Institut fiir Parallele und Verteilte Systeme

Universitat Stuttgart
UniversitatsstraBe 38
D-70569 Stuttgart

Bachelorarbeit Nr. 123

Effiziente verteilte
Hierarchisierung und
Dehierarchisierung auf vollen

Gittern
Philipp Butz
Studiengang: Informatik
Prufer: Jun.-Prof. Dr. rer. nat. Dirk Pfliger
Betreuer: M.Sc. Mario Heene
Beginn am: 10. April 2014
Beendet am: 10. Oktober 2014

CR-Nummer: G.1.0

Kurzfassung

In vielen wissenschaftlichen Bereichen werden numerische Verfahren fiir komplexe Simulationen
eingesetzt. Diese basieren auf beliebig dimensionalen numerischen Gleichungen, welche beispielsweise
fur die Simulation von Aktienmérkten mehrere 100 Dimensionen umfassen konnen. Auf Grund der
Grof3e der Gitter liegen die Daten meist verteilt vor. Die vollen Gitter fiir die Lésung dieser hoher
dimensionalen Probleme unterliegen dem Fluch der Dimensionalitit. Ein Ansatz, um dem entgegen
zu wirken, sind diinne Gitter, welche auf hierarchischen Basen basieren. Diese Arbeit widmet sich
insbesondere der Problematik der verteilten Gitter, wobei die verteilte Transformation der nodalen in
die hierarchische Basis thematisiert wird.

Inhaltsverzeichnis

1 Einleitung

Literaturverzeichnis

1.1 Problemstellung L
1.2 Gliederung
2 Grundlagen
2.1 Interpolation mit der Knotenbasis L.
2.2 Hierarchische Basisfunktionen 0 L.
2.3 Dunne Gitter und Kombinationstechnik
24 Randwerte e
2.5 Hierarchisierung und Dehierarchisierung
3 Implementierung
3.1 Ausgangspunkt
3.1.1 Datenstruktur L
3.2 Randwerte e
3.3 Dehierarchisierung
3.4 Verteilte Hierarchisierung und Dehierarchisierung
3.41 AufteilungderDaten
3.4.2 Kommunikationsmedium o L.
3.4.3 Hierarchisierung L L
3.44 Dehierarchisierung L
3.5 Cache-Effizienz
3.6 SG++ . L
4 Evaluation
4.1 Architektur der Testsysteme
42 Messungen e e
421 BlockgroBle
4.2.2 Starke Skalierung
4.2.3 Schwache Skalierung
4.24 Optimierbarkeit L Lo L o
5 Schluss
5.1 Zusammenfassung
5.2 Ausblick

10

11
12
13
14
15
16

19
19
20
21
22
22
23
24
25
29
33
34

35
35
35
35
36
38
39

41
41
41

43

Abbildungsverzeichnis

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

2.10

3.1
3.2

3.3

34

3.5

3.6

3.7

3.8

3.9

Volles Gitter mit [= (3, 3) ohne Randwerte (49 Punkte) 11
Hutfunktion aus Definition 2.4 fiir eine Stiitzstellex; 12
Links: Eine Funktion f(z) und deren lineare Approximation u(z), Rechts: Die Funk-

tion u(z) als Summe der gewichteten Basisfunktionen, basiertauf [3] 12
Links: Hierarchische Hutfunktionen, Rechts: Standart-Hutfunktionen, basiert auf [3] 13
Die Funktion u(x) und deren Ansatzfunktionen ¢ ;, basiertauf [3] 13
Links: Teilraum W; mit [= {1, 2} . Rechts: V3 aus Abbildung 2.9 ergédnzt um Randwerten 15
Erweiterung der Baumdarstellung aus Abbildung 2.10 um Randwerte 15
Links: Eine Funktion f(z) und deren lineare Approximation u(x) mit Randwerten,

Rechts: Die Funktion u(z) als Summe der Stiitzstellen 2 ; und deren Ansatzfunktionen

¢; mit Randwerten durch die Basisfunktionen (g 1 und g 2, basiert auf [3] 16
Links: Alle Teilrdume fiir [= 3 in beiden Dimensionen, Rechts: Diinnes Gitter V3
bestehend aus allen blau dargestellten Stiitzstellen im linken Teil der Grafik [3] . .. 17
Baumstruktur der hierarchisierten Punkte. Die gestrichelten blauen Linien beschreibt
die Vorgangerbeziehung zwischen den Punkten fiir [= 3, basiertauf [3] 17
Ein Pol beziglich der Dimension 2 eines vollen Gitters mitlo =3 19
Blau: hierarchische Vorgénger, Griin: Ablauf der Hierarchisierung nach Algorithmus
3.1fiireinenPol. L 20

Links: Volles Gitter mit [= (3, 3) mit Randwerten und einer Unterteilung in (2, 2)
Prozesse; Rechts: Volles Gitter mit [= (4, 2) ohne Randwerten in Dimension 2 und

einer Unterteilung in (3,2) Prozesse. 23
Kartesische Topologie von Prozessen durch MPIL Rang (oben) und Koordinaten der
Prozesse (unten) in den Knoten, basiertauf [?] 24
Baumdarstellung eines eindimensionalen Gitters mit [= 3 und Randwerten, wobei
das Gitter auf 2 Prozesse aufgeteiltist. 25
Linker Teilbaum eines Gitters mit Randwerten und [; > 5 und den hierarchischen
Abhiangigkeiten (blau) der Punkte. 26
Aufteilung eines Gitters mit [= 3 in 2 Prozesse. Ausgetauschten Punkte 4 und 8 in
rotdargestellt. 28
Baumdarstellung eines eindimensionalen Gitters mit [= 3 und Randwerten, wobei
das Gitter in 3 Prozesse aufgeteiltist. 0 L. 30

Baumdarstellung eines eindimensionalen Gitters, nach dem Datenaustausch, mit
! = 3 und Randwerten, wobei das Gitter in 3 Prozesse aufgeteilt ist. Dabei sind die
ausgetauschten Punkte, analog zu Abbildung 3.7 in rot dargestellt. 31

3.10 Array grid[] eines Gitters von links oben nach rechts unten mit [= 3, wobei sich die
Nummerierung an den Punktindizes der eindimensionalen Baumstruktur (rechts) der
Pole beziiglich Dimension 2 orientiert. In blau ist ein Pol beziiglich der Dimension 2
hervorgehoben und in rot die in die Cache geladenen Punkte fiir das Hierarchisieren

vonPunkt 1. 34
4.1 Unterschiedliche Blockgréfien bei der Bearbeitung eines Gitters mit insgesamt ca. 484

Mio. Punkten in 5 Dimensionen auf einem Prozess. 36
4.2 Oben: Hierarchisierung; Unten: naive (Austausch pro Dimension und Level) und

optimierte (Austausch pro Dimension) Dehierarchisierung. Jeweils mit Blockgrofle 8

bei konstanter Gittergrofie und 5 Dimensionen. 37
43 Oben: Hierarchisierung; Unten: naive (Austausch pro Dimension und Level) und

optimierte (Austausch pro Dimension) Dehierarchisierung. Jeweils Verdopplung der

Prozesse und Verdopplung der Gitterpunkte. Anzahl der Gitterpunkte ausgehend von

ca. 1,160 Mrd. mit Blockgrofle 8. L o 39
4.4 Effizienz der Algorithmen im Vergleich und im Bezug zur theoretischen Obergrenze. 40

Verzeichnis der Algorithmen

3.1 Basis Hierarchisierungs-Algorithmus, basiert auf [5] 19
3.2 Berechnung des Wertes des linken hierarchischen Vorganger zum Punkt: 22
3.3 Berechnung der auszutauschenden Punkte anhand der eindimensionalen Struktur,

wiein Abbildung 3.6 27
3.4 Uberprifung aller hierarchischen Nachfolger eines Punktes. 28
3.5 Erweiterung des Basis Hierarchisierungs-Algorithmus 3.1 29
3.6 Verteilte Dehierarchisierung mit optimiertem Ablauf 33

1 Einleitung

In vielen wissenschaftlichen Bereichen werden numerische Verfahren fiir komplexe Simulationen
eingesetzt. Beispielsweise fir die Untersuchung von physikalischen Phdnomenen, welche schwer
oder sogar unméglich durch Experimente nachvollziehbar sind [1]. Die Simulationen von komplexen
Vorgéngen basieren auf beliebig dimensionalen numerischen Gleichungen, welche beispielsweise fiir
die Simulation von Aktienméarkten mehrere 100 Dimensionen umfassen kénnen.

Die vollen Gitter fiir die Losung dieser hoher dimensionalen Probleme unterliegen dem Fluch der
Dimensionalitit, da die Anzahl der Gitterpunkte N = n?, bei n Gitterpunkten pro Dimension,
exponentiell mit der Anzahl der Dimensionen wichst. Bei steigender Genauigkeit wachsen somit
sowohl Gitter als auch die Zeit fiir die Berechnung exponentiell.

Ein Ansatz, um der Grof8e entgegen zu wirken, sind diinne Gitter, welche auf hierarchischen Basen
basieren. Fiir beliebig dimensionale Probleme wird ein Tensorprodukt dieser Basen gebildet. Die
hierarchische Struktur fithrt dazu, dass der Beitrag zur Losung mit steigendem Level kleiner wird.
Fiir die dinnen Gitter werden nur Basisfunktionen verwendet, welche in jede Richtung nur ein
bestimmtes Level aufweisen. Die Gitterstruktur ist darauthin nicht mehr reguldr, wodurch die direkte
Anwendung von Algorithmen, zur Berechnung einer Lésung, erschwert wird.

Die Kombinationstechnik setzt an diesem Problem an [2]. Hierbei werden diinne Gitter durch die
Kombination von reguldren Teilraumen dargestellt. Die Losung wird auf jedem der Teilrdume separat
berechnet und kombiniert.

1.1 Problemstellung

Der Gegenstand dieser Arbeit ist die Transformation der nodalen Basis in die hierarchische Basis. Fiir
diese Hierarchisierung und dessen inverse, die Dehierarchisierung, existieren Algorithmen bei denen
die Daten komplett in einem Speicherbereich liegen. Bei grofien beliebig dimensionalen Problemen
ist es jedoch oft der Fall, dass die Daten auf mehrere Knoten aufgeteilt vorliegen.

In dieser Arbeit werden Verfahren fiir die direkte Hierarchisierung und Dehierarchisierung auf
verteilten Daten entwickelt. Diese werden in das Diinngitter-Framework SG++ eingebunden und mit
Messungen bewertet [3, 4].

