Institut fiir Softwaretechnologie

Universitat Stuttgart
UniversitatsstraBe 38
D-70569 Stuttgart

Bachelorarbeit Nr. 141

Untersuchung der Erweiterung
von Java 8 um Lambda

Timo Freiberg

Studiengang: Softwaretechnik

Prifer/in: Prof. Dr. Erhard Plodereder
Betreuer/in: Timm Felden

Beginn am: 20. Mai 2014

Beendet am: 21. November 2014

CR-Nummer: D.1.1,D.1.5,D.3.3

Kurzfassung

Durch die Verbreitung von mehrkernigen Prozessoren wird es wichtiger, Programme zu schreiben, die
parallel ausgefiihrt werden konnen. Ein funktionaler Programmierstil kann paralleles Programmieren
erleichtern. Ein wichtiges Stilmittel funktionaler Sprachen sind Lambdas (anonyme Funktionen)
welche z.B. in den mit Java vergleichbaren Programmiersprachen C# und Scala zur Verfiigung stehen.
Mit Version 8 wurden in Java Lambdas eingefithrt, wodurch Java einen funktionalen Programmierstil
starker unterstiitzt als zuvor.

In dieser Arbeit wird untersucht, wie gut funktionale Programmiermuster in Java 8 umgesetzt werden
konnen. Anhand von Codebeispielen werden Fille dargestellt, in denen es sinnvoll ist, in Java einen
funktionalen Programmierstil anzuwenden. Schliellich werden Faustregeln fiir die Benutzung von
Lambdas und funktionalen Programmiermustern vorgeschlagen.

Es gibt viele Fille, in denen ein funktionaler Programmierstil kiirzer, lesbarer und weniger feh-
leranfillig ist als ein traditioneller imperativer Programmierstil. Aulerdem kann ein funktionaler
Programmierstil es stark erleichtern, parallel ausfithrbaren Code zu schreiben. Javas Typsystem
kann den Einsatz von Lambdas jedoch erschweren. Die Anderungen in Java 8 erméoglichen einen
oft besseren Programmierstil und machen die Sprache angenehmer zu benutzen. Dabei wurden die
Anderungen so eingebaut, dass sie fiir Java-Programmierer leicht verstandlich sind und eine minimale
Umgewohnung bendétigen.

Inhaltsverzeichnis

1. Einleitung
1.1. Inhaltliche Zusammenfassung
1.2. Zielgruppe und nétiges Vorwissen Lo
1.3, Struktur

2. Neue Features in Java 8
2.1. Lambda-Ausdriicke
2.2. Method References
2.3, Streams e e e e e e e
24. Optional
2.5. CompletableFuture und weitere Monaden

3. Funktionale Programmiermuster
3.1. PureFunktionen
3.2. Vermeidung von Mutierbarkeit oo o Lo
33. Rekursion
3.4. LazyEvaluation
3.5. Funktionen héherer Ordnung
3.6. Funktionspipelines
3.7. Continuation Passing Style L L.
3.8. Patternmatching L

4. Funktionale Programmierbeispiele in Java 8
4.1. Behandlung von Collections mit Streams
4.2. Behandlung von null-baren Werten mit Optional
43. Try-Monade
4.4. Berechnung des grofiten Palindrom-Produktes

5. Richtlinien fiir funktionale Programmierung in Java 8
5.1. Benutzung der neuen FeaturesinJava8
5.2. Einsatz von funktionalen Programmiermustern

6. Zusammenfassung

A. Appendix
A.1. Daten der Leistungstests
A2. Try-Monade
A.3. Einfach verkettete, nicht mutierbare Liste
A4, Tail-Call-Optimization-Test
A5. Method Referenz Typ3Test

Literaturverzeichnis

ENEENEEN BN

o ©

12
14
15
16

19
19
20
21
22
23
25
26
26

29
29
34
36
39

41
41
42

45

47
47
51
55
62
63

65

1. Einleitung

Dieses Kapitel gibt eine Ubersicht iiber Inhalt und Struktur dieses Dokuments. Aulerdem wird die
Zielgruppe dieser Arbeit sowie das notige technische Vorwissen beschrieben.

1.1. Inhaltliche Zusammenfassung

In dieser Arbeit werden Lambdafunktionen sowie weitere neue Features in Java 8 vorgestellt. Aufier-
dem wird untersucht, ob mit diesen Anderungen ein funktionaler Programmierstil méglich ist, was
die Vor- und Nachteile eines solchen Programmierstiles sind und in welchen Anwendungsfillen er
sinnvoll ist. Diese Punkte werden mit Codebeispielen illustriert. Danach werden Richtlinien fiir die
Benutzung der neuen Sprachfeatures und eines funktionalen Programmierstiles in Java vorgeschlagen.
SchlieBlich wird bewertet, inwiefern es moglich ist, in Java 8 funktional zu programmieren und wie
einfach der Sprung von Java 7 auf Java 8 fiir einen Programmierer ist.

1.2. Zielgruppe und noétiges Vorwissen

Diese Arbeit richtet sich primir an Java-Programmierer, die wenig Erfahrung mit funktionalen
Programmiersprachen haben. Erfahrung mit der Syntax von Java, einem traditionellen imperativen
Programmierstil in Java sowie englischen Fachbegriffen wird vorausgesetzt. Vorwissen tiber Stilmittel
und Aspekte funktionaler Programmierung wird nicht vorausgesetzt.

1.3. Struktur

In Kapitel 2 werden neue Features in Java 8, die einen funktionalen Programmierstil begiinstigen,
vorgestellt. Kapitel 3 fithrt typische Aspekte und Muster funktionaler Programmierung ein und
stellt sie anhand von kurzen Codebeispielen vor. Ausfithrlichere Fallbeispiele werden in Kapitel 4
vorgestellt, in denen imperativer Code mit funktionalem Code, der die neuen Features von Java 8
nutzt, verglichen wird. In Kapitel 5 werden Richtlinien fiir den Einsatz der neuen Sprachfeatures sowie
eines funktionalen Programmierstils vorgeschlagen. Schliefllich werden in Kapitel 6 die Anderungen
in Java 8 sowie der Programmierstil, der durch sie geférdert wird, zusammengefasst und bewertet.

[NS O R

2. Neue Features in Java 8

In diesem Kapitel werden die Anderungen in Java 8 vorgestellt, die einen funktionalen Program-
mierstil fordern. Syntax und typische Verwendung werden beschrieben und anhand von einfachen
Beispielen dargestellt. Ausfithrlichere Beispiele, anhand welcher Vor- und Nachteile eines funktionalen
Programmierstils in Java 8 illustriert werden, werden in Kapitel 4 vorgestellt.

2.1. Lambda-Ausdriicke

In Java gab es schon vor Java 8 eine Moglichkeit, Logik als Parameter an eine Methode zu tibergeben,
namlich mittels einer anonymen inneren Klasse (aiK). Ein typischer Empfinger ist z.B. die Methode
Collections.sort. Diese Methode erwartet ein Comparator-Objekt als Parameter. Solche Objekte werden
hiufig direkt am Verwendungsort als aiK initialisiert. Dabei ist nur die Logik in ihrer einzelnen
Methode fiir den Programmierer von Interesse. Eine typische Benutzung wird in Abbildung 2.1
dargestellt.

Abbildung 2.1: Sortierung einer Liste von Personen nach Alter

Collections.sort(persons, new Comparator<Person>() {
@Override
public int compare(Person pl, Person p2) {
return pl.getAge() - p2.getAge();
}
1)

Die Logik benotigt nur eine Zeile, die gesamte Deklaration der aiK aber fiinf Zeilen. Auflerdem kann
jeder Teil der aiK, bis auf die Logik in Zeile 4, automatisch erkannt werden:

Die Signatur der sort-Methode bestimmt, dass ein Comparator-Objekt mit demselben Typ-Parameter
E wie die Collection benétigt wird. Das Comparator-Interface bestimmt, dass eine compare-Methode
mit zwei Parametern vom Typ E, die einen int-Wert zuriickgibt, definiert werden muss. [Oral4a,
Oral4e]

Lambda-Ausdriicke erméoglichen es, die selbe Methode in nur einer Zeile zu schreiben. Die Signatur
des Lambdas muss identisch mit der Signatur der Methode sein, die an dieser Stelle mittels einer aiK
definiert werden wiirde. In diesem Fall muss die Signatur der compare-Methode tibereinstimmen,
damit der Compiler das Lambda akzeptiert.

2. Neue Features in Java 8

Abbildung 2.2: Kiirzung von Abbildung 2.1 mit einem Lambda

Collections.sort(persons, (pl, p2) -> pl.getAge() - p2.getAge());

2.1.1. Syntax

Ein Lambda besteht aus einer Parametermenge (die leer sein darf), einem Pfeil (->) sowie einem
Korper, der entweder ein Ausdruck oder ein Block sein muss.

Abbildung 2.3: Identitatsfunktion als Lambda

(int x) -> {return x;}

Abbildung 2.3 zeigt die Identitatsfunktion von int-Werten auf int-Werte. Dies ist die ausfiihrlichste
Art, diese Funktion als Lambda zu schreiben. Es ist moglich, einzelne Ausdriicke im Koérper des
Lambdas ohne geschweifte Klammern und ohne return zu schreiben, siehe Abbildung 2.4.

Abbildung 2.4: Identitatsfunktion mit minimiertem Kérper

(int x) -> x

Auch die linke Seite des Pfeils lasst sich verkiirzen, da die explizite Typangabe in Lambdas optional
ist. Wenn nur noch ein einzelner Parameter ohne Typangabe links vom Pfeil steht, sind die Klammern
um den Parameternamen optional. Abbildung 2.5 zeigt die kleinste Version der Identitatsfunktion.

Abbildung 2.5: Minimale Identitdtsfunktion

X -> X

Da in Abbildung 2.5 der Typ nicht explizit festgehalten ist, konnte dieses Lambda auch an eine
Methode tibergeben werden, die eine Funktion benétigt, die z.B. von String nach String abbildet. Dies
wird in Abbildung 2.6 dargestellt.

Die kompletten syntaktischen Regeln von Lambdas sind im offiziellen Java-Tutorial zu finden.[Ora14;]

2.1.2. Einsatz von Lambdas

In Java 8 wurden keine Funktionstypen eingefiihrt. Lambdas werden daher in Instanzen von Functional
Interfaces umgewandelt. Diese Interfaces zeichnen sich dadurch aus, dass sie genau eine abstrakte
Methode haben. Dabei werden abstrakte Methoden, die eine der Methoden von java.lang.Object
iiberschreiben, nicht gezahlt. [Ora14d]

Vor dieser Umwandlung sind Lambdas anonyme Funktionen, weshalb man das selbe Lambda in Ob-
jekte mit verschiedenem Typ umwandeln kann. Ein Beispiel dafiir wird in Abbildung 2.6 dargestellt.

2.1. Lambda-Ausdriicke

Abbildung 2.6: Das selbe Lambda wird in Variablen von verschiedenem Typ gespeichert

X -> X + 1;
X -> X + 1;

IntUnaryOperator f1
Function<Integer,Integer> f2

Comparator<Integer> gl = (x,y) -> 1;
IntBinaryOperator g2 = (x,y) -> 1;
int i = 1;

Supplier<Integer> hl = () -> i;
IntSupplier h2 = () -> 1i;

Function<String,String> idl
Function<Integer,Integer> id2

|
x

1
\%

X3
X5

Il
X
1
\'%

Damit eine Methode ein Lambda als Parameter empfangen kann, muss sie ein Functional Interface
als Parameter erwarten. In Java 8 wurde das function-Paket eingefiihrt, das Funktionen mit keinem,
einem oder zwei Parametern bereitstellt. [Ora14h]

In Abbildung 2.7 wird eine Methode vorgestellt, die ein Function-Objekt akzeptiert und die enthaltene
Funktion mit dem Eingabewert 0 ausfiihrt. Diese Methode konnte z.B. die in Abbildung 2.5 vorgestellte
Identitatsfunktion empfangen. An diesem Beispiel ist auflerdem zu erkennen, dass die durch das
Lambda definierte Funktion durch die abstrakte Methode des Functional Interface implementiert wird.
Diese Methode heisst in diesem Fall Function.apply.

Abbildung 2.7: Methode, die ein Lambda akzeptiert

int supplyZero(Function<Integer, Integer> f) {
//f ist ein Objekt, das eine apply-Methode besitzt
return f.apply(0);

}
supplyZero(x -> x); // ergibt 0

Da Lambdas nur die Methode eines Interfaces implementieren, kénnen sie nicht auf eigene Klassen-
variablen zugreifen, da sie keine besitzen. Genau wie aiK konnen sie aber auf Variablen in ihrem
Umfeld zugreifen, die entweder final sind, oder niemals neu zugewiesen werden und dadurch ohne
Kompilierfehler als final deklariert werden konnten. Letztere nennt man effective final Variablen, da
sie wie final behandelt werden konnen. In diesem Zusammenhang muss man beachten, dass Lambdas
immer Zugriff auf die Umgebungsvariablen von ihrem Deklarationsort haben, nicht etwa auf die
Variablen am Ausfithrungsort. [New13]

Der einzige funktionale Unterschied zwischen Lambdas und aiK ist, dass sich this in einem Lambda
auf die Klasse bezieht, in der das Lambda definiert ist; in einer aiK hingegen auf die aiK selbst.

11

2. Neue Features in Java 8

2.1.3. Hintergrund

Lambdas konnen in Java 8 nur als Objekte evaluiert werden. Die Entscheidung gegen die Einfithrung
von Funktionstypen wurde wie folgt begriindet. Erstens wiirden dadurch strukturelle Typen mit
nominalen Typen gemischt werden. Zweitens wiirde ein grofier Unterschied zwischen Bibliotheken,
die Funktionstypen benutzen, und solchen, die Objekte benutzen entstehen. [Goe10] Auflerdem
wiirden generische Funktionstypen durch Javas Type Erasure weniger nitzlich sein. [Goella]

Die Syntax wurde gewihlt, da sie der Syntax von Lambdas in C# und Scala dhnlich sieht, welche die
Java am dhnlichsten Sprachen sind.[Goel1b] Es wurde speziell der Pfeil mit Bindestrich gewahlt, da
ein Pfeil mit Gleichheitszeichen visuell schwer von anderen Symbolen zu unterscheiden ist, die das
Gleichheitszeichen beinhalten. [Oral12a, Goellc]

2.2. Method References

Viele Lambdas bestehen nur aus einem Aufruf einer Methode. Java 8 bietet mit Method References eine
alternative Schreibweise fiir solche Lambdas, die oft kiirzer ist. Zwei dquivalente Methodenaufrufe
mit einem Lambda und einer Method Reference werden in Abbildung 2.8 dargestellt.

