
Institut für Parallele und Verteilte Systeme

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit Nr. 123

Effiziente verteilte
Hierarchisierung und

Dehierarchisierung auf vollen
Gittern

Philipp Butz

Studiengang: Informatik

Prüfer: Jun.-Prof. Dr. rer. nat. Dirk Pflüger

Betreuer: M.Sc. Mario Heene

Beginn am: 10. April 2014

Beendet am: 10. Oktober 2014

CR-Nummer: G.1.0

Kurzfassung

In vielen wissenschaftlichen Bereichen werden numerische Verfahren für komplexe Simulationen

eingesetzt. Diese basieren auf beliebig dimensionalen numerischenGleichungen, welche beispielsweise

für die Simulation von Aktienmärkten mehrere 100 Dimensionen umfassen können. Auf Grund der

Größe der Gitter liegen die Daten meist verteilt vor. Die vollen Gitter für die Lösung dieser höher

dimensionalen Probleme unterliegen dem Fluch der Dimensionalität. Ein Ansatz, um dem entgegen

zu wirken, sind dünne Gitter, welche auf hierarchischen Basen basieren. Diese Arbeit widmet sich

insbesondere der Problematik der verteilten Gitter, wobei die verteilte Transformation der nodalen in

die hierarchische Basis thematisiert wird.

3

Inhaltsverzeichnis

1 Einleitung 9
1.1 Problemstellung . 9

1.2 Gliederung . 10

2 Grundlagen 11
2.1 Interpolation mit der Knotenbasis . 12

2.2 Hierarchische Basisfunktionen . 13

2.3 Dünne Gitter und Kombinationstechnik . 14

2.4 Randwerte . 15

2.5 Hierarchisierung und Dehierarchisierung . 16

3 Implementierung 19
3.1 Ausgangspunkt . 19

3.1.1 Datenstruktur . 20

3.2 Randwerte . 21

3.3 Dehierarchisierung . 22

3.4 Verteilte Hierarchisierung und Dehierarchisierung . 22

3.4.1 Aufteilung der Daten . 23

3.4.2 Kommunikationsmedium . 24

3.4.3 Hierarchisierung . 25

3.4.4 Dehierarchisierung . 29

3.5 Cache-Effizienz . 33

3.6 SG++ . 34

4 Evaluation 35
4.1 Architektur der Testsysteme . 35

4.2 Messungen . 35

4.2.1 Blockgröße . 35

4.2.2 Starke Skalierung . 36

4.2.3 Schwache Skalierung . 38

4.2.4 Optimierbarkeit . 39

5 Schluss 41
5.1 Zusammenfassung . 41

5.2 Ausblick . 41

Literaturverzeichnis 43

5

Abbildungsverzeichnis

2.1 Volles Gitter mit l = (3, 3) ohne Randwerte (49 Punkte) 11

2.2 Hutfunktion aus Definition 2.4 für eine Stützstelle xj 12

2.3 Links: Eine Funktion f(x) und deren lineare Approximation u(x), Rechts: Die Funk-
tion u(x) als Summe der gewichteten Basisfunktionen, basiert auf [3] 12

2.4 Links: Hierarchische Hutfunktionen, Rechts: Standart-Hutfunktionen, basiert auf [3] 13

2.5 Die Funktion u(x) und deren Ansatzfunktionen ϕl,j , basiert auf [3] 13

2.6 Links: Teilraum Wl mit l = {1, 2} . Rechts: V3 aus Abbildung 2.9 ergänzt um Randwerten 15

2.7 Erweiterung der Baumdarstellung aus Abbildung 2.10 um Randwerte 15

2.8 Links: Eine Funktion f(x) und deren lineare Approximation u(x) mit Randwerten,

Rechts: Die Funktion u(x) als Summe der Stützstellen xj und deren Ansatzfunktionen

ϕj mit Randwerten durch die Basisfunktionen ϕ0,1 und ϕ0,2, basiert auf [3] 16

2.9 Links: Alle Teilräume für l = 3 in beiden Dimensionen, Rechts: Dünnes Gitter V3
bestehend aus allen blau dargestellten Stützstellen im linken Teil der Grafik [3] . . . 17

2.10 Baumstruktur der hierarchisierten Punkte. Die gestrichelten blauen Linien beschreibt

die Vorgängerbeziehung zwischen den Punkten für l = 3, basiert auf [3] 17

3.1 Ein Pol bezüglich der Dimension 2 eines vollen Gitters mit l2 = 3 19

3.2 Blau: hierarchische Vorgänger, Grün: Ablauf der Hierarchisierung nach Algorithmus

3.1 für einen Pol. 20

3.3 Links: Volles Gitter mit l = (3, 3) mit Randwerten und einer Unterteilung in (2, 2)
Prozesse; Rechts: Volles Gitter mit l = (4, 2) ohne Randwerten in Dimension 2 und

einer Unterteilung in (3, 2) Prozesse. 23

3.4 Kartesische Topologie von Prozessen durch MPI. Rang (oben) und Koordinaten der

Prozesse (unten) in den Knoten, basiert auf [?] . 24

3.5 Baumdarstellung eines eindimensionalen Gitters mit l = 3 und Randwerten, wobei

das Gitter auf 2 Prozesse aufgeteilt ist. 25

3.6 Linker Teilbaum eines Gitters mit Randwerten und li ≥ 5 und den hierarchischen

Abhängigkeiten (blau) der Punkte. 26

3.7 Aufteilung eines Gitters mit l = 3 in 2 Prozesse. Ausgetauschten Punkte 4 und 8 in

rot dargestellt. 28

3.8 Baumdarstellung eines eindimensionalen Gitters mit l = 3 und Randwerten, wobei

das Gitter in 3 Prozesse aufgeteilt ist. 30

3.9 Baumdarstellung eines eindimensionalen Gitters, nach dem Datenaustausch, mit

l = 3 und Randwerten, wobei das Gitter in 3 Prozesse aufgeteilt ist. Dabei sind die

ausgetauschten Punkte, analog zu Abbildung 3.7 in rot dargestellt. 31

6

3.10 Array grid[] eines Gitters von links oben nach rechts unten mit l = 3, wobei sich die

Nummerierung an den Punktindizes der eindimensionalen Baumstruktur (rechts) der

Pole bezüglich Dimension 2 orientiert. In blau ist ein Pol bezüglich der Dimension 2

hervorgehoben und in rot die in die Cache geladenen Punkte für das Hierarchisieren

von Punkt 1. 34

4.1 Unterschiedliche Blockgrößen bei der Bearbeitung eines Gitters mit insgesamt ca. 484

Mio. Punkten in 5 Dimensionen auf einem Prozess. 36

4.2 Oben: Hierarchisierung; Unten: naive (Austausch pro Dimension und Level) und

optimierte (Austausch pro Dimension) Dehierarchisierung. Jeweils mit Blockgröße 8

bei konstanter Gittergröße und 5 Dimensionen. 37

4.3 Oben: Hierarchisierung; Unten: naive (Austausch pro Dimension und Level) und

optimierte (Austausch pro Dimension) Dehierarchisierung. Jeweils Verdopplung der

Prozesse und Verdopplung der Gitterpunkte. Anzahl der Gitterpunkte ausgehend von

ca. 1,160 Mrd. mit Blockgröße 8. 39

4.4 Effizienz der Algorithmen im Vergleich und im Bezug zur theoretischen Obergrenze. 40

Verzeichnis der Algorithmen

3.1 Basis Hierarchisierungs-Algorithmus, basiert auf [5] 19

3.2 Berechnung des Wertes des linken hierarchischen Vorgänger zum Punkt i 22

3.3 Berechnung der auszutauschenden Punkte anhand der eindimensionalen Struktur,

wie in Abbildung 3.6 . 27

3.4 Überprüfung aller hierarchischen Nachfolger eines Punktes 28

3.5 Erweiterung des Basis Hierarchisierungs-Algorithmus 3.1 29

3.6 Verteilte Dehierarchisierung mit optimiertem Ablauf 33

7

1 Einleitung

In vielen wissenschaftlichen Bereichen werden numerische Verfahren für komplexe Simulationen

eingesetzt. Beispielsweise für die Untersuchung von physikalischen Phänomenen, welche schwer

oder sogar unmöglich durch Experimente nachvollziehbar sind [1]. Die Simulationen von komplexen

Vorgängen basieren auf beliebig dimensionalen numerischen Gleichungen, welche beispielsweise für

die Simulation von Aktienmärkten mehrere 100 Dimensionen umfassen können.

Die vollen Gitter für die Lösung dieser höher dimensionalen Probleme unterliegen dem Fluch der

Dimensionalität, da die Anzahl der Gitterpunkte N = nd
, bei n Gitterpunkten pro Dimension,

exponentiell mit der Anzahl der Dimensionen wächst. Bei steigender Genauigkeit wachsen somit

sowohl Gitter als auch die Zeit für die Berechnung exponentiell.

Ein Ansatz, um der Größe entgegen zu wirken, sind dünne Gitter, welche auf hierarchischen Basen

basieren. Für beliebig dimensionale Probleme wird ein Tensorprodukt dieser Basen gebildet. Die

hierarchische Struktur führt dazu, dass der Beitrag zur Lösung mit steigendem Level kleiner wird.

Für die dünnen Gitter werden nur Basisfunktionen verwendet, welche in jede Richtung nur ein

bestimmtes Level aufweisen. Die Gitterstruktur ist daraufhin nicht mehr regulär, wodurch die direkte

Anwendung von Algorithmen, zur Berechnung einer Lösung, erschwert wird.

Die Kombinationstechnik setzt an diesem Problem an [2]. Hierbei werden dünne Gitter durch die

Kombination von regulären Teilräumen dargestellt. Die Lösung wird auf jedem der Teilräume separat

berechnet und kombiniert.

1.1 Problemstellung

Der Gegenstand dieser Arbeit ist die Transformation der nodalen Basis in die hierarchische Basis. Für

diese Hierarchisierung und dessen inverse, die Dehierarchisierung, existieren Algorithmen bei denen

die Daten komplett in einem Speicherbereich liegen. Bei großen beliebig dimensionalen Problemen

ist es jedoch oft der Fall, dass die Daten auf mehrere Knoten aufgeteilt vorliegen.

In dieser Arbeit werden Verfahren für die direkte Hierarchisierung und Dehierarchisierung auf

verteilten Daten entwickelt. Diese werden in das Dünngitter-Framework SG++ eingebunden und mit

Messungen bewertet [3, 4].

