
Institut für Softwaretechnologie
Universität Stuttgart

Universitätsstraße 38
D–70569 Stuttgart

Bachelorarbeit Nr. 103

Testüberdeckung
als Maß in Quamoco

Stefanie Dressel

Studiengang: Softwaretechnik

Prüfer: Prof. Dr. rer. nat. Stefan Wagner

Betreuer: Dipl.-Ing. Jan-Peter Ostberg

begonnen am: 01. Dezember 2013

beendet am: 28. Mai 2014

CR-Klassifikation: D.2.5, D.2.8, D.2.9

Kurzfassung

Um wettbewerbsfähige Softwareprodukte entwickeln und sich von anderen Unternehmen
abgrenzen zu können, werden die Anforderungen an die Softwarequalität immer höher.
Eine Möglichkeit diese greifbar und bewertbar zu machen, bieten die Qualitätsmodelle und
die zur Verfügung gestellten Werkzeuge von Quamoco. Ein Qualitätsmaß von Software ist
deren Testüberdeckung, welche bis zum Zeitpunkt der Erstellung dieser Arbeit noch nicht
von Quamoco berücksichtigt wird. Ziel dieser Arbeit ist es daher, die Testüberdeckung als
Maß in Quamoco zu integrieren.

Abstract

In order to develop competitive software products and to make yourself unique amongst
other companies, the need for high quality software rises. One approach to make the quality
of software more tangible and assessable is the usage of the Quamoco quality model and
its tool chain. One metric of software quality is test coverage. This is not yet covered by
Quamoco. Hence, this work aims to integrate test coverage into Quamoco.

3

Inhaltsverzeichnis

1 Einleitung 9
1.1 Motivation . 9

1.2 Ziel . 9

1.3 Aufbau der Arbeit . 10

2 Grundlagen 11
2.1 Softwarequalität . 11

2.2 Qualitätsmodelle . 12

2.2.1 Konzept . 12

2.2.2 Produktqualitätsmodell der ISO/IEC 25010 12

2.3 Softwaremetriken . 13

3 Quamoco 15
3.1 Meta-Modell . 15

3.2 Basismodell . 17

3.3 Werkzeuge . 18

4 Testüberdeckung 21
4.1 Definition . 21

4.2 Klassifikation von Softwaretests . 21

4.3 Kontrollflussorientierte Strukturtests . 22

4.3.1 Anweisungsüberdeckungstest . 22

4.3.2 Zweigüberdeckungstest . 23

4.4 Werkzeuge zur Messung der Testüberdeckung 23

4.4.1 CodeCover . 24

4.4.2 EclEmma . 25

5 Integration 27
5.1 Konzept . 27

5.2 Bestimmung eines Analysewerkzeugs und der Maße 28

5.3 Erweiterung des Basismodells . 28

5.4 Erweiterung der ConQAT-Anbindung . 34

5

6 Evaluation 37
6.1 Grundlagen . 37

6.2 Messung der Testüberdeckung . 37

6.3 Qualitätsanalyse . 38

6.4 Interpretation und Diskussion der Ergebnisse 38

7 Fazit 41
7.1 Zusammenfassung . 41

7.2 Ausblick . 41

Literaturverzeichnis 43

6

Abbildungsverzeichnis

2.1 Schematischer Aufbau eines hierarchischen Qualitätsmodells [24] 12

2.2 Produktqualitätsmodell der ISO/IEC 25010 [6] 13

3.1 Schematische Darstellung des Qualitätsmodellkonzept von Quamoco nach [22] 16

3.2 Modulhierarchie des Basismodells nach [23] . 18

3.3 Qualitätsmodell-Editor . 19

4.1 CodeCover als Eclipse-Plugin [1] . 24

4.2 EclEmma als Eclipse-Plugin [3] . 25

5.1 Das Funktionsprinzip einer Evaluierung mit Quamoco. 27

5.2 Übersicht der Einflüsse der Testüberdeckung auf die Qualitätsaspekte von
Quamoco. 30

5.3 ConQAT-Block für EclEmma . 34

5.4 HTML-Ausgabe der Evaluation mit den neuen Spalten für die Testüberdeckung. 35

6.1 Übersicht der Messergebnisse der Qualitätsanalyse. 39

7

Kapitel 1

Einleitung

1.1 Motivation

In den letzten Jahrzehnten hat sich Software zu einem zentralen Werkstoff des Informationszeit-
alters entwickelt [10]. Ein Leben ohne ist heutzutage nicht mehr denkbar, denn Software ist
ein fester Bestandteil des modernen Alltags geworden. Es gibt so gut wie keinen Bereich,
in dem sie nicht Einzug gehalten hat. Selbst einfache Dinge wie das Kaffeekochen werden
mittlerweile per Software gesteuert, ganz zu schweigen von einem komplexen Objekt wie
dem Automobil.
Dabei verlassen wir uns darauf, dass die Produkte fehlerfrei funktionieren. Dass dies nicht
immer der Fall ist und fehlerhafte Software in der Vergangenheit schwere Unfälle verursacht
hat, bezeugen nicht nur Zeitungsberichte. Ein bekanntes Beispiel ist der Raketenabsturz der
Ariane 5 am 4. Juni 1996 bei ihrem Jungfernflug [17]. Ein Programmierfehler im Lenksystem
führte schon wenige Sekunden nach dem Start zur Selbstzerstörung der Rakete.
Daher ist es notwendig eine gute Softwarequalität anzustreben, um wettbewerbsfähige
Softwareprodukte entwickeln zu können. Hierfür wurden Software-Qualitätsmodelle er-
stellt, welche genau definieren was unter guter Softwarequalität verstanden wird. Quamoco
(Kapitel 3) stellt ein solches Qualitätsmodell, sowie eine Werkzeugunterstützung zur Verfü-
gung. Diese ermöglicht es, selbst Modelle erstellen und bearbeiten, sowie eine automatische
Qualitätserhebung durchführen zu können.

1.2 Ziel

Ein Maß für die Qualität von Software ist die Testüberdeckung, welche zum Zeitpunkt
der Erstellung dieser Arbeit noch nicht in Quamoco integriert ist. Um das Modell und
die Werkzeugunterstützung von Quamoco jedoch weiter zu optimieren, stellt sich nun die
Frage, wie Quamoco um das Maß der Testüberdeckung erweitert werden kann? Hierzu
gehören eine detaillierte Qualitätsmodellierung und die Integration der Testüberdeckung in
die Werkzeugkette. Ziel dieser Bachelorarbeit ist es daher, dieser Frage nachzugehen, wobei
der Schwerpunkt auf der Integration in die Werkzeugkette liegt.

9

1 Einleitung

1.3 Aufbau der Arbeit

Diese Arbeit gliedert sich in folgende Teilbereiche:

Kapitel 2 – Grundlagen stellt den Begriff Softwarequalität und das Konzept Qualitätsmodell
vor, und gibt einen Überblick über Softwaremetriken.

Kapitel 3 – Quamoco erklärt das allgemeine Konzept von Quamoco und beschreibt das
Basismodell und die Werkzeugkette.

Kapitel 4 – Testüberdeckung benennt gebräuchliche Maße der Testüberdeckung und befasst
sich mit den Werkzeugen, um diese zu messen.

Kapitel 5 – Integration stellt die durchgeführten Anpassungen am Basismodell und an der
Werkzeugkette vor.

Kapitel 6 – Evaluation geht auf die Beurteilung des erweiterten Basismodells und der Werk-
zeugkette bei der Erprobung an Beispielsystemen eines Unternehmens ein.

Kapitel 7 – Fazit fasst die Ergebnisse der Arbeit zusammen und stellt mögliche Anknüp-
fungspunkte vor.

10

Kapitel 2

Grundlagen

Das folgende Kapitel beschreibt die nötigen Grundlagen zum Verständnis dieser Arbeit. Zu
Beginn werden die Begriffe Softwarequalität und Qualitätsmodell erklärt und ein Modell
für die Produktqualität vorgestellt. Anschließend wird ein Überblick über Softwaremetriken
gegeben.

2.1 Softwarequalität

Unter dem abstrakten Begriff Qualität wird laut Duden [9] die "Gesamtheit der charakteristi-
schen Eigenschaften einer Sache" verstanden. Übertragen gesagt, ist die Softwarequalität die
Gesamtheit aller spezifischen Merkmale, die ein Softwareprodukt ausmachen. So definiert die
Norm ISO/IEC 25000 Softwarequalität als "die Gesamtheit von Funktionen und Merkmalen
eines Softwareprodukts, das die Fähigkeit besitzt, angegebene oder implizierte Bedürfnisse
zu befriedigen". Je mehr die Anforderungen erfüllt werden, desto höher ist die Qualität der
Software. Daher wird in der ISO 9000:2008 zitiert nach [15], die Softwarequalität auch als
"Grad, in dem ein Satz von inhärenter Merkmalen Anforderungen erfüllt" definiert. Um
welche Eigenschaften es sich dabei handelt wird in Qualitätsmodellen (Kapitel 2.2) festgelegt.
Zur Bewertung der Qualität ist es daher erforderlich, dass die geforderten Eigenschaften
messbar sind.

