Institut fur Architektur von Anwendungssystemen

Universitat Stuttgart
Universitatsstralle 38
D - 70569 Stuttgart

Bachelorarbeit Nr. 151
Service Registry fir die
bedarfsabhangige Bereitstellung

von Diensten

Alexander Blehm

Studiengang: B.Sc. Softwaretechnik

Priiferin: Jun.-Prof. Dr.-Ing. Dimka Karastoyanova
Betreuerin: Dipl.-Inf. Karolina Vukojevic-Haupt
begonnen am: 27.05.2014

beendet am: 07.11.2014

CR-Nummer: H.3.5

Zusammenfassung

In einer geschaftlichen Umgebung werden Services standig bendtigt, daher muss man sich
dort keine Gedanken um die Einsparung von Ressourcen machen. Anders ist es in einer
wissenschaftlichen Umgebung. Hier werden Services seltener und unregelmaRiger genutzt.
Es ist daher naheliegender Services nur dann bereitzustellen, wenn sie auch wirklich
gebraucht werden. Sogenannte "On-Demand"-Services haben den Vorteil, dass sie bei
Bedarf provisioniert und nach der Benutzung de-provisioniert werden kdnnen. Eine Service
Registry erleichtert die Suche nach Services, indem sie Services an einer zentralen Stelle
verwaltet. Sie macht Vorgiange wie Service Discovery (das Suchen nach funktional
passenden Services) und Dynamic Binding (das automatische Zuweisen eines Aufrufes an
einen passenden Service) liberhaupt moglich. Es gibt keine Service Registry, die On-Demand
Services unterstltzt. Um eine Losung fiir diese Problemstellung zu entwickeln, werden in
dieser Arbeit folgende Ansatze diskutiert: das Anpassen existierender Losungen oder die
Entwicklung einer eigenen Losung fiir eine Service Registry mit Unterstiitzung von On-
Demand-Services. Das Resultat ist eine Service Registry mit einer Grundfunktionalitat zum
Registrieren von Ublichen, provisionierten Services und einer Erweiterung fiir nicht-
provisionierte On-Demand-Services.

Abstract

Services are used regularly and continuously in a business environment, therefore you do
not have to worry about saving resources. This is different in a scientific environment,
where services are used rarely and at irregular times. It is more suitable to provide services
whenever they are needed. The advantage of so called "on-demand" services is the
possibility of provisioning services whenever they are needed and deprovisioning them
after usage. A service registry makes the search for services easier, by managing services in
a central location. It makes operations, like service discovery (the search for services that fit
functionally) and dynamic binding (the automatic assignment of a call to a service) possible.
There exists no such service registry for on-demand services. To develop a solution for this
problem, the following approaches are discussed in this thesis: adjusting existing solutions
or developing a new solution for a service registry with support for on-demand services.
The result is a service registry with the core functionality for typical, continuously
provisioned services and an extension for not provisioned on-demand services.

Inhaltsverzeichnis

N =301 1= 0 o~ SRR 5
11 IMOTIVATION ittt e e s s s e e e e e e 6
1.2 A=Y e (=Y N o 1= | AP PR 6
13 AUTbau der Arbeitcooeeeeee s 7

D CT AU 1o Vo |-V o TSPt 9
2.1 SBIVICES ittt ettt e ettt e e e e s e s b et e e e e e e e e st be e e e e e e e e abebaeeeeeeeennnreraeeas 9
2.2 Service Orientierte Architekturooocuvii i 9
2.3 2110 [T Y= 10
2.4 L0] PR 10
2.5 SEIVICE REEISTIY . uiiiiiiiiiiiiiiiitee ettt ettt e e e e s e sttt e e e e e s s s sabeaaeeeesssessnnsraeeas 11
2.6 L6710 L PSSP 11
2.7 o] oy SR 12

3 BiSherige ArbDEITEN c....eiii e ree e e e 13

4 Analyse bestehender LOSUNGEN.......cccuiiiiiiiiie ettt et e e eree e e e rae e e 15
4.1 FAN =T o T 16 1 0 T TSP 15
4.2 WSO02 GOVErnance REGISTIY.cccoviiiiiiiiiieeieieeiitteee ettt e s s sreree s 18
43 Oracle SErvICE REZISIIY ..ocuviiee ettt e e e abee e e e b e e e e enreas 19

D SBIVICE REEISTIY . uuiiiiiiiiiiieite ettt e e e s s st e e e e e s s s sbnreaeeeeeeeas 21
5.1 D 1 =Y oY 0 VoY 1] | ST 21
5.2 USE-CaSES..eeiieeeieeiiiiiiteeee e e e ettt e e e e e ettt e e e e e e e abebe e eeeeeeeaanbereeeeeeeeeaannraeeeeeeeeaaannne 26

521 Use-Cases VOM BENULZETueiiiiiiiiiiiiiieeec ettt 27
5.2.2 Use-Cases VOM ESB......ccoiiiiiiiiiiiiee e 29
5.2.3 Use-Cases vON beiden AKEOrENcocvvieieeecieecieeees e evee et e e saeeens 30

oI 12 Y o1 =T a1t 0 A =]] o = PSPPI 31
6.1 Verwendete TeChNOIOZIEN........coviiii e et 31
6.2 A o o 11T A SR 33
6.3 SCNNIEESTRIEN ..t s be e e s eeaae s 34
6.4 Grafische Benutzeroberflachec.eovciiiiieieceece e 39

A AV LY [010 g V=T 0l 7= 1 U o = PR 43

8 AUSDIICK .ttt ettt et e st eeabe e sbaeenareena 43

9 AbbildUNGSVErZEICHNIS ...t e et e e rae e e e 44

10 TabelleNVErZEIChNISvvieeee e e 44

11 [0= =1 UL PP UPPPPPPPPPRt 45

1 Einleitung

Diese Arbeit baut auf der Arbeit "Service Selection for On-demand Provisioned Services" auf
mit dem Fokus auf die Service Registry [1]. Dort wird eine Architektur fiir das On-Demand-
Provisionieren von Services vorgestellt und die Service Registry ist ein Teil davon. Die
Aufgabe einer Service Registry in dieser Architektur ist es, Services zu verwalten, die von
Service-Anbietern (Service Provider) registriert werden. Service-Konsumenten (Service
Consumer) kénnen die Service Registry dann durchsuchen, um fiir ihre Anforderungen
einen passenden Service zu finden. Fir die Suche bietet die Service Registry die Funktion
der Service Discovery und Service Selection an. Service Discovery ist eine Funktion der
Service Registry, mit der man als Service Konsument eine Menge von Services angeboten
bekommt, die der funktionalen Anforderung des Service-Aufrufes entsprechen. Eine
weitere Funktion der Service Registry ist die Service Selection, in der anhand von nicht-
funktionalen Anforderungen geprift wird, welcher Service aus dieser Menge fir die
Anforderung des Konsumenten geeignet ist. Beide Eigenschaften (funktionale und nicht-
funktionale Anforderungen) muss die Service Registry verwalten kénnen.

In der Arbeit "Service Selection for On-demand Provisioned Services" werden auch neue
Typen von Services eingefiihrt. Ublich sind Services, die stindig installiert sind, eine feste
Endpunktadresse haben und immer auf Anfragen héren (provisionierte Services). Solche
Services konnen Uber Drittanbieter in der Service Registry angeboten werden und
unterscheiden sich von On-demand-Services. On-demand-Services sind Services, die noch
nicht provisioniert sind. Fir solche Services wird in der Service Registry ein Service Angebot
mit sogenanntem Service Package zur Verfligung gestellt. Das Service Package enthilt alle
Daten zur Provisionierung des Services. Ist ein solcher On-demand-Service provisioniert,
spricht man von einer Service-Instanz. Ahnlich, wie ein provisionierter Service, haben die
Service Instanzen eine eigene Endpunktadresse und héren auf Anfragen eines Service-
Konsumenten, bis sie nicht mehr gebraucht werden. Nachdem die Nutzung einer Instanz
abgeschlossen ist, wird sie wieder de-provisioniert. Folglich muss in der Service Registry
sowohl das Angebot des urspriinglichen, nicht-provisionierten Services als auch die
provisionierten Service-Instanzen verwaltet werden kénnen.

Fir das Registrieren von Services existieren bereits viele verschiedene Lésungen. Diese
Service Registry-Losungen bauen oft auf firmeneigenen "Service Orientierten
Architekturen" (SOA) auf und haben ihre eigene Interpretation von einer idealen Service
Registry, was dazu flihrt, dass die Losungen sehr unterschiedlich ausfallen und auch zum
Teil Terminologien verschieden interpretieren. Dies erschwert es, eine Ubersicht tiber diese
Losungen zu behalten. Es bietet jedoch keine dieser Losungen eine Service Registry, die On-
demand-Services verwalten kann. Die Realisierung einer solchen Service Registry bildet den
Hauptteil dieser Arbeit.

1.1 Motivation

Provisionierte Services werden in einer geschaftlichen Umgebung regelmafig und standig
gebraucht. Es macht Sinn, dass diese Services immer laufen und ihre Funktionalitat
bereitstellen. In einer wissenschaftlichen Umgebung werden Services seltener und
unregelmaliger genutzt. Der Rechenaufwand eines einzigen Services kann aber hoch sein
und begrenzte Rechenkapazitat aufbrauchen.

Die Arbeit "Service Selection for On-demand Provisioned Services" erklart, wie Services im
Laufe eines Workflows benutzt werden. Der Workflow ist ein Plan, der eine bestimmte
Aufgabe schrittweise 16st und in einigen seiner Schritte auch Services aufruft und diese
rechnen ldsst. Die Gesamtzeit der Ausfiihrung eines solchen Plans kann Wochen betragen.
Wenn man davon ausgeht, dass wahrend dieser Zeit nur provisionierte Services eingesetzt
werden, dann miussten diese Services zur gesamten Ausflihrungszeit vorhanden sein.
Jedoch werden diese Services, die sonst niemand anders bendtigt, vielleicht nur wenige
Stunden der Gesamtzeit beansprucht und es wird schnell klar, dass hier wegen
provisionierten Services Rechenressourcen zu lange blockiert sind. Um Ressourcen
einzusparen und freizugeben, wenn diese nicht benétigt werden, kénnen On-demand-
Services genutzt werden. Diese werden provisioniert, wenn sie gebraucht werden und de-
provisioniert, wenn sie nicht mehr gebraucht werden.

1.2 Ziel der Arbeit

Das Ziel dieser Arbeit ist es die Service Registry, die in der zuvor eingefiihrt Architektur
beschrieben wurde, zu realisieren. In der Abbildung 1 wird das Vorgehen in der Arbeit
verdeutlicht.