Abbildung 2.8: Beispiel fiir eine Method Reference

run((MyClass param) -> MyClass.doSomething(param));
run(MyClass: :doSomething);

Ahnlich wie Lambdas eine alternative Schreibweise fiir eine anonyme innere Klasse sind, ist eine
Method Reference eine alternative Schreibweise fiir ein Lambda. Eine Method Reference wird also
nur akzeptiert, wenn ein dquivalentes Lambda auch korrekt wére.

2.2.1. Syntax

Eine Method Reference besteht immer aus drei Teilen: Dem Namen der Klasse bzw. des Objektes,
welches die Methode beinhaltet, gefolgt von zwei Doppelpunkten, gefolgt vom Namen der Methode.
[Goel12b] Es gibt vier verschiedene Typen von Method References, welche in den folgenden Codebei-
spielen vorgestellt werden. Alle Method References haben gemeinsam, dass ein d4quivalentes Lambda
aus nur einem Methodenaufruf besteht und die Parameter des Lambdas in der selben Reihenfolge an
diese Methode weitergegeben werden.[Oral4g]

Typ 1 Der erste Typ dargestellt in Abbildung 2.9, ist die Referenz zu einer statischen Methode,
die die Parameter des Lambdas erhalt. In diesem Fall muss die Method Reference den Namen der
enthaltenden Klasse sowie den Namen der statischen Methode enthalten.

Abbildung 2.9: Referenz einer statischen Methode

run((MyClass param) -> MyClass.staticMethod(param));
run(MyClass::staticMethod);

12

2.2. Method References

Typ 2 Der zweite Typ, dargestellt in Abbildung 2.10, ist eine Referenz zu einer Methode eines
spezifischen Objektes im Scope. Diese Method Reference unterscheidet sich vom ersten Typ darin,
dass der Name eines Objektes statt dem Namen einer Klasse benutzt wird.

Abbildung 2.10: Referenz einer Instanzmethode eines spezifischen Objektes

MyClass obj = new MyClass();
run((MyClass param) -> obj.instanceMethod(param));
run(obj::instanceMethod);

run((MyClass param) -> this.instanceMethod(param));
run(this::instanceMethod);

Typ 3 Der dritte Typ, dargestellt in Abbildung 2.11, spezifiziert nicht explizit den Ort der aufgerufe-
nen Methode. Stattdessen wird eine Instanzmethode des ersten Parameters des Lambdas aufgerufen.
Instanzmethoden von anderen Parametern des Lambdas (oder sonstigen Objekten) konnen nicht auf-
gerufen werden, was in der Dokumentation nicht eindeutig spezifiziert ist, und daher in Abschnitt A.5
getestet wird.[Oral4g]

Die restlichen Parameter des Lambdas, falls vorhanden, werden in gleicher Reihenfolge an die auf-
gerufene Methode tibergeben. Da der erste Parameter des Lambdas in diesem Fall keinen Namen
zugewiesen bekommt, muss diese Art von Referenz, wie der erste Typ, den Typ des Parameters spezi-
fizieren. Dadurch ist es moglich, dass eine Methodenreferenz sowohl Typ 1 und Typ 3 auf einmal ist,
also zwei verschiedene Methoden referenziert werden kénnten. In diesem Fall wird ein Compilerfehler
erzeugt, da Method References eindeutig sein miissen.

Diese Referenz kann nur eine Instanzmethode des ersten Parameters des Lambdas aufrufen, was nicht
explizit spezifiziert wird.

Abbildung 2.11: Referenz einer Instanzmethode des ersten Parameters

run((MyClass param) -> param.doSomething());

run(MyClass: :doSomething);

Collections.sort(list, (String a, String b) -> a.compareTo(b));
Collections.sort(list, String::compareTo);

Typ 4 Der letzte Typ, dargestellt in Abbildung 2.12, referenziert eine Konstruktormethode. Auch
hier werden die Parameter des Lambdas in gleicher Reihenfolge an den Konstruktor weitergegeben.
Eine Konstruktorreferenz besteht aus dem Klassennamen und dem Methodennamen new.

Abbildung 2.12: Referenz eines Konstruktors

run((MyClass param) -> new MyClass(param));
run(MyClass: :new);

[I O R R

2. Neue Features in Java 8

2.3. Streams

Streams in Java 8 sind Sequenzen von Objekten (oder Primitivwerten), die Mengenoperationen héherer
Ordnung unterstiitzen. Streams erlauben es, Operationen auf jedes Element des Streams auszufiithren,
ohne je direkt einzelne Elemente zu manipulieren.

Abbildung 2.13: Eine Pipeline von Stream-Methoden

Stream.iterate(1l, x -> x+1)
.map(x -> X*X)
filter(x -> x % 2 == 0)
.limit (15)
.reduce(0, (a, b) -> a+b);

Abbildung 2.13 zeigt ein Beispiel fiir die Benutzung eines Streams. In Zeile 1 wird ein unendlicher
Stream von Zahlen generiert. Das erste Element ist 1 und jedes folgende Element ist um 1 grofier als
das vorherige. Dieser Stream beinhaltet also alle natiirlichen Zahlen. In Zeile 2 wird die durch das
Lambda beschriebene Funktion auf jedes Element des urspriinglichen Streams angewandt. Aus den
Ergebnissen wird ein neuer Stream generiert, der alle Quadratzahlen enthalt. In Zeile 3 werden alle
Elemente entfernt, die von der Lambda-Funktion auf false abgebildet werden. Der zuriickgegebene
Stream enthalt also nur noch alle geraden Quadratzahlen. In Zeile 4 wird der Stream auf eine feste
Zahl von Elementen begrenzt, in diesem Fall auf 15 Elemente. Dadurch kann in Zeile 5 die reduce-
Methode benutzt werden. Diese Methode kombiniert jedes Element mit einem Akkumulatorwert
(siehe Abbildung 3.10). In diesem Fall wird jedes Element nacheinander auf eine Summe aufaddiert.

Alle diese Methoden konnen Lambdas als Parameter empfangen, da sie die Methode, die durch das
Lambda definiert wurde, auf ihre Elemente anwenden. Diese Methoden werden ausfuhrlich in der
Java-Dokumentation erklart. [Ora14f]

Ein wichtiger Aspekt von Streams ist, dass ihre Methoden lazy evaluiert werden (siehe Abschnitt 3.4).
Das bedeutet, dass der Aufruf in Abbildung 2.13, Zeile 2 noch kein Element verarbeitet, bis in Zeile 5
alle Elemente aufaddiert werden. Ein Vorteil davon ist, dass es moglich ist, einen unendlichen Stream
zu generieren und Operationen auf die Elemente zu deklarieren, solange am Ende eine begrenzte
Zahl von Elementen verarbeitet werden. [Urm14a]

2.3.1. Verwendung

Streams konnen mittels der neuen Collection.stream-Methode aus Collections generiert werden,
der Stream beinhaltet dann die selben Objekte wie die Collection. Aulerdem gibt es statische Methoden
zur Generation von Streams, wie z.B. Stream.iterate, welche in Abbildung 2.13, Zeile 1 benutzt
wurde.

Streams besitzen zwei Arten von Methoden, die auf ihre Elemente zugreifen. Die erste Gruppe
sind die intermedidren Methoden, welche aus einem Stream einen neuen Stream konstruieren. Da
sie Instanzmethoden des Stream-Interfaces sind und einen Stream erzeugen, konnen sie, wie in
Abbildung 2.13 sichtbar, direkt miteinander verkettet werden. Diese Methoden, unter denen sich

14

2.4. Optional

z.B. map, filter und limit befinden, werden erst ausgefithrt, wenn eine terminierende Methode
ausgefiihrt wird, da Streams lazy evaluiert werden. Diese zweite Gruppe von Methoden, unter denen
sich neben reduce auch toArray und count befinden, erzeugt zwingend ein Ergebnis oder einen
Nebeneffekt.

Streams konnen leicht parallelisiert werden, indem in der Methodenpipeline die parallel-Methode
eingefiigt wird. Es kann sogar zwischen sequentieller und paralleler Berechnung gewechselt werden,
indem sequential und parallel abgewechselt werden. Parallelisierung von Stream-Operationen
kann die Leistung verbessern, wenn grof3e Datenmengen verarbeitet werden. [Oral2a, Oral4i]

2.3.2. Funktionsweise

Streams werden durch terminierende Operationen verbraucht, sie sind also nur zur einmaligen
Benutzung gedacht. Da Streams lazy evaluiert werden, konnen alle intermedidren Operationen
vorgemerkt werden, und dann fiir die terminierende Operation in einem Durchgang durchgefiihrt
werden.

2.3.3. Hintergrund

Streams werden lazy evaluiert, um optimierbar zu sein. Auflerdem sind somit unendliche Streams
moglich. [Oral4i, Urml4a] Es wurden keine Gegenstiicke der Stream-Operationen fiir Collections
eingefiihrt, da Collection-Methoden die eigene Instanz mutieren und eager statt lazy sind. Diese
Eigenschaften sind fiir Mengenoperationen hoherer Ordnung nicht sinnvoll. [Goel2c]

2.4. Optional

Optional ist eine Containerklasse, deren Zweck ist, null-Werte zu ersetzen. Da der Zugriff auf In-
stanzmethoden von null-Werten einen Fehler erzeugt, muss dieser Fall bei Parameterwerten oder
Riickgabewerten haufig manuell iiberpriift werden Dies kommt besonders hdufig vor, wenn null als
Ruckgabewert fiir das Fehlen eines Wertes definiert wurde. Fehler bei dieser manuellen Fallunter-
scheidung konnen nicht vom Typsystem erkannt werden. Eine konsequente Nutzung von Optional
kann héiufige null-Abfragen ersetzen. [Fus12]

2.4.1. Verwendung

Ein Optional-Wert kann entweder einen Wert enthalten, oder Empty sein. Optional Empty ist ein
Singleton, der anstelle von null verwendet wird. Jedes Optional-Objekt, das nicht Empty ist, enthélt
einen Wert, der nicht null ist. Optional bietet, ahnlich wie Stream, Methoden wie map, die Operationen
auf den beinhalteten Wert ausfithren, ohne diesen Wert manuell zu entpacken. Optional ist keine
Spracherweiterung, daher kénnen Optional-Werte selber null sein.

15

[B O R R

2. Neue Features in Java 8

Abbildung 2.14 zeigt einige Optional-Methoden in einem trivialen Beispiel. Alle Methoden von
Optional werden im Detail in der Java-Dokumentation erklart. [Oral4c, Urm14b]

Abbildung 2.14: Beispiel fiir Optional-Methoden

Optional.of("test")
.map(s -> s.substring(l, 2))
.flatMap(s -> Optional.of(5))
filter(i -> 1 < 3)
.0rElse(0);

In diesem Beispiel wird zuerst der String “test” in ein Optional-Objekt gepackt. Danach wird ein
Optional erzeugt, dass das Ergebnis der Anwendung des Lambdas auf den String beinhaltet, also den
String “e”. Anschlieflend wird ein neues Lambda auf den Inhalt angewandt, das den Eingabeparame-
ter ignoriert und ein Optional mit dem Wert 5 zuriickgibt. Die darauffolgende filter-Methode gibt
Optional Empty zuriick, falls das Lambda den Wert auf false abbildet. Da dies der Fall ist, ist der Wert

nach Zeile 4 Empty, und die orElse-Methode gibt den Alternativwert 0 zuriick.

Optional ist ein praktisches Werkzeug im Umgang mit Methoden, die null zuriickgeben kénnen. Dies
wird in Beispielen in Abschnitt 4.2 illustriert.

2.5. CompletableFuture und weitere Monaden

Schon vor Java 8 gab es das Future-Interface, das asynchron berechnete Werte beinhaltet. Mit Futures
ist es moglich, Werte parallel zu berechnen und erst wenn sie fertig berechnet wurden auszulesen.
CompletableFuture erweitert diese Funktionalitat um Methoden, die den Umgang erleichtern. Ein
triviales Beispiel fiir ein Future, das nach einer Verzogerung einen Riickgabewert erzeugt, wird in
Abbildung 2.15 dargestellt.

Abbildung 2.15: Triviales Future

Future<Integer> future = CompletableFuture.supplyAsync(() -> 1);
future.get(); //1

In diesem Fall ist der asynchron berechnete Wert eine Konstante. Fiir Werte deren Berechnung lange
dauert oder blockieren kann, kann es sehr niitzlich sein, die Berechnung an ein Future zu iibergeben.
Alle Methoden werden in der Java-Dokumentation im Detail erklart. [Oral4b]

2.5.1. Gemeinsamkeiten zwischen CompletableFuture und Optional

CompletableFuture ermdglicht es, Operationen auf den beinhalteten Wert anzuwenden oder den
beinhalteten Wert mit dem Wert eines weiteren CompletableFuture mit der thenCombine-Methode
zu kombinieren. [Ora14b] Diese Methoden erlauben einen dhnlichen Umgang mit dem beinhalteten
Wert, den auch Optional erlaubt hat. Die CompletableFuture.thenApply-Methode ist vergleichbar mit
der Optional.map-Methode, die thenCompose-Methode mit der flatMap-Methode, etc.

16

2.5. CompletableFuture und weitere Monaden

CompletableFuture und Optional haben folgende Eigenschaften gemeinsam: Sie enthalten Werte
eines spezifischen Typs. Es gibt Methoden zur Erstellung eines Objektes, das einen Wert beinhaltet,
wie Optional.of und CompletableFuture.supplyAsync. Schliefilich gibt es Methoden um Operationen
auf den beinhalteten Wert anzuwenden, wie flatMap und thenCompose. Dadurch sind diese beiden
Klassen Monaden. [Saul4a, RGU14]

2.5.2. Monaden

Monaden sind Container, die mit einer gewissen Logik ausgestattet sind. [She14, Iry07] Sie erlauben
es, den enthaltenen Wert zu manipulieren, wobei die Monadenspezifische Logik eingehalten wird,
was zu einer Kombination von Funktionalitaten fiihrt.

