
Institut für Architektur von Anwendungssystemen
Universität Stuttgart

Universitätsstraße 38
70569 Stuttgart

Germany

Bachelorarbeit Nr. 58

Datenverwaltung für
unifizierte Service Komposition

Oliver Naumann

Studiengang: Informatik

Prüfer: Prof. Dr. Frank Leymann

Betreuerin: Dipl.-Inf. Katharina Görlach

begonnen am: 29.05.13

beendet am: 28.11.13

CR-Klassifikation: H.3.2, H.4.1

Kurzfassung

Diese Arbeit stellt ein Konzept zur Datenverwaltung innerhalb von Service Composition En-

gines auf Basis von Referenzen vor. Typischerweise werden von Geschäftsprozessen verwen-

dete Daten in einer internen Datenbank gespeichert und by-value an Services übergeben. Die-

ses Vorgehen birgt vor allem bei der Verarbeitung von großen Datenmengen einige Nachteile.

In dieser Arbeit wird diskutiert, welche Vorteile eine Auslagerung der Daten hat und wie diese

realisiert werden kann. Basierend auf Erkenntnissen über die Datenverwaltung in bestehenden

Service Composition Engines wird ein Konzept entwickelt, wie Variablen in eine externe Da-

tenbank ausgelagert und anschließend durch Referenzen verwaltet werden können. Zentral da-

bei ist das Reference Resolution System (RRS). Das RRS ist eine Komponente, die als

Schnittstelle zwischen der Datenbank und der Composition Engine fungiert und verantwort-

lich für das Speichern, Abrufen, Modifizieren und Löschen der gespeicherten Daten ist. Teil

dieser Arbeit ist die Implementierung eines solchen RRS, das von einer bestehenden, gram-

matikbasierten Service Composition Engine eingebunden wird. Es werden Anforderungen

und Erweiterungsmöglichkeiten eines RRS erörtert und kategorisiert. Die Korrektheit der

Funktionalität und die Performanz des Systems wird anhand von Beispielen demonstriert.

2

Inhalt

1 Einleitung...4
1.1 Einordnung ins Gesamtsystem...5
1.2 Verwandte Arbeiten..6

2 Grundlagen...7
2.1 Extensible Markup Language (XML)..7
2.2 Web-Services und JAX-WS...9
2.3 Das XML-basierte Datenbanksystem BaseX...11

3 Referenzen...13
3.1 Datenverwaltung in Service Composition Engines..14
3.2 Vorteile einer referenzbasierten Datenverwaltung...15
3.3 Verwaltung der Referenzen..17

3.3.1 Auflösen von Referenzen beim Aufruf eines Web-Services...................................19
3.3.2 Zuordnung und Kardinalität...20
3.3.3 Gültigkeit von Referenzen..21

3.4 Referenzen-Schema..22
4 Reference Resolution System..26

4.1 Entwurf...27
4.2 Erweiterbarkeit und Konfiguration..30

4.2.1 Verwaltung der Datenspeicher durch das Konfigurationsverzeichnis....................31
4.2.2 Auswahl geeigneter Datenspeicher mit Heuristiken...32
4.2.3 Hinzufügen von Konnektoren...34
4.2.4 Erweiterung des Namensgenerators...34

5 Deployment und Validierung...36
5.1 Testumgebung...36
5.2 Validierung...37

5.2.1 Testfall A: Insert komplexer XML-Daten und anschließendes Get........................37
5.2.2 Testfall B: Update für nicht existierende Variable..38
5.2.3 Testfall C: Delete mit nicht valider Referenz...39
5.2.4 Übersicht über weitere Testfälle...40

5.3 Performanz...41
6 Zusammenfassung und Ausblick...46

3

1 Einleitung

Das Prinzip der serviceorientierten Architektur (im Folgenden SOA) findet bereits seit vielen

Jahren vermehrt Einzug in die IT-Landschaften großer Unternehmen. Die sich verstärkende,

weltweite Vernetzung von Firmen, die Auslagerung von IT-Dienstleistungen und der anhalten-

de Konkurrenzdruck durch das stetige Wachstum der Informatikbranche bringen neue Anfor-

derungen mit sich: Die Konzerne müssen mehr als zuvor dazu in der Lage sein, schnell und

flexibel auf Änderungen am Markt sowie gesetzliche Regulierungen zu reagieren [KO05]. In

der Praxis werden Unternehmensprozesse oft automatisiert ausgeführt. Dabei muss deren Ab-

lauf schnell und kostengünstig modifiziert werden können; neue Komponenten sollen ins Ge-

samtsystem integriert werden können, ohne dass dieses insgesamt großen Anpassungen unter-

zogen werden muss. Dies macht es nötig, dass einzelne Systemteile lose gekoppelt sind

[WC05]. Die SOA schafft einen Rahmen zur Erfüllung dieser Anforderungen, indem Kompo-

nenten als Services modelliert und diese durch Dienstkompositionen (Service Compositions)

orchestriert werden [JO08].

Um diese Dienstkompositionen automatisiert ablaufen zu lassen, müssen entsprechende Mo-

delle in Sprachen überführt werden, deren Instanzen anschließend von sogenannten Service

Composition Engines ausgeführt werden können. Hierfür wurden bereits zahlreiche Sprachen

entwickelt, wie zum Beispiel die Web Services Business Process Execution Language (im

Folgenden WS-BPEL) [JE07], das ebXML Business Process Specification Schema [UO01],

YAWL [YA12] und ConDec [PA06].

[GL13] stellt einen Ansatz zur Unifizierung von Service Compositions vor, der formale

Grammatiken nutzt, um verschiedene Konzepte solcher Sprachen zu vereinheitlichen. Diese

formalen Grammatiken können anschließend von formalen Automaten ausgeführt werden.

Die resultierende Service Composition Engine nutzt zur Verwaltung aller Daten, die zwischen

den einzelnen Services ausgetauscht werden, ein Reference Resolution System, das jedes Da-

tum extern speichert und den späteren Zugriff auf dieses per Referenz erlaubt.

In dieser Arbeit soll ein Konzept zur Verwaltung der Daten innerhalb der grammatikbasierten

Service Composition Engine entwickelt werden. Hierbei soll ein Reference Resolution Sys-

tem (im Folgenden RRS) als ein Web-Service entworfen und implementiert werden. Eine ge-

4

eignete Datenbank soll an das RRS angebunden werden, in der von der Service Composition

Engine erzeugte Variablen abgespeichert werden können.

Im Folgenden stellt die Arbeit vorerst die grammatikbasierte Service Composition Engine vor

und erörtert bisherige Ansätze zur Datenverwaltung per Referenz im Umfeld der SOA. Kapi-

tel 2 geht daraufhin kurz auf die zum Verständnis dieser Arbeit nötigen Grundlagen ein und

beschreibt die Wahl der für das RRS verwendeten Datenbank. Anschließend diskutiert Kapitel

3 den Referenzbegriff und wie eine Verwaltung der Daten per Referenz möglich ist. Kapitel 4

stellt das RRS als Komponente konzeptionell vor und beschreibt deren Entwurf und Details

der Implementierung. Anschließend soll Kapitel 5 die Funktionalität evaluieren, bevor Kapitel

6 mit einem Fazit über die gewonnenen Erkenntnisse und einem Ausblick über weitere mögli-

che Themen schließt.

1.1 Einordnung ins Gesamtsystem

In Abbildung 1 ist die Architektur der grammatikbasierten Service Composition Engine darge-

stellt:

Abbildung 1: Architektur einer grammatikbasierten Engine für unifizierte Service-Komposition

Auf der untersten Ebene befindet sich die formale Grammatik, die den auszuführenden Ge-

schäftsprozess beschreibt. Diese besteht aus Produktionsregeln, die Nichtterminale beinhalten,

welche Aktivitäten innerhalb des Geschäftsprozesses kodieren, wie etwa den Aufruf eines

5

Services. Muss ein Service aufgerufen werden, ist hierfür die Komponente ServiceInvocation

verantwortlich. Diese muss vor dem Aufruf zunächst die nötigen Parameter, die für den Auf-

ruf des Services nötig sind, ermitteln. Hierzu schlägt die Komponente ParameterResolution in

der Liste lokal gehaltener Referenzen nach und sucht die Referenz heraus, die auf die gesuch-

ten Daten verweist. Mit dieser kann durch die Komponente ServiceInvocation nun ein Aufruf

an das RRS ausgeführt werden, das die Referenz auflöst und die Parameterdaten zurückgibt,

die anschließend zum Aufrufen des ursprünglichen Services verwendet werden können. Ana-

log kann die Service Composition Engine auch neue Daten in das RRS einfügen oder beste-

hende Variablen löschen oder modifizieren. Kapitel 3.3 geht genauer auf die Verwaltung von

Daten und Referenzen innerhalb der grammatikbasierten Composition Engine ein. Um eine

lose Kopplung zu gewährleisten, wird das RRS als ein Web-Service bereitgestellt. Details hin-

sichtlich dieser architektonischen Wahl werden in Kapitel 4 diskutiert.

1.2 Verwandte Arbeiten

Es existieren verschiedene Ansätze für eine erweiterte Datenverwaltung in Service Compositi-

on Engines. Davon kommt das in [WG09] diskutierte Konzept dem hier vorgestellten Ansatz

am nächsten. Dort werden Daten ebenfalls von einem RRS verwaltet, auf die per Referenzen,

die als Endpoint References (siehe [WW06]) repräsentiert werden, zugegriffen werden kann.

Allerdings verwendet dabei nicht nur die Service Composition Engine das RRS, sondern es

werden Konzepte vorgestellt, mit denen auch aufzurufende Web-Services Referenzen auflö-

sen können. Ferner werden verschiedene Benutzer- und Prozessrechte diskutiert, die die Si-

cherheit bei der Verwaltung der Referenzen erhöhen.

[WG09] stellt lediglich ein Konzept zur Datenverwaltung vor, jedoch keinen Prototypen. Die-

se Bachelorarbeit kann daher in vielerlei Hinsicht als eine Hinführung zu einer technischen

Realisierung des vorgeschlagenen Konzepts angesehen werden. Es wird eine Implementie-

rung vorgestellt, die als Basis eines komplexeren System fungieren kann und anhand derer

evaluiert werden kann, ob die Herangehensweise an das Problem der Datenverwaltung mithil-

fe von Referenzen generell erfolgversprechend ist.

Andere Ansätze verwenden ebenfalls Datenbanken, um Daten zu externalisieren. Ein Über-

blick über bestehende Konzepte, in denen beispielsweise SQL von Geschäftsprozessen ge-

nutzt wird, um auf eine Datenbank zuzugreifen, wird in [VS08] gegeben.

6

2 Grundlagen

Im Folgenden werden einige grundlegende Begriffe erläutert, die zum Verständnis dieser Ar-

beit relevant sind. Kapitel 2.1 widmet sich vorerst der Spezifikation der Extensible Markup

Language als ein wichtiges Werkzeug in der serviceorientierten Architektur. In Kapitel 2.2

wird daraufhin das Konzept von Web-Services und dessen Möglichkeiten der Realisierung

vorgestellt. Kapitel 2.3 geht schließlich auf das XML-basierte Datenbanksystem BaseX ein,

das in dieser Arbeit als Datenspeicher für das RRS Verwendung findet.

2.1 Extensible Markup Language (XML)

Die Extensible Markup Language (kurz: XML) ist eine plattformunabhängige Sprache, auf

deren Basis neue Sprachen definiert werden können. Ausprägungen dieser Sprachen sind Do-

kumente, die einer bestimmten, zuvor meist mit XML Schema festgelegten Struktur folgen

[BE99]. Mit XML ist es möglich, Daten in nicht-binärer, menschenlesbarer Form abzuspei-

chern. Dadurch und dank ihres standardisierten Formats, das vom World Wide Web Consorti-

um spezifiziert wird, eignet sie sich insbesondere auch zur Kommunikation zwischen Syste-

men unterschiedlicher Plattformen. Dies macht XML zu einer geeigneten Grundlage für den

Datenaustausch zwischen Web-Services [WC05].

Zur Definition neuer XML-basierter Sprachen wird heutzutage meist XML Schema einge-

setzt. XML Schema spezifiziert die Art und Weise, wie Dokumente strukturiert und Datenty-

pen definiert werden können [WC05]. In XML-Schema-Dokumenten werden sogenannte

XML-Schema-Definitionen (kurz: XSDs) erstellt. Diese bestimmen, welche Form XML-Do-

kumente haben müssen, um als valide Instanzen der zugehörigen Schemata zu gelten. Ein

XML-Dokument, für das ein Schema definiert ist und das den Anforderungen dieses Schemas

genügt, wird valide genannt; ein XML-Dokument, das die Vorgaben der XML-Spezifikation

erfüllt, nennt man wohlgeformt [WW08]. Ein XML-Dokument kann also zwar wohlgeformt

aber dennoch nicht valide in Bezug auf ein bestimmtes Schema sein.

Listing 1 zeigt beispielhaft eine XML-Schema-Definition, Listing 2 eine dazugehörige, valide

XML-Instanz.

7

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Wurzel">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Kind1" type="xs:string"/>
 <xs:element name="Kind2">
 <xs:complexType>
 <xs:sequence>
 <xs:element name=“Datum“ type=“xs:date“/>
 </xs:sequence>
 <xs:attribute name=“ID“ type=“xs:integer“/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Listing 1: Beispielhafte XML-Schema-Definition.

<?xml version="1.0" encoding="UTF-8"?>
<Wurzel xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="schema.xsd">

 <Kind1>Erstes Kindelement</Kind1>
 <Kind2 ID=“2“>
 <Datum>2000-08-17</Datum>
 </Kind2>

 <!-- Dies ist ein Kommentar und wird ignoriert. -->

</Wurzel>

Listing 2: XML-Instanz, die dem Schema aus Listing 1 folgt.

Zur Strukturierung der erzeugten Sprachen stehen verschiedene Konzepte zur Verfügung.

