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Zusammenfassung

Die automatische Erstellung von Stundenpldnen fiir Schulen ist seit vielen Jahren For-
schungsgegenstand in den Bereichen der Kiinstlichen Intelligenz und der Unternehmens-
forschung. Diese Arbeit kombiniert Techniken aus beiden Bereichen: Eine Modellierung als
Constraint Satisfaction Problem und eine Modellierung als pseudo-boolesches Optimie-
rungsproblem werden jeweils mit der Relaxierung des zugehorigen linearen Programms
kombiniert, um schneller bessere Ergebnisse zu erzielen. Fiir jede Variante und Kombi-
nation dieser Modellierungen wurden Tests mit vier verschiedenen Probleminstanzen
durchgefiihrt. Die Ergebnisse zeigen, dass die vorgestellten Verfahren zumindest fiir kleine-
re Schulen, wie beispielsweise deutsche Grundschulen, dhnlich schnell sind wie etablierte
Verfahren. Im Unterschied zu diesen liefern die vorgestellten Verfahren jedoch stets voll-
standig zuldssige und beweisbar optimale Losungen und sind zudem einfacher erweiterbar
und anpassbar. In Kombination mit kommerziellen Losern erzielen die vorgestellten Mo-
dellierungen auch fiir groflere Probleminstanzen, wie z. B. die von deutschen Gymnasien,
bessere Ergebnisse. Die Modellierungen und Ergebnisse in dieser Arbeit sind spezifisch fiir
das deutsche Schulsystem.

Abstract

For many years, the automated construction of school timetables has been subject of
research in Artificial Intelligence and Operations Research. This thesis combines techniques
from both areas: Formulations as a constraint satisfaction problem and as a pseudo-boolean
optimization problem are each combined with the relaxation of the corresponding linear
program, in order to obtain better results more quickly. For each variant and combination
of these formulations, tests were carried out using four different instances. The results show
that — at least for smaller schools like German primary schools — the proposed methods
are as fast as established methods. In contrast to these, the proposed methods always
yield entirely feasible and provably optimal solutions. Moreover, they are easier to extend
and adjust. When combined with commercial solvers, the proposed problem formulations
achieve better results for larger instances like those of German high schools, as well. The
formulations and results in this thesis are specific to the German education system.
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Kapitel 1

Einleitung

Das Erstellen von brauchbaren Stundenpldnen fiir Schulen und Universititen stellt auch
im Computer-Zeitalter noch eine Herausforderung dar. Zwar verspricht eine Vielzahl
von Programmen, die Aufgabe zu tibernehmen oder zu unterstiitzen, doch neben der
Einarbeitung in die jeweilige Software ist oft eine zeitaufwéandige Nachbearbeitung der
berechneten Stundenpline notwendig. Insbesondere wenn die algorithmische Stundenpla-
nung daran scheitert, alle Unterrichtsstunden im Plan unterzubringen ohne dabei Konflikte
zu erzeugen, muss der Mensch noch seine Erfahrung und Arbeitszeit einbringen, um einen
verwendbaren Stundenplan zu erhalten.

Nach einer allgemeinen Definition des Stundenplanproblems fiir deutsche Schulen in
Kapitel 2 gibt diese Arbeit in Kapitel 3 einen Uberblick iiber mogliche Losungsansitze.
Insbesondere geht Abschnitt 3.3 auf einen Ansatz ein, der von Weidler [2012] eingefiihrt
wurde, und der das Problem als ganzzahliges, lineares Optimierungsproblem modelliert,
um es dann mit einem Loser fiir lineare Programmierung zu losen. Anschliefsend wird in
Kapitel 4 die Software ,SchulScheduler” vorgestellt, die basierend auf diesem Ansatz in
einem Studienprojekt entwickelt wurde.

Ziel dieser Arbeit ist es, andere Ansédtze zur Losung des Stundenplanproblems zu untersu-
chen, die insbesondere nicht von dem kommerziellen Solver Gurobi abhéingig sind, der
von der Software ,,SchulScheduler” derzeit verwendet wird. AufSerdem werden Techniken
eingesetzt, die es im Unterschied zu vielen bestehenden Softwareprodukten erlauben,
beweisbar optimale Losungen zu berechnen. Kapitel 5 zeigt zwei Ansédtze, die mittels
Constraint Programming auf unterschiedliche Art das Problem modellieren, und vergleicht
die Praxistauglichkeit dieser Ansitze anhand von Implementierungen mit zwei offenen
CSP-Solvern. Um die Erfolgsquote zu erhchen, wird in Kapitel 6 die LP-Relaxierung der
Probleminstanzen verwendet. In Kapitel 7 wird ein weiterer Ansatz vorgestellt, der auf
pseudo-boolescher Optimierung basiert. Kapitel 8 gibt neben einer Zusammenfassung
und einigen Anmerkungen vor allem einen Ausblick auf mogliche Verbesserungen der
vorgestellten Ansétze.
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Kapitel 2

Problemdefinition

In diesem Kapitel wird das Stundenplanproblem in der Form definiert, die in dieser
Arbeit verwendet wird. Abschnitt 2.2 fiihrt die verwendeten fachlichen Begriffe und
abkiirzende Schreibweisen ein. Nach der formalen Definition der grundlegenden Mengen
in Abschnitt 2.3 werden in Abschnitt 2.4 und Abschnitt 2.5 die harten bzw. weichen
Bedingungen vorgestellt.

2.1. Abgrenzung

Die in dieser Arbeit betrachtete Variante des Stundenplanproblems orientiert sich an
typischen deutschen Schulen. Die Schulsysteme anderer Lander unterscheiden sich zum
Teil in wesentlichen Punkten, sodass die Definition und die Losungsansitze nicht ohne
Weiteres {ibertragbar sind. Insbesondere werden hier keine Sonderfélle wie beispielsweise
das Kurssystem an Gymnasien betrachtet.

Fiir die Erstellung des Stundenplans wird davon ausgegangen, dass die Zuteilung von
Klassen, Fachern und Lehrern bereits stattgefunden hat. Die Zuteilung der Facher zu
den Klassen ergibt sich (in Deutschland) ohnehin direkt aus dem Bildungsplan und die
Zuteilung von Klassen- und Fach-Lehrern ist eine Entscheidung, die tiblicherweise vorab
getroffen wird. Auch dafiir existieren algorithmische Ansétze [z. B. Tillett, 1975; Breslaw,
1976], die hier aber nicht niher betrachtet werden. Bei der mathematischen Definition
folgt diese Arbeit in weiten Teilen der Definition von Weidler [2012, Kap. 4], die jedoch
vereinfacht wird, indem zusétzlich der Begriff des Unterrichts eingefiihrt wird.

2.2. Begriffe und Konventionen

Die grundlegenden Entititen bei der Stundenplan-Erstellung sind daher Klassen, Facher
und Lehrer. Das Zusammentreffen einer Klasse mit einem Lehrer fiir ein bestimmtes Fach
wird als Unterricht bezeichnet. Ein Unterricht nimmt eine gewisse Anzahl an Schulstunden



2. Problemdefinition

pro Woche in Anspruch, wodurch sich einzelne Unterrichtsstunden ergeben, die es im
Zeitraster zu platzieren gilt. Das Zeitraster ist eine Menge von Zeitslots, die fiir jeden Tag
und jede Stunde einen Eintrag enthdlt. Beispiel:

Der Deutsch-Unterricht der Klasse 5a wird vom Lehrer Adam drei Mal wochent-
lich gehalten. Er findet in den folgenden Zeitslots statt: Montag 3. Stunde, Montag
4. Stunde und Donnerstag 3. Stunde.

Am gleichen Beispiel lassen sich die in dieser Arbeit verwendeten Konventionen fiir
Abkiirzungen verdeutlichen:

Der Unterricht 5a-D-Ad findet in den Zeitslots Mo3, Mo4 und Do3 statt.

2.3. Formalisierung

Mathematisch kann das Stundenplanproblem durch die folgenden jeweils endlichen Men-
gen dargestellt werden:

* Klassen K

* Facher F

* Lehrer L

* Unterrichte U € K x F x L

* Wochenstunden W : U — IN

* Wochentage T = {Mo, Di, Mi, Do, Fr}

* Stunden S ={1,...,n} mitn e N

* Verfiigbare Zeitslots Z < {zs | te T,s€ S} =T x S

Zu bemerken ist hier, dass es sich bei W um eine Multimenge handelt. Wenn ein Unterricht
u = (k,f,1) € U zum Beispiel vier Mal in W enthalten ist (also W(k, f,]) = 4), dann
bedeutet das, dass der Unterricht vier Mal pro Woche stattfinden soll. Z ist eine Teilmenge
der gesamten moglichen Stundenmatrix T x S, weil z. B. am Freitagnachmittag nicht alle
Zeitslots zur Planung zur Verfiigung stehen.

Das Ziel ist nun, eine Zuteilung x : U — P(Z) zu finden, die fiir jeden Unterricht angibt,
in welchen Zeitslots dieser stattfindet. Im Folgenden werden die Kriterien beschrieben, die
eine solche Losung erfiillen muss.



2.4. Harte Bedingungen

2.3.1. Weitere Mengendefinitionen

Zur Vereinfachung der Formulierung verschiedener Bedingungen werden die folgenden
Mengen definiert:

* Der gesamte Unterricht eines Lehrers | € L ist definiert als
Uy :={u= (ky, fu,lu) e | I, =1}

* Der gesamte Unterricht einer Klasse k € K ist definiert als
Uy := {u = (ky, fu,lu) e U | ky, =k}

2.4. Harte Bedingungen
Die harten Bedingungen orientieren sich ebenfalls an denen von Weidler [2012, Kap. 4.1].

Als harte Bedingungen werden die Anforderungen an den Stundenplan bezeichnet, die auf
jeden Fall erfiillt sein miissen, damit dieser in der Praxis ausfithrbar ist. Ein Stundenplan,
der alle harten Bedingungen erfiillt, ist zulissig.

2.4.1. Korrekte Anzahl Wochenstunden

Einem Unterricht, der i Mal in der Multimenge W vorhanden ist, miissen genau i Zeitslots
zugewiesen werden, d. h. es muss gelten:

Vuel: |x(u)] = W(u)

2.4.2. Konfliktfreiheit

Ein Konflikt entsteht, wenn ein Lehrer oder eine Klasse zu einem Zeitpunkt zwei oder
mehr Unterrichte hat. Die Forderung nach Konfliktfreiheit bedeutet also, dass zu jedem
Zeitpunkt fiir jeden Lehrer bzw. jede Klasse maximal ein Unterricht stattfinden darf:

VzeZVleL:|[{uel|zex(u)}| <1
Vze ZVkeK:|[{uel|zex(u)}| <1
Hinweis: Es gibt zwar Félle, in denen ein Lehrer mehrere Klassen unterrichtet (z. B.

im Sport-Unterricht), dieser Spezialfall ist hier aber nicht gemeint. Diese sogenannten
Kopplungen werden in Abschnitt 4.3 ndher betrachtet.
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2.4.3. Kernstunden

Wegen der Aufsichtspflicht ist es an vielen Schulen erforderlich, dass jeder Schiiler den
ganzen Vormittag Unterricht hat. Es ist also fiir jeden Vormittags-Zeitslot und fiir jede
Klasse gefordert, dass mindestens einer der moglichen Unterrichte dann stattfindet (wegen
der Konfliktfreiheit ist es dann genau einer).

Wenn man mit Z; < Z die Menge Zeitslots bezeichnet, die Kernstunden sein sollen, ldsst
sich die Kernstunden-Bedingung entweder alleine:

Vze ZyVkeK: {uely|zex(u)}| =1
oder als Verscharfung der Konfliktfreiheit darstellen:
Vze ZyVkeK: {uely|zex(u)} =1

2.4.4. Weitere harte Bedingungen

Es gibt eine Reihe von harten Bedingungen, die nicht an jeder Schule eingehalten werden
miissen. Ihre Verwendung ist also optional. Diese Bedingungen werden hier nur kurz
beschrieben. Fiir detaillierte mathematische Formulierungen siehe [Weidler, 2012, Kap. 4.1]
und Abschnitt 7.2.

> Doppelstunden: Viele Schulen verwenden ein Doppelstundenmodell, das mehr oder we-
niger strikt angewandt wird. Fiir die strikteste Variante (ausschlieslich Doppelstunden)
kann man einfach langere/weniger Zeitslots definieren. Fiir flexiblere Doppelstunden-
modelle bietet SchulScheduler (siehe Kapitel 4) die Definition von Doppelstundenpaaren
(s1,82) € S? an. Dann ist gefordert, dass ein Unterricht genau dann in der einen Stunde
stattfindet, wenn er am selben Tag in der anderen Stunde stattfindet. Aus den angegebe-
nen Doppelstundenpaaren wird also eine Menge D = Z? von disjunkten Zeitslotpaaren
abgeleitet, von denen ein Unterricht immer entweder beide oder keine Zeitslots eines
Paares belegen muss. Eine einzelne Unterrichtsstunde pro Fach kann jedoch von dieser
Regel ausgenommen werden, wenn der Unterricht in dem Fach eine ungerade Anzahl
Wochenstunden hat.

> Fach pro Tag: Es wird gefordert, dass der Unterricht in einem Fach fiir eine Klasse
maximal fiir zwei Stunden pro Tag stattfindet — und wenn es zwei Stunden sind, miissen
diese aufeinanderfolgend sein.

> Lehrer-Nichtverfiigbarkeit: Wenn ein Lehrer zu bestimmten Zeitpunkten nicht verfiig-
bar ist, kann gefordert werden, dass keiner seiner Unterrichte zu diesen Zeitpunkten
stattfinden darf.



2.5. Weiche Bedingungen

> Freier Tag fiir Lehrer: Fiir einen Lehrer kann gefordert werden (wenn er dies wiinscht),
dass mindestens ein Wochentag fiir ihn komplett unterrichtsfrei ist.

> Fixierte Unterrichtsstunden: Mitunter ist es notwendig, bestimmte Unterrichtsstunden
auf einen bestimmten Zeitslot zu fixieren. Dabei konnen Unterrichtsstunden im selben
Fach tibrig bleiben, die nicht fixiert wurden, und dann normal verplant werden.

> Kopplungen: Manche Fiacher werden von mehreren Lehrern und/oder bei mehreren
Klassen gleichzeitig unterrichtet. Diese sogenannten Kopplungen werden in dieser
Arbeit nicht als zusatzliche harte Bedingungen behandelt, sondern als eine erweiterte
Art von Unterrichten interpretiert und in Abschnitt 4.3 genauer beschrieben.

2.5. Weiche Bedingungen

Die Erfiillung der harten Bedingungen ist entweder unmoglich (dann ist die Probleminstanz
nicht 16sbar), oder auf viele Arten moglich. Zum Beispiel lasst sich durch Vertauschen von
Zeitslots oder Tagen aus einer zuldssigen Losung schnell eine weitere zuldssige Losung
ableiten (mit wenigen Ausnahmen).

Daher bietet es sich an, anhand der Praferenzen der Schule aus den zuldssigen Losungen
eine besonders gute Losung auszuwéhlen. Das geschieht mittels einer Zielfunktion, deren
Wert maximiert werden soll. In die Zielfunktion gehen verschiedene weiche Bedingungen ein,
ggf. mit differenzierter Gewichtung. Diejenige zuldssige Losung, die unter allen zuldssigen
Losungen den Wert der Zielfunktion maximiert, wird optimale Losung genannt.

An dieser Stelle werden die weichen Bedingungen vorgestellt, die von SchulScheduler
(siehe Kapitel 4) untersttitzt werden. Fiir Details zur mathematischen Modellierung siehe
[Weidler, 2012, Kap. 4.2].

> Harte Ficher vormittags: Als harte Facher bezeichnet man mental anspruchsvolle Facher
wie Mathematik, Deutsch oder Physik. Zur Optimierung eines Stundenplans konnen
diese bevorzugt vormittags eingeplant werden.

> Folgen harter Facher: Aufierdem konnen aufeinanderfolgende Unterrichtsstunden in
harten Fichern vermieden werden.

> Unterrichtsprioritit: Eine Verfeinerung bzw. Abschwichung der harten Kernstunden-
Bedingung ist die bevorzugte Belegung von bestimmten Zeitslots. Zum Beispiel kann
Unterricht bevorzugt vormittags stattfinden, wohingegen spater Nachmittagsunterricht
vermieden wird. Fiir jede Stunde des Tages wird dazu eine Prioritdt angegeben.
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> Lehrer-Verfiigbarkeit: Es kann auf die zeitlichen Prédferenzen von Lehrern Riicksicht
genommen werden, indem diese angeben, wann sie eher unterrichten méchten und
wann sie eigentlich keine Zeit haben.

> Hohlstunden-Vermeidung: Da fiir Klassen oft die Einhaltung von Kernstunden gefor-
dert wird (siehe oben), ist die Vermeidung von Hohlstunden als weiche Bedingung
vor allem fiir Lehrer interessant. Hohlstunden sind Zeitslots, die nach dem ersten und
vor dem letzten Unterricht des Tages fiir einen Lehrer liegen, in denen er aber keinen
Unterricht gibt.

> OPVN-Abstimmung: Der Zeitpunkt der letzten Unterrichtsstunde einer Klasse kann
beispielsweise an den Busfahrplan angepasst werden.

Es sind viele weitere weiche Bedingungen denkbar. Insbesondere ldsst sich jede der harten
Bedingungen zu einer weichen Bedingung umformulieren, bei deren Verletzung ein ent-
sprechend grofier Betrag von der Zielfunktion abgezogen wird. Dieser Ansatz ist aber nur
voriibergehend fiir die Berechnung sinnvoll, weil ein Stundenplan, der harte Bedingungen
verletzt, in der Praxis nicht eingesetzt werden kann, was einer der Hauptkritikpunkte an
bestehenden Softwarelosungen ist.

2.6. NP-Vollstandigkeit

Even et al. [1975] wiesen nach, dass bereits eine sehr , primitive” Variante des Stundenplan-
problems NP-vollstindig ist. Fiir den Beweis wurde das von Gotlieb [1962] vorgeschlagene
Stundenplanproblem so weit vereinfacht, dass alle in der Praxis vorkommenden Varianten
mindestens so komplex sind wie die untersuchte. Die Problemdefinition besteht nur aus
Zeitslots, Lehrern, Klassen (wie oben beschrieben) und einer Wochenstunden-Matrix, die
neben der Konfliktfreiheit eingehalten werden muss. Aufierdem sind Nichtverfiigbarkeiten
nicht nur fiir Lehrer, sondern auch fiir Klassen vorgesehen.

Bei der hier vorgestellten Problemvariante kommt es zwar nicht vor, dass Klassen zu
bestimmten Zeiten nicht verftigbar sind, doch diese Einschrankung lasst sich leicht nachbil-
den, indem man ein Platzhalter-Fach pro Klasse mit einem Lehrer einfiihrt, der immer Zeit
hat, und dann fixe Stunden in diesem Fach auf die zu sperrenden Zeitslots legt. Damit ist
auch das hier vorgestellte Stundenplanproblem NP-vollstandig.



Kapitel 3

Losungsansatze

Dieses Kapitel gibt eine kurze Einfithrung der Losungsansitze, auf die sich diese Arbeit
spater bezieht. Neben dem manuellen Planen in Abschnitt 3.1 und dem Setz-Algorithmus in
Abschnitt 3.2 wird insbesondere der auf ganzzahliger, linearer Programmierung aufbauende
Ansatz von Weidler [2012] vorgestellt (Abschnitt 3.3).

Fiir einen ausfiihrlichen Uberblick iiber die Vielzahl an moglichen Ansédtzen zur Losung
von verschiedenen Varianten des Stundenplanproblems sei verwiesen auf die Studien von
Carter und Laporte [1998], Schaerf [1999], Burke et al. [2004] und Pillay [2013].

3.1. Stundenplanung von Hand

Vor ein paar Jahren wurden Stundenplédne noch iiberwiegend von Hand erstellt. Auch
wenn mittlerweile viele Schulen auf automatisierte Losungen umgestiegen sind, gibt es
immer noch — vor allem kleinere — Schulen, die ihren Stundenplan weiterhin von Hand
erstellen.

Die Vorgehensweise variiert dabei stark und hiangt von der Erfahrung und den Zielset-
zungen des Stundenplaners ab. Ein bekannter Ansatz ist die Verwendung einer grofien
Magnettafel, auf der jede Unterrichtsstunde mit zwei Pldttchen dargestellt wird — eines
davon im Stundenplan der Klasse, das andere im Stundenplan des Lehrers. Ausgehend von
einer leeren Tafel wird zunéchst ein (in sich stimmiger) Stundenplan fiir eine Klasse erstellt.
Das wird dann fiir die weiteren Klassen wiederholt, wobei Konflikte erkannt werden,
indem der jeweilige Unterricht parallel auch in den Lehrerpldnen eingetragen wird. Félle,
in denen eine Unterrichtsstunde gar nicht mehr platziert werden kann, kénnen dann nur
mit Ausprobieren, Erfahrung oder Neu-Beginnen gelost werden. (Quelle: eine typische
Grundschule aus Stiddeutschland)

Dieser Ansatz nimmt zwar auch fiir Grundschulen einige Zeit in Anspruch, aber in den
allermeisten Fallen fiihrt er zu einem zulédssigen und guten Ergebnis — aufgrund der Erfah-
rung der Stundenplaner. Deswegen muss er durchaus als Konkurrenz zur automatisierten
Stundenplanung betrachtet werden.



3. Losungsansitze

Konfliktfreie Stundenpline lassen sich an Grundschulen vergleichsweise einfach erstellen,
weil jede Klasse einen eigenen Klassenlehrer hat, der bis auf wenige Ausnahmen (oft
Sport oder Religion) alle Facher unterrichtet. Dadurch sind je ein Klassen- und Lehrerplan
fast identisch und auflerdem weitgehend unabhidngig von den anderen Plinen. Weil an
Grundschulen nur wenige Wahlmoglichkeiten und weniger Abhédngigkeiten zu anderen
Schulen oder externen Rdumen (insbesondere Sporthallen) bestehen, dndern sich die
Anforderungen zum neuen Schuljahr nur wenig, sodass oft der alte Stundenplan als
Vorlage verwendet werden kann. Fiir weiterfithrende Schulen ist der manuelle Ansatz
allerdings zunehmend weniger geeignet, weil sie meist grofier sind und komplexere und
wechselnde Anforderungen haben.

3.2. Setz-Algorithmus

Durch die Ubersetzung des manuellen Vorgehens in einen maschinell ausfiihrbaren Algo-
rithmus erhilt man einen einfachen Setz-Algorithmus. Die zu verplanenden Unterrichts-
stunden werden der Reihe nach auf einen noch freien Zeitslot gelegt, bis alle untergebracht
sind. Kann eine Unterrichtsstunde nicht mehr untergebracht werden, wird mittels Back-
tracking nach anderen Kombinationen gesucht.

Dieser zunéchst naive Algorithmus ladsst sich durch Heuristiken stark verbessern [siehe
z. B. Schmidt und Strohlein, 1980]. Nachdem ein zuldssiger Stundenplan gefunden ist,
kann dieser durch Tauschoperationen verbessert werden, bei denen zwei oder sogar mehr
Unterrichte vertauscht werden, ohne dabei Konflikte zu erzeugen. Heutzutage in Deutsch-
land etablierte Software-Produkte wie beispielsweise Untis® Express arbeiten nach eigener
Aussage mitunter auf diese Weise — wenngleich sicherlich mit einigen Verbesserungen:

,Wihrend der Setzoptimierung werden die einzelnen Unterrichtsstunden — beginnend
mit der schwierigsten — in den zunachst noch leeren und sich langsam fiillenden
Zeitraster hineingesetzt, wiahrend der Tauschoptimierung versucht das Programm
durch gezielte Tdusche das Ergebnis zu verbessern.”

Gruber & Petters [2014], Untis® Express Benutzerhandbuch

3.3. Ganzzahlige lineare Programmierung

Das in Kapitel 2 vorgestellte Stundenplanproblem kann als lineares Programm formu-
liert und dann mit entsprechenden Losern gelost werden. An dieser Stelle wird nur die
Grundidee wiedergegeben. Fiir Details siehe [Weidler, 2012].
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3.3. Ganzzahlige lineare Programmierung

Bei einem linearen Programm (LP) ist eine Zielfunktion
n
max 2 c ]-x j
j=1
gegeben, die unter Einhaltung der ebenfalls gegebenen Nebenbedingungen
n

Zaijxjébi ie{l,...,m}

j=1
maximiert werden soll.
Hinweis: Nebenbedingungen mit = oder > lassen sich einfach in die obige Form umformen.

