
Institut für Softwaretechnologie

Universität Stuttgart

Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit Nr. 97

Plausibilitätsprüfung implizit

gekoppelter Spreadsheet-Daten

Wolfgang Kraus

Studiengang: Softwaretechnik

Prüfer/in: Prof. Dr. rer. nat. Stefan Wagner

Betreuer/in: Daniel Kulesz, M.Sc

Beginn am: 2013-07-11

Beendet am: 2014-05-09

CR-Nummer: D.2.5, E.m, H.4.1

Kurzfassung

Spreadsheets („Excel Programme“) sind tabellenförmige Dateien, die nach diversen Studien
weit verbreitet sind und eine hohe Fehlerquote aufweisen. An der Universität Stuttgart wurde
zur Unterstützung der Prüfung vom Spreadsheets das Spreadsheet Inspection Framework (SIF)
entwickelt und in diversen Arbeiten erweitert. Für eine einfachere Benutzung wurde zudem
eine Integration (das SIFEI) für Microsoft Excel entwickelt, das eine Benutzerschnittstelle für
das SIF bereitstellt.

Im Rahmen dieser Bachelorarbeit soll das SIF um die Möglichkeit einer Plausibilitätsprüfung
von implizit gekoppelten Spreadsheet-Daten erweitert werden, um die Erhöhung der Daten-
qualität zu unterstützen. Für die Benutzung soll zudem das SIFEI erweitert werden, um diese
Prüfung aus Excel heraus ausführen zu können.

Abschließend wurde das umgesetzte Konzept evaluiert. Das Konzept ist für die Prüfung gut
geeignet, jedoch benötigt der Benutzer anfangs Unterstützung und die Verfügbarkeit aller Daten
stellt ein Problem dar.

3

Abstract

Spreadsheets (“Excel programs“) are files with a tabular presentation. According to several
studies they are both widely used and error-prone. To support the testing of those spreadsheet,
the Spreadsheet Inspection Framework (SIF) was developed and expanded throughout severeal
thesis projects. Furthermore an integration for Microsoft Excel was developed as a user interface
for the SIF, the SIF Excel Integration (SIFEI).

Goal of the thesis is to expand the SIF to support a plausibility check of implicitly coupled
spreadsheet data to improve the data quality in spreadsheets. Also the SIFEI is to be expanded
to support defining and running those tests through Excel.

Concluding, the concept and the implementation were evaluated. The concept showed to be
applicable but the user needs help when using the program for the first time and the availability
for the needed data might pose a problem.

4

Inhaltsverzeichnis

1. Einleitung 6
1.1. Motivation . 6
1.2. Ziel . 7
1.3. Gliederung . 7

2. Grundlagen 8
2.1. Taxonomie . 8
2.2. Kopplung . 10
2.3. Fehler in Spreadsheets . 11

3. Verwandte Arbeiten 13
3.1. Adding Apples and Oranges . 13
3.2. Topes . 14
3.3. Self-Checking Spreadsheets . 15
3.4. Abgrenzung . 15

4. Konzept für die Plausibilitätsprüfung 16
4.1. Beispiel . 16
4.2. Benötigte Definitionen und Daten für die Einschränkungen 17
4.3. Prüfung . 19

5. Implementierung 20
5.1. Spreadsheet Inspection Framework (SIF) . 20
5.2. SIF Excel Integration (SIFEI) . 25

6. Evaluation 28
6.1. Durchführung . 28
6.2. Fragebogen . 29
6.3. Beobachtungen . 30
6.4. Fazit . 31

7. Zusammenfassung und Ausblick 33

A. Anhang 35
A.1. Inhalt der Daten-CD . 35

Literaturverzeichnis 36

5

1. Einleitung

Spreadsheets („Excel-Programme“) werden oft für wichtige Aufgaben eingesetzt [Cro07], ent-
halten jedoch häufig Fehler. Diese Fehler können zum Teil gravierende Folgen haben, so gab es
beispielsweise bei der Analyse von 25 Spreadsheets, die in der Finanzindustrie benutzt wurden,
einen maximalen prozentualen Fehler von 416,5%, die höchste absolute Abweichung betrug
$110.543.305 [PBL09]. Panko fasste einige Artikel zu gefundenen Fehlern zusammen und gab
als Durchschnitt für Spreadsheets im „Field Audit“ ab 1997 eine Fehlerquote von 91% an. Selbst
wenn diese unter Laborbedingungen erstellt werden, enthielten 51% der Spreadsheet Fehler
[Pan08].

Im Hintergrund der Aufgabenstellung dieser Bachelorarbeit stehen, konträr zur Formel-
Fixierung der Forschung in der Finanzindustrie, auch schlechte Datenqualität.

1.1. Motivation

Eine Fehlerminimierung wird somit auch hier, ähnlich wie bei der professionellen Software-
entwicklung, benötigt. Um diese zu vereinfachen gibt es mehrere kommerziell verfügbare
Programme, die jedoch auf Finanzanwendungen zugeschnitten sind und in der Regel wenig
Einstellungsmöglichkeiten mit sich bringen [Zit12].

Als Alternative wurde an der Universität Stuttgart das Spreadsheet Inspection Framework
(SIF) entwickelt, um statische [Zit12] und dynamische [Lem13] Prüfungen durchzuführen. Die
statischen Prüfungen ermöglichen es, die verwendeten Formeln ähnlich der statischen Code-
analyse zu prüfen, beispielsweise, dass die Operatoren eine bestimmte Verschachtelungstiefe
nicht überschreiten. Die dynamische Prüfung ermöglicht es, die Ergebnisse der Formeln mit
Testeingaben zu überprüfen. Die verschiedenen Prüfungsarten werden im Kapitel 5.1.1 SIF
Ist-Zustand (S. 20) weitergehend beschrieben.

Für eine benutzerfreundlichere Darstellung der Fehler wurde die SIF Excel Integration (SIFEI)
entwickelt [Dou13] und um eine Benutzerschnittstelle für die dynamischen Prüfungen erweitert
[Sch14].

6

1.2. Ziel

1.2. Ziel

Das Ziel dieser Arbeit ist eine Erweiterung von SIF und SIFEI um einen Mechanismus zur
Plausibilitätsprüfung von in Spreadsheets enthaltenen Daten. Es soll eine Möglichkeit geschaf-
fen werden, vorhandene semantische Bezüge zwischen Datenwerten zu definieren und zu
prüfen. Für die Endbenutzertauglichkeit soll das SIFEI erweitert werden, um diese Prüfung
über Microsoft Excel zu ermöglichen. Der Schwerpunkt dabei liegt auf dem SIF, um weiterhin
eine möglichst große Unabhängigkeit gegenüber dem benutzten Spreadsheet Programm zu
gewährleisten.

Die Ursachen der zu findenden Fehler gehören zur unzureichenden Domainkenntnis und zu
den motorischen Fehlern, Näheres dazu in Kapitel 2.3 Fehler in Spreadsheets (S. 11) .

1.3. Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Grundlagen: Hier werden die grundliegenden Begriffe und Konzepte dargestellt.

Kapitel 3 – Verwandte Arbeiten fasst einige ähnliche Arbeiten zusammen und grenzt diese
gegen die Excel eigene Validierung ab.

Kapitel 4 – Konzept für die Plausibilitätsprüfung stellt das Konzept der Plausibilität und der
Umsetzung vor.

Kapitel 5 – Implementierung legt den Zustand vom SIF und SIFEI vor und nach der Änderung
dar.

Kapitel 6 – Evaluation beinhaltet die Durchführung und die Ergebnisse der Evaluation.

Kapitel 7 – Zusammenfassung und Ausblick fasst die Ergebnisse der Arbeit zusammen und
stellt Anknüpfungspunkte vor.

7

2. Grundlagen

2.1. Taxonomie

Nachdem diese Arbeit auf dem SIF aufbaut, sind die folgenden Definitionen an die der vorhe-
rigen Arbeiten [Zit12] angelehnt. Da nicht alle Begriffe benötigt werden, sind einige bewusst
ausgelassen.

Spreadsheet (Konzept)

Das Konzept eines Spreadsheets kommt von großen Papierbögen, die in der Buchhaltung
benutzt wurden und eine gradlinige, tabellenförmige Darstellung von Zellen beinhaltet haben.
Sie wurden anfangs benutzt um Grundkosten auf gewinnbringende Abteilungen umzulegen,
jedoch werden sie in der elektronischen Form inzwischen für viel mehr benutzt.

Zelle

Die Zelle ist die atomare Einheit für Benutzereingaben, dessen Inhalt grundsätzlich als Text
angesehen werden kann. Dieser kann auf verschiedene Arten formatiert und dargestellt werden.
Die Position der Zelle wird in der Regel über den Buchstaben für die Spalte und eine Zahl für
die Zeile notiert, zum Beispiel A2, die Zelle in der ersten Spalte und zweiten Zeile.

