Studiengang:

Prifer/in:

Betreuer/in:

Beginn am:

Beendet am:

CR-Nummer:

IPVS

Bachelorarbeit Nr. 113

Der PMP Gatekeeper

Diana Salsa

Informatik

Prof. Dr. Bernhard Mitschang

Dipl.-Inf. Christoph Stach

19. Februar 2014

19. August 2014

K.4.1

Kurzfassung

Mobile Endgerite speichern heutzutage eine grofle Menge personlicher Informationen. Verschiedene
Betriebssysteme erlauben ein unterschiedliches Maf} an Einflussnahme, wobei Android einen groflen
Teil der Verantwortung an den Anwender abgibt. Das Berechtigungsmanagement des Android-
Betriebssystems wird den Anforderungen an Sicherheit und Datenschutz allerdings nicht gerecht.
Anwender haben keine Kontrolle dariiber, was installierte Apps mit ihren Daten machen. Die Privacy
Management Platform (PMP) ermdglicht eine flexible Steuerung der Berechtigungen kompatibler
Apps, jedoch werden klassische Apps entweder ignoriert oder vollstindig blockiert.

Im Rahmen dieser Arbeit werden verschiedene alternative Berechtigungssysteme analysiert und
darauf basierend mogliche Konzepte fir die Entwicklung einer *Gatekeeper”-Komponente fiir die
PMP diskutiert. Diese soll dem Anwender erméglichen, selbst festzulegen, welche Berechtigungen
klassischer Apps erlaubt bzw. blockiert werden sollen. Der Gatekeeper wird als Teil der bereits
vorhandenen PMP prototypisch implementiert.

Abstract

Today’s mobile devices contain a lot of private information. Different operating systems allow a
varying degree of user influence; Android for instance passes responsibilities in large part to its users.
The Android Permission System cannot, however, adequately satisfy security and data protection
requirements. Users have no control over what installed apps do with their data. The Privacy Ma-
nagement Platform (PMP) allows a flexible permission management of compatible apps; however,
conventional apps are being either ignored or completely blocked.

This paper analyses different alternative permission systems and discusses possible approaches to
implement a PMP "Gatekeeper” based on that study. This component enables users to decide indivi-
dually, if permissions of conventional apps are to be blocked or not. The Gatekeeper is prototypically
implemented as a part of the existing PMP system.

Inhaltsverzeichnis

1 Einleitung
1.1 Ausgangssituation
1.2 Problemstellung L
13 Gliederung
2 Das Android-Berechtigungssystem
21 AusAnwendersicht Lo
2.2 AusEntwicklersicht L
23 AusSystemsicht L
24 TFazit.
3 Alternative Berechtigungssysteme
3.1 Inline Reference Monitoring
3.11 Dr.Androidand Mr.Hide
3.1.2 IL-FARMDroid
313 Aurasium ... L.
314 AppGuard
315 Bewertung L. e
3.2 Erweiterung des Android-Frameworks L.
321 ApeX
322 CREPE
3.23 MockDroid
3.24 AppFence
325 Bewertung.
4 Die Privacy Management Platform
4.1 Aufbau und Grundbegriffe
4.1.1 Ressourcen und Privacy Settings
412 ServiceFeatures. L
4.1.3 Privacy Rulesund Presets
42 Management e e
43 Integrationsstrategien L e
431 Application-Level L
43.2 App-Konverter
433 Anpassung des Application-Frameworks 0oL

11
11

13
13
15
16
19

21
21
21
23
23
25
26
27
27
29
30
32
33

35
35
35
36
37
37
38
39
39
40

5 Der PMP-Gatekeeper
5.1 Identifizierung von Apps
5.1.1 Registrierung beider PMPo oo
5.1.2 Referenz des PMP-AppService oL
5.1.3 AppInformationSeto
5.1.4 Existenz klassischer Permissions
5.1.5 System-Apps
5.2 Widerruf von Berechtigungen L
5.2.1 Veranderung des App-Manifests
5.2.2 Manipulation der Berechtigungen im Hauptspeicher
5.2.3 Blockade durch das Application-Framework
524 Widerrufs-Richtlinien
5.3 Implementierung des Prototyps L
5.3.1 Schnittstellezur PMP Lo
5.3.2 Berechtigungsmanagement
5.3.3 Erweiterung des Frameworks L.
534 Ergebnis

6 Zusammenfassung und Ausblick

Literaturverzeichnis

41
41
41
42
43
43
44
44
45
45
47
47
48
48
49
50
50

51

53

Abbildungsverzeichnis

2.1
2.2
2.3

3.1
3.2
3.3
34
3.5
3.6
3.7

4.1
4.2
4.3
4.4

5.1
5.2

Berechtigungsanzeige bei der Installation 14
Android-Systemschichten o oo 17
Ablauf eines Berechtigungschecks L L 0oL 18
Dr. Androidand Mr. Hide 22
Aurasium 24
AppGuard 25
APEX . L e 28
CREPE e 29
MockDroid 31
AppFence 32
Komponentender PMP L 36
PMP-Benutzeroberflache L L oo 38
Implementierungsstrategiender PMP Lo 39
PMP App-Konverter 40
Neue und angepasste PMP-Komponenten 48
Implementierung des Gatekeepers L o 49

Tabellenverzeichnis

3.1
3.2

Vergleich der Android IRM-Systeme 27
Vergleich der erweiterten Android-Systeme oL 34

Verzeichnis der Listings

2.1
2.2

5.1
5.2
5.3
54
5.5
5.6

Permissions im Manifest o L oo 15
ActivityManagerService.checkComponentPermission() 19
Registrierungsaufruf von PMP-Apps L o 42
Serviceaufruf von PMP-Apps 42
Application Information Set L 43
Berechtigungen in data/system/packages.xml 46
<shared-user>-Berechtigungen in data/system/packages.xml 46
ActivityManagerService.checkPermission() 50

1 Einleitung

In der heutigen Zeit sind Mobiltelefone mehr als nur einfache Handys. Die so genannten "Smartphones”
bieten inzwischen beinahe alles, was auch klassische Computer kdnnen und mehr: Verwaltung von
Terminen und Kontakten, Zugriff auf Mails und das World Wide Web, Navigation und sogar Bezahlen
an der Kasse sind damit heutzutage kein Problem mehr.

Ein Grund fir die in den letzten Jahren so rasant gewachsene Beliebtheit von Smartphones ist die
grofle Anzahl verfiigbarer Anwendungen (Apps) von Drittanbietern, die zu geringen Preisen und
haufig sogar vollig kostenlos bei verschiedenen Quellen (AppStores) erhaltlich sind. Ebenfalls ist die
Handhabung im Vergleich zu klassischen Computern sehr einfach und intuitiv, wodurch sich auch
unerfahrenere Anwender schnell zurecht finden.

Gerade solchen Anwendern ist aber hiufig nicht bewusst, welche Risiken durch den leichtsinnigen
Umgang mit diesen Geraten entstehen. Dadurch, dass Smartphones in immer mehr Bereichen des
tiglichen Lebens zum Einsatz kommen, werden auch mehr und mehr persénliche Daten gespeichert
und iibertragen.

1.1 Ausgangssituation

Wahrend es im Zeitalter klassischer Handys noch eine breite Palette verschiedener mobiler Betriebs-
systeme gab, geht der Trend seit Beginn des Smartphone-Zeitalters in eine deutlich andere Richtung.
Der Markt wird heutzutage vom quelloffenen System Android dominiert, das im zweiten Quartal 2014
einem Marktanteil von knapp 85% [K614] vorweisen kann. Android wird heutzutage von beinahe
allen grolen Smartphone-Herstellern verwendet, Ausnahmen sind unter anderem Apple (knapp 12%)
und Windows (knapp 3%).

Die Firma Android Inc. wurde im Oktober 2003 gegriindet und nur zwei Jahre spater fiir 50 Millionen
US-Dollar von Google aufgekauft [Erd13]. Ende 2007 wurde unter der Leitung von Google die Open
Handset Alliance als Zusammenschluss verschiedener Handyhersteller, Mobilfunkbetreiber und sons-
tiger Hard- und Softwareentwickler gegriindet. Die ersten mit Android betriebenen Mobiltelefone
kamen bereits ein Jahr spater auf den Markt.

Vergleicht man verschiedene mobile Betriebssysteme, fillt deutlich auf, dass Nutzer von Android
mehr Freiheiten haben als bei anderen Systemen. Apple beispielsweise erlaubt nur die Installation
von Apps aus dem eigenen AppStore, wobei nicht jede App dort zugelassen wird. Bei Android kénnen
Apps dagegen aus beliebigen Quellen bezogen werden.

1 Einleitung

Das bedeutet aber gleichzeitig, dass die Verantwortungspflicht, insbesondere im Bereich Sicherheit und
Datenschutz, auf den Anwender iibergeht. Damit dieser tiber mégliche Konsequenzen einer Installation
informierte Entscheidungen treffen kann, ist das Android-Berechtigungssystem so konzipiert, dass
dem Anwender vor der Installation alle von der App geforderten Rechte angezeigt werden und er
diese gewahren muss.

Aufgrund des grofien Angebots und den weitreichenden Anwendungsgebieten von Apps werden
diese heutzutage in nahezu allen Bereichen des téglichen Lebens verwendet. vHike [Stall, SB11] ist
beispielsweise ein Dienst zur Bildung von Fahrgemeinschaften, bei dem verfiigbare Fahrer in Echtzeit,
basierend auf ihrem Standort, an Mitfahrer vermittelt werden. Um alle Funktionen realisieren zu
koénnen, wird Zugriff auf Internet, GPS, Bluetooth und Telefonfunktionen benétigt.

Die App Candy Castle [SS12] dagegen ist ein auf Google Maps basierendes Lernspiel fiir diabeteskranke
Kinder. Uber die Eingabe von gemessenen Blutzuckerwerten werden am jeweils aktuellen Standort
Verteidigungstiirme fiir das eigene Schloss gebaut, wodurch Kindern die Wichtigkeit von regelmafligen
Messungen vermittelt wird; gleichzeitig werden Arzte bei auffilligen Werten automatisch informiert.
Die App speichert und tibermittelt damit neben Standortinformationen auch medizinische Daten.

Jede App, die wie die vorhergehenden Beispiele sowohl das Internet verwenden darf als auch Zugriff
auf personenbezogene Daten hat, konnte diese Informationen potentiell missbrauchen. Der Anwender
selbst kann ohne Eingriff in das System allerdings nicht iberpriifen, welche dieser Daten tatsachlich
versendet werden und an wen.

Dies ist im Normalfall nicht moglich, da Anwender auf Mobilgeréten im Gegensatz zu klassischen
Computern standardméfliig keine Administratorrechte haben. Um diese zu erhalten, gibt es fiir
erfahrene Nutzer nur die Moglichkeit, das Gerit zu “rooten”, dadurch gehen allerdings samtliche
Garantieanspriiche verloren.

In der Praxis hat sich daher gezeigt, dass das bestehende Android-Berechtigungssystem die Anfor-
derungen von Anwendern in Bezug auf Sicherheit und Schutz persénlicher Informationen nicht
ausreichend erfiillt. Dies liegt insbesondere daran, dass Apps heutzutage eine grofle Anzahl von
Berechtigungen anfordern, wodurch die Privatsphare von Anwendern immer starker gefahrdet wird
[FHET12].

Aus diesem Grund entstanden in den letzten Jahren verschiedene Konzepte dafiir, wie das Berechti-
gungsmanagement von Android erginzt werden kann, um mehr Sicherheit zu gewéhrleisten. Eines
dieser Systeme ist die an der Universitit Stuttgart entwickelte Privacy Management Platform (PMP)
[SM13], die anstatt des klassischen Android-Berechtigungsmanagements Rechte nicht global an Apps
vergibt, sondern auf Basis einzelner vom Anwender ausgewahlter Funktionen.

10

1.2 Problemstellung

1.2 Problemstellung

Die PMP kann hierbei auf verschiedenen Ebenen des Betriebssystem implementiert werden. Apps,
die speziell fiir die Verwendung mit der PMP entwickelt wurden, greifen ausschlief8lich dariiber auf
Ressourcen zu. Alle anderen Apps werden - je nach Implementierungsart - entweder ignoriert oder
vollstandig blockiert, was in der Praxis im Hinblick auf Datenschutz und Benutzbarkeit beides keine
akzeptable Losung darstellt.

Daher muss die PMP um eine zusétzliche Komponente - den so genannten “Gatekeeper” - ergéanzt
werden. Dieser soll dem Anwender erméglichen, individuell festzulegen, welche Berechtigungen
einer App tatsichlich gewéhrt werden sollen. Dazu muss der Gatekeeper zunéchst in der Lage sein,
klassische Apps und PMP-Apps eindeutig zu identifizieren; auflerdem sollen Zugriffe von System-Apps
aus Stabilitdtsgriinden immer erlaubt werden.

Gegenstand dieser Arbeit ist zunédchst eine Analyse bestehender alternativer Berechtigungssysteme
fiir Android. Basierend darauf werden verschiedene mogliche Konzepte fiir den Gatekeeper vorgestellt
und verglichen. Die Komponente wird dann als Proof-of-Concept auf Basis des bestehenden PMP-
Protoyps implementiert und bewertet.

1.3 Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 — Das Android-Berechtigungssystem beschreibt, wie das Rechtemanagement unter
Android funktioniert. Hierbei wird insbesondere auf Problematiken aus Sicht von Anwendern
und Entwicklern eingegangen; auflerdem wird kurz der Aufbau des Android-Betriebssystems
beschrieben und erklart, wie Berechtigungschecks auf Systemebene durchgefithrt werden.

Kapitel 3 — Alternative Berechtigungssysteme stellt verschiedene Ansitze vor, wie das beste-
hende Berechtigungssystem erweitert werden kann, um mehr Sicherheit und Kontrolle durch
den Anwender zu ermdglichen. Dabei werden verschiedene Implementierungsstrategien und
Schwerpunkte verglichen und abschlieend bewertet.

Kapitel 4 — Die Privacy Management Platform beschreibt Aufbau und Funktionsweise der PMP,
insbesondere werden verschiedene Strategien fiir die Integration in das bestehende Android-
Betriebssystem sowie deren Vor- und Nachteile diskutiert.

Kapitel 5 — Der PMP-Gatekeeper stellt verschiedene Konzepte fiir die Entwicklung der neuen
Gatekeeper-Komponente der PMP vor. Hierbei werden Wege zur Identifizierung von PMP-Apps
vorgestellt und Ansétze diskutiert, wie unerwiinschte Berechtigungen von Apps blockiert
werden konnen. Schlie8lich wird der Gatekeeper auf Basis des PMP-Prototyps implementiert.

Kapitel 6 — Zusammenfassung und Ausblick fasst die Kernpunkte und das Ergebnis der Arbeit
zusammen und stellt einen Ansatz vor, wie das entwickelte System fiir die Verwendung in der
Praxis weiter verbessert werden kann.

11

2 Das Android-Berechtigungssystem

Android arbeitet nach dem Principle of Least Privilege, was bedeutet, dass jede App nur die Infor-
mationen und Ressourcen verwenden darf, die ihr jeweiliger Verwendungszweck rechtfertigt. Um
Zugriff auf geschiitzte Inhalte oder Hardwarefunktionen (wie z.B. GPS und Kamera) zu bekommen,
missen der App besondere Rechte erteilt werden. Diese Rechte sind auf eine Menge von Permissions
abgebildet, mit denen der Anwender zusétzlich benotigte Komponenten fiir eine App freigeben kann
[FCHT11].

2.1 Aus Anwendersicht

Will ein Anwender eine neue App aus dem AppStore oder mithilfe eines manuell heruntergeladenen
APK (Android Package) installieren, erhilt er zunéchst eine Ubersicht iiber alle besonderen Berechti-
gungen, die die App anfordert. Daraufthin kann er entscheiden, ob er diese gewédhren mochte oder
nicht. Falls ja, erhilt die App diese Zugriffsberechtigungen auf dem jeweiligen Gerét auf Dauer, ein
Zuriickziehen ist nur noch durch vollstandige Deinstallation der App méglich.

Die Darstellung der geforderten Rechte hat sich mit der Zeit immer wieder verdndert, in Android
4.3 werden die Berechtigungen beispielsweise in einzelne Haupt- und Unterkategorien unterteilt
(siehe Abb. 2.1): Hauptkategorien sind z.B. Datenschutz und Gerdtezugriff, Unterkategorien sind
geordnet nach der jeweils angesprochenen Hardware (z.B. WiFi, Mikrofon, GPS). Zusitzlich ist
zu jeder Berechtigung ein kurzer Informationstext abrufbar, der erklért, wofiir diese Berechtigung
verwendet werden kann.

Zum Zeitpunkt dieser Arbeit bewirkte eine Neuerung bei Google Play, dass die Berechtigung INTER-
NET dort im allgemeinen Benachrichtigungsfenster tiberhaupt nicht mehr angezeigt wird, mit der
Begrindung, dass "Apps heutzutage normalerweise auf das Internet zugreifen” [goo14]. Dies kann
bei Anwendern ein falsches Gefiihl von Sicherheit erzeugen, da nicht jedem bewusst ist, dass durch
andere Berechtigungen freigegebene Daten iiber das Internet verbreitet werden kénnten [FEW12].

Das System wurde in der Theorie so konzipiert, dass jede App nur die Berechtigungen haben soll, die sie
auch tatsdchlich benétigt, und der Anwender dadurch iiber mogliche Zugriffe und damit verbundene
potentielle Risiken informiert ist. Hierbei sollte der Anwender bei Apps, die eine ungewdhnliche
Menge von Berechtigungen erfordern, obwohl deren Funktionalitit damit scheinbar nichts zu tun
hat, Vorsicht walten lassen.

In der Praxis ist diese Hemmschwelle allerdings nicht mehr besonders effektiv, da heutzutage beinahe
jede App eine gewisse Anzahl von besonderen Berechtigungen benétigt. In [BCG13] wird beschrieben,
wie Anwender mit der Zeit darauf “trainiert” werden, Warnhinweise automatisch zu bestétigen. Dieses

13

2 Das Android-Berechtigungssystem

\. Telefonnummern direkt anrufen = Dateien ohne Benachrichtigung herunterladen
s

| n n erhalten
Telefonstat. u. -ID lesen nternetdaten erhalte

Netzwerkstatus anzeigen

E SMS empfangen Vollstandiger Internetzugriff

SMS oder MMS bearbeiten WLAN-Status dndern

SMS oder MMS lesen WLAN-Status anzeigen

SMS senden
* Bluetooth-Einstellungen
&1 Fotos und Videos aufnehm Bluetooth-Verbindungen erstellen
i Ausgefiihrte Anwendungen abrufen
Q Ton aufzeichnen ‘})
Start automatisch starten
Allgemeiner (netzwerkbasierter) Standort
Genauer Standort (GPS) | Blitz steuern

Abbildung 2.1: Berechtigungen, die von "Google Suche” angefordert werden (Auszug)

Verhalten ist vergleichbar mit dem Akzeptieren einer Endbenutzer-Lizenzvereinbarung (EULA) bei
der Installation von neuer Software, ohne diese tiberhaupt durchzulesen.

