
Institut für Visualisierung und Interaktive Systeme

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit Nr. 69

3D Pointing Toolkit

Dennis Root

Studiengang: Informatik

Prüfer/in: Prof. Albrecht Schmidt

Betreuer/in: M.Sc. Thomas Kubitza

Beginn am: 2013-07-01

Beendet am: 2013-07-09

CR-Nummer: D.2.2, D.2.13, E.1, H.5.2, I.3.8

Kurzfassung

Der Mensch verbringt einen großen Teil seines Lebens in seinem zu Hause und die soge-
nannten „Smart-Homes“ von heute werden immer intelligenter. Deshalb besteht Bedarf
nach neuen Interaktions- und Feedbackmöglichkeiten für elektronische Geräte, die in unsere
modernen Haushalte integriert sind. Mit jedem neuen Feature, das dem Anwender geboten
wird, muss nämlich erforscht werden, wie der Mensch auf gewisse Feedbacks reagiert und
wie gut er mit neuen Interaktionstechniken umgehen kann. Um Daten über einen Anwender,
seine Bewegungen und Aktionen sammeln zu können, werden häufig Trackingsysteme ein-
gesetzt. Diese wiederum benötigen Softwarelösungen, die die gesammelten Daten auswerten
und in sinnvoller Form an andere Anwendungen weitergeben.

Eine solche Softwarelösung ist das in dieser Bachelorarbeit vorgestellte Toolkit, das präzise
Positions- und Orientierungsdaten eines optischen Trackingsystems verarbeiten und an
andere Anwendungen weitergeben soll. Mit den verarbeiteten Daten ist es dann möglich
eine große Bandbreite von Studien durchzuführen. Das Toolkit kann mit Hilfe der vom
Trackingsystem gelieferten Daten Zeigegesten des Anwenders im dreidimensionalen Raum
erkennen und damit Schnittberechnungen mit virtuellen Objekten durchführen. Die genann-
ten Objekte wurden zuvor im virtuellen 3D-Raum des Toolkits modelliert. Das Toolkit ist
durch seinen integrierten Editor sehr flexibel, da die virtuelle Umgebung an alle realen
Gegebenheiten angepasst werden kann.

3

Inhaltsverzeichnis

1. Einleitung 9

2. Grundlagen und Verwandte Arbeiten 11
2.1. Technische Grundlagen . 11

2.1.1. Trackingsysteme . 11

2.1.2. Tracking Technologien mit 3DOF und 6DOF 11

2.2. Optische Trackingsysteme - Interaktionsmöglichkeiten 20

2.2.1. Hand-Raycasting . 21

2.3. Computergrafik . 22

2.3.1. Repräsentation von Objekten . 22

2.3.2. Schnittberechnungen . 25

2.4. EI-Toolkit . 28

3. Konzept und Use Cases 29
3.1. Use Cases . 29

3.1.1. Steuerung von Haushaltsgeräten . 29

3.1.2. TV-/PC-Steuerung . 30

3.2. Bedeutung für Nutzerstudien . 32

4. 3D Pointing Toolkit 35
4.1. System-Setup . 35

4.2. Kommunikation . 35

4.2.1. NatNet SDK/NatNet2UDP . 36

4.2.2. EI-Toolkit . 37

4.3. Echtzeitrendering . 37

4.3.1. Szenen Repräsentation . 38

4.3.2. Echtzeitrendering . 40

4.4. Evaluierung des Systems . 44

4.4.1. Testhardware und Ergebnis . 44

4.4.2. Interaktion mit dem Toolkit . 45

5. Zusammenfassung und Ausblick 49

A. Anhang 53

Literaturverzeichnis 61

5

Abbildungsverzeichnis

2.1. (links) ein Schnitt zwischen zwei Kugeln bildet einen Schnittkreis (rechts) ein
Schnitt mit drei Kugeln liefert zwei Schnittpunkte. Quelle: [BWA01] 12

2.2. Ein Beispiel für einen sogenannten „Wand“mit passiven Targets, wie er bei
optischem Tracking eingesetzt wird. 17

2.3. Optischer Sensor mit im Kreis angeordneten Infrarotlicht emmitierenden
Einheiten. Quelle: [SEN] . 17

2.4. Zwei optische Sensoren erfassen die von den drei passiven Targets reflektierten
Infrarotstrahlen. Es werden mindestens zwei Sensoren und drei Targets benö-
tigt um ein 6DOF System zu erhalten, da ein Sensor nur die 2DOF Position
des Targets erfassen kann. Es wird erst mit zwei Sensoren und mit Hilfe der
bekannten Positionen der Sensoren möglich, die 3DOF Position eines Targets
im Raum zu berechnen. Um nun noch die Orientierung des Objekts im Raum
zu berechnen werden drei Targets benötigt, denn mit Hilfe ihrer Positionen
im Raum zueinander, wird es erst möglich die Orientierung zu erhalten. . . . 19

2.5. Vertex-Vertex-Mesh: für jeden Vertex werden die X-,Y-,Z-Koordinaten und alle
Nachbarn in geordneter Reihenfolge gespeichert. Quelle: [MES13] 23

2.6. Face-Vertex-Mesh: Liste mit allen Faces und Vertices. Jeder Vertexeintrag
enthält alle angrenzenden Faces. Quelle: [MES13] 24

2.7. Winged-Edge-Mesh: explizite Speicherung aller Faces, Edges und Vertices.
Vertex-Liste speichert alle anliegenden Egdes, die Face-Liste speichert alle
umrandenden Edges und die Edge-Liste speichert die Eckpunkte, anliegenden
Faces und die vier am nächsten an den Eckpunkten anliegenden Edges. Quelle:
[MES13] . 25

2.8. Beispiel für ein Polygonnetz. Quelle: [DOL] . 26

2.9. Baryzentrische Koordinaten λ1, λ2, λ3 von q bezüglich der drei Basispunkte
P1, P2, P3 . 27

3.1. Use Case: Steuerung von Haushaltsgeräten mit Hilfe des 3D Pointing Toolkits 30

3.2. Use Case: TV-/PC-Steuerung mit Hilfe des 3D Pointing Toolkits 31

4.1. Kommunikationstruktur und Dataflow des gesamten Systems. Die Daten
werden vom Anwender am Trackingserver eingegeben, wonach diese vom
NatNet2UDP Tool zu Nachrichten im UDP Format umgewandelt werden. Die
umgewandelten Daten werden dann schlussendlich vom 3D Pointing Toolkit
verarbeitet und anderen Anwendungen zur Verfügung gestellt. 36

6

4.2. Dataflow des NatNet SDKs. Der Tracking Tool Sever sendet per Netzwerk
Daten an das SDK, wonach das SDK die Daten über das UDP Protokoll
weiterschickt. Quelle: [NAT13] . 37

4.3. Funktionsweise des EI Toolkits. Jede angeschlossene Komponente wird durch
einen Stub gemanagt. Für die interne Kommunikation wird ein einheitliches
Protokoll verwendet, das unabhängig vom angeschlossenen Gerät immer
gleich ist. Quelle: [Hol05] . 38

4.4. Das SceneManagement von Ogre3D. Ein SceneManager ist für die ganze Szene
zuständig. Ihm werden einzelne SzeneNodes zugewiesen, denen MovableOb-
jects zugewordnet werden können. Quelle: [STR] 39

4.5. Das System im Live-Mode: Uneingeschränkte Sicht auf die 3D Szene, die
Schnittberechnungen und Ereignisse. Es stehen zusätzlich ein oder zwei vor-
definierte Viewpoints zur Auswahl, um dem Anwender die Interaktion zu
erleichtern. 41

4.6. Das System im Editor-Mode: Der Anwender hat die drei Auswahlmöglich-
keiten „Add Rectangle“, „Move Object“ und „Console“. Hier sieht man das
eingeblendete Fenster, mit dem man zur Szene ein neues Rechteck hinzufügen
kann. Nachdem die vier Randpunkte und ein Name eingegeben sind, kann
die Auswahl mit „Add Rectangle“ bestätigt werden, wonach gleich das neue
Objekt in der Szene erscheint. 42

4.7. Das System im Editor-Mode: Hier wurde die Auswahl „Move Objekt“ getrof-
fen. Der Anwender kann einen Objektnamen eingeben, mit den vier Pfeilen
bewegen und im oder gegen den Uhrzeigersinn drehen. 43

4.8. In dieser Abbildung ist zu sehen wie ein Testsystem, auf dem das 3D Poin-
ting Toolkit ausgeführt wird, mit einer komplexen virtuellen Szene zurecht-
kommt. Hierbei wurde eine Szene mit mehr als 250 eigenständigen komplexen
Objekten verwendet, die zusammen über 1,5 Mio Dreiecke beinhalten. Das
Diagramm lässt erkennen, dass ein durchschnittliches Testsystem auch bei
einer sehr komplexen Szene ca. 25FPS liefern kann, was einer akzeptablen
Bildwiederholungsrate entspricht. 45

4.9. a) Die Entfernung des Anwenders zum Objekt beeinflusst die Winkelabwei-
chung, die möglich ist, sodass der Anwender immer noch auf ein anvisiertes
Ziel zeigt. Je näher er am Objekt ist, desto größere Winkelabweichungen sind
möglich. b) Der Winkel des Anwenders zum Objekt beeinflusst die Abwei-
chung der Zeigerichtung, die möglich ist, sodass der Anwender immer noch
auf das anvisierte Ziel zeigt. Je direkter er vor dem Objekt steht, desto größere
Abweichungen der Zeigerichtung sind möglich. 47

A.1. Use Case: Steuerung von Haushaltsgeräten . 54

A.2. Use Case: TV-/PC-Steuerung . 55

A.3. Das vorgestellte GUI im Ausgangszustand mit den Auswahlmöglichkeiten
„Editor“, „Live Mode“, Hide All und „Quit“. 56

A.4. Das präsentierte GUI mit der Console, die es erleichtern soll neue Befehle zum
System hinzuzufügen. 57

A.5. Ein Beispiel für eine XML-Scene die vom Toolkit verwendet wird 58

7

A.6. Algorithmus zur Schnittberechnung Ray-SceneObject 59

8

1. Einleitung

Trackingsysteme im Allgemeinen haben der Forschung schon in der Vergangenheit viele
Möglichkeiten geboten die reale Umwelt in eine virtuelle Realität zu integrieren, um damit
neue Erkenntnisse über gewisse Gegebenheiten unserer Umwelt zu gewinnen. Heute sind
Trackingsysteme weiterhin unersetzbare Hilfsmittel für Studien und besonders optische
Trackingsysteme ermöglichen es auf relativ einfache Weise Daten über unsere Umgebung
zu sammeln. Mit optischen Trackingsystemen ist es z. B. möglich Bewegungsabläufe von
Menschen oder Tieren zu erfassen, um mehr über die biologischen Hintergründe zu er-
fahren und diese Erkenntnisse auf unsere Technik zu übertragen. Mit der Erfassung von
menschlichen Bewegungen wird es z. B. möglich neue Interaktionsmöglichkeiten zu bieten,
mit denen man Fernseher oder Displays mit der Größe einer Kinoleinwand durch Gesten
steuern kann. Eine weitere Trackingtechnologie, die jeder von uns schon verwendet hat, ist
unser heutiges GPS-System, das Unmengen an Möglichkeiten mit sich gebracht hat. Ein
Beispiel hierfür ist die Navigation auf der ganzen Erde. Das Tracking allein ist aber insoweit
nutzlos, da es zwar interessante Daten liefert, diese Daten aber ohne die Auswertung eines
entsprechenden Programms nicht von anderen Anwendungen verwertet werden können. Es
werden Tools benötigt, die die erzeugten Daten auswerten und dem Menschen verständlich
darlegen. Diese Tools haben nämlich die Aufgabe Realweltdaten auf eine modellierbare
virtuelle Umwelt zu projizieren und neue verwertbare Daten zu erzeugen.

Solche Umgebungen, aus denen die Daten gewonnen werden, sind die modernen Haushalte,
in denen wir einen Großteil unserer Lebenszeit verbringen. Die Anforderungen an unsere
Haushalte werden immer größer und mit aktuellen technischen Neuerungen wird es möglich
immer mehr Features in das sogenannte „Smart-Home“zu integrieren. Diese neuen Features
verlangen aber immer neuere Konzepte in der Mensch-Computer-Interaktion, welche die
Interaktion an sich, sowie auch das Feedback für den Anwender betreffen. Um Studien für
die zukünftige Interaktion mit dem „Smart-Home“durchführen zu können, benötigt man
Hilfsmittel, mit denen man präzise und schnell Daten sammeln kann und die sich preislich im
erschwinglichen Bereich befinden. Ein solches Hilfsmittel sind die beschriebenen optischen
Trackingsysteme, die mit einer hohen Genauigkeit die Positions- und Orientierungsdaten
von speziellen Markern erfassen können. Um die erfassten Daten für Forschungs- und
Studienzwecke verwenden zu können, wird eine virtuelle dreidimensionale Repräsentation
des Raums und der darin enthaltenen Marker benötigt. Die Repräsentation ermöglicht es
einerseits Objekte zu modellieren, die sich in einem durchschnittlichen Haushalt befinden
und andererseits mathematische Berechnungen durchzuführen.

Im Rahmen der Bachelorarbeit soll ein Toolkit entwickelt werden, das es im 3D-Raum
ermöglicht Zeigegesten, die mit Hilfe des Trackingsystems ermittelt werden, zu erkennen.
Diese Zeigegesten werden im Toolkit dazu verwendet in Echtzeit Schnittberechnungen, mit

9

1. Einleitung

den im virtuellen Raum modellierten Gegenständen, durchzuführen. Die Ergebnisse der
Berechnungen sollen mit Hilfe einer entsprechenden Netzwerk-API für andere Anwendun-
gen verfügbar gemacht werden. Das Toolkit soll außerdem über einen Editor verfügen, mit
dessen Hilfe man die Objekte im virtuellen dreidimensionalen Raum bearbeiten kann.

Gliederung

Der Aufbau dieser Arbeit ist so gegliedert, dass anfangs in einer Einleitung einerseits
geschildert wird welche Motivation hinter dieser Ausarbeitung steckt und andererseits wird
ein Überblick über die Aufgabenstellung und die Ziele der Arbeit gegeben.

Im drauf folgenden Kapitel: Grundlagen und Verwandte Arbeiten werden im ersten Ab-
schnitt 2.1 die technischen Grundlagen, nämlich die Trackingtechnologien, erläutert. Im
anschließenden Abschnitt 2.2 werden die Interaktionsmöglichkeiten erwähnt, die in Ver-
bindung mit optischen Trackingsystemen möglich sind. Im Abschnitt 2.3 werden dann die
nötigen Grundlagen im Bereich der Computergrafik vermittelt, die den Kern des entwickelten
Toolkits darstellen.

Im Kapitel: Konzept und Use Cases werden dem Leser das Konzept und zwei Use Cases
vorgestellt, die anhand von zwei konkreten Beispielen die möglichen Einsatzgebiete für
das 3D Pointing Toolkit deutlich machen sollen. Es wird außerdem im Abschnitt 3.2 die
Bedeutung des Toolkits für die Forschung und Benutzerstudien erläutert, das eines der
wichtigsten Ziele der entwickelten Software ist.

Das eigentliche System mit den wichtigsten Bestandteilen wird im Kapitel: 3D Pointing
Toolkit Abschnitt 4.1 vorgestellt und im Abschnitt 4.2 wird im Detail auf die Kommunikation
des entwickelten Toolkits eingegangen. Der Abschnitt 4.3 erläutert das Echtzeitrendering mit
allen dazugehörenden Grundlagen und der letzte Abschnitt 4.4 bewertet die Performance
des vorgestellten Toolkits.

