Institut fiir Softwaretechnologie
Universitat Stuttgart
Universitatsstral3e 38
D-70569 Stuttgart

Bachelorarbeit Nr. 103

Testuberdeckung
als MaB in Quamoco

Stefanie Dressel

Studiengang: Softwaretechnik

Prufer: Prof. Dr. rer. nat. Stefan Wagner
Betreuer: Dipl.-Ing. Jan-Peter Ostberg
begonnen am: 01.Dezember 2013

beendet am: 28.Mai 2014

CR-Klassifikation: D.2.5,D.2.8,D.2.9

Kurzfassung

Um wettbewerbsfahige Softwareprodukte entwickeln und sich von anderen Unternehmen
abgrenzen zu konnen, werden die Anforderungen an die Softwarequalitdt immer hoher.
Eine Moglichkeit diese greifbar und bewertbar zu machen, bieten die Qualitdtsmodelle und
die zur Verfiigung gestellten Werkzeuge von Quamoco. Ein Qualitdtsmaf von Software ist
deren Testiiberdeckung, welche bis zum Zeitpunkt der Erstellung dieser Arbeit noch nicht
von Quamoco berticksichtigt wird. Ziel dieser Arbeit ist es daher, die Testiiberdeckung als
Maf3 in Quamoco zu integrieren.

Abstract

In order to develop competitive software products and to make yourself unique amongst
other companies, the need for high quality software rises. One approach to make the quality
of software more tangible and assessable is the usage of the Quamoco quality model and
its tool chain. One metric of software quality is test coverage. This is not yet covered by
Quamoco. Hence, this work aims to integrate test coverage into Quamoco.

Inhaltsverzeichnis

1 Einleitung

1.1 Motivation
1.2 Ziel ...
1.3 Aufbauder Arbeit
2 Grundlagen

2.1 Softwarequalitdt L L
2.2 Qualitdtsmodelle e

221 Konzept

2.2.2 Produktqualititsmodell der ISO/IEC 25010
2.3 Softwaremetriken

3 Quamoco

3.1 Meta-Modell
3.2 Basismodell
33 Werkzeuge
4 Testiiberdeckung
4.1 Definition
4.2 Klassifikation von Softwaretests Lo L
4.3 Kontrollflussorientierte Strukturtestso oL
4.3.1 Anweisungsiiberdeckungstest 0L
4.3.2 Zweigiliberdeckungstest L Lo
4.4 Werkzeuge zur Messung der Testiiberdeckung
441 CodeCover. e
442 EcdEmma.
5 Integration
51 Konzept
5.2 Bestimmung eines Analysewerkzeugs und der Mafse
5.3 Erweiterung des Basismodells.
5.4 Erweiterung der ConQAT-Anbindung

10

11
11
12
12
12

13

15
15
17
18

21
21
21
22
22
23
23
24
25

27
27
28
28

34

6 Evaluation

6.1 Grundlagen

6.2 Messung der Testiiberdeckung

6.3 Qualitdtsanalyse L L

6.4 Interpretation und Diskussion der Ergebnisse
7 Fazit

7.1 Zusammenfassung

7.2 Ausblick

Literaturverzeichnis

37

37

37
38
38

41
41
41

43

Abbildungsverzeichnis

2.1
2.2

3.1
3.2
33

4.1
4.2

5.1
5.2

53
54

6.1

Schematischer Aufbau eines hierarchischen Qualitatsmodells [24] 12
Produktqualitdtsmodell der ISO/IEC 25010 [6] 13
Schematische Darstellung des Qualitdtsmodellkonzept von Quamoco nach [22] 16
Modulhierarchie des Basismodellsnach [23] 18
Qualitatsmodell-Editor 19
CodeCover als Eclipse-Plugin [1] 24
EclEmma als Eclipse-Plugin [3] 25
Das Funktionsprinzip einer Evaluierung mit Quamoco. 27
Ubersicht der Einfliisse der Testiiberdeckung auf die Qualititsaspekte von

Quamoco. L 30
ConQAT-Block fir EclEmma 34
HTML-Ausgabe der Evaluation mit den neuen Spalten fiir die Testiiberdeckung. 35
Ubersicht der Messergebnisse der Qualititsanalyse. 39

Kapitel 1

Einleitung

1.1 Motivation

In den letzten Jahrzehnten hat sich Software zu einem zentralen Werkstoff des Informationszeit-
alters entwickelt [10]. Ein Leben ohne ist heutzutage nicht mehr denkbar, denn Software ist
ein fester Bestandteil des modernen Alltags geworden. Es gibt so gut wie keinen Bereich,
in dem sie nicht Einzug gehalten hat. Selbst einfache Dinge wie das Kaffeekochen werden
mittlerweile per Software gesteuert, ganz zu schweigen von einem komplexen Objekt wie
dem Automobil.

Dabei verlassen wir uns darauf, dass die Produkte fehlerfrei funktionieren. Dass dies nicht
immer der Fall ist und fehlerhafte Software in der Vergangenheit schwere Unfélle verursacht
hat, bezeugen nicht nur Zeitungsberichte. Ein bekanntes Beispiel ist der Raketenabsturz der
Ariane 5 am 4. Juni 1996 bei ihrem Jungfernflug [17]. Ein Programmierfehler im Lenksystem
fiihrte schon wenige Sekunden nach dem Start zur Selbstzerstorung der Rakete.

Daher ist es notwendig eine gute Softwarequalitdt anzustreben, um wettbewerbsfahige
Softwareprodukte entwickeln zu konnen. Hierfiir wurden Software-Qualitdtsmodelle er-
stellt, welche genau definieren was unter guter Softwarequalitdt verstanden wird. Quamoco
(Kapitel 3) stellt ein solches Qualitdtsmodell, sowie eine Werkzeugunterstiitzung zur Verfii-
gung. Diese ermdoglicht es, selbst Modelle erstellen und bearbeiten, sowie eine automatische
Qualitdtserhebung durchfiihren zu konnen.

1.2 Ziel

Ein Maf8 fiir die Qualitdt von Software ist die Testiiberdeckung, welche zum Zeitpunkt
der Erstellung dieser Arbeit noch nicht in Quamoco integriert ist. Um das Modell und
die Werkzeugunterstiitzung von Quamoco jedoch weiter zu optimieren, stellt sich nun die
Frage, wie Quamoco um das Maf3 der Testiiberdeckung erweitert werden kann? Hierzu
gehoren eine detaillierte Qualititsmodellierung und die Integration der Testiiberdeckung in
die Werkzeugkette. Ziel dieser Bachelorarbeit ist es daher, dieser Frage nachzugehen, wobei
der Schwerpunkt auf der Integration in die Werkzeugkette liegt.

1 Einleitung

1.3 Aufbau der Arbeit

Diese Arbeit gliedert sich in folgende Teilbereiche:

Kapitel 2 — Grundlagen stellt den Begriff Softwarequalitit und das Konzept Qualititsmodell
vor, und gibt einen Uberblick iiber Softwaremetriken.

Kapitel 3 — Quamoco erklirt das allgemeine Konzept von Quamoco und beschreibt das
Basismodell und die Werkzeugkette.

Kapitel 4 — Testiiberdeckung benennt gebrauchliche Mafse der Testiiberdeckung und befasst
sich mit den Werkzeugen, um diese zu messen.

Kapitel 5 — Integration stellt die durchgefiihrten Anpassungen am Basismodell und an der
Werkzeugkette vor.

Kapitel 6 — Evaluation geht auf die Beurteilung des erweiterten Basismodells und der Werk-
zeugkette bei der Erprobung an Beispielsystemen eines Unternehmens ein.

Kapitel 7 — Fazit fasst die Ergebnisse der Arbeit zusammen und stellt mogliche Ankniip-
fungspunkte vor.

10

Kapitel 2

Grundlagen

Das folgende Kapitel beschreibt die nétigen Grundlagen zum Verstandnis dieser Arbeit. Zu
Beginn werden die Begriffe Softwarequalitdat und Qualitatsmodell erklart und ein Modell
fiir die Produktqualitit vorgestellt. AnschlieBend wird ein Uberblick iiber Softwaremetriken
gegeben.

2.1 Softwarequalitat

Unter dem abstrakten Begriff Qualitit wird laut Duden [9] die "Gesamtheit der charakteristi-
schen Eigenschaften einer Sache" verstanden. Ubertragen gesagt, ist die Softwarequalitit die
Gesamtheit aller spezifischen Merkmale, die ein Softwareprodukt ausmachen. So definiert die
Norm ISO/IEC 25000 Softwarequalitét als "die Gesamtheit von Funktionen und Merkmalen
eines Softwareprodukts, das die Fahigkeit besitzt, angegebene oder implizierte Bediirfnisse
zu befriedigen”. Je mehr die Anforderungen erfiillt werden, desto hoher ist die Qualitidt der
Software. Daher wird in der ISO 9oo0:2008 zitiert nach [15], die Softwarequalitat auch als
"Grad, in dem ein Satz von inhdrenter Merkmalen Anforderungen erfiillt" definiert. Um
welche Eigenschaften es sich dabei handelt wird in Qualititsmodellen (Kapitel 2.2) festgelegt.
Zur Bewertung der Qualitét ist es daher erforderlich, dass die geforderten Eigenschaften
messbar sind.

Die Softwarequalitét ldsst sich in zwei Bereiche unterteilen [16]: Zum einen in die Prozess-
qualitat, unter der die Qualitdt des Projekts, in dem das Softwareprodukt hergestellt wird
verstanden wird. Zum anderen in die Produktqualitdt bei der nur die Qualitit des Produkts
selbst betrachtet wird. Mit Hilfe einer hohen Prozessqualitit soll auch die Produktqualitét
positiv beeinflusst werden, sie ist aber weder eine Garantie noch eine Voraussetzung fiir eine
gute Produktqualitdt. Im weiteren Verlauf dieser Arbeit wird der Begriff Softwarequalitat als
Synonym fiir die Produktqualitdt verwendet.

11

2 Grundlagen

2.2 Qualitatsmodelle

Mit Qualitatsmodellen wird versucht, die abstrakte Bezeichnung Softwarequalitat verstand-
lich und greifbar zu machen. Hierfiir wird der Begriff konkretisiert und durch eine weitere
Detaillierung operationalisiert [14].

2.2.1 Konzept

Die Hauptelemente von Qualitdtsmodellen sind die Qualitdtsmerkmale (Faktoren), welche
hierarchisch angeordnet sind. Qualitdatsmerkmale sind oft noch unpréazise definiert und nicht
messbar [14]. Weitere Elemente von Qualitatsmodellen sind die Qualitatsindikatoren (Maf3e).
Im Gegensatz zu Merkmalen sind sie manuell oder automatisch messbare und voneinander
unabhéngige Kriterien und bilden daher die unterste Ebene der Hierarchie. Ein Indikator ist
oft fiir mehrere Qualitidtsmerkmale relevant, ebenso konnen fiir ein Merkmal verschiedene
Indikatoren wichtig sein. Daher ist die Hierarchie nicht {iberschneidungsfrei und bildet
somit keinen Baum, sondern eine Halbordnung (siehe Abb. 2.1), wobei die Indikatoren die
Blatter sind.

