Studiengang:

Prifer:

Betreuer:

Beginn am:

Beendet am:

CR-Nummer:

Institut fiir Softwaretechnologie

Universitat Stuttgart
UniversitatsstraBe 38
D-70569 Stuttgart

Bachelorarbeit Nr. 136

Synchronisierung der
Dokumentation von
Software-Modulen

Michael Happel

Softwaretechnik

Prof. Dr. Stefan Wagner

Dipl.-Inf. lvan Bogicevic

8. Mai 2014

7. November 2014

D.2.7,H.2.7

Kurzfassung

Diese Bachelorarbeit beschiftigt sich mit der Frage, wie Entwickler bei der Aktualisierung ihrer
Dokumentation von Computern unterstiitzt werden konnen. Dabei wird die Dokumentationssoftware
UniMoDoc um eine Synchronisierungsfunktion erweitert, mit der Dokumentationsdaten automatisch
mit Informationen, die im Versionsverwaltungssystem des dokumentierten Projekts zu finden sind,
aktualisiert werden. Die Recherche zur Aufgabenstellung der Arbeit sowie die Implementierung der
Synchronisierungsfunktion sind in dieser Arbeit dokumentiert.

Inhaltsverzeichnis

1 Einleitung
1.1 Motivation e e
1.2 Aufgabenstellung
1.3 Uberblick iiber die Arbeit
2 UniMoDoc
2.1 Einleitung
2.2 Uberblick iiber die Funktionsweise
2.3 Die Beschreibungselemente oL oL L L
3 Das Versionsverwaltungssystem Git
3.1 Einleitung
3.2 DreiBereicheunddreiZustande
3.3 BranchenundMergen. L
3.4 Das Innenleben eines Git-Repositories L.
3.5 GitObjekte
3.6 GitReferenzen
4 Die Extraktionswerkzeuge
4.1 Recherche e
4.2 StatSVIN . . . e
43 GitStats e e e
4.4 GIitinspectoro e e
45 Verwendung der Daten in UniMoDoc
5 Synchronisation
5.1 Allgemeiner Ablauf
52 Anwendungsfalle L
6 Die Implementierung
6.1 JavaServer Faces e
6.2 Programmierstil
6.3 Implementierung
6.4 Probleme e

7 Zusammenfassung und Ausblick
7.1 Ausblick

11
11
11
12

15
15
15
16
16
16
18

21
21
21
21
22
25

27
27
28

37
37
37
37
38

41

Literaturverzeichnis

43

Abbildungsverzeichnis

2.1

3.1
3.2

4.1
4.2
4.3
4.4
4.5

5.1
5.2
53
5.4
5.5
5.6
5.7
5.8
5.9

UniMoDoC Ubersicht 12
Die drei Bereiche von Git [Cha09] 15
Git Objekte [Cha09] 18
Eincheck Historie pro Entwickler, 23
Code eines Entwicklers im aktuellen Commit 23
Aktivitatenprotokoll 24
Dateiverantwortlichkeiten L o 24
Dateitypen e 25
Allgemeiner Synchonsationsablauf 00 L. 27
Ubersicht der Use-Casesot i it ittt 29
Erstellung einer Gitinspector XML Datei unter Windows 30
Erstellung einer Gitinspector XML Datei unter MacOS 31
Synchronisation der Module mit einem Repository 32
Die Markierung eines nicht gefundenen Moduls entfernen 33
Ein nicht gefundenes Modul l6schen 34
Ein nicht gefundenes Modul mit seinen Untermodulen l6schen 35
Die Markierung eines im Repository neu gefundenen Moduls entfernen 36

1 Einleitung

Incorrect documentation is often
worse than no documentation.

(Bertrand Meyer - Creator of the
Eiffel programming language)

1.1 Motivation

In der Softwaredokumentation wird zwischen integrierter und separater Dokumentation unter-
schieden. Integrierte Dokumentation ist die Dokumentation auf Codeebene, die vor allem durch
Kommentare entsteht. Separate Dokumentation ist beschreibt den Dokumentationsstil, wo sich die
Dokumentation auflerhalb des Programmcodes befindet. [Lud10] Darunter fallen die Dokumentation
des Gesamtsystems und die Dokumentation von einzelnen Softwaremodulen.

Bei der Dokumentation des Gesamtsystem wird das komplette Programm anhand seiner Funktionali-
tit beschrieben. Auf die feineren Bestandteile des Programms wird bei dieser Dokumentationsart
nicht detailliert eingegangen. Dokumentation auf Modulebene betrachtet die einzelnen Bestandteile,
aus denen ein Softwaresystem aufgebaut ist. Darunter fallen zum Beispiel Codepakete, in denen das
Benutzerinterface realisiert wird oder auch Strukturen in denen das Datenmodell einer Software un-
tergebracht ist. Die folgende Bachelorarbeit beschaftigt sich mit dem Moduldokumentationswerkzeug
UniMoDoc.

Eine Herausforderung der separaten Dokumentation ist es die Dokumentation aktuell zu halten.
Wenn sich Teile des Programms dndern, oder neue Features in eine Software eingebaut werden, ist es
grundsitzlich einfacher die integrierte Dokumentation aktuell zu halten, da Codekommentare einfach
wihrend der Implementierung angepasst werden konnen.

Da sich aber die separate Dokumentation in unterschiedlichen Dokumenten als der Code befindet,
existiert eine Diskrepanz zwischen diesen beiden Dokumenten. Falls diese Abweichungen nicht
behoben werden, wird die Dokumentation schnell wertlos und muss mit viel Mithe wieder auf
den aktuellen Stand gebracht werden. Dies hat zur Folge, dass die Kosten fiir diese ohnehin sehr
aufwendige und teure Aktivitat noch weiter ansteigen.

Am Beispiel von UniMoDoc werden in der Paketdokumentation Eigenschaften des Codes dokumen-
tiert, die fiir einen Menschen oft schwer und miithevoll zu erheben sind. Ein Beispiel dafiir sind die
Anzahl an Codezeilen in einem Paket. In diesen Fallen ist es wirksam die Metriken von einem Com-
puter erheben zu lassen um so den Entwickler in seiner Pflicht, stdndig eine aktuelle Dokumentation
bereitzustellen, zu unterstiitzen.

1 Einleitung

1.2 Aufgabenstellung

Die Bachelorarbeit ist in zwei Teile aufgeteilt. Dabei umfasst der erste Teil der Arbeit eine Analyse
inwiefern niitzliche Informationen fiir die Dokumentation, die im Versionsverwaltungssystem eines
Projektes gespeichert sind, automatisch erhoben werden kénnen. Dabei soll zum einen erhoben
werden, welche dieser Informationen fiir die Dokumentation in Frage kommen, weiterhin soll eine
Moglichkeit gefunden werden, an diese Metriken zu gelangen. Dies kann Beispielsweise mithilfe eines
Softwarewerkzeugs realisiert werden. Im zweiten Teil soll UniMoDoc um eine Synchronisierungs-
funktion erweitert werden. Diese soll automatisch die ausgewihlten Metriken aus dem ersten Teil
aus dem Versionsverwaltungssystem in die Dokumentation synchronisieren und die gewonnenen
Informationen dort anzeigen. Auftretende Konflikte zwischen der bestehenden Dokumentation und
den Informationen im Repository sollen dabei gekennzeichnet werden.

1.3 Uberblick liber die Arbeit

In der folgenden Arbeit ist die Recherche aus Teil eins sowie die Implementierung aus dem zweiten
Teil der Aufgabenstellung dokumentiert. Sie ist dabei in sechs weitere Kapitel unterteilt.

Kapitel 2 — UniMoDoc ist ein Uberblick iiber die Dokumentationssoftware, die in dieser Arbeit
erweitert wird.

Kapitel 3 — Das Versionsverwaltungssystem Git beschreibt auf welche Art und Weise die Infor-
mationen eines Projekts, in Git gespeichert werden.

Kapitel 4 — Die Extraktionswerkzeuge: Hier werden Werkzeuge vorgestellt mit denen Informa-
tionen aus einem Repository gewonnen werden konnen. Dabei wird ein Werkzeug fir die
Verwendung mit UniMoDoc ausgewdhlt. Weiterhin wird erklart welche Informationen, das
Werkzeug aus einem Projektarchiv gewinnen kann und wie diese in UniMoDoc fiir die Doku-
metation verwendet werden kénnen.

Kapitel 5 — Synchronisation erklart den Ablauf der Synchronisation von den gewonnenen Infor-
mationen mit der Dokumentation in UniMoDoc mithilfe von Use-Cases.

Kapitel 6 — Die Implementierung ist die Dokumentation der Implementierungsarbeit in UniMo-
Doc. Hier wird die Umsetzung der, in der Aufgabenstellung geforderten, Programmfeatures
vorgestellt. Weiterhin wird auf einige Schwierigkeiten, die wihrend der Implementierung
aufgetreten sind, eingegangen und anschlieflend aufgezeigt, wie diese gelost werden konnten.

Kapitel 7 — Zusammenfassung und Ausblick fasst die Ergebnisse der Arbeit zusammen und stellt
Ankniipfungspunkte fiir zukiinftige Erweiterungen der Synchronisierungsfunktion in UniMo-
Doc vor.