Zum Beispiel ist Optional eine Monade, deren Logik mit null-Werten zusammenhéngt. Interaktion
mit dem enthaltenen Wert iiber map etc. bekommt den zuséitzlichen Kontext, dass null-Werte dazu
fithren, dass der gespeicherte Wert durch Optional Empty ersetzt wird. Stream kann mehrere Werte
beinhalten, map etc. operieren daher auf allen Werten. CompletableFuture lagert die Berechnung des
Wertes automatisch in einen separaten Thread aus und merkt sich sein map-Aquivalent vor bis der
enthaltene Wert berechnet ist.

Eine weitere Monade, die in Abschnitt 4.3 vorgestellt wird, ist die Try-Monade. Sie evaluiert Ausdriicke,
die Exceptions werfen konnen und speichert entweder den Ergebniswert in einer Success-Instanz
oder die Exception in einer Failure-Instanz. Sie ist vergleichbar mit Optional, mit der Ausnahme, dass
der Fehlerfall im Gegensatz zu Optional Empty Informationen enthalt.

Monaden sind also auf eine spezielle Funktion spezialisiert. Sie sind komponierbar und begiinstigen
einen funktionalen Programmierstil durch die Benutzung von map-Methoden und Funktionspipeli-
nes.

17

3. Funktionale Programmiermuster

In diesem Abschnitt werden einige typische Aspekte und Muster von funktionaler Programmierung
erklart und mit simplen Codebeispielen illustriert. Zusatzlich werden Vor- und Nachteile bei der
Anwendung der Muster aufgezeigt, die in Java 8 umsetzbar sind.

Diese Programmiermuster wurden bei der Einarbeitung in das Thema in einem Testprojekt angewandt,
das in Abschnitt A.3 dargestellt wird.

3.1. Pure Funktionen

Pure Funktionen erfiillen zwei Eigenschaften. Sie haben keine sichtbaren Nebeneffekte, verandern also
keine Zustinde des Programms und interagieren nicht auf sichtbare Art und Weise mit der Umgebung.
Auflerdem geben bei gleichen Eingabewerten immer den gleichen Wert zuriick. [Mic14, Ale14]

Abbildung 3.1 stellt zwei Methoden vor, die beide eine Variable um 1 inkrementieren. Die erste
Methode inkrementiert eine Klassenvariable, und hat damit einen Seiteneffekt, die zweite Methode
hingegen ist eine pure Funktion.

Abbildung 3.1: Inkrementierende Methoden mit und ohne Nebeneffekte

class SideEffectExample {
int counter = 1;

void incrementWithSideEffects() {
counter++;

}
int incrementPure(int x) {
return x++;

}

Vorteile Pure Funktionen kénnen den Zustand des Programmes nicht verandern. Ein Verzicht
auf Nebeneffekte reduziert das Risiko, Fehler auszulosen, die mit dem Zustand des Programmes
zusammenhéngen, welche oft schwer zu diagnostizieren sind. Da das Verhalten von puren Funktionen
nicht vom Rest des Programmes abhéngt, sind sie oft leicht zu verstehen.

19

3. Funktionale Programmiermuster

Nachteile Nebeneffekte sind oft notwendig oder schwer zu vermeiden. Nebeneffektfrei zu program-
mieren kann die Laufzeit negativ beeinflussen.

3.2. Vermeidung von Mutierbarkeit

Mutierbarkeit bezeichnet die Moglichkeit, den Wert von Variablen wihrend der Laufzeit zu dndern.
Ein Objekt ist mutierbar, wenn mindestens eine der Werte dieses Objektes mutierbar ist. Eine Variable
in Java ist nicht mutierbar, wenn sie als final deklariert ist und, wenn sie ein Objekt ist, alle ihre
Attribute nicht mutierbar sind.

Nicht mutierbare Objekte, die einen Zustand haben, erzeugen tiblicherweise ein neues Objekt mit
modifiziertem Zustand, anstatt den eigenen Zustand zu dndern.

Abbildung 3.2 zeigt eine Klasse, die ihren Zustand verandern kann.

Abbildung 3.2: Beispiel fiir mutierbare Klassen

class MutableCounter {
final int value = 0;

void increment() {
value++;

}

int getValue() {
return value;

}
}

In Abbildung 3.3 wird eine &dhnliche Klasse vorgestellt, die nicht mutierbar ist. Sie erzeugt fiir jeden
neuen Zustand ein neues Objekt.

Vorteile Ein Verzicht auf Mutierbarkeit erlaubt es, die selben Objekte an mehreren Orten im Pro-
gramm zu verwenden, ohne den Zugriff auf diese Objekte zu kontrollieren oder synchronisieren. Dies
gilt besonders in nebenldufigen Programmen. [Sha14]

Nachteile Bei haufiger Anderung des Zustandes werden bei der Nutzung von nicht mutierbaren
Objekten hiufig neue Objekte erstellt. Dies kann sich negativ auf das Laufzeitverhalten auswirken.

20

3.3. Rekursion

Abbildung 3.3: Beispiel fiir nicht mutierbare Klassen

class ImmutableCounter {
final int value;

ImmutableCounter() {value = 0;}

ImmutableCounter(int value) {
this.value = value;

}

ImmutableCounter increment() {
return new ImmutableCounter(value++);

}

int getValue() {
return value;

}

3.3. Rekursion

Rekursive Methoden koénnen sich selber aufrufen. Dadurch kann die Implementierung z.B. einer
mathematischen Definition dhnlich sehen.

Zwei klassische Beispiele fiir rekursive Methoden werden in Abbildung 3.4 vorgestellt.

Abbildung 3.4: Beispiele fiir rekursive Methoden

class RecursivePureFunctions {
int fibonacciNumber(int n) {
if (n <= 1) return n;
return fibonacciNumber(n - 1) + fibonacciNumber(n - 2);

}

int factorial(int n) {
if (n == 0) return 1;
return nxfactorial(n - 1);

Vorteile Rekursive Methoden kénnen kiirzer und leichter verstindlich sein als dquivalente impera-
tive Methoden.

21

O 0 N QN UT A WDN -

—_
(=)

3. Funktionale Programmiermuster

Nachteile Java 8 fiithrt keine Tail-Call-Optimization durch. [Sch09, Ora12b] Da die zitierten Do-
kumente éalter sind als Java 8, wurde in Abschnitt A.4 ein Test durchgefiihrt, der das Fehlen dieser
Optimierungstechnik nahelegt. Daher kann tiefe Rekursion zu einem StackOverflow-Fehler fiih-
ren. Aufierdem ist wiederholter Funktionsaufruf weniger effizient als weitere Schleifendurchlaufe,
wodurch Rekursion meistens zu schlechterer Leistung fiihrt.

3.4. Lazy Evaluation

Als lazy (deutsch: faul) evaluiert bezeichnet man Ausdriicke, die erst berechnet werden, wenn ihr
Wert benétigt wird. Im Gegensatz dazu wird bei eager (deutsch: eifrig) Evaluation jeder Ausdruck
sofort verarbeitet.

In Abbildung 3.5 werden lazy sowie eager evaluierte Berechnungen vorgestellt.

Abbildung 3.5: Lazy und eager evaluierte Summen

class SumLazyOrEager {
int x = 1;
inty = 1;

int eagerResult = x + y;

int lazyResult() {
return x + vy;
}
}

Die Summe in Zeile 5 wird bei Instanziierung des Objektes berechnet, auch wenn der Wert nie benétigt
wird, dafiir wird der Wert nur einmal ausgerechnet, und kann dann mehrmals ausgelesen werden.
Die Methode ab Zeile 7 berechnet die Summe erst, wenn sie das erste mal aufgerufen wird. Da sie das
Ergebnis nicht zwischenspeichert, wird es aber bei jeder Abfrage erneut berechnet.

Abbildung 3.6 zeigt einen lazy evaluierten Wert, der nach einmaliger Berechnung zwischengespeichert
wird. Dadurch wird die lange Berechnung nur einmal ausgefiihrt, aber erst wenn der Wert benotigt
wird.

Abbildung 3.6: Lazy evaluierter Wert wird memoisiert

class LazyMemoization {
Value val;
Value getValue() {
if (val == null) {
val = calculateValue();

}

return val;

22

3.5. Funktionen héherer Ordnung

Vorteile Lazy Evaluation ermdglicht es zum Beispiel, mit unendlichen Sequenzen zu arbeiten, so
lange nicht alle Elemente benétigt werden. Lazy Evaluation kann das Laufzeitverhalten verbessern,
wenn dadurch Berechnungen eingespart werden kénnen.

Nachteile Wenn eine Datenstruktur lazy evaluiert wird, aber schlussendlich alle Elemente ver-
arbeitet werden, also keine Berechnung gespart wurde, wird die Leistung im Vergleich zu eager
Evaluation verschlechtert. Der Grund dafiir ist, dass lazy evaluierte Ausdriicke in Thunks gespeichert
werden. Thunks sind Funktionen ohne Parameter, die einen Ausdruck evaluieren und zuriickge-
ben. [Par03, Jan12] Ihre Berechnung benétigt zusatzlichen Aufwand, der die Leistung beeintrachtigt.
[Has10]

3.5. Funktionen héherer Ordnung

Funktionen hoherer Ordnung (HOF, Higher Order Function) zeichnen sich dadurch aus, dass sie
eine oder mehrere Funktionen als Parameter erhalten und/oder eine Funktion ausgeben. Wichtige
Beispiele sind HOF, die eine Funktion auf alle Elemente einer Menge anwenden.

Streams bieten solche Funktionen an und erméglichen es somit, den Stream zu bearbeiten, ohne
jemals direkten Zugriff auf die Elemente zu haben. HOF in Java 8 zeichnen sich dadurch aus, dass sie
ein Functional Interface als Parameter empfangen, da es in Java 8 keine Funktionstypen gibt.

Abbildung 3.7 zeigt eine einfache HOF, die ein Lambda empfingt und es mehrfach ausfithrt.

Abbildung 3.7: Eine Funktion, die ein iibergebenes Lambda mehrfach ausfiihrt

<T> void repeat(Supplier<T> f, int times) {
for (int 1 = 0; i < times; i++) {
f.get();
}
}

Diese Methode fuhrt das in f beinhaltete Lambda mehrmals aus.

Abbildung 3.8 zeigt eine Implementierung der Map-Funktion fiir Listen.

Abbildung 3.8: Die Map-Funktion auf Listen

<T,U> List<U> map(List<T> list, Function<T,U> f) {
List<U> mappedList = new ArraylList<>();
for (T element : list) {
mappedList.add(f.apply(element));
}

return mappedList;

23

3. Funktionale Programmiermuster

Map empfingt eine Liste sowie eine Funktion f, die Elemente dieser Liste empfangt. Sie wendet f auf
alle Elemente der Liste an und erzeugt eine Liste der Riickgabewerte.

Eine weitere wichtige Funktion fiir den Umgang mit Listen ist die Filter-Funktion, die in Abbildung 3.9
implementiert wird.

Abbildung 3.9: Die Filter-Funktion auf Listen

<T> List<T> filter(List<T> list, Predicate<T> pred) {
List<T> filteredList = new ArraylList<>();
for (T element : list) {
if (pred.test(element)) {
filteredList.add(element);
}
}

return filteredList;

}

Filter empfangt eine Liste sowie ein Pradikat, eine Funktion, die einen Wert auf einen boolean abbildet.
Sie gibt eine Liste zuriick, die nur noch die Elemente enthélt, fiir die das Pradikat true zuriickgibt.

Zuletzt wird in Abbildung 3.10 die Fold-Funktion implementiert.

Abbildung 3.10: Die Fold-Funktion auf Listen

<T, U> U fold(List<T> list, BiFunction<U, T, U> f, U id) {
U result = id;
for (T element : list) {
result = f.apply(result, element);
}

return result;

}

Fold erzeugt aus einer Liste einen Wert, der aus allen Elementen der Liste zusammengesetzt wird.
Dafiir wird neben der Liste eine Funktion mit zwei Parametern benétigt, die Elemente der Liste
sowie Werte vom Typ des Ergebniswertes annimmt und auf den selben Typ abbildet. Auflerdem
wird ein Initialwert benotigt, welcher zusammen mit dem ersten Element der Liste auf das erste
Zwischenergebnis abgebildet wird. Jedes Zwischenergebnis wird nacheinander mit jedem Element
der Liste kombiniert und erzeugt das nachste Zwischenergebnis, bis die Kombination mit dem letzten
Element der Liste den Riickgabewert erzeugt.

Vorteile HOF erlauben es, Funktionalitat als Parameter zu ibergeben. Ihr Einsatz kann eine Biblio-
thek sehr vielseitig parameterisierbar machen. Sie erméglichen es allgemein, eine weitere Abstrakti-
onsebene zu erschlieffen. [Hav14]

Nachteile Der Einsatz von HOF an sich hat keine Nachteile. Da Logik gekapselt wird, die sonst
explizit ausgeschrieben werden wiirde, besteht das Risiko, unleserlichen Code zu schreiben.

24

3.6. Funktionspipelines

3.6. Funktionspipelines

Eine Funktionspipeline wird durch Verkettung von Funktionen gebildet. In solch einer Pipeline wird
der Riickgabewert jeder Funktion in die nachste Funktion in der Pipeline eingegeben.

In funktionalen Sprachen wie Haskell konnen Funktionen direkt hintereinander geschrieben werden,
wenn die Ein- und Ausgabetypen passen: Seien die Funktionen f: A -> B, g: B -> C gegeben,
dann ist der Ausdruck g(f(a)) legal und erzeugt einen Wert vom Typ C.

In Java konnen Methoden auch, durch einen Punkt getrennt, aneinander gekettet werden. Allerdings
sind diese Methoden nicht statisch, sondern Instanzmethoden: Seien die Methoden B A.f(), C
B.g() gegeben, dann ist der Ausdruck a.f().g() legal und erzeugt auch einen Wert vom Typ C.

Ein Beispiel fiir eine simple Pipeline wird in Abbildung 3.11 vorgestellt.

Abbildung 3.11: Eine simple Methodenpipeline

new Incrementor(0) //0
.increment() //1
.increment () //2
.increment(); //3

Hier wird ein Objekt mit dem Wert 0 erstellt, anschliefend wird dieser Wert drei mal inkrementiert.
Die increment-Methode ist eine Instanzmethode der Klasse Incrementor, die in Abbildung 3.12
implementiert ist.

