
Institut für Parallele und Verteilte Systeme

Universität Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Bachelorarbeit Nr. 147

Vertrauen Jenseits Datenschutz
und Datensicherheit

Mark Aukschlat

Studiengang: Softwaretechnik

Prüfer/in: Prof. Dr.-Ing. habil. Bernhard Mitschang

Betreuer/in: Dipl.-Inf Christoph Stach

Beginn am: 2014-06-19

Beendet am: 2014-12-19

CR-Nummer: D.4.6, K.6.5

Kurzfassung

Smartphones sind zu einem festen Bestandteil des heutigen Lebens geworden. Besonders auf Grund der
breit gefächerten Möglichkeiten durch Software von Drittanbietern, sogenannte Applikationen oder
Apps erfreuen sie sich großer Beliebtheit. Doch neben ihrem Nutzen bringen die Apps auch Probleme
mit sich, da jeder sie erstellen kann. Manche Apps bieten nur eine mangelhafte Funktionalität, andere
richten Schaden an oder stehlen die privaten Daten des Benutzers. Bevor eine App installiert wird,
sollte man sich die Frage stellen, ob man dieser App überhaupt vertraut.
Dazu wird in dieser Arbeit ergründet, was es bedeutet einer App zu vertrauen. Es werden bereits
bestehende Vertrauenssysteme sowie Metriken betrachtet und mit der TriMetrik eine eigene Metrik
für das Vertrauen in eine App aufgestellt. Mit TriTrust werden zudem Konzept zur Umsetzung dieser
Metrik vorgestellt.

3

Inhaltsverzeichnis

1. Einleitung 9
1.1. Ausgangssituation . 9
1.2. Problemstellung . 10

2. Definition von Trust 13
2.1. Grundlegende Definition von Vertrauen . 13
2.2. Definitionen von Vertrauen in der Informatik . 16
2.3. Definition von Vertrauen in eine App . 17
2.4. Definition Reputation . 18

3. Related Work 21
3.1. Reputationssysteme . 21
3.2. Vertrauenssysteme . 22
3.3. Vertrauen in das Android-System . 22
3.4. Vertrauen in die App . 25
3.5. Vertrauen in den Entwickler . 27

4. Anforderungen und Umsetzungen 29
4.1. Grundaussage einer Vertrauensmetrik . 29
4.2. Die Faktoren und Bereiche . 34
4.3. Reputation . 36
4.4. Nutzerverhalten der App . 41
4.5. Permissions . 44
4.6. Kontroll- und Datenflussanalyse . 45
4.7. Vertrauen in andere Elemente . 47

5. TriMetrik 51
5.1. Ergebnis . 51
5.2. Bereiche . 52
5.3. Ratings . 53
5.4. Nutzung . 56
5.5. Permissions und Riskrating . 57
5.6. Problemmeldungen . 59

6. TriTrust 63
6.1. Ist-Zustand . 63
6.2. Mögliche Konzepte . 64

5

6.3. Kooperation mit Privacy-Systemen . 68

7. Implementierung 71
7.1. Ansatz und Schnittstellen . 71
7.2. Features . 72

8. Bewertung 75
8.1. Erfüllung der Eigenschaften . 75
8.2. Erfüllung der Definition . 76

9. Zusammenfassung und Ausblick 77

A. Anhang 81
A.1. Kritische Permissions . 81

Literaturverzeichnis 83

6

Abbildungsverzeichnis

4.1. Kategorien des Vertrauens . 32
4.2. Vertrauensfaktoren . 35
4.3. Reputation im Play Store . 36
4.4. Problemmeldung für Apps von TrustGo . 39
4.5. Windows Problemmeldung . 40
4.6. TaintDroid . 46
4.7. Beeinflussung des Vertrauens . 47

6.1. Ist-Zustand . 63
6.2. M1 - Erweiterung des Systems . 65
6.3. M2 - Service . 65
6.4. M3 - Erweiterung des App-Marktplatzes . 65
6.5. Einschränkung der Resource/Permissions . 68

7.1. Einfügen in den Play Store . 71
7.2. Übersichtanzeige Vertrauen . 72
7.3. Detailanzeige Gefahrenpotenzial . 73

Tabellenverzeichnis

4.1. Übersicht Vertrauens-Faktoren in anderen Metriken 34
4.2. Übersicht Ansätze für Permissions . 44

5.1. Problemmeldungen . 62

6.1. Zugriff auf Faktoren . 66

A.1. Kritische Permissions Gefahrenpotenzial . 81
A.2. Kritische Permissions private Daten . 82

7

1. Einleitung

1.1. Ausgangssituation

In der heutigen Zeit sind Smartphones zweifellos ein fester Bestandteil unseres Lebens geworden.
Wir tragen diese kleinen Geräte immer bei uns und viele Menschen wirken fast verloren, wenn sie
ihr Mobiltelefon nicht bei sich haben. Laut einer eMaketer-Studie1 wird davon ausgegangen, dass im
Jahr 2014 weltweit über 1,75 Milliarden Menschen ein Smartphone besitzen.

Das Leistungsspektrum der Smartphones hat dabei ständig zugenommen und ist inzwischen mit dem
von Desktop-PCs zu vergleichen. Ein Smartphone verbindet die Möglichkeiten der Telekommunikati-
on eines herkömmlichen Mobiltelefons mit den Funktionen eines PDA oder Tablett-Computers. Die
Erwartungshaltung an ein jedes Smartphone umfasst dabei, dass es auch als mobiles Medienabspiel-
gerät, zur Verwaltung von Terminen und Kontakten, als Navigationsgerät, Spielkonsole, Foto- und
Videokamera oder gar mittels NFC zum Bezahlen an der Kasse verwendet werden kann.

Die Vielseitigkeit von Smartphones wird dabei durch ein breites Angebot an Software von Drittan-
bietern unterstützt. Diese mobilen Applikationen, auch Apps genannt, können dabei nicht nur von
Firmen stammen, sondern auch von privaten Entwicklern. Alleine der Google Play Store2, der offizielle
App-Marktplatz für Smartphones mit dem Android-OS, beinhaltet über 1,3 Millionen Apps. Insgesamt
gibt es für Geräte mit dem Android-OS über 30 App-Marktplätze, wobei der Amazon Appstore3 oder
der von Samsung speziell für seine eigenen Smartphones gedachte Store Samsung Apps4 zu den
bekannteren zählen.

Geräte mit dem Android-OS dominieren dabei den Markt. Laut einer IDC-Studie5 ist auf 84,4% der im
dritten Quartal 2014 verkauften Geräte Android installiert. Das hohe Angebot der Apps wird dabei
durch die Vielzahl an Märkten unterstützt, wobei hohe Sicherheitsmaßnahmen bei diesen Märkte
nicht garantiert sind. Auch wenn der Play Store die Kontrolle von eingestellten Apps verschärft,
fallen sie doch im Vergleichsweise zum App-Store von Apple noch gering aus. Auf Grund des hohen
Marktanteils von Android, der Vielzahl an Apps und des offenen Sicherheitskonzept von Android
wird sich diese Arbeit vorwiegend mit Android Apps beschäftigen.

Die Vielfalt an Apps bringt nämlich auch ihre Probleme mit sich. Viele Apps sind niedriger Qualität
und bringen nicht die erwarteten Funktionalitäten mit sich. Manche Apps sind sogar schadhafter

1http://goo.gl/wpACCI
2https://play.google.com/store
3http://www.amazon.com/mobile-apps/b?node=2350149011
4http://apps.samsung.com
5http://www.idc.com/prodserv/smartphone-os-market-share.jsp

9

1. Einleitung

Natur. Nicht immer sind sich die Benutzer im Klaren, welche Rechte eine App, die sie auf ihrem Gerät
installieren, besitzt und was die App mit diesen Berechtigungen anstellen kann. Dabei kommt es
oft zur unerwünschten Verwendung privater Daten wie etwa Fotos, Kontaktdaten oder Nachrichten
durch die App. Diesem Missbrauch ist der Benutzer sich meist nicht bewusst oder kann ihn nicht
verhindern, solange er die App weiter verwenden will [Bac12].

Die Bedrohungen durchApps für den Benutzer lassen sich dabei in zwei grundsätzlich unterschiedliche
Gefahrenquellen zusammenfassen. Zum einen müssen das System und seine Daten vor Manipula-
tion oder ungewollten Zugriffen geschützt werden. Sicherheitslücken in Apps oder dem mobilen
Betriebssystem werden von Angreifern gezielt ausgenutzt, um vom Nutzer unbemerkt Aktionen
durchzuführen, die eigentlich nicht legitimiert sind und potenziell Schaden anrichten können. Hierbei
spricht man von Information Security.

Uscilowski [Usc13] stellte dabei fest, dass das Wachstum vom Schadsoftware für mobile Geräte
überproportional stärker ist als für Desktop-PCs. Erst allmählich reagieren die Hersteller von Sicher-
heitssoftware auf diese neuartigen Gefährdungen. Zunehmend entwickelt sich ein Markt für mobile
Sicherheitssoftware. Einige der größten Anbieter für Computer-Security wie etwa Kaspersky6, Avira7
und McAfee8 brachten Programme für mobile Plattformen heraus.

Das andere Problem ist, dass dem Nutzer die Möglichkeit geboten werden muss reglementieren zu
können, in welchem Umfang und auf welche Art der Daten eine App legal zugreifen darf. Funktionen
dieser Art werden als Data Privacy zusammengefasst.

Mit AppGuard [BGH+13] oder Dr. Android and Mister Hide [JMV+12] gibt es bereits Ansätze dazu,
die dem Benutzer erlauben einer App den Zugriff auf Daten zu verweigern und wenn nötig zufällig
oder bewusst falsch generierte Daten an die App zu liefern, wodurch keine privaten Informationen
verraten werden. Jedes System setzt dabei auf andere Ansätze und Strategien [SM13].

Die bisherigen Lösungsansätze konzentrieren sich meistens jedoch nur auf eine der Gefahrenquel-
len, was aus Benutzersicht nicht zufriedenstellend ist. Aus diesem Grund führten Stach und Mit-
schang [Sta13a] [Sta13b] [SM+14] die Privacy Managment Platform (PMP), ein kontextsesitives
und absturzsicheres Berechtigungssystem für Android ein. Mit PMP lassen sich Berechtigungsan-
passungen zur Laufzeit bewerkstelligen, private Daten auf Wunsch beliebig randomisieren und der
Nutzer wird jederzeit über die Konsequenzen seiner Einstellungen auf den Leistungsumfang einer
App informiert. Mittels eines sicheren Datencontainers (SDC) lässt sich die PMP leicht um wichtige,
die Information Security betreffende, Funktionen erweitern.

1.2. Problemstellung

Security- und Privacy-Systeme bieten dem Benutzer also Möglichkeiten, die Berechtigungen einer
App einzuschränken. Wenn eine App keine Berechtigungen besitzt, kann sie auch keinen Schaden
anrichten. Schränkt man die Berechtigungen einer App – in Android Permissions genannt – ein,

6http://www.kaspersky.com/de/android-security
7http://www.avira.com/android-phone/download-at
8http://home.mcafee.com/store/mobile-security

10

1.2. Problemstellung

leidet darunter eigentlich immer auch die Funktionalität der App. Wer nicht Gefahr laufen will, dass
eine App den eigenen Standort an Dritte sendet, verbietet ihr die Verwendung von Permissions zur
Standortbestimmung. Dadurch ist die Privacy gewährt, aber etwa eine Navigations-App wird nutzlos,
da sie den Benutzer nicht zum Ziel lotsen kann ohne seine Position zu kennen.

Um dieser Problematik entgegen zu wirken, muss man sich die Frage stellen, ob man einer App (und
ihrem Entwickler) vertrauen kann. Das Vertrauen spielt in der Informatik bereits in vielen Bereichen
wie dem Onlinehandel oder in Netzwerken eine große Rolle [AG07].

Es gilt nun auch eine Lösung zu finden, um das Vertrauen in eine App zu berechnen. Dabei sollte
allen Bereiche Beachtung geschenkt werden, die dafür eine Rolle spielen könnten. Neben der Frage
nach der Funktionalität der App sollten ihre Bedrohungen für das System und die Daten auf dem
Smartphone analysiert werden. Es sollten einerseits Empfehlungen abgegeben werden, ob eine App
auf Grund des für sie berechneten Vertrauens installiert werden kann oder ob man es besser lassen
sollte. Andererseits könnten auch Überlegungen angestellt werden, sodass begründete Security- und
Privacy-Maßnahmen unternommen werden können, will man die App trotz des niedrigem Vertrauen
nutzen.

Yan et al. untersuchten die Auswirkung eines angezeigten Vertrauens-Wertes auf die Bereitschaft
von Benutzern eine App weiter zu verwenden. Dabei wurde festgestellt, dass Benutzer bei einem
niedrigen Vertrauens-Wert tatsächlich bereit waren die Benutzung einer App nicht fortzusetzen.
Außerdem bestand ein nicht zu vernachlässigendes Interesse über die Berechnung des Vertrauens-
Wertes. Die Einführung eines solchen spielt auch aus Sicht des gewöhnlichen Smartphone-Nutzers
eine Rolle [YLNY13].

In dieser Arbeit wird der aktuelle Stand der Forschung bezüglich Technik zum Thema Vertrauen
analysiert und kritisch bewertet. Dabei wird ein eigener Best-of-BreedAnsatz, der allenAnforderungen
für die nachvollziehbare Berechnung eines Vertrauens-Wertes entspricht, entwickelt. Außerdem
werden eine Metrik, Konzeptvorschläge zur Umsetzung der Metrik und ein Prototyp für eines der
Konzept vorgestellt.

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Definition von Trust: Zunächst wird der Begriff Vertrauen definiert, wie er im gesell-
schaftlichen Sinne, im weiten Gebiet der Informatik und auf Android App bezogen verstanden
wird. Dabei wird abschließend für das Vertrauen eine eigene Definition gegeben.

Kapitel 3 – Related Work: In Kapitel 3 werden bereits bestehende Ansätze und Techniken vorge-
stellt. Neben Vertrauens- werden auch Security- und Privacy-Systeme aufgezählt, da später
eine Kombination dieser mit dem entwickelten Vertrauens-System diskutiert wird.

Kapitel 4 – Anforderungen und Umsetzungen: In Kapitel 4 werden die Anforderungen an eine
Vertrauens-Metrik für Android Apps aufgezählt. Dabei wird betrachtet, wie die in Kapitel 3 vor-
gestellten Systeme das Vertrauen berechnen. Aus diesen Erkenntnissen werden Überlegungen
aufgestellt, wie eine eigene Metrik aussehen müsste.

11

1. Einleitung

Kapitel 5 – TriMetrik: Kapitel 5 setzt die Überlegungen aus Kapitel 4 in eine eigene Metrik, die
TriMetrik um.

Kapitel 6 – TriTrust: Es werden in Kapitel 6 Konzepte präsentiert, wie die in Kapitel 5 aufgestellte
Metrik mit einem Vertrauens-System (TriTrust) realisiert werden kann.

Kapitel 7 – Implementierung: Kapitel 7 beschreibt die Implementierung eines Prototypen für eines
der Konzepte aus Kapitel 6.

Kapitel 8 – Bewertung: Abschließend wird eine Bewertung der Metrik durchgeführt, ob sie allen
Anforderungen entspricht.

Kapitel 9 – Zusammenfassung und Ausblick: Fasst die Ergebnisse der Arbeit zusammen, ver-
gleicht das Erreichte mit den Zielen und stellt Anknüpfungspunkte für zukünftige Weiterent-
wicklung von Metrik und Konzept vor.

12

2. Definition von Trust

Ziel dieser Arbeit ist es, eine Metrik aufzustellen, um das Vertrauen in eine App zu berechnen. Auch
wenn primär Android Apps in dieser Arbeit betrachtet werden, ist diese Definition für das Vertrauen
in eine App betriebssystemunabhängig.

Bevor jedoch Methoden und Konzepte zur Berechnung und Modellierung von Vertrauen betrachtet
werden, muss definiert werden, was überhaupt unter Vertrauen verstanden wird und wie dieses
Phänomen auf eine App angewandt werden kann.

Dazuwird in Unterkapitel 2.1 zunächst ergründet, auf welche Arten Vertrauen grundlegend verstanden
wird. Außerdem wird betrachtet, welche Eigenschaften Vertrauen besitzt und wie diese verwendet
werden können, um eine Definition und später auch die Metrik aufzustellen. Im Anschluss werden in
Unterkapitel 2.2 einige Definition betrachten, die bereits für Vertrauen in der Informatik gemacht
wurden.

In Unterkapitel 2.3 wird betrachtet, wie in anderen Arbeiten Vertrauen in Appen definiert wird. Mit
Hilfe dieser Definitionen, aber auch den in den vorherigen Unterkapiteln gewonnenen Erkenntnissen
wird eine eigene Definition für das Vertrauen in eine App gegeben.

Abschließend wird in Unterkapitel 2.4 der Begriff der Reputation definiert, da er in den folgenden
Kapiteln eine Rolle spielen wird und oft falsch verwendet oder verstanden wird.

2.1. Grundlegende Definition von Vertrauen

Zahlreiche Definitionen beschäftigt sich mit der Thematik des Vertrauens. Sie alle aufzuzählen würde
den Rahmen dieser Arbeit sprengen und viel Redundanz schaffen. Im Folgenden beschränkt sich
dieses Arbeit auf drei Definitionen nach Gambetta, Josang sowie von Grandison und Sloman. Diese
Definitionen zählen zu den ammeisten zitierten und geben einen guten Überblick über das Verständnis
von Vertrauen. Aus ihnen werden grundlegende Erkenntnisse über das Vertrauen gewonnen, die
später für unsere Problemstellung erweitert werden.

Zunächst betrachten wir die Definition von Gambetta et al. [Gam88]:

Definition 2.1.1 (Vertrauen nach Gambetta et al. [Gam88])
Eine besondere Ebene der subjektiven Wahrscheinlichkeit mit welcher ein Agent annimmt, dass ein
anderer Agent oder eine Gruppe von Agenten eine bestimmte Aktion ausführt, in zweierlei Hinsicht, bevor
er solche Aktionen beobachten kann (oder unabhängig von seiner Möglichkeit jemals eine solche Aktion
beobachten oder herbeiführen zu können) und in einem Kontext in welchem dies seine eigenen Aktionen
beeinflusst.

13

2. Definition von Trust

Vertrauen ist nach Gambetta also eine subjektive Annahme, die ein Agent von einem anderen Agenten
oder einer Gruppe von Agenten hat. Gambetta definiert diese Annahme direkt in einer „Wahrschein-
lichkeit“, also in welchem Maße wir annehmen, dass der Agent so handelt wie angenommen. Diese
Annahme wird um die Bedingungen erweitert, dass der Agent der Vertrauen hat, noch nie den anderen
Agenten eine solche Aktion hat ausführen sehen und die Aktion des anderen Agenten die Aktionen
des vertrauenden Agenten beeinflusst.

Wir haben also als Eigenschaften für das Vertrauen erhalten, dass dieses eine subjektive Annahme mit
Wahrscheinlichkeit ist, welche die Aktionen anderer Betrifft. Dabei spielt die Unwissenheit (der Agent
hat nie eine solche Aktion gesehen und könnte sie eventuell auch niemals sehen) genauso wie die
Tatsache, dass der Vertrauende selber durch diese Aktion betroffen ist.

Weitere Eigenschaften von Vertrauen lassen sich aus der Definition von Jøsang [Jøs96] ziehen. Dabei
sei angemerkt, dass in dieser Definition und in weiteren von Entitäten die Sprache ist, welche sich
jedoch nur in der Bezeichnung, nicht aber in der Bedeutung vom Agenten unterscheiden. In diesem
Kapitel wird um Kontinuität zu bewahren der Begriff des Agenten weiterhin verwendet werden – die
Verwendung des Begriffes Entität wird in den zitierten Definitionen jedoch belassen.

Definition 2.1.2 (Vertrauen nach Jøsang [Jøs96])
Der Glaube dass sie [die Entität in die man Vertrauen hat] in ihrem Verhalten keine bösartige Absichten
hat.

In dieser Definition bedeutet Vertrauen die Annahme, dass ein Agent in seinem Verhalten keine
bösartigen Absichten hat. Weniger als eine Eigenschaft für Vertrauen direkt ändert diese Definition
unseren Kontext. Nach Gambette konnte ein Agent noch eine Handlung durchführen oder eben nicht
und über die Konsequenzen ist nichts weiter bekannt. Nun kann klar definiert durch die Aktionen
eines Agenten Schaden entstehen. Vertrauen bedeutet also auch zu glauben, dass ein Agent keinen
Schaden anrichtet.

Aus der Definition von Grandison und Sloman [GS00] lassen sich noch weitere Erkenntnisse über das
Vertrauen gewinnen:

Definition 2.1.3 (Vertrauen nach Grandison und Sloman [GS00])
Der feste Glaube in die Kompetenz einer Entität verlässlich, sicher und zuverlässig in einem spezifizierten
Kontext zu agieren.

Diese Definition verfeinert noch die Bedingungen für das Verhalten eines Agenten, aber auch die
Umgebung. Es gibt einen klar spezifizierten Kontext, in dem die Fähigkeit des Agenten bewertet wird,
verlässlich, sicher und zuverlässig zu agieren. Vertrauen ist in dieser Definition also der Glaube daran,
ob und wie der Agent dazu fähig ist. Ob er eine Aktion durchführt und ob diese schädlich sein könnte,
wird nun also um die Qualität erweitert, mit welcher der Agent die Aktion durchführt.

Neben diesen Erkenntnissen zum Vertrauen lassen sich noch ein paar grundlegende Eigenschaften für
Vertrauen festlegen. Diese entspringen den Definitionen und mögen offensichtlich erscheinen, doch
in der späteren Diskussion für eine eigenen Definition in Unterkapitel 2.3 und bei der Aufstellung der
Metrik in Kapitel 5 wird auf diese zurückgegriffen und so ist eine formale Festlegung hilfreich.

14

2.1. Grundlegende Definition von Vertrauen

2.1.1. Eigenschaften von Vertrauen

Gutscher et al. [GHS08] sowie Yan undHoltmanns [YH08] versuchten die Eigenschaften von Vertrauen
zu formalisieren. Hier ist eine Auflistung dieser Eigenschaften gegeben, welche sich aus beiden
Versuchen zusammensetzt1.

(1) Vertrauen ist gerichtet: Vertrauen ist eine gerichtete Beziehung zwischen einem Vertrauendem
(trustor) und einem Vertrautem (trustee).

(2) Vertrauen ist nicht symmetrisch: Wenn A Vertrauen in B hat, impliziert das nicht notwendi-
gerweise, dass B Vertrauen in A hat.

(3) Vertrauen kann transitiv sein: Aus „A vertraut B“ und „B vertraut C“ kann „A vertraut C“
folgen, muss aber nicht. Dies darf nicht als Fakt genommen werden, sondern muss von Fall zu
Fall neu entschieden werden.

(4) Vertrauen ist subjektiv: Vertrauen ist eine persönliche Meinung, ein subjektives Phänomen,
das von verschiedenen Faktoren und Bedingungen abhängt.

(5) Vertrauen ist kontextabhängig: Vertrauen ist eine subjektive Meinung von einer Entität in
einem bestimmten Kontext.

(6) Vertrauen ist messbar: Vertrauenswerte können verwendet werden um die verschiedenen
Vertrauensgrade zu beschreiben, die eine Entität von einer anderen hat.

(7) Vertrauen ist abhängig von der Vergangenheit: Vergangene Erfahrungen können Einfluss
auf den aktuellen Vertrauenswert haben.

(8) Vertrauen ist dynamisch: Vertrauen ändert sich über die Zeit hinweg durch Erfahrungen oder
Informationen, die ich mit der anderen Entität gemacht oder über sie erhalten werden.

(9) Vertrauen kann eine zusammengesetzte Eigenschaft sein: Vertrauen ist eine Zusammen-
setzung vieler Attribute: Verlässlichkeit, Zuverlässigkeit, Ehrlichkeit, Aufrichtigkeit, Sicherheit,
Kompetenz und Pünktlichkeit, welche abhängig von der Umgebung in welcher Vertrauen spezifi-
ziert wird, beachtet werden müssen.

Aus der Definition 2.1.1 von Gambetta lässt sich dabei folgende Ergänzung für diese Liste machen,
auf die später zugreifen werden wird:

(10) Unwissen verlangt Vertrauen: Wenn alle Fakten bekannt sind, wird Vertrauen nicht benötigt
oder es ist von geringerer Bedeutung. Je weniger von einem Agenten bekannt ist, desto wichtiger
ist, welches Vertrauen man in ihn hat.

1Eigenschaften aus Gutscher: (2); (3); (8); Eigenschaften aus Yan: (1); (4); (5); (6); (7); (8); (9)

15

2. Definition von Trust

Eine wichtige Eigenschaft in dieser Liste ist hierbei Eigenschaft (6). Dass Vertrauen messbar ist, ist
Voraussetzung dafür, dass man Vertrauen modellieren und berechnen kann. Ohne diese Eigenschaft
wäre die Aufstellung einer Metrik eine fruchtlose Arbeit. Alle Arbeiten - wie auch diese hier - die
sich mit der Berechenbarkeit und Metriken für Vertrauen beschäftigen, begründen sich auf dieser
Eigenschaft.

In den folgenden Unterkapiteln wird auf diese Liste zurückgegriffen, um Definitionen zu be- und
ergründen.

Nachdem grundlegende Definitionen von Vertrauen analysiert wurden und die benötigten Eigen-
schaften von Vertrauen formal aufgestellt wurden, werden im folgenden Unterkapitel 2.2 Definitionen
für Vertrauen im Feld der Informatik betrachtet und erörtert welche Informationen daraus für eine
eigene Definition gewonnen werden können.

2.2. Definitionen von Vertrauen in der Informatik

Ein Ansatz für Vertrauen Multi-Agent Systeme stammt von Mui et al. [MMH02a]. Sie definieren
Vertrauen dabei wie folgend:

Definition 2.2.1 (Vertrauen in Multi-Agent Systemen nach Mui et al. [MMH02a])
Die subjektive Wahrnehmung eines einzelnen Agenten von einem anderen Agenten, die durch die bisheri-
gen Begegnungen der beiden miteinander geprägt wurde.