10

2 UniMoDoc

2.1 Einleitung

UniMoDoc ist ein Werkzeug zur Erstellung einer Dokumentationen auf Modulebene. Ausgeschrieben
bedeutet der Programmname Universal documentation tool for software modules. Die urspriingliche
Version von UniMoDoc wurde im Rahmen einer Diplomarbeit als Java Swing Anwendung geschrieben,
wurde aber von Ivan Bogicevic und Jan Strauf} als Webanwendung neu entwickelt. Die Anwendung
basiert heute auf dem Java Server Faces(JSF) Framework. UniMoDoc ist unter der Apache Licence
Version 2.0 unter folgender Adresse erhéltlich: http://sourceforge.net/projects/unimodoc/

2.2 Uberblick iiber die Funktionsweise

Abb. 2.1 zeigt die Hauptseite von UniMoDoc, die in vier Bereiche Aufgeteilt ist. Diese sind wie folgt
aufgebaut:

1. Moduliibersicht: In diesem Bereich werden alle Softwaremodule, die von UniMoDoc dokumentiert
werden, aufgelistet. Sie sind hierarchisch nach ihrem qualifizierenden Namen geordnet. Das erste
Paket, mit einem Punkt als qualifizierenden Namen, gibt das Hauptverzeichnis des Projekts an.
Mit einem Klick auf das Plus Icon im unteren Teil des Bereichs konnen neue Module hinzugefiigt
werden. Mit dem Zweig Icon ganz unten, lasst sich die Struktur der Beschreibungselemente aus
dem néchsten Bereich dndern.

2. Beschreibungselemente: Hier werden die Dokumentationsdaten fiir ein, in der Moduliibersicht
ausgewihltes, Paket aufgelistet. Diese Daten werden in UniMoDoc Beschreibungselemente
genannt. Ein Beschreibungselement dokumentiert einen bestimmten Aspekt eines Paketes.
Die Beschreibungselemente sind auf sechs Tabs aufgeteilt und werden im néachsten Abschnitt
genauer erklart. Der Unterbereich in dem sich die Tabs befinden wird Tab Navigation genannt.
Darin befinden zusatzlich noch ein Icon zum Bearbeiten sowie zum Léschen der Module. Mithilfe
des Bearbeiten Icons, kann in einen Editiermodus gewechselt werden, worin der Inhalt fiir alle
Beschreibungselemente manuell gedndert werden kann. Mit einem Klick auf den Loschen Icon
kann ein Modul gel6scht werden.

3. Seitenleiste: In der Seitenleiste werden dem Benutzer niitzliche Hilfsinformationen angezeigt.
Beispielsweise wird der in Abb. 2.1 in diesem Bereich erscheinende Hilfstext dann gezeigt, wenn
der Benutzer mit dem Mauszeiger iiber das Beschreibungselement Tasks fahrt.

11

http://sourceforge.net/projects/unimodoc/

2 UniMoDoc

O O
55| U

bin
de.msp

de.msp.control
de.msp.data
de.msp.data.spec
de.msp.exp
de.msp.gui
de.msp.gui.forms
de.msp.gui.graph
de.msp.html
de.msp.html.sites
de.msp.html.styles
de.msp.imp
de.msp.imp.auto
de.msp.test
de.msp.util

demo

doc

ext

ext.depaviz
ext.j-pad

lib

lib.apache
lib.apache.logging

lib.apache.logging.log4j

lib.jdepend
lib.jgraphx

res

[+
&

al Module Documente

Basics Interface Scenarios

Qualified Name

Long Name

Tasks

Module Status

Technology

Size in ELOC

Subpackage Size in ELOC
Last Change

Author

QOrigin

Tools

Source

Starting Point

Synchronization Status

Testcases Extras Status >
® ¢

The Universal Module Documentor

manage documentation and specification data of software modules

Java

3057 LOC

.Jdoc/Modulspezifikation_v2.0.pdf

Eclipse 4.0, Apache JLog4 and JGraphX

JSsref

Abbildung 2.1: UniMoDoC Ubersicht

Tasks @

the tasks of the module, the
effects implemented, e.g. "showing
the user interface, redirecting user
requests"

4. Titelleiste: Im rechten Teil der Titelleiste befinden sich Icons, die durch anklicken bestimmte Ope-
rationen ausfithren. Darunter gibt es die Option ein neues Projekt anzulegen. Weiterhin gibt es
eine Import- und Exportfunktion fiir XML Dateien sowie weitere Exportfunktionen fiir PDF und
RTF Dateien. Auch kann hier die, in dieser Arbeit implementierte Synchronisierungsfunktion
gestartet werden. Zusétzlich gibt es noch eine Option fiir einen Einstellungs- sowie einen
Aboutdialog.

2.3 Die Beschreibungselemente

2.3.1 Basics Tab

Im Basics Tab finden sich alle grundlegenden Informationen tiber das Paket. Die einzelnen Beschrei-
bungselemente dieses Tabs werden im folgenden kurz erklért.

Qualified Name: Der vollstindig qualifizierte Name des Pakets, beispielsweise org.example.gui

12

2.3 Die Beschreibungselemente

Long Name: Der vollstindige, ungekiirzte Name des Pakets, beispielsweise Graphical User Interface
fir ein Modul mit dem Kurznamen gui.

Tasks: An dieser Stelle werden die Aufgaben des Pakets im Gesamtprogramm dokumentiert. Bei-
spielsweise kann ein Paket fiir den Dateiexport zustindig sein, oder es implementiert das
Benutzerinterface.

Module Status: In diesem Attribut wird der Entwicklungsstatus des Pakets durch die Angabe des
derzeitigen Entwicklungsschritts angegeben. Entwicklungsschritte sind zum Beispiel: Imple-
mentierung fertiggestellt oder Code im Review.

Technology: Hier werden die Haupttechnologien und Programmiersprachen aufgelistet, die fir
das Paket verwendet wurden. Eine Technologie wire zum Beispiel das JSF Framework, eine
Programmiersprache Java.

Size: Dieses Attribut gibt die Grofle des Pakets in Lines of Code(LOC) an.
Last Change: Der letzte Zeitpunkt, an dem Inhalte des Pakets gedndert wurden.

Origin: Dieses Attribut gibt Referenzen an, die wichtig fiir das Paket sind. Wurden beispielsweise
Bilder oder Schriftarten in diesem Paket verwendet, kann das Attribut die URL der Webseite
enthalten, von der diese Ressourcen stammen. Weiterhin kann auf Spezifikation verlinkt werden,
wo dieser Teil des Programms dokumentiert wurde.

Author: Hier werden die Personen aufgelistet, die bei der Erstellung von diesem Paket mitgearbeitet

haben.

Tools: Dieses Attribut beschreibt die Werkzeuge die bei der Erstellung des Pakets verwendet wurden.
Beispiele dafiir sind das Entwicklungsframework Eclipse oder ein GUI-Builder.

Source: Dieses Beschreibungselement gibt den Pfad zu dem Ordner, in dem sich dieses Modul befindet,
ausgehend vom Hauptverzeichnis aus an.

Starting Point: Hier wird der Einstiegspunkt im Code dokumentiert, wo das Programm als erstes
beginnt Code auszufiihren. Gibt es keinen direkten Einstiegspunkt kann hier auch der Teil des
Pakets mit dem gréf3ten Umfang notiert werden.

In diesem Tab sind auch die neuen Beschreibungselemente untergebracht, die im Rahmen dieser
Arbeit hinzugefiigt werden. Sie werden in Abschnitt 4.5.1 erklart.

2.3.2 Interface

In diesem Tab werden die, in diesem Modul angebotenen, Funktionen und Abhingigkeiten dokumen-
tiert.

2.3.3 Scenarios

Hier werden typische Anwendungsfille textuell beschrieben.

13

2 UniMoDoc

2.3.4 Testcases

Dieser Tab ist noch nicht fertig implementiert. Er soll zur Dokumentation von Testsuites, das sind
thematisch gruppierte Testblocke dienen.

2.3.5 Extras

Dieser Tab enthilt ein grofies Textfeld, wo zusétzliche Informationen iiber das Paket, die noch nicht
dokumentiert wurden, beschrieben werden konnen.

2.3.6 Status

Dieser Tab bietet eine Ubersicht zum Entwicklungsstatus des Pakets.

Document Status: Dieses Beschreibungselement gibt den Status des Dokuments an, welches das
Paket dokumentiert.

Document Review Status: Der Status des Reviews von der Dokumentation zu diesem Paket.

Module Status: In diesem Attribut wird der Entwicklungsstatus des Pakets durch die Angabe des
derzeitigen Entwicklungsschritts angegeben. Entwicklungsschritte sind beispielsweise: Imple-
mentierung fertiggestellt oder Code im Review.

Module Review Status: Hier wird der aktuelle Status der Reviews zu diesem Paket gespeichert.

14

3 Das Versionsverwaltungssystem Git

3.1 Einleitung

Git ist ein System zur verteilten Versionsverwaltung von Dateien. Es wurde urspriinglich fiir die
Verwaltung des Quellcodes fiir den Linux Kernel entwickelt. Verteilte Versionsverwaltungssysteme
zeichnen sich dadurch aus, dass jeder Client, mit dem das Repository geteilt wird ein Backup der
gesamten Datenmenge besitzt. Somit ist das System nicht an einen zentralen Server gebunden. Im
folgenden werden zunéchst einige Grundbegriffe kurz umrissen, anschliefend wird auf die interne
Datenhaltung von Git eingegangen, die es moglich macht, dass fiir alle Dateien, die in das System
eingebunden sind, die komplette Historie gespeichert wird, und bei Bedarf auf jeden vorherigen Stand
zuriickgesetzt werden kann [Cha09].