1 Einleitung

1.2 Gliederung

In Kapitel 2 werden die mathematischen Grundlagen fiir die Problemstellung dieser Arbeit erlautert.
Dazu zéhlen insbesondere hierarchische Basisfunktionen und das Konzept der diinnen Gitter, welches
auf diesen Basisfunktionen aufbaut.

In Kapitel 3 wird beginnend ein Algorithmus fiir die serielle Losung der Hierarchisierung beschrieben.
Diese wird schrittweise erweitert zu einer verteilten Hierarchisierung und Dehierarchisierung, wobei
zwei Varianten fiir die verteilte Dehierarchisierung vorgestellt werden.

In Kapitel 4 werden die Losungsansatze durch Messungen bewertet und verglichen. Insbesondere wer-
den die Laufzeiten und Skalierung der zwei Varianten der verteilten Dehierarchisierung betrachtet.

Im letzten Kapitel werden die Erkenntnisse dieser Arbeit zusammengefasst und ein Ausblick auf
mogliche Erweiterungen gegeben.

10

2 Grundlagen

Im folgenden Kapitel werden die fiir die Hierarchisierung wichtigen mathematischen Grundlagen
erlautert, sowie die Grundziige der Moglichkeiten durch die Diinn-Gitter-Methode als Motivation.
Die Definitionen und Notationen sind aus der Doktorarbeit ,Spartially Adaptive Sparse Grids for
High-Dimensional Problems“ von Dirk Pfliiger entnommen [3].

Fir das wissenschaftliche Rechnen werden Probleme bzw. Funktionen beliebiger Dimensionalitét d
diskretisiert. Dafiir werden die Funktionen an bestimmten Stellen ausgewertet und anhand dieser
Werte mit dazugehorigen Ansatzfunktionen approximiert. Diese Arbeit verwendet regulire volle
Gittern in dem Bereich [0, 1]¢.

%
Die Anzahl der Punkte in einer Dimension wird durch den level Vektor [vorgegeben, wobei dieser
fiir jede Dimension das Disktretisierungslevel

@1) 1 =0l LEN

definiert. Aus dem Level einer Dimension 7 resultiert der Abstand der Stiitzstellen und die Anzahl der
Punkte. Der Abstand h zwischen zwei Stiitzstellen in einer Dimension 7 ist durch

(2.2) hy =27k

definiert. Die Anzahl der Punkte in Dimension 7 resultiert daraus zu

2l 41, falls Randwerte in Dimension i vorhanden sind
(23) N; =
ol — 1, sonst

Die Stiitzstellen bilden ein volles Gitter, wie in Abbildung 2.1 fir d = 2 und ? = (3, 3) dargestellt.

Abbildung 2.1: Volles Gitter mit [= (3, 3) ohne Randwerte (49 Punkte)

11

2 Grundlagen

2.1 Interpolation mit der Knotenbasis

Die Funktionswerte an den Stiitzstellen werden stiickweise linear interpoliert, wie in Abbildung 2.3
dargestellt. Hierbei werden die Funktionswerte c; an den Stiitzstellen ; jeweils mit einer Hutfunktion,
wie in Abbildung 2.2 grafisch und in Definition 2.4 formal dargestellt, gewichtet.

Abbildung 2.2: Hutfunktion aus Definition 2.4 fiir eine Stiitzstelle z;

(2.4) ¢j(z) :=max(1 — |z — z;|,0)

Eine Funktion f(x) lasst sich approximieren durch die Summe der Funktionswerte an den gewéhlten
Stiitzstellen multipliziert mit deren Gewichtung durch je eine Ansatzfunktion. Die formale Definition

N;
25) f(z) mu(@) = ;- ¢;j(x)
j=1

ist grafisch in Abbildung 2.3 dargestellt. Hierbei zeigt die rechte Grafik die gewichteten Basisfunktionen
und die Summe u(x) aller Ansatzfunktionen. In der linken Grafik ist eine Funktion f(z) und ihre
Approximation u(z), aus dem rechten Teil der Abbildung, dargestellt.

31 f(@)__u(@) =%, 0jp,(x) 37 @) =35 aj0i(x)

1] 14

0 : 0-f Av—»
o h=2? Zj 1 0 1

Abbildung 2.3: Links: Eine Funktion f(z) und deren lineare Approximation u(z), Rechts: Die Funk-
tion u(z) als Summe der gewichteten Basisfunktionen, basiert auf [3]

12

2.2 Hierarchische Basisfunktionen

2.2 Hierarchische Basisfunktionen

Im Gegensatz zu den Ansatzfunktionen aus Definition 2.4 sind hierarchische Basen definiert durch
(2:6) ui(x) = (2w — 1)

mit Level [und Indexi 0 < i < 2!. Der Unterschied zwischen den hierarchischen Hutfunktionen
und den Standart-Hutfunktionen ist in Abbildung 2.4 dargestellt.

1,1

=1 W Wi
1,1 ‘ ‘ 1,1
¥2,1 ©2,3

=2 Wa »>V3 Vs

T21 23 22 T2.4 26

¥3,1 ¥3,3 ©3,5 ¥3,7
=3 W3 V3

31 3,3 35 37 T3,1 L3,2%3323,4L35T36L3,7

Abbildung 2.4: Links: Hierarchische Hutfunktionen, Rechts: Standart-Hutfunktionen, basiert auf [3]

In der linken Grafik der Abbildung 2.4 ist die hierarchisierte Basis aus Hutfunktionen fiir die Level 1
bis 3 dargestellt. Es ist ersichtlich, dass die Hutfunktionen auf dem gleichen Level jeweils einen gleich
groflen Bereich abdecken und sich summiert auf den gesamten Wertebereich erstrecken. Im Gegensatz
dazu, tiberlappen sich die Basisfunktionen der Knotenbasis. Die formale Definition der Teilrdume V'
und W sind in Definition 2.10 und 2.9 einzusehen und werden im Abschnitt 2.3 erlautert.

Die Basisfunktionen fiir hdher dimensionale Probleme sind
das Tensor-Produkt der Basisfunktionen in jede Dimension

an jeder Stiitzstelle. Diese sind somit definiert als: 37
d 24
@7) o7 (@) = [T o1 (25)
Jj=1 14
Die Definition der Approximation () lisst sich damit 0 o+
definieren durch die Formel in Definition 2.13 im folgenden o h=27" 1

Abschnitt.
Abbildung 2.5: Die Funktion u(z) und
deren Ansatzfunktio-
nen ¢y ;, basiert auf

(3]

13

2 Grundlagen

2.3 Diinne Gitter und Kombinationstechnik

Diinne Gitter bestehen aus wesentlich weniger Punkten als volle Gitter und werden durch eine Kom-
bination von Teilrdumen aus Basisfunktionen, welche abhiangig von der Wahl einer entsprechenden
Norm ist, gebildet. Fiir 1D wurden in Abbildung 2.4 Teilraume W7, W5 und W3 dargestellt.

Die Teilrdume sind definiert durch eine Menge an Indizes
(2.8) 1'7 ={7:1<4i; < oli 1, i; ungerade, 1 < j < d}
welche die enthaltenen Basisfunktionen definiert.

Aus diesen Mengen an Basisfunktionen lassen sich, wie in Abbildung 2.9 auf Seite 17, die Teilraume
W—l> definieren durch

(2.9) W = span{g07y7(?) . T e I}

Die Diinn-Gitter-Methode besteht darin die Teilrdume, welche am meisten zur Losung beitragen, zu
kombinieren, um die Genauigkeit der Approximation, trotz weniger Stiitzstellen, nicht wesentlich
zu verschlechtern. In Abbildung 2.9 werden die, in blau dargestellten, Stiitzstellen zu einem diinnen
Gitter kombiniert, welches auf der rechten Seite der Abbildung dargestellt ist.

Der Diinngitterraum V/, ist definiert durch

210) Vo= H wo
|_l>|1 <n+d—1

wobei die Summennorm definiert ist durch

d
_>
@11) | U= 1
Jj=1

Damit kann die, in Abbildung 2.9 auf der rechten Seite dargestellte, Kombination von Teilrdumen als
V3 eindeutig bestimmt werden. Am Beispiel der Teilrdume in Abbildung 2.9 lasst sich leicht einsehen,
dass das diinne Gitter gerade einmal 17 Gitterpunkte enthélt im Gegensatz zu den 49 eines vollen
Gitters.

Durch das Andern der Norm der direkten Summe der Teilriume lassen sich diinne Gitter mit verschie-
denen Eigenschaften erstellen. Beispielsweise ldsst sich das volle Gitter durch die Maximumsnorm
herstellen, da die Maximumsnorm definiert ist durch

%
(212) [1']oo := max [l]

Damit lasst sich die Approximation u(x) auf dem Diinngitterraum V,, definieren als

(2.13) u(x) := Z ap = 7(7)

14

2.4 Randwerte

Fiir geniigen glatte Funktion f € HY ergibt sich beziiglich der Approximation u(z) € V,, eine
Approximationsordnung von

219) [|f(Z — u(T))l|1, € O(h} (log(hy "))

2.4 Randwerte

In der bisherigen Betrachtung wurden fiir die Randwerte keine Werte verschieden der Null angenom-
men. Fiir Funktionen wie in Abbildung 2.3 verbessern Randwerte die Approximation u(x) deutlich.
Diese konnen auf einem neuen Level, Level 0, definiert werden, jedoch entstehen dadurch neue
Teilrdume. Bei der Kombination dieser fithrt dies dazu, dass auf dem Rand doppelt so viele Punkte wie
auf der Hauptachse innerhalb des Gitters sind. Aus diesem Grund werden die Randwerte auf Level 1
hinzugefiigt und bei der Hierarchisierung und Interpolation speziell behandelt.

L =1

o~
[\
I

[\

Abbildung 2.6: Links: Teilraum W; mit | = {1, 2} . Rechts: V5 aus Abbildung 2.9 erginzt um Rand-
werten

Zwei zusétzliche Basisfunktionen ¢g 1 und ¢ 2 erweitern die Approximation aus Abbildung 2.3 zu
einer Approximation mit Randwerten, welche in Abbildung 2.8 dargestellt ist.

Die Teilrdume lassen sich damit wie in der linken Grafik in Abbildung 2.6 darstellen. Die Teilraum-
kombination V3 aus Abbildung 2.9, ebenfalls mit Randwerten, ist auf der rechten Seite zu sehen.

Die Abhéngigkeiten zwischen den Stiitzstellen lassen sich damit abermals durch einen Baum dar-
stellen. Abbildung 2.7 ist eine Erweiterung des Baumes aus Abbildung 2.10 und beinhaltet die neuen
Abhingigkeiten zwischen den Stiitzstellen und den Randwerten.