Die Subjektivität des Vertrauens in dieser Definition ist nichts Neues. Interessanter ist in diesem Fall,
dass zur Bildung von Vertrauen bereits Interaktion zwischen den beiden Akteuren geherrscht haben
muss. Dies ist problematisch, wenn man es auf die Problemstellung dieser Arbeit beziehen will, da
man den Vertrauenswert für eine App auch zu Rate ziehen will, um zu entscheiden, ob man diese
überhaupt installieren will.

Hat man also keine eigenen Erfahrungen mit dem anderen Agenten gemacht, muss man sich auf die
Erfahrungen anderer verlassen. Hierbei wird Eigenschaft (3) von Vertrauen verwendet. Wenn andere
Personen der App vertrauen und diesen Personen vertraut wird, folgt, dass man der App vertrauen
kann. Betrachtet man nicht die Meinung einer einzelnen Person, sondern die Meinung der breiten
Masse, wird dieses Meinungsbild auch als Reputation aufgegriffen. Eine ausführliche Erläuterung zur
Reputation und welche Rolle sie für das Vertrauen spielt, wird in Unterkapitel 2.4 erläutert.

Eine weitere Definition für Vertrauen stammt von Corritore et al. [CKW03] und bezieht sich auf
On-line Systeme:

Definition 2.2.2 (Vertrauen in On-line Systemen nach Corritore et al. [CKW03])
Die zuversichtliche Erwartung, dass in einer risikobehafteten Situation online nicht jemandes Schwach-
stellen ausgenutzt werden.

In dieser Definition findet man wieder die Möglichkeit Schaden zuzufügen und ob dies geschehen wird,
als zentralen Punkt des Vertrauens. Während nach Eigenschaft (8) Vertrauen eine zusammengesetzte

16

2.3. Definition von Vertrauen in eine App

Eigenschaft ist, beziehen sich diese Definitionen nur auf einen einzelnen Punkt. Dies kann jedoch
daher rühren, dass der Kontext keine anderen Bedingungen verlangt oder manche Bedingungen
als selbstverständlich angesehen werden. In der eigenen Definition für Vertrauen in Appen wird
später darauf geachtet, eine möglichst genaue Definition aufzustellen, um keinen Spielraum für
Mutmaßungen zu zulassen.

Die Rolle von Schadpotenzial und Sicherheit spielt in der Definition für Vertrauen eine große Rolle. Für
Yan und Holtmanns [YH08] „geht Vertrauen über die Security hinaus. Vertrauen ist eine erweiterte
Lösung für Security.“ Vertrauen ist also eine Lösung jenseits von unbegründeten Security- und (um
der Problemstellung aus Kapitel 1 zu entsprechen) Privacy-Maßnahmen.

Hat man Vertrauen in einen Agenten, dass er einem keinen Schaden zufügen kann, sind die Security-
und Privacy-Maßnahmen weniger bis gar nicht von Nöten. Im Umkehrschluss spielt Vertrauen eine
geringere Rolle (zumindest unter diesen Bedingungen), wenn man erhöhte Security- und Privacy-
Maßnahmen anwenden. Es besteht also ein Zusammenhang zwischen Security, Privacy und Vertrauen.
Dies entspricht der Kontext-Eigenschaft (5) von Vertrauen. Natürlich ist es Ziel dieser Arbeit die
Richtung zu Betrachten, in der das Vertrauen die wichtigere Rolle spielt, trotzdem werden in Ka-
pitel 5 und 6 Überlegungen angestellt, wie das Vertrauen eine geringere Rolle spielen kann, wenn
Securtiy- und Privacy-Maßnahmen erhöht werden oder wie es genutzt werden kann, um diese gezielter
einzusetzen.

Nachdem in Unterkapitel 2.1 der Begriff des Vertrauen in seiner grundlegenden Bedeutung ergründet
und die Eigenschaften von Vertrauen betrachtet wurden, sowie in diesem Unterkapitel Definitionen
für Vertrauen in der Informatik analysiert wurde, wird nun in Unterkapitel 2.3 eine Definition für das
Vertrauen in eine App gegeben werden.

2.3. Definition von Vertrauen in eine App

Definitionen für das Vertrauen in App sind noch nicht sehr zahlreich. Für unsere Metrik ist es
unerlässlich eine eigene Definition aufzustellen, die als Orientierung für die Faktoren eine Rolle spielt,
die in die Metrik einfließen. Um diese eigene Definition aufstellen zu können, wird die Definitionen
von Yan et al. [YZD12] betrachtet und dann um die Erkenntnisse erweitert, die in diesem Kapitel
gewonnen wurden. Yan et al. definieren das Vertrauen in eine App dabei wie folgt:

Definition 2.3.1 (Vertrauen in eine App nach Yan et al. [YZD12])
Der Glaube des Benutzers an eine App eine Aufgabe wie erwartet zu erfüllen.

In dieser Definition steht ausschließlich die Funktionalität der App im Vordergrund. Doch wenn es
um das Vertrauen in eine App geht, spielen andere Faktoren eine Rolle.

Die Definition 2.1.2 von Jøsang für Vertrauen und die Definition 2.2.2 von Corritore et al. für Vertrauen
in On-line Systemen beziehen sich wie oben bereits erörtert auf die Möglichkeit und die Bereitschaft
des Trustee dem Trustor Schaden zuzufügen. Auch wenn diese es nicht Ziel dieser Arbeit ist eine
Security-Lösung zu finden, sollte dieser Aspekt nicht vollständig ignoriert werden. Der Glaube an
eine App, kein Schadpotenzial zu besitzen, sollte auf jeden Fall Teil des Vertrauens in eine App sein.

17

2. Definition von Trust

Die Bedenken bezüglich der Sicherheit einer App lassen sich auch auf deren Umgang mit privaten
Daten erweitern. In einer Umfrage des PewResearchCenter gaben 57% der Teilnehmer an, eine App
nicht installiert zu haben, da sie der App zu viel Zugriff auf persönliche Daten gewähren müssten
oder eine App wieder deinstalliert zu haben, weil sie herausfanden, wie viele Daten von der App
gegen den Willen der Benutzer weitergeleitet wurden, [pew12].

Der Umgang einer App mit privaten Daten spielt also bei vielen Benutzern eine Rolle, wenn es um
das Vertrauen in eine App geht. Manche Anwendungen brauchen jedoch den Zugriff auf private
Daten, um ihre Funktionalität erfüllen zu können. Da viele kostenlose Appen erst durch Werbung
kostenlos bleiben, sind viele Benutzer auch bereit ihre privaten Daten gegen die kostenlose App
quasi einzutauschen. Folglich muss der Umgang einer App mit privaten Daten nicht unbeding für das
Vertrauen in die App eine Rolle spielen. Es greift dabei Eigenschaft (4) von Vertrauen und zwar, dass
dieses subjektiv ist und von den Ansichten des Einzelnen abhängt.

Definition 2.3.2 (Vertrauen in eine App)
Einer App wird vertraut, wenn sie die versprochenen Funktionalitäten bietet, private Daten nicht gegen
den Wunsch des Benutzers weitergibt und möglichst geringes Potenzial besitzt, um Schaden anzurichten.

Die TriMetrik, welche in Kapitel 5 aufgestellt wird, orientiert sich an dieser Definition 2.3.2. Dabei
entspricht die Definition den Eigenschaften des Vertrauen und den Ansprüchen und Vorstellungen,
die heutzutage in Bezug auf App herrschen.

Zum Abschluss des Kapitels wird in Unterkapitel 2.4 noch der Begriff der Reputation definiert.

2.4. Definition Reputation

Die Reputation eines Agenten wird gelegentlich mit dem Vertrauen in einen Agenten gleichgesetzt.
Dies ist jedoch eine falsche Verwendung des Begriffs und es soll im Folgenden eine klare Definition
für die Reputation einer App geliefert werden, um später Verwirrung zu vermeiden.

Dazu wird zunächst ein Vergleich zwischen den Definitionen von Mui et al. [MMH02a] für Vertrauen
in einem Multi-Agent System und die Reputation eines Agenten in einem solchen System gezogen.
Die Definition für Vertrauen wurde bereits als Definition 2.2.1 gegeben und analysiert. Zur Erinnerung
sei sie noch einmal gegeben: „Die subjektive Wahrnehmung eines einzelnen Agenten von einem anderen
Agenten, die durch die bisherigen Begegnungen der beiden miteinander geprägt wurde.“ Vergleichen wir
dies nun mit der Definition für die Reputation:

Definition 2.4.1 (Reputation eines Agenten in einem Mulit-Agent System nach Mui [MMH02a])
Die Wahrnehmung, die von einem anderem Agenten durch dessen vergangene Aktionen über seine
Intentionen und Normen gewonnen wurde.

Auffällig bei dieser Definition ist es, dass es bei der Reputation nicht mehr um die Wahrnehmung
des einzelnen geht, sondern von allen Agenten, die mit dem Agenten interagiert haben. Während
das Vertrauen also die subjektive Wahrnehmung eines Einzelnen ist, ist die Reputation der Eindruck
der breiten Masse. Die Reputation ist also der Ruf, den ein Agent bei der Allgemeinheit besitzt, den

18

2.4. Definition Reputation

er durch seine Taten gewonnen hat. Dies unterscheidet sich klar vom Vertrauen. Ist sein Verhalten
einem anderen Agenten gegenüber immer gutartig, hat dieser ein großes Vertrauen in ihm, ist sein
Verhalten gegenüber einem weiteren Agenten immer bösartig, hat dieser ein geringes Vertrauen in
ihm. Die Reputation des Agenten würde in diesem Fall mittelmäßig sein.

Einen ähnlichen Ansatz lässt sich auch bei Yan et al. [YZD12] finden, wenn man seine Definition
für das Vertrauen in eine App mit der Reputation mit der Definition für die Reputation einer App
vergleicht. Die Definition für Vertrauen wurde ebenfalls in Definition 2.3.1 gegeben, sie sei aber auch
zur Erinnerung wieder gegeben: „Das Glauben des Benutzers an eine App eine Aufgabe wie erwartet
zu erfüllen.“ Unter der Reputation verstehen sie:

Definition 2.4.2 (Reputation einer App nach Yan)
Das öffentliche Vertrauen, berechnet aus direktem oder indirektem Wissen oder Erfahrungen.

Nach dieser Definition wird Reputation mit dem öffentlichen Vertrauen gleichgesetzt, was in diesem
Fall dem Glauben, berechnet durch gesammelte Informationen ist, ob die App ihre Funktionalität ist,
wenn man beide Definitionen miteinander verknüpft.

Reputation kann also mehr als Vertrauen sein und weniger. Für die Metrik wird die Reputation als Teil
des persönlichen Vertrauens betrachtet. Durch Bewertungen und Berichte anderer wie etwa ein Rating
in einem App-Marktplatz bildet sich die öffentliche Meinung einer App. Dieser so entstandene Wert
wird in diesem Dokument als Reputation einer App verwendet. Dazu sei Definition 2.4.3 gegeben:

Definition 2.4.3 (Reputation einer App)
Die öffentliche Meinung von einer App, entstanden durch Bewertungen oder Berichte über die App.

Für das persönliche Vertrauen spielen jedoch andere Faktoren noch eine Rolle. Reputation beeinflusst
das Vertrauen in eine App, jedoch können eigene Erfahrungen, das persönliche Vertrauen in den
Entwickler und andere Faktoren eine Rolle spielen. Welche Faktoren dies im Detail sind, darauf wird
in Kapitel 5 genauer eingegangen.

In Kapitel 3 werden nun Ansätze und Methoden zum Thema Reputation und Vertrauen, sowie auch
inhaltlich verwandte System, die später noch eine Rolle spielen, betrachtet.

19

3. Related Work

Vertrauen spielt in der Informatik schon lange eine große Rolle. Marsh stellte 1994 eines der ersten
Konzepte eines berechenbaren Vertrauens-Wertes vor und seitdem wurden viele weitere Ansätze in
diesem Gebiet geliefert [Mar94].

In diesem Kapitel werden einige der bisherige Ansätze zu Vertrauen und verwandten Themen be-
trachtet. Zunächst werden in Unterkapitel 3.1 Reputationssysteme betrachtet, welche Stärken und
Schwächen diese besitzen und wo sie bereits im Einsatz sind. Anschließend werden Frameworks und
andere Ansätze für Vertrauens-Systeme in Unterkapitel 3.2 vorgestellt.

Die darauf folgenden Unterkapitel beschäftigen sich mit Ansätzen für das Android System und dafür
geschriebene Apps. Dabei wird zunächst in Unterkapitel 3.3 die Sicherheit des Systems und der Daten
vor Zugriffen durch Apps durch Security- und Privacy-Systeme analysiert. In Unterkapitel 3.4 werden
Systeme behandelt, welche sich mit dem Vertrauen in eine App direkt beschäftigen. Abschließend wird
der Aspekt des Vertrauens in den Entwickler einer App und welche Aufgaben es dort zu bewältigen
gibt in Unterkapitel 3.5 behandelt.

3.1. Reputationssysteme

Geht es um die Berechnung von Vertrauenswerten, spielen Reputationssysteme oft eine Rolle. In
Definition 2.4.2 auf Seite 19 wird die Reputation einer App als ihr öffentliches Vertrauen bezeichnet.
Fallen andere Einflussfaktoren, wie sie in Unterkapitel 2.4 etwa für eine App erläutert wurden, weg,
kann es sogar sein, dass Vertrauen und Reputation äquivalent sind.

Mui et al. geben in [MMH02b] eine Übersicht über die verschiedenen Typologien von Reputation.
Außerdem präsentieren sie ein Framework für den Test der verschiedenen Typologien in Hinblick auf
die Überlebensfähigkeit eines Agenten in einer evolutionären Version des unvollständige-Information-
Spiels.

Die selben Autoren beschäftigen sich mit bestehenden Vertrauens- und Reputationsmodelle. Dabei
stellen sie fest, dass keine Unterscheidung zwischen dem Vertrauens- und dem Reputations-Wert
gemacht werden und dass die soziologischen Eigenschaften von Vertrauen nicht beachtet werden. Er-
gänzend präsentieren sie ein eigenes Modell, welches zwischen Reputation und Vertrauen differenziert
und somit dieser Schwäche beikommt [MMH02a].

Hoffman et al. [HZNR09] und Fraga et al. [FBM12] geben eine Taxonomie über die Angriffsmethoden
und Ziele auf Reputations- und Vertrauenssysteme. Hoffman et al. überprüfen zusätzlich existierende
Systeme auf ihre Anfälligkeit für die vorgestellten Angriffe.

21

3. Related Work

Malik und Bouguettaya entwarfen mit RATEWeb ein Reputationssystem für Web-Services in Hinsicht
darauf, wie hoch die Qualität der Services ist, die diese anbieten. Dabei wird für Nutzer, welche
Bewertungen von Services abgeben ein Glaubwürdigkeitswert berechnet. Gibt eine Benutzer viele
Bewertungen ab, die als Fake identifiziert werden, sinkt die Glaubwürdigkeit des Nutzers und somit
der Einfluss seiner Bewertungen auf die Reputation eines Service [MB09].

Hussain et al. stellen Mechanismen vor, wie etwa das FC direct trust value-based decision making
methodology und die FC reputation-based trust decision making methodology, mit deren Hilfe ein
Vertrauens- beziehungsweise ein Raputationswert für einen Agenten berechnet werden kann. Au-
ßerdem können Aussagen darüber getroffen werdem, wie sich dieser Wert zu einer bestimmten Zeit
entwickeln wird [HCH08].

3.2. Vertrauenssysteme

Liu et al. präsentieren mit StereoTrust ein gruppenbasiertes Vertrauensmodel. In diesem werden
unbekannte Agenten auf Grund von ähnlichen Eigenschaften (Stereotypen genannt) in Gruppen mit
Agenten eingeteilt, mit denen bereits Interaktion bestand. Das Vertrauen, das man in die bekannten
Agenten setzt, wird dabei auf die anderen Agenten der Gruppe angewandt, wenn man einen Ver-
trauenswert braucht, da man mit diesen interagieren will. Stehen Informationen von Dritten über
die Agenten zur Verfügung, wird die Erweiterung d-StereoTrust verwendet, welche mit Hilfe dieser
Informationen jede Gruppe in eine gute und schlechte Subgruppe einteilen und eine noch genauere
Einschätzung des Vertrauenswertes zulassen [LDRL09].

Trust ME von Huerta-Canep et al. ist ein Vertrauens-System für mobile Umgebungen. Dabei wird
der Vertrauenswert in einen anderen Agenten aus drei Quellen berechnet. Erstens persönlichen
Erfahrungen mit dem anderen Agenten. Zweitens Informationen dritter Agenten über den anderen
Agenten (Reputation). Und drittens Ähnlichkeit von Interessen mit dem anderen Agenten, die man
durch direkte Kommunikation mit diesem erfährt. Diese Vielfältigkeit an Quellen zeichnet diesen
Ansatz aus [HCLH11].

Jiang et al. entwickelten ein Framework, welches ebenfalls Vertrauenswert in mobilen Umgebun-
gen berechnet. Das Vertrauensmodell erweitert dabei den vorhandenen Security Manager. Für die
Berechnung des Vertrauenswertes werden Erfahrungen und Empfehlungen verwendet [JK07]

3.3. Vertrauen in das Android-System

Im Folgenden werden die Ansätze, die sich mit Android im Speziellen beschäftigen, betrachtet. Auch
hier gibt es bereits eine große Zahl an Ideen und Methoden. Dabei unterteilt man Systeme in drei
große Bereiche, wie das Vertrauen in eine App gesteigert werden kann. Dies wären Privacy (das
Vertrauen in die eigene Urteilskraft), Security (das Vertrauen in das System) und Vertrauen (in eine
App). Auch wenn es wie bereits angesprochen das Ziel dieser Arbeit ist, nach Lösungen jenseits von
Security und Privacy zu suchen, wird auf diese beiden Gebiete eingegangen und mögliche brauchbare
Ansätze für ein Vertrauens-System analysiert.

22

3.3. Vertrauen in das Android-System

Diese werden betrachtet, da ein Einsatz dieser Systeme das Vertrauen in Apps bezüglich Gefahrenpo-
tenzial und Umgang mit privaten Daten in sofern steigern kann, dass die App dann keine Möglichkeit
mehr hat Schaden anzurichten, da sie überwacht. Dies steigert vielleicht nicht das Vertrauen in die
App, aber man muss sich um diesen Aspekt keine Gedanken mehr machen.

3.3.1. Privacy - Vertrauen in die eigene Urteilskraft

Mit einem Privacy-System wird dem Nutzer ein Berechtigungssystems gegeben. Mit diesem muss
der Nutzer nur die „richtigen“ Entscheidungen treffen und er kann den Apps vertrauen. Wenn
er beispielsweise nicht will, dass eine App seinen Standort kennt - er also allen Apps, die diese
Berechtigung beinhalten misstraut -, sein Berechtigungssystem ihm aber gestattet dieses Permissions
zu entziehen oder falsche Daten zu senden, dann geht von der App keine Gefahr mehr, bezogen auf
diesen Punkt aus.

Beresford et al. setzen mit MockDroid [BRSS11] direkt am Android OS an und modifizieren dieses.
So werden Zugriffe auf Permissions auf Systemebene im Package Manager abgefangen und wenn
gewünscht mit falschen Daten, sogenannter Mocked Data, getäuscht. Der Benutzer wird über die
Notificationbar informiert, wenn eine App auf eine Permission zugreift, welche Mocked Data zu-
rückliefert. So kann eine Verbindung zwischen möglicher fehlender Funktionalität und Mocked Data
hergestellt werden und die Permissions gegebenenfalls angepasst werden, wenn man Funktionalität
höher als Privacy schätzt.

Das Problem von MockDroid ist, dass das Betriebssystem umgeschrieben werden muss. Um das
Android OS modifizieren zu können, muss ein Benutzer Root-Rechte besitzen. Android basiert zwar
auf dem quelloffenen Linux-Kernel, ist ein Open-Source-System und seine Anpassbarkeit wird als
einer der größten Vorteile genannt, doch frei von Problemen ist ein Root-Zugriff nicht. Meist geht ein
Garantieverlustmit demRooten einher,Malwaremit Root-Zugriff kann höheren Schaden anstellen und
ein fehlerhafter Root-Vorgang kann sogar das Gerät zerstören. Gerade für unsichere oder unwissende
Benutzer wäre deswegen ein System sicherer, das keine Root-Rechte oder eine Veränderung der
Firmware benötigt. Solche Systeme werden im Folgenden betrachtet. Diese Systeme modifizieren
nicht das OS sondern die App an sich.

AppGuard von Backes et al. [BGH+13] [BGH+12] nutzt Inline Reference Monitoring (IRM) um eine
vordefinierte Anzahl von Policies durchzusetzen. Dazuwerden die Binärdatein der App umgeschrieben,
sodass vor jeder sicherheitsrelevanten Operation ein Sicherheitsmonitor aufgerufen wird. Dieser
Monitor gleicht dann mit den gegebenen Policies ab und entscheidet, ob die Funktion durchgeführt
wird oder ein alternativer Code ausgeführt wird, der dann gegebenenfalls Mocked Data zurückliefert,
damit die App nicht abstürzt.

Xu et al. entwickelten mit Aurasium [XSA12] ein System, welches ebenfalls eine App umschreibt, um
Funktionsaufrufe der Android API abzufangen und mit den Policies abgeglichen wird. Die App wird
damit in eine Sandbox gepackt. Dabei wird Aurasium im selben Prozess wie die App ausgeführt, die
sie überwacht und hat keinen eigenständigen Manager in einem seperaten Prozess.

Dr. Android and Mr. Hide von Jeon et al.[JMV+12] baut explizit auf einen Service namens Mr. Hide,
der in einem eigenen Prozess läuft. Apps werden mit Hilfe von Dr. Android (Dalvic Rewriter für

23

3. Related Work

Android) umgeschrieben, sodass all ihre API Aufrufe an Mr. Hide umgeleitet werden. Dort wird
dann mit Hilfe der dort definierten Policies bestimmt, welche Informationen und Funktionen die
App verwenden darf. Dafür wurden ebenfalls die fine-grained (zu dt. fein granulare) Permissions
eingeführt. Mit diesen lassen sich detailliertere Bestimmungen über die Rechte von Apps machen, als
mit den herkömmlichen Permissions.

Ein weiterer Ansatz ist die von Stach und Mitschang entwickelte PrivacyManagment Platform (PMP)
[SM+14] [Sta13a] [SM13] [Sta13b]. Die PMP führt dabei Ressources ein, welche die herkömmlichen
Permissions von Android ersetzen und dient dabei als Handler zwischen App und OS. Will eine App
auf solche Ressourcen zugreifen, muss sie beim PMP nachfragen, welches die Anfrage weiterleitet
und Daten zurückgibt oder diese verweigert, beziehungsweise falsche Daten zurücksendet, die keine
privaten Informationen preisgeben. Es können neue Ressourcen leicht in die PMPApp geladen werden,
wodurch sich eine feinere Granularität und eine größere Varianz als mit den statischen Android
Permissions erreichen lässt. Der Nachteil aus aktueller Sicht ist jedoch, dass Entwickler ihre Apps
auf diese Ressourcen ausgelegt schreiben müssen. Eine jede beliebige App lässt sich mit PMP nicht
kontrollieren.

3.3.2. Security - Vertrauen in das System

Wenn entweder sichergestellt werden kann, dass keine Schadsoftware auf dem Gerät ausgeführt
werden kann oder dass das System einen Angriffe frühzeitig erkennt und verhindert, dann kann man
den Apps in Hinsicht darauf vertrauen, dass sie keinen Schaden anrichtet.

Sun und Tan [ST14] entdeckten, dass Native Libraries von Androids Sicherheitsüberprüfung nicht
ausreichend beachtet werden. Mit NativeGuard schufen sie ein Sicherheits-Framework, welches
Native Libraries von den anderen Komponenten in einer Android App isoliert, indem es sie in einer
eigenen App laufen lässt, welche nicht die Permissions der eigentlichen App besitzt und somit nicht
auf diese zugreifen kann. Dafür müssen weder Veränderungen am OS noch am Quellcode der App
vorgenommen werden.

TrustDroid von Bugiel et al. [BDD+11] ist eine „praktische und leichtgewichte Domänenisolation in
Android“. Im Android OS ist keine Isolation zwischen Daten und Appen gegeben, was zum Beispiel bei
einem Smartphone welches privat und geschäftlich verwendet wird, wünschenswert wäre. TrustDroid
überwacht dabei die Inter-Process Comunication (IPC), den Zugriff auf Dateien und den Zugang
zum Netzwerk. Dadurch werden Apps und Daten aus einer Domäne vor Apps aus einer anderen
Domäne geschützt. Einen ähnlichen Ansatz verfolgen Russello et al. mit MOSES [RCCF12]. Sie setzen
jedoch auf noch mehr Feingranularität bei der Festlegung welche Daten etc. in welche Domäne fallen,
beziehungsweise in welches Security Profile, wie es dort heißt. Dabei ist MOSES kontextsensitiv und
kann automatisch das Security Profile dem Kontext anpassen.

QUIRE von Dietz et al. [DSP+11] verwendet Provenance um die Herkunft eines Aufrufs in der IPC zu
überwachen. Sollte eine App mit wenigen oder keinen kritischen Permissions versuchen auf eine App
zuzugreifen, die jene Permissions gegeben hat, schreitet QUIRE ein. Die App, auf welche zugegriffen
wird, kann diesen Aufruf dann nur mit jenen Permissions bearbeiten, die der aufrufenden App zur
Verfügung stehen.

24

3.4. Vertrauen in die App

Die Ausnutzung einer App durch eine andere, die weniger Permissions hat, nennt sich Privilege
Escalation Attack und wird in 3.4.2 noch weiter betrachtet.

Das nächste Unterkapitel beschäftigt sich nun mit Systemen, die zur Bestimmung des Vertrauens in
eine App dienen.

