Institut fiir Architektur von Anwendungssystemen

Universitdt Stuttgart
Universitatsstrafie 38
D-70569 Stuttgart

Bachelorarbeit Nr. 53

Verwaltung von Instanzdaten
eines TOSCA Cloud Services

Marcus FEisele

Studiengang: Softwaretechnik
Priifer/in: Prof. Dr. Frank Leymann
Betreuer/in: Dipl.-Inf. Florian Haupt
Beginn am: 30. April 2013

Beendet am: 30. Oktober 2013

CR-Nummer: C24,HO

Kurzfassung

Die Topology and Orchestration Specification for Cloud Applications (TOSCA)
ermoglicht die portable und interoperable Beschreibung von Cloud Anwendungen,
deren Deployment und deren Verwaltung. Die Abfolge der ausgefiihrten Operatio-
nen innerhalb der Anwendungsstruktur kann hierbei durch Management-Plane
modelliert werden.

Die Beschreibungen der Anwendung alleine sind jedoch nicht ausreichend um
Instanzen einer solchen sinnvoll zu verwalten. Wahrend der Ausfithrung der
Management-Pliane fallen komponentenspezifische Daten an, deren persistente
Speicherung und Bereitstellung gewdhrleistet sein muss. Die Pliane benotigen wah-
rend ihrer Ausfiihrung, neben den Instanzdaten, den Zugriff auf anwendungs-
spezifische Dateien. Zur Sicherstellung der Portabilitdt der Plane, muss dieser
Zugriff moglichst unabhédngig von der eingesetzten TOSCA-Laufzeitumgebung
sein. Die Verwaltung von Instanzdaten und Sicherstellung der Portabilitit sind
beides Aufgaben einer TOSCA-Laufzeitumgebung.

Diese Arbeit identifiziert Anforderungen an einen Dienst, der diese Aufgaben
realisiert, und zeigt den Entwurf und die Implementierung eines solchen. Dies
wird exemplarisch am Beispiel des OpenTOSCA-Containers, der eine an der Uni-
versitat Stuttgart entwickelte TOSCA-Laufzeitumgebung ist, durchgefiihrt. Dieser
wird im Zuge dieser Arbeit um eine Instanzdatenverwaltungs- und Portabilitats-
Schnittstelle erweitert.

Inhaltsverzeichnis

Abkiirzungsverzeichnis
Abbildungsverzeichnis
Tabellenverzeichnis
Verzeichnis der Listings
1 Einleitung

2 Grundlagen
21 Cloud
22 REST
23 TOSCA

2.3.1 Verschiedene Ebenendes Modells

23.2 Templates und Types

2.3.3 Instanzen, Propertiesund State

234 CSAR..............
24 OpenTOSCA
24.1 Architektur

3 Anforderungen an einen Dienst zur Instanzdatenverwaltung

3.1 Theoretische Annahmen

3.2 Servicelnstance-spezifische Anforderungen

3.2.1 Erstellen einer Servicelnstance
3.2.2 Loschen einer Servicelnstance

3.2.3 Abfragen von Servicelnstance-

Informationen

3.2.4 Finden von Servicelnstance-IDs anhand von Filtern
3.2.5 Priifung der Existenz einer Servicelnstance
3.3 Nodelnstance-spezifische Anforderungen

3.3.1 Erstellen einer Nodelnstance
3.3.2 Loschen einer Nodelnstance

10

11

15
15
17
18
18
19
21
22
22
23

27
27
28
28
30
30
30
31
31
31
31

3.3.3
3.3.4
3.3.5
3.3.6
3.37

Abfragen von Nodelnstance-Informationen
Andern von Nodelnstance-Informationen
Abfragen des NodeTypes einer Nodelnstance
Finden von Nodelnstance-IDs anhand von Filtern
Priifung der Existenz einer Nodelnstance

3.4 NodeTemplate-spezifische Anforderungen

34.1

Link zu einem oder mehreren Artefakten eines NodeTempla-
teserhalten L.

3.5 Weitere funktionale Anforderungen

3.5.1
352

4 Entwurf

Persistenz
Integration in bestehende Dienste

41 Einschrankungen
42 Ist-/Sollzustand
4.3 Schnittstellen.
44 Interaktion
4.5 Analyse der Beschaffenheit von Artefakten in TOSCA
4.6 Erweiterung der TOSCA-Engine
47 Persistenz e

4.8 REST

5 Implementierung

51 OSGi

5.2 Implementierung der Persistenz- und Filteranforderung
53 Erweiterung TOSCA-Engine
5.4 Erweiterung der bestehenden REST-Schnittstelle

6 Validierung des Konzepts und der Implementierung

7 Zusammenfassung und Ausblick

Literaturverzeichnis

Abkurzungsverzeichnis

API
BPEL
BPMN
CMS
CSAR
DA
FMC
HTML
HTTP

IAAS
laaS
ID
IDC
IPVS

JAXB
JPA
NIST
ODE
PaaS
PHP
QName
REST
SaaS
SOA
SQL
TOSCA
UML
URI

application programming interface
WS-Business Process Execution Language
Business Process Model and Notation
Content-Management-System

Cloud Service Archive

DeploymentArtifact

Fundamental Modeling Concepts

Hypertext Markup Language

Hypertext Transfer Protocol
ImplementationArtifact

Institut fiir Architektur von Anwendungssystemen
Infrastructure-as-a-Service

Identifier

International Data Corporation

Institut fiir Parallele und Verteilte Systeme
Informationstechnik

Java Architecture for XML Binding

Java Persistence API

National Institute of Standards and Technology
Orchestration Director Engine
Platform-as-a-Service

PHP: Hypertext Preprocessor

qualified Name

Representational State Transfer
Software-as-a-Service

service-oriented architecture

Structured Query Language

Topology and Orchestration Specification for Cloud Applications
Unified Modeling Language

Uniform Resource Identifier

URL
VM
W3C
WAR
XLink
XML

Uniform Resource Locator
virtuelle Maschine

World Wide Web Consortium
Web application ARchive
XML Linking Language
Extensible Markup Language

Abbildungsverzeichnis

2.1
2.2
2.3
24

4.1
42

4.3
44

4.5

4.6

4.7
4.8

49
4.10

51

52

TOSCA Drei-Schichten-Modell 19
Zusammenhang zwischen verschiedenen Template-Typen 20
Beispielstruktur einer giiltigen CSAR-Datei 22
FMC-Aufbaudiagramm der OpenTOSCA-Struktur 25
Erweitertes FMC-Aufbaudiagramm der OpenTOSCA-Struktur . . 36
UML-Klassendiagramm der beiden Interfaces IInstanceDataService

und [PortabilityService 38
Beispielhafter Ablauf eines Build-Plans 41
UML-Sequenzdiagramm: Servicelnstance-Erstellung innerhalb des

OpenTOSCA-Containers 45
UML-Sequenzdiagramm: Abruf von Instanzdaten innerhalb des

OpenTOSCA-Containers 46
UML-Sequenzdiagramm: Abruf von Links zu Artefakten innerhalb

des OpenTOSCA-Containers 47
Referenzierung von DAs, IAs und deren ArtifactSpecificContent . . 49
UML-Klassendiagramm der TOSCA-Engine Schnittstelle nach der

Erweiterung im Zuge der Entwicklung 52
UML-Klassendiagramm der Servicelnstance- und Nodelnstance-Klasse 53

Erweiterung der REST-Schnittstelle des OpenTOSCA-Containers . 54

SOA-Dreieck, beschreibt die Beziehungen zwischen den Rollen einer

service-oriented architecture 63
Struktur der zum Instanzdatenverwaltungsdienst gehdrenden OSGi-
Projekte 65

5.3 UML-Klassendiagramm der Resolved Artifacts und beteiligten Klassen 69

Tabellenverzeichnis

3.1 Identifikation und Beziehung von TOSCA-Elementen 29
3.2 Modifizierte Identifikation und Beziehung von TOSCA-Elementen 29
Verzeichnis der Listings

2.1 Mit JPA-Annotationen versehene Beispielklasse 26
4.1 Beispielhafte Definition eines DA mit artifactSpecificContent, einer

NodeTypelmplementation und eines ArtifactTemplates, das von dem

DA und dem IA der NodeTypelmplementation referenziert wird 50
42 Beispielhafte Umsetzung der XLink-Spezifikation 56
4.3 Beispielhafte Riickgabe der GET-Operation auf dem Nodelnstances-

Pfad 57
4.4 Beispielhafte Riickgabe der GET-Operation auf dem dynamischen

Nodelnstances-ID-Pfad 58
4.5 Beispielhafte Riickgabe der GET-Operation auf dem Properties-Pfad

einer Nodelnstance mit spezifiertem List-Parameter 59
4.6 Beispielhafte Riickgabe der GET-Operation auf dem Servicelnstances-

Pfad 59
4.7 Beispielhafte Riickgabe der GET-Operation auf dem dynamischen

Servicelnstance-Pfad 60
4.8 Beispielhafte Riickgabe der GET-Operation auf dem Artifact-Pfad . 61
4.9 Beispielhafte Konvertierung einer relativen Pfadreferenz in eine ab-

solute Referenz 61

51

52

53

10

Pseudo SQL-Anweisung, die einen externen optionalen Parameter
beinhaltet. 68
Gekiirzte Implementierung der InstanceDataRoot-Klasse inklusive

Jersey-Annotationen Lo Lo oL 72
Implementierung der NodelnstanceList inklusive JAXB-Annotationen 73

1 Einleitung

Die Entwicklung und Prognosen der letzten Jahre zeigen, dass Cloud-Computing
einer der wichtigsten Zweige der Informationstechnik (IT) ist und auch zukiinftig
bleiben wird. Mitte des Jahres 2012 prognostizierte die International Data Cor-
poration (IDC) bis ins Jahre 2016 eine Anndherung der Ausgaben fiir 6ffentliche
Cloud-Dienste an die 100 Milliarden Dollar Marke, was einem jahrlichem Wachs-
tum von 26,4% in diesem Zeitraum entsprechen wiirde.[IDC] Einer der Griinde
fir dieses starke Wachstum ist, dass immer mehr Unternehmen Bereiche ihrer
IT-Infrastruktur auslagern. Dieser Vorgang wird als Outsourcing bezeichnet und ist
besonders beliebt, wenn die ausgelagerten Bereiche nicht Teil des Kerngeschéfts
sind.

Hat sich ein Unternehmen erstmals fiir einen Cloud-Anbieter entschieden, so ist es
zundchst an diesen gebunden. Ein Wechsel des Anbieters ist in vielen Fallen fiir das
Unternehmen sehr schwer und nur mit hohen Kosten verbunden méglich. Dieser
Sachverhalt wird in der Literatur als vendor-lockin bezeichnet.

Griinde fiir diesen vendor-lockin sind vielfdltig. Es existieren wenige oder kaum
Standards zur Definition der Dienste von Cloud-Anbietern, deshalb bestehen viele
Losungen der Cloud-Anbieter aus proprietiren Komponenten. Aus diesem Grund
miissen Cloud-Anwendungen hdufig, speziell fiir einen gewissen Anbieter, maf3-
geschneidert werden. In Folge dessen konnen bestehende Daten oder gesamte
Cloud-Anwendungen hdufig nicht, oder nur in Verbindung mit hohen Kosten,
migriert werden.

Die Griinde fiir eine solche Migration sind allerdings vielfiltig. Einer dieser Griinde
ist die dynamische Preisgestaltung vieler Anbieter, welche zur Folge hat, dass ein
Unternehmen, das auf den Anbieter angewiesen ist, keine mittel- oder langfristige
Kontrolle iiber seine eigenen IT-Kosten hat. An dieser Stelle erkennen wir die
Notwendigkeit fiir ein Unternehmen, die Cloud permanent zu tiberwachen um
ggf. sehr zeitnah den Anbieter wechseln zu konnen.[SHIT13, S. 69ff] Topology and
Orchestration Specification for Cloud Applications (TOSCA) soll unter anderem
genau dieses Problem angehen und losen.

11

1 Einleitung

Motivation von TOSCA ist es Cloud-Computing wertvoller zu machen, in-
dem es gelingt die halb-automatische Erstellung und Verwaltung von An-
wendungsschicht (application layer) Diensten zwischen verschiedenen Cloud-
Implementierungsumgebungen zu portieren, ohne die Zusammenarbeitsfahigkeit
(interoperability) einzuschranken. TOSCA stellt eine Sprache zur Verfiigung, welche
ermoglicht Cloud-Dienste und Verwaltungsabldaufe zum Erstellen oder Modifizie-
ren dieser Dienste einheitlich zu beschreiben. Ein in TOSCA beschriebener Dienst
ist so unter Umstdnden zu einer Vielzahl von Anbietern kompatibel. Diese Tatsache
stellt einen grofsen Mehrwert fiir die bisherige Situation des Cloud-Computing dar,
denn bisher war es selten oder nur schwer moglich von einem Cloud-Anbieter
zu einem anderen zu wechseln oder sogar Dienste dieser beiden zu kombinieren.

[OAS13, S.7]

Motivation und Ziel

Bei der Durchfiihrung des Studienprojektes LeGO4TOSCA, das sich mit der Imple-
mentierung von TOSCA-konformen Bausteinen, sogenannte NodeTypes, beschif-
tigte, haben wir einige wichtige Erkenntnisse iiber die Automatisierung des Le-
benszyklus von Cloud-Anwendungen erlangen konnen. Einige der dort erkannten
Anforderungen sind nun in diese Bachelorarbeit eingeflossen.

Waihrend des Betriebs von Cloud-Anwendungen existieren und entstehen wichtige
komponentenspezifische Daten. Beispielsweise besitzt eine virtuelle Maschine (VM)
eine zugewiesene IP-Adresse und ein gestartetes Image hat zugehorige Anmelde-
daten (Credentials). Wir nennen diese Daten, da sie einer eindeutigen Instanz zu-
zuordnen sind, Instanzdaten. Aufierdem muss regelmaflig bei der automatisierten
Installation und Verwaltung einer Cloud-Anwendungen auf anwendungsspezifi-
sche Dateien jeglicher Art zugegriffen werden.

Bei der Erstellung der TOSCA wurden diese Anforderungen bereits identifiziert
und berticksichtigt. Es gibt sogenannte Properties um Instanzdaten zu spezifizie-
ren. Die Funktionalitdt um auf anwendungsspezifische Daten zuzugreifen wird in
TOSCA durch das Prinzip der ImplementationArtifacts (IAs) und DeploymentArti-
facts (DAs) abgedeckt.

Um TOSCA-Anwendungen zu interpretieren wird eine TOSCA-Laufzeitumgebung
benétigt, die diese Anforderungen erfiillt und diese Prinzipien umsetzt. Eine Imple-
mentierung einer solchen Laufzeitumgebung ist der, an der Universitit Stuttgart
entwickelte, OpenTOSCA-Container. Dieser hatte zu Beginn dieser Bachelorarbeit

12

jedoch nicht die Moglichkeit diese beiden Anforderungen ausreichend abzude-
cken und soll durch die Ergebnisse der Arbeit um diese Anforderungen erweitert
werden.

Im Rahmen dieser Bachelorarbeit werden deshalb theoretische Anforderungen an
einen solchen Dienst zur Instanzdatenverwaltung und Bereitstellung von IAs und
DAs identifiziert. Die identifizierten Anforderungen werden als Grundlage fiir den
Entwurf einer internen Schnittstelle fiir den OpenTOSCA-Container dienen. Diese
Schnittstelle wird im Laufe der Arbeit in Form eines OSGi-Bundles realisiert werden.
Die Funktionalitdt der internen Schnittstelle soll auch auflerhalb des Containers zur
Verfiigung stehen, weshalb die bereits bestehende Representational State Transfer
(REST)-Schnittstelle des OpenTOSCA-Containers erweitert werden wird.

Gliederung

Im Folgenden werden die Kapitel der Arbeit in chronologischer Reihenfolge darge-
stellt:

Kapitel 2 — Grundlagen: Hier werden die grundlegenden Begrifflichkeiten, die fiir
das Verstandnis der Arbeit erforderlich sind, erldutert. Besonders wird hierbei
auf die Zusammenhange der TOSCA-Spezifikation sowie auf die Architektur
des OpenTOSCA-Containers eingegangen.

Kapitel 3 — Anforderungen an einen Dienst zur Instanzdatenverwaltung: Dieses
Kapitel beschiftigt sich mit der Identifikation der Anforderungen an die
Schnittstellen. Diese Schnittstellen werden besonders hinsichtlich ihres spéte-
ren Einsatzes betrachtet.

Kapitel 4 — Entwurf: Entwurf der internen und REST-Schnittstelle, sowie Konzept
der Integration in den OpenTOSCA-Container unter Berticksichtigung der,
im vorherigem Kapitel identifizierten, Anforderungen.

Kapitel 5 — Implementierung: Dieses Kapitel beschreibt, die fiir die Implementie-
rung der Schnittstellen notwendigen Details und Besonderheiten. Es stellt
eine Erganzung der vorhergehenden Kapitel dar und baut auf diesen auf.

Kapitel 6 — Validierung des Konzepts und der Implementierung: Priifung des ent-
worfenen Konzepts und der Implementierung hinsichtlich der Erfiillung der
Anforderungen.

13

1 Einleitung

Kapitel 7 — Zusammenfassung und Ausblick: In diesem Kapitel werden die Er-
gebnisse der Arbeit zusammengefasst und Ausblicke auf die weitere Entwick-
lung aufgezeigt.

Verwendung der englischen Sprache

An vielen Stellen dieser Arbeit werden englische Fachbegriffe benutzt werden.
Diese Begriffe werden, sofern es sich nicht um allgemein bekannte Worter handelt,
im Text erklart oder iibersetzt werden. Eine Ausnahme hiervon bilden die Begriffe
der englischsprachigen TOSCA-Spezifikation. Um Mehrdeutigkeiten zu vermeiden
wurde von einer Ubersetzung dieser Begriffe in die deutsche Sprache abgesehen.

14

2 Grundlagen

Dieses Kapitel soll die fiir das Verstdandnis der Arbeit relevanten Grundlagen
vermitteln. Hierzu werden sowohl allgemeine Begrifflichkeiten als auch, mit der
Thematik verwandte, Technologien erklart.

2.1 Cloud

Der Begriff des Cloud-Computing ist ein weitreichender und es wurde vielmals
versucht den Begriff klar und prizise zu definieren. Eine der hdufig verwendeten
und anerkannten Definitionen ist die Definition nach dem National Institute of
Standards and Technology (NIST), die wie folgt von mir in die deutsche Sprache
tibersetzt wurde:

Cloud-Computing ist ein Modell um zu jeder Zeit bei Bedarf Netz-
werkzugriff zu einem geteilten Pool von Rechenressourcen (z.B. Netz-
werk, Server, Speicher, Anwendungen und Dienste) zu erhalten, die
mit minimalem Verwaltungsaufwand oder Eingriff seitens des Dienst-
leisters schnell bereitgestellt oder freigegeben werden konnen. Dieses
Cloud-Modell fordert die Verfiigbarkeit und besteht aus fiinf essen-
tiellen Charakteristika, drei Dienstmodellen (service models) und vier
Betriebsmodellen (deployment models).[PM11]

Im Wesentlichen unterscheidet sich diese Definition von anderen Definitionen
indem hier einerseits auf die drei gidngigen Abstraktionsebenen (Infrastructure-
as-a-Service (IaaS), Platform-as-a-Service (PaaS) und Software-as-a-Service (SaaS))
und andererseits auf die moglichen Liefermodelle (Private, Public, Hybrid und
Community Cloud) eingegangen wird. [MRV11]

Generell stellt ein Cloud-Anbieter, welcher auch die interne IT-Abteilung sein kann,
Dienste zur Verfiigung. Abhingig von der Art des vorliegenden Dienstmodells
handelt es sich dabei um unterschiedliche Ressourcen. Die verschiedenen Dienstmo-
delle sollen anhand des Beispiels einer weitverbreiteten Art von Webanwendung,

15

2 Grundlagen

eines Content-Management-System (CMS)-Systems, erklédrt werden. In diesem Bei-
spiel wird davon ausgegangen, dass es sich dabei um eine auf PHP: Hypertext
Preprocessor (PHP)-basierende Webanwendung handelt, welche die Datenhaltung
mittels eines angebundenen Datenbanksystems erledigt.