Das letzte Kapitel: Zusammenfassung und Ausblick fast die Ergebnisse der Arbeit zusam-
men und betrachtet sie aus einem kritischen Blickwinkel. Zusätzlich wird ein Ausblick
auf die Zukunft in diesem Bereich gegeben und es werden mögliche Anknüpfungspunkte
aufgezeigt.

10

2. Grundlagen und Verwandte Arbeiten

2.1. Technische Grundlagen

2.1.1. Trackingsysteme

Um Informationen über die Position und Orientierung eines Objekts in einem Raum zu
erhalten setzt man Trackingsysteme ein, die auf unterschiedliche Weisen arbeiten. Die von
den Trackingsystemen gelieferten Realweltdaten werden dann in einer virtuellen dreidimen-
sionalen Umgebung dargestellt. Mit Hilfe der virtuellen Umgebung kann der User in einem
computergenerierten Modell eines 3D-Raums Interaktionen durchführen. Hierbei spricht
man vom sogenannten „Motion Caputring“. Im Folgenden werden die grundlegenden
Trackingtechnologien beschrieben, die Vor- und Nachteile aufgezeigt und ihre Einsatzgebiete
erwähnt. Es wird im Allgemeinen zwischen Trackingsystemen unterschieden, die mit Hilfe
von akustischen Signalen, elektromagnetischen Feldern, Radiowellen, Beschleunigungssenso-
ren und mit optischen Sensoren arbeiten. Am Ende soll deutlich werden, wieso in dem hier
präsentierten Fall ein optisches Trackingsystem die sinnvollste Alternative ist. Tiefgreifendere
Informationen findet man bei [BWA01] und [RBG01].

Definition: Degree of Freedom

Degree of Freedom bezeichnet die Anzahl an Parametern in einem System, die unabhängig
voneinander variieren können. Bei einem Trackingsystem sind es die möglichen Bewegungen,
die durchgeführt bzw. erfasst werden können. Die ersten drei DOFs sind Translationen in
X-, Y-, Z-Richtung und die weiteren drei Parameter sind die möglichen Rotationen um die
einzelnen Achsen. Diese Rotationen werden häufig als Pitch, Roll und Pan bezeichnet.

2.1.2. Tracking Technologien mit 3DOF und 6DOF

Akustisches Tracking

Das akustische Tracking benutzt den Schall um eine Position eines Objektes im 3D Raum zu
bestimmen. Für das Tracking werden für gewöhnlich Schallwellen im für den Menschen nicht
hörbaren Bereich verwendet, damit der User keine unangenehmen Töne bzw. Geräusche
wahrnehmen kann. Um akustisches Tracking im dreidimensionalen Raum verwirklichen zu
können, benötigt man entweder ein System-Setup mit einem Empfänger und drei Sendern

11

2. Grundlagen und Verwandte Arbeiten

Abbildung 2.1.: (links) ein Schnitt zwischen zwei Kugeln bildet einen Schnittkreis (rechts)
ein Schnitt mit drei Kugeln liefert zwei Schnittpunkte. Quelle: [BWA01]

oder drei Empfängern und einem Sender. Dies ist der Fall, da mit Hilfe eines Empfängers und
Senders nur die Entfernung zu einem Objekt ermittelt werden kann. Dadurch kann sich das
Objekt auf der Oberfläche einer Kugel befinden 2.1, was für eine genaue dreidimensionale
Positionsbestimmung noch nicht ausreicht. Durch einen zweiten Sender bzw. Empfänger
entsteht eine weitere Kugel, die die erste Kugel schneidet und wodurch sich die mögliche
Position des Objekts auf den Schnittkreis der beiden Kugeln begrenzt 2.1. Mit Hilfe eines
dritten Senders bzw. Empfängers entstehen zwei Schnittpunkte mit allen drei Kugeln, von
denen einer durch die vorherigen Positionen verworfen werden kann 2.1.

Um die Entfernung zu einem Objekt zu bestimmen, werden beim akustischen Tracking
generell die zwei folgenden Techniken angewendet:

1. TOF (Time of Flight) In diesem Fall wird die Zeit gemessen, die der Schall vom Sender
zum Empfänger benötigt. Mit Hilfe der gemessenen Zeit und der Geschwindigkeit des
Schalls kann die Entfernung berechnet werden. Es gilt nämlich:

(2.1) d[m] = v[
m
s
] ∗ t[s]

2. Phasen Kohärenz Bei dieser Methode wird die Distanz zum Objekt mit Hilfe der Phasen-
differenz zwischen der Phase des Schalls am Sender und der am Empfänger ermittelt.

Um beim akustischen Tracking 6DOF zu erreichen werden insgesamt drei Sender und drei
Empfänger benötigt. Aus den gewonnen Informationen kann zusätzlich zur Position des
Objekts auch die Orientierung berechnet werden. Dies kann mit genau dieser Anzahl an
Sendern und Empfängern bewerkstelligt werden, da aus den ermittelten Positionen der
einzelnen Sender die Orientierung des Objekts, der die drei Sender an sich trägt, ermittelt
werden kann. Denn die festgelegte räumliche Stellung der drei Sender lässt einen Rückschluss
auf die Orientierung zu.

Vorteile Diese Trackingtechnologie ist im Vergleich zu den anderen Techniken sehr kosten-
günstig und es werden keine magnetischen Felder erzeugt.

Nachteile Es wird eine direkte Sichtlinie von Empfänger zu Sender benötigt, was die Be-
wegungsfreiheit des Users einschränkt. Ein weiterer Nachteil ist die Eigenschaft des

12

2.1. Technische Grundlagen

Systems, dass es temperaturabhängig ist. Schallwellen breiten sich bei verschiedenen
Temperaturen unterschiedlich schnell aus und diese Unterschiede müssen beachtet
und für genaue Messergebnisse durch das System ausgeglichen werden. Das Medium
Schall hat als weiteren Nachteil die Eigenschaft, dass die Reichweite ziemlich begrenzt
ist. Akustische Trackingsysteme haben im Allgemeinen auch eine geringe Genauigkeit
und Abtastrate.

Einsatzgebiete Akustisches Tracking wird durch seine Nachteile eher in Bereichen einge-
setzt, die nicht auf extrem genaue Messergebnisse angewiesen sind. Ein Beispiel hierfür
ist die Unterhaltungsindustrie.

Inertiales Tracking

Inertiales Tracking kann in der 3DOF Variante die X-, Y-, Z-Position eines Objektes mittels
Beschleunigungssensoren bestimmen. Für jede Richtung kann jeweils die Beschleunigung
mit Hilfe der Trägheit einer Masse ermittelt werden und durch den Zusammenhang von
Beschleunigung über eine bestimmte Zeit kann die neue Position bestimmt werden. Dieser
Zusammenhang wird durch diese Formel dargestellt:

(2.2) pos = a
∫ ∫

dt2

Um ein System mit 6DOF zu erreichen, werden beim inertialen Tracking Gyroskope ver-
wendet. Damit lassen sich im System Drehimpulse um die jeweiligen Achsen messen, mit
denen es dann möglich ist die Drehung um einen bestimmten Winkel um eine Achse zu
bestimmen. Gyroskope arbeiten mit einer sich konstant rotierenden Masse, die durch die
Drehimpulserhaltung Lageänderungen entgegenwirkt. Ein Beispiel hierfür ist ein Kreisel,
dessen Rotationsachse der Gravitationsachse entspricht. Wenn der Kreisel sich schnell genug
dreht, kippt er nicht um, sondern wirkt der Gravitationskraft und damit dem Umkippen
entgegen. Mechanisch arbeitende Gyroskope sind zwar sehr präzise, werden aber wegen
der Größe und Masse selten zum Tracking von Menschen eingesetzt. Die Alternative zu
mechanischen Gyroskopen bilden micromechanische Sensoren, die viel kleiner sind und mit
sogenannten Vibrationskreiseln arbeiten.

Vorteile Ein großer Vorteil dieser Trackingtechnologie ist die Tatsache, dass kein bestimmtes
„Medium“ benötigt wird, über das irgendwelche Signale übermittelt werden müssen.
Daher ist keine zusätzliche Hardware wie Sender oder Empfänger nötig. Durch die
kleinen Ausmaße des ganzen Systems, wird der Benutzer auch in kaum einer Weise in
seiner Bewegungsfreiheit eingeschränkt und kann sich komplett frei im Raum bewegen.
Außerdem gibt es keine äußeren Störfaktoren, die das System beeinflussen könnten.

Nachteile Da das inertiale Tracking eine Startkonfiguration hat, von der aus mit Hilfe der
Beschleunigungsmessungen die folgenden Positionen und Orientierungen berechnet
werden, muss das System von Zeit zu Zeit rekalibriert werden. Damit wird vermieden,
dass sich eventuelle Messungenauigkeiten zu einem großen Fehler aufaddieren.

13

2. Grundlagen und Verwandte Arbeiten

Einsatzgebiete Inertiales Tracking benötigte früher große und schwere Messinstrumente,
wohingegen heute kleine elektronische Bauteile diese Aufgabe übernommen haben.
Mit diesen kleinen Elementen findet inertiales Tracking häufig Einsatz in hybriden
Trackingtechnologien, da sie alleine zu starke Messungenauigkeiten über die Zeit
aufweisen.

Magnetisches Tracking

Magnetisches Tracking kann unter Verwendung von Magnetfeldern die Postion und Ori-
entierung eines Objekts im Raum ermitteln. Dies geschieht entweder durch Magnetfelder,
die durch Wechselstrom mit niedriger Frequenz erzeugt werden, oder durch pulsierende
gleichstromgenerierte Magnetfelder. Um ein 6DOF System zu erhalten, werden auf der Sen-
derseite drei separate Spulen benötigt, die orthogonal um einen Kern gewickelt sind und auf
der Empfängerseite drei „Antennen“, welche auch Spulen sind. Eine Messung der Position
und Orientierung im Raum erfolgt durch drei separate Sende- und Messvorgänge, bei denen
eine Spule nach der anderen ein Signal aussendet bzw. empfängt. Wenn eine Sendespule
eine Magnetfeld aufbaut, wird bei der Empfängerspule eine messbare Spannung induziert,
die von der Entfernung zum Sender und der Ausrichtung zum Magnetfeld des Senders
abhängig ist. Die induzierten Spannungen können dann mit bekannten Werten verglichen
werden, um die Entfernung zum Objekt zu ermitteln. Um zusätzlich noch die Orientierung
im Raum berechnen zu können, werden die drei induzierten Spannungen der jeweiligen
Empfängerspulen untereinander verglichen. Wichtig ist noch zu erwähnen, dass Magnet-
felder, die mit Wechselstrom generiert werden, den Nachteil haben, dass ferromagnetische
Objekte, die in der Reichweite des Empfängers liegen, das erzeugte Magnetfeld beeinflussen
können. Dadurch, dass Wechselstrom seine Richtung andauernd ändert, entstehen ständig
Wirbelströme, die schwer zu korrigieren sind. Magnetfelder, die durch Gleichstrom generiert
werden, erzeugen hingegen keine Wirbelströme. Messungenauigkeiten bleiben jedoch auch
in der Gleichstromvariante erhalten.

Vorteile Magnetische Trackingsysteme benötigen, durch ihre Arbeitsweise bedingt, keine
direkte Sichtlinie zwischen Empfänger und Sender, wodurch der Anwender frei in
seinen Bewegungen ist. Die eingesetzten Sensoren sind meist leicht und klein, was
auch wiederum eine bessere Handhabung ermöglicht. Mit magnetischen Systemen ist
es möglich mehrere Personen gleichzeitig zu erfassen.

Nachteile Ein großes Problem, mit dem magnetische Trackingsysteme konfrontiert wer-
den, sind durch metallische Objekte verursachte Verzerrungen und Beeinflussungen
der Messergebnisse. Außerdem ist diese Technologie nur in kleinen Bereichen des
erzeugten Magnetfelds präzise und es können zusätzlich Probleme beim Erfassen von
schnellen Bewegungen entstehen. Dadurch, dass alle benötigten Bauteile eine eigene
Stromversorgung brauchen, müssen viele Kabel verwendet werden.

Einsatzgebiete Magnetisches Tracking wird auf Grund seiner kleinen Sensoren in vielen
Bereichen eingesetzt. Hier muss jedoch darauf geachtet werden, dass keine ferro-

14

2.1. Technische Grundlagen

magnetischen Stoffe die Messungen stören. Häufig setzen Forschungs- aber auch
Militäreinrichtungen magnetisches Tracking ein.

Mechanisches Tracking

Diese Art von Tracking ist für den Einsatz in „Smart-Homes“nicht geeignet, da mechani-
sches Tracking typischerweise Winkel von Gelenken und die Abstände zwischen einzelnen
Gelenken misst. Es ist zwar möglich mit einer Anfangsposition alle weiteren Positionen der
gemessenen Gelenke durch die gemessenen Winkeländerungen zu bestimmen. Um aber sol-
che Messungen durchführen zu können, muss der User z. B. ein Exoskelett anlegen. Dadurch
ist der Einsatz aufwändig und mit zunehmender Präzision steigt auch die Komplexität des
„Messinstruments“.

Vorteile Ein sehr geschätzter Vorteil des mechanischen Trackings ist die extrem hohe Ge-
nauigkeit, die erzielt werden kann. Deswegen finden diese Systeme häufig Einsatz
in der Medizin, um präzise Informationen über Position und Orientierung, von z. B.
Operationswerkszeugen zu erhalten. Diese Systeme benötigen außerdem keine direkte
Sichtlinie und sie arbeiten auch nicht mit magnetischen Feldern, Schallwellen oder
Licht, was in manchen Fällen störend sein kann.

Nachteile Mechanisches Tracking hat zwar einzelne enorme Vorteile, diese Art von Tracking
birgt aber auch extreme Nachteile. Einer davon ist die Eigenschaft, dass diese Systeme
häufig als Exoskelett am User angebracht werden und dadurch die Bewegungsfreiheit
sehr stark beeinträchtigt wird. Die Exoskelette können nämlich schwer oder schwer
beweglich sein. Ein weiterer Nachteil ist der, dass diese Systeme nicht auf große Räume
angewendet werden können, da es technisch kaum möglich ist.

Einsatzgebiete Die bekanntesten Einsatzgebiete des mechanischen Tracking sind einerseits
sogenannte „Boom-Type Displays“und andererseits Operationswerkzeuge. Ein Boom-
Type Display ist ein kleines Display, das am Kopf und direkt vor den Augen eines
Menschen angebracht ist und das an Stäben befestigt ist. Diese Stäbe bilden einen Arm,
der das Display hält und der die Position und Orientierung des menschlichen Kopfes
erfasst. Die erwähnten Operationswerkzeuge mit mechanischem Tracking können die
menschlichen Bewegungen erfassen und auf einen Roboterarm übertragen, der bei
einer Operation viel ruhigere und genauere Bewegungen ausführen kann.

Optisches Tracking

Allgemein In diesem Abschnitt wird das optische Tracking etwas genauer unter die Lupe
genommen, da es eines der wichtigsten und am häufigsten eingesetzten Trackingtechnologien
ist. Der interessierte Leser kann in dem Survey zum Thema Trackingtechnologien von
Welch et al. [WF02] mehr erfahren. Optische Trackingsysteme werden in folgende zwei
grundlegende Systemkonfigurationen eingeteilt:

15

2. Grundlagen und Verwandte Arbeiten

Outside-In Es gibt optische Sensoren, die in der Umgebung an definierten Stellen ange-
bracht sind. Diese erfassen die Position und Orientierung von sogenannten Targets, die am
zu erfassenden Ziel angebracht sind.