Level 1

Level 2

Level 3

3 5 7
8 8 8

1
8

Abbildung 2.7: Erweiterung der Baumdarstellung aus Abbildung 2.10 um Randwerte

15

2 Grundlagen

3 u(@) = ¥, age5(2)
21 . : '
$0,2
1 K /%o,
0 i j i i i i i : 0 V ¥ ¥ ¥ ¥ { ! ;

Abbildung 2.8: Links: Eine Funktion f(z) und deren lineare Approximation u(z) mit Randwerten,
Rechts: Die Funktion u(z) als Summe der Stiitzstellen 2 ; und deren Ansatzfunktionen
¢; mit Randwerten durch die Basisfunktionen (g 1 und (g 2, basiert auf [3]

2.5 Hierarchisierung und Dehierarchisierung

Die Hierarchisierung beschreibt die Transformation der nodalen in die hierarchische Basis. Die
Dehierarchisierung beschreibt entsprechend die inverse Transformation. Bei diesen Transformationen
werden die Werte an den Stiitzstellen neu bestimmt.

Die Funktionswerte auf grofleren Leveln tragen die Differenz zwischen dem Funktionswert an dessen
Stiitzstelle und der schon vorhandenen Approximation bei. Eine Stiitzstelle =-; wird in Abhéangigkeit
der Stitzstellen auf niedrigeren Level neu berechnet zu

xj=x; — 0.5 (Tiept + Tright)

mit left = j — 2l l=

(2.15) . . el

mit right = j 4+ 2" "%

mit [, := (Level der Stiitzstelle x;) —1
wobei der T, _gli~la; der linke und T, | gli~le; der rechte hierarchische Vorgénger der Stiitzstelle z;
ist.

Dabei werden die Werte beginnend bei dem Level I; hierarchisiert, wodurch die Abarbeitung beziig-
lich des Binarbaums einer ,reverse level-order” Traversierung entspricht. Die Dehierarchisierung
entspricht der Inversen der Hierarchisierung damit der ,level-order” Traversierung des Bindrbaums.

Weitere Formeln fiir die Berechnung von Nachbarschaftsbeziehungen zwischen den Funktionswerten
abhingig von dem jeweiligen Level der Stiitzstelle ; werden im Kapitel 3 vorgestellt.

Die Abhéangigkeiten lassen sich iibersichtlicher durch eine Baumstruktur, wie in Abbildung 2.10,
beschreiben. In dieser Grafik ist ein Baum fiir die eindimensionalen Hierarchisierung mit [= 3
dargestellt. Die gestrichelten blauen Linien in dem Bindrbaum symbolisieren die Abhéingigkeiten. Fiir
die Stutzstellen 24, ¢ und x7 sind die Verbindungen zu deren Ansatzfunktionen in dem rechten Teil
der Abbildung verdeutlicht.

16

2.5 Hierarchisierung und Dehierarchisierung

l1:1 l1:2 l1:3 él
lh=1) ° ® oo 00
° o o |ileoeooe e o e
_ : °
ly =2 : 0000000
° ° o ||l @0 o0 .:.
' °
Y e e e @ @ @
I =3 ° | e e e 0 0@
2= ° ' e @)
'Y E e o e @ @@
l2d '

Abbildung 2.9: Links: Alle Teilrdume fiir [= 3 in beiden Dimensionen, Rechts: Diinnes Gitter V3
bestehend aus allen blau dargestellten Stiitzstellen im linken Teil der Grafik [3]

Level 1 13
Level 2 : T2
Level 3 a --------

|

—

Te L7 1

Abbildung 2.10: Baumstruktur der hierarchisierten Punkte. Die gestrichelten blauen Linien be-
schreibt die Vorgéngerbeziehung zwischen den Punkten fiir [= 3, basiert auf

[3]

17

3 Implementierung

Basierend auf den mathematischen Grundlagen aus Kapitel 2 werden in diesem Kapitel Algorithmen
fur das verteilte Umrechnen zwischen nodalen Basen und hierarchisierten Basen erarbeitet. Hierfiir
werden die Algorithmen fiir die verteilte Hierarchisierung und Dehierarchisierung aus dem seriellen
Algorithmus hergeleitet.

3.1 Ausgangspunkt

Abstrakt lasst sich die mathematische Definition der Hier- —_—
archisierung aus Kapitel 2 zum Beispiel durch den Algorith- |66 06000
mus 3.1 basiernd auf dem Algorithmus aus dem Paper ,Per- |6 600 00
formance of Unidirectional Hierarchization for Component |6 00000
Grids Virtually Maximized von Philipp Hupp darstellen o660 000
[5]. ejle 000 oo
. , o . , |l &0 0 00
H¥erbe1 erd 1f1 de:'r aufleren SC}:llelf?, in Ze'lle.: 2, iber alle ole e 00 0 o
Dimensionen iteriert, so dass die Hierarchisierung nach- —

einander fiir jede Dimension ausgefiihrt wird. In Zeile 3 Abbildung 3.1: Ein Pol beziiglich der
wird iiber alle ,Pole” in der entsprechenden Dimension dd Dimension 2 eines vol-
iteriert. len Gitters mit o = 3

Algorithmus 3.1 Basis Hierarchisierungs-Algorithmus, basiert auf [5]

1: function HIERARCHISIERUNG

2 for dd < 1tod do

3 for all 1-dim Pole P in Richtung dd do

4 for [<+ ljyto2do

5: for all x; auf Level [do

6 grid[i] = grid[i] — 0.5 - linkerVorgénger (i, dd,)
7 grid[i] = grid[i] — 0.5 - rechterVorganger(i, dd, 1)
8

9

end for
: end for
10: end for
11: end for

12: end function

19

3 Implementierung

Ein Pol beziiglich einer Dimension ¢ ist eine Menge an Stiitzstellen, welche sich nur in der Koordinate
beziiglich der Dimension ¢ unterscheiden. Ein Beispiel fiir ein Pol ist in Abbildung 3.1 dargestellt. Jeder
dieser Pole ist beziiglich der Dimension ¢ als unabhéngiges eindimensionales Gitter zu betrachten.
Die Anzahl der Pole einer Dimension % errechnet sich somit durch

d

(3.1) Pole; := H 2li —1
j=0
1#]

Der Algorithmus 3.1 behandelt keine Randwerte, wodurch in Zeile 3 iiber alle Level, beginnend
mit dem hochsten, bis zum Level 2 iteriert wird. Der Funktionswert an dem Stiitzpunkt auf Level 1
muss nur fiir Randwerte ungleich 0 betrachtet werden. In Zeile 5 wird tiber alle Funktionswerte in
dem jeweiligen eindimensionalen Pol und dem entsprechenden Level iteriert. Daraufhin werden die
neuen Werte der Funktionswerte, wie in Definition 2.15, durch die Zeilen 6-7 berechnet, wobei die
Funktionen jeweils den Wert des linken und rechten hierarchischen Vorgéngers ausgibt. Der Ablauf
des Algorithmus fiir einen Pol (Zeile 4ff) ist in Abbildung 3.2 grafisch dargestellt.

Die Level werde entsprechend dem Algorithmus 3.1 von grofiem nach kleinen Level durchlaufen,
wobei der Ablauf in Abbildung 3.2 fiir jeden Pol wiederholt wird.

Level 1

Level 2 L2 F {6)

Abbildung 3.2: Blau: hierarchische Vorgianger, Griin: Ablauf der Hierarchisierung nach Algorithmus
3.1 fiir einen Pol.

3.1.1 Datenstruktur

An dieser Stelle gilt es die Datenstruktur fur die Speicherung der Werte an den Stiitzstellen zu
beschreiben. Die Anzahl der Dimensionen kann variieren, dabei soll die Datenstruktur moglichst
generisch sein. Aus diesem Grund werden die Funktionswerte in einem eindimensionaler Array (grid[])
des entsprechenden Datentyps der Funktionswerte (z.B. ,double®) gespeichert. Die Reihenfolge der
Speicherung ist einfach gehalten, so dass sich die Pole beziiglich Dimension 1 aneinanderreihen. Somit
liegen die Stiitzstellen in der ersten Dimension aus Sicht des Speichers in direkter Nachbarschaft,
wodurch sich die ,Schrittweite” im Array zwischen den einzelnen Werten eines Pols dieser Dimension
als 1 ergibt. Fiir alle weiteren Dimensionen herrschen von 1 verschiedene Schrittweiten zwischen den

20

3.2 Randwerte

Werten innerhalb eines Pols. Diese Schrittweite im Array zwischen den Werten eines Pols beziiglich
einer Dimension ¢ ergibt sich zu

i—1
(3.2) Schrittweite; := H N; N; aus Definition 2.3
j=1

3.2 Randwerte

Randwerte sollen so generisch wie moglich sein, so dass der Basisalgorithmus um variable Randwerte
in jeder Dimension erweitert wird. Hierfiir wird zu Beginn fiir jede Dimension festgelegt, ob diese
Randwerte enthalt.

In Kapitel 2 wurden die formalen Anderungen fiir diese Erweiterung vorgestellt. Aus algorithmischer
Sicht andern sich im wesentlichen zwei Faktoren, wobei sowohl die Struktur der Speicherung als
auch der generelle Ablauf des Algorithmus erhalten bleibt.

Zum einen hinsichtlich Zeile 4 in Algorithmus 3.1. Hierbei miissen die Funktionswerte auf Level 1 nun
zusétzlich beztiglich den Randwerten hierarchisiert werden, sofern welche in der aktuell betrachteten
Dimension dd vorhanden sind.

Zum anderen hinsichtlich der Funktionen in Zeile 6 und 7. Hierbei muss tiberpriift werden, ob es
einen linken bzw. rechten hierarchischen Vorgénger gibt. Falls es Randwerte gibt, gibt es auch einen
linken hierarischen Vorgénger der Punkte 1,2 und 4 in Abbildung 3.2.

Da die Vorgéngerberechnung bisher nicht ausfiihrlich betrachtet wurde, im weiteren Verlauf allerdings
von Bedeutung ist, stellt der Algorithmus 3.2 die Funktion ,linkerVorganger()“ dar. Hierbei ist der
Ubergabeparameter i die Position von x; im Array aus Algorithmus 3.1 Zeile 5. dd ist die Dimension,
in welcher hierarchisiert wird (Algorithmus 3.1 Zeile 2) und [ist das Level von x; beziiglich Dimension
dd (Algorithmus 3.1 Zeile 5).

Fiir den linken Nachfolger gibt es drei Moglichkeiten, welche durch die ,if“-Bedingungen in Zeile 3
und 5 in Algorithmus 3.2 abgefragt werden.

