

Institut für Architektur von Anwendungssystemen

Universität Stuttgart
Universitätsstraße 38

D - 70569 Stuttgart

 Bachelorarbeit Nr. 151

 Service Registry für die

 bedarfsabhängige Bereitstellung

 von Diensten

 Alexander Blehm

 Studiengang: B.Sc. Softwaretechnik

 Prüferin: Jun.-Prof. Dr.-Ing. Dimka Karastoyanova

 Betreuerin: Dipl.-Inf. Karolina Vukojevic-Haupt

 begonnen am: 27.05.2014

 beendet am: 07.11.2014

 CR-Nummer: H.3.5

2

3

Zusammenfassung

In einer geschäftlichen Umgebung werden Services ständig benötigt, daher muss man sich

dort keine Gedanken um die Einsparung von Ressourcen machen. Anders ist es in einer

wissenschaftlichen Umgebung. Hier werden Services seltener und unregelmäßiger genutzt.

Es ist daher naheliegender Services nur dann bereitzustellen, wenn sie auch wirklich

gebraucht werden. Sogenannte "On-Demand"-Services haben den Vorteil, dass sie bei

Bedarf provisioniert und nach der Benutzung de-provisioniert werden können. Eine Service

Registry erleichtert die Suche nach Services, indem sie Services an einer zentralen Stelle

verwaltet. Sie macht Vorgänge wie Service Discovery (das Suchen nach funktional

passenden Services) und Dynamic Binding (das automatische Zuweisen eines Aufrufes an

einen passenden Service) überhaupt möglich. Es gibt keine Service Registry, die On-Demand

Services unterstützt. Um eine Lösung für diese Problemstellung zu entwickeln, werden in

dieser Arbeit folgende Ansätze diskutiert: das Anpassen existierender Lösungen oder die

Entwicklung einer eigenen Lösung für eine Service Registry mit Unterstützung von On-

Demand-Services. Das Resultat ist eine Service Registry mit einer Grundfunktionalität zum

Registrieren von üblichen, provisionierten Services und einer Erweiterung für nicht-

provisionierte On-Demand-Services.

Abstract

Services are used regularly and continuously in a business environment, therefore you do

not have to worry about saving resources. This is different in a scientific environment,

where services are used rarely and at irregular times. It is more suitable to provide services

whenever they are needed. The advantage of so called "on-demand" services is the

possibility of provisioning services whenever they are needed and deprovisioning them

after usage. A service registry makes the search for services easier, by managing services in

a central location. It makes operations, like service discovery (the search for services that fit

functionally) and dynamic binding (the automatic assignment of a call to a service) possible.

There exists no such service registry for on-demand services. To develop a solution for this

problem, the following approaches are discussed in this thesis: adjusting existing solutions

or developing a new solution for a service registry with support for on-demand services.

The result is a service registry with the core functionality for typical, continuously

provisioned services and an extension for not provisioned on-demand services.

4

Inhaltsverzeichnis
1 Einleitung .. 5

1.1 Motivation .. 6

1.2 Ziel der Arbeit ... 6

1.3 Aufbau der Arbeit ... 7

2 Grundlagen ... 9

2.1 Services ... 9

2.2 Service Orientierte Architektur .. 9

2.3 Binding .. 10

2.4 WSDL ... 10

2.5 Service Registry ... 11

2.6 UDDI .. 11

2.7 Policy ... 12

3 Bisherige Arbeiten .. 13

4 Analyse bestehender Lösungen .. 15

4.1 Apache jUDDI .. 15

4.2 WSO2 Governance Registry .. 18

4.3 Oracle Service Registry ... 19

5 Service Registry ... 21

5.1 Datenmodell ... 21

5.2 Use-Cases .. 26

5.2.1 Use-Cases vom Benutzer .. 27

5.2.2 Use-Cases vom ESB ... 29

5.2.3 Use-Cases von beiden Aktoren ... 30

6 Implementierung .. 31

6.1 Verwendete Technologien.. 31

6.2 Architektur .. 33

6.3 Schnittstellen .. 34

6.4 Grafische Benutzeroberfläche .. 39

7 Zusammenfassung .. 43

8 Ausblick ... 43

9 Abbildungsverzeichnis .. 44

10 Tabellenverzeichnis .. 44

11 Literatur .. 45

5

1 Einleitung

Diese Arbeit baut auf der Arbeit "Service Selection for On-demand Provisioned Services" auf

mit dem Fokus auf die Service Registry [1]. Dort wird eine Architektur für das On-Demand-

Provisionieren von Services vorgestellt und die Service Registry ist ein Teil davon. Die

Aufgabe einer Service Registry in dieser Architektur ist es, Services zu verwalten, die von

Service-Anbietern (Service Provider) registriert werden. Service-Konsumenten (Service

Consumer) können die Service Registry dann durchsuchen, um für ihre Anforderungen

einen passenden Service zu finden. Für die Suche bietet die Service Registry die Funktion

der Service Discovery und Service Selection an. Service Discovery ist eine Funktion der

Service Registry, mit der man als Service Konsument eine Menge von Services angeboten

bekommt, die der funktionalen Anforderung des Service-Aufrufes entsprechen. Eine

weitere Funktion der Service Registry ist die Service Selection, in der anhand von nicht-

funktionalen Anforderungen geprüft wird, welcher Service aus dieser Menge für die

Anforderung des Konsumenten geeignet ist. Beide Eigenschaften (funktionale und nicht-

funktionale Anforderungen) muss die Service Registry verwalten können.

In der Arbeit "Service Selection for On-demand Provisioned Services" werden auch neue

Typen von Services eingeführt. Üblich sind Services, die ständig installiert sind, eine feste

Endpunktadresse haben und immer auf Anfragen hören (provisionierte Services). Solche

Services können über Drittanbieter in der Service Registry angeboten werden und

unterscheiden sich von On-demand-Services. On-demand-Services sind Services, die noch

nicht provisioniert sind. Für solche Services wird in der Service Registry ein Service Angebot

mit sogenanntem Service Package zur Verfügung gestellt. Das Service Package enthält alle

Daten zur Provisionierung des Services. Ist ein solcher On-demand-Service provisioniert,

spricht man von einer Service-Instanz. Ähnlich, wie ein provisionierter Service, haben die

Service Instanzen eine eigene Endpunktadresse und hören auf Anfragen eines Service-

Konsumenten, bis sie nicht mehr gebraucht werden. Nachdem die Nutzung einer Instanz

abgeschlossen ist, wird sie wieder de-provisioniert. Folglich muss in der Service Registry

sowohl das Angebot des ursprünglichen, nicht-provisionierten Services als auch die

provisionierten Service-Instanzen verwaltet werden können.

Für das Registrieren von Services existieren bereits viele verschiedene Lösungen. Diese

Service Registry-Lösungen bauen oft auf firmeneigenen "Service Orientierten

Architekturen" (SOA) auf und haben ihre eigene Interpretation von einer idealen Service

Registry, was dazu führt, dass die Lösungen sehr unterschiedlich ausfallen und auch zum

Teil Terminologien verschieden interpretieren. Dies erschwert es, eine Übersicht über diese

Lösungen zu behalten. Es bietet jedoch keine dieser Lösungen eine Service Registry, die On-

demand-Services verwalten kann. Die Realisierung einer solchen Service Registry bildet den

Hauptteil dieser Arbeit.

6

1.1 Motivation

Provisionierte Services werden in einer geschäftlichen Umgebung regelmäßig und ständig

gebraucht. Es macht Sinn, dass diese Services immer laufen und ihre Funktionalität

bereitstellen. In einer wissenschaftlichen Umgebung werden Services seltener und

unregelmäßiger genutzt. Der Rechenaufwand eines einzigen Services kann aber hoch sein

und begrenzte Rechenkapazität aufbrauchen.

Die Arbeit "Service Selection for On-demand Provisioned Services" erklärt, wie Services im

Laufe eines Workflows benutzt werden. Der Workflow ist ein Plan, der eine bestimmte

Aufgabe schrittweise löst und in einigen seiner Schritte auch Services aufruft und diese

rechnen lässt. Die Gesamtzeit der Ausführung eines solchen Plans kann Wochen betragen.

Wenn man davon ausgeht, dass während dieser Zeit nur provisionierte Services eingesetzt

werden, dann müssten diese Services zur gesamten Ausführungszeit vorhanden sein.

Jedoch werden diese Services, die sonst niemand anders benötigt, vielleicht nur wenige

Stunden der Gesamtzeit beansprucht und es wird schnell klar, dass hier wegen

provisionierten Services Rechenressourcen zu lange blockiert sind. Um Ressourcen

einzusparen und freizugeben, wenn diese nicht benötigt werden, können On-demand-

Services genutzt werden. Diese werden provisioniert, wenn sie gebraucht werden und de-

provisioniert, wenn sie nicht mehr gebraucht werden.

1.2 Ziel der Arbeit

Das Ziel dieser Arbeit ist es die Service Registry, die in der zuvor eingeführt Architektur

beschrieben wurde, zu realisieren. In der Abbildung 1 wird das Vorgehen in der Arbeit

verdeutlicht.

Abbildung 1: Vorgehen in der Arbeit

Es soll zuerst geprüft werden, ob es Lösungskandidaten gibt, die man möglicherweise für

On-demand-Services erweitern könnte. Diese Lösungskandidaten werden im ersten, kleinen

Schritt (1) gefiltert. Der Schritt ist kleiner abgebildet, da in dieser Arbeit darauf geachtet

wurde, ob ein Lösungskandidat Open-Source ist oder nicht. Anschließend muss analysiert

werden, welche Vor- und Nachteile ein existierender und anpassbarer Lösungskandidat mit

sich bringt. Diese Analyse wird im größeren, zweiten Schritt (2) durchgeführt. Hier muss die

Open-Source-Lösung und die Dokumentation des Lösungskandidats sehr genau betrachtet

werden und jeder positive oder negative Aspekt festgehalten werden. Danach wird

entschieden, ob eine existierender Lösungskandidat angepasst wird oder ob eine neue

Lösung implementiert werden muss. Die Entscheidung ist die gewählte Lösung zwischen

den Schritten (2) und (3), die im dritten Schritt (3) implementiert wird. Das Resultat ist

7

schließlich eine Service Registry, die zusammengefasst den folgenden Anforderungen

gerecht werden muss:

 Das Verwalten von provisionierten Services

 Das Verwalten von nicht-provisionierten On-Demand-Services

 Das Verwalten von provisionierten Service-Instanzen jedes On-Demand-Services

 Das Ermöglichen einer Service Discovery für funktionale Anforderungen an einen

Service

 Das Ermöglichen einer Service Selection für nicht-funktionale Anforderungen an

einen Service

1.3 Aufbau der Arbeit

In Kapitel 2 werden einige Grundlagenbegriffe eingeführt, die im Laufe der Arbeit öfter

vorkommen und für das Verständnis wichtig sind. Kapitel 3 gibt eine Übersicht über eine

Architektur, welche die Forschungsgrundlage für die Service Registry ist. Dort soll klar

werden, warum es die Service Registry überhaupt gibt und wie sie in ihrem Umfeld

einzuordnen ist. Kapitel 4 analysiert bestehende Service Registry-Lösungen und prüft dabei,

ob sie vorteilhaft für die Anforderungen der Service Registry angepasst werden können.

