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Kurzfassung

Geometrische Packungs-Probleme sind in vielen industriellen Prozessen anzutreffen. Dadurch moti-
viert wird in dieser Arbeit untersucht, wie geometrische Formen méoglichst oft in einem rechteckigen
Gebiet platziert werden konnen.

Um zu garantieren, dass Platzierungen von Formen ohne Uberschneidungen sind, wird ein rasterba-
sierter Schnitttest realisiert, der unter Verwendung der OpenGL-API die Erkennung von Schnitten
komplett auf der Grafikkarte durchfiihrt. Die Problemstellung wird anhand von einfachen Polygonen
modelliert und mithilfe der geometrischen Eigenschaften der Polygone untersucht. Dafiir werden
mogliche Platzierungen von Polygonen eingeschriankt und mit Hilfe des Schnitttests auf Uberschnei-
dungen gepriift. Eine Datenstruktur zur Verwaltung schnittfreier Polygon-Stellungen wird entwickelt;
damit zusammenhingend werden Heuristiken vorgestellt, anhand derer solche Polygon-Stellungen
bewertet werden konnen. Weiterhin werden Strategien diskutiert, die die Anzahl betrachteter Polygon-
Stellungen, und somit nétiger Schnitttests, erheblich reduzieren. Diese Strategien orientieren sich an
den geometrischen Eigenschaften der Polygone, sowie an strukturellen Eigenschaften der verwende-
ten Datenstruktur. Durch das iterative Aufbauen lokal enger und schnittfreier Polygon-Platzierungen
werden globale Losungen fiir das rechteckige Gebiet konstruiert.

Anhand einer Software-Implementierung werden die dargelegten Strategien evaluiert und als effizient
erachtet.
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1 Einleitung

Abbildung 1.1: Eine Platzierung von 128 Formen auf einem rechteckigen Gebiet.

Problemstellung

Man stelle sich vor es ist Weihnachten und es werden Plitzchen gebacken. Aus dem rechteckig
ausgerollten Platzchenteig sollen maximal viele Platzchen ausgestochen werden, ohne den Teig neu
auszurollen. Eine andere Variante dieser Problemstellung lautet, aus einem rechteckigen Metallblech
moglichst viele vorgegebene Formen zu schneiden, um den Verschnitt an Material gering zu halten
und somit Materialkosten zu sparen.

In beiden Fallen liegt das Optimierungsproblem vor, auf einem gegebenen Gebiet eine Anordnung von
vorgeschriebenen Formen zu finden, die den genutzten Platz im Gebiet maximiert, indem maximal
viele Formen platziert werden. Die Formen konnen beliebig verschoben und gedreht werden, sollen
aber platziert werden, ohne sich gegenseitig zu iiberdecken, bzw. zu iberschneiden. Ein Beispiel einer
Platzierung von Formen ist in Abbildung 1.1 zu sehen. Dieses Packungs-Problem, Nesting-Problem, oder
Schachtelungs-Problem ist NP-schwer[AI12]. Das bedeutet, dass im Grunde alle moglichen Stellungen
von Formen ausprobiert werden miissen um eine optimale Verteilung auf dem Gebiet zu finden *. Statt
Menschen mit dem Finden solcher Platzierung zu beauftragen liegt es nahe sich von entsprechenden
Computer Programmen Ldsungen fiir gegebene Probleminstanzen berechnen zu lassen. Viele oder
alle Moglichkeiten fiir Platzierungen durchzuprobieren kann, selbst mit Computern, hoffnungslos

"Dies gilt natiirlich nur unter der Annahme, dass P # N P. Diese Annahme wird hier getroffen.



1 Einleitung

lange dauern, wenn nicht besondere Strategien zum Einsatz kommen, die eine Auswahl von nur
vielversprechenden Losungswegen sicherstellen.

Diese Arbeit untersucht Methoden und Algorithmen, wie das Nesting-Problem von Formen auf einem
rechteckigen Gebiet gelost werden kann. Unter Einschrankung der méglichen Platzierungen werden
Heuristiken entwickelt, die eine Losungsfindung beschleunigen. Es werden Datenstrukturen und
Vorgehensweisen erlautert um Platzierungen von Formen zu verwalten und zu bewerten, und es wird
gezeigt wie unter Nutzung dieser Strukturen uiberfliissiger Rechenaufwand vermieden werden kann.
Um zu erkennen wann sich Platzierungen von Formen tiberlagern wird ein Schnitttest entwickelt der
komplexe Berechnungen auf die Grafikkarte auslagert, und somit Gebrauch von deren spezialisierter
Hardware macht. Anhand einer Implementierung der vorgestellten Verfahren wird evaluiert, dass
diese eine schnellere Losungsfindung erméglichen als ein naiver Brute-Force Ansatz.

Bekannte Ansatze

Packungs-Probleme gibt es in zahlreichen Varianten, die in verschiedenen Anwendungsbereichen
auftauchen. Vom optimalen Zuschneiden von Blechen und Textilien[Nie07], iiber das optimale Packen
von Kartons auf Paletten bis hin zum optimalen Packen von Kofferraumen[EFRS03][EFK*05] sind
verschiedene Packungs-Probleme anzutreffen, sowohl in zwei- als auch in drei Raumdimensionen und
mit zu platzierenden Formen verschiedenster Arten. Die Relevanz solcher Probleme fiir industrielle
Fertigungsprozesse ist leicht ersichtlich, und so verwundert es nicht, dass der Autor dieser Arbeit bei
ersten Recherchen zu diesem Thema auf einen Artikel des Spiegel stief}, der dieses Thema behandelt.
Neben der naheliegenden, in dieser Arbeit eingangs ebenfalls gewahlten, Einfithrung in die Problem-
stellung anhand des weihnachtlichen Platzchen Backens geht der Spiegel-Artikel auf eine Software
namens AutoNester® ein, die vom Frauenhofer Institut fiir Algorithmen und Wissenschaftliches Rech-
nen entwickelt wird. Der AutoNester ist ein Programm das zweidimensionale Packungs-Probleme
16sen kann, und gleichzeitig die Einhaltung verschiedener Randbedingungen erlaubt. Als solches ist
der AutoNester ein Beispiel fiir den Bedarf an schnellen Losern fiir Packungs-Probleme.

Es besteht ein breites Forschungsgebiet, das stets neue Losungsstrategien fiir Nesting-Probleme entwi-
ckelt. Neben der Behandlung grundsitzlicher Strategien[BOO08] liegt der Fokus auf dem Finden schnel-
ler Algorithmen[OGF00], die gute Losungen in weniger Zeit berechnen. Hierbei werden verschiedene
Ansiatze verfolgt, die Losungen zum Beispiel mittels Lineare Programmierung[EFRS03][GO06] oder
Simulated Annealing[OF93][GO06] finden, und oft mit geometrischen Konstruktionen wie No-Fit
Polygons[Gho91] arbeiten. Die meisten Optimierungsverfahren fiir Packungs-Probleme miissen frii-
her oder spéter auf eine randomisierte Losungsfindung zuriick greifen. Hierbei wird eine vorhandene
Losung der Probleminstanz benutzt, um tiber zufillige Verdnderungen der platzierten Formen zu
einer bessere Losung zu gelangen. Solche Verfahren verfolgen die Strategie mit mehr investierter
Rechenzeit potentiell bessere Losungen zu finden. Um eine nétige initiale (Teil-)Losung fiir solche

’Dambek, Holger. Spiegel Online. Mathematik im Advent: Plitzchen backen fiir Perfektionisten. Dezember 2010. http:
//www.spiegel.de/wissenschaft/mensch/a-733067.html, letzter Zugriff: 1. April 2014.

*Frauenhofer SCAI http://www.scai.fraunhofer.de/geschaeftsfelder/optimierung/produkte.html, letzter Zu-
griff: 1. April 2014.
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randomisierten Verfahren zu erhalten sind wiederum weitere Strategien nétig, die nicht zwingend
eine optimale, aber eine gute Losung in kurzer Zeit liefern sollen.

Das Finden solcher initialen Losungen ist haufig stark von der genauen Formulierung der Problem-
stellung abhéngig. Fast alle Varianten des Packungs-Problems haben aber gemeinsam, dass schon
das Finden einer guten initialen Losung einen erheblichen Rechenaufwand bedeuten kann. Hinzu
kommen weitere berechnungsintensive Verfahren, die zum Beispiel das Einhalten von Randbedin-
gungen garantieren miissen. Vor allem muss sichergestellt sein, dass gefundene Lésungen keine
Formen enthalten, die sich iiberlagern oder iiberschneiden. Dies erfordert einen Test der erkennt,
wann Platzierungen Uberschneidungen enthalten; und weil dieser Test hdufig durchgefiithrt werden
muss, sollte dieser ebenfalls moglichst performant sein.

Herangehensweise und Aufbau der Arbeit

Diese Arbeit untersucht, wie geometrische Formen auf ein rechteckiges Gebiet méglichst oft platziert
werden konnen. Hierbei kénnen die Formen beliebig auf dem Gebiet verschoben und rotiert werden,
sie diirfen sich jedoch nicht tiberschneiden. Um die Problemstellung etwas zu vereinfachen, werden
nur solche Formen betrachtet, die keine Locher und keine runden Stellen haben. Hierdurch konnen
diese Formen durch einfache Polygone modelliert werden. Das rechteckige Gebiet sei durch seine
Hohe und Breite gegeben.

Statt einen globalen Ansatz zum Platzieren der Formen zu verfolgen, werden Eigenschaften der
gegebenen Formen (Polygone) genutzt, um zunichst lokal kleine Teillgsungen zu erzeugen. Vorrangig
wird untersucht, wie Polygone miteinander moglichst eng platziert werden konnen, und wie der Re-
chenaufwand fiir solche Platzierungen minimiert werden kann. Um zu garantieren, dass Platzierungen,
bzw. Stellungen von Polygonen schnittfrei sind, wird ein Rasterbasierter Schnitttest entwickelt und
unter Verwendung der OpenGL-API auf Grafikkarten umgesetzt, hierauf wird in Kapitel 3 ausfiithrlich
eingegangen. Kapitel 2 widmet sich der Aufarbeitung mathematischer und algorithmischer Verfahren
und Strukturen, die fiir die Modellierung des Problems und fiir die Untersuchung von Polygonen und
deren Platzierungen notwendig sind.

Die Untersuchung des Packungs-Problems erfolgt in Kapitel 4. Hier wird zunéchst eine Einschrankung
moglicher Platzierungen vorgenommen, um die Komplexitét der Problemstellung zu reduzieren. Diese
Einschriankung besteht darin, nicht grundsitzlich alle Platzierungen von Polygonen zu betrachten,
sondern nur solche, bei denen die Polygone direkt zusammenliegen. Polygone sollen sich nur an den sie
definierenden Punkten berithren und aneinander ausgerichtet sein. Dies kann als Einschrankung auf
diskrete Stellungen der Polygonene zueinander aufgefasst werden. Solche Polygon-Stellungen bieten
eine vereinfachte Betrachtung von méglichst engen Platzierungen von Polygonen, miissen aber anhand
des Schnitttests auf Uberschneidungen gepriift werden. Anhand der diskreten Stellungen werden in
Kapitel 4 Strategien entwickelt, um mogliche aber irrelevante Stellungen zu vermeiden, um somit die
zahlreichen und zeitintensiven Schnitttests zu reduzieren. Hierfiir werden einerseits geometrische
Eigenschaften der Polygone aus Kapitel 2.2 aufgegriffen, und andererseits werden strukturelle
Eigenschaften der Polygon-Stellungen genutzt, um irrelevante Gebiete von Polygon-Stellungen
von Berechnungen auszuschlieffen und alte Informationen aus Schnitttests wiederzuverwenden.
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1 Einleitung

Aus iterativ erstellten Teilldsungen kdnnen so schneller globale Losungen fir das gesamte Gebiet
zusammengesetzt werden.

Die in dieser Arbeit entwickelten Strategien werden anhand einer Software-Implementierung evaluiert.
Dies geschieht durch das Betrachten von Testinstanzen und daraus erhobener Daten in Kapitel 5. Im
darauf folgenden und letzten Kapitel schliefit die Arbeit mit einer Betrachtung und Zusammenfassung
der Ergebnisse, die im Laufe dieser Ausarbeitung entstanden sind.
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2 Mathematische und algorithmische
Grundlagen

Die Modellierung und Darstellung von Formen, also Polygonen, erfolgt anhand von Punkten und
Richtungen im zweidimensionalen Raum. Dies sind Orts- und Richtungsvektoren v, r in der zwei-
dimensionalen Ebene R?, sprich v, € R% Um das Drehen und Verschieben von Polygonen zu
realisieren, werden Transformationen in Form von Rotationen und Translationen benutzt.

Nach der Einfithrung von Transformationen folgt eine Definition der hier betrachteten Polygone
und ihrer Eigenschaften, gefolgt von Definitionen und Analysen weiterer geometrischer Objekte und
Algorithmen. Diese geometrischen Objekte und Algorithmen dienen im weiteren Verlauf der Arbeit
als Hilfsmittel, um Eigenschaften von Polygonen (und die Konstellation vieler dicht nebeneinander
platzierter Polygone) zu betrachten und zu bewerten. Namentlich werden einfache Polygone betrachtet,
deren Konvexe Hiille, das minimale umschliessende Rechteck, die Triangulierung eines Polygons,
und die Verdeckung eines Punktes im Raum durch ein oder mehrere Polygone.

2.1 Vektorrechnung und Transformationen

Da die Problemstellung dies bedingt, ist es notig das Drehen und Verschieben von Objekten im
zweidimensionalen Raum zu realisieren. Hierfiir werden zunachst die Transformationen Rotation und
Translation eingefithrt und anschliessend in eine leicht handhabbare Form gebracht. Dies passiert,
indem die nétigen Transformationen in sogenannten Homogenen Koordinaten durchgefiihrt werden.

Translation, Skalarprodukt, Winkel, Drehung, Skalierung

Gegeben seien Punkte, bzw. Ortsvektoren v € R? , (ggf. normierte) Richtungsvektoren » € R? und
sich auf einen solchen Richtungsvektor beziehende Normale n,, € R?. Die Normale wird meistens
ebenfalls als normiert angenommen, als Konvention wird im Folgenden auch davon ausgegangen,
dass eine Normale nach links vom zugehorigen Richtungsvektors zeigt.

Die erste Transformation, die fiir unsere Anwendungen benétigt wird, ist die Verschiebung, also
Translation T'(v, ) eines Vektors v € R? um einen bestimmten Richtungsvektor 7 € R,

v =T(v,r)

— = Ty i Tr) _ Ty + Xy ‘
Yo Yr Yo + Yr

13



2 Mathematische und algorithmische Grundlagen

Das Skalarprodukt zwischen zwei Vektoren 71,79 € R? ist gegeben durch

<7“177”2>=7“1'7“2= <x1> : <x2> =x1-22+Yy1-yY2o=5E€R.
Y1 Y2

Das Skalarprodukt zweier Vektoren ist Null, wenn die beiden Vektoren orthogonal aufeinander stehen,
wenn also einer der beteiligten Vektoren eine Normale des anderen ist. Das Skalarprodukt hat eine
besondere Beziehung zum Winkel zwischen zwei Vektoren, die anhand der Berechnung des Winkels
klar wird. Der Winkel o € [0, 71] zwischen zwei Vektoren 71, ro € R? ist gegeben durch

cos(a) = 7<T1’ r2)
ra| - [re|”

Der durch acos( ﬁ?ﬁfg‘ ) berechnete Winkel « bezieht sich stets auf den kleineren der beiden Winkel

zwischen r1 und 7.

Anhand des Skalarproduktes lasst sich testen, auf welcher Seite einer Linie ein gegebener Punkt liegt.
Seien gegeben ein Punkt p € R? und eine Linie die durch zwei Punkte v, vy € R? verlauft. Sei r,,
der Richtungsvektor von v; nach vp und 7, der Richtungsvektor von v nach p. Das Skalarprodukt
zwischen 7, und der (links orientierten) Normale 7., zur Linie gibt Auskunft {iber die Lage von p
beziiglich der Linie.

(rp,ny,) > 0 < p liegt links von der Linie durch vy, va.

Ist dieses Skalarprodukt Null, liegt der Punkt auf der Linie, ist das Skalarprodukt negativ, liegt der
Punkt auf der rechten Seite der Linie. Eine Darstellung der hier betrachteten Punkte und Vektoren ist
in Abbildung 2.1 zu sehen.

Abbildung 2.1: Zwei Richtungsvektoren r,, r,,, der eingeschlossene Winkel v und die Normale ..,
ZU Ty,

Die Rotation eines Vektors v € R? um einen Winkel « ist gegeben durch die Multiplikation mit der
Rotations-Matrix R(«)

14



2.1 Vektorrechnung und Transformationen

Der Vektor v wird um den Ursprung und gegen den Uhrzeigersinn gedreht. Eine Rotation im Uhrzei-
gersinn ergibt sich aus der Inversen von R(«). Die Inverse der Rotation R(«) ist eine Rotation um
R(—a). Setzt man nun — ein, ergibt sich tiber die Symmetrie vom Cosinus und der Punktsymmetrie
vom Sinus

R(a)~! = R(~a) = <cos(—a) —sin(—a))

sin(—a)  cos(—a)

[ cos(a) sin(w)
~ \—sin(a) cos(a)
= R(a)"
Ein normalisierter Richtungsvektor, der zwischen sich und der x-Achse einen Winkel « einschlief3t,

hat in seinen Koordinaten den entsprechenden cos(«a) und sin(«) Wert, dies ist am Einheitskreis leicht
zu erkennen. Durch diesen Zusammenhang lassen sich nun einerseits gegebene Richtungsvektoren r

T T
sehr einfach in die Richtung (1 0) rotieren, und andererseits lasst sich ( 1 0) in jede gegebene
andere Richtung rotieren. Dies ist angenehm, da sich hierdurch grundsatzlich Rotationen in gegebene
Richtungen durchfithren lassen, ohne je explizit die nétigen Winkel ausrechnen zu miissen. Sei also

>
r(o) = (cos(a) sin(a)) € R? ein normalisierter Richtungsvektor, so rotiert folgende inverse

.
Rotationsmatrix den Vektor 7 in Richtung (1 0)
R(r(a)~! = Tz Ty) _ cqs(oz) sin(a)
—Try Ty —sin(a) cos(a)
Die Skalierung eines Vektors v € R? erfolgt durch die Skalierungsmatrix

s O
S(8z,8y) = (0 . )
Y

V' = S(sz,8y) - v

Sz, 8y >0
Ein Beispiel fiir eine hintereinander Ausfithrung aller Transformationen ist in Abbildung 2.2 zu
sehen.

Ein grundsatzliches Problem der Translation ist, dass diese als Vektoraddition und nicht als Ma-
trixmultiplikation realisiert ist. Fiir eine einfache Handhabung der Transformationen ist jedoch ein
ausschliefliches Rechnen mit Matrizen erwiinscht, das wie folgt aussehen sollte:

v = S(sz,8y) - R(a) - T(r) - v
V" =T(r) S(ss,8y) - R() - v.

15



2 Mathematische und algorithmische Grundlagen

“I'0,0) X X
y y y
(0,0) X ’(o,o) X (0,0)
a) b) c)

Abbildung 2.2: a) Translation von Punkten. b) Rotation von Punkten im Uhrzeigersinn. ¢) Skalierung
einer Punktmenge.