Inside-Out Beim inside-out Ansatz sind die optischen Sensoren am Ziel angebracht und
diese ermitteln die Position und Orientierung im Raum mit Hilfe von definierten Punkten,
die in der Umgebung platziert sind.

Das Toolkit, das in dieser Arbeit präsentiert wird, basiert auf dem outside-in Ansatz. Opti-
sches Tracking, auch bildbasiertes Tracking genannt, arbeitet generell mit einem sogenannten
Target, welches als Lichtquelle dient und Sensoren, die lichtempfindlich sind Abbildung: 2.3.
Durch das Analysieren, der von den Sensoren gewonnen Bilder, wird die Position und
Orientierung der Targets im Raum ermittelt. Hierbei wird zwischen passiven und aktiven
Lichtquellen unterschieden. Aktive Lichtquellen strahlen mit Hilfe von z. B. LEDs Licht in
unterschiedlichen Lichtspektren aus und benötigen daher eine Stromquelle. Sie haben zwar
den Vorteil, dass sie ein optisches Trackingsystem robuster gegen Licht aus der Umgebung
machen, aber sie sind wegen der benötigen Stromquelle wartungs- und kostenintensiver. Da
die meisten optischen Trackingsysteme für den Inneneinsatz gedacht sind, werden häufig
passive Targets verwendet, die meist eine sphärische Form besitzen und deren Oberfläche
reflektierend ist Abbildung: 2.2, oder einen starken Kontrast zur Umgebung bilden. Ein
solches System beschreiben Pintaric et al. in dem Paper [PK07]. Es basiert auf dem outside-in
Prinzip, arbeitet mit passiven Targets und zeigt sehr deutlich die Vor- und Nachteile eines
solchen Trackingsystems auf.

Zusätzlich zu den beschriebenen Targets werden optische Sensoren für das Tracking benötigt.
Jeder optische Sensor arbeitet auf eine leicht unterschiedliche Weise. Es werden die folgenden
Typen von Sensoren unterschieden:

• Charge Coupled Devices (CCDs)

CCDs bestehen aus 1D oder 2D Photozellen-Arrays, bei denen die einzelnen Photozel-
len je nach Lichteinstrahlung eine gewisse Spannung produzieren. Dadurch entsteht ein
digitales Bild der Umgebung mit den relativen Lichtintensitäten, die auf die einzelnen
Zellen einwirken. Durch die vorhin beschriebenen Gegebenheiten der Targets und
der Umgebung, sind es die Targets, die den hellsten Punkt in dem Array erzeugen.
Dadurch bekommt man in dem Photozellen-Array eine 2DOF Position des Targets. Eine
weitere Eigenschaft der CCDs ist, dass sie nur Einzelaufnahmen machen und bedingt
durch die Technik und Verarbeitungsdauer der eingehenden Signale eine begrenzte
Anzahl an Bildern pro Sekunde liefern können.

• Photosensoren

Photosensoren verändern ihren Widerstand je nach dem wie viel Licht einfällt. Mehrere
zusammengesetzte Photosensoren liefern damit ein analoges Signal, das genau wie
CCDs ein 2DOF Abbild der Umgebung und dem Target darstellt. Sie haben den Vorteil,
dass sie simpel und schnell sind, da sie ein kontinuierliches Signal liefern.

16

2.1. Technische Grundlagen

Abbildung 2.2.: Ein Beispiel für einen sogenannten „Wand“mit passiven Targets, wie er bei
optischem Tracking eingesetzt wird.

Abbildung 2.3.: Optischer Sensor mit im Kreis angeordneten Infrarotlicht emmitierenden
Einheiten. Quelle: [SEN]

17

2. Grundlagen und Verwandte Arbeiten

• Position Sensing Detectors (PSDs)

PSDs arbeiten auf eine ähnliche Weise wie Photosensoren. Sie bestehen aus einem 1D
oder 2D Halbleiterbauelement, das eine Menge an Strömen liefert, die der Menge an
einstrahlendem Licht von einem bestimmtem Photosensor entsprechen. Daraus wird,
wie bei den anderen Sensoren, eine 2DOF Position des Targets ermittelt.

Um nun aus den ermittelten 2DOF Daten die Position im Raum, die 3DOF entspricht,
zu berechnen, werden mehrere Sensoren an unterschiedlichen Postionen angebracht. Mit
dem Wissen über die jeweiligen Postionen der einzelnen optischen Sensoren, lässt sich
mathematisch die 3D Position des Targets ermitteln. Um mit einem optischen Trackingsystem
6DOF zu erreichen benötigt man lediglich mehrere Targets. Denn aus der räumlichen Stellung
der jeweiligen Targets zueinander, lässt sich die Orientierung des Objekts tracken. Siehe
hierfür Abbildung 2.4.

Vorteile Optische Trackingsysteme haben den ganz großen Vorteil, dass sie durch ihre
Schnelligkeit sehr gut für Echtzeitanwendungen geeignet sind. Dadurch, dass Licht als
Medium verwendet wird und die elektronischen Bauteile die Signale meist sehr schnell
verarbeiten können, sind Update Raten von z. B. 100Hz möglich, was 100 Bildern
in der Sekunde entspricht. Außerdem sind die heutigen optischen Trackingsysteme
sehr präzise. Pintaric et al. [PK07] stellen ein System vor, dass im Bereich von ±5mm
arbeitet und Winkel im Bereich von 0.05◦ erfassen kann. Optische Trackingsysteme
sind überdies unempfindlich gegenüber magnetischen und akustischen Störfaktoren.

Nachteile Einer der größten Nachteile von optischen Trackingsystemen ist die Eigenschaft,
dass zwischen Sensor und Target eine direkte Sichtlinie bestehen muss. Dies kann den
User unter Umständen in seiner Bewegungsfreiheit einschränken und ungenaue Daten
zur Folge haben. Da in einem Testraum aber je nach System mehrere Dutzend Sensoren
an unterschiedlichen Positionen platziert werden können, ist dieses Problem meist
unter Kontrolle zu bekommen. Optische Trackingsysteme können zusätzlich durch
äußere Lichteinwirkung in ihrer Arbeitsweise behindert werden. Dies lässt sich aber
auch wieder durch einen Testraum, in dem die Umwelteinflüsse kontrolliert werden
können, unterbinden.

Einsatzgebiete Optische Trackingsysteme werden in vielen Bereichen eingesetzt, da sie
kostengünstig sind, ihren Anwender kaum in seiner Bewegungsfreiheit einschränken
und zusätzlich sehr genau und schnell arbeiten. Ein Einsatzgebiet, mit dem sich jeder
von uns fast täglich beschäftigt, ist die Filmindustrie. Moderne Filme beinhalten fast
immer Szenen, die fast vollständig im Computer entstanden sind, da sie so aufwändig
sind und viel zu hohe Kosten verursachen würden. Um die Bewegungen der Schau-
spieler in die virtuelle Szene integrieren zu können, bedienen sich die Filmemacher
des sogenannten „Motion Caputring“. Hierbei werden am Menschen reflektierende,
sphärische Kügelchen angebracht, die von Kameras erfasst werden. Mit diesen Daten
über die Positionen und Bewegungen der Schauspieler, lassen sich animierte Figuren
in der virtuellen Szene erstellen, die nach jedem beliebigen Wunsch gestaltet werden
können. Beispiele hierfür sind sehr viele aktuell in Hollywood produzierten Filme, z. B.
Iron Man, Avatar usw.

18

2.1. Technische Grundlagen

Abbildung 2.4.: Zwei optische Sensoren erfassen die von den drei passiven Targets reflektier-
ten Infrarotstrahlen. Es werden mindestens zwei Sensoren und drei Targets
benötigt um ein 6DOF System zu erhalten, da ein Sensor nur die 2DOF
Position des Targets erfassen kann. Es wird erst mit zwei Sensoren und mit
Hilfe der bekannten Positionen der Sensoren möglich, die 3DOF Position
eines Targets im Raum zu berechnen. Um nun noch die Orientierung des
Objekts im Raum zu berechnen werden drei Targets benötigt, denn mit Hilfe
ihrer Positionen im Raum zueinander, wird es erst möglich die Orientierung
zu erhalten.

19

2. Grundlagen und Verwandte Arbeiten

Optisches Tracking kann aber auch dafür eingesetzt werden, intuitive Interaktionsmög-
lichkeiten für Menschen zu bieten. Ein Beispiel hierfür ist das Paper von Shizuki et al.
[SHTT06], in dem ein Laserpointer verwendet wird, um Interaktionen mit einer großen
Leinwand zu ermöglichen. Hierbei wird der rote Punkt, den ein Laserpointer wirft,
von einer Kamera erfasst und mit Hilfe bestimmter Zeigegesten, die die Außenflä-
chen der Leinwand verwenden, kann der Anwender einfach durch Präsentationsfolien
navigieren oder ein Bild rotieren. Die Idee dahinter ist, dass beim Überqueren einer
Randfläche das System anfängt auf einen Befehl, z. B. in Form einer Geste, zu warten.
Da die Randflächen einer Leinwand so groß sind, ist diese Interaktion gemäß Fitts’
Law für den Anwender sehr angenehm und leicht umzusetzen.

2.2. Optische Trackingsysteme - Interaktionsmöglichkeiten

Optisches Tracking in Verbindung mit einer großen virtuellen Umgebung bietet dem An-
wender viele Möglichkeiten mit der realen Umwelt zu interagieren. Eine Möglichkeit sind
sogenannte Laserpointer Interaktionstechniken. Hierbei verwendet man meist einen echten
Laserpointer, der einen Strahl auf eine Fläche wirft und dann von Kameras erfasst wird. Es
werden wahlweise auch Devices verwendet, die nur als virtuelle Laserpointer dienen. In
beiden Fällen wir von der Spitze des Devices aus ein Strahl ausgesendet, der mit der Inter-
aktionsfläche geschnitten wird und z. B. als Cursor dienen kann, um Objekte auszuwählen
oder Gesten auszuführen. Ein gutes Beispiel hierfür ist das im vorherigen Kapitel erwähnte
Paper [SHTT06], bei dem ein echter Laserpointer verwendet wird, um durch Gesten mit
einer großen Leinwand zu interagieren. Hierbei erfasst das System eine Überquerung einer
definierten Grenzlinie, die die Innenfläche und die Außenfläche der Interaktionsfläche trennt.
Wenn eine solche Überquerung z. B. der rechten Grenzlinie festgestellt wird, kann in einer
Präsentation die nächste Folie angezeigt werden. Ein weiteres Beispiel ist die von Kirstein et
al. [KM98] vorgestellte Arbeit. Es wird vorgestellt wie ein Punkt eines Laserpointers durch
Kameras erfasst werden kann und anschließend direkt als Cursor verwendet werden kann,
um Eingaben vorzunehmen. Dabei wird die Position des erfassten Punkts des Laserpointers
an den Eingangkanal der Maus am Computer gesendet und als direktes Eingabesignal
verwendet. Der größte Vorteil dieser Laserpointer Interaktionstechniken ist der, dass sehr
schnelle und intuitive Interaktionen ermöglicht werden. Die Genauigkeit dieser Methode
wird jedoch durch das Zittern der menschlichen Hand in Mitleidenschaft gezogen. Cao
et al. [CB03] stellen in ihrer Arbeit weitere Interaktionstechniken vor, die einen Stab be-
nutzen, um mit einem großen Display zu interagieren. In ihrer Arbeit erfassen Kameras
einen speziellen Stab und dieser wird dazu verwendet mit Gesten Aktionen auszuführen.
Weitere Interaktionsmöglichkeiten, die einen Laser Pointer verwenden, werden von Olsen et
al. [ON01] vorgestellt und bewertet. Bei allen präsentierten Interaktionstechniken, die einen
Laser Pointer in Verbindung mit einer großen Interaktionsfläche verwenden, stellt sich die
grundlegende Frage, wie gut ein Laser Pointer für solche Zwecke überhaupt geeignet ist.
Dieser Frage gehen Oh et al. [OS02] in ihrer Arbeit nach, indem sie den Laser Pointer mit
einer Maus in Bezug auf Fitts’ Law vergleichen. Eine weitere Interaktionstechnologie, die
sich bei einem optischen Trackingsystem anbietet, ist das Tracking des gesamten Körpers

20

2.2. Optische Trackingsysteme - Interaktionsmöglichkeiten

des Anwenders oder nur einzelner Körperteile. Krüger [Kru91] stellte eine Möglichkeit
vor, bei der spielerische Dinge, die auf einer großen Leinwand dargestellt wurden, mit
dem Körper bedient wurden. Die Fortschritte in der Technik ermöglichen es mittlerweile
einzelne Körperteile und sogar einzelne Finger und Fingerbewegungen zu erfassen. Ein
aktuelles Beispiel hierfür ist das von LeapMotion [LEA] vorgestellte kleine Device, das im
dreidimensionalen Raum die Hände und sogar Finger eines Menschen tracken kann, um
damit kleine Spiele oder hoch komplexe CAD Anwendungen bedienen zu können. Hierbei
werden Genauigkeiten von 0,01mm erreicht, mit denen es möglich wird sehr präzise Tasks
zu meistern.

Eine weitere Interaktionstechnologie, die durch optisches Tracking ermöglicht wird, ist
das Hand-Raycasting. Dabei sind an der Hand des Users Tragets angebracht, die vom
Trackingsystem erfasst werden und mit deren Hilfe Informationen über die Position und
Orientierung der Hand ermittelt werden können.

2.2.1. Hand-Raycasting

Wie bei Interaktionen mit Laserpointern, wird auch beim Hand-Raycasting aus den gewon-
nen Positions- und Orientierungsdaten der Hand ein imaginärer Strahl ermittelt. Dieser
Strahl entspricht der Zeigerichtung der Hand und wird mit der Interaktionsfläche geschnit-
ten. Hierbei kann entweder nur die Hand, aber auch die einzelnen Finger des Anwenders
erfasst werden, um Interaktionen zu ermöglichen. Die Hand kann dazu verwendet werden,
Zeigegesten in Richtung ausgewählter Objekte oder auch ganze Gesten zu erkennen. Die
Hand allein bietet aber wenig Möglichkeiten eine Auswahl zu bestätigen oder zusätzliche
Aktionen umzusetzen. Wenn zusätzlich noch die Finger erfasst werden, kann zum Beispiel
das Zusammenführen von Daumen und Zeigefinger als Geste erkannt werden, um ein
angezeigtes Objekt zu bestätigen oder eine weitere Funktionalität des angezeigten Objekts
zu aktivieren. Vogel et al. [VB05] stellen eine Interaktionsmethode vor, die mit unter das
Hand-Raycasting verwendet. Es werden zwei Auswahlmöglichkeiten vorgestellt, von denen
eine die Berührung von Zeigefinger und Daumen verwendet, um Eingaben vornehmen
zu können. Die andere erkennt es, wenn ein imaginärer Button in der „Luft geklickt“wird.
Dabei wird erkannt, wie sich der Zeigefinger im Vergleich zu der ganzen Hand und der
Umgebung nach unten bewegt und diese Aktion signalisiert einen Klick. Zusätzlich zu
den „Klick-Techniken“ werden zwei Zeigetechniken vorgestellt. Eine davon ist das direkte
Hand-Raycasting, mit dem man sich durch Zeigegesten sehr schnell durch eine virtuelle
Umgebung bewegen kann. Diese Technik ermöglicht es dem Anwender zwar sehr schnelle
Eingaben zu tätigen, diese sind jedoch relativ ungenau und können nicht dafür genutzt
werden um zielsicher durch ein User Interface, wie wir es von den heutigen Computersyste-
men kennen, zu navigieren. Für die Eingaben, die eine höhere Genauigkeit verlangen, wird
eine weitere Zeigegeste präsentiert, die ein relatives Mapping der Hand des Anwenders
verwendet um einen Mauszeiger zu bewegen. Hierbei wird kein Eins-zu-Eins-Mapping be-
nutzt, da ein Anwender bei langsamen Bewegungen meist eine genauere Eingabe vornehmen
will und bei schnelleren sich auch schneller durch das Interface bewegen will. Als letzte
Interaktionsmethode wird ein Hybrid aus den beiden Zeigetechniken präsentiert. Hierbei

21

2. Grundlagen und Verwandte Arbeiten

kann der Anwender mit einer offenen Hand das langsame Bewegen der Maus verwenden
und wenn die Hand zu einer Zeigegeste geformt wird, kann sich der Anwender schnell
durch das Interface bewegen um schnell und relativ genau auf eine spezielle Stelle zeigen zu
können. Diese hybride Technik hat den Vorteil, dass das direkte Hand-Raycasting eine sehr
natürliche, intuitive und schnelle Form des Menschen ist, das Interesse auf ein Objekt oder
eine spezielle Stelle zu richten. Mit dem relativen Mapping der Hand auf einen Mauszeiger
kann der Anwender genauere Eingaben vornehmen.

