Institut fiir Architektur von Anwendungssystemen

Universitdt Stuttgart
Universitatsstrafie 38
D-70569 Stuttgart

Bachelorarbeit Nr. 62

Instanz-Management fiir
unifizierte
Service-Kompositionen

Stefan Furst
Studiengang: Informatik
Priifer/in: Prof. Dr. Frank Leymann
Betreuer/in: Dipl.-Inf. Katharina Gorlach
Beginn am: 21. Mai 2013
Beendet am: 8. November 2013

CR-Nummer: C24,D211,H4.1,11.2,1.7.2,].0

Kurzfassung

Service-Kompositionen kénnen durch Sprachen wie BPEL oder ConDec spezifiziert werden.
Fiir die Ausfithrung der durch diese Sprachen beschriebenen Prozesse werden verschiedene
Engines verwendet. Die Engine ist bei der Ausfiihrung eines Prozesses dafiir zustindig, die
Web Services des Prozesses aufzurufen. Die Web Services befinden sich in einer verteilten
Ablaufumgebung an verschiedenen Standorten, wodurch beim Aufruf des Web Services
Verzogerungen und Kosten durch Datentransfers entstehen. Die Verzogerungen und Kosten
konnen minimiert werden, indem die Engine nahe den verwendeten Web Services betrieben
wird. Um die Zahl der verschiedenen Engines innerhalb einer Ablaufumgebung zu reduzie-
ren, wurde ein Ansatz erforscht, bei dem Prozessspezifikationen von verschiedenen Sprachen
zu formalen Grammatiken transformiert werden konnen. Die Funktionalitdt der Engine wird
dabei durch einen endlichen Automaten realisiert. Fiir diesen bereits vorhandenen Ansatz
wird eine Komponente benétigt, die Instanzen des Automaten erzeugt und deren Betrieb in
einer verteilten Ablaufumgebung ermoglicht.

Im Rahmen dieser Bachelorarbeit wird die Realisierung einer Komponente vorgestellt, die
Instanzen eines Automaten in einer Cloud Umgebung erstellt und verwaltet. Dabei wird
ein Konzept zur Platzierung von Automaten-Instanzen in einer Region innerhalb der Ama-
zon Cloud Umgebung prasentiert. Die Region wird dabei so ausgewdhlt, dass die die
Zugriffskosten auf die Web Services minimiert werden.

Inhaltsverzeichnis

1. Einleitung 9
2. Grundlagen und Forschungsstand 11
2.1. Grundbegriffe 11
2.1.1. Cloud Computing und Cloud Regionen 11

2.1.2. Web Service und Service-Komposition 12

2.1.3. Formale Grammatiken oL Lo L. 13

2.2. Das Gesamtsystem des Automaten 13
2.2.1. Service Grammatiken Lo Lo Lo 13

2.2.2. Die Funktionsweise des Automaten 14

2.2.3. Die Funktion der Instanz-Management Komponente im Gesamtsystem 15

2.3. Forschungsstand 16

3. Anforderungen und Ablaufumgebung 19
3.1. Funktionale Anforderungen 19
3.2. Nichtfunktionale Anforderungen 20
3.3. Evaluation verschiedener Cloud Anbieter 21
3.3.1. Bewertungskriterien o oL oL 21

3.3.2. Untersuchung der Anbieter 22

3.3.3. Ergebnis 24

4. Entwurf 25
4.1. Aufgabenverteilung L Lo 26
4.2. Instanz-Management Komponente 27
4.2.1. Anfragen Verarbeitung 2y

4.2.2. Berechnung der Region 28

4.23. WebServiceIndex 30

4.2.4. Verwaltung der Instanzen des Automaten 30

4.2.5. Message Correlation L. 31

4.2.6. Reference Resolution System - Instanzverwaltung 32

4.3. Die Umgebung des Automaten 33
4.3.1. Schnittstelle der Automaten-Umgebung 33

4.3.2. Integration des Automaten in die Umgebung 34

4.3.3. Statusverwaltung L oo o 34

4.3.4. Skalierung Lo 35

5. Implementierung
5.1. Verwendete Amazon Web Services oL
5.1.1. Elastic Compute Cloud
5.1.2. CloudWatch
51.3. AutoScaling. L o
5.1.4. Elastic Load Balancing
5.1.5. Elastic Beanstalk
5.1.6. Simple Storage Service Lo L L oo
5.1.7. Simple Queue Service L L oL
51.8. Regionen. e
5.2. Architektur.
5.2.1. Schichtenarchitektur
5.2.2. Aufbau und Zusammenspiel der Anwendungen
5.3. Implementierung der Instanz-Management Komponente
5.3.1. Web Services und Web Service Client
5.3.2. Anfragen Verarbeitung
5.3.3. Regionen Berechnung
5.3.4. Web Service Registry
5.3.5. Instanz-Manager
53.6. RRSVerwaltung
5.3.7. Message Correlation
5.4. Implementierung der Automaten-Umgebung
5.4.1. Automaten Web Service L L oL oL
5.4.2. Zustand
5.4.3. Anfragen Verarbeitung
5.4.4. Skalierung L

6. Diskussion
6.1. Beispielhafte Verarbeitung einer Anfrage
6.2. Untersuchung des Ergebnisses
6.3. Alternative Umsetzungsmoglichkeiten

7. Zusammenfassung und Ausblick
7.1. Zusammenfassung o
7.2. Ausblick

A. Anhang

Literaturverzeichnis

37

37
37
37
38
38

39
39
40
41
41
42
44
45
46
47
47
48
51
52
53
54
54
56
56

59

59
61
62

65
66
67

69

Abbildungsverzeichnis

2.1.
2.2,

2.3.

4.1.
4.2.
4.3.

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9.
5.10.
5.11.
5.12.

5.13.
6.1.

Die einzelnen Komponenten des Automaten in einem UML Klassendiagramm 15

Die Instanz-Management Komponente im Gesamtsystem 16
Beispiel fiir die Verteilung von Instanzen anhand Betweenness und Kontext

Klassen 17
Instanz-Management Komponente und Automaten Umgebung 25
Verarbeitung einer Anfrage 27
Die Umgebung des Automaten im Uberblick. 33
Die Elastic Beanstalk Infrastruktur im Uberblick 39
Die entwickelten Anwendungen im Schichtenmodell 41
Die unterliegenden Ressourcen der Anwendungen 42
Der Aufbau der einzelnen Komponenten und ihre Beziehungen 43
Interaktion der Bestandteile der Instanz-Management Komponente 44
Das Verhalten der Web Service Operation sendRequest 45
Die Schritte zur Erzeugung einer Elastic Beanstalk Anwendung 49
Nachrichtenaustausch zur Bestdtigung 50
Nachrichtenaustausch zur Loschung 51
Nachrichtenaustausch Anfragen Verarbeitung 52
Message Correlation Ablauf, 53
Interaktion der Bestandteile der Automaten-Umgebung 54
Die Zustinde der Automaten-Umgebung 55
Exemplarische Verarbeitung einer Anfrage 60

Tabellenverzeichnis

3.1.

Verschiedene Anbieter von Cloud Services im Vergleich 22

Verzeichnis der Algorithmen

4.1. Algorithmus zur Berechnung der Zielregion.

1. Einleitung

Ein Mittel zur Automatisierung von Geschéftsprozessen ist die Verwendung von service-
orientierten Architekturen (SOA). Bei SOA handelt es sich um ein Architekturmuster, bei
dem verschiedene Funktionalitdten eines Systems gekapselt als Services angeboten werden.
Zur Ausfithrung einer Aufgabe werden dabei mehrere Services miteinander koordiniert.
Zur Implementierung eines Services werden hidufig Web Services verwendet. Diese bieten
eine Funktion tiber das Netzwerk an und werden tiber eine verteilte Ablaufumgebung
bereitgestellt. Geschéftsprozesse beschreiben mehrere Abldufe, die sich aus einzelnen Auf-
gaben zusammensetzen. Die Aufgaben werden durch Web Services implementiert. Zur
Umsetzung eines Geschiftsprozesses werden dementsprechend Kompositionen von Web
Services verwendet. Um einen Prozess zu spezifizieren, werden Sprachen wie die Business
Process Execution Language (BPEL) [J]] oder ConDec [PAo6] verwendet. Zur Ausfithrung
eines Prozesses wird eine Engine benotigt. Diese navigiert tiber den Prozess und fiihrt die in
der Beschreibung des Prozesses spezifizierten Aktivitdten aus. Eine Aktivitat kann dort zum
Beispiel der Aufruf eines Web Services sein.

Fiir verschiedene Sprachen zur Beschreibung von Service-Kompositionen werden unter-
schiedliche Engines benétigt. Falls mehrere Prozesse vorliegen, die in unterschiedlichen
Sprachen spezifiziert sind, miissen innerhalb einer Ablaufumgebung mehrere Engines gleich-
zeitig betrieben werden. Um dieses Problem zu beheben, wird ein Ansatz zur Unifizierung
von Service-Kompositionen erforscht [GLC13]. Dieser verwendet formale Grammatiken zur
Beschreibung von Service-Kompositionen und endliche Automaten, um diese auszufiihren.
Dabei sollen Beschreibungen von Service-Kompositionen, die in BPEL oder ConDec verfasst
sind, in formale Grammatiken tibersetzt werden. Dadurch wird es moglich, mit einem
endlichen Automaten die Beschreibungen von Service-Kompositionen aus verschiedenen
Sprachen auszufiihren. Die formalen Grammatiken dienen hierbei zur Spezifikation von
Prozessen. Der endliche Automat stellt die Komponente dar, die fiir die Navigation tiber
einen Prozess verantwortlich ist. Der endliche Automat wird zudem um eine Komponen-
te zum Aufruf von Web Services erweitert. Da sich die verwendeten Web Services tiber
mehrere Regionen in der Welt verteilt befinden konnen, entstehen durch den Kontakt mit
den verwendeten Web Services unter Umstdnden grofie Latenzen, welche die Ausfithrung
verzogern. Zudem ist es moglich, dass die Web Services grofie Datenmengen benétigen, die
iiber die Distanz zwischen Automat und Web Service transferiert werden miissen. Daher ist
es sinnvoll, die ausfiihrende Instanz des Automaten nahe den benotigten Web Services zu
platzieren, um die Distanzen, und damit auch die entstehenden Latenzen, zu minimieren.

Das Ziel dieser Arbeit ist die Entwicklung und Implementierung einer Instanz-Management
Komponente, welche fiir die Instanziierung von endlichen Automaten in einer verteilten
Ablaufumgebung (Cloud) verantwortlich ist. Diese soll, in Abhdngigkeit der verwendeten

1. Einleitung

Web Services einer Service-Komposition, ermitteln, in welcher Region die Instanz des ausfiih-
renden Automaten erzeugt werden soll. Dadurch soll eine moglichst effiziente Ausfiithrung
der Komposition ermdoglicht werden. Eine Region ist dabei ein Ort, an dem die Cloud Instanz
einer Anwendung in einem Rechenzentrum betrieben werden kann. Der bereits vorhandene
Automat soll zudem in einer generischen Form als Web Service angeboten werden. Eine
Instanz dieses Web Services soll also beliebig viele formale Grammatiken ausfiihren konnen.
Auflerdem soll auf die Skalierbarkeit der Losung geachtet werden. Das heifst, es sollen
entsprechend der Anzahl an Anfragen (formalen Grammatiken) neue Instanzen des Web
Services in der Cloud erzeugt werden. Hierzu soll die Instanz-Management Komponente
erkennen, wann eine Instanz nicht die benotigten Ressourcen fiir eine schnelle Verarbeitung
der Anfragen besitzt. Umgekehrt sollen keine unnétigen Instanzen des Automaten existieren,
um moglichst sparsam mit den verfiigbaren Ressourcen umzugehen.

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 — Grundlagen und Forschungsstand In diesem Kapitel werden einige Grundbe-
griffe erklart. Auflerdem wird auf die Funktionsweise der bereits vorhandenen Kom-
ponenten und die Rolle der Instanz-Management Komponente im Gesamtsystem
eingegangen. Zusétzlich dazu wird ein bereits vorhandener Ansatz zur Verteilung von
Anwendungen auf verschiedene Regionen vorgestellt.

Kapitel 3 — Anforderungen und Ablaufumgebung In den Anforderungen werden die funk-
tionalen und nichtfunktionalen Zieleigenschaften der Instanz-Management Komponen-
te festgelegt. Auflerdem werden verschiedene Anbieter von Cloud Services evaluiert.

Kapitel 4 — Entwurf Im Entwurf wird die Software konzeptioniert, deren Funktionen sich
aus den Anforderungen ergeben. Hierbei wird nicht auf konkrete Technologien einge-
gangen, sondern es erfolgt eine abstrakte Beschreibung der Umsetzung der Funktiona-
litaten.

Kapitel 5 — Implementierung Im Implementierungskapitel werden zunéchst die Technologi-
en erldutert, die bei der Umsetzung der Software verwendet wurden. Danach wird die
Architektur des Systems vorgestellt und es wird auf Implementierungsdetails wichtiger
Komponenten eingegangen.

Kapitel 6 — Diskussion Das Ergebnis der Arbeit wird hier in Form eines Beispieles vorge-
stellt. Auflerdem wird untersucht, inwiefern die Anforderungen erfiillt wurden und es
findet eine Diskussion des Ergebnisses statt.

Kapitel 7 — Zusammenfassung und Ausblick AbschlieSend werden die Arbeit und deren
Erkenntnisse zusammengefasst. Zusitzlich wird ein Ausblick gegeben, welche Heraus-
forderungen noch bewiltigt werden miissen.

10

2. Grundlagen und Forschungsstand

In diesem Kapitel werden zunéchst in Abschnitt 2.1 einige Grundbegriffe der Arbeit erldutert.
Danach wird in Abschnitt 2.2 die Funktion der bereits vorhandenen Komponenten und deren
Interaktion mit der Instanz-Management Komponente erklért. Zuletzt wird in Abschnitt 2.3
eine thematisch verwandte Arbeit vorgestellt, die sich mit der effizienten Verteilung von
Instanzen auf verschiedene Regionen befasst.

2.1. Grundbegriffe

Zunichst sollen in diesem Abschnitt einige Begriffe erkldrt werden, die eine zentrale Rolle in
der Arbeit spielen.

2.1.1. Cloud Computing und Cloud Regionen

Als Ablaufumgebung der zu entwickelnden Instanz-Management Komponente soll eine
Cloud verwendet werden. Das National Institute of Standards and Technology (NIST),
das dem U.S. Department of Commerce untersteht, definiert Cloud Computing wie folgt
(Ubersetzung vom Bundesamt fiir Informationssicherheit):

,Cloud Computing ist ein Modell, das es erlaubt, bei Bedarf, jederzeit und iiberall bequem iiber ein Netz
auf einen geteilten Pool von konfigurierbaren Rechnerressourcen (z. B. Netze, Server, Speichersysteme,
Anwendungen und Dienste) zuzugreifen, die schnell und mit minimalem Managementaufwand oder
geringer Serviceprovider-Interaktion zur Verfiigung gestellt werden konnen.” [MG11] [clo]

NIST nennt dabei folgende relevanten Charakteristiken [MG11]:

¢ Die angebotenen Ressourcen werden geteilt von mehreren Akteuren verwendet (resource
pooling).

e Der Zugriff auf die Ressourcen erfolgt auf Anforderung und ohne menschliche Interak-
tion mit dem Anbieter des Services (on-demand self-service).

e Der Zugriff auf die Ressourcen ist mit Standardmechanismen {iiber das Netzwerk
moglich. Somit werden heterogene Klienten unterstiitzt (broad network access).

e Kapazitdten konnen elastisch erworben und freigegeben werden. Dies kann auto-
matisch abhédngig von der Nutzungsintensitdt geschehen. Aus Sicht des Anwenders
scheinen die Ressourcen unendlich grofs zu sein (rapid elasticity).

11

2. Grundlagen und Forschungsstand

e Die Nutzung der Ressourcen kann iiberwacht und gesteuert werden (measured service).

Eine Cloud bietet folglich die Moglichkeit, dynamisch und mit minimalem Aufwand auf
einen geteilten Pool von Ressourcen zuzugreifen. Bei den Ressourcen kann es sich zum Bei-
spiel um Rechenkapazitdt oder Speicher handeln. Die Ressourcen einer Cloud werden dabei
stets als Service angeboten. Ein wichtiger Begriff im Zusammenhang mit Cloud Computing
ist die Cloud Region. Anbieter von Cloud Services (zum Beispiel Amazon Web Services)
verwenden zur Bereitstellung der Cloud Infrastruktur hdufig Rechenzentren in verschiede-
nen geographischen Regionen. Eine geographische Region, in der ein Rechenzentrum zur
Verfligung steht, wird in diesem Zusammenhang als Cloud Region beziehungsweise als
Region bezeichnet. Bei der Verwendung von Cloud Angeboten kann die Region oft explizit
ausgewdhlt werden.

2.1.2. Web Service und Service-Komposition

Cloud Computing basiert auf der Nutzung von Services, das heifst eine serviceorientierte
Architektur ist eine Voraussetzung einer Cloud. Zur Umsetzung von Services werden Web
Services verwendet. Das World Wide Web Consortium (W3C) definiert einen Web Service
wie folgt:

A Web service is a software system designed to support interoperable machine-to-machine interaction
over a network. It has an interface described in a machine-processable format (specifically WSDL).
Other systems interact with the Web service in a manner prescribed by its description using SOAP-
messages, typically conveyed using HTTP with an XML serialization in conjunction with other
Web-related standards.” [HB]

Web Services erlauben also Interaktion zwischen verschiedenen Systemen iiber das Netzwerk.
Mit SOAP wird ein XML basiertes Nachrichtenformat verwendet, wodurch auf einen Web
Service unabhingig von Plattform und Programmiersprache zugegriffen werden kann. Die
Beschreibung der Operationen, die ein Web Service anbietet, erfolgt iiber die Web Service
Definition Language (WSDL), die ebenfalls auf XML basiert [DJMZos5, S.26-27].

Bei einer Service-Komposition wird die Funktionalitit von mehreren Web Services zu einem
neuen Service kombiniert [ACHMog, S.245]. Service-Kompositionen werden verwendet, um
die Komplexitidt von Aufgaben zu reduzieren. Dabei konnen komplexe Web Services inkre-
mentell aus Web Services mit niedrigerem Abstraktionslevel aufgebaut werden [ACHMog,
S.247]. Prinzipiell konnen Service-Kompositionen nach Orchestrierungen und Choreogra-
phien unterschieden werden. Bei einer Orchestrierung wird der Ablauf eines Prozesses und
damit die Aufrufe der Web Services zentral gesteuert, wahrend bei einer Choreographie
die Web Services miteinander kooperieren [DJMZos, S202-203]. Im Folgenden wird im
Zusammenhang von Service-Kompositionen immer von Orchestrierungen ausgegangen.

12

2.2. Das Gesamtsystem des Automaten

2.1.3. Formale Grammatiken

Fiir die Ausfiihrung einer Service-Komposition muss eine Beschreibung vorliegen, in der
die verschiedenen Abldufe spezifiziert werden. In der vorliegenden Arbeit werden hierfiir
formale Grammatiken verwendet.

Bei einer formalen Grammatik handelt es sich um ein Konstrukt aus der theoretischen
Informatik, welches dazu dient formale Sprachen zu beschreiben [Scho8, S.3]. Bei einer
formalen Sprache handelt es sich um eine Kombination von Elementen eines definierten
Alphabets [Scho8, S.3]. Eine Grammatik beschreibt dabei Nicht-Terminale, Terminale, Produk-
tionsregeln und ein Startsymbol [Scho8, S.5]. Mit der Hilfe von Produktionsregeln kénnen
Symbolen durch andere Symbole substituiert werden. Symbole sind Terminale oder Nicht-
Terminale. In dem Zusammenhang von Produktionsregeln wird oft von der linken und der
rechten Seite einer Regel gesprochen. Die linke Seite beinhaltet dabei die Symbole, aus denen
abgeleitet wird und die rechte beinhaltet die Symbole, die das Ergebnis der Regel darstellen.
Die Produktionsregeln einer Grammatik werden so lange angewendet, bis sich keine weitere
Regel mehr anwenden ldsst. Das Startsymbol gibt an, mit welcher Regel begonnen werden
muss. Dabei muss das Startsymbol aus der Menge der Nicht-Terminale stammen.

2.2. Das Gesamtsystem des Automaten

Der Ansatz zur Spezifikation und Ausfithrung von Service-Komposititionen, der dieser
Arbeit zugrunde liegt, ldsst sich folgendermafien zusammenfassen:

Die Beschreibung aller notigen Artefakte einer Service-Komposition erfolgt durch eine
formale Grammatik. Diese kann in einem Unifizierungsprozess, beispielsweise aus einem
BPEL-Prozessmodell erstellt werden. Die formalen Grammatiken werden durch einen endli-
chen Automaten ausgefiihrt. Dieser ist zum Beispiel auch dafiir verantwortlich, die Aufrufe
von Web Services zu initiieren. Um eine effiziente Ausfithrung des Automaten zu gewéhrleis-
ten, soll dieser moglichst nahe an den verwendeten Web Services platziert werden. Hierfiir
ist die Instanz-Management Komponente zustandig.

In diesem Abschnitt soll die Funktionsweise des Automaten, der Aufbau der Grammatiken
und das Zusammenspiel dieser Komponente mit der Instanz-Management Komponente
erklart werden. Auf das Unifizierungsverfahren, also die Umwandlung der Spezifikationen
von Service-Kompositionen verschiedener Sprachen in eine formale Grammatik, wird in die-
ser Arbeit nicht eingegangen, da dieses unabhéngig von der Ausfithrung des Automaten und
der Instanz-Management Komponente ist. Eine Beschreibung des Unifizierungsverfahrens
findet sich in [Gor13].

2.2.1. Service Grammatiken

Die formalen Grammatiken, die zur Spezifikation einer Service Komposition verwendet
werden, werden auch als Service Grammatiken bezeichnet. Sie stellen die Grundlage fiir

13

2. Grundlagen und Forschungsstand

die Ausfithrung eines Automaten dar, da sie die Regeln enthalten, nach denen sich der
Automat verhilt. In einer Service Grammatik werden Terminale, Nicht-Terminale und die
Produktionsregeln bekannt gegeben, wie in Abschnitt 2.1.3 beschrieben. Es gibt jedoch
gewisse Unterschiede zu gewohnlichen formalen Grammatiken [GLC13].