Homogene Koordinaten fiir Transformationen

Die oben geforderte Eigenschaft fiir Transformationen kann durch Verwenden Homogener Koordinaten
sichergestellt werden. Im Folgenden werden die bereits vorgestellten Transformationen in homogene
Koordinaten tiberfiihrt. Hierbei handelt es sich um eine Erweiterung der bekannten Matrizen und
Vektoren um eine weitere Dimension, sodass Rechnungen fortan im dreidimensionalen R? statt finden,
aber immer noch fiir Operationen im zweidimensionalen R? stehen. Die zusitzliche dritte Dimension
wird in unserer Anwendung durchgehend durch eine hinzugefiigte 1 realisiert. Sei v € R?, so ist v in
homogenen Koordinaten dargestellt durch

X
v=|(")~ Y eR?
4 1

16



2.1 Vektorrechnung und Transformationen

Folgende Translations-Matrix gibt eine Translation um den Vektor r in homogenen Koordinaten an.

Il
o O =
o = O
=
<
<

Die Rotations- und Skalierungsmatrizen werden in homogenen Koordinaten um die dritte Dimension
und die homogene 1 erweitert, bleiben ansonsten aber unverandert.

cos(a) —sin(a) 0
R(a) = | sin(a) cos(a) 0
0 0 1
v =R(a) v
a € [0,2m)

Die Inverse dieser Rotationsmatrix ist, unter der gleichen Argumentation wie oben, ebenfalls die
Transponierte: R(a) ™! = R(a) .

Die Skalierung ist gegeben durch

s, 0 O
S(5z,8y) =10 s, 0
0 0 1
v = S(sg,8y) - v
Sz,8y >0

Diese Operationen in Form von 3 x 3—Matrizen ermdglichen eine einfache Modellierung und Dar-
stellung von zueinander verschobenen Objekten. So kann fiir jedes Objekt eine Matrix gespeichert
werden, die alle fiir das Objekt benétigten Transformationen beinhaltet. Bei weiteren, hinzukom-
menden Transformationen werden die entsprechenden Matrizen mit einander verrechnet. Die hier
ebenfalls erwihnte Skalierung findet Verwendung im Schnittest von Polygonen, ist jedoch nicht
relevant fiir das Darstellen von Stellungen von Polygonen.

17



2 Mathematische und algorithmische Grundlagen

2.2 Polygone und Geometrische Algorithmen

Wie bereits erwahnt, werden in dieser Arbeit zur Darstellung von zu platzierenden Formen zweidi-
mensionale Polygone verwendet. Denkbar wiaren auch andere Darstellungsformen, zum Beispiel eine
direkte Verwendung von gegebenen CAD! Daten der modellierten Form. Diese Darstellung kénnte
auch Rundungen und Locher enthalten, die iiblicherweise durch analytische Funktionen gegeben
sind. Eine Verarbeitung solcher Daten wiirde jedoch den Rahmen dieser Arbeit sprengen, und ist
nicht Teil der eigentlichen Problemstellung.

Da das Gebiet, in das gegebene Polygone platziert werden sollen, rechteckig ist, erfordert dessen
Modellierung nicht viel Mithe. Daher werden im Folgenden ausschlief3lich Eigenschaften der Polygone
untersucht.

Durch die Einschrankung auf einfache Polygone, die im folgenden Unterkapitel genauer erldutert
werden, werden gleichzeitig auch bestimmte geometrische Eigenschaften dieser Polygone als analyti-
sches Werkzeug nutzbar. Namentlich sind diese Eigenschaften die Konvexe Hiille, die Triangulierung,
das minimale umfassende Rechteck, und die Verdeckung eines Punktes durch ein Polygon. Fiir die Be-
rechnung dieser Eigenschaften wurden Algorithmen gewahlt und implementiert, die eine vertretbare
Balance zwischen Implementierungsaufwand und (Laufzeit-)Komplexitat aufweisen. Auf die Verwen-
dung von vorhandenen Software Bibliotheken (zum Beispiel CGAL?), die solche Verfahren bereits
implementieren, wurde bewusst verzichtet, um eine grolere Flexibilitit der eigenen Implementierung
zu bewahren.

ICAD, Computer-Aided Design
®CGAL, Computational Geometry Algorithms Library, www.cgal.org
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2.2.1 Einfache Polygone

Abbildung 2.3: Einfache Polygone gegeben durch Punkte die links orientierte Linienziige definieren.

In dieser Arbeit werden einfache, nicht zwingend konvexe Polygone betrachtet. Abbildung 2.3
zeigt einige solche Polygone. Ein Polygon P, = (p1,...,pn), pi € R? sei also gegeben durch eine
Folge von n paarweise verschiedenen Punkten so, dass jeweils zwei Punkte ein Segment (eine Linie)
Si; = (pispit1),i €1,...,n—1, S, = (pn, 1), bilden, die vom ersten Punkt zum zweiten orientiert
ist. Dieser Linienzug ist geschlossen (durch 5;,) und keine zwei Segmente schneiden sich , ausser
an einem Punkt, der Endpunkt beider Segmente ist. Als Konvention wird davon ausgegangen, dass
der Linienzug gegen den Uhrzeigersinn orientiert ist. Das bedeutet, dass links der Orientierung
eines Segments stets das Innere des Polygons liegt. Diese Konvention lasst sich, wenn nétig, bei
einem gegebenen Linienzug tiberpriifen und herstellen. Zwingend hierfiir ist allerdings, dass eine
Information gegeben ist, wo das Innere des Polygons liegt. Da das Polygon nur durch den Linienzug
definiert ist, kann es im Inneren des Polygons keine Locher geben, diese sind fiir eine allgemeine
Betrachtung der Aufgabenstellung dieser Arbeit auch nicht relevant. Rundungen am Polygon kénnen
durch entsprechend viele, kurze Segmente dargestellt werden. Dies erhoht jedoch die Komplexitit
des Polygons und fiithrt zu mehr Rechenaufwand, vor allem bei Brute-Force Ansitzen. Um diesen
Effekt abzumildern, ist eine Aufarbeitung von Polygonen denkbar, die Rundungen vereinfacht oder
anderweitig in weitere Berechnungen einflieSen l4sst. Diese Spezialfille werden hier nicht behandelt,
da ein allgemeiner Ansatz verfolgt wird.

Zwei erste Eigenschaften, die ein Polygon dieser Form hat sind:

+ Die (per Konvention nach links zeigenden) Normalen der Segmente zeigen in das Innere des
Polygons.

« An jedem Punkt gibt es einen inneren Winkel - dies ist derjenige Winkel, der durch beide
angrenzenden Segmente aufgespannt wird und im Inneren des Polygons liegt.

Von nun an wird fiir einen Eckpunkt eines Polygons der Begriff Vertex benutzt, um zu verdeutlichen,
dass der Punkt nicht etwa ein beliebiger Punkt am oder im Polygon ist, sondern einer, der als Eckpunkt
maf3geblich fir das Polygon ist.
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Abbildung 2.4: Konvexe Hiille (grau) eines einfachen Polygons (blau).

2.2.2 Konvexe Hiillen von Polygonen

Die Konvexe Hiille einer Punktmenge M ist definiert als die kleinste konvexe Menge, die M ganz
enthalt. Eine Menge K ist genau dann konvex, wenn fiir zwei Punkte p;, p» € K dieser Menge gilt,
dass die Verbindungslinie L = {z|z = p1 + A - (p2 — p1), A € [0,1]} dieser Punkte ebenfalls in K
liegt: L C K. Fir unsere Anwendung benétigen wir als Darstellung der Konvexen Hiille diejenigen
Segmente, die die konvexe Menge eingrenzend definieren. Abbildung 2.4 zeigt eine solche durch
Segmente gegebene Konvexen Hiille eines Polygons. Dies ist also wieder ein Polygon nach unserer
Definition, und die definierenden Vertices sind eine Teilmenge der Vertices des zugrundeliegenden
Polygons.

Fiir ein gegebenes Polygon bedeutet dies, vereinfacht ausgedriickt, dass man Segmente von jedem
Vertex zu allen anderen ziehen kann, und dann diejenigen Segmente als Konvexe Hiille itbernimmt, die
am dufBersten Rand liegen. Oder noch einfacher ausgedriickt: Um die Vertices des Polygons wird ein
enges Gummiband gelegt, das sich eng um die Vertices schmiegt. Die Vertices, die dieses Gummiband
berithrt, und die dadurch definierten Segmente, sollen berechnet werden.

Zur Berechnung von Konvexen Hiillen von Punktmengen gibt es zahlreiche Algorithmen. Die schnells-
te Berechnung der Konvexen Hiille von (unstrukturiert gegebenen) n Punkten ist in einer Zeitkom-
plexitat von O(n log h) moglich, wobei h die Anzahl der Vertices ist, die auf der Konvexen Hiille
liegen[Cha96]. Der Einfachheit halber wurde fiir diese Arbeit eine Variante von Andrews monotone
chain[And79] implementiert, um die Konvexe Hiille eines Polygons in O(n log n) zu berechnen. Die
Berechnung der Konvexen Hiille selbst ist hierbei in O(n) méglich, nachdem die Eingabe der Punkte
mit Aufwand O(n log n) sortiert wurde.

Die Punkte der Eingabe seien aufsteigend nach x-Koordinate sortiert, und Punkte mit gleicher x-
Koordinate seien absteigend nach y-Koordinate sortiert. Der Algorithmus berechnet die untere und
obere Hilfte der Konvexen Hiille separat, im Folgenden wird nur das Vorgehen fiir die untere Hélfte
erlautert; die obere Hilfte wird analog berechnet. Zunéchst ist ersichtlich, dass der Punkt p;,;, am
weitesten links und p;,q, am weitesten rechts zur Konvexen Hiille gehoren. Sind unterhalb der Linie
PminPmaz Keine weiteren Punkte, ist die untere Hilfte der Konvexen Hiille fertig. Gibt es jedoch
Punkte unterhalb der Linie, werden diese in ihrer sortierten Reihenfolge betrachtet. Ein Punkt p,,
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kann entweder innerhalb der bisher gefundenen Konvexen Hiille liegen, oder ausserhalb. Liegt er
ausserhalb, wird die Konvexe Hiille um diesen Punkt erweitert, und es ist nétig sicherzustellen, dass
alle bisherigen Punkte der Konvexen Hiille noch zum Rand dieser gehéren. Um das zu priifen wird vom
aktuellsten Segment der Konvexen Hiille riickwirts gehend getestet, welche Segmente der aktuellen
Konvexen Hiille durch Hinzufiigen von p,, tiberfliissig werden. Diese werden entfernt, indem die
hiermit korrespondierenden Punkte aus der konvexen Hiille entfernt werden. Diese Riickwartssuche
endet, wenn p,,;y, erreicht oder ein Segment der Konvexen Hiille gefunden wird, das durch p,, nicht
geindert werden muss (weil p,, links von der durch das Segment definierten Gerade liegt). Da jeder
Punkt auf diese Weise hochstens ein mal zur Konvexen Hiille hinzugefiigt und ggf. wieder entfernt
werden kann, sind nach O(n) Schritten alle an der Konvexen Hiille beteiligten Punkte gefunden.
Abbildung 2.5 skizziert die beschriebene Konstruktion der Konvexen Hiille.

Abbildung 2.5: a) py,in und pimg, des Polygons sind auf jeden Fall Teil der Konvexen Hiille. b)
Einteilen der Punkte in untere und obere Halfte (nur untere Halfte dargestellt) und
Sortieren der Punkte anhand der x-Koordinaten. ¢) Die Punkte ¢, ¢co und c3 sind
Teil der Konvexen Hiille aller bis c¢3 betrachteten Punkte. Durch Hinzunahme von
prn wird die Konvexe Hiille um p,, erweitert und c3 wird entfernt.

Nach Ablauf dieses Algorithmus liegt die Konvexe Hiille als Folge von Vertices vor, also als Linienzug,
der gegen den Uhrzeigersinn verlauft.
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Um eine Konstellation von zwei Polygonen zu bewerten, muss spéter die Konvexe Hiille von zwei
Polygonen P, und P, (mit je n und m Vertices) berechnet werden. Dies direkt iiber die Vertices der
Polygone zu berechnen, wiirde wieder eine erneute Sortierung der Punkte bendtigen, was eine teure
Operation ist. Da aber zu beiden gegebenen Polygonen jeweils eine Konvexe Hiille berechnet wurde,
lasst sich eine Sortierung der fiir uns relevanten Vertices, und daher die Berechnung der gesamten
Konvexen Hiille, in O(n + m) realisieren. Dies ist der Fall, da die gemeinsame Konvexe Hiille beider
Polygone nur aus Vertices bestehen kann, die bereits zu der Konvexen Hiille jedes einzelnen Polygons
gehoren. Da die Konvexen Hiillen als Linienzug gegeben und die Vertices jeweils sortiert sind, lassen
sich diese durch einen Merge-Sort Schritt in eine gemeinsame Sortierung tiberfithren. Dies hat einen
Aufwand von O(n + m). Im Anschluss wird wieder der bereits beschriebene Algorithmus verwendet,
um die Konvexe Hiille der sortierten Punktmenge zu berechnen. Dies hat ebenfalls einen Aufwand
von O(n + m). Abbildung 2.6 zeigt die Konvexe Hiille zweier konvexer Polygone.

Abbildung 2.6: Konvexe Hillle (in griin hinterlegt) zweier konvexer Polygone. Weil die Linienziige
der beiden Polygone bereits einer Sortierung folgen, lasst sich die gesamte Konvexe
Hiille in O(n) berechnen.
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2.2.3 Minimales umfassendes Rechteck

Das Minimale Umfassende Rechteck (kurz: minimales Rechteck) einer Punktmenge /M mit n Punkten
ist das Rechteck mit der kleinsten Flache, das alle Punkte aus M enthélt. Die Orientierung des
minimalen Rechtecks kann beliebig sein, und ist nicht an die Hauptachsen gebunden. Das minimale
Rechteck einer Punktmenge enthilt auch die Konvexe Hiille dieser Punktmenge, wie in Abbildung
2.7 dargestellt.

Abbildung 2.7: Das minimale umfassende Rechteck eines Polygons wird anhand der Konvexen Hiille
des Polygons berechnet.

Insbesondere ist die Berechnung des minimalen Rechtecks in einer Zeitkomplexitiat von O(n) moglich,
wenn die Konvexe Hiille der entsprechenden Punktmenge gegeben ist[FS75][Tou83]. Dies ist der
Beobachtung geschuldet, dass das minimale Rechteck mit jeder Seite mindestens einen Vertex der
Konvexen Hiille der Punktmenge berithren muss, und mit mindestens einer Seite an einem Segment
der Konvexen Hiille anliegt[FS75]. Ist also eine Konvexe Hiille (bzw. ein konvexes Polygon) gegeben,
lasst sich sehr schnell und relativ einfach das minimale Rechteck berechnen. Es wird wieder die
Konvention verwendet, dass eine Konvexe Hiille durch einen Linienzug gegeben ist.

Zur Berechnung des minimalen Rechtecks wird die Methode der Rotating Callipers[Tou83] verwendet.
Zwei jeweils parallele Linienpaare, die gemeinsam ein Rechteck bilden, werden hierbei um das
konvexe Polygon rotiert. Als Startkonfiguration konnen an den Hauptachsen orientierte Linien
gewahlt werden, die jeweils an dem Vertex anliegen, der am weitesten unten, rechts, oben und links
ist. Die Linien liegen stets an mindestens einem Vertex oder an einem Segment an, und werden stets
um den kleinsten moglichen Winkel so weiter rotiert, dass keine Linie ein Segment des konvexen
Polygons schneidet, sondern hochstens an einem Segment ausgerichtet ist. Hierbei muss jede Linie
jeden Vertex genau ein mal berithren, bis die Ausgangsstellung wieder erreicht ist. Dies entspricht
einer vollen Umrundung des konvexen Polygons durch alle Linien. Wahrend dieser Umrundung lassen
sich alle durch die vier Linien gebildeten Rechtecke aufstellen (es sind hochstens n Rechtecke), und das
kleinste wird als Ergebnis des Algorithmus ausgegeben. Tatséchlich ist nur eine viertel-Umrundung
des Polygons nétig, bis alle relevanten Rechtecke betrachtet wurden, da alle weiteren Drehungen nur
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Rechtecke erzeugen, die dquivalent zu bereits bekannten sind. Abbildung 2.8 zeigt zwei Schritte des
beschriebenen Algorithmus.

a) b) —

Abbildung 2.8: Die im Rechteck angeordneten Parallelen rotieren um den minimalen Winkel ac um
das konvexe Polygon.

Ein berechnetes minimales Rechteck zu einem Polygon wird mit den Seitenlangen (z, y) und zwei
Vektoren p, d € R? gespeichert. Der Vektor p gibt einen Eckpunkt des Rechtecks an und der Vektor d
eine Richtung, in die von p aus die lingere Seite des Rechtecks zeigt. Der Einfachheit halber wird p so
gewahlt, dass es der Eckpunkt links unten ist, nachdem das Rechteck anhand der Richtung p durch
eine Rotation R(p)~! auf die Hauptachsen ausgerichtet wurde. Die Seitenlinge z ist hierdurch die
langere der beiden Seiten und kann als Skalierungsfaktor verwendet werden, wie es im Schnitttest
noétig wird.
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2.2.4 Triangulierung von Polygonen

Abbildung 2.9: Triangulierung eines Polygons.

Die Zerlegung eines Polygons P, in Dreiecke wird Triangulierung genannt und ist in Abbildung
2.9 gezeigt. Jeweils drei Vertices des Polygons definieren hierbei ein Dreieck, Vertices kénnen an
mehreren Dreiecken beteiligt sein, und es gibt genau n — 2 solcher Dreiecke. Die hier betrachtete Form
einfacher Polygone erméglicht eine unkomplizierte Zerlegung in Dreiecke, da keine Locher im Inneren,
oder gar sich schneidende Segmente beriicksichtigt werden miissen. Da die Triangulierung nur fiir
Eingabe-Polygone durchgefithrt werden muss, und dies auch nur ein mal, wird ein Algorithmus in
einer Zeitkomplexitit von O(n?) benutzt. Die Grundidee des verwendeten Algorithmus ist, fehlende
Segmente zwischen Vertices hinzuzufiigen und entweder so entstandene Dreiecke am Polygon P,
wegzuschneiden, oder das Polygon am eingefiigten Segment aufzuspalten. Dies entspricht einerseits
einem Ear-Clipping[Mei75] Ansatz, verwendet aber auch eine rekursive Strategie an Stellen des
Polygons, an denen nicht direkt ein Dreieck entfernt werden kann.

Da genau drei Vertices an einem Dreieck beteiligt sein miissen, lauft der Algorithmus den Linienzug
des Polygons entlang, und betrachtet jeweils drei aufeinander folgende Vertices vg, v1, v2. Bilden diese
Vertices ein giiltiges, am Polygon abstehendes Dreieck, kann dieses Dreieck abgeschnitten werden.
Die beteiligten Vertices werden vermerkt und der Algorithmus fihrt fort mit einem Polygon P, 1, in
dem der Vertex v; fehlt, da er abgeschnitten wurde. Ein Dreieck kann nur abgeschnitten werden, wenn
innerhalb dieses Dreiecks keine weiteren Punkte des Polygons liegen. Liegt allerdings mindestens ein
weiterer Punkt im Dreieck, wird derjenige Punkt v ausfindig gemacht, der den kiirzesten Abstand zu
vy hat. Entlang der Linie v70 wird das Polygon P, nun in zwei kleinere Polygone geteilt, und das
Segment (v1,v) wird in beide Polygone hinzugefiigt. Der Algorithmus ruft sich nun rekursiv mit den
erzeugten Teilpolygonen als Eingabe auf und fiigt die Ergebnisse der Rekursionen der Dreiecksliste
hinzu.