Die Softwarequalität lässt sich in zwei Bereiche unterteilen [16]: Zum einen in die Prozess-
qualität, unter der die Qualität des Projekts, in dem das Softwareprodukt hergestellt wird
verstanden wird. Zum anderen in die Produktqualität bei der nur die Qualität des Produkts
selbst betrachtet wird. Mit Hilfe einer hohen Prozessqualität soll auch die Produktqualität
positiv beeinflusst werden, sie ist aber weder eine Garantie noch eine Voraussetzung für eine
gute Produktqualität. Im weiteren Verlauf dieser Arbeit wird der Begriff Softwarequalität als
Synonym für die Produktqualität verwendet.

11

2 Grundlagen

2.2 Qualitätsmodelle

Mit Qualitätsmodellen wird versucht, die abstrakte Bezeichnung Softwarequalität verständ-
lich und greifbar zu machen. Hierfür wird der Begriff konkretisiert und durch eine weitere
Detaillierung operationalisiert [14].

2.2.1 Konzept

Die Hauptelemente von Qualitätsmodellen sind die Qualitätsmerkmale (Faktoren), welche
hierarchisch angeordnet sind. Qualitätsmerkmale sind oft noch unpräzise definiert und nicht
messbar [14]. Weitere Elemente von Qualitätsmodellen sind die Qualitätsindikatoren (Maße).
Im Gegensatz zu Merkmalen sind sie manuell oder automatisch messbare und voneinander
unabhängige Kriterien und bilden daher die unterste Ebene der Hierarchie. Ein Indikator ist
oft für mehrere Qualitätsmerkmale relevant, ebenso können für ein Merkmal verschiedene
Indikatoren wichtig sein. Daher ist die Hierarchie nicht überschneidungsfrei und bildet
somit keinen Baum, sondern eine Halbordnung (siehe Abb. 2.1), wobei die Indikatoren die
Blätter sind.

Abbildung 2.1: Schematischer Aufbau eines hierarchischen Qualitätsmodells [24]

2.2.2 Produktqualitätsmodell der ISO/IEC 25010

Die Abbildung 2.2 zeigt das Produktqualitätsmodell der ISO/IEC 25010 [6]. Die Produkt-
qualität wird in diesem Modell in acht Merkmale unterteilt. Jedes dieser Merkmale stellt
wiederum eine Gruppierung aus zusammengehörenden Untermerkmalen dar.

12

2.3 Softwaremetriken

Abbildung 2.2: Produktqualitätsmodell der ISO/IEC 25010 [6]

2.3 Softwaremetriken

Im Software Engineering wird das Wort Metrik nicht als Distanzfunktion wie in der Mathe-
matik, sondern in der umgangssprachlichen Bedeutung von Maß verwendet [16]. Es handelt
sich hierbei um eine Abbildung einer Eigenschaft auf eine skalare oder vektorielle Größe.
Zur besseren Übersicht werden Softwaremetriken nach ihrem Messobjekt in die drei Klassen
Produkt-, Projekt- und Prozessmetriken unterteilt [19].

Produktmetriken

Diese Metriken befassen sich mit den Eigenschaften der Software selbst. Sie lassen sich
wiederum in dynamische und statische Metriken einteilen. Dynamische Metriken sind
Maße, die bei der Ausführung eines Programms gemessen werden, wohingegen statische
Metriken durch Messung aus der Systemdarstellung ermittelt werden. Für die Beurteilung
von Effizienz und Zuverlässigkeit sind dynamische Metriken hilfreich, statische Metriken
eignen sich eher für die Beurteilung von Komplexität, Verständlichkeit und Wartbarkeit [20].
Bekannte Metriken sind zum Beispiel die Anzahl der Codezeilen (LoC - Lines of Code)
oder die zyklomatische Komplexität nach McCabe [8]. Für viele Produktmetriken gibt es
Analysewerkzeuge wie z.B. FindBugs [4] und Gendarme [5]. Sie dienen der effizienten und
automatisierten Ermittlung der Produktmaße. Einige statische Analysen wie z.B. die Prüfung
auf uninitialisierte Variablen, sind häufig schon in Compilern integriert.

13

Kapitel 3

Quamoco

Das Forschungsprojekt Software-Qualität: Flexible Modellierung und Integriertes Controlling
(Quamoco) [12] befasste sich mit der Frage, wie die Leistungsfähigkeit und Wirtschaftlichkeit
von Softwareprodukten bewertbar und nachweisbar gemacht werden kann. Projektteilnehmer
waren die Unternehmen Capgemini, itestra, SAP und Siemens, sowie die Forschungsein-
richtungen Fraunhofer IESE und Technische Universität München. Sie wurden dabei vom
Bundesministerium für Bildung und Forschung, von 2009 bis 2012, im Rahmen des Förder-
programmes ITK 2020 mit 3,7 Millionen Euro unterstützt. Weitere rund 2,2 Millionen Euro
brachten die Industriepartner selbst in das Forschungsvorhaben mit ein [21].

Wie bereits in Kapitel 2.2 beschrieben wird mit Qualitätsmodellen versucht, den abstrakten
Begriff Softwarequalität durch eine hierarchische Verfeinerung zu konkretisieren. Allerdings
sind bereits bestehende Qualitätsmodelle, wie z.B. das Produktqualitätsmodell (Kapitel 2.2.2)
noch sehr abstrakt gehalten. Es werden dort zwar Qualitätsmerkmale, wie z.B. die „Zuverläs-
sigkeit“ definiert, jedoch wird nicht angegeben wie sich diese messen lassen. Demgegenüber
gibt es eine Reihe von Analysewerkzeugen, wie z.B. FindBugs [4] oder Gendarme [5], mit
denen Softwarequalitätsmaße erhoben werden können. Diesen fehlt allerdings der Bezug zu
den Qualitätszielen [21]. Einige Unternehmen definieren daher ihre eigenen Qualitätsrichtli-
nien, wobei diese meist nur für spezielle Bereiche der Softwarequalität nutzbar sind. Es ist
daher wünschenswert einen überprüfbaren Qualitätsstandard zu haben.

Das Forschungsprojekt Quamoco hatte sich daher zum Ziel gesetzt, einen solchen Standard
zu erarbeiten. Dieser Standard sollte ebenso die Vielfalt unterschiedlicher Softwareprodukte
berücksichtigen [12]. Als Resultat des Projekts entstand eine Werkzeugkette zur Erstellung
und Anwendung von Qualitätsmodellen, sowie ein Basis-Qualitätsmodell. Beides steht unter
www.quamoco.de zur freien Verfügung [21].

3.1 Meta-Modell

Um eine konsistente Struktur von Qualitätsmodellen zu gewährleisten, hat das Forschungs-
projekt ein Meta-Modell entwickelt [22]. Dieses definiert wie ein Quamoco-Qualitätsmodell

15

3 Quamoco

aufgebaut sein muss. Zudem wurde anhand des Meta-Modells ein Editor (Kapitel 3.3) im-
plementiert, um neue Qualitätsmodelle erstellen und bestehende anpassen und erweitern zu
können.
Quamoco-Qualitätsmodelle sind hierarchisch aufgebaut. Ebenso wie im Produktqualitäts-
modell wird der abstrakte Begriff Softwarequalität durch Aufsplittung in Qualitätsmerkmale
weiter verfeinert. Wie in Abbildung 3.1 zu sehen ist, beinhalten diese Modelle zwei unter-
schiedliche Hierarchien, mit Faktoren als Elemente. Diese sind entweder Qualitätsaspekte
oder Produktfaktoren, welche beide jeweils weiter in Subaspekte und Subfaktoren verfeinert
werden können. Alle Faktoren beschreiben die Eigenschaft einer Entität. Unter einer Entität
wird ein eindeutig bestimmbares Objekt eines Softwareprodukts verstanden. Entitäten sind
z.B. Klassen und Methoden, aber auch das gesamte Produkt wird als Entität bezeichnet. Der
Unterschied zwischen den beiden Faktorarten ist, dass es sich bei einem Qualitätsaspekt um
ein abstraktes Qualitätsziel handelt, welches immer das ganze Produkt als Entität besitzt.
Demgegenüber ist ein Produktfaktor eine messbare Eigenschaft eines Produktteils. Sowohl
die Qualitätsaspekte als auch die Produktfaktoren bilden eine eigene Hierarchie. Um die
Lücke zwischen den beiden Hierarchieebenen zu schließen und damit eine Verbindung von
den abstrakten Qualitätsaspekten zu den konkreten Produktfaktoren herzustellen, müssen
diese beiden Faktorarten in Beziehung zueinander gesetzt werden. Hierbei können allerdings
nur die Produktfaktoren die Qualitätsaspekte, entweder positiv oder negativ, beeinflussen.
Um ausdrücken zu können, welcher Produktfaktor, welchen Qualitätsaspekt wie beeinflusst,
werden im Modell Aggregationen definiert.

Abbildung 3.1: Schematische Darstellung
des Qualitätsmodellkonzept von Quamoco nach [22]

16

3.2 Basismodell

Weitere Elemente des Qualitätsmodells sind die Maße. Ein Maß ist eine konkrete Beschrei-
bung, die für einen speziellen Kontext angibt, wie Produktfaktoren gemessen werden. Die
Trennung von Produktfaktoren und Maßen ermöglicht es, die Faktoren in unterschiedlichen
Kontexten zu messen. Um die beiden Elemente miteinander in Beziehung zu bringen, wird
im Modell eine Evaluation definiert. Diese ermöglicht auch eine Zuordnung mehrerer Maße
zu einem Produktfaktor. Des Weiteren besteht eine Trennung zwischen den Maßen und den
Analysewerkzeugen. Hierdurch entsteht eine Flexibilität, um z.B. Daten manuell erheben
oder unterschiedliche Werkzeuge in verschiedenen Kontexten verwenden zu können. Eine
Verbindung zwischen diesen Elementen wird durch die Definition von MeasurementMethods
(Messmethoden) im Modell hergestellt. Mit diesem hier vorgestellten Gesamtkonzept wird
die Lücke zwischen dem abstrakten Begriff Softwarequalität und den konkreten Software-
maßen geschlossen.

