

Institut für Softwaretechnologie

Universität Stuttgart

Universitätsstraße 38

70569 Stuttgart

Deutschland

Bachelorarbeit Nr. 83

Visualisierung von Fehlern

in Spreadsheets

Ehssan Doust

Studiengang:

Softwaretechnik

Prüfer: Prof. Dr. rer. nat. Stefan Wagner

Betreuer:

M. Sc. Daniel Kulesz

Dipl.-Inf. Fabian Beck

begonnen am:

12.06.2013

beendet am:

12.12.2013

CR-Klassifikation:

H.4.1, D.2.5, H.5.2

3

Kurzfassung

Spreadsheets sind weit verbreitete Dokumente mit Tabellenstruktur, die laut diverser Studien

hohe Fehlerquoten aufweisen. An der Universität Stuttgart wurde ab 2012 mit dem Spread-

sheet Inspection Framework ein Prüfwerkzeug für statische und dynamische Prüfungen auf

Spreadsheets entwickelt. Das Spreadsheet Inspection Framework gibt nach Prüfung eines

Spreadsheets einen statischen Bericht im HTML-Format aus. Dieser Bericht ist als Fehlervisu-

alisierung unzureichend, da er separat als unformatierte Tabelle vorliegt und für typische

Endanwender kaum verständlich ist.

Im Rahmen dieser Bachelorarbeit wurden Kriterien herausgearbeitet, die eine gute Fehlervi-

sualisierung für Spreadsheet-Fehler erfüllen sollte. Danach wurde ein zu diesen Kriterien kon-

formes Visualisierungskonzept für die aus dem Spreadsheet Inspection Framework stammen-

den Befunde erarbeitet. Dieses Konzept enthält einerseits die Darstellung eines interaktiven

Berichts, und andererseits die Darstellung von Befund-Icons im Kontext der verursachenden

Zelle. Diese zweigleisige Darstellung der Befunde soll eine optimale Navigierbarkeit und in-

tuitive Verständlichkeit der Fehlervisualisierung sicherstellen.

Das Konzept wurde anschließend prototypisch als Microsoft Office Excel 2013 Add-In umge-

setzt und nach Abschluss der Implementierung mit sieben Probanden evaluiert. Die Evalua-

tion hat kleinere Probleme bei der Umsetzung des Konzepts aufgezeigt. Grundsätzlich hat sich

der Prototyp jedoch bei echten Excel-Anwendern als interaktives Fehlervisualisierungs-Werk-

zeug bewähren können.

5

Abstract

Spreadsheets are widely used documents with table structure. Recent studies report that

spreadsheets have high error rates. In 2012, a spreadsheet auditing tool named Spreadsheet

Inspection Framework was developed at the University of Stuttgart. This tool supports the

static and dynamic testing of spreadsheets. The Spreadsheet Inspection Framework creates a

static HTML report after having scanned a spreadsheet. This report is insufficient as fault vis-

ualization, because it is a separate unformatted table that is hardly understandable by typical

end users.

Within this thesis, criteria were worked out, which a good fault visualization of spreadsheet

errors should meet. Then, a visualization concept compliant to these criteria was developed.

This concept includes on the one hand the representation of an interactive report, and on the

other hand the representation of finding icons in the context of the causing cell. This two-tier

approach of presenting the findings is meant to ensure an optimal navigability and intuitive

intelligibility of the fault visualization.

The concept was then implemented as a Microsoft Office Excel 2013 add-in. After the imple-

mentation, the add-in was evaluated by seven subjects. The evaluation showed minor prob-

lems with the realization of the concept. In general, the prototype has proven its capabilities

as interactive fault visualization tool in practice with real Excel users.

7

Inhaltsverzeichnis

1 Einleitung .. 9

1.1 Motivation ... 9

1.2 Ziel .. 9

1.3 Kontext ... 10

1.4 Aufbau des Dokuments ... 10

2 Grundlagen ... 11

2.1 Spreadsheets.. 11

2.2 Fehlertaxonomie ... 13

2.3 Spreadsheet Inspection Framework .. 14

2.3.1 Statische Prüfungen ... 14

2.3.2 Dynamische Prüfungen ... 15

2.3.3 Bericht .. 15

2.3.4 Einschränkungen .. 16

2.4 Spreadsheet-Visualisierungen .. 16

2.5 Fehlervisualisierungen .. 17

2.6 Spreadsheet-Prüfwerkzeuge ... 18

2.7 Kriterien ... 20

3 Visualisierungskonzept ... 23

3.1 Allgemeines ... 23

3.2 Globale Befehle ... 24

3.3 Seitenleiste ... 24

3.4 Befund-Icons ... 25

8

3.5 Falsch positive Befunde ... 26

4 Implementierung des Prototyps ... 29

4.1 Allgemeines ... 30

4.2 Multifunktionsleiste ... 31

4.3 Ablauf einer Prüfung ... 31

4.4 Änderungen des Spreadsheet Inspection Frameworks .. 32

4.5 Abspeichern der falsch positiven Befunde ... 33

4.6 Zurücksetzen des Spreadsheets .. 34

5 Evaluation .. 37

5.1 Versuchsaufbau .. 38

5.2 Beschreibung des Ablaufs ... 40

5.3 Erkenntnisse .. 41

5.4 Gültigkeit der Ergebnisse .. 41

6 Zusammenfassung und Ausblick ... 43

6.1 Ausblick ... 44

7 Literaturverzeichnis ... 45

9

1 Einleitung

Spreadsheets sind weit verbreitete Dokumente mit Tabellenstruktur, die hauptsächlich Daten

und Formeln beinhalten. Laut diverser Studien weisen Spreadsheets hohe Fehlerquoten auf

(Panko, Facing the Problem of Spreadsheet Errors, 2006). Da Spreadsheets von vielen Unter-

nehmen eingesetzt werden und teilweise Einfluss auf unternehmenskritische Entscheidungen

haben, gab es in der Vergangenheit bereits beträchtliche finanzielle Schäden, die sich direkt

auf die Nutzung fehlerhafter Spreadsheets zurückführen lassen (European Spreadsheet Risks

Interest Group, 2013). Dies hat zur Folge, dass ein erhöhtes Interesse an einer effektiven Sen-

kung der bereits angesprochenen Fehlerquoten besteht. Hierfür wurden bereits Prüfwerk-

zeuge entwickelt, diese konnten sich in der Praxis allerdings noch nicht durchsetzen.

1.1 Motivation

Am Institut für Softwaretechnologie der Universität Stuttgart wurde ein Prüfwerkzeug für

Spreadsheets unter dem Namen Spreadsheet Inspection Framework (Zitzelsberger, 2012) entwi-

ckelt. Dieses stellt eine Alternative zu bereits existierenden Prüfwerkzeugen dar. Das Spread-

sheet Inspection Framework prüft Spreadsheets mit Hilfe von Prüfregeln. Nach der Prüfung ei-

nes Spreadsheets gibt das Spreadsheet Inspection Framework einen HTML-Bericht aus, welcher

eine Liste von Befunden (das sind Verstöße gegen Prüfregeln) beinhaltet. Dieser HTML-Be-

richt liegt in einem statischen, nicht formatierten Tabellenformat vor. Er ist unübersichtlich,

und für durchschnittliche, unauffällige Excel-Anwender schwer verständlich, deshalb wird im

Rahmen dieser Bachelorarbeit ein geeignetes Visualisierungskonzept für die vom Spreadsheet

Inspection Framework gemeldeten Befunde entwickelt.

1.2 Ziel

Die Fehlervisualisierungen der bereits existierenden Spreadsheet-Prüfwerkzeuge haben alle

spezifische Stärken aber auch Schwächen. Das Ziel dieser Bachelorarbeit liegt in der Heraus-

arbeitung von Eigenschaften, die eine gute Fehlervisualisierung erfüllen sollte, und in der an-

schließenden Erstellung eines technologieunabhängigen Konzepts, welches diese Kriterien

10

alle erfüllt. Hierfür werden unterstützend die bereits existierenden Prüfwerkzeuge betrachtet,

um aus deren Schwächen zu lernen. Das fertige Konzept wird prototypisch für ein bestimmtes

Tabellenkalkulationsprogramm umgesetzt und visualisiert die vom Spreadsheet Inspection

Framework gemeldeten Befunde. Im Anschluss wird eine Evaluation der Umsetzung durchge-

führt, welche eine qualitative Bewertung des erstellten Konzepts ermöglichen soll.

1.3 Kontext

Im Rahmen dieser Bachelorarbeit wird eine Fehlervisualisierung für Spreadsheets entwickelt. Die

inhaltlich verwandte Bachelorarbeit Benutzerschnittstelle für einen Spreadsheetprüfstand

(Scheurich, 2013), welche parallel zu dieser Arbeit von Jonas Scheurich erstellt wird, befasst

sich mit der Eingabe von Prüfregeln für das Spreadsheet Inspection Framework direkt in einem

Tabellenkalkulationsprogramm. Es ist geplant, dass für beide Bachelorarbeiten eine Kompo-

nente mit gemeinsamer Codebasis für ein bestimmtes Tabellenkalkulationsprogramm entwi-

ckelt wird. Diese Komponente trägt den Namen Spreadsheet Inspection Framework Excel Integra-

tion (SIFEI). Da sich diese Bachelorarbeit mit der Fehlervisualisierung befasst, erhält die im

Rahmen dieser Arbeit entwickelte Komponente den Kurznamen SIFEI-Visualisierung, die Ar-

beit von Jonas Scheurich erhält den Kurznamen SIFEI-Szenarienerfassung.

