Institut fur Architektur von Anwendungssystemen
Universitat Stuttgart
Universitatsstral’e 38
70569 Stuttgart
Germany

Bachelorarbeit Nr. 58

Datenverwaltung fur
unifizierte Service Komposition

Oliver Naumann

Studiengang: Informatik

Prifer: Prof. Dr. Frank Leymann
Betreuerin: Dipl.-Inf. Katharina Gorlach
begonnen am: 29.05.13

beendet am: 28.11.13

CR-Klassifikation: H.3.2,H4.1

Kurzfassung

Diese Arbeit stellt ein Konzept zur Datenverwaltung innerhalb von Service Composition En-
gines auf Basis von Referenzen vor. Typischerweise werden von Geschéftsprozessen verwen-
dete Daten in einer internen Datenbank gespeichert und by-value an Services iibergeben. Die-
ses Vorgehen birgt vor allem bei der Verarbeitung von groB3en Datenmengen einige Nachteile.
In dieser Arbeit wird diskutiert, welche Vorteile eine Auslagerung der Daten hat und wie diese
realisiert werden kann. Basierend auf Erkenntnissen iiber die Datenverwaltung in bestehenden
Service Composition Engines wird ein Konzept entwickelt, wie Variablen in eine externe Da-
tenbank ausgelagert und anschlieend durch Referenzen verwaltet werden konnen. Zentral da-
bei ist das Reference Resolution System (RRS). Das RRS ist eine Komponente, die als
Schnittstelle zwischen der Datenbank und der Composition Engine fungiert und verantwort-
lich fiir das Speichern, Abrufen, Modifizieren und Ldschen der gespeicherten Daten ist. Teil
dieser Arbeit ist die Implementierung eines solchen RRS, das von einer bestehenden, gram-
matikbasierten Service Composition Engine eingebunden wird. Es werden Anforderungen
und Erweiterungsmoglichkeiten eines RRS erortert und kategorisiert. Die Korrektheit der

Funktionalitdt und die Performanz des Systems wird anhand von Beispielen demonstriert.

Inhalt

L 5T 0 1S3 111 YRR 4
1.1 Einordnung inS GeSAMISYSIEM......ccueeruiieiieriieeitieeiieetienreeieesieeebeeseaeenseesaeeennreeeanneeeesnnees 5
1.2 Verwandte ATDEITEN.coiuiiiiiiiieiie ettt et 6

2 GIUNAIAZEN. ...ttt ettt et e st e e bt e e ebeeseesabe e seesnse e seesnbeenseeenseeensseeenns 7
2.1 Extensible Markup Language (XML).......cooouiiiiiieiiiie ettt 7
2.2 Web-Services Und JAX-WS. ..ottt st 9
2.3 Das XML-basierte Datenbanksystem BaseX..........ccccceeiiieeiiieiiiieeiieecieee e 11

3 RETETENZEN. ...ttt ettt ettt et et et e e es 13
3.1 Datenverwaltung in Service Composition Engines...........cccceeeveerciieeniieeenieeenieeenieennnn 14
3.2 Vorteile einer referenzbasierten Datenverwaltung..............ccoocveiieniiiniiiieniiieeniee e, 15
3.3 Verwaltung der Referenzen..........c.oeevviiiiiiiiiiiiecie ettt e 17

3.3.1 Auflésen von Referenzen beim Aufruf eines Web-Services.........cccoeeveeeiienieninennns 19
3.3.2 Zuordnung und Kardinalitat.............ccccueeeiiieiiiiieiiie e 20
3.3.3 Gililtigkeit vOn Referenzen...........covueiiiiiiiiiiiieiieeieeieeeit et 21
3.4 Referenzen-SChema.coo.eiiiiiiiiiiieieee et 22

4 Reference Resolution SYStEM.......cccuiiiuiiiiiiiiiiiie ettt et e eitee e baee e 26
A1 BIEWUIT ..ottt ettt et ettt e e e aeeeas 27
4.2 Erweiterbarkeit und Konfiguration.............ccoceevieeiiieniiiiiieieeiceee e 30

4.2.1 Verwaltung der Datenspeicher durch das Konfigurationsverzeichnis.................... 31
4.2.2 Auswabhl geeigneter Datenspeicher mit Heuristiken...........ccccoceveevinieniincnenne. 32
4.2.3 Hinzufligen von KonneKtoren............ccuveeiiieeiiieniiiiesiee e 34
4.2.4 Erweiterung des NamenSeNErators.eeeuueerueerieerieenieeieenieeieeesnnreeesseeeesneeeenns 34

5 Deployment und ValidieTung.............eeeeiiieiiieeiiie ettt e e e e e e e 36
5.1 TESTUMZEDUNG.ccuvieiieeiiieiieeieeete et et e et e st e et e et eebeessteenseessseeseesabeenseessseeseesnseenseens 36
5.2 ValIAIETUNG......eeiiiie ettt ettt e e et e et e e st eeessbeeesaaeeeeesssaeeeeeennnsneaeens 37

5.2.1 Testfall A: Insert komplexer XML-Daten und anschlieBendes Get....................... 37

5.2.2 Testfall B: Update fiir nicht existierende Variable.............ccccceevveeriiiencieeeniiieeeeens 38

5.2.3 Testfall C: Delete mit nicht valider Referenz..............cccocceeviiiiiiniiiiiniiiicieeee 39

5.2.4 Ubersicht iiber weitere TESIAILE.............oooouevevevreceeeeeeeeeeceeeeeeeeeeeceeee s e 40

5.3 PeIfOIMANTZ.couviiiiiiiiiiiiecitee ettt sttt et et et e e 41

6 Zusammenfassung Und AUSDBLICK..........cooviiiiiiiiee e 46

1 Einleitung

Das Prinzip der serviceorientierten Architektur (im Folgenden SOA) findet bereits seit vielen
Jahren vermehrt Einzug in die IT-Landschaften groer Unternehmen. Die sich verstirkende,
weltweite Vernetzung von Firmen, die Auslagerung von I'T-Dienstleistungen und der anhalten-
de Konkurrenzdruck durch das stetige Wachstum der Informatikbranche bringen neue Anfor-
derungen mit sich: Die Konzerne miissen mehr als zuvor dazu in der Lage sein, schnell und
flexibel auf Anderungen am Markt sowie gesetzliche Regulierungen zu reagieren [KO05]. In
der Praxis werden Unternehmensprozesse oft automatisiert ausgefiihrt. Dabei muss deren Ab-
lauf schnell und kostengiinstig modifiziert werden kénnen; neue Komponenten sollen ins Ge-
samtsystem integriert werden konnen, ohne dass dieses insgesamt gro3en Anpassungen unter-
zogen werden muss. Dies macht es notig, dass einzelne Systemteile lose gekoppelt sind
[WCO05]. Die SOA schafft einen Rahmen zur Erfiillung dieser Anforderungen, indem Kompo-
nenten als Services modelliert und diese durch Dienstkompositionen (Service Compositions)

orchestriert werden [JOOS].

Um diese Dienstkompositionen automatisiert ablaufen zu lassen, miissen entsprechende Mo-
delle in Sprachen iiberfiihrt werden, deren Instanzen anschlieBend von sogenannten Service
Composition Engines ausgefiihrt werden konnen. Hierflir wurden bereits zahlreiche Sprachen
entwickelt, wie zum Beispiel die Web Services Business Process Execution Language (im
Folgenden WS-BPEL) [JEO7], das ebXML Business Process Specification Schema [UOO01],
YAWL [YA12] und ConDec [PA06].

[GL13] stellt einen Ansatz zur Unifizierung von Service Compositions vor, der formale
Grammatiken nutzt, um verschiedene Konzepte solcher Sprachen zu vereinheitlichen. Diese
formalen Grammatiken konnen anschlieend von formalen Automaten ausgefiihrt werden.
Die resultierende Service Composition Engine nutzt zur Verwaltung aller Daten, die zwischen
den einzelnen Services ausgetauscht werden, ein Reference Resolution System, das jedes Da-

tum extern speichert und den spéteren Zugriff auf dieses per Referenz erlaubt.

In dieser Arbeit soll ein Konzept zur Verwaltung der Daten innerhalb der grammatikbasierten
Service Composition Engine entwickelt werden. Hierbei soll ein Reference Resolution Sys-

tem (im Folgenden RRS) als ein Web-Service entworfen und implementiert werden. Eine ge-

eignete Datenbank soll an das RRS angebunden werden, in der von der Service Composition

Engine erzeugte Variablen abgespeichert werden konnen.

Im Folgenden stellt die Arbeit vorerst die grammatikbasierte Service Composition Engine vor
und erdrtert bisherige Anséitze zur Datenverwaltung per Referenz im Umfeld der SOA. Kapi-
tel 2 geht darauthin kurz auf die zum Verstindnis dieser Arbeit nétigen Grundlagen ein und
beschreibt die Wahl der fiir das RRS verwendeten Datenbank. Anschliefend diskutiert Kapitel
3 den Referenzbegriff und wie eine Verwaltung der Daten per Referenz moglich ist. Kapitel 4
stellt das RRS als Komponente konzeptionell vor und beschreibt deren Entwurf und Details
der Implementierung. AnschlieBend soll Kapitel 5 die Funktionalitit evaluieren, bevor Kapitel
6 mit einem Fazit liber die gewonnenen Erkenntnisse und einem Ausblick iiber weitere mogli-

che Themen schlieBt.

1.1 Einordnung ins Gesamtsystem

In Abbildung 1 ist die Architektur der grammatikbasierten Service Composition Engine darge-

stellt:

(WS) XPath Solver (WS) Reference Resolution System

evaluate(Expression) insert(XmML) 3>
get(Reference)
update(Reference, XML)

delete(Reference)

— —

Servicelnvocation

ParameterResolution

invokeService() * Table R
parameterResolution() PAETN

getParameter()
setParameter()

NonTerminal

1

ProductionRule Automaton

Abbildung 1: Architektur einer grammatikbasierten Engine fiir unifizierte Service-Komposition

Auf der untersten Ebene befindet sich die formale Grammatik, die den auszufithrenden Ge-
schiftsprozess beschreibt. Diese besteht aus Produktionsregeln, die Nichtterminale beinhalten,

welche Aktivititen innerhalb des Geschéftsprozesses kodieren, wie etwa den Aufruf eines

Services. Muss ein Service aufgerufen werden, ist hierflir die Komponente Servicelnvocation
verantwortlich. Diese muss vor dem Aufruf zunichst die nétigen Parameter, die fiir den Auf-
ruf des Services notig sind, ermitteln. Hierzu schldgt die Komponente ParameterResolution in
der Liste lokal gehaltener Referenzen nach und sucht die Referenz heraus, die auf die gesuch-
ten Daten verweist. Mit dieser kann durch die Komponente Servicelnvocation nun ein Aufruf
an das RRS ausgefiihrt werden, das die Referenz auflost und die Parameterdaten zuriickgibt,
die anschlieBend zum Aufrufen des urspriinglichen Services verwendet werden konnen. Ana-
log kann die Service Composition Engine auch neue Daten in das RRS einfiigen oder beste-
hende Variablen 16schen oder modifizieren. Kapitel 3.3 geht genauer auf die Verwaltung von
Daten und Referenzen innerhalb der grammatikbasierten Composition Engine ein. Um eine
lose Kopplung zu gewéhrleisten, wird das RRS als ein Web-Service bereitgestellt. Details hin-

sichtlich dieser architektonischen Wahl werden in Kapitel 4 diskutiert.

1.2 Verwandte Arbeiten

Es existieren verschiedene Ansitze fiir eine erweiterte Datenverwaltung in Service Compositi-
on Engines. Davon kommt das in [WG09] diskutierte Konzept dem hier vorgestellten Ansatz
am nichsten. Dort werden Daten ebenfalls von einem RRS verwaltet, auf die per Referenzen,
die als Endpoint References (siche [WWO06]) repriasentiert werden, zugegriffen werden kann.
Allerdings verwendet dabei nicht nur die Service Composition Engine das RRS, sondern es
werden Konzepte vorgestellt, mit denen auch aufzurufende Web-Services Referenzen auflo-
sen konnen. Ferner werden verschiedene Benutzer- und Prozessrechte diskutiert, die die Si-

cherheit bei der Verwaltung der Referenzen erh6hen.

[WGO09] stellt lediglich ein Konzept zur Datenverwaltung vor, jedoch keinen Prototypen. Die-
se Bachelorarbeit kann daher in vielerlei Hinsicht als eine Hinfiihrung zu einer technischen
Realisierung des vorgeschlagenen Konzepts angesehen werden. Es wird eine Implementie-
rung vorgestellt, die als Basis eines komplexeren System fungieren kann und anhand derer
evaluiert werden kann, ob die Herangehensweise an das Problem der Datenverwaltung mithil-

fe von Referenzen generell erfolgversprechend ist.

Andere Ansitze verwenden ebenfalls Datenbanken, um Daten zu externalisieren. Ein Uber-
blick iiber bestehende Konzepte, in denen beispielsweise SQL von Geschiftsprozessen ge-

nutzt wird, um auf eine Datenbank zuzugreifen, wird in [VS08] gegeben.

2 Grundlagen

Im Folgenden werden einige grundlegende Begriffe erldutert, die zum Verstindnis dieser Ar-
beit relevant sind. Kapitel 2.1 widmet sich vorerst der Spezifikation der Extensible Markup
Language als ein wichtiges Werkzeug in der serviceorientierten Architektur. In Kapitel 2.2
wird darauthin das Konzept von Web-Services und dessen Moglichkeiten der Realisierung
vorgestellt. Kapitel 2.3 geht schlieBlich auf das XML-basierte Datenbanksystem BaseX ein,
das in dieser Arbeit als Datenspeicher fiir das RRS Verwendung findet.

2.1 Extensible Markup Language (XML)

Die Extensible Markup Language (kurz: XML) ist eine plattformunabhingige Sprache, auf
deren Basis neue Sprachen definiert werden konnen. Auspriagungen dieser Sprachen sind Do-
kumente, die einer bestimmten, zuvor meist mit XML Schema festgelegten Struktur folgen
[BE99]. Mit XML ist es moglich, Daten in nicht-bindrer, menschenlesbarer Form abzuspei-
chern. Dadurch und dank ihres standardisierten Formats, das vom World Wide Web Consorti-
um spezifiziert wird, eignet sie sich insbesondere auch zur Kommunikation zwischen Syste-
men unterschiedlicher Plattformen. Dies macht XML zu einer geeigneten Grundlage fiir den

Datenaustausch zwischen Web-Services [WCO05].

Zur Definition neuer XML-basierter Sprachen wird heutzutage meist XML Schema einge-
setzt. XML Schema spezifiziert die Art und Weise, wie Dokumente strukturiert und Datenty-
pen definiert werden koénnen [WCO05]. In XML-Schema-Dokumenten werden sogenannte
XML-Schema-Definitionen (kurz: XSDs) erstellt. Diese bestimmen, welche Form XML-Do-
kumente haben miissen, um als valide Instanzen der zugehorigen Schemata zu gelten. Ein
XML-Dokument, flir das ein Schema definiert ist und das den Anforderungen dieses Schemas
geniigt, wird valide genannt; ein XML-Dokument, das die Vorgaben der XML-Spezifikation
erfiillt, nennt man wohlgeformt [WWO08]. Ein XML-Dokument kann also zwar wohlgeformt

aber dennoch nicht valide in Bezug auf ein bestimmtes Schema sein.