Zellbereich

Es gibt die Möglichkeit, Zellbereiche zu definieren. Dazu gehören die relativen Bereiche mit dem
Format A1[:B2]. Die Werte in den eckigen Klammern sind optional; über den zweiten Zellnamen
mit dem Doppelpunkt kann man einen Zellbereich definieren, der das Rechteck von links oben
nach rechts unten beinhaltet. Alternativ zum relativen Bereich gibt es den absoluten Bereich.
Hierfür wird vor die absoluten Bereiche ein ’$’ vorgestellt, zum Beispiel A1:A3. Es gibt
beliebige Mischformen zwischen absoluten und relativen Bereichen, deren relativen Teile beim
Kopieren und Verschieben angepasst werden.

8

2.1. Taxonomie

Worksheet

Ein Worksheet (Arbeitsblatt) ist die tabellenförmige Darstellung von Zellen, die als Ganzes einen
eindeutigen Namen besitzt. Eine vertikale Reihe von Zellen wird Spalte, eine horizontale Reihe
wird Zeile genannt. Die Darstellungsgröße der Spalten und Zeilen kann für den jeweiligen
Inhalt angepasst werden.

Spreadsheet

Ein Spreadsheet (Arbeitsmappe), ist eine nicht leere Menge an Worksheets. Sie stellt zusammen
mit dem Spreadsheet Programm die grundliegende Interaktionsmöglichkeit für den Benutzer
dar, in der Worksheets hinzugefügt, geändert und gelöscht werden können.

Spreadsheet Programm

Ein Spreadsheet Programm stellt die Benutzerschnittstelle zu einem Spreadsheet mit diversen
Eingabemöglichkeiten dar. Bekannte Vertreter sind zum Beispiel OpenOffice Calc und Microsoft
Excel. Aufgrund der vorhandenen Integration für Excel wird dieses für diese Arbeit synonym
als Spreadsheet Programm benutzt.

Überschrift

Die Überschrift, sofern vorhanden, ist in der Regel die erste benutzte Zeile einer Spalte oder
Zeile. Somit könnte eine Zelle zwei Überschriften haben, sowohl horizontal, als auch vertikal.

Formel

Eine Formel ist eine besondere Benutzereingabe, die mit einem vorgestellten ’=’ beginnt und
vom Spreadsheet Programm berechnet wird. Sie kann aus Funktionen und Operatoren bestehen.
Falls es mehrere Funktionen gibt, müssen sie durch Operatoren verbunden werden. Es gibt
einige vorgegebene Funktionen, wie zum Beispiel SUM zum Aufsummieren von Werten. Opera-
toren sind die arithmetischen Zeichen (+, -, *, /), und die boolschen Operatoren UND und ODER.
Neben der direkten Eingabe von Werten in die Funktionen können auch Zellen als Eingabewert
referenziert werden.

Referenz

Zellen können im Rahmen von Formeln auch referenziert werden, um den Wert, der in der
Zelle steht, zu benutzten. Eine Referenz kann den Namen eines anderen Worksheets enthalten,

9

2. Grundlagen

der vor dem Zellbereich steht und durch ein ’!’ getrennt wird. Beim Kopieren oder Verschieben
eines relativen Zellbereiches, wird dieser angepasst, beispielsweise beim Kopieren in eine Zeile
weiter unten werden die Zeilennummern des Zellbereiches ebenfalls erhöht. Sofern das nicht
erwünscht ist, muss man einen absoluten Zellbereich definieren.

Ribbon

Ein Ribbon, oder Multifunktionsleiste, ist die standardmäßige graphische Darstellung der
Schaltflächen in Microsoft Excel 2013. Es gibt mehrere Ribbons die in Tabs aufgeteilt sind und
Funktionalitäten gruppiert bereitstellen. Die Überschrift des Ribbon bezeichnet die Kategorie,
wie zum Beispiel „Einfügen“, das unter anderem Knöpfe für das Kopieren und Einfügen aus
der Zwischenablage bereitstellt.

Spreadsheet Format

Ein Spreadsheet Format ist die technische Umsetzung wie das Spreadsheet auf der Festplatte
gespeichert wird. Ein Programm unterstützt in der Regel mehrere Formate, jedoch gibt es
Einschränkungen durch proprietäre und verschiedene Versionen der Formate.

2.2. Kopplung

In Rahmen dieser Arbeit wird die Kopplung als semantischer Zusammenhang zwischen Da-
tenwerten in verschiedenen Zellen bezeichnet. In einer simplen, tabellenförmigen Anordnung
von Werten gibt es in der Regel zwei Achsen der Kopplung, zum Einen in der Vertikalen, zum
Anderen in der horizontalen Richtung.

Die Auslegung der Richtungen ist an sich beliebig, für diese Arbeit wird es so ausgelegt:
Eine Spalte beinhaltet Datenwerte einer Klasse, die durch eine Überschrift beschrieben werden
können, während eine Zeile verschiedene Klassen zueinander in Bezug setzt.

Implizite Kopplung

Als implizite Kopplung wird der vorhandene semantische Zusammenhang bezeichnet, der je-
doch nicht explizit definiert ist. Eine Möglichkeit dafür sind zum Beispiel Namenskonventionen
bei Überschriften und die Struktur der Daten. Für das Spreadsheet Programm sind dies jedoch
nur Werte, die in einer Tabelle stehen und keinen Bezug zueinander haben. Im Kontrast dazu
gibt es die explizite Kopplung, zum Beispiel die Referenzierung dieser Werte durch eine Formel.

10

2.3. Fehler in Spreadsheets

All

Culpable
Violations

Blameless
Errors

Quantitative
Errors

Qualitative Errors
(Latent Errors)

Execution ErrorsPlanning Errors

Domain
Planning Errors in
Formula algorithm
Section algorithm

Domain knowledge

Spreadsheet
Planning Errors in:

Function use,
Non-2D logic, etc

Slips:
Sensory-motor errors:

Typing errors,
Pointing errors, etc

Lapses:
Memory lapses

Abbildung 2.1.: Fehlertaxonomiebaum aus [PA10], S. 241

2.3. Fehler in Spreadsheets

Zum besseren Verständnis für die auftretenden Fehler wurden auch für diese einige Taxonomien
erstellt und veröffentlicht. Die wahrscheinlich verbreitetste [KZ12] ist die „Revised Panko and
Halverson Taxonomy of Spreadsheet Errors“, die im Folgenden kurz vorgestellt wird.

In Abbildung 2.1 wird die überarbeitete Fehlertaxonomie für Spreadsheets von Panko dar-
gestellt. Das erste linke Blatt, die „Culpable Violation“ sind bewuste Fehlinformationen, die
den Betroffenen zu einer schlechten Entscheidung verleiten sollen. Nachdem bei einer böswilli-
gen Manipulation diese auch bei einer automatisierten Prüfung verschleiert würden, sind im
Rahmen dieser Arbeit nur die „Blameless Errors“ interessant.

Eine Unterkategorie davon, die quantitativen Fehler, führen sofort zu einem falsches Resultat,
das angezeigt wird. So zum Beispiel, wenn man bei einer Formel durch Null teilen möchte, wird
sofort „#DIV/0“ als Fehler angezeigt.

Da sich diese Arbeit nicht mit Formeln beschäftigt, lässt das die „Qualitative Errors“, üb-
rig, die ein Fehlerpotenzial besitzen, jedoch nicht sofort ersichtliche Folgen haben. Eine der
Unterklassen hiervon sind die „Execution Errors“, die Fehler bei der Ausführung, die beim
Eintippen der Werte in das Spreadsheet, entstehen. Dazu gehören Fehler beim Zeigen oder
Klicken („Pointing errors“) und Tippen („Typing errors“) sowie kurze Gedächtnisaussetzer

11

2. Grundlagen

(„Memory lapses“). Diese Fehler können während der Eingabe jederzeit auftreten und das
Finden von Einigen führt dazu, die Restlichen leichter zu übersehen [Pan08].

Die andere Unterklasse der qualitativen Fehler beinhaltet die Planungsfehler allgemein,
Fehler in der Auswahl und Benutzung der Funktionen und Formeln, welche für uns jedoch
nicht wichtig sind. Der Einzige für uns übertragbare Teil aus dieser Klasse ist das fehlende
Domainwissen, so zum Beispiel, wenn die Person, die für die Dateneingabe zuständig ist, nicht
mit den Bezeichnungen vertraut ist.