1.4 Aufbau des Dokuments

Zunächst werden in Kapitel 2 die für das generelle Verständnis notwendigen Grundlagen ein-

geführt. Danach wird in Kapitel 3 das Konzept zur Visualisierung von Fehlern in Spreadsheets

erstellt. Im Anschluss wird der implementierte Prototyp in Kapitel 4 vorgestellt und in Kapitel

5 evaluiert. Als Abschluss folgt in Kapitel 6 die Zusammenfassung der gewonnenen Erkennt-

nisse sowie eine Auflistung der verbleibenden Arbeit.

11

2 Grundlagen

In diesem Kapitel werden die Grundlagen der Fehlererkennung und -visualisierung in

Spreadsheets erläutert, sowie der Bezug zu verwandten Arbeiten hergestellt. Hierfür werden

zunächst wichtige Begriffe definiert und die Fehlertaxonomie für Spreadsheets vorgestellt, da-

nach wird das Spreadsheet Inspection Framework beschrieben. Im Anschluss wird auf existie-

rende Spreadsheet-Visualisierungen und auf Fehlervisualisierungen im Bereich der Software-

Entwicklung eingegangen. Als letztes wird auf Basis der gewonnenen Erkenntnisse zusam-

mengefasst, welche Kriterien eine gute Spreadsheet-Fehlervisualisierung erfüllen sollte.

2.1 Spreadsheets

Ein Spreadsheet (Arbeitsmappe) ist ein Dokument zur Speicherung und Verarbeitung von al-

phanumerischen Daten in Tabellenform. Ein Spreadsheet kann mehrere Tabellen enthalten,

welche im Folgenden als Arbeitsblätter (Worksheets) bezeichnet werden. In Abbildung 1 ist das

Tabellenkalkulationsprogramm Microsoft Office Excel (Excel) dargestellt. Tabellenkalkulations-

programme ermöglichen das Anzeigen, Erstellen und Bearbeiten von Spreadsheets.

12

Abbildung 1: Leeres Spreadsheet im Tabellenkalkulationsprogramm Microsoft Office Excel 2013

Jede Tabellenzelle eines Spreadsheets kann eindeutig über Angaben zu dem beinhaltenden

Arbeitsblatt, sowie der Spalte und Zeile referenziert werden. Eine solche Referenz wird übli-

cherweise in der sogenannten A1-Notation angegeben. Die in Abbildung 1 ausgewählte Zelle

hätte als Referenz in A1-Notation den Wert "=Tabelle1!A1", oder in Kurzform den Wert

"A1". Es können sowohl Zellreferenzen innerhalb eines Arbeitsblatts als auch über mehrere

Arbeitsblätter hinweg erstellt werden.

In jeder Tabellenzelle kann entweder ein numerischer Wert (eine Zahl), ein alphanumerischer

Wert (zum Beispiel ein Wort) oder eine Formel eingetragen werden. Formeln können simple

Berechnungen ausführen, und auf einen Katalog an vordefinierten Funktionen zurückgreifen.

Die Eingabewerte für Formeln können entweder Konstanten oder Referenzen auf andere Zel-

len sein. In Listing 1 ist beispielhaft eine Formel dargestellt, welche die Zahl aus Zelle A1 re-

ferenziert und auf die Konstante 24 addiert.

=Tabelle1!A1+24

Listing 1: Formel für die Berechnung einer Summe

13

In vielen Tabellenkalkulationsprogrammen können Zellen beliebig formatiert werden, zum

Beispiel können die Schriftart und -größe, sowie die Hintergrundfarbe, Rahmenfarbe und -

dicke angepasst werden. Zusätzlich bieten aktuelle Tabellenkalkulationsprogramme weitere

Möglichkeiten zur Datenvisualisierung an, zum Beispiel können diverse Diagramme einge-

fügt werden Im Rahmen dieser Arbeit sind hauptsächlich Daten und Formeln als Zellinhalte

von Belang.

2.2 Fehlertaxonomie

Zum besseren Verständnis der in Spreadsheets auftretenden Fehler ist es hilfreich, diese zu

klassifizieren. Aktuell gibt es mehrere Fehlertaxonomien für Spreadsheet-Fehler, welche sich

teilweise ähneln und aufeinander aufbauen. Die erste formale Fehlertaxonomie für Spread-

sheet-Fehler wurde von (Panko & Halverson Jr., Spreadsheets on Trial: A Survey of Research

on Spreadsheet Risks, 1996) veröffentlicht. In ihrer Arbeit unterteilen sie die Spreadsheet-Feh-

ler auf oberster Ebene in qualitative und quantitative Fehler. Quantitative Fehler führen zu ei-

nem numerisch falschen Ergebnis. Hierzu zählen unter anderem fehlerhafte Formeln oder

Konstanten. Qualitative Fehler hingegen verursachen kein falsches Ergebnis, aber sie verringern

die Qualität des Spreadsheets und können bei künftigen Änderungen im Spreadsheet zu

quantitativen Fehlern führen. Zu ihnen gehören beispielweise komplexe Formeln, welche nur

schwer verständlich und somit bei einer erneuten Bearbeitung oder der Bearbeitung durch

einen anderen Anwender fehleranfällig sind.

Viele aktuelle Prüfwerkzeuge für Spreadsheets suchen und finden nur qualitative Fehler. Qua-

litative Fehler sind im Gegensatz zu quantitativen Fehlern genau lokalisierbar, da jede Zelle

unabhängig von allen anderen betrachtet wird. Bei quantitativen Fehlern ist nicht sicher, ob

die Fehlerursache (das verursachende Element, zum Beispiel eine fehlerhafte Formel) und die

Fehlerauswirkung (ein falsches Ergebnis) in derselben Zelle liegen. Eine Zelle kann beispiels-

weise ein falsches Ergebnis anzeigen, die eigentliche Fehlerursache (zum Beispiel ein Formel-

fehler) kann jedoch in einer oder mehreren der referenzierten Zellen liegen.

14

2.3 Spreadsheet Inspection Framework

Das Spreadsheet Inspection Framework ist ein in Java implementiertes Prüfwerkzeug, welches

Spreadsheets mit Hilfe von statischen und dynamischen Prüfungen nach qualitativen bezie-

hungsweise quantitativen Fehlern durchsucht. Es wurde von (Zitzelsberger, 2012) entwickelt

und von (Lemcke, 2013) erweitert. Das Spreadsheet Inspection Framework prüft Spreadsheets

mit Hilfe von Prüfregeln, welche über XML-Dateien konfiguriert werden. Ein beispielhafter

Prüfvorgang ist in Abbildung 2 dargestellt.

Spreadsheet
übermitteln

XML-Konfiguration
übermitteln

Ausführung der
Prüfung

Ausgabe des
HTML-Berichts

Abbildung 2: Darstellung eines Prüfvorgangs im Spreadsheet Inspection Framework

Zunächst muss ein Spreadsheet an das Spreadsheet Inspection Framework übermittelt wer-

den, und im Anschluss die XML-Datei für die Prüfregeln geladen werden. Danach kann das

Spreadsheet Inspection Framework die Prüfung des übermittelten Spreadsheets durchführen.

Nach Ausführung der Prüfung gibt das Spreadsheet Inspection Framework einen HTML-Be-

richt aus, welcher die Befunde enthält.

Es ist zu beachten, dass mit Befund jeder vom Spreadsheet Inspection Framework gemeldete

Verstoß gegen ausgeführte Prüfregeln gemeint ist. Nicht jeder Befund muss zwangsläufig ei-

nen Fehler anzeigen, es kann sich auch um falsch positiv erkannte Befunde handeln. Eine

Fundstelle gibt den möglichen Ort der Fehlerursache eines Befunds an. Jeder Befund hat eine

Fundstelle, die tatsächliche Fehlerursache kann jedoch sowohl in der Fundstelle als auch in

einer der referenzierten Zellen liegen. Die SIFEI-Visualisierung verwendet das Spreadsheet In-

spection Framework zum Prüfen von Spreadsheets und visualisiert im Anschluss die Befunde.

2.3.1 Statische Prüfungen

Die sogenannten statischen Prüfungen zielen auf das Finden qualitativer Fehler ab. Die Zell-

inhalte werden nicht ausgewertet, sondern lediglich anhand von syntaktischen Merkmalen

geprüft. Gegenwärtig unterstützt das Spreadsheet Inspection Framework drei statische Prüf-

regeln, in Zukunft kann das Spreadsheet Inspection Framework um weitere statische Prüfre-

geln sowie Konfigurationsmöglichkeiten für diese Prüfregeln erweitert werden. Die Regel

15

Keine Konstanten in Formeln besagt, dass in Formeln keine konstanten Werte vorkommen sol-

len, diese sollen in eigenen Zellen gespeichert werden, damit sie an zentraler Stelle modifiziert

werden können. Die Regel Leserichtung besagt, dass in Formeln lediglich Zellen links und ober-

halb der aktuellen Zelle referenziert werden sollen. Die Regel Formelkomplexität besagt, dass

die Länge und Schachtelungstiefe von Formeln ein bestimmtes, vom Anwender konfigurier-

bares Maß nicht überschreiten sollte.