3.2 Drei Bereiche und drei Zustande

Dateien in Git befinden sich in einem von drei Zustdnden: Verdndert, Gestaged und Commited. Veran-
derte Dateien sind Dateien, die im Arbeitsverzeichnis neu erstellt oder modifiziert wurden und deren
verdnderter Zustand noch nicht in das Repository commited wurde. Diese Dateien konnen gestaged

Working Staging .git directory
Directory Area (Repository)

Checkout the project

Abbildung 3.1: Die drei Bereiche von Git [Cha09]

15

3 Das Versionsverwaltungssystem Git

werden. Man sagt zu diesen Vorgang auch, dass die Datei dem Index hinzugefiigt wird. Sie werden
dabei markiert um mit dem nachsten Commit in das Repository iibernommen zu werden. Solange
Anderungen noch nicht committed wurden, werden sie in der sogenannten Staging Area gespeichert.
Dateien die committed sind, befinden sich sicher im Repository [Cha09].

3.3 Branchen und Mergen

Ein prominentes Feature von Git ist das Branching (verzweigen). Dies ermdglicht dem Benutzer
vom Hauptentwicklungszweig abzuweichen und einen neuen Zweig zu erstellen, wo Anderungen
commited werden kénnen, ohne das der Hauptzweig dabei verdndert wird. Dies ermé&glicht paralleles
Arbeiten sowie eine risikofreie Umgebung um gréfiere Anderungen testen zu kénnen. Durch Mergen
konnen diese Zweige wieder zu einem Zweig zusammengefiithrt werden [Cha09].

3.4 Das Innenleben eines Git-Repositories

Wenn in einem Ordner ein Git Projekt mit dem Befehl git init angelegt wird, erstellt Git dort einen
neuen Ordner mit dem Namen .git, in dem alle internen Daten fiir das Repository abgespeichert
werden. Diese Daten lassen sich allgemein in zwei Gruppen unterteilen: Git Objekte und Git Referenzen.
Die Funktion dieser Gruppen und deren Entitdten wird in den folgenden Abschnitten grob umrissen
[Cha09].

3.5 Git Objekte

Die Git Objekte sind fiir die Erstellung eines internen Datenmodells verantwortlich, welches die
Historie aller Dateien in einem Projekt tiber dessen gesamten Lebenszeitraum abbildet. Dadurch ist es
moglich alle Anderungen die im Projekt durchgefithrt wurden riickgingig zu machen. Im folgenden
werden die drei wichtigsten Git-Objekte vorgestellt. Diese werden Blob-, Tree- und Commitobjekte
genannt [Cha09].

3.5.1 Das Blob Objekt

Blob Objekte werden verwendet um die verschiedenen Dateien, die im Projekt vorkommen zu
speichern. So entsteht aus jeder einzelnen Text-, Bild- und Codedatei jeweils ein Blob Objekt. Wird im
Verlauf des Projekts eine dieser Dateien bearbeitet, wird eine neues Blob Objekt erstellt, in dem die
verdnderte Datei gespeichert wird. Blob Objekte werden im Repository angelegt, sobald eine Datei zum
Index hinzugefiigt wird. Dabei wird anhand des Inhalts der Datei ein 40- Stelliger SHA-1 Hash erzeugt,
der als zukiinftige Referenz fiir das Objekt dient. Im Ordner .git/objects wird anschlieend, falls
noch nicht vorhanden, ein neuer Ordner erstellt. Der Name des Ordners besteht aus den ersten zwei
Stellen des Hashs. In diesem Ordner wird die Datei abgelegt. Dabei wird sie zunéachst komprimiert

16

3.5 Git Objekte

und erhilt anschlieflend die letzten 38 Stellen des Hashs als Dateinamen. Der gesamte Hash wird
anschlieflend in der Index Datei im .git Ordner hinterlegt [Cha09].

3.5.2 Das Tree Objekt

Das Tree Objekt existiert um die vielen Blob Objekte eines Projekts zu organisieren und ihnen
eine Struktur zu geben. Die Beziehung zwischen Tree- und Blob Objekten funktioniert wie die
von Ordnern und Dateien in einem Dateisystem. Dort kénnen sich in einem Ordner Dateien sowie
Unterordner befinden. Analog kénnen Blob- sowie weitere Tree Objekte zu einem Tree Objekt gehoren.
Wenn Dateien zum Index eines Repositories hinzugefiigt werden, wird aus jedem Ordner, der zu
der hinzugefiigten Dateistruktur gehort, ein Tree-Objekt erzeugt. Dieses Objekt erhalt, wie das Blob
Objekt, einen 40- Stelligen Hash, welches das Objekt intern adressiert. In jedem Tree Objekt werden
die Objekt-Typen, Hashes und Namen der Objekte gespeichert, welche sich im dazugehdrigen Ordner
befinden. Auch Tree Objekte werden im .git/objects Ordner gespeichert [Cha09].

3.5.3 Das Commit Objekt

Fiir jeden Commit, der im Repository durchgefithrt wird, wird ein Commit Objekt erstellt. Dieses
Objekt enthilt Informationen tiber den Zustand des Repositories zum Zeitpunkt des Commits. Ein
Commit Objekt enthélt tiblicherweise die folgenden Informationen: Der Name und die Emailadresse
des Authors. Eine Referenz auf ein Tree Objekt, welches den Zustand der Dateien und Ordner zum
Commitzeitpunkt widerspiegelt. Ein 40- Stelliger Hash, welcher diesen Commit eindeutig identifiziert.
Einen Zeitstempel von dem Zeitpunkt des Commits. Einen Kommentar, der die Anderungen, die mit
diesem Commit in das Versionsverwaltungssystem eingecheckt werden kommentiert. Auflerdem
enthilt ein Commit Objekt einen Verweis auf das vorherige Commit Objekt, aus dem es hervorge-
gangen ist. Jedes Commit Objekt, bis auf das Objekt, welches beim initialen Commit erstellt wurde,
enthalt mindestens eine dieser Referenzen. Im Fall, dass es sich bei dem Commit um einen Merge
handelt, werden alle Branches angegeben, aus welchen sich der Commit zusammensetzt. Erst durch
diese Referenzen ist es moglich Anderungen im Projekt riickgidngig machen zu kénnen und die
Versionshistorie einzelner Dateien nachzuverfolgen. Die Commit Objekte werden wie alle anderen
Hauptobjekte auch, im .git/objects Ordner gespeichert [Cha09].

3.5.4 Beispiel

Abb. 3.2 zeigt einen Graphen, der die Beziehungen dieser 3 wichtigsten Git Objekte verdeutlicht.
Gelbe Knoten représentieren Commit- , tiirkisfarbene Knoten Tree- und graue Knoten stellen Blob
Objekte dar. Alle Knoten besitzen eine Adresse, welche aus den ersten sechs Stellen ihres Hashs
besteht. In diesem Beispiel wurde im ersten Commit ein Ordner erstellt, in welchem sich die Datei
test.txt befindet. Im zweiten Commit wurde diese Datei verandert. Dabei wurde ein neuer Blob erstellt,
der die neue Version der Datei test.txt beinhaltet. Weiterhin wurde im zweiten Commit eine neue
Datei mit dem Namen new.txt erstellt. Im dritten Commit wurden die Dateien text.txt und new.txt
nicht verandert. Das Tree Objekt des Commits zeigt weiterhin auf die selben Blob Objekte wie der
Tree aus dem zweiten Commit. Allerdings wurde die urspriingliche Version von text.txt aus Commit

17

3 Das Versionsverwaltungssystem Git

bak

la410e 3cde9c
third commit tree new.txt

test.txt

\ 1f7a7a
"version 2"

test.txt
cac@ca 09155eb est.ix
second commit tree

new. txt fa49b0

"new file" =%

fdfafc d8320f
first commit tree

83baae
test.txt _>' "version 1"

Abbildung 3.2: Git Objekte [Cha09]

eins im Ordner bak abgespeichert. Dafiir wurde im Tree Objekt des dritten Commits eine Referenz
auf das Tree Objekt von Commit eins hinterlegt [Cha09].

3.6 Git Referenzen

Referenzobjekte helfen bei der Navigation durch den Objektgraphen. Sie sind im Ordner .git/refs
hinterlegt. Im folgenden werden die wichtigsten dieser Objekte kurz angesprochen [Cha09].

3.6.1 Heads

Heads sind Referenzen zu aktuellen Commit Objekten. Jeder Branch eines Repositories enthalt eine
Head Referenz neusten Commit Objekt dieses Branchs [Cha09].

18

3.6 Git Referenzen

3.6.2 Remotes

Remotes sind Referenzen zu Adressen, wo Versionen des Repositories hinterlegt sind. Auf diese
Remotes kann das Repository hochgeladen (gepusht) oder von ihnen heruntergeladen (gepullt)
werden [Cha09].

3.6.3 Tags

Obwohl Tags im .git/refs Ordner gespeichert sind, gehoren sie zu der Gruppe der Git Objekte.
Ein Tag zeigt auf ein Commit Objekt. Sie erleichtern die Interaktion mit Commit Objekten, da um
an das Commit Objekt zu gelangen nicht die ganze Commitkette ausgehend von der Head Referenz
durchlaufen werden muss [Cha09].

19

4 Die Extraktionswerkzeuge

4.1 Recherche

Der vorherige Abschnitt zeigte wie die Metadaten von Git organisiert und aufgebaut sind. Bei einer
Recherche nach Analysewerkzeugen, die diese Daten analysieren und aus ihnen Informationen
ableiten, zeigte sich relativ schnell, dass der Markt fiir solche Analysewerkzeuge relativ klein ist. Im
folgenden werden drei dieser Werkzeuge vorgestellt: StatsSVN fiir Svn Repositories sowie GitStats
und Gitinspector fiir Git Versionsverwaltungssysteme.

4.2 StatSVN

StatSVN [Sta] ist ein Open- Source- Werkzeug, welches aus den Informationen eines Subversion
Repositories eine grofie Anzahl an Statistiken, Tabellen und Grafiken generiert. Das Projekt befindet
sich seit 2006 in Entwicklung, die letzte Veroffentlichung der Betaversion 0.7 stammt allerdings aus dem
Jahr 2010. Soweit erkennbar ist, wird im Moment an dem Projekt nicht mehr aktiv weiterentwickelt.

