
Institut für Softwaretechnologie

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit Nr. 136

Synchronisierung der
Dokumentation von
Software-Modulen

Michael Happel

Studiengang: Softwaretechnik

Prüfer: Prof. Dr. Stefan Wagner

Betreuer: Dipl.-Inf. Ivan Bogicevic

Beginn am: 8. Mai 2014

Beendet am: 7. November 2014

CR-Nummer: D.2.7, H.2.7





Kurzfassung

Diese Bachelorarbeit beschäftigt sich mit der Frage, wie Entwickler bei der Aktualisierung ihrer
Dokumentation von Computern unterstützt werden können. Dabei wird die Dokumentationssoftware
UniMoDoc um eine Synchronisierungsfunktion erweitert, mit der Dokumentationsdaten automatisch
mit Informationen, die im Versionsverwaltungssystem des dokumentierten Projekts zu finden sind,
aktualisiert werden. Die Recherche zur Aufgabenstellung der Arbeit sowie die Implementierung der
Synchronisierungsfunktion sind in dieser Arbeit dokumentiert.

3





Inhaltsverzeichnis

1 Einleitung 9
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Aufgabenstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Überblick über die Arbeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 UniMoDoc 11
2.1 Einleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Überblick über die Funktionsweise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Die Beschreibungselemente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Das Versionsverwaltungssystem Git 15
3.1 Einleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Drei Bereiche und drei Zustände . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Branchen und Mergen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Das Innenleben eines Git-Repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Git Objekte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Git Referenzen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Die Extraktionswerkzeuge 21
4.1 Recherche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 StatSVN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 GitStats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Gitinspector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 Verwendung der Daten in UniMoDoc . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Synchronisation 27
5.1 Allgemeiner Ablauf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Anwendungsfälle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Die Implementierung 37
6.1 Java Server Faces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Programmierstil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3 Implementierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.4 Probleme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Zusammenfassung und Ausblick 41
7.1 Ausblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5



Literaturverzeichnis 43

6



Abbildungsverzeichnis

2.1 UniMoDoC Übersicht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Die drei Bereiche von Git [Cha09] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Git Objekte [Cha09] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Eincheck Historie pro Entwickler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Code eines Entwicklers im aktuellen Commit . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Aktivitätenprotokoll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Dateiverantwortlichkeiten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5 Dateitypen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Allgemeiner Synchonsationsablauf . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Übersicht der Use-Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Erstellung einer Gitinspector XML Datei unter Windows . . . . . . . . . . . . . . . . 30
5.4 Erstellung einer Gitinspector XML Datei unter Mac OS . . . . . . . . . . . . . . . . . 31
5.5 Synchronisation der Module mit einem Repository . . . . . . . . . . . . . . . . . . . . 32
5.6 Die Markierung eines nicht gefundenen Moduls entfernen . . . . . . . . . . . . . . . 33
5.7 Ein nicht gefundenes Modul löschen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.8 Ein nicht gefundenes Modul mit seinen Untermodulen löschen . . . . . . . . . . . . . 35
5.9 Die Markierung eines im Repository neu gefundenen Moduls entfernen . . . . . . . . 36

7





1 Einleitung

Incorrect documentation is often
worse than no documentation.

(Bertrand Meyer - Creator of the
Eiffel programming language)

1.1 Motivation

In der Softwaredokumentation wird zwischen integrierter und separater Dokumentation unter-
schieden. Integrierte Dokumentation ist die Dokumentation auf Codeebene, die vor allem durch
Kommentare entsteht. Separate Dokumentation ist beschreibt den Dokumentationsstil, wo sich die
Dokumentation außerhalb des Programmcodes befindet. [Lud10] Darunter fallen die Dokumentation
des Gesamtsystems und die Dokumentation von einzelnen Softwaremodulen.

Bei der Dokumentation des Gesamtsystem wird das komplette Programm anhand seiner Funktionali-
tät beschrieben. Auf die feineren Bestandteile des Programms wird bei dieser Dokumentationsart
nicht detailliert eingegangen. Dokumentation auf Modulebene betrachtet die einzelnen Bestandteile,
aus denen ein Softwaresystem aufgebaut ist. Darunter fallen zum Beispiel Codepakete, in denen das
Benutzerinterface realisiert wird oder auch Strukturen in denen das Datenmodell einer Software un-
tergebracht ist. Die folgende Bachelorarbeit beschäftigt sich mit dem Moduldokumentationswerkzeug
UniMoDoc.

Eine Herausforderung der separaten Dokumentation ist es die Dokumentation aktuell zu halten.
Wenn sich Teile des Programms ändern, oder neue Features in eine Software eingebaut werden, ist es
grundsätzlich einfacher die integrierte Dokumentation aktuell zu halten, da Codekommentare einfach
während der Implementierung angepasst werden können.

Da sich aber die separate Dokumentation in unterschiedlichen Dokumenten als der Code befindet,
existiert eine Diskrepanz zwischen diesen beiden Dokumenten. Falls diese Abweichungen nicht
behoben werden, wird die Dokumentation schnell wertlos und muss mit viel Mühe wieder auf
den aktuellen Stand gebracht werden. Dies hat zur Folge, dass die Kosten für diese ohnehin sehr
aufwendige und teure Aktivität noch weiter ansteigen.

Am Beispiel von UniMoDoc werden in der Paketdokumentation Eigenschaften des Codes dokumen-
tiert, die für einen Menschen oft schwer und mühevoll zu erheben sind. Ein Beispiel dafür sind die
Anzahl an Codezeilen in einem Paket. In diesen Fällen ist es wirksam die Metriken von einem Com-
puter erheben zu lassen um so den Entwickler in seiner Pflicht, ständig eine aktuelle Dokumentation
bereitzustellen, zu unterstützen.

9



1 Einleitung

1.2 Aufgabenstellung

Die Bachelorarbeit ist in zwei Teile aufgeteilt. Dabei umfasst der erste Teil der Arbeit eine Analyse
inwiefern nützliche Informationen für die Dokumentation, die im Versionsverwaltungssystem eines
Projektes gespeichert sind, automatisch erhoben werden können. Dabei soll zum einen erhoben
werden, welche dieser Informationen für die Dokumentation in Frage kommen, weiterhin soll eine
Möglichkeit gefunden werden, an diese Metriken zu gelangen. Dies kann Beispielsweise mithilfe eines
Softwarewerkzeugs realisiert werden. Im zweiten Teil soll UniMoDoc um eine Synchronisierungs-
funktion erweitert werden. Diese soll automatisch die ausgewählten Metriken aus dem ersten Teil
aus dem Versionsverwaltungssystem in die Dokumentation synchronisieren und die gewonnenen
Informationen dort anzeigen. Auftretende Konflikte zwischen der bestehenden Dokumentation und
den Informationen im Repository sollen dabei gekennzeichnet werden.

1.3 Überblick über die Arbeit

In der folgenden Arbeit ist die Recherche aus Teil eins sowie die Implementierung aus dem zweiten
Teil der Aufgabenstellung dokumentiert. Sie ist dabei in sechs weitere Kapitel unterteilt.