Text, der diese Konzepte repräsentiert, wird Markup genannt [WW08]. Jeglicher Text, der

kein Markup ist, heißt im Folgenden Zeichendaten. Die grundlegenden Markup-Bausteine

vom XML werden Elemente genannt. Elemente können Attribute und weitere Kindelemente

sowie Zeichendaten enthalten. Ein Beispiel hierfür ist das Element <Kind1> in Listing 2, das

die Zeichendaten „Erstes Kindelement“ enthält. Durch die Verschachtelung von Elementen

entstehen dabei baumartige Strukturen. Jedes XML-Dokument hat genau ein Element, das alle

anderen enthält, das sogenannte Wurzelelement (engl. „root element“ bzw. „document ele-

ment“) [GD05]. In obigem Beispiel ist dies das Element mit dem Namen <Wurzel>.

Elemente werden durch spitze Klammern dargestellt. Besitzt ein Element weitere Kinder,

muss es in ein Start- und ein Endelement aufgeteilt werden, die zusammen alle Kinder umfas-

sen. Attributen wird innerhalb des Startelements in Anführungszeichen ein Wert zugewiesen

(siehe beispielsweise das Attribut ID des Elements <Kind2> in Listing 2). Ferner können

Kommentare innerhalb des Dokuments verwendet werden, die bei der Verarbeitung ignoriert

werden (siehe Listing 2) [WW08].

8

Insbesondere in großen Projekten kann es schnell dazu kommen, dass viele verschiedene XM-

L-Sprachen definiert werden. Die Sprachen können miteinander kombiniert werden, wodurch

es unter den Strukturbausteinen jedoch zu Namenskonflikten kommen [WC05]. Deshalb exis-

tiert in XML die Möglichkeit, Namensräume (engl. „namespaces“) festzulegen, die die Gül-

tigkeitsbereiche von Namen bestimmen [WW08]. Listing 1 nutzt beispielsweise den Namens-

raum „xs“, der als die URL „http://www.w3.org/2001/XMLSchema“ definiert ist.

Im Rahmen dieser Arbeit wird außerdem ein weiteres Konstrukt verwendet: Enthalten die

Elemente oder Attribute Zeichendaten, die vom Parser als Markup interpretiert werden (wie

etwa '<' oder '>'), würde dies zu Fehlern in der Verarbeitung führen. Um diesen Konflikt auf-

zulösen, existieren sogenannte CDATA-Bereiche, innerhalb derer jegliche Zeichen als Zei-

chendaten aufgefasst werden [WW08]. Listing 3 zeigt die Verwendung von CDATA in einem

solchen Fall. Das Element <Element1> enthält hierbei einen CDATA-Bereich – die darin ent-

haltenen spitzen Klammern markieren somit kein Markup, sondern werden als Zeichendaten

interpretiert.

<Element1>
 <![CDATA[Dies ist kein Markup: <a>B]]>
</Element1>

Listing 3: Verwendung von CDATA, um Markup als Zeichendaten zu interpretieren.

2.2 Web-Services und JAX-WS

Als einen Web-Service bezeichnet man ein Softwaresystem, das für eine direkte Maschine-zu-

Maschine-Kommunikation innerhalb eines Netzwerks bereitgestellt wird. Ein Web-Service

besitzt eine Schnittstelle, oft im XML-Format, die bestimmt, auf welche Art der Web-Service

aufgerufen werden kann [WW04].

Web-Services spielen oftmals eine zentrale Rolle innerhalb der SOA. In dieser Architektur

werden alle Softwarekomponenten als Services modelliert. Diese können dann lose gekoppelt

auf Schnittstellenebene orchestriert werden, was das entstehende System flexibel und robust

macht [GD05]. Hierbei ist anzumerken, dass diese Services nicht unbedingt Web-Services

sein müssen – die SOA macht keinerlei Aussagen über die technische Realisierung.

Web-Services als gängige Realisierung der Services in der SOA können auf verschiedene Ar-

ten implementiert werden. Zwei der verbreitetsten Möglichkeiten sind SOAP-Web-Services

und RESTful-Web-Servies [PZ08]. Der in dieser Arbeit entwickelte Web-Service wird als ein

9

SOAP-Web-Service implementiert. Diese Art von Web-Service nutzt eine XML-gestützte Re-

präsentation der ausgetauschten Nachrichten, genannt SOAP-Nachrichten. Die Schnittstelle

eines solchen Web-Services wird ebenfalls in einem XML-Format beschrieben, der Web Ser-

vices Description Language (WSDL) [WW04].

Durch die Verwendung von Web-Services ergeben sich vor allem folgende Vorteile:

• Plattformunabhängigkeit: Dank der standardisierten Schnittstelle kann der entstandene

Web-Service von allen Systemen genutzt werden, die das SOAP-Nachrichtenprotokoll

unterstützen.

• Lose Kopplung: Das System macht sich nur durch seine Schnittstelle bekannt, Details

der Implementierung und des internen Datenflusses bleiben transparent.

Die SOAP-Nachrichten enthalten alle für den Aufruf nötigen Daten, insbesondere die Parame-

ter für den Web-Service-Aufruf bzw. den Rückgabewert im Falle der Antwortnachricht. In der

WSDL-Schnittstellenbeschreibung können ferner Fehler, sogenannte Faults, definiert werden,

die im Falle einer Ausnahme während des Aufrufs in der SOAP-Nachricht zurückgegeben

werden [WC05].

Ein weiterer Vorteil von Web-Services ist der standardisierte Verzeichnisdienst Universal Des-

cription, Discovery and Integration (kurz: UDDI). Dieser bietet die Möglichkeit, Web-Ser-

vices mit bestimmten Eigenschaften innerhalb von Netzwerken dynamisch aufzufinden

(„Find“), sofern diese zuvor registriert wurden („Publish“) [NE02]. Abbildung 2 stellt dies

schematisch dar.

Vor allem wenn ein Web-Service dynamisch gebunden wird, ist es manchmal wichtig, nicht

nur zu wissen, welche Schnittstelle der Web-Service bietet und wie er syntaktisch aufzurufen

ist, sondern auch, wie er sich verhält und unter welchen Rahmenbedingungen ein Aufruf mög-

lich ist. Diese Klasse an Eigenschaften wird unter dem Begriff der nichtfunktionalen Eigen-

schaften zusammengefasst, die beispielsweise Sicherheitsaspekte beinhalten oder Randbedin-

gungen angeben, die bei einem Aufruf des Services einzuhalten sind. Web-Services unterstüt-

zen eine Feststellung dieser Eigenschaften durch die ebenfalls XML-basierte Spezifikation

WS-Policy [WC05].

10

Abbildung 2: Service-Dreieck nach [WW04].

Um den Web-Service im Rahmen dieser Arbeit zu entwickeln, wird auf die Java API for XML

Web Services, kurz JAX-WS, zurückgegriffen [EM06]. Die exakte Definition der Web-Ser-

vice-Schnittstelle mit WSDL und die Implementierung der Verarbeitung von SOAP-Nachrich-

ten ist eine technisch komplexe Aufgabe. JAX-WS bietet dagegen die Möglichkeit, Web-Ser-

vices direkt aus Java-Code zu generieren, und erlaubt so die Entwicklung eines Web-Services

auf abstrakterer Ebene. In einem Bottom-Up-Ansatz werden hierbei erst gewöhnliche Java-

Klassen und Methoden erstellt und anschließend durch Annotationen ergänzt. Die so markier-

ten Einheiten können daraufhin exportiert werden, wobei die WSDL-Beschreibung für den

Web-Service automatisch erzeugt wird. Zusätzliche Informationen werden durch Deploy-

ment-Deskriptoren zur Verfügung gestellt. Der Web-Service kann dann auf dem gewünschten

Server bereitgestellt werden.

2.3 Das XML-basierte Datenbanksystem BaseX

Wie in Kapitel 2.2 beschrieben ist XML ein wichtiges Konzept vieler Web-Services, da es so-

wohl für die Beschreibung der Schnittstelle als auch, im Falle von SOAP-Web-Services, für

die Strukturierung der ausgetauschten Nachrichten eingesetzt wird. Um ein möglichst einheit-

liches Umfeld zur Ausführung von Geschäftsprozessen zu schaffen, bietet es sich daher an,

von Service Composition Engines verwendete Daten ebenfalls in Form von XML abzuspei-

chern, was in der Praxis das gängige Vorgehen ist. Innerhalb dieser Arbeit soll zum Speichern

solcher Daten eine Datenbank verwendet werden. Dies macht die Suche nach einem geeigne-

ten Datenbanksystem notwendig, in der die Daten zuverlässig verwaltet werden können.

Bereits früh nach der ersten Spezifikation von XML stellte sich die Frage, in welcher Form

Daten im XML-Format abgespeichert werden können, um eine effiziente Verarbeitung und

11

schnelle Datenbankanfragen zu gewährleisten. Darunter fallen unter anderem Ansätze, XML

in relationalen Datenbanken abzuspeichern. Beispielhaft wurde die Performanz eines solchen

Vorgehens etwa in [FK99] untersucht. Während dort sowohl das Speichern von Daten als

auch Anfragen an die Datenbank schnell ausgeführt werden konnten, bestand dennoch das

Problem, dass die Rekonstruktion ganzer XML-Dokumente aus der in der Datenbank vorhan-

denen Repräsentation der Daten zu viel Zeit in Anspruch nahm.

Ein anderer Ansatz ist das Ablegen von XML-Daten in Speichern, die XML nativ unterstüt-

zen, wie zum Beispiel in [KM99]. Diesem Ansatz folgt auch die quelloffene Datenbankengine

BaseX, die ab 2007 aus der Arbeit der Database and Information Systems Group der Universi-

tät Konstanz hervor ging1. Für diese Arbeit wird eine Datenbank auf Basis der BaseX-Engine

zum Ablegen der Daten verwendet. BaseX bietet im Vergleich zu anderen XML-Datenbanken

eine gute Performanz beim Ausführen von Anfragen [GR10]. Sie unterstützt transaktionale

Operationen nach dem ACID-Paradigma [GR81]. Die Einrichtung eines Servers ist binnen

weniger Minuten möglich, was das System sehr flexibel macht und die Einbindung der Daten-

bank in das Gesamtsystem erleichtert. Ferner stellt BaseX bereits einen frei verwendbaren

Client-Code in Java zur Verfügung, mit dem die Integration in das RRS ohne Anpassungen

möglich ist. Die Verwendung einer XML-Datenbank hat den Vorteil, dass die Daten, die das

RRS in Form von XML erhält, nicht transformiert werden müssen, sondern direkt an die Da-

tenbank weitergegeben werden können. Implizit findet dabei eine Prüfung dieser Daten statt,

sodass nur wohlgeformtes XML der Datenbank hinzugefügt werden kann. BaseX bietet au-

ßerdem eine grafische Benutzeroberfläche, die einen visuellen Eindruck vom aktuellen Zu-

stand der Datenbank gewährt und zur Administration eingesetzt werden kann [GH07].

1 „BaseX | The XML Database“, http://www.basex.org, aufgerufen am 03.10.2013

12

3 Referenzen

In diesem Kapitel soll das Konzept einer Referenz im Kontext der Datenverwaltung innerhalb

von Service Composition Engines erläutert und dessen Notwendigkeit dargelegt werden. Auf

dem Gebiet der Informatik wird der Begriff Referenz oftmals mit dem programmiersprachli-

chen Element eines Zeigers gleichgesetzt oder verglichen [ST10]. Zeiger sind in diesem Zu-

sammenhang Datentypen, die auf Speicheradressen zeigen [HE01]. Für den Einsatz innerhalb

dieser Arbeit ist dieser Begriff allerdings unpassend. Stattdessen wird der folgende Referenz-

begriff verwendet:

Definition (Referenz):

Eine Referenz ist ein wohlgeformtes, XML-basiertes Konstrukt, das indirekt und ein-

deutig auf eine in einem externen Speicher abgelegte Variable verweist. Es enthält alle

zur Auffindung der Variablen benötigten Informationen.

Die enthaltenen Information, die zur Auffindung der Variablen nötig sind, können vielfältig

sein und unterscheiden sich je nach verwendetem Datenspeicher. Werden die Variablen bei-

spielsweise in einer einfachen Textdatei gespeichert, könnten diese Informationen den Pfad

zur Datei und deren Namen beinhalten. Wird dagegen eine Datenbank als Speicher verwen-

det, muss die Referenz den Hostnamen und weitere Verbindungsinformationen wie den Na-

men der Datenbank und das Passwort enthalten. Ferner muss die Referenz, unabhängig vom

gewählten Datenspeicher, auch einen Identifikator enthalten, der die Variable im Gültigkeits-

bereich des Speichers eindeutig bestimmt. Andernfalls könnten einzelne Variablen innerhalb

des Datenspeichers nicht adressiert werden. Diese Information wird in dieser Arbeit als Name

der Variablen bezeichnet.

Im Rahmen dieser Arbeit wird als Speicher eine Datenbank auf Basis des in Kapitel 2.3 vor-

gestellten Datenbanksystems BaseX verwendet. Entsprechende Referenzen enthalten den

Host, auf dem die Datenbank erreichbar ist, den Namen der Datenbank, den Benutzernamen

und das Passwort zur Authentifizierung, den Port, durch den auf die Datenbank zugegriffen

werden kann sowie den oben angesprochenen Namen der referenzierten Variablen.

In Kapitel 3.1 soll vorerst dargestellt werden, in welcher Form Daten für gewöhnlich in Ser-

13

vice Composition Engines verwaltet werden. Anschließend werden in Kapitel 3.2 Vorteile ei-

ner alternativen Datenverwaltung mit Referenzen aufgezeigt. Kapitel 3.3 geht auf die spezifi-

sche Verwaltung der Referenzen innerhalb der in dieser Arbeit verwendeten grammatikbasier-

ten Service Composition Engine ein, während Kapitel 3.4 schließlich den Aufbau der Refe-

renzen detailliert beschreibt.

3.1 Datenverwaltung in Service Composition Engines

Geschäftsprozesse sind aufgrund der Tatsache, dass sie Kompositionen verschiedener Ser-

vices modellieren, in den meisten Fällen zustandsbehaftet, um den Datenaustausch zwischen

einzelnen Komponenten möglich zu machen [HA05]. Service Composition Engines müssen

daher eine Möglichkeit zur Verfügung stellen, Daten während der Ausführung von Prozessen

zu speichern und bei Bedarf abzurufen. Außerdem muss auch die Sprache, in der die von der

Service Composition Engine ausgeführte Instanz formuliert wurde, über Konstrukte verfügen,

die das Halten eines Zustands unterstützen [JE07].