2.3.2 Dynamische Prüfungen

Die dynamischen Prüfungen zielen auf das Finden quantitativer Fehler ab. Für das Auffinden

von quantitativen Fehlern werden die Formeln in den einzelnen Zellen ausgewertet und die

Ergebnisse mit vom Anwender definierten Werten verglichen. Hierfür müssen Zellreferenzen

mit einbezogen werden, was dazu führt, dass ein Verstoß gegen eine dynamische Prüfregel

zwar einer Zelle (nämlich derjenigen mit falschem numerischen Ergebnis) zugeordnet werden

kann, allerdings kann keine Aussage über die tatsächliche Fehlerursache getroffen werden, da

der eigentliche Fehler in einer beliebigen referenzierten Zelle aufgetreten sein kann.

2.3.3 Bericht

Nach dem Abschluss eines Prüfvorgangs gibt das Spreadsheet Inspection Framework einen

HTML-Bericht aus. Dieser Bericht enthält eine Liste mit Befunden, welche sowohl qualitative

als auch quantitative Fehler repräsentieren können. Der Bericht liegt in unformatiertem, stati-

schem HTML-Format vor (siehe Abbildung 3).

Abbildung 3: Ausschnitt aus einem HTML-Bericht des Spreadsheet Inspection Frameworks

16

Zusätzlich ist im Bericht eine Unterteilung der relevanten Zellen in Eingabe-, Zwischenergeb-

nis- und Ausgabezellen enthalten. Ein Befund besteht aus Informationen zum Ort des Versto-

ßes, einer Beschreibung des Verstoßes und einer Angabe seines Schweregrades, sowie einer

Beschreibung des verursachenden Elements. Mehrere Verstöße gegen dieselbe Prüfregel, wel-

che in benachbarten Zellen liegen, werden zu sogenannten Verstoßgruppen zusammenge-

fasst.

2.3.4 Einschränkungen

Das Spreadsheet Inspection Framework kann keine in Spreadsheets eingebetteten Makros aus-

führen, und deshalb keine Spreadsheets prüfen, welche Makros in ihren Berechnungen ver-

wenden. Eine weitere Einschränkung des Spreadsheet Inspection Frameworks in seiner ge-

genwärtig vorliegenden Version ist, dass es beim Prüfen von Spreadsheets mit mehreren Ar-

beitsblättern zu Fehlern kommt, da Referenzen auf unterschiedliche Arbeitsblätter nicht un-

terschieden werden können.

Darüber hinaus kann es vorkommen, dass das Spreadsheet Inspection Framework bei mehr-

maligem Prüfen desselben Spreadsheets geringfügig unterschiedliche Fehlermeldungen für

dieselben Befunde ausgibt (zum Beispiel wird die Sortierung in einer Aufzählung von Zellty-

pen nicht beibehalten, sondern die Sortierung der Aufzählung wird zufällig permutiert). Dies

erschwert eine eindeutige Zuordnung der Befunde, insbesondere auf programmatischer

Ebene.

2.4 Spreadsheet-Visualisierungen

Das Auffinden von Fehlern in Spreadsheets ist seit geraumer Zeit der Gegenstand von For-

schungen. So wurden bereits von (Davis, 1996) zwei Visualisierungs-Werkzeuge für Spread-

sheets unter der Annahme entwickelt, dass sich die Fehlerquote in Spreadsheets durch ein

gutes Verständnis der Abhängigkeiten zwischen Formeln und Zellbezügen senken ließe.

Es gibt eine Reihe weiterer Visualisierungs-Werkzeuge für Spreadsheets, welche größtenteils

versuchen, die Struktur und die Beziehungen innerhalb von Spreadsheets darzustellen, um

durch ein so erhöhtes Verständnis des Anwenders die vorhandenen Fehler offensichtlich wer-

den zu lassen. Teilweise verwenden diese Visualisierungs-Werkzeuge Konzepte aus der Soft-

ware-Entwicklung. Ein interessanter Ansatz hierzu findet sich in der Dissertation von

17

(Hermans, 2012). Sie verwendet unter anderem Klassendiagramme, um die Struktur von

Spreadsheets darzustellen. Diese Diagrammtypen werden typischerweise auf einer abstrakten

Ebene der Software-Entwicklung eingesetzt.

2.5 Fehlervisualisierungen

Leider wurden selbst nach einer ausführlichen Recherche keine Arbeiten gefunden, welche

sich speziell mit der Fehlervisualisierung in Spreadsheets befassen, deshalb wurden verwand-

ten Arbeiten zur Fehlervisualisierung in der Software-Entwicklung auf Ebene des Quellcodes

betrachtet. Interessanterweise existieren viele Arbeiten über die Fehlererkennung im Quell-

code von Programmen, aber wenige Arbeiten, die sich mit der anschließenden Fehlervisuali-

sierung auseinandersetzen. Dies hat vermutlich damit zu tun, dass Quellcode hauptsächlich

in speziellen Anwendungen (Entwicklungsumgebungen) geschrieben wird, und diese An-

wendungen bereits Möglichkeiten zur Fehlervisualisierung bereitstellen.

Das von (Slinger, 2005) entwickelte Plugin CodeNose für die Entwicklungsumgebung Eclipse

(eclipse.org) sucht mit Hilfe von statischen Prüfungen nach qualitativen Fehlern im Quellcode.

Die Befunde werden im Anschluss mit den Eclipse eigenen Visualisierungsmöglichkeiten dar-

gestellt. Diese werden im folgenden Abschnitt näher betrachtet.

Die Problemliste zeigt einen Bericht der aktuell im Quellcode befindlichen Probleme. Hierzu

zählen unter anderem Warnungen und Fehler. Jede Warnung und jeder Fehler haben ein be-

stimmtes Symbol, dieses ist für Warnungen gelb und für Fehler rot. Zusätzlich zu einer Prob-

lembeschreibung wird noch der Ort des verursachenden Elements angegeben (Abbildung 4).

Abbildung 4: Beispiel einer Problemliste in der Entwicklungsumgebung Eclipse

Neben der Codezeile, welche das Problem verursacht hat, wird das gleiche Symbol angezeigt

wie in der Problemliste. Diese Symbole werden durch sogenannte Marker links neben den

Codezeilen dargestellt. In Abbildung 5 ist beispielhaft ein Marker zu sehen, welcher einer

http://eclipse.org/

18

Warnung in der Problemliste entspricht. Zusätzlich zum Marker ist der Quellcode unterstri-

chen, welcher innerhalb der Codezeile als problemverursachend festgestellt wurde.

Abbildung 5: Icon an der Codestelle der Problemursache in Eclipse

Zusammenfassend lässt sich zur Fehlervisualisierung in Eclipse sagen, dass es sowohl eine

Art Bericht in Form der Problemliste gibt, als auch eine Fehlervisualisierung direkt im Quell-

code durch die Marker.

Ein weiteres Praxisbeispiel zur Fehlervisualisierung findet sich in Microsoft Office Excel selbst.

Hier werden Fehler, welche nicht automatisch gelöst werden können, über ein kleines Icon

(siehe Abbildung 6) neben der betroffenen Zelle dargestellt. Das Icon wird nur dann angezeigt,

wenn die betroffene Zelle ausgewählt ist. Ein Klick auf das Icon öffnet ein Kontextmenü, wel-

ches Informationen über den Fehler bereitstellt, und Hilfestellungen zur Fehlerbehebung an-

bietet.

Abbildung 6: Fehlervisualisierung in Microsoft Office Excel 2013

Allgemein ergibt sich der Eindruck, dass sich die aktuelle Forschung mehr auf Methoden zur

besseren Fehlererkennung in Spreadsheets und Spreadsheet-Visualisierungen konzentriert,

nicht jedoch auf Fehlervisualisierungen in Spreadsheets.

2.6 Spreadsheet-Prüfwerkzeuge

Bei den meisten der aktuell verfügbaren Spreadsheet-Prüfwerkzeuge handelt es sich um

proprietäre Anwendungen, welche kommerziell vertrieben werden. In einer Studie von

(Nixon & O'Hara, 2010) wurden vier Spreadsheet-Prüfwerkzeuge sowie die in Microsoft

Office Excel integrierte Prüffunktionalität auf ihre Nützlichkeit und Effektivität hin unter-

sucht. Hierzu wurden diese einzeln betrachtet und anhand eines exemplarischen Spreadsheets

19

getestet. Im Anschluss werden die von den betrachteten Prüfwerkzeugen gefundenen und

nicht gefundenen Fehler, sowie die Art der gewählten Fehlervisualisierung beschrieben.

Darüber hinaus betrachtete (Howard, 2007) eine Reihe von Werkzeugen für den Umgang mit

Spreadsheet, darunter auch einige Spreadsheet-Prüfwerkzeuge. In dieser Studie wird aller-

dings nur am Rande auf die Visualisierungen der Spreadsheet-Prüfwerkzeuge eingegangen,

größtenteils werden die untersuchten Werkzeuge und deren Features betrachtet.