Ty

L6sungskandidatA | Losungskandidat A

¥

LosungskandidatB | (1) |LésungskandidatB (2) Losung (3)

Y

LosungskandidatC |

Abbildung 1: Vorgehen in der Arbeit

Es soll zuerst gepriift werden, ob es Losungskandidaten gibt, die man moglicherweise fiir
On-demand-Services erweitern konnte. Diese Loésungskandidaten werden im ersten, kleinen
Schritt (1) gefiltert. Der Schritt ist kleiner abgebildet, da in dieser Arbeit darauf geachtet
wurde, ob ein Losungskandidat Open-Source ist oder nicht. AnschlieBend muss analysiert
werden, welche Vor- und Nachteile ein existierender und anpassbarer Losungskandidat mit
sich bringt. Diese Analyse wird im gréReren, zweiten Schritt (2) durchgefiihrt. Hier muss die
Open-Source-Losung und die Dokumentation des Losungskandidats sehr genau betrachtet
werden und jeder positive oder negative Aspekt festgehalten werden. Danach wird
entschieden, ob eine existierender Losungskandidat angepasst wird oder ob eine neue
Losung implementiert werden muss. Die Entscheidung ist die gewahlte Lésung zwischen
den Schritten (2) und (3), die im dritten Schritt (3) implementiert wird. Das Resultat ist

6

schlieBlich eine Service Registry, die zusammengefasst den folgenden Anforderungen

gerecht werden muss:

e Das Verwalten von provisionierten Services

e Das Verwalten von nicht-provisionierten On-Demand-Services

e Das Verwalten von provisionierten Service-Instanzen jedes On-Demand-Services

e Das Ermoglichen einer Service Discovery fiir funktionale Anforderungen an einen
Service

e Das Ermoglichen einer Service Selection fiir nicht-funktionale Anforderungen an

einen Service

1.3 Aufbau der Arbeit

In Kapitel 2 werden einige Grundlagenbegriffe eingefiihrt, die im Laufe der Arbeit 6fter
vorkommen und fiir das Verstindnis wichtig sind. Kapitel 3 gibt eine Ubersicht iber eine
Architektur, welche die Forschungsgrundlage fiir die Service Registry ist. Dort soll klar
werden, warum es die Service Registry Uberhaupt gibt und wie sie in ihrem Umfeld
einzuordnen ist. Kapitel 4 analysiert bestehende Service Registry-Losungen und priift dabei,
ob sie vorteilhaft fir die Anforderungen der Service Registry angepasst werden kdnnen.
Nach der Analyse wird auch entschieden, ob eine bestehende Losung fir die
Implementierung angepasst wird, oder eine eigene Implementierung die Service Registry
realisieren wird. Danach wird in Kapitel 5 die konzeptionelle Ausarbeitung der Service
Registry vorgestellt und in Kapitel 6 folgt schlieBlich die eigentliche Beschreibung zur
Implementierung. In Kapitel 7 werden die Kerninhalte der Arbeit zusammengefasst und in
Kapitel 8 wird ein Ausblick fir die Service Registry gegeben. Kapitel 9, 10 und 11 listen
jeweils ein Abbildungs-, Tabellen- und Literaturverzeichnis auf.

2 Grundlagen

SOA bringt ein breites Spektrum an Begriffen mit sich. Um im Kontext dieser Arbeit mit
klaren Begriffen arbeiten zu kénnen, werden in diesem Kapitel Grundbegriffe eingefiihrt,
erweitert und gegebenenfalls voneinander abgegrenzt. Viele Begriffe werden bewusst in
der englischen Form in deutschen Satzen verwendet, da der Gebrauch so allgemein Ublich
ist.

2.1 Services

Ein Service ist ein Softwareprogramm, das auf bestimmte Anfragen bestimmte Antworten
generiert. Er hat eine bestimmte Funktionalitdt und ist damit ein Dienstleister. Ein Service
hat eine einheitliche Schnittstelle, wahrend die innere Implementierung des Services
"versteckt" ist. Dadurch ist ein Service ein Element mit einer losen Kopplung. In unserem
Kontext unterscheiden wir zwischen provisionierten Services und nicht provisionierten
Services. Provisionierte Services sind Services, die immer aufgerufen werden kénnen und
eine feste Endpunktadresse (oder nur Endpunkt) haben. Nicht provisionierte Services
bestehen aus einem Service Package von dem mehrere Service-Instanzen provisioniert
werden konnen. Diese konnen dann wie ein provisionierter Service Anfragen
entgegennehmen. Bei nicht-provisionierten Services wird auflerdem unterschieden
zwischen nicht provisionierten "Shared Services" ("geteilter Service") und nicht
provisionierten "Dedicated Services" ("dedizierter Service"). Hierauf wird im Kapitel 5.1
noch genauer eingegangen.

2.2 Service Orientierte Architektur

Eine "Service Orientierte Architektur" (SOA) ist ein Architekturmuster, das auf Services
basiert. Die SOA ist oft an komplexen Prozessen orientiert. Man kann sich hier
Geschaftsprozesse vorstellen, wie z.B. das Bestellen eines Produktes bei einem Online-
Handler. Wenn ein Kunde ein Produkt bestellt, wird die Bestellung an den Handler
weitergegeben. Der Handler muss nun beispielsweise folgende Schritte ausfihren:

1. Priifen, ob das Produkt noch verfiigbar ist
2. Produkt versenden
3. Rechnung fiir den Kauf ausstellen

Jeder dieser kleineren drei Schritte konnte von einem Service bearbeitet werden. Ein
Service kdnnte in einer Datenbank priifen, ob das Produkt noch vorhanden ist. Ein weiterer
Service wirde bei der Versandabteilung des Online-Handlers das Produkt zum Versand
freigeben und ein dritter Service kdnnte den Rechnungspreis berechnen.

2.3 Binding

Das Binding beschreibt das technische Protokoll zur Kommunikation mit einem Service. Es
ist eine Kombination aus einer Kodierungsart, wie beispielsweise SOAP*, und einem
Protokoll, wie beispielsweise HTTP 2. In einer WSDL Datei beschreibt das Binding zusatzlich
das Format, in dem Eingabe- und Ausgabeparameter von Operationen verschickt werden.

2.4 WSDL

WSDL steht fiir Web Service Description Language und ist eine einheitliche
Beschreibungssprache fir die Schnittstellen von Services. Sie wird auf Basis von XML
beschrieben und hat den Vorteil, dass sie eine Kommunikation erlaubt, die unabhangig von
Programmiersprache oder Protokoll der Kommunikationspartner ist. Die Abbildung 2 zeigt
etwa, wie ein WSDL-Dokument aufgebaut ist.

Abstrakter Teil
Types <
verweist auf
Elements >
verweist auf
Messages <
verweist auf
Port-Type >
Konkreter Teil verweist auf
‘ Binding €
verweist auf
‘ Port

Abbildung 2: Aufbau einer WSDL

Eine WSDL-Datei ist schematisch in zwei Teile unterteilt: den abstrakten Beschreibungsteil
und den konkreten Beschreibungsteil. Im abstrakten Teil werden zuerst Datentypen
definiert, die entweder aus einzelnen primitiven Datentypen bestehen, oder zu
komplexeren, zusammengesetzten Datentypen definiert werden kdnnen. Anschliefend
werden im abstrakten Teil Elemente beschrieben, die auf diese Datentypen verweisen. Im
nachsten Schritt werden Nachrichten (Messages) definiert, die wiederum auf Elemente
verweisen. Operationen im Port-Type verweisen dann auf Nachrichten. Diese Nachrichten
kénnen die Eingabe- und Ausgabeparameter der Funktionsaufrufe (oder Operationen) eines
Services beschreiben.

! Simple Object Access Protocol, http://de.wikipedia.org/wiki/SOAP
? Hypertext Transfer Protocol, http://de.wikipedia.org/wiki/Hypertext_Transfer_Protocol
10

Im konkreten Teil einer WSDL wird dann festgelegt, welches Binding benutzt wird. Das
Binding verweist wiederum auf den Port-Type und muss fir jede abstrakte Operation des
Port-Types die konkreten Formate der Eingabe- und Ausgabeparameter bestimmen.
SchlieBlich wird noch ein Port definiert. Der Port beinhaltet die Endpunktadresse und
verweist auf das Binding [2].

2.5 Service Registry

Eine Service Registry ist ein Programm, dass relevante Daten zum Ansprechen von Services
verwaltet. Es dient dazu, den Uberblick {iber viele Services zu behalten und schnell
bestimmte Services zu finden. Da die Funktion eines Services sich oft auf kleine
Teilaufgaben beschrankt, werden fiir groflere Prozesse viele Services kombiniert, um
komplexere Aufgaben zu l6sen. Eine Service Registry sollte daher Services auf irgendeine
Weise klassifizieren kdénnen. Der Ansatz von UDDI (siehe Kapitel 2.6) sieht mehrere
Moglichkeiten vor, einen Service zu klassifizieren: zum einen mit eindeutigen, industriellen
Schlisseln, zum anderen mit den optionalen tModels, die mit Hilfe einer WSDL-Datei eine
Schnittstelle des Services beschreiben kdnnen. Gerade der zweite Ansatz mit der WSDL
Schnittstellenbeschreibung spiegelt sich in vielen Service Registry-Losungen wieder. In
unserem Kontext wird die Service Registry diesen Ansatz mit einem "Service Interface"
umsetzen. Dazu wird im Kapitel 5.1 genaueres beschrieben.

2.6 UDDI

UDDI steht fiir Universal Description, Discovery and Integration. Es ist eine Spezifikation, die
eine Struktur fiir ein Verzeichnis beschreibt, in dem Services registriert werden kdnnen.
UDDI beschreibt also effektiv eine Maoglichkeit, Daten in einer Art Service Registry
abzubilden. Die Abbildung 3 bildet die Grundelemente von UDDI ab.

businessEntity

J tModel

> businessService ;!

—» bindingTemplate
— > beinhaltet

e * verweistauf

Abbildung 3: Grundelemente von UDDI

Das Wurzelelement befindet sich in der Abbildung oben links und heif3t "businessEntity". In
der businessEntity gibt es Informationen, die speziell fir eine Firma ausgelegt sind, die

einen oder mehrere Services bereitstellt. Darunter kann man Kontaktinformationen,
11

industrielle Kategorien und einen Schliissel angeben, der die Firma eindeutig identifiziert.
Die businessEntity beinhaltet mehrere "businessService"-Elemente. Ein businessService
stellt einen Service dar. In diesem Element kann man eine textuelle Beschreibung fiir einen
Service hinterlegen, mehrere Bindings fiir den Service bestimmen und den Service
kategorisieren (mit den gleichen industriellen Kategorien, wie bei der businessEntity). Der
businessService beinhaltet ein oder mehrere "bindingTemplate"-Elemente. Im
bindingTemplate wird konkret beschrieben, Gber welches Protokoll und {iber welche
Endpunktadresse der Service ansprechbar ist. Das bindingTemplate verweist auf ein
tModel. Das tModel ist ein optionales Element, dass Schnittstellenbeschreibungen fiir einen
Service enthalt. Im tModel lasst sich ein Link zu einer WSDL-Datei angeben und auch hier
kann das tModel (und damit die Schnittstelle) kategorisiert werden.

2.7 Policy

Eine Policy ist ganz abstrakt eine Regel, die auf etwas angewendet werden kann. In SOA
werden Policies auf Services angewendet, um fiir Services nicht-funktionale Anforderungen
zu formulieren oder Sicherheitsregeln hinzuzufiigen. Eine Policy kann zum Beispiel die
Anzahl der Aufrufe an einen Service fir einen Service-Konsumenten taglich auf eine feste
Zahl beschranken oder beschreiben, dass ein Service besonders schnell oder besonders
sicher ist.

12

3 Bisherige Arbeiten

Es wird an dieser Stelle etwas genauer auf die Architektur und das Umfeld eingegangen, in
der sich die Service Registry befindet. Eine komplette Beschreibung der Architektur findet
sich in der Arbeit "Service Selection for On-demand Provisioned Services" [1]. Die Abbildung
4 veranschaulicht eine vereinfachte Nachbildung der Architektur.

]
! F o r— |
Ve Y
Service Service ! Enterprise l Provisioning
Package Registry \ Service : Engine \ 4
Repository i Bus ! Service X1
7y > - i
! ' _[l_ —_——
! o | (3)
e K s ||| e |1
upload Service register Service | | Engine :
Package ' \ I
Service Provider N I global
I lokal
Modeling Bootware
1
Tool — — _{ }_ —_—— — J
A
use
Scientist
[MODELING TIME
[MIDDLEWARE RUNTIME }
[SERVICE RUNTIME J
legende _
— Funktionsaufruf = = =» Deployment o ! logische Gruppe

Abbildung 4: Architektur und Umfeld der Service Registry [1]

Im Folgenden werden in diesem Kapitel Referenzen auf Elemente in der Architektur kursiv
geschrieben. Die Architektur ist in drei Phasen aufgeteilt. Diese sind im unteren Teil in der
Abbildung zu sehen. Es gibt die MODELING TIME (Model-Phase), die MIDDLEWARE
RUNTIME (Middleware-Phase) und die SERVICE RUNTIME (Service-Phase). Die Abbildung ist
in eine lokale Seite und eine globale Seite aufgeteilt. Die Elemente auf lokaler Seite
beschreiben jeden Wissenschaftler (Scientist), der auf seinem lokalen Computer arbeitet.
Die Elemente in der globalen Seite befinden sich in einer Cloud?. Die globale Seite ist immer
lauffahig und jeder kann auf ihre Elemente zugreifen.