In jedem Schritt wird also entweder ein Vertex weggeschnitten oder das Polygon geteilt. Dies ist
in Abbildung 2.10 dargestellt. Da ein neues Teilpolygon mindestens drei Vertices hat, sind solche

25



2 Mathematische und algorithmische Grundlagen

erzeugten Teilpolygone gilltig. Der Algorithmus (und rekursive Aufrufe davon) terminiert, wenn er
ein Polygon Ps erzeugt, oder Teillosungen aus einer Rekursion empfangen hat.

Angenommen fiir ein Polygon P,, geht der Algorithmus nie in eine Rekursion, so muss er maximal
alle n Vertices betrachten, bis ein erster Vertex mit dem ersten dazugehorigen Dreieck abgeschnitten
werden kann. Dies ist garantiert durch Meisters Two Ears Theorem[Mei75], das besagt, dass (bis auf
Dreiecke) jedes einfache Polygon mindestens zwei abstehende Dreiecke besitzt.

Fiir das Finden eines abstehenden Dreiecks benétigt der Algorithmus also maximal n Schritte, hinzu
kommen pro Dreieck n—3 Tests, ob weitere Punkte in dem gefundenen Dreieck liegen. Ohne Rekursion
benétigt der Algorithmus also O(n?) Schritte, um alle Dreiecke, bzw. Vertices abzuschneiden. Wird
eine Rekursion mit Polygonen P, ,, P, notig, werden insgesamt

n=mni+ng +2

n2:n%+n§+2n1n2+2n1+2n2+4

n Vertices bei Berechnungen betrachtet. Somit sind
O(n?) + O(n3) + O(n1) + O(ns) + O(1) = O(n + n3) € O(n?)

Schritte notig, bis die Rekursionen terminieren.

Ist das Eingabepolygon also ein giiltiges einfaches Polygon, terminiert der Algorithmus nach O(n?)
Schritten.

Abbildung 2.10: a) Das Dreieck kann vom Polygon abgeschnitten werden. b) v liegt innerhalb des
Dreiecks, daher wird das Polygon entlang 770 getrennt und die zwei Teilpolygone
einzeln trianguliert. Die abgerundeten Segmente stellen einen Verlauf des restlichen
Linienzugs dar, in dem v enthalten ist.

Nach dem Algorithmus liegt eine Liste von Dreiecken vor, die angibt durch welche Vertices ein
Dreieck gebildet wird, sodass alle angegebenen Dreiecke das urspriingliche Polygon bilden. Die
Triangulierung wird fiir den grafischen Schnittest benétigt, liefert aber auch den Flacheninhalt des
Polygons.
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2.2.5 Punktverdeckung durch Polygone

b

Abbildung 2.11: Rote Punkte ”sehen” in alle Richtungen nur das Polygon, griine Punkte “sehen” das
Polygon nur in einem bestimmten Bereich ihres Horizonts.

Gegeben seien ein beliebiger Punkt v € R? und ein Polygon P,,. Der Punkt v sei nicht im Inneren des
Polygons positioniert, er kann jedoch entweder komplett ausserhalb des Polygons liegen, oder in
einer lokal konkaven Stelle. Weiterhin sei ein Kreis gegeben, der grofy genug ist, sodass sowohl v, als
auch P, in diesem Kreis liegen. Dieser Kreis ist sozusagen der Horizont von v und F,.

Fiir v und P, ist nun zu entscheiden, wieviel vom Horizont v erblicken kann, sozusagen welchen
Winkel das Blickfeld von v auf den Horizont hat. Liegt der Punkt in einer lokal konkaven Stelle des
Polygons, gibt es zwei Moglichkeiten. Entweder der Punkt sieht in alle Richtungen nur Segmente
des Polygons, in diesem Fall wird der Horizont in einem Winkel von 0 gesehen. Oder der Punkt
kann auf den Horizont blicken, in diesem Fall gibt es einen Winkel o € (0, 27), der durch zwei
Richtungsvektoren aufgespannt wird, die das Blickfeld von v angeben. Abbildung 2.11 zeigt Beispiele,
in denen Punkte vom Polygon verdeckt sind oder nach aulen “sehen” konnen.

Dies ist gleichzeitig auch ein Test darauf, ob der gegebene Punkt von aufien gesehen durch das
Polygon verdeckt wird, oder zu sehen ist. Dieser Test wird im Laufe der Arbeit benutzt, um von aussen
nicht mehr erreichbare Punkte in einem Polygon, oder in einer Polygonkonstellation, zu erkennen.
Fiir den folgenden Algorithmus konnte der Autor keine Beschreibung in der Literatur finden, die ihm
zugénglich war. Es wird aber davon ausgegangen, dass der Algorithmus unter anderen Stichwortern,
oder fiir eine andere Verwendung bereits bekannt ist.

Der Algorithmus zur Losung der Problemstellung berechnet nicht direkt den Blickwinkel von v auf
den Horizont. Statt dessen wird der komplementare Winkel berechnet, der das Blickfeld von v auf das
Polygon angibt. Zur Vereinfachung wird dieser Blickwinkel auf das Polygon im Folgenden (ebenfalls)
« genannt.

Um an diesen Winkel « zu gelangen, werden zwei Richtungsvektoren ey, recw € R? gesucht, die das
Blickfeld von v angeben. Gleichzeitig wird im Verlauf des Algorithmus die Information mitgetragen,
ob o < 7, oder ob o > 7 gilt, um aus den Richtungen eindeutig den Winkel bestimmen zu konnen.
Die Grundidee besteht darin, alle Segmente des gegebenen Polygons P, auf den Horizont von v zu
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Abbildung 2.12: a) Die in P, durchlaufenen Segmente erweitern das initiale Blickfeld von v ohne
Uberschneidungen zu erzeugen. b) Das aktuell betrachtete Segment aktualisiert
Tecw Und erzeugt dadurch ein Blickfeld fiir v von mehr als 27. Hierdurch wird
erkannt, dass v komplett von P,, umschlossen wird.

projezieren, und Buch zu fithren, zu welchem Teil der Horizont bereits durch das Polygon verdeckt
ist. Abbildung 2.12 skizziert dieses Vorgehen.

Initial wird das erste Segment S1 = (p1, p2) von P, auf den Horizont projiziert, indem die Richtungen
(p1 — v) und (p2 — v) als Startwerte fiir 7, und r.., gewahlt werden. Gleichzeitig wird notiert, wo
beziiglich der beiden Richtungen das Innere des Polygons liegt. Dies ist initial durch das erste Segment
des Polygons gegeben. Sei nun .S; das im Linienzug nichste Segment. Von diesem nichsten Segment
wird der nichste, noch nicht verarbeitete Punkt p; 1 betrachtet. Liegt p;11 innerhalb des durch
Tew Und 7.e, markierten inneren Bereiches, muss keiner der beiden Richtungsvektoren angepasst
werden. Liegt der nichste Punkt ausserhalb dieses inneren Bereiches, wird eine der Richtungen so
angepasst, dass der Punkt wieder innen liegt (liegt ein Punkt genau auf einer der durch die Richtungen
gegebenen Geraden, liegt dieser Punkt ebenfalls innen). Dies passiert so, dass abhiangig von der
Laufrichtung des néachsten Segments entweder 7., oder .., angepasst wird, je nachdem, ob der
nichste aussen liegende Punkt den eingegrenzten inneren Bereich in Richtung im (CW, r,,) oder
gegen (CCW, 7c¢,) den Uhrzeigersinn verldsst. Weil das Polygon sich in besagte Richtung erstreckt,
wird die entsprechende begrenzende Richtung zu r = (p;+1 — v) aktualisiert. Auf diese Weise werden
alle Segmente des Polygons betrachtet, implizit auf den Horizont des Punktes v projiziert und dadurch
das freie Blickfeld von v eingegrenzt.

Im Laufe des Algorithmus kann es passieren, dass eine der Richtungen r so aktualisiert werden soll,
dass sie die jeweils andere Richtung iibertritt. Dies bedeutet, dass aus Sicht von v zwei Segmente des
Polygons sich am Horizont aus verschiedenen Richtungen iiberlappen, und zwar an einer Stelle des
Horizonts, die bisher sichtbar war. Da das Polygon ein Linienzug ist, ist v hierdurch komplett vom
Polygon umgeben. Der Horizont ist also nicht sichtbar, der gesuchte Winkel « ist gleich null und der
Algorithmus terminiert mit diesem Ergebnis.

Lauft der Algorithmus alle Segmente durch, ohne auf so eine Uberkreuzung von 7., und r.., zu
treffen, ist der gesuchte Winkel grofier null, und die resultierenden Richtungsvektoren und der Winkel
werden als Ergebnis ausgegeben. Die Laufzeitkomplexitét dieses Vorgehens betragt O(n), da maximal
n Segmente betrachtet werden miissen, bis der Algorithmus ein Ergebnis ausgibt.
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Abbildung 2.13: a) Der Punkt ist von Polygonen so umgeben, dass sein Horizont ausgefiillt ist. b)
Die Polygone verdecken den Horizont des Punktes nicht vollstandig,.

Ist ein Punkt v gegeben, und mehrere Polygone Pﬁ% kann fiir diesen Punkt berechnet werden,
ob sein Horizont von allen Polygonen gleichzeitig verdeckt wird (siehe Abbildung 2.13). Hierfiir
werden zunichst fiir jedes Polygon die Richtungen 7%, und r’_, samt der Winkel o berechnet.
Diese Richtungen werden nun so interpretiert, dass sie den Teil des Horizonts als Intervall angeben,

in dem das Polygon P’ den Horizont verdeckt. Eine Liste von Intervallen auf dem Horizont wird

T
zunéchst aufgestellt und beziiglich einer Referenz-Richtung (z.B. beztiglich (1 O) und entgegen

dem Uhrzeigersinn) sortiert. Die Intervalle konnen anschlieBend in einem Durchlauf der sortierten
Liste mit einander verschmolzen werden. Intervalle, die sich iiberlappen werden hierbei zu einem
Intervall zusammen gefasst. Dieses Intervalle-Mergen ist in einem Durchlauf der sortierten Intervall-
Liste moglich, also in O(n), wenn n die Anzahl der Intervalle ist.

Wihrend dieses Merge-Schrittes kann passieren, dass nur ein Intervall iibrig bleibt, das sich auch noch
selber tiberlappt, weil es auf dem Horizont einen Winkel von mehr als 27 einnimmt. In diesem Fall ist
der Punkt v von allen Polygonen so umgeben, dass kein Horizont iiber bleibt. Anderenfalls bleibt eine
Liste von Intervallen, zwischen denen zu einem gewissen Bereich jeweils ein Stiick Horizont sichtbar
ist. Mithilfe dieses Vorgehens kann untersucht werden, wie erreichbar ein Punkt v in Konstellation
mit einem oder vielen Polygonen ist.
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3 Polygon-Schnitttests auf der Grafikkarte

a) b)

Abbildung 3.1: a) Zwei Polygone in einer Stellung, in der sie sich schneiden. Die Schnittflache ist
rot markiert. b) Die Polygone werden anhand eines Rastergitters dargestellt.

Ein wesentlicher Bestandteil der Problemstellung dieser Arbeit ist es, dass platzierte Formen nicht
iibereinander liegen diirfen. Um dies sicher zu stellen, miissen in einer Stellung gegebene Polygone
darauf getestet werden, ob diese sich schneiden. Hierfiir existieren analytische Methoden, die fiir zwei
Polygone die beteiligten Segmente darauf testen, ob diese sich schneiden. Dies ist mit einer optimalen
Komplexitit von O(k + nlogn) moglich[CE92], wobei n die Anzahl aller gegebenen Segmente
ist, und k die Anzahl der resultierenden Schnittpunkte. Einerseits ist die Implementierung solcher
Algorithmen fehleranfillig und daher zeitraubend, andererseits sind analytisch genaue Schnitttests
auch nicht immer nétig.

In dieser Arbeit wird daher ein Schnitttest verwendet, der auf der Rasterisierung von Polygon-
Segmenten beruht. Dies bedeutet, dass ein Polygon in ein zweidimensionales Gitter gelegt wird, und
anhand des Linienzugs und des Inneren des Polygons Gitterzellen markiert werden, in denen das
Polygon liegt[OF93]. Der Vorgang der Abbildung von geometrischen Formen auf Gitterzellen wird
Rasterisierung genannt. Ein Beispiel einer Rasterisierung von Polygonen ist in Abbildung 3.1 zu
sehen. Ein solches Verfahren ist einfacher umzusetzen als ein analytisches und es bietet gleichzeitig
Kontrolle iber einen gewissen Fehler, den man im Schnitttest erlauben kann.

Grafikkarten (GPUs!) sind hoch spezialisierte Hardwareeinheiten, die auf schnelle Rasterisierung
und Verwaltung einfacher geometrischer Objekte spezialisiert sind. Eine Rasterisierung von gegeben
Polygonen kann zwar auch tiber eine Implementierung eines Software-Rasterisierers erfolgen, oder
durch die Benutzung von vorhandenen Software-Bibliotheken, jedoch stellen diese nur suboptimale
Losungen dar. In dieser Arbeit wird daher der Ansatz verfolgt, eine Rasterisierung der Polygone
unmittelbar auf der Grafikkarte geschehen zu lassen, und auf diese Weise einen Schnitttest zu

'GPU, Graphics processing unit
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3 Polygon-Schnitttests auf der Grafikkarte

realisieren, der sich die Spezialisierung der Grafikhardware zunutze macht. Hierfiir wird der OpenGL-
Standard® benutzt, der eine weitestgehend direkte Kommunikation mit der Grafikkarte erlaubt. Der
Schnitttest erfolgt dann anhand durch die Grafikkarte erstellter Bilder der Polygone, und dies alles
geschieht auf dem Speicher und den Recheneinheiten der GPU. Weitere Funktionalititen von OpenGL
ermoglichen anschliessend das Ergebnis eines solchen Schnitttests im Hauptspeicher der Anwendung
schnell verfiigbar zu machen.

Im Folgenden wird die OpenGL-APP und deren Verwendung erldutert. Darauf aufbauend wird, unter
Nutzung aktueller technischer Moglichkeiten der OpenGL-Version 4.2, ein Schnitttest auf der GPU
entwickelt und optimiert. Uber die bereits bestehende OpenGL Anbindung wird zusétzlich eine
einfache Visualisierung von Polygonen und Polygon-Schachtelungen realisiert, sowie eine Maus
basierte Eingabe von Polygonen durch den Benutzer.

3.1 Grundlagen in OpenGL

Grafikkarten sind darauf spezialisiert Berechnungen auf einfachen geometrischen Objekten schnell
und hochparallel durchzufiithren und als Rastergrafik auszugeben. OpenGL ist ein durch die Khronos
Group verwalteter Standard zur Darstellung von 2D und 3D Grafik. Aus Programmierersicht ist
OpenGL eine Bibliothek und Programmierschnittstelle die es erlaubt bestimmte geometrische Primi-
tive und dazugehorige Daten auf den Speicher der Grafikkarte zu ibertragen, diese durch die GPU
verarbeiten zu lassen, und daraus resultierende Bilder anzuzeigen oder anderweitig weiter zu verwen-
den. Hierfiir definiert OpenGL eine Reihe von Funktionen, die einem Programm ermdéglichen, mit
einer gegebenen OpenGL-Implementierung zu interagieren um definierte OpenGL-Zustande zu verin-
dern, Speicher anzufordern und Daten auf die GPU zu tibertragen, und letztendlich Objekte durch die
GPU erzeugen (rendern) zu lassen. Die OpenGL-Implementierung wird meist durch den Grafikkarten
Treiber bereitgestellt und dient als Server, der verschiedenen Anwendungen, den Clients, OpenGL-
Funktionalitdt zur Verfiigung stellt und Ressourcen der Grafikkarte verwaltet. OpenGL ist auf kein
bestimmtes Betriebssystem beschrankt und namhafte Hersteller von Grafikkarten bieten iiber entspre-
chende Treiber OpenGL-Unterstiitzung fiir gdngige Betriebssysteme. Eine OpenGL-Implementierung
bezieht sich stets auf eine bestimmte Version des OpenGL-Standards. Neuere Versionen des Standards
zeichnen sich durch mehr verfiighare und meist technisch aktuelle Funktionalitit aus. In dieser Arbeit
wird Funktionalitit der OpenGL-Version 4.2 verwendet, hierauf wird im néchsten Kapitel genauer
eingegangen.

Fiir ein Programm lasst sich die Verwendung von OpenGL in fiinf Schritte einteilen:
1. Initialisiere OpenGL Kontext.

2. Fordere von OpenGL Speicher an und fiille diesen mit geometrischen Objekten und dazu
gehorenden Daten. Initialisiere notige Shader-Programme und iibergib diese an OpenGL.

?OpenGL, Open Graphics Library, http://www.opengl.org/
? API, Application programming interface
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3. Setze aktuell zu zeichnendes Objekt, nétige Einstellungen und Zusténde, aktiviere aktuell zu
nutzendes Shader-Programm.

4. Rendere geometrisches Objekt iiber Draw Call.
5. Gib Speicher frei und beende OpenGL Kontext.

Wihrend Schritt 1, 2 und 5 hiufig nur ein mal nétig sind, werden Schritt 3 und 4 stets dann ausgefiihrt,
wenn eine neue Ausgabe aktualisierter Bilddaten gewiinscht ist. Fiir interaktive Echtzeitanwendungen
ist zum Beispiel eine Bildwiederholrate von mindestens 30 Bilern pro Sekunde wiinschenswert, sodass
mindestens 30 mal pro Sekunde notige Datenstrukturen aktualisiert werden und ein Draw Call fiir zu
zeichnende Objekte erfolgen muss.

Die Initialisierung eines OpenGL Kontexts erfolgt tiber Helfer-Bibliotheken, die von dem Betriebssys-
tem notige Ressourcen anfordern und technisch umfangreiche Funktionen abstrahieren, wie etwa die
Funktionalitét einer bestimmten OpenGL-Version zuginglich zu machen. Hierfiir wurden in dieser
Arbeit die Bibliotheken GLFW* und GLEW” genutzt. OpenGL kann nur einige wenige geometrische
Primitive zeichnen: Punkte, Linien und Dreiecke. Um also komplexe Objekte wie Polygone zeichnen
zu konnen, miissen diese als Dreiecke vorliegen. Um diese Daten an OpenGL zu tibergeben und
effizient verwalten zu konnen gibt es viele Mechanismen, auf die hier nicht naher eingegangen wird.
Grundsatzlich teilt ein Programm OpenGL mit, welche Art von Daten es zu zeichnen beabsichtigt.
Auf Anfrage stellt OpenGL reservierten Speicher bereit, auf den Vertices, Farben, Texturen und vieles
mehr ibertragen werden kann. Anschliessend werden diese Daten iiber OpenGL (auf der GPU) in
sogenannten Shader-Programmen zu einem Bild verarbeitet.