Eine ähnliche Studie von (Berberich, Nguyen, & Vetter, 2012) betrachtet 14 Spreadsheet-Prüf-

werkzeuge. Die Autoren beschreiben unter anderem ebenfalls die von den Prüfwerkzeugen

gewählten Visualisierungsformen. Die betrachteten Prüfwerkzeuge werden unterteilt in

Werkzeuge, welche einen Bericht generieren, und in Werkzeuge, welche Zellen hervorheben,

sowie in Werkzeuge, die beides tun. Werkzeuge die sowohl einen Bericht generieren als auch

Zellen hervorheben werden als besser eingestuft, als Werkzeuge die entweder einen Bericht

generieren oder Zellen hervorheben.

Auf Basis der Studie von (Berberich, Nguyen, & Vetter, 2012) haben (Kulesz & Ostberg, 2013)

eine Zusammenfassung der Herausforderungen und Probleme der aktuellen Spreadsheet-

Prüfwerkzeuge erstellt. In dieser Zusammenfassung gehen (Kulesz & Ostberg, 2013) insbeson-

dere auch auf die Herausforderungen einer guten Fehlervisualisierung ein, die genannten As-

pekte sind in die folgenden Abschnitte mit eingeflossen.

Nach Betrachtung der vier genannten Arbeiten wird ersichtlich, dass sich die Visualisierungs-

formen aller betrachteten Spreadsheet-Prüfwerkzeuge ähneln und dass diese sich nicht in das

Tabellenkalkulationsprogramm integrieren, sondern entweder einen Bericht generieren, oder

Inhalte zu dem geprüften Spreadsheet hinzufügen oder modifizieren. Im Folgenden werden

die Fehlervisualisierungsansätze der betrachteten Spreadsheet-Prüfwerkzeuge beschrieben.

Das Generieren eines Berichts scheint die beliebteste Form der Fehlervisualisierung zu sein.

Hierbei kann der Bericht entweder extern als separates Dokument oder intern, als zu-

sätzliches Arbeitsblatt im Spreadsheet angelegt werden. Der externe Bericht ist die ak-

tuelle Art der Fehlervisualisierung des Spreadsheet Inspection Frameworks. Der in-

terne Bericht ist nachteilig, weil dadurch das geprüfte Spreadsheet deutlich geändert

20

wird. Das geprüfte Spreadsheet kann nicht unmittelbar vom Anwender weiterverwen-

det werden, da vorher noch der Prüfbericht entfernt werden muss.

Das Einfärben von Zellen (oder allgemeiner: das Formatieren von Zellen), zu denen Befunde

vorliegen ist eine andere Art der Fehlervisualisierung, auch diese modifiziert das

Spreadsheet und verhindert dessen unmittelbare Weiterverwendung. Diese Art der

Visualisierung hat den Vorteil, dass der Anwender unmittelbar die Problemzonen des

geprüften Spreadsheets sieht, und intuitiv anhand der Farben die schwerwiegendsten

Verstöße ermitteln kann. Sollte das Spreadsheet bereits vor der Prüfung Farben ver-

wendet haben, um Zellen hervorzuheben, so ist eine zusätzliche Einfärbung aber stö-

rend, da sie die vorhandenen Farbinformationen entfernt. In einem solchen Fall ist das

geprüfte Spreadsheet nicht weiterverwendbar, sondern es muss auf eine frühere Ver-

sion zurückgegangen werden.

Eine weniger aufdringliche Art der Fehlervisualisierung ist das Einfügen von Kommentaren

in Zellen, zu denen Befunde vorliegen. Dies ist von Nachteil, falls das geprüfte Spread-

sheet bereits Kommentare vor der Prüfung enthielt und verhindert ebenfalls die di-

rekte Weiterverwendung des Spreadsheets (die Kommentare müssen entfernt werden,

bevor es weitergegeben werden kann).

2.7 Kriterien

In diesem Kapitel wurden Fehlervisualisierungsarten von verwandten Anwendungen bespro-

chen. Diese haben jeweils ihre Vor- und Nachteile. Das Generieren eines Berichts ist mit Ab-

stand die häufigste Visualisierungsform für Fehler in Spreadsheets. Darüber hinaus wurde die

in Microsoft Office Excel integrierte Fehlervisualisierung in Abbildung 6 gezeigt, und es

wurde die Parallele zur Fehlervisualisierung in Entwicklungsumgebungen auf der Abstrakti-

onsebene des Quellcodes beispielhaft anhand der Entwicklungsumgbung Eclipse aufgezeigt.

Im Folgenden werden die Erkenntnisse, welche aus den gezeigten Fehlervisualisierungsmög-

lichkeiten gezogen wurden, beschrieben und es werden Kriterien entwickelt, welche eine gute

Fehlervisualisierung für Endanwender erfüllen sollte.

21

Eine gute Fehlervisualisierung sollte zwei Ansätze verfolgen. Zum einen sollte sie einen guten

Überblick über alle Befunde in Form eines Berichts geben, und zum anderen sollte jeder Be-

fund im Kontext seiner Zelle dargestellt werden. Der Bericht sollte nicht extern vorliegen, son-

dern in das Tabellenkalkulationsprogramm integriert sein. Darüber hinaus sollte der Bericht

gruppiert nach der Fehlerart und sortiert nach der Fehlerschwere angezeigt werden, die ge-

nauen Sortiermöglichkeiten können dabei dem Anwender überlassen werden. Zu jedem Be-

fund sollte direkt ein passender Behebungsvorschlag angezeigt werden können.

Die Darstellung der Befunde im Kontext von Zellen, zum Beispiel über Icons, ermöglicht dem

Anwender – ebenso wie das Hervorheben von Zellen durch Einfärben – die intuitive Wahr-

nehmung von Problembereichen im Spreadsheet und auch die intuitive Wahrnehmung des

Schweregrads eines Befunds. Dies setzt voraus, dass eine intuitiv verständliche Farbskala für

die Darstellung der Befunde verwendet wird, zum Beispiel eine Skala zwischen den Farben

gelb und rot. Die Darstellung der Befunde im Kontext von Zellen muss mit bereits eingefärb-

ten Zellen umgehen können, und auch auf starken Hintergrundfarben gut erkennbar sein.

Da insbesondere in umfangreichen Spreadsheets viele Befunde ermittelt werden können, soll-

ten einzelne Befunde ausgeblendet werden können. Dies ermöglicht dem Anwender eine bes-

sere Fokussierung auf die aktuell wichtigen Befunde. Zusätzlich zu den bereits genannten As-

pekten sollte die Fehlervisualisierung das Spreadsheet nicht modifizieren. Falls dies technisch

nicht realisierbar ist, so sollte das Spreadsheet zumindest nicht irreversibel geändert werden.

23

3 Visualisierungskonzept

Im folgenden Kapitel wird das Visualisierungs- und Interaktionskonzept beschrieben, welches

im Rahmen dieser Arbeit entwickelt wird. Das Ziel der SIFEI-Visualisierung ist es, dem An-

wender zu helfen, die Befunde zu verstehen und deren Fundstellen im Spreadsheet zu lokali-

sieren. Im Anschluss wird der Anwender bei der Behebung der Fehler unterstützt.

3.1 Allgemeines

Die Fehlervisualisierung im Spreadsheet enthält einen Bericht, ähnlich zu dem vom Spread-

sheet Inspection Framework ausgegebenen HTML-Bericht. Der Bericht im Spreadsheet soll die

Befunde nach Prüfregel gruppieren und nach Fehlerschwere sortieren. Er wird in der Seiten-

leiste des Tabellenkalkulationsprogramms dargestellt (siehe Abbildung 7).

Damit die Fehlervisualisierung nah an den eigentlichen Befunden erfolgt, werden in Zellen,

zu denen Befunde vorliegen, kleine Befund-Icons eingeblendet (siehe Abbildung 7), welche

zum einen kontextabhängige Informationen liefern und zum anderen eine einfache Navigati-

ons- und Zuordnungsmöglichkeit zwischen der betroffenen Zelle und dem zugehörigen Be-

fund in Seitenleiste ermöglichen.

Abbildung 7: Tabellenkalkulationsprogramm mit Befund-Icon und Seitenleiste mit der Prüfregel Gesamtbetrag

24

Somit hat der Anwender zwei Möglichkeiten, durch die Befunde zu navigieren: Er kann direkt

im Spreadsheet in den betroffenen Zellen die Befund-Icons auswählen, oder er kann in der

Seitenleiste die gruppierten und sortierten Befunde betrachten.

3.2 Globale Befehle

Die globalen, kontextunabhängigen Befehle, welche jederzeit aufgerufen werden können,

werden in das Menü des Tabellenkalkulationsprogramms integriert. Zu diesen Befehlen zäh-

len das Starten von Prüfvorgängen, das Einblenden der Seitenleiste sowie das Zurücksetzen

des Dokuments auf den Stand vor der Prüfung.

3.3 Seitenleiste

In der Seitenleiste werden nach ausgeführter Prüfung des aktuellen Spreadsheets alle Prüfre-

geln sowie die Befunde angezeigt. Die Prüfregeln sind untereinander nach Schwere der auf-

summierten Befunde sortiert. Die Befunde werden gruppiert nach den zu Grunde liegenden

Prüfregeln und sortiert nach der jeweiligen Schwere innerhalb der zugehörigen Prüfregel an-

gezeigt.