Fiir die Berechnung von Stundenpldnen ist insbesondere die ganzzahlige lineare Optimie-
rung interessant (ILP), bei der zusétzlich gefordert wird, dass x; € N.

3.3.1. Modellierung als ganzzahliges lineares Programm

Wir definieren fiir jeden Unterricht u € U und jeden moglichen Zeitslot z € Z eine bindre
Variable x,; € {0,1}. Diese Variable hat den Wert 1, wenn der Unterricht (unter anderem)
zu diesem Zeitpunkt stattfindet, und sonst den Wert 0.

Damit lasst sich die Forderung nach der korrekten Wochenstundenzahl fiir jeden Unterricht
formulieren als: Vel Z Yo = W(u)

zeZ

und die Bedingung der Konfliktfreiheit fiir Klassen (analog fiir Lehrer) als:
Vze ZVkeK: Y xiz<1

uely
Analog dazu lautet die Kernstunden-Bedingung:

Vze ZrVkeK: ) xyz>1

uely

Aus der fertigen Belegung aller x,; erhilt man dann die gesuchte Zuteilung x : U — P(Z)

als: x(u):={zeZ|xy, =1}

Die LP-Formulierung des Problems wird spédter noch in Kapitel 6 verwendet werden.
Auflerdem verwendet die Software SchulScheduler (siehe Kapitel 4) dieses ganzzahlige
lineare Programm, um Stundenpldne zu berechnen. Formulierungen fiir einige weitere
Bedingungen werden in [Weidler, 2012, Kap. 4] und ergdnzend in Abschnitt 7.2 vorgestellt.
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3. Losungsansitze

3.4. Weitere Ansitze

3.4.1. Reduktion

Analog zur Modellierung als lineares Programm kann das Stundenplanproblem auf andere
Problemtypen reduziert und mit einem bestehenden, méglichst effizienten Solver gelost
werden. Die folgenden Kapitel der vorliegenden Arbeit befassen sich hauptsachlich mit
diesem Ansatz.

3.4.2. Optimierungs-Frameworks

Eine dhnliche Herangehensweise ist, mit Hilfe eines Frameworks einen evolutionidren
Algorithmus oder Ahnliches zu implementieren. Die verwendeten Optimierungsverfahren
stammen meist aus dem Bereich der kiinstlichen Intelligenz. Dabei miissen ebenfalls nur
die problemspezifischen Teile implementiert werden, es findet aber keine Reduktion statt,
d. h. es entsteht keine Probleminstanz eines allgemeineren Problemtyps.

3.4.3. Spezialisierte Algorithmen

Genau wie Untis® Express verwenden auch viele der Loser, die bei der dritten International
Timetabling Competition [Post et al., 2013] eingereicht wurden, Algorithmen mit spezifi-
schem Wissen iiber die Stundenplanung. Einige davon basieren auf der Kingston High
School Timetabling Engine [Kingston, 2014], die bereits selbst umfangreiche spezifische
Implementierungen bietet.

Da in dieser Arbeit ein anderer Ansatz verfolgt wird, werden an dieser Stelle keine
einzelnen Algorithmen genauer erldutert. Abschnitt 8.2 gibt einen kurzen Uberblick iiber
aktuelle Techniken und enthélt eine kurze Evaluation des Solvers von Kingston [2014].
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Kapitel 4

SchulScheduler

In diesem Kapitel wird die Software SchulScheduler vorgestellt, deren Infrastruktur und
Datensétze fiir diese Arbeit verwendet wurden. Abschnitt 4.2 gibt einen Einblick in die
Oberfldche der Software. Abschnitt 4.3 behandelt mit den Kopplungen eine in der Pra-
xis wichtige Besonderheit, die in SchulScheduler implementiert ist und in dieser Arbeit
ebenfalls ausfiihrlich betrachtet wird. In Abschnitt 4.4 werden die Testdatensitze von
SchulScheduler beschrieben. Als Referenz werden in Abschnitt 4.5 die Laufzeiten von
SchulScheduler mit dem Solver Gurobi auf diesen Datensitzen aufgefiihrt.

4.1. Einfiihrung

Basierend auf dem von Weidler [2012] eingefiihrten und in Unterabschnitt 3.3.1 vorge-
stellten Ansatz wurde 2013-2014 in einem Studienprojekt an der Universitdt Stuttgart die
Software SchulScheduler entwickelt. Ziel des Projekts war insbesondere die Bereitstellung
einer Benutzeroberfliche, die von Lehrern bedient werden kann, die wenig Erfahrung
im Umgang mit Computern und mit manueller Stundenplanung haben. Dadurch stehen
nun eine Oberfldche sowie ein flexibles Datenmodell und ein Framework fiir die Imple-
mentierung von Algorithmen zur Verfligung. Aufierdem sind im Rahmen des Projekts
verschiedene Testdatensétze entstanden, die in dieser Arbeit zum Testen der Implementie-
rungen verwendet werden. Der einzige bislang implementierte Algorithmus verwendet
den kommerziellen Loser Gurobi von Gurobi Optimization, Inc. [2014] zur Losung des
ganzzahligen linearen Programmes.

Die Software ist in Java 8 und Xtend implementiert und genau wie diese Arbeit unter der
Apache License 2.0 verdffentlicht. Fiir die Erstellung einer zeitgeméfien und funktionalen
Oberflache wurde JavaFX 8.0 verwendet.
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4. SchulScheduler

14

5 SchulScheduler - Stunden;

| import | Stunden | Facher | Lehver | Kiassen | Profile |

| Kopplungen | Fixe Stunden | Berechnung |

o auBerdem
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A\ Lehrer Bader: Fur den Lehrer Bad ist kein Fach eingetragen, das er unterrichtet.
/A Lehrer Bakus: Far den Lehrer Bak ist keiin Fach eingetragen, das er unterrichtet,

A\ Lehrer Bechel: Fr den Lehrer Bec ist kein Fach eingetragen, das er unterrichtet.
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Abbildung 4.2. SchulScheduler Ergebnisfenster



4.2. Oberfliche

4.2. Oberfliche

In Abbildung 4.1 und Abbildung 4.2 ist die Benutzeroberfliche der Software dargestellt.
Insbesondere die schnelle Darstellung, die einfache Verdnderbarkeit und die sofortige
Validierung der Ergebnisse war fiir die Erstellung dieser Arbeit eine grofle Hilfe. Per
Drag-and-drop kénnen Unterrichte versuchsweise umgeordnet werden. Alle verletzten
Bedingungen werden direkt erkannt und unten im Fenster aufgelistet, sodass sich die
Ergebnisse, die mit den hier vorgestellten Ansidtzen generiert wurden, leicht tiberpriifen
und beurteilen liefSen.

4.3. Kopplungen

Zusétzlich zu den in Kapitel 2 vorgestellten Bestandteilen einer Probleminstanz kennt Schul-
Scheduler noch einige weitere Elemente. Ein wesentliches Konzept sind dabei die Kopplun-
gen. Typischerweise treffen im Sport- oder Religions-Unterricht mehrere Klassen/Lehrer
zum Unterricht aufeinander. Beispielsweise konnten drei Klassen zum Sportunterricht
bei zwei Lehrern zusammengelegt werden und dann die Mddchen und Jungen getrennt
unterrichtet werden. Auch beim Religionsunterricht handelt es sich um eine Kopplung,
selbst wenn beispielsweise nur eine Klasse beteiligt ist, die aber nach evangelischer und
katholischer Konfession sowie Ethik aufgeteilt und von jeweils einem Lehrer unterrichtet
wird.

Wihrend die Definition und Eingabe von Kopplungen relativ kompliziert zu realisieren
sind, sind die Auswirkungen auf die eigentliche Berechnung der Losung nur minimal:
An einem Unterricht u € U < K x F x L konnen nun mehrere Klassen, Facher und/oder
Lehrer beteiligt sein, d. h. es ist nun U < P(K) x P(F) x P(L). Dementsprechend kann
ein einzelner Unterricht u € U in den Mengen U, und U; von mehreren Klassen und
Lehrern vorkommen. Alle bisher genannten Bedingungen lassen sich damit auf gleiche
oder sehr dhnliche Weise formulieren. Insbesondere dndert sich nichts an der Grundidee
der Algorithmen, eine Menge von Unterrichtsstunden, die gewisse Abhidngigkeiten haben,
in einem Zeitraster einplanen zu miissen. Lediglich die Verkniipfungen zwischen den
Unterrichten (z. B. wechselseitiger Ausschluss) nehmen durch den Einsatz von Kopplungen
zu, sodass Datensédtze mit vielen Kopplungen tendenziell weniger Losungen haben.

4.4. Testdatensatze

Wihrend der Durchfiithrung des Studienprojekts sind einige Datensétze entstanden, die
bereits im passenden Format vorliegen. Da sie in dieser Arbeit zur Evaluation und zum
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4.

SchulScheduler

Vergleich von Algorithmen verwendet wurden, wird im Folgenden eine kurze Charakteri-
sierung dieser Datensitze angegeben. Aus Datenschutzgriinden sind die Datensitze nur
mit Buchstaben benannt.

>

Datensatz A: Hierbei handelt es sich um einen sehr kleinen und einfachen Datensatz, der
hauptsdchlich zum Testen der Oberfldche entworfen wurde. Es gibt nur drei Stunden pro
Tag — und noch weniger Unterricht. Die Hélfte der Zeit ist unterrichtsfrei. Die Losung
dieses Datensatzes gelingt selbst von Hand in kiirzester Zeit.

Datensatz B: Dieser Datensatz ist eine Entschirfung von Datensatz C: Statt nur sechs
stehen hier acht Stunden pro Tag zur Verfiigung, was die Anzahl moglicher Losungen
deutlich erhoht. Auserdem wurde die Grofie der Probleminstanz (d. h. die Anzahl der
Klassen/Lehrer) halbiert.

Datensatz C: Dieser Datensatz gehort zu einer normalen deutschen Grundschule. Da
nur sechs Unterrichtsstunden téglich zur Verfiigung stehen, die fiir die hoheren Klassen
auch vollstandig ausgenutzt werden, ist die Zahl der Losungen stark beschrankt. Dafiir
gibt es nur wenig Abhéngigkeiten zwischen den Klassen, weil an der Grundschule jede
Klasse einen festen Klassenlehrer hat, der die meisten Fiacher alleine bestreitet.

Datensatz D: Der mit Abstand grofite Datensatz stammt urspriinglich von einem typi-
schen Gymnasium und wurde um einige Sonderfille erweitert, um die Algorithmus-
Implementierung ausgiebig testen zu konnen. Durch seine Grofie und insbesondere die
grofie Anzahl an Kopplungen ist dieser Datensatz relativ schwer optimal zu l6sen.

Tabelle 4.1. Grofsenordnungen der verwendeten Datensétze

Datensatz | A B C D

Klassen | 3 5 10 15

Facher | 5 9 9 23

Lehrer | 4 7 14 45
Unterrichte | 15 35 72 235

Kopplungen | 4 3 4 21
Unterrichtsstunden | 16 114 235 467

Zeitslots | 15 40 30 50
Lehrer-Nichtverfiigbarkeiten | 3 18 23 202
Doppelstunden | 0 0 0 3x2

Fixierte Unterrichtsstunden | 2 0 0 18

4.5. Performance

Zum spiteren Vergleich zeigt Tabelle 4.2 die Rechenzeiten des Gurobi-basierten Losungs-
verfahrens fiir die einzelnen Datensidtze. Zusitzlich zur Berechnung des ganzzahligen
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4.5. Performance

Optimums, welches in der Regel von Interesse ist, sind die Zeiten fiir das Finden einer zu-
lassigen (d. h. nicht unbedingt optimalen) Losung sowie fiir das Losen der LP-Relaxierung
(d. h. eine nicht ganzzahlige Losung) angegeben.

Tabelle 4.2. Rechenzeiten mit Gurobi

Datensatz | A B C D
Ganzzahlig, optimal | 12 ms 181 ms 32s T
Ganzzahlig, zuldssig | 4 ms 46ms 150ms 1,1s

Relaxiert, optimal | 6 ms 99 ms 119ms 4,0s
Relaxiert, zuldssig | 4 ms 69 ms 86ms 14s

T Verbleibende Gap von 0,18 % nach 40 Minuten

Zu diesen Laufzeiten sei angemerkt, dass keiner von vielen getesteten Open-Source-Solvern
wie Ip_solve, Clp, etc. (auler SCIP) in der Lage war, die Datensédtze B bis D in akzeptabler
Zeit (unter einem Tag) zu l6sen. Im Fall von Datensatz D gelingt das auch mit Gurobi nicht,
jedoch ist es in der Praxis problemlos moglich, die Berechnung nach 40 Minuten oder nach
einer Stunde abzubrechen. Dann ist der Unterschied zwischen der aktuell besten bekannten
Losung und der besten bekannten Schranke (genannt ,Gap*) bereits kleiner als 0,18 %, d. h.
das Ergebnis kann sich nicht mehr wesentlich verbessern und ist moglicherweise sogar
schon optimal.
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Kapitel 5

Losung mittels Constraint Programming

Dieses Kapitel beschreibt zwei verschiedene Ansétze, das Stundenplanproblem mit Con-
straint Programming zu l6sen. Zundchst wird in Abschnitt 5.1 das Verfahren allgemein
vorgestellt. In Abschnitt 5.2 wird eine Moglichkeit gezeigt, das Stundenplanproblem mit
ganzzahligen Variablen als CSP zu modellieren. Abschnitt 5.3 geht auf die Implementierung,
Rechenergebnisse und einige Moglichkeiten zur Verbesserung ein. Anschlieffend wird in
Abschnitt 5.4 ein alternativer, auf bindren Variablen basierender Ansatz vorgestellt.

5.1. Einfiihrung

Nach van Omme et al. [2014] bezeichnet man mit Constraint Satisfaction Problem (CSP)
ein mathematisches Modell bestehend aus einer Menge von Variablen V = {vy,...,v,},
moglichen Wertemengen dj, . .., d, fiir diese Variablen (Domanen) und einer Menge von
Constraints C. Die Constraints konnen dabei eine nahezu beliebige Form annehmen,
solange sie mathematisch formulierbar und algorithmisch propagierbar sind. Insbesondere
miissen die Constraints nicht linear sein oder dhnliches.

Das Ziel ist zundchst nur, die Constraints zu erfiillen, d. h. eine zulissige Losung zu finden!

Der Begriff Constraint Programming bezeichnet Losungsverfahren fiir CSPs.

5.1.1. Bedingungen und Constraints

Bei der Definition des Stundenplanproblems, die sich aus der Realwelt ableitet, wird in
dieser Arbeit durchgehend der Begriff ,,Bedingung” fiir Einschrankungen und Kriterien
verwendet, die ein Stundenplan erfiillen soll. In Bezug auf die Umsetzung der Bedingungen
in einem Solver wird der Begriff ,,Constraint” verwendet.

Die Unterscheidung ist wichtig, weil es keine 1:1-Beziehung zwischen Bedingungen und

Constraints gibt: Fiir die Umsetzung einer Bedingung kann nur ein Constraint benotigt
werden (z. B. fiir Lehrer-Nichtverfiigbarkeiten) oder mehrere (z. B. fiir die Konfliktfreiheit)
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5. Losung mittels Constraint Programming

— und manchmal sogar gar keiner. Umgekehrt konnen aber auch mehrere Bedingungen mit
gemeinsamen Constraints abgedeckt werden (z. B. Konfliktfreiheit und Kernstunden). Wie-
derum andere Bedingungen sind weich, sodass sie nur wenige oder gar keine Constraints
benotigen und stattdessen Einfluss auf die Zielfunktion nehmen.

5.1.2. Losungsverfahren

Grundsétzlich verwenden alle in dieser Arbeit erwdhnten Solver die gleiche Vorgehensweise
zur Losung eines CSP:

* Solange noch nicht alle Variablenwerte bekannt sind, werden eine Variable und ein noch
moglicher Wert fiir diese Variable ausgewahilt.

* Es wird entschieden, ob dieser Wert angenommen werden soll oder nicht, und ausgehend
von dieser Annahme die Suche fortgesetzt.

* Wenn fiir eine Variable tiberhaupt kein Wert mehr moglich ist, werden mittels Back-
tracking andere Losungsalternativen gesucht.

Dadurch entsteht ein bindrer Suchbaum, den alle verwendeten Solver auch zu bestimmten
Zeitpunkten oder sogar in Echtzeit visualisieren kdnnen.

Um friih bestimmte Werte fiir eine Variable ausschliefSen zu koénnen, wird fiir jede Variable
eine Menge der noch moglichen Werte verwaltet. Wenn diese Menge sich dndert (z. B. durch
eine Festlegung), hat dies Auswirkungen auf die moglichen Werte fiir andere Variablen.
Beispiel: Wenn der Mathematik-Unterricht der 5c auf den Zeitslot Mo3 gelegt wird, kann
der Deutsch-Unterricht der 5c¢ sicher nicht in dieser Stunde stattfinden, d. h. der Wert kann
fur die betreffende Variable ausgeschlossen werden — lange bevor die Variable tiberhaupt im
Suchbaum selbst betrachtet wird. In dem , Constraint Propagation” genannten Verfahren
wird bei der Anderung der moglichen Werte einer Variablen, die man sich als Knoten in
einem Netzwerk vorstellt, die Anderung iiber die einzelnen Constraints, die man sich als
Kanten vorstellt, zu den anderen Variablen propagiert, die davon betroffen sein konnten.
Fiir Details zum Verfahren und insbesondere zu den konkreten Implementierungen siehe
[van Omme et al., 2014] und [Schulte und Tack, 2013].

Eine wirkungsvolle Moglichkeit zur Einflussnahme auf die Suche ist die Festlegung der
Heuristiken zur Variablen- und Werteauswahl — mehr dazu in Unterabschnitt 5.3.2.
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5.2. Erste Modellierung als Constraint Satisfaction Problem

5.1.3. Optimierung mit Constraint Programming

Auch wenn die korrekte Losung eines CSP nicht notwendigerweise optimal ist, son-
dern im Regelfall einfach nur irgendeine zuldssige Losung darstellt, kann man mit Cons-
traint Programming Optimierungsprobleme 16sen. Dazu benétigt man eine Zielfunktion
z:dy x -+ xd, — R, die mogliche Losungen bewertet. Auch fiir diese Zielfunktion gibt es
keine Beschrankungen wie Linearitdt oder dhnliches — sie sollte aber mit geringem Aufwand
berechenbar sein. Wir gehen ohne Beschrankung der Allgemeinheit davon aus, dass die
Zielfunktion zu minimieren ist.

Um eine optimale Lésung zu erhalten, berechnet man zunéchst eine zulédssige Losung xg
und ihren Zielfunktionswert z(xg). Um die gefundene i-te Losung zu verbessern, fiigt man
den Constraint z(vy, ..., v,) < z(x;) hinzu und berechnet eine neue, bessere Losung x; 1.
Diesen Vorgang wiederholt man so lange, bis das CSP unlosbar wird. Die unmittelbar
davor gefundene Losung ist nicht nur zuldssig, sondern auch optimal. [van Omme et al.,
2014]

Die meisten CSP-Solver bieten bereits eine eingebaute Unterstiitzung fiir dieses oder dhnli-
che Optimierungsverfahren an, sodass man die gewiinschte Zielfunktion ohne zusitzlichen
Implementierungsaufwand direkt angeben kann.

5.2. Erste Modellierung als Constraint Satisfaction Problem

Die Stérke von Constraint Programming liegt darin, dass praktisch beliebige Constraints
moglich sind. Insbesondere der alldifferent-Constraint ist sehr gut erforscht [siehe Lopez-
Ortiz et al., 2003; van Hoeve, 2001] und wurde deshalb fiir den ersten Modellierungsansatz
verwendet. Dieser Ansatz ist naheliegend, weil er das Stundenplanproblem direkt abbildet:

Die Grundidee ist, die einzelnen Unterrichtsstunden jeweils einem Zeitslot zuzuordnen,
ohne Konflikte zu erzeugen. Entscheidend ist, dass nicht die Unterrichte (also z. B. Ma-
thematik Klasse 5c) sondern die einzelnen Unterrichtsstunden zugeordnet werden. Fiir
jede Wochenstunde eines Unterrichts u € U wird eine Variable x,; im CSP erstellt mit
ie{l,...,W(u)}, sodass es insgesamt }_,;; W(u) Variablen gibt. Als Doméne wird fiir alle
Variablen die Menge der verfiigbaren Zeitslots Z gewédhlt. Durch diese Art der Modellierung
wird die Forderung nach der korrekten Anzahl Wochenstunden (vgl. Unterabschnitt 2.4.1)
automatisch eingehalten.

Die in Abschnitt 2.3 geforderte Zuteilung x : U — P(Z) erhilt man aus der Losung des
CSP, indem man die zugewiesenen Werte aller Variablen eines Unterrichts zu einer Menge

usammenfasst: .
z x(u) ={x,; lie{l,...,W(u)}}
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5.2.1. Konfliktfreiheit

Die Konfliktfreiheit (vgl. Unterabschnitt 2.4.2) fordert, dass alle Unterrichte einer Klasse
sowie alle Unterrichte eines Lehrers jeweils zu unterschiedlichen Zeitpunkten stattfinden.
Das lasst sich unmittelbar mit dem alldifferent-Constraint modellieren, der fordert,
dass allen Variablen einer bestimmten Variablenmenge paarweise verschiedene Werte
zugewiesen werden:

VleL: alldifferent({x,; |ue U, icZ})
Vk e K: alldifferent({x,; |ue U, icZ})

5.2.2. Kernstunden

Zur Umsetzung der Kernstunden-Bedingung bieten sich verschiedene Constraints an, die
je nach konkreter Solver-Implementierung unterschiedlich unterstiitzt werden:

Eine fiir sich genommen ineffiziente Moglichkeit ist, zunéchst fiir jedes Unterricht-Zeitslot-
Paar eine bindre Statusvariable zu erstellen, die aussagt, ob der Unterricht zu diesem
Zeitpunkt stattfindet. Damit konnen die Kernstunden analog zum ILP modelliert werden
(siehe Unterabschnitt 3.3.1). Dieser Ansatz ist vor allem dann sinnvoll, wenn die Status-
variablen noch fiir weitere Constraints verwendet werden konnen, die iiber den Umfang
dieser Arbeit hinausgehen.

Deutlich effizienter ist eine Art der Modellierung, die keine zusatzlichen (Status-)Variablen
erfordert, und stattdessen den Constraint count (v, w, n) verwendet, der fordert, dass genau
n der Variablen aus der Variablenmenge v den Wert w annehmen sollen. Fiir eine Kernstun-
de muss pro Klasse genau eine der zu diesem Zeitpunkt méglichen Unterrichtsstunden
auf den Zeitslot gelegt werden:

Vze Z Vke K: count({x,; |uely,icZ},z1)

5.2.3. Symmetrische Losungen

Eine klare Schwiache dieser Form der Modellierung ist die Erzeugung von (exponentiell
vielen) symmetrischen Losungen, die den Losungsraum und damit den Suchbaum fiir
den Solver unnétig stark vergrofiern. Dadurch, dass jeder Unterricht in seine einzelnen
Unterrichtsstunden aufgespalten wird (z. B. die beiden Deutsch-Stunden der 5c¢), gibt es
mehrere verschiedene Losungen, die sich fiir den Endanwender aber nicht unterscheiden.
Im gegebenen Beispiel wire es egal, ob die erste der beiden Deutsch-Stunden in der ersten
Stunde montags stattfindet und die zweite in der zweiten Stunde, oder umgekehrt. Da
die einzelnen Unterrichtsstunden in einem Fach vollig austauschbar sind, kann man den
Losungsraum erheblich verkleinern, indem man eine Ordnung der Unterrichtsstunden
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erzwingt, d. h. dass die erste Unterrichtsstunde in dem Fach vor der zweiten stattfindet,
die zweite vor der dritten, und so weiter:

VueUVi<j: x, <Xy

Ein solches Verfahren zur Vermeidung von symmetrischen Losungen wird ,Symmetry
Breaking” genannt.

