
Institut für Architektur von Anwendungssystemen

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit Nr. 62

Instanz-Management für
unifizierte

Service-Kompositionen

Stefan Fürst

Studiengang: Informatik

Prüfer/in: Prof. Dr. Frank Leymann

Betreuer/in: Dipl.-Inf. Katharina Görlach

Beginn am: 21. Mai 2013

Beendet am: 8. November 2013

CR-Nummer: C.2.4, D.2.11, H.4.1, I.1.2, I.7.2, J.0

Kurzfassung

Service-Kompositionen können durch Sprachen wie BPEL oder ConDec spezifiziert werden.
Für die Ausführung der durch diese Sprachen beschriebenen Prozesse werden verschiedene
Engines verwendet. Die Engine ist bei der Ausführung eines Prozesses dafür zuständig, die
Web Services des Prozesses aufzurufen. Die Web Services befinden sich in einer verteilten
Ablaufumgebung an verschiedenen Standorten, wodurch beim Aufruf des Web Services
Verzögerungen und Kosten durch Datentransfers entstehen. Die Verzögerungen und Kosten
können minimiert werden, indem die Engine nahe den verwendeten Web Services betrieben
wird. Um die Zahl der verschiedenen Engines innerhalb einer Ablaufumgebung zu reduzie-
ren, wurde ein Ansatz erforscht, bei dem Prozessspezifikationen von verschiedenen Sprachen
zu formalen Grammatiken transformiert werden können. Die Funktionalität der Engine wird
dabei durch einen endlichen Automaten realisiert. Für diesen bereits vorhandenen Ansatz
wird eine Komponente benötigt, die Instanzen des Automaten erzeugt und deren Betrieb in
einer verteilten Ablaufumgebung ermöglicht.
Im Rahmen dieser Bachelorarbeit wird die Realisierung einer Komponente vorgestellt, die
Instanzen eines Automaten in einer Cloud Umgebung erstellt und verwaltet. Dabei wird
ein Konzept zur Platzierung von Automaten-Instanzen in einer Region innerhalb der Ama-
zon Cloud Umgebung präsentiert. Die Region wird dabei so ausgewählt, dass die die
Zugriffskosten auf die Web Services minimiert werden.

3

Inhaltsverzeichnis

1. Einleitung 9

2. Grundlagen und Forschungsstand 11
2.1. Grundbegriffe . 11

2.1.1. Cloud Computing und Cloud Regionen 11

2.1.2. Web Service und Service-Komposition 12

2.1.3. Formale Grammatiken . 13

2.2. Das Gesamtsystem des Automaten . 13

2.2.1. Service Grammatiken . 13

2.2.2. Die Funktionsweise des Automaten . 14

2.2.3. Die Funktion der Instanz-Management Komponente im Gesamtsystem 15

2.3. Forschungsstand . 16

3. Anforderungen und Ablaufumgebung 19
3.1. Funktionale Anforderungen . 19

3.2. Nichtfunktionale Anforderungen . 20

3.3. Evaluation verschiedener Cloud Anbieter . 21

3.3.1. Bewertungskriterien . 21

3.3.2. Untersuchung der Anbieter . 22

3.3.3. Ergebnis . 24

4. Entwurf 25
4.1. Aufgabenverteilung . 26

4.2. Instanz-Management Komponente . 27

4.2.1. Anfragen Verarbeitung . 27

4.2.2. Berechnung der Region . 28

4.2.3. Web Service Index . 30

4.2.4. Verwaltung der Instanzen des Automaten 30

4.2.5. Message Correlation . 31

4.2.6. Reference Resolution System - Instanzverwaltung 32

4.3. Die Umgebung des Automaten . 33

4.3.1. Schnittstelle der Automaten-Umgebung 33

4.3.2. Integration des Automaten in die Umgebung 34

4.3.3. Statusverwaltung . 34

4.3.4. Skalierung . 35

5

5. Implementierung 37
5.1. Verwendete Amazon Web Services . 37

5.1.1. Elastic Compute Cloud . 37

5.1.2. CloudWatch . 37

5.1.3. Auto Scaling . 38

5.1.4. Elastic Load Balancing . 38

5.1.5. Elastic Beanstalk . 38

5.1.6. Simple Storage Service . 39

5.1.7. Simple Queue Service . 39

5.1.8. Regionen . 40

5.2. Architektur . 41

5.2.1. Schichtenarchitektur . 41

5.2.2. Aufbau und Zusammenspiel der Anwendungen 42

5.3. Implementierung der Instanz-Management Komponente 44

5.3.1. Web Services und Web Service Client . 45

5.3.2. Anfragen Verarbeitung . 46

5.3.3. Regionen Berechnung . 47

5.3.4. Web Service Registry . 47

5.3.5. Instanz-Manager . 48

5.3.6. RRS Verwaltung . 51

5.3.7. Message Correlation . 52

5.4. Implementierung der Automaten-Umgebung . 53

5.4.1. Automaten Web Service . 54

5.4.2. Zustand . 54

5.4.3. Anfragen Verarbeitung . 56

5.4.4. Skalierung . 56

6. Diskussion 59
6.1. Beispielhafte Verarbeitung einer Anfrage . 59

6.2. Untersuchung des Ergebnisses . 61

6.3. Alternative Umsetzungsmöglichkeiten . 62

7. Zusammenfassung und Ausblick 65
7.1. Zusammenfassung . 65

7.2. Ausblick . 66

A. Anhang 67

Literaturverzeichnis 69

6

Abbildungsverzeichnis

2.1. Die einzelnen Komponenten des Automaten in einem UML Klassendiagramm 15

2.2. Die Instanz-Management Komponente im Gesamtsystem 16

2.3. Beispiel für die Verteilung von Instanzen anhand Betweenness und Kontext
Klassen . 17

4.1. Instanz-Management Komponente und Automaten Umgebung 25

4.2. Verarbeitung einer Anfrage . 27

4.3. Die Umgebung des Automaten im Überblick. 33

5.1. Die Elastic Beanstalk Infrastruktur im Überblick 39

5.2. Die entwickelten Anwendungen im Schichtenmodell 41

5.3. Die unterliegenden Ressourcen der Anwendungen 42

5.4. Der Aufbau der einzelnen Komponenten und ihre Beziehungen 43

5.5. Interaktion der Bestandteile der Instanz-Management Komponente 44

5.6. Das Verhalten der Web Service Operation sendRequest 45

5.7. Die Schritte zur Erzeugung einer Elastic Beanstalk Anwendung 49

5.8. Nachrichtenaustausch zur Bestätigung . 50

5.9. Nachrichtenaustausch zur Löschung . 51

5.10. Nachrichtenaustausch Anfragen Verarbeitung 52

5.11. Message Correlation Ablauf . 53

5.12. Interaktion der Bestandteile der Automaten-Umgebung 54

5.13. Die Zustände der Automaten-Umgebung . 55

6.1. Exemplarische Verarbeitung einer Anfrage . 60

Tabellenverzeichnis

3.1. Verschiedene Anbieter von Cloud Services im Vergleich 22

7

Verzeichnis der Algorithmen

4.1. Algorithmus zur Berechnung der Zielregion. 29

8

1. Einleitung

Ein Mittel zur Automatisierung von Geschäftsprozessen ist die Verwendung von service-
orientierten Architekturen (SOA). Bei SOA handelt es sich um ein Architekturmuster, bei
dem verschiedene Funktionalitäten eines Systems gekapselt als Services angeboten werden.
Zur Ausführung einer Aufgabe werden dabei mehrere Services miteinander koordiniert.
Zur Implementierung eines Services werden häufig Web Services verwendet. Diese bieten
eine Funktion über das Netzwerk an und werden über eine verteilte Ablaufumgebung
bereitgestellt. Geschäftsprozesse beschreiben mehrere Abläufe, die sich aus einzelnen Auf-
gaben zusammensetzen. Die Aufgaben werden durch Web Services implementiert. Zur
Umsetzung eines Geschäftsprozesses werden dementsprechend Kompositionen von Web
Services verwendet. Um einen Prozess zu spezifizieren, werden Sprachen wie die Business
Process Execution Language (BPEL) [JJ] oder ConDec [PA06] verwendet. Zur Ausführung
eines Prozesses wird eine Engine benötigt. Diese navigiert über den Prozess und führt die in
der Beschreibung des Prozesses spezifizierten Aktivitäten aus. Eine Aktivität kann dort zum
Beispiel der Aufruf eines Web Services sein.

Für verschiedene Sprachen zur Beschreibung von Service-Kompositionen werden unter-
schiedliche Engines benötigt. Falls mehrere Prozesse vorliegen, die in unterschiedlichen
Sprachen spezifiziert sind, müssen innerhalb einer Ablaufumgebung mehrere Engines gleich-
zeitig betrieben werden. Um dieses Problem zu beheben, wird ein Ansatz zur Unifizierung
von Service-Kompositionen erforscht [GLC13]. Dieser verwendet formale Grammatiken zur
Beschreibung von Service-Kompositionen und endliche Automaten, um diese auszuführen.
Dabei sollen Beschreibungen von Service-Kompositionen, die in BPEL oder ConDec verfasst
sind, in formale Grammatiken übersetzt werden. Dadurch wird es möglich, mit einem
endlichen Automaten die Beschreibungen von Service-Kompositionen aus verschiedenen
Sprachen auszuführen. Die formalen Grammatiken dienen hierbei zur Spezifikation von
Prozessen. Der endliche Automat stellt die Komponente dar, die für die Navigation über
einen Prozess verantwortlich ist. Der endliche Automat wird zudem um eine Komponen-
te zum Aufruf von Web Services erweitert. Da sich die verwendeten Web Services über
mehrere Regionen in der Welt verteilt befinden können, entstehen durch den Kontakt mit
den verwendeten Web Services unter Umständen große Latenzen, welche die Ausführung
verzögern. Zudem ist es möglich, dass die Web Services große Datenmengen benötigen, die
über die Distanz zwischen Automat und Web Service transferiert werden müssen. Daher ist
es sinnvoll, die ausführende Instanz des Automaten nahe den benötigten Web Services zu
platzieren, um die Distanzen, und damit auch die entstehenden Latenzen, zu minimieren.

Das Ziel dieser Arbeit ist die Entwicklung und Implementierung einer Instanz-Management
Komponente, welche für die Instanziierung von endlichen Automaten in einer verteilten
Ablaufumgebung (Cloud) verantwortlich ist. Diese soll, in Abhängigkeit der verwendeten

9

1. Einleitung

Web Services einer Service-Komposition, ermitteln, in welcher Region die Instanz des ausfüh-
renden Automaten erzeugt werden soll. Dadurch soll eine möglichst effiziente Ausführung
der Komposition ermöglicht werden. Eine Region ist dabei ein Ort, an dem die Cloud Instanz
einer Anwendung in einem Rechenzentrum betrieben werden kann. Der bereits vorhandene
Automat soll zudem in einer generischen Form als Web Service angeboten werden. Eine
Instanz dieses Web Services soll also beliebig viele formale Grammatiken ausführen können.
Außerdem soll auf die Skalierbarkeit der Lösung geachtet werden. Das heißt, es sollen
entsprechend der Anzahl an Anfragen (formalen Grammatiken) neue Instanzen des Web
Services in der Cloud erzeugt werden. Hierzu soll die Instanz-Management Komponente
erkennen, wann eine Instanz nicht die benötigten Ressourcen für eine schnelle Verarbeitung
der Anfragen besitzt. Umgekehrt sollen keine unnötigen Instanzen des Automaten existieren,
um möglichst sparsam mit den verfügbaren Ressourcen umzugehen.

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Grundlagen und Forschungsstand In diesem Kapitel werden einige Grundbe-
griffe erklärt. Außerdem wird auf die Funktionsweise der bereits vorhandenen Kom-
ponenten und die Rolle der Instanz-Management Komponente im Gesamtsystem
eingegangen. Zusätzlich dazu wird ein bereits vorhandener Ansatz zur Verteilung von
Anwendungen auf verschiedene Regionen vorgestellt.

Kapitel 3 – Anforderungen und Ablaufumgebung In den Anforderungen werden die funk-
tionalen und nichtfunktionalen Zieleigenschaften der Instanz-Management Komponen-
te festgelegt. Außerdem werden verschiedene Anbieter von Cloud Services evaluiert.

Kapitel 4 – Entwurf Im Entwurf wird die Software konzeptioniert, deren Funktionen sich
aus den Anforderungen ergeben. Hierbei wird nicht auf konkrete Technologien einge-
gangen, sondern es erfolgt eine abstrakte Beschreibung der Umsetzung der Funktiona-
litäten.

Kapitel 5 – Implementierung Im Implementierungskapitel werden zunächst die Technologi-
en erläutert, die bei der Umsetzung der Software verwendet wurden. Danach wird die
Architektur des Systems vorgestellt und es wird auf Implementierungsdetails wichtiger
Komponenten eingegangen.

Kapitel 6 – Diskussion Das Ergebnis der Arbeit wird hier in Form eines Beispieles vorge-
stellt. Außerdem wird untersucht, inwiefern die Anforderungen erfüllt wurden und es
findet eine Diskussion des Ergebnisses statt.

Kapitel 7 – Zusammenfassung und Ausblick Abschließend werden die Arbeit und deren
Erkenntnisse zusammengefasst. Zusätzlich wird ein Ausblick gegeben, welche Heraus-
forderungen noch bewältigt werden müssen.

10

2. Grundlagen und Forschungsstand

In diesem Kapitel werden zunächst in Abschnitt 2.1 einige Grundbegriffe der Arbeit erläutert.
Danach wird in Abschnitt 2.2 die Funktion der bereits vorhandenen Komponenten und deren
Interaktion mit der Instanz-Management Komponente erklärt. Zuletzt wird in Abschnitt 2.3
eine thematisch verwandte Arbeit vorgestellt, die sich mit der effizienten Verteilung von
Instanzen auf verschiedene Regionen befasst.

2.1. Grundbegriffe

Zunächst sollen in diesem Abschnitt einige Begriffe erklärt werden, die eine zentrale Rolle in
der Arbeit spielen.

2.1.1. Cloud Computing und Cloud Regionen

Als Ablaufumgebung der zu entwickelnden Instanz-Management Komponente soll eine
Cloud verwendet werden. Das National Institute of Standards and Technology (NIST),
das dem U.S. Department of Commerce untersteht, definiert Cloud Computing wie folgt
(Übersetzung vom Bundesamt für Informationssicherheit):

„Cloud Computing ist ein Modell, das es erlaubt, bei Bedarf, jederzeit und überall bequem über ein Netz
auf einen geteilten Pool von konfigurierbaren Rechnerressourcen (z. B. Netze, Server, Speichersysteme,
Anwendungen und Dienste) zuzugreifen, die schnell und mit minimalem Managementaufwand oder
geringer Serviceprovider-Interaktion zur Verfügung gestellt werden können.“ [MG11] [clo]

NIST nennt dabei folgende relevanten Charakteristiken [MG11]:

• Die angebotenen Ressourcen werden geteilt von mehreren Akteuren verwendet (resource
pooling).

• Der Zugriff auf die Ressourcen erfolgt auf Anforderung und ohne menschliche Interak-
tion mit dem Anbieter des Services (on-demand self-service).

• Der Zugriff auf die Ressourcen ist mit Standardmechanismen über das Netzwerk
möglich. Somit werden heterogene Klienten unterstützt (broad network access).

• Kapazitäten können elastisch erworben und freigegeben werden. Dies kann auto-
matisch abhängig von der Nutzungsintensität geschehen. Aus Sicht des Anwenders
scheinen die Ressourcen unendlich groß zu sein (rapid elasticity).

11

2. Grundlagen und Forschungsstand

• Die Nutzung der Ressourcen kann überwacht und gesteuert werden (measured service).

Eine Cloud bietet folglich die Möglichkeit, dynamisch und mit minimalem Aufwand auf
einen geteilten Pool von Ressourcen zuzugreifen. Bei den Ressourcen kann es sich zum Bei-
spiel um Rechenkapazität oder Speicher handeln. Die Ressourcen einer Cloud werden dabei
stets als Service angeboten. Ein wichtiger Begriff im Zusammenhang mit Cloud Computing
ist die Cloud Region. Anbieter von Cloud Services (zum Beispiel Amazon Web Services)
verwenden zur Bereitstellung der Cloud Infrastruktur häufig Rechenzentren in verschiede-
nen geographischen Regionen. Eine geographische Region, in der ein Rechenzentrum zur
Verfügung steht, wird in diesem Zusammenhang als Cloud Region beziehungsweise als
Region bezeichnet. Bei der Verwendung von Cloud Angeboten kann die Region oft explizit
ausgewählt werden.

2.1.2. Web Service und Service-Komposition

Cloud Computing basiert auf der Nutzung von Services, das heißt eine serviceorientierte
Architektur ist eine Voraussetzung einer Cloud. Zur Umsetzung von Services werden Web
Services verwendet. Das World Wide Web Consortium (W3C) definiert einen Web Service
wie folgt:

„A Web service is a software system designed to support interoperable machine-to-machine interaction
over a network. It has an interface described in a machine-processable format (specifically WSDL).
Other systems interact with the Web service in a manner prescribed by its description using SOAP-
messages, typically conveyed using HTTP with an XML serialization in conjunction with other
Web-related standards.“ [HB]

Web Services erlauben also Interaktion zwischen verschiedenen Systemen über das Netzwerk.
Mit SOAP wird ein XML basiertes Nachrichtenformat verwendet, wodurch auf einen Web
Service unabhängig von Plattform und Programmiersprache zugegriffen werden kann. Die
Beschreibung der Operationen, die ein Web Service anbietet, erfolgt über die Web Service
Definition Language (WSDL), die ebenfalls auf XML basiert [DJMZ05, S.26-27].

Bei einer Service-Komposition wird die Funktionalität von mehreren Web Services zu einem
neuen Service kombiniert [ACHM04, S.245]. Service-Kompositionen werden verwendet, um
die Komplexität von Aufgaben zu reduzieren. Dabei können komplexe Web Services inkre-
mentell aus Web Services mit niedrigerem Abstraktionslevel aufgebaut werden [ACHM04,
S.247]. Prinzipiell können Service-Kompositionen nach Orchestrierungen und Choreogra-
phien unterschieden werden. Bei einer Orchestrierung wird der Ablauf eines Prozesses und
damit die Aufrufe der Web Services zentral gesteuert, während bei einer Choreographie
die Web Services miteinander kooperieren [DJMZ05, S202-203]. Im Folgenden wird im
Zusammenhang von Service-Kompositionen immer von Orchestrierungen ausgegangen.

12

2.2. Das Gesamtsystem des Automaten

2.1.3. Formale Grammatiken

Für die Ausführung einer Service-Komposition muss eine Beschreibung vorliegen, in der
die verschiedenen Abläufe spezifiziert werden. In der vorliegenden Arbeit werden hierfür
formale Grammatiken verwendet.

Bei einer formalen Grammatik handelt es sich um ein Konstrukt aus der theoretischen
Informatik, welches dazu dient formale Sprachen zu beschreiben [Sch08, S.3]. Bei einer
formalen Sprache handelt es sich um eine Kombination von Elementen eines definierten
Alphabets [Sch08, S.3]. Eine Grammatik beschreibt dabei Nicht-Terminale, Terminale, Produk-
tionsregeln und ein Startsymbol [Sch08, S.5]. Mit der Hilfe von Produktionsregeln können
Symbolen durch andere Symbole substituiert werden. Symbole sind Terminale oder Nicht-
Terminale. In dem Zusammenhang von Produktionsregeln wird oft von der linken und der
rechten Seite einer Regel gesprochen. Die linke Seite beinhaltet dabei die Symbole, aus denen
abgeleitet wird und die rechte beinhaltet die Symbole, die das Ergebnis der Regel darstellen.
Die Produktionsregeln einer Grammatik werden so lange angewendet, bis sich keine weitere
Regel mehr anwenden lässt. Das Startsymbol gibt an, mit welcher Regel begonnen werden
muss. Dabei muss das Startsymbol aus der Menge der Nicht-Terminale stammen.

2.2. Das Gesamtsystem des Automaten

Der Ansatz zur Spezifikation und Ausführung von Service-Komposititionen, der dieser
Arbeit zugrunde liegt, lässt sich folgendermaßen zusammenfassen:
Die Beschreibung aller nötigen Artefakte einer Service-Komposition erfolgt durch eine
formale Grammatik. Diese kann in einem Unifizierungsprozess, beispielsweise aus einem
BPEL-Prozessmodell erstellt werden. Die formalen Grammatiken werden durch einen endli-
chen Automaten ausgeführt. Dieser ist zum Beispiel auch dafür verantwortlich, die Aufrufe
von Web Services zu initiieren. Um eine effiziente Ausführung des Automaten zu gewährleis-
ten, soll dieser möglichst nahe an den verwendeten Web Services platziert werden. Hierfür
ist die Instanz-Management Komponente zuständig.

In diesem Abschnitt soll die Funktionsweise des Automaten, der Aufbau der Grammatiken
und das Zusammenspiel dieser Komponente mit der Instanz-Management Komponente
erklärt werden. Auf das Unifizierungsverfahren, also die Umwandlung der Spezifikationen
von Service-Kompositionen verschiedener Sprachen in eine formale Grammatik, wird in die-
ser Arbeit nicht eingegangen, da dieses unabhängig von der Ausführung des Automaten und
der Instanz-Management Komponente ist. Eine Beschreibung des Unifizierungsverfahrens
findet sich in [Gör13].

