

34

4 Entwurf

Dieses Kapitel beschäftigt sich systematisch und konzeptionell mit dem Entwurf
der Schnittstelle des internen Dienstes und dem Entwurf der externen REST-
Schnittstelle. Es wird ein Konzept ausgearbeitet werden, wie der zu entwickelnde
Dienst in die Architektur des OpenTOSCA-Containers zu integrieren ist. Dabei
wird zuerst auf den Ist- und Sollzustand eingegangen um im Anschluss sich mit
der notwendigen Umsetzung der in Kapitel 3 identifizierten Anforderungen aus-
einanderzusetzen.

Beim Entwurf des Dienstes soll nach dem Top-Down-Ansatz, bei dem die Schnittstel-
lendefinition vor der Implementierung durchgeführt wird, vorgegangen werden.
Diese Vorgehensweise bietet sich an, da durch die in der Analyse identifizierten An-
forderungen bereits definiert ist welche Operationen dieser Dienst zur Verfügung
stellen muss, um den gestellten Anforderungen gerecht zu werden. Der Fokus liegt
aufgrund des gewählten Ansatzes deshalb am Anfang dieses Abschnittes auf den
Schnittstellen und der Interaktion der einzelnen Komponenten. Gegen Ende des
Kapitels wird sich der Entwurf dann detaillierter mit den eingesetzten Technologien
und verwendeten Datentypen auseinandersetzen.

4.1 Einschränkungen

Der OpenTOSCA-Container ist CSAR-aware. Das bedeutet, dass für die Herstellung
eindeutiger Beziehungen zu ServiceTemplates und anderen Templates immer die
jeweilige CSAR-ID des dazugehörigen CSAR angegeben werden muss. Diese Ab-
hängigkeit befindet sich in der TOSCA-Engine verankert. Da die zu entwerfenden
Dienste die TOSCA-Engine nutzen wird an einigen Stellen des Entwurfs die Anga-
be von CSAR-IDs notwendig, wobei an den entsprechenden Stellen dadurch eine
CSAR-ID in den Parametern enthalten sein wird.

35

4 Entwurf

OpenTOSCA Container

Container API

CSARs

Control

TOSCA Engine

R

R

Plan Engine

*.planengine PluginsPlugins

R

Core

StorageProviders

.file.instanceData *.portability

*.opentoscacontrol

*.toscaengine

IA Engine

*.iaengine PluginsPlugins

R

R

R

*.model

R

R
R

PortabilityInstanceData

Abbildung 4.1: Erweitertes FMC-Aufbaudiagramm der OpenTOSCA-Struktur, bis-
her bestehende Komponenten sind ausgegraut - es wurden keine
Komponenten entfernt

4.2 Ist- / Sollzustand

Auf den Ist-Zustand der Komponenten wurde bereits in Kapitel 3 Anforderun-
gen an einen Dienst zur Instanzdatenverwaltung, besonders in Form des FMC-
Aufbaudiagramms (s. Abbildung 2.4 auf Seite 25), ausreichend eingegangen.
Durch die Entwicklung des Dienstes wird sich die Architektur des OpenTOSCA-
Containers ändern, dies wird sich auch im Schaubild niederschlagen. Es steht
einerseits die Erweiterung der REST-Schnittstelle um weitere Funktionen bevor
und andererseits wird der OpenTOSCA-Container selbst intern neue Komponenten
beinhalten. Der Ist-Zustand der REST-Schnittstelle des OpenTOSCA-Containers

36

4.3 Schnittstellen

wurde bisher nicht behandelt und soll in Abschnitt 4.8, wenn es um den Entwurf
der veränderten REST-Schnittstelle geht, aufgezeigt werden.

Der Sollzustand lässt sich durch die Änderungen an Architektur und Schnittstelle
gut beschreiben. Die Umsetzung der in Kapitel 3 identifizierten Anforderungen soll
in mehreren OSGi-Modulen bzw. Komponenten umgesetzt werden. Die Entschei-
dung der Implementierung in mehreren Komponenten wurde getroffen, da nach
einiger Überlegung klar wurde, dass die Anforderung der Bereitstellung von Links
zu Artefakten eines NodeTemplates (vgl. Abschnitt 3.4.1 auf Seite 33) nicht in den
Tätigkeitsbereich eines Instanzdatenverwaltungs-Dienstes passt. Deshalb wird zum
Einen ein Dienst zur Instanzdatenverwaltung und zum Anderen ein Dienst, der sich
generell mit den weiteren Anforderungen zur Portierbarkeit oder auch Portabilität
von solchen Anwendungen beschäftigt, entwickelt. Der zusätzliche Dienst wird
im Weiteren Portability-API genannt. Die bisher einzige geplante Operation ist die
Umsetzung der in Abschnitt 3.4.1 geforderten Bereitstellung von Downloadlinks
für Artefakte. Diese Schnittstelle soll, sobald weitere Anforderungen ersichtlich
sind, erweitert werden. Diese neuen Komponenten werden auch weitere Anfor-
derungen an die bereits vorhandene TOSCA-Engine stellen, die im Zuge dessen
während der Entwicklung um diese weitere Funktionen erweitert werden muss.
Eine detaillierte Analyse dieser neuen Anforderungen und Funktionen erfolgt in
Abschnitt 4.6. Die geplanten Änderungen der Architektur sind in Abbildung 4.1 in
einer modifizierten Version des bisherigen FMC-Aufbaufdiagramms visualisiert.

Als Ergebnis dieser Arbeit wird der OpenTOSCA-Container um einen Dienst zur
Instanzdatenverwaltung, der seine Daten persistent speichert, erweitert sein. Eben-
so wird er einen Dienst zur Sicherstellung der Portabilität von Management-Plänen
erhalten, welcher Informationen zu Artefakten bereitstellt. Die Funktionalität dieser
beiden Dienste wird mittels der bereits bestehenden und in dieser Arbeit zusätzlich
erweiterten REST-API verfügbar gemacht, wobei diese Implementierung aus den
von der Portability-API generierten Artefakt-Links, die im OpenTOSCA-Container
gültig sind, allgemein gültige Referenzen zu Dateien konvertieren muss. Der Grund
für diese strikte Trennung zwischen internen Schnittstellen und REST-API ist die
Wiederverwendbarkeit und Trennung von Zuständigkeiten. Falls in einiger Zeit ei-
ne andere Art von Zugriff als die zu implementierende REST-Schnittstelle benötigt
wird kann diese ebenso die interne Dienstschnittstelle nutzen um die Funktionalität
verfügbar zu machen.

37

4 Entwurf

<<interface>>

IInstanceDataService

+createServiceInstance(ID_CSAR, ID_st): ServiceInstance

+deleteServiceInstance(ID_si)

+getServiceInstances(ID_si, stName, stID)_ List of

ServiceInstances

+createNodeInstance(ID_nt, ID_si): NodeInstance

+deleteNodeInstance(ID_ni)

+getNodeInstances(ID_ni, ID_nt, ntName, ID_si): List of

NodeInstances

+getState(ID_ni): State

+setState(ID_ni, State)

+getProperties(ID_ni, propertiesLIst): Properties

+setProperties(ID_ni, Properties)

ID_X Eindeutige ID für Typ X

st ServiceTemplate

nt NodeTemplate

si ServiceInstance

ni NodeInstance

artifactType = {IA, DA}

Properties, State sind noch zu

wählende Datentypen, die

gleichnamige Information

repräsentieren

<<interface>>

IPortabilityService

+getNodeTemplateArtifacts(ID_CSAR, ID_st, ID_nt,

artifactType, deploymentArtifactName, interfaceName,

operationName): List of Artifacts

Abbildung 4.2: UML-Klassendiagramm der beiden Interfaces IInstanceDataService
und IPortabilityService

4.3 Schnittstellen

Der Entwurf der beiden Schnittstellen orientiert sich sehr stark an Kapitel 3, das
die Anforderungen an die Schnittstellen aufzeigt. Jede dieser Anforderungen wird
durch eine Operation realisiert. Das Resultat dieses Abschnittes ist durch Ab-
bildung 4.2 grafisch dargestellt. Die Entstehung dieser Grafik soll im folgenden
Abschnitt erläutert werden.

Es werden zuerst die Operationen bezüglich Erstellung und Löschung von
Instanzen, also createServiceInstance, deleteServiceInstance, create
NodeInstance und deleteNodeInstance, behandelt. Beim Betrachten der Opera-
tionen fällt auf, dass bei jeder dieser Operationen eine Entität genau identifiziert
werden muss. Zum Beispiel muss bei der Erstellung einer ServiceInstance ein be-
stimmtes ServiceTemplate identifiziert werden. Im ersten Schritt dieser Betrachtung
wurden alle zu identifizierten Entitäten für alle Operationen definiert, danach wur-
den diese Entitäten wiederum durch ihre Identifier (siehe Tabelle 3.2 auf Seite 29)
ersetzt, so dass man die Parameter dieser Operationen erhält.

38

4.4 Interaktion

Für die weiteren Operationen getState, setState, getProperties und
setProperties war klar, da es sich um NodeInstance-spezifische Operationen
handelt, dass hier jeweils genau eine NodeInstance identifiziert werden muss. Die
beiden set-Operationen benötigen darüber hinaus auch noch einen Wert, der beim
Ausführen der Operation gesetzt werden soll.

Die beiden Methoden getServiceInstances und getNodeInstances stellen
einen Sonderfall dar, da sie nicht direkt eine spezielle Instanz identifizieren sondern
viel mehr Filterkriterien vorgeben, die zur Selektion von Instanzen genutzt werden
sollen. Nach einiger Überlegung wurde hier der Entschluss gefasst die beiden
Anforderungen "Prüfung der Existenz einer ServiceInstance" und "Prüfung der
Existenz einer NodeInstance" zusammen mit den beiden Filtermethoden umzuset-
zen. Das Resultat dieser Entscheidung ist die Aufnahme der NodeInstance-ID in die
getNodeInstances-Parameter und die Aufnahme der ServiceInstanceID in die
getServiceInstances-Parameter. Die weiteren Parameter wurden durch einen
Blick in die gestellten Anforderungen an die Suchmöglichkeiten in Abschnitt 3.2.4
auf Seite 30 und 3.3.6 auf Seite 33 bestimmt.

Die Schnittstelle des PortabilityService hat nur eine Methode, die es ermöglicht
Artefakte eines bestimmten ServiceTemplate eines CSARs abzufragen und nach
gewissen Kriterien zu filtern. Auf die Möglichkeiten der Filterung wurde bereits
ausgiebig in Abschnitt 3.4.1 auf Seite 33 eingegangen, diese sollen hier nicht erneut
ausführlich beschrieben werden.

4.4 Interaktion

Die geplante Interaktion der neuen Schnittstellen mit den bestehenden Komponen-
ten soll anhand eines recht simplen Beispiels zur Erstellung einer ServiceInstance
aufgezeigt werden. Als Grundlage hierfür nehmen wir die, in Abbildung 2.2 auf
Seite 20, beschriebene Topologie. Diese Betrachtung soll aber, aus Gründen des
Umfangs, auf die Installation der Ubuntu-NodeInstance beschränkt werden. Der
Aufruf der restlichen Installationen würde lediglich das Beispiel sowie die Grafik
vergrößern und kaum zusätzliches Wissen vermitteln.

Das Beispiel betrachtet lediglich die notwendige Arbeit in Zusammenhang mit
der Instanzdaten- und der Portability-API. Es wird davon ausgegangen, dass die
entsprechende CSAR bereits mittels des OpenTOSCA-Containers vollständig ver-
arbeitet wurde und die Pläne sich so aufrufen lassen. In dem Beispiel wird ein von
einem asynchrones Ubuntu-IA ausgegangen, das eine Install-Methode anbietet, die

39

4 Entwurf

nach Fertigstellung eine Nachricht über die erfolgreiche Installation an den Aufru-
fenden schickt. Die Installation wird auf einer entfernten Virtualisierungsplattform
durchgeführt, die dafür eine gültigen Hypertext Transfer Protocol (HTTP)-Link
zu einem Datenträgerabbild des zu installierenden Betriebssystems benötigt. Der
Ubuntu-NodeType hat ein solches Image als DA definiert.

Einige aufgezeigte Funktionen der TOSCA-Engine sind vor der Bachelorarbeit
noch nicht verfügbar und müssen im Zuge dieser ebenso implementiert werden.
Auf diese Erweiterungen soll in Abschnitt 4.6, der die Erweiterung der TOSCA-
Engine behandelt, eingegangen werden. Bei diesem Beispiel wird außerdem davon
ausgegangen, dass im ServiceTemplate der Beispieltopologie korrekt die minimale
Anzahl der Instanzen der einzelnen NodeTemplates auf 1 gesetzt ist. Dies hat
zur Folge, dass der Buildplan, der die Topologie aufsetzt, lediglich einen Request
an die Instanzdaten-Engine senden muss, da diese dann bei der Erstellung der
ServiceInstance ebenso die notwendigen NodeInstances erstellt.