Auf diese Arbeit übertragen, haben wir die folgenden Fehler, die wir automatisiert finden
können und wollen:

• Motorische Fehler

– Verklicken

– Vertippen

• Gedächtnisaussetzer

– Nicht vorhandene Werte

– Leere bzw. vergessene Zellen

• Unzureichendes Domainwissen

– Unplausible Kombinationen

– Fehlende Werte

12

3. Verwandte Arbeiten

Es gibt eine Vielzahl von wissenschaftlichen Artikeln, die sich mit der automatisierten Qua-
litätssicherung beschäftigen. In „Avoiding, finding and fixing spreadsheet errors – A survey
of automated approaches for spreadsheet QA“ wurden zwischen 400 bis 500 Kurzfassungen
durchgearbeitet [JSHW14] (S. 5), von denen 158 als relevante Quelle weiter benutzt wurden. Die
darin behandelten Methoden für die Datenqualität gehören zur Visualisierung der ähnlichen
Datenbereiche, des Datenflusses und die Einheiten- und Typinferenz. Es wurden leider keine
automatisierten Prüfmöglichkeiten für implizit gekoppelte Daten vorgestellt.

3.1. Adding Apples and Oranges

In „Adding Apples and Oranges“[EB02] stellen Erwig und Burnett eine einheitenbasierte Be-
trachtungsweise von Datenwerten vor: Eine Einheit ist eine Klassifizierung der Datenwerte
und wird durch Überschriften und Rückfragen an den Benutzer definiert. Sie können nach
bestimmten Regeln in Bezug gesetzt werden, wodurch die Einheiten vererbt oder generalisiert
werden. Die Bezüge sind Formeln, die mehrere Zellen referenzieren und somit Datenwerte in
Verbindung zueinander setzen.

Wie der Titel vermuten lässt, werden Äpfel und Orangen in Bezug gesetzt, die im Beispiel
für den Ertrag einer Plantage benutzt werden. Eine Möglichkeit, wie das Spreadsheet aussehen
kann, sieht man in Abbildung 3.1. Es werden in einer Tabelle das geerntete Obst gegen die
Monate eingetragen und es gibt verschiedene Formeln, die den Gesamtertrag verschiedener

Abbildung 3.1.: Beispiel für „Adding Apples and Oranges“, aus [JSHW14], (S. 17).

13

3. Verwandte Arbeiten

Abbildung 3.2.: Definition vom Format “Nachname, Vorname“ im Tope Developement
Environment, aus [SMS08] (S. 5)

Obstsorten eines Monats berechnen und Formeln die den Jahresertrag einer Sorte berechnen. Die
plausiblen Generalisierungen sind somit verschiedenes Obst im gleichen Monat oder gleiches
Obst über verschiedene Monate. Wenn man nun einen Fehler in einer Formel hätte, zum Beispiel
eine falsche Zeile in der richtigen Spalte referenziert, gibt es keine valide Generalisierung und
es liegt ein Konflikt vor.

3.2. Topes

In „Using Topes to Validate and Reformat Data in End-User Programming Tools “ [AAS11]
wird eine Möglichkeit vorgestellt, wie man eine reale Entität auf verschiedene Schreibweisen
darstellen und übertragen kann. So kann man beispielsweise eine Firma über den „umgangs-
sprachlichen“ Namen benennen, über den offiziellen Namen, wie er in Verträgen benutzt wird,
oder über die Abkürzung, die an der Börse Anwendung findet.

Um diese verschiedenen Formate zu definieren wird eine eigene Entwicklungsumgebung
vorgestellt, die man in Abbildung 3.2 sehen kann. Darin kann man das Format in einer Satz-

14

3.3. Self-Checking Spreadsheets

ähnlichen Darstellung beschreiben, die intern beispielsweise in eine Reihe von regulären Aus-
drücken übersetzt wird.

3.3. Self-Checking Spreadsheets

In „Self-Checking Spreadsheets: Recognition of Semantics“ [Ste13] wird eine serverseitige
Validierungsplattform vorgestellt, die bei Berechnungen aus der Physik unterstützen soll. Die
benutzten Formeln sollen nach den bekannten, in der Physik erlaubten, Regeln korrekt sein. Die
Einheiten der physikalischen Größen, wie z.B. Druck, wird als Konzept angesehen, und eine
Formel mit mehreren Konzepten überführt diese in ein Anderes. So kann z.B. das Konzept Kraft
aus der Multiplikation von den Konzepten Masse und Beschleunigung bestehen.

Diese Konzepte, also die Einheiten, werden als Tokens extrahiert, auf denen ein Parser arbeitet.
Jede Physik-Formel die unterstützt werden soll muss als Regel in einer formalen Grammatik
definiert werden, die durch einen Parser-Generator, hier yacc, zu einem funktionierenden Parser
übersetzt wird. Ausgehend von der Kombination in der Excel-Formel wird dadurch festgestellt,
welche Einheit der Wert hat.

3.4. Abgrenzung

Excel bietet bereits eigene Möglichkeiten, Zellen ein bestimmtes Format vorzugeben, diese
sind allerdings auf eine Zelle, beziehungsweise einen Zellbereich, beschränkt und bieten keine
Unterstützung, auf den Wert in einer anderen Zelle zu reagieren. Die eine Möglichkeit ist die
Formatierungsvorgabe, bei der man über ein benutzerdefiniertes Format die Struktur der Daten-
werte vorgeben kann, mit Platzhaltern für Ziffern oder Buchstaben. Eine andere Möglichkeit ist
die Dropdown-Auswahlliste, bei der man für eine Zelle eine Reihe von Werten definieren kann,
die in einem Dropdown Menü ausgewählt werden können.

Um eine zellübergreifende Prüfung in Excel durchzuführen, müssten zur Zeit Formeln
benutzt werden, die über ein VLOOKUP, oder eine vergleichbare Funktion, die Einschränkungen
nachschlagen. Dieser Ansatz ist allerdings invasiver für den Endbenutzer, da bei dem zu
prüfenden Arbeitsblatt mindestens eine weitere Spalte mit diesen Prüfformeln erstellt werden
muss und das Feedback, welche Zelle den nicht plausiblen Wert hat, wird auch komplizierter.
Außerdem müssten die Formeln zusätzlich geprüft werden und angepasst werden, falls sich die
Reihenfolge oder die Anzahl der Spalten ändert.

15

4. Konzept für die Plausibilitätsprüfung

Im Gegensatz zum Großteil der Literatur (siehe Kapitel 2) konzentrieren wir uns auf Daten,
die nicht durch Formeln in Bezug gesetzt werden. Obwohl für die Datenhaltung üblicherweise
Datenbanken benutzt werden, kann diese auch durch Spreadsheets durchgeführt werden.

Diese Daten stellen in der Regel Gegenstände aus der Realität dar, für die auch gewisse
Einschränkungen gelten. Das führt dazu, dass es meistens eine echte Teilmenge von Kombina-
tionen gibt, die plausibel ist. Beispielsweise passen bei Automobilen nicht alle Motoren in jedes
Grundmodell. Intuitiv kann diese Einschränkung als „Teil A schränkt die Auswahl von Teil B

ein“ beschrieben werden, worauf dieses Konzept aufbaut.
Falls es eine Kombination gibt, die nicht plausibel ist, soll diese gefunden werden. Die

Kombination kann zum Beispiel durch Unwissen, Vertippen oder ein Verrutschen in einer Zeile
entstehen.

Um diese unplausiblen Kombinationen zu finden, müssen Einschränkungen definiert werden,
welche Teile zueinander passen. Die Härte der Einschränkung ist jedoch vom Anwendungs-
fall und den Umständen abhängig und muss für jeden Einsatz selbst definiert werden. So
könnte beispielsweise ein Motor mit einem preislich festgehaltenen Mehraufwand in weiteren
Grundmodellen verbaut werden.

Um etwas prüfen zu können, muss es natürlich auch die Kombinationen geben. Diese werden
zum Beispiel in einer einfachen tabellarischen Datenstruktur zeilenweise aufgeschrieben, bei
der idealerweise für jeden Gegenstand eine eigene Spalte benutzt wird.

Folglich braucht man eine zeilenweise Betrachtung bestimmter Bereiche zur Prüfung, sowie
die Möglichkeit, Einschränkungen zu definieren und gegebenenfalls zu erklären.

4.1. Beispiel

Man kann sich eine Firma in der Automobilbranche vorstellen, welche verschiedene Bauteile
zusammensetzt, zur besseren Veranschaulichung werden „grobe“ Baugruppen verwendet. In
diesem Sinne gibt eine Menge an angebotenen Grundmodellen für Autos und deren Motoren,
die zusammen bestellt werden. Sowohl die Datenhaltung, welche Modelle existieren, als auch
die Bestellung wird durch Spreadsheets realisiert.