Kapitel 2 – UniMoDoc ist ein Überblick über die Dokumentationssoftware, die in dieser Arbeit
erweitert wird.

Kapitel 3 – Das Versionsverwaltungssystem Git beschreibt auf welche Art und Weise die Infor-
mationen eines Projekts, in Git gespeichert werden.

Kapitel 4 – Die Extraktionswerkzeuge: Hier werden Werkzeuge vorgestellt mit denen Informa-
tionen aus einem Repository gewonnen werden können. Dabei wird ein Werkzeug für die
Verwendung mit UniMoDoc ausgewählt. Weiterhin wird erklärt welche Informationen, das
Werkzeug aus einem Projektarchiv gewinnen kann und wie diese in UniMoDoc für die Doku-
metation verwendet werden können.

Kapitel 5 – Synchronisation erklärt den Ablauf der Synchronisation von den gewonnenen Infor-
mationen mit der Dokumentation in UniMoDoc mithilfe von Use-Cases.

Kapitel 6 – Die Implementierung ist die Dokumentation der Implementierungsarbeit in UniMo-
Doc. Hier wird die Umsetzung der, in der Aufgabenstellung geforderten, Programmfeatures
vorgestellt. Weiterhin wird auf einige Schwierigkeiten, die während der Implementierung
aufgetreten sind, eingegangen und anschließend aufgezeigt, wie diese gelöst werden konnten.

Kapitel 7 – Zusammenfassung und Ausblick fasst die Ergebnisse der Arbeit zusammen und stellt
Anknüpfungspunkte für zukünftige Erweiterungen der Synchronisierungsfunktion in UniMo-
Doc vor.

10



2 UniMoDoc

2.1 Einleitung

UniMoDoc ist ein Werkzeug zur Erstellung einer Dokumentationen auf Modulebene. Ausgeschrieben
bedeutet der Programmname Universal documentation tool for software modules. Die ursprüngliche
Version von UniMoDoc wurde im Rahmen einer Diplomarbeit als Java Swing Anwendung geschrieben,
wurde aber von Ivan Bogicevic und Jan Strauß als Webanwendung neu entwickelt. Die Anwendung
basiert heute auf dem Java Server Faces(JSF) Framework. UniMoDoc ist unter der Apache Licence
Version 2.0 unter folgender Adresse erhältlich: http://sourceforge.net/projects/unimodoc/

2.2 Überblick über die Funktionsweise

Abb. 2.1 zeigt die Hauptseite von UniMoDoc, die in vier Bereiche Aufgeteilt ist. Diese sind wie folgt
aufgebaut:

1. Modulübersicht: In diesem Bereich werden alle Softwaremodule, die von UniMoDoc dokumentiert
werden, aufgelistet. Sie sind hierarchisch nach ihrem qualifizierendenNamen geordnet. Das erste
Paket, mit einem Punkt als qualifizierenden Namen, gibt das Hauptverzeichnis des Projekts an.
Mit einem Klick auf das Plus Icon im unteren Teil des Bereichs können neue Module hinzugefügt
werden. Mit dem Zweig Icon ganz unten, lässt sich die Struktur der Beschreibungselemente aus
dem nächsten Bereich ändern.

2. Beschreibungselemente: Hier werden die Dokumentationsdaten für ein, in der Modulübersicht
ausgewähltes, Paket aufgelistet. Diese Daten werden in UniMoDoc Beschreibungselemente
genannt. Ein Beschreibungselement dokumentiert einen bestimmten Aspekt eines Paketes.
Die Beschreibungselemente sind auf sechs Tabs aufgeteilt und werden im nächsten Abschnitt
genauer erklärt. Der Unterbereich in dem sich die Tabs befinden wird Tab Navigation genannt.
Darin befinden zusätzlich noch ein Icon zumBearbeiten sowie zum Löschen derModule. Mithilfe
des Bearbeiten Icons, kann in einen Editiermodus gewechselt werden, worin der Inhalt für alle
Beschreibungselemente manuell geändert werden kann. Mit einem Klick auf den Löschen Icon
kann ein Modul gelöscht werden.

3. Seitenleiste: In der Seitenleiste werden dem Benutzer nützliche Hilfsinformationen angezeigt.
Beispielsweise wird der in Abb. 2.1 in diesem Bereich erscheinende Hilfstext dann gezeigt, wenn
der Benutzer mit dem Mauszeiger über das Beschreibungselement Tasks fährt.

11

http://sourceforge.net/projects/unimodoc/


2 UniMoDoc

Abbildung 2.1: UniMoDoC Übersicht

4. Titelleiste: Im rechten Teil der Titelleiste befinden sich Icons, die durch anklicken bestimmte Ope-
rationen ausführen. Darunter gibt es die Option ein neues Projekt anzulegen. Weiterhin gibt es
eine Import- und Exportfunktion für XML Dateien sowie weitere Exportfunktionen für PDF und
RTF Dateien. Auch kann hier die, in dieser Arbeit implementierte Synchronisierungsfunktion
gestartet werden. Zusätzlich gibt es noch eine Option für einen Einstellungs- sowie einen
Aboutdialog.

2.3 Die Beschreibungselemente

2.3.1 Basics Tab

Im Basics Tab finden sich alle grundlegenden Informationen über das Paket. Die einzelnen Beschrei-
bungselemente dieses Tabs werden im folgenden kurz erklärt.

Qualified Name: Der vollständig qualifizierte Name des Pakets, beispielsweise org.example.gui

12



2.3 Die Beschreibungselemente

Long Name: Der vollständige, ungekürzte Name des Pakets, beispielsweise Graphical User Interface
für ein Modul mit dem Kurznamen gui.

Tasks: An dieser Stelle werden die Aufgaben des Pakets im Gesamtprogramm dokumentiert. Bei-
spielsweise kann ein Paket für den Dateiexport zuständig sein, oder es implementiert das
Benutzerinterface.

Module Status: In diesem Attribut wird der Entwicklungsstatus des Pakets durch die Angabe des
derzeitigen Entwicklungsschritts angegeben. Entwicklungsschritte sind zum Beispiel: Imple-
mentierung fertiggestellt oder Code im Review.

Technology: Hier werden die Haupttechnologien und Programmiersprachen aufgelistet, die für
das Paket verwendet wurden. Eine Technologie wäre zum Beispiel das JSF Framework, eine
Programmiersprache Java.

Size: Dieses Attribut gibt die Größe des Pakets in Lines of Code(LOC) an.

Last Change: Der letzte Zeitpunkt, an dem Inhalte des Pakets geändert wurden.

Origin: Dieses Attribut gibt Referenzen an, die wichtig für das Paket sind. Wurden beispielsweise
Bilder oder Schriftarten in diesem Paket verwendet, kann das Attribut die URL der Webseite
enthalten, von der diese Ressourcen stammen.Weiterhin kann auf Spezifikation verlinkt werden,
wo dieser Teil des Programms dokumentiert wurde.