Listing 1 zeigt beispielhaft eine XML-Schema-Definition, Listing 2 eine dazugehdrige, valide
XML-Instanz.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="Wurzel">
<xs:complexType>
<XS:sequence>
<xs:element name="Kind1l" type="xs:string"/>
<xs:element name="Kind2">
<xs:complexType>
<XS:sequence>
<xs:element name=“Datum® type=“xs:date®/>
</Xs:sequence>
<xs:attribute name=“ID“ type=“xs:integer/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</Xs:schema>

Listing 1: Beispielhafte XML-Schema-Definition.

<?xml version="1.0" encoding="UTF-8"?>
<Wurzel xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="schema.xsd">

<Kind1l>Erstes Kindelement</Kind1>
<Kind2 ID=%2“>

<Datum>2000-08-17</Datum>
</Kind2>

<!-- Dies ist ein Kommentar und wird ignoriert. -->

</Wurzel>

Listing 2: XML-Instanz, die dem Schema aus Listing 1 folgt.

Zur Strukturierung der erzeugten Sprachen stehen verschiedene Konzepte zur Verfiigung.
Text, der diese Konzepte représentiert, wird Markup genannt [WWO08]. Jeglicher Text, der
kein Markup ist, heifft im Folgenden Zeichendaten. Die grundlegenden Markup-Bausteine
vom XML werden Elemente genannt. Elemente kdnnen Attribute und weitere Kindelemente
sowie Zeichendaten enthalten. Ein Beispiel hierfiir ist das Element <Kind1> in Listing 2, das
die Zeichendaten ,,Erstes Kindelement™ enthilt. Durch die Verschachtelung von Elementen
entstehen dabei baumartige Strukturen. Jedes XML-Dokument hat genau ein Element, das alle
anderen enthilt, das sogenannte Wurzelelement (engl. ,,root element™ bzw. ,,document ele-

ment*) [GDOS5]. In obigem Beispiel ist dies das Element mit dem Namen <Wurzel>.

Elemente werden durch spitze Klammern dargestellt. Besitzt ein Element weitere Kinder,
muss es in ein Start- und ein Endelement aufgeteilt werden, die zusammen alle Kinder umfas-
sen. Attributen wird innerhalb des Startelements in Anfiihrungszeichen ein Wert zugewiesen
(siche beispielsweise das Attribut ID des Elements <Kind2> in Listing 2). Ferner konnen
Kommentare innerhalb des Dokuments verwendet werden, die bei der Verarbeitung ignoriert

werden (siche Listing 2) [WWO0S].

Insbesondere in groBBen Projekten kann es schnell dazu kommen, dass viele verschiedene XM-
L-Sprachen definiert werden. Die Sprachen kdnnen miteinander kombiniert werden, wodurch
es unter den Strukturbausteinen jedoch zu Namenskonflikten kommen [WCO05]. Deshalb exis-
tiert in XML die Moglichkeit, Namensraume (engl. ,,namespaces®) festzulegen, die die Giil-
tigkeitsbereiche von Namen bestimmen [WWO08]. Listing 1 nutzt beispielsweise den Namens-

raum ,,xs*, der als die URL ,,http://www.w3.0rg/2001/XMLSchema* definiert ist.

Im Rahmen dieser Arbeit wird auBerdem ein weiteres Konstrukt verwendet: Enthalten die
Elemente oder Attribute Zeichendaten, die vom Parser als Markup interpretiert werden (wie
etwa '<' oder '), wiirde dies zu Fehlern in der Verarbeitung fithren. Um diesen Konflikt auf-
zuldsen, existieren sogenannte CDATA-Bereiche, innerhalb derer jegliche Zeichen als Zei-
chendaten aufgefasst werden [WWOS]. Listing 3 zeigt die Verwendung von CDATA in einem
solchen Fall. Das Element <Element1> enthilt hierbei einen CDATA-Bereich — die darin ent-
haltenen spitzen Klammern markieren somit kein Markup, sondern werden als Zeichendaten

interpretiert.

<Elementl>
<![CDATA[Dies ist kein Markup: <a>B]]>
</Elementl>

Listing 3: Verwendung von CDATA, um Markup als Zeichendaten zu interpretieren.
2.2 Web-Services und JAX-WS

Als einen Web-Service bezeichnet man ein Softwaresystem, das fiir eine direkte Maschine-zu-
Maschine-Kommunikation innerhalb eines Netzwerks bereitgestellt wird. Ein Web-Service
besitzt eine Schnittstelle, oft im XML-Format, die bestimmt, auf welche Art der Web-Service

aufgerufen werden kann [WWO04].

Web-Services spielen oftmals eine zentrale Rolle innerhalb der SOA. In dieser Architektur
werden alle Softwarekomponenten als Services modelliert. Diese konnen dann lose gekoppelt
auf Schnittstellenebene orchestriert werden, was das entstehende System flexibel und robust
macht [GDO5]. Hierbei ist anzumerken, dass diese Services nicht unbedingt Web-Services

sein miissen — die SOA macht keinerlei Aussagen iiber die technische Realisierung.

Web-Services als gingige Realisierung der Services in der SOA konnen auf verschiedene Ar-
ten implementiert werden. Zwei der verbreitetsten Mdglichkeiten sind SOAP-Web-Services

und RESTful-Web-Servies [PZ08]. Der in dieser Arbeit entwickelte Web-Service wird als ein

SOAP-Web-Service implementiert. Diese Art von Web-Service nutzt eine XML-gestiitzte Re-
priasentation der ausgetauschten Nachrichten, genannt SOAP-Nachrichten. Die Schnittstelle
eines solchen Web-Services wird ebenfalls in einem XML-Format beschrieben, der Web Ser-

vices Description Language (WSDL) [WWO04].
Durch die Verwendung von Web-Services ergeben sich vor allem folgende Vorteile:

* Plattformunabhingigkeit: Dank der standardisierten Schnittstelle kann der entstandene
Web-Service von allen Systemen genutzt werden, die das SOAP-Nachrichtenprotokoll

unterstiitzen.

¢ Lose Kopplung: Das System macht sich nur durch seine Schnittstelle bekannt, Details

der Implementierung und des internen Datenflusses bleiben transparent.

Die SOAP-Nachrichten enthalten alle fiir den Aufruf nétigen Daten, insbesondere die Parame-
ter fiir den Web-Service-Aufruf bzw. den Riickgabewert im Falle der Antwortnachricht. In der
WSDL-Schnittstellenbeschreibung kdnnen ferner Fehler, sogenannte Faults, definiert werden,
die im Falle einer Ausnahme wéhrend des Aufrufs in der SOAP-Nachricht zuriickgegeben

werden [WCO5].

Ein weiterer Vorteil von Web-Services ist der standardisierte Verzeichnisdienst Universal Des-
cription, Discovery and Integration (kurz: UDDI). Dieser bietet die Moglichkeit, Web-Ser-
vices mit bestimmten Eigenschaften innerhalb von Netzwerken dynamisch aufzufinden
(,,Find*), sofern diese zuvor registriert wurden (,,Publish®) [NE02]. Abbildung 2 stellt dies

schematisch dar.

Vor allem wenn ein Web-Service dynamisch gebunden wird, ist es manchmal wichtig, nicht
nur zu wissen, welche Schnittstelle der Web-Service bietet und wie er syntaktisch aufzurufen
ist, sondern auch, wie er sich verhélt und unter welchen Rahmenbedingungen ein Aufruf mog-
lich ist. Diese Klasse an Eigenschaften wird unter dem Begriff der nichtfunktionalen Eigen-
schaften zusammengefasst, die beispielsweise Sicherheitsaspekte beinhalten oder Randbedin-
gungen angeben, die bei einem Aufruf des Services einzuhalten sind. Web-Services unterstiit-
zen eine Feststellung dieser Eigenschaften durch die ebenfalls XML-basierte Spezifikation
WS-Policy [WCO05].

10

Service Discovery
(e.g. UDDI)

Publish

Service Provider
(Service)

Service Requester
(Client)

Interact

Abbildung 2: Service-Dreieck nach [WW04].

Um den Web-Service im Rahmen dieser Arbeit zu entwickeln, wird auf die Java API for XML
Web Services, kurz JAX-WS, zuriickgegriffen [EMO06]. Die exakte Definition der Web-Ser-
vice-Schnittstelle mit WSDL und die Implementierung der Verarbeitung von SOAP-Nachrich-
ten ist eine technisch komplexe Aufgabe. JAX-WS bietet dagegen die Moglichkeit, Web-Ser-
vices direkt aus Java-Code zu generieren, und erlaubt so die Entwicklung eines Web-Services
auf abstrakterer Ebene. In einem Bottom-Up-Ansatz werden hierbei erst gewdhnliche Java-
Klassen und Methoden erstellt und anschlieend durch Annotationen ergédnzt. Die so markier-
ten Einheiten konnen daraufhin exportiert werden, wobei die WSDL-Beschreibung fiir den
Web-Service automatisch erzeugt wird. Zusdtzliche Informationen werden durch Deploy-
ment-Deskriptoren zur Verfiigung gestellt. Der Web-Service kann dann auf dem gewiinschten

Server bereitgestellt werden.

2.3 Das XML-basierte Datenbanksystem BaseX

Wie in Kapitel 2.2 beschrieben ist XML ein wichtiges Konzept vieler Web-Services, da es so-
wohl fiir die Beschreibung der Schnittstelle als auch, im Falle von SOAP-Web-Services, fiir
die Strukturierung der ausgetauschten Nachrichten eingesetzt wird. Um ein moglichst einheit-
liches Umfeld zur Ausfiihrung von Geschéftsprozessen zu schaffen, bietet es sich daher an,
von Service Composition Engines verwendete Daten ebenfalls in Form von XML abzuspei-
chern, was in der Praxis das géngige Vorgehen ist. Innerhalb dieser Arbeit soll zum Speichern
solcher Daten eine Datenbank verwendet werden. Dies macht die Suche nach einem geeigne-

ten Datenbanksystem notwendig, in der die Daten zuverldssig verwaltet werden konnen.

Bereits frith nach der ersten Spezifikation von XML stellte sich die Frage, in welcher Form

Daten im XML-Format abgespeichert werden kdnnen, um eine effiziente Verarbeitung und

11

schnelle Datenbankanfragen zu gewéhrleisten. Darunter fallen unter anderem Ansitze, XML
in relationalen Datenbanken abzuspeichern. Beispielhaft wurde die Performanz eines solchen
Vorgehens etwa in [FK99] untersucht. Wéhrend dort sowohl das Speichern von Daten als
auch Anfragen an die Datenbank schnell ausgefiihrt werden konnten, bestand dennoch das
Problem, dass die Rekonstruktion ganzer XML-Dokumente aus der in der Datenbank vorhan-

denen Reprisentation der Daten zu viel Zeit in Anspruch nahm.

Ein anderer Ansatz ist das Ablegen von XML-Daten in Speichern, die XML nativ unterstiit-
zen, wie zum Beispiel in [KM99]. Diesem Ansatz folgt auch die quelloffene Datenbankengine
BaseX, die ab 2007 aus der Arbeit der Database and Information Systems Group der Universi-
tat Konstanz hervor ging'. Fiir diese Arbeit wird eine Datenbank auf Basis der BaseX-Engine
zum Ablegen der Daten verwendet. BaseX bietet im Vergleich zu anderen XML-Datenbanken
eine gute Performanz beim Ausfiihren von Anfragen [GR10]. Sie unterstiitzt transaktionale
Operationen nach dem ACID-Paradigma [GR81]. Die Einrichtung eines Servers ist binnen
weniger Minuten moglich, was das System sehr flexibel macht und die Einbindung der Daten-
bank in das Gesamtsystem erleichtert. Ferner stellt BaseX bereits einen frei verwendbaren
Client-Code in Java zur Verfligung, mit dem die Integration in das RRS ohne Anpassungen
moglich ist. Die Verwendung einer XML-Datenbank hat den Vorteil, dass die Daten, die das
RRS in Form von XML erhilt, nicht transformiert werden miissen, sondern direkt an die Da-
tenbank weitergegeben werden kdnnen. Implizit findet dabei eine Priifung dieser Daten statt,
sodass nur wohlgeformtes XML der Datenbank hinzugetfiigt werden kann. BaseX bietet au-
Berdem eine grafische Benutzeroberfliche, die einen visuellen Eindruck vom aktuellen Zu-

stand der Datenbank gewéhrt und zur Administration eingesetzt werden kann [GHO7].

1 ,,BaseX | The XML Database®, http://www.basex.org, aufgerufen am 03.10.2013

12

3 Referenzen

In diesem Kapitel soll das Konzept einer Referenz im Kontext der Datenverwaltung innerhalb
von Service Composition Engines erldutert und dessen Notwendigkeit dargelegt werden. Auf
dem Gebiet der Informatik wird der Begriff Referenz oftmals mit dem programmiersprachli-
chen Element eines Zeigers gleichgesetzt oder verglichen [ST10]. Zeiger sind in diesem Zu-
sammenhang Datentypen, die auf Speicheradressen zeigen [HEO1]. Fiir den Einsatz innerhalb
dieser Arbeit ist dieser Begriff allerdings unpassend. Stattdessen wird der folgende Referenz-

begriff verwendet:

Definition (Referenz):
Eine Referenz ist ein wohlgeformtes, XML-basiertes Konstrukt, das indirekt und ein-
deutig auf eine in einem externen Speicher abgelegte Variable verweist. Es enthilt alle

zur Auffindung der Variablen benétigten Informationen.

Die enthaltenen Information, die zur Auffindung der Variablen nétig sind, konnen vielfaltig
sein und unterscheiden sich je nach verwendetem Datenspeicher. Werden die Variablen bei-
spielsweise in einer einfachen Textdatei gespeichert, konnten diese Informationen den Pfad
zur Datei und deren Namen beinhalten. Wird dagegen eine Datenbank als Speicher verwen-
det, muss die Referenz den Hostnamen und weitere Verbindungsinformationen wie den Na-
men der Datenbank und das Passwort enthalten. Ferner muss die Referenz, unabhingig vom
gewdhlten Datenspeicher, auch einen Identifikator enthalten, der die Variable im Giiltigkeits-
bereich des Speichers eindeutig bestimmt. Andernfalls kdnnten einzelne Variablen innerhalb
des Datenspeichers nicht adressiert werden. Diese Information wird in dieser Arbeit als Name

der Variablen bezeichnet.

Im Rahmen dieser Arbeit wird als Speicher eine Datenbank auf Basis des in Kapitel 2.3 vor-
gestellten Datenbanksystems BaseX verwendet. Entsprechende Referenzen enthalten den
Host, auf dem die Datenbank erreichbar ist, den Namen der Datenbank, den Benutzernamen
und das Passwort zur Authentifizierung, den Port, durch den auf die Datenbank zugegriffen

werden kann sowie den oben angesprochenen Namen der referenzierten Variablen.