Der erste Unterschied besteht darin, dass Nicht-Terminale um einen Typ erweitert werden.
Dieser dient dazu, den Aufruf eines Web Services iiber ein Nicht-Terminal zu ermdglichen.
Der Typ eines Nicht-Terminals wird in der Grammatik spezifiziert. Dabei werden die zum
Aufruf eines Web Services notigen Informationen angegeben. Dies sind zum Beispiel die
Adresse des Web Services und die Ein- und Ausgabeparameter.

Auflerdem unterscheiden sich die Produktionsregeln von denen einer gewohnlichen formalen
Grammatik. Dort sind nichtdeterministische Produktionsregeln nicht erlaubt, das heifst es
sind nicht mehrere Regeln moglich, die sich auf dieselbe Folge von Symbolen beziehen. Bei
den hier verwendeten Service Grammatiken hingegen ist Nichtdeterminismus in bestimmten
Situationen erlaubt. Dies ist genau dann der Fall, wenn der Nichtdeterminismus zur Laufzeit
des Automaten aufgelost wird. Dies bedeutet konkret, dass der Automat Informationen
zur Laufzeit erhalten muss, die bestimmen, welche Regel ausgefiihrt wird. Hierfiir werden
Eingabe-Nicht-Terminale definiert. Diese sind mit Information verkniipft, die der Automat
zur Laufzeit liefert. Dementsprechend diirfen mehrere Produktionsregeln, die auf der linken
Seite dieselben Symbole verwenden nur genau dann existieren, wenn sie als Ergebnis ein
Eingabe-Nicht-Terminal liefern. [GLC13]

Ein Auszug einer Service Grammatik befindet sich in Anhang A. Hier ist jeweils ein Beispiel
fiir ein Nicht-Terminal, einen Nicht-Terminal Typen, ein Terminal und eine Produktionsregel
angegeben.

2.2.2. Die Funktionsweise des Automaten

Die formalen Grammatiken werden von einem endlichen Automaten ausgefiihrt. Die Funkti-
onsweise des Automaten und seinen zugehdrigen Komponenten wird in Abb. 2.1 dargestellt.
Der Automat liest ein Nicht-Terminal ein und wendet auf dieses eine Produktionsregel
an. Dabei kann das Nicht-Terminal durch ein weiteres Nicht-Terminal oder ein Terminal
substituiert werden. Es wird mit dem Startsymbol der Grammatik begonnen und es wird so
lange fortgefahren, bis sich keine Regeln mehr anwenden lassen.

Ein Nicht-Terminal besitzt dabei einen Typ (siehe 2.2.1), durch den ein Nicht-Terminal
mit dem Aufruf eines Web Services assoziiert sein kann. In diesem Fall gibt der Typ des
Nicht-Terminals die Adresse eines Web Services an. Der Aufruf des Web Services wird durch
den Automaten initiiert und erfolgt durch die Service Invocation Komponente.

Bei der Service Invocation miissen gewohnlich Daten in Form von Parametern tibermittelt
werden. Die Daten werden per Referenz verwaltet. Hierbei dient das Reference Resolution Sys-
tem (RRS) zur Speicherung der Daten. Das RRS ist ein Web Service, der unter Angabe einer
Referenz die entsprechenden Daten zuriickliefert. Die Referenzen fiir die Service Invocation

14

2.2. Das Gesamtsystem des Automaten

(WS) Reference Resolution System

(WS) XPath Solver
+get(reference) 00 F-=-=-=--- 8
+insert(value)

+evaluate(expression) +update(value, reference)
+delete(reference)

Service Invocation ParameterResolution
‘ 1 N Table T
tinvokeService) +getParameter()
-parameterResolution() -setParameter()

1

NonTerminal,

K———————————— |

/E . , |ProductionRulel | . Automaton

Abbildung 2.1.: Die einzelnen Komponenten des Automaten in einem UML Klassendia-
gramm.

werden durch die Nicht-Terminale zur Verfiigung gestellt. Innerhalb einer Kompositionsin-
stanz werden die Referenzen durch die ParameterResolution Komponente verwaltet.

Schliefslich kann der tatsdachliche Aufruf des gewiinschten Web Services erfolgen (zum
Beispiel in Abb. 2.1 ein Web Service zur Auflosung von XPath Ausdriicken). Das Ergebnis
des Service Aufrufs wird im RRS gespeichert.

2.2.3. Die Funktion der Instanz-Management Komponente im Gesamtsystem

Der Automat soll von der Instanz-Management Komponente verwaltet werden. Dies wird
in Abb. 2.2 dargestellt. Die Instanz-Management Komponente verwaltet die Instanzen des
Automaten und der Komponenten, die fiir die Ausfithrung des Automaten erforderlich
sind (in Abb. 2.2 als Engine Core Components bezeichnet). Dazu gehort der Automat selbst
(Queued Automaton), der die Produktionsregeln der Grammatik (Grammar) anwendet. Bei
der Ausfiihrung der Grammatik ist es notig, die Nicht-Terminal Typen aufzulésen und
entsprechende Service Aufrufe durchzufiihren. Die wird in Abb. 2.2 durch Non-Terminal Type
Resolution und Service Invocation dargestellt. Die Grammatik ist unabhdngig vom Automaten
selbst. Sie kann beliebig ausgetauscht oder ausgefiihrt werden.

Das RRS, die Datenbank des RRS, die Evaluierung von XPath Ausdriicken und sonstige
Web Services, die wahrend der Ausfithrung aufgerufen werden(Engine Context Components),
stehen in keiner direkten Beziehung zu der Instanz-Management Komponente. Sie werden
lediglich wahrend der Service Invocation verwendet, wie im vorigen Abschnitt beschrieben.
Jedoch muss zur Ausfithrung einer formalen Grammatik zwingend ein RRS verfiigbar sein.

15

2. Grundlagen und Forschungsstand

Web Service
(Any functionality)

v —

X un

T Expression Evaluation
e S Data Storage

S g (E.g. XPath Resolver)
O o <

g g. A

> 8 Reference Resolution

& System

$ A 4 v

Service Invocation
(Parameter Resolution)

{

Non-Terminal Type Resolution

Navigation + Monitoring Model / Instance
(Queued Automaton) (Grammar)

Engine Core Components
A

‘ Instance Management

Abbildung 2.2.: Die Instanz-Management Komponente im Gesamtsystem.

2.3. Forschungsstand

Die Instanz-Management Komponente hat nicht nur die Aufgabe, Instanzen eines Automaten
zu erzeugen, sondern diese auch sinnvoll auf verschiedene Regionen zu verteilen. Im
Folgenden wird ein bereits erforschter Ansatz vorgestellt, der sich mit der Verteilung von
Web Services auf verschiedene Regionen befasst. Dieser dient als Grundlage fiir den spéter
vorgestellten Algorithmus zur Verteilung von Instanzen.

In [GL12] wird der Begriff Closeness eingefiihrt, um zu bewerten, in welcher Region die
Instanz eines Web Services erstellt werden soll. Dabei sollen Verzdgerungen und Kosten
durch Datentransfers minimiert werden. Closeness besteht sowohl aus einem statischen
als auch einem dynamischen Aspekt. Der statische Teil verwendet ein Kontext Modell,
das definiert, welche Abhdngigkeiten Web Services zu anderen Web Services besitzen.
Die moglichen Kontext Typen miissen dabei manuell definiert werden und teilen sich in
verschiedene Klassen auf. Diese sind hdufig abhidngig von der verwendeten Infrastruktur. In
einer verteilten Umgebung konnten zum Beispiel Ressourcen in dieselbe Klasse eingeordnet
werden, wenn sich sich auf demselben Server befinden. Eine andere Klasse wire es, wenn
sich die verwandten Ressourcen im gleichen Rechen-Cluster befinden. Der dynamische Teil
der Closeness wird als Betweenness bezeichnet. Zwischen jedem Paar voneinander abhingiger
Web Services gibt es einen Betweenness Wert, der ebenfalls von der Infrastruktur abhédngig
ist. Der Betweenness Wert berechnet sich zum Beispiel daraus, wie viele Daten zwei Web
Services austauschen und wie grofd die Wahrscheinlichkeit ist, dass die beiden Web Services
Kontakt zueinander aufnehmen. Wenn beispielsweise ein neuer Web Service X bereitgestellt
werden soll und dieser die Web Services S1 und S2 verwendet, wird der Beetweenness Wert
zwischen X und S1 und X und Sz berechnet. Angenommen zwischen X und S1 wird mit

16

2.3. Forschungsstand

100% Wahrscheinlichkeit eine Datenmenge von 5 GB ausgetauscht und zwischen X und
S2 wird mit 50% Wahrscheinlichkeit eine Datenmenge von 6 GB ausgetauscht. In diesem
Fall ist der Betweenness Wert zwischen X und S1 hoher, da hier im Mittel mehr Daten
ausgetauscht werden. Die Betweenness Werte miissen stets dynamisch errechnet werden,
um beispielsweise das Auftauchen neuer Web Services verarbeiten zu konnen.

Aufierdem wird in [GL12] ein Ansatz zur dynamischen Verteilung von Instanzen vorgeschla-
gen. Hierzu werden ebenfalls die bereits erwdhnten Kontext Klassen verwendet. Dabei wird
zundchst nach wenig ausgelasteten Instanzen mit einem niedrigen Kontext gesucht, das
heifit nach einer moglichst nahen Instanz mit niedriger CPU Last. Wird eine solche nicht
gefunden, wird eine neue Instanz erzeugt. Bei der Erzeugung von neuen Instanzen werden
die Kontext Klassen und die Betweenness miteinbezogen. Dabei werden die verwendeten
Web Services als Orientierungspunkte verwendet und mithilfe der Kontext Klassen werden
verschiedene Alternativen berechnet, die als Ziel zur Platzierung des neuen Services dienen
konnen. Die Entscheidung wird getroffen, indem fiir jede Alternative die Betweenness zu
den anderen Web Services berechnet und dann verglichen wird.

Region 2

Region 1

Exprassion Evaluation 1

Reference
Resolution
System 2

Reference
Resolution

. . . Service Invocation 2
Se r\:lce.ln vocation 1

System 1
.

Mavigator 3
L]

. Navigator 2
MNavigator 1 ‘:'.

xpression Evaluation 2

Abbildung 2.3.: Beispiel fiir die Verteilung von Instanzen anhand Betweenness und Kontext

Klassen. Die Punkte stellen Instanzen von verschiedenen Web Services
dar. [GL12]

In Abbildung 2.3 wird ein Beispiel fiir die Berechnung anhand verschiedener Web Services
gezeigt. Das Kontext Modell gibt vor, dass Navigator und Service Invocation sich sehr
nahe beieinander befinden miissen (Kontext Klasse 1). Navigator und und das Reference
Resolution System miissen sich ebenfalls nahe beieinander befinden (Kontext Klasse 2). Die
sonstigen Web Services (S1, Sz, S3) diirfen an einem beliebigen Standort instantiiert sein
(Kontext Klasse 3). Sowohl Region 1 als auch Region 2 aus Abbildung 2.3 erfiillen diese
Vorgabe. Der Betweenness Wert entscheidet folglich, in welcher Region ein neuer Service
X bereitgestellt wird. Da sich S1, S2 und S3 in Region 2 befindet, werden die Betweenness
Werte zwischen X und S1, S2, S3 in die Berechnung miteinbezogen. In Region 1 ist dies nicht
der Fall. Region 2 erhilt damit insgesamt einen hoheren Betweenness Wert als Region 1.
Damit wird Region 2 fiir die Bereitstellung von X gewdhlt.

17

3. Anforderungen und Ablaufumgebung

Nachdem die Grundlagen nun vorgestellt worden sind und die grobe Funktion der Instanz-
Management Komponente in das Gesamtsystem eingeordnet wurde, werden in diesem
Kapitel die Zieleigenschaften in Form von Anforderungen ausformuliert. Die Anforderungen
ergeben sich dabei aus der Aufgabenstellung. Hierbei werden in Abschnitt 3.1 die funktiona-
len und in Abschnitt 3.2 die nichtfunktionalen Anforderungen erklirt. Die Anforderungen
sind nummeriert.

Eine generelle Vorgabe dieser Arbeit ist die Verwendung einer verteilten Ablaufumgebung
(Cloud) zur Ausfiihrung der Instanz-Management Komponente und des Automaten. Aus
diesem Grund erfolgt in Abschnitt 3.3 die Auswahl der spateren Ablaufumgebung fiir die
Instanz-Management Komponente. Hierfiir werden zundchst mehrere Vergleichskriterien
definiert, die Anforderungscharakter besitzen. Anschlieffend werden die Anbieter beztiglich
dieser Anforderungen evaluiert. Eine weitere Vorgabe ist die Verwendung der Programmier-
sprache Java fiir die Umsetzung. Dies wird bei der Auswahl der Ablaufumgebung bereits
berticksichtigt.

Im Folgenden wird auflerdem unter einer Anfrage immer eine formale Grammatik verstan-
den, die durch einen Automaten verarbeitet werden soll. Es ist auflerdem moglich, dass ein
Automat bei der Verarbeitung einer Grammatik zusitzliche Nachrichten vom Client erhalt.
Zur Abgrenzung wird eine solche Nachricht als Message bezeichnet.

3.1. Funktionale Anforderungen

A1 - Regionen Berechnung Die Instanz-Management Komponente soll eine Funktion bieten,
um die Region zu errechnen, in der eine Grammatik durch einen Automaten verarbeitet
werden soll. Dies soll auf Basis der in der Grammatik angegebenen Web Services
geschehen.

A2 - Verwaltung von verschiedenen Instanzen eines Automaten Wenn eine Anfrage fiir ei-
ne bestimmte Region vorliegt, soll die Instanz-Management Komponente diese Anfra-
ge an einen Automaten in dieser Region weiterleiten. Existiert in einer Region kein
Automat, muss dort eine neue Instanz erstellt werden. AufSerdem muss die Instanz-
Management Komponente dazu in der Lage sein, bereits vorhandene Instanzen des
Automaten und alle zugehorigen Ressourcen zu 16schen. Die Instanz-Management
Komponente muss stets Zugriff auf alle existierenden Instanzen besitzen. Die Instanz-
Management Komponente soll aufierdem dazu fahig sein, Automaten in verschiedenen
Regionen zu verwalten.

19

3. Anforderungen und Ablaufumgebung

A3 - Ausfithrung des Automaten méglich Der Automat soll in einer Art und Weise in der
Ablaufumgebung bereitgestellt werden, dass eine fehlerfreie Ausfiihrung des Auto-
maten moglich ist. Dabei sollen dem Automaten alle benétigten Komponenten zur
Verfiigung gestellt werden. Dies beinhaltet insbesondere auch die Moglichkeit, den
Automaten mit Messages zu versorgen (Message Correlation).

A4 - Uberblick iiber Web Services Um eine Berechnung der Zielregion einer Grammatik
durchfiithren zu konnen, soll die Instanz-Management Komponente die verfligbaren
Web Services in der verwendeten Ablaufumgebung kennen. Die Adresse und die
Region der Web Services muss also bekannt sein. Befindet sich ein Web Service nicht
in der verwendeten Ablaufumgebung, muss er der Instanz-Management Komponente
nicht bekannt sein.

A5 - Instanzverwaltung des Reference Resolution Systems (RRS) Eine unverzichtbare Kom-
ponente des Gesamtsystems ist das Reference Resolution System (siehe Abschnitt 2.2.2).
Dieses wird als Web Service angeboten. Das Erzeugen und Loschen der Instanzen
des RRS soll ebenfalls die Instanz-Management Komponente {ibernehmen. Hierbei
soll in jeder Region, in der sich derzeit mindestens eine Instanz eines Automaten
befindet, eine Instanz des RRS platziert werden. Befindet sich in einer Region keine
Automateninstanz, soll dort auch kein RRS zur Verfligung stehen.

A6 - Generischer Automat Die Anwendung in der Ablaufumgebung, die fiir die Ausfiihrung
von Grammatiken verantwortlich ist, soll nicht an einen festen Automaten gekoppelt
sein. Stattdessen soll diese mehrere beliebige Automaten enthalten, die verschiedene
Grammatiken ausfiihren konnen.

3.2. Nichtfunktionale Anforderungen

A7 - Garantierte Verarbeitung einer Anfrage Es soll sichergestellt werden, dass eine Anfrage,
das heifit eine Grammatik, die beim Instanz-Manager eingeht, auf jeden Fall verarbeitet
wird. Dies soll unabhéngig von Fehlern sein, die durch die Instanz-Management
Komponente oder durch die Umgebung des Automaten verursacht werden. In diesem
Fall darf die Anfrage durch einen Fehler nicht verloren gehen. Wird ein Fehler durch
eine syntaktisch inkorrekte Grammatik ausgelost, muss diese nicht verarbeitet werden.

A8 - Optimale Instanzenverteilung Bei der Berechnung der Zielregion soll die Region ge-
wahlt werden, die bei der Ausfithrung der Grammatik die geringsten Kosten aller
verfiigbaren Regionen verursacht. Dabei sollen insbesondere die Verzégerungen durch
den Aufruf von Web Services beriicksichtigt werden.

A9 - Effizienter Umgang mit Ressourcen Da in Cloud Umgebungen tiblicherweise genau
die Ressourcen bezahlt werden, die verwendet wurden (Pay-Per-Use), ist ein sparsamer
Umgang mit den Cloud Services sinnvoll. Hierbei sollen insbesondere keine unnétigen
Rechenkapazititen oder nicht benétigter Speicherplatz verwendet werden. Stattdessen

20

3.3. Evaluation verschiedener Cloud Anbieter

soll moglichst effizient mit bereits vorhanden Ressourcen umgegangen werden. Um-
gekehrt bedeutet dies, dass nicht oder wenig verwendete Instanzen sowie nicht mehr
benotigte Dateien geloscht werden sollen.

A10 - Skalierbarkeit Um grofie Mengen an Anfragen verarbeiten zu kdnnen, ohne stark stei-
gende Wartezeiten fiir das Verarbeiten einer Anfrage zu erhalten, soll die Infrastruktur
mit der Zahl der Anfragen skalieren. Dies bezieht sich insbesondere auf die Anzahl
der Rechnerinstanzen in einer Region, die dem System zur Verfiigung stehen.

3.3. Evaluation verschiedener Cloud Anbieter

Die spdtere Implementierung soll in einer verteilten Ablaufumgebung, das heifst einer
Cloud, lauffahig sein. Hierfiir wird die Cloud Umgebung des Unternehmens Amazon
gewdhlt. In diesem Abschnitt wird diese Auswahl ausfiihrlich begriindet, da es sich bei
der Cloud Umgebung um ein zentrales Werkzeug dieser Arbeit handelt. Hierzu werden
verschiedene Cloud Anbieter evaluiert. Bei der Entscheidung wurden Windows Azure[Mich],
Google Cloud [Gooe] und Amazon Web Services (AWS)[Amab] berticksichtigt.

Die Ergebnisse werden in Tabelle 3.1 zusammengefasst. Die dort angewandten Kriterien
werden in Abschnitt 3.3.1 erklart. Eine ausfiihrlichere Untersuchung der Angebote sowie das
Ergebnis finden sich in den darauffolgenden Abschnitten.

3.3.1. Bewertungskriterien

Fiir die Bewertung der Anbieter wurden mehrere Kriterien ausgewdhlt, die fiir die Ent-
wicklung der Instanz-Management Komponente relevant sind. Diese stellen gleichzeitig
die Anforderungen an die Cloud Angebote dar, die erfiillt werden miissen. Diese Kriterien
werden hier erklart.

Regionen Das Kriterium Regionen gibt an, ob die Region, in der eine Anwendung erstellt
wird, explizit ausgewdhlt werden kann. Diese Funktion ist unerldsslich fiir die Instanz-
Management Komponente, da diese einen Automaten abhédngig von den verwendeten
Web Services in einer Region platzieren muss.

PaaS Eine wichtige Funktion einer Cloud Umgebung ist die Verfiigbarkeit eines Platform as
a Service (PaaS) Angebots. Hierbei soll es moglich sein, eine Anwendung allein durch
das Bereitstellen eines entsprechenden Containers zu starten, wiahrend der Service sich
um die Bereitstellung der Infrastruktur kiimmert. Dieser Punkt ist relevant, da er die
Bereitstellung einer Anwendung vereinfacht.

Java API Da als Programmiersprache Java gewéhlt wird, ist der Umfang der Java API wichtig.
Es wird folglich untersucht, welche Moglichkeiten es gibt, die Cloud Umgebung durch
die Java API zu modifizieren.

21

3. Anforderungen und Ablaufumgebung

Regionen | PaaS Java API Konfigurierbarkeit | sonstige Services | Gratis Angebote
AWS Ja Ja Umfangreich Umfangreich Viele Ja
Azure Ja Ja Eingeschrankt Umfangreich Viele Teilweise
Google Ja Ja Umfangreich Eingeschrankt Wenige Ja

Tabelle 3.1.: Verschiedene Anbieter von Cloud Services im Vergleich.

Konfigurierbarkeit Ein weiteres Merkmal, das bewertet wird, ist die generelle Konfigurier-
barkeit der Cloud Umgebung, zum Beispiel welche Rechenleistung zur Verfiigung steht,
oder wie genau sich Komponenten, wie beispielsweise ein Load-Balancer, konfigurieren
lassen.

Sonstige Services Bei diesem Punkt wird untersucht, welche weiteren Services zur Verfi-
gung gestellt werden, die niitzlich sind, jedoch nicht zwingend fiir die Umsetzung der
Instanz-Management benétigt werden. Darunter fallen Services zur automatischen Ska-
lierung einer Anwendung, Warteschlangen fiir Nachrichten (Queue) und Services, die
Anfragen gleichmafiig auf verschiedene Rechnerinstanzen einer Anwendung verteilen
(Load-Balancing).

Gratis Angebote Da fiir die Arbeit keine Gelder zur Verfligung gestellt werden, ist ein
weiterer wichtiger Aspekt, ob und wieweit sich die Angebote gratis verwenden lassen.
Aufserdem soll untersucht werden ob Studienprojekte durch den jeweiligen Anbieter
unterstiitzt werden.

3.3.2. Untersuchung der Anbieter

Die verschiedenen Anbieter werden nun nach den eben erlduterten Anforderungen bewertet.
Die Ergebnisse hiervon befinden sich in Tabelle 3.1.