Shader sind eine Arbeitsanweisung an die Grafikkarte und werden als Programme realisiert die auf spe-
ziellen, parallelen Recheneinheiten der Grafikkarte ausgefithrt werden, und auf Eingabedaten in einem
definierten Rahmen arbeiten. Diese Verarbeitungsweise von Daten entspricht dem Single-Instruction-
Multiplie-Data Prinzip. Shader werden in der C #hnlichen Programmiersprache GLSL® geschrieben,
an OpenGL zur Kompilierung iibergeben und anschliessend als zu benutzende Shader-Programme
registriert. OpenGL definiert verschiedene Arten von Shadern, die auf verschiedenen Ebenen in
OpenGL unterschiedliche Aufgaben iibernehmen. Solche verschiedenen Shader werden gemeinsam
zu einem Shader-Programm zusammengefasst, das fiir OpenGL vereinfacht als ’Arbeitsanweisung an
die Grafikkarte’ umschrieben werden kann. Wihrend also ein Client-Programm von CPU-Seite fiir
OpenGL Daten vorbereitet und nétige Einstellungen trifft, verarbeiten Shader-Programme diese Daten
auf der Grafikkarte und fithren zum fertigen Bild. Der in Schritt 4 nétige Draw Call bewirkt, dass zu
malende Daten in Form von Vertices unter dem aktuell aktiven Shader-Programm verarbeitet werden.
Diese Verarbeitung erfolgt auf der GPU und durchléuft die sogenannte OpenGL Rendering-Pipeline.

Die in Abbildung 3.2 gezeigte Pipeline ist eine extrem verkiirzte Darstellung der tatsidchlichen OpenGL
Pipeline. Im weiteren Verlauf wird nur auf Aspekte der Pipeline und der Shader eingegangen, die
fur diese Arbeit wichtig sind und in der Implementierung eingesetzt wurden. Abbildung 3.2 zeigt
also nur fiir diese Arbeit relevante Teile der Rendering-Pipeline: die programmierbaren Vertex- und

*http://www.glfw.org/
*http://glew.sourceforge.net/
*GLSL, OpenGL Shading Language
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Abbildung 3.2: a) Vereinfachte OpenGL Rendering-Pipeline. Blau hinterlegte Schritte unterliegen
der Kontrolle durch den Programmierer. Orange hinterlegte Schritte sind unter Kon-
trolle von OpenGL und kénnen nur bedingt konfiguriert werden. b) Skizzenhafte
Darstellung der Schritte in der OpenGL Rendering-Pipeline. Die Schritte Transfor-
mieren und Fdrben sind durch den Vertex- und Fragment-Shader weitestgehend
frei programmierbar. Quelle: Eigene Darstellung in Anlehnung an die OpenGL 4.4
Spezifikation[SA13].

Fragment-Shader. Die Rasterisierung erfolgt automatisiert durch OpenGL und bildet geometrische
Primitive, deren Vertices durch den Vertex-Shader bearbeitet wurden, auf ein Rasterbild ab. Aus
der Rasterisierung gehen sogenannte Fragmente hervor, dies sind unfertige Pixel des Bildes, die das
rasterisierte Objekt darstellen. Fragmente werden im Fragment-Shader mit einer Farbe versehen und,
falls kein anderer Mechanismus das Gegenteil bewirkt, in das resultierende Bild iibernommen. Alle
Shader kénnen, neben durch die Pipeline definierten Eingabewerten, auch von der CPU bestimmte,
fiir den aktuellen Aufruf relevante Eingaben erhalten. Dies sind sogenannte Uniform Variablen. Diese
Uniform Variablen erlauben es, einen einmal geschrieben und geladenen Shader mit fiir verschiedene
Objekte wechselnden Parametern auszufithren. Auf diese Weise konnen zum Beispiel aktuell ndtige
Transformationsmatrizen in den Vertex-Shader tibergeben werden.

Der Vertex-Shader wird fiir jeden Vertex des zu zeichnenden Primitivs einmal aufgerufen. Dies erlaubt
es, alle Vertices in parallelen Recheneinheiten gleichzeitig zu verarbeiten. Diese Recheneinheiten kon-
nen nicht gegenseitig auf Informationen und Zwischenergebnisse voneinander zugreifen. Ein Vertex
kann im Vertex-Shader verschiedenen Transformationen unterzogen werden, und auch fiir den Vertex
wichtige Attribute kénnen manipuliert werden. Ein Vertex kann, neben seiner Position als Vektor in
maximal R%, noch weitere, frei wihlbare Eingabeparameter mitbringen, wie etwa die eigene Farbe, die
lokale Normale des Objekts, oder Texturkoordinaten. Nach der Verarbeitung im Vertex-Shader wird
aber erwartet, dass die Koordinaten aller Vertices in R? in homogenen Koordinaten, also als Vektor
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-
(ac Yy z w> € R*, in sogenannten Clip-Koordinaten vorliegen. Die x-y-Koordinaten entsprechen

hierbei den x-y-Achsen des Ausgabebildes, —z entspricht der Blickrichtung des Betrachters, ist also
die Tiefe. Die w-Koordinate wird fiir die perspektivische Division benutzt. Ist w ungleich null, so
bringt das Teilen aller Koordinaten durch w einen Vertex in normalisierte Gerdtekoordinaten. Fir die
Anwendung in dieser Arbeit sind nur die x-y-Koordinaten relevant.

OpenGL rasterisiert nur Teile von Objekten, deren x-y-Koordinaten nach dem Vertex-Shader in dem
Rechteck [—1.0, 1.0] x [—1.0, 1.0] liegen’. Wurden Vertices so transformiert, dass sie dieser Konvention
nachkommen, so befinden sie sich in normalisierten Gerdtekoordinaten. Fragmente werden nur fiir
diesen Bereich generiert und alles ausserhalb dieses Rechtecks wird durch Clipping beschnitten. Der
Fragment-Shader arbeitet auf interpolierten Vertex-Attributen und soll als Ergebnis einen Farbwert
in den Framebuffer tibergeben. Die Vertex-Attribute werden im zu zeichnenden Dreieck fiir die Stelle
interpolierten, an der ein Pixel gesetzt wird. Dies ermoéglicht fiir Grafikanwendungen pixelgenaue
Berechnung von Beleuchtung. Ein erzeugtes Fragment muss nicht in jedem Fall zu einem Pixel im
fertigen Bild werden. Ein Fragment kann sich selber als ungiiltig markieren oder aufgrund anderer
Mechanismen von anderen generierten Fragmenten iiberdeckt oder im Bild tiberschrieben werden. In
beiden Fillen landet ein Fragment nicht im resultierenden Bild. Wird ein Fragment jedoch gezeichnet,
wird es zwingend im Framebuffer gespeichert. Der Framebuffer muss jedoch nicht unbedingt im
Hauptfenster der Anwendung angezeigt werden. Auch ein oder mehrere Texturen im Grafikspeicher
koénnen als Framebuffer genutzt werden, und im weiteren Verlauf konnen diese Texturen als Quelle
fiir weitere Berechnungen dienen (sogenanntes Off-Screen Rendering).

Hat ein Framebuffer eine Breite von w Pixeln und eine Hohe von h Pixeln, so werden die normalisierten
Geritekoordinaten auf die Grofle des Framebuffers skaliert, bzw. es wird ein Gitter der Groéfle (w +
1,h + 1) auf das Einheitsrechteck gelegt, und die resultierenden Zellen stellen die Pixel dar. Fir
Teile von zu malenden Dreiecken, die nun in Zellen liegen, werden Fragmente erzeugt, die vom
Fragment-Shader eine Farbe erhalten. Fiir die Anwendung in dieser Arbeit haben alle Texturen und
Framebuffer quadratische Form, also gleiche Hohe und Breite.

3.2 Ein einfacher Schnitttest

Gegeben seien zwei Polygone und dazugehorige Transformationsmatrizen, die eine Konstellation der
Polygone realisieren. Fiir diese Konstellation soll nun gepriift werden, ob sich die beiden Polygone
schneiden. Die Darstellung der Polygone wird zum Programmstart einmalig OpenGL mitgeteilt,
hierfiir ist vor allem die Triangulierung des Polygons nétig. Alle jeweils notigen Transformationen
fiir Polygone eines Schnitttests werden stets als Uniform-Variablen an den zustandigen Vertex-Shader
iibergeben. Die Farbe, in der ein Polygon gezeichnet werden soll, wird ebenfalls als Uniform-Variable
ibergeben.

Im folgenden wird ein Schnitttest beschrieben, der die Polygone in ein Bild projiziert und erkennt
fur welche Pixel des Bildes beide Polygone einen Farbwert beisteuern wollten. Solche Pixel gelten

"Hier wird bewusst die Tiefendimension und der Zusammenhang zur Near- und Far-Clipping Plane ausgelassen, da fiir
diese Arbeit die Verarbeitung in x-y-Koordinten ausreichend ist.
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3 Polygon-Schnitttests auf der Grafikkarte

Abbildung 3.3: Anhand zwei rasterisierter Polygone wird die Schnittflache erkannt.

als Nachweis, dass die Polygone sich in dieser Stellung schneiden. Eine konzeptionelle Darstellung
des Schnitttests ist in Abbildung 3.3 zu sehen. Es kann natiirlich sein, dass Teile der Polygone, die
sich nicht schneiden, auf denselben Pixel gezeichnet werden sollen. Dies wire ein false-positive,
also ein Schnitt, der tatsichlich keiner ist, und dieses Verhalten ist eine unvermeidliche Folge der
Rasterisierung. Durch eine hohere Auflosung des Bildes lassen sich solche filschlich erkannten
Schnitte besser vermeiden.

Die Schnitterkennung erfolgt idealerweise komplett auf der GPU unter OpenGL, da ein Austausch
von Daten zwischen Hauptspeicher und Grafikkarte lange dauert und daher zu minimieren ist. Ein
naiver Ansatz, beide Polygone in ein Bild zu malen, funktioniert aus verschiedenen Griinden nicht.
Fiir jedes zu malende Polygon ist (lasst man fortgeschrittene Techniken der Computergrafik ausser
Acht) ein eigener Draw Call nétig. Das bedeutet, dass die Dreiecke des Polygons die Rendering-
Pipeline durchlaufen, im Vertex-Shader auf Clipping-Koordinaten, anschliessend auf normalisiere
Geritekoordinaten transformiert werden, im Fragment-Shader eine Farbe erhalten, und letztendlich
in einem Ausgabebild landen. Die Schwierigkeit besteht darin, dass ein Fragment, welches an einen
bestimmten Ort im Ergebnisbild als Pixel geschrieben werden soll, den dort vorher befindlichen Pixel
tiberschreiben wird. Der Fragment-Shader fiir dieses Fragment hat auch keine einfache Moglichkeit
heraus zu finden, ob an der entsprechenden Stelle im Zielbild bereits ein Pixel eine bestimmte Farbe
hat. Ahnliche Mechanismen sind zwar zum Beispiel fiir Tiefentests® zugénglich, stellen sich aber als
nicht hilfreich heraus, da sie im Kontext von OpenGL fiir andere Aufgaben ausgelegt sind. Es reicht
also nicht, beide Polygone hintereinander per Draw Call in das selbe Bild zu malen, da kein einfacher
Mechanismus zu Verfiigung steht um bei diesem Vorgehen einen Schnitt zu erkennen.

Wie bereits ausgefiithrt, unterstiitzt OpenGL verschiedene Arten von Framebuffern. Dies lésst die
Maoglichkeit zu, in Texturen zeichnen zu lassen, und diese Texturen anschliessend fiir weitere Be-
rechnungen zu verwenden. Ein solches Vorgehen wird im Allgemeinen Multipass Rendering genannt.
Folgender Schnitttest liegt hierdurch nahe:

#Jedes Fragment kann eine Tiefe erhalten, im Sinne einer Entfernung des gezeichneten Objektes vom Betrachter in
der dargestellten Szene. Sollen zwei Fragmente an derselben Stelle gezeichnet werden, kann anhand des Tiefentests
dasjenige Fragment gezeichnet werden, das ndher zum Betrachter liegt und somit das andere verdeckt.
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1. Initialisiere zwei gleich grof3e, schwarze Texturen A und B.
2. Erster Pass: Zeichne das erste Polygon in Textur A.
3. Zweiter Pass: Zeichne das zweite Polygon in Textur B.

4. Vergleiche beide Texturen pixelweise. Falls ein Pixel in beiden Texturen gezeichnet wurde,
schneiden sich die Polygone.

Der Vergleich der beiden Texturen soll nicht auf der CPU stattfinden, da hierfiir die Texturen in den
Hauptspeicher tibertragen werden miissen. Sollen die Texturen durch OpenGL verglichen werden,
muss dies im Rahmen der Rendering-Pipeline geschehen. Dies ist moglich, indem ein dritter Verarbei-
tungsschritt, also ein dritter Pass angefiigt wird. Im dritten Pass wird ein Rechteck (bestehend aus
zwei Dreiecken) so gezeichnet, dass es die normalisierten Geratekoordinaten ganz ausfiillt. Hierdurch
wird fiir jeden Pixel des Framebuffers genau ein Fragment erzeugt. Zusatzlich wird die Auflésung des
Framebuffers gleich der Auflésung der Texturen gesetzt, in die beide Polygone gezeichnet wurden. Im
Fragment-Shader werden die Texturen A und B verfiigbar gemacht, und abhiangig von den Werten
in den jeweiligen Pixeln kann das Fragment einen Schnitt der Polygone kommunizieren. Weil ein
Fragment seine Position im resultierenden Bild kennt, kann es anhand dieser Koordinaten auf die
korrespondierenden Pixel in den Texturen zugreifen und diese vergleichen. Mithilfe dieses Vorgehens
kann zum Beispiel in eine Dritte Textur pixelweise das Ergebnis des Vergleichs geschrieben werden.
Der Nachteil daran, eine gesamte dritte Textur als Resultat abzuspeichern, besteht darin, dass man
diese Textur wieder auf der CPU auswerten muss, um an das Ergebnis des Schnitttests zu gelangen.
Dies kann mithilfe sogenannter Atomic Counters vermieden werden.

Setze Daten Setze Daten Setze Daten | | Setze Lies
CPU ~lfirrass1 ||Pr2Y fur Pass 2 [|I°W[ lrirPass3 || ac [|PW i
Y CVD Y (—V Y !
OpenGL Render Render —@@1
Y Y ‘
................ ) B 4-..'-:-. ;
iR ‘
.................................................................. M
‘ AC++ ) ...... ;

Abbildung 3.4: Schnitterkennung anhand rasterisierter Polyone und eines Atomic Counters (AC).
In den ersten zwei Passen werden die Polygone in separate Texturen gerendert,
anschliessend werden die Texturen auf der GPU verglichen und anhand eines Atomic
Counter Uberschneidungen erkannt. Das Ergebnis des Tests wird von der CPU aus
dem Atomic Counter gelesen.

Abbildung 3.4 zeigt die drei Passe des entstandenen Schnitttests, skizziert die Verwendung der
Teilresultate und das Erkennen von Uberschneidungen durch einen Atomic Counter. Atomic Counters
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sind ein Feature der OpenGL Version 4.2 und erlauben es, in parallel ausgefithrten Shader Instanzen
einen gemeinsamen, zentralen Zahlenwert (Unsigned Integer) atomar auslesen und hochzahlen zu
lassen. Dieser Atomic Counter liegt im Speicher der GPU, da dort der Zugriff darauf erfolgt. Zusatzlich
kann der Wert eines solchen Atomic Counters iber die CPU initial gesetzt und bei Bedarf wieder
ausgelesen werden. Statt also eine grofle Textur auf den Hauptspeicher zu iibertragen, bietet es sich an,
im dritten Pass im Fragment-Shader einen Atomic Counter immer dann hochzihlen zu lassen, wenn
ein Fragment einen Schnitt gefunden hat. Durch die garantiert atomare Operation bleibt sichergestellt,
dass korrekte Ergebnisse entstehen. Andere mogliche Alternativen, die ein solches Verhalten eines
Zshlers nachahmen, sind generell auch ohne Atomic Counter méglich, zum Beispiel durch Schreiben
in eine weitere Textur. Solche schreibenden Speicherzugriffe auf Texturen werden jedoch als teure
Operationen erachtet und sind nicht zwingend atomar. Der bisher aufgebaute Schnitttest wird also
insofern modifiziert, dass vor dem dritten Pass die CPU einen Atomic Counter initial auf Null setzt, und
der Fragment-Shader im dritten Pass diejenigen Fragmente den Zéhler inkrementieren lasst, die einen
Schnitt gefunden haben. Nach dem dritten Pass liest die CPU den Zahlenwert des Atomic Counters
aus. Dies bedeutet, dass der Unsigned Integer des Atomic Counters von der GPU in den Hauptspeicher
Ubertragen werden muss, um das Resultat des Schnitttests fiir die CPU verfiigbar zu machen. Ist diese
gelesene Zahl grofier Null, schneiden sich die Polygone in der gegebenen Konstellation.

3.3 Details und Erweiterungen des Schnitttests

Der beschriebene Schnitttest lasst sich durch einige Anderungen konzeptionell vereinfachen und
dadurch merklich beschleunigen.

So wurde bisher nicht darauf eingegangen, wie genau die Transformationen aussehen, die die ge-
gebenen Polygone in die zu testende Konstellation bringen. Grundsatzlich reicht es, wenn diese
Transformationen sicherstellen, dass eines der Polygone voll im Bild liegt. Dies stellt sicher, dass eine
Uberschneidung in jedem Fall erkannt wird. Eine entsprechende Konvention kann sein, dass stets das
kleinere Polygon durch eine Skalierung in das Bild eingepasst wird. Die bestmogliche Einpassung
eines Polygons in das quadratische Bild ist mithilfe des minimalen umfassenden Rechtecks eines
Polygons gegeben. Das minimale Rechteck ist schnell zu berechnen und wird auch fiir andere Zwecke
eingesetzt, liegt also fiir jedes Polygon bereits vor. Anhand dieses minimalen Rechtecks wird fiir eine
Konstellation zweier Polygone also das kleinere Polygon optimal auf das Ausgabebild eingepasst und
skaliert. Hierdurch wird fiir die eingestellte Auflosung der Rasterisierung die bestmogliche Qualitat
erreicht, da kein Platz des Bildes ungenutzt bleibt. Dadurch werden fiir dieses Polygon auch maximal
viele Fragmente fiir die aktuelle Auflésung erzeugt. Dieses Polygon sei fortan das fixierte Polygon.
Das nicht fixierte Polygon sei das freie Polygon, im Sinne von frei schwebend.

Fir das freie Polygon gibt es viele Moglichkeiten, in einer bestimmten Lage zum fixierten Polygon
zu sein. Auf die Generierung dieser Konstellationen wird in Kapitel 4.1 genau eingegangen, hier
wird jedoch vorweg genommen, dass alle als relevant betrachteten Stellungen der beiden Polygone in
einem Zuge erfasst und bearbeitet werden sollen. Dies entspricht einer Sammlung, einem Test-Batch
von zu testenden Konfigurationen. Die nétigen Transformationsmatrizen fiir das fixierte und das freie
Polygon werden in einer Batch-Datenstruktur gespeichert, gemeinsam mit notigen OpenGL Daten,
um die Polygone zeichnen zu kénnen.
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3.3 Details und Erweiterungen des Schnitttests

Zunéchst ist wiinschenswert, von Seiten der CPU Verzdgerungen im Schnitttest zu minimieren. Das
heisst, eine moglichst hohe Lokalitat herzustellen. Bevor OpenGL auf der GPU zeichnet, muss die
CPU vor jedem Draw Call fur jedes Polygon und jede Transformationsmatrix nétige Informationen
bereit stellen. Dies ist in Abbildung 3.4 durch das CPU-seitige Setzen von Daten skizziert.