Software-Qualitat
1

y y [J

Qualitats- Qualitéts- Qualitats-
merkmal 1 merkmal 2 merkmal n
1
YVY VYV Y ¥ y
Qualitats- Qualitats Qualitats- Qualitats-
teilmerkmal teilmerkmal 2 || teilmerkmal 3 teilmerkmal m

! ! ! !

Qualitatsindikatoren

Abbildung 2.1: Schematischer Aufbau eines hierarchischen Qualitdtsmodells [24]

2.2.2 Produktqualitatsmodell der ISO/IEC 25010
Die Abbildung 2.2 zeigt das Produktqualitdtsmodell der ISO/IEC 25010 [6]. Die Produkt-

qualitdt wird in diesem Modell in acht Merkmale unterteilt. Jedes dieser Merkmale stellt
wiederum eine Gruppierung aus zusammengehodrenden Untermerkmalen dar.

12

2.3 Softwaremetriken

Maturity

Availabilit
g Reliability

Fault tolerance)
Functional completeness

Recoverability
. - Functional suitability Functional correctness
Appropriateness recognisability

Functional appropriateness

Learnability
Time behaviour

Operability
- Usability Performance efficiency Resouce utilisation
User error protection

i i Capacity
User interface aesthetics
A()CeSSibility Product quallty odaularity
Qeusability

Confidentiality
Maintainability Analysability

Modifiability

Integrity

Non-repudiation Security

Accountability Testability

- Co-existenz
Authenticity Compatibility

Adaptability Interoperability

Installability Portability

Replaceability

Abbildung 2.2: Produktqualititsmodell der ISO/IEC 25010 [6]

2.3 Softwaremetriken

Im Software Engineering wird das Wort Metrik nicht als Distanzfunktion wie in der Mathe-
matik, sondern in der umgangssprachlichen Bedeutung von Maf} verwendet [16]. Es handelt
sich hierbei um eine Abbildung einer Eigenschaft auf eine skalare oder vektorielle Grofle.
Zur besseren Ubersicht werden Softwaremetriken nach ihrem Messobjekt in die drei Klassen
Produkt-, Projekt- und Prozessmetriken unterteilt [19].

Produktmetriken

Diese Metriken befassen sich mit den Eigenschaften der Software selbst. Sie lassen sich
wiederum in dynamische und statische Metriken einteilen. Dynamische Metriken sind
Mafe, die bei der Ausfiihrung eines Programms gemessen werden, wohingegen statische
Metriken durch Messung aus der Systemdarstellung ermittelt werden. Fiir die Beurteilung
von Effizienz und Zuverldssigkeit sind dynamische Metriken hilfreich, statische Metriken
eignen sich eher fiir die Beurteilung von Komplexitit, Verstandlichkeit und Wartbarkeit [20].
Bekannte Metriken sind zum Beispiel die Anzahl der Codezeilen (LoC - Lines of Code)
oder die zyklomatische Komplexitdt nach McCabe [8]. Fiir viele Produktmetriken gibt es
Analysewerkzeuge wie z.B. FindBugs [4] und Gendarme [5]. Sie dienen der effizienten und
automatisierten Ermittlung der Produktmafie. Einige statische Analysen wie z.B. die Priifung
auf uninitialisierte Variablen, sind hdufig schon in Compilern integriert.

13

Kapitel 3

Quamoco

Das Forschungsprojekt Software-Qualitit: Flexible Modellierung und Integriertes Controlling
(Quamoco) [12] befasste sich mit der Frage, wie die Leistungsfdahigkeit und Wirtschaftlichkeit
von Softwareprodukten bewertbar und nachweisbar gemacht werden kann. Projektteilnehmer
waren die Unternehmen Capgemini, itestra, SAP und Siemens, sowie die Forschungsein-
richtungen Fraunhofer IESE und Technische Universitat Miinchen. Sie wurden dabei vom
Bundesministerium fiir Bildung und Forschung, von 2009 bis 2012, im Rahmen des Forder-
programmes ITK 2020 mit 3,7 Millionen Euro unterstiitzt. Weitere rund 2,2 Millionen Euro
brachten die Industriepartner selbst in das Forschungsvorhaben mit ein [21].

Wie bereits in Kapitel 2.2 beschrieben wird mit Qualitdtsmodellen versucht, den abstrakten
Begriff Softwarequalitit durch eine hierarchische Verfeinerung zu konkretisieren. Allerdings
sind bereits bestehende Qualititsmodelle, wie z.B. das Produktqualitdtsmodell (Kapitel 2.2.2)
noch sehr abstrakt gehalten. Es werden dort zwar Qualititsmerkmale, wie z.B. die , Zuverlas-
sigkeit” definiert, jedoch wird nicht angegeben wie sich diese messen lassen. Demgegeniiber
gibt es eine Reihe von Analysewerkzeugen, wie z.B. FindBugs [4] oder Gendarme [5], mit
denen Softwarequalitdtsmafie erhoben werden konnen. Diesen fehlt allerdings der Bezug zu
den Qualitdtszielen [21]. Einige Unternehmen definieren daher ihre eigenen Qualitatsrichtli-
nien, wobei diese meist nur fiir spezielle Bereiche der Softwarequalitdt nutzbar sind. Es ist
daher wiinschenswert einen tiberpriifbaren Qualitdtsstandard zu haben.

Das Forschungsprojekt Quamoco hatte sich daher zum Ziel gesetzt, einen solchen Standard
zu erarbeiten. Dieser Standard sollte ebenso die Vielfalt unterschiedlicher Softwareprodukte
berticksichtigen [12]. Als Resultat des Projekts entstand eine Werkzeugkette zur Erstellung
und Anwendung von Qualititsmodellen, sowie ein Basis-Qualitdtsmodell. Beides steht unter
www.quamoco.de zur freien Verfiigung [21].

3.1 Meta-Modell

Um eine konsistente Struktur von Qualitdtsmodellen zu gewdhrleisten, hat das Forschungs-
projekt ein Meta-Modell entwickelt [22]. Dieses definiert wie ein Quamoco-Qualitdtsmodell

15

3 Quamoco

aufgebaut sein muss. Zudem wurde anhand des Meta-Modells ein Editor (Kapitel 3.3) im-
plementiert, um neue Qualitdtsmodelle erstellen und bestehende anpassen und erweitern zu
konnen.

Quamoco-Qualitdtsmodelle sind hierarchisch aufgebaut. Ebenso wie im Produktqualitats-
modell wird der abstrakte Begriff Softwarequalitit durch Aufsplittung in Qualitdtsmerkmale
weiter verfeinert. Wie in Abbildung 3.1 zu sehen ist, beinhalten diese Modelle zwei unter-
schiedliche Hierarchien, mit Faktoren als Elemente. Diese sind entweder Qualititsaspekte
oder Produktfaktoren, welche beide jeweils weiter in Subaspekte und Subfaktoren verfeinert
werden konnen. Alle Faktoren beschreiben die Eigenschaft einer Entitit. Unter einer Entitat
wird ein eindeutig bestimmbares Objekt eines Softwareprodukts verstanden. Entitdten sind
z.B. Klassen und Methoden, aber auch das gesamte Produkt wird als Entitédt bezeichnet. Der
Unterschied zwischen den beiden Faktorarten ist, dass es sich bei einem Qualitdtsaspekt um
ein abstraktes Qualitdtsziel handelt, welches immer das ganze Produkt als Entitét besitzt.
Demgegentiber ist ein Produktfaktor eine messbare Eigenschaft eines Produktteils. Sowohl
die Qualitatsaspekte als auch die Produktfaktoren bilden eine eigene Hierarchie. Um die
Liicke zwischen den beiden Hierarchieebenen zu schliefsen und damit eine Verbindung von
den abstrakten Qualitdtsaspekten zu den konkreten Produktfaktoren herzustellen, miissen
diese beiden Faktorarten in Beziehung zueinander gesetzt werden. Hierbei konnen allerdings
nur die Produktfaktoren die Qualitatsaspekte, entweder positiv oder negativ, beeinflussen.
Um ausdriicken zu konnen, welcher Produktfaktor, welchen Qualitdtsaspekt wie beeinflusst,
werden im Modell Aggregationen definiert.

Qualitatsaspekt-Hierarchie

Produktfaktor-Hierarchie

Messwerkzeug

Abbildung 3.1: Schematische Darstellung
des Qualitdtsmodellkonzept von Quamoco nach [22]

16

3.2 Basismodell

Weitere Elemente des Qualitatsmodells sind die MafSe. Ein Mafs ist eine konkrete Beschrei-
bung, die fiir einen speziellen Kontext angibt, wie Produktfaktoren gemessen werden. Die
Trennung von Produktfaktoren und Mafsen ermoglicht es, die Faktoren in unterschiedlichen
Kontexten zu messen. Um die beiden Elemente miteinander in Beziehung zu bringen, wird
im Modell eine Evaluation definiert. Diese ermoglicht auch eine Zuordnung mehrerer Mafie
zu einem Produktfaktor. Des Weiteren besteht eine Trennung zwischen den Mafien und den
Analysewerkzeugen. Hierdurch entsteht eine Flexibilitdt, um z.B. Daten manuell erheben
oder unterschiedliche Werkzeuge in verschiedenen Kontexten verwenden zu kénnen. Eine
Verbindung zwischen diesen Elementen wird durch die Definition von MeasurementMethods
(Messmethoden) im Modell hergestellt. Mit diesem hier vorgestellten Gesamtkonzept wird
die Liicke zwischen dem abstrakten Begriff Softwarequalitdt und den konkreten Software-
mafien geschlossen.

Modularisierung

Ein wichtiges Konzept von Quamoco ist die Modularisierung, welche die Unterteilung eines
Modells in einzelne Module erlaubt [22].

Ein allumfassendes Qualitdtsmodell, welches den Anspriichen unterschiedlichster Techno-
logiebereiche geniigt, wire sehr unpraktisch und uniibersichtlich. Daher entwickelte das
Forschungsteam ein Basismodell, welches in seinem Hauptmodul Root Qualitdtsaspekte,
Produktfaktoren und Mafle, definiert, die weder von der Programmiersprache noch von
der Produktsparte abhéngen. Dieses Basismodell ldsst sich durch neue Module erweitern.
Hierdurch kénnen Qualitdtsmodelle erstellt werden, die auf der einen Seite auf spezielle
Eigenschaften unterschiedlicher Technologien eingehen. Auf der anderen Seite die selben,
allgemeinen Eigenschaften und Entitdten als Grundlage besitzen. Somit ist ein flexibler
Umgang mit grofsen Modellen moglich. Im Folgenden wird das Basismodell von Quamoco
genauer beschrieben.