5.3. Implementierung und Verbesserung

Um die Praxistauglichkeit dieses Ansatzes zu iiberpriifen, wurde diese Modellierung mit
den beiden CSP-Solvern Or-Tools [Or-Tools Team, 2010] und Gecode 4.2.1 [Gecode Team,
2006] implementiert und mit den in Abschnitt 4.4 vorgestellten Datensdtzen getestet. Beide
ausgewdhlten Solver gehorten in den vergangenen Jahren zu den besten CSP-Solvern
[Stuckey et al., 2010]. Bei Or-Tools handelt es sich um einen Solver, der ein Java-Interface
anbietet und daher direkt aus der SchulScheduler-Architektur heraus angesteuert werden
kann. Auch wenn Gecode direkt aus einer C++-Anwendung heraus gestartet wurde, hat
dies keine nennenswerten Auswirkungen auf die Laufzeiten, da Or-Tools intern ebenfalls
eine native Bibliothek verwendet und in die Zeitmessung nur die reine Ausfithrung
einbezogen wurde, d. h. nicht das Erstellen der Variablen und Constraints.

Beim Vergleich der Ergebnisse mit den in Abschnitt 4.5 angegebenen Laufzeiten ist es
wichtig zu beachten, dass in dieser CSP-Implementierung lediglich eine zulédssige Losung
gesucht wurde, wahrend bei der Berechnung mit Gurobi die optimale Losung gefunden
wurde. Zusétzlich zu den Rechenzeiten ist jeweils die Anzahl der Variablen und Constraints
angegeben, die durch die jeweilige Art der Modellierung entstanden sind.

5.3.1. Nur Konfliktfreiheit

Zunichst wurden alle Probleminstanzen ausschliefSlich mit der Bedingung fiir die Konflikt-
freiheit gelost.

Tabelle 5.1. CSP nur mit Konfliktfreiheits-Bedingung

Datensatz | A B C D
Anzahl Variablen 16 114 236 467
Anzahl Constraints 7 12 23 59
Rechenzeit (Or-Tools) | Ims 2ms 4ms 8ms
Rechenzeit (Gecode) | Oms 1ms 4ms 14 ms
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5.3.2. Suchstrategien

Die in Tabelle 5.1 dargestellten Ergebnisse wurden bereits mit einer gezielten Optimierung
beziiglich der Suchstrategie erzielt. Das grundsitzliche Vorgehen der Solver wurde bereits
in Unterabschnitt 5.1.2 beschrieben und kann durch geeignete Heuristiken fiir die Variablen-
und Wertewahl gesteuert werden. Hierbei stellen sich die Heuristiken als am effizientesten
heraus, die auch dem nattiirlichen menschlichen Vorgehen beim Setz-Algorithmus (siehe
Abschnitt 3.2) entsprechen wiirden.

Ohne weitere Konfiguration wahlen die Solver immer die erste Variable (in der Reihen-
folge, in der sie hinzugefiigt wurden) und weisen ihr den niedrigsten moglichen Wert
zu. Infolgedessen findet viel Unterricht montags statt (auch nachmittags) und wenig am
Freitag. Jedoch schldgt das Verfahren beim Datensatz C fehl und es kann auch nach tiber
drei Stunden Rechenzeit keine Losung gefunden werden. Die Ursache ist vermutlich eine
Konfliktsituation, die bereits durch relativ frithe Entscheidungen verursacht wurde und fiir
die ,spateren” Variablen keine mogliche Aufteilung mehr tibrig lasst.

Um dem Problem zu begegnen, setzt man bei der manuellen Planung verniinftigerweise
zuerst die Unterrichte ins Stundenraster, fiir die die wenigsten moglichen Plétze tibrig blei-
ben. Der CSP-Solver muss also diejenige Variable auswéhlen, die die kleinste verbleibende
Wertemenge hat. Mit dieser Heuristik, die den Solvern als ,,Choose Min Size” bekannt ist,
lasst sich auch fiir den Datensatz C eine Losung in wenigen Millisekunden finden.

Eine Heuristik zur Auswahl geeigneter Werte bringt in diesem Fall keine weiteren Vor-
teile. Zwar existieren in der Literatur Heuristiken, die die Werte so auswihlen, dass die
unmittelbaren negativen Auswirkungen durch die Propagierung moglichst gering sind
[Dechter, 2003, Kapitel 5.3.1], aber diese sind weder in Or-Tools noch Gecode implementiert.
Stattdessen ldsst sich nur anhand von Minimum und Maximum einer der noch moglichen
Werte auswihlen (z. B. der Mittelwert, das Maximum oder ein zufélliger Wert). Da aber fiir
das Stundenplanproblem in der einfachen, hier betrachteten Art alle Zeitslots (und damit
Werte) gleich sind, ist eine Werteheuristik tiberfliissig.

5.3.3. Ausschliefdlich lineare Suchbiume

Bemerkenswerterweise terminiert jede Berechnung binnen weniger Millisekunden, wenn
eine giinstige Heuristik angewendet wird, oder sie benétigt mehrere Stunden oder Tage,
abhdngig von der Problemgrofie. In den Féllen, in denen die Berechnung nach kiirzester
Zeit erfolgreich abgeschlossen werden kann, ist der Suchbaum stets linear. Das bedeutet,
dass jede vom Solver getroffene Entscheidung richtig war und demnach kein Backtracking
stattgefunden hat. Bei den meisten Datensétzen (bis auf Datensatz C, siehe vorheriger
Abschnitt) funktioniert das sogar mit randomisierten Heuristiken anstatt gezieltem Aus-
wiahlen der giinstigsten Variablen. Dabei wird natiirlich nicht eine zuféllige Losung erstellt,
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die ja mit sehr hoher Wahrscheinlichkeit unzuldssig wére, sondern es wird immer dann
zufillig ausgewdhlt, wenn mehrere noch mogliche Variablen oder Werte {ibrig sind. Fiir
das erfolgreiche Finden der Losung ist in diesen Fallen also ausschliefSlich die Constraint
Propagation verantwortlich.

5.3.4. Ausschluss von symmetrischen Losungen

Wie in Unterabschnitt 5.2.3 beschrieben wurde fiir die einzelnen Wochenstunden eines
Unterrichts eine Ordnung eingefiihrt, um symmetrische Losungen zu vermeiden. Wéahrend
tiir Or-Tools einzelne <-Constraints benétigt werden, stellt Gecode einen Constraint fiir
Xp < -+ < x, direkt zur Verfiigung.

Tabelle 5.2. CSP mit Konfliktfreiheit und Symmetry Breaking

Datensatz A B C D
Anzahl Variablen 16 114 236 467
Anzahl Constraints (Or-Tools) | 11 98 203 339
Anzahl Constraints (Gecode) 11 40 79 217
Rechenzeit (Or-Tools) | 1ms 2ms 6ms 11 ms
Rechenzeit (Gecode) | Oms 1ms 4ms 15ms

Aulffillig ist, dass die Rechenzeiten im Vergleich zur Berechnung ohne Symmetry Breaking
entweder gleich geblieben oder grofier geworden sind, obwohl dadurch eigentlich die
Berechnung beschleunigt werden sollte. Das ist damit zu begriinden, dass die Wirkungs-
weise des Symmetry Breakings noch gar nicht zur Geltung kommen konnte: Die Idee ist,
den Suchbaum zu verkleinern, sodass nach einem Backtracking-Schritt nicht nochmals
die (symmetrisch) gleichen Losungen durchsucht werden. Da aber gar kein Backtracking
stattfindet, sondern direkt eine Losung gefunden wird (egal welche der verschiedenen
symmetrischen Losungen das ist), bewirkt das Symmetry Breaking nur, dass nun eine
bestimmte der symmetrischen Losungen gefunden wird. Dazu ist zundchst ein grofierer
Rechenaufwand beim Propagieren notig, weil es mehr Constraints gibt.

Dennoch wurde auch bei allen folgenden Berechnungen das Symmetry Breaking beibe-
halten, weil sich in Fillen, in denen die Losung nicht sofort gefunden werden kann, eine
signifikante Verbesserung ergibt.

5.3.5. Berechnung mit Kernstunden

Die Kernstunden-Bedingung wurde in beiden Solvern, wie oben beschrieben, mit einem
count-Constraint implementiert. Durch das Hinzufiigen der Bedingung ist es mit keiner
der Heuristiken mehr moglich, innerhalb von einer Stunde eine Losung zu finden (siehe
Tabelle 5.3).
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Tabelle 5.3. CSP mit Kernstunden

Datensatz A B C D

Anzahl Variablen 16 114 236 467
Anzahl Constraints (Or-Tools) 11 312 639 1573
Anzahl Constraints (Gecode) 11 140 279 517
Rechenzeit (Or-Tools) | 1ms"* >1h >1h >1h
Rechenzeit (Gecode) | O0mst >1h >1h >1h

* Der Datensatz A enthilt keine Kernstunden

Die Kernstunden sind eine Bedingung, die die Constraint Propagation alleine nicht erfiillen
kann. Denn es gentigt nun nicht mehr, alle Werte konfliktfrei zu belegen, sondern es
muss am Ende auch mindestens eine Variable aus einer Teilmenge einen bestimmten
Wert haben — obwohl zum Zeitpunkt der Belegung noch viele andere Werte konfliktfrei
moglich gewesen wiren. Deswegen sind die Solver nun auf Backtracking angewiesen. Doch
wie man an den Laufzeiten sieht, scheint das Backtracking nicht effizient genug zu sein.
Alle Berechnungen dauerten so lange, dass sie nach einer Stunde abgebrochen werden
mussten. Zur Erinnerung: Der ILP-Solver Gurobi berechnet auf diesen Datensétzen eine
optimale Losung in weit unter einer Stunde. Versuchsweise wurde die Berechnung mit dem
einfachsten Datensatz (B) fiir langere Zeit durchgefiihrt, aber es wurde auch nach {tiber
acht Stunden keine Losung gefunden.

Selbst nach einer Stunde beginnt der Suchbaum der Berechnung mit Datensatz B (siehe
Abbildung 5.1) noch mit einer linearen Kette, die fast so lang ist wie zu Beginn der
Berechnung. Aus der bindren Struktur des Baums ist ersichtlich, dass die Berechnung in
etwa doppelt so lange laufen miisste, um die lineare Kette im oberen Teil des Baums um
nur einen Knoten zu verkiirzen. Wenn also die erste, an der Wurzel des Baums gefillte
Entscheidung eine Fehlentscheidung war, die zur Unlosbarkeit fiithrt, wéren in diesem
Fall mehrere Jahre Rechenzeit notig, um eine Lésung zu finden — und das bei einem
vergleichsweise kleinen Datensatz.

Dabei ist die Wahrscheinlichkeit relativ grof3, dass die (oberste) Fehlentscheidung, die
vom Backtracking gefunden und revidiert werden muss, sich relativ weit oben im Baum
befindet: Wenn beispielsweise — wie an vielen Grundschulen tiblich — die zweite bis sechste
Stunde Kernstunden sind und die jiingeren Schiiler in der ersten Klasse auch nur genau so
viel Unterricht haben (also 25 Wochenstunden), dann darf der Algorithmus keine einzige
Unterrichtsstunde in den Nachmittag oder in die erste Stunde legen.

Mit randomisierten Heuristiken fiir die Wahl der Werte oder mit der voreingestellten
Heuristik, immer die erste Variable und immer den kleinsten Wert zu wahlen, geschieht ein
solcher Fehler aber fast mit Sicherheit: Die erste Unterrichtsstunde der ersten Klasse (1a) auf
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Abbildung 5.1. Suchbaum (Gecode) von Datensatz B mit Kernstunden nach einer Stunde

den ersten verfiigbaren Zeitslot (Mol) zu legen wire an vielen Grundschulen bereits eine
Fehlentscheidung, die zur Unlosbarkeit fithren wiirde, weil Mol keine Kernstunde ist und
die 1. Klasse nur so viel Unterricht hat, wie es Kernstunden gibt. Danach muss der Solver
viel Zeit damit verbringen, die tibrigen Unterrichtsstunden konfliktfrei unterzubringen, um
dann festzustellen, dass die Kernstunden-Bedingung mangels Unterricht in der ersten Klas-
se gar nicht mehr erfiillt werden kann. Da aber die letzten Entscheidungen zuerst revidiert
werden, probiert der Solver zuerst alle Kombinationen fiir den restlichen Unterricht durch,
bevor er die falsch gesetzte Unterrichtsstunde irgendwann auf eine Kernstunde verschiebt.

5.3.6. Sortierung der Zeitslots

Zwar ist es in der Praxis sicherlich nicht moglich, nur mit Constraint Propagation und
ohne Backtracking auszukommen, sobald Bedingungen wie Kernstunden beachtet wer-
den miissen. Und wie Abbildung 5.1 deutlich zeigt, ist selbst bei einem sehr kleinen
Datensatz der Suchbaum bereits zu grofs, um ihn vollstindig mittels Backtracking zu
durchsuchen. Trotzdem kann die Backtracking-Methode zielfiihrend sein, wenn es gelingt,
die Fehlentscheidungen moglichst weit hinauszuzdgern, sodass sie moglichst frith wieder
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revidiert werden. Das bedeutet im Umkehrschluss, dass Entscheidungen, die mit hoher
Wahrscheinlichkeit richtig sind, zuerst gemacht werden sollten.

Im konkreten Fall der Kernstunden bedeutet das, dass ein Unterricht, der platziert werden
soll, bevorzugt auf eine Kernstunde gelegt werden sollte. Die natiirliche Ordnung der
Zeitslots ist die chronologische Ordnung. Diese Ordnung ist aber fiir die Losung des
Stundenplanproblems in der bisher vorgestellten Form unbedeutend. Es ist also problemlos
moglich, die Zeitslots so zu sortieren, dass Kernstunden am Beginn der Liste stehen.
Kombiniert mit der Heuristik ,,Choose Min Value” fithrt das dazu, dass Unterrichtsstunden
bevorzugt auf Kernstunden gelegt werden.

Tabelle 5.4. CSP mit Kernstunden und sortierten Zeitslots; unterteilt nach Variablen-Auswahl-
Heuristik

Datensatz A B C D
Rechenzeit (Or-Tools) | Oms 3ms >1h 19 ms
Failures (Or-Tools) 0 0 - 0 Choose First
Rechenzeit (Gecode) | Oms 2ms >1h 2l ms
Failures (Gecode) 0 0 - 0

Rechenzeit (Or-Tools) | 0ms 4ms 8ms’ 18 ms
Failures (Or-Tools) 0 1# ot 0
Rechenzeit (Gecode) | 0ms 1ms >1h 14 ms

Failures (Gecode) 0 0 - 0

* Nur bei einem Viertel der Versuche, sonst >1 h.
 Mittelwert

Choose Random

Obwohl es in manchen Fillen weiterhin zu Konflikten kommen kann, werden die falschen
Entscheidungen sehr frith wieder revidiert — auch wenn dies in den Tests nur mit Or-Tools
gelang. Beim Datensatz C war aufierdem etwas Gliick notig, um eine Losung zu finden.
Wie sich an der Anzahl der Failures, d. h. der Anzahl der erfolglos besuchten Blattknoten
zeigt, ist der Suchbaum einer erfolgreichen Suche nun nicht mehr linear — im Vergleich zu
allen vorherigen Berechnungen, die entweder gar nicht oder mit 0 Failures terminierten.
Durch das Umsortieren der Zeitslots — kombiniert mit einer passenden Heuristik — konnte
die Suche also erheblich verbessert werden.

5.3.7. Sortierung der Unterrichte

Zur weiteren Optimierung der Suchreihenfolge konnte man auch die Unterrichte sortieren,
sodass nicht nur die Werte sondern auch die Variablen im CSP so sortiert sind, dass die
schwierigeren Unterrichte friiher platziert werden. Dadurch werden Situationen vermieden,
in denen zwei Unterrichte verschiedener Klassen so gelegt werden, dass fiir eine Kopplung,
an der beide Klassen teilnehmen, kein moéglicher Zeitslot mehr tibrig bleibt. Sinnvoller
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ist es, zuerst den Zeitpunkt fiir die Kopplung festzulegen und danach den individuellen
Unterricht zu planen. Um die Unterrichte zu sortieren, kann man eine Ordnung fiir die
Unterrichte definieren, die zum Beispiel von der Anzahl der beteiligten Klassen und Lehrer
abhéngt, sowie bei Gleichheit von der Anzahl anderer Unterrichte abhidngt, an denen die
beteiligten Klassen und Lehrer wiederum beteiligt sind.

Dieser Ansatz brachte bei einigen Versuchen allerdings keine weiteren Verbesserungen
gegeniiber der bloflen Sortierung der Zeitslots, auch nicht in Kombination mit den weiteren
noch vorgestellten Bedingungen, sodass an dieser Stelle nicht genauer darauf eingegangen
wird.

5.3.8. Modellierung mit Statusvariablen

In Unterabschnitt 5.2.2 wurde eine alternative Art der Modellierung der Kernstunden-
Bedingung angesprochen, die fiir jede Unterricht-Zeitslot-Kombination eine zusétzliche
Statusvariable benétigt und dann analog zum linearen Programm mit bindren Variablen
modelliert werden kann. Tabelle 5.5 zeigt die unterschiedlichen Rechenzeiten, um zu
verdeutlichen, dass die konkrete Umsetzung einer Bedingung zwar durchaus mit einem
Faktor 2 bis 3 Einfluss auf die Laufzeit nehmen kann (beim groiten Datensatz). Dieser ist
jedoch verschwindend gering im Vergleich zu den Unterschieden zwischen terminierter
Berechnung (unter einer Sekunde) und sehr lang laufender Berechnung (iiber eine Stunde)
— denn auch mit Statusvariablen terminieren die Berechnungen nach einer Stunde nicht,
wenn die Zeitslots nicht vorab sortiert werden. Die Wahl der konkreten, effizienten Im-
plementierung eines bestimmten Constraints ist also zunédchst zweitrangig. Hinweis: Die
Ergebnisse der Berechnungen ohne Zeitslot-Sortierung sind in der Tabelle nicht aufgefiihrt,
weil sie mangels Terminierung keinen Vergleich erlauben.

Tabelle 5.5. Vergleich von Modellierungs-Varianten der Kernstunden-Bedingung

Datensatz A B C D
Rechenzeit (Or-Tools) | Oms 4ms 8ms 18 ms .
Failures (Or-Tools) 0 1 9 0 count-Constraint
Rechenzeit (Or-Tools) | 1ms 6ms 10ms 46 ms } Statusvariablen
Failures (Or-Tools) 0 1 9 0

5.3.9. Weitere Bedingungen

Unter den in Abschnitt 2.4 vorgestellten Bedingungen sind nur noch wenige, die sich ohne
die Verwendung komplexer Constraints umsetzen lassen.
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Zum einen sind das die Nichtverfiigbarkeiten von Lehrern. Wenn ein Lehrer [ € L in einem
Zeitslot z € Z nicht verfiigbar ist, kann keiner seiner Unterrichte zu diesem Zeitpunkt
stattfinden, was sich wie folgt formulieren lasst:

Vuel ] Vi<i<W(u): x, #z

Zum anderen ist es die Fixierung von einigen Unterrichtsstunden auf vorgegebene Zeitslots.
Fiir jeden der fixen Zeitslots {z1,...,z¢} < Z fiir einen Unterricht u € U wird eine der
Variablen x,,; fixiert: Vi<i<k: x,; =2z
Zusétzlich muss beachtet werden, dass die fixierten Zeitslots vom Symmetry Breaking
ausgenommen werden miissen, weil sonst der gesamte nicht-fixierte Unterricht nach den
fixen Zeitslots stattfinden miisste. Dadurch nimmt die Anzahl der Constraints durch fixierte
Unterrichtsstunden um maximal eins zu pro Unterricht. Weil in der Summe aber durch die
Vorbelegung einer Variablen mehr Informationen zur Losung des CSP vorliegen, wird die
Probleminstanz durch diese Bedingung eher einfacher.

Die beiden genannten Bedingungen lassen sich als einfache (Un-)Gleichungen implemen-
tieren und verbieten lediglich das Setzen von Unterricht an bestimmten Stellen, sodass die
Constraint Propagation ausreicht, um die Constraints zu erfiillen. Dementsprechend haben
sie keinen negativen Einfluss auf die Laufzeit oder gar den Erfolg der Berechnung;:

Tabelle 5.6. CSP mit Kernstunden, Nichtverfiigbarkeiten und fixierten Unterrichtsstunden

Datensatz A Bt ct D
Anzahl Variablen 16 114 236 467
Anzahl Constraints (Or-Tools) 24 516 1090 4182
Anzahl Constraints (Gecode) 15 155 299 728
Rechenzeit (Or-Tools) | Oms 4ms >1h 20ms
Rechenzeit (Gecode) | 0ms 1ms >1h 21 ms

T Enthilt keine fixierten Unterrichtsstunden

Die weiteren Bedingungen wie Doppelstunden, ein freier Tag fiir ausgewédhlte Lehrer
oder die Begrenzung auf tdglich maximal zwei Stunden Unterricht je Fach sind nur
mit komplexen Constraints, deren Propagierung mehr Rechenzeit in Anspruch nimmt,
und/oder mit einer grofien Anzahl von Statusvariablen umsetzbar. Insbesondere fiir
die Erfiillung der weichen Bedingungen, die als gewichteter numerischer Wert in eine
Zielfunktion eingehen miissen, sind solche Statusvariablen unverzichtbar.

Beispielhaft wurde die Doppelstunden-Bedingung mit Statusvariablen implementiert. Um
einen besseren Vergleich mit dem Suchbaum in Abbildung 5.1 zu erlauben, wurde der
dort verwendete Datensatz B um (nur) eine Doppelstunde in der dritten und vierten
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Abbildung 5.2. Suchbaum (Gecode) von Datensatz B mit einer Doppelstunde
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Stunde erweitert. Ublicherweise findet das Doppelstundenmodell an Schulen mindestens
am Vormittag und oft auch am gesamten Tag Anwendung. Abbildung 5.2 zeigt, dass bereits
bei einem einzigen Doppelstundenpaar sehr viele Statusvariablen erstellt werden miissen,
die die Tiefe des Suchbaums im Vergleich mit Abbildung 5.1 deutlich erhéhen.

Bei durchgehendem Doppelstundenmodell oder bei der Verwendung anderer (weicher)
Bedingungen mdiisste der Solver also fiir jede Kombination aus Unterrichtsstunde und
Zeitslot eine bindre Statusvariable erstellen, die aussagt, ob die Unterrichtsstunde auf den
Zeitslot gelegt wird oder nicht. Es liegt daher nahe, diese bindren Variablen direkt zur
Grundlage der Modellierung zu machen und die weiteren Constraints darauf aufbauend
zu formulieren. Dieser Ansatz wird im néachsten Kapitel vorgestellt.

5.4. Alternative Modellierung

Die oben vorgestellte CSP-Modellierung hat den Vorteil, dass sie intuitiv ist, wenige Varia-
blen verwendet (nur eine pro unterrichteter Wochenstunde), die Bedingung fiir die korrekte
Anzahl Wochenstunden nicht als eigenen Constraint angeben muss und fiir die Konflikt-
freiheit auf den performanten alldifferent-Constraint zurtickgreifen kann. Dennoch kann
es sich lohnen, eine andere Art der Modellierung zu wéhlen. Zum einen ist nicht nur die
Anzahl der Variablen, sondern auch die Grofle der Dominen entscheidend fiir die Zahl der
Losungen, die untersucht werden miissen. Zum anderen kann durch eine Modellierung mit
weniger komplexen Constraints dieselbe Probleminstanz parallel als lineares Programm
modelliert und dessen Relaxierung zur Verkleinerung der CSP-Instanz und damit des
Suchbaums verwendet werden (siehe dazu Kapitel 6). Dementsprechend hat die zweite hier
vorgestellte CSP-Modellierung des Stundenplanproblems eine grofiere Anzahl an Variablen
und Constraints, verwendet dafiir aber strukturell einfachere Constraints, die sich schneller
propagieren und auflerdem auch als lineare Gleichungen ausdriicken lassen.