In Kapitel 3.1 soll vorerst dargestellt werden, in welcher Form Daten fiir gewdhnlich in Ser-

13

vice Composition Engines verwaltet werden. Anschliefend werden in Kapitel 3.2 Vorteile ei-
ner alternativen Datenverwaltung mit Referenzen aufgezeigt. Kapitel 3.3 geht auf die spezifi-
sche Verwaltung der Referenzen innerhalb der in dieser Arbeit verwendeten grammatikbasier-
ten Service Composition Engine ein, wihrend Kapitel 3.4 schlieBlich den Aufbau der Refe-

renzen detailliert beschreibt.

3.1 Datenverwaltung in Service Composition Engines

Geschiftsprozesse sind aufgrund der Tatsache, dass sie Kompositionen verschiedener Ser-
vices modellieren, in den meisten Fallen zustandsbehaftet, um den Datenaustausch zwischen
einzelnen Komponenten moglich zu machen [HAOS]. Service Composition Engines miissen
daher eine Moglichkeit zur Verfiigung stellen, Daten wihrend der Ausfithrung von Prozessen
zu speichern und bei Bedarf abzurufen. AuBBerdem muss auch die Sprache, in der die von der
Service Composition Engine ausgefiihrte Instanz formuliert wurde, tiber Konstrukte verfiigen,

die das Halten eines Zustands unterstiitzen [JEO7].

In den meisten Fillen werden prozessrelevante Daten intern in der Composition Engine ge-
speichert und verwaltet. Sie liegen in expliziter Repridsentation vor und konnen so direkt
adressiert werden. Haufig werden fiir diesen Zweck interne Datenbanken verwendet. Ein be-
kannter Vertreter hierfiir ist zum Beispiel die quelloffene Composition Engine Apache ODE.
Diese erlaubt es zwar auch, Daten per WS-BPEL-Erweiterung auf externen Speichern abzule-
gen, allerdings ist dies nur fiir Datenquellen moglich, die von der Java Database Connectivity

[RE00] unterstiitzt werden, und auch nur fiir die standardméBigen SQL-Datentypen®.

Ebenfalls eine interne Datenbank bendtigt die Workflow Engine jBPM, die Geschéftsprozesse
auf Basis von Business Process Model and Notation (BPMN) ausfiihrt. Die Nutzung einer ex-
ternen Datenbank wird hierbei nicht ermdglicht, stattdessen setzt die Engine eine lokale In-
stanz der verwendeten Datenbank voraus®. Selbiges gilt fiir fiir WS-BPEL Engine OW2 Or-

chestra, die alle Daten ebenfalls in in einer vorkonfigurierten Datenbank ablegt®.

Einen dhnlichen Ansatz verfolgt beispielsweise auch YAWL und deren zugehdrige Compositi-
on Engine. In dieser werden alle Daten als XML-Dokumente représentiert. Einzelne Datenele-

mente werden dann innerhalb von Variablen abgelegt, die in verschiedenen Auspriagungen

2 ,,Apache ODE", http://ode.apache.org/index.html, abgerufen am 23.11.2013
3 ,,jBPM —Jboss Community*, http://www.jboss.org/jbpm, abgerufen am 24.11.2013
4 ,,Orchestra: The Open Source BPEL Solution®, http://orchestra.ow2.org, abgerufen am 24.11.2013

14

(beispielsweise Input- und Output-Variablen oder lokale Variablen) existieren und einem
strengen Typsystem auf Basis von XML Schema folgen. Die Daten werden in einer internen
Datenbank abgelegt — standardmifig in einer PostgreSQL-Datenbank. Eine Rekonfiguration
zur Nutzung anderer Datenbankverwaltungssysteme ist jedoch mdoglich. Datentransfer und

-manipulation erfolgen direkt mit XQuery [YA12].

3.2 Vorteile einer referenzbasierten Datenverwaltung

Die in Kapitel 3.1 dargestellte Datenverwaltung hat einige Nachteile, die vor allem zum Tra-
gen kommen, wenn die Web-Services sehr viele Daten untereinander austauschen. Dies ist vor
allem der Fall in Doménen, in denen Kalkulationen auf groBen Datenmengen stattfinden; ein
Beispiel hierfiir sind wissenschaftliche Arbeitsabldufe, die etwa detaillierte Simulationen

beinhalten [BCOS].

Werden in solchen Anwendungsbereichen Geschiftsprozesse zur Orchestrierung von Web-
Services verwendet, wird es zur Aufgabe der Service Composition Engine, diese groen Da-
tenmengen zu verwalten. Dies kann zu Problemen wie Performanz-Einbriichen oder Speicher-
knappheit fithren, wenn die Engine nicht zur Verwaltung von Daten solcher Grof3e ausgelegt
ist, insbesondere wenn die Menge an Daten sich in einer Grof3enordnung befindet, in der die
Ressourcen nicht zentral, sondern verteilt abgespeichert werden miissen [FUO1]. Ferner ist die
Service Composition Engine dafiir verantwortlich, dass diese Datenmengen an die einzelnen
Web-Services weitergegeben werden, was je nach Netzwerk zu Engpdssen durch zu geringe
Bandbreite fithren kann und so gegebenenfalls die Ausfiihrungszeit stark verldngert. Ebenso
konnen sich durch die zentrale Verwaltung der expliziten Daten Einbuflen in der Wartbarkeit
und Benutzerfreundlichkeit ergeben. Dies ist vor allem bei Variablen mit komplexen Typen
der Fall, deren Darstellung die Dokumente, die die Ausfiihrungslogik beinhalten, aufbldhen

und untibersichtlich machen kann.

Stattdessen schldgt diese Arbeit eine Verwaltung der Daten durch Referenzen vor. Hierbei

sind zwei Vorgehensweisen zu unterscheiden:

* (1) Die Referenzen werden lediglich von der Service Composition Engine genutzt und
verwaltet, die aufgerufenen Web-Services selbst bleiben unveridndert. Dieser Ansatz
genieft die Vorteile der Datenauslagerung, macht es aber dennoch nétig, dass die Re-

ferenzen schon vor dem Aufruf eines Web-Services aufgelost werden; damit miissen

15

die fiir den Web-Service nétigen Parameter noch immer by-value iibertragen werden.

* (2) Sowohl die Service Composition Engine als auch die aufgerufenen Web-Services
werden so angepasst, dass sie mit Referenzen umgehen und diese auflésen konnen.
Dies erlaubt sowohl die Auslagerung der Daten als auch eine effiziente Parameteriiber-
gabe an die Web-Services, da nun nicht mehr die eigentlichen Daten selbst, sondern

lediglich die Referenzen auf den tatsédchlichen Speicherort libergeben werden miissen.

Im Rahmen dieser Arbeit wird lediglich der Ansatz nach (1) verfolgt. Dieser kann aber durch-
aus als Vorarbeit fiir Ansatz (2) angesehen werden, da die Service Composition Engine in je-
dem Fall fiir das Management von Referenzen angepasst werden muss. Die Verwaltung und
Auflosung der Referenzen tibernimmt hierbei das bereits erwdhnte RRS. Der Entwurf des
RRS als Web-Service macht dieses als lose gekoppelte Komponente flexibel genug, dass es
kein fester Bestandteil der Service Composition Engine ist, sondern als eigensténdige Instanz
fungiert. So ist spiter die Mdglichkeit gegeben, dass es auch von den am Geschiftsprozess
beteiligten Services zur Auflosung der Referenzen benutzbar ist und ein einzelnes RRS von

mehreren Prozessinstanzen verwendet werden kann.

Sollen nach Ansatz (2) auch die Web-Services mit den Referenzen umgehen konnen, miissen
diese entsprechend angepasst werden. Als Moglichkeit bietet sich hier zum einen an, die Web-
Services zu modifizieren, dass diese selbststindig Referenzen auflésen und so an bendtigte
Daten gelangen. Ein anderer Ansatz ist das UmschlieBen der Web-Services mit einem Wrap-
per, dessen Aufgabe lediglich das Auflosen der Referenzen und die anschlieBende Weitergabe
der Daten an den unmodifizierten Web-Service ist. [WGO09] geht detailliert auf eine Losung
der Problematik nach Ansatz (2) ein, in der eine Erweiterung der Sprache WS-BPEL um Refe-

renzen und eine Transformation der Web-Services durch Wrapper vorgeschlagen wird.
Vorteile einer Datenverwaltung nach (1) sind:

* Durch die Entwicklung des Referenzen-Konzepts, eines RRS und einer referenzenun-
terstlitzenden Service Composition Engine wird eine erweiterbare Basis fiir eine durch
Referenzen unterstiitzte Datenverwaltung fiir die gesamte Umgebung der Ge-

schiftsprozesse inklusive der Web-Services gelegt.

* Es wird eine simple Représentation der Daten innerhalb der Service Composition En-

16

gine geschaffen. Ein einzelnes Datum wird nicht mehr durch eine (eventuell komple-
xe) XML-Instanz dargestellt, sondern durch einen einfachen Namen (siehe auch Kapi-

tel 3.3 zur Verwaltung der Referenzen in der Service Composition Engine).

* Der Speicherbedarf der Service Composition Engine wird reduziert, da Daten ausgela-
gert werden konnen und immer nur die Parameter fiir den aktuell aufzurufenden Web-
Service geladen werden miissen. Dies macht gegebenenfalls die Ausfiihrung von

grof3en, datenintensiven Geschéftsprozessen tiberhaupt erst moglich.

3.3 Verwaltung der Referenzen

In diesem Kapitel wird beschrieben, wie Daten und Referenzen in der in Kapitel 1.1 vorge-
stellten grammatikbasierten Service Composition Engine verwaltet werden. In dieser Engine
werden von formalen Automaten Modelle ausgefiihrt, die auf formalen Grammatiken basie-
ren. Um eine eindeutige Terminologie zu schaffen, miissen zunichst zwei Begriffe voneinan-
der abgegrenzt werden. Auf Referenzen wurde oben bereits eingegangen; ferner verwendet

die grammatikbasierte Service Composition Engine jedoch auch Bezeichner.

Definition (Bezeichner):
Ein Bezeichner ist ein innerhalb eines Geschéftsprozesses eindeutiger Name, der auf

eine Referenz abgebildet werden kann.

Diese Bezeichner sind die Namen, anhand derer Variablen innerhalb der formalen Grammatik
definiert und identifiziert werden. Die Abbildung der Bezeichner auf tatsdchliche Referenzen
(und im Anschluss deren Abbildung auf das Datum selbst) geschieht erst zur Laufzeit. Anstatt
also Referenzen direkt zu verwenden, wird auf eine Referenz durch ihren Bezeichner verwie-
sen, dessen Name konstant und eindeutig in der Grammatik festgehalten wird. Die Bezeichner
sind notwendig, da die Referenzen unter Umstdnden sehr grofl werden konnen und eine Ver-
wendung von ihnen innerhalb der Grammatik damit unhandlich wire. Zudem ist a priori die
genaue Gestalt einer Referenz meist nicht bekannt, weshalb diese nicht als Verweis auf die zu-
gehorige Variable in der Grammatik verwendet werden kann. Abbildung 3 stellt das Zusam-

menspiel zwischen Bezeichnern und Referenzen bei Aufruf eines Services schematisch dar.

17

Aufzurufender Web-Service Reference Resolution System

A

Wert Referenz

Referenz
Aufruf

Service Invocation Parameter Resolution
e
Bezeichner T

Service-Adresse N
und Bezeichner Tabelle R

Automat

Grammatik AN

Abbildung 3: Grundlegender Datenfluss beim Aufiruf eines Web-Services
durch die grammatikbasierte Service Composition Engine.

Da die Bezeichner nur innerhalb eines Geschéftsprozesses eindeutig sind, besitzen sie ledig-
lich lokale Giiltigkeit (im Gegensatz zu Referenzen, die zu Beginn von Kapitel 3 als global
eindeutig definiert wurden). Eine Liste aller Bezeichner, denen eine Referenz zugeordnet wur-
de, ist die Tabelle R. Diese enthilt die Abbildung von Bezeichnern auf Referenzen und wird
zur Auflosung genutzt, wenn auf eine bestimmte Referenz zugegriffen werden soll. Die Tabel-
le R ist Teil der Service Composition Engine. Jede Prozessinstanz verwaltet dabei ihre eigene
Tabelle und ist selbst dafiir verantwortlich, die Eintrdge fiir verwendete Bezeichner zu gene-
rieren und spéter wieder zu 16schen. Abbildung 4 zeigt den schematischen Aufbau der Tabelle

R mit méglichen Inhalten.

Bezeichner Referenz
X <reference><storagelLocation>...</storagelLocation><variableName>e17h1</variableName></reference>
Y <reference><storagelLocation>...</storageLocation><variableName>aew5g</variableName></reference>
z <reference><storagelLocation>...</storagelLocation><variableName>jw8ihz</variableName></reference>

Abbildung 4: Aufbau und mogliche Ausprdgung der Tabelle R.

Bevor ein Bezeichner auf eine Referenz abgebildet werden kann, muss die entsprechende Va-
riable zuvor initialisiert worden sein. Andernfalls existiert in der Tabelle R keine Referenz fiir
den Bezeichner und er kann nicht aufgeldst werden konnen. Entweder muss also die Prozess-

instanz eine zugehorige Referenz aus einer externen Quelle erhalten haben, oder sie fligt die

18

Variable mit den gewlinschten Initialwert selbst in das RRS ein. Wird ein neuer Wert in das
RRS eingefiigt, liefert dieses eine global eindeutige Referenz zuriick, mit der der gespeicherte
Wert spiter wieder abgerufen werden kann. Diese Referenz kann nun in der Zeile des entspre-
chenden Bezeichners eingefligt werden. Wird spéter in der Grammatik erneut auf den Be-
zeichner verwiesen (zum Beispiel weil die damit identifizierte Variable einen neuen Wert er-
halten soll), kann die Prozessinstanz in der Tabelle den Bezeichner nachschlagen und erhélt so
die Referenz, die auf die zu manipulierende Variable verweist. Diese kann dann an das RRS

zur Auflosung weitergegeben werden.

Wird ein Bezeichner nicht mehr bendtigt, kann er zusammen mit seiner Referenz aus der Ta-
belle R entfernt werden. Es ist dabei Aufgabe der Service Composition Engine selbst, dem
RRS mitzuteilen, ob dabei die dort gespeicherte Variable geloscht werden soll, da das RRS

keine Informationen dariiber hat, ob und wo die Variable spiter noch verwendet wird.

3.3.1 Auflosen von Referenzen beim Aufruf eines Web-Services

In der grammatikbasierten Service Composition Engine sind die Modelle, die die auszufiih-
renden Prozesse beschreiben, formale Grammatiken. In diesen formalen Grammatiken werden
einzelne aufzurufende Services als Nichtterminale repréasentiert. Die Modelle werden von for-
malen Automaten ausgefiihrt. Trifft der Automat wihrend der Ausfiihrung auf ein Nichttermi-
nal, muss der damit identifizierte Service aufgerufen werden. Dabei ergibt sich folgender Ab-

lauf, der auch in Abbildung 5 dargestellt ist:

* Der Automat iibergibt der Komponente Service Invocation die Adresse des aufzuru-
fenden Web-Service (diese wurde zuvor in der Grammatik definiert) und eine Liste

von Bezeichnern, die entweder Eingabe- oder Ausgabewerte markieren (1).