Ein weiteres Problem ist, dass auch wenn eine App tatsichlich eine bestimmte Berechtigung fiir
ihre Kernfunktionalitit benotigt, keine Garantie besteht, dass diese Zugriffsfreigabe im Hintergrund
nicht fiir andere unerwiinschte Zwecke ausgenutzt werden. Viele Apps erfordern die Berechtigung
INTERNET, meistens um damit Werbung anzuzeigen, mit der kostenlose Apps i.d.R. finanziert werden.
Hat die App aber gleichzeitig Zugrift auf private Daten wie Kalender, Kontakte oder Standortin-
formationen (was aufgrund ihrer priméren Aufgaben durchaus gerechtfertigt sein kann), kann der
Anwender nicht ohne weiteres tiberpriifen, ob méglicherweise private Informationen unerlaubt an
Dritte gesendet werden. Die Studie [EGC™10] hat gezeigt, dass eine nicht zu vernachlissigende
Anzahl an Apps entsprechende Informationen an Server weiterleitet, was eine deutliche Verletzung
der Privatsphére von Anwendern darstellt.

Ebenfalls problematisch sind Apps, die durch Privilege Escalation unberechtigten Zugriff auf geschiitz-
te Daten erhalten konnen [ZXMX13]. Hierbei greift eine App auf eine zweite App zu, die wiederum
Zugriff auf private Informationen hat. Dies wird beispielsweise ermdglicht, wenn beide Apps dieselbe
Signatur haben, da solche Apps (wie in Kapitel 2.3 beschrieben) grundsatzlich gegenseitigen Dateizu-
griff haben. Eine weitere Moglichkeit besteht, wenn Apps selbst als Content Provider! dienen, ohne
die Berechtigungen der aufrufenden Apps zu tiberpriifen.

Fir Anwender, die sich dieser Risiken bewusst sind, wire die einfachste Losung, keine Apps mit kriti-
schen Berechtigungen zu installieren und sich stattdessen nach Alternativen umzusehen. Allerdings
ist dies haufig umsténdlich, da Apps im AppStores hdufig nach Beliebtheit sortiert sind und man keine
Maoglichkeit hat, nach Apps ohne bestimmte Berechtigungen zu suchen. Bei offiziellen Apps eines
bestimmten Anbieters (wie z.B. Twitter oder Facebook) gibt es auch keine tatsiachliche Alternative.

!Content Provider stellen Schnittstellen bereit, iiber die Inhalte mit fremden Prozessen/Apps geteilt werden kénnen.

14

2.2 Aus Entwicklersicht

Aufgrund der zuvor beschriebenen Sicherheitsrisiken wire es daher wiinschenswert, wenn bei der
Installation von Apps einzelne Berechtigungen verweigert werden koénnten. Viele Apps fordern
Berechtigungen, die nur fiir ein einziges besonderes Feature innerhalb der App nétig sind (z.B. bei
einem Bildermanager ein Button zum Hochladen eines Bildes auf eine Fotoplattform). Viele Anwender
wollen diese Funktion gar nicht verwenden, miissen jedoch trotzdem die dazugehorige Berechtigung
INTERNET gewahren und das damit einhergehende Datenschutzrisiko akzeptieren.

Alles in allem ist das Android-Berechtigungssystem aus Anwendersicht sehr einfach gestaltet, aller-
dings sind sich viele nicht des Risikos bewusst, das sie durch Installation und Nutzung einer App mit
bestimmten zusétzlichen Berechtigungen eingehen. Aber auch wenn man vorsichtig sein méchte und
sich im AppStore nach Alternativen umschaut, gibt es haufig keine; daher werden letztendlich doch
wieder potentiell gefahrliche Apps installiert [AZHL12].

2.2 Aus Entwicklersicht

Beim Entwickeln einer App fiir Android miissen alle Berechtigungen, die eine App benétigt, in Form
von <uses-permission>-Tags im Manifest? eingetragen werden (siehe Lst. 2.1). Wird eine Methode
aufgerufen, ohne dass die App die nétige Berechtigung hat, tritt eine Exception auf. Da der Entwickler
aber aufgrund des zuvor beschriebenen Installationsvorgangs davon ausgeht, dass beim Ausfiithren
einer App samtliche geforderten Berechtigungen gewéhrt wurden, wird diese Exception haufig nicht
abgefangen, wodurch sie die App zum Absturz bringen kann.

Listing 2.1 Eingetragene Berechtigungen im Manifest der Twitter-App (Auszug)

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission android:name="android.permission.READ_PROFILE" />
<uses-permission android:name="android.permission.READ_CONTACTS" />
<uses-permission android:name="android.permission.MANAGE_ACCOUNTS" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

Ein Problem, mit dem Entwickler konfrontiert werden, ist, dass es keinerlei vollstindige Ubersichtsliste
von Methoden mit dazugehorigen Permissions gibt, das heifit, es ist nicht immer klar, ob eine Methode
besondere Berechtigungen benétigt. Dies ist zundchst einmal nicht schlimm, da man beim Testen der
App frih genug bemerkt, wenn Rechte fehlen.

Umgekehrt passiert es aber haufig, dass Entwickler ihren Apps zu viele Rechte geben, da sie meinen,
dass diese fiir die verwendeten Methoden notwendig sind. [FCH" 11] zeigt, dass insbesondere die
Berechtigungen ACCESS_NETWORK_STATE und READ_PHONE_STATE haufig unnétigerweise
von Apps angefordert werden.

’Das Manifest einer App enthilt samtliche Metadaten und Informationen iiber alle enthaltenen Komponenten der App
(inklusive bereitgestellte Dienste) sowie verwendete Bibliotheken und sonstige Abhangigkeiten.

15

2 Das Android-Berechtigungssystem

Ebenfalls konnen Rechte tiber Berechtigungsgruppen vergeben werden, die eine Menge von Funktio-
nen umfassen. INTERNET beispielsweise erlaubt alle Netzwerkzugriffe, es gibt aber keine Moglichkeit,
diese nur auf bestimmte Adressen einzuschranken. Hierbei kann es auch passieren, dass Entwick-
ler eine Berechtigungsgruppe verwenden, die eine benétigte Permission enthilt, obwohl dieselbe
Permission bereits Teil einer anderen (bereits verwendeten) Gruppe ist. Dies fithrt dazu, dass die
zusétzlichen Berechtigungen der neuen Gruppe unnétigerweise angefordert werden, was ein héheres
Sicherheitsrisiko darstellt.

Auch werden hidufig Designentscheidungen getroffen, die besondere Rechte erfordern, obwohl dies
eigentlich gar nicht nétig wire. So wiirde es z.B. bei vielen Apps ausreichen, Daten intern zu spei-
chern statt im 6ffentlichen Dateisystem, was eine spezielle Berechtigung erfordert. Auch wird der
Telefonstatus abgefragt, nur um die IMEI-Nummer als eindeutige ID des Gerits zu erhalten (haufig zu
Tracking- und Werbezwecken, wobei dies vom Google PlayStore inzwischen verboten wurde [Rud13]).
Gefahrlich ist dies, da mit derselben Berechtigung auch Informationen tiber Netzanbieter, Mailbox,
Land, aktuellen Datenverbrauch und Telefonate abrufbar sind [Izz14].

Neben den bereits existierenden Berechtigungen kénnen von App-Entwicklern auch neue Permissions
definiert werden. Diese enthalten die Elemente Name, Beschreibung, Bezeichner, Gruppe und Icon
sowie einen von vier protection Levels: normal (wird bei der Installation nicht extra nachgefragt),
dangerous (muss vom Anwender bestétigt werden), signature (wird nur an Apps gewahrt, die dieselbe
Signatur haben), signatureOrSystem (nur fiir System-Apps oder Apps mit derselben Signatur).

Mithilfe dieser Definitionen kénnen bestimmte 6ffentliche Funktionen einer App fiir andere Apps
eingeschrankt werden. Hierbei muss die App, die die Definition bereitstellt, zuerst installiert werden,
da diese vom System sonst nicht erkannt wird.

Auch durch neue Android-Versionen kénnen komplett neue Permissions hinzukommen, die von
diesem Zeitpunkt an fir Zugriffe benétigt werden, die in fritheren Versionen noch keine besonderen
Rechte erfordert haben. Dies kann problematisch sein, wenn Entwickler ihre Apps nicht entsprechend
updaten, wodurch diese auf neueren Systemen aufgrund der "fehlenden” Rechte nicht mehr lauffdhig
sind. Allerdings kann es auch vorkommen, dass die neuen Permissions nur System-Apps gewahrt
werden diirfen, wodurch entsprechende Apps auf neueren Android-Versionen tiberhaupt nicht mehr
benutzt werden konnen [SC13].

2.3 Aus Systemsicht

Das Android-Betriebssystem besteht aus mehreren Schichten (siehe Abb. 2.2), die iiber verschie-
dene Schnittstellen miteinander kommunizieren kénnen. Installierte Apps befinden sich auf dem
Application Level. Das Application Framework enthilt alle Manager-Komponenten, die Funktionen
des Betriebssystems steuern. Diese sind auf oberster Ebene in Java programmiert, die tatsachliche
Implementierung liegt aber hiufig in nativen Bibliotheken.

Die Kernkomponenten jeder App (Activities, Services, Receivers und Providers) werden indirekt von
der durch das System bereitgestellten Klasse Context abgeleitet. Diese enthilt die Methoden zur
Kommunikation mit dem obersten Level des Application-Frameworks, insbesondere werden iiber sie
auch samtliche Berechtigungschecks zur Laufzeit durchgefiihrt.

16

2.3 Aus Systemsicht

APPLICATIONS
(Home } Contacts } { Phone { Browser

S
|

APPLICATION FRAMEWORK
[Activity Manager { Window Manager W { Content Providersw t View System }

I 3

Package Manager] Telephony Manager] [Resource Manager [Location Manager W [Notification Managerw

LIBRARIES ANDROID RUNTIME

\ - Q. 1
[Media Framework | t SQLite]

Core Libraries
\ J

[Surface Manager

[OpenGL/ES [FreeType [webkit] (Dalvik Virtual Machine|
[SGL [ssL] [libe]
LINUX KERNEL

[Display Driver [Camera Driver J [Flash Memory DriverJ [Binder (IPC) DriverJ

[Keypad Driver [WiFi Driver | Audio Drivers] [Power Management]

Abbildung 2.2: Schichten der Android-Architektur [Kum12]

Der Java-Code der Android-Apps wird in Bytecode iibersetzt und innerhalb der so genannten Dalvik
Virtual Machine ausgefithrt. Hierbei handelt es sich um eine Umgebung, die ressourcenschonender
ist als die klassische java Virtual Machine, was sie fiir die Verwendung fiir mobile Endgerite geeig-
neter macht (Hinweis: Zum Zeitpunkt dieser Arbeit wurde in Android 4.4 eine neue experimentelle
Laufzeitumgebung namens ART eingefiihrt, die Dalvik langfristig ersetzen soll [sou14]).

Der Kern von Android ist ein Linux-Mehrbenutzersystem, wobei jede App eine eigene Nutzer-ID
(UID) erhalt. Einzige Ausnahme sind Apps, die von demselben Entwickler stammen und bewusst mit
demselben Zertifikat signiert wurden, sowie dieselbe sharedUserld haben [dev14].

Fiir jede UID wird eine separate Instanz der Dalvik VM ausgefiihrt, wodurch Apps von verschiedenen
Entwicklern vollstandig voneinander isoliert sind und daher auch keinen gegenseitigen Zugriff auf
Daten erhalten konnen. Einzige Ausnahme sind Dateien, die in 6ffentlichen Verzeichnissen abgelegt
werden, diese konnen von jeder App mit entsprechenden Rechten gelesen werden.

Ebenso kann der Quellcode anderer Apps sowie deren Kommunikation mit dem Application-
Framework nicht direkt manipuliert werden. Allerdings liegen die APKs aller installierter Apps
und Dienste in 6ffentlichen Verzeichnissen, so dass darin enthaltene Informationen von allen Apps
gelesen werden konnen.

17

2 Das Android-Berechtigungssystem

Da Apps vollkommen isoliert ausgefithrt werden, haben sie zunéchst einmal keinen Zugriff auf
Funktionen, die auf Systemebene implementiert sind, wie z.B. Zugriff auf die Gerdtehardware (Kamera,
GPS) oder Netzwerkfunktionen. Hierzu werden spezielle Berechtigungen benétigt, die vom Anwender
bei der Installation gew#hrt werden miissen.

Ruft eine App eine Methode auf, die derartige Rechte erfordert, wird von Context mit enforce() ein
entsprechender Check ausgefiithrt. Dieser wird an den ActivityManagerService weitergeleitet, der
tberpriift, ob die entsprechenden Berechtigungen gewahrt wurden. Wenn nicht, wird eine Security-
Exception ausgelost (siehe Abb. 2.3).

Telephony getDeviceld() getSubscriberinfo()
Manager return getSubscriberinfo().getDeviceld() | | return IPhoneSublnfo.Stub.asInterface(...)
L

___ R
getDeviceld()

PhoneSublinfo mContext.enforceCallingOrSelfPermission(READ_PHONE_STATE, "Requires READ_PHONE_STATE");
return mPhone.getDeviceld();

enforceCallingOrSelfPermission(p, msg)
enforce(permission, checkCallingOrSelfPermission(p), ...)
L L

1
enforce(p, result, ...)
if (result != PackageManager.PERMISSION_GRANTED)
Context throw new SecurityException(...) >
Impl 1
checkCallingOrSelfPermission(p)
checkPermission(p, pid, uid)
L

|
checkPermission(p, pid, uid)
return ActivityManagerNative.getDefault().checkPermission(p, ...)
L

___ | [y U

checkPermission(p, pid, uid) '
checkComponentPermission(p, pid, UserHandle.getAppld(uid), ...)
L

Activity
Manager
Service

checkComponentPermission(p, pid, uid, ...)
return PackageManager.PERMISSION_GRANTED
return PackageManager.PERMISSION_DENIED

Abbildung 2.3: Vereinfachter Ablauf eines Berechtigungschecks beim Aufruf von TelephonyMana-
ger.getDeviceld() (auf Basis des Android-Quellcodes)

Der tatsachliche Berechtigungscheck wird von der Methode checkComponentPermission() der Klasse
ActivityManagerService auf Basis von Permission, Prozess-ID und UID der App durchgefiihrt. Wie ge-
nau diese Methode arbeitet, unterscheidet sich jedoch zwischen verschiedenen Android-Versionen.

In Android 2.3 (siehe Lst. 2.2) wird zunéchst iiberpriift, ob es sich um Root- oder System-User handelt,
diese erhalten die Berechtigung automatisch, dasselbe gilt fiir Anfragen aus dem eigenen Prozess. Alle
anderen Checks werden tiber den PackageManager abgehandelt, dabei wird mit checkUidPermission()
aus der UID der App eine Instanz von GrantedPermissions ermittelt und iiberpriift, ob die tibergegebene
Permission darin enthalten ist, oder nicht.

18

2.4 Fazit

Listing 2.2 ActivityManagerService.checkComponentPermission() in Android 2.3 (Auszug) [Thea]

// Root, system server and our own process get to do everything.

if (uid == 0 || uid == Process.SYSTEM_UID || pid == MY_PID || !Process.supportsProcesses()) {
return PackageManager.PERMISSION_GRANTED;

}

// If the target requires a specific UID, always fail for others.

if (reqUid >= 0 && uid != requid) {
Slog.w(TAG, "Permission denied: checkComponentPermission() reqUid=" + requid);
return PackageManager.PERMISSION_DENIED;

}
if (permission == null) {
return PackageManager.PERMISSION_GRANTED;
}
try {

return AppGlobals.getPackageManager().checkUidPermission(permission, uid);
} catch (RemoteException e) {

// Should never happen, but if it does... deny!

Slog.e(TAG, "PackageManager is dead?!?", e);
}
return PackageManager.PERMISSION_DENIED;

Die tatsichlichen Informationen iiber die Berechtigungen jeder App liegen im Hauptspeicher. Nach
Installation oder Update einer App werden die jeweils geforderten Berechtigungen aus dem Manifest
gelesen, das als Teil des APKs fiir jede App im System abgelegt ist, und der Speicher aktualisiert.
Dadurch kénnen Berechtigungschecks zur Laufzeit schnell durchgefithrt werden. Ebenfalls von
Vorteil ist hierbei, dass es keine manipulierbare Datenbasis gibt, durch die boswillige Apps Zugrift
auf geschiitzte Daten erlangen konnten.

2.4 Fazit

Das Android-Berechtigungssystem ist zwar vom Grundprinzip her fiir Anwender leicht verstand-
lich, allerdings hat die in der Praxis immer weiter zunehmende Menge der von Apps geforderten
Berechtigungen dazu gefiihrt, dass kaum noch darauf geachtet wird, ob diese Forderungen tatséchlich
sinnvoll erscheinen. Aber auch bei Apps, die offensichtlich Zugriff auf private Daten und das Internet
benétigen, ist nicht garantiert, dass dies nicht fiir weitere versteckte Zwecke ausgenutzt wird.

Ein grofier Teil der Problematik liegt auch in der fehlenden Moglichkeit, einer App nur ausgewéhlte
Berechtigungen zu gewiahren bzw. den Zugriff auf bestimmte Informationen zu unterbinden. In
Android 4.3 wurde zwar App Ops eingebaut, die genau dies erméglicht, allerdings ist sie im System
versteckt und wurde von manchen Geréateherstellern (z.B. Samsung) wieder vollstandig deaktiviert.
Ab Android 4.4.2 ist sie sogar nur noch mit Root-Rechten abrufbar [Ros13].

Insgesamt ist das Berechtigungsmanagement in den bisherigen Standardversionen des Android-
Betriebssystems nicht ausreichend, um die Sicherheit privater Informationen zu gewahrleisten.

19

3 Alternative Berechtigungssysteme

Aufgrund der beschriebenen Unzulanglichkeiten des Android-Berechtigungssystems sind im Laufe der
Jahre verschiedene Konzepte entstanden, wie das bestehende System aus Anwendersicht verbessert
werden konnte. Im einfachsten Fall wiren bereits eine verstiandlichere Darstellung und Verdeutlichung
kritischer Rechtekombinationen hilfreich [SLG™12]. Grundsitzlich liegt das Problem allerdings in
der fehlenden Moglichkeit, Berechtigungen nur selektiv zu gewahren.