2.3. Computergrafik

3D Anwendungen sind in ihrer Berechnung meist sehr aufwendig und benötigen leistungs-
starke Computerhardware. Um bei Echtzeitanwendungen ein flüssiges Bild zu erhalten,
benötigt man eine minimale Anzahl an Bildern in der Sekunde. Das sind meist 25 FPS.
Hierfür verfügt heutzutage fast jeder Computer über eine eigene Einheit, die nur für Grafik-
berechnungen zuständig ist. Da es damit trotzdem nicht möglich ist bis ins kleinste Detail
realgetreue Bilder und Modelle zu erzeugen, bedient sich die Computergrafik einiger Tricks
um Bilder zu generieren, die nach Außen hin nur so wirken als ob sie realistisch wären.
Mit diesen Modellen ist es dann möglich physikalische Gesetze zu simulieren, um unsere
Umwelt visualisieren zu können. Die Visualisierung wird heutzutage in vielen Bereichen
eingesetzt, da es durch die heutige Computergrafik ermöglicht wird komplexe Sachverhalte
für den Menschen in Echtzeit sinnvoll darzustellen, um daraus neue Erkenntnisse gewinnen
zu können. In diesem Abschnitt werden die grundlegenden Konzepte, die derzeit in der
Computergrafik verwendet werden, aufgegriffen und erklärt.

2.3.1. Repräsentation von Objekten

Da eine detailgetreue Repräsentation mit der heute zur Verfügung stehenden Hardware
nicht möglich ist, werden Objekte aus Polygonen zusammengesetzt. Dies ist zwar nur eine
Approximation, sie bietet aber in Verbindung mit kleinen Tricks ein sehr gutes Ergebnis.

Der Grundbaustein, auf dem die ganze Computergrafik basiert, sind die sogenannten
Vertices. Dies sind festgelegte Punkte im 3D Raum, mit deren Hilfe es dann möglich ist
sogenannte Edges zu bilden, die jeweils zwei Vertices als Eckpunkte besitzen. Diese Kan-
ten sind die Berandung von Flächen, die Faces heißen. Faces können ein Dreieck mit drei
Eckpunkten oder ein Quad mit vier Eckpunkten sein. Die Grafikhardware ist so konzipiert,
dass sie Faces extrem schnell und sogar parallelisiert verarbeiten kann. Dies ist notwendig,
da schon simple Objekte, wie z. B. ein Zylinder aus mehreren Dutzend Faces besteht. Ein
Polygon wiederum besteht aus mehreren Faces. Für komplexe Objekte, die in der Compu-
tergrafik modelliert werden, verwendet man in vielen Bereichen sogenannte Meshes, die
eine effiziente Speicherung von Polygonen ermöglichen. Ein Mesh wird durch Tabellen von
z. B. Vertices beschrieben, die die Zusammensetzung eines Polygons beschreiben. Es wird
zwischen folgenden drei Mesh-Datenstrukturen unterschieden [Smi06]:

22

2.3. Computergrafik

Abbildung 2.5.: Vertex-Vertex-Mesh: für jeden Vertex werden die X-,Y-,Z-Koordinaten und
alle Nachbarn in geordneter Reihenfolge gespeichert. Quelle: [MES13]

• Vertex-Vertex Meshes speichern für jeden Vertex alle seine Nachbarn in geordneter
Reihenfolge und die jeweiligen X-,Y-,Z-Koordinaten. Abbildung 2.5 zeigt eine solche
Datenstruktur.

• Face-Vertex Meshes führen eine Liste aller existierenden Faces und Vertices. Jeder
Vertexeintrag enthält alle angrenzenden Faces. Siehe Abbildung 2.6.

• Winged-Edge Meshes ist eine weit verbreitete Datenstruktur, die explizit alle Faces,
Vertices und Edges speichert. Diese Methode bietet eine hohe Flexibilität, benötigt aber
auch am meisten Speicherplatz. Die Vertex-Liste speichert alle anliegenden Egdes, die
Face-Liste speichert alle umrandenden Edges und die Edge-Liste speichert die Eck-
punkte, anliegenden Faces und die vier am nächsten an den Eckpunkten anliegenden
Edges. Diese Datenstruktur ist die komplexeste und ist in Abbildung 2.7 zu sehen.

Mit Hilfe solcher Meshes können extrem detaillierte Objekte in diversen Programmen, wie
z. B. 3dsMax oder der Freeware Google ScetchUp erstellt werden und in verschiedensten
Anwendungen verwendet werden. Dazu gehören 3D Graphics Engines, Modellierprogramme
usw. Diese Objekte haben dann eine definierte Position und Orientierung im Raum, wobei
die Orientierung in der Computergrafik häufig durch sogenannte Quanternions ausgedrückt
wird.

23

2. Grundlagen und Verwandte Arbeiten

Abbildung 2.6.: Face-Vertex-Mesh: Liste mit allen Faces und Vertices. Jeder Vertexeintrag
enthält alle angrenzenden Faces. Quelle: [MES13]

Definiton: Quanternions

In der Computergrafik haben sich zur Darstellung von Rotationen und Orientierungen von
Objekten im dreidimensionalen Raum Quanternions durchgesetzt. Ein Quaternion ist ein
Viertupel mit den drei Komponenten x, y und z, die beschreiben um welche der X-, Y-
und Z-Achse die Rotation auftritt und eine w-Komponente, die aussagt um welchen Wert
rotiert werden soll. Die mathematische Definition eines Quaternions ist Q = w + ix + jy + kz,
wobei i, j und k eine imaginäre Komponente darstellen und w, x, y und z reelle Werte sind.
Quaternions haben sich wegen folgenden Vorteilen durchgesetzt:

• Der sogenannte „Gimbal Lock“wird vermieden. Grob umschrieben ist ein „Gimbal
Lock“das Wegfallen eines Freiheitsgrades der Rotation, wenn bei Euler Winkeln bei
der Hintereinanderausführung der Rotationen die erste und dritte Rotationsachse
zusammenfallen. Dies hat zur Folge, dass jede Rotation von der vorhergehenden
beeinflusst wird.

• Eine bestimmte Rotation zu verändern ist einfach.

• Es sind wenige mathematische Rechenoperationen notwendig um ein Quaternion zu
normalisieren. Dies wird beim Korrigieren von Rechenungenauigkeiten, die durch die
Computerhardware verursacht werden, benötigt.

24

2.3. Computergrafik

Abbildung 2.7.: Winged-Edge-Mesh: explizite Speicherung aller Faces, Edges und Vertices.
Vertex-Liste speichert alle anliegenden Egdes, die Face-Liste speichert alle
umrandenden Edges und die Edge-Liste speichert die Eckpunkte, anliegen-
den Faces und die vier am nächsten an den Eckpunkten anliegenden Edges.
Quelle: [MES13]

2.3.2. Schnittberechnungen

Der Vorteil von 3D Anwendungen ist der, dass alle Objekte in einer virtuellen Szene existie-
ren und sie in dieser leicht mit Translationen, Rotationen, Skalierungen oder Scherungen
manipuliert werden können. Für das entwickelte Toolkit waren im Speziellen die Schnittbe-
rechnungen von unterschiedlichen virtuellen Objekten, oder von Objekten und Strahlen sehr
interessant. Damit ist es nämlich möglich Zeigegesten des Users in die virtuelle Umgebung
zu übertragen und mit einer Szene zu schneiden. Schnittberechnungen sind im Grunde sim-
ple mathematische Rechnungen, die vom Toolkit oder einer Graphics Engine durchgeführt
werden.

25

2. Grundlagen und Verwandte Arbeiten

Abbildung 2.8.: Beispiel für ein Polygonnetz. Quelle: [DOL]

Grundlagen: Ray-Mesh Intersection

Typischerweise wird die Schnittberechnung zwischen einem Strahl und einem beliebig
komplexen Polygon für jedes einzelne Dreieck im Polygon durchgeführt [KC95]. Das grobe
Vorgehen hierfür ist das folgende:

1. Führe eine Schnittberechnung mit dem erzeugten Strahl und der Ebene, auf der das zu
prüfende Dreieck liegt, durch. Hierbei wird der Abstand t zum Schnittpunkt berechnet.

2. Prüfe für den Schnittpunkt mit dem Abstand t, ob er sich vor dem Strahlursprung und
nicht dahinter befindet. Die Bedingung hierfür ist (t > 0). Zusätzlich muss geprüft
werden, ob es einen weiteren Schnittpunkt gibt, der sich vor dem Berechneten befindet.
Wenn einer dieser beiden Test negativ ausfällt wird der Schnittpunkt verworfen, da
er sich entweder hinter dem Strahlursprung befindet, oder ein anderes Objekt die
Sicht verdeckt, was in beiden Fällen bedeutet, dass der berechnete Schnittpunkt nicht
sichtbar ist.

3. Fallen hingegen beide Tests aus 2. positiv aus, so kann mit Hilfe der Strahlgleichung
~s = ~pos0 + t ∗~v, wobei ~pos0 der Ursprung des Strahls, t der berechnete Abstand und ~v
der Richtungsvektor des Strahls sind, der Schnittpunkt berechnet werden.

4. Im letzten Schritt muss dann noch geprüft werden, ob sich der berechnete Schnittpunkt
im zu prüfenden Dreieck befindet. Dieser Schritt ist mit Abstand der aufwendigste
und teuerste im gesamten Ablauf. Mit Hilfe von Baryzentrischen Koordinaten kann
der Rechenaufwand jedoch reduziert werden.

Definition Baryzentrische Koordinaten

Gegeben sind k Punkte P1, P2, ..., Pk ∈ R. Wenn Punkt Q in der Form Q = λ1P1 +
λ2P2 + ... + λkPk mit λ1 + λ2 + ... + λk = 1 dargestellt werden kann, so bezeichnet
man (λ1, λ2, ..., λk) als Baryzentrische Koordinaten von Q bezüglich der Basispunkte
P1, P2, ..., Pk mit (k ≤ n + 1). Siehe hierfür die Abbildung 2.9.

26

2.3. Computergrafik

Abbildung 2.9.: Baryzentrische Koordinaten λ1, λ2, λ3 von q bezüglich der drei Basispunkte
P1, P2, P3

Wie vorhin gezeigt liegen in den meisten Mesh-Datenstrukturen die Vertices der
einzelnen Dreiecke explizit vor. Mit Hilfe der Eckpunkte P1, P2, P3 müssen λ1, λ2 und
λ3 mit λ1 =

A4(Q,P2,P3)
A4(P1,P2,P3)

, λ2 =
A4(P1,Q,P3)
A4(P1,P2,P3)

und λ3 =
A4(P1,P2,Q)
A4(P1,P2,P3)

bestimmt werden. Der
Schnittpunkt liegt im Dreieck, wenn λ1, λ2 und λ3 jeweils > null sind.

Der so errechnete Schnittpunkt bezieht sich auf die Weltkoordinaten. Für manche Anwen-
dungsfälle ist es jedoch auch interessant die Koordinaten des Schnittpunkts in Bezug auf die
Objektkoordinaten zu kennen. Hierbei ist zwischen 2D- und 3D Objekten zu unterscheiden:

relativer Schnittpunkt in 2D

Bei 2D Objekten ist die Berechnung des Schnittpunkts relativ simpel, da keine Sonderfälle
auftreten. Es muss ein Koordinatensystem definiert werden, das sich auf das Objekt bezieht.
Hierbei bietet es sich bei 2D Objekten an, die beliebige Formen aufweisen können, einen
Punkt in der Mitte des Objekts als Nullpunkt zu definieren. Um nun den Schnittpunkt, der
in Weltkoordinaten berechnet wurde, auf die Objektkoordinaten zu übertragen, muss eine
Transformationsmatrix von dem Welt- auf das Objektkoordinatensystem ermittelt werden,
mit der der Schnittpunkt anschließend multipliziert wird. Der errechnete Punkt ist der
relative Schnittpunkt bezogen auf das 2D Objekt.

relativer Schnittpunkt in 3D

Bei 3D Objekten ist die Vorgehensweise zur Berechnung eines relativen Schnittpunkts ähnlich.
Es muss auch eine Transformationsmatrix ermittelt werden, mit der der Weltkoordinaten-
Schnittpunkt multipliziert wird. Hierbei können aber Sonderfälle auftreten, die beachtet

27

2. Grundlagen und Verwandte Arbeiten

werden müssen. Bei 3D Objekten kann der errechnete relative Schnittpunkt nämlich auch auf
der Rückseite des Objekts liegen und somit für den Betrachter nicht sichtbar sein. D.h. wenn
sich noch ein anderer Schnittpunkt finden lässt, der auf der Sichtlinie vor dem errechneten
Punkt liegt, so muss er verworfen werden. Andere Sonderfälle sind die seitlichen Flächen
von dreidimensionalen Objekten, bei denen es interessant sein könnte zu wissen, in welchem
Winkel der Sichtstrahl die Oberfläche trifft. Denn je flacher der Einfallswinkel, desto größer
sind die Ungenauigkeiten in Bezug auf die tatsächliche Position wohin der Anwender zeigt.
Bei sehr flachen Winkeln können schon kleinste Abweichungen darüber entscheiden, ob ein
Objekt angezeigt wird oder nicht.

2.4. EI-Toolkit

In dieser Arbeit wird ein Netzwerktoolkit namens EI Toolkit verwendet [Hol05]. Netzwerk-
kommunikationen benötigen nämlich für unterschiedliche Ressourcen meist verschiedene
Protokolle. Um das Managen der einzelnen Ressourcen der Anwendung abzunehmen,
kann das EI-Toolkit eingesetzt werden. Es kümmert sich nämlich um die unterschiedlichen
Ressourcen und verwendet zur internen Kommunikation ein einheitliches Protokoll. Dies
vereinfacht die programminterne Kommunikation und ermöglicht es dem Entwickler seine
Aufmerksamkeit anderen Dingen zuzuwenden.