3.2 Basismodell

Wie bereits in Kapitel 3.1 beschrieben, ist das Basismodell ein Qualitdtsmodell, welches die
allgemeingiiltigen Qualitatsaspekte und Produktfaktoren definiert, die nicht von einem be-
stimmten Technologiebereich oder einer Programmiersprache abhidngen. Diese allgemeinen
Eigenschaften sind in dem Modul Root definiert. Zum Zeitpunkt der Erstellung dieser Arbeit
existieren zuséatzlich noch drei weitere Module. Hierbei handelt es sich zum einen um ein
Modul, welches spezifische Eigenschaften von objektorientierten Sprachen beinhaltet. Zum
anderen gibt es zwei Module, welche die Eigenheiten der Sprachen Java und C# abbilden.
Diese definieren zudem, wie die konkrete Messung von Eigenschaften {ibergeordneter Mo-
dule stattfindet. In Abbildung 3.2 ist die Abhéngigkeit der Module untereinander zu sehen.
Das oberste Modul ist das Modul Root, welches fiir alle weiteren Module die Basis bildet.
Darunter steht das Modul fiir die objektorientierten Spracheigenschaften und auf dritter

17

3 Quamoco

Ebene befinden sich die Module fiir die objektorientierten Sprachen. Die, mit gestrichelter
Linie umrandeten Module stellen mogliche Erweiterungen des Basismodells dar.

Root
/’// ‘\ \\\\

- ~

(T T - l \f ____________ |
! (¢} | object-oriented : GUI |
______ l —_———— = ‘\ | S ——

-
-

T — an
: C++ i [Java] [C#

Abbildung 3.2: Modulhierarchie des Basismodells nach [23]

Das Modell besteht aus einer Auswahl von grundlegenden Qualitdtsmerkmalen, d.h. von
Faktoren und Maflen, die fiir die Qualitdtsbeurteilung wichtig sind. Bei der Definition der
Qualitdtsaspekte wurden Produktqualititsmerkmale des Produktqualitdtsmodells ISO/IEC
25010 (Kapitel 2.2.2) verwendet.

Insgesamt umfasst das Modell 92 Entitdaten und 284 Faktoren [23]. Einige dieser Faktoren
dienen nicht direkt zur Qualitatsbeurteilung, sondern nur der Strukturierung. Und auch
nicht jeder Faktor beeinflusst andere Faktoren. Insgesamt hat das Modell 490 definierte
Einfliisse. Die 194 messbaren Faktoren sind im Vergleich zu den 526 Mafien, welche das
Modell beinhaltet, sehr wenig. Die vergleichbar grofie Anzahl an Mafien lasst sich auf die
Operationalisierung von verschiedenen Programmiersprachen zuriickfithren. Zur Messung
der Mafse werden acht manuelle Messmethoden und zwolf Werkzeuge zur Verfiigung gestellt.
Darunter FindBugs [4], welches fiir Java 361 Regeln modelliert und Gendarm [5] mit 146
Regeln fiir C#.

3.3 Werkzeuge

Das Forschungsteam hat neben den entstandenen Modellen auch Werkzeuge entwickelt,
um Qualitditsmodelle erstellen und bearbeiten, sowie eine automatische Qualitdtsbewertung
durchfiihren zu kénnen.

Qualitatsmodell-Editor

Der Editor basiert auf dem Eclipse Modeling Framework. Er ermoglicht die Erstellung und
Bearbeitung von Qualitdtsmodellen auf Grundlage des Meta-Modells.

Abbildung 3.3 zeigt den Qualitaitsmodell-Editor. Auf der linken Seite in der Projektiibersicht,
sind das Basismodell und seine Module zu sehen. Jedes Modul wird in einer separaten Datei
gespeichert, hierdurch wird das Konzept der Modularisierung unterstiitzt. Der Inhalt des
Modells lasst sich tiber verschiedene Baumstrukturen einsehen. Im mittleren Bereich ist die

18

3.3 Werkzeuge

Faktorhierarchie dargestellt und auf der rechten Seite befindet sich eine Eingabemaske zur
Definition von Eigenschaften zu einem ausgewdhlten Faktor.

oz

File Edit Qm Editor Search Window Help

- - -

’
(5 Project Explo... §2 ||| 9% java.gm 52

4 |2 Basemodel @, Property @Product

Quamoco Quality Model Editor

=] Properties i3

Factor: Interface and Implementati...arison method [Object-orientation]

oz csharp.qm 4 @ Quality @Product Attributes Evaluated By: xy Java/Interface and Implementation Consistency @Cor
95 java.gm 4 13 Refined By Hierarchy
9% object.qm @ Compatibility < ’
o References
T root.gm @ Functional Suitability Annotat add remove [z: new
4 @ Maintainability nnetations
4 1; Refined By Advanced Origin... From:

@ Analyzability

@ Modifiability

@ Modularity dd I d

4+ © Reusability a remove [Z: new up own
Pl Influenced By

[2

Behavioral Integrity @Clone mef

Measured By:

> Abstract class defines covariant compareTo() method
> Abstract class defines covariant equals() method [Java

@, Behavioral Integrity @ Comparis:
@ Behavioral Integrity @lterator » Covariant compareTo() method defined [Java)
@, Behavioral Integrity @ToString M > Covariant equals() method defined [Java)
@, Definition and Usage Consistenc » Covariant equals() method defined for enum [Java)
4| @, Interface and Implementation C > Covariant equals() method defined, Object.equals(Obj
Measured By < >
xy Evaluated By add| |remove| fz: new

Impacts
Interface and Implementation C
Interface and Implementation C
Literal Validity @Annotation

Influences:

@ Analyzability [Root]
@ Reusability [Root]

@ Functional Correctness [Ront]

Method-Pair Consistency @Cla
Reference Validity @Method par ,

) Cheat Sheets 2

28585

< >
Entity Hierarchy ' Factor List

Selection | Factor Hierarchy '

Selected Object: Interface and Implementation Consistency @ Comparison method [Object-orientation]

Abbildung 3.3: Qualitdtsmodell-Editor

Anbindung an das Analysewerkzeug ConQAT

Das Continuous Quality Assessment Toolkit (ConQAT) [2] ist ein konfigurierbares Werkzeug
zur Softwareanalyse. Mit einer graphischen Benutzeroberfldche lassen sich eigene Analyse-
konfigurationen erstellen. Hierfiir werden sogenannte Prozessoren miteinander verkniipft
und in Blocken verwaltet. ConQAT selbst stellt viele Prozessoren zur Verfiigung, z.B. zur
HTML-Ausgabe von Daten.

Von dem Qualititsmodell-Editor aus kann die Analysekonfiguration von Quamoco gestartet
werden. Damit ConQAT eine Evaluation durchfiihren kann, wurde das Werkzeug durch
das Forschungsteam um neue Prozessoren und Blocke erweitert. Diese sind speziell auf die
im Basismodell definierten Messwerkzeuge abgestimmt und kénnen deren Messergebnisse
verarbeiten. Zudem gibt es Prozessoren, die das Modell selbst einlesen und mit den gemes-
senen Maflen in Beziehung setzen. Die Ergebnisse werden als HTML-Ausgabe gespeichert
und an den Editor gesendet, der diese visuell darstellt.

19

Kapitel 4

Testuberdeckung

Dieses Kapitel beschiftigt sich mit der Definition der Testiiberdeckung und deren Ein-
gliederung in die Klassifikation von Softwaretests. Es werden die Anweisungs- und die
Zweigiiberdeckung beschrieben. Im Anschluss erfolgt eine Vorstellung von Werkzeugen, zur
Ermittlung der Testiiberdeckung.

4.1 Definition

Testfdlle konnen noch so gut sein, dennoch ist es mit ihnen nicht moéglich nachzuweisen, dass
keine Fehler mehr im Programmcode vorhanden sind [11]. Daher wird versucht die Testfélle
so abgeschlossen wie moglich zu erstellen [18]. Dies bedeutet, mit den vorhandenen Testfal-
len, den gesamten Programmcode mindestens einmal auszufiihren, denn Fehler konnen von
UnitTests nur in einem ausgefiihrten Programmteil gefunden werden [19]. Indem nun Code-
stellen identifiziert werden, die noch nicht oder unzureichend von Testfédllen abgedeckt sind,
steigt die Wahrscheinlichkeit Fehler zu entdecken. Der Grad der Abdeckung von Code durch
Testfélle wird auch als Testiiberdeckung bezeichnet und in Prozent angegeben. Mit Hilfe der
gemessenen Uberdeckung konnen die vorhandenen Testfélle bewertet und verbessert werden,
um so eine grofitmogliche Testiiberdeckung zu erzielen. Wichtigster Anwendungsbereich
zur Messung der Uberdeckung sind Modultests. Bei Systemtests hingegen werden sie nicht
eingesetzt [15].

4.2 Klassifikation von Softwaretests

Es gibt viele unterschiedliche Arten von Softwaretests, welche sich nach verschiedenen
Kriterien klassifizieren [16] lassen:

e Grundlage des Tests

e Aufwand fiir Vorbereitung und Archivierung

21

4 Testiliberdeckung

o Komplexitit des Priiflings
o getestete Eigenschaft

e beteiligte Rollen

Bei der Aufteilung der Softwaretests nach dem Kriterium Grundlagen des Tests, entstehen
zwei Klassen von Tests:

Funktionstest (Black-Box-Test) bezeichnet einen Test, dessen Testfédlle sich auf die in der
Spezifikation geforderten Eigenschaften bezieht.

Strukturtest (Glass-Box-Test, White-Box-Test, Clear-Box-Test) wird ein Test genannt, bei dem
als Grundlage fiir die Testfélle, die innere Struktur des zu testenden Programms und
die Aufzeichnungen fritherer Programmabldufe herangezogen werden.

Die Ermittlung der Testiiberdeckung gehort zu den kontrollflussorientierten Strukturtests
und ist ein dynamisches Testverfahren. Im Gegensatz zu den statischen, wird bei dynami-
schen Verfahren die Software beim Testen ausgefiihrt. Die Testvollstandigkeit wird anhand
der Kontrollflussiiberdeckung bewertet [15].

4.3 Kontrollflussorientierte Strukturtests

Zu den kontrollflussorientierten Strukturtests gehoren nach [15]:

e Anweisungsiiberdeckungstest

Zweigliberdeckungstest

Bedingungsiiberdeckungstest

Strukturierter Pfadtest und boundary interior-Pfadtest

Linear Code Sequence and Jump - barsierter Test

Pfadiiberdeckungstest

4.3.1 Anweisungsuberdeckungstest

Mit einem Anweisungsiiberdeckungstest wird ermittelt, wie viele Anweisungen des Pro-
grammcodes beim Testen ausgefiihrt werden. Um eine vollstindige Uberdeckung zu erzielen,
muss jede Anweisung mindestens einmal ausgefiihrt werden. Das Testmaf ist der erreichte
Anweisungsiiberdeckungsgrad:

Anzahl der ausgefiihrten Anweisungen

Grad der Anweisungsiiberdeckung = Gesamtanzahl der Anweisungen

22

4.4 Werkzeuge zur Messung der Testliberdeckung

Mit diesem Uberdeckungstest wird sichergestellt, dass alle Anweisungen ausgefiihrt wer-
den. Die Ausfithrung einer Anweisung ist ein notwendiges Kriterium, um in dieser ein
Fehler lokalisieren zu konnen. Da das Auftreten eines Fehlers jedoch an die Ausfiihrung mit
bestimmten Testdaten gekoppelt sein kann, ist die Anweisungsiiberdeckung kein hinreichen-
des Kriterium. Sie kann zur Quantifizierung der Testiiberdeckung herangezogen werden,
ist jedoch ein zu schwaches Kriterium fiir eine sinnvolle Testdurchfithrung und von der
alleinigen Verwendung wird abgeraten [15].