16

4.2. Benötigte Definitionen und Daten für die Einschränkungen

Motor
A B C

1 Art.Nr. Grundmodell Erklärung
2 1111 2323, 3434
3 2222 3434 Bei anderen Grundmodellen Preisaufschlag

Grundmodell
A B

1 Art.Nr. Name
2 2323 Flitzer, Sport
3 3434 Ruhe, Sanft

Bestellung
A B

1 Motor Grundmodell
2 2222 2323
3 1111 2332

Abbildung 4.1.: Minimalbeispiel für die Arbeitsblätter

Da nicht jeder Motor in jedes Grundmodell passt, gibt es hierbei gewisse Einschränkungen,
die dem Fachpersonal für die Montage bestens bekannt sind. In Bezug auf das hier vorzustellen-
de Konzept sind diese Einschränkungen bereits vermerkt und erklärt.

Die Bestellung ist eine einfache Auflistung der gewünschten Kombinationen, welche dann
an die Einkaufs- beziehungsweise die Montageabteilung weitergeleitet wird. In Abbildung 4.1
sieht man, wie die Arbeitsblätter aussehen könnten.

Um zu prüfen, ob die Kombinationen plausibel sind, betrachtet man jede Zeile der Bestellung:
Für die Erste wäre das der Motor 2222 und das Grundmodell 2323. Mit diesen Informationen
kann man nun nachschlagen, ob Einschränkungen ausgeübt werden. Der Motor 2222 übt
eine Einschränkung gegenüber dem Grundmodell aus; mit diesem Typ ist nur 3434 plausibel.
Das Grundmodell ist 2323, passt also nicht zusammen und man sollte diese Zeile anschließend
gegebenenfalls korrigieren. Nachdem das Grundmodell keine weiteren Einschränkungen ausübt
ist damit die Prüfung dieser Zeile fertig.

Bei der zweiten Zeile gibt es den Motor 1111 und das Grundmodell 2332, bei dem es einen
„Zahlendreher“ gab. Für den Motor 1111 passen die Grundmodelle 2323 und 3434, zwar ist
das Grundmodell 2332 ein nicht plausibler Wert, da es diesen Wert nicht gibt, kann man unter
anderem durch die Einschränkung einfach sehen, dass es 2323 seien sollte.

4.2. Benötigte Definitionen und Daten für die Einschränkungen

Die benötigten Daten werden über das Spreadsheet definiert, um sowohl eine einfache Methode
der Eingabe, als auch eine gewisse Unabhängigkeit von dem benutzten Spreadsheet Programm
zu haben, falls weitere Frontends für das SIF entwickelt werden. Wenn man die Einschränkungen

17

4. Konzept für die Plausibilitätsprüfung

über Seitenleisten oder andere Möglichkeiten im Spreadsheet Programm definieren würde, gäbe
es einen größeren Aufwand, die Informationen zu entkoppeln und zusätzlich einen höheren
Kommunikationsaufwand zwischen unseren Komponenten fürs Front- und Backend.

Im Rahmen von einer Art Modularisierung und für die Übersichtlichkeit der Informationen
im Spreadsheet gehe ich davon aus, dass für jeden Gegenstand ein eigenes Arbeitsblatt existiert,
das nach diesem benannt ist. Für die Unterscheidung sollte jeder Eintrag einen eindeutigen
Namen besitzen, die in einer Spalte aufgeschrieben sind, wie die Artikelnummern im obigen
Beispiel. Sofern diese nicht mit allen anderen Gegenständen kombiniert werden können, kann
man zusätzlich Spalten für Einschränkungen und Erklärungen definieren. Im Detail gibt es
folglich vier verschiedene Spalten:

Eine Spalte mit Werten: In dieser Spalte müssen die Bezeichner für den Gegenstand stehen,
beispielsweise Artikelnummern, die in dem zu prüfenden Kontext benutzt werden. Da
die Überschrift von einer Art Primärschlüssel wahrscheinlich bereits existiert, aber nicht
zwingend der Name des Gegenstandes ist, wird stattdessen der Name vom Arbeitsblatt
benutzt. Sofern es nur diese Spalte gibt, kann mit dieser automatischen Prüfung nur nach
unbekannten Werten gesucht werden, die zu einer Warnung führen.

Eine oder mehrere Spalten mit Einschränkungen: Damit kann eine zellübergreifende Über-
prüfung durchgeführt werden. Die Spalte muss den Namen der einzuschränkenden Menge
als Überschrift enthalten (Arbeitsblattname des einzuschränkender Gegenstand = diese
Überschrift). In dieser Spalte wird, für den Wert in der Zeile, eine Aufzählung plausibler
Werte erwartet.

Da es bei solchen Einschränkungen nicht nur Eins zu Eins Beziehungen gibt, sollten
mehrere Werte definiert werden können. Die Trennung der Werte erfolgt durch ein ’;’, da
es auch aus dem normalen Schriftgebrauch eine Trennung symbolisiert, jedoch seltener
benutzt wird als ein Punkt oder ein Komma.

Falls man das ’;’ im Wert benötigt, kann es mit einem führenden ’\’ als Zeichen benutzt
werden.

Zudem besteht die Möglichkeit reguläre Ausdrücke in der Java Syntax als plausiblen
Wert anzugeben, was Power Usern eine Möglichkeit bietet, diese Definition kompakter zu
halten oder Wertebereiche anzugeben.

Eine Spalte mit Erklärungen: Sofern es einen Verstoß gibt, wird diese Erklärung in der War-
nung mit angegeben. Über diese kann man die Härte der Einschränkung erklären, die

18

4.3. Prüfung

Identifikation von falsch positiven Befunden vereinfachen oder gegebenenfalls benutzte
reguläre Ausdrücke erläutern.

Zu prüfende Spalten: Es müssen auch die zu prüfenden Spalten definiert werden. Die Über-
schrift beinhaltet was in dieser Spalte steht.

Das kann zum einen der Name eines Gegenstandes sein, der eine Einschränkung ausübt.
In diesem Falle muss die Überschrift der Spalte gleich dem Namen des Arbeitsblattes sein,
in dem dieser Gegenstand aufgezählt ist.

Zum anderen kann es ein eingeschränkter Gegenstand sein. Dies ist der Fall, wenn eine
andere zu prüfende Spalte eine Einschränkung besitzt mit dem gleichen Namen wie die
Überschrift dieser Spalte.

4.3. Prüfung

Aus den Definitionen kann man zwei verschiedene Datentypen herausarbeiten. Zum einen ist
das die Repräsentation der zu prüfenden Werte, die durch die Überschrift und den Ist-Wert als
2-Tupel vorliegen. Zum anderen sind das die Einschränkungen. Um diese vom Spreadsheet
separiert betrachten zu können, benötigt man den 2-Tupel, der die Einschränkung ausübt und
den einzuschränkenden 2-Tupel.

Während der Prüfung wird für jedes Arbeitsblatt, das zu prüfende Spalten enthält, folgendes
für jede Zeile durchgeführt:

• Gegebene Daten der zu prüfenden Spalten als 2-Tupel extrahieren.

• Mit jedem 2-Tupel nachschauen, ob dadurch Einschränkungen ausgeübt werden.

• Überprüfen, ob die gefunden Einschränkungen durch alle Tupel erfüllt werden.

19

5. Implementierung

In diesem Kapitel werden das SIF und das SIFEI zunächst vorgestellt und anschließend werden
die von mir durchgeführte Änderungen dargestellt.

5.1. Spreadsheet Inspection Framework (SIF)

Das SIF ist das Backend, das die eigentliche Prüfung durchführt. Es ist nach der Metapher
einer Kfz-Werkstatt aufgebaut und in Java geschrieben. Es benutzt eine Reihe von Bibliotheken,
darunter die Apache commons für das Escapen bei der XML Übertragung und das Aufzeichnen
der internen Meldungen, und JAXB (Java Architecture for XML Binding) für die Deserialiserung
der XML-Dateien.

5.1.1. SIF Ist-Zustand

Von der Metapher ausgehend, wird die Prüfung explizit von außerhalb (durch den Benutzer)
angestoßen. Für diese wird ein Prüfling, in diesem Fall ein Spreadsheet, benötigt, an dem eine
Reihe von Prüfungen durchgeführt werden soll. Den groben Ablauf der Prüfung kann man
in Abbildung 5.1 Ablauf einer Inspektion sehen. Der Aufbau vom SIF und der Kontroll- und
Datenfluss wird in der Abbildung 5.2 Aufbau des SIF (S. 21) veranschaulicht. Zunächst wird
der Ablauf mit den Aufgabenbereichen der Pakete und Klassen erklärt, anschließend wird kurz
der Inhalt und die Definition der Prüfungen erläutert.