Modularisierung

Ein wichtiges Konzept von Quamoco ist die Modularisierung, welche die Unterteilung eines
Modells in einzelne Module erlaubt [22].
Ein allumfassendes Qualitätsmodell, welches den Ansprüchen unterschiedlichster Techno-
logiebereiche genügt, wäre sehr unpraktisch und unübersichtlich. Daher entwickelte das
Forschungsteam ein Basismodell, welches in seinem Hauptmodul Root Qualitätsaspekte,
Produktfaktoren und Maße, definiert, die weder von der Programmiersprache noch von
der Produktsparte abhängen. Dieses Basismodell lässt sich durch neue Module erweitern.
Hierdurch können Qualitätsmodelle erstellt werden, die auf der einen Seite auf spezielle
Eigenschaften unterschiedlicher Technologien eingehen. Auf der anderen Seite die selben,
allgemeinen Eigenschaften und Entitäten als Grundlage besitzen. Somit ist ein flexibler
Umgang mit großen Modellen möglich. Im Folgenden wird das Basismodell von Quamoco
genauer beschrieben.

3.2 Basismodell

Wie bereits in Kapitel 3.1 beschrieben, ist das Basismodell ein Qualitätsmodell, welches die
allgemeingültigen Qualitätsaspekte und Produktfaktoren definiert, die nicht von einem be-
stimmten Technologiebereich oder einer Programmiersprache abhängen. Diese allgemeinen
Eigenschaften sind in dem Modul Root definiert. Zum Zeitpunkt der Erstellung dieser Arbeit
existieren zusätzlich noch drei weitere Module. Hierbei handelt es sich zum einen um ein
Modul, welches spezifische Eigenschaften von objektorientierten Sprachen beinhaltet. Zum
anderen gibt es zwei Module, welche die Eigenheiten der Sprachen Java und C# abbilden.
Diese definieren zudem, wie die konkrete Messung von Eigenschaften übergeordneter Mo-
dule stattfindet. In Abbildung 3.2 ist die Abhängigkeit der Module untereinander zu sehen.
Das oberste Modul ist das Modul Root, welches für alle weiteren Module die Basis bildet.
Darunter steht das Modul für die objektorientierten Spracheigenschaften und auf dritter

17

3 Quamoco

Ebene befinden sich die Module für die objektorientierten Sprachen. Die, mit gestrichelter
Linie umrandeten Module stellen mögliche Erweiterungen des Basismodells dar.

Abbildung 3.2: Modulhierarchie des Basismodells nach [23]

Das Modell besteht aus einer Auswahl von grundlegenden Qualitätsmerkmalen, d.h. von
Faktoren und Maßen, die für die Qualitätsbeurteilung wichtig sind. Bei der Definition der
Qualitätsaspekte wurden Produktqualitätsmerkmale des Produktqualitätsmodells ISO/IEC
25010 (Kapitel 2.2.2) verwendet.
Insgesamt umfasst das Modell 92 Entitäten und 284 Faktoren [23]. Einige dieser Faktoren
dienen nicht direkt zur Qualitätsbeurteilung, sondern nur der Strukturierung. Und auch
nicht jeder Faktor beeinflusst andere Faktoren. Insgesamt hat das Modell 490 definierte
Einflüsse. Die 194 messbaren Faktoren sind im Vergleich zu den 526 Maßen, welche das
Modell beinhaltet, sehr wenig. Die vergleichbar große Anzahl an Maßen lässt sich auf die
Operationalisierung von verschiedenen Programmiersprachen zurückführen. Zur Messung
der Maße werden acht manuelle Messmethoden und zwölf Werkzeuge zur Verfügung gestellt.
Darunter FindBugs [4], welches für Java 361 Regeln modelliert und Gendarm [5] mit 146

Regeln für C#.

3.3 Werkzeuge

Das Forschungsteam hat neben den entstandenen Modellen auch Werkzeuge entwickelt,
um Qualitätsmodelle erstellen und bearbeiten, sowie eine automatische Qualitätsbewertung
durchführen zu können.

Qualitätsmodell-Editor

Der Editor basiert auf dem Eclipse Modeling Framework. Er ermöglicht die Erstellung und
Bearbeitung von Qualitätsmodellen auf Grundlage des Meta-Modells.
Abbildung 3.3 zeigt den Qualitätsmodell-Editor. Auf der linken Seite in der Projektübersicht,
sind das Basismodell und seine Module zu sehen. Jedes Modul wird in einer separaten Datei
gespeichert, hierdurch wird das Konzept der Modularisierung unterstützt. Der Inhalt des
Modells lässt sich über verschiedene Baumstrukturen einsehen. Im mittleren Bereich ist die

18

3.3 Werkzeuge

Faktorhierarchie dargestellt und auf der rechten Seite befindet sich eine Eingabemaske zur
Definition von Eigenschaften zu einem ausgewählten Faktor.

Abbildung 3.3: Qualitätsmodell-Editor

Anbindung an das Analysewerkzeug ConQAT

Das Continuous Quality Assessment Toolkit (ConQAT) [2] ist ein konfigurierbares Werkzeug
zur Softwareanalyse. Mit einer graphischen Benutzeroberfläche lassen sich eigene Analyse-
konfigurationen erstellen. Hierfür werden sogenannte Prozessoren miteinander verknüpft
und in Blöcken verwaltet. ConQAT selbst stellt viele Prozessoren zur Verfügung, z.B. zur
HTML-Ausgabe von Daten.

Von dem Qualitätsmodell-Editor aus kann die Analysekonfiguration von Quamoco gestartet
werden. Damit ConQAT eine Evaluation durchführen kann, wurde das Werkzeug durch
das Forschungsteam um neue Prozessoren und Blöcke erweitert. Diese sind speziell auf die
im Basismodell definierten Messwerkzeuge abgestimmt und können deren Messergebnisse
verarbeiten. Zudem gibt es Prozessoren, die das Modell selbst einlesen und mit den gemes-
senen Maßen in Beziehung setzen. Die Ergebnisse werden als HTML-Ausgabe gespeichert
und an den Editor gesendet, der diese visuell darstellt.

19

Kapitel 4

Testüberdeckung

Dieses Kapitel beschäftigt sich mit der Definition der Testüberdeckung und deren Ein-
gliederung in die Klassifikation von Softwaretests. Es werden die Anweisungs- und die
Zweigüberdeckung beschrieben. Im Anschluss erfolgt eine Vorstellung von Werkzeugen, zur
Ermittlung der Testüberdeckung.

4.1 Definition

Testfälle können noch so gut sein, dennoch ist es mit ihnen nicht möglich nachzuweisen, dass
keine Fehler mehr im Programmcode vorhanden sind [11]. Daher wird versucht die Testfälle
so abgeschlossen wie möglich zu erstellen [18]. Dies bedeutet, mit den vorhandenen Testfäl-
len, den gesamten Programmcode mindestens einmal auszuführen, denn Fehler können von
UnitTests nur in einem ausgeführten Programmteil gefunden werden [19]. Indem nun Code-
stellen identifiziert werden, die noch nicht oder unzureichend von Testfällen abgedeckt sind,
steigt die Wahrscheinlichkeit Fehler zu entdecken. Der Grad der Abdeckung von Code durch
Testfälle wird auch als Testüberdeckung bezeichnet und in Prozent angegeben. Mit Hilfe der
gemessenen Überdeckung können die vorhandenen Testfälle bewertet und verbessert werden,
um so eine größtmögliche Testüberdeckung zu erzielen. Wichtigster Anwendungsbereich
zur Messung der Überdeckung sind Modultests. Bei Systemtests hingegen werden sie nicht
eingesetzt [15].

4.2 Klassifikation von Softwaretests

Es gibt viele unterschiedliche Arten von Softwaretests, welche sich nach verschiedenen
Kriterien klassifizieren [16] lassen:

• Grundlage des Tests

• Aufwand für Vorbereitung und Archivierung

21

4 Testüberdeckung

• Komplexität des Prüflings

• getestete Eigenschaft

• beteiligte Rollen

Bei der Aufteilung der Softwaretests nach dem Kriterium Grundlagen des Tests, entstehen
zwei Klassen von Tests:

Funktionstest (Black-Box-Test) bezeichnet einen Test, dessen Testfälle sich auf die in der
Spezifikation geforderten Eigenschaften bezieht.

Strukturtest (Glass-Box-Test, White-Box-Test, Clear-Box-Test) wird ein Test genannt, bei dem
als Grundlage für die Testfälle, die innere Struktur des zu testenden Programms und
die Aufzeichnungen früherer Programmabläufe herangezogen werden.

Die Ermittlung der Testüberdeckung gehört zu den kontrollflussorientierten Strukturtests
und ist ein dynamisches Testverfahren. Im Gegensatz zu den statischen, wird bei dynami-
schen Verfahren die Software beim Testen ausgeführt. Die Testvollständigkeit wird anhand
der Kontrollflussüberdeckung bewertet [15].