Wenn die nétigen Daten fiir die Matrizen und Polygone nicht lokal schnell verfiigbar sind, muss auf
diese unnoétig gewartet werden. Daher ist es sinnvoll, einen Test-Batch als lokal zusammenhangenden
Speicher, also als Array, anzulegen. Fiir Draw Calls nétige OpenGL Daten und Transformationsmatri-
zen werden hier fiir jeden Test hinterlegt, dies teilweise redundant, aber moglichst lokal. Statt zum
Beispiel Zeiger auf Matrizen oder Polygondaten zu verwalten, werden diese Daten direkt in das Array
lokal hinterlegt. Auch ein Feedback-Feld fiir das Ergebnis des Schnitttests wird lokal vorgehalten.

Da das fixierte Polygon nur eine Transformation braucht, wird diese nur ein mal gesondert gespeichert,
und nicht fiir jeden Test des Batches nochmal gesondert. Lediglich fiir das freie Polygon miissen
variierende Transformationen mitgefiithrt werden. Diese Unterteilung in fixes und freies Polygon
vereinfacht auch den Schnitttest.

So muss das fixierte Polygon nur ein mal fiir den gesamten Test-Batch gezeichnet werden. Es entfllt
also faktisch ein Pass pro Schnitttest. Der bisher dritte Pass, das Vergleichen beider Texturen, kann
ebenfalls beseitigt werden. Der dritte Pass bringt dariiber hinaus auch den Nachteil mit sich, dass er fiir
die jeweilige Auflosung die maximal méglich Anzahl an Fragmenten generieren lasst, und jedes dieser
Fragmente fithrt auch noch zwei teure Speicherzugriffe in Texturen durch. Einfacher ist es, bereits
beim Zeichnen des nun freien Polygons nach Uberschneidungen zu suchen. Der Fragment-Shader wird
also so angepasst, dass fiir Fragmente des freien Polygons ein Texturzugriff auf das gezeichnete fixe
Polygon erfolgt und auf einen Schnitt getestet wird. Der Atomic Counter wird gesetzt, inkrementiert
und ausgelesen wie bisher, nur geschieht dies direkt beim Zeichnen des freien Polygons.

Die eben beschriebenen Erweiterungen des Schnitttests sind in Abbildung 3.5 dargestellt. Sie fithren
dazu, dass statt drei Draw Calls pro Schnitttest faktisch nur noch ein Draw Call pro Schnitttest nétig
ist, zuziiglich initialem Draw Call fiir das fixierte Polygon. Das ist aber nur moglich, weil das freie
Polygon viele verschiedene Stellungen zum fixierten haben kann. Zusatzlich wird versucht, tiber eine
hohe Lokalitit die CPU als Engpass im Schnitttest zu beseitigen °.

“Bei technisch gut ausgestatteten Testsystemen erwies sich die beschriebene lokale Datenstruktur als weniger ausschlag-
gebend fiir die Geschwindigkeit. Auf dem technisch verhaltnismaBig schwach bestiickten privaten Notebook des Autors
war jedoch eine Beschleunigung der Schnitttests nicht zu iibersehen. Daher méchte der Autor bei dieser sowieso nétigen
Datenstruktur auch die positiven Effekte fiir den CPU Cache betonen.
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3 Polygon-Schnitttests auf der Grafikkarte

Loop: Alle Stellung des zweiten Polygons

Setze Daten Setze Daten | | Setze Lies
CPU far Pa_ss 1 Draw fur Pa_ss 2 AC Draw AC \

Y AC=0H Render{ AC=i

OpenGL

Abbildung 3.5: Vereinfachter Schnitttest. Statt fiir jede Stellung zweier Polygone beide zu zeichnen
wird das erste Polygon in einer Position fixiert und das zweite relativ dazu verschoben.
Hierdurch sind nur noch zwei Passe nétig, einer davon nur ein mal, der zweite fiir
jede Stellung des zweiten Polygons.

3.4 Visualisierung und Benutzereingaben

Durch die OpenGL-Anbindung fiir den Schnitttest sind bereits alle nétigen Mittel vorhanden, um eine
Visualisierung von Polygonen und gefundenen Schachtelungen zu realisieren. Dies erwies sich im
Laufe dieser Arbeit mehrfach als vorteilhaft, weil so die Fehlersuche bei implementierten Verfahren
wesentlich vereinfacht wurde. Durch die verwendete Bibliothek GLFW ist es méglich, Benutzerein-
gaben iiber Tastatur und Maus zu verarbeiten. Das ermdglicht eine interaktive Visualisierung von
Polygonen und ihrer Eigenschaften. Die implementierte Visualisierung ist in Abbildung 3.6 zu se-
hen und unterstiitzt das Anzeigen einfacher Polygone und Linienziige, Navigieren und Zoomen in
der Darstellung, die Anzeige der Konvexen Hiille, des minimalen Rechtecks und das hervorheben
verdeckter Vertices.

Uber die durch GLFW verfiigbaren Benutzereingaben wurde auch eine Maus basierte Eingabe von
Polygonen implementiert. Der Benutzer kann per Mausklick im Anwendungsfenster Vertices definie-
ren. Diese werden laufend an OpenGL kommuniziert und der entstehende Linienzug wird angezeigt.
Der eingegebene Linienzug muss entgegen dem Uhrzeigersinn orientiert sein, um spéter als giiltiges
Polygon verwendet werden zu kénnen. Anderenfalls kann das Polygon nicht als Eingabe fiir eine
Schachtelung genutzt werden, da die Triangulierung des Polygons fehl schlédgt. Ist das eingegebene
Polygon giiltig, wird es vom Programm direkt fiir eine Schachtelung benutzt. Gleichzeitig werden die
Vertices des Polygons in Textform ausgegeben, sodass sie in eine Datei tibertragen werden konnen,
um das Polygon anhand dieser Datei zu einem anderen Zeitpunkt zu verwenden. Abbildung 3.7
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b)

-

Abbildung 3.6: a) Visualisierung eines Polygons (dunkelgriin) mit Konvexer Hiille (hellgriin) und
minimalen Rechteck (rot). b) Visualisierung von angeordneten Polygonen (blau) mit
Konvexer Hiille aller Polygone (griin), minimalen Rechteck (rot) und dem Gebiet, in
dem die Polygone anzuordnen sind (griines Rechteck).

zeigt einen eingegebenen Linienzug und die dadurch resultierende Darstellung des Polygons im
Programm.

v/
N

Abbildung 3.7: Eingabe eines links orientierten Linienzuges (links) und das daraus erzeugte Polygon
mit dessen Eigenschaften (rechts).
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4 Nesting von Polygonen

Nachdem der Schnitttest und Algorithmen fiir den Umgang mit Polygonen erlautert sind, wird das
tatsdchliche Platzieren von Polygonen behandelt. Gegeben seien also ein rechteckiges Gebiet, eine
Doméne G anhand seiner Seitenlingen (x,y) = G und ein einfaches Polygon P,,. Im Laufe der
nichsten Unterkapitel werden Methoden vorgestellt, die zum Ziel haben das Polygon P,, moglichst
oft in das Gebiet G zu platzieren, ohne dass sich zwei Instanzen von P, iiberschneiden.

Es wird versucht anhand geometrischer Eigenschaften der gegebenen Polygone gute Nestings zunédchst
fiir wenige Polygone zu finden, statt sich direkt global an der gegebenen Doméne G zu orientieren.
Statt beliebige Verschiebungen und Drehungen von Polygonen zu erlauben, werden ausschlief3lich
diskrete Stellungen von Polygonen betrachtet. Das bedeutet, dass Polygone zunéchst nur an Vertices
zusammen gelegt werden, und anschlieffend so rotiert, dass die anliegenden Seiten der Polygone
einander berithren (jedoch nicht iberschneiden). Da keine beliebigen Stellungen mehr betrachtet
werden, wird die Anzahl mdglicher Losungen erheblich eingeschrankt. Gleichzeitig erfolgt durch
das diskrete Vorgehen eine Einschrankung auf Polygon-Konstellationen, die durch die Form und
Eigenschaften der Polygone vorgegeben sind. Dies ermoglicht eine einfachere Betrachtung der
Aufgabenstellung. Eine Riickkehr zu beliebigen Verschiebungen und Rotationen ist konzeptionell
jederzeit moglich. Allerdings bewirken zuséatzliche, randomisierte Konstellationen beliebig mehr
Aufwand bei der Losungsfindung.

Im Folgenden werden also Methoden entwickelt, um unter diskreten Stellungen den Rechenaufwand
einer Losungsfindung zu reduzieren. Hierfiir wird zunéchst untersucht, wie Polygone zusammen zu
legen sind, sodass diese Konstellation als optimal angesehen werden kann. Stellungen der Polygone, in
denen diese sich schneiden, sind ungiiltig und werden nicht weiter betrachtet. Weitere Verfahren, um
ungiiltige Stellungen frithzeitig zu erkennen und dauerhaft zu vermeiden werden entwickelt, sodass
Rechenzeit fiir teure Schnitttests nur fiir tatsachlich notige Polygon-Stellungen investiert werden muss.
An schnell gefundene, vielversprechende Polygon-Konstellationen sollen iterativ weitere Polygone
hinzugefiigt werden, mit dem Ziel, moglichst wenig Platz zwischen den Polygonen ungenutzt zu
lassen. So gefundene, iterativ erweiterte Losungen werden anschlieend verwendet, um eine giiltige
globale Losung zu finden.

4.1 Ein lokaler diskreter Brute-Force Ansatz

Gegeben seien zwei Polygone P, = (v1,...,v,) und Q,, = (w1, ..., w,,). Gesucht wird die beste,
im Sinne von engste, Zusammenlegung dieser beiden Polygone. Wie bereits erldutert, soll dieses
enge Nesting von P und () realisiert werden, indem nur diskrete Stellungen der beiden Polygone
betrachtet werden. Die Polygone werden also an Vertices v; und w; zusammengelegt, und die an den
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4 Nesting von Polygonen

Vertices anliegenden Segmente werden so rotiert, dass sich die Polygone an diesen Seiten schnittfrei
berithren. Hieraus ergeben sich pro Vertex-Paar zwei Moglichkeiten, die Segmente zu Kombinieren,
ohne dass sich die Polygone auf triviale Weise iiberschneiden. Fiir die Polygone gibt es somit genau

|Pp X Qm|=n-m-2 € O(nm)

Méglichkeiten, wie sie diskret gepaart werden kénnen. Hierbei wird mit P, x (), ausgedriickt, dass
alle moglichen Stellungen der Polygone betrachtet werden. Weil die Polygone sich an jeweils einem
Segment beriithren, konnen sie im Sinne des diskreten Nestings nicht noch enger zusammen gelegt
werden. Abbildung 4.1 zeigt verschiedene diskrete Stellungen zweier Polygone, wie sie in dieser
Arbeit untersucht werden.

. R \ . .

Abbildung 4.1: Zwei Polygone in verschiedenen diskreten Stellungen.

Alle solche Stellungen werden erstellt und in einer Datenstruktur gespeichert. Neben den Indizes
der beteiligten Vertices wird auch die Ausrichtung der Segmente notiert. Diese Ausrichtung kann
zum Beispiel durch eine gewihlte Durchnummerierung der zwei Méglichen Segment-Kombinationen
erfolgen. Eine (Polygon-)Stellung ist also ein Tupel

(P Vertex ID, Q Vertex ID, Segment-Kombination) = (v_id, w_id, c)

und alle moglichen Stellungen werden aufgezahlt durch folgenden Pseudocode:

forv id=1...ndo
forw id=1...mdo
forc=—1,1do
Speichere Polygon-Stellung (v_id, w_id, c)
end for
end for
end for

Diese Stellungen sind jedoch nicht zwangslaufig schnittfrei, es wird also Stellungen geben, in denen
sich die Polygone schneiden. Aus den Informationen der Stellungen konnen entsprechende Transfor-
mationsmatrizen erzeugt werden, die diese Stellung realisieren. Zwar kénnen solche Transformationen
auch bereits bei der Aufzéhlung aller Stellungen erzeugt werden, aber fiir weitere Verfahren, die noch
erlautert werden, ist es einfacher die aufgezéhlten Stellungen und die dazugehérigen Transforma-
tionen getrennt zu behandeln. Die Transformationen werden erzeugt, indem fiir jede Stellung die
Polygone an den durch v_id und w_id angegebenen Vertices zum Nullpunkt verschoben werden,
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4.1 Ein lokaler diskreter Brute-Force Ansatz

und die durch ¢ gegebenen Segmente so rotiert werden, dass sie in die selbe Richtung zeigen (der
T
Einfachheit halber nach (1 0) )-

Mp = R(‘:;)_l - T(—vy_ia)
Mg = R(‘:(j)_l - T(=wy iq)

Tp = Vy_id—c — Vv_id
Tq = Wy _id4c — Ww_id
ce{-1,1}

Die Notation von 7, und r, berechnet die Richtung, in die das Segment zeigt, das an v, ;q, bzw.
Wy iq liegt. Um den in Kapitel 3.3 entwickelten Schnitttest mit einem fixierten und einem freien
Polygon durchfithren zu kénnen, ist eine leicht angepasste Generierung der Transformationen nétig.
Hierfiir wird zunéchst angenommen, dass P,, dasjenige Polygon von beiden ist, dessen minimales
Rechteck kleiner ist. Dann ist P, das fixierte Polygon und dessen Transformation ist die Einheitsmatrix.
QQr, muss am Vertex w,, jq zunachst in den Nullpunkt verschoben werden, dort werden Rotationen
verrechnet, die (),,, passend am Segment von P, ausrichten, und anschliefend wird @), an die richtige
Stelle an P, gesetzt.

Mp =

o O O =
SO O = O
O = O O

0
0
0
1
r g \ 1
MQ = T(Uvjd) : R(ﬁ) : R(ﬁ) : T(*wwjd)
T'p = Vy_id—c — Vv_id
Tq = Wyw_id+c — Ww_id
ce{-1,1}

Anhand gegebener Daten zum minimalen Rechteck von P, kann die Schnitttest-Funktion eine optima-
le Einpassung von P, auf den Zeichenbereich vornehmen, durch die hierfiir genutzte Transformation
wird auch @, fiir den Schnitttest korrekt transformiert und die Stellung der Polygone zueinander
bleibt erhalten. Mit den Transformationsmatrizen fiir die Stellungen kénnen auch nétige OpenGL
Daten generiert und die in Kapitel 3.3 eingefiihrte Test-Batch Datenstruktur aufgestellt werden.

Wie bereits erwahnt, konnen sich unter den generierten Konstellationen solche befinden, bei denen
sich die Polygone schneiden. Solche ungiiltigen Konstellationen miissen entfernt werden. Dies passiert,
indem der erstellte Test-Batch mit allen Konfigurationen an den Schnitttest Gibergeben wird. Der Test-
Batch vermerkt fiir jede Stellung das Ergebnis des Schnitttests und ungiiltige Stellungen werden in
einem weiteren Schritt geloscht. Aufgrund der hohen Anzahl moglicher Stellungen ist der Schnitttest
der zeitaufwéndigste Schritt der Losungsfindung.

Die nun verbliebenen Stellungen kénnen ausgewertet und weiterverwendet werden. Von nun an
stellt sich die Frage, welche Konfigurationen der Polygone als engste angesehen werden kénnen, und
somit fiir eine weitere Verarbeitung und Schachtelung besonders interessant sind.
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4 Nesting von Polygonen

4.2 Bewerten und Verwalten von Polygon-Stellungen

Ein wichtiger Aspekt in der Handhabung von Polygon-Konfigurationen ist deren tatséchliche Verwal-
tung in Datenstrukturen. Unter Betrachtung der notigen Eigenschaften einer solchen Struktur, und
der zur Verfiigung stehenden Mittel aus Kapitel 2.2 wird im Folgenden eine Verwaltung von Polygon-
Stellungen realisiert, die das Nesting mit weiteren Polygonen einfach gestaltet und Optimierungen
fiir diesen Prozess motiviert.

Es ist wiinschenswert nur solche schnittfreien Konfigurationen zweier Polygone weiter zu verwenden,
die vielversprechend fiir weitere Nestings sind. Ein Weiterrechnen mit allen gefundenen Konfigu-
rationen ist zwar moglich, bedeutet aber mit steigender Zahl beteiligter Polygone einen enormen
Zuwachs an benotigter Rechenzeit. Dieses Kapitel stellt einfache Heuristiken vor, wie gefundene
Konfigurationen qualitativ bewertet werden kénnen. Anhand solcher Heuristiken kann die Anzahl
der zu betrachtenden moglichen Polygon-Stellungen reduziert werden, indem nur vielversprechende
Konfigurationen fiir weitere Berechnungen verwendet werden. Trotz dieser Einschrankung soll die
Moglichkeit erhalten bleiben, eine optimale Losung zu finden, also maximal viele Polygone im Gebiet
zu positionieren.

4.2.1 Modellierung zusammengesetzter Polygone

Eine Stellung mehrerer Polygone wird ausgedriickt durch die beteiligten Polygone (in Form von
Linienziigen) und Transformationsmatrizen, die die Polygone entsprechend positionieren. Diese
Datenstruktur wird fortan als Polygon-Patch P bezeichnet, also als Ansammlung von Polygonen. Ein
Polygon-Patch ist eine schnittfreie Konstellation von Polygonen, die einen Verweis auf die betei-
ligten Polygone enthilt, zusammen mit den dazugehorigen Transformationsmatrizen und weiteren
Eigenschaften der Konstellation.

Der Aufbau eines Polygon-Patches erfolgt hierarchisch durch Zusammenlegen zwei bereits bestehen-
der Polygon-Patches, wie in Abbildung 4.2 dargestellt. Initial besteht ein Polygon-Patch also aus nur
einem Polygon, dessen Transformationsmatrix die Identitdtsmatrix ist. Der Flacheninhalt, die Konvexe
Hiille, und das minimale Rechteck des Polygons charakterisieren somit auch initial den Polygon-Patch.
Ist eine schnittfreie Konstellation von zwei Polygonen gefunden, wird diese Konstellation benutzt, um
einen neuen Polygon-Patch zu erzeugen. Seien also P” und Q” Polygon-Patches, dazu zwei Matrizen
Mp und Mg, die eine Konstellation der Polygon-Patches realisieren, indem sie auf alle enthaltenen
Polygone eines Patches angewendet werden. Ein neuer Polygon-Patch N wird erzeugt, indem alle
in P” und Q¥ beteiligten Polygone in N7 eingetragen werden.