Bei IaaS wird Rechnerinfrastruktur, wie VMs, Speicher und Netzwerke, zur Verfii-
gung gestellt, die der Anwender abhidngig von seinen Nutzerrechten selbststandig
verwalten kann. In den meisten Féllen erhidlt der Anwender Administratorrech-
te und ist dann selbst fiir die Installation, Verwaltung und Pflege der von ihm
benotigten Software verantwortlich. In unserem Beispiel bedeutet dies, dass der
Anwender nach der Provisionierung einer VM selbststdndig einen Webserver und
eine Datenbank auf dem System installieren muss. Im Anschluss muss auch die
Webanwendung, die unter Umstidnden noch konfiguriert werden muss, installiert
werden.

PaaS hingegen wihlt den Ansatz, anstatt der Infrastruktur, die Plattform zur Ver-
figung zu stellen. Plattformen sind oft Laufzeitumgebungen, Datenbanken oder
Serveranwendungen unterschiedlicher Art. Bei dieser Art des Dienstangebots pro-
fitiert der Anbieter davon, dass sich mehrere Kunden eine dieser Installationen
der Plattformen teilen konnen. Im Beispiel der Webanwendung sucht sich der
Anwender einen Anbieter, der ihm einen Webserver-Dienst mit Datenbank zur
Verfiigung stellt und installiert auf dieser Plattform dann die Webanwendung, die
er im Anschluss nur noch konfigurieren muss.

Bei SaaS gibt es einen Anbieter, der diese Webanwendung als Dienst zur Verfiigung
stellt. Nach Erhalt der Zugangsdaten kann der Kunde diesen Dienst, im Anschluss
an eine ggf. kurze Konfiguration, direkt benutzen.

In der Regel empfiehlt es sich eine umso hohere Abstraktionsebene zu wahlen (von
IaaS zu SaaS) desto anspruchsloser die Anwendung an ihre Umgebung ist. Wenn
eine Anwendung nur in einer sehr speziellen Umgebung lduft, ist es oft unvermeid-
lich diese Umgebung mittels eines laaS-Dienstes selbststandig herzustellen.laaS
bietet im Gegensatz zu SaaS zwar viel mehr Moglichkeiten der Konfiguration an,
aber mit grofser Macht folgt grofie Verantwortung. Als Kunde ist man bei laaS fiir
die Konfiguration des Betriebssystems, der Firewall und vieler anderer Dinge selbst
verantwortlich. Bei Saa$S ist dies Aufgabe des Anbieters.

Die vier Auslieferungsmodelle unterscheiden sich weitgehend darin wer auf die
geteilten Ressourcen Zugriff hat.

Die Private Cloud stellt den typischen Fall da, wenn ein Unternehmen alleinig auf die
in der Cloud existierenden Ressourcen zugreifen kann. Die Public Cloud hingegen

16

2.2 REST

ist fiir die Allgemeinheit gedffnet und prinzipiell jeder kann Ressourcen der Cloud
benutzen. Die Community Cloud ist typisch fiir Anwendungen bei den Zusammen-
arbeit zwischen Unternehmen oder Personen notwendig ist und Datenaustausch
zwischen diesen stattfinden muss. Zwischen diesen drei Formen gibt es noch vie-
lerlei Mischformen, die unter dem Uberbegriff Hybrid Cloud zusammengefasst
werden.

2.2 REST

Roy Fielding hat in seiner Dissertation "Architectural Styles and the Design of
Network-based Software Architectures" REST als einen Architekturstil fiir verteilte
Hypermedia Systeme vorgestellt. REST definiert eine Menge von architektonischen
Einschrankungen (constraints) die, wenn sie als Ganzes eingehalten werden, positive
Eigenschaften der entwickelten Anwendung betonen. [Fie00]

Diese positiven Eigenschaften kann man auch als Grundkonzepte von REST anse-
hen. Diese Grundkonzepte umfassen:

Anwendungsiibergreifend standardisierte Identifikation Verwenden von men-
schenlesbaren Uniform Resource Identifiers (URIs) um Instanzen von re-
levanten Ressourcen der Anwendung zu identifizieren

Hypermedia Verwenden von Links um Ressourcen miteinander zu verbinden.
Steuern des Funktionsflusses mittels Links.

Schnittstelle mit fest definierten Mengen von Operationen Jede Ressource unter-
stiitzt die gleichen Operationen (GET, POST, PUT, DELETE, HEAD und
OPTIONS)

Unterschiedliche Ressourcenprasentationen Unterschiedliche Reprasentationen
fiir unterschiedliche Anforderungen. Beispielsweise kann fiir ein und die-
selbe URI eine Hypertext Markup Language (HTML)-Datei fiir die Browser
geliefert werden aber auch eine Extensible Markup Language (XML) fiir
Anwendungen, die diese URI aufrufen.

Statuslose Kommunikation Die Kommunikation mit dem Client ist frei von einem
Sitzungszustand (stateless). Als Konsequenz davon ist ein Client ungebunden
von einem speziellen Server und jede zukiinftige Anfrage kann auch von

17

2 Grundlagen

einem anderem Server bearbeitet werden. Dies ist unter Anbetracht der Ska-
lierbarkeit und der Ausfallsicherheit interessant, da jegliche Zugriffe nun frei
verteilt werden konnen.

[Til11]

2.3 TOSCA

Topology and Orchestration Specification for Cloud Applications (TOSCA) ist ein
auf XML basierendes Metamodel fiir die Beschreibung des strukturellen Aufbaus
von Cloud-Anwendungen. Diese Struktur kann durch das Ausfiihren von Planen
in einer geeigneten Laufzeitumgebung (runtime enviroment) oder das Interpretieren
der definierten Anwendungsstruktur ausgefiihrt und verwaltet werden. Zu die-
sen verwaltenden Aufgaben gehoren generell Instanziierung, Management und
die Terminierung der Instanzen. Je nach Anwendung handelt es sich dabei um
unterschiedliche Managementoperationen.

Der folgende Abschnitt basiert auf der TOSCA [OAS13] und soll auf die Konzepte
dieser eingehen. Er soll es dem Leser ermoglichen die weiteren Kapitel in einem
klarem Kontext zu sehen. Dieses Kapitel erhebt keinerlei Anspruch auf Vollstan-
digkeit, es sollen lediglich die fiir die Ausarbeitung relevanten Themen erldutert
werden.

2.3.1 Verschiedene Ebenen des Modells

TOSCA modelliert auf zwei konzeptionellen Ebenen, auf Type- und Template-
Ebene. Zur Laufzeit existiert noch eine dritte Abstraktionsebene, die Instanz-Ebene,
welche nicht Teil des Modells der TOSCA ist. Der Zusammenhang zwischen den
einzelnen im Folgenden genannten Entitdten ist in Abbildung 2.1 auf der néchs-
ten Seite illustriert. Der folgende Abschnitt erldutert dies anhand der NodeTypes,
das Prinzip ist in TOSCA generell anwendbar. Auf RelationshipTypes, Relationship-
Templates und RelationshipInstances soll an dieser Stelle nicht explizit eingegangen
werden, sie werden im Abschnitt 2.3.2 erklart, wenn es um die Beschreibung der
Beziehungen geht.

NodeTypes sind wiederverwendbare Entitdten, sie beschreiben abstrakt Komponen-
ten einer Cloud-Anwendung, wie beispielsweise Anwendungen, VMs oder Spei-
cherkomponenten, und definieren so den Typ eines oder mehrerer NodeTemplates.

18

2.3 TOSCA

™)
<
NodeType RelationshipType Types 8
@]
A A ~
<instance-of> <instance-of> > c
1 1 =
8
NodeTemplate RelationshipTemplate Templates £
=
[}
A A o
<instar|x:e—0f> <insta?ce—of> /
Nodelnstance Relationshiplnstance Instances

Abbildung 2.1: TOSCA Drei-Schichten-Modell nach [BBLS12]

Die Definition eines NodeTypes spezifiziert die beobachtbaren Eigenschaften. Diese
Eigenschaften umfassen die Struktur der Properties, die vom NodeType benotigten
Requirements, die zur Verfiigung gestellten Capabilities sowie das Interface der
unterstiitzen Management-Operationen des NodeTypes.[OAS13]

NodeTemplates sind Instanziierungen dieser NodeTypes, hierbei werden unter ande-
rem konkrete Werte fiir die im NodeType definierten Properties gesetzt. Node-
Templates sind konkrete Vorlagen fiir erzeugbare Instanzen. Wenn ein Node-
Template instanziiert wird sprechen wir von einer Nodelnstance. Diese Instanzen
reprdsentieren reale, instanziierte Komponenten, beispielsweise einen konkreten
Apache Webserver.

2.3.2 Templates und Types

Die in diesem Abschnitt beschriebenen Beziehungen zwischen Template und Type
sowie NodeTemplate und RelationshipTemplate werden in Abbildung 2.2 auf der
ndchsten Seite anhand eines Beispiels erldutert.

Ein TopologyTemplate definiert die Struktur eines Dienstes. Dafiir werden Node-
Template und RelationshipTemplates benutzt, die zusammen das Topologie-Modell
(topology model) als einen gerichteten Graphen beschreiben. NodeTemplates und
RelationshipTemplates sind hierbei Instanzen von NodeTypes und Relationship-
Types. Ein NodeTemplate spezifiziert so das Vorkommen eines NodeTypes als

19

2 Grundlagen

ServiceTemplate

TopologyTemplate NodeTypes
4) /(NodeType
|| % ' type for: 9 5
NodeTemplate |] [/]+ I g
. \ 7 £ | 8
RelationShip- 1 hosted- hosted-
Template ~ on on
\
(" RelationshipType
typefor— | 8 [—— — } 2
T | — p 5y
@ g I g
\
4 Plans
—_— — —
(N J _

Abbildung 2.2: Zusammenhang zwischen verschiedenen Template-Typen nach
[BBLS12]

Servicekomponente. RelationshipTemplates werden dann genutzt um die einzel-
nen NodeTemplates logisch miteinander zu verkniipfen. [OAS13]

NodeTypes sind deshalb stark auf Wiederverwendbarkeit ausgelegt und enthalten
zusétzlich ImplementationArtifacts (IAs) und DeploymentArtifacts (DAs). IAs sind
Artefakte, die Operationen des NodeTypes implementieren. [OAS13]

Ein Betriebssystem-NodeType konnte beispielsweise eine Operation zum Absetzen
eines Kommandozeilenbefehls besitzen. Das IA dieser Operation konnte als eine
REST-Operation implementiert sein und in Form einer Web application ARchive
(WAR)-Datei zur Verfiigung stehen.

DAs werden benétigt um ein NodeType bzw. ein konkretes NodeTemplate zu
instanziieren. In dem vorherigem Beispiel konnte ein typisches DA ein Abbild des
verwendeten Betriebssystems sein. Damit ein NodeType mit einem bestimmten
TOSCA-Container eingesetzt werden kann muss dieser sowohl IAs als auch DAs
unterstiitzen.

20

2.3 TOSCA

Das Servicelemplate vereint alle diesen Templates und Typen, inklusive der darin
enthaltenen Artefakte, zusammen mit den Pldnen zu einer ganzheitlichen Service-
beschreibung. Die TOSCA beschreibt im ServiceTemplate lediglich die Struktur
der Anwendung. Die Verwaltung, besonders die Erstellung und Terminierung, der
Service- und Nodelnstances wird von sogenannten Planen gehandhabt. Diese Pléne
sind durch ein Prozessmodell, beispielsweise durch einen ein- oder mehrstufigen
Arbeitsablauf (Workflow), definiert. Die TOSCA definiert hierfiir keine neue Mo-
dellierungssprache sondern benutzt bestehende Technologien, wie beispielsweise
Business Process Model and Notation (BPMN)[OMG11] oder WS-Business Process
Execution Language (BPEL)[OAS07]. [OAS13]

2.3.3 Instanzen, Properties und State

Instanzen sind in dem Kontext dieser Bachelorarbeit instanziierte NodeTemplates.
Dies sind die fiir die Instanzdatenverwaltung relevanten Instanzen. Sie haben
konkrete Properties, bei denen es sich um in TOSCA definierte XML-Dokumente
handelt, auf die an vielen Stellen zugegriffen werden muss. Properties konnen
prinzipiell als Variablen im Kontext einer Instanz benutzt und angesehen werden,
sie konnen Daten wie IP-Adressen, Passworter, Installationsordner und sonstige
spezifische Werte repriasentieren. IAs benétigen Zugriff auf diese Daten, genauso
ist denkbar, dass Plane diese Daten gezielt lesen und auch manipulieren miissen.

Es ist nicht garantiert, dass immer dasselbe IA zur Ausfiithrung einer Operation
genutzt wird oder das jeweilige IA in der Zwischenzeit nicht neu deployed wurde.
Deshalb wurde wéhrend der Durchfiihrung des LeGO4TOSCA-Projekts die Erfah-
rung gemacht, dass es sich anbietet den Zustand eines IAs in den Properties der
zugehdrigen Instanz zu speichern.

Der State ist ein in TOSCA definierter Wert, der den Zustand einer Instanz eines
NodeTemplates angibt, beispielsweise konnten fiir eine Webanwendung die Zu-
stinde "deployed","running","stopped" und "undeployed" definiert sein. An dieser
Stelle sei aber daraufhingewiesen, dass der State aus Sicht des TOSCA-Containers
lediglich eine Textreprasentation ist. TOSCA-Container besitzen keine definierte
Logik, wie beispielsweise Monitoring, um diesen Zustand automatisch zu dndern.

Fiir das Modifizieren des States sind also Plane und IAs verantwortlich.

21

2 Grundlagen

/

| TOSCA-Metadata

| TOSCA.meta

 Definitions
tmyAppTypes .tosca

myApp.tosca

| WARs
L myWebApp . war

. _Plans

t setup.bpel
terminate.bpel

Abbildung 2.3: Beispielstruktur einer giiltigen CSAR-Datei

2.3.4 CSAR

Ein Cloud Service Archive ist ein im Zuge der TOSCA spezifiziertes Zip-Archiv mit
der Endung *.csar. Es paketiert Metadaten und benétigte Artefakte einer Cloud-
Anwendung zusammen zu einer Datei. Ein Cloud Service Archive (CSAR) muss
mindestens einen TOSCA-Metadata Ordner und einen Definitions Ordner enthal-
ten, dariiber hinaus gibt es keine weiteren Einschrankungen an den Aufbau des
Archives. [OAS13] Ein Beispiel fiir eine giiltige CSAR stellt die Abbildung 2.3 dar.

2.4 OpenTOSCA

OpenTOSCA! ist eine an der Universitit Stuttgart entwickelte Open Source
TOSCA-Laufzeitumgebung. Eine erste Version dieses TOSCA-Containers entstand
2012 wiahrend eines Studienprojekts der beiden Institute Institut fiir Architektur
von Anwendungssystemen (IAAS)? und Institut fiir Parallele und Verteilte Syste-
me (IPVS)? an der Universitit Stuttgart und wird seitdem weiterentwickelt.

1Webseite des OpenTOSCA-Containers: http://www.iaas.uni-stuttgart.de/OpenTOSCA/
2Webseite des IAAS: http://www.iaas.uni-stuttgart.de/
3Webseite des IPVS: http://www.ipvs.uni-stuttgart.de/

22

http://www.iaas.uni-stuttgart.de/OpenTOSCA/
http://www.iaas.uni-stuttgart.de/
http://www.ipvs.uni-stuttgart.de/

2.4 OpenTOSCA

2.4.1 Architektur

Der folgende Abschnitt soll auf die Architektur und grundlegende Funktionsweise
des OpenTOSCA-Containers eingehen, spezieller Fokus soll hierbei auf der Kom-
munikation zwischen den einzelnen Komponenten der TOSCA-Engine liegen. Dazu
werden zuerst die einzelnen Komponenten und deren Funktionen und im An-
schluss daran der Ablauf eines Deployment-Vorgangs einer CSAR beschrieben.

Grob ldsst sich die Architektur des OpenTOSCA-Containers in 6 Komponen-
ten unterteilen. Dies sind die Container-API (application programming interface),
TOSCA-Engine, IA-Engine, Plan-Engine, sowie die Control- und Core-Komponenten.
Einen groben Uberblick vermittelt das dazugehérige Fundamental Modeling Con-
cepts (FMC)-Aufbaudiagramm (s. Abbildung 2.4 auf Seite 25) [BBH13].

Die Core-Komponenten bilden den Kern der Architektur und beschéftigen sich pri-
mér mit den grundlegenden Aufgaben wie Persistenz, Dateiverwaltung und der
Speicherung von Informationen der anderen Komponenten.

Die IA-Engine und Plan-Engine haben recht dhnliche Funktionsweisen allerdings
unterschiedliche Zustandigkeiten, die IA-Engine kiimmert sich um das Deployment
von IAs und die Plan-Engine um das Deployment von Pldnen. Beide Engines
bedienen sich hierbei an auf sie zugeschnitte Plugins, die fiir eine gewisse Art von
Datei (z.B. eine WAR-Datei) Logik zur Verfiigung stellen, durch dieses dynamische
Plugin-System sind die beiden Engines beliebig erweiterbar.

Die TOSCA-Engine ist die Komponente, die sich mit der Verarbeitung der in der
CSAR enthaltenden ServiceTemplates beschéftigt. Sie liest, validiert und 16st Re-
ferenzen innerhalb des TOSCA-XMLs auf und stellt die daraus resultierenden
Informationen anderen Komponenten zur Verfiigung.

Fiir den Ablauf des Deployments einer CSAR-Datei ist die Control-Komponente
verantwortlich, sie stofst Operationen anderer Komponenten an und tiberpriift zu
jeder Zeit ob eine vom Benutzer gestartete Operation im aktuellem Deployment-
Zustand auch ausgefiihrt werden darf.

Als letzte Komponente bildet die Container-API die Schnittstelle nach aufien. Sie
ist eine in Jersey* implementierte REST-Schnittstelle und stellt so die fiir das Ver-
arbeiten einer CSAR notwendige Logik mittels eines Webservices zur Verfiigung.

“Webseite der Jersey-API: https:/ /jerseyjava.net/

23

2 Grundlagen

Auf diese Schnittstelle wird in Abschnitt 4.8, wenn es um die Erweiterung dieser
Schnittstelle geht, noch genauer eingegangen.

Der Ablauf des Deployment einer CSAR sieht beim OpenTOSCA-Container wie
folgt aus. Er ldsst sich logisch in 4 Schritte unterteilen: Das Hochladen der CSAR-
Datei, das anschliefSlende Verarbeiten der hochgeladenen CSAR, das Deployment
der IAs und das Deployment der Plédne.

Das Hochladen einer CSAR kann auf mehreren Wegen geschehen. Im Anschluss an
das Hochladen veranlasst die Container-API das Entpacken und die nachfolgende
Speicherung der in der CSAR enthaltenen Dateien. Das Speichern kann mittels
sogenannter StorageProvider angepasst werden, je nach ausgewéhltem StoragePro-
vider konnen diese Dateien entweder auf dem lokalem Dateisystem des Containers
oder in einem Cloud-Dateisystem gespeichert werden. Wenn weder die CSAR noch
die in der CSAR enthalten Definitionen fehlerhaft sind, wird im Anschluss der
Deployment-State in der Control-Komponente auf STORED gesetzt.

Der néichste Schritt im Ablauf ist das Anstofsen der Verarbeitung (processing) der
in dem CSAR enthaltenen TOSCA-Definitionen. Dafiir muss eine Anfrage an einen,
tiir das CSAR-spezifischen, CSARControl-Pfad der Container-API gesendet werden.
Daraufhin wird die Core-Komponente von der Container-API dazu veranlasst die
TOSCA-Definitionen zu verarbeiten. Bei der Verarbeitung ist wie bereits vorher
erwdhnt die TOSCA-Engine mafigeblich beteiligt, sie liest die Definitions ein und
16st dabei Referenzen auf und speichert in den Definitions enthaltene Dokumente
und Pldne. Nach dem Einlesen ist die TOSCA-Engine bereit Operationen betreffend
des CSAR entgegen zu nehmen.

Nun ist es moglich die in den Definitions enthaltenen IAs zu deployen, dies
wird mittels REST-Aufruf an den bereits beim Verarbeiten des CSAR benutzten
CSARControl-Pfads angestofSen. Dieser Aufruf wird von der Container-API {iber
die Core-Komponente zur IA-Engine delegiert, diese wahlt aufgrund der Art des
IAs das dazu passende Plugin aus, welches dann das Deployment iibernimmt. Dies
kann beispielsweise die Installation einer WAR-Datei auf einem lokalen Tomcat-
Server sein.