4.2.1 Probleme

Zu Testzwecken wurden zwei Open Source Projekte mit dem Tool analysiert: Das Repository der
Programmiersprache Ruby sowie Joda-Time, eine Java Bibliothek die die vorhandene Datum- und
Zeitfunktionalitit verbessert und erweitert. Beim Testen offenbarte sich eine grundlegende Schwiche
des Werkzeugs, ndmlich dass nicht alle Commits im Repository analysiert werden konnten, was
dazu fiihrte, dass in den Statistiken einige Dateien nicht beriicksichtigt wurden und somit die daraus
resultierenden Daten nicht genau genug waren.

4.3 GitStats

Auch GitStats [Gitb] ist ein Open- Source Programm, welches Informationen und Statistiken aus
einem Git Repository ableiten kann. Es ist seit 2007 in Entwicklung und erhélt auch heute noch
regelmaflig Updates.

21

4 Die Extraktionswerkzeuge

4.3.1 Probleme

Leider hat das Programm fiir die Verwendung fiir diesen Anwendungsfall zwei grofie Nachteile. Zum
einen besitzt das Tool als Ausgabeformat fiir die Statistiken nur HTML, was die Weiterverarbeitung
der Daten in diesem Anwendungsfall schwieriger macht. Auflerdem sind viele der generierten Daten
fir den Anwendungsfall nicht relevant, wiahrend wichtige Features fiir UniMoDoc fehlen. So werden
Dateien im Projektarchiv beispielsweise nicht ihren Autoren zugeordnet, ein Feature, welches, wie
in Abschnitt 4.5 gezeigt wird, fiir die Dokumentation sehr relevant sein kann. Die wenigen Daten
die relevant sind, konnen mit dem, im ndchsten Abschnitt vorgestellten Tool Gitinspector ebenfalls
extrahiert werden. Somit schied auch dieses Tool fiir die Verwendung im Projekt aus.

4.4 Gitinspector

Gitinspector [Gita] ist ein, unter der GNU GPL v3 Lizenz, angebotenes Tool zur Erstellung von
Statistiken aus Git Repositories. Es wurde urspriinglich fiir die Analyse von Repositories der Studenten
aus der Chalmers University of Technology sowie der Gothenburg University entwickelt. Auch heute
erhilt das Tool regelmaf3ig Updates, die aktuelle Version 0.3.2 wurde am 15. Januar 2014 veroffentlicht.
Gitinspector besitzt Git und Python als Abhéngigkeiten.

4.4.1 Features

Gitinspector ist von den betrachteten Analysewerkzeugen das einzige, welches auf mehreren Threads
arbeitet. Dies sorgt dafiir, das auch die Analyse von sehr groflen Repositories mit vielen Commits
relativ schnell durchgefiihrt wird. Als Ausgabeformate bietet Gitinspector HTML, XML und Klartext.
Davon ist vor allem XML relevant, da XML Dateien leicht von Computerprogrammen weiterverarbei-
tet werden konnen. Weiterhin wird eine machtige Filterfunktion angeboten. So ist es beispielsweise
moglich bestimmte Dateitypen im Repository zu ignorieren, beispielsweise Dateien die beim Compi-
lieren erzeugt werden. So flieflen diese Dateien nicht in die generierte Statistik ein und verfalschen
sie nicht.

4.4.2 Bericht
Im folgenden wird die HTML Version eines mit Gitinspector erzeugten Berichts fiir das Projektarchiv

des Open- Source Editors Atom [Ato] gezeigt. Dieser komprimiert angezeigte Bericht ist in fiinf Teile
aufgeteilt.

Eincheck Historie pro Entwickler

In Abb. 4.1 sind alle Autoren nach ihrem Anteil an Codednderungen im Repository aufgelistet.
Weiterhin sind dort ihre Anzahl an Commits und die Anzahl an Dateidnderungen und Léschungen zu

finden.

22

4.4 Gitinspector

The following historical commit information, by author, was found in the repository.

Author v Commits Insertions Deletions % of changes
555} (zip).plist 4 152834 80201 12.29
@ Adam Raben 2 6 53368 311 h

B Chris Wanstrath 54 225058 141483 19.33

== Corey Johnson 128 364453 404812 4057
Corey Johnson & Mathan Sobo 73 66401 43899 5.82

n Kevin Sawicki 181 35640 95894 6.94
MNathan Sobo 71 96053 96469 10.15

Show minor authors (12) v

Abbildung 4.1: Eincheck Historie pro Entwickler

Below are the number of rows from each author that have survived and are still intact in the current revision

Author v Rows % in comments ’
== Corey Johnson 418 10,77
Corey Johnson & Nathan Sobo 9258 13.40
Mathan Sobo 2494 23.78
Show minor authors (5) v

Abbildung 4.2: Code eines Entwicklers im aktuellen Commit

Code eines Entwicklers im aktuellen Commit

In Abb. 4.2 sind die Anzahl an Codezeilen pro Author aufgelistet, die noch in der aktuellen Revision
vorhanden sind. Es wird auch gezeigt, wie viel Prozent dieser Codezeilen aus Kommentaren besteht.

Aktivitatenprotokoll
In Abb. 4.3 sind alle Monate aus dem Projektzeitraum aufgelistet. Fiir jeden Monat wird angegeben,
welcher Author wieviel am Projekt gearbeitet hat. Die roten Anteile sind Léschungen, die griinen

Einfiigungen und Anderungen. Weiterhin wird die Anzahl der Codezeilen angegeben, die in diesem
Monat verandert wurden.

Dateiverantwortlichkeiten

Der nichste Abschnitt im Bericht in Abb. 4.4 listet fiir jeden Author im Projekt fiir jede Datei, in der
er Code eingefiigt hat, auf wie viele Zeilen ausfithrbaren Code davon ihm zugeordnet werden.

23

4 Die Extraktionswerkzeuge

Author 201212 2013-01 2013-02 2013-03 2013-04 2013-05 2013-06 201307

. Adam Roben _ .
ﬂ Cheng Zhao . I

Caorey Johnson & Mathan Sobo

(2 John Bamette I

[Kein Savick I B B F

ol Kevin Sawicki & Nathan Sobo [|
Nathan Sobao)) I

= prabablycarsy I : —

Modified Rows: 9103 7881 60416 42814 5866 3859 2136 18844

Abbildung 4.3: Aktivitatenprotokoll

Corey Johnson is mostly responsible for

vendor{jasmine_js (309 eloc)
script/utils/verifiy-requirements_js (60 eloc)

spec/fixtures/sample-with-tabs-and-initial-comment_js (4 eloc)

Corey Johnson & Nathan Sobo is mostly responsible for

benchmark/fixtures/huge js (8004 eloc)

spec/fixtures/sample js (13 eloc)

Mathan Sobo is mostly responsible for

vendor{jasmine_js (1726 eloc)

vendaor{jasmine-jguery js (175 eloc)

Abbildung 4.4: Dateiverantwortlichkeiten

Dateitypen

In Abb. 4.5, dem letzten Teil des Berichts werden alle Dateitypen die sich im Projektarchiv befinden

aufgelistet. Die fett gekennzeichneten Dateitypen wurden fiir den Bericht beriicksichtigt. Alle anderen
wurden ignoriert.

4.4.3 Modifikation

Die im Projekt verwendete Version 0.3.2 von Gitinspector musste noch fiir den Anwendungsfall
angepasst werden. So wurden fiir den Abschnitt, wo die Dateiverantwortlichkeiten der einzelnen
Entwickler angegeben wurden nur die 10 Dateien, an denen die meisten Zeilen verandert wurden
angezeigt. Um alle Dateien, an denen der Entwickler mitgearbeitet hatte anzuzeigen musste in der

24

4.5 Verwendung der Daten in UniMoDoc

The extensions below were found in the repository history (extensions used during statistical analysis are marked).

less vsprops saves cxx pch html coffee rb xcconfig rake tmDragCommand bat settings h cmd manifest TDC el cfg xcscheme xcsettings gypi patch props
snippets tmCommand pem template rc lproj js S method_analysis pbxproj ja asm c idl com tmLanguage golden markdown mdown cc app vim
tmPreferences tmbundle txt xmpfilter xib pbfilespec tmMacro py pegjs json emacs rhtml pl pm tmSnippet rjs cson gence gyp md mm erb def stdout
sample blah taf in xcworkspacedata plist xclangspec hpp grd tmTheme csv css defs printvars nib in0 in1 jst sublime-build php cjson svg builder m order
sh cpp sb strings

Abbildung 4.5: Dateitypen

Datei responibilities.py in Zeile 122 und 123 die Abbruchbedingung der for Schleife entfernt
werden.

4.4.4 Performanz

Testweise wurde das Werkzeug auf einem System mit einem NovaBench Score von 1671 ausgefiithrt
[Nov]. Als Testrepositories dienten zum einen das Git-Repository des Atom Editors (Stand 06.06.2014)
mit 16018 commits und ca. 400 Dateien [Ato]. Aulerdem wurde das Repository der Web Frontend
Framework Bootstrap (Stand 06.06.2014) mit 9232 Commits und 328 Dateien getestet [Boo]. Zur
Analyse der ersten Frameworks benétigte das System 20 Sekunden um eine XML Datei mit den
Ergebnissen zu erstellen. Fiir die Analyse des Bootstrap Frameworks wurden 13 Sekunden gebraucht.

4.5 Verwendung der Daten in UniMoDoc

Von den von Gitinspector erzeugten Daten sind die folgenden relevant fiir eine Verwendung in
UniMoDoc.