Jede Prüfregel erhält für die aufsummierte Schwere aller ihrer Verstöße ein Farbmapping auf

einer Skala zwischen Gelb und Rot. Die Farbskala ist relativ zu sehen, die Prüfregel mit der

geringsten Schwere erhält die Farbe Gelb, die Prüfregel mit dem höchsten Schweregrad erhält

die Farbe Rot. Diese Skala sollte von allen Menschen intuitiv verstanden werden können. In

Abbildung 8 ist beispielhaft die statische Prüfregel Leserichtung mit einem einzigen Befund

dargestellt, so wie sie in der Seitenleiste angezeigt werden soll.

Abbildung 8: Darstellung einer Prüfregel mit Verstoß in der Seitenleiste

Leserichtung 100

Diese Regel überprüft, ob die
Referenzen im Spreadsheet in
konfigurierbare Richtungen
gelesen werden können.

Verstöße (1)

Formel [=A1] 100
Die folgende Formel kann
nicht von links nach
rechts und oben nach un-
ten gelesen werden.

25

Wenn ein Befund in der Seitenleiste ausgewählt wird, so wird das zugehörige Befund-Icon im

Spreadsheet ebenfalls ausgewählt und in den sichtbaren Bereich gescrollt. Die kleinen Häk-

chen links neben den Befunden ermöglichen das Ein- und Ausblenden von Befunden.

3.4 Befund-Icons

Im Spreadsheet selbst werden Befunde in den betroffenen Zellen über ein Befund-Icon darge-

stellt (siehe Abbildung 9). Die Farbe des Befund-Icons lässt den Rückschluss auf die zugehö-

rige Prüfregel sowie die Schwere des Befunds zu. Bei Auswahl eines Befund-Icons im Spread-

sheet öffnet sich die Seitenleiste, und der entsprechende Befund wird ausgewählt.

Abbildung 9: Befund-Icon

Die Darstellung der Befund-Icons hat den Nachteil, dass nur ein Befund pro Zelle angezeigt

werden kann. Sobald es mehrere Befunde in derselben Zelle gibt, stößt diese Form der Visua-

lisierung an ihre Grenzen, und es wird zusätzlich in derselben Zelle eine Navigationsmöglich-

keit auf der rechten Seite des Befund-Icons eingeblendet (siehe Abbildung 10).

Abbildung 10: Befund-Icon mit zyklischer Navigationsmöglichkeit

Die Navigationsmöglichkeit auf der rechten Seite des Befund-Icons besteht aus zwei kleinen

Zahlen, welche den Index des aktuell angezeigten Befunds sowie die Anzahl der insgesamt zu

dieser Zelle vorhandenen Befunde angeben. Über und unter diesen Zahlen werden Pfeile ein-

geblendet, welche eine zyklische Navigation durch alle Befunde in der betroffenen Zelle er-

möglichen.

Wenn der Anwender mit der Maus über dem Befund-Icon schwebt, wird ein Hinweis sichtbar,

welcher ihn darauf hinweist, dass das Kontextmenü des Befund-Icons weitere Informationen

bereithält. Das Kontextmenü (siehe Abbildung 11) des Befund-Icons stellt alle Informationen

dar, welche zu dem Befund vorliegen, unter anderem auch einen Lösungsvorschlag.

!

! 2
4

26

Abbildung 11: Kontextmenü eines Befund-Icons

3.5 Falsch positive Befunde

Die Prüfmechanismen des Spreadsheet Inspection Frameworks sind leider nicht perfekt, wes-

halb es zu Befunden kommen kann, deren Ursache bei genauer Betrachtung als irrelevant oder

sogar als vom Benutzer beabsichtigt einzustufen ist. Solche Befunde werden als falsch positive

Befunde bezeichnet.

Es sei an dieser Stelle angemerkt, dass ein Verstoß gegen eine statische Prüfregel jederzeit als

falsch positiver Befund definiert werden kann, da es sich bei solchen Verstößen um qualitative

Fehler handelt, die aktuell keine numerischen Auswirkungen haben.

Ein Verstoß gegen eine dynamische Prüfregel stellt jedoch einen quantitativen Fehler dar, wel-

cher nur nach reiflicher Überlegung als falsch positiver Befund definiert werden sollte. Es wäre

auch denkbar, dem Anwender das Definieren von falsch positiven Befunden nur für qualita-

tive Fehler zu erlauben, und das Definieren für quantitative Fehler zu verbieten, da diese ja

vom Anwender selbst verursacht wurden, und entweder ein Fehler in der Definition der dy-

namischen Prüfregel oder im Spreadsheet selbst vorliegen muss. Um den Anwender nicht zu

verwirren, wird ihm die Definition von falsch positiven Befunden sowohl auf Verstößen gegen

statische als auch dynamische Prüfregeln erlaubt.

Da jeder Befund als falsch positiver Befund definiert werden kann, wird die Definition von

falsch positiven Befunden über ein Kontextmenü sowohl auf den Befund-Icons in der Zelle als

auch auf den Verstößen in der Seitenleiste möglich sein. Das Kontextmenü kann für die Defi-

nition und das Entfernen eines falsch positiven Befunds verwendet werden. Wenn der Befehl

!
Falsche Leserichtung

Hintergrund
Die Leserichtung von Zell-refe-
renzen in Formeln sollte von
links nach rechts und von
oben nach unten gehen.

Lösungsvorschlag
Extrahieren Sie die Konstanten
in eigene Zellen, und referen-
zieren Sie diese in der Formel.

Dies ist ein False Positive

27

im Kontextmenü versteckt ist, besteht die Gefahr, dass der Anwender den Befehl nicht findet.

Ob dies der Fall ist, wird im Rahmen der Evaluation ermittelt. Sobald ein Befund als falsch

positiver Befund definiert wurde, wird dies in der Seitenleiste dargestellt, und das zugehörige

Befund-Icon in der Zelle wird ausgeblendet. Dies hat zur Folge, dass die Entfernung eines

falsch positiven Befunds in der Seitenleiste erfolgen muss, da das zugehörige Befund-Icon ja

nicht mehr vorhanden ist.

29

4 Implementierung des Prototyps

Dieses Kapitel beschreibt die Umsetzung des in Kapitel 3 vorgestellten Visualisierungskon-

zepts unter Verwendung eines konkreten Tabellenkalkulationsprogramms. Hierbei werden

wichtige Architektur- und Implementierungsdetails berücksichtigt.

Für die Umsetzung des zu entwickelnden Visualisierungsprototyps musste zunächst ein ge-

eignetes Tabellenkalkulationsprogramm ausgewählt werden. Hierfür standen auf Grund ihrer

Verbreitung die beiden Anwendungen Microsoft Office Excel (Excel) und LibreOffice Calc zur

Auswahl. Die außerordentlich große Marktdominanz von Excel stellt einen großen Vorteil ge-

genüber LibreOffice Calc dar. Ein Großteil der Spreadsheet-Benutzer verwendet Excel und ist

an dessen Bedienstruktur gewöhnt. Darüber hinaus liegen die meisten Spreadsheets heutzu-

tage als Excel Dateien vor, und werden in anderen Tabellenkalkulationsprogrammen teilweise

fehlerhaft dargestellt. Aus diesen Gründen wurde für die Umsetzung des zu entwickelnden

Visualisierungsprototyps Excel 2013 ausgewählt.

In Abbildung 12 ist die Umsetzung des Visualisierungsprototyps nach Abschluss der Imple-

mentierungsarbeiten zu sehen. Hierbei sind globalen Befehle in der Multifunktionsleiste (Rib-

bon), die Prüfregeln und Verstöße in der Seitenleiste, sowie die Befund-Icons in den Zellen zu

sehen. Es ist zu beachten, dass von den globalen Befehlen, welche in der Multifunktionsleiste

sichtbar sind, lediglich die Befehle der Gruppen Test und View des Abschnitts INSPECTION

zur SIFEI-Visualisierung gehören.

30

Abbildung 12: Visualisierung der Befunde nach erfolgter Prüfung des Spreadsheets

4.1 Allgemeines

Das zu entwickelnde Excel Add-In ist ein Add-In auf Anwendungsebene, welches sich am Le-

benszyklus von Excel und nicht am Lebenszyklus von geöffneten Dokumenten orientiert. Dies

hat zur Folge, dass das Add-In unmittelbar beim Anwendungsstart von Excel geladen wird,

oder sobald es manuell vom Anwender installiert oder aktiviert wird. Von diesem Zeitpunkt

an läuft das Add-In kontinuierlich im Hintergrund mit, solange Excel läuft oder es manuell

deaktiviert wird, und zwar auch dann wenn keine Dokumente geöffnet sind. Dies hat zur

Folge, dass das Add-In für jedes geöffnete Dokument ein eigenes Datenmodell anlegen und

verwalten muss, um zum Beispiel die Verstöße zwischenspeichern zu können und um für jede

geöffnete Arbeitsmappe eine eigene Seitenleiste mit individuellen Daten anzeigen zu können.