In der Model-Phase werden in der Architektur auf lokaler Seite das Modeling Tool und die
Bootware vom Wissenschaftler (Scientist) genutzt. Auf globaler Seite werden die Service
Package Repository und die Service Registry ausgefiihrt. Ein Service Provider registriert
Services in der Service Registry und ladt fir On-demand-Services entsprechende Service

* Datenspeicherung in einer Cloud, http://de.wikipedia.org/wiki/Cloud_Computing
13

Packages in die Service Package Repository hoch. Die Service Packages sind
Installationspakete, die alle Daten zum Provisionieren eines nicht-provisionierten On-
demand-Services enthalten. Wichtig ist an dieser Stelle, dass das Registrieren eines Services
in der Service Registry nur die Informationen zum Service speichert, wie eine
Endpunktadresse, eine WSDL-Datei fiir die Schnittstelle und einige mehr. Die Besonderheit
der Service Registry in dieser Architektur ist, dass sie fir On-demand-Services einen Verweis
auf ein Service Package im Service Package Repository speichert. Die Service Package
Repository dagegen beinhaltet die eigentlichen Service Packages.

Auf lokaler Seite definiert der Wissenschaftler zunachst einen Workflow. Ein Workflow ist
ein Plan, der schrittweise Operationen ausfiihrt und an bestimmten Stellen Services aufruft.
Dieser Workflow wird im Modeling Tool erstellt. Mit Hilfe der Bootware wird dann die
Provisioning Engine aufgesetzt und es wird das Service Package weitergegeben, das die
Workflow Middleware aufsetzen soll (1). Die Provisioning Engine ist eine komplexere
Komponente, die in der Lage ist jede Art von Service zu Provisionieren und es wird an dieser
Stelle nicht genauer auf sie eingegangen. Am Ende der Model-Phase provisioniert die
Provisioning Engine die Workflow Middleware (2). Diese Workflow Middleware besteht aus
dem Enterprise Service Bus (ESB) und der Workflow Engine und ist mit einem gestrichelten
Kasten in der Abbildung markiert.

In der Middleware-Phase wird der Plan, der zuvor in der Model-Phase vom Wissenschaftler
definiert wurde, auf der Workflow Engine ausgefiihrt. Der ESB bekommt Service-Aufrufe
von der Workflow Engine, um die Schritte im Plan auszufiihren. Fir provisionierte Services
leitet der ESB den Aufruf direkt an die Endpunktadresse des Services weiter. Flr nicht-
provisionierte Services muss der ESB zuerst mit der Service Registry und der Provisioning
Engine kommunizieren. Im ersten Schritt bekommt der ESB von der Service Registry alle
Informationen, die er zum provisionieren des nicht-provisionierten Services braucht, wie
zum Beispiel den Verweis auf das Service Package. Dann ruft der ESB die Provisioning
Engine auf, damit die Provisioning Engine den Service provisioniert (3). Dies ist in der
Abbildung mit den Service-Instanzen Service X1 bis Service Xn dargestellt. Das Provsionieren
der On-demand-Services leitet die Service-Phase ein. Nachdem die Services provisioniert
wurden, werden die Aufrufe an die Service-Instanzen weitergeleitet.

In der Service-Phase fiihren die Service-Instanzen die gewlinschte Funktionalitdt nach dem
Service-Aufruf aus. Sobald ein Service fertig ist mit der Ausfiihrung, gibt er eine Antwort an
den ESB zurlick. Der ESB leitet die Antwort direkt an die Workflow Engine zuriick. Wenn die
Services mit der Ausfihrung fertig sind, wird die Unterscheidung zwischen nicht-
provisionierten "Dedicated Services" und nicht-provisionierten "Shared Services" wichtig.
Die nicht-provisionierten Dedicated Services sind nur fir einen Aufruf vorgesehen. Das
bedeutet, dass der ESB fiir die Dedicated Service-Instanz nach Bearbeitung des Service-
Aufrufs sofort die Provisioning Engine aufruft, um die Instanz zu de-provisionieren. Anders
ist es bei Shared Service-Instanzen. Hier muss der ESB zuerst priifen, ob die Instanz noch
Service-Aufrufe verarbeitet. Erst wenn der Service keine Service-Aufrufe mehr verarbeitet,
kann dieser analog de-provisioniert werden. Wenn die Workflow Engine mit der
Ausfiihrung des Plans fertig ist, wird durch die Bootware das De-provisionieren der
Workflow-Middleware initiiert. Zuletzt de-provisioniert die Bootware auch die Provisioning
Engine.
14

4 Analyse bestehender L6sungen

Im Folgenden werden bestehende Service Registry-LOsungen betrachtet, die
moglicherweise fiir nicht-provisionierte Services angepasst werden kdnnten. Fir die
bereits existierenden Losungen wird vor allem auf Kriterien geachtet, die in der Tabelle 1
zusammengefasst sind. Anforderungen wie das Registrieren von provisionierten Services
und nicht-provisionierten Services entfallen in der Kriterientabelle, da davon ausgegangen
wird, dass einfache, provisionierte Services registriert werden koénnen und nicht-
provisionierte Services nicht. Weitere, in der Tabelle 1 nicht aufgefiihrte Eigenschaften der
bestehenden Service Registry-Losungen werden ebenfalls betrachtet, sofern sie als
Besonderheit auffallen.

Kriterium Beschreibung des Kriteriums

Service Discovery Dies ist die Mdglichkeit technische Schnittstellen zu definieren,
um funktionale Anforderungen an einen Service zu stellen.

Service Selection Dies ist die Moglichkeit Policies oder nicht-funktionale
Anforderungen an einen Service zu stellen.

User Guide Ein User Guide ist eine Dokumentation zur Benutzung der

bestehenden Lésung. Durch sie lasst sich der praktische Nutzen
der Losung besser verstehen.

GUI Das "Graphical User Interface", also die bestehende grafische
Benutzeroberflache sollte vorteilhaft grofStenteils
wiederverwendbar sein, damit man dort bei einer Anpassung
nicht zu viel Arbeit investieren muss.

Development Guide Ein Development Guide ist eine Dokumentation, die mindestens
einen Einstieg in den existierenden Open-Source-Code gibt und
die Struktur des Codes erklart.

Aktive Community Eine "aktive Community", die zeigt, dass das Projekt noch aktiv ist
und bei der man sich bei Problemstellungen an Menschen aus
der aktiven Community wenden kann.

Tabelle 1: Kriterien bei der Analyse

4.1 Apache juDDI

Das Programm jUDDI4 ist eine Open-Source Java-Implementierung der UDDI-Spezifikation
von OASIS [3]. Alle Funktionen, die in der UDDI Spezifikation beschrieben sind, werden von
juDDI sowohl programmatisch als auch ber die grafische Oberflache angeboten. Die Lizenz
flr die Software ist die "Apache Software License, Version 2.0" ’,

Da jUDDI eine UDDI-Implementierung ist, stellt sich zuerst die Frage, in wie fern UDDI
bereits fiir die Anforderungen an die Service Registry aus Kapitel 1.2 geeignet ist. In Kapitel
2.6 wurde bereits genannt, dass UDDI businessServices in den Grundelementen beschreibt,
was Services mit einer Endpunktadresse sind. Damit ware die Anforderung fir
provisionierte Services erfillt. Nicht-provisionierte Services sieht die UDDI Spezifikation
nicht vor, daher wird voraussichtlich auch jUDDI um nicht-provisionierte Services erweitert
werden missen. UDDI bietet eine Moglichkeit, Schnittstellen mit tModels fir Services zu

* Java UDDI, http://juddi.apache.org/
> Open-Source-Lizenz von Apache, http://www.apache.org/licenses/LICENSE-2.0.html
15

beschreiben und diese zu kategorisieren. Die Struktur eines tModels wird in Abbildung 5

dargestellt.

<tModel tHodelKey="uuid:5DD523859-BlA4-4fe7-B131-0F8EF73DD17S" >
<name>rInterface-Name</name:
<descriptionr»Interface for Web Service«/description>»
<overviewDoc
<description>The =service's WSDL document</descriptions>
<overviewlURL uselype="text">
<!—— W5DL ADDRESS —->
<foverviewlRL>
</overviewDoc>
<categoryBag>
<keyedReference keyName="Category of Interface”
keyValue="514191"
tHodelHey="uuid: c0b9fel3-179f-413d-8a5b-5004db8esSbb2" />
</categoryBags>
</ tHModel>

Abbildung 5: tModel fir funktionale Anforderungen

Fiir ein tModel kann also eine WSDL-Datei zur Beschreibung der Schnittstelle referenziert
werden (im Tag "overviewURL"). Des weiteren lasst sich im "categoryBag" eine eindeutige
Kategorie fur das Service-Interface beschreiben. Dies wiirde eine Service-Discovery fiir
funktionale Anforderungen an einen Webservice ermdoglichen. Mit tModels lassen sich in
UDDI auch Policies beschreiben. Ein Beispiel dafiir ist in Abbildung 6 dargestellt.

<tModel tModelKey="uddi:uddi.org:specification:v3_policy">
<namerexample-org:policy</names>
<dezcription>Policy Description service specification</description>
<overviewDoc>
<overviewlURL useType="text">

</overviewURL>
< foverviewDoc>
<categorvyBag>
<keyedReference keyName="example-org:types:specification™
keyValue="gspecification™
tHModelKey="uddi:example.org: categorization: types"/>
</categoryBag>
</tModel>

Abbildung 6: tModel fur nicht-funktionale Anforderungen

Statt einer WSDL fiir das Tag "overviewURL" wird ein Policy-Dokument angegeben. Bei der
Kategorisierung misste dann eine eindeutige nicht-funktionale Anforderung eingetragen
werden. Eine genauere Beschreibung der Policies in UDDI findet sich in der UDDI-
Spezifikation [3]. Damit ware mit UDDI auch eine Service Selection fiir nicht-funktionale
Anforderungen moglich. Da UDDI nicht-provisionierte Services nicht vorsieht und nach
genauerer Betrachtung jUDDI nicht-provisionierte Services auch nicht unterstiitzt, muss
juDDI erweitert werden. Im Folgenden wird also anhand der Kriterien analysiert, ob sich

jUDDI vorteilhaft anpassen lasst.

16

In der Dokumentation von jUDDI finden sich ein User-Guide und einige Demo-Videos, die
die Benutzung von jUDDI erklaren. Das erfiillt das Kriterium des User-Guides und hilft, das
bestehende System zu verstehen. Jedoch hat jUDDI bei der Implementierung der grafischen
Benutzeroberflache deutliche Schwéchen. Es ist ohne die Dokumentation nicht intuitiv klar,
wie die grafische Benutzeroberfliche fiir Services zu benutzen ist. Die Usability der
grafischen Oberflache ist ebenfalls niedrig. Hier wurden einfache Usability-Praktiken, wie
das Highlighting eines Menils, in dem man sich befindet, nicht implementiert. Das
bedeutet, dass Zeit in die Verbesserung oder ein neues Design der grafischen Oberflache
investiert werden muss und jUDDI keine fertige grafische Oberflaiche mit sich bringt.
Deshalb ist das Kriterium fiir die "GUI" nicht erfillt. Auf der Homepage von jUDDI ist bei der
Dokumentation ebenfalls einen Development Guide zu finden, jedoch erklart dieser
lediglich, wie man externe Clients entwickeln kann, um die UDDI Schnittstellen zu benutzen,
die bereits existieren. Der Development Guide gibt keinen Code-Einstieg und beschreibt
nicht die existierende Architektur des Systems und des Codes. Damit ist das Kriterium fiir
den Development Guide ebenfalls nicht erfiillt. Apache jUDDI hat kein eigenes Forum.
Fragen zu jUDDI finden sich vereinzelt auf verschiedenen anderen Foren, aber es scheint
keine zentrale Stelle dafiir zu geben. Es wird deutlich, dass die Community sich nicht aktiv
mit jUDDI beschaftigt. Ein weiterer Indikator dafiir ist eine Art Wiki-Lexikon fiir jUDDI, das
nur aus kaputten Links besteht. Damit ist das Kriterium fiir eine aktive Community ebenfalls
nicht erfullt.

