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Kurzfassung

Geometrische Packungs-Probleme sind in vielen industriellen Prozessen anzutreffen. Dadurch moti-
viert wird in dieser Arbeit untersucht, wie geometrische Formen möglichst oft in einem rechteckigen
Gebiet platziert werden können.

Um zu garantieren, dass Platzierungen von Formen ohne Überschneidungen sind, wird ein rasterba-
sierter Schnitttest realisiert, der unter Verwendung der OpenGL-API die Erkennung von Schnitten
komplett auf der Grafikkarte durchführt. Die Problemstellung wird anhand von einfachen Polygonen
modelliert und mithilfe der geometrischen Eigenschaften der Polygone untersucht. Dafür werden
mögliche Platzierungen von Polygonen eingeschränkt und mit Hilfe des Schnitttests auf Überschnei-
dungen geprüft. Eine Datenstruktur zur Verwaltung schnittfreier Polygon-Stellungen wird entwickelt;
damit zusammenhängend werden Heuristiken vorgestellt, anhand derer solche Polygon-Stellungen
bewertet werden können.Weiterhin werden Strategien diskutiert, die die Anzahl betrachteter Polygon-
Stellungen, und somit nötiger Schnitttests, erheblich reduzieren. Diese Strategien orientieren sich an
den geometrischen Eigenschaften der Polygone, sowie an strukturellen Eigenschaften der verwende-
ten Datenstruktur. Durch das iterative Aufbauen lokal enger und schnittfreier Polygon-Platzierungen
werden globale Lösungen für das rechteckige Gebiet konstruiert.

Anhand einer Software-Implementierung werden die dargelegten Strategien evaluiert und als effizient
erachtet.
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1 Einleitung

Abbildung 1.1: Eine Platzierung von 128 Formen auf einem rechteckigen Gebiet.

Problemstellung

Man stelle sich vor es ist Weihnachten und es werden Plätzchen gebacken. Aus dem rechteckig
ausgerollten Plätzchenteig sollen maximal viele Plätzchen ausgestochen werden, ohne den Teig neu
auszurollen. Eine andere Variante dieser Problemstellung lautet, aus einem rechteckigen Metallblech
möglichst viele vorgegebene Formen zu schneiden, um den Verschnitt an Material gering zu halten
und somit Materialkosten zu sparen.

In beiden Fällen liegt das Optimierungsproblem vor, auf einem gegebenen Gebiet eine Anordnung von
vorgeschriebenen Formen zu finden, die den genutzten Platz im Gebiet maximiert, indem maximal
viele Formen platziert werden. Die Formen können beliebig verschoben und gedreht werden, sollen
aber platziert werden, ohne sich gegenseitig zu überdecken, bzw. zu überschneiden. Ein Beispiel einer
Platzierung von Formen ist in Abbildung 1.1 zu sehen. Dieses Packungs-Problem,Nesting-Problem, oder
Schachtelungs-Problem ist NP-schwer[AI12]. Das bedeutet, dass im Grunde alle möglichen Stellungen
von Formen ausprobiert werden müssen um eine optimale Verteilung auf dem Gebiet zu finden 1. Statt
Menschen mit dem Finden solcher Platzierung zu beauftragen liegt es nahe sich von entsprechenden
Computer Programmen Lösungen für gegebene Probleminstanzen berechnen zu lassen. Viele oder
alle Möglichkeiten für Platzierungen durchzuprobieren kann, selbst mit Computern, hoffnungslos

1Dies gilt natürlich nur unter der Annahme, dass P ̸= NP . Diese Annahme wird hier getroffen.
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1 Einleitung

lange dauern, wenn nicht besondere Strategien zum Einsatz kommen, die eine Auswahl von nur
vielversprechenden Lösungswegen sicherstellen.

Diese Arbeit untersucht Methoden und Algorithmen, wie das Nesting-Problem von Formen auf einem
rechteckigen Gebiet gelöst werden kann. Unter Einschränkung der möglichen Platzierungen werden
Heuristiken entwickelt, die eine Lösungsfindung beschleunigen. Es werden Datenstrukturen und
Vorgehensweisen erläutert um Platzierungen von Formen zu verwalten und zu bewerten, und es wird
gezeigt wie unter Nutzung dieser Strukturen überflüssiger Rechenaufwand vermieden werden kann.
Um zu erkennen wann sich Platzierungen von Formen überlagern wird ein Schnitttest entwickelt der
komplexe Berechnungen auf die Grafikkarte auslagert, und somit Gebrauch von deren spezialisierter
Hardware macht. Anhand einer Implementierung der vorgestellten Verfahren wird evaluiert, dass
diese eine schnellere Lösungsfindung ermöglichen als ein naiver Brute-Force Ansatz.

Bekannte Ansätze

Packungs-Probleme gibt es in zahlreichen Varianten, die in verschiedenen Anwendungsbereichen
auftauchen. Vom optimalen Zuschneiden von Blechen und Textilien[Nie07], über das optimale Packen
von Kartons auf Paletten bis hin zum optimalen Packen von Kofferräumen[EFRS03][EFK+05] sind
verschiedene Packungs-Probleme anzutreffen, sowohl in zwei- als auch in drei Raumdimensionen und
mit zu platzierenden Formen verschiedenster Arten. Die Relevanz solcher Probleme für industrielle
Fertigungsprozesse ist leicht ersichtlich, und so verwundert es nicht, dass der Autor dieser Arbeit bei
ersten Recherchen zu diesem Thema auf einen Artikel des Spiegel stieß2, der dieses Thema behandelt.
Neben der naheliegenden, in dieser Arbeit eingangs ebenfalls gewählten, Einführung in die Problem-
stellung anhand des weihnachtlichen Plätzchen Backens geht der Spiegel-Artikel auf eine Software
namens AutoNester3 ein, die vom Frauenhofer Institut für Algorithmen und Wissenschaftliches Rech-
nen entwickelt wird. Der AutoNester ist ein Programm das zweidimensionale Packungs-Probleme
lösen kann, und gleichzeitig die Einhaltung verschiedener Randbedingungen erlaubt. Als solches ist
der AutoNester ein Beispiel für den Bedarf an schnellen Lösern für Packungs-Probleme.

Es besteht ein breites Forschungsgebiet, das stets neue Lösungsstrategien für Nesting-Probleme entwi-
ckelt. Neben der Behandlung grundsätzlicher Strategien[BO08] liegt der Fokus auf dem Finden schnel-
ler Algorithmen[OGF00], die gute Lösungen in weniger Zeit berechnen. Hierbei werden verschiedene
Ansätze verfolgt, die Lösungen zum Beispiel mittels Lineare Programmierung[EFRS03][GO06] oder
Simulated Annealing[OF93][GO06] finden, und oft mit geometrischen Konstruktionen wie No-Fit
Polygons[Gho91] arbeiten. Die meisten Optimierungsverfahren für Packungs-Probleme müssen frü-
her oder später auf eine randomisierte Lösungsfindung zurück greifen. Hierbei wird eine vorhandene
Lösung der Probleminstanz benutzt, um über zufällige Veränderungen der platzierten Formen zu
einer bessere Lösung zu gelangen. Solche Verfahren verfolgen die Strategie mit mehr investierter
Rechenzeit potentiell bessere Lösungen zu finden. Um eine nötige initiale (Teil-)Lösung für solche

2Dambek, Holger. Spiegel Online. Mathematik im Advent: Plätzchen backen für Perfektionisten. Dezember 2010. http:
//www.spiegel.de/wissenschaft/mensch/a-733067.html, letzter Zugriff: 1. April 2014.

3Frauenhofer SCAI, http://www.scai.fraunhofer.de/geschaeftsfelder/optimierung/produkte.html, letzter Zu-
griff: 1. April 2014.
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randomisierten Verfahren zu erhalten sind wiederum weitere Strategien nötig, die nicht zwingend
eine optimale, aber eine gute Lösung in kurzer Zeit liefern sollen.

Das Finden solcher initialen Lösungen ist häufig stark von der genauen Formulierung der Problem-
stellung abhängig. Fast alle Varianten des Packungs-Problems haben aber gemeinsam, dass schon
das Finden einer guten initialen Lösung einen erheblichen Rechenaufwand bedeuten kann. Hinzu
kommen weitere berechnungsintensive Verfahren, die zum Beispiel das Einhalten von Randbedin-
gungen garantieren müssen. Vor allem muss sichergestellt sein, dass gefundene Lösungen keine
Formen enthalten, die sich überlagern oder überschneiden. Dies erfordert einen Test der erkennt,
wann Platzierungen Überschneidungen enthalten; und weil dieser Test häufig durchgeführt werden
muss, sollte dieser ebenfalls möglichst performant sein.

Herangehensweise und Aufbau der Arbeit

Diese Arbeit untersucht, wie geometrische Formen auf ein rechteckiges Gebiet möglichst oft platziert
werden können. Hierbei können die Formen beliebig auf dem Gebiet verschoben und rotiert werden,
sie dürfen sich jedoch nicht überschneiden. Um die Problemstellung etwas zu vereinfachen, werden
nur solche Formen betrachtet, die keine Löcher und keine runden Stellen haben. Hierdurch können
diese Formen durch einfache Polygone modelliert werden. Das rechteckige Gebiet sei durch seine
Höhe und Breite gegeben.

Statt einen globalen Ansatz zum Platzieren der Formen zu verfolgen, werden Eigenschaften der
gegebenen Formen (Polygone) genutzt, um zunächst lokal kleine Teillösungen zu erzeugen. Vorrangig
wird untersucht, wie Polygone miteinander möglichst eng platziert werden können, und wie der Re-
chenaufwand für solche Platzierungen minimiert werden kann. Um zu garantieren, dass Platzierungen,
bzw. Stellungen von Polygonen schnittfrei sind, wird ein Rasterbasierter Schnitttest entwickelt und
unter Verwendung der OpenGL-API auf Grafikkarten umgesetzt, hierauf wird in Kapitel 3 ausführlich
eingegangen. Kapitel 2 widmet sich der Aufarbeitung mathematischer und algorithmischer Verfahren
und Strukturen, die für die Modellierung des Problems und für die Untersuchung von Polygonen und
deren Platzierungen notwendig sind.

Die Untersuchung des Packungs-Problems erfolgt in Kapitel 4. Hier wird zunächst eine Einschränkung
möglicher Platzierungen vorgenommen, um die Komplexität der Problemstellung zu reduzieren. Diese
Einschränkung besteht darin, nicht grundsätzlich alle Platzierungen von Polygonen zu betrachten,
sondern nur solche, bei denen die Polygone direkt zusammenliegen. Polygone sollen sich nur an den sie
definierenden Punkten berühren und aneinander ausgerichtet sein. Dies kann als Einschränkung auf
diskrete Stellungen der Polygonene zueinander aufgefasst werden. Solche Polygon-Stellungen bieten
eine vereinfachte Betrachtung vonmöglichst engen Platzierungen von Polygonen,müssen aber anhand
des Schnitttests auf Überschneidungen geprüft werden. Anhand der diskreten Stellungen werden in
Kapitel 4 Strategien entwickelt, um mögliche aber irrelevante Stellungen zu vermeiden, um somit die
zahlreichen und zeitintensiven Schnitttests zu reduzieren. Hierfür werden einerseits geometrische
Eigenschaften der Polygone aus Kapitel 2.2 aufgegriffen, und andererseits werden strukturelle
Eigenschaften der Polygon-Stellungen genutzt, um irrelevante Gebiete von Polygon-Stellungen
von Berechnungen auszuschließen und alte Informationen aus Schnitttests wiederzuverwenden.
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1 Einleitung

Aus iterativ erstellten Teillösungen können so schneller globale Lösungen für das gesamte Gebiet
zusammengesetzt werden.

Die in dieser Arbeit entwickelten Strategienwerden anhand einer Software-Implementierung evaluiert.
Dies geschieht durch das Betrachten von Testinstanzen und daraus erhobener Daten in Kapitel 5. Im
darauf folgenden und letzten Kapitel schließt die Arbeit mit einer Betrachtung und Zusammenfassung
der Ergebnisse, die im Laufe dieser Ausarbeitung entstanden sind.
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2 Mathematische und algorithmische
Grundlagen

Die Modellierung und Darstellung von Formen, also Polygonen, erfolgt anhand von Punkten und
Richtungen im zweidimensionalen Raum. Dies sind Orts- und Richtungsvektoren v, r in der zwei-
dimensionalen Ebene R2, sprich v, r ∈ R2. Um das Drehen und Verschieben von Polygonen zu
realisieren, werden Transformationen in Form von Rotationen und Translationen benutzt.

Nach der Einführung von Transformationen folgt eine Definition der hier betrachteten Polygone
und ihrer Eigenschaften, gefolgt von Definitionen und Analysen weiterer geometrischer Objekte und
Algorithmen. Diese geometrischen Objekte und Algorithmen dienen im weiteren Verlauf der Arbeit
als Hilfsmittel, um Eigenschaften von Polygonen (und die Konstellation vieler dicht nebeneinander
platzierter Polygone) zu betrachten und zu bewerten. Namentlichwerden einfache Polygone betrachtet,
deren Konvexe Hülle, das minimale umschliessende Rechteck, die Triangulierung eines Polygons,
und die Verdeckung eines Punktes im Raum durch ein oder mehrere Polygone.

2.1 Vektorrechnung und Transformationen

Da die Problemstellung dies bedingt, ist es nötig das Drehen und Verschieben von Objekten im
zweidimensionalen Raum zu realisieren. Hierfür werden zunächst die Transformationen Rotation und
Translation eingeführt und anschliessend in eine leicht handhabbare Form gebracht. Dies passiert,
indem die nötigen Transformationen in sogenannten Homogenen Koordinaten durchgeführt werden.

Translation, Skalarprodukt, Winkel, Drehung, Skalierung

Gegeben seien Punkte, bzw. Ortsvektoren v ∈ R2 , (ggf. normierte) Richtungsvektoren r ∈ R2 und
sich auf einen solchen Richtungsvektor beziehende Normale nr ∈ R2. Die Normale wird meistens
ebenfalls als normiert angenommen, als Konvention wird im Folgenden auch davon ausgegangen,
dass eine Normale nach links vom zugehörigen Richtungsvektors zeigt.

Die erste Transformation, die für unsere Anwendungen benötigt wird, ist die Verschiebung, also
Translation T (v, r) eines Vektors v ∈ R2 um einen bestimmten Richtungsvektor r ∈ R2.

v′ = T (v, r)

= v + r =
(

xv

yv

)
+
(

xr

yr

)
=
(

xv + xr

yv + yr

)
.
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2 Mathematische und algorithmische Grundlagen

Das Skalarprodukt zwischen zwei Vektoren r1, r2 ∈ R2 ist gegeben durch

⟨r1, r2⟩ = r1 · r2 =
(

x1
y1

)
·
(

x2
y2

)
= x1 · x2 + y1 · y2 = s ∈ R.

Das Skalarprodukt zweier Vektoren ist Null, wenn die beiden Vektoren orthogonal aufeinander stehen,
wenn also einer der beteiligten Vektoren eine Normale des anderen ist. Das Skalarprodukt hat eine
besondere Beziehung zum Winkel zwischen zwei Vektoren, die anhand der Berechnung des Winkels
klar wird. DerWinkel α ∈ [0, π] zwischen zwei Vektoren r1, r2 ∈ R2 ist gegeben durch

cos(α) = ⟨r1, r2⟩
|r1| · |r2|

.

Der durch acos( ⟨r1,r2⟩
|r1|·|r2|) berechnete Winkel α bezieht sich stets auf den kleineren der beiden Winkel

zwischen r1 und r2.

Anhand des Skalarproduktes lässt sich testen, auf welcher Seite einer Linie ein gegebener Punkt liegt.
Seien gegeben ein Punkt p ∈ R2 und eine Linie die durch zwei Punkte v1, v2 ∈ R2 verläuft. Sei rv

der Richtungsvektor von v1 nach v2 und rp der Richtungsvektor von v1 nach p. Das Skalarprodukt
zwischen rp und der (links orientierten) Normale nrv zur Linie gibt Auskunft über die Lage von p
bezüglich der Linie.

⟨rp, nrv ⟩ > 0 ⇔ p liegt links von der Linie durch v1, v2.

Ist dieses Skalarprodukt Null, liegt der Punkt auf der Linie, ist das Skalarprodukt negativ, liegt der
Punkt auf der rechten Seite der Linie. Eine Darstellung der hier betrachteten Punkte und Vektoren ist
in Abbildung 2.1 zu sehen.

p

v1

2v

p

v

rv
n

r

r
α

Abbildung 2.1: Zwei Richtungsvektoren rp, rv , der eingeschlossene Winkel α und die Normale nrv

zu rv .

Die Rotation eines Vektors v ∈ R2 um einen Winkel α ist gegeben durch die Multiplikation mit der
Rotations-Matrix R(α)

R(α) =
(

cos(α) − sin(α)
sin(α) cos(α)

)
v′ = R(α) · v.
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2.1 Vektorrechnung und Transformationen

Der Vektor v wird um den Ursprung und gegen den Uhrzeigersinn gedreht. Eine Rotation im Uhrzei-
gersinn ergibt sich aus der Inversen von R(α). Die Inverse der Rotation R(α) ist eine Rotation um
R(−α). Setzt man nun −α ein, ergibt sich über die Symmetrie vom Cosinus und der Punktsymmetrie
vom Sinus

R(α)−1 = R(−α) =
(

cos(−α) − sin(−α)
sin(−α) cos(−α)

)

=
(

cos(α) sin(α)
− sin(α) cos(α)

)
= R(α)⊤

Ein normalisierter Richtungsvektor, der zwischen sich und der x-Achse einen Winkel α einschließt,
hat in seinen Koordinaten den entsprechenden cos(α) und sin(α) Wert, dies ist am Einheitskreis leicht
zu erkennen. Durch diesen Zusammenhang lassen sich nun einerseits gegebene Richtungsvektoren r

sehr einfach in die Richtung
(
1 0

)⊤
rotieren, und andererseits lässt sich

(
1 0

)⊤
in jede gegebene

andere Richtung rotieren. Dies ist angenehm, da sich hierdurch grundsätzlich Rotationen in gegebene
Richtungen durchführen lassen, ohne je explizit die nötigen Winkel ausrechnen zu müssen. Sei also
r(α) =

(
cos(α) sin(α)

)⊤
∈ R2 ein normalisierter Richtungsvektor, so rotiert folgende inverse

Rotationsmatrix den Vektor r in Richtung
(
1 0

)⊤
:

R(r(α))−1 =
(

rx ry

−ry rx

)
=
(

cos(α) sin(α)
− sin(α) cos(α)

)

Die Skalierung eines Vektors v ∈ R2 erfolgt durch die Skalierungsmatrix

S(sx, sy) =
(

sx 0
0 sy

)
v′ = S(sx, sy) · v

sx, sy > 0

Ein Beispiel für eine hintereinander Ausführung aller Transformationen ist in Abbildung 2.2 zu
sehen.