In den meisten Fällen werden prozessrelevante Daten intern in der Composition Engine ge-

speichert und verwaltet. Sie liegen in expliziter Repräsentation vor und können so direkt

adressiert werden. Häufig werden für diesen Zweck interne Datenbanken verwendet. Ein be-

kannter Vertreter hierfür ist zum Beispiel die quelloffene Composition Engine Apache ODE.

Diese erlaubt es zwar auch, Daten per WS-BPEL-Erweiterung auf externen Speichern abzule-

gen, allerdings ist dies nur für Datenquellen möglich, die von der Java Database Connectivity

[RE00] unterstützt werden, und auch nur für die standardmäßigen SQL-Datentypen2.

Ebenfalls eine interne Datenbank benötigt die Workflow Engine jBPM, die Geschäftsprozesse

auf Basis von Business Process Model and Notation (BPMN) ausführt. Die Nutzung einer ex-

ternen Datenbank wird hierbei nicht ermöglicht, stattdessen setzt die Engine eine lokale In-

stanz der verwendeten Datenbank voraus3. Selbiges gilt für für WS-BPEL Engine OW2 Or-

chestra, die alle Daten ebenfalls in in einer vorkonfigurierten Datenbank ablegt4.

Einen ähnlichen Ansatz verfolgt beispielsweise auch YAWL und deren zugehörige Compositi-

on Engine. In dieser werden alle Daten als XML-Dokumente repräsentiert. Einzelne Datenele-

mente werden dann innerhalb von Variablen abgelegt, die in verschiedenen Ausprägungen

2 „Apache ODE“, http://ode.apache.org/index.html, abgerufen am 23.11.2013
3 „jBPM – Jboss Community“, http://www.jboss.org/jbpm, abgerufen am 24.11.2013
4 „Orchestra: The Open Source BPEL Solution“, http://orchestra.ow2.org, abgerufen am 24.11.2013

14

(beispielsweise Input- und Output-Variablen oder lokale Variablen) existieren und einem

strengen Typsystem auf Basis von XML Schema folgen. Die Daten werden in einer internen

Datenbank abgelegt – standardmäßig in einer PostgreSQL-Datenbank. Eine Rekonfiguration

zur Nutzung anderer Datenbankverwaltungssysteme ist jedoch möglich. Datentransfer und

-manipulation erfolgen direkt mit XQuery [YA12].

3.2 Vorteile einer referenzbasierten Datenverwaltung

Die in Kapitel 3.1 dargestellte Datenverwaltung hat einige Nachteile, die vor allem zum Tra-

gen kommen, wenn die Web-Services sehr viele Daten untereinander austauschen. Dies ist vor

allem der Fall in Domänen, in denen Kalkulationen auf großen Datenmengen stattfinden; ein

Beispiel hierfür sind wissenschaftliche Arbeitsabläufe, die etwa detaillierte Simulationen

beinhalten [BC08].

Werden in solchen Anwendungsbereichen Geschäftsprozesse zur Orchestrierung von Web-

Services verwendet, wird es zur Aufgabe der Service Composition Engine, diese großen Da-

tenmengen zu verwalten. Dies kann zu Problemen wie Performanz-Einbrüchen oder Speicher-

knappheit führen, wenn die Engine nicht zur Verwaltung von Daten solcher Größe ausgelegt

ist, insbesondere wenn die Menge an Daten sich in einer Größenordnung befindet, in der die

Ressourcen nicht zentral, sondern verteilt abgespeichert werden müssen [FU01]. Ferner ist die

Service Composition Engine dafür verantwortlich, dass diese Datenmengen an die einzelnen

Web-Services weitergegeben werden, was je nach Netzwerk zu Engpässen durch zu geringe

Bandbreite führen kann und so gegebenenfalls die Ausführungszeit stark verlängert. Ebenso

können sich durch die zentrale Verwaltung der expliziten Daten Einbußen in der Wartbarkeit

und Benutzerfreundlichkeit ergeben. Dies ist vor allem bei Variablen mit komplexen Typen

der Fall, deren Darstellung die Dokumente, die die Ausführungslogik beinhalten, aufblähen

und unübersichtlich machen kann.

Stattdessen schlägt diese Arbeit eine Verwaltung der Daten durch Referenzen vor. Hierbei

sind zwei Vorgehensweisen zu unterscheiden:

• (1) Die Referenzen werden lediglich von der Service Composition Engine genutzt und

verwaltet, die aufgerufenen Web-Services selbst bleiben unverändert. Dieser Ansatz

genießt die Vorteile der Datenauslagerung, macht es aber dennoch nötig, dass die Re-

ferenzen schon vor dem Aufruf eines Web-Services aufgelöst werden; damit müssen

15

die für den Web-Service nötigen Parameter noch immer by-value übertragen werden.

• (2) Sowohl die Service Composition Engine als auch die aufgerufenen Web-Services

werden so angepasst, dass sie mit Referenzen umgehen und diese auflösen können.

Dies erlaubt sowohl die Auslagerung der Daten als auch eine effiziente Parameterüber-

gabe an die Web-Services, da nun nicht mehr die eigentlichen Daten selbst, sondern

lediglich die Referenzen auf den tatsächlichen Speicherort übergeben werden müssen.

Im Rahmen dieser Arbeit wird lediglich der Ansatz nach (1) verfolgt. Dieser kann aber durch-

aus als Vorarbeit für Ansatz (2) angesehen werden, da die Service Composition Engine in je-

dem Fall für das Management von Referenzen angepasst werden muss. Die Verwaltung und

Auflösung der Referenzen übernimmt hierbei das bereits erwähnte RRS. Der Entwurf des

RRS als Web-Service macht dieses als lose gekoppelte Komponente flexibel genug, dass es

kein fester Bestandteil der Service Composition Engine ist, sondern als eigenständige Instanz

fungiert. So ist später die Möglichkeit gegeben, dass es auch von den am Geschäftsprozess

beteiligten Services zur Auflösung der Referenzen benutzbar ist und ein einzelnes RRS von

mehreren Prozessinstanzen verwendet werden kann.

Sollen nach Ansatz (2) auch die Web-Services mit den Referenzen umgehen können, müssen

diese entsprechend angepasst werden. Als Möglichkeit bietet sich hier zum einen an, die Web-

Services zu modifizieren, dass diese selbstständig Referenzen auflösen und so an benötigte

Daten gelangen. Ein anderer Ansatz ist das Umschließen der Web-Services mit einem Wrap-

per, dessen Aufgabe lediglich das Auflösen der Referenzen und die anschließende Weitergabe

der Daten an den unmodifizierten Web-Service ist. [WG09] geht detailliert auf eine Lösung

der Problematik nach Ansatz (2) ein, in der eine Erweiterung der Sprache WS-BPEL um Refe-

renzen und eine Transformation der Web-Services durch Wrapper vorgeschlagen wird.

Vorteile einer Datenverwaltung nach (1) sind:

• Durch die Entwicklung des Referenzen-Konzepts, eines RRS und einer referenzenun-

terstützenden Service Composition Engine wird eine erweiterbare Basis für eine durch

Referenzen unterstützte Datenverwaltung für die gesamte Umgebung der Ge-

schäftsprozesse inklusive der Web-Services gelegt.

• Es wird eine simple Repräsentation der Daten innerhalb der Service Composition En-

16

gine geschaffen. Ein einzelnes Datum wird nicht mehr durch eine (eventuell komple-

xe) XML-Instanz dargestellt, sondern durch einen einfachen Namen (siehe auch Kapi-

tel 3.3 zur Verwaltung der Referenzen in der Service Composition Engine).

• Der Speicherbedarf der Service Composition Engine wird reduziert, da Daten ausgela-

gert werden können und immer nur die Parameter für den aktuell aufzurufenden Web-

Service geladen werden müssen. Dies macht gegebenenfalls die Ausführung von

großen, datenintensiven Geschäftsprozessen überhaupt erst möglich.

3.3 Verwaltung der Referenzen

In diesem Kapitel wird beschrieben, wie Daten und Referenzen in der in Kapitel 1.1 vorge-

stellten grammatikbasierten Service Composition Engine verwaltet werden. In dieser Engine

werden von formalen Automaten Modelle ausgeführt, die auf formalen Grammatiken basie-

ren. Um eine eindeutige Terminologie zu schaffen, müssen zunächst zwei Begriffe voneinan-

der abgegrenzt werden. Auf Referenzen wurde oben bereits eingegangen; ferner verwendet

die grammatikbasierte Service Composition Engine jedoch auch Bezeichner.

Definition (Bezeichner):

Ein Bezeichner ist ein innerhalb eines Geschäftsprozesses eindeutiger Name, der auf

eine Referenz abgebildet werden kann.

Diese Bezeichner sind die Namen, anhand derer Variablen innerhalb der formalen Grammatik

definiert und identifiziert werden. Die Abbildung der Bezeichner auf tatsächliche Referenzen

(und im Anschluss deren Abbildung auf das Datum selbst) geschieht erst zur Laufzeit. Anstatt

also Referenzen direkt zu verwenden, wird auf eine Referenz durch ihren Bezeichner verwie-

sen, dessen Name konstant und eindeutig in der Grammatik festgehalten wird. Die Bezeichner

sind notwendig, da die Referenzen unter Umständen sehr groß werden können und eine Ver-

wendung von ihnen innerhalb der Grammatik damit unhandlich wäre. Zudem ist a priori die

genaue Gestalt einer Referenz meist nicht bekannt, weshalb diese nicht als Verweis auf die zu-

gehörige Variable in der Grammatik verwendet werden kann. Abbildung 3 stellt das Zusam-

menspiel zwischen Bezeichnern und Referenzen bei Aufruf eines Services schematisch dar.

17

Abbildung 3: Grundlegender Datenfluss beim Aufruf eines Web-Services
durch die grammatikbasierte Service Composition Engine.

Da die Bezeichner nur innerhalb eines Geschäftsprozesses eindeutig sind, besitzen sie ledig-

lich lokale Gültigkeit (im Gegensatz zu Referenzen, die zu Beginn von Kapitel 3 als global

eindeutig definiert wurden). Eine Liste aller Bezeichner, denen eine Referenz zugeordnet wur-

de, ist die Tabelle R. Diese enthält die Abbildung von Bezeichnern auf Referenzen und wird

zur Auflösung genutzt, wenn auf eine bestimmte Referenz zugegriffen werden soll. Die Tabel-

le R ist Teil der Service Composition Engine. Jede Prozessinstanz verwaltet dabei ihre eigene

Tabelle und ist selbst dafür verantwortlich, die Einträge für verwendete Bezeichner zu gene-

rieren und später wieder zu löschen. Abbildung 4 zeigt den schematischen Aufbau der Tabelle

R mit möglichen Inhalten.

Abbildung 4: Aufbau und mögliche Ausprägung der Tabelle R.

Bevor ein Bezeichner auf eine Referenz abgebildet werden kann, muss die entsprechende Va-

riable zuvor initialisiert worden sein. Andernfalls existiert in der Tabelle R keine Referenz für

den Bezeichner und er kann nicht aufgelöst werden können. Entweder muss also die Prozess-

instanz eine zugehörige Referenz aus einer externen Quelle erhalten haben, oder sie fügt die

18

Variable mit den gewünschten Initialwert selbst in das RRS ein. Wird ein neuer Wert in das

RRS eingefügt, liefert dieses eine global eindeutige Referenz zurück, mit der der gespeicherte

Wert später wieder abgerufen werden kann. Diese Referenz kann nun in der Zeile des entspre-

chenden Bezeichners eingefügt werden. Wird später in der Grammatik erneut auf den Be-

zeichner verwiesen (zum Beispiel weil die damit identifizierte Variable einen neuen Wert er-

halten soll), kann die Prozessinstanz in der Tabelle den Bezeichner nachschlagen und erhält so

die Referenz, die auf die zu manipulierende Variable verweist. Diese kann dann an das RRS

zur Auflösung weitergegeben werden.

Wird ein Bezeichner nicht mehr benötigt, kann er zusammen mit seiner Referenz aus der Ta-

belle R entfernt werden. Es ist dabei Aufgabe der Service Composition Engine selbst, dem

RRS mitzuteilen, ob dabei die dort gespeicherte Variable gelöscht werden soll, da das RRS

keine Informationen darüber hat, ob und wo die Variable später noch verwendet wird.

3.3.1 Auflösen von Referenzen beim Aufruf eines Web-Services

In der grammatikbasierten Service Composition Engine sind die Modelle, die die auszufüh-

renden Prozesse beschreiben, formale Grammatiken. In diesen formalen Grammatiken werden

einzelne aufzurufende Services als Nichtterminale repräsentiert. Die Modelle werden von for-

malen Automaten ausgeführt. Trifft der Automat während der Ausführung auf ein Nichttermi-

nal, muss der damit identifizierte Service aufgerufen werden. Dabei ergibt sich folgender Ab-

lauf, der auch in Abbildung 5 dargestellt ist:

• Der Automat übergibt der Komponente Service Invocation die Adresse des aufzuru-

fenden Web-Service (diese wurde zuvor in der Grammatik definiert) und eine Liste

von Bezeichnern, die entweder Eingabe- oder Ausgabewerte markieren (1).

• Die Komponente Service Invocation löst die übergebenen Parameter auf, indem sie

die Bezeichner an die Komponente Parameter Resolution übergibt (2). Dieser ist die

Tabelle R zugeordnet, anhand derer die Parameter Resolution die Bezeichner auf Re-

ferenzen abbilden kann. Diese werden an die Komponente Service Invocation zurück-

gegeben (3).

19

Abbildung 5: Ablaufdiagramm zum Aufruf eines Web-Services durch die
grammatikbasierte Service Composition Engine.