Die Anweisungsiiberdeckung ist das am einfachsten zu messende Uberdeckungsmaf. Sofern
der Programmcode keinen ,toten Code” beinhaltet, kann theoretisch eine hundertprozentige
Anweisungsiiberdeckung realisiert werden [15]. In der Praxis ldsst sich jedoch nur sehr
schwer eine Uberdeckung von mehr als achtzig Prozent erzielen [16]. Es existiert oft defensi-
ver Code, der nur bei Fehlern in anderen Programmteilen ausgefithrt wird. Zur Erkennung
von Wartungsfehlern ist solcher Code jedoch sinnvoll. Auch Testfélle, die abhdngig von
Uhrzeit und Datum sind, sind oft schwer zu realisieren.

4.3.2 Zweiguberdeckungstest

Bei einem Zweigiiberdeckungstest miissen mindestens einmal alle Zweige des zu testenden
Programms ausgefiihrt werden, um eine vollstindige Uberdeckung zu erzielen. Wird
eine hundertprozentige Zweigiiberdeckung erreicht, so liegt auch eine vollstindige
Anweisungsiiberdeckung vor. Testmaf3 ist der erreichte Zweigiiberdeckungsgrad:

Anzahl ausgefiihrter Zweige

Grad der Zweigiiberdeckung = Gesamtanzahl der Zweige

Die Zweigiiberdeckung gilt als Minimalkriterium von kontrollflussorientierten Tests [15]. Sie
ist eine notwendige Testtechnik und wird von den meisten anderen Testmethoden subsu-
miert.

Alle Programmzweige mit Testfdllen abzudecken, erweist sich in manchen Fillen als schwie-
rig, da manchmal zwar der Zweig ausfithrbar wire, jedoch die Erzeugung des Testfalls
sehr kompliziert ist. Auf der anderen Seite kann es auch Zweige geben, die nie ausfiihr-
bar sind. Solche tiberfliissigen Zweige entstehen oft durch Entwurfsfehler. Aber auch eine
hundertprozentige Zweigiiberdeckung ist keine Garantie fiir ein fehlerfreies Programm.

4.4 Werkzeuge zur Messung der Testliberdeckung

Heutzutage gibt es eine ganze Reihe von Werkzeugen zur Ermittlung der Testiiberdeckung
fiir verschiedenste Programmiersprachen. Allein fiir Java existieren mehr als zehn solcher
Werkzeuge, wie z.B. Cobertura, CodeCover und Emma [7].

23

4 Testiliberdeckung

Werkzeuge zur Testiiberdeckung liefern im Allgemeinen folgende Informationen [13]:
¢ Quellcodeabdeckung in Prozent
e Identifizieren und markieren ungetesteter Teile
e Ermittlung der Testiiberdeckung nach Normen und Standards

Im Weiteren soll auf die zwei Werkzeuge CodeCover und EclEmma genauer eingegangen
werden, welche beide als Eclipse-Plugin verfiigbar sind:

4.4.1 CodeCover

CodeCover [1] ist ein an der Universitdt Stuttgart entwickeltes Glass-Box-Test-Werkzeug.
Es entstand im Rahmen eines Studienprojekts und wird unter anderem in Form von Ab-
schlussarbeiten aktiv weiterentwickelt. Mit CodeCover kénnen neben der Anweisungs-
und Zweigiiberdeckung noch fiinf weitere Uberdeckungsmafle gemessen werden. Zur Zeit
werden die Programmiersprachen Java, COBOL und C unterstiitzt. CodeCover steht unter
EPL-Lizenz und ist unter www.codecover.org als Standalone Version, sowie als Eclipse-
Plugin frei verfiigbar. Mit CodeCover ist es moglich, die Art der Testiiberdeckung individuell
auszuwihlen und nur fiir vorher definierte Klassen und Pakete messen zu lassen. Die Analy-
seergebnisse sind beim Eclipse-Plugin direkt in Eclipse einsehbar (siehe Abbildung 4.1) und
konnen zusétzlich als XML- und HTML-File exportiert werden.

0606 Java - i pp/src/org/codecover/simplej ontroller/AppController.java - Eclipse SDK - fUsers/Markus/Documents/Development/Eclipse /workspaceDemo =
Irs- I$- 0 |Es6 @] 4]0 -5 B0 £ 35 Debug Elava
Package Explorer Hierarchy SimpleJavaApp java AppController java Outli... | Ant | & Live ... Pick ...

-] 2 =0 b4 =0 L 4 2 =0
IS “The file has modifications. Save before proceeding?”, - [E—
B s Fileld); 0
v = simplelavaApp Hostname: locathost
v Fsrc switch (result) {
v 8 ora.codecover simplejavaapp case JOptionPane. VES_OFTION: o 1234
w 1 .
b [L simpleavasppava if ! Y
s simplelavaApp /% Saving was aborted or failed, so we don't proceed */ 4
» £ org.codecover simplejavaapp.contr ne. F—
» 8 org.codecover s
» £ org.codecover simplejavaapp.view | |[mm Coverage g@‘ = @m|® @ = Oj| Notconnected
b = JRE System Library [IVM 1.5.0 (MacOS X T
irrl Live Notificati
» (= codecover (] Show methods with | Statement Coverage [5) (<= %) (905 % ve Notification
» (= icons — Test Case Name:
Name Statement Branch Loop Strict Condition
» & AppController -42% -532% -333% -—11% m
> © AppFile 080 % 6.7 % 457 % - 50.0% < Start Test Case
End Test Case
[Correiation 1| ZkE- =z B0 FinlshTesusession
Test Case: "Close Window" of the Test Sessi. i
Close Wi... Delete B... New Book...New Wind...__Quit Save
De ad Ce ige Log Fil
I Test Case: "Delete Book” of the Test Session D ———
» Test Case: "New Book; Change Book” of the T
I Test Case: "NewWindow’ of the Test Sessior
Test Case: "Quit” of the Test Session: ‘livenc
b Test Case: "Save” of the Test Session: “livens
Delete B...
New Book.. ==,
Y
[——— —] y<T+ € - B EIC
B oolean Analyzer 53 | = O [problems [peclarat...[search [progress [Console [1avadoc [Tasks [Error Log [Testse.. 28] = O
Class: [AppController 1%) Condition: [model. 2] Bol¥
model.isFileModified(fileld) Result Test Cases (Number of Executions) Test Session Container: [SimplelavaApp Oct 8, 2007 3:22.23 M%)
1 Quit(2) Name Date Time
@ Close Windaw (1) ™ » (3 livenotificationrun Oct 8, 2007 5:01.08 PM
O » @ eclipserun Oct 9, 2007 2:37:50 PM
(— — — — — — — —] YT This condition reached a strict condition coverage of 100.0%. € i KR
s
lo 1 7

Abbildung 4.1: CodeCover als Eclipse-Plugin [1]

24

4.4 Werkzeuge zur Messung der Testliberdeckung

4.4.2 EclEmma

EclEmma [3] ist ein frei verfiigbares Eclipse-Plugin, mit dem die Testiiberdeckung in Java-
Programmen gemessen werden kann. Die Analyse ldsst sich tiber das Menii oder die
Run-Workbench Symbolleiste starten. Neben der Zeilen-, Methoden- und Typeniiberdeckung
kann EclEmma auch die Anweisungs- und Zweigiiberdeckung ermitteln. Die Ergebnisse
sind nach der Messung direkt im Workbench verfiigbar wie in Abbildung 4.2 zu sehen ist.
Mit der Exportfunktion von EclEmma lassen sich diese unter anderem als HTML-, XML-
oder CSV-Datei exportieren.

& Java - CursorableLinkedList.java - Eclipse SDK — ||:||1|

File Edit Source Refactor Mavigate Search Project Run Window Help

Iti-He @ | %-%-0-%- |BFG- [2-3-"C-2 - |®5 | 58 &
o Junit 2 [3 EH~ =0 rsorableLinkedlist java X =g
Finished after 34,898 seconds public hoolean addill(int index, Collection c) AID
Runs: 13009/13009 B Errors: 0 B Failures: 0 1E (im0 dsliaEw (1))
return false; et

I } else if{ size == index || size == 0 {

B i i h return addill (c);

@ Failures | [£]& Hisrarchy } else {

E---EE jurit. framewark. TestSuite Listable succ = getlistablelt|index):
E|---|£—|E| juriit Framework, TestSuite Listahle

B i pred = (null == =succe) ? nuall @ succ.previ():
Eg lregsfsgculf:commons.collections.TestCIos SPERRECE 85 = EolEEEEeE Dl
E|E| org.apache. commans, collections. TestCall: TG (AR heen B ()) 4

pred = insertlistable (pred,succ, it.next(]]);

] TestBuFferUtils
[TestEnumerationUtils
|5_E| org.apache ., commons, collections, TestFact

+
return true:;

[TestListUtils i
[TestmapLtils ¥ -
|£—|E| org.apache . commons. collections, TestPrec 4 | | LIJ
] TestsetUtils =
[arg.apache commans. callections, TestTrar Problems | Javadoc | Declaration | Consale ﬂa Coverage &4 O
E|E| Testarray3kack TestalPackages (31.10.2006 15:04:14) % | ® % _n . | B,E o 600 ~
E|E| TestBeanMap
[] org.apache. commons. collections. TestBing— Element I Cowverage I Covered Lines I Totall_iil;
EEl TestBoundedFif oBuFFer IHB java - commons-collections = | 79,5 % 10927 13738
E|E| TestBoundedrif cBuFFar? - f# org.apache.commans,collections = 741 % 3842 5183
[TestCursorableLinkedList [J] ArrayStack.java b 86,5 % 32 3
[Ef] TestDoubleCrderedrap 4] Bagltils. java = 86,7 % 13 15 —
|E_|E| aorg.apache . cormmons, colleckions, TestExte [J] BeanMap.java = 72,4 % 155 214
E|E| TestFastarraylist B BinaryHeap.java] 7,6 % 127 145
E‘EI TestFastArrayList] [J] BoundedFifoBuffer java = 93,2 % az a5
Ef5] TestFastHashMap [J] BufferCverflowException. java - 55,6 % 5 9
Ef] TestFastHashMap1 [J] BufferUnderflowException.java L] 58,9 % g 9
Ef] TestFastTreeMap [J] BufferUtils.java - 30,8 % 4 13
E‘EI TestFastTreeMapl - [J] ClosureUtils.java = 93,9 % 31 33

| | LIJ)] Collectionitils.java] 92,4 % 293 317

B ComparatorUtils, java - 8,6 % 3 35
= Failure Trace G [J] CursorableLinkedList. java = a54% 444 520 =]
[] | ‘Writable | Smart Insert | 149: 25 |

Abbildung 4.2: EclEmma als Eclipse-Plugin [3]

25

Kapitel 5

Integration

Das folgende Kapitel befasst sich mit der Umsetzung der Integration der Testiiberdeckung
in Quamoco. Zu Beginn wird das Konzept vorgestellt. Anschliefend werden die Erwei-
terungen des Basismodells erldutert und die Auswirkungen der Testiiberdeckung auf die
Qualititsaspekte diskutiert. Zum Schluss wird auf die Anderungen der Werkzeugkette
eingegangen.