Amazon Web Services

Bei den Angeboten von Amazon Web Services ldsst sich eine Region explizit auswihlen.
Hierbei stehen in Amerika, Europa und Asien jeweils mehrere Subregionen zur Auswahl be-
reit. Als Platform as a Service Angebot steht Elastic Beanstalk zur Verfiigung [Amap]. Hierbei
muss lediglich ein Container, der die gewiinschte Anwendung enthalt, zur Verfiigung gestellt
werden. Dieser Vorgang ldsst sich auch iiber die Java API durchfithren [Amad]. Die Java API
bietet samtliche Konfigurationsmoglichkeiten, die auch tiber das Web Interface zur Verfii-
gung stehen. Die Moglichkeiten zur Konfiguration sind insgesamt sehr detailliert. Es stehen
verschiedene Hardwarekonfigurationen fiir die Recheninstanzen zur Verfiigung [Amap]. Das
Betriebssystem sowie die sonstige Software auf den Instanzen ldsst sich beliebig konfigu-
rieren. Des Weiteren steht ein Service fiir Queues [Aman], sowie ein Load-Balancer [Amae]

22

3.3. Evaluation verschiedener Cloud Anbieter

und automatische Skalierung [Amao] zur Verfiigung. Auch diese Komponenten lassen sich
frei konfigurieren [Amac]. Simtliche, fiir diese Arbeit relevanten Services, stehen aufSerdem
zeitlich begrenzt gratis zur Verfiigung [Amag]. Zudem unterstiitzt Amazon Studenten mit
eigenen Projekten mit Gutscheinen fiir die Nutzung von AWS [Amah].

Windows Azure

Windows Azure ldsst beim Start von verschiedenen Services eine Auswahl der Region zu.
Verfiigbare Regionen sind Nord-Amerika, Europa, Ozeanien und Asien [Migj]. Diese lassen
sich teilweise noch weiter aufschliisseln. Zudem biete Windows Azure ein Platform as a
Service Angebot (Azure Cloud Services). Um eine Java Anwendung bereitzustellen, miissen
hierbei zunidchst mehrere Konfigurationsdateien erstellt werden, die auf dem Server die
benotigte Java Umgebung erzeugen [Micc]. Hierbei werden Services wie automatische
Skalierung selbststandig bereitgestellt [Micg]. Die Java API hat nur einen eingeschriankten
Funktionsumfang und bietet keinen Zugriff auf alle Moglichkeiten. Beispielsweise ist es
nicht moglich eine Anwendung iiber die Java API bereitzustellen. Hierfiir muss teilweise
eine REST-API und ein Kommandozeilen Interface zur Hilfe genommen werden [Mica].
Die einzelnen Komponenten bieten detaillierte Konfigurationsmoglichkeiten. Auch sonstige
Services wie Queues [Micd] und Komponenten fiir automatische Skalierung, sowohl vertikal
als auch horizontal, und Load-Balancing stehen zur Verfiigung [Mice]. Die Moglichkeiten,
Windows Azure gratis zu benutzen, sind jedoch eingeschrankt. Insbesondere virtuelle
Rechenkapazititen lassen sich nur gegen Bezahlung verwenden [Micf]. Dafiir erhalt der
Anwender bei Registrierung einen Gutschein, der die Nutzung der Services fiir eine gewisse
Zeit ermoglicht [Micb]. Auch bei Windows Azure gibt es Programme um Studierende durch
Gratis Nutzungskontingente zu unterstiitzen [Mici].

Google Cloud

Auch bei den Services der Google Cloud lédsst sich die Region explizit auswéhlen. Hier stehen
jedoch nur die Regionen Nord-Amerika und Europa zur Verfiigung [Gooa]. Mit Google App
Engine (GAE) steht ein Platform as a Service Angebot bereit, das es erlaubt, eine Anwendung
nur durch den Upload eines Containers zu starten[Goob]. GAE erlaubt jedoch keinen Zugriff
auf die verwendeten Ressourcen wie die Rechnerinstanzen. Wenn dies gewtinscht ist, muss
stattdessen Google Compute Engine verwendet werden. Hierbei kann virtuelle Rechenkapazitat
gemietet werden, ein Anwendungsserver und andere Komponenten miissen jedoch durch
den Anwender eingerichtet werden [Goof]. Die Java API bietet Zugriff auf die meisten
Funktionen der Google Cloud Services [Gooh]. Die Konfigurationsoptionen bei Google
App Engine sind jedoch beschrénkt. Die unterliegenden Ressourcen lassen sich hier nicht
gezielt konfigurieren. Zum Beispiel kann bei GAE nicht explizit ausgewahlt werden, welche
Hardwarekonfiguration eine verwendete Rechnerinstanz besitzen soll. Aufierdem stehen
bei den Google Cloud Services Load-Balancing und Auto-Skalierung zur Verfiigung [Goob].
Hierbei ldsst sich jedoch nicht steuern, wie viele Rechnerinstanzen verwendet werden sollen
und ob generell skaliert werden soll. Diese Funktionen stehen nur fiir Compute Engine zur

23

3. Anforderungen und Ablaufumgebung

Verfiigung. Einen Queue Service bietet Google nicht. Google App Engine ldsst sich in zeitlich
begrenztem Rahmen kostenlos nutzen, jedoch steht im kostenlosen Angebot nur eine nach
oben begrenzte Skalierbarkeit zur Verfiigung [Good]. Fiir Compute Engine gibt es keine
Angebote zur Gratis-Nutzung [Goog]. Angebote fiir Studierende gibt es nicht [Gooc].

3.3.3. Ergebnis

Aus den untersuchten Cloud Services wird Amazon Web Services als beste Losung fiir diese
Arbeit betrachtet, da dort simtliche gestellten Anforderungen erfiillt werden. Insbesondere
wichtig sind die umfangreichen Konfigurationsmoglichkeiten und die Java API, die Zugriff
auf samtliche Funktionen von Amazon Web Services direkt aus der Java Umgebung erlaubt,
ohne auf andere Werkzeuge zuriickgreifen zu miissen. AufSerdem steht ein PaaS Angebot
(Elastic Beanstalk) zur Verfiigung, welches die Bereitstellung einer Anwendung vereinfacht
und dennoch Zugriff auf die unterliegenden Ressourcen bietet.

Gegen die Verwendung von Windows Azure spricht vor allem die wenig umfangreiche Java
APIL Auflerdem ist das Bereitstellen einer Java Anwendung im Vergleich zu den anderen
Angeboten wenig komfortabel, da bei Azure zunidchst mehrere Konfigurationsdateien erstellt
werden miissen. Bei den Angeboten von Google und Amazon ist nur der Container mit der
Anwendung notig, um diese bereitzustellen. Google ldsst bei App Engine jedoch keinen
Zugriff auf die verwendeten Ressourcen und auf deren Konfigurationsmoglichkeiten zu.
Dies spricht gegen die Verwendung der Google Services.

24

4. Entwurf

In diesem Kapitel wird der Entwurf vorgestellt, der als Grundlage fiir die Umsetzung
der Anforderungen dient. Dabei wird vor allem auf das generelle Konzept der Instanz-
Management Komponente eingegangen und es erfolgt eine abstrakte Beschreibung, wie die
Funktionalitdten umgesetzt werden. Es werden keine konkreten Technologien beschrieben,
die zur Umsetzung verwendet werden.

Grundlegend sollen die Funktionalitdten durch zwei verschiedene Anwendungen realisiert
werden: Durch eine zentrale Instanz-Management Komponente und eine Umgebung, in der
ein Automat in der Cloud betrieben werden kann. Die Entwicklung einer Umgebung fiir
den Automaten ist notig, da der Automat nicht autonom in der Cloud betrieben werden
kann. Es soll fiir den Automaten also eine Anwendung entwickelt werden, die in der Cloud
lauffahig ist und einen oder mehrere Automaten betreiben kann. Diese Anwendung wird als
Umgebung des Automaten oder als Automaten-Umgebung bezeichnet. Als Automat wird wie
bisher die Komponente bezeichnet, die fiir die Ausfiihrung einer Grammatik zustandig ist.
Das Verhiltnis von Instanz-Management Komponente zu Automaten-Umgebung wird in
Abbildung 4.1 dargestellt. Die Instanz-Management Komponente besitzt Zugriff auf beliebig
viele Instanzen von Automaten-Umgebungen. Die Instanzen der Automaten-Umgebungen
sind auf verschiedene Regionen verteilt, wiahrend die Instanz-Management Komponente in
einer bestimmten Region lokalisiert ist. Eine Automaten-Umgebung innerhalb einer Region
kann dort aber auf mehreren Rechnern betrieben werden. Zudem koénnen innerhalb einer
Automaten-Umgebung mehrere Automaten betrieben werden.

Rechner Automaten Umgebung Automaten Umgebung Rechner
\ Automat Automat Instanz-Management Automat Automat /
[——; Rechner

Rechner
Komponente
Automat Automat Automat Automat
Rechner Rechner

Abbildung 4.1.: Das Verhiltnis der Instanz-Management Komponente zu den Automaten-
Umgebungen.

Die Aufteilung in zwei verschiedene Anwendungen ist sinnvoll, da es in einer verteilten
Ablaufumgebung genau eine Komponente geben soll, die Anfragen verwaltet. Zudem ist
ein mehrfaches Vorkommen der Instanz-Management Komponente nicht sinnvoll, da diese
zur Verteilung der Anfragen auf verschiedene Instanzen einen Uberblick iiber samtliche
existierende Instanzen des Automaten benétigt. Bei einer Verteilung der Instanz-Management
Komponente tiber mehrere Regionen miisste hierfiir eine Synchronisierung zwischen den

25

4. Entwurf

verschiedenen Instanz-Management Komponenten stattfinden, damit diese aktuelles Wissen
iiber alle existierenden Automaten-Umgebungen besitzen. Durch die Verwendung einer
zentralen Komponente kann auf einen solchen Mechanismus verzichtet werden.

Eine genaue Aufteilung der Aufgabenbereiche auf die beiden verschiedenen Anwendungen
erfolgt in Abschnitt 4.1. Daraufhin wird in Abschnitt 4.2 die Instanz-Management Kom-
ponente konzeptioniert. Die Kozeptionierung der Umgebung des Automaten erfolgt in
Abschnitt 4.3.

4.1. Aufgabenverteilung

Die meisten der geforderten Funktionalititen aus Kapitel 3 werden durch die Instanz-
Management Komponente umgesetzt. Einige Anforderungen werden jedoch durch die
Automaten-Umgebung erfiillt.

Fiir Anforderung A1 muss die Berechnung einer Zielregion umgesetzt werden. Dies fallt
der Instanz-Management Komponente zu, da die Region berechnet werden muss, bevor die
Grammatik an einen Automaten der Zielregion geschickt werden kann. Anforderung A2 gibt
die Verwaltung der verschiedenen Instanzen des Automaten vor. Um dies zu realisieren, be-
sitzt die Instanz-Management Komponente eine Ubersicht iiber alle Automaten-Umgebungen
und tiber die Rechner, die diese verwenden. Die Automaten-Umgebung besitzt dagegen
Informationen iiber die Automaten selbst, die innerhalb der Umgebung betrieben werden.
Anforderung A3 beschreibt eine Funktion, um den Automaten in einer verteilten Ablaufum-
gebung ausfiithrbar zu machen. Dies soll von der Instanz-Management Komponente und der
Umgebung des Automaten sichergestellt werden. Dabei ist es insbesondere die Aufgabe der
Automaten-Umgebung, Automaten innerhalb der Umgebung zur Verarbeitung von Anfragen
bereitzustellen. Laut Anforderung A4 muss ein Uberblick iiber die in den Grammatiken
verwendeten Web Services hergestellt werden. Dies ist Aufgabe der Instanz-Management
Komponente, da dies zur Berechnung der Zielregion des Automaten erforderlich ist. Die
Verwaltung des RRS (Anforderung As) fillt ebenfalls in den Aufgabenbereich der Instanz-
Management Komponente. Der Automat ruft das RRS lediglich auf wie einen beliebigen
anderen Web Service. In A6 wird Generalitit des Automaten gefordert. Diese muss durch
die Umgebung des Automaten sichergestellt werden.

Die nichtfunktionalen Anforderungen werden ebenfalls den verschiedenen Komponenten
zugewiesen. Die Garantie, dass eine Anfrage verarbeitet wird (A7), muss dabei von beiden
Komponenten gewihrleistet werden. Beide Komponenten sollen bei der Verarbeitung sicher-
stellen, dass eine Anfrage im Fehlerfall nicht verloren geht. In A8 wird Optimalitat fiir die
Verteilung der Instanzen gefordert, das heifit eine Minimierung der Kosten wéahrend der
Ausfiihrung einer Grammatik. Dies soll bei der Berechnung der Region durch die Instanz-
Management Komponente sichergestellt werden. Die Anforderungen A9 und A1o beziehen
sich auf Effizienz und Skalierbarkeit und sollen sowohl durch die Instanz-Management
Komponente als auch durch die Automaten-Umgebung erfiillt werden. Die Umgebung des
Automaten soll dafiir zustindig sein, dem Automaten ausreichend Rechenleistung zur Verfii-
gung zu stellen. Diese soll bei Bedarf erhoht oder verringert werden. Dies kann zum Beispiel

26

4.2. Instanz-Management Komponente

durch die Verwendung von mehreren Rechnern geschehen. Die Instanz-Management Kom-
ponente hingegen soll bestimmen, ob in einer Region tiberhaupt eine Automaten-Umgebung
existiert.

4.2. Instanz-Management Komponente

Nachdem die Verteilung der Aufgaben im vorigen Abschnitt vorgestellt wurde, wird nun
zundchst die Funktionalitdt der zentralen Instanz-Management Komponente konzipiert.
Hierbei gibt es keine Sortierung nach den Anforderungen mehr; stattdessen werden dhnliche
Aufgaben zusammen behandelt.

4.2.1. Anfragen Verarbeitung

Der Einstiegspunkt fiir die Instanz-Management Komponente soll die Entgegennahme
und Verarbeitung von Anfragen darstellen. Dabei ist es insbesondere wichtig, dass eine
Anfrage nicht durch einen unerwarteten Fehler verloren geht (vgl. Anforderung A7). Die
Anfragen sollen deshalb in einer Warteschlange gespeichert werden. Diese soll persistent
sein und keine Anfragen verlieren, auch im Falle, dass die Instanz-Management Komponente
nicht verftigbar ist. Die Speicherung der Anfragen wird in Abbildung 4.2 dargestellt. Die
Entgegennahme von Anfragen soll iiber eine Schnittstelle geschehen, die dem Nutzer zur
Verfiigung steht. Diese soll nur die Funktion haben, Anfragen entgegen zu nehmen und
sie danach in der Warteschlange zu speichern. Bei der Verarbeitung der Anfrage wird
diese zundchst aus der Warteschlange entfernt. Im Fehlerfall soll sie immer zurtick in die
Warteschlange gelegt werden.

Im Fehlerfall (

Schnitt- . .
77777777777777 " atelle Warteschlange . Verarbeitung (Warteschlange Region B(

Warteschlange Region CO -------- >

Warteschlange Region AO rrrrrrrrr >

—_—
\

Abbildung 4.2.: Die Speicherung einer Anfrage wahrend der Verarbeitung. Die Pfeile stellen
das Senden der Anfrage von einer Komponente zur anderen dar. Gestrichel-
te Pfeile stehen fiir das Senden zu einer anderen Anwendung.

Wéahrend der Verarbeitung einer Anfrage soll die Berechnung der Region (siehe Ab-
schnitt 4.2.2) erfolgen und eine Instanz einer Automaten-Umgebung aus der Zielregion
angefordert werden (siehe Abschnitt 4.2.4). AuSerdem soll die Anfrage letztendlich zu der
entsprechenden Automaten-Umgebung gesendet werden. Bei letztgenanntem Schritt ist es
moglich, dass die Automaten-Umgebung zu diesem Zeitpunk keine Anfragen entgegen neh-
men kann. Eine Automaten-Umgebung kann zum Beispiel keine Anfragen entgegen nehmen,

27

4. Entwurf

wenn der Rechner, auf dem diese betrieben werden soll, noch nicht bereit ist. Die Anfrage
soll in diesem Fall in eine weitere Warteschlange eingefiigt und versandt werden, sobald
die Automaten-Umgebung bereit ist. Dabei wird fiir jede Region eine eigene Warteschlange
verwendet, wie in Abbildung 4.2 dargestellt. Die Automaten-Umgebung liefert selbst eine
Riickmeldung dariiber, wenn sie bereit ist. Der Status der Automaten-Umgebung muss also
nicht abgefragt werden. In der Wartezeit sollen weitere Anfragen verarbeitet werden kénnen.
Die Anfrage wird der Automaten-Umgebung tiber eine Schnittstelle iibergeben, die diese
hierfiir zur Verfiigung stellt. Die Automaten-Umgebung ist fiir die weitere Verarbeitung der
Anfrage zustandig.

4.2.2. Berechnung der Region

Der erste Schritt bei der Verarbeitung einer Anfrage stellt die Berechnung der Region dar, in
der die Anfrage verarbeitet werden soll (Zielregion). Eine Anfrage ist hier eine Grammatik, die
ausgefiihrt werden soll. Die Berechnung ist Aufgabe der Instanz-Management Komponente.
Hierbei wird gefordert, dass die Berechnung ein optimales Ergebnis liefert. Das heifst die
Grammatik soll bei der Ausfithrung minimale Kosten verursachen (vgl. Anforderung AS).

Faktoren, die hier bei der Berechnung berticksichtigt werden sollen, sind die Entfernungen zu
den verwendeten Web Services und die Haufigkeit, mit der diese wihrend der Ausfithrung
einer Grammatik verwendet werden. Dies zielt vor allem auf eine Minimierung der Latenz
bei der Kommunikation mit den Web Services ab. Hierbei wird die Distanz zwischen
den Regionen als Metrik verwendet. Die Distanzwerte sind dabei statisch. Die Bewertung
einer Region ergibt sich durch eine Analyse der in der Grammatik verwendeten Web
Services in Kombination mit den Distanzen. Bei dem Verfahren werden Regionen bevorzugt,
die moglichst viele Web Services enthalten. Falls eine Region alle Web Services enthilt,
wird diese immer zur Zielregion erklart, falls es nicht noch andere Regionen gibt, die
dieselbe Eigenschaft erfiillen. Ansonsten wird die Region als Zielregion gewdhlt, die die
minimale Latenz bei der Kommunikation mit den Web Services anderer Regionen bietet. Der
Algorithmus, der verwendet werden soll, um die Zielregion zu berechnen, wird in Alg. 4.1
als Pseudocode dargestellt.

Zunidchst wird die in der Anfrage enthaltene Grammatik untersucht. Dies geschieht in
den Zeilen 2 - 3 des Algorithmus. Hierbei werden die Web Services ermittelt, die bei der
Ausfiihrung der Grammatik benétigt werden. Aufierdem wird mit Hilfe eines Web Service
Indexes (siehe Abbschnitt 4.2.3) untersucht, welche Web Services von diesen verfiigbar sind.
Dabei werden nur Web Services berticksichtigt, die sich in derselben Ablaufumgebung
befinden, wie die Instanz-Management Komponente und die Automaten-Umgebung (Closed
World, vgl. [GL12]). Externe Web Services werden bei der Berechnung der Region ignoriert,
da tiber deren Distanz zu den verwendeten Regionen keine zuverldssige Aussage getroffen
werden kann.

Fiir den Fall, dass keiner der verwendeten Web Services in der Closed World verfiigbar
ist, kann die Berechnung abgebrochen und stattdessen eine zufillige Region verwendet
werden. Dies geschieht in den Zeilen 4 - 6. Danach wird in Zeile 9 - 22 fiir jede Region,

28

4.2. Instanz-Management Komponente

Algorithmus 4.1 Algorithmus zur Berechnung der Zielregion.

procedure COMPUTEREGION(grammar)
requiredWS <— GETWSs(grammar)
availableWs < GETAVAILABLEWS(requiredWs)
if availableWs.asEmpry() then
5 return randomRegion
end if
finalRegion < null
bestDistance <— o
for all r € Regions do
10: ranking < 0
wsNotInR < GETUNAVAILBLEWS(7, requiredWs)
for all ws € wsNotInR do
n < GETNUMBEROFACCESSES (ws, grammar)
closestRegion < GETCLOSESTREGION (ws)
15: distance <— GETDISTANCE(closestRegion)
ranking <— ranking 4 n * distance
end for
if ranking < bestDistance then
bestDistance < ranking
20! finalRegion < r
end if
end for
return finalRegion
end procedure

die in der verteilten Ablaufumgebung (Amazon Web Services) zur Verfiigung steht, eine
Bewertung erstellt. Die Bewertung ergibt sich dabei aus der Distanz zu den Web Services,
die sich nicht in der Region befinden und der Haufigkeit der Verwendung dieser Web
Services. Es wird folglich fiir jeden Web Service, der sich nicht in der zu bewertenden Region
befindet, die Distanz zwischen der zu bewertenden Region und der Region, die den Web
Service beinhaltet und die geringste Distanz zur bewertenden Region besitzt, mit der Anzahl
der Web Service Aufrufe multipliziert und auf den bisherigen Bewertungs-Wert addiert.
Hierfiir wird in Zeile 11 zunichst eine Liste der Web Services erstellt, die nicht in der zu
bewertenden Region verfiigbar sind. Danach wird in den Zeilen 13 - 16 von Algorithmus 4.1
schrittweise die Bewertung berechnet. Beispielsweise soll die Bewertung fiir die Region
Amerika erstellt werden. Es werden die Web Services A und B bendtigt. Web Service A ist
in der Region Amerika verfiigbar und erhcht die Bewertung daher nicht. Web Service B ist
nicht in Amerika verfiigbar. In Zeile 13 wird die Anzahl der Zugriffe auf B ermittelt. Hierbei
wird als Ergebnis beispielsweise 5 geliefert. In Zeile 14 wird Europa als ndchste Region
ermittelt, die Web Service B enthilt. Die Distanz zwischen Europa und Amerika betragt 1000.
Folglich wird in Zeile 16 die Bewertung auf 5000 erhoht. Die Anzahl der Web Service Aufrufe
kann dabei durch eine Analyse der Produktionsregeln der Grammatik bestimmt werden,

29

4. Entwurf

indem gezahlt wird, wie oft das Nicht-Terminal eines Web Services auf der rechten Seite der
Produktionsregeln vorkommt. Hierbei handelt es sich jedoch nur um eine Schéatzung, da
Regeln mehrfach ausgefiihrt werden kénnen. Wie oft eine Regel tatsdchlich verwendet wird,
kann erst wiahrend der Ausfiihrung des Automaten bestimmt werden. Wenn die Berechnung
fiir jeden nicht verfiigbaren Web Service durchgefiihrt wurde, wird die Bewertung der
Region mit der bisher giinstigsten Region verglichen. Ist die Bewertung niedriger, wird die
eben bewertete Region zur neuen Zielregion erklirt, wie es in den Zeilen 18 - 21 dargestellt
wird. Wenn beispielsweise die bisherige Zielregion Asien mit einer Bewertung von 10000
war, dann wird nun Amerika mit der Bewertung von 5000 zur neuen Zielregion erklart.