Inspektionsauftrag
erstellen

Spreadsheet
Inventar
erstellen

Inspektionsauftrag
konfigurieren

Inspektion
durchführen

Ergebnisse
analysieren

Dynamische
Prüfung

Bericht
erstellen

Abbildung 5.1.: Ablauf einer Inspektion, angelehnt an [Lem13], S. 24

20

5.1. Spreadsheet Inspection Framework (SIF)

Abbildung 5.2.: Aufbau des SIF, aus [Lem13], S.31

Ablauf:
Die Prüfungen werden als Inspektionsauftrag durch eine XML-Datei definiert, die für die
Benutzung durch das Frontend über einen lokalen Port übertragen wird. Die Datei beinhaltet
die Informationen, wo das Spreadsheet abgespeichert ist und gegebenenfalls die Parameter für
die verschiedenen Policys der statischen und der dynamischen Prüfungen.

Dieser Prüfling wird am FrontDesk entgegen genommen und über die Klassen im IO Pa-
ket eingelesen und in das eigene Datenmodell übertragen. Die Prüfungen müssen als Policy
vom PolicyManager bei den Managern im Paket TechnicalDepartment registriert werden. Die
registrierten Prüfungen werden anschließend im TestBay durch die, der Policy entsprechenden,
Facility durchgeführt.

21

5. Implementierung

Nach der Prüfung wird ein abschließender Bericht erstellt, der die charakteristischen Zellen
für die dynamische Prüfung aufzählt und vorhandene Violations auflistet. Der Bericht wird
von „Hand“ wahlweise als HTML oder XML in der DataFacade erstellt.

Policys:
Die in der Policy als ConfigurableParameter annotierten Attribute, können durch die XML-
Datei definiert werden. Die Deserialisierung wird durch die JAXB Bibliothek durchgeführt. Die
Übertragung der ConfigurableParameter von der Policy an die Facility wird mit Reflection
durchgeführt, deren Routine in der AbstractTestFacility, der Vaterklasse aller Facilitys,
definiert ist.

Bei der dynamischen Prüfung können zum einen Testwerte für die Zellen angegeben werden,
die in einer Formel benutzt werden, dazu gehören die InputCell, in der referenzierte Daten ste-
hen, die IntermediateCell, die Berechnungen durchführt und deren Ergebnis auch referenziert
wird, und die ResultCell, die nur Berechnungen durchführt und darstellt.

Zum anderen können für beliebige Zellen Vor- und Nachbedingungen und Invarianten
definiert werden. Die Vorbedingung muss vor dem Berechnen der Formeln erfüllt sein, die
Nachbedingung muss danach erfüllt sein. Eine Invariante muss sowohl davor, als auch danach
erfüllt sein.

Die Einschränkungen können als BinaryRelation angegeben werden (größer/kleiner als X,
gleich Y) oder als TernaryRelation (enthalten im Intervall X − Y).
Zusätzlich gibt es bereits 3 Policies für statische Prüfungen:

ReadingDirectionPolicyRule Überprüft die Referenzierungsrichtung der Formeln, ob sich diese
nur nach Links und Oben beziehen.

FormulaComplexityPolicyRule Überprüft die Anzahl der Operatoren einer Formel und die
maximale Verschachtlung der Funktionen.

NoConstantsInFormulasPolicyRule Überprüft, ob Konstanten „hardcoded“ in der Formel sind.

5.1.2. SIF Erweiterung

Um in der Metapher zu bleiben, wurde ein neuer Prüfstand hinzugefügt, der die Plausibilitäts-
prüfung zellübergreifend realisieren kann. Dies ist die SanityTestFacility deren Parameter,
also die markierten Zellen, über die SanityPolicyRule definiert werden.

Die Deserialisierung der SanityPolicyRule wird ebenfalls durch JAXB übernommen, und
beinhaltet Listen für die Überschriften der Werte, Einschränkungen, Erklärungen und zu prü-
fenden Zellen.

22

5.1. Spreadsheet Inspection Framework (SIF)

1: Einlesen der Einschränkungen
2: Für jedes Arbeitsblatt mit zu prüfenden Spalten:
3: Für jede Zeile mit mindestens einem Wert:
4: Werte als Überschrift - Werte Tupel extrahieren
5: Für jeden Tupel nachschauen, ob er Einschränkungen ausübt
6: Für jede Einschränkung prüfen, ob die Tupel sie erfüllen
7: Für jede nicht erfüllte Einschränkung einen Verstoß erstellen
8: Falls Warnungen aktiviert sind, für jeden unbekannten Wert�

einen Verstoß erstellen
9: Alle gefundenen Verstöße an den FrontDesk weitergeben

Abbildung 5.3.: Pseudocode der Prüfung

Benutzer FrontDesk SanityTestFacility SanityConstraintFacility

Position der
Überschriften

SanityTupel

SanityConstraint

loop [jede Zeile]

Starten

ViolationList

Policy
übertragen

XML
Report

Abbildung 5.4.: Sequenzdiagramm der Prüfung

23

5. Implementierung

SanityConstraint
definedFrom : String

value : String
explanation : String
definedFor : String
constraints : String[]

SanityTuple
header : String
value : String
parent : Cell

Abbildung 5.5.: Datenstrukturen für die Plausibilitätsprüfung

In den Abbildungen 5.3 Pseudocode der Prüfung (S. 23) und 5.4 Sequenzdiagramm der
Prüfung (S. 23) wird der Ablauf verkürzt dargestellt und für die Übersichtlichkeit wurden
einige Klassen in der Hierarchie bis zum Start der Prüfung ausgelassen. Im Detail wird dieser
so in der Umsetzung durchgeführt:

Über mehrere Ebenen wird vom FrontDesk die Hauptroutine von der SanityTestFacility
aufgerufen. Hier werden zuerst die Informationen, die von der SanityPolicyRule übertragen
wurden, auf die vorhandenen Arbeitsblätter bezogen und sortiert. Anschließend werden die
Informationen, welche Arbeitsblätter Werte, Einschränkungen und Erklärungen besitzt, an die
SanityConstraintFacility weitergegeben, die diese in das eigene Datenmodell überträgt. Die
für die Plausibilitätsprüfung benötigten Datenstrukturen werden in Abbildung 5.5 dargestellt.

Nach dem Einlesen der Einschränkungen werden in der SanityTestFacility die zu prü-
fenden Spalten gesammelt und pro Zeile werden die Zelleninhalte als SanityTuple extrahiert.
Mit dem Tupel kann man mit der SanityConstraintFacility nachschlagen, ob er eine Ein-
schränkung, einen SanityConstraint, ausübt und/oder ein unbekannter Wert ist. Sofern die
Warnungen aktiviert sind, wird an dieser Stelle für die unbekannten Werte ein Verstoß generiert.

Wenn man für jeden Tupel der Zeile nachgeschlagen hat, ob es eine Einschränkung ausübt,
wird mit der gefundenen Menge der SanityContraints geprüft, ob die Tupel diese erfüllen.
Wenn der header des Tupels dem definedFor des SanityConstraint entspricht, muss der value
des Tupel einer der Werte sein, die in constraints aufgeführt sind, ansonsten wird ein Verstoß
generiert.

Abschließend werden die gefundenen Verstöße als ViolationList über das Return Statement
von der Hauptroutine der SanityTestFacility an den FrontDesk weitergegeben.

Die Datenhaltung und das Einlesen der Einschränkungen wird separat vom Datenmodell
des SIF gehalten, was einen kleinen Bruch mit der aktuellen Durchführung darstellt, in der das
„Erkennen“ von besonderen Zellen bisher beim Einlesen in das Datenmodell vom SIF stattfindet.
Allerdings werden Informationen aus der Policy benötigt, die zu dem Zeitpunkt noch nicht

24

5.2. SIF Excel Integration (SIFEI)

Abbildung 5.6.: Ribbon des SIFEI

(einfach) bereitstehen und nicht, wie die Zellen für die dynamische Prüfung, durch (nicht)
referenziert werden erkannt werden können.

Ebenso werden die Zelldefinitionen im Datenmodell vom SIF selbst gehalten, jedoch gab es
für mich keinen plausiblen Weg meine Definitionen dort sauber zu integrieren, abgesehen davon,
dass es bei einer möglichen Erweiterung der Prüfung von explizit gekoppelten Daten beliebige
Kombinationen aus den Zelltypen für die dynamische Prüfung und der Plausibilitätsprüfung
entstehen können.

Auch bei der Art der Prüfung entfernt sich diese Arbeit etwas von dem gegebenen Konzept,
da sie bisher durch Conditions definiert wurden, die eine Relation auf eine Zelle bezogen.
Um in diesem Ansatz zu bleiben, hätte man nach dem Nachschlagen der Einschränkungen
für jeden Teil der Einschränkung eine Condition erstellen müssen, von denen nur eine erfüllt
sein müsste. Alternativ hätte man im Frontend die Berechnung durchführen können, welche
Zelle durch welchen Wert wie eingeschränkt wird und diese als Invarianten anzugeben, jedoch
war es meines Erachtens sowohl praktischer als auch portabler, diese Prüfung im Spreadsheet
Programm unabhängigen SIF durchzuführen.