Ein grundsätzliches Problem der Translation ist, dass diese als Vektoraddition und nicht als Ma-
trixmultiplikation realisiert ist. Für eine einfache Handhabung der Transformationen ist jedoch ein
ausschließliches Rechnen mit Matrizen erwünscht, das wie folgt aussehen sollte:

v′ = S(sx, sy) · R(α) · T (r) · v

v′′ = T (r) · S(sx, sy) · R(α) · v.
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Abbildung 2.2: a) Translation von Punkten. b) Rotation von Punkten im Uhrzeigersinn. c) Skalierung
einer Punktmenge.

Homogene Koordinaten für Transformationen

Die oben geforderte Eigenschaft für Transformationen kann durch VerwendenHomogener Koordinaten
sichergestellt werden. Im Folgenden werden die bereits vorgestellten Transformationen in homogene
Koordinaten überführt. Hierbei handelt es sich um eine Erweiterung der bekannten Matrizen und
Vektoren um eine weitere Dimension, sodass Rechnungen fortan im dreidimensionalenR3 statt finden,
aber immer noch für Operationen im zweidimensionalen R2 stehen. Die zusätzliche dritte Dimension
wird in unserer Anwendung durchgehend durch eine hinzugefügte 1 realisiert. Sei v ∈ R2, so ist v in
homogenen Koordinaten dargestellt durch

v =
(

x

y

)
7→

x

y

1

 ∈ R3
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2.1 Vektorrechnung und Transformationen

Folgende Translations-Matrix gibt eine Translation um den Vektor r in homogenen Koordinaten an.

T (r) =

1 0 rx

0 1 ry

0 0 1


v′ = T (r) · v

=

1 0 rx

0 1 ry

0 0 1

 ·

x

y

1



=

x + rx

y + ry

1


Die Rotations- und Skalierungsmatrizen werden in homogenen Koordinaten um die dritte Dimension
und die homogene 1 erweitert, bleiben ansonsten aber unverändert.

R(α) =

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1


v′ = R(α) · v

α ∈ [0, 2π)

Die Inverse dieser Rotationsmatrix ist, unter der gleichen Argumentation wie oben, ebenfalls die
Transponierte: R(α)−1 = R(α)⊤.

Die Skalierung ist gegeben durch

S(sx, sy) =

sx 0 0
0 sy 0
0 0 1


v′ = S(sx, sy) · v

sx, sy > 0

Diese Operationen in Form von 3 × 3−Matrizen ermöglichen eine einfache Modellierung und Dar-
stellung von zueinander verschobenen Objekten. So kann für jedes Objekt eine Matrix gespeichert
werden, die alle für das Objekt benötigten Transformationen beinhaltet. Bei weiteren, hinzukom-
menden Transformationen werden die entsprechenden Matrizen mit einander verrechnet. Die hier
ebenfalls erwähnte Skalierung findet Verwendung im Schnittest von Polygonen, ist jedoch nicht
relevant für das Darstellen von Stellungen von Polygonen.
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2.2 Polygone und Geometrische Algorithmen

Wie bereits erwähnt, werden in dieser Arbeit zur Darstellung von zu platzierenden Formen zweidi-
mensionale Polygone verwendet. Denkbar wären auch andere Darstellungsformen, zum Beispiel eine
direkte Verwendung von gegebenen CAD1 Daten der modellierten Form. Diese Darstellung könnte
auch Rundungen und Löcher enthalten, die üblicherweise durch analytische Funktionen gegeben
sind. Eine Verarbeitung solcher Daten würde jedoch den Rahmen dieser Arbeit sprengen, und ist
nicht Teil der eigentlichen Problemstellung.

Da das Gebiet, in das gegebene Polygone platziert werden sollen, rechteckig ist, erfordert dessen
Modellierung nicht viel Mühe. Daher werden im Folgenden ausschließlich Eigenschaften der Polygone
untersucht.

Durch die Einschränkung auf einfache Polygone, die im folgenden Unterkapitel genauer erläutert
werden, werden gleichzeitig auch bestimmte geometrische Eigenschaften dieser Polygone als analyti-
sches Werkzeug nutzbar. Namentlich sind diese Eigenschaften die Konvexe Hülle, die Triangulierung,
das minimale umfassende Rechteck, und die Verdeckung eines Punktes durch ein Polygon. Für die Be-
rechnung dieser Eigenschaften wurden Algorithmen gewählt und implementiert, die eine vertretbare
Balance zwischen Implementierungsaufwand und (Laufzeit-)Komplexität aufweisen. Auf die Verwen-
dung von vorhandenen Software Bibliotheken (zum Beispiel CGAL2), die solche Verfahren bereits
implementieren, wurde bewusst verzichtet, um eine größere Flexibilität der eigenen Implementierung
zu bewahren.

1CAD, Computer-Aided Design
2CGAL, Computational Geometry Algorithms Library, www.cgal.org
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2.2 Polygone und Geometrische Algorithmen

2.2.1 Einfache Polygone

Abbildung 2.3: Einfache Polygone gegeben durch Punkte die links orientierte Linienzüge definieren.

In dieser Arbeit werden einfache, nicht zwingend konvexe Polygone betrachtet. Abbildung 2.3
zeigt einige solche Polygone. Ein Polygon Pn = (p1, . . . , pn), pi ∈ R2 sei also gegeben durch eine
Folge von n paarweise verschiedenen Punkten so, dass jeweils zwei Punkte ein Segment (eine Linie)
Si = (pi, pi+1), i ∈ 1, . . . , n − 1, Sn = (pn, p1), bilden, die vom ersten Punkt zum zweiten orientiert
ist. Dieser Linienzug ist geschlossen (durch Sn) und keine zwei Segmente schneiden sich , ausser
an einem Punkt, der Endpunkt beider Segmente ist. Als Konvention wird davon ausgegangen, dass
der Linienzug gegen den Uhrzeigersinn orientiert ist. Das bedeutet, dass links der Orientierung
eines Segments stets das Innere des Polygons liegt. Diese Konvention lässt sich, wenn nötig, bei
einem gegebenen Linienzug überprüfen und herstellen. Zwingend hierfür ist allerdings, dass eine
Information gegeben ist, wo das Innere des Polygons liegt. Da das Polygon nur durch den Linienzug
definiert ist, kann es im Inneren des Polygons keine Löcher geben, diese sind für eine allgemeine
Betrachtung der Aufgabenstellung dieser Arbeit auch nicht relevant. Rundungen am Polygon können
durch entsprechend viele, kurze Segmente dargestellt werden. Dies erhöht jedoch die Komplexität
des Polygons und führt zu mehr Rechenaufwand, vor allem bei Brute-Force Ansätzen. Um diesen
Effekt abzumildern, ist eine Aufarbeitung von Polygonen denkbar, die Rundungen vereinfacht oder
anderweitig in weitere Berechnungen einfließen lässt. Diese Spezialfälle werden hier nicht behandelt,
da ein allgemeiner Ansatz verfolgt wird.

Zwei erste Eigenschaften, die ein Polygon dieser Form hat sind:

• Die (per Konvention nach links zeigenden) Normalen der Segmente zeigen in das Innere des
Polygons.

• An jedem Punkt gibt es einen inneren Winkel - dies ist derjenige Winkel, der durch beide
angrenzenden Segmente aufgespannt wird und im Inneren des Polygons liegt.

Von nun an wird für einen Eckpunkt eines Polygons der Begriff Vertex benutzt, um zu verdeutlichen,
dass der Punkt nicht etwa ein beliebiger Punkt am oder im Polygon ist, sondern einer, der als Eckpunkt
maßgeblich für das Polygon ist.
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2 Mathematische und algorithmische Grundlagen

Abbildung 2.4: Konvexe Hülle (grau) eines einfachen Polygons (blau).

2.2.2 Konvexe Hüllen von Polygonen

Die Konvexe Hülle einer Punktmenge M ist definiert als die kleinste konvexe Menge, die M ganz
enthält. Eine Menge K ist genau dann konvex, wenn für zwei Punkte p1, p2 ∈ K dieser Menge gilt,
dass die Verbindungslinie L = {x|x = p1 + λ · (p2 − p1), λ ∈ [0, 1]} dieser Punkte ebenfalls in K
liegt: L ⊂ K . Für unsere Anwendung benötigen wir als Darstellung der Konvexen Hülle diejenigen
Segmente, die die konvexe Menge eingrenzend definieren. Abbildung 2.4 zeigt eine solche durch
Segmente gegebene Konvexen Hülle eines Polygons. Dies ist also wieder ein Polygon nach unserer
Definition, und die definierenden Vertices sind eine Teilmenge der Vertices des zugrundeliegenden
Polygons.

Für ein gegebenes Polygon bedeutet dies, vereinfacht ausgedrückt, dass man Segmente von jedem
Vertex zu allen anderen ziehen kann, und dann diejenigen Segmente als Konvexe Hülle übernimmt, die
am äußersten Rand liegen. Oder noch einfacher ausgedrückt: Um die Vertices des Polygons wird ein
enges Gummiband gelegt, das sich eng um die Vertices schmiegt. Die Vertices, die dieses Gummiband
berührt, und die dadurch definierten Segmente, sollen berechnet werden.

Zur Berechnung von Konvexen Hüllen von Punktmengen gibt es zahlreiche Algorithmen. Die schnells-
te Berechnung der Konvexen Hülle von (unstrukturiert gegebenen) n Punkten ist in einer Zeitkom-
plexität von O(n log h) möglich, wobei h die Anzahl der Vertices ist, die auf der Konvexen Hülle
liegen[Cha96]. Der Einfachheit halber wurde für diese Arbeit eine Variante von Andrews monotone
chain[And79] implementiert, um die Konvexe Hülle eines Polygons in O(n log n) zu berechnen. Die
Berechnung der Konvexen Hülle selbst ist hierbei in O(n) möglich, nachdem die Eingabe der Punkte
mit Aufwand O(n log n) sortiert wurde.

Die Punkte der Eingabe seien aufsteigend nach x-Koordinate sortiert, und Punkte mit gleicher x-
Koordinate seien absteigend nach y-Koordinate sortiert. Der Algorithmus berechnet die untere und
obere Hälfte der Konvexen Hülle separat, im Folgenden wird nur das Vorgehen für die untere Hälfte
erläutert; die obere Hälfte wird analog berechnet. Zunächst ist ersichtlich, dass der Punkt pmin am
weitesten links und pmax am weitesten rechts zur Konvexen Hülle gehören. Sind unterhalb der Linie
pminpmax keine weiteren Punkte, ist die untere Hälfte der Konvexen Hülle fertig. Gibt es jedoch
Punkte unterhalb der Linie, werden diese in ihrer sortierten Reihenfolge betrachtet. Ein Punkt pn
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2.2 Polygone und Geometrische Algorithmen

kann entweder innerhalb der bisher gefundenen Konvexen Hülle liegen, oder ausserhalb. Liegt er
ausserhalb, wird die Konvexe Hülle um diesen Punkt erweitert, und es ist nötig sicherzustellen, dass
alle bisherigen Punkte der Konvexen Hülle noch zum Rand dieser gehören. Um das zu prüfen wird vom
aktuellsten Segment der Konvexen Hülle rückwärts gehend getestet, welche Segmente der aktuellen
Konvexen Hülle durch Hinzufügen von pn überflüssig werden. Diese werden entfernt, indem die
hiermit korrespondierenden Punkte aus der konvexen Hülle entfernt werden. Diese Rückwärtssuche
endet, wenn pmin erreicht oder ein Segment der Konvexen Hülle gefunden wird, das durch pn nicht
geändert werden muss (weil pn links von der durch das Segment definierten Gerade liegt). Da jeder
Punkt auf diese Weise höchstens ein mal zur Konvexen Hülle hinzugefügt und ggf. wieder entfernt
werden kann, sind nach O(n) Schritten alle an der Konvexen Hülle beteiligten Punkte gefunden.
Abbildung 2.5 skizziert die beschriebene Konstruktion der Konvexen Hülle.
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Abbildung 2.5: a) pmin und pmax des Polygons sind auf jeden Fall Teil der Konvexen Hülle. b)
Einteilen der Punkte in untere und obere Hälfte (nur untere Hälfte dargestellt) und
Sortieren der Punkte anhand der x-Koordinaten. c) Die Punkte c1, c2 und c3 sind
Teil der Konvexen Hülle aller bis c3 betrachteten Punkte. Durch Hinzunahme von
pn wird die Konvexe Hülle um pn erweitert und c3 wird entfernt.

Nach Ablauf dieses Algorithmus liegt die Konvexe Hülle als Folge von Vertices vor, also als Linienzug,
der gegen den Uhrzeigersinn verläuft.
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Um eine Konstellation von zwei Polygonen zu bewerten, muss später die Konvexe Hülle von zwei
Polygonen Pn und Pm (mit je n und m Vertices) berechnet werden. Dies direkt über die Vertices der
Polygone zu berechnen, würde wieder eine erneute Sortierung der Punkte benötigen, was eine teure
Operation ist. Da aber zu beiden gegebenen Polygonen jeweils eine Konvexe Hülle berechnet wurde,
lässt sich eine Sortierung der für uns relevanten Vertices, und daher die Berechnung der gesamten
Konvexen Hülle, in O(n + m) realisieren. Dies ist der Fall, da die gemeinsame Konvexe Hülle beider
Polygone nur aus Vertices bestehen kann, die bereits zu der Konvexen Hülle jedes einzelnen Polygons
gehören. Da die Konvexen Hüllen als Linienzug gegeben und die Vertices jeweils sortiert sind, lassen
sich diese durch einen Merge-Sort Schritt in eine gemeinsame Sortierung überführen. Dies hat einen
Aufwand von O(n + m). Im Anschluss wird wieder der bereits beschriebene Algorithmus verwendet,
um die Konvexe Hülle der sortierten Punktmenge zu berechnen. Dies hat ebenfalls einen Aufwand
von O(n + m). Abbildung 2.6 zeigt die Konvexe Hülle zweier konvexer Polygone.

Abbildung 2.6: Konvexe Hülle (in grün hinterlegt) zweier konvexer Polygone. Weil die Linienzüge
der beiden Polygone bereits einer Sortierung folgen, lässt sich die gesamte Konvexe
Hülle in O(n) berechnen.
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2.2 Polygone und Geometrische Algorithmen

2.2.3 Minimales umfassendes Rechteck

Das Minimale Umfassende Rechteck (kurz: minimales Rechteck) einer Punktmenge M mit n Punkten
ist das Rechteck mit der kleinsten Fläche, das alle Punkte aus M enthält. Die Orientierung des
minimalen Rechtecks kann beliebig sein, und ist nicht an die Hauptachsen gebunden. Das minimale
Rechteck einer Punktmenge enthält auch die Konvexe Hülle dieser Punktmenge, wie in Abbildung
2.7 dargestellt.

Abbildung 2.7: Das minimale umfassende Rechteck eines Polygons wird anhand der Konvexen Hülle
des Polygons berechnet.

Insbesondere ist die Berechnung des minimalen Rechtecks in einer Zeitkomplexität von O(n) möglich,
wenn die Konvexe Hülle der entsprechenden Punktmenge gegeben ist[FS75][Tou83]. Dies ist der
Beobachtung geschuldet, dass das minimale Rechteck mit jeder Seite mindestens einen Vertex der
Konvexen Hülle der Punktmenge berühren muss, und mit mindestens einer Seite an einem Segment
der Konvexen Hülle anliegt[FS75]. Ist also eine Konvexe Hülle (bzw. ein konvexes Polygon) gegeben,
lässt sich sehr schnell und relativ einfach das minimale Rechteck berechnen. Es wird wieder die
Konvention verwendet, dass eine Konvexe Hülle durch einen Linienzug gegeben ist.

Zur Berechnung des minimalen Rechtecks wird die Methode der Rotating Callipers[Tou83] verwendet.
Zwei jeweils parallele Linienpaare, die gemeinsam ein Rechteck bilden, werden hierbei um das
konvexe Polygon rotiert. Als Startkonfiguration können an den Hauptachsen orientierte Linien
gewählt werden, die jeweils an dem Vertex anliegen, der am weitesten unten, rechts, oben und links
ist. Die Linien liegen stets an mindestens einem Vertex oder an einem Segment an, und werden stets
um den kleinsten möglichen Winkel so weiter rotiert, dass keine Linie ein Segment des konvexen
Polygons schneidet, sondern höchstens an einem Segment ausgerichtet ist. Hierbei muss jede Linie
jeden Vertex genau ein mal berühren, bis die Ausgangsstellung wieder erreicht ist. Dies entspricht
einer vollen Umrundung des konvexen Polygons durch alle Linien. Während dieser Umrundung lassen
sich alle durch die vier Linien gebildeten Rechtecke aufstellen (es sind höchstens n Rechtecke), und das
kleinste wird als Ergebnis des Algorithmus ausgegeben. Tatsächlich ist nur eine viertel-Umrundung
des Polygons nötig, bis alle relevanten Rechtecke betrachtet wurden, da alle weiteren Drehungen nur
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Rechtecke erzeugen, die äquivalent zu bereits bekannten sind. Abbildung 2.8 zeigt zwei Schritte des
beschriebenen Algorithmus.

αmin

a) b)

Abbildung 2.8: Die im Rechteck angeordneten Parallelen rotieren um den minimalen Winkel α um
das konvexe Polygon.

Ein berechnetes minimales Rechteck zu einem Polygon wird mit den Seitenlängen (x, y) und zwei
Vektoren p, d ∈ R2 gespeichert. Der Vektor p gibt einen Eckpunkt des Rechtecks an und der Vektor d
eine Richtung, in die von p aus die längere Seite des Rechtecks zeigt. Der Einfachheit halber wird p so
gewählt, dass es der Eckpunkt links unten ist, nachdem das Rechteck anhand der Richtung p durch
eine Rotation R(p)−1 auf die Hauptachsen ausgerichtet wurde. Die Seitenlänge x ist hierdurch die
längere der beiden Seiten und kann als Skalierungsfaktor verwendet werden, wie es im Schnitttest
nötig wird.
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2.2 Polygone und Geometrische Algorithmen

2.2.4 Triangulierung von Polygonen

Abbildung 2.9: Triangulierung eines Polygons.

Die Zerlegung eines Polygons Pn in Dreiecke wird Triangulierung genannt und ist in Abbildung
2.9 gezeigt. Jeweils drei Vertices des Polygons definieren hierbei ein Dreieck, Vertices können an
mehreren Dreiecken beteiligt sein, und es gibt genau n−2 solcher Dreiecke. Die hier betrachtete Form
einfacher Polygone ermöglicht eine unkomplizierte Zerlegung in Dreiecke, da keine Löcher im Inneren,
oder gar sich schneidende Segmente berücksichtigt werden müssen. Da die Triangulierung nur für
Eingabe-Polygone durchgeführt werden muss, und dies auch nur ein mal, wird ein Algorithmus in
einer Zeitkomplexität von O(n2) benutzt. Die Grundidee des verwendeten Algorithmus ist, fehlende
Segmente zwischen Vertices hinzuzufügen und entweder so entstandene Dreiecke am Polygon Pn

wegzuschneiden, oder das Polygon am eingefügten Segment aufzuspalten. Dies entspricht einerseits
einem Ear-Clipping[Mei75] Ansatz, verwendet aber auch eine rekursive Strategie an Stellen des
Polygons, an denen nicht direkt ein Dreieck entfernt werden kann.