40

4.4
Interaktion

C
o
n

ta
in

e
r-

A
P

I
B

u
ild

-P
la

n
U

b
u

n
tu

-I
A

P
o

rt
a

b
ili

ty
In

s
ta

n
z
d
a

te
n

Startereignis

Erstelle
ServiceInstance

mittels
ContainerAPI

Installiere Ubuntu

Request zur
ServiceInstance-Erstellung

Erstelle
ServiceInstance
und zugehörige
NodeInstances

Installationsrequest
mit NodeID trifft ein

Abruf von
Instanzdaten

z.B. IP

Datenanfrage zu
einer Ubuntu-Instanz

Bereitstellung der
Daten

Abruf eines Links
zu einer *.iso

für die Installation

Generieren von
Link zu Linux.iso

Ausführen der
Installation +

Übergabe der ISO
als Link

Weitere Installationen
….

Abbildung 4.3: Beispielhafter Ablauf eines Build-Plans

41

4 Entwurf

Ablauf des Beispiels zwischen Plan, IA und Container-API

Der Buildplan hat einen relativ einfachen Ablauf, der in Abbildung 4.3 auf Seite 41
ausführlich aufgezeigt wird. Bei diesem Ablauf ruft der Plan erst die Instanzdaten-
komponente der Container-API auf um eine ServiceInstance des ServiceTemplates
zu erstellen. Die Container-API veranlasst, wie im oberen Verantwortlichkeitsbe-
reich (Swimlane) ersichtlich, nun eine Instanziierung der ServiceInstance und aller
zugehörigen NodeInstances. Daraufhin erhält der Plan die synchrone Antwort mit
der darin enthaltenen ServiceInstanceID der ServiceInstance. Als nächster Schritt
wird das Ubuntu-Betriebssystem installiert. Für den Plan stellt diese Operation
einen Aufruf des Ubuntu-IA mit anschließendem Warten auf die asynchrone Fer-
tigstellungsnachricht dar. Die asynchrone Nachricht wird in der Abbildung durch
ein Briefsymbol repräsentiert.

Während der Installationsoperation, die in der unteren Swimlane abläuft, holt das
Ubuntu-IA im ersten Schritt erforderliche Daten bezüglich der Instanz von der In-
stanzdatenkomponente um diese im Anschluss zur Installation des Betriebssystems
zu nutzen. In diesem Beispiel handelt es sich bei diesen Daten exemplarisch um
die IP-Adresse der unterliegenden Virtualisierungsplattform und Zugangsdaten zu
dieser.

Nachdem das IA nun die IP-Adresse und die Zugangsdaten zu der Virtualisierungs-
plattform hat, benötigt es noch das Datenträgerabbild des Betriebssystems. Diese
Operation wird in Abbildung 4.3 durch die Aktivität mit der Bezeichnung "Abruf
eines Links zu einer *.iso für die Installation" repräsentiert. Um diese Operation
durchzuführen geht es an die Portability-Komponente der Container-API heran
und ruft die Methode zur Bereitstellung von Artefakten mit den entsprechenden
Parametern auf. Die Antwort dieses Dienstes enthält nun einen gültigen Link zu
dem Datenträgerabbild, das im Ubuntu-NodeType als DA definiert wurde. Jetzt
kann das Ubuntu-IA die Installation mit allen notwendigen Daten aufrufen.

Nach der Fertigstellung dieser Operation sendet das IA Daten an die Instanzdaten-
Schnittstelle. Bei der Installation entstehen oftmals wichtige Informationen, wie
beispielsweise IP-Adresse oder das zufällig gewählte Passwort des Betriebssys-
tems. Diese instanzspezifischen Informationen müssen für die spätere Verwendung
dauerhaft gespeichert werden. Von diesem Schritt wird aus Gründen der Übersicht-
lichkeit der Grafik abgesehen, die Möglichkeit dazu soll dennoch erwähnt werden.
Nach dieser Operation ist die Aufgabe des Ubuntu-IAs erledigt. Es sendet nun eine
Nachricht an den Build-Plan, damit dieser mit eventuellen weiteren Schritten fort-
fahren kann. Im Falle eines Fehlers kann an dieser Stelle, die im Plan durch einen

42

4.4 Interaktion

Brief symbolisiert ist, eine andere Antwort erfolgen, die entweder zum Abbruch
des Plans führen kann oder von diesem kompensiert werden muss.

Ablauf aus Sicht des Containers

Dieser Abschnitt soll nun ausführlich auf den Ablauf innerhalb des OpenTOSCA-
Containers eingehen und betrachtet hierfür die folgenden Komponenten des
OpenTOSCA-Containers: Container-API, TOSCA-Engine, Portability-Dienst und
den Instanzdaten-Dienst.

Erstellung der ServiceInstance mittels Container-API

Der gesamte folgende Abschnitt bezieht sich auf den ersten Schritt des Plans
(s. Abbildung 4.3 auf Seite 41: Erstellung einer ServiceInstance inklusive ihrer
dazugehörigen NodeInstances). Der nun beschriebene Ablauf ist in Abbildung 4.4
auf Seite 45 grafisch dargestellt.

Der Plan ruft die Methode zur Erstellung einer ServiceInstance der REST-
Schnittstelle des Containers auf. Die Container-API ruft nun unmittelbar die
createServiceInstance-Methode des internen InstanceDataService auf und ver-
anlasst so diesen eine ServiceInstance mit den übergebenen Parametern zu erstellen.
Die Schritte, die nun zuerst ablaufen, sind weitgehend Validierungen der übermit-
telten Parameter. Dabei wird neben einer Prüfung der Werte zusätzlich eine Prüfung
der Existenz des, in den Parametern spezifizierten, ServiceTemplates durchgeführt.
Dies geschieht indem die TOSCA-Engine nach einer Liste aller ServiceTempla-
tes in der angegebenen CSAR gefragt wird und diese Liste dann nach dem zu
erstellenden ServiceTemplate durchsucht wird.

Im nächsten Schritt werden mittels eines Aufrufs der TOSCA-Engine die
Angaben zur Kardinalität der einzelnen NodeTemplates des ServiceTempla-
tes ermittelt. Der Rückgabe-Wert der getInstanceCountsOfNodeTemplates
ByServiceTemplateID-Methode ist eine assoziative Speicherstruktur bzw. Map,
die NodeTemplateIDs und eine Datenstruktur, welche die Minimal- und Maximal-
anzahl beinhaltet, miteinander verknüpft. Mit Hilfe dieser Map und der darin
enthaltenen Datenstruktur kann eine Schleife initialisiert werden, die für alle in
dem ServiceTemplate enthaltenen NodeTemplates genau so viele NodeInstances
erstellt wie mittels der Minimalanzahl spezifiziert. Nachdem dieser Schritt abge-
schlossen ist wurden die ServiceInstance und die dazugehörigen NodeInstances

43

4 Entwurf

erfolgreich erstellt. Der InstanceDataService gibt das erstellte ServiceInstance-Objekt
an die Container-API zurück, welche dann als letzten Schritt einen Link zu dieser
ServiceInstance generiert, der dann letztendlich dem Plan als Antwort zurückge-
sendet wird.

Dieses Beispiel lässt sich auch die Erstellung von NodeInstances übertragen, da
diese beiden Operationen sehr ähnlich sind und sich weitgehend nur durch die
Wahl der Parameter unterscheiden. Deshalb soll an dieser Stelle auch kein weiteres
Beispiel zur Erstellung einer NodeInstance erfolgen.

Abruf von Instanzdaten mittels Container-API

Dieser Abschnitt bezieht sich auf die beispielhafte Operation zum Abruf von In-
stanzdaten in Abbildung 4.3 auf Seite 41. Wie diese Operation im OpenTOSCA-
Container umgesetzt werden soll wird in Abbildung 4.5 auf Seite 46 verdeutlicht.
Hierbei schickt der Plan eine getProperties-Anfrage an die Container-API. Diese
Anfrage enthält einerseits die NodeInstanceID und andererseits eine Liste der Pro-
perties, die der Plan vom Container benötigt. In der Abbildung ist der Parameter
null gewählt, dies bedeutet in der Praxis, dass der Service alle für diesen Knoten
bekannten Properties zurückgeben wird. Falls hier Properties in dieser Liste spezifi-
ziert werden, generiert der InstanceDataService ein eigenes Properties-Element,
das er dann mit den in der Liste angegebenen Werten befüllt. Dieser Parameter
bietet also die Möglichkeit sich nur die Werte, die wirklich benötigt werden, zurück-
geben zu lassen. Die Container-API ruft den internen InstanceDataService auf,
der im ersten Schritt die NodeInstance inklusive der dazugehörigen Instanzdaten
lädt. Falls die im Aufruf übergebene Properties-Liste gefüllt ist, ist noch eine Filte-
rung der Properties notwendig. Dies wird gelöst, indem ein neues XML-Dokument
erzeugt wird und alle in der Liste enthaltenen Properties in dieses neue Dokument
hineinkopiert werden. Am Ende wird das Properties-Dokument der NodeInstance
bzw. das soeben neu erstellte, mit den gefilterten Properties gefüllte, Dokument
zurückgeben. Die REST-API gibt das erhaltene Dokument an den aufrufenden Plan
weiter.

Abruf von Links zu Artefakten mittels Container-API

Die Operation zum Abruf eines Links zu einer *.iso für die Installation (s. Abbil-
dung 4.3 auf Seite 41) beschäftigt sich mit der Beschaffung eines Links zu einem

44

4.4 Interaktion

createServiceInstance
(CSAR_ID, serviceTemplate_ID)

Plan

Container-

API

(REST-

Schnittstelle)

InstanceData

Service

TOSCA-

Engine

createServiceInstance
(CSAR_ID, serviceTemplate_ID)

validate Parameters()

getToscaReferenceMapper().
getServiceTemplateIDsContainedInCSAR(CSAR_ID)

serviceTemplateIDs

check if serviceTemplateIDs contains
serviceTemplate_ID

getInstanceCountsOfNodeTemplates
ByServiceTemplateID(CSAR_ID, serviceTemplate_ID)

counts<NtemplateID, min&maxCount>

createServiceInstance
(CSAR_ID, serviceTemplate_ID)

Schleife

[for each counts]

Schleife

[for count.minCount]

createNodeInstance
(count.name, serviceInstance)

serviceInstance

link to serviceInstance

Abbildung 4.4: UML-Sequenzdiagramm: ServiceInstance-Erstellung innerhalb des
OpenTOSCA-Containers

45

4 Entwurf

getProperties
(nodeInstanceID, null)

Plan

Container-

API

(REST-

Schnittstelle)

InstanceData

Service

getProperties
(nodeInstanceID, null)

retrieve nodeInstance with nodeInstanceID

properties

properties

null bedeutet hier,
dass alle Werte
zurückgegeben

werden

building new
properties-Element only

containing required values

optional

[propertiesList != null]

Abbildung 4.5: UML-Sequenzdiagramm: Abruf von Instanzdaten innerhalb des
OpenTOSCA-Containers

DA. Die Portability-Komponente der Container-API stellt eine Methode mit dieser
Funktionalität zur Verfügung. Die genaue Funktionsweise wird in Form des Ab-
lauf eines Aufrufs aus Sicht des OpenTOSCA-Containers in Abbildung 4.6 auf der
nächsten Seite dargestellt.

In der Abbildung erkennt man, dass das IA die Container-API mittels der
getNodeTemplateArtifacts-Methode aufruft und dabei artefaktspezifische Pa-
rameter übergibt. Die Container-API ruft intern die getNodeTemplateArtifacts-
Methode des zuständigen Portability-Dienstes auf, welcher sich dann um die Er-
stellung der Liste mit den entsprechenden Links kümmert. Im Detail geschieht dies

46

4.4 Interaktion

getNodeTemplateArtifacts
(CSAR_ID, serviceTemplate_ID,
"DA","ubuntuNT","ubuntu.iso",

null, null)

Plan

Container-

API

(REST-

Schnittstelle)

Portability

Service

TOSCA-

Engine

getNodeTemplateArtifacts(...) getNodeTypeOfNodeTemplate
(CSAR_ID, serviceTemplate_ID, "ubuntuNT")

nodeType

getNodeTypeImplementationsOfNodeType
(CSAR_ID, nodeTypeOfNodeTemplate)

nodeTypeImplementations

Schleife

[for each nodeTypeImplentation]

filtered Artifacts

list of links to Artifacts

Aufruf um ubuntu.iso
DeploymentArtifact vom

NodeTemplate „ubuntuNT“
zu erhalten

Parameter s. REST-Aufruf

getResolvedArtifactsOfNodeTypeImplementation
(csarID, nodeTypeImplementation.name)

resolvedArtifacts

filter list of Artifacts
by specified
Parameters

add resolvedArtifact
 to list

Generate valid
HTTP-Links
refering to

REST-Fileservice

Abbildung 4.6: UML-Sequenzdiagramm: Abruf von Links zu Artefakten innerhalb
des OpenTOSCA-Containers

47

4 Entwurf

durch enge Zusammenarbeit mit der TOSCA-Engine, da diese alle Informationen
bezüglich des ServiceTemplates besitzt.