Author: Hier werden die Personen aufgelistet, die bei der Erstellung von diesem Paket mitgearbeitet
haben.

Tools: Dieses Attribut beschreibt die Werkzeuge die bei der Erstellung des Pakets verwendet wurden.
Beispiele dafür sind das Entwicklungsframework Eclipse oder ein GUI-Builder.

Source: Dieses Beschreibungselement gibt den Pfad zu demOrdner, in dem sich dieses Modul befindet,
ausgehend vom Hauptverzeichnis aus an.

Starting Point: Hier wird der Einstiegspunkt im Code dokumentiert, wo das Programm als erstes
beginnt Code auszuführen. Gibt es keinen direkten Einstiegspunkt kann hier auch der Teil des
Pakets mit dem größten Umfang notiert werden.

In diesem Tab sind auch die neuen Beschreibungselemente untergebracht, die im Rahmen dieser
Arbeit hinzugefügt werden. Sie werden in Abschnitt 4.5.1 erklärt.

2.3.2 Interface

In diesem Tab werden die, in diesem Modul angebotenen, Funktionen und Abhängigkeiten dokumen-
tiert.

2.3.3 Scenarios

Hier werden typische Anwendungsfälle textuell beschrieben.

13



2 UniMoDoc

2.3.4 Testcases

Dieser Tab ist noch nicht fertig implementiert. Er soll zur Dokumentation von Testsuites, das sind
thematisch gruppierte Testblöcke dienen.

2.3.5 Extras

Dieser Tab enthält ein großes Textfeld, wo zusätzliche Informationen über das Paket, die noch nicht
dokumentiert wurden, beschrieben werden können.

2.3.6 Status

Dieser Tab bietet eine Übersicht zum Entwicklungsstatus des Pakets.

Document Status: Dieses Beschreibungselement gibt den Status des Dokuments an, welches das
Paket dokumentiert.

Document Review Status: Der Status des Reviews von der Dokumentation zu diesem Paket.

Module Status: In diesem Attribut wird der Entwicklungsstatus des Pakets durch die Angabe des
derzeitigen Entwicklungsschritts angegeben. Entwicklungsschritte sind beispielsweise: Imple-
mentierung fertiggestellt oder Code im Review.

Module Review Status: Hier wird der aktuelle Status der Reviews zu diesem Paket gespeichert.

14



3 Das Versionsverwaltungssystem Git

3.1 Einleitung

Git ist ein System zur verteilten Versionsverwaltung von Dateien. Es wurde ursprünglich für die
Verwaltung des Quellcodes für den Linux Kernel entwickelt. Verteilte Versionsverwaltungssysteme
zeichnen sich dadurch aus, dass jeder Client, mit dem das Repository geteilt wird ein Backup der
gesamten Datenmenge besitzt. Somit ist das System nicht an einen zentralen Server gebunden. Im
folgenden werden zunächst einige Grundbegriffe kurz umrissen, anschließend wird auf die interne
Datenhaltung von Git eingegangen, die es möglich macht, dass für alle Dateien, die in das System
eingebunden sind, die komplette Historie gespeichert wird, und bei Bedarf auf jeden vorherigen Stand
zurückgesetzt werden kann [Cha09].

3.2 Drei Bereiche und drei Zustände

Dateien in Git befinden sich in einem von drei Zuständen: Verändert, Gestaged und Commited. Verän-
derte Dateien sind Dateien, die im Arbeitsverzeichnis neu erstellt oder modifiziert wurden und deren
veränderter Zustand noch nicht in das Repository commited wurde. Diese Dateien können gestaged

Abbildung 3.1: Die drei Bereiche von Git [Cha09]

15



3 Das Versionsverwaltungssystem Git

werden. Man sagt zu diesen Vorgang auch, dass die Datei dem Index hinzugefügt wird. Sie werden
dabei markiert um mit dem nächsten Commit in das Repository übernommen zu werden. Solange
Änderungen noch nicht committed wurden, werden sie in der sogenannten Staging Area gespeichert.
Dateien die committed sind, befinden sich sicher im Repository [Cha09].

3.3 Branchen und Mergen

Ein prominentes Feature von Git ist das Branching (verzweigen). Dies ermöglicht dem Benutzer
vom Hauptentwicklungszweig abzuweichen und einen neuen Zweig zu erstellen, wo Änderungen
commited werden können, ohne das der Hauptzweig dabei verändert wird. Dies ermöglicht paralleles
Arbeiten sowie eine risikofreie Umgebung um größere Änderungen testen zu können. Durch Mergen
können diese Zweige wieder zu einem Zweig zusammengeführt werden [Cha09].

3.4 Das Innenleben eines Git-Repositories

Wenn in einem Ordner ein Git Projekt mit dem Befehl git init angelegt wird, erstellt Git dort einen
neuen Ordner mit dem Namen .git, in dem alle internen Daten für das Repository abgespeichert
werden. Diese Daten lassen sich allgemein in zwei Gruppen unterteilen: Git Objekte und Git Referenzen.
Die Funktion dieser Gruppen und deren Entitäten wird in den folgenden Abschnitten grob umrissen
[Cha09].

3.5 Git Objekte

Die Git Objekte sind für die Erstellung eines internen Datenmodells verantwortlich, welches die
Historie aller Dateien in einem Projekt über dessen gesamten Lebenszeitraum abbildet. Dadurch ist es
möglich alle Änderungen die im Projekt durchgeführt wurden rückgängig zu machen. Im folgenden
werden die drei wichtigsten Git-Objekte vorgestellt. Diese werden Blob-, Tree- und Commitobjekte
genannt [Cha09].

3.5.1 Das Blob Objekt

Blob Objekte werden verwendet um die verschiedenen Dateien, die im Projekt vorkommen zu
speichern. So entsteht aus jeder einzelnen Text-, Bild- und Codedatei jeweils ein Blob Objekt. Wird im
Verlauf des Projekts eine dieser Dateien bearbeitet, wird eine neues Blob Objekt erstellt, in dem die
veränderte Datei gespeichert wird. Blob Objekte werden im Repository angelegt, sobald eine Datei zum
Index hinzugefügt wird. Dabei wird anhand des Inhalts der Datei ein 40- Stelliger SHA-1 Hash erzeugt,
der als zukünftige Referenz für das Objekt dient. Im Ordner .git/objects wird anschließend, falls
noch nicht vorhanden, ein neuer Ordner erstellt. Der Name des Ordners besteht aus den ersten zwei
Stellen des Hashs. In diesem Ordner wird die Datei abgelegt. Dabei wird sie zunächst komprimiert

16



3.5 Git Objekte

und erhält anschließend die letzten 38 Stellen des Hashs als Dateinamen. Der gesamte Hash wird
anschließend in der Index Datei im .git Ordner hinterlegt [Cha09].