3.4. Vertrauen in die App

Um das Vertrauen eine App zu bestimmen gibt es zwei Möglichkeiten. Entweder man vertraut der
App, weil dieser App andere Nutzer vertrauen (Unterkapitel 3.4.1) oder man vertraut der App, da
man diese analysiert (Unterkapitel 3.4.2 und 3.4.3). Außerdem werden in diesem Unterkapitel bereits
bestehende Vertrauensmetriken aufgeführt (Unterkapitel 3.4.4).

3.4.1. Reputationssysteme für Android Apps

Reputationssysteme wurden in Unterkapitel 3.1 ausführlich besprochen. Da die meisten App-
Marktplätze über ein eigenes Rating-System verfügen, spielen Reputationssysteme für Android
Apps eine eher geringe Rolle. Ein erwähnenswerter Ansatz wäre AppAware.

Girardello und Michahelles entwickelten AppAware, ein System für ein implizites Rating von Android
Apps. Dieser implizite Wert für die Apps berechnete sich daraus, wie viele Benutzer eine App
installierten und diese dann updateten oder wieder deinstallierten. Gerade bei Apps mit noch wenigen
Downloads erhielten sie dadurch mehr Feedback als durch das Rating-System des Google Play
Store [GM10b].

3.4.2. Analysesysteme

Ein möglicher Ansatz um festzustellen, ob man in eine App Vertrauen haben kann oder nicht, sind
Analysesysteme, in denen das Verhalten einer App betrachtet wird. Dabei beobachten wir, ob die
App Aktionen durchführt, die als schädlich oder ungewollt gelten. Solche Aktionen führen zu einem
Vertrauensverlust.

App Analysen werden dabei einerseits auf dem Kontrollfluss einer App ausgeführt, andererseits lässt
sich auch der Informationsfluss analysieren.

Ein bekanntes Problem in Android stellen Privilege Escalation Attacks dar, welche von Davi et al.
erstmals beschrieben wurden. In diesen wird eine Schwäche von Android ausgenutzt, in der eine App
mit weniger Permissions Zugriff auf die Komponenten einer privilegierten App hat - also eine App,
die über mehr Permissions verfügt. Die zugreifende App kann auf diese Weise Permissions benutzen,
die ihr nicht gewährt wurden. Dadurch kann Schaden entstehen, der sich rein durch die Analyse der
Permissions wie in Unterkapitel 3.4.3 beschrieben, nicht erahnen lässt. Außerdem kann eine App auf
möglicherweise sensitive Daten einer anderen App zugreifen [DDSW11].

25

3. Related Work

Zhongyang et al. entwickelten mit DroidAlarm ein statisches Analysewerkzeug für den Kontrollfluss
zwischen Apps, um die Gefahr von Privilege Escalation Attacks auf Grund von Capability Leaks
herauszufinden [ZXMX13]

TaintDroid ist ein von Enck et al. entwickeltes Werkzeug zur effizienten, systemweiten Überwachung
des Informationsflusses. Private oder sensitive Daten werden dabei markiert und wenn diese Daten
von einer App weitergegeben werden, wird der Benutzer darüber informiert [EGC+14].

3.4.3. Risikoabschätzung durch Permissions

Neben der dynamischen Flussanalyse lässt sich noch eine statische Analyse bezüglich der Permissions
durchführen, welche eine App besitzt.

Felt et al. führten eine Studie durch, wie weit Smartphone-Nutzer auf Permissions achten und sich
mit diesen auskennen. Sie stellten dabei fest, dass über der Hälfte der Benutzer nicht einmal bewusst
war, dass Informationen über die Permissions während der Installation im Store angezeigt werden.
Lediglich 20% der Teilnehmer wussten, was ein Großteil der Permissions, die Privacy- oder Security-
Risiken mit sich ziehen können, überhaupt bedeuten. Knapp ein Viertel der Probanden gab an, sich
über unbekannte Permissions in Reviews der App informiert zu haben. Felt sieht deshalb Reviews, im
Idealfall von einem kleinen Expertenkreis geschrieben, als wichtigen ersten Schritt zur Verständlichkeit
der Bedeutung von Permissions für den durchschnittlichen Benutzer [FGW11].

Chia et al. stellten fest, dass eine positive Korrelation zwischen der Anzahl der Permissions, die
eine App verlangt, und ihrer Popularität sowie einem guten Rating besteht. Dies führen sie darauf
zurück, dass mehr Permissions für eine breitere und bessere Funktionalität sorgen und die Beliebtheit
einer App sich mehr auf die Funktionalität, denn die Sicherheit bezieht. Sie sehen daher ernste
Probleme, dass Benutzer dazu neigen Permissions einfach zu akzeptieren, da sie daran gewöhnt
sind, dass Apps viele Permissions verlangen. Somit würde das ganze Permission-System seinen Sinn
verlieren [CYA12].

Auf Grund der angezweifelten Effektivität des Permission-Systems wurden einige Versuche gestartet
die Permissions zu analysieren, die vonApps verlangt werden und eine Erkenntnis daraus zu gewinnen,
ob die Apps ein Risiko darstellen.

Enck et al. entwarfen Kirin, ein System, welches dem Benutzer während des Installationsprozesses
Empfehlungen gibt, ob er diesen wirklich fortsetzen will. Ummögliche schadhaften Apps identifizieren
zu können, wurde ein neunteiliger Regelsatz1 aufgestellt, welche Kombinationen von Permissions
eine App nicht besitzen darf, da diese Permissions als potenzielle Angriffspunkte für schadhaftes
Vorgehen dienen [EOM09].

Sarma et al. schlugen eine Risikoerkennung für Apps durch Permissions vor, die über einen einfachen
Regelsatz hinaus geht. Sie betrachteten dabei nicht nur die Permissions der zu überprüfenden App,
sondern auch jene Permissions anderer Apps in dieser Kategorie. Dadurch werden seltene Permissions
in den Kategorien identifiziert, welche als Risikosignal dienen [SLG+12].

1Zwei dieser Regeln sind nicht mehr aktuell, da es die enthaltenen Permissions nicht mehr gibt.

26

3.5. Vertrauen in den Entwickler

Peng et al. führten eine Risk-Score für Apps ein, die ebenfalls auf deren Permissions und jenen
Permissions von anderen Apps in der Kategorie beruht. Zur Berechnung der Risk-Score werden
Probabilistische Generative Modelle verwendet. Monotonie ist bei der Berechnung für Peng et al.
dabei wichtig, sodass die Risk-Score immer durch das Entfernen einer Permissions gesenkt wird.
Zusätzlich lässt sich mit Hilfe der Risk-Score ein Ranking unter den Apps berechnen, sodass das
Risiko der App im Vergleich zu anderen Apps gesehen werden kann [PGS+12].

Felt et al. analysierten die Android API und stellten ein Mapping zwischen Permissions und API
Aufrufen imQuellcode her.Mit diesemHilfe diesesMappings entwickelten sie Stowaway, einWerkzeug
umApps zu finden, welchemehr Permissions verlangen, als sie tatsächlich benötigen. In ihrem Testsatz
verwendeten etwa ein Drittel der Apps mehr Permissions als sie brauchten, was Felt et al. darauf
zurückführen, dass die Android API nicht ausreichend dokumentiert ist [FCH+11].

3.4.4. Vertrauensmetriken für eine App

Um eine Vertrauensmetrik für Android Apps aufzustellen wurden bereits mehrere Ansätze gemacht.
Die hier kurz angeschnittenen Ansätze werden in Kapitel 4 weiter vertieft.

Yan et al. entwickelten mit TruBeRepec ein Analysesystem, welches die Nutzung einer App durch
Benutzer misst und dadurch das Vertrauen des Benutzers in diese App zu messen. Um die Nutzungs-
daten in einen Vertrauenswert umzuwandeln, wurde eine Studie durchgeführt, wie das Vertrauen der
Benutzer in eine App und ihre Benutzung dieser zusammenhängen [YLNY13].

MAETROID von Dimi et al. welches den Entscheidungsprozess des Analytic Hierarchy Process nutzt,
um das Vertrauen von Apps zu bestimmen. Dazu analysieren sie zum einen statische Eigenschaften,
schlagen aber auch ein Feedback-System bezüglich Fehlverhalten der App vor. Mit Hilfe dieser Rück-
meldungen wird das statisch berechnete Ergebnis gegebenenfalls angepasst [DMM+12] [DMM+13].

Kuehnhausen und Frost berechnen das Vertrauen in eine App aus den Ratings, Reviews und Permissi-
ons, welche eine App erhalten hat, beziehungsweise besitzt. Dabei schlagen sie Zuversicht-Metriken
für die drei Bereiche vor, um daraus den Vertrauenswert berechnen zu können [KF13].

Wenn einer App vertraut wird, dann muss sichergegangen werden, dass es sich auch wirklich um diese
App handelt, wenn man sie herunterläd. Zhou et al. weisen darauf hin, dass viele populäre Appen mit
ähnlichem oder gleichen Namen in abgeänderter Form auf Third Party Stores hochgeladen werden.
Diese Apps stammen von anderen Entwicklern und verlangen oft mehr Permissions als die original
Apps. Um solche umpaketierten Apps zu entdecken, entwickelten sie DroidMoss, welches eine Fuzzy
Hashing Technik verwendet, um Unterschiede vom Umpaketieren der Apps zu finden [ZZJN12].

3.5. Vertrauen in den Entwickler

Einer App kann auch vertraut werden, wenn man Vertrauen in ihren Anbieter oder Entwickler hat.
In diesem Falle gilt es jedoch sicherzustellen, dass die App auch garantiert von diesem Entwickler
stammt.

27

3. Related Work

Barrera et al. haben das Signierungsverfahren für Apps unter Android analysiert und ein eigenes,
sichereres alternatives Verfahren vorgestellt [BMCO14] [BCMO12].

Im nächsten Kapitel werden die in Unterkapitel 3.4, speziell in Unterkapitel 3.4.4 genauer betrachtet,
um die Anforderungen und Möglichkeiten für eine Vertrauens-Metrik und ein Vertrauens-System für
Android Apps zu ergründen.

28

4. Anforderungen und Umsetzungen

In Kapitel 3 wurde einen Überblick geliefert, welche Systeme und Theorien bereits bezüglich Repu-
tation und Vertrauen bestehen. Außerdem wurden verwandte Ansätze sowie nützliche Werkzeuge
vorgestellt. Ziel dieses Kapitel ist es die vielversprechendsten Ansätze zu analysieren, welche sich mit
dem Vertrauen in eine App beschäftigen und die jeweiligen Metriken kritisch zu bewerten. Daraus
werden die Anforderungen für eine Vertrauensmetrik gewonnen und Überlegungen angestellt, welche
Werte in eine eigene Metrik einfließen können. Die Umsetzung der Entscheidungen für die Metrik
erfolgt nicht in diesem sondern in Kapitel 5.

Zunächst werden in Unterkapitel 4.1 die Systeme und Metriken grundlegend betrachtet. WelchenWert
liefern die Metriken dem Benutzer zurück, welche Eigenschaften einer App werden dafür betrachtet
und welche Aussage kann dadurch über das Vertrauen in eine App getroffen werden?

In Unterkapitel 4.2 werden die jeweiligen Faktoren betrachtet, die in die Metrik einfließen können
und welche Bereiche sie beeinflussen. Ausführlich wird dann in den Unterkapiteln 4.3 bis 4.5 un-
tersucht, wie die Faktoren Reputation, Nutzung und verlangte Permissions einer App in die Metrik
einfließen. Den Ansatz der Kontroll- und Datenflussanalyse, welcher in keiner der bestehenden
Vertrauensmetriken Verwendung findet, wird in Unterkapitel 4.6 untersucht.

Abschließend wird in Unterkapitel 4.7 überlegt, wie andere Elemente wie der Entwickler oder der
App-Marktplatz, aus welchem die App bezogen wird, das Vertrauen in die App beeinflussen können.

4.1. Grundaussage einer Vertrauensmetrik

Die erste Überlegung bezüglich einer Metrik sollte sein, welche Aussage mit ihr getroffen werden soll.
Eine Metrik für das Vertrauen in eine App sollte dem Betrachter eine Aussage geben können, ob er
diese App installieren will oder es lieber lassen sollte. Die Entscheidung des Installierens oder nicht
Installieren wird aber auch oft dadurch beeinflusst, dass sich viele andere Apps finden lassen, welche
dieselbe Aufgabe erfüllen. Es gilt also zu ergründen, wie der Wert einer Metrik aussehen sollte, damit
er auf beide Probleme angewendet werden kann.

Als nächstes stellt sich natürlich die Frage, was das Vertrauen in eine App bedeutet und wie eineMetrik
dieses berechnen könnte. In Kapitel 2 wurde in der Definition 2.3.2 auf Seite 18 für den Ansatz diese
Arbeit bestimmt, dass einer App vertraut wird, wenn sie die versprochenen Funktionalitäten bietet,
private Daten nicht gegen den Wunsch des Besitzers weitergibt und möglichst niedriges Potenzial
besitzt, um Schaden anzurichten. Um dafür eine Metrik aufstellen zu können, müssen messbare Werte
- im Folgenden Faktoren genannt - gefunden werden, durch welche sich Werte für das Vertrauen in
die drei Bereiche aus der Definition errechnen lassen.

29

4. Anforderungen und Umsetzungen

In diesem Unterkapitel wird die Fragestellung der am besten geeignetenWerteskala für die Metrik und
welche Aussage aus dem Ergebnis der Metrik getroffen werden kann behandelt. Außerdem werden
Überlegungen angestellt, wie die drei Bereiche aus der Definition zueinander in Relation gestellt
werden und der individuellenWichtigkeit eines Benutzers angepasst werden können. Mit den Faktoren
beschäftigt sich, wie in der Einleitung des Kapitels angekündigt, erst das nächste Unterkapitel 4.2.

4.1.1. Die Werteskala

Um eine ideale Werteskala für unsere Metrik zu finden, werden nun einige Überlegungen angestellt.
Es wird aber auch auf die bereits in Unterkapitel 3.4.4 vorgestellten Metriken eingegangen werden
und diese auf ihre Tauglichkeit überprüft.

Der einfachste Ansatz für das Ergebnis der Metrik wäre eine binäre Entscheidung, die Vertrauen
oder kein Vertrauen zurückliefert. Dies ist jedoch ein sehr simpler Ansatz und es fällt schwer eine
Grenze zu ziehen. Wo setze ich diesen absoluten Bruch an? Sollen wir eher einer App misstrauen oder
riskieren zu naiv zu sein? Und wie verhalten sich zwei Apps zueinander, denen beiden vertraut wird?
Für welche sollte ich mich entscheiden? Eine binäre Entscheidung liefert für unsere Anforderungen
keine zufriedenstellende Werteskala.

Dini et al. [DMM+13] gehen lediglich einen Schritt weiter. Sie unterteilen das Maß des Vertrauens in
eine trinäre Entscheidung. Einer App wird entweder als vertrauenswürdig (d.h.: „Die App funktioniert
korrekt und sollte keine bösartigen Funktionalitäten verbergen.“), nicht vertrauenswürdig (d.h.: „Die
App könnte die Sicherheit des Smartphones gefährden.“) oder trügerisch (d.h.: „Weder funktioniert die
App korrekt, noch ist sie sicher“). Hier ergibt sich wie bei einer binären Entscheidung das Problem,
dass die einzelnen Kategorien zu weit gefasst sind.

Der Vorteil einer groben Kategorisierung ist jedoch, dass dieMetrik eine klare und unmissverständliche
Aussage trifft. Dies dient also als eine einfache Orientierung für den Betrachter des Ergebnisses.

Die am feinsten gegliederte Skala der aufgeführten Metriken ist jene im Prozentbereich, wie sie
Yan et al. [YLNY13] beziehungsweise Kuehnhausen und Frost [KF13] verwenden. Sie lässt uns einen
großen Spielraum bei der Bewertung des Vertrauensmaßes. Jedoch muss hier darauf geachtet, dass
beim Benutzer keine Verwirrung entsteht. Was bedeutet beispielsweise ein Vertrauen von 60%? Ist
dies ein guter Vertrauenswert oder ein schlechter?

Die in dieser Arbeit verwendete Lösung ist ein Hybrid aus einer Einteilung in Kategorien und einem
parallel berechneten prozentualen Vertrauenswert. Die Kategorien geben einen Anhaltspunkt wie
eine App einzuordnen ist und welche Gründe für einen gesenkten Vertrauenswert gesorgt haben. Der
prozentualeWert sorgt für eine feinere Granularität, um innerhalb der Kategorien eine Unterscheidung
zu ermöglichen.

Diese Lösung verbindet die Vorteile beider Ansätze: Der Benutzer kann einschätzen, was der Vertrau-
enswert bedeutet, den er bekommt. Aber Apps, die nur aus einem einzelnen oder wenigen Gründen
in eine schlechtere Kategorien gerutscht sind, lassen sich leichter als solche erkennen. Außerdem
wird dem Benutzer eine Möglichkeit geboten Apps zu vergleichen, welcher eher zu vertrauen ist,
selbst wenn beide in einer guten Kategorie eingeordnet sind.

30

4.1. Grundaussage einer Vertrauensmetrik

Im Google Play Store müssen Apps in vier Bewertungsstufen eingeteilt werden1. Diese beschäftigen
sich jedoch mit dem Inhalt einer App wie anzügliche Inhalte und Glücksspiel. Einzig das Abrufen und
Veröffentlichen des Standortes spielt in dieser Bewertung und auch in unserer eine Rolle. Ansonsten
sind diese Bewertungen für unseren Ansatz nicht zu gebrauchen.

Deswegen werden zum Zweck der Einordnung fünf eigens aufgestellte Kategorien verwendt (siehe
Abbildung 4.1), welche die Vertrauenswürdigkeit einer App repräsentieren sollen. Diese Kategorien
sind:

• K1: Volles Vertrauen: Aus keinem der einzelnen Bereiche gibt es Grund Bedenken bezüglich
des Vertrauens in die App zu haben. Um in diese Kategorie fallen zu können, muss die App
durchweg sehr gut bewertet sein und darf keinerlei Permissions besitzen, welche die Security
oder Privacy gefährden können.

• K2: Hohes Vertrauen: Die App hat keine perfekte Bewertung oder besitzt kritische Permissi-
ons bezüglich Privacy und Security. Die Nutzung und die Bewertung lassen trotzdem darauf
schließen, dass die Funktionalität der App gut ist und ein erhöhtes Gefahrenpotenzial oder eine
Weitergabe privater Daten wurde nicht festgestellt.

• K3: Geringe Bedenken: Funktionalität, Gefahrenpotenzial oder Umgang mit privaten Daten
geben Anlass zu geringen Bedenken. Das Rating und die Nutzung kann Hinweise auf kleine
Mängel an der Funktionalität geben. Die Permissions der App können verdächtig erscheinen.
Daten wie Standort und Telefon-ID werden an Werbeserver weitergegeben.

• K4: Größere Bedenken: Diese Kategorie besagt, dass entweder die Funktionalität wahrscheinlich
deutliche Mängel aufweist, ein erhöhtes Schadpotential besteht oder private Daten, die über
Werbezwecke hinaus gehen wahrscheinlich an Dritte weitergegeben werden.

• K5: Geringes Vertrauen: In dieser Kategorie landen Apps mit wahrscheinlich stark eingeschränk-
ter Funktionalität, mit gemeldeten Fehlverhalten, was das Schadpotenzial angeht und der
wahrscheinlichen Weitergabe privater Daten wie persönlichen SMS oder den gespeicherten
Kontakten im Smartphone.

Es ist dabei eher unwahrscheinlich, dass eine App in Kategorie K1 landet, da viele Apps kritische
Permissions benötigen, um ihre Funktionalität umsetzen zu können. Ein volles Vertrauen kann einer
App jedoch nicht geschenkt werden, wenn sie auch nur das geringste Potenzial besitzt, Schaden
anzurichten. Diese Kategorie dient primär dazu, dass eine vollständige Definition des Wertebereichs
besteht.

Realistisch gesehen ist Kategorie K2, welche ein hohes Vertrauen bedeutet, der beste Wert den eine
App erreichen kann. Auf Grund verschiedener Faktoren kann eine App in die Kategorien K3 bis K5
eingeordnet werden. Kategorie K5 kommt dabei der Empfehlung gleich, die App in keinem Fall zu
installieren. Um eine solche Empfehlung geben zu können, sollten begründete Zweifel vorliegen der
App nicht zu vertrauen. Deswegen wird dieser Kategorie nur erreicht, wenn eine aktive Rückmeldung
zum Fehlverhalten der App vorhanden ist und nicht ausschließlich auf Grund von Vermutungen.
Dazu mehr in Unterkapitel 4.2.

1http://goo.gl/Bd7tm0

31

4. Anforderungen und Umsetzungen

Volles Vertrauen

Wahrsch. deutliche
Mängel in der
Funktionalität

Wahrsch.
eingeschränkte
Funktionalität

Besitzt kritische
Security

Permissions

Erhöhtes
Schadpotenzial

Hohe Anzahl
gemeldeten

Fehlverhaltens

Besitzt kritische
Privacy

Permissiosn

Weitergabe von
privaten Daten I

Weitergabe von
privaten Daten II

Könnte kleine
Mängel in der Funk

-tionalität haben

Wahrsch. kleine
Mängel in der
Funktionalität

Geringes
Schadpotenzial

Adware
mit Weitergabe
privater Daten

K1

K2

K3

K4

K5

Abbildung 4.1.: Die Kategorien, in welche eine App fallen kann.

Eine App fällt dabei in die schlechteste Kategorie, in die sie in einem der drei Bereiche eingeordnet
wurde. Besitzt eine App beispielsweise gute Ratings und wird viel genutzt, fällt sie also in Kategorie K2
bezüglich der Funktionalität. Gibt die App den Standort zu Werbezwecken an Werbeserver weiter
landet sie in KategorieK3 bezüglich demUmgangmit privatenDaten.Wurde häufiger Guthabenverlust
gemeldet, wodurch der Verdacht sich verstärkt, dass die App heimlich im Hintergrund SMS an
Premiumnummern schickt, fällt sie im Gefahrenpotenzial in Kategorie K5. Damit fällt die App im
gesamten Vertrauen in Kategorie K5.

Aus diesem Beispiel wird ersichtlich, dass kein klares Mapping zwischen Vertrauenswert und der Ver-
trauenskategorie, in welche die App fällt, möglich ist. Durch ihr relativ gutes Abschneiden in Hinblick
auf Funktionalität und Umgang mit privaten Daten kann der Vertrauenswert der App immer noch
vergleichsweise hoch sein. Aus diesem Grund spielt in solchen Sonderfällen die Vertrauenskategorie
eine sehr wichtige Rolle.

Da dieseMetrik nicht den Anspruch stellt als Sicherheitssoftware zu agieren, sondern nur den Verdacht
liefert, dass eine App Schaden anrichten kann, bleibt es darüber hinaus dem Benutzer überlassen der
App trotzdem zu vertrauen. Hierbei ist jedoch die Kommunikation wichtig, aus welchem Grund die
App in die schlechte Kategorie fällt und warum ihr Vertrauenswert trotzdem so hoch ist.

32

4.1. Grundaussage einer Vertrauensmetrik

Um den Einfluss der einzelnen Bereiche möglichst stark zu halten wird für den Vertrauenswert
der App die Summe der einzelnen Vertrauenswerte in die Bereiche verwendet. Für Funktionalität,
Gefahrenpotenzial und Umgang mit privaten Daten wird also ebenfalls ein Vertrauenswert auf der
Skala von 0 bis 100% berechnet.

Nachdem mit dieser Hybridlösung der Wertebereich der Skala festgelegt wurde, wird im nächs-
ten Unterkapitel über die Gewichtung diskutiert, mit welcher die drei Bereiche Einfluss auf den
Vertrauenswert nehmen.

4.1.2. Individualität des Vertrauens

Wie bei der Aufstellung der Definition für Vertrauen in eine App schon festgestellt wurde, ist Vertrauen
eine individuelle Ansicht. Die drei Bereiche Funktionalität, Gefahrenpotenzial und Umgang mit
privaten Daten können dabei für jeden Benutzer von unterschiedlicher Wichtigkeit sein. Manche
Benutzer legen mehr Wert auf hohe Funktionalität als auf ein niedriges Gefahrenpotenzial, andere
sind darauf bedacht, dass ihre privaten Daten nicht in die Hände Dritter gelangen. Deswegen sollte
dem Nutzer die Möglichkeit geboten werden die Bereiche zu gewichten.

Für die Metrik in dieser Arbeit stehen dem Benutzer vier Stufen der Wichtigkeit zur Verfügung:

• W1: Sehr wichtig: Dieser Bereich ist dem Benutzer sehr wichtig. Er wird deutlich stärker
gewichtet.

• W2: Wichtig: Der Bereich spielt für den Benutzer bei einer App eine Rolle. Dies ist die Standar-
deinstellung und sorgt für eine gleichmäßige Gewichtung, wenn keine Anpassungen an der
Gewichtung durch den Benutzer durchgeführt wurden.

• W3: Weniger Wichtig: Der Bereich ist dem Benutzer weniger wichtig als die anderen. Er wird
bei der Berechnung des Vertrauenswertes schwächer gewichtet.

• W4: Unwichtig: Fließt nicht in die Berechnungmit ein. Sorgt damit auch nicht für die Einordnung
in die Kategorien.

Die Gewichtungen W1 bis W3 bestimmen dabei primär den Einfluss, den ein Bereich auf den Vertrau-
enswert nimmt. Die Gewichtungen stehen für den Multiplikationsfaktor, mit welchem die Bereiche
bei der Aufsummierung verrechnet werden.

Lediglich wenn ein Bereich mit W4 gewichtet ist sorgt er nicht mehr dafür, dass eine App auf Grund
der Kategorie in diesem Bereich in diese Gesamtkategorie abrutscht. Selbst wenn aus dem obigen
Beispiel das Gefahrenpotenzial mitW3 gewichtet wäre und beide anderen Bereiche mitW1, würde
die App trotzdem in Kategorie K5 fallen. Ein anderes Vorgehen würde die Idee hinter den Kategorien
zunichtemachen.