9

1 Einleitung

1.2 Gliederung

In Kapitel 2 werden die mathematischen Grundlagen für die Problemstellung dieser Arbeit erläutert.

Dazu zählen insbesondere hierarchische Basisfunktionen und das Konzept der dünnen Gitter, welches

auf diesen Basisfunktionen aufbaut.

In Kapitel 3 wird beginnend ein Algorithmus für die serielle Lösung der Hierarchisierung beschrieben.

Diese wird schrittweise erweitert zu einer verteilten Hierarchisierung und Dehierarchisierung, wobei

zwei Varianten für die verteilte Dehierarchisierung vorgestellt werden.

In Kapitel 4 werden die Lösungsansätze durch Messungen bewertet und verglichen. Insbesondere wer-

den die Laufzeiten und Skalierung der zwei Varianten der verteilten Dehierarchisierung betrachtet.

Im letzten Kapitel werden die Erkenntnisse dieser Arbeit zusammengefasst und ein Ausblick auf

mögliche Erweiterungen gegeben.

10

2 Grundlagen

Im folgenden Kapitel werden die für die Hierarchisierung wichtigen mathematischen Grundlagen

erläutert, sowie die Grundzüge der Möglichkeiten durch die Dünn-Gitter-Methode als Motivation.

Die Definitionen und Notationen sind aus der Doktorarbeit „Spartially Adaptive Sparse Grids for

High-Dimensional Problems“ von Dirk Pflüger entnommen [3].

Für das wissenschaftliche Rechnen werden Probleme bzw. Funktionen beliebiger Dimensionalität d
diskretisiert. Dafür werden die Funktionen an bestimmten Stellen ausgewertet und anhand dieser

Werte mit dazugehörigen Ansatzfunktionen approximiert. Diese Arbeit verwendet reguläre volle

Gittern in dem Bereich [0, 1]d.

Die Anzahl der Punkte in einer Dimension wird durch den level Vektor

−→
l vorgegeben, wobei dieser

für jede Dimension das Disktretisierungslevel

(2.1)

−→
l = (l1, ..., ld) li ∈ N

definiert. Aus dem Level einer Dimension i resultiert der Abstand der Stützstellen und die Anzahl der

Punkte. Der Abstand h zwischen zwei Stützstellen in einer Dimension i ist durch

(2.2) hi = 2−li

definiert. Die Anzahl der Punkte in Dimension i resultiert daraus zu

(2.3) Ni =

2li + 1, falls Randwerte in Dimension i vorhanden sind

2li − 1, sonst

Die Stützstellen bilden ein volles Gitter, wie in Abbildung 2.1 für d = 2 und

−→
l = (3, 3) dargestellt.

Abbildung 2.1: Volles Gitter mit l = (3, 3) ohne Randwerte (49 Punkte)

11

2 Grundlagen

2.1 Interpolation mit der Knotenbasis

Die Funktionswerte an den Stützstellen werden stückweise linear interpoliert, wie in Abbildung 2.3

dargestellt. Hierbei werden die Funktionswerteαj an den Stützstellen xj jeweils mit einer Hutfunktion,

wie in Abbildung 2.2 grafisch und in Definition 2.4 formal dargestellt, gewichtet.

0

1

0

xj 1

ϕj(x)

Abbildung 2.2: Hutfunktion aus Definition 2.4 für eine Stützstelle xj

(2.4) ϕj(x) := max(1− |x− xj |, 0)

Eine Funktion f(x) lässt sich approximieren durch die Summe der Funktionswerte an den gewählten

Stützstellen multipliziert mit deren Gewichtung durch je eine Ansatzfunktion. Die formale Definition

(2.5) f(x) ≈ u(x) :=
Ni∑

j=1
αj · ϕj(x)

ist grafisch inAbbildung 2.3 dargestellt. Hierbei zeigt die rechte Grafik die gewichteten Basisfunktionen

und die Summe u(x) aller Ansatzfunktionen. In der linken Grafik ist eine Funktion f(x) und ihre

Approximation u(x), aus dem rechten Teil der Abbildung, dargestellt.

0

1

2

3

0

xj 1

f(x) u(x) =
∑

j αjϕj(x)

h = 2−3
0

1

2

3

0

xj 1

u(x) =
∑

j αjϕj(x)

Abbildung 2.3: Links: Eine Funktion f(x) und deren lineare Approximation u(x), Rechts: Die Funk-
tion u(x) als Summe der gewichteten Basisfunktionen, basiert auf [3]

12

2.2 Hierarchische Basisfunktionen

2.2 Hierarchische Basisfunktionen

Im Gegensatz zu den Ansatzfunktionen aus Definition 2.4 sind hierarchische Basen definiert durch

(2.6) ϕl,i(x) := ϕ(2lx− i)

mit Level l und Index i 0 < i < 2l
. Der Unterschied zwischen den hierarchischen Hutfunktionen

und den Standart-Hutfunktionen ist in Abbildung 2.4 dargestellt.

l = 3

l = 2

l = 1

W3

W2

W1

x3,1

ϕ3,1

x3,3

ϕ3,3

x3,5

ϕ3,5

x3,7

ϕ3,7
x2,1

ϕ2,1

x2,3

ϕ2,3
x1,1

ϕ1,1

V3

V3

V2

V1

x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 x3,7

x2,2 x2,4 x2,6

x1,1

Abbildung 2.4: Links: Hierarchische Hutfunktionen, Rechts: Standart-Hutfunktionen, basiert auf [3]

In der linken Grafik der Abbildung 2.4 ist die hierarchisierte Basis aus Hutfunktionen für die Level 1

bis 3 dargestellt. Es ist ersichtlich, dass die Hutfunktionen auf dem gleichen Level jeweils einen gleich

großen Bereich abdecken und sich summiert auf den gesamtenWertebereich erstrecken. Im Gegensatz

dazu, überlappen sich die Basisfunktionen der Knotenbasis. Die formale Definition der Teilräume V
und W sind in Definition 2.10 und 2.9 einzusehen und werden im Abschnitt 2.3 erläutert.

0

1

2

3

0
1h = 2−3

Abbildung 2.5: Die Funktion u(x) und
deren Ansatzfunktio-

nen ϕl,j , basiert auf

[3]

Die Basisfunktionen für höher dimensionale Probleme sind

das Tensor-Produkt der Basisfunktionen in jede Dimension

an jeder Stützstelle. Diese sind somit definiert als:

(2.7) ϕ−→
l ,

−→
i

(−→x) :=
d∏

j=1
ϕlj ,ij

(xj)

Die Definition der Approximation u(−→x) lässt sich damit

definieren durch die Formel in Definition 2.13 im folgenden

Abschnitt.

13

2 Grundlagen

2.3 Dünne Gitter und Kombinationstechnik

Dünne Gitter bestehen aus wesentlich weniger Punkten als volle Gitter und werden durch eine Kom-

bination von Teilräumen aus Basisfunktionen, welche abhängig von der Wahl einer entsprechenden

Norm ist, gebildet. Für 1D wurden in Abbildung 2.4 Teilräume W1, W2 und W3 dargestellt.

Die Teilräume sind definiert durch eine Menge an Indizes

(2.8) I−→
l

:= {−→i : 1 ≤ ij ≤ 2lj − 1, ij ungerade, 1 ≤ j ≤ d}

welche die enthaltenen Basisfunktionen definiert.

Aus diesen Mengen an Basisfunktionen lassen sich, wie in Abbildung 2.9 auf Seite 17, die Teilräume

W−→
l
definieren durch

(2.9) W−→
l

:= span{ϕ−→
l ,

−→
i

(−→x) : −→i ∈ I−→
l
}

Die Dünn-Gitter-Methode besteht darin die Teilräume, welche am meisten zur Lösung beitragen, zu

kombinieren, um die Genauigkeit der Approximation, trotz weniger Stützstellen, nicht wesentlich

zu verschlechtern. In Abbildung 2.9 werden die, in blau dargestellten, Stützstellen zu einem dünnen

Gitter kombiniert, welches auf der rechten Seite der Abbildung dargestellt ist.

Der Dünngitterraum Vn ist definiert durch

(2.10) Vn :=
⊕

|
−→
l |1 ≤n+d−1

W−→
l

wobei die Summennorm definiert ist durch

(2.11) |
−→
l |1 :=

d∑
j=1

lj

Damit kann die, in Abbildung 2.9 auf der rechten Seite dargestellte, Kombination von Teilräumen als

V3 eindeutig bestimmt werden. Am Beispiel der Teilräume in Abbildung 2.9 lässt sich leicht einsehen,

dass das dünne Gitter gerade einmal 17 Gitterpunkte enthält im Gegensatz zu den 49 eines vollen

Gitters.

Durch das Ändern der Norm der direkten Summe der Teilräume lassen sich dünne Gitter mit verschie-

denen Eigenschaften erstellen. Beispielsweise lässt sich das volle Gitter durch die Maximumsnorm

herstellen, da die Maximumsnorm definiert ist durch

(2.12) |
−→
l |∞ := max

1≤j≤d
|lj |

Damit lässt sich die Approximation u(x) auf dem Dünngitterraum Vn definieren als

(2.13) u(x) :=
∑

|
−→
l |≤n+d−1

−→
i ∈I−→

l

α−→
l ,

−→
i

ϕ−→
l ,

−→
i

(−→x)

14

2.4 Randwerte

Für genügen glatte Funktion f ∈ Hmix

2 ergibt sich bezüglich der Approximation u(x) ∈ Vn eine

Approximationsordnung von

(2.14) ||f(−→x − u(−→x))||L2 ∈ O(h2
n(log(h−1

n))d−1)

2.4 Randwerte

In der bisherigen Betrachtung wurden für die Randwerte keine Werte verschieden der Null angenom-

men. Für Funktionen wie in Abbildung 2.3 verbessern Randwerte die Approximation u(x) deutlich.
Diese können auf einem neuen Level, Level 0, definiert werden, jedoch entstehen dadurch neue

Teilräume. Bei der Kombination dieser führt dies dazu, dass auf dem Rand doppelt so viele Punkte wie

auf der Hauptachse innerhalb des Gitters sind. Aus diesem Grund werden die Randwerte auf Level 1

hinzugefügt und bei der Hierarchisierung und Interpolation speziell behandelt.

l2 = 2

l1 = 1

Abbildung 2.6: Links: Teilraum Wl mit l = {1, 2} . Rechts: V3 aus Abbildung 2.9 ergänzt um Rand-

werten

Zwei zusätzliche Basisfunktionen ϕ0,1 und ϕ0,2 erweitern die Approximation aus Abbildung 2.3 zu

einer Approximation mit Randwerten, welche in Abbildung 2.8 dargestellt ist.