« Die Dateitypen, die im Projekt verwendet werden kénnen benutzt werden, um die Daten fiir
das Beschreibungselement Technology im globalen Modul zu ermitteln.

« Die Grof3e der einzelnen Pakte in eloc (Executable lines of code). Dies kann zum einen verwendet
werden um das Beschreibungselement Size fiir alle Module zu bestimmten, weiterhin konnen
die Daten fiir ein neues Beschreibungselement verwendet werden, welches in Abschnitt 4.5.1
vorgestellt wird.

« Die Autoren pro Datei. Mit diesen Analysedaten kann ermittelt werden wer von den Autoren
an welcher Datei mitgearbeitet hat. Somit kann das Beschreibungselement Autor fiir jedes
einzelne Modul ermittelt werden.

« Der Pfad jeder einzelnen Datei. Da fir jede Datei im Projekt ihr absoluter Pfad bekannt ist, kann
das Beschreibungselement Source bestimmt und tiberpriift werden, welches den absoluten Pfad
eines jeden Moduls angibt.

25

4 Die Extraktionswerkzeuge

« Weiterhin kann der Pfad, der fiir jede Datei im Projekt bekannt ist, dazu verwendet werden
um zu iiberpriifen ob ein Modul iiberhaupt noch im Projekt vorhanden ist. Dies kann in einem
weiteren neuen Beschreibungselement Synchronization Status, welches im néchsten Abschnitt
beschrieben wird, dokumentiert werden.

4.5.1 Neue Beschreibungselemente

Durch die ermittelten Daten kénnen zwei neue Beschreibungselemente fiir die Module mit Informa-
tionen gefiillt werden. Diese werden in den folgenden Abschnitten vorgestellt.

GroBe der Unterpakete (Subpackage Size)

Da das Beschreibungselement Size fiir jedes Modul ermittelt werden kann, ist es moglich fiir jedes
Modul auch die Gesamtgrofie seiner Unterpakete zu ermitteln. Diese Gesamtgrofle setzt sich aus
der Grofle des Moduls plus der Grofle aller seiner Unterpakete zusammen. Zum Beispiel existie-
ren zwei Module: de.test.data und de.test.data.constants. Die Grofie des Beschreibungsele-
ments Subpackage Size fiir de.test.data setzt sich aus der Grofie von de. test.data sowie der von
de.test.data.constants zusammen. Subpackage Size von de.test.data.constants entspricht
seiner eigenen Grofle, da dieses Modul keine weiteren Unterpakete hat.

Synchronization Status

Ein weiteres neues Beschreibungselement ist Synchronisation Status. In diesem Element wird der
Zustand des Paktes, wie ihn die Synchronisation ermittelt hat, dokumentiert. Er besitzt drei mogliche
Zustande: Module not found, Module freshly added und leer. Ein Modul hat den Synchonization Status
von Module not found wenn das Modul wihrend des Synchronisationsvorgangs nicht im Repository
gefunden werden konnte. Das kann zum Beispiel daran liegen, dass der Ordner, in dem sich der Inhalt
dieses Moduls befand, bereits geloscht wurde, diese Anderung aber noch nicht dokumentiert wurde.
Wenn ein Modul einen Synchronization Status von Module freshly added besitzt, wurde es wahrend der
letzten Synchronisation neu in der Dokumentation hinzugefiigt. Dies kann dann vorkommen, wenn
ein neues Modul im Projekt hinzugefiigt wurde, dies aber nicht in der Dokumentation vermerkt wurde.
Wenn ein Modul einen leeren Synchronization Status besitzt, wurde nichts auffilliges am Modul
wihrend der letzten Synchronisation bemerkt. Das Modul wurde gefunden und alle Beschreibungs-
elemente die synchronisiert werden kénnen befinden sich auf dem neusten Stand. Fiir jeden Zustand,
den dieses Beschreibungselement besitzen kann, konnen auf dem Modul verschiedene zusétzliche
Operationen durchgefithrt werden. Diese Operationen werden im nichsten Kapitel vorgestellt.

26

5 Synchronisation

5.1 Allgemeiner Ablauf

In Abb. 5.1 wird dargestellt wie die im Rahmen der Bachelorarbeit implementierte Synchronisation
funktioniert. Im linken Teil der Grafik wird der Zustand der Dokumentation vor der Synchronisation
dargestellt. Dort gehoren zu einer Dokumentation Liste von Modulen. Nachdem die Synchronisa-
tion durchgefithrt wurde, wird das Beschreibungselement Synchronisation Status einer von den
drei Klassen zugeordnet, die in Abschnitt 4.5.1 vorgestellt wurden. Fiir die neu aus dem Repository
hinzugefiigten Module ist es moglich die Markierung zu entfernen. Fiir die nicht mehr im Reposi-
tory gefundenen Module ist es zusatzlich auch noch méglich die Module zu 16schen. Die Icons fiir
diese Operationen werden neben dem Edit und Delete Icon in der Tab Navigation angezeigt. Wenn
die Synchronisation neu gestartet wird, werden alle Module erneut einer Klasse zugeordnet. Die
Anwendungsfille dieser Operationen werden in diesem Kapitel vorgestellt.

Bei genauerer Betrachtung der Daten, die zur Verwendung in UniMoDoc von Gitinspector ermittelt
wurden und in Abschnitt 4.5 vorgestellt wurden, wird klar, dass sich diese von einem Computer genau

:rErneute Synchronisation

Unsynchronisierte Synchronisation Synchronisierte
Dokumentation Dokumentation

Leerer MNicht mehr

Module ahiesusemgsiﬂe- I"_unflag. Y Synchronisation | unflag__| gefundene
P T Status Module

Deletj

Abbildung 5.1: Allgemeiner Synchonsationsablauf

27

5 Synchronisation

ermitteln lassen. Wenn es keine Fehler bei der Ermittlung dieser Daten gibt, kann sich der Benutzer
darauf verlassen, dass die Daten korrekt sind und muss sich nicht weiter damit beschéftigen. Auch
lassen diese Daten keinen Interpretationsspielraum zu, da sie entweder stimmen kénnen oder nicht.
Aus diesem Grund ist es nicht nétig dem Benutzer alle Veranderungen die in der Synchronisation
durchgefiihrt wurden einzeln aufzulisten und ihm die Méglichkeit zu geben die Aktualisierungen bei
einzelnen Beschreibungselementen riickgangig zu machen. Somit sind dafiir keine Anwendungsfille
notig.

5.1.1 Voraussetzungen fiir die Erstellung einer Gitinspector XML Datei
Aus Griinden, die im nichsten Kapitel genauer erldutert werden, findet die Analyse eines Repositories
mit Gitinspector auflerhalb von UniMoDoc statt. Folgende Voraussetzungen sind dabei zu beachten.

« Die modifizierte Version von UniMoDoc, zusammen mit den Skripten zur Ausfithrung auf der
Konsole, miissen unter https://sourceforge.net/projects/gitinspector®32m/ bezogen
werden

 Git muss installiert und in der PATH Variable hinterlegt und somit von der Konsole aus
ausfuhrbar sein. (Download unter: http://git-scm.com/downloads)

« Python ab der Version 2.6 muss installiert sein. (Download unter: https://www.python.org/
downloads/)

5.2 Anwendungsfalle

5.2.1 Einleitung
Abb. 5.2 zeigt Ubersicht mit den sieben Use-Cases, die in diesem Kapitel vorgestellt werden. Da

UniMoDoc neben dem Benutzer, der die Dokumentation durchfithrt, keine zusatzlichen Benutzerrollen
verwendet, ist dieser in der Lage auf alle hier vorgestellten Funktionen zuzugreifen.

Use Cases

Abb. 5.3 bis Abb. 5.9 zeigen die in Abb. 5.2 vorgestellten Use-Cases im Detail.

28

https://sourceforge.net/projects/gitinspector032m/
http://git-scm.com/downloads
https://www.python.org/downloads/
https://www.python.org/downloads/

5.2 Anwendungsfalle

Benutzer

Erstellung einer Gitinspector
XML Datei Windows

Erstellung einer Gitinspector

XML Datei Mac

Synchonisation der Module
mit einem Repository

Die Markierung eines nicht

gefundenen Moduls entfernen

Die Markierung eines im
Repository neu gefundenen
Moduls entfernen

Ein nicht gefundenes Modul

lischen

in nicht gefundenes Modul
mit seinen Untermodulen
lischen

Abbildung 5.2: Ubersicht der Use-Cases

29

5 Synchronisation

Ziel: Der Benutzer méchte unter Windows eine Gitinspector XML Datei
fur die Verwendung in UniMoDoc erstellen.

Akteur: Benutzer

Beschreibung: Der Benutzer startet das fiur Windows vorbereitete Skript, wahit
ein Repository zur Analyse aus und erhalt zum Abschluss eine
von Gitinspector erstellte XML Datei fir das gewahlte Repository.

Normalablauf

Vorbedingung: Die Voraussetzungen aus Abschnitt 5.1.1 mussen erfullt sein.
Der Benutzer befindet sich in einem Windows Betriebssystem.
Der Benutzer hat die Datei windows.bat mit einem Doppelklick
gestartet.

1 Skript Das Skript erwartet vom Benutzer eine Pfadeingabe zu einem
Git-Repository.
Bedingung fir Sonderfall: Der Benutzer Alternativablauf 1a
bricht den Vorgang durch Schliellen des
Fensters ab.

2 Benutzer Der Benutzer gibt einen Pfad an und bestétigt die Eingabe durch
Driicken der Enter Taste.

3 Skript Das Skript tberprift die Pfadeingabe und analysiert das
Repository.
Bedingung fur Sonderfall: Der eingegebene | Alternativablauf 1b
Pfad zeigt nicht zu einem validen Git-
Repository.