Im ersten Schritt besorgt sich die Portability-API den NodeType des in den Parame-
tern spezifizierten Templates, um im Anschluss mittels dieser Information alle Node-
TypeImplementations des NodeTypes zu erfragen. Für alle NodeTypeImplementations
werden nun, mit Hilfe der getResolvedArtifactsOfNodeTypeImplementation-
Methode der TOSCA-Engine, alle resolvedArtifacts in einer Liste gesammelt.
ResolvedArtifact ist eine Datenstruktur, welche bereits aufgelöste Referenzen,
also keinerlei Referenzen selbst mehr enthält. Bei dem Inhalt kann es sich aber um
artefaktspezifischen Inhalt (ArtifactSpecificContent) oder um den relativen Pfad zur
Datei innerhalb der CSAR handeln, mehr dazu aber im Abschnitt 4.5.

Die erstellte Liste wird im Anschluss entsprechend den spezifizierten Parametern
gefiltert und zurück an die Container-API gegeben. Die zurückgegebene Liste
enthält wie bereits erwähnt entweder ArtifactSpecificContent oder eine innerhalb
der CSAR gültige Referenz. Der ArtifactSpecificContent kann direkt zurückgegeben
werden, die relative Referenz muss allerdings noch umgewandelt werden, da
einem IA diese Information nicht genügt. Das IA benötigt zur Verwendung der
Schnittstelle einen gültigen Link zur Datei auf die referenziert wird.

Deshalb wird in der Container-API nun für jede Referenz ein entsprechender Link
zur REST-Schnittstelle des FileServices generiert, an dem die Datei mittels HTTP-
Request für das IA abrufbar ist. Diese modifizierte Liste gibt die Container-API nun
an das aufrufende IA zurück, das mit den zur Verfügung gestellten Informationen
weiterarbeiten kann.

4.5 Analyse der Beschaffenheit von Artefakten in TOSCA

Die Beschreibung der letzten Operation hat noch einige Fragen offen gelassen. Die
getResolvedArtifacts-Methode erscheint noch recht abstrakt, welche Funktion
diese Methode genau hat soll im Folgenden erläutert werden.

Um die Funktion genau zu definieren erscheint es sinnvoll zuerst einen Blick in
die TOSCA [OAS13] zu werfen und die Möglichkeiten zur Definition von IAs und
DAs genauer zu analysieren.

Die zu implementierende Funktion muss auf jeden Fall alle für das NodeTemplate
relevanten Artefaktinformationen liefern. Diese Informationen setzen sich aus zwei

48

4.5 Analyse der Beschaffenheit von Artefakten in TOSCA

NodeTemplate type=“myNT“

DeploymentArtifact

artifactReference

artifactSpecific

Content

referenziert via "type"-Attribut

NodeTypeImpl nodeType=“myNT“

DeploymentArtifact

artifactReference

artifactSpecific

Content

referenziert via "nodeType"-Attribut

ImplementationArtifact

artifactReference

artifactSpecific

Content

NodeType name=“myNT“

ArtifactTemplate

ArtifactReferences

artifactReference

reference=“folder/

file.extension“

...

artifactReference

reference=“...“

referenziert auf

…

Abbildung 4.7: Referenzierung von DAs, IAs und deren ArtifactSpecificContent

strukturell unterschiedlichen Typen zusammen. Zum Einen kann ein Artefakt soge-
nannten ArtifactSpecificContent haben, in dem der Inhalt eines Artefaktes direkt
definiert wird. Es handelt sich also um eine Möglichkeit ein Artefakt direkt im
entsprechenden Template zu definieren. Diese Möglichkeit kann genutzt werden
um zum Beispiel einen Link oder einen Namen eines entfernt vorhandenen Images
anzugeben oder direkt im Template ein Skript zu verfassen, das als Artefakt dient.
Zum Anderem besteht die Möglichkeit in einer Definition eines Artefaktes auf ein
sogenanntes ArtifactTemplate zu referenzieren. In diesem bestehen viele weitere
Möglichkeiten ein Artefakt genauer zu beschreiben, hier soll aber primär auf die

49

4 Entwurf

Listing 4.1 Beispielhafte Definition eines DA mit artifactSpecificContent, einer
NodeTypeImplementation und eines ArtifactTemplates, das von dem DA und dem
IA der NodeTypeImplementation referenziert wird
<NodeTemplate id="myApp" name="myApplication" type="types:ApplicationType">

...
<DeploymentArtifacts>

<DeploymentArtifact artifactRef="myNamespace:myScript"
artifactType="types:script" name="myScript">
<ArtefaktSpezifischerTag>irgend ein

Text</ArtefaktSpezifischerTag>
</DeploymentArtifact>

</DeploymentArtifacts>
</NodeTemplate>
...
<NodeTypeImplementation name="myNodeTypeImpl" nodeType="types:NodeType">

<ImplementationArtifacts>
<ImplementationArtifact artifactRef="myNamespace:myScript"

artifactType="types:script"/>
</ImplementationArtifacts>

</NodeTypeImplementation>
...
<ArtifactTemplate id="myScript" type="type:Script">

<ArtifactReferences>
<ArtifactReference reference="IAs/Scripts/myScript.sh"/>
<ArtifactReference reference="IAs/Scripts/myScript.bat"/>

</ArtifactReferences>
</ArtifactTemplate>
...

Möglichkeit der Referenzierung innerhalb der CSAR eingegangen werden. Im Arti-
factTemplate ist es möglich eine Liste von Referenzen anzugeben, die auf Dateien
innerhalb der CSAR verweisen. Listing 4.1 zeigt einen Auszug eines ServiceTem-
plates, das neben einem DA mit ArtifactSpecificContent exemplarisch zeigt, wie
ein ArtifactTemplate von einem IA referenziert wird.[OAS13]

4.6 Erweiterung der TOSCA-Engine

Dieser Abschnitt beschäftigt sich mit der Erweiterung der bereits bestehenden
TOSCA-Engine. Diese muss, um die beiden neuen Dienste zur Bereitstellung der
Artefakte und der Instanzdaten mit ausreichend Daten und Informationen zu
versorgen, erweitert werden.

50

4.7 Persistenz

Die beiden Dienste werden Funktionen benötigen um sowohl Informationen be-
züglich NodeTemplates und NodeTypeImplementations abzufragen, als auch die
Möglichkeit bieten Referenzen auf ArtifactTemplates aufzulösen. Viele dieser Me-
thoden sind bereits vorhanden und in der existierenden Implementierung der
Schnittstelle bereits funktionsfähig. Nach ausgiebiger Analyse konnten die zusätz-
lich benötigten Methoden identifiziert werden. Abbildung 4.8 auf Seite 52 zeigt
die bestehende Schnittstelle der OpenTOSCA-Engine inklusive der im Laufe der
Arbeit aufgenommenen Methoden.

Es ist erkennbar, dass die TOSCA-Engine die benötigten Funktionen für
den Dienst zur Verwaltung der Instanzdaten weitgehend bereits besitzt. Ein-
zig die Funktionen getNameOfReference, die benötigt wird um das Name-
Attribut der Service- oder NodeTemplates zu bestimmen, getInstanceCounts
OfNodeTemplatesByServiceTemplateID, welche die Mindest- und Maximal-
anzahl für Instanzen von gewissen NodeTemplates eines ServiceTemplates liefert,
und doesNodeTemplateExist, die lediglich überprüft ob ein NodeTemplate in
einem ServiceTemplate existiert, müssen hinzugefügt werden.

Hauptteil der Erweiterung werden dementsprechend, die für die Portability-API be-
nötigten Funktionen getResolvedArtifactsOfNodeTemplate und getResolved
ArtifactsOfNodeTypeImplementation sein, welche sich um die Dereferen-
zierung der Artefaktreferenzen innerhalb von NodeTemplate und NodeType-
Implementation kümmern werden (vgl. Abbildung 4.7 auf Seite 49). Der Rück-
gabewert dieser Methoden wird eine Datenstruktur sein, die sowohl DAs als auch
IAs inklusive deren ArtifactSpecificContent und den Inhalt der referenzierten Arte-
factTemplates enthalten wird.

4.7 Persistenz

Die Anforderungen an die Persistenz der beiden Dienste sind sehr unterschiedlich.
Die Portability-API muss ihre Daten nicht persistent speichern, da sie implizit die
Persistenz der TOSCA-Engine nutzt. Sie hat keine zusätzlichen Informationen und
gibt lediglich aufbereitete Funktionen der TOSCA-Engine weiter und macht diese
verfügbar. Ganz anders sieht dies beim Dienst zur Verwaltung der Instanzdaten
aus, dessen Daten müssen persistent gehalten werden. Diese Daten müssen nicht
nur gespeichert werden, sondern sie müssen bei den Anfragen auch nach gewissen
Kriterien gefiltert werden können. Aus diesem Grund sollen die Daten in einer

51

4 Entwurf

<<interface>>

IToscaEngineService

+getToscaReferenceMapper()

+resolveDefinitions(CSARID)

+getReferencedNodeTypesOfAServiceTemplate(CSARID, QName)

+getNodeTypeImplementationsOfNodeType(CSARID, QName)

+getImplementationArtifactNamesOfNodeTypeImplementation

+getRequiredContainerFeaturesOfANodeTypeImplementation(CSARID, QName)

+getArtifactTypeOfAImplementationArtifact(CSARID, QName, String)

+getArtifactTemplateOfAImplementationArtifact(CSARID, QName, String)

+getArtifactSpecificContentOfAImplementationArtifact(CSARID, QName, String)

+getPropertiesOfAArtifactTemplate(CSARID, QName)

+clearCSARContent(CSARID)

B
e
re

it
s

b
e
s
te

h
e

n
d
e

 S
c
h

n
it
ts

te
lle

d
e

r
O

p
e
n

T
O

S
C

A
-E

n
g

in
e

+getPropertyConstraintsOfAArtifactTemplate(CSARID, QName)

+getArtifactsOfAArtifactTemplate(CSARID, QName)

+getNodeTypeOfNodeTemplate(CSARID, QName, String)

+getPropertiesOfNodeTemplate(CSARID, QName, String)

+getResolvedArtifactsOfNodeTemplate(CSARID, QName)

+getResolvedArtifactsOfNodeTypeImplementation(CSARID, QName)

+getNameOfReference(CSARID, QName)

+getInstanceCountsOfNodeTemplatesByServiceTemplateID(CSARID, QName)

+doesNodeTemplateExist(CSARID, QName, String)

N
e
u
e

 M
e
th

o
d
e
n

 d
e

r
S

c
h
n
it
ts

te
lle

Abbildung 4.8: UML-Klassendiagramm der TOSCA-Engine Schnittstelle nach der
Erweiterung im Zuge der Entwicklung

Datenbank gespeichert werden, mit deren Hilfe später auch der Filtermechanismus
umgesetzt werden soll.

An vielen Stellen der Implementierung des OpenTOSCA-Containers werden bereits
Daten persistent gespeichert, an diesen Stellen wird bereits auf eine Datenbank
zur Speicherung zurückgegriffen. Die bestehende Implementierung nutzt Eclipse
Link1, die Referenzimplementierung der Java Persistence API (JPA) in Kombination
mit einer lokalen Derby2-Datenbank.

Im Abschnitt 3.5.2 auf Seite 34, der die Integration in bestehende Dienste beschreibt,
wurde bereits erwähnt, dass die Entwicklung der neuen Dienste sich homogen
in die bestehende Architektur integrieren soll. Nach erfolgreicher Analyse der

1Eclipse Link: http://www.eclipse.org/eclipselink
2Apache Derby: http://db.apache.org/derby/

52

http://www.eclipse.org/eclipselink
http://db.apache.org/derby/

4.8 REST

ServiceInstance

-serviceInstanceID

NodeInstance

-nodeInstanceID

+getter/setter

+getter/setter

-createdAt

-serviceTemplateID

-serviceTemplateName

-nodeInstances

-nodeTemplateID

-createdAt

-nodeTemplateName

-nodeType

-properties

-state

-serviceInstance

1 0..*

Abbildung 4.9: UML-Klassendiagramm der ServiceInstance- und NodeInstance-
Klasse

Umsetzbarkeit der geforderten Funktionalität mittels EclipseLink, wurde sich an
dieser Stelle für den Einsatz dieser Persistenzmöglichkeit entschieden.

Das Datenmodell des zu entwickelten Instanzdaten-Dienstes besteht nur aus
Service- und NodeInstances. ServiceInstances besitzen folgende Attribute: Eindeu-
tige ServiceInstanceID, Erstelldatum, ServiceTemplateID, ServiceTemplateName
und eine Liste aller zugehörigen NodeInstances.