2.2.1. Service Grammatiken

Die formalen Grammatiken, die zur Spezifikation einer Service Komposition verwendet
werden, werden auch als Service Grammatiken bezeichnet. Sie stellen die Grundlage für

13

2. Grundlagen und Forschungsstand

die Ausführung eines Automaten dar, da sie die Regeln enthalten, nach denen sich der
Automat verhält. In einer Service Grammatik werden Terminale, Nicht-Terminale und die
Produktionsregeln bekannt gegeben, wie in Abschnitt 2.1.3 beschrieben. Es gibt jedoch
gewisse Unterschiede zu gewöhnlichen formalen Grammatiken [GLC13].

Der erste Unterschied besteht darin, dass Nicht-Terminale um einen Typ erweitert werden.
Dieser dient dazu, den Aufruf eines Web Services über ein Nicht-Terminal zu ermöglichen.
Der Typ eines Nicht-Terminals wird in der Grammatik spezifiziert. Dabei werden die zum
Aufruf eines Web Services nötigen Informationen angegeben. Dies sind zum Beispiel die
Adresse des Web Services und die Ein- und Ausgabeparameter.

Außerdem unterscheiden sich die Produktionsregeln von denen einer gewöhnlichen formalen
Grammatik. Dort sind nichtdeterministische Produktionsregeln nicht erlaubt, das heißt es
sind nicht mehrere Regeln möglich, die sich auf dieselbe Folge von Symbolen beziehen. Bei
den hier verwendeten Service Grammatiken hingegen ist Nichtdeterminismus in bestimmten
Situationen erlaubt. Dies ist genau dann der Fall, wenn der Nichtdeterminismus zur Laufzeit
des Automaten aufgelöst wird. Dies bedeutet konkret, dass der Automat Informationen
zur Laufzeit erhalten muss, die bestimmen, welche Regel ausgeführt wird. Hierfür werden
Eingabe-Nicht-Terminale definiert. Diese sind mit Information verknüpft, die der Automat
zur Laufzeit liefert. Dementsprechend dürfen mehrere Produktionsregeln, die auf der linken
Seite dieselben Symbole verwenden nur genau dann existieren, wenn sie als Ergebnis ein
Eingabe-Nicht-Terminal liefern. [GLC13]

Ein Auszug einer Service Grammatik befindet sich in Anhang A. Hier ist jeweils ein Beispiel
für ein Nicht-Terminal, einen Nicht-Terminal Typen, ein Terminal und eine Produktionsregel
angegeben.

2.2.2. Die Funktionsweise des Automaten

Die formalen Grammatiken werden von einem endlichen Automaten ausgeführt. Die Funkti-
onsweise des Automaten und seinen zugehörigen Komponenten wird in Abb. 2.1 dargestellt.
Der Automat liest ein Nicht-Terminal ein und wendet auf dieses eine Produktionsregel
an. Dabei kann das Nicht-Terminal durch ein weiteres Nicht-Terminal oder ein Terminal
substituiert werden. Es wird mit dem Startsymbol der Grammatik begonnen und es wird so
lange fortgefahren, bis sich keine Regeln mehr anwenden lassen.

Ein Nicht-Terminal besitzt dabei einen Typ (siehe 2.2.1), durch den ein Nicht-Terminal
mit dem Aufruf eines Web Services assoziiert sein kann. In diesem Fall gibt der Typ des
Nicht-Terminals die Adresse eines Web Services an. Der Aufruf des Web Services wird durch
den Automaten initiiert und erfolgt durch die Service Invocation Komponente.

Bei der Service Invocation müssen gewöhnlich Daten in Form von Parametern übermittelt
werden. Die Daten werden per Referenz verwaltet. Hierbei dient das Reference Resolution Sys-
tem (RRS) zur Speicherung der Daten. Das RRS ist ein Web Service, der unter Angabe einer
Referenz die entsprechenden Daten zurückliefert. Die Referenzen für die Service Invocation

14

2.2. Das Gesamtsystem des Automaten

Abbildung 2.1.: Die einzelnen Komponenten des Automaten in einem UML Klassendia-
gramm.

werden durch die Nicht-Terminale zur Verfügung gestellt. Innerhalb einer Kompositionsin-
stanz werden die Referenzen durch die ParameterResolution Komponente verwaltet.

Schließlich kann der tatsächliche Aufruf des gewünschten Web Services erfolgen (zum
Beispiel in Abb. 2.1 ein Web Service zur Auflösung von XPath Ausdrücken). Das Ergebnis
des Service Aufrufs wird im RRS gespeichert.

2.2.3. Die Funktion der Instanz-Management Komponente im Gesamtsystem

Der Automat soll von der Instanz-Management Komponente verwaltet werden. Dies wird
in Abb. 2.2 dargestellt. Die Instanz-Management Komponente verwaltet die Instanzen des
Automaten und der Komponenten, die für die Ausführung des Automaten erforderlich
sind (in Abb. 2.2 als Engine Core Components bezeichnet). Dazu gehört der Automat selbst
(Queued Automaton), der die Produktionsregeln der Grammatik (Grammar) anwendet. Bei
der Ausführung der Grammatik ist es nötig, die Nicht-Terminal Typen aufzulösen und
entsprechende Service Aufrufe durchzuführen. Die wird in Abb. 2.2 durch Non-Terminal Type
Resolution und Service Invocation dargestellt. Die Grammatik ist unabhängig vom Automaten
selbst. Sie kann beliebig ausgetauscht oder ausgeführt werden.

Das RRS, die Datenbank des RRS, die Evaluierung von XPath Ausdrücken und sonstige
Web Services, die während der Ausführung aufgerufen werden(Engine Context Components),
stehen in keiner direkten Beziehung zu der Instanz-Management Komponente. Sie werden
lediglich während der Service Invocation verwendet, wie im vorigen Abschnitt beschrieben.
Jedoch muss zur Ausführung einer formalen Grammatik zwingend ein RRS verfügbar sein.

15

2. Grundlagen und Forschungsstand

Abbildung 2.2.: Die Instanz-Management Komponente im Gesamtsystem.

2.3. Forschungsstand

Die Instanz-Management Komponente hat nicht nur die Aufgabe, Instanzen eines Automaten
zu erzeugen, sondern diese auch sinnvoll auf verschiedene Regionen zu verteilen. Im
Folgenden wird ein bereits erforschter Ansatz vorgestellt, der sich mit der Verteilung von
Web Services auf verschiedene Regionen befasst. Dieser dient als Grundlage für den später
vorgestellten Algorithmus zur Verteilung von Instanzen.

In [GL12] wird der Begriff Closeness eingeführt, um zu bewerten, in welcher Region die
Instanz eines Web Services erstellt werden soll. Dabei sollen Verzögerungen und Kosten
durch Datentransfers minimiert werden. Closeness besteht sowohl aus einem statischen
als auch einem dynamischen Aspekt. Der statische Teil verwendet ein Kontext Modell,
das definiert, welche Abhängigkeiten Web Services zu anderen Web Services besitzen.
Die möglichen Kontext Typen müssen dabei manuell definiert werden und teilen sich in
verschiedene Klassen auf. Diese sind häufig abhängig von der verwendeten Infrastruktur. In
einer verteilten Umgebung könnten zum Beispiel Ressourcen in dieselbe Klasse eingeordnet
werden, wenn sich sich auf demselben Server befinden. Eine andere Klasse wäre es, wenn
sich die verwandten Ressourcen im gleichen Rechen-Cluster befinden. Der dynamische Teil
der Closeness wird als Betweenness bezeichnet. Zwischen jedem Paar voneinander abhängiger
Web Services gibt es einen Betweenness Wert, der ebenfalls von der Infrastruktur abhängig
ist. Der Betweenness Wert berechnet sich zum Beispiel daraus, wie viele Daten zwei Web
Services austauschen und wie groß die Wahrscheinlichkeit ist, dass die beiden Web Services
Kontakt zueinander aufnehmen. Wenn beispielsweise ein neuer Web Service X bereitgestellt
werden soll und dieser die Web Services S1 und S2 verwendet, wird der Beetweenness Wert
zwischen X und S1 und X und S2 berechnet. Angenommen zwischen X und S1 wird mit

16

2.3. Forschungsstand

100% Wahrscheinlichkeit eine Datenmenge von 5 GB ausgetauscht und zwischen X und
S2 wird mit 50% Wahrscheinlichkeit eine Datenmenge von 6 GB ausgetauscht. In diesem
Fall ist der Betweenness Wert zwischen X und S1 höher, da hier im Mittel mehr Daten
ausgetauscht werden. Die Betweenness Werte müssen stets dynamisch errechnet werden,
um beispielsweise das Auftauchen neuer Web Services verarbeiten zu können.

Außerdem wird in [GL12] ein Ansatz zur dynamischen Verteilung von Instanzen vorgeschla-
gen. Hierzu werden ebenfalls die bereits erwähnten Kontext Klassen verwendet. Dabei wird
zunächst nach wenig ausgelasteten Instanzen mit einem niedrigen Kontext gesucht, das
heißt nach einer möglichst nahen Instanz mit niedriger CPU Last. Wird eine solche nicht
gefunden, wird eine neue Instanz erzeugt. Bei der Erzeugung von neuen Instanzen werden
die Kontext Klassen und die Betweenness miteinbezogen. Dabei werden die verwendeten
Web Services als Orientierungspunkte verwendet und mithilfe der Kontext Klassen werden
verschiedene Alternativen berechnet, die als Ziel zur Platzierung des neuen Services dienen
können. Die Entscheidung wird getroffen, indem für jede Alternative die Betweenness zu
den anderen Web Services berechnet und dann verglichen wird.

Abbildung 2.3.: Beispiel für die Verteilung von Instanzen anhand Betweenness und Kontext
Klassen. Die Punkte stellen Instanzen von verschiedenen Web Services
dar. [GL12]

In Abbildung 2.3 wird ein Beispiel für die Berechnung anhand verschiedener Web Services
gezeigt. Das Kontext Modell gibt vor, dass Navigator und Service Invocation sich sehr
nahe beieinander befinden müssen (Kontext Klasse 1). Navigator und und das Reference
Resolution System müssen sich ebenfalls nahe beieinander befinden (Kontext Klasse 2). Die
sonstigen Web Services (S1, S2, S3) dürfen an einem beliebigen Standort instantiiert sein
(Kontext Klasse 3). Sowohl Region 1 als auch Region 2 aus Abbildung 2.3 erfüllen diese
Vorgabe. Der Betweenness Wert entscheidet folglich, in welcher Region ein neuer Service
X bereitgestellt wird. Da sich S1, S2 und S3 in Region 2 befindet, werden die Betweenness
Werte zwischen X und S1, S2, S3 in die Berechnung miteinbezogen. In Region 1 ist dies nicht
der Fall. Region 2 erhält damit insgesamt einen höheren Betweenness Wert als Region 1.
Damit wird Region 2 für die Bereitstellung von X gewählt.

17

3. Anforderungen und Ablaufumgebung

Nachdem die Grundlagen nun vorgestellt worden sind und die grobe Funktion der Instanz-
Management Komponente in das Gesamtsystem eingeordnet wurde, werden in diesem
Kapitel die Zieleigenschaften in Form von Anforderungen ausformuliert. Die Anforderungen
ergeben sich dabei aus der Aufgabenstellung. Hierbei werden in Abschnitt 3.1 die funktiona-
len und in Abschnitt 3.2 die nichtfunktionalen Anforderungen erklärt. Die Anforderungen
sind nummeriert.

Eine generelle Vorgabe dieser Arbeit ist die Verwendung einer verteilten Ablaufumgebung
(Cloud) zur Ausführung der Instanz-Management Komponente und des Automaten. Aus
diesem Grund erfolgt in Abschnitt 3.3 die Auswahl der späteren Ablaufumgebung für die
Instanz-Management Komponente. Hierfür werden zunächst mehrere Vergleichskriterien
definiert, die Anforderungscharakter besitzen. Anschließend werden die Anbieter bezüglich
dieser Anforderungen evaluiert. Eine weitere Vorgabe ist die Verwendung der Programmier-
sprache Java für die Umsetzung. Dies wird bei der Auswahl der Ablaufumgebung bereits
berücksichtigt.

Im Folgenden wird außerdem unter einer Anfrage immer eine formale Grammatik verstan-
den, die durch einen Automaten verarbeitet werden soll. Es ist außerdem möglich, dass ein
Automat bei der Verarbeitung einer Grammatik zusätzliche Nachrichten vom Client erhält.
Zur Abgrenzung wird eine solche Nachricht als Message bezeichnet.

3.1. Funktionale Anforderungen

A1 - Regionen Berechnung Die Instanz-Management Komponente soll eine Funktion bieten,
um die Region zu errechnen, in der eine Grammatik durch einen Automaten verarbeitet
werden soll. Dies soll auf Basis der in der Grammatik angegebenen Web Services
geschehen.

A2 - Verwaltung von verschiedenen Instanzen eines Automaten Wenn eine Anfrage für ei-
ne bestimmte Region vorliegt, soll die Instanz-Management Komponente diese Anfra-
ge an einen Automaten in dieser Region weiterleiten. Existiert in einer Region kein
Automat, muss dort eine neue Instanz erstellt werden. Außerdem muss die Instanz-
Management Komponente dazu in der Lage sein, bereits vorhandene Instanzen des
Automaten und alle zugehörigen Ressourcen zu löschen. Die Instanz-Management
Komponente muss stets Zugriff auf alle existierenden Instanzen besitzen. Die Instanz-
Management Komponente soll außerdem dazu fähig sein, Automaten in verschiedenen
Regionen zu verwalten.

19

3. Anforderungen und Ablaufumgebung

A3 - Ausführung des Automaten möglich Der Automat soll in einer Art und Weise in der
Ablaufumgebung bereitgestellt werden, dass eine fehlerfreie Ausführung des Auto-
maten möglich ist. Dabei sollen dem Automaten alle benötigten Komponenten zur
Verfügung gestellt werden. Dies beinhaltet insbesondere auch die Möglichkeit, den
Automaten mit Messages zu versorgen (Message Correlation).

A4 - Überblick über Web Services Um eine Berechnung der Zielregion einer Grammatik
durchführen zu können, soll die Instanz-Management Komponente die verfügbaren
Web Services in der verwendeten Ablaufumgebung kennen. Die Adresse und die
Region der Web Services muss also bekannt sein. Befindet sich ein Web Service nicht
in der verwendeten Ablaufumgebung, muss er der Instanz-Management Komponente
nicht bekannt sein.

A5 - Instanzverwaltung des Reference Resolution Systems (RRS) Eine unverzichtbare Kom-
ponente des Gesamtsystems ist das Reference Resolution System (siehe Abschnitt 2.2.2).
Dieses wird als Web Service angeboten. Das Erzeugen und Löschen der Instanzen
des RRS soll ebenfalls die Instanz-Management Komponente übernehmen. Hierbei
soll in jeder Region, in der sich derzeit mindestens eine Instanz eines Automaten
befindet, eine Instanz des RRS platziert werden. Befindet sich in einer Region keine
Automateninstanz, soll dort auch kein RRS zur Verfügung stehen.

A6 - Generischer Automat Die Anwendung in der Ablaufumgebung, die für die Ausführung
von Grammatiken verantwortlich ist, soll nicht an einen festen Automaten gekoppelt
sein. Stattdessen soll diese mehrere beliebige Automaten enthalten, die verschiedene
Grammatiken ausführen können.

3.2. Nichtfunktionale Anforderungen

A7 - Garantierte Verarbeitung einer Anfrage Es soll sichergestellt werden, dass eine Anfrage,
das heißt eine Grammatik, die beim Instanz-Manager eingeht, auf jeden Fall verarbeitet
wird. Dies soll unabhängig von Fehlern sein, die durch die Instanz-Management
Komponente oder durch die Umgebung des Automaten verursacht werden. In diesem
Fall darf die Anfrage durch einen Fehler nicht verloren gehen. Wird ein Fehler durch
eine syntaktisch inkorrekte Grammatik ausgelöst, muss diese nicht verarbeitet werden.

A8 - Optimale Instanzenverteilung Bei der Berechnung der Zielregion soll die Region ge-
wählt werden, die bei der Ausführung der Grammatik die geringsten Kosten aller
verfügbaren Regionen verursacht. Dabei sollen insbesondere die Verzögerungen durch
den Aufruf von Web Services berücksichtigt werden.

A9 - Effizienter Umgang mit Ressourcen Da in Cloud Umgebungen üblicherweise genau
die Ressourcen bezahlt werden, die verwendet wurden (Pay-Per-Use), ist ein sparsamer
Umgang mit den Cloud Services sinnvoll. Hierbei sollen insbesondere keine unnötigen
Rechenkapazitäten oder nicht benötigter Speicherplatz verwendet werden. Stattdessen

20

3.3. Evaluation verschiedener Cloud Anbieter

soll möglichst effizient mit bereits vorhanden Ressourcen umgegangen werden. Um-
gekehrt bedeutet dies, dass nicht oder wenig verwendete Instanzen sowie nicht mehr
benötigte Dateien gelöscht werden sollen.

A10 - Skalierbarkeit Um große Mengen an Anfragen verarbeiten zu können, ohne stark stei-
gende Wartezeiten für das Verarbeiten einer Anfrage zu erhalten, soll die Infrastruktur
mit der Zahl der Anfragen skalieren. Dies bezieht sich insbesondere auf die Anzahl
der Rechnerinstanzen in einer Region, die dem System zur Verfügung stehen.

3.3. Evaluation verschiedener Cloud Anbieter

Die spätere Implementierung soll in einer verteilten Ablaufumgebung, das heißt einer
Cloud, lauffähig sein. Hierfür wird die Cloud Umgebung des Unternehmens Amazon
gewählt. In diesem Abschnitt wird diese Auswahl ausführlich begründet, da es sich bei
der Cloud Umgebung um ein zentrales Werkzeug dieser Arbeit handelt. Hierzu werden
verschiedene Cloud Anbieter evaluiert. Bei der Entscheidung wurden Windows Azure[Mich],
Google Cloud [Gooe] und Amazon Web Services (AWS)[Amab] berücksichtigt.

Die Ergebnisse werden in Tabelle 3.1 zusammengefasst. Die dort angewandten Kriterien
werden in Abschnitt 3.3.1 erklärt. Eine ausführlichere Untersuchung der Angebote sowie das
Ergebnis finden sich in den darauffolgenden Abschnitten.

3.3.1. Bewertungskriterien

Für die Bewertung der Anbieter wurden mehrere Kriterien ausgewählt, die für die Ent-
wicklung der Instanz-Management Komponente relevant sind. Diese stellen gleichzeitig
die Anforderungen an die Cloud Angebote dar, die erfüllt werden müssen. Diese Kriterien
werden hier erklärt.

Regionen Das Kriterium Regionen gibt an, ob die Region, in der eine Anwendung erstellt
wird, explizit ausgewählt werden kann. Diese Funktion ist unerlässlich für die Instanz-
Management Komponente, da diese einen Automaten abhängig von den verwendeten
Web Services in einer Region platzieren muss.

PaaS Eine wichtige Funktion einer Cloud Umgebung ist die Verfügbarkeit eines Platform as
a Service (PaaS) Angebots. Hierbei soll es möglich sein, eine Anwendung allein durch
das Bereitstellen eines entsprechenden Containers zu starten, während der Service sich
um die Bereitstellung der Infrastruktur kümmert. Dieser Punkt ist relevant, da er die
Bereitstellung einer Anwendung vereinfacht.

Java API Da als Programmiersprache Java gewählt wird, ist der Umfang der Java API wichtig.
Es wird folglich untersucht, welche Möglichkeiten es gibt, die Cloud Umgebung durch
die Java API zu modifizieren.

21

3. Anforderungen und Ablaufumgebung

Regionen PaaS Java API Konfigurierbarkeit sonstige Services Gratis Angebote

AWS Ja Ja Umfangreich Umfangreich Viele Ja

Azure Ja Ja Eingeschränkt Umfangreich Viele Teilweise

Google Ja Ja Umfangreich Eingeschränkt Wenige Ja

Tabelle 3.1.: Verschiedene Anbieter von Cloud Services im Vergleich.

Konfigurierbarkeit Ein weiteres Merkmal, das bewertet wird, ist die generelle Konfigurier-
barkeit der Cloud Umgebung, zum Beispiel welche Rechenleistung zur Verfügung steht,
oder wie genau sich Komponenten, wie beispielsweise ein Load-Balancer, konfigurieren
lassen.

Sonstige Services Bei diesem Punkt wird untersucht, welche weiteren Services zur Verfü-
gung gestellt werden, die nützlich sind, jedoch nicht zwingend für die Umsetzung der
Instanz-Management benötigt werden. Darunter fallen Services zur automatischen Ska-
lierung einer Anwendung, Warteschlangen für Nachrichten (Queue) und Services, die
Anfragen gleichmäßig auf verschiedene Rechnerinstanzen einer Anwendung verteilen
(Load-Balancing).

Gratis Angebote Da für die Arbeit keine Gelder zur Verfügung gestellt werden, ist ein
weiterer wichtiger Aspekt, ob und wieweit sich die Angebote gratis verwenden lassen.
Außerdem soll untersucht werden ob Studienprojekte durch den jeweiligen Anbieter
unterstützt werden.