Nach der Analyse wird auch entschieden, ob eine bestehende Lösung für die

Implementierung angepasst wird, oder eine eigene Implementierung die Service Registry

realisieren wird. Danach wird in Kapitel 5 die konzeptionelle Ausarbeitung der Service

Registry vorgestellt und in Kapitel 6 folgt schließlich die eigentliche Beschreibung zur

Implementierung. In Kapitel 7 werden die Kerninhalte der Arbeit zusammengefasst und in

Kapitel 8 wird ein Ausblick für die Service Registry gegeben. Kapitel 9, 10 und 11 listen

jeweils ein Abbildungs-, Tabellen- und Literaturverzeichnis auf.

8

9

2 Grundlagen

SOA bringt ein breites Spektrum an Begriffen mit sich. Um im Kontext dieser Arbeit mit

klaren Begriffen arbeiten zu können, werden in diesem Kapitel Grundbegriffe eingeführt,

erweitert und gegebenenfalls voneinander abgegrenzt. Viele Begriffe werden bewusst in

der englischen Form in deutschen Sätzen verwendet, da der Gebrauch so allgemein üblich

ist.

2.1 Services

Ein Service ist ein Softwareprogramm, das auf bestimmte Anfragen bestimmte Antworten

generiert. Er hat eine bestimmte Funktionalität und ist damit ein Dienstleister. Ein Service

hat eine einheitliche Schnittstelle, während die innere Implementierung des Services

"versteckt" ist. Dadurch ist ein Service ein Element mit einer losen Kopplung. In unserem

Kontext unterscheiden wir zwischen provisionierten Services und nicht provisionierten

Services. Provisionierte Services sind Services, die immer aufgerufen werden können und

eine feste Endpunktadresse (oder nur Endpunkt) haben. Nicht provisionierte Services

bestehen aus einem Service Package von dem mehrere Service-Instanzen provisioniert

werden können. Diese können dann wie ein provisionierter Service Anfragen

entgegennehmen. Bei nicht-provisionierten Services wird außerdem unterschieden

zwischen nicht provisionierten "Shared Services" ("geteilter Service") und nicht

provisionierten "Dedicated Services" ("dedizierter Service"). Hierauf wird im Kapitel 5.1

noch genauer eingegangen.

2.2 Service Orientierte Architektur

Eine "Service Orientierte Architektur" (SOA) ist ein Architekturmuster, das auf Services

basiert. Die SOA ist oft an komplexen Prozessen orientiert. Man kann sich hier

Geschäftsprozesse vorstellen, wie z.B. das Bestellen eines Produktes bei einem Online-

Händler. Wenn ein Kunde ein Produkt bestellt, wird die Bestellung an den Händler

weitergegeben. Der Händler muss nun beispielsweise folgende Schritte ausführen:

1. Prüfen, ob das Produkt noch verfügbar ist

2. Produkt versenden

3. Rechnung für den Kauf ausstellen

Jeder dieser kleineren drei Schritte könnte von einem Service bearbeitet werden. Ein

Service könnte in einer Datenbank prüfen, ob das Produkt noch vorhanden ist. Ein weiterer

Service würde bei der Versandabteilung des Online-Händlers das Produkt zum Versand

freigeben und ein dritter Service könnte den Rechnungspreis berechnen.

10

2.3 Binding

Das Binding beschreibt das technische Protokoll zur Kommunikation mit einem Service. Es

ist eine Kombination aus einer Kodierungsart, wie beispielsweise SOAP 1, und einem

Protokoll, wie beispielsweise HTTP 2. In einer WSDL Datei beschreibt das Binding zusätzlich

das Format, in dem Eingabe- und Ausgabeparameter von Operationen verschickt werden.

2.4 WSDL

WSDL steht für Web Service Description Language und ist eine einheitliche

Beschreibungssprache für die Schnittstellen von Services. Sie wird auf Basis von XML

beschrieben und hat den Vorteil, dass sie eine Kommunikation erlaubt, die unabhängig von

Programmiersprache oder Protokoll der Kommunikationspartner ist. Die Abbildung 2 zeigt

etwa, wie ein WSDL-Dokument aufgebaut ist.

Abbildung 2: Aufbau einer WSDL

Eine WSDL-Datei ist schematisch in zwei Teile unterteilt: den abstrakten Beschreibungsteil

und den konkreten Beschreibungsteil. Im abstrakten Teil werden zuerst Datentypen

definiert, die entweder aus einzelnen primitiven Datentypen bestehen, oder zu

komplexeren, zusammengesetzten Datentypen definiert werden können. Anschließend

werden im abstrakten Teil Elemente beschrieben, die auf diese Datentypen verweisen. Im

nächsten Schritt werden Nachrichten (Messages) definiert, die wiederum auf Elemente

verweisen. Operationen im Port-Type verweisen dann auf Nachrichten. Diese Nachrichten

können die Eingabe- und Ausgabeparameter der Funktionsaufrufe (oder Operationen) eines

Services beschreiben.

1
 Simple Object Access Protocol, http://de.wikipedia.org/wiki/SOAP

2
 Hypertext Transfer Protocol, http://de.wikipedia.org/wiki/Hypertext_Transfer_Protocol

11

Im konkreten Teil einer WSDL wird dann festgelegt, welches Binding benutzt wird. Das

Binding verweist wiederum auf den Port-Type und muss für jede abstrakte Operation des

Port-Types die konkreten Formate der Eingabe- und Ausgabeparameter bestimmen.

Schließlich wird noch ein Port definiert. Der Port beinhaltet die Endpunktadresse und

verweist auf das Binding [2].

2.5 Service Registry

Eine Service Registry ist ein Programm, dass relevante Daten zum Ansprechen von Services

verwaltet. Es dient dazu, den Überblick über viele Services zu behalten und schnell

bestimmte Services zu finden. Da die Funktion eines Services sich oft auf kleine

Teilaufgaben beschränkt, werden für größere Prozesse viele Services kombiniert, um

komplexere Aufgaben zu lösen. Eine Service Registry sollte daher Services auf irgendeine

Weise klassifizieren können. Der Ansatz von UDDI (siehe Kapitel 2.6) sieht mehrere

Möglichkeiten vor, einen Service zu klassifizieren: zum einen mit eindeutigen, industriellen

Schlüsseln, zum anderen mit den optionalen tModels, die mit Hilfe einer WSDL-Datei eine

Schnittstelle des Services beschreiben können. Gerade der zweite Ansatz mit der WSDL

Schnittstellenbeschreibung spiegelt sich in vielen Service Registry-Lösungen wieder. In

unserem Kontext wird die Service Registry diesen Ansatz mit einem "Service Interface"

umsetzen. Dazu wird im Kapitel 5.1 genaueres beschrieben.

2.6 UDDI

UDDI steht für Universal Description, Discovery and Integration. Es ist eine Spezifikation, die

eine Struktur für ein Verzeichnis beschreibt, in dem Services registriert werden können.

UDDI beschreibt also effektiv eine Möglichkeit, Daten in einer Art Service Registry

abzubilden. Die Abbildung 3 bildet die Grundelemente von UDDI ab.

Abbildung 3: Grundelemente von UDDI

Das Wurzelelement befindet sich in der Abbildung oben links und heißt "businessEntity". In

der businessEntity gibt es Informationen, die speziell für eine Firma ausgelegt sind, die

einen oder mehrere Services bereitstellt. Darunter kann man Kontaktinformationen,

12

industrielle Kategorien und einen Schlüssel angeben, der die Firma eindeutig identifiziert.

Die businessEntity beinhaltet mehrere "businessService"-Elemente. Ein businessService

stellt einen Service dar. In diesem Element kann man eine textuelle Beschreibung für einen

Service hinterlegen, mehrere Bindings für den Service bestimmen und den Service

kategorisieren (mit den gleichen industriellen Kategorien, wie bei der businessEntity). Der

businessService beinhaltet ein oder mehrere "bindingTemplate"-Elemente. Im

bindingTemplate wird konkret beschrieben, über welches Protokoll und über welche

Endpunktadresse der Service ansprechbar ist. Das bindingTemplate verweist auf ein

tModel. Das tModel ist ein optionales Element, dass Schnittstellenbeschreibungen für einen

Service enthält. Im tModel lässt sich ein Link zu einer WSDL-Datei angeben und auch hier

kann das tModel (und damit die Schnittstelle) kategorisiert werden.

2.7 Policy

Eine Policy ist ganz abstrakt eine Regel, die auf etwas angewendet werden kann. In SOA

werden Policies auf Services angewendet, um für Services nicht-funktionale Anforderungen

zu formulieren oder Sicherheitsregeln hinzuzufügen. Eine Policy kann zum Beispiel die

Anzahl der Aufrufe an einen Service für einen Service-Konsumenten täglich auf eine feste

Zahl beschränken oder beschreiben, dass ein Service besonders schnell oder besonders

sicher ist.

13

3 Bisherige Arbeiten
Es wird an dieser Stelle etwas genauer auf die Architektur und das Umfeld eingegangen, in

der sich die Service Registry befindet. Eine komplette Beschreibung der Architektur findet

sich in der Arbeit "Service Selection for On-demand Provisioned Services" [1]. Die Abbildung

4 veranschaulicht eine vereinfachte Nachbildung der Architektur.

Abbildung 4: Architektur und Umfeld der Service Registry [1]

Im Folgenden werden in diesem Kapitel Referenzen auf Elemente in der Architektur kursiv

geschrieben. Die Architektur ist in drei Phasen aufgeteilt. Diese sind im unteren Teil in der

Abbildung zu sehen. Es gibt die MODELING TIME (Model-Phase), die MIDDLEWARE

RUNTIME (Middleware-Phase) und die SERVICE RUNTIME (Service-Phase). Die Abbildung ist

in eine lokale Seite und eine globale Seite aufgeteilt. Die Elemente auf lokaler Seite

beschreiben jeden Wissenschaftler (Scientist), der auf seinem lokalen Computer arbeitet.

Die Elemente in der globalen Seite befinden sich in einer Cloud3. Die globale Seite ist immer

lauffähig und jeder kann auf ihre Elemente zugreifen.