5.2. SIF Excel Integration (SIFEI)

Das SIFEI wurde geschaffen um eine endbenutzerfreundliche Benutzung des SIF zu ermöglichen.
Es bietet die Möglichkeit die dynamischen Prüfungen als sogenanntes Szenario zu definieren,
die statischen Prüfungen sind aufgrund der Übertragung der Prüfaufträge immer vorhanden.
Als Plattform wurde Microsoft Excel gewählt, da es eine höhere Verbreitung besitzt [Dou13].
Von daher ist es ein in C# entwickeltes Office Addin.

5.2.1. SIFEI Ist-Zustand

In Abbildung 5.6 Ribbon des SIFEI sieht man das Ribbon, das von SIFEI bereitgestellt wird. Per
Scan wird eine Kopie des Spreadsheets im temporären Verzeichnis erstellt und ein Prüfauftrag

25

5. Implementierung

Abbildung 5.7.: Unplausible Kombinationen

wird für diese Kopie gestartet. Die Verstöße werden danach über XML vom SIF an das SIFEI
übertragen und im eigentlichen Spreadsheet dargestellt.

Es bietet zudem die Möglichkeit die dynamische Prüfung, hier Szenario genannt, zu definie-
ren. Dafür muss man zuerst die relevanten Zellen als Eingabe-, Zwischen- oder Ergebniszelle
definieren. Danach kann man über New bei Scenario direkt in den Zellen des Spreadsheets die
Testwerte eingeben.

In Abbildung 5.7 Unplausible Kombinationen sieht man, wie die Verstöße dargestellt werden.
Sie werden zum Einen über ein Ausrufezeichen in der verursachenden Zelle dargestellt, bei dem
über einen Rechtsklick die Details angezeigt werden. Zum Anderen kann die gesamte Liste der
Verstöße über einen Linksklick auf das Ausrufezeichen in einer Seitenleiste angezeigt werden.
Die Darstellung ist bereits so vorhanden gewesen, jedoch ist der Inhalt der Verstöße bereits von
meiner Erweiterung.

5.2.2. SIFEI Erweiterung

Wie in Abbildung 5.8 Erweitertes Ribbon des SIFEI (S. 27) zu sehen ist, wurde es um vier
Zelldefinitionen erweitert, die für die Plausibilitätsprüfung benötigt sind. An sich ist die gesamte
Spalte für uns interessant, aufgrund der variablen Bereiche in der eine Tabelle erweitert oder
gelöscht werden kann, ist das Markieren des gesamten Bereiches nicht sinnvoll.

26

5.2. SIF Excel Integration (SIFEI)

Abbildung 5.8.: Erweitertes Ribbon des SIFEI

Aufgrund des erhöhten Rechenaufwandes beim Markieren einer kompletten Spalte, konzen-
trieren wir uns von daher auf eine Zelle pro Spalte, die Überschrift. Es macht in der Umsetzung
im Backend zwar keinen Unterschied, welche Zelle in der Spalte markiert wurde, doch die
Überschrift bietet hierbei die beste Möglichkeit, die markierte Zelle wiederzufinden.

Somit war es nicht nötig, von den existierenden Designpatterns abzuweichen und die vier
neuen Zellen konnten analog zu den vorhandenen Datenstrukturen der dynamischen Prüfung
implementieren. Die neuen Definitionsmöglichkeiten sind:

Values: Die Überschrift der Spalte mit den eindeutigen Bezeichnungen.

Restriction: Die Überschrift der Spalte mit den plausiblen Werten.

Explanation: Die Überschrift der Spalte mit den Erklärungen.

To be checked: Die Überschriften der zu prüfenden Spalten.

Warnings: Ob unbekannte Werte eine Warnung verursachen sollen.

Entsprechend mussten die Routinen für das Serialisieren und Deserialisieren der XML Daten
erweitert werden, die sowohl für das Abspeichern in der Excel Datei benötigt werden als auch
für das Übertragen zum SIF. Aufgrund der umliegenden Einschränkungen bei der vorhandenen
Übertragung der XML Daten an das SIF werden die Informationen für die Plausibilitätsprüfung
an das Ende der dynamische Prüfung abgespeichert.

27

6. Evaluation

Um hauptsächlich die Umsetzung auf Tauglichkeit zu prüfen, wurde eine Evaluation durch-
geführt. Im Besonderen sollte überprüft werden, ob das grundliegende Konzept zum einen
verständlich und anwendbar ist, zum anderen ob die Umsetzung dem Konzept gerecht wird
und dem Benutzer in der Qualitätssicherung hilft.

Es gab einen Pilotprobanden, der einige ungünstige Textstellen erkannte, die anschließend
geändert wurden. Bei zwei Aufgaben wurde, von den Anmerkungen des Piloten ausgehend,
nachgebessert. Die anderen beiden Aufgaben blieben praktisch gleich und der Pilot wird bei
diesen mit ausgewertet. Nach der Korrektur der Aufgaben gab es fünf reguläre Probanden.
Die Probanden waren überwiegend männlich, zwischen 20 und 25 Jahren waren hauptsächlich
in den Studiengängen Informatik und Softwaretechnik eingeschrieben, sowie einen aus dem
Studiengang Luft- und Raumfahrttechnik.

6.1. Durchführung

Für das Experiment wurde ein Rechner mit Windows 8 benutzt, auf dem Excel 2013 installiert
war. Bis auf das Ribbon „Start“ wurden die anderen Excel eigenen Ribbons ausgeblendet,um
der Übersichtlichkeit beizutragen, da die Usability des zu Grunde liegende Ribbons bereits in
anderen Arbeiten evaluiert wurde [Dou13, Sch14].

Den Probanden wurde zuerst an einem Benutzungsbeispiel das Konzept und die Benutzung
des SIFEI veranschaulicht, das in vier Aufgaben umgesetzt werden sollte. Abschließend gab es
einen speziellen Fragebogen zum Konzept und der Umsetzung, und der allgemeinen Benutzung
von Excel.

Die Aufgaben waren in sich abgeschlossen und es gab keine direkte Abhängigkeit zwischen
den verschiedenen Dateien. Von den Aufgaben der Evaluation werden in 6.3 Beobachtungen
(S. 30) zunächst die Ziele und anschließend die Beobachtungen bei der Durchführung erläutert.

28

6.2. Fragebogen

Frage ∅ Beste Schlechteste
Die Aufgaben waren verständlich formuliert 1.5 1 2
Das Konzept der Plausibilität war verständlich 1.3 1 2
Das Markieren der Überschriften war für mich leicht 1.5 1 3
Die Strukturierung der Datenwerte war für mich leicht 1.6 1 3
Die Definitionsmöglichkeit für die Einschränkungen ist gut
gelöst

2.3 1 4

Ich würde SIFEI für die Prüfung eigener Spreadsheets be-
nutzen

1.8 1 3

Tabelle 6.1.: Ergebnisse des speziellen Fragebogen

6.2. Fragebogen

In der Tabelle 6.1 Ergebnisse des speziellen Fragebogen werden die Ergebnisse dargestellt. Es
gab fünf Auswahlmöglichkeiten, es wird Eins für die beste Wertung und Fünf als Schlechteste
angesehen. Im Folgenden werden die Fragen des speziellen Fragebogens und die zugehörigen
Antworten wiedergegeben.

Kommt Ihnen das grundliegende Konzept der Einschränkungen („Gegenstand A schränkt
die Auswahl von Gegenstand B“) sinnvoll vor?

Alle Probanden gaben Ja an, Anmerkungen gab es keine.

Haben Sie bereits nicht plausible Daten in einem Spreadsheet vorgefunden?

Zwei Probanden gaben Ja an.

Benutzen Sie bereits eigene Methoden oder andere Werkzeuge, um Daten plausibel zu hal-
ten?

Ein Proband gab an, gesunden Menschenverstand in einer manuellen Prüfung zu benutzen.

Könnten Sie sich grundsätzlich vorstellen die Grundlagen von regulären Ausdrücken zu
erlernen oder würden Sie die Muster lieber wie in einer Excel-Formel definieren?

Nachdem es durchaus Personen gibt, denen reguläre Ausdrücke nicht bekannt sind, gab es
zunächst eine kurze Erklärung:

Sofern es Muster in den Datenwerten gibt, kann man diese aktuell durch einen regulären
Ausdruck beschreiben. Reguläre Ausdrücke haben den Vorteil, dass sie vieles beschreiben

29

6. Evaluation

können und dabei sehr kompakt sind, worin jedoch auch ein Nachteil liegt, da man diese
„Sprache“ erlernen müsste.