3.3.2. Untersuchung der Anbieter

Die verschiedenen Anbieter werden nun nach den eben erläuterten Anforderungen bewertet.
Die Ergebnisse hiervon befinden sich in Tabelle 3.1.

Amazon Web Services

Bei den Angeboten von Amazon Web Services lässt sich eine Region explizit auswählen.
Hierbei stehen in Amerika, Europa und Asien jeweils mehrere Subregionen zur Auswahl be-
reit. Als Platform as a Service Angebot steht Elastic Beanstalk zur Verfügung [Amap]. Hierbei
muss lediglich ein Container, der die gewünschte Anwendung enthält, zur Verfügung gestellt
werden. Dieser Vorgang lässt sich auch über die Java API durchführen [Amad]. Die Java API
bietet sämtliche Konfigurationsmöglichkeiten, die auch über das Web Interface zur Verfü-
gung stehen. Die Möglichkeiten zur Konfiguration sind insgesamt sehr detailliert. Es stehen
verschiedene Hardwarekonfigurationen für die Recheninstanzen zur Verfügung [Amap]. Das
Betriebssystem sowie die sonstige Software auf den Instanzen lässt sich beliebig konfigu-
rieren. Des Weiteren steht ein Service für Queues [Aman], sowie ein Load-Balancer [Amae]

22

3.3. Evaluation verschiedener Cloud Anbieter

und automatische Skalierung [Amao] zur Verfügung. Auch diese Komponenten lassen sich
frei konfigurieren [Amac]. Sämtliche, für diese Arbeit relevanten Services, stehen außerdem
zeitlich begrenzt gratis zur Verfügung [Amag]. Zudem unterstützt Amazon Studenten mit
eigenen Projekten mit Gutscheinen für die Nutzung von AWS [Amah].

Windows Azure

Windows Azure lässt beim Start von verschiedenen Services eine Auswahl der Region zu.
Verfügbare Regionen sind Nord-Amerika, Europa, Ozeanien und Asien [Micj]. Diese lassen
sich teilweise noch weiter aufschlüsseln. Zudem biete Windows Azure ein Platform as a
Service Angebot (Azure Cloud Services). Um eine Java Anwendung bereitzustellen, müssen
hierbei zunächst mehrere Konfigurationsdateien erstellt werden, die auf dem Server die
benötigte Java Umgebung erzeugen [Micc]. Hierbei werden Services wie automatische
Skalierung selbstständig bereitgestellt [Micg]. Die Java API hat nur einen eingeschränkten
Funktionsumfang und bietet keinen Zugriff auf alle Möglichkeiten. Beispielsweise ist es
nicht möglich eine Anwendung über die Java API bereitzustellen. Hierfür muss teilweise
eine REST-API und ein Kommandozeilen Interface zur Hilfe genommen werden [Mica].
Die einzelnen Komponenten bieten detaillierte Konfigurationsmöglichkeiten. Auch sonstige
Services wie Queues [Micd] und Komponenten für automatische Skalierung, sowohl vertikal
als auch horizontal, und Load-Balancing stehen zur Verfügung [Mice]. Die Möglichkeiten,
Windows Azure gratis zu benutzen, sind jedoch eingeschränkt. Insbesondere virtuelle
Rechenkapazitäten lassen sich nur gegen Bezahlung verwenden [Micf]. Dafür erhält der
Anwender bei Registrierung einen Gutschein, der die Nutzung der Services für eine gewisse
Zeit ermöglicht [Micb]. Auch bei Windows Azure gibt es Programme um Studierende durch
Gratis Nutzungskontingente zu unterstützen [Mici].

Google Cloud

Auch bei den Services der Google Cloud lässt sich die Region explizit auswählen. Hier stehen
jedoch nur die Regionen Nord-Amerika und Europa zur Verfügung [Gooa]. Mit Google App
Engine (GAE) steht ein Platform as a Service Angebot bereit, das es erlaubt, eine Anwendung
nur durch den Upload eines Containers zu starten[Goob]. GAE erlaubt jedoch keinen Zugriff
auf die verwendeten Ressourcen wie die Rechnerinstanzen. Wenn dies gewünscht ist, muss
stattdessen Google Compute Engine verwendet werden. Hierbei kann virtuelle Rechenkapazität
gemietet werden, ein Anwendungsserver und andere Komponenten müssen jedoch durch
den Anwender eingerichtet werden [Goof]. Die Java API bietet Zugriff auf die meisten
Funktionen der Google Cloud Services [Gooh]. Die Konfigurationsoptionen bei Google
App Engine sind jedoch beschränkt. Die unterliegenden Ressourcen lassen sich hier nicht
gezielt konfigurieren. Zum Beispiel kann bei GAE nicht explizit ausgewählt werden, welche
Hardwarekonfiguration eine verwendete Rechnerinstanz besitzen soll. Außerdem stehen
bei den Google Cloud Services Load-Balancing und Auto-Skalierung zur Verfügung [Goob].
Hierbei lässt sich jedoch nicht steuern, wie viele Rechnerinstanzen verwendet werden sollen
und ob generell skaliert werden soll. Diese Funktionen stehen nur für Compute Engine zur

23

3. Anforderungen und Ablaufumgebung

Verfügung. Einen Queue Service bietet Google nicht. Google App Engine lässt sich in zeitlich
begrenztem Rahmen kostenlos nutzen, jedoch steht im kostenlosen Angebot nur eine nach
oben begrenzte Skalierbarkeit zur Verfügung [Good]. Für Compute Engine gibt es keine
Angebote zur Gratis-Nutzung [Goog]. Angebote für Studierende gibt es nicht [Gooc].

3.3.3. Ergebnis

Aus den untersuchten Cloud Services wird Amazon Web Services als beste Lösung für diese
Arbeit betrachtet, da dort sämtliche gestellten Anforderungen erfüllt werden. Insbesondere
wichtig sind die umfangreichen Konfigurationsmöglichkeiten und die Java API, die Zugriff
auf sämtliche Funktionen von Amazon Web Services direkt aus der Java Umgebung erlaubt,
ohne auf andere Werkzeuge zurückgreifen zu müssen. Außerdem steht ein PaaS Angebot
(Elastic Beanstalk) zur Verfügung, welches die Bereitstellung einer Anwendung vereinfacht
und dennoch Zugriff auf die unterliegenden Ressourcen bietet.

Gegen die Verwendung von Windows Azure spricht vor allem die wenig umfangreiche Java
API. Außerdem ist das Bereitstellen einer Java Anwendung im Vergleich zu den anderen
Angeboten wenig komfortabel, da bei Azure zunächst mehrere Konfigurationsdateien erstellt
werden müssen. Bei den Angeboten von Google und Amazon ist nur der Container mit der
Anwendung nötig, um diese bereitzustellen. Google lässt bei App Engine jedoch keinen
Zugriff auf die verwendeten Ressourcen und auf deren Konfigurationsmöglichkeiten zu.
Dies spricht gegen die Verwendung der Google Services.

24

4. Entwurf

In diesem Kapitel wird der Entwurf vorgestellt, der als Grundlage für die Umsetzung
der Anforderungen dient. Dabei wird vor allem auf das generelle Konzept der Instanz-
Management Komponente eingegangen und es erfolgt eine abstrakte Beschreibung, wie die
Funktionalitäten umgesetzt werden. Es werden keine konkreten Technologien beschrieben,
die zur Umsetzung verwendet werden.

Grundlegend sollen die Funktionalitäten durch zwei verschiedene Anwendungen realisiert
werden: Durch eine zentrale Instanz-Management Komponente und eine Umgebung, in der
ein Automat in der Cloud betrieben werden kann. Die Entwicklung einer Umgebung für
den Automaten ist nötig, da der Automat nicht autonom in der Cloud betrieben werden
kann. Es soll für den Automaten also eine Anwendung entwickelt werden, die in der Cloud
lauffähig ist und einen oder mehrere Automaten betreiben kann. Diese Anwendung wird als
Umgebung des Automaten oder als Automaten-Umgebung bezeichnet. Als Automat wird wie
bisher die Komponente bezeichnet, die für die Ausführung einer Grammatik zuständig ist.
Das Verhältnis von Instanz-Management Komponente zu Automaten-Umgebung wird in
Abbildung 4.1 dargestellt. Die Instanz-Management Komponente besitzt Zugriff auf beliebig
viele Instanzen von Automaten-Umgebungen. Die Instanzen der Automaten-Umgebungen
sind auf verschiedene Regionen verteilt, während die Instanz-Management Komponente in
einer bestimmten Region lokalisiert ist. Eine Automaten-Umgebung innerhalb einer Region
kann dort aber auf mehreren Rechnern betrieben werden. Zudem können innerhalb einer
Automaten-Umgebung mehrere Automaten betrieben werden.

Abbildung 4.1.: Das Verhältnis der Instanz-Management Komponente zu den Automaten-
Umgebungen.

Die Aufteilung in zwei verschiedene Anwendungen ist sinnvoll, da es in einer verteilten
Ablaufumgebung genau eine Komponente geben soll, die Anfragen verwaltet. Zudem ist
ein mehrfaches Vorkommen der Instanz-Management Komponente nicht sinnvoll, da diese
zur Verteilung der Anfragen auf verschiedene Instanzen einen Überblick über sämtliche
existierende Instanzen des Automaten benötigt. Bei einer Verteilung der Instanz-Management
Komponente über mehrere Regionen müsste hierfür eine Synchronisierung zwischen den

25

4. Entwurf

verschiedenen Instanz-Management Komponenten stattfinden, damit diese aktuelles Wissen
über alle existierenden Automaten-Umgebungen besitzen. Durch die Verwendung einer
zentralen Komponente kann auf einen solchen Mechanismus verzichtet werden.

Eine genaue Aufteilung der Aufgabenbereiche auf die beiden verschiedenen Anwendungen
erfolgt in Abschnitt 4.1. Daraufhin wird in Abschnitt 4.2 die Instanz-Management Kom-
ponente konzeptioniert. Die Kozeptionierung der Umgebung des Automaten erfolgt in
Abschnitt 4.3.

4.1. Aufgabenverteilung

Die meisten der geforderten Funktionalitäten aus Kapitel 3 werden durch die Instanz-
Management Komponente umgesetzt. Einige Anforderungen werden jedoch durch die
Automaten-Umgebung erfüllt.

Für Anforderung A1 muss die Berechnung einer Zielregion umgesetzt werden. Dies fällt
der Instanz-Management Komponente zu, da die Region berechnet werden muss, bevor die
Grammatik an einen Automaten der Zielregion geschickt werden kann. Anforderung A2 gibt
die Verwaltung der verschiedenen Instanzen des Automaten vor. Um dies zu realisieren, be-
sitzt die Instanz-Management Komponente eine Übersicht über alle Automaten-Umgebungen
und über die Rechner, die diese verwenden. Die Automaten-Umgebung besitzt dagegen
Informationen über die Automaten selbst, die innerhalb der Umgebung betrieben werden.
Anforderung A3 beschreibt eine Funktion, um den Automaten in einer verteilten Ablaufum-
gebung ausführbar zu machen. Dies soll von der Instanz-Management Komponente und der
Umgebung des Automaten sichergestellt werden. Dabei ist es insbesondere die Aufgabe der
Automaten-Umgebung, Automaten innerhalb der Umgebung zur Verarbeitung von Anfragen
bereitzustellen. Laut Anforderung A4 muss ein Überblick über die in den Grammatiken
verwendeten Web Services hergestellt werden. Dies ist Aufgabe der Instanz-Management
Komponente, da dies zur Berechnung der Zielregion des Automaten erforderlich ist. Die
Verwaltung des RRS (Anforderung A5) fällt ebenfalls in den Aufgabenbereich der Instanz-
Management Komponente. Der Automat ruft das RRS lediglich auf wie einen beliebigen
anderen Web Service. In A6 wird Generalität des Automaten gefordert. Diese muss durch
die Umgebung des Automaten sichergestellt werden.

Die nichtfunktionalen Anforderungen werden ebenfalls den verschiedenen Komponenten
zugewiesen. Die Garantie, dass eine Anfrage verarbeitet wird (A7), muss dabei von beiden
Komponenten gewährleistet werden. Beide Komponenten sollen bei der Verarbeitung sicher-
stellen, dass eine Anfrage im Fehlerfall nicht verloren geht. In A8 wird Optimalität für die
Verteilung der Instanzen gefordert, das heißt eine Minimierung der Kosten während der
Ausführung einer Grammatik. Dies soll bei der Berechnung der Region durch die Instanz-
Management Komponente sichergestellt werden. Die Anforderungen A9 und A10 beziehen
sich auf Effizienz und Skalierbarkeit und sollen sowohl durch die Instanz-Management
Komponente als auch durch die Automaten-Umgebung erfüllt werden. Die Umgebung des
Automaten soll dafür zuständig sein, dem Automaten ausreichend Rechenleistung zur Verfü-
gung zu stellen. Diese soll bei Bedarf erhöht oder verringert werden. Dies kann zum Beispiel

26

4.2. Instanz-Management Komponente

durch die Verwendung von mehreren Rechnern geschehen. Die Instanz-Management Kom-
ponente hingegen soll bestimmen, ob in einer Region überhaupt eine Automaten-Umgebung
existiert.

4.2. Instanz-Management Komponente

Nachdem die Verteilung der Aufgaben im vorigen Abschnitt vorgestellt wurde, wird nun
zunächst die Funktionalität der zentralen Instanz-Management Komponente konzipiert.
Hierbei gibt es keine Sortierung nach den Anforderungen mehr; stattdessen werden ähnliche
Aufgaben zusammen behandelt.

4.2.1. Anfragen Verarbeitung

Der Einstiegspunkt für die Instanz-Management Komponente soll die Entgegennahme
und Verarbeitung von Anfragen darstellen. Dabei ist es insbesondere wichtig, dass eine
Anfrage nicht durch einen unerwarteten Fehler verloren geht (vgl. Anforderung A7). Die
Anfragen sollen deshalb in einer Warteschlange gespeichert werden. Diese soll persistent
sein und keine Anfragen verlieren, auch im Falle, dass die Instanz-Management Komponente
nicht verfügbar ist. Die Speicherung der Anfragen wird in Abbildung 4.2 dargestellt. Die
Entgegennahme von Anfragen soll über eine Schnittstelle geschehen, die dem Nutzer zur
Verfügung steht. Diese soll nur die Funktion haben, Anfragen entgegen zu nehmen und
sie danach in der Warteschlange zu speichern. Bei der Verarbeitung der Anfrage wird
diese zunächst aus der Warteschlange entfernt. Im Fehlerfall soll sie immer zurück in die
Warteschlange gelegt werden.

Abbildung 4.2.: Die Speicherung einer Anfrage während der Verarbeitung. Die Pfeile stellen
das Senden der Anfrage von einer Komponente zur anderen dar. Gestrichel-
te Pfeile stehen für das Senden zu einer anderen Anwendung.

Während der Verarbeitung einer Anfrage soll die Berechnung der Region (siehe Ab-
schnitt 4.2.2) erfolgen und eine Instanz einer Automaten-Umgebung aus der Zielregion
angefordert werden (siehe Abschnitt 4.2.4). Außerdem soll die Anfrage letztendlich zu der
entsprechenden Automaten-Umgebung gesendet werden. Bei letztgenanntem Schritt ist es
möglich, dass die Automaten-Umgebung zu diesem Zeitpunk keine Anfragen entgegen neh-
men kann. Eine Automaten-Umgebung kann zum Beispiel keine Anfragen entgegen nehmen,

27

4. Entwurf

wenn der Rechner, auf dem diese betrieben werden soll, noch nicht bereit ist. Die Anfrage
soll in diesem Fall in eine weitere Warteschlange eingefügt und versandt werden, sobald
die Automaten-Umgebung bereit ist. Dabei wird für jede Region eine eigene Warteschlange
verwendet, wie in Abbildung 4.2 dargestellt. Die Automaten-Umgebung liefert selbst eine
Rückmeldung darüber, wenn sie bereit ist. Der Status der Automaten-Umgebung muss also
nicht abgefragt werden. In der Wartezeit sollen weitere Anfragen verarbeitet werden können.
Die Anfrage wird der Automaten-Umgebung über eine Schnittstelle übergeben, die diese
hierfür zur Verfügung stellt. Die Automaten-Umgebung ist für die weitere Verarbeitung der
Anfrage zuständig.

4.2.2. Berechnung der Region

Der erste Schritt bei der Verarbeitung einer Anfrage stellt die Berechnung der Region dar, in
der die Anfrage verarbeitet werden soll (Zielregion). Eine Anfrage ist hier eine Grammatik, die
ausgeführt werden soll. Die Berechnung ist Aufgabe der Instanz-Management Komponente.
Hierbei wird gefordert, dass die Berechnung ein optimales Ergebnis liefert. Das heißt die
Grammatik soll bei der Ausführung minimale Kosten verursachen (vgl. Anforderung A8).

Faktoren, die hier bei der Berechnung berücksichtigt werden sollen, sind die Entfernungen zu
den verwendeten Web Services und die Häufigkeit, mit der diese während der Ausführung
einer Grammatik verwendet werden. Dies zielt vor allem auf eine Minimierung der Latenz
bei der Kommunikation mit den Web Services ab. Hierbei wird die Distanz zwischen
den Regionen als Metrik verwendet. Die Distanzwerte sind dabei statisch. Die Bewertung
einer Region ergibt sich durch eine Analyse der in der Grammatik verwendeten Web
Services in Kombination mit den Distanzen. Bei dem Verfahren werden Regionen bevorzugt,
die möglichst viele Web Services enthalten. Falls eine Region alle Web Services enthält,
wird diese immer zur Zielregion erklärt, falls es nicht noch andere Regionen gibt, die
dieselbe Eigenschaft erfüllen. Ansonsten wird die Region als Zielregion gewählt, die die
minimale Latenz bei der Kommunikation mit den Web Services anderer Regionen bietet. Der
Algorithmus, der verwendet werden soll, um die Zielregion zu berechnen, wird in Alg. 4.1
als Pseudocode dargestellt.

Zunächst wird die in der Anfrage enthaltene Grammatik untersucht. Dies geschieht in
den Zeilen 2 - 3 des Algorithmus. Hierbei werden die Web Services ermittelt, die bei der
Ausführung der Grammatik benötigt werden. Außerdem wird mit Hilfe eines Web Service
Indexes (siehe Abbschnitt 4.2.3) untersucht, welche Web Services von diesen verfügbar sind.
Dabei werden nur Web Services berücksichtigt, die sich in derselben Ablaufumgebung
befinden, wie die Instanz-Management Komponente und die Automaten-Umgebung (Closed
World, vgl. [GL12]). Externe Web Services werden bei der Berechnung der Region ignoriert,
da über deren Distanz zu den verwendeten Regionen keine zuverlässige Aussage getroffen
werden kann.

Für den Fall, dass keiner der verwendeten Web Services in der Closed World verfügbar
ist, kann die Berechnung abgebrochen und stattdessen eine zufällige Region verwendet
werden. Dies geschieht in den Zeilen 4 - 6. Danach wird in Zeile 9 - 22 für jede Region,

28

4.2. Instanz-Management Komponente

Algorithmus 4.1 Algorithmus zur Berechnung der Zielregion.
procedure ComputeRegion(grammar)

requiredWS← getWs(grammar)
availableWs← getAvailableWs(requiredWs)
if availableWs.isEmpty() then

5: return randomRegion
end if
f inalRegion← null
bestDistance← ∞
for all r ∈ Regions do

10: ranking← 0
wsNotInR← getUnavailbleWs(r, requiredWs)
for all ws ∈ wsNotInR do

n← getNumberOfAccesses(ws, grammar)
closestRegion← getClosestRegion(ws)

15: distance← getDistance(closestRegion)
ranking← ranking + n ∗ distance

end for
if ranking ≤ bestDistance then

bestDistance← ranking
20: f inalRegion← r

end if
end for
return f inalRegion

end procedure

die in der verteilten Ablaufumgebung (Amazon Web Services) zur Verfügung steht, eine
Bewertung erstellt. Die Bewertung ergibt sich dabei aus der Distanz zu den Web Services,
die sich nicht in der Region befinden und der Häufigkeit der Verwendung dieser Web
Services. Es wird folglich für jeden Web Service, der sich nicht in der zu bewertenden Region
befindet, die Distanz zwischen der zu bewertenden Region und der Region, die den Web
Service beinhaltet und die geringste Distanz zur bewertenden Region besitzt, mit der Anzahl
der Web Service Aufrufe multipliziert und auf den bisherigen Bewertungs-Wert addiert.
Hierfür wird in Zeile 11 zunächst eine Liste der Web Services erstellt, die nicht in der zu
bewertenden Region verfügbar sind. Danach wird in den Zeilen 13 - 16 von Algorithmus 4.1
schrittweise die Bewertung berechnet. Beispielsweise soll die Bewertung für die Region
Amerika erstellt werden. Es werden die Web Services A und B benötigt. Web Service A ist
in der Region Amerika verfügbar und erhöht die Bewertung daher nicht. Web Service B ist
nicht in Amerika verfügbar. In Zeile 13 wird die Anzahl der Zugriffe auf B ermittelt. Hierbei
wird als Ergebnis beispielsweise 5 geliefert. In Zeile 14 wird Europa als nächste Region
ermittelt, die Web Service B enthält. Die Distanz zwischen Europa und Amerika beträgt 1000.
Folglich wird in Zeile 16 die Bewertung auf 5000 erhöht. Die Anzahl der Web Service Aufrufe
kann dabei durch eine Analyse der Produktionsregeln der Grammatik bestimmt werden,

29

4. Entwurf

indem gezählt wird, wie oft das Nicht-Terminal eines Web Services auf der rechten Seite der
Produktionsregeln vorkommt. Hierbei handelt es sich jedoch nur um eine Schätzung, da
Regeln mehrfach ausgeführt werden können. Wie oft eine Regel tatsächlich verwendet wird,
kann erst während der Ausführung des Automaten bestimmt werden. Wenn die Berechnung
für jeden nicht verfügbaren Web Service durchgeführt wurde, wird die Bewertung der
Region mit der bisher günstigsten Region verglichen. Ist die Bewertung niedriger, wird die
eben bewertete Region zur neuen Zielregion erklärt, wie es in den Zeilen 18 - 21 dargestellt
wird. Wenn beispielsweise die bisherige Zielregion Asien mit einer Bewertung von 10000

war, dann wird nun Amerika mit der Bewertung von 5000 zur neuen Zielregion erklärt.