4.2.3. Web Service Index

Bei der Berechnung der Region ist es erforderlich, die Ablaufumgebung nach bekannten
Web Services zu durchsuchen, die fiir die Ausfiihrung einer Service-Komposition verwendet
werden. Dabei soll ein Index dieser Web Services erstellt werden.

Der Web Service Index soll zu dem Zeitpunkt, an dem die Berechnung der Region stattfindet,
Informationen iiber alle bekannten und verfiigbaren Web Services besitzen. Bei den Informa-
tionen, die gespeichert werden sollen, handelt es sich um den Namen und die Operationen
des Web Services, die Region des Web Services und die URL, die den Zugriff auf den Web
Service ermoglicht. Um diese Informationen zusammenzustellen, muss die Ablaufumgebung
nach diesen Web Services durchsucht werden. Die Erstellung des Indexes soll zudem laufend
geschehen und nicht erst beginnen, wenn die Informationen zu den Web Services bei der
Berechnung der Region angefordert werden. Dabei wird nach allen Web Services gesucht,
die wahrend des Betriebs der Instanz-Management Komponente bereits in einer Grammatik
verwendet wurden. Ein Web Service wird dabei in die Suche mit aufgenommen, wenn er
zum ersten Mal in einer Grammatik auftaucht.

In den Grammatiken werden Web Services und deren Operationen eindeutig tiber den Na-
men identifiziert. Bei der Erstellung des Indexes wird gleich vorgegangen. Wenn nach einem
Web Service aus einer Grammatik gesucht wird, werden folglich zwei Eigenschaften tiber-
priift: Zum einen, ob der Web Service denselben Namen besitzt wie in der Grammatik und
zum anderen, ob dessen Operationen gleich benannt sind wie in der Grammatik vorgegeben.
Es wird fiir die Ablaufumgebung der Instanz-Management Komponente also angenommen,
dass die Kombination aus Web Service Namen und dem Namen einer Operation des Web
Services eindeutig ist.

4.2.4. Verwaltung der Instanzen des Automaten

Wenn die Berechnung einer Region abgeschlossen ist, muss die Instanz einer Automaten-
Umgebung zur Verfiigung gestellt werden. Die Bereitstellung und Verwaltung von Instanzen
der Automaten-Umgebung ist eine zentrale Funktion der Instanz-Management Komponente.
Dabei soll sie stets Zugriff auf simtliche existierende Instanzen der Automaten-Umgebung

30

4.2. Instanz-Management Komponente

besitzen. Es miissen folglich fiir jede Automaten-Umgebung bestimmte Verwaltungsinforma-
tionen gespeichert werden. Darunter fallen Informationen, die den Zugriff auf die Automaten-
Umgebung ermoglichen, wie die URL, und Status-Informationen der Automaten-Umgebung,
zum Beispiel ob diese Anfragen entgegen nehmen kann oder nicht. Die Verwaltungsinfor-
mationen miissen angelegt werden, wenn eine neue Automaten-Umgebung erzeugt wird
und konnen zusammen mit der Automaten-Umgebung geldscht werden. Eine Automaten-
Umgebung kann geldscht werden, wenn die Verarbeitung der Grammatiken in dieser Region
abgeschlossen ist. Dies wird der Instanz-Management Komponente durch eine Nachricht
der Automaten-Umgebung signalisiert. Fiir Nachrichten der Automaten-Umgebung soll eine
extra Schnittstelle bereit gestellt werden. Wenn die Instanz-Management Komponente eine
Losch-Nachricht erhilt, soll sie alle Cloud-Ressourcen der Automaten-Umgebung freige-
ben. Dazu gehoren zum Beispiel die Rechner, auf der die Automaten-Umgebung betrieben
wird.

In einer Region soll immer maximal eine Instanz einer Automaten-Umgebung erstellt wer-
den. Dementsprechend existieren fiir eine Region auch die Verwaltungsinformationen nur
einmal, auch wenn die dortige Automaten-Umgebung auf mehreren Rechnern betrieben
wird. Wenn ein Automat aus einer bestimmten Region angefordert wird, werden die Verwal-
tungsinformationen der Automaten-Umgebung dieser Region zuriickgeliefert. Die Verwal-
tungsinformationen sollen die nétigen Informationen bieten, um zum Beispiel eine Anfrage
zu der Automaten-Umgebung zu senden. Wenn ein Automat in einer Region angefordert
wird, in der noch keine Automaten-Umgebung existiert, wird diese zu diesem Zeitpunkt
erzeugt. Wenn die Automaten-Umgebung in einer Region auf mehreren Rechnern betrieben
wird, soll sich ein Load-Balancer darum kiimmern, Anfragen auf diese zu verteilen. In den
Verwaltungsinformationen der Automaten-Umgebung werden dabei die Daten gespeichert,
die fiir den Zugriff auf den Load-Balancer erforderlich sind. Bei der Message Correlation
hingegen sollen die Messages nicht an den Load-Balancer geschickt werden. Die Messages
miissen explizit an den Rechner geschickt werden, auf dem eine Anfrage verarbeitet wird.
Hierfiir miissen auch die Zugriffsinformationen zu den Rechnern gespeichert werden, auf
denen die Automaten-Umgebung betrieben wird.

Es ist moglich, dass die Instanz-Management Komponente fehlerhaft terminiert und dabei
nicht die existierenden Automaten-Umgebungen 16scht. In diesem Fall sollen die Automaten-
Umgebungen bei einem Neustart der Instanz-Management Komponente verwendet werden
konnen, obwohl diese keine Verwaltungsinformationen tiber die Automaten-Umgebungen
besitzt. Um diese Automaten-Umgebungen verwenden zu kénnen, soll bei der Erstellung
einer Automaten-Umgebung in einer Region tiberpriift werden, ob in dieser Region bereits
eine Automaten-Umgebung existiert.

4.2.5. Message Correlation
Nachdem eine Anfrage bei der Automaten-Umgebung eingegangen ist, ist es moglich, dass

der Client Messages schickt, die sich auf diese Anfrage beziehen. Diese schickt der Client an
die Schnittstelle der Instanz-Management Komponente und es ist deren Aufgabe, diese genau

31

4. Entwurf

an die Automaten-Umgebung weiterzuleiten, die diese Anfrage verarbeitet (Anforderung
A3).

Hierfiir soll der Client eine ID erhalten, wenn er eine Anfrage in Form einer Grammatik
sendet. Diese identifiziert die Anfrage eindeutig. Unter Angabe dieser ID soll es moglich
sein, Messages zu dem Rechner zu senden, auf dem die Grammatik bearbeitet wird. Da
es vorkommen kann, dass eine Anfrage noch nicht bearbeitet wurde, wenn eine Message
zu dieser Anfrage eingeht, muss es eine Moglichkeit geben, die Message solange in einer
Warteschlange zu speichern. Sobald bekannt wird, dass eine Anfrage von einem bestimmten
Rechner bearbeitet wird, sollen die betroffenen Messages in der Warteschlange an diesen
Rechner gesendet werden. Der Rechner, auf dem die Anfrage verarbeitet wird, kann erst
bestimmt werden, wenn die Anfrage dort eingegangen ist. Sobald dies geschieht, sendet
die Automaten-Umgebung der Instanz-Management Komponente eine Nachricht, in der
angegeben ist, auf welchem Rechner die Anfrage verarbeitet wird. Eine ID mit dem zugeho-
rigen Ziel soll aus dem System geloscht werden, sobald die Anfrage von einem Automaten
ausgefiihrt wurde.

4.2.6. Reference Resolution System - Instanzverwaltung

Eine weitere Funktion, die durch die Instanz-Management Komponente erfiillt werden soll,
ist die Verwaltung des Reference Resolution System (Anforderung As). Die Verwaltung der
RRS Instanzen wird in dhnlicher Weise wie die Verwaltung der Instanzen der Automaten-
Umgebung konzipiert.

Auch hier soll die Instanz-Management Komponente Verwaltungsinformation der RRS
Instanzen speichern. Dabei soll die Instanz-Management Komponente Informationen tiber
alle Instanzen des RRS besitzen. Die Instanz-Management Komponente soll aufserdem dafiir
verantwortlich sein, neue Instanzen des RRS zu erzeugen oder nicht mehr benétigte Instanzen
zu 16schen. In einer Region soll eine RRS Instanz existieren, wenn dort Automaten betrieben
werden, das heifist wenn dort eine Automaten-Umgebung vorhanden ist. Hierbei ist fiir
jede Region genau eine Instanz des RRS vorgesehen. Dementsprechend soll in einer Region
eine neue Instanz des RRS erzeugt werden, wenn dort eine Automaten-Umgebung erzeugt
wird. Die Instanz des RRS soll geloscht werden, wenn in der Region keine Automaten mehr
existieren, das heifst wenn die Automaten-Umgebung geloscht wird. Im Falle eines Absturzes
der Instanz-Management Komponente, soll ein bereits vorhandenes RRS in einer Region
wiederverwendet werden kdnnen, wie bei der Verwaltung der Automaten-Umgebungen.

Da es sich bei dem RRS um eine externe Komponente handelt, kann nicht beurteilt werden,
ob das RRS auch beim Betrieb auf mehreren Rechnern korrekt funktioniert. Hierbei miisste
sichergestellt werden, dass es zu keinen Inkonsistenzen in der Datenbank des RRS kommt.
Dabher ist ein Betrieb des RRS auf mehreren Rechnern nicht vorgesehen.

32

4.3. Die Umgebung des Automaten

4.3. Die Umgebung des Automaten

Im folgenden Abschnitt wird die Umgebung des Automaten konzipiert. Diese dient dazu,
den Betrieb von Automaten in der Cloud zu ermoglichen. Dabei soll die Umgebung des Au-
tomaten die Anwendung in der Cloud darstellen. Ein Uberblick der Automaten-Umgebung
wird in Abbildung 4.3 gezeigt. Die Automaten-Umgebung kann tiber eine Schnittstelle An-
fragen und Messages der Instanz-Management Komponente entgegen nehmen. In Abb. 4.3
wird die Schnittstelle gestrichelt dargestellt. Von der Schnittstelle aus werden Anfragen
und Messages zu Warteschlangen weitergeleitet. Innerhalb der Automaten-Umgebung kon-
nen mehrere Automaten betrieben werden, die Anfragen verarbeiten. Die Anfragen und
Nachrichten aus den Warteschlangen werden den Automaten zugewiesen. Die Automaten
bendtigen bei der Verarbeitung einer Anfrage Zugriff auf eine Service Invocation Kompo-
nente. Die verschiedenen Automaten werden dabei wie in Abbildung 4.3 dargestellt durch
die Automaten-Umgebung verwaltet.

Automaten-Umgebung

.
Anfrage | Warte- PN
S Automat |« >
schlange Status

1

1

1

! Service

1 [

" Ver-
1

1

1

I 3
A 4

Automat |«

"| Invocation
Message ! Warte- waltung
! schlange Automat <
1

Abbildung 4.3.: Die Umgebung des Automaten im Uberblick. Die gestrichelte Komponente
stellt die Schnittstelle zur Automaten-Umgebung dar.

I
I
|
—_-—-—
I

r
Y

4.3.1. Schnittstelle der Automaten-Umgebung

Um Anfragen entgegen nehmen zu konnen, muss die Automaten-Umgebung eine Schnitt-
stelle besitzen. Diese wird in Abb. 4.3 durch die gestrichelten Linien dargestellt. Sie dient
der Instanz-Management Komponente dazu, der Automaten-Umgebung Anfragen in Form
von Grammatiken zu tibergeben. Diese soll gleichzeitig auch dazu verwendet werden, um
Messages entgegen zu nehmen (Message Correlation).

Die Schnittstelle soll keine Funktion zur Verarbeitung von Anfragen umsetzen. Sie soll diese
lediglich Anfragen entgegen nehmen und in einer persistenten Warteschlange speichern,
damit diese von anderen Bestandteilen der Umgebung abgerufen werden konnen. Fiir
Messages gilt dasselbe (siehe Abbildung 4.3.

33

4. Entwurf

4.3.2. Integration des Automaten in die Umgebung

Zur Verarbeitung von Anfragen muss der Automat in die Umgebung integriert werden. Dabei
soll ein gleichzeitiger Betrieb von mehreren Automaten moglich sein, wie in Abbildung 4.3
dargestellt. Ein Automat soll durch die Ubergabe einer Grammatik gestartet werden konnen.
Dies soll mit beliebig vielen verschiedenen Grammatiken moglich sein. Eventuell miissen
dem Automaten wihrend der Ausfiihrung Messages zugefiihrt werden.

Die Anfragen sollen aus der Warteschlange bezogen werden, in der die Anfragen tiber das
Interface abgelegt werden. Messages sollen zwischengespeichert werden, bis sie benotigt
werden. Hierzu dient eine Warteschlange, wie in Abbildung 4.3 dargestellt. Zur Zuordnung
der Messages zu einer Anfrage wird dieselbe ID verwendet, wie bei der Instanz-Management
Komponente. Die benétigten Funktionen zur Zuordnung der Message sollen dabei durch
die Umgebung des Automaten zur Verfiigung gestellt werden. Sobald die Ausfithrung einer
Anfrage beendet ist, soll aufSerdem die Instanz-Management Komponente {iber das Interface
der Instanz-Management Komponente benachrichtigt werden. Dies ist nétig, damit diese die
ID der Anfrage aus ihrem Speicher entfernen kann. Eine Zustellung von Messages beziiglich
dieser ID ist zu diesem Zeitpunkt nicht mehr notig, da die Anfrage vollstindig ausgefiihrt
wurde.

Fiir den Betrieb eines Automaten ist zudem eine zusétzliche Service Invocation Komponente
erforderlich (siehe 2.2). Diese soll dem Automaten in derselben Umgebung bereit gestellt
werden.

4.3.3. Statusverwaltung

Fiir die Verwaltung der Umgebung und die Interaktion mit der Instanz-Management Kompo-
nente muss die Automaten-Umgebung gewisse Statusinformationen speichern. Dazu gehort
zum Beispiel die URL der Instanz-Management Komponente, die zur Kommunikation beno-
tigt wird. Auflerdem soll hierbei der Zustand aller laufenden Automaten gespeichert werden.
Der Statusverwaltung der Automaten-Umgebung soll stets bekannt sein, wie viele Automa-
ten gerade betrieben werden und welche Anfrage diese verarbeiten. Dieser Zusammenhang
wird auch in Abbildung 4.3 dargestellt. Fiir den Fall, dass keine Anfragen bearbeitet werden,
soll veranlasst werden, dass die Automaten-Umgebung entfernt wird, um Ressourcen zu
sparen (vgl. Anforderung A1o). Hierfiir soll die Automaten-Umgebung eine Nachricht an
die entsprechende Schnittstelle der Instanz-Management Komponente senden.

Auflerdem soll tiber die Statusverwaltung der Automaten-Umgebung bestimmt werden,
wann die Automaten-Umgebung in der Lage ist, Anfragen entgegen zu nehmen und wann
nicht. Bevor eine Automaten-Umgebung bereit ist, miissen zum Beispiel die Warteschlangen
bereitgestellt werden. Der Bereitschaftsstatus soll mit der Instanz-Management Komponente
kommuniziert werden.

34

4.3. Die Umgebung des Automaten

4.3.4. Skalierung

Die Automaten-Umgebung hat die Aufgabe, die verwendeten Ressourcen effizient zu nutzen.
Aufierdem sollen die zugrunde liegenden Ressourcen mit der Anzahl der Anfragen skalieren.
Um die bereits verwendeten Ressourcen optimal auszunutzen, sollen mehrere Automaten
gleichzeitig betrieben werden konnen. Auflerdem soll erkannt werden, wenn die Ressourcen
einer Automaten-Umgebung nicht mehr ausreichen, um alle Anfragen zu verarbeiten. Hierzu
soll die Verwendung der genutzten Ressourcen {iberwacht werden. Wenn diese ausgelastet
sind, sollen zusétzliche Rechner fiir die Automaten-Umgebung verwendet werden (horizontale
Skalierung). Fiir den Fall, dass sich die Anzahl der Anfragen reduziert, sollen entsprechend
weniger Rechner verwendet werden. Wenn zusatzliche Rechner verwendet oder bestehende
freigegeben werden, muss dies der Instanz-Management Komponente mitgeteilt werden.
Auflerdem soll sichergestellt werden, dass verschiedene Rechner gleichméfiig ausgelastet
werden, das heifst die Anfragen miissen ausgewogen auf diese verteilt werden.

35

5. Implementierung

Nachdem im Entwurf die konzeptionelle Umsetzung der Anforderungen allgemein erklart
wurde, befasst sich dieses Kapitel mit der Implementierung der im Entwurf beschriebenen
Funktionalitdten. Hierfiir werden in Abschnitt 5.1 zundchst die verwendeten Funktionen von
Amazon Web Services erklédrt. Daraufhin wird in Abschnitt 5.2 die Architektur der einzelnen
Komponenten und des gesamten Systems erldutert. Zuletzt wird in den Abschnitten 5.3
und 5.4 auf ausgewdhlte Implementierungsdetails der Instanz-Management Komponente
und der Automaten-Umgebung eingegangen.

5.1. Verwendete Amazon Web Services

Zur Implementierung der Instanz-Management Komponente werden verschiedene Cloud
Angebote von Amazon Web Services [Amab] verwendet. Die Entscheidung fiir die AWS
wird in Abschnitt 3.3 begriindet. Im Folgenden werden die Web Services erklart, die in der
weiteren Implementierung verwendet werden, um das Verstdndnis in den darauf folgenden
Abschnitten zu erleichtern.

5.1.1. Elastic Compute Cloud

Bei Elastic Compute Cloud (EC2) handelt es sich um einen Web Service, der Rechenkapazitat
aus der AWS Cloud zur Verfiigung stellt [Amam]. Es wird damit ermoglicht, virtuelle
Rechner zu mieten. Diese werden als EC2-Instanzen bezeichnet. Dabei kann festgelegt
werden, wie viel Rechenleistung, Speicher und Netzwerkleistung einer EC2-Instanz zur
Verfligung gestellt werden soll. Zudem konnen Sicherheitsbestimmungen, wie externe
Zugriffsrechte auf die Instanz oder auch das gewiinschte Betriebssystem, festgelegt werden.

5.1.2. CloudWatch

CloudWatch kann dazu verwendet werden, um die Leistungsdaten von verschiedenen Ama-
zon Web Services zu tiberwachen [Amal]. Hierbei stehen fiir verschiedene Services Metriken
zur Verfiigung, nach denen deren Leistungsfahigkeit beurteilt wird. Dabei konnen Alarme
definiert werden, die ausgelost werden, sobald selbst definierte Schwellwerte passiert werden.
Wenn eine EC2-Instanz tiberwacht wird, kann beispielsweise die CPU-Last oder die Anzahl
der Festplatten Zugriffe iiberwacht werden [Amak]. In diesem Beispiel konnte nun festgelegt

37

5. Implementierung

werden, dass ein Alarm ausgeldst wird, sobald die durchschnittliche CPU-Auslastung der
Instanz tiber einen Zeitraum von fiinf Minuten tiber 70 Prozent liegt.

5.1.3. Auto Scaling

Bei Auto Scaling handelt es sich um einen Web Service, der dazu dient, automatisch EC2-
Instanzen zu erzeugen und zu l6schen [Amao]. Dies geschieht abhidngig von einer Metrik, die
selbst bestimmt werden kann. Zum Beispiel kann festgelegt werden, dass ab einer bestimmten
CPU-Last einer EC2-Instanz automatisch eine neue EC2-Instanz erzeugt wird oder dass
eine EC2-Instanz geldscht wird, sobald eine definierte Schwelle unterschritten wird. Zudem
kann bestimmt werden, wie oft die EC2-Instanzen zum Beispiel auf CPU Last tiberpriift
werden und es konnen generelle Grenzen iiber die Anzahl der EC2-Instanzen definiert
werden. Die Uberwachung der Leistungsdaten erfolgt durch CloudWatch. Das heif3t, sobald
CloudWatch einen Alarm auslost, erzeugt Auto Scaling eine neue EC2-Instanz. AufSerdem
tberpriift Auto Scaling regelméflig die Gesundheit der zugeordneten EC2-Instanzen und
erzeugt automatisch neue, falls eine EC2-Instanz nicht funktionsfdhig ist. Die EC2-Instanzen
werden in sogenannten Auto Scaling Gruppen verwaltet. Wenn {iber Auto Scaling eine neue
EC2-Instanz erzeugt wird, gehort diese zur selben Auto Scaling Gruppe wie die EC2-Instanz,
die durch die neue EC2-Instanz unterstiitzt werden soll.

5.1.4. Elastic Load Balancing

Elastic Load Balancing ist ein Service, der Load-Balancing fiir EC2-Instanzen implemen-
tiert [Amae]. Hierbei werden die Anfragen auf die EC2-Instanzen verteilt, die dem Load-
Balancer zugeteilt sind. Der Load-Balancer achtet dabei auch darauf, dass er Anfragen nur
an funktionsfihige EC2-Instanzen weiterleitet. Die Rechenkapazitdten des Load-Balancers
werden automatisch angepasst.Bei vielen eingehenden Anfragen werden diese also erhoht,
beziehungsweise bei wenigen Anfragen gesenkt.