Analog zu der in Unterabschnitt 3.3.1 beschriebenen LP-Formulierung wird nun auch
hier pro Unterricht u € U (nicht pro Unterrichtsstunde) und pro Zeitslot z € Z eine
binédre Variable x,; erstellt. Fiir Details zur Modellierung siehe Unterabschnitt 3.3.1. Der
Vorteil dieser Art der Modellierung ist, dass es keine symmetrischen Losungen mehr in
Bezug auf verschiedene Unterrichtsstunden zu einem bestimmten Unterricht gibt, weil
die Variablen pro Unterricht und nicht pro Unterrichtsstunde erstellt werden. Dafiir muss
pro Unterricht ein zuséatzlicher Constraint eingefiigt werden, der die richtige Anzahl an
Wochenstunden erzwingt. Die jeweiligen bindren Ungleichungen zu allen Bedingungen
werden von den Solvern direkt verstanden und in effiziente Propagatoren umgesetzt, die
fuir bindre Variablen optimiert sind.
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5.4. Alternative Modellierung

5.4.1. Nur Konfliktfreiheit

Genau wie bei der in Abschnitt 5.2 vorgestellten Variante gelingt es auch hier bei allen
Datensitzen, innerhalb kiirzester Zeit eine Losung zu finden, solange nur die Konfliktfrei-
heit gefordert ist. Auffallig ist, dass der schwierigste Datensatz C nur mittels Backtracking
gelost werden kann.

Tabelle 5.7. Bindres CSP nur mit Konfliktfreiheits-Bedingung

Datensatz A B C D
Anzahl Variablen | 156 1036 1512 8602
Anzahl Constraints | 103 472 677 2901
Rechenzeit (Or-Tools) | Oms 1ms 115ms 8 ms
Rechenzeit (Gecode) | 0ms 7ms 70s 210 ms
Failures (beide) 0 0 9576 0

Als Heuristik wurde ,,Choose First Variable” und ,,Choose Max Value” gewdhlt, was dazu
fithrt, dass die Unterrichte der Reihe nach auf den ersten moglichen Zeitslot fixiert werden,
da die erste mogliche Variable auf ihren maximalen Wert (also 1) gesetzt wird.

5.4.2. Mit Kernstunden

Die Forderung nach Kernstunden ldsst sich mit bindren Variablen besonders einfach
ausdriicken, indem der Constraint fiir die Konfliktfreiheit einer Klasse abgewandelt wird:
Anstatt hochstens einer (< 1) Unterrichtsstunde zu einem bestimmten Zeitpunkt ist nun
genau eine (= 1) gefordert. Dementsprechend bleibt die Anzahl der Constraints gleich,
wenngleich die Schwierigkeit der Probleminstanz nattirlich stark zunimmt.

Tabelle 5.8. Binidres CSP mit Kernstunden

Datensatz | A B C D
Anzahl Variablen | 156 1036 1512 8602
Anzahl Constraints | 103 472 677 2901
Rechenzeit (Or-Tools) | 0ms" >1h 144 mst >1h
Rechenzeit (Gecode) | 0ms’ 6ms >1h >1h

T Der Datensatz A enthilt keine Kernstunden
¥ Nach 14958 Failures

Im Vergleich zur ersten Modellierungs-Variante (siehe Tabelle 5.3) fillt auf, dass nicht alle
Datensédtze unlosbar sind, sondern dass Or-Tools und Gecode jeweils einen (Zufalls-)Treffer
landen. Das ist moglich, wenn die Variablen so angeordnet sind, dass ganz ohne Back-
tracking bzw. mit nur wenigen Failures eine Losung gefunden werden kann. Es sei darauf
hingewiesen, dass die CSP-Suche nicht randomisiert ist, sondern lediglich die Variablen
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5. Losung mittels Constraint Programming

und Constraints aus implementierungstechnischen Griinden in leicht unterschiedlichen
Reihenfolgen an die Solver tibergeben wurden.

Da aber der Grofiteil der Berechnungen nicht erfolgreich verlief, muss auch hier eine
Moglichkeit zur Verkleinerung und/oder Anordnung des Suchbaums gefunden werden,
damit die Backtracking-Suche sinnvoll eingesetzt werden kann.

5.4.3. Sortierung der Zeitslots

Analog zu dem in Unterabschnitt 5.3.6 gezeigten Ansatz konnen auch hier die Zeitslots
so sortiert werden, dass die Variablen x,,, die zu einer Kernstunde z € Z; gehoren, zuerst
abgearbeitet werden. In Kombination mit der Werteheuristik , Choose Max Value” wird
der Unterricht dann bevorzugt auf diese Zeitslots gelegt.

Tabelle 5.9. Bindres CSP mit Kernstunden und sortierten Zeitslots

Datensatz ‘ A B C D
Anzahl Variablen | 156 1036 1512 8602
Anzahl Constraints | 103 472 677 2901
Rechenzeit (Or-Tools) | 0ms* >1h >1h >1h
Rechenzeit (Gecode) | 0mst 6ms >1h >1h

* Der Datensatz A enthilt keine Kernstunden

Leider verfehlt diese Optimierung bei der bindren Modellierungs-Variante ihre Wirkung.
Durch die Sortierung der Zeitslots kénnen keine zusitzlichen Datensétze gelost werden,
stattdessen ist nun auch Or-Tools (zuféllig) nicht mehr in der Lage, den Datensatz C zu
losen.

Da alle erzielten Losungen von bindren Probleminstanzen mit Kernstunden eher als
Zufallstreffer einzustufen sind, bei denen die Variablen zufillig in der richtigen Reihenfolge
waren, scheint eine Umsortierung der bindren Variablen nicht auszureichen. Stattdessen
muss das urspriingliche Problem, dass der Suchbaum zu grof ist, gelost werden.

Eine naheliegende Moglichkeit, um den Losungsraum und damit den Suchbaum zu
verkleinern, ist das Fixieren von Variablen auf hoffentlich sinnvolle Werte. Anstatt die zu
fixierenden Werte heuristisch auszuwéhlen, wird ein anderer Ansatz verfolgt, der auch die
Motivation dafiir war, das Problem iiberhaupt binidr zu modellieren. Im folgenden Kapitel
wird eine Technik vorgestellt, mit der die LP-Relaxierung einbezogen werden kann, um
Werte vorab zu fixieren.
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Kapitel 6

Einbezug der LP-Relaxierung

Der in diesem Kapitel beschriebene Losungsansatz kombiniert den bindren Ansatz aus
Abschnitt 5.4 mit der LP-Formulierung aus Abschnitt 3.3. Zunéchst wird in Abschnitt 6.1
dargelegt, wieso diese Methode erfolgsversprechend ist. Die Abschnitte 6.3, 6.4 und 6.5 stel-
len drei verschiedene Moglichkeiten vor, wie die Kombination der beiden Modellierungen
sinnvoll vorgenommen werden kann, und analysieren die Ergebnisse. Abschnitt 6.6 zeigt ei-
ne Methode, mit der aus dem Konfliktgraphen der Probleminstanz zusétzliche Constraints
gewonnen werden konnen, um die LP-Formulierung zu verschérfen. Abschlieffend wird in
Abschnitt 6.7 untersucht, wie sich die zuvor entwickelten Losungsansitze verhalten, wenn
weitere Bedingungen eingehalten werden sollen.

6.1. Motivation

In Abschnitt 5.4 wurde eine Modellierung des Stundenplanproblems als Constraint Satisfac-
tion Problem vorgestellt, die strukturell der Umsetzung von Weidler [2012] als ganzzahliges
lineares Programm (ILP) gleicht. Gibt man die Forderung nach der Ganzzahligkeit in die-
sem linearen Programm auf, so erhilt man eine relaxierte Form der Probleminstanz. Die
Bedingung x,, € {0,1} wird also ersetzt durch 0 < x,; < 1. Im Unterschied zum ur-
spriinglichen, NP-schweren ILP ist das zugehorige relaxierte Problem in Polynomialzeit
losbar.

Ob es tiberhaupt zielfithrend ist, die LP-Relaxierung zu verwenden, ldsst sich durch einen
Vergleich der Zielfunktionswerte der optimalen ganzzahligen und der optimalen reellen
Losungen untersuchen. Aufierdem ist es von Interesse, wie dhnlich sich die Belegungen
der beiden Losungen sind. Die Werte wurden dabei mit Gurobi und der SchulScheduler-
Modellierung (siehe auch Kapitel 4) ermittelt, wobei die Zielfunktion leicht perturbiert
wurde, um stets die gleiche aus mehreren optimalen Losungen zu erhalten.
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6. Einbezug der LP-Relaxierung

Tabelle 6.1. Zielfunktionswerte von LP und ILP (berechnet mit Gurobi)

Datensatz A B C D
OPTint | -8,000-101 -2,715.10° -2,372:10° -1,652-10*F
OPTrgrac | -8,200-10' -2,715.10° -2,372-10° -1.812-10*
Anteil gleicher Werte 90,2 % 82,5 % 71,7 % 84,3 %
Anteil dhnlicher Werte 96,5 % 95,9 % 94,8 % 97,5 %
Anteil gednderter Werte 3,5 % 4,1 % 5,2 % 2,5 %
Rechenzeit fiir Relaxierung 6 ms 91 ms 119 ms 40s

* Nicht optimal. Die Berechnung wiirde iiber Tage laufen und wurde deshalb
nach 40 Minuten bei einer verbleibenden Gap von 0,19 % abgebrochen.

Tabelle 6.1 zeigt, dass die Zielfunktionswerte stets von der gleichen Gréflenordnung und
in den meisten Fallen sogar bis auf mindestens drei Nachkommastellen gleich sind. Auch
inhaltlich sind sich die Losungen sehr dhnlich: Der Grofiteil der Variablen (zwischen
70 % und 90 %) ist bereits in der Losung der LP-Relaxierung ganzzahlig (,gleich” in der
Tabelle) und etwa 95 % der Variablen wurden so gerundet wie erwartet (also ab 0,5 zu 1
aufgerundet; ,dhnlich” in der Tabelle).

Weiterhin lohnt es sich nur, die LP-Relaxierung mit einzubeziehen, wenn diese in ak-
zeptabler Zeit berechnet werden kann. Dem kommerziellen Solver Gurobi, der auch die
ganzzahligen Probleminstanzen 19sen kann, gelingt das in kiirzester Zeit. Ein kurzer Ver-
such (ohne genaue Messung) mit den offenen LP-Solvern glpk, Ip_solve, und SYMPHONY
(Clp) zeigte, dass auch diese in unter einer Minute die optimale reelle Losung bestimmen
konnen.

6.2. Mbogliche Vorgehensweisen

Um von einer reellen Losung auf eine mogliche (und im Fall eines Optimierungsproblems
eine moglichst gute) Losung des urspriinglichen Problems zu schlieSen, gibt es mehrere
verschiedene Ansitze. Eine Moglichkeit ist, gezielt so zu runden, dass dabei zumindest
keine Bedingungen verletzt werden und dass der Wert der Zielfunktion sich nicht zu stark
verschlechtert. Zum Beispiel sind die Werte der LP-Relaxierung des Vertex-Cover-Problems
stets halbzahlig (also 0 oder 0,5 oder 1) und man erhilt eine 2-Approximation, indem
man alle Werte von 0,5 auf 1 rundet. Im Unterschied zum Stundenplanproblem hat das
Vertex-Cover-Problem jedoch die Eigenschaft, dass die extreme Losung, die alle Variablen
auf 1 setzt, immer noch zuléssig ist. Beim Stundenplanproblem hingegen ist es in der Regel
weder moglich, alle Variablen auf 0 zu setzen, noch alle Variablen auf 1 zu setzen. Das
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6.3. Ganzzahlige Werte fixieren

bedeutet, dass bei unvorsichtigem Runden leicht Bedingungen verletzt werden kénnen,
sodass die Losung unzuldssig wird.

Der hier vorgestellte Ansatz ist allerdings tiberhaupt nicht darauf angewiesen, dass jede
Variable einen ganzzahligen Wert direkt aus der LP-Relaxierung zugewiesen bekommt.
Im Gegenteil ist es sogar gewiinscht, dass einige Variablen unbesetzt bleiben, da die
LP-Relaxierung nur dazu dienen soll, diejenigen Variablen zu fixieren, deren Werte als
vergleichsweise sicher angenommen werden kénnen. Es wire also ein Vorgehen denkbar,
bei dem alle Werte unterhalb von (zum Beispiel) 0,1 abgerundet, alle Werte oberhalb von
0,9 aufgerundet und die {ibrigen vom CSP-Solver bestimmt werden.

6.3. Ganzzahlige Werte fixieren

Noch vorsichtiger ist der Ansatz, tiberhaupt nicht zu runden, sondern nur Werte, die
bereits in der Losung der LP-Relaxierung ganzzahlig sind (also 0,0 und 1,0), zu fixieren.
Leider zeigen aber die Ergebnisse, dass selbst dieser Ansatz bereits zu weit geht, sodass
einige Datensédtze unlosbar werden:

Tabelle 6.2. Bindres CSP mit Fixieren von ganzzahligen Werten aus der LP-Relaxierung

Datensatz A B C D

Anzahl Variablen | 156 1036 1512 8602

Anzahl Constraints | 103 472 677 2901
Rechenzeit (Relaxierung) | 3 ms 14 ms 26 ms 258 ms

Anzahl fixierter 1-Werte 5 114 194 153

Anzahl fixierter 0-Werte | 129 922 1234 7750
Gesamtzahl Constraints | 237 1508 2105 10804

Rechenzeit (Or-Tools) | Oms 1ms unlosbar unldsbar

Hinweis: Die Berechnung basiert auf der Modellierung aus Abschnitt 5.4 mit Konflikt-
freiheit, Zeitslot-Sortierung und Kernstunden. Fiir jeden zu fixierenden Wert wurde ein
zusétzlicher Constraint der Form x,; = 1 bzw. x,,; = 0 eingefiigt.

6.3.1. Unlosbare Probleminstanzen beim Fixieren von Nullen

Zwar sinkt die verbleibende Rechenzeit fiir Or-Tools bei den Datensidtzen A und B deutlich
ab, was zeigt, dass durch den Einbezug der LP-Relaxierung die Probleminstanz einfacher
geworden ist. Aber bei den anderen beiden Datensitzen wird die Probleminstanz durch
das Fixieren der 0- und 1-Werte unldsbar.
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6. Einbezug der LP-Relaxierung

Einerseits um sicher zu gehen, andererseits zur Untersuchung der Ursachen, wurde die
Unlosbarkeit auch mit Gurobi und einem ganzzahligen linearen Programm der gleichen
Struktur nachvollzogen. Neben der blofien Feststellung der Unlosbarkeit ist Gurobi in der
Lage, eine minimale Teilmenge der Constraints zu bestimmen, die zur Unldsbarkeit fiihrt.
Durch systematisches Analysieren der Zusammenhénge zwischen diesen Constraints (siehe
Abbildung 6.1) und durch iteratives Vereinfachen der Probleminstanzen konnte schlieslich
eine minimale Probleminstanz gefunden werden, an der das Problem demonstriert werden
kann. Das Problem entsteht durch eine ungiinstige Kombination aus Kopplungen (siehe
Abschnitt 4.3) und Kernstunden.
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Abbildung 6.1. Mit Papier, Stift und Klebeband verschaffte sich der Autor einen Eindruck davon,
wie aufwindig die manuelle Stundenplanung in der Praxis sein muss.

Die minimale Probleminstanz besteht aus zwei Klassen A und B, drei Fachern F, G und
H, die von jeweils einem Lehrer unterrichtet werden (diese heiffen zur Vereinfachung
ebenfalls F, G und H), sowie drei Zeitslots 1, 2, und 3 (insgesamt, nicht pro Tag), die alle
drei Kernstunden sind. Jede der Klassen wird in jedem der Facher genau eine Stunde lang
unterrichtet. Dadurch hat jede Klasse genau drei Stunden Unterricht, die Kernstunden-
Bedingung ldsst sich also erfiillen. Auflerdem findet der Unterricht im Fach H gemeinsam,
also gekoppelt statt. Wahrend die Lehrer F und G also zwei Stunden pro Woche arbeiten
miissen, hilt der Lehrer H seinen Unterricht nur ein Mal.

Neben der Konfliktfreiheit, den Kernstunden und natiirlich der Erfiillung des geforderten
Unterrichts gibt es keine weiteren Bedingungen. Dass die Probleminstanz prinzipiell 16sbar
ist, lasst sich am einfachsten durch Angabe von zuldssigen Stundenpldnen zeigen — hier
aus Sicht der beiden Klassen:
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6.3. Ganzzahlige Werte fixieren

Tabelle 6.3. Mogliche Losung fiir die minimale Probleminstanz

Zeit | Unterricht A Unterricht B

1 F G
2 G F
3 H H

Wie man leicht nachpriifen kann, muss kein Lehrer zwei Unterrichte gleichzeitig halten,
jede Klasse erhalt ihren geforderten Unterricht und die Unterrichtsstunde im Fach H findet
gemeinsam statt.

Interessanterweise liefert Gurobi bereits in der Presolve-Phase diese Losung. Im Normalfall
ist diese Probleminstanz aber in ein grofieres Umfeld von weiteren Constraints eingebettet,
die dazu fiihren, dass der LP-Solver unter Umstdnden eine andere Losung zuriickgibt.
Prinzipiell muss die Vorgehensweise zum Einbeziehen der LP-Relaxierung mit jeder zulas-
sigen relaxierten Losung zurechtkommen. Wenn man im gegebenen Beispiel drei weitere
Zeitslots 4, 5 und 6 hinzuftigt, die jedoch keine Kernstunden sind, dndert das zunéchst
nichts an der Zuldssigkeit der gegebenen Losung — die {iberfliissigen Zeitslots bleiben
einfach fiir alle Klassen unterrichtsfrei. Die zusé&tzlichen Zeitslots fiihren jedoch dazu, dass
Gurobi eine andere Losung fiir die LP-Relaxierung berechnet.

Wir gehen also davon aus, dass aufgrund der Struktur des Problems ,,um” diese minimale
Probleminstanz herum der LP-Solver eine beliebig ungiinstige, aber dennoch zuldssige
reelle Losung liefern kann. In diesem Fall sei die Losung wie folgt aufgebaut:

Tabelle 6.4. Werte fiir x,,, aus der LP-Relaxierung

) Y AF AG BF BG ABH

1| 12 0 1/2 0 1/2
2| 12 /2 1/2  1)2 0
3 0 1/2 0 1/2 1/2

Der Wert x,,, gibt an, ob der Unterricht u € U zum Zeitpunkt z € Z stattfindet. Beispiels-
weise bedeutet die 0 unten links in der Tabelle, dass der Unterricht A-F sicher nicht zum
Zeitpunkt 3 stattfindet.
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6. Einbezug der LP-Relaxierung

Wir tiberpriifen nun, ob alle Bedingungen eingehalten wurden:

* Von jedem Unterricht findet wie gefordert insgesamt eine Stunde statt, da die Spalten-
summen 1 sind.

* Es gibt keine Konflikte fiir Klassen oder Lehrer, da die Summe der zu einer Klasse bzw.
einem Lehrer gehorenden Werte in einer Zeile nie grofer als 1 ist.

* Die Kernstunden-Bedingung wird eingehalten, weil die Summe der zu einer Klasse
gehorenden Werte in einer Zeile immer genau 1 ist.

Das Fixieren betrifft in diesem Fall nur die 0-Werte, weil es keine 1-Stellen gibt. Wir zeigen
nun, dass es fiir die tibrigen Werte keine zulédssige ganzzahlige Losung mehr geben kann:
Fiir den gekoppelten Unterricht H muss entweder Zeitslot 1 oder Zeitslot 3 gewdhlt werden.
Wenn Zeitslot 1 gewahlt wird, gilt fiir beide Klassen, dass sie in diesem Zeitslot keine Zeit
mehr haben. Deswegen muss der Unterricht im Fach F bei beiden Klassen zum Zeitpunkt 2
stattfinden, denn zum Zeitpunkt 3 ist er verboten, weil die LP-Relaxierung hier den Wert 0
zugewiesen hat. Da aber beide Klassen im Fach F vom selben Lehrer F unterrichtet werden,
konnen diese Unterrichte nicht zeitgleich stattfinden, sodass es keine Losung gibt. Ein
analoger Widerspruch ergibt sich mit Lehrer G, wenn man annimmt, dass der Unterricht
H zum Zeitpunkt 3 stattfindet.

Zwar entsteht dieser Konflikt nur durch die Kombination aus Kopplungen mit Kernstunden
und einer ungiinstig gewihlten reellen Losung, doch in der Praxis kommt dieser Fall
sehr héufig vor. Bei Tests mit verschiedenen LP-Solvern, verschiedenen Algorithmen in
Gurobi (Innere-Punkte-Verfahren und Dual-Simplex) und verschiedenen (randomisierten)
Reihenfolgen der Variablen und Constraints ergaben sich jeweils unterschiedliche Losungen
fiir die LP-Relaxierung, von denen etwa zwei Drittel nach dem Fixieren des ganzzahligen
Anteils zu unldsbaren Probleminstanzen fiihrten. Auch wenn mit einer Zielfunktion, die
sich aus den weichen Bedingungen der Problemstellung und einer leichten Perturbation
ergibt, eine eindeutige optimale Losung fiir die LP-Relaxierung gefunden werden kann,
16st diese das Problem fiir die Datensédtze C und D leider nicht auf.

6.4. Nur Einsen fixieren

Im oben gezeigten Beispiel und auch in allen anderen untersuchten (gréfieren) Féllen
entsteht das Problem durch die Fixierung der 0-Werte, die effektiv die Platzierung eines
Unterrichts auf einen bestimmten Zeitslot verbieten. In gréfleren Probleminstanzen ist
stets eine Kopplung mit im Spiel, sowie eine grofiflachige Zahl von ,, Verboten” fiir einen
bestimmten Unterricht. Abbildung 6.2 schliisselt fiir einen bestimmten, beispielhaften Fall
auf, aus welchen Griinden die zwei verbleibenden Stunden eines Unterrichts nicht platziert
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6.4. Nur Einsen fixieren

Stunde | Montag Dienstag Mittwoch Donnerstag Freitag
1 K K K 0 L
2 L K 0 0 K
3 L K L 0 K
4 L L K 0 K
5 0 L L 0 0
6| KL 0 0 L L
7 0 0 K L G
8 0 L 0 0 G
9 0 0 L G

10 K 0 0 L G

Abbildung 6.2. Analyse einer unlsbaren Probleminstanz (K = Konflikt mit anderem Unterricht der
Klasse, L = Konflikt mit anderem Unterricht des Lehrers, G = Zeitslot gesperrt, 0 = Verboten durch
LP-Relaxierung)

werden konnten. Fiir beide bleibt nur ein einziger Zeitslot (Di9) iibrig, weil knapp die
Halfte der iibrigen Zeitslots durch die 0-Werte aus der LP-Relaxierung blockiert sind.

Dabher liegt die Idee nahe, auf das Fixieren der 0-Werte zu verzichten und nur die Einsen zu
betrachten. Die Idee erscheint nicht zuletzt deshalb plausibel, weil das sichere Stattfinden
eines Unterrichts eine deutlich starkere Information ist als das Nicht-Stattfinden. Denn in
jeder der vielen Gleichungen der Form x; + - -- + x; < 1, aus denen das lineare Programm
zum grofiten Teil besteht, kann nur eine einzige Variable den Wert 1 annehmen, wahrend
der Wert 0 leicht mehrfach zu vergeben ist. Das zeigt sich auch an den Statistiken in
Tabelle 6.2, wo erheblich mehr 0-Werte fixiert wurden als 1-Werte.

Bei der Durchfiihrung der Berechnungen ohne die Fixierung von 0-Werten, d. h. nur mit
fixierten 1-Werten, scheint das Problem der Unlosbarkeit zundchst vollig verschwunden zu
sein:

Tabelle 6.5. Bindres CSP mit Fixieren von 1-Werten

Datensatz A B C D
Anzahl Variablen | 156 1036 1512 8602
Anzahl Constraints | 103 472 677 2901
Rechenzeit (Relaxierung) | 3ms 14ms 26ms 258 ms
Anzahl fixierter 1-Werte 5 114 194 153
Gesamtzahl Constraints | 108 586 871 3054
Rechenzeit (Or-Tools) | 0ms 2ms 2 ms >1h
Rechenzeit (Gecode) | 0ms Oms >1h 697 mst

* Nach 116 Failures
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6. Einbezug der LP-Relaxierung

Die in Tabelle 6.5 aufgefithrten Messungen basieren auf den von Gurobi (deterministisch)
ausgewdhlten optimalen Losungen fiir die LP-Relaxierung. Zwar wird die reelle Losung
jeweils deterministisch ausgewdhlt, aber es handelt sich dennoch um eine willkiirliche
Auswahl aus einer Menge moglicher Losungen. Um zu untersuchen, inwiefern die Ergeb-
nisse auf Zufallstreffer zuriickzufiihren sind oder nicht, wurden die Berechnungen mit
unterschiedlichen Losungen wiederholt. Zur Generierung dieser zuséatzlichen Losungen
wurde eine zufdllig ausgewéhlte Variable geandert und fixiert, um die Losung zunéchst
unzuldssig zu machen, und anschlielend wieder eine optimale Losung gesucht. Dieses
Verfahren wurde fiir jeden Datensatz insgesamt 100 Mal durchgefiihrt und anschlieffend
ermittelt, ob die durch das Fixieren zustande gekommene Probleminstanz noch l6sbar
ist, sowie ob sie dann auch tatsdchlich gelost wird. Die Ergebnisse sind in Tabelle 6.6
dargestellt.