4.3 Kontrollflussorientierte Strukturtests

Zu den kontrollflussorientierten Strukturtests gehören nach [15]:

• Anweisungsüberdeckungstest

• Zweigüberdeckungstest

• Bedingungsüberdeckungstest

• Strukturierter Pfadtest und boundary interior-Pfadtest

• Linear Code Sequence and Jump - barsierter Test

• Pfadüberdeckungstest

4.3.1 Anweisungsüberdeckungstest

Mit einem Anweisungsüberdeckungstest wird ermittelt, wie viele Anweisungen des Pro-
grammcodes beim Testen ausgeführt werden. Um eine vollständige Überdeckung zu erzielen,
muss jede Anweisung mindestens einmal ausgeführt werden. Das Testmaß ist der erreichte
Anweisungsüberdeckungsgrad:

Grad der Anweisungsüberdeckung =
Anzahl der ausgeführten Anweisungen

Gesamtanzahl der Anweisungen

22

4.4 Werkzeuge zur Messung der Testüberdeckung

Mit diesem Überdeckungstest wird sichergestellt, dass alle Anweisungen ausgeführt wer-
den. Die Ausführung einer Anweisung ist ein notwendiges Kriterium, um in dieser ein
Fehler lokalisieren zu können. Da das Auftreten eines Fehlers jedoch an die Ausführung mit
bestimmten Testdaten gekoppelt sein kann, ist die Anweisungsüberdeckung kein hinreichen-
des Kriterium. Sie kann zur Quantifizierung der Testüberdeckung herangezogen werden,
ist jedoch ein zu schwaches Kriterium für eine sinnvolle Testdurchführung und von der
alleinigen Verwendung wird abgeraten [15].

Die Anweisungsüberdeckung ist das am einfachsten zu messende Überdeckungsmaß. Sofern
der Programmcode keinen „toten Code“ beinhaltet, kann theoretisch eine hundertprozentige
Anweisungsüberdeckung realisiert werden [15]. In der Praxis lässt sich jedoch nur sehr
schwer eine Überdeckung von mehr als achtzig Prozent erzielen [16]. Es existiert oft defensi-
ver Code, der nur bei Fehlern in anderen Programmteilen ausgeführt wird. Zur Erkennung
von Wartungsfehlern ist solcher Code jedoch sinnvoll. Auch Testfälle, die abhängig von
Uhrzeit und Datum sind, sind oft schwer zu realisieren.

4.3.2 Zweigüberdeckungstest

Bei einem Zweigüberdeckungstest müssen mindestens einmal alle Zweige des zu testenden
Programms ausgeführt werden, um eine vollständige Überdeckung zu erzielen. Wird
eine hundertprozentige Zweigüberdeckung erreicht, so liegt auch eine vollständige
Anweisungsüberdeckung vor. Testmaß ist der erreichte Zweigüberdeckungsgrad:

Grad der Zweigüberdeckung =
Anzahl ausgeführter Zweige

Gesamtanzahl der Zweige

Die Zweigüberdeckung gilt als Minimalkriterium von kontrollflussorientierten Tests [15]. Sie
ist eine notwendige Testtechnik und wird von den meisten anderen Testmethoden subsu-
miert.
Alle Programmzweige mit Testfällen abzudecken, erweist sich in manchen Fällen als schwie-
rig, da manchmal zwar der Zweig ausführbar wäre, jedoch die Erzeugung des Testfalls
sehr kompliziert ist. Auf der anderen Seite kann es auch Zweige geben, die nie ausführ-
bar sind. Solche überflüssigen Zweige entstehen oft durch Entwurfsfehler. Aber auch eine
hundertprozentige Zweigüberdeckung ist keine Garantie für ein fehlerfreies Programm.

4.4 Werkzeuge zur Messung der Testüberdeckung

Heutzutage gibt es eine ganze Reihe von Werkzeugen zur Ermittlung der Testüberdeckung
für verschiedenste Programmiersprachen. Allein für Java existieren mehr als zehn solcher
Werkzeuge, wie z.B. Cobertura, CodeCover und Emma [7].

23

4 Testüberdeckung

Werkzeuge zur Testüberdeckung liefern im Allgemeinen folgende Informationen [13]:

• Quellcodeabdeckung in Prozent

• Identifizieren und markieren ungetesteter Teile

• Ermittlung der Testüberdeckung nach Normen und Standards

Im Weiteren soll auf die zwei Werkzeuge CodeCover und EclEmma genauer eingegangen
werden, welche beide als Eclipse-Plugin verfügbar sind:

4.4.1 CodeCover

CodeCover [1] ist ein an der Universität Stuttgart entwickeltes Glass-Box-Test-Werkzeug.
Es entstand im Rahmen eines Studienprojekts und wird unter anderem in Form von Ab-
schlussarbeiten aktiv weiterentwickelt. Mit CodeCover können neben der Anweisungs-
und Zweigüberdeckung noch fünf weitere Überdeckungsmaße gemessen werden. Zur Zeit
werden die Programmiersprachen Java, COBOL und C unterstützt. CodeCover steht unter
EPL-Lizenz und ist unter www.codecover.org als Standalone Version, sowie als Eclipse-
Plugin frei verfügbar. Mit CodeCover ist es möglich, die Art der Testüberdeckung individuell
auszuwählen und nur für vorher definierte Klassen und Pakete messen zu lassen. Die Analy-
seergebnisse sind beim Eclipse-Plugin direkt in Eclipse einsehbar (siehe Abbildung 4.1) und
können zusätzlich als XML- und HTML-File exportiert werden.

Abbildung 4.1: CodeCover als Eclipse-Plugin [1]

24

4.4 Werkzeuge zur Messung der Testüberdeckung

4.4.2 EclEmma

EclEmma [3] ist ein frei verfügbares Eclipse-Plugin, mit dem die Testüberdeckung in Java-
Programmen gemessen werden kann. Die Analyse lässt sich über das Menü oder die
Run-Workbench Symbolleiste starten. Neben der Zeilen-, Methoden- und Typenüberdeckung
kann EclEmma auch die Anweisungs- und Zweigüberdeckung ermitteln. Die Ergebnisse
sind nach der Messung direkt im Workbench verfügbar wie in Abbildung 4.2 zu sehen ist.
Mit der Exportfunktion von EclEmma lassen sich diese unter anderem als HTML-, XML-
oder CSV-Datei exportieren.

Abbildung 4.2: EclEmma als Eclipse-Plugin [3]

25

Kapitel 5

Integration

Das folgende Kapitel befasst sich mit der Umsetzung der Integration der Testüberdeckung
in Quamoco. Zu Beginn wird das Konzept vorgestellt. Anschließend werden die Erwei-
terungen des Basismodells erläutert und die Auswirkungen der Testüberdeckung auf die
Qualitätsaspekte diskutiert. Zum Schluss wird auf die Änderungen der Werkzeugkette
eingegangen.

5.1 Konzept

Um die Testüberdeckung als Maß in Quamoco integrieren zu können, müssen folgende drei
Schritte durchgeführt werden:

1. Bestimmung eines Analysewerkzeugs und der Maße

2. Erweiterung des Basismodells

3. Erweiterung der ConQAT-Anbindung

Diese leiten sich aus der Arbeitsweise von Quamoco ab, welche in der Abbildung 5.1 zu
sehen ist. In den nächsten Abschnitten werden die einzelnen Schritte genauer erklärt.

Abbildung 5.1: Das Funktionsprinzip einer Evaluierung mit Quamoco.

27

5 Integration

Die Evaluierung eines vorgegebenen Softwareprodukts wird mit dem Analysewerkzeug
ConQAT durchgeführt. Als Eingabe wird neben dem Produkt selbst, auch das Quamoco-
Qualitätsmodell, nach dem die Software bewertet werden soll, benötigt. Enthält das Modell
Maße, deren Messwerkzeug nicht von ConQAT zur Analyse angestoßen wird, so ist es
notwendig die Messungen vor der Evaluierung durchzuführen. Die Messergebnisse werden
ebenfalls ConQAT, als Eingabe, zur Verfügung gestellt. Damit ConQAT diese Messdaten
für die Evaluierung weiter verarbeiten kann, ist eine Anpassung der ConQAT-Anbindung
notwendig (siehe Kapitel 5.4). Nach der Evaluation gibt ConQAT die Ergebnisse als HTML-
Datei aus.

5.2 Bestimmung eines Analysewerkzeugs und der Maße

Analysewerkzeug

Wie bereits in Kapitel 4.4 beschrieben, gibt es eine Vielzahl von Analysewerkzeugen zur
Ermittlung der Testüberdeckung. Da die Integration im Rahmen dieser Arbeit sich auf die
Messung von Java-Code beschränkt, fiel die erste Wahl auf das Messwerkzeug CodeCover.
Die Vorteile des Werkzeugs waren zum einen der Ausschluss ausgewählter Klassen von
der Analyse, sowie zum anderen die Möglichkeit durch ein Open Language Interface, das
Werkzeug auch für andere Programmiersprachen erweitern und verwenden zu können. Zu
Beginn der Erprobung stellte sich allerdings heraus, dass CodeCover mit der neu in Java 7

eingeführten Typinferenz und der dadurch geschaffenen Möglichkeit ’<>’ zu verwenden,
nicht zurecht kommt und eine Messung verweigert. Daher wurde für die Messung der
Testüberdeckung auf das Analysewerkzeug EclEmma zurückgegriffen. Die Messergebnisse
werden in eine CSV-Datei gespeichert. Diese beinhaltet unter anderem vier Spalten, wobei
zwei die Anzahl der überdeckten und zwei die Anzahl der nichtüberdeckten Anweisungen
bzw. Zweige angibt. Die Zeilen spiegeln die Klassen und innere Klassen des Projekts wider.