5.1.5. Elastic Beanstalk

Bei Elastic Beanstalk handelt es sich um einen Web Service, der die Bereitstellung von
Anwendungen in der Cloud soweit wie moglich automatisieren soll [Amap]. Dabei ist es
notig, einen Container, der die Anwendung enthélt, hochzuladen und Elastic Beanstalk
stellt die notige Infrastruktur fiir die Anwendung bereit. Die Infrastruktur einer Elastic
Beanstalk Anwendung wird in Abbildung 5.1 dargestellt. Eine Anwendung wird dabei auf
einer oder mehreren EC2-Instanzen betrieben. Die EC2-Instanzen werden in der Abbildung
durch orange Rechtecke visualisiert. Diese werden in einer Auto-Scaling Gruppe verwaltet,
wie in der Abbildung durch die blau gestrichelte Umrandung dargestellt. Der Zustand der
EC2-Instanzen wird durch CloudWatch iiberwacht. Uberschreitet eine der zu {iberwachenden
Ressourcen einen bestimmten Wert, wird ein Alarm ausgelost. Dieser wird von der Auto-
Scaling Gruppe dazu verwendet, um neue EC2-Instanzen zu erzeugen oder die Anzahl der

38

5.1. Verwendete Amazon Web Services

Instanzen zu reduzieren. Die Anfragen an die Anwendung konnen von einem beliebigen Ort
aufierhalb oder innerhalb der Cloud gesendet werden. Der Client, der Anfragen sendet, wird
in der Abbildung grau dargestellt. Gewohnlich werden die Anfragen dabei an einen Load-
Balancer gesendet, der diese auf die EC2-Instanzen der Auto-Scaling Gruppe verteilt. Der
Load-Balancer ist in der Abbildung blau markiert. In manchen Féllen ist es jedoch sinnvoll
eine EC2-Instanz direkt anzusprechen. In diesem Fall kann die Anfrage auch gesendet
werden, ohne den Load-Balancer zu verwenden. Obwohl Elastic Beanstalk die Bereitstellung
der Infrastruktur tibernimmt, ist es moglich, auf die einzelnen Komponenten, wie die EC2-
Instanzen oder den Load-Balancer, zuzugreifen und diese individuell zu konfigurieren.

/ AWS Cloud
Elastic Beanstalk

Load-

Balancer

Anwendungs Anwendungs Anwendungs
Server Server Server

EC2 Instanz mit EC2 Instanz mit EC2 Instanz mit
Cloud Watch Cloud Watch Cloud Watch

Auto-Scaling Gruppe

Abbildung 5.1.: Die Elastic Beanstalk Infrastruktur im Uberblick.

5.1.6. Simple Storage Service

Bei Simple Storage Service (S3) handelt es sich um eine Cloud Losung zur Speicherung von
Daten [Amaf]. Die Organisation der Daten erfolgt dabei tiber sogenannte Buckets. Ein Bucket
dient als Wurzelverzeichnis, in dem Dateien abgelegt und Ordner erstellt werden kénnen.
Fiir den Bucket selbst lassen sich zum Beispiel Zugriffsbestimmungen fiir alle untergeordnete
Dateien oder ein Lebenszyklus fiir die Dateien festlegen.

5.1.7. Simple Queue Service
Simple Queue Service (SQS) stellt eine Nachrichten Warteschlange zur Verfiigung [Aman]. In

dieser konnen reine Textnachrichten gespeichert werden, die maximal eine Grofse von 256 KB
besitzen diirfen. Die Warteschlange erlaubt paralleles Lesen und Schreiben, gibt jedoch keine

39

5. Implementierung

Garantie iiber die Reihenfolge, in der die Nachrichten bezogen werden. Die Warteschlan-
ge lasst sich als Puffer und zur Kommunikation zwischen verschiedenen Anwendungen
einsetzen.

5.1.8. Regionen

Bei dem Start eines Services wird die Auswahl einer Region erlaubt. Bei den verftigbaren
Regionen handelt es sich um Gebiete, in denen sich ein Amazon Rechenzentrum befindet.
Wenn ein Service einer bestimmten Region zugeordnet wird, dann wird er in dem dortigen
Rechenzentrum betrieben. Fiir Zugriffe, die aus der raumlichen Nédhe der Region kommen,
ergeben sich so zum Beispiel automatisch Vorteile wie bessere Latenzen. Es macht Sinn,
die Region zu verwenden, aus deren Nahe die meisten Zugriffe zu erwarten sind. Zudem
profitieren auch unterschiedliche Amazon Web Services davon, wenn sie in derselben
Region betrieben werden. Zum Beispiel ist der Datenverkehr zwischen EC2-Instanzen, die in
derselben Region liegen, kostenlos [Amai].

Die verfiigbaren Regionen sind [Amaj]:

e Asien-Pazifik
- Singapur
— Sydney
- Tokyo

e Europa
— Irland

e Nord-Amerika
- Kalifornien
- Oregon
— Virginia

e Siid-Amerika

— Sao Paulo

Zudem existiert die Region GovCloud. Diese kann jedoch ausschliefllich durch die Regierung
der Vereinigten Staaten verwendet werden und wird in dieser Arbeit daher ignoriert.

40

5.2. Architektur

5.2. Architektur

Die Grundlagen fiir die Implementierung sind nun bekannt. In diesem Abschnitt wird darauf
aufbauend die Architektur des Gesamtsystems sowie der einzelnen Komponenten im Detail
erklart.

5.2.1. Schichtenarchitektur

Plasentationssehicht
SOAP Web Services Interfaces
Instanz-Management Komponente
Java

Automaten-Umgebun
Elastic Beanstalk § &

Warteschlangen
SQs Speicher fir
S3 Anwendungscontainer

Abbildung 5.2.: Die entwickelten Anwendungen im Schichtenmodell.

Der generelle Aufbau der Instanz-Management Komponente und der Automaten-Umgebung
lasst sich in eine 3-Schichten Architektur einordnen, wie in Abbildung 5.2 dargestellt. Keine
der Anwendungen verfiigt iiber eine grafische Benutzeroberflache. Sowohl die Instanz-
Management Komponente als auch die Automaten-Umgebung kommunizieren ausschliefs-
lich tber verschiedene SOAP Web Services, die hier als die Prasentationsschicht bezeichnet
werden. Die Anwendung kann somit von einem beliebig konzipierten Client verwendet wer-
den, solange dieser SOAP unterstiitzt. Die Anwendungsschicht beinhaltet die Komponenten
der Instanz-Management Komponente und der Automaten-Umgebung. Die Anwendungen
sind dabei in Java implementiert und werden durch Elastic Beanstalk bereitgestellt. Die
Infrastruktur einer Elastic Beanstalk Anwendung wird in Abschnitt 5.1.5 erklart. Die EC2-
Instanzen sind dabei konfiguriert, wie in Abbildung 5.3 dargestellt. In dieser Abbildung
werden die Ressourcen gezeigt, auf denen die Anwendungen ausgefiihrt werden. Dabei
gibt es mehrere Ebenen, die aufeinander aufsetzen. Diese werden in der Abbildung durch
die blauen Rechtecke dargestellt. Die Pfeile symbolisieren die Hierarchie zwischen den
Ebenen. Auf der untersten Ebene befinden sich die EC2-Instanzen. Eine EC2-Instanz wird
als virtueller Server verwendet, auf dem das Betriebssystem ausgefiihrt wird. Das Betriebs-
system wird in der Abbildung als Ebene tiber den EC2-Instanzen dargestellt. Es basiert auf
einem 64 Bit Linux. Bei dem Linux OS handelt es sich um ein von Amazon zur Verfiigung

41

5. Implementierung

gestelltes Linux Image, welches fiir den Betrieb auf EC2-Instanzen optimiert ist [Amaa].
Das Linux OS wird zum Betrieb eines Apache Tomcat 7 Webserver verwendet. Dieser dient
zur Ausfithrung der Instanz-Management Komponente und der Automaten-Umgebung.
Bei beiden Anwendungen handelt es sich um Java Web Anwendungen. Sie werden auf der
obersten Ebene von Abbildung 5.3 dargestellt.

Web Anwendung

Instanz-Management Komponente, Automaten-Umgebung

Apache Tomcat 7

Betriebssystem

Linux (64 bit)

Virtueller Server

EC2 Instanz

Abbildung 5.3.: Die unterliegenden Ressourcen der Anwendungen.

Fiir die Speicherung von Daten werden ausschliefilich Amazon Web Services verwendet.
Hierbei wird eine Warteschleife aus SQS verwendet, um Anfragen persistent zu speichern
und weiterzugeben. Aufserdem wird S3 benétigt, um zum Beispiel Anwendungscontainer
zu speichern. Eine weitere persistente Speicherung von Informationen ist nicht erforderlich.
Fine Datenbank oder Ahnliches wird daher nicht benétigt.

5.2.2. Aufbau und Zusammenspiel der Anwendungen

Der Aufbau der einzelnen Anwendungen wird an dieser Stelle erldutert. Hierbei soll lediglich
ein Uberblick iiber die Bestandteile der Anwendungen und deren Kommunikation geschaffen
werden, ohne dabei auf die Funktionen der einzelnen Bestandteile einzugehen, da diese in
den Kapiteln 5.3 und 5.4 beschrieben sind.

Die Anwendungen und ihre Komponenten werden in Abbildung 5.4 dargestellt. Die Funktio-
nalitdt der Instanz-Management Komponente wird auf sechs Komponenten aufgeteilt, die in

42

5.2. Architektur

Instanz-Management Komponente Automaten-Umgebung
Funktionalitat Funktionalitat \
. Region Web Service Ruckruf Web Anfragen
gr Berechnung Registry = Web Service - Verarbeitung
S5 Service Client
o N
o T Z
= D 5 N Instanz RRS Zustand
3 2@ Manager Verwaltung
g“’g Automa
3 Anfragen Message BN Service | ten N Automat
& : > . Web ..
Verarbeitung Correlation Client Service Ausfiihrung

~/

- 29

Abbildung 5.4.: Der Aufbau der einzelnen Komponenten und ihre Beziehungen. Bei den
grauen Pfeilen handelt es sich um den Aufruf eines Web Services, wo-
bei der Pfeil in Richtung des verwendeten Web Services zeigt. Schwarze
Pfeile stehen fiir den Austausch von Daten. Blau gestrichelte Pfeile sym-
bolisieren Funktionsaufrufe zwischen den Teilen der Anwendung. Die
Farbung der Komponenten orientiert sich an der Grafik zur Schichtenarchi-
tektur(Abb. 5.2). Blau gefarbte Rechtecke sind Komponenten der Préasentati-
onsschicht. Graue Rechtecke sind Komponenten der Anwendungsschicht.
Orange Elemente stehen fiir die Datenschicht.

Abb. 5.4 grau markiert sind. Hier wird insbesondere auf die Komponente Instanz Manager hin-
gewiesen. Diese ist fiir die Verwaltung der Instanzen der Automaten-Umgebung zustdandig
und darf nicht mit der Anwendung Instanz-Management Komponente verwechselt werden.
Zudem bietet die Instanz-Management Komponente zwei verschiedene Web Services und
einen Web Service Client an. Diese Komponenten sind blau gefarbt. Der Instanz-Management
Web Service dient zur Kommunikation mit dem Client, der in der Abbildung links dargestellt
ist. Der Riickruf Web Service stellt eine Schnittstelle fiir die Automaten-Umgebung dar. Der
Web Service Client der Instanz-Management Komponente hat die Aufgabe, den Kontakt
mit dem Automaten Web Service aufzunehmen. Die Automaten-Umgebung wird in Abb. 5.4
gleich unterteilt wie die Instanz-Management Komponente. Dabei muss beachtet werden,
dass mehrere Automaten-Umgebungen existieren konnen. Die Automaten-Umgebung teilt
die Kernfunktionalitdt auf drei verschiedene Komponenten auf, die in Abb. 5.4 grau markiert
sind. Zudem ist bei der Automaten-Umgebung ein Web Service und ein Web Service Client
enthalten. Diese Komponenten sind blau gekennzeichnet. Der Automaten Web Service dient
bei der Kommunikation mit der Instanz-Management Komponente dazu, um Anfragen an
die Automaten-Umgebung zu tibermitteln. Der Web Service Client der Automaten-Umgebung
wird dazu verwendet, um Riickrufe zur Instanz-Management Komponente durchzufiihren.

43

5. Implementierung

Die Web Services dienen zudem dazu, die grau markierten Komponenten der Anwendungen
zu aktivieren. Die Web Service Clients der jeweiligen Anwendungen werden umgekehrt
durch diese Komponenten aktiviert, wodurch die Kommunikation mit der jeweils anderen
Anwendung ermoglicht wird. Diese Beziehungen werden durch die blau gestrichelten Pfeile
in der Abbildung dargestellt.

Aufierdem kommunizieren beide Anwendungen mit Web Services von Amazon, die zur
Speicherung von Daten verwendet werden. Diese sind in Abb. 5.4 orange dargestellt. SQS
wird hierbei als Warteschlange und persistenter Speicher fiir Anfragen verwendet. Durch
SQS werden aufierdem Anfragen zwischen den Web Services und den anderen Komponenten
weitergeleitet. Der Speicherdienst S3 wird nur durch die Instanz-Management Komponente
verwendet. Der Zugriff auf die Services von Amazon erfolgt hierbei ausschliefllich durch die
grau markierten Komponenten, die die Anwendungslogik implementieren.

5.3. Implementierung der Instanz-Management Komponente

Im vorigen Abschnitt wurde die Architektur des Systems vorgestellt. Im Folgenden Abschnitt
wird die Implementierung der Komponenten der Instanz-Management Komponente erklért.
Eine Ubersicht der Komponenten wird in Abbildung 5.4 dargestellt. In Abbildung 5.5 wird
die Interaktion der verschiedenen Komponenten der Instanz-Management Komponente
gezeigt.

Message
Web Service " Region Message ["
Registry || Berechnung Correlation
Instanz- Web
Management Service
Web Service ! - : Client
RRS * Anfragen > Instanz I
Verwaltung || Verarbeitung |« Manager

Anfrage Warteschlange ’)WT \W(Warteschlange OWT

Abbildung 5.5.: Die Interaktion der Bestandteile der Instanz-Management Komponente.
Auf den Riickruf Web Service wurde der Ubersicht halber verzichtet. Er
kommuniziert mit den Komponenten RRS Verwaltung, Anfragen Verarbeitung,
Instanz Manager und Message Correlation.

Der Instanz-Management Web Service empfangt Anfragen und sendet diese an eine Warte-
schlange. Die Komponente Anfragen Verarbeitung entfernt Anfragen aus der Warteschlange
und bearbeitet sie. Dabei verwendet sie zur Berechnung der Zielregion die Komponente
Region Berechnung. Diese verwendet dabei die Komponente Web Service Registry. Diese stellt
einen Index der Web Services aus der Amazon Cloud zur Verfiigung. Nach der Berechnung

44

5.3. Implementierung der Instanz-Management Komponente

der Region fordert Anfragen Verarbeitung von RRS Verwaltung eine Instanz des Reference Re-
soultion Systems (RRS) an und von Instanz Manager eine Instanz einer Automaten-Umgebung.
Die Anfrage wird dann in einer Warteschlange gespeichert und durch den Web Service Client
zur Automaten-Umgebung geschickt. Falls der Instanz-Management Web Service eine Message
erhilt, ibergibt er diese der Message Correlation Komponente. Diese fordert das Ziel der
Message von Instanz-Manager an und tibergibt sie dann dem Web Service Client.

5.3.1. Web Services und Web Service Client

Die Instanz-Management Komponente bietet zwei verschiedene Web Services an. Der Instanz-
Management Web Service aus Abb. 5.4 dient zur Kommunikation mit dem Client. Er bietet
zwei Operationen. Die Operation sendRequest(..) wird dazu verwendet, der Instanz-
Management Komponente Anfragen zu iibermitteln. Die Operation sendMessage (. .) dient
zur Ubermittlung von Messages an die Instanz-Management Komponente. Die Operationen
von Riickruf Web Service konnen von den Automaten-Umgebungen fiir Riickmeldungen an
die Instanz-Management Komponente verwendet werden. Die Instanz-Management Kom-
ponente besitzt aufSerdem einen Web Service Client, der zur Kontaktaufnahme mit dem
Automaten Web Service der Automaten-Umgebung dient. Hierbei wird eine Verbindung zu
dem Automaten Web Service der Automaten-Umgebung aufgebaut und danach die gewiinsch-
te Operation aufgerufen. Der Web Service Client bietet einen Aufruf fiir jede Operation des
Automaten Web Services.

sendRequest(Grammatik) Grammatik Grammatik
Instanz- 4’(Warteschlange 0 — | Anfragen
respond(ID) Management ID Verarbeitung
< Web Service »| Message Correlation

Abbildung 5.6.: Das Verhalten der Operation sendRequest des Instanz-Management Web
Services. Die Pfeile stehen fiir den Austausch von Daten. Die Rechtecke
symbolisieren die beteiligten Komponenten.

Die Erzeugung des Codes fiir die Web Services und der Clients erfolgt mit dem Framework
ApacheCXF'. Hierzu muss eine Basisklasse angegeben werden, deren Methoden als Web
Service Operationen angeboten werden sollen. Der Instanz-Management Web Service ist in der
Klasse ManagementWs implementiert. Das Verhalten der Operation sendRequest (. .) wird in
Abbildung 5.6 dargestellt. Die Operation benotigt als Parameter eine Grammatik und liefert
eine Anfragen-ID zurtlick, die bei dieser Operation generiert wird. Gleichzeitig wird die
Anfragen-ID durch die Message Correlation Komponente gespeichert. Die Grammatik wird
lediglich zu einer Warteschlange weitergeleitet. Die Warteschlange wird durch Amazon SQS
zur Verfiigung gestellt. Zum Zugriff auf die Warteschlange wird die SQS-API verwendet.
Die Komponente Anfragen Verarbeitung entfernt die Anfrage zur Verarbeitung aus der

Thttp:/ /cxf.apache.org/

45

5. Implementierung

Warteschlange. Die Methode sendMessage (. .) nimmt als Parameter eine Nachricht und eine
ID entgegen. Diese werden direkt an die Message Correlation Komponente weitergeleitet.
Der Riickruf Web Service ist in der Klasse AutomatonCallback implementiert. Die Operationen
von AutomatonCallback werden schrittweise in den Abbildungen 5.8, 5.9und 5.10 dargestellt
und in den folgenden Kapiteln erklart.

5.3.2. Anfragen Verarbeitung

Die Komponente Anfragen Verarbeitung verarbeitet eingehende Anfragen. Bei der Verar-
beitung sind vor allem die Klassen RequestHandler und RequestHandlerManager rele-
vant. RequestHandlerManager verwaltet einzelne Instanzen der Klasse RequestHandler.
Von RequestHandlerManager existiert immer nur eine Instanz (Singleton-Pattern). Sowohl
RequestHandlerManager als auch RequestHandler leiten von Thread* ab und konnen somit
als Thread ausgefiihrt werden. Der RequestHandlerManager-Thread lauft dabei so lange, bis
er von anderer Stelle gestoppt wird.

Der RequestHandlerManager Thread erzeugt nicht beliebig viele RequestHandler Threads,
sondern limitiert deren Anzahl tiber die Anzahl der verfiigbaren CPU-Kerne. Wenn eine
Anfrage zu bearbeiten ist, wird zuerst {iberpriift, ob es RequestHandler Threads gibt, die
keine Aufgabe besitzen. Wenn dies der Fall ist, wird die Anfrage einem solchen Thread
zugewiesen. Ansonsten wird {iberpriift, ob ein neuer Thread erzeugt werden kann, der die
Aufgabe dann tibernimmt. Ist dies nicht der Fall, muss gewartet werden, bis ein existierender
Thread seine Aufgabe abschliefit und wieder bereit steht.

Ein RequestHandler-Thread ldsst die Zielregion einer Anfrage berechnen und fordert dort
die Instanz einer Automaten-Umgebung von der Komponente Instanz Manager an. Wenn
die Instanz der Automaten-Umgebung Anfragen entgegen nehmen kann, wird die Anfrage
sofort tiber den Web Service Client dorthin gesendet. Falls die Instanz noch nicht bereit ist oder
in der Region noch kein RRS existiert, wartet der RequestHandler Thread nicht. Stattdessen
wird tiber SQS eine Warteschlange erstellt, in der alle Anfragen gespeichert werden, die
in dieser Region ausgefiihrt werden sollen, aber auf die Automaten-Umgebung warten
missen. Der RequestHandler Thread ist somit in der Wartezeit nicht blockiert, sondern
kann neue Anfragen bearbeiten. Sobald das RRS und die Automaten-Umgebung dieser
Region sich bereit melden werden die Anfragen in der Warterschlange an die Automaten-
Umgebung der Region gesendet. Das RRS gilt dabei als bereit, sobald eine Instanz des
RRS durch die Komponente RRS Verwaltung zur Verfiigung gestellt wird. Die Automaten-
Umgebung meldet sich durch die Verwendung der Operation automatonReady(..) des
Riickruf Web Services der Instanz-Management Komponente bereit. Wenn wéahrend einem
beliebigen Verarbeitungsschritt eine Exception3 geworfen wird, wird die Anfrage zurtick
zur Warteschlange fiir Anfragen gesendet, damit diese nicht verloren geht. Dort bleibt
sie, bis sie vom RequestHandlerManager Thread erneut einem RequestHandler zugewiesen

?java.lang.Thread
3java.lang.Exception

46

5.3. Implementierung der Instanz-Management Komponente

wird. Ist die Bearbeitung einer Anfrage abgeschlossen, terminiert der entsprechende Thread
nicht, sondern meldet der Instanz von RequestHandlerManager, dass er keine Anfrage zu
verarbeiten hat und wartet, bis er eine neue Anfrage von der RequestHandlerManager Instanz
erhilt.

5.3.3. Regionen Berechnung

Die Berechnung der Zielregion wird durch die verschiedenen RequestHandler Threads,
deren Abldufe bereits erkldrt wurden, initiiert. Die Implementierung der Berechnung halt
sich dabei an Algorithmus 4.1, wobei hier einige Besonderheiten beachtet werden miissen.

Am Anfang der Berechnung muss ein Index der Web Services erstellt werden, die in Elastic
Beanstalk verfiigbar sind. Dies geschieht mittels der Komponente Web Service Registry, deren
Implementierung in Abschnitt 5.3.4 vorgestellt wird. Der Web Service Registry Komponente
werden hierfiir die Namen der Web Services und der Operationen mitgeteilt, die in einer
Grammatik verwendet werden. Um die Namen der Web Services zu ermitteln, muss zunéchst
die XML-Grammatik geparst werden. Dies geschieht in der Klasse XMLGrammar. Beim Parsen
der Web Service Namen und Operationen wird nach den Typen der Nicht-Terminale gesucht,
die fiir Web Services stehen (siehe 2.2.1). In Algorithmus 4.1 miissen zudem die Web Service
Aufrufe gezahlt werden. Hierfiir wird ebenfalls die Grammatik analysiert, wobei die Klasse
XMLGrammar verwendet wird.