Da genau drei Vertices an einem Dreieck beteiligt sein müssen, läuft der Algorithmus den Linienzug
des Polygons entlang, und betrachtet jeweils drei aufeinander folgende Vertices v0, v1, v2. Bilden diese
Vertices ein gültiges, am Polygon abstehendes Dreieck, kann dieses Dreieck abgeschnitten werden.
Die beteiligten Vertices werden vermerkt und der Algorithmus fährt fort mit einem Polygon Pn−1, in
dem der Vertex v1 fehlt, da er abgeschnitten wurde. Ein Dreieck kann nur abgeschnitten werden, wenn
innerhalb dieses Dreiecks keine weiteren Punkte des Polygons liegen. Liegt allerdings mindestens ein
weiterer Punkt im Dreieck, wird derjenige Punkt v ausfindig gemacht, der den kürzesten Abstand zu
v1 hat. Entlang der Linie v1v wird das Polygon Pn nun in zwei kleinere Polygone geteilt, und das
Segment (v1, v) wird in beide Polygone hinzugefügt. Der Algorithmus ruft sich nun rekursiv mit den
erzeugten Teilpolygonen als Eingabe auf und fügt die Ergebnisse der Rekursionen der Dreiecksliste
hinzu.

In jedem Schritt wird also entweder ein Vertex weggeschnitten oder das Polygon geteilt. Dies ist
in Abbildung 2.10 dargestellt. Da ein neues Teilpolygon mindestens drei Vertices hat, sind solche
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erzeugten Teilpolygone gültig. Der Algorithmus (und rekursive Aufrufe davon) terminiert, wenn er
ein Polygon P3 erzeugt, oder Teillösungen aus einer Rekursion empfangen hat.

Angenommen für ein Polygon Pn geht der Algorithmus nie in eine Rekursion, so muss er maximal
alle n Vertices betrachten, bis ein erster Vertex mit dem ersten dazugehörigen Dreieck abgeschnitten
werden kann. Dies ist garantiert durch Meisters Two Ears Theorem[Mei75], das besagt, dass (bis auf
Dreiecke) jedes einfache Polygon mindestens zwei abstehende Dreiecke besitzt.

Für das Finden eines abstehenden Dreiecks benötigt der Algorithmus also maximal n Schritte, hinzu
kommen proDreieckn−3Tests, obweitere Punkte in dem gefundenenDreieck liegen. Ohne Rekursion
benötigt der Algorithmus also O(n2) Schritte, um alle Dreiecke, bzw. Vertices abzuschneiden. Wird
eine Rekursion mit Polygonen Pn1 , Pn2 nötig, werden insgesamt

n = n1 + n2 + 2
n2 = n2

1 + n2
2 + 2n1n2 + 2n1 + 2n2 + 4

n Vertices bei Berechnungen betrachtet. Somit sind

O(n2
1) + O(n2

2) + O(n1) + O(n2) + O(1) = O(n2
1 + n2

2) ∈ O(n2)

Schritte nötig, bis die Rekursionen terminieren.

Ist das Eingabepolygon also ein gültiges einfaches Polygon, terminiert der Algorithmus nach O(n2)
Schritten.
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Abbildung 2.10: a) Das Dreieck kann vom Polygon abgeschnitten werden. b) v liegt innerhalb des
Dreiecks, daher wird das Polygon entlang v1v getrennt und die zwei Teilpolygone
einzeln trianguliert. Die abgerundeten Segmente stellen einen Verlauf des restlichen
Linienzugs dar, in dem v enthalten ist.

Nach dem Algorithmus liegt eine Liste von Dreiecken vor, die angibt durch welche Vertices ein
Dreieck gebildet wird, sodass alle angegebenen Dreiecke das ursprüngliche Polygon bilden. Die
Triangulierung wird für den grafischen Schnittest benötigt, liefert aber auch den Flächeninhalt des
Polygons.
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2.2.5 Punktverdeckung durch Polygone

Abbildung 2.11: Rote Punkte ”sehen” in alle Richtungen nur das Polygon, grüne Punkte ”sehen” das
Polygon nur in einem bestimmten Bereich ihres Horizonts.

Gegeben seien ein beliebiger Punkt v ∈ R2 und ein Polygon Pn. Der Punkt v sei nicht im Inneren des
Polygons positioniert, er kann jedoch entweder komplett ausserhalb des Polygons liegen, oder in
einer lokal konkaven Stelle. Weiterhin sei ein Kreis gegeben, der groß genug ist, sodass sowohl v, als
auch Pn in diesem Kreis liegen. Dieser Kreis ist sozusagen der Horizont von v und Pn.

Für v und Pn ist nun zu entscheiden, wieviel vom Horizont v erblicken kann, sozusagen welchen
Winkel das Blickfeld von v auf den Horizont hat. Liegt der Punkt in einer lokal konkaven Stelle des
Polygons, gibt es zwei Möglichkeiten. Entweder der Punkt sieht in alle Richtungen nur Segmente
des Polygons, in diesem Fall wird der Horizont in einem Winkel von 0 gesehen. Oder der Punkt
kann auf den Horizont blicken, in diesem Fall gibt es einen Winkel α ∈ (0, 2π), der durch zwei
Richtungsvektoren aufgespannt wird, die das Blickfeld von v angeben. Abbildung 2.11 zeigt Beispiele,
in denen Punkte vom Polygon verdeckt sind oder nach außen ”sehen” können.

Dies ist gleichzeitig auch ein Test darauf, ob der gegebene Punkt von außen gesehen durch das
Polygon verdeckt wird, oder zu sehen ist. Dieser Test wird im Laufe der Arbeit benutzt, um von aussen
nicht mehr erreichbare Punkte in einem Polygon, oder in einer Polygonkonstellation, zu erkennen.
Für den folgenden Algorithmus konnte der Autor keine Beschreibung in der Literatur finden, die ihm
zugänglich war. Es wird aber davon ausgegangen, dass der Algorithmus unter anderen Stichwörtern,
oder für eine andere Verwendung bereits bekannt ist.

Der Algorithmus zur Lösung der Problemstellung berechnet nicht direkt den Blickwinkel von v auf
den Horizont. Statt dessen wird der komplementäre Winkel berechnet, der das Blickfeld von v auf das
Polygon angibt. Zur Vereinfachung wird dieser Blickwinkel auf das Polygon im Folgenden (ebenfalls)
α genannt.

Um an diesen Winkel α zu gelangen, werden zwei Richtungsvektoren rcw, rccw ∈ R2 gesucht, die das
Blickfeld von v angeben. Gleichzeitig wird im Verlauf des Algorithmus die Information mitgetragen,
ob α ≤ π, oder ob α > π gilt, um aus den Richtungen eindeutig den Winkel bestimmen zu können.
Die Grundidee besteht darin, alle Segmente des gegebenen Polygons Pn auf den Horizont von v zu
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v
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rccw
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Abbildung 2.12: a) Die in Pn durchlaufenen Segmente erweitern das initiale Blickfeld von v ohne
Überschneidungen zu erzeugen. b) Das aktuell betrachtete Segment aktualisiert
rccw und erzeugt dadurch ein Blickfeld für v von mehr als 2π. Hierdurch wird
erkannt, dass v komplett von Pn umschlossen wird.

projezieren, und Buch zu führen, zu welchem Teil der Horizont bereits durch das Polygon verdeckt
ist. Abbildung 2.12 skizziert dieses Vorgehen.

Initial wird das erste Segment S1 = (p1, p2) von Pn auf den Horizont projiziert, indem die Richtungen
(p1 − v) und (p2 − v) als Startwerte für rcw und rccw gewählt werden. Gleichzeitig wird notiert, wo
bezüglich der beiden Richtungen das Innere des Polygons liegt. Dies ist initial durch das erste Segment
des Polygons gegeben. Sei nun Si das im Linienzug nächste Segment. Von diesem nächsten Segment
wird der nächste, noch nicht verarbeitete Punkt pi+1 betrachtet. Liegt pi+1 innerhalb des durch
rcw und rccw markierten inneren Bereiches, muss keiner der beiden Richtungsvektoren angepasst
werden. Liegt der nächste Punkt ausserhalb dieses inneren Bereiches, wird eine der Richtungen so
angepasst, dass der Punkt wieder innen liegt (liegt ein Punkt genau auf einer der durch die Richtungen
gegebenen Geraden, liegt dieser Punkt ebenfalls innen). Dies passiert so, dass abhängig von der
Laufrichtung des nächsten Segments entweder rcw oder rccw angepasst wird, je nachdem, ob der
nächste aussen liegende Punkt den eingegrenzten inneren Bereich in Richtung im (CW, rcw) oder
gegen (CCW, rccw) den Uhrzeigersinn verlässt. Weil das Polygon sich in besagte Richtung erstreckt,
wird die entsprechende begrenzende Richtung zu r = (pi+1 − v) aktualisiert. Auf diese Weise werden
alle Segmente des Polygons betrachtet, implizit auf den Horizont des Punktes v projiziert und dadurch
das freie Blickfeld von v eingegrenzt.

Im Laufe des Algorithmus kann es passieren, dass eine der Richtungen r so aktualisiert werden soll,
dass sie die jeweils andere Richtung übertritt. Dies bedeutet, dass aus Sicht von v zwei Segmente des
Polygons sich am Horizont aus verschiedenen Richtungen überlappen, und zwar an einer Stelle des
Horizonts, die bisher sichtbar war. Da das Polygon ein Linienzug ist, ist v hierdurch komplett vom
Polygon umgeben. Der Horizont ist also nicht sichtbar, der gesuchte Winkel α ist gleich null und der
Algorithmus terminiert mit diesem Ergebnis.

Läuft der Algorithmus alle Segmente durch, ohne auf so eine Überkreuzung von rcw und rccw zu
treffen, ist der gesuchte Winkel größer null, und die resultierenden Richtungsvektoren und der Winkel
werden als Ergebnis ausgegeben. Die Laufzeitkomplexität dieses Vorgehens beträgt O(n), da maximal
n Segmente betrachtet werden müssen, bis der Algorithmus ein Ergebnis ausgibt.
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2.2 Polygone und Geometrische Algorithmen

Abbildung 2.13: a) Der Punkt ist von Polygonen so umgeben, dass sein Horizont ausgefüllt ist. b)
Die Polygone verdecken den Horizont des Punktes nicht vollständig.

Ist ein Punkt v gegeben, und mehrere Polygone P i
ni
, kann für diesen Punkt berechnet werden,

ob sein Horizont von allen Polygonen gleichzeitig verdeckt wird (siehe Abbildung 2.13). Hierfür
werden zunächst für jedes Polygon die Richtungen ri

cw und ri
ccw samt der Winkel αi berechnet.

Diese Richtungen werden nun so interpretiert, dass sie den Teil des Horizonts als Intervall angeben,
in dem das Polygon P i den Horizont verdeckt. Eine Liste von Intervallen auf dem Horizont wird
zunächst aufgestellt und bezüglich einer Referenz-Richtung (z.B. bezüglich

(
1 0

)⊤
und entgegen

dem Uhrzeigersinn) sortiert. Die Intervalle können anschließend in einem Durchlauf der sortierten
Liste mit einander verschmolzen werden. Intervalle, die sich überlappen werden hierbei zu einem
Intervall zusammen gefasst. Dieses Intervalle-Mergen ist in einem Durchlauf der sortierten Intervall-
Liste möglich, also in O(n), wenn n die Anzahl der Intervalle ist.

Während dieses Merge-Schrittes kann passieren, dass nur ein Intervall übrig bleibt, das sich auch noch
selber überlappt, weil es auf dem Horizont einen Winkel von mehr als 2π einnimmt. In diesem Fall ist
der Punkt v von allen Polygonen so umgeben, dass kein Horizont über bleibt. Anderenfalls bleibt eine
Liste von Intervallen, zwischen denen zu einem gewissen Bereich jeweils ein Stück Horizont sichtbar
ist. Mithilfe dieses Vorgehens kann untersucht werden, wie erreichbar ein Punkt v in Konstellation
mit einem oder vielen Polygonen ist.
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3 Polygon-Schnitttests auf der Grafikkarte

a) b)

Abbildung 3.1: a) Zwei Polygone in einer Stellung, in der sie sich schneiden. Die Schnittfläche ist
rot markiert. b) Die Polygone werden anhand eines Rastergitters dargestellt.

Ein wesentlicher Bestandteil der Problemstellung dieser Arbeit ist es, dass platzierte Formen nicht
übereinander liegen dürfen. Um dies sicher zu stellen, müssen in einer Stellung gegebene Polygone
darauf getestet werden, ob diese sich schneiden. Hierfür existieren analytische Methoden, die für zwei
Polygone die beteiligten Segmente darauf testen, ob diese sich schneiden. Dies ist mit einer optimalen
Komplexität von O(k + n log n) möglich[CE92], wobei n die Anzahl aller gegebenen Segmente
ist, und k die Anzahl der resultierenden Schnittpunkte. Einerseits ist die Implementierung solcher
Algorithmen fehleranfällig und daher zeitraubend, andererseits sind analytisch genaue Schnitttests
auch nicht immer nötig.

In dieser Arbeit wird daher ein Schnitttest verwendet, der auf der Rasterisierung von Polygon-
Segmenten beruht. Dies bedeutet, dass ein Polygon in ein zweidimensionales Gitter gelegt wird, und
anhand des Linienzugs und des Inneren des Polygons Gitterzellen markiert werden, in denen das
Polygon liegt[OF93]. Der Vorgang der Abbildung von geometrischen Formen auf Gitterzellen wird
Rasterisierung genannt. Ein Beispiel einer Rasterisierung von Polygonen ist in Abbildung 3.1 zu
sehen. Ein solches Verfahren ist einfacher umzusetzen als ein analytisches und es bietet gleichzeitig
Kontrolle über einen gewissen Fehler, den man im Schnitttest erlauben kann.

Grafikkarten (GPUs1) sind hoch spezialisierte Hardwareeinheiten, die auf schnelle Rasterisierung
und Verwaltung einfacher geometrischer Objekte spezialisiert sind. Eine Rasterisierung von gegeben
Polygonen kann zwar auch über eine Implementierung eines Software-Rasterisierers erfolgen, oder
durch die Benutzung von vorhandenen Software-Bibliotheken, jedoch stellen diese nur suboptimale
Lösungen dar. In dieser Arbeit wird daher der Ansatz verfolgt, eine Rasterisierung der Polygone
unmittelbar auf der Grafikkarte geschehen zu lassen, und auf diese Weise einen Schnitttest zu

1GPU, Graphics processing unit
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3 Polygon-Schnitttests auf der Grafikkarte

realisieren, der sich die Spezialisierung der Grafikhardware zunutze macht. Hierfür wird der OpenGL-
Standard2 benutzt, der eine weitestgehend direkte Kommunikation mit der Grafikkarte erlaubt. Der
Schnitttest erfolgt dann anhand durch die Grafikkarte erstellter Bilder der Polygone, und dies alles
geschieht auf dem Speicher und den Recheneinheiten der GPU. Weitere Funktionalitäten von OpenGL
ermöglichen anschliessend das Ergebnis eines solchen Schnitttests im Hauptspeicher der Anwendung
schnell verfügbar zu machen.

Im Folgenden wird die OpenGL-API3 und deren Verwendung erläutert. Darauf aufbauend wird, unter
Nutzung aktueller technischer Möglichkeiten der OpenGL-Version 4.2, ein Schnitttest auf der GPU
entwickelt und optimiert. Über die bereits bestehende OpenGL Anbindung wird zusätzlich eine
einfache Visualisierung von Polygonen und Polygon-Schachtelungen realisiert, sowie eine Maus
basierte Eingabe von Polygonen durch den Benutzer.

3.1 Grundlagen in OpenGL

Grafikkarten sind darauf spezialisiert Berechnungen auf einfachen geometrischen Objekten schnell
und hochparallel durchzuführen und als Rastergrafik auszugeben. OpenGL ist ein durch die Khronos
Group verwalteter Standard zur Darstellung von 2D und 3D Grafik. Aus Programmierersicht ist
OpenGL eine Bibliothek und Programmierschnittstelle die es erlaubt bestimmte geometrische Primi-
tive und dazugehörige Daten auf den Speicher der Grafikkarte zu übertragen, diese durch die GPU
verarbeiten zu lassen, und daraus resultierende Bilder anzuzeigen oder anderweitig weiter zu verwen-
den. Hierfür definiert OpenGL eine Reihe von Funktionen, die einem Programm ermöglichen, mit
einer gegebenen OpenGL-Implementierung zu interagieren um definierte OpenGL-Zustände zu verän-
dern, Speicher anzufordern und Daten auf die GPU zu übertragen, und letztendlich Objekte durch die
GPU erzeugen (rendern) zu lassen. Die OpenGL-Implementierung wird meist durch den Grafikkarten
Treiber bereitgestellt und dient als Server, der verschiedenen Anwendungen, den Clients, OpenGL-
Funktionalität zur Verfügung stellt und Ressourcen der Grafikkarte verwaltet. OpenGL ist auf kein
bestimmtes Betriebssystem beschränkt und namhafte Hersteller von Grafikkarten bieten über entspre-
chende Treiber OpenGL-Unterstützung für gängige Betriebssysteme. Eine OpenGL-Implementierung
bezieht sich stets auf eine bestimmte Version des OpenGL-Standards. Neuere Versionen des Standards
zeichnen sich durch mehr verfügbare und meist technisch aktuelle Funktionalität aus. In dieser Arbeit
wird Funktionalität der OpenGL-Version 4.2 verwendet, hierauf wird im nächsten Kapitel genauer
eingegangen.

Für ein Programm lässt sich die Verwendung von OpenGL in fünf Schritte einteilen:

1. Initialisiere OpenGL Kontext.

2. Fordere von OpenGL Speicher an und fülle diesen mit geometrischen Objekten und dazu
gehörenden Daten. Initialisiere nötige Shader-Programme und übergib diese an OpenGL.

2OpenGL, Open Graphics Library, http://www.opengl.org/
3API, Application programming interface
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3.1 Grundlagen in OpenGL

3. Setze aktuell zu zeichnendes Objekt, nötige Einstellungen und Zustände, aktiviere aktuell zu
nutzendes Shader-Programm.

4. Rendere geometrisches Objekt über Draw Call.

5. Gib Speicher frei und beende OpenGL Kontext.

Während Schritt 1, 2 und 5 häufig nur ein mal nötig sind, werden Schritt 3 und 4 stets dann ausgeführt,
wenn eine neue Ausgabe aktualisierter Bilddaten gewünscht ist. Für interaktive Echtzeitanwendungen
ist zum Beispiel eine Bildwiederholrate von mindestens 30 Bilern pro Sekunde wünschenswert, sodass
mindestens 30 mal pro Sekunde nötige Datenstrukturen aktualisiert werden und ein Draw Call für zu
zeichnende Objekte erfolgen muss.