1. Der Vorganger ist kein Randwert (Zeile 3).
2. Der Vorganger ist ein Randwert und es gibt in Dimension dd Randwerte (Zeile 5).

3. Der Vorgénger ist ein Randwert und es gibt in Dimension dd keine Randwerte (Zeile 7).

Die Berechnung des rechten hierarischen Vorgéngers ist dhnlich, im Algorithmus 3.2 wird in Zeile 2
der Offset beziiglich des Vorgéngers nicht subtrahiert sondern addiert.

Fiir die ersten zwei Bedingungen ist die berechnete Position linkerV orgénger ein giiltiger Index
beziiglich des Arrays grid[] und eine giiltige Position beziiglich der mathematischen Beziehungen
zwischen den Punkten x; und Zjinkervorginger-

21

3 Implementierung

Algorithmus 3.2 Berechnung des Wertes des linken hierarchischen Vorganger zum Punkt ¢

1: function LEFTPREDECESSOR(%, dd, [)
2 linkerVorginger := i — Schrittweite - (2l44~1) // Definition 2.15
3 if linkerV orgénger ist kein Randwert then
4 return grid[linkerV organger] // grid[] Array mit Funktionswerten
5: else if linkerVorganger ist Randwert und Dimension dd hat Randwerte) then
6 return grid[linkerV orgénger]
7 else
8 return 0
9: end if
10: end function

3.3 Dehierarchisierung

Die Dehierarchisierung ist das Umwandeln der hierarchisierten Basis in die urspriingliche nodale
Basis. Die Dehierarchisierung ist somit das riickwérts Anwenden des Algorithmus 3.1.

Explizit bedeutet dies, dass die ,for“-Schleife in Zeile 4 von hinten beginnt. Die Dehierarchisierung
beginnt damit bei dem kleinsten Level. Dieses ist Level 1, falls Randwerte vorhanden sind, und Level
2 falls keine vorhanden sind.

Die Reihenfolge der Abarbeitung der Pole sowie der einzelnen x; muss dabei nicht verindert werden.
Im Fall der Pole ist dies leicht ersichtlich, da die Pole einer Dimension ¢ beziiglich dieser unabhangig
voneinander sind. Die Unabhingigkeit der einzelnen x; mit gleichem Level lasst sich durch die
Baumstruktur in Abbildung 3.2 einsehen.

Da dieser Aspekte fiir die spatere verteilte Dehierarchisierung eine Rolle spielt, wird nochmals
verdeutlicht, dass die Werte beginnend bei dem kleinsten Level dehierarchisiert werden. Die Dehier-
archisierung der x; auf héheren Level setzt somit die Dehierarchisierung der z; der kleineren Level
voraus.

3.4 Verteilte Hierarchisierung und Dehierarchisierung

Fir die Verteilung der Daten und das anschlieende Hierarchisieren oder Dehierarchisieren gibt es
mehrere Moglichkeiten.

Ein naiver Ansatz ist, die Daten auf einem Prozess zu sammeln, sofern die Kapazitit des Hauptspeicher
dies zulasst, diese zu hierarchisieren oder dehierarchisieren und daraufhin auf die Prozesse zu verteilen.
Dabei bildet der Kommunikationsschritt den Flaschenhals der Hierarchisierung beziehungsweise
Dehierarchisierung, da alle Prozesse ihre Daten an einen Prozess senden und dieser, nach Beenden
der Bearbeitung, die verdnderten Daten zuriick verteilen muss.

Alternativ kann die Hierarchisierung und Dehierarchisierung verteilt auf allen Prozessen ablaufen.
Diese Variante beinhaltet mehr Komplexitat, beziiglich des Datenaustausches und der eigentlichen

22

3.4 Verteilte Hierarchisierung und Dehierarchisierung

Verarbeitung der Daten, verzichtet jedoch auf das Sammeln und Verteilen aller Daten auf einem Prozess.
Diese Alternative wird im Folgende erlautert und in Kapitel 4 mit Laufzeitmessungen bewertet.

3.4.1 Aufteilung der Daten

Zu Beginn gilt es die Anforderungen an die Aufteilung der Daten zu definieren.

Die Anzahl der Level ist fiir jede Dimension beliebig wahlbar, so dass es sinnvoll erscheint auch eine
unterschiedliche Aufteilung fiir jede Dimension zuzulassen. Abbildung 3.3 stellt zwei Gitter mit einer,
in rot dargestellten, Unterteilung in 4 (links) beziehungsweise 9 Prozesse (rechts) dar.

Dabei wurde die Unterteilung in Abbildung 3.3 anhand der Koordinaten der Stitzstellen gewihlt.
Fir eine Unterteilung in 2 Prozesse, werden die Stiitzstellen aufgeteilt in die zwei Bereiche [0, %] und
]%, 1]. Die Punkte auf der oberen Grenze eines Prozesses sind damit inklusive und die auf der unteren
Grenze exklusive.

In der linken Grafik der Abbildung 3.3 ist ein Gitter mit Level [= (3, 3) und einer Aufteilung in je
2 Prozesse pro Dimension dargestellt. Auf der rechten Seite ist ein Gitter mit [= (4, 2) und keinen
Randwerten in Dimension 2 zu sehen, wobei die Daten auf 3 Prozesse beziiglich Dimension 1 aufgeteilt
wurden. Eine variable Aufteilung, in Abhéangigkeit der Dimensionen, macht es somit méglich die
Prozesse gleichmafig auszulasten.

Abbildung 3.3: Links: Volles Gitter mit [= (3, 3) mit Randwerten und einer Unterteilung in (2, 2)
Prozesse; Rechts: Volles Gitter mit [= (4, 2) ohne Randwerten in Dimension 2 und
einer Unterteilung in (3, 2) Prozesse.

Im Allgemeinen wird eine variable Aufteilung der Punkte in einen Prozess in Abhéngigkeit einer
Dimension unterstiitzt, so dass fiir jede Dimension die unter und ober Grenzen der einzelnen Prozesse
festgelegt werden kann.

Die Datenstruktur verandert sich insofern, dass der Array nicht nach einer bestimmten Anzahl
an Feldern abgeschnitten wird, sondern dass die Daten in Blécke beziiglich der Koordinaten der
Stutzstellen aufgeteilt werden. Daraus folgt, dass fiir jede Dimension, bei der eine Aufteilung auf
mehr als 1 Prozess gew#hlt wurde, die Daten fiir jeden Pol in dieser Dimension verteilt vorliegen und
abhéngig von der Aufteilung Kommunikation zwischen den Prozessen notwendig ist.

23

3 Implementierung

3.4.2 Kommunikationsmedium

Fir die Kommunikation der verteilten Prozesse wird das ,Message Passing Interface” (MPI) verwendet
[6]. Dieses bietet Moglichkeit fiir den effizienten Austausch von Daten auf verschiedenen Rechnerar-
chitekturen. Dabei erhilt jeder Prozess beim Start eine eindeutige ID (Rang), durch welche er von den
anderen Prozessen iiber das Interface angesprochen werden kann. MPI enthélt viele Funktionalitdten
beziiglich des Verteilens und Sammelns von Daten auf verschiedenen Topologien von Prozessen.

Hierbei sind fiir diese Arbeit zwei Funktionalitdten hinsichtlich der zuvor besprochenen Datenstruktur
und den Datenaustausch relevant.

Zum einen bietet MPI nicht blockierendes Senden und Empfangen von Daten zwischen Prozessen
an. Dies ermdglicht es parallel Daten mit allen Nachbarn auszutauschen. Insbesondere bei einer
Aufteilung der Daten in mehr als 2 Prozesse in eine Dimension, ist es von Bedeutung Daten gleichzeitig
auszutauschen, um den Datenaustausch nicht durch gegenseitiges Warten zu verlangsamen.

Zum anderen bietet MPI verschiedene Prozess-Topologien an. Diese erméglichen es den Zugriff
auf Prozesse zu erleichtern. Insbesondere ist hier einer kartesische Ordnung der Prozesse, welche
in Abbildung 3.4 dargestellt ist, von Bedeutung. Das Gitter ldsst sich mit beliebiger Anzahl an
Dimensionen und Prozessen in jede Dimension erstellen.

Abbildung 3.4: Kartesische Topologie von Prozessen durch MPIL Rang (oben) und Koordinaten der
Prozesse (unten) in den Knoten, basiert auf [?]

Durch diese Topologie ermoglicht MPI weitere Funktionalitiaten, wie Koordinaten auf den Rang
abzubilden und umgekehrt. Des weiteren lassen sich die Nachbarschaftsbeziehungen zwischen den
Prozessen abhéngig von der Dimension abfragen. Diese sind in Abbildung 3.4 durch schwarze Ver-
bindungen zwischen den Prozessen dargestellt. Zum Beispiel gibt MPI fiir eine Anfrage nach den
Nachbarn in Dimension 1 des Prozesses mit dem Rang 5 die Prozessrange 1 und 9 zurtick.

Es sei noch angemerkt, dass Supercomputer-Systeme, wie zum Beispiel die Testarchitektur Hermit,
welche in Kapitel 4 beschrieben wird, fiir die Kommunikation mit MPI optimiert sind.

24

3.4 Verteilte Hierarchisierung und Dehierarchisierung

3.4.3 Hierarchisierung

Nachdem die Aufteilung der Daten im Unterabschnitt 3.4.1 erlautert wurde, befasst sich der folgende
Abschnitt mit den Veranderungen beziiglich der verteilten Hierarchisierung.

In Abbildung 3.5 ist die Baumstruktur fiir ein eindimensionales Gitter mit Level I = 3 dargestellt.
Hierbei wurden die Punkte auf die Prozesse 0 und 1 aufgeteilt, wodurch hierarchische Abhéngigkeiten
zwischen Punkten iiber Prozessgrenzen hinausgehen. Beispielsweise lasst sich der Punkt 5 in Prozess
1 nicht ohne weiteres hierarchisieren, da sein linker hierarchischer Vorgianger sich auf Prozess 0

befindet.

Im folgenden gilt es demnach vorerst fiir jeden Prozess diejenigen Punkte zu ermitteln, welche
der jeweilige Prozess bendtigt und welche die Nachbarprozesse bendtigen. Darauthin werden die
ermittelten Punkte ausgetauscht.

Weiterhin wird die Hierarchisierung auf die geanderte Datenstruktur angepasst, da, im Vergleich zum
Algorithmus 3.1, nur tiber lokal vorhandene Punkte iteriert wird.

Level 1

Level 2

Level 3

Abbildung 3.5: Baumdarstellung eines eindimensionalen Gitters mit ! = 3 und Randwerten, wobei
das Gitter auf 2 Prozesse aufgeteilt ist.