* Die Komponente Service Invocation 16st die iibergebenen Parameter auf, indem sie
die Bezeichner an die Komponente Parameter Resolution iibergibt (2). Dieser ist die
Tabelle R zugeordnet, anhand derer die Parameter Resolution die Bezeichner auf Re-
ferenzen abbilden kann. Diese werden an die Komponente Service Invocation zuriick-

gegeben (3).

19

Aufzurufender Web-Service Reference Resolution System ‘

A

(5) Wert (4) Referenz

(6) Aufruf

Service Invocation Parameter Resolution
4)
(2) Bezeichner !

(1) Service-Adresse N
und Bezeichner Tabelle R

Automat ‘

(3) Referenz ‘

Grammatik AN

Abbildung 5: Ablaufdiagramm zum Aufruf eines Web-Services durch die
grammatikbasierte Service Composition Engine.

¢ Die Komponente Service Invocation ruft fiir jeden Eingabewert das RRS auf und
iibergibt die zugehorige Referenz (4). Von RRS erhilt die Service Invocation dann die

Werte der Variablen, auf die die Referenzen verwiesen haben (5).

* Nun besitzt die Service Invocation die Adresse des Web-Services und alle ndtigen Pa-

rameter und kann diesen aufrufen (6).

Besitzt der aufgerufene Web-Service Riickgabewerte, miissen diese zudem durch das RRS
riickgespeichert werden. Die entsprechenden Bezeichner hat die Komponente Service Invoca-
tion zuvor in Schritt (1) bereits vom Automaten erhalten, sodass diese ebenfalls auf Referen-
zen abgebildet werden konnen, die nun an das RRS zusammen mit dem Wert fiir die Variable

iibergeben werden.

3.3.2 Zuordnung und Kardinalitat

Bisher ungeklart ist die Frage, woher der Service Composition Engine die Adresse des RRS
bekannt ist, das zur Auflosung von Referenzen aufgerufen werden soll. In Abbildung 1 in Ka-
pitel 1.1 wurde die Kardinalitit zwischen der Service Composition Engine und dem RRS als
n-zu-m-Beziehung dargestellt. Ausschlaggebender ist jedoch die Beziehung zwischen einzel-
nen Prozessinstanzen und dem RRS. In dem bisher bestehenden System ist einem Ge-
schéftsprozess genau ein RRS zugeordnet. Die Adresse des RRS ist in der Grammatik des

Prozesses enthalten. Dies hat den Vorteil, dass diese beliebig angepasst werden kann, ohne

20

dass der Code der Service Composition Engine verdndert werden muss oder ein Redeploy-

ment dieser notig ist.

Der Prozessinstanz ist damit die Adresse des RRS immer bekannt. Ein RRS kann gleichzeitig
von mehreren Prozessinstanzen verwendet werden, was kein Problem darstellt, da das RRS
selbst die Eindeutigkeit der Referenzen sicherstellt. Die Bezeichner miissen wie zuvor geklart

nur innerhalb der einzelnen Prozesse einzigartig sein.

Das Problem wird komplexer, wenn die Referenzen zwischen Prozessen ausgetauscht werden
konnen. In diesem Fall darf ein Prozess, sobald er ein Datum nicht mehr bendtigt, nicht ein-
fach beim RRS dessen Loschung in Auftrag geben, da es moglicherweise von anderen Prozes-
sen noch verwendet werden muss. Dieser Umstand ist im momentanen Gesamtsystem aller-
dings nicht vorgesehen. Stattdessen wird er als Gegenstand zukiinftiger Arbeiten in Kapitel 6

nochmals aufgegriffen.

3.3.3 Giiltigkeit von Referenzen

Wird ein neues Datum im RRS abgelegt, wird fiir dieses eine neue Referenz generiert. Somit
ist fiir jede Variable in einem Datenspeicher zeitweilig mindestens eine Referenz im Umlauf,
durch die auf die Variable zugegriffen werden kann. Wird die Referenz kopiert, konnen aller-
dings auch mehrere identische Referenzen auf diese Variable verweisen. Wird die Variable
nun geldscht, konnen die Referenzen nicht mehr aufgelost werden. Dies ist ebenfalls nicht
moglich, wenn beispielsweise der Datenspeicher nicht mehr erreichbar ist. Referenzen konnen

somit ihre Giiltigkeit verlieren. Im Rahmen dieser Arbeit wird diese folgendermafien definiert:

Definition (Giiltigkeit):
Eine Referenz ist giiltig, solange sie vom Reference Resolution System aufgelost wer-
den kann und die Variable, auf die sie verweist, seit der Erstellung der Referenz nicht

geldscht wurde.

Eine Referenz ist also nicht mehr giiltig, wenn die Variable, auf die sie verweist, nicht mehr
vom RRS aufgefunden werden kann. Dies kann vielfdltige Griinde haben — zum Beispiel kann
sich das Schema der Referenzen mittlerweile geédndert haben, sodass alte Referenzen nicht
mehr valide im Bezug auf das im RRS hinterlegte Schema sind, oder das RRS kann keine

Verbindung mehr zu einer zuvor benutzten Datenbank herstellen.

21

Die obige Definition schlie3t aber auch den Fall ein, dass eine Referenz erstellt, das zugehori-
ge Datum aber geloscht wird, wihrend die Referenz noch im Umlauf ist. Es entsteht so eine
Art Dangling Reference [EY93]. Dieser Fall ist besonders kritisch, wenn nach dem Loschen
der Variablen eine neue Variable im selben Datenspeicher abgelegt wird, die zufillig oder sys-
tematisch den gleichen Variablennamen erhilt. Dann verweist die alte Referenz ndmlich auf
ein neues Datum, das eventuell einen anderen Wert hat, als erwartet. Dies 16st aber keinen
Fehler aus, da die Referenz fehlerfrei aufgeldst werden kann. Eine Referenz darf deshalb nicht
mehr giiltig sein, sobald die zugrunde liegende Variable geloscht wird. Mogliche Erkennungs-
strategien flir dieses Problem wéren beispielsweise Varianten von Tombstones [LO75] oder
das Anreichern von Variablen und Referenzen mit Versionierungsinformationen nach dem
Locks-and-Keys-Prinzip [FL80] oder durch Speicherung des Zeitpunkts der Erstellung der

Referenz bzw. Loschung der Variablen.

Diese Arbeit beschriankt sich darauf, dass Referenzen nicht zwischen Prozessen ausgetauscht
werden. Es werden nur Daten ausgetauscht. Somit ist die Giiltigkeit von Referenzen immer
gewihrleistet. Eine Erweiterung beziiglich dem Austausch von Referenzen miisste jedoch die

Giiltigkeit von Referenzen beriicksichtigen.

3.4 Referenzen-Schema

Zu Beginn dieses Kapitels wurde bereits definiert, dass Referenzen alle fiir ihre Auflosung n6-
tigen Informationen enthalten. Dies macht es ndtig, dass eine geeignete Form gewéhlt wird,
durch die diese Informationen reprisentiert werden. Das in [WGO09] vorgeschlagene Schema
fiir Referenzen sieht unter anderem als Mdglichkeit zur Auflosung vor, die nétigen Datenban-
kabfragen (etwa um den Wert einer Variablen zu erhalten oder sie zu 16schen) direkt in der

Referenz zu speichern. Dies hat mehrere Nachteile:

* Lange und komplexe Queries konnen die Referenzen, deren Vorteil es unter anderem
sein soll, moglichst simpel und klein zu sein, aufbldhen. Zudem miissen mehrere ver-
schiedene Queries gespeichert werden (fiir das Zuweisen von neuen Werten, das Lo-

schen und das Abrufen des Werts von Variablen).

* Die Queries konnen von anderen Programmen ausgelesen und in verdnderter Form
wieder in der Referenz gespeichert werden, um damit das RRS (ob gewollt oder unge-

wollt) dazu zu bringen, schadhafte Operationen auf der Datenbank auszufiihren (,,In-

22

jection®).

* Die Referenzen sind anfilliger dafiir, nach gewisser Zeit ihre Giiltigkeit zu verlieren,
wenn beispielsweise das Layout der zugehdrigen Datenbank verdndert wird und die

Queries dadurch nicht mehr funktionieren.

Stattdessen wird in dieser Arbeit ein anderer Ansatz verfolgt: Die zur Auflésung nétigen In-
formationen werden nicht in direkter Form von Queries gespeichert, sondern indem die ver-
schiedenen Informationsfragmente einzeln angegeben werden. Fiir eine Datenbank kénnen so
zum Beispiel der Host, Datenbankname, Benutzername und Passwort mit der Referenz iiber-
geben werden. Allein das RRS kennt nun den internen Aufbau der Datenbank, fiigt die gege-
benen Informationen dynamisch zur Laufzeit zu einem Query zusammen und fiihrt dieses aus.
Das RRS hat somit die alleinige Kontrolle dariiber, welche Queries auf der Datenbank ausge-
fiihrt werden und kann bei einer Anderung des Datenbankschemas die Queries entsprechend

anpassen, ohne dass die Referenzen zwingend gedndert werden miissen.

Fiir die Kopplung des RRS an die XML-Datenbank wird in dieser Arbeit Aufruftechnik ver-
wendet, das heillt, der Datenbankbefehl wird in einem Methodenaufruf direkt an das Daten-
banksystem iibermittelt. BaseX enthilt hierzu bereits einen entsprechenden Client unter BSD-
Lizenz’. Konzeptionell sind natiirlich auch andere Formen wiéhlbar, wie etwa Spracherweite-

rungen (vergleiche [HRO1]) oder eine Anbindung mit Java Database Connectivity [RE0O].

Indem lediglich Verbindungsinformationen statt vollstindigen Queries angegeben werden, er-

geben sich die folgenden Vorteile:

* Die Referenzen werden klein und iibersichtlich gehalten und sind gut lesbar. Es miis-
sen nicht mehrere Queries pro Referenz gespeichert werden, eine einmalige Angabe

der Verbindungsinformationen gentigt.

* Es konnen keine Datenbankoperationen injiziert werden, da die Queries vom RRS zur

Laufzeit erzeugt werden.

+ Die Referenzen werden robuster gegeniiber Anderungen des Datenbanklayouts, da bei

einer solchen nun nicht mehr alle Referenzen, sondern lediglich die Query-Erzeugung

5 ,Java client for BaseX“, https://github.com/BaseXdb/basex-examples/blob/master/src/main/java/org/basex/
examples/api/BaseXClient.java, aufgerufen am 29.10.2013

23

im RRS angepasst werden muss.

Auch wenn keine Injektion von unerwiinschen Queries mehr moglich ist, bleiben andere Si-
cherheitsrisiken bestehen, da die Daten aus der Referenz beispielsweise offen das Passwort
zur Datenbank beinhalten. Dieses Problem kann durch verschiedene Methoden geldst werden
— so konnten beispielsweise von der Datenbank nur Zugriffe vom RRS zugelassen werden
oder aber das RRS verschliisselt die Passworter innerhalb der Referenzen. Im Rahmen dieser
Bachelorabeit wird diese Problematik jedoch nicht weiter vertieft. Ein Uberblick iiber verblie-
bene Sicherheitsrisiken, die im Falle einer realen Anwendung vermieden werden miissen,

wird im Ausblick in Kapitel 6 gegeben.

Zusitzlich zu den Verbindungsinformationen muss das Schema der Referenzen auch den in-
ternen Namen der Variablen enthalten, sodass einzelne Variablen auf demselben Datenspei-
cher identifiziert werden konnen. Diese Namen miissen lediglich innerhalb des Datenspei-
chers einzigartig sein. Bei der Erstellung neuer Variablen wird dies transaktional sicherge-
stellt, damit es nicht zu Namenskollisionen kommt und die Eindeutigkeit der Referenzen be-
stehen bleibt. Die Verbindungsinformationen zum Datenspeicher und der Name der Variablen

legen gemeinsam den Speicherort einer Variablen eindeutig fest.

Das fertige Schema fiir die Referenzen wird in Listing 4 dargestellt. Der Typ fiir das Element
<storageLocation> wird in ein anderes XML-Schema-Dokument storagetypes.xsd ausgela-
gert. Dieses enthélt alle Definitionen fiir die verschiedenen Speicherarten, in denen potentiell
Variablen abgelegt werden konnen. In dieser Arbeit wird exakt eine Speicherart verwendet,
ein Datenbanksystem auf Basis von BaseX. Die zugehorige storagetypes.xsd ist in Listing 5

dargestellt.

24

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<!-- Include the types of storages that can be used. -->
<xs:include schemalLocation="storagetypes.xsd" />

<xs:element name="reference">
<xs:complexType>
<Xs:sequence>
<xs:element name="storagelLocation" type="storageTypeT" />
<xs:element name="variableName" type="xs:string" />
</xs:sequence>
</xs:complexType>
</xs:element>

</Xs:schema>

Listing 4: Schema der Referenzen (reference.xsd).

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:complexType name="storageTypeT">
<xs:choice>

<xs:element name="BaseXXMLDatabase">
<xs:complexType>
<Xs:sequence>
<xs:element name="hostname" type="xs:string" />
<xs:element name="port" type="xs:integer" />
<xs:element name="database" type="xs:string" />
<xs:element name="username" type="xs:string" />
<xs:element name="password" type="xs:string" />
</Xs:sequence>
</xs:complexType>
</Xs:element>

</xs:choice>
</xs:complexType>

</Xs:schema>

Listing 5: Definition der Speichertypen (storagetypes.xsd).

Auf diese Art und Weise kann nun eine einfache Erweiterung der Speichertypen geschehen,
indem in der storagestypes.xsd dem <choice>-Konstrukt weitere Elemente hinzugefiigt wer-
den. Soll dieser Speichertyp auch vom RRS aufgelost werden konnen, ist ferner die Imple-
mentierung eines entsprechenden Konnektors notwendig, worauf in Kapitel 4.2.3 eingegan-

gen wird.

Was die Referenzen nicht enthalten, ist ein Verweis auf das RRS selbst, das zur Auflosung der
Referenzen fahig ist. Diese Entscheidung wurde im Hinblick darauf getroffen, dass der Ser-
vice Composition Engine fiir einen bestimmten Prozess in dessen Grammatik immer mindes-

tens ein RRS zugeordnet ist und damit stets ein Verweis existiert.

25

4 Reference Resolution System

Das RRS ist das Kernstiick einer referenzbasierten Datenverwaltung. Es ist dafiir verantwort-
lich, Daten abzulegen und in diesem Zuge eine Referenz auf das gespeicherte Datum zu gene-
rieren. Durch Auflosung der Referenzen soll anschlieBend jedes Datum wieder erhalten sowie
auch manipuliert werden konnen, bis es schlieBlich geloscht wird und Referenzen, die auf die-

ses Datum verweisen, damit ihre Giiltigkeit verlieren.
Damit besitzt die Schnittstelle des RRS vier zentrale Operationen:

* Insert
Ein Datum in Form von XML wird vom RRS in einem der moglichen Datenspeicher
als Variable abgelegt. Eine Referenz, die das Datum eindeutig identifiziert, wird gene-

riert und als Antwort zuriickgegeben.

* Get
Eine Referenz wird aufgeldst und der Wert der Variablen, auf die die Referenz ver-

weist, zuriickgegeben.