5.1 Konzept

Um die Testiiberdeckung als Mafs in Quamoco integrieren zu konnen, miissen folgende drei
Schritte durchgefiihrt werden:

1. Bestimmung eines Analysewerkzeugs und der Mafie
2. Erweiterung des Basismodells

3. Erweiterung der ConQAT-Anbindung

Diese leiten sich aus der Arbeitsweise von Quamoco ab, welche in der Abbildung 5.1 zu
sehen ist. In den ndchsten Abschnitten werden die einzelnen Schritte genauer erklart.

Softwareprodukt

Quamoco-Editor Messwerkzeug

Y Y

f Qualitatsmodell L) ConQAT (ﬁ Messergebnisse ;

‘ HTML-Ausgabe ’

Abbildung 5.1: Das Funktionsprinzip einer Evaluierung mit Quamoco.

27

5 Integration

Die Evaluierung eines vorgegebenen Softwareprodukts wird mit dem Analysewerkzeug
ConQAT durchgefiihrt. Als Eingabe wird neben dem Produkt selbst, auch das Quamoco-
Qualitatsmodell, nach dem die Software bewertet werden soll, benotigt. Enthélt das Modell
Mafle, deren Messwerkzeug nicht von ConQAT zur Analyse angestofien wird, so ist es
notwendig die Messungen vor der Evaluierung durchzufiihren. Die Messergebnisse werden
ebenfalls ConQAT, als Eingabe, zur Verfiigung gestellt. Damit ConQAT diese Messdaten
tir die Evaluierung weiter verarbeiten kann, ist eine Anpassung der ConQAT-Anbindung
notwendig (siehe Kapitel 5.4). Nach der Evaluation gibt ConQAT die Ergebnisse als HTML-
Datei aus.

5.2 Bestimmung eines Analysewerkzeugs und der MaBe

Analysewerkzeug

Wie bereits in Kapitel 4.4 beschrieben, gibt es eine Vielzahl von Analysewerkzeugen zur
Ermittlung der Testiiberdeckung. Da die Integration im Rahmen dieser Arbeit sich auf die
Messung von Java-Code beschrénkt, fiel die erste Wahl auf das Messwerkzeug CodeCover.
Die Vorteile des Werkzeugs waren zum einen der Ausschluss ausgewihlter Klassen von
der Analyse, sowie zum anderen die Moglichkeit durch ein Open Language Interface, das
Werkzeug auch fiir andere Programmiersprachen erweitern und verwenden zu kénnen. Zu
Beginn der Erprobung stellte sich allerdings heraus, dass CodeCover mit der neu in Java 7
eingefiihrten Typinferenz und der dadurch geschaffenen Moglichkeit ‘<>" zu verwenden,
nicht zurecht kommt und eine Messung verweigert. Daher wurde fiir die Messung der
Testiiberdeckung auf das Analysewerkzeug EclEmma zuriickgegriffen. Die Messergebnisse
werden in eine CSV-Datei gespeichert. Diese beinhaltet unter anderem vier Spalten, wobei
zwei die Anzahl der {iberdeckten und zwei die Anzahl der nichtiiberdeckten Anweisungen
bzw. Zweige angibt. Die Zeilen spiegeln die Klassen und innere Klassen des Projekts wider.

MaBe

Mit EclEmma lassen sich verschiedene Testiiberdeckungsmafse messen. Im Rahmen dieser
Bachelorarbeit beschranken wir uns auf die Mafle Anweisungs- und Zweigiiberdeckung
(Kapitel 4.3). Diese Ma8e gehoren zu den am einfachsten zu ermittelnden Uberdeckungsmafe
und stellen eine ausreichende Grundlage dar.

5.3 Erweiterung des Basismodells

Die Modifizierung des Modells wurde mit dem Qualitatsmodell-Editor (Kapitel 3.3) durch-
gefiihrt. Zuerst wurde das Tool EclEmma im Modell definiert. Da es sich hierbei um ein
Analysewerkzeug fiir die Programmiersprache Java handelt, stand die Zuordnung zum
Modul Java aufier Frage. Ebenso wie bereits fiir alle anderen Tools, ungeachtet welche

28

5.3 Erweiterung des Basismodells

Programmiersprache sie unterstiitzen, wurde fiir EclEmma im Modul Root eine Source
angelegt. Zudem wurden zwei neue Measures, eins fiir die Anweisungs- und eins fiir die
Zweigiiberdeckung im Java Modul definiert, da die Integration fiir diese Programmier-
sprache durchgefiihrt wurde. Des Weiteren wurde fiir jedes dieser beiden Elemente eine
MeasurementMethod im Modul Java angelegt, welche das Tool EclEmma mit den Measures
verkniipft.

Bevor neue Produktfaktoren fiir die Mafle ins Modell eingefiigt werden konnten, war die
Frage zu kldren, welche der folgenden Aufteilungen am sinnvollsten ist:

1. Ein Produktfaktor Testiiberdeckung, der sich aus den Mafien Anweisungs- und Zweig-
tiberdeckung zusammensetzt.

2. Zwei unabhiéngige Produktfaktoren, einen fiir die Anweisungs- und einen fiir die
Zweigiiberdeckung, die nebeneinander existieren.

3. Drei Produktfaktoren, wobei der Produktfaktor Testiiberdeckung, den Subfaktor An-
weisungstiiberdeckung und den Subfaktor Zweigiiberdeckung besitzt.

Um diese Frage beantworten zu konnen, ist es notwendig die Einfliisse der Testiiberde-
ckung auf die Qualitdtsaspekte zu kennen. Beeinflussen beide Uberdeckungsma@e dieselben
Aspekte, so ist es sinnvoll nur einen gemeinsamen Produktfaktor zu definieren. Dies wiirde
die Anzahl der zu modellierenden Einfliisse halbieren. Beeinflussen hingegen beide Mafie
unterschiedliche Qualitdtsaspekte, so wére es notwendig zwei Produktfaktoren zu model-
lieren. Die dritte Variante ist sinnvoll, wenn sowohl beide Uberdeckungsmafle gemeinsam
Qualitatsaspekte und zusétzlich noch allein Aspekte beeinflussen.

Im Rahmen dieser Bachelorarbeit wurde eine erste Uberlegung zu der Beeinflussung der
Qualitatsaspekte durch die Testiiberdeckung vorgenommen. Zuerst wurde angenommen,
dass die Anweisungstiberdeckung andere Qualitdtsaspekte beeinflusst, als die Zweigiiberde-
ckung, deshalb wurden im Modell zwei Produktfaktoren definiert. Jedoch konnte nur fiir
die drei Merkmale Reife, Portierbarkeit und Effizienz eine Begriindung gefunden werden,
dass diese nur von einem der beiden Uberdeckungsmafle beeinflusst werden. Nach weiterer
Diskussion dartiber, stellten sich diese Begriindungen allerdings als nicht haltbar heraus.
Die Sinnhaftigkeit einer getrennten Betrachtung der Mafle ist hiermit jedoch nicht ausge-
schlossen. Denn um dies letzten Endes beurteilen zu konnen, sind umfangreiche Studien
und Expertenwissen notwendig. Daher wurden die zwei Produktfaktoren beibehalten, um
dadurch so flexibel wie moglich zu bleiben.

Die neu definierten Produktfaktoren wurden im Modul Root integriert, da sie weder von
der Programmiersprache, noch von deren Art oder einem speziellen Technologiebereich
abhdngen. Um eine Verkniipfung zwischen diesen neuen Produktfaktoren und den zuvor
modellierten Measures aus dem Java Modul herzustellen, wurde ebenfalls im Modul Java
eine Evaluation modelliert.

29

5 Integration

Einfluss der Testliberdeckung auf die Qualitatsaspekte

Die Testiiberdeckung identifiziert Codestellen, die durch UnitTests abgedeckt werden. Bei
Fehlschlagen von UnitTests konnen die hierfiir verantwortlichen Codezeilen gedndert und
so das fehlerhafte Verhalten beseitigt werden. Die Testiiberdeckung hat somit einen Einfluss
auf Qualitatsaspekte, die durch die Verwendung von UnitTests beeinflusst werden.

Im Weiteren werden nun die Qualitdtsaspekte einzeln betrachtet und jeweils begriindet,
weshalb die Testtiberdeckung auf diesen Aspekt einen Einfluss hat oder nicht. Wie schon
in Kapitel 3.2 beschrieben, wurden bei der Definition der Qualitidtsaspekte, Merkmale
des Produktqualitidtsmodells der IISO/IEC 25010 fiir Quamoco verwendet und angepasst.
Abbildung 5.2 gibt einen Uberblick iiber die Einfliisse. Griin bedeutet, dieser Aspekt wird
beeinflusst, rot er wird nicht beeinflusst.

Modularitat

Analysierbarkeit k Wartbarkeit
Modifizierbarkeit
Testbarkeit

Verfugbarkeit

Softwarequalitat

Zuverlassigkeit

Funktionalitdt ~ = Richtigkeit

Sicherheit

Abbildung 5.2: Ubersicht der Einfliisse der Testiiberdeckung
auf die Qualitdtsaspekte von Quamoco.

Gebrauchstauglichkeit

Kann das Produkt bei der Verwendung durch bestimmte Benutzer in einem bestimmten Kontext,
die vorgegebenen Ziele effizient, effektiv und zufriedenstellend erfiillen?

Bei der Gebrauchstauglichkeit geht es darum, wie ein Benutzer mit der Software zu-
rechtkommt, z.B. wie leicht sie zu erlernen ist. Aber auch die Asthetik und die sinnvolle
und benutzerfreundliche Gestaltung der Oberfldche beeinflussen die Gebrauchstaug-
lichkeit. Da dies Eigenschaften sind, die nicht mit UnitTests getestet werden konnen,
hat die Testtiberdeckung auch keinen Einfluss auf die Gebrauchstauglichkeit.