Maße

Mit EclEmma lassen sich verschiedene Testüberdeckungsmaße messen. Im Rahmen dieser
Bachelorarbeit beschränken wir uns auf die Maße Anweisungs- und Zweigüberdeckung
(Kapitel 4.3). Diese Maße gehören zu den am einfachsten zu ermittelnden Überdeckungsmaße
und stellen eine ausreichende Grundlage dar.

5.3 Erweiterung des Basismodells

Die Modifizierung des Modells wurde mit dem Qualitätsmodell-Editor (Kapitel 3.3) durch-
geführt. Zuerst wurde das Tool EclEmma im Modell definiert. Da es sich hierbei um ein
Analysewerkzeug für die Programmiersprache Java handelt, stand die Zuordnung zum
Modul Java außer Frage. Ebenso wie bereits für alle anderen Tools, ungeachtet welche

28

5.3 Erweiterung des Basismodells

Programmiersprache sie unterstützen, wurde für EclEmma im Modul Root eine Source
angelegt. Zudem wurden zwei neue Measures, eins für die Anweisungs- und eins für die
Zweigüberdeckung im Java Modul definiert, da die Integration für diese Programmier-
sprache durchgeführt wurde. Des Weiteren wurde für jedes dieser beiden Elemente eine
MeasurementMethod im Modul Java angelegt, welche das Tool EclEmma mit den Measures
verknüpft.
Bevor neue Produktfaktoren für die Maße ins Modell eingefügt werden konnten, war die
Frage zu klären, welche der folgenden Aufteilungen am sinnvollsten ist:

1. Ein Produktfaktor Testüberdeckung, der sich aus den Maßen Anweisungs- und Zweig-
überdeckung zusammensetzt.

2. Zwei unabhängige Produktfaktoren, einen für die Anweisungs- und einen für die
Zweigüberdeckung, die nebeneinander existieren.

3. Drei Produktfaktoren, wobei der Produktfaktor Testüberdeckung, den Subfaktor An-
weisungsüberdeckung und den Subfaktor Zweigüberdeckung besitzt.

Um diese Frage beantworten zu können, ist es notwendig die Einflüsse der Testüberde-
ckung auf die Qualitätsaspekte zu kennen. Beeinflussen beide Überdeckungsmaße dieselben
Aspekte, so ist es sinnvoll nur einen gemeinsamen Produktfaktor zu definieren. Dies würde
die Anzahl der zu modellierenden Einflüsse halbieren. Beeinflussen hingegen beide Maße
unterschiedliche Qualitätsaspekte, so wäre es notwendig zwei Produktfaktoren zu model-
lieren. Die dritte Variante ist sinnvoll, wenn sowohl beide Überdeckungsmaße gemeinsam
Qualitätsaspekte und zusätzlich noch allein Aspekte beeinflussen.
Im Rahmen dieser Bachelorarbeit wurde eine erste Überlegung zu der Beeinflussung der
Qualitätsaspekte durch die Testüberdeckung vorgenommen. Zuerst wurde angenommen,
dass die Anweisungsüberdeckung andere Qualitätsaspekte beeinflusst, als die Zweigüberde-
ckung, deshalb wurden im Modell zwei Produktfaktoren definiert. Jedoch konnte nur für
die drei Merkmale Reife, Portierbarkeit und Effizienz eine Begründung gefunden werden,
dass diese nur von einem der beiden Überdeckungsmaße beeinflusst werden. Nach weiterer
Diskussion darüber, stellten sich diese Begründungen allerdings als nicht haltbar heraus.
Die Sinnhaftigkeit einer getrennten Betrachtung der Maße ist hiermit jedoch nicht ausge-
schlossen. Denn um dies letzten Endes beurteilen zu können, sind umfangreiche Studien
und Expertenwissen notwendig. Daher wurden die zwei Produktfaktoren beibehalten, um
dadurch so flexibel wie möglich zu bleiben.

Die neu definierten Produktfaktoren wurden im Modul Root integriert, da sie weder von
der Programmiersprache, noch von deren Art oder einem speziellen Technologiebereich
abhängen. Um eine Verknüpfung zwischen diesen neuen Produktfaktoren und den zuvor
modellierten Measures aus dem Java Modul herzustellen, wurde ebenfalls im Modul Java
eine Evaluation modelliert.

29

5 Integration

Einfluss der Testüberdeckung auf die Qualitätsaspekte

Die Testüberdeckung identifiziert Codestellen, die durch UnitTests abgedeckt werden. Bei
Fehlschlagen von UnitTests können die hierfür verantwortlichen Codezeilen geändert und
so das fehlerhafte Verhalten beseitigt werden. Die Testüberdeckung hat somit einen Einfluss
auf Qualitätsaspekte, die durch die Verwendung von UnitTests beeinflusst werden.
Im Weiteren werden nun die Qualitätsaspekte einzeln betrachtet und jeweils begründet,
weshalb die Testüberdeckung auf diesen Aspekt einen Einfluss hat oder nicht. Wie schon
in Kapitel 3.2 beschrieben, wurden bei der Definition der Qualitätsaspekte, Merkmale
des Produktqualitätsmodells der IISO/IEC 25010 für Quamoco verwendet und angepasst.
Abbildung 5.2 gibt einen Überblick über die Einflüsse. Grün bedeutet, dieser Aspekt wird
beeinflusst, rot er wird nicht beeinflusst.

Abbildung 5.2: Übersicht der Einflüsse der Testüberdeckung
auf die Qualitätsaspekte von Quamoco.

Gebrauchstauglichkeit
Kann das Produkt bei der Verwendung durch bestimmte Benutzer in einem bestimmten Kontext,
die vorgegebenen Ziele effizient, effektiv und zufriedenstellend erfüllen?
Bei der Gebrauchstauglichkeit geht es darum, wie ein Benutzer mit der Software zu-
rechtkommt, z.B. wie leicht sie zu erlernen ist. Aber auch die Ästhetik und die sinnvolle
und benutzerfreundliche Gestaltung der Oberfläche beeinflussen die Gebrauchstaug-
lichkeit. Da dies Eigenschaften sind, die nicht mit UnitTests getestet werden können,
hat die Testüberdeckung auch keinen Einfluss auf die Gebrauchstauglichkeit.

Portierbarkeit
Wie einfach lässt sich ein System oder eine Komponente effizient und effektiv von einer Hardware,
Software oder einer Betriebs- oder Nutzungsumgebung auf eine andere übertragen?
Der Aufwand, um eine Software in eine andere Umgebung übertragen zu können
hängt unter anderem von der Kapselung der umgebungsspezifischen Anweisungen ab.

30

5.3 Erweiterung des Basismodells

Solche Eigenschaften in der Struktur eines Programmcodes sind nicht durch UnitTests
heraus findbar. Auch der Benutzeraufwand zur Installation des Programms beeinflusst
dessen Portierbarkeit. Dies kann eben sowenig durch UnitTests getestet werden. Daher
beeinflusst die Testüberdeckung auch nicht die Portierbarkeit einer Software.

Verträglichkeit
Können zwei oder mehr Systeme oder Softwarekomponenten in der selben Hardware oder
Softwareumgebung, Informationen austauschen oder erforderliche Funktionen ausführen, ohne
dass sich die Programme gegenseitig beeinträchtigen?
Um eine Aussage über die Verträglichkeit der Software mit anderen Softwareprodukten
machen zu können, bedarf es Tests in der die beiden Programme parallel ausgeführt
werden. Mit UnitTests hingegen werden nur die funktionalen Eigenschaften einer
Software getestet. Daher hat die Testüberdeckung keinerlei Auswirkungen auf die
Verträglichkeit.

Funktionalität

• Vollständigkeit
Erfüllt die Menge an Funktionen alle spezifizierten Aufgaben und Benutzerziele?
Es wird angenommen, dass alle Anforderungen des Benutzers spezifiziert und
die UnitTests alle in der Spezifikation angegebenen Funktionalitäten abdecken.
Die Vollständigkeit ist gegeben, sobald mit den gegebenen UnitTests keine Fehler
mehr gefunden werden. Die Höhe der Testüberdeckung ist hierbei nicht von
Bedeutung. Auch bei niedriger Überdeckung kann eine hundertprozentige Voll-
ständigkeit gegeben sein. Die geringe Überdeckung kann durch defensiven Code
hervorgerufen werden.

• Richtigkeit
Liefert das Produkt die geforderten Ergebnisse mit der benötigten Genauigkeit?
Die Richtigkeit wird von der Testüberdeckung beeinflusst. Wird eine Funktion
überdeckt, so wurde sie mindestens einmal von einem UnitTest ausgeführt. Wurde
mit einem UnitTest ein Fehlverhalten gefunden, so ist davon auszugehen, dass
die fehlerhafte Funktion verbessert wurde und nun wie gewünscht funktioniert.
Je höher nun die Testüberdeckung ist, desto mehr Funktionen wurden getestet,
daher ist die Wahrscheinlichkeit größer, dass die implementierten Funktionen
auch die geforderten Ergebnisse liefern.