Datenaustausch

Der Datenaustausch besteht im wesentlichen aus drei Schritten.
1. Berechnung der zu sendenden und der benétigten Punkte.
2. Sammeln der zusendenden Werte fiir alle Nachbarprozesse beziiglich einer Dimension.
3. Austausch der Daten mittels MPL

Die Berechnung der Punkte setzt voraus, dass jeder Prozess weif3, iber welchen lokalen Bereich des
globalen Gitters die einzelnen Prozesse verfiigen. Dabei hat jede Dimension eine festen Unterteilung
in Prozessen, wodurch jeder Pol beziiglich einer Dimension die gleiche eindimensionale Struktur
aufweist. Die Berechnung der Punkte lasst sich fiir jede Dimension zu einem eindimensionalen Modell,
wie in Abbildung 3.5, vereinfachen.

25

3 Implementierung

Level 1 @ _____

VN N -

ohmm -
Wy

\

\

\

Level [; — 3 E
Level [; — 2 E

f o

/E 7’
Level [; — 1 .

\ :

\\\\
Level I;

Abbildung 3.6: Linker Teilbaum eines Gitters mit Randwerten und /; > 5 und den hierarchischen
Abhéangigkeiten (blau) der Punkte.

Dieser Feststellung lasst sich durch die Abbildung 3.3 veranschaulichen. Betrachtet man hier die
horizontale Unterteilung des Gitters, so ist ersichtlich, dass die oberen Prozesse jeweils 5 Punkte
(4 Gitterpunkte + 1 Randpunkt) in der senkrechten Achse beinhalte. Die unteren Prozesse beinhaltet
beide 4 Punkte (3 Gitterpunkte + 1 Randpunkt) in der senkrechten Achse.

Daraus lasst sich die Erkenntnis gewinnen, dass die Berechnung iiber die eindimensionale Struktur
jeder Dimension erfolgt und diese anschlieffend auf die lokale Arraystrukur umgerechnet wird.

Fir die Prozesse ist daher die Berechnung des ersten und letzten lokalen Punktes beziiglich der
eindimensionalen Struktur wichtig. Diese lasst sich fiir Dimension ¢ berechnen durch

(3.3) (Erster Punkt), :=

(2“ — 1) - (Koordinaten des Prozesses); 41
(Anzahl der Prozesse);

wobei die Koordinate beziiglich einer Dimension 7 eines Prozesse anhand der Topologie, welche in
Unterabschnitt 3.4.2 dargestellt wurde, von MPI ausgelesen werden kann. Dementsprechend lasst
sich der letzte Punkt durch

(2% — 1) - ((Koordinaten des Prozesses); + 1)
(Anzahl der Prozesse);

(3.4) (Letzter Punkt), := [

berechnen.

Im folgenden wird aus Griinden der Ubersichtlichkeit vorerst die Berechnung der benétigten Punkte
jedes Prozesses dargestellt. Dieser wird daraufhin erweitert, um auch die Punkte, welche an die
Nachbarn geschickt werden miissen, zu berechnen.

26

3.4 Verteilte Hierarchisierung und Dehierarchisierung

Algorithmus 3.3 Berechnung der auszutauschenden Punkte anhand der eindimensionalen Struktur,
wie in Abbildung 3.6
1: function BERECHNEPUNKTE(?)
2 punkt := (Erster Punkt);
3 while punkt <= (Letzter Punkt), do
4 if linker Vorginger von punkt auflerhalb then
5: merke linken Vorgénger
6
7
8
9

end if
if rechter Vorgianger von punkt aulerhalb then
merke rechten Vorganger
punkt := nachster lokaler Punkt mit Level = min(l;, Level(punkt) + 1)
10: else

11: punkt := rechter Vorgianger von punkt
12: end if
13: end while

14: end function

Die eigentliche Berechnung der Punkte lésst sich naiv auf einen einfachen Algorithmus iibertragen.
Dabei wird jeder Punkt betrachtet und jeweils tiberpriift, ob dessen hierarchische Vorgianger in einem
Nachbarprozess oder lokal vorhanden sind. Dieser lasst sich jedoch noch verkiirzen.

Die Abbildung 3.6 zeigt den linken Teilbaum eines Gitters mit beliebigem Level [> 5. Hierbei wurden
die hierarchischen Abhéngigkeiten in blau dargestellt. Betrachtet man nun die Abhéngigkeiten des
Punktes 3, so lasst sich feststellen, dass dieser bei Betrachtung der Punkte 2 und 4 nicht notwendiger-
weise beachtet werden muss. Dies lasst sich ebenso fur die Punkte 5, 6, 7 und 9 feststellen. Fir den
Punkt 10 fehlt der rechte Vorginger, so dass dieser nicht iibersprungen werden kann.

Der optimierte Algorithmus zur Berechnung der nétigen Punkte ist durch den Pseudocode in Algo-
rithmus 3.3 dargestellt.

Dieser Algorithmus beschreibt einen Pfad iiber eine Teilmenge der Punkte eines Prozesses, wobei an
jedem Punkt, beginnend beim kleinsten lokal vorhandenen Punkt, die hierarchischen Vorganger auf
lokale Existenz iiberpriuft werden. Der nachste Punkt ist entweder der rechter Vorgénger, falls dieser
lokal vorhanden ist oder der nachste lokale Punkt mit Level l,,c;t > I, und [, kleinstmoglich.
Dabei wird beginnend beim Level des Punktes bis zum Level /; iiberpriift, ob der néchste Punkt
dieses Levels innerhalb des lokalen Bereichs des Prozesses liegt, wobei der nachste Punkt auf Level ;
gewahlt wird, wenn dieser innerhalb oder schon aufierhalb des lokalen Bereichs liegt. Durch diese
Wahl terminiert die ,while“-Schleife in Zeile 3.

Der Algorithmus 3.3 durchlauft die Punkte des Teilbaums in Abbildung 3.6 beginnend bei 1 tiber 2, 4,
8 zu 10. Hierbei werden fiir jeden Punkt die entsprechenden hierarchischen Vorganger betrachtet und
gegebenenfalls in einer Liste gespeichert. Beispielsweise fiir den Punkt 8, ist der rechte Vorgéanger nicht
vorhanden, so dass der Punkt 24 hinzugefiigt wird. Hierbei basiert die Berechnung des Vorgiangers
auf der Definition 2.15 aus Kapitel 2.

27

3 Implementierung

Algorithmus 3.4 Uberpriifung aller hierarchischen Nachfolger eines Punktes

1: function cHECKNACHFOLGER(punkt)
2 for level := Level(punkt) — 1 to [; do
3 if punkt + 2li—tev¢l auBerhalb then // rechte Nachfolger
4: speichere punkt fiir entsprechenden Nachbarprozess
5: end if
6 if punkt — 2li—tevel quferhalb then // linke Nachfolger
7 speichere punkt fiir entsprechenden Nachbarprozess
8 end if
9: end for
10: end function

Die Berechnung der Punkte, welche an die Nachbarprozesse geschickt werden, lassen sich in den
Algorithmus 3.3 einbinden. Hierbei werden fiir jeden Punkt nicht nur dessen Vorgénger, sondern auch
dessen hierarchischen Nachfolger betrachtet. Die Iteration iiber die Nachfolger ist in Algorithmus
3.4 dargestellt. Dabei werden beginnend beim Nachfolger mit dem kleinsten Level alle weiteren
Nachfolger bis Level /; betrachtet und gegebenenfalls gespeichert.

Mit Hilfe dieser Algorithmen werden die auszutauschenden Punkte in jedem Prozess berechnet. Diese
eindimensionalen Punkte lassen sich auf Positionen beziiglich des lokalen Arrays umrechnen, welche
durch MPT ausgetauscht werden.

Hierarchisierung

Zur Visualisierung der Datenstruktur nach dem Austausch der Punkte, stellt Abbildung 3.7 ein
Gitter mit [= 3, Randwerten und einer Aufteilung in 2 Prozesse dar. Hierbei sind die, mit Hilfe der
Algorithmen des vorherigen Abschnitt,s ausgetauschten Punkte durch rote Kreise dargestellt. Jeder
Prozess verfiigt somit tiber die benétigten Punkte und kann die lokale Hierarchisierung ausfiihren.

//\\:
- ! \
A — -2 /://~\
Level 1 R < ! ‘
1
1

Level 2 .

Level 3

Abbildung 3.7: Aufteilung eines Gitters mit [= 3 in 2 Prozesse. Ausgetauschten Punkte 4 und 8 in
rot dargestellt.

28

3.4 Verteilte Hierarchisierung und Dehierarchisierung

Dabei ldsst sich der Algorithmus der Hierarchisierung zu Beginn dieses Kapitels durch leichte Ande-
rungen anpassen. Zum einen werden fiir jede Dimension die entsprechenden Punkte ausgetauscht
und zum anderen wird nur tiber die lokal vorhandenen z; iteriert. Der geanderte Ablauf der Hierar-
chisierung ist zusammenfassend in Algorithmus 3.5 dargestellt.

Algorithmus 3.5 Erweiterung des Basis Hierarchisierungs-Algorithmus 3.1

1: function VERTEILTEHIERARCHISIERUNG

2: for dd < 1toddo

3: berechnePunkte(dd) // Datenaustausch
4: for all lokale 1-dim Pole P in Richtung dd do

2, (keine Randwert
5: for [<« lggto{ (keine Randwerte)yq do

1, (Randwerte),,

6: for all (Erster Punkt),;; < z; < (Letzter Punkt);; auf Level [do
7: grid[i] = grid[i] — 0.5 - leftPredecessor (i, dd, [)
8: grid[i]| = grid[i] — 0.5 - rightPredecessor(i, dd, 1)
9: end for
10: end for
11 end for
12: end for

13: end function

3.4.4 Dehierarchisierung

Der Algorithmus in Abschnitt 3.3 lasst sich nicht ohne weiteres durch Hinzufiigen eines Datenaustau-
sches, dhnlich zu dem der Hierarchisierung, erweitern.

Die Dehierarchisierung ist das Umkehren der Hierarchisierung, der Ablauf ist somit genau entgegen-
gesetzt. Der Knackpunkt beziiglich des Datenaustausches ergibt sich aus dem Durchlauf der Level,
beginnend bei Level 1 bzw. 2 bis [;. Hierbei setzen die x; auf hoheren Level die schon dehierarchisierten
Werte auf den niedrigeren Level voraus.