Portierbarkeit
Wie einfach lisst sich ein System oder eine Komponente effizient und effektiv von einer Hardware,
Software oder einer Betriebs- oder Nutzungsumgebung auf eine andere iibertragen?
Der Aufwand, um eine Software in eine andere Umgebung tibertragen zu konnen
héngt unter anderem von der Kapselung der umgebungsspezifischen Anweisungen ab.

30

5.3 Erweiterung des Basismodells

Solche Eigenschaften in der Struktur eines Programmcodes sind nicht durch UnitTests
heraus findbar. Auch der Benutzeraufwand zur Installation des Programms beeinflusst
dessen Portierbarkeit. Dies kann eben sowenig durch UnitTests getestet werden. Daher
beeinflusst die Testiiberdeckung auch nicht die Portierbarkeit einer Software.

Vertraglichkeit

Konnen zwei oder mehr Systeme oder Softwarekomponenten in der selben Hardware oder
Softwareumgebung, Informationen austauschen oder erforderliche Funktionen ausfiihren, ohne
dass sich die Programme gegenseitig beeintrichtigen?

Um eine Aussage tiber die Vertraglichkeit der Software mit anderen Softwareprodukten
machen zu konnen, bedarf es Tests in der die beiden Programme parallel ausgefiihrt
werden. Mit UnitTests hingegen werden nur die funktionalen Eigenschaften einer
Software getestet. Daher hat die Testtiberdeckung keinerlei Auswirkungen auf die
Vertraglichkeit.

Funktionalitat

e Vollstindigkeit

Erfiillt die Menge an Funktionen alle spezifizierten Aufgaben und Benutzerziele?

Es wird angenommen, dass alle Anforderungen des Benutzers spezifiziert und
die UnitTests alle in der Spezifikation angegebenen Funktionalitidten abdecken.
Die Vollstandigkeit ist gegeben, sobald mit den gegebenen UnitTests keine Fehler
mehr gefunden werden. Die Hohe der Testiiberdeckung ist hierbei nicht von
Bedeutung. Auch bei niedriger Uberdeckung kann eine hundertprozentige Voll-
standigkeit gegeben sein. Die geringe Uberdeckung kann durch defensiven Code
hervorgerufen werden.

¢ Richtigkeit

Liefert das Produkt die geforderten Ergebnisse mit der bendtigten Genauigkeit?

Die Richtigkeit wird von der Testtiberdeckung beeinflusst. Wird eine Funktion
tiberdeckt, so wurde sie mindestens einmal von einem UnitTest ausgefiihrt. Wurde
mit einem UnitTest ein Fehlverhalten gefunden, so ist davon auszugehen, dass
die fehlerhafte Funktion verbessert wurde und nun wie gewtinscht funktioniert.
Je hoher nun die Testiiberdeckung ist, desto mehr Funktionen wurden getestet,
daher ist die Wahrscheinlichkeit grofier, dass die implementierten Funktionen
auch die geforderten Ergebnisse liefern.

e Angemessenheit

Eignet sich die Menge der Funktionen fiir die spezifizierte Aufgabe und Benutzerziele, d.h.
sind sie z.B. aus aufgabenorientierten Teilfunktionen zusammengesetzt?

Die Angemessenheit von Funktionen ist von der Struktur dieser abhdngig. Wird
z.B. eine bestimmte Folge von Anweisungen von mehreren Methoden verwendet,
so ist es sinnvoll diese in eine eigene Methode auszulagern. Da sich durch das
Testen mit UnitTests die Programmstruktur einer Software nicht dndert, hat die
Testiiberdeckung auch keinen Einfluss auf die Angemessenheit.

31

5 Integration

Wartbarkeit

32

o Modularitat

Wie gut teilt sich ein System oder ein Computerprogramm in separate Komponenten auf,
so dass eine Anderung an einer Komponente nur eine minimale Auswirkung auf andere
Komponenten hat?

Die Testiiberdeckung hat einen Einfluss auf die Modularitét, sofern man immer
nur die UnitTests einer Softwarekomponente ausfiihrt und die Uberdeckung des
gesamten Programmcodes betrachtet. Bei diesen UnitTests werden nur Funktionen
der zu testenden Komponente aufgerufen, wird nun eine Uberdeckung in anderen
Komponenten festgestellt, so ist eine Abhdngigkeit der Komponenten vorhanden.
Je niedriger nun die Testiiberdeckung in den anderen Komponenten ist, desto
wahrscheinlicher ist es, dass die getestete Komponente gut gekapselt ist.

Wiederverwendbarkeit

Ist das Programm so aufgebaut, dass Komponenten davon in mehr als einem System oder
beim Bau von anderen Programmteilen wiederverwendet werden konnen?

Die Wiederverwendbarkeit hdangt hauptsachlich von der Struktur und dem ab-
strakten Charakter einer Softwarekomponente ab. Da sich dies mit UnitTests nicht
testen ldsst, wird die Wiederverwendbarkeit auch nicht von der Testiiberdeckung
beeinflusst.

Analysierbarkeit

Wie einfach lassen sich Auswirkungen von Anderungen auf den Rest des Produkts fest-
stellen, und wie leicht konnen fehlerhafte Programmstellen ausfindig gemacht werden?
Die Analysierbarkeit wird von der Testiiberdeckung beeinflusst. Je grofier die
Uberdeckung ist, desto kleiner ist der potenzielle Bereich fiir Fehler, vorausgesetzt
mit den vorhandenen UnitTests konnen keine weiteren Fehler diagnostiziert wer-
den. Je kleiner der Bereich in dem ein Fehler erwartet wird, desto geringer ist auch
der Aufwand ihn zu finden. Daher nimmt mit zunehmender Testiiberdeckung die
Analysierbarkeit zu.

Modifizierbarkeit

Wie einfach lisst sich das Produkt effizient und effektiv dndern, ohne dabei Fehler oder
einen Leistungsabfall zu verursachen?

Die Modifizierbarkeit wird durch die Testiiberdeckung beeinflusst. Je hoher die
Uberdeckung ist, desto wahrscheinlicher ist es, dass die zu d&ndernde Stelle durch
einen UnitTest abgedeckt wird. Die Korrektheit einer Anderung kann somit direkt
von diesem UnitTest {iberpriift werden. Bei neu umgesetzten Anforderungen
gibt es unabhingig von der Hohe der Testiiberdeckung, noch keinen UnitTest.
Allerdings kann mit den vorhandenen UnitTests, eine negative Beeinflussung der
anderen Funktionen durch die neue Programmstelle direkt identifiziert werden.
Somit ist auch hier eine hohe Testiiberdeckung von Vorteil.

Testbarkeit
Wie einfach lassen sich fiir ein System oder Komponenten Testkriterien einfiihren und
Tests zur Uberpriifung auf Einhaltung der Kriterien durchfiihren?

5.3 Erweiterung des Basismodells

Effizienz

Auch bei einer Software, die schwer zu testen ist, kann eventuell mit viel Aufwand
eine hohe Testiiberdeckung erreicht werden. Die Wahrscheinlichkeit ist jedoch
grofier, dass wenn eine hohe Testiiberdeckung erzielt wurde, die Testbarkeit
ebenfalls hoch ist.

Wie verhiilt sich die Leistung in Bezug auf die spezifizierte Ressourcenmenge?

Die Effizienz ist abhdngig von der Benutzung der Hardwareressourcen und dem
Zeitverhalten bei der Ausfiihrung von Funktionen. Um die Effizienz eines Systems
testen zu konnen ist es erforderlich, das System im Ganzen zu betrachten. Dies ist bei
den UnitTests nicht gegeben, daher hat auch die Testiiberdeckung keinen Einfluss auf
die Effizienz.

Zuverlassigkeit

e Reife

Wie viele Anforderungen an die Zuverlissigkeit werden bei normalen Betriebsbedingungen
erfiillt?

Die Testiiberdeckung beeinflusst die Reife einer Software. Denn je hoher die
Uberdeckung ist, desto mehr Code wurde mit UnitTests getestet und desto gerin-
ger ist die Wahrscheinlichkeit, dass das Programm Fehler enthilt, somit ist das
Programm reifer.

Verfiigbarkeit

Sind ein System oder Komponenten betriebsbereit und zuginglich, wenn sie benotigt
werden?

Die Verfligbarkeit hiangt zum einen von dufieren Faktoren, wie z.B. der Verfiig-
barkeit von Netzwerkverbindungen, der Hardware oder dem Vorhandensein von
Strom ab. Diese Faktoren lassen sich nicht durch UnitTests testen. Allerdings
konnen zum anderen auch fehlerhafte Funktionen dazu fiihren, dass die Software
nicht stabil 1duft und somit zeitweise nicht verfiigbar ist. Bei einer hohen Testiiber-
deckung ist allerdings die Wahrscheinlichkeit solcher Fehler geringer, da potenziell
weniger Fehler im Code vorhanden sind. Daher hat die Testiiberdeckung einen
Einfluss auf die Verfiigbarkeit.

Fehlertoleranz

Kann ein System oder Komponenten trotz der Anwesenheit von Hard- oder Softwarefeh-
lern arbeiten?

Um dies beurteilen zu konnen, ist es notwendig das gesamte System zu betrach-
tet und nicht wie bei den UnitTests nur einzelne Funktionen. Daher hat die
Testiiberdeckung keinen Einfluss auf die Fehlertoleranz.

Wiederherstellbarkeit

Wie einfach kann das Produkt bei einer Unterbrechung oder einem Ausfall, ein stabiles
Leistungsnieveau und die direkt betroffenen Daten wiederherstellen?

Ebenso wenig wie die Testiiberdeckung auf die funktionale Vollstindigkeit keinen
Einfluss hat, verhilt es sich auch bei der Wiederherstellbarkeit. Sind hierfiir keine
Funktionen implementiert die dafiir sorgen, dass z.B. die Daten gesichert werden,

33

5 Integration

so kann die Testiiberdeckung noch so hoch sein, die Daten lassen sich nicht
wiederherstellen.

Sicherheit
Sind Informationen und Daten vor der Einsicht und Anderung von unberechtigten Personen
und Systemen geschiitzt und wird der Zugang autorisierten Personen und Systemen nicht
verweigert?
Die Testiiberdeckung beeinflusst die Sicherheit eines Systems. Denn je hoher die Uber-
deckung ist, desto wahrscheinlicher ist es, dass die Funktionen, welche Berechtigungen
verwalten, mit UnitTests getestet wurden und gemaif} der Spezifikation funktionieren.

5.4 Erweiterung der ConQAT-Anbindung

Zur Integration der Testiiberdeckung war es notwendig die ConQAT-Anbindung zu
erweitern. Eine Anpassung des Qualitdtsmodell-Editors war nicht erforderlich.