¢ Update
Eine Referenz wird aufgelost und der Wert der Variablen, auf die die Referenz ver-
weist, durch einen anderen Wert ersetzt. Dies entspricht etwa einer Zuweisungsopera-

tion.

* Delete
Eine Referenz wird aufgeldst und die Variable, auf die die Referenz verweist, aus dem
zugehorigen Datenspeicher geloscht, wodurch Referenzen auf sie nicht zukiinfig nicht

mehr aufgelost werden kdnnen.

Das RRS wurde im Rahmen dieser Arbeit als ein SOAP-Web-Service entwickelt. Aufgrund
der Tatsache, dass nur die Service Composition Engine das RRS aufruft, wére fiir die momen-
tane Verwendung zwar eine einfache, eng an die Service Composition Engine gekoppelte
Komponente ausreichend gewesen, allerdings bietet die hier gewihlte Architektur gro3e Vor-

teile hinsichtlich der Erweiterbarkeit: Die Konzeption als Web-Service bietet die Mdglichkeit,

26

dass ein RRS nicht nur von einer Service Composition Engine genutzt wird, sondern von
mehreren [GL12]. In einem solchen Szenario wére mithilfe von Referenzen auch die Mog-
lichkeit existent, Referenzen zwischen verschiedenen Geschiftsprozessen, die von verschie-
denen Service Composition Engines ausgefiihrt werden, auszutauschen. Diese Idee lésst sich
erweitern zu Variablen, deren Werte zentral verwaltet oder sogar von externen Instanzen regu-
liert werden. [WG09] geht auf einen solchen Anwendungsfall genauer ein und beschreibt dar-
in, wie solche auBBerhalb der Geschéftsprozesse festgelegten Daten (wie zum Beispiel sich dn-
dernde gesetzliche Vorgaben) mithilfe von Referenzen ohne Redundanzen verwaltet werden
kénnen. Anderungen an solchen Daten miissten somit nicht durch alle Geschiftsprozess pro-

pagiert werden.

In einer solchen Umgebung konnte das RRS aufgrund des Entwurfs als Web-Service dann
etwa durch UDDI dynamisch gefunden werden. Dies wiirde es nicht mehr n6tig machen, dass
die Adresse des RRS fest in der Grammatik eines Prozesses kodiert ist. Um die auftretende
Arbeitslast bei vielen laufenden Geschiftsprozessen auszugleichen, wére dann auch das De-
ployment von mehreren RRS im Rahmen dynamischer Skalierbarkeit moglich — dabei wire es
nicht notwendig, dass dasselbe RRS, das eine Referenz generiert, auch zur Auflésung dersel-

ben genutzt wird, was sich positiv auf die Robustheit des Gesamtsystems auswirkt.

Implementiert wurde das RRS in Java mit der in Kapitel 2.2 vorgestellten Java API for XML
Web Services und der zugehorigen Referenzimplementierung. Im folgenden Kapitel soll wird
der Entwurf des Systems vorgestellt. AnschlieBend geht Kapitel 4.2 darauf ein, wie das Sys-
tem auf einfache Art und Weise ausgebaut werden kann, um weitere Datenspeicher zu unter-

stiitzen.

4.1 Entwurf

Aufgrund der oben diskutierten Moglichkeiten zur Ausweitung des Systems spielen beim Ent-

wurf des RRS vor allem zwei Aspekte eine wichtige Rolle: Flexibilitidt und Erweiterbarkeit.

Das RRS soll ohne Probleme schnell auf anderen Servern bereigestellt bzw. in andere Syste-
me integriert werden konnen. Gleichzeitig sollen moglichst auf einfache Art und Weise und
ohne ein notiges Redeployment weitere Datenspeicher hinzugefiigt werden konnen, die zum
Halten von Variablen genutzt werden. Die Losung des Integrationsaspekt ergibt sich bereits

aus der Implementierung des RRS als Web-Service, wie zu Beginn von Kapitel 4 angespro-

27

chen. Die Erweiterbarkeit soll dadurch gewéhrleistet werden, dass Informationen zu den Da-
tenspeichern nicht fest im Programmcode gespeichert werden, sondern im Deployment-De-
skriptor ein Konfigurationsverzeichnis definiert wird. Aus diesem werden dynamisch zur
Laufzeit alle verwendeten XML-Schemata ausgelesen, sowie alle XML-Dokumente, die die

Verbindungsinformationen zu den genutzten Datenspeichern enthalten.

Abbildung 6 zeigt das grundlegende Entwurfsdiagramm. Die Klasse Interface enthilt alle
nach auflen sichtbaren Funktionen. Soll ein neues Datum extern gespeichert werden, muss fiir
die Wahl eines geeigneten Datenspeichers eine Klasse der Schnittstelle Heuristic implemen-
tiert werden, deren Aufgabe es ist, den Datenspeicher auszuwéhlen. Ein Beispiel hierfiir ist
die Klasse AlwaysBaseXHeuristic, die die BaseX-Datenbank auswihlt, in der im Rahmen die-
ser Arbeit die Variablen abgelegt werden. Die Klasse ConnectorFactory wird genutzt, um zur
Laufzeit Instanzen von Konnektoren zu erzeugen (Klassen, die die Schnittstelle Storage-
Connector implementieren). Diese realisieren den Zugriff auf die Datenspeicher. In dieser Ar-
beit ist dies der BaseXXMLDatabaseConnector, der die Aufruffunktionen des BaseXClients
zur Ubermittlung der Datenbankbefehle nutzt. Konnektoren miissen die folgenden Methoden
imlementieren: Initialize (zum Offnen des Datenspeichers und fiir andere vorbereitende MaB-
nahmen), Close (SchlieBen der Verbindung zum Datenspeicher) sowie Insert, Get, Update und
Delete, die verantwortlich dafiir sind, die Variablen im Speicher abzulegen, sie zu erfragen, zu
modifizieren oder zu 16schen (zum Beispiel, indem entsprechende Queries erzeugt und ausge-

fiihrt werden).

Bei Anfragen, die an das RRS gestellt werden, arbeitet das System folgendermafen: Wird eine
der Operationen Get, Update oder Delete aufgerufen, wird als Parameter eine Referenz iiber-
geben. Diese enthilt bereits alle notigen Informationen dartiber, wo die Variable, auf die ver-
wiesen wird, abgelegt ist (siche Kapitel 3). Wird dagegen die Operation Insert aufgerufen,
muss flir die neu anzulegende Variable erst ein Speicherort gefunden werden. Hierzu kann
eine Instanz einer Klasse verwendet werden, die von der Schnittstelle Heuristic erbt (wie etwa
die in Abbildung 6 dargestellte Klasse AlwaysBaseXHeuristic). In dieser konnen verschiedene
Wege definiert werden, wie der geeignetste Datenspeicher fiir das zu speichernde Datum auf-
gefunden werden kann. Néheres zu Heuristiken folgt in Kapitel 4.2. Im Rahmen dieser Bache-
lorarbeit existiert lediglich eine einzige Heuristik, die immer die einzig genutzte XML-Daten-

bank auf Basis des BaseX-Datenbanksystems auswéhlt.

28

<<Interface>>
StorageConnector

initialize(storageLocation) : void
close() : void

StorageFault __ throws insert(XML) : Reference

< get(Reference) : XML
update(Reference, XML) : void
delete(Reference) : void

create

ConnectorFactory

BaseXClient

socket : Socket
inStream : Stream
outStream : Stream

execute(Query) : Result

BaseXXMLDatabaseConnector

hostname : String
port : String

database : String
username : String
password : String

createConnector(storageLocation) : StorageConnector

pass return
storage location connector

Interface

RRSFault throws insert(XML) : Reference
<

< get(Reference) : XML
update(Reference, XML) : void
delete(Reference) : void

A

SOAP
messages

A

Service Composition Engine

lookup
storage location

return
storage location

initialize() : void

close() : void

insert(XML) : Reference
get(Reference) : XML
update(Reference, XML) : void
delete(Reference) : void

AlwaysBaseXHeuristic

— >

generate

name NameGenerator

generateUUIDName() : UUID

return

name

chooseStorageLocation() : storageLocation
—{ basexxmldatabase1.xml Ik‘

<<Interface>>
Heuristic

_{

Storage Location 1 Il‘

chooseStorageLocation() : storageLocation ‘—<

Storage Location 2 lh‘

e

Abbildung 6: Der grundlegende Aufbau des Reference Resolution System.

Um eine Verbindung zum Datenspeicher herzustellen, existieren die sogenannten Konnekto-

ren. Sie leiten ab von der Schnittstelle StorageConnector und implementieren fiir einen be-

stimmten Typ Datenspeicher den Zugriff auf diesen sowie das Speichern, Manupulieren und

Loschen von Variablen. Der richtige Konnektor wird von der Klasse StorageConnectorFacto-

ry zur Laufzeit mithilfe der Verbindungsinformationen ausgewéhlt und die entsprechende

29

Klasse dynamisch instanziiert. Die Instanz wird an das Interface zuriickgegeben, das nun di-
rekt auf die Operationen des Konnektors zugreifen kann und durch diese eine Verbindung

zum Datenspeicher besitzt.

Nachdem der Konnektor erzeugt wurde, gibt die Klasse Interface bei diesem die ndtige Ope-
ration in Auftrag und leitet die hierfiir ndtigen Daten (beispielsweise die Referenz im Falle der
Operationen Get, Update und Delete) per Parameter weiter, damit der Konnektor in Folge die
entsprechende Operation durchfiihren kann. Die Antwort (zum Beispiel der Wert der Varia-
blen im Falle der Operation Get) wird anschlieBend per SOAP-Nachricht zum Web-Ser-
vice-Requester zuriickgegeben. Im Sonderfall der Methode Insert muss auBerdem noch ein
Name fiir die Variable generiert werden, der mit hoher Wahrscheinlichkeit noch nicht in der
Datenbank vertreten ist — hierfiir ist der Namensgenerator zustdndig. Im Rahmen dieser Arbeit
werden hierfiir pseudo-zuféllige Universally Unique Identifier (kurz: UUID) mit einer Grof3e
von 128 Bit als Namen vergeben®, um die Wahrscheinlichkeit fiir eine Namenskollision mog-
lichst gering zu halten. Wird zufillig ein Name gewdhlt, der bereits vergeben ist, ldsst der hier

verwendete Connector den Namensgenerator einen weiteren Namen erzeugen.

Falls es bei der Verarbeitung der Anfrage zu Fehlern kommt, enthdlt die zuriickgegebene
SOAP-Nachricht eine SOAP-Fault, die Auskunft dariiber gibt, warum die Anfrage nicht aus-
gefiihrt werden konnte. Die Faults sind als Java Exceptions implementiert und werden von
JAX-WS entsprechend in Faults konvertiert. Diese Fehler existieren auf zwei Ebenen: RRS-
Faults werden erzeugt, wenn grundsdtzliche Fehler auf Ebene der Klassen Interface und
ConnectorFactory sowie in den Heuristiken auftreten (etwa wenn eine nicht valide Referenz
iibergeben wird oder kein passender Konnektor erzeugt werden kann). Tritt ein Fehler wih-

rend Operationen auf dem Datenspeicher auf, wird stattdessen eine StorageFault erzeugt.

4.2 Erweiterbarkeit und Konfiguration

In Anbetracht der zu Beginn von Kapitel 4 erorterten Moglichkeiten zur Ausweitung des Ein-
satzes des RRS ist eine Erweiterbarkeit des Systems ein wesentliches Kriterium fiir den Ent-
wurf. Um dieser Anforderung gerecht zu werden, bietet die zu dieser Arbeit gehdrende Imple-

mentierung verschiedene Moglichkeiten zur Erweiterung:

6 ,,UUID (Java 2 Platform SE 5.0)%, http://docs.oracle.com/javase/1.5.0/docs/api/java/util/
UUID.html#randomUUIDY), aufgerufen am 04.11.2013

30

* Die Definition eines Konfigurationsverzeichnisses, das sowohl die XML-Schemata
der Referenzen und Speicherarten als auch Verbindungsinformationen zu allen beste-
henden Datenspeichern enthilt, erlaubt das dynamische Hinzufiigen und Entfernen

von Speicherorten.

* Die Schnittstelle Heuristic dient als Vorlage fiir die Implementierung von Heuristiken,
deren Aufgabe es ist, automatisiert einen geeigneten Speicherort fiir ein abzulegendes

Datum zu finden.

* Konnektoren implementieren die Verbindung des RRS zu den Datenspeichern und die
Ausfiihrung der Insert-, Get-, Update- und Delete-Operationen auf den Speichern.
Eine andere Art von Datenspeicher kann schnell und flexibel durch Implementierung

eines zugehorigen Konnektors hinzugefiigt werden.

* Ein Namensgenerator kann verschiedene Methoden zur Generierung geeigneter, mog-

lichst noch nicht in der Datenbank vorhandener Namen implementieren.

4.2.1 Verwaltung der Datenspeicher durch das Konfigurationsverzeichnis

In Kapitel 4.1 wurde bereits die Existenz eines zentralen Konfigurationsverzeichnisses er-
wihnt. Dieses Verzeichnis wird im Deployment-Deskriptor festgelegt und enthélt alle zur Va-
lidierung nétigen Schemata (das Schema fiir Referenzen, die Speicherarten und die Verbin-
dungsinformationen) sowie die Verbindungsinformationen iiber alle verfiigbaren Datenspei-

cher, die in Form von XML-Dokumenten vorliegen.

Das Verzeichnis kann dynamisch zur Laufzeit durchsucht werden, wodurch es insbesondere
moglich wird, Datenspeicher wihrend der Laufzeit hinzuzufiigen oder zu entfernen. Die ent-
haltenen XML-Instanzen, die jeweils die Verbindungsinformationen zu einem Datenspeicher

enthalten, miissen dem in Listing 6 dargestellten Schema folgen.

31

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<!-- Include the types of storages that can be used. -->
<xs:include schemalLocation="storagetypes.xsd" />

<xs:element name="storageInformation">
<xs:complexType>
<XS:sequence>
<xs:element name="storagelLocation" type="storageTypeT" />
<xs:element name="storageProperties">
<xs:complexType>
<xs:all>
<!-- Possible properties of storages. -->
<xs:element name="maximumDataSize" type="xs:integer" />
<xs:element name="setupDate" type="xs:date" />
<xs:element name=“lastUsedOn® type=“xs:data”“ />
</xs:all>
</xs:complexType>
</xs:element>
</Xs:sequence>
</xs:complexType>
</xs:element>

</xs:schema>

Listing 6. Schema der XML-Dokumente, die Informationen zu einem
bestimmten Datenspeicher enthalten (storageinformation.xsd).

Das Wurzelelement <storagelnformation> gliedert sich in zwei Teile: Zum einen enthélt es die
Verbindungsinformationen zum Datenspeicher (Element <storageLocation>), die in der stora-
getypes.xsd definiert wurden (siehe Listing 5 in Kapitel 3.4); zum anderen besteht die Mog-
lichkeit, diese rein technischen, funktionalen Daten mit nichtfunktionalen Eigenschaften anzu-
reichern. Diese werden innerhalb des Elements <storageProperties> aufgelistet. Die mometa-
ne Implementierung nutzt diese nichtfunktionalen Eigenschaften noch nicht — daher ist ihr
Vorkommen optional. Allerdings konnen Heuristiken definiert werden, die einen geeigneten
Datenspeicher auf Basis dieser Eigenschaften auswihlen. Denkbar ist beispielsweise auch das

Einbinden von WS-Policy-Richtlinien an dieser Stelle.