4.2.3. Web Service Index

Bei der Berechnung der Region ist es erforderlich, die Ablaufumgebung nach bekannten
Web Services zu durchsuchen, die für die Ausführung einer Service-Komposition verwendet
werden. Dabei soll ein Index dieser Web Services erstellt werden.

Der Web Service Index soll zu dem Zeitpunkt, an dem die Berechnung der Region stattfindet,
Informationen über alle bekannten und verfügbaren Web Services besitzen. Bei den Informa-
tionen, die gespeichert werden sollen, handelt es sich um den Namen und die Operationen
des Web Services, die Region des Web Services und die URL, die den Zugriff auf den Web
Service ermöglicht. Um diese Informationen zusammenzustellen, muss die Ablaufumgebung
nach diesen Web Services durchsucht werden. Die Erstellung des Indexes soll zudem laufend
geschehen und nicht erst beginnen, wenn die Informationen zu den Web Services bei der
Berechnung der Region angefordert werden. Dabei wird nach allen Web Services gesucht,
die während des Betriebs der Instanz-Management Komponente bereits in einer Grammatik
verwendet wurden. Ein Web Service wird dabei in die Suche mit aufgenommen, wenn er
zum ersten Mal in einer Grammatik auftaucht.

In den Grammatiken werden Web Services und deren Operationen eindeutig über den Na-
men identifiziert. Bei der Erstellung des Indexes wird gleich vorgegangen. Wenn nach einem
Web Service aus einer Grammatik gesucht wird, werden folglich zwei Eigenschaften über-
prüft: Zum einen, ob der Web Service denselben Namen besitzt wie in der Grammatik und
zum anderen, ob dessen Operationen gleich benannt sind wie in der Grammatik vorgegeben.
Es wird für die Ablaufumgebung der Instanz-Management Komponente also angenommen,
dass die Kombination aus Web Service Namen und dem Namen einer Operation des Web
Services eindeutig ist.

4.2.4. Verwaltung der Instanzen des Automaten

Wenn die Berechnung einer Region abgeschlossen ist, muss die Instanz einer Automaten-
Umgebung zur Verfügung gestellt werden. Die Bereitstellung und Verwaltung von Instanzen
der Automaten-Umgebung ist eine zentrale Funktion der Instanz-Management Komponente.
Dabei soll sie stets Zugriff auf sämtliche existierende Instanzen der Automaten-Umgebung

30

4.2. Instanz-Management Komponente

besitzen. Es müssen folglich für jede Automaten-Umgebung bestimmte Verwaltungsinforma-
tionen gespeichert werden. Darunter fallen Informationen, die den Zugriff auf die Automaten-
Umgebung ermöglichen, wie die URL, und Status-Informationen der Automaten-Umgebung,
zum Beispiel ob diese Anfragen entgegen nehmen kann oder nicht. Die Verwaltungsinfor-
mationen müssen angelegt werden, wenn eine neue Automaten-Umgebung erzeugt wird
und können zusammen mit der Automaten-Umgebung gelöscht werden. Eine Automaten-
Umgebung kann gelöscht werden, wenn die Verarbeitung der Grammatiken in dieser Region
abgeschlossen ist. Dies wird der Instanz-Management Komponente durch eine Nachricht
der Automaten-Umgebung signalisiert. Für Nachrichten der Automaten-Umgebung soll eine
extra Schnittstelle bereit gestellt werden. Wenn die Instanz-Management Komponente eine
Lösch-Nachricht erhält, soll sie alle Cloud-Ressourcen der Automaten-Umgebung freige-
ben. Dazu gehören zum Beispiel die Rechner, auf der die Automaten-Umgebung betrieben
wird.

In einer Region soll immer maximal eine Instanz einer Automaten-Umgebung erstellt wer-
den. Dementsprechend existieren für eine Region auch die Verwaltungsinformationen nur
einmal, auch wenn die dortige Automaten-Umgebung auf mehreren Rechnern betrieben
wird. Wenn ein Automat aus einer bestimmten Region angefordert wird, werden die Verwal-
tungsinformationen der Automaten-Umgebung dieser Region zurückgeliefert. Die Verwal-
tungsinformationen sollen die nötigen Informationen bieten, um zum Beispiel eine Anfrage
zu der Automaten-Umgebung zu senden. Wenn ein Automat in einer Region angefordert
wird, in der noch keine Automaten-Umgebung existiert, wird diese zu diesem Zeitpunkt
erzeugt. Wenn die Automaten-Umgebung in einer Region auf mehreren Rechnern betrieben
wird, soll sich ein Load-Balancer darum kümmern, Anfragen auf diese zu verteilen. In den
Verwaltungsinformationen der Automaten-Umgebung werden dabei die Daten gespeichert,
die für den Zugriff auf den Load-Balancer erforderlich sind. Bei der Message Correlation
hingegen sollen die Messages nicht an den Load-Balancer geschickt werden. Die Messages
müssen explizit an den Rechner geschickt werden, auf dem eine Anfrage verarbeitet wird.
Hierfür müssen auch die Zugriffsinformationen zu den Rechnern gespeichert werden, auf
denen die Automaten-Umgebung betrieben wird.

Es ist möglich, dass die Instanz-Management Komponente fehlerhaft terminiert und dabei
nicht die existierenden Automaten-Umgebungen löscht. In diesem Fall sollen die Automaten-
Umgebungen bei einem Neustart der Instanz-Management Komponente verwendet werden
können, obwohl diese keine Verwaltungsinformationen über die Automaten-Umgebungen
besitzt. Um diese Automaten-Umgebungen verwenden zu können, soll bei der Erstellung
einer Automaten-Umgebung in einer Region überprüft werden, ob in dieser Region bereits
eine Automaten-Umgebung existiert.

4.2.5. Message Correlation

Nachdem eine Anfrage bei der Automaten-Umgebung eingegangen ist, ist es möglich, dass
der Client Messages schickt, die sich auf diese Anfrage beziehen. Diese schickt der Client an
die Schnittstelle der Instanz-Management Komponente und es ist deren Aufgabe, diese genau

31

4. Entwurf

an die Automaten-Umgebung weiterzuleiten, die diese Anfrage verarbeitet (Anforderung
A3).

Hierfür soll der Client eine ID erhalten, wenn er eine Anfrage in Form einer Grammatik
sendet. Diese identifiziert die Anfrage eindeutig. Unter Angabe dieser ID soll es möglich
sein, Messages zu dem Rechner zu senden, auf dem die Grammatik bearbeitet wird. Da
es vorkommen kann, dass eine Anfrage noch nicht bearbeitet wurde, wenn eine Message
zu dieser Anfrage eingeht, muss es eine Möglichkeit geben, die Message solange in einer
Warteschlange zu speichern. Sobald bekannt wird, dass eine Anfrage von einem bestimmten
Rechner bearbeitet wird, sollen die betroffenen Messages in der Warteschlange an diesen
Rechner gesendet werden. Der Rechner, auf dem die Anfrage verarbeitet wird, kann erst
bestimmt werden, wenn die Anfrage dort eingegangen ist. Sobald dies geschieht, sendet
die Automaten-Umgebung der Instanz-Management Komponente eine Nachricht, in der
angegeben ist, auf welchem Rechner die Anfrage verarbeitet wird. Eine ID mit dem zugehö-
rigen Ziel soll aus dem System gelöscht werden, sobald die Anfrage von einem Automaten
ausgeführt wurde.

4.2.6. Reference Resolution System - Instanzverwaltung

Eine weitere Funktion, die durch die Instanz-Management Komponente erfüllt werden soll,
ist die Verwaltung des Reference Resolution System (Anforderung A5). Die Verwaltung der
RRS Instanzen wird in ähnlicher Weise wie die Verwaltung der Instanzen der Automaten-
Umgebung konzipiert.

Auch hier soll die Instanz-Management Komponente Verwaltungsinformation der RRS
Instanzen speichern. Dabei soll die Instanz-Management Komponente Informationen über
alle Instanzen des RRS besitzen. Die Instanz-Management Komponente soll außerdem dafür
verantwortlich sein, neue Instanzen des RRS zu erzeugen oder nicht mehr benötigte Instanzen
zu löschen. In einer Region soll eine RRS Instanz existieren, wenn dort Automaten betrieben
werden, das heißt wenn dort eine Automaten-Umgebung vorhanden ist. Hierbei ist für
jede Region genau eine Instanz des RRS vorgesehen. Dementsprechend soll in einer Region
eine neue Instanz des RRS erzeugt werden, wenn dort eine Automaten-Umgebung erzeugt
wird. Die Instanz des RRS soll gelöscht werden, wenn in der Region keine Automaten mehr
existieren, das heißt wenn die Automaten-Umgebung gelöscht wird. Im Falle eines Absturzes
der Instanz-Management Komponente, soll ein bereits vorhandenes RRS in einer Region
wiederverwendet werden können, wie bei der Verwaltung der Automaten-Umgebungen.

Da es sich bei dem RRS um eine externe Komponente handelt, kann nicht beurteilt werden,
ob das RRS auch beim Betrieb auf mehreren Rechnern korrekt funktioniert. Hierbei müsste
sichergestellt werden, dass es zu keinen Inkonsistenzen in der Datenbank des RRS kommt.
Daher ist ein Betrieb des RRS auf mehreren Rechnern nicht vorgesehen.

32

4.3. Die Umgebung des Automaten

4.3. Die Umgebung des Automaten

Im folgenden Abschnitt wird die Umgebung des Automaten konzipiert. Diese dient dazu,
den Betrieb von Automaten in der Cloud zu ermöglichen. Dabei soll die Umgebung des Au-
tomaten die Anwendung in der Cloud darstellen. Ein Überblick der Automaten-Umgebung
wird in Abbildung 4.3 gezeigt. Die Automaten-Umgebung kann über eine Schnittstelle An-
fragen und Messages der Instanz-Management Komponente entgegen nehmen. In Abb. 4.3
wird die Schnittstelle gestrichelt dargestellt. Von der Schnittstelle aus werden Anfragen
und Messages zu Warteschlangen weitergeleitet. Innerhalb der Automaten-Umgebung kön-
nen mehrere Automaten betrieben werden, die Anfragen verarbeiten. Die Anfragen und
Nachrichten aus den Warteschlangen werden den Automaten zugewiesen. Die Automaten
benötigen bei der Verarbeitung einer Anfrage Zugriff auf eine Service Invocation Kompo-
nente. Die verschiedenen Automaten werden dabei wie in Abbildung 4.3 dargestellt durch
die Automaten-Umgebung verwaltet.

Abbildung 4.3.: Die Umgebung des Automaten im Überblick. Die gestrichelte Komponente
stellt die Schnittstelle zur Automaten-Umgebung dar.

4.3.1. Schnittstelle der Automaten-Umgebung

Um Anfragen entgegen nehmen zu können, muss die Automaten-Umgebung eine Schnitt-
stelle besitzen. Diese wird in Abb. 4.3 durch die gestrichelten Linien dargestellt. Sie dient
der Instanz-Management Komponente dazu, der Automaten-Umgebung Anfragen in Form
von Grammatiken zu übergeben. Diese soll gleichzeitig auch dazu verwendet werden, um
Messages entgegen zu nehmen (Message Correlation).

Die Schnittstelle soll keine Funktion zur Verarbeitung von Anfragen umsetzen. Sie soll diese
lediglich Anfragen entgegen nehmen und in einer persistenten Warteschlange speichern,
damit diese von anderen Bestandteilen der Umgebung abgerufen werden können. Für
Messages gilt dasselbe (siehe Abbildung 4.3.

33

4. Entwurf

4.3.2. Integration des Automaten in die Umgebung

Zur Verarbeitung von Anfragen muss der Automat in die Umgebung integriert werden. Dabei
soll ein gleichzeitiger Betrieb von mehreren Automaten möglich sein, wie in Abbildung 4.3
dargestellt. Ein Automat soll durch die Übergabe einer Grammatik gestartet werden können.
Dies soll mit beliebig vielen verschiedenen Grammatiken möglich sein. Eventuell müssen
dem Automaten während der Ausführung Messages zugeführt werden.

Die Anfragen sollen aus der Warteschlange bezogen werden, in der die Anfragen über das
Interface abgelegt werden. Messages sollen zwischengespeichert werden, bis sie benötigt
werden. Hierzu dient eine Warteschlange, wie in Abbildung 4.3 dargestellt. Zur Zuordnung
der Messages zu einer Anfrage wird dieselbe ID verwendet, wie bei der Instanz-Management
Komponente. Die benötigten Funktionen zur Zuordnung der Message sollen dabei durch
die Umgebung des Automaten zur Verfügung gestellt werden. Sobald die Ausführung einer
Anfrage beendet ist, soll außerdem die Instanz-Management Komponente über das Interface
der Instanz-Management Komponente benachrichtigt werden. Dies ist nötig, damit diese die
ID der Anfrage aus ihrem Speicher entfernen kann. Eine Zustellung von Messages bezüglich
dieser ID ist zu diesem Zeitpunkt nicht mehr nötig, da die Anfrage vollständig ausgeführt
wurde.

Für den Betrieb eines Automaten ist zudem eine zusätzliche Service Invocation Komponente
erforderlich (siehe 2.2). Diese soll dem Automaten in derselben Umgebung bereit gestellt
werden.

4.3.3. Statusverwaltung

Für die Verwaltung der Umgebung und die Interaktion mit der Instanz-Management Kompo-
nente muss die Automaten-Umgebung gewisse Statusinformationen speichern. Dazu gehört
zum Beispiel die URL der Instanz-Management Komponente, die zur Kommunikation benö-
tigt wird. Außerdem soll hierbei der Zustand aller laufenden Automaten gespeichert werden.
Der Statusverwaltung der Automaten-Umgebung soll stets bekannt sein, wie viele Automa-
ten gerade betrieben werden und welche Anfrage diese verarbeiten. Dieser Zusammenhang
wird auch in Abbildung 4.3 dargestellt. Für den Fall, dass keine Anfragen bearbeitet werden,
soll veranlasst werden, dass die Automaten-Umgebung entfernt wird, um Ressourcen zu
sparen (vgl. Anforderung A10). Hierfür soll die Automaten-Umgebung eine Nachricht an
die entsprechende Schnittstelle der Instanz-Management Komponente senden.

Außerdem soll über die Statusverwaltung der Automaten-Umgebung bestimmt werden,
wann die Automaten-Umgebung in der Lage ist, Anfragen entgegen zu nehmen und wann
nicht. Bevor eine Automaten-Umgebung bereit ist, müssen zum Beispiel die Warteschlangen
bereitgestellt werden. Der Bereitschaftsstatus soll mit der Instanz-Management Komponente
kommuniziert werden.

34

4.3. Die Umgebung des Automaten

4.3.4. Skalierung

Die Automaten-Umgebung hat die Aufgabe, die verwendeten Ressourcen effizient zu nutzen.
Außerdem sollen die zugrunde liegenden Ressourcen mit der Anzahl der Anfragen skalieren.
Um die bereits verwendeten Ressourcen optimal auszunutzen, sollen mehrere Automaten
gleichzeitig betrieben werden können. Außerdem soll erkannt werden, wenn die Ressourcen
einer Automaten-Umgebung nicht mehr ausreichen, um alle Anfragen zu verarbeiten. Hierzu
soll die Verwendung der genutzten Ressourcen überwacht werden. Wenn diese ausgelastet
sind, sollen zusätzliche Rechner für die Automaten-Umgebung verwendet werden (horizontale
Skalierung). Für den Fall, dass sich die Anzahl der Anfragen reduziert, sollen entsprechend
weniger Rechner verwendet werden. Wenn zusätzliche Rechner verwendet oder bestehende
freigegeben werden, muss dies der Instanz-Management Komponente mitgeteilt werden.
Außerdem soll sichergestellt werden, dass verschiedene Rechner gleichmäßig ausgelastet
werden, das heißt die Anfragen müssen ausgewogen auf diese verteilt werden.

35

5. Implementierung

Nachdem im Entwurf die konzeptionelle Umsetzung der Anforderungen allgemein erklärt
wurde, befasst sich dieses Kapitel mit der Implementierung der im Entwurf beschriebenen
Funktionalitäten. Hierfür werden in Abschnitt 5.1 zunächst die verwendeten Funktionen von
Amazon Web Services erklärt. Daraufhin wird in Abschnitt 5.2 die Architektur der einzelnen
Komponenten und des gesamten Systems erläutert. Zuletzt wird in den Abschnitten 5.3
und 5.4 auf ausgewählte Implementierungsdetails der Instanz-Management Komponente
und der Automaten-Umgebung eingegangen.

5.1. Verwendete Amazon Web Services

Zur Implementierung der Instanz-Management Komponente werden verschiedene Cloud
Angebote von Amazon Web Services [Amab] verwendet. Die Entscheidung für die AWS
wird in Abschnitt 3.3 begründet. Im Folgenden werden die Web Services erklärt, die in der
weiteren Implementierung verwendet werden, um das Verständnis in den darauf folgenden
Abschnitten zu erleichtern.

5.1.1. Elastic Compute Cloud

Bei Elastic Compute Cloud (EC2) handelt es sich um einen Web Service, der Rechenkapazität
aus der AWS Cloud zur Verfügung stellt [Amam]. Es wird damit ermöglicht, virtuelle
Rechner zu mieten. Diese werden als EC2-Instanzen bezeichnet. Dabei kann festgelegt
werden, wie viel Rechenleistung, Speicher und Netzwerkleistung einer EC2-Instanz zur
Verfügung gestellt werden soll. Zudem können Sicherheitsbestimmungen, wie externe
Zugriffsrechte auf die Instanz oder auch das gewünschte Betriebssystem, festgelegt werden.

5.1.2. CloudWatch

CloudWatch kann dazu verwendet werden, um die Leistungsdaten von verschiedenen Ama-
zon Web Services zu überwachen [Amal]. Hierbei stehen für verschiedene Services Metriken
zur Verfügung, nach denen deren Leistungsfähigkeit beurteilt wird. Dabei können Alarme
definiert werden, die ausgelöst werden, sobald selbst definierte Schwellwerte passiert werden.
Wenn eine EC2-Instanz überwacht wird, kann beispielsweise die CPU-Last oder die Anzahl
der Festplatten Zugriffe überwacht werden [Amak]. In diesem Beispiel könnte nun festgelegt

37

5. Implementierung

werden, dass ein Alarm ausgelöst wird, sobald die durchschnittliche CPU-Auslastung der
Instanz über einen Zeitraum von fünf Minuten über 70 Prozent liegt.

5.1.3. Auto Scaling

Bei Auto Scaling handelt es sich um einen Web Service, der dazu dient, automatisch EC2-
Instanzen zu erzeugen und zu löschen [Amao]. Dies geschieht abhängig von einer Metrik, die
selbst bestimmt werden kann. Zum Beispiel kann festgelegt werden, dass ab einer bestimmten
CPU-Last einer EC2-Instanz automatisch eine neue EC2-Instanz erzeugt wird oder dass
eine EC2-Instanz gelöscht wird, sobald eine definierte Schwelle unterschritten wird. Zudem
kann bestimmt werden, wie oft die EC2-Instanzen zum Beispiel auf CPU Last überprüft
werden und es können generelle Grenzen über die Anzahl der EC2-Instanzen definiert
werden. Die Überwachung der Leistungsdaten erfolgt durch CloudWatch. Das heißt, sobald
CloudWatch einen Alarm auslöst, erzeugt Auto Scaling eine neue EC2-Instanz. Außerdem
überprüft Auto Scaling regelmäßig die Gesundheit der zugeordneten EC2-Instanzen und
erzeugt automatisch neue, falls eine EC2-Instanz nicht funktionsfähig ist. Die EC2-Instanzen
werden in sogenannten Auto Scaling Gruppen verwaltet. Wenn über Auto Scaling eine neue
EC2-Instanz erzeugt wird, gehört diese zur selben Auto Scaling Gruppe wie die EC2-Instanz,
die durch die neue EC2-Instanz unterstützt werden soll.