In der Model-Phase werden in der Architektur auf lokaler Seite das Modeling Tool und die

Bootware vom Wissenschaftler (Scientist) genutzt. Auf globaler Seite werden die Service

Package Repository und die Service Registry ausgeführt. Ein Service Provider registriert

Services in der Service Registry und lädt für On-demand-Services entsprechende Service

3
 Datenspeicherung in einer Cloud, http://de.wikipedia.org/wiki/Cloud_Computing

14

Packages in die Service Package Repository hoch. Die Service Packages sind

Installationspakete, die alle Daten zum Provisionieren eines nicht-provisionierten On-

demand-Services enthalten. Wichtig ist an dieser Stelle, dass das Registrieren eines Services

in der Service Registry nur die Informationen zum Service speichert, wie eine

Endpunktadresse, eine WSDL-Datei für die Schnittstelle und einige mehr. Die Besonderheit

der Service Registry in dieser Architektur ist, dass sie für On-demand-Services einen Verweis

auf ein Service Package im Service Package Repository speichert. Die Service Package

Repository dagegen beinhaltet die eigentlichen Service Packages.

Auf lokaler Seite definiert der Wissenschaftler zunächst einen Workflow. Ein Workflow ist

ein Plan, der schrittweise Operationen ausführt und an bestimmten Stellen Services aufruft.

Dieser Workflow wird im Modeling Tool erstellt. Mit Hilfe der Bootware wird dann die

Provisioning Engine aufgesetzt und es wird das Service Package weitergegeben, das die

Workflow Middleware aufsetzen soll (1). Die Provisioning Engine ist eine komplexere

Komponente, die in der Lage ist jede Art von Service zu Provisionieren und es wird an dieser

Stelle nicht genauer auf sie eingegangen. Am Ende der Model-Phase provisioniert die

Provisioning Engine die Workflow Middleware (2). Diese Workflow Middleware besteht aus

dem Enterprise Service Bus (ESB) und der Workflow Engine und ist mit einem gestrichelten

Kasten in der Abbildung markiert.

In der Middleware-Phase wird der Plan, der zuvor in der Model-Phase vom Wissenschaftler

definiert wurde, auf der Workflow Engine ausgeführt. Der ESB bekommt Service-Aufrufe

von der Workflow Engine, um die Schritte im Plan auszuführen. Für provisionierte Services

leitet der ESB den Aufruf direkt an die Endpunktadresse des Services weiter. Für nicht-

provisionierte Services muss der ESB zuerst mit der Service Registry und der Provisioning

Engine kommunizieren. Im ersten Schritt bekommt der ESB von der Service Registry alle

Informationen, die er zum provisionieren des nicht-provisionierten Services braucht, wie

zum Beispiel den Verweis auf das Service Package. Dann ruft der ESB die Provisioning

Engine auf, damit die Provisioning Engine den Service provisioniert (3). Dies ist in der

Abbildung mit den Service-Instanzen Service X1 bis Service Xn dargestellt. Das Provsionieren

der On-demand-Services leitet die Service-Phase ein. Nachdem die Services provisioniert

wurden, werden die Aufrufe an die Service-Instanzen weitergeleitet.

In der Service-Phase führen die Service-Instanzen die gewünschte Funktionalität nach dem

Service-Aufruf aus. Sobald ein Service fertig ist mit der Ausführung, gibt er eine Antwort an

den ESB zurück. Der ESB leitet die Antwort direkt an die Workflow Engine zurück. Wenn die

Services mit der Ausführung fertig sind, wird die Unterscheidung zwischen nicht-

provisionierten "Dedicated Services" und nicht-provisionierten "Shared Services" wichtig.

Die nicht-provisionierten Dedicated Services sind nur für einen Aufruf vorgesehen. Das

bedeutet, dass der ESB für die Dedicated Service-Instanz nach Bearbeitung des Service-

Aufrufs sofort die Provisioning Engine aufruft, um die Instanz zu de-provisionieren. Anders

ist es bei Shared Service-Instanzen. Hier muss der ESB zuerst prüfen, ob die Instanz noch

Service-Aufrufe verarbeitet. Erst wenn der Service keine Service-Aufrufe mehr verarbeitet,

kann dieser analog de-provisioniert werden. Wenn die Workflow Engine mit der

Ausführung des Plans fertig ist, wird durch die Bootware das De-provisionieren der

Workflow-Middleware initiiert. Zuletzt de-provisioniert die Bootware auch die Provisioning

Engine.

15

4 Analyse bestehender Lösungen

Im Folgenden werden bestehende Service Registry-Lösungen betrachtet, die

möglicherweise für nicht-provisionierte Services angepasst werden könnten. Für die

bereits existierenden Lösungen wird vor allem auf Kriterien geachtet, die in der Tabelle 1

zusammengefasst sind. Anforderungen wie das Registrieren von provisionierten Services

und nicht-provisionierten Services entfallen in der Kriterientabelle, da davon ausgegangen

wird, dass einfache, provisionierte Services registriert werden können und nicht-

provisionierte Services nicht. Weitere, in der Tabelle 1 nicht aufgeführte Eigenschaften der

bestehenden Service Registry-Lösungen werden ebenfalls betrachtet, sofern sie als

Besonderheit auffallen.

Kriterium Beschreibung des Kriteriums

Service Discovery Dies ist die Möglichkeit technische Schnittstellen zu definieren,
um funktionale Anforderungen an einen Service zu stellen.

Service Selection Dies ist die Möglichkeit Policies oder nicht-funktionale
Anforderungen an einen Service zu stellen.

User Guide Ein User Guide ist eine Dokumentation zur Benutzung der
bestehenden Lösung. Durch sie lässt sich der praktische Nutzen
der Lösung besser verstehen.

GUI Das "Graphical User Interface", also die bestehende grafische
Benutzeroberfläche sollte vorteilhaft größtenteils
wiederverwendbar sein, damit man dort bei einer Anpassung
nicht zu viel Arbeit investieren muss.

Development Guide Ein Development Guide ist eine Dokumentation, die mindestens
einen Einstieg in den existierenden Open-Source-Code gibt und
die Struktur des Codes erklärt.

Aktive Community Eine "aktive Community", die zeigt, dass das Projekt noch aktiv ist
und bei der man sich bei Problemstellungen an Menschen aus
der aktiven Community wenden kann.

Tabelle 1: Kriterien bei der Analyse

4.1 Apache jUDDI

Das Programm jUDDI4 ist eine Open-Source Java-Implementierung der UDDI-Spezifikation

von OASIS [3]. Alle Funktionen, die in der UDDI Spezifikation beschrieben sind, werden von

jUDDI sowohl programmatisch als auch über die grafische Oberfläche angeboten. Die Lizenz

für die Software ist die "Apache Software License, Version 2.0" 5.

Da jUDDI eine UDDI-Implementierung ist, stellt sich zuerst die Frage, in wie fern UDDI

bereits für die Anforderungen an die Service Registry aus Kapitel 1.2 geeignet ist. In Kapitel

2.6 wurde bereits genannt, dass UDDI businessServices in den Grundelementen beschreibt,

was Services mit einer Endpunktadresse sind. Damit wäre die Anforderung für

provisionierte Services erfüllt. Nicht-provisionierte Services sieht die UDDI Spezifikation

nicht vor, daher wird voraussichtlich auch jUDDI um nicht-provisionierte Services erweitert

werden müssen. UDDI bietet eine Möglichkeit, Schnittstellen mit tModels für Services zu

4
 Java UDDI, http://juddi.apache.org/

5
 Open-Source-Lizenz von Apache, http://www.apache.org/licenses/LICENSE-2.0.html

16

beschreiben und diese zu kategorisieren. Die Struktur eines tModels wird in Abbildung 5

dargestellt.

Abbildung 5: tModel für funktionale Anforderungen

Für ein tModel kann also eine WSDL-Datei zur Beschreibung der Schnittstelle referenziert

werden (im Tag "overviewURL"). Des weiteren lässt sich im "categoryBag" eine eindeutige

Kategorie für das Service-Interface beschreiben. Dies würde eine Service-Discovery für

funktionale Anforderungen an einen Webservice ermöglichen. Mit tModels lassen sich in

UDDI auch Policies beschreiben. Ein Beispiel dafür ist in Abbildung 6 dargestellt.

Abbildung 6: tModel für nicht-funktionale Anforderungen

Statt einer WSDL für das Tag "overviewURL" wird ein Policy-Dokument angegeben. Bei der

Kategorisierung müsste dann eine eindeutige nicht-funktionale Anforderung eingetragen

werden. Eine genauere Beschreibung der Policies in UDDI findet sich in der UDDI-

Spezifikation [3]. Damit wäre mit UDDI auch eine Service Selection für nicht-funktionale

Anforderungen möglich. Da UDDI nicht-provisionierte Services nicht vorsieht und nach

genauerer Betrachtung jUDDI nicht-provisionierte Services auch nicht unterstützt, muss

jUDDI erweitert werden. Im Folgenden wird also anhand der Kriterien analysiert, ob sich

jUDDI vorteilhaft anpassen lässt.

17

In der Dokumentation von jUDDI finden sich ein User-Guide und einige Demo-Videos, die

die Benutzung von jUDDI erklären. Das erfüllt das Kriterium des User-Guides und hilft, das

bestehende System zu verstehen. Jedoch hat jUDDI bei der Implementierung der grafischen

Benutzeroberfläche deutliche Schwächen. Es ist ohne die Dokumentation nicht intuitiv klar,

wie die grafische Benutzeroberfläche für Services zu benutzen ist. Die Usability der

grafischen Oberfläche ist ebenfalls niedrig. Hier wurden einfache Usability-Praktiken, wie

das Highlighting eines Menüs, in dem man sich befindet, nicht implementiert. Das

bedeutet, dass Zeit in die Verbesserung oder ein neues Design der grafischen Oberfläche

investiert werden muss und jUDDI keine fertige grafische Oberfläche mit sich bringt.

Deshalb ist das Kriterium für die "GUI" nicht erfüllt. Auf der Homepage von jUDDI ist bei der

Dokumentation ebenfalls einen Development Guide zu finden, jedoch erklärt dieser

lediglich, wie man externe Clients entwickeln kann, um die UDDI Schnittstellen zu benutzen,

die bereits existieren. Der Development Guide gibt keinen Code-Einstieg und beschreibt

nicht die existierende Architektur des Systems und des Codes. Damit ist das Kriterium für

den Development Guide ebenfalls nicht erfüllt. Apache jUDDI hat kein eigenes Forum.

Fragen zu jUDDI finden sich vereinzelt auf verschiedenen anderen Foren, aber es scheint

keine zentrale Stelle dafür zu geben. Es wird deutlich, dass die Community sich nicht aktiv

mit jUDDI beschäftigt. Ein weiterer Indikator dafür ist eine Art Wiki-Lexikon für jUDDI, das

nur aus kaputten Links besteht. Damit ist das Kriterium für eine aktive Community ebenfalls

nicht erfüllt.

Als Besonderheit ergänzend zu den definierten Kriterien ist bei der Analyse von jUDDI noch

aufgefallen, dass es einen Blog gibt, das von einem jUDDI Entwickler geführt wird. Dort

findet sich ein Architekturbild der Komponenten von jUDDI. Es gibt auf der jUDDI

Homepage auch die Möglichkeit den Code anzusehen, ohne ihn zuvor selber bauen zu

müssen 6.

