
Institut für Formale Methoden der Informatik

Universität Stuttgart

Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit Nr. 137

Optimierung von

Schulstundenplänen

Philipp Keck

Studiengang: Softwaretechnik, B.Sc.

Prüfer/in: Prof. Dr. Stefan Funke

Betreuer/in: Prof. Dr. Stefan Funke

Beginn am: 21.05.2014

Beendet am: 10.10.2014

CR-Nummer: I.2.8, G.2.3, F.2.2, J.1

Zusammenfassung
Die automatische Erstellung von Stundenplänen für Schulen ist seit vielen Jahren For-
schungsgegenstand in den Bereichen der Künstlichen Intelligenz und der Unternehmens-
forschung. Diese Arbeit kombiniert Techniken aus beiden Bereichen: Eine Modellierung als
Constraint Satisfaction Problem und eine Modellierung als pseudo-boolesches Optimie-
rungsproblem werden jeweils mit der Relaxierung des zugehörigen linearen Programms
kombiniert, um schneller bessere Ergebnisse zu erzielen. Für jede Variante und Kombi-
nation dieser Modellierungen wurden Tests mit vier verschiedenen Probleminstanzen
durchgeführt. Die Ergebnisse zeigen, dass die vorgestellten Verfahren zumindest für kleine-
re Schulen, wie beispielsweise deutsche Grundschulen, ähnlich schnell sind wie etablierte
Verfahren. Im Unterschied zu diesen liefern die vorgestellten Verfahren jedoch stets voll-
ständig zulässige und beweisbar optimale Lösungen und sind zudem einfacher erweiterbar
und anpassbar. In Kombination mit kommerziellen Lösern erzielen die vorgestellten Mo-
dellierungen auch für größere Probleminstanzen, wie z. B. die von deutschen Gymnasien,
bessere Ergebnisse. Die Modellierungen und Ergebnisse in dieser Arbeit sind spezifisch für
das deutsche Schulsystem.

Abstract
For many years, the automated construction of school timetables has been subject of
research in Artificial Intelligence and Operations Research. This thesis combines techniques
from both areas: Formulations as a constraint satisfaction problem and as a pseudo-boolean
optimization problem are each combined with the relaxation of the corresponding linear
program, in order to obtain better results more quickly. For each variant and combination
of these formulations, tests were carried out using four different instances. The results show
that – at least for smaller schools like German primary schools – the proposed methods
are as fast as established methods. In contrast to these, the proposed methods always
yield entirely feasible and provably optimal solutions. Moreover, they are easier to extend
and adjust. When combined with commercial solvers, the proposed problem formulations
achieve better results for larger instances like those of German high schools, as well. The
formulations and results in this thesis are specific to the German education system.

iii

Inhaltsverzeichnis
1 Einleitung 1

2 Problemdefinition 3

2.1 Abgrenzung . 3
2.2 Begriffe und Konventionen . 3
2.3 Formalisierung . 4
2.4 Harte Bedingungen . 5
2.5 Weiche Bedingungen . 7
2.6 NP-Vollständigkeit . 8

3 Lösungsansätze 9

3.1 Stundenplanung von Hand . 9
3.2 Setz-Algorithmus . 10
3.3 Ganzzahlige lineare Programmierung . 10
3.4 Weitere Ansätze . 12

4 SchulScheduler 13

4.1 Einführung . 13
4.2 Oberfläche . 15
4.3 Kopplungen . 15
4.4 Testdatensätze . 15
4.5 Performance . 16

5 Lösung mittels Constraint Programming 19

5.1 Einführung . 19
5.2 Erste Modellierung als Constraint Satisfaction Problem 21
5.3 Implementierung und Verbesserung . 23
5.4 Alternative Modellierung . 32

6 Einbezug der LP-Relaxierung 35

6.1 Motivation . 35
6.2 Mögliche Vorgehensweisen . 36
6.3 Ganzzahlige Werte fixieren . 37

iv

Inhaltsverzeichnis

6.4 Nur Einsen fixieren . 40
6.5 Sortieren statt Fixieren . 45
6.6 Verschärfung der LP-Relaxierung . 51
6.7 Weitere Bedingungen . 59

7 Lösung mittels pseudo-boolescher Optimierung 65

7.1 Einführung . 65
7.2 Vollständige Binärisierung . 66
7.3 Implementierung und Optimierung . 69
7.4 Einbezug der LP-Relaxierung . 71
7.5 Auswertung . 72

8 Zusammenfassung, Anmerkungen und Ausblick 75

8.1 Zusammenfassung . 75
8.2 Vergleich mit spezialisierten Algorithmen . 76
8.3 Weitere getestete Solver . 78
8.4 Messverfahren . 79
8.5 Softwaretechnische Anmerkungen . 79
8.6 Umgang mit nicht lösbaren Probleminstanzen 80
8.7 Lokale Suche und Large Neighborhood Search 81
8.8 Runden der LP-Relaxierung . 81
8.9 Fazit . 82

Literaturverzeichnis 83

v

Abbildungsverzeichnis
4.1 SchulScheduler Eingabefenster . 14
4.2 SchulScheduler Ergebnisfenster . 14

5.1 Suchbaum (Gecode) von Datensatz B mit Kernstunden nach einer Stunde . . 27
5.2 Suchbaum (Gecode) von Datensatz B mit einer Doppelstunde 31

6.1 Foto von manueller Konflikt-Reproduktion . 38
6.2 Analyse einer unlösbaren Probleminstanz . 41
6.3 Histogramme der optimalen relaxierten LP-Lösungen 46
6.4 Suchbaum einer kleinen Probleminstanz mit Variablen-Sortierung nach LP-

Relaxierung . 49
6.5 Position der ersten Fehlentscheidung im CSP-Suchbaum 50
6.6 Position der ersten Fehlentscheidung im CSP-Suchbaum (Kopplungen prio-

risiert) . 51
6.7 Konfliktgraph einer minimalen Probleminstanz 53
6.8 Position der ersten Fehlentscheidung mit Cliquen-Constraints 57

vi

Tabellenverzeichnis
4.1 Größenordnungen der verwendeten Datensätze 16
4.2 Rechenzeiten mit Gurobi . 17

5.1 CSP nur mit Konfliktfreiheits-Bedingung . 23
5.2 CSP mit Konfliktfreiheit und Symmetry Breaking 25
5.3 CSP mit Kernstunden . 26
5.4 CSP mit Kernstunden und sortierten Zeitslots 28
5.5 Vergleich von Modellierungs-Varianten der Kernstunden-Bedingung 29
5.6 CSP mit Kernstunden, Nichtverfügbarkeiten und fixierten Unterrichtsstunden 30
5.7 Binäres CSP nur mit Konfliktfreiheits-Bedingung 33
5.8 Binäres CSP mit Kernstunden . 33
5.9 Binäres CSP mit Kernstunden und sortierten Zeitslots 34

6.1 Zielfunktionswerte von LP und ILP (berechnet mit Gurobi) 36
6.2 Binäres CSP mit Fixieren von ganzzahligen Werten aus der LP-Relaxierung . 37
6.3 Mögliche Lösung für die minimale Probleminstanz 39
6.4 Werte für xuz aus der LP-Relaxierung . 39
6.5 Binäres CSP mit Fixieren von 1-Werten . 41
6.6 Einfluss der fixierten 1-Werte auf die Lösbarkeit 42
6.7 Mögliche Lösung für die minimale Probleminstanz beim Fixieren von Einsen 44
6.8 Werte für xuz aus der LP-Relaxierung beim Fixieren von Einsen 44
6.9 Einfluss der Sortierung auf den Erfolg der Berechnung 48
6.10 Schlechte LP-Relaxierung bei ungünstiger Probleminstanz 52
6.11 Statistiken zur Cliquensuche . 56
6.12 Einfluss der Cliquen-Constraints auf den Erfolg der Berechnung 58
6.13 Berechnung mit Cliquen-Constraints und verbesserter Variablen-Ordnung . 59
6.14 CSP mit zusätzlichen harten Bedingungen . 60
6.15 CSP mit Zielfunktion . 61
6.16 CSP mit Zielfunktion und zusätzlichen harten Bedingungen 62

7.1 Laufzeit der Pseudo-Boolean-Solver mit harten Bedingungen 70
7.2 Laufzeit der Pseudo-Boolean-Solver mit harten und weichen Bedingungen . 71
7.3 Laufzeit der Pseudo-Boolean-Solver mit LP-Relaxierung 72

vii

Kapitel 1

Einleitung

Das Erstellen von brauchbaren Stundenplänen für Schulen und Universitäten stellt auch
im Computer-Zeitalter noch eine Herausforderung dar. Zwar verspricht eine Vielzahl
von Programmen, die Aufgabe zu übernehmen oder zu unterstützen, doch neben der
Einarbeitung in die jeweilige Software ist oft eine zeitaufwändige Nachbearbeitung der
berechneten Stundenpläne notwendig. Insbesondere wenn die algorithmische Stundenpla-
nung daran scheitert, alle Unterrichtsstunden im Plan unterzubringen ohne dabei Konflikte
zu erzeugen, muss der Mensch noch seine Erfahrung und Arbeitszeit einbringen, um einen
verwendbaren Stundenplan zu erhalten.

Nach einer allgemeinen Definition des Stundenplanproblems für deutsche Schulen in
Kapitel 2 gibt diese Arbeit in Kapitel 3 einen Überblick über mögliche Lösungsansätze.
Insbesondere geht Abschnitt 3.3 auf einen Ansatz ein, der von Weidler [2012] eingeführt
wurde, und der das Problem als ganzzahliges, lineares Optimierungsproblem modelliert,
um es dann mit einem Löser für lineare Programmierung zu lösen. Anschließend wird in
Kapitel 4 die Software „SchulScheduler“ vorgestellt, die basierend auf diesem Ansatz in
einem Studienprojekt entwickelt wurde.

Ziel dieser Arbeit ist es, andere Ansätze zur Lösung des Stundenplanproblems zu untersu-
chen, die insbesondere nicht von dem kommerziellen Solver Gurobi abhängig sind, der
von der Software „SchulScheduler“ derzeit verwendet wird. Außerdem werden Techniken
eingesetzt, die es im Unterschied zu vielen bestehenden Softwareprodukten erlauben,
beweisbar optimale Lösungen zu berechnen. Kapitel 5 zeigt zwei Ansätze, die mittels
Constraint Programming auf unterschiedliche Art das Problem modellieren, und vergleicht
die Praxistauglichkeit dieser Ansätze anhand von Implementierungen mit zwei offenen
CSP-Solvern. Um die Erfolgsquote zu erhöhen, wird in Kapitel 6 die LP-Relaxierung der
Probleminstanzen verwendet. In Kapitel 7 wird ein weiterer Ansatz vorgestellt, der auf
pseudo-boolescher Optimierung basiert. Kapitel 8 gibt neben einer Zusammenfassung
und einigen Anmerkungen vor allem einen Ausblick auf mögliche Verbesserungen der
vorgestellten Ansätze.

1

1. Einleitung

Ganz besonders möchte ich Professor Funke für seine hilfreiche und kompetente Betreuung
sowie die interessante und praxisnahe Aufgabenstellung danken. Außerdem geht ein
herzliches Dankeschön an meine Tante, die mir am lebenden Beispiel einen Einblick in
die Stundenplanung an Grundschulen gegeben hat, sowie an meine Kommilitonen Sven
Schnaible und Gustav Murawski fürs Korrekturlesen.

2

Kapitel 2

Problemdefinition

In diesem Kapitel wird das Stundenplanproblem in der Form definiert, die in dieser
Arbeit verwendet wird. Abschnitt 2.2 führt die verwendeten fachlichen Begriffe und
abkürzende Schreibweisen ein. Nach der formalen Definition der grundlegenden Mengen
in Abschnitt 2.3 werden in Abschnitt 2.4 und Abschnitt 2.5 die harten bzw. weichen
Bedingungen vorgestellt.

2.1. Abgrenzung

Die in dieser Arbeit betrachtete Variante des Stundenplanproblems orientiert sich an
typischen deutschen Schulen. Die Schulsysteme anderer Länder unterscheiden sich zum
Teil in wesentlichen Punkten, sodass die Definition und die Lösungsansätze nicht ohne
Weiteres übertragbar sind. Insbesondere werden hier keine Sonderfälle wie beispielsweise
das Kurssystem an Gymnasien betrachtet.

Für die Erstellung des Stundenplans wird davon ausgegangen, dass die Zuteilung von
Klassen, Fächern und Lehrern bereits stattgefunden hat. Die Zuteilung der Fächer zu
den Klassen ergibt sich (in Deutschland) ohnehin direkt aus dem Bildungsplan und die
Zuteilung von Klassen- und Fach-Lehrern ist eine Entscheidung, die üblicherweise vorab
getroffen wird. Auch dafür existieren algorithmische Ansätze [z. B. Tillett, 1975; Breslaw,
1976], die hier aber nicht näher betrachtet werden. Bei der mathematischen Definition
folgt diese Arbeit in weiten Teilen der Definition von Weidler [2012, Kap. 4], die jedoch
vereinfacht wird, indem zusätzlich der Begriff des Unterrichts eingeführt wird.

2.2. Begriffe und Konventionen

Die grundlegenden Entitäten bei der Stundenplan-Erstellung sind daher Klassen, Fächer
und Lehrer. Das Zusammentreffen einer Klasse mit einem Lehrer für ein bestimmtes Fach
wird als Unterricht bezeichnet. Ein Unterricht nimmt eine gewisse Anzahl an Schulstunden

3

2. Problemdefinition

pro Woche in Anspruch, wodurch sich einzelne Unterrichtsstunden ergeben, die es im
Zeitraster zu platzieren gilt. Das Zeitraster ist eine Menge von Zeitslots, die für jeden Tag
und jede Stunde einen Eintrag enthält. Beispiel:

Der Deutsch-Unterricht der Klasse 5a wird vom Lehrer Adam drei Mal wöchent-
lich gehalten. Er findet in den folgenden Zeitslots statt: Montag 3. Stunde, Montag
4. Stunde und Donnerstag 3. Stunde.

Am gleichen Beispiel lassen sich die in dieser Arbeit verwendeten Konventionen für
Abkürzungen verdeutlichen:

Der Unterricht 5a-D-Ad findet in den Zeitslots Mo3, Mo4 und Do3 statt.

2.3. Formalisierung
Mathematisch kann das Stundenplanproblem durch die folgenden jeweils endlichen Men-
gen dargestellt werden:

• Klassen K

• Fächer F

• Lehrer L

• Unterrichte U Ď Kˆ Fˆ L

• Wochenstunden W : U Ñ N

• Wochentage T = {Mo, Di, Mi, Do, Fr}
• Stunden S = {1, . . . , n} mit n P N

• Verfügbare Zeitslots Z Ď {zts | t P T, s P S} = Tˆ S

Zu bemerken ist hier, dass es sich bei W um eine Multimenge handelt. Wenn ein Unterricht
u = (k, f , l) P U zum Beispiel vier Mal in W enthalten ist (also W(k, f , l) = 4), dann
bedeutet das, dass der Unterricht vier Mal pro Woche stattfinden soll. Z ist eine Teilmenge
der gesamten möglichen Stundenmatrix Tˆ S, weil z. B. am Freitagnachmittag nicht alle
Zeitslots zur Planung zur Verfügung stehen.

Das Ziel ist nun, eine Zuteilung x : U Ñ P(Z) zu finden, die für jeden Unterricht angibt,
in welchen Zeitslots dieser stattfindet. Im Folgenden werden die Kriterien beschrieben, die
eine solche Lösung erfüllen muss.

4

2.4. Harte Bedingungen

2.3.1. Weitere Mengendefinitionen

Zur Vereinfachung der Formulierung verschiedener Bedingungen werden die folgenden
Mengen definiert:

• Der gesamte Unterricht eines Lehrers l P L ist definiert als
Ul := {u = (ku, fu, lu) P U | lu = l}

• Der gesamte Unterricht einer Klasse k P K ist definiert als
Uk := {u = (ku, fu, lu) P U | ku = k}

2.4. Harte Bedingungen

Die harten Bedingungen orientieren sich ebenfalls an denen von Weidler [2012, Kap. 4.1].

Als harte Bedingungen werden die Anforderungen an den Stundenplan bezeichnet, die auf
jeden Fall erfüllt sein müssen, damit dieser in der Praxis ausführbar ist. Ein Stundenplan,
der alle harten Bedingungen erfüllt, ist zulässig.

2.4.1. Korrekte Anzahl Wochenstunden

Einem Unterricht, der i Mal in der Multimenge W vorhanden ist, müssen genau i Zeitslots
zugewiesen werden, d. h. es muss gelten:

@u P U : |x(u)| = W(u)

2.4.2. Konfliktfreiheit

Ein Konflikt entsteht, wenn ein Lehrer oder eine Klasse zu einem Zeitpunkt zwei oder
mehr Unterrichte hat. Die Forderung nach Konfliktfreiheit bedeutet also, dass zu jedem
Zeitpunkt für jeden Lehrer bzw. jede Klasse maximal ein Unterricht stattfinden darf:

@z P Z @l P L : |{u P Ul | z P x(u)}| ď 1

@z P Z @k P K : |{u P Uk | z P x(u)}| ď 1

Hinweis: Es gibt zwar Fälle, in denen ein Lehrer mehrere Klassen unterrichtet (z. B.
im Sport-Unterricht), dieser Spezialfall ist hier aber nicht gemeint. Diese sogenannten
Kopplungen werden in Abschnitt 4.3 näher betrachtet.

5

2. Problemdefinition

2.4.3. Kernstunden

Wegen der Aufsichtspflicht ist es an vielen Schulen erforderlich, dass jeder Schüler den
ganzen Vormittag Unterricht hat. Es ist also für jeden Vormittags-Zeitslot und für jede
Klasse gefordert, dass mindestens einer der möglichen Unterrichte dann stattfindet (wegen
der Konfliktfreiheit ist es dann genau einer).

Wenn man mit Zk Ď Z die Menge Zeitslots bezeichnet, die Kernstunden sein sollen, lässt
sich die Kernstunden-Bedingung entweder alleine:

@z P Zk @k P K : |{u P Uk | z P x(u)}| ě 1

oder als Verschärfung der Konfliktfreiheit darstellen:

@z P Zk @k P K : |{u P Uk | z P x(u)}| = 1

2.4.4. Weitere harte Bedingungen

Es gibt eine Reihe von harten Bedingungen, die nicht an jeder Schule eingehalten werden
müssen. Ihre Verwendung ist also optional. Diese Bedingungen werden hier nur kurz
beschrieben. Für detaillierte mathematische Formulierungen siehe [Weidler, 2012, Kap. 4.1]
und Abschnitt 7.2.

Ź Doppelstunden: Viele Schulen verwenden ein Doppelstundenmodell, das mehr oder we-
niger strikt angewandt wird. Für die strikteste Variante (ausschließlich Doppelstunden)
kann man einfach längere/weniger Zeitslots definieren. Für flexiblere Doppelstunden-
modelle bietet SchulScheduler (siehe Kapitel 4) die Definition von Doppelstundenpaaren
(s1, s2) P S2 an. Dann ist gefordert, dass ein Unterricht genau dann in der einen Stunde
stattfindet, wenn er am selben Tag in der anderen Stunde stattfindet. Aus den angegebe-
nen Doppelstundenpaaren wird also eine Menge D Ă Z2 von disjunkten Zeitslotpaaren
abgeleitet, von denen ein Unterricht immer entweder beide oder keine Zeitslots eines
Paares belegen muss. Eine einzelne Unterrichtsstunde pro Fach kann jedoch von dieser
Regel ausgenommen werden, wenn der Unterricht in dem Fach eine ungerade Anzahl
Wochenstunden hat.

Ź Fach pro Tag: Es wird gefordert, dass der Unterricht in einem Fach für eine Klasse
maximal für zwei Stunden pro Tag stattfindet – und wenn es zwei Stunden sind, müssen
diese aufeinanderfolgend sein.

Ź Lehrer-Nichtverfügbarkeit: Wenn ein Lehrer zu bestimmten Zeitpunkten nicht verfüg-
bar ist, kann gefordert werden, dass keiner seiner Unterrichte zu diesen Zeitpunkten
stattfinden darf.

6

2.5. Weiche Bedingungen

Ź Freier Tag für Lehrer: Für einen Lehrer kann gefordert werden (wenn er dies wünscht),
dass mindestens ein Wochentag für ihn komplett unterrichtsfrei ist.

Ź Fixierte Unterrichtsstunden: Mitunter ist es notwendig, bestimmte Unterrichtsstunden
auf einen bestimmten Zeitslot zu fixieren. Dabei können Unterrichtsstunden im selben
Fach übrig bleiben, die nicht fixiert wurden, und dann normal verplant werden.

Ź Kopplungen: Manche Fächer werden von mehreren Lehrern und/oder bei mehreren
Klassen gleichzeitig unterrichtet. Diese sogenannten Kopplungen werden in dieser
Arbeit nicht als zusätzliche harte Bedingungen behandelt, sondern als eine erweiterte
Art von Unterrichten interpretiert und in Abschnitt 4.3 genauer beschrieben.

2.5. Weiche Bedingungen

Die Erfüllung der harten Bedingungen ist entweder unmöglich (dann ist die Probleminstanz
nicht lösbar), oder auf viele Arten möglich. Zum Beispiel lässt sich durch Vertauschen von
Zeitslots oder Tagen aus einer zulässigen Lösung schnell eine weitere zulässige Lösung
ableiten (mit wenigen Ausnahmen).

Daher bietet es sich an, anhand der Präferenzen der Schule aus den zulässigen Lösungen
eine besonders gute Lösung auszuwählen. Das geschieht mittels einer Zielfunktion, deren
Wert maximiert werden soll. In die Zielfunktion gehen verschiedene weiche Bedingungen ein,
ggf. mit differenzierter Gewichtung. Diejenige zulässige Lösung, die unter allen zulässigen
Lösungen den Wert der Zielfunktion maximiert, wird optimale Lösung genannt.

An dieser Stelle werden die weichen Bedingungen vorgestellt, die von SchulScheduler
(siehe Kapitel 4) unterstützt werden. Für Details zur mathematischen Modellierung siehe
[Weidler, 2012, Kap. 4.2].

Ź Harte Fächer vormittags: Als harte Fächer bezeichnet man mental anspruchsvolle Fächer
wie Mathematik, Deutsch oder Physik. Zur Optimierung eines Stundenplans können
diese bevorzugt vormittags eingeplant werden.

Ź Folgen harter Fächer: Außerdem können aufeinanderfolgende Unterrichtsstunden in
harten Fächern vermieden werden.

Ź Unterrichtspriorität: Eine Verfeinerung bzw. Abschwächung der harten Kernstunden-
Bedingung ist die bevorzugte Belegung von bestimmten Zeitslots. Zum Beispiel kann
Unterricht bevorzugt vormittags stattfinden, wohingegen später Nachmittagsunterricht
vermieden wird. Für jede Stunde des Tages wird dazu eine Priorität angegeben.

7

2. Problemdefinition

Ź Lehrer-Verfügbarkeit: Es kann auf die zeitlichen Präferenzen von Lehrern Rücksicht
genommen werden, indem diese angeben, wann sie eher unterrichten möchten und
wann sie eigentlich keine Zeit haben.

Ź Hohlstunden-Vermeidung: Da für Klassen oft die Einhaltung von Kernstunden gefor-
dert wird (siehe oben), ist die Vermeidung von Hohlstunden als weiche Bedingung
vor allem für Lehrer interessant. Hohlstunden sind Zeitslots, die nach dem ersten und
vor dem letzten Unterricht des Tages für einen Lehrer liegen, in denen er aber keinen
Unterricht gibt.

Ź ÖPVN-Abstimmung: Der Zeitpunkt der letzten Unterrichtsstunde einer Klasse kann
beispielsweise an den Busfahrplan angepasst werden.

Es sind viele weitere weiche Bedingungen denkbar. Insbesondere lässt sich jede der harten
Bedingungen zu einer weichen Bedingung umformulieren, bei deren Verletzung ein ent-
sprechend großer Betrag von der Zielfunktion abgezogen wird. Dieser Ansatz ist aber nur
vorübergehend für die Berechnung sinnvoll, weil ein Stundenplan, der harte Bedingungen
verletzt, in der Praxis nicht eingesetzt werden kann, was einer der Hauptkritikpunkte an
bestehenden Softwarelösungen ist.

2.6. NP-Vollständigkeit

Even et al. [1975] wiesen nach, dass bereits eine sehr „primitive“ Variante des Stundenplan-
problems NP-vollständig ist. Für den Beweis wurde das von Gotlieb [1962] vorgeschlagene
Stundenplanproblem so weit vereinfacht, dass alle in der Praxis vorkommenden Varianten
mindestens so komplex sind wie die untersuchte. Die Problemdefinition besteht nur aus
Zeitslots, Lehrern, Klassen (wie oben beschrieben) und einer Wochenstunden-Matrix, die
neben der Konfliktfreiheit eingehalten werden muss. Außerdem sind Nichtverfügbarkeiten
nicht nur für Lehrer, sondern auch für Klassen vorgesehen.

Bei der hier vorgestellten Problemvariante kommt es zwar nicht vor, dass Klassen zu
bestimmten Zeiten nicht verfügbar sind, doch diese Einschränkung lässt sich leicht nachbil-
den, indem man ein Platzhalter-Fach pro Klasse mit einem Lehrer einführt, der immer Zeit
hat, und dann fixe Stunden in diesem Fach auf die zu sperrenden Zeitslots legt. Damit ist
auch das hier vorgestellte Stundenplanproblem NP-vollständig.

8

Kapitel 3

Lösungsansätze

Dieses Kapitel gibt eine kurze Einführung der Lösungsansätze, auf die sich diese Arbeit
später bezieht. Neben dem manuellen Planen in Abschnitt 3.1 und dem Setz-Algorithmus in
Abschnitt 3.2 wird insbesondere der auf ganzzahliger, linearer Programmierung aufbauende
Ansatz von Weidler [2012] vorgestellt (Abschnitt 3.3).

Für einen ausführlichen Überblick über die Vielzahl an möglichen Ansätzen zur Lösung
von verschiedenen Varianten des Stundenplanproblems sei verwiesen auf die Studien von
Carter und Laporte [1998], Schaerf [1999], Burke et al. [2004] und Pillay [2013].

3.1. Stundenplanung von Hand
Vor ein paar Jahren wurden Stundenpläne noch überwiegend von Hand erstellt. Auch
wenn mittlerweile viele Schulen auf automatisierte Lösungen umgestiegen sind, gibt es
immer noch – vor allem kleinere – Schulen, die ihren Stundenplan weiterhin von Hand
erstellen.

Die Vorgehensweise variiert dabei stark und hängt von der Erfahrung und den Zielset-
zungen des Stundenplaners ab. Ein bekannter Ansatz ist die Verwendung einer großen
Magnettafel, auf der jede Unterrichtsstunde mit zwei Plättchen dargestellt wird – eines
davon im Stundenplan der Klasse, das andere im Stundenplan des Lehrers. Ausgehend von
einer leeren Tafel wird zunächst ein (in sich stimmiger) Stundenplan für eine Klasse erstellt.
Das wird dann für die weiteren Klassen wiederholt, wobei Konflikte erkannt werden,
indem der jeweilige Unterricht parallel auch in den Lehrerplänen eingetragen wird. Fälle,
in denen eine Unterrichtsstunde gar nicht mehr platziert werden kann, können dann nur
mit Ausprobieren, Erfahrung oder Neu-Beginnen gelöst werden. (Quelle: eine typische
Grundschule aus Süddeutschland)

Dieser Ansatz nimmt zwar auch für Grundschulen einige Zeit in Anspruch, aber in den
allermeisten Fällen führt er zu einem zulässigen und guten Ergebnis – aufgrund der Erfah-
rung der Stundenplaner. Deswegen muss er durchaus als Konkurrenz zur automatisierten
Stundenplanung betrachtet werden.