Die Initialisierung eines OpenGL Kontexts erfolgt über Helfer-Bibliotheken, die von dem Betriebssys-
tem nötige Ressourcen anfordern und technisch umfangreiche Funktionen abstrahieren, wie etwa die
Funktionalität einer bestimmten OpenGL-Version zugänglich zu machen. Hierfür wurden in dieser
Arbeit die Bibliotheken GLFW4 und GLEW5 genutzt. OpenGL kann nur einige wenige geometrische
Primitive zeichnen: Punkte, Linien und Dreiecke. Um also komplexe Objekte wie Polygone zeichnen
zu können, müssen diese als Dreiecke vorliegen. Um diese Daten an OpenGL zu übergeben und
effizient verwalten zu können gibt es viele Mechanismen, auf die hier nicht näher eingegangen wird.
Grundsätzlich teilt ein Programm OpenGL mit, welche Art von Daten es zu zeichnen beabsichtigt.
Auf Anfrage stellt OpenGL reservierten Speicher bereit, auf den Vertices, Farben, Texturen und vieles
mehr übertragen werden kann. Anschliessend werden diese Daten über OpenGL (auf der GPU) in
sogenannten Shader-Programmen zu einem Bild verarbeitet.

Shader sind eine Arbeitsanweisung an die Grafikkarte und werden als Programme realisiert die auf spe-
ziellen, parallelen Recheneinheiten der Grafikkarte ausgeführt werden, und auf Eingabedaten in einem
definierten Rahmen arbeiten. Diese Verarbeitungsweise von Daten entspricht dem Single-Instruction-
Multiplie-Data Prinzip. Shader werden in der C ähnlichen Programmiersprache GLSL6 geschrieben,
an OpenGL zur Kompilierung übergeben und anschliessend als zu benutzende Shader-Programme
registriert. OpenGL definiert verschiedene Arten von Shadern, die auf verschiedenen Ebenen in
OpenGL unterschiedliche Aufgaben übernehmen. Solche verschiedenen Shader werden gemeinsam
zu einem Shader-Programm zusammengefasst, das für OpenGL vereinfacht als ’Arbeitsanweisung an
die Grafikkarte’ umschrieben werden kann. Während also ein Client-Programm von CPU-Seite für
OpenGL Daten vorbereitet und nötige Einstellungen trifft, verarbeiten Shader-Programme diese Daten
auf der Grafikkarte und führen zum fertigen Bild. Der in Schritt 4 nötige Draw Call bewirkt, dass zu
malende Daten in Form von Vertices unter dem aktuell aktiven Shader-Programm verarbeitet werden.
Diese Verarbeitung erfolgt auf der GPU und durchläuft die sogenannte OpenGL Rendering-Pipeline.

Die in Abbildung 3.2 gezeigte Pipeline ist eine extrem verkürzte Darstellung der tatsächlichen OpenGL
Pipeline. Im weiteren Verlauf wird nur auf Aspekte der Pipeline und der Shader eingegangen, die
für diese Arbeit wichtig sind und in der Implementierung eingesetzt wurden. Abbildung 3.2 zeigt
also nur für diese Arbeit relevante Teile der Rendering-Pipeline: die programmierbaren Vertex- und

4http://www.glfw.org/
5http://glew.sourceforge.net/
6GLSL, OpenGL Shading Language
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Abbildung 3.2: a) Vereinfachte OpenGL Rendering-Pipeline. Blau hinterlegte Schritte unterliegen
der Kontrolle durch den Programmierer. Orange hinterlegte Schritte sind unter Kon-
trolle von OpenGL und können nur bedingt konfiguriert werden. b) Skizzenhafte
Darstellung der Schritte in der OpenGL Rendering-Pipeline. Die Schritte Transfor-
mieren und Färben sind durch den Vertex- und Fragment-Shader weitestgehend
frei programmierbar. Quelle: Eigene Darstellung in Anlehnung an die OpenGL 4.4
Spezifikation[SA13].

Fragment-Shader. Die Rasterisierung erfolgt automatisiert durch OpenGL und bildet geometrische
Primitive, deren Vertices durch den Vertex-Shader bearbeitet wurden, auf ein Rasterbild ab. Aus
der Rasterisierung gehen sogenannte Fragmente hervor, dies sind unfertige Pixel des Bildes, die das
rasterisierte Objekt darstellen. Fragmente werden im Fragment-Shader mit einer Farbe versehen und,
falls kein anderer Mechanismus das Gegenteil bewirkt, in das resultierende Bild übernommen. Alle
Shader können, neben durch die Pipeline definierten Eingabewerten, auch von der CPU bestimmte,
für den aktuellen Aufruf relevante Eingaben erhalten. Dies sind sogenannte Uniform Variablen. Diese
Uniform Variablen erlauben es, einen einmal geschrieben und geladenen Shader mit für verschiedene
Objekte wechselnden Parametern auszuführen. Auf diese Weise können zum Beispiel aktuell nötige
Transformationsmatrizen in den Vertex-Shader übergeben werden.

Der Vertex-Shader wird für jeden Vertex des zu zeichnenden Primitivs einmal aufgerufen. Dies erlaubt
es, alle Vertices in parallelen Recheneinheiten gleichzeitig zu verarbeiten. Diese Recheneinheiten kön-
nen nicht gegenseitig auf Informationen und Zwischenergebnisse voneinander zugreifen. Ein Vertex
kann im Vertex-Shader verschiedenen Transformationen unterzogen werden, und auch für den Vertex
wichtige Attribute können manipuliert werden. Ein Vertex kann, neben seiner Position als Vektor in
maximalR4, noch weitere, frei wählbare Eingabeparameter mitbringen, wie etwa die eigene Farbe, die
lokale Normale des Objekts, oder Texturkoordinaten. Nach der Verarbeitung im Vertex-Shader wird
aber erwartet, dass die Koordinaten aller Vertices in R3 in homogenen Koordinaten, also als Vektor
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3.2 Ein einfacher Schnitttest

(
x y z w

)⊤
∈ R4, in sogenannten Clip-Koordinaten vorliegen. Die x-y-Koordinaten entsprechen

hierbei den x-y-Achsen des Ausgabebildes, −z entspricht der Blickrichtung des Betrachters, ist also
die Tiefe. Die w-Koordinate wird für die perspektivische Division benutzt. Ist w ungleich null, so
bringt das Teilen aller Koordinaten durch w einen Vertex in normalisierte Gerätekoordinaten. Für die
Anwendung in dieser Arbeit sind nur die x-y-Koordinaten relevant.

OpenGL rasterisiert nur Teile von Objekten, deren x-y-Koordinaten nach dem Vertex-Shader in dem
Rechteck [−1.0, 1.0]×[−1.0, 1.0] liegen7.WurdenVertices so transformiert, dass sie dieser Konvention
nachkommen, so befinden sie sich in normalisierten Gerätekoordinaten. Fragmente werden nur für
diesen Bereich generiert und alles ausserhalb dieses Rechtecks wird durch Clipping beschnitten. Der
Fragment-Shader arbeitet auf interpolierten Vertex-Attributen und soll als Ergebnis einen Farbwert
in den Framebuffer übergeben. Die Vertex-Attribute werden im zu zeichnenden Dreieck für die Stelle
interpolierten, an der ein Pixel gesetzt wird. Dies ermöglicht für Grafikanwendungen pixelgenaue
Berechnung von Beleuchtung. Ein erzeugtes Fragment muss nicht in jedem Fall zu einem Pixel im
fertigen Bild werden. Ein Fragment kann sich selber als ungültig markieren oder aufgrund anderer
Mechanismen von anderen generierten Fragmenten überdeckt oder im Bild überschrieben werden. In
beiden Fällen landet ein Fragment nicht im resultierenden Bild. Wird ein Fragment jedoch gezeichnet,
wird es zwingend im Framebuffer gespeichert. Der Framebuffer muss jedoch nicht unbedingt im
Hauptfenster der Anwendung angezeigt werden. Auch ein oder mehrere Texturen im Grafikspeicher
können als Framebuffer genutzt werden, und im weiteren Verlauf können diese Texturen als Quelle
für weitere Berechnungen dienen (sogenanntes Off-Screen Rendering).

Hat ein Framebuffer eine Breite vonw Pixeln und eine Höhe von h Pixeln, so werden die normalisierten
Gerätekoordinaten auf die Größe des Framebuffers skaliert, bzw. es wird ein Gitter der Größe (w +
1, h + 1) auf das Einheitsrechteck gelegt, und die resultierenden Zellen stellen die Pixel dar. Für
Teile von zu malenden Dreiecken, die nun in Zellen liegen, werden Fragmente erzeugt, die vom
Fragment-Shader eine Farbe erhalten. Für die Anwendung in dieser Arbeit haben alle Texturen und
Framebuffer quadratische Form, also gleiche Höhe und Breite.

3.2 Ein einfacher Schnitttest

Gegeben seien zwei Polygone und dazugehörige Transformationsmatrizen, die eine Konstellation der
Polygone realisieren. Für diese Konstellation soll nun geprüft werden, ob sich die beiden Polygone
schneiden. Die Darstellung der Polygone wird zum Programmstart einmalig OpenGL mitgeteilt,
hierfür ist vor allem die Triangulierung des Polygons nötig. Alle jeweils nötigen Transformationen
für Polygone eines Schnitttests werden stets als Uniform-Variablen an den zuständigen Vertex-Shader
übergeben. Die Farbe, in der ein Polygon gezeichnet werden soll, wird ebenfalls als Uniform-Variable
übergeben.

Im folgenden wird ein Schnitttest beschrieben, der die Polygone in ein Bild projiziert und erkennt
für welche Pixel des Bildes beide Polygone einen Farbwert beisteuern wollten. Solche Pixel gelten

7Hier wird bewusst die Tiefendimension und der Zusammenhang zur Near- und Far-Clipping Plane ausgelassen, da für
diese Arbeit die Verarbeitung in x-y-Koordinten ausreichend ist.
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3 Polygon-Schnitttests auf der Grafikkarte

Abbildung 3.3: Anhand zwei rasterisierter Polygone wird die Schnittfläche erkannt.

als Nachweis, dass die Polygone sich in dieser Stellung schneiden. Eine konzeptionelle Darstellung
des Schnitttests ist in Abbildung 3.3 zu sehen. Es kann natürlich sein, dass Teile der Polygone, die
sich nicht schneiden, auf denselben Pixel gezeichnet werden sollen. Dies wäre ein false-positive,
also ein Schnitt, der tatsächlich keiner ist, und dieses Verhalten ist eine unvermeidliche Folge der
Rasterisierung. Durch eine höhere Auflösung des Bildes lassen sich solche fälschlich erkannten
Schnitte besser vermeiden.

Die Schnitterkennung erfolgt idealerweise komplett auf der GPU unter OpenGL, da ein Austausch
von Daten zwischen Hauptspeicher und Grafikkarte lange dauert und daher zu minimieren ist. Ein
naiver Ansatz, beide Polygone in ein Bild zu malen, funktioniert aus verschiedenen Gründen nicht.
Für jedes zu malende Polygon ist (lässt man fortgeschrittene Techniken der Computergrafik ausser
Acht) ein eigener Draw Call nötig. Das bedeutet, dass die Dreiecke des Polygons die Rendering-
Pipeline durchlaufen, im Vertex-Shader auf Clipping-Koordinaten, anschliessend auf normalisiere
Gerätekoordinaten transformiert werden, im Fragment-Shader eine Farbe erhalten, und letztendlich
in einem Ausgabebild landen. Die Schwierigkeit besteht darin, dass ein Fragment, welches an einen
bestimmten Ort im Ergebnisbild als Pixel geschrieben werden soll, den dort vorher befindlichen Pixel
überschreiben wird. Der Fragment-Shader für dieses Fragment hat auch keine einfache Möglichkeit
heraus zu finden, ob an der entsprechenden Stelle im Zielbild bereits ein Pixel eine bestimmte Farbe
hat. Ähnliche Mechanismen sind zwar zum Beispiel für Tiefentests8 zugänglich, stellen sich aber als
nicht hilfreich heraus, da sie im Kontext von OpenGL für andere Aufgaben ausgelegt sind. Es reicht
also nicht, beide Polygone hintereinander per Draw Call in das selbe Bild zu malen, da kein einfacher
Mechanismus zu Verfügung steht um bei diesem Vorgehen einen Schnitt zu erkennen.

Wie bereits ausgeführt, unterstützt OpenGL verschiedene Arten von Framebuffern. Dies lässt die
Möglichkeit zu, in Texturen zeichnen zu lassen, und diese Texturen anschliessend für weitere Be-
rechnungen zu verwenden. Ein solches Vorgehen wird im Allgemeinen Multipass Rendering genannt.
Folgender Schnitttest liegt hierdurch nahe:

8Jedes Fragment kann eine Tiefe erhalten, im Sinne einer Entfernung des gezeichneten Objektes vom Betrachter in
der dargestellten Szene. Sollen zwei Fragmente an derselben Stelle gezeichnet werden, kann anhand des Tiefentests
dasjenige Fragment gezeichnet werden, das näher zum Betrachter liegt und somit das andere verdeckt.
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3.2 Ein einfacher Schnitttest

1. Initialisiere zwei gleich große, schwarze Texturen A und B.

2. Erster Pass: Zeichne das erste Polygon in Textur A.

3. Zweiter Pass: Zeichne das zweite Polygon in Textur B.

4. Vergleiche beide Texturen pixelweise. Falls ein Pixel in beiden Texturen gezeichnet wurde,
schneiden sich die Polygone.

Der Vergleich der beiden Texturen soll nicht auf der CPU stattfinden, da hierfür die Texturen in den
Hauptspeicher übertragen werden müssen. Sollen die Texturen durch OpenGL verglichen werden,
muss dies im Rahmen der Rendering-Pipeline geschehen. Dies ist möglich, indem ein dritter Verarbei-
tungsschritt, also ein dritter Pass angefügt wird. Im dritten Pass wird ein Rechteck (bestehend aus
zwei Dreiecken) so gezeichnet, dass es die normalisierten Gerätekoordinaten ganz ausfüllt. Hierdurch
wird für jeden Pixel des Framebuffers genau ein Fragment erzeugt. Zusätzlich wird die Auflösung des
Framebuffers gleich der Auflösung der Texturen gesetzt, in die beide Polygone gezeichnet wurden. Im
Fragment-Shader werden die Texturen A und B verfügbar gemacht, und abhängig von den Werten
in den jeweiligen Pixeln kann das Fragment einen Schnitt der Polygone kommunizieren. Weil ein
Fragment seine Position im resultierenden Bild kennt, kann es anhand dieser Koordinaten auf die
korrespondierenden Pixel in den Texturen zugreifen und diese vergleichen. Mithilfe dieses Vorgehens
kann zum Beispiel in eine Dritte Textur pixelweise das Ergebnis des Vergleichs geschrieben werden.
Der Nachteil daran, eine gesamte dritte Textur als Resultat abzuspeichern, besteht darin, dass man
diese Textur wieder auf der CPU auswerten muss, um an das Ergebnis des Schnitttests zu gelangen.
Dies kann mithilfe sogenannter Atomic Counters vermieden werden.

CPU

OpenGL

Setze Daten 

für Pass 3
Draw

Render

Setze 

   AC

AC=0 AC=i

Lies 

 AC

AC++

RenderRender

DrawDraw
Setze Daten 

für Pass 2

Setze Daten 

für Pass 1

Abbildung 3.4: Schnitterkennung anhand rasterisierter Polyone und eines Atomic Counters (AC).
In den ersten zwei Pässen werden die Polygone in separate Texturen gerendert,
anschliessend werden die Texturen auf der GPU verglichen und anhand eines Atomic
Counter Überschneidungen erkannt. Das Ergebnis des Tests wird von der CPU aus
dem Atomic Counter gelesen.

Abbildung 3.4 zeigt die drei Pässe des entstandenen Schnitttests, skizziert die Verwendung der
Teilresultate und das Erkennen von Überschneidungen durch einen Atomic Counter. Atomic Counters
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3 Polygon-Schnitttests auf der Grafikkarte

sind ein Feature der OpenGL Version 4.2 und erlauben es, in parallel ausgeführten Shader Instanzen
einen gemeinsamen, zentralen Zahlenwert (Unsigned Integer) atomar auslesen und hochzählen zu
lassen. Dieser Atomic Counter liegt im Speicher der GPU, da dort der Zugriff darauf erfolgt. Zusätzlich
kann der Wert eines solchen Atomic Counters über die CPU initial gesetzt und bei Bedarf wieder
ausgelesen werden. Statt also eine große Textur auf den Hauptspeicher zu übertragen, bietet es sich an,
im dritten Pass im Fragment-Shader einen Atomic Counter immer dann hochzählen zu lassen, wenn
ein Fragment einen Schnitt gefunden hat. Durch die garantiert atomare Operation bleibt sichergestellt,
dass korrekte Ergebnisse entstehen. Andere mögliche Alternativen, die ein solches Verhalten eines
Zählers nachahmen, sind generell auch ohne Atomic Counter möglich, zum Beispiel durch Schreiben
in eine weitere Textur. Solche schreibenden Speicherzugriffe auf Texturen werden jedoch als teure
Operationen erachtet und sind nicht zwingend atomar. Der bisher aufgebaute Schnitttest wird also
insofern modifiziert, dass vor dem dritten Pass die CPU einen Atomic Counter initial auf Null setzt, und
der Fragment-Shader im dritten Pass diejenigen Fragmente den Zähler inkrementieren lässt, die einen
Schnitt gefunden haben. Nach dem dritten Pass liest die CPU den Zahlenwert des Atomic Counters
aus. Dies bedeutet, dass der Unsigned Integer des Atomic Counters von der GPU in den Hauptspeicher
übertragen werden muss, um das Resultat des Schnitttests für die CPU verfügbar zu machen. Ist diese
gelesene Zahl größer Null, schneiden sich die Polygone in der gegebenen Konstellation.

3.3 Details und Erweiterungen des Schnitttests

Der beschriebene Schnitttest lässt sich durch einige Änderungen konzeptionell vereinfachen und
dadurch merklich beschleunigen.

So wurde bisher nicht darauf eingegangen, wie genau die Transformationen aussehen, die die ge-
gebenen Polygone in die zu testende Konstellation bringen. Grundsätzlich reicht es, wenn diese
Transformationen sicherstellen, dass eines der Polygone voll im Bild liegt. Dies stellt sicher, dass eine
Überschneidung in jedem Fall erkannt wird. Eine entsprechende Konvention kann sein, dass stets das
kleinere Polygon durch eine Skalierung in das Bild eingepasst wird. Die bestmögliche Einpassung
eines Polygons in das quadratische Bild ist mithilfe des minimalen umfassenden Rechtecks eines
Polygons gegeben. Das minimale Rechteck ist schnell zu berechnen und wird auch für andere Zwecke
eingesetzt, liegt also für jedes Polygon bereits vor. Anhand dieses minimalen Rechtecks wird für eine
Konstellation zweier Polygone also das kleinere Polygon optimal auf das Ausgabebild eingepasst und
skaliert. Hierdurch wird für die eingestellte Auflösung der Rasterisierung die bestmögliche Qualität
erreicht, da kein Platz des Bildes ungenutzt bleibt. Dadurch werden für dieses Polygon auch maximal
viele Fragmente für die aktuelle Auflösung erzeugt. Dieses Polygon sei fortan das fixierte Polygon.
Das nicht fixierte Polygon sei das freie Polygon, im Sinne von frei schwebend.