3.5.2 Das Tree Objekt

Das Tree Objekt existiert um die vielen Blob Objekte eines Projekts zu organisieren und ihnen
eine Struktur zu geben. Die Beziehung zwischen Tree- und Blob Objekten funktioniert wie die
von Ordnern und Dateien in einem Dateisystem. Dort können sich in einem Ordner Dateien sowie
Unterordner befinden. Analog können Blob- sowie weitere Tree Objekte zu einem Tree Objekt gehören.
Wenn Dateien zum Index eines Repositories hinzugefügt werden, wird aus jedem Ordner, der zu
der hinzugefügten Dateistruktur gehört, ein Tree-Objekt erzeugt. Dieses Objekt erhält, wie das Blob
Objekt, einen 40- Stelligen Hash, welches das Objekt intern adressiert. In jedem Tree Objekt werden
die Objekt-Typen, Hashes und Namen der Objekte gespeichert, welche sich im dazugehörigen Ordner
befinden. Auch Tree Objekte werden im .git/objects Ordner gespeichert [Cha09].

3.5.3 Das Commit Objekt

Für jeden Commit, der im Repository durchgeführt wird, wird ein Commit Objekt erstellt. Dieses
Objekt enthält Informationen über den Zustand des Repositories zum Zeitpunkt des Commits. Ein
Commit Objekt enthält üblicherweise die folgenden Informationen: Der Name und die Emailadresse
des Authors. Eine Referenz auf ein Tree Objekt, welches den Zustand der Dateien und Ordner zum
Commitzeitpunkt widerspiegelt. Ein 40- Stelliger Hash, welcher diesen Commit eindeutig identifiziert.
Einen Zeitstempel von dem Zeitpunkt des Commits. Einen Kommentar, der die Änderungen, die mit
diesem Commit in das Versionsverwaltungssystem eingecheckt werden kommentiert. Außerdem
enthält ein Commit Objekt einen Verweis auf das vorherige Commit Objekt, aus dem es hervorge-
gangen ist. Jedes Commit Objekt, bis auf das Objekt, welches beim initialen Commit erstellt wurde,
enthält mindestens eine dieser Referenzen. Im Fall, dass es sich bei dem Commit um einen Merge
handelt, werden alle Branches angegeben, aus welchen sich der Commit zusammensetzt. Erst durch
diese Referenzen ist es möglich Änderungen im Projekt rückgängig machen zu können und die
Versionshistorie einzelner Dateien nachzuverfolgen. Die Commit Objekte werden wie alle anderen
Hauptobjekte auch, im .git/objects Ordner gespeichert [Cha09].

3.5.4 Beispiel

Abb. 3.2 zeigt einen Graphen, der die Beziehungen dieser 3 wichtigsten Git Objekte verdeutlicht.
Gelbe Knoten repräsentieren Commit- , türkisfarbene Knoten Tree- und graue Knoten stellen Blob
Objekte dar. Alle Knoten besitzen eine Adresse, welche aus den ersten sechs Stellen ihres Hashs
besteht. In diesem Beispiel wurde im ersten Commit ein Ordner erstellt, in welchem sich die Datei
test.txt befindet. Im zweiten Commit wurde diese Datei verändert. Dabei wurde ein neuer Blob erstellt,
der die neue Version der Datei test.txt beinhaltet. Weiterhin wurde im zweiten Commit eine neue
Datei mit dem Namen new.txt erstellt. Im dritten Commit wurden die Dateien text.txt und new.txt
nicht verändert. Das Tree Objekt des Commits zeigt weiterhin auf die selben Blob Objekte wie der
Tree aus dem zweiten Commit. Allerdings wurde die ursprüngliche Version von text.txt aus Commit

17



3 Das Versionsverwaltungssystem Git

Abbildung 3.2: Git Objekte [Cha09]

eins im Ordner bak abgespeichert. Dafür wurde im Tree Objekt des dritten Commits eine Referenz
auf das Tree Objekt von Commit eins hinterlegt [Cha09].

3.6 Git Referenzen

Referenzobjekte helfen bei der Navigation durch den Objektgraphen. Sie sind im Ordner .git/refs
hinterlegt. Im folgenden werden die wichtigsten dieser Objekte kurz angesprochen [Cha09].

3.6.1 Heads

Heads sind Referenzen zu aktuellen Commit Objekten. Jeder Branch eines Repositories enthält eine
Head Referenz neusten Commit Objekt dieses Branchs [Cha09].

18



3.6 Git Referenzen

3.6.2 Remotes

Remotes sind Referenzen zu Adressen, wo Versionen des Repositories hinterlegt sind. Auf diese
Remotes kann das Repository hochgeladen (gepusht) oder von ihnen heruntergeladen (gepullt)
werden [Cha09].

3.6.3 Tags

Obwohl Tags im .git/refs Ordner gespeichert sind, gehören sie zu der Gruppe der Git Objekte.
Ein Tag zeigt auf ein Commit Objekt. Sie erleichtern die Interaktion mit Commit Objekten, da um
an das Commit Objekt zu gelangen nicht die ganze Commitkette ausgehend von der Head Referenz
durchlaufen werden muss [Cha09].

19





4 Die Extraktionswerkzeuge

4.1 Recherche

Der vorherige Abschnitt zeigte wie die Metadaten von Git organisiert und aufgebaut sind. Bei einer
Recherche nach Analysewerkzeugen, die diese Daten analysieren und aus ihnen Informationen
ableiten, zeigte sich relativ schnell, dass der Markt für solche Analysewerkzeuge relativ klein ist. Im
folgenden werden drei dieser Werkzeuge vorgestellt: StatsSVN für Svn Repositories sowie GitStats
und Gitinspector für Git Versionsverwaltungssysteme.

4.2 StatSVN

StatSVN [Sta] ist ein Open- Source- Werkzeug, welches aus den Informationen eines Subversion
Repositories eine große Anzahl an Statistiken, Tabellen und Grafiken generiert. Das Projekt befindet
sich seit 2006 in Entwicklung, die letzte Veröffentlichung der Betaversion 0.7 stammt allerdings aus dem
Jahr 2010. Soweit erkennbar ist, wird im Moment an dem Projekt nicht mehr aktiv weiterentwickelt.

4.2.1 Probleme

Zu Testzwecken wurden zwei Open Source Projekte mit dem Tool analysiert: Das Repository der
Programmiersprache Ruby sowie Joda-Time, eine Java Bibliothek die die vorhandene Datum- und
Zeitfunktionalität verbessert und erweitert. Beim Testen offenbarte sich eine grundlegende Schwäche
des Werkzeugs, nämlich dass nicht alle Commits im Repository analysiert werden konnten, was
dazu führte, dass in den Statistiken einige Dateien nicht berücksichtigt wurden und somit die daraus
resultierenden Daten nicht genau genug waren.

4.3 GitStats

Auch GitStats [Gitb] ist ein Open- Source Programm, welches Informationen und Statistiken aus
einem Git Repository ableiten kann. Es ist seit 2007 in Entwicklung und erhält auch heute noch
regelmäßig Updates.