Abbildung 3.12: Eine Klasse, die eine verkettbare Methode besitzt

class Incrementor {
int value;

Incrementor(int value) {
this.value = value;

}

Incrementor increment() {
return new Incrementor(value++);
}
}

Da sie ein neues Incrementor-Objekt zuriickgibt, kann die gleiche Methode auf dem neuen Objekt
aufgerufen werden, etc.

Vorteile Eine Pipeline ist ein einziger Ausdruck und kann daher von vorne nach hinten gelesen
werden. Im Gegensatz dazu steht z.B. bei Schleifen der auszufithrende Code hinter der Deklaration

der Schleife.

3. Funktionale Programmiermuster

Nachteile Eine lange Verkettung von Methoden kann schwer nachvollziehbar sein, vor allem wenn
die Pipeline zwischen vielen Typen transformiert.

3.7. Continuation Passing Style

Continuation Passing Style bezeichnet die Praxis, Funktionen eine weitere Funktion zu tibergeben,
welche am Ende mit dem Riickgabewert der ersten Funktion aufgerufen wird. Dieser Stil erzwingt
durch das Typsystem das weitere Behandeln des Riickgabewertes einer Funktion, dhnlich wie Optional
des Behandeln eines moglichen Null-Wertes erzwingt.

Wenn beispielsweise eine Methode g mit dem Riickgabewert einer Methode f aufgerufen wird,
kann man im Continuation Passing Style g als Parameter an f iibergeben, wie in Abbildung 3.13
dargestellt.

Abbildung 3.13: Benutzung einer Try-Monade

//direct style
int fDirect(int value) {
return value x 2;

}

//continuation passing style
int fCPS(int value, Function<Integer,Integer> func) {
return func.apply(value * 2);

}

Function<Integer,Integer> g = X -> XxX;
//. ..
{

g.apply(fDirect(1)); //direct

fCPS(1, 9); //CPS
}

Dieses Stilmittel ist eine Moglichkeit, Funktionen héherer Ordnung anzuwenden. Die Try-Monade,
die in Abschnitt 4.3 vorgestellt wird, stellt Methoden zur Verfiigung, die Continuation Passing Style
anwenden.

3.8. Patternmatching

Patternmatching erlaubt es, eine Fallunterscheidung anhand von Attributen eines Wertes durchzu-
fithren. Diese Funktionalitat dhnelt der eines if-then-else-Blocks oder eines switch-Blocks. Pattern-

26

=W N =

3.8. Patternmatching

matching erméglicht es zusétzlich, Attribute in der Fallunterscheidung zu binden, damit diese in dem
danach auszufithrenden Code benutzbar sind.

Da Patternmatching in Java nicht unterstiitzt wird, wird in Abbildung 3.14 die Fakultitsfunktion in
der Java-dhnlichen funktionalen Programmiersprache Scala vorgestellt. Die Variable n wird erst in
Zeile 3 im allgemeinen Fall gebunden.

Abbildung 3.14: Fakultatsfunktion in Haskell mit Patternmatching

def factorial(x:Int):Int = x match {
case 0 => 1
case n => nxfactorial(n-1)

}

Patternmatching in Scala bietet noch weitere Funktionalitit, die in Java nicht zur Verfiigung steht.
[Sar14, Sta13]

Im Vergleich dazu wird in Abbildung 3.15 die Fakultdtsfunktion in Java vorgestellt, die einen switch-
Block zur Fallunterscheidung benutzt. Hier muss n vor der Fallunterscheidung gebunden werden und
es kann nur zwischen spezifischen Werten oder dem allgemeinen Fall unterschieden werden.

Abbildung 3.15: Fakultatsfunktion in Java mit einem switch-Block

int factorial(int n) {
switch (n) {
case 0 : return 1;
default : return nxfactorial(n-1);

Verwendung Patternmatching ist ein iibliches Stilmittel in funktionalen Sprachen, das haufig zur
Fallunterscheidung benutzt wird. Es ist das einzige hier aufgefiihrte Feature, dass in Java 8 nicht als
Sprachfeature zur Verfiigung steht.

27

4. Funktionale Programmierbeispiele in Java 8

In diesem Kapitel wird in ausfiihrlichen Beispielen imperatives Programmieren mit funktionalem
Programmieren verglichen. Nach jedem Codebeispiel werden die verwendeten funktionalen Stilmittel
beschrieben und Vor- und Nachteile der funktionalen Losung erértert. Die Codebeispiele sind aus
dem Buch Java 8 in Action entnommen, und werden dort im Detail behandelt. [RGU14]

4.1. Behandlung von Collections mit Streams

In diesem Abschnitt werden beispielhafte Anfragen an eine Liste von Transactions gestellt. Diese An-
fragen werden zuerst im klassischen imperativen Stil implementiert, und dann in einem funktionalen
Stil mit Streams.

Beide Klassen stellen Getter-Methoden zum Zugriff auf ihre Attribute bereit. Die Attribute der Trader-
Klasse werden in Abbildung 4.1 dargestellt.

Abbildung 4.1: Attribute der Trader-Klasse

class Trader {
String name;
String city;
}

Die Attribute der Transaction-Klasse werden in Abbildung 4.2 dargestellt.

Abbildung 4.2: Attribute der Trader-Klasse

class Transaction {
Trader trader;
int year;
int value;

}

Es wird eine Liste von Transaction-Objekten namens transactions zur Verfigung gestellt.

4. Funktionale Programmierbeispiele in Java 8

4.1.1. Beispiel: Nach Jahr gefilterte und nach Wert sortierte Transaktionen

Im ersten Beispiel werden aus der Liste aller Transaktionen diese gesammelt, die im Jahr 2011
stattfanden. Diese Transaktionen werden nach Umsatz sortiert und in einer Liste zuriickgegeben.
Eine imperative Implementierung wird in Abbildung 4.3 dargestellt.

Abbildung 4.3: Imperativer Stil - Transaktionen von 2011, nach Umsatz sortiert

public List<Transaction> sortedTransactionsFrom2011() {
List<Transaction> result = new ArraylList<>();
for (Transaction t : transactions) {
if (t.getYear() == 2011) {
result.add(t);
}
}

result.sort(new Comparator<Transaction>() {
@Override
public int compare(Transaction ol, Transaction 02) {
return ol.getValue() - o2.getValue();
}
1)
return result;

}

Diese Methode besteht aus zwei logischen Operationen. Zuerst werden die Transaktionen ausgewéhlt,
die dem Kriterium t.getYear() == 2011 geniigen. Diese Transaktionen werden in einer neuen Liste
gespeichert. Dies ist eine Filter-Operation.

Danach werden die gefilterten Transaktionen sortiert. Dafiir wird eine Comparator-Instanz erstellt,
deren compare-Methode die value-Attribute der Transaktionen vergleicht. Diese anonyme innere
Klasse kann in Java 8 durch ein Lambda ersetzt werden. Ein dquivalenter Aufruf der sort-Methode
mit einem Lambda wird in Abbildung 4.4 dargestellt. So konnen 5 Zeilen Code gespart werden, die
keine Logik enthalten.

Abbildung 4.4: Aufruf der sort-Methode mit einem Lambda

result.sort((ol, 02) -> ol.getValue() - o2.getValue());

Die erste logische Operation in Abbildung 4.3 benétigt jedoch 6 Zeilen, nur um eine gefilterte Liste
zu erzeugen. Durch Nutzung von Streams bendtigt das Erstellen einer gefilterten Kopie der Liste nur
eine Methode, wie in Abbildung 4.5 dargestellt.

Abbildung 4.5: Erstellung eines gefilterten Streams aus einer Liste

transactions.stream().filter(t -> t.getYear() == 2011)

Dieser Ausdruck kann durch Einsatz von Funktionspipelines direkt mit weiteren Stream-Methoden
verkettet werden, wie der Stream.sorted-Methode. Sie empfangt wie die sort-Methode von Collections

4.1. Behandlung von Collections mit Streams

ein Comparator-Objekt, unterscheidet sich aber darin, dass sie den sortierten Stream zuriickgibt
anstatt den Stream, auf dem sie aufgerufen wird, zu modifizeren. Sie ist also eine pure Funktion.

In Abbildung 4.6 wird ein Ausdruck dargestellt, der sowohl die Filter- als auch die Sortieroperation
enthalt.

Abbildung 4.6: Filtern und sortieren eines Streams

transactions.stream()
.filter(t -> t.getYear() == 2011)
.sorted((ol, 02) -> ol.getValue() - o2.getValue())

Um die in diesem Stream enthaltenen Transaktionen als Liste zuriickzugeben, muss eine Terminal-
operation verwendet werden. Die Stream.collect-Methode erlaubt es unter anderem, die Elemente
eines Streams in einer Liste zu sammeln. Somit kann die Methode aus Abbildung 4.3 auf funktionale
Art und Weise implementiert werden, wie in Abbildung 4.7 dargestellt.

Abbildung 4.7: Funktionaler Stil - Transaktionen von 2011, nach Umsatz sortiert

public List<Transaction> sortedTransactionsFrom2011() {
return transactions.stream()
.filter(t -> t.getYear() == 2011)
.sorted(Comparator.comparing(Transaction: :getValue))
.collect(Collectors.tolList());
}

Die statische Comparator.comparing-Methode erzeugt ein Comparator-Objekt, das in diesem Fall
die value-Attribute von Transaktionen vergleicht. Die Funktionalitit wird durch die Namensgebung
beschrieben und wird in der Java-Dokumentation weiter erklart. [Oral4e]

Diese Methode hat, neben der Kompaktheit, klare Vorteile gegeniiber der imperativen Version. Sie
besteht aus einem einzigen Ausdruck, in dem jede logische Operation in einer Zeile ausgefiihrt wird.
Die Methoden beschreiben die ausgefithrten Operationen mit ihrem Namen. Die Anwendung der
Operationen auf die einzelnen Elemente wird durch die Implementierung des Streams vollzogen, und
nicht vom Programmierer.

Auflerdem ist die zyklomatische Komplexitat der Methode geringer, da keine Schleifen oder if-Blocke
notig sind. Zyklomatische Komplexitt ist eine Metrik, die zur Bewertung der Codequalitat etabliert ist.
[Inc12] Obwohl diese Metrik in funktionaler Programmierung durch die Nutzung von Funktionen ho-
herer Ordnung weniger aussagekréftig ist, wird sie doch auch fiir die funktionale Programmiersprache
Scala beachtet. [DS11, DS14]

4.1.2. Beispiel: Trader aus Cambridge ohne Duplikate, nach Namen sortiert

In diesem Beispiel wird eine Liste der Trader aus Cambridge gesucht, die nach Namen sortiert sind.
Dies wird in Abbildung 4.8 imperativ gelost.

31

4. Funktionale Programmierbeispiele in Java 8

Abbildung 4.8: Imperativer Stil - Héandler aus Cambridge, nach Namen sortiert

public List<Trader> sortedTradersFromCambridge() {
Set<Trader> resultSet = new TreeSet<>(new Comparator<Trader>() {
@Override
public int compare(Trader ol, Trader 02) {
return ol.getName().compareTo(o02.getName());
1)
for (Transaction t : transactions) {
if ("Cambridge".equals(t.getTrader().getCity())) {
resultSet.add(t.getTrader());
}
}
return new ArrayList<>(resultSet);

}

Hier wird ein Set als Zwischenspeicher benutzt, da keine Duplikate erwiinscht sind. Die TreeSet-Klasse
erlaubt es auflerdem, ihre Elemente zu ordnen, was den zweiten Teil der Problemstellung erfiillt. Dafiir
wird ein Comparator-Objekt in den Konstruktor des TreeSets iibergeben, das die Namen der Trader
vergleicht. Die Schleife, in dieser Methode der letzte Block, fithrt schlieflich die Filter-Operation aus
und kopiert die Trader in das Set.

Da zwei Operationen durch die Wahl der Datenstruktur durchgefithrt werden, ist diese Methode
relativ direkt, vor allem, wenn die anonyme innere Klasse im TreeSet-Konstruktor durch ein Lambda
ersetzt werden wiirde. Die dquivalente Methode mit Streams, in Abbildung 4.9 dargestellt, ist daher
ghnlich lang.

Abbildung 4.9: Funktionaler Stil - Handler aus Cambridge, nach Namen sortiert

public List<Trader> sortedTradersFromCambridge() {
return transactions.stream()

.map(Transaction::getTrader)
.filter(trader -> "Cambridge".equals(trader.getCity()))
.distinct ()
.sorted(Comparator.comparing(Trader: :getName))
.collect(Collectors.tolList());

}

Dieser Stil beschreibt aber deutlich ausdriicklicher, welche Operationen durchgefiihrt werden. Die
Entfernung von Duplikaten aus dem Ergebnis wird im imperativen Beispiel nur durch die Nutzung
von Set deutlich, das Sortieren nur dadurch, dass man einen Comparator im Konstruktor mitgibt. Im
funktionalen Beispiel sind diese beiden Operationen durch den Aufruf von Methoden mit erkldrenden
Namen offensichtlich gemacht.

32

4.1. Behandlung von Collections mit Streams

4.1.3. Beispiel: Sortierte Namen aller Handler in einem String

In diesem Beispiel werden die Namen aller Handler geordnet in einem String gespeichert. Die Impe-
rative Losung wird in Abbildung 4.10 dargestellt.

Abbildung 4.10: Imperativer Stil - Sortierte Namen aller Handler

public String activeTraderNames() {
StringBuilder names = new StringBuilder();
Set<String> nameSet = new TreeSet<>(new Comparator<String>() {
@Override
public int compare(String ol, String 02) {
return ol.compareTo(o02);
)
for (Transaction t : transactions) {
nameSet.add(t.getTrader().getName());
}
for (String name : nameSet) {
names.append(name) ;
}
return names.toString();

}

Das Sortieren und das Entfernen von Duplikaten wird wieder durch die Benutzung eines TreeSets als
erste Hilfsvariable implizit gemacht. Das Fiillen des Sets findet in der ersten Schleife statt. Danach
wird der String in einer zweiten Hilfsvariable aus den Namen der Trader erstellt, wofiir eine weitere
Schleife notwendig ist.

Im Vergleich dazu die funktionale Losung in Abbildung 4.11.