Abbildung 3.8 zeigt die eindimensionale Struktur eines Gitters mit [= 3 und Randwerten. Beim
Dehierarchisieren wird hier mit dem Punkt 4 begonnen. Dieser benétigt die Punkte 0 und 8 des
Nachbarprozesses 0 beziehungsweise 2. Bis hier ist ein Austausch dquivalent zum Austausch der
Hierarchisierung moglich, jedoch benétigen die Punkte 2 und 6 jeweils den dehierarchisierten Wert
des Punktes 4. Ebenso ist fiir die Punkte 3 und 5 keine Dehierarchisierung ohne die dehierarchisierten
Werte der Punkte 2 und 6 méoglich. Ein Austausch dquivalent zu dem der Hierarchisierung ist demnach
nicht méglich.

29

3 Implementierung

Level 1

Level 2

Level 3

Abbildung 3.8: Baumdarstellung eines eindimensionalen Gitters mit [= 3 und Randwerten, wobei

Naiv

das Gitter in 3 Prozesse aufgeteilt ist.

Die naive Losung besteht darin, nach der Dehierarchisierung jedes Levels nur die geéinderten Funkti-
onswerte beziiglich diesem auszutauschen. Hierbei werden jeweils nur die, fiir die Dehierarchisierung
des folgenden Levels, relevanten Punkte ausgetauscht.

Verglichen mit dem Austausch der Hierarchisierung fiir jede Dimension, ist hier ein Austausch fir
jede Dimension und jedes Level notwendig, wodurch sich die Anzahl der Nachrichten erhoht bei
gleichzeitiger Verringerung der Gréfie der Nachrichten. Dies hat eine haufige Synchronisierung der
Prozesse zur Folge.

Der Ablauf des naiven Algorithmus auf das, in Abbildung 3.8 dargestellte, Gitter ergibt sich zu:

1.

2.

3.

4.

5.

6.

Austausch der Randwerte, falls diese in Dimension ¢ vorhanden.
Lokale Dehierarchisierung der z; auf Level 1 (Punkt 4)
Austausch der x; auf Level 1 (Punkt 4 an die Prozesse 0 und 2)
Lokale Dehierarchisierung der x; auf Level 2 (Punkt 2 und 6)
Austausch der x; auf Level 2 (Punkt 2 und 6 an Prozess 1)

Lokale Dehierarchisierung der x; auf Level 3 (Punkt 1, 3, 5 und 7)

Das Austauschen, von nur wenigen Punkten bei jedem Level, kann, durch gegenseitiges Warten, zum
Leerlaufvon einigen Prozessen fithren, wodurch Rechenzeit verschenkt wird und eine unausgeglichene
Auslastung entsteht.

30

3.4 Verteilte Hierarchisierung und Dehierarchisierung

Optimiert

Das Ziel des optimierten Algorithmus ist, das Austauschen dquivalent zu dem der Hierarchisie-
rung, einmal pro Dimension, durchzufithren. Dabei wird das haufigere Synchronisieren der Prozesse
durch zusétzliche Rechenarbeit ausgeglichen, wobei sich die Abhangigkeiten zwischen den z; nicht
beeinflussen lassen.

In Abbildung 3.8 bestehen fiir den Punkt 3 nicht lokal vorhandene hierarchische Abhangigkeiten. Bei
der Betrachtung der Abhéngigkeit des linken Vorgéangers (Punkt 2) lasst sich erkennen, dass dieser
wiederum den linken Randwert (Punkt 0) und den Punkt 4 benétigt. Hierbei fallt auf, dass der linke
Randwert schon fiir das Dehierarchisieren des Punktes 4 benotigt wird und somit lokal auf Prozess
1 vorhanden ist. Ein erneutes Austauschen nach Level 1 l4sst sich an diesem Beispiel vermeiden,
durch das Senden der Punkte 0 und 2 zu Beginn. Der Punkt 2 lasst sich auf Level 2 lokal in Prozess 1
Dehierarchisieren, wodurch der Punkt 3 ohne erneuten Austausch dehierarchisiert werden kann.

Nach diesem Schema erhélt Prozess 0 sowohl den Punkt 4 von Prozess 1 als auch den Punkt 8 von
Prozess 2, so dass dieser den Punkt 4 selbsténdig dehierarchisieren kann. Aquivalent dazu lauft die
Dehierarchisierung gespiegelt in Prozess 2 ab.

Die Komplexitét des Austausches wird durch das Austauschen der gesamten Abhangigkeitsstruktur
erhoht, wobei im Gegenzug Leerlaufzeiten reduziert oder komplett vermieden werden. Abbildung 3.9
stellt die Struktur der Daten nach dem Austausch fiir das Beispiel eines Gitters mit [= 3 und einer
Aufteilung in 3 Prozesse dar.

o
Level 1

\

Level 2

Level 3

Abbildung 3.9: Baumdarstellung eines eindimensionalen Gitters, nach dem Datenaustausch, mit
! = 3 und Randwerten, wobei das Gitter in 3 Prozesse aufgeteilt ist. Dabei sind die
ausgetauschten Punkte, analog zu Abbildung 3.7 in rot dargestellt.

Der Algorithmus beziiglich des Berechnens der auszutauschenden Punkte der Hierarchisierung wird
fiir die Dehierarchisierung erweitert. Hierbei wird die Reihenfolge der Betrachtung der Punkte nicht
verandert, wohingegen die betrachtenden Abhéngigkeiten erweitert werden.

Benotigten Punkte: Bei der Berechnung der benétigten Punkte werden, wie in Abbildung 3.9
dargestellt, zusétzlich alle hierarchischen Vorgianger betrachtet. Fir einen lokalen Punkt z; mit
einem nicht lokalen hierarchischen Vorgénger Zv o,gsnger €rgeben sich beziiglich der hierarchischen
Vorgangern von v orginger mehrere Moglichkeiten:

31

3 Implementierung

1. Sowie Xy orginger als auch ein hierarchischer Vorgénger dessen befinden sich im gleichen
Prozess. Der Prozess sendet somit beide bzw. alle weiteren. Ein Beispiel fiir diese Beziehung
sind die Punkte 2 und 0 beziiglich des Punktes z; = 3 in Abbildung 3.9.

2. Ein Vorginger von Tv,ginger befinden sich weder in dem gleichen Prozess von x; noch von

TV orgianger-

3. Ein Vorgénger von Ty orginger befindet sich im gleichen Prozess wie z;. Hierbei entstehen
beziiglich dieses Punktes keine weiteren zu sendenden Daten. Ein Beispiel fiir diese Beziehungen
sind die Punkte 2 und 4 beziiglich des Punktes z; = 3. Dabei ist der Vorgénger von Punkt 2,
Punkt 4, wiederum in Prozess 1 und somit im gleichen Prozess wie x;.

Aus diesen Moglichkeiten folgt, dass die Berechnung der Vorganger rekursiv berechnet werden, da
diese in verschiedenen Prozessen sein kénnen.

Zusendende Punkte: Bei der Betrachtung der ausgetauschten Punkte in Abbildung 3.9 ist ersichtlich,
dass die Punkte auf Level 1 an alle Nachbarn verteilt wurden. Fiir alle weiteren Punkte werden alle
hierarchischen Nachfolger betrachtet. Diese Abhingigkeit beschreibt den Teilbaum mit x; als Wurzel
und Level [, bis Level /; in Dimension j. Formal lasst sich der Teilbaum darstellen durch

(kleinster Nachfolger), :=1i — (219' lay _ 1)
rofter Nachfolger), =i+ (26l — 1
(g ger);

Der Punkt z; wird daraufhin an alle Prozesse verteilt, welche einen Teil der Punkte zwischen
(kleinster Nachfolger), und (grofiter Nachfolger), beinhalten.

Dehierarchisierung

Das erweiterte Austauschen von Abhangigkeiten bis auf Level 1 erzeugt einen komplexeren Ablauf
der Dehierarchisierung. Hierbei werden fiir eine Dimension ¢ die Daten ausgetauscht und darauthin
sowohl die lokalen als auch die ausgetauschten Werte dehierarchisiert.

Im Vergleich zur Hierarchisierung werden dabei gegebenenfalls auch ein Teil der ausgetauschten
Werte dehierarchisiert. Das Austauschen nach jedem Level des naiven Algorithmus wird somit ersetzt
durch das Dehierarchisieren der ausgetauschten Werte auf dem entsprechenden Level. Analog zur
verteilten Hierarchisierung lasst sich der Ablauf wie in Algorithmus 3.6 darstellen.

32

3.5 Cache-Effizienz

Algorithmus 3.6 Verteilte Dehierarchisierung mit optimiertem Ablauf

1: function VERTEILTEDEHIERARCHISIERUNG
2: for dd <+ dto1do

3: berechnePunkteDehierarchisierung(dd) // Datenaustausch
4: for all lokale 1-dim Pole P in Richtung dd do

. for [2, (keine Randwerte),, to 1y do

1, (Randwerte),,;

6: for all (Erster Punkt),, < x; < (Letzter Punkt);,; auf Level [do

7: grid[i] = grid[i] + 0.5 - leftPredecessor (i, dd,)

8: grid[i] = grid[i] + 0.5 - rightPredecessor (i, dd, [)

9: end for
10: for all ausgetauschte Punkte auf Level [do
11: // Dehierarchisierung der ausgetauschten Punkte gespeichert im Array extern([]
12: externli] = extern[i] + 0.5 - leftPredecessor (i, dd,)
13: extern[i| = extern|i] + 0.5 - rightPredecessor (i, dd, [)
14: end for
15: end for
16: end for
17: end for

18: end function

3.5 Cache-Effizienz

Der Ablauf der Hierarchisierung und Dehierarchisierung erfolgt Polweise. In Abbildung 3.10 ist die
Arraystruktur fiir ein Gitter mit [= 3 dargestellt. Dabei beginnt das eindimensionale Gitter links
oben und verlauft zeilenweise bis zum letzten Eintrag rechts unten. Hierbei wurde die Nummerierung
anhand der Baumdarstellung der Pole beziiglich Dimension 2 gew4ihlt. Fiir einen blau umrahmten Pol
beziiglich Dimension 2 ist ersichtlich, dass die Werte der Punkte im Array lokal beieinander liegen.

Das Bearbeiten eines Punktes fithrt in der Hardware dazu, dass die Werte in Cache-Lines aus dem
Hauptspeicher in den Cache geladen werden [7, S. 334ff]. Beim Hierarchisieren von Punkt 1 des ersten
Pols wird demnach nicht nur genau dessen Wert geladen, sondern die gesamte Cache-Line. Daraus
resultiert, dass fiir das Hierarchisieren von Punkt 1 der rot umrahmte Bereich in Abbildung 3.10 in den
Cache geladen wird. Dabei ist der Punkt 0 der linke Vorgénger und Punkt 2 der rechte Vorgénger.