Als letzten Schritt miissen nun noch die Managementplidne auf eine passende Lauf-
zeitumgebung ausgeliefert (deployed) werden. Diese Operation wird mittels eines
Aufrufs auf den bereits bekannten CSARControl-Pfad ausgefiihrt. Bei OpenTOSCA

24

2.4 OpenTOSCA

OpenTOSCA Container

Container API

| CSARs | | CSARControl StorageProviders

Control IA Engine

() s R)> R)>
*.opentoscacontrol —O—'_ *.iaengine Plugins

Ov 3
Plan Engine

<R 2
TOSCA Engine _O_ * planengine Plugins
I,

Core

*.deployment | | *.endpoint

* file |

Abbildung 2.4: FMC-Aufbaudiagramm der OpenTOSCA-Struktur nach [BBH' 13]

werden dabei als BPEL vorliegende Pliane auf eine lokale Apache Orchestration
Director Engine (ODE)® deployed.

Nach Ausfiihrung dieser Schritte sind alle IAs korrekt installiert und die durch die
deployten Managementpldne zur Verfligung gestellten Funktionalitdten kénnen
korrekt verwendet werden.

5Apache ODE: http://ode.apache.org/

25

http://ode.apache.org/

2 Grundlagen

Listing 2.1 Mit JPA-Annotationen versehene Beispielklasse

1 @Entity

2 public class Mitarbeiter {

3

4 @Id

5 private int id;

6

7 @Column(name = "fullName", columnDefinition = "VARCHAR(128)")
8 private name;

10 private String getName(){...}
11 private void setName(String name){...}
12 }

26

3 Anforderungen an einen Dienst zur
Instanzdatenverwaltung

Dieses Kapitel setzt sich mit den Anforderungen auseinander, die an einen Dienst
zur Instanzdatenverwaltung und zur Bereitstellung von IAs und DAs gestellt
werden. Diese Anforderungen werden weitgehend aus Sicht eines Nutzers eines
TOSCA-Containers (speziell OpenTOSCA-Nutzer) betrachtet werden und beruhen
stark auf Erfahrungen, die wiahrend des Studienprojektes LeGO4TOSCA bei der
Entwicklung von NodeTypes gemacht wurden.

Ein OpenTOSCA-Nutzer kann jeder sein, der einen Webservice benutzen kann,
weitgehend werden diese Schnittstellen aber von automatischen Build- bzw. Ma-
nagementpldnen und von IAs benutzt werden um zur Laufzeit Informationen
beziiglich Nodelnstances oder NodeType-spezifischen Dateien zu erlangen.

Die folgenden Anforderungen konnten im Laufe der Arbeit identifiziert werden
und werden in diesem Kapitel an entsprechender Stelle weiter erlautert:

Die Anforderungen im Einzelnen sind unterteilt in Serviceinstanz-spezifische,
Nodeinstanz-spezifische, Nodetemplate-spezifische und weitere funktionale An-
forderungen. Bevor diese im Detail betrachtet werden, wird nun noch auf die
theoretischen Annahmen, die fiir die folgenden Anforderungen notwendig sind,
eingegangen.

3.1 Theoretische Annahmen

In Abbildung 2.2 auf Seite 20 wurde bereits auf die unterschiedlichen Abstrak-
tionsebenen von TOSCA eingegangen. Da hier nun immer konkrete Instanzen
dieser Abstraktionsebenen betrachtet werden, muss zuerst iiberlegt werden mittels
welcher Werte eine solche Instanz genau identifiziert werden kann. In der Tabel-
le 3.1 auf Seite 29 wird auf das Verhiltnis zwischen diesen Instanzen und deren
Identifiern eingegangen.

27

3 Anforderungen an einen Dienst zur Instanzdatenverwaltung

Fiir die Betrachtung der Tabelle 3.1 auf der ndchsten Seite ist vorausgesetzt, dass es
sich bei qualified Name (QName) um einen fully qualified Name handelt, bei dem ein
Namespace-Element und ein lokaler Teil (localpart) angegeben sein muss. An Stellen
an denen ein QName nicht explizit einen Namespace benétigt, da dieser implizit
aufgrund des Kontexts bereits bekannt ist, wird nur der notwendige localpart als
Zeichenkette modelliert.

Dies ist bei jeder Operation, bei dem ein NodeTemplate innerhalb eines Service-
Templates identifiziert wird, der Fall. Das NodeTemplate befindet sich immer im
Namensraum (namespace) des umschliefienden ServiceTemplates — eine Angabe
des Namensraums des NodeTemplates ist so iiberfliissig.

Fiir den vorliegenden Anwendungsfall der Instanzdatenverwaltung lasst sich die
Identifikation aber leicht abwandeln. NodeTemplates sind in ServiceTemplates ge-
schachtelt, sie befinden sich immer im selben Namespace. Bei der Installation einer
Cloud-Anwendung werden zuerst die Servicelnstances (die ihr zugehoriges Tem-
plate kennen) und im Anschluss daran die einzelnen Nodelnstances erstellt, durch
diese temporale Abhéngigkeit kann bei der Instanziierung eines NodeTemplates
auf die Angabe des Namespaces verzichtet werden und stattdessen die zugehorige
Servicelnstance angegeben werden, die bei der Erstellung sowieso benétigt wird.
Im weiteren Verlauf soll also immer wenn es um Identifikation einer Nodelnstance
geht, der Namespace aus der zugehorigen Servicelnstance bezogen werden. In
Tabelle 3.2 auf der ndchsten Seite wird der bei der Erstellung einer Nodelnstance
angepasste und in der Arbeit als Grundlage verwendete Zustand der Beziehung
zwischen den Templates und Instanzen aufgezeigt.

3.2 Servicelnstance-spezifische Anforderungen

3.2.1 Erstellen einer Servicelnstance

Eine Servicelnstance ist eine Instanz eines ServiceTemplates welches durch eine
ServiceTemplatelD identifizierbar ist. Die ToscaEngine des OpenTOSCA-Containers
benotigt jedoch zusétzlich die ID der CSAR, die das ServiceTemplate enthilt. Ein
Nutzer der spateren Schnittstelle muss also die Moglichkeit haben mittels diesen
Parametern eine Instanz eines ServiceTemplates zu erzeugen.

Beim Erstellen eines ServiceTemplates hat man die Moglichkeit Kardinalitdten zu
spezifizieren, welche die minimale und maximale Anzahl der Vorkommen von
NodeTemplates festlegen. Um das Aufsetzen von Topologien zu vereinfachen soll

28

3.2 Servicelnstance-spezifische Anforderungen

Instanz eindeutiger Identifier Identifier, die bei Erstellung
der Instanz angegeben wer-
den miissen

ServiceTemplate ServiceTemplateID (QName) —

NodeTemplate NodeTemplateID (QName) —

Servicelnstance ServicelnstancelD (generiert ServiceTemplateIlD (QName)
bei Erstellung)

Nodelnstance NodelnstancelD (generiert ServicelnstancelD, NodeTem-
bei Erstellung) plateID (QName)

Tabelle 3.1: Identifikation von TOSCA-Elementen und Beziehung zwischen Instan-
zen und Templates

Instanz eindeutiger Identifier Identifier, die bei Erstellung
der Instanz angegeben wer-
den miissen

ServiceTemplate ServiceTemplateID (QName) —

NodeTemplate NodeTemplateID (QName); —
alternativ:
ServiceTemplateID (QName),
NodeTemplateID (String)

Servicelnstance ServicelnstancelD (generiert ServiceTemplateIlD (QName)

bei Erstellung)
Nodelnstance NodelnstancelD (generiert ServicelnstanceID , NodeTem-
bei Erstellung) plateID (String)

Tabelle 3.2: Angepasste Identifikation von TOSCA-Elementen und Beziehung zwi-
schen Instanzen und Templates

29

3 Anforderungen an einen Dienst zur Instanzdatenverwaltung

bei der Instanziierung eines ServiceTemplates zusétzlich fiir jedes vorhandene
NodeTemplate eine Instanz, bzw. eine Nodelnstance, erzeugt werden. Nach Erstel-
lung der Servicelnstance miissen Informationen beziiglich dieser und aller wahrend
des Erstellungsprozesses erzeugten Nodelnstances mittels eindeutiger IDs abrufbar
sein.

3.2.2 Loschen einer Servicelnstance

Fiir die Loschung einer Servicelnstance muss lediglich die Servicelnstance-ID
angegeben werden. Bei dem Loschvorgang miissen aufler der Serviceinstance selbst
auch noch alle zur Serviceinstance dazugehorigen Nodelnstances geldscht werden.
Im Anschluss an die Loschung sollen keinerlei Informationen beziiglich dieser
Instanzen mehr existieren. Diese Art von Loschung, bei der abhédngige Elemente
geloscht werden, nennt man cascading delete.

3.2.3 Abfragen von Servicelnstance-Informationen

Es muss die Moglichkeit bestehen, Informationen beziiglich einer bestimmten
Servicelnstance, von der die ID bekannt ist, zu erhalten. Diese Informationen
miissen Aufschluss tiber folgende Details geben:

e Zeitpunkt der Erstellung der Instanz
e zugehorige CSAR-ID

QName des ServiceTemplates, das als Vorlage fiir die Servicelnstance diente

Name des ServiceTemplates, das als Vorlage diente

Referenzen auf alle Nodelnstances, die zu dieser Servicelnstance gehoren

3.2.4 Finden von Servicelnstance-IDs anhand von Filtern

Neben der Informationsabfrage zu einer bestimmten Servicelnstance muss auch die
Moglichkeit bestehen, mittels der Angabe von Filtern, spezielle Servicelnstances
bzw. die IDs der Servicelnstances zu finden. Mogliche Filterkriterien sollten hierbei
vor allem der Name des verwendeten ServiceTemplates sein, sowie dessen ID.

30

3.3 Nodelnstance-spezifische Anforderungen

Ein gidngiger Anwendungsfall fiir die Verwendung dieser Filter, ist die Frage nach
allen Instanzen eines gewissen ServiceTemplates. Die Funktionalitdt des Findens
von Servicelnstances anhand des verwendeten Templates wird dann eine Antwort
auf genau diese Frage liefern.

3.2.5 Prifung der Existenz einer Servicelnstance

Neben der Abfrage von Informationen beziiglich Servicelnstances ist es notwendig
auch eine Moglichkeit zu haben, welche die Existenz einer Servicelnstance priift.

3.3 Nodelnstance-spezifische Anforderungen

3.3.1 Erstellen einer Nodelnstance

Das Erstellen einer Nodelnstance wird einerseits implizit beim Erstellen einer
Servicelnstance aufgerufen und kann andererseits auch explizit nach Erstellung
einer Servicelnstance veranlasst werden. Bei der Erstellung miissen Parameter
angegeben werden, die einen eindeutigen Riickschluss auf die zugehorige Ser-
vicelnstance und auf das zu instanziierende NodeTemplate liefern. Nodelnstances
haben im Gegensatz zu Servicelnstances noch Instanzdaten, fiir diese Daten konnen
in TOSCA Standardwerte im Template definiert werden, die beim Erstellen einer
Nodelnstance auch gesetzt werden miissen.

3.3.2 Loschen einer Nodelnstance
Die Loschung einer Nodelnstance erfordert, dass diese eindeutig identifiziert ist,

dafiir wird die NodelnstancelD als Parameter benotigt. Nach der Loschung der
Nodelnstance diirfen keinerlei Informationen dieser mehr verfiigbar sein.

3.3.3 Abfragen von Nodelnstance-Informationen

Bei Nodelnstance Informationen handelt es sich einerseits, d4hnlich wie bei der
Abfrage von Servicelnstance-Daten, um Meta-Informationen zur Erstellung und
andererseits um den sogenannte State und die Properties einer Nodelnstance. Was

31

3 Anforderungen an einen Dienst zur Instanzdatenverwaltung

man unter dem State und den Properties einer Nodelnstance versteht wurde bereits
in Abschnitt 2.3.3 auf Seite 21 erldutert.

Diese Abfrage muss also folgende Informationen liefern:

o Zeitpunkt der Erstellung der Instanz

QName des NodeTemplates, das als Vorlage fiir die Nodelnstance diente

Name des NodeTemplates, das als Vorlage diente

Referenzen auf die zugehorige Servicelnstance

State der Nodelnstance

Properties der Nodelnstance

3.3.4 Andern von Nodelnstance-Informationen

Das Modifizieren von Instanzdaten ist Hauptaufgabe dieses Dienstes, es muss
also gewihrleistet sein, dass er diese Aufgabe erledigen kann. Um Instanzdaten
dndern zu konnen muss einerseits die Instanz identifiziert werden und andererseits
miissen neue Werte der Informationen in der Anfrage enthalten sein. Nach der
Durchfiihrung der Anderungen der Daten einer Instanz miissen die neuen Daten
unter der bisher verwendeten Adresse zur Verfiigung stehen.

3.3.5 Abfragen des NodeTypes einer Nodelnstance

Bei der Entwicklung von IAs im LeGO4TOSCA Studienprojekt wurde an vie-
len Stellen eine Moglichkeit zur Bestimmung des NodeTypes einer bestimmte
Nodelnstance benétigt. Besonders wichtig war die Unterscheidung der NodeTy-
pes von Microsoft Windows! und Ubuntu? um anderen IAs (vor allem IAs von
Anwendungs-NodeTypes) eine Information fiir die interne Entscheidung der ein-
zusetzenden Logik zu bieten. Dies ist ein sicherlich hdufiger Anwendungsfall, da
sich durch die Unterscheidung in den IAs selbst, Plane generischer schreiben und
vielseitiger einsetzen lassen.

Microsoft Windows: http://windows.microsoft.com/en-us/windows/home
2Ubuntu: http://www.ubuntu.com/

32

http://windows.microsoft.com/en-us/windows/home
http://www.ubuntu.com/

3.4 NodeTemplate-spezifische Anforderungen

3.3.6 Finden von Nodelnstance-IDs anhand von Filtern

Neben der Abfrage von Informationen beziiglich Nodelnstances muss auch die
Moglichkeit bestehen eine Nodelnstance, bzw. die ID der Nodelnstance, aufgrund
von Parametern zu finden. Denkbar ist, dass nach der Erstellung einer Serviceln-
stance und der impliziten Erstellung der dazugehorigen Nodelnstances die ID
einer bestimmten Nodelnstance unbekannt ist. Nun kann mittels der bekannten
Servicelnstance-ID und des NodeTemplates in Erfahrung gebracht werden wie die
ID dieser bestimmten Instanz ist.

3.3.7 Prifung der Existenz einer Nodelnstance

Neben der Abfrage von Informationen beztiglich Nodelnstances muss auch eine
allgemeine Moglichkeit existieren, die tiberpriift ob eine Nodelnstance {iberhaupt
existiert. Dies kann zu Validierungszwecken und zur Fehlerbehandlung sehr wich-
tig sein.

3.4 NodeTemplate-spezifische Anforderungen

3.4.1 Link zu einem oder mehreren Artefakten eines NodeTemplates
erhalten

Diese Anforderung bezieht sich nun auf die Komponente des Diensts, die sich mit
dem Bereitstellen von Artefakten beschiftigt. Im LeGO4TOSCA Projekt wurden IAs
entwickelt, die jeweils eine Installationsmethode bereit stellten. Bei der Implemen-
tierung wurde deutlich, dass diese Methoden die Moglichkeit benotigen auf Daten,
die in dem zugehorigem CSAR enthalten sind, zuzugreifen. Problematisch war dies,
weil in den TOSCA-Definitionen nur relative Pfade zu den DAs angegeben werden.
Fiir die effektive Verwendung muss aber eine Moglichkeit bestehen absolute, d.h.
direkt herunterladbare, Referenzen fiir bestimmte Artefakte zu ermitteln.

Denkbar wiére ein Szenario in dem ein Anwendungs-NodeType die ent-
sprechende Anwendung mittels einer Installations-Methode installiert. Ab-
strakt betrachtet wird die Installation einen Download einer *.zip-Datei, so-
wie das Entpacken dieser Datei beinhalten. Fiir den Download benétigt

33

3 Anforderungen an einen Dienst zur Instanzdatenverwaltung

das IA nun eine Adresse an der diese Datei heruntergeladen werden kann.
Um die hdufigsten Anwendungsfille abzudecken miissen folgende Filtermoglich-

keiten bestehen:
e serviceTemplateID
e nodeTemplateID
o Art des gesuchten Artefaktes (DA oder IA)

o Name des Artefaktes

3.5 Weitere funktionale Anforderungen

3.5.1 Persistenz

Die Lebensdauer einer Cloud-Anwendung kann sehr lange sein, es ist also eine sehr
realistische Annahme, dass sowohl die Maschine auf der der TOSCA-Container
lauft als auch der TOSCA-Container selbst einmal abstiirzt oder neugestartet wer-
den muss. Die Instanzdaten miissen nach so einem Vorfall natiirlich weiterhin
verfligbar sein, da ohne diese Daten die Verwaltung des Dienstes mit hoher Wahr-
scheinlichkeit unmoglich wird. Der Dienst zur Instanzdatenverwaltung muss seine
Daten also persistent speichern.

3.5.2 Integration in bestehende Dienste

Der zu entwickelnde Dienst muss sich in die bisherige Architektur des OpenTOSCA-
Containers integrieren und sich so weit wie moglich dhnlicher Technologien wie
bereits implementiere Komponenten bedienen. Es muss generell auf Konsistenz zur
bestehenden Architektur geachtet werden, besonders wenn es um die Entwicklung
der REST-Schnittstelle geht um den spateren Nutzern eine einheitliche Erfahrung
mit der Container-API zu ermoglichen. Was dies im Einzelnen bedeutet soll im
nachfolgendem Kapitel Entwurf aufgezeigt werden.

34

4 Entwurf

Dieses Kapitel beschéftigt sich systematisch und konzeptionell mit dem Entwurf
der Schnittstelle des internen Dienstes und dem Entwurf der externen REST-
Schnittstelle. Es wird ein Konzept ausgearbeitet werden, wie der zu entwickelnde
Dienst in die Architektur des OpenTOSCA-Containers zu integrieren ist. Dabei
wird zuerst auf den Ist- und Sollzustand eingegangen um im Anschluss sich mit
der notwendigen Umsetzung der in Kapitel 3 identifizierten Anforderungen aus-
einanderzusetzen.

Beim Entwurf des Dienstes soll nach dem Top-Down-Ansatz, bei dem die Schnittstel-
lendefinition vor der Implementierung durchgefiihrt wird, vorgegangen werden.
Diese Vorgehensweise bietet sich an, da durch die in der Analyse identifizierten An-
forderungen bereits definiert ist welche Operationen dieser Dienst zur Verfligung
stellen muss, um den gestellten Anforderungen gerecht zu werden. Der Fokus liegt
aufgrund des gewdhlten Ansatzes deshalb am Anfang dieses Abschnittes auf den
Schnittstellen und der Interaktion der einzelnen Komponenten. Gegen Ende des
Kapitels wird sich der Entwurf dann detaillierter mit den eingesetzten Technologien
und verwendeten Datentypen auseinandersetzen.

4.1 Einschrankungen

Der OpenTOSCA-Container ist CSAR-aware. Das bedeutet, dass fiir die Herstellung
eindeutiger Beziehungen zu ServiceTemplates und anderen Templates immer die
jeweilige CSAR-ID des dazugehdorigen CSAR angegeben werden muss. Diese Ab-
hangigkeit befindet sich in der TOSCA-Engine verankert. Da die zu entwerfenden
Dienste die TOSCA-Engine nutzen wird an einigen Stellen des Entwurfs die Anga-
be von CSAR-IDs notwendig, wobei an den entsprechenden Stellen dadurch eine
CSAR-ID in den Parametern enthalten sein wird.