Fiir die Ermittlung der Distanzen zwischen den Regionen in Algorithmus 4.1 wird die
Klasse RegionMap verwendet. In dieser sind die Distanzen der Regionen zueinander hart
kodiert. Fiir die Distanzen wurden die ungefdhren Luftliniendistanzen der Rechenzentren
zueinander verwendet.

Sobald die Zielregion ermittelt ist, wird fiir jeden Web Service, der in der Amazon Cloud
verfligbar ist, die URL in die Grammatik eingefiigt. Somit wird bei der Ausfithrung der
Grammatik der Web Service in der Ablaufumgebung tiber die eingefiigte URL erreicht.
Hierbei werden die Web Services verwendet, die sich in der Zielregion befinden oder
der Zielregion am néachsten sind. Das Einfiigen der Web Service-URLs in die Grammatik
geschieht iiber die Klasse XMLGrammar. Fiir Web Services, die nicht in der Amazon Cloud
gehostet sind, wird keine Anderung der Adresse vorgenommen.

5.3.4. Web Service Registry

Die Web Service Registry ist ein wichtiger Bestandteil fiir die Berechnung der Zielregion einer
Grammatik, da sie einen Web Service Index implementiert. Die wichtigste Funktionalitat ist
dabei auf die Klassen RegistryManager und Crawler aufgeteilt. Die Klasse RegistryManager
speichert Informationen zu den Web Services, die bei der Erstellung des Indexes berticksich-
tigt werden sollen. Gespeichert werden der Name des Web Services und die Namen seiner
Operationen, da diese benotigt werden, um einen Web Service zu identifizieren. Zusétzlich
dazu wird der Name des Web Service Ports gespeichert, da dieser fiir den Zugriff auf die

47

5. Implementierung

WSDL-Datei eines Web Services notwendig ist. Den verschiedenen Web Services werden
die IDs der Elastic Beanstalk Anwendungen zugeordnet, die diesen Web Service anbieten.
Die Information tiber die zu suchenden Web Services miissen dabei von einer anderen
Komponente hinzugefiigt werden. Dies geschieht in der Regel durch die Komponente Region
Berechnung.

Die Erstellung des Web Service Indexes geschieht tiber die Klasse Crawler, die von Thread
ableitet. Eine Instanz von Crawler wird iiber den Konstruktor der Klasse immer an eine
bestimmte Region gebunden. Bei der Suche wird vorgegangen wie folgt: Zundchst wird tiber
die Elastic Beanstalk API eine Liste aller der Instanz-Management Komponente verfiigbaren
Anwendungen in einer Elastic Beanstalk Region abgefragt. Nun wird fiir jede der Anwen-
dungen tiberpriift, ob sie einen Web Service enthilt. Dabei wird zunéchst mit Hilfe des
Portnamens getestet, ob die Anwendung eine WSDL-Datei enthdlt. Wenn dies nicht der Fall
ist, bietet die Anwendung den entsprechenden Web Service nicht an. Wenn die Anwendung
aber eine WSDL-Datei enthdlt, wird in dieser tiberpriift, ob der Name des Services und
seine Operationen dem gesuchten Web Service entsprechen. Wenn dies der Fall ist, wird die
Elastic Beanstalk ID dieser Anwendung in der Klasse RegistryManager gespeichert und dem
Web Service zugeordnet. Dieser Vorgang wird bei allen Elastic Beanstalk Anwendungen
fiir jeden zu suchenden Web Service durchgefiihrt. Bei einer Aktualisierung des Indexes
werden bereits bekannte Anwendungen, die einen Web Service anbieten, tiberpriift. Dabei
wird getestet, ob der Web Service noch verfiigbar ist. Bei der Uberpriifung wird zunichst
tiber die Elastic Beanstalk API abgefragt, ob die Anwendung und ihre Infrastruktur noch
existiert. Im nédchsten Schritt wird die WSDL-Datei der Anwendung tiberpriift. Dabei wird
untersucht, ob der Web Service Namen und die Namen der Operationen noch dieselben
sind. Wenn die Anwendung nicht mehr existiert oder die WSDL-Datei sich verdandert hat,
wird sie aus dem Index geldscht.

RegistryManager bietet eine blockierende und eine nicht-blockierende Aktualisierung des
Web Service Indexes an. Die nicht-blockierende Version kann verwendet werden, um initial
die existierenden Web Services in die Registry aufzunehmen. In diesem Fall konnen die
Crawler Threads im Hintergrund den Index erstellen. Die blockierende Variante ist fiir die
Berechnung der Region erforderlich, da es hier zwingend notwendig ist, einen aktuellen
Index zu besitzen. Bei der blockierenden Methode wird gewartet, bis der Index jeder Region
aktualisiert wurde.

5.3.5. Instanz-Manager

Wenn bei der Verarbeitung einer Anfrage oder in einer anderen Situation eine Instanz einer
Automaten-Umgebung angefordert wird, fallt dies in den Aufgabenbereich der Kompo-
nente Instanz-Manager. Die Verwaltung der Instanzen geschieht dabei hauptséchlich tiber
die Klassen InstanceManagement und InstanceRepresentation. Bei InstanceManagement
handelt es sich um die zentrale Klasse, die Informationen tiiber alle Instanzen der Automaten-
Umgebung besitzt. Die Verwaltungsinformationen der Automaten-Umgebung werden in
einer Instanz der Klasse InstanceRepresentation gespeichert. Diese bietet Zugriff auf die
relevanten Eigenschaften der Elastic Beanstalk Anwendung, wie die URL und den Status

48

5.3. Implementierung der Instanz-Management Komponente

der Anwendung. Es kann nur eine Instanz der Klasse InstanceManagement existieren. Auf
diese kann in der Anwendung global zugegriffen werden. Sie verwaltet alle Instanzen von
InstanceRepresentation. InstanceManagement steuert den Zugriff auf die Instanzen von
InstanceRepresentation und ldsst nur eine dieser Instanzen pro Region zu. Wenn eine In-
stanz von InstanceRepresentation aus einer bestimmten Region von InstanceManagement
angefordert wird, wird entweder eine neue Instanz von InstanceRepresentation erzeugt
oder eine bestehende zuriickgeliefert.

Bei der Erzeugung einer Instanz von InstanceRepresentation wird die Instanz einer
Automaten-Umgebung in Elastic Beanstalk erzeugt. Hierfiir sind mehrere Schritte not-
wendig, die in Abbildung 5.7 visualisiert werden. In samtlichen Schritten wird die Java API
verwendet, um Kontakt zu AWS aufzunehmen. Eine zentrale Rolle spielt hierbei die Klasse
AWSElasticBeanstalkClient, die in der Java API enthalten ist. Uber diese werden siamtliche
Aufrufe an die Elastic Beanstalk AWS Schnittstelle tibermittelt.

Version bereitstellen

Umgebung
verwalten

Anwendung Upload einer

, Umgebung erzeugen
erzeugen Anwendungsversion g g g

Version aktualisieren

Abbildung 5.7.: Die Schritte zur Erzeugung einer Elastic Beanstalk Anwendung.

Um eine Anwendung auf Elastic Beanstalk bereitzustellen, wird dort zunéchst eine An-
wendung erzeugt, die noch keine Funktion bietet. Hierbei wird lediglich ein Name fiir
die Anwendung angegeben. Im ndchsten Schritt wird eine Implementierung der Anwen-
dung in einem Container auf Amazon S3 hochgeladen. Die Implementierung wird als
Anwendungsversion bezeichnet. Die Anwendungsversion wird dabei als Web Application Ar-
chive (WAR-Datei) bereitgestellt. Eine WAR-Datei enthilt eine Anwendung, die nach der
Java-Servlet-Spezifikation verpackt ist. Schliefllich wird eine sogenannte Umgebung erzeugt.
Hierbei wird festgelegt, welche Anwendung in dieser Umgebung betrieben werden soll
und welche Anwendungsversion verwendet werden soll. Beim Erzeugen der Umgebung
wird die Infrakstruktur fiir die Anwendung bereitgestellt. Darunter fallen EC2-Instanzen,
ein Load-Balancer, eie Auto Scaling Gruppe und CloudWatch Alarme. Bei der Erstellung
der Umgebung kann die Infrakstur manuell konfiguriert werden. An dieser Stelle wird ein
Betriebssystem (Linux) und ein Anwendungsserver (Tomcat) fiir die EC2-Instanzen festgelegt.
Fiir saimtliche andere Optionen werden die Standardeinstellungen verwendet. Nachdem
die Umgebung erzeugt wurde und die Infrastruktur bereit steht, kann sie beliebig modifi-

49

5. Implementierung

ziert werden. Zum Beispiel kann wie in Abbildung 5.7 die Anwendungsversion aktualisiert
werden.

Die Klasse InstanceRepresentation bietet nicht nur Zugriff auf die Elastic Beanstalk An-
wendung, sondern auch auf die EC2-Instanzen, die verwendet werden, um die Anwendung
zu betreiben. Dies ist insbesondere fiir die Message Correlation Komponente erforderlich, da
hierfiir gezielt EC2-Instanzen adressiert werden miissen. Um Zugriff auf die EC2-Instanzen
zu erhalten, muss die EC2-API verwendet werden. Mithilfe der EC2-Api wird eine Liste aller
EC2-Instanzen der Region abgefragt. Die IDs dieser EC2-Instanzen werden mit den IDs der
ECa2-Instanzen verglichen, die der Elastic Beanstalk Umgebung zugeordnet sind. So kann
festgestellt werden, welche der EC2-Instanzen zum Betrieb der Elastic Beanstalk Anwendung
verwendet werden. Die Informationen, die zum Zugriff auf die EC2-Instanzen verwendet
werden, werden in der Klasse InstanceRepresentation gespeichert.

| :!Instanz-Manager |

sendRequest(Grammar)

! | new()]
1 :Automaten-Umgebung |

requestID()

‘ confirmID(Region, InstancelD)

automatonReady (Region, InstancelD) ‘

Abbildung 5.8.: Die Nachrichten zur Bestdtigung einer Automaten-Umgebung in einem
UML-Sequenzdiagramm.

Uber InstanceRepresentation kann auflerdem abgefragt werden, ob die entsprechende
Instanz der Automaten-Umgebung bereit ist, Anfragen zu tibernehmen, oder nicht. Eine
Automaten-Umgebung ist nicht immer bereit, da es eine gewisse Zeit erfordert, die Ressour-
cen fiir die Umgebung bereitzustellen, nachdem der Befehl zur Erstellung der Umgebung
abgesendet wurde. In dieser Zeit ist es dementsprechend noch nicht moglich, eine An-
frage an die Anwendung zu schicken. In InstanceRepresentation wird gespeichert, ob
eine Automaten-Umgebung bereit ist Anfragen entgegen zu nehmen oder nicht. Wenn die
Automaten-Umgebung bereit ist, muss dies fiir die einzelnen EC2-Instanzen, auf denen die
Automaten-Umgebung betrieben wird, bestitigt werden. Um eine EC2-Instanz zu bestitigen,
werden mehrere Schritte durchgefiihrt. Diese werden in Abbildung 5.8 dargestellt. Hier wird
zundchst eine Grammatik durch sendRequest(..) tUbermittelt. Daraufhin wird eine neue
Automaten-Umgebung erzeugt. Diese beginnt den Bestdtigungsvorgang durch den Aufruf
der Operation requestID() des Riickruf Web Services. Uber die Klasse InstanceManagement
wird nun von sdmtlichen existierenden InstanceRepresentation Instanzen eine Liste der
unbestitigten EC2-Instanzen angefordert. Bei diesen Instanzen wird die Web Service Ope-
ration confirmID(..) des Automaten Web Service der Automaten-Umgebung aufgerufen.
Dabei werden die Region und die ID der jeweiligen EC2-Instanz als Parameter tibergeben.

50

5.3. Implementierung der Instanz-Management Komponente

Eine EC2-Instanz wird jedoch erst als bestétigt gewertet, wenn ein Aufruf der Operation
automatonReady(..) des Riickruf Web Services durch die Automaten-Umgebung erfolgt. Da-
bei werden erneut die Region und die ID der EC2-Instanz angegeben. Dieser Vorgang wird
fiir alle unbestitigten EC2-Instanzen durchgefiihrt.

Die Klasse InstanceManagement sorgt zusdtzlich fiir die Loschung von Automaten-
Umgebungen. Fiir eine Loschung miissen Nachrichten zwischen Instanz-Management
Komponente und Automaten-Umgebung ausgetauscht werden. Die Nachrichten wer-
den in Abbildung 5.9 dargestellt. Eine Loschung wird durch den Aufruf der Operation
deleteAutomaton(..) des Riickruf Web Services durch die Automaten-Umgebung ausgel0st.
Die Automaten-Umgebung in einer Region kann jedoch auf mehreren EC2-Instanzen betrie-
ben werden. Wenn eine dieser EC2-Instanzen durch die Automaten-Umgebung entfernt wird,
verwendet diese immer die Operation deleteAutomaton(..). Daher muss vor der Loschung
der Automaten-Umgebung tiberpriift werden, ob nur noch eine EC2-Instanz in der Umge-
bung betrieben wird. Ansonsten wére es moglich, dass die gesamte Automaten-Umgebung
geloscht wird, obwohl diese noch auf anderen EC2-Instanzen betrieben werden soll. Falls die
Operation deleteAutomaton(..) durch die letzte existieren EC2-Instanz einer Automaten-
Umgebung erfolgt, wird die Automaten-Umgebung geldscht, wie in Abbildung 5.9 durch
delete() dargestellt. Dabei sind dieselben Schritte notig, wie zum Bereitstellen einer Elastic
Beanstalk Anwendung. Auch hier miissen iiber die API die Umgebung, die Anwendung und
die Anwendungsversion separat geloscht werden. Das Loschen einzelner EC2-Instanzen ist
nicht Aufgabe der Instanz-Management Komponente, sondern der Automaten-Umgebung.

:Instanz-Manager :Automaten-Umgebung

deleteAutomaton (Region)

delete()

g@

Abbildung 5.9.: Die Nachrichten zur Loschung einer Automaten-Umgebung in einem UML-
Sequenzdiagramm.

5.3.6. RRS Verwaltung

Eine Bedingung, die fiir die Verarbeitung einer Grammatik erfiillt sein muss, ist das Vorhan-
densein des RRS in der Region der Automaten-Umgebung. Das RRS muss hierbei bereitge-
stellt werden, bevor eine Grammatik ausgefiihrt wird. Die Verwaltung der Instanzen des RRS
ist analog zu der Verwaltung der Instanzen der Automaten-Umgebung implementiert. Der
einzige Unterschied besteht darin, dass keine Skalierung vorgesehen ist (vgl. Abschnitt 4.2.6).
In der Implementierung der RRS Verwaltung ergeben sich daher nur zwei nennenswerte

51

5. Implementierung

Unterschiede. Zum einen werden EC2-Instanzen nicht extra gesucht oder gespeichert. Der
Zugriff erfolgt daher vollstandig tiber die Elastic Beanstalk API. Zum anderen liefert das RRS
selbst keine Riickmeldung dariiber, wann es bereit ist. Der Zustand des RRS wird daher aktiv
in einem Zeitintervall von 60 Sekunden iiber die Elastic Beanstalk API abgefragt. Sobald
festgestellt wird, dass die RRS Instanz bereit ist, wird die Komponente Anfragen Verarbeitung
benachrichtigt. Diese kann nun wartende Anfragen an die Automaten-Umgebung senden.

5.3.7. Message Correlation

Fiir die Message Correlation Komponente sind die Klassen MessageCorrelation und IdTable
relevant. MessageCorrelation ist dabei fiir die reine Weiterleitung der Messages zustandig.
In IdTable wird gespeichert, welche Anfrage von welcher Automaten-Umgebung verarbeitet
wird. Dabei wird die ID der Anfrage der URL der Automaten-Umgebung zugeordnet.
Hierbei wird immer die URL der EC2-Instanz gespeichert, nicht die URL des Load-Balancers
der Umgebung, da dieser die Message zu einer beliebigen Automaten-Umgebung innerhalb
der Auto-Scaling Gruppe schickt.

:Instanz-Manager :Automaten-Umgebung

sendRequest(Grammar, RequestID)

processingRequest(RequestID)

Forall m in Messages

sendMessage (m, RequestID)

executionFinished(RequestID)

Abbildung 5.10.: Die Nachrichten zur Verarbeitung einer Anfrage in einem UML-
Sequenzdiagramm.

IdTable verwendet eine Tabelle zur Zuordnung einer Anfragen-ID zu der Automaten-
Umgebung, die diese bearbeitet. Ein Eintrag in der Tabelle wird beim Eingang einer Anfrage
angelegt. Zu dieser Zeit ist die EC2-Instanz, auf der die Anfrage bearbeitet wird, jedoch
noch nicht bekannt. Diese wird erst dann bekannt, wenn die Anfrage dorthin geschickt
wurde. Der Eintrag in der Tabelle ist deshalb noch nicht vollstandig. Um den Eintrag in der
Tabelle zu vervollstiandigen, ist die Message Correlation Komponente auf eine Riickmeldung
der Automaten-Umgebung angewiesen. Die hierfiir verwendeten Nachrichten werden in
Abbildung 5.10 gezeigt. In der Abbildung wird zunéchst {iber sendRequest (. .) eine Anfrage
an die Automaten-Umgebung geschickt. Die Automaten-Umgebung teilt mit, durch welche
EC2-Instanz die Anfrage verarbeitet wird. Dies geschieht tiber den Riickruf Web Service durch
die Operation processingRequest (..). Wenn die Instanz-Management Komponente diese

52

5.4. Implementierung der Automaten-Umgebung

Nachricht erhalten hat, kann sie die Messages an die entsprechende EC2-Instanz schicken.
Sobald die Automaten-Umgebung tiber executionFinished(..) des Riickruf Web Service
signalisiert, dass die Anfrage verarbeitet wurde, kann der Tabelleneintrag dieser Anfrage
geloscht werden.

Der Vorgidnge zur Weiterleitung einer Message werden in Abbildung 5.11 dargestellt.
Die Weiterleitung erfolgt ebenfalls iiber die Klasse MessageCorrelation. Wenn eine Mes-
sage bei der Web Service Implementierung ManagementWS eingeht, wird die Message
iber forwardMessage(..) zur Klasse MessageCorrelation weitergeleitet. In der Klas-
se MessageCorrelation wird mithilfe der Klasse IdTable iiberpriift, ob die Automaten-
Umgebung, die die zugehorige Anfrage bearbeitet, bereits bekannt ist. Dies geschieht durch
die Methode getMessageTarget(..). Wenn das Ziel der Nachricht bekannt ist, wird die
Message direkt dorthin gesendet. Der Fall, wenn das Ziel der Nachricht nicht bekannt ist,
wird in Abb. 5.11 in der linken Bildhélfte dargestellt. Hier liefert getMessageTarget(..)
keine URL zuriick. Die Message wird in diesem Fall so lange in einer Warteschlange ge-
speichert, bis die Automaten-Umgebung bekannt ist. Das weitere Vorgehen wird in der
rechten Bildhélfte von Abbildung 5.11 dargestellt. Durch die Klasse AutomatenCallback
wird MessageCorrelation mitgeteilt, dass die Anfrage verarbeitet wird. Dies geschieht
durch die Methode processingRequest(..). Gleichzeitig wird in IDTable das Ziel der Mes-
sages gesetzt, was durch die Methode addMessageTarget(..) geschieht. Danach entfernt
MessageCorrelation die Messages aus der Warteschlange und schickt sie zum Ziel.

getMessages(ID) K sendMessage(Message,|D)
‘ ManagementWs ‘ MessageCorreIatlonI >

J forwardMessage(Message, ID)

Ip rocessingRequest(ID)

on | »(Queve |)
‘ MessageCorrelation [storeMessage(M D) T Queue ‘ AutomatonCallback |
getMessageTarget(lD)J INO URL Available addMessageTarget(ID,URL) J
| IDTable | | IDTable |

Abbildung 5.11.: Das linke Bild stellt das Vorgehen dar, wenn das Ziel einer Message noch
nicht bekannt ist. Das rechte Bild stellt dar, wie die Message weitergeleitet
wird.

5.4. Implementierung der Automaten-Umgebung

Nachdem die Implementierung des Instanz-Managers im vorigen Abschnitt vorgestellt
wurde, wird in diesem Abschnitt auf die Implementierung der Automaten-Umgebung
eingegangen. Hierbei werden einige Vorgidnge nicht mehr, oder weniger genau, erklart,
da diese dhnlich implementiert sind, wie bei der Instanz-Management Komponente. Auf
die Implementierung des Web Service Clients (siehe 5.3.1) und die Komponente Automat
Ausfiihrung (siehe Abb. 5.4) wird deshalb nicht mehr eingegangen. Bei Automat Ausfiihrung

53

5. Implementierung

handelt es sich um den eigentlichen Automaten und zugehorige Komponenten. Diese wurden
nicht im Rahmen dieser Arbeit entwickelt, weshalb die Implementierung hier nicht erldutert
wird. Die Komponente wird lediglich als JAR-Datei in das Projekt der Automaten-Umgebung
eingebunden, was den Zugriff auf deren Funktionen ermoglicht.

| ¥

Automaten m{ (Anfrage Anfragen
Web Service Warteschlange |——> Verarbeitung Zustand

l T h .
Message Message Automat Web Service
Warteschlange . .
Ausfiihrung Client

A

Abbildung 5.12.: Die Interaktion der Bestandteile der Automaten-Umgebung.

Eine Ubersicht iiber die Komponenten der Automaten-Umgebung wird in Abb. 5.12 darge-
stellt. Der Automaten Web Service nimmt Anfragen und Messages entgegen und speichert
sie in einer Warteschlange. Auflerdem kommuniziert sie mit der Komponente Zustand. Die
Komponente Anfragen Verarbeitung entfernt Anfragen aus der Warteschlange und steuert
die Komponente Automaten Ausfiihrung. Automaten Ausfiihrung fiihrt einen oder mehrere
Automaten aus und gibt entsprechendes Feedback an Anfragen Verarbeitung. Dabei entnimmt
Automaten Ausfiihrung die Messages aus der Warteschlange. Anfragen Verarbeitung gibt zudem
Informationen iiber den Verarbeitungsstatus von Anfragen an die Zustand Komponente
weiter. Sowohl Zustand als auch Anfragen Verarbeitung geben tiber den Web Service Client
Riickmeldungen an die Instanz-Management Komponente. Die genauen Abldufe werden in
den folgenden Abschnitten erklart.