Als Besonderheit erganzend zu den definierten Kriterien ist bei der Analyse von jUuDDI noch
aufgefallen, dass es einen Blog gibt, das von einem jUDDI Entwickler gefiihrt wird. Dort
findet sich ein Architekturbild der Komponenten von jUDDI. Es gibt auf der jUDDI
Homepage auch die Moglichkeit den Code anzusehen, ohne ihn zuvor selber bauen zu
miissen °.

Zusammengefasst wird in der Tabelle 2 gezeigt, dass nicht alle Kriterien zur Arbeit mit jUDDI
erfullt sind. Das Ergebnis der Analyse zeigt mit der Oberfliche und dem Mangel an
Entwicklerunterstitzung, dass eine Arbeit mit jUDDI sehr zeitkritisch sein kdnnte. Im
Rahmen dieser Bachelorarbeit wird jUDDI daher nicht als existierende Losung angepasst.

Kriterium erfillt Begriindung

Service Discovery | ja Dies ist mit tModels moglich.

Service Selection | ja Dies ist mit tModels moglich.

User Guide ja Verstandlicher User Guide und Demo-Videos machen die
Benutzung von juDDI klar.

GUI nein Die GUI ist nicht ohne Dokumentation benutzbar und hat
eine niedrige Usability.

Development nein Kein Development Guide fir den Code an sich, nur fir

Guide externe Clients.

Aktive nein Es gibt keine aktive Community und kein juDDI Forum.

Community

Tabelle 2: Ergebnisse der Analyse von jUDDI

® eine externe Referenz fiir den jUDDI Code, http://juddi.apache.org/xref/
17

4.2 WSO02 Governance Registry

Die WS0O2 Governance Registry (oder kurz WSO2 GREG) ist eine Open-Source-Losung von
WSO02, die unter anderem eine Service Registry beinhaltet [ref-WSO2-GREG-hp]. Anders als
bei jUDDI ist WSO2 GREG keine UDDI-Implementierung. Sie ist jedoch genauso wie jUDDI
unter der Apache License 2.0 verfligbar. WSO2 GREG interpretiert Inhalte, wie z.B. Services,
auf eine eigene Weise mit Artefakten. Die Artefakte in WSO2 GREG sind durch XML-
Strukturen beschrieben. Die Dokumentation beschreibt, wie durch bestimmte XML-
Schnipsel ein Artefakt um Textfelder, oder Dropdown-Felder erweitert werden kann.
Bearbeitet man ein Artefakt mit der korrekten XML-Syntax, so generiert sich auch eine
entsprechende HTML Oberfliche dazu ’.

In WSO2 GREG gibt es die Mdglichkeit, Links zu WSDL-Dateien flr Services anzugeben, es ist
aber nicht vorgesehen, eine Schnittstellenbeschreibung fiir mehrere Services zu
verwenden. Es ist in WSO2 GREG zwar auch moglich ein Artefakt fir WSDL-Dateien separat
anzugeben, jedoch kénnen diese nicht fiir ein Service-Artefakt genutzt werden. Damit ist
die Service Discovery vorerst nicht moglich und es missten hier Anpassungen im Code
vorgenommen werden. Auch die Service Selection fiir nicht-funktionale Anforderungen ist
in WSO2 nicht méglich. Ahnlich wie bei WSDL-Artefakten kénnen separat Policy-Artefakte
angelegt, aber nicht fiir Service-Artefakte benutzt werden.

Auf der Homepage von WS02 GREG gibt es einen Link zur Dokumentation. Dort finden sich
teilweise sehr ausfiihrliche Beschreibungen zur Benutzung von WS0O2 GREG. Damit ist das
Kriterium fiir einen User Guide erfillt. Die bestehende Oberflache von WSO2 GREG ist sehr
intuitiv bedienbar. Es ist sofort klar, wo ein Service angelegt werden kann und es ist
verstandlich welche Daten fiir den Service angelegt werden kdnnen und wozu. Damit ist das
Kriterium fir die GUI erfillt, denn die Oberflache lasst sich so wiederverwenden und es
mussten eventuell nur kleine Anpassungen gemacht werden. Beschreibungen fir
Entwickler finden sich in der Dokumentation von WSO2 GREG keine. Es gibt nur eine kleine
Anleitung, die beschreibt, wie man den Code der Anwendung bauen kann. Jedoch scheitert
der "Build"-Prozess nach dieser Anleitung. Folglich ist das Kriterium fiir einen Development
Guide nicht erfillt. Support fiir Entwickler ist bei WSO2 GREG nur schwer zu erreichen. Das
offizielle Forum zu WSO2 GREG ist seit 2012 nicht mehr benutzt worden. Fir weitere
Fragen wird man bei WSO2 an Stackoverflow® verwiesen. Eine Frage zum Code-Einstieg und
dem fehlerhaften Build wurde aber schliefRlich auch auf Stackoverflow nicht beantwortet.
Damit ist auch das Kriterium fiir die aktive Community nicht erfiillt in WSO2 GREG.

Die Ergebnisse der Analyse werden in der Tabelle 3 zusammengefasst. Auch hier sind nicht
alle Kriterien erfullt. Die Architektur von WSO2 GREG ist nicht klar und damit ist auch hier
die Arbeit im Rahmen der Bachelorarbeit zu zeitkritisch. WSO2 GREG wird daher ebenfalls
nicht als bestehende Losung fiir die Service Registry angepasst.

7 Configurable Governance Artifacts sind generische Artefakte in WSO2 GREG,

https://docs.wso2.com/pages/viewpage.action?pageld=22185121

& Stackoverflow ist eine Frageplattform fur Entwickler, http://stackoverflow.com/
18

Kriterium erfillt Begriindung

Service Discovery | nein Man kann keine Schnittstellenbeschreibung mehrmals fir
Services verwenden.

Service Selection | nein Man kann keine Policies fiir Services verwenden.

User Guide ja Verstandlicher User Guide und Demo-Videos machen die
Benutzung von juDDI klar.

GUI ja Die GUI ist intuitiv bedienbar und ist groRtenteils
wiederverwendbar.

Development nein Kein Development Guide fir den Code, Dokumentation ist

Guide ein reiner User-Guide.

Aktive nein Offizielles Forum wird nicht mehr benutzt, Stackoverflow hat

Community sich nicht als gute Alternative herausgestellt.

Tabelle 3: Ergebnisse der Analyse von WSO2 GREG

4.3 Oracle Service Registry

Die Oracle Service Registry, eine nicht Open-Source-Losung, wurde ebenfalls betrachtet.
Jedoch wurde hier schnell klar, dass sie die Service Registry-Anforderungen dieser Arbeit
nicht erfiillt. Sie hat keine Unterstlitzung fir nicht-provisionierte Services. Da die Oracle
Service Registry nicht Open-Source ist und die Entwicklerhandbiicher auch keine passende
Konfigurationsmoglichkeit fur die Anforderungen aus Kapitel 1.2 beschrieben haben wird
die Oracle Service Registry auch nicht als mogliche Losung betrachtet.

19

20

5 Service Registry

Die Service Registry fiir On-Demand-Services ist flr ein bestimmtes Umfeld vorgesehen, in
der es unter anderem zusammen mit einem Enterprise Service Bus (ESB) kommuniziert. Aus
dem Datenmodell in Kapitel 5.1 und den Anforderungen vom ESB ergibt sich eine
Schnittstelle, die die Service Registry nach auBen hin anbieten muss. Die Methoden werden
in einem Use-Case-Diagramm in Kapitel 5.2 vorgestellt und in Kapitel 6.3 spater konkreter
definiert.

5.1 Datenmodell

Das Datenmodell der Service Registry ist in Abbildung 7 mit Hilfe eines Entity-Relationship-
Models abgebildet.

21

Service Interface

.\§ D

n QualityOfService

Ser'.rn:ECc-nfguratmn

abstract
concrete
ServiceProvider |

Repository_Id ServicePackage_Id

ProvisionedService] | NotProvisionedService]

/e

[SharedService] [DedicatedService]

1 1

SharedSerlcelnstance DedicatedServicelnstance

/éYd

NotProvisionedServicelnstanc
‘ n
1

Consumer

Abbildung 7: Datenmodell der Service Registry

22

Das Datenmodell teilt die Entitdten in abstrakte und konkrete Entitdaten auf. Die abstrakten
Entitaten sollen funktionale und nicht-funktionale Eigenschaften von Services definieren.
Diese sollen Services kategorisieren und von mehreren Services benutzt werden, welche die
gleichen funktionalen und nicht-funktionalen Eigenschaften haben. Der konkrete Teil
beschreibt schliellich die eigentlichen Services. Im Folgenden wird jede Entitat des
Datenmodells genauer erlautert:

"Service Interface"

Das Service Interface soll die Schnittstelle zu einem Service definieren und damit eine
funktionale Anforderung beschreiben. Dies wird fiir Services in der Service Registry eine
Service Discovery moglich machen. Es hat einen eindeutigen PortType-Namen (Name) der
eine eindeutige Schnittstelle eines Webservices beschreibt. Die funktionale Beschreibung
besteht aus einer Adresse zu einer WSDL-Datei. Fiir diese WSDL ist vorgesehen, dass sie
zumindest den abstrakten Teil definieren muss. Sie muss nicht zwingend den konkreten Teil
(mit Binding Information und Endpunktadresse) definieren, da dies nicht relevant fiir eine
Schnittstellenbeschreibung ist. Optional soll die funktionale Schnittstelle auch mit einer
kleinen textuellen Beschreibung erganzt werden kénnen.

"QualityOfService"

Ein QualityOfService soll nicht-funktionale Anforderungen beschreiben kénnen und damit
eine Service Selection fir Services in der Service Registry ermoglichen. Es werden vorerst
Paare von nicht-funktionalen Eigenschaften (Property) mit Werten (Values) gefillt. Die
Ausarbeitung eines vollstandigen Models fiir die nicht-funktionalen Anforderungen ist nicht
Teil dieser Arbeit.

"ServiceConfiguration"

Eine ServiceConfiguration stellt Kombinationen funktionaler (Service Interface) und nicht-
funktionaler (QualityOfService) Eigenschaften dar. Hiermit soll flir Services eine passende
Kombination abgebildet werden kdnnen. Jede ServiceConfiguration hat immer genau eine
funktionale Beschreibung (Servicelnterface), kann aber mehrere nicht-funktionale
Beschreibungen (QualityOfService) haben. Umgekehrt koénnen Service Interfaces fir
mehrere ServiceConfigurations benutzt werden. Ebenso kénnen einzelne QualityOfService
flr mehrere ServiceConfigurations benutzt werden.

"ServiceOffer"

Hier wird ein Service als "Angebot" (ServiceOffer) dargestellt, das immer von einem
bestimmten Service Anbieter (ServiceProvider) kommt. Es wird bewusst Angebot genannt,
um zu verdeutlichen, dass es sich hier nur um Informationen eines Services handelt und
nicht um den Service selbst. Fiir jedes Angebot muss genau ein Binding festgelegt werden.
Falls der gleiche Service mit einem anderen Binding registriert werden muss, so muss daftr
ein neues ServiceOffer mit diesem Binding erstellt werden. Das Angebot steht fiir einen
Service, der eine bestimmte ServiceConfiguration implementiert. Die gleiche
ServiceConfiguration kann von mehreren Angeboten genutzt werden. Ein Angebot

23

beschreibt alle allgemeinen Eigenschaften eines konkreten Service-Angebots, wie einen
Namen, eine vollstandige WSDL-Datei, etc.