Zu diesem Zweck wurden verschiedene Systeme entwickelt, die es Anwendern erlauben, mehr Einfluss
auf das Berechtigungsmanagement ihrer Apps zu nehmen. Diese lassen sich in zwei grundlegende
Kategorien unterteilen: eine Manipulation der Apps durch eine eingebaute Monitor-Komponente
oder eine Anpassung des Betriebssystems selbst.

Die hier beschriebenen Verfahren stellen eine Auswahl aus der breiten Menge der existierenden
alternativen Berechtigungssysteme dar und sollen verschiedene konzeptionelle und implementie-
rungstechnische Ansitze zeigen.

3.1 Inline Reference Monitoring

Da eine App aufgrund des Sandbox-Modells von Android (siehe Kapitel 2.3) nicht in der Lage ist,
andere Apps von “aulen” zu iiberwachen, besteht ein Losungsansatz darin, existierende Apps durch
einen eingebauten Sicherheitsmonitor zu erganzen. Dieser ist dann in der Lage, Zugriffe abzufangen,
die besondere Berechtigungen erfordern, und auf Basis von Richtlinien zu entscheiden, ob diese
blockiert oder erlaubt werden sollen.

Um bereits gepackte Apps nachtréglich zu bearbeiten, werden Tools verwendet, die zunachst das
bestehende APK dekompilieren und damit annédherungsweise die urspriingliche Datenstruktur wie-
derherstellen, so dass Anderungen am Quellcode vorgenommen werden kénnen. Danach wird der
Code wieder gepackt und neu signiert. Das dadurch entstandene neue APK kann vom Anwender
normal installiert werden [HSD13].

3.1.1 Dr. Android and Mr. Hide

Ein Merkmal vieler Apps ist, dass sie aufgrund der teilweise "groben” Einteilung der Permission-
Elemente mehr Rechte haben, als sie fiir die Ausfithrung ihrer Funktionalitat tatsachlich benétigen
wiirden. Da mehr Rechte automatisch ein hoheres Sicherheitsrisiko darstellen, ist es wiinschenswert,
diese auf das absolut notige Minimum zu reduzieren.

21

3 Alternative Berechtigungssysteme

Ein Ansatz, der diese Problematik angeht, ist in [JMV ' 12] beschrieben. Hierbei wurden zunichst die
existierenden Android-Berechtigungen anhand ihrer Eigenschaften in vier Hauptgruppen unterteilt:
Externe Ressourcen, Strukturierte Anwenderdaten, Sensoren und Systeminformationen. Auf Basis der
bestehenden Permissions sind neue, starker eingeschrankte Berechtigungen definiert.

Das Verfahren teilt sich in drei separate Module:

Zunachst wird die existierende App auf notwendige Rechte untersucht. Dies geschieht mithilfe des
Tools RefineDroid in Form einer statischen Analyse des Dalvik-Bytecodes. Dieser wird auf bestimmte
Textmuster und API-Aufrufe geprift, die Hinweise auf benéttigte Berechtigungen geben koénnten.
Ebenfalls wird ausgewertet, welche Parameter an entsprechende Methoden weitergegeben werden.
Daraus ergibt sich eine Liste aller tatsachlich bené6tigten Rechte der App.

Das Modul Mr. Hide (the Hide Interface to the Droid Environment) stellt eine Reihe von Android-
Services dar, die eine eigene Menge von Permissions zur Verfiigung stellen und regeln (siehe Abb.
3.1a). Damit diese Services die entsprechenden Berechtigungschecks auch abfangen kénnen, miissen
Apps, die das System verwenden, passende Schnittstellen enthalten. Diese werden Entwicklern
durch die Bibliothek hidelib zur Verfiigung gestellt. Sie erhalten somit die Moglichkeit, verfeinerte
Berechtigungen innerhalb ihrer Apps zu verwenden.

process input.apk hidelib.dex
boundary

T) classes.dex \| E?g‘zﬁ‘:edre
N Mr. Hide !
app 1 hidelib . !
" service . Android | Manifest
A [Manifest.xml rewriter
. (direct access | apktool
. removed : Other
v) ' Resources [Resource
: (*.xml) rewriter
Sensitive Android APls ' Other files (unchanged)
prAndrid e > . .
(a) Mr. Hide: Bereitstellung verfeinerter (b) Dr. Android: Ergénzung bestehender Apps
Permissions fiir andere Apps durch hidelib-Funktionalitat

Abbildung 3.1: Dr. Android and Mr. Hide [JMV*12]

Um auch als Anwender eine bereits bestehende App mit den beschriebenen Methoden ergianzen zu
kénnen, wird das Modul Dr. Android (auf Basis von apktool') angeboten (siehe Abb. 3.1b). Dieses
entfernt die zu groben Permissions aus dem Manifest und fiigt die tatsdchlich bendtigten eigenen
verfeinerten Permissions hinzu. Die Bibliothek hidelib wird so in die App integriert, dass ihre Services
beim Starten der App direkt mit ausgefithrt werden. Ebenfalls werden Ableitungen von Klassen der
CoreAPI im Quellcode durch Ableitungen dquivalenter hidelib-Klassen ersetzt, die entsprechende
Schnittstellen enthalten.

"https://code.google.com/p/android-apktool/

22

3.1 Inline Reference Monitoring

3.1.2 I-ARM Droid

Eine Moglichkeit, das Verhalten von Apps beim Aufruf bestimmter Methoden zu manipulieren,
bietet I-ARM Droid [DSKC12] bzw. dessen Weiterentwicklung RetroSkeleton [DC13]. Hierbei geht es
zundchst einmal nicht konkret um Funktionalititen, die besondere Berechtigungen erfordern, jedoch
kann das System unter anderem auch dazu verwendet werden, solche Zugriffe abzufangen und mit
benutzerdefiniertem Verhalten zu ergénzen.

Um eine Methode zu tiberschreiben, muss der Anwender deren komplette Signatur angeben. Da
diese Signatur innerhalb des Dalvik-Bytecodes einzigartig ist, wird garantiert, dass tatsachlich nur
die gewtinschte Methode manipuliert wird. Das alternative Verhalten kann in Java-Code formuliert
werden, so dass beliebig einfache oder komplexe Anpassungen moglich sind.

Die so entstandenen neuen Methoden werden in separaten Klassen abgelegt, die beim Umschreiben
der App hinzugefiigt werden. Urspriingliche Klassen des Application-Frameworks, die neu definierte
Methoden enthalten, werden neu abgeleitet und ebenfalls hinzugefiigt. Dabei werden die neuen
Methoden so ersetzt, dass sie wiederum auf die neuen Definitionen verweisen.

Durch dieses Vorgehen konnen mehrere Methoden dieselbe Definition haben kénnen, ohne dass
ein unnotiger Overhead an Code entsteht. Der urspriingliche Quellcode der App wird schlie8lich
so umgeschrieben, dass Instanzen von neu abgeleiteten Klassen diese anstatt der Originalklassen
verwenden.

Dieses Verfahren kann verwendet werden, um beliebige Aufrufe von Methoden des Application-
Frameworks abzufangen und zu manipulieren. Da dies auch die Methoden beinhaltet, die fiir Berechti-
gungschecks verantwortlich sind, kénnen der App an dieser Stelle Berechtigungen “entzogen” werden.
Auch kann bei Aufrufen von Methoden, die private Daten auslesen, stattdessen ein benutzerdefiniertes
Objekt (beispielsweise mit Dummy-Daten) zuriickgegeben werden.

Dies hat den Vorteil, dass die App trotz effektiv fehlender Berechtigungen nicht abstiirzt, da die
Methode passende Daten erhilt und keinen Fehler wirft. Auch sind anhand der an die Methode
iibergebenen Parameter kontextbezogene Entscheidungen moglich, beispielsweise konnten Internet-
Anfragen nur an bestimmte Server zugelassen werden.

3.1.3 Aurasium

Aurasium [XSA12] ist ein System, welches eine App um eine zusatzliche Sandbox ergénzt. Dabei
wird einer existierenden App eine native Monitor-Komponente hinzugefiigt, die bei Anfragen an
das System zwischengeschaltet wird und damit in der Lage ist, potentiell unerwiinschte Zugriffe auf
private Daten abzufangen.

Der oberste Level des Application-Frameworks, also die Interfaces, die von den Apps direkt angespro-
chen werden, sind in Java programmiert, der Rest in nativem Code. Die tatsichliche Kommunikation
wird dort von Shared Objects gesteuert, die wiederum auf verschiedenen Shared Libraries aufbauen.
Dabei landen Anfragen einer bestimmten Funktionalitit (z.B. Netzwerkzugriff) - unabhéngig davon,
welches Interface auf Java-Ebene verwendet wurde - schlussendlich immer bei denselben nativen
Methoden. Diese fordern die gewiinschte Funktionalitat dann vom Linux Kernel an.

23

3 Alternative Berechtigungssysteme

Application Code |

Android Package (.apk)

Framework Code - Java

- Aurasium
- -0 .
—(Java Native Interface — Decompiled | 1] | os dex | | resources.arse Native
smali files .
Library

Framework Code - Native (C++)

uncompiled resources

Aurasium "
[Aurasium} - - - Java Code AndroidManifest.xml [(i‘&olllrl;zsolllllg:t
el Boundary [llbm.so] {lleSO] [llbstdc++.soj Declaration
| Linux Kernel |
(a) Architektur von Aurasium (b) Erganzung des APKs

Abbildung 3.2: Aurasium [XSA12]

Aurasium ergénzt die vorhandenen nativen Bibliotheken durch eigene Objekte, die Monitorfunktionen
implementieren (siche Abb. 3.2a). Shared Objects im nativen Teil des Frameworks werden dynamisch
mit ihren jeweiligen Zielfunktionen verlinkt. Um den Monitor zwischenzuschalten, werden die
verlinkten Funktionszeiger durch Zeiger auf entsprechende Methoden von Aurasium ersetzt, die
wiederum auf die tatsichliche Zielmethode zuriick verweisen. Dadurch kann der Monitor bei jedem
Aufruf entscheiden, ob die Anfrage weitergeleitet oder blockiert wird.

Um diese Entscheidung zu treffen, sind Richtlinien definiert, die fiir jede angeforderte Funktionalitat
ein individuelles Verhalten festlegen. So konnen beispielsweise Netzwerk-Anfragen mit externen
Tools analysiert werden, um dem Anwender Informationen uiber die angefragte Seite zu zeigen.

Alle Zugriffe werden zunichst von Aurasium abgefangen, der Anwender wird dabei jedes Mal
informiert und gefragt, ob der jeweilige Zugriff erlaubt werden soll. Dabei ist es auch méglich,
individuelle Entscheidungen fiir die Zukunft zu speichern (z.B. Blacklist/Whitelist fiir IP-Adressen).

In der einfachen Version wird jede App iiber einen eigenen Monitor separat gesteuert. Eine Moglichkeit,
Zugriffs-Entscheidungen global festzulegen, bietet der Aurasium Security Manager. Hierbei werden
Anfragen von den Aurasium-Komponenten der verschiedenen Apps immer erst an den Manager
weitergeleitet, der die jeweilige Entscheidungen registriert und zuriickgibt. Dies hat den Vorteil,
dass vom Anwender definierte Regeln auch dann erhalten bleiben, wenn einzelne Apps deinstalliert
werden, und auch fiir neu installierte Apps bereits registriert sind.

Aurasium verwendet apktool, um das APK einer bestehenden App zu ergidnzen (siehe Abb. 3.2b).
Hierbei konnen die benédtigten nativen Bibliotheken als Shared Objects ohne Integrationsaufwand
hinzugefiigt werden, zusatzlich wird der benétigte Java-Code in den bestehenden Quellcode integriert.
Hierbei muss sichergestellt werden, dass der neue Code beim Start der App zuerst ausgefithrt wird.
Dies wird garantiert, wenn Aurasium in der Manifest-Datei als Application-Klasse definiert ist.

24

3.1 Inline Reference Monitoring

3.1.4 AppGuard

AppGuard [BGH™13a, BGH'13b] ist dhnlich konzipiert wie Aurasium, arbeitet jedoch auf einer
anderen Ebene des Systems. Auch die Wahrnehmung und Steuerung durch den Anwender unterschei-
det sich sehr stark. Wahrend Aurasium bei jeder zur Laufzeit auftretenden Berechtigungsanfrage
die Entscheidung dem Nutzer iiberlasst, erlaubt AppGuard, kritische Berechtigungen tiber eine
Permission-Liste der App global zu deaktivieren (siehe Abb. 3.3a).

Implementierungstechnisch werden bei AppGuard - anders als bei Aurasium - Anfragen an das
System nicht innerhalb des nativen Codes abgefangen, sondern bereits auf Ebene der Dalvik VM.
Hierbei werden die Funktionszeiger auf den Bytecode der tatsiachlichen Methoden durch Zeiger auf
Methoden des Monitors ersetzt. Dieser tiberpriift den jeweiligen Zugriff auf Basis der tiber AppGuard
erlaubten Rechte und entscheidet, ob der Aufruf zugelassen wird.

AppGuard reagiert iiber einen Broadcast Receiver automatisch auf die Installation einer neuen App.
Auf Wunsch des Anwenders hin kann die App dann mit zusétzlichen Komponenten ergéinzt werden,
die die Uberwachung ermdglichen. Nachdem die neue Version der App installiert wurde, konnen
einzelne Berechtigungen iiber das AppGuard-Interface deaktiviert werden. Die Liste entspricht dabei
der Menge der von der App geforderten Permissions, zusatzlich hat jede App die Berechtigung "Zugriff
auf Mediendatenbank”; diese erfordert in Android kein spezielles Permission-Element, kann aber
trotzdem unerwiinscht sein und somit blockiert werden.

Manche Berechtigungen, wie z.B. der Internetzugriff, konnen zusitzlich verfeinert werden. Hierbei
erstellt AppGuard eine Liste aller Server, mit denen sich die App seit Neuinstallation verbinden wollte.
Der Anwender kann zusétzlich zur globalen Einstellung der Berechtigungsliste einzelne Domains
blockieren oder freigeben.

Berechtigungen Log
zugrTTauT geoTKT:
 23.07.1416:02
Internet Zugriff gestattet (golem.de.dynamic.feedsportal.com)

Berechtigungen Log

Wirkt sich auf den Akku aus

[standby-Modus des Tablets verhindern X 2307141602

. Internet Zugriff auf googleads.g.doubleclick.net geblockt
Informationen zu lhren Apps

 23.07.1416:02
O A - Internet Zugriff gestattet (www.golem.de).
usgefiihrte Anwendungen abrufen
 23.07.1416:02

. Internet Zugriff gestattet (www.golem.de)
Netzwerkkommunikation igrifig (www.g)

 23.07.1416:02

Internet Zugriff gestattet (scr3.golem.de).
V 23.07.1416:02

Internet Zugriff gestattet (scr3.golem.de).

] WLAN-Status éndern

p Golem
[Vollstandiger Internetzugriff &= de timluegger.golem V 2307.1416:02
1 Internet Zugriff gestattet (www.golem.de).
X 2307.1416:02
Internet Zugriff auf googleads.g.doubleclick.net geblockt.
 23.07.1416:02
Internet Zugriff gestattet (www.golem.de).
 23.07.1416:02
Internet Zugriff gestattet (www.golem.de).
X 23.07.1416:02
Internet Zugriff auf googleads.g.doubleclick.net geblockt.
 23.07.1416:02
Internet Zugriff gestattet (www.golem.de).
V 23.07.1416:02
Internet Zugriff gestattet (www.golem.de).
 23.07.1416:02
Internet Zugriff gestattet (www.golem.de).

"] Netzwerkverbindung andern

Anrufe

["] Telefonstat. u. -ID lesen

Mediendaten

' Zugriff auf Mediendatenbank (Fotos, etc.)

Alle Berechtigungen anzeigen...

(a) Deaktivierung einzelner Berechtigungen (b) Logdatei mit blockierten/erlaubten Zugriffen

Abbildung 3.3: AppGuard

25

3 Alternative Berechtigungssysteme

Auflerdem ist fur jede App eine vollstandige Logdatei (sieche Abb. 3.3b) aller Zugriffe abrufbar, durch
die der Nutzer das Verhalten der App verfolgen kann. Hierbei wird jeweils markiert, welche Zugriffe
von AppGuard erlaubt bzw. blockiert wurden. Dadurch kénnen die Auswirkungen von Berechtigungs-
anderung unmittelbar beobachtet werden.

Durch das Neupacken und die damit entstandene neue Signatur der App sind Updates aus dem
AppStore nicht mehr méglich. AppGuard bietet dafiir einen eigenen Update-Mechanismus an, der
den Anwender iiber neue Versionen informiert und die Installation tibernimmt. Dadurch gehen
gespeicherte Daten nicht verloren.

3.1.5 Bewertung

Alle Systeme, die eine Manipulation der Apps selbst erfordern, haben den Nachteil, dass beim Andern
des Quellcodes und dem darauffolgenden Neupacken des APKs nicht die urspriingliche Signatur des
Entwicklers verwendet werden kann. Diese dient als Nachweis der Urheberschaft und ist notwendig,
um Apps desselben Entwicklers zu erkennen und direkte Updates zu erméglichen.

Die Beziehung zwischen verschiedenen Apps kann beim Neusignieren erhalten bleiben, indem Apps
mit demselben Originalzertifikat dieselbe neue Signatur enthalten. Dies erfordert das Speichern der
Originalinformation sowie ein 1:1-Mapping auf neu generierte Signaturen, funktioniert aber nur,
wenn alle Apps auf einem Gerat bzw. von derselben Instanz der Software neu gepackt wurden.

Mit diesem Verfahren ist es allerdings nicht mehr méglich, automatische Updates zu beziehen, da die
Signatur der App nicht mit der aus dem AppStore iibereinstimmt. Um eine neue Version zu installieren,
misste die eigene Version der App zunichst entfernt werden, was aus Anwendersicht unerwiinscht
sein kann, da etwaige lokal gespeicherte Daten verloren gehen wiirden. AppGuard umgeht dieses
Problem, indem ein eigener Update-Mechanismus angeboten wird, jedoch miissen neue Versionen
trotzdem manuell installiert werden.

Ebenfalls problematisch ist die rechtliche Seite, da eine Anderung von Software, auch wenn sie
automatisiert geschieht, einen Eingriff in das Urheberrecht des Entwicklers darstellt. Auch ist es damit
moglich, Werbung zu blockieren, die fiir viele freien Apps die Finanzierungsgrundlage darstellen.
Google hat beispielsweise AppGuard wieder aus dem PlayStore entfernt, da sie gegen die allgemeinen
Geschiftsbedingungen verstofit [Fril2].