Die Teilräume lassen sich damit wie in der linken Grafik in Abbildung 2.6 darstellen. Die Teilraum-

kombination V3 aus Abbildung 2.9, ebenfalls mit Randwerten, ist auf der rechten Seite zu sehen.

Die Abhängigkeiten zwischen den Stützstellen lassen sich damit abermals durch einen Baum dar-

stellen. Abbildung 2.7 ist eine Erweiterung des Baumes aus Abbildung 2.10 und beinhaltet die neuen

Abhängigkeiten zwischen den Stützstellen und den Randwerten.

4

1
2

2

1
4

1

1
8

3

3
8

6

3
4

5

5
8

7

7
8

0 8

Level 1

Level 2

Level 3

Abbildung 2.7: Erweiterung der Baumdarstellung aus Abbildung 2.10 um Randwerte

15

2 Grundlagen

0

1

2

3

0

xj 1

f(x) u(x) =
∑

j αjϕj(x)

h = 2−3
0

1

2

3

0

xj 1

ϕ0,1

ϕ0,2

u(x) =
∑

j αjϕj(x)

Abbildung 2.8: Links: Eine Funktion f(x) und deren lineare Approximation u(x) mit Randwerten,

Rechts: Die Funktion u(x) als Summe der Stützstellen xj und deren Ansatzfunktionen

ϕj mit Randwerten durch die Basisfunktionen ϕ0,1 und ϕ0,2, basiert auf [3]

2.5 Hierarchisierung und Dehierarchisierung

Die Hierarchisierung beschreibt die Transformation der nodalen in die hierarchische Basis. Die

Dehierarchisierung beschreibt entsprechend die inverse Transformation. Bei diesen Transformationen

werden die Werte an den Stützstellen neu bestimmt.

Die Funktionswerte auf größeren Leveln tragen die Differenz zwischen dem Funktionswert an dessen

Stützstelle und der schon vorhandenen Approximation bei. Eine Stützstelle xj wird in Abhängigkeit

der Stützstellen auf niedrigeren Level neu berechnet zu

(2.15)

xj = xj − 0.5 · (xleft + xright)

mit left = j − 2li−lxj

mit right = j + 2li−lxj

mit lxj := (Level der Stützstelle xj)− 1

wobei der x
j−2li−lxj

der linke und x
j+2li−lxj

der rechte hierarchische Vorgänger der Stützstelle xj

ist.

Dabei werden die Werte beginnend bei dem Level li hierarchisiert, wodurch die Abarbeitung bezüg-

lich des Binärbaums einer „reverse level-order“ Traversierung entspricht. Die Dehierarchisierung

entspricht der Inversen der Hierarchisierung damit der „level-order“ Traversierung des Binärbaums.

Weitere Formeln für die Berechnung von Nachbarschaftsbeziehungen zwischen den Funktionswerten

abhängig von dem jeweiligen Level der Stützstelle xj werden im Kapitel 3 vorgestellt.

Die Abhängigkeiten lassen sich übersichtlicher durch eine Baumstruktur, wie in Abbildung 2.10,

beschreiben. In dieser Grafik ist ein Baum für die eindimensionalen Hierarchisierung mit l = 3
dargestellt. Die gestrichelten blauen Linien in dem Binärbaum symbolisieren die Abhängigkeiten. Für

die Stützstellen x4, x6 und x7 sind die Verbindungen zu deren Ansatzfunktionen in dem rechten Teil

der Abbildung verdeutlicht.

16

2.5 Hierarchisierung und Dehierarchisierung

l2

l1

l2 = 3

l2 = 2

l2 = 1

l1 = 1 l1 = 2 l1 = 3

Abbildung 2.9: Links: Alle Teilräume für l = 3 in beiden Dimensionen, Rechts: Dünnes Gitter V3
bestehend aus allen blau dargestellten Stützstellen im linken Teil der Grafik [3]

4

1
2

2

1
4

1

1
8

3

3
8

6

3
4

5

5
8

7

7
8

Level 1

Level 2

Level 3

0

1

2

3

0
1x4 x6 x7

Abbildung 2.10: Baumstruktur der hierarchisierten Punkte. Die gestrichelten blauen Linien be-

schreibt die Vorgängerbeziehung zwischen den Punkten für l = 3, basiert auf
[3]

17

3 Implementierung

Basierend auf den mathematischen Grundlagen aus Kapitel 2 werden in diesem Kapitel Algorithmen

für das verteilte Umrechnen zwischen nodalen Basen und hierarchisierten Basen erarbeitet. Hierfür

werden die Algorithmen für die verteilte Hierarchisierung und Dehierarchisierung aus dem seriellen

Algorithmus hergeleitet.

3.1 Ausgangspunkt

Abbildung 3.1: Ein Pol bezüglich der

Dimension 2 eines vol-

len Gitters mit l2 = 3

Abstrakt lässt sich die mathematische Definition der Hier-

archisierung aus Kapitel 2 zum Beispiel durch den Algorith-

mus 3.1 basiernd auf dem Algorithmus aus dem Paper „Per-

formance of Unidirectional Hierarchization for Component

Grids Virtually Maximized“ von Philipp Hupp darstellen

[5].

Hierbei wird in der äußeren Schleife, in Zeile 2, über alle

Dimensionen iteriert, so dass die Hierarchisierung nach-

einander für jede Dimension ausgeführt wird. In Zeile 3

wird über alle „Pole“ in der entsprechenden Dimension dd
iteriert.

Algorithmus 3.1 Basis Hierarchisierungs-Algorithmus, basiert auf [5]

1: function Hierarchisierung

2: for dd← 1 to d do
3: for all 1-dim Pole P in Richtung dd do
4: for l← ldd to 2 do
5: for all xi auf Level l do
6: grid[i] = grid[i]− 0.5 · linkerVorgänger(i, dd, l)
7: grid[i] = grid[i]− 0.5 · rechterVorgänger(i, dd, l)
8: end for
9: end for
10: end for
11: end for
12: end function

19

3 Implementierung

Ein Pol bezüglich einer Dimension i ist eine Menge an Stützstellen, welche sich nur in der Koordinate

bezüglich der Dimension i unterscheiden. Ein Beispiel für ein Pol ist in Abbildung 3.1 dargestellt. Jeder

dieser Pole ist bezüglich der Dimension i als unabhängiges eindimensionales Gitter zu betrachten.

Die Anzahl der Pole einer Dimension i errechnet sich somit durch

(3.1) Polei :=
d∏

j=0
i ̸=j

2lj − 1

Der Algorithmus 3.1 behandelt keine Randwerte, wodurch in Zeile 3 über alle Level, beginnend

mit dem höchsten, bis zum Level 2 iteriert wird. Der Funktionswert an dem Stützpunkt auf Level 1
muss nur für Randwerte ungleich 0 betrachtet werden. In Zeile 5 wird über alle Funktionswerte in

dem jeweiligen eindimensionalen Pol und dem entsprechenden Level iteriert. Daraufhin werden die

neuen Werte der Funktionswerte, wie in Definition 2.15, durch die Zeilen 6-7 berechnet, wobei die

Funktionen jeweils den Wert des linken und rechten hierarchischen Vorgängers ausgibt. Der Ablauf

des Algorithmus für einen Pol (Zeile 4ff) ist in Abbildung 3.2 grafisch dargestellt.

Die Level werde entsprechend dem Algorithmus 3.1 von großem nach kleinen Level durchlaufen,

wobei der Ablauf in Abbildung 3.2 für jeden Pol wiederholt wird.

4

2

1 3

6

5 7

Level 1

Level 2

Level 3

Abbildung 3.2: Blau: hierarchische Vorgänger, Grün: Ablauf der Hierarchisierung nach Algorithmus

3.1 für einen Pol.

3.1.1 Datenstruktur

An dieser Stelle gilt es die Datenstruktur für die Speicherung der Werte an den Stützstellen zu

beschreiben. Die Anzahl der Dimensionen kann variieren, dabei soll die Datenstruktur möglichst

generisch sein. Aus diesemGrundwerden die Funktionswerte in einem eindimensionaler Array (grid[])

des entsprechenden Datentyps der Funktionswerte (z.B. „double“) gespeichert. Die Reihenfolge der

Speicherung ist einfach gehalten, so dass sich die Pole bezüglich Dimension 1 aneinanderreihen. Somit

liegen die Stützstellen in der ersten Dimension aus Sicht des Speichers in direkter Nachbarschaft,

wodurch sich die „Schrittweite“ im Array zwischen den einzelnen Werten eines Pols dieser Dimension

als 1 ergibt. Für alle weiteren Dimensionen herrschen von 1 verschiedene Schrittweiten zwischen den

20

3.2 Randwerte

Werten innerhalb eines Pols. Diese Schrittweite im Array zwischen den Werten eines Pols bezüglich

einer Dimension i ergibt sich zu

(3.2) Schrittweitei :=
i−1∏
j=1

Nj Nj aus Definition 2.3

3.2 Randwerte

Randwerte sollen so generisch wie möglich sein, so dass der Basisalgorithmus um variable Randwerte

in jeder Dimension erweitert wird. Hierfür wird zu Beginn für jede Dimension festgelegt, ob diese

Randwerte enthält.

In Kapitel 2 wurden die formalen Änderungen für diese Erweiterung vorgestellt. Aus algorithmischer

Sicht ändern sich im wesentlichen zwei Faktoren, wobei sowohl die Struktur der Speicherung als

auch der generelle Ablauf des Algorithmus erhalten bleibt.

Zum einen hinsichtlich Zeile 4 in Algorithmus 3.1. Hierbei müssen die Funktionswerte auf Level 1 nun

zusätzlich bezüglich den Randwerten hierarchisiert werden, sofern welche in der aktuell betrachteten

Dimension dd vorhanden sind.

Zum anderen hinsichtlich der Funktionen in Zeile 6 und 7. Hierbei muss überprüft werden, ob es

einen linken bzw. rechten hierarchischen Vorgänger gibt. Falls es Randwerte gibt, gibt es auch einen

linken hierarischen Vorgänger der Punkte 1, 2 und 4 in Abbildung 3.2.

Da die Vorgängerberechnung bisher nicht ausführlich betrachtet wurde, imweiteren Verlauf allerdings

von Bedeutung ist, stellt der Algorithmus 3.2 die Funktion „linkerVorgänger()“ dar. Hierbei ist der

Übergabeparameter i die Position von xi im Array aus Algorithmus 3.1 Zeile 5. dd ist die Dimension,

in welcher hierarchisiert wird (Algorithmus 3.1 Zeile 2) und l ist das Level von xi bezüglich Dimension

dd (Algorithmus 3.1 Zeile 5).