5.1.4. Elastic Load Balancing

Elastic Load Balancing ist ein Service, der Load-Balancing für EC2-Instanzen implemen-
tiert [Amae]. Hierbei werden die Anfragen auf die EC2-Instanzen verteilt, die dem Load-
Balancer zugeteilt sind. Der Load-Balancer achtet dabei auch darauf, dass er Anfragen nur
an funktionsfähige EC2-Instanzen weiterleitet. Die Rechenkapazitäten des Load-Balancers
werden automatisch angepasst.Bei vielen eingehenden Anfragen werden diese also erhöht,
beziehungsweise bei wenigen Anfragen gesenkt.

5.1.5. Elastic Beanstalk

Bei Elastic Beanstalk handelt es sich um einen Web Service, der die Bereitstellung von
Anwendungen in der Cloud soweit wie möglich automatisieren soll [Amap]. Dabei ist es
nötig, einen Container, der die Anwendung enthält, hochzuladen und Elastic Beanstalk
stellt die nötige Infrastruktur für die Anwendung bereit. Die Infrastruktur einer Elastic
Beanstalk Anwendung wird in Abbildung 5.1 dargestellt. Eine Anwendung wird dabei auf
einer oder mehreren EC2-Instanzen betrieben. Die EC2-Instanzen werden in der Abbildung
durch orange Rechtecke visualisiert. Diese werden in einer Auto-Scaling Gruppe verwaltet,
wie in der Abbildung durch die blau gestrichelte Umrandung dargestellt. Der Zustand der
EC2-Instanzen wird durch CloudWatch überwacht. Überschreitet eine der zu überwachenden
Ressourcen einen bestimmten Wert, wird ein Alarm ausgelöst. Dieser wird von der Auto-
Scaling Gruppe dazu verwendet, um neue EC2-Instanzen zu erzeugen oder die Anzahl der

38

5.1. Verwendete Amazon Web Services

Instanzen zu reduzieren. Die Anfragen an die Anwendung können von einem beliebigen Ort
außerhalb oder innerhalb der Cloud gesendet werden. Der Client, der Anfragen sendet, wird
in der Abbildung grau dargestellt. Gewöhnlich werden die Anfragen dabei an einen Load-
Balancer gesendet, der diese auf die EC2-Instanzen der Auto-Scaling Gruppe verteilt. Der
Load-Balancer ist in der Abbildung blau markiert. In manchen Fällen ist es jedoch sinnvoll
eine EC2-Instanz direkt anzusprechen. In diesem Fall kann die Anfrage auch gesendet
werden, ohne den Load-Balancer zu verwenden. Obwohl Elastic Beanstalk die Bereitstellung
der Infrastruktur übernimmt, ist es möglich, auf die einzelnen Komponenten, wie die EC2-
Instanzen oder den Load-Balancer, zuzugreifen und diese individuell zu konfigurieren.

Abbildung 5.1.: Die Elastic Beanstalk Infrastruktur im Überblick.

5.1.6. Simple Storage Service

Bei Simple Storage Service (S3) handelt es sich um eine Cloud Lösung zur Speicherung von
Daten [Amaf]. Die Organisation der Daten erfolgt dabei über sogenannte Buckets. Ein Bucket
dient als Wurzelverzeichnis, in dem Dateien abgelegt und Ordner erstellt werden können.
Für den Bucket selbst lassen sich zum Beispiel Zugriffsbestimmungen für alle untergeordnete
Dateien oder ein Lebenszyklus für die Dateien festlegen.

5.1.7. Simple Queue Service

Simple Queue Service (SQS) stellt eine Nachrichten Warteschlange zur Verfügung [Aman]. In
dieser können reine Textnachrichten gespeichert werden, die maximal eine Größe von 256 KB
besitzen dürfen. Die Warteschlange erlaubt paralleles Lesen und Schreiben, gibt jedoch keine

39

5. Implementierung

Garantie über die Reihenfolge, in der die Nachrichten bezogen werden. Die Warteschlan-
ge lässt sich als Puffer und zur Kommunikation zwischen verschiedenen Anwendungen
einsetzen.

5.1.8. Regionen

Bei dem Start eines Services wird die Auswahl einer Region erlaubt. Bei den verfügbaren
Regionen handelt es sich um Gebiete, in denen sich ein Amazon Rechenzentrum befindet.
Wenn ein Service einer bestimmten Region zugeordnet wird, dann wird er in dem dortigen
Rechenzentrum betrieben. Für Zugriffe, die aus der räumlichen Nähe der Region kommen,
ergeben sich so zum Beispiel automatisch Vorteile wie bessere Latenzen. Es macht Sinn,
die Region zu verwenden, aus deren Nähe die meisten Zugriffe zu erwarten sind. Zudem
profitieren auch unterschiedliche Amazon Web Services davon, wenn sie in derselben
Region betrieben werden. Zum Beispiel ist der Datenverkehr zwischen EC2-Instanzen, die in
derselben Region liegen, kostenlos [Amai].

Die verfügbaren Regionen sind [Amaj]:

• Asien-Pazifik

– Singapur

– Sydney

– Tokyo

• Europa

– Irland

• Nord-Amerika

– Kalifornien

– Oregon

– Virginia

• Süd-Amerika

– Sao Paulo

Zudem existiert die Region GovCloud. Diese kann jedoch ausschließlich durch die Regierung
der Vereinigten Staaten verwendet werden und wird in dieser Arbeit daher ignoriert.

40

5.2. Architektur

5.2. Architektur

Die Grundlagen für die Implementierung sind nun bekannt. In diesem Abschnitt wird darauf
aufbauend die Architektur des Gesamtsystems sowie der einzelnen Komponenten im Detail
erklärt.

5.2.1. Schichtenarchitektur

Abbildung 5.2.: Die entwickelten Anwendungen im Schichtenmodell.

Der generelle Aufbau der Instanz-Management Komponente und der Automaten-Umgebung
lässt sich in eine 3-Schichten Architektur einordnen, wie in Abbildung 5.2 dargestellt. Keine
der Anwendungen verfügt über eine grafische Benutzeroberfläche. Sowohl die Instanz-
Management Komponente als auch die Automaten-Umgebung kommunizieren ausschließ-
lich über verschiedene SOAP Web Services, die hier als die Präsentationsschicht bezeichnet
werden. Die Anwendung kann somit von einem beliebig konzipierten Client verwendet wer-
den, solange dieser SOAP unterstützt. Die Anwendungsschicht beinhaltet die Komponenten
der Instanz-Management Komponente und der Automaten-Umgebung. Die Anwendungen
sind dabei in Java implementiert und werden durch Elastic Beanstalk bereitgestellt. Die
Infrastruktur einer Elastic Beanstalk Anwendung wird in Abschnitt 5.1.5 erklärt. Die EC2-
Instanzen sind dabei konfiguriert, wie in Abbildung 5.3 dargestellt. In dieser Abbildung
werden die Ressourcen gezeigt, auf denen die Anwendungen ausgeführt werden. Dabei
gibt es mehrere Ebenen, die aufeinander aufsetzen. Diese werden in der Abbildung durch
die blauen Rechtecke dargestellt. Die Pfeile symbolisieren die Hierarchie zwischen den
Ebenen. Auf der untersten Ebene befinden sich die EC2-Instanzen. Eine EC2-Instanz wird
als virtueller Server verwendet, auf dem das Betriebssystem ausgeführt wird. Das Betriebs-
system wird in der Abbildung als Ebene über den EC2-Instanzen dargestellt. Es basiert auf
einem 64 Bit Linux. Bei dem Linux OS handelt es sich um ein von Amazon zur Verfügung

41

5. Implementierung

gestelltes Linux Image, welches für den Betrieb auf EC2-Instanzen optimiert ist [Amaa].
Das Linux OS wird zum Betrieb eines Apache Tomcat 7 Webserver verwendet. Dieser dient
zur Ausführung der Instanz-Management Komponente und der Automaten-Umgebung.
Bei beiden Anwendungen handelt es sich um Java Web Anwendungen. Sie werden auf der
obersten Ebene von Abbildung 5.3 dargestellt.

Abbildung 5.3.: Die unterliegenden Ressourcen der Anwendungen.

Für die Speicherung von Daten werden ausschließlich Amazon Web Services verwendet.
Hierbei wird eine Warteschleife aus SQS verwendet, um Anfragen persistent zu speichern
und weiterzugeben. Außerdem wird S3 benötigt, um zum Beispiel Anwendungscontainer
zu speichern. Eine weitere persistente Speicherung von Informationen ist nicht erforderlich.
Eine Datenbank oder Ähnliches wird daher nicht benötigt.

5.2.2. Aufbau und Zusammenspiel der Anwendungen

Der Aufbau der einzelnen Anwendungen wird an dieser Stelle erläutert. Hierbei soll lediglich
ein Überblick über die Bestandteile der Anwendungen und deren Kommunikation geschaffen
werden, ohne dabei auf die Funktionen der einzelnen Bestandteile einzugehen, da diese in
den Kapiteln 5.3 und 5.4 beschrieben sind.

Die Anwendungen und ihre Komponenten werden in Abbildung 5.4 dargestellt. Die Funktio-
nalität der Instanz-Management Komponente wird auf sechs Komponenten aufgeteilt, die in

42

5.2. Architektur

Abbildung 5.4.: Der Aufbau der einzelnen Komponenten und ihre Beziehungen. Bei den
grauen Pfeilen handelt es sich um den Aufruf eines Web Services, wo-
bei der Pfeil in Richtung des verwendeten Web Services zeigt. Schwarze
Pfeile stehen für den Austausch von Daten. Blau gestrichelte Pfeile sym-
bolisieren Funktionsaufrufe zwischen den Teilen der Anwendung. Die
Färbung der Komponenten orientiert sich an der Grafik zur Schichtenarchi-
tektur(Abb. 5.2). Blau gefärbte Rechtecke sind Komponenten der Präsentati-
onsschicht. Graue Rechtecke sind Komponenten der Anwendungsschicht.
Orange Elemente stehen für die Datenschicht.

Abb. 5.4 grau markiert sind. Hier wird insbesondere auf die Komponente Instanz Manager hin-
gewiesen. Diese ist für die Verwaltung der Instanzen der Automaten-Umgebung zuständig
und darf nicht mit der Anwendung Instanz-Management Komponente verwechselt werden.
Zudem bietet die Instanz-Management Komponente zwei verschiedene Web Services und
einen Web Service Client an. Diese Komponenten sind blau gefärbt. Der Instanz-Management
Web Service dient zur Kommunikation mit dem Client, der in der Abbildung links dargestellt
ist. Der Rückruf Web Service stellt eine Schnittstelle für die Automaten-Umgebung dar. Der
Web Service Client der Instanz-Management Komponente hat die Aufgabe, den Kontakt
mit dem Automaten Web Service aufzunehmen. Die Automaten-Umgebung wird in Abb. 5.4
gleich unterteilt wie die Instanz-Management Komponente. Dabei muss beachtet werden,
dass mehrere Automaten-Umgebungen existieren können. Die Automaten-Umgebung teilt
die Kernfunktionalität auf drei verschiedene Komponenten auf, die in Abb. 5.4 grau markiert
sind. Zudem ist bei der Automaten-Umgebung ein Web Service und ein Web Service Client
enthalten. Diese Komponenten sind blau gekennzeichnet. Der Automaten Web Service dient
bei der Kommunikation mit der Instanz-Management Komponente dazu, um Anfragen an
die Automaten-Umgebung zu übermitteln. Der Web Service Client der Automaten-Umgebung
wird dazu verwendet, um Rückrufe zur Instanz-Management Komponente durchzuführen.

43

5. Implementierung

Die Web Services dienen zudem dazu, die grau markierten Komponenten der Anwendungen
zu aktivieren. Die Web Service Clients der jeweiligen Anwendungen werden umgekehrt
durch diese Komponenten aktiviert, wodurch die Kommunikation mit der jeweils anderen
Anwendung ermöglicht wird. Diese Beziehungen werden durch die blau gestrichelten Pfeile
in der Abbildung dargestellt.

Außerdem kommunizieren beide Anwendungen mit Web Services von Amazon, die zur
Speicherung von Daten verwendet werden. Diese sind in Abb. 5.4 orange dargestellt. SQS
wird hierbei als Warteschlange und persistenter Speicher für Anfragen verwendet. Durch
SQS werden außerdem Anfragen zwischen den Web Services und den anderen Komponenten
weitergeleitet. Der Speicherdienst S3 wird nur durch die Instanz-Management Komponente
verwendet. Der Zugriff auf die Services von Amazon erfolgt hierbei ausschließlich durch die
grau markierten Komponenten, die die Anwendungslogik implementieren.

5.3. Implementierung der Instanz-Management Komponente

Im vorigen Abschnitt wurde die Architektur des Systems vorgestellt. Im Folgenden Abschnitt
wird die Implementierung der Komponenten der Instanz-Management Komponente erklärt.
Eine Übersicht der Komponenten wird in Abbildung 5.4 dargestellt. In Abbildung 5.5 wird
die Interaktion der verschiedenen Komponenten der Instanz-Management Komponente
gezeigt.

Abbildung 5.5.: Die Interaktion der Bestandteile der Instanz-Management Komponente.
Auf den Rückruf Web Service wurde der Übersicht halber verzichtet. Er
kommuniziert mit den Komponenten RRS Verwaltung, Anfragen Verarbeitung,
Instanz Manager und Message Correlation.

Der Instanz-Management Web Service empfängt Anfragen und sendet diese an eine Warte-
schlange. Die Komponente Anfragen Verarbeitung entfernt Anfragen aus der Warteschlange
und bearbeitet sie. Dabei verwendet sie zur Berechnung der Zielregion die Komponente
Region Berechnung. Diese verwendet dabei die Komponente Web Service Registry. Diese stellt
einen Index der Web Services aus der Amazon Cloud zur Verfügung. Nach der Berechnung

44

5.3. Implementierung der Instanz-Management Komponente

der Region fordert Anfragen Verarbeitung von RRS Verwaltung eine Instanz des Reference Re-
soultion Systems (RRS) an und von Instanz Manager eine Instanz einer Automaten-Umgebung.
Die Anfrage wird dann in einer Warteschlange gespeichert und durch den Web Service Client
zur Automaten-Umgebung geschickt. Falls der Instanz-Management Web Service eine Message
erhält, übergibt er diese der Message Correlation Komponente. Diese fordert das Ziel der
Message von Instanz-Manager an und übergibt sie dann dem Web Service Client.

5.3.1. Web Services und Web Service Client

Die Instanz-Management Komponente bietet zwei verschiedene Web Services an. Der Instanz-
Management Web Service aus Abb. 5.4 dient zur Kommunikation mit dem Client. Er bietet
zwei Operationen. Die Operation sendRequest(..) wird dazu verwendet, der Instanz-
Management Komponente Anfragen zu übermitteln. Die Operation sendMessage(..) dient
zur Übermittlung von Messages an die Instanz-Management Komponente. Die Operationen
von Rückruf Web Service können von den Automaten-Umgebungen für Rückmeldungen an
die Instanz-Management Komponente verwendet werden. Die Instanz-Management Kom-
ponente besitzt außerdem einen Web Service Client, der zur Kontaktaufnahme mit dem
Automaten Web Service der Automaten-Umgebung dient. Hierbei wird eine Verbindung zu
dem Automaten Web Service der Automaten-Umgebung aufgebaut und danach die gewünsch-
te Operation aufgerufen. Der Web Service Client bietet einen Aufruf für jede Operation des
Automaten Web Services.

Abbildung 5.6.: Das Verhalten der Operation sendRequest des Instanz-Management Web
Services. Die Pfeile stehen für den Austausch von Daten. Die Rechtecke
symbolisieren die beteiligten Komponenten.

Die Erzeugung des Codes für die Web Services und der Clients erfolgt mit dem Framework
ApacheCXF1. Hierzu muss eine Basisklasse angegeben werden, deren Methoden als Web
Service Operationen angeboten werden sollen. Der Instanz-Management Web Service ist in der
Klasse ManagementWS implementiert. Das Verhalten der Operation sendRequest(..) wird in
Abbildung 5.6 dargestellt. Die Operation benötigt als Parameter eine Grammatik und liefert
eine Anfragen-ID zurück, die bei dieser Operation generiert wird. Gleichzeitig wird die
Anfragen-ID durch die Message Correlation Komponente gespeichert. Die Grammatik wird
lediglich zu einer Warteschlange weitergeleitet. Die Warteschlange wird durch Amazon SQS
zur Verfügung gestellt. Zum Zugriff auf die Warteschlange wird die SQS-API verwendet.
Die Komponente Anfragen Verarbeitung entfernt die Anfrage zur Verarbeitung aus der

1http://cxf.apache.org/

45

5. Implementierung

Warteschlange. Die Methode sendMessage(..) nimmt als Parameter eine Nachricht und eine
ID entgegen. Diese werden direkt an die Message Correlation Komponente weitergeleitet.
Der Rückruf Web Service ist in der Klasse AutomatonCallback implementiert. Die Operationen
von AutomatonCallback werden schrittweise in den Abbildungen 5.8, 5.9und 5.10 dargestellt
und in den folgenden Kapiteln erklärt.

5.3.2. Anfragen Verarbeitung

Die Komponente Anfragen Verarbeitung verarbeitet eingehende Anfragen. Bei der Verar-
beitung sind vor allem die Klassen RequestHandler und RequestHandlerManager rele-
vant. RequestHandlerManager verwaltet einzelne Instanzen der Klasse RequestHandler.
Von RequestHandlerManager existiert immer nur eine Instanz (Singleton-Pattern). Sowohl
RequestHandlerManager als auch RequestHandler leiten von Thread2 ab und können somit
als Thread ausgeführt werden. Der RequestHandlerManager-Thread läuft dabei so lange, bis
er von anderer Stelle gestoppt wird.

Der RequestHandlerManager Thread erzeugt nicht beliebig viele RequestHandler Threads,
sondern limitiert deren Anzahl über die Anzahl der verfügbaren CPU-Kerne. Wenn eine
Anfrage zu bearbeiten ist, wird zuerst überprüft, ob es RequestHandler Threads gibt, die
keine Aufgabe besitzen. Wenn dies der Fall ist, wird die Anfrage einem solchen Thread
zugewiesen. Ansonsten wird überprüft, ob ein neuer Thread erzeugt werden kann, der die
Aufgabe dann übernimmt. Ist dies nicht der Fall, muss gewartet werden, bis ein existierender
Thread seine Aufgabe abschließt und wieder bereit steht.

Ein RequestHandler-Thread lässt die Zielregion einer Anfrage berechnen und fordert dort
die Instanz einer Automaten-Umgebung von der Komponente Instanz Manager an. Wenn
die Instanz der Automaten-Umgebung Anfragen entgegen nehmen kann, wird die Anfrage
sofort über den Web Service Client dorthin gesendet. Falls die Instanz noch nicht bereit ist oder
in der Region noch kein RRS existiert, wartet der RequestHandler Thread nicht. Stattdessen
wird über SQS eine Warteschlange erstellt, in der alle Anfragen gespeichert werden, die
in dieser Region ausgeführt werden sollen, aber auf die Automaten-Umgebung warten
müssen. Der RequestHandler Thread ist somit in der Wartezeit nicht blockiert, sondern
kann neue Anfragen bearbeiten. Sobald das RRS und die Automaten-Umgebung dieser
Region sich bereit melden werden die Anfragen in der Warterschlange an die Automaten-
Umgebung der Region gesendet. Das RRS gilt dabei als bereit, sobald eine Instanz des
RRS durch die Komponente RRS Verwaltung zur Verfügung gestellt wird. Die Automaten-
Umgebung meldet sich durch die Verwendung der Operation automatonReady(..) des
Rückruf Web Services der Instanz-Management Komponente bereit. Wenn während einem
beliebigen Verarbeitungsschritt eine Exception3 geworfen wird, wird die Anfrage zurück
zur Warteschlange für Anfragen gesendet, damit diese nicht verloren geht. Dort bleibt
sie, bis sie vom RequestHandlerManager Thread erneut einem RequestHandler zugewiesen

2java.lang.Thread
3java.lang.Exception

46

5.3. Implementierung der Instanz-Management Komponente

wird. Ist die Bearbeitung einer Anfrage abgeschlossen, terminiert der entsprechende Thread
nicht, sondern meldet der Instanz von RequestHandlerManager, dass er keine Anfrage zu
verarbeiten hat und wartet, bis er eine neue Anfrage von der RequestHandlerManager Instanz
erhält.

5.3.3. Regionen Berechnung

Die Berechnung der Zielregion wird durch die verschiedenen RequestHandler Threads,
deren Abläufe bereits erklärt wurden, initiiert. Die Implementierung der Berechnung hält
sich dabei an Algorithmus 4.1, wobei hier einige Besonderheiten beachtet werden müssen.

Am Anfang der Berechnung muss ein Index der Web Services erstellt werden, die in Elastic
Beanstalk verfügbar sind. Dies geschieht mittels der Komponente Web Service Registry, deren
Implementierung in Abschnitt 5.3.4 vorgestellt wird. Der Web Service Registry Komponente
werden hierfür die Namen der Web Services und der Operationen mitgeteilt, die in einer
Grammatik verwendet werden. Um die Namen der Web Services zu ermitteln, muss zunächst
die XML-Grammatik geparst werden. Dies geschieht in der Klasse XMLGrammar. Beim Parsen
der Web Service Namen und Operationen wird nach den Typen der Nicht-Terminale gesucht,
die für Web Services stehen (siehe 2.2.1). In Algorithmus 4.1 müssen zudem die Web Service
Aufrufe gezählt werden. Hierfür wird ebenfalls die Grammatik analysiert, wobei die Klasse
XMLGrammar verwendet wird.