Nachdem die Werteskala für Vertrauenswert und Vertrauenskategorien aufgestellt wurde und die
Verrechnung und Gewichtung der einzelnen Bereiche dafür bestimmt wurde, werden nun die Faktoren
betrachtet, die Einfluss auf das Vertrauen in eine App beziehungsweise einen der drei Bereiche der
App haben.

33

4. Anforderungen und Umsetzungen

Metrik von Ratings Permissions Nutzung Problemmeldungen

Yan et al. [YLNY13] ja nein ja nein
Kuehnhausen et al. ja ja nein nein

Dini et al. [DMM+13] ja ja nein ja

Tabelle 4.1.: Übersicht welche Vertrauens-Faktoren in den betrachteten Metriken ein Rolle spielen.

4.2. Die Faktoren und Bereiche

In den betrachteten Metriken spielen unterschiedliche Faktoren eine Rolle bezüglich des Vertrauens
in eine App. Aus ihnen lassen sich Werte bezüglich des Vertrauens in eine App berechnen. Eine kurze
Übersicht, welche Faktoren von wessen Metrik verwendet wurden, liefert Tabelle 4.1.

Diese Faktoren werden im Folgenden ausführlich erklärt und Überlegungen angestellt, welche unserer
drei Bereiche (Funktionalität; Gefahrenpotenzial; Zugriff auf private Daten) durch sie beeinflusst
werden.

Ratings spielen bei Yan et al. [YLNY13] wie auch bei Kuehnhausen und Frost [KF13] eine Rolle. Über
diese subjektive Bewertung der App durch Benutzer lassen sich primär Schlüsse über die Funktionalität
der App ziehen. Eine schadhafte App tendiert dazu ein schlechteres Rating zu haben, aber es fällt eher
schwer dies bewerten zu können. Über den Umgang der App mit privaten Daten lassen sich ebenfalls
eher keine Schlüsse ziehen, da die wenigstens Nutzer Einsicht in diese Vorgänge haben und so ein
Einfluss auf ihre Bewertung für die App unwahrscheinlich erscheint. Eine ausführliche Überlegung
zu Ratings findet sich in Unterkapitel 4.3.1.

Permissions werden von Kuehnhausen und Frost [KF13] sowie Dini et al. [DMM+13] in der Metrik
verwendet. Man könnte die Permissions verwenden, um eine Aussage über die Funktionalität der App
zu machen (zum Beispiel wäre es für eine Foto-App hinderlich nicht die CAMERA Permission zu besit-
zen), doch dieser Ansatz ist sehr wage und wird nicht weiter verfolgt. Einen besseren Anhaltspunkt
liefern die Permissions für das Gefahrenpotenzial. Auch lassen sich Schlüsse für den Umgang mit
privaten Daten ziehen, da ein Missbrauch hier nur möglich ist, wenn die App dazu auch die nötigen
Permissions besitzt um darauf zugreifen zu können. Wie dies in der Metrik umgesetzt wird, wird in
Unterkapitel 4.5 erläutert.

Durch dieNutzung der App versuchen Yan et al. [YLNY13] auf die Funktionalität der App zu schließen.
Wird eine App viel genutzt, kann davon ausgegangen werden, dass sie die Funktionalität bietet, die
der Nutzer von ihr erwartet. Hier greift für Gefahrenpotenzial und Missbrauch privater Daten dieselbe
Argumentation wie bei der Reputation. Wenn Benutzer das eine oder andere feststellen hören sie
eventuell auf die App zu nutzen, [pew12]. Jedoch ist es unmöglich festzustellen, ob dies die Gründe
dafür sind. Wie die Nutzung in die Metrik einfließt, erörtert Unterkapitel 4.4.

Um die Unzufriedenheit von Benutzern mit einer App genauer ergründen zu können, reicht es nicht
aus nur die Reputation oder die Nutzung zu betrachten. Deswegen sollte man ihm die Möglichkeit
der Problemmeldung gewähren. Dini et al. [DMM+13] lassen in ihrem Ansatz die Benutzer zu

34

4.2. Die Faktoren und Bereiche

FUNKTIONALITÄT
GEFÄHRDUNGS-

POTENZIAL
ZUGRIFF AUF

PRIVATE DATEN

RATING Nutzung
PROBLEM-

MELDUNGEN
PERMISSIONS

VERTRAUEN

DATENFLUSS-
ANALYSE

Abbildung 4.2.: Faktoren, die das Vertrauen in eine App beinflussen und mit welchen messbaren
Werten sie zusammenhängen.

verschiedenen Fehlverhalten der App eine Rückmeldung machen. Je nachdem, welche Möglichkeiten
zur Problemmeldung dem Benutzer gegeben werden, können dieses alle drei Bereiche beeinflussen.
Gedanken dazu, welche Fragen beim Feedback gestellt werden und wie diese dann in der Metrik
umgesetzt werden, finden sich in Unterkapitel 4.3.3.

Ein Ansatz, der bei keiner der betrachteten Metriken eine Rolle spielt ist die Flussanalyse. Mit Hilfe
der Datenflussanalyse von TaintDroid [EGC+10] [EGC+14] lassen sich private Daten markieren (orig.
taint Data), sodass ein ungewollter Zugriff und Missbrauch dieser Daten bemerkt wird. Solche Zugriffe
verletzen eventuell den Wunsch des Benutzers, wie die App mit seinen privaten Daten umgeht. Mit
der Kontrollflussanalyse lassen sich die in Unterkapitel 3.4.2 erwähnten Privilege Escalation Attacks
entdecken, über welche Daten und Permissions von Apps genutzt werden können, die eigentlich
keinen Zugriff darauf haben sollten, was das Gefahrenpotenzial wie den Umgang mit privaten
Daten betrifft. Wie die Entdeckungen durch Flussanalyse in die Metrik einfließen können, wird in
Unterkapitel 4.6 beschrieben.

Insgesamt bieten sich also fünf messbare Faktoren an, die für unsere Metrik eine Rolle spielen. All diese
Faktoren beeinflussen, wie bereits beschrieben, einen oder mehrere unserer drei Bereiche. Abbildung
4.2 fasst diese Zuordnung noch einmal zusammen.

Nun werden die verschiedenen Faktoren ausführlich analysiert. Begonnen wird mit der Reputation
einer App, welche Ratings, Reviews und Problemmeldungen umfasst.

35

4. Anforderungen und Umsetzungen

Abbildung 4.3.: Anzeige von Ratings und Reviews im Google Play Store. Diese können als Quelle
für eine Vertrauensmetrik verwendet werden.

4.3. Reputation

Reputation ist ein wichtiger Faktor, um das Vertrauen in eine App berechnen zu können. Drei Faktoren
lassen sich für die Reputation in eine App zurate ziehen: Ratings, Reviews und Problemmeldungen.
Diese lassen sich in strukturierte und unstrukturierte Daten unterteilen, wobei Ratings und Problem-
meldungen in erstere und Reviews in letztere Kategorie fallen. Ratings werden in den meisten Fällen
auf einer Skala von einem bis fünf Sternen abgegeben, Problemmeldungen sind vorwiegend eine
binäre Entscheidung (eine Problemmeldung wurde abgegeben oder nicht). Reviews im Gegensatz
sind Fließtexte, denen kein direkter Wert entnommen werden kann. Eine tiefgehende Analyse des
Textes muss durchgeführt werden, um eine Erkenntnis daraus gewinnen zu können.

Ratings und Reviews lassen sich leicht aus den verschiedenen App-Marktplätzen beziehen, etwa dem
Google Play Store (Siehe Abbildung 4.3). Für Problemmeldungen besteht keine solche Quelle, vor allem,
wenn man selber auswählen will, welche Probleme betrachtet werden sollen. Hierfür ist ein eigenes
System beziehungsweise Konzept nötig. Für Ratings und Reviews könnte auch ein eigenes System
verwendet werden, doch gerade die Vielzahl an Bewertungen in den App-Marktplätzen stellen einen
Vorteil da, der mit einem eigenen System nur schwer zu erreichen wäre.

Dass Reputationssysteme einige Schwächen haben wurde in Unterkapitel 3.1 bereits angesprochen.
Angriffe, um die Bewertung einer App gezielt besser oder schlechter zu machen stellt ein Problem dar.
Es gibt Möglichkeiten ein eigenes System gegen solche Angriffe robuster zu machen und Ansätze,
Daten anderer Systeme zu interpretieren, wenn über deren Sicherheit gegen solche Angriffe keine
Aussage gemacht werden kann. Wie diese Probleme in den bereits bestehenden Systemen behandelt
wurden, wird im Folgenden beschrieben, wenn auf die einzelnen Werte eingegangen wird.

Zunächst werden nun Ratings betrachtet und wie sie Einfluss auf das Vertrauen in eine App nehmen
können.

4.3.1. Rating

Wie bereits erwähnt stellt ein App-Store eine gute Quelle für die Ratings einer App dar. Natürlich
lässt sich hier nur schwer feststellen, wie und ob das System gegen Angriffe gesichert ist. Um eine

36

4.3. Reputation

Bewertung abgeben zu können, muss man nur ein Google-Profil besitzen und die App auf einem
Gerät installiert haben. „Bad Mouthing“, das Senken der Wertung einer App durch zahlreiche Abgabe
fälschlich schlechter Bewertungen, und „Ballot-Stuffing“, die Erhöhung der Wertung einer App durch
bewusst zu gute Bewertungen, stellen dadurch durchaus mögliche Angriffsmethoden dar.

Was jedoch für eine Quelle wie den Play Store spricht, ist seine hohe Anzahl an Nutzern. Je mehr
Personen eine App bewerten, desto mehr „falsche Bewertungen“ werden benötigt, um eine Auswir-
kung zu haben. Diese Überlegung lässt sich mit dem Ansatz von Kuehnhausen und Frost [KF13]
kombinieren. Sie berechnen, welche Zuversicht man in das Rating haben kann und verwenden dazu
unter anderem die Anzahl der Ratings für eine App. Dafür verwenden sie die Studentsche t-Verteilung
und kommen zu guten Ergebnissen.

Als zweites Maß für die Zuversicht in das Rating wird die Verteilung der Ratings von Kuehnhausen
und Frost [KF13] verwendet. Dabei wird betrachtet, ob die Ratings sich gleichmäßig verteilen (nicht
zu hohe Zuversicht in den Wert des Rating), gegen einen Wert (hohe Zuversicht) korrekt oder gegen
zwei Werte (kaum Zuversicht) tendieren.

Die Werte für die Zuversicht in das Rating werden anschließend mit dem durchschnittlichen Rating
der App verrechnet und daraus ergibt das Vertrauen in eine App bezüglich der Ratings. Diese Metrik
kommt dem Problem von falschen Bewertungen teilweise bei und gibt durch die Analyse der Verteilung
der Ratings einen guten Anhaltspunkt, ob der Wert der Ratings aussagekräftig ist. Aus diesem Grund
wird die Metrik für Ratings von Kuehnhausen und Frost [KF13] für die Metrik in dieser Arbeit
übernommen.

Angemerkt werden sollte, dass eine Metrik bezüglich der Ratings immer an Aussagekraft verliert,
wenn nicht genug Ratings für eine App vorliegen. Laut der Analyse des Google Play Stores von
AppBrain.com gab es Ende November 2014 über eine halbe Millionen Apps mit weniger als drei
Ratings, was vierzig Prozent der Apps ausmacht. Von diesen lässt sich eher kein verlässlicher Wert für
das Vertrauen gewinnen. Kuehnhausen und Frost [KF13] wählen in ihrer Metrik die Mindestanzahl
von sieben Ratings für eine App. Ansonsten ist das Vertrauen in eine App auf Grund der Ratings in
ihrer Metrik 0.

Einer App nicht zu vertrauen, da eine Aussage über ihre Vertrauenswürdigkeit nicht möglich ist, ist
besser, als ihr unbegründet zu vertrauen. Ist das Vertrauen in die Funktionalität einer App durch
diesen Grund 0, sollte dem Benutzer jedoch auf jeden Fall kommuniziert werden, warum dies der Fall
ist.

Im Folgenden werden einige Gedanken zu Reviews angestellt und wie sie für das Vertrauen einer
App eine Rolle spielen könnten.

4.3.2. Reviews

Kuehnhausen und Frost [KF13] verwenden Reviews als Faktor für ihren Vertrauenswert. Sie analysie-
ren die Reviews auf Schreibfehler und die Anzahl der lobenden und kritisierendenWorte. Mit ersterem
stellen sie fest, ob das Review selber vertrauenswürdig ist, wobei eine bessere Rechtschreibung ein
höheres Vertrauen bewirkt. Mit der Anzahl der lobenden oder kritisierendenWorte wird die Stimmung
des Reviews erfasst und aus dieser das Vertrauen in die App aufgrund des Reviews berechnet.

37

4. Anforderungen und Umsetzungen

Diese Berechnung ließe sich noch erweitern. Im Google Play Store etwa lassen sich Reviews von
anderen Benutzern bewerten. Einem sehr positiv bewertetem Review könnte trotz Schreibfehlern
Vertrauen geschenkt werden. Eine stärkere Gewichtung eines solchen Reviews wäre auch eine
Überlegung.

Ebenfalls könnten die Reviews nach bestimmten Schlagwortenwie zumBeispiel „Virus“ oder ähnlichen
Warnungen gesucht werden und bei einer entsprechend hohen Anzahl der Vertrauenswert bezüglich
Gefahrenpotenzial gesenkt werden.

Die Reviews leiden jedoch unter demselben Problem wie die Permissions, nicht jede App besitzt
Reviews. Dabei wiegt die Zahl der Apps ohne Reviews noch schwerer. In der Testmenge von Kuehn-
hausen und Frost [KF13] besaßen über 58% der Apps keine Reviews.

Auf Grund des großen Mangels an Reviews und der Tatsache, dass unstrukturierte Daten schwerer zu
erfassen sind und keine für diese Arbeit zufriedenstellenden Werte lieferte, wurde entschieden, dass
Reviews nicht in die Metrik mit einfließen. Aus diesem Grund finden sie auch nur an dieser Stelle der
Vollständigkeit halber Erwähnung.

4.3.3. Problemmeldungen

Reviews stellen für den menschlichen Benutzer gesehen eine gute Informationsquelle dar. Die textuelle
Beschreibung kann hinweise auf Schwächen einer Apps hinweisen und auch aus anderen Gründen
vor ihr warnen. Die automatische Analyse solcher Texte liegt jedoch jenseits des Umfang dieser
Arbeit.

Eine Möglichkeit gezielte Informationen über eine App beziehen zu können bieten dabei Problemmel-
dungen. MAETROID, das von Dini et al. [DMM+13] entworfene System, verwendet Problemmeldun-
gen, um den statisch berechneten Vertrauenswert in eine App dynamisch anpassen zu können.

Zu diesem Zweck kann ein Benutzer zu fünf möglichen, festgestellten Fehlverhalten der App Rückmel-
dung geben, ob diese gar nicht, selten oder oft aufgetreten sind. Die möglichen Fehlverhalten wurden
dabei danach ausgewählt, dass sie gute Indikatoren für Malware Apps darstellen. Diese möglichen
Fehlverhalten sind dabei Abstürze, erhöhter Batterieverbrauch, Usability, Guthabensverlust (durch SMS)
und Bugs.

Ziel dieser Metrik sollte es jedoch sein ein Fehlverhalten einem der drei Bereiche zuweisen zu
können und nicht eine allgemeine Aussage zu tätigen. Abstürze, Usability und Bugs lassen sich dabei
der Funktionalität der App zuordnen. Erhöhter Batterieverbrauch und Guthabensverlust (durch SMS)
betreffen das Gefahrenpotenzial der App. Für dieses lassen sich noch die Möglichkeiten Versteckte
Installation oder Deinstallation von Apps sowie Gebühren durch Netzwerkaufkommen hinzufügen.

Die Datenflussanalyse durch TaintDroid lässt sich verwenden, um Problemmeldungen bezüglich
des Umgangs mit privaten Daten abzugeben. Da der Benutzer ohne ein Werkzeug keine Einsicht
besitzt was mit seinen Daten geschieht, benötigt er ein Hilfsmittel um bessere Rückmeldung geben
zu können. Die Möglichkeit von TaintDroid werden nicht an dieser Stelle, sondern in Unterkapitel 4.6
behandelt.

38

4.3. Reputation

Abbildung 4.4.:Möglichkeiten in der TrustGo App entdeckte Probleme einer App zu melden.

Durch diese direkte Bewertung bezüglich des Fehlverhaltens einer App kann guter Rückschluss auf
die App in den drei Bereichen gezogen werden und das Vertrauen der App kann in Kategorie K4
fallen, denn hier verlassen wir das Feld der Spekulationen wie bei den Ratings und Reviews. Trotzdem
bleibt es natürlich in den meisten Fällen die subjektive Wahrnehmung von Benutzern.

Für die Metrik dieser Arbeit wurden nun spezielle Rückmeldungen festgelegt. Da es kein System
gibt, das genau diese abfragt, sollte ein eigenes geschaffen werden. Dazu gibt es zwei verschiedene
Möglichkeiten.

Der eine Ansatz ist es dem Benutzer eine Meldemöglichkeit zu gewähren, die dieser wahrnehmen
kann, wenn er will. Ein Beispiel dafür wäre die Meldefunktion der App TrustGo2 wie in Abbildung
4.4 zu sehen. Bei dieser kann mit einer Meldung ein Fehlverhalten der App gemeldet werden.

Im Gegensatz zur ausschließlichen Meldung von Fehlverhalten beinhaltet MAETROID die Mög-
lichkeit auch abzusenden, dass alles mit dem System in Ordnung ist. Dadurch besitzt die von Di-
ni et al. [DMM+13] vorgeschlagene Rückmeldung auch die Möglichkeit des positiven Feedbacks.
Dazu muss eine App jedoch bei jeder Meldung auf alle vorhandenen Rückmeldepunkte bewertet
werden und ein Benutzer kann eine App nur ein einziges Mal bewerten.

Für die Metrik dieser Arbeit wird der Ansatz von Dini et al. [DMM+13] gewählt. Will ein Benutzer
eine App bewerten, wird er zumindest zu allen Möglichkeiten aus einem der drei Bereiche befragt, zu
dem er ein Problem melden will. Pro Benutzer gibt es auch nur eine Rückmeldung, sollte der Benutzer
eine neue Problemmeldung senden, werden die Werte der alten Problemmeldung denen der neuen
angepasst.

2http://www.trustgo.com/

39

4. Anforderungen und Umsetzungen

Abbildung 4.5.: Ein Beispiel für eine Windows Problemmeldung, bei welcher nach der Erlaubnis des
Benutzers zusätzliche Informationen mitgesendet werden.

Überlegenswert wäre auch eine Problemmeldung, welche vorgefallene Probleme automatisch sammelt
und nachdem der Benutzer es legitimierte an einen Server schickt. Vergleichbar mit der Windows
Problemmeldung (siehe Abbildung 4.5).

Dazu können die Ergebnisse von TaintDroid für private Daten oder logcat-Informationen3 bezüglich
Abstürzen einer App mitgeschickt werden. Dadurch lassen sich präzisere Aussagen treffen, als nur
durch die Vermutungen des Benutzers.

Das Problem ist, dass sich jedoch nicht alle vorgeschlagenen Probleme systematisch feststellen lassen.
Es ist für die möglichen messbaren Werte auf jeden Fall ein guter Ansatz, der weiter verfolgt werden
sollte. In dieser Arbeit wird er jedoch keine Verwendung finden.

Angriffe auf das System mit unberechtigten Problemmeldungen sollten natürlich verhindert werden.
Dazu gibt es zwei wichtige Verteidigungsmechanismen. Zum einen sollte immer klar sein, von wem
die Problemmeldung kommt. Dazu empfiehlt sich zum Beispiel die Verknüpfung mit der Problemmel-
dungen mit dem Google-Account (ohne welchen die Person sowieso keine Android Apps verwenden
könnte). Darüber hinaus schlagen Dini et al. [DMM+13] einen Zeitfaktor als Bremse vor. Werden
massenhaft Problemmeldungen in kurzer Zeit abgegeben, ist davon auszugehen, dass es sich dabei
um kein gewöhnliches Benutzerverhalten, sondern um einen Angriff handelt. Die Effektivität dieses
Ansatzes bewiesen sie in mehreren Experimenten.

Eine weitere Möglichkeit, um vor falschen Meldungen zu schützen, stellt die Überprüfung dar, ob
eine Problemmeldung überhaupt Sinn macht. Guthabensverlust durch von der App versendete SMS
ist nicht möglich, wenn diese App gar nicht die Permissions besitzt SMS versenden zu können. Mit
diesen Vorkehrungen sind die Problemmeldungen gegen die meisten Angriffe robust.

3siehe: http://developer.android.com/tools/help/logcat.html

40

4.4. Nutzerverhalten der App

Wie aus dem Nutzerverhalten einer App Schlüsse auf deren Funktionalität gezogen werden können,
wird im nächsten Unterkapitel betrachtet.

4.4. Nutzerverhalten der App

Einen Anhaltspunkt für die Qualität und Funktionalität einer App gibt das Nutzerverhalten. Wenn eine
App gut ist und die Funktionalitäten bietet, die sie verspricht, wird ein Benutzer sie auch verwenden,
so der Grundgedanke. Eine App benutzen, heißt Vertrauen in sie haben. Daraus lässt sich ein Wert
gewinnen.

Eine sehr grobe Lösung bieten Girardello und Michahelles [GM10b] [GM10a]. Sie entwickelten eine
App namens AppAware, welche von Benutzern auf ihrem Smartphone installieren wird. Diese App
überwacht, wennApps installiert, deinstalliert und upgedatet werden. Entsprechend der letzten Aktion
eines Benutzers bei einer App bekommt diese einen Wert zugewiesen (deinstalliert 0,0; installiert 0,9;
Update 1,0). Aus den Rückmeldungen aller Benutzer für eine App wird der Mittelwert berechnet.

Wenn auch simpel, stellt die Überlegung von Girardello und Michahelles einen guten Ansatz dar. Für
die Metrik würde es sich also anbieten zu messen, wie oft eine App wieder deinstalliert oder geupdatet
wurde und daraus auf die QUalität und Funktionalität der App zu schließen. Jedoch weisen Girardello
und Michahelles selber auf die Schwäche hin, dass ihre Metrik darauf baut, dass schlechte Apps
auch wirklich deinstalliert werden. Da die meisten Updates von Apps über den Play Store komplett
automatisch oder ohne allzu großes Mitwirken des Benutzers vonstattengehen, ist das Update einer
App auch nicht zwangsweise ein gewichtiger Faktor für das Vertrauen in die App. Für die Metrik ist
dieser Ansatz weniger zu gebrauchen.

Eine Verfeinerung sollte also in Betracht gezogen werden, in welcher analysiert wird, ob eine App
nach der Installation auch wirklich genutzt wird und wenn ja wie oft und wie viel. Mit dieser
Fragestellung beschäftigt sichwie bereits erwähnt TruBeRepec von Yan et al. [YLNY13]. Sie führten eine
großangelegte Benutzerstudie durch, um herauszufinden, wie das Nutzerverhalten mit dem Vertrauen
in eine App zusammen hängt und stellten mit Hilfe dessen eine komplexe Metrik aufgestellt.

Für das Nutzerverhalten einer App fließen etwa die Anzahl der Nutzungen, die Zeit der Nutzung und
die Nutzungshäufigkeit der jeweiligen App, aber auch aller anderen Apps als Vergleichspunkt ein.
Informationen wie genutzte und vorhandenen Feature einer App spielen ebenfalls eine Rolle. Dieses
Herangehen benötigt eine Vielzahl an Informationen über die App und das Verhalten des Nutzers.

Für diese Arbeit verwenden wir einen simpleren Ansatz als Yan et al. [YLNY13]. Dazu wird in einer
abgewandelten Funktion ihres Ansatzes für Nutzungsverhalten (siehe Gleichung (5.21) auf Seite 56) die
relative Nutzung einer App durch einen Benutzer berechnet. Unterschiedliche Benutzer verwenden
ihr Smartphone unterschiedlich oft und lange, deswegen stellt ein absoluter Wert der Nutzung einer
App kein gutes Maß dar. Es sollte also betrachtet werden, wie oft ein Benutzer eine App im Vergleich
zu anderen Apps verwendet. Dadurch ist es egal, ob ein Benutzer sein Smartphone ständig in der
Hand hat oder nur wenige Male am Tag benutzt.

Ein Problem stellt hier dar, dass manche Apps nur eine bestimmte Zeit am Tag verwendet werden,
wie etwa eine Wecker-App, die meistens nur einmal am Abend gestellt und sonst nicht verwendet

41

4. Anforderungen und Umsetzungen

wird, egal wie oft man das Smartphone verwendet. Dadurch ergibt sich für einen Viel- und einen
Wenig-Nutzer der gleiche absolute aber ein unterschiedlicher relativer Wert.

Bei der Aufstellung dieser Metrik machen wir die Annahme, dass sich das Verhältnis der Smartphone-
Nutzer-Typen bei ähnlichen Apps ähnlich verhält. Diese muss jedoch nicht den Tatsachen entsprechen
und sollte mit einer Studie unterstützt oder widerlegt werden. Sollte sie widerlegt werden, wäre eine
Lösung die Benutzer in verschieden Kategorien einzuteilen und ihren relativen Nutzungswert mit
einem Parameter zu versehen, sollte zwischen den einzelnen Benutzerkategorien eine eindeutige
Differenz bestehen. Dadurch läuft man jedoch wieder Gefahr den Wert zu verfälschen. Aus diesem
Grund geht diese Arbeit dem naiven Ansatz nach.

Um die relative Nutzung in einen aussagekräftigen Wert umzuwandeln wird zunächst der Mittelwert
der relativen Nutzung aller Benutzer, welche die App installiert haben berechnet. An dieser Stelle
kann die Deinstallation einer App mit einbezogen werden. Dazu in Unterkapitel 4.4.1 mehr.

Die relativen Nutzung einer App mit der irgendwelcher Apps zu vergleichen würde kein aussa-
gekräftiges Ergebnis liefern. Vergleicht man eine Wetter-App mit einer Spiele-App, wird letztere
im Normalfall eine höhere Nutzung aufweisen. Deswegen sollte eine App mit jenen Apps aus der
selben Kategorie verglichen werden. Dies führt zu einem Ranking unter den Apps, wobei der relativ
am meisten genutzten App am meisten vertraut wird und der am wenigsten genutzten App am
wenigsten.