Für den linken Nachfolger gibt es drei Möglichkeiten, welche durch die „if“-Bedingungen in Zeile 3

und 5 in Algorithmus 3.2 abgefragt werden.

1. Der Vorgänger ist kein Randwert (Zeile 3).

2. Der Vorgänger ist ein Randwert und es gibt in Dimension dd Randwerte (Zeile 5).

3. Der Vorgänger ist ein Randwert und es gibt in Dimension dd keine Randwerte (Zeile 7).

Die Berechnung des rechten hierarischen Vorgängers ist ähnlich, im Algorithmus 3.2 wird in Zeile 2

der Offset bezüglich des Vorgängers nicht subtrahiert sondern addiert.

Für die ersten zwei Bedingungen ist die berechnete Position linkerV orgänger ein gültiger Index

bezüglich des Arrays grid[] und eine gültige Position bezüglich der mathematischen Beziehungen

zwischen den Punkten xi und xlinkerV orgänger .

21

3 Implementierung

Algorithmus 3.2 Berechnung des Wertes des linken hierarchischen Vorgänger zum Punkt i

1: function leftPredecessor(i, dd, l)
2: linkerV orgänger := i− Schrittweite · (2ldd−l) // Definition 2.15

3: if linkerV orgänger ist kein Randwert then
4: return grid[linkerV orgänger] // grid[] Array mit Funktionswerten

5: else if linkerV orgänger ist Randwert und Dimension dd hat Randwerte) then
6: return grid[linkerV orgänger]
7: else
8: return 0
9: end if
10: end function

3.3 Dehierarchisierung

Die Dehierarchisierung ist das Umwandeln der hierarchisierten Basis in die ursprüngliche nodale

Basis. Die Dehierarchisierung ist somit das rückwärts Anwenden des Algorithmus 3.1.

Explizit bedeutet dies, dass die „for“-Schleife in Zeile 4 von hinten beginnt. Die Dehierarchisierung

beginnt damit bei dem kleinsten Level. Dieses ist Level 1, falls Randwerte vorhanden sind, und Level

2 falls keine vorhanden sind.

Die Reihenfolge der Abarbeitung der Pole sowie der einzelnen xi muss dabei nicht verändert werden.

Im Fall der Pole ist dies leicht ersichtlich, da die Pole einer Dimension i bezüglich dieser unabhängig

voneinander sind. Die Unabhängigkeit der einzelnen xi mit gleichem Level lässt sich durch die

Baumstruktur in Abbildung 3.2 einsehen.

Da dieser Aspekte für die spätere verteilte Dehierarchisierung eine Rolle spielt, wird nochmals

verdeutlicht, dass die Werte beginnend bei dem kleinsten Level dehierarchisiert werden. Die Dehier-

archisierung der xi auf höheren Level setzt somit die Dehierarchisierung der xi der kleineren Level

voraus.

3.4 Verteilte Hierarchisierung und Dehierarchisierung

Für die Verteilung der Daten und das anschließende Hierarchisieren oder Dehierarchisieren gibt es

mehrere Möglichkeiten.

Ein naiver Ansatz ist, die Daten auf einem Prozess zu sammeln, sofern die Kapazität des Hauptspeicher

dies zulässt, diese zu hierarchisieren oder dehierarchisieren und daraufhin auf die Prozesse zu verteilen.

Dabei bildet der Kommunikationsschritt den Flaschenhals der Hierarchisierung beziehungsweise

Dehierarchisierung, da alle Prozesse ihre Daten an einen Prozess senden und dieser, nach Beenden

der Bearbeitung, die veränderten Daten zurück verteilen muss.

Alternativ kann die Hierarchisierung und Dehierarchisierung verteilt auf allen Prozessen ablaufen.

Diese Variante beinhaltet mehr Komplexität, bezüglich des Datenaustausches und der eigentlichen

22

3.4 Verteilte Hierarchisierung und Dehierarchisierung

Verarbeitung der Daten, verzichtet jedoch auf das Sammeln undVerteilen aller Daten auf einem Prozess.

Diese Alternative wird im Folgende erläutert und in Kapitel 4 mit Laufzeitmessungen bewertet.

3.4.1 Aufteilung der Daten

Zu Beginn gilt es die Anforderungen an die Aufteilung der Daten zu definieren.

Die Anzahl der Level ist für jede Dimension beliebig wählbar, so dass es sinnvoll erscheint auch eine

unterschiedliche Aufteilung für jede Dimension zuzulassen. Abbildung 3.3 stellt zwei Gitter mit einer,

in rot dargestellten, Unterteilung in 4 (links) beziehungsweise 9 Prozesse (rechts) dar.

Dabei wurde die Unterteilung in Abbildung 3.3 anhand der Koordinaten der Stützstellen gewählt.

Für eine Unterteilung in 2 Prozesse, werden die Stützstellen aufgeteilt in die zwei Bereiche [0, 1
2] und

]1
2 , 1]. Die Punkte auf der oberen Grenze eines Prozesses sind damit inklusive und die auf der unteren

Grenze exklusive.

In der linken Grafik der Abbildung 3.3 ist ein Gitter mit Level l = (3, 3) und einer Aufteilung in je

2 Prozesse pro Dimension dargestellt. Auf der rechten Seite ist ein Gitter mit l = (4, 2) und keinen

Randwerten in Dimension 2 zu sehen, wobei die Daten auf 3 Prozesse bezüglich Dimension 1 aufgeteilt

wurden. Eine variable Aufteilung, in Abhängigkeit der Dimensionen, macht es somit möglich die

Prozesse gleichmäßig auszulasten.

Abbildung 3.3: Links: Volles Gitter mit l = (3, 3) mit Randwerten und einer Unterteilung in (2, 2)
Prozesse; Rechts: Volles Gitter mit l = (4, 2) ohne Randwerten in Dimension 2 und

einer Unterteilung in (3, 2) Prozesse.

Im Allgemeinen wird eine variable Aufteilung der Punkte in einen Prozess in Abhängigkeit einer

Dimension unterstützt, so dass für jede Dimension die unter und ober Grenzen der einzelnen Prozesse

festgelegt werden kann.

Die Datenstruktur verändert sich insofern, dass der Array nicht nach einer bestimmten Anzahl

an Feldern abgeschnitten wird, sondern dass die Daten in Blöcke bezüglich der Koordinaten der

Stützstellen aufgeteilt werden. Daraus folgt, dass für jede Dimension, bei der eine Aufteilung auf

mehr als 1 Prozess gewählt wurde, die Daten für jeden Pol in dieser Dimension verteilt vorliegen und

abhängig von der Aufteilung Kommunikation zwischen den Prozessen notwendig ist.

23

3 Implementierung

3.4.2 Kommunikationsmedium

Für die Kommunikation der verteilten Prozesse wird das „Message Passing Interface“ (MPI) verwendet

[6]. Dieses bietet Möglichkeit für den effizienten Austausch von Daten auf verschiedenen Rechnerar-

chitekturen. Dabei erhält jeder Prozess beim Start eine eindeutige ID (Rang), durch welche er von den

anderen Prozessen über das Interface angesprochen werden kann. MPI enthält viele Funktionalitäten

bezüglich des Verteilens und Sammelns von Daten auf verschiedenen Topologien von Prozessen.

Hierbei sind für diese Arbeit zwei Funktionalitäten hinsichtlich der zuvor besprochenen Datenstruktur

und den Datenaustausch relevant.

Zum einen bietet MPI nicht blockierendes Senden und Empfangen von Daten zwischen Prozessen

an. Dies ermöglicht es parallel Daten mit allen Nachbarn auszutauschen. Insbesondere bei einer

Aufteilung der Daten in mehr als 2 Prozesse in eine Dimension, ist es von Bedeutung Daten gleichzeitig

auszutauschen, um den Datenaustausch nicht durch gegenseitiges Warten zu verlangsamen.

Zum anderen bietet MPI verschiedene Prozess-Topologien an. Diese ermöglichen es den Zugriff

auf Prozesse zu erleichtern. Insbesondere ist hier einer kartesische Ordnung der Prozesse, welche

in Abbildung 3.4 dargestellt ist, von Bedeutung. Das Gitter lässt sich mit beliebiger Anzahl an

Dimensionen und Prozessen in jede Dimension erstellen.

0

(0, 0)

1

(1, 0)

2

(2, 0)

3

(3, 0)

4

(0, 1)

5

(1, 1)

6

(2, 1)

7

(3, 1)

8

(0, 2)

9

(1, 2)

10

(2, 2)

11

(3, 2)

Abbildung 3.4: Kartesische Topologie von Prozessen durch MPI. Rang (oben) und Koordinaten der

Prozesse (unten) in den Knoten, basiert auf [?]

Durch diese Topologie ermöglicht MPI weitere Funktionalitäten, wie Koordinaten auf den Rang

abzubilden und umgekehrt. Des weiteren lassen sich die Nachbarschaftsbeziehungen zwischen den

Prozessen abhängig von der Dimension abfragen. Diese sind in Abbildung 3.4 durch schwarze Ver-

bindungen zwischen den Prozessen dargestellt. Zum Beispiel gibt MPI für eine Anfrage nach den

Nachbarn in Dimension 1 des Prozesses mit dem Rang 5 die Prozessränge 1 und 9 zurück.

Es sei noch angemerkt, dass Supercomputer-Systeme, wie zum Beispiel die Testarchitektur Hermit,

welche in Kapitel 4 beschrieben wird, für die Kommunikation mit MPI optimiert sind.

24

3.4 Verteilte Hierarchisierung und Dehierarchisierung

3.4.3 Hierarchisierung

Nachdem die Aufteilung der Daten im Unterabschnitt 3.4.1 erläutert wurde, befasst sich der folgende

Abschnitt mit den Veränderungen bezüglich der verteilten Hierarchisierung.

In Abbildung 3.5 ist die Baumstruktur für ein eindimensionales Gitter mit Level l = 3 dargestellt.

Hierbei wurden die Punkte auf die Prozesse 0 und 1 aufgeteilt, wodurch hierarchische Abhängigkeiten

zwischen Punkten über Prozessgrenzen hinausgehen. Beispielsweise lässt sich der Punkt 5 in Prozess

1 nicht ohne weiteres hierarchisieren, da sein linker hierarchischer Vorgänger sich auf Prozess 0

befindet.