5.4.1. Automaten Web Service

Der Automaten Web Service dient, gleich wie die Web Services der Instanz-Management
Komponente, zur Ubermittlung von Anfragen. Der Automaten Web Service besitzt drei
verschiedene Operationen. Die Operation sendRequest(..) arbeitet identisch wie die gleich
benannte Operation des Instanz-Management Web Services, nur wird an dieser Stelle keine
ID erzeugt. Die Operation sendMessage(. .) leitet eine Message im Gegensatz zur Instanz-
Management Komponente direkt an eine Warteschlange weiter. Zusétzlich gibt es noch die
Operation confirm(..), deren Funktion in Abschnitt 5.4.2 erklart wird.

Auch die Web Services der Automaten-Umgebung wurden mit Apache CXF erzeugt.

5.4.2. Zustand

Ein wichtiger Teil zur Verwaltung der Automaten-Umgebung stellt die Komponente Zustand
dar. Hierbei ist vor allem die Klasse Status zu erwdhnen. Durch diese wird festgelegt, wann

54

5.4. Implementierung der Automaten-Umgebung

die Automaten-Umgebung bereit ist, Anfragen entgegen zu nehmen und wann nicht. Die
Zustinde der Automaten-Umgebung werden in Abbildung 5.13 dargestellt. Blaue Rechtecke
stehen in der Abbildung fiir Zustdnde. Blaue Pfeile symbolisieren Zustandsiibergénge. Die
Automaten-Umgebung besitzt mehrere Zustdnde, in denen sie bereit (in der Abbildung griin
umrandet) oder nicht bereit ist (in der Abbildung rot umrandet).

Nicht Bereit Bereit

Anfrage
Starte Anwendung Gestartet Nicht Bestatigun
- Start Vorgang (=i Eung| | e e erhalten Anfra_gen
Bestatigt Bearbeitung

Anfrage
erhalten

o Anwendung
Terminierung < — j+—
beenden

Abbildung 5.13.: Die Zustinde der Automaten-Umgebung im Uberblick.

Anfrage
bearbeitet

Zu Beginn ist die Anwendung nicht bereit, da sie zundchst gestartet werden muss. Nach dem
Startvorgang muss die Umgebung zunéchst bestatigt werden (vgl. Abb. 5.13). Die Automaten-
Umgebung gilt als bestétigt, wenn in Status die Region der Automaten-Umgebung und
die ID der EC2-Instanz, auf der die Automaten-Umgebung ausgefiihrt wird, gespeichert
ist. Beide Informationen sind zu Beginn nicht verfiigbar und werden der Automaten-
Umgebung tiber die Operation confirm(..) des Automaten Web Service durch die Instanz-
Management Komponente mitgeteilt (siehe Abb. 5.8). Die Instanz-Management Komponente
verwendet die Operation confirm(..) erst, wenn die Automaten-Umgebung die Operation
requestID(..) des Riickruf Web Services der Instanz-Management Komponente verwendet.
Die Verwendung von requestID(..) durch die Automaten-Umgebung muss dabei zuerst
erfolgen, da die Instanz-Management bis zu diesem Zeitpunkt keine Information dartiber
verfligt, ob die Infrastruktur der Automaten-Umgebung bereit steht. Sobald die Operati-
on confirm(..) durch die Instanz-Management Komponente verwendet wird, wird die
Operation automatonReady(..) der Instanz-Management Komponente aufgerufen und die
Automaten-Umgebung kann nun Anfragen bearbeiten (siehe Abb. 5.8). Der Aufruf von
automatonReady (. .) ist erforderlich, um der Instanz-Management Komponente mitzuteilen,
dass die Automaten Umgebung nun bereit ist. Die Automaten Umgebung befindet sich nun
im Zustand Umgebung bereit aus Abbildung 5.13. In Status wird auflerdem gespeichert, ob
die Automaten-Umgebung gerade eine Anfrage bearbeitet oder sich im Leerlauf befindet.
Dies wird durch in Abbildung 5.13 durch die Zustinde Anfragen Bearbeitung und Leerlauf
ausgedriickt. Sobald die Automaten-Umgebung in den Zustand Leerlauf tibergeht, wird ein
Timer von 15 Minuten gestartet. Zu dem Zeitpunkt, an dem dieser Timer abladuft, wird die
Operation deleteAutomaton(..) des Riickruf Web Services aufgerufen (siehe Abb. 5.9). Falls
wihrend der 15 miniitigen Wartezeit eine neue Anfrage eingeht, wird der Timer abgebrochen.
Sobald die Anwendung gel6scht wird, das heifit in den Zustand Terminierung iibergeht, gilt
sie als nicht bereit und kann keine Anfragen mehr entgegen nehmen.

55

5. Implementierung

5.4.3. Anfragen Verarbeitung

Die Verarbeitung von Anfragen erfolgt dhnlich wie beim Instanz-Manager und wird
durch den Automaten Web Service angestofien, wenn eine Anfrage eingeht. Dabei verhal-
ten sich die Klassen AutomatonThreadManager und AutomatonThread gleich zueinander wie
RequestHandlerManager und RequestHandler.

Jede Instanz von AutomatonThread fiihrt einen Automaten aus. Die Instanzen von
AutomatonThread erhalten die Grammatiken hierfiir von der einzigen existierenden In-
stanz von AutomatonThreadManager. Die Instanz von AutomatonThreadManager bezieht die
Anfragen wiederum aus der SQS Warteschlange, in der die Anfragen durch den Au-
tomaten Web Service gespeichert werden. Wenn der Automat einer AutomatonThread In-
stanz die Ausfithrung einer Grammatik beendet hat, teil der AutomatonThread dies der
Instanz von AutomatonThreadManager mit. Diese benachrichtigt Status dariiber, wenn sich
alle Threads im Leerlauf befinden, wodurch dort der Losch-Timer gestartet wird. AufSer-
dem werden vor und nach der Ausfithrung eines Automaten die jeweiligen Operationen
processingRequest(..) und executionFinished(..) des Riickruf Web Services ausgefiihrt
(vgl. Abb. 5.10).

In der Komponente Anfragen Verarbeitung ist zudem die Funktion implementiert, Messages
an bestimmte Instanzen von AutomatonThread weiterzuleiten. Hierbei wird dhnlich vorgegan-
gen, wie bei der Message Correlation Komponente der Instanz-Management Komponente. Es
wird lokal eine Tabelle gefiihrt, die speichert, welcher Thread welche Anfrage bearbeitet. Die
Zuordnung erfolgt dabei iiber die eindeutige ID des Threads, die durch das Betriebssystem
vergeben wird. Um die Messages bis zur Verwendung zu speichern, besitzt jeder Thread
eine eigene Warteschlangen auf SQS. Der Zugriff auf die Warteschlange erfolgt tiber die SQS
APL

5.4.4. Skalierung

Um die Automaten-Umgebung skalierbar zu gestalten, werden {iiber Elastic Beanstalk die
Services Load-Balancing, Auto Scaling und CloudWatch verwendet. Die Skalierung erfolgt
ausschliefilich tiber diese Services. Sie werden automatisch beim Start der Elastic Beanstalk
Anwendung verwendet. Durch den Auto Scaling Service werden dabei auf verschiedenen
ECa2-Instanzen jeweils eine komplette Automaten-Umgebung erstellt. Der Auto-Scaling Ser-
vice ist dabei so konfiguriert, dass eine neue EC2-Instanz gestartet wird, sobald auf allen
bestehenden EC2-Instanzen iiber einen Zeitraum von drei Minuten eine durchschnittliche
CPU Last von tiber 80% vorliegt. Dabei werden maximal fiinf EC2-Instanzen pro Automaten-
Umgebung erstellt. Eine EC2-Instanz wird geloscht, wenn bei dieser iiber einen Zeitraum
von drei Minuten eine durchschnittliche CPU Last von unter 50% vorliegt. Die Anfragen,
die von der Instanz-Management Komponente an die Automaten-Umgebung geschickt
werden, werden durch den Load-Balancer auf die EC2-Instanzen, auf denen die Automaten-
Umgebungen betrieben wird, verteilt. Der Load-Balancer schickt Anfragen dabei bevorzugt
an EC2-Instanzen mit niedriger CPU Last. Dies bringt das Problem mit sich, dass Anfragen
auch an eine EC2-Instanz geschickt werden konnen, obwohl diese noch nicht bereit ist,

56

5.4. Implementierung der Automaten-Umgebung

das heifst noch nicht von der Instanz-Management Komponente bestitigt wurde. Ohne die
Region und ID der EC2-Instanz zu kennen, konnen die Anfragen jedoch nicht verarbeitet
werden. Sie werden aus diesem Grund so lange lokal zwischengespeichert, bis diese Infor-
mationen vorhanden sind. Sobald die Region bekannt ist, werden die Nachrichten zur SQS
Warteschlange geschickt, die von allen Automaten-Umgebungen der Region verwendet wird,
um Anfragen zu speichern. Ohne die Region zu kennen, ist auch dies nicht moglich, da bei
SQS immer eine Region explizit angegeben werden muss.

57

6. Diskussion

In diesem Kapitel soll das Ergebnis der Arbeit diskutiert werden. Hierzu wird in Abschnitt 6.1
die beispielhafte Verarbeitung einer Anfrage durch den die Instanz-Management Kompo-
nente schrittweise vorgestellt, um die Funktionen der Instanz-Management Komponente
zusammenzufassen. Auf dieser Basis wird in 6.2 untersucht, ob die Ziele der Arbeit und
die Anforderungen aus Kapitel 3 erfiillt wurden. Abschlieffend werden in 6.3 eventuelle
Schwiéchen und Verbesserungsmoglichkeiten diskutiert.

6.1. Beispielhafte Verarbeitung einer Anfrage

In diesem Abschnitt wird die beispielhafte Verarbeitung einer Anfrage vorgestellt, um die
Funktionsweise der Instanz-Management Komponente und der Automaten-Umgebung zu-
sammenzufassen. Der Ablauf wird aufierdem in einem UML-Aktivitdtsdiagramm dargestellt
(siehe Abb. 6.1).

Die Verarbeitung einer Anfrage wird stets durch den Empfang einer Anfrage durch die
Instanz-Management Komponente initiiert. Bei der Anfrage handelt es sich um eine formale
Grammatik in XML Form. Die Anfrage wird durch die Instanz-Management Komponente
entgegengenommen und es wird eine eindeutige ID fiir diese Anfrage generiert. Die ID wird
gespeichert und zum Client zuriickgesendet. Die Anfrage selbst wird in die Warteschlange
fiir Anfragen eingeordnet.

Nun beginnt die Verarbeitung der Anfrage. Der erste Schritt dabei ist die Berechnung
der Zielregion, in der die Grammatik ausgefiihrt werden soll. Dieser Schritt wird in der
Abbildung durch den Zustand Region Berechnen dargestellt. Danach wird eine Instanz
einer Automaten-Umgebung in der Zielregion angefordert. An dieser Stelle gibt es zwei
Moglichkeiten, die in der Abbildung durch die Verzweigung Aut.-Umg. verfiigbar? dargestellt
werden. Bei der ersten Moglichkeit ist in dieser Region bereits eine Instanz der Automaten-
Umgebung vorhanden, die bereit ist Anfragen entgegenzunehmen. In diesem Fall wird die
Anfrage direkt an die Automaten-Umgebung geschickt. Ist keine Instanz der Automaten-
Umgebung vorhanden, wird in der Zielregion eine neue erstellt. Die Anfrage wird in einer
Warteschlange gespeichert, bis die neue Instanz der Automaten-Umgebung bereit dazu ist,
Anfragen entgegenzunehmen. Bevor die Automaten-Umgebung Anfragen entgegen nehmen
kann, muss diese zunéchst durch die Instanz-Management Komponente bestitigt werden
(Zustand Bestitigung in der Abbildung).

59

6. Diskussion

Instanz-Management Komponente Automaten-Umgebung

Empfange
Anfrage
Anfrage B
entgegennehmen]
v v
m
¥

v
In Warteschlange

Bestitigung

¥

N Anfrage entgegen

E nehmen

ID zuriicksenden

und speichern

Region berechnen

Automaten-
Umgebung anfordern

v

7’7[MNein]

Aut.-Umg. verfiighar?

Automaten-
Umgebung erzeugen

Messages
g entgegenneh

[Ja]

Anfrage speichern
und warten

=

¥ v
@

[1A]
[Nein] Messages empfangen? —l

Message senden b@

S

Verarbeit

Verarbeitu
abgeschlos

Abbildung 6.1.: Verarbeitung einer Anfrage in einem UML Aktivitdtsdiagramm.

Die weiteren Aktionen von Instanz-Management Komponente und Automaten-Umgebung
finden parallel statt. Dies wird durch den blauen Parallelisierungsbalken bei der Instanz-
Management Komponente dargestellt. Die Instanz-Management Komponente leitet die An-

60

6.2. Untersuchung des Ergebnisses

frage zur Automaten-Umgebung weiter, die diese entgegen nimmt. Die Instanz-Management
Komponente befindet sich nun zunéchst im Leerlauf. Die Automaten-Umgebung beginnt
mit der Verarbeitung der Grammatik. Dariiber wird auch die Instanz-Management Kom-
ponente benachrichtigt. Falls diese Messages empfangen hat (Verzweigungsknoten Messa-
ges empfangen? in der Abbildung) sendet sie diese an die Automaten-Umgebung. In der
Automaten-Umgebung wird der Automat ausgefiihrt und parallel dazu werden Messages
entgegen genommen. Die Parallelitdt wird in der Abbildung durch den Parallelisierungsbal-
ken vor Messages entgegennehmen und Automat ausfiihren dargestellt. Nach dem Ende dieser
parallelen Aktionen in der Automaten-Umgebung ist dort die Verarbeitung beendet. Es wird
eine Riickmeldung an die Instanz-Management Komponente gegeben, womit die parallele
Aktivitdt von Instanz-Management Komponente und Automaten-Umgebung beendet ist.
Dies wird durch den Synchronisierungsbalken bei der Instanz-Management Komponente
dargestellt. Damit ist die Verarbeitung der Anfrage abgeschlossen.

6.2. Untersuchung des Ergebnisses

Anhand des Beispielablaufes aus dem vorigen Abschnitt wird nun untersucht, inwiefern
die Ziele der Arbeit erreicht wurden. Die generellen Ziele der Arbeit aus der Einleitung
wurden erfiillt. Die Instanz-Management Komponente ist dazu in der Lage, verschiedene
Instanzen eines Automaten zu verwalten und auf unterschiedliche Regionen der Amazon
Cloud zu verteilen. Sie kann zudem Instanzen eines Automaten entfernen. Die Auswahl
der Region geschieht dabei, wie gefordert, tiber die in der Grammatik verwendeten Web
Services. Zudem wird der Automat in einer generischen Form bereitgestellt, wodurch dieser
prinzipiell beliebig viele verschiedene Grammatiken verarbeiten kann. Die Skalierbarkeit des
Automaten wird {iber die Automaten-Umgebung sichergestellt. Die Skalierung selbst wird
dabei vollstindig von der Amazon Infrastruktur tibernommen. Diese kiimmert sich auch
darum, iiberfliissige Rechenkapazititen wieder freizugeben. Die Automaten-Umgebung
selbst wird von der Instanz-Management Komponente entfernt, sobald die Automaten-
Umgebung nicht mehr benétigt wird.

Auch den Anforderungen, die in Kapitel 3 formuliert wurden, wird durch die vorliegen-
de Implementierung nachgekommen. Die Anforderungen A1 (Regionen Berechnung), A2
(Verwaltung von verschiedenen Instanzen eines Automaten), A6 (Generischer Automat), Ag
(Effizienter Umgang mit Ressourcen) und A1o (Skalierbarkeit) sind bereits durch die allge-
meinen Ziele abgedeckt. Anforderung A3 (Ausfithrung des Automaten moglich) wird durch
die Message Correlation Komponente der Instanz-Management Komponente und durch die
Automaten-Umgebung erfiillt. Hierbei kann ein Automat gestartet werden und wéhrend der
Ausfithrung kann dieser mit Messages versorgt werden. Durch die Web Service Registry Kom-
ponente wird Anforderung A4 (Uberblick iiber Web Services) erfiillt, da diese Informationen
zu samtlichen Web Services speichert. Die geforderte Verwaltung der RRS-Instanzen aus
Anforderung As wird durch die Komponente RRS Verwaltung implementiert. Anforderung
A7 (Garantierte Verarbeitung einer Anfrage) wird durch die Speicherung der Anfragen in
einer persistenten Warteschlange erfiillt. Zudem werden die Anfragen im Fehlerfall wieder
dort gespeichert. In Anforderung A8 wird eine optimale Verteilung der Automaten auf die

61

6. Diskussion

verschiedenen Regionen gefordert. Die Anforderung ist beztiglich der verwendeten Metrik
erfiillt. Fiir jede Region wird eine Bewertung erstellt, in der die Kosten der Web Service
Aufrufe bewertetet werden. Die Kosten werden durch die Auswahl der Region mit der besten
Bewertung minimiert.

6.3. Alternative Umsetzungsmoglichkeiten

Wie im vorigen Abschnitt gezeigt, wurden die Ziele und Anforderungen der Arbeit durch
die Implementierung erfiillt. An dieser Stelle werden alternative Umsetzungsmoglichkeiten
fiir gewisse Probleme diskutiert, die Nachteile der vorliegenden Implementierung beheben
wiirden, jedoch andere Probleme mit sich bringen wiirden.

Ein Problem stellt die lange Zeitspanne dar, die fiir die Bereitstellung einer Elastic Beanstalk
Anwendung benétigt wird. Wenn eine neue Automaten-Umgebung erzeugt wird, vergeht
haufig eine Zeit von 5 - 10 Minuten, bis die Anwendung tatsdchlich bereitsteht. Die genaue
Dauer unterscheidet sich bei jedem Bereitstellungsvorgang. Fiir die Verarbeitung einer Anfra-
ge bedeutet dies eine ebenso lange Wartezeit. Eine solche Verzogerung bei der Bearbeitung
von Anfragen ist nicht wiinschenswert. Um dies zu vermeiden, konnte in jeder Region
standardméflig eine Automaten-Umgebung betrieben werden, die nie geloscht wird. Hierbei
wiirden unter Umstdnden aber lange Leerlauf-Phasen fiir eine Automaten-Umgebung ent-
stehen, wenn die Automaten-Umgebung einer Region eigentlich nicht benétigt wird. Dies
wiére ein Widerspruch zu der Anforderung, dass moglichst viele Ressourcen gespart werden
sollen. Letztendlich wurde in der Implementierung die erste Losung gewdhlt, da tiber die
Dauer der Verarbeitungszeit in den Anforderungen keine Vorgaben gemacht wurden.

Ein weiterer Punkt, der diskutiert werden kann, ist das Vorgehen bei der Berechnung der
Region. In der verwendeten Implementierung wird die Zugriffshaufigkeit auf Web Services
analysiert. Aufierdem wird die Latenz durch die Strecke bewertet, die bei einem Web Service
Aufruf zuriickgelegt wird. Ein Aspekt der dabei nicht bertiicksichtigt wird, ist die Daten-
menge, die die Web Services transferieren. Diese ist nicht ohne Weiteres ermittelbar. Die
Latenz konnte ebenfalls effizienter bestimmt werden, als {iber die reine Entfernung der
Rechenzentren, in denen die Web Services zur Verfiigung stehen. Die Latenz ist unter ande-
rem abhédngig von der tatsdchlichen Leitungsldnge und der Qualitdt der Leitung sowie der
Stationen, iiber die ein Paket geschickt wird. Um hierbei eine zuverldssige Abschitzung zu
treffen, miissten die Latenzen zwischen den einzelnen Rechenzentren regelmiflig {iber einen
langeren Zeitraum gemessen werden. Eine einzelne Messung einer Latenz zu verwenden,
wire nicht sinnvoll, da diese nur eine Momentaufnahme darstellt und stark variieren kann.
Die absolute Distanz zweier Rechenzentren hat jedoch immer einen Einfluss auf die Latenz,
auch wenn sie nicht die einzige Einflussgrofe ist.

Die Skalierung der Automaten-Umgebung konnte ebenfalls anders umgesetzt werden. Wiir-
den die Komponenten wie Load-Balancing und Auto Scaling in der Instanz-Management
Komponente implementiert werden, hédtte man hierauf besseren Zugriff. Des Weiteren beno-
tigt es weniger Zeit, eine Elastic Beanstalk Anwendung ohne diese Komponenten zu starten,
da hierbei nur eine EC2-Instanz gestartet und konfiguriert werden muss. Damit konnte auch

62

6.3. Alternative Umsetzungsméglichkeiten

das zuerst beschriebene Problem entschirft werden. Jedoch erfordert es erheblichen Auf-
wand, diese Komponenten selbst mit der Zuverldssigkeit und Qualitdt zu implementieren,
die durch AWS gewihrleistet wird. Daher wurde die Skalierung der Anwendungen der

Amazon Infrastruktur tiberlassen.

63

7. Zusammenfassung und Ausblick

In diesem Kapitel soll die Arbeit abschliefifend zusammengefasst werden. Aufierdem wird
ein Ausblick gegeben, welche Aufgaben in der Zukunft noch zu bewiltigen sind.

7.1. Zusammenfassung

Im Rahmen dieser Bachelorarbeit wurde eine Instanz-Management Komponente fiir unifi-
zierte Service-Kompositionen entwickelt, die in der Lage ist, die Instanzen eines endlichen
Automaten zur Ausfiihrung von Service-Kompositionen in der Amazon Cloud zu verwalten
und diese sinnvoll {iber verschiedene Cloud-Regionen zu verteilen. Zudem wurde eine
Umgebung fiir den Automaten entwickelt, die dessen Betrieb in der Cloud erlaubt.

Zu Beginn der Arbeit wurden zundchst mehrere Anbieter von Cloud Services evaluiert, um
daraus das Angebot zu wihlen, welches am besten zur Erfiillung der gestellten Anforderun-
gen geeignet ist. Hierbei wurden die Anbieter beziiglich mehrerer Kriterien verglichen, was
zur Entscheidung fiir das Cloud Angebot Amazon Web Services gefiihrt hat.