NP = pPPuQ”

Hier ist PP UQ” als Zusammenlegen von Polygon-Patches zu interpretieren, bzw. als Vereinigung der
in den Polygon-Patches enthaltenen Mengen von Polygonen. Zusétzlich werden die zu den Polygonen
gehorigen Transformationsmatrizen aus P” und Q7 mit Mp, bzw. mit M) verrechnet und ebenfalls
in N7 eingetragen, um fiir die in N enthaltenen Polygone korrekte Transformationen zu erhalten.
Da P? und Q¥ jeweils eine Konvexe Hiille kh(P%), bzw. kh(Q”) haben, wird aus diesen mithilfe
des in Kapitel 2.2.2 vorgestellten Algorithmus die Konvexe Hiille kh(N7) der gesamt Konstellation
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4.2 Bewerten und Verwalten von Polygon-Stellungen

berechnet. Die Konvexen Hiillen der beiden urspriinglichen Patches miissen hierfiir mithilfe der
Transformationsmatrizen in die benétigte Stellung gebracht werden.

kh(N7) = kb (kh(P”) - Mp U kh(QT) - My)
Hieraus kann wiederum das minimale Rechteck mr(/N”) der Konstellation errechnet werden.
mr(N”) = mr(kh(N7))

Der Flicheninhalt area(N7”), der durch die Polygone in N* eingenommen wird, ergibt sich als
Summe der Flicheninhalte der Polygone von P” und Q. Als Flicheninhalt wird also die Summe der
Flacheninhalte aller Polygone mitgetragen, etwaige Liicken zwischen Polygonen im Patch werden
nicht zum Flacheninhalt gezahlt.

area(N”) = area(P”) + area(Q")

b)

Abbildung 4.2: Zwei Polygon-Patches mit jeweils zwei und drei Polygonen werden anhand einer
Stellung zusammen gelegt.

Das Erzeugen von neuen Konstellationen fiir zwei gegebene Polygon-Patches geschieht wie in Kapitel
4.1 beschrieben anhand der Vertices der enthaltenen Polygone. Die Polygone in einem Polygon-Patch
sind anhand intern vergebener Indizes identifizierbar, und das Konstrukt fiir Test-Generierungen
wird um diese Polygon-IDs erweitert. Eine Stellung von zwei Polygon-Patches P” und Q% wird dann
dargestellt als folgendes Tupel:

(P Polygon P ID, P Vertex ID, Q7 Polygon Q ID, Q Vertex ID, Segment-Kombination)

= (poly_p_id, v_id, poly_q_id, w_id, c)

Die Kombination von interner Polygon-ID und der Vertex-ID zu diesem Polygon kann auch als Meta-
Index fiir den gesuchten Vertex im Polygon-Patch verstanden werden. Anhand dieser Identifizierung
von Vertices konnen notige Test-Batches auf dieselbe Weise fiir Polygon-Patches aufgestellt werden,
wie sie fir einzelne Polygone vorgestellt wurden. Alle moglichen Stellungen zweier Polygon-Patches
werden tiber mégliche Stellungen aller beteiligter Polygone aufgezahlt.
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for poly_p_id = 1. .. (max P” Polygons) do
for poly_q_id = 1. .. (max Q” Polygons) do
forv id=1...ndo
forw id=1...mdo
forc=—1,1do
Speichere Polygon-Stellung (poly_p_id, v_id, poly_q_id, w_id, c)
end for
end for
end for
end for
end for

Die so generierten Tests werden tiber einen leicht angepassten Schnitttest von ungiltigen Konfi-
gurationen bereinigt. Die Konvexe Hiille eines Polygon-Patches ist leicht zu berechnen, weshalb
auch das minimale Rechteck verfiigbar ist. Das minimale Rechteck kann fiir den bereits entwickelten
Schnitttest benutzt werden, um ein ganzes Polygon-Patch auf Uberschneidung mit einem zweiten zu
priifen. Der Schnitttest wird also so modifiziert, dass er einen Polygon-Patch mithilfe seines minimalen
Rechtecks in das Zeichenfeld einpasst, und anschlieffend alle im Patch enthaltenen Polygone zeichnet.
Aufgrund des einfachen Aufbaus des Schnitttests ist dies leicht umsetzbar, denn statt nur einem
Polygon werden nun alle Polygone eines Polygon-Patches pro Pass gezeichnet. Ein Polygon-Patch
benétigt also auch Informationen, anhand derer er per OpenGL gezeichnet werden kann. Dies ist im
Grunde eine Ansammlung der OpenGL-Daten der beteiligten Polygone.

Von nun an wird fiir Polygon-Konstellationen angenommen, dass diese als Polygon-Patches umgesetzt
werden. Auch werden die Begriffe Polygon und Polygon-Patch synonym fiireinander verwendet. Im
weiteren Verlauf der Arbeit wird es darauf ankommen Polygon-Patches so zu manipulieren, dass
beim Nesting mit weiteren Polygon-Patches anfallende Testfille zahlenméafig verringert werden, um
Rechenzeit zu sparen.

4.2.2 Einfache Bewertungsfunktionen

Soll ein Polygon P, auf einem Gebiet G moglichst oft platziert werden, so ist die optimale Losung
nach oben Beschriankt durch die Flacheninhalte des Polygons und des Gebiets.

{area(g)

o | kma:c
area(P)J

Sollen k gleiche Polygone in einem Gebiet verteilt werden, miissen diese (im Kontext dieser Arbeit)
in diskreten Stellungen zueinander platziert sein. Fir k > 2 Polygone gibt es

m22n - ... -2n= nk. okl < phmaz . gkmaz—1
—_—
k—2 mal

Maoglichkeiten, die Polygone diskret miteinander zu kombinieren. Nicht alle diese Stellungen sind
schnittfrei oder einzigartig. Selbst wenn Stellungen mit Uberschneidungen entfernt werden, sollten
nur vielversprechende Konstellationen tatsachlich erzeugt und betrachtet werden. Statt also iiber
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einen Brute-Force Ansatz global exponentiell viele Stellungen zu betrachten, ist es nétig anhand von
Heuristiken eine Auswahl von Polygon-Stellungen zu treffen, die trotz der getroffenen Einschrankung
eine gute (oder gar optimale) Losung ermdglichen.

Eine Moglichkeit Polygon-Stellungen zu bewerten ist die Konvexen Hiille der gesamten Stellung,
beziehungsweise der Flicheninhalt der Konvexen Hiille. Der Flacheninhalt area(kh(P”)) der Konve-
xen Hiille eines Polygon-Patches muss mindestens so grof} sein wie der Flicheninhalt area(P”) des
Polygon-Patches selber:

area(kh(P”)) > area(P”)

Je enger die Polygone im Polygon-Patch zusammen liegen, desto kleiner wird auch der Flacheninhalt
der Konvexen Hillle. Die Flache der Konvexen Hiille wird also als Maf} dafiir verwendet, wie eng
Polygone zusammenliegen. Dieser Sachverhalt ist in Abbildung 4.3 skizziert. Solche Stellungen
konnen bevorzugt betrachtet werden, denn sind Polygone schon in einer gewissen Konstellation
platziert, ist es unwahrscheinlich, dass in Liicken zwischen den Polygonen spéter noch etwas passend
platziert werden kann. Liegen also schnittfreie Stellungen fiir k£ Polygone vor, werden diejenigen
Stellungen fiir weitere Iterationen mit £ + 1 Polygonen verwendet, deren Konvexe Hiille minimal
ist. Die hiermit verfolgte Strategie ist es also, von Aussen an einen Polygon-Patch weitere Polygone
so anzulegen, dass diese eng anliegen. Ideal ist es, wenn neue Polygone in die bisherige Stellung
schnittfrei so eingefiigt werden konnen, dass sie in lokale konkave Stellen anderer Polygone passen,
und somit die Konvexe Hiille des gesamten Polygon-Patches gar nicht oder nur wenig erweitern.

a)

Abbildung 4.3: Zwei Stellungen von Polygonen. Die Fliche der Konvexen Hiille in b) fillt minimal
kleiner aus als in a)

Da das Gebiet G rechteckig ist, ist es vielversprechend solche Konstellationen zu bevorzugen, deren
Form méglichst rechteckig ist. Wahrend die Konvexe Hiille fiir verschiedene Stellungen den gleichen
Flacheninhalt aufweisen kann, sind rechteckige Stellungen mit minimaler Konvexer Hiille interessant,
um global eine einfache Losung zu erzeugen. Hierfiir wird eine rechteckig Stellung einfach anhand
des minimalen umfassenden Rechtecks dicht auf das Gebiet G gepackt, ohne einzelne Vertices der
Polygone betrachten zu missen.

Fiir den Flicheninhalt area(mr(P%)) eines minimalen Rechtecks fiir einen Polygon-Patch gilt, dass
er mindestens so grof} ist wie der Fliacheninhalt area(kh(P”)) der Konvexen Hiille:

area(mr(PP)) > area(kh(PP))
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Es ist also sinnvoll solche Stellungen zu suchen, deren Konvexe Hiille moglichst dicht im minimalen
Rechteck liegt. Abbildung 4.4 zeigt ein Beispiel fiir zwei Stellungen, von denen die bessere mittels des
minimalen Rechtecks erkannt werden kann. Als Maf} wird folgendes Verhaltnis der Flacheninhalte
verwendet:

area(mr(P7))

area(kh(P7)) =1

Polygon-Patches, die eine rechteckige Form aufweisen, minimieren dieses Verhaltnis.

Anhand der beiden Heuristiken werden schnittfreie Polygon-Stellungen bewertet und nur solche
als Polygon-Patches fiir weitere Nestings in Betracht gezogen, deren Konvexe Hiille minimal ist,
und die gleichzeitig das minimale Rechteck maximal ausfiillen. In der Software-Implementierung zu
dieser Arbeit zeigt sich, dass durch diese Heuristiken eine Auswahl vielversprechender Teillosungen
sichergestellt wird.
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Abbildung 4.4: Die Fliache der Konvexen Hiille (rot) ist in a) und b) gleich, aber b) passt enger in das
eigene minimale Rechteck (griin). Stellung b) ist deswegen fiir ein direktes Fiillen
der rechteckigen Doméne besser geeignet.

4.3 Einschrankung auf relevante Vertices

Komplexe Polygone werden durch viele Vertices dargestellt. Abhangig von der Anzahl an Vertices sind
jedoch quadratisch viele Konstellationen moglich, die fiir ein diskretes Nesting von zwei Polygonen
betrachtet werden miissen. Schon fiir verhaltnismaflig kleine Polygone mit wenigen Vertices ist somit
die Anzahl moglicher Stellungen sehr grof3. Erzeugte Stellungen miissen darauf gepriift werden,
ob sich die beteiligten Polygone schneiden, und der Schnitttest ist trotz vieler Optimierungen sehr
zeitaufwiandig. Ohne auf andere Varianten von Schnitttests auszuweichen, bleibt nur die Moglichkeit
die Anzahl anfallender Testfille zu minimieren, indem bei der Testerzeugung auf Eigenschaften der
Polygone eingegangen wird. Hierfiir sind vor allem die Vertices der Polygone relevant, und im Folgen-
den werden Strategien erldutert, wie unter Betrachtung von Vertices unnétige Schnitttests vermieden
werden konnen. Dies fithrt dazu, dass man fir Polygone in Polygon-Patches eine Datenstruktur von
Vertices mitfiihrt, in der giiltige, also valide Vertices gespeichert werden. Nur solche validen Vertices
miissen fiir zu generierende Stellungen betrachtet werden, wodurch viel iiberfliissige Arbeit entfallt.

4.3.1 Winkelsummen an Vertices

Ein erster Ansatz tiberfliissige Stellungen zu erkennen ist das Betrachten der Innenwinkel zusammen-
gelegter Vertices. Werden zwei Polygone an Vertices zusammen gelegt, so kann diese Stellung nur
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dann schnittfrei sein, wenn die Polygone sich nicht schon lokal an den beteiligten Vertices schneiden.
An jedem Vertex lésst sich ein Innenwinkel abmessen, der angibt, in welchem Winkel die beiden
angrenzenden Segmente das Innere des Polygons einschliessen. Wenn zwei Vertices von Polygonen
zusammen gelegt werden, darf die Summe dieser Innenwinkel nicht mehr als 360° (oder 27) betra-
gen, da sich die Polygone sonst lokal iiberschneiden. Bei der Generierung von Stellungen muss also
gepriift werden ob die Winkelsummen einen Schnitt implizieren, und die betrachtete Stellung wird
gegebenenfalls nicht erzeugt.

Dies ist ein lokal eingeschrankter Ansatz und muss fiir jede anfallende Konfiguration neu berechnet
werden. Dennoch kénnen mithilfe dieses simplen Vorgehens viele unnétige Schnitttests eingespart
werden.

4.3.2 Erkennen nicht erreichbarer Gebiete

Ein Polygon-Patch wird unter der Annahme erstellt, dass die beiden beteiligten Polygone (oder
Polygon-Patches) in der engsten moglichen schnittfreien Stellung vorliegen. Das bedeutet, dass
zwischen Teilpolygonen des Patches keine weiteren Polygone gesetzt werden kénnen ohne Uber-
schneidungen zu erzeugen. In einem Polygon-Patch gibt es also Vertices die auflen liegen, an die
weitere Polygone gelegt werden kénnen, und Vertices die innen liegen, die nicht mehr erreichbar sind.
Vertices die innen liegen konnen fiir die Generierung weiterer Stellungen somit ignoriert werden. Dies
spart eine signifikante Anzahl an Stellungen, die aufgrund der Lage der Polygone sowieso Uberschnei-
dungen enthalten. Diese Annahme ist jedoch nur vertretbar, falls nur ein Polygon derselben Sorte
platziert werden soll, oder alle gegebenen Polygone eine vergleichbare Grofie haben. Fiir kleinere
Polygone, die in Liicken eines Polygon-Patches passen konnten, wiirde ein solches Vorgehen eventuell
gute Nestings verhindern, sofern nicht weitere Informationen tiber besagte Liicken zur Verfiigung
stehen. Eine solche detailierte Analyse von Polygon-Stellungen und enthaltenen Liicken {iberschreitet
jedoch den Umfang dieser Arbeit.

Aus diesen Uberlegungen heraus wird die Datenstruktur des Polygon-Patches so erweitert, dass fiir
jedes enthaltene Polygon ein Array mitgefithrt wird, das angibt, welche Vertices des Polygons aussen
liegen. Da dies die Stellen am Polygon sind die fir eine giiltige Konfiguration in Frage kommen,
werden diese Vertices fortan valide Vertices genannt. Abbildung 4.5 zeigt valide Vertices (griin) und
nicht valide Vertices (rot) fiir Polygone.

Die Berechnung von validen Vertices wird mittels der Algorithmen fiir Punktverdeckung durch
Polygone aus Kapitel 2.2.5 realisiert. Initial werden bei einem Polygon-Patch mit nur einem Polygon
alle Vertices des Polygons darauf untersucht, ob diese von aussen sichtbar sind. Diese Sichtbarkeit
wird interpretiert als Erreichbarkeit der Vertices bei Stellungen. Ist ein Vertex erreichbar, wird er im
valide-Vertices-Array fiir dieses Polygon eingetragen. Fiir ein Polygon mit n Vertices benétigt die
Berechnung valider Vertices O(n?) Schritte, da fiir die Verdeckung eines Vertex alle durch Vertices
definierten Segmente betrachtet werden miissen. Hat ein Polygon-Patch mehrere Polygone, werden fir
einen Vertex alle Polygone darauf gepriift, ob sie den Vertex verdecken. Sobald ein Vertex von einem
Polygon, oder von allen Polygonen, komplett verdeckt wird, wird es von weiteren Berechnungen fiir
Stellungen ausgeschlossen, indem es nicht im valide-Vertices-Array eingetragen wird. Haben alle
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a)

Abbildung 4.5: a) Valide Vertices (griin) in einem Polygon. b) Valide Vertices (griin) in einem Polygon-
Patch. Eigen- und durch andere Polygone verdeckte Vertices (rot) werden von weite-
ren Berechnungen ausgeschlossen.

im Patch vorhandenen Polygone insgesamt n Vertices, benétigt die Verdeckungsberechnung aller
validen Vertices ebenfalls O(n?) Schritte.

Bei der Generierung von neuen Stellungen und Testfallen werden nun nur noch valide Vertices von
Polygonen in einem Polygon-Patch verwendet. Valide Vertices miissen nur einmal bei der Erstellung
eines Polygon-Patches berechnet und gespeichert werden. Wird ein Polygon-Patch mit einem weiteren
zusammengelegt, werden die bisherigen validen Vertices aller beteiligten Polygone iibernommen und
in der neuen Konstellation darauf geprift, ob sie verdeckt werden. Vor allem bei grof3en Polygon-
Patches mit vielen Polygonen ist dieses Vorgehen von Vorteil, da so nur Vertices am Rand des Patches
fiir weitere Berechnungen herangezogen werden.

Gemeinsam mit dem Erkennen zu grofler Winkelsummen an Vertices bieten valide Vertices ein
effektives Mittel, um die quadratisch vielen Stellungen, und daher quadratisch viele Schnitttests, auf
nur tatsichlich sinnvolle zu begrenzen.

4.4 Vermeiden unnétiger Schnitttests

Eine weitere Moglichkeit unnotige Polygon-Stellungen und Schnitttests zu vermeiden ist das Aus-
nutzen struktureller Eigenschaften von Polygon-Patches. Neben der Betrachtung symmetrischer
Eigenschaften von erzeugten Stellungen kénnen vor allem Informationen aus alten Testfallen benutzt
werden, um Voraussagen iiber neu anfallende Schnitttests zu treffen. Dies fithrt zu einer erheblichen
Reduzierung von erstellten Polygon-Stellungen.

4.4.1 Redundante symmetrische Polygon-Stellungen
Fiir Polygone und Polygon-Patches die nicht mit einem strukturell unterschiedlichen, sondern mit

einem identischen Polygon(-Patch) zusammengelegt werden sollen, ist die Abschatzung moglicher
Stellungen aus Kapitel 4.1 zu hoch. Beim Erstellen diskreter Stellungen fiir zwei identische Polygone
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muss nur rund die Halfte der Stellungen betrachtet werden, die fiir zwei unterschiedliche Polygone
anfallen wiirden. Gegeben ein Polygon P, mit nummerierten Vertices, so miissen nur Vertices v;, v;
(2,7 < n) des Polygons aneinander gelegt werden, bei denen j < 7 gilt, und fiir jedes Vertex-Paar gibt
es zwei Ausrichtungen der anliegenden Segmente.
fori=1...ndo
forj=1...ido
forc=—1,1do
Speichere Polygon-Stellung (i, j, c)
end for
end for
end for

Dies fuhrt zu

2-2?22'”(2“):”'(”“)
j=1

Stellungen, die auf Schnitte getestet werden miissen. Im Vergleich zur urspriinglichen Abzahlung von
n -m - 2 (hier m = n) Stellungen ist dies gerade die Hilfte.

Diese Einsparung ldsst sich auch auf Polygon-Patches uibertragen, die mit sich selber gepaart
werden sollen. Eine Stellung wird dann nur weiterverwendet, wenn sie durch folgende Funktion
AkzeptiereStellung akzeptiert wird.

(P? Polygon P ID, P Vertex ID, P” Polygon Q ID, Q Vertex ID, Segment-Kombination)
= (poly_p_id, v_id, poly_q_id, w_id, ¢) = s

poly_p_id < poly_q_id, akzeptiere
AkzeptiereStellung(s) = ¢ (poly_p_id = poly_q_id) und (v_id < w_id), akzeptiere

sonst, verwerfe

4.4.2 Alte Schnitttests wiederverwerten

Eine Weiterfiihrung des Gedankens, beim Kombinieren dquivalenter Polygon-Patches redundante
Stellungen zu filtern, fithrt zu dem Ergebnis, anhand der Zusammensetzung eines Polygon-Patches
einmal bereits erkannte Uberschneidungen nicht wieder zu erzeugen. Dies hat auch mit der Einsicht zu
tun, dass vor allem bei grof3en Polygon-Patches, selbst unter Benutzung von validen Vertices, ein grofer
Teil erzeugter Stellungen Uberschneidungen aufweist. Die Erkennung dieser Uberschneidungen kostet
Rechenzeit, und die gewonnene Information tiber die Uberschneidung sollte wieder verwertet werden.
Dies ist aufgrund der hierarchischen Zusammensetzung von Polygon-Patches umsetzbar.