21



4 Die Extraktionswerkzeuge

4.3.1 Probleme

Leider hat das Programm für die Verwendung für diesen Anwendungsfall zwei große Nachteile. Zum
einen besitzt das Tool als Ausgabeformat für die Statistiken nur HTML, was die Weiterverarbeitung
der Daten in diesem Anwendungsfall schwieriger macht. Außerdem sind viele der generierten Daten
für den Anwendungsfall nicht relevant, während wichtige Features für UniMoDoc fehlen. So werden
Dateien im Projektarchiv beispielsweise nicht ihren Autoren zugeordnet, ein Feature, welches, wie
in Abschnitt 4.5 gezeigt wird, für die Dokumentation sehr relevant sein kann. Die wenigen Daten
die relevant sind, können mit dem, im nächsten Abschnitt vorgestellten Tool Gitinspector ebenfalls
extrahiert werden. Somit schied auch dieses Tool für die Verwendung im Projekt aus.

4.4 Gitinspector

Gitinspector [Gita] ist ein, unter der GNU GPL v3 Lizenz, angebotenes Tool zur Erstellung von
Statistiken aus Git Repositories. Es wurde ursprünglich für die Analyse von Repositories der Studenten
aus der Chalmers University of Technology sowie der Gothenburg University entwickelt. Auch heute
erhält das Tool regelmäßig Updates, die aktuelle Version 0.3.2 wurde am 15. Januar 2014 veröffentlicht.
Gitinspector besitzt Git und Python als Abhängigkeiten.

4.4.1 Features

Gitinspector ist von den betrachteten Analysewerkzeugen das einzige, welches auf mehreren Threads
arbeitet. Dies sorgt dafür, das auch die Analyse von sehr großen Repositories mit vielen Commits
relativ schnell durchgeführt wird. Als Ausgabeformate bietet Gitinspector HTML, XML und Klartext.
Davon ist vor allem XML relevant, da XML Dateien leicht von Computerprogrammen weiterverarbei-
tet werden können. Weiterhin wird eine mächtige Filterfunktion angeboten. So ist es beispielsweise
möglich bestimmte Dateitypen im Repository zu ignorieren, beispielsweise Dateien die beim Compi-
lieren erzeugt werden. So fließen diese Dateien nicht in die generierte Statistik ein und verfälschen
sie nicht.

4.4.2 Bericht

Im folgenden wird die HTML Version eines mit Gitinspector erzeugten Berichts für das Projektarchiv
des Open- Source Editors Atom [Ato] gezeigt. Dieser komprimiert angezeigte Bericht ist in fünf Teile
aufgeteilt.

Eincheck Historie pro Entwickler

In Abb. 4.1 sind alle Autoren nach ihrem Anteil an Codeänderungen im Repository aufgelistet.
Weiterhin sind dort ihre Anzahl an Commits und die Anzahl an Dateiänderungen und Löschungen zu
finden.

22



4.4 Gitinspector

Abbildung 4.1: Eincheck Historie pro Entwickler

Abbildung 4.2: Code eines Entwicklers im aktuellen Commit

Code eines Entwicklers im aktuellen Commit

In Abb. 4.2 sind die Anzahl an Codezeilen pro Author aufgelistet, die noch in der aktuellen Revision
vorhanden sind. Es wird auch gezeigt, wie viel Prozent dieser Codezeilen aus Kommentaren besteht.

Aktivitätenprotokoll

In Abb. 4.3 sind alle Monate aus dem Projektzeitraum aufgelistet. Für jeden Monat wird angegeben,
welcher Author wieviel am Projekt gearbeitet hat. Die roten Anteile sind Löschungen, die grünen
Einfügungen und Änderungen. Weiterhin wird die Anzahl der Codezeilen angegeben, die in diesem
Monat verändert wurden.

Dateiverantwortlichkeiten

Der nächste Abschnitt im Bericht in Abb. 4.4 listet für jeden Author im Projekt für jede Datei, in der
er Code eingefügt hat, auf wie viele Zeilen ausführbaren Code davon ihm zugeordnet werden.

23



4 Die Extraktionswerkzeuge

Abbildung 4.3: Aktivitätenprotokoll

Abbildung 4.4: Dateiverantwortlichkeiten

Dateitypen

In Abb. 4.5, dem letzten Teil des Berichts werden alle Dateitypen die sich im Projektarchiv befinden
aufgelistet. Die fett gekennzeichneten Dateitypen wurden für den Bericht berücksichtigt. Alle anderen
wurden ignoriert.

4.4.3 Modifikation

Die im Projekt verwendete Version 0.3.2 von Gitinspector musste noch für den Anwendungsfall
angepasst werden. So wurden für den Abschnitt, wo die Dateiverantwortlichkeiten der einzelnen
Entwickler angegeben wurden nur die 10 Dateien, an denen die meisten Zeilen verändert wurden
angezeigt. Um alle Dateien, an denen der Entwickler mitgearbeitet hatte anzuzeigen musste in der

24



4.5 Verwendung der Daten in UniMoDoc

Abbildung 4.5: Dateitypen

Datei responibilities.py in Zeile 122 und 123 die Abbruchbedingung der for Schleife entfernt
werden.

4.4.4 Performanz

Testweise wurde das Werkzeug auf einem System mit einem NovaBench Score von 1671 ausgeführt
[Nov]. Als Testrepositories dienten zum einen das Git-Repository des Atom Editors (Stand 06.06.2014)
mit 16018 commits und ca. 400 Dateien [Ato]. Außerdem wurde das Repository der Web Frontend
Framework Bootstrap (Stand 06.06.2014) mit 9232 Commits und 328 Dateien getestet [Boo]. Zur
Analyse der ersten Frameworks benötigte das System 20 Sekunden um eine XML Datei mit den
Ergebnissen zu erstellen. Für die Analyse des Bootstrap Frameworks wurden 13 Sekunden gebraucht.

4.5 Verwendung der Daten in UniMoDoc

Von den von Gitinspector erzeugten Daten sind die folgenden relevant für eine Verwendung in
UniMoDoc.

• Die Dateitypen, die im Projekt verwendet werden können benutzt werden, um die Daten für
das Beschreibungselement Technology im globalen Modul zu ermitteln.

• Die Größe der einzelnen Pakte in eloc (Executable lines of code). Dies kann zum einen verwendet
werden um das Beschreibungselement Size für alle Module zu bestimmten, weiterhin können
die Daten für ein neues Beschreibungselement verwendet werden, welches in Abschnitt 4.5.1
vorgestellt wird.

• Die Autoren pro Datei. Mit diesen Analysedaten kann ermittelt werden wer von den Autoren
an welcher Datei mitgearbeitet hat. Somit kann das Beschreibungselement Autor für jedes
einzelne Modul ermittelt werden.

• Der Pfad jeder einzelnen Datei. Da für jede Datei im Projekt ihr absoluter Pfad bekannt ist, kann
das Beschreibungselement Source bestimmt und überprüft werden, welches den absoluten Pfad
eines jeden Moduls angibt.

25



4 Die Extraktionswerkzeuge

• Weiterhin kann der Pfad, der für jede Datei im Projekt bekannt ist, dazu verwendet werden
um zu überprüfen ob ein Modul überhaupt noch im Projekt vorhanden ist. Dies kann in einem
weiteren neuen Beschreibungselement Synchronization Status, welches im nächsten Abschnitt
beschrieben wird, dokumentiert werden.