Bei dem, in Abschnitt 3.4.3 vorgestellten, Algorithmus findet eine polweise Abarbeitung statt. Fiir
Dimensionen mit hohem Level und daraus resultierenden groflen Polen werden die schon in die
Cache geladenen Werte der Nachbarpole zu Beginn des Pols durch Werte am Ende des Pols ersetzt,
bevor dieses benutzt wurden. Daraus folgt, dass die Werte mehrere Male geladen werden, ohne dass
sie verwendet werden.

Fiir bessere Ausnutzung der Lokalitit werden die Punkte nicht mehr nach Polen abgearbeitet, sondern
in Blocken, welche jeweils aus mehreren Polen bestehen. Anhand der Abbildung 3.10 werden 4 Pole
gleichzeitig hierarchisiert bzw. dehierarchisiert.

33

3 Implementierung

(o=l BN)W O) [I O B GCN Nl Rl
(o=l BN B) NO) [I O B GG N Rl
(o=l BN X NO) [l I NOLE B NG B e}
(o=l BN X NS [I NOLE B NG N e}
(o=l BNl X NS [Iy NOLE B NG N Rl
(o=l BN B X NS; [Iy O B NG I Rl

(o=l IN B e &) [I Ny O B NG B Rl

[o°N BNl o N O I IOL B NCl Bl e

[o N BNl oW O T I IO I WOl ol e

Abbildung 3.10: Array grid[] eines Gitters von links oben nach rechts unten mit [= 3, wobei
sich die Nummerierung an den Punktindizes der eindimensionalen Baumstruktur
(rechts) der Pole beziiglich Dimension 2 orientiert. In blau ist ein Pol beziiglich der
Dimension 2 hervorgehoben und in rot die in die Cache geladenen Punkte fiir das
Hierarchisieren von Punkt 1.

3.6 SG++

SG++ ist eine Toolbox, welche Gegenstand der Dissertation ,Spatially Adaptive Sparse Grids for
Higher-Dimensional Problems® von Dirk Pfliiger war [3, 4]. Diese Toolbox ermdglicht das Bear-
beiten verschiedenster hoherdimensionalen Probleme mit adaptiven diinnen Gittern und umfasst
Interpolation mit verschiedenen Basen, Approximationen und das Losen von partiellen Differen-
tialgleichungen. Die Algorithmen in SG++ sind zum Grof3teil in C++ programmiert, wodurch die
vorgestellten Algorithmen ebenfalls in C++ umgesetzt wurden und in SG++ eingebunden wurden.

34

4 Evaluation

In diesem Kapitel werden Messungen, beziiglich der in Kapitel 3 vorgestellten Algorithmen fiir
die Hierarchisierung und Dehierarchisierung, vorgestellt und bewertet. Dabei werden jeweils die
Hierarchisierung und die Varianten der Dehierarchisierung dargestellt.

Die angegebenen Zeiten in diesem Kapitel sind jeweils die durchschnittlichen Zeiten fiir die Hierar-
chisierung und Dehierarchisierung. Dabei wurde weiter unterschieden zwischen durchschnittlicher
Berechnungszeit und Zeit fiir den Datenaustausch.

4.1 Architektur der Testsysteme

Die Messungen in diesem Kapitel wurden auf den folgenden zwei Systemen ausgefiihrt.
Hermit

Hermit ist ein Cray XE6 Supercomputer [8]. Dieser verfiigt iiber 3552 Knoten mit je 2 Prozessoren,
welche aus 16 Kernen mit einer Taktrate von je 2.3 GHz bestehen. Diese verfiigen iiber einen L1 Cache
mit 16 KB, einen L2 Cache mit 2 MB und einen L3 Cache mit 6 MB. Zusétzlich verfiigt jeder Knoten
iiber 32 GB bzw. 64 GB Hauptspeicher.

Die Knoten von Hermit sind in einem 3D-Torus-Netzwerk aus Cray Germini Netzwerkcontrollern
verbunden [9].

Kepler

Kepler verfiigt iiber ein Prozessor von Intel, welcher aus 2 CPUs mit je 8 Kernen besteht. Dabei
verfiigen diese auf gemeinsame 20 MB L3 Cache und pro Kern jeweils iiber 256 KB L2 und 32 KB L1
Cache. Die Messungen auf diesem System beinhalten nur ,single core® Messungen.

4.2 Messungen

4.2.1 BlockgroBe

In den Messungen in Abbildung 4.1 wurde die benétigte Zeit in Abhangigkeit der Blockgrofle darge-
stellt. Dabei wurden die Zeit fiir das Hierarchisieren und Dehierarchisieren auf einem Prozess, bei
einem Gitter mit Dimension d = 5 und einer Gittergrofie von ca. 484 Mio. Punkten, gemessen. Die
Messungen wurden auf Kepler ausgefiihrt.

35

4 Evaluation

Hierbei spielte das Abarbeiten von mehreren Polen gleichzeitig nicht nur beziiglich der Cacheaus-
nutzung eine Rolle. Durch das parallele Abarbeiten werden Berechnungen, wie das Berechnen der
Vorginger, des niachsten Punktes des gleichen Levels und if-Abfragen beziiglich vorhandener oder
nicht vorhandener Randwerten, eingespart.

In Abbildung 4.1 ist deutlich zu erkennen, dass sich das Abarbeiten von mehreren Polen positiv auf
die Laufzeit auswirkt.

—— Hierarchisierung
30 1 —— Dehierarchisierung
c
()
©
c
]
S
a 207
£
:‘q_—‘)
N
10 +

0 2 4 6 8 10 12 14
BlockgréBe

Abbildung 4.1: Unterschiedliche Blockgrofien bei der Bearbeitung eines Gitters mit insgesamt ca.
484 Mio. Punkten in 5 Dimensionen auf einem Prozess.

4.2.2 Starke Skalierung

Fir das Messen der starken Skalierbarkeit wurde die Anzahl der verwendeten Prozessoren von
Messung zu Messung verdoppelt, wobei die Gittergrofie unverandert blieb. Hierbei wurde ein Gitter
mit 5 Dimensionen und insgesamt ca. 2 Mrd. Punkten gewahlt. Die Messung der Zeiten wurden auf
Hermit durchgefiihrt.

Die obere Grafik der Abbildung 4.2 zeigt die benétigte Zeit in logarithmischer Skala fiir die Hierarchi-
sierung. Dabei wird im folgenden die Gesamtzeit in Blau, die Berechnungszeit in Griin und die Zeit fiir
den Datenaustausch in Rot dargestellt. Beim Vergleich der Varianten der Dehierarchisierung werden
die Messungen fiir den Austausch pro Dimension gestrichelt, jedoch mit identischer Farbcodierung,
veranschaulicht.

In den Grafiken in Abbildung 4.2 ist zu erkennen, dass der Datenaustausch der Dehierarchisierung
deutlich mehr Zeit beansprucht als der der Hierarchisierung. Dies ist vermeintlich auf die haufige Syn-
chronisierung der Prozesse auf Grund des Datenaustausches bei jedem Level (Naiv) beziehungsweise
auf die hohere Menge an Daten, im Fall des Austausches pro Dimension (Optimiert), zuriickzufithren.
Die Berechnungszeit halbiert sich beinahe bei jeder Verdopplung der Prozesse.

36

4.2 Messungen

— Hierarchisierung Gesamtzeit
—— Hierarchisierung Optimum

—— Hierarchisierung Berechnungszeit
—— Hierarchisierung Datenaustauschzeit
c
3 10° |
c
-]
X
]
)
£
.*q_—)'
N
1071 ¢
32 64 128 256 512 1024 2048 4096
Anzahl der Prozesse
—— Naiv Gesamtzeit
—— Naiv Berechnungszeit
—— Naiv Datenaustauschzeit
c - -- Opt. Gesamtzeit
g - - - Opt. Berechnungszeit
S .0 - - - Opt. Datenaustauschzeit
= 107 7
0]
)
£
.*G_—J'
N
1071 |

32 64 128 256 512 1024 2048 4096
Anzahl der Prozesse

Abbildung 4.2: Oben: Hierarchisierung; Unten: naive (Austausch pro Dimension und Level) und
optimierte (Austausch pro Dimension) Dehierarchisierung. Jeweils mit Blockgrofie 8
bei konstanter Gittergrofie und 5 Dimensionen.

Die untere Grafik in Abbildung 4.2 vergleicht die Varianten der Dehierarchisierung. Zu Beginn ist
die Zeit des Datenaustausches im optimierten Fall um ca. 20% geringer als beim Austauschen pro
Dimension und Level. Die beinahe konstante Zeit ab 1024 Prozessen, entsteht vermeintlich durch das
Verschicken aller Vorganger.

Fir insgesamt 1024 Prozesse bedeutet dies eine Aufteilung der eindimensionalen Baumstruktur mit
jeweils 63 Punkten (127 in Dimension 5) in 4 Teile (in jeder Dimension). Die einzelnen Prozesse, bei
einer Aufteilung von 63 Punkten auf 4 Prozesse, beinhalten komplette TeilbAume ab Level 2. Bei
weiteren Unterteilungen, werden die Baumstrukturen in kleinere TeilbAume unterteilt, so dass die

37

4 Evaluation

auszutauschenden Vorganger auf hoheren Level sind und die Anzahl der hierarchischen Vorgéanger
steigt. Auf Grund dessen wird die Zeit fiir den Datenaustausch nicht im gleichen Mafle wie die
Berechnungszeit kleiner.

4.2.3 Schwache Skalierung

Fiir das Messen der schwachen Skalierbarkeit wurde sowohl die Anzahl an Prozessen als auch auch
die Gittergrofie von Messung zu Messung verdoppelt. Dabei wurde, beginnend bei einem Gitter mit 5
Dimensionen und insgesamt ca. 1 Mrd. Punkten auf 32 Prozessoren, die Zeiten fiir die Hierarchisierung
und beide Varianten der Dehierarchisierung gemessen, sowie jeweils die Zeiten fiir die Berechnung
und den Datenaustausch.

Dabei ist die Hierarchisierung in der oberen Grafik in Abbildung 4.3 und die Varianten der Dehier-
archisierung in der unteren Grafik. Sowohl fiir die Hierarchisierung als auch fiir die Varianten der
Dehierarchisierung wurden in diinnem (gestrichelten) Blau die optimale Zeit eingetragen, welche
konstant bei gleichzeitiger Verdopplung der Prozesse und der Gitterpunkte ist.