• Die Komponente Service Invocation ruft für jeden Eingabewert das RRS auf und

übergibt die zugehörige Referenz (4). Von RRS erhält die Service Invocation dann die

Werte der Variablen, auf die die Referenzen verwiesen haben (5).

• Nun besitzt die Service Invocation die Adresse des Web-Services und alle nötigen Pa-

rameter und kann diesen aufrufen (6).

Besitzt der aufgerufene Web-Service Rückgabewerte, müssen diese zudem durch das RRS

rückgespeichert werden. Die entsprechenden Bezeichner hat die Komponente Service Invoca-

tion zuvor in Schritt (1) bereits vom Automaten erhalten, sodass diese ebenfalls auf Referen-

zen abgebildet werden können, die nun an das RRS zusammen mit dem Wert für die Variable

übergeben werden.

3.3.2 Zuordnung und Kardinalität

Bisher ungeklärt ist die Frage, woher der Service Composition Engine die Adresse des RRS

bekannt ist, das zur Auflösung von Referenzen aufgerufen werden soll. In Abbildung 1 in Ka-

pitel 1.1 wurde die Kardinalität zwischen der Service Composition Engine und dem RRS als

n-zu-m-Beziehung dargestellt. Ausschlaggebender ist jedoch die Beziehung zwischen einzel-

nen Prozessinstanzen und dem RRS. In dem bisher bestehenden System ist einem Ge-

schäftsprozess genau ein RRS zugeordnet. Die Adresse des RRS ist in der Grammatik des

Prozesses enthalten. Dies hat den Vorteil, dass diese beliebig angepasst werden kann, ohne

20

dass der Code der Service Composition Engine verändert werden muss oder ein Redeploy-

ment dieser nötig ist.

Der Prozessinstanz ist damit die Adresse des RRS immer bekannt. Ein RRS kann gleichzeitig

von mehreren Prozessinstanzen verwendet werden, was kein Problem darstellt, da das RRS

selbst die Eindeutigkeit der Referenzen sicherstellt. Die Bezeichner müssen wie zuvor geklärt

nur innerhalb der einzelnen Prozesse einzigartig sein.

Das Problem wird komplexer, wenn die Referenzen zwischen Prozessen ausgetauscht werden

können. In diesem Fall darf ein Prozess, sobald er ein Datum nicht mehr benötigt, nicht ein-

fach beim RRS dessen Löschung in Auftrag geben, da es möglicherweise von anderen Prozes-

sen noch verwendet werden muss. Dieser Umstand ist im momentanen Gesamtsystem aller-

dings nicht vorgesehen. Stattdessen wird er als Gegenstand zukünftiger Arbeiten in Kapitel 6

nochmals aufgegriffen.

3.3.3 Gültigkeit von Referenzen

Wird ein neues Datum im RRS abgelegt, wird für dieses eine neue Referenz generiert. Somit

ist für jede Variable in einem Datenspeicher zeitweilig mindestens eine Referenz im Umlauf,

durch die auf die Variable zugegriffen werden kann. Wird die Referenz kopiert, können aller-

dings auch mehrere identische Referenzen auf diese Variable verweisen. Wird die Variable

nun gelöscht, können die Referenzen nicht mehr aufgelöst werden. Dies ist ebenfalls nicht

möglich, wenn beispielsweise der Datenspeicher nicht mehr erreichbar ist. Referenzen können

somit ihre Gültigkeit verlieren. Im Rahmen dieser Arbeit wird diese folgendermaßen definiert:

Definition (Gültigkeit):

Eine Referenz ist gültig, solange sie vom Reference Resolution System aufgelöst wer-

den kann und die Variable, auf die sie verweist, seit der Erstellung der Referenz nicht

gelöscht wurde.

Eine Referenz ist also nicht mehr gültig, wenn die Variable, auf die sie verweist, nicht mehr

vom RRS aufgefunden werden kann. Dies kann vielfältige Gründe haben – zum Beispiel kann

sich das Schema der Referenzen mittlerweile geändert haben, sodass alte Referenzen nicht

mehr valide im Bezug auf das im RRS hinterlegte Schema sind, oder das RRS kann keine

Verbindung mehr zu einer zuvor benutzten Datenbank herstellen.

21

Die obige Definition schließt aber auch den Fall ein, dass eine Referenz erstellt, das zugehöri-

ge Datum aber gelöscht wird, während die Referenz noch im Umlauf ist. Es entsteht so eine

Art Dangling Reference [EY93]. Dieser Fall ist besonders kritisch, wenn nach dem Löschen

der Variablen eine neue Variable im selben Datenspeicher abgelegt wird, die zufällig oder sys-

tematisch den gleichen Variablennamen erhält. Dann verweist die alte Referenz nämlich auf

ein neues Datum, das eventuell einen anderen Wert hat, als erwartet. Dies löst aber keinen

Fehler aus, da die Referenz fehlerfrei aufgelöst werden kann. Eine Referenz darf deshalb nicht

mehr gültig sein, sobald die zugrunde liegende Variable gelöscht wird. Mögliche Erkennungs-

strategien für dieses Problem wären beispielsweise Varianten von Tombstones [LO75] oder

das Anreichern von Variablen und Referenzen mit Versionierungsinformationen nach dem

Locks-and-Keys-Prinzip [FL80] oder durch Speicherung des Zeitpunkts der Erstellung der

Referenz bzw. Löschung der Variablen.

Diese Arbeit beschränkt sich darauf, dass Referenzen nicht zwischen Prozessen ausgetauscht

werden. Es werden nur Daten ausgetauscht. Somit ist die Gültigkeit von Referenzen immer

gewährleistet. Eine Erweiterung bezüglich dem Austausch von Referenzen müsste jedoch die

Gültigkeit von Referenzen berücksichtigen.

3.4 Referenzen-Schema

Zu Beginn dieses Kapitels wurde bereits definiert, dass Referenzen alle für ihre Auflösung nö-

tigen Informationen enthalten. Dies macht es nötig, dass eine geeignete Form gewählt wird,

durch die diese Informationen repräsentiert werden. Das in [WG09] vorgeschlagene Schema

für Referenzen sieht unter anderem als Möglichkeit zur Auflösung vor, die nötigen Datenban-

kabfragen (etwa um den Wert einer Variablen zu erhalten oder sie zu löschen) direkt in der

Referenz zu speichern. Dies hat mehrere Nachteile:

• Lange und komplexe Queries können die Referenzen, deren Vorteil es unter anderem

sein soll, möglichst simpel und klein zu sein, aufblähen. Zudem müssen mehrere ver-

schiedene Queries gespeichert werden (für das Zuweisen von neuen Werten, das Lö-

schen und das Abrufen des Werts von Variablen).

• Die Queries können von anderen Programmen ausgelesen und in veränderter Form

wieder in der Referenz gespeichert werden, um damit das RRS (ob gewollt oder unge-

wollt) dazu zu bringen, schadhafte Operationen auf der Datenbank auszuführen („In-

22

jection“).

• Die Referenzen sind anfälliger dafür, nach gewisser Zeit ihre Gültigkeit zu verlieren,

wenn beispielsweise das Layout der zugehörigen Datenbank verändert wird und die

Queries dadurch nicht mehr funktionieren.

Stattdessen wird in dieser Arbeit ein anderer Ansatz verfolgt: Die zur Auflösung nötigen In-

formationen werden nicht in direkter Form von Queries gespeichert, sondern indem die ver-

schiedenen Informationsfragmente einzeln angegeben werden. Für eine Datenbank können so

zum Beispiel der Host, Datenbankname, Benutzername und Passwort mit der Referenz über-

geben werden. Allein das RRS kennt nun den internen Aufbau der Datenbank, fügt die gege-

benen Informationen dynamisch zur Laufzeit zu einem Query zusammen und führt dieses aus.

Das RRS hat somit die alleinige Kontrolle darüber, welche Queries auf der Datenbank ausge-

führt werden und kann bei einer Änderung des Datenbankschemas die Queries entsprechend

anpassen, ohne dass die Referenzen zwingend geändert werden müssen.

Für die Kopplung des RRS an die XML-Datenbank wird in dieser Arbeit Aufruftechnik ver-

wendet, das heißt, der Datenbankbefehl wird in einem Methodenaufruf direkt an das Daten-

banksystem übermittelt. BaseX enthält hierzu bereits einen entsprechenden Client unter BSD-

Lizenz5. Konzeptionell sind natürlich auch andere Formen wählbar, wie etwa Spracherweite-

rungen (vergleiche [HR01]) oder eine Anbindung mit Java Database Connectivity [RE00].

Indem lediglich Verbindungsinformationen statt vollständigen Queries angegeben werden, er-

geben sich die folgenden Vorteile:

• Die Referenzen werden klein und übersichtlich gehalten und sind gut lesbar. Es müs-

sen nicht mehrere Queries pro Referenz gespeichert werden, eine einmalige Angabe

der Verbindungsinformationen genügt.

• Es können keine Datenbankoperationen injiziert werden, da die Queries vom RRS zur

Laufzeit erzeugt werden.

• Die Referenzen werden robuster gegenüber Änderungen des Datenbanklayouts, da bei

einer solchen nun nicht mehr alle Referenzen, sondern lediglich die Query-Erzeugung

5 „Java client for BaseX“, https://github.com/BaseXdb/basex-examples/blob/master/src/main/java/org/basex/
examples/api/BaseXClient.java, aufgerufen am 29.10.2013

23

im RRS angepasst werden muss.

Auch wenn keine Injektion von unerwünschen Queries mehr möglich ist, bleiben andere Si-

cherheitsrisiken bestehen, da die Daten aus der Referenz beispielsweise offen das Passwort

zur Datenbank beinhalten. Dieses Problem kann durch verschiedene Methoden gelöst werden

– so könnten beispielsweise von der Datenbank nur Zugriffe vom RRS zugelassen werden

oder aber das RRS verschlüsselt die Passwörter innerhalb der Referenzen. Im Rahmen dieser

Bachelorabeit wird diese Problematik jedoch nicht weiter vertieft. Ein Überblick über verblie-

bene Sicherheitsrisiken, die im Falle einer realen Anwendung vermieden werden müssen,

wird im Ausblick in Kapitel 6 gegeben.

Zusätzlich zu den Verbindungsinformationen muss das Schema der Referenzen auch den in-

ternen Namen der Variablen enthalten, sodass einzelne Variablen auf demselben Datenspei-

cher identifiziert werden können. Diese Namen müssen lediglich innerhalb des Datenspei-

chers einzigartig sein. Bei der Erstellung neuer Variablen wird dies transaktional sicherge-

stellt, damit es nicht zu Namenskollisionen kommt und die Eindeutigkeit der Referenzen be-

stehen bleibt. Die Verbindungsinformationen zum Datenspeicher und der Name der Variablen

legen gemeinsam den Speicherort einer Variablen eindeutig fest.

Das fertige Schema für die Referenzen wird in Listing 4 dargestellt. Der Typ für das Element

<storageLocation> wird in ein anderes XML-Schema-Dokument storagetypes.xsd ausgela-

gert. Dieses enthält alle Definitionen für die verschiedenen Speicherarten, in denen potentiell

Variablen abgelegt werden können. In dieser Arbeit wird exakt eine Speicherart verwendet,

ein Datenbanksystem auf Basis von BaseX. Die zugehörige storagetypes.xsd ist in Listing 5

dargestellt.

24

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <!-- Include the types of storages that can be used. -->
 <xs:include schemaLocation="storagetypes.xsd" />

 <xs:element name="reference">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="storageLocation" type="storageTypeT" />
 <xs:element name="variableName" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

</xs:schema>

Listing 4: Schema der Referenzen (reference.xsd).

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:complexType name="storageTypeT">
 <xs:choice>

 <xs:element name="BaseXXMLDatabase">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="hostname" type="xs:string" />
 <xs:element name="port" type="xs:integer" />
 <xs:element name="database" type="xs:string" />
 <xs:element name="username" type="xs:string" />
 <xs:element name="password" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 </xs:choice>
 </xs:complexType>

</xs:schema>

Listing 5: Definition der Speichertypen (storagetypes.xsd).

Auf diese Art und Weise kann nun eine einfache Erweiterung der Speichertypen geschehen,

indem in der storagestypes.xsd dem <choice>-Konstrukt weitere Elemente hinzugefügt wer-

den. Soll dieser Speichertyp auch vom RRS aufgelöst werden können, ist ferner die Imple-

mentierung eines entsprechenden Konnektors notwendig, worauf in Kapitel 4.2.3 eingegan-

gen wird.

Was die Referenzen nicht enthalten, ist ein Verweis auf das RRS selbst, das zur Auflösung der

Referenzen fähig ist. Diese Entscheidung wurde im Hinblick darauf getroffen, dass der Ser-

vice Composition Engine für einen bestimmten Prozess in dessen Grammatik immer mindes-

tens ein RRS zugeordnet ist und damit stets ein Verweis existiert.

25

4 Reference Resolution System

Das RRS ist das Kernstück einer referenzbasierten Datenverwaltung. Es ist dafür verantwort-

lich, Daten abzulegen und in diesem Zuge eine Referenz auf das gespeicherte Datum zu gene-

rieren. Durch Auflösung der Referenzen soll anschließend jedes Datum wieder erhalten sowie

auch manipuliert werden können, bis es schließlich gelöscht wird und Referenzen, die auf die-

ses Datum verweisen, damit ihre Gültigkeit verlieren.

Damit besitzt die Schnittstelle des RRS vier zentrale Operationen:

• Insert

Ein Datum in Form von XML wird vom RRS in einem der möglichen Datenspeicher

als Variable abgelegt. Eine Referenz, die das Datum eindeutig identifiziert, wird gene-

riert und als Antwort zurückgegeben.

• Get

Eine Referenz wird aufgelöst und der Wert der Variablen, auf die die Referenz ver-

weist, zurückgegeben.

• Update

Eine Referenz wird aufgelöst und der Wert der Variablen, auf die die Referenz ver-

weist, durch einen anderen Wert ersetzt. Dies entspricht etwa einer Zuweisungsopera-

tion.

• Delete

Eine Referenz wird aufgelöst und die Variable, auf die die Referenz verweist, aus dem

zugehörigen Datenspeicher gelöscht, wodurch Referenzen auf sie nicht zukünfig nicht

mehr aufgelöst werden können.