Zusammengefasst wird in der Tabelle 2 gezeigt, dass nicht alle Kriterien zur Arbeit mit jUDDI

erfüllt sind. Das Ergebnis der Analyse zeigt mit der Oberfläche und dem Mangel an

Entwicklerunterstützung, dass eine Arbeit mit jUDDI sehr zeitkritisch sein könnte. Im

Rahmen dieser Bachelorarbeit wird jUDDI daher nicht als existierende Lösung angepasst.

Kriterium erfüllt Begründung

Service Discovery ja Dies ist mit tModels möglich.

Service Selection ja Dies ist mit tModels möglich.

User Guide ja Verständlicher User Guide und Demo-Videos machen die
Benutzung von jUDDI klar.

GUI nein Die GUI ist nicht ohne Dokumentation benutzbar und hat
eine niedrige Usability.

Development
Guide

nein Kein Development Guide für den Code an sich, nur für
externe Clients.

Aktive
Community

nein Es gibt keine aktive Community und kein jUDDI Forum.

Tabelle 2: Ergebnisse der Analyse von jUDDI

6
 eine externe Referenz für den jUDDI Code, http://juddi.apache.org/xref/

18

4.2 WSO2 Governance Registry

Die WSO2 Governance Registry (oder kurz WSO2 GREG) ist eine Open-Source-Lösung von

WSO2, die unter anderem eine Service Registry beinhaltet [ref-WSO2-GREG-hp]. Anders als

bei jUDDI ist WSO2 GREG keine UDDI-Implementierung. Sie ist jedoch genauso wie jUDDI

unter der Apache License 2.0 verfügbar. WSO2 GREG interpretiert Inhalte, wie z.B. Services,

auf eine eigene Weise mit Artefakten. Die Artefakte in WSO2 GREG sind durch XML-

Strukturen beschrieben. Die Dokumentation beschreibt, wie durch bestimmte XML-

Schnipsel ein Artefakt um Textfelder, oder Dropdown-Felder erweitert werden kann.

Bearbeitet man ein Artefakt mit der korrekten XML-Syntax, so generiert sich auch eine

entsprechende HTML Oberfläche dazu 7.

In WSO2 GREG gibt es die Möglichkeit, Links zu WSDL-Dateien für Services anzugeben, es ist

aber nicht vorgesehen, eine Schnittstellenbeschreibung für mehrere Services zu

verwenden. Es ist in WSO2 GREG zwar auch möglich ein Artefakt für WSDL-Dateien separat

anzugeben, jedoch können diese nicht für ein Service-Artefakt genutzt werden. Damit ist

die Service Discovery vorerst nicht möglich und es müssten hier Anpassungen im Code

vorgenommen werden. Auch die Service Selection für nicht-funktionale Anforderungen ist

in WSO2 nicht möglich. Ähnlich wie bei WSDL-Artefakten können separat Policy-Artefakte

angelegt, aber nicht für Service-Artefakte benutzt werden.

Auf der Homepage von WSO2 GREG gibt es einen Link zur Dokumentation. Dort finden sich

teilweise sehr ausführliche Beschreibungen zur Benutzung von WSO2 GREG. Damit ist das

Kriterium für einen User Guide erfüllt. Die bestehende Oberfläche von WSO2 GREG ist sehr

intuitiv bedienbar. Es ist sofort klar, wo ein Service angelegt werden kann und es ist

verständlich welche Daten für den Service angelegt werden können und wozu. Damit ist das

Kriterium für die GUI erfüllt, denn die Oberfläche lässt sich so wiederverwenden und es

müssten eventuell nur kleine Anpassungen gemacht werden. Beschreibungen für

Entwickler finden sich in der Dokumentation von WSO2 GREG keine. Es gibt nur eine kleine

Anleitung, die beschreibt, wie man den Code der Anwendung bauen kann. Jedoch scheitert

der "Build"-Prozess nach dieser Anleitung. Folglich ist das Kriterium für einen Development

Guide nicht erfüllt. Support für Entwickler ist bei WSO2 GREG nur schwer zu erreichen. Das

offizielle Forum zu WSO2 GREG ist seit 2012 nicht mehr benutzt worden. Für weitere

Fragen wird man bei WSO2 an Stackoverflow8 verwiesen. Eine Frage zum Code-Einstieg und

dem fehlerhaften Build wurde aber schließlich auch auf Stackoverflow nicht beantwortet.

Damit ist auch das Kriterium für die aktive Community nicht erfüllt in WSO2 GREG.

Die Ergebnisse der Analyse werden in der Tabelle 3 zusammengefasst. Auch hier sind nicht

alle Kriterien erfüllt. Die Architektur von WSO2 GREG ist nicht klar und damit ist auch hier

die Arbeit im Rahmen der Bachelorarbeit zu zeitkritisch. WSO2 GREG wird daher ebenfalls

nicht als bestehende Lösung für die Service Registry angepasst.

7
 Configurable Governance Artifacts sind generische Artefakte in WSO2 GREG,

https://docs.wso2.com/pages/viewpage.action?pageId=22185121
8
 Stackoverflow ist eine Frageplattform für Entwickler, http://stackoverflow.com/

19

Kriterium erfüllt Begründung

Service Discovery nein Man kann keine Schnittstellenbeschreibung mehrmals für
Services verwenden.

Service Selection nein Man kann keine Policies für Services verwenden.

User Guide ja Verständlicher User Guide und Demo-Videos machen die
Benutzung von jUDDI klar.

GUI ja Die GUI ist intuitiv bedienbar und ist größtenteils
wiederverwendbar.

Development
Guide

nein Kein Development Guide für den Code, Dokumentation ist
ein reiner User-Guide.

Aktive
Community

nein Offizielles Forum wird nicht mehr benutzt, Stackoverflow hat
sich nicht als gute Alternative herausgestellt.

Tabelle 3: Ergebnisse der Analyse von WSO2 GREG

4.3 Oracle Service Registry

Die Oracle Service Registry, eine nicht Open-Source-Lösung, wurde ebenfalls betrachtet.

Jedoch wurde hier schnell klar, dass sie die Service Registry-Anforderungen dieser Arbeit

nicht erfüllt. Sie hat keine Unterstützung für nicht-provisionierte Services. Da die Oracle

Service Registry nicht Open-Source ist und die Entwicklerhandbücher auch keine passende

Konfigurationsmöglichkeit für die Anforderungen aus Kapitel 1.2 beschrieben haben wird

die Oracle Service Registry auch nicht als mögliche Lösung betrachtet.

20

21

5 Service Registry
Die Service Registry für On-Demand-Services ist für ein bestimmtes Umfeld vorgesehen, in

der es unter anderem zusammen mit einem Enterprise Service Bus (ESB) kommuniziert. Aus

dem Datenmodell in Kapitel 5.1 und den Anforderungen vom ESB ergibt sich eine

Schnittstelle, die die Service Registry nach außen hin anbieten muss. Die Methoden werden

in einem Use-Case-Diagramm in Kapitel 5.2 vorgestellt und in Kapitel 6.3 später konkreter

definiert.

5.1 Datenmodell

Das Datenmodell der Service Registry ist in Abbildung 7 mit Hilfe eines Entity-Relationship-

Models abgebildet.

22

Abbildung 7: Datenmodell der Service Registry

23

Das Datenmodell teilt die Entitäten in abstrakte und konkrete Entitäten auf. Die abstrakten

Entitäten sollen funktionale und nicht-funktionale Eigenschaften von Services definieren.

Diese sollen Services kategorisieren und von mehreren Services benutzt werden, welche die

gleichen funktionalen und nicht-funktionalen Eigenschaften haben. Der konkrete Teil

beschreibt schließlich die eigentlichen Services. Im Folgenden wird jede Entität des

Datenmodells genauer erläutert:

"Service Interface"

Das Service Interface soll die Schnittstelle zu einem Service definieren und damit eine

funktionale Anforderung beschreiben. Dies wird für Services in der Service Registry eine

Service Discovery möglich machen. Es hat einen eindeutigen PortType-Namen (Name) der

eine eindeutige Schnittstelle eines Webservices beschreibt. Die funktionale Beschreibung

besteht aus einer Adresse zu einer WSDL-Datei. Für diese WSDL ist vorgesehen, dass sie

zumindest den abstrakten Teil definieren muss. Sie muss nicht zwingend den konkreten Teil

(mit Binding Information und Endpunktadresse) definieren, da dies nicht relevant für eine

Schnittstellenbeschreibung ist. Optional soll die funktionale Schnittstelle auch mit einer

kleinen textuellen Beschreibung ergänzt werden können.

"QualityOfService"

Ein QualityOfService soll nicht-funktionale Anforderungen beschreiben können und damit

eine Service Selection für Services in der Service Registry ermöglichen. Es werden vorerst

Paare von nicht-funktionalen Eigenschaften (Property) mit Werten (Values) gefüllt. Die

Ausarbeitung eines vollständigen Models für die nicht-funktionalen Anforderungen ist nicht

Teil dieser Arbeit.

"ServiceConfiguration"

Eine ServiceConfiguration stellt Kombinationen funktionaler (Service Interface) und nicht-

funktionaler (QualityOfService) Eigenschaften dar. Hiermit soll für Services eine passende

Kombination abgebildet werden können. Jede ServiceConfiguration hat immer genau eine

funktionale Beschreibung (ServiceInterface), kann aber mehrere nicht-funktionale

Beschreibungen (QualityOfService) haben. Umgekehrt können Service Interfaces für

mehrere ServiceConfigurations benutzt werden. Ebenso können einzelne QualityOfService

für mehrere ServiceConfigurations benutzt werden.

"ServiceOffer"

Hier wird ein Service als "Angebot" (ServiceOffer) dargestellt, das immer von einem

bestimmten Service Anbieter (ServiceProvider) kommt. Es wird bewusst Angebot genannt,

um zu verdeutlichen, dass es sich hier nur um Informationen eines Services handelt und

nicht um den Service selbst. Für jedes Angebot muss genau ein Binding festgelegt werden.

Falls der gleiche Service mit einem anderen Binding registriert werden muss, so muss dafür

ein neues ServiceOffer mit diesem Binding erstellt werden. Das Angebot steht für einen

Service, der eine bestimmte ServiceConfiguration implementiert. Die gleiche

ServiceConfiguration kann von mehreren Angeboten genutzt werden. Ein Angebot

24

beschreibt alle allgemeinen Eigenschaften eines konkreten Service-Angebots, wie einen

Namen, eine vollständige WSDL-Datei, etc.

"Binding"

Das Binding beschreibt das technische Kommunikationsprotokoll, mit dem der Service

ansprechbar ist. Es soll aus einer Kombination von Codiertyp und Netzwerkprotokoll

bestehen. Ein Beispiel für so eine Kombination ist SOAP / HTTP. Jedes Binding kann für

genau ein Service-Angebot genutzt werden.