Einige relevante „Abkürzungen“ wären [a-z] für einen Buchstaben zwischen a und z; \d für
eine Zahl; und \s für Leerzeichen, sogenannte Whitespaces. Über geschweifte Klammern
kann man angeben, wie oft ein Zeichen wiederholt werden soll, als Abkürzungen gibt es
das + für mindestens einmal und * für beliebig oft, auch Nullmal. So „erkennt“ zum Beispiel
„[WZ]ahl\s\d+“ entweder Wahl oder Zahl, gefolgt von einem Leerzeichen und mindestens
einer Zahl.

Fünf der sechs Probanden gaben an, dass sie sich die regulären Ausdrücke vorstellen können.

Allgemeiner Fragebogen:

Es wurde zudem ein Fragebogen zur allgemeinen Benutzung von Excel, den es am Institut für
Softwaretechnologie bereits gab, ausgefüllt. Die eine Hälfte der Probanden waren erfahrene
Excel-Benutzer, deren Anwendungsfälle von wissenschaftlichen Auswertungen zu einfacher
Datenhaltung reichten. Die andere Hälfte hatte noch nicht viel mit Excel gearbeitet. Das äußerte
sich jedoch nur bei der Geschwindigkeit der Dateneingabe und der Navigation in Excel sowie
der Anpassung der Spaltenbreiten für die Eingaben.

6.3. Beobachtungen

Die Ziele und Beobachtungen bei den Aufgaben waren:

Aufgabe 1 war die grundliegende Struktur für die Datenhaltung, damit die Einschränkungen
über das Worksheet definiert werden können. Dafür sollten die Arbeitsblätter und die
Überschriften richtig benannt und mit dem SIFEI markiert werden.

Beim Pilotprobanden ist aufgefallen, dass die Daten in der Aufgabenstellung schlecht
formatiert waren. Nachdem dies behoben wurde, machten die weiteren Probanden keine
Fehler in der Struktur.

Es wurden von allen zu viele Spalten als Werte Spalte markiert. Es wäre nur die Bestell-
nummer nötig gewesen, aber es wurden bei der Karosserie zusätzlich der Name und bei
den Reifen die Größe markiert. Zudem wurde die Werte Spalte bei den Reifen von drei
Probanden vergessen, vermutlich, da sie keine Einschränkung ausübten.

Aufgabe 2 war das Übertragen von Daten mit einigen simulierten Tippfehlern, die mit dem SIF
geprüft und korrigiert werden sollten.

30

6.4. Fazit

Beim Pilotprobanden gab es eine Kombination aus der Zahl 1 und dem Buchstaben l,
um Tippfehler zu provozieren. Aufgrund der verursachten Verwirrung wurde das zu
simulierten Tippfehlern geändert und der Pilot wird bei dieser Aufgabe nicht weiter
ausgewertet.

Drei der fünf Probanden hatten die Überschriften zuerst fälschlicherweise als Werte
Spalte markiert, nachdem die Prüfung nichts ergab wurden sie, nach Nachschlagen in der
Beschreibung, als zu prüfende Spalte markiert.

Drei Probanden korrigierten alle Tippfehler auf die gleiche Art, einer änderte den Zahlen-
dreher von 505 ↔ 550 zu 500 geändert (beide waren in den plausiblen Werten). Der Letzte
übersprang das Korrigieren vollständig.

Ein Proband schrieb die Spalten in einer geänderten Reihenfolge ab, was über den Bezug
durch die Überschrift bei der Prüfung keinen Unterschied machte.

Aufgabe 3 war das Prüfen einer größeren Ansammlung von teils fehlerhaften Daten, die kor-
rigiert werden sollte. Es gab mehrere Tippfehler, einige Zeilen bei denen nur ein Wert
unplausibel war, eine Zeile, die nur unbekannte Werte enthielt und bei der letzten Zeile
war ein Wert in darunterliegende Zeile verrutscht.

Fünf der sechs Probanden ersetzten die Werte bei einer eindeutigen Alternative durch
die Einschränkung, einer davon hatte durch verkette Abhängigkeiten1 an einem Wert
mehrfach Änderungen durchgeführt.

Das Verrutschen wurde nur von zwei Probanden als solches bearbeitet.

Aufgabe 4 war das Erweitern einer Einschränkung.

Die Hälfte der Probanden ersetzte die Einschränkung durch den genannten Wert, einer
von diesen entfernte zudem den plausiblen Wert aus einer anderen Zeile. Die andere
Hälfte fügte den neuen Wert der bestehenden Einschränkung hinzu.

6.4. Fazit

Das grundliegende Konzept wurde positiv aufgenommen, jedoch ist die Anwendungsmöglich-
keit in der aktuellen Form eingeschränkt.

Das Definieren der Einschränkungen ist nicht ideal gelöst, konkrete Verbesserungsmöglich-
keiten wurden keine genannt. Dazu kommt, dass die Aufzählungen der Daten nicht immer in

1A schränkt B ein, B schränkt C ein und nur B ist falsch, aber es zeigt einen Verstoß bei B und C an

31

6. Evaluation

einer Arbeitsmappe vorhanden sind, oder, wenn sie es sind, einen höheren Wartungsaufwand
durch die Redundanz mit sich führen. Somit wäre es praktischer, wenn die Einschränkungen
außerhalb des aktuellen Spreadsheets liegen könnetn.

Bei der Darstellung der Verstöße könnte man die farbige Markierung benutzen um die Anzahl
der Verstöße darzustellen, zum Beispiel wenn ein Wert sowohl unbekannt ist, als auch eine
Einschränkung nicht erfüllt.

Um das „falsch korrigieren“ zu verhindern, könnte man sich eine bessere visuelle Darstellung
der Abhängigkeiten vorstellen, ähnlich der Visualisierung von Excel für den Datenfluss von
Formeln. Zudem könnte man das Dokument erneut automatisch prüfen, sobald etwas geändert
wurde.

Hinzu kommt, dass die schriftliche Form der Bedienungsanleitung als nicht ideal aufgefasst
wurde, ein kurzer Workshop oder ein Einführungsvideo wäre zwei Probanden lieber gewesen,
die anderen machten dazu keine Aussage.

32

7. Zusammenfassung und Ausblick

Nachdem es zu der genauen Problemstellung, der Plausibilitätsprüfung implizit gekoppel-
ter Spreadsheet-Daten keine, für mich auffindbaren, Artikel existierten, wurde das intuitive
Konzept, „Teil A schränkt die Auswahl von Teil B ein“, für die Erweiterung benutzt.

Die Umsetzung von diesem Konzept konzentrierte sich auf das SIF, nachdem es sowohl
Plattform- als auch Spreadsheet Programm unabhängig ist. Die Erweiterung des SIFEI war
vergleichsweise einfach gehalten und wurde im vorhandenen Look and Feel der Integrations-
komponente gehalten.

Die Evaluation zeigte einige Schwächen bei der Definitionsart der Einschränkungen auf,
sowohl was die Verständlichkeit angeht als auch für die Verfügbarkeit der Daten in einem “nor-
malen“ Gebrauch von Spreadsheets für die Datenhaltung, erweckte trotzdem einen positiven
Eindruck, so dass es bei der Qualitätssicherung nützlich sein kann.

Ausblick

Von der Evaluation ausgehend kann man sich die folgenden Erweiterungen vorstellen:

• „Auslagern“ der Einschränkungen in separate Spreadsheets oder XML-Dateien

• Eine visuelle Darstellung der Abhängigkeiten der Einschränkungen

• Die farbige Markierung über die Severity an die Anzahl der Verstöße anpassen

• Eine Art „Echtzeitprüfung“, die nach jeder Änderung durchgeführt wird

Von der Aufgabe zur grundliegenden Datenhaltung könnte man sich eine Erweiterung der
Datenstruktur, zu etwas den Topes [AAS11] ähnlichem, für die Gegenstände überlegen. So
könnte man sowohl über einen Primärschlüssel als auch über eine Kombination von anderen
Namen, einen Gegenstand identifizieren. Wenn man dies über etwas, dem Tope Developement
Environment ähnlichem, definieren kann, würde das zudem für das Spreadsheet weniger
instrusiv sein.

33

7. Zusammenfassung und Ausblick

Um die Fehlerkorrektur bei verketteten Einschränkungen zu unterstützen, könnte man,
zusätzlich zur allgemeinen Darstellung, die Kombinationen vorschlagen, die mit den wenigsten
Änderungen den größten Teil der Verstöße korrigiert.

Weitergehend könnte man die Prüfung auf explizit gekoppelte Daten erweitern, bei der die
Parameter als Gegenstände angesehen werden, die durch die Formel kombiniert werden.