9

3. Lösungsansätze

Konfliktfreie Stundenpläne lassen sich an Grundschulen vergleichsweise einfach erstellen,
weil jede Klasse einen eigenen Klassenlehrer hat, der bis auf wenige Ausnahmen (oft
Sport oder Religion) alle Fächer unterrichtet. Dadurch sind je ein Klassen- und Lehrerplan
fast identisch und außerdem weitgehend unabhängig von den anderen Plänen. Weil an
Grundschulen nur wenige Wahlmöglichkeiten und weniger Abhängigkeiten zu anderen
Schulen oder externen Räumen (insbesondere Sporthallen) bestehen, ändern sich die
Anforderungen zum neuen Schuljahr nur wenig, sodass oft der alte Stundenplan als
Vorlage verwendet werden kann. Für weiterführende Schulen ist der manuelle Ansatz
allerdings zunehmend weniger geeignet, weil sie meist größer sind und komplexere und
wechselnde Anforderungen haben.

3.2. Setz-Algorithmus

Durch die Übersetzung des manuellen Vorgehens in einen maschinell ausführbaren Algo-
rithmus erhält man einen einfachen Setz-Algorithmus. Die zu verplanenden Unterrichts-
stunden werden der Reihe nach auf einen noch freien Zeitslot gelegt, bis alle untergebracht
sind. Kann eine Unterrichtsstunde nicht mehr untergebracht werden, wird mittels Back-
tracking nach anderen Kombinationen gesucht.

Dieser zunächst naive Algorithmus lässt sich durch Heuristiken stark verbessern [siehe
z. B. Schmidt und Ströhlein, 1980]. Nachdem ein zulässiger Stundenplan gefunden ist,
kann dieser durch Tauschoperationen verbessert werden, bei denen zwei oder sogar mehr
Unterrichte vertauscht werden, ohne dabei Konflikte zu erzeugen. Heutzutage in Deutsch-
land etablierte Software-Produkte wie beispielsweise Untis® Express arbeiten nach eigener
Aussage mitunter auf diese Weise – wenngleich sicherlich mit einigen Verbesserungen:

„Während der Setzoptimierung werden die einzelnen Unterrichtsstunden – beginnend
mit der schwierigsten – in den zunächst noch leeren und sich langsam füllenden
Zeitraster hineingesetzt, während der Tauschoptimierung versucht das Programm
durch gezielte Täusche das Ergebnis zu verbessern.“

Gruber & Petters [2014], Untis® Express Benutzerhandbuch

3.3. Ganzzahlige lineare Programmierung
Das in Kapitel 2 vorgestellte Stundenplanproblem kann als lineares Programm formu-
liert und dann mit entsprechenden Lösern gelöst werden. An dieser Stelle wird nur die
Grundidee wiedergegeben. Für Details siehe [Weidler, 2012].

10

3.3. Ganzzahlige lineare Programmierung

Bei einem linearen Programm (LP) ist eine Zielfunktion

max
n

∑
j=1

cjxj

gegeben, die unter Einhaltung der ebenfalls gegebenen Nebenbedingungen
n

∑
j=1

aijxj ď bi i P {1, . . . , m}

maximiert werden soll.

Hinweis: Nebenbedingungen mit = oder ě lassen sich einfach in die obige Form umformen.

Für die Berechnung von Stundenplänen ist insbesondere die ganzzahlige lineare Optimie-
rung interessant (ILP), bei der zusätzlich gefordert wird, dass xj P N.

3.3.1. Modellierung als ganzzahliges lineares Programm
Wir definieren für jeden Unterricht u P U und jeden möglichen Zeitslot z P Z eine binäre
Variable xuz P {0, 1}. Diese Variable hat den Wert 1, wenn der Unterricht (unter anderem)
zu diesem Zeitpunkt stattfindet, und sonst den Wert 0.

Damit lässt sich die Forderung nach der korrekten Wochenstundenzahl für jeden Unterricht
formulieren als:

@u P U : ∑
zPZ

xuz = W(u)

und die Bedingung der Konfliktfreiheit für Klassen (analog für Lehrer) als:

@z P Z @k P K : ∑
uPUk

xuz ď 1

Analog dazu lautet die Kernstunden-Bedingung:

@z P Zk @k P K : ∑
uPUk

xuz ě 1

Aus der fertigen Belegung aller xuz erhält man dann die gesuchte Zuteilung x : U Ñ P(Z)
als: x(u) := {z P Z | xuz = 1}

Die LP-Formulierung des Problems wird später noch in Kapitel 6 verwendet werden.
Außerdem verwendet die Software SchulScheduler (siehe Kapitel 4) dieses ganzzahlige
lineare Programm, um Stundenpläne zu berechnen. Formulierungen für einige weitere
Bedingungen werden in [Weidler, 2012, Kap. 4] und ergänzend in Abschnitt 7.2 vorgestellt.

11

3. Lösungsansätze

3.4. Weitere Ansätze

3.4.1. Reduktion
Analog zur Modellierung als lineares Programm kann das Stundenplanproblem auf andere
Problemtypen reduziert und mit einem bestehenden, möglichst effizienten Solver gelöst
werden. Die folgenden Kapitel der vorliegenden Arbeit befassen sich hauptsächlich mit
diesem Ansatz.

3.4.2. Optimierungs-Frameworks
Eine ähnliche Herangehensweise ist, mit Hilfe eines Frameworks einen evolutionären
Algorithmus oder Ähnliches zu implementieren. Die verwendeten Optimierungsverfahren
stammen meist aus dem Bereich der künstlichen Intelligenz. Dabei müssen ebenfalls nur
die problemspezifischen Teile implementiert werden, es findet aber keine Reduktion statt,
d. h. es entsteht keine Probleminstanz eines allgemeineren Problemtyps.

3.4.3. Spezialisierte Algorithmen

Genau wie Untis® Express verwenden auch viele der Löser, die bei der dritten International
Timetabling Competition [Post et al., 2013] eingereicht wurden, Algorithmen mit spezifi-
schem Wissen über die Stundenplanung. Einige davon basieren auf der Kingston High
School Timetabling Engine [Kingston, 2014], die bereits selbst umfangreiche spezifische
Implementierungen bietet.

Da in dieser Arbeit ein anderer Ansatz verfolgt wird, werden an dieser Stelle keine
einzelnen Algorithmen genauer erläutert. Abschnitt 8.2 gibt einen kurzen Überblick über
aktuelle Techniken und enthält eine kurze Evaluation des Solvers von Kingston [2014].

12

Kapitel 4

SchulScheduler

In diesem Kapitel wird die Software SchulScheduler vorgestellt, deren Infrastruktur und
Datensätze für diese Arbeit verwendet wurden. Abschnitt 4.2 gibt einen Einblick in die
Oberfläche der Software. Abschnitt 4.3 behandelt mit den Kopplungen eine in der Pra-
xis wichtige Besonderheit, die in SchulScheduler implementiert ist und in dieser Arbeit
ebenfalls ausführlich betrachtet wird. In Abschnitt 4.4 werden die Testdatensätze von
SchulScheduler beschrieben. Als Referenz werden in Abschnitt 4.5 die Laufzeiten von
SchulScheduler mit dem Solver Gurobi auf diesen Datensätzen aufgeführt.

4.1. Einführung

Basierend auf dem von Weidler [2012] eingeführten und in Unterabschnitt 3.3.1 vorge-
stellten Ansatz wurde 2013-2014 in einem Studienprojekt an der Universität Stuttgart die
Software SchulScheduler entwickelt. Ziel des Projekts war insbesondere die Bereitstellung
einer Benutzeroberfläche, die von Lehrern bedient werden kann, die wenig Erfahrung
im Umgang mit Computern und mit manueller Stundenplanung haben. Dadurch stehen
nun eine Oberfläche sowie ein flexibles Datenmodell und ein Framework für die Imple-
mentierung von Algorithmen zur Verfügung. Außerdem sind im Rahmen des Projekts
verschiedene Testdatensätze entstanden, die in dieser Arbeit zum Testen der Implementie-
rungen verwendet werden. Der einzige bislang implementierte Algorithmus verwendet
den kommerziellen Löser Gurobi von Gurobi Optimization, Inc. [2014] zur Lösung des
ganzzahligen linearen Programms.

Die Software ist in Java 8 und Xtend implementiert und genau wie diese Arbeit unter der
Apache License 2.0 veröffentlicht. Für die Erstellung einer zeitgemäßen und funktionalen
Oberfläche wurde JavaFX 8.0 verwendet.

13

4. SchulScheduler

Abbildung 4.1. SchulScheduler Eingabefenster

Abbildung 4.2. SchulScheduler Ergebnisfenster

14

4.2. Oberfläche

4.2. Oberfläche

In Abbildung 4.1 und Abbildung 4.2 ist die Benutzeroberfläche der Software dargestellt.
Insbesondere die schnelle Darstellung, die einfache Veränderbarkeit und die sofortige
Validierung der Ergebnisse war für die Erstellung dieser Arbeit eine große Hilfe. Per
Drag-and-drop können Unterrichte versuchsweise umgeordnet werden. Alle verletzten
Bedingungen werden direkt erkannt und unten im Fenster aufgelistet, sodass sich die
Ergebnisse, die mit den hier vorgestellten Ansätzen generiert wurden, leicht überprüfen
und beurteilen ließen.

4.3. Kopplungen

Zusätzlich zu den in Kapitel 2 vorgestellten Bestandteilen einer Probleminstanz kennt Schul-
Scheduler noch einige weitere Elemente. Ein wesentliches Konzept sind dabei die Kopplun-
gen. Typischerweise treffen im Sport- oder Religions-Unterricht mehrere Klassen/Lehrer
zum Unterricht aufeinander. Beispielsweise könnten drei Klassen zum Sportunterricht
bei zwei Lehrern zusammengelegt werden und dann die Mädchen und Jungen getrennt
unterrichtet werden. Auch beim Religionsunterricht handelt es sich um eine Kopplung,
selbst wenn beispielsweise nur eine Klasse beteiligt ist, die aber nach evangelischer und
katholischer Konfession sowie Ethik aufgeteilt und von jeweils einem Lehrer unterrichtet
wird.

Während die Definition und Eingabe von Kopplungen relativ kompliziert zu realisieren
sind, sind die Auswirkungen auf die eigentliche Berechnung der Lösung nur minimal:
An einem Unterricht u P U Ď Kˆ Fˆ L können nun mehrere Klassen, Fächer und/oder
Lehrer beteiligt sein, d. h. es ist nun U Ď P(K)ˆP(F)ˆP(L). Dementsprechend kann
ein einzelner Unterricht u P U in den Mengen Uk und Ul von mehreren Klassen und
Lehrern vorkommen. Alle bisher genannten Bedingungen lassen sich damit auf gleiche
oder sehr ähnliche Weise formulieren. Insbesondere ändert sich nichts an der Grundidee
der Algorithmen, eine Menge von Unterrichtsstunden, die gewisse Abhängigkeiten haben,
in einem Zeitraster einplanen zu müssen. Lediglich die Verknüpfungen zwischen den
Unterrichten (z. B. wechselseitiger Ausschluss) nehmen durch den Einsatz von Kopplungen
zu, sodass Datensätze mit vielen Kopplungen tendenziell weniger Lösungen haben.

4.4. Testdatensätze

Während der Durchführung des Studienprojekts sind einige Datensätze entstanden, die
bereits im passenden Format vorliegen. Da sie in dieser Arbeit zur Evaluation und zum

15

4. SchulScheduler

Vergleich von Algorithmen verwendet wurden, wird im Folgenden eine kurze Charakteri-
sierung dieser Datensätze angegeben. Aus Datenschutzgründen sind die Datensätze nur
mit Buchstaben benannt.

Ź Datensatz A: Hierbei handelt es sich um einen sehr kleinen und einfachen Datensatz, der
hauptsächlich zum Testen der Oberfläche entworfen wurde. Es gibt nur drei Stunden pro
Tag – und noch weniger Unterricht. Die Hälfte der Zeit ist unterrichtsfrei. Die Lösung
dieses Datensatzes gelingt selbst von Hand in kürzester Zeit.

Ź Datensatz B: Dieser Datensatz ist eine Entschärfung von Datensatz C: Statt nur sechs
stehen hier acht Stunden pro Tag zur Verfügung, was die Anzahl möglicher Lösungen
deutlich erhöht. Außerdem wurde die Größe der Probleminstanz (d. h. die Anzahl der
Klassen/Lehrer) halbiert.

Ź Datensatz C: Dieser Datensatz gehört zu einer normalen deutschen Grundschule. Da
nur sechs Unterrichtsstunden täglich zur Verfügung stehen, die für die höheren Klassen
auch vollständig ausgenutzt werden, ist die Zahl der Lösungen stark beschränkt. Dafür
gibt es nur wenig Abhängigkeiten zwischen den Klassen, weil an der Grundschule jede
Klasse einen festen Klassenlehrer hat, der die meisten Fächer alleine bestreitet.

Ź Datensatz D: Der mit Abstand größte Datensatz stammt ursprünglich von einem typi-
schen Gymnasium und wurde um einige Sonderfälle erweitert, um die Algorithmus-
Implementierung ausgiebig testen zu können. Durch seine Größe und insbesondere die
große Anzahl an Kopplungen ist dieser Datensatz relativ schwer optimal zu lösen.

Tabelle 4.1. Größenordnungen der verwendeten Datensätze

Datensatz A B C D
Klassen 3 5 10 15
Fächer 5 9 9 23
Lehrer 4 7 14 45

Unterrichte 15 35 72 235
Kopplungen 4 3 4 21

Unterrichtsstunden 16 114 235 467
Zeitslots 15 40 30 50

Lehrer-Nichtverfügbarkeiten 3 18 23 202
Doppelstunden 0 0 0 3ˆ2

Fixierte Unterrichtsstunden 2 0 0 18

4.5. Performance
Zum späteren Vergleich zeigt Tabelle 4.2 die Rechenzeiten des Gurobi-basierten Lösungs-
verfahrens für die einzelnen Datensätze. Zusätzlich zur Berechnung des ganzzahligen

16

4.5. Performance

Optimums, welches in der Regel von Interesse ist, sind die Zeiten für das Finden einer zu-
lässigen (d. h. nicht unbedingt optimalen) Lösung sowie für das Lösen der LP-Relaxierung
(d. h. eine nicht ganzzahlige Lösung) angegeben.

Tabelle 4.2. Rechenzeiten mit Gurobi

Datensatz A B C D
Ganzzahlig, optimal 12 ms 181 ms 3,2 s -†

Ganzzahlig, zulässig 4 ms 46 ms 150 ms 1,1 s
Relaxiert, optimal 6 ms 91 ms 119 ms 4,0 s
Relaxiert, zulässig 4 ms 69 ms 86 ms 1,4 s

† Verbleibende Gap von 0,18 % nach 40 Minuten

Zu diesen Laufzeiten sei angemerkt, dass keiner von vielen getesteten Open-Source-Solvern
wie lp_solve, Clp, etc. (außer SCIP) in der Lage war, die Datensätze B bis D in akzeptabler
Zeit (unter einem Tag) zu lösen. Im Fall von Datensatz D gelingt das auch mit Gurobi nicht,
jedoch ist es in der Praxis problemlos möglich, die Berechnung nach 40 Minuten oder nach
einer Stunde abzubrechen. Dann ist der Unterschied zwischen der aktuell besten bekannten
Lösung und der besten bekannten Schranke (genannt „Gap“) bereits kleiner als 0,18 %, d. h.
das Ergebnis kann sich nicht mehr wesentlich verbessern und ist möglicherweise sogar
schon optimal.

17

Kapitel 5

Lösung mittels Constraint Programming

Dieses Kapitel beschreibt zwei verschiedene Ansätze, das Stundenplanproblem mit Con-
straint Programming zu lösen. Zunächst wird in Abschnitt 5.1 das Verfahren allgemein
vorgestellt. In Abschnitt 5.2 wird eine Möglichkeit gezeigt, das Stundenplanproblem mit
ganzzahligen Variablen als CSP zu modellieren. Abschnitt 5.3 geht auf die Implementierung,
Rechenergebnisse und einige Möglichkeiten zur Verbesserung ein. Anschließend wird in
Abschnitt 5.4 ein alternativer, auf binären Variablen basierender Ansatz vorgestellt.

5.1. Einführung

Nach van Omme et al. [2014] bezeichnet man mit Constraint Satisfaction Problem (CSP)
ein mathematisches Modell bestehend aus einer Menge von Variablen V = {v1, . . . , vn},
möglichen Wertemengen d1, . . . , dn für diese Variablen (Domänen) und einer Menge von
Constraints C. Die Constraints können dabei eine nahezu beliebige Form annehmen,
solange sie mathematisch formulierbar und algorithmisch propagierbar sind. Insbesondere
müssen die Constraints nicht linear sein oder ähnliches.
Das Ziel ist zunächst nur, die Constraints zu erfüllen, d. h. eine zulässige Lösung zu finden!

Der Begriff Constraint Programming bezeichnet Lösungsverfahren für CSPs.

5.1.1. Bedingungen und Constraints
Bei der Definition des Stundenplanproblems, die sich aus der Realwelt ableitet, wird in
dieser Arbeit durchgehend der Begriff „Bedingung“ für Einschränkungen und Kriterien
verwendet, die ein Stundenplan erfüllen soll. In Bezug auf die Umsetzung der Bedingungen
in einem Solver wird der Begriff „Constraint“ verwendet.

Die Unterscheidung ist wichtig, weil es keine 1:1-Beziehung zwischen Bedingungen und
Constraints gibt: Für die Umsetzung einer Bedingung kann nur ein Constraint benötigt
werden (z. B. für Lehrer-Nichtverfügbarkeiten) oder mehrere (z. B. für die Konfliktfreiheit)

19

5. Lösung mittels Constraint Programming

– und manchmal sogar gar keiner. Umgekehrt können aber auch mehrere Bedingungen mit
gemeinsamen Constraints abgedeckt werden (z. B. Konfliktfreiheit und Kernstunden). Wie-
derum andere Bedingungen sind weich, sodass sie nur wenige oder gar keine Constraints
benötigen und stattdessen Einfluss auf die Zielfunktion nehmen.

5.1.2. Lösungsverfahren

Grundsätzlich verwenden alle in dieser Arbeit erwähnten Solver die gleiche Vorgehensweise
zur Lösung eines CSP:

• Solange noch nicht alle Variablenwerte bekannt sind, werden eine Variable und ein noch
möglicher Wert für diese Variable ausgewählt.

• Es wird entschieden, ob dieser Wert angenommen werden soll oder nicht, und ausgehend
von dieser Annahme die Suche fortgesetzt.

• Wenn für eine Variable überhaupt kein Wert mehr möglich ist, werden mittels Back-
tracking andere Lösungsalternativen gesucht.

Dadurch entsteht ein binärer Suchbaum, den alle verwendeten Solver auch zu bestimmten
Zeitpunkten oder sogar in Echtzeit visualisieren können.

Um früh bestimmte Werte für eine Variable ausschließen zu können, wird für jede Variable
eine Menge der noch möglichen Werte verwaltet. Wenn diese Menge sich ändert (z. B. durch
eine Festlegung), hat dies Auswirkungen auf die möglichen Werte für andere Variablen.
Beispiel: Wenn der Mathematik-Unterricht der 5c auf den Zeitslot Mo3 gelegt wird, kann
der Deutsch-Unterricht der 5c sicher nicht in dieser Stunde stattfinden, d. h. der Wert kann
für die betreffende Variable ausgeschlossen werden – lange bevor die Variable überhaupt im
Suchbaum selbst betrachtet wird. In dem „Constraint Propagation“ genannten Verfahren
wird bei der Änderung der möglichen Werte einer Variablen, die man sich als Knoten in
einem Netzwerk vorstellt, die Änderung über die einzelnen Constraints, die man sich als
Kanten vorstellt, zu den anderen Variablen propagiert, die davon betroffen sein könnten.
Für Details zum Verfahren und insbesondere zu den konkreten Implementierungen siehe
[van Omme et al., 2014] und [Schulte und Tack, 2013].

Eine wirkungsvolle Möglichkeit zur Einflussnahme auf die Suche ist die Festlegung der
Heuristiken zur Variablen- und Werteauswahl – mehr dazu in Unterabschnitt 5.3.2.

20

5.2. Erste Modellierung als Constraint Satisfaction Problem

5.1.3. Optimierung mit Constraint Programming
Auch wenn die korrekte Lösung eines CSP nicht notwendigerweise optimal ist, son-
dern im Regelfall einfach nur irgendeine zulässige Lösung darstellt, kann man mit Cons-
traint Programming Optimierungsprobleme lösen. Dazu benötigt man eine Zielfunktion
z : d1 ˆ ¨ ¨ ¨ ˆ dn Ñ R, die mögliche Lösungen bewertet. Auch für diese Zielfunktion gibt es
keine Beschränkungen wie Linearität oder ähnliches – sie sollte aber mit geringem Aufwand
berechenbar sein. Wir gehen ohne Beschränkung der Allgemeinheit davon aus, dass die
Zielfunktion zu minimieren ist.

Um eine optimale Lösung zu erhalten, berechnet man zunächst eine zulässige Lösung x0
und ihren Zielfunktionswert z(x0). Um die gefundene i-te Lösung zu verbessern, fügt man
den Constraint z(v0, . . . , vn) ă z(xi) hinzu und berechnet eine neue, bessere Lösung xi+1.
Diesen Vorgang wiederholt man so lange, bis das CSP unlösbar wird. Die unmittelbar
davor gefundene Lösung ist nicht nur zulässig, sondern auch optimal. [van Omme et al.,
2014]

Die meisten CSP-Solver bieten bereits eine eingebaute Unterstützung für dieses oder ähnli-
che Optimierungsverfahren an, sodass man die gewünschte Zielfunktion ohne zusätzlichen
Implementierungsaufwand direkt angeben kann.

5.2. Erste Modellierung als Constraint Satisfaction Problem

Die Stärke von Constraint Programming liegt darin, dass praktisch beliebige Constraints
möglich sind. Insbesondere der alldifferent-Constraint ist sehr gut erforscht [siehe López-
Ortiz et al., 2003; van Hoeve, 2001] und wurde deshalb für den ersten Modellierungsansatz
verwendet. Dieser Ansatz ist naheliegend, weil er das Stundenplanproblem direkt abbildet:

Die Grundidee ist, die einzelnen Unterrichtsstunden jeweils einem Zeitslot zuzuordnen,
ohne Konflikte zu erzeugen. Entscheidend ist, dass nicht die Unterrichte (also z. B. Ma-
thematik Klasse 5c) sondern die einzelnen Unterrichtsstunden zugeordnet werden. Für
jede Wochenstunde eines Unterrichts u P U wird eine Variable xui im CSP erstellt mit
i P {1, . . . , W(u)}, sodass es insgesamt ∑uPU W(u) Variablen gibt. Als Domäne wird für alle
Variablen die Menge der verfügbaren Zeitslots Z gewählt. Durch diese Art der Modellierung
wird die Forderung nach der korrekten Anzahl Wochenstunden (vgl. Unterabschnitt 2.4.1)
automatisch eingehalten.

Die in Abschnitt 2.3 geforderte Zuteilung x : U Ñ P(Z) erhält man aus der Lösung des
CSP, indem man die zugewiesenen Werte aller Variablen eines Unterrichts zu einer Menge
zusammenfasst: x(u) = {xui | i P {1, . . . , W(u)}}

21

5. Lösung mittels Constraint Programming

5.2.1. Konfliktfreiheit
Die Konfliktfreiheit (vgl. Unterabschnitt 2.4.2) fordert, dass alle Unterrichte einer Klasse
sowie alle Unterrichte eines Lehrers jeweils zu unterschiedlichen Zeitpunkten stattfinden.
Das lässt sich unmittelbar mit dem alldifferent-Constraint modellieren, der fordert,
dass allen Variablen einer bestimmten Variablenmenge paarweise verschiedene Werte
zugewiesen werden:

@l P L : alldifferent({xui | u P Ul , i P Z})
@k P K : alldifferent({xui | u P Uk, i P Z})

5.2.2. Kernstunden
Zur Umsetzung der Kernstunden-Bedingung bieten sich verschiedene Constraints an, die
je nach konkreter Solver-Implementierung unterschiedlich unterstützt werden:

Eine für sich genommen ineffiziente Möglichkeit ist, zunächst für jedes Unterricht-Zeitslot-
Paar eine binäre Statusvariable zu erstellen, die aussagt, ob der Unterricht zu diesem
Zeitpunkt stattfindet. Damit können die Kernstunden analog zum ILP modelliert werden
(siehe Unterabschnitt 3.3.1). Dieser Ansatz ist vor allem dann sinnvoll, wenn die Status-
variablen noch für weitere Constraints verwendet werden können, die über den Umfang
dieser Arbeit hinausgehen.

Deutlich effizienter ist eine Art der Modellierung, die keine zusätzlichen (Status-)Variablen
erfordert, und stattdessen den Constraint count(v, w, n) verwendet, der fordert, dass genau
n der Variablen aus der Variablenmenge v den Wert w annehmen sollen. Für eine Kernstun-
de muss pro Klasse genau eine der zu diesem Zeitpunkt möglichen Unterrichtsstunden
auf den Zeitslot gelegt werden:

@z P Zk @k P K : count({xui | u P Uk, i P Z}, z, 1)

5.2.3. Symmetrische Lösungen
Eine klare Schwäche dieser Form der Modellierung ist die Erzeugung von (exponentiell
vielen) symmetrischen Lösungen, die den Lösungsraum und damit den Suchbaum für
den Solver unnötig stark vergrößern. Dadurch, dass jeder Unterricht in seine einzelnen
Unterrichtsstunden aufgespalten wird (z. B. die beiden Deutsch-Stunden der 5c), gibt es
mehrere verschiedene Lösungen, die sich für den Endanwender aber nicht unterscheiden.
Im gegebenen Beispiel wäre es egal, ob die erste der beiden Deutsch-Stunden in der ersten
Stunde montags stattfindet und die zweite in der zweiten Stunde, oder umgekehrt. Da
die einzelnen Unterrichtsstunden in einem Fach völlig austauschbar sind, kann man den
Lösungsraum erheblich verkleinern, indem man eine Ordnung der Unterrichtsstunden

22

5.3. Implementierung und Verbesserung

erzwingt, d. h. dass die erste Unterrichtsstunde in dem Fach vor der zweiten stattfindet,
die zweite vor der dritten, und so weiter:

@u P U @i ă j : xui ă xuj

Ein solches Verfahren zur Vermeidung von symmetrischen Lösungen wird „Symmetry
Breaking“ genannt.