Nachbedingung: Das Skript erstellte die Datei statistics.xml im selben Ordner wo
sich die Datei windows.bat befand.

Alternativablauf 1a

Vorbedingung: Der Benutzer bricht den Vorgang durch SchlieRen des Fensters
ab.

Nachbedingung: Das Fenster wurde geschlossen. Es wurde keine Analyse
vorgenommen.

Alternativablauf 1b

Vorbedingung: Der eingegebene Pfad zeigt nicht zu einem validen Git
Repository.

1b1 | Skript Das Skript gibt eine Warnung aus und schliel3t das Fenster.

Nachbedingung: Das Fenster wurde geschlossen. Es wurde keine Analyse

Vorienommen.

Abbildung 5.3: Erstellung einer Gitinspector XML Datei unter Windows

5.2 Anwendungsfalle

Ziel: Der Benutzer mochte unter Mac OS eine Gitinspector XML Datei
fur die Verwendung in UniMoDoc erstellen.
Akteur: Benutzer

Beschreibung:

Der Benutzer startet das fur Mac OS vorbereitete Skript, wahlt ein
Repository zur Analyse aus und erhélt zum Abschluss eine von
Gitinspector erstellte XML Datei fiir das gewahlte Repository.

Normalablauf

Vorbedingung:

Die Voraussetzungen aus Abschnitt 5.1.1 missen erfillt sein.
Der Benutzer befindet sich in einem Mac Betriebssystem.

Der Benutzer hat das Terminal ge¢ffnet und ist zum Ordner, wo
sich die Datei mac.sh befindet, navigiert.

Der Benutzer startete das Skript mit dem Befehl: sh mac.sh

1 Skript

Das Skript erwartet vom Benutzer eine Pfadeingabe zu einem
Git-Repository.

Bedingung fur Sonderfall: Der Benutzer Alternativablauf 2a
bricht den Vorgang durch Schlie3en des
Fensters ab.

2 Benutzer

Der Benutzer gibt einen Pfad an und bestétigt die Eingabe durch
Dricken der Enter Taste.

3 Skript

Das Skript Uberprift die Pfadeingabe und analysiert das
Repository.

Bedingung fur Sonderfall: Der eingegebene | Alternativablauf 2b
Pfad zeigt nicht zu einem validen Git-
Repository.

Nachbedingung:

Das Skript erstellte die Datei statistics.xml im selben Ordner wo
sich die Datei mac.sh befand.

Alternativablauf 2a

Vorbedingung:

Der Benutzer bricht den Vorgang durch Schliefen des Fensters
ab.

Nachbedingung:

Alternativablauf 2b

vorienommen.

Das Fenster wurde geschlossen. Es wurde keine Analyse

Vorbedingung:

Der eingegebene Pfad zeigt nicht zu einem validen Git
Repository.

2b1 | Skript

Das Skript gibt eine Warnung aus und schliet das Fenster.

Nachbedingung:

Vorienommen.

Das Fenster wurde geschlossen. Es wurde keine Analyse

Abbildung 5.4: Erstellung einer Gitinspector XML Datei unter Mac OS

5 Synchronisation

Ziel: Der Benutzer méchte eine Gitinspector XML Datei in UniMoDoc
einlesen und den Stand des Repositories mit dem Stand der
Dokumentation synchronisieren.

Akteur: Benutzer

Beschreibung:

Der Benutzer mit dem Synchronisationsdialog den Pfad der XML
Datei aus und startet die Synchronisation. Nachdem diese
beendet wurde, werden die Anderungen in UniMoDoc angezeigt.

Normalablauf

Vorbedingung: Der Benutzer hat UniMoDoc in einem Browser gedffnet.

1 Benutzer Der Benutzer klickt auf den Synchronisationsbutton, der sich im
rechten Teil der Titelleiste befindet.

2 UniMoDoc | UniMoDoc zeigt dem Benutzer ein Dialogfeld mit einem
Dateiauswahldialog und einem Upload Button.

Bedingung fur Sonderfall: Der Benutzer Alternativablauf 3a
bricht den Vorgang durch SchlieRen des
Popup Dialogs ab.

3 Benutzer Der Benutzer klickt auf den Button mit der Aufschrift ,Datei
auswéahlen®, wahlt eine, durch Gitinspector erzeugte, XML Datei
aus und startet die Synchronisation durch Klicken auf den Button
mit der Aufschrift ,Upload XML File®.

4 UniMoDoc | UniMoDoc Uberprift die Pfadeingabe und startet die

Synchronisation. Fur die Synchronisationsdauer erscheint ein
Dialog, der den Benutzer lber die laufende Synchronisation
informiert.

Bedingung fiur Sonderfall: Der eingegebene | Alternativablauf 3b

Pfad zeigt nicht zu einer XML Datei.

Bedingung fir Sonderfall: Der eingegebene | Alternativablauf 3c
Pfad zeigt nicht auf eine valide Gitinspector

XML Datei.

Nachbedingung:

Die Synchronisation wurde erfolgreich abgeschlossen. Die
Module wurden mit den aktuellen Informationen aus dem
Repositoy beflillt. Es wird eine Statistik Gber die gemachten
Anderungen angezeigt.

Alternativablauf 3a

Vorbedingung:

Der Benutzer bricht den Vorgang durch SchlieRen des Popup
Dialogs ab.

Nachbedingung:

Das Fenster wurde geschlossen. Es wurde keine Synchronisation
durchgefihrt.

Alternativablauf 3b
Vorbedingung: Der eingegebene Pfad zeigt nicht zu einer XML Datei.
3b1 UniMoDoc | UniMoDoc gibt eine Warnung im Browser aus und beendet den

Synchronisationsvorgang.

Nachbedingung:

Alternativablauf 3c

Die Warnung wird im Browser gezeigt, es wurde keine
Synchronisation durchgefihrt.

Vorbedingung:

Der eingegebene Pfad zeigt nicht auf eine valide Gitinspector
XML Datei.

3ci UniMoDoc

UniMoDoc gibt eine Warnung auf der Konsole aus und beendet
den Synchronisationsvorgang.

Nachbedingung:

Die Warnung wird auf der Konsole angezeigt, es wurde keine

B2 Sinchronisation durchiefuhrt.

Abbildung 5.5: Synchronisation der Module mit einem Repository

5.2 Anwendungsfalle

Ziel: Der Benutzer méchte das Markierungssymbol eines Moduls in
der linken Seitenleiste I6schen.

Akteur: Benutzer

Beschreibung: Der Benutzer wahlt den ,Modul nicht gefunden® Dialog durch

Klicken auf das Icon mit dem Fragezeichen im rechten Teil des
Tab Navigationsbereichs aus. Anschlieend entfernt er die
Markierung durch einen Klick auf den Button mit der Aufschrift
L,Unflag“.

Normalablauf
Vorbedingung: Der Benutzer hat UniMoDoc in einem Browser gedffnet.

Der Benutzer hat ein Modul, welches wahrend einer
Synchronisation nicht gefunden wurde, und somit mit einem
Fragezeichensymbol versehen ist, ausgewahlt.

1 Benutzer Der Benutzer klickt auf das Icon mit dem Fragezeichen im
rechten Teil des Tab Navigationsbereichs.

2 UniMoDoc | UniMoDoc zeigt dem Benutzer ein Dialogfeld mit der Information,
dass das Modul bei der Synchronisation nicht gefunden worden
ist.

Bedingung fur Sonderfall: Der Benutzer Alternativablauf 4a
bricht den Vorgang durch einen Klick auf
den Button mit der Aufschrift ,Cancel“ ab.

3 Benutzer Der Benutzer klickt auf den Button mit der Aufschrift ,Unflag”

4 UniMoDoc | UniMoDoc entfernt die Markierung und schlief3t das
Dialogfenster.

Nachbedingung: Die Markierung wurde entfernt. Das Dialogfenster wurde
geschlossen. Das Icon mit dem Fragezeichensymbol, mit dem
dieser Vorgang gestartet wurde, ist nicht mehr sichtbar. Der Inhalt
des Beschreibungselement ,Synchronisation Status wurde
entfernt.

Alternativablauf 4a

Vorbedingung: Der Benutzer bricht den Vorgang durch einen Klick auf den
Button mit der Aufschrift ,Cancel” ab.

Nachbedingung: Das Dialogfenster wurde geschlossen. Die Markierung wurde

nicht entfernt.

Abbildung 5.6: Die Markierung eines nicht gefundenen Moduls entfernen

33

5 Synchronisation

Ziel: Der Benutzer méchte ein Modul, welches bei der Synchronisation
nicht gefunden wurde, entfernen.

Akteur: Benutzer

Beschreibung: Der Benutzer wahlt den ,Modul nicht gefunden® Dialog durch

Klicken auf das Icon mit dem Fragezeichen im rechten Teil des
Tab Navigationsbereichs aus. Anschlieend entfernt er das
Modul mit einem Klick auf den Button ,Delete®

Normalablauf
Vorbedingung: Der Benutzer hat UniMoDoc in einem Browser gedffnet.

Der Benutzer hat ein Modul, welches wéhrend einer
Synchronisation nicht gefunden wurde, und somit mit einem
Fragezeichensymbol versehen ist, ausgewéhlt.

1 Benutzer Der Benutzer klickt auf das Icon mit dem Fragezeichen im
rechten Teil des Tab Navigationsbereichs.

2 UniMoDoc | UniMoDoc zeigt dem Benutzer ein Dialogfeld mit der Information,
dass das Modul bei der Synchronisation nicht gefunden worden
ist.