NodeInstances bestehen aus eindeutiger NodeInstanceID, NodeTemplateID und
NodeTemplateName des zugehörigen Templates, zugehörigen NodeType, Erstell-
datum, der zugehörigen ServiceInstance und außerdem State und Properties der
Instanz. Auf die genaue Umsetzung dieses Businessmodells mittels JPA soll bei der
Implementierung in Abschnitt 5.2 auf Seite 67 eingegangen werden. Die Struktur
der beiden Klassen ist im Klassendiagramm in Abbildung 4.9 dargestellt.

4.8 REST

Dieser Abschnitt geht auf die Erweiterung der REST-Schnittstelle ein. Abbil-
dung 4.10 auf der nächsten Seite zeigt die erweiterte REST-Schnittstelle des
OpenTOSCA-Containers inklusive des schemenhaften Ist-Zustandes. Die API soll
zwei weitere Pfade erhalten "/instanceData" und "/portability". Die Verwendung
der Ressourcen ist, wie bei REST generell, selbsterklärend.

53

4 Entwurf

%NodeID1% /

state/

properties/

%ServiceID1% /

LEGENDE

Containerapi/

instancedata/

portability/

...

%NodeID-N% /

GET:

getNodeInstanceInfo

DELETE:

deleteNodeInstance

GET:

getProperties

PUT:

setProperties

GET:

getState

PUT:

setState

CSARs/

CSARControl/

Credentials/

Storage

Providers/

GET:

getServiceInstance

List

POST:

createService

Instance

...

%ServiceID-N% /

GET:

getArtifacts

POST:

createNodeInstance

GET:

getNodeInstanceList

GET:

getServiceInstance

List

DELETE:

deleteService

InstanceList

OperationStatischer Pfad
Dynamischer

Pfad

Abbildung 4.10: Erweiterung der REST-Schnittstelle des OpenTOSCA-Containers

54

4.8 REST

Der InstanceData-Pfad soll alle Anfragen bezüglich der Instanzdaten-Engine ver-
walten, hierzu beinhaltet der Pfad auf oberster Ebene zwei weitere Pfade, die
Zugriff auf NodeInstances und ServiceInstances liefern. Einer dieser Pfade ist der
NodeInstances-Pfad. Er bietet die Operationen GET und POST an um einerseits
mittels GET und der Angabe von Filterparametern eine gefilterte Liste von No-
deInstances zu erhalten und andererseits die Erstellung von NodeInstances, also
die Instanziierung von NodeTemplates, zu ermöglichen. Um Zugriff auf instanz-
spezifische Operationen zu erhalten wird an den NodeInstances-Pfad die ID der
entsprechenden Instanz angehängt. An diesem dynamischen Pfad kann ein GET
abgesetzt werden um Informationen zu der Instanz zu erhalten, ein DELETE löscht
die der Identifier (ID) entsprechende NodeInstance. Zugriff auf die Properties
und den State geschieht durch die zum instanzspezifischen Pfad relativen Pfade
"/properties" und "/state". Auf diesen Ressourcen sind GET und PUT-Operationen
möglich um die jeweiligen Informationen abzufragen oder zu überschreiben. Der
NodeInstances-Pfad ist in Abbildung 4.10 in der oberen rechten Ecke inklusive aller
untergeordneten Pfaden und Ressourcen dargestellt.

Ähnlich wie bei den NodeInstances sieht dies bei den ServiceInstances aus. Auf dem
ServiceInstances-Pfad sind GET und POST-Operation möglich. Die GET-Operation
liefert eine Liste, die den Anfrageparametern entsprechenden ServiceInstances
beinhaltet. Mittels POST-Operation können an dieser Stelle ServiceInstances erstellt
werden. Relativ zu diesem Pfad existiert ein dynamischer Pfad, der durch Angabe
der ServiceInstanceID einen Link zu einer spezifischen ServiceInstance darstellt.
Auf dieser Ressource sind wieder die beiden Operationen GET, um Informationen
zu der spezifizierten ServiceInstance zu ermitteln, und DELETE, um die spezifizier-
te ServiceInstance und all ihre zugehörigen NodeInstances zu löschen, möglich. Der
ServiceInstance-Pfad ist, ebenso wie der NodeInstances-Pfad, in Abbildung 4.10
dargestellt.

Die PortabilityAPI ist unter dem Pfad "/portability" erreichbar. Sie ist um unteren
Bereich der Abbildung 4.10 dargestellt und bietet unter dem Pfad "/artifacts"
eine GET-Operation an, die es ermöglicht Artefakte anhand von Parametern zu
ermitteln.

Verlinkung mittels XLink

REST beabsichtigt darzustellen, wie sich gut konzipierte Web Anwendungen ver-
halten. Es wird ein Netzwerk von Hypermedia Dokumenten, also z.B. Webseiten,
beschrieben, in dem der Benutzer voranschreitet indem er Links zwischen diesen

55

4 Entwurf

Listing 4.2 Beispielhafte Umsetzung der XLink-Spezifikation
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns:root xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:ns="http://example.com">
<ns:self xlink:href="http://mydomain.com" xlink:title="meine Webseite"

xlink:type="simple"/>
</ns:root>

Webseiten auswählt [Fie00]. Eine REST-API soll dabei unabhängig von statischen
Ressourcenamen sein, es muss jediglich der Einstiegspunkt der Anwendung be-
kannt sein, der es ermöglicht weitere Ressourcen aufgrund der gelieferten Links
zu erschließen. [Fie08] Eine der Konsequenzen dieser Anforderung ist neben der
Verlinkung einzelner Ressourcen, das Zurückgeben von Links als Ergebnis von
Erstelloperationen.

Die Beschaffenheit dieser generierten Links muss um die maschinelle Verarbei-
tung sicherzustellen einem Standard entsprechen. Die World Wide Web Consor-
tium (W3C) definiert für die Verlinkung innerhalb XML-Dokumenten einen Stan-
dard namens XML Linking Language (XLink)3 zur Verfügung. XLink liegt mitt-
lerweile seit Mai 2010 in der Version 1.1 vor und ermöglicht es zwischen Ressour-
cen zu verlinken und diese Links mittels geeigneten Abfragesprachen einfach zu
extrahieren.[WDMO10]

Um für unseren Verwendungszweck ausreichende Links nach der XLink-
Spezifikation zu erstellen genügt es es einen Link vom simple-Typ zu erstellen,
der die Attribute href und title besitzt. Dabei gibt href den Ort und title den
Namen der referenzierten Ressource an. [WDMO10] Ein Beispiel für die Art der
während der Implementierung einzusetzenden Verlinkung stellt Listing 4.2 dar.

Rückgabetypen der REST-Schnittstelle

Die bisherigen Pfade der OpenTOSCA-REST-Schnittstelle geben ihre Ergebnisse als
reinen Text, genauer gesagt als String, zurück oder nutzen zur Rückgabe struktu-
rierte Informationen im XML-Format. Im Bezug auf die Konsistenz der Schnittstelle
wäre ein anderes Verhalten an dieser Stelle sehr schlecht, deshalb werden die beiden
Pfade dies auch auf diese Art handhaben.

3XLink Spezifikation: http://www.w3.org/TR/xlink11/

56

http://www.w3.org/TR/xlink11/

4.8 REST

Listing 4.3 Beispielhafte Rückgabe der GET-Operation auf dem NodeInstances-
Pfad
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:NodeInstanceList xmlns:ns1="http://www.w3.org/1999/xlink"

xmlns:ns2="http://opentosca.org/api/pp">
<ns2:self ns1:href="http://localhost:1337/containerapi/

instancedata/nodeInstances" ns1:title="self" ns1:type="simple"/>
<ns2:nodeinstances>

<ns2:link
ns1:href="http://localhost:1337/containerapi/instancedata/
nodeInstances/1" ns1:title="1" ns1:type="simple"/>

<ns2:link
ns1:href="http://localhost:1337/containerapi/instancedata/
nodeInstances/10" ns1:title="10" ns1:type="simple"/>

<ns2:link
ns1:href="http://localhost:1337/containerapi/instancedata/
nodeInstances/11" ns1:title="11" ns1:type="simple"/>

</ns2:nodeinstances>
</ns2:NodeInstanceList>

Aus Abschnitt 4.8 folgt die Anforderung, dass POST-Operationen einen Link auf
die durch die Operation erstellten Objekte liefern. Delete-Operationen hingegen
sollen, falls die Operation erfolgreich war, ein OK zurückgeben. Da diese simplen
OK- und Zeichenketten-Rückgabewerte alle recht selbsterklärend sind und auf
die Verlinkung bereits im vorhergehenden Abschnitt 4.8 ausreichend eingegangen
wurde, soll im folgenden Abschnitt auf die speziellen Rückgabetypen der einzelnen
GET-Operationen eingegangen werden. Dabei sollen die GET-Operationen der
/nodeInstances-, /serviceInstances- und /portability/artifacts-Pfade getrennt betrachtet
werden.

GET-Operationen Rückgabewerte des NodeInstance-Pfads

Der NodeInstance-Pfad hat insgesamt vier GET-Operation. Die GET-Operation
des NodeInstances-Pfad selbst, die GET-Operation auf dem dynamischen ID-Pfad
und die beiden GET-Operation auf State- und auf dem Properties-Pfad. Die GET-
Operation auf dem NodeInstances-Pfad wird Links zu den im Aufruf passenden
NodeInstances liefern. Ein beispielhafter Rückgabewert dieser Operation ist in
Listing 4.3 ersichtlich.

Die GET-Operation auf dem dynamischen ID-Pfad liefert Informationen bezüglich
einer spezifischen NodeInstance mit der im Pfad spezifizierten ID. Die Operationen

57

4 Entwurf

Listing 4.4 Beispielhafte Rückgabe der GET-Operation auf dem dynamischen
NodeInstances-ID-Pfad
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:NodeInstance xmlns:ns1="http://www.w3.org/1999/xlink"

xmlns:ns2="http://opentosca.org/api/pp"
created-at="2013-08-10T09:54:55.038+02:00"
nodeInstanceID="http://opentosca.org/nodetemplates/instances/1"
nodeTemplateID="{http://www.example.com/demo}MySql"
nodeTemplateName="MySQL" serviceInstanceID=
"http://opentosca.org/servicetemplates/instances/1">
<ns2:Link ns1:href="http://localhost:1337/containerapi/instancedata/

nodeInstances/1" ns1:title="self" ns1:type="simple"/>
<ns2:Link ns1:href="http://localhost:1337/containerapi/instancedata/

serviceInstances/1" ns1:title="ServiceInstance" ns1:type="simple"/>
<ns2:Link ns1:href="http://localhost:1337/containerapi/instancedata/

nodeInstances/1/properties" ns1:title="Properties"
ns1:type="simple"/>

<ns2:Link ns1:href="http://localhost:1337/containerapi/instancedata/
nodeInstances/1/state" ns1:title="State" ns1:type="simple"/>

<ns2:NodeType>{http://www.example.com/ToscaTypes}MySqlType</ns2:NodeType>
</ns2:NodeInstance>

liefern neben vielen Informationen, in Form von Attributen, noch einige Links zu
zugehöriger ServiceInstance, Properties und State. Ein beispielhafter Rückgabewert
ist in Listing 4.4 dargestellt.

Die GET-Operation auf dem State-Pfad liefert lediglich den State zurück in dem die
NodeInstance sich gerade befindet. Dies ist im Generellen ein QName wird aber
als String zurückgeliefert. REST sieht dafür den Datentyp text/plain vor, der an
dieser Stelle dafür auch benutzt werden wird.

Letzte Operation dieses Abschnitts ist die GET-Operation des Properties-Pfads.
Abhängig von den Parametern gibt er die Properties der, mittels des Pfads spe-
zifizierten, NodeInstance zurück. Je nachdem ob die Rückgabe der Properties
mittels der Parameter eingeschränkt ist, gibt die REST-Schnittstelle das gesamte
Properties-Document zurück oder generiert aus den in den Parametern ange-
geben Properties-Namen ein neues Dokument, das die spezifizierten Properties
enthält.

Die Struktur des Rückgabewert hängt einerseits von der Beschaffenheit der Default-
Properties in der Definition im ServiceTemplate ab und andererseits davon ob
einschränkende Parameter in der Anfrage definiert wurden. Wenn Parameter in der
Abfrage spezifiziert wurden ist der Rückgabewert ein neues Dokument in einem

58

4.8 REST

Listing 4.5 Beispielhafte Rückgabe der GET-Operation auf dem Properties-Pfad
einer NodeInstance mit spezifiertem List-Parameter
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Properties>

<demo:AdminUser
xmlns:demo="http://www.example.com/demo">admin</demo:AdminUser>

<demo:AdminPassword
xmlns:demo="http://www.example.com/demo">admin</demo:AdminPassword>

</Properties>

Listing 4.6 Beispielhafte Rückgabe der GET-Operation auf dem ServiceInstances-
Pfad
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:ServiceInstanceList xmlns:ns1="http://www.w3.org/1999/xlink"

xmlns:ns2="http://opentosca.org/api/pp">
<ns2:serviceinstances>

<ns2:link ns1:href="http://localhost:1337/containerapi/
instancedata/serviceInstances/1" ns1:title="1"
ns1:type="simple"/>

</ns2:serviceinstances>
</ns2:ServiceInstanceList>

eigenen zur Portability-API gehörendem Namespace. Ein Beispiel für diesen Fall
stellt Listing 4.5 dar. Falls keine Parameter angegeben werden hängt der Rückgabe-
wert zu stark von den definierten Properties ab, so dass hier an dieser Stelle kein
weiteres repräsentatives Beispiel gegeben werden kann.