5.3. Implementierung und Verbesserung

Um die Praxistauglichkeit dieses Ansatzes zu überprüfen, wurde diese Modellierung mit
den beiden CSP-Solvern Or-Tools [Or-Tools Team, 2010] und Gecode 4.2.1 [Gecode Team,
2006] implementiert und mit den in Abschnitt 4.4 vorgestellten Datensätzen getestet. Beide
ausgewählten Solver gehörten in den vergangenen Jahren zu den besten CSP-Solvern
[Stuckey et al., 2010]. Bei Or-Tools handelt es sich um einen Solver, der ein Java-Interface
anbietet und daher direkt aus der SchulScheduler-Architektur heraus angesteuert werden
kann. Auch wenn Gecode direkt aus einer C++-Anwendung heraus gestartet wurde, hat
dies keine nennenswerten Auswirkungen auf die Laufzeiten, da Or-Tools intern ebenfalls
eine native Bibliothek verwendet und in die Zeitmessung nur die reine Ausführung
einbezogen wurde, d. h. nicht das Erstellen der Variablen und Constraints.

Beim Vergleich der Ergebnisse mit den in Abschnitt 4.5 angegebenen Laufzeiten ist es
wichtig zu beachten, dass in dieser CSP-Implementierung lediglich eine zulässige Lösung
gesucht wurde, während bei der Berechnung mit Gurobi die optimale Lösung gefunden
wurde. Zusätzlich zu den Rechenzeiten ist jeweils die Anzahl der Variablen und Constraints
angegeben, die durch die jeweilige Art der Modellierung entstanden sind.

5.3.1. Nur Konfliktfreiheit

Zunächst wurden alle Probleminstanzen ausschließlich mit der Bedingung für die Konflikt-
freiheit gelöst.

Tabelle 5.1. CSP nur mit Konfliktfreiheits-Bedingung

Datensatz A B C D
Anzahl Variablen 16 114 236 467

Anzahl Constraints 7 12 23 59
Rechenzeit (Or-Tools) 1 ms 2 ms 4 ms 8 ms

Rechenzeit (Gecode) 0 ms 1 ms 4 ms 14 ms

23

5. Lösung mittels Constraint Programming

5.3.2. Suchstrategien
Die in Tabelle 5.1 dargestellten Ergebnisse wurden bereits mit einer gezielten Optimierung
bezüglich der Suchstrategie erzielt. Das grundsätzliche Vorgehen der Solver wurde bereits
in Unterabschnitt 5.1.2 beschrieben und kann durch geeignete Heuristiken für die Variablen-
und Wertewahl gesteuert werden. Hierbei stellen sich die Heuristiken als am effizientesten
heraus, die auch dem natürlichen menschlichen Vorgehen beim Setz-Algorithmus (siehe
Abschnitt 3.2) entsprechen würden.

Ohne weitere Konfiguration wählen die Solver immer die erste Variable (in der Reihen-
folge, in der sie hinzugefügt wurden) und weisen ihr den niedrigsten möglichen Wert
zu. Infolgedessen findet viel Unterricht montags statt (auch nachmittags) und wenig am
Freitag. Jedoch schlägt das Verfahren beim Datensatz C fehl und es kann auch nach über
drei Stunden Rechenzeit keine Lösung gefunden werden. Die Ursache ist vermutlich eine
Konfliktsituation, die bereits durch relativ frühe Entscheidungen verursacht wurde und für
die „späteren“ Variablen keine mögliche Aufteilung mehr übrig lässt.

Um dem Problem zu begegnen, setzt man bei der manuellen Planung vernünftigerweise
zuerst die Unterrichte ins Stundenraster, für die die wenigsten möglichen Plätze übrig blei-
ben. Der CSP-Solver muss also diejenige Variable auswählen, die die kleinste verbleibende
Wertemenge hat. Mit dieser Heuristik, die den Solvern als „Choose Min Size“ bekannt ist,
lässt sich auch für den Datensatz C eine Lösung in wenigen Millisekunden finden.

Eine Heuristik zur Auswahl geeigneter Werte bringt in diesem Fall keine weiteren Vor-
teile. Zwar existieren in der Literatur Heuristiken, die die Werte so auswählen, dass die
unmittelbaren negativen Auswirkungen durch die Propagierung möglichst gering sind
[Dechter, 2003, Kapitel 5.3.1], aber diese sind weder in Or-Tools noch Gecode implementiert.
Stattdessen lässt sich nur anhand von Minimum und Maximum einer der noch möglichen
Werte auswählen (z. B. der Mittelwert, das Maximum oder ein zufälliger Wert). Da aber für
das Stundenplanproblem in der einfachen, hier betrachteten Art alle Zeitslots (und damit
Werte) gleich sind, ist eine Werteheuristik überflüssig.

5.3.3. Ausschließlich lineare Suchbäume
Bemerkenswerterweise terminiert jede Berechnung binnen weniger Millisekunden, wenn
eine günstige Heuristik angewendet wird, oder sie benötigt mehrere Stunden oder Tage,
abhängig von der Problemgröße. In den Fällen, in denen die Berechnung nach kürzester
Zeit erfolgreich abgeschlossen werden kann, ist der Suchbaum stets linear. Das bedeutet,
dass jede vom Solver getroffene Entscheidung richtig war und demnach kein Backtracking
stattgefunden hat. Bei den meisten Datensätzen (bis auf Datensatz C, siehe vorheriger
Abschnitt) funktioniert das sogar mit randomisierten Heuristiken anstatt gezieltem Aus-
wählen der günstigsten Variablen. Dabei wird natürlich nicht eine zufällige Lösung erstellt,

24

5.3. Implementierung und Verbesserung

die ja mit sehr hoher Wahrscheinlichkeit unzulässig wäre, sondern es wird immer dann
zufällig ausgewählt, wenn mehrere noch mögliche Variablen oder Werte übrig sind. Für
das erfolgreiche Finden der Lösung ist in diesen Fällen also ausschließlich die Constraint
Propagation verantwortlich.

5.3.4. Ausschluss von symmetrischen Lösungen
Wie in Unterabschnitt 5.2.3 beschrieben wurde für die einzelnen Wochenstunden eines
Unterrichts eine Ordnung eingeführt, um symmetrische Lösungen zu vermeiden. Während
für Or-Tools einzelne ă-Constraints benötigt werden, stellt Gecode einen Constraint für
x0 ă ¨ ¨ ¨ ă xn direkt zur Verfügung.

Tabelle 5.2. CSP mit Konfliktfreiheit und Symmetry Breaking

Datensatz A B C D
Anzahl Variablen 16 114 236 467

Anzahl Constraints (Or-Tools) 11 98 203 339
Anzahl Constraints (Gecode) 11 40 79 217

Rechenzeit (Or-Tools) 1 ms 2 ms 6 ms 11 ms
Rechenzeit (Gecode) 0 ms 1 ms 4 ms 15 ms

Auffällig ist, dass die Rechenzeiten im Vergleich zur Berechnung ohne Symmetry Breaking
entweder gleich geblieben oder größer geworden sind, obwohl dadurch eigentlich die
Berechnung beschleunigt werden sollte. Das ist damit zu begründen, dass die Wirkungs-
weise des Symmetry Breakings noch gar nicht zur Geltung kommen konnte: Die Idee ist,
den Suchbaum zu verkleinern, sodass nach einem Backtracking-Schritt nicht nochmals
die (symmetrisch) gleichen Lösungen durchsucht werden. Da aber gar kein Backtracking
stattfindet, sondern direkt eine Lösung gefunden wird (egal welche der verschiedenen
symmetrischen Lösungen das ist), bewirkt das Symmetry Breaking nur, dass nun eine
bestimmte der symmetrischen Lösungen gefunden wird. Dazu ist zunächst ein größerer
Rechenaufwand beim Propagieren nötig, weil es mehr Constraints gibt.

Dennoch wurde auch bei allen folgenden Berechnungen das Symmetry Breaking beibe-
halten, weil sich in Fällen, in denen die Lösung nicht sofort gefunden werden kann, eine
signifikante Verbesserung ergibt.

5.3.5. Berechnung mit Kernstunden
Die Kernstunden-Bedingung wurde in beiden Solvern, wie oben beschrieben, mit einem
count-Constraint implementiert. Durch das Hinzufügen der Bedingung ist es mit keiner
der Heuristiken mehr möglich, innerhalb von einer Stunde eine Lösung zu finden (siehe
Tabelle 5.3).

25

5. Lösung mittels Constraint Programming

Tabelle 5.3. CSP mit Kernstunden

Datensatz A B C D
Anzahl Variablen 16 114 236 467

Anzahl Constraints (Or-Tools) 11 312 639 1573
Anzahl Constraints (Gecode) 11 140 279 517

Rechenzeit (Or-Tools) 1 ms† >1 h >1 h >1 h
Rechenzeit (Gecode) 0 ms† >1 h >1 h >1 h

† Der Datensatz A enthält keine Kernstunden

Die Kernstunden sind eine Bedingung, die die Constraint Propagation alleine nicht erfüllen
kann. Denn es genügt nun nicht mehr, alle Werte konfliktfrei zu belegen, sondern es
muss am Ende auch mindestens eine Variable aus einer Teilmenge einen bestimmten
Wert haben – obwohl zum Zeitpunkt der Belegung noch viele andere Werte konfliktfrei
möglich gewesen wären. Deswegen sind die Solver nun auf Backtracking angewiesen. Doch
wie man an den Laufzeiten sieht, scheint das Backtracking nicht effizient genug zu sein.
Alle Berechnungen dauerten so lange, dass sie nach einer Stunde abgebrochen werden
mussten. Zur Erinnerung: Der ILP-Solver Gurobi berechnet auf diesen Datensätzen eine
optimale Lösung in weit unter einer Stunde. Versuchsweise wurde die Berechnung mit dem
einfachsten Datensatz (B) für längere Zeit durchgeführt, aber es wurde auch nach über
acht Stunden keine Lösung gefunden.

Selbst nach einer Stunde beginnt der Suchbaum der Berechnung mit Datensatz B (siehe
Abbildung 5.1) noch mit einer linearen Kette, die fast so lang ist wie zu Beginn der
Berechnung. Aus der binären Struktur des Baums ist ersichtlich, dass die Berechnung in
etwa doppelt so lange laufen müsste, um die lineare Kette im oberen Teil des Baums um
nur einen Knoten zu verkürzen. Wenn also die erste, an der Wurzel des Baums gefällte
Entscheidung eine Fehlentscheidung war, die zur Unlösbarkeit führt, wären in diesem
Fall mehrere Jahre Rechenzeit nötig, um eine Lösung zu finden – und das bei einem
vergleichsweise kleinen Datensatz.

Dabei ist die Wahrscheinlichkeit relativ groß, dass die (oberste) Fehlentscheidung, die
vom Backtracking gefunden und revidiert werden muss, sich relativ weit oben im Baum
befindet: Wenn beispielsweise – wie an vielen Grundschulen üblich – die zweite bis sechste
Stunde Kernstunden sind und die jüngeren Schüler in der ersten Klasse auch nur genau so
viel Unterricht haben (also 25 Wochenstunden), dann darf der Algorithmus keine einzige
Unterrichtsstunde in den Nachmittag oder in die erste Stunde legen.

Mit randomisierten Heuristiken für die Wahl der Werte oder mit der voreingestellten
Heuristik, immer die erste Variable und immer den kleinsten Wert zu wählen, geschieht ein
solcher Fehler aber fast mit Sicherheit: Die erste Unterrichtsstunde der ersten Klasse (1a) auf

26

5.3. Implementierung und Verbesserung

Abbildung 5.1. Suchbaum (Gecode) von Datensatz B mit Kernstunden nach einer Stunde

den ersten verfügbaren Zeitslot (Mo1) zu legen wäre an vielen Grundschulen bereits eine
Fehlentscheidung, die zur Unlösbarkeit führen würde, weil Mo1 keine Kernstunde ist und
die 1. Klasse nur so viel Unterricht hat, wie es Kernstunden gibt. Danach muss der Solver
viel Zeit damit verbringen, die übrigen Unterrichtsstunden konfliktfrei unterzubringen, um
dann festzustellen, dass die Kernstunden-Bedingung mangels Unterricht in der ersten Klas-
se gar nicht mehr erfüllt werden kann. Da aber die letzten Entscheidungen zuerst revidiert
werden, probiert der Solver zuerst alle Kombinationen für den restlichen Unterricht durch,
bevor er die falsch gesetzte Unterrichtsstunde irgendwann auf eine Kernstunde verschiebt.

5.3.6. Sortierung der Zeitslots
Zwar ist es in der Praxis sicherlich nicht möglich, nur mit Constraint Propagation und
ohne Backtracking auszukommen, sobald Bedingungen wie Kernstunden beachtet wer-
den müssen. Und wie Abbildung 5.1 deutlich zeigt, ist selbst bei einem sehr kleinen
Datensatz der Suchbaum bereits zu groß, um ihn vollständig mittels Backtracking zu
durchsuchen. Trotzdem kann die Backtracking-Methode zielführend sein, wenn es gelingt,
die Fehlentscheidungen möglichst weit hinauszuzögern, sodass sie möglichst früh wieder

27

5. Lösung mittels Constraint Programming

revidiert werden. Das bedeutet im Umkehrschluss, dass Entscheidungen, die mit hoher
Wahrscheinlichkeit richtig sind, zuerst gemacht werden sollten.

Im konkreten Fall der Kernstunden bedeutet das, dass ein Unterricht, der platziert werden
soll, bevorzugt auf eine Kernstunde gelegt werden sollte. Die natürliche Ordnung der
Zeitslots ist die chronologische Ordnung. Diese Ordnung ist aber für die Lösung des
Stundenplanproblems in der bisher vorgestellten Form unbedeutend. Es ist also problemlos
möglich, die Zeitslots so zu sortieren, dass Kernstunden am Beginn der Liste stehen.
Kombiniert mit der Heuristik „Choose Min Value“ führt das dazu, dass Unterrichtsstunden
bevorzugt auf Kernstunden gelegt werden.

Tabelle 5.4. CSP mit Kernstunden und sortierten Zeitslots; unterteilt nach Variablen-Auswahl-
Heuristik

Datensatz A B C D
Rechenzeit (Or-Tools) 0 ms 3 ms >1 h 19 ms

Choose FirstFailures (Or-Tools) 0 0 - 0
Rechenzeit (Gecode) 0 ms 2 ms >1 h 21 ms

Failures (Gecode) 0 0 - 0
Rechenzeit (Or-Tools) 0 ms 4 ms 8 ms† 18 ms

Choose RandomFailures (Or-Tools) 0 1‡ 9‡ 0
Rechenzeit (Gecode) 0 ms 1 ms >1 h 14 ms

Failures (Gecode) 0 0 - 0
† Nur bei einem Viertel der Versuche, sonst >1 h.
‡ Mittelwert

Obwohl es in manchen Fällen weiterhin zu Konflikten kommen kann, werden die falschen
Entscheidungen sehr früh wieder revidiert – auch wenn dies in den Tests nur mit Or-Tools
gelang. Beim Datensatz C war außerdem etwas Glück nötig, um eine Lösung zu finden.
Wie sich an der Anzahl der Failures, d. h. der Anzahl der erfolglos besuchten Blattknoten
zeigt, ist der Suchbaum einer erfolgreichen Suche nun nicht mehr linear – im Vergleich zu
allen vorherigen Berechnungen, die entweder gar nicht oder mit 0 Failures terminierten.
Durch das Umsortieren der Zeitslots – kombiniert mit einer passenden Heuristik – konnte
die Suche also erheblich verbessert werden.

5.3.7. Sortierung der Unterrichte
Zur weiteren Optimierung der Suchreihenfolge könnte man auch die Unterrichte sortieren,
sodass nicht nur die Werte sondern auch die Variablen im CSP so sortiert sind, dass die
schwierigeren Unterrichte früher platziert werden. Dadurch werden Situationen vermieden,
in denen zwei Unterrichte verschiedener Klassen so gelegt werden, dass für eine Kopplung,
an der beide Klassen teilnehmen, kein möglicher Zeitslot mehr übrig bleibt. Sinnvoller

28

5.3. Implementierung und Verbesserung

ist es, zuerst den Zeitpunkt für die Kopplung festzulegen und danach den individuellen
Unterricht zu planen. Um die Unterrichte zu sortieren, kann man eine Ordnung für die
Unterrichte definieren, die zum Beispiel von der Anzahl der beteiligten Klassen und Lehrer
abhängt, sowie bei Gleichheit von der Anzahl anderer Unterrichte abhängt, an denen die
beteiligten Klassen und Lehrer wiederum beteiligt sind.

Dieser Ansatz brachte bei einigen Versuchen allerdings keine weiteren Verbesserungen
gegenüber der bloßen Sortierung der Zeitslots, auch nicht in Kombination mit den weiteren
noch vorgestellten Bedingungen, sodass an dieser Stelle nicht genauer darauf eingegangen
wird.

5.3.8. Modellierung mit Statusvariablen

In Unterabschnitt 5.2.2 wurde eine alternative Art der Modellierung der Kernstunden-
Bedingung angesprochen, die für jede Unterricht-Zeitslot-Kombination eine zusätzliche
Statusvariable benötigt und dann analog zum linearen Programm mit binären Variablen
modelliert werden kann. Tabelle 5.5 zeigt die unterschiedlichen Rechenzeiten, um zu
verdeutlichen, dass die konkrete Umsetzung einer Bedingung zwar durchaus mit einem
Faktor 2 bis 3 Einfluss auf die Laufzeit nehmen kann (beim größten Datensatz). Dieser ist
jedoch verschwindend gering im Vergleich zu den Unterschieden zwischen terminierter
Berechnung (unter einer Sekunde) und sehr lang laufender Berechnung (über eine Stunde)
– denn auch mit Statusvariablen terminieren die Berechnungen nach einer Stunde nicht,
wenn die Zeitslots nicht vorab sortiert werden. Die Wahl der konkreten, effizienten Im-
plementierung eines bestimmten Constraints ist also zunächst zweitrangig. Hinweis: Die
Ergebnisse der Berechnungen ohne Zeitslot-Sortierung sind in der Tabelle nicht aufgeführt,
weil sie mangels Terminierung keinen Vergleich erlauben.

Tabelle 5.5. Vergleich von Modellierungs-Varianten der Kernstunden-Bedingung

Datensatz A B C D
Rechenzeit (Or-Tools) 0 ms 4 ms 8 ms 18 ms

}
count-ConstraintFailures (Or-Tools) 0 1 9 0

Rechenzeit (Or-Tools) 1 ms 6 ms 10 ms 46 ms
}

StatusvariablenFailures (Or-Tools) 0 1 9 0

5.3.9. Weitere Bedingungen

Unter den in Abschnitt 2.4 vorgestellten Bedingungen sind nur noch wenige, die sich ohne
die Verwendung komplexer Constraints umsetzen lassen.

29

5. Lösung mittels Constraint Programming

Zum einen sind das die Nichtverfügbarkeiten von Lehrern. Wenn ein Lehrer l P L in einem
Zeitslot z P Z nicht verfügbar ist, kann keiner seiner Unterrichte zu diesem Zeitpunkt
stattfinden, was sich wie folgt formulieren lässt:

@u P Ul @1 ď i ď W(u) : xui ‰ z

Zum anderen ist es die Fixierung von einigen Unterrichtsstunden auf vorgegebene Zeitslots.
Für jeden der fixen Zeitslots {z1, . . . , zk} Ă Z für einen Unterricht u P U wird eine der
Variablen xui fixiert:

@1 ď i ď k : xui = zi

Zusätzlich muss beachtet werden, dass die fixierten Zeitslots vom Symmetry Breaking
ausgenommen werden müssen, weil sonst der gesamte nicht-fixierte Unterricht nach den
fixen Zeitslots stattfinden müsste. Dadurch nimmt die Anzahl der Constraints durch fixierte
Unterrichtsstunden um maximal eins zu pro Unterricht. Weil in der Summe aber durch die
Vorbelegung einer Variablen mehr Informationen zur Lösung des CSP vorliegen, wird die
Probleminstanz durch diese Bedingung eher einfacher.

Die beiden genannten Bedingungen lassen sich als einfache (Un-)Gleichungen implemen-
tieren und verbieten lediglich das Setzen von Unterricht an bestimmten Stellen, sodass die
Constraint Propagation ausreicht, um die Constraints zu erfüllen. Dementsprechend haben
sie keinen negativen Einfluss auf die Laufzeit oder gar den Erfolg der Berechnung:

Tabelle 5.6. CSP mit Kernstunden, Nichtverfügbarkeiten und fixierten Unterrichtsstunden

Datensatz A B† C† D
Anzahl Variablen 16 114 236 467

Anzahl Constraints (Or-Tools) 24 516 1090 4182
Anzahl Constraints (Gecode) 15 155 299 728

Rechenzeit (Or-Tools) 0 ms 4 ms >1 h 20 ms
Rechenzeit (Gecode) 0 ms 1 ms >1 h 21 ms

† Enthält keine fixierten Unterrichtsstunden

Die weiteren Bedingungen wie Doppelstunden, ein freier Tag für ausgewählte Lehrer
oder die Begrenzung auf täglich maximal zwei Stunden Unterricht je Fach sind nur
mit komplexen Constraints, deren Propagierung mehr Rechenzeit in Anspruch nimmt,
und/oder mit einer großen Anzahl von Statusvariablen umsetzbar. Insbesondere für
die Erfüllung der weichen Bedingungen, die als gewichteter numerischer Wert in eine
Zielfunktion eingehen müssen, sind solche Statusvariablen unverzichtbar.

Beispielhaft wurde die Doppelstunden-Bedingung mit Statusvariablen implementiert. Um
einen besseren Vergleich mit dem Suchbaum in Abbildung 5.1 zu erlauben, wurde der
dort verwendete Datensatz B um (nur) eine Doppelstunde in der dritten und vierten

30

5.3. Implementierung und Verbesserung

Abbildung 5.2. Suchbaum (Gecode) von Datensatz B mit einer Doppelstunde

31

5. Lösung mittels Constraint Programming

Stunde erweitert. Üblicherweise findet das Doppelstundenmodell an Schulen mindestens
am Vormittag und oft auch am gesamten Tag Anwendung. Abbildung 5.2 zeigt, dass bereits
bei einem einzigen Doppelstundenpaar sehr viele Statusvariablen erstellt werden müssen,
die die Tiefe des Suchbaums im Vergleich mit Abbildung 5.1 deutlich erhöhen.

Bei durchgehendem Doppelstundenmodell oder bei der Verwendung anderer (weicher)
Bedingungen müsste der Solver also für jede Kombination aus Unterrichtsstunde und
Zeitslot eine binäre Statusvariable erstellen, die aussagt, ob die Unterrichtsstunde auf den
Zeitslot gelegt wird oder nicht. Es liegt daher nahe, diese binären Variablen direkt zur
Grundlage der Modellierung zu machen und die weiteren Constraints darauf aufbauend
zu formulieren. Dieser Ansatz wird im nächsten Kapitel vorgestellt.

5.4. Alternative Modellierung

Die oben vorgestellte CSP-Modellierung hat den Vorteil, dass sie intuitiv ist, wenige Varia-
blen verwendet (nur eine pro unterrichteter Wochenstunde), die Bedingung für die korrekte
Anzahl Wochenstunden nicht als eigenen Constraint angeben muss und für die Konflikt-
freiheit auf den performanten alldifferent-Constraint zurückgreifen kann. Dennoch kann
es sich lohnen, eine andere Art der Modellierung zu wählen. Zum einen ist nicht nur die
Anzahl der Variablen, sondern auch die Größe der Domänen entscheidend für die Zahl der
Lösungen, die untersucht werden müssen. Zum anderen kann durch eine Modellierung mit
weniger komplexen Constraints dieselbe Probleminstanz parallel als lineares Programm
modelliert und dessen Relaxierung zur Verkleinerung der CSP-Instanz und damit des
Suchbaums verwendet werden (siehe dazu Kapitel 6). Dementsprechend hat die zweite hier
vorgestellte CSP-Modellierung des Stundenplanproblems eine größere Anzahl an Variablen
und Constraints, verwendet dafür aber strukturell einfachere Constraints, die sich schneller
propagieren und außerdem auch als lineare Gleichungen ausdrücken lassen.

Analog zu der in Unterabschnitt 3.3.1 beschriebenen LP-Formulierung wird nun auch
hier pro Unterricht u P U (nicht pro Unterrichtsstunde) und pro Zeitslot z P Z eine
binäre Variable xuz erstellt. Für Details zur Modellierung siehe Unterabschnitt 3.3.1. Der
Vorteil dieser Art der Modellierung ist, dass es keine symmetrischen Lösungen mehr in
Bezug auf verschiedene Unterrichtsstunden zu einem bestimmten Unterricht gibt, weil
die Variablen pro Unterricht und nicht pro Unterrichtsstunde erstellt werden. Dafür muss
pro Unterricht ein zusätzlicher Constraint eingefügt werden, der die richtige Anzahl an
Wochenstunden erzwingt. Die jeweiligen binären Ungleichungen zu allen Bedingungen
werden von den Solvern direkt verstanden und in effiziente Propagatoren umgesetzt, die
für binäre Variablen optimiert sind.

32

5.4. Alternative Modellierung

5.4.1. Nur Konfliktfreiheit
Genau wie bei der in Abschnitt 5.2 vorgestellten Variante gelingt es auch hier bei allen
Datensätzen, innerhalb kürzester Zeit eine Lösung zu finden, solange nur die Konfliktfrei-
heit gefordert ist. Auffällig ist, dass der schwierigste Datensatz C nur mittels Backtracking
gelöst werden kann.

Tabelle 5.7. Binäres CSP nur mit Konfliktfreiheits-Bedingung

Datensatz A B C D
Anzahl Variablen 156 1036 1512 8602

Anzahl Constraints 103 472 677 2901
Rechenzeit (Or-Tools) 0 ms 1 ms 115 ms 8 ms

Rechenzeit (Gecode) 0 ms 7 ms 7,0 s 210 ms
Failures (beide) 0 0 9576 0

Als Heuristik wurde „Choose First Variable“ und „Choose Max Value“ gewählt, was dazu
führt, dass die Unterrichte der Reihe nach auf den ersten möglichen Zeitslot fixiert werden,
da die erste mögliche Variable auf ihren maximalen Wert (also 1) gesetzt wird.

5.4.2. Mit Kernstunden
Die Forderung nach Kernstunden lässt sich mit binären Variablen besonders einfach
ausdrücken, indem der Constraint für die Konfliktfreiheit einer Klasse abgewandelt wird:
Anstatt höchstens einer (ď 1) Unterrichtsstunde zu einem bestimmten Zeitpunkt ist nun
genau eine (= 1) gefordert. Dementsprechend bleibt die Anzahl der Constraints gleich,
wenngleich die Schwierigkeit der Probleminstanz natürlich stark zunimmt.

Tabelle 5.8. Binäres CSP mit Kernstunden

Datensatz A B C D
Anzahl Variablen 156 1036 1512 8602

Anzahl Constraints 103 472 677 2901
Rechenzeit (Or-Tools) 0 ms† >1 h 144 ms‡ >1 h

Rechenzeit (Gecode) 0 ms† 6 ms >1 h >1 h
† Der Datensatz A enthält keine Kernstunden
‡ Nach 14958 Failures

Im Vergleich zur ersten Modellierungs-Variante (siehe Tabelle 5.3) fällt auf, dass nicht alle
Datensätze unlösbar sind, sondern dass Or-Tools und Gecode jeweils einen (Zufalls-)Treffer
landen. Das ist möglich, wenn die Variablen so angeordnet sind, dass ganz ohne Back-
tracking bzw. mit nur wenigen Failures eine Lösung gefunden werden kann. Es sei darauf
hingewiesen, dass die CSP-Suche nicht randomisiert ist, sondern lediglich die Variablen

33

5. Lösung mittels Constraint Programming

und Constraints aus implementierungstechnischen Gründen in leicht unterschiedlichen
Reihenfolgen an die Solver übergeben wurden.