Das RRS wurde im Rahmen dieser Arbeit als ein SOAP-Web-Service entwickelt. Aufgrund

der Tatsache, dass nur die Service Composition Engine das RRS aufruft, wäre für die momen-

tane Verwendung zwar eine einfache, eng an die Service Composition Engine gekoppelte

Komponente ausreichend gewesen, allerdings bietet die hier gewählte Architektur große Vor-

teile hinsichtlich der Erweiterbarkeit: Die Konzeption als Web-Service bietet die Möglichkeit,

26

dass ein RRS nicht nur von einer Service Composition Engine genutzt wird, sondern von

mehreren [GL12]. In einem solchen Szenario wäre mithilfe von Referenzen auch die Mög-

lichkeit existent, Referenzen zwischen verschiedenen Geschäftsprozessen, die von verschie-

denen Service Composition Engines ausgeführt werden, auszutauschen. Diese Idee lässt sich

erweitern zu Variablen, deren Werte zentral verwaltet oder sogar von externen Instanzen regu-

liert werden. [WG09] geht auf einen solchen Anwendungsfall genauer ein und beschreibt dar-

in, wie solche außerhalb der Geschäftsprozesse festgelegten Daten (wie zum Beispiel sich än-

dernde gesetzliche Vorgaben) mithilfe von Referenzen ohne Redundanzen verwaltet werden

können. Änderungen an solchen Daten müssten somit nicht durch alle Geschäftsprozess pro-

pagiert werden.

In einer solchen Umgebung könnte das RRS aufgrund des Entwurfs als Web-Service dann

etwa durch UDDI dynamisch gefunden werden. Dies würde es nicht mehr nötig machen, dass

die Adresse des RRS fest in der Grammatik eines Prozesses kodiert ist. Um die auftretende

Arbeitslast bei vielen laufenden Geschäftsprozessen auszugleichen, wäre dann auch das De-

ployment von mehreren RRS im Rahmen dynamischer Skalierbarkeit möglich – dabei wäre es

nicht notwendig, dass dasselbe RRS, das eine Referenz generiert, auch zur Auflösung dersel-

ben genutzt wird, was sich positiv auf die Robustheit des Gesamtsystems auswirkt.

Implementiert wurde das RRS in Java mit der in Kapitel 2.2 vorgestellten Java API for XML

Web Services und der zugehörigen Referenzimplementierung. Im folgenden Kapitel soll wird

der Entwurf des Systems vorgestellt. Anschließend geht Kapitel 4.2 darauf ein, wie das Sys-

tem auf einfache Art und Weise ausgebaut werden kann, um weitere Datenspeicher zu unter-

stützen.

4.1 Entwurf

Aufgrund der oben diskutierten Möglichkeiten zur Ausweitung des Systems spielen beim Ent-

wurf des RRS vor allem zwei Aspekte eine wichtige Rolle: Flexibilität und Erweiterbarkeit.

Das RRS soll ohne Probleme schnell auf anderen Servern bereigestellt bzw. in andere Syste-

me integriert werden können. Gleichzeitig sollen möglichst auf einfache Art und Weise und

ohne ein nötiges Redeployment weitere Datenspeicher hinzugefügt werden können, die zum

Halten von Variablen genutzt werden. Die Lösung des Integrationsaspekt ergibt sich bereits

aus der Implementierung des RRS als Web-Service, wie zu Beginn von Kapitel 4 angespro-

27

chen. Die Erweiterbarkeit soll dadurch gewährleistet werden, dass Informationen zu den Da-

tenspeichern nicht fest im Programmcode gespeichert werden, sondern im Deployment-De-

skriptor ein Konfigurationsverzeichnis definiert wird. Aus diesem werden dynamisch zur

Laufzeit alle verwendeten XML-Schemata ausgelesen, sowie alle XML-Dokumente, die die

Verbindungsinformationen zu den genutzten Datenspeichern enthalten.

Abbildung 6 zeigt das grundlegende Entwurfsdiagramm. Die Klasse Interface enthält alle

nach außen sichtbaren Funktionen. Soll ein neues Datum extern gespeichert werden, muss für

die Wahl eines geeigneten Datenspeichers eine Klasse der Schnittstelle Heuristic implemen-

tiert werden, deren Aufgabe es ist, den Datenspeicher auszuwählen. Ein Beispiel hierfür ist

die Klasse AlwaysBaseXHeuristic, die die BaseX-Datenbank auswählt, in der im Rahmen die-

ser Arbeit die Variablen abgelegt werden. Die Klasse ConnectorFactory wird genutzt, um zur

Laufzeit Instanzen von Konnektoren zu erzeugen (Klassen, die die Schnittstelle Storage-

Connector implementieren). Diese realisieren den Zugriff auf die Datenspeicher. In dieser Ar-

beit ist dies der BaseXXMLDatabaseConnector, der die Aufruffunktionen des BaseXClients

zur Übermittlung der Datenbankbefehle nutzt. Konnektoren müssen die folgenden Methoden

imlementieren: Initialize (zum Öffnen des Datenspeichers und für andere vorbereitende Maß-

nahmen), Close (Schließen der Verbindung zum Datenspeicher) sowie Insert, Get, Update und

Delete, die verantwortlich dafür sind, die Variablen im Speicher abzulegen, sie zu erfragen, zu

modifizieren oder zu löschen (zum Beispiel, indem entsprechende Queries erzeugt und ausge-

führt werden).

Bei Anfragen, die an das RRS gestellt werden, arbeitet das System folgendermaßen: Wird eine

der Operationen Get, Update oder Delete aufgerufen, wird als Parameter eine Referenz über-

geben. Diese enthält bereits alle nötigen Informationen darüber, wo die Variable, auf die ver-

wiesen wird, abgelegt ist (siehe Kapitel 3). Wird dagegen die Operation Insert aufgerufen,

muss für die neu anzulegende Variable erst ein Speicherort gefunden werden. Hierzu kann

eine Instanz einer Klasse verwendet werden, die von der Schnittstelle Heuristic erbt (wie etwa

die in Abbildung 6 dargestellte Klasse AlwaysBaseXHeuristic). In dieser können verschiedene

Wege definiert werden, wie der geeignetste Datenspeicher für das zu speichernde Datum auf-

gefunden werden kann. Näheres zu Heuristiken folgt in Kapitel 4.2. Im Rahmen dieser Bache-

lorarbeit existiert lediglich eine einzige Heuristik, die immer die einzig genutzte XML-Daten-

bank auf Basis des BaseX-Datenbanksystems auswählt.

28

Abbildung 6: Der grundlegende Aufbau des Reference Resolution System.

Um eine Verbindung zum Datenspeicher herzustellen, existieren die sogenannten Konnekto-

ren. Sie leiten ab von der Schnittstelle StorageConnector und implementieren für einen be-

stimmten Typ Datenspeicher den Zugriff auf diesen sowie das Speichern, Manupulieren und

Löschen von Variablen. Der richtige Konnektor wird von der Klasse StorageConnectorFacto-

ry zur Laufzeit mithilfe der Verbindungsinformationen ausgewählt und die entsprechende

29

Klasse dynamisch instanziiert. Die Instanz wird an das Interface zurückgegeben, das nun di-

rekt auf die Operationen des Konnektors zugreifen kann und durch diese eine Verbindung

zum Datenspeicher besitzt.

Nachdem der Konnektor erzeugt wurde, gibt die Klasse Interface bei diesem die nötige Ope-

ration in Auftrag und leitet die hierfür nötigen Daten (beispielsweise die Referenz im Falle der

Operationen Get, Update und Delete) per Parameter weiter, damit der Konnektor in Folge die

entsprechende Operation durchführen kann. Die Antwort (zum Beispiel der Wert der Varia-

blen im Falle der Operation Get) wird anschließend per SOAP-Nachricht zum Web-Ser-

vice-Requester zurückgegeben. Im Sonderfall der Methode Insert muss außerdem noch ein

Name für die Variable generiert werden, der mit hoher Wahrscheinlichkeit noch nicht in der

Datenbank vertreten ist – hierfür ist der Namensgenerator zuständig. Im Rahmen dieser Arbeit

werden hierfür pseudo-zufällige Universally Unique Identifier (kurz: UUID) mit einer Größe

von 128 Bit als Namen vergeben6, um die Wahrscheinlichkeit für eine Namenskollision mög-

lichst gering zu halten. Wird zufällig ein Name gewählt, der bereits vergeben ist, lässt der hier

verwendete Connector den Namensgenerator einen weiteren Namen erzeugen.

Falls es bei der Verarbeitung der Anfrage zu Fehlern kommt, enthält die zurückgegebene

SOAP-Nachricht eine SOAP-Fault, die Auskunft darüber gibt, warum die Anfrage nicht aus-

geführt werden konnte. Die Faults sind als Java Exceptions implementiert und werden von

JAX-WS entsprechend in Faults konvertiert. Diese Fehler existieren auf zwei Ebenen: RRS-

Faults werden erzeugt, wenn grundsätzliche Fehler auf Ebene der Klassen Interface und

ConnectorFactory sowie in den Heuristiken auftreten (etwa wenn eine nicht valide Referenz

übergeben wird oder kein passender Konnektor erzeugt werden kann). Tritt ein Fehler wäh-

rend Operationen auf dem Datenspeicher auf, wird stattdessen eine StorageFault erzeugt.

4.2 Erweiterbarkeit und Konfiguration

In Anbetracht der zu Beginn von Kapitel 4 erörterten Möglichkeiten zur Ausweitung des Ein-

satzes des RRS ist eine Erweiterbarkeit des Systems ein wesentliches Kriterium für den Ent-

wurf. Um dieser Anforderung gerecht zu werden, bietet die zu dieser Arbeit gehörende Imple-

mentierung verschiedene Möglichkeiten zur Erweiterung:

6 „UUID (Java 2 Platform SE 5.0)“, http://docs.oracle.com/javase/1.5.0/docs/api/java/util/
UUID.html#randomUUID(), aufgerufen am 04.11.2013

30

• Die Definition eines Konfigurationsverzeichnisses, das sowohl die XML-Schemata

der Referenzen und Speicherarten als auch Verbindungsinformationen zu allen beste-

henden Datenspeichern enthält, erlaubt das dynamische Hinzufügen und Entfernen

von Speicherorten.

• Die Schnittstelle Heuristic dient als Vorlage für die Implementierung von Heuristiken,

deren Aufgabe es ist, automatisiert einen geeigneten Speicherort für ein abzulegendes

Datum zu finden.

• Konnektoren implementieren die Verbindung des RRS zu den Datenspeichern und die

Ausführung der Insert-, Get-, Update- und Delete-Operationen auf den Speichern.

Eine andere Art von Datenspeicher kann schnell und flexibel durch Implementierung

eines zugehörigen Konnektors hinzugefügt werden.

• Ein Namensgenerator kann verschiedene Methoden zur Generierung geeigneter, mög-

lichst noch nicht in der Datenbank vorhandener Namen implementieren.

4.2.1 Verwaltung der Datenspeicher durch das Konfigurationsverzeichnis

In Kapitel 4.1 wurde bereits die Existenz eines zentralen Konfigurationsverzeichnisses er-

wähnt. Dieses Verzeichnis wird im Deployment-Deskriptor festgelegt und enthält alle zur Va-

lidierung nötigen Schemata (das Schema für Referenzen, die Speicherarten und die Verbin-

dungsinformationen) sowie die Verbindungsinformationen über alle verfügbaren Datenspei-

cher, die in Form von XML-Dokumenten vorliegen.

Das Verzeichnis kann dynamisch zur Laufzeit durchsucht werden, wodurch es insbesondere

möglich wird, Datenspeicher während der Laufzeit hinzuzufügen oder zu entfernen. Die ent-

haltenen XML-Instanzen, die jeweils die Verbindungsinformationen zu einem Datenspeicher

enthalten, müssen dem in Listing 6 dargestellten Schema folgen.

31

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <!-- Include the types of storages that can be used. -->
 <xs:include schemaLocation="storagetypes.xsd" />

 <xs:element name="storageInformation">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="storageLocation" type="storageTypeT" />
 <xs:element name="storageProperties">
 <xs:complexType>
 <xs:all>
 <!-- Possible properties of storages. -->
 <xs:element name="maximumDataSize" type="xs:integer" />
 <xs:element name="setupDate" type="xs:date" />
 <xs:element name=“lastUsedOn“ type=“xs:data“ />
 </xs:all>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

</xs:schema>

Listing 6: Schema der XML-Dokumente, die Informationen zu einem
bestimmten Datenspeicher enthalten (storageinformation.xsd).

Das Wurzelelement <storageInformation> gliedert sich in zwei Teile: Zum einen enthält es die

Verbindungsinformationen zum Datenspeicher (Element <storageLocation>), die in der stora-

getypes.xsd definiert wurden (siehe Listing 5 in Kapitel 3.4); zum anderen besteht die Mög-

lichkeit, diese rein technischen, funktionalen Daten mit nichtfunktionalen Eigenschaften anzu-

reichern. Diese werden innerhalb des Elements <storageProperties> aufgelistet. Die mometa-

ne Implementierung nutzt diese nichtfunktionalen Eigenschaften noch nicht – daher ist ihr

Vorkommen optional. Allerdings können Heuristiken definiert werden, die einen geeigneten

Datenspeicher auf Basis dieser Eigenschaften auswählen. Denkbar ist beispielsweise auch das

Einbinden von WS-Policy-Richtlinien an dieser Stelle.

4.2.2 Auswahl geeigneter Datenspeicher mit Heuristiken

Der Begriff Heuristik findet außer in der Informatik auch in zahlreichen anderen Anwen-

dungsgebieten Gebrauch. [PE84] beispielsweise definiert mit Heuristiken Strategien, die ver-

fügbare und zugängliche Informationen nutzen, um das Lösen von Problemen sowohl durch

Maschinen als auch durch Menschen zu kontrollieren. In der künstlichen Intelligenz werden

besonders bei Problemen mit großem Suchraum Heuristiken genutzt, um mit begrenzter Infor-

mation möglichst schnell gute Entscheidungen zu treffen [HN68]. Im Kontext des RRS soll

der Begriff jedoch deutlich enger gefasst werden:

32

Definition (Heuristik):

Eine Heuristik beschreibt eine Sammlung verwandter Vorgehensweisen, die mit mögli-

cherweise unterschiedlichen Mengen an Information über die zu speichernden Daten

den dafür im Sinne einer bestimmten Strategie passendsten verfügbaren Datenspeicher

auswählen.