4.5.1 Neue Beschreibungselemente

Durch die ermittelten Daten können zwei neue Beschreibungselemente für die Module mit Informa-
tionen gefüllt werden. Diese werden in den folgenden Abschnitten vorgestellt.

Größe der Unterpakete (Subpackage Size)

Da das Beschreibungselement Size für jedes Modul ermittelt werden kann, ist es möglich für jedes
Modul auch die Gesamtgröße seiner Unterpakete zu ermitteln. Diese Gesamtgröße setzt sich aus
der Größe des Moduls plus der Größe aller seiner Unterpakete zusammen. Zum Beispiel existie-
ren zwei Module: de.test.data und de.test.data.constants. Die Größe des Beschreibungsele-
ments Subpackage Size für de.test.data setzt sich aus der Größe von de.test.data sowie der von
de.test.data.constants zusammen. Subpackage Size von de.test.data.constants entspricht
seiner eigenen Größe, da dieses Modul keine weiteren Unterpakete hat.

Synchronization Status

Ein weiteres neues Beschreibungselement ist Synchronisation Status. In diesem Element wird der
Zustand des Paktes, wie ihn die Synchronisation ermittelt hat, dokumentiert. Er besitzt drei mögliche
Zustände: Module not found, Module freshly added und leer. Ein Modul hat den Synchonization Status
von Module not found wenn das Modul während des Synchronisationsvorgangs nicht im Repository
gefunden werden konnte. Das kann zum Beispiel daran liegen, dass der Ordner, in dem sich der Inhalt
dieses Moduls befand, bereits gelöscht wurde, diese Änderung aber noch nicht dokumentiert wurde.
Wenn ein Modul einen Synchronization Status vonModule freshly added besitzt, wurde es während der
letzten Synchronisation neu in der Dokumentation hinzugefügt. Dies kann dann vorkommen, wenn
ein neues Modul im Projekt hinzugefügt wurde, dies aber nicht in der Dokumentation vermerkt wurde.
Wenn ein Modul einen leeren Synchronization Status besitzt, wurde nichts auffälliges am Modul
während der letzten Synchronisation bemerkt. Das Modul wurde gefunden und alle Beschreibungs-
elemente die synchronisiert werden können befinden sich auf dem neusten Stand. Für jeden Zustand,
den dieses Beschreibungselement besitzen kann, können auf dem Modul verschiedene zusätzliche
Operationen durchgeführt werden. Diese Operationen werden im nächsten Kapitel vorgestellt.

26



5 Synchronisation

5.1 Allgemeiner Ablauf

In Abb. 5.1 wird dargestellt wie die im Rahmen der Bachelorarbeit implementierte Synchronisation
funktioniert. Im linken Teil der Grafik wird der Zustand der Dokumentation vor der Synchronisation
dargestellt. Dort gehören zu einer Dokumentation Liste von Modulen. Nachdem die Synchronisa-
tion durchgeführt wurde, wird das Beschreibungselement Synchronisation Status einer von den
drei Klassen zugeordnet, die in Abschnitt 4.5.1 vorgestellt wurden. Für die neu aus dem Repository
hinzugefügten Module ist es möglich die Markierung zu entfernen. Für die nicht mehr im Reposi-
tory gefundenen Module ist es zusätzlich auch noch möglich die Module zu löschen. Die Icons für
diese Operationen werden neben dem Edit und Delete Icon in der Tab Navigation angezeigt. Wenn
die Synchronisation neu gestartet wird, werden alle Module erneut einer Klasse zugeordnet. Die
Anwendungsfälle dieser Operationen werden in diesem Kapitel vorgestellt.

Bei genauerer Betrachtung der Daten, die zur Verwendung in UniMoDoc von Gitinspector ermittelt
wurden und in Abschnitt 4.5 vorgestellt wurden, wird klar, dass sich diese von einem Computer genau

Abbildung 5.1: Allgemeiner Synchonsationsablauf

27



5 Synchronisation

ermitteln lassen. Wenn es keine Fehler bei der Ermittlung dieser Daten gibt, kann sich der Benutzer
darauf verlassen, dass die Daten korrekt sind und muss sich nicht weiter damit beschäftigen. Auch
lassen diese Daten keinen Interpretationsspielraum zu, da sie entweder stimmen können oder nicht.
Aus diesem Grund ist es nicht nötig dem Benutzer alle Veränderungen die in der Synchronisation
durchgeführt wurden einzeln aufzulisten und ihm die Möglichkeit zu geben die Aktualisierungen bei
einzelnen Beschreibungselementen rückgängig zu machen. Somit sind dafür keine Anwendungsfälle
nötig.

5.1.1 Voraussetzungen für die Erstellung einer Gitinspector XML Datei

Aus Gründen, die im nächsten Kapitel genauer erläutert werden, findet die Analyse eines Repositories
mit Gitinspector außerhalb von UniMoDoc statt. Folgende Voraussetzungen sind dabei zu beachten.

• Die modifizierte Version von UniMoDoc, zusammen mit den Skripten zur Ausführung auf der
Konsole, müssen unter https://sourceforge.net/projects/gitinspector032m/ bezogen
werden

• Git muss installiert und in der PATH Variable hinterlegt und somit von der Konsole aus
ausführbar sein. (Download unter: http://git-scm.com/downloads)

• Python ab der Version 2.6 muss installiert sein. (Download unter: https://www.python.org/
downloads/)

5.2 Anwendungsfälle

5.2.1 Einleitung

Abb. 5.2 zeigt Übersicht mit den sieben Use-Cases, die in diesem Kapitel vorgestellt werden. Da
UniMoDoc neben dem Benutzer, der die Dokumentation durchführt, keine zusätzlichen Benutzerrollen
verwendet, ist dieser in der Lage auf alle hier vorgestellten Funktionen zuzugreifen.

Use Cases

Abb. 5.3 bis Abb. 5.9 zeigen die in Abb. 5.2 vorgestellten Use-Cases im Detail.