28

3. Konzept und Use Cases

Das entwickelte 3D Pointing Toolkit basiert auf einem optischen Trackingsystem und auf
einer Echtzeitrendering 3D Graphics Engine. Das Trackingsystem arbeitet mit Licht im
Infrarotbereich und baut auf dem „outside-in“ Prinzip mit passiven Targets auf. Da der Ver-
suchsraum isoliert von äußeren Lichtverhältnissen betrieben werden kann und die Größe des
zu trackenden Volumens begrenzt ist, ist diese Trackingtechnologie eine der besten Varianten
um ein Objekt zu erfassen. Das Ziel des 3D Pointing Toolkits besteht darin, diese erfassten
Daten in eine virtuelle Umgebung zu übertragen, um dann im virtuellen dreidimensionalen
Raum Schnittberechnungen für unterschiedliche Anwendungsfälle durchführen zu können.
Das Toolkit ist so konzipiert, dass Gegenstände aus der realen Umgebung leicht in die
virtuelle Umgebung integriert und während der Laufzeit daran Anpassungen vorgenommen
werden können. Der User bewegt sich dann in einer virtuellen Umgebung, kann auf Objekte
zeigen und weitere Tasks, wie Objekte auswählen oder manipulieren, durchführen. Es ist
außerdem so entwickelt, dass zeitlich und räumlich präzise erfasste Events per definierter
Netzwerk-API über das UDP-Protokoll verbreitet werden, damit andere Anwendungen auf
die Daten zugreifen und sie verarbeiten können. Damit ist die Verwendung des Toolkits sehr
vielseitig und es kann auf unterschiedlichste Weisen verwendet werden.

Anwendungsbeispiel Ein simples Anwendungsbeispiel kann so aussehen, dass eine Lampe
im Toolkit modelliert wird, damit der Anwender dann per Pointing-Gesten auf das Objekt
zeigen und es damit auswählen kann. Ein weiteres Programm, das auf die Netzwerknach-
richten des Toolkits hört, kann die Lampe dann z.B. direkt ansteuern und die Helligkeit
dieser Lampe regulieren.

Die Einsatzmöglichkeiten des Toolkits sind durch die präzise und schnelle Arbeitsweise
sehr vielseitig. Es bietet einen globalen Schnittpunkt und einen zu einem Objekt relativen
Schnittpunkt, wodurch auch komplexere Interaktionen ermöglicht werden. Im Folgenden
werden einige Anwendungsbeispiele für das vorgestellt 3D Pointing Toolkit präsentiert.

3.1. Use Cases

3.1.1. Steuerung von Haushaltsgeräten

Der User kann direkt auf Objekte, wie z.B. eine Heizung oder die Raumfenster zeigen und
auf eine beliebige Art und Weise seine Auswahl bestätigen. Solange der User auf das Objekt
zeigt, wird es z. B. durch einen in den Raum integrierten Beamer angestrahlt oder es wird

29

3. Konzept und Use Cases

System

auf Objekt zeigen
*

*

«extends»

«include»

Objekt anleuchten
(visuell)

«include»

Vibration
(haptisch)

«include»

Auswahl erkennen

extension points
positiv: Auswahl erkannt

negativ: Auswahl nicht erkannt

Eingabe verarbeiten

condition: {erkannt}
extension point: positiv

«extends»

Eingabe verwerfen

condition: {nicht erkannt}
extension point: negativ

«include»

negatives Feedback

«include»

positives Feedback

Abbildung 3.1.: Use Case: Steuerung von Haushaltsgeräten mit Hilfe des 3D Pointing Tool-
kits

ein haptisches oder akustisches Feedback gegeben. Der User hat dann die Möglichkeit durch
eine Geste oder eine Spracheingabe das angezeigte Objekt auszuwählen. Wenn das Objekt
erfolgreich ausgewählt wurde, kann der User durch Gesten- oder Spracheingaben Befehle
an das System übermitteln, die dann verarbeitet werden. So kann z. B. die Leistung einer
Heizung durch die Befehle „heißer“ oder „kälter“ angepasst werden, oder die Fenster durch
die Befehle „auf“ oder „zu“ geöffnet oder geschlossen werden. Die Heizung liese sich auch
durch eine nach oben oder nach unten hin gehende Bewegung der Hand heißer oder kälter
machen.

3.1.2. TV-/PC-Steuerung

Ein anderer Use Case für das Toolkit in Verbindung mit anderen Anwendungen, könnte
die Steuerung von modernen elektronischen Geräten sein. Der User kann z. B. auf einen
Fernseher zeigen und durch eine zusätzliche Geste oder Spracheingabe den Fernseher aus-
wählen. Solange der User nur auf den Fernseher zeigt, kann er durch einen Beamer farblich
umrandet werden und wenn der User seine Auswahl bestätigt, kann sich die Umrandungs-
farbe verändern um zu signalisieren, dass die Auswahl erfolgreich war. Im gleichen Zug

30

3.1. Use Cases

System

auf TV/PC zeigen

*

*

«extends»

«include»

Objekt anleuchten
(visuell)

«include»

Vibration
(haptisch)

«include»

Auswahl erkennen

extension points
positiv: Auswahl erkannt

negativ: Auswahl nicht erkannt

Eingabe verwerfen

condition: {nicht erkannt}
extension point: negativ

«extends»

Menu auf TV/PC
anzeigen

extension points

klick auf Button: Menüpunkt gewählt
klick nicht auf Button & hold:

Starte Swipe-Geste

condition: {erkannt}
extension point: positiv

«include»
positives Feedback

«include»

negatives Feedback

«extends»

Swipe Geste verarbeiten
und z.B. Sender wechseln

condition: {kein Button}
extension point: klick nicht auf Button & hold«extends»

Auswahl ausführen

condition: {Button}
extension point: klick auf Button

*

*

Abbildung 3.2.: Use Case: TV-/PC-Steuerung mit Hilfe des 3D Pointing Toolkits

wird im Fernseher ein Menü angezeigt. Da das Toolkit neben den Weltkoordinaten des
Schnittpunkts, auch die relativen Koordinaten in Bezug auf das ausgewählte Gerät ausgeben
kann, können die Schnittpunktkoordinaten auf 2D gemapped werden, damit ein kleiner
Zeiger auf dem Fernseher angezeigt wird. Das heißt, dass der User genau weiß auf welche
Stelle des Fernsehers er genau zeigt und er kann mit diesen Informationen auf ein zuvor
eingeblendetes Menü zeigen und damit durch zusätzliche Eingaben mit dem Fernseher inter-
agieren. Dies ist bei den modernen „Smart-TVs“, im Vergleich zu den derzeit verwendeten
TV-Fernbedienungen, eine sehr gute und vielseitige Eingabealternative .

Die gezeigten Use Cases, für die das vorgestellte 3D Pointing Toolkit verwendet werden kann,
sind nur eine kleine Auswahl. Durch den implementierten Editor ist es nämlich möglich,
beliebige virtuelle Umgebungen zu schaffen und immer an die Gegebenheiten der realen
Umwelt anzupassen.

31

3. Konzept und Use Cases

3.2. Bedeutung für Nutzerstudien

Die Mensch-Computer-Interaktion wird früher oder später auch in den modernen Haushalt
integriert werden. Es gibt jetzt schon Möglichkeiten mit seinem Smartphone von Unterwegs
seine Heizung oder Klimaanlage zu steuern, um sich beim Eintritt in sein „Home-Sweet-
Home“ komplett wohlzufühlen. Kühlschränke können ihren Inhalt automatisch überwachen,
um selbstständig eine Einkaufsliste für den Besitzer zu erstellen, damit dieser beim Einkauf
auch nichts Wichtiges vergisst. Die heutigen Fernseher bieten mittlerweile auch ein eigenes
Interface, das man dazu verwenden kann sich online Filme anzuschauen, oder sogar im
Internet zu surfen. Es wird derzeit jedoch keine uneingeschränkte Interaktion mit solchen
Haushaltsgeräten ermöglicht und es ist noch nicht absehbar, wann es erschwingliche Systeme
geben wird, die eine intuitive Interaktion ermöglichen. An diesem Punkt greift das entwi-
ckelte 3D Pointing Toolkit, das zwar auf einer sehr kostspieligen Hardware aufbaut, aber
es ermöglicht Erkenntnisse über die zukünftigen Interaktionsmöglichkeiten in modernen
Haushalten zu gewinnen. Es können Daten für verschiedenste Forschungsgebiete gesammelt
und ausgewertet werden um dementsprechend angepasste Systeme zu entwickeln.

Das Toolkit basiert außerdem darauf eine Auswahl durch Pointing-Gesten zu treffen, was
eine intuitive und einfache Möglichkeit für den Menschen darstellt einen Gegenstand zu
erfassen. Ein Mensch lernt nämlich schon als Kleinkind sich durch „Zeigen“ auf gewisse
Sachen mit seiner Umwelt zu verständigen. Dies ist ein Teil der sogenannten Deixis, einem
Fachbegriff aus der Sprachwissenschaft. Gesten, die dazu verwendet werden eine Nachricht
zu übermitteln, werden von Kleinkindern im vorsprachlichem Alter von Natur aus erlernt
[Gro11]. Hierzu gehört auch die Zeigegeste, die nach Bates et al. [BE79] im Speziellen zu den
deiktischen Gesten zählt und fast immer einen Bezug auf ein spezielles Objekt hat. Es wurde
durch Pizzuto und Copabianco in einer Feldstudie festgestellt, dass Kleinkinder in ihrer
Kommunikation sehr häufig deiktische Gesten, insbesondere die Zeigegeste, verwenden um
sich ihrer Umwelt mitzuteilen [PE05]. Diese Art sich zu Verständigen behält jeder Mensch
auch im Alter bei und er kann damit besser verdeutlichen, was er ausdrücken will und in
vielen Fällen das Gesagte auch einfach unterstreichen. Hier zeigt sich, dass es sinnvoll ist
Zeigegesten zur Interaktion mit „Smart-Homes“ zu verwenden und dass es einem User
leicht fallen könnte, diese Interaktionstechnik anzuwenden. Damit ist es sehr interessant in
Studien noch folgende offene Fragen zu untersuchen und zu klären:

Genauigkeit Eine Zeigegeste setzt sich meist aus den Wahrnehmungen, die man mit seinen
Augen macht und der entsprechend angepassten Koordination seiner Hand zusammen.
Hierbei ist die Hand-Auge-Koordination von Mensch zu Mensch etwas unterschiedlich
und die Zeigerichtung wird von jedem etwas anders wahrgenommen. Dementspre-
chend muss geprüft werden bei welcher Haltung der Hand welche Abweichung statt-
findet. Es muss außerdem geprüft werden, wie groß die Objekte im Toolkit modelliert
werden müssen, damit ein User sie leicht und zielsicher treffen kann.

Feedback Ein weiterer interessanter Punkt, der untersucht werden muss, ist das Feedback,
das dem User gegeben wird. Ein Mensch benötigt nämlich für seine Aktionen eine
entsprechende Reaktion um sagen zu können, ob das was er gemacht hat richtig

32

3.2. Bedeutung für Nutzerstudien

war. Hierbei können alle vom Menschen vorhandenen Wahrnehmungskanäle genutzt
werden. Es gibt die Möglichkeiten ein Feedback über die visuelle, auditive, olfaktorische
oder gustatorische Wahrnehmung oder auch über die Sensibilität, also dem Tastsinn
zu geben, bei denen jeder einzelne Feedback-Typ seine Vor- und Nachteile hat.

Benutzbarkeit Das ganze System ist auch mit mehreren Targets zu betreiben. In diesem
Fall ist es interessant zu wissen, ob ein User die gewünschten Interaktionen mit einer
Hand ausführen kann, oder ob es sinnvoll ist beide Arme und vielleicht sogar die
Beine zu tracken. Dies gibt dem Anwender nämlich eine größere Bewegungsfreiheit.
Dadurch, dass mehr als nur eine Hand getracked wird, kann es jedoch sein, dass die
Interaktion zu komplex wird oder es für das System zu schwierig wird die Gesten
richtig zu interpretieren.

33

4. 3D Pointing Toolkit

Im nun folgenden Hauptteil werden die Grundbausteine des entwickelten Toolkits vorgestellt.
Es werden die Zusammenhänge zwischen den einzelnen Teilen erläutert und in Betracht
auf Skalierbarkeit, Benutzerfreundlichkeit, Performance und Robustheit untersucht. Als
Grundlage für das Toolkit wird das optische Trackingsystem „OptiTrack“verwendet, das
mit der 3D Graphics Engine Ogre3D über UDP Pakete kommuniziert. Am Anfang wird das
verwendete Trackingsystem und das System-Setup beschrieben, wonach die Kommunikation
zwischen den zwei System beleuchtet wird. Das eigentliche Verarbeiten der generierten Daten,
nämlich das Echtzeitrendering, wird im darauf folgenden Teil im Detail beschrieben. Beim
Echtzeitrendering werden dann Fragen geklärt, die die Repräsentation der dreidimensionalen
Szene, die interne Objektrepräsentation, die Schnittberechnung und die definierte Netzwerk-
API betreffen. Für die Bedienung des 3D Pointing Toolkits wurde ein GUI verwendet, das
Möglichkeiten bietet den integrierten Editor zu bedienen und im „Live-Modus“ z. B. die
Kameraperspektive sinnvoll zu steuern.

4.1. System-Setup

Das verwendete Trackingsystem basiert auf dem optischen Tracking. Hierfür wird Infra-
rotlicht von neun Motion-Capture Kameras 2.3, die rechteckig an der Decke angebracht
sind, ausgestrahlt und das von den Targets reflektierte Restlicht erfasst. Die Targets sind
mindestens drei kleine sphärische Kugeln, die an einem Marker in einer genau definierten
Ausrichtung angebracht sind 2.2. Mit dem System ist eine Frame-Rate von 100 FPS mög-
lich und es wird ein Trackingvolumen von mehr als 12m2 erfasst. Der Marker selbst wird
dann wiederum an der Hand des Users angebracht. Das Trackingsystem verarbeitet die
erfassten Trackingdaten und übergibt die X-,Y- und Z-Position und die Orientierung, die
eine Winkelabweichung der einzelnen Achsen darstellt, an die Kommunikations-Einheit. Die
verarbeiteten Daten bekommt die Hauptanwendung, die sie weiterverarbeitet und auf dem
Ausgabemonitor darstellt.

4.2. Kommunikation

Die zwei Kernelemente, auf denen die Kommunikation basiert, ist das vom Hersteller
des Trackingsystems gelieferte NatNet SDK [NAT13] und das an der Universität Stuttgart
entwickelte EI Toolkit [Hol05]. Das NatNet SDK ist eine Client/Server-Architektur, die es

35

4. 3D Pointing Toolkit

Anwender

Trackingystem Server NatNet2UDP 3D Pointing Toolkit

Andere Anwendung1

Andere Anwendung2

...

Abbildung 4.1.: Kommunikationstruktur und Dataflow des gesamten Systems. Die Daten
werden vom Anwender am Trackingserver eingegeben, wonach diese vom
NatNet2UDP Tool zu Nachrichten im UDP Format umgewandelt werden.
Die umgewandelten Daten werden dann schlussendlich vom 3D Pointing
Toolkit verarbeitet und anderen Anwendungen zur Verfügung gestellt.

ermöglicht, die vom Trackingsystem generierten Daten, auf unterschiedliche Weisen den ent-
sprechenden Applikationen mitzuteilen, wobei das Trackingsystem gleichzeitig den Server
bildet. Um die generierten Daten anderen Anwendungen zur Verfügung zu stellen, wird
in diesem Fall das UDP-Protokoll verwendet, da die verwendete Netzwerkinfrastruktur
auf Ethernet basiert und prinzipiell keine Pakete verloren gehen und die Paketreihenfolge
eingehalten wird. Um noch eine höhere Abstraktion in der Kommunikation zu erreichen,
wird das sogenannte EI Toolkit verwendet. Das EI Toolkit ist dafür zuständig unterschied-
lichste Eingangssignale und Protokolle zu verarbeiten und ein einheitliches Protokoll für die
Kommunikation mit einer anderen Applikation zu bieten.

