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K U R Z FA S S U N G

Viele Störungen in Bildern lassen sich durch einen mathematischen Prozess, die so-
genannte Faltung, beschreiben. Hierzu gehören insbesondere Bilder, die aufgrund
von Bewegung oder Defokussierung bei der Aufnahme unscharf geworden sind. Das
Thema dieser Arbeit ist die Dekonvolution, auch Entfaltung genannt, d.h. die Wie-
derherstellung dieser ursprünglich scharfen Bilder aus ihren gegebenen unscharfen
Aufnahmen. Ist die genaue Ursache der Störung, d.h. der sogenannte Faltungskern,
bekannt, spricht man von nicht-blinder Dekonvolution. Im Rahmen der Arbeit wer-
den hierfür zwei Klassen von Verfahren miteinander verglichen: Fourier-basierte Fil-
ter, die das unscharfe Eingangsbild in den Frequenzbereich transformieren und dort
den Faltungsprozess umkehren sowie Variationsansätze, die das gesuchte scharfe Bild
als Minimierer eines geeigneten Energiefunktionals berechnen. Während als Vertre-
ter der Klasse der Fourier-basierten Verfahren der häufig verwendete Wiener-Filter
betrachtet wird, werden als Vertreter der Variationsansätze Varianten mit homogener
(quadratischer) und kantenerhaltender (subquadratischer) Regularisierung diskutiert.
Auch die numerische Implementierung der einzelnen Verfahren wird im Rahmen der
Arbeit untersucht. Während für die Fourier-basierten Verfahren die Schnelle Fourier-
Transformation (FFT) verwendet wird, kommen bei den Variationsansätzen ein ex-
plizites und ein stabilisiertes explizites Schema als Gradientenabstiegsverfahren zum
Einsatz. Im Fall der quadratischen Regularisierung wird zudem noch ein Löser im
Frequenzbereich vorgestellt. Ein Vergleich der beiden Klassen anhand eines Testbildes
mit verschiedenen Faltungskernen schließt die Arbeit ab.

i





I N H A LT S V E R Z E I C H N I S

1 einleitung 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Aufgabenstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Aufbau der Arbeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 mathematische grundlagen 5

2.1 Bilder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
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1. E I N L E I T U N G

1.1 motivation

Beim Anfertigen digitaler Fotos treten häufig Schwierigkeiten auf, die unter anderem
auf äußere Einflüsse zurückzuführen sind. Unter anderem kommt es vor, dass diverse
Störungen auf Bildern auftreten. Dies kann sich beispielsweise durch Störsignale wie
Rauschen oder durch Unschärfe wie bei Defokussierungen bemerkbar machen. Eine
Möglichkeit ist, erneut ein Bild zu machen, mit der Hoffnung, dass es besser bzw.
schärfer wird als das vorherige Bild. Allerdings gibt es häufig einmalige Momente,
für die es keinen weiteren Versuch gibt. Als Alternative bleibt dann nur, das Bild
nachträglich aufzubereiten, um die Qualität zu verbessern.

Da ein großes Interesse daran besteht, Bilder im Nachhinein zu bearbeiten, besonders
sie qualitativ aufzubereiten, wird im Bereich der Bildverarbeitung an entsprechenden
Formeln, Algorithmen und Methoden geforscht. Der Einsatz solcher automatisierter
Algorithmen ist bei Digitalkameras interessant sein, die nach der Aufnahme eines
Bildes beispielsweise die Schärfe verbessern, um ein nicht gelungenes Foto doch noch
zu nutzen und brauchbar zu machen.

Um solche Methoden zu entwickeln, ist ein grundlegendes Verständnis von Störungen
und Fehlern in Bildern notwendig. Dieses wird erlangt, indem fehlerhafte Bilder, das
heißt Bilder, die mit Störungen behaftet sind und unscharf sein können, simuliert wer-
den. Das dient dazu, die Effekte zu verstehen, die beim Fotografieren auftreten können.
Aus diesen fehlerhaften Bildern und vor allem deren Erstellungsweise können an-
schließend verschiedene Algorithmen abgeleitet werden, die diese Effekte rückgängig
machen. Da diese Methoden nicht immer fehlerfrei arbeiten, werden unterschiedlichs-
te Ansätze entwickelt, die gewisse Fehler in Bildern schrittweise und durch mehrma-
liges Anwenden herausfiltern. Mithilfe solcher Methoden soll im Allgemeinen unge-
wollten Effekten gegengesteuert und die Bildqualität verbessert werden. Ein Beispiel
hierfür ist die Rekonstruktion unscharfer Bilder.

1.2 aufgabenstellung

Die Aufbereitung solcher unscharfer Bilder gehört zu den klassischen Problemen der
Bildverarbeitung. Hierbei wird oft angenommen, dass sich die Unschärfe mathema-
tisch durch eine lineare ortsabhängige Mittelung benachbarter Grauwerte formulieren
lässt - durch eine sogenannte Faltung. Diese Annahme trifft z.B. auf unscharfe Bilder
zu, die durch ein Verwackeln der Kamera entstanden sind. Typische Ansätze basie-
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2 einleitung

ren auf einer Umkehrung der Faltung, der sogenannten Dekonvolution (Entfaltung).
Es wird oft angenommen, dass die Charakteristik der Mittelung, der sogenannte Fal-
tungskern, bekannt ist. Daher handelt es sich dabei um nicht-blinde Dekonvolution.