28

https://sourceforge.net/projects/gitinspector032m/
http://git-scm.com/downloads
https://www.python.org/downloads/
https://www.python.org/downloads/


5.2 Anwendungsfälle

Abbildung 5.2: Übersicht der Use-Cases

29



5 Synchronisation

Abbildung 5.3: Erstellung einer Gitinspector XML Datei unter Windows

30



5.2 Anwendungsfälle

Abbildung 5.4: Erstellung einer Gitinspector XML Datei unter Mac OS

31



5 Synchronisation

Abbildung 5.5: Synchronisation der Module mit einem Repository

32



5.2 Anwendungsfälle

Abbildung 5.6: Die Markierung eines nicht gefundenen Moduls entfernen

33



5 Synchronisation

Abbildung 5.7: Ein nicht gefundenes Modul löschen

34



5.2 Anwendungsfälle

Abbildung 5.8: Ein nicht gefundenes Modul mit seinen Untermodulen löschen

35



5 Synchronisation

Abbildung 5.9: Die Markierung eines im Repository neu gefundenen Moduls entfernen

36



6 Die Implementierung

6.1 Java Server Faces

Die Java Server Faces Technologie Framework zur Erstellung von Benutzeroberflächen für Java
basierte Webanwendungen [Jav]. Mit diesem Framework ist es mit relativ wenig Aufwand möglich:

• User Interface Komponenten auf einer Website rendern zu lassen

• Events, die von diesen Komponenten ausgelöst werden auf mit Anwendungscode, der sich auf
dem Server befindet, interagieren zu lassen

• UI Komponenten an Daten auf dem Server zu binden

Die JSF Komponenten können mit sogenannten Beans interagieren. Diese stellen eine Verbindung
zwischen dem Präsentationslayer und dem Layer, wo die Geschäftslogik realisiert wird, dar. Beans
sind Java Klassen, die dem JavaBeans- Standard genügen müssen [Mar]. Innerhalb einer Bean können
dann andere Teile des Programms aufgerufen werden, die dann zum Beispiel Daten zur Befüllung
von UI- Komponenten an das Präsentationslayer der Anwendung liefern.

6.2 Programmierstil

In der Implementierung wurde darauf geachtet, das Best Practices beim Programmierstil eingehalten
wurden, um lesbaren, erweiterbaren und wiederverwendbaren Code zu erzeugen. Konkret wurde
unter anderem auf aussagekräftige Kommentierung, gute Codeformatierung, konsistente Benennung
der Bezeichner, die Verwendung von JavaDoc Kommentaren und gutes Logging geachtet um die
Lesbarkeit des Codes hoch zu halten. Die von JSF vorgegebene Trennung von Präsentation und
Applicationlogic sorgt weiterhin für eine gut strukturierte Code Base.

6.3 Implementierung

Bei der Implementierung von UniMoDoc wurde eine Bean mit dem Namen SyncBean erstellt, durch die
die Interaktion mit dem User Interface geschieht. In dieser Klasse werden Methoden zur Ausführung
der Synchronisation (Abb. 5.5) sowie dem Entfernen der Markierungen (Abb. 5.6 und Abb. 5.9)
bereitgestellt. Die anderen Use Cases finden, wie bei der Erstelltung der Gitinspector XML Dateien,
außerhalb des Programms statt oder es wurden Funktionalitäten verwendet, die schon an anderen
Stellen im Programm implementiert wurden.

37



6 Die Implementierung

Die Funktionalität für die Entfernung der Markierung ist relativ simpel. Als Parameter wird der
Methode ein String mit der ID des zu modifizierenden Moduls mitgegeben. Mit dessen Hilfe kann im
Modulbaum das Beschreibungselement syncStatus des entsprechenden Moduls zurückgesetzt werden.
Das führt dazu, dass die entsprechende Markierung nicht mehr angezeigt wird, da diese abhängig
von dem Wert des Beschreibungselements angezeigt werden.

Die Synchronisation findet ihn mehreren Abschnitten statt, die im folgenden kurz erläutert werden.

1. Upload der Gitinspector XML Datei: Die Gitinspector XML Datei kann im User Interface über
einen Dateiauswahldialog hochgeladen werden. Bevor die Klasse weiter verarbeitet werden
kann, prüft die Klasse FileUploadValidatorSync aus dem Validatorpaket die Dateigröße,
den Dateityp sowie die Länge des Dateinamens. Die Datei darf maximal 5MB groß sein und
nur einen MIME-Type von text/xml oder application/xml besitzen. Der Dateiname darf
maximal 50 Zeichen lang sein. Ist die Überprüfung erfolgreich, wird mit dem nächsten Schritt
fortgefahren, bei einer nicht erfolgreichen Validierung wird dem Benutzer auf dem Browser
eine entsprechende Fehlermeldung ausgegeben.

2. Überprüfung der XML Datei: Im nächsten Schritt wird überprüft ob sich die übergebene XMLDatei
tatsächlich um eine Gitinspector XMLDatei handelt. Dabei wird zum einen die Struktur der XML
Datei grob überprüft, weiterhin wird die Versionsnummer der Gitinspector Version ausgelesen,
die die Statistik erstellt hat um Versionskonflikte zu vermeiden. Schlägt die Überprüfung fehl,
wird auf der Konsole eine entsprechende Fehlermeldung ausgegeben.

3. Traversierung der XML Datei und Ermittlung der Informationen: In diesem Schritt wird die XML
Datei durchlaufen und es werden die Beschreibungselemente aktualisiert. Es wird nach neuen
und nicht gefundenen Dateien gesucht und es werden die Technologien ermittelt, die im Projekt
verwendet werden. Die Statistiken werden gesammelt und in einer Nachricht im Browser
ausgegeben. Die Updates in den Beschreibungselementen werden auch im Browser direkt
angezeigt.

6.4 Probleme

Die Implementierung der Synchronisationsfunktion lief relativ Problemfrei ab. Die wenigen Pro-
bleme, die dennoch auftraten, sind in den folgenden Abschnitten zusammen mit ihren Lösungen
dokumentiert.

6.4.1 Parsing der Gitinspector XML Datei

Ursprünglich war geplant die XML Datei aus Gitinspector so zu parsen, wie das bei der Ver-
arbeitung des XML Imputs für UniMoDoc Projektdateien in der Klasse XMLImporter im Paket
de.modulspezifikation.importer durchgeführt wurde. Dort wurde die Baumförmige Knoten-
struktur der mit dem DocumentBuilder geparsten XML Datei manuell traversiert. Bei der Anaylse
der von Gitinspector erzeugten XML Datei wurde deutlich, dass sich viele der logisch zusammenhän-
genden Informationen in verschiedenen Teilen des XML Baums befanden. Dadurch musste, dieser

38



6.4 Probleme

Baum sehr oft auf unterschiedliche Arten traversiert werden. Dies erzeugte eine große Menge an
unübersichtlichem Code, welcher sehr schwer zu lesen war.

Um das Problem zu lösen, wurde die aufwendige XML Knotentraversierung von der in Java inte-
grierten Bibliothek XPath übernommen. Mit dieser Abfragesprache können auch sehr komplexe
Baumtraversierungen übersichtlich und mit wenigen Codezeilen durchgeführt werden. Dadurch wird
dass die Logik für die Repositoryanalyse nicht mit Unmengen an Traversierungscode verschleiert.

6.4.2 Automatische Analyse durch Gitinspector innerhalb des Programms

In Abschnitt 5.1.1 wurde bereits darauf hingewiesen, dass die Gitinspector XMLDatei semiautomatisch
mithilfe von Konsolenskripten erstellt werden muss. Die Gründe warum die diese Erstellung nicht
innerhalb von UniMoDoc stattfindet werden im folgenden Aufgelistet.