Insgesamt kénnen die hier vorgestellten Ansétze direkt verglichen werden (siehe Tabelle 3.1). Dabei
tallt schnell auf, dass kein System alle gewiinschten Eigenschaften (wie in [SM13] genannt) unterstiitzt.
Laufzeitanderungen sind beispielsweise nur dann moglich, wenn das Kontrollsystem direkt auf dem
Anwendergerat installiert ist. Diese Systeme erlauben wiederum keine kontextsensitive (von externen
Faktoren wie z.B. Standort und Uhrzeit abhéngige) Berechtigungssteuerung. Die Absturzsicherheit
der neu gepackten Apps ist in den meisten Fallen gew#hrleistet, wobei in Einzelfillen durch das Um-
schreiben Fehler entstehen konnen. Auch im Bezug auf Feedback gibt es unterschiedliches Verhalten,
bei AppGuard werden Funktionen, die widerrufene Berechtigungen erfordern, beispielsweise einfach
nicht ausgefiihrt, ohne den Anwender darauf hinzuweisen. Auf der anderen Seite ist AppGuard das
einzige System, welches einen Update-Mechanismus fiir installierte Apps implementiert.

26

3.2 Erweiterung des Android-Frameworks

Laufzeit- Absturz- Kontext- Dummy- Anwender- Auto-
anderung sicher sensitiv Daten Feedback Updates
Dr. A. & Nein Ja Ja Nein Nein Nein
Mr. Hide
I-ARM Nein Ja Ja Ja Ja Nein
Aurasium Ja Ja Nein Nein Ja Nein
AppGuard Ja Ja Nein Nein Nein Ja

Tabelle 3.1: Vergleich der Android IRM-Systeme

Fazit: Im Bezug auf Anpassbarkeit bietet ’-ARM Droid die meisten Moglichkeiten, jedoch sind dazu
Programmierkenntnisse und ein tieferes Verstindnis der Android-Systemarchitektur notwendig, was
es fiir den Einsatz fiir normale” Anwender unbrauchbar macht.

Von allen hier beschriebenen Ansatzen ist AppGuard am benutzerfreundlichsten. Da es direkt als
App auf dem jeweiligen Gerat installiert wird, muss der Anwender nicht erst manuell die APKs
herunterladen, diese umwandeln und dann die neue Version auf das Zielgerat spielen. Durch die
Moglichkeit, Apps mit einem Klick zu konvertieren und Updates ohne Datenverlust zu installieren,
entsteht gegeniiber der Installation direkt aus dem AppStore nur ein geringer Mehraufwand.

3.2 Erweiterung des Android-Frameworks

Da jeder auf Inline Reference Monitoring (IRM) basierende Ansatz eine Manipulation des Quellcodes
der jeweiligen Apps erfordert, kann nicht garantiert werden, dass die Funktionalitit der Apps dabei
vollstandig bestehen bleibt. In Einzelfallen konnen die Apps nach der Konvertierung auch ohne

tatsichliche Einschrinkung der Berechtigungen teilweise oder vollstindig fehlerhaft sein®.

Will man die Berechtigungen von Apps ohne Manipulation von deren Quellcode einschrinken, ist dies
nur auf Systemebene durch eine Anderung am Android-Framework selbst méglich. Zur Installation
einer angepassten Version des Android Betriebssystems muss das Zielgerit gerootet sein.

3.2.1 Apex

Apex (Android Permission Extension Framework) [NKZ10] ist eine angepasste Version des Android-
Betriebssystems, die es dem Anwender ermdglicht, direkt bei der Installation einer App einzelne
Berechtigungen zu verweigern oder einzuschranken.

Eine Erweiterung des Package Installers namens Poly erlaubt fiir jede einzelne Berechtigung die
Wahl zwischen drei Moglichkeiten: allow, deny, constrain. Neben der im Android-System bisher
nicht vorhandenen Méglichkeit, einzelne Berechtigungen iberhaupt nicht zu gewahren, ist es damit
ebenfalls moglich, den Zugriff auf gewisse Dienste benutzerdefiniert einzuschranken. Ein Beispiel

*Bei einem Test von AppGuard mit 30 Apps funktionierten drei davon nach der Konvertierung nicht mehr richtig.

27

3 Alternative Berechtigungssysteme

hierfiir wire, die Berechtigung SEND_SMS zu limitieren, so dass nur eine gewisse Anzahl Nachrichten
pro Tag erlaubt sind oder diese nur innerhalb bestimmter Uhrzeiten verschickt werden kénnen.

Apex erlaubt aulerdem, die Richtlinien von bereits installierten Apps nachtréglich zu bearbeiten.
Hierzu wurde in den Einstellungen ein Link auf das Poly-Interface fiir das Richtlinien-Management
erstellt. Alle Richtlinien sind &hnlich wie die originalen Android-Berechtigungen in XML-Dateien
gespeichert. Diese enthalten unterhalb der UID der jeweiligen App alle Einschrankungen, die durch
den Anwender festgelegt wurden.

Android Permission Extension Framework

o

checkPermission() L
checkCallingPermission() checkComponentPermission() 4
checkUidPermission() Expression

Py i checkPermission() Repository

) : Policy Resolver
— 3 ® gv L]
S -

—e - -
s | > ‘ ActivityManagerNative ‘ —~
! 2 3 /
. . N~ a | \‘L‘T T\?) ~
Activities, Services, . oy |
~ AN o) i ‘ ActivityManagerService ‘ © o @
. ! g >
) | Security ' = ~ ® -
\,»I ! Exception o) |® & g Attribute User
o ¥ / _5 ES Repository defines
Application Context (10) Package Manager Service] 8 policies
~ 3
©
14

- Process Boundary

IActivityManager o — — - ‘
®) @ . | ‘ Existing Permission Checks ‘ ©) 0o
T T\ N
N Policy [] unmodiied
s NN Access Manager Repository
_— W\ D Created for Apex
Parcel
Permission PID uiD
(IPC Mechanism) Modified for Apex

Abbildung 3.4: Erweiterung des Android-Frameworks durch Apex [NKZ10]

Wie in Kapitel 2.3 beschrieben, wird jeder Berechtigungscheck iiber den Application Context an den
ActivityManagerService weitergeleitet. Die darin enthaltene Methode checkPermission() ist der einzige
offentliche Eingangspunkt fiir Berechtigungschecks® und dadurch gut dafiir geeignet, Anpassungen
am Berechtigungssystem vorzunehmen.

Bei Apex wurde der PackageManagerService dahingehend erweitert, dass nach den bestehenden Checks
die Anfrage an einen neu implementierten Access Manager weitergegeben wird (siehe Abb. 3.4). Dieser
priift mithilfe eines Policy Resolvers auf Basis der geforderten Permission und der UID der App, ob die
Berechtigung gewéhrt werden soll oder nicht.

Als Teil des erweiterten Berechtigungschecks von Apex wurde fiir Riickgabewerte eine neue Konstante
namens PERMISSION_CONSTRAINT CHECK_FAILED definiert, fiir den Fall dass eine Berechtigung
aufgrund der vom Anwender definierten Richtlinien verweigert wurde. Diese wird von enforce() mit
einer besonderen Instanz von SecurityException verarbeitet, die den Anwender dariiber informiert.

Apex ist somit in der Lage, benutzerdefinierte Einschrankungen aller Berechtigungen jeder App durch
den Anwender zu ermoéglichen. Ein Nachteil dieser Implementierungsweise ist, dass die Methode
checkPermission() keine Informationen aufier der UID der App selbst enthalt, wodurch inhaltsbezogene
Richtlinien (z.B. IP-Blacklists bei Internet-Anfragen) nicht méglich sind.

*laut Quellcode-Kommentar unter http://goo.gl/rW1th, Zeile 5763f.

28

3.2 Erweiterung des Android-Frameworks

3.2.2 CRéPE

Waihrend Apex die Moglichkeit bietet, einzelne Berechtigungen von Apps einzuschranken, ist dies
nur durch absolute Richtlinien méglich, die vom Anwender definiert werden und ab diesem Zeitpunkt
so lange gelten, bis sie manuell angepasst werden. Ein Ansatz, der eine flexiblere kontextabhéngige
Steuerung von Zugriffsberechtigungen erméglicht, ist CREPE [CCFZ12]. Hierbei liegt der Fokus darin,
verschiedene Policies parallel zu definieren und abhangig von der Umgebung zu entscheiden, welche
davon zum jeweiligen Zeitpunkt aktiv sein sollen.

Die so definierten Richtlinien lassen sich in zwei Kategorien einteilen: Access Control Policies, die Zu-
griffsregeln festlegen, und Obligation Policies, die Aktionen definieren, die vom System zu bestimmten
Zeitpunkten ausgefithrt werden sollen (beispielsweise Starten oder Stoppen einer App).

Policies werden in einer Art Matrix zwischen den zugehorigen Subjekten (Apps) und Objekten
(Apps, Ressourcen) gespeichert. Der zugeordnete Wert ist eine Regel, die die Anweisung access bzw.
deny sowie eine Prioritat enthalt. Existieren zu einem bestimmten Zeitpunkt mehrere aktive Regeln,
entscheidet die Prioritét, welche tatsachlich gilt.

Regeln kénnen abhingig von verschiedenen Kontexten definiert werden. Diese diirfen Informationen
enthalten, die iiber externe Sensoren ermittelt werden kdnnen, beispielsweise mit GPS (aktueller
Standort), Netzwerkadapter (online oder offline) oder Bluetooth. Hierfiir wurde das Betriebssys-
tem durch einen ContextDetector erweitert, der Anderungen in der Umgebung registriert und den
ManagerService entsprechend informiert (siehe Schritte 5-7 in Abb. 3.5).

Application =
Layer Admin
' Lol QR Policy |~ (1)
@ ' Administrator Receiver | Camera
— Object @ @
A \ \ 4 @
@ Remote L]
Administrator w_|
B e
@ |
PEP PDP X PAP i Sl ——
and Canen
Action Executory.
CRePE ®- @
Reference || ActiveRules | ==p
Monitor k] Manager |
____O! NG
()
Android
Middleware
Linux
Kernel

Abbildung 3.5: Ubersicht der CREPE-Architektur [CCFZ12]

29

3 Alternative Berechtigungssysteme

Der ActiveRulesManager erhilt die Informationen tiber den aktuellen Kontext (Schritt 8) und priift,
ob aufgrund einer Anderung des Kontextes bestimmte Aktionen ausgefithrt werden miissen (bei-
spielsweise Deaktivierung einer Hardwarekomponente). Wenn ja, wird der CRéPE Reference Monitor
informiert und die Anweisung durch den darin enthaltenen ActionExecutor ausgefiihrt.

Wie in Kapitel 2.3 beschrieben, wird jeder Permission-Check des Betriebssystems iiber die Methode
checkPermission() im ActivityManagerService durchgefithrt. Diese Methode wurde hierbei dahinge-
hend erweitert, dass zuerst anhand des Reference-Monitors iiberprift wird, ob die aktuell aktiven
Policies diesen Zugriff erlauben (Schritte b und c). Ist dies der Fall, wird der normale Berechtigungs-

check durchgefiihrt (Schritt d).

Eine Besonderheit an CRéEPE gegeniiber anderen vergleichbaren Systemen sind die verschiedenen
Méoglichkeiten, Policies auf einem Gerét zu installieren. Neben dem Erstellen von eigenen Eintriagen
durch den Anwender selbst (Local Administrator) konnen diese auch von externen Quellen (Remote
Administrator), beispielsweise iiber SMS, Bluetooth oder das Einlesen eines QR-Codes empfangen
werden (siehe Admin-Komponente in Abb. 3.5 rechts oben).

Alle installierten Policies miissen ein giiltiges Zertifikat enthalten; jeder Administrator hat hierbei
eine eindeutige Identitit sowie eine maximal erlaubte Prioritét, die einzelnen Regeln zugeordnet
werden kann. Damit ist es moglich, dass Richtlinien des Remote-Administrators (beispielsweise eine
Firma) die Regeln des Anwenders (ein Angestellter dieser Firma) iiberschreiben kann, da dieser eine
hohere Prioritit vergeben darf als der Anwender selbst.

Insgesamt liegt der Fokus dieses Ansatzes auf der kontextabhiangigen Steuerung von Berechtigungen,
die sicherstellen kann, dass zu bestimmten Zeitpunkten und in bestimmten Situationen einzelne
Funktionen (die generell erlaubt sind) unterbunden werden kénnen, ohne dass der Anwender manuell
Anderungen an Berechtigungsregeln vornehmen muss. Auch kénnen globale Richtlinien "von oben”
durchgesetzt werden, die der Anwender selbst nicht manipulieren kann.

3.2.3 MockDroid

Viele Apps benétigen gewisse Berechtigungen nur fir zusitzliche optionale Features. Auch wenn
ein Anwender ein Feature iiberhaupt nicht verwenden mochte, muss er trotzdem die Berechtigung
erteilen, da die App sonst nicht installiert werden kann. Um private Daten wie z.B. Standort und
Kontakte vor moglichem Missbrauch zu schiitzen, besteht ein Ansatz darin, dass das System Zugriffe
auf solche Daten abfingt und stattdessen Dummy-Daten zuriickgibt.

Das System MockDroid [BRSS11] erlaubt Dummy-Daten fiir Standort, SMS, Kalender, Kontakte und
Gerate-ID. Aulerdem konnen Internet-Anfragen so abgefangen werden, dass ein Timeout auftritt und
die App dadurch den Eindruck hat, es bestehe keine Verbindung. Auch das Senden und Empfangen
von Broadcasts kann verhindert werden.

Bei Installation einer neuen App werden zunéchst alle Rechte zugeteilt. Der Anwender wird hierbei
durch das Android-System tiber die benétigten Berechtigungen informiert und muss diese wie
gewohnt bestétigen. Daraufhin erscheint in der Benachrichtigungsleiste ein Hinweis, tiber den man
zu einer Manager-Oberfldche gelangt, wo man einzelne Berechtigungen deaktivieren und damit durch
Dummy-Daten ersetzen kann (siehe Abb. 3.6).

30

3.2 Erweiterung des Android-Frameworks

&*, Paper Toss FREE 02 - UK
| Backflip Studios Inc. A Clear
Paper Toss
This application has access to the [Ongoing |
following:) Mocked Permissions
& [usB debugging connected
A Your locatio Select to disable USB debugging.
oarse (network-based) location, fine
GPS) locatior USB connected
A Network communication Select to copy files to/from your computer. CC’?‘”‘SE‘ (network-based)
full Internet acces e location
A Phone calls L L
ead phone state ar ntit @ Mock permissions for application fine (GPS) location
Press to configure mocking for Paper Toss 16:53
read phone state and
() show all ad | e

identity

[[o]

(a) Information tber benétigte (b) Benachrichtigung nach Instal- (c) Benutzerdefinierte ~ Anpas-
Berechtigungen (Standard) lation einer App sung der Berechtigungen

Abbildung 3.6: MockDroid [BRSS11]

Um Dummy-Daten zu speichern, wurde dem System eine zusétzliche Gruppe namens mock hinzuge-
fiigt, die diese innerhalb eines festgelegten Verzeichnisses fiir alle Apps verwaltet. Auflerdem ist fiir
den PackageManager ein Service implementiert, der bei Anderungen an diesen Daten ein Update der
Berechtigungsinformation im Hauptspeicher veranlasst.

Um Anderungen an den Daten vorzunehmen, wurde die App Mocker entwickelt, die durch eine neu
definierte Systemberechtigung als einzige App auf das entsprechende Verzeichnis zugreifen darf.
Damit ist es moglich, im laufenden Betrieb die Einstellungen fiir jede installierte App zu dndern.

Will eine App auf geschiitzte Daten zugreifen, wird zunéchst der Berechtigungscheck des Application
Frameworks aufgerufen. Die entsprechende Methode wurden hierbei so modifiziert, dass nach der
bereits existierenden Priifung auflerdem noch kontrolliert wird, ob die jeweilige Ressource fiir die
abfragende App durch MockDroid freigegeben oder blockiert werden soll. In letzterem Fall werden
gef. passende Dummy-Daten zuriickgegeben, z.B. eine leere Datenbank.

Dieses Verfahren hat den Vorteil, dass die App trotz effektiv fehlender Zugriffsberechtigung normal
arbeiten kann und keine Fehler vom System zuriickbekommt. Die App selbst "merkt” dabei nicht,
dass die verwendeten Daten nicht echt sind, da das Datenformat den Erwartungen entspricht.

Anwender sind somit in der Lage, selbst festzulegen, welche Daten sie jeder App zur Verfiigung
stellen mochten, und kénnen im laufenden Betrieb testen, welche Auswirkungen dies jeweils auf
deren Funktionalitat hat.

31

3 Alternative Berechtigungssysteme

3.2.4 AppFence

Die zuvor beschriebenen Verfahren zeigen einerseits, wie Berechtigungen auf Systemebene wider-
rufen werden konnen (mit der Gefahr, dass die App als Konsequenz moglicherweise abstiirzt) und
andererseits, wie durch Riickgabe von Dummy-Daten die Kernfunktionalitidt bewahrt werden kann,
ohne dass Fehler auftreten.

Ein Ansatz, der diese beiden Methoden miteinander kombiniert, ist AppFence [HHJ*11]. Hierbei wurde
zunichst das Monitoring-Tool TaintDroid [EGC*10] verwendet, um bestimmte geschiitzte Daten
markieren und deren Weitergabe verfolgen zu konnen. Darauf aufbauend wurden zwei verschiedene
Verfahren implementiert, um die Weitergabe dieser Daten an externe Server zu unterbinden:

Dalvik VM

S y content://caleridar QNS ITSR a1 ‘
1_app_1
\peAn()
content manager]—
OSNetworkSystem, .
e
I

log, camera,
onnectio microphone
ofe o shadowin

account manager]_

location manager]‘

f
L
|
[process manager]—
[
[telephony manager }‘

AppFence |
daemon

Abbildung 3.7: AppFence: Anpassung der Framework-Dateien, um Riickgabe von manipulierten Da-
ten zu ermdglichen (dunkelrot), Blockade ausgehender Nachrichten (griin) [HHJ*11]

Data Shadowing - Ahnlich wie auch bei MockDroid werden hierbei Daten weitergegeben, deren
Format und Inhalt einem vom System erwarteten Datensatz entspricht. In vielen Féllen ist dies
einfach durch eine leere Datenbank zu bewerkstelligen (z.B. bei Kalender, Kontakten, Nachrichten).
Manchmal ist es aber notwendig, tatsachliche (scheinbar korrekte) Informationen zuriickzugeben, da
die App diese iiberpriift oder zur Ausfithrung zwingend benétigt. Ein Beispiel hierfiir wire eine (durch
AppFence gefilschte) IMEI-Nummer des Gerits oder auch per Default definierte GPS-Koordinaten.