In jeder Kategorie gibt es also eine App geben, der auf Grund ihrer Nutzung zu fast 100% in ihre
Funktionalität vertraut wird. Dieser Wert wird jedoch durch die Ratings und Problemmeldungen
verrechnet. Dass eine App also zu einem Zeitpunkt der Berechnung scheinbar volles Vertrauen erhält,
nur weil sie besser als der Rest abschneidet wird wieder relativiert durch andere Faktoren. Würden
diese jedoch nicht mit eingerechnet werden, müsste man bei einem Ranking sehr vorsichtig sein. Ist
eine App vertrauenswürdiger als der Rest, bedeutet dies nicht, dass sie vertrauenswürdig ist.

Im nächsten Unterkapitel wird die Deinstallation und die Nichtnutzung einer App in deren Vertrau-
enswert bezüglich der Nutzung einfließen können und ob zwischen diesen eine Unterscheidung
gemacht werden sollte.

4.4.1. Deinstallation und Nichtnutzung der App

Insgesamt wurden zwei Gründe ausgemacht, dass das Vertrauen in eine App auf Grund ihrer Nutzung
gegen Null strebt oder diesen Wert auch erreicht. Dies wäre eine Deinstallation der App durch den
Benutzer oder wenn dieser die App lange Zeit nicht mehr verwendet. Die Frage, die sich stellt ist, ob
beide Fälle gleich stark gewichtet werden sollen, oder ob sogar innerhalb der Fälle Unterscheidungen
gemacht werden sollte.

Für eine stärkere Gewichtung der Deinstallation spricht, dass dies ein aktives Vorgehen ist, mit
welchem man sich der App entledigt. Es muss Gründe geben, dass die App wieder deinstalliert wurde.
Jedoch sind diese Gründe nicht unbedingt klar. Dass es sich auf fehlende Funktionalität oder andere
Gründe zurückführen lässt, muss nicht der Fall sein. Dass eine App direkt deinstalliert wird und der
Benutzer sie nicht einfach vergisst und nicht mehr nutzt, ist in diesem Fall eine Spekulation.

42

4.4. Nutzerverhalten der App

Diesem Problem ließe sich mit einer Nachfrage beikommen. Wenn der Benutzer eine App deinstalliert
kann eine Abfrage stattfinden, warum er dies tut. In Frage kämen Auswahlmöglichkeiten wie:

• App bietet nicht die versprochene/erwartete Funktionalität.

• App ist schadhaft.

• App missbraucht private Daten.

• Der Speicherplatz wurde benötigt.

• Kein bestimmter Grund.

• Keine Angabe.

Die ersten drei Möglichkeiten könnten auch detaillierter gehalten werden, vergleichbar mit den Pro-
blemmeldungen aus Unterkapitel 4.3.3 und 4.6.2. Wichtig ist auch, dass dem Benutzer die Möglichkeit
gegeben werden sollte, keine Angabe machen zu können, wenn er nicht will - wobei die Unterschei-
dung, zwischen keine Angabe machen wollen und keinen bestimmten Grund haben, hervorzuheben
ist (letzteres ist immer noch eine Aussage für manche).

Wenn ein Benutzer längere Zeit eine App nicht verwendet, könnte ihm auch eine solche Nachfrage
gestellt werden. Die Punkte der schadhaften App und missbrauchten Daten würden dann wahrschein-
lich herausfallen, da eine solche App mit hoher Wahrscheinlichkeit sofort deinstalliert wird, wenn
der Benutzer sie entdeckt.

Dieses Herangehen hat jedoch seine Probleme. Die für die Metrik vorgeschlagenen Problemmeldungen
sind ein passives Meldesystem. Der Benutzer kann sich entscheiden ein Fehlverhalten der App zu
melden, wenn er dies für angemessen hält. Die Abfrage zur Deinstallation oder bei Nichtnutzung
einer App sind jedoch aktiv und können dem Benutzer das Gefühl geben, dass sie ihm aufgezwungen
werden. Gerade wenn eine App lange nicht mehr genutzt wird, kann eine Nachfrage in diesem Fall
als sehr aufdringlich empfunden werden oder gar als Aufforderung die App mehr zu verwenden
missverstanden werden kann.

Der Standpunkt dieser Arbeit ist es, dass der Benutzer gewillt sein muss, Probleme mit der App zu
melden und er nicht das Gefühl haben soll, dass er dazu gezwungen wird. Folglich wird keine Abfrage
bezüglich der Gründe für Deinstallation oder Nichtnutzung einer App stattfinden. Da sich dann nur
über die Gründe spekulieren lässt, werden Deinstallation und Nichtnutzung gleich stark gewichtet,
wenn sie in den Vertrauenswert einfließen.

Nachdem die Nutzung einer App und deren Einfluss auf das Vertrauen in die Funktionalität einer
App analysiert wurde, werden nun die Erkenntnisse behandelt, die aus den Permissions einer App
gezogen werden können.

43

4. Anforderungen und Umsetzungen

Metrik von Skala Einbezogene Werte

Peng et al. Ranking mit Prozentangabe Permissions der App;
Wert anderer Apps mit denen verglichen wird

Enck et al. binäre Entscheidung Neunteiliger Regelsatz
(Zwei davon nicht mehr aktuell)

Sarma et al. binäre Entscheidung 26 Permissions (als kritisch eingestuft); Anfor-
derung kritischer Permissions durch andere Apps

Tabelle 4.2.: Übersicht über die verschiedenen Ansätze für Metriken für das Risiko durch Permissions

4.5. Permissions

Permissions geben einen Anhaltspunkt, welcher Schaden durch eine App entstehen kann. Es bietet
sich also an, zu betrachten, welche Permissions Gefahrenpotenzial beherbergen oder dazu genutzt
werden können, um die privaten Daten des Benutzers zu entwenden. Eine Liste dieser Permissions,
die aus [SLG+12] übernommen und leicht modifiziert ist, findet sich in Anhang A.1.

Wie Chia et al. [CYA12] jedoch feststellten steigt die Anzahl der verlangten Permissions mit der
Funktionalität einer App. Somit ist eine reine Betrachtung der verlangten Permissions kein gutes Maß.
Welche Aussage für die Metrik jedoch gemacht wird, ist dass eine App, die eine kritische Permission
besitzt, nicht in Vertrauenskategorie K1 fallen kann.

Es wurden bereits einige Versuche unternommen, um das Risiko durch eine App auf Grund ihrer Per-
missions zu bewerten. Enck et al. [EOM09] stellten zum Beispiel neun Regeln auf, welche Permissions
oder Kombinationen dieser enthielten, die oft von schadhaften Apps verwendet wurden.

Der aktuell am meisten genutzte Ansatz ist es, Permissions zu identifizieren, welche auf alle Apps
oder auf die Apps in einer Kategorie bezogen selten sind. Peng et al. [PGS+12] verwenden Bayes
Modelle, um Apps zu identifizieren, deren Zusammensetzung der verwendeten Permissions selten
ist. Sarma et al. [SLG+12] identifizieren seltene kritische Permissions und Kombinationen seltener
Permissions, um eine App als verdächtig zu markieren.

Für die Metrik in dieser Arbeit gehen wir einen ähnlichen, wenn auch simpleren Ansatz. Es bietet
sich an zu betrachten, wie wahrscheinlich die einzelnen kritischen Permissions für eine App in ihrer
jeweiligen Kategorie sind und daraus einen Mittelwert zu berechnen.

Ein weiterer Punkt, der ein Gespür dafür gibt, ob eine App mehr Permissions verlangt, als sie braucht
ist die Anzahl der durchschnittlichen kritischen Permissions in der Kategorie. Dazu bietet sich die
Metrik für das Vertrauen in die Anzahl der Permissions von Kuehnhausen und Frost [KF13][KF13].

Aus dieser Kombination der Wahrscheinlichkeit der kritischen Permissions und der Anzahl der
kritischen Permissions, die eine App verlangt, lässt sich ein guter Wert dafür gewinnen, wie es um
ihr Gefahrenpotenzial steht und ob sie mehr Zugriff auf private Daten verlangt, als in ihrer Kategorie
gewöhnlich ist.

44

4.6. Kontroll- und Datenflussanalyse

Um das Gefahrenpotenzial zu kategorisieren, wird betrachtet, wie selten die kritischste Permission
einer App in der Kategorie ist. Dafür müssen Werte für die Zuordnung festgelegt werden. Der Ansatz
von Sarma et al. schlägt dafür vor, von der Installation einer App abzuraten, wenn sie eine Permissions
besitzt, die weniger als 2% der restlichen Apps die Permissions verlangen. Dies wird jedoch über alle
Apps im Appshop gesehen. Das Ziel von Sarma et al. ist es auch möglichst wenige Meldungen zu
erzielen. Außerdem wollen Sarma et al. wie beschrieben nur eine binäre Entscheidung, ob eine App
bösartig oder nicht ist.

Durch das Gefahrenpotenzial kann eine Aufteilung auf die drei Kategorien K2, K3 und K4 stattfinden.
Es stehen primär Zahlen für die Verteilung von Permissions über alle Apps und nicht jene in einer
speziellen Kategorie zur Verfügung. Darüber hinaus kann sich die Wahrscheinlichkeitsverteilung über
die Permissions verändern. Für diese Arbeit wird die Verteilung: Wahrscheinlichkeit der Permissions
≤ 5% 7→ K2; 5% < Wahrscheinlichkeit der Permissions ≤ 50% 7→ K3; sonst 7→ K4. Die Aussagekraft
dieser Verteilung sollte mit einer Studie ergründet werden. Werden keine kritischen Permissions
verlangt, kommt die App in Kategorie K1.

Die Einteilung bezüglich des Umgangs mit privaten Daten findet in anderer Weise statt. Auch wenn
die Permissions, die benötigt werden, um auf Daten zuzugreifen, in das Vertrauen einfließen, wird die
Kategorie durch die Rückmeldungen bestimmt, die durch die Datenflussanalyse ermöglicht werden.

Als nächstes wird, die angesprochene Datenflussanalyse besprochen, aber auch ein Blick auf die
Kontrollflussanalyse geworfen.

4.6. Kontroll- und Datenflussanalyse

4.6.1. Kontrollfluss

Der Kontrollfluss kann genutzt werden, um die bereits in Kapitel 3 geschilderten Privilege Escalation
Attacks aufzudecken, wobei der primäre Ansatzpunkt die Entdeckung von Apps ist, welche diese
Attacken erst ermöglichen. DroidChecker von Chan et al. bietet etwa eine statische Analysmöglichkeit,
um Apps zu finden, die Privilege Escalation Attacks erst möglich machen, indem sie den Zugriff anderer
Apps zulassen, [CHY12].

Eine Möglichkeit wäre alle Apps mit DroidChecker zu überprüfen und sollte sich bei einer App
Angriffsmöglichkeiten ergeben, müsste das Vertrauen in das Gefahrenpotenzial dieser App sehr
niedrig eingeordnet werden. Der Anteil an Apps mit solchen Lücken fällt jedoch vergleichsweise
gering aus (in ihrem Experiment weniger als 0,2%, was bei der großen Anzahl an Apps im Play Store
immer noch sehr viele sein könnten).

In diesem Fall muss eine Abwägung gemacht werden, ob und wann eine App überprüft wird, ob sie
Angriffspunkte liefert. Da diese Analyse statisch stattfinden kann, könnte sie etwa von einem App-
Marktplatz automatisch ausgeführt werden, wenn eine App neu eingestellt wird. Diese Möglichkeit
hängt sehr von den Umständen ab, weswegen sie hier erwähnt sei, in der Metrik jedoch nicht
detailierter darauf eingegangen wird.

45

4. Anforderungen und Umsetzungen

Abbildung 4.6.: Anzeige der weitergeleiteten privaten Daten die von TaintDroid entdeckt wurden.

4.6.2. Datenfluss

Das große Problem in Bezug auf den Missbrauch privater Daten ist, dass der Benutzer diesen oft nicht
bemerkt. Während die Fehlverhalten einer App, die bezüglich Funktionalität und Gefahrenpotenzial
gemeldet werden können, vom Benutzer relativ gut wahrnehmbar sind, bedarf es bei den privaten Da-
ten der Hilfe eines Werkzeugs. Geeignet dafür ist TaintDroid von Enck et al., [EGC+10] [EGC+14].

TaintDroidinformiert den Benutzer, wenn eine App auf private Daten zugreift und von diese ge-
sendet werden. Ein Beispiel dafür liefern die Screenshots aus dem TaintDroid Demo Video4 in
Abbildung 4.6.

Aus den möglichen Erkenntnissen, die TaintDroid dem Benutzer liefern kann, werden für diese Metrik
folgende verwendet:

• Standort an einen Werbeserver

• Telephon Information an Content Server (IMSI, ICC-ID)

• Geräte ID an Content Server (IMEI)

• Kalender

• Kontakte

• SMS-Speicher

4Quelle: http://appanalysis.org/demo/index.html

46

4.7. Vertrauen in andere Elemente

Vertrauen in
die Applikation

Vertrauen in
den App-Store

Beeinflusst

Beeinflusst

Beeinflusst

Abbildung 4.7.: Das Vertrauen in eine App, einen Entwickler und einen App-Marktplatz beeinflussen
sich gegenseitig.

Die ersten drei Optionen sind Informationen, welche während den Tests von Enck et al. häufig
festgestellte wurden und Informationen über den Benutzer liefern. Die anderen drei Optionen sollten
selbsterklärend sein, warum ihre Weitergabe das Vertrauen in eine App senken sollte. Die Meldung
dieses Missbrauchs privater Daten findet wie in Unterkapitel 4.3.3 statt.

Ein Punkt, den Enck et al. ansprechen ist, dass manche Apps in ihrer EULA deklarieren, dass Daten
wie die IMEI von der App verwendet werden dürfen. Für diese Metrik wird die Ansicht verfolgt, dass
nur weil für eine App zugegeben wird, dass sie private Daten weitergibt, dadurch nicht das Vertrauen
in sie höher ist. Außerdem gilt die Frage: Wie viele Nutzer lesen und verstehen die EULA wirklich?

Nachdem TaintDroid als Werkzeug zur Erkennung des Missbrauchs privater Daten vorgestellt wurde,
werden im nächsten Unterkapitel die Elemente des Entwicklers und des App-Marktplatzes behandelt
und wie sie Einfluss auf das Vertrauen in die App haben können.

4.7. Vertrauen in andere Elemente

Das Vertrauen in eine App kann auch von dem Vertrauen in ihren Entwickler und in den App-
Marktplatz beeinflusst, in welchem die App zum Download angeboten wird. Gleiches kann auch in
die andere Richtung und zwischen Marktplatz und Entwickler gelten (siehe Abbildung 4.7). Es lohnt
sich also zu betrachten, welche Faktoren das Vertrauen in einen App-Entwicklern (Unterkapitel 4.7.1)
und einen App-Marktplatz (Unterkapitel 4.7.2) beeinflussen könnten.

4.7.1. Der Entwickler

Es lassen sich eine Handvoll Anhaltspunkte für das Vertrauen in einen Entwickler finden. Der beste ist
natürlich, seine Apps zu betrachten. Wie hoch ist das Vertrauen in diese Apps, ist bekannte Malware
dabei oder wählt er für seine Apps bewusst täuschende Namen (siehe [CYA12]). Es sollte jedoch
davon ausgegangen werden, dass ein guter App-Marktplatz Entwickler löscht, welche Malware in
diesen einstellen.

47

4. Anforderungen und Umsetzungen

Überlegenswert wären auch zu betrachten wie viele Apps der Entwickler in den App-Marktplatz
gestellt hat oder wie viele Downloads seine Apps in der Gesamtheit haben. Jedoch ergibt sich auch dar-
aus kein Ergebnis. Ein Entwickler kann viele Apps, die wenig vertrauenswürdig sind, veröffentlichen
und generiert dadurch viele Downloads während ein anderer Entwickler nur eine vertrauenswürdige
App veröffentlicht, diese aber kaum heruntergeladen wird. Zu diesen Ansätzen fehlen Studien und
Analysen, die eine weitere Überlegung für eine Vertrauensmetrik ermöglichen.

Bewertungen der Entwickler, zum Beispiel durch den App-Marktplatz oder eine andere Quelle stellen
auch eine Möglichkeit dar. Der Google Play Store5 verleiht seine Entwickler beziehungsweise deren
Apps zwei Abzeichen, die Editors Choice und den Top Developer, welche beide von Mitarbeitern des
Play Stores gewählt werden. Die Editors Choice ist eine Sammlung von Apps, in die Apps mit hoher
Qualität, guter graphischer Oberfläche, Langzeitbeliebtheit und innovativer Benutzung von Android
Features aufgenommen werden. Den Top Developer bekommen Entwickler verliehen, von denen alle
oder die meisten Apps eine gute Qualität aufweisen und über lange Zeit hohe Anerkennung genießen.
Der Anteil dieser Entwickler sollte jedoch sehr gering ausfallen und so ist dies keine nützliche Aussage
für die Allgemeinheit.

Es fällt also schwierig das Vertrauen in einen Entwickler zu berechnen, weswegen es nicht in diese
Metrik einfließt.

4.7.2. Der App-Marktplatz

Neben den großen, bekannten App-Marktplätze gibt es auch zahlreiche kleinere App-Marktplätze
von Drittanbietern. Laut einer Symantec Analyse [Usc13] gibt es App-Marktplätze von Drittanbietern,
bei welchen jede zehnte neu hinzugefügte App Malware enthält. Teilweise gibt es App-Marktplätze ,
die beinahe ausschließlich Malware enthalten. Auch wenn dies eher Einzelfälle sind und die App-
Marktplätze nach kurzer Zeit wieder offline gehen, gibt es doch viele App-Marktplätze, die eine
hohe hohe Anzahl von Ad- und Malware aufweisen. Die Eigenschaft eines Marktplatzes, für seinen
hohen Malware-Anteil bekannt zu sein, wirkt sich negativ auf das Vertrauen der Apps aus, die dort
dargeboten werden.

Ein weiteres Maß für das Vertrauen in einen Marktplatz könnten seine Sicherheitsvorkehrungen sein.
Wie weit und gut überprüft der Shop eingestellte Apps auf Malware, besitzt er einen Kill-Switch, um
nachträglich als schadhaft festgestellte Apps von den Smartphones zu entfernen, nachdem sie einmal
installiert wurden und die Bedingungen dafür, dass man Apps in den Store stellen kann.

Dini et al. [DMM+13] unterscheiden in ihrer Metrik für das Vertrauen in eine App zwischen „offiziel-
len“ und „inoffiziellen“ Marktplätze, sowie der Möglichkeit, dass kein Shop vorhanden war, man also
die .apk-Datei aus einer anderen Quelle hat. Dieses Maß ist sehr grob und verallgemeinernd.

Insgesamt gibt es einige Faktoren, die für die Vertrauenswürdigkeit eines App- Marktplatzes zurate
gezogen werden können. Jedoch gewähren gerade inoffizielle Shops eher keine Auskunft über ihre
Sicherheitsmechanismen. Ein Ansatz wäre ein Reputationssystem für App- Marktplätze aufzubauen,
in welches auch die Erkenntnisse von Analysen wie jener von Symatec einfließen. Ein solches System

5http://goo.gl/bdZU4e

48

4.7. Vertrauen in andere Elemente

liegt jedoch jenseits des Umfangs dieser Arbeit. Es kann keine befriedigender Wert für das Vertrauen
in den Marktplatz errechnet werden, wodurch auch von dieser Seite nichts in die Metrik einfließen
kann.

49

5. TriMetrik

In Kapitel 4 wurden Ansätze zu Vertauens-Metriken und Systemen für Android Apps untersucht.
Daraus wurden Erkenntnisse für eine eigeneMetrik getroffen. In diesem Kapitel wird nun die TriMetrik
präsentiert.

Dazu wird in Unterkapitel 5.1 ein Überblick über die Zusammenführung des Vertrauens in die
einzelnen Bereiche gegeben, deren Berechnung des Vertrauens in Unterkapitel 5.2 behandelt wird. Im
Folgenden wird betrachtet, wie die Ratings (Unterkapitel 5.3), die Nutzung einer App (Unterkapitel 5.4),
die Permissions, die eine App verlangt (Unterkapitel 5.5) und die Problemmeldungen für eine App
(Unterkapitel 5.6) konkret in die Metrik einfließen.

5.1. Ergebnis

Final liefert die Metrik zwei Werte für eine überprüfte App appi, den prozentualen Vertrauenswert
(Gleichung 5.2) in die App und die Vertrauenskategorie (Gleichung 5.3), in welche die App fällt.

Der prozentuale Vertrauenswert ergibt sich als Summe der gewichteten Vertrauenswerte für die
Funktionalität der App (Fappi), das Gefahrenpotenzial der App (Gappi) und den Umgang der App mit
privaten Daten (Dappi).

Die Gewichtungsfaktoren α, β und γ berechnen sich aus der gewählten Gewichtung für die drei
Bereiche wie in Gleichung 5.1 gezeigt. Dabei liefert die Funktion Gewichtung(Bereich) Werte
abhängig von der jeweiligen gewählten Wichtigkeit der Bereiche durch den Benutzer (W1 = 2; W2 =
1; W3 = 0,5; W4 = 0). Für den Wert von α ergibt sich damit:

(5.1) α = Gewichtung(F)
Gewichtung(F) + Gewichtung(G) + Gewichtung(D)

Analog werden β und γ, mit jeweils Gewichtung(G) und Gewichtung(D) als Nenner, berechnet.

Solange nicht alle drei Bereiche mit W4 gewichtet wurden, gilt dabei α + β + γ = 1. Wurden
alle drei Bereiche vom Benuzter als Unwichtig festgelegt, liefert die Metrik eine Fehlermeldung, da
keine Berechnung möglich ist. Für diese Werte wird die Berechnung der Gewichtungsfaktoren durch
Gleichung 5.1 nicht aufgerufen, weil sonst ein Division-Durch-Null-Fehler auftreten würde. Dem
Benutzer muss dann vom Vertrauenssystem kommuniziert werden, dass eine Berechnung keinen
Sinn macht, wenn alle Faktoren keine Rolle spielen.

51

5. TriMetrik

Für das Vertrauen in eine App erhält man also die Gleichung 5.2. Auf das Zustandekommen des
Vertrauens der einzelnen Bereiche wird in den Gleichungen 5.4 für V ertrauen(Fappi), Gleichung 5.5
für V ertrauen(Gappi) und in Gleichung 5.6 für V ertrauen(Dappi) eingegangen.

(5.2) V ertrauen(appi) = α · V ertrauen(Fappi) + β · V ertrauen(Gappi) + γ · V ertrauen(Dappi)

Das Ergebnis für das Vertrauen in eine App liegt im Intervall [0, 1] und repräsentiert das prozentuale
Vertrauen in die App. Durch die Aufsummierung der drei Bereiche kann ein App noch einen ver-
gleichsweise hohen Vertrauenswert erhalten, selbst wenn sie in einem der Bereiche sehr schlecht
abschneidet. Dies ist aber wie beschrieben gewünscht, da die Metrik einen Gesamtüberblick (gemäß
der Wichtigkeit für den Benutzer) über alle Qualitäten der App liefern soll.

Damit ein schlechtes Abschneiden in einer der Kategorien nicht unbeachtet bleibt, wurden die
Kategorien eingeführt. Hier wurde bestimmt, dass die Vertrauenskategorie der App der schlechtesten
Kategorie eines der drei Bereiche entspricht. Auf die Kategorien sei die Ordnungsrelation „≤“ definiert,
sodass die Kategorien sich nach demMaß des Vertrauens ordnen lassen, welches sie ausdrücken sollen
(K5 < K4 < K3 < K2 < K1). Die Funktion Kat(Fappi liefert die Kategorie, in welche die App im Bereich
Funktionalität fällt, außer der Bereich wurde mitW4 gewichtet, in diesem fall wird automatisch K1
zurückgegeben, da diesere Bereich für das Vertrauen in die App nicht in Beachtung gezogen wird
und K1 in diesem Fall das neutrale Element darstellt.

Unter diesen Bedingungen gilt für die Gesamtkategorie einer App:

(5.3) Kat(appi) = min(Kat(Fappi), Kat(Gappi), Kat(Dappi))

Damit ist nun gegeben, wie sich das Gesamtvertrauen und die Gesamtkategorie einer App berechnet.
Im nächsten Unterkapitel wird nun betrachtet, aus welchen Werten sich das Vertrauen in den drei
Bereichen zusammensetzt.

5.2. Bereiche

Um das Vertrauen in die einzelnen drei Bereiche zu erhalten, werden dort wiederum die unterschied-
lichen Faktoren betrachtet, welche sie beeinflussen.

Das Vertrauen in die Funktionalität einer App berechnet sich aus den Ratings der App (Unterkapitel 5.3,
Gleichung 5.7), der Nutzung der App (Unterkapitel 5.4, Gleichung 5.23) und den Problemmeldungen
bezüglich der Funktionalität der App (Unterkapitel 5.6, Gleichung 5.36).

(5.4) V ertrauen(Fappi) = Ratings(appi) · Nutzung(appi) · ProblemmeldungenF (appi)

52

5.3. Ratings

Für das Gefahrenpotenzial und das damit einhergehende Vertrauen in eine App spielen das Riskrating
(Unterkapitel 5.5, Gleichung 5.24) und Problemmeldungen bezüglich des Schadpotenzial (Unterkapitel
5.6, Gleichung 5.37) eine Rolle.

(5.5) V ertrauen(Gappi) = RiskratingG(appi) · ProblemmeldungenG(appi)

Der Umgang mit privaten Daten schließlich wird ebenfalls von Riskrating (Unterkapitel 5.5, Glei-
chung 5.24) und dem Problemmeldungen bezüglich privater Daten (Unterkapitel 5.6, Gleichung 5.38)
beeinflusst.