"ServiceProvider"

Der Service-Anbieter (ServiceProvider) kann mehrere Angebote von Services anbieten. Er

sollte eindeutig identifizierbar sein, um zu unterscheiden welches Angebot von welchem

Anbieter stammt. Ein Service-Anbieter sollte auch nur in der Lage sein, seine eigenen

Angebote zu bearbeiten, und diese auch wieder aus der Service Registry zu löschen.

"ProvisionedService"

Ein ProvisionedService beschreibt einen provisionierten Service. So ein Service wird in der

Regel von Drittanbietern registriert. Er besitzt einen Endpunkt, der immer auf Anfragen

hört, und erbt alle Eigenschaften des allgemeinen Service Angebots (ServiceOffer).

"NotProvisionedService"

Ein NotProvisionedService fasst alle Eigenschaften nicht-provisionierter Service-Angebote

zusammen. In dem Fall kann hier eindeutig bestimmt werden, welches Service Package

benutzt wird (ServicePackage_Id), um den Service zu installieren und welcher Typ von Paket

das ist (Repository_Id). Es ist eine Zwischenabstraktion und erbt alle Eigenschaften des

Service-Angebots (ServiceOffer).

"SharedService"

Ein SharedService ist ein konkretes Service-Angebot. Aus einem Shared-Service-Angebot

lassen sich Instanzen von Services installieren, die Anfragen eines gleichen Benutzers durch

die gleiche Instanz bearbeiten lassen können. Es erbt alle Eigenschaften eines nicht-

provisionierten Service-Angebots (NotProvisionedService) und hat eine Liste von

SharedServiceInstance. Dies sind die Service-Instanzen, die entstehen, wenn der Service

provisioniert wird.

"DedicatedService"

Aus einem Dedicated-Service-Angebot lassen sich Instanzen von Services installieren, die

jeweils nur eine Anfrage eines Benutzers bearbeiten können. Für jede weitere Anfrage des

gleichen Benutzers muss eine neue Instanz dieses Angebots installiert werden. Es erbt alle

Eigenschaften eines nicht-provisionierten Services-Angebots und hat eine Liste von

DedicatedServiceInstance. Dies sind die Service-Instanzen, die entstehen, wenn der Service

provisioniert wird.

25

"NotProvisionedServiceInstance"

NotProvisionedServiceInstance ist eine Instanz von nicht-provisionieren Services. Folglich

muss sie eine Endpunktadresse haben, über die sie ansprechbar ist. Die

NotProvisionedServiceInstance hat diesen Endpunkt, weil sie im Folgenden für die

SharedServiceInstance und DedicatedServiceInstance verwendet wird.

"SharedServiceInstance"

Eine SharedServiceInstance ist eine Service-Instanz eines Shared-Service-Angebots. Sie erbt

die Endpunktadresse einer allgemeinen "NotProvisionedServiceInstance" und ist dafür

vorgesehen mehrere Anfragen eines Benutzers gleichzeitig verarbeiten zu können. Diese

Anfragen (Calls) sollen in einer Zählvariable (Callsnumber) gezählt werden. Fällt die

Callsnumber auf 0 zurück nachdem alle Anfragen abgearbeitet wurden, so kann die Instanz

wieder de-provisioniert werden.

"DedicatedServiceInstance"

Eine DedicatedServiceInstance ist eine Instanz eines Dedicated-Service-Angebots. Sie erbt

die Endpunktadresse einer allgemeinen "NotProvisionedServiceInstance" und kann immer

nur eine Anfrage des gleichen Benutzers bearbeiten. Es gibt hier also nur den Zustand der

Bearbeitung einer Anfrage oder den Zustand, in dem die Instanz keine Anfrage mehr

bearbeitet und "abwesend" (idle) ist. Nachdem die eine Anfrage bearbeitet ist, für welche

die Dedicated-Service-Instanz vorgesehen war, kann die Instanz wieder de-provisioniert

werden.

"Consumer"

Der Consumer (Konsument oder Nutzer) benutzt nicht-provisionierte Service-Instanzen. Er

kann mehrere Instanzen benutzen und muss bei den Instanzen als "Consumer" eingetragen

werden, damit Anfragen korrekt umgeleitet werden. Dies ist deshalb wichtig, weil für

Anfragen vom Consumer unterschieden werden muss, ob sie an ein Shared-Service-

Angebot oder ein Dedicated-Service-Angebot gerichtet sind. Falls sie an ein Shared-Service-

Angebot gerichtet sind, muss zuerst geprüft werden, ob es nicht schon eine provisionierte

Shared-Service-Instanz für den Benutzer gibt. Falls es sie gibt, muss die Anfrage an diese

Instanz umgeleitet werden und die Callsnumber der Instanz erhöht werden. Falls es sie

nicht gibt, muss eine neue Shared-Service-Instanz provisioniert werden. Bei einer Anfrage

an eine Dedicated-Service-Instanz wird einfach ohne weitere Prüfung eine neue Instanz

provisioniert.

26

5.2 Use-Cases

In der Abbildung 8 werden die Use-Cases der Service Registry vorgestellt, die sich durch die

zwei möglichen Benutzer der Service Registry ergeben: den menschlichen Benutzer und den

Enterprise Service Bus (ESB).

Die folgenden Kapitel beschreiben Methoden, welche die Service Registry zur Verfügung
stellen muss. Es gibt Methoden, die entweder ausschließlich von einem menschlichen
Benutzer, ausschließlich vom Enterprise Service Bus (ESB) oder von beiden genutzt werden
sollen.

Abbildung 8: Use-Cases der Service Registry

27

5.2.1 Use-Cases vom Benutzer

Create Service Interface

Der Benutzer erstellt ein Service Interface, das später beim Erstellen von Service-

Configurations angegeben werden kann. Das Service Interface soll eine Service Discovery

ermöglichen und beschreibt funktionale Eigenschaften eines Services. Eine Service

Configuration muss beim Erstellen immer ein bereits existierendes Service Interface

angeben.

Create Service Configuration

Der Benutzer erstellt durch Angabe eines existierenden Service-Interfaces und zusätzlicher

Angabe von Qualitätspaaren eine Service-Configuration. Es ist keine separate Methode für

das Erstellen von nicht-funktionalen Eigenschaften (QualityOfService) eines Services

vorgesehen, da sie implizit in der Create Service Configuration Methode erstellt werden.

Die nicht-funktionalen Eigenschaften eines Services ermöglichen eine Service Selection. Die

Service-Configuration soll helfen, Service-Angebote in der Service Registry zu

kategorisieren.

Create Service Offer

Der Use-Case Create Service Offer ist die abstrakte Beschreibung zur Erstellung eines

Service-Angebots. Der Use-Case muss in einem der drei folgenden Fälle konkretisiert

werden:

1. Create Provisioned Service

2. Create NP Shared Service

3. Create NP Dedicated Service

Alle diese Use-Cases müssen beim Erstellen eine zuvor erstellte Service-Configuration

referenzieren, damit klar ist, mit welcher Schnittstelle der Service anzusprechen ist.

Create Provisioned Service

Der Benutzer erstellt ein konkretes Service-Angebot für einen provisionierten Service.

Dieser Use-Case ist für Drittanbieter von Services vorgesehen, die ihren Service extern

betreiben und hier lediglich die Schnittstelle und eine Endpunktadresse für den Service

angeben.

Create NP Shared Service

Der Benutzer erstellt ein konkretes Service-Angebot für einen nicht-provisionierten Shared-

Service. Dieses Angebot muss angeben, mit welchem Service Package es provisioniert

werden kann. Aus diesem Angebot sollen Shared-Service-Instanzen erstellt werden können.

28

Create NP Dedicated Service

Der Benutzer erstellt ein konkretes Service-Angebot für einen nicht-provisionierten

Dedicated-Service. Dieses Angebot muss angeben, mit welchem Service Package es

provisioniert werden kann. Aus diesem Angebot sollen Dedicated-Service-Instanzen erstellt

werden können.

Edit Service Offer

Der Benutzer kann ein Service-Angebot bearbeiten. Dies ist ein abstrakter Use-Case, der in

einem der folgenden Use-Cases konkretisiert werden muss:

1. Edit Provisioned Service

2. Edit Not Provisioned Service

Wichtig ist, dass der Benutzer das Service-Angebot nur bearbeiten kann, wenn er selbst als

Service-Anbieter dieses Angebot in der Service Registry registriert hat.

Edit Provisioned Service

Der Benutzer bearbeitet ein existierendes Service-Angebot eines provisionierten Services,

das er selbst registriert hat. Dieser Use-Case sollte nur vom Service-Anbieter des Service-

Angebots genutzt werden können.

Edit Not Provisioned Service

Der Benutzer bearbeitet ein existierendes Service-Angebot eines nicht-provisionierten

Services, das er selbst registriert hat. Dieser Use-Case sollte nur vom Service-Anbieter des

Service-Angebots genutzt werden können.

Delete Service Offer

Der Benutzer löscht ein Service-Angebot aus der Service Registry. Dies kann der Benutzer

nur für Service-Angebote anwenden, die er selber als Service-Anbieter in der Service

Registry registriert hat.

Register User

"Register User" registriert einen Benutzer im System der Service Registry. Dieser Benutzer

kann sich dann im System einloggen. Als registrierter Benutzer kann das System den

Benutzer beim Registrieren von Service-Angeboten als Service-Anbieter vermerken. Der

Benutzer kann im System nun auch als Service-Consumer für nicht-provisionierte Service-

Instanzen vom ESB vermerkt eingetragen werden.

Login User

Dieser Use-Case Authentifiziert den Benutzer im System. Das System erkennt den Benutzer

und kann ihn als Service-Anbieter beim Registrieren von Service-Angeboten vermerken.

29

Search Service Offers by Provider

Der Benutzer sucht in der Service Registry nach Service-Offers, die von einem bestimmten

Service-Anbieter registriert wurden. Der Name des Anbieters muss genau den gesuchten

Namen haben.

Search Service Offers by ServiceConfiguration

Der Benutzer sucht in der Service Registry nach Service Offers, die eine bestimmte Service

Configuration implementieren. Diese Service-Configuration muss genau den gesuchten

Namen haben.

5.2.2 Use-Cases vom ESB

Register Not Provisioned Service Instance

Dieser Use-Case registriert eine nicht-provisionierte Instanz eines nicht-provisionierten

Service-Angebots. Diese Instanz kann entweder die eines Shared-Service-Offers oder eines

Dedicated-Service-Offers sein. Durch diese Registrierung ist auch klar, dass die Anzahl der

Aufrufe an die jeweilige nicht-provisionierte Instanz genau 1 ist.

Unregister Not Provisioned Service Instance

Dieser Use-Case löscht eine nicht-provisionierte Service-Instanz aus der Registry, wenn sie

nicht mehr gebraucht wird. Das ist dann der Fall, wenn keine Aufrufe mehr von der Service-

Instanz bearbeitet werden. Der ESB entscheidet, wann dieser Use-Case aufzurufen ist.