Hierfiir werden fiir zwei Polygon-Patches A7 und B” alle Stellungen gespeichert, die schnittfrei
sind. Zusétzlich ist es notig, jedem im Verlauf des Programms erzeugten Polygon-Patch eine eindeuti-
ge Identifikationsnummer zu geben. Die Tupel fiir giiltige Stellungen werden gemeinsam mit den
eindeutigen IDs der beteiligten Polygon-Patches abgespeichert und kénnen wiederverwendet werden,
wenn wieder genau diese beiden Polygon-Patches miteinander kombiniert werden sollen.
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Ein Polygon-Patch P entsteht hierarchisch durch die Kombination zwei weiterer Polygon-Patches
AP und B”.

PP = AP uB”
Fiir eine formale Betrachtung werden A% und B” fortan Eltern-Patches PA* und PP* von PP

genannt.
PP = AP UB? = P47 y PP?

Sollen zwei vorhandene Polygon-Patches P” und Q7 zu einem neuen zusammen gelegt werden,
werden alle enthaltenen Polygone der Patches miteinander kombiniert. Das bedeutet implizit, dass
die jeweils beteiligten Eltern beider Polygon-Patches miteinander kombiniert werden. Formal kann
dies wie folgt ausgedriickt werden

PP « QP _ (PAP U PBP) % (QAP U QBP)
— PP « (QAP U QBP) _ {PP % QAP] U [PP % QBP]
_ (PAPUPBP) % QP _ [PAP % QP] U {PBP % QP]
_ [PAP > QAP} U [PAP > QBP] U [PBP % QAP] U [PBP > QBP]

(4.1)

Hierbei bedeutet x alle Stellungen zwischen zwei Polygon-Patches zu generieren, und U kann als
(Mengen-)Vereinigung verstanden werden, einerseits zwischen Polygon-Patches untereinander und
andererseits zwischen generierten Mengen von Stellungen. Die mit eckigen Klammern umschlossenen
Terme sind Kombinationen von Eltern-Patches (und Eltern- und Kind-Patches), die eventuell bereits
einmal berechnet wurden und woriiber Informationen vorliegen kénnen. Wenn fiir zwei Polygon-
Patches P¥ und Q7 Stellungen generiert werden sollen, wird auf Ebene der Eltern-Patches implizit
die letzte Zeile von Gleichung 4.1 umgesetzt. Dabei werden die Stellungen erzeugt, die durch die
Terme in eckigen Klammern definiert werden. Die zweite und dritte Zeile von Gleichung 4.1 sind
aquivalente Umformungen der letzten Zeile, in denen Informationen zwischen Polygon- und Eltern-
Patches genutzt werden kénnen. In Abbildung 4.6 ist eine ungiiltige Stellung zweier Patches gezeigt,
die unter Verwendung von Informationen tiber die Eltern-Patches vermieden werden kann.

An dieser Stelle lassen sich zuvor getatigte Schnitttests wiederverwerten. Genauer gesagt lassen sich
giltige Stellungen wiederverwerten, wenn fiir zwei nun zu kombinierende Eltern-Patches bereits zu
einem fritheren Zeitpunkt Stellungen erzeugt und von Uberschneidungen bereinigt wurden. Diese
giltigen Stellungen werden, gemeinsam mit den IDs fiir die dazugehorigen Patches, in einer Tabelle
gespeichert. Sollen zwei Eltern-Patches miteinander kombiniert werden, wird anhand ihrer IDs in
der Tabelle nachgeschlagen, ob bereits Stellungen fiir diese Kombination vorliegen. Liegen keine
Stellungen vor, konnen fiir dieses Eltern-Paar keine zu generierenden Stellungen iibersprungen
werden. Also werden, wie bisher auch, alle moglichen Stellungen fiir dieses Eltern-Patch Paar erzeugt.
Liegen fiir zwei zu testende Eltern-Patches in der Tabelle bereits Stellungen vor, werden diese fiir
den aktuellen Kontext der beiden Patches wiederverwendet. Da Stellungen grundsétzlich als Tupel
mit Polygon-IDs und Vertex-IDs gespeichert werden, miissen diese IDs aus dem Kontext, in dem
sie vorher gestimmt haben, nun angepasst werden auf dem neuen Kontext der Eltern-Patches im
Kind-Polygon-Patch. Dieser Kontext ist vor allem gegeben durch die Lage der Polygone im Polygon-
Patch und ihre fiir jeden Patch intern neu vergebenen IDs, aber auch das Filtern von ehemals validen
Vertices, die im Kontext des Kind-Polygon-Patches nicht zwingend valide sind. Ein solches Bereinigen
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Abbildung 4.6: a) Ein Polygon-Patch P bestehend aus zwei Polygonen. Fiir die Teilpolygone
wurden alle Stellungen betrachtet, bevor der Patch erzeugt wurde. b) P¥ wird mit
sich selber in einer Stellung platziert. Es entsteht ein Schnitt der iiber einen Schnitttest
erkannt werden muss. ¢) Die sich schneidenden Teilpolygone der Patches wurden
bereits einmal auf die ungiiltige Stellung getestet. Der anfallende Schnitttest ist
vermeidbar, indem die alte Information genutzt wird.

von nicht mehr validen Vertices ist durch Sortieren und Abgleichen der gegebenen Stellungen und
aktuell validen Vertices moglich.

Wurden alte Stellungen fiir Eltern-Patches auf diese Weise aufgearbeitet, stellen sie eine giiltige
Teilmenge der Stellungen fiir P x Q7 dar. Da die Eltern-Patches von P” und Q7 aber nun in einer
neuer Platzierung mit mehr Patches stehen, kénnen ehemals giiltige Stellungen zwischen Eltern-
Patches nun ungiiltig sein. Dies ist aus Sicht eines Eltern-Patches in P” der Fall, weil er sich mit neu
hinzugefiigten Eltern-Patches in Q% iiberschneiden kann, auch wenn von genau einem Eltern-Patch
in Q% bekannt ist, dass keine Uberschneidung damit vorliegt. Daher miissen auch die auf diese
Weise gewonnenen und angepassten Stellungen wieder durch Schnitttests validiert werden, wie dies
fir Stellungen zwischen P” und Q% sowieso nétig ist. Da aber Uberschneidungen auf Ebene der
Eltern-Patches bereits vorher beseitigt wurden, fallt der Aufwand hierfiir kein zweites mal an.

Im Laufe des Programms werden bei der Erstellung von Polygon-Patches also stets alle giiltigen
Stellungen mit den nétigen IDs der Patches in einer Tabelle gespeichert und kénnen jederzeit wieder-
verwendet werden. Diese Tabelle kann als eine Art Bibliothek fiir giiltige Stellungen zwischen bisher
erstellten Patches angesehen werden. Unter einer guten Strukturierung der Stellungen und Patches
sind bei p erstellten Polygon-Patches maximal

p-(p+1)
2
Pakete mit Stellungen fiir Polygon-Patch Kombinationen zu speichern.
Diese Bibliothek mit Stellungen ist nicht zwangslaufig dicht befullt, da nicht zwingend jeder Polygon-
Patch mit jedem anderen kombiniert wird oder werden soll. Da auch stets neue Polygon-Patches

erzeugt werden erscheint es wenig zielfithrend, die Bibliothek explizit zu fiillen. Vielmehr sollte sie als
Moglichkeit gesehen werden, altes Wissen tiber Stellungen praktisch wiederverwenden zu kénnen.

Das hier beschriebene Absteigen im hierarchischen Aufbau eines Polygon-Patches ist theoretisch
so weit moglich, dass die gesamte Entstehungsgeschichte eines Polygon-Patches in Form eines
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Binarbaumes mitgefiihrt werden kann. Innerhalb dieses Bindrbaumes liefen sich alle im Polygon-Patch
enthaltenen Eltern-, Eltern-Eltern-, etc. auf ehemalige Uberschneidungen mit Eltern eines weiteren
Polygon-Patches priifen. Dies wiirde jedoch eine nicht triviale Strukturierung, Suche und Abgleichung
von gemeinsamen Eltern-Patches im Eltern-Bindrbaum erfordern, weshalb dieser Gedanke in der
Implementierung zu dieser Arbeit nicht weiter verfolgt wurde.

4.5 Finden einer globalen Losung

Das Finden einer globalen Losung bedeutet eine Platzierung von Polygonen auf der Doméne G
zu finden, sodass moglichst viele Polygone enthalten sind. Mit den bisher entwickelten Methoden
lassen sich enge Platzierungen von Polygonen in Form von Polygon-Patches realisieren. Unter
Verwendung von validen Vertices und unter Wiederverwertung alter giiltiger Stellungen wird die
Anzahl teurer Schnitttests reduziert. Gleichzeitig kann mithilfe der vorgestellten Heuristiken eine
Auswahl vielversprechender Polygon-Patches erfolgen, um die Komplexitiat der Losungsfindung
weiter zu reduzieren.

Fiir das Finden einer globalen Losung wurden in dieser Arbeit zwei einfache Strategien evaluiert, die
sich aus Polygon-Patches und deren Eigenschaften ergeben. Zur Vereinfachung wird angenommen,
dass Instanzen von nur einem Polygon auf dem Gebiet platziert werden sollen. Miissten verschiedene
Polygone platziert werden, lassen sich dieselben Strategien anwenden wie hier beschrieben, nur
kommt hinzu, dass eventuell weitere Bedingungen an die Stiickzahl der verschiedenen Polygone
gestellt werden.

Brute-Force auf der Doméne

Es bietet sich ein iteratives Brute-Force Vorgehen an, stets Polygon-Patches um eine Polygoninstanz
zu erweitern. Diese rundenbasierte Strategie erstellt fiir Runde ¢ alle Polygon-Patches, die genau ¢
Polygone beinhalten. Bei diesem Vorgehen fallt ohne einschrinkende Heuristiken ein extrem hoher
(Berechnungs-)Aufwand an. Es ist also ndtig, nach jeder Runde nicht tatsichlich alle Polygon-Patches
mit ¢ Polygonen zu behalten, sondern nur solche, bei denen die Polygone am engsten zusammen
liegen. Gleichzeitig werden unter diesen Patches diejenigen bevorzugt, deren Form am meisten einem
Rechteck gleicht. Hierfiir werden die in Kapitel 4.2.2 vorgestellten Heuristiken verwendet. Im Laufe
der Losungsfindung wird eine Tabelle von Polygon-Patches aufgebaut und stets erweitert. In dieser
Polygon-Patch-Bibliothek konnen fiir eine gegebene Zahl k alle Polygon-Patches nachgeschlagen wer-
den, die genau diese Anzahl an Polygonen beinhalten. Sollen also neue Polygon-Patch Kombinationen
mit insgesamt ¢ Polygonen generiert werden, werden in der Polygon-Patch-Bibliothek alle Patches
mit k£ und j Polygonen benutzt, um Stellungen mit ¢ = j + k£ Polygonen zu erzeugen. Diese Stellun-
gen werden anschlieffend in Schnitt-Tests umgesetzt und von Uberschneidungen bereinigt. Aus gut
bewerteten Stellungen werden neue Polygon-Patches erstellt und in die Polygon-Patches-Bibliothek
eingetragen.

Die in Runde ¢ neu erzeugten Polygone lassen sich aber auch einschranken, indem nicht alle Paare
von Polygon-Patches betrachtet werden, die zusammen ¢ = j + k Polygone haben. Wird zum Beispiel
k fest vorgegeben, beschrankt dies die Anzahl an méglichen Polygon-Patch Paaren, die kombiniert
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werden konnen. So werden fir eine aktuelle Runde ¢ nur Polygone-Patches der letzten k£ Runden
heran gezogen, und um maximal j = 7 — k Polygone erweitert. Fiir £ = 1 bedeutet dies zum Beispiel,
dass Resultate aus der letzten Runde benutzt werden. Diese Resultate werden um genau ein Polygon
so erweitert, dass dieses Polygon am engsten an das bisherige Polygon-Patch angelegt wird. Das ist
ein auf die letzten k£ Runden beschréankter Brute-Force Ansatz.

Da das Gebiet G rechteckig ist, werden neu generierte Polygon-Patches anhand ihrer minimalen
Rechtecke darauf getestet, ob sie in G platziert werden kénnen. Hierfiir miissen lediglich die Seiten-
langen von G mit denen des minimalen Rechtecks verglichen werden. Polygon-Patches die eigentlich
heuristisch gute Stellungen beinhalten, aber zu grof} sind werden so erkannt und entfernt. Um un-
notige Schnitttests fiir zu grofle Patches zu sparen, werden die korrespondierenden Stellungen vor
den Schnitttests anhand ihrer minimalen Rechtecke heraus gefiltert. Dies spart besonders bei grofler
werdenden Patches Rechenzeit, wenn sie die Doméne bereits gut ausfiillen und weitere Polygone
nicht beliebig platziert werden kénnen. Der in Runden agierende Algorithmus terminiert, wenn
alle neu erzeugten Polygon-Patches zu grof3 fiir G sind und wieder verworfen werden, oder bis eine
angegebene maximale Anzahl an platzierten Polygonen erreicht wurde. Die Laufzeit dieses Vorgehens
héngt also wesentlich von der Anzahl der pro Runde neu erzeugten Polygon-Patches ab.

Zusammensetzen einer Losung anhand minimaler Rechtecke

Das iterative Aufbauen eines grofien Polygon-Patches, der eine Losung darstellt, erfordert viel Auf-
wand. Eine einfache Moglichkeit eine schnelle Losung zu finden ist, einen kleineren Polygon-Patch
anhand seines minimalen Rechtecks moglichst oft in G zu platzieren. Da das optimale Platzieren
von Rechtecken verschiedener Gréflen selber ein NP-vollstdndiges Nesting-Problem darstellt[Kor03],
wurde in dieser Arbeit nur das Platzieren eines stets gleich grofien Rechtecks im Gebiet realisiert.
Solche gleich grofien Rechtecke eines Polygon-Patches kénnen ohne Weiteres schnittfrei in die Do-
maéne gelegt werden, und es bleibt nur noch zu zéhlen, wieviele Polygone hierdurch insgesamt in der
Doméne platziert sind. Fiir dieses Vorgehen ist es sinnvoll Polygon-Patches zu bevorzugen, die sehr
dicht in ihrem minimalen Rechteck liegen. Diese Forderung wird in die Sortierung und Auswahl von
Polygon-Patches des rundenbasierten Verfahrens integriert. Von den Stellungen in denen die Polygone
am engsten zusammen liegen werden also die bevorzugt, die ihr minimales Rechteck besser ausfiillen.
Die in jeder Runde neu erzeugten Polygon-Patches werden dann anhand ihrer minimalen Rechtecke
ausfiillend auf das Gebiet platziert und unter allen solchen Losung einer Runde wird die Beste behalten.
Da die hierdurch erzeugten Platzierungen auf der Doméne nicht zwangslaufig eng zusammen liegen
(im Sinne von Kapitel 4.2.2), werden so gefundene Losungen nicht fiir weitere Verbesserungen in
Betracht gezogen. Es erscheint jedoch sinnvoll bei vielversprechenden Losungen dieser Art wieder
die zugrundeliegenden Polygon-Patches aufzugreifen und weitere Polygone hinzuzufiigen unter der
Bedingung, dass das minimale Rechteck nicht wesentlich gréfer wird.
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Die in Kapitel 2.2 und 3 erlduterten und in Kapitel 4 entwickelten Methoden und Algorithmen
wurden in einer prototypischen Anwendung implementiert und verifiziert. Die Implementierung ist
in C geschrieben, nutzt die Laufzeitbibliotheken OpenGL, GLEW (Version 1.10) und GLFW (Version
3) und ist auf GNU/Linux Systemen lauffahig. Fiir den Schnitttest wird eine OpenGL 4.2 kompatible
Grafikkarte mit ebenfalls OpenGL 4.2 kompatiblen Gerétetreibern vorausgesetzt. Fiir eine Verwendung
unter Windows ist eine Anpassung von Betriebssystem-spezifischen Funktionen nétig, zum Beispiel
Funktionen zur Zeitmessung.

Die implementierte Anwendung erwartet die Eingabe eines Polygons in Form eines Linienzugs
und die Grofle eines rechteckigen Gebietes. Uber die in Kapitel 4.5 erlduterten Strategien zum
Finden einer globalen Losung wird versucht das Polygon moglichst oft im Gebiet zu platzieren.
Hierfiir werden rundenweise Polygon-Patches mit mehr Polygonen erstellt, bis keine Erweiterung
von Polygon-Patches mehr moglich ist, die gleichzeitig noch in das Gebiet passen. Das Polygon
kann durch den Benutzer als Linienzug gezeichnet, oder anhand einer Textdatei geladen werden.
Uber Eingabeparameter sind die Grof3e des Ausgabefensters, die Texturgrofie der fiir den Schnitttest
genutzten Texturen, und Einstellungen fiir das Nesting von Polygonen konfigurierbar. Da sich die
Strategien zur Minimierung und Vermeidung von Schnitttests durchweg als vorteilhaft erwiesen
haben, werden Polygon-Stellungen durchgehend nicht-optional unter Verwendung dieser Strategien
erstellt. Uber Parameter lasst sich einstellen, wieviele der am besten bewerteten Stellungen einer
Runde fiir weitere Berechnungen verwendet werden sollen und wieviele Polygone pro Runde an
einen Polygon-Patch hinzugefiigt werden. Hierdurch sind vielfaltige Moglichkeiten zur Auswahl von
Losungen und zur Reduzierung der notigen Rechenzeit gegeben.

In Folgenden werden Resultate der implementierten Anwendung prasentiert. Hierfiir werden Daten
betrachtet, die tiber ausgewihlte Probleminstanzen auf zwei verschiedenen Testsystemen erhoben
wurden.

Testsystem AMD ist ein Notebook mit AMD E2-1800 APU, deren Dual-Core CPU mit maximal 1.7GHz
taktet und 1MB L2 Cache besitzt. Die in der APU integrierte Grafikeinheit ist eine AMD Radeon
HD 7340 deren Grafikspeicher mit maximal 512MB vom Hauptspeicher des Systems versorgt wird.
Im System sind als Hauptspeicher 16GB DDR3-1333-RAM verbaut, die im Single-Channel-Modus
betrieben werden. Als Betriebssystem ist GNU/Linux mit einem Arch Linux (Kernel 3.13) in Betrieb.
Der verwendete Grafiktreiber ist der von AMD fiir Linux bereit gestellte Catalyst-Treiber 14.3.

Testsystem NVI ist ein Desktop PC mit einem AMD FX-4100 Quad-Core Prozessor der mit maximal
3.8GHz taktet und 4MB L2 Cache besitzt. Die verbaute dedizierte Grafikkarte ist eine NVIDIA GeForce
GT 640 mit 2048MB Grafikspeicher. Im System sind 16GB DDR3-1333-RAM verbaut, die im Dual-
Channel-Modus betrieben werden. Als Betriebssystem wird ebenfalls ein Arch Linux (Kernel 3.12)
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verwendet. Als Grafiktreiber ist der von NVIDIA fiir Linux bereit gestellte Treiber in Version 331.20
in Betrieb.

Abbildung 5.1 zeigt drei Testinstanzen, bei denen verschiedene geometrische Formen auf kleinen
Gebieten platziert werden sollen. Lésungen der drei Instanzen sind in Abbildung 5.2 zu sehen.