Für das freie Polygon gibt es viele Möglichkeiten, in einer bestimmten Lage zum fixierten Polygon
zu sein. Auf die Generierung dieser Konstellationen wird in Kapitel 4.1 genau eingegangen, hier
wird jedoch vorweg genommen, dass alle als relevant betrachteten Stellungen der beiden Polygone in
einem Zuge erfasst und bearbeitet werden sollen. Dies entspricht einer Sammlung, einem Test-Batch
von zu testenden Konfigurationen. Die nötigen Transformationsmatrizen für das fixierte und das freie
Polygon werden in einer Batch-Datenstruktur gespeichert, gemeinsam mit nötigen OpenGL Daten,
um die Polygone zeichnen zu können.
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Zunächst ist wünschenswert, von Seiten der CPU Verzögerungen im Schnitttest zu minimieren. Das
heisst, eine möglichst hohe Lokalität herzustellen. Bevor OpenGL auf der GPU zeichnet, muss die
CPU vor jedem Draw Call für jedes Polygon und jede Transformationsmatrix nötige Informationen
bereit stellen. Dies ist in Abbildung 3.4 durch das CPU-seitige Setzen von Daten skizziert.

Wenn die nötigen Daten für die Matrizen und Polygone nicht lokal schnell verfügbar sind, muss auf
diese unnötig gewartet werden. Daher ist es sinnvoll, einen Test-Batch als lokal zusammenhängenden
Speicher, also als Array, anzulegen. Für Draw Calls nötige OpenGL Daten und Transformationsmatri-
zen werden hier für jeden Test hinterlegt, dies teilweise redundant, aber möglichst lokal. Statt zum
Beispiel Zeiger auf Matrizen oder Polygondaten zu verwalten, werden diese Daten direkt in das Array
lokal hinterlegt. Auch ein Feedback-Feld für das Ergebnis des Schnitttests wird lokal vorgehalten.

Da das fixierte Polygon nur eine Transformation braucht, wird diese nur ein mal gesondert gespeichert,
und nicht für jeden Test des Batches nochmal gesondert. Lediglich für das freie Polygon müssen
variierende Transformationen mitgeführt werden. Diese Unterteilung in fixes und freies Polygon
vereinfacht auch den Schnitttest.

So muss das fixierte Polygon nur ein mal für den gesamten Test-Batch gezeichnet werden. Es entfällt
also faktisch ein Pass pro Schnitttest. Der bisher dritte Pass, das Vergleichen beider Texturen, kann
ebenfalls beseitigt werden. Der dritte Pass bringt darüber hinaus auch den Nachteil mit sich, dass er für
die jeweilige Auflösung die maximal möglich Anzahl an Fragmenten generieren lässt, und jedes dieser
Fragmente führt auch noch zwei teure Speicherzugriffe in Texturen durch. Einfacher ist es, bereits
beim Zeichnen des nun freien Polygons nach Überschneidungen zu suchen. Der Fragment-Shader wird
also so angepasst, dass für Fragmente des freien Polygons ein Texturzugriff auf das gezeichnete fixe
Polygon erfolgt und auf einen Schnitt getestet wird. Der Atomic Counter wird gesetzt, inkrementiert
und ausgelesen wie bisher, nur geschieht dies direkt beim Zeichnen des freien Polygons.

Die eben beschriebenen Erweiterungen des Schnitttests sind in Abbildung 3.5 dargestellt. Sie führen
dazu, dass statt drei Draw Calls pro Schnitttest faktisch nur noch ein Draw Call pro Schnitttest nötig
ist, zuzüglich initialem Draw Call für das fixierte Polygon. Das ist aber nur möglich, weil das freie
Polygon viele verschiedene Stellungen zum fixierten haben kann. Zusätzlich wird versucht, über eine
hohe Lokalität die CPU als Engpass im Schnitttest zu beseitigen 9.

9Bei technisch gut ausgestatteten Testsystemen erwies sich die beschriebene lokale Datenstruktur als weniger ausschlag-
gebend für die Geschwindigkeit. Auf dem technisch verhältnismäßig schwach bestückten privaten Notebook des Autors
war jedoch eine Beschleunigung der Schnitttests nicht zu übersehen. Daher möchte der Autor bei dieser sowieso nötigen
Datenstruktur auch die positiven Effekte für den CPU Cache betonen.

39



3 Polygon-Schnitttests auf der Grafikkarte
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Abbildung 3.5: Vereinfachter Schnitttest. Statt für jede Stellung zweier Polygone beide zu zeichnen
wird das erste Polygon in einer Position fixiert und das zweite relativ dazu verschoben.
Hierdurch sind nur noch zwei Pässe nötig, einer davon nur ein mal, der zweite für
jede Stellung des zweiten Polygons.

3.4 Visualisierung und Benutzereingaben

Durch die OpenGL-Anbindung für den Schnitttest sind bereits alle nötigen Mittel vorhanden, um eine
Visualisierung von Polygonen und gefundenen Schachtelungen zu realisieren. Dies erwies sich im
Laufe dieser Arbeit mehrfach als vorteilhaft, weil so die Fehlersuche bei implementierten Verfahren
wesentlich vereinfacht wurde. Durch die verwendete Bibliothek GLFW ist es möglich, Benutzerein-
gaben über Tastatur und Maus zu verarbeiten. Das ermöglicht eine interaktive Visualisierung von
Polygonen und ihrer Eigenschaften. Die implementierte Visualisierung ist in Abbildung 3.6 zu se-
hen und unterstützt das Anzeigen einfacher Polygone und Linienzüge, Navigieren und Zoomen in
der Darstellung, die Anzeige der Konvexen Hülle, des minimalen Rechtecks und das hervorheben
verdeckter Vertices.

Über die durch GLFW verfügbaren Benutzereingaben wurde auch eine Maus basierte Eingabe von
Polygonen implementiert. Der Benutzer kann per Mausklick im Anwendungsfenster Vertices definie-
ren. Diese werden laufend an OpenGL kommuniziert und der entstehende Linienzug wird angezeigt.
Der eingegebene Linienzug muss entgegen dem Uhrzeigersinn orientiert sein, um später als gültiges
Polygon verwendet werden zu können. Anderenfalls kann das Polygon nicht als Eingabe für eine
Schachtelung genutzt werden, da die Triangulierung des Polygons fehl schlägt. Ist das eingegebene
Polygon gültig, wird es vom Programm direkt für eine Schachtelung benutzt. Gleichzeitig werden die
Vertices des Polygons in Textform ausgegeben, sodass sie in eine Datei übertragen werden können,
um das Polygon anhand dieser Datei zu einem anderen Zeitpunkt zu verwenden. Abbildung 3.7
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Abbildung 3.6: a) Visualisierung eines Polygons (dunkelgrün) mit Konvexer Hülle (hellgrün) und
minimalen Rechteck (rot). b) Visualisierung von angeordneten Polygonen (blau) mit
Konvexer Hülle aller Polygone (grün), minimalen Rechteck (rot) und dem Gebiet, in
dem die Polygone anzuordnen sind (grünes Rechteck).

zeigt einen eingegebenen Linienzug und die dadurch resultierende Darstellung des Polygons im
Programm.

Abbildung 3.7: Eingabe eines links orientierten Linienzuges (links) und das daraus erzeugte Polygon
mit dessen Eigenschaften (rechts).
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Nachdem der Schnitttest und Algorithmen für den Umgang mit Polygonen erläutert sind, wird das
tatsächliche Platzieren von Polygonen behandelt. Gegeben seien also ein rechteckiges Gebiet, eine
Domäne G anhand seiner Seitenlängen (x, y) = G und ein einfaches Polygon Pn. Im Laufe der
nächsten Unterkapitel werden Methoden vorgestellt, die zum Ziel haben das Polygon Pn möglichst
oft in das Gebiet G zu platzieren, ohne dass sich zwei Instanzen von Pn überschneiden.

Eswird versucht anhand geometrischer Eigenschaften der gegebenen Polygone gute Nestings zunächst
für wenige Polygone zu finden, statt sich direkt global an der gegebenen Domäne G zu orientieren.
Statt beliebige Verschiebungen und Drehungen von Polygonen zu erlauben, werden ausschließlich
diskrete Stellungen von Polygonen betrachtet. Das bedeutet, dass Polygone zunächst nur an Vertices
zusammen gelegt werden, und anschließend so rotiert, dass die anliegenden Seiten der Polygone
einander berühren (jedoch nicht überschneiden). Da keine beliebigen Stellungen mehr betrachtet
werden, wird die Anzahl möglicher Lösungen erheblich eingeschränkt. Gleichzeitig erfolgt durch
das diskrete Vorgehen eine Einschränkung auf Polygon-Konstellationen, die durch die Form und
Eigenschaften der Polygone vorgegeben sind. Dies ermöglicht eine einfachere Betrachtung der
Aufgabenstellung. Eine Rückkehr zu beliebigen Verschiebungen und Rotationen ist konzeptionell
jederzeit möglich. Allerdings bewirken zusätzliche, randomisierte Konstellationen beliebig mehr
Aufwand bei der Lösungsfindung.

Im Folgenden werden also Methoden entwickelt, um unter diskreten Stellungen den Rechenaufwand
einer Lösungsfindung zu reduzieren. Hierfür wird zunächst untersucht, wie Polygone zusammen zu
legen sind, sodass diese Konstellation als optimal angesehen werden kann. Stellungen der Polygone, in
denen diese sich schneiden, sind ungültig und werden nicht weiter betrachtet. Weitere Verfahren, um
ungültige Stellungen frühzeitig zu erkennen und dauerhaft zu vermeiden werden entwickelt, sodass
Rechenzeit für teure Schnitttests nur für tatsächlich nötige Polygon-Stellungen investiert werdenmuss.
An schnell gefundene, vielversprechende Polygon-Konstellationen sollen iterativ weitere Polygone
hinzugefügt werden, mit dem Ziel, möglichst wenig Platz zwischen den Polygonen ungenutzt zu
lassen. So gefundene, iterativ erweiterte Lösungen werden anschließend verwendet, um eine gültige
globale Lösung zu finden.

4.1 Ein lokaler diskreter Brute-Force Ansatz

Gegeben seien zwei Polygone Pn = (v1, . . . , vn) und Qm = (w1, . . . , wm). Gesucht wird die beste,
im Sinne von engste, Zusammenlegung dieser beiden Polygone. Wie bereits erläutert, soll dieses
enge Nesting von P und Q realisiert werden, indem nur diskrete Stellungen der beiden Polygone
betrachtet werden. Die Polygone werden also an Vertices vi und wj zusammengelegt, und die an den
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Vertices anliegenden Segmente werden so rotiert, dass sich die Polygone an diesen Seiten schnittfrei
berühren. Hieraus ergeben sich pro Vertex-Paar zwei Möglichkeiten, die Segmente zu Kombinieren,
ohne dass sich die Polygone auf triviale Weise überschneiden. Für die Polygone gibt es somit genau

|Pn × Qm| = n · m · 2 ∈ O(nm)

Möglichkeiten, wie sie diskret gepaart werden können. Hierbei wird mit Pn × Qm ausgedrückt, dass
alle möglichen Stellungen der Polygone betrachtet werden. Weil die Polygone sich an jeweils einem
Segment berühren, können sie im Sinne des diskreten Nestings nicht noch enger zusammen gelegt
werden. Abbildung 4.1 zeigt verschiedene diskrete Stellungen zweier Polygone, wie sie in dieser
Arbeit untersucht werden.

Abbildung 4.1: Zwei Polygone in verschiedenen diskreten Stellungen.

Alle solche Stellungen werden erstellt und in einer Datenstruktur gespeichert. Neben den Indizes
der beteiligten Vertices wird auch die Ausrichtung der Segmente notiert. Diese Ausrichtung kann
zum Beispiel durch eine gewählte Durchnummerierung der zwei Möglichen Segment-Kombinationen
erfolgen. Eine (Polygon-)Stellung ist also ein Tupel

(P Vertex ID,Q Vertex ID, Segment-Kombination) = (v_id, w_id, c)

und alle möglichen Stellungen werden aufgezählt durch folgenden Pseudocode:
for v_id = 1 . . . n do

for w_id = 1 . . . m do
for c = −1, 1 do

Speichere Polygon-Stellung (v_id, w_id, c)
end for

end for
end for

Diese Stellungen sind jedoch nicht zwangsläufig schnittfrei, es wird also Stellungen geben, in denen
sich die Polygone schneiden. Aus den Informationen der Stellungen können entsprechende Transfor-
mationsmatrizen erzeugt werden, die diese Stellung realisieren. Zwar können solche Transformationen
auch bereits bei der Aufzählung aller Stellungen erzeugt werden, aber für weitere Verfahren, die noch
erläutert werden, ist es einfacher die aufgezählten Stellungen und die dazugehörigen Transforma-
tionen getrennt zu behandeln. Die Transformationen werden erzeugt, indem für jede Stellung die
Polygone an den durch v_id und w_id angegebenen Vertices zum Nullpunkt verschoben werden,
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und die durch c gegebenen Segmente so rotiert werden, dass sie in die selbe Richtung zeigen (der
Einfachheit halber nach

(
1 0

)⊤
).

MP = R
( rp

|rp|

)−1
· T (−vv_id)

MQ = R
( rq

|rq|

)−1
· T (−ww_id)

rp = vv_id−c − vv_id

rq = ww_id+c − ww_id

c ∈ {−1, 1}
Die Notation von rp und rq berechnet die Richtung, in die das Segment zeigt, das an vv_id, bzw.
wv_id liegt. Um den in Kapitel 3.3 entwickelten Schnitttest mit einem fixierten und einem freien
Polygon durchführen zu können, ist eine leicht angepasste Generierung der Transformationen nötig.
Hierfür wird zunächst angenommen, dass Pn dasjenige Polygon von beiden ist, dessen minimales
Rechteck kleiner ist. Dann istPn das fixierte Polygon und dessen Transformation ist die Einheitsmatrix.
Qm muss am Vertex ww_id zunächst in den Nullpunkt verschoben werden, dort werden Rotationen
verrechnet, die Qm passend am Segment von Pn ausrichten, und anschließend wird Qm an die richtige
Stelle an Pn gesetzt.

MP =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


MQ = T (vv_id) · R

( rp

|rp|

)
· R
( rq

|rq|

)−1
· T (−ww_id)

rp = vv_id−c − vv_id

rq = ww_id+c − ww_id

c ∈ {−1, 1}
Anhand gegebener Daten zumminimalen Rechteck von Pn kann die Schnitttest-Funktion eine optima-
le Einpassung von Pn auf den Zeichenbereich vornehmen, durch die hierfür genutzte Transformation
wird auch Qm für den Schnitttest korrekt transformiert und die Stellung der Polygone zueinander
bleibt erhalten. Mit den Transformationsmatrizen für die Stellungen können auch nötige OpenGL
Daten generiert und die in Kapitel 3.3 eingeführte Test-Batch Datenstruktur aufgestellt werden.

Wie bereits erwähnt, können sich unter den generierten Konstellationen solche befinden, bei denen
sich die Polygone schneiden. Solche ungültigen Konstellationenmüssen entfernt werden. Dies passiert,
indem der erstellte Test-Batch mit allen Konfigurationen an den Schnitttest übergeben wird. Der Test-
Batch vermerkt für jede Stellung das Ergebnis des Schnitttests und ungültige Stellungen werden in
einem weiteren Schritt gelöscht. Aufgrund der hohen Anzahl möglicher Stellungen ist der Schnitttest
der zeitaufwändigste Schritt der Lösungsfindung.

Die nun verbliebenen Stellungen können ausgewertet und weiterverwendet werden. Von nun an
stellt sich die Frage, welche Konfigurationen der Polygone als engste angesehen werden können, und
somit für eine weitere Verarbeitung und Schachtelung besonders interessant sind.
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4.2 Bewerten und Verwalten von Polygon-Stellungen

Ein wichtiger Aspekt in der Handhabung von Polygon-Konfigurationen ist deren tatsächliche Verwal-
tung in Datenstrukturen. Unter Betrachtung der nötigen Eigenschaften einer solchen Struktur, und
der zur Verfügung stehenden Mittel aus Kapitel 2.2 wird im Folgenden eine Verwaltung von Polygon-
Stellungen realisiert, die das Nesting mit weiteren Polygonen einfach gestaltet und Optimierungen
für diesen Prozess motiviert.

Es ist wünschenswert nur solche schnittfreien Konfigurationen zweier Polygone weiter zu verwenden,
die vielversprechend für weitere Nestings sind. Ein Weiterrechnen mit allen gefundenen Konfigu-
rationen ist zwar möglich, bedeutet aber mit steigender Zahl beteiligter Polygone einen enormen
Zuwachs an benötigter Rechenzeit. Dieses Kapitel stellt einfache Heuristiken vor, wie gefundene
Konfigurationen qualitativ bewertet werden können. Anhand solcher Heuristiken kann die Anzahl
der zu betrachtenden möglichen Polygon-Stellungen reduziert werden, indem nur vielversprechende
Konfigurationen für weitere Berechnungen verwendet werden. Trotz dieser Einschränkung soll die
Möglichkeit erhalten bleiben, eine optimale Lösung zu finden, also maximal viele Polygone im Gebiet
zu positionieren.

4.2.1 Modellierung zusammengesetzter Polygone

Eine Stellung mehrerer Polygone wird ausgedrückt durch die beteiligten Polygone (in Form von
Linienzügen) und Transformationsmatrizen, die die Polygone entsprechend positionieren. Diese
Datenstruktur wird fortan als Polygon-Patch P bezeichnet, also als Ansammlung von Polygonen. Ein
Polygon-Patch ist eine schnittfreie Konstellation von Polygonen, die einen Verweis auf die betei-
ligten Polygone enthält, zusammen mit den dazugehörigen Transformationsmatrizen und weiteren
Eigenschaften der Konstellation.

Der Aufbau eines Polygon-Patches erfolgt hierarchisch durch Zusammenlegen zwei bereits bestehen-
der Polygon-Patches, wie in Abbildung 4.2 dargestellt. Initial besteht ein Polygon-Patch also aus nur
einem Polygon, dessen Transformationsmatrix die Identitätsmatrix ist. Der Flächeninhalt, die Konvexe
Hülle, und das minimale Rechteck des Polygons charakterisieren somit auch initial den Polygon-Patch.
Ist eine schnittfreie Konstellation von zwei Polygonen gefunden, wird diese Konstellation benutzt, um
einen neuen Polygon-Patch zu erzeugen. Seien also P P und QP Polygon-Patches, dazu zwei Matrizen
MP und MQ, die eine Konstellation der Polygon-Patches realisieren, indem sie auf alle enthaltenen
Polygone eines Patches angewendet werden. Ein neuer Polygon-Patch NP wird erzeugt, indem alle
in P P und QP beteiligten Polygone in NP eingetragen werden.