31

Für die Implementierung des Add-Ins wird das Microsoft .NET Framework verwendet. Hierbei

kommt die Windows Presentation Foundation (WPF) für die Entwicklung der Benutzerschnitt-

stelle zum Einsatz, für die Entwicklung des Programmcodes wird die Programmiersprache C#

verwendet.

4.2 Multifunktionsleiste

Die Multifunktionsleiste (Ribbon) von Excel wird verwendet, um die globalen, kontextunab-

hängigen Befehle bereitzustellen. In Abbildung 13 wird der Abschnitt INSPECTION der Mul-

tifunktionsleiste dargestellt, welcher die globalen Befehle für SIFEI enthält.

Abbildung 13: Multifunktionsleiste von Excel im Abschnitt INSPECTION mit den Gruppen Test und View

Die folgenden drei Befehle werden im Rahmen der SIFEI-Visualisierung bereitgestellt, der Rest

der sichtbaren Befehle gehört zur SIFEI-Szenarienerfassung.

Scan – Startet einen neuen Prüfvorgang

Findings – Öffnet die Seitenleiste und zeigt die Befunde an

Reset document – Entfernt alle sichtbaren Steuerelemente aus dem Dokument

4.3 Ablauf einer Prüfung

Sobald der Anwender im INSPECTION-Abschnitt der Multifunktionsleiste auf den Scan-But-

ton klickt, wird intern ein neuer InspectionJob angelegt und in eine globale Warteschlange ein-

gefügt. Die InspectionEngine überwacht die globale Warteschlange und leitet eintreffende In-

spectionJobs sequenziell an das Spreadsheet Inspection Framework zur Prüfung weiter. Nach

erfolgreicher Prüfung durch das Spreadsheet Inspection Framework aktualisiert der Inspec-

tionJob das Datenmodell der zugehörigen Arbeitsmappe. Nach Änderung des Datenmodells

aktualisiert die Arbeitsmappe die Benutzerschnittstelle und erzeugt gegebenenfalls im

Spreadsheet neue Steuerelemente für die empfangenen Befunde.

32

4.4 Änderungen des Spreadsheet Inspection Frameworks

Für die Übermittlung von Prüfaufträgen an das Spreadsheet Inspection Framework müssen

zunächst einige Anpassungen im Spreadsheet Inspection Framework vorgenommen werden,

da es in seiner aktuellen Form nicht mit auf Microsoft .NET basierenden Anwendungen kom-

munizieren kann. Darüber hinaus kann das Spreadsheet Inspection Framework gegenwärtig

ausschließlich HTML-Berichte ausgeben, das HTML-Format ist zur Datenübermittlung zwi-

schen Anwendungen aber nur bedingt geeignet.

Zunächst wurde das Spreadsheet Inspection Framework um die Möglichkeit erweitert, an-

stelle eines HTML-Berichts einen Bericht im XML-Format ausgeben zu können. Im Anschluss

wurde das Spreadsheet Inspection Framework als eigenständige Konsolenanwendung lauffä-

hig gemacht, da es bis zum damaligen Zeitpunkt lediglich als Java-Bibliothek in andere Java-

Anwendungen eingebunden werden konnte. Als nächstes wurde in der nun entstandenen

Java-Anwendung eine Socket-Schnittstelle implementiert, welche Spreadsheets und Prüfre-

geln empfangen und als Antwort einen Bericht senden kann. Diese Form der Interprozess-

kommunikation wurde gewählt, weil sie einerseits von allen Computern mit Windows-Be-

triebssystem unterstützt wird, und andererseits einen geringen Implementierungsaufwand er-

fordert. Zudem können über Socket-Verbindungen große Datenmengen mit sehr geringem

Overhead übertragen werden.

Der Start der Java-Anwendung und die Konfiguration der Socket-Verbindung erfolgt über

den in Listing 2 angegebenen Aufruf, es muss lediglich ein lokaler Port übergeben werden.

java -jar sif.jar port

Listing 2: Kommandozeilenparameter des Spreadsheet Inspection Frameworks nach der Anpassung

Das Excel Add-In stellt einen Socket-Server bereit, welcher auf einem bestimmten Port Ver-

bindungen entgegennimmt. Dieser Socket-Server läuft während der gesamten Ausführungs-

zeit des Excel Add-Ins im Hintergrund mit. Das Excel Add-In wurde als Socket-Server ge-

wählt, da die Lebensdauer des Microsoft Office Excel Add-Ins entscheidend ist, die Funktio-

nalität des Spreadsheet Inspection Frameworks jedoch nur benötigt wird, solange das Micro-

soft Office Excel Add-In läuft.

Das Spreadsheet Inspection Framework ist der Socket-Client, welcher vom Excel Add-In bei

Bedarf gestartet wird und sich direkt mit dem per Kommandozeile übergebenen Port auf dem

33

lokalen Host verbindet. Sobald die Socket-Verbindung hergestellt ist, kann das Spreadsheet

Inspection Framework eine beliebige Anzahl an InspectionJobs abarbeiten.

Die nötige Datenübertragung für die Prüfung eines InspectionJobs, welche über die Socket-

Verbindung läuft, wird in Abbildung 14 dargestellt.

Abbildung 14: Datenübertragung zwischen dem Excel Add-In und dem SIF

Das Spreadsheet Inspection Framework bleibt mit dem Excel Add-In verbunden, bis die So-

cket-Verbindung vom Excel Add-In geschlossen wird. Sobald die Socket-Verbindung ge-

schlossen wird, beendet sich das Spreadsheet Inspection Framework automatisch.

In dieser Konstellation wird davon ausgegangen, dass sich das Excel Add-In und das Spread-

sheet Inspection Framework auf demselben Computer befinden, es wäre jedoch nach kleinen

Anpassungen auch möglich, das Excel Add-in und das Spreadsheet Inspection Framework

auf separaten, mit dem selben Netzwerk verbundenen Computern auszuführen.

Abgesehen davon wurde das Spreadsheet Inspection Framework mit der neuesten Version

des Apache POI (poi.apache.org) aktualisiert, welche für das Lesen von Spreadsheets verwen-

det wird und in der aktuellen Version Stabilitäts- und Kompatibilitätsverbesserungen, sowie

neue Features enthält.

4.5 Abspeichern der falsch positiven Befunde

Der Prototyp unterstützt die Definition und das Entfernen von falsch positiven Befunden.

Wenn ein Befund als falsch positiv definiert wird, müssen der Befund und dessen Ort (Zelle)

im Spreadsheet eindeutig abgespeichert werden, damit selbst bei einer zwischenzeitlichen Än-

derung des Spreadsheets der Befund nach einem erneuten Prüfvorgang noch als falsch positiv

erkannt wird. Diese Daten werden als benutzerdefinierte XML-Daten im Spreadsheet abge-

legt.

Da sich das Spreadsheet nach dem Speichervorgang ändern und die Orte von Befunden ver-

schoben werden können, werden für die betroffenen Zellen für den Anwender unsichtbare

Spreadsheet
Inspection
Framework

Microsoft
Office Excel

(1) Spreadsheet, XML-Konfiguration

(2) HTML-Bericht

http://poi.apache.org/

34

Namen angelegt. Namen sind relative Referenzen auf Zellen, welche von Excel auf dem aktu-

ellen Stand gehalten werden, falls sich der absolute Ort einer Zelle ändert. Somit können falsch

positive Befunde auch dann noch korrekt zugeordnet werden, falls sich deren Ort zwischen-

zeitlich geändert hat.

4.6 Zurücksetzen des Spreadsheets

Die im Spreadsheet eingefügten Steuerelemente werden, falls der Anwender das Spreadsheet

speichert, mit abgespeichert und erscheinen beim nächsten Öffnen des Dokuments als un-

scharfe Grafiken (Artefakte), nicht mehr als interaktive Steuerelemente. Um diese Artefakte

entfernen zu können, gibt es den Befehl Reset document, welcher das Spreadsheet auf den Stand

vor dem Prüfvorgang zurücksetzt. Es ist zu beachten, dass ein Spreadsheet, welches die abge-

speicherten Artefakte enthält, nur in einem Microsoft Office Excel mit dem Add-In der SIFEI-

Visualisierung über den Befehl Reset document zurückgesetzt werden kann.

Abgesehen von den Artefakten kann das Spreadsheet benutzerdefinierte XML-Daten durch

das Abspeichern von falsch positiven Befunden besitzen, diese können in Excel mit der Doku-

mentprüfung entfernt werden. In Abbildung 15 ist ein Screenshot der Dokumentprüfung zu

sehen, welcher benutzerdefinierte XML-Daten gefunden hat. Diese können über den Button

Alle entfernen aus dem Spreadsheet entfernt werden.

35

Abbildung 15: Dokumentprüfung in Microsoft Excel

37

5 Evaluation

Nach Abschluss der Implementierung wurde eine Evaluation mit typischen Excel-Anwendern

durchgeführt, um die Intuitivität und generelle Verständlichkeit des entwickelten Prototyps

zu prüfen. In diesem Kapitel wird zunächst die durchgeführte Evaluation beschrieben, im An-

schluss werden die gewonnen Ergebnisse und Beobachtungen ausgewertet. Da die Evaluation

mit sieben Probanden durchgeführt wurde, liegt der Fokus bei der Auswertung der Evalua-

tion eher auf den qualitativen Aspekten als auf quantitativen Auswertungen.