Tabelle 6.6. Einfluss der fixierten 1-Werte auf die Losbarkeit

Datensatz | A B C D
Anzahl 16sbarer Instanzen | 100 100 80 100
Anzahl unldsbarer Instanzen 0 0 20 0

Anzahl geloster Instanzen (Or-Tools) | 100 100 48 0
Anzahl geltster Instanzen (Gecode) | 100 100 50 16
Anzahl Timeouts >10 s (Or-Tools) | 0 0 32 100
Anzahl Timeouts >10 s (Gecode) | 0 0 30 84
Anzahl erkannter Unlosbarkeiten (Or-Tools) - - 10 -
Anzahl erkannter Unlosbarkeiten (Gecode) - - 8 -
Anzahl Variablen | 156 1036 1512 8602
Durchschnittlich fixierte 1-Werte (unlosbar) - - 204,6 -
Durchschnittlich fixierte 1-Werte (16sbar) | 5,1 112,3 185,55 1645
Durchschnittlich fixierte 1-Werte (gelost) | 5,1 112,3 1929 166,7
Durchschnittlich fixierte 1-Werte (Timeout) - - 173,8 1644

Zunichst fillt auf, dass die Probleminstanz selbst dann unldsbar werden kann, wenn
ausschliefilich die 1-Werte fixiert werden. Das ist allerdings dufierst selten und tritt nur
beim Datensatz C auf - die Griinde dafiir werden in Unterabschnitt 6.4.1 genauer erldutert.

Von den losbaren Instanzen konnten dennoch nicht alle gelost werden, weil dem CSP-Solver
zu wenig Information zur Verfiigung stand, um schnell eine Losung zu finden. Da die
fritheren Messungen gezeigt haben, dass eine Losung entweder sehr schnell (innerhalb von
weniger als einer Sekunde) oder erst nach mehreren Stunden gefunden wird, wurde die
Berechnung nach 10 Sekunden abgebrochen und die Berechnung in diesem Fall als erfolglos
gezdhlt (Timeout). Wiahrend die Datensédtze A und B immer geldst werden konnten, was
im Fall von Datensatz B ohne LP-Relaxierung nicht gelingt, wurde fiir Datensatz D auch
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6.4. Nur Einsen fixieren

mit LP-Relaxierung nur duflerst selten eine Losung gefunden. Aufierdem zeigt sich, dass
mehr fixierte Werte im Mittel eher dazu beitragen, dass die Instanz gelost werden kann.

Hierbei bleibt allerdings unklar, wie weit sich die nach dem Fixieren gefundene Losung
vom Optimum entfernt hat. Auf der anderen Seite ist es gerade einer der Vorteile der
LP-Relaxierung, dass damit auf vergleichsweise kostengiinstige Weise die Zielfunktion mit
eingebunden werden kann. Die gerundeten/fixierten Werte gehoren zu einer optimalen
reellen Losung und sind daher schon relativ dicht am Ziel. Dadurch entfallen viele der
aufwindigen Iterationen, die ein CSP-Solver zum Optimieren durchfiihren muss (siehe
Unterabschnitt 5.1.3) — sofern die Probleminstanz nicht bereits unlosbar geworden ist.

Zur Einschitzung der Anzahl der fixierten Variablen sei angemerkt, dass ein fixierter
1-Wert eine ganze Reihe von Variablen indirekt festlegt. Beispielsweise fallen durch die
Fixierung einer Unterrichtsstunde automatisch alle anderen Unterrichte der gleichen Klasse
bzw. des gleichen Lehrers zu diesem Zeitpunkt weg. Und wenn durch die LP-Relaxierung
alle Stunden eines Unterrichts fixiert werden, kann dieser in allen tibrigen Zeitslots nicht
mehr stattfinden, sodass fast |Z| Variablen durch eine einzige 1 festgelegt werden. So
wurden zum Beispiel im Fall von Datensatz D (siehe Tabelle 6.5) von den insgesamt 8602
Variablen nur 153 auf 1 fixiert. Bei der Berechnung mit Gecode mussten dennoch nur 306
weitere Entscheidungen zur Belegung von Variablen getroffen werden — alle weiteren Werte
konnten durch Constraint Propagation hergeleitet werden, die insgesamt 5887 Mal aktiv
war, um die verbleibenden 8143 Variablen zu belegen.

6.4.1. Unlosbare Probleminstanzen beim Fixieren von Einsen

Die Ergebnisse in Tabelle 6.6 zeigen, dass es im Fall von Datensatz C in einem Fiinftel der
Falle zur Unlosbarkeit kommt, wenn die 1-Werte aus der LP-Relaxierung fixiert werden. Mit
einem dhnlichen Vorgehen wie in Unterabschnitt 6.3.1 wurde durch manuelle Analyse der
Ursachen eine minimale Probleminstanz ermittelt, an der sich das Problem demonstrieren
lasst.

Genau wie im obigen Beispiel gibt es auch hier zwei Klassen A und B, die in den drei
Fachern F, G und H jeweils eine Unterrichtsstunde pro Woche haben, wobei das Fach H
gemeinsam (also gekoppelt) unterrichtet wird. Fiir die Facher G und H gibt es weiterhin
jeweils einen Lehrer. Im Fach F werden die beiden Klassen jedoch — im Unterschied
zum obigen Beispiel — von jeweils einem eigenen Lehrer unterrichtet, die mit F4 und Fp
bezeichnet werden. Es stehen weiterhin drei Zeitslots zur Verfiigung.

Da die Arbeitsteilung im Fach F, das nun von zwei Lehrern tibernommen wird, keine
zusétzliche Einschrankung darstellt, ist die oben angegebene Losung weiterhin zuldssig:
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6. Einbezug der LP-Relaxierung

Tabelle 6.7. Mogliche Losung fiir die minimale Probleminstanz beim Fixieren von Einsen

Zeit | Unterricht A  Unterricht B

1 Far G
2 G Fg
3 H H

Analog kann man nun nachpriifen, dass keine Konflikte auftreten und dass die geforderten
Unterrichte alle stattfinden. Hinweis: Auch wenn sie es in dieser Losung nicht tun, konnten
F4 und Fp zeitgleich stattfinden.

Zwar berechnet Gurobi fiir die LP-Relaxierung genau diese (ganzzahlige!) Losung, aber es
sind weitere reelle Losungen denkbar, die zu Problemen fiithren. Wenn man zu den drei
Zeitslots zwei weitere hinzuftigt, die tiberhaupt nicht benotigt werden und nicht belegt
werden konnen, weil sie im Vergleich zu den anderen keine Kernstunden sind, dann liefert
Gurobi — obwohl die obige Losung weiterhin zulédssig wére — die folgende halbzahlige
Losung:

Tabelle 6.8. Werte fiir x,, aus der LP-Relaxierung beim Fixieren von Einsen

> “| AFA, AG BFy BG ABH

1 1 0 1 0 0
2 0 1/2 0 1/2 1/2
3 0 1/2 0 1/2 1/2

Zunidchst sei angemerkt, dass die beiden Einser im Fach F aus Sicht des CSP-Solvers die
einzigen beiden vorbelegten Werte sind, die iibrigen werden verworfen — auch wenn sie
nattirlich die Bedingungen zur Konfliktfreiheit und zu den Kernstunden erfiillen miissen.
Dass es ausgehend von dieser Situation keine Losung mehr geben kann, sieht man leicht,
indem man zunéichst die Kopplung A-B-H auf den Zeitslot 2 oder 3 platziert. Da daran
beide Klassen beteiligt sind, muss der gesamte restliche Unterricht im jeweils anderen
Zeitslot stattfinden. Das ist aber nicht moglich, weil die beiden Klassen im Fach G beide
vom selben Lehrer, aber getrennt unterrichtet werden.

Im Gegensatz zu dem Beispiel in Unterabschnitt 6.3.1, wo durch eine grofie Anzahl von
0-Werten jede einzelne Losung blockiert wurde, die ansonsten denkbar gewesen wiére, ge-
ntigen hier nur zwei Werte, um die Probleminstanz unlosbar zu machen. Gliicklicherweise
funktioniert das nur, weil das Zeitraster sehr eng ist, wiahrend in Unterabschnitt 6.3.1 auch
ein erheblich grofieres Zeitraster mit Nullen blockiert worden ware. Sowohl in diesem
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Beispiel als auch in Datensatz C gibt es Klassen, die genau so viel Unterricht haben wie es
Zeitslots bzw. Kernstunden gibt, sodass keine Ausweichmoglichkeiten existieren und von
Anfang an feststeht, auf welche Zeitslots dieser Unterricht aufgeteilt werden muss.

In der Praxis sind solche Falle zum Gliick eher selten, wie auch die Tabelle 6.6 zeigt, und
treten nur auf, wenn eine Schule keinen Nachmittagsunterricht vorsieht. In diesen Féllen
konnte man bewusst auf den Einsatz der LP-Relaxierung verzichten und die vergleichsweise
kleine Probleminstanz dann nur vom CSP-Solver 16sen lassen. Fiir alle anderen Fille ist
der Einbezug der LP-Relaxierung eine gute Losung, solange man nur die 1-Werte fixiert.

Die Unlosbarkeit zu erkennen und erst dann auf die LP-Relaxierung zu verzichten ist
leider nicht moglich, weil die CSP-Solver die Unlosbarkeit nur in der Halfte der Falle frith
genug melden (vgl. Tabelle 6.6). Stattdessen kann aber die LP-Relaxierung selbst verbessert
werden, sodass das Problem nicht mehr auftritt (sieche dazu Abschnitt 6.6).

6.4.2. Runden statt Fixieren

Eine Uberlegung zur weiteren Verbesserung des Verfahrens kénnte sein, nicht nur ganz-
zahlige Variablenwerte zu fixieren, sondern sogar aufzurunden, beispielsweise ab 0,9 oder
0,8.

Abbildung 6.3 auf Seite 46 zeigt, dass Werte oberhalb von 0, 8 relativ selten sind, vor allem
im Vergleich zur Zahl der Variablen, die genau 1,0 sind. Versuche mit den beiden grofien
Datensédtzen C und D haben ergeben, dass das Aufrunden keine zusétzlichen Vorteile bringt.
Stattdessen kam es in einem Fall vor, dass beim Aufrunden ab 0,8 die Probleminstanz
sogar unlosbar wurde, wahrend sie ohne Aufrunden noch geldst werden konnte.

6.5. Sortieren statt Fixieren

Das in Abschnitt 6.4 vorgestellte Vorgehen, bei dem nur die Einsen fixiert werden, hat
zwei prinzipbedingte Nachteile: Zum einen besteht eine (geringe) Gefahr, dass durch das
Fixieren die Probleminstanz unlosbar wird und der CSP-Solver das nicht bemerkt. Zum
anderen geht die differenzierte Abstufung der tibrigen Variablen 0 < x,, < 1 verloren,
obwohl es sich dabei um etwa die gleiche Anzahl an Variablen handelt wie beim Fixieren
der x,, = 1.

Beide Probleme lassen sich losen, indem auf das Fixieren verzichtet und stattdessen
lediglich priorisiert wird. Die LP-Relaxierung wird also nicht mehr als Einschrankung des
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zu groflen Losungsraums, sondern als Heuristik zur gezielten Suche im weiterhin grofien
Losungsraum verwendet.

Dazu wird auf den Variablen der CSP-Instanz eine Ordnung eingefiihrt und mit der Werte-
heuristik ,,Choose Max Value” kombiniert. Durch diese Ordnung kann vorab festgelegt
werden, welche Variablen bevorzugt auf 1 gesetzt werden, sofern dies noch konfliktfrei
moglich ist.

6.5.1. Ordnung der Variablen

In erster Linie werden die Variablen nach ihrem Wert in der LP-Relaxierung geordnet.
Da aber vor allem die Werte 1,0 und 0,5 sowie einige andere Briiche relativ haufig
vorkommen, bietet es sich an, die Ordnung noch weiter zu verfeinern. Dazu verwenden
wir Uberlegungen aus Unterabschnitt 5.3.7 und Unterabschnitt 5.4.3, d. h. wir ziehen
Kernstunden vor und bevorzugen Unterrichte mit mehr Abhéngigkeiten, was insbesondere
grofiere Kopplungen betrifft.

Zunichst definieren wir den Grad d eines Unterrichts 1 € U als die Anzahl aller Unterrichte,
an denen beteiligte Lehrer und Klassen teilnehmen:

d(u) =Y (Ul + Y Uk

uel; uely
leL keK

Damit ergibt sich die Ordnung zweier Variablen x,,,, und x;,,, anhand der folgenden
Kriterien, wobei ein Kriterium nur betrachtet wird, wenn alle vorherigen Kriterien keine
Unterscheidung ermoglicht haben. xy,;, ist vor x,,, einzuordnen, wenn:

* Xuyz, > Xuz, (Sortierung nach der LP-Relaxierung)

* 71 € Zy A 23 ¢ Zi (Kernstunden zuerst belegen)

[{k € K| uy € Ug}| > |[{k € K| up € Ui }| (mehr beteiligte Klassen)
{leL|uyeU}|>|{l€L|uye U} (mehr beteiligte Lehrer)

d(uy) > d(uy) (Grad des Unterrichts bei gleicher Klassen- und Lehrer-Zahl)

* e(uy) > e(uy) (Einfuigereihenfolge)

Dabei ist e : U — IN die Reihenfolge der Unterrichte im Datensatz, die nur verwendet
wird, um bei ansonsten gleichen Unterrichten trotzdem eine deterministische Ordnung zu
erhalten.
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6. Einbezug der LP-Relaxierung

6.5.2. Ergebnisse

Um Zufallstreffer auszuschlieffen und die Auswirkungen von unterschiedlichen Losun-
gen fiir die LP-Relaxierung zu untersuchen, wurde jede Berechnung wieder 100 Mal
durchgefiihrt:

Tabelle 6.9. Einfluss der Sortierung auf den Erfolg der Berechnung

Datensatz | A B C D
Anzahl geloster Instanzen (Or-Tools) | 100 100 46 4
Anzahl geloster Instanzen (Gecode) | 100 100 43 4
Anzahl Timeouts >10 s (Or-Tools) | 0 0 54 96
Anzahl Timeouts >10 s (Gecode) | 0 0 57 96
Anzahl Variablen | 156 1036 1512 8602
Durchschnittlich Anzahl 1-Werte (gelost) | 52 1130 186,5 174,5
Durchschnittlich Anzahl 1-Werte (Timeout) - - 1845 164,44

Die Zahl der erfolgreichen Berechnungen ist etwas niedriger als beim Fixieren (vgl. Ta-
belle 6.5), dafiir kommt es selbstverstandlich nicht mehr vor, dass eine Probleminstanz
ganzlich unlosbar wird.

Es sei nochmals darauf hingewiesen, dass in den Féllen, in denen keine Losung gefunden
wurde, bereits nach 10 Sekunden abgebrochen wurde. Weil es jedoch eines der Ziele des
neuen Ansatzes ist, die Variablen so zu sortieren, dass die erste zulédssige Losung bereits
sehr frith im Suchbaum auftritt, wurden einige langere Berechnungen mit den Datensatzen
C und D durchgefiihrt, die zwischen einer und fiinf Stunden dauerten. Diese waren alle
erfolglos, d. h. es ware noch mehr Zeit nétig, um eine zulédssige Losung zu bestimmen.

6.5.3. Analyse mit kleiner Probleminstanz

Die in Unterabschnitt 6.4.1 vorgestellte minimale Probleminstanz, die beim Fixieren der
1-Werte unltsbar wird, bleibt durch die blofle Sortierung der Variablen nattirlich 16sbar.
Doch da grundsatzlich die Variablen mit hohen Werten in der LP-Relaxierung zuerst mit 1
belegt werden, wird der Fehler bei dieser Probleminstanz direkt zu Beginn begangen.

Bei der in Abbildung 6.4 dargestellten Suche werden mit den ersten beiden Entscheidungen
(AF = 1 und BF = 1) bereits zwei Unterrichte so gelegt, dass es keine zuldssige Losung
ftir die tibrigen mehr geben kann. Weil aber jeder der anderen Unterrichte (hier nur AX)
alleine noch platziert werden konnte, wird dieser Fehler vom Algorithmus nicht sofort
erkannt. Stattdessen versucht der Solver, einen weiteren Unterricht (AX) zu platzieren,
wodurch sich ein Widerspruch ergibt — egal auf welchen der beiden verbleibenden Zeitslots
der Unterricht gelegt wird. Erst nachdem der komplette Teilbaum durchsucht ist, wird die
Entscheidung per Backtracking revidiert und dann sofort eine Losung gefunden.
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AX=2 AX=3

Abbildung 6.4. Suchbaum einer kleinen Probleminstanz mit Variablen-Sortierung nach LP-
Relaxierung

Im gegebenen Beispiel wird die Losung trotzdem in wenigen Mikrosekunden gefunden
und es mussten davor nur zwei unzulédssige Blattknoten untersucht werden. Das liegt
ausschliefslich daran, dass der Suchbaum mit einer Tiefe von drei Entscheidungen (Kanten)
insgesamt sehr klein ist und in weniger als einer Millisekunde vollstdndig durchsucht
werden konnte. Bei grofieren Probleminstanzen liegen jedoch viele weitere Entscheidungen
zwischen den mit 1 belegten Variablen, fiir die die Fehlentscheidung getroffen wurde, und
den Variablen, bei deren Belegung der Fehler entdeckt wird. Der Teilbaum unterhalb der
Fehlentscheidung, der sicher keine Losung enthilt, kann also sehr grofs ausfallen, was
die Berechnung enorm verlangsamt. Die Messergebnisse aus Tabelle 6.9 bestédtigen diese
Uberlegungen.

6.5.4. Position der ersten Fehlentscheidung

Um genauer einschitzen zu konnen, wie weit oben oder unten im Baum das vorgestellte
Verfahren die erste Fehlentscheidung trifft, wurde diese Position in mehreren Testldufen
(100 pro Datensatz) genauer bestimmt.

Der CSP-Solver belegt alle Variablen zundchst mit 1, bis das nicht mehr konfliktfrei moglich
ist. Wenn ein Konflikt auftritt, wird stets die letzte gemachte Entscheidung revidiert. Also
befindet sich eine lange Kette von 1-Belegungen am Anfang des Suchbaums, solange dieser
erst zu einem kleinen Teil durchsucht wurde. Die erste solche 1, die zusammen mit allen
vorherigen die Probleminstanz unlésbar macht, ist die erste Fehlentscheidung.

Mit Hilfe von Gurobi kénnen die Probleminstanzen als ganzzahliges lineares Programm
modelliert und in kurzer Zeit auf Losbarkeit tiberpriift werden. Es wurden die Variablen in
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der gleichen Reihenfolge auf 1 fixiert, in der auch der CSP-Solver sie bearbeiten wiirde, und
jeweils die Position der Variablen festgehalten, nach deren Fixierung die Probleminstanz
unlgsbar wurde. Die Position lédsst sich dabei durch zwei Kennzahlen charakterisieren:
zum einen durch den relativen Index im Vergleich zu allen Variablen (z. B. wire die
400. von insgesamt 8000 Variablen bei 5%) und zum anderen durch ihren Wert in der
LP-Relaxierung (was der Position im Histogramm entspricht, vgl. Abbildung 6.3).
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Abbildung 6.5. Position der ersten Fehlentscheidung im CSP-Suchbaum

Die Diagramme in Abbildung 6.5 machen deutlich, dass zum einen alle ersten Fehler bereits
sehr frith auftreten (im ersten Sechstel) und dass zum anderen im Fall von Datensatz C
bereits das Auswéhlen einer 1 aus der LP-Relaxierung ein Fehler sein kann. Dieser Umstand
ist bereits aus Unterabschnitt 6.4.1 bekannt und fithrt dazu, dass es nicht moglich ist, alle
Einsen zu fixieren ohne die Losbarkeit zu beeintrachtigen.

6.5.5. Sortierung verbessern

Eine naheliegende Idee zur Verbesserung der Suche ist es daher, nach besseren Heuristiken
fiir die Sortierung zu suchen, um die erste Fehlentscheidung mdglichst weit hinauszuzo-
gern.

Die Analyse von einigen problematischen Beispielen (z. B. Unterabschnitt 6.4.1) zeigt,
dass stets Kopplungen beteiligt sind, die nicht mehr platziert werden kénnen, nachdem
anderer Unterricht auf ungtinstige Zeitslots gelegt wurde. Um das Problem zu umgehen,
konnte man versuchen, die Kopplungen moglichst frith zu platzieren. Das erreicht man
beispielsweise, indem man die betreffenden Variablen moglichst friih einsortiert — etwa
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Abbildung 6.6. Position der ersten Fehlentscheidung im CSP-Suchbaum (Kopplungen priorisiert)

direkt hinter alle Variablen mit dem Wert 1,0 in der LP-Relaxierung. Diese alternative
Sortierung fiihrt zu keinen wesentlich besseren Ergebnissen (siehe Abbildung 6.6).

Es wurden einige solche Abwandlungen der Variablensortierung getestet, von denen jedoch
keine zu einer nennenswerten Verbesserung fiihrte.

6.6. Verscharfung der LP-Relaxierung

Bisher wurde versucht, durch Fixieren oder Sortieren der Variablen anhand der LP-
Relaxierung und einiger weiterer Kriterien den Ablauf der Suche zu verbessern. Anstatt
dabei nur die Kriterien zu verdndern, kann man auch versuchen, die LP-Relaxierung selbst
zu verbessern. Dazu muss die LP-Instanz des Problems gezielt um Constraints erweitert
werden, die fiir eine ILP-Instanz eigentlich redundant sind. Das bedeutet, dass dadurch kei-
ne ganzzahligen Losungen verloren gehen, wohl aber reelle Losungen, sodass die optimale
relaxierte Losung ndher bei der gesuchten ganzzahligen Losung liegt.

In anderen Problembereichen bringt diese Methode grofse Vorteile. So lasst sich beispiels-
weise die LP-Relaxierung bei der Suche nach unabhingigen Mengen in Graphen erheblich
verbessern, indem man fiir jeden ungeraden Zyklus im Graphen einen zusétzlichen Con-
straint hinzuftigt [Grotschel et al., 1988, Kapitel 9.1].

6.6.1. Idee

Ein analoger Ansatz fiir das Stundenplanproblem ldsst sich aus der schwierigen Pro-
bleminstanz ableiten, die in Unterabschnitt 6.4.1 vorgestellt wurde. Die Werteverteilung
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Tabelle 6.10. Schlechte LP-Relaxierung bei ungtinstiger Probleminstanz

Y| A-FA A-G BFy BG A-B-H

Z
1 1 0 1 0 0
2 0 1/2 0 1/2 1/2
3 0 1/2 0 1/2 1/2

der LP-Relaxierung bei dieser Probleminstanz ist in Tabelle 6.10 dargestellt. Nach dem
Setzen der beiden 1-Werte gibt es fiir die iibrigen Unterrichte keine zulédssige Verteilung
mehr. Der Grund dafiir ist, dass nur noch zwei Zeitslots zur Verfligung stehen, aber
drei Unterrichte platziert werden miissen, was prinzipiell nur moglich ist, wenn zwei
davon gleichzeitig stattfinden. Im konkreten Fall gibt es aber keine zwei Unterrichte, die
gleichzeitig stattfinden konnten: Die Kopplung hat mit den beiden anderen Unterrichten je
eine Klasse gemeinsam, und die beiden Unterrichte im Fach G haben denselben Lehrer.

Das Kernproblem ldsst sich noch etwas weiter reduzieren, indem nur ein einziger Zeitslot
(egal ob 2 oder 3) betrachtet wird: Obwohl von den drei Unterrichten nur einer stattfinden
kann, haben alle drei in der LP-Relaxierung den Wert 1/2, in der Summe also mehr als 1.
Dies lasst sich verhindern, indem pro Zeitslot ein zusétzlicher Constraint hinzugefiigt wird,
der die Summe auf 1 beschrankt.