Für die Ermittlung der Distanzen zwischen den Regionen in Algorithmus 4.1 wird die
Klasse RegionMap verwendet. In dieser sind die Distanzen der Regionen zueinander hart
kodiert. Für die Distanzen wurden die ungefähren Luftliniendistanzen der Rechenzentren
zueinander verwendet.

Sobald die Zielregion ermittelt ist, wird für jeden Web Service, der in der Amazon Cloud
verfügbar ist, die URL in die Grammatik eingefügt. Somit wird bei der Ausführung der
Grammatik der Web Service in der Ablaufumgebung über die eingefügte URL erreicht.
Hierbei werden die Web Services verwendet, die sich in der Zielregion befinden oder
der Zielregion am nächsten sind. Das Einfügen der Web Service-URLs in die Grammatik
geschieht über die Klasse XMLGrammar. Für Web Services, die nicht in der Amazon Cloud
gehostet sind, wird keine Änderung der Adresse vorgenommen.

5.3.4. Web Service Registry

Die Web Service Registry ist ein wichtiger Bestandteil für die Berechnung der Zielregion einer
Grammatik, da sie einen Web Service Index implementiert. Die wichtigste Funktionalität ist
dabei auf die Klassen RegistryManager und Crawler aufgeteilt. Die Klasse RegistryManager

speichert Informationen zu den Web Services, die bei der Erstellung des Indexes berücksich-
tigt werden sollen. Gespeichert werden der Name des Web Services und die Namen seiner
Operationen, da diese benötigt werden, um einen Web Service zu identifizieren. Zusätzlich
dazu wird der Name des Web Service Ports gespeichert, da dieser für den Zugriff auf die

47

5. Implementierung

WSDL-Datei eines Web Services notwendig ist. Den verschiedenen Web Services werden
die IDs der Elastic Beanstalk Anwendungen zugeordnet, die diesen Web Service anbieten.
Die Information über die zu suchenden Web Services müssen dabei von einer anderen
Komponente hinzugefügt werden. Dies geschieht in der Regel durch die Komponente Region
Berechnung.

Die Erstellung des Web Service Indexes geschieht über die Klasse Crawler, die von Thread
ableitet. Eine Instanz von Crawler wird über den Konstruktor der Klasse immer an eine
bestimmte Region gebunden. Bei der Suche wird vorgegangen wie folgt: Zunächst wird über
die Elastic Beanstalk API eine Liste aller der Instanz-Management Komponente verfügbaren
Anwendungen in einer Elastic Beanstalk Region abgefragt. Nun wird für jede der Anwen-
dungen überprüft, ob sie einen Web Service enthält. Dabei wird zunächst mit Hilfe des
Portnamens getestet, ob die Anwendung eine WSDL-Datei enthält. Wenn dies nicht der Fall
ist, bietet die Anwendung den entsprechenden Web Service nicht an. Wenn die Anwendung
aber eine WSDL-Datei enthält, wird in dieser überprüft, ob der Name des Services und
seine Operationen dem gesuchten Web Service entsprechen. Wenn dies der Fall ist, wird die
Elastic Beanstalk ID dieser Anwendung in der Klasse RegistryManager gespeichert und dem
Web Service zugeordnet. Dieser Vorgang wird bei allen Elastic Beanstalk Anwendungen
für jeden zu suchenden Web Service durchgeführt. Bei einer Aktualisierung des Indexes
werden bereits bekannte Anwendungen, die einen Web Service anbieten, überprüft. Dabei
wird getestet, ob der Web Service noch verfügbar ist. Bei der Überprüfung wird zunächst
über die Elastic Beanstalk API abgefragt, ob die Anwendung und ihre Infrastruktur noch
existiert. Im nächsten Schritt wird die WSDL-Datei der Anwendung überprüft. Dabei wird
untersucht, ob der Web Service Namen und die Namen der Operationen noch dieselben
sind. Wenn die Anwendung nicht mehr existiert oder die WSDL-Datei sich verändert hat,
wird sie aus dem Index gelöscht.

RegistryManager bietet eine blockierende und eine nicht-blockierende Aktualisierung des
Web Service Indexes an. Die nicht-blockierende Version kann verwendet werden, um initial
die existierenden Web Services in die Registry aufzunehmen. In diesem Fall können die
Crawler Threads im Hintergrund den Index erstellen. Die blockierende Variante ist für die
Berechnung der Region erforderlich, da es hier zwingend notwendig ist, einen aktuellen
Index zu besitzen. Bei der blockierenden Methode wird gewartet, bis der Index jeder Region
aktualisiert wurde.

5.3.5. Instanz-Manager

Wenn bei der Verarbeitung einer Anfrage oder in einer anderen Situation eine Instanz einer
Automaten-Umgebung angefordert wird, fällt dies in den Aufgabenbereich der Kompo-
nente Instanz-Manager. Die Verwaltung der Instanzen geschieht dabei hauptsächlich über
die Klassen InstanceManagement und InstanceRepresentation. Bei InstanceManagement
handelt es sich um die zentrale Klasse, die Informationen über alle Instanzen der Automaten-
Umgebung besitzt. Die Verwaltungsinformationen der Automaten-Umgebung werden in
einer Instanz der Klasse InstanceRepresentation gespeichert. Diese bietet Zugriff auf die
relevanten Eigenschaften der Elastic Beanstalk Anwendung, wie die URL und den Status

48

5.3. Implementierung der Instanz-Management Komponente

der Anwendung. Es kann nur eine Instanz der Klasse InstanceManagement existieren. Auf
diese kann in der Anwendung global zugegriffen werden. Sie verwaltet alle Instanzen von
InstanceRepresentation. InstanceManagement steuert den Zugriff auf die Instanzen von
InstanceRepresentation und lässt nur eine dieser Instanzen pro Region zu. Wenn eine In-
stanz von InstanceRepresentation aus einer bestimmten Region von InstanceManagement

angefordert wird, wird entweder eine neue Instanz von InstanceRepresentation erzeugt
oder eine bestehende zurückgeliefert.

Bei der Erzeugung einer Instanz von InstanceRepresentation wird die Instanz einer
Automaten-Umgebung in Elastic Beanstalk erzeugt. Hierfür sind mehrere Schritte not-
wendig, die in Abbildung 5.7 visualisiert werden. In sämtlichen Schritten wird die Java API
verwendet, um Kontakt zu AWS aufzunehmen. Eine zentrale Rolle spielt hierbei die Klasse
AWSElasticBeanstalkClient, die in der Java API enthalten ist. Über diese werden sämtliche
Aufrufe an die Elastic Beanstalk AWS Schnittstelle übermittelt.

Abbildung 5.7.: Die Schritte zur Erzeugung einer Elastic Beanstalk Anwendung.

Um eine Anwendung auf Elastic Beanstalk bereitzustellen, wird dort zunächst eine An-
wendung erzeugt, die noch keine Funktion bietet. Hierbei wird lediglich ein Name für
die Anwendung angegeben. Im nächsten Schritt wird eine Implementierung der Anwen-
dung in einem Container auf Amazon S3 hochgeladen. Die Implementierung wird als
Anwendungsversion bezeichnet. Die Anwendungsversion wird dabei als Web Application Ar-
chive (WAR-Datei) bereitgestellt. Eine WAR-Datei enthält eine Anwendung, die nach der
Java-Servlet-Spezifikation verpackt ist. Schließlich wird eine sogenannte Umgebung erzeugt.
Hierbei wird festgelegt, welche Anwendung in dieser Umgebung betrieben werden soll
und welche Anwendungsversion verwendet werden soll. Beim Erzeugen der Umgebung
wird die Infrakstruktur für die Anwendung bereitgestellt. Darunter fallen EC2-Instanzen,
ein Load-Balancer, eie Auto Scaling Gruppe und CloudWatch Alarme. Bei der Erstellung
der Umgebung kann die Infrakstur manuell konfiguriert werden. An dieser Stelle wird ein
Betriebssystem (Linux) und ein Anwendungsserver (Tomcat) für die EC2-Instanzen festgelegt.
Für sämtliche andere Optionen werden die Standardeinstellungen verwendet. Nachdem
die Umgebung erzeugt wurde und die Infrastruktur bereit steht, kann sie beliebig modifi-

49

5. Implementierung

ziert werden. Zum Beispiel kann wie in Abbildung 5.7 die Anwendungsversion aktualisiert
werden.

Die Klasse InstanceRepresentation bietet nicht nur Zugriff auf die Elastic Beanstalk An-
wendung, sondern auch auf die EC2-Instanzen, die verwendet werden, um die Anwendung
zu betreiben. Dies ist insbesondere für die Message Correlation Komponente erforderlich, da
hierfür gezielt EC2-Instanzen adressiert werden müssen. Um Zugriff auf die EC2-Instanzen
zu erhalten, muss die EC2-API verwendet werden. Mithilfe der EC2-Api wird eine Liste aller
EC2-Instanzen der Region abgefragt. Die IDs dieser EC2-Instanzen werden mit den IDs der
EC2-Instanzen verglichen, die der Elastic Beanstalk Umgebung zugeordnet sind. So kann
festgestellt werden, welche der EC2-Instanzen zum Betrieb der Elastic Beanstalk Anwendung
verwendet werden. Die Informationen, die zum Zugriff auf die EC2-Instanzen verwendet
werden, werden in der Klasse InstanceRepresentation gespeichert.

Abbildung 5.8.: Die Nachrichten zur Bestätigung einer Automaten-Umgebung in einem
UML-Sequenzdiagramm.

Über InstanceRepresentation kann außerdem abgefragt werden, ob die entsprechende
Instanz der Automaten-Umgebung bereit ist, Anfragen zu übernehmen, oder nicht. Eine
Automaten-Umgebung ist nicht immer bereit, da es eine gewisse Zeit erfordert, die Ressour-
cen für die Umgebung bereitzustellen, nachdem der Befehl zur Erstellung der Umgebung
abgesendet wurde. In dieser Zeit ist es dementsprechend noch nicht möglich, eine An-
frage an die Anwendung zu schicken. In InstanceRepresentation wird gespeichert, ob
eine Automaten-Umgebung bereit ist Anfragen entgegen zu nehmen oder nicht. Wenn die
Automaten-Umgebung bereit ist, muss dies für die einzelnen EC2-Instanzen, auf denen die
Automaten-Umgebung betrieben wird, bestätigt werden. Um eine EC2-Instanz zu bestätigen,
werden mehrere Schritte durchgeführt. Diese werden in Abbildung 5.8 dargestellt. Hier wird
zunächst eine Grammatik durch sendRequest(..) übermittelt. Daraufhin wird eine neue
Automaten-Umgebung erzeugt. Diese beginnt den Bestätigungsvorgang durch den Aufruf
der Operation requestID() des Rückruf Web Services. Über die Klasse InstanceManagement

wird nun von sämtlichen existierenden InstanceRepresentation Instanzen eine Liste der
unbestätigten EC2-Instanzen angefordert. Bei diesen Instanzen wird die Web Service Ope-
ration confirmID(..) des Automaten Web Service der Automaten-Umgebung aufgerufen.
Dabei werden die Region und die ID der jeweiligen EC2-Instanz als Parameter übergeben.

50

5.3. Implementierung der Instanz-Management Komponente

Eine EC2-Instanz wird jedoch erst als bestätigt gewertet, wenn ein Aufruf der Operation
automatonReady(..) des Rückruf Web Services durch die Automaten-Umgebung erfolgt. Da-
bei werden erneut die Region und die ID der EC2-Instanz angegeben. Dieser Vorgang wird
für alle unbestätigten EC2-Instanzen durchgeführt.

Die Klasse InstanceManagement sorgt zusätzlich für die Löschung von Automaten-
Umgebungen. Für eine Löschung müssen Nachrichten zwischen Instanz-Management
Komponente und Automaten-Umgebung ausgetauscht werden. Die Nachrichten wer-
den in Abbildung 5.9 dargestellt. Eine Löschung wird durch den Aufruf der Operation
deleteAutomaton(..) des Rückruf Web Services durch die Automaten-Umgebung ausgelöst.
Die Automaten-Umgebung in einer Region kann jedoch auf mehreren EC2-Instanzen betrie-
ben werden. Wenn eine dieser EC2-Instanzen durch die Automaten-Umgebung entfernt wird,
verwendet diese immer die Operation deleteAutomaton(..). Daher muss vor der Löschung
der Automaten-Umgebung überprüft werden, ob nur noch eine EC2-Instanz in der Umge-
bung betrieben wird. Ansonsten wäre es möglich, dass die gesamte Automaten-Umgebung
gelöscht wird, obwohl diese noch auf anderen EC2-Instanzen betrieben werden soll. Falls die
Operation deleteAutomaton(..) durch die letzte existieren EC2-Instanz einer Automaten-
Umgebung erfolgt, wird die Automaten-Umgebung gelöscht, wie in Abbildung 5.9 durch
delete() dargestellt. Dabei sind dieselben Schritte nötig, wie zum Bereitstellen einer Elastic
Beanstalk Anwendung. Auch hier müssen über die API die Umgebung, die Anwendung und
die Anwendungsversion separat gelöscht werden. Das Löschen einzelner EC2-Instanzen ist
nicht Aufgabe der Instanz-Management Komponente, sondern der Automaten-Umgebung.

Abbildung 5.9.: Die Nachrichten zur Löschung einer Automaten-Umgebung in einem UML-
Sequenzdiagramm.

5.3.6. RRS Verwaltung

Eine Bedingung, die für die Verarbeitung einer Grammatik erfüllt sein muss, ist das Vorhan-
densein des RRS in der Region der Automaten-Umgebung. Das RRS muss hierbei bereitge-
stellt werden, bevor eine Grammatik ausgeführt wird. Die Verwaltung der Instanzen des RRS
ist analog zu der Verwaltung der Instanzen der Automaten-Umgebung implementiert. Der
einzige Unterschied besteht darin, dass keine Skalierung vorgesehen ist (vgl. Abschnitt 4.2.6).
In der Implementierung der RRS Verwaltung ergeben sich daher nur zwei nennenswerte

51

5. Implementierung

Unterschiede. Zum einen werden EC2-Instanzen nicht extra gesucht oder gespeichert. Der
Zugriff erfolgt daher vollständig über die Elastic Beanstalk API. Zum anderen liefert das RRS
selbst keine Rückmeldung darüber, wann es bereit ist. Der Zustand des RRS wird daher aktiv
in einem Zeitintervall von 60 Sekunden über die Elastic Beanstalk API abgefragt. Sobald
festgestellt wird, dass die RRS Instanz bereit ist, wird die Komponente Anfragen Verarbeitung
benachrichtigt. Diese kann nun wartende Anfragen an die Automaten-Umgebung senden.

5.3.7. Message Correlation

Für die Message Correlation Komponente sind die Klassen MessageCorrelation und IdTable

relevant. MessageCorrelation ist dabei für die reine Weiterleitung der Messages zuständig.
In IdTable wird gespeichert, welche Anfrage von welcher Automaten-Umgebung verarbeitet
wird. Dabei wird die ID der Anfrage der URL der Automaten-Umgebung zugeordnet.
Hierbei wird immer die URL der EC2-Instanz gespeichert, nicht die URL des Load-Balancers
der Umgebung, da dieser die Message zu einer beliebigen Automaten-Umgebung innerhalb
der Auto-Scaling Gruppe schickt.

Abbildung 5.10.: Die Nachrichten zur Verarbeitung einer Anfrage in einem UML-
Sequenzdiagramm.

IdTable verwendet eine Tabelle zur Zuordnung einer Anfragen-ID zu der Automaten-
Umgebung, die diese bearbeitet. Ein Eintrag in der Tabelle wird beim Eingang einer Anfrage
angelegt. Zu dieser Zeit ist die EC2-Instanz, auf der die Anfrage bearbeitet wird, jedoch
noch nicht bekannt. Diese wird erst dann bekannt, wenn die Anfrage dorthin geschickt
wurde. Der Eintrag in der Tabelle ist deshalb noch nicht vollständig. Um den Eintrag in der
Tabelle zu vervollständigen, ist die Message Correlation Komponente auf eine Rückmeldung
der Automaten-Umgebung angewiesen. Die hierfür verwendeten Nachrichten werden in
Abbildung 5.10 gezeigt. In der Abbildung wird zunächst über sendRequest(..) eine Anfrage
an die Automaten-Umgebung geschickt. Die Automaten-Umgebung teilt mit, durch welche
EC2-Instanz die Anfrage verarbeitet wird. Dies geschieht über den Rückruf Web Service durch
die Operation processingRequest(..). Wenn die Instanz-Management Komponente diese

52

5.4. Implementierung der Automaten-Umgebung

Nachricht erhalten hat, kann sie die Messages an die entsprechende EC2-Instanz schicken.
Sobald die Automaten-Umgebung über executionFinished(..) des Rückruf Web Service
signalisiert, dass die Anfrage verarbeitet wurde, kann der Tabelleneintrag dieser Anfrage
gelöscht werden.

Der Vorgänge zur Weiterleitung einer Message werden in Abbildung 5.11 dargestellt.
Die Weiterleitung erfolgt ebenfalls über die Klasse MessageCorrelation. Wenn eine Mes-
sage bei der Web Service Implementierung ManagementWS eingeht, wird die Message
über forwardMessage(..) zur Klasse MessageCorrelation weitergeleitet. In der Klas-
se MessageCorrelation wird mithilfe der Klasse IdTable überprüft, ob die Automaten-
Umgebung, die die zugehörige Anfrage bearbeitet, bereits bekannt ist. Dies geschieht durch
die Methode getMessageTarget(..). Wenn das Ziel der Nachricht bekannt ist, wird die
Message direkt dorthin gesendet. Der Fall, wenn das Ziel der Nachricht nicht bekannt ist,
wird in Abb. 5.11 in der linken Bildhälfte dargestellt. Hier liefert getMessageTarget(..)
keine URL zurück. Die Message wird in diesem Fall so lange in einer Warteschlange ge-
speichert, bis die Automaten-Umgebung bekannt ist. Das weitere Vorgehen wird in der
rechten Bildhälfte von Abbildung 5.11 dargestellt. Durch die Klasse AutomatenCallback

wird MessageCorrelation mitgeteilt, dass die Anfrage verarbeitet wird. Dies geschieht
durch die Methode processingRequest(..). Gleichzeitig wird in IDTable das Ziel der Mes-
sages gesetzt, was durch die Methode addMessageTarget(..) geschieht. Danach entfernt
MessageCorrelation die Messages aus der Warteschlange und schickt sie zum Ziel.

Abbildung 5.11.: Das linke Bild stellt das Vorgehen dar, wenn das Ziel einer Message noch
nicht bekannt ist. Das rechte Bild stellt dar, wie die Message weitergeleitet
wird.

5.4. Implementierung der Automaten-Umgebung

Nachdem die Implementierung des Instanz-Managers im vorigen Abschnitt vorgestellt
wurde, wird in diesem Abschnitt auf die Implementierung der Automaten-Umgebung
eingegangen. Hierbei werden einige Vorgänge nicht mehr, oder weniger genau, erklärt,
da diese ähnlich implementiert sind, wie bei der Instanz-Management Komponente. Auf
die Implementierung des Web Service Clients (siehe 5.3.1) und die Komponente Automat
Ausführung (siehe Abb. 5.4) wird deshalb nicht mehr eingegangen. Bei Automat Ausführung

53

5. Implementierung

handelt es sich um den eigentlichen Automaten und zugehörige Komponenten. Diese wurden
nicht im Rahmen dieser Arbeit entwickelt, weshalb die Implementierung hier nicht erläutert
wird. Die Komponente wird lediglich als JAR-Datei in das Projekt der Automaten-Umgebung
eingebunden, was den Zugriff auf deren Funktionen ermöglicht.

Abbildung 5.12.: Die Interaktion der Bestandteile der Automaten-Umgebung.

Eine Übersicht über die Komponenten der Automaten-Umgebung wird in Abb. 5.12 darge-
stellt. Der Automaten Web Service nimmt Anfragen und Messages entgegen und speichert
sie in einer Warteschlange. Außerdem kommuniziert sie mit der Komponente Zustand. Die
Komponente Anfragen Verarbeitung entfernt Anfragen aus der Warteschlange und steuert
die Komponente Automaten Ausführung. Automaten Ausführung führt einen oder mehrere
Automaten aus und gibt entsprechendes Feedback an Anfragen Verarbeitung. Dabei entnimmt
Automaten Ausführung die Messages aus der Warteschlange. Anfragen Verarbeitung gibt zudem
Informationen über den Verarbeitungsstatus von Anfragen an die Zustand Komponente
weiter. Sowohl Zustand als auch Anfragen Verarbeitung geben über den Web Service Client
Rückmeldungen an die Instanz-Management Komponente. Die genauen Abläufe werden in
den folgenden Abschnitten erklärt.

5.4.1. Automaten Web Service

Der Automaten Web Service dient, gleich wie die Web Services der Instanz-Management
Komponente, zur Übermittlung von Anfragen. Der Automaten Web Service besitzt drei
verschiedene Operationen. Die Operation sendRequest(..) arbeitet identisch wie die gleich
benannte Operation des Instanz-Management Web Services, nur wird an dieser Stelle keine
ID erzeugt. Die Operation sendMessage(..) leitet eine Message im Gegensatz zur Instanz-
Management Komponente direkt an eine Warteschlange weiter. Zusätzlich gibt es noch die
Operation confirm(..), deren Funktion in Abschnitt 5.4.2 erklärt wird.