Die Evaluation wurde zunächst im Rahmen einer Pilotstudie an drei Probanden auf die allge-

meine Verständlichkeit der Aufgaben hin getestet, im Anschluss folgte dann die Hauptstudie

mit vier weiteren Probanden. Da sich die Umgebungsbedingungen und Aufgabenstellungen

zwischen der Pilot- und der Hauptstudie nur minimal unterschieden haben (es wurde ein

Rechtschreibfehler korrigiert), werden im Folgenden die Probanden der Pilotstudie und die

Probanden der Hauptstudie nicht unterschieden.

Mit Hilfe der Evaluation soll herausgefunden werden, ob der umgesetzte Prototyp für unauf-

fällige, in etwa normale Excel-Anwender intuitiv verständlich ist, und ob sich diese in die

Struktur der Fehlervisualisierung hineindenken können. Bei den Probanden handelte es sich

größtenteils um Studenten aus Ingenieursstudiengängen der Universität Stuttgart. Konkret

gab es zwei Probanden aus dem Master-Studiengang Energietechnik, einen Probanden aus dem

Bachelor-Studiengang Erneuerbare Energien, zwei Probanden aus dem Bachelor-Studiengang

Softwaretechnik, einen Probanden aus dem Master-Studiengang Maschinenbau sowie einen Pro-

banden aus dem Diplom-Studiengang Luft- und Raumfahrttechnik. Es wurden bewusst nur

zwei Softwaretechnik-Studenten als Probanden verwendet, da spekuliert wurde, dass diese

Studenten sich einfacher in die SIFEI-Visualisierung hineindenken können und deshalb einen

Vorteil hätten.

38

5.1 Versuchsaufbau

Die Evaluation wurde in Kooperation mit Jonas Scheurich durchgeführt. Sie bestand aus zwei

Teilen. Im ersten Teil ging es um den in dieser Arbeit entwickelten Prototypen zur Fehlervisu-

alisierung in Spreadsheets, im zweiten Teil ging es um den von Jonas Scheurich entwickelten

Prototypen zur Benutzerschnittstelle für einen Spreadsheetprüfstand (Scheurich, 2013). Beide Teile

enthielten unterschiedliche Aufgabenstellungen und waren inhaltlich entkoppelt.

Für die Durchführung der Studie wurde den Probanden ein Fragebogen mit sechs Aufgaben

vorgelegt, den diese unter Verwendung der SIFEI-Visualisierung und Excel ausfüllen sollten.

Die ersten drei Aufgaben bezogen sich inhaltlich auf die SIFEI-Visualisierung. Zusätzlich stand

den Probanden zu jeder Aufgabe ein Blatt mit einer kleinen Hilfestellung (Hilfeblatt) zur Ver-

fügung, welches bei Problemen verwendet werden durfte. Das Hilfeblatt beinhaltete jeweils

einen Lösungshinweis, welcher sich auf den schwierigsten Teil der gestellten Aufgabe bezog.

Darüber hinaus durften bei ernsthaften Problemen jederzeit Fragen gestellt werden, allerdings

nur nach vorheriger Konsultation des Hilfeblatts.

Für die Aufgaben wurde ein einfaches und für Studenten interessantes Spreadsheet verwen-

det, welches in Abbildung 16 dargestellt ist. Es handelte sich um einen BAföG-Rückzahlungs-

rechner, welcher die Höhe des nach Studienende zurückzuzahlenden BAföG-Betrags errech-

net. Das Spreadsheet wurde bereits für frühere Evaluationen und Tests des Spreadsheet In-

spection Frameworks verwendet. Es wurde darauf geachtet, dass keiner der Probanden bereits

an einer früheren Evaluation des Spreadsheet Inspection Framework teilgenommen hatte.

39

Abbildung 16: Testdokument für die Evaluation

Vor dem Start der eigentlichen Aufgaben wurde den Probanden eine kleine Übersicht mit je

einem bis zwei Sätze zur Multifunktionsleiste, zur Seitenleiste und zu den Befund-Icons gege-

ben. Diese Übersicht beinhaltete allgemeine Informationen zur SIFEI-Visualisierung.

Nachfolgend werden die drei gestellten Aufgaben für den ersten Teil der Evaluation beschrie-

ben. In Aufgabe 1 waren einige einfache Fragestellungen zu beantworten, welche das Heraus-

lesen von Informationen aus der Fehlervisualisierung erforderten. Es handelte sich hauptsäch-

lich um Multiple-Choice-Aufgaben, unter anderem sollte die Anzahl geprüfter Regeln, die

Zelle mit dem schwersten Befund, die am häufigsten verletzte Regel und die am schwersten

verletzte Regel genannt werden.

Die zweite Aufgabe führte das Konzept der falsch positiven Befunde ein. Der Proband sollte

Befunde ein- und ausblenden, einige falsch positive Befunde definieren, sowie die Definition

als falsch positiver Befund für einen Befund wieder rückgängig machen.

40

In der letzten Aufgabe sollte der Proband erweiterte Informationen zu einem Fehler sowie

einen möglichen Lösungsvorschlag zu einem bestimmten Befund abrufen. Der Lösungsvor-

schlag ließ sich ausschließlich über das Kontextmenü des zugehörigen Befund-Icons im

Spreadsheet anzeigen.

5.2 Beschreibung des Ablaufs

Die Probanden hatten allgemein kleinere bis mittelschwere Probleme mit der Bedienung des

Prototyps. Die genauen Problembereiche der einzelnen Probanden waren breit gestreut, einige

Probanden hatten Probleme mit Dingen, die andere Probanden auf Anhieb verstanden.

In der ersten Aufgabe wurde die Anzahl der geprüften Regeln von den meisten Probanden

korrekt erfasst, lediglich ein Proband konnte die richtige Anzahl nicht feststellen. Die nächste

Teilaufgabe, in der die konkrete Anzahl an Verstößen gegen die einzelnen Prüfregeln gefragt

war, konnten fünf von sieben Probanden fehlerfrei lösen können.

Das Auslesen der korrekten Anzahl an Befunden in einer Zelle mit drei Befunden gelang leider

keinem der Probanden, da jeweils nur ein Befund-Icon sichtbar war. Dieses Befund-Icon hatte

keine Navigationsmöglichkeit. Die einzige Möglichkeit, alle Befunde in der Zelle (nacheinan-

der) zu sehen wäre das Ausblenden der jeweils anderen Befunde gewesen. Hier wäre eine

Implementierung der zyklischen Navigationsmöglichkeit (vergleiche Kapitel 3) sicherlich hilf-

reich gewesen.

Sehr gut abgeschnitten haben alle Probanden beim Nennen der am schwersten verletzten Prüf-

regel, des schwersten Einzelverstoßes und dessen Zelle sowie der am häufigsten verletzten

Prüfregel. Hier gab es keinen einzigen Probanden mit Schwierigkeiten, dies liegt vermutlich

an der intensiven roten Hervorhebung der betreffenden Befunde.

Die zweite Aufgabe war für die Probanden einfacher lösbar als die erste Aufgabe, das Ein-

und Ausblenden von Befunden war für fast alle Probanden intuitiv möglich. Die Definition

von falsch positiven Befunden war fünf von sieben Probanden ohne Hilfeblatt möglich, den-

noch haben die Probanden unterschiedlich lange nach dem Kontextmenü, über welches die

Definition als falsch positiver Befund möglich ist, suchen müssen.

41

Die dritte Aufgabe fiel den Probanden insgesamt am schwersten, vier von sieben Probanden

mussten hier das Hilfeblatt zu Rate ziehen. Das Kontextmenü auf den Befund-Icons war trotz

des unterstützenden Tooltips nicht intuitiv auffindbar, jedoch war der anschließend im Kon-

textmenü angezeigte Lösungshinweis für alle Probanden verständlich. Es kam sogar vor, dass

Probanden den Tooltip des Befund-Icons gelesen haben (der Tooltip weist auf das Kontext-

menü auf dem Befund-Icon hin), aber dennoch das Kontextmenü nicht gefunden haben.

5.3 Erkenntnisse

Nach Abschluss der Evaluation ist aufgefallen, dass es zwei Probleme mit dem Prototypen

gibt. Das erste Problem ist, dass kein Proband die korrekte Anzahl vorhandener Befunde aus

einer Zelle mit drei Befunden auslesen konnte. Dieses Problem kann durch eine Implementie-

rung der zyklischen Navigationsmöglichkeit (siehe Kapitel 3) behoben werden.

Das zweite Problem ist, dass vier von sieben Probanden Probleme mit der intuitiven Benut-

zung der Befund-Icons hatten, insbesondere ist den Probanden das Kontextmenü der Befund-

Icons erst nach Konsultation des Hilfeblatts aufgefallen. Nachdem die Probanden das Hilfe-

blatt zu Rate gezogen hatten, konnten sie das Kontextmenü finden und so unter anderem auch

den Behebungsvorschlag zum Befund anzeigen lassen. Es ist davon auszugehen, dass die An-

wender im Allgemeinen lediglich einmal auf die Existenz dieses Kontextmenüs hingewiesen

werden müssen.