35

4 Entwurf

OpenTOSCA Container

Container API
InstanceData | | Portability

*.instanceData | | *.portability

Abbildung 4.1: Erweitertes FMC-Aufbaudiagramm der OpenTOSCA-Struktur, bis-
her bestehende Komponenten sind ausgegraut - es wurden keine
Komponenten entfernt

4.2 Ist- / Sollzustand

Auf den Ist-Zustand der Komponenten wurde bereits in Kapitel 3 Anforderun-
gen an einen Dienst zur Instanzdatenverwaltung, besonders in Form des FMC-
Aufbaudiagramms (s. Abbildung 2.4 auf Seite 25), ausreichend eingegangen.
Durch die Entwicklung des Dienstes wird sich die Architektur des OpenTOSCA-
Containers dndern, dies wird sich auch im Schaubild niederschlagen. Es steht
einerseits die Erweiterung der REST-Schnittstelle um weitere Funktionen bevor
und andererseits wird der OpenTOSCA-Container selbst intern neue Komponenten
beinhalten. Der Ist-Zustand der REST-Schnittstelle des OpenTOSCA-Containers

36

4.3 Schnittstellen

wurde bisher nicht behandelt und soll in Abschnitt 4.8, wenn es um den Entwurf
der verdnderten REST-Schnittstelle geht, aufgezeigt werden.

Der Sollzustand lasst sich durch die Anderungen an Architektur und Schnittstelle
gut beschreiben. Die Umsetzung der in Kapitel 3 identifizierten Anforderungen soll
in mehreren OSGi-Modulen bzw. Komponenten umgesetzt werden. Die Entschei-
dung der Implementierung in mehreren Komponenten wurde getroffen, da nach
einiger Uberlegung klar wurde, dass die Anforderung der Bereitstellung von Links
zu Artefakten eines NodeTemplates (vgl. Abschnitt 3.4.1 auf Seite 33) nicht in den
Tatigkeitsbereich eines Instanzdatenverwaltungs-Dienstes passt. Deshalb wird zum
Einen ein Dienst zur Instanzdatenverwaltung und zum Anderen ein Dienst, der sich
generell mit den weiteren Anforderungen zur Portierbarkeit oder auch Portabilitat
von solchen Anwendungen beschiftigt, entwickelt. Der zusétzliche Dienst wird
im Weiteren Portability-API genannt. Die bisher einzige geplante Operation ist die
Umsetzung der in Abschnitt 3.4.1 geforderten Bereitstellung von Downloadlinks
fiir Artefakte. Diese Schnittstelle soll, sobald weitere Anforderungen ersichtlich
sind, erweitert werden. Diese neuen Komponenten werden auch weitere Anfor-
derungen an die bereits vorhandene TOSCA-Engine stellen, die im Zuge dessen
wihrend der Entwicklung um diese weitere Funktionen erweitert werden muss.
Eine detaillierte Analyse dieser neuen Anforderungen und Funktionen erfolgt in
Abschnitt 4.6. Die geplanten Anderungen der Architektur sind in Abbildung 4.1 in
einer modifizierten Version des bisherigen FMC-Aufbaufdiagramms visualisiert.

Als Ergebnis dieser Arbeit wird der OpenTOSCA-Container um einen Dienst zur
Instanzdatenverwaltung, der seine Daten persistent speichert, erweitert sein. Eben-
so wird er einen Dienst zur Sicherstellung der Portabilitdt von Management-Planen
erhalten, welcher Informationen zu Artefakten bereitstellt. Die Funktionalitit dieser
beiden Dienste wird mittels der bereits bestehenden und in dieser Arbeit zusatzlich
erweiterten REST-API verfiigbar gemacht, wobei diese Implementierung aus den
von der Portability-API generierten Artefakt-Links, die im OpenTOSCA-Container
giiltig sind, allgemein giiltige Referenzen zu Dateien konvertieren muss. Der Grund
fur diese strikte Trennung zwischen internen Schnittstellen und REST-API ist die
Wiederverwendbarkeit und Trennung von Zustdndigkeiten. Falls in einiger Zeit ei-
ne andere Art von Zugriff als die zu implementierende REST-Schnittstelle benotigt
wird kann diese ebenso die interne Dienstschnittstelle nutzen um die Funktionalitat
verfligbar zu machen.

37

4 Entwurf

<<interface>> Legende
lInstanceDataService

+createServicelnstance(ID_CSAR, ID_st): Servicelnstance ID_X Elndeutlge ID fur Typ X

+deleteServiceInstance(ID_si) st ServiceTemplate
+getServicelnstances(ID_si, stName, stID)_ List of nt NodeTemplate
Servicelnstances Si Servicelnstance
+createNodelnstance(ID_nt, ID_si): Nodelnstance ni Nodelnstance

+deleteNodelnstance(ID_ni)
+getNodelnstances(ID_ni, ID_nt, ntName, I1D_si): List of

R — artifactType = {IA, DA}
+getState(ID_ni): State

+setState(ID_ni, State) Properties, State sind noch zu
+getProperties(ID_ni, propertiesLIst): Properties wahlende Datentypen, die

+setProperties(ID_ni, Properties) gleichnamige Information

reprasentieren

<<interface>>

IPortabilityService

+getNodeTemplateArtifacts(ID_CSAR, ID_st, ID_nt,
artifactType, deploymentArtifactName, interfaceName,
operationName): List of Artifacts

Abbildung 4.2: UML-Klassendiagramm der beiden Interfaces IInstanceDataService
und IPortabilityService

4.3 Schnittstellen

Der Entwurf der beiden Schnittstellen orientiert sich sehr stark an Kapitel 3, das
die Anforderungen an die Schnittstellen aufzeigt. Jede dieser Anforderungen wird
durch eine Operation realisiert. Das Resultat dieses Abschnittes ist durch Ab-
bildung 4.2 grafisch dargestellt. Die Entstehung dieser Grafik soll im folgenden
Abschnitt erldutert werden.

Es werden zuerst die Operationen beziiglich Erstellung und Loschung von
Instanzen, also createServiceInstance, deleteServiceInstance, create
NodeInstance und deleteNodeInstance, behandelt. Beim Betrachten der Opera-
tionen fallt auf, dass bei jeder dieser Operationen eine Entitdt genau identifiziert
werden muss. Zum Beispiel muss bei der Erstellung einer Servicelnstance ein be-
stimmtes ServiceTemplate identifiziert werden. Im ersten Schritt dieser Betrachtung
wurden alle zu identifizierten Entititen fiir alle Operationen definiert, danach wur-
den diese Entitdten wiederum durch ihre Identifier (siehe Tabelle 3.2 auf Seite 29)
ersetzt, so dass man die Parameter dieser Operationen erhilt.

38

4.4 Interaktion

Fir die weiteren Operationen getState, setState, getProperties und
setProperties war klar, da es sich um Nodelnstance-spezifische Operationen
handelt, dass hier jeweils genau eine Nodelnstance identifiziert werden muss. Die
beiden set-Operationen benotigen dariiber hinaus auch noch einen Wert, der beim
Ausfiihren der Operation gesetzt werden soll.

Die beiden Methoden getServiceInstances und getNodeInstances stellen
einen Sonderfall dar, da sie nicht direkt eine spezielle Instanz identifizieren sondern
viel mehr Filterkriterien vorgeben, die zur Selektion von Instanzen genutzt werden
sollen. Nach einiger Uberlegung wurde hier der Entschluss gefasst die beiden
Anforderungen "Priifung der Existenz einer Servicelnstance" und "Priifung der
Existenz einer Nodelnstance" zusammen mit den beiden Filtermethoden umzuset-
zen. Das Resultat dieser Entscheidung ist die Aufnahme der Nodelnstance-ID in die
getNodeInstances-Parameter und die Aufnahme der ServicelnstancelD in die
getServiceIlnstances-Parameter. Die weiteren Parameter wurden durch einen
Blick in die gestellten Anforderungen an die Suchmoglichkeiten in Abschnitt 3.2.4
auf Seite 30 und 3.3.6 auf Seite 33 bestimmt.

Die Schnittstelle des PortabilityService hat nur eine Methode, die es ermoglicht
Artefakte eines bestimmten ServiceTemplate eines CSARs abzufragen und nach
gewissen Kriterien zu filtern. Auf die Moglichkeiten der Filterung wurde bereits
ausgiebig in Abschnitt 3.4.1 auf Seite 33 eingegangen, diese sollen hier nicht erneut
ausfiihrlich beschrieben werden.

4.4 Interaktion

Die geplante Interaktion der neuen Schnittstellen mit den bestehenden Komponen-
ten soll anhand eines recht simplen Beispiels zur Erstellung einer Servicelnstance
aufgezeigt werden. Als Grundlage hierfiir nehmen wir die, in Abbildung 2.2 auf
Seite 20, beschriebene Topologie. Diese Betrachtung soll aber, aus Griinden des
Umfangs, auf die Installation der Ubuntu-Nodelnstance beschrankt werden. Der
Aufruf der restlichen Installationen wiirde lediglich das Beispiel sowie die Grafik
vergroflern und kaum zusitzliches Wissen vermitteln.

Das Beispiel betrachtet lediglich die notwendige Arbeit in Zusammenhang mit
der Instanzdaten- und der Portability-API. Es wird davon ausgegangen, dass die
entsprechende CSAR bereits mittels des OpenTOSCA-Containers vollstindig ver-
arbeitet wurde und die Pldne sich so aufrufen lassen. In dem Beispiel wird ein von
einem asynchrones Ubuntu-IA ausgegangen, das eine Install-Methode anbietet, die

39

4 Entwurf

nach Fertigstellung eine Nachricht iiber die erfolgreiche Installation an den Aufru-
fenden schickt. Die Installation wird auf einer entfernten Virtualisierungsplattform
durchgefiihrt, die dafiir eine giiltigen Hypertext Transfer Protocol (HTTP)-Link
zu einem Datentragerabbild des zu installierenden Betriebssystems benotigt. Der
Ubuntu-NodeType hat ein solches Image als DA definiert.

Einige aufgezeigte Funktionen der TOSCA-Engine sind vor der Bachelorarbeit
noch nicht verfiigbar und miissen im Zuge dieser ebenso implementiert werden.
Auf diese Erweiterungen soll in Abschnitt 4.6, der die Erweiterung der TOSCA-
Engine behandelt, eingegangen werden. Bei diesem Beispiel wird aufierdem davon
ausgegangen, dass im ServiceTemplate der Beispieltopologie korrekt die minimale
Anzahl der Instanzen der einzelnen NodeTemplates auf 1 gesetzt ist. Dies hat
zur Folge, dass der Buildplan, der die Topologie aufsetzt, lediglich einen Request
an die Instanzdaten-Engine senden muss, da diese dann bei der Erstellung der
Servicelnstance ebenso die notwendigen Nodelnstances erstellt.

40

|57

c
[]
15 Erstelle
'E‘ Servicelnstance o Bereitstellung der
c und zugehdrige Daten
o S A Nodelnstances |
< 7]] | Datenanfrage zu
h < Request zur einen Ubuntu-Instanz
?1_) Servicelnstance-Erstellung ! |
c ; | ;
‘© | ! |
1< I ' I
O P | | | e m———————————
(@) = | ! [I(-
-% | | | | Generieren von
© | ! | | Link zu Linux.iso
o | ! | |
o | ! |
| |
| | [|
| ' | 1
| | |
. | ! ,
c ! | | |
K| A - Y | '
o I | !
= L L ™
5 Erstelle : : 1
SerV|C§Irlstance Installiere Ubuntu | | Weitere Ingtallationen
mittels | |
- ContainerAPI |
Startereignis | :
T | |
| L .
| |
| |
L]
! |
| I et N —
| |
! |
<—F 4 v
2
. . Ausfiihren der
% Abrufvon Abruf eines Links Installation +
o Instanzdaten zu einer *.iso Ubergabe der 1SO
) . z.B.IP fiir die Installation als Link
Installationsrequest
mit NodelD trifft ein

Abbildung 4.3: Beispielhafter Ablauf eines Build-Plans

uoielsu| ¥y

4 Entwurf

Ablauf des Beispiels zwischen Plan, IA und Container-API

Der Buildplan hat einen relativ einfachen Ablauf, der in Abbildung 4.3 auf Seite 41
ausfiihrlich aufgezeigt wird. Bei diesem Ablauf ruft der Plan erst die Instanzdaten-
komponente der Container-API auf um eine Servicelnstance des ServiceTemplates
zu erstellen. Die Container-API veranlasst, wie im oberen Verantwortlichkeitsbe-
reich (Swimlane) ersichtlich, nun eine Instanziierung der Servicelnstance und aller
zugehorigen Nodelnstances. Daraufhin erhilt der Plan die synchrone Antwort mit
der darin enthaltenen ServicelnstancelD der Servicelnstance. Als ndchster Schritt
wird das Ubuntu-Betriebssystem installiert. Fiir den Plan stellt diese Operation
einen Aufruf des Ubuntu-IA mit anschliefendem Warten auf die asynchrone Fer-
tigstellungsnachricht dar. Die asynchrone Nachricht wird in der Abbildung durch
ein Briefsymbol reprasentiert.

Wihrend der Installationsoperation, die in der unteren Swimlane ablauft, holt das
Ubuntu-IA im ersten Schritt erforderliche Daten beziiglich der Instanz von der In-
stanzdatenkomponente um diese im Anschluss zur Installation des Betriebssystems
zu nutzen. In diesem Beispiel handelt es sich bei diesen Daten exemplarisch um
die IP-Adresse der unterliegenden Virtualisierungsplattform und Zugangsdaten zu
dieser.

Nachdem das IA nun die IP-Adresse und die Zugangsdaten zu der Virtualisierungs-
plattform hat, benétigt es noch das Datentrdgerabbild des Betriebssystems. Diese
Operation wird in Abbildung 4.3 durch die Aktivitdt mit der Bezeichnung "Abruf
eines Links zu einer *.iso fiir die Installation" reprasentiert. Um diese Operation
durchzufiihren geht es an die Portability-Komponente der Container-API heran
und ruft die Methode zur Bereitstellung von Artefakten mit den entsprechenden
Parametern auf. Die Antwort dieses Dienstes enthilt nun einen giiltigen Link zu
dem Datentrdagerabbild, das im Ubuntu-NodeType als DA definiert wurde. Jetzt
kann das Ubuntu-IA die Installation mit allen notwendigen Daten aufrufen.

Nach der Fertigstellung dieser Operation sendet das IA Daten an die Instanzdaten-
Schnittstelle. Bei der Installation entstehen oftmals wichtige Informationen, wie
beispielsweise IP-Adresse oder das zufillig gewédhlte Passwort des Betriebssys-
tems. Diese instanzspezifischen Informationen mdiissen fiir die spatere Verwendung
dauerhaft gespeichert werden. Von diesem Schritt wird aus Griinden der Ubersicht-
lichkeit der Grafik abgesehen, die Moglichkeit dazu soll dennoch erwdhnt werden.
Nach dieser Operation ist die Aufgabe des Ubuntu-IAs erledigt. Es sendet nun eine
Nachricht an den Build-Plan, damit dieser mit eventuellen weiteren Schritten fort-
fahren kann. Im Falle eines Fehlers kann an dieser Stelle, die im Plan durch einen

42

4.4 Interaktion

Brief symbolisiert ist, eine andere Antwort erfolgen, die entweder zum Abbruch
des Plans fithren kann oder von diesem kompensiert werden muss.

Ablauf aus Sicht des Containers

Dieser Abschnitt soll nun ausfiihrlich auf den Ablauf innerhalb des OpenTOSCA-
Containers eingehen und betrachtet hierfiir die folgenden Komponenten des
OpenTOSCA-Containers: Container-API, TOSCA-Engine, Portability-Dienst und
den Instanzdaten-Dienst.

Erstellung der Servicelnstance mittels Container-API

Der gesamte folgende Abschnitt bezieht sich auf den ersten Schritt des Plans
(s. Abbildung 4.3 auf Seite 41: Erstellung einer Servicelnstance inklusive ihrer
dazugehorigen Nodelnstances). Der nun beschriebene Ablauf ist in Abbildung 4.4
auf Seite 45 grafisch dargestellt.

Der Plan ruft die Methode zur Erstellung einer Servicelnstance der REST-
Schnittstelle des Containers auf. Die Container-API ruft nun unmittelbar die
createServiceInstance-Methode des internen InstanceDataService auf und ver-
anlasst so diesen eine Servicelnstance mit den iibergebenen Parametern zu erstellen.
Die Schritte, die nun zuerst ablaufen, sind weitgehend Validierungen der tibermit-
telten Parameter. Dabei wird neben einer Priifung der Werte zusétzlich eine Priifung
der Existenz des, in den Parametern spezifizierten, ServiceTemplates durchgefiihrt.
Dies geschieht indem die TOSCA-Engine nach einer Liste aller ServiceTempla-
tes in der angegebenen CSAR gefragt wird und diese Liste dann nach dem zu
erstellenden ServiceTemplate durchsucht wird.

Im néchsten Schritt werden mittels eines Aufrufs der TOSCA-Engine die
Angaben zur Kardinalitdt der einzelnen NodeTemplates des ServiceTempla-
tes ermittelt. Der Riickgabe-Wert der getInstanceCountsOfNodeTemplates
ByServiceTemplateID-Methode ist eine assoziative Speicherstruktur bzw. Map,
die NodeTemplateIDs und eine Datenstruktur, welche die Minimal- und Maximal-
anzahl beinhaltet, miteinander verkniipft. Mit Hilfe dieser Map und der darin
enthaltenen Datenstruktur kann eine Schleife initialisiert werden, die fiir alle in
dem ServiceTemplate enthaltenen NodeTemplates genau so viele Nodelnstances
erstellt wie mittels der Minimalanzahl spezifiziert. Nachdem dieser Schritt abge-
schlossen ist wurden die Servicelnstance und die dazugehorigen Nodelnstances

43

4 Entwurf

erfolgreich erstellt. Der InstanceDataService gibt das erstellte ServiceInstance-Objekt
an die Container-API zuriick, welche dann als letzten Schritt einen Link zu dieser
Servicelnstance generiert, der dann letztendlich dem Plan als Antwort zuriickge-
sendet wird.

Dieses Beispiel ldsst sich auch die Erstellung von Nodelnstances iibertragen, da
diese beiden Operationen sehr dhnlich sind und sich weitgehend nur durch die
Wahl der Parameter unterscheiden. Deshalb soll an dieser Stelle auch kein weiteres
Beispiel zur Erstellung einer Nodelnstance erfolgen.

Abruf von Instanzdaten mittels Container-API

Dieser Abschnitt bezieht sich auf die beispielhafte Operation zum Abruf von In-
stanzdaten in Abbildung 4.3 auf Seite 41. Wie diese Operation im OpenTOSCA-
Container umgesetzt werden soll wird in Abbildung 4.5 auf Seite 46 verdeutlicht.
Hierbei schickt der Plan eine getProperties-Anfrage an die Container-API. Diese
Anfrage enthilt einerseits die NodelnstancelD und andererseits eine Liste der Pro-
perties, die der Plan vom Container benétigt. In der Abbildung ist der Parameter
null gewdhlt, dies bedeutet in der Praxis, dass der Service alle fiir diesen Knoten
bekannten Properties zurtickgeben wird. Falls hier Properties in dieser Liste spezifi-
ziert werden, generiert der InstanceDataService ein eigenes Properties-Element,
das er dann mit den in der Liste angegebenen Werten befiillt. Dieser Parameter
bietet also die Moglichkeit sich nur die Werte, die wirklich benotigt werden, zurtick-
geben zu lassen. Die Container-API ruft den internen InstanceDataService auf,
der im ersten Schritt die Nodelnstance inklusive der dazugehorigen Instanzdaten
ladt. Falls die im Aufruf {ibergebene Properties-Liste gefiillt ist, ist noch eine Filte-
rung der Properties notwendig. Dies wird gelost, indem ein neues XML-Dokument
erzeugt wird und alle in der Liste enthaltenen Properties in dieses neue Dokument
hineinkopiert werden. Am Ende wird das Properties-Dokument der Nodelnstance
bzw. das soeben neu erstellte, mit den gefilterten Properties gefiillte, Dokument
zuriickgeben. Die REST-API gibt das erhaltene Dokument an den aufrufenden Plan
weiter.