"Binding"

Das Binding beschreibt das technische Kommunikationsprotokoll, mit dem der Service
ansprechbar ist. Es soll aus einer Kombination von Codiertyp und Netzwerkprotokoll
bestehen. Ein Beispiel flir so eine Kombination ist SOAP / HTTP. Jedes Binding kann fir
genau ein Service-Angebot genutzt werden.

"ServiceProvider"

Der Service-Anbieter (ServiceProvider) kann mehrere Angebote von Services anbieten. Er
sollte eindeutig identifizierbar sein, um zu unterscheiden welches Angebot von welchem
Anbieter stammt. Ein Service-Anbieter sollte auch nur in der Lage sein, seine eigenen
Angebote zu bearbeiten, und diese auch wieder aus der Service Registry zu |6schen.

"ProvisionedService"

Ein ProvisionedService beschreibt einen provisionierten Service. So ein Service wird in der
Regel von Drittanbietern registriert. Er besitzt einen Endpunkt, der immer auf Anfragen
hort, und erbt alle Eigenschaften des allgemeinen Service Angebots (ServiceOffer).

"NotProvisionedService"

Ein NotProvisionedService fasst alle Eigenschaften nicht-provisionierter Service-Angebote
zusammen. In dem Fall kann hier eindeutig bestimmt werden, welches Service Package
benutzt wird (ServicePackage _Id), um den Service zu installieren und welcher Typ von Paket
das ist (Repository_ld). Es ist eine Zwischenabstraktion und erbt alle Eigenschaften des
Service-Angebots (ServiceOffer).

"SharedService"

Ein SharedService ist ein konkretes Service-Angebot. Aus einem Shared-Service-Angebot
lassen sich Instanzen von Services installieren, die Anfragen eines gleichen Benutzers durch
die gleiche Instanz bearbeiten lassen kénnen. Es erbt alle Eigenschaften eines nicht-
provisionierten Service-Angebots (NotProvisionedService) und hat eine Liste von
SharedServicelnstance. Dies sind die Service-Instanzen, die entstehen, wenn der Service
provisioniert wird.

"DedicatedService"

Aus einem Dedicated-Service-Angebot lassen sich Instanzen von Services installieren, die
jeweils nur eine Anfrage eines Benutzers bearbeiten konnen. Fir jede weitere Anfrage des
gleichen Benutzers muss eine neue Instanz dieses Angebots installiert werden. Es erbt alle
Eigenschaften eines nicht-provisionierten Services-Angebots und hat eine Liste von
DedicatedServicelnstance. Dies sind die Service-Instanzen, die entstehen, wenn der Service
provisioniert wird.

24

"NotProvisionedServicelnstance"

NotProvisionedServicelnstance ist eine Instanz von nicht-provisionieren Services. Folglich
muss sie eine Endpunktadresse haben, (ber die sie ansprechbar ist. Die
NotProvisionedServicelnstance hat diesen Endpunkt, weil sie im Folgenden fiir die
SharedServicelnstance und DedicatedServicelnstance verwendet wird.

"SharedServicelnstance"

Eine SharedServicelnstance ist eine Service-Instanz eines Shared-Service-Angebots. Sie erbt
die Endpunktadresse einer allgemeinen "NotProvisionedServicelnstance" und ist dafir
vorgesehen mehrere Anfragen eines Benutzers gleichzeitig verarbeiten zu kdnnen. Diese
Anfragen (Calls) sollen in einer Zahlvariable (Callsnumber) gezahlt werden. Fallt die
Callsnumber auf 0 zurlick nachdem alle Anfragen abgearbeitet wurden, so kann die Instanz
wieder de-provisioniert werden.

"DedicatedServicelnstance"

Eine DedicatedServicelnstance ist eine Instanz eines Dedicated-Service-Angebots. Sie erbt
die Endpunktadresse einer allgemeinen "NotProvisionedServicelnstance" und kann immer
nur eine Anfrage des gleichen Benutzers bearbeiten. Es gibt hier also nur den Zustand der
Bearbeitung einer Anfrage oder den Zustand, in dem die Instanz keine Anfrage mehr
bearbeitet und "abwesend" (idle) ist. Nachdem die eine Anfrage bearbeitet ist, fir welche
die Dedicated-Service-Instanz vorgesehen war, kann die Instanz wieder de-provisioniert
werden.

"Consumer"

Der Consumer (Konsument oder Nutzer) benutzt nicht-provisionierte Service-Instanzen. Er
kann mehrere Instanzen benutzen und muss bei den Instanzen als "Consumer" eingetragen
werden, damit Anfragen korrekt umgeleitet werden. Dies ist deshalb wichtig, weil fir
Anfragen vom Consumer unterschieden werden muss, ob sie an ein Shared-Service-
Angebot oder ein Dedicated-Service-Angebot gerichtet sind. Falls sie an ein Shared-Service-
Angebot gerichtet sind, muss zuerst gepriift werden, ob es nicht schon eine provisionierte
Shared-Service-Instanz flir den Benutzer gibt. Falls es sie gibt, muss die Anfrage an diese
Instanz umgeleitet werden und die Callsnumber der Instanz erh6ht werden. Falls es sie
nicht gibt, muss eine neue Shared-Service-Instanz provisioniert werden. Bei einer Anfrage
an eine Dedicated-Service-Instanz wird einfach ohne weitere Prifung eine neue Instanz
provisioniert.

25

5.2 Use-Cases

In der Abbildung 8 werden die Use-Cases der Service Registry vorgestellt, die sich durch die

zwei moglichen Benutzer der Service Registry ergeben: den menschlichen Benutzer und den

Enterprise Service Bus (ESB).

Service Registry

\

Register Service Call

Unregister Service Call

Register NotProvisioned
ervice Instance

ESB

User (Human)

List All Service Offers

nregister NotProvisioned
ervice Instance

Condition: Type = Provision&i’l‘

Create Service Offer

| Extension Point: Provisioned

Extension Points:

<
Provisioned F\\‘ <extends >;/
Shared

A
n ~
N i - .
Dedicated \ \\ : Create Provisioned Service
N
w<extends>>
Create Service Configuratio A \\ Condition: Type = Sharﬁl‘
\ =1

\ N Extension Point: Shared
Create Service Interface N ~
<<ex§s{nds> 3\
\ B: Create NP Shared Service
Edit Service Offer \

. . v Condition: Type = Dedicatedll‘
Extension Points: I~ v) !)
; \ Extension Point: Dedicated
Edit PS 4 \\ \
Edit NPS (RN “
) A Al
\\ i : Create NP Dedicated Service
Delete Service Offer \<<exﬁ=&nds=~>
A

\ \ Condition: Type = Edit P:

\ N h C
’ Search ServiceOffers \ A F_xi.:ensmrj PDI nt:)
) \ i Edit Provisioned Service
by Provider N
<<ext‘e\nds=~=~ \
\
\\ Edit Provisioned Service

.~ — _ _| Condition: Type = Edit NP

Search ServiceOffers \\ Extansion Palnt:
by ServiceConfiguration A

Search ServiceOffers by PortType
Name (findServices)

Edit Mot Provisioned Service

N
\
\
Edit Mot Provisioned Service

Abbildung 8: Use-Cases der Service Registry

Die folgenden Kapitel beschreiben Methoden, welche die Service Registry zur Verfligung
stellen muss. Es gibt Methoden, die entweder ausschliellich von einem menschlichen
Benutzer, ausschliellich vom Enterprise Service Bus (ESB) oder von beiden genutzt werden

sollen.

26

5.2.1 Use-Cases vom Benutzer

Create Service Interface

Der Benutzer erstellt ein Service Interface, das spater beim Erstellen von Service-
Configurations angegeben werden kann. Das Service Interface soll eine Service Discovery
ermoglichen und beschreibt funktionale Eigenschaften eines Services. Eine Service
Configuration muss beim Erstellen immer ein bereits existierendes Service Interface
angeben.

Create Service Configuration

Der Benutzer erstellt durch Angabe eines existierenden Service-Interfaces und zusatzlicher
Angabe von Qualitatspaaren eine Service-Configuration. Es ist keine separate Methode fiir
das Erstellen von nicht-funktionalen Eigenschaften (QualityOfService) eines Services
vorgesehen, da sie implizit in der Create Service Configuration Methode erstellt werden.
Die nicht-funktionalen Eigenschaften eines Services ermoglichen eine Service Selection. Die
Service-Configuration soll helfen, Service-Angebote in der Service Registry zu
kategorisieren.

Create Service Offer

Der Use-Case Create Service Offer ist die abstrakte Beschreibung zur Erstellung eines
Service-Angebots. Der Use-Case muss in einem der drei folgenden Falle konkretisiert
werden:

1. Create Provisioned Service
2. Create NP Shared Service
3. Create NP Dedicated Service

Alle diese Use-Cases miissen beim Erstellen eine zuvor erstellte Service-Configuration
referenzieren, damit klar ist, mit welcher Schnittstelle der Service anzusprechen ist.

Create Provisioned Service

Der Benutzer erstellt ein konkretes Service-Angebot flir einen provisionierten Service.
Dieser Use-Case ist flir Drittanbieter von Services vorgesehen, die ihren Service extern
betreiben und hier lediglich die Schnittstelle und eine Endpunktadresse fiir den Service
angeben.

Create NP Shared Service

Der Benutzer erstellt ein konkretes Service-Angebot fiir einen nicht-provisionierten Shared-
Service. Dieses Angebot muss angeben, mit welchem Service Package es provisioniert
werden kann. Aus diesem Angebot sollen Shared-Service-Instanzen erstellt werden kdnnen.

27

Create NP Dedicated Service

Der Benutzer erstellt ein konkretes Service-Angebot fiir einen nicht-provisionierten
Dedicated-Service. Dieses Angebot muss angeben, mit welchem Service Package es
provisioniert werden kann. Aus diesem Angebot sollen Dedicated-Service-Instanzen erstellt
werden kdnnen.

Edit Service Offer

Der Benutzer kann ein Service-Angebot bearbeiten. Dies ist ein abstrakter Use-Case, der in
einem der folgenden Use-Cases konkretisiert werden muss:

1. Edit Provisioned Service
2. Edit Not Provisioned Service

Wichtig ist, dass der Benutzer das Service-Angebot nur bearbeiten kann, wenn er selbst als
Service-Anbieter dieses Angebot in der Service Registry registriert hat.

Edit Provisioned Service

Der Benutzer bearbeitet ein existierendes Service-Angebot eines provisionierten Services,
das er selbst registriert hat. Dieser Use-Case sollte nur vom Service-Anbieter des Service-
Angebots genutzt werden kénnen.

Edit Not Provisioned Service

Der Benutzer bearbeitet ein existierendes Service-Angebot eines nicht-provisionierten
Services, das er selbst registriert hat. Dieser Use-Case sollte nur vom Service-Anbieter des
Service-Angebots genutzt werden kénnen.

Delete Service Offer

Der Benutzer 16scht ein Service-Angebot aus der Service Registry. Dies kann der Benutzer
nur fur Service-Angebote anwenden, die er selber als Service-Anbieter in der Service
Registry registriert hat.

Register User

"Register User" registriert einen Benutzer im System der Service Registry. Dieser Benutzer
kann sich dann im System einloggen. Als registrierter Benutzer kann das System den
Benutzer beim Registrieren von Service-Angeboten als Service-Anbieter vermerken. Der
Benutzer kann im System nun auch als Service-Consumer flr nicht-provisionierte Service-
Instanzen vom ESB vermerkt eingetragen werden.

Login User

Dieser Use-Case Authentifiziert den Benutzer im System. Das System erkennt den Benutzer
und kann ihn als Service-Anbieter beim Registrieren von Service-Angeboten vermerken.