Da aber der Großteil der Berechnungen nicht erfolgreich verlief, muss auch hier eine
Möglichkeit zur Verkleinerung und/oder Anordnung des Suchbaums gefunden werden,
damit die Backtracking-Suche sinnvoll eingesetzt werden kann.

5.4.3. Sortierung der Zeitslots
Analog zu dem in Unterabschnitt 5.3.6 gezeigten Ansatz können auch hier die Zeitslots
so sortiert werden, dass die Variablen xuz, die zu einer Kernstunde z P Zk gehören, zuerst
abgearbeitet werden. In Kombination mit der Werteheuristik „Choose Max Value“ wird
der Unterricht dann bevorzugt auf diese Zeitslots gelegt.

Tabelle 5.9. Binäres CSP mit Kernstunden und sortierten Zeitslots

Datensatz A B C D
Anzahl Variablen 156 1036 1512 8602

Anzahl Constraints 103 472 677 2901
Rechenzeit (Or-Tools) 0 ms† >1 h >1 h >1 h

Rechenzeit (Gecode) 0 ms† 6 ms >1 h >1 h
† Der Datensatz A enthält keine Kernstunden

Leider verfehlt diese Optimierung bei der binären Modellierungs-Variante ihre Wirkung.
Durch die Sortierung der Zeitslots können keine zusätzlichen Datensätze gelöst werden,
stattdessen ist nun auch Or-Tools (zufällig) nicht mehr in der Lage, den Datensatz C zu
lösen.

Da alle erzielten Lösungen von binären Probleminstanzen mit Kernstunden eher als
Zufallstreffer einzustufen sind, bei denen die Variablen zufällig in der richtigen Reihenfolge
waren, scheint eine Umsortierung der binären Variablen nicht auszureichen. Stattdessen
muss das ursprüngliche Problem, dass der Suchbaum zu groß ist, gelöst werden.

Eine naheliegende Möglichkeit, um den Lösungsraum und damit den Suchbaum zu
verkleinern, ist das Fixieren von Variablen auf hoffentlich sinnvolle Werte. Anstatt die zu
fixierenden Werte heuristisch auszuwählen, wird ein anderer Ansatz verfolgt, der auch die
Motivation dafür war, das Problem überhaupt binär zu modellieren. Im folgenden Kapitel
wird eine Technik vorgestellt, mit der die LP-Relaxierung einbezogen werden kann, um
Werte vorab zu fixieren.

34

Kapitel 6

Einbezug der LP-Relaxierung

Der in diesem Kapitel beschriebene Lösungsansatz kombiniert den binären Ansatz aus
Abschnitt 5.4 mit der LP-Formulierung aus Abschnitt 3.3. Zunächst wird in Abschnitt 6.1
dargelegt, wieso diese Methode erfolgsversprechend ist. Die Abschnitte 6.3, 6.4 und 6.5 stel-
len drei verschiedene Möglichkeiten vor, wie die Kombination der beiden Modellierungen
sinnvoll vorgenommen werden kann, und analysieren die Ergebnisse. Abschnitt 6.6 zeigt ei-
ne Methode, mit der aus dem Konfliktgraphen der Probleminstanz zusätzliche Constraints
gewonnen werden können, um die LP-Formulierung zu verschärfen. Abschließend wird in
Abschnitt 6.7 untersucht, wie sich die zuvor entwickelten Lösungsansätze verhalten, wenn
weitere Bedingungen eingehalten werden sollen.

6.1. Motivation

In Abschnitt 5.4 wurde eine Modellierung des Stundenplanproblems als Constraint Satisfac-
tion Problem vorgestellt, die strukturell der Umsetzung von Weidler [2012] als ganzzahliges
lineares Programm (ILP) gleicht. Gibt man die Forderung nach der Ganzzahligkeit in die-
sem linearen Programm auf, so erhält man eine relaxierte Form der Probleminstanz. Die
Bedingung xuz P {0, 1} wird also ersetzt durch 0 ď xuz ď 1. Im Unterschied zum ur-
sprünglichen, NP-schweren ILP ist das zugehörige relaxierte Problem in Polynomialzeit
lösbar.

Ob es überhaupt zielführend ist, die LP-Relaxierung zu verwenden, lässt sich durch einen
Vergleich der Zielfunktionswerte der optimalen ganzzahligen und der optimalen reellen
Lösungen untersuchen. Außerdem ist es von Interesse, wie ähnlich sich die Belegungen
der beiden Lösungen sind. Die Werte wurden dabei mit Gurobi und der SchulScheduler-
Modellierung (siehe auch Kapitel 4) ermittelt, wobei die Zielfunktion leicht perturbiert
wurde, um stets die gleiche aus mehreren optimalen Lösungen zu erhalten.

35

6. Einbezug der LP-Relaxierung

Tabelle 6.1. Zielfunktionswerte von LP und ILP (berechnet mit Gurobi)

Datensatz A B C D
OPTINT -8,000¨101 -2,715¨103 -2,372¨103 -1,652¨104 †

OPTFRAC -8,200¨101 -2,715¨103 -2,372¨103 -1.812¨104

Anteil gleicher Werte 90,2 % 82,5 % 71,7 % 84,3 %
Anteil ähnlicher Werte 96,5 % 95,9 % 94,8 % 97,5 %

Anteil geänderter Werte 3,5 % 4,1 % 5,2 % 2,5 %
Rechenzeit für Relaxierung 6 ms 91 ms 119 ms 4,0 s
† Nicht optimal. Die Berechnung würde über Tage laufen und wurde deshalb

nach 40 Minuten bei einer verbleibenden Gap von 0,19 % abgebrochen.

Tabelle 6.1 zeigt, dass die Zielfunktionswerte stets von der gleichen Größenordnung und
in den meisten Fällen sogar bis auf mindestens drei Nachkommastellen gleich sind. Auch
inhaltlich sind sich die Lösungen sehr ähnlich: Der Großteil der Variablen (zwischen
70 % und 90 %) ist bereits in der Lösung der LP-Relaxierung ganzzahlig („gleich“ in der
Tabelle) und etwa 95 % der Variablen wurden so gerundet wie erwartet (also ab 0, 5 zu 1
aufgerundet; „ähnlich“ in der Tabelle).

Weiterhin lohnt es sich nur, die LP-Relaxierung mit einzubeziehen, wenn diese in ak-
zeptabler Zeit berechnet werden kann. Dem kommerziellen Solver Gurobi, der auch die
ganzzahligen Probleminstanzen lösen kann, gelingt das in kürzester Zeit. Ein kurzer Ver-
such (ohne genaue Messung) mit den offenen LP-Solvern glpk, lp_solve, und SYMPHONY
(Clp) zeigte, dass auch diese in unter einer Minute die optimale reelle Lösung bestimmen
können.

6.2. Mögliche Vorgehensweisen

Um von einer reellen Lösung auf eine mögliche (und im Fall eines Optimierungsproblems
eine möglichst gute) Lösung des ursprünglichen Problems zu schließen, gibt es mehrere
verschiedene Ansätze. Eine Möglichkeit ist, gezielt so zu runden, dass dabei zumindest
keine Bedingungen verletzt werden und dass der Wert der Zielfunktion sich nicht zu stark
verschlechtert. Zum Beispiel sind die Werte der LP-Relaxierung des Vertex-Cover-Problems
stets halbzahlig (also 0 oder 0, 5 oder 1) und man erhält eine 2-Approximation, indem
man alle Werte von 0, 5 auf 1 rundet. Im Unterschied zum Stundenplanproblem hat das
Vertex-Cover-Problem jedoch die Eigenschaft, dass die extreme Lösung, die alle Variablen
auf 1 setzt, immer noch zulässig ist. Beim Stundenplanproblem hingegen ist es in der Regel
weder möglich, alle Variablen auf 0 zu setzen, noch alle Variablen auf 1 zu setzen. Das

36

6.3. Ganzzahlige Werte fixieren

bedeutet, dass bei unvorsichtigem Runden leicht Bedingungen verletzt werden können,
sodass die Lösung unzulässig wird.

Der hier vorgestellte Ansatz ist allerdings überhaupt nicht darauf angewiesen, dass jede
Variable einen ganzzahligen Wert direkt aus der LP-Relaxierung zugewiesen bekommt.
Im Gegenteil ist es sogar gewünscht, dass einige Variablen unbesetzt bleiben, da die
LP-Relaxierung nur dazu dienen soll, diejenigen Variablen zu fixieren, deren Werte als
vergleichsweise sicher angenommen werden können. Es wäre also ein Vorgehen denkbar,
bei dem alle Werte unterhalb von (zum Beispiel) 0, 1 abgerundet, alle Werte oberhalb von
0, 9 aufgerundet und die übrigen vom CSP-Solver bestimmt werden.

6.3. Ganzzahlige Werte fixieren

Noch vorsichtiger ist der Ansatz, überhaupt nicht zu runden, sondern nur Werte, die
bereits in der Lösung der LP-Relaxierung ganzzahlig sind (also 0, 0 und 1, 0), zu fixieren.
Leider zeigen aber die Ergebnisse, dass selbst dieser Ansatz bereits zu weit geht, sodass
einige Datensätze unlösbar werden:

Tabelle 6.2. Binäres CSP mit Fixieren von ganzzahligen Werten aus der LP-Relaxierung

Datensatz A B C D
Anzahl Variablen 156 1036 1512 8602

Anzahl Constraints 103 472 677 2901
Rechenzeit (Relaxierung) 3 ms 14 ms 26 ms 258 ms
Anzahl fixierter 1-Werte 5 114 194 153
Anzahl fixierter 0-Werte 129 922 1234 7750
Gesamtzahl Constraints 237 1508 2105 10804

Rechenzeit (Or-Tools) 0 ms 1 ms unlösbar unlösbar

Hinweis: Die Berechnung basiert auf der Modellierung aus Abschnitt 5.4 mit Konflikt-
freiheit, Zeitslot-Sortierung und Kernstunden. Für jeden zu fixierenden Wert wurde ein
zusätzlicher Constraint der Form xuz = 1 bzw. xuz = 0 eingefügt.

6.3.1. Unlösbare Probleminstanzen beim Fixieren von Nullen
Zwar sinkt die verbleibende Rechenzeit für Or-Tools bei den Datensätzen A und B deutlich
ab, was zeigt, dass durch den Einbezug der LP-Relaxierung die Probleminstanz einfacher
geworden ist. Aber bei den anderen beiden Datensätzen wird die Probleminstanz durch
das Fixieren der 0- und 1-Werte unlösbar.

37

6. Einbezug der LP-Relaxierung

Einerseits um sicher zu gehen, andererseits zur Untersuchung der Ursachen, wurde die
Unlösbarkeit auch mit Gurobi und einem ganzzahligen linearen Programm der gleichen
Struktur nachvollzogen. Neben der bloßen Feststellung der Unlösbarkeit ist Gurobi in der
Lage, eine minimale Teilmenge der Constraints zu bestimmen, die zur Unlösbarkeit führt.
Durch systematisches Analysieren der Zusammenhänge zwischen diesen Constraints (siehe
Abbildung 6.1) und durch iteratives Vereinfachen der Probleminstanzen konnte schließlich
eine minimale Probleminstanz gefunden werden, an der das Problem demonstriert werden
kann. Das Problem entsteht durch eine ungünstige Kombination aus Kopplungen (siehe
Abschnitt 4.3) und Kernstunden.

Abbildung 6.1. Mit Papier, Stift und Klebeband verschaffte sich der Autor einen Eindruck davon,
wie aufwändig die manuelle Stundenplanung in der Praxis sein muss.

Die minimale Probleminstanz besteht aus zwei Klassen A und B, drei Fächern F, G und
H, die von jeweils einem Lehrer unterrichtet werden (diese heißen zur Vereinfachung
ebenfalls F, G und H), sowie drei Zeitslots 1, 2, und 3 (insgesamt, nicht pro Tag), die alle
drei Kernstunden sind. Jede der Klassen wird in jedem der Fächer genau eine Stunde lang
unterrichtet. Dadurch hat jede Klasse genau drei Stunden Unterricht, die Kernstunden-
Bedingung lässt sich also erfüllen. Außerdem findet der Unterricht im Fach H gemeinsam,
also gekoppelt statt. Während die Lehrer F und G also zwei Stunden pro Woche arbeiten
müssen, hält der Lehrer H seinen Unterricht nur ein Mal.

Neben der Konfliktfreiheit, den Kernstunden und natürlich der Erfüllung des geforderten
Unterrichts gibt es keine weiteren Bedingungen. Dass die Probleminstanz prinzipiell lösbar
ist, lässt sich am einfachsten durch Angabe von zulässigen Stundenplänen zeigen – hier
aus Sicht der beiden Klassen:

38

6.3. Ganzzahlige Werte fixieren

Tabelle 6.3. Mögliche Lösung für die minimale Probleminstanz

Zeit Unterricht A Unterricht B
1 F G
2 G F
3 H H

Wie man leicht nachprüfen kann, muss kein Lehrer zwei Unterrichte gleichzeitig halten,
jede Klasse erhält ihren geforderten Unterricht und die Unterrichtsstunde im Fach H findet
gemeinsam statt.

Interessanterweise liefert Gurobi bereits in der Presolve-Phase diese Lösung. Im Normalfall
ist diese Probleminstanz aber in ein größeres Umfeld von weiteren Constraints eingebettet,
die dazu führen, dass der LP-Solver unter Umständen eine andere Lösung zurückgibt.
Prinzipiell muss die Vorgehensweise zum Einbeziehen der LP-Relaxierung mit jeder zuläs-
sigen relaxierten Lösung zurechtkommen. Wenn man im gegebenen Beispiel drei weitere
Zeitslots 4, 5 und 6 hinzufügt, die jedoch keine Kernstunden sind, ändert das zunächst
nichts an der Zulässigkeit der gegebenen Lösung – die überflüssigen Zeitslots bleiben
einfach für alle Klassen unterrichtsfrei. Die zusätzlichen Zeitslots führen jedoch dazu, dass
Gurobi eine andere Lösung für die LP-Relaxierung berechnet.

Wir gehen also davon aus, dass aufgrund der Struktur des Problems „um“ diese minimale
Probleminstanz herum der LP-Solver eine beliebig ungünstige, aber dennoch zulässige
reelle Lösung liefern kann. In diesem Fall sei die Lösung wie folgt aufgebaut:

Tabelle 6.4. Werte für xuz aus der LP-Relaxierung

z
u

A-F A-G B-F B-G A-B-H

1 1/2 0 1/2 0 1/2

2 1/2 1/2 1/2 1/2 0
3 0 1/2 0 1/2 1/2

Der Wert xuz gibt an, ob der Unterricht u P U zum Zeitpunkt z P Z stattfindet. Beispiels-
weise bedeutet die 0 unten links in der Tabelle, dass der Unterricht A-F sicher nicht zum
Zeitpunkt 3 stattfindet.

39

6. Einbezug der LP-Relaxierung

Wir überprüfen nun, ob alle Bedingungen eingehalten wurden:

• Von jedem Unterricht findet wie gefordert insgesamt eine Stunde statt, da die Spalten-
summen 1 sind.

• Es gibt keine Konflikte für Klassen oder Lehrer, da die Summe der zu einer Klasse bzw.
einem Lehrer gehörenden Werte in einer Zeile nie größer als 1 ist.

• Die Kernstunden-Bedingung wird eingehalten, weil die Summe der zu einer Klasse
gehörenden Werte in einer Zeile immer genau 1 ist.

Das Fixieren betrifft in diesem Fall nur die 0-Werte, weil es keine 1-Stellen gibt. Wir zeigen
nun, dass es für die übrigen Werte keine zulässige ganzzahlige Lösung mehr geben kann:
Für den gekoppelten Unterricht H muss entweder Zeitslot 1 oder Zeitslot 3 gewählt werden.
Wenn Zeitslot 1 gewählt wird, gilt für beide Klassen, dass sie in diesem Zeitslot keine Zeit
mehr haben. Deswegen muss der Unterricht im Fach F bei beiden Klassen zum Zeitpunkt 2
stattfinden, denn zum Zeitpunkt 3 ist er verboten, weil die LP-Relaxierung hier den Wert 0
zugewiesen hat. Da aber beide Klassen im Fach F vom selben Lehrer F unterrichtet werden,
können diese Unterrichte nicht zeitgleich stattfinden, sodass es keine Lösung gibt. Ein
analoger Widerspruch ergibt sich mit Lehrer G, wenn man annimmt, dass der Unterricht
H zum Zeitpunkt 3 stattfindet.

Zwar entsteht dieser Konflikt nur durch die Kombination aus Kopplungen mit Kernstunden
und einer ungünstig gewählten reellen Lösung, doch in der Praxis kommt dieser Fall
sehr häufig vor. Bei Tests mit verschiedenen LP-Solvern, verschiedenen Algorithmen in
Gurobi (Innere-Punkte-Verfahren und Dual-Simplex) und verschiedenen (randomisierten)
Reihenfolgen der Variablen und Constraints ergaben sich jeweils unterschiedliche Lösungen
für die LP-Relaxierung, von denen etwa zwei Drittel nach dem Fixieren des ganzzahligen
Anteils zu unlösbaren Probleminstanzen führten. Auch wenn mit einer Zielfunktion, die
sich aus den weichen Bedingungen der Problemstellung und einer leichten Perturbation
ergibt, eine eindeutige optimale Lösung für die LP-Relaxierung gefunden werden kann,
löst diese das Problem für die Datensätze C und D leider nicht auf.

6.4. Nur Einsen fixieren

Im oben gezeigten Beispiel und auch in allen anderen untersuchten (größeren) Fällen
entsteht das Problem durch die Fixierung der 0-Werte, die effektiv die Platzierung eines
Unterrichts auf einen bestimmten Zeitslot verbieten. In größeren Probleminstanzen ist
stets eine Kopplung mit im Spiel, sowie eine großflächige Zahl von „Verboten“ für einen
bestimmten Unterricht. Abbildung 6.2 schlüsselt für einen bestimmten, beispielhaften Fall
auf, aus welchen Gründen die zwei verbleibenden Stunden eines Unterrichts nicht platziert

40

6.4. Nur Einsen fixieren

Stunde Montag Dienstag Mittwoch Donnerstag Freitag
1 K K K 0 L
2 L K 0 0 K
3 L K L 0 K
4 L L K 0 K
5 0 L L 0 0
6 K, L 0 0 L L
7 0 0 K L G
8 0 L 0 0 G
9 0 0 L G

10 K 0 0 L G

Abbildung 6.2. Analyse einer unlösbaren Probleminstanz (K = Konflikt mit anderem Unterricht der
Klasse, L = Konflikt mit anderem Unterricht des Lehrers, G = Zeitslot gesperrt, 0 = Verboten durch
LP-Relaxierung)

werden konnten. Für beide bleibt nur ein einziger Zeitslot (Di9) übrig, weil knapp die
Hälfte der übrigen Zeitslots durch die 0-Werte aus der LP-Relaxierung blockiert sind.

Daher liegt die Idee nahe, auf das Fixieren der 0-Werte zu verzichten und nur die Einsen zu
betrachten. Die Idee erscheint nicht zuletzt deshalb plausibel, weil das sichere Stattfinden
eines Unterrichts eine deutlich stärkere Information ist als das Nicht-Stattfinden. Denn in
jeder der vielen Gleichungen der Form x1 + ¨ ¨ ¨+ xj ď 1, aus denen das lineare Programm
zum größten Teil besteht, kann nur eine einzige Variable den Wert 1 annehmen, während
der Wert 0 leicht mehrfach zu vergeben ist. Das zeigt sich auch an den Statistiken in
Tabelle 6.2, wo erheblich mehr 0-Werte fixiert wurden als 1-Werte.

Bei der Durchführung der Berechnungen ohne die Fixierung von 0-Werten, d. h. nur mit
fixierten 1-Werten, scheint das Problem der Unlösbarkeit zunächst völlig verschwunden zu
sein:

Tabelle 6.5. Binäres CSP mit Fixieren von 1-Werten

Datensatz A B C D
Anzahl Variablen 156 1036 1512 8602

Anzahl Constraints 103 472 677 2901
Rechenzeit (Relaxierung) 3 ms 14 ms 26 ms 258 ms
Anzahl fixierter 1-Werte 5 114 194 153
Gesamtzahl Constraints 108 586 871 3054

Rechenzeit (Or-Tools) 0 ms 2 ms 2 ms >1 h
Rechenzeit (Gecode) 0 ms 0 ms >1 h 697 ms†

† Nach 116 Failures

41

6. Einbezug der LP-Relaxierung

Die in Tabelle 6.5 aufgeführten Messungen basieren auf den von Gurobi (deterministisch)
ausgewählten optimalen Lösungen für die LP-Relaxierung. Zwar wird die reelle Lösung
jeweils deterministisch ausgewählt, aber es handelt sich dennoch um eine willkürliche
Auswahl aus einer Menge möglicher Lösungen. Um zu untersuchen, inwiefern die Ergeb-
nisse auf Zufallstreffer zurückzuführen sind oder nicht, wurden die Berechnungen mit
unterschiedlichen Lösungen wiederholt. Zur Generierung dieser zusätzlichen Lösungen
wurde eine zufällig ausgewählte Variable geändert und fixiert, um die Lösung zunächst
unzulässig zu machen, und anschließend wieder eine optimale Lösung gesucht. Dieses
Verfahren wurde für jeden Datensatz insgesamt 100 Mal durchgeführt und anschließend
ermittelt, ob die durch das Fixieren zustande gekommene Probleminstanz noch lösbar
ist, sowie ob sie dann auch tatsächlich gelöst wird. Die Ergebnisse sind in Tabelle 6.6
dargestellt.

Tabelle 6.6. Einfluss der fixierten 1-Werte auf die Lösbarkeit

Datensatz A B C D
Anzahl lösbarer Instanzen 100 100 80 100

Anzahl unlösbarer Instanzen 0 0 20 0
Anzahl gelöster Instanzen (Or-Tools) 100 100 48 0

Anzahl gelöster Instanzen (Gecode) 100 100 50 16
Anzahl Timeouts >10 s (Or-Tools) 0 0 32 100

Anzahl Timeouts >10 s (Gecode) 0 0 30 84
Anzahl erkannter Unlösbarkeiten (Or-Tools) - - 10 -

Anzahl erkannter Unlösbarkeiten (Gecode) - - 8 -
Anzahl Variablen 156 1036 1512 8602

Durchschnittlich fixierte 1-Werte (unlösbar) - - 204,6 -
Durchschnittlich fixierte 1-Werte (lösbar) 5,1 112,3 185,5 164,5
Durchschnittlich fixierte 1-Werte (gelöst) 5,1 112,3 192,9 166,7

Durchschnittlich fixierte 1-Werte (Timeout) - - 173,8 164,4

Zunächst fällt auf, dass die Probleminstanz selbst dann unlösbar werden kann, wenn
ausschließlich die 1-Werte fixiert werden. Das ist allerdings äußerst selten und tritt nur
beim Datensatz C auf – die Gründe dafür werden in Unterabschnitt 6.4.1 genauer erläutert.

Von den lösbaren Instanzen konnten dennoch nicht alle gelöst werden, weil dem CSP-Solver
zu wenig Information zur Verfügung stand, um schnell eine Lösung zu finden. Da die
früheren Messungen gezeigt haben, dass eine Lösung entweder sehr schnell (innerhalb von
weniger als einer Sekunde) oder erst nach mehreren Stunden gefunden wird, wurde die
Berechnung nach 10 Sekunden abgebrochen und die Berechnung in diesem Fall als erfolglos
gezählt (Timeout). Während die Datensätze A und B immer gelöst werden konnten, was
im Fall von Datensatz B ohne LP-Relaxierung nicht gelingt, wurde für Datensatz D auch

42

6.4. Nur Einsen fixieren

mit LP-Relaxierung nur äußerst selten eine Lösung gefunden. Außerdem zeigt sich, dass
mehr fixierte Werte im Mittel eher dazu beitragen, dass die Instanz gelöst werden kann.

Hierbei bleibt allerdings unklar, wie weit sich die nach dem Fixieren gefundene Lösung
vom Optimum entfernt hat. Auf der anderen Seite ist es gerade einer der Vorteile der
LP-Relaxierung, dass damit auf vergleichsweise kostengünstige Weise die Zielfunktion mit
eingebunden werden kann. Die gerundeten/fixierten Werte gehören zu einer optimalen
reellen Lösung und sind daher schon relativ dicht am Ziel. Dadurch entfallen viele der
aufwändigen Iterationen, die ein CSP-Solver zum Optimieren durchführen muss (siehe
Unterabschnitt 5.1.3) – sofern die Probleminstanz nicht bereits unlösbar geworden ist.

Zur Einschätzung der Anzahl der fixierten Variablen sei angemerkt, dass ein fixierter
1-Wert eine ganze Reihe von Variablen indirekt festlegt. Beispielsweise fallen durch die
Fixierung einer Unterrichtsstunde automatisch alle anderen Unterrichte der gleichen Klasse
bzw. des gleichen Lehrers zu diesem Zeitpunkt weg. Und wenn durch die LP-Relaxierung
alle Stunden eines Unterrichts fixiert werden, kann dieser in allen übrigen Zeitslots nicht
mehr stattfinden, sodass fast |Z| Variablen durch eine einzige 1 festgelegt werden. So
wurden zum Beispiel im Fall von Datensatz D (siehe Tabelle 6.5) von den insgesamt 8602
Variablen nur 153 auf 1 fixiert. Bei der Berechnung mit Gecode mussten dennoch nur 306
weitere Entscheidungen zur Belegung von Variablen getroffen werden – alle weiteren Werte
konnten durch Constraint Propagation hergeleitet werden, die insgesamt 5887 Mal aktiv
war, um die verbleibenden 8143 Variablen zu belegen.

6.4.1. Unlösbare Probleminstanzen beim Fixieren von Einsen

Die Ergebnisse in Tabelle 6.6 zeigen, dass es im Fall von Datensatz C in einem Fünftel der
Fälle zur Unlösbarkeit kommt, wenn die 1-Werte aus der LP-Relaxierung fixiert werden. Mit
einem ähnlichen Vorgehen wie in Unterabschnitt 6.3.1 wurde durch manuelle Analyse der
Ursachen eine minimale Probleminstanz ermittelt, an der sich das Problem demonstrieren
lässt.

Genau wie im obigen Beispiel gibt es auch hier zwei Klassen A und B, die in den drei
Fächern F, G und H jeweils eine Unterrichtsstunde pro Woche haben, wobei das Fach H
gemeinsam (also gekoppelt) unterrichtet wird. Für die Fächer G und H gibt es weiterhin
jeweils einen Lehrer. Im Fach F werden die beiden Klassen jedoch – im Unterschied
zum obigen Beispiel – von jeweils einem eigenen Lehrer unterrichtet, die mit FA und FB
bezeichnet werden. Es stehen weiterhin drei Zeitslots zur Verfügung.