Abruf von Links zu Artefakten mittels Container-API

Die Operation zum Abruf eines Links zu einer *.iso fiir die Installation (s. Abbil-
dung 4.3 auf Seite 41) beschiftigt sich mit der Beschaffung eines Links zu einem

44

4.4 Interaktion

o -
Container-
API InstanceData TOSCA-
Plan (REST- Service Engine
Schnittstelle)
T T T
| | |
| | |
I createServicelnstance : : :
SAR_ID, serviceTemplate_ID

L (CAR s _ﬁk)l createServicelnstance | |
| | (CSAR_ID, serviceTemplate_ID)! |
| | o |
!] gl I
! | |
! I I) I
| | | validate Parameters() |
| I I
: ! ! getToscaReferenceMapper(). !
| : : getServiceTemplatelDsContai nedInCSAR(CSAR_ID):
»'
I |] g
| | | _ serviceTemplatelDs |
! | e 1
! I I I
! I I
| [[check if serviceTemplatelDs contains [
: : [serviceTemplate_ID :
| | | |
I | | |
| | | getinstanceCountsOfNodeTemplates |
| | | ByServiceTemplatelD(CSAR_ID, serviceTemplate_ID)|
: I f P
| : le counts<NtemplatelD, min&maxCount>— — — — — —:
| I I
! [[createServicelnstance [
: : | (CSAR_ID, serviceTemplate_ID) :
! | L |
: I Schleife J I
| |
: | [for ¢ach counts] |
| s |
| | Schleife J |
I | |
: | [for countminCount] |
| | |
! I I
| | | createNodelnstance |
| | | (count.name, servicelnstance) |
| I I
! I 1 I
| I | I
| <servicelnstance- — — — — — 1 |
[. | | |
IKllnk to servicelnstance- — — — 9 | |
l l

Abbildung 4.4: UML-Sequenzdiagramm: Servicelnstance-Erstellung innerhalb des

OpenTOSCA-Containers

45

4 Entwurf

@) .
Container-
@ API InstanceData
| (REST- Service
Plan Schnittstelle)
T

H getProperties

l (nodelnstancelD, null)

T
I
I
I
I
I
I
ol
>

|

|

|

|
L ;I getProperties
: null bedeutet hier, | (nodelnstancelD, null)
| dass alle Werte |
| zuriickgegeben I
| werden : |
| | | retrieve nodelnstance with nodelnstancelD
! I I
| | |
: : optional I
: : :[propertiesList 1= null]
: | building new
| : : properties-Element only
| | | containing required values
| I
! I |
| I I
| I I
| I I
| I I
! I I
: |~ -properties— — — — — — — H

| |
| I I
k< — properties — — — — — — — - I

|

Abbildung 4.5: UML-Sequenzdiagramm: Abruf von Instanzdaten innerhalb des
OpenTOSCA-Containers

DA. Die Portability-Komponente der Container-API stellt eine Methode mit dieser
Funktionalitdt zur Verfiigung. Die genaue Funktionsweise wird in Form des Ab-
lauf eines Aufrufs aus Sicht des OpenTOSCA-Containers in Abbildung 4.6 auf der
néchsten Seite dargestellt.

In der Abbildung erkennt man, dass das IA die Container-API mittels der
getNodeTemplateArtifacts-Methode aufruft und dabei artefaktspezifische Pa-
rameter tibergibt. Die Container-API ruft intern die getNodeTemplateArtifacts-
Methode des zustandigen Portability-Dienstes auf, welcher sich dann um die Er-
stellung der Liste mit den entsprechenden Links kiimmert. Im Detail geschieht dies

46

4.4 |Interaktion

o
Container-
API Portability TOSCA-
(REST- Service Engine
m Schnittstelle)
T
getNodeTemplateArtifacts !

(CSARL_ID, serviceTemplate_ID,

I "DA""ubuntuNT","ubuntu.iso”, |
L null, null) |
|

>

Aufruf um ubuntu.iso

getNodeTemplateArtifacts(...)

getNodeTypeOfNodeTemplate

DeploymentArtifact vom
NodeTemplate ,ubuntuNT*
zu erhalten

filtered Artifacts
I<_

Generate valid
| HTTP-Links
| refering to
REST-Fileservice

list of links to Artifacts |

Parameter s. REST-Aufruf

»
v (CSAR_ID, serviceTemplate_ID, "ubuntuNT")
>
nodeType
S e -
| |
: getNodeTypelmplementationsOfNodeType :
| (CSAR_ID, nodeTypeOfNodeTemplate) |
| gl
e _nodeTypelmplementations _ _ _ _ _ _ _ _ _ |
|
Schleife
|[for each nodeTypelmplentation]
getResolvedArtifacts OfNodeTypelmplementation
(csarlD, nodeTypelmplementation.name)
resolvedArtifacts

|

|

| add resolvedArtifact
| to list

|

| filter list of Artifacts
| by specified
| Parameters
|
|

Abbildung 4.6: UML-Sequenzdiagramm: Abruf von Links zu Artefakten innerhalb
des OpenTOSCA-Containers

47

4 Entwurf

durch enge Zusammenarbeit mit der TOSCA-Engine, da diese alle Informationen
beztiglich des ServiceTemplates besitzt.

Im ersten Schritt besorgt sich die Portability-API den NodeType des in den Parame-
tern spezifizierten Templates, um im Anschluss mittels dieser Information alle Node-
Typelmplementations des NodeTypes zu erfragen. Fiir alle NodeTypelmplementations
werden nun, mit Hilfe der getResolvedArtifactsOfNodeTypeImplementation-
Methode der TOSCA-Engine, alle resolvedArtifacts in einer Liste gesammelt.
ResolvedArtifact ist eine Datenstruktur, welche bereits aufgeloste Referenzen,
also keinerlei Referenzen selbst mehr enthilt. Bei dem Inhalt kann es sich aber um
artefaktspezifischen Inhalt (ArtifactSpecificContent) oder um den relativen Pfad zur
Datei innerhalb der CSAR handeln, mehr dazu aber im Abschnitt 4.5.

Die erstellte Liste wird im Anschluss entsprechend den spezifizierten Parametern
gefiltert und zuriick an die Container-API gegeben. Die zuriickgegebene Liste
enthélt wie bereits erwdhnt entweder ArtifactSpecificContent oder eine innerhalb
der CSAR giiltige Referenz. Der ArtifactSpecificContent kann direkt zuriickgegeben
werden, die relative Referenz muss allerdings noch umgewandelt werden, da
einem IA diese Information nicht gentigt. Das IA benotigt zur Verwendung der
Schnittstelle einen giiltigen Link zur Datei auf die referenziert wird.

Deshalb wird in der Container-API nun fiir jede Referenz ein entsprechender Link
zur REST-Schnittstelle des FileServices generiert, an dem die Datei mittels HTTP-
Request fiir das IA abrufbar ist. Diese modifizierte Liste gibt die Container-API nun
an das aufrufende IA zuriick, das mit den zur Verfiigung gestellten Informationen
weiterarbeiten kann.

4.5 Analyse der Beschaffenheit von Artefakten in TOSCA

Die Beschreibung der letzten Operation hat noch einige Fragen offen gelassen. Die
getResolvedArtifacts-Methode erscheint noch recht abstrakt, welche Funktion
diese Methode genau hat soll im Folgenden erldutert werden.

Um die Funktion genau zu definieren erscheint es sinnvoll zuerst einen Blick in
die TOSCA [OAS13] zu werfen und die Moglichkeiten zur Definition von IAs und
DAs genauer zu analysieren.

Die zu implementierende Funktion muss auf jeden Fall alle fiir das NodeTemplate
relevanten Artefaktinformationen liefern. Diese Informationen setzen sich aus zwei

48

4.5 Analyse der Beschaffenheit von Artefakten in TOSCA

referenziert via "nodeType"-Attribut

referenziert via "type"-Attribut

artifactSpecific
Content

artifactSpecific
Content
artifactReference

artifactReference

V referenziert auf

artifactSpecific
Content
artifactReference

artifactReference
reference="folder/
file.extension”

artifactReference

“ o«

reference="...

Abbildung 4.7: Referenzierung von DAs, IAs und deren ArtifactSpecificContent

strukturell unterschiedlichen Typen zusammen. Zum Einen kann ein Artefakt soge-
nannten ArtifactSpecificContent haben, in dem der Inhalt eines Artefaktes direkt
definiert wird. Es handelt sich also um eine Moglichkeit ein Artefakt direkt im
entsprechenden Template zu definieren. Diese Moglichkeit kann genutzt werden
um zum Beispiel einen Link oder einen Namen eines entfernt vorhandenen Images
anzugeben oder direkt im Template ein Skript zu verfassen, das als Artefakt dient.
Zum Anderem besteht die Moglichkeit in einer Definition eines Artefaktes auf ein
sogenanntes ArtifactTemplate zu referenzieren. In diesem bestehen viele weitere
Moglichkeiten ein Artefakt genauer zu beschreiben, hier soll aber primér auf die

49

4 Entwurf

Listing 4.1 Beispielhafte Definition eines DA mit artifactSpecificContent, einer
NodeTypelmplementation und eines ArtifactTemplates, das von dem DA und dem
IA der NodeTypelmplementation referenziert wird

<NodeTemplate id="myApp" name="myApplication" type="types:ApplicationType">

<DeploymentArtifacts>
<DeploymentArtifact artifactRef="myNamespace:myScript"
artifactType="types:script" name="myScript">
<ArtefaktSpezifischerTag>irgend ein
Text</ArtefaktSpezifischerTag>
</DeploymentArtifact>
</DeploymentArtifacts>
</NodeTemplate>

<NodeTypeImplementation name="myNodeTypeImpl" nodeType="types:NodeType">
<ImplementationArtifacts>
<ImplementationArtifact artifactRef="myNamespace:myScript
artifactType="types:script"/>
</ImplementationArtifacts>
</NodeTypeImplementation>

n

<ArtifactTemplate id="myScript" type="type:Script">
<ArtifactReferences>
<ArtifactReference reference="IAs/Scripts/myScript.sh"/>
<ArtifactReference reference="IAs/Scripts/myScript.bat"/>
</ArtifactReferences>
</ArtifactTemplate>

Moglichkeit der Referenzierung innerhalb der CSAR eingegangen werden. Im Arti-
factTemplate ist es moglich eine Liste von Referenzen anzugeben, die auf Dateien
innerhalb der CSAR verweisen. Listing 4.1 zeigt einen Auszug eines ServiceTem-
plates, das neben einem DA mit ArtifactSpecificContent exemplarisch zeigt, wie
ein ArtifactTemplate von einem IA referenziert wird.[OAS13]

4.6 Erweiterung der TOSCA-Engine

Dieser Abschnitt beschaftigt sich mit der Erweiterung der bereits bestehenden
TOSCA-Engine. Diese muss, um die beiden neuen Dienste zur Bereitstellung der
Artefakte und der Instanzdaten mit ausreichend Daten und Informationen zu
versorgen, erweitert werden.

50

4.7 Persistenz

Die beiden Dienste werden Funktionen bendtigen um sowohl Informationen be-
ztiglich NodeTemplates und NodeTypelmplementations abzufragen, als auch die
Moglichkeit bieten Referenzen auf ArtifactTemplates aufzulosen. Viele dieser Me-
thoden sind bereits vorhanden und in der existierenden Implementierung der
Schnittstelle bereits funktionsfahig. Nach ausgiebiger Analyse konnten die zusétz-
lich benétigten Methoden identifiziert werden. Abbildung 4.8 auf Seite 52 zeigt
die bestehende Schnittstelle der OpenTOSCA-Engine inklusive der im Laufe der
Arbeit aufgenommenen Methoden.

Es ist erkennbar, dass die TOSCA-Engine die benotigten Funktionen fiir
den Dienst zur Verwaltung der Instanzdaten weitgehend bereits besitzt. Ein-
zig die Funktionen getNameOfReference, die bendétigt wird um das Name-
Attribut der Service- oder NodeTemplates zu bestimmen, getInstanceCounts
OfNodeTemplatesByServiceTemplateID, welche die Mindest- und Maximal-
anzahl fiir Instanzen von gewissen NodeTemplates eines ServiceTemplates liefert,
und doesNodeTemplateExist, die lediglich tiberpriift ob ein NodeTemplate in
einem ServiceTemplate existiert, miissen hinzugefiigt werden.

Hauptteil der Erweiterung werden dementsprechend, die fiir die Portability-API be-
notigten Funktionen getResolvedArtifactsOfNodeTemplate und getResolved
ArtifactsOfNodeTypeImplementation sein, welche sich um die Dereferen-
zierung der Artefaktreferenzen innerhalb von NodeTemplate und NodeType-
Implementation kiimmern werden (vgl. Abbildung 4.7 auf Seite 49). Der Riick-
gabewert dieser Methoden wird eine Datenstruktur sein, die sowohl DAs als auch
IAs inklusive deren ArtifactSpecificContent und den Inhalt der referenzierten Arte-
factTemplates enthalten wird.

4.7 Persistenz

Die Anforderungen an die Persistenz der beiden Dienste sind sehr unterschiedlich.
Die Portability-API muss ihre Daten nicht persistent speichern, da sie implizit die
Persistenz der TOSCA-Engine nutzt. Sie hat keine zusétzlichen Informationen und
gibt lediglich aufbereitete Funktionen der TOSCA-Engine weiter und macht diese
verfiigbar. Ganz anders sieht dies beim Dienst zur Verwaltung der Instanzdaten
aus, dessen Daten miissen persistent gehalten werden. Diese Daten miissen nicht
nur gespeichert werden, sondern sie miissen bei den Anfragen auch nach gewissen
Kriterien gefiltert werden konnen. Aus diesem Grund sollen die Daten in einer

51

4 Entwurf

<<interface>>

IToscaEngineService

7| +clearCSARContent(CSARID)

+getToscaReferenceMapper()

+resolveDefinitions(CSARID)
+getReferencedNodeTypesOfAServiceTemplate (CSARID, QName)
+getNodeTypelmplementationsOfNode Type(CSARID, QName)
+getimplementationArtifactNamesOfNodeTypelmplementation
+getRequiredContainerFeaturesOfANodeTypelmplementation (CSARID, QName)
+getArtifactType OfAlmplementationArtifact(CSARID, QName, String)
+getArtifactTemplate OfAlmplementationArtifact(CSARID, QName, String)
+getArtifactSpecificContentOfAlmplementationArtifact (CSARID, QName, String)
+getPropertiesOfAArtifactTemplate(CSARID, QName)
+getPropertyConstraintsOfAArtifactTemplate (CSARID, QName)
+getArtifactsOfAArtifactTemplate (CSARID, QName)
+getNodeTypeOfNodeTemplate(CSARID, QName, String)

_| +getPropertiesOfNodeTemplate(CSARID, QName, String)

Bereits bestehende Schnittstelle
der OpenTOSCA-Engine
N

+getResolvedArtifactsOfNodeTemplate (CSARID, QName)
+getResolvedArtifactsOfNodeTypelmplementation(CSARID, QName)
+getNameOfReference(CSARID, QName)
+getinstanceCountsOfNodeTemplatesByServiceTemplatelD(CSARID, QName)
+doesNodeTemplateExist(CSARID, QName, String)

Neue Methoden
der Schnittstelle

Abbildung 4.8: UML-Klassendiagramm der TOSCA-Engine Schnittstelle nach der
Erweiterung im Zuge der Entwicklung

Datenbank gespeichert werden, mit deren Hilfe spéater auch der Filtermechanismus
umgesetzt werden soll.

An vielen Stellen der Implementierung des OpenTOSCA-Containers werden bereits
Daten persistent gespeichert, an diesen Stellen wird bereits auf eine Datenbank
zur Speicherung zuriickgegriffen. Die bestehende Implementierung nutzt Eclipse
Link!, die Referenzimplementierung der Java Persistence API (JPA) in Kombination
mit einer lokalen Derby?-Datenbank.

Im Abschnitt 3.5.2 auf Seite 34, der die Integration in bestehende Dienste beschreibt,
wurde bereits erwédhnt, dass die Entwicklung der neuen Dienste sich homogen
in die bestehende Architektur integrieren soll. Nach erfolgreicher Analyse der

1Eclipse Link: http://www.eclipse.org/eclipselink
2Apache Derby: http://db.apache.org/derby/

52

http://www.eclipse.org/eclipselink
http://db.apache.org/derby/

4.8 REST

Servicelnstance Nodelnstance
-serviceTemplateID -nodelnstancelD
-createdAt PR -createdAt
-servicelnstancelD 1 0.*| -nodeTemplatelD
-serviceTemplateName -nodeTemplateName
-nodelnstances -nodeType
+getter/setter -properties

-State
-servicelnstance
+getter/setter

Abbildung 4.9: UML-Klassendiagramm der Servicelnstance- und Nodelnstance-
Klasse

Umsetzbarkeit der geforderten Funktionalitdt mittels EclipseLink, wurde sich an
dieser Stelle fiir den Einsatz dieser Persistenzmoglichkeit entschieden.

Das Datenmodell des zu entwickelten Instanzdaten-Dienstes besteht nur aus
Service- und Nodelnstances. Servicelnstances besitzen folgende Attribute: Eindeu-
tige ServicelnstancelD, Erstelldatum, ServiceTemplatelD, ServiceTemplateName
und eine Liste aller zugehorigen Nodelnstances.

Nodelnstances bestehen aus eindeutiger NodelnstancelD, NodeTemplatelD und
NodeTemplateName des zugehorigen Templates, zugehorigen NodeType, Erstell-
datum, der zugehorigen Servicelnstance und aufserdem State und Properties der
Instanz. Auf die genaue Umsetzung dieses Businessmodells mittels JPA soll bei der
Implementierung in Abschnitt 5.2 auf Seite 67 eingegangen werden. Die Struktur
der beiden Klassen ist im Klassendiagramm in Abbildung 4.9 dargestellt.

4.8 REST

Dieser Abschnitt geht auf die Erweiterung der REST-Schnittstelle ein. Abbil-
dung 4.10 auf der ndchsten Seite zeigt die erweiterte REST-Schnittstelle des
OpenTOSCA-Containers inklusive des schemenhaften Ist-Zustandes. Die API soll
zwei weitere Pfade erhalten "/instanceData" und "/portability". Die Verwendung
der Ressourcen ist, wie bei REST generell, selbsterklarend.

53

4 Entwurf

bisherige nodelnstances/
Schnittstelle

-l servicelnstances/
_-) rtifaCtS/

Abbildung 4.10: Erweiterung der REST-Schnittstelle des OpenTOSCA-Containers

54

4.8 REST

Der InstanceData-Pfad soll alle Anfragen beziiglich der Instanzdaten-Engine ver-
walten, hierzu beinhaltet der Pfad auf oberster Ebene zwei weitere Pfade, die
Zugriff auf Nodelnstances und Servicelnstances liefern. Einer dieser Pfade ist der
Nodelnstances-Pfad. Er bietet die Operationen GET und POST an um einerseits
mittels GET und der Angabe von Filterparametern eine gefilterte Liste von No-
delnstances zu erhalten und andererseits die Erstellung von Nodelnstances, also
die Instanziierung von NodeTemplates, zu ermoglichen. Um Zugriff auf instanz-
spezifische Operationen zu erhalten wird an den Nodelnstances-Pfad die ID der
entsprechenden Instanz angehédngt. An diesem dynamischen Pfad kann ein GET
abgesetzt werden um Informationen zu der Instanz zu erhalten, ein DELETE 16scht
die der Identifier (ID) entsprechende Nodelnstance. Zugriff auf die Properties
und den State geschieht durch die zum instanzspezifischen Pfad relativen Pfade
"/properties" und "/state". Auf diesen Ressourcen sind GET und PUT-Operationen
moglich um die jeweiligen Informationen abzufragen oder zu tiberschreiben. Der
Nodelnstances-Pfad ist in Abbildung 4.10 in der oberen rechten Ecke inklusive aller
untergeordneten Pfaden und Ressourcen dargestellt.

Ahnlich wie bei den Nodelnstances sieht dies bei den Servicelnstances aus. Auf dem
Servicelnstances-Pfad sind GET und POST-Operation moglich. Die GET-Operation
liefert eine Liste, die den Anfrageparametern entsprechenden Servicelnstances
beinhaltet. Mittels POST-Operation kénnen an dieser Stelle Servicelnstances erstellt
werden. Relativ zu diesem Pfad existiert ein dynamischer Pfad, der durch Angabe
der ServicelnstancelD einen Link zu einer spezifischen Servicelnstance darstellt.
Auf dieser Ressource sind wieder die beiden Operationen GET, um Informationen
zu der spezifizierten Servicelnstance zu ermitteln, und DELETE, um die spezifizier-
te Servicelnstance und all ihre zugehorigen Nodelnstances zu 16schen, moglich. Der
Servicelnstance-Pfad ist, ebenso wie der Nodelnstances-Pfad, in Abbildung 4.10
dargestellt.