Komplexe Installation: Als JSF Web Anwendung läuft UniMoDoc auf einem Server, der die vom
Browser aufrufbaren Webseiten generiert und an diesen sendet. Für das UniMoDoc Projekt ist
das der Apache Tomcat Server. Die zusätzliche Installation der in Gitinspector verwendeten
Abhängigkeiten auf dem Server ist sehr komplex und war im Zeitrahmen dieser Bachelorarbeit
nicht zu erledigen.

Lizenzkonflikte: Die in Gitinspector verwendete GNU GPL v3 Lizenz ist mit der in UniMoDoc ver-
wendeten Apache Licence 2.0 kompatibel. Dies sorgt dafür, dass die modifizierte Version von
Gitinspector separat von UniMoDoc angeboten werden muss.

Erhöhte Laufzeit der Synchronisation: Wenn die Repositoryanalyse direkt im Programm ausgeführt
wird, würde sich die Ausführungzeit der Synchronisation um die Zeitdauer erhöhen, die Gitin-
spector benötigt um die XML Datei zu erstellen. Abschnitt 4.4.4 zeigte, dass dafür bei größeren
Repositories Zeiten im Bereich von 10-15 Sekunden benötigt werden. Somit würde sich die
Zeit während der Synchronisation, wo der Benutzer das Programm nicht bedienen kann noch
weiter verlängern.

39





7 Zusammenfassung und Ausblick

Diese Bachelorarbeit zeigte nun, wie Entwickler bei der Aktualisierung ihrer Dokumentation von
Computern unterstützt werden können. Dabei können Maschinen vor allem bei der Erhebung von
Metriken helfen, die durch ihre Art von Menschen nur sehr langwierig und schwer zu ermitteln
sind. Es wurde die Moduldokumentationssoftware UniMoDoc vorgestellt und erklärt wie das Pro-
gramm mithilfe von Beschreibungselementen die Eigenschaften von Softwaremodulen dokumentiert.
Anschließend anhand des Versionskontrollsystems Git erklärt, wie diese Systeme die, an sie überge-
benen, Information abspeichern und es wurde ein Werkzeug ausgewählt, das diese Informationen aus
Git extrahieren kann und damit ausgewählte Beschreibungselemente von UniMoDoc automatisch
aktualisieren kann. Weiterhin wurde gezeigt, dass es zusätzlich noch möglich ist zu ermitteln, welche
von den in UniMoDoc verwalteten Pakete im Repository noch exisieren und welche davon nicht
mehr vorhanden oder neu hinzugekommen sind.

Im zweiten Teil der Bachelorarbeit wurde gezeigt, wie diese Veränderungen in UniMoDoc eingebaut
wurden. Hierzu wurden die implementierten neuen Features mithilfe von Use-Case Diagrammen
dargestellt. Weiterhin wurde erklärt wie die Implementierung umgesetzt wurde und gezeigt wie
Probleme, die dort aufgetreten sind behandelt wurden.

7.1 Ausblick

Bei der Entwicklung der neuen Features in UniMoDoc sind folgende Ideen für Entwicklungen in der
Zukunft aufgekommen:

• Die Möglichkeit alle Markierungen für im Repository nicht gefundenen und in der Dokumenta-
tion neu hinzugefügten Module auf einmal zu entfernen.

• Einen Absoluten Pfad in den Programmeinstellungen festzulegen, von dem aus die Beschrei-
bungselemente qName und src angegeben werden.

• Für jede Datei im Repository bei der Synchronisation überprüfen, wann sie das letzte mal
verändert wurde und diese Information im Beschreibungselement Last Change für die zuletzt
veränderte Datei im Modul angeben.

• Weitere Beschreibungselemente, deren Informationen nicht im Repository liegen aber von
einem Computer ermittelt werden können in UniMoDoc hinzufügen. Ein Beispiel dafür ist die
Testabdeckung der Tests in den einzelnen Modulen.

41





Literaturverzeichnis

[Ato] Atom Editor - Project Website. URL https://atom.io/. (Zitiert auf den Seiten 22 und 25)

[Boo] Bootstrap - Project Website. URL http://getbootstrap.com/. (Zitiert auf Seite 25)

[Cha09] S. Chancon. Pro Git. Apress, 1. Auflage, 2009. (Zitiert auf den Seiten 7, 15, 16, 17, 18 und 19)

[Gita] Gitinspector - Project Website. URL https://code.google.com/p/gitinspector/. (Zi-
tiert auf Seite 22)

[Gitb] GitStats - Project Website. URL https://sourceforge.net/projects/gitstats/. (Zitiert
auf Seite 21)

[Jav] The Java EE5 Tutorial - Chapter 10 Java Server Faces Technology. URL http://docs.

oracle.com/javaee/5/tutorial/doc/bnaph.html. (Zitiert auf Seite 37)

[Lud10] H. L. Ludewig, J. Software Engineering - Grundlagen, Menschen, Prozesse, Techniken.
dpunkt.verlag, 2. Auflage, 2010. (Zitiert auf Seite 9)

[Mar] M. P. K. S. Marinschek, Kurz. Kapitel 2.4 Managed Beans. URL http://jsfatwork.irian.

at/. (Zitiert auf Seite 37)

[Nov] Novabench - Website. URL http://novabench.com/. (Zitiert auf Seite 25)

[Sta] StatSVN - Project Website. URL http://www.statsvn.org/. (Zitiert auf Seite 21)

Alle URLs wurden zuletzt am 29. 10. 2014 geprüft.

43

https://atom.io/
http://getbootstrap.com/
https://code.google.com/p/gitinspector/
https://sourceforge.net/projects/gitstats/
http://docs.oracle.com/javaee/5/tutorial/doc/bnaph.html
http://docs.oracle.com/javaee/5/tutorial/doc/bnaph.html
http://jsfatwork.irian.at/
http://jsfatwork.irian.at/
http://novabench.com/
http://www.statsvn.org/




Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wörtlich oder sinngemäß aus anderen Werken übernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Prüfungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-
se noch vollständig veröffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren überein.

Ort, Datum, Unterschrift


	1 Einleitung
	1.1 Motivation
	1.2 Aufgabenstellung
	1.3 Überblick über die Arbeit

	2 UniMoDoc
	2.1 Einleitung
	2.2 Überblick über die Funktionsweise
	2.3 Die Beschreibungselemente

	3 Das Versionsverwaltungssystem Git
	3.1 Einleitung
	3.2 Drei Bereiche und drei Zustände
	3.3 Branchen und Mergen
	3.4 Das Innenleben eines Git-Repositories
	3.5 Git Objekte
	3.6 Git Referenzen

	4 Die Extraktionswerkzeuge
	4.1 Recherche
	4.2 StatSVN
	4.3 GitStats
	4.4 Gitinspector
	4.5 Verwendung der Daten in UniMoDoc

	5 Synchronisation
	5.1 Allgemeiner Ablauf
	5.2 Anwendungsfälle

	6 Die Implementierung
	6.1 Java Server Faces
	6.2 Programmierstil
	6.3 Implementierung
	6.4 Probleme

	7 Zusammenfassung und Ausblick
	7.1 Ausblick

	Literaturverzeichnis