Abbildung 4.11: Sortierte Namen aller Héndler, Funktional

public String fActiveTraderNames() {
return transactions.stream()
.map(transaction -> transaction.getTrader().getName())
.distinct()
.sorted()
.collect(Collectors.joining());

}

Die sorted-Methode ohne Parameter kann Streams von Elementen, die eine natiirliche Ordnung haben
ohne einen Comparator sortieren. Die Benutzung des StringBuilders wird durch die Collectors.joining-
Methode implizit gemacht, aber auch andere Datenstrukturen kénnen durch die Stream.reduce
Methoden einfach kombiniert werden.

In diesem Beispiel ist der Unterschied zwischen den imperativen und funktionalen Methoden beson-
ders drastisch, da eine anonyme innere Klasse und zwei Schleifen eingespart wurden. Das Stream-
Beispiel ist nicht komplexer als die vorigen und beschreibt nach wie vor die Vorgehensweise durch
die Methodennamen.

33

4. Funktionale Programmierbeispiele in Java 8

4.1.4. Zusammenfassung

Ein grofler Unterschied zwischem imperativem und funktionalem Programmierstil im Umgang mit
Collections ist die Codestruktur und Leserichtung sowie die Reihenfolge der Operationen. Imperativer
Code besteht aus vielen Schleifen und if-Blocken und benutzt haufig Zwischenvariablen. Daher wird
beim Lesen des Codes oft zwischen entfernten Zeilen hin und her gesprungen.

Operationen in einer einzigen Pipeline, konnen dagegen in Reihenfolge der Methodenaufrufe gelesen
werden. Streams ermdglichen es, viele Operationen auf Collections in einer einzigen Pipeline zu
komponieren.

4.2. Behandlung von null-baren Werten mit Optional

In diesem Abschnitt wird ein Beispiel vorgestellt, in dem moglicherweise fehlende Attribute der
Klassen Person, Car und Insurance ausgelesen werden. Die Attribute der Klassen sind durch Getter-
Methoden erreichbar. In Abbildung 4.12 werden die Attribute der Klassen dargestellt. Die Attribute,
deren Wert fehlen kann, sind durch Kommentare markiert

Abbildung 4.12: Klassen, die in Abschnitt 4.2 benutzt werden

class Person {
Car car; //nullbar
}
class Car {
Insurance insurance; //nullbar
}
class Insurance {
String name;

}

Eine naive imperative Implementierung einer Methode, die den Namen der Autoversicherung einer
iibergebenen Person zuriickgibt wird in Abbildung 4.13 dargestellt.

Abbildung 4.13: Imperative Methode, die nicht auf null-Werte pruft

public String getCarInsuranceName(Person p) {
return p.getCar().getInsurance().getName();

}

Nicht vorhandene Werte werden im Imperativen Stil durch null modelliert. Die oben gezeigte Methode
konnte also eine NullPointerException auslosen. Eine korrekte Implementierung wiirde diese Félle
iiberpriifen, wie in Abbildung 4.14 dargestellt wird.

Diese Methode gibt einen alternativen Riickgabewert an, stattdessen kénnte aber auch null zuriickge-
geben werden, falls eines der Zwischenergebnisse null ist. Diese Methode kann durch den Einsatz
von Optional kiirzer und mit geringerer zyklomatischer Komplexitit geschrieben werden. Dies wird
in Abbildung 4.15 dargestellt.

34

4.2. Behandlung von null-baren Werten mit Optional

Abbildung 4.14: Imperative Behandlung von méglichen null-Werten

public String getCarInsuranceName(Person p) {
String result = "unknown";
if (p.getCar() != null) {
Car car = p.getCar();
if (car.getInsurance() '= null) {
result = car.getInsurance().getName();
}
}

return result;

}
Abbildung 4.15: Einsatz von Optional, um null-Tests zu ersetzen

public String getCarInsuranceName(Person p) {
return Optional.ofNullable(p.getCar())
.map(Car::getInsurance)
.map(Insurance::getName)
.0rElse("unknown");

}

Diese Methode setzt eine Pipeline ein und hat dadurch eine geringe zyklomatische Komplexitit. Die
Uberpriifung von null-Werten wird durch Optional internalisiert. Diese Methode hat also einen klaren
Vorteil in Programmierstil und Lesbarkeit.

Jedoch benutzt diese Methode Optional nur intern. Die Getter der Klassen geben immer noch null-
Werte zuriick, was an anderen Stellen im Programm zu Fehlern fithren kann. Auflerdem gibt die
Methode immer noch einen alternativen Wert zuriick, falls der geforderte Wert nicht existiert.

Eine bessere Alternative wire es, sowohl den Riickgabewert der Methode, als auch die Riickgabewerte
der Getter, zu Optional zu dndern. Die so gednderten Attribute der Klassen werden in Abbildung 4.16
dargestellt.

Abbildung 4.16: Modifizierte Klassen, die Optional benutzen

class Person {
Optional<Car> car;
}
class Car {
Optional<Insurance> insurance;
}
class Insurance {
String name;

}

4. Funktionale Programmierbeispiele in Java 8

In dieser Version sind keine Kommentare notwendig, die den Benutzer dariiber informieren, dass
Werte null sein konnen, stattdessen wird dies durch das Typsystem deutlich. Eine Methode, die
die Klassen aus Abbildung 4.16 verwendet und selber Optional zuriickgibt, wird in Abbildung 4.17
dargestellt.

Abbildung 4.17: Alle Werte, die fehlen konnen, sind durch Optional ersetzt

public Optional<String> getCarInsuranceName(Person p) {
return p.getCar()
.flatMap(Car::getInsurance)
.map(Insurance::getName);

}

Diese Methode erfiillt die selbe Funktionalitat wie die erste imperative Methode in Abbildung 4.14, sie
ist jedoch deutlich kiirzer, geradliniger zu lesen und macht dem Benutzer deutlich, dass sie womdglich
kein Ergebnis produzieren kann.

4.2.1. Zusammenfassung

Die Behandlung von méglichen null-Werten mit Optional erlaubt es, mit Pipelines Methoden zu
komponieren und dadurch lesbareren und kiirzeren Code zu schreiben. Optional als Riickgabewert
macht moglicherweise fehlende Werte deutlich, was mit der Benutzung von null-Werten nur durch
Kommentare mitgeteilt werden kann. Auflerdem wird der Benutzer durch das Typsystem dazu
angehalten, diesen Fall zu behandeln. [Urm14b]

4.3. Try-Monade

In diesem Abschnitt wird eine Monade zur Behandlung von Exceptions implementiert. Diese Imple-
mentierung ahmt die Try-Monade aus der Programmiersprache Scala nach. [Lin14]

Diese Monade umschliefit Ausdriicke, deren Evaluation Exceptions auslésen kann, und versucht,
den Rickgabewert zu erzeugen. Falls dies erfolgreich gelingt, wird der Wert in einer Success-Instanz
gespeichert. Falls nicht, wird die Exception in einer Failure-Instanz gespeichert. Diese grundlegende
Funktionalitat wird in Abbildung 4.18 vorgestellt.

Abbildung 4.18: Grundlegende Funktionalitat von Try

Try<Integer> first = Try.attempt(() -> Integer.parseIlnt("12"));
if (first.isSuccess()) {
first.get(); //12
}
Try<Integer> second = Try.attempt(() -> Integer.parseInt("no int"));
if (second.isFailure()) {
second.getException(); //NumberFormatException

}

36

4.3. Try-Monade

Die Fabrikmethode attempt empfiangt ein Supplier-Objekt, das eine Funktion ohne Parameter darstellt.
So kann die Berechnung des Ausdruckes in die Fabrikmethode verlagert werden. Diese Methode gibt
dann entweder ein Success-Objekt mit dem Riickgabewert, oder ein Failure-Objekt mit der Exception
zuriick. Die Fabrikmethode konnte also wie in Abbildung 4.19 implementiert werden.

Abbildung 4.19: Fabrikmethode der Try-Monade

public static <T> Try<T> attempt(TrySupplier<T> val) {
try {
return new Success<>(val.get());
} catch (Exception e) {
return new Failure<>(e);

}
}

Success und Failure sind beides Kindklassen von Try, die jeweils einen Wert vom Typ T oder eine
Exception enthalten. Diese Fabrikmethode internalisiert also den Try-Block, genau wie Optional
den if-Block, der auf null Giberpriift, internalisiert. Die einzige Besonderheit dieser Methode ist der
Parameter, da sie kein Supplier aus der function-Package ist. Der Grund dafiir ist, dass in diesem Fall
Exceptions geworfen werden, wofiir ein eigenes Functional Interface deklariert werden muss. Die
zwei eigenen Interfaces der Try-Monade werden in Abbildung 4.20 vorgestellt.

Abbildung 4.20: Functional Interfaces fiir Try

interface TryFunction<T,U> {
public U apply(T t) throws Exception;

}
interface TrySupplier<T> {
public T get() throws Exception;

}

Diese Functional Interfaces haben dhnliche Methoden wie Function und Supplier aus dem Function-
Paket, werfen aber Exceptions. Dadurch, dass andere Interfaces benutzt werden, kénnen in Variablen
gespeicherte Funktionen von Try nicht mit anderen Monaden wie Optional benutzt werden. Dies
verhindert aulerdem ein Monaden-Interface, da dies entweder mit Optional oder Try inkompatibel
wire.

Weiterhin werden map- und flatMap-Methoden benétigt. Die Implementierungen dieser Methoden
werden in Abbildung 4.21 sowie Abbildung 4.22 dargestellt.

Abbildung 4.21: Map-Methoden fiir Success und Failure

<U> Try<U> map(TryFunction<T, U> f) {
return attempt(() -> f.apply(value));
}

public <U> Try<U> map(TryFunction<T, U> f) {
return new Failure<>(e);

}

37

4. Funktionale Programmierbeispiele in Java 8

Abbildung 4.22: FlatMap-Methoden fiir Success und Failure

<U> Try<U> flatMap(TryFunction<T, Try<U>> f) {
try {
return f.apply(value);
} catch (Exception e) {
return new Failure<>(e);

}

}

public <U> Try<U> flatMap(TryFunction<T, Try<U>> f) {
return new Failure<>(e);

}

Ahnlich wie bei Optional fithren (Flat)Map keine Operation auf Failures durch, sie geben einfach die
gespeicherte Exception weiter.

4.3.1. Beispiel fur den Einsatz der Try-Monade

I0-Operationen kénnen einige Exceptions auslosen. Abbildung 4.23 zeigt eine Methode, die alle Zeilen
einer Datei ausliest und als Stream zuriickgibt. Dieser Stream ist in einem Try verpackt, da Exceptions
ausgelost werden konnen.

Abbildung 4.23: Methode zum Auslesen von Dateien mit Stream

Try<Stream<String>> getlLines(String path) {
return Try.attempt(() -> Files.lines(Paths.get(path)));
}

Aquivalente Methoden ohne Try werden in Abbildung 4.24 dargestellt. Diese Methoden benutzen
die neue Files.lines-Methode. Es ist Konvention, Exceptions weiter zu propagieren, wie in der ersten
Methode. Dadurch wird die Fehlerbehandlung allerdings nur verschoben. Try erlaubt es, die Exception
zu propagieren, ermoglicht es aber, weiter mit dem Riickgabewert zu arbeiten, auch wenn er eine
Exception enthalt.

Abbildung 4.24: FlatMap-Methoden fiir Success und Failure

Stream<String> getlLines(String path) throws IOException {
return Files.lines(Paths.get(path));
}

Stream<String> getlLines(String path) {
try {
return Files.lines(Paths.get(path));
} catch (IOException e) {
// handle e

}

38

4.4. Berechnung des gréBten Palindrom-Produktes

4.4. Berechnung des groBten Palindrom-Produktes

In diesem Abschnitt wird ein Beispielalgorithmus implementiert, der das gréte Produkt von dreistel-
ligen Zahlen berechnet, das ein Palindrom ist. Palindrome ergeben von vorne und von hinten gelesen
das selbe Ergebnis.

Dafiir wird eine Methode gegeben, die rekursiv iiberprift, ob ein String ein Palindrom ist. Diese
Methode wird in Abbildung 4.25 dargestellt.

Abbildung 4.25: Methode, die iberpriift, ob ein String ein Palindrom ist

boolean isPalindrome(String s) {
if (s.length() <= 1) return true;
return s.charAt(0) == s.charAt(s.length() - 1) &&
isPalindrome(s.substring(1l, s.length() - 1));
}

Diese Methode vergleicht das erste und letzte Zeichen des Strings und ruft sich dann rekursiv mit
dem inneren String, ohne die davor verglichenen Zeichen auf, bis der String nur noch ein oder kein
Zeichen hat. Die Berechnung des gréiten Palindroms auf imperative Weise wird in Abbildung 4.26
dargestellt.

Abbildung 4.26: Imperative Methode, unoptimiert

int result = 0;
for (int i 999; i >= 100; i--) {
for (int j = 999; j >= 100; j--) {
int pal =i * j;
if (isPalindrome(pal)) {
if (pal > result) {
result = pal;

}

}

Diese Methode vergleicht durch zwei ineinander geschachtelte Schleifen alle Kombinationen von
dreistelligen Zahlen. Jede Kombination wird multipliziert, durch isPalindrome gefiltert und am Ende
gespeichert, wenn sie grofier ist als das vorige Zwischenergebnis. Eine dquivalente Methode im
funktionalen Stil, die Streams benutzt, wird in Abbildung 4.27 dargestellt.

Diese Methode fiihrt eine komplexe Map-Operation durch, in der jede Zahl von 999 bis 100 auf
das grofite Produkt mit einer anderen dreistelligen Zahl abgebildet wird, falls dieses Produkt ein
Palindrom ist. Alternativ werden die Elemente auf Null abgebildet. Schlief}lich werden die Elemente
des Streams auf die gréfte Zahl reduziert.

In solch einem vergleichbar komplexeren Beispiel ist der funktionale Stil kein klarer Sieger in Sachen
Lesbarkeit. Auflerdem ist der Leistungsunterschied in diesem Beispiel signifikant, vor allem da

39

4. Funktionale Programmierbeispiele in Java 8

Abbildung 4.27: Funktionale Methode mit Streams

IntStream.range(999, 100)
.map(i -> IntStream.range(999, 100)
.map(j -> 1ix*j)
.filter(this::isPalindrome)
.findFirst()
.0rElse(0))
.reduce(0, Math::max);

der imperative Stil durch zwei Anderungen leicht optimiert werden kann, wie in Abbildung 4.28
dargestellt.