Da die Arbeitsteilung im Fach F, das nun von zwei Lehrern übernommen wird, keine
zusätzliche Einschränkung darstellt, ist die oben angegebene Lösung weiterhin zulässig:

43

6. Einbezug der LP-Relaxierung

Tabelle 6.7. Mögliche Lösung für die minimale Probleminstanz beim Fixieren von Einsen

Zeit Unterricht A Unterricht B
1 FA G
2 G FB
3 H H

Analog kann man nun nachprüfen, dass keine Konflikte auftreten und dass die geforderten
Unterrichte alle stattfinden. Hinweis: Auch wenn sie es in dieser Lösung nicht tun, könnten
FA und FB zeitgleich stattfinden.

Zwar berechnet Gurobi für die LP-Relaxierung genau diese (ganzzahlige!) Lösung, aber es
sind weitere reelle Lösungen denkbar, die zu Problemen führen. Wenn man zu den drei
Zeitslots zwei weitere hinzufügt, die überhaupt nicht benötigt werden und nicht belegt
werden können, weil sie im Vergleich zu den anderen keine Kernstunden sind, dann liefert
Gurobi – obwohl die obige Lösung weiterhin zulässig wäre – die folgende halbzahlige
Lösung:

Tabelle 6.8. Werte für xuz aus der LP-Relaxierung beim Fixieren von Einsen

z
u

A-FA A-G B-FB B-G A-B-H

1 1 0 1 0 0
2 0 1/2 0 1/2 1/2

3 0 1/2 0 1/2 1/2

Zunächst sei angemerkt, dass die beiden Einser im Fach F aus Sicht des CSP-Solvers die
einzigen beiden vorbelegten Werte sind, die übrigen werden verworfen – auch wenn sie
natürlich die Bedingungen zur Konfliktfreiheit und zu den Kernstunden erfüllen müssen.
Dass es ausgehend von dieser Situation keine Lösung mehr geben kann, sieht man leicht,
indem man zunächst die Kopplung A-B-H auf den Zeitslot 2 oder 3 platziert. Da daran
beide Klassen beteiligt sind, muss der gesamte restliche Unterricht im jeweils anderen
Zeitslot stattfinden. Das ist aber nicht möglich, weil die beiden Klassen im Fach G beide
vom selben Lehrer, aber getrennt unterrichtet werden.

Im Gegensatz zu dem Beispiel in Unterabschnitt 6.3.1, wo durch eine große Anzahl von
0-Werten jede einzelne Lösung blockiert wurde, die ansonsten denkbar gewesen wäre, ge-
nügen hier nur zwei Werte, um die Probleminstanz unlösbar zu machen. Glücklicherweise
funktioniert das nur, weil das Zeitraster sehr eng ist, während in Unterabschnitt 6.3.1 auch
ein erheblich größeres Zeitraster mit Nullen blockiert worden wäre. Sowohl in diesem

44

6.5. Sortieren statt Fixieren

Beispiel als auch in Datensatz C gibt es Klassen, die genau so viel Unterricht haben wie es
Zeitslots bzw. Kernstunden gibt, sodass keine Ausweichmöglichkeiten existieren und von
Anfang an feststeht, auf welche Zeitslots dieser Unterricht aufgeteilt werden muss.

In der Praxis sind solche Fälle zum Glück eher selten, wie auch die Tabelle 6.6 zeigt, und
treten nur auf, wenn eine Schule keinen Nachmittagsunterricht vorsieht. In diesen Fällen
könnte man bewusst auf den Einsatz der LP-Relaxierung verzichten und die vergleichsweise
kleine Probleminstanz dann nur vom CSP-Solver lösen lassen. Für alle anderen Fälle ist
der Einbezug der LP-Relaxierung eine gute Lösung, solange man nur die 1-Werte fixiert.

Die Unlösbarkeit zu erkennen und erst dann auf die LP-Relaxierung zu verzichten ist
leider nicht möglich, weil die CSP-Solver die Unlösbarkeit nur in der Hälfte der Fälle früh
genug melden (vgl. Tabelle 6.6). Stattdessen kann aber die LP-Relaxierung selbst verbessert
werden, sodass das Problem nicht mehr auftritt (siehe dazu Abschnitt 6.6).

6.4.2. Runden statt Fixieren

Eine Überlegung zur weiteren Verbesserung des Verfahrens könnte sein, nicht nur ganz-
zahlige Variablenwerte zu fixieren, sondern sogar aufzurunden, beispielsweise ab 0, 9 oder
0, 8.

Abbildung 6.3 auf Seite 46 zeigt, dass Werte oberhalb von 0, 8 relativ selten sind, vor allem
im Vergleich zur Zahl der Variablen, die genau 1, 0 sind. Versuche mit den beiden großen
Datensätzen C und D haben ergeben, dass das Aufrunden keine zusätzlichen Vorteile bringt.
Stattdessen kam es in einem Fall vor, dass beim Aufrunden ab 0, 8 die Probleminstanz
sogar unlösbar wurde, während sie ohne Aufrunden noch gelöst werden könnte.

6.5. Sortieren statt Fixieren

Das in Abschnitt 6.4 vorgestellte Vorgehen, bei dem nur die Einsen fixiert werden, hat
zwei prinzipbedingte Nachteile: Zum einen besteht eine (geringe) Gefahr, dass durch das
Fixieren die Probleminstanz unlösbar wird und der CSP-Solver das nicht bemerkt. Zum
anderen geht die differenzierte Abstufung der übrigen Variablen 0 ă xuz ă 1 verloren,
obwohl es sich dabei um etwa die gleiche Anzahl an Variablen handelt wie beim Fixieren
der xuz = 1.

Beide Probleme lassen sich lösen, indem auf das Fixieren verzichtet und stattdessen
lediglich priorisiert wird. Die LP-Relaxierung wird also nicht mehr als Einschränkung des

45

6. Einbezug der LP-Relaxierung

0
ď

0,
1

ď
0,

2
ď

0,
3

ď
0,

4
ď

0,
5

ď
0,

6
ď

0,
7

ď
0,

8
ď

0,
9

ă
1´

ε 1
0

100

200

247

0 0 0 0
22

0 0 0 0 0

46

#V
ar

ia
bl

en

(a) Datensatz A

0
ď

0,
1

ď
0,

2
ď

0,
3

ď
0,

4
ď

0,
5

ď
0,

6
ď

0,
7

ď
0,

8
ď

0,
9

ă
1´

ε 1

0

500

1,000

1,500 1,413

12 30 32 33 80 23 15 8 11 1
172

#V
ar

ia
bl

en

(b) Datensatz B

0
ď

0,
1

ď
0,

2
ď

0,
3

ď
0,

4
ď

0,
5

ď
0,

6
ď

0,
7

ď
0,

8
ď

0,
9

ă
1´

ε 1

0

500

1,000

1,500

2,000 1,922

74 54 117108105 68 41 39 14 10
168

#V
ar

ia
bl

en

(c) Datensatz C

0
ď

0,
1

ď
0,

2
ď

0,
3

ď
0,

4
ď

0,
5

ď
0,

6
ď

0,
7

ď
0,

8
ď

0,
9

ă
1´

ε 1
0

0.5

1

1.5
¨104

13,506

449 358 268 277 248 197 161 117 102 80

1,337

#V
ar

ia
bl

en

(d) Datensatz D

Abbildung 6.3. Histogramme der optimalen relaxierten LP-Lösungen

46

6.5. Sortieren statt Fixieren

zu großen Lösungsraums, sondern als Heuristik zur gezielten Suche im weiterhin großen
Lösungsraum verwendet.

Dazu wird auf den Variablen der CSP-Instanz eine Ordnung eingeführt und mit der Werte-
heuristik „Choose Max Value“ kombiniert. Durch diese Ordnung kann vorab festgelegt
werden, welche Variablen bevorzugt auf 1 gesetzt werden, sofern dies noch konfliktfrei
möglich ist.

6.5.1. Ordnung der Variablen

In erster Linie werden die Variablen nach ihrem Wert in der LP-Relaxierung geordnet.
Da aber vor allem die Werte 1, 0 und 0, 5 sowie einige andere Brüche relativ häufig
vorkommen, bietet es sich an, die Ordnung noch weiter zu verfeinern. Dazu verwenden
wir Überlegungen aus Unterabschnitt 5.3.7 und Unterabschnitt 5.4.3, d. h. wir ziehen
Kernstunden vor und bevorzugen Unterrichte mit mehr Abhängigkeiten, was insbesondere
größere Kopplungen betrifft.

Zunächst definieren wir den Grad d eines Unterrichts u P U als die Anzahl aller Unterrichte,
an denen beteiligte Lehrer und Klassen teilnehmen:

d(u) = ∑
uPUl
lPL

|Ul|+ ∑
uPUk
kPK

|Uk|

Damit ergibt sich die Ordnung zweier Variablen xu1z1 und xu2z2 anhand der folgenden
Kriterien, wobei ein Kriterium nur betrachtet wird, wenn alle vorherigen Kriterien keine
Unterscheidung ermöglicht haben. xu1z1 ist vor xu2z2 einzuordnen, wenn:

• xu1z1 ą xu2z2 (Sortierung nach der LP-Relaxierung)

• z1 P Zk ^ z2 R Zk (Kernstunden zuerst belegen)

• |{k P K | u1 P Uk}| ą |{k P K | u2 P Uk}| (mehr beteiligte Klassen)

• |{l P L | u1 P Ul}| ą |{l P L | u2 P Ul}| (mehr beteiligte Lehrer)

• d(u1) ą d(u2) (Grad des Unterrichts bei gleicher Klassen- und Lehrer-Zahl)

• e(u1) ą e(u2) (Einfügereihenfolge)

Dabei ist e : U ÞÑ N die Reihenfolge der Unterrichte im Datensatz, die nur verwendet
wird, um bei ansonsten gleichen Unterrichten trotzdem eine deterministische Ordnung zu
erhalten.

47

6. Einbezug der LP-Relaxierung

6.5.2. Ergebnisse
Um Zufallstreffer auszuschließen und die Auswirkungen von unterschiedlichen Lösun-
gen für die LP-Relaxierung zu untersuchen, wurde jede Berechnung wieder 100 Mal
durchgeführt:

Tabelle 6.9. Einfluss der Sortierung auf den Erfolg der Berechnung

Datensatz A B C D
Anzahl gelöster Instanzen (Or-Tools) 100 100 46 4

Anzahl gelöster Instanzen (Gecode) 100 100 43 4
Anzahl Timeouts >10 s (Or-Tools) 0 0 54 96

Anzahl Timeouts >10 s (Gecode) 0 0 57 96
Anzahl Variablen 156 1036 1512 8602

Durchschnittlich Anzahl 1-Werte (gelöst) 5,2 113,0 186,5 174,5
Durchschnittlich Anzahl 1-Werte (Timeout) - - 184,5 164,4

Die Zahl der erfolgreichen Berechnungen ist etwas niedriger als beim Fixieren (vgl. Ta-
belle 6.5), dafür kommt es selbstverständlich nicht mehr vor, dass eine Probleminstanz
gänzlich unlösbar wird.

Es sei nochmals darauf hingewiesen, dass in den Fällen, in denen keine Lösung gefunden
wurde, bereits nach 10 Sekunden abgebrochen wurde. Weil es jedoch eines der Ziele des
neuen Ansatzes ist, die Variablen so zu sortieren, dass die erste zulässige Lösung bereits
sehr früh im Suchbaum auftritt, wurden einige längere Berechnungen mit den Datensätzen
C und D durchgeführt, die zwischen einer und fünf Stunden dauerten. Diese waren alle
erfolglos, d. h. es wäre noch mehr Zeit nötig, um eine zulässige Lösung zu bestimmen.

6.5.3. Analyse mit kleiner Probleminstanz
Die in Unterabschnitt 6.4.1 vorgestellte minimale Probleminstanz, die beim Fixieren der
1-Werte unlösbar wird, bleibt durch die bloße Sortierung der Variablen natürlich lösbar.
Doch da grundsätzlich die Variablen mit hohen Werten in der LP-Relaxierung zuerst mit 1
belegt werden, wird der Fehler bei dieser Probleminstanz direkt zu Beginn begangen.

Bei der in Abbildung 6.4 dargestellten Suche werden mit den ersten beiden Entscheidungen
(AF = 1 und BF = 1) bereits zwei Unterrichte so gelegt, dass es keine zulässige Lösung
für die übrigen mehr geben kann. Weil aber jeder der anderen Unterrichte (hier nur AX)
alleine noch platziert werden könnte, wird dieser Fehler vom Algorithmus nicht sofort
erkannt. Stattdessen versucht der Solver, einen weiteren Unterricht (AX) zu platzieren,
wodurch sich ein Widerspruch ergibt – egal auf welchen der beiden verbleibenden Zeitslots
der Unterricht gelegt wird. Erst nachdem der komplette Teilbaum durchsucht ist, wird die
Entscheidung per Backtracking revidiert und dann sofort eine Lösung gefunden.

48

6.5. Sortieren statt Fixieren

AF=1

BF=1

AX=2 AX=3

Abbildung 6.4. Suchbaum einer kleinen Probleminstanz mit Variablen-Sortierung nach LP-
Relaxierung

Im gegebenen Beispiel wird die Lösung trotzdem in wenigen Mikrosekunden gefunden
und es mussten davor nur zwei unzulässige Blattknoten untersucht werden. Das liegt
ausschließlich daran, dass der Suchbaum mit einer Tiefe von drei Entscheidungen (Kanten)
insgesamt sehr klein ist und in weniger als einer Millisekunde vollständig durchsucht
werden könnte. Bei größeren Probleminstanzen liegen jedoch viele weitere Entscheidungen
zwischen den mit 1 belegten Variablen, für die die Fehlentscheidung getroffen wurde, und
den Variablen, bei deren Belegung der Fehler entdeckt wird. Der Teilbaum unterhalb der
Fehlentscheidung, der sicher keine Lösung enthält, kann also sehr groß ausfallen, was
die Berechnung enorm verlangsamt. Die Messergebnisse aus Tabelle 6.9 bestätigen diese
Überlegungen.

6.5.4. Position der ersten Fehlentscheidung
Um genauer einschätzen zu können, wie weit oben oder unten im Baum das vorgestellte
Verfahren die erste Fehlentscheidung trifft, wurde diese Position in mehreren Testläufen
(100 pro Datensatz) genauer bestimmt.

Der CSP-Solver belegt alle Variablen zunächst mit 1, bis das nicht mehr konfliktfrei möglich
ist. Wenn ein Konflikt auftritt, wird stets die letzte gemachte Entscheidung revidiert. Also
befindet sich eine lange Kette von 1-Belegungen am Anfang des Suchbaums, solange dieser
erst zu einem kleinen Teil durchsucht wurde. Die erste solche 1, die zusammen mit allen
vorherigen die Probleminstanz unlösbar macht, ist die erste Fehlentscheidung.

Mit Hilfe von Gurobi können die Probleminstanzen als ganzzahliges lineares Programm
modelliert und in kurzer Zeit auf Lösbarkeit überprüft werden. Es wurden die Variablen in

49

6. Einbezug der LP-Relaxierung

der gleichen Reihenfolge auf 1 fixiert, in der auch der CSP-Solver sie bearbeiten würde, und
jeweils die Position der Variablen festgehalten, nach deren Fixierung die Probleminstanz
unlösbar wurde. Die Position lässt sich dabei durch zwei Kennzahlen charakterisieren:
zum einen durch den relativen Index im Vergleich zu allen Variablen (z. B. wäre die
400. von insgesamt 8000 Variablen bei 5 %) und zum anderen durch ihren Wert in der
LP-Relaxierung (was der Position im Histogramm entspricht, vgl. Abbildung 6.3).

A B C D
0%

5%

10%

15%

Datensatz

R
el

at
iv

er
In

de
x

(b
es

se
r
I

)

A B C D
0

0.2

0.4

0.6

0.8

1

Datensatz

(J
be

ss
er

)
R

el
ax

ie
ru

ng
s-

W
er

t

Abbildung 6.5. Position der ersten Fehlentscheidung im CSP-Suchbaum

Die Diagramme in Abbildung 6.5 machen deutlich, dass zum einen alle ersten Fehler bereits
sehr früh auftreten (im ersten Sechstel) und dass zum anderen im Fall von Datensatz C
bereits das Auswählen einer 1 aus der LP-Relaxierung ein Fehler sein kann. Dieser Umstand
ist bereits aus Unterabschnitt 6.4.1 bekannt und führt dazu, dass es nicht möglich ist, alle
Einsen zu fixieren ohne die Lösbarkeit zu beeinträchtigen.

6.5.5. Sortierung verbessern

Eine naheliegende Idee zur Verbesserung der Suche ist es daher, nach besseren Heuristiken
für die Sortierung zu suchen, um die erste Fehlentscheidung möglichst weit hinauszuzö-
gern.

Die Analyse von einigen problematischen Beispielen (z. B. Unterabschnitt 6.4.1) zeigt,
dass stets Kopplungen beteiligt sind, die nicht mehr platziert werden können, nachdem
anderer Unterricht auf ungünstige Zeitslots gelegt wurde. Um das Problem zu umgehen,
könnte man versuchen, die Kopplungen möglichst früh zu platzieren. Das erreicht man
beispielsweise, indem man die betreffenden Variablen möglichst früh einsortiert – etwa

50

6.6. Verschärfung der LP-Relaxierung

A B C D
0%

5%

10%

15%

Datensatz

R
el

at
iv

er
In

de
x

(b
es

se
r
I

)

A B C D
0

0.2

0.4

0.6

0.8

1

Datensatz
(J

be
ss

er
)

R
el

ax
ie

ru
ng

s-
W

er
t

Abbildung 6.6. Position der ersten Fehlentscheidung im CSP-Suchbaum (Kopplungen priorisiert)

direkt hinter alle Variablen mit dem Wert 1, 0 in der LP-Relaxierung. Diese alternative
Sortierung führt zu keinen wesentlich besseren Ergebnissen (siehe Abbildung 6.6).

Es wurden einige solche Abwandlungen der Variablensortierung getestet, von denen jedoch
keine zu einer nennenswerten Verbesserung führte.

6.6. Verschärfung der LP-Relaxierung
Bisher wurde versucht, durch Fixieren oder Sortieren der Variablen anhand der LP-
Relaxierung und einiger weiterer Kriterien den Ablauf der Suche zu verbessern. Anstatt
dabei nur die Kriterien zu verändern, kann man auch versuchen, die LP-Relaxierung selbst
zu verbessern. Dazu muss die LP-Instanz des Problems gezielt um Constraints erweitert
werden, die für eine ILP-Instanz eigentlich redundant sind. Das bedeutet, dass dadurch kei-
ne ganzzahligen Lösungen verloren gehen, wohl aber reelle Lösungen, sodass die optimale
relaxierte Lösung näher bei der gesuchten ganzzahligen Lösung liegt.

In anderen Problembereichen bringt diese Methode große Vorteile. So lässt sich beispiels-
weise die LP-Relaxierung bei der Suche nach unabhängigen Mengen in Graphen erheblich
verbessern, indem man für jeden ungeraden Zyklus im Graphen einen zusätzlichen Con-
straint hinzufügt [Grötschel et al., 1988, Kapitel 9.1].

6.6.1. Idee
Ein analoger Ansatz für das Stundenplanproblem lässt sich aus der schwierigen Pro-
bleminstanz ableiten, die in Unterabschnitt 6.4.1 vorgestellt wurde. Die Werteverteilung

51

6. Einbezug der LP-Relaxierung

Tabelle 6.10. Schlechte LP-Relaxierung bei ungünstiger Probleminstanz

z
u A-FA A-G B-FB B-G A-B-H

1 1 0 1 0 0
2 0 1/2 0 1/2 1/2

3 0 1/2 0 1/2 1/2

der LP-Relaxierung bei dieser Probleminstanz ist in Tabelle 6.10 dargestellt. Nach dem
Setzen der beiden 1-Werte gibt es für die übrigen Unterrichte keine zulässige Verteilung
mehr. Der Grund dafür ist, dass nur noch zwei Zeitslots zur Verfügung stehen, aber
drei Unterrichte platziert werden müssen, was prinzipiell nur möglich ist, wenn zwei
davon gleichzeitig stattfinden. Im konkreten Fall gibt es aber keine zwei Unterrichte, die
gleichzeitig stattfinden könnten: Die Kopplung hat mit den beiden anderen Unterrichten je
eine Klasse gemeinsam, und die beiden Unterrichte im Fach G haben denselben Lehrer.

Das Kernproblem lässt sich noch etwas weiter reduzieren, indem nur ein einziger Zeitslot
(egal ob 2 oder 3) betrachtet wird: Obwohl von den drei Unterrichten nur einer stattfinden
kann, haben alle drei in der LP-Relaxierung den Wert 1/2, in der Summe also mehr als 1.
Dies lässt sich verhindern, indem pro Zeitslot ein zusätzlicher Constraint hinzugefügt wird,
der die Summe auf 1 beschränkt.

6.6.2. Verallgemeinerung

Hinweis: Da nun auch Kopplungen betrachtet werden, wird die Definition aus Abschnitt 2.3
wie in Abschnitt 4.3 beschrieben erweitert, sodass pro Unterricht mehrere Klassen, Lehrer
und Fächer möglich sind:

U Ď P(K)ˆP(F)ˆP(L)

Wir betrachten den Konfliktgraphen G = (U, E) der zu lösenden Probleminstanz, in dem
die Unterrichte als Knoten dargestellt sind und zwischen zwei Unterrichten genau dann
eine Kante existiert, wenn sie nicht gleichzeitig stattfinden können, also:

E =

{
{(k1, f1, l2), (k2, f2, l2)} P

(
U
2

)∣∣∣∣ k1 X k2 ‰ H_ l1 X l2 ‰ H
}

Die drei Unterrichte aus dem Beispiel oben haben die Eigenschaft, dass sich jeder mit
jedem anderen ausschließt. Sie bilden also eine (kleine) Clique im Konfliktgraphen (siehe
Abbildung 6.7).

52

6.6. Verschärfung der LP-Relaxierung

A-FA

A-B-H

A-G

B-FB B-G

Abbildung 6.7. Konfliktgraph der minimalen Probleminstanz

6.6.3. Maximale Cliquen
In einem Graphen G = (U, E) ist eine Clique definiert als Teilmenge C Ď U der Knoten,
wobei zwischen je zwei Knoten eine Kante existieren muss, also (C

2) Ď E. Eine Clique
C heißt maximal genau dann, wenn sie in keiner anderen Clique echt enthalten ist, also
@D) C : (D

2) Ď E. Während die Suche nach Cliquen einer gegebenen Größe k und
damit auch nach der größten Clique NP-vollständig ist [Schöning, 2003], können maximale
Cliquen zumindest mit Aufwand O(nm) pro gefundener Clique (mit n = |U|, m = |E|)
aufgezählt werden [Tsukiyama et al., 1977]. In einem Graph können jedoch exponentiell
viele Cliquen existieren.

In der Praxis erweist sich eine Abwandlung des Algorithmus von Bron und Kerbosch [1973]
als praktikabel, bei der durch die Wahl eines Pivot-Knotens der Suchbaum signifikant
verkleinert wird [Tomita et al., 2006]. Der Bron-Kerbosch-Algorithmus ohne Pivotieren ist
im Folgenden als Pseudo-Code dargestellt:

Algorithm 1 Bron-Kerbosch-Algorithmus (findet alle maximalen Cliquen)
Require: C, M, X Ď U sind Knotenmengen

1: function Find-Max-Cliques(C, M, X)
2: if M = H^ X = H then
3: Speichere maximale Clique C
4: end if
5: for all u P M do
6: Find-Max-Cliques(CY {u}, MX N(u), XX N(u))
7: M Ð M z {u}
8: X Ð XY {u}
9: end for

10: end function

53

6. Einbezug der LP-Relaxierung

Dabei ist N(v) := {u P U | {u, v} P E} die Menge der direkten Nachbarn von v. In der
Menge C ist stets die aktuelle Clique gespeichert, in M sind weitere mögliche Knoten, die
in die Clique aufgenommen werden könnten, und X enthält die Knoten, die nicht mehr in
die Clique aufgenommen werden sollen. Der Algorithmus wird mit dem initialen Aufruf
Find-Max-Cliques(H, U, H) gestartet.

Durch die Wahl eines Pivot-Knotens p P MY X lässt sich die Suche – je nach Struktur
des Graphen – erheblich beschleunigen [Tomita et al., 2006]. Die Idee ist, dass in allen
maximalen Cliquen, die noch gefunden werden können, entweder p selbst enthalten
ist, oder wenn nicht, dann auch keiner von den Nachbarn von p. Denn alle Knoten in
m P MY X haben die Eigenschaft, dass sie mit allen in der aktuellen Clique C verbunden
sind, sodass CY {m} wieder eine (größere) Clique wäre. Ein Nachbar von p kann C aber
nur dann zu einer maximalen Clique ergänzen, wenn auch p in der Clique ist, denn ohne
p wäre die Clique nicht maximal, weil sie sich mit p einfach vergrößern lassen würde. Da
alle Nachbarn von p in dem rekursiven Aufruf betrachtet werden, in dem zunächst p selbst
ausgewählt wurde, müssen sie nicht ein weiteres Mal betrachtet werden, wenn p nicht in C
enthalten ist.

Es lassen sich also alle Nachbarn N(p) eines beliebigen Knotens in jeder Runde von der
Suche ausschließen, ohne dass dadurch die Vollständigkeit der Suche verloren geht. Um
einen möglichst großen Effekt zu erzielen, wählt man als Pivot-Knoten denjenigen Knoten
p P M Y X mit den meisten Nachbarn in M oder alternativ einfach mit den meisten
Nachbarn überhaupt, d. h. mit dem höchsten Grad.

Algorithm 2 Bron-Kerbosch-Algorithmus mit Pivotieren
Require: C, M, X Ď U sind Knotenmengen

1: function Find-Max-Cliques(C, M, X)
2: if M = H^ X = H then
3: Speichere maximale Clique C
4: end if
5: Wähle p P MY X mit |N(p)| maximal (oder |N(p)XM| maximal)
6: for all u P M z N(p) do
7: Find-Max-Cliques(CY {u}, MX N(u), XX N(u))
8: M Ð M z {u}
9: X Ð XY {u}

10: end for
11: end function

54

6.6. Verschärfung der LP-Relaxierung

6.6.4. Interessante Cliquen
Cliquen im Konfliktgraphen sind Mengen von Unterrichten, die sich paarweise gegenseitig
ausschließen. Naheliegende Cliquen sind insbesondere die Mengen aller Unterrichte eines
bestimmten Lehrers oder einer bestimmten Klasse – und meistens sind diese auch maximal.
Da diese ohnehin über die Konfliktfreiheits-Bedingung abgedeckt sind und einen Großteil
der Cliquen ausmachen, lohnt es sich nicht, diese mit dem Bron-Kerbosch-Algorithmus zu
finden. Im Fall des großen Testdatensatzes D sind 54 der insgesamt 96 Cliquen uninteres-
sant, weil sie bereits über die Konfliktfreiheits-Bedingung abgedeckt sind. Bei der kleinen
Beispielinstanz (siehe Abbildung 6.7) betrifft das die obere und die untere Clique.

Um die Cliquensuche weiter zu verkürzen, hilft die Überlegung, dass Cliquen immer
uninteressant sind, wenn sie nur aus normalen Unterrichten bestehen, also wenn keine
Kopplungen enthalten sind. Normale Unterrichte sind solche, bei denen genau ein Lehrer
genau eine Klasse in genau einem Fach unterrichtet. Die Aussage, dass bei solchen Cliquen
entweder alle Lehrer gleich sind, oder alle Klassen, oder beides, lässt sich per Induktion
über die Größe n der Clique beweisen:

Ź n = 1: Die Aussage gilt, es sind sowohl alle Lehrer als auch alle Klassen gleich, weil nur
ein Unterricht betrachtet wird.