Die Hierarchisierung weicht geringfiigig vom Optimum ab, wohingegen bei beiden Féllen der Dehier-
archisierung eine hohere Abweichung zu erkennen ist. Des Weiteren zeigt die Grafik, dass sich bei
mehr Prozessen die Variante mit dem Austausch pro Dimension negativ auf die Berechnungszeit und
bei einer vielen Prozessen auch auf die Zeit des Datenaustausches auswirkt.

Dieser Aspekt wurde zuvor bei den Messungen fiir die starke Skalierbarkeit angesprochen und néher
erlautert. Die Wahl einer Variante der Dehierarchisierung ist somit stark abhéngig von der Aufteilung
der Daten auf die Prozesse.

38

4.2 Messungen

3 s
j=
[}
=]
g — Hierarchisierung Gesamtzeit
é 2 —— Hierarchisierung Optimum
k= —— Hierarchisierung Berechnungszeit
= —— Hierarchisierung Datenaustauschzeit
N 1+
0 t t t t t t t >
32 64 128 256 512 1024 2048
Anzahl der Prozesse
— Naiv Gesamtzeit
—— Naiv Optimum
61 —— Naiv Berechnungszeit
g —— Naiv Datenaustauschzeit
7 === Opt. Gesamtzeit
g 4 - -~ Opt. Optimum
‘g - - - Opt. Berechnungszeit
po - - - Opt. Datenaustauschzeit
g Ll
0

32 64 128 256 512 1024 2048
Anzahl der Prozesse

Abbildung 4.3: Oben: Hierarchisierung; Unten: naive (Austausch pro Dimension und Level) und
optimierte (Austausch pro Dimension) Dehierarchisierung. Jeweils Verdopplung der
Prozesse und Verdopplung der Gitterpunkte. Anzahl der Gitterpunkte ausgehend
von ca. 1,160 Mrd. mit Blockgrof3e 8.

4.2.4 Optimierbarkeit
Im folgenden wird die Effizienz der Algorithmen verglichen und in Bezug zu der theoretisch Ober-
grenze basierend auf der Speicherbandbreite gesetzt.

Die theoretische Obergrenze fiir die Hierarchisierung lasst sich durch die Formel

2-d - N; - (GrofSe des Datentyps)

4.1
“D) Bandbreite des Speichers

39

4 Evaluation

beschreiben [5]. Hierbei wird jeder Punkt des Gitters fiir jede Dimension einmal betrachtet und dabei
geladen, verandert und zuriick geschrieben.

Dabei hingt die Bandbreite wesentlich von N; ab, da diese in Abhéngigkeit von den Kapazititen
der L1, L2 und L3 Caches unterschiedlich schnell geladen werden kénnen. Fir sehr grofie N; und
einer Blockgrof3e von 1 werden die Daten der Cache-Line nicht komplett verwendet, da sie zuvor
tiberschrieben werden.

Fir die Messung der oberen Grenze wurde der ,Stream Benchmark® von John D. McCalpin an
die Hierarchisierung angepasst [10]. Hierbei wurde fiir verschiedene Gittergrofien die Anzahl der
ausgefithrten Berechnungen der Definition 4.2 gemessen.

] =l + ol
(4.2) ali] == ali] + -afi + 1]

Die Ergebnisse dieses Benchmarks sind in Abbildung 4.4 dargestellt, wobei die Anzahl der bearbeiteten
Gitterpunkte pro Sekunde aufgezeigt ist. Die Messungen wurden auf Kepler durchgefiihrt, wobei
jeweils nur ein Prozess fiir die Berechnung verwendet wurde.

—— Stream Benchmark
—— Serielle (De-)Hierarchisierung
—— Opt. (De-)Hierarchisierung

109 |

--- Opt. (De-)Hierarchisierung - Block 8
—— Naiv (De-)Hierarchisierung
N - - - Naiv (De-)Hierarchisierung - Block 8

Sekunde 108 I

107 1 1 1 1
10° 106 107 108
N

Abbildung 4.4: Effizienz der Algorithmen im Vergleich und im Bezug zur theoretischen Obergrenze.

Die Ergebnisse in Abbildung 4.4 zeigen, dass die Algorithmen nicht optimal sind.

Der Algorithmus fiir die serielle Hierarchisierung und Dehierarchisierung wird durch die Flexibilitat
beziiglich Randwerten verlangsamt, da hier viele if-Abfragen notwendig sind und die Startwerte der
Pole nicht direkte berechnet werden kénnen.

40

5 Schluss

5.1 Zusammenfassung

Zu Beginn dieser Arbeit wurden die mathematischen Grundlagen fir die Hierarchisierung und
Dehierarchisierung beschrieben. Daraufhin folgte in Kapitel 3 der serielle Algorithmus fiir die Hierar-
chisierung, welcher um variable Randwerte erweitert wurde. Um auf der veranderten Datenstruktur
fiir verteilte Gitter zu arbeiten, wurden Algorithmen beziiglich des Datenaustausches erlautert. Dabei
wurden fiir die Dehierarchisierung zwei Varianten mit unterschiedlichen Austauschverfahren vorge-
stellt. Die entwickelten Algorithmen wurden im Kapitel 4 mit Messungen bewertet und verglichen.

5.2 Ausblick

Die Implementierung der Hierarchisierung und Dehierarchisierung verwendet in der seriellen Variante
jeweils zwei Methoden. Dabei bestimmt eine die Startwerte der eindimensionalen Pole und die andere
arbeitet die eindimensionalen Pole ab. Durch den variablen Rand und das zusétzliche Aufteilen der
Pole auf verschiedene Prozesse entsteht Komplexitit, welche durch das Verwenden vieler if-Abfragen
und mehrerer Hilfsmethoden gelost wurde. Auch wurden die Werte der Nachbarn in einem eigenen
Array gespeichert, wodurch weitere if-Abfragen entstanden sind, um die Position der benétigten
Werte zu ermitteln.

Eine mogliche Erweiterung wire das Verwenden von nur einem Array, so dass die Gibertragenen
Werte an das Ende des Arrays, mit den lokalen Punkten, angehéngt werden. Beim Durchlauf des
ersten Pols konnten die Offsets der benétigten Vorgénger gespeichert werden, so dass das Abarbeiten
der Ubrigen Pole ohne if-Abfragen auskommt.

Dies fithrt zu einer weiteren moglichen Erweiterung. Da fiir jede Dimension klar definiert ist, ob diese
Randwerte beinhaltet, konnte es sinnvoll sein die Methoden fiir das Abarbeiten der Pole aufzuteilen,
so dass es fiir die Bearbeitung der Dimension mit Randwerten andere Methoden als fiir die ohne
Randwerte gibt.

Auch kann es moglich sein, dass fiir eine Dimension keine Aufteilung in mehrere Prozesse benétigt
wurde, so dass die Verwendung der seriellen Bearbeitung fiir diesen Fall die vorzuziehende Methode
ware.

41

Literaturverzeichnis

[1] Prof. Dr. rer. nat. habil. Miriam Mehl. Skript zur Vorlesung Grundlagen des wissenschaftlichen
Rechnens. 2014. (Zitiert auf Seite 9)

[2] Michael Griebel, Michael Schneider, and Christoph Zenger. A combination technique for the
solution of sparse grid problems, 1992. (Zitiert auf Seite 9)

[3] Dirk Pfliiger. Spatially Adaptive Sparse Grids for High-Dimensional Problems. Verlag Dr. Hut,
Miinchen, August 2010. (Zitiert auf den Seiten 6, 9, 11, 12, 13, 16, 17 und 34)

[4] Sg++. http://www5.in.tum.de/SGpp/releases/index.html. (Zitiert auf den Seiten 9 und 34)

[5] Philipp Hupp. Performance of unidirectional hierarchization for component grids virtually
maximized. Procedia Computer Science, 29(0):2272 — 2283, 2014. 2014 International Conference
on Computational Science. (Zitiert auf den Seiten 7, 19 und 40)

[6] Mpi. http://www.open-mpi.org/. (Zitiert auf Seite 24)

[7] Prof. Dr. Hans-Joachim Wunderlich. Skript zur Vorlesung Rechnerorganisation. 2008. (Zitiert
auf Seite 33)

[8] Hermit. http://www.prace-ri.eu/best-practice-guide-cray-xe-xc-html/?lang=en#
sec-3-1. (Zitiert auf Seite 35)

[9] Germini. http://www.training.prace-ri.eu/uploads/tx_pracetmo/
BestPracticeHermit.pdf. (Zitiert auf Seite 35)

[10] John D. McCalpin. Memory Bandwidth and Machine Balance in Current High Performance
Computers. IEEE Computer Society Technical Committee on Computer Architecture (TCCA)
Newsletter, pages 19-25, December 1995. (Zitiert auf Seite 40)

Alle URLs wurden zuletzt am 7. Oktober 2014 gepriift.

43

http://www5.in.tum.de/SGpp/releases/index.html
http://www.open-mpi.org/
http://www.prace-ri.eu/best-practice-guide-cray-xe-xc-html/?lang=en#sec-3-1
http://www.prace-ri.eu/best-practice-guide-cray-xe-xc-html/?lang=en#sec-3-1
http://www.training.prace-ri.eu/uploads/tx_pracetmo/BestPracticeHermit.pdf
http://www.training.prace-ri.eu/uploads/tx_pracetmo/BestPracticeHermit.pdf

Erkliarung

Ich versichere, diese Arbeit selbststiandig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wortlich oder sinngemifd aus anderen Werken tibernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Pritifungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-
se noch vollstindig veroffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Problemstellung
	1.2 Gliederung

	2 Grundlagen
	2.1 Interpolation mit der Knotenbasis
	2.2 Hierarchische Basisfunktionen
	2.3 Dünne Gitter und Kombinationstechnik
	2.4 Randwerte
	2.5 Hierarchisierung und Dehierarchisierung

	3 Implementierung
	3.1 Ausgangspunkt
	3.1.1 Datenstruktur

	3.2 Randwerte
	3.3 Dehierarchisierung
	3.4 Verteilte Hierarchisierung und Dehierarchisierung
	3.4.1 Aufteilung der Daten
	3.4.2 Kommunikationsmedium
	3.4.3 Hierarchisierung
	3.4.4 Dehierarchisierung

	3.5 Cache-Effizienz
	3.6 SG++

	4 Evaluation
	4.1 Architektur der Testsysteme
	4.2 Messungen
	4.2.1 Blockgröße
	4.2.2 Starke Skalierung
	4.2.3 Schwache Skalierung
	4.2.4 Optimierbarkeit

	5 Schluss
	5.1 Zusammenfassung
	5.2 Ausblick

	Literaturverzeichnis