Die Portability API ist unter dem Pfad "/portability" erreichbar. Sie ist um unteren
Bereich der Abbildung 4.10 dargestellt und bietet unter dem Pfad "/artifacts"
eine GET-Operation an, die es ermoglicht Artefakte anhand von Parametern zu
ermitteln.

Verlinkung mittels XLink

REST beabsichtigt darzustellen, wie sich gut konzipierte Web Anwendungen ver-
halten. Es wird ein Netzwerk von Hypermedia Dokumenten, also z.B. Webseiten,
beschrieben, in dem der Benutzer voranschreitet indem er Links zwischen diesen

55

4 Entwurf

Listing 4.2 Beispielhafte Umsetzung der XLink-Spezifikation

<?xml version="1.0" encoding="UTF-8" standalone="vyes"?>
<ns:root xmlns:xlink="http://www.w3.0rg/1999/x1ink"
xmlns:ns="http://example.com">
<ns:self xlink:href="http://mydomain.com" xlink:title="meine Webseite"
xlink:type="simple" />
</ns:root>

Webseiten auswéahlt [Fie00]. Eine REST-API soll dabei unabhingig von statischen
Ressourcenamen sein, es muss jediglich der Einstiegspunkt der Anwendung be-
kannt sein, der es ermoglicht weitere Ressourcen aufgrund der gelieferten Links
zu erschlieflen. [Fie08] Eine der Konsequenzen dieser Anforderung ist neben der
Verlinkung einzelner Ressourcen, das Zuriickgeben von Links als Ergebnis von
Erstelloperationen.

Die Beschaffenheit dieser generierten Links muss um die maschinelle Verarbei-
tung sicherzustellen einem Standard entsprechen. Die World Wide Web Consor-
tium (W3C) definiert fiir die Verlinkung innerhalb XML-Dokumenten einen Stan-
dard namens XML Linking Language (XLink)® zur Verfiigung. XLink liegt mitt-
lerweile seit Mai 2010 in der Version 1.1 vor und ermdglicht es zwischen Ressour-
cen zu verlinken und diese Links mittels geeigneten Abfragesprachen einfach zu
extrahieren.[WDMO10]

Um fir unseren Verwendungszweck ausreichende Links nach der XLink-
Spezifikation zu erstellen gentigt es es einen Link vom simple-Typ zu erstellen,
der die Attribute href und title besitzt. Dabei gibt href den Ort und title den
Namen der referenzierten Ressource an. [WDMO10] Ein Beispiel fiir die Art der
wiahrend der Implementierung einzusetzenden Verlinkung stellt Listing 4.2 dar.

Ruckgabetypen der REST-Schnittstelle

Die bisherigen Pfade der OpenTOSCA-REST-Schnittstelle geben ihre Ergebnisse als
reinen Text, genauer gesagt als String, zurtick oder nutzen zur Riickgabe struktu-
rierte Informationen im XML-Format. Im Bezug auf die Konsistenz der Schnittstelle
waire ein anderes Verhalten an dieser Stelle sehr schlecht, deshalb werden die beiden
Pfade dies auch auf diese Art handhaben.

3XLinkSpeziﬁkation:http://www.wS.org/TR/xlinkll/

56

http://www.w3.org/TR/xlink11/

4.8 REST

Listing 4.3 Beispielhafte Riickgabe der GET-Operation auf dem Nodelnstances-
Pfad

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:NodeInstancelList xmlns:nsl="http://www.w3.0org/1999/x1ink"
xmlns:ns2="http://opentosca.org/api/pp">
<ns2:self nsl:href="http://localhost:1337/containerapi/
instancedata/nodeInstances"” nsl:title="self" nsl:type="simple"/>
<ns2:nodeinstances>
<ns2:1ink
nsl:href="http://localhost:1337/containerapi/instancedata/
nodeInstances/1" nsl:title="1" nsl:type="simple"/>
<ns2:1ink
nsl:href="http://localhost:1337/containerapi/instancedata/
nodeInstances/10" nsl:title="10" nsl:type="simple"/>
<ns2:1ink
nsl:href="http://localhost:1337/containerapi/instancedata/
nodeInstances/11" nsl:title="11" nsl:type="simple"/>
</ns2:nodeinstances>
</ns2:NodeInstancelist>

Aus Abschnitt 4.8 folgt die Anforderung, dass POST-Operationen einen Link auf
die durch die Operation erstellten Objekte liefern. Delete-Operationen hingegen
sollen, falls die Operation erfolgreich war, ein OK zurtickgeben. Da diese simplen
OK- und Zeichenketten-Riickgabewerte alle recht selbsterkldarend sind und auf
die Verlinkung bereits im vorhergehenden Abschnitt 4.8 ausreichend eingegangen
wurde, soll im folgenden Abschnitt auf die speziellen Riickgabetypen der einzelnen
GET-Operationen eingegangen werden. Dabei sollen die GET-Operationen der
/modelnstances-, /servicelnstances- und /portability/artifacts-Pfade getrennt betrachtet
werden.

GET-Operationen Riickgabewerte des Nodelnstance-Pfads

Der Nodelnstance-Pfad hat insgesamt vier GET-Operation. Die GET-Operation
des Nodelnstances-Pfad selbst, die GET-Operation auf dem dynamischen ID-Pfad
und die beiden GET-Operation auf State- und auf dem Properties-Pfad. Die GET-
Operation auf dem Nodelnstances-Pfad wird Links zu den im Aufruf passenden
Nodelnstances liefern. Ein beispielhafter Riickgabewert dieser Operation ist in
Listing 4.3 ersichtlich.

Die GET-Operation auf dem dynamischen ID-Pfad liefert Informationen beziiglich
einer spezifischen Nodelnstance mit der im Pfad spezifizierten ID. Die Operationen

57

4 Entwurf

Listing 4.4 Beispielhafte Riickgabe der GET-Operation auf dem dynamischen
Nodelnstances-ID-Pfad
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:NodeInstance xmlns:nsl="http://www.w3.0rg/1999/x1ink"
xmlns:ns2="http://opentosca.org/api/pp"
created-at="2013-08-10T09:54:55.038+02:00"
nodeInstanceID="http://opentosca.org/nodetemplates/instances/1"
nodeTemplateID="{http://www.example.com/demo}MySql"
nodeTemplateName="MySQL" servicelnstancelD=
"http://opentosca.org/servicetemplates/instances/1">
<ns2:Link nsl:href="http://localhost:1337/containerapi/instancedata/
nodeInstances/1" nsl:title="self" nsl:type="simple"/>
<ns2:Link nsl:href="http://localhost:1337/containerapi/instancedata/
servicelnstances/1" nsl:title="ServiceInstance" nsl:type="simple"/>
<ns2:Link nsl:href="http://localhost:1337/containerapi/instancedata/
nodeInstances/1/properties” nsl:title="Properties"
nsl:type="simple" />
<ns2:Link nsl:href="http://localhost:1337/containerapi/instancedata/
nodeInstances/1/state" nsl:title="State" nsl:type="simple"/>
<ns2:NodeType>{http://www.example.com/ToscaTypes}MySqlType</ns2:NodeType>
</ns2:NodeInstance>

liefern neben vielen Informationen, in Form von Attributen, noch einige Links zu
zugehoriger Servicelnstance, Properties und State. Ein beispielhafter Riickgabewert
ist in Listing 4.4 dargestellt.

Die GET-Operation auf dem State-Pfad liefert lediglich den State zurtick in dem die
Nodelnstance sich gerade befindet. Dies ist im Generellen ein QName wird aber
als String zurtickgeliefert. REST sieht dafiir den Datentyp text/plain vor, der an
dieser Stelle dafiir auch benutzt werden wird.

Letzte Operation dieses Abschnitts ist die GET-Operation des Properties-Pfads.
Abhingig von den Parametern gibt er die Properties der, mittels des Pfads spe-
zifizierten, Nodelnstance zurtick. Je nachdem ob die Riickgabe der Properties
mittels der Parameter eingeschrankt ist, gibt die REST-Schnittstelle das gesamte
Properties-Document zuriick oder generiert aus den in den Parametern ange-
geben Properties-Namen ein neues Dokument, das die spezifizierten Properties
enthalt.

Die Struktur des Riickgabewert hdngt einerseits von der Beschaffenheit der Default-
Properties in der Definition im ServiceTemplate ab und andererseits davon ob
einschrankende Parameter in der Anfrage definiert wurden. Wenn Parameter in der
Abfrage spezifiziert wurden ist der Riickgabewert ein neues Dokument in einem

58

4.8 REST

Listing 4.5 Beispielhafte Riickgabe der GET-Operation auf dem Properties-Pfad
einer Nodelnstance mit spezifiertem List-Parameter

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Properties>
<demo:AdminUser
xmlns:demo="http://www.example.com/demo">admin</demo: AdminUser>
<demo :AdminPassword
xmlns:demo="http://www.example.com/demo">admin</demo:AdminPassword>
</Properties>

Listing 4.6 Beispielhafte Riickgabe der GET-Operation auf dem Servicelnstances-
Pfad

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:ServicelInstancelist xmlns:nsl="http://www.w3.0rg/1999/x1ink"
xmlns:ns2="http://opentosca.org/api/pp">
<ns2:serviceinstances>
<ns2:1ink nsl:href="http://localhost:1337/containerapi/
instancedata/servicelInstances/1" nsl:title="1"
nsl:type="simple" />
</ns2:serviceinstances>
</ns2:ServiceInstancelList>

eigenen zur Portability-API gehorendem Namespace. Ein Beispiel fiir diesen Fall
stellt Listing 4.5 dar. Falls keine Parameter angegeben werden hangt der Riickgabe-
wert zu stark von den definierten Properties ab, so dass hier an dieser Stelle kein
weiteres reprasentatives Beispiel gegeben werden kann.

GET-Operationen Riickgabewerte des Servicelnstance-Pfads

Die GET-Operationen des Servicelnstance-Pfads verhalten sich recht dhnlich wie
die des Nodelnstance-Pfads. Ein GET auf der Servicelnstances-Ressource selbst
gibt eine Liste von Servicelnstances, die mittels Filterparametern noch weiter ein-
geschrankt werden konnen. Eine beispielhafte Riickgabe dieser Operation ist in
Listing 4.6 abgebildet. Ein GET auf dem dynamischen ID-Pfad gibt, &hnlich wie
beim Nodelnstance-Pfad, Informationen zu der mittels ID spezifizierten Serviceln-
stance zurtick. Ein fiir diese Operation beispielhafter Riickgabewert ist in Listing 4.7
auf der ndchsten Seite enthalten.

59

4 Entwurf

Listing 4.7 Beispielhafte Riickgabe der GET-Operation auf dem dynamischen
Servicelnstance-Pfad
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:ServicelInstance xmlns:nsl="http://www.w3.0rg/1999/x1ink"
xmlns:ns2="http://opentosca.org/api/pp"
created-at="2013-08-09T18:31:54.196+02:00" csarID="SugarCRM3.csar"
serviceInstanceID="http://opentosca.org/servicetemplates/instances/1"
serviceTemplateID=
"http://www.example.com/demo}SugarCRM_CSPRDO1_ServiceTemplate"
serviceTemplateName="SugarCRM (CSPRD01) Service Template'>
<ns2:Link nsl:href="http://localhost:1337/containerapi/instancedata/
servicelnstances/1" nsl:title="self" nsl:type="simple"/>
<ns2:nodelInstances>
<ns2:nodeInstance
nsl:href="http://localhost:1337/containerapi/instancedata/
nodeInstances/1"
nsl:title="http://opentosca.org/nodetemplates/instances/1"
nsl:type="simple"/>
<ns2:nodelnstance
nsl:href="http://localhost:1337/containerapi/instancedata/
nodeInstances/2"
nsl:title="http://opentosca.org/nodetemplates/instances/2"
nsl:type="simple" />
</ns2:nodeInstances>
</ns2:Servicelnstance>

GET-Operationen Riickgabewerte des Portability-Pfads

Der Portability-Pfad hat, wie bereits erwdhnt, die alleinige Funktion zur Abfrage
von Artefakten, welche unter dem Artifact-Pfad mittels eines GET-Requests
nutzbar ist. Die Abfrage kann mittels Parametern gezielt eingeschrankt werden. Ein
Beispiel fiir diese Art von Riickgabewert ist in Listing 4.8 auf der ndchsten Seite zu
sehen. Auffillig hierbei ist der im references-Tag (Auszeichner) enthaltene Pfad,
der einen Downloadlink des Artefakts darstellt. Dieser muss auf Grundlage des
von der internen Portability-API erhaltenem Pfads berechnet werden. Auf diese
notwendige Umwandlung soll im folgendem Abschnitt 4.8 eingegangen werden.

60

4.8 REST

Listing 4.8 Beispielhafte Riickgabe der GET-Operation auf dem Artifact-Pfad

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Artifacts xmlns="http://opentosca.org/planportability/rest">
<deploymentArtifacts/>
<implementationtArtifacts>
<implementationArtifact operationName="ConfigureScript"
type="{http://www.example.com/ToscaTypes}Script">
<references>
<ref>http://localhost:1337/containerapi/CSARs/
SugarCRM3.csar/Content/IAs/Scripts/ApacheWebServer/
install.sh</ref>
</references>
</implementationArtifact>
</implementationtArtifacts>
</Artifacts>

Listing 4.9 Beispielhafte Konvertierung einer relativen Pfadreferenz in eine absolute

Referenz
Relativer Pfad
"TIAs/Scripts/ApacheWebServer/install.sh"
=> Absolute Referenz:
"http://<Host URL des Containers>:1337/containerapi/CSARs/
SugarCRM3.csar/Content/IAs/Scripts/ApacheWebServer/install.sh"

Umwandlung der von der internen Portability-API generierten Links zu extern
erreichbaren Links

Im vorherigen Abschnitt wurde bereits auf die Tatsache aufmerksam gemacht,
dass man statt relativer Referenzen absolute Referenzen benétigt. Ein Nutzer der
Container-API benétigt nicht den Pfad der Datei innerhalb der CSAR, er braucht
eine Uniform Resource Locator (URL), an der das Artefakt selbst verftigbar ist. Die
REST-Schnittstelle des OpenTOSCA-Container besitzt bereits einen Pfad, der es
ermoglicht die Struktur einer CSAR zu traversieren und Dateien der CSAR direkt
herunterzuladen.

Die REST-API wird also einen Mechanismus benétigen um den relative Pfad eines
Artefakts innerhalb der CSAR in eine URL, bei der das Artefakt verftigbar ist, zu
konvertieren. Ein Beispiel fiir die Konvertierung einer relativen Referenz in eine
absolute stellt Listing 4.9 dar. In Listing 4.7 auf der vorherigen Seite wurde die
Referenz schon korrekt aufgelost und die im ref-Tag enthaltene Referenz ermoglicht
es dem Anfragenden das entsprechende Artefakt herunterzuladen.

61

5 Implementierung

Dieses Kapitel soll auf die Details und Besonderheiten der Implementierung der in
Kapitel 4 entworfenen Losung eingehen. Dabei wird primar auf allgemeine Schritte
der Implementierung, die bisher nicht ausreichend behandelt wurden, sowie auf
die Umsetzung der Persistenz- und Filteranforderung eingegangen werden. An-
dere notwendige Implementierungsschritte sind durch den Entwurf weitgehend
ausreichend beschrieben und mussten lediglich umgesetzt werden.

Dienstverzeichnis
(service registry)

sucht veroffentlicht
(find) (publish)
Dienstnutzer ruft auf Dienstanbieter
(service consumer) (bind) | (service provider)

Abbildung 5.1: SOA-Dreieck, beschreibt die Beziehungen zwischen den Rollen
einer service-oriented architecture nach [Mel10]

63

5 Implementierung

5.1 OSGi

OSGi spezifiziert ein dynamisches Modulsystem fiir Java, die sogenannte OSGi
Service Platform. Das Framework implementiert das Konzept der service-oriented
architecture (SOA) und bietet so die Grundlage fiir modularisierte Losungen in
Java. Abbildung 5.1 auf der vorherigen Seite stellt die Beziehung zwischen den
einzelnen Beteiligten dieses Architekturmusters da.

Ein Service wird lediglich durch seine Schnittstelle spezifiziert und ist so unabhén-
gig von einer Implementierung. Auf der einen Seite ist der Dienstanbieter (Service
Provider), der diese Schnittstelle implementiert und sein Dienstangebot beim Dienst-
verzeichnis (Service Registry) veroffentlicht (publish). Auf der anderen Seite ist ein
Dienstnutzer (Service Consumer), der nur die Schnittstelle des zu verwendeten
Services kennt und im Dienstverzeichnis nach einer passenden Implementierung
dieser Schnittstelle sucht (find). Enthdlt das Verzeichnis eine passende Implementie-
rung kann er diese benutzen. Die Rolle des Dienstverzeichnisses wird in OSGi vom
Framework umgesetzt. Den Kern des OSGi-Frameworks bilden Module, welche
im OSGi-Kontext Bundles genannte werden. In diesen Bundles werden sowohl
Schnittstellen definiert als auch implementiert. Die Bundles nehmen so Rolle der
Dienstanbieter ein, konnen aber ebenso andere Dienste nutzen und so ebenso als
Dienstnutzer auftreten.

Diese Architektur fithrt zu einer losen Kopplung zwischen Dienstnutzer und
Dienstanbieter. Im OSGi-Framework konnen Bundles zur Laufzeit installiert, ge-
startet, gestoppt, aktualisiert und deinstalliert werden. Wéahrend der Laufzeit kann
es von einem Bundle mehrere Versionen geben (Versionierung) und von einer
Schnittstelle mehrere Implementierungen (Varianten).[Wiit08]

Notwendiges Projektsetup

Bei den einzelnen Komponenten des OpenTOSCA-Containers handelt es sich um
OSGi-Bundles. Die typische OSGi-Projektstruktur innerhalb des OpenTOSCA-
Containers wurde beibehalten. Deshalb wurden fiir beide Dienste jeweils drei
Projekte erstellt: Ein Projekt fiir die Schnittstelle des zu implementierenden Dienstes,
ein Projekt fiir die Implementierung selbst, sowie ein Projekt fiir die dazugehorigen
Testfélle. Diese Struktur wird anhand der Struktur der InstanceData-Engine in
Abbildung 5.2 auf der nidchsten Seite gezeigt.

64

5.1 OSGi

/
| org.opentosca.instancedata.service...... Schnittstellen-Projekt
src
L org.opentosca.instancedata.service
| IInstanceDataService. java
| . . . Implementierungs-
org.opentosca.instancedata.service.impl.. Projekt
| _src
org.opentosca.instancedata.service.impl
IInstanceDataServicelImpl. java
org.opentosca.instancedata.service.impl.persistence
AbstractDAO. java
NodeInstanceDAO. java
ServicelnstanceDAO. java
, META-INF
| MANTFEST.MF
. 0SGI-INF
L InstanceDataServiceImpl_component.xml

| _org.opentosca.instancedata.service.impl.test. ... Test-Projekt
*

Abbildung 5.2: Struktur der zum Instanzdatenverwaltungsdienst gehdrenden
OSGi-Projekte

Das Projekt org.opentosca.instancedata.service besteht lediglich aus dem
gleichnamigen Package, welches das Interface IInstanceDataService beinhal-
tet. Die Implementierung selbst befindet sich in dem Projekt org.opentosca.
instancedata.service.impl zusammen mit den beiden Ordnern META-INF und
OSGI-INF. Der META-INF-Ordner beinhaltet die MANIFEST .MF, die Name, Version,
importierte Packages und weitere bundlespezifische Informationen enthilt. Die in
OSGI-INF enthalten Dateien geben Aufschluss dariiber welche Schnittstellen das
Bundle zur Laufzeit referenziert und zur Verfiigung stellt.

Die Anderungen in der bestehenden REST-API bestanden darin zwei neue Packa-
ges fiir die beiden Dienste innerhalb des Projekts org.opentosca. containerapi
zu erstellen. Die Wurzelressourcen der neuen Packages mussten noch in der Klasse
JerseyApplication hinzugefiigt werden.