4.2.2 Auswahl geeigneter Datenspeicher mit Heuristiken

Der Begrift Heuristik findet auler in der Informatik auch in zahlreichen anderen Anwen-
dungsgebieten Gebrauch. [PE84] beispielsweise definiert mit Heuristiken Strategien, die ver-
fligbare und zugingliche Informationen nutzen, um das Losen von Problemen sowohl durch
Maschinen als auch durch Menschen zu kontrollieren. In der kiinstlichen Intelligenz werden
besonders bei Problemen mit groem Suchraum Heuristiken genutzt, um mit begrenzter Infor-
mation moglichst schnell gute Entscheidungen zu treffen [HN68]. Im Kontext des RRS soll
der Begriff jedoch deutlich enger gefasst werden:

32

Definition (Heuristik):
Eine Heuristik beschreibt eine Sammlung verwandter Vorgehensweisen, die mit mogli-
cherweise unterschiedlichen Mengen an Information {iber die zu speichernden Daten
den dafiir im Sinne einer bestimmten Strategie passendsten verfligbaren Datenspeicher

auswiahlen.

Im RRS sind Heuristiken dafiir vorgesehen, von der Operation Insert verwendet zu werden.
Immer dann, wenn eine neue Variable in einem Datenspeicher abgelegt werden soll, muss ent-
schieden werden, welcher der verfiigbaren Speicher hierzu verwendet wird. Heuristiken soll-
ten hierzu die Schnittstelle Heuristic implementieren. Eine Heuristik kann dann verschiedene

Methoden implementieren, um eine Wahl zu treffen.

Da im Rahmen dieser Arbeit dem RRS nur ein einziger Datenspeicher zur Verfiigung steht,
wihlt die implementierte Heuristik (AlwaysBaseXHeuristic) immer die BaseX-Datenbank
aus, die im XML-Dokument basexxmldatabasel.xml deklariert wird. Soll das RRS zukiinftig
in einer groBeren Umgebung verwendet werden, in der es gegebenenfalls von mehreren unter-
schiedlichen Prozessen mit unterschiedlich groBen zu speichernden Datenmengen verwendet
wird, wird die Wahl des geeignetsten Datenspeichers unter Umstédnden deutlich komplexer,
sodass die Definition weiterer Strategien notig sein kann. Hierzu kann es sinnvoll sein, gemif
Kapitel 4.2.1 fiir jeden Speicher eine Menge an nichtfunktionalen Eigenschaften zur Verfii-
gung zu stellen, die den Heuristiken als Information zur Verfligung stehen. Einige mogliche

sich daraus ergebende Strategien sollen hier beispielhaft aufgefiihrt werden:

* Es wird immer der Datenspeicher ausgewéhlt, der am langsten nicht verwendet wurde,

um die Variablen moglichst gleichmiafBig auf verfiigbare Datenbanken zu verteilen.

* Es wird stets ein Datenspeicher zufillig ausgewéhlt, um durch Randomisierung zu
vermeiden, dass periodische Muster bei den Aufrufen von Insert zur Uberfiillung ein-

zelner Datenspeicher fiihren.

e Fiir groBe Variablen werden vorrangig Speicher ausgewihlt, die solche Datenmengen

effizienter verarbeiten konnen.

* Bestimmte Datenspeicher werden generell praferiert, wihrend andere nur als Ersatzlo-

sung zur Verfiigung stehen, falls priméire Datenbanken ausfallen.

33

4.2.3 Hinzufligen von Konnektoren

In dieser Arbeit wird zur Speicherung der Variablen das Datenbanksystem BaseX verwendet.
Die Vorteile von BaseX als ein generell fiir diese Verwendung gut geeigneter Datenspeicher
wurden bereits in Kapitel 2.3 erldutert. Weitere BaseX-Datenbanken konnen wie in Kapitel
4.2.1 beschrieben einfach durch das Hinzufiigen neuer XML-Dokumente, die dem in der sto-
rageinformation.xsd definierten XML-Schema folgen, in das Konfigurationsverzeichnis an

das RRS angebunden werden.

Wird das Gesamtsystem jedoch ausgeweitet und in spezifischeren Szenarien verwendet, kann
es zu Sonderfillen kommen, wenn beispielsweise fiir hochperformante Anfragen Key-Value-
Stores verwendet werden sollen [DHO7] oder aufgrund rechtlicher Einschrankungen ein Aus-
lagern der Daten in beliebige externe Datenbanken nicht moglich ist. In diesen Féllen ist es
ndtig, dass andere Arten von Datenspeichern unterstiitzt werden. Dies konnen andere Daten-
banksysteme mit abweichender Kopplung sein oder aber es werden gar keine Datenbanken
zum Speichern der Variablen verwendet, sondern das lokale Dateisystem. Ist das der Fall,
miissen fiir das Offnen des neuen Datenspeichers und die Ubertragung der Queries neue Rou-
tinen implementiert werden, im besten Fall ohne die Funktionalitit der bestehenden Methoden
zu dndern. Zu diesem Zweck werden die sogenannten Konnektoren verwendet. Dies sind
Klassen, die die Schnittstelle StorageConnector implementieren. Sie sind verantwortlich fiir
das Herstellen und Trennen der Verbindung und das Ausfiihren aller Befehle, die zum Spei-

chern, Abrufen, Manipulieren und Loschen von Variablen benétigt werden.

Soll das System eine neue Art Datenspeicher unterstiitzen, muss zusitzlich zur Erweiterung
der Typen in der storagetypes.xsd lediglich ein neuer Konnektor implementiert werden, der
diese Operationen unterstiitzt. Die ConnectorFactory instantiiert den neuen Konnektor dann
auf Basis der zum Datenspeicher zugehdrigen XML-Instanz automatisch, wodurch keine wei-

tere Integration notwendig ist.

4.2.4 Erweiterung des Namensgenerators

In dieser Arbeit werden als Namen fiir Variablen ausschlieBlich UUIDs verwendet’. Diese

werden von einem Namensgenerator erzeugt und in Form von Strings zuriickgegeben.

7 ,,UUID (Java 2 Platform SE 5.0)%, http://docs.oracle.com/javase/1.5.0/docs/api/java/util/
UUID.html#randomUUIDY), aufgerufen am 04.11.2013

34

Ist diese Art der Namensvergabe fiir einen bestimmten Datenspeicher nicht moglich (etwa
weil diese zu lang sind oder dadurch unerwiinschte Zeichen im Bezeichner vorkommen),
miissen andere Namen generiert werden. Hierzu kann der Namensgenerator um die entspre-
chenden Methoden erweitert werden. Diese konnen anschlieBend vom Konnektor benutzt

werden.

35

5 Deployment und Validierung

In diesem Kapitel soll das zu dieser Arbeit gehdrende, implementierte RRS (das dem in Kapi-
tel 4 vorgestellten Entwurf folgt) auf einem Server bereitgestellt werden; ebenso soll eine Da-
tenbank auf Basis des Datenbanksystems BaseX bereitgestellt werden, die an das RRS ange-
bunden wird. AnschlieBend soll die Funktionsweise der implementierten Methoden validiert

werden.

Kapitel 5.1 stellt vorerst die Systemspezifikation des Systems vor, auf dem die Tests durchge-
fiihrt wurden. Kapitel 5.2 widmet sich anschlieBend der Validierung. Hierzu wird das System
anhand verschiedener Testfélle gepriift. In Kapitel 5.3 werden einige Statistiken im Hinblick

auf die Performanz des Web-Services erliutert.

5.1 Testumgebung

Alle folgenden Priifungen wurden auf einem Computer mit Windows 7 Home Premium als
Betriebssystem in der 64-Bit-Version durchgefiihrt. Das System enthilt einen Zweikern-Pro-
zessor mit einem Takt von jeweils 2,27 Gigahertz. Es verfiigt liber einen Arbeitsspeicher von

4 Gigabyte.

Das BaseX-Datenbanksystem wurde direkt auf dieses System aufgespielt. Um eine einfache
Konfiguration zu gewihrleisten, existiert lediglich ein Benutzer und eine Datenbank, in der
die Variablen abgelegt werden. Das RRS wurde auf einem Tomcat-Server der Version 7.0 be-
reitgestellt®. Im Deployment-Deskriptor des RRS wurde entsprechend der Konfigurationspfad
zu allen XML-Schemata und der XML-Datei mit den Verbindungsinformationen zur verwen-
deten Datenbank gesetzt. Ebenfalls im Deployment-Deskriptor angegeben wurden die URL
und die Implementierungsklasse. Der Tomcat-Server selbst lduft ebenfalls auf dem oben be-

schriebenen System.

Um den Web-Service aufzurufen, wird SoapUI verwendet’. SoapUI ist eine quelloffene Soft-
ware, mit der das funktionale Priifen von Web-Services moglich ist. Sie bietet sowohl einfa-
che Moglichkeiten zum Testen von Methoden durch den Versand einzelner SOAP-Nachrich-

ten als auch komplexere Priifmdglichkeiten wie das Definieren von Testsuites, die komplizier-

8 ,,Apache Tomcat®, http://tomcat.apache.org, abgerufen am 13.11.2013
9 ,,SoapUI — The Home of Functional Testing", http://www.soapui.org, abgerufen am 13.11.2013

36

tere Szenarien abdecken konnen.

5.2 Validierung

Um die korrekte Funktion des RRS sicherzustellen, wurde eine Reihe von Testfdllen in Form
von SOAP-Nachrichten entworfen, die mithilfe von SoapUI an das RRS geschickt wurden.
Das Ergebnis der Operationen wurde anschliefend mit dem erwarteten Ergebnis verglichen.
Im Folgenden werden einige der Ergebnisse auszugsweise detailliert vorgestellt. Daraufhin

folgt eine kurzgefasste Liste aller Ergebnisse.

5.2.1 Testfall A: Insert komplexer XML-Daten und anschlief3endes Get

Dieser Testfall beschéftigt sich mit der Insert- und der Get-Operation. Es sollen XML-Daten
in der Datenbank gespeichert werden, die gingige Konstrukte (Attribute, Kommentare, Esca-
pe-Sequenzen) sowie Sonderzeichen enthalten. Als Ergebnis wird erwartet, dass die Daten er-
folgreich in der Datenbank gespeichert werden konnen und bei einem Get in derselben Form

zurlickgeliefert werden.

Die in Listing 7 dargestellte SOAP-Nachricht wurde hierfiir an das RRS iibermittelt:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:core="http://core/">
<soapenv:Header/>
<soapenv:Body>
<core:insert>
<initialvalue>
<! [CDATA[<Elementl Attribl="5">Test</Elementl>
<Element2 Attrib2="Test">42.2</Element2>
<!-- This is a comment. -->
<Element3>1&1t;2 & 21t;3 -> 1&1t;3</Element3>
<Elementd>!"8§$%/()=? *+~#'7°;:|@E€</Elementd>]]>
</initialValue>
</core:insert>
</soapenv:Body>
</soapenv:Envelope>

Listing 7: SOAP-Nachricht zur Priifung des Verhaltens bei der Insert-Operation.

Die Antwortnachricht soll die Referenz zu diesem Datum enthalten. Listing 8 stellt die Nach-

richt dar.

37

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<ns2:insertResponse xmlns:ns2="http://core/">
<return>
<[CDATA[<reference><storagelLocation><BaseXXMLDatabase><hostname>
localhost</hostname><port>1984</port><database>testdb</database>
<username>testuser</username><password>password</password>
</BaseXXMLDatabase></storagelLocation><variableName>
cc73ed87-1264-4f0f-934a-2e8b02d3e5dd</variableName></reference>]]>
</return>
</ns2:insertResponse>
</S:Body>
</S:Envelope>

Listing 8: SOAP-Nachricht als Antwort auf die Insert-Operation.

Mit der erhaltenen Referenz sollen die Daten nun wieder abgerufen werden. Die Listings 9
und 10 zeigen die Anfrage- und die Antwortnachricht. Die XML-Daten wurden korrekt in der

Datenbank abgelegt und zuriickgeliefert.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:core="http://core/">
<soapenv:Header/>
<soapenv:Body>
<core:get>
<reference>
<! [CDATA[<reference><storagelLocation><BaseXXMLDatabase><hostname>
localhost</hostname><port>1984</port><database>testdb</database>
<username>testuser</username><password>password</password>
</BaseXXMLDatabase></storagelLocation><variableName>
cc73ed87-1264-4f0f-934a-2e8b02d3e5dd</variableName></reference>]]>
</reference>
</core:get>
</soapenv:Body>
</soapenv:Envelope>

Listing 9: SOAP-Nachricht zur Priifung des Verhaltens bei der Get-Operation.

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<ns2:getResponse xmlns:ns2="http://core/">
<return>
<![CDATA[<Elementl Attribl="5">Test</Elementl>
<Element2 Attrib2="Test">42.2</Element2>
<!-- This is a comment. -->
<Element3>1&1t;2 & 21t;3 -> 1&1t;3</Element3>
<Element4>!"§$%/()=? *+~#'7°;:|@E</Elements>]]>
</return>
</ns2:getResponse>
</S:Body>
</S:Envelope>

Listing 10: SOAP-Nachricht als Antwort auf die Get-Operation.
5.2.2 Testfall B: Update fiir nicht existierende Variable

Dieser Testfall zeigt das Ergebnis einer Update-Operation, deren iibergebene Referenz einen
Variablennamen tragt, der nicht im Datenspeicher vorkommt. Da es sich hierbei um einen
Fehler auf Ebene des Datenspeichers handelt, wird nach Kapitel 4.1 als Ergebnis eine Stora-

geFault erwartet. Die Listings 11 und 12 zeigen die Anfrage und die erhaltene Antwortnach-

38

richt mit dem erwiinschten Ergebnis.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/
xmlns:core="http://core/">
<soapenv:Header/>
<soapenv:Body>
<core:update>
<reference>
<! [CDATA[<reference><storagelLocation><BaseXXMLDatabase><hostname>
localhost</hostname><port>1984</port><database>testdb</database>
<username>testuser</username><password>password</password>
</BaseXXMLDatabase></storagelLocation><variableName>NonExistent
</variableName></reference>]]>
</reference>
<newValue>NewValue</newValue>
</core:update>
</soapenv:Body>
</soapenv:Envelope>

Listing 11: SOAP-Nachricht zur Priifung des Verhaltens bei der
Update-Operation, wenn die Variable nicht existiert.

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<S:Fault xmlns:ns4="http://www.w3.0rg/2003/05/soap-envelope">
<faultcode>S:Server</faultcode>
<faultstring>Reference could not be resolved.</faultstring>
<detail>
<ns2:StorageFault xmlns:ns2="http://core/">
<message>Reference could not be resolved.</message>
</ns2:StorageFault>
</detail>
</S:Fault>
</S:Body>
</S:Envelope>

Listing 12: SOAP-Nachricht als Antwort auf die fehlerhafte Update-Anfrage.
5.2.3 Testfall C: Delete mit nicht valider Referenz

Im Folgenden wird die Operation Delete aufgerufen, allerdings mit einer Referenz, die nicht
dem definierten Schema innerhalb der reference.xsd entspricht (es fehlen der Name der Varia-
ble sowie das umschlieBende <StorageLocation>-Element und das Passwort). Der Aufruf soll
daher eine RRSFault erzeugen. Listing 13 zeigt die SOAP-Nachricht des Aufrufs, Listing 14
die erwartete und erhaltene RRSFault.