Abbildung 4.28: Imperative Methode, optimiert

int result = 0;
for (int i = 999; i >= 100; i--) {
for (int j = 999; j >= 100; j--) {
int pal =1 * j;
if (pal < result) {
break; //first optimization
}
if (isPalindrome(pal)) {
if (pal > result) {
result = pal;
}

break; //second optimization

}

Das erste Kommentar markiert eine Zeile, die erreicht wird, wenn das Produkt kleiner ist als das
aktuelle Maximum. Da die innere Schleife in jedem Durchlauf ein geringeres Produkt erzeugt, kann
an dieser Stelle die innere Schleife abgebrochen werden. Aus dem gleichen Grund kann nach dem
ersten Fund eines Palindroms die innere Schleife gebrochen werden, was in der Zeile des zweiten
Kommentars geschieht. Diese Optimierungen verbessern die Leistung der imperativen Version um
einen Faktor von 10, sieche Abschnitt A.1.

5. Richtlinien fur funktionale Programmierung
in Java 8

In diesem Kapitel werden Richtlinien fiir die Gestaltung von funktionalem Code und fiir den Einsatz
der neuen Features von Java 8 bzw. eines funktionalen Programmierstils vorgeschlagen. Diese Regeln
wurden bei der Einarbeitung in das Thema erprobt (siehe Abschnitt A.3) und halten sich an allgemeine
Konventionen. [RGU14, Urm14a, Saul4a, Fus12, Urm14b]

5.1. Benutzung der neuen Features in Java 8

Lambdas anstelle von anonymen inneren Klassen Zustandslose anonyme innere Klassen in
Lambdas umwandeln, da Lambdas die selbe Information enthalten und weniger Platz verbrauchen.

Lambdas mit nur einem Ausdruck bevorzugen Lambdas ohne geschweifte Klammern und ohne
return-Anweisung sind platzsparender. Falls das Lambda durch die kiirzere Form weniger lesbar ist,
ist es zu bevorzugen, das Lambda durch Formatierung hervorzuheben.

Implizite Typen der Parameter bevorzugen Nur wenn die Parametertypen des Lambdas nicht
offensichtlich oder leicht zu erkennen sind, sollten Typen deklariert werden.

Ubersicht durch Leerzeichen, Einriickung und Umbriiche Visuelle Anordnung zu anderen
Lambdas oder ein Zeilenumbruch vor oder nach dem Lambda bzw im Korper des Lambdas konnen
den Code lesbarer machen.

Optionale Klammern auslassen Aufler der vorige Punkt wurde schon befolgt und es tragt zur
Ubersicht bei.

Direkt nach dem Pfeil umbrechen Falls nicht innerhalb des Kérpers umgebrochen werden kann.
Weitere Umbruchregeln betreffen Methodenpipelines.

Konventionelle Regeln beachten Sowohl die Parameterliste als auch der Kérper kann sonst nach
iblichen Styleregeln formatiert werden.

41

5. Richtlinien fur funktionale Programmierung in Java 8

Method References statt Lambdas bevorzugen Eine Ausnahme ist, wenn die Referenz durch
den Klassen- oder Objektnamen lénger wire als ein entsprechendes Lambda. Selbst dann kann eine
Method Reference lesbarer sein.

Vorhandene Functional Interfaces benutzen Wenn eine Funktion nétig ist, die nicht im
Function-Paket enthalten ist, oder ein anderer Name sinnvoll ist, konnen eigene Interfaces eingesetzt
werden.

Streams fiir Operationen auf gesamte Collections benutzen Operationen, die durch Iteration
iiber die gesamte Collection durchgefithrt werden, konnen oft mit Streams lesbarer implementiert
werden.

Optional statt null zuriickgeben, um fehlenden Wert zu signalisieren Dadurch wird dem
Benutzer durch den Riickgabetyp angezeigt, dass ein fehlender Wert méoglich ist.

Wert im Optional liber map, flatMap und filter bearbeiten Anstatt den Wert manuell zu entpa-
cken und zu modifizieren.

Wert im Optional tiber ifPresent und die orElse-Methoden entpacken Anstatt mit isPresent
zu testen und danach mit get den Inhalt zu erreichen.

5.2. Einsatz von funktionalen Programmiermustern

Pure Funktionen verwenden Methoden, die nicht explizit fiir ihre Seiteneffekte benutzt werden,
sollten wenn moglich pur sein.

Mutierbare Datenstrukturen vermeiden Aufler es ist fiir die Leistung des Programms notwen-
dig.

Rekursion mit Vorsicht einsetzen Wenn eine Methode eleganter ausgedriickt werden kann, und
keine Gefahr besteht, einen StackOverflowError auszuldsen.

Lazy evaluierte Strukturen ausnutzen Wenn z.B. nur Teile einer Collection bearbeitet werden
missen, kann die Nutzung von Streams die Leistung verbessern.

Wiederholte logische Muster in Funktionen héherer Ordnung extrahieren Analog mit der
Extraktion von Methoden. Die Moglichkeit zur Extraktion kann aber weniger offensichtlich sein als
bei Methodenextraktion.

42

5.2. Einsatz von funktionalen Programmiermustern

Methodenpipelines statt Zwischenvariablen nutzen Zwischenvariablen miissen vor der Nut-
zung deklariert werden, oft liegen einige Zeilen zwischen Deklaration und Verwendung. Methodenpi-
pelines konnen hingegen meistens direkt von vorne nach hinten gelesen werden.

Methodenpipelines direkt vor Punkten umbrechen Dadurch sind Methodenaufrufe mit zuge-
horigem Punkt auf einer Zeile. Es kann dadurch eine Zeile inmitten einer Pipeline auskommentiert
werden, z.B. ein Aufruf der parallel-Methode in einer Stream-Pipeline. Bei langeren Pipelines sollte
jede Methode auf einer separaten Zeile stehen.

Pipelines in Pipelines durch Einriickung visuell abtrennen Methoden in einer Pipeline kon-
nen manchmal selber Pipelines als Parameter erhalten. Dann sollte diese innere Pipeline weiter
eingeriickt sein als die duflere. Weiterhin sollten innere Pipelines besonders lesbar gestaltet werden.

Logische Spriinge in Pipelines durch Leerzeilen oder kommentierte Zeilen lesbar machen
Wenn eine Verkettung von Methoden schwer nachvollziehbare Operationen durchfiihrt, kann es
lesbarer sein, Leerzeilen mit Kommentaren zwischen zwei Methoden einzufiigen, anstatt ein Zwi-
schenergebnis in eine Variable zu speichern.

43

6. Zusammenfassung

Die neuen Features in Java 8 erméglichen in vielen Fallen Programmierung im funktionalen Stil. Die
in Kapitel 3 vorgestellten Stilmittel sind (bis auf Patternmatching) in Java gut umsetzbar. Lambdas und
Method References sowie die Einfithrung von Monaden fordern den Einsatz von Methodenpipelines
und puren Funktionen. Solch ein Programmierstil kann die Parallelisierung eines Programmes stark
vereinfachen. Im Fall von Streams kann z.B. der Aufruf einer einzigen zusatzlichen Methode die
Bearbeitung parallelisieren. Auch unter anderen Gesichtspunkten hat ein funktionaler Programmierstil
Vorteile, z.B. in der Lesbarkeit.

Die Anderungen in Java 8 sind dabei relativ leicht verstindlich geblieben, da nur Lambdas und
Method References zusitzliche Syntaxregeln mit sich bringen. Die restlichen Anderungen wurden
in den Bibliotheken durchgefiihrt. Dies macht die Umgewdhnung fiir Java-Programmierer einfach.
Gleichzeitig ermdglichen Streams und Optional einen puren funktionalen Programmierstil, der auch
in der offiziellen Dokumentation sowie Tutorials vorgestellt wird. Es wird Java-Entwicklern also
vereinfacht, sich einen funktionalen Programmierstil anzueignen.

Einige Features, die fiir einen funktionalen Programmierstil sinnvoll sind, fehlen in Java 8 aber. Darun-
ter befinden sich Value-Typen, die einen effizienten Umgang mit Aggregatsdatentypen erméoglichen
wiirden. [JR14] Tupel-Typen wiirden es vereinfachen, in einer Methode mehrere Werte zuriickzugeben,
ohne selber eine Klasse dafiir zu erstellen. Dies ist in einem funktionalen Programmierstil wichtiger
als in einem imperativen, da pure Funktionen neben dem Riickgabewert nicht mit der Umgebung
interagieren. [Saul4b]

Funktionstypen wiirden das Schreiben von Methoden, die Lambdas als Parameter akzeptieren, ange-
nehmer machen. Die Verwendung von Functional Interfaces ist besonders umsténdlich, wenn Lambdas
mit mehr als 2 Parametern benétigt werden. Dann kann entweder ein neues Functional Interface
eingefithrt werden oder das Function-Interface aus dem Function-Paket geschachtelt werden. Dadurch
konnen die Parameter des Lambdas (das eigentlich aus mehreren geschachtelten Lambdas besteht),
durch Pfeile getrennt, hintereinander geschrieben werden. Dies wird in Abschnitt A.3 in der Implemen-
tierung der foldl-Methode dargestellt. Schliefilich bedeutet das Fehlen von Tail-Call-Optimization,
dass Rekursion nur mit Vorsicht eingesetzt werden kann.

Schlussendlich hat Java mit der Version 1.8 einen sinnvollen Schritt in Richtung funktionaler Program-
mierung gemacht. Es wird ein funktionaler Programmierstil ermoglicht, der klare Vorteile gegeniiber
einem imperativen Programmierstil haben kann. Die Umgewhnung fiir Java-Programmierer wurde
gering gehalten und die Sprachentwicklung wurde klar abgegrenzt von “funktionaleren” Sprachen
wie Scala.

45

A. Appendix

In diesem Kapitel wird Code, der bei der Einarbeitung in diese Arbeit erzeugt wurde, aufgelistet.

Die Leistungsdaten sowie die Tests zur Existenz von Tail-Call-Optimization wurden auf einem PC
mit Windows 8.1 Pro 64-bit, einem AMD Phenom II X4 975 sowie 8.00GB Dual-Channel DDR3 @
669MHz RAM durchgefiihrt. Als Laufzeitumgebung wurde JRE 1.8.0_05 mit Standardeinstellungen
auf Eclipse 4.4.0 durchgefiihrt.

A.1. Daten der Leistungstests

In diesem Abschnitt werden die Leistungstests vorgestellt, in denen die Leistung von Lambdas mit
der von anonymen inneren Klassen sowie imperativem Code verglichen wurde. Diese Leistungstests
decken nur einfache Fille ab und treffen daher keine allgemeingiiltige Aussage.

Abbildung A.1 vergleicht Lambdas mit dquivalenten Aufrufen von anonymen inneren Klassen. Die
Methode, die Lambdas benutzte, brauchte ca 950ms. Die Methode, die eine innere Klasse benutzte,
brauchte ca 710ms. Dies spiegelt nicht die Ergebnisse des Oracle Performance Teams wieder, welches
allerdings vermutlich einen differenzierteren Leistungstest durchfiihrte. [Goel2a]

Abbildung A.2 vergleicht Lambdas mit einer dhnlichen, imperativen Methode. Die Methode, die
Lambdas benutzte, brauchte wieder ca 950ms. Die imperative Methode brauchte ca 840ms.

Abbildung A.3 vergleicht Listen mit Streams. Die Methode, die Listen benutzte, brauchte ca 180ms.
Die Methode, die Streams benutzte, brauchte ca 730ms.

Abbildung A.1: Leistungsvergleich von Lambdas und anonymen inneren Klassen

long TIMES = 1_000_000_000L;

public int f(Function<Integer,Integer> f) {
return f.apply(0);
}

long testlLambda() {
Timer t = new Timer();
int val = 0;
t.start();
for (int i = 0; i < TIMES; i++) {
val = f(x -> x);

}

47

A. Appendix

return t.stop();

}

long testInnerClass() {

Timer t = new Timer();

int val = 0;

t.start();

for (int i = 0; i < TIMES; i++) {

val = l1.aiC(new Function<Integer, Integer>() {
@Override
public Integer apply(Integer x) {
return Xx;

i3 H

}

return t.stop();

Abbildung A.2: Leistungsvergleich von Lambdas und imperativer Programmierung

long TIMES = 1_000_000_000L;

public int f(Function<Integer,Integer> f) {
return f.apply(0);
}

long testlLambda() {
Timer t = new Timer();
int val = 0;
t.start();
for (int 1 = 0; i < TIMES; i++) {
val = f(x -> x);
}
return t.stop();

}

long testImperative() {
Timer t = new Timer();
int val = 0;
t.start();
for (int i = 0; i < TIMES; i++) {
val = imperativeld(0);
}

return t.stop();

48

A.1. Daten der Leistungstests

Abbildung A.3: Leistungsvergleich von Streams und Listen

List<String> list = new ArraylList<>();

// ...

for (int i = 0; i < 1000000; i++) {
1.list.add(String.valueOf(1i));

}

// ...

long testlList() {

}

Timer t = new Timer();
t.start();
List<String> result = new ArraylList<>();
for (String s : list) {
if (s.length() % 2 == 0) {
result.add(s.concat("done"));
}
}

return t.stop();

long testStream() {

Timer t = new Timer();
t.start();
List<String> result = list
.stream()
.filter(s -> s.length() % 2 == 0)
.map(s -> s.concat("done"))
.collect(Collectors.toList());
return t.stop();

49

A. Appendix

Abbildung A.4: Timer-Klasse zur Messung der Leistungsdaten

public class Timer {
long startTime;

public Timer() {
this.startTime = 0;

}

private void reset() {
this.startTime = 0;
}
public void start() {
if (this.startTime != 0)
throw new IllegalStateException("Timer already started");
this.startTime = System.nanoTime();

/ **
*
* @return the time passed in ms
*/
public long stop() {
if (this.startTime == 0)
throw new IllegalStateException("Timer not started");
final long resultInNs = System.nanoTime() - this.startTime;
this.reset();
return resultInNs / 1.000_000;

50

A.2. Try-Monade

A.2. Try-Monade

Abbildung A.6 zeigt die Implementierung der Try-Monade, die in Abschnitt 4.3 vorgestellt wurde.
Die Implementierung ahmt die Try-Monade in Scala nach. [Lin14] Die Functional Interfaces, die von
dieser Klasse benutzt werden, werden in Abbildung A.5 dargestellt.