Im folgenden gilt es demnach vorerst für jeden Prozess diejenigen Punkte zu ermitteln, welche

der jeweilige Prozess benötigt und welche die Nachbarprozesse benötigen. Daraufhin werden die

ermittelten Punkte ausgetauscht.

Weiterhin wird die Hierarchisierung auf die geänderte Datenstruktur angepasst, da, im Vergleich zum

Algorithmus 3.1, nur über lokal vorhandene Punkte iteriert wird.

4

2

1 3

6

5 7

0 8

0 1

Level 1

Level 2

Level 3

Abbildung 3.5: Baumdarstellung eines eindimensionalen Gitters mit l = 3 und Randwerten, wobei

das Gitter auf 2 Prozesse aufgeteilt ist.

Datenaustausch

Der Datenaustausch besteht im wesentlichen aus drei Schritten.

1. Berechnung der zu sendenden und der benötigten Punkte.

2. Sammeln der zusendenden Werte für alle Nachbarprozesse bezüglich einer Dimension.

3. Austausch der Daten mittels MPI.

Die Berechnung der Punkte setzt voraus, dass jeder Prozess weiß, über welchen lokalen Bereich des

globalen Gitters die einzelnen Prozesse verfügen. Dabei hat jede Dimension eine festen Unterteilung

in Prozessen, wodurch jeder Pol bezüglich einer Dimension die gleiche eindimensionale Struktur

aufweist. Die Berechnung der Punkte lässt sich für jede Dimension zu einem eindimensionalen Modell,

wie in Abbildung 3.5, vereinfachen.

25

3 Implementierung

1 3 5 7 9

2 6 10

4

8

0Level 1
.
.
.

Level li − 3

Level li − 2

Level li − 1

Level li

Abbildung 3.6: Linker Teilbaum eines Gitters mit Randwerten und li ≥ 5 und den hierarchischen

Abhängigkeiten (blau) der Punkte.

Dieser Feststellung lässt sich durch die Abbildung 3.3 veranschaulichen. Betrachtet man hier die

horizontale Unterteilung des Gitters, so ist ersichtlich, dass die oberen Prozesse jeweils 5 Punkte

(4 Gitterpunkte + 1 Randpunkt) in der senkrechten Achse beinhalte. Die unteren Prozesse beinhaltet

beide 4 Punkte (3 Gitterpunkte + 1 Randpunkt) in der senkrechten Achse.

Daraus lässt sich die Erkenntnis gewinnen, dass die Berechnung über die eindimensionale Struktur

jeder Dimension erfolgt und diese anschließend auf die lokale Arraystrukur umgerechnet wird.

Für die Prozesse ist daher die Berechnung des ersten und letzten lokalen Punktes bezüglich der

eindimensionalen Struktur wichtig. Diese lässt sich für Dimension i berechnen durch

(3.3) (Erster Punkt)i :=
⌈

(2li − 1) · (Koordinaten des Prozesses)i

(Anzahl der Prozesse)i

⌉
+ 1

wobei die Koordinate bezüglich einer Dimension i eines Prozesse anhand der Topologie, welche in

Unterabschnitt 3.4.2 dargestellt wurde, von MPI ausgelesen werden kann. Dementsprechend lässt

sich der letzte Punkt durch

(3.4) (Letzter Punkt)i :=
⌈

(2li − 1) · ((Koordinaten des Prozesses)i + 1)
(Anzahl der Prozesse)i

⌉

berechnen.

Im folgenden wird aus Gründen der Übersichtlichkeit vorerst die Berechnung der benötigten Punkte

jedes Prozesses dargestellt. Dieser wird daraufhin erweitert, um auch die Punkte, welche an die

Nachbarn geschickt werden müssen, zu berechnen.

26

3.4 Verteilte Hierarchisierung und Dehierarchisierung

Algorithmus 3.3 Berechnung der auszutauschenden Punkte anhand der eindimensionalen Struktur,

wie in Abbildung 3.6

1: function berechnePunkte(i)
2: punkt := (Erster Punkt)i

3: while punkt <= (Letzter Punkt)i do
4: if linker Vorgänger von punkt außerhalb then
5: merke linken Vorgänger

6: end if
7: if rechter Vorgänger von punkt außerhalb then
8: merke rechten Vorgänger

9: punkt := nächster lokaler Punkt mit Level = min(li, Level(punkt) + 1)
10: else
11: punkt := rechter Vorgänger von punkt
12: end if
13: end while
14: end function

Die eigentliche Berechnung der Punkte lässt sich naiv auf einen einfachen Algorithmus übertragen.

Dabei wird jeder Punkt betrachtet und jeweils überprüft, ob dessen hierarchische Vorgänger in einem

Nachbarprozess oder lokal vorhanden sind. Dieser lässt sich jedoch noch verkürzen.

Die Abbildung 3.6 zeigt den linken Teilbaum eines Gitters mit beliebigem Level l ≥ 5. Hierbei wurden
die hierarchischen Abhängigkeiten in blau dargestellt. Betrachtet man nun die Abhängigkeiten des

Punktes 3, so lässt sich feststellen, dass dieser bei Betrachtung der Punkte 2 und 4 nicht notwendiger-

weise beachtet werden muss. Dies lässt sich ebenso für die Punkte 5, 6, 7 und 9 feststellen. Für den

Punkt 10 fehlt der rechte Vorgänger, so dass dieser nicht übersprungen werden kann.

Der optimierte Algorithmus zur Berechnung der nötigen Punkte ist durch den Pseudocode in Algo-

rithmus 3.3 dargestellt.

Dieser Algorithmus beschreibt einen Pfad über eine Teilmenge der Punkte eines Prozesses, wobei an

jedem Punkt, beginnend beim kleinsten lokal vorhandenen Punkt, die hierarchischen Vorgänger auf

lokale Existenz überprüft werden. Der nächste Punkt ist entweder der rechter Vorgänger, falls dieser

lokal vorhanden ist oder der nächste lokale Punkt mit Level lnext > lxi und lnext kleinstmöglich.

Dabei wird beginnend beim Level des Punktes bis zum Level li überprüft, ob der nächste Punkt

dieses Levels innerhalb des lokalen Bereichs des Prozesses liegt, wobei der nächste Punkt auf Level li
gewählt wird, wenn dieser innerhalb oder schon außerhalb des lokalen Bereichs liegt. Durch diese

Wahl terminiert die „while“-Schleife in Zeile 3.

Der Algorithmus 3.3 durchläuft die Punkte des Teilbaums in Abbildung 3.6 beginnend bei 1 über 2, 4,

8 zu 10. Hierbei werden für jeden Punkt die entsprechenden hierarchischen Vorgänger betrachtet und

gegebenenfalls in einer Liste gespeichert. Beispielsweise für den Punkt 8, ist der rechte Vorgänger nicht

vorhanden, so dass der Punkt 24 hinzugefügt wird. Hierbei basiert die Berechnung des Vorgängers

auf der Definition 2.15 aus Kapitel 2.

27

3 Implementierung

Algorithmus 3.4 Überprüfung aller hierarchischen Nachfolger eines Punktes

1: function checkNachfolger(punkt)
2: for level := Level(punkt)− 1 to li do
3: if punkt + 2li−level

außerhalb then // rechte Nachfolger

4: speichere punkt für entsprechenden Nachbarprozess

5: end if
6: if punkt− 2li−level

außerhalb then // linke Nachfolger

7: speichere punkt für entsprechenden Nachbarprozess

8: end if
9: end for
10: end function

Die Berechnung der Punkte, welche an die Nachbarprozesse geschickt werden, lassen sich in den

Algorithmus 3.3 einbinden. Hierbei werden für jeden Punkt nicht nur dessen Vorgänger, sondern auch

dessen hierarchischen Nachfolger betrachtet. Die Iteration über die Nachfolger ist in Algorithmus

3.4 dargestellt. Dabei werden beginnend beim Nachfolger mit dem kleinsten Level alle weiteren

Nachfolger bis Level li betrachtet und gegebenenfalls gespeichert.

Mit Hilfe dieser Algorithmen werden die auszutauschenden Punkte in jedem Prozess berechnet. Diese

eindimensionalen Punkte lassen sich auf Positionen bezüglich des lokalen Arrays umrechnen, welche

durch MPI ausgetauscht werden.

Hierarchisierung

Zur Visualisierung der Datenstruktur nach dem Austausch der Punkte, stellt Abbildung 3.7 ein

Gitter mit l = 3, Randwerten und einer Aufteilung in 2 Prozesse dar. Hierbei sind die, mit Hilfe der

Algorithmen des vorherigen Abschnitt,s ausgetauschten Punkte durch rote Kreise dargestellt. Jeder

Prozess verfügt somit über die benötigten Punkte und kann die lokale Hierarchisierung ausführen.

1 3 5 7

2 6

4

8

4

0 8

Level 1

Level 2

Level 3

Abbildung 3.7: Aufteilung eines Gitters mit l = 3 in 2 Prozesse. Ausgetauschten Punkte 4 und 8 in

rot dargestellt.

28

3.4 Verteilte Hierarchisierung und Dehierarchisierung

Dabei lässt sich der Algorithmus der Hierarchisierung zu Beginn dieses Kapitels durch leichte Ände-

rungen anpassen. Zum einen werden für jede Dimension die entsprechenden Punkte ausgetauscht

und zum anderen wird nur über die lokal vorhandenen xi iteriert. Der geänderte Ablauf der Hierar-

chisierung ist zusammenfassend in Algorithmus 3.5 dargestellt.

Algorithmus 3.5 Erweiterung des Basis Hierarchisierungs-Algorithmus 3.1

1: function verteilteHierarchisierung

2: for dd← 1 to d do
3: berechnePunkte(dd) // Datenaustausch

4: for all lokale 1-dim Pole P in Richtung dd do

5: for l← ldd to

2, (keine Randwerte)dd

1, (Randwerte)dd

do

6: for all (Erster Punkt)dd ≤ xi ≤ (Letzter Punkt)dd auf Level l do
7: grid[i] = grid[i]− 0.5 · leftPredecessor(i, dd, l)
8: grid[i] = grid[i]− 0.5 · rightPredecessor(i, dd, l)
9: end for
10: end for
11: end for
12: end for
13: end function

3.4.4 Dehierarchisierung

Der Algorithmus in Abschnitt 3.3 lässt sich nicht ohne weiteres durch Hinzufügen eines Datenaustau-

sches, ähnlich zu dem der Hierarchisierung, erweitern.