I1 12

I3

Abbildung 5.1: Drei Testinstanzen. Die Polygone (hellgriin) werden auf dem Gebiet (griines Rechteck)
moglichst oft platziert. Die Konvexe Hiille der Polygone ist dunkelgriin hinterlegt,
das minimale Rechteck ist in rot eingezeichnet. I1) Ein rechtwinkliges Dreieck auf
einem Gebiet, in dem es maximal acht mal platziert werden kann. 12) Wie I1 ein
rechtwinkliges Dreieck, jedoch mit drei Aussparungen. Es kann maximal acht mal
im Gebiet platziert werden. I3) Ein geometrisches Objekt mit 17 Vertices in einem
Gebiet, in dem es vom Programm maximal sieben mal platziert werden konnte.

Zunéachst wird der GPU-Schnitttest auf beiden Testsytemen evaluiert und die Performanz verglichen,
die im wesentlichen von der Gréfie der intern verwendeten Bildauflosungen abhéngt. Anschliessend
werden Laufzeiten und der anfallende Rechenaufwand fiir jede Instanz betrachtet. Hierbei werden
verschiedene Varianten des Programms betrachtet, bei denen unterschiedliche Beschleunigungstech-
nicken deaktiviert wurden. Zuletzt folgt eine Betrachtung von Instanzen auf groflen Gebieten, auf
denen der allgemeine Nesting Brute-Force Ansatz an seine Grenzen stof3t.

Ergebnisse und Messungen der Implementierung

Der Schnitttest ist ein sehr wichtiger Faktor fiir die Laufzeit des Programms und fiir die Korrektheit
der gefundene Losung. Im Grunde wird fast die gesamte Laufzeit des Programms dafiir aufgebracht
Polygon-Stellungen auf Uberschneidungen zu priifen. Daher wird zunéchst die Performanz des
Schnitttests untersucht. Der Schnitttest ist mafigeblich durch die Auflésung seines rasterisierten
Bildes konfigurierbar. Von dieser Auflésung héngt vereinfacht gesagt ab, wieviele (parallele) Rechen-
einheiten auf der Grafikkarte die Bearbeitung von Pixeln (Fragmenten) des Bildes realisieren miissen.
Gleichzeitig ist die dem Schnitttest zugrunde liegende Bildauflosung mafgeblich fiir die Korrektheit
dieses Tests. Ist die Auflésung zu niedrig gewahlt, konnen Details der Polygone nicht entsprechend
abgebildet werden, sodass Uberschneidungen an diesen Details nicht erkannt werden. Tabelle 5.1
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Abbildung 5.2: Losungen der drei Testinstanzen. I1) Acht Dreiecke passen in das quadratische Gebiet.
I2) Die Aussparungen dndern nichts an der dreieckigen Grundform des Polygons,
weshalb ebenfalls nur acht solche Formen in das Quadrat platziert werden kénnen.
I3) Das Programm findet eine Losung mit maximal sieben platzierten Formen. Das
Losen dieser Instanzen dauert auf beiden Testsystemen wenige Sekunden.

Millisekunden pro Schnitttest

AMD NVI
Aflosung | I1 [ 2 | B | 1 | 2 | B3
1024 1.75 | 1.61 | 1.51 0.207 | 0.174 | 0.151
512 1.17 | 1.20 | 1.81 || 0.106 | 0.092 | 0.088
256 0.99 | 0.99 | 0.96 || 0.080 | 0.070 | 0.068
128 0.77 | 0.77 | 0.70 || 0.073 | 0.065 | 0.062
64 0.67 | 0.68 | 0.65 0.073 | 0.064 | 0.060
32 0.67 | 0.70 | 0.66" || 0.072 | 0.062 | 0.059*

Tabelle 5.1: Messungen der durchschnittlichen Zeit fiir einen Schnitttest auf der GPU. Die Auflésung
des quadratischen Bildes fur den Schnitttest ist in Pixeln angegeben. Fiur die mit *
markierten Eintrage fiir I3 wurde vom Programm eine ungiiltige Losung ausgegeben.

zeigt Messungen fiir die beiden Testsysteme AMD und NVI, auf denen unter verschiedenen Bildaufls-
sungen des Schnitttests die vorgestellten Testinstanzen I1, 12 und I3 geldst wurden. Gemessen wurde
die durchschnittliche Zeit in Millisekunden, die ein Schnitttest auf dem System benétigt. Bei beiden
Systemen skaliert die gemessene Zeit fiir einen Schnitttest nicht beliebig nach unten. Dies ist durch
einen Overhead teils durch den CPU-Teil des Schnitttests zu erklaren, kann aber auch mit genauen
Implementierungsdetails im Bezug auf OpenGL und mit dem Grafiktreiber zusammenhéngen. Eine
weitere Optimierung des Schnitttests, um diesen Overhead weiter zu senken, kann in der Verwendung
fortgeschrittener OpenGL-Techniken bestehen.

Fir die genannten Ergebnisse wurde das Programm mit dem GNU C Compiler 4.8 mit Optimierungs-
stufe O2 kompiliert. Tatsachlich spielt die Optimierungsstufe des Kompiliervorgangs aber keine
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Abbildung 5.3: Eine gréfiere Variante der Testinstanz I3. In knapp einer Minute konnten vom Pro-
gramm 18 Polygone platziert werden. Die Berechnung wurde auf dem NVI System
durchgefiihrt, die Schnitttest-Auflosung wurde auf 512 gestellt.

Programm Laufzeit (grof3e I3)
Optimierung AMD \ NVI
00 17m 26s 884ms | 1m 25s 127ms
02 17m 12s357ms | 1m 09s 500ms
03 17m 03s 309ms | 1m 09s 304ms

Tabelle 5.2: Laufzeiten der in Abbildung 5.3 dargestellten geldsten Instanz, abhingig von der Opti-
mierungsstufe wihrend des Kompiliervorgangs.

entscheidende Rolle fiir die Laufzeit des Programms. Dies ist in Tabelle 5.2 zu sehen. Gemessen
wurden Ausfithrungszeiten fiir eine Abwandlung der Testinstanz I3 (siehe Abbildung 5.3) mit etwas
grofierem Gebiet, auf das 18 Polygone platziert werden konnten. Auf beiden Testsystemen wurden
Varianten des Programms gestartet, die mit verschiedenen Optimierungsstufen kompiliert wurden.
Die Bildauflésung fiir den Schnitttest wurde hier auf 512 gesetzt.

Die Unabhangigkeit der Programmlaufzeit von Compileroptimierungen deckt sich mit der Beobach-
tung, dass gemessene Laufzeiten vollstindig mit Schnitttests zugebracht werden, die auf der GPU
stattfinden.
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Variante H deaktivierte Funktionen

Vo keine
V1 valide Vertices
V2 V1 + alte Tests wiederverwerten
V3 V2 + Stellungen vor Schnitttest auf Gebietsiiberschreitung priifen
Anzahl erstellter Stellungen
Variante Il I2 I3
Vo 1646 3077 2749
V1 1715 4459 4194
A\ 2612 23082 63049
V3 6528 | 147162 146 608

Tabelle 5.3: Anzahl erstellter Stellungen wihrend eines Programmdurchlaufs auf den drei vorge-
stellten Instanzen und unter Deaktivierung verschiedener Stellungen-reduzierender
Funktionen.

Es wurden verschiedene Strategien entwickelt um nur tatsachlich nétige Polygon-Stellungen zu erzeu-
gen. Dies hatte den Hintergrund, méglichst viele aus Stellungen folgende Schnitttests zu vermeiden.
Um zu evaluieren, welchen Mehrwert diese Methoden zur Vermeidung von Stellungen haben, wurde
die entwickelte Software in mehreren Varianten kompiliert. In den Programm-Varianten wurden
jeweils verschiedene Funktionen deaktiviert, die die Anzahl generierter Stellungen reduzieren. Test-
laufe auf den vorgestellten Instanzen wurden durchgefiihrt, und alle im Programmverlauf erstellten
Stellungen wurden gezahlt. Die Ergebnisse hierzu sind in Tabelle 5.3 dargestellt.

Das Programm wurde stets so lange laufen gelassen, bis keine der neu erstellten Stellungen ein
weiteres Polygon zum Nesting hinzufiigen konnte. Fiir diesen Brute-Force Ansatz zeigt sich in Tabelle
5.3 deutlich, dass die in Variante V3 deaktivierte Funktion viele Schnitttests ersparen kann. Diese
Funktion wurde in Kapitel 4.5 nur kurz erwéhnt. Um nicht alle generierten Polygon-Stellungen an den
Schnitttest zur Uberpriifung geben zu miissen, werden fiir diese zunéchst die minimalen Rechtecke
erzeugt. Anhand dieser Rechtecke werden Stellungen entfernt, die nicht in das Gebiet passen, noch
bevor sie einem Schnitttest unterzogen werden. Vor allem beim iterativen Nesting von Polygonen und
wenn das Gebiet zu einem grofien Teil bereits gefiillt ist werden so viele Schnitttests vermieden. Eine
ghnliche Relevanz fiir die Anzahl erstellter Stellungen hat das Wiederverwerten alter Schnitttests.
Vor allem fiir die komplexeren Polygone in I2 und I3 kdnnen extrem viele unnétige Stellungen, und
somit Schnitttests, eingespart werden. Aus den erhobenen Daten wird geschlussfolgert, dass die
entwickelten Methoden zur Aufwandsreduzierung sehr gut funktionieren.

Alle bisher betrachteten Testinstanzen wurden uber den Brute-Force Ansatz berechnet, iterativ neue
Polygone auf dem Gebiet zu platzieren. Hierbei werden in jeder neuen Runde ¢ alle bisher erzeugten
Polygon-Patches betrachtet und diejenigen Paare von Patches miteinander kombiniert, die zusammen
genau ¢ = j + k Polygone haben. Da im Verlauf des Programms sehr viele Polygon-Patches erzeugt
werden, sind mit jeder Runde mehr solcher Patch-Paare moglich, und der damit einhergehende
Aufwand fiir Schnitttests nimmt enorm zu. Eine Moglichkeit diesen Aufwand zu beschrénken ist,
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bisher gefundene Polygon-Patches mehrmals im Gebiet zu platzieren. Eine andere Moglichkeit besteht
darin, sich pro Runde auf maximal £ neu hinzugefiigte Polygone zu beschranken. Beschrankt man die
Loésungsfindung zum Beispiel auf & = 1, ist eine erheblich geringere Laufzeit messbar, und es wird
eine dhnlich gute Losung gefunden wie beim Brute-Force Ansatz mit geschachtelten Patches. Das
Ergebnis eines solchen Tests ist in Abbildung 5.4 zu sehen.

Der Speicherverbrauch bei Berechnungen mit einem nicht beschrankten Brute-Force steigt mit jeder
Runde erheblich. Das ist einerseits auf die steigende Zahl neuer Polygon-Patches zuriick zu fithren,
wird wahrscheinlich aber auch zu einem grofien Teil durch das Speichern alter Stellungen verursacht.
Beide Aspekte lassen sich abmildern, indem dquivalente Polygon-Patches, die dieselbe Platzierung
von Polygonen darstellen, erkannt und gefiltert werden. Ebenfalls ist eine ausgereifte Strategie zur
Einschrankung von neu erzeugten Polygonen denkbar, die sich sowohl auf den Speicherverbrauch,
als auch auf den Berechnungsaufwand auswirken wiirde. Eine durchdachtere Strategie fiir das Spei-
chern von alten giiltigen Stellungen wird sicherlich auch zu einer Reduktion des Speicherverbrauchs
fithren.

Phdaw Pd P W) >

B

y -

Abbildung 5.4: links) 120 Polygone konnten in 30 Minuten platziert werden. Tatsachlich wurden
8 Polygon-Patches mit jeweils 15 Polygonen im Gebiet anhand ihrer minimalen
Rechtecke verteilt. Die Polygon-Patches wurden tiber unbeschranktes Brute-Force
berechnet. Die Platzierung der minimalen Rechtecke ist sofort verfiigbar. Wahrend
der 16. Runde des Programmdurchlaufs beendete das Betriebssystem den Prozess,
weil es die gesamten Systemressourcen in Anspruch nahm (16GB RAM + 8GB Swap).
rechts) Iterativ konnten in knapp 4 Sekunden 117 Polygone nacheinander platziert
werden. Der Brute-Force Ansatz wurde beschrankt auf genau ein neues Polygon pro
Runde. Der Speicherverbrauch belief sich auf knapp 60MB. Beide Tests wurden auf
dem NVI System mit einer Schnitttest-Bildauflosung von 512 durchgefiihrt.
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Zusammenfassung

In dieser Arbeit wurde untersucht wie gegebene Formen méglichst oft in einem rechteckigen Gebiet
platziert werden konnen. Die Problemstellung wurde durch Polygone modelliert, die moglichst eng
zusammen liegen sollen. Statt beliebige Platzierungen zu erlauben, wurden nur Polygon-Stellungen
betrachtet, die sich an den Vertices und Segmenten der Polygone orientieren. Verschiedene geometri-
sche Eigenschaften wurden benutzt um Stellungen von Polygonen qualitativ zu bewerten, dies sind
die Konvexe Hiille und das minimale Rechteck. Die hierfiir nétigen Algorithmen wurden fiir haufig
stattfindende Berechnungen in bestméglicher Laufzeit-Komplexitit umgesetzt und implementiert.

Um komplexe geometrische Berechnungen auf der CPU zu vermeiden wurde ein rasterbasierter
Schnitttest fiir Grafikkarten realisiert und optimiert, der von technisch zeitgeméfien Funktionen der
OpenGL-API Gebrauch macht. Mit Hilfe der dadurch bestehenden OpenGL-Anbindung wurde eine
Visualisierung fiir Polygone und Platzierungen von Polygonen implementiert, die auch eine Maus
basierte Eingabe von Polygonen durch den Benutzer zulésst.

Die hier getatigte Einschrankung auf diskrete Polygon-Stellungen hat zur Folge, dass sich zwei Poly-
gone grundsétzlich in jeder erzeugten Stellung schneiden kénnen. Um den hieraus resultiertenden
Rechenaufwand fiir Schnitttests zu reduzieren wurden verschiedene Strategien betrachtet, wie die
Anzahl erzeugter Stellungen verringert werden kann, ohne gleichzeitig die Qualitat einer gefundenen
Losung zu beeintrachtigen. Die Datenstruktur der Polygon-Patches wurde eingefiihrt, um Stellungen
von vielen Polygonen zu speichern und dauerhaft zu verwalten. Mithilfe der Polygon-Patches konnte
eine Reduktion unnétiger Vertices bei der Erzeugung von Stellungen realisiert werden. Unnétige
Vertices werden dadurch erkannt, dass sie im Polygon-Patch rundum durch Polygone verdeckt sind.
Zusatzlich wurde eine Moglichkeit aufgezeigt die Information iiber getitigte Schnitttests wieder zu
verwerten, indem gespeichert wird, welche Stellungen von Schnitttest als giiltig erkannt wurden.
Durch die hierarchische Struktur der Polygon-Patches wurde anhand gespeicherter giiltiger Stellun-
gen moglich, bei der Erzeugung neuer Stellungen zwischen Polygon-Patches solche Varianten zu
vermeiden, die Uberschneidungen von Polygonen enthalten.

Die entwickelten Strategien zum Nesting von Polygonen wurden in einer Software-Implementierung
umgesetzt und evaluiert. Die entwickelte Software kann fiir gegebene Gebiete und Polygone Plat-
zierungen der Polygone berechnen, anhand verschiedener Parameter sind der Schnitttest und die
Strategie bei der globalen Losungsfindung konfigurierbar. Das Laufzeitverhalten wurde anhand ver-
schiedener Testinstanzen und Parameter-Konfigurationen untersucht. Die gemessenen Resultate
entsprechen erwarteten Verbesserungen im Laufzeitverhalten, die durch die entwickelten Strategien
erzielt werden sollten.
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Limitierungen und moégliche Erweiterungen

Die in dieser Arbeit entwickelten Strategien wurden nur fiir hier so genannte diskrete Polygon-
Stellungen betrachtet. Die eingangs getatigte Einschrinkung auf diskreten Stellungen hat zur Folge,
dass nicht tatsachlich alle moglichen Losungen einer Probleminstanz betrachtet werden. Es liegt also
nahe, die hier entwickelten Strategien auf beliebige Stellungen zu erweitern, bei denen Polygone
tatsachlich beliebig orientiert und platziert sein konnen. Ein solche Ansatz wiirde aber wahrscheinlich
zu der Nutzung bereits gut untersuchter Strategien fithren, wie sie fiir das Losen von Nesting-
Problemen bereits entwickelt wurden[BOO08].

Die hier entwickelten Methoden greifen den Aspekt auf, dass die Anzahl erzeugter Stellungen mini-
miert werden soll. Der Ansatz, alte giiltige Stellungen tiber den Programmverlauf in einer Bibliothek
zu bewahren und als Nachschlagewerk zu nutzen, lasst sich grundsatzlich ausbauen. Sofern eine
sinnvolle Verwaltung gegeben ist, kann fiir Polygon-Patches der gesamte Eltern-Stammbaum in
Form eines Bindrbaumes betrachtet werden, um ungiiltige Stellungen in Teilbereichen des Patches
zu vermeiden. Dieser Eltern-Stammbaum kann wiederum eingeschrinkt werden auf Teile, die im
aktuellen Patch relevant sind, also am dufleren Rand des Patches liegen.

Das Speichern alter Stellungen und das bisher nicht untersuchte Erzeugen dquivalenter Polygon-
Patches fithren zu einem enormen Speicherverbrauch. Diese beiden Aspekte hangen stark zusammen.
Wenn iiber den gesamten Programmverlauf keine dquivalenten Polygon-Patches erzeugt werden,
werden die nétigen Tabellen zum Speichern aller Polygone und Resultate von Polygon-Stellungen
erheblich kleiner. In den Resultaten des entwickelten Programms finden sich momentan viele Polygon-
Patches mit dquivalenten Stellungen, die mehrfach erzeugt wurden. Bereits eine besser durchdachte
Auswahl von pro Runde neu erzeugten Polygonen konnte den aktuellen Speicherverbrauch gut
beschranken, denn zur Bewertung und Sortierung von Polygon-Patches untereinander nachdem sie
erstellt wurden sind keine Untersuchungen gemacht worden. Damit ist gemeint, dass nachdem in
Runde i zwei Patches A” und B” kombiniert wurden und aus deren engster Stellungen ein neuer
Patch P” entstanden ist, dieser Patch P” bisher in die Liste aller erzeugten Patches aufgenommen
wird, ohne mit anderen in dieser Runde neu erzeugten Patches verglichen zu werden.

Unabhiangig von der tatsachlichen Stellung der Polygone lasst sich der entwickelte OpenGL-Schnitttest
weiter ausbauen. Hierfiir konnen weitere in der Grafikprogrammierung iibliche Verfahren untersucht
werden, die auch mithilfe von OpenGL realisierbar sind. Uber die genaue Wahl des Texturformates, eine
weitere Reduktion von CPU-seitigen OpenGL-Aufrufen iiber spezielle OpenGL Funktionen, bis hin zu
Optimierungen an verwendeten Shadern sind viele Verbesserungen denkbar. Diese grundsatzlich in
der Grafikprogrammierung beheimateten Ansitze miissten fiir die Verwendung in einem Schnitttest
genauer betrachtet und evaluiert werden.
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