28

Search Service Offers by Provider

Der Benutzer sucht in der Service Registry nach Service-Offers, die von einem bestimmten
Service-Anbieter registriert wurden. Der Name des Anbieters muss genau den gesuchten
Namen haben.

Search Service Offers by ServiceConfiguration

Der Benutzer sucht in der Service Registry nach Service Offers, die eine bestimmte Service
Configuration implementieren. Diese Service-Configuration muss genau den gesuchten
Namen haben.

5.2.2 Use-Cases vom ESB

Register Not Provisioned Service Instance

Dieser Use-Case registriert eine nicht-provisionierte Instanz eines nicht-provisionierten
Service-Angebots. Diese Instanz kann entweder die eines Shared-Service-Offers oder eines
Dedicated-Service-Offers sein. Durch diese Registrierung ist auch klar, dass die Anzahl der
Aufrufe an die jeweilige nicht-provisionierte Instanz genau 1 ist.

Unregister Not Provisioned Service Instance

Dieser Use-Case l6scht eine nicht-provisionierte Service-Instanz aus der Registry, wenn sie
nicht mehr gebraucht wird. Das ist dann der Fall, wenn keine Aufrufe mehr von der Service-
Instanz bearbeitet werden. Der ESB entscheidet, wann dieser Use-Case aufzurufen ist.

Register Service Call

Dieser Use-Case registriert einen Aufruf eines Service-Consumers flir eine nicht-
provisionierte Shared-Service-Instanz. Folglich wird die Zahl der Aufrufe um 1
inkrementiert. Dieser Use-Case ist nicht fiir Dedicated-Service-Instanzen vorgesehen, da fir
diese Instanzen nur 2 Zustdnde moglich sind: der Zustand mit einem Aufruf oder der
Zustand mit keinem Aufruf. Dieser Use-Case kann erst auf eine Shared-Service-Instanz
angewendet werden, nachdem sie mit "Register Not Provisioned Service Instance"
provisioniert wurde.

Unregister Service Call

Dieser Use-Case dekrementiert die Zahl der Aufrufe eines Service-Consumers fiir eine nicht-
provisionierte Shared-Service-Instanz um 1. Dieser Use-Case ist ebenfalls nur fiir Shared-
Service-Instanzen gedacht und nicht fiir Dedicated-Service-Instanzen vorgesehen. Falls eine
Shared-Service-Instanz nur noch einen Aufruf verarbeitet, darf dieser Use-Case nicht
aufgerufen werden. Bei genau einem Ubrigen Aufruf muss "Unregister Not Provisioned
Service Instance" benutzt werden.

29

5.2.3 Use-Cases von beiden Aktoren

Search Service Offers by PortType-Name (findServices)

Dieser Use-Case sucht in der Service Registry nach Service Offers, die Service Configurations
implementieren, welche wiederum ein bestimmtes Service-Interface haben. Dieses Service-
Interface muss genau den gesuchten PortType-Namen haben.

List all Service Offers

"List all Service Offers" gibt alle Service-Angebote in der Service Registry zuriick ohne
weitere Einschrankungen.

30

6 Implementierung

Fir die Service Registry-Implementierung wird keine existierende Service Registry-LOsung
angepasst. Diese Entscheidung wurde nach der Analyse existierender Losungen in Kapitel 4
getroffen. Stattdessen wird eine neue Software implementiert, die genau auf die
konzeptionelle Anforderungsbeschreibung in Kapitel 5 zugeschnitten ist. Die
Implementierung tragt den Namen "Service-Registry-Service" (kurz SRS) und realisiert die
Registry selbst als Webservice. Die folgenden Kapitel beinhalten eine detaillierte
Beschreibung der Implementierung des Service-Registry-Service.

6.1 Verwendete Technologien

Java

Java’ ist eine objektorientierte, imperative Programmiersprache die sehr stark verbreitet
ist. Daher wird hier nicht weiter auf Java eingegangen.

JavaScript

JavaScript'® Ist nicht zu verwechseln mit der Programmiersprache Java. JavaScript ist eine
klassenlose Skriptsprache zur vereinfachten Implementierung von interaktiven
Webapplikationen.

HttpServlets

Hiermit sind Java-Servlets gemeint aus dem Standard "javax package™" [4]. Diese Servlets
kann man in einem Servlet-Container definieren und benutzen. HttpServlets bilden
Schnittstellen und Methoden, deren Inhalte man mit einer eigenen Implementierung fiillen
kann. Anfragen in Form von HttpRequest-Objekten kdnnen dort verarbeiten werden und
Antworten in Form von HttpResponse-Objekten gebaut werden.

Axis2

Axis2 ist die zweite Version von Apache Axis. Es ist eine SOAP-Engine, mit der es moglich ist
unter anderem durch Data-Binding XML-Inhalte in Objekte von Java umzuwandeln. Folglich
nimmt Axis2 bei der Entwicklung eines Web-Services die Arbeit des manuellen Parsens von
XML-Nachrichten und der anschlieBenden Umwandlung in Java-Objekte ab.

? Java als Programmiersprache, http://de.wikipedia.org/wiki/Java_(Programmiersprache)

1% JavaScript als Skriptsprache, http://de.wikipedia.org/wiki/JavaScript

! Organisieren von Java Klassen mit "packages", http://en.wikipedia.org/wiki/Java_package
31

Jetty

Jetty? ist eine leichtgewichtige Servlet-Engine, in der man seine eigene Webapplikation mit
eigenen Servlets in Java definieren kann. Es ist ein Projekt, das im Umfeld einer Eclipse
Community entwickelt wird. In der Implementierung wird die Embedded-Jetty Version
benutzt, bei der man in einem Java-Projekt seinen eigenen Webserver definieren kann.

Tomcat

Apache Tomcat ist ein leichtgewichtiger Webserver, der die Spezifikation von Java-Servlets
implementiert. Es erlaubt es dadurch, unter anderem, Webanwendungen in Form von
Web-Application-Archives (WAR) zu deployen. Tomcat bietet eine alternative Moglichkeit,
die SOAP-Schnittstelle der Implementierung zu nutzen, da sich das Java-Projekt der
Implementierung ebenso als WAR exportieren und auf Tomcat deployen l&sst.

SOAP

Das Simple Object Access Protocol (SOAP) ist ein Netzwerkprotokoll zum Austausch von
Daten zwischen Systemen. Es ermdglicht in unserer Implementierung die Kommunikation
zwischen dem ESB und dem SRS auf Basis von SOAP-Envelopes.

MysQL

MySQL ist ein weit verbreitetes, relationales Datenbankverwaltungssystem. In MySQL
lassen sich mehrere Datenbanken definieren, die relational sind. MySQL wird in der ersten
Version des SRS genutzt, kann aber auch durch jede andere relationale Datenbank ersetzt
werden.

Hibernate

Hibernate ist ein Object-Relational-Mapping-Framework (ORM-Framework) fir Java. Mit
Hibernate konnen Objekte in einer relationalen Datenbank persistent gemacht werden.
Daflr muss die Datenbankstruktur vom Entwickler nicht selbst gebaut werden und es
miissen auch keine eigenen dynamischen SQL-Befehle geschrieben werden.

12 das Eclipse-Projekt von Jetty, http://www.eclipse.org/jetty/
32

6.2 Architektur

In der Abbildung 9 sieht man ein Architekturbild, das eine Ubersicht iiber die Komponenten
des Service-Registry-Services darstellt.

Browser ESB
4 -
HTML

~

sz | T
v t 4

Servlets SOAP.JAVA
‘ — 3

Application Functionality

!

DAL
Application Layer ‘ > S0AP
L ——> REST
D Communication Layer interpret
L] HTML Templates Database ———— dbconnection

<«——— functioncalls

Abbildung 9: Die Architektur der Service Registry

Man betrachte das Architekturbild oben mittig beginnend bei den Mdoglichkeiten, wie der
Service-Registry-Service angesprochen werden kann. Es gibt den ESB, der (iber das SOAP
Protokoll Anfragen an den SRS stellt, und es gibt den Browser, der Giber HTTP Anfragen an
den SRS stellt.

Uber SOAP (rechts in der Abbildung) nimmt der SRS im Communication Layer Anfragen mit
Hilfe von Axis2 generierten Java-Klassen entgegen. Es wurde dafiir zuerst eine WSDL-Datei
als Schnittstelle definiert, die bestimmte Methoden des SRS anbietet. Es gibt Methoden, die
nur fiir den ESB relevant sind. Es gibt in der SOAP Schnittstelle aber auch Methoden, mit
denen man jede andere Funktion der SRS-Applikationslogik nutzen kann, wie das
Registrieren eines Service-Angebots. Das hat den Vorteil, dass man auch einen externen
Webservice-Client fir den SRS schreiben kénnte. In der AXIS2-Komponente wird jede
Anfrage in Java-Code formatiert. Es werden mit Hilfe von Axis2 Java-Objekte automatisch
aus der WSDL-Schnittstellenbeschreibung generiert, die dann alle in einer Klasse zur
Implementierung eines Mappings benutzt werden. Diese Klasse bildet die Komponente
SOAP.JAVA. Dort lasst sich ein Mapping implementieren, das aus Axis2 Java-Objekten die
33

relevanten Daten fiir eine Anfrage ausliest und diese dann in Methoden fiir die
Applikationslogik (Application Functionality) einsetzt. Sobald die Methoden der
Applikationslogik ausgefiihrt sind, geben sie eine Antwort an die Mapping-Klasse von
SOAP.JAVA zuriick. Diese Antwort muss nun in ein Riickgabeobjekt von Axis2 eingesetzt
werden und gibt dann eine SOAP-Antwort an den Aufrufenden zurtick.

Flr die REST Schnittstelle (links in der Abbildung) wurde zuerst eine Website implementiert,
die das Benutzen des SRS verstandlicher machen soll. Es ist eine grafische Oberflache, die
aus HTML-Templates besteht und von einem Browser interpretiert werden kann. Der
Benutzer kann an bestimmte Stellen auf der Website navigieren und dort dann
beispielsweise HTML-Formulare zum Eintragen eines Service-Angebots ausfiillen und
abschicken. Diese Formulare werden dann tUber HTTP-Requests an Servlets im Java-Code
weitergeleitet (siehe Komponente "Servlets"). Ahnlich wie beim Mapping der Axis2 Java-
Objekte werden hier Inhalte aus HTTP-Request-Objekten ausgelesen und in entsprechende
Methoden der Applikationslogik eingesetzt. Sobald die Methoden der Applikationslogik
ausgefihrt sind, geben sie eine Antwort an das Servlet zuriick. Im Servlet muss aus dieser
Antwort ein HTTP-Response-Objekt gebaut werden, das eine Antwort an den Aufrufenden
zurlickgibt.

SchlieBlich sitzt im Application Layer die Applikationslogik, die eng mit dem Data-Access-
Layer (DAL) Objekte in der Datenbank persistent speichert oder Informationen aus der
Datenbank ausliest. Es werden hier Data-Access-Objects benutzt, die jeweils flir einzelne
Modelklassen zustdndig sind. Beispielsweise gibt es ein Data-Access-Object fiir den
Benutzer (UserDAO.java). In der UserDAO.java werden dann die Methoden "registerUser()"
und "loginUser()" angeboten zum Registrieren oder Authentifizieren eines Benutzers im
System.