Ź n = 2: Da beide Unterrichte eine Clique bilden, sind sie durch eine Kante verbunden,
weil zwischen beiden ein Konflikt besteht. Der kann nur dadurch verursacht werden,
dass beide denselben Lehrer und/oder dieselbe Klasse haben.

Ź n ą 2: Da jede Teilmenge der Clique wieder eine Clique ist, kann ein Unterricht u aus
der Clique entfernt werden. Für die übrige Teilmenge gilt per Induktionsvoraussetzung,
dass alle Unterrichte denselben Lehrer und/oder dieselbe Klasse haben.

1. Fall: Sie haben dieselbe Klasse und denselben Lehrer. Da u zu allen anderen
Unterrichten eine Kante hat, hat er entweder auch denselben Lehrer oder
auch dieselbe Klasse.

2. Fall: Sie haben dieselbe Klasse, aber es gibt mindestens zwei mit unterschiedli-
chem Lehrer. Da u zu diesen beiden eine Kante hat, muss er dieselbe Klasse
haben. Denn hätte er sie nicht, dann müsste er mit den beiden anderen
Unterrichten einen Lehrerkonflikt haben, was aber nicht möglich ist, weil
diese verschiedene Lehrer haben.

3. Fall: Sie haben denselben Lehrer, aber es gibt mindestens zwei mit unterschied-
licher Klasse: analog zu Fall 2.

Wenn in einer Clique alle Lehrer oder alle Klassen gleich sind, existiert für die Clique bereits
ein Constraint aus der Konfliktfreiheits-Bedingung, sodass die Clique uninteressant ist.

55

6. Einbezug der LP-Relaxierung

Demnach sind nur die Cliquen potenziell interessant, in denen mindestens eine Kopplung
vorkommt. In Abbildung 6.7 ist es also nur die Clique auf der rechten Seite. Um solche
Cliquen schneller zu ermitteln, kann die Suche direkt ausgehend von den Kopplungen
gestartet werden:

Algorithm 3 Cliquensuche ausgehend von Kopplungen
Require: U ist die Menge aller Unterrichte

1: function Find-Max-Cliques(U)
2: X ÐH

3: for all u P U do
4: if u ist Kopplung then
5: Find-Max-Cliques({u}, N(u) z X, XX N(u))
6: end if
7: end for
8: end function

6.6.5. Ergebnisse der Cliquensuche
Tabelle 6.11. Statistiken zur Cliquensuche

Datensatz A B C D
Anzahl Kopplungen 4 3 4 21

Anzahl maximaler Cliquen 7 8 19 96
Davon interessante Cliquen 4 1 3 42

Durchsuchte Cliquen (Bron-Kerbosch) 7 8 19 96
Laufzeit (Bron-Kerbosch ohne Pivot) 60 ms 72 ms 112 ms 36,1 s

Laufzeit (Bron-Kerbosch mit Pivot) 32 ms 44 ms 72 ms 920 ms
Durchsuchte Cliquen (Start in Kopplungen) 7 6 13 81

Laufzeit (Start in Kopplungen mit Pivot) 32 ms 34 ms 54 ms 476 ms

Die Ergebnisse in Tabelle 6.11 zeigen, dass vor allem das Pivotieren, aber auch das gezielte
Starten in den Kopplungen die Effizienz der Cliquensuche verbessern.

6.6.6. Auswirkungen auf die erste Fehlerposition
Zum Vergleich mit Abbildung 6.5 wurde wieder für 100 zufällige Lösungen der LP-
Relaxierung ermittelt, wie früh die erste Fehlentscheidung passieren würde, wenn der
CSP-Solver die Variablen in der Reihenfolge der reellen Lösung auf 1 setzt. Die Ergebnisse
in Abbildung 6.8 sind durchgehend besser als ohne die Cliquen-Constraints. Insbesondere

56

6.6. Verschärfung der LP-Relaxierung

gibt es – wie beabsichtigt – auch bei Datensatz C keinen Fall mehr, in dem das Fixieren
einer ganzzahligen 1 eine Fehlentscheidung wäre.

A B C D
0%

5%

10%

15%

Datensatz

R
el

at
iv

er
In

de
x

(b
es

se
r
I

)

A B C D
0

0.2

0.4

0.6

0.8

1

Datensatz

(J
be

ss
er

)
R

el
ax

ie
ru

ng
s-

W
er

t

Abbildung 6.8. Position der ersten Fehlentscheidung im CSP-Suchbaum (mit Cliquen-Constraints)

6.6.7. CSP-Berechnungen mit Cliquen-Constraints

Um die Berechnung mit dem CSP-Solver zu beschleunigen, könnte man in die CSP-Instanz
nicht nur die Ergebnisse der verbesserten LP-Relaxierung einfließen lassen, sondern zu-
sätzlich die Cliquen-Constraints direkt zur CSP-Instanz hinzufügen. Aus theoretischer
Sicht bringt das aber keinen Mehrwert, weil der CSP-Solver nur mit diskreten Werten aus
den Domänen der Variablen arbeitet. Wenn beispielsweise mittels Constraint Propagation
darauf geschlossen werden kann, dass ein Unterricht zu einem bestimmten Zeitpunkt nicht
mehr stattfinden kann, dann deswegen, weil ein Nachbar-Unterricht (im Konfliktgraphen)
bereits zu diesem Zeitpunkt stattfindet. Diese Information kann jedoch alleine dadurch
propagiert werden, dass eine Kante im Konfliktgraphen vorliegt. Die zusätzliche Infor-
mation, dass aus einer Menge von n Unterrichten nur m gleichzeitig stattfinden können
(mit m ă n), hilft dem CSP-Solver nicht, weil er erst einen Unterricht setzen muss, bevor
ein Constraint propagiert werden kann – und dann ist ohnehin schon sicher, dass keiner
der anderen n ´ 1 Unterrichte überhaupt noch zu diesem Zeitpunkt stattfinden kann.
Probeweise durchgeführte Berechnungen bestätigen diese Überlegungen.

Deswegen wurden die Cliquen-Constraints im Folgenden nur zur relaxierten LP-Instanz
hinzugefügt. Deren Lösung wurde wiederum 100 Mal zufällig ausgewählt und dann wie in
Abschnitt 6.5 beschrieben in die CSP-Instanz eingearbeitet. Die Ergebnisse in Tabelle 6.12
müssen also mit Tabelle 6.9 verglichen werden.

57

6. Einbezug der LP-Relaxierung

Tabelle 6.12. Einfluss der Cliquen-Constraints auf den Erfolg der Berechnung

Datensatz A B C D
Anzahl gelöster Instanzen (Or-Tools) 100 100 97 18

Anzahl gelöster Instanzen (Gecode) 100 100 97 16
Anzahl Timeouts >10 s (Or-Tools) 0 0 3 82

Anzahl Timeouts >10 s (Gecode) 0 0 3 84
Anzahl Variablen 156 1036 1512 8602

Durchschnittlich Anzahl 1-Werte (gelöst) 10,58 112,7 197,9 168,4
Durchschnittlich Anzahl 1-Werte (Timeout) - - 165,7 160,8

Obwohl sich die Anzahl der gelösten Instanzen im Vergleich zur Berechnung ohne Cliquen-
Constraints bereits stark gesteigert hat, bleiben vor allem beim großen Datensatz D die
meisten Berechnungen erfolglos. Selbst mit mehreren Stunden Berechnungszeit können
diese Instanzen nicht gelöst werden.

6.6.8. Verbesserte Ordnung der Variablen

Die mit Cliquen-Constraints ermittelte Lösung der LP-Relaxierung ist sehr präzise in
Bezug auf die 1-Werte. In allen weiteren Experimenten wurde kein Fall mehr beobachtet,
in dem ein Wert von 1, 0 aus der Relaxierung nicht auch in der endgültigen Lösung
korrekt gewesen wäre. Anstatt die Werte aber zu fixieren (wie in Abschnitt 6.4), wurde
die heuristische Variablen-Ordnung aus Unterabschnitt 6.5.1 so angepasst, dass 1-Werte
deutlich bevorzugt werden, wohingegen die feine Abstufung der reellen Variablen eher in
den Hintergrund gerückt ist, weil die anderen Kriterien wichtiger sind (siehe Überlegungen
in Unterabschnitt 5.3.7 und Unterabschnitt 5.4.3).

In der neuen Ordnung wird xu1z1 vor xu2z2 eingeordnet, wenn:

• xu1z1 = 1^ xu2z2 ă 1 (Präferiere Einsen aus der LP-Relaxierung)

• z1 P Zk ^ z2 R Zk (Kernstunden zuerst belegen)

• |{k P K | u1 P Uk}| ą |{k P K | u2 P Uk}| (mehr beteiligte Klassen)

• |{l P L | u1 P Ul}| ą |{l P L | u2 P Ul}| (mehr beteiligte Lehrer)

• xu1z1 ą xu2z2 (Sortierung nach der LP-Relaxierung)

• d(u1) ą d(u2) (Grad des Unterrichts bei gleicher Klassen- und Lehrer-Zahl)

• e(u1) ą e(u2) (Einfügereihenfolge)

58

6.7. Weitere Bedingungen

Mit dieser neuen Ordnung können die Probleminstanzen fast immer gelöst werden:

Tabelle 6.13. Berechnung mit Cliquen-Constraints und verbesserter Variablen-Ordnung

Datensatz A B C D
Anzahl gelöster Instanzen (Or-Tools) 100 100 98 99

Anzahl gelöster Instanzen (Gecode) 100 100 97 98
Anzahl Timeouts >10 s (Or-Tools) 0 0 2 1

Anzahl Timeouts >10 s (Gecode) 0 0 3 2
Anzahl Variablen 156 1036 1512 8602

Durchschnittlich Anzahl 1-Werte (gelöst) 10,26 113,2 199,1 161,5
Durchschnittlich Anzahl 1-Werte (Timeout) - - 176,6 169,0

6.7. Weitere Bedingungen

Mit der im vorherigen Abschnitt vorgestellten Methode lassen sich alle getesteten Datensät-
ze fast immer lösen. Dabei wurde aber jeweils nur eine zulässige Lösung berechnet, die die
Bedingungen „Wochenstunden“, „Konfliktfreiheit“ und „Kernstunden“ erfüllt. Es wurden
also nur vergleichsweise wenige Bedingungen eingehalten und insbesondere keine weichen
Bedingungen verwendet, sodass keine Optimierung des fertigen Ergebnisses nötig war.

Im Folgenden werden zunächst weitere harte Bedingungen hinzugefügt und die Auswir-
kungen auf die Berechnung untersucht. Anschließend werden Berechnungen mit weichen
Bedingungen durchgeführt. Für die Definition der Bedingungen siehe Kapitel 2. Auf
mögliche Varianten der Modellierung wird in diesem Kapitel nicht weiter eingegangen.
Alle Bedingungen wurden so implementiert wie in Abschnitt 7.2 oder von Weidler [2012]
beschrieben.

6.7.1. Harte Bedingungen
Alle Ergebnisse sind in Tabelle 6.14 dargestellt. Die Bedingungen „Fixe Stunden“ und „Fach-
Pro-Tag-Begrenzung“ lassen sich hinzufügen, ohne dass bei der Berechnung Probleme
auftreten. Dazu ist anzumerken, dass die Datensätze B und C überhaupt keine fixen
Stunden enthalten.

Außerdem zeigt sich beim Datensatz C bereits, dass die LP-Relaxierung und die Constraint
Propagation zusammen nicht mehr ausreichen, um die Lösung zu finden. Die CSP-Solver
müssen per Backtracking nach Lösungen suchen. Je nach gewählter LP-Relaxierung gelingt
das relativ schnell nach einigen Failures, oder es dauert so lange, dass die Berechnung
abgebrochen werden muss. Mit der Bedingung „Lehrer-Nichtverfügbarkeiten“ terminiert

59

6. Einbezug der LP-Relaxierung

keine Berechnung mehr für Datensatz C. Zum Vergleich: Alle Instanzen können von Gurobi
innerhalb weniger Sekunden gelöst werden.

Tabelle 6.14. CSP mit zusätzlichen harten Bedingungen

Datensatz A B C D
Anzahl Variablen 156 1036 1512 8602

Anzahl Constraints 103 472 677 2901
Nur KernstundenRechenzeit (Or-Tools) 0 ms 1 ms 2 ms 11 ms

Rechenzeit (Gecode) 0 ms 4 ms 10 ms 106 ms
Anzahl Constraints 105 472 677 2919

+ Fixe StundenRechenzeit (Or-Tools) 1 ms 2 ms 3 ms 18 ms
Rechenzeit (Gecode) 0 ms 4 ms 10 ms 87 ms
Anzahl Constraints 190 697 1407 5579

+ Fach-Pro-TagRechenzeit (Or-Tools) 0 ms 3 ms 13 ms† 22 ms
Rechenzeit (Gecode) 0 ms 4 ms 245 ms† 230 ms
Anzahl Constraints 190 742 1487 5668

+ Nichtverf.Rechenzeit (Or-Tools) 1 ms 1 ms >1 h 17 ms
Rechenzeit (Gecode) 0 ms 4 ms >1 h 103 ms

Anzahl Variablen -‡ -‡ -‡ 10192
+ DoppelstundenAnzahl Constraints -‡ -‡ -‡ 11846

Rechenzeit (Or-Tools) -‡ -‡ -‡ >1 h
Rechenzeit (Gecode) -‡ -‡ -‡ >1 h

† Nach 775 Failures
‡ Enthält keine Doppelstunden

6.7.2. Weiche Bedingungen
Durch das Hinzufügen von weichen Bedingungen werden Optimierungsschritte nötig
(siehe Unterabschnitt 5.1.3). Insbesondere muss der Solver, nachdem er bereits eine optimale
Lösung gefunden hat, den gesamten restlichen Suchbaum durchsuchen, um überhaupt
feststellen zu können, dass die gefundene Lösung optimal ist.

Für den ersten Test wurden nur die harten Bedingungen „Wochenstunden“, „Konfliktfrei-
heit“ und „Kernstunden“ verwendet. Als einzige weiche Bedingung wurde die „Unter-
richtspriorität“ verwendet (siehe Abschnitt 2.5), die den Unterrichten zu jedem Zeitslot,
der keine Kernstunde ist, eine Priorität zuweist, sodass der Unterricht insgesamt eher
vormittags stattfindet.

Mit Gurobi wurde der Zielfunktionswert der optimalen Lösung ermittelt. Beide CSP-Solver
hatten je eine Stunde Zeit zur Berechnung und in Tabelle 6.15 ist die jeweils letzte/beste
gefundene Lösung angegeben.

60

6.7. Weitere Bedingungen

Tabelle 6.15. CSP mit Zielfunktion

Datensatz A B C D
Anzahl Variablen 156 1036 1512 8602

Größe der Zielfunktion 156 476 392 4862
Anzahl Constraints 104 473 678 2902

Optimum (Minimum) -78 -56 -136 -362
Beste Lösung (Or-Tools) -78 -56 -136 -309

Gefunden nach (Or-Tools) 2 ms 2 ms 7 ms 52 min
Terminiert nach (Or-Tools) >1 h >1 h >1 h >1 h

Beste Lösung (Gecode) -78 -56 -136 -309
Gefunden nach (Gecode) 5 ms 4 ms 181 ms 55 min
Terminiert nach (Gecode) >1 h >1 h >1 h >1 h

Für die Datensätze A bis C kann innerhalb weniger Millisekunden eine optimale Lösung
gefunden werden. Im Fall der Datensätze B und C ist bereits die erste gefundene Lösung
optimal, was auf eine gute Lösung der LP-Relaxierung schließen lässt. Aber auch für
Datensatz A wird nach nur 4 Failures bereits eine optimale Lösung gefunden.

Auch wenn die optimale Lösung gefunden ist, kann die Suche noch nicht terminieren,
weil der Solver noch nicht weiß, dass die Lösung optimal ist. Die weitere Suche, die
den Optimalitätsbeweis liefern würde, dauert länger als eine Stunde und wurde daher
abgebrochen.

Der Datensatz D ist deutlich größer als die anderen, sodass in der gegebenen Zeit keine
optimale Lösung gefunden werden kann. Die gefundenen zulässigen Lösungen nähern
sich binnen weniger Minuten dem Wert ´307 oder ´320 (je nach ausgewählter Lösung der
LP-Relaxierung). Danach verbessern sich die Lösungen nur noch sehr langsam und auch
nach fünf Stunden ist der Wert höchstens um ´5 besser und damit noch weit vom Optimum
entfernt.

61

6. Einbezug der LP-Relaxierung

Für den zweiten Test wurden die harten Bedingungen „Fixe Stunden“, „Lehrer-Nichtver-
fügbarkeiten“ und „Fach-pro-Tag“ sowie die weiche Bedingung „Lehrer-Verfügbarkeiten“
hinzugefügt.

Tabelle 6.16. CSP mit Zielfunktion und zusätzlichen harten Bedingungen

Datensatz A B C D
Anzahl Variablen 156 1036 1512 8602

Größe der Zielfunktion 140 480 397 5510
Anzahl Constraints 231 883 1489 6604

Optimum (Minimum) -74 -54 -134 -346
Beste Lösung (Or-Tools) -74 -52 -134 -214

Gefunden nach (Or-Tools) 0 ms 3,9 s 264 ms 51 min
Terminiert nach (Or-Tools) 20,1 s >1 h >2 h >2 h

Beste Lösung (Gecode) -74 -52 -134 -215
Gefunden nach (Gecode) 0 ms 15,5 s 609 ms 38 min
Terminiert nach (Gecode) 12,7 s >1 h >1 h >1 h

Während beim kleinen Datensatz A die zusätzliche Einschränkung des Suchbaums dazu
führt, dass die optimale Lösung binnen weniger Sekunden bestätigt werden kann, sind die
übrigen Datensätze weiterhin zu groß um in akzeptabler Zeit eine Lösung zu erhalten. Statt-
dessen zeigt sich, dass die Suche nach besseren Lösungen aufgrund der größeren Zahl von
Constraints nun länger dauert. Mit der zusätzlichen harten Bedingung „Doppelstunden“
wird für Datensatz D in einer Stunde überhaupt keine Lösung mehr gefunden.

Auch hier hat die von Gurobi ausgewählte Lösung der LP-Relaxierung erheblichen Einfluss
auf die weitere Berechnung. Obwohl die LP-Relaxierung ebenfalls mit Zielfunktion gelöst
wird, was die Menge der möglichen Lösungen stark einschränkt, gibt es weiterhin verschie-
dene optimale Lösungen, die sich vor allem in der Größe des ganzzahligen Anteils stark
unterscheiden können. Dadurch kann z. B. für den Datensatz C binnen Millisekunden eine
optimale Lösung gefunden werden, während es bei Datensatz B, der durch Vereinfachung
von Datensatz C entstanden ist, deutlich länger für eine suboptimale Lösung dauert.

6.7.3. Auswertung
Die Suche mittels Constraint Propagation und Backtracking ist nur dann in der Lage, eine
Lösung zu finden, wenn diese entweder direkt am Anfang des Suchbaums liegt, was durch
eine geschickte Sortierung der Variablen erreicht werden kann, oder wenn die Lösungen
allgemein dicht gestreut sind. Letzteres war bei den meisten Tests der vorherigen Kapitel
vor allem deswegen der Fall, weil einige Bedingungen weggelassen wurden. Die Tests mit
zusätzlichen Bedingungen zeigen, dass insbesondere der Datensatz C schwer zu lösen ist,
was sich damit erklären lässt, dass die Klassen in diesem Datensatz fast oder genau so viel

62

6.7. Weitere Bedingungen

Unterricht haben wie es Wochenstunden gibt. Für die Verteilung des Unterrichts gibt es
also nur sehr wenige Freiräume. Durch die in der Realität natürlich ebenfalls geforderten
Doppelstunden wird aber auch der Datensatz D schwerer lösbar.

Jede zusätzliche Bedingung führt also dazu, dass zulässige Lösungen im Suchbaum seltener
werden. Um trotzdem noch eine zulässige Lösung finden zu können, müssten die Such-
Heuristik und/oder die Reihenfolge der Variablen entsprechend angepasst werden, so wie
es in den vorherigen Kapiteln für die Kernstunden und die Konfliktfreiheit beschrieben
wurde. Dieser Ansatz wird jedoch mit zunehmender Anzahl an verschiedenen Bedingungen
schwieriger, weil diese sich zum Teil widersprechen und es keine Sortierung oder Heuristik
gibt, die allen gerecht wird.

Selbst wenn es gelingen würde, eine solche Heuristik zu finden, die es für jeden Datensatz
und beliebige Bedingungen ermöglicht, die zulässigen Lösungen schnell auffindbar zu
machen, wäre die Größe des Suchbaums weiterhin ein Problem, sobald weiche Bedingungen
beachtet werden sollen. Denn dafür muss der Suchbaum, der mit Einschränkung auf
den optimalen Zielfunktionswert übrig bleibt, komplett durchsucht werden – weil es in
diesem letzten Suchbaum per Definition keine zulässige Lösung mehr gibt. Dafür sind die
Probleminstanzen, die in der Praxis der Stundenplanung vorkommen, schlicht zu groß.

Aus diesem Grund betrachten wir im nächsten Kapitel einen Ansatz, der nicht auf variablen-
basierter Suche aufbaut, sondern mit einer eher „globalen“ Perspektive nach Lösungen
sucht und mittels Resolution den Optimalitätsbeweis führen kann.

63

Kapitel 7

Lösung mittels pseudo-boolescher
Optimierung

Dieses Kapitel beschreibt einen Ansatz, das Stundenplanproblem mit pseudo-boolescher
Optimierung zu lösen. Zunächst wird in Abschnitt 7.1 das Verfahren allgemein vorgestellt.
Abschnitt 7.2 gibt für alle benötigten Bedingungen des Stundenplanproblems eine binäre
Formulierung an. Abschnitt 7.3 geht auf die Implementierung und Rechenergebnisse ein
und in Abschnitt 7.4 wird das Verfahren mit der LP-Relaxierung kombiniert.

7.1. Einführung

Im Allgemeinen ist eine pseudo-boolesche Funktion definiert als f : Bn ÞÑ R [Boros und
Hammer, 2002]. Funktionsterme können in Literalschreibweise ausgedrückt werden mit
xi := (1´ xi).

Für das Stundenplanproblem in der hier vorgestellten Form gelingt es sogar, alle Bedin-
gungen als lineare Constraints zu formulieren, sodass sie der Definition von Chai und
Kuehlmann [2005] entsprechen:

∑ ai ¨ li ě k mit ai, k P R, li P {xi, xi}, xi P B

Hinweis: Constraints mit = oder ď lassen sich entsprechend umformen.

Vervollständigt wird die Probleminstanz durch eine (lineare) pseudo-boolesche Zielfunkti-
on, deren Minimum bzw. Maximum gesucht ist.

7.1.1. Lösungsverfahren
Für die pseudo-boolesche Optimierung (PBO) gibt es mehrere grundsätzlich verschiedene
Lösungsansätze. Einige Solver verfolgen den Ansatz, PBO-Instanzen auf ganzzahlige
lineare Programmierung (ILP) oder Constraint Programming (CSP) zu reduzieren. Da diese

65

7. Lösung mittels pseudo-boolescher Optimierung

Techniken bereits in den vorherigen Kapiteln ausführlich durch direkte Modellierungen
betrachtet wurden, wurden diese Solver hier ausgeschlossen.

Von besonderem Interesse sind deshalb die Solver, die auf SAT-Verfahren basieren, indem
zum Beispiel die pseudo-booleschen Constraints in aussagenlogische Klauseln übersetzt
werden [Eén und Sörensson, 2006] oder indem ein SAT-Solver so erweitert wird, dass er
direkt mit den pseudo-booleschen Constraints umgehen kann [Le Berre und Parrain, 2010].
Um damit auch Optimierungsprobleme lösen zu können, bietet sich ein ähnlicher Ansatz
wie beim Constraint Programming (siehe Unterabschnitt 5.1.3) an, bei dem eine zulässige
Lösung durch Hinzufügen von Constraints solange verbessert wird, bis es keine bessere
Lösung mehr gibt. Darüber hinaus gibt es fortgeschrittenere Ansätze, die zum Beispiel
Cutting Planes verwenden [Manquinho und Marques-Silva, 2006].

7.2. Vollständige Binärisierung
Selbst wenn man als Grundlage der Modellierung binäre Variablen wählt, wie es der von
Weidler [2012] eingeführte und in Abschnitt 3.3 vorgestellte LP-Ansatz tut, können zur Mo-
dellierung komplexerer Bedingungen zusätzliche Variablen nötig sein, die nicht unbedingt
binär sind [z. B. Weidler, 2012, Kap. 4.2.3, 4.2.4]. Deswegen muss für alle Bedingungen eine
binäre Formulierung gefunden werden, insbesondere für solche Bedingungen, die in dieser
Arbeit bislang noch nicht genauer betrachtet wurden. Denn wenn eine solche Formulierung
nicht oder nur sehr ineffizient möglich wäre, wäre der gesamte pseudo-boolesche Ansatz
für die Praxis untauglich.

Wie beim LP-Ansatz (siehe Unterabschnitt 3.3.1) wählen wir als Grundlage der Modellie-
rung die Variablen xuz mit u P U und z P Z. Da die Solver lineare Ungleichungen direkt als
Constraints akzeptieren, lassen sich die Konfliktfreiheits- und die Kernstunden-Bedingung
analog formulieren. Für alle anderen Bedingungen wird im Folgenden eine mögliche
Formulierung mit binären Variablen und pseudo-booleschen Constraints angegeben. Zur
Definition der Bedingungen selbst siehe Abschnitt 2.4 und Abschnitt 2.5.

7.2.1. Fixe Stunden und Nichtverfügbarkeiten
Die Bedingung, dass der Unterricht u P U zum Zeitpunkt z P Z sicher stattfinden soll, lässt
sich durch den folgenden Constraint ausdrücken:

xuz = 1

Ebenso einfach lässt sich verhindern, dass ein Lehrer l P L zu einem Zeitpunkt z P Z
unterrichten muss, an dem er nicht verfügbar ist:

@u P Ul : xuz = 0

66

7.2. Vollständige Binärisierung

7.2.2. Doppelstunden

Es gibt eine Variante des Doppelstundensystems, die sehr einfach umzusetzen ist: Wenn
der gesamte Stundenplan nur aus Doppelstunden besteht, halbiert man einfach die Wo-
chenstundenzahl jedes Unterrichts und verdoppelt die Länge jeder Unterrichtsstunde.