6.6.2. Verallgemeinerung

Hinweis: Da nun auch Kopplungen betrachtet werden, wird die Definition aus Abschnitt 2.3
wie in Abschnitt 4.3 beschrieben erweitert, sodass pro Unterricht mehrere Klassen, Lehrer
und Féacher moglich sind:

U c P(K) x P(F) x P(L)

Wir betrachten den Konfliktgraphen G = (U, E) der zu losenden Probleminstanz, in dem
die Unterrichte als Knoten dargestellt sind und zwischen zwei Unterrichten genau dann
eine Kante existiert, wenn sie nicht gleichzeitig stattfinden koénnen, also:

E={ {(kifil), (ke o)V e (0 )| kinke 2 @Vl b # o
{ ) }

Die drei Unterrichte aus dem Beispiel oben haben die Eigenschaft, dass sich jeder mit
jedem anderen ausschlief$t. Sie bilden also eine (kleine) Clique im Konfliktgraphen (siehe
Abbildung 6.7).
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A-Fy A-G

B-Fp B-G
Abbildung 6.7. Konfliktgraph der minimalen Probleminstanz

6.6.3. Maximale Cliquen

In einem Graphen G = (U, E) ist eine Cligue definiert als Teilmenge C < U der Knoten,
wobei zwischen je zwei Knoten eine Kante existieren muss, also ((2:) c E. Eine Clique
C heifit maximal genau dann, wenn sie in keiner anderen Clique echt enthalten ist, also
DD C: (? ) < E. Wéhrend die Suche nach Cliquen einer gegebenen Grofle k und
damit auch nach der grofiten Clique NP-vollstiandig ist [Schéning, 2003], konnen maximale
Cliquen zumindest mit Aufwand O(nm) pro gefundener Clique (mit n = |U|,m = |E|)
aufgezdhlt werden [Tsukiyama et al., 1977]. In einem Graph koénnen jedoch exponentiell
viele Cliquen existieren.

In der Praxis erweist sich eine Abwandlung des Algorithmus von Bron und Kerbosch [1973]
als praktikabel, bei der durch die Wahl eines Pivot-Knotens der Suchbaum signifikant
verkleinert wird [Tomita et al., 2006]. Der Bron-Kerbosch-Algorithmus ohne Pivotieren ist
im Folgenden als Pseudo-Code dargestellt:

Algorithm 1 Bron-Kerbosch-Algorithmus (findet alle maximalen Cliquen)

Require: C, M, X < U sind Knotenmengen
1: function FIND-Max-CL1QUEs(C, M, X)
2: if M =g A X = then

Speichere maximale Clique C
end if
forall u e M do
FIND-Max-CLIQUES(C u {u}, M n N(u), X n N(u))
M M\ {u)
X« Xu{u}

9: end for

10: end function
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Dabei ist N(v) := {ue U | {u,v} € E} die Menge der direkten Nachbarn von v. In der
Menge C ist stets die aktuelle Clique gespeichert, in M sind weitere mogliche Knoten, die
in die Clique aufgenommen werden konnten, und X enthalt die Knoten, die nicht mehr in
die Clique aufgenommen werden sollen. Der Algorithmus wird mit dem initialen Aufruf
FinD-Max-CLIQUES(JJ, U, &) gestartet.

Durch die Wahl eines Pivot-Knotens p € M u X ldsst sich die Suche — je nach Struktur
des Graphen — erheblich beschleunigen [Tomita et al., 2006]. Die Idee ist, dass in allen
maximalen Cliquen, die noch gefunden werden konnen, entweder p selbst enthalten
ist, oder wenn nicht, dann auch keiner von den Nachbarn von p. Denn alle Knoten in
m e M u X haben die Eigenschaft, dass sie mit allen in der aktuellen Clique C verbunden
sind, sodass C u {m} wieder eine (groBere) Clique wire. Ein Nachbar von p kann C aber
nur dann zu einer maximalen Clique ergédnzen, wenn auch p in der Clique ist, denn ohne
p wire die Clique nicht maximal, weil sie sich mit p einfach vergrofSern lassen wiirde. Da
alle Nachbarn von p in dem rekursiven Aufruf betrachtet werden, in dem zunéchst p selbst
ausgewdhlt wurde, miissen sie nicht ein weiteres Mal betrachtet werden, wenn p nicht in C
enthalten ist.

Es lassen sich also alle Nachbarn N(p) eines beliebigen Knotens in jeder Runde von der
Suche ausschliefien, ohne dass dadurch die Vollstandigkeit der Suche verloren geht. Um
einen moglichst grofien Effekt zu erzielen, wéhlt man als Pivot-Knoten denjenigen Knoten
p € M u X mit den meisten Nachbarn in M oder alternativ einfach mit den meisten
Nachbarn tiberhaupt, d. h. mit dem hochsten Grad.

Algorithm 2 Bron-Kerbosch-Algorithmus mit Pivotieren

Require: C, M, X < U sind Knotenmengen
1: function FIND-Max-CL1Ques(C, M, X)
if M =@ A X = then
3 Speichere maximale Clique C
4 end if
5. Wéhle p € M U X mit [N(p)| maximal (oder |[N(p) n M| maximal)
6: forallue M\ N(p) do
7.
8
9

FIND-Max-CL1QuEs(C u {u}, M n N(u), X n N(u))
M — M\ {u}
: X — Xu{u}
10: end for
11: end function
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6.6.4. Interessante Cliquen

Cliquen im Konfliktgraphen sind Mengen von Unterrichten, die sich paarweise gegenseitig
ausschliefen. Naheliegende Cliquen sind insbesondere die Mengen aller Unterrichte eines
bestimmten Lehrers oder einer bestimmten Klasse — und meistens sind diese auch maximal.
Da diese ohnehin tiber die Konfliktfreiheits-Bedingung abgedeckt sind und einen Grofiteil
der Cliquen ausmachen, lohnt es sich nicht, diese mit dem Bron-Kerbosch-Algorithmus zu
finden. Im Fall des grofien Testdatensatzes D sind 54 der insgesamt 96 Cliquen uninteres-
sant, weil sie bereits iiber die Konfliktfreiheits-Bedingung abgedeckt sind. Bei der kleinen
Beispielinstanz (siehe Abbildung 6.7) betrifft das die obere und die untere Clique.

Um die Cliquensuche weiter zu verkiirzen, hilft die Uberlegung, dass Cliquen immer
uninteressant sind, wenn sie nur aus normalen Unterrichten bestehen, also wenn keine
Kopplungen enthalten sind. Normale Unterrichte sind solche, bei denen genau ein Lehrer
genau eine Klasse in genau einem Fach unterrichtet. Die Aussage, dass bei solchen Cliquen
entweder alle Lehrer gleich sind, oder alle Klassen, oder beides, ldsst sich per Induktion
tiber die Grofle n der Clique beweisen:

> n = 1: Die Aussage gilt, es sind sowohl alle Lehrer als auch alle Klassen gleich, weil nur
ein Unterricht betrachtet wird.

> n = 2: Da beide Unterrichte eine Clique bilden, sind sie durch eine Kante verbunden,
weil zwischen beiden ein Konflikt besteht. Der kann nur dadurch verursacht werden,
dass beide denselben Lehrer und/oder dieselbe Klasse haben.

> n > 2: Da jede Teilmenge der Clique wieder eine Clique ist, kann ein Unterricht u aus
der Clique entfernt werden. Fiir die tibrige Teilmenge gilt per Induktionsvoraussetzung,
dass alle Unterrichte denselben Lehrer und/oder dieselbe Klasse haben.

1. Fall: Sie haben dieselbe Klasse und denselben Lehrer. Da u zu allen anderen
Unterrichten eine Kante hat, hat er entweder auch denselben Lehrer oder
auch dieselbe Klasse.

2. Fall: Sie haben dieselbe Klasse, aber es gibt mindestens zwei mit unterschiedli-
chem Lehrer. Da u zu diesen beiden eine Kante hat, muss er dieselbe Klasse
haben. Denn hitte er sie nicht, dann miisste er mit den beiden anderen
Unterrichten einen Lehrerkonflikt haben, was aber nicht moglich ist, weil
diese verschiedene Lehrer haben.

3. Fall: Sie haben denselben Lehrer, aber es gibt mindestens zwei mit unterschied-
licher Klasse: analog zu Fall 2.

Wenn in einer Clique alle Lehrer oder alle Klassen gleich sind, existiert fiir die Clique bereits
ein Constraint aus der Konfliktfreiheits-Bedingung, sodass die Clique uninteressant ist.
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Demnach sind nur die Cliquen potenziell interessant, in denen mindestens eine Kopplung
vorkommt. In Abbildung 6.7 ist es also nur die Clique auf der rechten Seite. Um solche
Cliquen schneller zu ermitteln, kann die Suche direkt ausgehend von den Kopplungen
gestartet werden:

Algorithm 3 Cliquensuche ausgehend von Kopplungen
Require: U ist die Menge aller Unterrichte

1: function FIND-Max-CriQues(U)

2: X—g

3 forall u e U do

4 if u ist Kopplung then

5: FiND-Max-Criques({u}, N(u) \ X, X n N(u))
6: end if

7 end for

8: end function

6.6.5. Ergebnisse der Cliquensuche
Tabelle 6.11. Statistiken zur Cliquensuche

Datensatz A B C D

Anzahl Kopplungen 4 3 4 21

Anzahl maximaler Cliquen 7 8 19 96

Davon interessante Cliquen 4 1 3 42
Durchsuchte Cliquen (Bron-Kerbosch) 7 8 19 96

Laufzeit (Bron-Kerbosch ohne Pivot) | 60 ms 72ms 112ms 36,1s

Laufzeit (Bron-Kerbosch mit Pivot) | 32 ms 44ms 72ms 920 ms
Durchsuchte Cliquen (Start in Kopplungen) 7 6 13 81

Laufzeit (Start in Kopplungen mit Pivot) | 32ms 34ms 54ms 476 ms

Die Ergebnisse in Tabelle 6.11 zeigen, dass vor allem das Pivotieren, aber auch das gezielte
Starten in den Kopplungen die Effizienz der Cliquensuche verbessern.

6.6.6. Auswirkungen auf die erste Fehlerposition

Zum Vergleich mit Abbildung 6.5 wurde wieder fiir 100 zufillige Losungen der LP-
Relaxierung ermittelt, wie friith die erste Fehlentscheidung passieren wiirde, wenn der
CSP-Solver die Variablen in der Reihenfolge der reellen Losung auf 1 setzt. Die Ergebnisse
in Abbildung 6.8 sind durchgehend besser als ohne die Cliquen-Constraints. Insbesondere
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gibt es — wie beabsichtigt — auch bei Datensatz C keinen Fall mehr, in dem das Fixieren
einer ganzzahligen 1 eine Fehlentscheidung wére.
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Abbildung 6.8. Position der ersten Fehlentscheidung im CSP-Suchbaum (mit Cliquen-Constraints)

6.6.7. CSP-Berechnungen mit Cliquen-Constraints

Um die Berechnung mit dem CSP-Solver zu beschleunigen, kénnte man in die CSP-Instanz
nicht nur die Ergebnisse der verbesserten LP-Relaxierung einfliefSen lassen, sondern zu-
satzlich die Cliquen-Constraints direkt zur CSP-Instanz hinzufiigen. Aus theoretischer
Sicht bringt das aber keinen Mehrwert, weil der CSP-Solver nur mit diskreten Werten aus
den Doménen der Variablen arbeitet. Wenn beispielsweise mittels Constraint Propagation
darauf geschlossen werden kann, dass ein Unterricht zu einem bestimmten Zeitpunkt nicht
mebhr stattfinden kann, dann deswegen, weil ein Nachbar-Unterricht (im Konfliktgraphen)
bereits zu diesem Zeitpunkt stattfindet. Diese Information kann jedoch alleine dadurch
propagiert werden, dass eine Kante im Konfliktgraphen vorliegt. Die zusitzliche Infor-
mation, dass aus einer Menge von n Unterrichten nur m gleichzeitig stattfinden kénnen
(mit m < n), hilft dem CSP-Solver nicht, weil er erst einen Unterricht setzen muss, bevor
ein Constraint propagiert werden kann — und dann ist ohnehin schon sicher, dass keiner
der anderen n — 1 Unterrichte tiberhaupt noch zu diesem Zeitpunkt stattfinden kann.
Probeweise durchgefiihrte Berechnungen bestitigen diese Uberlegungen.

Deswegen wurden die Cliquen-Constraints im Folgenden nur zur relaxierten LP-Instanz
hinzugefiigt. Deren Losung wurde wiederum 100 Mal zufillig ausgewdhlt und dann wie in
Abschnitt 6.5 beschrieben in die CSP-Instanz eingearbeitet. Die Ergebnisse in Tabelle 6.12
miissen also mit Tabelle 6.9 verglichen werden.
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Tabelle 6.12. Einfluss der Cliquen-Constraints auf den Erfolg der Berechnung

Datensatz A B C D
Anzahl geltster Instanzen (Or-Tools) | 100 100 97 18
Anzahl geloster Instanzen (Gecode) | 100 100 97 16
Anzahl Timeouts >10 s (Or-Tools) 0 0 3 82
Anzahl Timeouts >10 s (Gecode) 0 0 3 84
Anzahl Variablen | 156 1036 1512 8602
Durchschnittlich Anzahl 1-Werte (gelost) | 10,58 112,7 197,9 168,44
Durchschnittlich Anzahl 1-Werte (Timeout) - - 165,7 160,8

Obwohl sich die Anzahl der geldsten Instanzen im Vergleich zur Berechnung ohne Cliquen-
Constraints bereits stark gesteigert hat, bleiben vor allem beim grofien Datensatz D die
meisten Berechnungen erfolglos. Selbst mit mehreren Stunden Berechnungszeit konnen
diese Instanzen nicht gelost werden.

6.6.8. Verbesserte Ordnung der Variablen

Die mit Cliquen-Constraints ermittelte Losung der LP-Relaxierung ist sehr prizise in
Bezug auf die 1-Werte. In allen weiteren Experimenten wurde kein Fall mehr beobachtet,
in dem ein Wert von 1,0 aus der Relaxierung nicht auch in der endgiiltigen Losung
korrekt gewesen wére. Anstatt die Werte aber zu fixieren (wie in Abschnitt 6.4), wurde
die heuristische Variablen-Ordnung aus Unterabschnitt 6.5.1 so angepasst, dass 1-Werte
deutlich bevorzugt werden, wohingegen die feine Abstufung der reellen Variablen eher in
den Hintergrund geriickt ist, weil die anderen Kriterien wichtiger sind (siehe Uberlegungen
in Unterabschnitt 5.3.7 und Unterabschnitt 5.4.3).

In der neuen Ordnung wird x,,,, vor x,,,, eingeordnet, wenn:

* Xy;z; = 1 A Xyyz, <1 (Préferiere Einsen aus der LP-Relaxierung)

* z1 € Zx A 23 ¢ Zi (Kernstunden zuerst belegen)

* [{ke K|ujeU}| > |{keK|uye U} (mehr beteiligte Klassen)

* {leL|uyel}| >|{l€L|upe U}| (mehr beteiligte Lehrer)

® Xuz; > Xu,z, (Sortierung nach der LP-Relaxierung)

* d(uy) > d(up) (Grad des Unterrichts bei gleicher Klassen- und Lehrer-Zahl)

* e(uy) > e(uy) (Einfuigereihenfolge)
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Mit dieser neuen Ordnung kénnen die Probleminstanzen fast immer gelost werden:

Tabelle 6.13. Berechnung mit Cliquen-Constraints und verbesserter Variablen-Ordnung

Datensatz A B C D
Anzahl geloster Instanzen (Or-Tools) | 100 100 98 99
Anzahl geltster Instanzen (Gecode) | 100 100 97 98
Anzahl Timeouts >10 s (Or-Tools) 0 0 2 1
Anzahl Timeouts >10 s (Gecode) 0 0 3 2
Anzahl Variablen | 156 1036 1512 8602
Durchschnittlich Anzahl 1-Werte (gelost) | 10,26 113,2 199,1 161,55
Durchschnittlich Anzahl 1-Werte (Timeout) - - 176,6 169,0

6.7. Weitere Bedingungen

Mit der im vorherigen Abschnitt vorgestellten Methode lassen sich alle getesteten Datensét-
ze fast immer 16sen. Dabei wurde aber jeweils nur eine zuldssige Losung berechnet, die die
Bedingungen , Wochenstunden”, , Konfliktfreiheit” und ,Kernstunden” erfiillt. Es wurden
also nur vergleichsweise wenige Bedingungen eingehalten und insbesondere keine weichen
Bedingungen verwendet, sodass keine Optimierung des fertigen Ergebnisses notig war.

Im Folgenden werden zunéchst weitere harte Bedingungen hinzugeftigt und die Auswir-
kungen auf die Berechnung untersucht. Anschlielend werden Berechnungen mit weichen
Bedingungen durchgefiihrt. Fiir die Definition der Bedingungen siehe Kapitel 2. Auf
mogliche Varianten der Modellierung wird in diesem Kapitel nicht weiter eingegangen.
Alle Bedingungen wurden so implementiert wie in Abschnitt 7.2 oder von Weidler [2012]
beschrieben.

6.7.1. Harte Bedingungen

Alle Ergebnisse sind in Tabelle 6.14 dargestellt. Die Bedingungen , Fixe Stunden” und , Fach-
Pro-Tag-Begrenzung” lassen sich hinzufiigen, ohne dass bei der Berechnung Probleme
auftreten. Dazu ist anzumerken, dass die Datensdtze B und C tiberhaupt keine fixen
Stunden enthalten.

Auflerdem zeigt sich beim Datensatz C bereits, dass die LP-Relaxierung und die Constraint
Propagation zusammen nicht mehr ausreichen, um die Losung zu finden. Die CSP-Solver
miissen per Backtracking nach Losungen suchen. Je nach gewéhlter LP-Relaxierung gelingt
das relativ schnell nach einigen Failures, oder es dauert so lange, dass die Berechnung
abgebrochen werden muss. Mit der Bedingung , Lehrer-Nichtverfiigbarkeiten” terminiert
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keine Berechnung mehr fiir Datensatz C. Zum Vergleich: Alle Instanzen konnen von Gurobi
innerhalb weniger Sekunden gelost werden.

Tabelle 6.14. CSP mit zuséatzlichen harten Bedingungen

Datensatz A B C D
Anzahl Variablen | 156 1036 1512 8602
Anzahl Constraints | 103 472 677 2901
Rechenzeit (Or-Tools) | Oms 1ms 2ms 11 ms Nur Kernstunden
Rechenzeit (Gecode) | Oms 4ms 10ms 106 ms
Anzahl Constraints | 105 472 677 2919
Rechenzeit (Or-Tools) | Ims 2ms 3 ms 18 ms
Rechenzeit (Gecode) | Oms 4ms 10ms 87 ms
Anzahl Constraints | 190 697 1407 5579
Rechenzeit (Or-Tools) | 0ms 3ms 13ms’ 22ms
Rechenzeit (Gecode) | 0ms 4ms 245 ms’ 230 ms

Anzahl Constraints | 190 742 1487 5668 }

+ Fixe Stunden

+ Fach-Pro-Tag

Rechenzeit (Or-Tools) | Ims 1ms >1h 17 ms + Nichtverf.

Rechenzeit (Gecode) | Oms 4ms >1h 103 ms

Anzahl Variablen 3 3 3 10192
Anzahl Constraints 4 4 -+ 11846 D Istund
Rechenzeit (Or-Tools) 4 = = >1h * Poppelstunden
Rechenzeit (Gecode) 4 A = >1h

¥ Nach 775 Failures
t Enthalt keine Doppelstunden

6.7.2. Weiche Bedingungen

Durch das Hinzuftigen von weichen Bedingungen werden Optimierungsschritte notig
(siehe Unterabschnitt 5.1.3). Insbesondere muss der Solver, nachdem er bereits eine optimale
Losung gefunden hat, den gesamten restlichen Suchbaum durchsuchen, um tiberhaupt
feststellen zu konnen, dass die gefundene Losung optimal ist.

Fiir den ersten Test wurden nur die harten Bedingungen , Wochenstunden”, , Konfliktfrei-
heit” und , Kernstunden” verwendet. Als einzige weiche Bedingung wurde die , Unter-
richtsprioritdt” verwendet (siehe Abschnitt 2.5), die den Unterrichten zu jedem Zeitslot,
der keine Kernstunde ist, eine Prioritdt zuweist, sodass der Unterricht insgesamt eher
vormittags stattfindet.

Mit Gurobi wurde der Zielfunktionswert der optimalen Losung ermittelt. Beide CSP-Solver

hatten je eine Stunde Zeit zur Berechnung und in Tabelle 6.15 ist die jeweils letzte /beste
gefundene Losung angegeben.
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Tabelle 6.15. CSP mit Zielfunktion

Datensatz A B C D

Anzahl Variablen | 156 1036 1512 8602

Grofle der Zielfunktion | 156 476 392 4862

Anzahl Constraints | 104 473 678 2902

Optimum (Minimum) | -78 -56 -136 -362

Beste Losung (Or-Tools) | -78 -56 -136 -309
Gefunden nach (Or-Tools) | 2ms 2ms 7ms 52 min

Terminiert nach (Or-Tools) | >1h >1h >1h >1 h

Beste Losung (Gecode) | -78 -56 -136 -309
Gefunden nach (Gecode) | 5ms 4ms 181 ms 55 min

Terminiert nach (Gecode) | >1h >1h >1h >1h

Fiir die Datensétze A bis C kann innerhalb weniger Millisekunden eine optimale Losung
gefunden werden. Im Fall der Datensatze B und C ist bereits die erste gefundene Losung
optimal, was auf eine gute Losung der LP-Relaxierung schliefSen ldsst. Aber auch fiir
Datensatz A wird nach nur 4 Failures bereits eine optimale Losung gefunden.

Auch wenn die optimale Losung gefunden ist, kann die Suche noch nicht terminieren,
weil der Solver noch nicht weif3, dass die Losung optimal ist. Die weitere Suche, die
den Optimalitdtsbeweis liefern wiirde, dauert ldnger als eine Stunde und wurde daher
abgebrochen.

Der Datensatz D ist deutlich grofser als die anderen, sodass in der gegebenen Zeit keine
optimale Losung gefunden werden kann. Die gefundenen zuldssigen Losungen ndhern
sich binnen weniger Minuten dem Wert -307 oder -320 (je nach ausgewéhlter Losung der
LP-Relaxierung). Danach verbessern sich die Losungen nur noch sehr langsam und auch
nach finf Stunden ist der Wert hochstens um -5 besser und damit noch weit vom Optimum
entfernt.
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Fiir den zweiten Test wurden die harten Bedingungen , Fixe Stunden”, , Lehrer-Nichtver-
fugbarkeiten” und , Fach-pro-Tag” sowie die weiche Bedingung , Lehrer-Verftigbarkeiten”
hinzugefiigt.

Tabelle 6.16. CSP mit Zielfunktion und zusétzlichen harten Bedingungen

Datensatz A B C D

Anzahl Variablen | 156 1036 1512 8602

Grofle der Zielfunktion | 140 480 397 5510

Anzahl Constraints | 231 883 1489 6604

Optimum (Minimum) | -74 -54 -134 -346

Beste Losung (Or-Tools) -74 -52 -134 -214
Gefunden nach (Or-Tools) | Oms 39s 264ms 51 min

Terminiert nach (Or-Tools) | 20,1s >1h >2 h >2 h

Beste Losung (Gecode) | -74 -52 -134 -215
Gefunden nach (Gecode) | Oms 155s 609 ms 38 min

Terminiert nach (Gecode) | 12,7s >1h >1h >1h

Wihrend beim kleinen Datensatz A die zusétzliche Einschrankung des Suchbaums dazu
fuhrt, dass die optimale Losung binnen weniger Sekunden bestitigt werden kann, sind die
tibrigen Datensétze weiterhin zu groff um in akzeptabler Zeit eine Losung zu erhalten. Statt-
dessen zeigt sich, dass die Suche nach besseren Losungen aufgrund der grofieren Zahl von
Constraints nun ldnger dauert. Mit der zuséatzlichen harten Bedingung , Doppelstunden”
wird fiir Datensatz D in einer Stunde {iberhaupt keine Losung mehr gefunden.