Danach wurde anhand der Anforderungen ein Konzept fiir die Instanz-Management Kom-
ponente erstellt. Hierbei wurde festgestellt, dass die geforderten Funktionalitdten sich nur
schwer in einer einzigen zentralen Komponente realisieren lassen. Stattdessen wurde be-
schlossen, bestimmte Funktionalititen zum Automaten auszulagern. Der Automat und die
zusétzlich benotigten Komponenten wurden in einer Anwendung zusammengefasst, die als
Automaten-Umgebung bezeichnet wurde. Diese verwaltet den Zustand des Automaten und
versorgt den Automaten mit Anfragen. Die Instanz-Management Komponente kiimmert sich
dagegen hauptsdchlich um die Verwaltung der verschiedenen Automaten-Umgebungen. Eine
weitere Aufgabe der Instanz-Management Komponente ist die Verteilung der Automaten-
Umgebungen auf verschiedene Regionen, wofiir ein Algorithmus entwickelt wurde. Dieser
berticksichtigt die Web-Services einer Kompositionsgrammatik und bezieht die Verwen-
dungshdufigkeit der Web Services sowie die Entfernung eines Web Services zu einer Region
mit ein.

Anschlieffend wurden Implementierungsdetails beider Anwendungen und ihrer Kompo-
nenten erldutert. Dabei wurde ein besonderer Fokus auf das Zusammenspiel der beiden
Anwendungen und auf die Integration der Anwendungen in die Amazon Cloud gelegt.
Abschlieflend wurde in einer Evaluation festgestellt, dass die Anforderungen der Arbeit
erfiillt wurden, jedoch wurden Design-Entscheidungen angesprochen, die noch weitere
Optimierungen bendtigen.

65

7. Zusammenfassung und Ausblick

7.2. Ausblick

In Abschnitt 6.3 wurden bereits einige Funktionen der Anwendungen angesprochen, die mit
einem gewissen Aufwand erweitert werden konnen.

Fiir die Optimierung der Instanz Verteilung auf verschiedene Regionen konnten in einem
langeren Betrieb Daten iiber die Verwendung der Web Services gesammelt werden. Hierbei
konnten beispielsweise die Datenmengen analysiert werden, die ein Web Service bei einem
Aufruf durchschnittlich sendet. Dadurch konnten Web Services, die grofie Datenmengen
benoétigen, starker gewichtet werden, als solche, die auf geringe Datenmengen zugreifen.
Zudem konnten tiber einen lingeren Zeitraum Daten tiber die gemessenen Latenzen zwi-
schen den Regionen gesammelt werden. Diese konnten anstatt der reinen Entfernung als
Metrik fiir die Entfernung der Regionen zueinander verwendet werden. Zudem konnten die
Daten dynamisch aktualisiert werden, wenn die Latenzen zur Laufzeit stetig tiberwacht und
analysiert werden wiirden.

Auch die Skalierungsfunktion bietet noch Raum fiir Optimierungen. Die Amazon Services
zur Skalierung bieten grundsatzlich viele Moglichkeiten zur Konfiguration, zum Beispiel,
ab welchen Schwellen neue Instanzen erzeugt werden und wie viele Instanzen prinzipiell
verwendet werden sollen. Hierbei konnte evaluiert werden, welche Einstellungen fiir die
Skalierung einen optimalen Kompromiss aus Leistung und Einsparung von Ressourcen
bieten. Hierzu miissten verschiedene Konfigurationen in Testszenarien iiberpriift werden.
Zudem wurde das Zeitintervall, nach der eine Automaten-Umgebung im Falle von Inaktivitat
vollstandig geloscht wird, fest auf eine Zeit von 15 Minuten gesetzt. An dieser Stelle konnte
untersucht werden, ob dieses Zeitintervall eine sinnvolle Lange besitzt. Ein weiterer Ansatz
wire eine dynamische Berechnung dieser Zeitspanne, wobei hierfiir zundchst Grundlagen
geschaffen werden miissten, auf denen die Berechnung basieren sollte.

66

A. Anhang

</grammar>
<nonTerminals>

<nonTerminal>
<name> D1 </name>
<type> RRS </type>
<input>
<value> 2 </value>
</input>
<output>
<reference> X </reference>
</output>
</nonTerminal>

</nonTerminals>
<nonTerminalTypes>

<nonTerminalType name="RRS">
<wsa:EndpointReference>
<wsa:Address>
http://95.208.155.213:8081/RRS/services/RRSPort?wsdl
</wsa:Address>
</wsa:EndpointReference>
<operation>insert</operation>
<wsdl:binding>RRSServiceSoapBinding</wsdl:binding>
<wsdl:portType>RRS</wsdl:portType>
<wsdl:port>RRSPort</wsdl:port>
<wsdl:service>RRSService</wsdl:service>
<namespace>http://default_package/</namespace>
</nonTerminalType>

</nonTerminalTypes>
<terminals>
<terminal>

<name> sl </name>
</terminal>

67

A. Anhang

</terminals>

<rules>

<rule>
<LHS>
<nonTerminalRef> S </nonTerminalRef>
</LHS>
<RHS>
<nonTerminalRef> D1 </nonTerminalRef>
<nonTerminalRef> D2 </nonTerminalRef>
<nonTerminalRef> D3 </nonTerminalRef>
<nonTerminalRef> X </nonTerminalRef>
</RHS>
</rule>

</rules>
<start>
<nonTerminalRef> S </nonTerminalRef>

</start>

</grammar>

68

Literaturverzeichnis

[ACHMo4] G. Alonso, E. Casati, K. Harumi, V. Machiraju. Web Services - Concepts, Archi-

[Amaal]

[Amab]

[Amac]

[Amad]

[Amae]

[Amaf]

[Amag]

[Amah]

[Amai]

[Amaj]

tectures and Applications. Springer, 2004. ISBN: 978-3-642-07888-0. (Zitiert auf
Seite 12)

Amazon. Amazon Linux AMIs. http://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/AmazonLinuxAMIBasics.html. [Online; abgerufen am 18.09.2013].
(Zitiert auf Seite 42)

Amazon. Amazon Web Services Documentation. http://aws.amazon.com/
documentation/. [Online; abgerufen am 10.09.2013]. (Zitiert auf den Seiten 21
und 37)

Amazon. Architectural Overview. http://docs.aws.amazon. com/
elasticbeanstalk/latest/dg/concepts.concepts.architecture.html. [Onli-
ne; abgerufen am 10.09.2013]. (Zitiert auf Seite 23)

Amazon. AWS SDK for Java API Reference. http://docs.aws.amazon.com/
AWSJavaSDK/latest/javadoc/index.html. [Online; abgerufen am 10.09.2013].
(Zitiert auf Seite 22)

Amazon. How Elastic Load Balancing Works. http://docs.aws.amazon.
com/ElasticLoadBalancing/latest/DeveloperGuide/SvcIntro_HowELBWorks.
html. [Online; abgerufen am 19.09.2013]. (Zitiert auf den Seiten 22 und 38)

Amazon. Introduction to Amazon S3. http://docs.aws.amazon. com/AmazonS3/
latest/dev/Introduction.html. [Online; abgerufen am 19.09.2013]. (Zitiert auf
Seite 39)

Amazon. Kostenloses Nutzungskontingent fiir AWS. http://aws.amazon.com/
de/free/. [Online; abgerufen am 10.09.2013]. (Zitiert auf Seite 23)

Amazon. Kostenloses Nutzungskontingent fiir AWS. http://aws.amazon. com/
de/grants/. [Online; abgerufen am 10.09.2013]. (Zitiert auf Seite 23)

Amazon. Pricing. http://aws.amazon.com/ec2/#pricing. [Online; abgerufen
am 19.09.2013]. (Zitiert auf Seite 40)

Amazon. Produkte und Services nach Region. http://aws.amazon.com/de/
about-aws/globalinfrastructure/regional-product-services/. [Online; ab-
gerufen am 19.09.2013]. (Zitiert auf Seite 40)

69

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonLinuxAMIBasics.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonLinuxAMIBasics.html
http://aws.amazon.com/documentation/
http://aws.amazon.com/documentation/
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/concepts.concepts.architecture.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/concepts.concepts.architecture.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/SvcIntro_HowELBWorks.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/SvcIntro_HowELBWorks.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/SvcIntro_HowELBWorks.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.html
http://aws.amazon.com/de/free/
http://aws.amazon.com/de/free/
http://aws.amazon.com/de/grants/
http://aws.amazon.com/de/grants/
http://aws.amazon.com/ec2/#pricing
http://aws.amazon.com/de/about-aws/globalinfrastructure/regional-product-services/
http://aws.amazon.com/de/about-aws/globalinfrastructure/regional-product-services/

Literaturverzeichnis

[Amak]

[Amal]

[Amam)]

[Aman]

[Amao]

[Amap]

[clo]

[DIMZos]

[GL12]

[GLC13]

[Gooa]

[Goob]

70

Amazon. Supported AWS Services. http://docs.aws.amazon.com/
AmazonCloudWatch/latest/DeveloperGuide/supported_services.html. [Onli-
ne; abgerufen am 19.09.2013]. (Zitiert auf Seite 37)

Amazon. What Is Amazon CloudWatch. http://docs.aws.amazon.com/
AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html. [Online;
abgerufen am 19.09.2013]. (Zitiert auf Seite 37)

Amazon. What is Amazon EC2? http://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/concepts.html. [Online; abgerufen am 19.09.2013]. (Zitiert
auf Seite 37)

Amazon. What is Amazon Simple Queue Service? http://docs.aws.amazon.
com/AWSSimpleQueueService/latest/SQSDeveloperGuide/Welcome.html. [On-
line; abgerufen am 19.09.2013]. (Zitiert auf den Seiten 22 und 39)

Amazon. What is Auto Scaling? http://docs.aws.amazon.com/AutoScaling/
latest/DeveloperGuide/WhatIsAutoScaling.html. [Online; abgerufen am
19.09.2013]. (Zitiert auf den Seiten 23 und 38)

Amazon. What Is AWS Elastic Beanstalk and Why Do I Need It? http://
docs.aws.amazon.com/elasticbeanstalk/latest/dg/Welcome.html. [Online;
abgerufen am 10.09.2013]. (Zitiert auf den Seiten 22 und 38)

Bundesamt fiir Sicherheit in der Informationstechnik. Cloud Computing Grund-
lagen. https://www.bsi.bund.de/DE/Themen/CloudComputing/Grundlagen/
Grundlagen_node.html. [Online; abgerufen am 19.10.2013]. (Zitiert auf Sei-
te 11)

W. Dostal, M. Jeckle, I. Melzer, B. Zengler. Service-orientierte Architekturen mit
Web Services. Elsevier, 2005. ISBN: 978-3-8274-1457-1. (Zitiert auf Seite 12)

K. Gorlach, F. Leymann. Dynamic Service Provisioning for the Cloud. In
Proceedings of the 2012 IEEE Ninth International Conference on Services Computing,
SCC "12, S. 555-561. IEEE Computer Society, Washington, DC, USA, 2012. doi:
10.1109/SCC.2012.30. URL http://dx.doi.org/10.1109/SCC.2012.30. (Zitiert
auf den Seiten 16, 17 und 28)

K. Gorlach, F. Leymann, V. Claus. Unified Execution of Service Compositions.
IEEE International Conference on Service Oriented Computing & Applications (SOCA
2013), Kauai, Hawai, December 16-18, 2013. (Zitiert auf den Seiten 9 und 14)

Google. Available Regions & Zones. https://developers.google.com/
compute/docs/zones#available. [Online; abgerufen am 10.09.2013]. (Zitiert auf
Seite 23)

Google. Google App Engine. https://cloud.google.com/products/
app-engine. [Online; abgerufen am 10.09.2013]. (Zitiert auf Seite 23)

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/supported_services.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/supported_services.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/Welcome.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/Welcome.html
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/WhatIsAutoScaling.html
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/WhatIsAutoScaling.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/Welcome.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/Welcome.html
https://www.bsi.bund.de/DE/Themen/CloudComputing/Grundlagen/Grundlagen_node.html
https://www.bsi.bund.de/DE/Themen/CloudComputing/Grundlagen/Grundlagen_node.html
http://dx.doi.org/10.1109/SCC.2012.30
https://developers.google.com/compute/docs/zones#available
https://developers.google.com/compute/docs/zones#available
https://cloud.google.com/products/app-engine
https://cloud.google.com/products/app-engine

Literaturverzeichnis

[Gooc]

[Good]

[Gooe]

[Goof]

[Goog]

[Gooh]

[Gor13]

[HB]

1))

[MG11]

[Mica]

[Micb]

[Micc]

[Micd]

Google. Google App Engine Billing FAQ. https://developers.google.com/
appengine/kb/billing#discount. [Online; abgerufen am 10.09.2013]. (Zitiert
auf Seite 24)

Google. Google App Engine Pricing. https://cloud.google.com/pricing/.
[Online; abgerufen am 10.09.2013]. (Zitiert auf Seite 24)

Google. Google Cloud Platform. https://cloud.google.com/. [Online; abgeru-
fen am 10.09.2013]. (Zitiert auf Seite 21)

Google. Google Compute Engine. https://cloud.google.com/products/
compute-engine. [Online; abgerufen am 10.09.2013]. (Zitiert auf Seite 23)

Google. Google Compute Engine Pricing. https://cloud.google.com/pricing/
compute-engine. [Online; abgerufen am 10.09.2013]. (Zitiert auf Seite 24)

Google. Java Service APIs. https://developers.google.com/appengine/docs/
java/apis. [Online; abgerufen am 10.09.2013]. (Zitiert auf Seite 23)

K. Gorlach. A Generic Transformation of Existing Service Composition Mo-
dels to a Unified Model. Technischer Bericht Informatik 2013/01, Universi-
tat Stuttgart, Universitdt Stuttgart, Institut fiir Architektur von Anwendungs-
systemen, 2013. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/
NCSTRL/NCSTRL_view.pl?id=TR-2013-01&engl=0. (Zitiert auf Seite 13)

H. Haas, A. Brown. Web Services Glossary. http://www.w3.org/TR/ws-gloss/.
W3C.[Online; abgerufen am 21.09.2013]. (Zitiert auf Seite 12)

D. Jordan, J. Jordan. Web Services Business Process Execution Language Ver-
sion 2.0. http://docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-0S.html.
OASIS.[Online; abgerufen am 23.09.2013]. (Zitiert auf Seite 9)

P. Mell, T. Grance. The NIST definition of cloud computing (draft). NIST special
publication, 800(145):7, 2011. (Zitiert auf Seite 11)

Microsoft. API and Schema References for Windows Azure. http://msdn.
microsoft.com/en-us/library/windowsazure/f£800682.aspx. [Online; abge-
rufen am 10.09.2013]. (Zitiert auf Seite 23)

Microsoft. ~ Free Trial. https://www.windowsazure.com/de-de/pricing/
free-trial/. [Online; abgerufen am 10.09.2013]. (Zitiert auf Seite 23)

Microsoft. How to Create and Deploy a Cloud Service. http:
//www.windowsazure.com/en-us/manage/services/cloud-services/
how-to-create-and-deploy-a-cloud-service/. [Online; abgerufen am
17.10.2013]. (Zitiert auf Seite 23)

Microsoft. ~ Messaging. http://www.windowsazure.com/de-de/services/
messaging/. [Online; abgerufen am 10.09.2013]. (Zitiert auf Seite 23)

71

https://developers.google.com/appengine/kb/billing#discount
https://developers.google.com/appengine/kb/billing#discount
https://cloud.google.com/pricing/
https://cloud.google.com/
https://cloud.google.com/products/compute-engine
https://cloud.google.com/products/compute-engine
https://cloud.google.com/pricing/compute-engine
https://cloud.google.com/pricing/compute-engine
https://developers.google.com/appengine/docs/java/apis
https://developers.google.com/appengine/docs/java/apis
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-2013-01&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-2013-01&engl=0
http://www.w3.org/TR/ws-gloss/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://msdn.microsoft.com/en-us/library/windowsazure/ff800682.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/ff800682.aspx
https://www.windowsazure.com/de-de/pricing/free-trial/
https://www.windowsazure.com/de-de/pricing/free-trial/
http://www.windowsazure.com/en-us/manage/services/cloud-services/how-to-create-and-deploy-a-cloud-service/
http://www.windowsazure.com/en-us/manage/services/cloud-services/how-to-create-and-deploy-a-cloud-service/
http://www.windowsazure.com/en-us/manage/services/cloud-services/how-to-create-and-deploy-a-cloud-service/
http://www.windowsazure.com/de-de/services/messaging/
http://www.windowsazure.com/de-de/services/messaging/

Literaturverzeichnis

[Mice]

[Micf]

[Micg]

[Mich]

[Mici]

[Micj]

[PA06]

[Scho8]

72

Microsoft. Virtual Machines. http://www.windowsazure.com/en-us/
documentation/services/virtual-machines/?fb=de-de. [Online; abgerufen
am 10.09.2013]. (Zitiert auf Seite 23)

Microsoft. Virtuelle Computer — Preisdetails. http://www.windowsazure.
com/de-de/pricing/details/virtual-machines/. [Online; abgerufen am
10.09.2013]. (Zitiert auf Seite 23)

Microsoft. What is a cloud service? https://www.windowsazure.com/en-us/
manage/services/cloud-services/what-is-a-cloud-service/7fb=de-de.
[Online; abgerufen am 10.09.2013]. (Zitiert auf Seite 23)

Microsoft. Windows Azure Documentation. http://www.windowsazure.com/
en-us/documentation/?fb=de-de. [Online; abgerufen am 10.09.2013]. (Zitiert
auf Seite 21)

Microsoft. Windows Azure in Education. http://www.windowsazure.com/
en-us/community/education/. [Online; abgerufen am 10.09.2013]. (Zitiert auf
Seite 23)

Microsoft. Windows Azure Trust Center. https://www.windowsazure.com/
en-us/support/trust-center/privacy/. [Online; abgerufen am 10.09.2013].
(Zitiert auf Seite 23)

M. Pesic, W. Aalst. A Declarative Approach for Flexible Business Processes
Management. In J. Eder, S. Dustdar, Herausgeber, Business Process Management
Workshops, Band 4103 von Lecture Notes in Computer Science, S. 169—-180. Springer
Berlin Heidelberg, 2006. doi:10.1007/11837862_18. (Zitiert auf Seite 9)

U. Schoening. Theoretische Informatik - kurz gefasst. Spektrum, 2008. ISBN:
978-3827418241. (Zitiert auf Seite 13)

http://www.windowsazure.com/en-us/documentation/services/virtual-machines/?fb=de-de
http://www.windowsazure.com/en-us/documentation/services/virtual-machines/?fb=de-de
http://www.windowsazure.com/de-de/pricing/details/virtual-machines/
http://www.windowsazure.com/de-de/pricing/details/virtual-machines/
https://www.windowsazure.com/en-us/manage/services/cloud-services/what-is-a-cloud-service/?fb=de-de
https://www.windowsazure.com/en-us/manage/services/cloud-services/what-is-a-cloud-service/?fb=de-de
http://www.windowsazure.com/en-us/documentation/?fb=de-de
http://www.windowsazure.com/en-us/documentation/?fb=de-de
http://www.windowsazure.com/en-us/community/education/
http://www.windowsazure.com/en-us/community/education/
https://www.windowsazure.com/en-us/support/trust-center/privacy/
https://www.windowsazure.com/en-us/support/trust-center/privacy/

Erkldarung

Ich versichere, diese Arbeit selbststindig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wortlich oder sinngeméf aus anderen Wer-
ken tibernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Priifungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollstandig
verdffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einleitung
	2 Grundlagen und Forschungsstand
	2.1 Grundbegriffe
	2.1.1 Cloud Computing und Cloud Regionen
	2.1.2 Web Service und Service-Komposition
	2.1.3 Formale Grammatiken

	2.2 Das Gesamtsystem des Automaten
	2.2.1 Service Grammatiken
	2.2.2 Die Funktionsweise des Automaten
	2.2.3 Die Funktion der Instanz-Management Komponente im Gesamtsystem

	2.3 Forschungsstand

	3 Anforderungen und Ablaufumgebung
	3.1 Funktionale Anforderungen
	3.2 Nichtfunktionale Anforderungen
	3.3 Evaluation verschiedener Cloud Anbieter
	3.3.1 Bewertungskriterien
	3.3.2 Untersuchung der Anbieter
	3.3.3 Ergebnis

	4 Entwurf
	4.1 Aufgabenverteilung
	4.2 Instanz-Management Komponente
	4.2.1 Anfragen Verarbeitung
	4.2.2 Berechnung der Region
	4.2.3 Web Service Index
	4.2.4 Verwaltung der Instanzen des Automaten
	4.2.5 Message Correlation
	4.2.6 Reference Resolution System - Instanzverwaltung

	4.3 Die Umgebung des Automaten
	4.3.1 Schnittstelle der Automaten-Umgebung
	4.3.2 Integration des Automaten in die Umgebung
	4.3.3 Statusverwaltung
	4.3.4 Skalierung

	5 Implementierung
	5.1 Verwendete Amazon Web Services
	5.1.1 Elastic Compute Cloud
	5.1.2 CloudWatch
	5.1.3 Auto Scaling
	5.1.4 Elastic Load Balancing
	5.1.5 Elastic Beanstalk
	5.1.6 Simple Storage Service
	5.1.7 Simple Queue Service
	5.1.8 Regionen

	5.2 Architektur
	5.2.1 Schichtenarchitektur
	5.2.2 Aufbau und Zusammenspiel der Anwendungen

	5.3 Implementierung der Instanz-Management Komponente
	5.3.1 Web Services und Web Service Client
	5.3.2 Anfragen Verarbeitung
	5.3.3 Regionen Berechnung
	5.3.4 Web Service Registry
	5.3.5 Instanz-Manager
	5.3.6 RRS Verwaltung
	5.3.7 Message Correlation

	5.4 Implementierung der Automaten-Umgebung
	5.4.1 Automaten Web Service
	5.4.2 Zustand
	5.4.3 Anfragen Verarbeitung
	5.4.4 Skalierung

	6 Diskussion
	6.1 Beispielhafte Verarbeitung einer Anfrage
	6.2 Untersuchung des Ergebnisses
	6.3 Alternative Umsetzungsmöglichkeiten

	7 Zusammenfassung und Ausblick
	7.1 Zusammenfassung
	7.2 Ausblick

	A Anhang
	Literaturverzeichnis