Im RRS sind Heuristiken dafür vorgesehen, von der Operation Insert verwendet zu werden.

Immer dann, wenn eine neue Variable in einem Datenspeicher abgelegt werden soll, muss ent-

schieden werden, welcher der verfügbaren Speicher hierzu verwendet wird. Heuristiken soll-

ten hierzu die Schnittstelle Heuristic implementieren. Eine Heuristik kann dann verschiedene

Methoden implementieren, um eine Wahl zu treffen.

Da im Rahmen dieser Arbeit dem RRS nur ein einziger Datenspeicher zur Verfügung steht,

wählt die implementierte Heuristik (AlwaysBaseXHeuristic) immer die BaseX-Datenbank

aus, die im XML-Dokument basexxmldatabase1.xml deklariert wird. Soll das RRS zukünftig

in einer größeren Umgebung verwendet werden, in der es gegebenenfalls von mehreren unter-

schiedlichen Prozessen mit unterschiedlich großen zu speichernden Datenmengen verwendet

wird, wird die Wahl des geeignetsten Datenspeichers unter Umständen deutlich komplexer,

sodass die Definition weiterer Strategien nötig sein kann. Hierzu kann es sinnvoll sein, gemäß

Kapitel 4.2.1 für jeden Speicher eine Menge an nichtfunktionalen Eigenschaften zur Verfü-

gung zu stellen, die den Heuristiken als Information zur Verfügung stehen. Einige mögliche

sich daraus ergebende Strategien sollen hier beispielhaft aufgeführt werden:

• Es wird immer der Datenspeicher ausgewählt, der am längsten nicht verwendet wurde,

um die Variablen möglichst gleichmäßig auf verfügbare Datenbanken zu verteilen.

• Es wird stets ein Datenspeicher zufällig ausgewählt, um durch Randomisierung zu

vermeiden, dass periodische Muster bei den Aufrufen von Insert zur Überfüllung ein-

zelner Datenspeicher führen.

• Für große Variablen werden vorrangig Speicher ausgewählt, die solche Datenmengen

effizienter verarbeiten können.

• Bestimmte Datenspeicher werden generell präferiert, während andere nur als Ersatzlö-

sung zur Verfügung stehen, falls primäre Datenbanken ausfallen.

33

4.2.3 Hinzufügen von Konnektoren

In dieser Arbeit wird zur Speicherung der Variablen das Datenbanksystem BaseX verwendet.

Die Vorteile von BaseX als ein generell für diese Verwendung gut geeigneter Datenspeicher

wurden bereits in Kapitel 2.3 erläutert. Weitere BaseX-Datenbanken können wie in Kapitel

4.2.1 beschrieben einfach durch das Hinzufügen neuer XML-Dokumente, die dem in der sto-

rageinformation.xsd definierten XML-Schema folgen, in das Konfigurationsverzeichnis an

das RRS angebunden werden.

Wird das Gesamtsystem jedoch ausgeweitet und in spezifischeren Szenarien verwendet, kann

es zu Sonderfällen kommen, wenn beispielsweise für hochperformante Anfragen Key-Value-

Stores verwendet werden sollen [DH07] oder aufgrund rechtlicher Einschränkungen ein Aus-

lagern der Daten in beliebige externe Datenbanken nicht möglich ist. In diesen Fällen ist es

nötig, dass andere Arten von Datenspeichern unterstützt werden. Dies können andere Daten-

banksysteme mit abweichender Kopplung sein oder aber es werden gar keine Datenbanken

zum Speichern der Variablen verwendet, sondern das lokale Dateisystem. Ist das der Fall,

müssen für das Öffnen des neuen Datenspeichers und die Übertragung der Queries neue Rou-

tinen implementiert werden, im besten Fall ohne die Funktionalität der bestehenden Methoden

zu ändern. Zu diesem Zweck werden die sogenannten Konnektoren verwendet. Dies sind

Klassen, die die Schnittstelle StorageConnector implementieren. Sie sind verantwortlich für

das Herstellen und Trennen der Verbindung und das Ausführen aller Befehle, die zum Spei-

chern, Abrufen, Manipulieren und Löschen von Variablen benötigt werden.

Soll das System eine neue Art Datenspeicher unterstützen, muss zusätzlich zur Erweiterung

der Typen in der storagetypes.xsd lediglich ein neuer Konnektor implementiert werden, der

diese Operationen unterstützt. Die ConnectorFactory instantiiert den neuen Konnektor dann

auf Basis der zum Datenspeicher zugehörigen XML-Instanz automatisch, wodurch keine wei-

tere Integration notwendig ist.

4.2.4 Erweiterung des Namensgenerators

In dieser Arbeit werden als Namen für Variablen ausschließlich UUIDs verwendet7. Diese

werden von einem Namensgenerator erzeugt und in Form von Strings zurückgegeben.

7 „UUID (Java 2 Platform SE 5.0)“, http://docs.oracle.com/javase/1.5.0/docs/api/java/util/
UUID.html#randomUUID(), aufgerufen am 04.11.2013

34

Ist diese Art der Namensvergabe für einen bestimmten Datenspeicher nicht möglich (etwa

weil diese zu lang sind oder dadurch unerwünschte Zeichen im Bezeichner vorkommen),

müssen andere Namen generiert werden. Hierzu kann der Namensgenerator um die entspre-

chenden Methoden erweitert werden. Diese können anschließend vom Konnektor benutzt

werden.

35

5 Deployment und Validierung

In diesem Kapitel soll das zu dieser Arbeit gehörende, implementierte RRS (das dem in Kapi-

tel 4 vorgestellten Entwurf folgt) auf einem Server bereitgestellt werden; ebenso soll eine Da-

tenbank auf Basis des Datenbanksystems BaseX bereitgestellt werden, die an das RRS ange-

bunden wird. Anschließend soll die Funktionsweise der implementierten Methoden validiert

werden.

Kapitel 5.1 stellt vorerst die Systemspezifikation des Systems vor, auf dem die Tests durchge-

führt wurden. Kapitel 5.2 widmet sich anschließend der Validierung. Hierzu wird das System

anhand verschiedener Testfälle geprüft. In Kapitel 5.3 werden einige Statistiken im Hinblick

auf die Performanz des Web-Services erläutert.

5.1 Testumgebung

Alle folgenden Prüfungen wurden auf einem Computer mit Windows 7 Home Premium als

Betriebssystem in der 64-Bit-Version durchgeführt. Das System enthält einen Zweikern-Pro-

zessor mit einem Takt von jeweils 2,27 Gigahertz. Es verfügt über einen Arbeitsspeicher von

4 Gigabyte.

Das BaseX-Datenbanksystem wurde direkt auf dieses System aufgespielt. Um eine einfache

Konfiguration zu gewährleisten, existiert lediglich ein Benutzer und eine Datenbank, in der

die Variablen abgelegt werden. Das RRS wurde auf einem Tomcat-Server der Version 7.0 be-

reitgestellt8. Im Deployment-Deskriptor des RRS wurde entsprechend der Konfigurationspfad

zu allen XML-Schemata und der XML-Datei mit den Verbindungsinformationen zur verwen-

deten Datenbank gesetzt. Ebenfalls im Deployment-Deskriptor angegeben wurden die URL

und die Implementierungsklasse. Der Tomcat-Server selbst läuft ebenfalls auf dem oben be-

schriebenen System.

Um den Web-Service aufzurufen, wird SoapUI verwendet9. SoapUI ist eine quelloffene Soft-

ware, mit der das funktionale Prüfen von Web-Services möglich ist. Sie bietet sowohl einfa-

che Möglichkeiten zum Testen von Methoden durch den Versand einzelner SOAP-Nachrich-

ten als auch komplexere Prüfmöglichkeiten wie das Definieren von Testsuites, die komplizier-

8 „Apache Tomcat“, http://tomcat.apache.org, abgerufen am 13.11.2013
9 „SoapUI – The Home of Functional Testing“, http://www.soapui.org, abgerufen am 13.11.2013

36

tere Szenarien abdecken können.

5.2 Validierung

Um die korrekte Funktion des RRS sicherzustellen, wurde eine Reihe von Testfällen in Form

von SOAP-Nachrichten entworfen, die mithilfe von SoapUI an das RRS geschickt wurden.

Das Ergebnis der Operationen wurde anschließend mit dem erwarteten Ergebnis verglichen.

Im Folgenden werden einige der Ergebnisse auszugsweise detailliert vorgestellt. Daraufhin

folgt eine kurzgefasste Liste aller Ergebnisse.

5.2.1 Testfall A: Insert komplexer XML-Daten und anschließendes Get

Dieser Testfall beschäftigt sich mit der Insert- und der Get-Operation. Es sollen XML-Daten

in der Datenbank gespeichert werden, die gängige Konstrukte (Attribute, Kommentare, Esca-

pe-Sequenzen) sowie Sonderzeichen enthalten. Als Ergebnis wird erwartet, dass die Daten er-

folgreich in der Datenbank gespeichert werden können und bei einem Get in derselben Form

zurückgeliefert werden.

Die in Listing 7 dargestellte SOAP-Nachricht wurde hierfür an das RRS übermittelt:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:core="http://core/">
 <soapenv:Header/>
 <soapenv:Body>
 <core:insert>
 <initialValue>
 <![CDATA[<Element1 Attrib1="5">Test</Element1>
 <Element2 Attrib2="Test">42.2</Element2>
 <!-- This is a comment. -->
 <Element3>1<2 & 2lt;3 -> 1<3</Element3>
 <Element4>!"§$%/()=?´*+~#'^°;:|@€</Element4>]]>
 </initialValue>
 </core:insert>
 </soapenv:Body>
</soapenv:Envelope>

Listing 7: SOAP-Nachricht zur Prüfung des Verhaltens bei der Insert-Operation.

Die Antwortnachricht soll die Referenz zu diesem Datum enthalten. Listing 8 stellt die Nach-

richt dar.

37

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <ns2:insertResponse xmlns:ns2="http://core/">
 <return>
 <[CDATA[<reference><storageLocation><BaseXXMLDatabase><hostname>
 localhost</hostname><port>1984</port><database>testdb</database>
 <username>testuser</username><password>password</password>
 </BaseXXMLDatabase></storageLocation><variableName>
 cc73ed87-1264-4f0f-934a-2e8b02d3e5dd</variableName></reference>]]>
 </return>
 </ns2:insertResponse>
 </S:Body>
</S:Envelope>

Listing 8: SOAP-Nachricht als Antwort auf die Insert-Operation.

Mit der erhaltenen Referenz sollen die Daten nun wieder abgerufen werden. Die Listings 9

und 10 zeigen die Anfrage- und die Antwortnachricht. Die XML-Daten wurden korrekt in der

Datenbank abgelegt und zurückgeliefert.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:core="http://core/">
 <soapenv:Header/>
 <soapenv:Body>
 <core:get>
 <reference>
 <![CDATA[<reference><storageLocation><BaseXXMLDatabase><hostname>
 localhost</hostname><port>1984</port><database>testdb</database>
 <username>testuser</username><password>password</password>
 </BaseXXMLDatabase></storageLocation><variableName>
 cc73ed87-1264-4f0f-934a-2e8b02d3e5dd</variableName></reference>]]>
 </reference>
 </core:get>
 </soapenv:Body>
</soapenv:Envelope>

Listing 9: SOAP-Nachricht zur Prüfung des Verhaltens bei der Get-Operation.

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <ns2:getResponse xmlns:ns2="http://core/">
 <return>
 <![CDATA[<Element1 Attrib1="5">Test</Element1>
 <Element2 Attrib2="Test">42.2</Element2>
 <!-- This is a comment. -->
 <Element3>1<2 & 2lt;3 -> 1<3</Element3>
 <Element4>!"§$%/()=?´*+~#'^°;:|@€</Element4>]]>
 </return>
 </ns2:getResponse>
 </S:Body>
</S:Envelope>

Listing 10: SOAP-Nachricht als Antwort auf die Get-Operation.

5.2.2 Testfall B: Update für nicht existierende Variable

Dieser Testfall zeigt das Ergebnis einer Update-Operation, deren übergebene Referenz einen

Variablennamen trägt, der nicht im Datenspeicher vorkommt. Da es sich hierbei um einen

Fehler auf Ebene des Datenspeichers handelt, wird nach Kapitel 4.1 als Ergebnis eine Stora-

geFault erwartet. Die Listings 11 und 12 zeigen die Anfrage und die erhaltene Antwortnach-

38

richt mit dem erwünschten Ergebnis.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:core="http://core/">
 <soapenv:Header/>
 <soapenv:Body>
 <core:update>
 <reference>
 <![CDATA[<reference><storageLocation><BaseXXMLDatabase><hostname>
 localhost</hostname><port>1984</port><database>testdb</database>
 <username>testuser</username><password>password</password>
 </BaseXXMLDatabase></storageLocation><variableName>NonExistent
 </variableName></reference>]]>
 </reference>
 <newValue>NewValue</newValue>
 </core:update>
 </soapenv:Body>
</soapenv:Envelope>

Listing 11: SOAP-Nachricht zur Prüfung des Verhaltens bei der
Update-Operation, wenn die Variable nicht existiert.

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <S:Fault xmlns:ns4="http://www.w3.org/2003/05/soap-envelope">
 <faultcode>S:Server</faultcode>
 <faultstring>Reference could not be resolved.</faultstring>
 <detail>
 <ns2:StorageFault xmlns:ns2="http://core/">
 <message>Reference could not be resolved.</message>
 </ns2:StorageFault>
 </detail>
 </S:Fault>
 </S:Body>
</S:Envelope>

Listing 12: SOAP-Nachricht als Antwort auf die fehlerhafte Update-Anfrage.