Im Gegensatz zu anderen Systemen, die Zugriffe durch Widerruf von Berechtigungen durch Anderun-
gen am Application-Framework unterbinden, werden hierbei direkt die Java-Methoden manipuliert,
die die tatsdchlichen Daten zuriickgeben (siehe Abb. 3.7). Dabei handelt es beispielsweise um die
Manager-Klassen des Application-Frameworks (z.B. fiir Standort, Telefoninformationen und samt-
liche Content-Provider), andere Daten (wie Kamera und Mikrofon) werden iiber das Dateisystem
abgerufen.

32

3.2 Erweiterung des Android-Frameworks

Exfiltration blocking - Hierbei geht es darum, die Weitergabe von Daten iiber das Internet nur in
bestimmten Fillen zu unterbinden. Dies ist sinnvoll, wenn die Ubertragung privater Informationen
fiir die Hauptfunktionalitdt einer App notwendig ist (beispielsweise der korrekte Standort bei einem
Navigationssystem), dieselben Informationen aber nicht an den Server eines Werbetreibers gesendet
werden sollen.

Dabei gibt es in Bezug auf die Kommunikation mit der entsprechenden App wiederum zwei ver-
schiedene Ansétze: Entweder wird die entsprechende Nachricht durch das System einfach nicht
weitergegeben, wobei die App dariiber nicht informiert wird, oder das System simuliert den Offline-
Modus und gibt eine entsprechende Meldung an die App zuriick.

Durch verschiedene Tests wurde gezeigt, dass mit einem dieser Verfahren alleine nicht garantiert
werden kann, dass ein Grofiteil der Apps weiterhin fehlerfrei lduft. Insgesamt ist eine Kombination
der beiden Ansitze am erfolgversprechendsten, wobei vom jeweiligen Anwender allerdings ein
gewisses Grundverstandnis vorausgesetzt wird, um diesbeziiglich informierte Entscheidungen treffen
zu konnen. Um die Verwendung des Systems zu erleichtern, wire es beispielsweise denkbar, eine
zentrale Anlaufstelle zu eréffnen, bei der durch eine grofle Anzahl von Nutzern (crowdsourcing) fiir
bekannte Apps die bestmoglichen Einstellungen ermittelt werden konnen.

3.2.5 Bewertung

Ein Nachteil der hier beschriebenen Methoden ist, das eine Anpassung des Android-Systems eine
grof3e Hiirde darstellt. Um ein derartiges System tiberhaupt installieren zu kénnen, muss das entspre-
chende Gerit gerootet sein, wodurch etwaige Garantieanspriiche verfallen. Ein weiteres Problem
ist, dass bereits jetzt jedes Gerdte-Modell eine durch den Hersteller speziell angepasste Version
des Android-Betriebssystems enthalt. Die dadurch entstandene Fragmentierung der existierenden
Android-Versionen wiirde sich durch die Verbreitung der hier beschriebenen Systeme nur noch weiter
verschlimmern.

Abgesehen von dieser Problematik sind die hier beschrieben Ansitze aus Anwendersicht sehr kom-
fortabel, da sie sich im laufenden Betrieb genauso verhalten wie bekannte Android-Systeme und
lediglich um die Moglichkeit erganzt wurden, einzelne Berechtigungen zu widerrufen.

Dadurch, dass die Apps selbst nicht verandert werden und damit die Originalsignatur erhalten bleibt,
koénnen diese normal aus den jeweiligen AppStores installiert und upgedatet werden. Auch besteht
keine Gefahr, dass eine App durch Integration eines Monitors fehlerhaft wird.

Jeder Anwender kann selbst Richtlinien definieren, die festlegen, auf welche Daten die jeweilige App
zugreifen darf. Dadurch, dass Richtlinien jederzeit geéindert werden konnen, sind Anwender dazu in
der Lage, genau zu beobachten, welche Auswirkungen diese auf die jeweilige App haben.

Die vorgestellten Systeme konnen analog zu Kapitel 3.1.5 auf Basis ihrer Eigenschaften verglichen
werden. Auch hier sieht man schnell, dass es kein System gibt, was alle gewiinschten Méglichkeiten
bietet. Da hier samtliche Berechtigungen iiber das Betriebssystem selbst gesteuert werden, konnen
diese im laufenden Betrieb beliebig angepasst werden.

33

3 Alternative Berechtigungssysteme

Alle weiteren Eigenschaften werden aber nur von manchen Systemen unterstiitzt (sieche Tabelle 3.2).
Bei Systemen, die Zugriffe auf Systemebene blockieren, kann bei bestimmten Implementierungsan-
satzen insbesondere das Problem bestehen, dass Apps aufgrund fehlender Rechte abstiirzen. Das liegt
am Ablauf eines Berechtigungschecks (siehe Kapitel 2.3), der, falls er fehlschligt, den Programmablauf
durch eine SecurityException unterbricht, die in Apps meist nicht abgefangen wird. Wird das System
an einer anderen Stelle erweitert, besteht dieses Problem nicht.

Laufzeit- Absturz- Kontext- Dummy- Anwender- Remote
anderung sicher sensitiv Daten Feedback Admin
Apex Ja Nein Ja Nein Ja Nein
CRéPE Ja Nein Ja Nein ? Ja
MockDroid Ja Ja Nein Ja Nein Nein
AppFence Ja Ja Nein Ja Nein Nein

Tabelle 3.2: Vergleich der erweiterten Android-Systeme

Generell setzen die hier beschriebenen Verfahren verschiedene Schwerpunkte. Wihrend es bei Apex
und CREPE primér um die (kontextbezogene) Restriktion von Zugriffen auf bestimmte Informationen
geht, sind AppFence und MockDroid speziell darauf bedacht, Dummy-Daten zu verwenden, um die
Funktionalitit einer App zu bewahren, ohne tatséchlich private Daten preisgeben zu miissen.

Letztendlich ist es abhingig vom gewinschten Anwendungszweck, welches System tatsichlich
sinnvoll ist. Fiir private Anwender reicht es haufig, wie mit Apex und MockDroid einfach nur selbst
Berechtigungen widerrufen zu kénnen - wenn eine App dadurch nicht mehr funktioniert, kénnen
die Richtlinien schnell angepasst werden. Komplexere Systeme wie CRéEPE sind dagegen eher auf
Firmenebene gut geeignet, um globale Richtlinien durchsetzen zu kénnen, die der Anwender selbst
nicht umgehen kann.

Insgesamt ist aber deutlich zu sehen, dass ein angepasstes Betriebssystem zur Berechtigungssteuerung
mehr Vorteile bringt als die Manipulation jeder einzelnen App iiber einen Konverter. Insbesondere
aus Sicht von Anwendern ist letzteres doch eher umsténdlich, da bei der Installation jeder einzelnen
App aktiv Schritte durchgefiihrt werden miissen, um deren Berechtigungen widerrufbar zu machen.
Ein angepasstes Betriebssystem wird dagegen einmalig auf einem Gerit installiert und erméglicht
dies ohne weiteres Zutun des Anwenders.

Allerdings erfiillt keine der hier vorgestellten Erganzungen des Android-Betriebssystems alle An-
forderungen, die an eine flexible Berechtigungssteuerung gestellt werden. Das im folgenden Kapitel
vorgestellte Konzept beschreibt einen Ansatz, der die Vorteile aller bisherigen Systeme miteinander
kombiniert.

34

4 Die Privacy Management Platform

Die Privacy Management Platform (PMP) [Stal3a] ist ein alternatives Berechtigungssystem fiir Android,
das eine kontextbezogene Steuerung von App-Berechtigungen durch den Anwender erméglicht.

Der Grundgedanke des Systems besteht darin, Rechte nicht einer gesamten App zuzuweisen, sondern
nur den Komponenten, die diese auch tatsdchlich benétigten. Dadurch fithrt der Widerruf einzelner
Berechtigungen lediglich zur Deaktivierung der entsprechenden Funktionen.

Im Gegensatz zu anderen alternativen Systemen baut die PMP hierbei nicht auf dem klassischen
Permission-Modell von Android auf, sondern fiihrt eine alternative Form des Berechtigungsmanage-
ments ein. Dies soll garantieren, dass Apps nur iber die PMP Zugriff auf private Daten erhalten kénnen,
um dem Anwender vollstdndige Kontrolle dariiber zu geben, welche App auf welche Informationen
zugreifen darf.

4.1 Aufbau und Grundbegriffe

Abbildung 4.1 zeigt eine Ubersicht der verschiedenen Bestandteile des PMP-Berechtigungssystems in
einer an UML angelehnten Notation.Die einzelnen Komponenten und deren Zusammenhéange werden
im Folgenden erldutert.

4.1.1 Ressourcen und Privacy Settings

PMP-Apps verwenden keine klassischen Android-Permissions und haben deshalb auch keinen di-
rekten Zugriff auf geschiitzte Informationen tiber das Application-Framework. Die Interfaces fiir
benétigte Daten werden von einzelnen Ressourcen bereitgestellt. Hierbei werden drei verschiedene
Modi unterstiitzt: Riickgabe korrekter Daten, Riickgabe verdnderter Daten und Riickgabe zufilliger
Daten. Eine Menge von Ressourcen kann zu einer Ressourcengruppe zusammengefasst werden.

Wie die tatsichlichen Daten bezogen werden, ist dem Entwickler der Ressource freigestellt. Hierbei
kann die entsprechende Hardware (z.B. GPS) direkt angesprochen werden, ebenfalls ist aber moglich,
einen allgemeineren Ansatz zu verwenden und den Standort auf Basis der jeweils auf dem Gerat
verfiigbaren Informationen zu ermitteln (z.B. auch iber den WLAN-Adapter oder den Netzbetreiber).
Ebenfalls ist es moglich, die Verwendung einer Ressource auf bestimmte Funktionen (Service Features)
oder sogar nur auf einzelne Apps einzuschranken.

Jede Ressource definiert verschiedene Privacy Settings, mit denen der Anwender steuern kann, welche
Zugriffe dem jeweilige Feature erlaubt werden sollen. Im einfachsten Fall sind die Werte true oder
false vorhanden, um den Zugriff entweder zu erlauben oder nicht. Manchmal kann es aber auch

35

4 Die Privacy Management Platform

potentielle Gefahrenquellen vertrauenswurdige Komponenten

Privacy

Policy

1

1

1

1

I .
! A
1

|

1

1

1

besteht
aus
1.*

S— 1.* Kontext ;
Service' i I8 Policy 5
Feature Funktionsumfang Rule esource
. 1.* Daten .

1.

Konfiguration

1

Privacy k
Setting

Resource
Group!

Abbildung 4.1: Komponenten der PMP [Sta13b]

sinnvoll sein, mehrere Abstufungen zu erméglichen. Bei einer Ressource zur Standortbestimmung
ware es beispielsweise denkbar, den Anwender zusétzlich entscheiden zu lassen, ob CoarseLocation
oder FineLocation verwendet werden soll.

Ebenfalls sind iiber die Privacy Settings zusatzliche kontextuelle Einschrankungen definierbar. Diese
konnen einerseits von externen Faktoren wie Standort und Uhrzeit abhéngen, andererseits aber auch
auf Basis des jeweiligen Zugriffs (beispielsweise abhéngig von der Adresse einer Internet-Anfrage)
getroffen werden.

Ressourcen sind nicht direkt in die PMP eingebaut, sondern kénnen im laufenden Betrieb bei Bedarf
hinzugefiigt werden!. Benotigt eine neue App eine noch fehlende Ressource, wird diese automatisch
aus einem geschiitzten Datenarchiv nachinstalliert. Dies hat den Vorteil, dass Ressourcen unabhangig
von der PMP selbst aktualisiert oder auch neu veroffentlicht werden kénnen, wodurch das System
frei erweiterbar ist.

4.1.2 Service Features

Alle Teilfunktionen einer App, die besondere Berechtigungen erfordern, werden auf einzelne Service
Features abgebildet. Hierbei enthalt jedes Service Feature neben einem Namen und einer Beschreibung
die Menge der dafiir bendtigten Ressourcen und Privacy Settings. Jedes einzelne Service Feature kann
im laufenden Betrieb entweder aktiviert oder deaktiviert sein, wodurch die App auf die entsprechenden
Funktionen und Berechtigungen eingeschrénkt ist.

"Im PMP-Protoyp sind Ressourcen als eigene Apps implementiert, die Schnittstellen zur PMP enthalten.

36

4.2 Management

Dieses Modell stellt die grofite Besonderheit der PMP im Vergleich mit anderen Berechtigungssystemen
dar, da es ein vollig neues Konzept implementiert. Wahrend es bei anderen Systemen passieren kann,
dass Apps aufgrund fehlender Berechtigungen abstiirzen, 16st die PMP dieses Problem, indem die
entsprechenden Funktionen bei der Ausfithrung der App iibersprungen werden. Der Anwender kann
dadurch direkt verfolgen, welche Auswirkung das Aktivieren und Deaktivieren bestimmter Features
auf den Funktionsumfang der App hat.

4.1.3 Privacy Rules und Presets

Um ein Service Feature einer App zu aktivieren, miissen entsprechende Regeln (Privacy Rules) definiert
sein. Diese bestehen aus dem jeweiligen Feature, der zugehorigen Ressource und dem vom Anwender
fir diesen Zugriff definierten Privacy Setting. Sind fiir eine bestimmte Aktion noch keine Regeln
vorhanden, wird der Anwender dariiber entsprechend informiert. Die Menge aller definierten Regeln
bilden die Privacy Policy.

Eine beliebige Teilmenge von Regeln kann in ein so genanntes Preset exportiert werden. Ein solches
Preset kann an andere weitergegeben und wiederum in die PMP importiert werden. Dadurch ist es
moglich, unerfahrenen Anwendern die Konfiguration der PMP zu erleichtern, indem der Allgemeinheit
fertige Presets aus vertrauenswiirdigen Quellen zur Verfiigung gestellt werden. Existieren mehrere
Presets fiir eine App, werden alle miteinander kompatiblen Regeln aktiviert; bei Konflikten muss der
Anwender entscheiden, welche Regel Prioritét hat.

Unter anderem konnten auch Firmen diese Moglichkeit nutzen, um entsprechende Presets fiir ihre
Mitarbeiter zu erstellen. In der heutigen Zeit ist es nicht ungewo6hnlich, eigentlich private mobi-
le Geréte auch im Geschéftsleben zu nutzen (bring-your-own-device) und damit auf Firmendaten
zuzugreifen, was ein nicht unwesentliches Sicherheitsrisiko darstellt. [Pan13] beschreibt, wie das
bestehende Preset-Management der PMP erweitert werden kann, um Firmen zu erméglichen, eigene
Richtlinien durchzusetzen, die vom Anwender nicht umgangen werden kénnen.

4.2 Management

Damit fiir die PMP entwickelte Apps installiert werden kénnen, muss die PMP selbst bereits auf
dem Gerét vorhanden sein. Nach der Installation einer App wird diese automatisch gestartet und
registriert sich bei der PMP. Da neuen PMP-Apps standardmif3ig keine Berechtigungen gewihrt
sind, wird nun die Liste der verfiigbaren Service Features angezeigt, aus denen der Anwender die
gewlnschten Funktionen auswihlen kann. Danach ist die Installation abgeschlossen und die App
kann verwendet werden.

Uber das Hauptfenster der PMP (sieche Abb. 4.2a) kann der Anwender auf alle registrierten Apps
zugreifen. Dort kann laufend angepasst werden, welche Service Features einer App aktiviert sein
sollen (siehe Abb. 4.2b). Unter "Ressourcen” werden alle auf dem Gerat installierten und sonstige zur
Installation bereitstehenden Ressourcen angezeigt.

37

4 Die Privacy Management Platform

atlo0l 16:32

Kalender

Service Features

Aktivierte Service Features sind griin, deaktivierte
Service Features sind rot. Im Experten-Modus
kénnen Sie diese andern indem Sie Presets zur
App hinzufiigen.

’ Privatsphiarenverwaltungsplattform

Willkommen zur
Privatspharenverwaltungsplattform. Tippen Sie
auf einen Knopf, um mit PMP zu interagieren. Sie
kénnen auch den Experten-Modus in den
Einstellungen aktivieren.

ﬁ Details: Termine anzeigen

Termine hinzufiigen
Kalendereintrage kénnen hinzugefiigt oder
bearbeitet werden.

Termine anzeigen

Kalendereintrige kénnen angezeigt werden.

Kalendereintrage kdnnen angezeigt werden.
. Benotigte Privacy Settings

Datenbank - Erfaubte Datenbanken v 4
Bendtigter Wert: appointments

Apps Ressourcen Termine importieren

Datenbank - Aus Datenbank lesen RV 4
Kalendereintrége von der SD-Karte importieren.

BenGtigter Wert: true

Neues Zu Preset .
e R

Termine exportieren

Kalendereintrage auf die SD-Karte exportieren.

Termine per E-Mail
Kalendereintrage kénnen per E-Mail versendet
werden.

Presets Einstellungen

3| Statistiken

-1 App ist bereits registriert

(a) Hauptfenster der PMP (b) Service Features (c) Privacy Rule

Abbildung 4.2: PMP-Benutzeroberfliche am Beispiel einer Kalender-App

Die PMP kann in zwei verschiedenen Modi betrieben werden, dem einfachen Modus und dem Exper-
tenmodus. Der einfache Modus umfasst nur die wichtigsten Grundfunktionen der PMP und richtet
sich an eher unerfahrene Anwender. Hierbei ist es lediglich méglich, einzelne Service Features ein-
und auszuschalten.

Im Expertenmodus kdnnen Regeln verschiedenen Presets zugeordnet werden (siehe Abb. 4.2c). Deren
Liste ist Giber das Hauptfenster abrufbar, dort konnen neue Presets angelegt sowie importiert und
exportiert werden. Im Detailfenster eines Presets sind die darin enthaltenen Apps sowie alle zugeho-
rigen Privacy Settings aufgelistet. Diese konnen durch Anderung der Werte und das Hinzufiigen von
benutzerdefinierten Kontexten weiter angepasst werden.

4.3 Integrationsstrategien

Es gibt prinzipiell drei verschiedene Ansétze, die PMP in ein bestehendes Android-System zu integrie-
ren (sieche Abb. 4.3). Je nach gewéhlter Strategie werden unterschiedliche Anforderungen an System
und Anwender gestellt, gleichzeitig kann nicht bei allen Ansatzen ein vollkommener Schutz privater
Daten und die Stabilitét aller verwendeten Apps garantiert werden.

Ebenfalls hat die Wahl der Integrationsstrategie grofien Einfluss auf die Implementierungsform und
damit schlussendlich die Funktionsweise der in Kapitel 5 vorgestellten Gatekeeper-Komponente.