Auch die Web Services der Automaten-Umgebung wurden mit Apache CXF erzeugt.

5.4.2. Zustand

Ein wichtiger Teil zur Verwaltung der Automaten-Umgebung stellt die Komponente Zustand
dar. Hierbei ist vor allem die Klasse Status zu erwähnen. Durch diese wird festgelegt, wann

54

5.4. Implementierung der Automaten-Umgebung

die Automaten-Umgebung bereit ist, Anfragen entgegen zu nehmen und wann nicht. Die
Zustände der Automaten-Umgebung werden in Abbildung 5.13 dargestellt. Blaue Rechtecke
stehen in der Abbildung für Zustände. Blaue Pfeile symbolisieren Zustandsübergänge. Die
Automaten-Umgebung besitzt mehrere Zustände, in denen sie bereit (in der Abbildung grün
umrandet) oder nicht bereit ist (in der Abbildung rot umrandet).

Abbildung 5.13.: Die Zustände der Automaten-Umgebung im Überblick.

Zu Beginn ist die Anwendung nicht bereit, da sie zunächst gestartet werden muss. Nach dem
Startvorgang muss die Umgebung zunächst bestätigt werden (vgl. Abb. 5.13). Die Automaten-
Umgebung gilt als bestätigt, wenn in Status die Region der Automaten-Umgebung und
die ID der EC2-Instanz, auf der die Automaten-Umgebung ausgeführt wird, gespeichert
ist. Beide Informationen sind zu Beginn nicht verfügbar und werden der Automaten-
Umgebung über die Operation confirm(..) des Automaten Web Service durch die Instanz-
Management Komponente mitgeteilt (siehe Abb. 5.8). Die Instanz-Management Komponente
verwendet die Operation confirm(..) erst, wenn die Automaten-Umgebung die Operation
requestID(..) des Rückruf Web Services der Instanz-Management Komponente verwendet.
Die Verwendung von requestID(..) durch die Automaten-Umgebung muss dabei zuerst
erfolgen, da die Instanz-Management bis zu diesem Zeitpunkt keine Information darüber
verfügt, ob die Infrastruktur der Automaten-Umgebung bereit steht. Sobald die Operati-
on confirm(..) durch die Instanz-Management Komponente verwendet wird, wird die
Operation automatonReady(..) der Instanz-Management Komponente aufgerufen und die
Automaten-Umgebung kann nun Anfragen bearbeiten (siehe Abb. 5.8). Der Aufruf von
automatonReady(..) ist erforderlich, um der Instanz-Management Komponente mitzuteilen,
dass die Automaten Umgebung nun bereit ist. Die Automaten Umgebung befindet sich nun
im Zustand Umgebung bereit aus Abbildung 5.13. In Status wird außerdem gespeichert, ob
die Automaten-Umgebung gerade eine Anfrage bearbeitet oder sich im Leerlauf befindet.
Dies wird durch in Abbildung 5.13 durch die Zustände Anfragen Bearbeitung und Leerlauf
ausgedrückt. Sobald die Automaten-Umgebung in den Zustand Leerlauf übergeht, wird ein
Timer von 15 Minuten gestartet. Zu dem Zeitpunkt, an dem dieser Timer abläuft, wird die
Operation deleteAutomaton(..) des Rückruf Web Services aufgerufen (siehe Abb. 5.9). Falls
während der 15 minütigen Wartezeit eine neue Anfrage eingeht, wird der Timer abgebrochen.
Sobald die Anwendung gelöscht wird, das heißt in den Zustand Terminierung übergeht, gilt
sie als nicht bereit und kann keine Anfragen mehr entgegen nehmen.

55

5. Implementierung

5.4.3. Anfragen Verarbeitung

Die Verarbeitung von Anfragen erfolgt ähnlich wie beim Instanz-Manager und wird
durch den Automaten Web Service angestoßen, wenn eine Anfrage eingeht. Dabei verhal-
ten sich die Klassen AutomatonThreadManager und AutomatonThread gleich zueinander wie
RequestHandlerManager und RequestHandler.

Jede Instanz von AutomatonThread führt einen Automaten aus. Die Instanzen von
AutomatonThread erhalten die Grammatiken hierfür von der einzigen existierenden In-
stanz von AutomatonThreadManager. Die Instanz von AutomatonThreadManager bezieht die
Anfragen wiederum aus der SQS Warteschlange, in der die Anfragen durch den Au-
tomaten Web Service gespeichert werden. Wenn der Automat einer AutomatonThread In-
stanz die Ausführung einer Grammatik beendet hat, teil der AutomatonThread dies der
Instanz von AutomatonThreadManager mit. Diese benachrichtigt Status darüber, wenn sich
alle Threads im Leerlauf befinden, wodurch dort der Lösch-Timer gestartet wird. Außer-
dem werden vor und nach der Ausführung eines Automaten die jeweiligen Operationen
processingRequest(..) und executionFinished(..) des Rückruf Web Services ausgeführt
(vgl. Abb. 5.10).

In der Komponente Anfragen Verarbeitung ist zudem die Funktion implementiert, Messages
an bestimmte Instanzen von AutomatonThread weiterzuleiten. Hierbei wird ähnlich vorgegan-
gen, wie bei der Message Correlation Komponente der Instanz-Management Komponente. Es
wird lokal eine Tabelle geführt, die speichert, welcher Thread welche Anfrage bearbeitet. Die
Zuordnung erfolgt dabei über die eindeutige ID des Threads, die durch das Betriebssystem
vergeben wird. Um die Messages bis zur Verwendung zu speichern, besitzt jeder Thread
eine eigene Warteschlangen auf SQS. Der Zugriff auf die Warteschlange erfolgt über die SQS
API.

5.4.4. Skalierung

Um die Automaten-Umgebung skalierbar zu gestalten, werden über Elastic Beanstalk die
Services Load-Balancing, Auto Scaling und CloudWatch verwendet. Die Skalierung erfolgt
ausschließlich über diese Services. Sie werden automatisch beim Start der Elastic Beanstalk
Anwendung verwendet. Durch den Auto Scaling Service werden dabei auf verschiedenen
EC2-Instanzen jeweils eine komplette Automaten-Umgebung erstellt. Der Auto-Scaling Ser-
vice ist dabei so konfiguriert, dass eine neue EC2-Instanz gestartet wird, sobald auf allen
bestehenden EC2-Instanzen über einen Zeitraum von drei Minuten eine durchschnittliche
CPU Last von über 80% vorliegt. Dabei werden maximal fünf EC2-Instanzen pro Automaten-
Umgebung erstellt. Eine EC2-Instanz wird gelöscht, wenn bei dieser über einen Zeitraum
von drei Minuten eine durchschnittliche CPU Last von unter 50% vorliegt. Die Anfragen,
die von der Instanz-Management Komponente an die Automaten-Umgebung geschickt
werden, werden durch den Load-Balancer auf die EC2-Instanzen, auf denen die Automaten-
Umgebungen betrieben wird, verteilt. Der Load-Balancer schickt Anfragen dabei bevorzugt
an EC2-Instanzen mit niedriger CPU Last. Dies bringt das Problem mit sich, dass Anfragen
auch an eine EC2-Instanz geschickt werden können, obwohl diese noch nicht bereit ist,

56

5.4. Implementierung der Automaten-Umgebung

das heißt noch nicht von der Instanz-Management Komponente bestätigt wurde. Ohne die
Region und ID der EC2-Instanz zu kennen, können die Anfragen jedoch nicht verarbeitet
werden. Sie werden aus diesem Grund so lange lokal zwischengespeichert, bis diese Infor-
mationen vorhanden sind. Sobald die Region bekannt ist, werden die Nachrichten zur SQS
Warteschlange geschickt, die von allen Automaten-Umgebungen der Region verwendet wird,
um Anfragen zu speichern. Ohne die Region zu kennen, ist auch dies nicht möglich, da bei
SQS immer eine Region explizit angegeben werden muss.

57

6. Diskussion

In diesem Kapitel soll das Ergebnis der Arbeit diskutiert werden. Hierzu wird in Abschnitt 6.1
die beispielhafte Verarbeitung einer Anfrage durch den die Instanz-Management Kompo-
nente schrittweise vorgestellt, um die Funktionen der Instanz-Management Komponente
zusammenzufassen. Auf dieser Basis wird in 6.2 untersucht, ob die Ziele der Arbeit und
die Anforderungen aus Kapitel 3 erfüllt wurden. Abschließend werden in 6.3 eventuelle
Schwächen und Verbesserungsmöglichkeiten diskutiert.

6.1. Beispielhafte Verarbeitung einer Anfrage

In diesem Abschnitt wird die beispielhafte Verarbeitung einer Anfrage vorgestellt, um die
Funktionsweise der Instanz-Management Komponente und der Automaten-Umgebung zu-
sammenzufassen. Der Ablauf wird außerdem in einem UML-Aktivitätsdiagramm dargestellt
(siehe Abb. 6.1).

Die Verarbeitung einer Anfrage wird stets durch den Empfang einer Anfrage durch die
Instanz-Management Komponente initiiert. Bei der Anfrage handelt es sich um eine formale
Grammatik in XML Form. Die Anfrage wird durch die Instanz-Management Komponente
entgegengenommen und es wird eine eindeutige ID für diese Anfrage generiert. Die ID wird
gespeichert und zum Client zurückgesendet. Die Anfrage selbst wird in die Warteschlange
für Anfragen eingeordnet.

Nun beginnt die Verarbeitung der Anfrage. Der erste Schritt dabei ist die Berechnung
der Zielregion, in der die Grammatik ausgeführt werden soll. Dieser Schritt wird in der
Abbildung durch den Zustand Region Berechnen dargestellt. Danach wird eine Instanz
einer Automaten-Umgebung in der Zielregion angefordert. An dieser Stelle gibt es zwei
Möglichkeiten, die in der Abbildung durch die Verzweigung Aut.-Umg. verfügbar? dargestellt
werden. Bei der ersten Möglichkeit ist in dieser Region bereits eine Instanz der Automaten-
Umgebung vorhanden, die bereit ist Anfragen entgegenzunehmen. In diesem Fall wird die
Anfrage direkt an die Automaten-Umgebung geschickt. Ist keine Instanz der Automaten-
Umgebung vorhanden, wird in der Zielregion eine neue erstellt. Die Anfrage wird in einer
Warteschlange gespeichert, bis die neue Instanz der Automaten-Umgebung bereit dazu ist,
Anfragen entgegenzunehmen. Bevor die Automaten-Umgebung Anfragen entgegen nehmen
kann, muss diese zunächst durch die Instanz-Management Komponente bestätigt werden
(Zustand Bestätigung in der Abbildung).

59

6. Diskussion

Abbildung 6.1.: Verarbeitung einer Anfrage in einem UML Aktivitätsdiagramm.

Die weiteren Aktionen von Instanz-Management Komponente und Automaten-Umgebung
finden parallel statt. Dies wird durch den blauen Parallelisierungsbalken bei der Instanz-
Management Komponente dargestellt. Die Instanz-Management Komponente leitet die An-

60

6.2. Untersuchung des Ergebnisses

frage zur Automaten-Umgebung weiter, die diese entgegen nimmt. Die Instanz-Management
Komponente befindet sich nun zunächst im Leerlauf. Die Automaten-Umgebung beginnt
mit der Verarbeitung der Grammatik. Darüber wird auch die Instanz-Management Kom-
ponente benachrichtigt. Falls diese Messages empfangen hat (Verzweigungsknoten Messa-
ges empfangen? in der Abbildung) sendet sie diese an die Automaten-Umgebung. In der
Automaten-Umgebung wird der Automat ausgeführt und parallel dazu werden Messages
entgegen genommen. Die Parallelität wird in der Abbildung durch den Parallelisierungsbal-
ken vor Messages entgegennehmen und Automat ausführen dargestellt. Nach dem Ende dieser
parallelen Aktionen in der Automaten-Umgebung ist dort die Verarbeitung beendet. Es wird
eine Rückmeldung an die Instanz-Management Komponente gegeben, womit die parallele
Aktivität von Instanz-Management Komponente und Automaten-Umgebung beendet ist.
Dies wird durch den Synchronisierungsbalken bei der Instanz-Management Komponente
dargestellt. Damit ist die Verarbeitung der Anfrage abgeschlossen.

6.2. Untersuchung des Ergebnisses

Anhand des Beispielablaufes aus dem vorigen Abschnitt wird nun untersucht, inwiefern
die Ziele der Arbeit erreicht wurden. Die generellen Ziele der Arbeit aus der Einleitung
wurden erfüllt. Die Instanz-Management Komponente ist dazu in der Lage, verschiedene
Instanzen eines Automaten zu verwalten und auf unterschiedliche Regionen der Amazon
Cloud zu verteilen. Sie kann zudem Instanzen eines Automaten entfernen. Die Auswahl
der Region geschieht dabei, wie gefordert, über die in der Grammatik verwendeten Web
Services. Zudem wird der Automat in einer generischen Form bereitgestellt, wodurch dieser
prinzipiell beliebig viele verschiedene Grammatiken verarbeiten kann. Die Skalierbarkeit des
Automaten wird über die Automaten-Umgebung sichergestellt. Die Skalierung selbst wird
dabei vollständig von der Amazon Infrastruktur übernommen. Diese kümmert sich auch
darum, überflüssige Rechenkapazitäten wieder freizugeben. Die Automaten-Umgebung
selbst wird von der Instanz-Management Komponente entfernt, sobald die Automaten-
Umgebung nicht mehr benötigt wird.

Auch den Anforderungen, die in Kapitel 3 formuliert wurden, wird durch die vorliegen-
de Implementierung nachgekommen. Die Anforderungen A1 (Regionen Berechnung), A2

(Verwaltung von verschiedenen Instanzen eines Automaten), A6 (Generischer Automat), A9

(Effizienter Umgang mit Ressourcen) und A10 (Skalierbarkeit) sind bereits durch die allge-
meinen Ziele abgedeckt. Anforderung A3 (Ausführung des Automaten möglich) wird durch
die Message Correlation Komponente der Instanz-Management Komponente und durch die
Automaten-Umgebung erfüllt. Hierbei kann ein Automat gestartet werden und während der
Ausführung kann dieser mit Messages versorgt werden. Durch die Web Service Registry Kom-
ponente wird Anforderung A4 (Überblick über Web Services) erfüllt, da diese Informationen
zu sämtlichen Web Services speichert. Die geforderte Verwaltung der RRS-Instanzen aus
Anforderung A5 wird durch die Komponente RRS Verwaltung implementiert. Anforderung
A7 (Garantierte Verarbeitung einer Anfrage) wird durch die Speicherung der Anfragen in
einer persistenten Warteschlange erfüllt. Zudem werden die Anfragen im Fehlerfall wieder
dort gespeichert. In Anforderung A8 wird eine optimale Verteilung der Automaten auf die

61

6. Diskussion

verschiedenen Regionen gefordert. Die Anforderung ist bezüglich der verwendeten Metrik
erfüllt. Für jede Region wird eine Bewertung erstellt, in der die Kosten der Web Service
Aufrufe bewertetet werden. Die Kosten werden durch die Auswahl der Region mit der besten
Bewertung minimiert.

6.3. Alternative Umsetzungsmöglichkeiten

Wie im vorigen Abschnitt gezeigt, wurden die Ziele und Anforderungen der Arbeit durch
die Implementierung erfüllt. An dieser Stelle werden alternative Umsetzungsmöglichkeiten
für gewisse Probleme diskutiert, die Nachteile der vorliegenden Implementierung beheben
würden, jedoch andere Probleme mit sich bringen würden.

Ein Problem stellt die lange Zeitspanne dar, die für die Bereitstellung einer Elastic Beanstalk
Anwendung benötigt wird. Wenn eine neue Automaten-Umgebung erzeugt wird, vergeht
häufig eine Zeit von 5 - 10 Minuten, bis die Anwendung tatsächlich bereitsteht. Die genaue
Dauer unterscheidet sich bei jedem Bereitstellungsvorgang. Für die Verarbeitung einer Anfra-
ge bedeutet dies eine ebenso lange Wartezeit. Eine solche Verzögerung bei der Bearbeitung
von Anfragen ist nicht wünschenswert. Um dies zu vermeiden, könnte in jeder Region
standardmäßig eine Automaten-Umgebung betrieben werden, die nie gelöscht wird. Hierbei
würden unter Umständen aber lange Leerlauf-Phasen für eine Automaten-Umgebung ent-
stehen, wenn die Automaten-Umgebung einer Region eigentlich nicht benötigt wird. Dies
wäre ein Widerspruch zu der Anforderung, dass möglichst viele Ressourcen gespart werden
sollen. Letztendlich wurde in der Implementierung die erste Lösung gewählt, da über die
Dauer der Verarbeitungszeit in den Anforderungen keine Vorgaben gemacht wurden.

Ein weiterer Punkt, der diskutiert werden kann, ist das Vorgehen bei der Berechnung der
Region. In der verwendeten Implementierung wird die Zugriffshäufigkeit auf Web Services
analysiert. Außerdem wird die Latenz durch die Strecke bewertet, die bei einem Web Service
Aufruf zurückgelegt wird. Ein Aspekt der dabei nicht berücksichtigt wird, ist die Daten-
menge, die die Web Services transferieren. Diese ist nicht ohne Weiteres ermittelbar. Die
Latenz könnte ebenfalls effizienter bestimmt werden, als über die reine Entfernung der
Rechenzentren, in denen die Web Services zur Verfügung stehen. Die Latenz ist unter ande-
rem abhängig von der tatsächlichen Leitungslänge und der Qualität der Leitung sowie der
Stationen, über die ein Paket geschickt wird. Um hierbei eine zuverlässige Abschätzung zu
treffen, müssten die Latenzen zwischen den einzelnen Rechenzentren regelmäßig über einen
längeren Zeitraum gemessen werden. Eine einzelne Messung einer Latenz zu verwenden,
wäre nicht sinnvoll, da diese nur eine Momentaufnahme darstellt und stark variieren kann.
Die absolute Distanz zweier Rechenzentren hat jedoch immer einen Einfluss auf die Latenz,
auch wenn sie nicht die einzige Einflussgröße ist.

Die Skalierung der Automaten-Umgebung könnte ebenfalls anders umgesetzt werden. Wür-
den die Komponenten wie Load-Balancing und Auto Scaling in der Instanz-Management
Komponente implementiert werden, hätte man hierauf besseren Zugriff. Des Weiteren benö-
tigt es weniger Zeit, eine Elastic Beanstalk Anwendung ohne diese Komponenten zu starten,
da hierbei nur eine EC2-Instanz gestartet und konfiguriert werden muss. Damit könnte auch

62

6.3. Alternative Umsetzungsmöglichkeiten

das zuerst beschriebene Problem entschärft werden. Jedoch erfordert es erheblichen Auf-
wand, diese Komponenten selbst mit der Zuverlässigkeit und Qualität zu implementieren,
die durch AWS gewährleistet wird. Daher wurde die Skalierung der Anwendungen der
Amazon Infrastruktur überlassen.

63

7. Zusammenfassung und Ausblick

In diesem Kapitel soll die Arbeit abschließend zusammengefasst werden. Außerdem wird
ein Ausblick gegeben, welche Aufgaben in der Zukunft noch zu bewältigen sind.

7.1. Zusammenfassung

Im Rahmen dieser Bachelorarbeit wurde eine Instanz-Management Komponente für unifi-
zierte Service-Kompositionen entwickelt, die in der Lage ist, die Instanzen eines endlichen
Automaten zur Ausführung von Service-Kompositionen in der Amazon Cloud zu verwalten
und diese sinnvoll über verschiedene Cloud-Regionen zu verteilen. Zudem wurde eine
Umgebung für den Automaten entwickelt, die dessen Betrieb in der Cloud erlaubt.

Zu Beginn der Arbeit wurden zunächst mehrere Anbieter von Cloud Services evaluiert, um
daraus das Angebot zu wählen, welches am besten zur Erfüllung der gestellten Anforderun-
gen geeignet ist. Hierbei wurden die Anbieter bezüglich mehrerer Kriterien verglichen, was
zur Entscheidung für das Cloud Angebot Amazon Web Services geführt hat.

Danach wurde anhand der Anforderungen ein Konzept für die Instanz-Management Kom-
ponente erstellt. Hierbei wurde festgestellt, dass die geforderten Funktionalitäten sich nur
schwer in einer einzigen zentralen Komponente realisieren lassen. Stattdessen wurde be-
schlossen, bestimmte Funktionalitäten zum Automaten auszulagern. Der Automat und die
zusätzlich benötigten Komponenten wurden in einer Anwendung zusammengefasst, die als
Automaten-Umgebung bezeichnet wurde. Diese verwaltet den Zustand des Automaten und
versorgt den Automaten mit Anfragen. Die Instanz-Management Komponente kümmert sich
dagegen hauptsächlich um die Verwaltung der verschiedenen Automaten-Umgebungen. Eine
weitere Aufgabe der Instanz-Management Komponente ist die Verteilung der Automaten-
Umgebungen auf verschiedene Regionen, wofür ein Algorithmus entwickelt wurde. Dieser
berücksichtigt die Web-Services einer Kompositionsgrammatik und bezieht die Verwen-
dungshäufigkeit der Web Services sowie die Entfernung eines Web Services zu einer Region
mit ein.