Die Dehierarchisierung ist das Umkehren der Hierarchisierung, der Ablauf ist somit genau entgegen-

gesetzt. Der Knackpunkt bezüglich des Datenaustausches ergibt sich aus dem Durchlauf der Level,

beginnend bei Level 1 bzw. 2 bis li. Hierbei setzen die xi auf höheren Level die schon dehierarchisierten

Werte auf den niedrigeren Level voraus.

Abbildung 3.8 zeigt die eindimensionale Struktur eines Gitters mit l = 3 und Randwerten. Beim

Dehierarchisieren wird hier mit dem Punkt 4 begonnen. Dieser benötigt die Punkte 0 und 8 des

Nachbarprozesses 0 beziehungsweise 2. Bis hier ist ein Austausch äquivalent zum Austausch der

Hierarchisierung möglich, jedoch benötigen die Punkte 2 und 6 jeweils den dehierarchisierten Wert

des Punktes 4. Ebenso ist für die Punkte 3 und 5 keine Dehierarchisierung ohne die dehierarchisierten

Werte der Punkte 2 und 6 möglich. Ein Austausch äquivalent zu dem der Hierarchisierung ist demnach

nicht möglich.

29

3 Implementierung

4

2

1 3

6

5 7

0 8

0 1 2

Level 1

Level 2

Level 3

Abbildung 3.8: Baumdarstellung eines eindimensionalen Gitters mit l = 3 und Randwerten, wobei

das Gitter in 3 Prozesse aufgeteilt ist.

Naiv

Die naive Lösung besteht darin, nach der Dehierarchisierung jedes Levels nur die geänderten Funkti-

onswerte bezüglich diesem auszutauschen. Hierbei werden jeweils nur die, für die Dehierarchisierung

des folgenden Levels, relevanten Punkte ausgetauscht.

Verglichen mit dem Austausch der Hierarchisierung für jede Dimension, ist hier ein Austausch für

jede Dimension und jedes Level notwendig, wodurch sich die Anzahl der Nachrichten erhöht bei

gleichzeitiger Verringerung der Größe der Nachrichten. Dies hat eine häufige Synchronisierung der

Prozesse zur Folge.

Der Ablauf des naiven Algorithmus auf das, in Abbildung 3.8 dargestellte, Gitter ergibt sich zu:

1. Austausch der Randwerte, falls diese in Dimension i vorhanden.

2. Lokale Dehierarchisierung der xi auf Level 1 (Punkt 4)

3. Austausch der xi auf Level 1 (Punkt 4 an die Prozesse 0 und 2)

4. Lokale Dehierarchisierung der xi auf Level 2 (Punkt 2 und 6)

5. Austausch der xi auf Level 2 (Punkt 2 und 6 an Prozess 1)

6. Lokale Dehierarchisierung der xi auf Level 3 (Punkt 1, 3, 5 und 7)

Das Austauschen, von nur wenigen Punkten bei jedem Level, kann, durch gegenseitiges Warten, zum

Leerlauf von einigen Prozessen führen, wodurch Rechenzeit verschenktwird und eine unausgeglichene

Auslastung entsteht.

30

3.4 Verteilte Hierarchisierung und Dehierarchisierung

Optimiert

Das Ziel des optimierten Algorithmus ist, das Austauschen äquivalent zu dem der Hierarchisie-

rung, einmal pro Dimension, durchzuführen. Dabei wird das häufigere Synchronisieren der Prozesse

durch zusätzliche Rechenarbeit ausgeglichen, wobei sich die Abhängigkeiten zwischen den xi nicht

beeinflussen lassen.

In Abbildung 3.8 bestehen für den Punkt 3 nicht lokal vorhandene hierarchische Abhängigkeiten. Bei

der Betrachtung der Abhängigkeit des linken Vorgängers (Punkt 2) lässt sich erkennen, dass dieser

wiederum den linken Randwert (Punkt 0) und den Punkt 4 benötigt. Hierbei fällt auf, dass der linke

Randwert schon für das Dehierarchisieren des Punktes 4 benötigt wird und somit lokal auf Prozess

1 vorhanden ist. Ein erneutes Austauschen nach Level 1 lässt sich an diesem Beispiel vermeiden,

durch das Senden der Punkte 0 und 2 zu Beginn. Der Punkt 2 lässt sich auf Level 2 lokal in Prozess 1

Dehierarchisieren, wodurch der Punkt 3 ohne erneuten Austausch dehierarchisiert werden kann.

Nach diesem Schema erhält Prozess 0 sowohl den Punkt 4 von Prozess 1 als auch den Punkt 8 von

Prozess 2, so dass dieser den Punkt 4 selbständig dehierarchisieren kann. Äquivalent dazu läuft die

Dehierarchisierung gespiegelt in Prozess 2 ab.

Die Komplexität des Austausches wird durch das Austauschen der gesamten Abhängigkeitsstruktur

erhöht, wobei im Gegenzug Leerlaufzeiten reduziert oder komplett vermieden werden. Abbildung 3.9

stellt die Struktur der Daten nach dem Austausch für das Beispiel eines Gitters mit l = 3 und einer

Aufteilung in 3 Prozesse dar.

1 3 5 7

2 6

4

8

2

0

6

8

4

0

4

0 8

0 1 2

Level 1

Level 2

Level 3

Abbildung 3.9: Baumdarstellung eines eindimensionalen Gitters, nach dem Datenaustausch, mit

l = 3 und Randwerten, wobei das Gitter in 3 Prozesse aufgeteilt ist. Dabei sind die

ausgetauschten Punkte, analog zu Abbildung 3.7 in rot dargestellt.

Der Algorithmus bezüglich des Berechnens der auszutauschenden Punkte der Hierarchisierung wird

für die Dehierarchisierung erweitert. Hierbei wird die Reihenfolge der Betrachtung der Punkte nicht

verändert, wohingegen die betrachtenden Abhängigkeiten erweitert werden.

Benötigten Punkte: Bei der Berechnung der benötigten Punkte werden, wie in Abbildung 3.9

dargestellt, zusätzlich alle hierarchischen Vorgänger betrachtet. Für einen lokalen Punkt xi mit

einem nicht lokalen hierarchischen Vorgänger xV orgänger ergeben sich bezüglich der hierarchischen

Vorgängern von xV orgänger mehrere Möglichkeiten:

31

3 Implementierung

1. Sowie xV orgänger als auch ein hierarchischer Vorgänger dessen befinden sich im gleichen

Prozess. Der Prozess sendet somit beide bzw. alle weiteren. Ein Beispiel für diese Beziehung

sind die Punkte 2 und 0 bezüglich des Punktes xi = 3 in Abbildung 3.9.

2. Ein Vorgänger von xV orgänger befinden sich weder in dem gleichen Prozess von xi noch von

xV orgänger .

3. Ein Vorgänger von xV orgänger befindet sich im gleichen Prozess wie xi. Hierbei entstehen

bezüglich dieses Punktes keine weiteren zu sendenden Daten. Ein Beispiel für diese Beziehungen

sind die Punkte 2 und 4 bezüglich des Punktes xi = 3. Dabei ist der Vorgänger von Punkt 2,

Punkt 4, wiederum in Prozess 1 und somit im gleichen Prozess wie xi.

Aus diesen Möglichkeiten folgt, dass die Berechnung der Vorgänger rekursiv berechnet werden, da

diese in verschiedenen Prozessen sein können.

Zusendende Punkte: Bei der Betrachtung der ausgetauschten Punkte in Abbildung 3.9 ist ersichtlich,
dass die Punkte auf Level 1 an alle Nachbarn verteilt wurden. Für alle weiteren Punkte werden alle

hierarchischen Nachfolger betrachtet. Diese Abhängigkeit beschreibt den Teilbaum mit xi als Wurzel

und Level lxi bis Level lj in Dimension j. Formal lässt sich der Teilbaum darstellen durch

(3.5)

(kleinster Nachfolger)i := i− (2lj−lxi − 1)
(größter Nachfolger)i := i + (2lj−lxi − 1)

Der Punkt xi wird daraufhin an alle Prozesse verteilt, welche einen Teil der Punkte zwischen

(kleinster Nachfolger)i und (größter Nachfolger)i beinhalten.

Dehierarchisierung

Das erweiterte Austauschen von Abhängigkeiten bis auf Level 1 erzeugt einen komplexeren Ablauf

der Dehierarchisierung. Hierbei werden für eine Dimension i die Daten ausgetauscht und daraufhin

sowohl die lokalen als auch die ausgetauschten Werte dehierarchisiert.

Im Vergleich zur Hierarchisierung werden dabei gegebenenfalls auch ein Teil der ausgetauschten

Werte dehierarchisiert. Das Austauschen nach jedem Level des naiven Algorithmus wird somit ersetzt

durch das Dehierarchisieren der ausgetauschten Werte auf dem entsprechenden Level. Analog zur

verteilten Hierarchisierung lässt sich der Ablauf wie in Algorithmus 3.6 darstellen.

32

3.5 Cache-Effizienz

Algorithmus 3.6 Verteilte Dehierarchisierung mit optimiertem Ablauf

1: function verteilteDehierarchisierung

2: for dd← d to 1 do
3: berechnePunkteDehierarchisierung(dd) // Datenaustausch

4: for all lokale 1-dim Pole P in Richtung dd do

5: for l←

2, (keine Randwerte)dd

1, (Randwerte)dd

to ldd do

6: for all (Erster Punkt)dd ≤ xi ≤ (Letzter Punkt)dd auf Level l do
7: grid[i] = grid[i] + 0.5 · leftPredecessor(i, dd, l)
8: grid[i] = grid[i] + 0.5 · rightPredecessor(i, dd, l)
9: end for
10: for all ausgetauschte Punkte auf Level l do
11: // Dehierarchisierung der ausgetauschten Punkte gespeichert im Array extern[]

12: extern[i] = extern[i] + 0.5 · leftPredecessor(i, dd, l)
13: extern[i] = extern[i] + 0.5 · rightPredecessor(i, dd, l)
14: end for
15: end for
16: end for
17: end for
18: end function

3.5 Cache-Effizienz

Der Ablauf der Hierarchisierung und Dehierarchisierung erfolgt Polweise. In Abbildung 3.10 ist die

Arraystruktur für ein Gitter mit l = 3 dargestellt. Dabei beginnt das eindimensionale Gitter links

oben und verläuft zeilenweise bis zum letzten Eintrag rechts unten. Hierbei wurde die Nummerierung

anhand der Baumdarstellung der Pole bezüglich Dimension 2 gewählt. Für einen blau umrahmten Pol

bezüglich Dimension 2 ist ersichtlich, dass die Werte der Punkte im Array lokal beieinander liegen.