65

5 Implementierung

5.2 Implementierung der Persistenz- und Filteranforderung

Dieser Abschnitt stellt die fiir die Persistenz- und Filterumsetzung notwendigen
Erweiterungen des in Abbildung 4.9 auf Seite 53 dargestellten Datenmodells dar.
Dabei wird im ersten Unterabschnitt mit den Grundlagen der eingesetzten Tech-
nologie JPA begonnen. Der Einsatz von JPA wurde bereits im Entwurf (vgl. Ab-
schnitt 4.7 auf Seite 51) festgelegt. Im Anschluss an die Grundlagen von JPA werden
in darauf folgendem Unterabschnitt die fiir die Implementierung notwendigen
Schritte erldutert.

JPA

Bei der JPA! handelt es sich um eine Spezifikation, welche die permanenten Spei-
cherung von Objekten in Java beschreibt. Der Einsatz einer Implementierung der
JPA ermoglicht die Speicherung von Objekten in relationalen Datenbanken.

Um Objekte einer Klasse persistent zu speichern, muss in einer zugehorigen
persistence.xml eine persistence-unit erstellt werden, welche die zu persis-
tierende Klasse einschliefst. Hier werden aufserdem fiir die Speicherung besonders
im Bezug auf die eingesetzte Datenbank wichtige Parameter gesetzt. [JPA09]

Ein weiterer Schritt ist das Annotieren der Klasse. Dabei werden Felder und Me-
thoden der Klasse mit sogenannten Annotations, welche die Speicherung steuern,
versehen. Eine zu speichernde Klasse muss mit der @Entity-Annotation verse-
hen werden. Fiir die Felder der Klasse kann mittels der @Column-Annotation noch
spezifiziert werden wie der Spaltenname lauten soll und von welchen Datentyp
die Spalte sein soll, oftmals sind hier aber sinnvolle Standardwerte gesetzt. Aufier
diesen eben genannten Annotationen existieren noch weitere, die Abfragen von
Objekten aus der Datenbank reprasentieren (@NamedQueries) oder die Konvertie-
rung von Feldern steuern kdnnen (@Convert). Desweiteren besteht die Moglichkeit
Beziehungen zwischen verschiedenen Entitdten herzustellen, dies kann mit den
Annotations @ManyToOne, @neToMany und @anyToMany gesteuert werden. Mit

I Webseite der JPA
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.
html

66

http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html

5.2 Implementierung der Persistenz- und Filteranforderung

diesen Annotationen lassen sich selbst komplexe Datenmodelle abbilden. Eine Bei-
spiel fiir eine mit JPA-Annotationen versehene Klasse zeigt Listing 2.1 auf Seite 26.
[JPA09]

Implementierung

Im vorherigen Unterabschnitt wurde bereits auf die notwendigen Schritte um
eine Klasse zu speichern eingegangen. Wiahrend der Implementierung wurden die
Klassen aus Abbildung 4.9 auf Seite 53 mit den notwendigen Annotations versehen.
Letztendlich war im Zuge der Umsetzung der Persistenz noch die Erstellung der
entsprechenden persistence.xml und die Implementierung eines Konverters fiir
die Konvertierung zwischen QNames und Strings notwendig.

Um die Filteranforderung umzusetzen gab es zwei unterschiedliche Ansétze, ent-
weder den Ansatz alle Informationen im Speicher der Anwendung zu halten und
die Filter auf diese Informationen anzuwenden oder die Daten soweit es geht nur in
der Datenbank zu halten und alle Filteroperationen auf der Datenbank auszufiihren.
Letztendlich wurde sich fiir die Losung entschieden die Datenbank zu nutzen um
die Filter anzuwenden. Der Nachteil dieser Losung ist, dass ohne die Zwischen-
speicherung in der Datenbank die Daten 6fters aus der Datenbank geladen werden
miissen. Da sich bei OpenTOSCA diese Datenbank auf der selben Maschine wie der
Container befindet, fithrt dies jedoch zu keinen erheblichen Leistungseinbufien. Die
Vorteile der Losung sind hingegen, dass dieser Ansatz zum einen nicht so einfach
zu inkonsistenten Zustdnden zwischen Anwendung und Datenbank fithren kann
und zum anderen die Filterung bequem mittels Structured Query Language (SQL)
ermoglicht.

Das Filtern der unterschiedlichen Parameter war schnell durch eine SQL-
Anweisung gelost. Aus diversen Griinden, wie Validierung und Schutz vor boswilli-
gen Anfragen, wurde ein NamedQuery eingesetzt. Es bereitete aber Schwierigkeiten,
dass es sich bei einigen Parametern um optionale Parameter handelte, welche falls
sie nicht gesetzt sind beim Filtern einfach ignoriert werden sollten. Eine einfache
Abfrage (Query) mittels Gleichheits-Operator fiihrte so also nicht zum Ziel.

Gelost wurde das Probleme durch die COALESCE-Funktion. Sie nimmt beliebig
viele Parameter an und liefert den ersten Parameter zurtick der ungleich NULL ist.
Die COALESCE-Funktion ermoglicht es indirekt einen optionalen Wert in einem
SQL-Query anzugeben. Wie dies funktioniert zeigt Listing 5.1 auf der nadchsten
Seite. Durch das geschickte Einsetzen von COALESCE evaluiert die entsprechende

67

R IO Ul WN -

[S S o S Gy S U Y
OOV OONNANUIE WN P, OV

5 Implementierung

Listing 5.1 Pseudo SQL-Anweisung, die einen externen optionalen Parameter
beinhaltet. Im Query nach der Auswertung der COALESCE-Funktionen wird
ersichtlich, dass Name "ignoriert" wird

Query (vor Auswertung der COALESCE-Funktionen):
SELECT * FROM mitarbeiter WHERE
ID = COALESCE($id, ID) AND NAME = COALESCE($name, NAME);

Fall 1: alle Parameter gesetzt
externe Parameter: $id=1, $name = Marcus

Query nach Auswertung der COALESCE-Funktionen und Einsetzen der Variablen:
SELECT * FROM mitarbeiter WHERE
ID = 1 AND NAME = 'Marcus’; - verhdlt sich wie normaler Query

Fall 2: optionaler Parameter nicht gesetzt

externe Parameter: $id=1, $name = NULL
Query nach Auswertung der COALESCE-Funktionen und Einsetzen der Variablen:
SELECT * FROM mitarbeiter WHERE

ID = $id AND NAME = NAME;

NAME = NAME ist immer WAHR => Teil der Konjunktion ist immer erfiillt

Bedingung immer WAHR und wird so ignoriert. Wenn man es genau nimmt wird sie
nicht ignoriert, die Anfrage liefert jedoch genau die gleichen Ergebnisse, wie wenn
diese Bedingung nicht vorhanden gewesen wire.

5.3 Erweiterung TOSCA-Engine

Die Erweiterung der Tosca-Engine wurde bereits im Entwurf in Abschnitt 4.6 Er-
weiterung der TOSCA-Engine betrachtet. Abbildung 4.8 auf Seite 52 im Ent-
wurf zeigt die neu zu implementierenden Methoden. Im Unterschied zu der Be-
trachtung im Entwurf werden in dem folgenden Abschnitt Besonderheiten der
Implementierung hervorgehoben. Die Methoden doesNodeTemplateExist und
getNameOfReference werden in diesem Kapitel nicht ausfiihrlich behandelt, da sie
weitgehend bestehende Methoden nutzen oder Erweiterungen dieser darstellen.

Die Methode getInstanceCountsOfNodeTemplatesByServiceTemplatelID bie-
tet eine Moglichkeit die Kardinalitdten der in einem ServiceTemplate enthaltenen

68

5.3 Erweiterung TOSCA-Engine

ResolvedArtifact

-type:QName
ResolvedArtifacts -artifactSpecificContent:Document
-references: List<String>
-deploymentArtifacts: +getter/setter
List<ResolvedDeploymentArtifact> [?
-implementationArtifacts:
List<ResolvedImplementationArtifact>
+getter/setter
ResolvedDeploymentArtifact ResolvedimplementationArtifact
-name -interfaceName
+getter/setter -operationName
+getter/setter

Abbildung 5.3: UML-Klassendiagramm der Resolved Artifacts und beteiligten Klas-
sen

NodeTemplates zu erfragen. Eine zu beachtende Besonderheit ist, dass im Node-
Template die Mindestanzahl als int und die Maximalanzahl, da sie auch als unbe-
grenzt (unbounded) definiert werden kann, als String repréasentiert werden.

Die Methode nutzt einen speziellen Typ namens NodeTemplateInstanceCounts
als Riickgabewert. Dieser Riickgabewert stellt eine Beziehung zwischen dem
QName eines NodeTemplates und seiner Kardinalitdt her. Die Kardinalitat wird
durch eine interne Struktur représentiert, die Mindest- und Maximalanzahl kapselt.
Mindest- und Maximalanzahl werden als int modelliert, wobei die Darstellung
der unbeschrankten Maximalanzahl durch den Wert -1 geschieht.

Bei der Implementierung der Methoden getResolvedArtifactsOfNodeTemplate
und getResolvedArtifactsOfNodeTypeImplementation wurde die Dereferen-
zierung der Referenzen zu ArtifactTemplates wie in Abbildung 4.7 auf Seite 49
durchgefiihrt. Sie liefert also entweder den ArtifactSpecificContent eines Artefakts
oder die ggf. vorhandenen und aufgelosten Referenzen des entsprechenden Artifact-
Templates. Der Riickgabewert dieser Methode biindelt diese Informationen und be-
steht aus einer speziellen Klasse namens ResolvedArtifacts. Diese Klasse enthalt
jeweils eine Liste fiir DAs und IAs. DAs und IAs haben viele Gemeinsamkeiten aber
unterscheiden sich in einer Kleinigkeit: DAs besitzen lediglich ein name-Attribute,
IAs hingegen besitzen ein interfaceName und ein operationName-Attribut.

Der Zusammenhang zwischen den einzelnen Klassen ist in Abbildung 5.3
in Form eines Unified Modeling Language (UML)-Klassendiagramms dar-

69

5 Implementierung

gestellt. Die beiden Listen der ResolvedArtifacts-Klasse beinhalten Ele-
mente der ResolvedDeploymentArtifact- bzw. ResolvedImplementation-
Artifact-Klasse. Bei den drei in der Abbildung rechts befindlichen ab-
gebildeten Klassen (ResolvedArtifact, ResolvedDeploymentArtifact und
ResolvedImplementationArtifact) handelt es sich um interne Klassen der
ResolvedArtifacts-Klasse.

5.4 Erweiterung der bestehenden REST-Schnittstelle

Die Erweiterung der REST-Schnittstelle wurde bereits in Abschnitt 4.8 auf Seite 53
sehr detailliert beschrieben, dort wurde auch ausfiihrlich auf die grundlegenden
Konzepte eingegangen. Dieser Abschnitt beschiftigt sich nun mit der zur Imple-
mentierung des Entwurfes eingesetzten Technologien und Verfahren. Dies unterteilt
sich in die notwendige Erweiterung der Container-API und in die Erzeugung und
Aufbereitung der Riickgabewerte der Operationen.

Erstellung der notwendigen REST-Pfade

Die benotigten REST-Pfade sind bereits im Abschnitt 4.8 im Entwurf auf Seite 53
identifiziert worden. Dieser Abschnitt wird aufzeigen, auf welche Weise die in
Abbildung 4.10 auf Seite 54 aufgezeigte Struktur hergestellt wurde. Dies soll anhand
eines Beispiels, exemplarisch fiir alle anderen Pfade, gezeigt werden.

Fiir die Implementierung der bisherigen REST-API kommt, wie im Entwurf bereits
erwdhnt, Jersey zum Einsatz. Jersey ermoglicht die Definitionen von Pfaden, die
Verkniipfung von REST-Operationen zu Methoden, das Setzen von Riickgabetypen,
und das Definieren von Parametern der REST-Operationen durch Annotationen.
Pfade werden in Jersey mittels @Path-Annotation, die den Name des Pfades angibt,
erstellt. Ein Ziel eines Pfades wird in der weiteren Arbeit als REST-Ressource be-
zeichnet. Die Annotationen @GET, @POST, @DELETE, @PUT und @HEAD verkniipfen die
annotierten Methoden mit den entsprechenden Operationen der REST-Ressource
des aktuellen Pfades. Auflerdem kann fiir die Methoden noch der Riickgabe-Typ
mittels der @Produces-Annotation definiert werden. Parameter werden in Jersey je
nach Art des Parameters mittels @QueryParam-, @PathParam-, @FormParam- oder
@FormDataParam-Annotation definiert. Mittels der @Context-Annotation kann
noch der Kontext des Aufrufs, der Informationen wie beispielsweise die aktuelle
URL des Aufrufs enthilt, injiziert (injected) ,sprich zur Laufzeit eingefiigt, werden.

70

5.4 Erweiterung der bestehenden REST-Schnittstelle

Bei dem nun gezeigten Beispiel (siehe Listing 5.2 auf der ndchsten Seite) handelt
es sich um die Implementierung der InstanceDataRoot-Klasse, die als Einstiegs-
punkt fiir die Instanzdatenverwaltung innerhalb der REST-API dient. Dieser Ein-
stiegspunkt musste zusitzlich in der JerseyApplication-Klasse, die Verweise auf
alle Komponenten der REST-API enthilt, hinzugeftigt werden.

Dieses verkiirzte Beispiel zeigt deutlich den Einsatz der Jersey-Annotationen. Au-
lerdem konnen zwei weitere Konzepte in diesem kurzem Beispiel betrachtet
werden. Bei der Implementierung der beiden Methoden getNodeInstances und
getServiceInstances wird das Prinzip der Delegation genutzt, um den Aufruf
an eine weitere Ressource weiterzuleiten und von dieser verarbeiten zu lassen. Das
andere Prinzip ist ein spezielles Verhalten von Jersey um die Riickgabe von XML zu
ermoglichen. Jersey ermoglicht die Verwendung von Java Architecture for XML Bin-
ding (JAXB)-annotierten Klassen, wie es die Klasse InstanceDataEntry in diesem
Beispiel ist, um XML-Antworten zu generieren. Auf die Verwendung von JAXB
und den dazugehorigen Annotationen wird im ndchsten Abschnitt eingegangen.

Generierung der Riickgabewerte

Im Kapitel Entwurf (vgl. Abschnitt 4.8 auf Seite 53) wurde bereits sehr detailliert
auf die gelieferten Ergebnisse der einzelnen Operationen eingegangen. Bei vielen
der dort spezifizierten Riickgabetypen handelt es sich um anwendungsspezifisches
XML. Im Entwurf wurde allerdings nicht festgelegt, wie diese XML-Typen erzeugt
werden. Mit der fiir die Implementierung verwendeten Technologie wird sich
dieser Unterabschnitt beschiftigen.

Die TOSCA-Engine selbst verarbeitet viele XML-Dateien beim Einlesen eines CSAR
— die Definitionen sind in XML verfasst. In der TOSCA-Engine kam um aus dem,
durch TOSCA definierten, Schema Java-Klassen zu generieren die JAXB-API? zum
Einsatz. Die Konvertierung von XML zu Java-Klassen wird im Allgemeinen als
Unmarshalling bezeichnet.

In der ContainerAPI soll nun JAXB genutzt werden um diese Konvertierung in die
andere Richtung durchzufiihren, es soll aus zur Laufzeit genutzten Java-Klassen
XML generiert werden. Es soll also ein sogenanntes Marshalling der entsprechenden
Klassen durchgefiihrt werden.

2Webseite des JAXB-Projekts: https://jaxb.java.net/

71

https://jaxb.java.net/

1
2
3

O 0 N O Ul A

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

5 Implementierung

Listing 5.2 Gekiirzte Implementierung der InstanceDataRoot-Klasse inklusive
Jersey-Annotationen

@Path("/instancedata")
public class InstanceDataRoot {

@Context

UriInfo uriInfo;

@Context

Request request;

@GET

@Produces (MediaType.APPLICATION_XML)

public Response doGet() {
InstanceDataEntry idr = new InstanceDataEntry(...);
return Response.ok(idr).build();

}

@Path("/nodeInstances")

public Object getNodeInstances() {
return new NodeInstancelistResource();

}

@Path("/servicelInstances")

public Object getServiceInstances() {
return new ServicelnstancelistResource();

3

}

Exemplarisch fiir alle anderen Konvertierungen wird an dieser Stelle die Erstellung
des XMLs fiir die Riickgabe der Nodelnstance-Liste (vgl. Listing 4.3 auf Seite 57) er-
lautert. JAXB arbeitet ebenso wie JPA mit Annotationen. Die Annotationen werden
eingesetzt um die Struktur des zu generierenden XMLs zu definieren. Listing 5.3
auf der nichsten Seite zeigt die Implementierung der Nodelnstance-Liste, welche
bereits mit Annotationen versehen ist. Augenmerk soll bei der Betrachtung auf den
Annotationen liegen, @XmlRootElement definiert den Namen des Root-Elements
des XML-Dokuments wohingegen @Xm1Element einzelne XML-Elemente definiert.
@XmlElementWrapper ermoglicht es eine Liste von XML-Elementen mit einem
umschliefSenden Element zu versehen.

JAXB unterstiitzt von Haus aus bereits viele Java-Datentypen, nicht unterstiitz-
te Typen oder Klassen konnen aber durch die Definition eines Bindings mittels

72

5.4 Erweiterung der bestehenden REST-Schnittstelle

Listing 5.3 Implementierung der NodelnstanceList inklusive JAXB-Annotationen

1 @XmlRootElement(name = "NodeInstancelList")
2 @XmlType(propOrder = { "selfLink", "links" })
3 public class NodelInstancelist {

private List<SimpleXLink> links;
private SimpleXLink selfLink;
public NodelInstanceList() {

}

public NodeInstancelList(SimpleXLink selflink, List<SimpleXLink> links) {
super();
this.selflink = selflink;
this.links = links;

}

@XmlElement(name = "self")
public SimpleXLink getSelfLink() {
return selflLink;

}

public void setSelfLink(SimpleXLink selfLink) {
this.selfLink = selfLink;
}

@XmlElement(name = "link")

@XmlElementWrapper (name = "nodeinstances")

public List<SimpleXLink> getLinks() {
return links;

}

public void setLinks(List<SimpleXLink> links) {
this.links = links;

}

Annotationen fiir diese ebenso umgewandelt werden. Ein nicht direkt ersichtli-
ches Beispiel ist in Listing 5.3 die Klasse SimpleXLink, bei der es sich um eine
JAXB-annotierte Klasse handelt.[JAX13]

73

5 Implementierung

Konvertierung der Links zu den Artefakten

Wie in Abschnitt 4.8 auf Seite 60 beschrieben liefert die TOSCA-Engine relative
Referenzen zu den Artefakten zuriick. Diese Pfade ermdglichen es einem Benutzer
der API nicht ohne Zusatzaufwand, auf die jeweiligen Artefakte zuzugreifen. Es
muss also eine Konvertierung zu absoluten Referenzen, die einen Zugriff auf diese
Artefakte ermoglichen, durchgefiihrt werden.

Die REST-API bietet bereits einen Pfad an, der es ermoglicht den Inhalt ei-
ner CSAR-Datei zu traversieren und gezielt auf Dateien, die sich in dem
CSAR befinden, zuzugreifen. Es handelt sich um den \CSARs-Pfad. Dieser Pfad
kann an dieser Stelle genutzt werden um den Zugriff auf Artefakte zu er-
lauben. Um diesen Zugriff zu ermdglichen miissen lediglich die relativen Re-
ferenzen aus den Definitionen, der Form "/Pfad/.../Datei.Endung", in die
Form "http://.../CSARs/csarID/Content/Pfad/.../Datei.Endung" umge-
wandelt werden.

Die Erzeugung des fiir die Operation notwendigen XMLs wurde wie nach dem im
vorherigem Abschnitt "Generierung der Riickgabewerte" beschriebenen Prinzip
implementiert.

74

6 Validierung des Konzepts und der
Implementierung

Dieses Kapitel soll die Validierung des entworfenen Konzepts und der entwickelten
Implementierung im Bezug auf die in Kapitel 3 definierten Anforderungen darstel-
len. Es wird betrachtet ob und in welchem Umfang die Anforderungen mittels der
Erweiterung der Container-API erfiillt wurden.