Register Service Call

Dieser Use-Case registriert einen Aufruf eines Service-Consumers für eine nicht-

provisionierte Shared-Service-Instanz. Folglich wird die Zahl der Aufrufe um 1

inkrementiert. Dieser Use-Case ist nicht für Dedicated-Service-Instanzen vorgesehen, da für

diese Instanzen nur 2 Zustände möglich sind: der Zustand mit einem Aufruf oder der

Zustand mit keinem Aufruf. Dieser Use-Case kann erst auf eine Shared-Service-Instanz

angewendet werden, nachdem sie mit "Register Not Provisioned Service Instance"

provisioniert wurde.

Unregister Service Call

Dieser Use-Case dekrementiert die Zahl der Aufrufe eines Service-Consumers für eine nicht-

provisionierte Shared-Service-Instanz um 1. Dieser Use-Case ist ebenfalls nur für Shared-

Service-Instanzen gedacht und nicht für Dedicated-Service-Instanzen vorgesehen. Falls eine

Shared-Service-Instanz nur noch einen Aufruf verarbeitet, darf dieser Use-Case nicht

aufgerufen werden. Bei genau einem übrigen Aufruf muss "Unregister Not Provisioned

Service Instance" benutzt werden.

30

5.2.3 Use-Cases von beiden Aktoren

Search Service Offers by PortType-Name (findServices)

Dieser Use-Case sucht in der Service Registry nach Service Offers, die Service Configurations

implementieren, welche wiederum ein bestimmtes Service-Interface haben. Dieses Service-

Interface muss genau den gesuchten PortType-Namen haben.

List all Service Offers

"List all Service Offers" gibt alle Service-Angebote in der Service Registry zurück ohne

weitere Einschränkungen.

31

6 Implementierung

Für die Service Registry-Implementierung wird keine existierende Service Registry-Lösung

angepasst. Diese Entscheidung wurde nach der Analyse existierender Lösungen in Kapitel 4

getroffen. Stattdessen wird eine neue Software implementiert, die genau auf die

konzeptionelle Anforderungsbeschreibung in Kapitel 5 zugeschnitten ist. Die

Implementierung trägt den Namen "Service-Registry-Service" (kurz SRS) und realisiert die

Registry selbst als Webservice. Die folgenden Kapitel beinhalten eine detaillierte

Beschreibung der Implementierung des Service-Registry-Service.

6.1 Verwendete Technologien

Java

Java9 ist eine objektorientierte, imperative Programmiersprache die sehr stark verbreitet

ist. Daher wird hier nicht weiter auf Java eingegangen.

JavaScript

JavaScript10 Ist nicht zu verwechseln mit der Programmiersprache Java. JavaScript ist eine

klassenlose Skriptsprache zur vereinfachten Implementierung von interaktiven

Webapplikationen.

HttpServlets

Hiermit sind Java-Servlets gemeint aus dem Standard "javax package11" [4]. Diese Servlets

kann man in einem Servlet-Container definieren und benutzen. HttpServlets bilden

Schnittstellen und Methoden, deren Inhalte man mit einer eigenen Implementierung füllen

kann. Anfragen in Form von HttpRequest-Objekten können dort verarbeiten werden und

Antworten in Form von HttpResponse-Objekten gebaut werden.

Axis2

Axis2 ist die zweite Version von Apache Axis. Es ist eine SOAP-Engine, mit der es möglich ist

unter anderem durch Data-Binding XML-Inhalte in Objekte von Java umzuwandeln. Folglich

nimmt Axis2 bei der Entwicklung eines Web-Services die Arbeit des manuellen Parsens von

XML-Nachrichten und der anschließenden Umwandlung in Java-Objekte ab.

9
 Java als Programmiersprache, http://de.wikipedia.org/wiki/Java_(Programmiersprache)

10
 JavaScript als Skriptsprache, http://de.wikipedia.org/wiki/JavaScript

11
 Organisieren von Java Klassen mit "packages", http://en.wikipedia.org/wiki/Java_package

32

Jetty

Jetty12 ist eine leichtgewichtige Servlet-Engine, in der man seine eigene Webapplikation mit

eigenen Servlets in Java definieren kann. Es ist ein Projekt, das im Umfeld einer Eclipse

Community entwickelt wird. In der Implementierung wird die Embedded-Jetty Version

benutzt, bei der man in einem Java-Projekt seinen eigenen Webserver definieren kann.

Tomcat

Apache Tomcat ist ein leichtgewichtiger Webserver, der die Spezifikation von Java-Servlets

implementiert. Es erlaubt es dadurch, unter anderem, Webanwendungen in Form von

Web-Application-Archives (WAR) zu deployen. Tomcat bietet eine alternative Möglichkeit,

die SOAP-Schnittstelle der Implementierung zu nutzen, da sich das Java-Projekt der

Implementierung ebenso als WAR exportieren und auf Tomcat deployen lässt.

SOAP

Das Simple Object Access Protocol (SOAP) ist ein Netzwerkprotokoll zum Austausch von

Daten zwischen Systemen. Es ermöglicht in unserer Implementierung die Kommunikation

zwischen dem ESB und dem SRS auf Basis von SOAP-Envelopes.

MySQL

MySQL ist ein weit verbreitetes, relationales Datenbankverwaltungssystem. In MySQL

lassen sich mehrere Datenbanken definieren, die relational sind. MySQL wird in der ersten

Version des SRS genutzt, kann aber auch durch jede andere relationale Datenbank ersetzt

werden.

Hibernate

Hibernate ist ein Object-Relational-Mapping-Framework (ORM-Framework) für Java. Mit

Hibernate können Objekte in einer relationalen Datenbank persistent gemacht werden.

Dafür muss die Datenbankstruktur vom Entwickler nicht selbst gebaut werden und es

müssen auch keine eigenen dynamischen SQL-Befehle geschrieben werden.

12

 das Eclipse-Projekt von Jetty, http://www.eclipse.org/jetty/

33

6.2 Architektur

In der Abbildung 9 sieht man ein Architekturbild, das eine Übersicht über die Komponenten

des Service-Registry-Services darstellt.

Abbildung 9: Die Architektur der Service Registry

Man betrachte das Architekturbild oben mittig beginnend bei den Möglichkeiten, wie der

Service-Registry-Service angesprochen werden kann. Es gibt den ESB, der über das SOAP

Protokoll Anfragen an den SRS stellt, und es gibt den Browser, der über HTTP Anfragen an

den SRS stellt.

Über SOAP (rechts in der Abbildung) nimmt der SRS im Communication Layer Anfragen mit

Hilfe von Axis2 generierten Java-Klassen entgegen. Es wurde dafür zuerst eine WSDL-Datei

als Schnittstelle definiert, die bestimmte Methoden des SRS anbietet. Es gibt Methoden, die

nur für den ESB relevant sind. Es gibt in der SOAP Schnittstelle aber auch Methoden, mit

denen man jede andere Funktion der SRS-Applikationslogik nutzen kann, wie das

Registrieren eines Service-Angebots. Das hat den Vorteil, dass man auch einen externen

Webservice-Client für den SRS schreiben könnte. In der AXIS2-Komponente wird jede

Anfrage in Java-Code formatiert. Es werden mit Hilfe von Axis2 Java-Objekte automatisch

aus der WSDL-Schnittstellenbeschreibung generiert, die dann alle in einer Klasse zur

Implementierung eines Mappings benutzt werden. Diese Klasse bildet die Komponente

SOAP.JAVA. Dort lässt sich ein Mapping implementieren, das aus Axis2 Java-Objekten die

34

relevanten Daten für eine Anfrage ausliest und diese dann in Methoden für die

Applikationslogik (Application Functionality) einsetzt. Sobald die Methoden der

Applikationslogik ausgeführt sind, geben sie eine Antwort an die Mapping-Klasse von

SOAP.JAVA zurück. Diese Antwort muss nun in ein Rückgabeobjekt von Axis2 eingesetzt

werden und gibt dann eine SOAP-Antwort an den Aufrufenden zurück.

Für die REST Schnittstelle (links in der Abbildung) wurde zuerst eine Website implementiert,

die das Benutzen des SRS verständlicher machen soll. Es ist eine grafische Oberfläche, die

aus HTML-Templates besteht und von einem Browser interpretiert werden kann. Der

Benutzer kann an bestimmte Stellen auf der Website navigieren und dort dann

beispielsweise HTML-Formulare zum Eintragen eines Service-Angebots ausfüllen und

abschicken. Diese Formulare werden dann über HTTP-Requests an Servlets im Java-Code

weitergeleitet (siehe Komponente "Servlets"). Ähnlich wie beim Mapping der Axis2 Java-

Objekte werden hier Inhalte aus HTTP-Request-Objekten ausgelesen und in entsprechende

Methoden der Applikationslogik eingesetzt. Sobald die Methoden der Applikationslogik

ausgeführt sind, geben sie eine Antwort an das Servlet zurück. Im Servlet muss aus dieser

Antwort ein HTTP-Response-Objekt gebaut werden, das eine Antwort an den Aufrufenden

zurückgibt.

Schließlich sitzt im Application Layer die Applikationslogik, die eng mit dem Data-Access-

Layer (DAL) Objekte in der Datenbank persistent speichert oder Informationen aus der

Datenbank ausliest. Es werden hier Data-Access-Objects benutzt, die jeweils für einzelne

Modelklassen zuständig sind. Beispielsweise gibt es ein Data-Access-Object für den

Benutzer (UserDAO.java). In der UserDAO.java werden dann die Methoden "registerUser()"

und "loginUser()" angeboten zum Registrieren oder Authentifizieren eines Benutzers im

System.

6.3 Schnittstellen

Hier wird konkret beschrieben, wie die Methoden der SOAP-Schnittstelle zum SRS benutzt

werden können. Es wurde zuerst eine WSDL-Datei für die Schnittstelle definiert und daraus

ein Axis2 Java-Skelett generiert, in der die Funktionalität dann ausimplementiert wurde. In

dieser Arbeit wird generell beschrieben, welche Methoden über die SOAP-Schnittstelle

verfügbar sind und welche Funktion sie implementieren. Für eine detaillierte Beschreibung

der Parameter, der Felder die nicht leer sein dürfen, der generierten Antworten, sowie

deren Bedeutung, wird an dieser Stelle auf das Benutzerhandbuch verwiesen.

initialize

Diese Methode Initialisiert das System, indem es einen Standard-Benutzer anlegt für den

SRS. Der Standard-Benutzer kann zuvor in einer Konfigurationsdatei definiert werden. Diese

Methode sollte vor allem bei der ersten Benutzung aufgerufen werden, oder nach einem

Wechsel auf eine neue, leere Datenbank. Diese Methode ist nicht zwingend notwendig, da

das System beim Jetty-Serverstart automatisch initialisiert wird und einen Benutzer anlegt,

sofern er nicht vorhanden ist.