GET-Operationen Rückgabewerte des ServiceInstance-Pfads

Die GET-Operationen des ServiceInstance-Pfads verhalten sich recht ähnlich wie
die des NodeInstance-Pfads. Ein GET auf der ServiceInstances-Ressource selbst
gibt eine Liste von ServiceInstances, die mittels Filterparametern noch weiter ein-
geschränkt werden können. Eine beispielhafte Rückgabe dieser Operation ist in
Listing 4.6 abgebildet. Ein GET auf dem dynamischen ID-Pfad gibt, ähnlich wie
beim NodeInstance-Pfad, Informationen zu der mittels ID spezifizierten ServiceIn-
stance zurück. Ein für diese Operation beispielhafter Rückgabewert ist in Listing 4.7
auf der nächsten Seite enthalten.

59

4 Entwurf

Listing 4.7 Beispielhafte Rückgabe der GET-Operation auf dem dynamischen
ServiceInstance-Pfad
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:ServiceInstance xmlns:ns1="http://www.w3.org/1999/xlink"

xmlns:ns2="http://opentosca.org/api/pp"
created-at="2013-08-09T18:31:54.196+02:00" csarID="SugarCRM3.csar"
serviceInstanceID="http://opentosca.org/servicetemplates/instances/1"
serviceTemplateID=
"http://www.example.com/demo}SugarCRM_CSPRD01_ServiceTemplate"
serviceTemplateName="SugarCRM (CSPRD01) Service Template">
<ns2:Link ns1:href="http://localhost:1337/containerapi/instancedata/

serviceInstances/1" ns1:title="self" ns1:type="simple"/>
<ns2:nodeInstances>

<ns2:nodeInstance
ns1:href="http://localhost:1337/containerapi/instancedata/
nodeInstances/1"
ns1:title="http://opentosca.org/nodetemplates/instances/1"
ns1:type="simple"/>

<ns2:nodeInstance
ns1:href="http://localhost:1337/containerapi/instancedata/
nodeInstances/2"
ns1:title="http://opentosca.org/nodetemplates/instances/2"
ns1:type="simple"/>

</ns2:nodeInstances>
</ns2:ServiceInstance>

GET-Operationen Rückgabewerte des Portability-Pfads

Der Portability-Pfad hat, wie bereits erwähnt, die alleinige Funktion zur Abfrage
von Artefakten, welche unter dem Artifact-Pfad mittels eines GET-Requests
nutzbar ist. Die Abfrage kann mittels Parametern gezielt eingeschränkt werden. Ein
Beispiel für diese Art von Rückgabewert ist in Listing 4.8 auf der nächsten Seite zu
sehen. Auffällig hierbei ist der im references-Tag (Auszeichner) enthaltene Pfad,
der einen Downloadlink des Artefakts darstellt. Dieser muss auf Grundlage des
von der internen Portability-API erhaltenem Pfads berechnet werden. Auf diese
notwendige Umwandlung soll im folgendem Abschnitt 4.8 eingegangen werden.

60

4.8 REST

Listing 4.8 Beispielhafte Rückgabe der GET-Operation auf dem Artifact-Pfad
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Artifacts xmlns="http://opentosca.org/planportability/rest">

<deploymentArtifacts/>
<implementationtArtifacts>

<implementationArtifact operationName="ConfigureScript"
type="{http://www.example.com/ToscaTypes}Script">
<references>

<ref>http://localhost:1337/containerapi/CSARs/
SugarCRM3.csar/Content/IAs/Scripts/ApacheWebServer/
install.sh</ref>

</references>
</implementationArtifact>

</implementationtArtifacts>
</Artifacts>

Listing 4.9 Beispielhafte Konvertierung einer relativen Pfadreferenz in eine absolute
Referenz
Relativer Pfad

"IAs/Scripts/ApacheWebServer/install.sh"
=> Absolute Referenz:

"http://<Host URL des Containers>:1337/containerapi/CSARs/
SugarCRM3.csar/Content/IAs/Scripts/ApacheWebServer/install.sh"

Umwandlung der von der internen Portability-API generierten Links zu extern
erreichbaren Links

Im vorherigen Abschnitt wurde bereits auf die Tatsache aufmerksam gemacht,
dass man statt relativer Referenzen absolute Referenzen benötigt. Ein Nutzer der
Container-API benötigt nicht den Pfad der Datei innerhalb der CSAR, er braucht
eine Uniform Resource Locator (URL), an der das Artefakt selbst verfügbar ist. Die
REST-Schnittstelle des OpenTOSCA-Container besitzt bereits einen Pfad, der es
ermöglicht die Struktur einer CSAR zu traversieren und Dateien der CSAR direkt
herunterzuladen.

Die REST-API wird also einen Mechanismus benötigen um den relative Pfad eines
Artefakts innerhalb der CSAR in eine URL, bei der das Artefakt verfügbar ist, zu
konvertieren. Ein Beispiel für die Konvertierung einer relativen Referenz in eine
absolute stellt Listing 4.9 dar. In Listing 4.7 auf der vorherigen Seite wurde die
Referenz schon korrekt aufgelöst und die im ref-Tag enthaltene Referenz ermöglicht
es dem Anfragenden das entsprechende Artefakt herunterzuladen.

61

5 Implementierung

Dieses Kapitel soll auf die Details und Besonderheiten der Implementierung der in
Kapitel 4 entworfenen Lösung eingehen. Dabei wird primär auf allgemeine Schritte
der Implementierung, die bisher nicht ausreichend behandelt wurden, sowie auf
die Umsetzung der Persistenz- und Filteranforderung eingegangen werden. An-
dere notwendige Implementierungsschritte sind durch den Entwurf weitgehend
ausreichend beschrieben und mussten lediglich umgesetzt werden.

Dienstverzeichnis

(service registry)

Dienstanbieter

(service provider)

Dienstnutzer

(service consumer)

sucht

(find)

veröffentlicht

(publish)

ruft auf

(bind)

Abbildung 5.1: SOA-Dreieck, beschreibt die Beziehungen zwischen den Rollen
einer service-oriented architecture nach [Mel10]

63

5 Implementierung

5.1 OSGi

OSGi spezifiziert ein dynamisches Modulsystem für Java, die sogenannte OSGi
Service Platform. Das Framework implementiert das Konzept der service-oriented
architecture (SOA) und bietet so die Grundlage für modularisierte Lösungen in
Java. Abbildung 5.1 auf der vorherigen Seite stellt die Beziehung zwischen den
einzelnen Beteiligten dieses Architekturmusters da.
Ein Service wird lediglich durch seine Schnittstelle spezifiziert und ist so unabhän-
gig von einer Implementierung. Auf der einen Seite ist der Dienstanbieter (Service
Provider), der diese Schnittstelle implementiert und sein Dienstangebot beim Dienst-
verzeichnis (Service Registry) veröffentlicht (publish). Auf der anderen Seite ist ein
Dienstnutzer (Service Consumer), der nur die Schnittstelle des zu verwendeten
Services kennt und im Dienstverzeichnis nach einer passenden Implementierung
dieser Schnittstelle sucht (find). Enthält das Verzeichnis eine passende Implementie-
rung kann er diese benutzen. Die Rolle des Dienstverzeichnisses wird in OSGi vom
Framework umgesetzt. Den Kern des OSGi-Frameworks bilden Module, welche
im OSGi-Kontext Bundles genannte werden. In diesen Bundles werden sowohl
Schnittstellen definiert als auch implementiert. Die Bundles nehmen so Rolle der
Dienstanbieter ein, können aber ebenso andere Dienste nutzen und so ebenso als
Dienstnutzer auftreten.

Diese Architektur führt zu einer losen Kopplung zwischen Dienstnutzer und
Dienstanbieter. Im OSGi-Framework können Bundles zur Laufzeit installiert, ge-
startet, gestoppt, aktualisiert und deinstalliert werden. Während der Laufzeit kann
es von einem Bundle mehrere Versionen geben (Versionierung) und von einer
Schnittstelle mehrere Implementierungen (Varianten).[Wüt08]

Notwendiges Projektsetup

Bei den einzelnen Komponenten des OpenTOSCA-Containers handelt es sich um
OSGi-Bundles. Die typische OSGi-Projektstruktur innerhalb des OpenTOSCA-
Containers wurde beibehalten. Deshalb wurden für beide Dienste jeweils drei
Projekte erstellt: Ein Projekt für die Schnittstelle des zu implementierenden Dienstes,
ein Projekt für die Implementierung selbst, sowie ein Projekt für die dazugehörigen
Testfälle. Diese Struktur wird anhand der Struktur der InstanceData-Engine in
Abbildung 5.2 auf der nächsten Seite gezeigt.

64

5.1 OSGi

/

org.opentosca.instancedata.service......Schnittstellen-Projekt
src

org.opentosca.instancedata.service

IInstanceDataService.java

org.opentosca.instancedata.service.impl..
Implementierungs-
Projekt

src

org.opentosca.instancedata.service.impl

IInstanceDataServiceImpl.java

org.opentosca.instancedata.service.impl.persistence

AbstractDAO.java

NodeInstanceDAO.java

ServiceInstanceDAO.java

META-INF

MANIFEST.MF

OSGI-INF

InstanceDataServiceImpl component.xml

org.opentosca.instancedata.service.impl.test....Test-Projekt
*

Abbildung 5.2: Struktur der zum Instanzdatenverwaltungsdienst gehörenden
OSGi-Projekte

Das Projekt org.opentosca.instancedata.service besteht lediglich aus dem
gleichnamigen Package, welches das Interface IInstanceDataService beinhal-
tet. Die Implementierung selbst befindet sich in dem Projekt org.opentosca.
instancedata.service.impl zusammen mit den beiden Ordnern META-INF und
OSGI-INF. Der META-INF-Ordner beinhaltet die MANIFEST.MF, die Name, Version,
importierte Packages und weitere bundlespezifische Informationen enthält. Die in
OSGI-INF enthalten Dateien geben Aufschluss darüber welche Schnittstellen das
Bundle zur Laufzeit referenziert und zur Verfügung stellt.

Die Änderungen in der bestehenden REST-API bestanden darin zwei neue Packa-
ges für die beiden Dienste innerhalb des Projekts org.opentosca.containerapi
zu erstellen. Die Wurzelressourcen der neuen Packages mussten noch in der Klasse
JerseyApplication hinzugefügt werden.

65

5 Implementierung

5.2 Implementierung der Persistenz- und Filteranforderung

Dieser Abschnitt stellt die für die Persistenz- und Filterumsetzung notwendigen
Erweiterungen des in Abbildung 4.9 auf Seite 53 dargestellten Datenmodells dar.
Dabei wird im ersten Unterabschnitt mit den Grundlagen der eingesetzten Tech-
nologie JPA begonnen. Der Einsatz von JPA wurde bereits im Entwurf (vgl. Ab-
schnitt 4.7 auf Seite 51) festgelegt. Im Anschluss an die Grundlagen von JPA werden
in darauf folgendem Unterabschnitt die für die Implementierung notwendigen
Schritte erläutert.

JPA

Bei der JPA1 handelt es sich um eine Spezifikation, welche die permanenten Spei-
cherung von Objekten in Java beschreibt. Der Einsatz einer Implementierung der
JPA ermöglicht die Speicherung von Objekten in relationalen Datenbanken.