Das Bearbeiten eines Punktes führt in der Hardware dazu, dass die Werte in Cache-Lines aus dem

Hauptspeicher in den Cache geladen werden [7, S. 334ff]. Beim Hierarchisieren von Punkt 1 des ersten

Pols wird demnach nicht nur genau dessen Wert geladen, sondern die gesamte Cache-Line. Daraus

resultiert, dass für das Hierarchisieren von Punkt 1 der rot umrahmte Bereich in Abbildung 3.10 in den

Cache geladen wird. Dabei ist der Punkt 0 der linke Vorgänger und Punkt 2 der rechte Vorgänger.

Bei dem, in Abschnitt 3.4.3 vorgestellten, Algorithmus findet eine polweise Abarbeitung statt. Für

Dimensionen mit hohem Level und daraus resultierenden großen Polen werden die schon in die

Cache geladenen Werte der Nachbarpole zu Beginn des Pols durch Werte am Ende des Pols ersetzt,

bevor dieses benutzt wurden. Daraus folgt, dass die Werte mehrere Male geladen werden, ohne dass

sie verwendet werden.

Für bessere Ausnutzung der Lokalität werden die Punkte nicht mehr nach Polen abgearbeitet, sondern

in Blöcken, welche jeweils aus mehreren Polen bestehen. Anhand der Abbildung 3.10 werden 4 Pole

gleichzeitig hierarchisiert bzw. dehierarchisiert.

33

3 Implementierung

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

Abbildung 3.10: Array grid[] eines Gitters von links oben nach rechts unten mit l = 3, wobei
sich die Nummerierung an den Punktindizes der eindimensionalen Baumstruktur

(rechts) der Pole bezüglich Dimension 2 orientiert. In blau ist ein Pol bezüglich der

Dimension 2 hervorgehoben und in rot die in die Cache geladenen Punkte für das

Hierarchisieren von Punkt 1.

3.6 SG++

SG++ ist eine Toolbox, welche Gegenstand der Dissertation „Spatially Adaptive Sparse Grids for

Higher-Dimensional Problems“ von Dirk Pflüger war [3, 4]. Diese Toolbox ermöglicht das Bear-

beiten verschiedenster höherdimensionalen Probleme mit adaptiven dünnen Gittern und umfasst

Interpolation mit verschiedenen Basen, Approximationen und das Lösen von partiellen Differen-

tialgleichungen. Die Algorithmen in SG++ sind zum Großteil in C++ programmiert, wodurch die

vorgestellten Algorithmen ebenfalls in C++ umgesetzt wurden und in SG++ eingebunden wurden.

34

4 Evaluation

In diesem Kapitel werden Messungen, bezüglich der in Kapitel 3 vorgestellten Algorithmen für

die Hierarchisierung und Dehierarchisierung, vorgestellt und bewertet. Dabei werden jeweils die

Hierarchisierung und die Varianten der Dehierarchisierung dargestellt.

Die angegebenen Zeiten in diesem Kapitel sind jeweils die durchschnittlichen Zeiten für die Hierar-

chisierung und Dehierarchisierung. Dabei wurde weiter unterschieden zwischen durchschnittlicher

Berechnungszeit und Zeit für den Datenaustausch.

4.1 Architektur der Testsysteme

Die Messungen in diesem Kapitel wurden auf den folgenden zwei Systemen ausgeführt.

Hermit

Hermit ist ein Cray XE6 Supercomputer [8]. Dieser verfügt über 3552 Knoten mit je 2 Prozessoren,

welche aus 16 Kernen mit einer Taktrate von je 2.3 GHz bestehen. Diese verfügen über einen L1 Cache

mit 16 KB, einen L2 Cache mit 2 MB und einen L3 Cache mit 6 MB. Zusätzlich verfügt jeder Knoten

über 32 GB bzw. 64 GB Hauptspeicher.

Die Knoten von Hermit sind in einem 3D-Torus-Netzwerk aus Cray Germini Netzwerkcontrollern

verbunden [9].

Kepler

Kepler verfügt über ein Prozessor von Intel, welcher aus 2 CPUs mit je 8 Kernen besteht. Dabei

verfügen diese auf gemeinsame 20 MB L3 Cache und pro Kern jeweils über 256 KB L2 und 32 KB L1

Cache. Die Messungen auf diesem System beinhalten nur „single core“ Messungen.

4.2 Messungen

4.2.1 Blockgröße

In den Messungen in Abbildung 4.1 wurde die benötigte Zeit in Abhängigkeit der Blockgröße darge-

stellt. Dabei wurden die Zeit für das Hierarchisieren und Dehierarchisieren auf einem Prozess, bei

einem Gitter mit Dimension d = 5 und einer Gittergröße von ca. 484 Mio. Punkten, gemessen. Die

Messungen wurden auf Kepler ausgeführt.

35

4 Evaluation

Hierbei spielte das Abarbeiten von mehreren Polen gleichzeitig nicht nur bezüglich der Cacheaus-

nutzung eine Rolle. Durch das parallele Abarbeiten werden Berechnungen, wie das Berechnen der

Vorgänger, des nächsten Punktes des gleichen Levels und if-Abfragen bezüglich vorhandener oder

nicht vorhandener Randwerten, eingespart.

In Abbildung 4.1 ist deutlich zu erkennen, dass sich das Abarbeiten von mehreren Polen positiv auf

die Laufzeit auswirkt.

0 2 4 6 8 10 12 14

10

20

30

Blockgröße

Ze
it

in
S

ek
un

de
n

Hierarchisierung
Dehierarchisierung

Abbildung 4.1: Unterschiedliche Blockgrößen bei der Bearbeitung eines Gitters mit insgesamt ca.

484 Mio. Punkten in 5 Dimensionen auf einem Prozess.

4.2.2 Starke Skalierung

Für das Messen der starken Skalierbarkeit wurde die Anzahl der verwendeten Prozessoren von

Messung zu Messung verdoppelt, wobei die Gittergröße unverändert blieb. Hierbei wurde ein Gitter

mit 5 Dimensionen und insgesamt ca. 2 Mrd. Punkten gewählt. Die Messung der Zeiten wurden auf

Hermit durchgeführt.

Die obere Grafik der Abbildung 4.2 zeigt die benötigte Zeit in logarithmischer Skala für die Hierarchi-

sierung. Dabei wird im folgenden die Gesamtzeit in Blau, die Berechnungszeit in Grün und die Zeit für

den Datenaustausch in Rot dargestellt. Beim Vergleich der Varianten der Dehierarchisierung werden

die Messungen für den Austausch pro Dimension gestrichelt, jedoch mit identischer Farbcodierung,

veranschaulicht.

In den Grafiken in Abbildung 4.2 ist zu erkennen, dass der Datenaustausch der Dehierarchisierung

deutlich mehr Zeit beansprucht als der der Hierarchisierung. Dies ist vermeintlich auf die häufige Syn-

chronisierung der Prozesse auf Grund des Datenaustausches bei jedem Level (Naiv) beziehungsweise

auf die höhere Menge an Daten, im Fall des Austausches pro Dimension (Optimiert), zurückzuführen.

Die Berechnungszeit halbiert sich beinahe bei jeder Verdopplung der Prozesse.

36

4.2 Messungen

32 64 128 256 512 1024 2048 4096

10−1

100

Anzahl der Prozesse

Ze
it

in
S

ek
un

de
n

Hierarchisierung Gesamtzeit
Hierarchisierung Optimum
Hierarchisierung Berechnungszeit
Hierarchisierung Datenaustauschzeit

32 64 128 256 512 1024 2048 4096

10−1

100

Anzahl der Prozesse

Ze
it

in
S

ek
un

de
n

Naiv Gesamtzeit
Naiv Berechnungszeit
Naiv Datenaustauschzeit
Opt. Gesamtzeit
Opt. Berechnungszeit
Opt. Datenaustauschzeit

Abbildung 4.2: Oben: Hierarchisierung; Unten: naive (Austausch pro Dimension und Level) und

optimierte (Austausch pro Dimension) Dehierarchisierung. Jeweils mit Blockgröße 8

bei konstanter Gittergröße und 5 Dimensionen.

Die untere Grafik in Abbildung 4.2 vergleicht die Varianten der Dehierarchisierung. Zu Beginn ist

die Zeit des Datenaustausches im optimierten Fall um ca. 20% geringer als beim Austauschen pro

Dimension und Level. Die beinahe konstante Zeit ab 1024 Prozessen, entsteht vermeintlich durch das

Verschicken aller Vorgänger.

Für insgesamt 1024 Prozesse bedeutet dies eine Aufteilung der eindimensionalen Baumstruktur mit

jeweils 63 Punkten (127 in Dimension 5) in 4 Teile (in jeder Dimension). Die einzelnen Prozesse, bei

einer Aufteilung von 63 Punkten auf 4 Prozesse, beinhalten komplette Teilbäume ab Level 2. Bei

weiteren Unterteilungen, werden die Baumstrukturen in kleinere Teilbäume unterteilt, so dass die

37

4 Evaluation

auszutauschenden Vorgänger auf höheren Level sind und die Anzahl der hierarchischen Vorgänger

steigt. Auf Grund dessen wird die Zeit für den Datenaustausch nicht im gleichen Maße wie die

Berechnungszeit kleiner.

4.2.3 Schwache Skalierung

Für das Messen der schwachen Skalierbarkeit wurde sowohl die Anzahl an Prozessen als auch auch

die Gittergröße von Messung zu Messung verdoppelt. Dabei wurde, beginnend bei einem Gitter mit 5

Dimensionen und insgesamt ca. 1 Mrd. Punkten auf 32 Prozessoren, die Zeiten für die Hierarchisierung

und beide Varianten der Dehierarchisierung gemessen, sowie jeweils die Zeiten für die Berechnung

und den Datenaustausch.

Dabei ist die Hierarchisierung in der oberen Grafik in Abbildung 4.3 und die Varianten der Dehier-

archisierung in der unteren Grafik. Sowohl für die Hierarchisierung als auch für die Varianten der

Dehierarchisierung wurden in dünnem (gestrichelten) Blau die optimale Zeit eingetragen, welche

konstant bei gleichzeitiger Verdopplung der Prozesse und der Gitterpunkte ist.