(5.6) V ertrauen(Dappi) = RiskratingD(appi) · ProblemmeldungenD(appi)

In welche Vertrauenskategorie einer der Bereiche eingeordnet wird, entscheidet sich auch durch diese
Faktoren. Es gilt, wie bei der Gesamtkategorie, dass die App in den einzelnen Bereichen jeweils in die
niedrigste, auf Grund eines Faktors erreichte, Vertrauenskategorie fällt. Wie sich die Faktoren auf die
Vertrauenskategorien auswirken, wird ebenfalls in den einzelnen Unterkapiteln erwähnt.

5.3. Ratings

Für das Rating gilt, dass bei weniger als 10 Ratings der Wert von 0 zurückgegeben wird, da sich mit
zu wenigen Ratings kein verlässlicher Vertrauenswert berechnen lässt. Bei 10 Ratings oder mehr lässt
sich das Vertrauen aufgrund der Ratings wie folgt berechnen:

(5.7) Ratings(appi) = RatingSkaliert(appi) · AnzahlRatings(appi) · V erteilungRatings(appi)

Für die TriMetrik wird die Metrik für das Vertrauen auf Grund der Ratings eins zu eins von Kuehn-
hausen und Frost [KF13] übernommen. Auch wenn der Ansatz von Kuenhausen und Frost [KF13]
sich auf ein Rating mit 5 Sternen bezieht, lässt es sich theoretisch auch für andere Skalen verwenden.
Die gängigste Bewertung ist jedoch das 5 Sterne System.

Steht das durchschnittliche Rating für die App nicht direkt zur Verfügung, muss dieses noch von der
Metrik berechnet werden. Sei R1 die Anzahl der Ratings der App mit einem Stern, R2 die Anzahl
der Ratings mit zwei Sternen und so weiter bis Rmax dem bestmöglichen Rating. Außerdem ist n die
Anzahl der insgesamt abgegebenen Ratings. Das durchschnittliche Rating R̄appi einer App ergibt sich
dann als:

(5.8) R̄appi =
∑max

x=1 Rx

n

53

5. TriMetrik

Zunächst müssen die Ratings auf unsere Skala von 0% bis 100% also auf das Intervall [0, 1] gebracht
werden. Sei dazu RM die Anzahl der möglichen Werte, die das Rating annehmen kann, dann gilt für
das skalierte Rating:

(5.9) RatingSkaliert(appi) = R̄appi − 1
RM − 1

Die Verringerung der beiden Werte um eins stammt daher, dass die meisten Ratings mit einem Stern
und nicht mit null Sternen beginnen. Startet bei die ursprüngliche Skala der Ratings bei null, werden
beide Werte unmodifiziert gelassen.

Dieser skalierte, aber ansonsten unmodifizierte Wert drückt nun das Vertrauen in die Funktionalität
auf Grund der Ratings aus, wenn man diesen zur Gänze vertrauen würde. Wie von Kuehnhausen
und Frost [KF13] vorgeschlagen werden die Studentsche t-Verteilung und ein Algorithmus als Maß
zur Verteilung der Ratings angewendet, um herauszufinden, welche Zuversicht man in die Werte des
Ratings haben kann. Kann man den Ratings nicht vertrauen, vertraut man auch der App nicht. Dabei
wird der Ansatz verfolgt lieber kein Vertrauen als falsches Vertrauen zu haben.

Für das Vertrauen in die Anzahl der Ratings ergibt sich die folgende Gleichung:

(5.10) AnzahlRatings(appi) = 1 − ST (n)√
n − 1

Dabei ist ST(n) der Wert der inversen Distributionsfunktion der Studentschen t-Distribution mit n − 1
Freiheitsgraden und einem beidseitigen Konfidenzintervall von 95%.

(5.11) ST (n) = CDF −1
T (n−1)(0, 975)

Das Ziel der Metrik ist es herauszufinden, ob die Ratings gegen zwei unterschiedliche Werte tendieren,
womit die Zuversicht in die Aussagekraft der Ratings schwinden würde. Dazu werden die Ratings
in die Anzahl der hohen Ratings Rhigh und niedrigen Ratings Rlow unterteilt. Steigt die Anzahl der
Ratings, muss hier eventuell feiner differenziert werden. Im Folgenden wird lediglich die Variante mit
fünf Sternen betrachtet.

(5.12) Rlow = R1 + R2 + R3 Rhigh = R3 + R4 + R5

Gibt es die Sonderfälle Rlow = 0 oder Rhigh = 0, also nur hohe Bewertungen mit 4 und 5 Sternen oder
nur niedrige Bewertungen mit 1 und 2 Sternen, ergibt sich für die gewichtete Mittelwertdifferenz:

(5.13) wmd(Rappi) = R4 · |Rappi − 4|
n

+ R5 · |Rappi − 5|
n

54

5.3. Ratings

Falls Rlow = 0 gilt, ansonsten wenn Rhigh = 0 gilt, dann erhält man:

(5.14) wmd(Rappi) = R1 · |Rappi − 1|
n

+ R2 · |Rappi − 2|
n

Tritt keiner der Sonderfälle ein, werden das durchschnittliche Rating der hohen und niedrigen
Ratings berechnet (Gleichung 5.15+5.16) und die Anzahl der Ratings mit ihnen verrechnet (Glei-
chung 5.18+5.17).

(5.15) R̄high = R3 + R4 + R5
Rhigh

(5.16) R̄low = R1 + R2 + R3
Rlow

(5.17) wlow = Rlow

Rhigh + Rlow

(5.18) whigh = Rhigh

Rhigh + Rlow

Schließlich wird die gewichtete Mittelwertdifferenz in Anbetracht des gesamten durchschnittlichen
Ratings berechnet:

(5.19) wmd(R) = wlow ·
∣∣∣R̄appi − R̄low

∣∣∣ + whigh ·
∣∣∣R̄appi − R̄high

∣∣∣

Dadurch ergibt sich nach Kuehnhausen und Frost [KF13] ein Vertrauen in die Ratings auf Grund der
Verteilung der Ratings:

(5.20) V erteilungRatings(appi) = 1 − wmd(app1)
2

Mit Hilfe der Ratings lässt sich die Vertrauens-Kategorie der App bezüglich der Funktionalität bestim-
men. In ihrem Testsatz erhielten Kuehnhausen und Frost [KF13] eine relativ gleichmäßige Verteilung
in das Vertrauen der Apps, mit einer Spitze von 25% bei nicht vorhandenem Vertrauen, was auf zu
wenige Ratings zurückzuführen ist.

Für die Metrik verwenden wir eine gleichmäßige Aufteilung auf die drei Kategorien, wodurch eine
App mit 33% Vertrauen oder weniger in Kategorie K4, mit 34% bis 66% in Kategorie K3 landet und
von 67% bis 99% in Kategorie K2 landet. Keine App erreichte die 100%, aber der Vollständigkeit halber
sei definiert, dass eine solche App in Kategorie K1 landen würde.

55

5. TriMetrik

5.4. Nutzung

Bei der Berechnung des Vertrauenswertes auf Grund der Nutzung einer App wurde festgelegt, dass
diese App immer in Relation zu anderen Apps betrachtet werden sollte. Dazu müssen zwei Submengen
von Apps betrachtet werden. Zum einen die bereits eingeführte Menge aller Apps in der selben App
AKategorie, zum anderen die Menge der vom jeweiligen Benutzerj installierten Apps, Aj ⊆ A.

Zunächst wird berechnet, wie oft ein Benutzer eine App im Vergleich zu anderen Apps nutzt. Diese
relative Nutzung gibt einen besseren Wert, als ein absoluter Wert, da er für Personen mit unterschied-
lichen Nutzungszeiten ihres Smartphones besser widerspiegelt. Für diese individuelle Nutzung eines
Benutzerj betrachten wir über einen Zeitabschnitt, wie oft und wie lange dieser die App genutzt
hat.

Die Anzahl der Nutzungen der appi durch den Benutzerj im Zeitabschnitt t sei dabei AN(j,appi)(t)
und die Zeit in welcher die App genutzt wurde im Zeitabschnitt t: ZNappi,j(t). Auf die Gesamtheit
der von Benutzerj installierten Apps bezogen, ist ANAj (t) deren Nutzung im Zeitabschnitt t und
analog ZNAj (t) die Zeit aller genutzten Apps des Benutzers.

Die relative Nutzung der appi des Benutzerj im Zeitabschnitt t wird dann durch Gleichung 5.21
beschrieben, welche eine Abwandlung der Gleichung von Yan et al. [YLNY13] darstellt, wobei die
Nutzungsfrequenz und die festgestellten Features herausfallen:

(5.21) NutzungIndividuel(appi, t, j) = ANappi,j(t)
ANAj (t) · ZNappi,j(t)

ZNAj (t)

Aus der individuellen Nutzung aller Benutzer, welche die App installiert haben, lässt sich dann
ein Mittelwert bilden. An dieser Stelle lässt sich die Information über die Deinstallation einer App
einbringen. Alle Benutzer, welche die App installiert hatten und wieder deinstallierten fließen in
die Berechnung des Mittelwertes mit dem Wert 0 ein. In diesem Fall ist das Nichtverwenden einer
App im Abschnitt t gleichbedeutend mit einer Deinstallation der App zu irgend einem beliebigem
Zeitpunkt.

(5.22) NutzungGesamt(appi) =
∑

NutzungIndividuel(appi, t, Benutzerj)
AKategorie(appi)

Mit der durchschnittlichen Nutzung einer App aller Nutzer lässt sich ein Ranking der Apps erstellen,
wie viel eine App im Vergleich zu anderen Apps in ihrer Kategorie genutzt wird:

(5.23) Nutzung(appi) = |{app ∈ AKategorie | NutzungGesamt(app) ≤ NutzungGesamt(appi)}|
|AKategorie|

Hierbei sei anzumerken, dass diese Metrik gewisse Apps benachteiligt. Bei einem Wecker möchte der
Benutzer möglichst schnell die Weckzeit einstellen und kommt so bei einem guten Wecker auf eine

56

5.5. Permissions und Riskrating

geringe Nutzungsdauer. Bei einer schlechten Wecker App dauert die Einstellung der Weckzeit eine
längere Zeit. In diesem Falle würde eine hohe Nutzung nicht für eine gute Funktionalität, sondern
für eine schlechte Usability stehen. Eine Möglichkeit diesem Problem entgegen zu wirken wäre es,
die Nutzung in Gleichung 5.4 schwächer zu gewichten, je niedriger der relative Nutzen der App in
Gleichung 5.22 ausfällt.

Da die Nutzung relativ gesehen wird und besagtes Problem besteht, fließt das durch die Nutzung
berechnete Vertrauens lediglich in den Vertrauenswert der Funktionalität ein, aber beeinflusst nicht
die Vertrauens-Kategorie.

5.5. Permissions und Riskrating

Um das Vertrauen in eine App auf Grund ihrer Permissions zu berechnen, stellen sich zwei Fragen.
Welche Permissions können Schaden anrichten? Ist die App nicht vielleicht auf diese Permissions
angewiesen, um ihre Funktionalität umzusetzen?

Im Anhang finden sich die Listen für kritische Permission bezüglich des Schadpotenzials einer App
(Tabelle A.1 auf Seite 81) und ihres Zugriffs auf Daten des Benutzers (Tabelle A.2 auf Seite 82).
Dadurch definieren sich die Mengen PG ⊂ P als Menge der kritischen Permissions, die für ein
erhöhtes Schadpotenzial sorgen. Außerdem ergibt sich die Menge PD ⊂ P mit kritischen Permissions,
die Zugriff auf die Daten liefern, als Untermengen aller Permissions P , die eine App verlangen kann.

Da die Permissions einer App mit den Permissions ähnlicher Apps verglichen werden sollen, wird
Akatl

⊂ A als die Menge aller Apps in der Kategorie katl definiert, wobei A die Menge aller existie-
renden Apps sei.

Für unser Riskrating einer App wird nun zum einen betrachtet, wie viele andere Apps aus der
Kategorie ebenfalls die von der App verlangten kritischen Permissions anfordern, und zum anderen,
wie viele kritische Permissions durchschnittlich in der Kategorie verlangt werden. Dadurch ergibt
sich für das Riskrating einer App die Gleichung:

(5.24) Riskratingx(appi) = AnzKritPermx(appi) · WahrschKritPermx(appi)

Die Berechnung von RiskratingG und RiskratingD ist bis auf den Fakt, dass bei ersterem die Menge
PG und bei letzterem PD verwendet wird, äuqivalent. Im Folgenden wird die Berechnung nur für
RiskratingG gezeigt, um unnötige Redundanz zu vermeiden. Zu beachten ist, dass sollten keine
kritischen Permissions verlangt werden, automatisch der Vertrauenswert von 100% zurück geliefert
wird, da keine erkennbare Bedrohung von der App ausgehen kann.

Zunächst wird die Funktion Besitzt(appi, permm) festgelegt. Diese ist eine binäre Abfrage, ob die
App appi die Permissions permm verlangt:

(5.25) Besitzt(appi, permm) =
{

1, falls die App diese Permissions verlangt
0, sonst

57

5. TriMetrik

Mit Hilfe dieser Funktion berechnet sich die Anzahl der kritischen Permissions einer App appi mit
der Gleichung:

(5.26) PG(appi) =
∑

permm∈PG

Besitzt(appi, permm)

Die durchschnittliche Summe der kritischen Permissions pro Kategorie erhält man mit der Glei-
chung:

(5.27) P̄G,katl
=

∑
appi∈Akatl

PG(appi)
|Akatl

|

Um das Vertrauen in die Anzahl der verwendeten kritischen Permissions zu berechnen, wird die von
Kuehnhausen und Frost [KF13] vorgeschlagene Poission Distribution verwendet (Gleichung 5.28). Da
die Anzahl der verlangten kritischen Permissions eher gering ausfällt (maximal 11 für PG und 12 für
PD), ist die heavy-tailed Poisson Distribution für Kuehnhausen und Frost [KF13] am besten geeignet,
um als Maß für die Anzahl der kritischen Permissions zu dienen.

(5.28) AnzKritPermG(appi) = P̄G,katl
!

PG(appi)!
· P̄

PG(appi)−P̄G,katl
G,katl

Neben der Anzahl der kritischen Permission wird nun die Wahrscheinlichkeit dieser Permissions
betrachtet, dass sie von Apps in einer Kategorie angefordert werden. Dazu berechnet sich die relative
Häufigkeit einer Permissions permm in der Kategorie katl nach der Gleichung:

(5.29) Haeufig(permm, katl) =
∑

appi∈katl
Besitzt(appi, permm)

|Akatl
|

Die Wahrscheinlichkeit einer App wird dabei aus dem Durchschnitt der Wahrscheinlichkeit der von
ihr angeforderten Permissions berechnet. Dabei erhält jede App den „Internet-Bonus“. Die über alle
Apps im Marktplatz hinweggesehen am meisten verlangte Permission ist die INTERNET Permission
mit etwa 80%. In der Metrik wird die Wahrscheinlichkeit der kritischen Permissions mit dem Faktor
5
4 verrechnet, sodass eine App, die lediglich die INTERNET Permission verlangt (was heutzutage sehr
normal ist), 100% Vertrauen besitzt1. Auch wenn diese Modifikation auf den ersten Blick zu gutmütig
erscheint, bewirkt sie doch im niedrigen Bereich, in dem sich die Häufigkeit der meisten Permissions
bewegt, keinen allzu großen Anstieg des Vertrauens.

1In Kategorie K1 fällt sie dadurch trotzdem nicht.

58

5.6. Problemmeldungen

Für das Vertrauen in die Wahrscheinlichkeit der kritischen Permissions einer App ergibt sich also die
Gleichung:

(5.30)

WahrschKritPermG(appi) =min((Durchschnitt

PG(appi)
· 5

4), 1)

Durchschnitt =
∑

permm∈PG

(Besitzt(appi, permm) · Haeufig(permm, katl))

Über den Einfluss der kritischen Permissions auf die Vertrauens-Kategorie wurde bereits in Unterka-
pitel 4.5 ausführlich diskutiert.

Ist die minimale Wahrscheinlichkeit einer kritischen Permissions kleiner 5% landet sie in Kategorie
K2, ist sie größer 5% aber kleiner 50%, landet sie in Kategorie K3, sonst ist sie in Kategorie K4. Werden
keine kritischen Permissions verlangt, kommt die App in Kategorie K1.

Dies gilt wie angesprochen nur für Kategorie(Gappi) und nicht für Kategorie(Dappi).

5.6. Problemmeldungen

Problemmeldungen dienen dazu, dass der Benutzer gezielte Rückmeldung über die Probleme mit
einer App geben kann. Dini et al. [DMM+13] schlagen eher eine Rückmeldung über die App als eine
Problemmeldung vor, wodurch mit positiven Rückmeldungen das Vertrauen in eine App gesteigert
werden kann. Auch wenn die übernommene Funktion für den Rückmeldewert eine positive Rückmel-
dung ermöglicht, indem gemeldet wird, dass es keine Probleme gibt, wird doch davon ausgegangen,
dass ein Benutzer eher geneigt ist eine negative Rückmeldung zu geben.

Aus diesem Grund ist der initialeWert bezüglich der Rückmeldungen volles Vertrauen (also einenWert
von 1, beziehungsweise einem Meldewert, von 4 für die Funktionalität und das Gefahrenpotenzial
und 5 für die privaten Daten – vgl. Gleichungen 5.36 bis 5.38), da über die Problemmeldungen uns
kein Grund geliefert wurde, der App nicht zu vertrauen. Durch die Multiplikation mit dem jeweiligen
Riskrating besitzt der Problemmeldungswert dadurch keinerlei Auswirkung auf das Gesamtvertrauen
in die einzelnen Bereiche.

Darüber hinaus wird die Rückmeldefunktion der von Dini et al. [DMM+13] verwendete Metrik leicht
abgeändert. Sie verrechnen alle möglichen Gründe für ein Fehlverhalten miteinander und geben
dadurch eine Gesamtübersicht über die App. Für TriMetrik findet eine Aufteilung in die drei Bereiche
statt, um Problemmeldungen den einzelnen Bereichen zuordnen zu können. Tabelle 5.1 bietet dazu
eine Übersicht der möglichen Rückmeldungen und ihrer Werte.

Diese Liste wird in dieser Zusammensetzung für die TriMetrik verwendet, lässt sich aber eventuell
noch um weitere Meldungen erweitern. Genauso sind die Werte überlegt gewählt, doch sie können
nicht den Anspruch erheben die Meinung der Mehrheit zu repräsentieren. Dini et al. argumentieren,
dass sie ihre Meldemöglichkeiten nach Problemen gewählt haben, welche bekannte Anzeichen von

59

5. TriMetrik

Malware sind. Eine andere Herangehensweise, welche die subjektive Ansicht des Benutzers besser
modellieren würde, wäre es zu ergründen, welche Probleme den Benutzer stören und wie schwer
sie sein Vertrauen in eine App verringern würden. Dazu müsste eine empirische Benutzerstudie
durchgeführt werden, die jenseits des Rahmen dieser Arbeit liegt.

Der Benutzer kann dabei zu einem der drei Bereiche eine Rückmeldung machen, ob und wie stark
oder mit welcher Gewissheit er ein Fehlverhalten der App wahrgenommen hat. Daraus ergeben sich
die Gleichungen 5.31 für das Vertrauen auf Grund einer Rückmeldung bezüglich der Funktionalität,
Gleichung 5.32 für eine Rückmeldung bezüglich des Gefahrenpotenzials und schließlich Gleichung 5.33
für TaindDroid-gestützte Problemmeldung bezüglich dem Umgang mit privaten Daten.

(5.31) RF (appi, k) = max(0, (4 − RF1 − RF2 − RF3))

(5.32) RG(appi, k) = max(0, (4 − RG1 − RG2 − RG3 − RG4))

(5.33) RD(appi, k) = max(0, (5 − RD1 − RD2 − RD3 − RD4 − RD5))

Aus den einzelnen Rückmeldungen muss wiederum die Gesamtrückmeldung berechnet werden. Diese
Berechnung findet für alle drei Bereiche analog statt, hier sei die Berechnung für das Vertrauen
bezüglich der Funktionalität gegeben:

(5.34) RSF (appi, k) = (1 − δ(k)) · RSF (appi, k − 1) + δ(k) · RF (appi, k)

δ(k) dient dabei als Faktor, nach wie vielen Problemmeldungen ein Vertrauenswert mit dem überge-
benen Wert dieser Meldungen übereinstimmen soll. Dini et al. [DMM+13] setzen dafür die Anzahl der
Benutzer an, welche den Vertrauenswert für die App von MAETROID erfragten. Da, je nach Umset-
zung, kein solcher Wert zur Verfügung steht, muss ein anderer Weg gefunden werden. Möglichkeiten
für die Anzahl der benötgiten Prüblemmeldungen wäre zum Beispiel die Zahl der Nutzer, die ein
Rating für die App abgegeben haben oder vielleicht auch nur ein Zehntel dieser. Dieser Wert lässt
sich ohne die Informatione, wie die Metrik als System umgesetzt wird, schwer bestimmten.

Für δ(k) gilt die Gleichung:

(5.35) δ(k) = τ

k
· (1 − 1

∆t
)

τ berechnet sich dabei aus der Differenz zwischen RSF (appi, k) und dem initialen Meldewert
(4 im Fall der Funktionalität). ∆t ist der zeitliche Unterschied zwischen diesem und der letzten

60

5.6. Problemmeldungen

Problemmeldung. Je weiter zwei Problemmeldungen zeitlich bei einander liegen, desto schwächer
wird der Einfluss auf den Gesamtmeldewert.

Abschließend muss der Meldewert noch auf das Intervall [0,1] skaliert werden:

(5.36) ProblemmeldungenF (appi) = RSF (appi, k)
4

(5.37) ProblemmeldungenG(appi) = RSG(appi, k)
4

(5.38) ProblemmeldungenD(appi) = RSD(appi, k)
5

Für die Kategorien findet bezüglich der Funktionalität und der Problemmeldungen ein direktes
Mapping zwischen dem Vertrauenswert und der Vertrauenskategorie statt. Liegt RSF oder RSG für
eine App zwischen 0 und 1, fällt die App in dem jeweiligen Bereich in die Vertrauenskategorie K5,
liegt der Wert zwischen 1 und 2 fällt die App in K4, zwischen 2 und 3 fällt die App in K3 und liegt sie
zwischen 3 und 4 fällt die App in K4. Wurden keine Problemmeldungen abgegeben oder nur solche,
die zurückgeben, dass keine Probleme vorliegen, fällt die App in Kategorie K5.

Die Kategorie bezüglich des Umgangs mit privaten Daten hängt mit dem Inhalt der Problemmeldungen
zusammen (RD1 7→ K2; RD2 7→ K3; RD3 7→ K4; RD3 7→ K5; RD3 7→ K5; RD3 7→ K5).

Nachdem in diesem Kapitel die Metrik aufgestellt wurde, werden in Kapitel 6 Konzepte vorgestellt,
wie diese Metrik sich umsetzen lässt.

61

5. TriMetrik

Problemmeldung Rückmeldungen

Funktionalität
RF1: Abstürze Keine (0) Wenige (1) Viele (2)
RF2: Usability Gut (0) Eingeschränkt (1) Schlecht (2)
RF3: Bugs Keine (0) Selten/Wenige (1) Oft/Viele (2)
Gefahrenpotenzial
RG1: Erhöhter Batterieverbrauch Keinen (0) Leicht erhöht (1) Deutlich erhöht (2)
RG2: Versteckte Installation oder Keine (0) Vielleicht (1) Festgestellt (2)
Deinstallation von Apps
RG3: Verursacht Gebühren aufgrund Keine (0) Vielleicht (1) Festgestellt (3)
hohem Netzwerkgebrauch
RG4:Guthabensverlust (durch SMS) Keiner (0) Vielleicht (1) Festgestellt (4)
Umgang mit privaten Daten
RD1: GPS/Standort an Werbeserver Nein (0) Festgestellt (2)
RD2: Telephon Information an Nein (0) Festgestellt (2)
Content Server (IMSI, ICC-ID)
RD3: Geräte ID an Content Server (IMEI) Nein (0) Festgestellt (2)
RD4: Adressbuch Nein (0) Festgestellt (5)
RD5: SMS-Speicher Nein (0) Festgestellt (5)
RD6: Kalender Nein (0) Festgestellt (5)

Tabelle 5.1.: Übersicht über die möglichen Problemmeldungen und ihre Werte für die Funktion.

62

6. TriTrust

In Kapitel 5 wurde die TriMetrik vorgestellt, um den Vertrauenswert in eine App zu berechnen. In
diesem Kapitel werden mit TriTrust nun mögliche Umsetzungen der Metrik vorgestellt. Dazu werden
zunächst in Unterkapitel 6.1 der Ist-Zustand betrachten. Anschließend wird in Unterkapitel 6.2
diskutiert an welchen Stellen sich die Metrik implementieren lässt und es werden drei verschiedene
Konzepte vorgestellt. Abschließend wird in Unterkapitel 6.3 überlegt, wie sich das System um Privacy-
Komponenten erweitern lässt und wie sich diese auf den Vertrauens-Wert auswirken.

6.1. Ist-Zustand

Abbildung 6.1 zeigt den aktuell Ist-Zustand. Apps werden von einem Entwickler geschrieben und
in den App-Marktplatz gestellt. Alternativ kann das .apk-File auch an anderer Stelle zur Verfügung
gestellt werden. Ein Benutzer kann dann über den App-Marktplatz oder die andere Quelle die App
herunterladen. Über die App-Marktplätze erhält er Feedback zur App via Ratings und Reviews. Diese
Bewertung findet durch andere Benutzer statt.

Der Benutzer hat dabei im System mit vier Agenten zu tun, denen er mehr oder weniger vertrauen
kann. Dies wären andere Benutzer, der App-Marktplatz oder eine andere Quelle von der Apps bezogen
werden können, die Entwickler von Apps und natürlich die Apps selber. Siehe dazu Abbildung 6.1.

Abbildung 6.1.: Der Ist-Zustand der Interaktion und des Vertrauens ohne Erweiterungen der Systeme.

63

6. TriTrust

Andere Benutzer bewertet Apps durch Ratings und Reviews. Dies kann in App-Marktplätzen direkt
passieren oder aber auch in inoffiziellen Blogs und Foren1. Dabei ist die Frage, obman den Bewertungen
der anderen Benutzer vertrauen kann. Man kann zwar ihre Ratings und Reviews meistens einsehen,
doch Anhaltspunkte, wie diese einzuschätzen sind, gibt es wenige.