Um Objekte einer Klasse persistent zu speichern, muss in einer zugehörigen
persistence.xml eine persistence-unit erstellt werden, welche die zu persis-
tierende Klasse einschließt. Hier werden außerdem für die Speicherung besonders
im Bezug auf die eingesetzte Datenbank wichtige Parameter gesetzt. [JPA09]

Ein weiterer Schritt ist das Annotieren der Klasse. Dabei werden Felder und Me-
thoden der Klasse mit sogenannten Annotations, welche die Speicherung steuern,
versehen. Eine zu speichernde Klasse muss mit der @Entity-Annotation verse-
hen werden. Für die Felder der Klasse kann mittels der @Column-Annotation noch
spezifiziert werden wie der Spaltenname lauten soll und von welchen Datentyp
die Spalte sein soll, oftmals sind hier aber sinnvolle Standardwerte gesetzt. Außer
diesen eben genannten Annotationen existieren noch weitere, die Abfragen von
Objekten aus der Datenbank repräsentieren (@NamedQueries) oder die Konvertie-
rung von Feldern steuern können (@Convert). Desweiteren besteht die Möglichkeit
Beziehungen zwischen verschiedenen Entitäten herzustellen, dies kann mit den
Annotations @ManyToOne, @OneToMany und @ManyToMany gesteuert werden. Mit

1Webseite der JPA
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.
html

66

http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html

5.2 Implementierung der Persistenz- und Filteranforderung

diesen Annotationen lassen sich selbst komplexe Datenmodelle abbilden. Eine Bei-
spiel für eine mit JPA-Annotationen versehene Klasse zeigt Listing 2.1 auf Seite 26.
[JPA09]

Implementierung

Im vorherigen Unterabschnitt wurde bereits auf die notwendigen Schritte um
eine Klasse zu speichern eingegangen. Während der Implementierung wurden die
Klassen aus Abbildung 4.9 auf Seite 53 mit den notwendigen Annotations versehen.
Letztendlich war im Zuge der Umsetzung der Persistenz noch die Erstellung der
entsprechenden persistence.xml und die Implementierung eines Konverters für
die Konvertierung zwischen QNames und Strings notwendig.

Um die Filteranforderung umzusetzen gab es zwei unterschiedliche Ansätze, ent-
weder den Ansatz alle Informationen im Speicher der Anwendung zu halten und
die Filter auf diese Informationen anzuwenden oder die Daten soweit es geht nur in
der Datenbank zu halten und alle Filteroperationen auf der Datenbank auszuführen.
Letztendlich wurde sich für die Lösung entschieden die Datenbank zu nutzen um
die Filter anzuwenden. Der Nachteil dieser Lösung ist, dass ohne die Zwischen-
speicherung in der Datenbank die Daten öfters aus der Datenbank geladen werden
müssen. Da sich bei OpenTOSCA diese Datenbank auf der selben Maschine wie der
Container befindet, führt dies jedoch zu keinen erheblichen Leistungseinbußen. Die
Vorteile der Lösung sind hingegen, dass dieser Ansatz zum einen nicht so einfach
zu inkonsistenten Zuständen zwischen Anwendung und Datenbank führen kann
und zum anderen die Filterung bequem mittels Structured Query Language (SQL)
ermöglicht.

Das Filtern der unterschiedlichen Parameter war schnell durch eine SQL-
Anweisung gelöst. Aus diversen Gründen, wie Validierung und Schutz vor böswilli-
gen Anfragen, wurde ein NamedQuery eingesetzt. Es bereitete aber Schwierigkeiten,
dass es sich bei einigen Parametern um optionale Parameter handelte, welche falls
sie nicht gesetzt sind beim Filtern einfach ignoriert werden sollten. Eine einfache
Abfrage (Query) mittels Gleichheits-Operator führte so also nicht zum Ziel.

Gelöst wurde das Probleme durch die COALESCE-Funktion. Sie nimmt beliebig
viele Parameter an und liefert den ersten Parameter zurück der ungleich NULL ist.
Die COALESCE-Funktion ermöglicht es indirekt einen optionalen Wert in einem
SQL-Query anzugeben. Wie dies funktioniert zeigt Listing 5.1 auf der nächsten
Seite. Durch das geschickte Einsetzen von COALESCE evaluiert die entsprechende

67

5 Implementierung

Listing 5.1 Pseudo SQL-Anweisung, die einen externen optionalen Parameter
beinhaltet. Im Query nach der Auswertung der COALESCE-Funktionen wird
ersichtlich, dass Name "ignoriert" wird

1 Query (vor Auswertung der COALESCE-Funktionen):
2 SELECT * FROM mitarbeiter WHERE
3 ID = COALESCE($id, ID) AND NAME = COALESCE($name, NAME);
4
5 Fall 1: alle Parameter gesetzt
6 externe Parameter: $id=1, $name = Marcus
7
8 Query nach Auswertung der COALESCE-Funktionen und Einsetzen der Variablen:
9 SELECT * FROM mitarbeiter WHERE

10 ID = 1 AND NAME = ’Marcus’; - verhält sich wie normaler Query
11
12
13 Fall 2: optionaler Parameter nicht gesetzt
14 externe Parameter: $id=1, $name = NULL
15
16 Query nach Auswertung der COALESCE-Funktionen und Einsetzen der Variablen:
17 SELECT * FROM mitarbeiter WHERE
18 ID = $id AND NAME = NAME;
19
20 NAME = NAME ist immer WAHR => Teil der Konjunktion ist immer erfüllt

Bedingung immer WAHR und wird so ignoriert. Wenn man es genau nimmt wird sie
nicht ignoriert, die Anfrage liefert jedoch genau die gleichen Ergebnisse, wie wenn
diese Bedingung nicht vorhanden gewesen wäre.

5.3 Erweiterung TOSCA-Engine

Die Erweiterung der Tosca-Engine wurde bereits im Entwurf in Abschnitt 4.6 Er-
weiterung der TOSCA-Engine betrachtet. Abbildung 4.8 auf Seite 52 im Ent-
wurf zeigt die neu zu implementierenden Methoden. Im Unterschied zu der Be-
trachtung im Entwurf werden in dem folgenden Abschnitt Besonderheiten der
Implementierung hervorgehoben. Die Methoden doesNodeTemplateExist und
getNameOfReferencewerden in diesem Kapitel nicht ausführlich behandelt, da sie
weitgehend bestehende Methoden nutzen oder Erweiterungen dieser darstellen.

Die Methode getInstanceCountsOfNodeTemplatesByServiceTemplateID bie-
tet eine Möglichkeit die Kardinalitäten der in einem ServiceTemplate enthaltenen

68

5.3 Erweiterung TOSCA-Engine

ResolvedArtifact

-references: List<String>

ResolvedDeploymentArtifact

-name

+getter/setter

+getter/setter

-artifactSpecificContent:Document

-type:QName

ResolvedImplementationArtifact

-interfaceName

+getter/setter

-operationName

ResolvedArtifacts

+getter/setter

-implementationArtifacts:

List<ResolvedImplementationArtifact>

-deploymentArtifacts:

List<ResolvedDeploymentArtifact>

Abbildung 5.3: UML-Klassendiagramm der ResolvedArtifacts und beteiligten Klas-
sen

NodeTemplates zu erfragen. Eine zu beachtende Besonderheit ist, dass im Node-
Template die Mindestanzahl als int und die Maximalanzahl, da sie auch als unbe-
grenzt (unbounded) definiert werden kann, als String repräsentiert werden.
Die Methode nutzt einen speziellen Typ namens NodeTemplateInstanceCounts
als Rückgabewert. Dieser Rückgabewert stellt eine Beziehung zwischen dem
QName eines NodeTemplates und seiner Kardinalität her. Die Kardinalität wird
durch eine interne Struktur repräsentiert, die Mindest- und Maximalanzahl kapselt.
Mindest- und Maximalanzahl werden als int modelliert, wobei die Darstellung
der unbeschränkten Maximalanzahl durch den Wert -1 geschieht.

Bei der Implementierung der Methoden getResolvedArtifactsOfNodeTemplate
und getResolvedArtifactsOfNodeTypeImplementation wurde die Dereferen-
zierung der Referenzen zu ArtifactTemplates wie in Abbildung 4.7 auf Seite 49
durchgeführt. Sie liefert also entweder den ArtifactSpecificContent eines Artefakts
oder die ggf. vorhandenen und aufgelösten Referenzen des entsprechenden Artifact-
Templates. Der Rückgabewert dieser Methode bündelt diese Informationen und be-
steht aus einer speziellen Klasse namens ResolvedArtifacts. Diese Klasse enthält
jeweils eine Liste für DAs und IAs. DAs und IAs haben viele Gemeinsamkeiten aber
unterscheiden sich in einer Kleinigkeit: DAs besitzen lediglich ein name-Attribute,
IAs hingegen besitzen ein interfaceName und ein operationName-Attribut.

Der Zusammenhang zwischen den einzelnen Klassen ist in Abbildung 5.3
in Form eines Unified Modeling Language (UML)-Klassendiagramms dar-

69

5 Implementierung

gestellt. Die beiden Listen der ResolvedArtifacts-Klasse beinhalten Ele-
mente der ResolvedDeploymentArtifact- bzw. ResolvedImplementation-
Artifact-Klasse. Bei den drei in der Abbildung rechts befindlichen ab-
gebildeten Klassen (ResolvedArtifact, ResolvedDeploymentArtifact und
ResolvedImplementationArtifact) handelt es sich um interne Klassen der
ResolvedArtifacts-Klasse.

5.4 Erweiterung der bestehenden REST-Schnittstelle

Die Erweiterung der REST-Schnittstelle wurde bereits in Abschnitt 4.8 auf Seite 53
sehr detailliert beschrieben, dort wurde auch ausführlich auf die grundlegenden
Konzepte eingegangen. Dieser Abschnitt beschäftigt sich nun mit der zur Imple-
mentierung des Entwurfes eingesetzten Technologien und Verfahren. Dies unterteilt
sich in die notwendige Erweiterung der Container-API und in die Erzeugung und
Aufbereitung der Rückgabewerte der Operationen.

Erstellung der notwendigen REST-Pfade

Die benötigten REST-Pfade sind bereits im Abschnitt 4.8 im Entwurf auf Seite 53
identifiziert worden. Dieser Abschnitt wird aufzeigen, auf welche Weise die in
Abbildung 4.10 auf Seite 54 aufgezeigte Struktur hergestellt wurde. Dies soll anhand
eines Beispiels, exemplarisch für alle anderen Pfade, gezeigt werden.

Für die Implementierung der bisherigen REST-API kommt, wie im Entwurf bereits
erwähnt, Jersey zum Einsatz. Jersey ermöglicht die Definitionen von Pfaden, die
Verknüpfung von REST-Operationen zu Methoden, das Setzen von Rückgabetypen,
und das Definieren von Parametern der REST-Operationen durch Annotationen.
Pfade werden in Jersey mittels @Path-Annotation, die den Name des Pfades angibt,
erstellt. Ein Ziel eines Pfades wird in der weiteren Arbeit als REST-Ressource be-
zeichnet. Die Annotationen @GET, @POST, @DELETE, @PUT und @HEAD verknüpfen die
annotierten Methoden mit den entsprechenden Operationen der REST-Ressource
des aktuellen Pfades. Außerdem kann für die Methoden noch der Rückgabe-Typ
mittels der @Produces-Annotation definiert werden. Parameter werden in Jersey je
nach Art des Parameters mittels @QueryParam-, @PathParam-, @FormParam- oder
@FormDataParam-Annotation definiert. Mittels der @Context-Annotation kann
noch der Kontext des Aufrufs, der Informationen wie beispielsweise die aktuelle
URL des Aufrufs enthält, injiziert (injected) ,sprich zur Laufzeit eingefügt, werden.

70

5.4 Erweiterung der bestehenden REST-Schnittstelle

Bei dem nun gezeigten Beispiel (siehe Listing 5.2 auf der nächsten Seite) handelt
es sich um die Implementierung der InstanceDataRoot-Klasse, die als Einstiegs-
punkt für die Instanzdatenverwaltung innerhalb der REST-API dient. Dieser Ein-
stiegspunkt musste zusätzlich in der JerseyApplication-Klasse, die Verweise auf
alle Komponenten der REST-API enthält, hinzugefügt werden.

Dieses verkürzte Beispiel zeigt deutlich den Einsatz der Jersey-Annotationen. Au-
ßerdem können zwei weitere Konzepte in diesem kurzem Beispiel betrachtet
werden. Bei der Implementierung der beiden Methoden getNodeInstances und
getServiceInstances wird das Prinzip der Delegation genutzt, um den Aufruf
an eine weitere Ressource weiterzuleiten und von dieser verarbeiten zu lassen. Das
andere Prinzip ist ein spezielles Verhalten von Jersey um die Rückgabe von XML zu
ermöglichen. Jersey ermöglicht die Verwendung von Java Architecture for XML Bin-
ding (JAXB)-annotierten Klassen, wie es die Klasse InstanceDataEntry in diesem
Beispiel ist, um XML-Antworten zu generieren. Auf die Verwendung von JAXB
und den dazugehörigen Annotationen wird im nächsten Abschnitt eingegangen.

Generierung der Rückgabewerte

Im Kapitel Entwurf (vgl. Abschnitt 4.8 auf Seite 53) wurde bereits sehr detailliert
auf die gelieferten Ergebnisse der einzelnen Operationen eingegangen. Bei vielen
der dort spezifizierten Rückgabetypen handelt es sich um anwendungsspezifisches
XML. Im Entwurf wurde allerdings nicht festgelegt, wie diese XML-Typen erzeugt
werden. Mit der für die Implementierung verwendeten Technologie wird sich
dieser Unterabschnitt beschäftigen.