39

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:core="http://core/">
<soapenv:Header/>
<soapenv:Body>
<core:delete>
<reference>
<! [CDATA[<reference><BaseXXMLDatabase><hostname>localhost</hostname>
<port>1984</port><database>testdb</database><username>testuser
</username></BaseXXMLDatabase></reference>]]>
</reference>
</core:delete>
</soapenv:Body>
</soapenv:Envelope>

Listing 13: Aufruf der Delete-Operation als SOAP-Nachricht mit nicht valider Referenz.

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<S:Fault xmlns:ns4="http://www.w3.0rg/2003/05/soap-envelope">
<faultcode>S:Server</faultcode>
<faultstring>No valid reference was passed.</faultstring>
<detail>
<ns2:RRSFault xmlns:ns2="http://core/">
<message>No valid reference was passed.</message>
</ns2:RRSFault>
</detail>
</S:Fault>
</S:Body>
</S:Envelope>

Listing 14: SOAP-Nachricht als Antwort auf die fehlerhafte Delete-Anfrage.
5.2.4 Ubersicht iiber weitere Testfille

Tabelle 1 liefert eine Ubersicht iiber weitere gepriifte Testfille, die allesamt das erwartete Er-

gebnis lieferten.

Anfrage Antwort
Insert einer leeren Zeichenkette Referenz
Insert wohlgeformter XML-Daten Referenz
Insert nicht wohlgeformter XML-Daten StorageFault
Datenbank ist offline oder nicht erreichbar StorageFault
Get mit einer validen, giiltigen Referenz Wert
Get/Update/Delete mit einer invaliden Referenz RRSFault
Get/Update/Delete einer nicht existierenden Variable StorageFault
Update mit leerem String als neuem Wert OK

Update mit wohlgeformten XML-Daten als neuem Wert OK

Update mit nicht wohlgeformten XML-Daten als neuem Wert | StorageFault
Delete mit einer validen, giiltigen Referenz OK
Konfigurationsverzeichnis falsch gesetzt RRSFault
Datenspeicher-Typ wird nicht unterstiitzt RRSFault
Get/Update/Delete ohne Referenz RRSFault

Tabelle 1: Ubersicht iiber Testfiille bei der Priifung des Reference Resolution Systems.

40

5.3 Performanz

Um die Performanzeigenschaften des Systems unter verschiedenen Bedingungen zu testen,
wurde die Datenbank vorerst mit einer vorgegebenen Anzahl an Variablen gefiillt. Um den
Vorgang zu beschleunigen und nicht viele Male den Web-Serivce aufrufen zu miissen, wurden
diese mit XQuery-Befehlen eingefiigt, wie beispielhaft in Listing 15 dargestellt. Der dort ge-
zeigte XQuery-Befehl fiigt 100.000 Variablen in die Datenbank ein; diese haben eine Form
wie in Listing 16 gezeigt. Der Vorgang wurde fiir eine verschiedene Anzahl Variablen wieder-

holt.

insert node (for $x in (1 to 100000) return <Variable id='test-variable-
00{$x}-rrs'><TestXML><Name>test-variable-00{$x}-
rrs</Name><Identifier>{$x}</Identifier><Text-Content>Text Content</Text-
Content><ElementWithAttributes attribl='{$x}' attrib2='{$x}'>Element with
Attributes</ElementWithAttributes></TestXML></Variable>) into
/VariableDatabase

Listing 15: Beispielhafter XQuery-Befehl, um 100.000
Variablen in die Datenbank einzufiigen.

<Variable id='test-variable-001-rrs'>
<TestXML>
<Name>test-variable-001-rrs</Name>
<Identifier>1</Identifier>
<Text-Content>Text Content</Text-Content>
<ElementWithAttributes attribl='1"' attrib2='1'>Element with
Attributes</ElementWithAttributes>
</TestXML>
</Variable>

Listing 16: Beispiel fiir eine durch den XQuery-Befehl erzeugte Variable.

Gemessen wurden die durchschnittlichen, minimalen und maximalen Antwortzeiten fiir die
Anfragen. In allen Féllen wurde darauf geachtet, dass die Anfragen in korrekter Form gestellt
werden und die Datenbank funktionsfahig ist, um die Performanzmessung der grundlegenden
Funktionalitét nicht durch Sonderfélle oder SOAP-Faults zu verfilschen. Ferner wurde mithil-
fe der Java-Funktion System.nanoTime() der Anteil der Zeit gemessen, den die Ausfiihrung
der Befehle auf der Datenbank einnimmt. Aus diesem Wert kann rekonstruiert werden, wie
viel Zeit die datenbankunabhéngigen Berechnungen des RRS selbst in Anspruch nehmen. Ab-
bildung 7 zeigt einen Screenshot der Konfiguration der Priifung in SoapUI. In den Tabellen 2

bis 5 werden die Ergebnisse der Messungen dargestellt.

41

£ soapl1452

=8

- - e S - - . - - PPN
File Tools Desktop Help
2aa@80X80 Search For... -2
5 @ insert - Request @ [& Insert sequential load test G Giied B
B %"J;;‘S‘ » o i @ O @ ® [|http:/localhostB080/RRS/irs ~| %“t+t® P XEEHwX0O Limit:
8| 5 X meraceportinging s ~ soep-oxg/soap/eafalf| G BN Threads: 15 strategy Test Delay Rendom [0]
Y 2 e
o2 dele =) =l Testtep |_min |_mas | g |_tast | con |_tps | byt | bps |_en | it [F)
B2 gt L= H insert - Request 1 ® s 2 B 18 120 16k o/~
@ insert 5 TestCase: . » sa 7 B 1® 1720 e o o
&2 Request1
- update
& 8 Testsuite
& TestCase Insert
3= Test Steps (1)
&) insert - Request
& Load Tests (1)
& Insert sequential load test |
W s Tests
ecurity Tests ©0) . X g Show Types: [-All- ~| Show Steps: [-All- ~
5 H 7 E
Toadrest Propertes i il tpe | step e
LSS Tee— Dal| | [d][v20531110105413120 Message LoadTest started at Thu Nov 14 11:54:13 CET 2013 |~
Property Value — = —
Name Tnsertsequentiolload .| | Aut Headers (0) Attachments(®) WS-A WSRM VS Hesders IMSProperty ©) | o =
Description =
@ Assertions (1) Request Log (4) entry
esponse time: 36ms 515 bytes) - 13.16 |LOBTERUSG| LoadTest Assertions Setup Script TearDown Serpt
soaplUllog httplog jettylog errorlog wsrmlog memory log

Abbildung 7: Konfiguration von und Performanzpriifung mit SoapUI am Beispiel der Insert-Operation.

Insert
Initiale Anzahl Minimale Maximale Durchschnittlic Zeit fiir RRS-interne
Variablen in der Datenbank | Antwortzeit Antwortzeit he Antwortzeit Berechnungen
10 16 ms 51 ms 23 ms 14 ms
100 17 ms 64 ms 24 ms 13 ms
1.000 19 ms 41 ms 26 ms 18 ms
10.000 29 ms 58 ms 43 ms 15 ms
100.000 168 ms 276 ms 185 ms 15 ms
1.000.000 1502 ms 1790 ms 1531 ms 18 ms
Tabelle 2: Messung der Antwortzeiten der Insert-Operation.
Get
Anzahl Variablen Minimale Maximale Durchschnittlic Zeit fiir RRS-interne
in der Datenbank Antwortzeit Antwortzeit he Antwortzeit Berechnungen
10 19 ms 60 ms 25 ms 20 ms
100 19 ms 42 ms 25 ms 21 ms
1.000 22 ms 55 ms 30 ms 24 ms
10.000 45 ms 72 ms 58 ms 23 ms
100.000 320 ms 390 ms 338 ms 21 ms
1.000.000 2962 ms 3252 ms 3038 ms 22 ms
Tabelle 3: Messung der Antwortzeiten der Get-Operation.
Update
Anzahl Variablen Minimale Maximale Durchschnittlic Zeit fiir RRS-interne
in der Datenbank Antwortzeit Antwortzeit he Antwortzeit Berechnungen
10 21 ms 68 ms 30 ms 22 ms
100 22 ms 64 ms 32 ms 22 ms
1.000 26 ms 77 ms 38 ms 21 ms
10.000 50 ms 95 ms 66 ms 27 ms
100.000 318 ms 410 ms 346 ms 26 ms
1.000.000 2930 ms 3436 ms 3012 ms 24 ms

Tabelle 4: Messung der Antwortzeiten der Update-Operation.

42

Delete
Initiale Anzahl Minimale Maximale Durchschnittlic Zeit fiir RRS-interne
Variablen in der Datenbank | Antwortzeit Antwortzeit he Antwortzeit Berechnungen
10 26 ms 39 ms 32 ms 26 ms
100 29 ms 37 ms 34 ms 24 ms
1.000 32 ms 69 ms 38 ms 23 ms
10.000 64 ms 92 ms 77 ms 24 ms
100.000 328 ms 376 ms 342 ms 23 ms
1.000.000 2998 ms 3353 ms 3067 ms 24 ms

Tabelle 5: Messung der Antwortzeiten der Delete-Operation.

Fiir eine geringe Anzahl (bis etwa 10* Variablen in der Datenbank) sind kaum Einbufen an der
Antwortzeit zu erkennen. Die Antwortzeiten liegen in der GroBenordnung géngiger Antwort-
zeiten im Web, wodurch sie in einem realen Umfeld nur wenig ins Gewicht fallen. Erst wenn
die Anzahl der in der Datenbank gespeicherten Variablen gegen die GroBenordnung 10° geht,
machen sich deutlich lingere Antwortzeiten bemerkbar. Greifen in diesem Fall in der Realitit
viele Prozessinstanzen auf das RRS zu, wiirde dies die Performanz des Gesamtsystems erheb-
lich beeintrachtigen. Daher muss in der Praxis rechtzeitig auf diesen Umstand reagiert wer-

den, etwa durch das Hinzufiigen neuer Datenbanken.

Betrachtet man die Menge an Zeit, die das RRS mit Berechnungen verbringt und nicht auf die
Datenbank wartet, fillt auf, dass diese nahezu konstant bleibt. Die Schwankungen weisen kei-
nerlei Tendenz auf und kénnen daher als Messungenauigkeiten angesehen werden. Dies zeigt,
dass fiir eine grofle Anzahl an Variablen der Engpass die angebundene Datenbank ist, nicht die
Berechnungen innerhalb des RRS. Nur wenn die Datenbankoperationen schnell abgeschlos-
sen sind, nehmen die Berechnungen innerhalb des RRS (Parsing, Instantiierung, Kommunika-

tion) einen signifikanten Anteil ein.

Da ein wesentlicher Anwendungsfall fiir eine referenzbasierte Datenverwaltung das Speichern
grofler Datenmengen ist, wurden auBlerdem dhnliche Priifungen mit groBen Variablen durch-
geflihrt. Die Listings 17 und 18 zeigen den dafiir verwendeten XQuery-Befehl und die resul-
tierenden Variablen. Die Grofe dieser Variablen betrigt etwa Faktor 1.000 im Vergleich zu der
vorherigen kleinen Variablen. Bei 100.000 eingefiigten Variablen hat die resultierende Daten-

bank dabei eine Grofle von etwa 22 Gigabyte.

43

insert node (for $x in (1 to 10) return <Variable id='test-variable-00{$x}-
rrs'>{(for $y in (1 to 1000) return <TestXML><Name>test-variable-00{$x}-
rrs</Name><Identifier>{$x}-{$y}</Identifier><Text-Content>Text
Content</Text-Content><ElementWithAttributes attribl='{$x}'
attrib2="{$y}'>Element with Attributes</ElementWithAttributes></TestXML>)}
</Variable>) into /VariableDatabase

Listing 17: Beispielhafter XQuery-Befehl um zehn
grofie Variablen in die Datenbank einzufiigen.

<Variable id='test-variable-001-rrs'>
<TestXML>
<Name>test-variable-001-rrs</Name>
<Identifier>1-1</Identifier>
<Text-Content>Text Content</Text-Content>
attrib2="1"'>Element with

</TestXML>

<TestXML>

</TestXML>
</Variable>

<ElementWithAttributes attribl="1"
Attributes</ElementWithAttributes>

<Name>test-variable-001-rrs</Name>
<Identifier>1-1000</Identifier>
<Text-Content>Text Content</Text-Content>
<ElementWithAttributes attribl="1"
Attributes</ElementWithAttributes>

attrib2="'1000"'>Element with

Listing 18: Beispiel fiir eine durch den XQuery-Befehl erzeugte grofie Variable.

Die Tabellen 6 und 7 zeigen die Ergebnisse der Tests fiir die Insert- und die Get-Operation.

Insert, grof3e Variablen
Initiale Anzahl Minimale Maximale Durchschnittlic Zeit fiir RRS-interne
Variablen in der Datenbank | Antwortzeit Antwortzeit he Antwortzeit Berechnungen
10 105 ms 342 ms 134 ms 24 ms
100 108 ms 387 ms 130 ms 20 ms
1.000 118 ms 290 ms 142 ms 22 ms
10.000 229 ms 411 ms 258 ms 23 ms
100.000 1288 ms 1562 ms 1343 ms 26 ms
Tabelle 6: Messung der Antwortzeiten der Insert-Operation fiir grofse Variablen.
Get, grofie Variablen
Anzahl Variablen Minimale Maximale Durchschnittlic Zeit fiir RRS-interne
in der Datenbank Antwortzeit Antwortzeit he Antwortzeit Berechnungen
10 73 ms 185 ms 92 ms 34 ms
100 62 ms 104 ms 85 ms 35 ms
1.000 68 ms 129 ms 99 ms 38 ms
10.000 242 ms 396 ms 269 ms 39 ms
100.000 1753 ms 2088 ms 1830 ms 39 ms

Tabelle 7: Messung der Antwortzeiten der Get-Operation fiir grofSe Variablen.

44

Eine Erhohung der Antwortzeit auf iiber eine Sekunde tritt hier bereits bei weniger als

100.000 Variablen auf. Fiir eine Zahl von Variablen um 10* ist die Performanz allerdings noch
immer unter 300 Millisekunden. Interessant ist die Tatsache, dass das Einfiigen bei noch we-
nigen gespeicherten Variablen in diesem Fall ldnger dauert als das Abrufen der Werte. Erst
wenn viele Variablen in der Datenbank gespeichert sind, bewegt sich das Verhéltnis wieder in
Richtung der Werte, die fiir kleine Variablen gemessen wurden. Die Zeit fiir RRS-interne Be-
rechnungen ist geringfiigig gestiegen, allerdings um einen Faktor kleiner als zwei. Zu beach-
ten ist jedoch, dass die SOAP-Nachrichten auf derselben Maschine erzeugt und empfangen
wurden. Wird das RRS iiber das Netzwerk aufgerufen, sind bei gréferen Variablen entspre-

chend lingere Zeiten fiir die Ubertragung der Daten einzurechnen.