Die Analysekonfiguration von Quamoco wurde um einen neuen Block fiir das Messwerkzeug
EclEmma erweitert. Dieser hat im Block NightlyQuamocoGeneratedJava die Kette der Werkzeug-
blocke um eine Glied erweitert. Diese Blocke enthalten die Information, wo die Messdaten
gespeichert sind, lesen diese ein und verarbeiten sie. Bei manchen Messwerkzeugen wird
zuvor noch das Werkzeug zur Messung angestofsen.

Wie in Abbildung 5.3 zu sehen ist, besteht der Block fiir EclEmma aus zwei Eingaben, einer
Ausgabe und zwei Prozessoren.

input csvinput

CSVReader |

csy-reader J

I
l
EclEmmacC szeader{

l ecl-emma-csv-reader J

scope

34

5.4 Erweiterung der ConQAT-Anbindung

Abbildung 5.3: ConQAT-Block fiir EclEmma

Bei dem CSV-Reader handelt es sich um einen schon in ConQAT implementierten Prozessor,
mit dem die in einer CSV-Datei vorliegenden Messergebnisse der Uberdeckungsmessung
eingelesen und in einer Liste abgespeichert werden. Im Block NightlyQuamocoGenerated]ava
wird der Pfad zu der CSV-Datei mit den Messergebnissen definiert und mit der Eingabe
csvlnput an den CSVReader weitergegeben. Der Prozessor EclEmmaCsvReader hingegen wurde
extra fiir die Verarbeitung der EclEmma-Messergebnisse geschrieben. Er ist ein Pipeline-
Prozessor, d.h. er bekommt einen Datenstrom {iiber die Eingabe input und gibt diesen nach
Anderung, als Ausgabe scope weiter. Als zusitzliche Eingabe erhélt der Prozessor eine
Liste mit den Messdaten, die zuvor mit dem CSVReader eingelesen wurden. Der Prozessor
berechnet fiir die Klassen und Pakete des Softwareprodukts die Anzahl und den Prozentwert
der Testiiberdeckung. Dazu tibertragt er die Liste in eine Tabelle. Fiir jedes Element im
Datenstrom wird tiberpriift, ob dieses auch in der Tabelle vorhanden ist. Falls ja, werden
die Eintrage fiir die Klassen und Pakete aus den Daten berechnet und zusétzlich fiir jedes
Element der Prozentwert der Uberdeckung ermittelt. Gibt es fiir ein Element kein Eintrag in
der Tabelle, so wird der Prozentwert auf -1 und die restlichen Spalten auf null gesetzt. Dies
ermoglicht es direkt in der Ausgabedatei zu erkennen, fiir welche Klassen es keine Messwerte
gibt. Diese Elemente werden bei der Gesamtprozentberechnung selbstverstandlich nicht mit
berticksichtigt. Dem Datenstrom werden anschlieffend sechs neue Spalten (siehe Abb. 5.4)
hinzugefiigt und die berechneten Werte eingetragen. Durch entsprechende Bezeichnungen
der Spalten wird eine Verkniipfung zu den Mafien des Basismodells hergestellt.

0,415 598.80 425.16 0,275 57.694 21.93

1
(o}
o
(o}
(o}
o
o
o
o (o}
o
o
o
o
(o}
o
(o}
o

000 0 0000k P HE e e e
o
o
e e e e = T = i e = i
000000 D0D0 00000000

o 26 o -1 o o
0,415 598.686 425.141 0.275 57.694 21.838
0,417 588.813 420.549 0.274 56.682 21.430
0,002 50.981 izg o 5.194 1

Abbildung 5.4: HTML-Ausgabe der Evaluation mit den neuen Spalten fiir die
Testiiberdeckung.

35

Kapitel 6

Evaluation

Dieses Kapitel beschéftigt sich mit der Evaluierung des erweiterten Qualitdtsmodells und
diskutiert die Auswirkungen der Integration der Testiiberdeckung.

6.1 Grundlagen

Um das erweiterte Qualitdtsmodell zu beurteilen, wurde eine Evaluation eines Softwarepro-
dukts mit diesem Modell durchgefiihrt. Das hierfiir verwendete Softwareprodukt stellte ein
deutsches mittelstindisches Unternehmen zur Verfiigung. Bei dem Produkt handelt es sich
um ein Projekt in Java 7, welches aus einer Reihe von Unterprojekten besteht. Insgesamt um-
fasst es um die 762.000 Lines of Code (gemessen mit ConQAT-Prozessor LOCAnalyzer) und
ca. 7000 Klassen. Die Testsuite mit den UnitTests, von denen ausgehend die Testiiberdeckung
gemessen wurde, enthdlt um die 8oo Testklassen.

6.2 Messung der Testiiberdeckung

Vor der Evaluierung des Softwareprodukts, wurde zuerst die Testiiberdeckung gemessen.
Hierzu wurde das Eclipse-Plugin von CodeCover verwendet. Allerdings stellte sich heraus,
dass CodeCover mit der in Java 7 eingefiihrten Typinferenz, nicht zurecht kommt und
daher die Messung nicht durchfiihren kann. Daher wurde die ConQAT-Anbindung auf
EclEmma umgestellt, welches auch bei Programmcode in Java 7, die Testiiberdeckung messen
kann. Es wurden mit dem Eclipse-Plugin die Testiiberdeckung ermittelt, anschliefiend die
Messergebnisse als CSV-Datei exportiert und der Dateipfad ConQAT bekannt gegeben. Als
Ergebnis wurde eine Anweisungsiiberdeckung von 41,5 % und eine von Zweigiiberdeckung
27,5% gemessen.

37

6 Evaluation

6.3 Qualitatsanalyse

In der ersten Analyserunde wurde zur Qualitdtserhebung das anfangliche Basismodell und
die urspriingliche Werkzeugkette verwendet. Da zur Ausfithrung im Qualitdtsmodell-Editor
nur ein Pfad fiir das zu testende Programmcode angegeben werden kann und sich
die Testklassen des Gesamtprojekts in diversen Unterprojekten befinden, wurden diese
explizit von der Analyse ausgeschlossen. Des Weiteren verhinderte JavaDoc, ein weiteres
Messwerkzeug, welches bei der Analyse von ConQAT zur Messung verwendet wird,
eine reibungslose Durchfiithrung der Evaluation. Aus diesem Grund wurde der Block fiir
JavaDoc auskommentiert. Eine weitere Einstellung die notwendig fiir die Durchfithrung der
Evaluation war, war die Erhohung des Arbeitsspeichers.

Nachdem die anfanglichen Schwierigkeiten behoben wurden, konnte eine Qualitdtsbeur-
teilung durchgefiihrt werden. Im Anschluss wurden zwei weitere Evaluationen mit dem
gednderten Basismodell und der erweiterten ConQAT-Anbindung durchgefiihrt. Die zuvor
durchgefiihrten Anderungen wurden auch hier vollzogen. In der ersten Runde wurden fiir
folgende Einfliisse immer das niedrigste Ranking in der Aggregation und beim zweiten
Durchlauf immer das hochste Ranking eingestellt. Je niedriger das Ranking eingestellt
ist, desto einen geringeren Anteil an Einfluss hat der Produktfaktor im Vergleich zu den
anderen Faktoren, welche den Qualitatsaspekt beeinflussen.

Zur Analyse wurden folgende Einfliisse im Basismodell definiert:
e Funktionalitdt - Richtigkeit (A und Z)

Portierbarkeit (A)

Zuverladssigkeit (A und Z)

Wartbarkeit - Analysierbarkeit (A und Z)

e Wartbarkeit - Modizierbarkeit (A und Z)

e Wartbarkeit - Testbarkeit (A und Z)

(A = Anweisungsiiberdeckung, Z = Zweigiiberdeckung)

6.4 Interpretation und Diskussion der Ergebnisse

Wie man der Tabelle 6.1 entnehmen kann, hat die Testiiberdeckung einen grofleren Einfluss
auf die Gesamtqualitdt, wenn ein hoheres Ranking eingestellt wird. Bei den in der Tabelle
angegebenen Werten handelt es sich um Schulnoten, somit ist eine 1,0 die bestmogliche
und eine 6,0 die schlechteste Bewertung. Allerdings sind die Messewerte, bei denen die
Testtiberdeckung berticksichtigt wurde, im Vergleich zu denen ohne die Testtiberdeckung
erheblich schlechter. Da die Testiiberdeckung sowohl bei der Anweisungs- als auch bei der
Zweigliberdeckung kleiner als fiinfzig Prozent ist, war davon auszugehen, dass durch die
Beriicksichtigung der Testiiberdeckung die Qualitdt schlechter bewertet wird. Solch eine

38

6.4 Interpretation und Diskussion der Ergebnisse

grofie Abweichung ist allerdings sehr iiberraschend. Sie kann ein Zeichen dafiir sein, dass die
Einfliisse noch nicht genau genug eingestellt sind. Um eine sinnvolle Einstellung vornehmen
zu konnen, bedarf es allerdings einer genaueren Untersuchung der Einfliisse mit vielen
Testdaten und dem Wissen und der Erfahrung von Experten.

niedrigstes hochstes ohne Test-
Ranking Ranking iiberdeckung
Qualitat 4,183 5,784 1,082
Funktionalitit 3,880 6,000 1,002
Funktionalitit - Richtigkeit 3,880 6,000 1,002
Portierbarkeit 3,892 6,000 1,000
Zuverlassigkeit 3,610 5,526 1,000
Wartbarkeit 4,302 6,000 1,529
Wartbarkeit — Analysierbarkeit 3,647 5,192 1,774
Wartbarkeit - Modifizierbarkeit 6,000 6,000 1,947
Wartbarkeit — Testbarkeit 3,882 6,000 1,000

Abbildung 6.1: Ubersicht der Messergebnisse der Qualititsanalyse.

39

Kapitel 7

Fazit

Dieses Kapitel fasst die vorgestellte Arbeit zusammen und gibt einen Uberblick auf mogliche
Ankniipfungspunkte.

7.1 Zusammenfassung

Diese Bachelorarbeit beschaftigte sich mit der Integration der Testiiberdeckung als MafS in
Quamoco. Durch die Hinzunahme des neuen Qualititsmafs, wurde das Basismodell weiter
verfeinert und somit eine prézisere Qualitdtsbestimmung moglich. Der Schwerpunkt dieser
Arbeit lag in der Integration der Testiiberdeckung in die Werkzeugkette. Als weiterer Punkt
wurde die Einflussnahme der Testiiberdeckung auf die Qualititsaspekte diskutiert.