Abbildung A.5: Functional Interfaces, die von der Try-Monade benutzt werden

public interface TryFunction<T,U> {
public U apply(T t) throws Exception;

}
public interface TrySupplier<T> {

public T get() throws Exception;

}
Abbildung A.6: Implementierung der Try-Monade

public abstract class Try<T> {
private Try() {}

public static <T> Try<T> attempt(TrySupplier<T> val) {
try {
return new Success<>(val.get());
} catch (Exception e) {
return new Failure<>(e);
}
}

public abstract T get() throws Exception;
public abstract Exception getException();

public abstract boolean isFailure();
public abstract boolean isSuccess();

public abstract <U> Try<U> map(TryFunction<T,U> f);
public abstract <U> Try<U> flatMap(TryFunction<T,Try<U>> f);

public abstract T orElse(T alt);
public abstract void forEach(Consumer<T> f);

static class Success<T> extends Try<T> {
T value;
private Success(T value) {
this.value = value;

}

A. Appendix

@Override
public T get() {
return value;
}
@Override
public Exception getException() {
throw new IllegalStateException(toString() +
" does not contain an Exception");
¥
@Override
public boolean isFailure() {
return false;
¥
@Override
public boolean isSuccess() {
return true;
}
@Override
public <U> Try<U> map(TryFunction<T, U> f) {
return attempt(() -> f.apply(value));

}
@Override
public <U> Try<U> flatMap(TryFunction<T, Try<U>> f) {
try {
return f.apply(value);
} catch (Exception e) {
return new Failure<>(e);
}
}
@Override

public T orElse(T alt) {
return value;

}

@Override
public void forEach(Consumer<T> f) {
f.accept(value);

}

52

A.2. Try-Monade

@Override
public String toString() {
return "Success[" + value.toString() + "1";
}
}

static class Failure<T> extends Try<T> {
Exception e;

private Failure(Exception e) {
this.e = e;

}

@Override

public T get() throws Exception {
throw e;

}

@Override

public Exception getException() {
return e;

}

@Override

public boolean isFailure() {
return true;

}

@Override

public boolean isSuccess() {
return false;

}

@Override

public <U> Try<U> map(TryFunction<T, U> f) {
return new Failure<>(e);

}

@Override
public <U> Try<U> flatMap(TryFunction<T, Try<U>> f) {
return new Failure<>(e);

}

@Override
public T orElse(T alt) {
return alt;

}

53

A. Appendix

54

@Override
public void forEach(Consumer<T> f) {}

@Override
public String toString() {
return "Failure[" + e.toString() + "1";

}

A.3. Einfach verkettete, nicht mutierbare Liste

A.3. Einfach verkettete, nicht mutierbare Liste

Die in Abbildung A.7 dargestellte Liste wurde zur Einarbeitung in funktionale Programmiermuster
erstellt. Sie ist nicht mutierbar, komplett nebeneffektfrei und implementiert Methoden, die in Scala und
Haskell fiir Listen bereitstehen. Anfangs wurden alle Methoden rekursiv implementiert, schliefllich
wurden manche Methoden imperativ implementiert wahrend die restlichen auf diesen aufbauen, um
StackOverflowErrors vorzubeugen.

Die Kindklassen I'tem und Empty werden in Abbildung A.8 sowie Abbildung A.9 dargestellt.

Abbildung A.7: Implementierung einer einfach verketteten Liste im funktionalen Stil

public abstract class HList<E> {
public abstract boolean isEmpty();
public abstract Optional<E> head();
public abstract HList<E> tail();
public static <E> HList<E> emptylList() {
return Empty.empty();

}

public static <E> HList<E> create(E element) {
return new Item<>(element, emptylList());

}
@SafeVarargs
public static <E> HList<E> create(E... elements) {
HList<E> 1 = emptyList();
for (E e : elements) {
// prepends elements because prepend is 0(1l), append is 0(n)
1 = l.prepend(e);
}
// reverses list because elements are prepended, not appended
return 1l.reverse();
}

public static <E> HList<E> create(E element, HList<E> list) {
return new Item<>(element, list);

}

public HList<E> prepend(E e) {
return create(e, this);

}

55

A. Appendix

public HList<E> append(E e) {
// Uses imperatively implemented foldr, does’t overflow
return foldr(el -> list -> list.prepend(el), create(e));

}

public HList<E> prepend(HList<E> 1) {
return 1.append(this);
¥

public HList<E> append(HList<E> 1) {
// Uses imperatively implemented foldr, does’t overflow
return foldr(el -> list -> list.prepend(el), 1);

}

public Optional<E> get(int i) {

/*
//recursive implementation is prettier, but it can overflow:
if (1 == 0) return head();

if (1 <0 || isEmpty()) return Optional.empty();
return tail().get(i-1);
*/

if (i <0 || i >= size()) return Optional.empty();
//1 + 1 because get(0) returns the first element,
//unfold(1l) creates a one-element list
return zip(unfold(i + 1), element -> index -> element)
.last();
}

public int size() {
return foldl(count -> e -> count + 1, 0);

}

public Optional<E> last() {
return foldl(dummy -> element -> Optional.of(element),
Optional.empty());
}

public HList<E> init() {
return take(size() - 1);

}
public HList<E> take(int n) {

//zip stops when one of the lists stops, unfold(n) has n elements.
return zip(unfold(n), element -> dummy -> element);

56

A.3. Einfach verkettete, nicht mutierbare Liste

public HList<E> takeWhile(Predicate<E> fun) {
//this is hard to implement without sideeffects

HList<E> result = emptylList();

HList<E> index = this;

while ('index.isEmpty() && fun.test(index.head().get())) {
//prepending new elements for performance
result = result.prepend(index);
index = index.tail();

}

return result.reverse();

}

public HList<E> reverse() {
return foldl(l -> e -> (l.prepend(e)), emptyList());
}

public void forEach(Consumer<? super E> fun) {
foldl(n -> e -> {fun.accept(e); return Optional.empty(); }
, Optional.empty());
}

public <T> T foldl(Function<T, Function<E, T>> fun, T init) {
/*
// recursive version, can overflow
if (isEmpty()) return init;
return tail().foldl(fun, fun.apply(init).apply(head().get()));
*/

T res = init;

HList<E> 1 = this;

while (!'l.isEmpty()) {
res = fun.apply(res).apply(l.head().get());
1 = 1.tail();

}

return res;

}

public <T> T foldr(Function<E, Function<T, T>> fun, T init) {
/%
// recursive version, can overflow
if (isEmpty()) return init;
return fun.apply(head().get()).apply(tail().foldr(fun, init));
x/
return reverse().foldl(t -> e -> fun.apply(e).apply(t), init);

57

A. Appendix

public HList<E> filter(Predicate<E> fun) {
return foldr(e -> 1 -> fun.test(e) ? 1l.prepend(e) : 1, emptyList());
}

public <T> HList<T> map(Function<E, T> fun) {
return foldr(e -> 1 -> l.prepend(fun.apply(e)), emptyList());
}

public <T, R> HList<R> zip(HList<T> 1, Function<E, Function<T, R>> fun)
/*
// recursive version, can overflow
if (isEmpty() || Ll.isEmpty()) return emptyList();
return create(
fun.apply(head().get()).apply(l.head().get()),
tail().zip(l.tail(), fun));
x/
HList<E> 11 = this;
HList<T> 12 = 1;
HList<R> result = emptyList();
while (!11.isEmpty() && !'12.isEmpty()) {
result = result.prepend(fun.apply(ll.head().get())
.apply(l2.head() .get()));
11.tail();
12.tail();

11
12

}

return result.reverse();

}

public static <E> HList<E> unfold(E seed, Function<E, E> fun,
Predicate<E> stop) {
/*
// recursive version, can overflow
if (stop.test(seed)) return emptyList();
return create(seed, unfold(fun.apply(seed), fun, stop));
*/
E e = seed;
HList<E> 1 = emptylList();
while (!stop.test(e)) {
//prepend is a lot cheaper than append
1 = l.prepend(e);
e = fun.apply(e);
}

return l.reverse();

58

A.3. Einfach verkettete, nicht mutierbare Liste

/ *%
* Returns a list of consecutive integers starting at 1, ending at to.
* Equivalent to unfold(1l, to, 1);
*/
public static HList<Integer> unfold(int to) {
if (to < 1) return emptyList();
return unfold(1l, to, 1);

VAT
* Returns a list of consecutive integers starting at start,
ending at stop.
* Equivalent to unfold(start, stop, 1) or, if start > stop,
unfold(start, stop, -1).

*/
public static HList<Integer> unfold(int start, int stop) {
return unfold(start, stop, start < stop 7?7 1 : -1);
}
/xx

*

Returns a list of integers starting at start,
ending at stop included, with <code>(n+1l) = (n) + step</code>.
Returns an empty list if step == 0 or step moves the sequence
away from stop
(if <tt>start < stop ? step < 0 : step > 0</tt>)
Infinite Lists are not allowed because they are evaluated
eagerly, leading to infinite loops.
*/
public static HList<Integer> unfold(int start, int stop, int step) {
if (step == 0 ||
start <= stop && step < 0 ||
start > stop && step > 0) return emptyList();
return unfold(start, x -> x + step, x ->
start <= stop
?7 x > stop
! X < stop);

*

*

*

*

@Override
public String toString() {
return foldl(a -> b -> a.concat(b.toString() + ", "), "[").concat("]");

public String toString(String begin, String separator, String end) {
return foldl(a -> b -> a.concat(b.toString() + separator),
begin).concat(end);

59

A. Appendix

@Override
public boolean equals(Object o) {
if (0o == null || 'o.getClass().equals(this.getClass())) return false;

@SuppressWarnings ("unchecked")
HList<E> 1 = (HList<E>) o;
if (l.size() != size()) return false;
return zip(l, a -> b -> a.equals(b))
.foldl(a -> b -> a ? (boolean) b : false, true);

}

VAL
* Mirrors AbstractLists hashCode method.
x/
@Override
public int hashCode() {
return foldl(n -> e -> 31%n + (e == null ? 0 : e.hashCode()), 1);
}

Abbildung A .8: Item-Kindklasse

class Item<E> extends HList<E> {

60

private E head;
private HList<E> tail;

Item(E head, HList<E> tail) {

this.tail = tail;

this.head = Objects.requireNonNull(head);
}

@Override
public boolean isEmpty() {
return false;

}

@Override
public Optional<E> head() {
return Optional.of(head);

}

@Override
public HList<E> tail() {
return tail;

}

A.3. Einfach verkettete, nicht mutierbare Liste

Abbildung A.9: Empty-Kindklasse

final class Empty<E> extends HList<E> {

private final static HList<?> EMPTY = new Empty<>();

@SuppressWarnings ("unchecked")

public static <E> Empty<E> empty() {
return (Empty<E>) EMPTY;

}

private Empty() {}

@Override
public boolean isEmpty() {
return true;

}

@Override

public Optional<E> head() {
return Optional.empty();

}

@Override
public HList<E> tail() {
return empty();

}

61

A. Appendix

A.4. Tail-Call-Optimization-Test

In Abbildung A.10 werden zwei Methoden vorgefiihrt, die die selbe Funktionalitét iterativ sowie
rekursiv implementieren, sowie eine Methode, die diese Methoden ausfiihrt. Die rekursive Methode
10st konsistent einen StackOverflowError aus.

Abbildung A.10: Test zur Existenz von Tail-Call-Optimization

public class TailRec {
static int times = 100000;

public static void main(String[] args) {
System.out.println(new TailRec().iterate(0, times));
System.out.println(new TailRec().recurse(0, times));

int iterate(int val, int times) {
int result = val;
for (int i = 0; i < times; i++) {

result++;
}
return result;
}
int recurse(int val, int times) {
if (times == 0) return val;
return recurse(++val, --times);

62

A.5. Method Referenz Typ 3 Test

A.5. Method Referenz Typ 3 Test

In diesem Abschnitt wird versucht, eine Typ 3 Method Reference zu benutzen, die eine Instanzmethode
des zweiten Parameters aufruft. Dies erzeugt einen Fehler, im Gegensatz zu einem Aufruf einer
Instanzmethode des ersten Parameters.

Abbildung A.11: Test der Anwendung von Typ 3 Method References

static void testMethodRef() {
System.out.println(testMethodRefOrder((a, b) -> a.m(b)));
System.out.println(testMethodRefOrder(A::m));

System.out.println(testMethodRefOrder((a, b) -> b.m(a)));

System.out.println(testMethodRefOrder(B::m));

/ *

The method testMethRefOrder(BiFunction<Test.A,Test.B,Integer>)
in the type Test is not applicable for the arguments (B::m)

*/
}
static A a = new A();
static B b = new B();

static class A {
public int m(B b) {
return 1;
}
}

static class B {
public int m(A a) {
return 2;
}
}

static Integer testMethodRefOrder(BiFunction<A, B, Integer> f) {
return f.apply(a, b);
}

63

Literaturverzeichnis

[Ale14]

[DS11]

[DS14]

[Fus12]

[Goe10]

[Goel1a]

[Goel1b]

[Goelic]

[Goel2a]

[Goe12b]

[Goel2c]

[Has10]

[Hav14]

[Inc12]

A. Alexander. Scala idiom - Methods should not have side effects. http://
alvinalexander.com/scala/scala-idiom-methods-functions-no-side-effects,
2014. (Zitiert auf Seite 19)

J. L. Daniel Spiewak. java - Cyclomatic Complexity of Java - stackoverflow. http://
stackoverflow.com/a/6331574, 2011. (Zitiert auf Seite 31)

J. I. Daniel Spiewak. Scalastyle: Implemented Rules. http://www.scalastyle.org/
rules-0.5.0.html, 2014. (Zitiert auf Seite 31)

M. Fusco. No more excuses to use null references in Java 8. http://java.dzone.com/
articles/no-more-excuses-use-null, 2012. (Zitiert auf den Seiten 15 und 41)

B. Goetz. State of the Lambda Version 2. http://cr.openjdk.java.net/~briangoetz/
lambda/lambda- state-2.html, 2010. (Zitiert auf Seite 12)

B. Goetz. A peek past lambda. http://mail.openjdk.java.net/pipermail/
lambda-dev/2011-August/003877.html, 2011. (Zitiert auf Seite 12)

B. Goetz. Syntax decision. http://mail.openjdk.java.net/pipermail/lambda-dev/
2011-September/003936.html, 2011. (Zitiert auf Seite 12)

B. Goetz. Syntax decision. http://mail.openjdk.java.net/pipermail/lambda-dev/
2011-September/004021.html, 2011. (Zitiert auf Seite 12)