45

6 Zusammenfassung und Ausblick

In dieser Arbeit wurde ein Konzept fiir die Datenverwaltung mit Referenzen in Service Com-
position Engines vorgestellt. Der Ansatz benutzt externe Datenbanken oder andere Datenspei-
cher, um von den Geschéftsprozessen verwendete Variablen auszulagern und stattdessen per
Referenz auf sie zuzugreifen. Zentral dabei war die Einfiihrung eines RRS, das die Verwal-
tung der Variablen in den Datenspeichern iibernimmt und als Schnittstelle zwischen der Ser-

vice Composition Engine und den Datenspeichern fungiert.

Es wurde ein Konzept vorgestellt, mit dem das RRS in eine bestehende Service Composition
Engine, die auf der Verwendung formaler Grammatiken und Automaten zur Definition und
Ausfithrung von Prozessen basiert, eingebunden werden kann. Hierzu wurde ein Referenzbe-
griff eingefiihrt, der im Rahmen dieser Arbeit verwendet wurde, und das Schema fiir solche
Referenzen definiert. Die Arbeit hat die Vorteile einer referenzbasierten Datenverwaltung dis-
kutiert und dargelegt, wie die Service Composition Engine mit den Referenzen umgeht und

diese mithilfe von Bezeichnern identifiziert und halt.

AnschlieBend wurde ein Entwurf des RRS als Web-Service vorgestellt und dessen Aufbau und
Funktionsweise diskutiert. Es wurden Moglichkeiten gesammelt, mit denen zukiinftig eine
Ausweitung der Funktionalitit des Systems moglich ist. SchlieBlich wurde anhand mehrerer
Testfélle die Korrektheit der zu dieser Arbeit gehdrenden Implementierung des RRS gezeigt.
Die Arbeit hat Ergebnisse von Performanzpriifungen vorgestellt, diskutiert und ins Verhéltnis

zueinander gesetzt.

In zukiinftigen Arbeiten zu diesem Thema miissen insbesondere zwei Aspekte diskutiert wer-
den: Der Sicherheitsaspekt solcher Systeme und die Ausweitung der referenzbasierten Daten-

verwaltung auf die Services selbst.

Sicherheitsliicken bestehen vor allem bei den Referenzen, da diese momentan die Speiche-
rung aller Verbindungsinformationen in Klartext vorsehen und so insbesondere dort gespei-
cherte Passworter einfach ausgelesen werden konnen. Somit muss eine MaBBnahme entwickelt
werden, die verhindert, dass nicht autorisierte Instanzen Referenzen auslesen und durch die

dort enthaltenen Informationen Zugriff auf den vollstdndigen Datenspeicher erhalten kdnnen.

46

Damit einher geht moglicherweise der Entwurf eines Systems von Rechten, die an verschiede-
ne Prozesse oder Benutzer vergeben werden konnen. [WGO09] stellt hierzu beispielsweise eine
Trennung der Schnittstelle des RRS in ein Retrieval Interface und ein Management Interface
vor, sodass nicht alle Prozesse Variablen einfiigen, modifizieren oder 16schen kdnnen. Dieser
Ansatz muss jedoch noch mit anderen Moglichkeiten verglichen und in der Praxis erprobt

werden.

Soll die Benutzung von und der Zugriff auf Daten mit Referenzen nicht auf die Service Com-
position Engine beschriankt sein, miissen Moglichkeiten entwickelt werden, wie die aufgerufe-
nen Services diese handhaben kénnen. Die Ubertragung der Referenzen selbst stellt kein Pro-
blem dar, allerdings miissen die Services mit ihnen umgehen konnen und hierzu umgeschrie-
ben werden. [WGO09] schldgt hierfiir die Entwicklung sogenannter Service-Wrapper vor, bleibt
dabei jedoch auf konzeptioneller Ebene, sodass eine Realisierung des Ansatzes als Gegen-

stand weiterer Arbeiten dienen kann.

Weiter vertieft werden kann ferner auch das Abrufen und Modifizieren grof3er Variablen. Bei
groflen Datenmengen ist es moglicherweise in vielen Fillen ausreichend, nur Teile der abge-
legten XML-Instanzen zu dndern oder aus dem RRS zu laden. In einem solchen Fall wire es
ineffizient, die gesamte Variable zu erfragen, da dies ein erneutes Parsing der gesamten XML-
Daten der Variablen nétig macht. Uberdies miisste sie die gesamte Variable iiber das Netzwerk
iibertragen werden. Stattdessen wire es sinnvoller, nur Teile von Variablen abrufen oder ver-

andern zu konnen.

Ebenfalls ungeklért ist, wie Daten auf Referenzbasis zwischen verschiedenen Prozessen aus-
getauscht werden konnen. Das momentane System sieht diesen Umstand nicht vor, sodass
eine Prozessinstanz, sobald eine bestimmte Variable nicht mehr benétigt wird, zusammen mit
dem Bezeichner auch die Variable aus dem RRS 16schen kann. Wenn allerdings die Referen-
zen zwischen den Prozessen weitergegeben werden konnen, muss ein Verfahren entwickelt
werden, das bestimmt, wann Variablen aus den Datenspeichern entfernt werden konnen und
wann dies nicht erlaubt ist, weil etwa andere Prozesse die Daten noch verwenden. Ein mogli-
cher Ansatz zur Bestimmung des Loschzeitpunkts der Daten wire etwa die Verwendung ver-

teilter Garbage Collection wie etwa durch Reference Counting [PS95].

47

Literaturverzeichnis

[BCOS]

[BE99]

[DHO7]

[EMO6]

[EY93]

[FK99]

[FLSO]

[FUO1]

[GDO5]

[GHO7]

[GL12]

Bharathi, S.; Chervenak, A.; Deelman, E.; Mehta, G.; Su, M.; Vahi, K.: ,,Character-
ization of Scientific Workflows*, Third Workshop on Workflows in Support of
Large-Scale Science, 2008, S. 1-10

Bohnlein, M.; vom Ende, A. U.. , XML - Extensible Markup Language”,
Wirtschaftsinformatik, Volume 41, Springer Fachmedien Wiesbaden, 1999, S. 274-
276

DeCandia, G.; Hastorun, D.; Jampani, M.; Kakulapati, G.; Lakshman, A.; Pilchin,
A.; Sivasubramanian, S.; Vosshall, P.; Vogels, W.: ,,Dynamo: Amazon's Highly
Available Key-value Store*, SOSP, Volume 7, 2007, S. 205-220

Eckstein, R.; Mordani, R.: ,Introducing JAX-WS 2.0 With the Java SE 6 Platform,
Part 17, http://www.oracle.com/technetwork/articles/javase/jax-ws-2-141894 . html,
aufgerufen am 22.10.2013

Eyre-Todd, R. A.: ,,The Detection of Dangling References in C++ Programs*, ACM
Letters on Programming Languages and Systems, Volume 2, 1993, S. 127-134
Florescu, D.; Kossman, D.: ,,Storing and Querying XML Data using an RDMBS”,
Data Engineering Bulletin, Volume 22, IEEE, 1999, S. 27-34

Fischer, C. N.; LeBlanc, R. J.: ,,The Implementation of Run-Time Diagnostics in
Pascal®, IEEE Transactions on Software Engineering, Volume SE-6, 1980, S. 313-
319

Fujimoto, R. M.: ,Parallel Simulation: Parallel and Distributed Simulation
Systems®, Proceedings of the 33rd conference on Winter simulation, 2001, S. 147-
157

Graham, S.; David, D.; Simeonov, S.; Daniels, G.; Brittenham, P.; Nakamura, Y.;
Fremantle, P.; Konig, D.; Zentner, C.: ,,Building Web Services with Java”, Sams
Publishing, 2005

Griin, C.; Holupirek, A.; Scholl, M. H.: ,,Visually Exploring and Querying XML
with BaseX”, LNI, Volume 103, Gesellschaft fiir Informatik, 2007, S. 629-632
Gorlach, K.; Leymann, F.: ,,Dynamic Service Provisioning for the Cloud®, Proceed-
ings of the 9th IEEE International Conference on Service Computing, 2012, S. 555-
561

48

[GL13]

[GR81]

[GR10]

[HA05]

[HEO1]

[HNG68]

[HRO1]

[JEO7]

[JO08]

[KM99]

[KOOS5]
[LO75]

[NEO02]

[PAO6]

[PES4]

Gorlach, K.; Leymann, F.; Claus, V.: ,,Unified Execution of Service Compositions*,
Processdings of the 6th IEEE International Conference on Service Oriented Com-
puting & Applications, SOCA 2013 (to appear), http://www.iaas.uni-stuttgart.de/in-
stitut/mitarbeiter/goerlach/UnifiedExecutionOfServiceCompositions.pdf

Gray, J. N.: ,,The Transaction Concept: Virtues and Limitations”, Proceedings of the
7th International Conference on Very Large Databases, 1981, S.144-154

Griin, C.: ,,Storing and Querying Large XML Instances”, Dissertation, Universitit
Konstanz, 2010

Havey, M.: ,,Essential Business Process Modeling®, O'Reilly Media, 2005
Herrmann, D.: ,,C++ fiir Naturwissenschaftler”, Prentice Hall, 2001

Hart, P. E.; Nilsson, N. J.; Raphael, B.: ,,A Formal Basis for the Heuristic Determin-
ation of Minimum Cost Paths, IEEE Transactions on Systems Science and Cyber-
netics, Volume 4, 1968, S. 100-107

Hérder, T.; Rahm, E.: ,,Datenbanksysteme — Konzepte und Techniken der Imple-
mentierung*, Springer-Verlag, 2001

Jordan, D.; Evdemon, J.: ,,Web Services Business Process Execution Language Ver-
sion 2.0, OASIS Standard, 2007

Josuttis, N.: ,,SOA in der Praxis — System-Design fiir verteilte Geschiftsprozesse”,
dpunkt.verlag, 2008

Kanne, C.; Moerkotte, G.: ,,Efficient Storage of XML data”, Universitdt Mannheim
Technical Report, 1999

Koch, C.: ,,A New Blueprint for the Enterprise”, CIO Magazine, March Issue, 2005
Lomet, D. B.: ,,Scheme for Invalidating References to Freed Storage*, IBM Journal
of Research and Development, Volume 19, 1975, S. 26-35

Newcomer, E.: ,,Understanding Web Services — XML, WSDL, SOAP, and UDDI”,
Pearson Education, 2002

Pesic, M.; van der Aalst, W. M. P.: ,,A Declarative Approach for Flexible Business
Processes Management®, Business Process Management Workshops, 2006

Pearl, J.: ,,Heuristics: Intelligent Search Strategies for Computer Problem Solving*,

Addison Wesley Longman Publishing Co, 1984

49

[PS95]

[PZ08]

[RE00]

[ST10]
[UO01]

[VS08]

[WC05]

[WG09]

[WWO04]

[WWO06]

[WWO08]

[YA12]

Plainfossé, D.; Shapiro, M.: ,,A Survey of Distributed Garbage Collection Tech-
niques*, Lecture Notes in Computer Science, Volume 986, Springer-Verlag Berlin
Heidelberg, 1995, S. 211-249

Pautasso, C.; Zimmerman, O.; Leymann, F.: ,RESTful Web Services vs 'Big' Web
Services: Making the Right Architectural Decision”, Proceedings of the 17th inter-
national conference on World Wide Web, 2008, S. 805-814

Reese, G.: ,,Database Programming with JDBC and Java®“, O'Reilly & Associates,
2000

Stroustrup, B.: ,,Die C++ Programmiersprache*, Addison-Wesley, 2010
UN/CEFACT; OASIS: ,,ebXML Business Process Specification Schema Version
1.01”, http://www.ebxml.org/specs/ebBPSS.pdf, abgerufen am 09.11.2013
Vrhovnik, M.; Schwarz, H.; Radeschiitz, S.; Mitschang, B.: ,,An Overview of SQL
Support in Workflow Producs®, IEEE 24th International Conference on Data Engin-
eering, 2008, S. 1287-1296

Weerawarana, S.; Curbera, F.; Leymann, F.; Storey, T.; Ferguson, D. F.: ,,Web Ser-
vices Platform Architecture”, Pearson Education, 2005

Wieland, M.; Gorlach, K.; Leymann, F.: ,,Towards Reference Passing in Web Ser-
vice and Workflow-based Applications®, IEEE International Enterprise Distributed
Object Computing Conference, 2009, S. 109-118

World Wide Web Consortium: ,,Web Services Glossary”, W3C Working Group
Note 11 2004, 2004

World Wide Web Consortium: ,,Web Services Addressing 1.0 — Core*, W3C Re-
commendation 9 May 2006, 2006

World Wide Web Consortium: ,,Extensible Markup Language (XML) 1.0 (Fifth
Edition)”, W3C Recommendation 26 November 2008, 2008

The YAWL Foundation: ,,YAWL — User Manual, Version 2.3%, 2012

50

Erklarung

Ich versichere, diese Arbeit selbststindig verfasst zu haben. Ich habe keine anderen als die an-
gegebenen Quellen benutzt und alle wortlich oder sinngeméf aus anderen Werken iibernom-
mene Aussagen als solche gekennzeichnet. Weder diese Arbeit noch wesentliche Teile daraus
waren bisher Gegenstand eines anderen Priifungsverfahrens. Ich habe diese Arbeit bisher we-
der teilweise noch vollstindig verdffentlicht. Das elektronische Exemplar stimmt mit allen

eingereichten Exemplaren tliberein.

Ebersbach, den 27. November 2013

51

	1 Einleitung
	1.1 Einordnung ins Gesamtsystem
	1.2 Verwandte Arbeiten

	2 Grundlagen
	2.1 Extensible Markup Language (XML)
	2.2 Web-Services und JAX-WS
	2.3 Das XML-basierte Datenbanksystem BaseX

	3 Referenzen
	3.1 Datenverwaltung in Service Composition Engines
	3.2 Vorteile einer referenzbasierten Datenverwaltung
	3.3 Verwaltung der Referenzen
	3.3.1 Auflösen von Referenzen beim Aufruf eines Web-Services
	3.3.2 Zuordnung und Kardinalität
	3.3.3 Gültigkeit von Referenzen

	3.4 Referenzen-Schema

	4 Reference Resolution System
	4.1 Entwurf
	4.2 Erweiterbarkeit und Konfiguration
	4.2.1 Verwaltung der Datenspeicher durch das Konfigurationsverzeichnis
	4.2.2 Auswahl geeigneter Datenspeicher mit Heuristiken
	4.2.3 Hinzufügen von Konnektoren
	4.2.4 Erweiterung des Namensgenerators

	5 Deployment und Validierung
	5.1 Testumgebung
	5.2 Validierung
	5.2.1 Testfall A: Insert komplexer XML-Daten und anschließendes Get
	5.2.2 Testfall B: Update für nicht existierende Variable
	5.2.3 Testfall C: Delete mit nicht valider Referenz
	5.2.4 Übersicht über weitere Testfälle

	5.3 Performanz

	6 Zusammenfassung und Ausblick