38

4.3 Integrationsstrategien

System A
System System Y] -
> PMP A -> PMP A
_A;’LJ - - _,__J b _Afij P ___J o Appy - ’
! | Praal ’ ! : o~ ’ .
1 1 1 App
1 1 0 s | Converter || Rest Resy |s) PMP i
2 v 2 M
Res; LRI Res, P

(a) Application-Level (b) App-Konverter (c) Teil des Frameworks

Abbildung 4.3: Implementierungsstrategien der PMP [SM14]

4.3.1 Application-Level

Die einfachste Form der PMP ist die Implementierung in Form einer App (siehe Abb. 4.3a). Alle
Komponenten, inklusive Ressourcen, liegen auf dem Application-Level und benétigen keine besonde-
ren Zugriffe auf das Betriebssystem. Dies hat den Vorteil, dass das System auf jedem Gerét normal
installiert werden kann.

Fiir die PMP entwickelte Apps konnen somit nach Bedarf eingeschrankt verwendet werden, wahrend
klassische Apps nicht beeinflusst werden und somit weiterhin voll funktionsfahig sind.

Dies ist aber gleichzeitig der grofie Nachteil dieser Implementierungsart, da diese Apps weiterhin
uneingeschrankt auf private Daten zugreifen diirfen. Ebenfalls konnten Apps, die scheinbar mit der
PMP zusammenarbeiten, durch die zusétzliche Verwendung klassischer Permissions entgegen dem
Wunsch des Anwenders trotzdem direkten Zugriff auf das Application-Framework erlangen.

Insgesamt ist dieser Ansatz also zwar zu Testzwecken ausreichend?, kann aber keine tatsichliche
Sicherheit der privaten Daten garantieren, was ihn fiir die Praxis untauglich macht.

4.3.2 App-Konverter

In Kapitel 3.1 wurde beschrieben, wie alternative Berechtigungssysteme durch den Einsatz von
Konvertern bestehende Apps anpassen, so dass eine Steuerung der Berechtigungen dieser Apps ohne
Eingriff in das Betriebssystem méglich wird.

Bei der PMP konnte ein derartiger Ansatz so aussehen, dass alle klassischen Permissions aus dem
Manifest der App entfernt werden, so dass die App nicht mehr direkt auf das Application-Framework
zugreifen kann. An deren Stelle konnten Schnittstellen auf die entsprechenden PMP-Ressourcen in
den Quellcode der App integriert und der Bytecode entsprechend umgeschrieben werden, so dass die
App effektiv in eine PMP-App "umgebaut” wird (siehe Abb. 4.4).

Dies hitte den Vorteil, dass die PMP trotzdem auf Anwendungsebene implementiert werden konnte,
wihrend klassische Apps automatisch so angepasst werden, dass sie nur noch tiber die PMP auf
private Daten zugreifen kénnen.

?Der Protoyp der PMP ist auf Application-Level implementiert: https://code.google.com/p/pmp-android/

39

4 Die Privacy Management Platform

META-INE Anwendung N

J neu signieren | META-INF

res Nativen Code | 3
J umschreiben [L
-

es
" assets
AndroidManifest.xml ‘ Eintrage . AndroidManifest.xml
4 anpassen '

resources.arsc classes.dex Dalvik-Bytecode | classes.dex” resources.arsc

7 umschreiben | Yy

assets

I

Lok

Abbildung 4.4: PMP App-Konverter [Stal3b]

Wihrend dadurch die Sicherheit der Daten weitgehend gewéhrleistet ist, kann nicht garantiert werden,
das dieser automatische Prozess bei allen Apps erfolgreich verlauft. Erfahrungen mit dhnlichen
Systemen (z.B. AppGuard) haben gezeigt, dass vereinzelt Apps nach dem Konvertieren nicht mehr
richtig funktionieren. Ein weiteres Problem ist die rechtliche Seite, da eine Manipulation des Bytecodes
einer App das Urheberrecht des Entwicklers verletzt. Schlief3lich besteht auch noch das Problem,
dass eine durch den Konvertierungsprozess neu signierte App nicht durch automatische Updates
aktualisiert werden kann.

4.3.3 Anpassung des Application-Frameworks

Die einzige Moglichkeit, ohne Manipulation der Apps selbst Zugriffe auf private Daten zu verhindern,
besteht darin, die PMP direkt in das Android-Betriebssystem zu integrieren (siehe Abb. 4.3c). Da-
durch koénnen alle Anfragen auf Basis klassischer Android-Permissions vom Application-Framework
blockiert werden, wihrend iiber die PMP angeforderte Ressourcen weiterhin frei zuginglich sind>.

Dies fithrt im Umkehrschluss natiirlich dazu, dass Apps, die nicht speziell fiir die Verwendung mit
der PMP entwickelt wurden, alle Rechte verlieren und somit groitenteils unbenutzbar werden. Da
diese Situation von Seiten des Entwickler auch nicht beriicksichtigt wird, ist es sehr wahrschein-
lich, dass betroffene Apps einfach abstiirzen, sobald eine Methode aufgerufen wird, die besondere
Berechtigungen erfordert (siehe Kapitel 2.2).

Wihrend dieses Vorgehen zwar die Sicherheit der privaten Daten garantiert, ist es in der Praxis
nicht anwendbar, da nicht davon ausgegangen werden kann, dass es von allen Apps PMP-kompatible
Versionen geben wird. Um einen realistischen Kompromiss zwischen Sicherheit und Funktionalitét
zu treffen, muss der Anwender selbst dazu in der Lage sein, diesen Apps (dhnlich wie bei PMP-Apps)
einzelne Berechtigungen gewéhren zu kdnnen.

Zu diesem Zweck muss der PMP eine neue Komponente hinzugefiigt werden, die es zulésst, dass
einzelne Zugriffe auf Basis klassischer Berechtigungen vom Application-Framework nicht blockiert
werden. Die Konzeption und prototypische Implementierung dieses "Gatekeepers” wird im folgenden
Kapitel beschrieben.

*Philipp Scholz hat diese Implementierungsstrategie im Rahmen seiner Diplomarbeit realisiert [Sch13]

40

5 Der PMP-Gatekeeper

Der Gatekeeper ist eine im Rahmen dieser Arbeit neu entwickelte PMP-Komponente, die festlegen
soll, welche Zugriffe von Legacy-Apps auf private Daten erlaubt bzw. blockiert werden sollen. Die Be-
zeichnung Legacy-App beschreibt hierbei Apps, die nicht fiir die Verwendung mit der PMP entwickelt
wurden und demnach Verweise auf klassische Android-Permissions enthalten.

Fiir Legacy-Apps sollen Zugriffe auf Basis von definierten Richtlinien entschieden werden, wobei
System-Apps aus Stabilitatsgriinden uneingeschrankten Zugriff auf das Framework erhalten miissen.
Eine der Hauptaufgaben des Gatekeepers ist also, eine App zuverlissig als "Legacy” oder "PMP”
klassifizieren zu kénnen.

5.1 Identifizierung von Apps

Jede App, die fiir die Verwendung mit der PMP entwickelt wurde, enthélt Komponenten, an denen
sich dies eindeutig feststellen lasst. Da die APKs aller installierten Apps unter Android in einem
Offentlichen Verzeichnis abgelegt sind, konnen die darin enthaltenen Informationen von anderen
Apps ausgelesen werden. Im Folgenden wird beschrieben, wie der Gatekeeper diese Informationen
nutzen kann, um Apps zu klassifizieren.

Um die Metadaten einer beliebigen installierten App zu erhalten, kann die Methode PackageMana-
ger.getPackagelnfo() verwendet werden. Diese gibt ein Packagelnfo-Objekt zurick, aus dem alle im
Manifest hinterlegten Informationen ausgelesen werden kénnen.

5.1.1 Registrierung bei der PMP

Da sich jede PMP-App beim ersten Start bei der PMP registrieren muss, enthélt das Manifest unterhalb
des <application>-Elements einen Aufruf der PMP-RegistrationActivity (siehe Lst. 5.1). Die Activities
einer App konnen mit Packagelnfo.activities ausgelesen werden, der Name der zugehorigen Klasse ist
dabei unter Activitylnfo.name gespeichert.

Hierbei reicht es allerdings nicht, lediglich zu priifen, ob die RegistrationActivity iiberhaupt refe-
renziert wird. Um die PMP zu umgehen, konnte sie einfach als Activity eingetragen werden, auch
wenn sie nie aufgerufen wird, was zu einer falsch positiven Identifizierung fithren wiirde. Es ist daher
ebenfalls notwendig zu tiberpriifen, ob die entsprechende Activity auch tatsdchlich der Launcher der
jeweiligen App ist.

41

5 Der PMP-Gatekeeper

Listing 5.1 Registrierungsaufruf von PMP-Apps im Manifest

<activity

android:name="de.unistuttgart.ipvs.pmp.api.gui.registration.RegistrationActivity"
android:label="@string/app_name"
android:theme="@android:style/Theme.NoTitleBar" >
<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

</activity>

Dies ist allerdings nicht tiber das PackageInfo-Element méglich, da es sich bei der Aktion LAUNCHER
um einen Intent handelt und diese vom System an einer anderen Stelle gespeichert werden. Die
einzige Moglichkeit, diese abzufragen, besteht drin, vom PackageManager eine Liste aller Intents der
Launcher-Kategorie anzufordern und daraus wiederum die Namen der passenden Apps zu ermitteln.

5.1.2 Referenz des PMP-AppService

Eine weitere Moglichkeit, eine PMP-App anhand ihres Manifests zu identifizieren, besteht iiber
ihre Implementierung der PMP-Service-Schnittstelle. Alle Apps, die die PMP verwenden, um auf
Ressourcen zuzugreifen, miissen unterhalb von <application> eine Referenz auf den PMP-AppService
enthalten. Darunter befindet sich eine Intent-Liste, die eine Referenz auf den eigenen Paketnamen
enthilt (siehe Lst. 5.2).

Listing 5.2 Serviceaufruf von PMP-Apps im Manifest

<l-- The service of the app where pmp connects to -->
<service
android:name="de.unistuttgart.ipvs.pmp.service.app.AppService"
android:exported="true" >
<intent-filter>
<action android:name="de.unistuttgart.ipvs.pmp.apps.bluetoothtestapp">
</action>
</intent-filter>
</service>

Auch diese Informationen konnen iiber vorhandene Java-Methoden ermittelt werden. Mit Packageln-
fo.services erhalt man ein Array von Servicelnfo-Objekten, die mit der Menge der <service>-Tags in
der Manifest-Datei korrespondieren. Mit Servicelnfo.name kann wiederum die referenzierte Klasse
ermittelt werden.

Allerdings ist es mit dieser Methode leicht moglich, den Gatekeeper zu tduschen, da das Vorhandensein
eines solchen Serviceeintrags alleine natiirlich nicht garantiert, dass es sich tatsichlich um eine PMP-
App handelt.

42

5.1 ldentifizierung von Apps

5.1.3 ApplinformationSet

Anstatt das Manifest auszulesen, konnen PMP-Apps auch iiber ihre Android-Ressourcen identifiziert
werden. Jede PMP-App enthélt unter assets/ais.xml (siehe Lst. 5.3) in ihrem appInformationSet eine
Liste vorhandener Service Features. Diese Liste wird von der PMP verwendet, um einzelne Funktionen
der App anzuzeigen und zu steuern.

Listing 5.3 Application Information Set einer PMP-App (Auszug)

<appInformationSet>
<appInformation>
<name>Calendar</name>
<description>This App is used to test the privacy management platform. It provides
simple calendar functionalities.</description>
</appInformation>
<serviceFeatures>
<serviceFeature identifier="read">
<name>Show entries</name>
<description>Calendar entries can be displayed.</description>
<requiredResourceGroup
identifier="de.unistuttgart.ipvs.pmp.resourcegroups.database"
minRevision="1">
<requiredPrivacySetting identifier="read">true</requiredPrivacySetting>
<requiredPrivacySetting
identifier="allowedDatabases">appointments</requiredPrivacySetting>
</requiredResourceGroup>
</serviceFeature>

Die Datei kann tiber den AssetManager mit getAssets().open(ais.xml”) angesprochen werden. Da die
Existenz einer solchen Datei alleine noch nicht garantiert, dass es sich um eine PMP-App handelt,
muss mit einem XML-Parser nach einem passenden Knoten gesucht werden, z.B. <appInformation>
oder <serviceFeature>.

Ein potentieller Nachteil dieser Methode ist, dass PMP-Apps, die keinerlei besondere Berechtigungen
erfordern, nicht zwingend eine solche Datei benétigen. Gleichzeitig ist dies aber im vorliegenden Fall
nicht bedenklich, da der Gatekeeper eine solche App nicht unbedingt beriicksichtigen muss. Viel
problematischer ist, dass der Gatekeeper auch hier bewusst getduscht werden kénnte, indem den
Assets einfach eine formal passende Datei hinzugefiigt wird.

5.1.4 Existenz klassischer Permissions

Alle bisher vorgestellten Ansétze sind in der Lage, tatsdchliche PMP-Apps positiv zu identifizieren.
Wiirde die PMP aber als Alternative zum bestehenden Android-Berechtiungssystem implementiert,
miusste unter allen Umstédnden verhindert werden, dass Apps ohne Zustimmung des Anwenders
uneingeschrankt daran vorbei auf das Application-Framework zugreifen dirfen. Moglich wire dies,
indem dem Gatekeeper wie zuvor beschrieben vorgetauscht wird, dass es sich um eine PMP-App
handelt, wahrend gleichzeitig weiterhin klassische Permissions verwendet werden.

43

5 Der PMP-Gatekeeper

Daher muss bei der Identifizierung von Legacy-Apps ebenfalls tiberpriift werden, ob entsprechende
<uses-permission>-Eintrage im Manifest vorhanden sind. Das PackageInfo-Objekt einer App enthalt
unter requestedPermissions eine Liste dieser Eintrdge. Nur wenn diese Liste tatsachlich leer ist, darf
eine App vom Gatekeeper ignoriert werden. Ansonsten muss der Anwender die Moglichkeit haben,
diese Permissions zu steuern, auch dann, wenn es sich per Definition um eine PMP-App handelt.

5.1.5 System-Apps

Mit den zuvor beschriebenen Methoden ist es moglich, PMP-Apps zu identifizieren und dadurch im
Umbkehrschluss Legacy-Apps zu erkennen. Um allerdings eine fehlerfreie Ausfithrung des Android-
Betriebssystems zu gewahrleisten, dirfen Berechtigungen von gewissen System-Apps nicht einfach
blockiert werden.

Um System-Apps zu identifizieren, kann deren ApplicationInfo auf die Konstanten FLAG_SYSTEM und
FLAG_UPDATED_SYSTEM_APP hin untersucht werden. FLAG_SYSTEM prift hierbei, ob eine App
in der Systempartition installiert ist, FLAG_UPDATED_SYSTEM_APP dagegen ist fiir Apps gesetzt,
die als Update einer System-App installiert wurden.

In den meisten Fillen funktioniert diese Methode. Da auf einem normalen Gerit keine Apps durch
den Anwender in der Systempartition installiert werden konnen, gibt es keine falsch positive Identifi-
zierung. Auf gerooteten Geriten ist es dagegen unmoglich festzustellen, ob eine App tatséchlich eine
echte System-App ist, da ein Verschieben von Apps aus der und in die Systempartition mit Apps wie
/system/app mover' mdglich ist.

Generell ist es jedoch nicht unbedingt sinnvoll, System-Apps automatisch alle Berechtigungen zu
gewihren. In der Praxis werden auf Geriten mit von Herstellern angepassten Betriebssystemen eine
grofie Anzahl Apps vorinstalliert, die vom Anwender nicht entfernt werden kénnen (z.B. die Twitter-
App auf dem Samsung Galaxy Note 2014). Diese Apps liegen ebenfalls in der Systempartition, haben
aber mit der korrekten Funktionalitéit des Betriebssystems nichts zu tun. Daher wire es sinnvoller,
wenn zumindest bei manchen ”System-Apps” die Berechtigungen doch einschriankbar waren.

Hierbei konnte einerseits die Entscheidung dem Anwender als "Experten” selbst iberlassen werden
(wodurch bei falschem Vorgehen das System beeintrichtigt werden kann); andererseits wire es
denkbar, eine Liste unproblematischer vorinstallierter Apps zu definieren, deren Einschrankung fiir
das System keine negativen Auswirkungen hat.

5.2 Widerruf von Berechtigungen

Nachdem der Gatekeeper in der Lage ist, vom Anwender installierte Legacy-Apps zu identifizieren,
miissen Zugriffe auf private Daten bei widerrufenen Berechtigungen abgefangen werden kénnen. Je
nachdem, auf welchem Level des Betriebssystems die PMP integriert ist, gibt es verschiedene Ansétze,
dies zu bewerkstelligen.

' App zum Verschieben installierter Apps zwischen System- und Anwenderverzeichnis, http://goo.gl/eFoiHh

44

5.2 Widerruf von Berechtigungen

5.2.1 Veranderung des App-Manifests

Fiir die Version der PMP, die nur auf dem Application-Level arbeitet, gibt es keine Moglichkeit, direkt
in die Kommunikation zwischen anderen Apps und dem Application-Framework einzugreifen. Wie
in Kapitel 3.1 beschrieben wire dies nur moglich, indem der Code der jeweiligen App durch eine
Monitor-Komponente erganzt wird.

Systeme wie Aurasium und AppGuard basieren darauf, iiber IRM in die Berechtigungsanfragen der
Apps einzugreifen und nach benutzerdefinierten Richtlinien zu entscheiden, ob diese erlaubt werden
oder nicht. Die PMP dagegen zielt darauf ab, eine eigene Art von Rechtemanagement an Stelle der
Android-Permissions zu verwenden.

Um zu verhindern, dass Legacy-Apps freien Zugriff auf das System erhalten, konnen die entsprechen-
den Berechtigungen aus dem Manifest des APK entfernt und die App danach neu installiert werden.
Dies wiirde allerdings ein Neupacken und dementsprechend ein Neusignieren der APK mit einer
Software wie z.B. apktool erfordern.

Wie bei allen IRM-Ansétzen besteht hierbei aber das Problem der veranderten App-Signatur, daher
konnen Updates nicht mehr direkt aus dem AppStore installiert werden. Auflerdem kann es passieren
(je nachdem, wie gut Fehler vom Entwickler abgefangen wurden), dass die App bei Ausfithrung einer
Methode, die bestimmte Rechte erfordert, einfach abstiirzt, wenn die entsprechende Berechtigung
nicht gewéhrt wurde.

Insgesamt ist dieser Ansatz fiir den Anwender eher umstéindlich, da fiir jede verénderte App-
Berechtigung das entsprechende APK neu angepasst und installiert werden muss. Wiinschenswert
wire daher eine Methode, die eine Anpassung der Berechtigungen im laufenden Betrieb ermdglicht.