Die TOSCA-Engine selbst verarbeitet viele XML-Dateien beim Einlesen eines CSAR
– die Definitionen sind in XML verfasst. In der TOSCA-Engine kam um aus dem,
durch TOSCA definierten, Schema Java-Klassen zu generieren die JAXB-API2 zum
Einsatz. Die Konvertierung von XML zu Java-Klassen wird im Allgemeinen als
Unmarshalling bezeichnet.

In der ContainerAPI soll nun JAXB genutzt werden um diese Konvertierung in die
andere Richtung durchzuführen, es soll aus zur Laufzeit genutzten Java-Klassen
XML generiert werden. Es soll also ein sogenanntes Marshalling der entsprechenden
Klassen durchgeführt werden.

2Webseite des JAXB-Projekts: https://jaxb.java.net/

71

https://jaxb.java.net/

5 Implementierung

Listing 5.2 Gekürzte Implementierung der InstanceDataRoot-Klasse inklusive
Jersey-Annotationen

1 @Path("/instancedata")
2 public class InstanceDataRoot {
3

4 @Context
5 UriInfo uriInfo;
6 @Context
7 Request request;
8

9 @GET
10 @Produces(MediaType.APPLICATION_XML)
11 public Response doGet() {
12 ...
13 InstanceDataEntry idr = new InstanceDataEntry(...);
14 return Response.ok(idr).build();
15 }
16

17 @Path("/nodeInstances")
18 public Object getNodeInstances() {
19 return new NodeInstanceListResource();
20 }
21

22 @Path("/serviceInstances")
23 public Object getServiceInstances() {
24 return new ServiceInstanceListResource();
25 }
26

27 }

Exemplarisch für alle anderen Konvertierungen wird an dieser Stelle die Erstellung
des XMLs für die Rückgabe der NodeInstance-Liste (vgl. Listing 4.3 auf Seite 57) er-
läutert. JAXB arbeitet ebenso wie JPA mit Annotationen. Die Annotationen werden
eingesetzt um die Struktur des zu generierenden XMLs zu definieren. Listing 5.3
auf der nächsten Seite zeigt die Implementierung der NodeInstance-Liste, welche
bereits mit Annotationen versehen ist. Augenmerk soll bei der Betrachtung auf den
Annotationen liegen, @XmlRootElement definiert den Namen des Root-Elements
des XML-Dokuments wohingegen @XmlElement einzelne XML-Elemente definiert.
@XmlElementWrapper ermöglicht es eine Liste von XML-Elementen mit einem
umschließenden Element zu versehen.

JAXB unterstützt von Haus aus bereits viele Java-Datentypen, nicht unterstütz-
te Typen oder Klassen können aber durch die Definition eines Bindings mittels

72

5.4 Erweiterung der bestehenden REST-Schnittstelle

Listing 5.3 Implementierung der NodeInstanceList inklusive JAXB-Annotationen
1 @XmlRootElement(name = "NodeInstanceList")
2 @XmlType(propOrder = { "selfLink", "links" })
3 public class NodeInstanceList {
4

5 private List<SimpleXLink> links;
6

7 private SimpleXLink selfLink;
8

9 public NodeInstanceList() {
10

11 }
12

13 public NodeInstanceList(SimpleXLink selfLink, List<SimpleXLink> links) {
14 super();
15 this.selfLink = selfLink;
16 this.links = links;
17 }
18

19 @XmlElement(name = "self")
20 public SimpleXLink getSelfLink() {
21 return selfLink;
22 }
23

24 public void setSelfLink(SimpleXLink selfLink) {
25 this.selfLink = selfLink;
26 }
27

28 @XmlElement(name = "link")
29 @XmlElementWrapper(name = "nodeinstances")
30 public List<SimpleXLink> getLinks() {
31 return links;
32 }
33

34 public void setLinks(List<SimpleXLink> links) {
35 this.links = links;
36 }
37

38 }

Annotationen für diese ebenso umgewandelt werden. Ein nicht direkt ersichtli-
ches Beispiel ist in Listing 5.3 die Klasse SimpleXLink, bei der es sich um eine
JAXB-annotierte Klasse handelt.[JAX13]

73

5 Implementierung

Konvertierung der Links zu den Artefakten

Wie in Abschnitt 4.8 auf Seite 60 beschrieben liefert die TOSCA-Engine relative
Referenzen zu den Artefakten zurück. Diese Pfade ermöglichen es einem Benutzer
der API nicht ohne Zusatzaufwand, auf die jeweiligen Artefakte zuzugreifen. Es
muss also eine Konvertierung zu absoluten Referenzen, die einen Zugriff auf diese
Artefakte ermöglichen, durchgeführt werden.

Die REST-API bietet bereits einen Pfad an, der es ermöglicht den Inhalt ei-
ner CSAR-Datei zu traversieren und gezielt auf Dateien, die sich in dem
CSAR befinden, zuzugreifen. Es handelt sich um den \CSARs-Pfad. Dieser Pfad
kann an dieser Stelle genutzt werden um den Zugriff auf Artefakte zu er-
lauben. Um diesen Zugriff zu ermöglichen müssen lediglich die relativen Re-
ferenzen aus den Definitionen, der Form "/Pfad/.../Datei.Endung", in die
Form "http://.../CSARs/csarID/Content/Pfad/.../Datei.Endung" umge-
wandelt werden.

Die Erzeugung des für die Operation notwendigen XMLs wurde wie nach dem im
vorherigem Abschnitt "Generierung der Rückgabewerte" beschriebenen Prinzip
implementiert.

74

6 Validierung des Konzepts und der
Implementierung

Dieses Kapitel soll die Validierung des entworfenen Konzepts und der entwickelten
Implementierung im Bezug auf die in Kapitel 3 definierten Anforderungen darstel-
len. Es wird betrachtet ob und in welchem Umfang die Anforderungen mittels der
Erweiterung der Container-API erfüllt wurden.

Die ServiceInstance-spezifischen Anforderungen (vgl. Abschnitt 3.2 auf Seite 28)
erfordern, dass eine ServiceInstance erstellt und gelöscht werden kann. Diese An-
forderung werden vollständig durch die beiden Operationen POST und DELETE auf
dem ServiceInstances- bzw. dynamischen ServiceInstanceID-Pfad der jeweiligen
ServiceInstance realisiert.
Außerdem muss die Schnittstelle es ermöglichen, Informationen bezüglich einer
ServiceInstance zu erhalten. Diese Anforderungen wird durch die GET-Operation
auf dem ServiceInstanceID-Pfad umgesetzt.
Die letzte ServiceInstance-spezifische Anforderung ist es die ServiceInstances an-
hand spezieller Filter zu identifizieren. Die GET-Operation auf der ServiceInstance-
Ressource ermöglicht dies, sie erlaubt es ServiceInstances anhand ihres service-
TemplateNames und der serviceTemplateID zu filtern. Durch den zusätzlichen
Parameter serviceInstanceID erfüllt sie sogar die Anforderung der Existenzprü-
fung, da eine nicht existente serviceInstanceID als Filterparameter eine leere Liste
zurückliefert.

Die NodeInstance-spezifischen Anforderungen (vgl. Abschnitt 3.3 auf Seite 31) sind
denen der ServiceInstance-spezifischen sehr ähnlich. Ebenso müssen Erstellung
und Löschung der NodeInstances ermöglicht werden. Diese beiden Anforderun-
gen werden durch die POST- und DELETE-Operation auf dem NodeInstances- bzw.
dynamischen NodeInstanceID-Pfad erfüllt. Die Prüfung der Existenz einer NodeIn-
stance kann wie bei den ServiceInstances mittels der Operation zum Finden von
NodeInstance-IDs genutzt werden, wobei eine nicht existierende NodeInstanceID
eine leere Liste zurückliefert. Ebenso wie bei den ServiceInstances besteht auch die

75

6 Validierung des Konzepts und der Implementierung

Anforderung NodeInstances anhand von den in Abschnitt 3.3.6 auf Seite 33 defi-
nierten Parametern zu finden. Diese Anforderung wird mittels der GET-Operation
auf der NodeInstance-Ressource umgesetzt. Besonderheit der NodeInstances im
Vergleich zur Beschaffenheit der ServiceInstances ist das Vorhandensein von state
und properties, diese beiden Informationen müssen einerseits abgefragt und geän-
dert werden können. Hierfür hat jede dieser beiden Ressourcen einen Unterpfad
relativ zum Pfad einer speziellen NodeInstance. Auf diesen Pfaden /properties
und /state sind GET- und PUT-Operationen möglich um diese Informationen
abzufragen bzw. zu ändern.

Dieser Absatz betrachtet die einzige NodeTemplate-spezifische Anforderung
(vgl. Abschnitt 3.4 auf Seite 33). Diese Anforderung fordert eine Möglichkeit ab-
solute Referenzen zu Artefakte eines NodeTemplates zu erhalten. Es muss also
möglich sein mittels der gelieferten Referenzen auf die Artefakte zuzugreifen. In
Abschnitt 4.5 auf Seite 48 wurde eine detaillierte Analyse durchgeführt, auf welche
Art und Weise Artefakte in TOSCA dargestellt werden können. Die bei der Analyse
gewonnenen Erkenntnisse sind in die spätere Implementierung eingeflossen und es
wurde mit dem /artifacts-Pfad der Portability-API eine Möglichkeit geschaffen,
Referenzen zu Artefakten eines serviceTemplates zu erhalten. Die in der dazugehö-
rigen Anforderungen identifizierten Filtermöglichkeiten wurden umgesetzt.

Verbleibende Anforderungen sind die weiteren funktionalen Anforderungen Persis-
tenz und Integration in die existierende Architektur des OpenTOSCA-Containers.
Die Persistenz wurde mittels JPA umgesetzt. Die Implementierung speichert die
Daten und Änderungen dieser direkt in der Datenbank. Dadurch kann garantiert
werden, dass beim Herunterfahren oder Absturz des OpenTOSCA-Containers der
Zustand der Anwendung nicht verloren geht. Der Verlust der Datenbank selbst
wurde hier nicht betrachtet, da in diesem Fall der ganze TOSCA-Container nach
einem Neustart nicht mehr wie gewohnt operieren kann.

Die Integration in die bestehende Architektur des OpenTOSCA-Containers bedeu-
tet zwei Dinge. Auf der einen Seite muss der OpenTOSCA-Container nach der
Erweiterung weiterhin eine konsistente Art des Zugriffs für den Benutzer bieten.
Auf der anderen Seite sollten, um die Wartbarkeit zu gewährleisten, bei der Imple-
mentierung möglichst bereits innerhalb des OpenTOSCA-Containers eingesetzte
Technologien zum Einsatz kommen. Im Nachhinein betrachtet kann man sagen,
dass während der Implementierung diese Anforderungen erfolgreich umgesetzt
wurden. Der Zugriff auf die REST-API erfolgt weiterhin in einer gewohnt einheitli-
chen Art, die neuen Funktionen wurden erfolgreich in die bestehende Schnittstelle

76

integriert. Bei der Implementierung wurde sich um diese Integration ebenso be-
müht. Sowohl bei der Art des Projektsetup, als auch bei der Wahl der zur Imple-
mentierung genutzten Technologien, wurde sich an bestehenden Komponenten
orientiert. Beide entwickelten Komponenten, der Dienst zur Instanzdatenverwal-
tung und die Portability-API, sind typische OpenTOSCA-Komponenten.

77

7 Zusammenfassung und Ausblick

Zur sinnvollen Verwaltung von Instanzen eines Cloud-Services ist es nötig, Lauf-
zeitdaten bezüglich einzelner Komponenten eines Cloud-Services persistent zu
speichern und bereit zu stellen. Instanzdaten alleine genügen aber nicht um eine
Cloud-Anwendung aufzusetzen. Neben den bisherigen OpenTOSCA-Diensten,
wird bei der Installation von einzelnen Instanzen ein Zugriff auf die in TOSCA defi-
nierten DAs benötigt. Vor Durchführung dieser Bachelorarbeit bot der OpenTOSCA-
Container keine Möglichkeit an, um Instanzdaten zu verwalten. Der Zugriff auf
die DAs war prinzipiell möglich, aber für die Anforderungen der Pläne nicht
dynamisch genug.

Das Ziel der vorliegenden Arbeit war es deshalb, einen Dienst zur Verwaltung von
Instanzdaten eines TOSCA-Cloud-Services zu entwerfen und umzusetzen. Eine der
daraus resultierenden Aufgaben war es also theoretische Anforderungen an einen
solchen Dienst zur Instanzdatenverwaltung und zur Bereitstellung von Artefakten
zu identifizieren. Die Analyse wurden mit Rückblick auf bereits abgeschlossene
Projekte und hinsichtlich neuer Anwendungsfälle durchgeführt. Das Ergebnis der
Analyse liegt in Form von Anforderungen an den Dienst vor, welche in Kapitel 3
dargestellt sind.