35

getAllServices

Diese Methode gibt alle Service-Angebote zurück, ohne Einschränkungen. Dies ist lediglich

eine Hilfsmethode und kann vor allem bei vielen Service-Angeboten sehr zeitintensiv sein.

Auch die Antwort kann bei vielen Angeboten unübersichtlich erscheinen.

searchByProvider

Diese Methode gibt alle Service-Angebote zurück, die von einem bestimmten Service-

Anbieter (Provider) im SRS registriert wurden. Der Name des Service-Providers muss genau

mit dem Namen eines Service-Providers in der Datenbank übereinstimmen.

searchByServiceConfiguration

Diese Methode gibt alle Service-Angebote zurück, die eine bestimmte Service-Configuration

implementieren. Hier wird auch nach dem Namen der Service-Configuration gesucht. Der

Name ist für jede Service-Configuration eindeutig und muss mit dem Namen einer Service-

Configuration in der Datenbank genau übereinstimmen.

findService

"findService" hieß früher "searchByQualifiedPortTypeName" und gibt alle Service-Angebote

zurück, die ein bestimmtes Service-Interface implementieren. Das Service-Inteface ist

eindeutig durch den PortType-Namen identifizierbar und beschreibt die technische

Schnittstelle eines Services. Der Name muss genau mit dem PortType-Namen des Service-

Interfaces in der Datenbank übereinstimmen.

registerNPSInstance

Diese Methode registriert eine Service-Instanz eines nicht-provisionierten Service-

Angebots. Hier kann sowohl eine Shared-Service-Instanz, als auch eine Dedicated-Service-

Instanz registriert werden, durch die Angabe des Servie-Angebots, von welchem die Instanz

erstellt wird. In dieser Methode muss auch der Benutzer angegeben werden, da die

Unterscheidung zwischen Shared-Service-Instanz und Dedicated-Service-Instanz wichtig ist.

Bei einem Aufruf für ein Dedicated-Service-Angebot wird einfach eine Dedicated-Service-

Instanz erstellt, ohne weitere Prüfung und egal von welchem Benutzer. Bei einem Aufruf für

ein Shared-Service-Angebot muss zuerst geprüft werden, ob es von diesem Angebot schon

eine Shared-Service-Instanz des Benutzers, der im Aufruf angegeben wurde, gibt. Wenn ja,

dann wird der Aufruf an diese Instanz weitergeleitet und lediglich "registerServiceCall"

aufgerufen, um die Zahl des Aufrufs für die Shared-Service-Instanz um 1 zu inkrementieren.

Falls es noch keine solche Shared-Service-Instanz gibt, wird eine neue für den jeweiligen

Benutzer provisioniert.

unregisterNPSInstance

Diese Methode löscht eine Registrierung einer Service-Instanz eines nicht-provisionierten

Service-Angebots. Diese Methode ist nur für Dedicated-Service-Instanzen, oder Shared-

Service-Instanzen gedacht, deren aktuelle Zahl der Aufrufe genau 1 ist. Falls die Zahl höher

36

ist (was nur für Shared-Service-Instanzen möglich ist), darf die nicht-provisionierte Service-

Instanz noch nicht aus der Registry gelöscht werden. Dafür sollte dann stattdessen die

Anzahl der Aufrufe mit "unregisterServiceCall" um 1 dekrementiert werden.

registerServiceCall

Diese Methode inkrementiert die Zahl der Aufrufe eines Shared-Service-Instanz um 1. Diese

Methode ist nur für Shared-Service-Instanzen vorgesehen, die bereits mindestens einen

Aufruf verarbeiten, da dort die Zahl der Aufrufe höher als 1 sein kann.

unregisterServiceCall

Diese Methode dekrementiert die Zahl der Aufrufe einer Shared-Service-Instanz um 1.

Diese Methode ist nur für Shared-Service-Instanzen vorgesehen, deren Aufrufzahl echt

höher als 1 ist. Falls die Anzahl der Aufrufe genau 1 ist, sollte die Methode

"unregisterNPSInstance" benutzt werden, um die Service-Instanz aus dem SRS zu löschen.

registerUser

Die Methode "registerUser" registriert einen Benutzer im System. Dieser Benutzer kann

sich dann mit Name und Passwort im System authentifizieren mit der Methode "loginUser".

Das Registrieren des Benutzers bringt zum einen die Möglichkeit, diesen Benutzer beim

Anlegen von Service-Angeboten als Service-Anbieter einzutragen, und zum anderen kann

der ESB den Benutzer für Aufrufe an nicht-provisionierte Service-Angebote mit angeben.

loginUser

Die Methode "loginUser" authentifiziert einen Benutzer im System mit Hilfe eines

Authentifizierungs-Token. Dieses Token wird als Antwort zurückgegeben und repräsentiert

den eingeloggten Benutzer, da der Name und das Passwort des Benutzers eingegeben

werden müssen, um das Token zu bekommen. Es wird bei vielen anderen Methoden

verwendet, in denen ein Service-Provider bekannt sein muss, wie beispielsweise das

Registrieren eines Service-Angebots. Das Token hat den Vorteil, dass nur ein String

übergeben werden muss und es nur zeitlich begrenzt gültig ist.

createProvisionedService

Diese Methode registriert ein Service-Angebot für einen provisionierten Service. Dieser

Service wird in der Regel von Drittanbietern registriert für einen Service, der extern

betrieben wird. Es muss hier also die ServiceConfiguration und ein Endpunkt angegeben

werden, über den der Service erreichbar ist.

createNotProvisionedSharedService

Diese Methode registriert ein Service-Angebot für einen nicht-provisionierten Shared-

Service. Es muss ein Service Package angegeben werden, dass ein Installationspaket aus der

Service Package Repository referenziert und ein RepositoryType angibt. Aus diesem Service-

Angebot können Shared-Service-Instanzen provisioniert werden, die mehrere Aufrufe des

gleichen Benutzers gleichzeitig abarbeiten können.

37

createNotProvisionedDedicatedService

Diese Methode registriert ein Service-Angebot für einen nicht-provisionierten Dedicated-

Service. Es muss ein Service Package angegeben werden, dass ein Installationspaket aus der

Service Package Repository referenziert und ein RepositoryType angibt. Aus diesem Service-

Angebot können Dedicated-Service-Instanzen provisioniert werden, die jeweils nur einen

Aufruf eines Benutzers zur gleichen Zeit abarbeiten können.

editProvisionedService

"editProvisionedService" bearbeitet ein Service-Angebot für einen provisionierten Service.

Hier können fast alle Daten geändert werden, die zuvor beim Anlegen dieses Angebots

angegeben wurden. Der Service-Anbieter ist dafür verantwortlich, dass die Daten des

Services auch mit den geänderten Daten im SRS übereinstimmen. Diese Methode kann nur

vom Service-Anbieter genutzt werden, der dieses Service-Angebot auch registriert hat.

editNotProvisionedSharedService

Diese Methode bearbeitet ein Service-Angebot für einen nicht-provisionierten Shared-

Service. Es können fast alle Daten geändert werden, die zuvor beim Anlegen dieses

Angebots angegeben wurden. Der Service-Typ (Shared- oder Dedicated-Service) kann nicht

geändert werden. Für eine Änderung des Service-Typs muss das alte Service-Angebot

gelöscht werden und ein neues Service-Angebot registriert werden. Der Service-Anbieter ist

dafür verantwortlich, dass die Daten des Services auch mit den geänderten Daten im SRS

übereinstimmen. Diese Methode kann nur vom Service-Anbieter genutzt werden, der

dieses Service-Angebot auch registriert hat.

editNotProvisionedDedicatedService

Diese Methode bearbeitet ein Service-Angebot für einen nicht-provisionierten Dedicated-

Service. Es können fast alle Daten geändert werden, die zuvor beim Anlegen dieses

Angebots angegeben wurden. Der Service-Typ (Shared- oder Dedicated-Service) kann nicht

geändert werden. Für eine Änderung des Service-Typs muss das alte Service-Angebot

gelöscht werden und ein neues Service-Angebot registriert werden. Der Service-Anbieter ist

dafür verantwortlich, dass die Daten des Services auch mit den geänderten Daten im SRS

übereinstimmen. Diese Methode kann nur vom Service-Anbieter genutzt werden, der

dieses Service-Angebot auch registriert hat.

deleteService

"deleteService" löscht ein Service-Angebot aus dem SRS. Diese Methode ist mit Vorsicht zu

verwenden. Das Löschen eines Service-Angebots für einen provisionierten Service löscht

einfach das Angebot. Das Löschen eines Service-Angebots für nicht-provisionierte Services

löscht auch alle eingetragenen Instanzen aus dem SRS. Das bedeutet nicht, dass die

Instanzen automatisch de-provisioniert werden, sie wurden lediglich aus dem SRS gelöscht,

weil sie ohne ihr Service-Angebot nicht mehr bearbeitet werden können.

38

createServiceInterface

Diese Methode rrstellt ein Service Interface, das eine Schnittstellenbeschreibung für einen

Service ist. Mit dieser Schnittstellenbeschreibung wird eine funktionale Anforderung für

Services definiert. Service Interfaces können später mit nicht-funktionalen Eigenschaften in

Service-Configurations kombiniert werden. Service Interfaces haben einen eindeutigen

PortType-Namen, der eine Service Discovery ermöglicht.

deleteServiceInterface

Diese Methode löscht ein ServiceInterface aus dem SRS. Ohne ein Service-Interface wird

auch jede Service-Configuration unbrauchbar, die dieses Service Interface referenziert.

Damit wird auch jede Service-Configuration gelöscht, die das Service Interface referenziert

hat. Service-Angebote die eine solche Service-Configuration referenziert haben, haben

dann vorerst keinen Eintrag mehr für eine Service-Configuration. Es kann eine neue Service-

Configuration durch die Bearbeitungsmethoden editProvisionedService,

editNotProvisionedSharedService und editNotProvisionedDedicatedService eingetragen

werden.

createServiceConfiguration

Diese Methode erstellt eine Service-Configuration, die funktionale Eigenschaften mit

Service Interfaces und nicht-funktionale Eigenschaften eines Services kombiniert. In dieser

Methode werden die nicht-funktionalen Eigenschaften als Map aus String-String-Paaren

mitgegeben. Eine Service-Configuration kann dann von Service-Angeboten zur

Kategorisierung genutzt werden.

createServiceConfigurationWithInterface

Diese Methode erstellt sowohl ein Service Interface, als auch eine Service-Configuration.