Anschließend wurden Implementierungsdetails beider Anwendungen und ihrer Kompo-
nenten erläutert. Dabei wurde ein besonderer Fokus auf das Zusammenspiel der beiden
Anwendungen und auf die Integration der Anwendungen in die Amazon Cloud gelegt.
Abschließend wurde in einer Evaluation festgestellt, dass die Anforderungen der Arbeit
erfüllt wurden, jedoch wurden Design-Entscheidungen angesprochen, die noch weitere
Optimierungen benötigen.

65

7. Zusammenfassung und Ausblick

7.2. Ausblick

In Abschnitt 6.3 wurden bereits einige Funktionen der Anwendungen angesprochen, die mit
einem gewissen Aufwand erweitert werden können.

Für die Optimierung der Instanz Verteilung auf verschiedene Regionen könnten in einem
längeren Betrieb Daten über die Verwendung der Web Services gesammelt werden. Hierbei
könnten beispielsweise die Datenmengen analysiert werden, die ein Web Service bei einem
Aufruf durchschnittlich sendet. Dadurch könnten Web Services, die große Datenmengen
benötigen, stärker gewichtet werden, als solche, die auf geringe Datenmengen zugreifen.
Zudem könnten über einen längeren Zeitraum Daten über die gemessenen Latenzen zwi-
schen den Regionen gesammelt werden. Diese könnten anstatt der reinen Entfernung als
Metrik für die Entfernung der Regionen zueinander verwendet werden. Zudem könnten die
Daten dynamisch aktualisiert werden, wenn die Latenzen zur Laufzeit stetig überwacht und
analysiert werden würden.

Auch die Skalierungsfunktion bietet noch Raum für Optimierungen. Die Amazon Services
zur Skalierung bieten grundsätzlich viele Möglichkeiten zur Konfiguration, zum Beispiel,
ab welchen Schwellen neue Instanzen erzeugt werden und wie viele Instanzen prinzipiell
verwendet werden sollen. Hierbei könnte evaluiert werden, welche Einstellungen für die
Skalierung einen optimalen Kompromiss aus Leistung und Einsparung von Ressourcen
bieten. Hierzu müssten verschiedene Konfigurationen in Testszenarien überprüft werden.
Zudem wurde das Zeitintervall, nach der eine Automaten-Umgebung im Falle von Inaktivität
vollständig gelöscht wird, fest auf eine Zeit von 15 Minuten gesetzt. An dieser Stelle könnte
untersucht werden, ob dieses Zeitintervall eine sinnvolle Länge besitzt. Ein weiterer Ansatz
wäre eine dynamische Berechnung dieser Zeitspanne, wobei hierfür zunächst Grundlagen
geschaffen werden müssten, auf denen die Berechnung basieren sollte.

66

A. Anhang

</grammar>

<nonTerminals>

<nonTerminal>

<name> D1 </name>

<type> RRS </type>

<input>

<value> 2 </value>

</input>

<output>

<reference> X </reference>

</output>

</nonTerminal>

...

</nonTerminals>

<nonTerminalTypes>

<nonTerminalType name="RRS">

<wsa:EndpointReference>

<wsa:Address>

http://95.208.155.213:8081/RRS/services/RRSPort?wsdl

</wsa:Address>

</wsa:EndpointReference>

<operation>insert</operation>

<wsdl:binding>RRSServiceSoapBinding</wsdl:binding>

<wsdl:portType>RRS</wsdl:portType>

<wsdl:port>RRSPort</wsdl:port>

<wsdl:service>RRSService</wsdl:service>

<namespace>http://default_package/</namespace>

</nonTerminalType>

...

</nonTerminalTypes>

<terminals>

<terminal>

<name> s1 </name>

</terminal>

...

67

A. Anhang

</terminals>

<rules>

<rule>

<LHS>

<nonTerminalRef> S </nonTerminalRef>

</LHS>

<RHS>

<nonTerminalRef> D1 </nonTerminalRef>

<nonTerminalRef> D2 </nonTerminalRef>

<nonTerminalRef> D3 </nonTerminalRef>

<nonTerminalRef> X </nonTerminalRef>

</RHS>

</rule>

...

</rules>

<start>

<nonTerminalRef> S </nonTerminalRef>

</start>

</grammar>

68

Literaturverzeichnis

[ACHM04] G. Alonso, F. Casati, K. Harumi, V. Machiraju. Web Services - Concepts, Archi-
tectures and Applications. Springer, 2004. ISBN: 978-3-642-07888-0. (Zitiert auf
Seite 12)

[Amaa] Amazon. Amazon Linux AMIs. http://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/AmazonLinuxAMIBasics.html. [Online; abgerufen am 18.09.2013].
(Zitiert auf Seite 42)

[Amab] Amazon. Amazon Web Services Documentation. http://aws.amazon.com/

documentation/. [Online; abgerufen am 10.09.2013]. (Zitiert auf den Seiten 21

und 37)

[Amac] Amazon. Architectural Overview. http://docs.aws.amazon.com/

elasticbeanstalk/latest/dg/concepts.concepts.architecture.html. [Onli-
ne; abgerufen am 10.09.2013]. (Zitiert auf Seite 23)

[Amad] Amazon. AWS SDK for Java API Reference. http://docs.aws.amazon.com/

AWSJavaSDK/latest/javadoc/index.html. [Online; abgerufen am 10.09.2013].
(Zitiert auf Seite 22)

[Amae] Amazon. How Elastic Load Balancing Works. http://docs.aws.amazon.

com/ElasticLoadBalancing/latest/DeveloperGuide/SvcIntro_HowELBWorks.

html. [Online; abgerufen am 19.09.2013]. (Zitiert auf den Seiten 22 und 38)

[Amaf] Amazon. Introduction to Amazon S3. http://docs.aws.amazon.com/AmazonS3/
latest/dev/Introduction.html. [Online; abgerufen am 19.09.2013]. (Zitiert auf
Seite 39)

[Amag] Amazon. Kostenloses Nutzungskontingent für AWS. http://aws.amazon.com/
de/free/. [Online; abgerufen am 10.09.2013]. (Zitiert auf Seite 23)

[Amah] Amazon. Kostenloses Nutzungskontingent für AWS. http://aws.amazon.com/
de/grants/. [Online; abgerufen am 10.09.2013]. (Zitiert auf Seite 23)

[Amai] Amazon. Pricing. http://aws.amazon.com/ec2/#pricing. [Online; abgerufen
am 19.09.2013]. (Zitiert auf Seite 40)

[Amaj] Amazon. Produkte und Services nach Region. http://aws.amazon.com/de/

about-aws/globalinfrastructure/regional-product-services/. [Online; ab-
gerufen am 19.09.2013]. (Zitiert auf Seite 40)

69

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonLinuxAMIBasics.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonLinuxAMIBasics.html
http://aws.amazon.com/documentation/
http://aws.amazon.com/documentation/
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/concepts.concepts.architecture.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/concepts.concepts.architecture.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/SvcIntro_HowELBWorks.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/SvcIntro_HowELBWorks.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/SvcIntro_HowELBWorks.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.html
http://aws.amazon.com/de/free/
http://aws.amazon.com/de/free/
http://aws.amazon.com/de/grants/
http://aws.amazon.com/de/grants/
http://aws.amazon.com/ec2/#pricing
http://aws.amazon.com/de/about-aws/globalinfrastructure/regional-product-services/
http://aws.amazon.com/de/about-aws/globalinfrastructure/regional-product-services/

Literaturverzeichnis

[Amak] Amazon. Supported AWS Services. http://docs.aws.amazon.com/

AmazonCloudWatch/latest/DeveloperGuide/supported_services.html. [Onli-
ne; abgerufen am 19.09.2013]. (Zitiert auf Seite 37)

[Amal] Amazon. What Is Amazon CloudWatch. http://docs.aws.amazon.com/

AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html. [Online;
abgerufen am 19.09.2013]. (Zitiert auf Seite 37)

[Amam] Amazon. What is Amazon EC2? http://docs.aws.amazon.com/AWSEC2/

latest/UserGuide/concepts.html. [Online; abgerufen am 19.09.2013]. (Zitiert
auf Seite 37)

[Aman] Amazon. What is Amazon Simple Queue Service? http://docs.aws.amazon.

com/AWSSimpleQueueService/latest/SQSDeveloperGuide/Welcome.html. [On-
line; abgerufen am 19.09.2013]. (Zitiert auf den Seiten 22 und 39)

[Amao] Amazon. What is Auto Scaling? http://docs.aws.amazon.com/AutoScaling/

latest/DeveloperGuide/WhatIsAutoScaling.html. [Online; abgerufen am
19.09.2013]. (Zitiert auf den Seiten 23 und 38)

[Amap] Amazon. What Is AWS Elastic Beanstalk and Why Do I Need It? http://

docs.aws.amazon.com/elasticbeanstalk/latest/dg/Welcome.html. [Online;
abgerufen am 10.09.2013]. (Zitiert auf den Seiten 22 und 38)

[clo] Bundesamt für Sicherheit in der Informationstechnik. Cloud Computing Grund-
lagen. https://www.bsi.bund.de/DE/Themen/CloudComputing/Grundlagen/

Grundlagen_node.html. [Online; abgerufen am 19.10.2013]. (Zitiert auf Sei-
te 11)

[DJMZ05] W. Dostal, M. Jeckle, I. Melzer, B. Zengler. Service-orientierte Architekturen mit
Web Services. Elsevier, 2005. ISBN: 978-3-8274-1457-1. (Zitiert auf Seite 12)

[GL12] K. Görlach, F. Leymann. Dynamic Service Provisioning for the Cloud. In
Proceedings of the 2012 IEEE Ninth International Conference on Services Computing,
SCC ’12, S. 555–561. IEEE Computer Society, Washington, DC, USA, 2012. doi:
10.1109/SCC.2012.30. URL http://dx.doi.org/10.1109/SCC.2012.30. (Zitiert
auf den Seiten 16, 17 und 28)

[GLC13] K. Görlach, F. Leymann, V. Claus. Unified Execution of Service Compositions.
IEEE International Conference on Service Oriented Computing & Applications (SOCA
2013), Kauai, Hawai, December 16-18, 2013. (Zitiert auf den Seiten 9 und 14)

[Gooa] Google. Available Regions & Zones. https://developers.google.com/

compute/docs/zones#available. [Online; abgerufen am 10.09.2013]. (Zitiert auf
Seite 23)

[Goob] Google. Google App Engine. https://cloud.google.com/products/

app-engine. [Online; abgerufen am 10.09.2013]. (Zitiert auf Seite 23)

70

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/supported_services.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/supported_services.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/Welcome.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/Welcome.html
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/WhatIsAutoScaling.html
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/WhatIsAutoScaling.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/Welcome.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/Welcome.html
https://www.bsi.bund.de/DE/Themen/CloudComputing/Grundlagen/Grundlagen_node.html
https://www.bsi.bund.de/DE/Themen/CloudComputing/Grundlagen/Grundlagen_node.html
http://dx.doi.org/10.1109/SCC.2012.30
https://developers.google.com/compute/docs/zones#available
https://developers.google.com/compute/docs/zones#available
https://cloud.google.com/products/app-engine
https://cloud.google.com/products/app-engine

Literaturverzeichnis

[Gooc] Google. Google App Engine Billing FAQ. https://developers.google.com/

appengine/kb/billing#discount. [Online; abgerufen am 10.09.2013]. (Zitiert
auf Seite 24)

[Good] Google. Google App Engine Pricing. https://cloud.google.com/pricing/.
[Online; abgerufen am 10.09.2013]. (Zitiert auf Seite 24)

[Gooe] Google. Google Cloud Platform. https://cloud.google.com/. [Online; abgeru-
fen am 10.09.2013]. (Zitiert auf Seite 21)

[Goof] Google. Google Compute Engine. https://cloud.google.com/products/

compute-engine. [Online; abgerufen am 10.09.2013]. (Zitiert auf Seite 23)

[Goog] Google. Google Compute Engine Pricing. https://cloud.google.com/pricing/
compute-engine. [Online; abgerufen am 10.09.2013]. (Zitiert auf Seite 24)

[Gooh] Google. Java Service APIs. https://developers.google.com/appengine/docs/
java/apis. [Online; abgerufen am 10.09.2013]. (Zitiert auf Seite 23)

[Gör13] K. Görlach. A Generic Transformation of Existing Service Composition Mo-
dels to a Unified Model. Technischer Bericht Informatik 2013/01, Universi-
tät Stuttgart, Universität Stuttgart, Institut für Architektur von Anwendungs-
systemen, 2013. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/

NCSTRL/NCSTRL_view.pl?id=TR-2013-01&engl=0. (Zitiert auf Seite 13)

[HB] H. Haas, A. Brown. Web Services Glossary. http://www.w3.org/TR/ws-gloss/.
W3C.[Online; abgerufen am 21.09.2013]. (Zitiert auf Seite 12)

[JJ] D. Jordan, J. Jordan. Web Services Business Process Execution Language Ver-
sion 2.0. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.
OASIS.[Online; abgerufen am 23.09.2013]. (Zitiert auf Seite 9)

[MG11] P. Mell, T. Grance. The NIST definition of cloud computing (draft). NIST special
publication, 800(145):7, 2011. (Zitiert auf Seite 11)

[Mica] Microsoft. API and Schema References for Windows Azure. http://msdn.

microsoft.com/en-us/library/windowsazure/ff800682.aspx. [Online; abge-
rufen am 10.09.2013]. (Zitiert auf Seite 23)

[Micb] Microsoft. Free Trial. https://www.windowsazure.com/de-de/pricing/

free-trial/. [Online; abgerufen am 10.09.2013]. (Zitiert auf Seite 23)

[Micc] Microsoft. How to Create and Deploy a Cloud Service. http:

//www.windowsazure.com/en-us/manage/services/cloud-services/

how-to-create-and-deploy-a-cloud-service/. [Online; abgerufen am
17.10.2013]. (Zitiert auf Seite 23)

[Micd] Microsoft. Messaging. http://www.windowsazure.com/de-de/services/

messaging/. [Online; abgerufen am 10.09.2013]. (Zitiert auf Seite 23)

71

https://developers.google.com/appengine/kb/billing#discount
https://developers.google.com/appengine/kb/billing#discount
https://cloud.google.com/pricing/
https://cloud.google.com/
https://cloud.google.com/products/compute-engine
https://cloud.google.com/products/compute-engine
https://cloud.google.com/pricing/compute-engine
https://cloud.google.com/pricing/compute-engine
https://developers.google.com/appengine/docs/java/apis
https://developers.google.com/appengine/docs/java/apis
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-2013-01&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-2013-01&engl=0
http://www.w3.org/TR/ws-gloss/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://msdn.microsoft.com/en-us/library/windowsazure/ff800682.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/ff800682.aspx
https://www.windowsazure.com/de-de/pricing/free-trial/
https://www.windowsazure.com/de-de/pricing/free-trial/
http://www.windowsazure.com/en-us/manage/services/cloud-services/how-to-create-and-deploy-a-cloud-service/
http://www.windowsazure.com/en-us/manage/services/cloud-services/how-to-create-and-deploy-a-cloud-service/
http://www.windowsazure.com/en-us/manage/services/cloud-services/how-to-create-and-deploy-a-cloud-service/
http://www.windowsazure.com/de-de/services/messaging/
http://www.windowsazure.com/de-de/services/messaging/

Literaturverzeichnis

[Mice] Microsoft. Virtual Machines. http://www.windowsazure.com/en-us/

documentation/services/virtual-machines/?fb=de-de. [Online; abgerufen
am 10.09.2013]. (Zitiert auf Seite 23)

[Micf] Microsoft. Virtuelle Computer – Preisdetails. http://www.windowsazure.

com/de-de/pricing/details/virtual-machines/. [Online; abgerufen am
10.09.2013]. (Zitiert auf Seite 23)

[Micg] Microsoft. What is a cloud service? https://www.windowsazure.com/en-us/

manage/services/cloud-services/what-is-a-cloud-service/?fb=de-de.
[Online; abgerufen am 10.09.2013]. (Zitiert auf Seite 23)

[Mich] Microsoft. Windows Azure Documentation. http://www.windowsazure.com/

en-us/documentation/?fb=de-de. [Online; abgerufen am 10.09.2013]. (Zitiert
auf Seite 21)

[Mici] Microsoft. Windows Azure in Education. http://www.windowsazure.com/

en-us/community/education/. [Online; abgerufen am 10.09.2013]. (Zitiert auf
Seite 23)

[Micj] Microsoft. Windows Azure Trust Center. https://www.windowsazure.com/

en-us/support/trust-center/privacy/. [Online; abgerufen am 10.09.2013].
(Zitiert auf Seite 23)

[PA06] M. Pesic, W. Aalst. A Declarative Approach for Flexible Business Processes
Management. In J. Eder, S. Dustdar, Herausgeber, Business Process Management
Workshops, Band 4103 von Lecture Notes in Computer Science, S. 169–180. Springer
Berlin Heidelberg, 2006. doi:10.1007/11837862_18. (Zitiert auf Seite 9)

[Sch08] U. Schoening. Theoretische Informatik - kurz gefasst. Spektrum, 2008. ISBN:
978-3827418241. (Zitiert auf Seite 13)

72

http://www.windowsazure.com/en-us/documentation/services/virtual-machines/?fb=de-de
http://www.windowsazure.com/en-us/documentation/services/virtual-machines/?fb=de-de
http://www.windowsazure.com/de-de/pricing/details/virtual-machines/
http://www.windowsazure.com/de-de/pricing/details/virtual-machines/
https://www.windowsazure.com/en-us/manage/services/cloud-services/what-is-a-cloud-service/?fb=de-de
https://www.windowsazure.com/en-us/manage/services/cloud-services/what-is-a-cloud-service/?fb=de-de
http://www.windowsazure.com/en-us/documentation/?fb=de-de
http://www.windowsazure.com/en-us/documentation/?fb=de-de
http://www.windowsazure.com/en-us/community/education/
http://www.windowsazure.com/en-us/community/education/
https://www.windowsazure.com/en-us/support/trust-center/privacy/
https://www.windowsazure.com/en-us/support/trust-center/privacy/

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wörtlich oder sinngemäß aus anderen Wer-
ken übernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Prüfungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollständig
veröffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

	1 Einleitung
	2 Grundlagen und Forschungsstand
	2.1 Grundbegriffe
	2.1.1 Cloud Computing und Cloud Regionen
	2.1.2 Web Service und Service-Komposition
	2.1.3 Formale Grammatiken

	2.2 Das Gesamtsystem des Automaten
	2.2.1 Service Grammatiken
	2.2.2 Die Funktionsweise des Automaten
	2.2.3 Die Funktion der Instanz-Management Komponente im Gesamtsystem

	2.3 Forschungsstand

	3 Anforderungen und Ablaufumgebung
	3.1 Funktionale Anforderungen
	3.2 Nichtfunktionale Anforderungen
	3.3 Evaluation verschiedener Cloud Anbieter
	3.3.1 Bewertungskriterien
	3.3.2 Untersuchung der Anbieter
	3.3.3 Ergebnis

	4 Entwurf
	4.1 Aufgabenverteilung
	4.2 Instanz-Management Komponente
	4.2.1 Anfragen Verarbeitung
	4.2.2 Berechnung der Region
	4.2.3 Web Service Index
	4.2.4 Verwaltung der Instanzen des Automaten
	4.2.5 Message Correlation
	4.2.6 Reference Resolution System - Instanzverwaltung

	4.3 Die Umgebung des Automaten
	4.3.1 Schnittstelle der Automaten-Umgebung
	4.3.2 Integration des Automaten in die Umgebung
	4.3.3 Statusverwaltung
	4.3.4 Skalierung

	5 Implementierung
	5.1 Verwendete Amazon Web Services
	5.1.1 Elastic Compute Cloud
	5.1.2 CloudWatch
	5.1.3 Auto Scaling
	5.1.4 Elastic Load Balancing
	5.1.5 Elastic Beanstalk
	5.1.6 Simple Storage Service
	5.1.7 Simple Queue Service
	5.1.8 Regionen

	5.2 Architektur
	5.2.1 Schichtenarchitektur
	5.2.2 Aufbau und Zusammenspiel der Anwendungen

	5.3 Implementierung der Instanz-Management Komponente
	5.3.1 Web Services und Web Service Client
	5.3.2 Anfragen Verarbeitung
	5.3.3 Regionen Berechnung
	5.3.4 Web Service Registry
	5.3.5 Instanz-Manager
	5.3.6 RRS Verwaltung
	5.3.7 Message Correlation

	5.4 Implementierung der Automaten-Umgebung
	5.4.1 Automaten Web Service
	5.4.2 Zustand
	5.4.3 Anfragen Verarbeitung
	5.4.4 Skalierung

	6 Diskussion
	6.1 Beispielhafte Verarbeitung einer Anfrage
	6.2 Untersuchung des Ergebnisses
	6.3 Alternative Umsetzungsmöglichkeiten

	7 Zusammenfassung und Ausblick
	7.1 Zusammenfassung
	7.2 Ausblick

	A Anhang
	Literaturverzeichnis