Auch hier hat die von Gurobi ausgewéahlte Losung der LP-Relaxierung erheblichen Einfluss
auf die weitere Berechnung. Obwohl die LP-Relaxierung ebenfalls mit Zielfunktion gelost
wird, was die Menge der moglichen Losungen stark einschréankt, gibt es weiterhin verschie-
dene optimale Losungen, die sich vor allem in der Gréfle des ganzzahligen Anteils stark
unterscheiden konnen. Dadurch kann z. B. fiir den Datensatz C binnen Millisekunden eine
optimale Losung gefunden werden, wihrend es bei Datensatz B, der durch Vereinfachung
von Datensatz C entstanden ist, deutlich linger fiir eine suboptimale Losung dauert.

6.7.3. Auswertung

Die Suche mittels Constraint Propagation und Backtracking ist nur dann in der Lage, eine
Losung zu finden, wenn diese entweder direkt am Anfang des Suchbaums liegt, was durch
eine geschickte Sortierung der Variablen erreicht werden kann, oder wenn die Losungen
allgemein dicht gestreut sind. Letzteres war bei den meisten Tests der vorherigen Kapitel
vor allem deswegen der Fall, weil einige Bedingungen weggelassen wurden. Die Tests mit
zusédtzlichen Bedingungen zeigen, dass insbesondere der Datensatz C schwer zu l9sen ist,
was sich damit erkldren ldsst, dass die Klassen in diesem Datensatz fast oder genau so viel
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Unterricht haben wie es Wochenstunden gibt. Fiir die Verteilung des Unterrichts gibt es
also nur sehr wenige Freirdume. Durch die in der Realitit nattirlich ebenfalls geforderten
Doppelstunden wird aber auch der Datensatz D schwerer 16sbar.

Jede zusatzliche Bedingung fiihrt also dazu, dass zuldssige Losungen im Suchbaum seltener
werden. Um trotzdem noch eine zuldssige Losung finden zu konnen, miissten die Such-
Heuristik und/oder die Reihenfolge der Variablen entsprechend angepasst werden, so wie
es in den vorherigen Kapiteln fiir die Kernstunden und die Konfliktfreiheit beschrieben
wurde. Dieser Ansatz wird jedoch mit zunehmender Anzahl an verschiedenen Bedingungen
schwieriger, weil diese sich zum Teil widersprechen und es keine Sortierung oder Heuristik
gibt, die allen gerecht wird.

Selbst wenn es gelingen wiirde, eine solche Heuristik zu finden, die es fiir jeden Datensatz
und beliebige Bedingungen ermoglicht, die zuldssigen Losungen schnell auffindbar zu
machen, ware die Grofie des Suchbaums weiterhin ein Problem, sobald weiche Bedingungen
beachtet werden sollen. Denn dafiir muss der Suchbaum, der mit Einschrankung auf
den optimalen Zielfunktionswert tibrig bleibt, komplett durchsucht werden — weil es in
diesem letzten Suchbaum per Definition keine zuldssige Losung mehr gibt. Dafiir sind die
Probleminstanzen, die in der Praxis der Stundenplanung vorkommen, schlicht zu grof.

Aus diesem Grund betrachten wir im nédchsten Kapitel einen Ansatz, der nicht auf variablen-
basierter Suche aufbaut, sondern mit einer eher , globalen” Perspektive nach Losungen
sucht und mittels Resolution den Optimalitdtsbeweis fithren kann.
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Kapitel 7

Losung mittels pseudo-boolescher
Optimierung

Dieses Kapitel beschreibt einen Ansatz, das Stundenplanproblem mit pseudo-boolescher
Optimierung zu l6sen. Zunichst wird in Abschnitt 7.1 das Verfahren allgemein vorgestellt.
Abschnitt 7.2 gibt fiir alle bendtigten Bedingungen des Stundenplanproblems eine binédre
Formulierung an. Abschnitt 7.3 geht auf die Implementierung und Rechenergebnisse ein
und in Abschnitt 7.4 wird das Verfahren mit der LP-Relaxierung kombiniert.

7.1. Einfiihrung

Im Allgemeinen ist eine pseudo-boolesche Funktion definiert als f : B" — IR [Boros und
Hammer, 2002]. Funktionsterme konnen in Literalschreibweise ausgedriickt werden mit
X = (1—x;).

Fiir das Stundenplanproblem in der hier vorgestellten Form gelingt es sogar, alle Bedin-
gungen als lineare Constraints zu formulieren, sodass sie der Definition von Chai und
Kuehlmann [2005] entsprechen:

Zai ‘lizk mita; ke, ;€ {x,-,a?-}, x;€B
Hinweis: Constraints mit = oder < lassen sich entsprechend umformen.

Vervollstandigt wird die Probleminstanz durch eine (lineare) pseudo-boolesche Zielfunkti-
on, deren Minimum bzw. Maximum gesucht ist.

7.1.1. Losungsverfahren

Fiir die pseudo-boolesche Optimierung (PBO) gibt es mehrere grundsétzlich verschiedene
Losungsansétze. Einige Solver verfolgen den Ansatz, PBO-Instanzen auf ganzzahlige
lineare Programmierung (ILP) oder Constraint Programming (CSP) zu reduzieren. Da diese
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Techniken bereits in den vorherigen Kapiteln ausfiihrlich durch direkte Modellierungen
betrachtet wurden, wurden diese Solver hier ausgeschlossen.

Von besonderem Interesse sind deshalb die Solver, die auf SAT-Verfahren basieren, indem
zum Beispiel die pseudo-booleschen Constraints in aussagenlogische Klauseln iibersetzt
werden [Eén und Sérensson, 2006] oder indem ein SAT-Solver so erweitert wird, dass er
direkt mit den pseudo-booleschen Constraints umgehen kann [Le Berre und Parrain, 2010].
Um damit auch Optimierungsprobleme 16sen zu konnen, bietet sich ein dhnlicher Ansatz
wie beim Constraint Programming (siehe Unterabschnitt 5.1.3) an, bei dem eine zuléssige
Losung durch Hinzuftigen von Constraints solange verbessert wird, bis es keine bessere
Losung mehr gibt. Dariiber hinaus gibt es fortgeschrittenere Ansitze, die zum Beispiel
Cutting Planes verwenden [Manquinho und Marques-Silva, 2006].

7.2. Vollstindige Bindrisierung

Selbst wenn man als Grundlage der Modellierung binére Variablen wihlt, wie es der von
Weidler [2012] eingefiihrte und in Abschnitt 3.3 vorgestellte LP-Ansatz tut, kénnen zur Mo-
dellierung komplexerer Bedingungen zusétzliche Variablen nétig sein, die nicht unbedingt
bindr sind [z. B. Weidler, 2012, Kap. 4.2.3, 4.2.4]. Deswegen muss fiir alle Bedingungen eine
bindre Formulierung gefunden werden, insbesondere fiir solche Bedingungen, die in dieser
Arbeit bislang noch nicht genauer betrachtet wurden. Denn wenn eine solche Formulierung
nicht oder nur sehr ineffizient moglich wére, ware der gesamte pseudo-boolesche Ansatz
fuir die Praxis untauglich.

Wie beim LP-Ansatz (siehe Unterabschnitt 3.3.1) wéhlen wir als Grundlage der Modellie-
rung die Variablen x,; mit u € U und z € Z. Da die Solver lineare Ungleichungen direkt als
Constraints akzeptieren, lassen sich die Konfliktfreiheits- und die Kernstunden-Bedingung
analog formulieren. Fiir alle anderen Bedingungen wird im Folgenden eine mogliche
Formulierung mit bindren Variablen und pseudo-booleschen Constraints angegeben. Zur
Definition der Bedingungen selbst siehe Abschnitt 2.4 und Abschnitt 2.5.

7.2.1. Fixe Stunden und Nichtverfiigbarkeiten

Die Bedingung, dass der Unterricht u € U zum Zeitpunkt z € Z sicher stattfinden soll, 1asst
sich durch den folgenden Constraint ausdriicken:

Xyz = 1
Ebenso einfach ldsst sich verhindern, dass ein Lehrer | € L zu einem Zeitpunkt z € Z

unterrichten muss, an dem er nicht verfiigbar ist:

Vuel;: x,;, =0
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7.2.2. Doppelstunden

Es gibt eine Variante des Doppelstundensystems, die sehr einfach umzusetzen ist: Wenn
der gesamte Stundenplan nur aus Doppelstunden besteht, halbiert man einfach die Wo-
chenstundenzahl jedes Unterrichts und verdoppelt die Lange jeder Unterrichtsstunde.

Wenn das Doppelstundensystem nicht den ganzen Tag tiber oder nicht fiir alle Unterrichte
gelten soll, kann man fiir jeden Unterricht u € U und jedes Zeitslot-Paar (z1,z,) € D
erzwingen (D c Z? ist die Menge der Zeitslot-Paare, fiir die die Doppelstunden-Bedingung
gelten soll), dass der Unterricht stets paarweise stattfindet [sieche Weidler, 2012, Kap. 4.1.6]:

Xuzy = Xuz,

Fiir Unterrichte mit ungerader Wochenstundenzahl bedeutet das, dass mindestens eine
Unterrichtsstunde aufSerhalb des Doppelstundenbereichs stattfinden muss. Es gibt aber
in der Praxis viele Falle, in denen das Doppelstundensystem grundsatzlich den ganzen
Tag tiber angewendet wird, obwohl es Unterrichte mit ungerader Wochenstundenzahl gibt.
Diese werden entweder 14-tdgig unterrichtet, was man leicht modellieren kann, indem
man die Wochenstundenzahl auf die nédchste gerade Zahl rundet und im Ergebnis eine
Doppelstunde als 14-tdgig markiert. Auch wenn der 14-tdgige Unterricht im Wechsel mit
einem anderen Fach/Lehrer oder mit einer anderen Klasse stattfindet, ldsst sich das mit
einer Kopplung vergleichsweise einfach modellieren. Oder die ,,{ibrig gebliebenen” einzel-
nen Unterrichtsstunden miissen im Doppelstundenraster untergebracht werden, indem
jeweils zwei (von verschiedenen Féachern) einen Doppelstunden-Slot belegen — oder auch
nur eine, wodurch eine Freistunde entsteht. Natiirlich darf maximal eine Unterrichtsstunde
pro Unterricht alleine vorkommen, weil ansonsten das gesamte Doppelstundensystem
aufgelost wiirde.

Ein CSP-Solver kann sich mit einer Statusvariable leicht merken, welche Unterrichtsstunde
die alleinstehende ist. Fiir die Modellierung mit pseudo-booleschen Constraints sind jedoch
zusitzliche (bindre) Variablen notig: Wir definieren fiir jedes Zeitslot-Paar (z1,z3) € D und
jeden Unterricht 1 € U mit ungerader Wochenstundenzahl W (u) die Variablen

1 Die zugehorige Unterrichtsstunde x,,;, ist eine Einzelstunde
0 Sonst

ie{1,2}: ew, —{

und ersetzen den bisherigen Constraint x,,;, = x;, durch

Xuzy < Xuzy + €uzy

<
Xuz, & Xuzy + Cuzy
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Die aussagenlogische Schreibweise dieser Constraints verdeutlicht die Idee:

Xuzy — Xuz, V Cuzg

Xuzy, = Xuzy V Cuz,

Wenn der Unterricht zum einen Zeitpunkt stattfindet, dann findet er auch zum anderen
statt, oder es handelt sich um eine Einzelstunde.

Zusétzlich muss sichergestellt werden, dass maximal eine Einzelstunde stattfindet:

Zeuz<1

zeZ

und dass Einzelstunden nur stattfinden, wenn tiberhaupt Unterricht stattfindet:

Vze Z: ey < Xyz

Hinweis: Die Entscheidung zur Einfiihrung von zusitzlichen Variablen pro Unterricht und
Zeitslot bedeutet nicht, dass sich die Gesamtzahl der Variablen in der Probleminstanz
verdoppelt. Diese zusétzlichen Variablen sind nur fiir Zeitslots notig, die zu Doppelstun-
den gehoren, und vor allem nur fiir Unterrichte, die eine ungerade Stundenzahl haben.
Unterrichte mit gerader Stundenzahl sind in der Praxis deutlich hdufiger und lassen sich
weiterhin ohne zusétzliche Variablen mit diesem Constraint zu Doppelstunden zusammen-
fassen:
Xuz; = Xuz,

Dieser Constraint ldsst sich leicht in Klauselschreibweise umformen:

Xuzy <> Xuz, < (xu21 Vv xuzz) A (xu21 Vv xuzz)

7.2.3. Hohlstunden-Vermeidung

Fiir einen gegebenen Lehrer [ € L soll die Anzahl an Hohlstunden minimiert werden.
Es soll also moglichst wenige Zeitslots geben, die zwischen belegten Zeitslots desselben
Tages liegen, aber fiir den Lehrer unterrichtsfrei sind. Weidler [2012] verwendet dafiir
ganzzahlige Variablen, die die Nummer der ersten und letzten Unterrichtsstunde an einem
Tag markieren, und minimiert dann die Differenz.

Ein guter Ansatz, um auf nicht-bindre Variablen verzichten zu kénnen, ist die Umkehrung
des Geforderten: Wenige Hohlstunden sind gleichbedeutend mit vielen Stunden vor der
ersten oder nach der letzten Unterrichtsstunde an einem Tag.

Wir definieren neue Variablen «;,, w;, € B fiir jeden Zeitslot z € Z. Die Variablen «;, sind

vor der ersten Unterrichtsstunde des Lehrers wahr, also wenn er noch ausschlafen kann.
Die Variablen wy, sind nach der letzten Unterrichtsstunde wahr, also am Feierabend.
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Fiir jede Stunde des Tages gibt es auf den einzelnen Lehrer bezogen vier Moglichkeiten:

* Er hat noch frei (schlédft noch), dann ist «;, wahr.
* Er unterrichtet, dann Ju € U; : x,; = 1.
* Er hat schon frei (Feierabend), dann ist w;, wahr.

* Er hat eine Hohlstunde, dann ist keine der Variablen wahr.

Weil sich diese Moglichkeiten gegenseitig ausschliefSen, muss gelten:

VzeZ: ap+wp+ Y xuz<1

uell;

Aufierdem miissen fiir eine freie Morgenstunde auch alle Stunden davor frei sein, analog
miissen nach einer Feierabendstunde alle folgenden Stunden frei sein:

Vt e T, 2<i< |S| : ‘XIZ[,‘ < [xlzti_l

VieT, 1<i<|S|-1: Wiz, < Wiz,

Das Ziel ist die Vermeidung von Hohlstunden, was mit einer Maximierung der Zahl der
freien Randstunden gleichzusetzen ist. Es gilt also, diesen Term zu maximieren:

2 (‘Xlz + wlz)

zeZ

7.2.4. Weitere Bedingungen

Fiir die weiteren Bedingungen , Fach pro Tag”, ,Harte Facher vormittags”, ,Folgen harter
Facher” und , Lehrer-Nichtverfiigbarkeiten” gibt Weidler [2012] bereits Modellierungen in
bindrer Form an, die direkt als pseudo-boolesche Constraints formuliert werden konnen.

7.3. Implementierung und Optimierung

Fiir die Losung der PB-Instanzen wurden Solver ausgewihlt, die auf SAT basieren. Sowohl
Sat4] Pseudo 2.3.5 [Le Berre und Parrain, 2010] als auch die Solver WBO 2.0 [Manquinho
etal., 2009] und PWBO 2.2 [Martins et al., 2011] gehorten in den letzten Jahren zu den besten
PB-Solvern [Pseudo Boolean Competition, 2012]. Da PWBO nur Probleminstanzen mit
Zielfunktion unterstiitzt, wurde fiir die Berechnung mit ausschlieflich harten Bedingungen
der Solver WBO verwendet, und fiir die weiteren Berechnungen stets PWBO. Zum Vergleich
wurde der LP-basierte Solver SCIP 3.1.0 mit SoPlex 2.0.0 herangezogen [Achterberg, 2009].
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7.3.1. Ausschliefllich harte Bedingungen

Tabelle 7.1 zeigt die Ergebnisse der Berechnungen mit harten Bedingungen.

Tabelle 7.1. Laufzeit der Pseudo-Boolean-Solver mit harten Bedingungen

Datensatz A B C D

Anzahl Variablen 156 1036 1512 8602

Anzahl Constraints 115 500 733 3088
Rechenzeit (Sat4]) 7ms 1l6ms 418ms 43 ms
Rechenzeit (WBO) | <1l0ms 20ms 80ms 140 ms
Rechenzeit (SCIP) | <10ms 50ms 560 ms 220 ms

Anzahl Constraints 1157 600 933 3388
Rechenzeit (Sat4]) 7ms b5lms 134 ms 68 ms
Rechenzeit (WBO) | <1l0ms 40ms 60ms 160 ms
Rechenzeit (SCIP) | <5ms 30ms 100 ms 210 ms

Anzahl Constraints 127F 645 1013 4394
Rechenzeit (Sat4]) 7ms 6lms 37ms 48 ms
Rechenzeit (WBO) | <10ms 50ms 100 ms 130 ms
Rechenzeit (SCIP) | <5ms 30ms 60ms 220 ms

T Der Datensatz A enthilt keine Kernstunden

Konfliktfreiheit

+ Kernstunden

+ Fixe Stunden

Hinweis: Die Rechenzeiten von (P)WBO und SCIP kénnen lediglich auf 10 Millisekunden
genau angegeben werden.

Alle Solver sind in der Lage, fiir alle Probleminstanzen innerhalb kurzer Zeit eine zuldssige
Losung zu finden. Der Vergleich mit den CSP-Implementierungen in Abschnitt 5.3 und
Abschnitt 5.4 zeigt, dass die PB-Solver trotz der schwierigeren Kernstunden-Bedingungen
alle Datensétze 19sen konnen, was den CSP-Solvern nur mit zusétzlichen Hilfestellungen
wie einer gezielten Sortierung der Variablen (Unterabschnitt 5.4.3) oder mit Unterstiitzung
durch die LP-Relaxierung (Kapitel 6) gelingt.

7.3.2. Optimierung mit weichen Bedingungen

Tabelle 7.2 zeigt die Ergebnisse der Berechnungen mit den oben genannten harten Be-
dingungen sowie einer Zielfunktion aus den weichen Bedingungen , Unterrichtsprioritat”
und , Lehrer-Verfiigbarkeiten”. Hinweis: Beim Vergleich mit den CSP-Berechnungen (siehe
Unterabschnitt 6.7.2) ist zu beachten, dass die dort verwendeten Bedingungen leicht von
den hier verwendeten abweichen, sodass auch der optimale Zielfunktionswert nicht immer
gleich ist.
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Tabelle 7.2. Laufzeit der Pseudo-Boolean-Solver mit harten und weichen Bedingungen

Datensatz A B C D
Anzahl Variablen 156 1036 1512 8602
Grofde der Zielfunktion 140 480 397 5510
Anzahl Constraints 127 645 1013 4394
Optimum (Minimum) -74 -54 -134 -348
Beste Losung (Sat4]) -74 -35 -128 -267

Gefunden nach (Sat4]) 56s 206s 59 min 335 ms

Terminiert nach (Sat4]) | 11,4 s >1h >1h 52 mint

Beste Losung (PWBO) -74 -30 -122 -46
Gefunden nach (PWBO) 09s 80ms 170ms 2.2s
Terminiert nach (PWBO) 25s >1h >1 h >1h
)
)
)

Beste untere Schranke (PWBO - -558 -528 -1766
Beste Losung (SCIP -74 -54 -134 -348
Gefunden nach (SCIP) | <40ms <40ms 100ms 52s

Terminiert nach (SCIP) | 40ms 40ms 370ms 116,0s

t Abbruch wegen Speicheriiberlauf

Nur der vergleichsweise kleine Datensatz A kann von allen Solvern optimal gelost werden.
Bei den anderen Datensédtzen zeigt sich ein deutlicher Unterschied zwischen den SAT-
basierten PB-Solvern, die keinen einzigen Datensatz 16sen konnen, und dem LP-basierten
Solver SCIP, der alle in akzeptabler Zeit 16st.

7.4. Einbezug der LP-Relaxierung

Die Beobachtung, dass der LP-basierte Solver wesentlich erfolgreicher ist als die reinen
PB-Solver, legt nahe, die LP-Relaxierung einzubeziehen — analog zu dem in Kapitel 6
vorgestellten CSP-Ansatz. Da die Variablen in der PB-Modellierung keine Reihenfolge
haben, in der sie abgearbeitet werden, kommt nur die Fixierung von ganzzahligen Werten
in Frage. Weil die Fixierung von 0-Werten eine Probleminstanz unlésbar machen kann
(siehe Unterabschnitt 6.3.1), werden hier nur die 1-Werte fixiert, d. h. sie werden als Axiome
in die Probleminstanz aufgenommen.

Die Berechnungen wurden mit den harten Bedingungen ,Kernstunden”, ,Fixe Stunden”
und , Lehrer-Nichtverfiigbarkeiten” sowie den weichen Bedingungen ,Unterrichtspriori-
tat” und , Lehrer-Verfiigbarkeiten” durchgefiihrt und die Ergebnisse sind in Tabelle 7.3
dargestellt. Zu den Ergebnissen bei Datensatz C sei angemerkt, dass der Erfolg bei beiden
Solvern von der gewihlten Losung der LP-Relaxierung abhingt.
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Tabelle 7.3. Laufzeit der Pseudo-Boolean-Solver mit LP-Relaxierung

Datensatz A B C D
Anzahl Variablen 156 1036 1512 8602
Anzahl fixijerter Variablen 6 114 194 97

Grofe der Zielfunktion 140 480 397 5510

Anzahl Constraints 131 759 1207 4476

Optimum (Minimum) -74 -54 -134 -348

Beste Losung (Sat4]) -74 -54 -134 -300
Gefunden nach (Sat4]) | 14ms 22ms 55ms 429 ms

Terminiert nach (Sat4]) | 160ms 27 ms >1h >1h

Beste Losung (PWBO) -74 -54 -134 -326
Gefunden nach (PWBO) | 230 ms 30ms 770ms 337,4s

Terminiert nach (PWBO) | 360 ms 30ms 52,6 s >1h

Beste untere Schranke (PWBO) - - - -1166

Generell ist die Berechnung durch die Fixierung der Einsen aus der LP-Relaxierung
deutlich schneller und erfolgreicher. Im Vergleich mit den CSP-Berechnungen (siehe Un-
terabschnitt 6.7.2) zeigt sich auflerdem, dass die PB-Solver schneller terminieren, weil
sie den Optimalitiatsbeweis mit Resolution (oder mit anderen Techniken) fithren kénnen
und nicht den gesamten verbleibenden Suchbaum durchsuchen miissen. Fiir Datensatz
D, der nicht innerhalb der gegebenen Zeit gelost werden kann, finden die PB-Solver in
kiirzerer Zeit bessere Losungen als die CSP-Solver. Ohne Optimierung, dafiir aber mit der
Doppelstunden-Bedingung, kann fiir Datensatz D in weniger als einer Sekunde eine zuldssi-
ge Losung gefunden werden, was den CSP-Solvern auch nach einer Stunde nicht gelungen
ist. Auch mit zufillig ausgewéhlten (optimalen) Losungen der LP-Relaxierung bleiben diese
Unterschiede bestehen, sodass ausgeschlossen werden kann, dass die oben verwendete
deterministisch gewéhlte Losung per Zufall den PB-Solvern eine bessere Ausgangssituation
bietet. Das zeigt, dass der PB-Ansatz nicht so stark auf wachsende Probleminstanzen
reagiert wie der CSP-Ansatz.

Genau wie die CSP-Solver profitieren auch die PB-Solver nicht (messbar) von den zusétzli-
chen Cliquen-Constraints. Diese werden daher nur zur Verbesserung der LP-Relaxierung
eingesetzt.

7.5. Auswertung

Auch wenn die PB-Implementierung in fast allen Fillen erfolgreicher ist als die CSP-
Implementierung, bleibt sie noch deutlich hinter den Ergebnissen zuriick, die der kommer-
zielle Solver Gurobi mit der ILP-Modellierung erzielt. Die Berechnung mit dem grofien
Datensatz D benétigt zu viel Zeit. Zwar gelingt es PWBO, innerhalb von einer Stunde eine
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knapp akzeptable Losung zu finden, doch die obigen Berechnungen wurden nicht mit
allen Bedingungen durchgefiihrt. Zuséatzliche Bedingungen fithren zwar nicht zu einer
exponentiell lingeren Laufzeit, doch selbst wenn sich die Laufzeit nur um einen Faktor
vergrofert, wére die resultierende Laufzeit mit dem hier vorgestellten Ansatz fiir die Praxis
zu grofs.