Die Servicelnstance-spezifischen Anforderungen (vgl. Abschnitt 3.2 auf Seite 28)
erfordern, dass eine Servicelnstance erstellt und geloscht werden kann. Diese An-
forderung werden vollstindig durch die beiden Operationen POST und DELETE auf
dem Servicelnstances- bzw. dynamischen ServicelnstancelD-Pfad der jeweiligen
Servicelnstance realisiert.

Auflerdem muss die Schnittstelle es ermoglichen, Informationen beziiglich einer
Servicelnstance zu erhalten. Diese Anforderungen wird durch die GET-Operation
auf dem ServicelnstancelD-Pfad umgesetzt.

Die letzte Servicelnstance-spezifische Anforderung ist es die Servicelnstances an-
hand spezieller Filter zu identifizieren. Die GET-Operation auf der Servicelnstance-
Ressource ermoglicht dies, sie erlaubt es Servicelnstances anhand ihres service-
TemplateNames und der serviceTemplatelD zu filtern. Durch den zusétzlichen
Parameter servicelnstancelD erfiillt sie sogar die Anforderung der Existenzprii-
fung, da eine nicht existente servicelnstancelD als Filterparameter eine leere Liste
zurtickliefert.

Die Nodelnstance-spezifischen Anforderungen (vgl. Abschnitt 3.3 auf Seite 31) sind
denen der Servicelnstance-spezifischen sehr dhnlich. Ebenso miissen Erstellung
und Loschung der Nodelnstances ermoglicht werden. Diese beiden Anforderun-
gen werden durch die POST- und DELETE-Operation auf dem Nodelnstances- bzw.
dynamischen NodelnstancelD-Pfad erfiillt. Die Priifung der Existenz einer Nodeln-
stance kann wie bei den Servicelnstances mittels der Operation zum Finden von
Nodelnstance-IDs genutzt werden, wobei eine nicht existierende NodelnstancelD
eine leere Liste zurtickliefert. Ebenso wie bei den Servicelnstances besteht auch die

75

6 Validierung des Konzepts und der Implementierung

Anforderung Nodelnstances anhand von den in Abschnitt 3.3.6 auf Seite 33 defi-
nierten Parametern zu finden. Diese Anforderung wird mittels der GET-Operation
auf der Nodelnstance-Ressource umgesetzt. Besonderheit der Nodelnstances im
Vergleich zur Beschaffenheit der Servicelnstances ist das Vorhandensein von state
und properties, diese beiden Informationen miissen einerseits abgefragt und gean-
dert werden konnen. Hierfiir hat jede dieser beiden Ressourcen einen Unterpfad
relativ zum Pfad einer speziellen Nodelnstance. Auf diesen Pfaden /properties
und /state sind GET- und PUT-Operationen moglich um diese Informationen
abzufragen bzw. zu dndern.

Dieser Absatz betrachtet die einzige NodeTemplate-spezifische Anforderung
(vgl. Abschnitt 3.4 auf Seite 33). Diese Anforderung fordert eine Moglichkeit ab-
solute Referenzen zu Artefakte eines NodeTemplates zu erhalten. Es muss also
moglich sein mittels der gelieferten Referenzen auf die Artefakte zuzugreifen. In
Abschnitt 4.5 auf Seite 48 wurde eine detaillierte Analyse durchgefiihrt, auf welche
Art und Weise Artefakte in TOSCA dargestellt werden konnen. Die bei der Analyse
gewonnenen Erkenntnisse sind in die spétere Implementierung eingeflossen und es
wurde mit dem /artifacts-Pfad der Portability-API eine Moglichkeit geschaffen,
Referenzen zu Artefakten eines serviceTemplates zu erhalten. Die in der dazugeho-
rigen Anforderungen identifizierten Filtermoglichkeiten wurden umgesetzt.

Verbleibende Anforderungen sind die weiteren funktionalen Anforderungen Persis-
tenz und Integration in die existierende Architektur des OpenTOSCA-Containers.
Die Persistenz wurde mittels JPA umgesetzt. Die Implementierung speichert die
Daten und Anderungen dieser direkt in der Datenbank. Dadurch kann garantiert
werden, dass beim Herunterfahren oder Absturz des OpenTOSCA-Containers der
Zustand der Anwendung nicht verloren geht. Der Verlust der Datenbank selbst
wurde hier nicht betrachtet, da in diesem Fall der ganze TOSCA-Container nach
einem Neustart nicht mehr wie gewohnt operieren kann.

Die Integration in die bestehende Architektur des OpenTOSCA-Containers bedeu-
tet zwei Dinge. Auf der einen Seite muss der OpenTOSCA-Container nach der
Erweiterung weiterhin eine konsistente Art des Zugriffs fiir den Benutzer bieten.
Auf der anderen Seite sollten, um die Wartbarkeit zu gewéhrleisten, bei der Imple-
mentierung moglichst bereits innerhalb des OpenTOSCA-Containers eingesetzte
Technologien zum Einsatz kommen. Im Nachhinein betrachtet kann man sagen,
dass wahrend der Implementierung diese Anforderungen erfolgreich umgesetzt
wurden. Der Zugriff auf die REST-API erfolgt weiterhin in einer gewohnt einheitli-
chen Art, die neuen Funktionen wurden erfolgreich in die bestehende Schnittstelle

76

integriert. Bei der Implementierung wurde sich um diese Integration ebenso be-
miiht. Sowohl bei der Art des Projektsetup, als auch bei der Wahl der zur Imple-
mentierung genutzten Technologien, wurde sich an bestehenden Komponenten
orientiert. Beide entwickelten Komponenten, der Dienst zur Instanzdatenverwal-
tung und die Portability-AP]I, sind typische OpenTOSCA-Komponenten.

77

7 Zusammenfassung und Ausblick

Zur sinnvollen Verwaltung von Instanzen eines Cloud-Services ist es nétig, Lauf-
zeitdaten beziiglich einzelner Komponenten eines Cloud-Services persistent zu
speichern und bereit zu stellen. Instanzdaten alleine geniigen aber nicht um eine
Cloud-Anwendung aufzusetzen. Neben den bisherigen OpenTOSCA-Diensten,
wird bei der Installation von einzelnen Instanzen ein Zugriff auf die in TOSCA defi-
nierten DAs benétigt. Vor Durchfiihrung dieser Bachelorarbeit bot der OpenTOSCA-
Container keine Moglichkeit an, um Instanzdaten zu verwalten. Der Zugriff auf
die DAs war prinzipiell moglich, aber fiir die Anforderungen der Plidne nicht
dynamisch genug.

Das Ziel der vorliegenden Arbeit war es deshalb, einen Dienst zur Verwaltung von
Instanzdaten eines TOSCA-Cloud-Services zu entwerfen und umzusetzen. Eine der
daraus resultierenden Aufgaben war es also theoretische Anforderungen an einen
solchen Dienst zur Instanzdatenverwaltung und zur Bereitstellung von Artefakten
zu identifizieren. Die Analyse wurden mit Riickblick auf bereits abgeschlossene
Projekte und hinsichtlich neuer Anwendungsfille durchgefiihrt. Das Ergebnis der
Analyse liegt in Form von Anforderungen an den Dienst vor, welche in Kapitel 3
dargestellt sind.

Im Anschluss an die Analyse folgte der durch Kapitel 4 reprasentierte Entwurf eines
Konzeptes fiir die Integration des neuen Dienstes in den bestehenden OpenTOSCA-
Container. Er setzt sich mit fiir die Umsetzung relevanten Uberlegungen auseinan-
der. Neben Beschaffenheit der Artefakte, Definition sowohl der internen als auch
externen REST Schnittstelle und der Interaktion der Komponenten untereinander
wurde auch der Grundstein fiir die Umsetzung des fiir OpenTOSCA-typischen
OSGi-Projektsetups gelegt.

Ein Ziel des Entwurfs war es, durch die bevorstehende Implementierung, den
OpenTOSCA-Container nicht unnétig mit Ballast in Form von neuen Technolo-
gien zu beladen. Jede neu eingesetzte Technologie stellt zusatzliche Anforderun-
gen an die zukiinftigen Entwickler und erhoht so den Wartungs- und Weiterent-
wicklungsaufwand. Um dieses Ziels zu erreichen wurde analysiert, inwiefern der

79

7 Zusammenfassung und Ausblick

OpenTOSCA-Container bereits Technologien verwendete, die fiir die spatere Im-
plementierung sinnvoll genutzt werden konnten.

Als Ergebnis dieser Analyse wurden JPA und JAXB fiir die Umsetzung dieser
Arbeit verwendet. Diese beide Technologien werden bereits von anderen Kompo-
nenten des Containers verwendet und stellen so kein neues notwendiges Wissen
fiir die Wartung des zukiinftigen OpenTOSCA-Containers dar. Neben den gerade
genannten Technologien wurde zur Implementierung der REST-Schnittstelle des
Dienstes, die bestehende Container API erweitert. Diese Tatsache hat zum einen
zur Folge, dass neben Jersey kein weiteres Framework zur Implementierung einer
REST-Schnittstelle benotigt wurde, als auch zum anderen, dass der neue Dienst
unter dem bereits vorhandenen Pfad der Container-API erreichbar ist.

Das Kapitel 5 beschiftigt sich mit der Implementierung. Es erldutert neben den
eingesetzten Technologien an dieser Stelle vor allem Feinheiten der Umsetzung des
Entwurfs.

Die Validierung in Kapitel 6 fiihrt eine Gegeniiberstellung der in Kapitel 3 identifi-
zierten Anforderungen und der Implementierung durch. Diese Gegentiberstellung
bestatigt, dass die entwickelten Losungen zum Zwecke der Instanzdatenverwal-
tung und zum Zugriff auf Artefakte eines Cloud-Services brauchbar sind.

Die OpenTOSCA-Laufzeit ist nun in der Lage Instanzdaten zu verwalten und er-
moglicht mittels der bereits bestehenden REST-API den Zugriff auf diese. Neben
dem Zugriff auf Instanzdaten kdnnen die Plane nun ebenfalls auf die Artefakte
eines ServiceTemplates zugreifen. Es ist zu erwarten, dass in Zukunft diese Zu-
griffe standardisiert werden und die Ergebnisse dieser Arbeit an diesen Standard
angepasst werden miissen. Diese Standardisierung wire aus Sicht der Kompati-
bilitat zwischen verschiedenen TOSCA-Containern jedenfalls erstrebenswert. Die
Ergebnisse dieser Arbeit sind dennoch sinn- und wertvoll, da die umgesetzten
Funktionen der beiden Dienste benotigt werden und eine baldige Standardisierung
der Schnittstellen nicht abzusehen war.

80

Literaturverzeichnis

[BBH*13]

[BBLS12]

[Fie00]

[Fie08]

[IDC]

[JAX13]

[JPA09]

T. Binz, U. Breitenbiicher, F. Haupt, O. Kopp, F. Leymann, A. Nowak,
S. Wagner. OpenTOSCA - A Runtime for TOSCA-based Cloud Appli-
cations. In 11" International Conference on Service-Oriented Computing,
LNCS. Springer, 2013. (Zitiert auf den Seiten 23 und 25)

T. Binz, G. Breiter, F. Leymann, T. Spatzier. Portable Cloud Services
Using TOSCA. IEEE Internet Computing, 16(03):80-85, 2012. doi:10.
1109/MIC.2012.43. URL http://doi.ieeecomputersociety.org/
10.1109/MIC.2012.43. (Zitiert auf den Seiten 19 und 20)

R. T. Fielding. REST: Architectural Styles and the Design of Network-
based Software Architectures. Doctoral dissertation, University of Ca-
lifornia, Irvine, 2000. URL http://www.ics.uci.edu/~fielding/
pubs/dissertation/top.htm. (Zitiert auf den Seiten 17 und 56)

R. T. Fielding. REST APIs must be hypertext-driven,
2008. URL http://roy.gbiv.com/untangled/2008/
rest-apis-must-be-hypertext-driven. (Zitiert auf Seite 56)

IDC Forecasts Public IT Cloud Services Spending Will Approach
$100 Billion in 2016 Generating 41% of Growth in Five Key IT Ca-
tegories. URL http://www.idc.com/getdoc.jsp?containerId=
prUS23684912. (Zitiert auf Seite 11)

JAXB Release Documentation, 2013. URL https://jaxb.java.net/
2.2.7/docs/. Revision 20130802.c6cc023. (Zitiert auf Seite 73)

Java Persistence 2.0, Final Release. Technischer Bericht, Sun Micro-
systems, 2009. URL http://download.oracle.com/otndocs/jcp/
persistence-2.0-fr-eval-oth-JSpec/. (Zitiert auf den Seiten 66
und 67)

81

http://doi.ieeecomputersociety.org/10.1109/MIC.2012.43
http://doi.ieeecomputersociety.org/10.1109/MIC.2012.43
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://www.idc.com/getdoc.jsp?containerId=prUS23684912
http://www.idc.com/getdoc.jsp?containerId=prUS23684912
https://jaxb.java.net/2.2.7/docs/
https://jaxb.java.net/2.2.7/docs/
http://download.oracle.com/otndocs/jcp/persistence-2.0-fr-eval-oth-JSpec/
http://download.oracle.com/otndocs/jcp/persistence-2.0-fr-eval-oth-JSpec/

Literaturverzeichnis

[Mel10]

[MRV11]

[OAS07]

[OAS13]

[OMG11]

[PM11]

[SHI"13]

[Til11]

[WDMO10]

82

L. Melzer. Service-Orientierte Architekturen Mit Web Services: Konzepte
- Standards - Praxis. Spektrum Akademischer Verlag GmbH, 2010.
URL http://books.google.de/books?id=e3gnVPngoUoC. (Zitiert
auf Seite 63)

C. Metzger, T. Reitz, J. Villar. Cloud Computing: Chancen und Ri-
siken aus technischer und unternehmerischer Sicht. Hanser, Miin-
chen, 2011. URL http://deposit.d-nb.de/cgi-bin/dokserv?
1d=3549075&prov=M&dok_var=1&dok_ext=htm. (Zitiert auf Sei-
te 15)

OASIS. Web Services Business Process Execution Language Version
2.0. online, 2007. URL http://docs.oasis-open.org/wsbhpel/2.
0/0S/wsbpel-v2.0-0S.html. (Zitiert auf Seite 21)

OASIS. Topology and Orchestration Specification for Cloud
Applications Version 1.0 - Candidate OASIS Standard 01, 2013.
URL http://docs.oasis-open.org/tosca/TOSCA/v1.0/cos01/
TOSCA-v1.0-cos01.html. (Zitiert auf den Seiten 12, 18, 19, 20, 21, 22,
48 und 50)

I. O. Object Management Group. Documents Associated With Business
Process Model And Notation (BPMN) Version 2.0. online, 2011. URL
http://www.omg.org/spec/BPMN/2.0/. (Zitiert auf Seite 21)

T. G. P. Mell. The NIST Definition of Cloud Computing. Techni-
scher Bericht, National Institute of Standards & Technology, 2011.
URL http://csrc.nist.gov/publications/nistpubs/800-145/
SP800-145.pdf. (Zitiert auf Seite 15)

B. Satzger, W. Hummer, C. Inzinger, P. Leitner, S. Dustdar. Winds of
Change: From Vendor Lock-In to the Meta Cloud. Internet Computing,
IEEE, 17(1):69-73, 2013. d0i:10.1109/MIC.2013.19. (Zitiert auf Seite 11)

S. Tilkov. REST und HTTP: Einsatz der Architektur des Web fiir
Integrationsszenarien. dpunkt, Heidelberg, 2., aktualis. und erw.
Auflage, 2011. URL http://deposit.d-nb.de/cgi-bin/dokserv?
1d=3678896&prov=M&dok_var=1&dok_ext=htm. (Zitiert auf Sei-
te 18)

N. Walsh, S. DeRose, E. Maler, D. Orchard. XML Linking Langua-
ge (XLink) Version 1.1. W3C recommendation, W3C, 2010. URL

http://books.google.de/books?id=e3qnVPngoUoC
http://deposit.d-nb.de/cgi-bin/dokserv?id=3549075&prov=M&dok_var=1&dok_ext=htm
http://deposit.d-nb.de/cgi-bin/dokserv?id=3549075&prov=M&dok_var=1&dok_ext=htm
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cos01/TOSCA-v1.0-cos01.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cos01/TOSCA-v1.0-cos01.html
http://www.omg.org/spec/BPMN/2.0/
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://deposit.d-nb.de/cgi-bin/dokserv?id=3678896&prov=M&dok_var=1&dok_ext=htm
http://deposit.d-nb.de/cgi-bin/dokserv?id=3678896&prov=M&dok_var=1&dok_ext=htm

Literaturverzeichnis

http://www.w3.0rg/TR/2010/REC-x1ink11-20100506/. (Zitiert
auf Seite 56)

[Wiit08] G. Wiitherich. Die OSGi-Service-Platform: eine Einfithrung
mit Eclipse Equinox. dpunkt, Heidelberg, 1. aufl. Auflage,
2008. URL http://deposit.d-nb.de/cgi-bin/dokserv?id=
3067525&prov=M&dok_var=1&dok_ext=htm. (Zitiert auf Seite 64)

Alle URLs wurden zuletzt am 23.10.2013 gepriift.

83

http://www.w3.org/TR/2010/REC-xlink11-20100506/
http://deposit.d-nb.de/cgi-bin/dokserv?id=3067525&prov=M&dok_var=1&dok_ext=htm
http://deposit.d-nb.de/cgi-bin/dokserv?id=3067525&prov=M&dok_var=1&dok_ext=htm

Erkldrung

Ich versichere, diese Arbeit selbststandig verfasst zu haben.
Ich habe keine anderen als die angegebenen Quellen benutzt
und alle wortlich oder sinngemaf aus anderen Werken tiber-
nommene Aussagen als solche gekennzeichnet. Weder diese
Arbeit noch wesentliche Teile daraus waren bisher Gegen-
stand eines anderen Priifungsverfahrens. Ich habe diese Ar-
beit bisher weder teilweise noch vollstindig veroffentlicht.
Das elektronische Exemplar stimmt mit allen eingereichten
Exemplaren iiberein.

Ort, Datum, Unterschrift

	Abkürzungsverzeichnis
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Verzeichnis der Listings
	1 Einleitung
	2 Grundlagen
	2.1 Cloud
	2.2 REST
	2.3 TOSCA
	2.3.1 Verschiedene Ebenen des Modells
	2.3.2 Templates und Types
	2.3.3 Instanzen, Properties und State
	2.3.4 CSAR

	2.4 OpenTOSCA
	2.4.1 Architektur

	3 Anforderungen an einen Dienst zur Instanzdatenverwaltung
	3.1 Theoretische Annahmen
	3.2 ServiceInstance-spezifische Anforderungen
	3.2.1 Erstellen einer ServiceInstance
	3.2.2 Löschen einer ServiceInstance
	3.2.3 Abfragen von ServiceInstance-Informationen
	3.2.4 Finden von ServiceInstance-IDs anhand von Filtern
	3.2.5 Prüfung der Existenz einer ServiceInstance

	3.3 NodeInstance-spezifische Anforderungen
	3.3.1 Erstellen einer NodeInstance
	3.3.2 Löschen einer NodeInstance
	3.3.3 Abfragen von NodeInstance-Informationen
	3.3.4 Ändern von NodeInstance-Informationen
	3.3.5 Abfragen des NodeTypes einer NodeInstance
	3.3.6 Finden von NodeInstance-IDs anhand von Filtern
	3.3.7 Prüfung der Existenz einer NodeInstance

	3.4 NodeTemplate-spezifische Anforderungen
	3.4.1 Link zu einem oder mehreren Artefakten eines NodeTemplates erhalten

	3.5 Weitere funktionale Anforderungen
	3.5.1 Persistenz
	3.5.2 Integration in bestehende Dienste

	4 Entwurf
	4.1 Einschränkungen
	4.2 Ist- / Sollzustand
	4.3 Schnittstellen
	4.4 Interaktion
	4.5 Analyse der Beschaffenheit von Artefakten in TOSCA
	4.6 Erweiterung der TOSCA-Engine
	4.7 Persistenz
	4.8 REST

	5 Implementierung
	5.1 OSGi
	5.2 Implementierung der Persistenz- und Filteranforderung
	5.3 Erweiterung TOSCA-Engine
	5.4 Erweiterung der bestehenden REST-Schnittstelle

	6 Validierung des Konzepts und der Implementierung
	7 Zusammenfassung und Ausblick
	Literaturverzeichnis