Die Hierarchisierung weicht geringfügig vom Optimum ab, wohingegen bei beiden Fällen der Dehier-

archisierung eine höhere Abweichung zu erkennen ist. Des Weiteren zeigt die Grafik, dass sich bei

mehr Prozessen die Variante mit dem Austausch pro Dimension negativ auf die Berechnungszeit und

bei einer vielen Prozessen auch auf die Zeit des Datenaustausches auswirkt.

Dieser Aspekt wurde zuvor bei den Messungen für die starke Skalierbarkeit angesprochen und näher

erläutert. Die Wahl einer Variante der Dehierarchisierung ist somit stark abhängig von der Aufteilung

der Daten auf die Prozesse.

38

4.2 Messungen

32 64 128 256 512 1024 2048

0

1

2

3

Anzahl der Prozesse

Z
e
i
t
i
n
S
e
k
u
n
d
e
n

Hierarchisierung Gesamtzeit

Hierarchisierung Optimum

Hierarchisierung Berechnungszeit

Hierarchisierung Datenaustauschzeit

32 64 128 256 512 1024 2048

0

2

4

6

Anzahl der Prozesse

Z
e
i
t
i
n
S
e
k
u
n
d
e
n

Naiv Gesamtzeit

Naiv Optimum

Naiv Berechnungszeit

Naiv Datenaustauschzeit

Opt. Gesamtzeit

Opt. Optimum

Opt. Berechnungszeit

Opt. Datenaustauschzeit

Abbildung 4.3: Oben: Hierarchisierung; Unten: naive (Austausch pro Dimension und Level) und

optimierte (Austausch pro Dimension) Dehierarchisierung. Jeweils Verdopplung der

Prozesse und Verdopplung der Gitterpunkte. Anzahl der Gitterpunkte ausgehend

von ca. 1,160 Mrd. mit Blockgröße 8.

4.2.4 Optimierbarkeit

Im folgenden wird die Effizienz der Algorithmen verglichen und in Bezug zu der theoretisch Ober-

grenze basierend auf der Speicherbandbreite gesetzt.

Die theoretische Obergrenze für die Hierarchisierung lässt sich durch die Formel

(4.1)

2 · d ·Ni · (Größe des Datentyps)
Bandbreite des Speichers

39

4 Evaluation

beschreiben [5]. Hierbei wird jeder Punkt des Gitters für jede Dimension einmal betrachtet und dabei

geladen, verändert und zurück geschrieben.

Dabei hängt die Bandbreite wesentlich von Ni ab, da diese in Abhängigkeit von den Kapazitäten

der L1, L2 und L3 Caches unterschiedlich schnell geladen werden können. Für sehr große Ni und

einer Blockgröße von 1 werden die Daten der Cache-Line nicht komplett verwendet, da sie zuvor

überschrieben werden.

Für die Messung der oberen Grenze wurde der „Stream Benchmark“ von John D. McCalpin an

die Hierarchisierung angepasst [10]. Hierbei wurde für verschiedene Gittergrößen die Anzahl der

ausgeführten Berechnungen der Definition 4.2 gemessen.

(4.2)

a[i] := a[i] + ·a[i− 1]
a[i] := a[i] + ·a[i + 1]

Die Ergebnisse dieses Benchmarks sind in Abbildung 4.4 dargestellt, wobei die Anzahl der bearbeiteten

Gitterpunkte pro Sekunde aufgezeigt ist. Die Messungen wurden auf Kepler durchgeführt, wobei

jeweils nur ein Prozess für die Berechnung verwendet wurde.

105 106 107 108
107

108

109

N

N
Sekunde

Stream Benchmark
Serielle (De-)Hierarchisierung
Opt. (De-)Hierarchisierung
Opt. (De-)Hierarchisierung - Block 8
Naiv (De-)Hierarchisierung
Naiv (De-)Hierarchisierung - Block 8

Abbildung 4.4: Effizienz der Algorithmen im Vergleich und im Bezug zur theoretischen Obergrenze.

Die Ergebnisse in Abbildung 4.4 zeigen, dass die Algorithmen nicht optimal sind.

Der Algorithmus für die serielle Hierarchisierung und Dehierarchisierung wird durch die Flexibilität

bezüglich Randwerten verlangsamt, da hier viele if-Abfragen notwendig sind und die Startwerte der

Pole nicht direkte berechnet werden können.

40

5 Schluss

5.1 Zusammenfassung

Zu Beginn dieser Arbeit wurden die mathematischen Grundlagen für die Hierarchisierung und

Dehierarchisierung beschrieben. Daraufhin folgte in Kapitel 3 der serielle Algorithmus für die Hierar-

chisierung, welcher um variable Randwerte erweitert wurde. Um auf der veränderten Datenstruktur

für verteilte Gitter zu arbeiten, wurden Algorithmen bezüglich des Datenaustausches erläutert. Dabei

wurden für die Dehierarchisierung zwei Varianten mit unterschiedlichen Austauschverfahren vorge-

stellt. Die entwickelten Algorithmen wurden im Kapitel 4 mit Messungen bewertet und verglichen.

5.2 Ausblick

Die Implementierung der Hierarchisierung undDehierarchisierung verwendet in der seriellen Variante

jeweils zwei Methoden. Dabei bestimmt eine die Startwerte der eindimensionalen Pole und die andere

arbeitet die eindimensionalen Pole ab. Durch den variablen Rand und das zusätzliche Aufteilen der

Pole auf verschiedene Prozesse entsteht Komplexität, welche durch das Verwenden vieler if-Abfragen

und mehrerer Hilfsmethoden gelöst wurde. Auch wurden die Werte der Nachbarn in einem eigenen

Array gespeichert, wodurch weitere if-Abfragen entstanden sind, um die Position der benötigten

Werte zu ermitteln.

Eine mögliche Erweiterung wäre das Verwenden von nur einem Array, so dass die übertragenen

Werte an das Ende des Arrays, mit den lokalen Punkten, angehängt werden. Beim Durchlauf des

ersten Pols könnten die Offsets der benötigten Vorgänger gespeichert werden, so dass das Abarbeiten

der übrigen Pole ohne if-Abfragen auskommt.

Dies führt zu einer weiteren möglichen Erweiterung. Da für jede Dimension klar definiert ist, ob diese

Randwerte beinhaltet, könnte es sinnvoll sein die Methoden für das Abarbeiten der Pole aufzuteilen,

so dass es für die Bearbeitung der Dimension mit Randwerten andere Methoden als für die ohne

Randwerte gibt.

Auch kann es möglich sein, dass für eine Dimension keine Aufteilung in mehrere Prozesse benötigt

wurde, so dass die Verwendung der seriellen Bearbeitung für diesen Fall die vorzuziehende Methode

wäre.

41

Literaturverzeichnis

[1] Prof. Dr. rer. nat. habil. Miriam Mehl. Skript zur Vorlesung Grundlagen des wissenschaftlichen

Rechnens. 2014. (Zitiert auf Seite 9)

[2] Michael Griebel, Michael Schneider, and Christoph Zenger. A combination technique for the

solution of sparse grid problems, 1992. (Zitiert auf Seite 9)

[3] Dirk Pflüger. Spatially Adaptive Sparse Grids for High-Dimensional Problems. Verlag Dr. Hut,

München, August 2010. (Zitiert auf den Seiten 6, 9, 11, 12, 13, 16, 17 und 34)

[4] Sg++. http://www5.in.tum.de/SGpp/releases/index.html. (Zitiert auf den Seiten 9 und 34)

[5] Philipp Hupp. Performance of unidirectional hierarchization for component grids virtually

maximized. Procedia Computer Science, 29(0):2272 – 2283, 2014. 2014 International Conference

on Computational Science. (Zitiert auf den Seiten 7, 19 und 40)

[6] Mpi. http://www.open-mpi.org/. (Zitiert auf Seite 24)

[7] Prof. Dr. Hans-Joachim Wunderlich. Skript zur Vorlesung Rechnerorganisation. 2008. (Zitiert

auf Seite 33)

[8] Hermit. http://www.prace-ri.eu/best-practice-guide-cray-xe-xc-html/?lang=en#

sec-3-1. (Zitiert auf Seite 35)

[9] Germini. http://www.training.prace-ri.eu/uploads/tx_pracetmo/

BestPracticeHermit.pdf. (Zitiert auf Seite 35)

[10] John D. McCalpin. Memory Bandwidth and Machine Balance in Current High Performance

Computers. IEEE Computer Society Technical Committee on Computer Architecture (TCCA)
Newsletter, pages 19–25, December 1995. (Zitiert auf Seite 40)

Alle URLs wurden zuletzt am 7. Oktober 2014 geprüft.

43

http://www5.in.tum.de/SGpp/releases/index.html
http://www.open-mpi.org/
http://www.prace-ri.eu/best-practice-guide-cray-xe-xc-html/?lang=en#sec-3-1
http://www.prace-ri.eu/best-practice-guide-cray-xe-xc-html/?lang=en#sec-3-1
http://www.training.prace-ri.eu/uploads/tx_pracetmo/BestPracticeHermit.pdf
http://www.training.prace-ri.eu/uploads/tx_pracetmo/BestPracticeHermit.pdf

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich

habe keine anderen als die angegebenen Quellen benutzt und

alle wörtlich oder sinngemäß aus anderen Werken übernommene

Aussagen als solche gekennzeichnet. Weder diese Arbeit noch

wesentliche Teile daraus waren bisher Gegenstand eines anderen

Prüfungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-

se noch vollständig veröffentlicht. Das elektronische Exemplar

stimmt mit allen eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Problemstellung
	1.2 Gliederung

	2 Grundlagen
	2.1 Interpolation mit der Knotenbasis
	2.2 Hierarchische Basisfunktionen
	2.3 Dünne Gitter und Kombinationstechnik
	2.4 Randwerte
	2.5 Hierarchisierung und Dehierarchisierung

	3 Implementierung
	3.1 Ausgangspunkt
	3.1.1 Datenstruktur

	3.2 Randwerte
	3.3 Dehierarchisierung
	3.4 Verteilte Hierarchisierung und Dehierarchisierung
	3.4.1 Aufteilung der Daten
	3.4.2 Kommunikationsmedium
	3.4.3 Hierarchisierung
	3.4.4 Dehierarchisierung

	3.5 Cache-Effizienz
	3.6 SG++

	4 Evaluation
	4.1 Architektur der Testsysteme
	4.2 Messungen
	4.2.1 Blockgröße
	4.2.2 Starke Skalierung
	4.2.3 Schwache Skalierung
	4.2.4 Optimierbarkeit

	5 Schluss
	5.1 Zusammenfassung
	5.2 Ausblick

	Literaturverzeichnis