Mit den zusatzlichen Bedingungen ,Fach-pro-Tag” und ,Doppelstunden” dauert die
Berechnung fiir Datensatz D bereits erheblich ldnger. Nach einer Stunde ist ein Zielfunk-
tionswert von -109 erreicht, das Optimum ldge bei -270. Wahrend Gurobi binnen zwei
Minuten (anstatt wenigen Sekunden) in der Lage ist, das Optimum trotz dieser zusétzlichen
Bedingungen zu berechnen, steigt die Laufzeit bei den (freien, kostenlosen) PB-Solvern
von Stunden auf Tage an. Dabei handelt es sich nicht notwendigerweise um einen grund-
sdtzlichen Mangel des PB-Ansatzes oder der PB-Solver, aber es fehlt noch an weiteren
Verbesserungen, um auch bei grofieren Datensdtzen mit allen gewtinschten Bedingungen
praktikable Laufzeiten zu erhalten.

Fiir kleinere (Grund-)Schulen konnte das in dieser Arbeit vorgestellte Verfahren bereits
eingesetzt werden. Um zu lange Laufzeiten und insbesondere den zeitintensiven Optimali-
tatsbeweis am Ende zu vermeiden, konnte man die Berechnung abbrechen, sobald mehr
als eine Stunde lang keine bessere Losung gefunden wurde. Die bis dahin gefundenen
Losungen sind bereits gut genug (im Beispiel von Datensatz A bis C sogar schon optimal),
um verwendet werden zu konnen. Weitere Verbesserungen, die in der Praxis auch bemerk-
bar wiren, konnen eher durch eine Verbesserung der Modellierung und insbesondere
der Zielfunktion erreicht werden, als durch eine weitere Anndherung an das theoretische
Optimum um wenige Prozent.
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Kapitel 8

Zusammenfassung, Anmerkungen und
Ausblick

Dieses Kapitel gibt in Abschnitt 8.1 eine Zusammenfassung {iber die in dieser Arbeit
vorgestellten Losungsansatze und Ergebnisse. Die Abschnitte 8.2 und 8.3 enthalten Ver-
gleiche mit anderen Ansétzen und Solvern. Abschnitt 8.4 dokumentiert das Verfahren fiir
die Zeitmessungen in dieser Arbeit. In den Abschnitten 8.5 bis 8.8 wird ein Ausblick auf
mogliche zukiinftige Entwicklungen gegeben.

8.1. Zusammenfassung

Es wurden drei Ansétze zur Losung des Stundenplanproblems untersucht: der erste mit
ganzzahligen Variablen in einem CSP, der zweite mit bindren Variablen und der dritte
mit pseudo-boolescher Optimierung. Die letzteren beiden Ansétze wurden mit Hilfe der
LP-Relaxierung verbessert.

Der erste Losungsansatz konnte vom alldifferent-Constraint und von der geringen Varia-
blenzahl profitieren. Solange nur die Konfliktfreiheits-Bedingung erfiillt werden musste,
gelang es damit in wenigen Millisekunden, zuldssige Losungen zu finden. Mit Hilfe einer
gezielten Sortierung der Zeitslots und der Unterrichte konnte auch die Kernstunden-
Bedingung erfiillt werden. Die Modellierung der meisten anderen Bedingungen und
insbesondere das Aufstellen einer Zielfunktion, die jede Unterricht-Zeitslot-Belegung unter-
schiedlich gewichten muss, erfordern jedoch eine grofie Menge an bindren Statusvariablen,
die den Ansatz an seine Grenzen bringen.

Deswegen wurden die bindren Variablen im zweiten Ansatz direkt als Hauptvariablen des
CSP gewihlt. Diese Art der Modellierung erzielte zunéchst dhnliche Ergebnisse wie die
vorherige. Als zusétzlicher Vorteil konnte die LP-Relaxierung einbezogen werden, um die
Suche weiter zu beschleunigen. Es wurde untersucht, wie unterschiedliche Varianten des
Rundens oder des Fixierens von Werten die Losbarkeit der Probleminstanz beeintrachtigen
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und wie sie die Berechnung beschleunigen. Dabei stellte sich heraus, dass insbesondere
die 1-Werte aus der LP-Relaxierung als zuverldssig angesehen werden konnen, nicht
jedoch die (deutlich hdufigeren) 0-Werte. Um auch von den Zwischenwerten zu profitieren,
ohne sie runden zu miissen, wurde die LP-Relaxierung als Sortierreihenfolge der CSP-
Variablen eingesetzt. In Kombination mit einer heuristischen Verfeinerung der Sortierung
der Variablen und einer Verschidrfung der LP-Relaxierung durch Cliquen-Constraints
konnten so Ergebnisse erzielt werden, die vergleichbar mit der ersten Modellierung sind.
Anders als bei jener kénnen aber bei der bindren Modellierung mit LP-Unterstiitzung
weitere Bedingungen eingefiigt werden, ohne dass die Laufzeit extrem ansteigt.

Komplexere Bedingungen wie die Doppelstunden, vor allem aber der eng gelagerte Daten-
satz C bringen auch diesen CSP-Ansatz an seine Grenzen. Da fiir die meisten schwierigeren
Bedingungen eine Heuristik zur gezielteren Suche gefunden werden muss, lassen sich
mehrere Bedingungen nur schwer kombinieren. Auflerdem ist die Suche nach dem Op-
timum mit dieser Methode relativ langsam, weil zum Schluss der gesamte verbleibende
Suchbaum durchsucht werden muss, um sicher zu sein, dass es keine bessere Losung gibt.

Aufgrund dessen wurde fiir den dritten Ansatz ein auf SAT basierendes Verfahren gewihlt,
sodass der Optimalitdtsbeweis mit effizienteren Methoden (wie Resolution) gefiihrt werden
kann. Ein weiterer Vorteil ist, dass bei der pseudo-booleschen Optimierung nur binire
Variablen und pseudo-boolesche Constraints méglich sind und daher auch nur diese vom
Solver unterstiitzt werden miissen, was fiir das Stundenplanproblem ausreicht. Mit diesem
Ansatz konnten in vergleichbarer Zeit zuldssige Losungen gefunden werden und die nach
einer Stunde erreichten Zielfunktionswerte waren durchgehend besser als beim CSP-Ansatz.
Vor allem aber terminierten die PB-Solver nach dem Finden der optimalen Lésung erheblich
schneller als die CSP-Solver, d. h. sie konnten wie erwartet den Optimalitdtsbeweis schneller
durchfiihren.

Insgesamt ist es dennoch mit keiner Methode in Kombination mit den genannten Solvern
gelungen, den Datensatz D optimal zu 16sen. Dem freien (nicht kommerziell nutzbaren)
Solver SCIP gelingt das zwar sowohl mit der ILP- als auch mit der PB-Modellierung
des Problems, doch wenn weitere Bedingungen — insbesondere die Doppelstunden —
hinzugefiigt werden, benotigt auch SCIP relativ lange fiir die Berechnung.

8.2. Vergleich mit spezialisierten Algorithmen

Wie bereits in Kapitel 3 erwidhnt, gibt es viele Algorithmen und Herangehensweisen, die
speziell fiir das Stundenplanproblem entwickelt oder angepasst wurden. Viele der neueren
bauen auf der Problemdefinition von Post et al. [2012] auf, die als sehr allgemein gehaltenes
XML-Format gegeben ist.
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Manche dieser Algorithmen verwenden einen Setz-Algorithmus (siehe Abschnitt 3.2), um
zundchst eine zuldssige Losung zu erhalten. Andere bauen diese aus kleineren Teillosungen
zusammen (z. B. KHE) oder verwenden ein randomisiertes Verfahren. Mitunter werden
sogar harte Bedingungen relaxiert, damit tiberhaupt eine erste Losung gefunden werden
kann. Diese wird dann mit unterschiedlichen Methoden verbessert bzw. iiberhaupt erst in
eine zuldssige Losung tberfiihrt.

Die naheliegende Idee, mittels lokaler Suche zwei oder drei Unterrichte zu vertauschen,
um neue Losungen zu finden, ist dabei oft nicht zielfiihrend. Kingston [2013] nennt dafiir
zwei Griinde: Zum einen sind die Probleminstanzen iiblicherweise so grofs, dass die zu
reparierenden Problemstellen zu weit auseinander liegen, als dass sie mit einer lokalen
Operation behoben werden konnten. Zum anderen ist schnell ein Zustand erreicht, in
dem alle moglichen lokalen Operationen bereits erfolglos durchprobiert wurden, weil jede
direkte Nachbar-Losung nicht besser als die aktuelle Losung ist.

Um entfernte, scheinbar unabhéngige Problemstellen einer Losung gemeinsam beheben
zu konnen, sind also andere Methoden notig. Ein moglicher Ansatz ist, mittels Simulated
Annealing dennoch einige Nachbarlésungen zu explorieren, auch wenn diese nicht un-
mittelbar besser sind [Fonseca et al., 2012]. Meyers und Orlin [2007] betrachten hingegen
eine groflere Nachbarschaft beim Verdndern der Losungen. Mit GELATO [Cipriano et al.,
2013], einem Tool das auf Gecode aufbaut, lieSe sich das Stundenplanproblem mit einer
Kombination aus Constraint Programming und Large Neighborhood Search 16sen.

Ahnlich ist der Ansatz von Kingston [2013], der mehrere lokale Operationen so aneinander
reiht, dass sich am Ende der Kette eine Verbesserung ergibt. Diese Idee wurde — neben
vielen weiteren Optimierungen — in KHE implementiert [Kingston, 2014]. Probeweise
wurden die SchulScheduler-Instanzen in das XML-Format von Post et al. [2012] konvertiert,
wobei nur die Konfliktfreiheit und die Kernstunden als Bedingungen verwendet wurden.
Der aktuelle KHE-Solver (vom Mai 2014) terminiert fiir den grofiten Datensatz D in weniger
als einer Minute, gibt jedoch eine unzuldssige Losung aus, bei der die Kernstunden-
Bedingung an einer Stelle verletzt wird.

Im Vergleich mit den speziell fiir das Stundenplanproblem entwickelten Algorithmen, die
oft (leicht) unzuldssige Losungen tolerieren und mit lokaler Suche arbeiten, haben die in
dieser Arbeit vorgestellten Ansétze (lineare Programmierung, Constraint Programming und
pseudo-boolesche Optimierung) den Vorteil, dass die gefundenen Losungen stets zuldssig
und auflerdem beweisbar optimal sind. Ein weiterer Vorteil ist der geringere Entwicklungs-
und Wartungsaufwand: Die Modellierung als ILP oder CSP nimmt erheblich weniger Zeit
in Anspruch und erlaubt es, Anderungswiinsche von Schulen schnell umzusetzen.

Ein klarer Nachteil sind die langeren Rechenzeiten. Im Vergleich mit KHE benétigen die
fur diese Arbeit verwendeten Solver Or-Tools, Gecode, Sat4] und (P)WBO deutlich langer
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fur die gleiche Probleminstanz, und in einigen Féllen terminieren sie tiberhaupt nicht in
akzeptabler Zeit. In der Praxis relativiert sich dieser Nachteil jedoch, da durch den Einsatz
von kommerziellen Solvern wie Gurobi oder SCIP die Rechenzeit vergleichbar gut ist.
Hingegen hat die Tatsache, dass die gefundenen Losungen dann ausnahmslos zuldssig
und optimal sind, in der Praxis eine grofie Relevanz.

8.3. Weitere getestete Solver

Neben den hauptsédchlich verwendeten Solvern Or-Tools, Gecode, Sat4] und (PYWBO
wurden einige weitere Solver kurz getestet, die hier nur kurz erwahnt werden, weil sie
entweder nicht besser als die verwendeten Solver abschnitten, oder weil sie kostenpflichtig
sind. Alle Solver (auier KHE) wurden mit der bindren Problemformulierung getestet.

* Gurobi 5.6.2 [Gurobi Optimization, Inc., 2014] 16ste alle verwendeten Instanzen in (oft
deutlich) unter einer Stunde optimal und erzielte auch bei den vollstindigen Instanzen
aus SchulScheduler gute Ergebnisse (siehe Abschnitt 4.5).

* KHE14 (siehe oben) rechnete schnell, lieferte aber teilweise unzulédssige Losungen.

* LocalSolver 4.5 [Benoist et al., 2011] war durchweg deutlich langsamer als Gurobi, SCIP
und auch als der in Abschnitt 7.4 vorgestellte Ansatz mit pseudo-boolescher Optimierung
und LP-Relaxierung.

* Mistral 2.0 [Hebrard, 2014] berechnete zuldssige Losungen so schnell wie die anderen
Solver, benotigte aber bereits fiir den kleinen Datensatz A langer als eine Stunde fiir den
Optimalitdtsbeweis der gefundenen optimalen Losung. Bei den grofleren Datensédtzen
waren die nach einer Stunde gefundenen Losungen noch weit vom Optimum entfernt.

* Opturion CPX 1.0.2 [Opturion, 2014] rechnete erheblich langsamer als PBSugar und
Sat4].

* Sat4] Maxsat 2.3.5 [Le Berre und Parrain, 2010] war durchgehend etwas langsamer als
Sat4] Pseudo.

e SCIP 3.1.0 [Achterberg, 2009] rechnete dhnlich gut wie Gurobi, benotigte jedoch ein
Mehrfaches der Zeit. Da es sich bei den kleineren Datensitzen aber nur um Sekunden
handelt, ist die Laufzeit fiir diese Instanzen trotzdem gut.

* Sugar 2.2.1 [Tamura et al., 2009] und PBSugar 1.1.1 [Tamura et al., 2013] mussten zur
iterativen Optimierung fiir jede Iteration vollstindig neu starten und rechneten etwas
langsamer als Sat4]. Insbesondere die letzte Iteration (Optimalitdtsbeweis) dauerte sehr
lang.
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Die hier genannten Ergebnisse erheben keinesfalls den Anspruch, reprasentativ fiir die Leis-
tungsfahigkeit dieser Solver zu sein. Es handelt sich lediglich um kurze, wenig optimierte
Tests mit bereits bestehenden Instanzen des Stundenplanproblems.

8.4. Messverfahren

Alle Berechnungen wurden auf einem gewdhnlichen Desktop-Rechner (Intel Core i7-920
mit 2,67 GHz und 6 GB RAM) unter Windows 7 durchgefiihrt. Fiir Solver, die lediglich
Linux unterstiitzen, wurde Ubuntu 14.04 in einer virtuellen Maschine mit 2 Gigabyte
Arbeitsspeicher verwendet. Das betrifft KHE, Mistral, PWBO und WBO.

Generell wurden lang laufende Berechnungen nach einer Stunde abgebrochen und die
Rechenzeit mit >1 h angegeben, wenn eigentlich Berechnungsergebnisse im Bereich von
Sekunden {iblich waren. Bei sehr kurzen Rechenzeiten im Millisekundenbereich wurden die
Berechnungen fiinf bis zehn Mal ausgefithrt und der Median aller Messungen angegeben.

Aufgrund der Vielzahl der verwendeten Solver mussten die Probleminstanzen aus dem
SchulScheduler-Format in viele andere Formate konvertiert und fiir viele andere Schnitt-
stellen aufbereitet werden. Da die dafiir verwendeten Skripte auf Korrektheit und nicht auf
Laufzeit optimiert wurden und Laufzeiten von mehreren Sekunden aufwiesen, wurde fiir
alle Solver einheitlich nur die reine Berechnungszeit gemessen und nicht das Einlesen und
Konvertieren der Probleminstanz. Auch Vorberechnungen wie die Suche aller Cliquen und
das Ermitteln des fertigen Stundenplans aus den Berechnungsergebnissen sind von den
Rechenzeiten stets ausgenommen. Die berechneten Stundenpldne wurden stichprobenartig
auf Korrektheit iiberpriift.

8.5. Softwaretechnische Anmerkungen

Aus verschiedenen Griinden kann es notwendig sein, dieselbe Probleminstanz in unter-
schiedlichen Formen an verschiedene Solver zu iibergeben: Einerseits lassen sich dadurch
Solver vergleichen oder parallel ausfiihren. Vor allem aber ist es fiir die Berechnung der
LP-Relaxierung nétig, deren Ergebnis dann in die weitere Berechnung einflief3t.

Um den Code zur Generierung der Variablen und Constraints fiir die verschiedenen
Solver nicht mehrfach implementieren und warten zu miissen, konnte in Zukunft auf
eine allgemeinere Softwarearchitektur zuriickgegriffen werden. Diese konnte entweder
die SchulScheduler-Probleminstanz zuerst in ein eigenes Zwischenformat aus Variablen,
Constraints und Zielfunktion tibersetzen und anschlieffend an die verschiedenen Solver
weitergeben. Oder es konnte eine verallgemeinerte Schnittstelle zur Kapselung der Solver
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entworfen werden, sodass jede Bedingung nur ein Mal implementiert werden muss und
trotzdem alle Solver-Typen ansteuern kann.

Eine Losung oder zumindest eine gute Referenz daftir konnte die relativ neue Java Con-
straint Programming API (JSR-331) sein, die im Rahmen dieser Arbeit aber noch nicht
verwendet wurde.

8.6. Umgang mit nicht l6sbaren Probleminstanzen

Im Normalfall sind die in der Praxis vorkommenden Probleminstanzen losbar. Vor allem
wenn ein dhnlicher Stundenplan wie im Vorjahr erstellt werden soll, mit nur leichten
Abweichungen bei Klassen und Lehrern, existiert ziemlich sicher eine Losung. Dennoch
kann es vorkommen, dass die Anforderungen nicht erfiillbar sind und die Schule bei-
spielsweise ihre Lehrerzuweisung oder deren Verfiigbarkeiten anpassen muss. Aufierdem
kann es durch einfache Tippfehler oder Verstandnisprobleme in Bezug auf die Konzepte
der Software dazu kommen, dass eine unlosbare Probleminstanz zum Solver gelangt.
Viele Konflikte und Probleme konnen vorab durch sorgféltige Validierung der Daten in
polynomieller Zeit und meist schon in Echtzeit wihrend der Eingabe erkannt werden.

Fiir alle tibrigen Falle ist es wichtig, dass die Solver mit unldsbaren Probleminstanzen um-
gehen konnen. CSP- und PB-Solver konnen das von Haus aus, weil sie bei der Optimierung
die Optimalitdt der letzten Losung dadurch beweisen, dass die gleiche Probleminstanz
mit Forderung nach einer besseren Losung unldsbar ist. Jedoch ist zu diesem Zeitpunkt
die Probleminstanz bereits relativ weit eingeschrankt und der Solver hat bereits einige
Constraints verarbeiten konnen und so etwas tiber die Probleminstanz gelernt.

Die getesteten CSP- und PB-Solver melden einige unlosbare Probleminstanzen innerhalb
von wenigen Millisekunden — vor allem wenn es sich um direkte Widerspriiche handelt, wie
etwa Klassen, die mehr Unterricht haben als es Zeitslots gibt. Andere unlgsbare Problemin-
stanzen werden selbst nach mehreren Stunden nicht erkannt. Letzteres ist problematisch,
weil der Nutzer glaubt, es wiirde eine Losung berechnet, wihrend beispielsweise ein
CSP-Solver den kompletten Suchbaum durchsuchen muss, obwohl es keine Losung gibt.
Das dauert aber mit Sicherheit linger als das gesetzte Zeitlimit, sodass der Nutzer die
Riickmeldung bekommt, dass seine Probleminstanz zu grofs oder zu schwierig sei.

Es miissten also weitere Techniken entwickelt werden, um unldsbare Probleminstanzen
moglichst schnell zu erkennen. Dafiir kommen unter anderem (weitere) geschickte Vali-
dierungen, Heuristiken oder auch die LP-Relaxierung in Frage, deren Unlosbarkeit ver-
gleichsweise schnell festgestellt werden kann. Einen besonderen Vorteil bieten Solver wie
Gurobi, die eine minimale Menge von Constraints berechnen kénnen, die zur Unlosbarkeit
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fiihrt. Die Software kann diese dann in menschenlesbare Bedingungen tibersetzen und
gruppieren, sodass dem Nutzer Hinweise gegeben werden kénnen, durch welche seiner
Eingaben die Probleminstanz unlésbar wird. In SchulScheduler ist eine solche Funktion
bereits implementiert.

8.7. Lokale Suche und Large Neighborhood Search

Wie bereits in Abschnitt 8.2 angesprochen, ist die lokale Suche in einer grdfleren Nachbar-
schaft ein geeigneter Ansatz zur Verbesserung von Losungen des Stundenplanproblems,
der aber den Nachteil hat, dass die Exploration der Nachbarschaft meist explizit program-
miert werden muss. Um die Vorteile der lokalen Suche mit der Flexibilitit von Ansitzen,
die lediglich eine einfache Modellierung des Problems erfordern, zu kombinieren, kénn-
ten (neue) Solver evaluiert werden, die wie LocalSolver eine generische und heuristische
Implementierung fiir lokale Suche anbieten.

8.8. Runden der LP-Relaxierung

Fiir andere Problemtypen finden sich in der Literatur viele Ansitze, um die Losung des
relaxierten linearen Programms so zu runden, dass die damit gefundene ganzzahlige
Losung zuldssig ist und nur wenig vom Optimum abweicht [siehe Vazirani, 2001]. In
Unterabschnitt 6.3.1 wurde gezeigt, dass das beim Stundenplanproblem nur schwer moglich
ist, weil es reelle Losungen gibt, deren ganzzahliger Teil die Probleminstanz bereits unlosbar
macht. Selbst mit den in Abschnitt 6.6 vorgestellten Cliquen-Constraints wére das Problem
durch normales Runden nicht immer 16sbar: Durch das Fixieren aller ganzzahligen Werte
wird der Datensatz C in 20 % und der Datensatz D sogar in 59 % der Félle unlosbar.

Dennoch ist die LP-Relaxierung fiir das Stundenplanproblem &ufierst interessant. Ein
Vergleich der Zielfunktionswerte von relaxierter und ganzzahliger Losung (siehe Tabelle 6.1)
ergibt, dass diese nur wenig bis gar nicht voneinander abweichen. Zudem kam es bei
den Berechnungen im Rahmen dieser Arbeit nie vor, dass eine der Einsen aus der LP-
Relaxierung falsch gewesen wire, wenn diese mit Cliquen-Constraints berechnet wurde.

Moglicherweise konnte ein Verfahren gefunden werden, das die LP-Relaxierung geschickt
rundet oder mehrfach rundet. Ebenfalls denkbar waren weitere Verscharfungen der LP-
Relaxierung, die verhindern, dass die Fixierung von Nullen die Probleminstanz unldsbar
macht. Ein weiterer Ansatzpunkt zur Verbesserung der LP-Relaxierung ist ihre Zielfunktion.
Diese konnte gezielt so perturbiert werden, dass die gefundene reelle Losung die genannten
Probleme nicht mehr aufweist.
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8.9. Fazit

Losungsverfahren, die das Stundenplanproblem nicht direkt 16sen, sondern es auf CSP,
ILP oder dhnliches reduzieren, sind durch die Verftigbarkeit von schnellen Solvern und
Computern als ebenbiirtige Konkurrenz zu spezialisierten Algorithmen anzusehen und
sind zudem besser wartbar und flexibler anpassbar. In dieser Arbeit wurde das Stunden-
planproblem in der von SchulScheduler verwendeten Form als CSP, als pseudo-boolesches
Optimierungsproblem und als bindres lineares Programm modelliert. Wenn offene und
kostenlose Solver verwendet werden, sind die vorgestellten Ansitze zwar nur fiir kleinere
Schulen ausreichend performant, doch fiir den praktischen Einsatz an grofieren Schulen
konnte auch auf kommerzielle Solver zuriickgegriffen werden. Mit weiteren Verbesse-
rungen der Modellierung und der Solver ist es mit hoher Wahrscheinlichkeit moglich,
auch grofiere Datensitze schnell genug zu l6sen. Dabei ist der pseudo-boolesche Ansatz
aufgrund der Arbeitsweise der Solver erfolgversprechender als die CSP-Modellierung.

Die Ergebnisse der Arbeit zeigen, dass vor allem die LP-Relaxierung der gewéhlten bindren
LP-Modellierung sehr aussagekréftig und damit zielfithrend ist. Sie kann auflerdem mit
verschiedensten Ansdtzen kombiniert werden. Fiir die weitere Forschung in diesem Bereich
sind daher vor allem die LP-Relaxierung und auflerdem die lokale Suche vielversprechend.
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