NP = P P ∪ QP

Hier ist P P ∪QP als Zusammenlegen von Polygon-Patches zu interpretieren, bzw. als Vereinigung der
in den Polygon-Patches enthaltenen Mengen von Polygonen. Zusätzlich werden die zu den Polygonen
gehörigen Transformationsmatrizen aus P P und QP mit MP , bzw. mit MQ verrechnet und ebenfalls
in NP eingetragen, um für die in NP enthaltenen Polygone korrekte Transformationen zu erhalten.
Da P P und QP jeweils eine Konvexe Hülle kh(P P), bzw. kh(QP) haben, wird aus diesen mithilfe
des in Kapitel 2.2.2 vorgestellten Algorithmus die Konvexe Hülle kh(NP) der gesamt Konstellation
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berechnet. Die Konvexen Hüllen der beiden ursprünglichen Patches müssen hierfür mithilfe der
Transformationsmatrizen in die benötigte Stellung gebracht werden.

kh(NP) = kh
(

kh(P P) · MP ∪ kh(QP) · MQ

)
Hieraus kann wiederum das minimale Rechteck mr(NP) der Konstellation errechnet werden.

mr(NP) = mr(kh(NP))

Der Flächeninhalt area(NP), der durch die Polygone in NP eingenommen wird, ergibt sich als
Summe der Flächeninhalte der Polygone von P P und QP . Als Flächeninhalt wird also die Summe der
Flächeninhalte aller Polygone mitgetragen, etwaige Lücken zwischen Polygonen im Patch werden
nicht zum Flächeninhalt gezählt.

area(NP) = area(P P) + area(QP)

a) b)

Abbildung 4.2: Zwei Polygon-Patches mit jeweils zwei und drei Polygonen werden anhand einer
Stellung zusammen gelegt.

Das Erzeugen von neuen Konstellationen für zwei gegebene Polygon-Patches geschieht wie in Kapitel
4.1 beschrieben anhand der Vertices der enthaltenen Polygone. Die Polygone in einem Polygon-Patch
sind anhand intern vergebener Indizes identifizierbar, und das Konstrukt für Test-Generierungen
wird um diese Polygon-IDs erweitert. Eine Stellung von zwei Polygon-Patches P P und QP wird dann
dargestellt als folgendes Tupel:

(P P Polygon P ID, P Vertex ID, QP Polygon Q ID, Q Vertex ID, Segment-Kombination)

= (poly_p_id, v_id, poly_q_id, w_id, c)

Die Kombination von interner Polygon-ID und der Vertex-ID zu diesem Polygon kann auch als Meta-
Index für den gesuchten Vertex im Polygon-Patch verstanden werden. Anhand dieser Identifizierung
von Vertices können nötige Test-Batches auf dieselbe Weise für Polygon-Patches aufgestellt werden,
wie sie für einzelne Polygone vorgestellt wurden. Alle möglichen Stellungen zweier Polygon-Patches
werden über mögliche Stellungen aller beteiligter Polygone aufgezählt.
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for poly_p_id = 1 . . . (max PP Polygons) do
for poly_q_id = 1 . . . (max QP Polygons) do

for v_id = 1 . . . n do
for w_id = 1 . . . m do

for c = −1, 1 do
Speichere Polygon-Stellung (poly_p_id, v_id, poly_q_id, w_id, c)

end for
end for

end for
end for

end for

Die so generierten Tests werden über einen leicht angepassten Schnitttest von ungültigen Konfi-
gurationen bereinigt. Die Konvexe Hülle eines Polygon-Patches ist leicht zu berechnen, weshalb
auch das minimale Rechteck verfügbar ist. Das minimale Rechteck kann für den bereits entwickelten
Schnitttest benutzt werden, um ein ganzes Polygon-Patch auf Überschneidung mit einem zweiten zu
prüfen. Der Schnitttest wird also so modifiziert, dass er einen Polygon-Patch mithilfe seines minimalen
Rechtecks in das Zeichenfeld einpasst, und anschließend alle im Patch enthaltenen Polygone zeichnet.
Aufgrund des einfachen Aufbaus des Schnitttests ist dies leicht umsetzbar, denn statt nur einem
Polygon werden nun alle Polygone eines Polygon-Patches pro Pass gezeichnet. Ein Polygon-Patch
benötigt also auch Informationen, anhand derer er per OpenGL gezeichnet werden kann. Dies ist im
Grunde eine Ansammlung der OpenGL-Daten der beteiligten Polygone.

Von nun an wird für Polygon-Konstellationen angenommen, dass diese als Polygon-Patches umgesetzt
werden. Auch werden die Begriffe Polygon und Polygon-Patch synonym füreinander verwendet. Im
weiteren Verlauf der Arbeit wird es darauf ankommen Polygon-Patches so zu manipulieren, dass
beim Nesting mit weiteren Polygon-Patches anfallende Testfälle zahlenmäßig verringert werden, um
Rechenzeit zu sparen.

4.2.2 Einfache Bewertungsfunktionen

Soll ein Polygon Pn auf einem Gebiet G möglichst oft platziert werden, so ist die optimale Lösung
nach oben Beschränkt durch die Flächeninhalte des Polygons und des Gebiets.⌊ area(G)

area(P )

⌋
= kmax

Sollen k gleiche Polygone in einem Gebiet verteilt werden, müssen diese (im Kontext dieser Arbeit)
in diskreten Stellungen zueinander platziert sein. Für k ≥ 2 Polygone gibt es

2n2 ·2n · . . . · 2n︸ ︷︷ ︸
k−2 mal

= nk · 2k−1 ≤ nkmax · 2kmax−1

Möglichkeiten, die Polygone diskret miteinander zu kombinieren. Nicht alle diese Stellungen sind
schnittfrei oder einzigartig. Selbst wenn Stellungen mit Überschneidungen entfernt werden, sollten
nur vielversprechende Konstellationen tatsächlich erzeugt und betrachtet werden. Statt also über
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einen Brute-Force Ansatz global exponentiell viele Stellungen zu betrachten, ist es nötig anhand von
Heuristiken eine Auswahl von Polygon-Stellungen zu treffen, die trotz der getroffenen Einschränkung
eine gute (oder gar optimale) Lösung ermöglichen.

Eine Möglichkeit Polygon-Stellungen zu bewerten ist die Konvexen Hülle der gesamten Stellung,
beziehungsweise der Flächeninhalt der Konvexen Hülle. Der Flächeninhalt area(kh(P P)) der Konve-
xen Hülle eines Polygon-Patches muss mindestens so groß sein wie der Flächeninhalt area(P P) des
Polygon-Patches selber:

area(kh(P P)) ≥ area(P P)

Je enger die Polygone im Polygon-Patch zusammen liegen, desto kleiner wird auch der Flächeninhalt
der Konvexen Hülle. Die Fläche der Konvexen Hülle wird also als Maß dafür verwendet, wie eng
Polygone zusammenliegen. Dieser Sachverhalt ist in Abbildung 4.3 skizziert. Solche Stellungen
können bevorzugt betrachtet werden, denn sind Polygone schon in einer gewissen Konstellation
platziert, ist es unwahrscheinlich, dass in Lücken zwischen den Polygonen später noch etwas passend
platziert werden kann. Liegen also schnittfreie Stellungen für k Polygone vor, werden diejenigen
Stellungen für weitere Iterationen mit k + 1 Polygonen verwendet, deren Konvexe Hülle minimal
ist. Die hiermit verfolgte Strategie ist es also, von Aussen an einen Polygon-Patch weitere Polygone
so anzulegen, dass diese eng anliegen. Ideal ist es, wenn neue Polygone in die bisherige Stellung
schnittfrei so eingefügt werden können, dass sie in lokale konkave Stellen anderer Polygone passen,
und somit die Konvexe Hülle des gesamten Polygon-Patches gar nicht oder nur wenig erweitern.

a) b)

Abbildung 4.3: Zwei Stellungen von Polygonen. Die Fläche der Konvexen Hülle in b) fällt minimal
kleiner aus als in a)

Da das Gebiet G rechteckig ist, ist es vielversprechend solche Konstellationen zu bevorzugen, deren
Form möglichst rechteckig ist. Während die Konvexe Hülle für verschiedene Stellungen den gleichen
Flächeninhalt aufweisen kann, sind rechteckige Stellungen mit minimaler Konvexer Hülle interessant,
um global eine einfache Lösung zu erzeugen. Hierfür wird eine rechteckig Stellung einfach anhand
des minimalen umfassenden Rechtecks dicht auf das Gebiet G gepackt, ohne einzelne Vertices der
Polygone betrachten zu müssen.

Für den Flächeninhalt area(mr(P P)) eines minimalen Rechtecks für einen Polygon-Patch gilt, dass
er mindestens so groß ist wie der Flächeninhalt area(kh(P P)) der Konvexen Hülle:

area(mr(P P)) ≥ area(kh(P P))
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Es ist also sinnvoll solche Stellungen zu suchen, deren Konvexe Hülle möglichst dicht im minimalen
Rechteck liegt. Abbildung 4.4 zeigt ein Beispiel für zwei Stellungen, von denen die bessere mittels des
minimalen Rechtecks erkannt werden kann. Als Maß wird folgendes Verhältnis der Flächeninhalte
verwendet:

area(mr(P P))
area(kh(P P)) ≥ 1

Polygon-Patches, die eine rechteckige Form aufweisen, minimieren dieses Verhältnis.

Anhand der beiden Heuristiken werden schnittfreie Polygon-Stellungen bewertet und nur solche
als Polygon-Patches für weitere Nestings in Betracht gezogen, deren Konvexe Hülle minimal ist,
und die gleichzeitig das minimale Rechteck maximal ausfüllen. In der Software-Implementierung zu
dieser Arbeit zeigt sich, dass durch diese Heuristiken eine Auswahl vielversprechender Teillösungen
sichergestellt wird.

a) b)

Abbildung 4.4: Die Fläche der Konvexen Hülle (rot) ist in a) und b) gleich, aber b) passt enger in das
eigene minimale Rechteck (grün). Stellung b) ist deswegen für ein direktes Füllen
der rechteckigen Domäne besser geeignet.

4.3 Einschränkung auf relevante Vertices

Komplexe Polygone werden durch viele Vertices dargestellt. Abhängig von der Anzahl an Vertices sind
jedoch quadratisch viele Konstellationen möglich, die für ein diskretes Nesting von zwei Polygonen
betrachtet werden müssen. Schon für verhältnismäßig kleine Polygone mit wenigen Vertices ist somit
die Anzahl möglicher Stellungen sehr groß. Erzeugte Stellungen müssen darauf geprüft werden,
ob sich die beteiligten Polygone schneiden, und der Schnitttest ist trotz vieler Optimierungen sehr
zeitaufwändig. Ohne auf andere Varianten von Schnitttests auszuweichen, bleibt nur die Möglichkeit
die Anzahl anfallender Testfälle zu minimieren, indem bei der Testerzeugung auf Eigenschaften der
Polygone eingegangen wird. Hierfür sind vor allem die Vertices der Polygone relevant, und im Folgen-
den werden Strategien erläutert, wie unter Betrachtung von Vertices unnötige Schnitttests vermieden
werden können. Dies führt dazu, dass man für Polygone in Polygon-Patches eine Datenstruktur von
Vertices mitführt, in der gültige, also valide Vertices gespeichert werden. Nur solche validen Vertices
müssen für zu generierende Stellungen betrachtet werden, wodurch viel überflüssige Arbeit entfällt.

4.3.1 Winkelsummen an Vertices

Ein erster Ansatz überflüssige Stellungen zu erkennen ist das Betrachten der Innenwinkel zusammen-
gelegter Vertices. Werden zwei Polygone an Vertices zusammen gelegt, so kann diese Stellung nur
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dann schnittfrei sein, wenn die Polygone sich nicht schon lokal an den beteiligten Vertices schneiden.
An jedem Vertex lässt sich ein Innenwinkel abmessen, der angibt, in welchem Winkel die beiden
angrenzenden Segmente das Innere des Polygons einschliessen. Wenn zwei Vertices von Polygonen
zusammen gelegt werden, darf die Summe dieser Innenwinkel nicht mehr als 360◦ (oder 2π) betra-
gen, da sich die Polygone sonst lokal überschneiden. Bei der Generierung von Stellungen muss also
geprüft werden ob die Winkelsummen einen Schnitt implizieren, und die betrachtete Stellung wird
gegebenenfalls nicht erzeugt.

Dies ist ein lokal eingeschränkter Ansatz und muss für jede anfallende Konfiguration neu berechnet
werden. Dennoch können mithilfe dieses simplen Vorgehens viele unnötige Schnitttests eingespart
werden.

4.3.2 Erkennen nicht erreichbarer Gebiete

Ein Polygon-Patch wird unter der Annahme erstellt, dass die beiden beteiligten Polygone (oder
Polygon-Patches) in der engsten möglichen schnittfreien Stellung vorliegen. Das bedeutet, dass
zwischen Teilpolygonen des Patches keine weiteren Polygone gesetzt werden können ohne Über-
schneidungen zu erzeugen. In einem Polygon-Patch gibt es also Vertices die außen liegen, an die
weitere Polygone gelegt werden können, und Vertices die innen liegen, die nicht mehr erreichbar sind.
Vertices die innen liegen können für die Generierung weiterer Stellungen somit ignoriert werden. Dies
spart eine signifikante Anzahl an Stellungen, die aufgrund der Lage der Polygone sowieso Überschnei-
dungen enthalten. Diese Annahme ist jedoch nur vertretbar, falls nur ein Polygon derselben Sorte
platziert werden soll, oder alle gegebenen Polygone eine vergleichbare Größe haben. Für kleinere
Polygone, die in Lücken eines Polygon-Patches passen könnten, würde ein solches Vorgehen eventuell
gute Nestings verhindern, sofern nicht weitere Informationen über besagte Lücken zur Verfügung
stehen. Eine solche detailierte Analyse von Polygon-Stellungen und enthaltenen Lücken überschreitet
jedoch den Umfang dieser Arbeit.

Aus diesen Überlegungen heraus wird die Datenstruktur des Polygon-Patches so erweitert, dass für
jedes enthaltene Polygon ein Array mitgeführt wird, das angibt, welche Vertices des Polygons aussen
liegen. Da dies die Stellen am Polygon sind die für eine gültige Konfiguration in Frage kommen,
werden diese Vertices fortan valide Vertices genannt. Abbildung 4.5 zeigt valide Vertices (grün) und
nicht valide Vertices (rot) für Polygone.

Die Berechnung von validen Vertices wird mittels der Algorithmen für Punktverdeckung durch
Polygone aus Kapitel 2.2.5 realisiert. Initial werden bei einem Polygon-Patch mit nur einem Polygon
alle Vertices des Polygons darauf untersucht, ob diese von aussen sichtbar sind. Diese Sichtbarkeit
wird interpretiert als Erreichbarkeit der Vertices bei Stellungen. Ist ein Vertex erreichbar, wird er im
valide-Vertices-Array für dieses Polygon eingetragen. Für ein Polygon mit n Vertices benötigt die
Berechnung valider Vertices O(n2) Schritte, da für die Verdeckung eines Vertex alle durch Vertices
definierten Segmente betrachtet werdenmüssen. Hat ein Polygon-Patchmehrere Polygone, werden für
einen Vertex alle Polygone darauf geprüft, ob sie den Vertex verdecken. Sobald ein Vertex von einem
Polygon, oder von allen Polygonen, komplett verdeckt wird, wird es von weiteren Berechnungen für
Stellungen ausgeschlossen, indem es nicht im valide-Vertices-Array eingetragen wird. Haben alle
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a) b)

Abbildung 4.5: a)Valide Vertices (grün) in einem Polygon. b)Valide Vertices (grün) in einem Polygon-
Patch. Eigen- und durch andere Polygone verdeckte Vertices (rot) werden von weite-
ren Berechnungen ausgeschlossen.

im Patch vorhandenen Polygone insgesamt n Vertices, benötigt die Verdeckungsberechnung aller
validen Vertices ebenfalls O(n2) Schritte.

Bei der Generierung von neuen Stellungen und Testfällen werden nun nur noch valide Vertices von
Polygonen in einem Polygon-Patch verwendet. Valide Vertices müssen nur einmal bei der Erstellung
eines Polygon-Patches berechnet und gespeichert werden.Wird ein Polygon-Patch mit einemweiteren
zusammengelegt, werden die bisherigen validen Vertices aller beteiligten Polygone übernommen und
in der neuen Konstellation darauf geprüft, ob sie verdeckt werden. Vor allem bei großen Polygon-
Patches mit vielen Polygonen ist dieses Vorgehen von Vorteil, da so nur Vertices am Rand des Patches
für weitere Berechnungen herangezogen werden.

Gemeinsam mit dem Erkennen zu großer Winkelsummen an Vertices bieten valide Vertices ein
effektives Mittel, um die quadratisch vielen Stellungen, und daher quadratisch viele Schnitttests, auf
nur tatsächlich sinnvolle zu begrenzen.

4.4 Vermeiden unnötiger Schnitttests

Eine weitere Möglichkeit unnötige Polygon-Stellungen und Schnitttests zu vermeiden ist das Aus-
nutzen struktureller Eigenschaften von Polygon-Patches. Neben der Betrachtung symmetrischer
Eigenschaften von erzeugten Stellungen können vor allem Informationen aus alten Testfällen benutzt
werden, um Voraussagen über neu anfallende Schnitttests zu treffen. Dies führt zu einer erheblichen
Reduzierung von erstellten Polygon-Stellungen.

4.4.1 Redundante symmetrische Polygon-Stellungen

Für Polygone und Polygon-Patches die nicht mit einem strukturell unterschiedlichen, sondern mit
einem identischen Polygon(-Patch) zusammengelegt werden sollen, ist die Abschätzung möglicher
Stellungen aus Kapitel 4.1 zu hoch. Beim Erstellen diskreter Stellungen für zwei identische Polygone
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muss nur rund die Hälfte der Stellungen betrachtet werden, die für zwei unterschiedliche Polygone
anfallen würden. Gegeben ein Polygon Pn mit nummerierten Vertices, so müssen nur Vertices vi, vj

(i, j ≤ n) des Polygons aneinander gelegt werden, bei denen j ≤ i gilt, und für jedes Vertex-Paar gibt
es zwei Ausrichtungen der anliegenden Segmente.
for i = 1 . . . n do

for j = 1 . . . i do
for c = −1, 1 do

Speichere Polygon-Stellung (i, j, c)
end for

end for
end for

Dies führt zu
2 ·

n∑
j=1

j = 2 · n · (n + 1)
2 = n · (n + 1)

Stellungen, die auf Schnitte getestet werden müssen. Im Vergleich zur ursprünglichen Abzählung von
n · m · 2 (hier m = n) Stellungen ist dies gerade die Hälfte.

Diese Einsparung lässt sich auch auf Polygon-Patches übertragen, die mit sich selber gepaart
werden sollen. Eine Stellung wird dann nur weiterverwendet, wenn sie durch folgende Funktion
AkzeptiereStellung akzeptiert wird.

(P P Polygon P ID, P Vertex ID, P P Polygon Q ID, Q Vertex ID, Segment-Kombination)

= (poly_p_id, v_id, poly_q_id, w_id, c) = s

AkzeptiereStellung(s) =


poly_p_id < poly_q_id, akzeptiere
(poly_p_id = poly_q_id) und (v_id ≤ w_id), akzeptiere
sonst, verwerfe

4.4.2 Alte Schnitttests wiederverwerten

Eine Weiterführung des Gedankens, beim Kombinieren äquivalenter Polygon-Patches redundante
Stellungen zu filtern, führt zu dem Ergebnis, anhand der Zusammensetzung eines Polygon-Patches
einmal bereits erkannte Überschneidungen nicht wieder zu erzeugen. Dies hat auch mit der Einsicht zu
tun, dass vor allem bei großen Polygon-Patches, selbst unter Benutzung von validen Vertices, ein großer
Teil erzeugter Stellungen Überschneidungen aufweist. Die Erkennung dieser Überschneidungen kostet
Rechenzeit, und die gewonnene Information über die Überschneidung sollte wieder verwertet werden.
Dies ist aufgrund der hierarchischen Zusammensetzung von Polygon-Patches umsetzbar.