6.3 Schnittstellen

Hier wird konkret beschrieben, wie die Methoden der SOAP-Schnittstelle zum SRS benutzt
werden kénnen. Es wurde zuerst eine WSDL-Datei fur die Schnittstelle definiert und daraus
ein Axis2 Java-Skelett generiert, in der die Funktionalitdt dann ausimplementiert wurde. In
dieser Arbeit wird generell beschrieben, welche Methoden iber die SOAP-Schnittstelle
verfugbar sind und welche Funktion sie implementieren. Fiir eine detaillierte Beschreibung
der Parameter, der Felder die nicht leer sein diirfen, der generierten Antworten, sowie
deren Bedeutung, wird an dieser Stelle auf das Benutzerhandbuch verwiesen.

initialize

Diese Methode Initialisiert das System, indem es einen Standard-Benutzer anlegt fir den
SRS. Der Standard-Benutzer kann zuvor in einer Konfigurationsdatei definiert werden. Diese
Methode sollte vor allem bei der ersten Benutzung aufgerufen werden, oder nach einem
Wechsel auf eine neue, leere Datenbank. Diese Methode ist nicht zwingend notwendig, da
das System beim Jetty-Serverstart automatisch initialisiert wird und einen Benutzer anlegt,
sofern er nicht vorhanden ist.

34

getAllServices

Diese Methode gibt alle Service-Angebote zuriick, ohne Einschrankungen. Dies ist lediglich
eine Hilfsmethode und kann vor allem bei vielen Service-Angeboten sehr zeitintensiv sein.
Auch die Antwort kann bei vielen Angeboten uniibersichtlich erscheinen.

searchByProvider

Diese Methode gibt alle Service-Angebote zuriick, die von einem bestimmten Service-
Anbieter (Provider) im SRS registriert wurden. Der Name des Service-Providers muss genau
mit dem Namen eines Service-Providers in der Datenbank tbereinstimmen.

searchByServiceConfiguration

Diese Methode gibt alle Service-Angebote zuriick, die eine bestimmte Service-Configuration
implementieren. Hier wird auch nach dem Namen der Service-Configuration gesucht. Der
Name ist fir jede Service-Configuration eindeutig und muss mit dem Namen einer Service-
Configuration in der Datenbank genau Gbereinstimmen.

findService

"findService" hieB friiher "searchByQualifiedPortTypeName" und gibt alle Service-Angebote
zurlick, die ein bestimmtes Service-Interface implementieren. Das Service-Inteface ist
eindeutig durch den PortType-Namen identifizierbar und beschreibt die technische
Schnittstelle eines Services. Der Name muss genau mit dem PortType-Namen des Service-
Interfaces in der Datenbank ibereinstimmen.

registerNPSInstance

Diese Methode registriert eine Service-Instanz eines nicht-provisionierten Service-
Angebots. Hier kann sowohl eine Shared-Service-Instanz, als auch eine Dedicated-Service-
Instanz registriert werden, durch die Angabe des Servie-Angebots, von welchem die Instanz
erstellt wird. In dieser Methode muss auch der Benutzer angegeben werden, da die
Unterscheidung zwischen Shared-Service-Instanz und Dedicated-Service-Instanz wichtig ist.
Bei einem Aufruf fiir ein Dedicated-Service-Angebot wird einfach eine Dedicated-Service-
Instanz erstellt, ohne weitere Prifung und egal von welchem Benutzer. Bei einem Aufruf fiir
ein Shared-Service-Angebot muss zuerst geprift werden, ob es von diesem Angebot schon
eine Shared-Service-Instanz des Benutzers, der im Aufruf angegeben wurde, gibt. Wenn ja,
dann wird der Aufruf an diese Instanz weitergeleitet und lediglich "registerServiceCall"
aufgerufen, um die Zahl des Aufrufs fiir die Shared-Service-Instanz um 1 zu inkrementieren.
Falls es noch keine solche Shared-Service-Instanz gibt, wird eine neue fiir den jeweiligen
Benutzer provisioniert.

unregisterNPSInstance

Diese Methode |6scht eine Registrierung einer Service-Instanz eines nicht-provisionierten
Service-Angebots. Diese Methode ist nur fir Dedicated-Service-Instanzen, oder Shared-
Service-Instanzen gedacht, deren aktuelle Zahl der Aufrufe genau 1 ist. Falls die Zahl héher

35

ist (was nur flr Shared-Service-Instanzen maoglich ist), darf die nicht-provisionierte Service-
Instanz noch nicht aus der Registry geldscht werden. Dafiir sollte dann stattdessen die
Anzahl der Aufrufe mit "unregisterServiceCall" um 1 dekrementiert werden.

registerServiceCall

Diese Methode inkrementiert die Zahl der Aufrufe eines Shared-Service-Instanz um 1. Diese
Methode ist nur fir Shared-Service-Instanzen vorgesehen, die bereits mindestens einen
Aufruf verarbeiten, da dort die Zahl der Aufrufe héher als 1 sein kann.

unregisterServiceCall

Diese Methode dekrementiert die Zahl der Aufrufe einer Shared-Service-Instanz um 1.
Diese Methode ist nur flir Shared-Service-Instanzen vorgesehen, deren Aufrufzahl echt
hoher als 1 ist. Falls die Anzahl der Aufrufe genau 1 ist, sollte die Methode
"unregisterNPSInstance" benutzt werden, um die Service-Instanz aus dem SRS zu I6schen.

registerUser

Die Methode "registerUser" registriert einen Benutzer im System. Dieser Benutzer kann
sich dann mit Name und Passwort im System authentifizieren mit der Methode "loginUser".
Das Registrieren des Benutzers bringt zum einen die Moglichkeit, diesen Benutzer beim
Anlegen von Service-Angeboten als Service-Anbieter einzutragen, und zum anderen kann
der ESB den Benutzer flr Aufrufe an nicht-provisionierte Service-Angebote mit angeben.

loginUser

Die Methode "loginUser" authentifiziert einen Benutzer im System mit Hilfe eines
Authentifizierungs-Token. Dieses Token wird als Antwort zuriickgegeben und reprasentiert
den eingeloggten Benutzer, da der Name und das Passwort des Benutzers eingegeben
werden mussen, um das Token zu bekommen. Es wird bei vielen anderen Methoden
verwendet, in denen ein Service-Provider bekannt sein muss, wie beispielsweise das
Registrieren eines Service-Angebots. Das Token hat den Vorteil, dass nur ein String
Ubergeben werden muss und es nur zeitlich begrenzt giiltig ist.

createProvisionedService

Diese Methode registriert ein Service-Angebot fir einen provisionierten Service. Dieser
Service wird in der Regel von Drittanbietern registriert fiir einen Service, der extern
betrieben wird. Es muss hier also die ServiceConfiguration und ein Endpunkt angegeben
werden, lGiber den der Service erreichbar ist.

createNotProvisionedSharedService

Diese Methode registriert ein Service-Angebot fir einen nicht-provisionierten Shared-
Service. Es muss ein Service Package angegeben werden, dass ein Installationspaket aus der
Service Package Repository referenziert und ein RepositoryType angibt. Aus diesem Service-
Angebot kénnen Shared-Service-Instanzen provisioniert werden, die mehrere Aufrufe des
gleichen Benutzers gleichzeitig abarbeiten kénnen.

36

createNotProvisionedDedicatedService

Diese Methode registriert ein Service-Angebot fiir einen nicht-provisionierten Dedicated-
Service. Es muss ein Service Package angegeben werden, dass ein Installationspaket aus der
Service Package Repository referenziert und ein RepositoryType angibt. Aus diesem Service-
Angebot kdnnen Dedicated-Service-Instanzen provisioniert werden, die jeweils nur einen
Aufruf eines Benutzers zur gleichen Zeit abarbeiten kénnen.

editProvisionedService

"editProvisionedService" bearbeitet ein Service-Angebot fiir einen provisionierten Service.
Hier kdnnen fast alle Daten gedndert werden, die zuvor beim Anlegen dieses Angebots
angegeben wurden. Der Service-Anbieter ist daflir verantwortlich, dass die Daten des
Services auch mit den gednderten Daten im SRS libereinstimmen. Diese Methode kann nur
vom Service-Anbieter genutzt werden, der dieses Service-Angebot auch registriert hat.

editNotProvisionedSharedService

Diese Methode bearbeitet ein Service-Angebot filir einen nicht-provisionierten Shared-
Service. Es konnen fast alle Daten gedndert werden, die zuvor beim Anlegen dieses
Angebots angegeben wurden. Der Service-Typ (Shared- oder Dedicated-Service) kann nicht
geindert werden. Fiir eine Anderung des Service-Typs muss das alte Service-Angebot
geldscht werden und ein neues Service-Angebot registriert werden. Der Service-Anbieter ist
dafir verantwortlich, dass die Daten des Services auch mit den geanderten Daten im SRS
libereinstimmen. Diese Methode kann nur vom Service-Anbieter genutzt werden, der
dieses Service-Angebot auch registriert hat.

editNotProvisionedDedicatedService

Diese Methode bearbeitet ein Service-Angebot fiir einen nicht-provisionierten Dedicated-
Service. Es konnen fast alle Daten geandert werden, die zuvor beim Anlegen dieses
Angebots angegeben wurden. Der Service-Typ (Shared- oder Dedicated-Service) kann nicht
gedndert werden. Fiir eine Anderung des Service-Typs muss das alte Service-Angebot
geldscht werden und ein neues Service-Angebot registriert werden. Der Service-Anbieter ist
dafiir verantwortlich, dass die Daten des Services auch mit den gednderten Daten im SRS
Ubereinstimmen. Diese Methode kann nur vom Service-Anbieter genutzt werden, der
dieses Service-Angebot auch registriert hat.

deleteService

"deleteService" 16scht ein Service-Angebot aus dem SRS. Diese Methode ist mit Vorsicht zu
verwenden. Das Loschen eines Service-Angebots flr einen provisionierten Service l6scht
einfach das Angebot. Das Loschen eines Service-Angebots fiir nicht-provisionierte Services
|6scht auch alle eingetragenen Instanzen aus dem SRS. Das bedeutet nicht, dass die
Instanzen automatisch de-provisioniert werden, sie wurden lediglich aus dem SRS gel6scht,
weil sie ohne ihr Service-Angebot nicht mehr bearbeitet werden kdnnen.

37

createServicelnterface

Diese Methode rrstellt ein Service Interface, das eine Schnittstellenbeschreibung fiir einen
Service ist. Mit dieser Schnittstellenbeschreibung wird eine funktionale Anforderung fir
Services definiert. Service Interfaces kdnnen spater mit nicht-funktionalen Eigenschaften in
Service-Configurations kombiniert werden. Service Interfaces haben einen eindeutigen
PortType-Namen, der eine Service Discovery ermdoglicht.

deleteServicelnterface

Diese Methode 16scht ein Servicelnterface aus dem SRS. Ohne ein Service-Interface wird
auch jede Service-Configuration unbrauchbar, die dieses Service Interface referenziert.
Damit wird auch jede Service-Configuration geldscht, die das Service Interface referenziert
hat. Service-Angebote die eine solche Service-Configuration referenziert haben, haben
dann vorerst keinen Eintrag mehr fiir eine Service-Configuration. Es kann eine neue Service-
Configuration durch die Bearbeitungsmethoden editProvisionedService,
editNotProvisionedSharedService und editNotProvisionedDedicatedService eingetragen
werden.

createServiceConfiguration

Diese Methode erstellt eine Service-Configuration, die funktionale Eigenschaften mit
Service Interfaces und nicht-funktionale Eigenschaften eines Services kombiniert. In dieser
Methode werden die nicht-funktionalen Eigenschaften als Map aus String-String-Paaren
mitgegeben. Eine Service-Configuration kann dann von Service-Angeboten zur
Kategorisierung genutzt werden.

createServiceConfigurationWithinterface

Diese Methode erstellt sowohl ein Service Interface, als auch eine Service-Configuration.
Diese Methode kombiniert das Hintereinanderausfiihren von "createServicelnterface" und
"createServiceConfiguration" mit dem Unterschied, dass wenn etwas beim Erstellen der
Service-Configuration schieflduft auch kein Service-Interface erstellt wird. So gesehen ist die
Methode atomar.

deleteServiceConfiguration

Diese Methode I6scht eine Service-Configuration aus dem SRS. Service-Interfaces, die von
der Service-Configuration referenziert wurden bleiben in der Datenbank, da sie unabhangig
von den Service-Configurations sind. Service-Angebote die eine solche Service-
Configuration referenziert haben, haben dann vorerst keinen Eintrag mehr fiir eine Service-
Configuration. Es kann eine neue Service-Configuration durch die Bearbeitungsmethoden
editProvisionedService, editNotProvisionedSharedService und editNotProvisionedDedica-
tedService eingetragen werden.