Bedingung fur Sonderfall: Der Benutzer Alternativablauf 5a
bricht den Vorgang durch einen Klick auf
den Button mit der Aufschrift ,Cancel” ab.

3 Benutzer Der Benutzer klickt auf den Button mit der Aufschrift ,,Delete”
4 UniMoDoc | UniMoDoc entfernt das Modul und schlief3t das Dialogfenster.
Nachbedingung: Das Modul wurde geldscht. Das Modul, welches sich in der linken

Seitenleiste vor dem geléschten Modul befand ist nun
ausgewdhlt. Es wird eine Infomeldung angezeigt.

Alternativablauf 5a

Vorbedingung: Der Benutzer bricht den Vorgang durch einen Klick auf den
Button mit der Aufschrift ,Cancel” ab.

Nachbedingung: Das Dialogfenster wurde geschlossen. Das Modul wurde nicht

ieldscht.

Abbildung 5.7: Ein nicht gefundenes Modul 16schen

34

5.2 Anwendungsfalle

Ziel: Der Benutzer méchte ein Modul, welches bei der Synchronisation
nicht gefunden wurde, zusammen mit seinen Untermodulen
entfernen.

Akteur: Benutzer

Beschreibung:

Der Benutzer wahlt den ,Modul nicht gefunden” Dialog durch
Klicken auf das Icon mit dem Fragezeichen im rechten Teil des
Tab Navigationsbereichs aus. Er bestéatigt mit einem Klick auf die
Option ,Delete submodules” dass er auch die Untermodule
I6schen méchte. AnschlieRend entfernt er das Modul mit seinen
Untermodulen mit einem Klick auf den Button ,Delete”

Normalablauf

Vorbedingung:

Der Benutzer hat UniMoDoc in einem Browser geé&ffnet.
Der Benutzer hat ein Modul, welches wahrend einer
Synchronisation nicht gefunden wurde, und somit mit einem
Fragezeichensymbol versehen ist, ausgewahlt.

1 Benutzer Der Benutzer klickt auf das Icon mit dem Fragezeichen im
rechten Teil des Tab Navigationsbereichs.

2 UniMoDoc | UniMoDoc zeigt dem Benutzer ein Dialogfeld mit der Information,
dass das Modul bei der Synchronisation nicht gefunden worden
ist.

Bedingung fur Sonderfall: Der Benutzer Alternativablauf 6a
bricht den Vorgang durch einen Klick auf
den Button mit der Aufschrift ,Cancel” ab.

3 Benutzer Der Benutzer klickt auf die Option ,delete submodules”
AnschlieRend klickt er auf den Button mit der Aufschrift ,Delete®

4 UniMoDoc | UniMoDoc entfernt das Modul mit seinen Untermodulen und
schliett das Dialogfenster.

Nachbedingung:

Das Modul wurde zusammen mit seinen Untermodulen geléscht.
Es wird eine Informationsmeldung angezeigt.

Alternativablauf 6a

Vorbedingung:

Der Benutzer bricht den Vorgang durch einen Klick auf den
Button mit der Aufschrift ,Cancel” ab.

Nachbedingung:

Untermodule wurden nicht ielﬁscht.

Das Dialogfenster wurde geschlossen. Das Modul und seine

Abbildung 5.8: Ein nicht gefundenes Modul mit seinen Untermodulen l6schen

35

5 Synchronisation

Ziel: Der Benutzer méchte das Markierungssymbol eines Moduls in
der linken Seitenleiste I6schen.

Akteur: Benutzer

Beschreibung: Der Benutzer wahlt den ,Modul neu hinzugeflugt” Dialog durch

Klicken auf das Icon mit dem Kreissymbol im rechten Teil des
Tab Navigationsbereichs aus. Anschlieflend entfernt er die
Markierung durch einen Klick auf den Button mit der Aufschrift
L,unflag“.

Normalablauf
Vorbedingung: Der Benutzer hat UniMoDoc in einem Browser geotffnet.

Der Benutzer hat ein Modul, welches wahrend einer
Synchronisation neu hinzugefuigt wurde, und somit mit einem
Kreissymbol versehen ist, ausgewéhlt.

1 Benutzer Der Benutzer klickt auf das Icon mit dem Kreissymbol im rechten
Teil des Tab Navigationsbereichs.

2 UniMoDoc | UniMoDoc zeigt dem Benutzer ein Dialogfeld mit der Information,
dass das Modul bei der Synchronisation neu hinzugefiigt worden
ist.

Bedingung fur Sonderfall: Der Benutzer Alternativablauf 7a
bricht den Vorgang durch einen Klick auf
den Button mit der Aufschrift ,Cancel“ ab.

3 Benutzer Der Benutzer klickt auf den Button mit der Aufschrift ,Unflag”

4 UniMoDoc | UniMoDoc entfernt die Markierung und schlie3t das
Dialogfenster.

Nachbedingung: Die Markierung wurde entfernt. Das Dialogfenster wurde
geschlossen. Das Icon mit dem Kreissymbol, mit dem dieser
Vorgang gestartet wurde, ist nicht mehr sichtbar. Der Inhalt des
Beschreibungselement ,Synchronisation Status” wurde entfernt.

Alternativablauf 7a

Vorbedingung: Der Benutzer bricht den Vorgang durch einen Klick auf den
Button mit der Aufschrift ,Cancel“ ab.

Nachbedingung: Das Dialogfenster wurde geschlossen. Die Markierung wurde

nicht entfernt.

Abbildung 5.9: Die Markierung eines im Repository neu gefundenen Moduls entfernen

36

6 Die Implementierung

6.1 Java Server Faces

Die Java Server Faces Technologie Framework zur Erstellung von Benutzeroberflachen fiir Java
basierte Webanwendungen [Jav]. Mit diesem Framework ist es mit relativ wenig Aufwand moglich:

« User Interface Komponenten auf einer Website rendern zu lassen

« Events, die von diesen Komponenten ausgelost werden auf mit Anwendungscode, der sich auf
dem Server befindet, interagieren zu lassen

« UI Komponenten an Daten auf dem Server zu binden

Die JSF Komponenten kénnen mit sogenannten Beans interagieren. Diese stellen eine Verbindung
zwischen dem Présentationslayer und dem Layer, wo die Geschiftslogik realisiert wird, dar. Beans
sind Java Klassen, die dem JavaBeans- Standard geniigen miissen [Mar]. Innerhalb einer Bean kénnen
dann andere Teile des Programms aufgerufen werden, die dann zum Beispiel Daten zur Befillung
von UI- Komponenten an das Préasentationslayer der Anwendung liefern.

6.2 Programmierstil

In der Implementierung wurde darauf geachtet, das Best Practices beim Programmierstil eingehalten
wurden, um lesbaren, erweiterbaren und wiederverwendbaren Code zu erzeugen. Konkret wurde
unter anderem auf aussagekriftige Kommentierung, gute Codeformatierung, konsistente Benennung
der Bezeichner, die Verwendung von JavaDoc Kommentaren und gutes Logging geachtet um die
Lesbarkeit des Codes hoch zu halten. Die von JSF vorgegebene Trennung von Prasentation und
Applicationlogic sorgt weiterhin fiir eine gut strukturierte Code Base.

6.3 Implementierung

Bei der Implementierung von UniMoDoc wurde eine Bean mit dem Namen SyncBean erstellt, durch die
die Interaktion mit dem User Interface geschieht. In dieser Klasse werden Methoden zur Ausfithrung
der Synchronisation (Abb. 5.5) sowie dem Entfernen der Markierungen (Abb. 5.6 und Abb. 5.9)
bereitgestellt. Die anderen Use Cases finden, wie bei der Erstelltung der Gitinspector XML Dateien,
auflerhalb des Programms statt oder es wurden Funktionalitaten verwendet, die schon an anderen
Stellen im Programm implementiert wurden.

37

6 Die Implementierung

Die Funktionalitat fiir die Entfernung der Markierung ist relativ simpel. Als Parameter wird der
Methode ein String mit der ID des zu modifizierenden Moduls mitgegeben. Mit dessen Hilfe kann im
Modulbaum das Beschreibungselement syncStatus des entsprechenden Moduls zuriickgesetzt werden.
Das fithrt dazu, dass die entsprechende Markierung nicht mehr angezeigt wird, da diese abhéingig
von dem Wert des Beschreibungselements angezeigt werden.

Die Synchronisation findet ihn mehreren Abschnitten statt, die im folgenden kurz erlautert werden.

1. Upload der Gitinspector XML Datei: Die Gitinspector XML Datei kann im User Interface tiber
einen Dateiauswahldialog hochgeladen werden. Bevor die Klasse weiter verarbeitet werden
kann, priift die Klasse FileUploadValidatorSync aus dem Validatorpaket die Dateigrofie,
den Dateityp sowie die Liange des Dateinamens. Die Datei darf maximal 5MB grof sein und
nur einen MIME-Type von text/xml oder application/xml besitzen. Der Dateiname darf
maximal 50 Zeichen lang sein. Ist die Uberpriifung erfolgreich, wird mit dem nichsten Schritt
fortgefahren, bei einer nicht erfolgreichen Validierung wird dem Benutzer auf dem Browser
eine entsprechende Fehlermeldung ausgegeben.

2. Uberpriifung der XML Datei: Im néchsten Schritt wird iiberpriift ob sich die tibergebene XML Datei
tatsachlich um eine Gitinspector XML Datei handelt. Dabei wird zum einen die Struktur der XML
Datei grob tiberpriift, weiterhin wird die Versionsnummer der Gitinspector Version ausgelesen,
die die Statistik erstellt hat um Versionskonflikte zu vermeiden. Schligt die Uberpriifung fehl,
wird auf der Konsole eine entsprechende Fehlermeldung ausgegeben.