4.2.1. NatNet SDK/NatNet2UDP

Wie in Abbilung 4.2 zu sehen ist, bekommt das NatNet SDK die Daten vom Tracking
Tools Server über das Netzwerk per Multicast bzw. Unicast zugesendet. Multicast ist die
leichtere Variante, da keine spezifische IP oder kein definierter Port benötigt werden. Die
empfangenen Daten werden dann über UDP weiter verschickt.

36

4.3. Echtzeitrendering

4.2.2. EI-Toolkit

Abbildung 4.3 zeigt die Architektur des EI Toolkits. Externe wie auch interne Ressourcen
werden durch sogenannte „Stubs“ repräsentiert, die Daten von den einzelnen Ressourcen
erhalten aber auch an sie verschicken können. Der große Vorteil des EI-Toolkits ist der, dass
die Anwendung sich nicht mit der Steuerung und Organisation der einzelnen Ressourcen
beschäftigen muss und es sehr einfach ist Ressourcen hinzuzufügen oder zu entfernen. Für
das vorgestellte 3D Pointing Toolkit bedeutet dies, dass die eingehenden Signale des NatNet
SDKs vom EI Toolkit gemanagt werden und die relevanten Daten mit einem allgemeinen
Protokoll der Anwendung zur Verfügung gestellt werden.

4.3. Echtzeitrendering

Eine der größeren Anforderung an das entwickelte Toolkit besteht darin, die vom Tracking-
system generierten Daten, die mit 100Hz erstellt werden, in Echtzeit zu verarbeiten und eine
ähnlich gute Wiederholungsrate bei der Verarbeitung und Ausgabe zu bieten. Hierbei bietet

Abbildung 4.2.: Dataflow des NatNet SDKs. Der Tracking Tool Sever sendet per Netzwerk
Daten an das SDK, wonach das SDK die Daten über das UDP Protokoll
weiterschickt. Quelle: [NAT13]

37

4. 3D Pointing Toolkit

Abbildung 4.3.: Funktionsweise des EI Toolkits. Jede angeschlossene Komponente wird
durch einen Stub gemanagt. Für die interne Kommunikation wird ein
einheitliches Protokoll verwendet, das unabhängig vom angeschlossenen
Gerät immer gleich ist. Quelle: [Hol05]

sich der Einsatz der hardwarenahen Programmiersprache C++ und den zwei bekannten
Programmierschnittstellen OpenGL und DirectX an. Sie ermöglichen es nämlich komplexe
3D Szenen schnell darzustellen. Diese zwei 3D-APIs sind sehr vielseitig und können an viele
Anforderungen angepasst werden, sie sind jedoch in ihrer Bedienung bei grundlegenden
Aufgaben sehr aufwendig. Hierfür gibt es 3D Grafik Engines, die den Einsatz von vielen
Grundfunktionalitäten der 3D Computergrafik vereinfachen und dem Anwender leichter
zugänglich machen. Ein Beispiel hierfür ist die Open Source 3D Grafik Engine Ogre3D
[OGR09], die objektorientiert ist und von dem vorgestellten 3D Pointing Toolkit verwendet
wird. Ogre3D verwendet einen Szenegraphen und bietet eine mitgelieferte Library zur Verar-
beitung von Benutzereingaben. Zusätzlich können noch weitere Bibliotheken leicht integriert
werden. Durch die Verwendung der zwei erwähnten 3D-APIs und der Programmiersprache
C++ kann eine sehr hohe Performance des Tools erreicht werden, da alle Bauteile der Com-
puterhardware für die jeweils richtige Aufgabe verwendet werden. Am Anfang wird auf die
Fragestellung eingegangen, wie man ganze Szenen aus der Realwelt modellieren, im Editor
des Toolkits verändern und am Ende speichern kann. Im Anschluss werden die wichtigsten
Einzelteile des Echtzeitrendering aufgegriffen und genauer betrachtet.

4.3.1. Szenen Repräsentation

Wie in Abbildung 4.4 zu sehen ist, verwendet Ogre3D einen SceneManager, der für alle
SceneNodes verantwortlich ist. Die einzelnen SceneNodes sind für die Objekte verantwortlich,

38

4.3. Echtzeitrendering

Abbildung 4.4.: Das SceneManagement von Ogre3D. Ein SceneManager ist für die ganze
Szene zuständig. Ihm werden einzelne SzeneNodes zugewiesen, denen
MovableObjects zugewordnet werden können. Quelle: [STR]

die an sie angehängt werden. Das bedeutet, dass der SceneManager ein eigenes System
hat, in dem er die Positionen, Orientierungen und weitere Eigenschaften der einzelnen
SceneNodes verwaltet. Die SceneNodes wiederum haben ein eigenes System, in dem sie die
Informationen der an sie angehängten Objekte verwalten. Eine Szene die Ogre3D verwendet,
kann programmatisch beschrieben werden, was jedoch den Nachteil hat, dass Veränderungen,
die während der Laufzeit an der Szene vorgenommen werden, nach Beenden des Programms
nicht gespeichert werden. Hierfür verwendet das entwickelte Toolkit stattdessen eine XML-
Repräsentation der Szene, die bei jedem Start der Anwendung eingelesen und vor dem
Beenden wieder abgespeichert wird. Die einzelnen Objekte, die für die Interaktion und
somit für die Schnittberechnung verwendet werden, werden zusammen mit ihrem Namen
und ihren vier Eckpunkten in der XML-Datei abgespeichert. Für jedes Objekt wird beim
Programmstart ein neuer SceneNode erstellt, der nur für dieses Objekt verantwortlich ist.
Der Name wird jedem Objekt intern zugewiesen und alle Operationen, die für ein Objekt
durchgeführt werden, laufen auf dem zugewiesenen Namen ab. Dies trägt zur Skalierbarkeit
des Toolkits bei, da beliebig viele Objekte in die Berechnungen eingebunden werden können
und das Toolkit alles unabhängig von der Anzahl, der in der Szene existierenden Objekte
und nur anhand der Objektnamen verarbeiten kann. Im Anhang findet sich eine beispielhafte
XML-Repräsentation einer kleinen Szene A.5 auf Seite 58.

39

4. 3D Pointing Toolkit

4.3.2. Echtzeitrendering

Der Kern des 3D Pointing Toolkits ist die 3D Repräsentation der „Realwelt-Szene“ und die
Schnittberechnung zwischen Zeigestrahl des Anwenders und der sich im Raum befindenden
Objekte. Da das Toolkit so konzipiert wurde, dass es skalierbar ist muss natürlich auch der
Schnittberechnungsalgorithmus unabhängig von der Anzahl der zu testenden Objekte ablau-
fen. Dies geschieht mit Hilfe des Szenegraphen von Ogre3D, der alle vorhandenen Objekte
mit Hilfe von eindeutig zuzuordnenden String-Namen verwaltet und für unterschiedlichste
Berechnungen bereit hält. Wie schon erwähnt enthält das vorgestellte Toolkit einen Editor,
der es dem Anwender gestattet während der Laufzeit kleine Änderungen an der Szene
vorzunehmen. So können noch kleine Ungenauigkeiten korrigiert werden, ohne die ganze
Anwendungen beenden zu müssen. Um dem Anwender eine angenehme Bedienung zu
ermöglichen, wurde ein GUI implementiert, das die Verwendung des Toolkit vereinfachen
soll. In diesem Abschnitt wird im ersten Teil das GUI erläutert. Im darauf folgenden Teil wird
der Kern, nämlich der Algorithmus zur Schnittberechnung, vorgestellt und am Ende wird
die Netzwerk-API präsentiert, die von anderen Anwendungen verwendet werden kann.

Toolkit-GUI

Die implementierte grafische Benutzoberfläche soll dem Anwender erleichtern, alle wichtigen
Funktionalitäten auf einfach Art und Weise zu bedienen, um damit die Benutzerfreundlich-
keit des Toolkits zu steigern. Folgende Hauptfunktionalitäten stehen zur Verfügung:

Live-Mode Das Toolkit bietet einen „Live-Mode Button“, der dem Benutzer eine freie Sicht
auf die gerenderte Szene bietet und noch verschiedene vordefinierte Kamerapositionen
zur Auswahl stellt. Abbildung 4.5 zeigt die Anwendung im Live-Mode.

Editor-Mode Es steht außerdem ein „Editor Button“ zur Verfügung. Hier hat der Benutzer
die Möglichkeit, die zwei wichtigen Funktionalitäten „Add Rectangle“ und „Move
Object“ auszuwählen. Wie in Abbildung 4.6 und Abbildung 4.7 zu sehen ist, erscheint
nach der Auswahl einer der zwei Funktionen jeweils ein neues Fenster. Bei „Add
Rectangle“ werden vom Benutzer alle vier Eckpunkte des zu zeichnenden Rechtecks
erfragt. „Move Object“ bietet dem User ein Objekt aus der Szene auszuwählen und die
Position bzw. die Orientierung des Objekts durch Rotation zu verändern.

Schnittberechnung

Ogre3D bietet eine integrierte Möglichkeit sogenannte „Rays“ mit einem definierten Start-
punkt und einer Richtung zu generieren, um dann festzustellen, ob Kollisionen mit Objekten
in der Szene auftreten. Wenn Kollisionen zwischen Strahl und Objekt auftreten, werden alle
Kollisionen mit der entsprechenden Entfernung vom Startpunkt bis zum Kollisionspunkt in
einem Buffer gespeichert. Problematiken wie die Frage, welches Objekt in einer Szene von
welchem anderen Objekt verdeckt wird oder auch andersherum, sowie die Frage welche
Objekte nicht in die Schnittberechnung eingehen sollen, müssen vom Algorithmus zur

40

4.3. Echtzeitrendering

Schnittberechnung beachtet werden. Da Ogre3D alle Objekte in einem Szenegraphen mit
einem Rootknoten verwaltet, geht der in Abbildung A.6 auf Seite 59 gezeigte Algorithmus
zur Ermittlung des relevanten Schnittpunkts folgendermaßen vor:

1. Der Buffer mit den Ergebnissen für Kollisionen enthält alle geschnittenen Objekte sor-
tiert in der Reihenfolge, in der die Objekte geschnitten wurden. Da für Pointing-Gesten
meist nur das vom User aus erste Objekt relevant ist und alle anderen davon verdeckt
werden, wird im gezeigten Algorithmus nur auf das erste Objekt geachtet. Im ersten
Schritt fragt der Algorithmus beim Wurzelknoten nach seinem ersten Kindknoten.

2. Für alle Kindknoten vergleicht der Algorithmus, ob der Name des zuerst geschnittenen
Objekts mit dem Namen des Objekts, der am Kindknoten angehängt ist, übereinstimmt.

Abbildung 4.5.: Das System im Live-Mode: Uneingeschränkte Sicht auf die 3D Szene, die
Schnittberechnungen und Ereignisse. Es stehen zusätzlich ein oder zwei
vordefinierte Viewpoints zur Auswahl, um dem Anwender die Interaktion
zu erleichtern.

41

4. 3D Pointing Toolkit

Abbildung 4.6.: Das System im Editor-Mode: Der Anwender hat die drei Auswahlmöglich-
keiten „Add Rectangle“, „Move Object“ und „Console“. Hier sieht man
das eingeblendete Fenster, mit dem man zur Szene ein neues Rechteck
hinzufügen kann. Nachdem die vier Randpunkte und ein Name eingegeben
sind, kann die Auswahl mit „Add Rectangle“ bestätigt werden, wonach
gleich das neue Objekt in der Szene erscheint.

3. Wenn das der Fall ist hat der Algorithmus den richtigen Kindknoten, der für das
relevante Objekt zuständig ist, gefunden und es können alle nötigen Operationen auf
dem Objekt bzw. auf seinem zuständigen Knoten durchgeführt werden.

4. Im letzten Schritt ermittelt der Algorithmus den Schnittpunkt in Bezug auf das Welt-
koordinatensystem durch einsetzen der von Ogre3D mitgelieferten Distanz in die
Strahlgleichung~s = ~pos0 + t ∗~v, wobei t = Distanz.

42

4.3. Echtzeitrendering

Netzwerk-API

Das 3D Pointing Toolkit verwendet UDP-Packete um die gewonnen Informationen an
Anwendungen zu übermitteln, die sie weiterverarbeiten. Die API sieht folgendermaßen
aus:

OT : typ : x : y : z : object

Die Netzwerk-API soll es einer anderen Anwendung ermöglichen, die Daten sinnvoll für ihre
Zwecke verwenden zu können. Sinnvoll bedeutet in dem Fall, dass die andere Anwendung
erkennt, dass es sich um Pakete vom 3D Pointing Toolkit handelt. Hierfür werden an den
Anfang der übermittelten Pakete die Buchstaben OT gestellt, die für „OptiTrack“stehen.
Außerdem muss übermittelt werden, wie die X-,Y- und Z-Koordinaten des berechneten

Abbildung 4.7.: Das System im Editor-Mode: Hier wurde die Auswahl „Move Objekt“ ge-
troffen. Der Anwender kann einen Objektnamen eingeben, mit den vier
Pfeilen bewegen und im oder gegen den Uhrzeigersinn drehen.

43

4. 3D Pointing Toolkit

Schnittpunkts lauten, was mit x : y : z erledigt wird. Am Ende des Pakets steht der Name
des Objekts, welches gerade geschnitten wurde. Außerdem muss unterschieden werden um
welche Sorte von Schnitt es sich handelt. Dies passiert an der Stelle typ im Paket. Es wird
zwischen drei verschiedenen Schnittpunkttypen unterschieden, da es interessant und für den
Einsatzbereich des Toolkits auch wichtig zu wissen ist, ob in dem Moment nur ein Übergang
von einem auf ein anderes Objekt stattgefunden hat, oder ob sich nur der Punkt, auf den der
Anwender in ein und dem selben Objekt zeigt, verändert hat. Der erste Fall wird benötigt,
um unterschiedliche Feedbacktypen beim Ändern des angezeigten Objekts zu testen. Dafür
muss die Anwendung, die auf das Toolkit hört, nämlich wissen, ob es eine Veränderung in
Bezug auf das derzeit angezeigte Objekt gab. Wenn sich das Objekt verändert, muss z. B. der
Lichtspot vom alten auf das neue Objekt gerichtet werden. Hierfür werden die zwei Signale
„in“ und „out“ verwendet. Hierbei signalisiert in, dass ein neues Objekt angezeigt wird
und out signalisiert, dass ein Objekt nicht mehr angezeigt wird. Der zweite Fall wird mit
dem Signal „on“ belegt und bedeutet, dass der Anwender noch auf das selbe Objekt zeigt.
Es ist noch hinzuzufügen, dass das Toolkit in- und out-Signale nur bei einer tatsächlichen
Veränderung verschickt und das on-Signal kontinuierlich mit 10Hz übermittelt wird.

4.4. Evaluierung des Systems

Das vorgestellte Toolkit ist darauf ausgelegt 3D Positions- und Orientierungsdaten eines
optischen Trackingsystems in Echtzeit auszuwerten und anderen Anwendungen zur Verfü-
gung zu stellen. Hierbei ist besonders die Bildwiederholungsrate wichtig, da dadurch eine
Aussage über die Verarbeitungsgeschwindigkeit des Gesamtsystems getroffen werden kann.
Das Echtzeitrendering beinhaltet nämlich die Schnittberechnungen im dreidimensionalen
Raum und es verwaltet auch die gesamte virtuelle Szene. Damit ist das Rendering der Fla-
schenhals des gesamten 3D Pointing Toolkits. Das System wurde so implementiert, dass die
Framerate von Anfang an auf 100FPS begrenzt ist, da das Trackingsystem Daten mit 100Hz
verschickt. Diese maximale Framerate wird mit zunehmender Komplexität der virtuellen
Szene niedriger.