• Angemessenheit
Eignet sich die Menge der Funktionen für die spezifizierte Aufgabe und Benutzerziele, d.h.
sind sie z.B. aus aufgabenorientierten Teilfunktionen zusammengesetzt?
Die Angemessenheit von Funktionen ist von der Struktur dieser abhängig. Wird
z.B. eine bestimmte Folge von Anweisungen von mehreren Methoden verwendet,
so ist es sinnvoll diese in eine eigene Methode auszulagern. Da sich durch das
Testen mit UnitTests die Programmstruktur einer Software nicht ändert, hat die
Testüberdeckung auch keinen Einfluss auf die Angemessenheit.

31

5 Integration

Wartbarkeit

• Modularität
Wie gut teilt sich ein System oder ein Computerprogramm in separate Komponenten auf,
so dass eine Änderung an einer Komponente nur eine minimale Auswirkung auf andere
Komponenten hat?
Die Testüberdeckung hat einen Einfluss auf die Modularität, sofern man immer
nur die UnitTests einer Softwarekomponente ausführt und die Überdeckung des
gesamten Programmcodes betrachtet. Bei diesen UnitTests werden nur Funktionen
der zu testenden Komponente aufgerufen, wird nun eine Überdeckung in anderen
Komponenten festgestellt, so ist eine Abhängigkeit der Komponenten vorhanden.
Je niedriger nun die Testüberdeckung in den anderen Komponenten ist, desto
wahrscheinlicher ist es, dass die getestete Komponente gut gekapselt ist.

• Wiederverwendbarkeit
Ist das Programm so aufgebaut, dass Komponenten davon in mehr als einem System oder
beim Bau von anderen Programmteilen wiederverwendet werden können?
Die Wiederverwendbarkeit hängt hauptsächlich von der Struktur und dem ab-
strakten Charakter einer Softwarekomponente ab. Da sich dies mit UnitTests nicht
testen lässt, wird die Wiederverwendbarkeit auch nicht von der Testüberdeckung
beeinflusst.

• Analysierbarkeit
Wie einfach lassen sich Auswirkungen von Änderungen auf den Rest des Produkts fest-
stellen, und wie leicht können fehlerhafte Programmstellen ausfindig gemacht werden?
Die Analysierbarkeit wird von der Testüberdeckung beeinflusst. Je größer die
Überdeckung ist, desto kleiner ist der potenzielle Bereich für Fehler, vorausgesetzt
mit den vorhandenen UnitTests können keine weiteren Fehler diagnostiziert wer-
den. Je kleiner der Bereich in dem ein Fehler erwartet wird, desto geringer ist auch
der Aufwand ihn zu finden. Daher nimmt mit zunehmender Testüberdeckung die
Analysierbarkeit zu.

• Modifizierbarkeit
Wie einfach lässt sich das Produkt effizient und effektiv ändern, ohne dabei Fehler oder
einen Leistungsabfall zu verursachen?
Die Modifizierbarkeit wird durch die Testüberdeckung beeinflusst. Je höher die
Überdeckung ist, desto wahrscheinlicher ist es, dass die zu ändernde Stelle durch
einen UnitTest abgedeckt wird. Die Korrektheit einer Änderung kann somit direkt
von diesem UnitTest überprüft werden. Bei neu umgesetzten Anforderungen
gibt es unabhängig von der Höhe der Testüberdeckung, noch keinen UnitTest.
Allerdings kann mit den vorhandenen UnitTests, eine negative Beeinflussung der
anderen Funktionen durch die neue Programmstelle direkt identifiziert werden.
Somit ist auch hier eine hohe Testüberdeckung von Vorteil.

• Testbarkeit
Wie einfach lassen sich für ein System oder Komponenten Testkriterien einführen und
Tests zur Überprüfung auf Einhaltung der Kriterien durchführen?

32

5.3 Erweiterung des Basismodells

Auch bei einer Software, die schwer zu testen ist, kann eventuell mit viel Aufwand
eine hohe Testüberdeckung erreicht werden. Die Wahrscheinlichkeit ist jedoch
größer, dass wenn eine hohe Testüberdeckung erzielt wurde, die Testbarkeit
ebenfalls hoch ist.

Effizienz
Wie verhält sich die Leistung in Bezug auf die spezifizierte Ressourcenmenge?
Die Effizienz ist abhängig von der Benutzung der Hardwareressourcen und dem
Zeitverhalten bei der Ausführung von Funktionen. Um die Effizienz eines Systems
testen zu können ist es erforderlich, das System im Ganzen zu betrachten. Dies ist bei
den UnitTests nicht gegeben, daher hat auch die Testüberdeckung keinen Einfluss auf
die Effizienz.

Zuverlässigkeit

• Reife
Wie viele Anforderungen an die Zuverlässigkeit werden bei normalen Betriebsbedingungen
erfüllt?
Die Testüberdeckung beeinflusst die Reife einer Software. Denn je höher die
Überdeckung ist, desto mehr Code wurde mit UnitTests getestet und desto gerin-
ger ist die Wahrscheinlichkeit, dass das Programm Fehler enthält, somit ist das
Programm reifer.

• Verfügbarkeit
Sind ein System oder Komponenten betriebsbereit und zugänglich, wenn sie benötigt
werden?
Die Verfügbarkeit hängt zum einen von äußeren Faktoren, wie z.B. der Verfüg-
barkeit von Netzwerkverbindungen, der Hardware oder dem Vorhandensein von
Strom ab. Diese Faktoren lassen sich nicht durch UnitTests testen. Allerdings
können zum anderen auch fehlerhafte Funktionen dazu führen, dass die Software
nicht stabil läuft und somit zeitweise nicht verfügbar ist. Bei einer hohen Testüber-
deckung ist allerdings die Wahrscheinlichkeit solcher Fehler geringer, da potenziell
weniger Fehler im Code vorhanden sind. Daher hat die Testüberdeckung einen
Einfluss auf die Verfügbarkeit.

• Fehlertoleranz
Kann ein System oder Komponenten trotz der Anwesenheit von Hard- oder Softwarefeh-
lern arbeiten?
Um dies beurteilen zu können, ist es notwendig das gesamte System zu betrach-
tet und nicht wie bei den UnitTests nur einzelne Funktionen. Daher hat die
Testüberdeckung keinen Einfluss auf die Fehlertoleranz.

• Wiederherstellbarkeit
Wie einfach kann das Produkt bei einer Unterbrechung oder einem Ausfall, ein stabiles
Leistungsnieveau und die direkt betroffenen Daten wiederherstellen?
Ebenso wenig wie die Testüberdeckung auf die funktionale Vollständigkeit keinen
Einfluss hat, verhält es sich auch bei der Wiederherstellbarkeit. Sind hierfür keine
Funktionen implementiert die dafür sorgen, dass z.B. die Daten gesichert werden,

33

5 Integration

so kann die Testüberdeckung noch so hoch sein, die Daten lassen sich nicht
wiederherstellen.

Sicherheit
Sind Informationen und Daten vor der Einsicht und Änderung von unberechtigten Personen
und Systemen geschützt und wird der Zugang autorisierten Personen und Systemen nicht
verweigert?
Die Testüberdeckung beeinflusst die Sicherheit eines Systems. Denn je höher die Über-
deckung ist, desto wahrscheinlicher ist es, dass die Funktionen, welche Berechtigungen
verwalten, mit UnitTests getestet wurden und gemäß der Spezifikation funktionieren.

5.4 Erweiterung der ConQAT-Anbindung

Zur Integration der Testüberdeckung war es notwendig die ConQAT-Anbindung zu
erweitern. Eine Anpassung des Qualitätsmodell-Editors war nicht erforderlich.

Die Analysekonfiguration von Quamoco wurde um einen neuen Block für das Messwerkzeug
EclEmma erweitert. Dieser hat im Block NightlyQuamocoGeneratedJava die Kette der Werkzeug-
blöcke um eine Glied erweitert. Diese Blöcke enthalten die Information, wo die Messdaten
gespeichert sind, lesen diese ein und verarbeiten sie. Bei manchen Messwerkzeugen wird
zuvor noch das Werkzeug zur Messung angestoßen.

Wie in Abbildung 5.3 zu sehen ist, besteht der Block für EclEmma aus zwei Eingaben, einer
Ausgabe und zwei Prozessoren.

34

5.4 Erweiterung der ConQAT-Anbindung

Abbildung 5.3: ConQAT-Block für EclEmma

Bei dem CSV-Reader handelt es sich um einen schon in ConQAT implementierten Prozessor,
mit dem die in einer CSV-Datei vorliegenden Messergebnisse der Überdeckungsmessung
eingelesen und in einer Liste abgespeichert werden. Im Block NightlyQuamocoGeneratedJava
wird der Pfad zu der CSV-Datei mit den Messergebnissen definiert und mit der Eingabe
csvInput an den CSVReader weitergegeben. Der Prozessor EclEmmaCsvReader hingegen wurde
extra für die Verarbeitung der EclEmma-Messergebnisse geschrieben. Er ist ein Pipeline-
Prozessor, d.h. er bekommt einen Datenstrom über die Eingabe input und gibt diesen nach
Änderung, als Ausgabe scope weiter. Als zusätzliche Eingabe erhält der Prozessor eine
Liste mit den Messdaten, die zuvor mit dem CSVReader eingelesen wurden. Der Prozessor
berechnet für die Klassen und Pakete des Softwareprodukts die Anzahl und den Prozentwert
der Testüberdeckung. Dazu überträgt er die Liste in eine Tabelle. Für jedes Element im
Datenstrom wird überprüft, ob dieses auch in der Tabelle vorhanden ist. Falls ja, werden
die Einträge für die Klassen und Pakete aus den Daten berechnet und zusätzlich für jedes
Element der Prozentwert der Überdeckung ermittelt. Gibt es für ein Element kein Eintrag in
der Tabelle, so wird der Prozentwert auf -1 und die restlichen Spalten auf null gesetzt. Dies
ermöglicht es direkt in der Ausgabedatei zu erkennen, für welche Klassen es keine Messwerte
gibt. Diese Elemente werden bei der Gesamtprozentberechnung selbstverständlich nicht mit
berücksichtigt. Dem Datenstrom werden anschließend sechs neue Spalten (siehe Abb. 5.4)
hinzugefügt und die berechneten Werte eingetragen. Durch entsprechende Bezeichnungen
der Spalten wird eine Verknüpfung zu den Maßen des Basismodells hergestellt.