34

A. Anhang

A.1. Inhalt der Daten-CD

Die Ergebnisse dieser Arbeit sind auf einer CD dokumentiert, die folgenden Inhalt besitzt:

• Aufgabenstellung dieser Bachelorarbeit im PDF-Format

• Kurzfassung und Abstract als Textdatei

• Diese Ausarbeitung im PDF-Format

• Das Projekt für das SIF

• Das Projekt für das SIFEI

• Installationsdateien

• Schnellstart Anleitung

• Aufgabenstellung und Fragebogen der Evaluation

35

Literaturverzeichnis

[AAS11] A. Asavametha, P. Ayyavu, C. Scaffidi. No Application Is an Island: Using Topes to
Transform Strings during Data Transfer. In Information Science and Applications (ICI-
SA), 2011 International Conference on, S. 1–10. 2011. doi:10.1109/ICISA.2011.5772325.
(Zitiert auf den Seiten 14 und 33)

[Cro07] G. J. Croll. The Importance and Criticality of Spreadsheets in the City of London.
CoRR, abs/0709.4063, 2007. (Zitiert auf Seite 6)

[Dou13] E. Doust. Visualisierung von Fehlern in Spreadsheets. Bachelorarbeit, Universität
Stuttgart, Holzgartenstr. 16, 70174 Stuttgart, 2013. (Zitiert auf den Seiten 6, 25 und 28)

[EB02] M. Erwig, M. Burnett. Adding Apples and Oranges. In Practical Aspects of Declarative
Languages, 4th International Symposium, PADL 2002, S. 173–191. 2002. (Zitiert auf
Seite 13)

[JSHW14] D. Jannach, T. Schmitz, B. Hofer, F. Wotawa. Avoiding, finding and fixing spreadsheet
errors – A survey of automated approaches for spreadsheet QA. Journal of Systems
and Software, 2014. doi:http://dx.doi.org/10.1016/j.jss.2014.03.058. URL http://www.

sciencedirect.com/science/article/pii/S0164121214000788. (Zitiert auf Seite 13)

[KZ12] D. Kulesz, S. Zitzelsberger. Investigating Effects of Common Spreadsheet Design
Practices on Correctness and Maintainability. 2012. (Zitiert auf Seite 11)

[Lem13] M. Lemcke. Dynamische Prüfung von Spreadsheets. Diplomarbeit, Universität Stuttgart,
Holzgartenstr. 16, 70174 Stuttgart, 2013. URL http://elib.uni-stuttgart.de/opus/

volltexte/2013/8722. (Zitiert auf den Seiten 6, 20 und 21)

[PA10] R. R. Panko, S. Aurigemma. Revising the Panko–Halverson taxonomy of spreadsheet
errors. Decision Support Systems, 49(2):235 – 244, 2010. doi:http://dx.doi.org/10.
1016/j.dss.2010.02.009. URL http://www.sciencedirect.com/science/article/pii/

S0167923610000461. (Zitiert auf Seite 11)

36

http://www.sciencedirect.com/science/article/pii/S0164121214000788
http://www.sciencedirect.com/science/article/pii/S0164121214000788
http://elib.uni-stuttgart.de/opus/volltexte/2013/8722
http://elib.uni-stuttgart.de/opus/volltexte/2013/8722
http://www.sciencedirect.com/science/article/pii/S0167923610000461
http://www.sciencedirect.com/science/article/pii/S0167923610000461

Literaturverzeichnis

[Pan08] R. R. Panko. Spreadsheet Errors: What We Know. What We Think We Can Do. CoRR,
abs/0802.3457, 2008. (Zitiert auf den Seiten 6 und 12)

[PBL09] S. G. Powell, K. R. Baker, B. Lawson. Impact of errors in operational spreads-
heets. Decision Support Systems, 47(2):126 – 132, 2009. doi:http://dx.doi.org/10.
1016/j.dss.2009.02.002. URL http://www.sciencedirect.com/science/article/pii/

S0167923609000335. (Zitiert auf Seite 6)

[Sch14] J. Scheurich. Benutzerschnittstelle für einen Spreadsheet-Prüfstand. Bachelorarbeit,
Universität Stuttgart, Holzgartenstr. 16, 70174 Stuttgart, 2014. (Zitiert auf den Seiten 6
und 28)

[SMS08] C. Scaffidi, B. Myers, M. Shaw. Topes: Reusable Abstractions for Validating Data.
In Proceedings of the 30th International Conference on Software Engineering, ICSE ’08, S.
1–10. ACM, New York, NY, USA, 2008. doi:10.1145/1368088.1368090. URL http:

//doi.acm.org/10.1145/1368088.1368090. (Zitiert auf Seite 14)

[Ste13] M. Stewart. Self-checking Spreadsheets: Recognition of Semantics. Procedia Computer
Science, 18(0):199 – 207, 2013. doi:http://dx.doi.org/10.1016/j.procs.2013.05.183. URL
http://www.sciencedirect.com/science/article/pii/S1877050913003268. 2013 In-
ternational Conference on Computational Science. (Zitiert auf Seite 15)

[Zit12] S. Zitzelsberger. Fehlererkennung in Spreadsheets. Diplomarbeit, Universität Stuttgart,
Holzgartenstr. 16, 70174 Stuttgart, 2012. URL http://elib.uni-stuttgart.de/opus/

volltexte/2012/7056. (Zitiert auf den Seiten 6 und 8)

Alle URLs wurden zuletzt am 10. 05. 2014 geprüft.

37

http://www.sciencedirect.com/science/article/pii/S0167923609000335
http://www.sciencedirect.com/science/article/pii/S0167923609000335
http://doi.acm.org/10.1145/1368088.1368090
http://doi.acm.org/10.1145/1368088.1368090
http://www.sciencedirect.com/science/article/pii/S1877050913003268
http://elib.uni-stuttgart.de/opus/volltexte/2012/7056
http://elib.uni-stuttgart.de/opus/volltexte/2012/7056

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben.
Ich habe keine anderen als die angegebenen Quellen benutzt
und alle wörtlich oder sinngemäß aus anderen Werken über-
nommene Aussagen als solche gekennzeichnet. Weder diese
Arbeit noch wesentliche Teile daraus waren bisher Gegen-
stand eines anderen Prüfungsverfahrens. Ich habe diese Ar-
beit bisher weder teilweise noch vollständig veröffentlicht.
Das elektronische Exemplar stimmt mit allen eingereichten
Exemplaren überein.

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Motivation
	1.2 Ziel
	1.3 Gliederung

	2 Grundlagen
	2.1 Taxonomie
	2.2 Kopplung
	2.3 Fehler in Spreadsheets

	3 Verwandte Arbeiten
	3.1 Adding Apples and Oranges
	3.2 Topes
	3.3 Self-Checking Spreadsheets
	3.4 Abgrenzung

	4 Konzept für die Plausibilitätsprüfung
	4.1 Beispiel
	4.2 Benötigte Definitionen und Daten für die Einschränkungen
	4.3 Prüfung

	5 Implementierung
	5.1 Spreadsheet Inspection Framework (SIF)
	5.2 SIF Excel Integration (SIFEI)

	6 Evaluation
	6.1 Durchführung
	6.2 Fragebogen
	6.3 Beobachtungen
	6.4 Fazit

	7 Zusammenfassung und Ausblick
	A Anhang
	A.1 Inhalt der Daten-CD

	Literaturverzeichnis

 HistoryItem_V1
 TrimAndShift

 Bereich: alle ungeraden Seiten
 Beschneiden: keine
 Versatz: links um 2.83 Punkte verschieben
 Normen (erweiterte Option): 'Original'

 32

 D:20131206132801
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 338
 295
 Fixed
 Left
 2.8346
 0.0000

 Odd
 92
 AllDoc
 94

 CurrentAVDoc

 None
 595.2756
 Left

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 26
 39
 38
 20

 1

 HistoryItem_V1
 TrimAndShift

 Bereich: aktuelle Seite, nur wenn ungerade
 Beschneiden: keine
 Versatz: rechts um 2.83 Punkte verschieben
 Normen (erweiterte Option): 'Original'

 32

 D:20131206132801
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 338
 295
 Fixed
 Right
 2.8346
 0.0000

 Odd
 92
 CurrentPage
 94

 CurrentAVDoc

 None
 595.2756
 Left

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 0
 39
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Bereich: aktuelle Seite, nur wenn ungerade
 Beschneiden: keine
 Versatz: unten um 4.25 Punkte verschieben
 Normen (erweiterte Option): 'Original'

 32

 D:20131206132801
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 338
 295

 Fixed
 Down
 4.2520
 0.0000

 Odd
 92
 CurrentPage
 94

 CurrentAVDoc

 None
 595.2756
 Left

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 0
 39
 0
 1

 1

 HistoryList_V1
 qi2base