5.2.3 Testfall C: Delete mit nicht valider Referenz

Im Folgenden wird die Operation Delete aufgerufen, allerdings mit einer Referenz, die nicht

dem definierten Schema innerhalb der reference.xsd entspricht (es fehlen der Name der Varia-

ble sowie das umschließende <StorageLocation>-Element und das Passwort). Der Aufruf soll

daher eine RRSFault erzeugen. Listing 13 zeigt die SOAP-Nachricht des Aufrufs, Listing 14

die erwartete und erhaltene RRSFault.

39

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:core="http://core/">
 <soapenv:Header/>
 <soapenv:Body>
 <core:delete>
 <reference>
 <![CDATA[<reference><BaseXXMLDatabase><hostname>localhost</hostname>
 <port>1984</port><database>testdb</database><username>testuser
 </username></BaseXXMLDatabase></reference>]]>
 </reference>
 </core:delete>
 </soapenv:Body>
</soapenv:Envelope>

Listing 13: Aufruf der Delete-Operation als SOAP-Nachricht mit nicht valider Referenz.

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <S:Fault xmlns:ns4="http://www.w3.org/2003/05/soap-envelope">
 <faultcode>S:Server</faultcode>
 <faultstring>No valid reference was passed.</faultstring>
 <detail>
 <ns2:RRSFault xmlns:ns2="http://core/">
 <message>No valid reference was passed.</message>
 </ns2:RRSFault>
 </detail>
 </S:Fault>
 </S:Body>
</S:Envelope>

Listing 14: SOAP-Nachricht als Antwort auf die fehlerhafte Delete-Anfrage.

5.2.4 Übersicht über weitere Testfälle

Tabelle 1 liefert eine Übersicht über weitere geprüfte Testfälle, die allesamt das erwartete Er-

gebnis lieferten.

Anfrage Antwort

Insert einer leeren Zeichenkette Referenz

Insert wohlgeformter XML-Daten Referenz

Insert nicht wohlgeformter XML-Daten StorageFault

Datenbank ist offline oder nicht erreichbar StorageFault

Get mit einer validen, gültigen Referenz Wert

Get/Update/Delete mit einer invaliden Referenz RRSFault

Get/Update/Delete einer nicht existierenden Variable StorageFault

Update mit leerem String als neuem Wert OK

Update mit wohlgeformten XML-Daten als neuem Wert OK

Update mit nicht wohlgeformten XML-Daten als neuem Wert StorageFault

Delete mit einer validen, gültigen Referenz OK

Konfigurationsverzeichnis falsch gesetzt RRSFault

Datenspeicher-Typ wird nicht unterstützt RRSFault

Get/Update/Delete ohne Referenz RRSFault

Tabelle 1: Übersicht über Testfälle bei der Prüfung des Reference Resolution Systems.

40

5.3 Performanz

Um die Performanzeigenschaften des Systems unter verschiedenen Bedingungen zu testen,

wurde die Datenbank vorerst mit einer vorgegebenen Anzahl an Variablen gefüllt. Um den

Vorgang zu beschleunigen und nicht viele Male den Web-Serivce aufrufen zu müssen, wurden

diese mit XQuery-Befehlen eingefügt, wie beispielhaft in Listing 15 dargestellt. Der dort ge-

zeigte XQuery-Befehl fügt 100.000 Variablen in die Datenbank ein; diese haben eine Form

wie in Listing 16 gezeigt. Der Vorgang wurde für eine verschiedene Anzahl Variablen wieder-

holt.

insert node (for $x in (1 to 100000) return <Variable id='test-variable-
00{$x}-rrs'><TestXML><Name>test-variable-00{$x}-
rrs</Name><Identifier>{$x}</Identifier><Text-Content>Text Content</Text-
Content><ElementWithAttributes attrib1='{$x}' attrib2='{$x}'>Element with
Attributes</ElementWithAttributes></TestXML></Variable>) into
/VariableDatabase

Listing 15: Beispielhafter XQuery-Befehl, um 100.000
Variablen in die Datenbank einzufügen.

<Variable id='test-variable-001-rrs'>
 <TestXML>
 <Name>test-variable-001-rrs</Name>
 <Identifier>1</Identifier>
 <Text-Content>Text Content</Text-Content>
 <ElementWithAttributes attrib1='1' attrib2='1'>Element with
 Attributes</ElementWithAttributes>
 </TestXML>
</Variable>

Listing 16: Beispiel für eine durch den XQuery-Befehl erzeugte Variable.

Gemessen wurden die durchschnittlichen, minimalen und maximalen Antwortzeiten für die

Anfragen. In allen Fällen wurde darauf geachtet, dass die Anfragen in korrekter Form gestellt

werden und die Datenbank funktionsfähig ist, um die Performanzmessung der grundlegenden

Funktionalität nicht durch Sonderfälle oder SOAP-Faults zu verfälschen. Ferner wurde mithil-

fe der Java-Funktion System.nanoTime() der Anteil der Zeit gemessen, den die Ausführung

der Befehle auf der Datenbank einnimmt. Aus diesem Wert kann rekonstruiert werden, wie

viel Zeit die datenbankunabhängigen Berechnungen des RRS selbst in Anspruch nehmen. Ab-

bildung 7 zeigt einen Screenshot der Konfiguration der Prüfung in SoapUI. In den Tabellen 2

bis 5 werden die Ergebnisse der Messungen dargestellt.

41

Abbildung 7: Konfiguration von und Performanzprüfung mit SoapUI am Beispiel der Insert-Operation.

Insert

Initiale Anzahl
Variablen in der Datenbank

Minimale
Antwortzeit

Maximale
Antwortzeit

Durchschnittlic
he Antwortzeit

Zeit für RRS-interne
Berechnungen

10 16 ms 51 ms 23 ms 14 ms

100 17 ms 64 ms 24 ms 13 ms

1.000 19 ms 41 ms 26 ms 18 ms

10.000 29 ms 58 ms 43 ms 15 ms

100.000 168 ms 276 ms 185 ms 15 ms

1.000.000 1502 ms 1790 ms 1531 ms 18 ms

Tabelle 2: Messung der Antwortzeiten der Insert-Operation.

Get

Anzahl Variablen
in der Datenbank

Minimale
Antwortzeit

Maximale
Antwortzeit

Durchschnittlic
he Antwortzeit

Zeit für RRS-interne
Berechnungen

10 19 ms 60 ms 25 ms 20 ms

100 19 ms 42 ms 25 ms 21 ms

1.000 22 ms 55 ms 30 ms 24 ms

10.000 45 ms 72 ms 58 ms 23 ms

100.000 320 ms 390 ms 338 ms 21 ms

1.000.000 2962 ms 3252 ms 3038 ms 22 ms

Tabelle 3: Messung der Antwortzeiten der Get-Operation.

Update

Anzahl Variablen
in der Datenbank

Minimale
Antwortzeit

Maximale
Antwortzeit

Durchschnittlic
he Antwortzeit

Zeit für RRS-interne
Berechnungen

10 21 ms 68 ms 30 ms 22 ms

100 22 ms 64 ms 32 ms 22 ms

1.000 26 ms 77 ms 38 ms 21 ms

10.000 50 ms 95 ms 66 ms 27 ms

100.000 318 ms 410 ms 346 ms 26 ms

1.000.000 2930 ms 3436 ms 3012 ms 24 ms

Tabelle 4: Messung der Antwortzeiten der Update-Operation.

42

Delete

Initiale Anzahl
Variablen in der Datenbank

Minimale
Antwortzeit

Maximale
Antwortzeit

Durchschnittlic
he Antwortzeit

Zeit für RRS-interne
Berechnungen

10 26 ms 39 ms 32 ms 26 ms

100 29 ms 37 ms 34 ms 24 ms

1.000 32 ms 69 ms 38 ms 23 ms

10.000 64 ms 92 ms 77 ms 24 ms

100.000 328 ms 376 ms 342 ms 23 ms

1.000.000 2998 ms 3353 ms 3067 ms 24 ms

Tabelle 5: Messung der Antwortzeiten der Delete-Operation.

Für eine geringe Anzahl (bis etwa 104 Variablen in der Datenbank) sind kaum Einbußen an der

Antwortzeit zu erkennen. Die Antwortzeiten liegen in der Größenordnung gängiger Antwort-

zeiten im Web, wodurch sie in einem realen Umfeld nur wenig ins Gewicht fallen. Erst wenn

die Anzahl der in der Datenbank gespeicherten Variablen gegen die Größenordnung 106 geht,

machen sich deutlich längere Antwortzeiten bemerkbar. Greifen in diesem Fall in der Realität

viele Prozessinstanzen auf das RRS zu, würde dies die Performanz des Gesamtsystems erheb-

lich beeinträchtigen. Daher muss in der Praxis rechtzeitig auf diesen Umstand reagiert wer-

den, etwa durch das Hinzufügen neuer Datenbanken.

Betrachtet man die Menge an Zeit, die das RRS mit Berechnungen verbringt und nicht auf die

Datenbank wartet, fällt auf, dass diese nahezu konstant bleibt. Die Schwankungen weisen kei-

nerlei Tendenz auf und können daher als Messungenauigkeiten angesehen werden. Dies zeigt,

dass für eine große Anzahl an Variablen der Engpass die angebundene Datenbank ist, nicht die

Berechnungen innerhalb des RRS. Nur wenn die Datenbankoperationen schnell abgeschlos-

sen sind, nehmen die Berechnungen innerhalb des RRS (Parsing, Instantiierung, Kommunika-

tion) einen signifikanten Anteil ein.

Da ein wesentlicher Anwendungsfall für eine referenzbasierte Datenverwaltung das Speichern

großer Datenmengen ist, wurden außerdem ähnliche Prüfungen mit großen Variablen durch-

geführt. Die Listings 17 und 18 zeigen den dafür verwendeten XQuery-Befehl und die resul-

tierenden Variablen. Die Größe dieser Variablen beträgt etwa Faktor 1.000 im Vergleich zu der

vorherigen kleinen Variablen. Bei 100.000 eingefügten Variablen hat die resultierende Daten-

bank dabei eine Größe von etwa 22 Gigabyte.

43

insert node (for $x in (1 to 10) return <Variable id='test-variable-00{$x}-
rrs'>{(for $y in (1 to 1000) return <TestXML><Name>test-variable-00{$x}-
rrs</Name><Identifier>{$x}-{$y}</Identifier><Text-Content>Text
Content</Text-Content><ElementWithAttributes attrib1='{$x}'
attrib2='{$y}'>Element with Attributes</ElementWithAttributes></TestXML>)}
</Variable>) into /VariableDatabase

Listing 17: Beispielhafter XQuery-Befehl um zehn
große Variablen in die Datenbank einzufügen.

<Variable id='test-variable-001-rrs'>
 <TestXML>
 <Name>test-variable-001-rrs</Name>
 <Identifier>1-1</Identifier>
 <Text-Content>Text Content</Text-Content>
 <ElementWithAttributes attrib1='1' attrib2='1'>Element with
 Attributes</ElementWithAttributes>
 </TestXML>

 .
 .
 .

 <TestXML>
 <Name>test-variable-001-rrs</Name>
 <Identifier>1-1000</Identifier>
 <Text-Content>Text Content</Text-Content>
 <ElementWithAttributes attrib1='1' attrib2='1000'>Element with
 Attributes</ElementWithAttributes>
 </TestXML>
</Variable>

Listing 18: Beispiel für eine durch den XQuery-Befehl erzeugte große Variable.

Die Tabellen 6 und 7 zeigen die Ergebnisse der Tests für die Insert- und die Get-Operation.

Insert, große Variablen

Initiale Anzahl
Variablen in der Datenbank

Minimale
Antwortzeit

Maximale
Antwortzeit

Durchschnittlic
he Antwortzeit

Zeit für RRS-interne
Berechnungen

10 105 ms 342 ms 134 ms 24 ms

100 108 ms 387 ms 130 ms 20 ms

1.000 118 ms 290 ms 142 ms 22 ms

10.000 229 ms 411 ms 258 ms 23 ms

100.000 1288 ms 1562 ms 1343 ms 26 ms

Tabelle 6: Messung der Antwortzeiten der Insert-Operation für große Variablen.

Get, große Variablen

Anzahl Variablen
in der Datenbank

Minimale
Antwortzeit

Maximale
Antwortzeit

Durchschnittlic
he Antwortzeit

Zeit für RRS-interne
Berechnungen

10 73 ms 185 ms 92 ms 34 ms

100 62 ms 104 ms 85 ms 35 ms

1.000 68 ms 129 ms 99 ms 38 ms

10.000 242 ms 396 ms 269 ms 39 ms

100.000 1753 ms 2088 ms 1830 ms 39 ms

Tabelle 7: Messung der Antwortzeiten der Get-Operation für große Variablen.

Eine Erhöhung der Antwortzeit auf über eine Sekunde tritt hier bereits bei weniger als

44

100.000 Variablen auf. Für eine Zahl von Variablen um 104 ist die Performanz allerdings noch

immer unter 300 Millisekunden. Interessant ist die Tatsache, dass das Einfügen bei noch we-

nigen gespeicherten Variablen in diesem Fall länger dauert als das Abrufen der Werte. Erst

wenn viele Variablen in der Datenbank gespeichert sind, bewegt sich das Verhältnis wieder in

Richtung der Werte, die für kleine Variablen gemessen wurden. Die Zeit für RRS-interne Be-

rechnungen ist geringfügig gestiegen, allerdings um einen Faktor kleiner als zwei. Zu beach-

ten ist jedoch, dass die SOAP-Nachrichten auf derselben Maschine erzeugt und empfangen

wurden. Wird das RRS über das Netzwerk aufgerufen, sind bei größeren Variablen entspre-

chend längere Zeiten für die Übertragung der Daten einzurechnen.

45

6 Zusammenfassung und Ausblick

In dieser Arbeit wurde ein Konzept für die Datenverwaltung mit Referenzen in Service Com-

position Engines vorgestellt. Der Ansatz benutzt externe Datenbanken oder andere Datenspei-

cher, um von den Geschäftsprozessen verwendete Variablen auszulagern und stattdessen per

Referenz auf sie zuzugreifen. Zentral dabei war die Einführung eines RRS, das die Verwal-

tung der Variablen in den Datenspeichern übernimmt und als Schnittstelle zwischen der Ser-

vice Composition Engine und den Datenspeichern fungiert.