Abbildung 5.4: HTML-Ausgabe der Evaluation mit den neuen Spalten für die
Testüberdeckung.

35

Kapitel 6

Evaluation

Dieses Kapitel beschäftigt sich mit der Evaluierung des erweiterten Qualitätsmodells und
diskutiert die Auswirkungen der Integration der Testüberdeckung.

6.1 Grundlagen

Um das erweiterte Qualitätsmodell zu beurteilen, wurde eine Evaluation eines Softwarepro-
dukts mit diesem Modell durchgeführt. Das hierfür verwendete Softwareprodukt stellte ein
deutsches mittelständisches Unternehmen zur Verfügung. Bei dem Produkt handelt es sich
um ein Projekt in Java 7, welches aus einer Reihe von Unterprojekten besteht. Insgesamt um-
fasst es um die 762.000 Lines of Code (gemessen mit ConQAT-Prozessor LOCAnalyzer) und
ca. 7000 Klassen. Die Testsuite mit den UnitTests, von denen ausgehend die Testüberdeckung
gemessen wurde, enthält um die 800 Testklassen.

6.2 Messung der Testüberdeckung

Vor der Evaluierung des Softwareprodukts, wurde zuerst die Testüberdeckung gemessen.
Hierzu wurde das Eclipse-Plugin von CodeCover verwendet. Allerdings stellte sich heraus,
dass CodeCover mit der in Java 7 eingeführten Typinferenz, nicht zurecht kommt und
daher die Messung nicht durchführen kann. Daher wurde die ConQAT-Anbindung auf
EclEmma umgestellt, welches auch bei Programmcode in Java 7, die Testüberdeckung messen
kann. Es wurden mit dem Eclipse-Plugin die Testüberdeckung ermittelt, anschließend die
Messergebnisse als CSV-Datei exportiert und der Dateipfad ConQAT bekannt gegeben. Als
Ergebnis wurde eine Anweisungsüberdeckung von 41,5 % und eine von Zweigüberdeckung
27,5% gemessen.

37

6 Evaluation

6.3 Qualitätsanalyse

In der ersten Analyserunde wurde zur Qualitätserhebung das anfängliche Basismodell und
die ursprüngliche Werkzeugkette verwendet. Da zur Ausführung im Qualitätsmodell-Editor
nur ein Pfad für das zu testende Programmcode angegeben werden kann und sich
die Testklassen des Gesamtprojekts in diversen Unterprojekten befinden, wurden diese
explizit von der Analyse ausgeschlossen. Des Weiteren verhinderte JavaDoc, ein weiteres
Messwerkzeug, welches bei der Analyse von ConQAT zur Messung verwendet wird,
eine reibungslose Durchführung der Evaluation. Aus diesem Grund wurde der Block für
JavaDoc auskommentiert. Eine weitere Einstellung die notwendig für die Durchführung der
Evaluation war, war die Erhöhung des Arbeitsspeichers.
Nachdem die anfänglichen Schwierigkeiten behoben wurden, konnte eine Qualitätsbeur-
teilung durchgeführt werden. Im Anschluss wurden zwei weitere Evaluationen mit dem
geänderten Basismodell und der erweiterten ConQAT-Anbindung durchgeführt. Die zuvor
durchgeführten Änderungen wurden auch hier vollzogen. In der ersten Runde wurden für
folgende Einflüsse immer das niedrigste Ranking in der Aggregation und beim zweiten
Durchlauf immer das höchste Ranking eingestellt. Je niedriger das Ranking eingestellt
ist, desto einen geringeren Anteil an Einfluss hat der Produktfaktor im Vergleich zu den
anderen Faktoren, welche den Qualitätsaspekt beeinflussen.

Zur Analyse wurden folgende Einflüsse im Basismodell definiert:

• Funktionalität - Richtigkeit (A und Z)

• Portierbarkeit (A)

• Zuverlässigkeit (A und Z)

• Wartbarkeit - Analysierbarkeit (A und Z)

• Wartbarkeit - Modizierbarkeit (A und Z)

• Wartbarkeit - Testbarkeit (A und Z)

(A = Anweisungsüberdeckung, Z = Zweigüberdeckung)

6.4 Interpretation und Diskussion der Ergebnisse

Wie man der Tabelle 6.1 entnehmen kann, hat die Testüberdeckung einen größeren Einfluss
auf die Gesamtqualität, wenn ein höheres Ranking eingestellt wird. Bei den in der Tabelle
angegebenen Werten handelt es sich um Schulnoten, somit ist eine 1,0 die bestmögliche
und eine 6,0 die schlechteste Bewertung. Allerdings sind die Messewerte, bei denen die
Testüberdeckung berücksichtigt wurde, im Vergleich zu denen ohne die Testüberdeckung
erheblich schlechter. Da die Testüberdeckung sowohl bei der Anweisungs- als auch bei der
Zweigüberdeckung kleiner als fünfzig Prozent ist, war davon auszugehen, dass durch die
Berücksichtigung der Testüberdeckung die Qualität schlechter bewertet wird. Solch eine

38

6.4 Interpretation und Diskussion der Ergebnisse

große Abweichung ist allerdings sehr überraschend. Sie kann ein Zeichen dafür sein, dass die
Einflüsse noch nicht genau genug eingestellt sind. Um eine sinnvolle Einstellung vornehmen
zu können, bedarf es allerdings einer genaueren Untersuchung der Einflüsse mit vielen
Testdaten und dem Wissen und der Erfahrung von Experten.

niedrigstes
Ranking

höchstes
Ranking

ohne Test-
überdeckung

Qualität 4,183 5,784 1,082

Funktionalität 3,880 6,000 1,002

Funktionalität - Richtigkeit 3,880 6,000 1,002

Portierbarkeit 3,892 6,000 1,000

Zuverlässigkeit 3,610 5,526 1,000

Wartbarkeit 4,302 6,000 1,529

Wartbarkeit – Analysierbarkeit 3,647 5,192 1,774

Wartbarkeit – Modifizierbarkeit 6,000 6,000 1,947

Wartbarkeit – Testbarkeit 3,882 6,000 1,000

Abbildung 6.1: Übersicht der Messergebnisse der Qualitätsanalyse.

39

Kapitel 7

Fazit

Dieses Kapitel fasst die vorgestellte Arbeit zusammen und gibt einen Überblick auf mögliche
Anknüpfungspunkte.

7.1 Zusammenfassung

Diese Bachelorarbeit beschäftigte sich mit der Integration der Testüberdeckung als Maß in
Quamoco. Durch die Hinzunahme des neuen Qualitätsmaß, wurde das Basismodell weiter
verfeinert und somit eine präzisere Qualitätsbestimmung möglich. Der Schwerpunkt dieser
Arbeit lag in der Integration der Testüberdeckung in die Werkzeugkette. Als weiterer Punkt
wurde die Einflussnahme der Testüberdeckung auf die Qualitätsaspekte diskutiert.

Zu Beginn dieser Arbeit wurden der Begriff Softwarequalität und die Konzepte Qualitätsmodelle
und Softwaremetriken vorgestellt. Anschließend fand eine Beschreibung des Forschungspro-
jekts Quamoco und dessen Konzepte und Ergebnisse statt. Im Weiteren wurde näher auf
Softwaretests und insbesondere auf die Testüberdeckung eingegangen. Um diese im Basis-
modell zu integrieren, wurde mit dem Qualitätsmodell-Editor dieses um neue Elemente,
wie die Maße Anweisungs- und Zweigüberdeckung, erweitert. Zudem wurde die ConQAT-
Anbindung um einen neuen Block für das Messwerkwerkzeug EclEmma und einen Prozessor,
zur Verarbeitung der Messergebnisse ergänzt. Des Weiteren wurde über die Auswirkungen
der Testüberdeckung auf die Qualitätsaspekte diskutiert. Abschließend wurde das erweiterte
Modell an einem Softwaresystem eines Unternehmens getestet. Während der Erprobung
stellte sich heraus, dass eine ausführliche Untersuchung der Auswirkungen der Testüberde-
ckung auf die Qualitätsaspekte notwendig ist, um die Testüberdeckung als Qualitätsmaß mit
in der Evaluation berücksichtigen zu können.