Die Quellen von Apps - in den meisten Fällen App-Marktplätzen - können auch das Vertrauen
von Benutzern genießen. Offizielle App-Marktplätze wie der Google Play Store, der App Store von
Amazone oder der Samsung-eigene Marktplatz genießen eher das Vertrauen, dass sie schädliche Apps
ausfiltert. Einem Drittanbieter-Marktplatz könnte dabei eher Misstrauen entgegengebracht werden.
Genaue Informationen über einen Store sind dabei schwer zu bekommen und solange er auf keine
Reporte wie jenen von Uscilowski [Usc13] Zugriff hat, ist es schwer sich einen Eindruck zu machen.

Des weiteren kann der Benutzer Vertrauen in den Entwickler haben, weil man ihn beispielsweise
persönlich kennt oder bereits Apps von ihm verwendet, mit denen man zufrieden ist, beziehungsweise
denenman vertraut. Großen Entwicklern gegenüber kannman durch Gerüchte und Berichte Vertrauen
entgegenbringen oder nicht. Bei einem Entwickler, mit dem man noch keine Erfahrungen hat und der
nicht sehr bekannt ist, kann Vertrauen nur schwer aufgebaut werden.

Als Letztes kann der Benutzer natürlich Vertrauen in die Apps selber haben. Dieses kann durch
die Ratings und Reviews, Berichte oder eine Betrachtung der Permissions entstehen. Wie diese zu
bewerten sind, kann gerade weniger informierten Benutzern schwer fallen.

In Unterkapitel 6.2 wird ergründet, welches Framework aufgebaut werden kann, um die TriMetrik
umzusetzen. Dazu werden mehrere Ansätze ergründet, wie sich TriTrust umsetzen lässt.

6.2. Mögliche Konzepte

Als Ansatz für die Implementierung stehen uns drei Möglichkeiten offen. Die erste wäre eine Modifika-
tion des Betriebssystem des Smartphones oder eine App, die auf diesem läuft (M1, siehe Abbildung 6.2).
Alternativ lässt sich ein Service implementieren (M2, siehe Abbildung 6.3), der auf einem Server läuft.
Außerdem kommt ein PlugIn für einen App-Marktplatz in Frage (M3, siehe Abbildung 6.4).

In den Unterkapiteln 6.2.1 bis 6.2.3 werden die einzelnen Konzepte beschrieben, sowie ihre Vor- und
Nachteile diskutiert. Eine große Rolle spielt dabei, wie die Informationen bezogen werden können, die
für die Metrik gebraucht werden. Eine Übersicht dazu liefert Tabelle 6.1. Dabei wird unterschieden,
ob die Werte direkt vorhanden sind oder sie von einer anderen Quelle bezogen werden müssen.

6.2.1. M1 - Erweiterung des Systems

Eine Möglichkeit die vorgeschlagene Metrik zu implementieren stellt eine Implementierung direkt
auf dem dar. Wann immer der Benutzer sich bei der Installation einer App nicht sicher ist, kann er
diese dann zunächst von TriTrust prüfen lassen.

1Etwa: http://www.sebastian-pertsch.de/1911/die-besten-android-apps.html

64

6.2. Mögliche Konzepte

Abbildung 6.2.:M1 - Umsetzung als Erweiterung des Systems

Abbildung 6.3.:M2 - Umsetzung als Service.

Abbildung 6.4.:M3 - Umsetzung als Erweiterung eines App-Marktplatzes.

65

6. TriTrust

Modul a Reputation Permissions Nutzung Informations-

Rating Feedback Genutzte Vergleich mit fluss
Permissions anderen Apps

M1 indirekt indirekt direkt indirekt direkt direkt
M2 indirekt direkt direkt indirekt indirekt indirekt
M3 (in)direkt direkt direkt direkt (in)direkt indirekt

Tabelle 6.1.: Übersicht welches Modul auf welche Faktoren für die Metrik direkt oder indirekt
zugreifen können.

aVerwende Modulbezeichnungen aus Abschnitt 6.2

Der Vorteil ist, dass wenn das System direkt auf dem Smartphone sitzt, Informationen wie die
Nutzung von Apps direkt gemessen werden können. Wenn die, für die Zukunft geplante Analyse der
Erkenntnisse von TaintDroid direkt in die Metrik einfließt, könnte TaintDroid direkt in das System2

integriert werden.

Der offensichtliche Nachteil ist jedoch, dass beinahe alle Daten von externen Quellen bezogen werden
müssen. Für die Problemmeldungen wurde bereits festgelegt, dass ein eigenes System mit Server
geschaffen werden muss. Dieser Server muss dann jedoch um andere Werte wie die Nutzung aller
Benutzer, bereits errechnete Vertrauens-Werte oder die Informationen über die genutzten Permissions
der Apps erweitert werden. Damit wird ein System benötigt, welches dem Modul M2 schon sehr
ähnlich ist. Informationen über das Rating oder die Permissions der anderenAppsmüssen von externen
Quellen bezogen werden. Die Möglichkeit TriTrust direkt auf dem Smartphone zu implementieren ist
also keine ideal Lösung.

6.2.2. M2 – Service

Ein Service in Form einer Website oder einer Online-Applikation wäre eine weitere Alternative.
Wenn ein Benutzer sich bei einer App unsicher ist, kann er online nachsehen, wie es um ihren
Vertrauenswert steht.

Hierbei stehen zwei Möglichkeiten zur Verfügung, wann eine App von TriTrust bewertet wird.
Entweder wird eine App bewertet, wenn das erste Mal für sie ein Vertrauenswert angefordert wird
oder von einem oder mehreren App-Marktplätzen werden neue Apps immer direkt bewertet, wenn
sie zur Verfügung gestellt werden. Gegen die Berechnung des Vertrauenswertes beim ersten Zugriff
spricht, dass dieser erste Benutzer eventuell eine Zeit auf sein Ergebnis warten muss. Der klare
Nachteil alle Apps zu erfassen ist ein großes Aufkommen an unnötigen Daten. Die große Menge an
Apps im Play Store sorgt dafür, dass bei vielen Apps eine hohe Wahrscheinlichkeit besteht, dass sich
niemand für den Vertrauenswert dieser Apps interessiert.

2Hierfür muss nach aktuellem Stand dann jedoch das Betriebssystem verändert werden, da TaintDroid dies benötigt. Die
Lösung als App fällt folglich heraus.

66

6.2. Mögliche Konzepte

Für die Umsetzung von TriTrust als Service spricht, dass, wie im vorherigen Unterkapitel erwähnt,
einige Informationen sowieso global zwischengespeichert werden müssen und für die Problemmel-
dungen in jedem Fall ein eigenes System benötigt wird. Außerdem ermöglicht dies einen leichten
Zugriff für jede Person auf die Informationen.

Auch bei einem Service bleibt das Problem, dass Informationen über das Rating von externen Quellen
bezogen werden muss. Außerdem benötigt es eine Möglichkeit, um an Informationen über das
Nutzerverhalten der Apps zu gelangen. Diese Informationen lassen sich durch eine App auf dem
System gewinnen. Genauso müsste auf den Smartphones selber TaintDroid installiert werden.

Der Service bringt also Vorteile mit sich, doch sie hat auch ihre Nachteile, weshalb sie auch nicht die
perfekte Lösung darstellt.

6.2.3. M3 - Erweiterung des App-Marktplatzes

Als letzte Möglichkeit bietet sich noch die Erweiterung eines App-Marktplatzes an. Dem Benutzer
kann zu jeder App neben den üblichen Informationen zusätzlich der Vertrauenswert angezeigt werden.
Wie bei M2 kann alternativ darüber nachgedacht werden, dass dieser Wert erst berechnet wird, wenn
er erstmals angefordert wurde.

Der Vorteil der App-Marktplatz-Erweiterung ist, dass einige Informationen wie ein Rating und
die verlangten Permissions bereits zur Verfügung stehen. Der Google Play Store zumindest misst
auch das Nutzerverhalten der von ihm bezogenen Apps. Darüber hinaus steht im Normalfall eine
Hardware-Infrastruktur (Server etc.) bereit, die genutzt werden kann.

Doch auch dieser Ansatz hat Nachteile. Wenn der Marktplatz kein geeignetes Benutzersystem aufweist
und nur wenige Ratings zur Verfügung stehen, sinkt hier der Verlass in die Korrektheit des Ratings.
Wenn dann nicht wie beim Play Store Informationen über die Nutzung gesammelt werden, ergibt
sich hier das selbe Problem wie beim Service. TaintDroid muss natürlich auch in diesem Fall vom
Benutzer installiert werden.

Darüber hinaus werden bei diesem Ansatz wahrscheinlich nur die Apps aus diesem Marktplatz
bewertet. Es sollte als eher unwahrscheinlich betrachtet werden, dass ein Marktplatz Bewertungen für
die Apps eines Konkurrenten durchführen will. Dadurch schränkt sich für den Benutzer die Menge
der Apps ein.

Die Erweiterung des App-Marktplatzes stellt die aussichtsreichste Möglichkeit dar, doch auch sie ist
auf Grund der genannten Nachteile nicht die perfekte Lösung.

Eine Kombination aus einer lokalen Komponente auf dem Smartphone, welche die Nutzung von
Apps misst und TaintDroid mit sich bringt und entweder einem eigenständigen Service oder einer
Erweiterung für einen App-Marktplatz stellte die Lösung für TriTrust dar.

Alternativ besitzen aber auch App-Marktplätze wie der Google Play Store eine Möglichkeit die
Nutzung einer App zu messen. Wenn Benutzer keine zusätzliche Software auf ihrem Smartphone
installieren wollen, würde in diesem Fall M3 auch alleine arbeiten können. Gerade zur Einführung
und zu ersten Test bietet sich diese Möglichkeit an, da sie den wenigsten Aufwand für den Benutzer

67

6. TriTrust

Abbildung 6.5.: Mit PMP und AppGuard lassen sich die Resources beziehungsweise die Permissions
einer App einschränken..

bedeutet. Auch aus diesem Grund wurde diese Variante für den Prototypen im nächsten Kapitel
gewählt.

Bevor die Implementierung des Prototypen vorgestellt wird, wird zunächst im folgenden Unterkapitel
abschließend überlegt, wie Privacy-Systeme das Vertrauen in eine App beeinflussen können.

6.3. Kooperation mit Privacy-Systemen

In Kapitel 3 wurden bereits einige Privacy-Systeme aufgeführt. Werden diese auf dem Smartphone
installiert, kann das Vertrauen in eine App bezüglich des Gefahrenpotenzials oder des Umgangs mit
privaten Daten indirekt steigern, indem sie etwa die Permissions der App einschränken.

Ein Beispiel hierfür wären die bereits vorgestellte PMP oder AppGuard (siehe Abbildung 6.5). Vor
allem der Umgang mit privaten Daten lässt sich dadurch stark verbessern, wenn dem Benutzer
kommuniziert wird, welche Daten weitergesendet werden. Entzieht er der App die dafür benötigten
Rechte, steigert sich indirekt das Vertrauen in die App, da sie keine Bedrohung mehr für die Daten
darstellt.

Die TriMetrik überprüft bezüglich des Riskratings kritische Permissions und die meisten Problemmel-
dungen lassen sich ebenfalls auf entsprechende Permissions mappen. Dadurch kann dem Privacy-
System eine Empfehlung geliefert werden, welche Permissions verboten werden sollten. Diesen
Vorschlag muss der Benutzer dann nur noch bestätigen.

68

6.3. Kooperation mit Privacy-Systemen

Auf die Funktionalität einer App kann mit diesen Systemen kein Einfluss genommen werden. Es ist
eher möglich, dass sich diese durch die Einschränkung der Permissions verschlechtert. Natürlich
muss auch klar sein, dass das tatsächliche Vertrauen in die App an sich dadurch auch nicht steigt.
Das eigentliche Ziel dieser Arbeit sollte es ja sein einen Ansatz jenseits verschärfter und Privacy-
Maßnahmen zu finden.

In diesemKapitel wurden die möglichen Konzepte für TriTrust, die Umsetzung der TriMetrik vorgestellt
und ihre Vor- und Nachteile diskutiert. Außerdem wurde ein Zusammenspiel zwischen einem Ver-
trauenssystem und Privacy-Systemen diskutiert. Im nächsten Kapitel 7 wird nun die Implementierung
eines Prototypen des Konzepts M3 behandelt.

69

7. Implementierung

Für die Implementierung eines Prototypen von TriTrust wurde eine html5 Web Applikation gewählt,
welche als Erweiterung für einen online App-Marktplatz dienen kann. Dazu wird in Unterkapitel 7.1
beschrieben, wie die Erweiterung im App-Marktplatz eingesetzt werden kann und welche Schnittstel-
len zwischen der Erweiterung und dem Marktplatz bestehen. Unterkapitel 7.2 gibt tiefere Einsicht in
den Aufbau des Prototypen.

7.1. Ansatz und Schnittstellen

Die Erweiterung eines App-Marktplatzes in Form einer Web Applikation bietet einen guten An-
satzpunkt. Dank html5 ist der Prototyp plattformunabhängig einsetzbar und kann leicht von allen
Online-App-Marktplätzen verwendet werden. Dabei bietet es sich an, etwa wie in Abbildung 7.1
gezeigt, den Vertrauenswert neben anderen Informationen, wie den Ratings, anzuzeigen. Für weitere
Details muss der Benutzer dann auf die Anzeige klicken und wird weitergeleitet.

Für die Berechnung des Vertrauenswertes und der Kategorienwurde dieMetrikmit Hilfe von Javascript
implementiert. Das dafür benötigte Input wie die Ratings, die Permissions und (wenn vorhanden) die
Nutzung werden an die Skripte übergeben und der Vertrauenswert für die drei Bereiche berechnet
und kann dann auf den Servern des App-Marktplatzes gespeichert werden.

Die Eingabe der Gewichtung für die drei Bereiche und das Absenden von Problemmeldungen finden
bei dem Prototypen über die Web Applikation statt, könnten aber auch an anderer Stelle im App-
Marktplatz eingebaut werden.

Im nächsten Unterkapitel werden die Interaktionsmöglichkeiten des Benutzers mit dem Prototypen
beschrieben.

Abbildung 7.1.:Möglichkeit das Rating im Google Play Store anzuzeigen.

71

7. Implementierung

Abbildung 7.2.: Die Hauptanzeige gibt eine Übersicht des gesamten Vertrauenswertes und der ein-
zelnen drei Bereiche.

7.2. Features

Der Hauptbildschirm der Hauptansicht (siehe Abbildung 7.2) bietet eine Übersicht des Vertrauens-
wertes sowie der Kategorie der App und auch der einzelnen Bereiche. Dort kann über die Tabs
der Hauptansicht die Gewichtung für die Vertrauensberechnung festgelegt und Problemmeldungen
bezüglich der App abgesendet werden.

Über die Detail-Buttons gelangt man in ein ausführlichere Begründung, wie der Vertrauenswert
zustande kam. Ein Beispiel für das Riskrating einer Appmit Begründung findet sich in Abbildung 7.3.

Die Studie von Yan et al. [YLNY13] zeigt, dass wenn für eine App ein Vertrauenswert angezeigt wird,
oft auch Interesse besteht, wie dieser zustande kam. Dabei können beim Gefahrenpotenzial und dem
Umgang mit privaten Daten konkrete Hinweise bezüglich der Permissions und der Problemmeldungen
gegeben werden, während die Funktionalität (abgesehen von den Problemmeldungen) eher nur
Spekulationen zulässt, wenn es um Ranking und Nutzung geht.

Die Anzahl der Bildschirme ist überschaubar und die Navigation sollte dem Benutzer leicht fallen.
Dadurch ist eine schnelle aber doch detaillierte Information des Benutzers über den Vertrauenswert
möglich.

Im nächsten Kapitel findet eine Bewertung der TriMetrik statt, ob die gesetzten Ziele dieser Arbeit
erfüllt wurden und wo es noch offene Punkte gibt.

72

7.2. Features

Abbildung 7.3.: Zu den einzelnen Bereichen gibt es ausführliche Informationen, wie der Vertrauens-
wert zustande kam.

73

8. Bewertung

Das Ziel dieser Arbeit war es eine Vertrauens-Metrik für Apps aufzustellen. In diesem Kapitel soll nun
betrachtet werden, wie weit die Metrik die Anforderungen erfüllt, die sich an die Eigenschaften von
Vertrauen, welche in Kapitel 2.1.1 beschrieben wurden, stellen. Dies geschieht in Unterkapitel 8.1. Au-
ßerdem findet in Unterkapitel 8.2 ein Vergleich mit der aufgestellten Definition2.3.2 für das Vertrauen
in eine App statt, ob auch diese umgesetzt wurde.

8.1. Erfüllung der Eigenschaften

Zehn Eigenschaften für Vertrauen wurden in Unterkapitel 2.1.1 aufgestellt. Im Folgenden wird nun
betrachtet, wie weit die TriMetrik diese erfüllt.

(1) Vertrauen ist gerichtet: Der Benutzer vertraut einer App, die er benutzen will, sich aber nicht
sicher ist. Die Richtung des Vertrauens ist klar in der TriMetrik.

(2) Vertrauen ist nicht symmetrisch: Die Rückrichtung, dass eine App dem Benutzer vertraut ist
in der TriMetrik nicht vorgesehen, also kann keine Symmetrie bestehen.

(3) Vertrauen kann transitiv sein: Im Falle der Ratings und der Problemmeldungen vertraut der
Benutzer den Einschätzungen anderer Benutzer.Wieweit dieses transitive Vertrauen gerechtfertigt
ist, wird dabei in der TriMetrik mit berechnet.

(4) Vertrauen ist subjektiv: Das Vertrauen in die App ist subjektiv in Hinsicht auf die Ratings und
die meisten Problemmeldungen, die bezüglich der App abgegeben werden. Hinzu kommen in der
TriMetrik aber auch Analysewerte von den Permissions und der Flussanalyse.

(5) Vertrauen ist kontextabhängig: Jeder Benutzer kann andere Vorstellungen haben, welcher der
drei Bereiche der TriMetrik für ihn wichtig ist. Durch die Gewichtung kann er darauf Einfluss
nehmen und den Wert so in Richtung seiner Vorstellungen anpassen.

(6) Vertrauen istmessbar: Die TriMetrik berechnet einen Vertrauenswert und Vertrauenskategorien
für eine App aus messbaren Eigenschaften wie Werte der Ratings, Anzahl der Permissions etc.

(7) Vertrauen ist abhängig von der Vergangenheit: Vergangene Erfahrungenmit der App können
von Benutzern über die Problemmeldung oder das Rating in den Vertrauenswert der TriMetrik
einfließen.

(8) Vertrauen ist dynamisch: Durch neue Ratings oder erhaltene Problemmeldungen kann der Ver-
trauenswert einer App den Erfahrungen der Benutzer mit der App von der TriMetrik entsprechend
angepasst werden und ändert sich damit dynamisch.

75

8. Bewertung

(9) Vertrauen kann eine zusammengesetzte Eigenschaft sein: Das Vertrauen in die App setzt
sich in der TriMetrik aus drei Bereichen zusammen, welche wiederum von unterschiedlichen
Faktoren bestimmt werden.

(10) Unwissen verlangt Vertrauen: Der Hauptgedanke hinter der TriMetrik ist es, einem Benutzer
eine Empfehlung geben zu können, ob er eine App installieren soll oder nicht. Da er die App
davor noch nicht verwendet hat, hat er keine Ahnung wie sich diese verhalten wird und so dient
ihm der Vertrauenswert als Hilfsmittel zur Entscheidungsfindung.

Alle aufgestellten Eigenschaften von Vertrauen werden also von der TriMetrik abgedeckt oder sind
durch die Umstände gegeben. Die TriMetrik entspricht also soweit den Anforderungen.

8.2. Erfüllung der Definition

Neben den Eigenschaften für Vertrauen wurde in Kapitel 2 auch eine Definition für das Vertrauen in
eine App aufgestellt. Ob die TriMetrik mit den Anforderungen der Definition übereinstimmt soll nun
in diesem Unterkapitel betrachtet werden.

Zur Erinnerung sei hier noch einmal die Definition gegeben: „Einer App wird vertraut, wenn sie
die versprochenen Funktionalitäten bietet, private Daten nicht gegen den Wunsch des Benutzers
weitergibt und möglichst geringes Potenzial besitzt, um Schaden anzurichten.“

Ob eine App die versprochene Funktionalität bietet, erfährt der Benutzer aus der Analyse der TriMetrik
und des Vertrauenswertes beziehungsweise der Vertrauenskategorie der Funktionalität der App.

Über den Umgang mit privaten Daten erhält der Benutzer ebenfalls Rückmeldung von der TriMetrik.
Zusätzlich wurde in Kapitel 6 diskutiert, wie sich durch die Kooperation mit einem Privacy-System,
wie beispielsweise PMP, die Weitergabe der Daten einschränken lässt und der App dann insofern
vertraut werden kann, dass es ihr nicht mehr möglich ist diese Daten weiterzusenden.

Das Potenzial einer App Schaden anzurichten wird ebenfalls von der TriMetrik berechnet und dem
Benutzer eine Warnung über ungewöhnliche Permissions oder gemeldete Fehlverhalten der App gibt.
Kritische Permissions können dabei wiederum von einem Privacy-System eingeschränkt werden,
um das Vertrauen zu steuern. Jedoch muss auch von Seite des Betriebssystems ein gewisser Grad an
Sicherheit garantiert werden.

Die TriMetrik erfüllt also auch die Anforderungen, welche der Definition entnommen wurden.

76

9. Zusammenfassung und Ausblick

Zunächst wurden in dieser Arbeit Definitionen von Vertrauen betrachtet, um seine Eigenschaften zu
ergründen. Mit Hilfe dieser wurde eine eigene Definition für das Vertrauen in eine App aufgestellt,
welche den allgemeinen Eigenschaften von Vertrauen, wie auch den speziellen Anforderungen,
die sich in Bezug auf eine App stellen, entspricht. Dabei wurden die drei Bereiche Funktionalität,
Gefahrenpotenzial und Umgang mit privaten Daten als für das Vertrauen in eine App elementar
erkannt.

Nachdem eine Übersicht über verwandte Arbeiten geliefert wurde, wurden anschließend bestehende
Vertrauenssysteme tiefgehend betrachtet und zusammen mit Analysesystemen bezüglich der Permis-
sions von Apps und dem Kontroll- sowie Datenfluss auf ihre Brauchbarkeit für eine eigene Metrik
untersucht. Um das Vertrauen in eine App für den Benutzer brauchbar darzustellen, wird auf eine
Kombination aus prozentualer Skala und Kategorien gebaut. Für die Berechnung des Vertrauenswertes
wurden verschieden Faktoren wie Ratings, Permissions und Problemmeldungen den drei Bereichen
zugeordnet.

Mit der TriMetrik wurde dann eine Metrik aufgestellt, um diesen Vertrauenswert berechnen zu können.
Dazu wurden unterschiedliche Funktionen von den vorgestellten Metriken entliehen, aber auch eigene
Funktionen aus den gewonnenen Erkenntnissen aufgestellt.

Die drei Bereiche Funktionalität, Gefahrenpotenzial und Zugriff auf private Daten werden allesamt
gesondert betrachtet und für jeden separat der Vertrauenswert und die Vertrauenskategorie berechnet.
Diese Aufteilung hebt die TriMetrik von allen in dieser Arbeit untersuchten Ansätzen ab.

Für die drei Bereiche wurden Faktoren erörtert, die genutzt werden können um das Vertrauen in
diese zu ergründen. Dabei wurden Vertrauensmetriken entliehen, welche an anderer Stelle bereits
Verwendung fanden und deren Effektivität bestätigt wurde.

An manchen Punkten wurden die Metriken angepasst und da große Studien den Rahmen dieser
Arbeit sprengen, kann nur gemutmaßt werden, ob die Effektivität erhalten bleibt. Gerade in Bezug auf
das Riskrating und die Nutzung einer App ist der eigene Ansatz eine deutlich einfachere Version im
Vergleich zu anderenMetriken und sollte sich dieser als untauglich erweisen ist darüber nachzudenken,
eine komplexere Metrik zu verwenden.

Für das Rating einer App und die Problemmeldungen werden die hauptsächlich subjektiven Wahr-
nehmungen anderer Benutzer als Maß genommen. Dabei können auch die bekannten Probleme
von Reputationssystemen auftreten. Die Metrik baut darauf auf eine hohe Anzahl von Ratings und
Problemmeldungen zu bekommen, wie sie etwa die große Benutzerzahl des Google Play Store bietet,
wodurch ein Angreifer eine sehr große Zahl an falschen Bewertungen abgeben muss, um ins Gewicht
zu fallen. Außerdem werden Problemmeldungen mit einem Zeitfaktor versehen, sodass viele Bewer-
tungen in kurzer Zeit, wobei es sich um ein typisches Angriffsschema handelt, kaum einen Einfluss

77

9. Zusammenfassung und Ausblick

auf den Vertrauenswert besitzen. Diese Maßnahmen dienen um offensichtliche Angriffe abzuwehren.
Es liegt jenseits der Möglichkeiten dieser Arbeit subtiler Angriffe festzustellen.

Mögliche Konzepte zur Umsetzung der Metrik wurden mit TriTrust präsentiert. Dabei wurde über die
Vor- und Nachteile der Umsetzung als Erweiterung des OS auf dem Smartphone, als Middleware oder
als Erweiterung eines App-Marktplatzes diskutiert. Eine Kombination aus einer lokalen Komponente
und einer globalen Komponente in Form der Middleware oder dem App-Marktplatz wurde als ideal
betrachtet.

Ein Prototyp für die Erweiterung eines App-Marktplatzes wurde dann in Form einer Web App
vorgestellt.

Abschließend fand eine Bewertung der Metrik statt, ob sie sie den aufgestellten Anforderungen
und Definitionen entspricht. Das Hauptziel, eine Metrik, welche die drei Bereiche abdeckt und dem
Benutzer eine brauchbare Rückmeldung gibt wurde erfüllt. Bezüglich einiger Funktionen für die
Berechnung der Metrik muss jedoch noch Untersucht werden, wie zuverlässig und korrekt die
Ergebnisse sind.