Hierfür werden für zwei Polygon-Patches AP und BP alle Stellungen gespeichert, die schnittfrei
sind. Zusätzlich ist es nötig, jedem im Verlauf des Programms erzeugten Polygon-Patch eine eindeuti-
ge Identifikationsnummer zu geben. Die Tupel für gültige Stellungen werden gemeinsam mit den
eindeutigen IDs der beteiligten Polygon-Patches abgespeichert und können wiederverwendet werden,
wenn wieder genau diese beiden Polygon-Patches miteinander kombiniert werden sollen.
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Ein Polygon-Patch P P entsteht hierarchisch durch die Kombination zwei weiterer Polygon-Patches
AP und BP .

P P = AP ∪ BP

Für eine formale Betrachtung werden AP und BP fortan Eltern-Patches P AP und P BP von P P

genannt.
P P = AP ∪ BP = P AP ∪ P BP

Sollen zwei vorhandene Polygon-Patches P P und QP zu einem neuen zusammen gelegt werden,
werden alle enthaltenen Polygone der Patches miteinander kombiniert. Das bedeutet implizit, dass
die jeweils beteiligten Eltern beider Polygon-Patches miteinander kombiniert werden. Formal kann
dies wie folgt ausgedrückt werden

P P × QP = (P AP ∪ P BP) × (QAP ∪ QBP)
= P P × (QAP ∪ QBP) = [P P × QAP ] ∪ [P P × QBP ]
= (P AP ∪ P BP) × QP = [P AP × QP ] ∪ [P BP × QP ]
= [P AP × QAP ] ∪ [P AP × QBP ] ∪ [P BP × QAP ] ∪ [P BP × QBP ]

(4.1)

Hierbei bedeutet × alle Stellungen zwischen zwei Polygon-Patches zu generieren, und ∪ kann als
(Mengen-)Vereinigung verstanden werden, einerseits zwischen Polygon-Patches untereinander und
andererseits zwischen generierten Mengen von Stellungen. Die mit eckigen Klammern umschlossenen
Terme sind Kombinationen von Eltern-Patches (und Eltern- und Kind-Patches), die eventuell bereits
einmal berechnet wurden und worüber Informationen vorliegen können. Wenn für zwei Polygon-
Patches P P und QP Stellungen generiert werden sollen, wird auf Ebene der Eltern-Patches implizit
die letzte Zeile von Gleichung 4.1 umgesetzt. Dabei werden die Stellungen erzeugt, die durch die
Terme in eckigen Klammern definiert werden. Die zweite und dritte Zeile von Gleichung 4.1 sind
äquivalente Umformungen der letzten Zeile, in denen Informationen zwischen Polygon- und Eltern-
Patches genutzt werden können. In Abbildung 4.6 ist eine ungültige Stellung zweier Patches gezeigt,
die unter Verwendung von Informationen über die Eltern-Patches vermieden werden kann.

An dieser Stelle lassen sich zuvor getätigte Schnitttests wiederverwerten. Genauer gesagt lassen sich
gültige Stellungen wiederverwerten, wenn für zwei nun zu kombinierende Eltern-Patches bereits zu
einem früheren Zeitpunkt Stellungen erzeugt und von Überschneidungen bereinigt wurden. Diese
gültigen Stellungen werden, gemeinsam mit den IDs für die dazugehörigen Patches, in einer Tabelle
gespeichert. Sollen zwei Eltern-Patches miteinander kombiniert werden, wird anhand ihrer IDs in
der Tabelle nachgeschlagen, ob bereits Stellungen für diese Kombination vorliegen. Liegen keine
Stellungen vor, können für dieses Eltern-Paar keine zu generierenden Stellungen übersprungen
werden. Also werden, wie bisher auch, alle möglichen Stellungen für dieses Eltern-Patch Paar erzeugt.
Liegen für zwei zu testende Eltern-Patches in der Tabelle bereits Stellungen vor, werden diese für
den aktuellen Kontext der beiden Patches wiederverwendet. Da Stellungen grundsätzlich als Tupel
mit Polygon-IDs und Vertex-IDs gespeichert werden, müssen diese IDs aus dem Kontext, in dem
sie vorher gestimmt haben, nun angepasst werden auf dem neuen Kontext der Eltern-Patches im
Kind-Polygon-Patch. Dieser Kontext ist vor allem gegeben durch die Lage der Polygone im Polygon-
Patch und ihre für jeden Patch intern neu vergebenen IDs, aber auch das Filtern von ehemals validen
Vertices, die im Kontext des Kind-Polygon-Patches nicht zwingend valide sind. Ein solches Bereinigen
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a) b) c)

Abbildung 4.6: a) Ein Polygon-Patch P P bestehend aus zwei Polygonen. Für die Teilpolygone
wurden alle Stellungen betrachtet, bevor der Patch erzeugt wurde. b) P P wird mit
sich selber in einer Stellung platziert. Es entsteht ein Schnitt der über einen Schnitttest
erkannt werden muss. c) Die sich schneidenden Teilpolygone der Patches wurden
bereits einmal auf die ungültige Stellung getestet. Der anfallende Schnitttest ist
vermeidbar, indem die alte Information genutzt wird.

von nicht mehr validen Vertices ist durch Sortieren und Abgleichen der gegebenen Stellungen und
aktuell validen Vertices möglich.

Wurden alte Stellungen für Eltern-Patches auf diese Weise aufgearbeitet, stellen sie eine gültige
Teilmenge der Stellungen für P P × QP dar. Da die Eltern-Patches von P P und QP aber nun in einer
neuer Platzierung mit mehr Patches stehen, können ehemals gültige Stellungen zwischen Eltern-
Patches nun ungültig sein. Dies ist aus Sicht eines Eltern-Patches in P P der Fall, weil er sich mit neu
hinzugefügten Eltern-Patches in QP überschneiden kann, auch wenn von genau einem Eltern-Patch
in QP bekannt ist, dass keine Überschneidung damit vorliegt. Daher müssen auch die auf diese
Weise gewonnenen und angepassten Stellungen wieder durch Schnitttests validiert werden, wie dies
für Stellungen zwischen P P und QP sowieso nötig ist. Da aber Überschneidungen auf Ebene der
Eltern-Patches bereits vorher beseitigt wurden, fällt der Aufwand hierfür kein zweites mal an.

Im Laufe des Programms werden bei der Erstellung von Polygon-Patches also stets alle gültigen
Stellungen mit den nötigen IDs der Patches in einer Tabelle gespeichert und können jederzeit wieder-
verwendet werden. Diese Tabelle kann als eine Art Bibliothek für gültige Stellungen zwischen bisher
erstellten Patches angesehen werden. Unter einer guten Strukturierung der Stellungen und Patches
sind bei p erstellten Polygon-Patches maximal

p · (p + 1)
2

Pakete mit Stellungen für Polygon-Patch Kombinationen zu speichern.

Diese Bibliothek mit Stellungen ist nicht zwangsläufig dicht befüllt, da nicht zwingend jeder Polygon-
Patch mit jedem anderen kombiniert wird oder werden soll. Da auch stets neue Polygon-Patches
erzeugt werden erscheint es wenig zielführend, die Bibliothek explizit zu füllen. Vielmehr sollte sie als
Möglichkeit gesehen werden, altes Wissen über Stellungen praktisch wiederverwenden zu können.

Das hier beschriebene Absteigen im hierarchischen Aufbau eines Polygon-Patches ist theoretisch
so weit möglich, dass die gesamte Entstehungsgeschichte eines Polygon-Patches in Form eines
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Binärbaumesmitgeführt werden kann. Innerhalb dieses Binärbaumes ließen sich alle im Polygon-Patch
enthaltenen Eltern-, Eltern-Eltern-, etc. auf ehemalige Überschneidungen mit Eltern eines weiteren
Polygon-Patches prüfen. Dies würde jedoch eine nicht triviale Strukturierung, Suche und Abgleichung
von gemeinsamen Eltern-Patches im Eltern-Binärbaum erfordern, weshalb dieser Gedanke in der
Implementierung zu dieser Arbeit nicht weiter verfolgt wurde.

4.5 Finden einer globalen Lösung

Das Finden einer globalen Lösung bedeutet eine Platzierung von Polygonen auf der Domäne G
zu finden, sodass möglichst viele Polygone enthalten sind. Mit den bisher entwickelten Methoden
lassen sich enge Platzierungen von Polygonen in Form von Polygon-Patches realisieren. Unter
Verwendung von validen Vertices und unter Wiederverwertung alter gültiger Stellungen wird die
Anzahl teurer Schnitttests reduziert. Gleichzeitig kann mithilfe der vorgestellten Heuristiken eine
Auswahl vielversprechender Polygon-Patches erfolgen, um die Komplexität der Lösungsfindung
weiter zu reduzieren.

Für das Finden einer globalen Lösung wurden in dieser Arbeit zwei einfache Strategien evaluiert, die
sich aus Polygon-Patches und deren Eigenschaften ergeben. Zur Vereinfachung wird angenommen,
dass Instanzen von nur einem Polygon auf dem Gebiet platziert werden sollen. Müssten verschiedene
Polygone platziert werden, lassen sich dieselben Strategien anwenden wie hier beschrieben, nur
kommt hinzu, dass eventuell weitere Bedingungen an die Stückzahl der verschiedenen Polygone
gestellt werden.

Brute-Force auf der Domäne

Es bietet sich ein iteratives Brute-Force Vorgehen an, stets Polygon-Patches um eine Polygoninstanz
zu erweitern. Diese rundenbasierte Strategie erstellt für Runde i alle Polygon-Patches, die genau i
Polygone beinhalten. Bei diesem Vorgehen fällt ohne einschränkende Heuristiken ein extrem hoher
(Berechnungs-)Aufwand an. Es ist also nötig, nach jeder Runde nicht tatsächlich alle Polygon-Patches
mit i Polygonen zu behalten, sondern nur solche, bei denen die Polygone am engsten zusammen
liegen. Gleichzeitig werden unter diesen Patches diejenigen bevorzugt, deren Form am meisten einem
Rechteck gleicht. Hierfür werden die in Kapitel 4.2.2 vorgestellten Heuristiken verwendet. Im Laufe
der Lösungsfindung wird eine Tabelle von Polygon-Patches aufgebaut und stets erweitert. In dieser
Polygon-Patch-Bibliothek können für eine gegebene Zahl k alle Polygon-Patches nachgeschlagen wer-
den, die genau diese Anzahl an Polygonen beinhalten. Sollen also neue Polygon-Patch Kombinationen
mit insgesamt i Polygonen generiert werden, werden in der Polygon-Patch-Bibliothek alle Patches
mit k und j Polygonen benutzt, um Stellungen mit i = j + k Polygonen zu erzeugen. Diese Stellun-
gen werden anschließend in Schnitt-Tests umgesetzt und von Überschneidungen bereinigt. Aus gut
bewerteten Stellungen werden neue Polygon-Patches erstellt und in die Polygon-Patches-Bibliothek
eingetragen.

Die in Runde i neu erzeugten Polygone lassen sich aber auch einschränken, indem nicht alle Paare
von Polygon-Patches betrachtet werden, die zusammen i = j + k Polygone haben. Wird zum Beispiel
k fest vorgegeben, beschränkt dies die Anzahl an möglichen Polygon-Patch Paaren, die kombiniert

56



4.5 Finden einer globalen Lösung

werden können. So werden für eine aktuelle Runde i nur Polygone-Patches der letzten k Runden
heran gezogen, und um maximal j = i − k Polygone erweitert. Für k = 1 bedeutet dies zum Beispiel,
dass Resultate aus der letzten Runde benutzt werden. Diese Resultate werden um genau ein Polygon
so erweitert, dass dieses Polygon am engsten an das bisherige Polygon-Patch angelegt wird. Das ist
ein auf die letzten k Runden beschränkter Brute-Force Ansatz.

Da das Gebiet G rechteckig ist, werden neu generierte Polygon-Patches anhand ihrer minimalen
Rechtecke darauf getestet, ob sie in G platziert werden können. Hierfür müssen lediglich die Seiten-
längen von G mit denen des minimalen Rechtecks verglichen werden. Polygon-Patches die eigentlich
heuristisch gute Stellungen beinhalten, aber zu groß sind werden so erkannt und entfernt. Um un-
nötige Schnitttests für zu große Patches zu sparen, werden die korrespondierenden Stellungen vor
den Schnitttests anhand ihrer minimalen Rechtecke heraus gefiltert. Dies spart besonders bei größer
werdenden Patches Rechenzeit, wenn sie die Domäne bereits gut ausfüllen und weitere Polygone
nicht beliebig platziert werden können. Der in Runden agierende Algorithmus terminiert, wenn
alle neu erzeugten Polygon-Patches zu groß für G sind und wieder verworfen werden, oder bis eine
angegebene maximale Anzahl an platzierten Polygonen erreicht wurde. Die Laufzeit dieses Vorgehens
hängt also wesentlich von der Anzahl der pro Runde neu erzeugten Polygon-Patches ab.

Zusammensetzen einer Lösung anhand minimaler Rechtecke

Das iterative Aufbauen eines großen Polygon-Patches, der eine Lösung darstellt, erfordert viel Auf-
wand. Eine einfache Möglichkeit eine schnelle Lösung zu finden ist, einen kleineren Polygon-Patch
anhand seines minimalen Rechtecks möglichst oft in G zu platzieren. Da das optimale Platzieren
von Rechtecken verschiedener Größen selber ein NP-vollständiges Nesting-Problem darstellt[Kor03],
wurde in dieser Arbeit nur das Platzieren eines stets gleich großen Rechtecks im Gebiet realisiert.
Solche gleich großen Rechtecke eines Polygon-Patches können ohne Weiteres schnittfrei in die Do-
mäne gelegt werden, und es bleibt nur noch zu zählen, wieviele Polygone hierdurch insgesamt in der
Domäne platziert sind. Für dieses Vorgehen ist es sinnvoll Polygon-Patches zu bevorzugen, die sehr
dicht in ihrem minimalen Rechteck liegen. Diese Forderung wird in die Sortierung und Auswahl von
Polygon-Patches des rundenbasierten Verfahrens integriert. Von den Stellungen in denen die Polygone
am engsten zusammen liegen werden also die bevorzugt, die ihr minimales Rechteck besser ausfüllen.
Die in jeder Runde neu erzeugten Polygon-Patches werden dann anhand ihrer minimalen Rechtecke
ausfüllend auf das Gebiet platziert und unter allen solchen Lösung einer Runde wird die Beste behalten.
Da die hierdurch erzeugten Platzierungen auf der Domäne nicht zwangsläufig eng zusammen liegen
(im Sinne von Kapitel 4.2.2), werden so gefundene Lösungen nicht für weitere Verbesserungen in
Betracht gezogen. Es erscheint jedoch sinnvoll bei vielversprechenden Lösungen dieser Art wieder
die zugrundeliegenden Polygon-Patches aufzugreifen und weitere Polygone hinzuzufügen unter der
Bedingung, dass das minimale Rechteck nicht wesentlich größer wird.
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Die in Kapitel 2.2 und 3 erläuterten und in Kapitel 4 entwickelten Methoden und Algorithmen
wurden in einer prototypischen Anwendung implementiert und verifiziert. Die Implementierung ist
in C geschrieben, nutzt die Laufzeitbibliotheken OpenGL, GLEW (Version 1.10) und GLFW (Version
3) und ist auf GNU/Linux Systemen lauffähig. Für den Schnitttest wird eine OpenGL 4.2 kompatible
Grafikkarte mit ebenfalls OpenGL 4.2 kompatiblen Gerätetreibern vorausgesetzt. Für eine Verwendung
unter Windows ist eine Anpassung von Betriebssystem-spezifischen Funktionen nötig, zum Beispiel
Funktionen zur Zeitmessung.

Die implementierte Anwendung erwartet die Eingabe eines Polygons in Form eines Linienzugs
und die Größe eines rechteckigen Gebietes. Über die in Kapitel 4.5 erläuterten Strategien zum
Finden einer globalen Lösung wird versucht das Polygon möglichst oft im Gebiet zu platzieren.
Hierfür werden rundenweise Polygon-Patches mit mehr Polygonen erstellt, bis keine Erweiterung
von Polygon-Patches mehr möglich ist, die gleichzeitig noch in das Gebiet passen. Das Polygon
kann durch den Benutzer als Linienzug gezeichnet, oder anhand einer Textdatei geladen werden.
Über Eingabeparameter sind die Größe des Ausgabefensters, die Texturgröße der für den Schnitttest
genutzten Texturen, und Einstellungen für das Nesting von Polygonen konfigurierbar. Da sich die
Strategien zur Minimierung und Vermeidung von Schnitttests durchweg als vorteilhaft erwiesen
haben, werden Polygon-Stellungen durchgehend nicht-optional unter Verwendung dieser Strategien
erstellt. Über Parameter lässt sich einstellen, wieviele der am besten bewerteten Stellungen einer
Runde für weitere Berechnungen verwendet werden sollen und wieviele Polygone pro Runde an
einen Polygon-Patch hinzugefügt werden. Hierdurch sind vielfältige Möglichkeiten zur Auswahl von
Lösungen und zur Reduzierung der nötigen Rechenzeit gegeben.

In Folgenden werden Resultate der implementierten Anwendung präsentiert. Hierfür werden Daten
betrachtet, die über ausgewählte Probleminstanzen auf zwei verschiedenen Testsystemen erhoben
wurden.

TestsystemAMD ist ein Notebook mit AMD E2-1800 APU, deren Dual-Core CPUmit maximal 1.7GHz
taktet und 1MB L2 Cache besitzt. Die in der APU integrierte Grafikeinheit ist eine AMD Radeon
HD 7340 deren Grafikspeicher mit maximal 512MB vom Hauptspeicher des Systems versorgt wird.
Im System sind als Hauptspeicher 16GB DDR3-1333-RAM verbaut, die im Single-Channel-Modus
betrieben werden. Als Betriebssystem ist GNU/Linux mit einem Arch Linux (Kernel 3.13) in Betrieb.
Der verwendete Grafiktreiber ist der von AMD für Linux bereit gestellte Catalyst-Treiber 14.3.

Testsystem NVI ist ein Desktop PC mit einem AMD FX-4100 Quad-Core Prozessor der mit maximal
3.8GHz taktet und 4MB L2 Cache besitzt. Die verbaute dedizierte Grafikkarte ist eine NVIDIA GeForce
GT 640 mit 2048MB Grafikspeicher. Im System sind 16GB DDR3-1333-RAM verbaut, die im Dual-
Channel-Modus betrieben werden. Als Betriebssystem wird ebenfalls ein Arch Linux (Kernel 3.12)
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verwendet. Als Grafiktreiber ist der von NVIDIA für Linux bereit gestellte Treiber in Version 331.20
in Betrieb.