7.2 Ausblick

Wie in Kapitel 6.4 beschrieben, ist die Integration noch nicht hundertprozentig abgeschlossen.
Um die Testüberdeckung als Qualitätsmaß in die Qualitätsmessung aufnehmen zu können

41

7 Fazit

ist es notwendig, die Auswirkungen der Testüberdeckung auf die Qualitätsaspekte genauer
zu untersuchen und mit der Modellierung der Einflüsse im Basismodell zu experimentieren.
Hierbei ist zu überlegen, ob die in Kapitel 5.3 beschriebene Aufteilung der Testüberdeckung
in mehrere Produktfaktoren, durch eine andere ersetzt werden sollte. Dies Bedarf allerdings
einer umfangreicheren Studie, bei der unterschiedliche Softwareprodukte evaluiert und die
Ergebnisse durch Experten ausgewertet und beurteilt werden müssen.
Ein weiterer Anknüpfungspunkt an diese Arbeit ist die Anpassung des Qualitätsmodell-
Editors. Dieser könnte um ein Eingabefeld erweitert werden, so dass der Dateipfad der
Messwerte direkt über den Editor angegeben werden kann und nicht wie bisher in einem
ConQAT-Block.
Bei der Erstellung dieser Arbeit zeigten sich weitere Aspekte, die für Quamoco sinnvoll
erscheinen. Diese könnten in einer zukünftigen Weiterentwicklung von Quamoco integriert
werden. Hierbei handelt es sich zum einen um die Berücksichtigung von weiteren Testüber-
deckungsmaßen. Zum anderen um die Integration von Testüberdeckungswerkzeugen für
die Programmiersprache C#.

Zusammenfassend lässt sich sagen, dass die Weiterentwicklung von Quamoco ein wichtiger
Schritt für die Entwicklung der Softwarequalität ist.

42

Literaturverzeichnis

[1] CodeCover. http://codecover.org/ (Zitiert auf den Seiten 7 und 24)

[2] ConQAT. https://www.cqse.eu/en/products/conqat/overview/ (Zitiert auf Seite 19)

[3] EclEmma - Java Code Coverage for Eclipse. http://www.eclemma.org/ (Zitiert auf den
Seiten 7 und 25)

[4] Find Bugs in Java Programs. http://findbugs.sourceforge.net/ (Zitiert auf den Sei-
ten 13, 15 und 18)

[5] Gendarme. http://www.mono-project.com/Gendarme (Zitiert auf den Seiten 13, 15

und 18)

[6] ISO/IEC 25010:2011 Systems and software engineering - Systems and software product Quality
Requirements and Evaluation (SQuaRE) - System and software quality models (Zitiert auf den
Seiten 7, 12 und 13)

[7] Open Source Code Coverage Tools in Java. http://java-source.net/open-source/

code-coverage (Zitiert auf Seite 23)

[8] Software-Metrik. http://www.itwissen.info/definition/lexikon/

Software-Metrik-software-metric.html (Zitiert auf Seite 13)

[9] Bibliographisches Institut GmbH, Dudenverlag: Duden. http://www.duden.de/

rechtschreibung/Qualitaet (Zitiert auf Seite 11)

[10] Broy, M. ; Jarke, M. ; Nagl, M. ; Rombach, H. D. u. a.: Dagstuhl-Manifest zur
Strategischen Bedeutung des Software Engineering in Deutschland. In: Perspectives
Workshop, Informatik Spektrum : 29, 2006 (3), S. 210 – 221 (Zitiert auf Seite 9)

[11] Dijkstra, E. W.: The Humble Programmer. In: Commun. ACM (1972), S. 859–866 (Zitiert
auf Seite 21)

[12] Fraunhofer-Institut für Experimentelles Software Engineering: Software-
Qualitätsmodelle für die Praxis. http://www.iese.fraunhofer.de/de/customers_

industries/automotive/referenzprojekt_quamoco.html (Zitiert auf Seite 15)

[13] Gürkan, A. ; Hartmut, P. : Code Coverage - Tools. In: Hakin9 EXTRA (06/2012) (Zitiert
auf Seite 24)

43

http://codecover.org/
https://www.cqse.eu/en/products/conqat/overview/
http://www.eclemma.org/
http://findbugs.sourceforge.net/
http://www.mono-project.com/Gendarme
http://java-source.net/open-source/code-coverage
http://java-source.net/open-source/code-coverage
http://www.itwissen.info/definition/lexikon/Software-Metrik-software-metric.html
http://www.itwissen.info/definition/lexikon/Software-Metrik-software-metric.html
http://www.duden.de/rechtschreibung/Qualitaet
http://www.duden.de/rechtschreibung/Qualitaet
http://www.iese.fraunhofer.de/de/customers_industries/automotive/referenzprojekt_quamoco.html
http://www.iese.fraunhofer.de/de/customers_industries/automotive/referenzprojekt_quamoco.html

Literaturverzeichnis

[14] Kelter, U. : Software-Qualitätsmodelle. (2007) (Zitiert auf Seite 12)

[15] Liggesmeyer, P. : Software-Qualität - Testen, Analysieren und Verifizieren von Software (2.
Aufl.). Spektrum Akademischer Verlag, 2009 (Zitiert auf den Seiten 11, 21, 22 und 23)

[16] Ludewig, J. ; Lichter, H. : Software Engineering - Grundlagen, Menschen, Prozesse,
Techniken. dpunkt.verlag, 2007 (Zitiert auf den Seiten 11, 13, 21 und 23)

[17] Mandau, M. : Die größten Software-Desaster. http://www.focus.de/digital/computer/
chip-exklusiv/tid-14183/computer-fehler-die-groessten-software-desaster_

aid_396628.html (Zitiert auf Seite 9)

[18] Myers, G. J. ; Sandler, C. : The Art of Software Testing. John Wiley & Sons, 2004 (Zitiert
auf Seite 21)

[19] Schneider, K. : Abenteuer Softwarequalität: Grundlagen und Verfahren für Qualitätssicherung
und Qualitätsmanagement (2. Aufl.). dpunkt.verlag, 2012 (Zitiert auf den Seiten 13 und 21)

[20] Sommerville, I. : Software Engineering. Pearson, 2007 (Zitiert auf Seite 13)

[21] Wagner, S. : Softwarequalitätt erfassen und verlässlich vergleichen. http://newsletter.

capgemini.de/mobile-fitness-energieversorgung-und-softwarequalitaet-22012/

softwarequalitaet-erfassen-und-vergleichen (Zitiert auf Seite 15)

[22] Wagner, S. : Software Product Quality Control. Springer, 2013 (Zitiert auf den Seiten 7,
15, 16 und 17)

[23] Wagner, S. ; Lochmann, K. ; Heinemann, L. u. a.: Practical Product Quality Modelling
and Assessment: The Quamoco Approach. 2013 (Zitiert auf den Seiten 7 und 18)

[24] Wikipedia, Die freie Enzyklopädie: Softwarequalität. http://de.wikipedia.org/wiki/
Softwarequalität (Zitiert auf den Seiten 7 und 12)

Alle URLs wurden zuletzt am 25.05.2014 geprüft.

44

http://www.focus.de/digital/computer/chip-exklusiv/tid-14183/computer-fehler-die-groessten-software-desaster_aid_396628.html
http://www.focus.de/digital/computer/chip-exklusiv/tid-14183/computer-fehler-die-groessten-software-desaster_aid_396628.html
http://www.focus.de/digital/computer/chip-exklusiv/tid-14183/computer-fehler-die-groessten-software-desaster_aid_396628.html
http://newsletter.capgemini.de/mobile-fitness-energieversorgung-und-softwarequalitaet-22012/softwarequalitaet-erfassen-und-vergleichen
http://newsletter.capgemini.de/mobile-fitness-energieversorgung-und-softwarequalitaet-22012/softwarequalitaet-erfassen-und-vergleichen
http://newsletter.capgemini.de/mobile-fitness-energieversorgung-und-softwarequalitaet-22012/softwarequalitaet-erfassen-und-vergleichen
http://de.wikipedia.org/wiki/Softwarequalit�t
http://de.wikipedia.org/wiki/Softwarequalit�t

Erklärung

Ich versichere diese Arbeit selbstständig
verfasst zu haben. Ich habe keine anderen als
die angegebenen Quellen benutzt und alle
wörtlich oder sinngemäß aus anderen Werken
übernommene Aussagen als solche
gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher
Gegenstand eines anderen Prüfungsverfahrens.
Ich habe diese Arbeit bisher weder teilweise
noch vollständig veröffentlicht. Das
elektronische Exemplar stimmt mit allen
eingereichten Exemplaren überein.

(Stefanie Dressel)

	1 Einleitung
	1.1 Motivation
	1.2 Ziel
	1.3 Aufbau der Arbeit

	2 Grundlagen
	2.1 Softwarequalität
	2.2 Qualitätsmodelle
	2.2.1 Konzept
	2.2.2 Produktqualitätsmodell der ISO/IEC 25010

	2.3 Softwaremetriken

	3 Quamoco
	3.1 Meta-Modell
	3.2 Basismodell
	3.3 Werkzeuge

	4 Testüberdeckung
	4.1 Definition
	4.2 Klassifikation von Softwaretests
	4.3 Kontrollflussorientierte Strukturtests
	4.3.1 Anweisungsüberdeckungstest
	4.3.2 Zweigüberdeckungstest

	4.4 Werkzeuge zur Messung der Testüberdeckung
	4.4.1 CodeCover
	4.4.2 EclEmma

	5 Integration
	5.1 Konzept
	5.2 Bestimmung eines Analysewerkzeugs und der Maße
	5.3 Erweiterung des Basismodells
	5.4 Erweiterung der ConQAT-Anbindung

	6 Evaluation
	6.1 Grundlagen
	6.2 Messung der Testüberdeckung
	6.3 Qualitätsanalyse
	6.4 Interpretation und Diskussion der Ergebnisse

	7 Fazit
	7.1 Zusammenfassung
	7.2 Ausblick

	Literaturverzeichnis