Wenn das Doppelstundensystem nicht den ganzen Tag über oder nicht für alle Unterrichte
gelten soll, kann man für jeden Unterricht u P U und jedes Zeitslot-Paar (z1, z2) P D
erzwingen (D Ă Z2 ist die Menge der Zeitslot-Paare, für die die Doppelstunden-Bedingung
gelten soll), dass der Unterricht stets paarweise stattfindet [siehe Weidler, 2012, Kap. 4.1.6]:

xuz1 = xuz2

Für Unterrichte mit ungerader Wochenstundenzahl bedeutet das, dass mindestens eine
Unterrichtsstunde außerhalb des Doppelstundenbereichs stattfinden muss. Es gibt aber
in der Praxis viele Fälle, in denen das Doppelstundensystem grundsätzlich den ganzen
Tag über angewendet wird, obwohl es Unterrichte mit ungerader Wochenstundenzahl gibt.
Diese werden entweder 14-tägig unterrichtet, was man leicht modellieren kann, indem
man die Wochenstundenzahl auf die nächste gerade Zahl rundet und im Ergebnis eine
Doppelstunde als 14-tägig markiert. Auch wenn der 14-tägige Unterricht im Wechsel mit
einem anderen Fach/Lehrer oder mit einer anderen Klasse stattfindet, lässt sich das mit
einer Kopplung vergleichsweise einfach modellieren. Oder die „übrig gebliebenen“ einzel-
nen Unterrichtsstunden müssen im Doppelstundenraster untergebracht werden, indem
jeweils zwei (von verschiedenen Fächern) einen Doppelstunden-Slot belegen – oder auch
nur eine, wodurch eine Freistunde entsteht. Natürlich darf maximal eine Unterrichtsstunde
pro Unterricht alleine vorkommen, weil ansonsten das gesamte Doppelstundensystem
aufgelöst würde.

Ein CSP-Solver kann sich mit einer Statusvariable leicht merken, welche Unterrichtsstunde
die alleinstehende ist. Für die Modellierung mit pseudo-booleschen Constraints sind jedoch
zusätzliche (binäre) Variablen nötig: Wir definieren für jedes Zeitslot-Paar (z1, z2) P D und
jeden Unterricht u P U mit ungerader Wochenstundenzahl W(u) die Variablen

i P {1, 2} : euzi =

{
1 Die zugehörige Unterrichtsstunde xuzi ist eine Einzelstunde
0 Sonst

und ersetzen den bisherigen Constraint xuz1 = xuz2 durch

xuz1 ď xuz2 + euz1

xuz2 ď xuz1 + euz2

67

7. Lösung mittels pseudo-boolescher Optimierung

Die aussagenlogische Schreibweise dieser Constraints verdeutlicht die Idee:

xuz1 Ñ xuz2 _ euz1

xuz2 Ñ xuz1 _ euz2

Wenn der Unterricht zum einen Zeitpunkt stattfindet, dann findet er auch zum anderen
statt, oder es handelt sich um eine Einzelstunde.

Zusätzlich muss sichergestellt werden, dass maximal eine Einzelstunde stattfindet:

∑
zPZ

euz ď 1

und dass Einzelstunden nur stattfinden, wenn überhaupt Unterricht stattfindet:

@z P Z : euz ď xuz

Hinweis: Die Entscheidung zur Einführung von zusätzlichen Variablen pro Unterricht und
Zeitslot bedeutet nicht, dass sich die Gesamtzahl der Variablen in der Probleminstanz
verdoppelt. Diese zusätzlichen Variablen sind nur für Zeitslots nötig, die zu Doppelstun-
den gehören, und vor allem nur für Unterrichte, die eine ungerade Stundenzahl haben.
Unterrichte mit gerader Stundenzahl sind in der Praxis deutlich häufiger und lassen sich
weiterhin ohne zusätzliche Variablen mit diesem Constraint zu Doppelstunden zusammen-
fassen: xuz1 = xuz2

Dieser Constraint lässt sich leicht in Klauselschreibweise umformen:

xuz1 Ø xuz2 ô (xuz1 _ xuz2)^ (xuz1 _ xuz2)

7.2.3. Hohlstunden-Vermeidung
Für einen gegebenen Lehrer l P L soll die Anzahl an Hohlstunden minimiert werden.
Es soll also möglichst wenige Zeitslots geben, die zwischen belegten Zeitslots desselben
Tages liegen, aber für den Lehrer unterrichtsfrei sind. Weidler [2012] verwendet dafür
ganzzahlige Variablen, die die Nummer der ersten und letzten Unterrichtsstunde an einem
Tag markieren, und minimiert dann die Differenz.

Ein guter Ansatz, um auf nicht-binäre Variablen verzichten zu können, ist die Umkehrung
des Geforderten: Wenige Hohlstunden sind gleichbedeutend mit vielen Stunden vor der
ersten oder nach der letzten Unterrichtsstunde an einem Tag.

Wir definieren neue Variablen αlz, ωlz P B für jeden Zeitslot z P Z. Die Variablen αlz sind
vor der ersten Unterrichtsstunde des Lehrers wahr, also wenn er noch ausschlafen kann.
Die Variablen ωlz sind nach der letzten Unterrichtsstunde wahr, also am Feierabend.

68

7.3. Implementierung und Optimierung

Für jede Stunde des Tages gibt es auf den einzelnen Lehrer bezogen vier Möglichkeiten:

• Er hat noch frei (schläft noch), dann ist αlz wahr.

• Er unterrichtet, dann Du P Ul : xuz = 1.

• Er hat schon frei (Feierabend), dann ist ωlz wahr.

• Er hat eine Hohlstunde, dann ist keine der Variablen wahr.

Weil sich diese Möglichkeiten gegenseitig ausschließen, muss gelten:

@z P Z : αlz + ωlz + ∑
uPUl

xuz ď 1

Außerdem müssen für eine freie Morgenstunde auch alle Stunden davor frei sein, analog
müssen nach einer Feierabendstunde alle folgenden Stunden frei sein:

@t P T, 2 ď i ď |S| : αlzti
ď αlzti´1

@t P T, 1 ď i ď |S| ´ 1 : ωlzti
ď ωlzti+1

Das Ziel ist die Vermeidung von Hohlstunden, was mit einer Maximierung der Zahl der
freien Randstunden gleichzusetzen ist. Es gilt also, diesen Term zu maximieren:

∑
zPZ

(αlz + ωlz)

7.2.4. Weitere Bedingungen
Für die weiteren Bedingungen „Fach pro Tag“, „Harte Fächer vormittags“, „Folgen harter
Fächer“ und „Lehrer-Nichtverfügbarkeiten“ gibt Weidler [2012] bereits Modellierungen in
binärer Form an, die direkt als pseudo-boolesche Constraints formuliert werden können.

7.3. Implementierung und Optimierung
Für die Lösung der PB-Instanzen wurden Solver ausgewählt, die auf SAT basieren. Sowohl
Sat4J Pseudo 2.3.5 [Le Berre und Parrain, 2010] als auch die Solver WBO 2.0 [Manquinho
et al., 2009] und PWBO 2.2 [Martins et al., 2011] gehörten in den letzten Jahren zu den besten
PB-Solvern [Pseudo Boolean Competition, 2012]. Da PWBO nur Probleminstanzen mit
Zielfunktion unterstützt, wurde für die Berechnung mit ausschließlich harten Bedingungen
der Solver WBO verwendet, und für die weiteren Berechnungen stets PWBO. Zum Vergleich
wurde der LP-basierte Solver SCIP 3.1.0 mit SoPlex 2.0.0 herangezogen [Achterberg, 2009].

69

7. Lösung mittels pseudo-boolescher Optimierung

7.3.1. Ausschließlich harte Bedingungen

Tabelle 7.1 zeigt die Ergebnisse der Berechnungen mit harten Bedingungen.

Tabelle 7.1. Laufzeit der Pseudo-Boolean-Solver mit harten Bedingungen

Datensatz A B C D
Anzahl Variablen 156 1036 1512 8602

Anzahl Constraints 115 500 733 3088
KonfliktfreiheitRechenzeit (Sat4J) 7 ms 16 ms 418 ms 43 ms

Rechenzeit (WBO) <10 ms 20 ms 80 ms 140 ms
Rechenzeit (SCIP) <10 ms 50 ms 560 ms 220 ms

Anzahl Constraints 115† 600 933 3388
+ KernstundenRechenzeit (Sat4J) 7 ms 51 ms 134 ms 68 ms

Rechenzeit (WBO) <10 ms 40 ms 60 ms 160 ms
Rechenzeit (SCIP) <5 ms 30 ms 100 ms 210 ms

Anzahl Constraints 127† 645 1013 4394
+ Fixe StundenRechenzeit (Sat4J) 7 ms 61 ms 37 ms 48 ms

Rechenzeit (WBO) <10 ms 50 ms 100 ms 130 ms
Rechenzeit (SCIP) <5 ms 30 ms 60 ms 220 ms

† Der Datensatz A enthält keine Kernstunden

Hinweis: Die Rechenzeiten von (P)WBO und SCIP können lediglich auf 10 Millisekunden
genau angegeben werden.

Alle Solver sind in der Lage, für alle Probleminstanzen innerhalb kurzer Zeit eine zulässige
Lösung zu finden. Der Vergleich mit den CSP-Implementierungen in Abschnitt 5.3 und
Abschnitt 5.4 zeigt, dass die PB-Solver trotz der schwierigeren Kernstunden-Bedingungen
alle Datensätze lösen können, was den CSP-Solvern nur mit zusätzlichen Hilfestellungen
wie einer gezielten Sortierung der Variablen (Unterabschnitt 5.4.3) oder mit Unterstützung
durch die LP-Relaxierung (Kapitel 6) gelingt.

7.3.2. Optimierung mit weichen Bedingungen

Tabelle 7.2 zeigt die Ergebnisse der Berechnungen mit den oben genannten harten Be-
dingungen sowie einer Zielfunktion aus den weichen Bedingungen „Unterrichtspriorität“
und „Lehrer-Verfügbarkeiten“. Hinweis: Beim Vergleich mit den CSP-Berechnungen (siehe
Unterabschnitt 6.7.2) ist zu beachten, dass die dort verwendeten Bedingungen leicht von
den hier verwendeten abweichen, sodass auch der optimale Zielfunktionswert nicht immer
gleich ist.

70

7.4. Einbezug der LP-Relaxierung

Tabelle 7.2. Laufzeit der Pseudo-Boolean-Solver mit harten und weichen Bedingungen

Datensatz A B C D
Anzahl Variablen 156 1036 1512 8602

Größe der Zielfunktion 140 480 397 5510
Anzahl Constraints 127 645 1013 4394

Optimum (Minimum) -74 -54 -134 -348
Beste Lösung (Sat4J) -74 -35 -128 -267

Gefunden nach (Sat4J) 5,6 s 206 s 59 min 335 ms
Terminiert nach (Sat4J) 11,4 s >1 h >1 h 52 min†

Beste Lösung (PWBO) -74 -30 -122 -46
Gefunden nach (PWBO) 0,9 s 80 ms 170 ms 2,2 s
Terminiert nach (PWBO) 2,5 s >1 h >1 h >1 h

Beste untere Schranke (PWBO) - -558 -528 -1766
Beste Lösung (SCIP) -74 -54 -134 -348

Gefunden nach (SCIP) <40 ms <40 ms 100 ms 5,2 s
Terminiert nach (SCIP) 40 ms 40 ms 370 ms 116,0 s

† Abbruch wegen Speicherüberlauf

Nur der vergleichsweise kleine Datensatz A kann von allen Solvern optimal gelöst werden.
Bei den anderen Datensätzen zeigt sich ein deutlicher Unterschied zwischen den SAT-
basierten PB-Solvern, die keinen einzigen Datensatz lösen können, und dem LP-basierten
Solver SCIP, der alle in akzeptabler Zeit löst.

7.4. Einbezug der LP-Relaxierung

Die Beobachtung, dass der LP-basierte Solver wesentlich erfolgreicher ist als die reinen
PB-Solver, legt nahe, die LP-Relaxierung einzubeziehen – analog zu dem in Kapitel 6
vorgestellten CSP-Ansatz. Da die Variablen in der PB-Modellierung keine Reihenfolge
haben, in der sie abgearbeitet werden, kommt nur die Fixierung von ganzzahligen Werten
in Frage. Weil die Fixierung von 0-Werten eine Probleminstanz unlösbar machen kann
(siehe Unterabschnitt 6.3.1), werden hier nur die 1-Werte fixiert, d. h. sie werden als Axiome
in die Probleminstanz aufgenommen.

Die Berechnungen wurden mit den harten Bedingungen „Kernstunden“, „Fixe Stunden“
und „Lehrer-Nichtverfügbarkeiten“ sowie den weichen Bedingungen „Unterrichtspriori-
tät“ und „Lehrer-Verfügbarkeiten“ durchgeführt und die Ergebnisse sind in Tabelle 7.3
dargestellt. Zu den Ergebnissen bei Datensatz C sei angemerkt, dass der Erfolg bei beiden
Solvern von der gewählten Lösung der LP-Relaxierung abhängt.

71

7. Lösung mittels pseudo-boolescher Optimierung

Tabelle 7.3. Laufzeit der Pseudo-Boolean-Solver mit LP-Relaxierung

Datensatz A B C D
Anzahl Variablen 156 1036 1512 8602

Anzahl fixierter Variablen 6 114 194 97
Größe der Zielfunktion 140 480 397 5510

Anzahl Constraints 131 759 1207 4476
Optimum (Minimum) -74 -54 -134 -348

Beste Lösung (Sat4J) -74 -54 -134 -300
Gefunden nach (Sat4J) 14 ms 22 ms 55 ms 429 ms
Terminiert nach (Sat4J) 160 ms 27 ms >1 h >1 h
Beste Lösung (PWBO) -74 -54 -134 -326

Gefunden nach (PWBO) 230 ms 30 ms 770 ms 337,4 s
Terminiert nach (PWBO) 360 ms 30 ms 52,6 s >1 h

Beste untere Schranke (PWBO) - - - -1166

Generell ist die Berechnung durch die Fixierung der Einsen aus der LP-Relaxierung
deutlich schneller und erfolgreicher. Im Vergleich mit den CSP-Berechnungen (siehe Un-
terabschnitt 6.7.2) zeigt sich außerdem, dass die PB-Solver schneller terminieren, weil
sie den Optimalitätsbeweis mit Resolution (oder mit anderen Techniken) führen können
und nicht den gesamten verbleibenden Suchbaum durchsuchen müssen. Für Datensatz
D, der nicht innerhalb der gegebenen Zeit gelöst werden kann, finden die PB-Solver in
kürzerer Zeit bessere Lösungen als die CSP-Solver. Ohne Optimierung, dafür aber mit der
Doppelstunden-Bedingung, kann für Datensatz D in weniger als einer Sekunde eine zulässi-
ge Lösung gefunden werden, was den CSP-Solvern auch nach einer Stunde nicht gelungen
ist. Auch mit zufällig ausgewählten (optimalen) Lösungen der LP-Relaxierung bleiben diese
Unterschiede bestehen, sodass ausgeschlossen werden kann, dass die oben verwendete
deterministisch gewählte Lösung per Zufall den PB-Solvern eine bessere Ausgangssituation
bietet. Das zeigt, dass der PB-Ansatz nicht so stark auf wachsende Probleminstanzen
reagiert wie der CSP-Ansatz.

Genau wie die CSP-Solver profitieren auch die PB-Solver nicht (messbar) von den zusätzli-
chen Cliquen-Constraints. Diese werden daher nur zur Verbesserung der LP-Relaxierung
eingesetzt.

7.5. Auswertung
Auch wenn die PB-Implementierung in fast allen Fällen erfolgreicher ist als die CSP-
Implementierung, bleibt sie noch deutlich hinter den Ergebnissen zurück, die der kommer-
zielle Solver Gurobi mit der ILP-Modellierung erzielt. Die Berechnung mit dem großen
Datensatz D benötigt zu viel Zeit. Zwar gelingt es PWBO, innerhalb von einer Stunde eine

72

7.5. Auswertung

knapp akzeptable Lösung zu finden, doch die obigen Berechnungen wurden nicht mit
allen Bedingungen durchgeführt. Zusätzliche Bedingungen führen zwar nicht zu einer
exponentiell längeren Laufzeit, doch selbst wenn sich die Laufzeit nur um einen Faktor
vergrößert, wäre die resultierende Laufzeit mit dem hier vorgestellten Ansatz für die Praxis
zu groß.

Mit den zusätzlichen Bedingungen „Fach-pro-Tag“ und „Doppelstunden“ dauert die
Berechnung für Datensatz D bereits erheblich länger. Nach einer Stunde ist ein Zielfunk-
tionswert von ´109 erreicht, das Optimum läge bei ´270. Während Gurobi binnen zwei
Minuten (anstatt wenigen Sekunden) in der Lage ist, das Optimum trotz dieser zusätzlichen
Bedingungen zu berechnen, steigt die Laufzeit bei den (freien, kostenlosen) PB-Solvern
von Stunden auf Tage an. Dabei handelt es sich nicht notwendigerweise um einen grund-
sätzlichen Mangel des PB-Ansatzes oder der PB-Solver, aber es fehlt noch an weiteren
Verbesserungen, um auch bei größeren Datensätzen mit allen gewünschten Bedingungen
praktikable Laufzeiten zu erhalten.

Für kleinere (Grund-)Schulen könnte das in dieser Arbeit vorgestellte Verfahren bereits
eingesetzt werden. Um zu lange Laufzeiten und insbesondere den zeitintensiven Optimali-
tätsbeweis am Ende zu vermeiden, könnte man die Berechnung abbrechen, sobald mehr
als eine Stunde lang keine bessere Lösung gefunden wurde. Die bis dahin gefundenen
Lösungen sind bereits gut genug (im Beispiel von Datensatz A bis C sogar schon optimal),
um verwendet werden zu können. Weitere Verbesserungen, die in der Praxis auch bemerk-
bar wären, können eher durch eine Verbesserung der Modellierung und insbesondere
der Zielfunktion erreicht werden, als durch eine weitere Annäherung an das theoretische
Optimum um wenige Prozent.

73

Kapitel 8

Zusammenfassung, Anmerkungen und
Ausblick

Dieses Kapitel gibt in Abschnitt 8.1 eine Zusammenfassung über die in dieser Arbeit
vorgestellten Lösungsansätze und Ergebnisse. Die Abschnitte 8.2 und 8.3 enthalten Ver-
gleiche mit anderen Ansätzen und Solvern. Abschnitt 8.4 dokumentiert das Verfahren für
die Zeitmessungen in dieser Arbeit. In den Abschnitten 8.5 bis 8.8 wird ein Ausblick auf
mögliche zukünftige Entwicklungen gegeben.

8.1. Zusammenfassung

Es wurden drei Ansätze zur Lösung des Stundenplanproblems untersucht: der erste mit
ganzzahligen Variablen in einem CSP, der zweite mit binären Variablen und der dritte
mit pseudo-boolescher Optimierung. Die letzteren beiden Ansätze wurden mit Hilfe der
LP-Relaxierung verbessert.

Der erste Lösungsansatz konnte vom alldifferent-Constraint und von der geringen Varia-
blenzahl profitieren. Solange nur die Konfliktfreiheits-Bedingung erfüllt werden musste,
gelang es damit in wenigen Millisekunden, zulässige Lösungen zu finden. Mit Hilfe einer
gezielten Sortierung der Zeitslots und der Unterrichte konnte auch die Kernstunden-
Bedingung erfüllt werden. Die Modellierung der meisten anderen Bedingungen und
insbesondere das Aufstellen einer Zielfunktion, die jede Unterricht-Zeitslot-Belegung unter-
schiedlich gewichten muss, erfordern jedoch eine große Menge an binären Statusvariablen,
die den Ansatz an seine Grenzen bringen.

Deswegen wurden die binären Variablen im zweiten Ansatz direkt als Hauptvariablen des
CSP gewählt. Diese Art der Modellierung erzielte zunächst ähnliche Ergebnisse wie die
vorherige. Als zusätzlicher Vorteil konnte die LP-Relaxierung einbezogen werden, um die
Suche weiter zu beschleunigen. Es wurde untersucht, wie unterschiedliche Varianten des
Rundens oder des Fixierens von Werten die Lösbarkeit der Probleminstanz beeinträchtigen

75

8. Zusammenfassung, Anmerkungen und Ausblick

und wie sie die Berechnung beschleunigen. Dabei stellte sich heraus, dass insbesondere
die 1-Werte aus der LP-Relaxierung als zuverlässig angesehen werden können, nicht
jedoch die (deutlich häufigeren) 0-Werte. Um auch von den Zwischenwerten zu profitieren,
ohne sie runden zu müssen, wurde die LP-Relaxierung als Sortierreihenfolge der CSP-
Variablen eingesetzt. In Kombination mit einer heuristischen Verfeinerung der Sortierung
der Variablen und einer Verschärfung der LP-Relaxierung durch Cliquen-Constraints
konnten so Ergebnisse erzielt werden, die vergleichbar mit der ersten Modellierung sind.
Anders als bei jener können aber bei der binären Modellierung mit LP-Unterstützung
weitere Bedingungen eingefügt werden, ohne dass die Laufzeit extrem ansteigt.

Komplexere Bedingungen wie die Doppelstunden, vor allem aber der eng gelagerte Daten-
satz C bringen auch diesen CSP-Ansatz an seine Grenzen. Da für die meisten schwierigeren
Bedingungen eine Heuristik zur gezielteren Suche gefunden werden muss, lassen sich
mehrere Bedingungen nur schwer kombinieren. Außerdem ist die Suche nach dem Op-
timum mit dieser Methode relativ langsam, weil zum Schluss der gesamte verbleibende
Suchbaum durchsucht werden muss, um sicher zu sein, dass es keine bessere Lösung gibt.

Aufgrund dessen wurde für den dritten Ansatz ein auf SAT basierendes Verfahren gewählt,
sodass der Optimalitätsbeweis mit effizienteren Methoden (wie Resolution) geführt werden
kann. Ein weiterer Vorteil ist, dass bei der pseudo-booleschen Optimierung nur binäre
Variablen und pseudo-boolesche Constraints möglich sind und daher auch nur diese vom
Solver unterstützt werden müssen, was für das Stundenplanproblem ausreicht. Mit diesem
Ansatz konnten in vergleichbarer Zeit zulässige Lösungen gefunden werden und die nach
einer Stunde erreichten Zielfunktionswerte waren durchgehend besser als beim CSP-Ansatz.
Vor allem aber terminierten die PB-Solver nach dem Finden der optimalen Lösung erheblich
schneller als die CSP-Solver, d. h. sie konnten wie erwartet den Optimalitätsbeweis schneller
durchführen.

Insgesamt ist es dennoch mit keiner Methode in Kombination mit den genannten Solvern
gelungen, den Datensatz D optimal zu lösen. Dem freien (nicht kommerziell nutzbaren)
Solver SCIP gelingt das zwar sowohl mit der ILP- als auch mit der PB-Modellierung
des Problems, doch wenn weitere Bedingungen – insbesondere die Doppelstunden –
hinzugefügt werden, benötigt auch SCIP relativ lange für die Berechnung.

8.2. Vergleich mit spezialisierten Algorithmen

Wie bereits in Kapitel 3 erwähnt, gibt es viele Algorithmen und Herangehensweisen, die
speziell für das Stundenplanproblem entwickelt oder angepasst wurden. Viele der neueren
bauen auf der Problemdefinition von Post et al. [2012] auf, die als sehr allgemein gehaltenes
XML-Format gegeben ist.

76

8.2. Vergleich mit spezialisierten Algorithmen

Manche dieser Algorithmen verwenden einen Setz-Algorithmus (siehe Abschnitt 3.2), um
zunächst eine zulässige Lösung zu erhalten. Andere bauen diese aus kleineren Teillösungen
zusammen (z. B. KHE) oder verwenden ein randomisiertes Verfahren. Mitunter werden
sogar harte Bedingungen relaxiert, damit überhaupt eine erste Lösung gefunden werden
kann. Diese wird dann mit unterschiedlichen Methoden verbessert bzw. überhaupt erst in
eine zulässige Lösung überführt.

Die naheliegende Idee, mittels lokaler Suche zwei oder drei Unterrichte zu vertauschen,
um neue Lösungen zu finden, ist dabei oft nicht zielführend. Kingston [2013] nennt dafür
zwei Gründe: Zum einen sind die Probleminstanzen üblicherweise so groß, dass die zu
reparierenden Problemstellen zu weit auseinander liegen, als dass sie mit einer lokalen
Operation behoben werden könnten. Zum anderen ist schnell ein Zustand erreicht, in
dem alle möglichen lokalen Operationen bereits erfolglos durchprobiert wurden, weil jede
direkte Nachbar-Lösung nicht besser als die aktuelle Lösung ist.

Um entfernte, scheinbar unabhängige Problemstellen einer Lösung gemeinsam beheben
zu können, sind also andere Methoden nötig. Ein möglicher Ansatz ist, mittels Simulated
Annealing dennoch einige Nachbarlösungen zu explorieren, auch wenn diese nicht un-
mittelbar besser sind [Fonseca et al., 2012]. Meyers und Orlin [2007] betrachten hingegen
eine größere Nachbarschaft beim Verändern der Lösungen. Mit GELATO [Cipriano et al.,
2013], einem Tool das auf Gecode aufbaut, ließe sich das Stundenplanproblem mit einer
Kombination aus Constraint Programming und Large Neighborhood Search lösen.

Ähnlich ist der Ansatz von Kingston [2013], der mehrere lokale Operationen so aneinander
reiht, dass sich am Ende der Kette eine Verbesserung ergibt. Diese Idee wurde – neben
vielen weiteren Optimierungen – in KHE implementiert [Kingston, 2014]. Probeweise
wurden die SchulScheduler-Instanzen in das XML-Format von Post et al. [2012] konvertiert,
wobei nur die Konfliktfreiheit und die Kernstunden als Bedingungen verwendet wurden.
Der aktuelle KHE-Solver (vom Mai 2014) terminiert für den größten Datensatz D in weniger
als einer Minute, gibt jedoch eine unzulässige Lösung aus, bei der die Kernstunden-
Bedingung an einer Stelle verletzt wird.

Im Vergleich mit den speziell für das Stundenplanproblem entwickelten Algorithmen, die
oft (leicht) unzulässige Lösungen tolerieren und mit lokaler Suche arbeiten, haben die in
dieser Arbeit vorgestellten Ansätze (lineare Programmierung, Constraint Programming und
pseudo-boolesche Optimierung) den Vorteil, dass die gefundenen Lösungen stets zulässig
und außerdem beweisbar optimal sind. Ein weiterer Vorteil ist der geringere Entwicklungs-
und Wartungsaufwand: Die Modellierung als ILP oder CSP nimmt erheblich weniger Zeit
in Anspruch und erlaubt es, Änderungswünsche von Schulen schnell umzusetzen.

Ein klarer Nachteil sind die längeren Rechenzeiten. Im Vergleich mit KHE benötigen die
für diese Arbeit verwendeten Solver Or-Tools, Gecode, Sat4J und (P)WBO deutlich länger

77

8. Zusammenfassung, Anmerkungen und Ausblick

für die gleiche Probleminstanz, und in einigen Fällen terminieren sie überhaupt nicht in
akzeptabler Zeit. In der Praxis relativiert sich dieser Nachteil jedoch, da durch den Einsatz
von kommerziellen Solvern wie Gurobi oder SCIP die Rechenzeit vergleichbar gut ist.
Hingegen hat die Tatsache, dass die gefundenen Lösungen dann ausnahmslos zulässig
und optimal sind, in der Praxis eine große Relevanz.

8.3. Weitere getestete Solver

Neben den hauptsächlich verwendeten Solvern Or-Tools, Gecode, Sat4J und (P)WBO
wurden einige weitere Solver kurz getestet, die hier nur kurz erwähnt werden, weil sie
entweder nicht besser als die verwendeten Solver abschnitten, oder weil sie kostenpflichtig
sind. Alle Solver (außer KHE) wurden mit der binären Problemformulierung getestet.