Ausblick

Auch wenn die TriMetrik an einigen Stellen auf andere Metriken zurückgreift, deren Aussagekraft
bereits getestet wurde, wurden für einige Faktoren neue Berechnungen vorgeschlagen. Wie bereits
genannt wurden etwa für die Nutzung oder das Riskrating neue Funktionen aufgestellt und deren
Aussagekraft muss durch ausführliche Studien gestützt werden, die den Rahmen einer Bachelorarbeit
sprengen.

Informationen, die dabei herausgefunden werden sollten, wären:

• Wie sieht die Wahrscheinlichkeit von kritischen Permissions in den Kategorien aus und wie
kann man damit das Vertrauen auf Grund ungewöhnlich seltener Permissions berechnen?

• Ergibt sich durch die Nutzung einer Permission ein nachvollziehbarer Vertrauenswert und
sollte die Nutzung bei bestimmten Kategorien eine geringere oder gar keine Rolle spielen?

• Mit wie vielen Problemmeldungen für eine App ist nach einer akzeptablen Zeit zu rechnen,
sodass sich der Vertrauenswert durch Problemmeldungen einpendeln kann?

• Spiegelt die Gewichtung der gemeldeten Fehlverhalten einer Problemmeldung die Vorstellungen
der breiten Nutzermasse wieder?

Mit Hilfe von empirischen Studien ließe sich die Effektivität der App beweisen, beziehungsweise
weiter verfeinern, um eine genauere Aussage treffen zu können.

Eine Beeinflussung des Vertrauens in eine App durch den Entwickler dieser oder den App-Marktplatz,
auf welchem sie angeboten wird, könnte weiter untersucht werden, nachdem es in dieser Arbeit nur
angesprochen wurde.

78

Auch wenn Veränderungen der Permissions von Android eher selten sind, können diese doch von
Zeit zu Zeit auftreten, wie an dem veralteten Regelsatz von Kirin zu sehen war. Eine Anpassung der
kritischen Listen an geänderte Permissions sollte durchgeführt werden, um die Metrik aktuell zu
halten.

Ebenfalls eine stetige Weiterentwicklung findet bei TaintDroid statt und so sollte diese beobachtet
werden. Über die direkte Einbindung in das System wurde bereits diskutiert und durch diese automa-
tische Analyse wäre die Abhängigkeit von Problemmeldungen der Benutzer kleiner. Andererseits
könnte der Benutzer sich auch überwacht fühlen. Eine Benutzerstudie zur Bereitschaft ein solches
System auf seinem Smartphone zu installieren, aber auch allgemein TaintDroid zu nutzen, könnte für
Klarheit sorgen.

Eine weitere Möglichkeit für die Zukunft stellt die Erweiterung für das PMP-System dar. In diesem
fallen die Permissions heraus und werden wie angesprochen durch Resources ersetzt. Da sich der
Satz der Resources ständig dynamisch erweitert, muss über eine Möglichkeit nachgedacht werden,
wie diese sich in kritische Kategorien einordnen ließen und ein Vergleich gezogen werden kann.

79

A. Anhang

A.1. Kritische Permissions

Dies ist eine Übersicht über die kritischen Permissions, welche verhindern, dass eine Applikation
in den Bereichen Gefahrenpotenzial und Umgang mit privaten Daten in die Kategorie K1 fallen
kann, respektive einen Vertrauenswert von 100% in diesen Bereichen erreicht. Die Permissions
und ihre Bedeutung wurden der Website android.com1 entnommen, Stand 01. Dezember 2014 für
Android 4.4.

CALL_PHONEa make a phone call w/o user’s confirmation
INTERNETa open network sockets
MOUNT_UNMOUNT_FILESYSTEMS mount / unmount file sys for removable storage.
SEND_SMSa send SMS messages
WAKE_LOCK Allows using PowerManager WakeLocks to keep

processor from sleeping or screen from dimming
WRITE_CALENDAR write the user’s calendar data.
WRITE_CONTACTS write the user’s contacts data.
WRITE_HISTORY_BOOKMARKSb write the user’s browsing history and bookmarks.
WRITE_SMS write SMS messages.
WRITE_EXTERNAL_STORAGE write to external storage
NFC perform I/O operations over NFC
GET_ACCOUNTS access the list of accounts in the Accounts Service
BLUETOOTH connect to paired bluetooth devices
BLUETOOTH_ADMIN discover and pair bluetooth devices

Tabelle A.1.: Übersicht der kritischen Permissions, die eine Bedrohung für die Sicherheit des Smart-
phones darstellen können.

aDiese Permissions können den Benutzer Geld kosten.
bDiese Permission wird von vielen Schadhaften aber kaum bis keinen gewöhnlichen Apps verlangt, [SLG+12].

1http://developer.android.com/reference/android/Manifest.permission.html

81

A. Anhang

ACCESS_COARSE_LOCATION access to coarse (e.g., Cell_ID, WiFi) location
ACCESS_FINE_LOCATION access to fine (e.g., GPS) location
PROCESS_OUTGOING_CALLS monitor, modify, or abort outgoing calls.
READ_CALENDAR read the user’s calendar data.
READ_CONTACTS read the user’s contacts data.
READ_HISTORY_BOOKMARKSa read the user’s browsing history and bookmarks.
READ_PHONE_STATE read only access to phone state.
READ_SMS read SMS messages.
RECEIVE_MMS monitor, record, or process MMS msgs.
RECEIVE_SMS monitor, record, or process SMS msgs.
RECORD_AUDIO record audio.
RECEIVE_WAP_PUSH monitor incoming WAP messages.
READ_LOGS read low_level log msgs.
READ_CALL_LOG Allows an application to read the user’s call log.
READ_VOICEMAIL Allows an application to read voicemails in the system.

Tabelle A.2.: Übersicht der kritischen Permissions, die eine Bedrohung für privaten Daten des Be-
nutzers auf dem Smartphone darstellen können.

aDiese Permission wird von vielen Schadhaften aber kaum bis keinen gewöhnlichen Apps verlangt, [SLG+12]

82

Literaturverzeichnis

[AG07] D. Artz, Y. Gil. A survey of trust in computer science and the Semantic Web. Web
Semantics: Science, Services and Agents on the World Wide Web, 5(2):58 – 71, 2007. doi:
http://dx.doi.org/10.1016/j.websem.2007.03.002. URL http://www.sciencedirect.com/
science/article/pii/S1570826807000133. Software Engineering and the Semantic
Web. (Zitiert auf Seite 11)

[Bac12] M. Backes. New Approach Uncovers Data Abuse on Mobile End Devices. Technischer
Bericht, University Saarland, 2012. (Zitiert auf Seite 10)

[BCMO12] D. Barrera, J. Clark, D. McCarney, P. C. van Oorschot. Understanding and Improving App
Installation Security Mechanisms Through Empirical Analysis of Android. In Proceedings
of the Second ACM Workshop on Security and Privacy in Smartphones and Mobile Devices,
SPSM ’12, S. 81–92. ACM, New York, NY, USA, 2012. doi:10.1145/2381934.2381949. URL
http://doi.acm.org/10.1145/2381934.2381949. (Zitiert auf Seite 28)

[BDD+11] S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.-R. Sadeghi, B. Shastry. Practical and
Lightweight Domain Isolation on Android. In Proceedings of the 1st ACM Workshop
on Security and Privacy in Smartphones and Mobile Devices, SPSM ’11, S. 51–62. ACM,
New York, NY, USA, 2011. doi:10.1145/2046614.2046624. URL http://doi.acm.org/10.

1145/2046614.2046624. (Zitiert auf Seite 24)

[BGH+12] M. Backes, S. Gerling, C. Hammer, M.Maffei, P. von Styp-Rekowsky. AppGuard - real-time
policy enforcement for third-party applications. Technischer Bericht, SaarlÃ¤ndische
UniversitÃ¤ts- und Landesbibliothek, Postfach 151141, 66041 SaarbrÃ¼cken, 2012. URL
http://scidok.sulb.uni-saarland.de/volltexte/2012/4902. (Zitiert auf Seite 23)

[BGH+13] M. Backes, S. Gerling, C. Hammer, M. Maffei, P. von Styp-Rekowsky. AppGuard–
Enforcing User Requirements on Android Apps. In Tools and Algorithms for the Con-
struction and Analysis of Systems, S. 543–548. Springer, 2013. (Zitiert auf den Seiten 10
und 23)

[BMCO14] D. Barrera, D. McCarney, J. Clark, P. C. van Oorschot. Baton: Certificate Agility for
Androids Decentralized Signing Infrastructure. In Proceedings of the 2014 ACM conference
on Security and privacy in wireless & mobile networks, S. 1–12. ACM, 2014. (Zitiert auf
Seite 28)

[BRSS11] A. R. Beresford, A. Rice, N. Skehin, R. Sohan. MockDroid: Trading Privacy for Application
Functionality on Smartphones. In Proceedings of the 12th Workshop on Mobile Computing
Systems and Applications, HotMobile ’11, S. 49–54. ACM, New York, NY, USA, 2011.

83

Literaturverzeichnis

doi:10.1145/2184489.2184500. URL http://doi.acm.org/10.1145/2184489.2184500.
(Zitiert auf Seite 23)

[CHY12] P. P. Chan, L. C. Hui, S. M. Yiu. DroidChecker: Analyzing Android Applications for
Capability Leak. In Proceedings of the Fifth ACM Conference on Security and Privacy in
Wireless and Mobile Networks, WISEC ’12, S. 125–136. ACM, New York, NY, USA, 2012.
doi:10.1145/2185448.2185466. URL http://doi.acm.org/10.1145/2185448.2185466.
(Zitiert auf Seite 45)

[CKW03] C. L. Corritore, B. Kracher, S. Wiedenbeck. On-line trust: concepts, evolving themes,
a model. International Journal of Human-Computer Studies, 58(6):737 – 758, 2003. doi:
http://dx.doi.org/10.1016/S1071-5819(03)00041-7. URL http://www.sciencedirect.

com/science/article/pii/S1071581903000417. Trust and Technology. (Zitiert auf
Seite 16)

[CYA12] P. H. Chia, Y. Yamamoto, N. Asokan. Is This App Safe?: A Large Scale Study onApplication
Permissions and Risk Signals. In Proceedings of the 21st International Conference on
World Wide Web, WWW ’12, S. 311–320. ACM, New York, NY, USA, 2012. doi:10.1145/
2187836.2187879. URL http://doi.acm.org/10.1145/2187836.2187879. (Zitiert auf
den Seiten 26, 44 und 47)

[DDSW11] L. Davi, A. Dmitrienko, A.-R. Sadeghi, M. Winandy. Privilege Escalation Attacks on
Android. In M. Burmester, G. Tsudik, S. Magliveras, I. Ilić, Herausgeber, Information
Security, Band 6531 von Lecture Notes in Computer Science, S. 346–360. Springer Berlin
Heidelberg, 2011. doi:10.1007/978-3-642-18178-8_30. URL http://dx.doi.org/10.

1007/978-3-642-18178-8_30. (Zitiert auf Seite 25)

[DMM+12] G. Dini, F. Martinelli, I. Matteucci, M. Petrocchi, A. Saracino, D. Sgandurra. A Multi-
criteria-Based Evaluation of Android Applications. In C. Mitchell, A. Tomlinson, Her-
ausgeber, Trusted Systems, Band 7711 von Lecture Notes in Computer Science, S. 67–
82. Springer Berlin Heidelberg, 2012. doi:10.1007/978-3-642-35371-0_7. URL http:

//dx.doi.org/10.1007/978-3-642-35371-0_7. (Zitiert auf Seite 27)

[DMM+13] G. Dini, F. Martinelli, I. Matteucci, M. Petrocchi, A. Saracino, D. Sgandurra. Evaluating
the Trust of Android Applications through an Adaptive and Distributed Multi-criteria
Approach. In Trust, Security and Privacy in Computing and Communications (TrustCom),
2013 12th IEEE International Conference on, S. 1541–1546. 2013. doi:10.1109/TrustCom.
2013.189. (Zitiert auf den Seiten 27, 30, 34, 38, 39, 40, 48, 59 und 60)

[DSP+11] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, D. S. Wallach. QUIRE: Lightweight Provenance
for Smart Phone Operating Systems. In USENIX Security Symposium. 2011. (Zitiert auf
Seite 24)

[EGC+10] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, A. N. Sheth. TaintDroid: An
Information-flow Tracking System for Realtime Privacy Monitoring on Smartphones. In
Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation,
OSDI’10, S. 1–6. USENIX Association, Berkeley, CA, USA, 2010. URL http://dl.acm.

org/citation.cfm?id=1924943.1924971. (Zitiert auf den Seiten 35 und 46)

84

Literaturverzeichnis

[EGC+14] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, A. N. Sheth. TaintDroid:
An Information Flow Tracking System for Real-time Privacy Monitoring on Smartphones.
Commun. ACM, 57(3):99–106, 2014. doi:10.1145/2494522. URL http://doi.acm.org/

10.1145/2494522. (Zitiert auf den Seiten 26, 35 und 46)

[EOM09] W. Enck, M. Ongtang, P. McDaniel. On Lightweight Mobile Phone Application Certificati-
on. In Proceedings of the 16th ACM Conference on Computer and Communications Security,
CCS ’09, S. 235–245. ACM, New York, NY, USA, 2009. doi:10.1145/1653662.1653691. URL
http://doi.acm.org/10.1145/1653662.1653691. (Zitiert auf den Seiten 26 und 44)

[FBM12] D. Fraga, Z. Bankovic, J. M. Moya. A Taxonomy of Trust and Reputation System Attacks.
In Trust, Security and Privacy in Computing and Communications (TrustCom), 2012 IEEE
11th International Conference on, S. 41–50. IEEE, 2012. (Zitiert auf Seite 21)

[FCH+11] A. P. Felt, E. Chin, S. Hanna, D. Song, D. Wagner. Android Permissions Demystified.
In Proceedings of the 18th ACM Conference on Computer and Communications Security,
CCS ’11, S. 627–638. ACM, New York, NY, USA, 2011. doi:10.1145/2046707.2046779. URL
http://doi.acm.org/10.1145/2046707.2046779. (Zitiert auf Seite 27)

[FGW11] A. P. Felt, K. Greenwood, D. Wagner. The effectiveness of application permissions. In
Proceedings of the 2nd USENIX conference on Web application development, S. 7–7. USENIX
Association, 2011. (Zitiert auf Seite 26)

[Gam88] D. Gambetta. Trust: Making and breaking cooperative relations. 1988. (Zitiert auf
Seite 13)

[GHS08] A. Gutscher, J. Heesen, O. Siemoneit. Possibilities and Limitations of Modeling Trust and
Reputation. WSPI, 332:50–61, 2008. (Zitiert auf Seite 15)

[GM10a] A. Girardello, F. Michahelles. AppAware: Which Mobile Applications Are Hot? In
Proceedings of the 12th International Conference on Human Computer Interaction with
Mobile Devices and Services, MobileHCI ’10, S. 431–434. ACM, New York, NY, USA, 2010.
doi:10.1145/1851600.1851698. URL http://doi.acm.org/10.1145/1851600.1851698.
(Zitiert auf Seite 41)

[GM10b] A. Girardello, F. Michahelles. Explicit and Implicit Ratings for Mobile Applications. In
GI Jahrestagung (1), S. 606–612. 2010. (Zitiert auf den Seiten 25 und 41)

[GS00] T. Grandison, M. Sloman. A survey of trust in internet applications. Communications
Surveys Tutorials, IEEE, 3(4):2–16, 2000. doi:10.1109/COMST.2000.5340804. (Zitiert auf
Seite 14)

[HCH08] F. K. Hussain, E. Chang, O. Hussain. A Robust Methodology for Prediction of Trust and
Reputation Values. In Proceedings of the 2008 ACM Workshop on Secure Web Services,
SWS ’08, S. 97–108. ACM, New York, NY, USA, 2008. doi:10.1145/1456492.1456507. URL
http://doi.acm.org/10.1145/1456492.1456507. (Zitiert auf Seite 22)

85

Literaturverzeichnis

[HCLH11] G. Huerta-Canepa, D. Lee, S. Y. Han. Trust ME: A Trust Decision Framework for
Mobile Environments. In Trust, Security and Privacy in Computing and Communica-
tions (TrustCom), 2011 IEEE 10th International Conference on, S. 464–471. 2011. doi:
10.1109/TrustCom.2011.60. (Zitiert auf Seite 22)

[HZNR09] K. Hoffman, D. Zage, C. Nita-Rotaru. A Survey of Attack and Defense Techniques for
Reputation Systems. ACM Comput. Surv., 42(1):1:1–1:31, 2009. doi:10.1145/1592451.
1592452. URL http://doi.acm.org/10.1145/1592451.1592452. (Zitiert auf Seite 21)

[JK07] Z. Jiang, S. Kim. Trust Model for Mobile Devices in Ubiquitous Environment. In Procee-
dings of the 1st International Conference on Network-based Information Systems, NBiS’07, S.
426–434. Springer-Verlag, Berlin, Heidelberg, 2007. URL http://dl.acm.org/citation.
cfm?id=1776510.1776563. (Zitiert auf Seite 22)

[JMV+12] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster, T. Millstein. Dr.
Android and Mr. Hide: Fine-grained Permissions in Android Applications. In Proceedings
of the Second ACM Workshop on Security and Privacy in Smartphones and Mobile Devices,
SPSM ’12, S. 3–14. ACM, New York, NY, USA, 2012. doi:10.1145/2381934.2381938. URL
http://doi.acm.org/10.1145/2381934.2381938. (Zitiert auf den Seiten 10 und 23)

[Jøs96] A. Jøsang. The Right Type of Trust for Distributed Systems. In Proceedings of the 1996
Workshop on New Security Paradigms, NSPW ’96, S. 119–131. ACM, New York, NY, USA,
1996. doi:10.1145/304851.304877. URL http://doi.acm.org/10.1145/304851.304877.
(Zitiert auf Seite 14)

[KF13] M. Kuehnhausen, V. Frost. Trusting smartphone Apps? To install or not to install,
that is the question. In Cognitive Methods in Situation Awareness and Decision Support
(CogSIMA), 2013 IEEE International Multi-Disciplinary Conference on, S. 30–37. 2013. doi:
10.1109/CogSIMA.2013.6523820. (Zitiert auf den Seiten 27, 30, 34, 37, 38, 44, 53, 54, 55
und 58)

[LDRL09] X. Liu, A. Datta, K. Rzadca, E.-P. Lim. StereoTrust: A Group Based Personalized Trust
Model. In Proceedings of the 18th ACM Conference on Information and Knowledge Mana-
gement, CIKM ’09, S. 7–16. ACM, New York, NY, USA, 2009. doi:10.1145/1645953.1645958.
URL http://doi.acm.org/10.1145/1645953.1645958. (Zitiert auf Seite 22)

[Mar94] S. P. Marsh. Formalising trust as a computational concept. Thesis or dissertation, University
of Stirling, 1994. URL http://hdl.handle.net/1893/2010. (Zitiert auf Seite 21)

[MB09] Z. Malik, A. Bouguettaya. RATEWeb: Reputation Assessment for Trust Establish-
ment Among Web Services. The VLDB Journal, 18(4):885–911, 2009. doi:10.1007/
s00778-009-0138-1. URL http://dx.doi.org/10.1007/s00778-009-0138-1. (Zitiert
auf Seite 22)

[MMH02a] L. Mui, M. Mohtashemi, A. Halberstadt. A computational model of trust and reputation.
In System Sciences, 2002. HICSS. Proceedings of the 35th Annual Hawaii International
Conference on, S. 2431–2439. 2002. doi:10.1109/HICSS.2002.994181. (Zitiert auf den
Seiten 16, 18 und 21)

86

Literaturverzeichnis

[MMH02b] L. Mui, M. Mohtashemi, A. Halberstadt. Notions of Reputation in Multi-agents Systems:
A Review. In Proceedings of the First International Joint Conference on Autonomous Agents
and Multiagent Systems: Part 1, AAMAS ’02, S. 280–287. ACM, New York, NY, USA,
2002. doi:10.1145/544741.544807. URL http://doi.acm.org/10.1145/544741.544807.
(Zitiert auf Seite 21)

[pew12] Privacy And DataManagment OnMobile Devices, 2012. URL http://www.pewinternet.
org/files/old-media//Files/Reports/2012/PIP_MobilePrivacyManagement.

pdf. (Zitiert auf den Seiten 18 und 34)

[PGS+12] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru, I. Molloy. Using
Probabilistic Generative Models for Ranking Risks of Android Apps. In Proceedings
of the 2012 ACM Conference on Computer and Communications Security, CCS ’12, S.
241–252. ACM, New York, NY, USA, 2012. doi:10.1145/2382196.2382224. URL http:

//doi.acm.org/10.1145/2382196.2382224. (Zitiert auf den Seiten 27 und 44)

[RCCF12] G. Russello, M. Conti, B. Crispo, E. Fernandes. MOSES: Supporting Operation Modes on
Smartphones. In Proceedings of the 17th ACM Symposium on Access Control Models and
Technologies, SACMAT ’12, S. 3–12. ACM, New York, NY, USA, 2012. doi:10.1145/2295136.
2295140. URL http://doi.acm.org/10.1145/2295136.2295140. (Zitiert auf Seite 24)

[SLG+12] B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, I. Molloy. Android Permissions:
A Perspective Combining Risks and Benefits. In Proceedings of the 17th ACM Symposium
on Access Control Models and Technologies, SACMAT ’12, S. 13–22. ACM, New York, NY,
USA, 2012. doi:10.1145/2295136.2295141. URL http://doi.acm.org/10.1145/2295136.
2295141. (Zitiert auf den Seiten 26, 44, 81 und 82)

[SM13] C. Stach, B.Mitschang. PrivacyManagement forMobile Platforms –AReview of Concepts
and Approaches. In Mobile Data Management (MDM), 2013 IEEE 14th International
Conference on, Band 1, S. 305–313. 2013. doi:10.1109/MDM.2013.45. (Zitiert auf den
Seiten 10 und 24)

[SM+14] C. Stach, B. Mitschang, et al. Design and Implementation of the Privacy Management
Platform. In -. Auenwald: IEEE Computer Society Conference Publishing Services, 2014.
(Zitiert auf den Seiten 10 und 24)

[ST14] M. Sun, G. Tan. NativeGuard: protecting android applications from third-party native
libraries. In Proceedings of the 2014 ACM conference on Security and privacy in wireless &
mobile networks, S. 165–176. ACM, 2014. (Zitiert auf Seite 24)

[Sta13a] C. Stach. How to Assure Privacy on Android Phones and Devices? In Mobile Data
Management (MDM), 2013 IEEE 14th International Conference on, Band 1, S. 350–352. 2013.
doi:10.1109/MDM.2013.54. (Zitiert auf den Seiten 10 und 24)

[Sta13b] C. Stach. Wie funktioniert Datenschutz auf Mobilplattformen? In GI-Jahrestagung, S.
2072–2086. 2013. (Zitiert auf den Seiten 10 und 24)

[Usc13] B. Uscilowski. Mobile Adware and Malware Analysis, 2013. (Zitiert auf den Seiten 10, 48
und 64)

87

Literaturverzeichnis

[XSA12] R. Xu, H. Saïdi, R. Anderson. Aurasium: Practical Policy Enforcement for Android
Applications. In USENIX Security Symposium, S. 539–552. 2012. (Zitiert auf Seite 23)

[YH08] Z. Yan, S. Holtmanns. Trust modeling and management: from social trust to digital trust.
Computer security, privacy and politics: current issues, challenges and solutions, S. 290–323,
2008. (Zitiert auf den Seiten 15 und 17)

[YLNY13] Z. Yan, C. Liu, V. Niemi, G. Yu. Exploring the Impact of Trust Information Visualization
on Mobile Application Usage. Personal Ubiquitous Comput., 17(6):1295–1313, 2013. doi:
10.1007/s00779-013-0636-4. URL http://dx.doi.org/10.1007/s00779-013-0636-4.
(Zitiert auf den Seiten 11, 27, 30, 34, 41, 56 und 72)

[YZD12] Z. Yan, P. Zhang, R. Deng. TruBeRepec: a trust-behavior-based reputation and re-
commender system for mobile applicationsnull. Personal and Ubiquitous Computing,
16(5):485–506, 2012. doi:10.1007/s00779-011-0420-2. URL http://dx.doi.org/10.

1007/s00779-011-0420-2. (Zitiert auf den Seiten 17 und 19)

[ZXMX13] Y. Zhongyang, Z. Xin, B. Mao, L. Xie. DroidAlarm: An All-sided Static Analysis Tool for
Android Privilege-escalation Malware. In Proceedings of the 8th ACM SIGSAC Symposium
on Information, Computer and Communications Security, ASIA CCS ’13, S. 353–358. ACM,
New York, NY, USA, 2013. doi:10.1145/2484313.2484359. URL http://doi.acm.org/10.

1145/2484313.2484359. (Zitiert auf Seite 26)

[ZZJN12] W. Zhou, Y. Zhou, X. Jiang, P. Ning. Detecting Repackaged Smartphone Applications in
Third-party Android Marketplaces. In Proceedings of the Second ACM Conference on Data
and Application Security and Privacy, CODASPY ’12, S. 317–326. ACM, New York, NY,
USA, 2012. doi:10.1145/2133601.2133640. URL http://doi.acm.org/10.1145/2133601.
2133640. (Zitiert auf Seite 27)

Alle URLs wurden zuletzt am 04. 08. 2014 geprüft.

88

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben.
Ich habe keine anderen als die angegebenen Quellen benutzt
und alle wörtlich oder sinngemäß aus anderen Werken über-
nommene Aussagen als solche gekennzeichnet. Weder diese
Arbeit noch wesentliche Teile daraus waren bisher Gegen-
stand eines anderen Prüfungsverfahrens. Ich habe diese Ar-
beit bisher weder teilweise noch vollständig veröffentlicht.
Das elektronische Exemplar stimmt mit allen eingereichten
Exemplaren überein.

Ort, Datum, Unterschrift

89