5.2.2 Manipulation der Berechtigungen im Hauptspeicher

Die Uberpriifung, welche Rechte einer App durch den Anwender gewihrt wurden, geschieht auf
Basis der APKs der installierten Apps. Hierbei geht das System davon aus, dass bei Installation alle
in deren Manifest geforderten Berechtigungen vom Anwender bestatigt wurden, da sonst die App
nicht hatte installiert werden konnen. Die jeweiligen Berechtigungen werden in den Hauptspeicher
geschrieben und tberpriift, wann immer eine App eine entsprechende Methode ausfithren will.

Da dieser Speicher beim Ausschalten eines Gerits geleert wird, wird der aktuelle Systemzustand
laufend in verschiedenen Dateien gesichert. Beim Start werden diese Daten wiederum in den Haupt-
speicher eingelesen. Die Informationen iiber die Berechtigungen installierte Apps liegen unter data/-
system/packages.xml (siehe Lst. 5.4), fiir den Zugriff darauf sind allerdings Root-Rechte erforderlich.

Eine Idee, Berechtigungen auf einem gerooteten System zu widerrufen, besteht also darin, die ent-
sprechenden Zeilen aus dieser Datei zu entfernen und anschlieffend das Gerét neu zu starten [Bir09].
Allerdings ist dies keine permanente Losung, da hierbei lediglich der aktuelle Systemzustand mani-
puliert und dem Gerét so voriibergehend vorgetduscht wird, dass bestimmte Berechtigungen vom
Anwender nicht gewahrt wurden.

45

5 Der PMP-Gatekeeper

Listing 5.4 Berechtigungen einer App in data/system/packages.xml (Auszug)

<package name="com.google.android.apps.translate"
codePath="/mnt/asec/com.google.android.apps.translate-1/pkg.apk"
nativeLibraryPath="/mnt/asec/com.google.android.apps.translate-1/1ib" flags="262144"
ft="146c41f6ba0" it="13973e3a2f1l" ut="146c41f893e" version="30000060" userId="10065"
installer="com.android.vending">
<sigs count="1">
<cert index="9" />
</sigs>
<perms>
<item name="android.permission.READ_SMS" />
<item name="android.permission.CAMERA" />
<item name="android.permission.WRITE_EXTERNAL_STORAGE" />
<item name="android.permission.INTERNET" />
</perms>
</package>

Eine weitere Einschrankung dieses Ansatzes ist, dass nicht alle Berechtigungen von Apps in derselben
Form aufgefiihrt sind. Vorinstallierte Apps, die im Systemordner liegen, sind dort zwar mit aufgelistet,
haben aber keine Berechtigungs-Parameter. Dies liegt einerseits daran, dass viele Berechtigungen in
Android tiber den <permission>-Parameter protectionLevel="system” fur System-Apps automatisch
gewihrt werden (vgl. [Theb]), andererseits werden die Berechtigungen von System-Apps teilweise
auch tiber <shared-user>-Eintrage kollektiv am Ende der Datei aufgefiihrt (siehe Lst. 5.5), weitere
wiederum liegen in komplett anderen Dateien.

Listing 5.5 <shared-user>-Berechtigungen in data/system/packages.xml (Auszug)

<shared-user name="android.uid.calendar" userId="10052">
<sigs count="1">
<cert index="1" />
</sigs>
<perms>
<item name="android.permission.USE_CREDENTIALS" />
<item name="android.permission.WRITE_EXTERNAL_STORAGE" />
<item name="android.permission.GET_ACCOUNTS" />
<item name="android.permission.READ_SYNC_STATS" />
</perms>
</shared-user>

Insgesamt ist dieser Ansatz nicht sinnvoll, da es fiir die Permissions verschiedener Arten von Apps
keine einheitliche Speicherstruktur gibt. Die Sicherungsdatei wird auflerdem bei jeder Anderung der
Daten im Hauptspeicher (beispielsweise nach Installation oder Update einer App) neu erzeugt, was
dazu fithrt, dass der Anwender nach einer erneuten Anpassung der Datei durch den Gatekeeper sein
Gerit neu starten miisste, damit die Einschrankung der Berechtigungen erhalten bleibt.

46

5.2 Widerruf von Berechtigungen

5.2.3 Blockade durch das Application-Framework

Falls die PMP als Teil des Android-Betriebssystems implementiert wurde, konnen Zugriffe von
Legacy-Apps, wie in Kapitel 3.2 beschrieben, auf verschiedenen Systemebenen abgefangen werden.
Die naheliegendste Methode hierfiir ist eine Erweiterung der Methode checkPermission() in der Klasse
ActivityManagerService. Da alle Permission-Checks des Systems bei dieser Methode landen, muss nur
an einer einzigen Stelle eine Anpassung gemacht werden.

Hierbei kann vor oder nach dem tatsichlichen Berechtigungscheck durch Android beliebiger Code
erginzt werden. Abhingig von dem Ergebnis des eigenen Berechtigungschecks muss nur eine der
Konstanten PackageManager. PERMISSION_GRANTED bzw. PackageManager. PERMISSION_DENIED
zuriickgegeben werden.

Der Nachteil dieser Vorgehensweise ist, dass diese Methode nur Informationen tiber die geforderte
Berechtigung und die aufrufende App hat. Wihrend diese Informationen ausreichen, um bei einem
einfachen Widerrufsmodell Entscheidungen zu treffen, konnen keine inhaltsbezogenen Informationen
berticksichtigt werden, da nicht bekannt ist, wofiir die App die Berechtigung im jeweiligen Fall
tatsachlich benoétigt.

Ebenfalls wird bei diesem Ansatz nicht verhindert, dass die App bei Verweigerung einer Berechtigung
abstiirzt. Dies wiirde passieren, da Entwickler in der Regel nicht davon ausgehen, dass eine bestimmte
Berechtigung zur Laufzeit nicht gewéhrt wird.

5.2.4 Widerrufs-Richtlinien

Die einfachste Methode, um Sicherheit vor Zugriffen von Legacy-Apps zu garantieren, ist, einfach
alle Berechtigungsanfragen durch diese Apps zu verweigern. Dies hat jedoch in den meisten Fillen
zur Folge, dass die entsprechende App tiberhaupt nicht mehr funktioniert.

Weitaus sinnvoller ist der Ansatz, vereinzelte Berechtigungen zu gewéhren, der auch von den meisten
alternativen Berechtigungssystemen fiir Android verfolgt wird. Hierbei kann der Anwender selbst
entscheiden, welche Zugriffe der App erlaubt werden sollen.

Eine Liste der vorhandenen Berechtigungen kann aus der Menge der <permission>-Elemente im
Manifest der jeweiligen App erzeugt werden. Eine einfache Berechtigungssteuerung durch den
Anwender wiirde so aussehen, dass einzelne Elemente dieser Liste gew#hrt werden kénnen, wodurch
die entsprechende App eingeschréankt lauffahig wire.

Diese Steuerung konnte nach Vorlage bestehender Systeme beliebig verfeinert werden, allerdings
ist dies nicht Sinn des Gatekeepers, da die PMP iiber ihre serviceFeatures selbst bereits eine genaue
Einteilung der benétigten Berechtigungen abhingig von den jeweils gewiinschten Funktionen der
App enthilt und darauf abzielt, dass Apps diese Form des Rechtemanagements verwenden. Bei Legacy-
Apps ist es daher lediglich notwendig, dem Anwender die Moglichkeit zu bieten, vertrauenswiirdigen
Apps einzelne Berechtigungen gewéhren zu kénnen.

47

5 Der PMP-Gatekeeper

5.3 Implementierung des Prototyps

Im folgenden wird der Prototyp des Gatekeepers vorgestellt, der als Proof-of-Concept auf Basis des
bestehenden PMP-Prototyps implementiert wurde. Abbildung 5.1 zeigt eine Ubersicht der im Rahmen
dieser Arbeit neu hinzugefiigten und angepassten Komponenten der PMP.

Installation Deinstallation .
Neue App > PackageManager € Installierte App

PACKAGE_ADDED PACKAGE_REMOVED

R &~ ___ PO .
. Install entfernen | Uninstall
Receiver anfigen LegFLti:;cg)pps / Receiver
Gatekeeper AUSIELL Permission List
Prufe: nicht PMP- wahle gewahrte | Datei
oder System-App P I\/I P Permissions

Abbildung 5.1: Gatekeeper: neue (orange) und angepasste (blau) Komponenten der PMP

5.3.1 Schnittstelle zur PMP

Das Android Application Framework reagiert auf verschiedene Systemereignisse (z.B. Empfang einer
SMS, Anderung des Netzwerk- oder Bluetooth-Zustands, Aktionen des PackageManagers) mit dem
Senden so genannter Broadcasts. Diese kénnen von jeder App iiber entsprechende BroadcastReceiver
aufgefangen und weiterverarbeitet werden.

Der bestehende PMP-Prototyp implementiert unter anderem einen InstallReceiver und einen Unin-
stallReceiver, die auf das Hinzufligen und Entfernen von Apps tiber den PackageManager reagieren
und den Namen des entsprechenden APKs weitergeben.

Die Schnittstelle zur neuen Gatekeeper-Komponente wurde am Ende des InstallReceivers angefiigt.
Hierbei wird zunéchst iiberpriift, ob es sich um eine System-App handelt und wenn nicht, ob klassische
Permission-Elemente vorhanden sind. Die entsprechenden Apps werden der Liste "Legacy-Apps”
des Gatekeepers hinzugefiigt. Auch Legacy-Apps, die keine Berechtigungen anfordern, werden der
Vollstandigkeit halber in diese Liste mit aufgenommen.

48

5.3 Implementierung des Prototyps

5.3.2 Berechtigungsmanagement

Eine auf Basis der PMP gebaute Version des Android-Betriebssystems verweigert standardméafig alle
Berechtigungen, die auf Basis von klassischen Android-Permissions angefragt werden. Da Legacy-
Apps damit zum Grofiteil unbenutzbar werden, ermoglicht der neue Gatekeeper dem Anwender,
vereinzelte Berechtigungen doch zu gewahren.

Analog zur bestehenden Liste der PMP-Apps wurde ein neuer Mentipunkt "Legacy-Apps” hinzugefiigt
(sieche Abb. 5.2a), unter dem alle vom Gatekeeper entsprechend identifizierten Apps aufgelistet
werden (siehe Abb. 5.2b). Mit einem Klick auf die entsprechende App wird die Liste der geforderten
Berechtigungen aufgerufen, die der Anwender einzeln gewahren kann (siehe Abb. 5.2c).

Derselbe Dialog wird ebenfalls angezeigt, wenn eine neue App installiert wurde, die klassische
Berechtigungen anfordert. Dadurch wird der Anwender unmittelbar dariiber informiert, dass Teile
der soeben installierten App moglicherweise durch den PMP-Gatekeeper blockiert werden. Hier kann
der Anwender nun entscheiden, ob ausgewéhlte Berechtigungen gewahrt werden sollen. Danach
kann er testen, ob die App mit der aktuellen Konfiguration wie gewiinscht funktioniert und wenn
nicht, die Berechtigungen iiber die PMP wiederum anpassen.

Alle vom Anwender festgelegten Richtlinien werden im internen Dateisystem der PMP abgelegt.
Hierbei wird neben dem PackageName der jeweiligen App nur eine Liste der tatsdchlich gewéhrten
Permissions gespeichert. Dies hat den Vorteil, dass auch bei einem Update der entsprechenden App
bereits gewahrte Permissions erhalten bleiben, gleichzeitig muss die Datei zunachst nicht angepasst
werden, um etwaige durch das Update neu hinzugekommene Berechtigungen zu erginzen.

ool 21:04 ool 21:07 ool 21:12

(é’ Legacy-Apps

’ Privatspharenverwaltungsplattform

-_— Berechtigungen gewahren:
Alle Legacy-Apps werden hier aufgelistet. Wahlen Lampe
Sie eine App, um Berechtigungen anzusehen und P

anzupassen.

Willkommen zur
Privatspharenverwaltungsplattform. Tippen Sie
auf einen Knopf, um mit PMP zu interagieren. Sie
kénnen auch den Experten-Modus in den
Einstellungen aktivieren.

-— Vollstandiger
Lampe Internetzugriff

ch.smalltech.ledflashlight.free

—

Netzwerkstatus

Tasks Free anzeigen

‘ ch.teamtasks.tasks

&

Google-

PMP-Apps

Legacy-Apps

Presets

Ressourcen

W - o . W—

(a) Hauptfenster der PMP

£, Clean Master

com.cleanmaster.mguard

AppGuard

com.srt.appguard.mobile

DS file

com.synology.DSfile

. Twitter

com.twitter.android

Golem News

(b) Liste aller Legacy-Apps

Servicekonfiguration
lesen

Fotos und Videos
aufnehm

Fotolicht steuern

(c) Berechtigungen gewihren

Abbildung 5.2: Implementierung des Gatekeepers als Teil des PMP-Prototyps

5 Der PMP-Gatekeeper

5.3.3 Erweiterung des Frameworks

Wie zuvor beschrieben, ist der einzige in der Praxis sinnvolle Ansatz, Berechtigungen zu widerru-
fen, tiber eine Erweiterung des Application-Frameworks. Die im Rahmen dieser Arbeit entwickelte
Gatekeeper-Komponente wurde auf Basis des Application-Level PMP-Prototyps gebaut, daher war es
nicht moglich, diesen Teil direkt zu implementieren.

Wie in Kapitel 5.2.3 beschrieben, kann der entsprechende Code innerhalb der Methode checkPermis-
sion() des ActivityManagerService erginzt werden. Der Berechtigungscheck der PMP kann hierbei
entweder vor oder nach der bestehenden Priifung durch das Android-System stattfinden. Ein Beispiel
hierfiir wird in Listing 5.6 gezeigt.

Hierbei ist auflerdem notwendig, aus der iibergebenen UID die zugehorigen Paketnamen zu ermitteln,
dies geht mit der Methode PackageManager.getPackagesForUid(). Die neu hinzugefiigte Methode
checkGatekeeper() muss dann lediglich priifen, ob die angegebenen Paketnamen in der innerhalb der
PMP gespeicherten Datei vorhanden und die entsprechenden Berechtigungen gewahrt sind.

Listing 5.6 Erweiterung von ActivityManagerService.checkPermission()

checkPermission(String permission, int pid, int uid) {
if (permission == null)
return PackageManager.PERMISSION_DENIED;
}

if (checkComponentPermission(permission, pid, uid, -1) ==
PackageManager.PERMISSION_GRANTED) {
String[] packageNames = PackageManager.getPackagesForUid(uid);
return checkGatekeeper(packageNames, permission);
} else
return PackageManager.PERMISSION_DENIED;

5.3.4 Ergebnis

Der im Rahmen dieser Arbeit entwickelte Prototyp der Gatekeepers ist im Kombination mit einer
geringfiigigen Anpassung des Android-Frameworks in der Lage, alle durch klassische Permissions
gewdahrten Berechtigungen von Apps zu blockieren und dadurch unerwiinschte Zugriffe auf private
Daten zu unterbinden. Durch eine Erweiterung der PMP konnen vertrauenswiirdigen Apps einzelne
Berechtigungen wieder gewahrt werden.

Auf einem Gerit, das die PMP mitsamt der neuen Gatekeeper-Komponente als alternatives Berechti-
gungssystem implementiert, hat der Anwender somit volle Kontrolle tiber alle Zugriffe auf geschiitzte
Daten und kann frei entscheiden, welche Informationen er den jeweiligen Apps zur Verfiigung stellen
mochte. Da die gewéhrten Berechtigungen zur Laufzeit beliebig angepasst werden kénnen, kann der
Anwender unmittelbar nachvollziehen, welche Auswirkungen einzelne Anderungen auf die Funktio-
nalitat der jeweiligen App haben. Somit kann im Laufe der Zeit die bestmogliche Balance zwischen
Sicherheit und Funktionalitit ermittelt werden.

50

6 Zusammenfassung und Ausblick

In der heutigen Zeit werden mobile Gerite in fast allen Bereichen des tdglichen Lebens verwendet
und speichern eine grofie Menge personlicher Informationen. Android, das meistbenutzte mobile
Betriebssystem, lasst Anwendern relativ viel Freiheit, gleichzeitig bedeutet dies aber, dass sie mehr
Verantwortung beziiglich Sicherheit und Datenschutz iibernehmen miissen. Allerdings sind insbe-
sondere unerfahrene Anwender meist nicht dazu in der Lage, die tatsachlichen Risiken realistisch zu
bewerten.

Um private Daten vor méglichem Missbrauch zu schiitzen, bendtigen Apps fiir den Zugriff darauf
besondere Rechte. Bei der Installation werden diese dem Anwender prasentiert, dabei kann aber
lediglich entschieden werden, alle geforderten Rechte auf Dauer zu gewéhren oder die App tiberhaupt
nicht zu installieren. Da Apps haufig sehr viele Rechte anfordern und meistens auch Internet benétigen,
geht der Anwender durch jede Installation ein Risiko ein.

Android bietet auch erfahrenen Anwendern von Haus aus keine Moglichkeit, weiteren Einfluss auf das
Rechtemanagement ihrer Apps zu nehmen. Aus diesem Grund sind in den letzten Jahren verschiedene
Konzepte fiir alternative Berechtigungssysteme entstanden.

Auf herkémmlichen Gerdten kénnen installierte Apps nur durch Manipulation ihres Quellcodes selbst
eingeschrankt werden, allerdings besteht dabei keine Erfolgsgarantie, auch ist dieses Vorgehen aus
rechtlicher Sicht nicht zuléssig. Uber eine Anpassung des Betriebssystems auf einem gerooteten Gerit
ist es dagegen moglich, einzelne Berechtigungen von Apps zu widerrufen.

Bei der Privacy Management Platform sind Berechtigungen nicht direkt Apps, sondern einzelnen
Features zugewiesen, die jederzeit aktiviert bzw. deaktiviert werden konnen. Hierbei werden alle
benoétigten Ressourcen vom Gerit tiber die PMP bezogen. PMP-kompatible Apps benotigen daher
keinen direkten Zugriff auf das Application-Framework.

Je nach Implementierungsstrategie der PMP werden die Berechtigungen von Legacy-Apps entweder
tiberhaupt nicht beeinflusst oder vollstandig blockiert. Beides ist in der Praxis nicht akzeptabel, da
sowohl der Schutz privater Daten als auch die Verwendung klassischer Apps méglich sein miissen.
Zu diesem Zweck wurde im Rahmen dieser Arbeit der "Gatekeeper” als neue PMP-Komponente
konzipiert, der Anwendern erlaubt, vertrauenswiirdigen Legacy-Apps ausgewéhlte Berechtigungen
zu gewihren.