Es wurde ein Konzept vorgestellt, mit dem das RRS in eine bestehende Service Composition

Engine, die auf der Verwendung formaler Grammatiken und Automaten zur Definition und

Ausführung von Prozessen basiert, eingebunden werden kann. Hierzu wurde ein Referenzbe-

griff eingeführt, der im Rahmen dieser Arbeit verwendet wurde, und das Schema für solche

Referenzen definiert. Die Arbeit hat die Vorteile einer referenzbasierten Datenverwaltung dis-

kutiert und dargelegt, wie die Service Composition Engine mit den Referenzen umgeht und

diese mithilfe von Bezeichnern identifiziert und hält.

Anschließend wurde ein Entwurf des RRS als Web-Service vorgestellt und dessen Aufbau und

Funktionsweise diskutiert. Es wurden Möglichkeiten gesammelt, mit denen zukünftig eine

Ausweitung der Funktionalität des Systems möglich ist. Schließlich wurde anhand mehrerer

Testfälle die Korrektheit der zu dieser Arbeit gehörenden Implementierung des RRS gezeigt.

Die Arbeit hat Ergebnisse von Performanzprüfungen vorgestellt, diskutiert und ins Verhältnis

zueinander gesetzt.

In zukünftigen Arbeiten zu diesem Thema müssen insbesondere zwei Aspekte diskutiert wer-

den: Der Sicherheitsaspekt solcher Systeme und die Ausweitung der referenzbasierten Daten-

verwaltung auf die Services selbst.

Sicherheitslücken bestehen vor allem bei den Referenzen, da diese momentan die Speiche-

rung aller Verbindungsinformationen in Klartext vorsehen und so insbesondere dort gespei-

cherte Passwörter einfach ausgelesen werden können. Somit muss eine Maßnahme entwickelt

werden, die verhindert, dass nicht autorisierte Instanzen Referenzen auslesen und durch die

dort enthaltenen Informationen Zugriff auf den vollständigen Datenspeicher erhalten können.

46

Damit einher geht möglicherweise der Entwurf eines Systems von Rechten, die an verschiede-

ne Prozesse oder Benutzer vergeben werden können. [WG09] stellt hierzu beispielsweise eine

Trennung der Schnittstelle des RRS in ein Retrieval Interface und ein Management Interface

vor, sodass nicht alle Prozesse Variablen einfügen, modifizieren oder löschen können. Dieser

Ansatz muss jedoch noch mit anderen Möglichkeiten verglichen und in der Praxis erprobt

werden.

Soll die Benutzung von und der Zugriff auf Daten mit Referenzen nicht auf die Service Com-

position Engine beschränkt sein, müssen Möglichkeiten entwickelt werden, wie die aufgerufe-

nen Services diese handhaben können. Die Übertragung der Referenzen selbst stellt kein Pro-

blem dar, allerdings müssen die Services mit ihnen umgehen können und hierzu umgeschrie-

ben werden. [WG09] schlägt hierfür die Entwicklung sogenannter Service-Wrapper vor, bleibt

dabei jedoch auf konzeptioneller Ebene, sodass eine Realisierung des Ansatzes als Gegen-

stand weiterer Arbeiten dienen kann.

Weiter vertieft werden kann ferner auch das Abrufen und Modifizieren großer Variablen. Bei

großen Datenmengen ist es möglicherweise in vielen Fällen ausreichend, nur Teile der abge-

legten XML-Instanzen zu ändern oder aus dem RRS zu laden. In einem solchen Fall wäre es

ineffizient, die gesamte Variable zu erfragen, da dies ein erneutes Parsing der gesamten XML-

Daten der Variablen nötig macht. Überdies müsste sie die gesamte Variable über das Netzwerk

übertragen werden. Stattdessen wäre es sinnvoller, nur Teile von Variablen abrufen oder ver-

ändern zu können.

Ebenfalls ungeklärt ist, wie Daten auf Referenzbasis zwischen verschiedenen Prozessen aus-

getauscht werden können. Das momentane System sieht diesen Umstand nicht vor, sodass

eine Prozessinstanz, sobald eine bestimmte Variable nicht mehr benötigt wird, zusammen mit

dem Bezeichner auch die Variable aus dem RRS löschen kann. Wenn allerdings die Referen-

zen zwischen den Prozessen weitergegeben werden können, muss ein Verfahren entwickelt

werden, das bestimmt, wann Variablen aus den Datenspeichern entfernt werden können und

wann dies nicht erlaubt ist, weil etwa andere Prozesse die Daten noch verwenden. Ein mögli-

cher Ansatz zur Bestimmung des Löschzeitpunkts der Daten wäre etwa die Verwendung ver-

teilter Garbage Collection wie etwa durch Reference Counting [PS95].

47

Literaturverzeichnis

[BC08] Bharathi, S.; Chervenak, A.; Deelman, E.; Mehta, G.; Su, M.; Vahi, K.: „Character-

ization of Scientific Workflows“, Third Workshop on Workflows in Support of

Large-Scale Science, 2008, S. 1-10

[BE99] Böhnlein, M.; vom Ende, A. U.: „XML – Extensible Markup Language”,

Wirtschaftsinformatik, Volume 41, Springer Fachmedien Wiesbaden, 1999, S. 274-

276

[DH07] DeCandia, G.; Hastorun, D.; Jampani, M.; Kakulapati, G.; Lakshman, A.; Pilchin,

A.; Sivasubramanian, S.; Vosshall, P.; Vogels, W.: „Dynamo: Amazon's Highly

Available Key-value Store“, SOSP, Volume 7, 2007, S. 205-220

[EM06] Eckstein, R.; Mordani, R.: „Introducing JAX-WS 2.0 With the Java SE 6 Platform,

Part 1”, http://www.oracle.com/technetwork/articles/javase/jax-ws-2-141894.html,

aufgerufen am 22.10.2013

[EY93] Eyre-Todd, R. A.: „The Detection of Dangling References in C++ Programs“, ACM

Letters on Programming Languages and Systems, Volume 2, 1993, S. 127-134

[FK99] Florescu, D.; Kossman, D.: „Storing and Querying XML Data using an RDMBS”,

Data Engineering Bulletin, Volume 22, IEEE, 1999, S. 27-34

[FL80] Fischer, C. N.; LeBlanc, R. J.: „The Implementation of Run-Time Diagnostics in

Pascal“, IEEE Transactions on Software Engineering, Volume SE-6, 1980, S. 313-

319

[FU01] Fujimoto, R. M.: „Parallel Simulation: Parallel and Distributed Simulation

Systems“, Proceedings of the 33rd conference on Winter simulation, 2001, S. 147-

157

[GD05] Graham, S.; David, D.; Simeonov, S.; Daniels, G.; Brittenham, P.; Nakamura, Y.;

Fremantle, P.; König, D.; Zentner, C.: „Building Web Services with Java”, Sams

Publishing, 2005

[GH07] Grün, C.; Holupirek, A.; Scholl, M. H.: „Visually Exploring and Querying XML

with BaseX”, LNI, Volume 103, Gesellschaft für Informatik, 2007, S. 629-632

[GL12] Görlach, K.; Leymann, F.: „Dynamic Service Provisioning for the Cloud“, Proceed-

ings of the 9th IEEE International Conference on Service Computing, 2012, S. 555-

561

48

[GL13] Görlach, K.; Leymann, F.; Claus, V.: „Unified Execution of Service Compositions“,

Processdings of the 6th IEEE International Conference on Service Oriented Com-

puting & Applications, SOCA 2013 (to appear), http://www.iaas.uni-stuttgart.de/in-

stitut/mitarbeiter/goerlach/UnifiedExecutionOfServiceCompositions.pdf

[GR81] Gray, J. N.: „The Transaction Concept: Virtues and Limitations”, Proceedings of the

7th International Conference on Very Large Databases, 1981, S.144-154

[GR10] Grün, C.: „Storing and Querying Large XML Instances”, Dissertation, Universität

Konstanz, 2010

[HA05] Havey, M.: „Essential Business Process Modeling“, O'Reilly Media, 2005

[HE01] Herrmann, D.: „C++ für Naturwissenschaftler“, Prentice Hall, 2001

[HN68] Hart, P. E.; Nilsson, N. J.; Raphael, B.: „A Formal Basis for the Heuristic Determin-

ation of Minimum Cost Paths“, IEEE Transactions on Systems Science and Cyber-

netics, Volume 4, 1968, S. 100-107

[HR01] Härder, T.; Rahm, E.: „Datenbanksysteme – Konzepte und Techniken der Imple-

mentierung“, Springer-Verlag, 2001

[JE07] Jordan, D.; Evdemon, J.: „Web Services Business Process Execution Language Ver-

sion 2.0“, OASIS Standard, 2007

[JO08] Josuttis, N.: „SOA in der Praxis – System-Design für verteilte Geschäftsprozesse”,

dpunkt.verlag, 2008

[KM99] Kanne, C.; Moerkotte, G.: „Efficient Storage of XML data”, Universität Mannheim

Technical Report, 1999

[KO05] Koch, C.: „A New Blueprint for the Enterprise”, CIO Magazine, March Issue, 2005

[LO75] Lomet, D. B.: „Scheme for Invalidating References to Freed Storage“, IBM Journal

of Research and Development, Volume 19, 1975, S. 26-35

[NE02] Newcomer, E.: „Understanding Web Services – XML, WSDL, SOAP, and UDDI”,

Pearson Education, 2002

[PA06] Pesic, M.; van der Aalst, W. M. P.: „A Declarative Approach for Flexible Business

Processes Management“, Business Process Management Workshops, 2006

[PE84] Pearl, J.: „Heuristics: Intelligent Search Strategies for Computer Problem Solving“,

Addison Wesley Longman Publishing Co, 1984

49

[PS95] Plainfossé, D.; Shapiro, M.: „A Survey of Distributed Garbage Collection Tech-

niques“, Lecture Notes in Computer Science, Volume 986, Springer-Verlag Berlin

Heidelberg, 1995, S. 211-249

[PZ08] Pautasso, C.; Zimmerman, O.; Leymann, F.: „RESTful Web Services vs 'Big' Web

Services: Making the Right Architectural Decision”, Proceedings of the 17th inter-

national conference on World Wide Web, 2008, S. 805-814

[RE00] Reese, G.: „Database Programming with JDBC and Java“, O'Reilly & Associates,

2000

[ST10] Stroustrup, B.: „Die C++ Programmiersprache“, Addison-Wesley, 2010

[UO01] UN/CEFACT; OASIS: „ebXML Business Process Specification Schema Version

1.01”, http://www.ebxml.org/specs/ebBPSS.pdf, abgerufen am 09.11.2013

[VS08] Vrhovnik, M.; Schwarz, H.; Radeschiitz, S.; Mitschang, B.: „An Overview of SQL

Support in Workflow Producs“, IEEE 24th International Conference on Data Engin-

eering, 2008, S. 1287-1296

[WC05] Weerawarana, S.; Curbera, F.; Leymann, F.; Storey, T.; Ferguson, D. F.: „Web Ser-

vices Platform Architecture”, Pearson Education, 2005

[WG09] Wieland, M.; Görlach, K.; Leymann, F.: „Towards Reference Passing in Web Ser-

vice and Workflow-based Applications“, IEEE International Enterprise Distributed

Object Computing Conference, 2009, S. 109-118

[WW04] World Wide Web Consortium: „Web Services Glossary”, W3C Working Group

Note 11 2004, 2004

[WW06] World Wide Web Consortium: „Web Services Addressing 1.0 – Core“, W3C Re-

commendation 9 May 2006, 2006

[WW08] World Wide Web Consortium: „Extensible Markup Language (XML) 1.0 (Fifth

Edition)”, W3C Recommendation 26 November 2008, 2008

[YA12] The YAWL Foundation: „YAWL – User Manual, Version 2.3“, 2012

50

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich habe keine anderen als die an-

gegebenen Quellen benutzt und alle wörtlich oder sinngemäß aus anderen Werken übernom-

mene Aussagen als solche gekennzeichnet. Weder diese Arbeit noch wesentliche Teile daraus

waren bisher Gegenstand eines anderen Prüfungsverfahrens. Ich habe diese Arbeit bisher we-

der teilweise noch vollständig veröffentlicht. Das elektronische Exemplar stimmt mit allen

eingereichten Exemplaren überein.

Ebersbach, den 27. November 2013 _____________________

51

	1 Einleitung
	1.1 Einordnung ins Gesamtsystem
	1.2 Verwandte Arbeiten

	2 Grundlagen
	2.1 Extensible Markup Language (XML)
	2.2 Web-Services und JAX-WS
	2.3 Das XML-basierte Datenbanksystem BaseX

	3 Referenzen
	3.1 Datenverwaltung in Service Composition Engines
	3.2 Vorteile einer referenzbasierten Datenverwaltung
	3.3 Verwaltung der Referenzen
	3.3.1 Auflösen von Referenzen beim Aufruf eines Web-Services
	3.3.2 Zuordnung und Kardinalität
	3.3.3 Gültigkeit von Referenzen

	3.4 Referenzen-Schema

	4 Reference Resolution System
	4.1 Entwurf
	4.2 Erweiterbarkeit und Konfiguration
	4.2.1 Verwaltung der Datenspeicher durch das Konfigurationsverzeichnis
	4.2.2 Auswahl geeigneter Datenspeicher mit Heuristiken
	4.2.3 Hinzufügen von Konnektoren
	4.2.4 Erweiterung des Namensgenerators

	5 Deployment und Validierung
	5.1 Testumgebung
	5.2 Validierung
	5.2.1 Testfall A: Insert komplexer XML-Daten und anschließendes Get
	5.2.2 Testfall B: Update für nicht existierende Variable
	5.2.3 Testfall C: Delete mit nicht valider Referenz
	5.2.4 Übersicht über weitere Testfälle

	5.3 Performanz

	6 Zusammenfassung und Ausblick