Abgesehen von diesen beiden Problemen hat sich der Prototyp im Praxistest bewähren kön-

nen. Die Probanden konnten den Großteil der Aufgaben selbstständig und zielgerichtet lösen.

Die intuitive Verständlichkeit des Prototyps kann stellenweise sicherlich noch verbessert wer-

den, nach einer kurzen Einweisung in die Verwendung sollten sich die meisten Anwender

jedoch zurechtfinden können.

5.4 Gültigkeit der Ergebnisse

Die Studie wurde mit lediglich sieben Probanden durchgeführt, welche zudem alle ein ähnli-

ches Studienfach belegten. Die gewonnenen Erkenntnisse können somit nicht für eine Mehr-

heit der Excel-Anwender verallgemeinert werden.

43

6 Zusammenfassung und Ausblick

Trotz existierender Spreadsheet-Prüfwerkzeuge bleiben Spreadsheet-Fehler weiterhin ein gro-

ßes Problem, dessen Bedeutung auch in jüngster Vergangenheit nicht an Relevanz verliert, wie

die finanziellen Verluste, welche durch fehlerhafte Spreadsheets verursacht werden, belegen.

Die Fehlersuche in Spreadsheets und die Visualisierung von Spreadsheet-Strukturen ist ein

reges Forschungsgebiet (vgl. Kapitel 2). Dennoch existieren aktuell keine Arbeiten, welche sich

dediziert mit der Fehlervisualisierung in Spreadsheets befassen.

Im Verlauf dieser Arbeit wurde ein Konzept zur Fehlervisualisierung in Spreadsheets erstellt,

welches auf den in Kapitel 2.7 erarbeiteten Kriterien basiert. Das Konzept umfasst die Darstel-

lung der Befunde in einer sortierten und gruppierten Liste in der Seitenleiste des Tabellenkal-

kulationsprogramms, und die Darstellung der einzelnen Befunde durch Befund-Icons direkt

in den verursachenden Zellen. Jede Prüfregel erhält ein Farbmapping passend zu der aufsum-

mierten Schwere aller zugehörigen Befunde, um intuitiv die schwersten Befunde (und deren

Befund-Icons) zuordnen zu können. Darüber hinaus können einzelne Befunde als falsch posi-

tiv definiert werden.

Das erstellte Konzept wurde prototypisch für Microsoft Office Excel 2013 implementiert, alle

wichtigen Funktionen des Konzepts mit Ausnahme der zyklischen Navigationsmöglichkeit

zwischen mehreren Befund-Icons in derselben Zelle wurden umgesetzt.

Im Gegensatz zu den in Kapitel 2 betrachteten, aktuell auf dem Markt vertretenen Prüfwerk-

zeugen setzt die SIFEI-Visualisierung als einzige die interaktiven und kontextabhängigen Feh-

lervisualisierungen (in Form der Seitenleiste und mit Hilfe von Befund-Icons) um. Die bereits

existierenden Prüfwerkzeuge generieren im Gegensatz dazu größtenteils statische Berichte

und verwenden statische Zellhervorhebungen (zum Beispiel Kommentare, oder Einfärben

von Zellen) als kontextabhängige, jedoch nicht interaktive Fehlervisualisierung.

Die anschließende Evaluation des Prototyps hat gezeigt, dass das Konzept vielversprechend

ist, es allerdings noch Probleme in Hinsicht auf die intuitive Verständlichkeit der zugrunde

44

liegenden Konzepte (Prüfregel, Befund, Fehler) gibt. Hier müssten die Anwender gegebenen-

falls vor Verwendung der SIFEI-Visualisierung in das Thema Spreadsheet-Fehlersuche und die

Bedienung der SIFEI-Visualisierung eingeführt werden, außerdem sollte die SIFEI-Visualisie-

rung in Hinsicht auf ihre Benutzerfreundlichkeit verbessert werden.

Abgesehen davon konnte sich der Prototyp der SIFEI-Visualisierung im Praxistest bewähren,

nach einer Eingewöhnungsphase war den Anwendern die Benutzung des Prototyps bekannt

und dieser konnte effektiv eingesetzt werden.

6.1 Ausblick

Für die Zukunft ist es wünschenswert, die Aspekte des Prototyps, welche von einem Großteil

der Probanden nicht intuitiv verstanden wurden, einfacher umzusetzen. So sollte beispiels-

weise der Lösungsvorschlag für einen Befund nicht ausschließlich im Kontextmenü des Be-

fund-Icons, sondern ebenfalls im Kontextmenü des Befunds in der Seitenleiste dargestellt wer-

den. Zudem wäre eine deutsche Variante der Benutzerschnittstelle sinnvoll.

Die zyklische Navigationsmöglichkeit zwischen mehreren Befund-Icons würde das Problem

der Visualisierung von mehreren Befunden in derselben Zelle vermutlich lösen. Eine weitere

Überlegung wäre, eine grundlegende Unterscheidung der Befund-Icons für quantitative Feh-

ler und qualitative Fehler einzuführen, zum Beispiel durch eine andere geometrische Basis-

form des Befund-Icons (gegenwärtig haben alle Befund-Icons als geometrische Basisform ei-

nen Kreis). Nach diesen Änderungen sollte dann gegebenenfalls eine weitere Evaluation

durchgeführt werden.

Zum aktuellen Zeitpunkt laufen weitere Bachelorarbeiten an der Universität Stuttgart, welche

sich mit der Erweiterung des Spreadsheet Inspection Frameworks beschäftigen. Es ist zu er-

warten, dass sich somit auch neue Anforderungen an die Fehlervisualisierung der Befunde

ergeben, welche eventuell im Rahmen einer zukünftigen Bachelorarbeit umgesetzt werden.

45

7 Literaturverzeichnis

Berberich, T., Nguyen, A. B., & Vetter, M. (2012). Audit-Werkzeuge für Spreadsheets. Fachstudie,

University of Stuttgart, DE.

Davis, J. S. (1996). Tools for spreadsheet auditing. International Journal of Human-Computer

Studies(45), S. 429-442.

European Spreadsheet Risks Interest Group. (2013). Spreadsheet mistakes. Abgerufen am 12.

November 2013 von http://www.eusprig.org/horror-stories.htm

Hermans, F. F. (2012). Analyzing and visualizing Spreadsheets. Doktorarbeit, Delft University of

Technology, NL.

Howard, P. (2007). Spreadsheet Management. Northhamptonshire, UK: Bloor Research.

Kulesz, D., & Ostberg, J.-P. (2013). Practical Challenges with Spreadsheet Auditing Tools.

University of Stuttgart, DE.

Lemcke, M. (2013). Dynamische Prüfung von Spreadsheets. Diplomarbeit, University of Stuttgart,

DE.

Nixon, D., & O'Hara, M. (2010). Spreadsheet Auditing Software. University of Salford,

Information Systems Institute, UK.

Panko, R. (2006). Facing the Problem of Spreadsheet Errors. Decision Line(37.5), S. 8-10.

Panko, R., & Halverson Jr., R. P. (1996). Spreadsheets on Trial: A Survey of Research on

Spreadsheet Risks. Proceedings of the 29th Annual Hawaii International Conference on

System Sciences, (S. 326-335). Hawaii.

Scheurich, J. (2013). Benutzerschnittstelle für einen Spreadsheet-Prüfstand. Bachelorarbeit (noch

nicht fertiggestellt), University of Stuttgart, DE.

Slinger, S. (2005). Code Smell Detection in Eclipse. Thesis, Delft University of Technology,

Department of Software Technology, NL.

46

Zitzelsberger, S. (2012). Fehlererkennung in Spreadsheets. Diplomarbeit, University of Stuttgart,

DE.

Erklärung

Hiermit versichere ich, diese Arbeit selbstständig verfasst

und nur die angegebenen Quellen benutzt zu haben.

(Ehssan Doust)

	1 Einleitung
	1.1 Motivation
	1.2 Ziel
	1.3 Kontext
	1.4 Aufbau des Dokuments

	2 Grundlagen
	2.1 Spreadsheets
	2.2 Fehlertaxonomie
	2.3 Spreadsheet Inspection Framework
	2.3.1 Statische Prüfungen
	2.3.2 Dynamische Prüfungen
	2.3.3 Bericht
	2.3.4 Einschränkungen

	2.4 Spreadsheet-Visualisierungen
	2.5 Fehlervisualisierungen
	2.6 Spreadsheet-Prüfwerkzeuge
	2.7 Kriterien

	3 Visualisierungskonzept
	3.1 Allgemeines
	3.2 Globale Befehle
	3.3 Seitenleiste
	3.4 Befund-Icons
	3.5 Falsch positive Befunde

	4 Implementierung des Prototyps
	4.1 Allgemeines
	4.2 Multifunktionsleiste
	4.3 Ablauf einer Prüfung
	4.4 Änderungen des Spreadsheet Inspection Frameworks
	4.5 Abspeichern der falsch positiven Befunde
	4.6 Zurücksetzen des Spreadsheets

	5 Evaluation
	5.1 Versuchsaufbau
	5.2 Beschreibung des Ablaufs
	5.3 Erkenntnisse
	5.4 Gültigkeit der Ergebnisse

	6 Zusammenfassung und Ausblick
	6.1 Ausblick

	7 Literaturverzeichnis