3. Traversierung der XML Datei und Ermittlung der Informationen: In diesem Schritt wird die XML
Datei durchlaufen und es werden die Beschreibungselemente aktualisiert. Es wird nach neuen
und nicht gefundenen Dateien gesucht und es werden die Technologien ermittelt, die im Projekt
verwendet werden. Die Statistiken werden gesammelt und in einer Nachricht im Browser
ausgegeben. Die Updates in den Beschreibungselementen werden auch im Browser direkt
angezeigt.

6.4 Probleme

Die Implementierung der Synchronisationsfunktion lief relativ Problemfrei ab. Die wenigen Pro-
bleme, die dennoch auftraten, sind in den folgenden Abschnitten zusammen mit ihren Lésungen
dokumentiert.

6.4.1 Parsing der Gitinspector XML Datei

Urspriinglich war geplant die XML Datei aus Gitinspector so zu parsen, wie das bei der Ver-
arbeitung des XML Imputs fiir UniMoDoc Projektdateien in der Klasse XMLImporter im Paket
de.modulspezifikation.importer durchgefithrt wurde. Dort wurde die Baumférmige Knoten-
struktur der mit dem DocumentBuilder geparsten XML Datei manuell traversiert. Bei der Anaylse
der von Gitinspector erzeugten XML Datei wurde deutlich, dass sich viele der logisch zusammenhén-
genden Informationen in verschiedenen Teilen des XML Baums befanden. Dadurch musste, dieser

38

6.4 Probleme

Baum sehr oft auf unterschiedliche Arten traversiert werden. Dies erzeugte eine grofie Menge an
uniibersichtlichem Code, welcher sehr schwer zu lesen war.

Um das Problem zu 16sen, wurde die aufwendige XML Knotentraversierung von der in Java inte-
grierten Bibliothek XPath tibernommen. Mit dieser Abfragesprache konnen auch sehr komplexe
Baumtraversierungen iibersichtlich und mit wenigen Codezeilen durchgefithrt werden. Dadurch wird
dass die Logik fiir die Repositoryanalyse nicht mit Unmengen an Traversierungscode verschleiert.

6.4.2 Automatische Analyse durch Gitinspector innerhalb des Programms

In Abschnitt 5.1.1 wurde bereits darauf hingewiesen, dass die Gitinspector XML Datei semiautomatisch
mithilfe von Konsolenskripten erstellt werden muss. Die Griinde warum die diese Erstellung nicht
innerhalb von UniMoDoc stattfindet werden im folgenden Aufgelistet.

Komplexe Installation: Als JSF Web Anwendung lauft UniMoDoc auf einem Server, der die vom
Browser aufrufbaren Webseiten generiert und an diesen sendet. Fiir das UniMoDoc Projekt ist
das der Apache Tomcat Server. Die zusétzliche Installation der in Gitinspector verwendeten
Abhéngigkeiten auf dem Server ist sehr komplex und war im Zeitrahmen dieser Bachelorarbeit
nicht zu erledigen.

Lizenzkonflikte: Die in Gitinspector verwendete GNU GPL v3 Lizenz ist mit der in UniMoDoc ver-
wendeten Apache Licence 2.0 kompatibel. Dies sorgt dafiir, dass die modifizierte Version von
Gitinspector separat von UniMoDoc angeboten werden muss.

Erhohte Laufzeit der Synchronisation: Wenn die Repositoryanalyse direkt im Programm ausgefiihrt
wird, wirde sich die Ausfithrungzeit der Synchronisation um die Zeitdauer erhdhen, die Gitin-
spector bendtigt um die XML Datei zu erstellen. Abschnitt 4.4.4 zeigte, dass dafiir bei grofleren
Repositories Zeiten im Bereich von 10-15 Sekunden benétigt werden. Somit wiirde sich die
Zeit wahrend der Synchronisation, wo der Benutzer das Programm nicht bedienen kann noch
weiter verldngern.

39

7 Zusammenfassung und Ausblick

Diese Bachelorarbeit zeigte nun, wie Entwickler bei der Aktualisierung ihrer Dokumentation von
Computern unterstiitzt werden konnen. Dabei konnen Maschinen vor allem bei der Erhebung von
Metriken helfen, die durch ihre Art von Menschen nur sehr langwierig und schwer zu ermitteln
sind. Es wurde die Moduldokumentationssoftware UniMoDoc vorgestellt und erklart wie das Pro-
gramm mithilfe von Beschreibungselementen die Eigenschaften von Softwaremodulen dokumentiert.
Anschlieflend anhand des Versionskontrollsystems Git erklart, wie diese Systeme die, an sie iberge-
benen, Information abspeichern und es wurde ein Werkzeug ausgewahlt, das diese Informationen aus
Git extrahieren kann und damit ausgewéhlte Beschreibungselemente von UniMoDoc automatisch
aktualisieren kann. Weiterhin wurde gezeigt, dass es zusétzlich noch moglich ist zu ermitteln, welche
von den in UniMoDoc verwalteten Pakete im Repository noch exisieren und welche davon nicht
mehr vorhanden oder neu hinzugekommen sind.

Im zweiten Teil der Bachelorarbeit wurde gezeigt, wie diese Verdnderungen in UniMoDoc eingebaut
wurden. Hierzu wurden die implementierten neuen Features mithilfe von Use-Case Diagrammen
dargestellt. Weiterhin wurde erklart wie die Implementierung umgesetzt wurde und gezeigt wie
Probleme, die dort aufgetreten sind behandelt wurden.

7.1 Ausblick

Bei der Entwicklung der neuen Features in UniMoDoc sind folgende Ideen fir Entwicklungen in der
Zukunft aufgekommen:

« Die Moglichkeit alle Markierungen fiir im Repository nicht gefundenen und in der Dokumenta-
tion neu hinzugefiigten Module auf einmal zu entfernen.

« Einen Absoluten Pfad in den Programmeinstellungen festzulegen, von dem aus die Beschrei-
bungselemente gName und src angegeben werden.

« Fiir jede Datei im Repository bei der Synchronisation iiberpriifen, wann sie das letzte mal
verandert wurde und diese Information im Beschreibungselement Last Change fiir die zuletzt
verdanderte Datei im Modul angeben.

« Weitere Beschreibungselemente, deren Informationen nicht im Repository liegen aber von
einem Computer ermittelt werden kénnen in UniMoDoc hinzufiigen. Ein Beispiel dafiir ist die
Testabdeckung der Tests in den einzelnen Modulen.

41

Literaturverzeichnis

[Ato] Atom Editor - Project Website. URL https://atom.io/. (Zitiert auf den Seiten 22 und 25)
[Boo] Bootstrap - Project Website. URL http://getbootstrap.com/. (Zitiert auf Seite 25)
[Cha09] S. Chancon. Pro Git. Apress, 1. Auflage, 2009. (Zitiert auf den Seiten 7, 15, 16, 17, 18 und 19)

[Gita] Gitinspector - Project Website. URL https://code.google.com/p/gitinspector/. (Zi-
tiert auf Seite 22)

[Gitb] GitStats - Project Website. URL https://sourceforge.net/projects/gitstats/. (Zitiert
auf Seite 21)

[Jav] The Java EE5 Tutorial - Chapter 10 Java Server Faces Technology. URL http://docs.
oracle.com/javaee/5/tutorial/doc/bnaph.html. (Zitiert auf Seite 37)

[Lud10] H. L. Ludewig, J. Software Engineering - Grundlagen, Menschen, Prozesse, Techniken.
dpunkt.verlag, 2. Auflage, 2010. (Zitiert auf Seite 9)

[Mar] M. P.K.S. Marinschek, Kurz. Kapitel 2.4 Managed Beans. URL http://jsfatwork.irian.
at/. (Zitiert auf Seite 37)

[Nov] Novabench - Website. URL http://novabench.com/. (Zitiert auf Seite 25)
[Sta] StatSVN - Project Website. URL http://www.statsvn.org/. (Zitiert auf Seite 21)

Alle URLs wurden zuletzt am 29. 10. 2014 gepriift.

43

https://atom.io/
http://getbootstrap.com/
https://code.google.com/p/gitinspector/
https://sourceforge.net/projects/gitstats/
http://docs.oracle.com/javaee/5/tutorial/doc/bnaph.html
http://docs.oracle.com/javaee/5/tutorial/doc/bnaph.html
http://jsfatwork.irian.at/
http://jsfatwork.irian.at/
http://novabench.com/
http://www.statsvn.org/

Erkliarung

Ich versichere, diese Arbeit selbststiandig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wortlich oder sinngemifd aus anderen Werken tibernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Pritifungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-
se noch vollstindig veroffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Motivation
	1.2 Aufgabenstellung
	1.3 Überblick über die Arbeit

	2 UniMoDoc
	2.1 Einleitung
	2.2 Überblick über die Funktionsweise
	2.3 Die Beschreibungselemente

	3 Das Versionsverwaltungssystem Git
	3.1 Einleitung
	3.2 Drei Bereiche und drei Zustände
	3.3 Branchen und Mergen
	3.4 Das Innenleben eines Git-Repositories
	3.5 Git Objekte
	3.6 Git Referenzen

	4 Die Extraktionswerkzeuge
	4.1 Recherche
	4.2 StatSVN
	4.3 GitStats
	4.4 Gitinspector
	4.5 Verwendung der Daten in UniMoDoc

	5 Synchronisation
	5.1 Allgemeiner Ablauf
	5.2 Anwendungsfälle

	6 Die Implementierung
	6.1 Java Server Faces
	6.2 Programmierstil
	6.3 Implementierung
	6.4 Probleme

	7 Zusammenfassung und Ausblick
	7.1 Ausblick

	Literaturverzeichnis