Im Anschluss an die Analyse folgte der durch Kapitel 4 repräsentierte Entwurf eines
Konzeptes für die Integration des neuen Dienstes in den bestehenden OpenTOSCA-
Container. Er setzt sich mit für die Umsetzung relevanten Überlegungen auseinan-
der. Neben Beschaffenheit der Artefakte, Definition sowohl der internen als auch
externen REST Schnittstelle und der Interaktion der Komponenten untereinander
wurde auch der Grundstein für die Umsetzung des für OpenTOSCA-typischen
OSGi-Projektsetups gelegt.

Ein Ziel des Entwurfs war es, durch die bevorstehende Implementierung, den
OpenTOSCA-Container nicht unnötig mit Ballast in Form von neuen Technolo-
gien zu beladen. Jede neu eingesetzte Technologie stellt zusätzliche Anforderun-
gen an die zukünftigen Entwickler und erhöht so den Wartungs- und Weiterent-
wicklungsaufwand. Um dieses Ziels zu erreichen wurde analysiert, inwiefern der

79

7 Zusammenfassung und Ausblick

OpenTOSCA-Container bereits Technologien verwendete, die für die spätere Im-
plementierung sinnvoll genutzt werden konnten.

Als Ergebnis dieser Analyse wurden JPA und JAXB für die Umsetzung dieser
Arbeit verwendet. Diese beide Technologien werden bereits von anderen Kompo-
nenten des Containers verwendet und stellen so kein neues notwendiges Wissen
für die Wartung des zukünftigen OpenTOSCA-Containers dar. Neben den gerade
genannten Technologien wurde zur Implementierung der REST-Schnittstelle des
Dienstes, die bestehende ContainerAPI erweitert. Diese Tatsache hat zum einen
zur Folge, dass neben Jersey kein weiteres Framework zur Implementierung einer
REST-Schnittstelle benötigt wurde, als auch zum anderen, dass der neue Dienst
unter dem bereits vorhandenen Pfad der Container-API erreichbar ist.

Das Kapitel 5 beschäftigt sich mit der Implementierung. Es erläutert neben den
eingesetzten Technologien an dieser Stelle vor allem Feinheiten der Umsetzung des
Entwurfs.

Die Validierung in Kapitel 6 führt eine Gegenüberstellung der in Kapitel 3 identifi-
zierten Anforderungen und der Implementierung durch. Diese Gegenüberstellung
bestätigt, dass die entwickelten Lösungen zum Zwecke der Instanzdatenverwal-
tung und zum Zugriff auf Artefakte eines Cloud-Services brauchbar sind.

Die OpenTOSCA-Laufzeit ist nun in der Lage Instanzdaten zu verwalten und er-
möglicht mittels der bereits bestehenden REST-API den Zugriff auf diese. Neben
dem Zugriff auf Instanzdaten können die Pläne nun ebenfalls auf die Artefakte
eines ServiceTemplates zugreifen. Es ist zu erwarten, dass in Zukunft diese Zu-
griffe standardisiert werden und die Ergebnisse dieser Arbeit an diesen Standard
angepasst werden müssen. Diese Standardisierung wäre aus Sicht der Kompati-
bilität zwischen verschiedenen TOSCA-Containern jedenfalls erstrebenswert. Die
Ergebnisse dieser Arbeit sind dennoch sinn- und wertvoll, da die umgesetzten
Funktionen der beiden Dienste benötigt werden und eine baldige Standardisierung
der Schnittstellen nicht abzusehen war.

80

Literaturverzeichnis

[BBH+13] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak,
S. Wagner. OpenTOSCA – A Runtime for TOSCA-based Cloud Appli-
cations. In 11th International Conference on Service-Oriented Computing,
LNCS. Springer, 2013. (Zitiert auf den Seiten 23 und 25)

[BBLS12] T. Binz, G. Breiter, F. Leymann, T. Spatzier. Portable Cloud Services
Using TOSCA. IEEE Internet Computing, 16(03):80–85, 2012. doi:10.
1109/MIC.2012.43. URL http://doi.ieeecomputersociety.org/
10.1109/MIC.2012.43. (Zitiert auf den Seiten 19 und 20)

[Fie00] R. T. Fielding. REST: Architectural Styles and the Design of Network-
based Software Architectures. Doctoral dissertation, University of Ca-
lifornia, Irvine, 2000. URL http://www.ics.uci.edu/~fielding/
pubs/dissertation/top.htm. (Zitiert auf den Seiten 17 und 56)

[Fie08] R. T. Fielding. REST APIs must be hypertext-driven,
2008. URL http://roy.gbiv.com/untangled/2008/
rest-apis-must-be-hypertext-driven. (Zitiert auf Seite 56)

[IDC] IDC Forecasts Public IT Cloud Services Spending Will Approach
$100 Billion in 2016 Generating 41% of Growth in Five Key IT Ca-
tegories. URL http://www.idc.com/getdoc.jsp?containerId=
prUS23684912. (Zitiert auf Seite 11)

[JAX13] JAXB Release Documentation, 2013. URL https://jaxb.java.net/
2.2.7/docs/. Revision 20130802.c6cc023. (Zitiert auf Seite 73)

[JPA09] Java Persistence 2.0, Final Release. Technischer Bericht, Sun Micro-
systems, 2009. URL http://download.oracle.com/otndocs/jcp/
persistence-2.0-fr-eval-oth-JSpec/. (Zitiert auf den Seiten 66
und 67)

81

http://doi.ieeecomputersociety.org/10.1109/MIC.2012.43
http://doi.ieeecomputersociety.org/10.1109/MIC.2012.43
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://www.idc.com/getdoc.jsp?containerId=prUS23684912
http://www.idc.com/getdoc.jsp?containerId=prUS23684912
https://jaxb.java.net/2.2.7/docs/
https://jaxb.java.net/2.2.7/docs/
http://download.oracle.com/otndocs/jcp/persistence-2.0-fr-eval-oth-JSpec/
http://download.oracle.com/otndocs/jcp/persistence-2.0-fr-eval-oth-JSpec/

Literaturverzeichnis

[Mel10] I. Melzer. Service-Orientierte Architekturen Mit Web Services: Konzepte
- Standards - Praxis. Spektrum Akademischer Verlag GmbH, 2010.
URL http://books.google.de/books?id=e3qnVPngoUoC. (Zitiert
auf Seite 63)

[MRV11] C. Metzger, T. Reitz, J. Villar. Cloud Computing: Chancen und Ri-
siken aus technischer und unternehmerischer Sicht. Hanser, Mün-
chen, 2011. URL http://deposit.d-nb.de/cgi-bin/dokserv?
id=3549075&prov=M&dok_var=1&dok_ext=htm. (Zitiert auf Sei-
te 15)

[OAS07] OASIS. Web Services Business Process Execution Language Version
2.0. online, 2007. URL http://docs.oasis-open.org/wsbpel/2.
0/OS/wsbpel-v2.0-OS.html. (Zitiert auf Seite 21)

[OAS13] OASIS. Topology and Orchestration Specification for Cloud
Applications Version 1.0 - Candidate OASIS Standard 01, 2013.
URL http://docs.oasis-open.org/tosca/TOSCA/v1.0/cos01/
TOSCA-v1.0-cos01.html. (Zitiert auf den Seiten 12, 18, 19, 20, 21, 22,
48 und 50)

[OMG11] I. O. Object Management Group. Documents Associated With Business
Process Model And Notation (BPMN) Version 2.0. online, 2011. URL
http://www.omg.org/spec/BPMN/2.0/. (Zitiert auf Seite 21)

[PM11] T. G. P. Mell. The NIST Definition of Cloud Computing. Techni-
scher Bericht, National Institute of Standards & Technology, 2011.
URL http://csrc.nist.gov/publications/nistpubs/800-145/
SP800-145.pdf. (Zitiert auf Seite 15)

[SHI+13] B. Satzger, W. Hummer, C. Inzinger, P. Leitner, S. Dustdar. Winds of
Change: From Vendor Lock-In to the Meta Cloud. Internet Computing,
IEEE, 17(1):69–73, 2013. doi:10.1109/MIC.2013.19. (Zitiert auf Seite 11)

[Til11] S. Tilkov. REST und HTTP: Einsatz der Architektur des Web für
Integrationsszenarien. dpunkt, Heidelberg, 2., aktualis. und erw.
Auflage, 2011. URL http://deposit.d-nb.de/cgi-bin/dokserv?
id=3678896&prov=M&dok_var=1&dok_ext=htm. (Zitiert auf Sei-
te 18)

[WDMO10] N. Walsh, S. DeRose, E. Maler, D. Orchard. XML Linking Langua-
ge (XLink) Version 1.1. W3C recommendation, W3C, 2010. URL

82

http://books.google.de/books?id=e3qnVPngoUoC
http://deposit.d-nb.de/cgi-bin/dokserv?id=3549075&prov=M&dok_var=1&dok_ext=htm
http://deposit.d-nb.de/cgi-bin/dokserv?id=3549075&prov=M&dok_var=1&dok_ext=htm
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cos01/TOSCA-v1.0-cos01.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cos01/TOSCA-v1.0-cos01.html
http://www.omg.org/spec/BPMN/2.0/
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://deposit.d-nb.de/cgi-bin/dokserv?id=3678896&prov=M&dok_var=1&dok_ext=htm
http://deposit.d-nb.de/cgi-bin/dokserv?id=3678896&prov=M&dok_var=1&dok_ext=htm

Literaturverzeichnis

http://www.w3.org/TR/2010/REC-xlink11-20100506/. (Zitiert
auf Seite 56)

[Wüt08] G. Wütherich. Die OSGi-Service-Platform: eine Einführung
mit Eclipse Equinox. dpunkt, Heidelberg, 1. aufl. Auflage,
2008. URL http://deposit.d-nb.de/cgi-bin/dokserv?id=
3067525&prov=M&dok_var=1&dok_ext=htm. (Zitiert auf Seite 64)

Alle URLs wurden zuletzt am 23. 10. 2013 geprüft.

83

http://www.w3.org/TR/2010/REC-xlink11-20100506/
http://deposit.d-nb.de/cgi-bin/dokserv?id=3067525&prov=M&dok_var=1&dok_ext=htm
http://deposit.d-nb.de/cgi-bin/dokserv?id=3067525&prov=M&dok_var=1&dok_ext=htm

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben.
Ich habe keine anderen als die angegebenen Quellen benutzt
und alle wörtlich oder sinngemäß aus anderen Werken über-
nommene Aussagen als solche gekennzeichnet. Weder diese
Arbeit noch wesentliche Teile daraus waren bisher Gegen-
stand eines anderen Prüfungsverfahrens. Ich habe diese Ar-
beit bisher weder teilweise noch vollständig veröffentlicht.
Das elektronische Exemplar stimmt mit allen eingereichten
Exemplaren überein.

Ort, Datum, Unterschrift

	Abkürzungsverzeichnis
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Verzeichnis der Listings
	1 Einleitung
	2 Grundlagen
	2.1 Cloud
	2.2 REST
	2.3 TOSCA
	2.3.1 Verschiedene Ebenen des Modells
	2.3.2 Templates und Types
	2.3.3 Instanzen, Properties und State
	2.3.4 CSAR

	2.4 OpenTOSCA
	2.4.1 Architektur

	3 Anforderungen an einen Dienst zur Instanzdatenverwaltung
	3.1 Theoretische Annahmen
	3.2 ServiceInstance-spezifische Anforderungen
	3.2.1 Erstellen einer ServiceInstance
	3.2.2 Löschen einer ServiceInstance
	3.2.3 Abfragen von ServiceInstance-Informationen
	3.2.4 Finden von ServiceInstance-IDs anhand von Filtern
	3.2.5 Prüfung der Existenz einer ServiceInstance

	3.3 NodeInstance-spezifische Anforderungen
	3.3.1 Erstellen einer NodeInstance
	3.3.2 Löschen einer NodeInstance
	3.3.3 Abfragen von NodeInstance-Informationen
	3.3.4 Ändern von NodeInstance-Informationen
	3.3.5 Abfragen des NodeTypes einer NodeInstance
	3.3.6 Finden von NodeInstance-IDs anhand von Filtern
	3.3.7 Prüfung der Existenz einer NodeInstance

	3.4 NodeTemplate-spezifische Anforderungen
	3.4.1 Link zu einem oder mehreren Artefakten eines NodeTemplates erhalten

	3.5 Weitere funktionale Anforderungen
	3.5.1 Persistenz
	3.5.2 Integration in bestehende Dienste

	4 Entwurf
	4.1 Einschränkungen
	4.2 Ist- / Sollzustand
	4.3 Schnittstellen
	4.4 Interaktion
	4.5 Analyse der Beschaffenheit von Artefakten in TOSCA
	4.6 Erweiterung der TOSCA-Engine
	4.7 Persistenz
	4.8 REST

	5 Implementierung
	5.1 OSGi
	5.2 Implementierung der Persistenz- und Filteranforderung
	5.3 Erweiterung TOSCA-Engine
	5.4 Erweiterung der bestehenden REST-Schnittstelle

	6 Validierung des Konzepts und der Implementierung
	7 Zusammenfassung und Ausblick
	Literaturverzeichnis