Diese Methode kombiniert das Hintereinanderausführen von "createServiceInterface" und

"createServiceConfiguration" mit dem Unterschied, dass wenn etwas beim Erstellen der

Service-Configuration schiefläuft auch kein Service-Interface erstellt wird. So gesehen ist die

Methode atomar.

deleteServiceConfiguration

Diese Methode löscht eine Service-Configuration aus dem SRS. Service-Interfaces, die von

der Service-Configuration referenziert wurden bleiben in der Datenbank, da sie unabhängig

von den Service-Configurations sind. Service-Angebote die eine solche Service-

Configuration referenziert haben, haben dann vorerst keinen Eintrag mehr für eine Service-

Configuration. Es kann eine neue Service-Configuration durch die Bearbeitungsmethoden

editProvisionedService, editNotProvisionedSharedService und editNotProvisionedDedica-

tedService eingetragen werden.

39

6.4 Grafische Benutzeroberfläche

In diesem Kapitel wird die konzeptionelle Arbeit an der grafischen Benutzeroberfläche für

die Darstellung im Browser erläutert. Für konkretere Darstellungen und die Benutzung der

Oberfläche wird auf das Benutzerhandbuch verwiesen. Für Beispiele bei der Entwicklung

der grafischen Benutzeroberfläche wird auf das Entwicklerhandbuch verwiesen.

In der Abbildung 10 wird zunächst der konzeptionelle Aufbau der grafischen Benutzer-

oberfläche dargestellt.

Abbildung 10: Konzeptioneller Aufbau der grafischen Benutzeroberfläche

Oben befindet sich der Header, der sich über die gesamte Breite des SRS streckt. Er ist

größtenteils statisch und hat nur wenige Elemente, die sich bei der Navigation durch die

Oberfläche verändern. Auf der linken Seite befindet sich die Navigation, in der es ein

Seitenmenü geben wird, das Buttons für die einzelnen Menüpunkte anbietet. Der große

Bereich unten rechts für den Inhalt passt sich mit jedem Untermenü dynamisch an.

In den folgenden Abbildungen werden die großen Abschnitte der Website mit einem

Namen in Großbuchstaben versehen. In den Abschnitten sind Elemente mit spitzen

Klammern versehen, wenn dort ein Button ist oder ein Text steht, der etwas beschreibt.

Elemente, die sich bei der Navigation auf der Oberfläche dynamisch ändern, sind zusätzlich

mit einem gestrichelten Kasten umrandet. In der Abbildung 11 wird erklärt, wie der Header

aufgebaut ist.

Abbildung 11: Aufbau des Headers

Im Header soll oben links der Name des Systems fest stehen. Unten links wird die

"Location", also der Ort in der man sich auf der Website befindet, angezeigt. Dieses

Element ändert sich dynamisch beim Navigieren in jedes Untermenü der grafischen

Benutzeroberfläche. Oben rechts wird ein Logout-Button angezeigt, sobald ein Benutzer

40

sich im System eingeloggt hat. Grundsätzlich muss sich jeder Benutzer auf der Oberfläche

anmelden, ob er nur nach Services suchen will, oder ob er ein Service-Angebot im SRS

registrieren will. Die Login-Ansicht und die Ansicht zum Registrieren neuer Benutzer sind

die einzigen, die sich vom restlichen Aufbau des Systems unterscheiden. Die Login-Ansicht

wird in Abbildung 12 dargestellt.

Abbildung 12: Die Login-Ansicht

Man bemerkt, dass im Abschnitt LOGIN ein weiterer Abschnitt mit LOGIN FORMULAR

eingebaut ist. Die Login-Ansicht hat nicht die ursprünglich beschriebene Trennung von

Navigation und Inhalt, die für alle untergeordneten Ansichten gilt. Stattdessen ist das

LOGIN FORMULAR zentriert im Bild. Der LOGIN-Abschnitt ist nur ein Hintergrund, während

das LOGIN FORMULAR die Eingabemaske für einen Benutzernamen und ein Passwort hat.

Darin befindet sich unten links der Login-Button und unten rechts der Verweis auf die

Registrierungsseite für einen neuen Benutzer. Die Ansicht zum Registrieren erstreckt sich

ähnlich über die komplette Breite und wird hier nicht genauer beschrieben. Hat ein

Benutzer sich mit der Login-Maske erfolgreich eingeloggt, so erscheint er in der initialen

Ansicht der Oberfläche. Diese ist, wie in der vorher beschriebenen Abbildung 10 aufgebaut,

wobei im Inhalt ein kleiner Beschreibungstext den Benutzer auffordert, ein Untermenü aus

der Navigation auszuwählen. Der Aufbau der Navigation ist in der Abbildung 13 dargestellt.

Abbildung 13: Aufbau der Navigation

41

Die Navigation hat Menüpunkte in Form von Buttons. Diese Menüpunkte sind gruppiert

durch Zwischenüberschriften. Durch Klick auf jedes Menü ändert sich der große Abschnitt

mit dem Inhalt der Website aus Abbildung 10. Oben befindet sich eine Überschrift

(HINZUFÜGEN) für alle Menüpunkte, die eine Ansicht zum Hinzufügen von Elementen im

SRS öffnen. Das sind dann beispielsweise Menüpunkte zum Hinzufügen eines Service

Interfaces, einer Service-Configuration oder einem Service-Angebot. Darunter befindet sich

eine Überschrift (SUCHEN) für alle Menüpunkte, die eine Ansicht zum Suchen von

Elementen im SRS öffnen. Hier können alle Elemente, die zuvor hinzugefügt wurden, im

System gesucht und eingesehen werden.

42

43

7 Zusammenfassung
Diese Arbeit baut auf der Architektur der bisherigen Arbeiten aus Kapitel 3 auf. Das Ziel der

Arbeit ist es, aus den formulierten Anforderungen aus Kapitel 1.2 und dem Konzept aus

Kapitel 5 eine Service Registry zu implementieren. Am IAAS13 wurde ein Datenmodell für die

Service Registry erarbeitet, das zu Beginn der Arbeit schon vorhanden war. Anhand dieses

Datenmodells und den Anforderungen wurden bestehende Service Registry-Lösungen

betrachtet und einige davon genauer analysiert. Eine Vorbedingung für die Analyse war,

dass die bestehende Service Registry Lösung Open-Source ist, da keine der betrachteten

Service Registry-Lösungen nicht-provisionierte Services unterstützt haben. Die Analyse

musste prüfen, ob bestehende Lösungen vorteilhaft für die Anforderungen angepasst

werden konnten. Für das Datenmodell der Service Registry mussten nebenher Änderungen

vorgenommen werden. Das Ergebnis der Analyse fasst alle Vor- und Nachteile der

bestehenden Lösungen zusammen. Es hat jedoch ergeben, dass bestehende Lösungen nur

mit beträchtlichem Aufwand angepasst werden könnten. Folglich ist eine eigene

Implementierung das Ergebnis dieser Arbeit. Die Implementierung wurde durch einen

eingebauten Jetty-Webserver in einem Java-Projekt realisiert, der zwei Möglichkeiten zur

Kommunikation anbietet: eine SOAP Schnittstelle, die primär durch den Enterprise Service

Bus genutzt wird und eine grafische Oberfläche, auf der die Arbeit mit dem SRS für

menschliche Benutzer vereinfacht werden soll.

8 Ausblick
Die Ausarbeitung und Implementierung des Service Registry Service für On-Demand-

Services ist zwar für den Rahmen der Anforderungen in dieser Arbeit abgeschlossen. Es

existiert jedoch noch Future Work, das den SRS erweitern kann. Diese Erweiterungen

hängen mit dem Fortschritt der Forschungsarbeit für On-Demand-Services zusammen.

Beispielsweise ist für diese Arbeit noch nicht klar gewesen, wie man das Provisionieren und

De-provisionieren für On-Demand-Services optimieren kann. Der aktuelle Stand ist, dass

Services einfach de-provisioniert werden, wenn es keine Aufrufe mehr für sie zum

Bearbeiten gibt, obwohl man diese Services in einem Workflow eventuell nach kurzer Zeit

wieder gebrauchen könnte.

In dieser Arbeit ist die Beschreibung der funktionalen Eigenschaften für Services im Service

Interface genauer erarbeitet, als die Beschreibung für nicht-funktionale Eigenschaften. Die

"Qualities-of-Services" bestehen momentan nur aus einfachen Key-Value-Paaren. Eine

genauere Erarbeitung für die nicht-funktionalen Eigenschaften wäre für den SRS ebenfalls

denkbar.

13

 Institut für Architektur von Anwendungssystemen, http://www.iaas.uni-stuttgart.de/

44

9 Abbildungsverzeichnis

Abbildung 1: Vorgehen in der Arbeit .. 6

Abbildung 2: Aufbau einer WSDL ... 10

Abbildung 3: Grundelemente von UDDI ... 11

Abbildung 4: Architektur und Umfeld der Service Registry .. 13

Abbildung 5: tModel für funktionale Anforderungen .. 16

Abbildung 6: tModel für nicht-funktionale Anforderungen ... 16

Abbildung 7: Datenmodell der Service Registry ... 22

Abbildung 8: Use-Cases der Service Registry.. 26

Abbildung 9: Die Architektur der Service Registry ... 33

Abbildung 10: Konzeptioneller Aufbau der grafischen Benutzeroberfläche 39

Abbildung 11: Aufbau des Headers .. 39

Abbildung 12: Die Login-Ansicht ... 40

Abbildung 13: Aufbau der Navigation .. 40

10 Tabellenverzeichnis

Tabelle 1: Kriterien bei der Analyse .. 15

Tabelle 2: Ergebnisse der Analyse von jUDDI ... 17

Tabelle 3: Ergebnisse der Analyse von WSO2 GREG .. 19

file:///C:\Users\Alexander\Desktop\Alex\Uni\6.%20Semester\BA\Ausarbeitung\ABlehm_Ausarbeitung_fertig.docx%23_Toc402359369

45

11 Literatur
[1] Karolina Vukojevic-Haupt; Florian Haupt; Dimka Karastoyanova; Frank Leymann:

Service Selection for On-demand Provisioned Services: Proceedings of the 18th IEEE

International EDOC Conference (EDOC 2014) 2014.

[2] Erik Christensen, Francisco Curbera, Greg Meredith, Sanjiva Weerawarana: Web

Services Description Language (WSDL) 1.1.

 URL: http://www.w3.org/TR/wsdl.

[3] OASIS: UDDI Spec TC. UDDI Version 3.0.2.

 URL: http://www.uddi.org/pubs/uddi-v3.0.2-20041019.htm.

[4] Sun Microsystems: JavaTM 2 Platform Enterprise Edition, v 1.4 API Specification.

URL: http://docs.oracle.com/javaee/1.4/api/overview-summary.html.

46

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich habe keine anderen als die

angegebenen Quellen benutzt und alle wörtlich oder sinngemäß aus anderen Werken

übernommene Aussagen als solche gekennzeichnet. Weder diese Arbeit noch wesentliche

Teile daraus waren bisher Gegenstand eines anderen Prüfungsverfahrens. Ich habe diese

Arbeit bisher weder teilweise noch vollständig veröffentlicht. Das elektronische Exemplar

stimmt mit allen eingereichten Exemplaren überein.

Stuttgart,

Alexander Blehm