B. Goetz. Lambda: A Peek Under The Hood. http://de.slideshare.net/
jaxlondon2012/1lambda-a- peek-under-the-hood-brian-goetz, 2012. (Zitiert auf Sei-
te 47)

B. Goetz. Method reference double-colon syntax. http://mail.openjdk.java.net/
pipermail/lambda-dev/2012-May/004979.html, 2012. (Zitiert auf Seite 12)

B. Goetz. State of the Lambda: Libraries Edition. http://cr.openjdk.java.net/
~briangoetz/lambda/collections-overview.html, 2012. (Zitiert auf Seite 15)

Haskell.org. Thunk. https://www.haskell.org/haskellwiki/Thunk, 2010. (Zitiert auf
Seite 23)

M. Haverbeke. Higher-Order Functions :: Eloquent JavaScript. http://
eloquentjavascript.net/05_higher_order.html, 2014. (Zitiert auf Seite 24)

K. Inc. McCabe Cyclomatic Complexity. http://docs.klocwork.com/Insight-10.0/
McCabe_Cyclomatic_Complexity, 2012. (Zitiert auf Seite 31)

65

http://alvinalexander.com/scala/scala-idiom-methods-functions-no-side-effects
http://alvinalexander.com/scala/scala-idiom-methods-functions-no-side-effects
http://stackoverflow.com/a/6331574
http://stackoverflow.com/a/6331574
http://www.scalastyle.org/rules-0.5.0.html
http://www.scalastyle.org/rules-0.5.0.html
http://java.dzone.com/articles/no-more-excuses-use-null
http://java.dzone.com/articles/no-more-excuses-use-null
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-2.html
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-2.html
http://mail.openjdk.java.net/pipermail/lambda-dev/2011-August/003877.html
http://mail.openjdk.java.net/pipermail/lambda-dev/2011-August/003877.html
http://mail.openjdk.java.net/pipermail/lambda-dev/2011-September/003936.html
http://mail.openjdk.java.net/pipermail/lambda-dev/2011-September/003936.html
http://mail.openjdk.java.net/pipermail/lambda-dev/2011-September/004021.html
http://mail.openjdk.java.net/pipermail/lambda-dev/2011-September/004021.html
http://de.slideshare.net/jaxlondon2012/lambda-a-peek-under-the-hood-brian-goetz
http://de.slideshare.net/jaxlondon2012/lambda-a-peek-under-the-hood-brian-goetz
http://mail.openjdk.java.net/pipermail/lambda-dev/2012-May/004979.html
http://mail.openjdk.java.net/pipermail/lambda-dev/2012-May/004979.html
http://cr.openjdk.java.net/~briangoetz/lambda/collections-overview.html
http://cr.openjdk.java.net/~briangoetz/lambda/collections-overview.html
https://www.haskell.org/haskellwiki/Thunk
http://eloquentjavascript.net/05_higher_order.html
http://eloquentjavascript.net/05_higher_order.html
http://docs.klocwork.com/Insight-10.0/McCabe_Cyclomatic_Complexity
http://docs.klocwork.com/Insight-10.0/McCabe_Cyclomatic_Complexity

Literaturverzeichnis

[Iry07]

[Jan12]

[JR14]

[Lin14]

[Mic14]

[New13]

[Ora12a]

[Ora12b]

[Oral4a]

[Ora14b]

[Oral4c]

[Ora14d]

[Oral4e]

[Ora14f]

[Oral4g]

[Ora14h]

66

J. Iry. Monads are Elephants Part 1. http://james-iry.blogspot.it/2007/09/
monads-are-elephants-part-1.html, 2007. (Zitiert auf Seite 17)

C. Janssen. Thunk - Definition from Techopedia. http://www.techopedia.com/
definition/2818/thunk, 2012. (Zitiert auf Seite 23)

G.S. John Rose, Brian Goetz. State of the Values. http://cr.openjdk. java.net/~jrose/
values/values-0.html, 2014. (Zitiert auf Seite 45)

M. Linhares. Scala’s Either, Try and the M word. http://mauricio.github.io/2014/02/
17/scala-either-try-and-the-m-word.html, 2014. (Zitiert auf den Seiten 36 und 51)

Microsoft. Refactoring Into Pure Functions. http://msdn.microsoft.com/en-us/
library/bb669139.aspx, 2014. (Zitiert auf Seite 19)

T. Neward. Java 8: Lambdas, Part 1. Java Magazine, 2013. http://www.oracle.com/
technetwork/articles/java/architect-lambdas-partl-2080972.html. (Zitiert auf
Seite 11)

Oracle. JSR 335: Lambda Expressions for the Java™ Programming Language. http:
//cr.openjdk.java.net/~dlsmith/jsr335-0.6.1/, 2012. (Zitiert auf den Seiten 12
und 15)

Oracle. Performance techniques used in the Hotspot JVM. https://wikis.oracle.com/
display/HotSpotInternals/PerformanceTechniques, 2012. (Zitiert auf Seite 22)

Oracle. Class Collections (Java Documentation). https://docs.oracle.com/javase/8/
docs/api/java/util/Collections.html, 2014. (Zitiert auf Seite 9)

Oracle. Class CompletableFuture<T> (Java Documentation). http://docs.oracle.com/
javase/8/docs/api/java/util/concurrent/CompletableFuture.html, 2014. (Zitiert
auf Seite 16)

Oracle. Class Optional<T> (Java Documentation). http://docs.oracle.com/javase/
8/docs/api/java/util/Optional.html, 2014. (Zitiert auf Seite 16)

Oracle. Functionallnterface Definition. http://docs.oracle.com/javase/8/docs/api/
java/lang/FunctionalInterface.html, 2014. (Zitiert auf Seite 10)

Oracle. Interface Comparator<T> (Java Documentation). http://docs.oracle.com/
javase/8/docs/api/java/util/Comparator.html, 2014. (Zitiert auf den Seiten 9
und 31)

Oracle. Interface Stream<T> (Java Documentation). http://docs.oracle.com/javase/
8/docs/api/java/util/stream/Stream.html, 2014. (Zitiert auf Seite 14)

Oracle. Method References. https://docs.oracle.com/javase/tutorial/java/
java00/methodreferences.html, 2014. (Zitiert auf den Seiten 12 und 13)

Oracle. Package java.util.function (Java Documentation). http://docs.oracle.com/
javase/8/docs/api/java/util/function/package-summary.html, 2014. (Zitiert auf
Seite 11)

http://james-iry.blogspot.it/2007/09/monads-are-elephants-part-1.html
http://james-iry.blogspot.it/2007/09/monads-are-elephants-part-1.html
http://www.techopedia.com/definition/2818/thunk
http://www.techopedia.com/definition/2818/thunk
http://cr.openjdk.java.net/~jrose/values/values-0.html
http://cr.openjdk.java.net/~jrose/values/values-0.html
http://mauricio.github.io/2014/02/17/scala-either-try-and-the-m-word.html
http://mauricio.github.io/2014/02/17/scala-either-try-and-the-m-word.html
http://msdn.microsoft.com/en-us/library/bb669139.aspx
http://msdn.microsoft.com/en-us/library/bb669139.aspx
http://www.oracle.com/technetwork/articles/java/architect-lambdas-part1-2080972.html
http://www.oracle.com/technetwork/articles/java/architect-lambdas-part1-2080972.html
http://cr.openjdk.java.net/~dlsmith/jsr335-0.6.1/
http://cr.openjdk.java.net/~dlsmith/jsr335-0.6.1/
https://wikis.oracle.com/display/HotSpotInternals/PerformanceTechniques
https://wikis.oracle.com/display/HotSpotInternals/PerformanceTechniques
https://docs.oracle.com/javase/8/docs/api/java/util/Collections.html
https://docs.oracle.com/javase/8/docs/api/java/util/Collections.html
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html
http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html
http://docs.oracle.com/javase/8/docs/api/java/lang/FunctionalInterface.html
http://docs.oracle.com/javase/8/docs/api/java/lang/FunctionalInterface.html
http://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html
http://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html
http://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
http://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html
https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html
http://docs.oracle.com/javase/8/docs/api/java/util/function/package-summary.html
http://docs.oracle.com/javase/8/docs/api/java/util/function/package-summary.html

Literaturverzeichnis

[Ora14i] Oracle. Package java.util.stream (Java Documentation). https://docs.oracle.com/
javase/8/docs/api/java/util/stream/package-summary.html, 2014. (Zitiert auf Sei-
te 15)

[Ora14j] Oracle. Syntax of Lambda Expressions. http://docs.oracle.com/javase/tutorial/
java/java00/lambdaexpressions.html#syntax, 2014. (Zitiert auf Seite 10)

[Par03] S.P.Parker. McGraw-Hill dictionary of scientific and technical terms. McGraw-Hill, 2003.
http://encyclopedia2.thefreedictionary.com/Thunk+(data). (Zitiert auf Seite 23)

[RGU14] A. M. Raoul-Gabriel Urma, Mario Fusco. Java 8 in Action: Lambdas, Streams and Functional-
style Programming v9. Manning Publications, 2014. (Zitiert auf den Seiten 17, 29 und 41)

[Sar14] F. Sarradin. Playing with Scala’s pattern matching. http://kerflyn.wordpress.com/
2011/02/14/playing-with-scalas-pattern-matching/, 2014. (Zitiert auf Seite 27)

[Saul4a] P.yves Saumont. What’s Wrong in Java 8, Part IV: Monads. http://java.dzone.com/
articles/whats-wrong-java-8-part-iv, 2014. (Zitiert auf den Seiten 17 und 41)

[Sau14b] P. yves Saumont. What’s Wrong in Java 8, Part V: Tuples. http://java.dzone.com/
articles/whats-wrong-java-8-part-v, 2014. (Zitiert auf Seite 45)

[Sch09] A. Schwaighofer. Tail Call Optimization in the Java HotSpot™ VM.
http://www.ssw.uni-1linz.ac.at/Research/Papers/Schwaighofer@9Master/
schwaighofer@9master.pdf, 2009. (Zitiert auf Seite 22)

[Sha14] A. Sharma. 6 Benefits of Programming with Immutable Ob-
jects in Java. https://www.linkedin.com/today/post/article/
20140528113353-16837833-6-benefits-of-programming-with-immutable-objects-in-java,
2014. (Zitiert auf Seite 20)

[She14] O. Shelajev. Monadic futures in Java 8. http://zeroturnaround.com/rebellabs/
monadic- futures-in-java8/, 2014. (Zitiert auf Seite 17)

[Sta13] A. Staveley. Scala Pattern Matching: A Case for New Thinking? http://java.dzone.
com/articles/scala-pattern-matching- case, 2013. (Zitiert auf Seite 27)

[Urm14a] R.-G. Urma. Processing Data with Java SE 8 Streams, Part 1. FJava
Magazine, 2014. http://www.oracle.com/technetwork/articles/java/
mald-java-se-8-streams-2177646.html. (Zitiert auf den Seiten 14, 15 und 41)

[Urm14b] R.-G. Urma. Tired of Null Pointer Exceptions? Consider Using Java SE 8’s Optional! http:
//www.oracle.com/technetwork/articles/java/java8-optional-2175753.html,
2014. (Zitiert auf den Seiten 16, 36 und 41)

Alle URLs wurden zuletzt am 21. November 2014 gepriift.

67

https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html#syntax
http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html#syntax
http://encyclopedia2.thefreedictionary.com/Thunk+(data)
http://kerflyn.wordpress.com/2011/02/14/playing-with-scalas-pattern-matching/
http://kerflyn.wordpress.com/2011/02/14/playing-with-scalas-pattern-matching/
http://java.dzone.com/articles/whats-wrong-java-8-part-iv
http://java.dzone.com/articles/whats-wrong-java-8-part-iv
http://java.dzone.com/articles/whats-wrong-java-8-part-v
http://java.dzone.com/articles/whats-wrong-java-8-part-v
http://www.ssw.uni-linz.ac.at/Research/Papers/Schwaighofer09Master/schwaighofer09master.pdf
http://www.ssw.uni-linz.ac.at/Research/Papers/Schwaighofer09Master/schwaighofer09master.pdf
https://www.linkedin.com/today/post/article/20140528113353-16837833-6-benefits-of-programming-with-immutable-objects-in-java
https://www.linkedin.com/today/post/article/20140528113353-16837833-6-benefits-of-programming-with-immutable-objects-in-java
http://zeroturnaround.com/rebellabs/monadic-futures-in-java8/
http://zeroturnaround.com/rebellabs/monadic-futures-in-java8/
http://java.dzone.com/articles/scala-pattern-matching-case
http://java.dzone.com/articles/scala-pattern-matching-case
http://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
http://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
http://www.oracle.com/technetwork/articles/java/java8-optional-2175753.html
http://www.oracle.com/technetwork/articles/java/java8-optional-2175753.html

Erkliarung

Ich versichere, diese Arbeit selbststiandig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wortlich oder sinngemifd aus anderen Werken tibernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Pritifungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-
se noch vollstindig veroffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Inhaltliche Zusammenfassung
	1.2 Zielgruppe und nötiges Vorwissen
	1.3 Struktur

	2 Neue Features in Java 8
	2.1 Lambda-Ausdrücke
	2.2 Method References
	2.3 Streams
	2.4 Optional
	2.5 CompletableFuture und weitere Monaden

	3 Funktionale Programmiermuster
	3.1 Pure Funktionen
	3.2 Vermeidung von Mutierbarkeit
	3.3 Rekursion
	3.4 Lazy Evaluation
	3.5 Funktionen höherer Ordnung
	3.6 Funktionspipelines
	3.7 Continuation Passing Style
	3.8 Patternmatching

	4 Funktionale Programmierbeispiele in Java 8
	4.1 Behandlung von Collections mit Streams
	4.2 Behandlung von null-baren Werten mit Optional
	4.3 Try-Monade
	4.4 Berechnung des größten Palindrom-Produktes

	5 Richtlinien für funktionale Programmierung in Java 8
	5.1 Benutzung der neuen Features in Java 8
	5.2 Einsatz von funktionalen Programmiermustern

	6 Zusammenfassung
	A Appendix
	A.1 Daten der Leistungstests
	A.2 Try-Monade
	A.3 Einfach verkettete, nicht mutierbare Liste
	A.4 Tail-Call-Optimization-Test
	A.5 Method Referenz Typ 3 Test

	Literaturverzeichnis