38

6.4 Grafische Benutzeroberflache

In diesem Kapitel wird die konzeptionelle Arbeit an der grafischen Benutzeroberflache fir
die Darstellung im Browser erldutert. Fir konkretere Darstellungen und die Benutzung der
Oberflache wird auf das Benutzerhandbuch verwiesen. Fiir Beispiele bei der Entwicklung
der grafischen Benutzeroberflache wird auf das Entwicklerhandbuch verwiesen.

In der Abbildung 10 wird zunachst der konzeptionelle Aufbau der grafischen Benutzer-
oberflache dargestellt.

HEADER

NAVIGATION CONTENT / INHALT

Abbildung 10: Konzeptioneller Aufbau der grafischen Benutzeroberflache

Oben befindet sich der Header, der sich lber die gesamte Breite des SRS streckt. Er ist
groltenteils statisch und hat nur wenige Elemente, die sich bei der Navigation durch die
Oberflache verdandern. Auf der linken Seite befindet sich die Navigation, in der es ein
Seitenmeni geben wird, das Buttons fiir die einzelnen Meniipunkte anbietet. Der grol3e
Bereich unten rechts fiir den Inhalt passt sich mit jedem Untermeni dynamisch an.

In den folgenden Abbildungen werden die groBen Abschnitte der Website mit einem
Namen in GroRbuchstaben versehen. In den Abschnitten sind Elemente mit spitzen
Klammern versehen, wenn dort ein Button ist oder ein Text steht, der etwas beschreibt.
Elemente, die sich bei der Navigation auf der Oberflache dynamisch dndern, sind zusatzlich
mit einem gestrichelten Kasten umrandet. In der Abbildung 11 wird erklart, wie der Header
aufgebaut ist.

<Name SRS=> HEADER [

|L <location> |

Abbildung 11: Aufbau des Headers

Im Header soll oben links der Name des Systems fest stehen. Unten links wird die
"Location", also der Ort in der man sich auf der Website befindet, angezeigt. Dieses
Element andert sich dynamisch beim Navigieren in jedes Untermenii der grafischen
Benutzeroberflache. Oben rechts wird ein Logout-Button angezeigt, sobald ein Benutzer

39

sich im System eingeloggt hat. Grundsatzlich muss sich jeder Benutzer auf der Oberflache
anmelden, ob er nur nach Services suchen will, oder ob er ein Service-Angebot im SRS
registrieren will. Die Login-Ansicht und die Ansicht zum Registrieren neuer Benutzer sind
die einzigen, die sich vom restlichen Aufbau des Systems unterscheiden. Die Login-Ansicht
wird in Abbildung 12 dargestellt.

HEADER

LOGIN

LOGIN FORMULAR
<Eingabe Benutzername>

<Eingabe Passwort>

<login-Button> <Register-Button>

Abbildung 12: Die Login-Ansicht

Man bemerkt, dass im Abschnitt LOGIN ein weiterer Abschnitt mit LOGIN FORMULAR
eingebaut ist. Die Login-Ansicht hat nicht die urspriinglich beschriebene Trennung von
Navigation und Inhalt, die fir alle untergeordneten Ansichten gilt. Stattdessen ist das
LOGIN FORMULAR zentriert im Bild. Der LOGIN-Abschnitt ist nur ein Hintergrund, wahrend
das LOGIN FORMULAR die Eingabemaske fiir einen Benutzernamen und ein Passwort hat.
Darin befindet sich unten links der Login-Button und unten rechts der Verweis auf die
Registrierungsseite fiir einen neuen Benutzer. Die Ansicht zum Registrieren erstreckt sich
dhnlich Gber die komplette Breite und wird hier nicht genauer beschrieben. Hat ein
Benutzer sich mit der Login-Maske erfolgreich eingeloggt, so erscheint er in der initialen
Ansicht der Oberflache. Diese ist, wie in der vorher beschriebenen Abbildung 10 aufgebaut,
wobei im Inhalt ein kleiner Beschreibungstext den Benutzer auffordert, ein Untermeni aus
der Navigation auszuwéahlen. Der Aufbau der Navigation ist in der Abbildung 13 dargestelit.

NAVIGATION
HINZUFUGEN

<Meniipunkte zum

Hinzufligen von Elementen>

SUCHEN

<Meniipunkte zum Suchen

von Elementens

Abbildung 13: Aufbau der Navigation
40

Die Navigation hat Menlpunkte in Form von Buttons. Diese Menipunkte sind gruppiert
durch Zwischeniberschriften. Durch Klick auf jedes Menl @ndert sich der grolRe Abschnitt
mit dem Inhalt der Website aus Abbildung 10. Oben befindet sich eine Uberschrift
(HINZUFUGEN) fiir alle Meniipunkte, die eine Ansicht zum Hinzufiigen von Elementen im
SRS offnen. Das sind dann beispielsweise Menlipunkte zum Hinzufligen eines Service
Interfaces, einer Service-Configuration oder einem Service-Angebot. Darunter befindet sich
eine Uberschrift (SUCHEN) fiir alle Meniipunkte, die eine Ansicht zum Suchen von
Elementen im SRS 6ffnen. Hier kdnnen alle Elemente, die zuvor hinzugefiigt wurden, im
System gesucht und eingesehen werden.

41

42

7 Zusammenfassung

Diese Arbeit baut auf der Architektur der bisherigen Arbeiten aus Kapitel 3 auf. Das Ziel der
Arbeit ist es, aus den formulierten Anforderungen aus Kapitel 1.2 und dem Konzept aus
Kapitel 5 eine Service Registry zu implementieren. Am IAAS™ wurde ein Datenmodell fiir die
Service Registry erarbeitet, das zu Beginn der Arbeit schon vorhanden war. Anhand dieses
Datenmodells und den Anforderungen wurden bestehende Service Registry-Losungen
betrachtet und einige davon genauer analysiert. Eine Vorbedingung fir die Analyse war,
dass die bestehende Service Registry Losung Open-Source ist, da keine der betrachteten
Service Registry-Losungen nicht-provisionierte Services unterstlitzt haben. Die Analyse
musste prifen, ob bestehende Losungen vorteilhaft fiir die Anforderungen angepasst
werden konnten. Fiir das Datenmodell der Service Registry mussten nebenher Anderungen
vorgenommen werden. Das Ergebnis der Analyse fasst alle Vor- und Nachteile der
bestehenden Lésungen zusammen. Es hat jedoch ergeben, dass bestehende Losungen nur
mit betrdchtlichem Aufwand angepasst werden konnten. Folglich ist eine eigene
Implementierung das Ergebnis dieser Arbeit. Die Implementierung wurde durch einen
eingebauten Jetty-Webserver in einem Java-Projekt realisiert, der zwei Moglichkeiten zur
Kommunikation anbietet: eine SOAP Schnittstelle, die primar durch den Enterprise Service
Bus genutzt wird und eine grafische Oberfliche, auf der die Arbeit mit dem SRS fir
menschliche Benutzer vereinfacht werden soll.

8 Ausblick

Die Ausarbeitung und Implementierung des Service Registry Service fir On-Demand-
Services ist zwar fur den Rahmen der Anforderungen in dieser Arbeit abgeschlossen. Es
existiert jedoch noch Future Work, das den SRS erweitern kann. Diese Erweiterungen
hdngen mit dem Fortschritt der Forschungsarbeit flir On-Demand-Services zusammen.
Beispielsweise ist fiir diese Arbeit noch nicht klar gewesen, wie man das Provisionieren und
De-provisionieren fiir On-Demand-Services optimieren kann. Der aktuelle Stand ist, dass
Services einfach de-provisioniert werden, wenn es keine Aufrufe mehr fiir sie zum
Bearbeiten gibt, obwohl man diese Services in einem Workflow eventuell nach kurzer Zeit
wieder gebrauchen kdnnte.

In dieser Arbeit ist die Beschreibung der funktionalen Eigenschaften fiir Services im Service
Interface genauer erarbeitet, als die Beschreibung fiir nicht-funktionale Eigenschaften. Die
"Qualities-of-Services" bestehen momentan nur aus einfachen Key-Value-Paaren. Eine
genauere Erarbeitung fiir die nicht-funktionalen Eigenschaften ware fir den SRS ebenfalls
denkbar.

3 |nstitut fiir Architektur von Anwendungssystemen, http://www.iaas.uni-stuttgart.de/
43

9 Abbildungsverzeichnis

Abbildung 1: Vorgehen in der Arbeit........cccuveiieciiiiieciee e e 6
Abbildung 2: AUFDAU @INEI WSDLeviieiciiee ettt e e e etae e e e bae e e e 10
Abbildung 3: Grundelemente VON UDDI.......ccooiuiiiiiiiieecciies et eee e evee e e e 11
Abbildung 4: Architektur und Umfeld der Service Registry.......ccccceeecieeiecciee e, 13
Abbildung 5: tModel fiir funktionale Anforderungencccooecveei e 16
Abbildung 6: tModel fiir nicht-funktionale Anforderungencccecveeeveieiiicciee e, 16
Abbildung 7: Datenmodell der Service REgIStIYccveeiieiiiiicciee et 22
Abbildung 8: Use-Cases der Service REZIStIY........uiiicciieiiiiiieeceiee et 26
Abbildung 9: Die Architektur der Service REZIStryc.uevivviieiiiiiiee e 33
Abbildung 10: Konzeptioneller Aufbau der grafischen Benutzeroberflache.......................... 39
Abbildung 11: Aufbau des HEAAErsccuieiieciiee e e e 39
Abbildung 12: Die LOgIN-ANSICAL......cccuiiii e e s 40
Abbildung 13: Aufbau der Navigationcccoocuiiii i e 40

10 Tabellenverzeichnis

Tabelle 1: Kriterien bei der ANAlYSE..... ..ottt e e e rae e e e 15
Tabelle 2: Ergebnisse der Analyse VON JUDDIcococuiiiiicciiieeccieee ettt evree e e svreee e 17
Tabelle 3: Ergebnisse der Analyse von WS02 GREGccccveeiiiciieieiiiieecciieeeesiveee e svieee e 19

44

file:///C:\Users\Alexander\Desktop\Alex\Uni\6.%20Semester\BA\Ausarbeitung\ABlehm_Ausarbeitung_fertig.docx%23_Toc402359369

11 Literatur

(1]

(2]

(3]

(4]

Karolina Vukojevic-Haupt; Florian Haupt; Dimka Karastoyanova; Frank Leymann:
Service Selection for On-demand Provisioned Services: Proceedings of the 18th IEEE
International EDOC Conference (EDOC 2014) 2014.

Erik Christensen, Francisco Curbera, Greg Meredith, Sanjiva Weerawarana: Web
Services Description Language (WSDL) 1.1.

URL: http://www.w3.org/TR/wsdl.

OASIS: UDDI Spec TC. UDDI Version 3.0.2.

URL: http://www.uddi.org/pubs/uddi-v3.0.2-20041019.htm.

Sun Microsystems: JavaTM 2 Platform Enterprise Edition, v 1.4 API Specification.
URL: http://docs.oracle.com/javaee/1.4/api/overview-summary.html.

45

Erklarung

Ich versichere, diese Arbeit selbststandig verfasst zu haben. Ich habe keine anderen als die
angegebenen Quellen benutzt und alle wortlich oder sinngemaR aus anderen Werken
libernommene Aussagen als solche gekennzeichnet. Weder diese Arbeit noch wesentliche
Teile daraus waren bisher Gegenstand eines anderen Priifungsverfahrens. Ich habe diese
Arbeit bisher weder teilweise noch vollstandig veroffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren (berein.

Stuttgart,

Alexander Blehm

46