Abbildung 5.1 zeigt drei Testinstanzen, bei denen verschiedene geometrische Formen auf kleinen
Gebieten platziert werden sollen. Lösungen der drei Instanzen sind in Abbildung 5.2 zu sehen.

Abbildung 5.1: Drei Testinstanzen. Die Polygone (hellgrün) werden auf demGebiet (grünes Rechteck)
möglichst oft platziert. Die Konvexe Hülle der Polygone ist dunkelgrün hinterlegt,
das minimale Rechteck ist in rot eingezeichnet. I1) Ein rechtwinkliges Dreieck auf
einem Gebiet, in dem es maximal acht mal platziert werden kann. I2) Wie I1 ein
rechtwinkliges Dreieck, jedoch mit drei Aussparungen. Es kann maximal acht mal
im Gebiet platziert werden. I3) Ein geometrisches Objekt mit 17 Vertices in einem
Gebiet, in dem es vom Programm maximal sieben mal platziert werden konnte.

Zunächst wird der GPU-Schnitttest auf beiden Testsytemen evaluiert und die Performanz verglichen,
die im wesentlichen von der Größe der intern verwendeten Bildauflösungen abhängt. Anschliessend
werden Laufzeiten und der anfallende Rechenaufwand für jede Instanz betrachtet. Hierbei werden
verschiedene Varianten des Programms betrachtet, bei denen unterschiedliche Beschleunigungstech-
nicken deaktiviert wurden. Zuletzt folgt eine Betrachtung von Instanzen auf großen Gebieten, auf
denen der allgemeine Nesting Brute-Force Ansatz an seine Grenzen stößt.

Ergebnisse und Messungen der Implementierung

Der Schnitttest ist ein sehr wichtiger Faktor für die Laufzeit des Programms und für die Korrektheit
der gefundene Lösung. Im Grunde wird fast die gesamte Laufzeit des Programms dafür aufgebracht
Polygon-Stellungen auf Überschneidungen zu prüfen. Daher wird zunächst die Performanz des
Schnitttests untersucht. Der Schnitttest ist maßgeblich durch die Auflösung seines rasterisierten
Bildes konfigurierbar. Von dieser Auflösung hängt vereinfacht gesagt ab, wieviele (parallele) Rechen-
einheiten auf der Grafikkarte die Bearbeitung von Pixeln (Fragmenten) des Bildes realisieren müssen.
Gleichzeitig ist die dem Schnitttest zugrunde liegende Bildauflösung maßgeblich für die Korrektheit
dieses Tests. Ist die Auflösung zu niedrig gewählt, können Details der Polygone nicht entsprechend
abgebildet werden, sodass Überschneidungen an diesen Details nicht erkannt werden. Tabelle 5.1
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Abbildung 5.2: Lösungen der drei Testinstanzen. I1)Acht Dreiecke passen in das quadratische Gebiet.
I2) Die Aussparungen ändern nichts an der dreieckigen Grundform des Polygons,
weshalb ebenfalls nur acht solche Formen in das Quadrat platziert werden können.
I3) Das Programm findet eine Lösung mit maximal sieben platzierten Formen. Das
Lösen dieser Instanzen dauert auf beiden Testsystemen wenige Sekunden.

Millisekunden pro Schnitttest
AMD NVI

Auflösung I1 I2 I3 I1 I2 I3
1024 1.75 1.61 1.51 0.207 0.174 0.151
512 1.17 1.20 1.81 0.106 0.092 0.088
256 0.99 0.99 0.96 0.080 0.070 0.068
128 0.77 0.77 0.70 0.073 0.065 0.062
64 0.67 0.68 0.65 0.073 0.064 0.060
32 0.67 0.70 0.66* 0.072 0.062 0.059*

Tabelle 5.1: Messungen der durchschnittlichen Zeit für einen Schnitttest auf der GPU. Die Auflösung
des quadratischen Bildes für den Schnitttest ist in Pixeln angegeben. Für die mit *
markierten Einträge für I3 wurde vom Programm eine ungültige Lösung ausgegeben.

zeigt Messungen für die beiden Testsysteme AMD und NVI, auf denen unter verschiedenen Bildauflö-
sungen des Schnitttests die vorgestellten Testinstanzen I1, I2 und I3 gelöst wurden. Gemessen wurde
die durchschnittliche Zeit in Millisekunden, die ein Schnitttest auf dem System benötigt. Bei beiden
Systemen skaliert die gemessene Zeit für einen Schnitttest nicht beliebig nach unten. Dies ist durch
einen Overhead teils durch den CPU-Teil des Schnitttests zu erklären, kann aber auch mit genauen
Implementierungsdetails im Bezug auf OpenGL und mit dem Grafiktreiber zusammenhängen. Eine
weitere Optimierung des Schnitttests, um diesen Overhead weiter zu senken, kann in der Verwendung
fortgeschrittener OpenGL-Techniken bestehen.

Für die genannten Ergebnisse wurde das Programm mit dem GNU C Compiler 4.8 mit Optimierungs-
stufe O2 kompiliert. Tatsächlich spielt die Optimierungsstufe des Kompiliervorgangs aber keine
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Abbildung 5.3: Eine größere Variante der Testinstanz I3. In knapp einer Minute konnten vom Pro-
gramm 18 Polygone platziert werden. Die Berechnung wurde auf dem NVI System
durchgeführt, die Schnitttest-Auflösung wurde auf 512 gestellt.

Programm Laufzeit (große I3)
Optimierung AMD NVI

O0 17m 26s 884ms 1m 25s 127ms
O2 17m 12s 357ms 1m 09s 500ms
O3 17m 03s 309ms 1m 09s 304ms

Tabelle 5.2: Laufzeiten der in Abbildung 5.3 dargestellten gelösten Instanz, abhängig von der Opti-
mierungsstufe während des Kompiliervorgangs.

entscheidende Rolle für die Laufzeit des Programms. Dies ist in Tabelle 5.2 zu sehen. Gemessen
wurden Ausführungszeiten für eine Abwandlung der Testinstanz I3 (siehe Abbildung 5.3) mit etwas
größerem Gebiet, auf das 18 Polygone platziert werden konnten. Auf beiden Testsystemen wurden
Varianten des Programms gestartet, die mit verschiedenen Optimierungsstufen kompiliert wurden.
Die Bildauflösung für den Schnitttest wurde hier auf 512 gesetzt.

Die Unabhängigkeit der Programmlaufzeit von Compileroptimierungen deckt sich mit der Beobach-
tung, dass gemessene Laufzeiten vollständig mit Schnitttests zugebracht werden, die auf der GPU
stattfinden.
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Variante deaktivierte Funktionen
V0 keine
V1 valide Vertices
V2 V1 + alte Tests wiederverwerten
V3 V2 + Stellungen vor Schnitttest auf Gebietsüberschreitung prüfen

Anzahl erstellter Stellungen
Variante I1 I2 I3

V0 1 646 3 077 2 749
V1 1 715 4 459 4 194
V2 2 612 23 082 63 049
V3 6 528 147 162 146 608

Tabelle 5.3: Anzahl erstellter Stellungen während eines Programmdurchlaufs auf den drei vorge-
stellten Instanzen und unter Deaktivierung verschiedener Stellungen-reduzierender
Funktionen.

Es wurden verschiedene Strategien entwickelt um nur tatsächlich nötige Polygon-Stellungen zu erzeu-
gen. Dies hatte den Hintergrund, möglichst viele aus Stellungen folgende Schnitttests zu vermeiden.
Um zu evaluieren, welchen Mehrwert diese Methoden zur Vermeidung von Stellungen haben, wurde
die entwickelte Software in mehreren Varianten kompiliert. In den Programm-Varianten wurden
jeweils verschiedene Funktionen deaktiviert, die die Anzahl generierter Stellungen reduzieren. Test-
läufe auf den vorgestellten Instanzen wurden durchgeführt, und alle im Programmverlauf erstellten
Stellungen wurden gezählt. Die Ergebnisse hierzu sind in Tabelle 5.3 dargestellt.

Das Programm wurde stets so lange laufen gelassen, bis keine der neu erstellten Stellungen ein
weiteres Polygon zum Nesting hinzufügen konnte. Für diesen Brute-Force Ansatz zeigt sich in Tabelle
5.3 deutlich, dass die in Variante V3 deaktivierte Funktion viele Schnitttests ersparen kann. Diese
Funktion wurde in Kapitel 4.5 nur kurz erwähnt. Um nicht alle generierten Polygon-Stellungen an den
Schnitttest zur Überprüfung geben zu müssen, werden für diese zunächst die minimalen Rechtecke
erzeugt. Anhand dieser Rechtecke werden Stellungen entfernt, die nicht in das Gebiet passen, noch
bevor sie einem Schnitttest unterzogen werden. Vor allem beim iterativen Nesting von Polygonen und
wenn das Gebiet zu einem großen Teil bereits gefüllt ist werden so viele Schnitttests vermieden. Eine
ähnliche Relevanz für die Anzahl erstellter Stellungen hat das Wiederverwerten alter Schnitttests.
Vor allem für die komplexeren Polygone in I2 und I3 können extrem viele unnötige Stellungen, und
somit Schnitttests, eingespart werden. Aus den erhobenen Daten wird geschlussfolgert, dass die
entwickelten Methoden zur Aufwandsreduzierung sehr gut funktionieren.

Alle bisher betrachteten Testinstanzen wurden über den Brute-Force Ansatz berechnet, iterativ neue
Polygone auf dem Gebiet zu platzieren. Hierbei werden in jeder neuen Runde i alle bisher erzeugten
Polygon-Patches betrachtet und diejenigen Paare von Patches miteinander kombiniert, die zusammen
genau i = j + k Polygone haben. Da im Verlauf des Programms sehr viele Polygon-Patches erzeugt
werden, sind mit jeder Runde mehr solcher Patch-Paare möglich, und der damit einhergehende
Aufwand für Schnitttests nimmt enorm zu. Eine Möglichkeit diesen Aufwand zu beschränken ist,
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bisher gefundene Polygon-Patches mehrmals im Gebiet zu platzieren. Eine andere Möglichkeit besteht
darin, sich pro Runde auf maximal k neu hinzugefügte Polygone zu beschränken. Beschränkt man die
Lösungsfindung zum Beispiel auf k = 1, ist eine erheblich geringere Laufzeit messbar, und es wird
eine ähnlich gute Lösung gefunden wie beim Brute-Force Ansatz mit geschachtelten Patches. Das
Ergebnis eines solchen Tests ist in Abbildung 5.4 zu sehen.

Der Speicherverbrauch bei Berechnungen mit einem nicht beschränkten Brute-Force steigt mit jeder
Runde erheblich. Das ist einerseits auf die steigende Zahl neuer Polygon-Patches zurück zu führen,
wird wahrscheinlich aber auch zu einem großen Teil durch das Speichern alter Stellungen verursacht.
Beide Aspekte lassen sich abmildern, indem äquivalente Polygon-Patches, die dieselbe Platzierung
von Polygonen darstellen, erkannt und gefiltert werden. Ebenfalls ist eine ausgereifte Strategie zur
Einschränkung von neu erzeugten Polygonen denkbar, die sich sowohl auf den Speicherverbrauch,
als auch auf den Berechnungsaufwand auswirken würde. Eine durchdachtere Strategie für das Spei-
chern von alten gültigen Stellungen wird sicherlich auch zu einer Reduktion des Speicherverbrauchs
führen.

Abbildung 5.4: links) 120 Polygone konnten in 30 Minuten platziert werden. Tatsächlich wurden
8 Polygon-Patches mit jeweils 15 Polygonen im Gebiet anhand ihrer minimalen
Rechtecke verteilt. Die Polygon-Patches wurden über unbeschränktes Brute-Force
berechnet. Die Platzierung der minimalen Rechtecke ist sofort verfügbar. Während
der 16. Runde des Programmdurchlaufs beendete das Betriebssystem den Prozess,
weil es die gesamten Systemressourcen in Anspruch nahm (16GB RAM + 8GB Swap).
rechts) Iterativ konnten in knapp 4 Sekunden 117 Polygone nacheinander platziert
werden. Der Brute-Force Ansatz wurde beschränkt auf genau ein neues Polygon pro
Runde. Der Speicherverbrauch belief sich auf knapp 60MB. Beide Tests wurden auf
dem NVI System mit einer Schnitttest-Bildauflösung von 512 durchgeführt.
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Zusammenfassung

In dieser Arbeit wurde untersucht wie gegebene Formen möglichst oft in einem rechteckigen Gebiet
platziert werden können. Die Problemstellung wurde durch Polygone modelliert, die möglichst eng
zusammen liegen sollen. Statt beliebige Platzierungen zu erlauben, wurden nur Polygon-Stellungen
betrachtet, die sich an den Vertices und Segmenten der Polygone orientieren. Verschiedene geometri-
sche Eigenschaften wurden benutzt um Stellungen von Polygonen qualitativ zu bewerten, dies sind
die Konvexe Hülle und das minimale Rechteck. Die hierfür nötigen Algorithmen wurden für häufig
stattfindende Berechnungen in bestmöglicher Laufzeit-Komplexität umgesetzt und implementiert.

Um komplexe geometrische Berechnungen auf der CPU zu vermeiden wurde ein rasterbasierter
Schnitttest für Grafikkarten realisiert und optimiert, der von technisch zeitgemäßen Funktionen der
OpenGL-API Gebrauch macht. Mit Hilfe der dadurch bestehenden OpenGL-Anbindung wurde eine
Visualisierung für Polygone und Platzierungen von Polygonen implementiert, die auch eine Maus
basierte Eingabe von Polygonen durch den Benutzer zulässt.

Die hier getätigte Einschränkung auf diskrete Polygon-Stellungen hat zur Folge, dass sich zwei Poly-
gone grundsätzlich in jeder erzeugten Stellung schneiden können. Um den hieraus resultiertenden
Rechenaufwand für Schnitttests zu reduzieren wurden verschiedene Strategien betrachtet, wie die
Anzahl erzeugter Stellungen verringert werden kann, ohne gleichzeitig die Qualität einer gefundenen
Lösung zu beeinträchtigen. Die Datenstruktur der Polygon-Patches wurde eingeführt, um Stellungen
von vielen Polygonen zu speichern und dauerhaft zu verwalten. Mithilfe der Polygon-Patches konnte
eine Reduktion unnötiger Vertices bei der Erzeugung von Stellungen realisiert werden. Unnötige
Vertices werden dadurch erkannt, dass sie im Polygon-Patch rundum durch Polygone verdeckt sind.
Zusätzlich wurde eine Möglichkeit aufgezeigt die Information über getätigte Schnitttests wieder zu
verwerten, indem gespeichert wird, welche Stellungen von Schnitttest als gültig erkannt wurden.
Durch die hierarchische Struktur der Polygon-Patches wurde anhand gespeicherter gültiger Stellun-
gen möglich, bei der Erzeugung neuer Stellungen zwischen Polygon-Patches solche Varianten zu
vermeiden, die Überschneidungen von Polygonen enthalten.

Die entwickelten Strategien zum Nesting von Polygonen wurden in einer Software-Implementierung
umgesetzt und evaluiert. Die entwickelte Software kann für gegebene Gebiete und Polygone Plat-
zierungen der Polygone berechnen, anhand verschiedener Parameter sind der Schnitttest und die
Strategie bei der globalen Lösungsfindung konfigurierbar. Das Laufzeitverhalten wurde anhand ver-
schiedener Testinstanzen und Parameter-Konfigurationen untersucht. Die gemessenen Resultate
entsprechen erwarteten Verbesserungen im Laufzeitverhalten, die durch die entwickelten Strategien
erzielt werden sollten.
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Limitierungen und mögliche Erweiterungen

Die in dieser Arbeit entwickelten Strategien wurden nur für hier so genannte diskrete Polygon-
Stellungen betrachtet. Die eingangs getätigte Einschränkung auf diskreten Stellungen hat zur Folge,
dass nicht tatsächlich alle möglichen Lösungen einer Probleminstanz betrachtet werden. Es liegt also
nahe, die hier entwickelten Strategien auf beliebige Stellungen zu erweitern, bei denen Polygone
tatsächlich beliebig orientiert und platziert sein können. Ein solche Ansatz würde aber wahrscheinlich
zu der Nutzung bereits gut untersuchter Strategien führen, wie sie für das Lösen von Nesting-
Problemen bereits entwickelt wurden[BO08].

Die hier entwickelten Methoden greifen den Aspekt auf, dass die Anzahl erzeugter Stellungen mini-
miert werden soll. Der Ansatz, alte gültige Stellungen über den Programmverlauf in einer Bibliothek
zu bewahren und als Nachschlagewerk zu nutzen, lässt sich grundsätzlich ausbauen. Sofern eine
sinnvolle Verwaltung gegeben ist, kann für Polygon-Patches der gesamte Eltern-Stammbaum in
Form eines Binärbaumes betrachtet werden, um ungültige Stellungen in Teilbereichen des Patches
zu vermeiden. Dieser Eltern-Stammbaum kann wiederum eingeschränkt werden auf Teile, die im
aktuellen Patch relevant sind, also am äußeren Rand des Patches liegen.

Das Speichern alter Stellungen und das bisher nicht untersuchte Erzeugen äquivalenter Polygon-
Patches führen zu einem enormen Speicherverbrauch. Diese beiden Aspekte hängen stark zusammen.
Wenn über den gesamten Programmverlauf keine äquivalenten Polygon-Patches erzeugt werden,
werden die nötigen Tabellen zum Speichern aller Polygone und Resultate von Polygon-Stellungen
erheblich kleiner. In den Resultaten des entwickelten Programms finden sich momentan viele Polygon-
Patches mit äquivalenten Stellungen, die mehrfach erzeugt wurden. Bereits eine besser durchdachte
Auswahl von pro Runde neu erzeugten Polygonen könnte den aktuellen Speicherverbrauch gut
beschränken, denn zur Bewertung und Sortierung von Polygon-Patches untereinander nachdem sie
erstellt wurden sind keine Untersuchungen gemacht worden. Damit ist gemeint, dass nachdem in
Runde i zwei Patches AP und BP kombiniert wurden und aus deren engster Stellungen ein neuer
Patch P P entstanden ist, dieser Patch P P bisher in die Liste aller erzeugten Patches aufgenommen
wird, ohne mit anderen in dieser Runde neu erzeugten Patches verglichen zu werden.

Unabhängig von der tatsächlichen Stellung der Polygone lässt sich der entwickelte OpenGL-Schnitttest
weiter ausbauen. Hierfür können weitere in der Grafikprogrammierung übliche Verfahren untersucht
werden, die auchmithilfe vonOpenGL realisierbar sind. Über die genaueWahl des Texturformates, eine
weitere Reduktion von CPU-seitigen OpenGL-Aufrufen über spezielle OpenGL Funktionen, bis hin zu
Optimierungen an verwendeten Shadern sind viele Verbesserungen denkbar. Diese grundsätzlich in
der Grafikprogrammierung beheimateten Ansätze müssten für die Verwendung in einem Schnitttest
genauer betrachtet und evaluiert werden.
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