Der Gatekeeper muss hierbei in der Lage sein, PMP- und Legacy-Apps zuverldssig zu identifizieren,
dies kann tiber das Vorhandensein von PMP-Schnittstellen bzw. klassischer Permission-Elemente
geschehen. Ebenfalls miissen Zugriffe, deren Berechtigungen vom Anwender widerrufen wurden,
verhindert werden, wobei System-Apps aus Stabilitidtsgrinden nicht eingeschriankt werden diirfen.
Hierbei kann entweder die jeweilige App selbst manipuliert werden oder eine Blockade durch das
System stattfinden.

51

6 Zusammenfassung und Ausblick

SchlieBlich wurde der Gatekeeper auf Basis des bestehenden PMP-Prototyps implementiert. Nach
Installation einer Legacy-Apps erhilt der Anwender eine Ubersicht aller geforderten Berechtigungen
und kann diese individuell gewéhren. Diese Einstellungen kénnen tiber die PMP jederzeit angepasst
werden. Damit der Widerruf der hierbei nicht gewihrten Berechtigungen tatsachlich funktioniert,
muss eine geringfiigige Anpassung am Application-Framework vorgenommen werden.

Der im Rahmen dieser Arbeit konzipierte Gatekeeper ist also in der Lage, von Anwendern installierte
Legacy-Apps sicher zu identifizieren und deren Zugriffe auf das Application-Framework zu unter-
binden. Auch scheinbare PMP-Apps, die sich iiber klassische Permissions unberechtigten Zugriff
verschaffen konnten, werden erkannt und abgefangen. Uber die neue Erweiterung der PMP kénnen
Apps einzelne Zugriffsrechte wieder gewihrt werden. Somit hat der Anwender volle Kontrolle dartiber,
auf welche Daten installierte Apps jeweils zugreifen diirfen.

Ausblick

Mit der im Rahmen dieser Arbeit erweiterten Version der PMP kann ein Anwender frei festlegen,
welche Informationen jeder App zur Verfiigung stehen. Dadurch kénnen vertrauenswiirdige Legacy-
Apps auch innerhalb eines auf der PMP basierenden Android-Betriebssystems weiterhin verwendet
werden.

Die hierbei vorgestellte Anpassung des Application-Frameworks ist nur ein Beispiel dafiir, wie Zugriffe
auf geschiitzte Daten auf Systemebene effektiv blockiert werden konnen. Ein Nachteil dieses Ansatzes
ist (wie in Kapitel 5.2.3 beschrieben), dass die meisten Apps einfach abstiirzen, wenn eine zur Laufzeit
geforderte Berechtigung nicht gewéhrt wurde.

Nach Vorlage der vorgestellten alternativen Berechtigungssysteme konnte man dieses Problem l6sen,
indem nicht der Berechtigungscheck selbst angepasst wird, sondern stattdessen die Methoden, die die
eigentlichen Daten zuriickgeben. Wie in Kapitel 2.3 beschrieben, rufen diese Methoden selbst den
Berechtigungscheck des Systems auf, direkt danach koénnte die Berechtigungspriifung auf Basis des
Gatekeepers stattfinden.

Der Vorteil hierbei wire, dass diese Methoden nicht tiber SecurityExceptions das System unterbrechen,
sondern tatsachliche Riickgabeparameter haben und somit bei einer durch die PMP widerrufenen
Berechtigungen einen leeren (aber passenden) Datensatz an die App zuriickgeben kénnten, wodurch
das System normal weiterarbeiten wiirde. Unberechtigte Internet-Anfragen konnten wiederum durch
eine Offline-Meldung abgefangen werden. Allerdings miisste bei diesem Ansatz jede einzelne Methode
im Application-Framework, die Zugriff auf durch Permissions geschiitzte Quellen hat, angepasst
werden, was vergleichsweise aufwandig ist.

Durch eine derartige Erweiterung des Gatekeepers wiirde die Zuverlassigkeit von Legacy-Apps in der
Praxis erhoht werden, da zur Laufzeit auftretende Zugriffe auf geschiitzten Daten blockiert werden
konnten, ohne dass der Programmfluss unterbrochen wird. Dadurch wéren auch stark eingeschrankte
Apps weiterhin lauffahig und Anwender konnten frei entscheiden, welche Informationen der App
tatsachlich zur Verfigung gestellt werden sollen.

52

Literaturverzeichnis

[AZHL12]

[BCG13]

[BGH™13a]

[BGH*13b]

[Bir09]

[BRSS11]

[CCFZ12]

[DC13]

[devi4]

[DSKC12]

K. W.Y. Ay, Y. F. Zhou, Z. Huang, D. Lie. PScout: Analyzing the Android Permission Spe-
cification. In Proceedings of the 2012 ACM Conference on Computer and Communications
Security, CCS ’12. 2012. (Zitiert auf Seite 15)

K. Benton, L. Camp, V. Garg. Studying the effectiveness of android application per-
missions requests. In Pervasive Computing and Communications Workshops (PERCOM
Workshops), 2013 IEEE International Conference on, PerCom ’13. 2013. (Zitiert auf Seite 13)

M. Backes, S. Gerling, C. Hammer, M. Maffei, P. von Styp-Rekowsky. AppGuard - Fine-
grained Policy Enforcement for Untrusted Android Applications. Technischer Bericht
A/02/2013, Saarland University, 2013. (Zitiert auf Seite 25)

M. Backes, S. Gerling, C. Hammer, M. Maffei, P. von Styp-Rekowsky. AppGuard: En-
forcing User Requirements on Android Apps. In Proceedings of the 19th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems, TA-
CAS’13. 2013. (Zitiert auf Seite 25)

T. Bird. Changing application security permissions after installation. Wiki-Eintrag auf
elinux.org, 2009. URL http://elinux.org/Android_Security. (Zitiert auf Seite 45)

A.R.Beresford, A. Rice, N. Skehin, R. Sohan. MockDroid: Trading Privacy for Application
Functionality on Smartphones. In Proceedings of the 12th Workshop on Mobile Computing
Systems and Applications, HotMobile *11. 2011. (Zitiert auf den Seiten 30 und 31)

M. Conti, B. Crispo, E. Fernandes, Y. Zhauniarovich. CRePE: A System for Enforcing
Fine-Grained Context-Related Policies on Android. Information Forensics and Security,
IEEE Transactions on, 7(5):1426—1438, 2012. (Zitiert auf Seite 29)

B. Davis, H. Chen. RetroSkeleton: Retrofitting Android Apps. In Proceeding of the 11th
Annual International Conference on Mobile Systems, Applications, and Services, MobiSys
’13. 2013. (Zitiert auf Seite 23)

developer.android.com. Application Fundamentals, 2014. URL http://developer.
android.com/guide/components/fundamentals.html. (Zitiert auf Seite 17)

B. Davis, B. Sanders, A. Khodaverdian, H. Chen. I-ARM-Droid: A Rewriting Frame-
work for In-App Reference Monitors for Android Applications. In IEEE Mobile Security
Technologies, MoST’12. 2012. (Zitiert auf Seite 23)

53

http://elinux.org/Android_Security
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/components/fundamentals.html

Literaturverzeichnis

[EGC*10]

[Erd13]

[FCH™11]

[FEW12]

[FHET12]

[Fri12]

[goo14]

[HHJ11]

[HSD13]

[Izz14]

[IMV+12]

[K614]

[Kum12]

54

W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, A. N. Sheth. TaintDroid: An
Information-flow Tracking System for Realtime Privacy Monitoring on Smartphones. In
Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation,
OSDI’'10. 2010. (Zitiert auf den Seiten 14 und 32)

F. Erdle. Android: Die Geschichte des Erfolgs. connect.de, 2013. URL http://www.
connect.de/ratgeber/android-geschichte-des-erfolgs-1491130.html. (Zitiert
auf Seite 9)

A.P.Felt, E. Chin, S. Hanna, D. Song, D. Wagner. Android Permissions Demystified. In
Proceedings of the 18th ACM Conference on Computer and Communications Security, CCS
’11. 2011. (Zitiert auf den Seiten 13 und 15)

A. P. Felt, S. Egelman, D. Wagner. I've Got 99 Problems, but Vibration Ain’t One: A
Survey of Smartphone Users’ Concerns. In Proceedings of the Second ACM Workshop
on Security and Privacy in Smartphones and Mobile Devices, SPSM ’12. 2012. (Zitiert auf
Seite 13)

A.P.Felt, E. Ha, S. Egelman, A. Haney, E. Chin, D. Wagner. Android Permissions: User
Attention, Comprehension, and Behavior. In Proceedings of the Eighth Symposium on
Usable Privacy and Security, SOUPS ’12. 2012. (Zitiert auf Seite 10)

C. Frickel. Google 16scht Anti-Schniiffel-App fiir Android, 2012. URL http://goo.gl/
DkUsSR. (Zitiert auf Seite 26)

google.com. App-Berechtigungen priifen, 2014. URL https://support.google.com/
googleplay/answer/6014972?hl=de. (Zitiert auf Seite 13)

P. Hornyack, S. Han, J. Jung, S. Schechter, D. Wetherall. These Aren’T the Droids You'Re
Looking for: Retrofitting Android to Protect Data from Imperious Applications. In
Proceedings of the 18th ACM Conference on Computer and Communications Security, CCS
’11. 2011. (Zitiert auf Seite 32)

H. Hao, V. Singh, W. Du. On the Effectiveness of API-level Access Control Using Bytecode
Rewriting in Android. In Proceedings of the 8th ACM SIGSAC Symposium on Information,
Computer and Communications Security, ASIA CCS *13. 2013. (Zitiert auf Seite 21)

Izzy. Why do so many applications require permission to read the phone state and
identity?, 2014. URL http://goo.gl/jtciYF. (Zitiert auf Seite 16)

J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster, T. Millstein. Dr.
Android and Mr. Hide: Fine-grained Permissions in Android Applications. In Proceedings
of the Second ACM Workshop on Security and Privacy in Smartphones and Mobile Devices,
SPSM ’12. 2012. (Zitiert auf Seite 22)

T. Koltzsch. Android lauft auf fast 85 Prozent aller Smartphones. golem.de, 2014. URL
http://goo.gl/usW4sP. (Zitiert auf Seite 9)

S. Kumar. Architecture of Android, 2012. URL http://androidprogramz.blogspot.
de/2012/06/architecture-of-android-in-order-to.html. (Zitiert auf Seite 17)

http://www.connect.de/ratgeber/android-geschichte-des-erfolgs-1491130.html
http://www.connect.de/ratgeber/android-geschichte-des-erfolgs-1491130.html
http://goo.gl/DkUsSR
http://goo.gl/DkUsSR
https://support.google.com/googleplay/answer/6014972?hl=de
https://support.google.com/googleplay/answer/6014972?hl=de
http://goo.gl/jtciYF
http://goo.gl/usW4sP
http://androidprogramz.blogspot.de/2012/06/architecture-of-android-in-order-to.html
http://androidprogramz.blogspot.de/2012/06/architecture-of-android-in-order-to.html

Literaturverzeichnis

[NKZ10]

[Pan13]

[Ros13]

[Rud13]

[SB11]

[SC13]

[Sch13]

[SLG*12]

[SM13]

[SM14]

[sou14]

[SS12]

M. Nauman, S. Khan, X. Zhang. Apex: Extending Android Permission Model and
Enforcement with User-defined Runtime Constraints. In Proceedings of the 5th ACM
Symposium on Information, Computer and Communications Security, ASIACCS ’10. 2010.
(Zitiert auf den Seiten 27 und 28)

A. Panos. BYOD - Private Hardware in der Firma nutzen. Diplomarbeit, Universitét
Stuttgart, Fakultdt Informatik, Elektrotechnik und Informationstechnik, Deutschland,
2013. (Zitiert auf Seite 37)

S. Rosenblatt. Why Android won’t be getting App Ops anytime soon.
Auf den Seiten von cnet, 2013. URL http://www.cnet.com/news/
why-android-wont-be-getting-app-ops-anytime-soon/. (Zitiert auf Seite 19)

D. Ruddock. Google Play Services 4.0 Requires Developers To Use The New ”Advertising
ID” To Identify Your Device, Enforcement Starts Aug 2014, 2013. URL http://goo.gl/
pfMzD8. (Zitiert auf Seite 16)

C. Stach, A. Brodt. — vHike — A Dynamic Ride-sharing Service for Smartphones. In
Proceedings of the 12th International Conference on Mobile Data Management, MDM’11.
2011. (Zitiert auf Seite 10)

J. Sellwood, J. Crampton. Sleeping Android: The Danger of Dormant Permissions. In
Proceedings of the Third ACM Workshop on Security and Privacy in Smartphones &
Mobile Devices, SPSM ’13. 2013. (Zitiert auf Seite 16)

P. Scholz. Integration der PMP in das Android OS. Diplomarbeit, Universitat Stuttgart,
Fakultit Informatik, Elektrotechnik und Informationstechnik, Deutschland, 2013. (Zitiert
auf Seite 40)

B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, I. Molloy. Android Permissions:
A Perspective Combining Risks and Benefits. In Proceedings of the 17th ACM Symposium
on Access Control Models and Technologies, SACMAT ’12. 2012. (Zitiert auf Seite 21)

C. Stach, B. Mitschang. Privacy Management for Mobile Platforms - A Review of
Concepts and Approaches. In Proceedings of the 14th International Conference on Mobile
Data Management, S. 1-9. IEEE Computer Society Conference Publishing Services, 2013.
(Zitiert auf den Seiten 10 und 26)

C. Stach, B. Mitschang. Design and Implementation of the Privacy Management Platform.
In Proceedings of the 15th International Conference on Mobile Data Management, MDM’14.
2014. (Zitiert auf Seite 39)

source.android.com. Introducing ART, 2014. URL https://source.android.com/
devices/tech/dalvik/art.html. (Zitiert auf Seite 17)

C. Stach, L. F. Schlindwein. Candy Castle - A Prototype for Pervasive Health Games.
In Proceedings of the 2012 IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops), PerCom’12. 2012. (Zitiert auf Seite 10)

55

http://www.cnet.com/news/why-android-wont-be-getting-app-ops-anytime-soon/
http://www.cnet.com/news/why-android-wont-be-getting-app-ops-anytime-soon/
http://goo.gl/pfMZD8
http://goo.gl/pfMZD8
https://source.android.com/devices/tech/dalvik/art.html
https://source.android.com/devices/tech/dalvik/art.html

Literaturverzeichnis

[Sta11]

[Sta13a]

[Sta13b]

[Thea]

[Theb]

[XSA12]

[ZXMX13]

C. Stach. Saving time, money and the environment - vHike a dynamic ride-sharing
service for mobile devices. In Proceedings of the 2011 IEEE International Conference on
Pervasive Computing and Communications Workshops (PerCom Workshops), PerCom’11.
2011. (Zitiert auf Seite 10)

C. Stach. How to Assure Privacy on Android Phones and Devices? In Proceedings of the
14th International Conference on Mobile Data Management, MDM’13. 2013. (Zitiert auf
Seite 35)

C. Stach. Wie funktioniert Datenschutz auf Mobilplattformen? In Informatik 2013:
Informatik angepasst an Mensch, Organisation und Umwelt, 43. GI Jahrestagung, Lecture
Notes in Informatics. 2013. (Zitiert auf den Seiten 36 und 40)

The Android Open Source Project. ActivityManagerService.java (Android 2.3, Source
Code). URL http://goo.gl/j9TIyK. (Zitiert auf Seite 19)

The Android Open Source Project. = AndroidManifest (Source Code). URL
https://github.com/android/platform_frameworks_base/blob/master/core/
res/AndroidManifest.xml. (Zitiert auf Seite 46)

R. Xu, H. Saidi, R. Anderson. Aurasium: Practical Policy Enforcement for Android
Applications. In Proceedings of the 21st USENIX Conference on Security Symposium,
Security’12. 2012. (Zitiert auf den Seiten 23 und 24)

Y. Zhongyang, Z. Xin, B. Mao, L. Xie. DroidAlarm: An All-sided Static Analysis Tool for
Android Privilege-escalation Malware. In Proceedings of the 8th ACM SIGSAC Symposium
on Information, Computer and Communications Security, ASIA CCS *13. 2013. (Zitiert auf
Seite 14)

Alle URLs wurden zuletzt am 15. 08. 2014 gepriift.

56

http://goo.gl/j9TJyK
https://github.com/android/platform_frameworks_base/blob/master/core/res/AndroidManifest.xml
https://github.com/android/platform_frameworks_base/blob/master/core/res/AndroidManifest.xml

Erkliarung

Ich versichere, diese Arbeit selbststiandig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wortlich oder sinngemifd aus anderen Werken tibernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Pritifungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-
se noch vollstindig veroffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Ausgangssituation
	1.2 Problemstellung
	1.3 Gliederung

	2 Das Android-Berechtigungssystem
	2.1 Aus Anwendersicht
	2.2 Aus Entwicklersicht
	2.3 Aus Systemsicht
	2.4 Fazit

	3 Alternative Berechtigungssysteme
	3.1 Inline Reference Monitoring
	3.1.1 Dr. Android and Mr. Hide
	3.1.2 I-ARM Droid
	3.1.3 Aurasium
	3.1.4 AppGuard
	3.1.5 Bewertung

	3.2 Erweiterung des Android-Frameworks
	3.2.1 Apex
	3.2.2 CRêPE
	3.2.3 MockDroid
	3.2.4 AppFence
	3.2.5 Bewertung

	4 Die Privacy Management Platform
	4.1 Aufbau und Grundbegriffe
	4.1.1 Ressourcen und Privacy Settings
	4.1.2 Service Features
	4.1.3 Privacy Rules und Presets

	4.2 Management
	4.3 Integrationsstrategien
	4.3.1 Application-Level
	4.3.2 App-Konverter
	4.3.3 Anpassung des Application-Frameworks

	5 Der PMP-Gatekeeper
	5.1 Identifizierung von Apps
	5.1.1 Registrierung bei der PMP
	5.1.2 Referenz des PMP-AppService
	5.1.3 AppInformationSet
	5.1.4 Existenz klassischer Permissions
	5.1.5 System-Apps

	5.2 Widerruf von Berechtigungen
	5.2.1 Veränderung des App-Manifests
	5.2.2 Manipulation der Berechtigungen im Hauptspeicher
	5.2.3 Blockade durch das Application-Framework
	5.2.4 Widerrufs-Richtlinien

	5.3 Implementierung des Prototyps
	5.3.1 Schnittstelle zur PMP
	5.3.2 Berechtigungsmanagement
	5.3.3 Erweiterung des Frameworks
	5.3.4 Ergebnis

	6 Zusammenfassung und Ausblick
	Literaturverzeichnis