4.4.1. Testhardware und Ergebnis

Das entwickelte Toolkit wurde auf einem Testsystem mit einem Intel CPU mit vier Kernen
und jeweils einer Taktrate von 2.83GHz und einer NVIDIA Quadro NVS290 Grafikkarte
evaluiert. Dieses System ermöglicht bei einer komplexen Szene mit über 250 eigenständigen
Objekten und über 1,5 Mio gerenderten Dreiecken eine maximal Framerate von 87FPS
Abbildung 4.8. Dieser Maximalwert kommt dann zustande, wenn kein einziges Dreieck
im sichtbaren Bereich liegt, im Hintergrund aber trotzdem alle einzelnen Objekte vom
SceneManager gemanagt werden müssen. Die Abbildung zeigt, dass die Framerate mit
zunehmender Anzahl an gerenderten Dreiecken abnimmt und ihr Minimum bei 23FPS liegt.
Dies ist bei einer solch komplexen Szene noch eine hinnehmbare Bildwiederholungsrate.
Als Vergleichswert für ein angenehmes und ruckelfreies Bild können 25FPS angenommen

44

4.4. Evaluierung des Systems

Abbildung 4.8.: In dieser Abbildung ist zu sehen wie ein Testsystem, auf dem das 3D
Pointing Toolkit ausgeführt wird, mit einer komplexen virtuellen Szene
zurechtkommt. Hierbei wurde eine Szene mit mehr als 250 eigenständi-
gen komplexen Objekten verwendet, die zusammen über 1,5 Mio Dreiecke
beinhalten. Das Diagramm lässt erkennen, dass ein durchschnittliches Test-
system auch bei einer sehr komplexen Szene ca. 25FPS liefern kann, was
einer akzeptablen Bildwiederholungsrate entspricht.

werden, wie sie bei jedem normalen Film verwendet werden. Damit ist zu sehen, dass
bei einem durchschnittlichen Computersystem sehr komplexe Szenen mit ordentlichen
Frameraten verarbeitet werden können.

4.4.2. Interaktion mit dem Toolkit

Um Schnittberechnungen mit Hilfe der Zeigegesten durchführen zu können, werden die
Gegenstände aus der realen Umgebung in die virtuelle Szene des Toolkits integriert. Hierbei
hat sich bei der Entwicklung des Toolkits die Frage gestellt, ob die virtuellen Gegenstände
die identischen Ausmaße haben sollen, wie die Objekte aus dem realen Testraum. Anfangs
wurden die Größen der Objekte eins zu eins übernommen. Nach den ersten Testläufen wurde
jedoch festgestellt, dass das optische Trackingsystem zwar zentimetergenaue Ergebnisse
liefert, es dem Anwender aber trotzdem schwer fällt ein bestimmtes Objekt anzuvisieren.
Es wurden drei Faktoren gefunden, die einen Einfluss auf die Interaktion mit dem Toolkit
haben:

Auge-Hand-Koordination Das 3D Pointing Toolkit in Verbindung mit dem optischen
Trackingsystem „OptiTrack“ wurde von verschiedenen Personen getestet und bewertet.
Bei diesen Tests wurde die Feststellung gemacht, dass jeder Mensch eine individuelle

45

4. 3D Pointing Toolkit

Empfindung in Bezug auf die Zeigerichtung seiner Hand hat. Hierbei hat sich gezeigt,
dass die Anwender besonders bei kleinen Gegenständen Probleme hatten einzuschät-
zen, ob sie nun auf das mit den Augen anvisierte Objekt zeigen oder nicht. Es wurde
darauf verzichtet, dem Anwender ein optisches Feedback zu geben, wohin er genau
zeigt. Dieser Umstand war sehr förderlich dabei festzustellen, wie die individuelle
Wahrnehmung der Zeigerichtung von der Realität abweicht, da der Anwender keine
Möglichkeit hatte seine Bewegungen durch optische Wahrnehmungen zu korrigieren.
Um diese Abweichungen, die vom Anwender abhängig sind, zu korrigieren, bieten
sich folgende zwei Möglichkeiten an:

• 1. In einer aufwendigen Kalibrierungsphase, können die individuellen Abweichun-
gen der Auge-Hand-Koordination in Abhängigkeit von der Stellung des Kopfes
und der Hand korrigiert werden. Hierbei muss jedoch jeweils die Hand und der
Kopf vom Trackingsystem erfasst werden, um feststellen zu können bei welcher
Auge-Hand-Konstellation welche Abweichungen auftreten.

• 2. Die wesentlich einfachere Möglichkeit die auftretenden Fehler korrigieren zu
können, ist es dem Benutzer ein optisches Feedback in Form eines Punktes zu
geben. Bei dieser Variante kann der Anwender mögliche Abweichungen durch
seine Wahrnehmungen ausgleichen.

Schwankungen im Randbereich Ein weiterer Faktor, der die Interaktion mit der virtuellen
Szene beeinflusst, ist die Genauigkeit und Empfindlichkeit des optischen Trackingsys-
tems. Es werden nämlich schon sehr feine Abweichungen erfasst. Das kann besonders
im Randbereich von Objekten dazu führen, dass ein Anwender sie eigentlich anvisiert,
aber schon eine kleine unbeabsichtigte Bewegung diesen Umstand verändern kann.
Dieses Phänomen wurde von den meisten Anwendern als unerwünscht empfunden
und kann durch die Vergrößerung der virtuellen Objekte behoben werden.

Entfernung und Winkel zum Objekt Eine weitere Rolle spielt die Entfernung und Ausrich-
tung zu dem Objekt, das anvisiert werden soll. Abhängig davon wie weit der Anwender
vom ausgewählten Gegenstand entfernt ist und in welchem Winkel er zu dem Objekt
steht, verändern sich die Parameter der Zeigegeste. Wenn ein Objekt aus einem sehr
flachen Winkel anvisiert wird, so sind schon kleinste Abweichungen in der Zeige-
richtung entscheidend darüber, ob ein Objekt ausgewählt wird oder nicht. Diesen
Sachverhalt veranschaulicht Abbildung 4.9. Wenn der Anwender einen Gegenstand
jedoch direkt von vorne anzielt, so hat er mehr Spielraum und kleinere Abweichungen
sind nicht so entscheidend. Ähnlich verhält es sich mit der Entfernung zu dem Objekt,
das der Anwender auswählen will. So ist es aus der Nähe einfacher genaue Zeigegesten
durchzuführen, da Veränderungen in der Zeigerichtung eine kleine Auswirkung haben.
Wenn der Anwender jedoch weiter vom Objekt entfernt ist, so können schon kleine
Änderungen des Zeigevektors darüber entscheiden, ob ein Objekt angezeigt wird oder
nicht. Abbildung 4.9 soll dies verdeutlichen. Dieses Problem kann wiederum durch
eine Vergrößerung der virtuellen Objekte beseitigt werden, da damit Auswirkungen
der Entfernung und des Winkels reduziert werden.

46

4.4. Evaluierung des Systems

Abbildung 4.9.: a) Die Entfernung des Anwenders zum Objekt beeinflusst die Winkelabwei-
chung, die möglich ist, sodass der Anwender immer noch auf ein anvisiertes
Ziel zeigt. Je näher er am Objekt ist, desto größere Winkelabweichungen
sind möglich. b) Der Winkel des Anwenders zum Objekt beeinflusst die Ab-
weichung der Zeigerichtung, die möglich ist, sodass der Anwender immer
noch auf das anvisierte Ziel zeigt. Je direkter er vor dem Objekt steht, desto
größere Abweichungen der Zeigerichtung sind möglich.

Fazit

Die genannten Faktoren, die sich auf die Interaktion mit dem 3D Pointing Toolkit auswirken,
können durch die zwei genannten Lösungsansätze zwar nicht beseitigt aber abgeschwächt
werden. In dem Fall des vorgestellten Pointing Toolkits wurde eine Vergrößerung der
virtuellen Objekte um einen festen Wert von 15cm an jeder Seite gewählt. Das bedeutet
für das größte Objekt eine prozentuale Steigerung der Seitenlängen um 10% und beim
kleinsten Objekt eine Steigerung um 100%. Es wurde eine feste Größe von 15cm gewählt, da
es einem Anwender immer leichter fällt ein großes Objekt auszuwählen und anzuvisieren.
Problematisch hingegen sind die kleinen Objekte, da die oben genannten Faktoren besonders
bei kleinen Objekten eine große Rolle spielen. Somit ist es sinnvoll dem Anwender den
Umgang mit kleinen Gegenständen zu erleichtern, wohingegen bei den größeren nur eine
kleine Anpassung vorgenommen werden muss. Um dem Benutzer die Interaktion mit dem
Toolkit noch weiter zu erleichtern, kann zusätzlich der zweite Lösungsansatz eingesetzt
werden, da er ihm eine Hilfestellung bei der Auge-Hand-Koordination geben kann. Mit
dem gegebenen Feedback können mögliche Fehleinschätzungen korrigiert und an die realen
Gegebenheiten angepasst werden.

47

5. Zusammenfassung und Ausblick

Das Resümee aus der vorgestellten Arbeit, ist die Erkenntnis, dass einerseits Trackingsys-
teme nicht aus unserer Umwelt und auch Forschung wegzudenken sind und andererseits
Anwendungen, die die von Trackingsystemen gewonnen Daten auswerten, immer wichtiger
werden. Denn schon bald werden die kommenden Trackingtechnologien Einzug in unser
alltägliches Leben halten. Die anfangs vorgestellten Trackingtechnologien, die sich extrem
in ihren Funktionsweisen unterscheiden, haben alle ihre Vor- und Nachteile, die sie nur
für spezielle Einsatzgebiete verwendbar machen. Hier kann die Forschung jedoch ansetzen
und hybride Technologien entwickeln, die die Nachteile einzelner Systeme reduzieren und
stattdessen die jeweiligen Vorteile mehr zur Geltung bringen. Es gibt schon einige Tracking-
systeme, die mehrere Technologien verbinden und damit die Stärken der einzelnen Systeme
hervorheben. Damit werden neue Möglichkeiten im Bereich des Tracking geschaffen, die
in machen Einsatzgebieten dringend benötigt werden. Beispiele für solche Hybride sind
Trackingsysteme, die eine Technologie mit dem inertialen Tracking kombinieren. Dies bietet
sich an, da inertiales Tracking eine hohe Genauigkeit und Wiederholungsrate liefert, es jedoch
ab und zu eine Rekalibrierung benötigt, damit sich keine großen Fehler zusammenaddieren
[BWA01]. In diesem Gebiet kann jedoch noch viel Forschung betrieben werden, um Systeme
zu schaffen, die klein und handlich sind und die gleichzeitig hohe Wiederholungsraten und
Genauigkeiten bieten.

In dieser Arbeit wurden auch Interaktionsmöglichkeiten vorgestellt, die es mit Hilfe von
einem optischem Trackingsystem und Motion Capturing ermöglichen mit einer virtuel-
len Umgebung zu interagieren. Wie in der Arbeit von Shizuki et al. [SHTT06] vorgestellt,
gibt es schon Ansätze, die versuchen einem Anwender eine möglichst intuitive und trotz-
dem mächtige Interaktionstechnik an die Hand zu geben, um ein Computersystem über
Laserpointer-Eingaben zu steuern. Bei Eingaben über Laserpointer oder das Hand-Raycasting,
wie sie auch bei dem vorgestellten Toolkit verwendet wurden, entstehen jedoch Unzuläng-
lichkeiten, die durch die Natur der Eingabetechnologien hervorgerufen werden. Hierbei
handelt es sich einerseits um das natürliche „Zittern“ der menschlichen Hand, was sich
durch spezielle Algorithmen teilweise beheben lässt. Das „Zittern“ ist bei Aufgaben, die eine
hohe Präzision benötigen jedoch trotzdem noch zu spüren. Andererseits geht es um den
Mangel an Eingabemöglichkeiten, wie z.B. Buttons, die die Interaktion mit komplexen Menüs
sehr aufwendig machen. So sind die beiden Interaktionsmöglichkeiten zwar perfekt dafür
geeignet mit sehr großen Flächen zu interagieren, wenn man jedoch im Zentimeterbereich
arbeiten muss, entstehen Fehler, die manchmal nicht hinnehmbar sind. Wenn zusätzlich
noch komplexe Anwendungsmenüs hinzukommen, dann muss sich der Entwickler sehr
viele Gedanken darüber machen, wie er Eingabemöglichkeiten, wie z.B. Buttons oder Gesten,
dazu verwendet dem Anwender eine angenehme Interaktion zu ermöglichen. Er muss dann

49

5. Zusammenfassung und Ausblick

aber auch darauf achten den Anwender nicht durch zu aufwendige Gesten zu überfordern.
Diese Interaktiontechniken müssen von Entwicklern noch weiter verbessert und so gestaltet
werden, dass sich eine breite Masse der Bevölkerung damit zurechtfinden kann. Denn durch
die vorgestellte Idee der „Smart Homes“ werden sich in der Zukunft immer mehr Menschen
mit diesen Interaktionstechnologien beschäftigen. Wenn noch zusätzlich die Trackingsysteme
immer kleiner und erschwinglicher werden, wird jeder durchschnittliche Haushalt die nötige
Hardware besitzen, solche Interaktionen auch tatsächlich nutzen zu können. Ein perfektes
Beispiel hierfür ist der erst kürzlich vorgestellte Kinect 2 Sensor, der in Verbindung mit der
XBOX One präsentiert wurde. Der Sensor kann Personen, deren Gesten, Handbewegun-
gen und Rotationen und scheinbar sogar deren Mimik erfassen und somit eine Bandbreite
von neuen Interaktionsmöglichkeiten bieten [Car13]. Der Sensor verwendet nach Angaben
der Hersteller die TOF-Technik in Verbindung mit Infrarotlicht, um eine Tiefenkarte der
Umgebung zu erstellen.

Ohne, wie die in dieser Arbeit vorgestellten, Toolkits sind diese technischen Neuerungen im
Bereich der Trackingsysteme jedoch nutzlos. Wenn man das Beispiel der Kinect 2 nimmt,
so sieht man, dass bei einer generierten dreidimensionalen Tiefenkarte eine virtuelle 3D
Repräsentation des Raums benötigt wird, um weitere Berechnungen durchführen zu können.
So ist zum Beispiel die Gestenerkennung darauf angewiesen, dass im Hintergrund auf den
erfassten Daten Berechnungen zur Erkennung von Gestenmustern durchgeführt werden.
In dieser Arbeit wurde das Konzept des Hand-Raycasting zur Interaktion mit dem System
benutzt, das sehr einfach und für diesen Zweck gut geeignet ist. Diese Eingabemethode
ermöglicht es dem Benutzer schnell eine Auswahl auf großem Raum zu treffen. Es gibt
jedoch Defizite bei der Genauigkeit, wenn man mit sehr kleinen Objekten arbeitet. Dieses
Interaktionskonzept bedarf auch mehr Forschung im Bereich der Bedienbarkeit. Hier stellen
sich die Fragen, wie sich die Haltung des Arms, die individuellen Gegebenheiten des
Körperbaus und der Wahrnehmung auf die Zeigegesten auswirken. Dies sind nämlich
Faktoren, die von Mensch zu Mensch unterschiedlich sein können und die Interakion
beeinflussen.