• Gurobi 5.6.2 [Gurobi Optimization, Inc., 2014] löste alle verwendeten Instanzen in (oft
deutlich) unter einer Stunde optimal und erzielte auch bei den vollständigen Instanzen
aus SchulScheduler gute Ergebnisse (siehe Abschnitt 4.5).

• KHE14 (siehe oben) rechnete schnell, lieferte aber teilweise unzulässige Lösungen.

• LocalSolver 4.5 [Benoist et al., 2011] war durchweg deutlich langsamer als Gurobi, SCIP
und auch als der in Abschnitt 7.4 vorgestellte Ansatz mit pseudo-boolescher Optimierung
und LP-Relaxierung.

• Mistral 2.0 [Hebrard, 2014] berechnete zulässige Lösungen so schnell wie die anderen
Solver, benötigte aber bereits für den kleinen Datensatz A länger als eine Stunde für den
Optimalitätsbeweis der gefundenen optimalen Lösung. Bei den größeren Datensätzen
waren die nach einer Stunde gefundenen Lösungen noch weit vom Optimum entfernt.

• Opturion CPX 1.0.2 [Opturion, 2014] rechnete erheblich langsamer als PBSugar und
Sat4J.

• Sat4J Maxsat 2.3.5 [Le Berre und Parrain, 2010] war durchgehend etwas langsamer als
Sat4J Pseudo.

• SCIP 3.1.0 [Achterberg, 2009] rechnete ähnlich gut wie Gurobi, benötigte jedoch ein
Mehrfaches der Zeit. Da es sich bei den kleineren Datensätzen aber nur um Sekunden
handelt, ist die Laufzeit für diese Instanzen trotzdem gut.

• Sugar 2.2.1 [Tamura et al., 2009] und PBSugar 1.1.1 [Tamura et al., 2013] mussten zur
iterativen Optimierung für jede Iteration vollständig neu starten und rechneten etwas
langsamer als Sat4J. Insbesondere die letzte Iteration (Optimalitätsbeweis) dauerte sehr
lang.

78

8.4. Messverfahren

Die hier genannten Ergebnisse erheben keinesfalls den Anspruch, repräsentativ für die Leis-
tungsfähigkeit dieser Solver zu sein. Es handelt sich lediglich um kurze, wenig optimierte
Tests mit bereits bestehenden Instanzen des Stundenplanproblems.

8.4. Messverfahren

Alle Berechnungen wurden auf einem gewöhnlichen Desktop-Rechner (Intel Core i7-920
mit 2,67 GHz und 6 GB RAM) unter Windows 7 durchgeführt. Für Solver, die lediglich
Linux unterstützen, wurde Ubuntu 14.04 in einer virtuellen Maschine mit 2 Gigabyte
Arbeitsspeicher verwendet. Das betrifft KHE, Mistral, PWBO und WBO.

Generell wurden lang laufende Berechnungen nach einer Stunde abgebrochen und die
Rechenzeit mit >1 h angegeben, wenn eigentlich Berechnungsergebnisse im Bereich von
Sekunden üblich waren. Bei sehr kurzen Rechenzeiten im Millisekundenbereich wurden die
Berechnungen fünf bis zehn Mal ausgeführt und der Median aller Messungen angegeben.

Aufgrund der Vielzahl der verwendeten Solver mussten die Probleminstanzen aus dem
SchulScheduler-Format in viele andere Formate konvertiert und für viele andere Schnitt-
stellen aufbereitet werden. Da die dafür verwendeten Skripte auf Korrektheit und nicht auf
Laufzeit optimiert wurden und Laufzeiten von mehreren Sekunden aufwiesen, wurde für
alle Solver einheitlich nur die reine Berechnungszeit gemessen und nicht das Einlesen und
Konvertieren der Probleminstanz. Auch Vorberechnungen wie die Suche aller Cliquen und
das Ermitteln des fertigen Stundenplans aus den Berechnungsergebnissen sind von den
Rechenzeiten stets ausgenommen. Die berechneten Stundenpläne wurden stichprobenartig
auf Korrektheit überprüft.

8.5. Softwaretechnische Anmerkungen

Aus verschiedenen Gründen kann es notwendig sein, dieselbe Probleminstanz in unter-
schiedlichen Formen an verschiedene Solver zu übergeben: Einerseits lassen sich dadurch
Solver vergleichen oder parallel ausführen. Vor allem aber ist es für die Berechnung der
LP-Relaxierung nötig, deren Ergebnis dann in die weitere Berechnung einfließt.

Um den Code zur Generierung der Variablen und Constraints für die verschiedenen
Solver nicht mehrfach implementieren und warten zu müssen, könnte in Zukunft auf
eine allgemeinere Softwarearchitektur zurückgegriffen werden. Diese könnte entweder
die SchulScheduler-Probleminstanz zuerst in ein eigenes Zwischenformat aus Variablen,
Constraints und Zielfunktion übersetzen und anschließend an die verschiedenen Solver
weitergeben. Oder es könnte eine verallgemeinerte Schnittstelle zur Kapselung der Solver

79

8. Zusammenfassung, Anmerkungen und Ausblick

entworfen werden, sodass jede Bedingung nur ein Mal implementiert werden muss und
trotzdem alle Solver-Typen ansteuern kann.

Eine Lösung oder zumindest eine gute Referenz dafür könnte die relativ neue Java Con-
straint Programming API (JSR-331) sein, die im Rahmen dieser Arbeit aber noch nicht
verwendet wurde.

8.6. Umgang mit nicht lösbaren Probleminstanzen

Im Normalfall sind die in der Praxis vorkommenden Probleminstanzen lösbar. Vor allem
wenn ein ähnlicher Stundenplan wie im Vorjahr erstellt werden soll, mit nur leichten
Abweichungen bei Klassen und Lehrern, existiert ziemlich sicher eine Lösung. Dennoch
kann es vorkommen, dass die Anforderungen nicht erfüllbar sind und die Schule bei-
spielsweise ihre Lehrerzuweisung oder deren Verfügbarkeiten anpassen muss. Außerdem
kann es durch einfache Tippfehler oder Verständnisprobleme in Bezug auf die Konzepte
der Software dazu kommen, dass eine unlösbare Probleminstanz zum Solver gelangt.
Viele Konflikte und Probleme können vorab durch sorgfältige Validierung der Daten in
polynomieller Zeit und meist schon in Echtzeit während der Eingabe erkannt werden.

Für alle übrigen Fälle ist es wichtig, dass die Solver mit unlösbaren Probleminstanzen um-
gehen können. CSP- und PB-Solver können das von Haus aus, weil sie bei der Optimierung
die Optimalität der letzten Lösung dadurch beweisen, dass die gleiche Probleminstanz
mit Forderung nach einer besseren Lösung unlösbar ist. Jedoch ist zu diesem Zeitpunkt
die Probleminstanz bereits relativ weit eingeschränkt und der Solver hat bereits einige
Constraints verarbeiten können und so etwas über die Probleminstanz gelernt.

Die getesteten CSP- und PB-Solver melden einige unlösbare Probleminstanzen innerhalb
von wenigen Millisekunden – vor allem wenn es sich um direkte Widersprüche handelt, wie
etwa Klassen, die mehr Unterricht haben als es Zeitslots gibt. Andere unlösbare Problemin-
stanzen werden selbst nach mehreren Stunden nicht erkannt. Letzteres ist problematisch,
weil der Nutzer glaubt, es würde eine Lösung berechnet, während beispielsweise ein
CSP-Solver den kompletten Suchbaum durchsuchen muss, obwohl es keine Lösung gibt.
Das dauert aber mit Sicherheit länger als das gesetzte Zeitlimit, sodass der Nutzer die
Rückmeldung bekommt, dass seine Probleminstanz zu groß oder zu schwierig sei.

Es müssten also weitere Techniken entwickelt werden, um unlösbare Probleminstanzen
möglichst schnell zu erkennen. Dafür kommen unter anderem (weitere) geschickte Vali-
dierungen, Heuristiken oder auch die LP-Relaxierung in Frage, deren Unlösbarkeit ver-
gleichsweise schnell festgestellt werden kann. Einen besonderen Vorteil bieten Solver wie
Gurobi, die eine minimale Menge von Constraints berechnen können, die zur Unlösbarkeit

80

8.7. Lokale Suche und Large Neighborhood Search

führt. Die Software kann diese dann in menschenlesbare Bedingungen übersetzen und
gruppieren, sodass dem Nutzer Hinweise gegeben werden können, durch welche seiner
Eingaben die Probleminstanz unlösbar wird. In SchulScheduler ist eine solche Funktion
bereits implementiert.

8.7. Lokale Suche und Large Neighborhood Search

Wie bereits in Abschnitt 8.2 angesprochen, ist die lokale Suche in einer größeren Nachbar-
schaft ein geeigneter Ansatz zur Verbesserung von Lösungen des Stundenplanproblems,
der aber den Nachteil hat, dass die Exploration der Nachbarschaft meist explizit program-
miert werden muss. Um die Vorteile der lokalen Suche mit der Flexibilität von Ansätzen,
die lediglich eine einfache Modellierung des Problems erfordern, zu kombinieren, könn-
ten (neue) Solver evaluiert werden, die wie LocalSolver eine generische und heuristische
Implementierung für lokale Suche anbieten.

8.8. Runden der LP-Relaxierung

Für andere Problemtypen finden sich in der Literatur viele Ansätze, um die Lösung des
relaxierten linearen Programms so zu runden, dass die damit gefundene ganzzahlige
Lösung zulässig ist und nur wenig vom Optimum abweicht [siehe Vazirani, 2001]. In
Unterabschnitt 6.3.1 wurde gezeigt, dass das beim Stundenplanproblem nur schwer möglich
ist, weil es reelle Lösungen gibt, deren ganzzahliger Teil die Probleminstanz bereits unlösbar
macht. Selbst mit den in Abschnitt 6.6 vorgestellten Cliquen-Constraints wäre das Problem
durch normales Runden nicht immer lösbar: Durch das Fixieren aller ganzzahligen Werte
wird der Datensatz C in 20 % und der Datensatz D sogar in 59 % der Fälle unlösbar.

Dennoch ist die LP-Relaxierung für das Stundenplanproblem äußerst interessant. Ein
Vergleich der Zielfunktionswerte von relaxierter und ganzzahliger Lösung (siehe Tabelle 6.1)
ergibt, dass diese nur wenig bis gar nicht voneinander abweichen. Zudem kam es bei
den Berechnungen im Rahmen dieser Arbeit nie vor, dass eine der Einsen aus der LP-
Relaxierung falsch gewesen wäre, wenn diese mit Cliquen-Constraints berechnet wurde.

Möglicherweise könnte ein Verfahren gefunden werden, das die LP-Relaxierung geschickt
rundet oder mehrfach rundet. Ebenfalls denkbar wären weitere Verschärfungen der LP-
Relaxierung, die verhindern, dass die Fixierung von Nullen die Probleminstanz unlösbar
macht. Ein weiterer Ansatzpunkt zur Verbesserung der LP-Relaxierung ist ihre Zielfunktion.
Diese könnte gezielt so perturbiert werden, dass die gefundene reelle Lösung die genannten
Probleme nicht mehr aufweist.

81

8. Zusammenfassung, Anmerkungen und Ausblick

8.9. Fazit

Lösungsverfahren, die das Stundenplanproblem nicht direkt lösen, sondern es auf CSP,
ILP oder ähnliches reduzieren, sind durch die Verfügbarkeit von schnellen Solvern und
Computern als ebenbürtige Konkurrenz zu spezialisierten Algorithmen anzusehen und
sind zudem besser wartbar und flexibler anpassbar. In dieser Arbeit wurde das Stunden-
planproblem in der von SchulScheduler verwendeten Form als CSP, als pseudo-boolesches
Optimierungsproblem und als binäres lineares Programm modelliert. Wenn offene und
kostenlose Solver verwendet werden, sind die vorgestellten Ansätze zwar nur für kleinere
Schulen ausreichend performant, doch für den praktischen Einsatz an größeren Schulen
könnte auch auf kommerzielle Solver zurückgegriffen werden. Mit weiteren Verbesse-
rungen der Modellierung und der Solver ist es mit hoher Wahrscheinlichkeit möglich,
auch größere Datensätze schnell genug zu lösen. Dabei ist der pseudo-boolesche Ansatz
aufgrund der Arbeitsweise der Solver erfolgversprechender als die CSP-Modellierung.

Die Ergebnisse der Arbeit zeigen, dass vor allem die LP-Relaxierung der gewählten binären
LP-Modellierung sehr aussagekräftig und damit zielführend ist. Sie kann außerdem mit
verschiedensten Ansätzen kombiniert werden. Für die weitere Forschung in diesem Bereich
sind daher vor allem die LP-Relaxierung und außerdem die lokale Suche vielversprechend.

82

Literaturverzeichnis

[Achterberg 2009] T. Achterberg. SCIP: Solving constraint integer programs. Mathematical
Programming Computation, 1(1):1–41, Juli 2009.

[Benoist et al. 2011] T. Benoist, B. Estellon, F. Gardi, R. Megel, und K. Nouioua. LocalSolver
1.x: A black-box local-search solver for 0-1 programming. 4OR, 9(3):299–316, 2011. URL
http://www.localsolver.com/.

[Boros und Hammer 2002] E. Boros und P. L. Hammer. Pseudo-boolean optimization.
Discrete Appl. Math., 123(1-3):155–225, Nov. 2002.

[Breslaw 1976] J. A. Breslaw. A linear programming solution to the faculty assignment
problem. Socio-Economic Planning Sciences, 10(6):227–230, 1976.

[Bron und Kerbosch 1973] C. Bron und J. Kerbosch. Algorithm 457: Finding all cliques of
an undirected graph. Commun. ACM, 16(9):575–577, Sept. 1973.

[Burke et al. 2004] E. K. Burke, G. Kendall, M. Mısır, und E. Özcan. Applications to
timetabling. In Handbook of Graph Theory, chapter 5.6, Seiten 445–474. Chapman Hall/CRC
Press, 2004.

[Carter und Laporte 1998] M. W. Carter und G. Laporte. Recent developments in practical
course timetabling. In Selected Papers from the Second International Conference on Practice and
Theory of Automated Timetabling II, PATAT ’97, Seiten 3–19, London, UK, 1998. Springer-
Verlag.

[Chai und Kuehlmann 2005] D. Chai und A. Kuehlmann. A fast pseudo-boolean constraint
solver. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24(3):
305–317, März 2005.

[Cipriano et al. 2013] R. Cipriano, L. Di Gaspero, und A. Dovier. A multi-paradigm tool
for large neighborhood search. In E.-G. Talbi, Hrsg., Hybrid Metaheuristics, Band 434 von
Studies in Computational Intelligence, Seiten 389–414. Springer Berlin Heidelberg, 2013.

[Dechter 2003] R. Dechter. Constraint processing. Elsevier Morgan Kaufmann, 2003.
[Even et al. 1975] S. Even, A. Itai, und A. Shamir. On the complexity of time table

and multi-commodity flow problems. In Proceedings of the 16th Annual Symposium on
Foundations of Computer Science, Seiten 184–193, 1975.

[Eén und Sörensson 2006] N. Eén und N. Sörensson. Translating pseudo-boolean con-
straints into SAT. Journal on Satisfiability, Boolean Modeling and Computation, 2:1–26, 2006.

[Fonseca et al. 2012] G. Fonseca, S. Brito, und H. Santos. A simulated annealing based
approach to the high school timetabling problem. In H. Yin, J. Costa, und G. Barreto,
Hrsg., Intelligent Data Engineering and Automated Learning - IDEAL 2012, Band 7435 von
Lecture Notes in Computer Science, Seiten 540–549. Springer Berlin Heidelberg, 2012.

[Gecode Team 2006] Gecode Team. Gecode: Generic constraint development environment,
2006. URL http://www.gecode.org/.

83

http://www.localsolver.com/
http://www.gecode.org/

Literaturverzeichnis

[Gotlieb 1962] C. C. Gotlieb. The construction of class-teacher time-tables. In IFIP Congress,
Seiten 73–77, 1962.

[Grötschel et al. 1988] M. Grötschel, L. Lovász, und A. Schrijver. Geometric Algorithms and
Combinatorial Optimization, Band 2 von Algorithms and Combinatorics. Springer, 1988.

[Gruber & Petters 2014] Gruber & Petters. Untis Express Benutzerhandbuch, 2014. URL
http://downloads.grupet.at/downloads/int/HelpManuals/DE/Light.pdf.

[Gurobi Optimization, Inc. 2014] Gurobi Optimization, Inc. Gurobi optimizer reference
manual, 2014. URL http://www.gurobi.com/.

[Hebrard 2014] E. Hebrard. Mistral 2.0, 2014. URL http://homepages.laas.fr/ehebrard/mistral.

html.
[Kingston 2013] J. H. Kingston. Repairing high school timetables with polymorphic

ejection chains. Annals of Operations Research, Seiten 1–16, 2013.
[Kingston 2014] J. H. Kingston. The KHE High School Timetabling Engine, 2014. URL

http://sydney.edu.au/engineering/it/~jeff/khe/.
[Le Berre und Parrain 2010] D. Le Berre und A. Parrain. The Sat4J library, release 2.2,

system description. Journal on Satisfiability, Boolean Modeling and Computation, 7:59–64,
2010.

[López-Ortiz et al. 2003] A. López-Ortiz, C.-G. Quimper, J. Tromp, und P. Van Beek. A
fast and simple algorithm for bounds consistency of the alldifferent constraint. In IJCAI,
Band 3, Seiten 245–250, 2003.

[Manquinho und Marques-Silva 2006] V. Manquinho und J. P. Marques-Silva. On using
cutting planes in pseudo-boolean optimization. Journal on Satisfiability, Boolean Modeling
and Computation, 2:209–219, 2006.

[Manquinho et al. 2009] V. Manquinho, J. Marques-silva, und J. Planes. Algorithms for
weighted boolean optimization. In In SAT’09, Seiten 495–508, 2009.

[Martins et al. 2011] R. Martins, V. Manquinho, und I. Lynce. Parallel Search for Boolean
Optimization. In RCRA International Workshop on Experimental Evaluation of Algorithms for
Solving Problems with Combinatorial Explosion, 2011.

[Meyers und Orlin 2007] C. Meyers und J. Orlin. Very large-scale neighborhood search
techniques in timetabling problems. In E. Burke und H. Rudová, Hrsg., Practice and
Theory of Automated Timetabling VI, Band 3867 von Lecture Notes in Computer Science, Seiten
24–39. Springer Berlin Heidelberg, 2007.

[Opturion 2014] Opturion. CPX discrete optimizer, 2014. URL http://www.opturion.com/cpx.html.
[Or-Tools Team 2010] Or-Tools Team. or-tools: Operations research tools developed at

Google, 2010. URL https://code.google.com/p/or-tools/.
[Pillay 2013] N. Pillay. A survey of school timetabling research. Annals of Operations

Research, Seiten 1–33, 2013.
[Post et al. 2012] G. Post, S. Ahmadi, S. Daskalaki, J. Kingston, J. Kyngas, C. Nurmi,

und D. Ranson. An XML format for benchmarks in high school timetabling. Annals of
Operations Research, 194(1):385–397, 2012.

84

http://downloads.grupet.at/downloads/int/HelpManuals/DE/Light.pdf
http://www.gurobi.com/
http://homepages.laas.fr/ehebrard/mistral.html
http://homepages.laas.fr/ehebrard/mistral.html
http://sydney.edu.au/engineering/it/~jeff/khe/
http://www.opturion.com/cpx.html
https://code.google.com/p/or-tools/

Literaturverzeichnis

[Post et al. 2013] G. Post, L. Di Gaspero, J. Kingston, B. McCollum, und A. Schaerf. The
third international timetabling competition. Annals of Operations Research, Seiten 1–7,
2013.

[Pseudo Boolean Competition 2012] Pseudo Boolean Competition, 2012. URL http://www.

cril.univ-artois.fr/PB12/.
[Schaerf 1999] A. Schaerf. A survey of automated timetabling. Artificial Intelligence Review,

13(2):87–127, 1999.
[Schmidt und Ströhlein 1980] G. Schmidt und T. Ströhlein. Timetable construction – an

annotated bibliography. The Computer Journal, 23(4):307–316, 1980.
[Schulte und Tack 2013] C. Schulte und G. Tack. Programming propagators. In C. Schulte,

G. Tack, und M. Z. Lagerkvist, Hrsg., Modeling and Programming with Gecode. 2013. Bezieht
sich auf Gecode 4.2.1.

[Schöning 2003] U. Schöning. Theoretische Informatik - kurzgefasst. Spektrum Akademischer
Verlag, 4. Auflage, 2003.

[Stuckey et al. 2010] P. J. Stuckey, R. Becket, und J. Fischer. Philosophy of the MiniZinc
challenge. Constraints - An International Journal, 15(3):307–316, Juli 2010.

[Tamura et al. 2009] N. Tamura, A. Taga, S. Kitagawa, und M. Banbara. Compiling finite
linear CSP into SAT. Constraints - An International Journal, 14(2):254–272, 2009.

[Tamura et al. 2013] N. Tamura, M. Banbara, und T. Soh. Compiling pseudo-boolean
constraints to SAT with order encoding. In IEEE 25th International Conference on Tools with
Artificial Intelligence (ICTAI), Seiten 1020–1027, Nov. 2013.

[Tillett 1975] P. Tillett. An operations research approach to the assignment of teachers to
courses. Socio-Economic Planning Sciences, 9(3-4):101–104, 1975.

[Tomita et al. 2006] E. Tomita, A. Tanaka, und H. Takahashi. The worst-case time com-
plexity for generating all maximal cliques and computational experiments. Theoretical
Computer Science - Computing and Combinatorics, 363(1):28–42, Okt. 2006.

[Tsukiyama et al. 1977] S. Tsukiyama, M. Ide, H. Ariyoshi, und I. Shirakawa. A new
algorithm for generating all the maximal independent sets. SIAM Journal on Computing,
6(3):505–517, 1977.

[van Hoeve 2001] W. J. van Hoeve. The alldifferent constraint: A survey, 2001.
[van Omme et al. 2014] N. van Omme, L. Perron, und V. Furnon. or-tools user’s manual.

Technical report, Google, 2014.
[Vazirani 2001] V. V. Vazirani. Approximation Algorithms. Springer US, New York, NY, USA,

2001.
[Weidler 2012] V. Weidler. Stundenplanung als ganzzahliges lineares Optimierungspro-

blem. Universität Stuttgart, Juli 2012.

85

http://www.cril.univ-artois.fr/PB12/
http://www.cril.univ-artois.fr/PB12/

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und alle
wörtlich oder sinngemäß aus anderen Werken übernommenen
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Prüfungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-
se noch vollständig veröffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

87

	1 Einleitung
	2 Problemdefinition
	2.1 Abgrenzung
	2.2 Begriffe und Konventionen
	2.3 Formalisierung
	2.3.1 Weitere Mengendefinitionen

	2.4 Harte Bedingungen
	2.4.1 Korrekte Anzahl Wochenstunden
	2.4.2 Konfliktfreiheit
	2.4.3 Kernstunden
	2.4.4 Weitere harte Bedingungen

	2.5 Weiche Bedingungen
	2.6 NP-Vollständigkeit

	3 Lösungsansätze
	3.1 Stundenplanung von Hand
	3.2 Setz-Algorithmus
	3.3 Ganzzahlige lineare Programmierung
	3.3.1 Modellierung als ganzzahliges lineares Programm

	3.4 Weitere Ansätze
	3.4.1 Reduktion
	3.4.2 Optimierungs-Frameworks
	3.4.3 Spezialisierte Algorithmen

	4 SchulScheduler
	4.1 Einführung
	4.2 Oberfläche
	4.3 Kopplungen
	4.4 Testdatensätze
	4.5 Performance

	5 Lösung mittels Constraint Programming
	5.1 Einführung
	5.1.1 Bedingungen und Constraints
	5.1.2 Lösungsverfahren
	5.1.3 Optimierung mit Constraint Programming

	5.2 Erste Modellierung als Constraint Satisfaction Problem
	5.2.1 Konfliktfreiheit
	5.2.2 Kernstunden
	5.2.3 Symmetrische Lösungen

	5.3 Implementierung und Verbesserung
	5.3.1 Nur Konfliktfreiheit
	5.3.2 Suchstrategien
	5.3.3 Ausschließlich lineare Suchbäume
	5.3.4 Ausschluss von symmetrischen Lösungen
	5.3.5 Berechnung mit Kernstunden
	5.3.6 Sortierung der Zeitslots
	5.3.7 Sortierung der Unterrichte
	5.3.8 Modellierung mit Statusvariablen
	5.3.9 Weitere Bedingungen

	5.4 Alternative Modellierung
	5.4.1 Nur Konfliktfreiheit
	5.4.2 Mit Kernstunden
	5.4.3 Sortierung der Zeitslots

	6 Einbezug der LP-Relaxierung
	6.1 Motivation
	6.2 Mögliche Vorgehensweisen
	6.3 Ganzzahlige Werte fixieren
	6.3.1 Unlösbare Probleminstanzen beim Fixieren von Nullen

	6.4 Nur Einsen fixieren
	6.4.1 Unlösbare Probleminstanzen beim Fixieren von Einsen
	6.4.2 Runden statt Fixieren

	6.5 Sortieren statt Fixieren
	6.5.1 Ordnung der Variablen
	6.5.2 Ergebnisse
	6.5.3 Analyse mit kleiner Probleminstanz
	6.5.4 Position der ersten Fehlentscheidung
	6.5.5 Sortierung verbessern

	6.6 Verschärfung der LP-Relaxierung
	6.6.1 Idee
	6.6.2 Verallgemeinerung
	6.6.3 Maximale Cliquen
	6.6.4 Interessante Cliquen
	6.6.5 Ergebnisse der Cliquensuche
	6.6.6 Auswirkungen auf die erste Fehlerposition
	6.6.7 CSP-Berechnungen mit Cliquen-Constraints
	6.6.8 Verbesserte Ordnung der Variablen

	6.7 Weitere Bedingungen
	6.7.1 Harte Bedingungen
	6.7.2 Weiche Bedingungen
	6.7.3 Auswertung

	7 Lösung mittels pseudo-boolescher Optimierung
	7.1 Einführung
	7.1.1 Lösungsverfahren

	7.2 Vollständige Binärisierung
	7.2.1 Fixe Stunden und Nichtverfügbarkeiten
	7.2.2 Doppelstunden
	7.2.3 Hohlstunden-Vermeidung
	7.2.4 Weitere Bedingungen

	7.3 Implementierung und Optimierung
	7.3.1 Ausschließlich harte Bedingungen
	7.3.2 Optimierung mit weichen Bedingungen

	7.4 Einbezug der LP-Relaxierung
	7.5 Auswertung

	8 Zusammenfassung, Anmerkungen und Ausblick
	8.1 Zusammenfassung
	8.2 Vergleich mit spezialisierten Algorithmen
	8.3 Weitere getestete Solver
	8.4 Messverfahren
	8.5 Softwaretechnische Anmerkungen
	8.6 Umgang mit nicht lösbaren Probleminstanzen
	8.7 Lokale Suche und Large Neighborhood Search
	8.8 Runden der LP-Relaxierung
	8.9 Fazit

	Literaturverzeichnis