Zu Beginn dieser Arbeit wurden der Begriff Softwarequalitit und die Konzepte Qualititsmodelle
und Softwaremetriken vorgestellt. Anschlieffend fand eine Beschreibung des Forschungspro-
jekts Quamoco und dessen Konzepte und Ergebnisse statt. Im Weiteren wurde nédher auf
Softwaretests und insbesondere auf die Testiiberdeckung eingegangen. Um diese im Basis-
modell zu integrieren, wurde mit dem Qualitdtsmodell-Editor dieses um neue Elemente,
wie die Mafle Anweisungs- und Zweigiiberdeckung, erweitert. Zudem wurde die ConQAT-
Anbindung um einen neuen Block fiir das Messwerkwerkzeug EclEmma und einen Prozessor,
zur Verarbeitung der Messergebnisse erganzt. Des Weiteren wurde iiber die Auswirkungen
der Testliberdeckung auf die Qualitdtsaspekte diskutiert. Abschlieflend wurde das erweiterte
Modell an einem Softwaresystem eines Unternehmens getestet. Wahrend der Erprobung
stellte sich heraus, dass eine ausfiihrliche Untersuchung der Auswirkungen der Testiiberde-
ckung auf die Qualitdtsaspekte notwendig ist, um die Testiiberdeckung als Qualitdtsmafd mit
in der Evaluation berticksichtigen zu konnen.

7.2 Ausblick

Wie in Kapitel 6.4 beschrieben, ist die Integration noch nicht hundertprozentig abgeschlossen.
Um die Testiiberdeckung als Qualitdtsmaf’ in die Qualitdtsmessung aufnehmen zu kénnen

41

7 Fazit

ist es notwendig, die Auswirkungen der Testiiberdeckung auf die Qualitdtsaspekte genauer
zu untersuchen und mit der Modellierung der Einfliisse im Basismodell zu experimentieren.
Hierbei ist zu tiberlegen, ob die in Kapitel 5.3 beschriebene Aufteilung der Testiiberdeckung
in mehrere Produktfaktoren, durch eine andere ersetzt werden sollte. Dies Bedarf allerdings
einer umfangreicheren Studie, bei der unterschiedliche Softwareprodukte evaluiert und die
Ergebnisse durch Experten ausgewertet und beurteilt werden miissen.

Ein weiterer Ankniipfungspunkt an diese Arbeit ist die Anpassung des Qualitdtsmodell-
Editors. Dieser konnte um ein Eingabefeld erweitert werden, so dass der Dateipfad der
Messwerte direkt iiber den Editor angegeben werden kann und nicht wie bisher in einem
ConQAT-Block.

Bei der Erstellung dieser Arbeit zeigten sich weitere Aspekte, die fiir Quamoco sinnvoll
erscheinen. Diese konnten in einer zukiinftigen Weiterentwicklung von Quamoco integriert
werden. Hierbei handelt es sich zum einen um die Beriicksichtigung von weiteren Testiiber-
deckungsmafien. Zum anderen um die Integration von Testiiberdeckungswerkzeugen fiir
die Programmiersprache C#.

Zusammenfassend ldsst sich sagen, dass die Weiterentwicklung von Quamoco ein wichtiger
Schritt fiir die Entwicklung der Softwarequalitat ist.

42

Literaturverzeichnis

[1]
[2]
(3]

[10]

[11]

[12]

[13]

CodeCover. http://codecover.org/ (Zitiert auf den Seiten 7 und 24)
ConQAT. https://www.cqse.eu/en/products/conqat/overview/ (Zitiert auf Seite 19)

EclEmma - Java Code Coverage for Eclipse. http://www.eclemma.org/ (Zitiert auf den
Seiten 7 und 25)

Find Bugs in Java Programs. http://findbugs.sourceforge.net/ (Zitiert auf den Sei-
ten 13, 15 und 18)

Gendarme. http://www.mono-project.com/Gendarme (Zitiert auf den Seiten 13, 15
und 18)

ISO/IEC 25010:2011 Systems and software engineering - Systems and software product Quality
Requirements and Evaluation (SQuaRE) - System and software quality models (Zitiert auf den
Seiten 7, 12 und 13)

Open Source Code Coverage Tools in Java. http://java-source.net/open-source/
code-coverage (Zitiert auf Seite 23)

Software-Metrik. http://www.itwissen.info/definition/lexikon/
Software-Metrik-software-metric.html (Zitiert auf Seite 13)

BrBL10GRAPHISCHES INSTITUT GMBH, DUDENVERLAG: Duden. http://www.duden.de/
rechtschreibung/Qualitaet (Zitiert auf Seite 11)

Broy, M. ; JARKE, M. ; NaGL, M. ; RomBacH, H. D. u.a.: Dagstuhl-Manifest zur
Strategischen Bedeutung des Software Engineering in Deutschland. In: Perspectives
Workshop, Informatik Spektrum : 29, 2006 (3), S. 210 — 221 (Zitiert auf Seite 9)

DijkstrA, E. W.: The Humble Programmer. In: Commun. ACM (1972), S. 859-866 (Zitiert
auf Seite 21)

FRAUNHOFER-INSTITUT FUR EXPERIMENTELLES SOFTWARE ENGINEERING: Software-
Qualitdtsmodelle fiir die Praxis. http://www.iese.fraunhofer.de/de/customers_
industries/automotive/referenzprojekt_quamoco.html (Zitiert auf Seite 15)

GURrkAN, A. ; HArTMUT, P. : Code Coverage - Tools. In: Haking EXTRA (06/2012) (Zitiert
auf Seite 24)

43

http://codecover.org/
https://www.cqse.eu/en/products/conqat/overview/
http://www.eclemma.org/
http://findbugs.sourceforge.net/
http://www.mono-project.com/Gendarme
http://java-source.net/open-source/code-coverage
http://java-source.net/open-source/code-coverage
http://www.itwissen.info/definition/lexikon/Software-Metrik-software-metric.html
http://www.itwissen.info/definition/lexikon/Software-Metrik-software-metric.html
http://www.duden.de/rechtschreibung/Qualitaet
http://www.duden.de/rechtschreibung/Qualitaet
http://www.iese.fraunhofer.de/de/customers_industries/automotive/referenzprojekt_quamoco.html
http://www.iese.fraunhofer.de/de/customers_industries/automotive/referenzprojekt_quamoco.html

Literaturverzeichnis

[14] KeLTER, U. : Software-Qualitatsmodelle. (2007) (Zitiert auf Seite 12)

[15] LIGGESMEYER, P. : Software-Qualitit - Testen, Analysieren und Verifizieren von Software (2.
Aufl.). Spektrum Akademischer Verlag, 2009 (Zitiert auf den Seiten 11, 21, 22 und 23)

[16] Lubewig, J. ; LicHTER, H. : Software Engineering - Grundlagen, Menschen, Prozesse,
Techniken. dpunkt.verlag, 2007 (Zitiert auf den Seiten 11, 13, 21 und 23)

[17] MaNDAU, M. : Die grofiten Software-Desaster. http://www.focus.de/digital/computer/
chip-exklusiv/tid-14183/computer-fehler-die-groessten-software-desaster_
aid_396628.html (Zitiert auf Seite 9)

[18] MYERs, G. J. ; SANDLER, C. : The Art of Software Testing. John Wiley & Sons, 2004 (Zitiert
auf Seite 21)

[19] SCHNEIDER, K. : Abenteuer Softwarequalitiit: Grundlagen und Verfahren fiir Qualititssicherung
und Qualititsmanagement (2. Aufl.). dpunkt.verlag, 2012 (Zitiert auf den Seiten 13 und 21)

[20] SOMMERVILLE, L. : Software Engineering. Pearson, 2007 (Zitiert auf Seite 13)

[21] WAGNER, S. : Softwarequalitiitt erfassen und verlisslich vergleichen. http://newsletter.
capgemini.de/mobile-fitness-energieversorgung-und-softwarequalitaet-22012/
softwarequalitaet-erfassen-und-vergleichen (Zitiert auf Seite 15)

[22] WAGNER, S. : Software Product Quality Control. Springer, 2013 (Zitiert auf den Seiten 7,
15, 16 und 17)

[23] WAGNER, S. ; LocamaNN, K. ; HEINEMANN, L. u.a.: Practical Product Quality Modelling
and Assessment: The Quamoco Approach. 2013 (Zitiert auf den Seiten 7 und 18)

[24] WikiPEDIA, DIE FREIE ENZYKLOPADIE: Softwarequalitit. http://de.wikipedia.org/wiki/
Softwarequalitdt (Zitiert auf den Seiten 7 und 12)

Alle URLs wurden zuletzt am 25.05.2014 gepriift.

44

http://www.focus.de/digital/computer/chip-exklusiv/tid-14183/computer-fehler-die-groessten-software-desaster_aid_396628.html
http://www.focus.de/digital/computer/chip-exklusiv/tid-14183/computer-fehler-die-groessten-software-desaster_aid_396628.html
http://www.focus.de/digital/computer/chip-exklusiv/tid-14183/computer-fehler-die-groessten-software-desaster_aid_396628.html
http://newsletter.capgemini.de/mobile-fitness-energieversorgung-und-softwarequalitaet-22012/softwarequalitaet-erfassen-und-vergleichen
http://newsletter.capgemini.de/mobile-fitness-energieversorgung-und-softwarequalitaet-22012/softwarequalitaet-erfassen-und-vergleichen
http://newsletter.capgemini.de/mobile-fitness-energieversorgung-und-softwarequalitaet-22012/softwarequalitaet-erfassen-und-vergleichen
http://de.wikipedia.org/wiki/Softwarequalit�t
http://de.wikipedia.org/wiki/Softwarequalit�t

Erkldrung

Ich versichere diese Arbeit selbststiandig
verfasst zu haben. Ich habe keine anderen als
die angegebenen Quellen benutzt und alle
wortlich oder sinngeméfd aus anderen Werken
tibernommene Aussagen als solche
gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher
Gegenstand eines anderen Priifungsverfahrens.
Ich habe diese Arbeit bisher weder teilweise
noch vollstandig veroffentlicht. Das
elektronische Exemplar stimmt mit allen
eingereichten Exemplaren tiberein.

(Stefanie Dressel)

	1 Einleitung
	1.1 Motivation
	1.2 Ziel
	1.3 Aufbau der Arbeit

	2 Grundlagen
	2.1 Softwarequalität
	2.2 Qualitätsmodelle
	2.2.1 Konzept
	2.2.2 Produktqualitätsmodell der ISO/IEC 25010

	2.3 Softwaremetriken

	3 Quamoco
	3.1 Meta-Modell
	3.2 Basismodell
	3.3 Werkzeuge

	4 Testüberdeckung
	4.1 Definition
	4.2 Klassifikation von Softwaretests
	4.3 Kontrollflussorientierte Strukturtests
	4.3.1 Anweisungsüberdeckungstest
	4.3.2 Zweigüberdeckungstest

	4.4 Werkzeuge zur Messung der Testüberdeckung
	4.4.1 CodeCover
	4.4.2 EclEmma

	5 Integration
	5.1 Konzept
	5.2 Bestimmung eines Analysewerkzeugs und der Maße
	5.3 Erweiterung des Basismodells
	5.4 Erweiterung der ConQAT-Anbindung

	6 Evaluation
	6.1 Grundlagen
	6.2 Messung der Testüberdeckung
	6.3 Qualitätsanalyse
	6.4 Interpretation und Diskussion der Ergebnisse

	7 Fazit
	7.1 Zusammenfassung
	7.2 Ausblick

	Literaturverzeichnis