Das hier verwendete System-Setup wurde so gewählt, dass hohe Abtastraten und hohe
Frameraten in der Verarbeitung erreicht werden konnten, womit eine kleine Latenzzeiten
und hohe Wiederholungsraten erreicht werden können. Das Toolkit an sich bietet viele
Möglichkeiten die virtuelle Repräsentation der Umgebung während der Laufzeit sowie auch
vor dem Start zu bearbeiten und neue Objekte, die mit in die Berechnungen aufgenommen
werden sollen, hinzuzufügen oder auch zu entfernen. An dieser Stelle kann noch angeknüpft
werden um zusätzlich komplexere Mesh-Modelle von Objekten einzubinden, damit auch
vielschichtigere Interaktionskonzepte möglich werden. Außerdem wurde ein GUI implemen-
tiert, das den Umgang mit dem erwähnten Editor erleichtern soll. Ein weiterer wichtiger Teil
des vorgestellten Toolkits ist die Kommunikation der einzelnen Bestandteile. Hier wurde
das erwähnte EI Toolkit eingesetzt, das es dem Entwickler leichter machen soll viele unter-
schiedliche Ressourcen, die mit der Anwendung kommunizieren, mit einem einheitlichen
Protokoll zu verwenden. Dieser Ansatz nimmt viel Arbeit ab und gestattet es, sich auf andere
Fragestellungen zu konzentrieren. Im letzten Kapitel wurde die Performance des Toolkits
unter einem festgelegten Testsystem getestet und ausgewertet. Dabei wurde festgestellt, dass
das Toolkit mit sehr komplexen virtuellen Szenen umgehen kann und skalierbar ist. Es wurde

50

außerdem die Interaktion mit dem Toolkit und dem optischen Trackingsystem bewertet,
wobei festgestellt wurde, dass drei Faktoren die Interaktion stark beeinflussen. Diese drei
Parameter wurden beschrieben und es wurden jeweils Lösungsansätze vorgeschlagen.

Schlussendlich ist das entwickelte Toolkit ein Werkzeug, das anderen Anwendungen ver-
arbeitete Trackingdaten in sinnvoller Form zur Verfügung stellen soll. Somit ist es sehr
vielseitig einsetzbar und die vorgestellten Use Cases sind nur eine kleine Auswahl von
Einsatzmöglichkeiten des Toolkits und es können noch viele andere hinzukommen.

Ausblick

Leap Motion [LEA] und der neue Kinect 2 Sensor [Car13] sind nur zwei Beispiele, die zeigen,
dass schon heute die Trackingtechnologien immer kleiner und leistungsstärker werden. Es
wurde auch eine Trackingtechnologie vorgestellt, die einzig und allein auf W-LAN Signalen
basiert und die keine besonderen Targets braucht, die am zu erfassenden Objekt angebracht
werden müssen [QP13]. Die von Pu et al. vorgestellte Technologie basiert auf standard W-
LAN Geräten, wie Smartphones oder W-LAN Router, von denen mindestens zwei benötigt
werden. Die Funktionsweise baut auf einem W-LAN Gerät auf, das als Sender W-LAN
Signale aussendet, die vom zu trackenden Objekt reflektiert und von einem zweiten Gerät
erfasst werden. Durch die Schwankungen im W-LAN Signal können bestimmte Gesten
eines Menschen erfasst und zum Bedienen von z. B. Multimediageräten verwendet werden.
Diese Technologie ist ein gutes Beispiel dafür, was in der Zukunft auf uns zukommen wird
und was wir für Möglichkeiten in der Mensch-Computer-Interaktion haben werden. Mit
dieser Erkenntnis wird auch klar, dass immer höhere Anforderungen an die Software, die
im Hintergrund die erfassten Daten auswertet, gestellt werden und dass sie eine immer
wichtigere Rolle spielen werden. Da die derzeit verwendeten Interaktionskonzepte nicht
ausreichen um die modernen Multimediageräte zu bedienen, wird auch die Forschung auf
neue Trackingtechnologien und die dazugehörende Software angewiesen sein, um neue
Erkenntnisse gewinnen und neue Konzepte vorstellen zu können.

51

A. Anhang

Abbildung A.6 stellt den Pseudecode des Algorithmus zur Schnittberechnung dar und
Abbildung A.5 präsentiert ein Beispiel für eine Szene die im erläuterten XML-Format
gespeichert wurde. Es sind noch die Abbildung A.3 und Abbildung A.4 angehängt, von
denen die erste das GUI im Ausgangszustand und das zweite die Console zeigen. Zur
besseren Sichtbarkeit sind noch Abbildung A.1 und Abbildung A.2 angefügt, die die
beiden vorgestellten Use Cases darstellen.

53

A
.

A
nhang

System

auf Objekt zeigen
*

*

«extends»

«include»

Objekt anleuchten
(visuell)

«include»

Vibration
(haptisch)

«include»

Auswahl erkennen

extension points
positiv: Auswahl erkannt

negativ: Auswahl nicht erkannt

Eingabe verarbeiten

condition: {erkannt}
extension point: positiv

«extends»

Eingabe verwerfen

condition: {nicht erkannt}
extension point: negativ

«include»

negatives Feedback

«include»

positives Feedback

Abbildung A.1.: Use Case: Steuerung von Haushaltsgeräten

5
4

System

auf TV/PC zeigen

*

*

«extends»

«include»

Objekt anleuchten
(visuell)

«include»

Vibration
(haptisch)

«include»

Auswahl erkennen

extension points
positiv: Auswahl erkannt

negativ: Auswahl nicht erkannt

Eingabe verwerfen

condition: {nicht erkannt}
extension point: negativ

«extends»

Menu auf TV/PC
anzeigen

extension points

klick auf Button: Menüpunkt gewählt
klick nicht auf Button & hold:

Starte Swipe-Geste

condition: {erkannt}
extension point: positiv

«include»
positives Feedback

«include»

negatives Feedback

«extends»

Swipe Geste verarbeiten
und z.B. Sender wechseln

condition: {kein Button}
extension point: klick nicht auf Button & hold«extends»

Auswahl ausführen

condition: {Button}
extension point: klick auf Button

*

*

Abbildung A.2.: Use Case: TV-/PC-Steuerung

5
5

A. Anhang

Abbildung A.3.: Das vorgestellte GUI im Ausgangszustand mit den Auswahlmöglichkeiten
„Editor“, „Live Mode“, Hide All und „Quit“.

56

Abbildung A.4.: Das präsentierte GUI mit der Console, die es erleichtern soll neue Befehle
zum System hinzuzufügen.

57

A. Anhang

Abbildung A.5.: Ein Beispiel für eine XML-Scene die vom Toolkit verwendet wird

58

Abbildung A.6.: Algorithmus zur Schnittberechnung Ray-SceneObject

59

Literaturverzeichnis

[BE79] B. I. C. L. V. V. Bates E., Benigni L. The emergence of symbols: Cognition and
communication in infancy, 1979. (Zitiert auf Seite 32)

[BWA01] G. Bishop, G. Welch, B. D. Allen. Tracking: Beyond 15 minutes of thought.
SIGGRAPH Course Pack, 2001. (Zitiert auf den Seiten 6, 11, 12 und 49)

[Car13] D. Cardinal. Kinect for the Xbox One: Sensor revolution or marketing hype? Tech-
nischer Bericht, Ziff Davis, Inc, 2013. URL http://www.extremetech.com/gaming/

156436-kinect-for-the-xbox-one-sensor-revolution-or-marketing-hype.
(Zitiert auf den Seiten 50 und 51)

[CB03] X. Cao, R. Balakrishnan. VisionWand: interaction techniques for large displays
using a passive wand tracked in 3D. In Proceedings of the 16th annual ACM
symposium on User interface software and technology, UIST ’03, S. 173–182. ACM,
New York, NY, USA, 2003. doi:10.1145/964696.964716. URL http://doi.acm.

org/10.1145/964696.964716. (Zitiert auf Seite 20)

[DOL] URL http://en.wikipedia.org/wiki/File:Dolphin_triangle_mesh.png. (Zi-
tiert auf den Seiten 6 und 26)

[Gro11] F. Groß. Die gestische Entwicklung praeverbaler Kleinkinder unter dem Einfluss des
Babysigning und dem Erwerb einer Gebaerdensprache. Diplomarbeit, Universitaet
Trier, 2011. (Zitiert auf Seite 32)

[Hol05] P. Holleis. EI Toolkit, 2005. URL https://wiki.medien.ifi.lmu.de/HCILab/

EiToolkit. (Zitiert auf den Seiten 7, 28, 35 und 38)

[KC95] J. A. Kin, K. Choi. Ray Tracing Triangular Meshes. Technischer Bericht, In Western
Computer Graphics Symposium, 1995. (Zitiert auf Seite 26)

[KM98] C. Kirstein, H. Mueller. Interaction with a Projection Screen Using a Camera-
Tracked Laser Pointer. In PROCEEDINGS OF THE INTERNATIONAL CONFE-
RENCE ON MULTIMEDIA MODELING. IEEE COMPUTER, S. 191–192. Society
Press, 1998. (Zitiert auf Seite 20)

[Kru91] M. Krueger. Videoplace and the interface of the future. 1991. (Zitiert auf Seite 21)

[LEA] Leap Motion. URL https://www.leapmotion.com/product. (Zitiert auf den Sei-
ten 21 und 51)

[MES13] Polygon mesh, 2013. URL http://en.wikipedia.org/wiki/Polygon_mesh. (Zi-
tiert auf den Seiten 6, 23, 24 und 25)

61

http://www.extremetech.com/gaming/156436-kinect-for-the-xbox-one-sensor-revolution-or-marketing-hype
http://www.extremetech.com/gaming/156436-kinect-for-the-xbox-one-sensor-revolution-or-marketing-hype
http://doi.acm.org/10.1145/964696.964716
http://doi.acm.org/10.1145/964696.964716
http://en.wikipedia.org/wiki/File:Dolphin_triangle_mesh.png
https://wiki.medien.ifi.lmu.de/HCILab/EiToolkit
https://wiki.medien.ifi.lmu.de/HCILab/EiToolkit
https://www.leapmotion.com/product
http://en.wikipedia.org/wiki/Polygon_mesh

Literaturverzeichnis

[NAT13] NatNet SDK, 2013. URL http://www.naturalpoint.com/optitrack/products/

natnet-sdk/. (Zitiert auf den Seiten 7, 35 und 37)

[OGR09] Ogre 3D, 2000-2009. URL http://www.ogre3d.org/. (Zitiert auf Seite 38)

[ON01] D. R. Olsen, Jr., T. Nielsen. Laser pointer interaction. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’01, S. 17–22. ACM, New
York, NY, USA, 2001. doi:10.1145/365024.365030. URL http://doi.acm.org/10.

1145/365024.365030. (Zitiert auf Seite 20)

[OS02] J.-Y. Oh, W. Stuerzlinger. Laser Pointers as Collaborative Pointing Devices, 2002.
(Zitiert auf Seite 20)

[PE05] C. M. Pizzuto E. The link and differences between deixis and symbols in children’s early
gestural-vocal system, S. 179–199. 2005. (Zitiert auf Seite 32)

[PK07] T. Pintaric, H. Kaufmann. Affordable Infrared-Optical Pose Tracking for Virtual
and Augmented Reality. In G. Zachmann, Herausgeber, IEEE VR Workshop on
Trends and Issues in Tracking for Virtual Environments, S. 44–51. Shaker Verlag, Aa-
chen, 2007. URL http://publik.tuwien.ac.at/files/pub-inf_5236.pdf. Vor-
trag: IEEE Virtual Reality 2007, Charlotte, NC (USA); 2007-03-14 – 2007-03-17.
(Zitiert auf den Seiten 16 und 18)

[QP13] S. G. S. P. Qifan Pu, Sidhant Gupta. Whole-Home Gesture Recognition Using-
Wireless Signals, 2013. URL http://wisee.cs.washington.edu/. (Zitiert auf
Seite 51)

[RBG01] J. P. Rolland, Y. Baillot, A. A. Goon. A SURVEY OF TRACKING TECHNOLOGY
FOR VIRTUAL ENVIRONMENTS, 2001. (Zitiert auf Seite 11)

[SEN] URL http://www.naturalpoint.com/optitrack/products/v100-r2/buy.html.
(Zitiert auf den Seiten 6 und 17)

[SHTT06] B. Shizuki, T. Hisamatsu, S. Takahashi, J. Tanaka. Laser pointer interaction
techniques using peripheral areas of screens. In Proceedings of the working conference
on Advanced visual interfaces, AVI ’06, S. 95–98. ACM, New York, NY, USA, 2006. doi:
10.1145/1133265.1133284. URL http://doi.acm.org/10.1145/1133265.1133284.
(Zitiert auf den Seiten 20 und 49)

[Smi06] C. Smith. On vertex-vertex systems and their use in geometric and biological modelling.
Dissertation, Calgary, Alta., Canada, Canada, 2006. AAINR19574. (Zitiert auf
Seite 22)

[STR] URL http://www.ogre3d.org/docs/manual/manual_4.html#The-Core-Objects.
(Zitiert auf den Seiten 7 und 39)

[VB05] D. Vogel, R. Balakrishnan. Distant freehand pointing and clicking on very large,
high resolution displays. In Proceedings of the 18th annual ACM symposium on User
interface software and technology, UIST ’05, S. 33–42. ACM, New York, NY, USA,
2005. doi:10.1145/1095034.1095041. URL http://doi.acm.org/10.1145/1095034.

1095041. (Zitiert auf Seite 21)

62

http://www.naturalpoint.com/optitrack/products/natnet-sdk/
http://www.naturalpoint.com/optitrack/products/natnet-sdk/
http://www.ogre3d.org/
http://doi.acm.org/10.1145/365024.365030
http://doi.acm.org/10.1145/365024.365030
http://publik.tuwien.ac.at/files/pub-inf_5236.pdf
http://wisee.cs.washington.edu/
http://www.naturalpoint.com/optitrack/products/v100-r2/buy.html
http://doi.acm.org/10.1145/1133265.1133284
http://www.ogre3d.org/docs/manual/manual_4.html##The-Core-Objects
http://doi.acm.org/10.1145/1095034.1095041
http://doi.acm.org/10.1145/1095034.1095041

Literaturverzeichnis

[WF02] G. Welch, E. Foxlin. Motion tracking: no silver bullet, but a respectable arsenal.
Computer Graphics and Applications, IEEE, 22(6):24–38, 2002. doi:10.1109/MCG.
2002.1046626. (Zitiert auf Seite 15)

Alle URLs wurden zuletzt am 30. 06. 2013 geprüft.

63

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wörtlich oder sinngemäß aus anderen Wer-
ken übernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Prüfungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollständig
veröffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

	1 Einleitung
	2 Grundlagen und Verwandte Arbeiten
	2.1 Technische Grundlagen
	2.1.1 Trackingsysteme
	2.1.2 Tracking Technologien mit 3DOF und 6DOF

	2.2 Optische Trackingsysteme - Interaktionsmöglichkeiten
	2.2.1 Hand-Raycasting

	2.3 Computergrafik
	2.3.1 Repräsentation von Objekten
	2.3.2 Schnittberechnungen

	2.4 EI-Toolkit

	3 Konzept und Use Cases
	3.1 Use Cases
	3.1.1 Steuerung von Haushaltsgeräten
	3.1.2 TV-/PC-Steuerung

	3.2 Bedeutung für Nutzerstudien

	4 3D Pointing Toolkit
	4.1 System-Setup
	4.2 Kommunikation
	4.2.1 NatNet SDK/NatNet2UDP
	4.2.2 EI-Toolkit

	4.3 Echtzeitrendering
	4.3.1 Szenen Repräsentation
	4.3.2 Echtzeitrendering

	4.4 Evaluierung des Systems
	4.4.1 Testhardware und Ergebnis
	4.4.2 Interaktion mit dem Toolkit

	5 Zusammenfassung und Ausblick
	A Anhang
	Literaturverzeichnis