Die am weitesten verbreiteten Ansätze für diese Art der Problemstellung basieren
auf einer Dekonvolution im Frequenzbereich, auch Fourier-Bereich genannt. Zu ih-
nen gehört der sogenannte Wiener-Filter. Solche linearen Ansätze haben jedoch das
Problem, dass hohe Frequenzen erhebliche Artefakte verursachen können, da diese
Frequenzen bei dem Bildaufnahmeprozess fast vollständig eliminiert wurden. Bei der
Dekonvolution ist nicht sicher, ob diese Frequenzen bedeutenden Bilddetails zuzu-
ordnen sind oder ob sie im Wesentlichen nur Rauschen entsprechen, das unterdrückt
werden muss, anstatt es durch die Dekonvolution zu verstärken.

In diesem Zusammenhang haben sich globale kontinuierliche Optimierungsansätze,
sogenannte Variationsansätze, als echte Alternativen etabliert. Diese berechnen das ur-
sprünglich scharfe Bild als Minimierer eines geeigneten Energiefunktionals mit Daten-
und Glattheitsterm. Während der Datenterm das gesuchte und das gegebene Bild
über das Faltungsmodell in Beziehung setzen, verhindert der Glattheitsterm eine Ver-
stärkung von Rauschen und Artefakten. Um durch ungeeignete Glattheitsannahmen
nicht auch die Schärfe des zu bestimmenden scharfen Bildes zu beeinträchtigen, wur-
den in der Literatur verschiedene adaptive Glattheitsterme vorgestellt. Ein Vergleich
einiger dieser sogenannten Regularisierer findet sich in der Arbeit von Welk et al. [1].

Ziel der Arbeit ist es, die verschiedenen in Welk et al. [1] vorgestellten quadratischen
und subquadratischen Variationsansätze zu implementieren und zu evaluieren. In
allen Fällen soll neben der Modellierung auch eine effiziente Implementierung der
Ansätze durch geeignete numerische Verfahren untersucht werden. Die Evaluation
der implementierten Ansätze soll anhand eines geeigneten Testbildes erfolgen. Hier-
bei soll der Wiener-Filter als lineares Vergleichsverfahren dienen. Dieser soll ebenfalls
implementiert werden.

1.3 aufbau der arbeit

Diese Arbeit beschäftigt sich mit der Untersuchung verschiedener Methoden, um un-
scharfe Bilder bestmöglich zu rekonstruieren, wobei diese Methoden besonders auf
Zuverlässigkeit und Qualität geprüft werden sollen. Zunächst erfolgt eine Einordnung
in den wissenschaftlichen Zusammenhang und die Problemstellung. Danach werden
in Kapitel 2 die mathematischen Grundlagen bereitgestellt, wie beispielsweise Hinter-
gründe zur Erstellung von geeigneten Bildern, ein verlässliches Maß zum Vergleich
der Qualität der Verfahren und die Fourier-Transformation. Anschließend werden in
Kapitel 3 die zu untersuchenden Methoden vorgestellt, welche in Fourier-basierte und
Variationale Ansätze unterteilt werden. In Kapitel 4 folgt die Evaluation dieser Metho-
den. Dies geschieht anhand eines Beispielbildes, das den unterschiedlichen Methoden
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unterzogen wird. Die Methoden und deren Ergebnisse werden danach in Kapitel 5

zusammengefasst. Abschließend wird im gleichen Kapitel auf andere Methoden und
mögliche Chancen für die Zukunft zur Rekonstruktion von Bildern hingewiesen.





2. M AT H E M AT I S C H E G R U N D L A G E N

Dieses Kapitel befasst sich mit den Grundlagen der Bildverarbeitung, auf denen unter
anderem die später vorgestellten Verfahren basieren. Es folgt zunächst eine generel-
le Einführung in die Eigenschaften von Bildern. Daraufhin werden Möglichkeiten zur
Erstellung der Testbilder diskutiert. Abschließend werden die Grundlagen der verwen-
deten Methoden vorgestellt.

2.1 bilder

In dieser Arbeit werden Grauwertbilder verwendet. Die Bilder bestehen dabei aus ei-
nem rechteckigen, zweidimensionalen Definitionsbereich Ω = (1, nx) x (1, ny). Diese
einzelnen Zellen aus dem Definitionsbereich werden Pixel genannt, denen Zahlen aus
dem Wertebereich zugeordnet werden, die dem jeweiligen Grauwert entsprechen. Der
Wertebereich geht von 0 bis 255, da er durch ein einzelnes Byte gespeichert wird. Hier-
bei gilt die Konvention, dass niedrige Zahlen dunkle und hohe Zahlen helle Grauwer-
te bedeuten. Mithilfe davon lassen sich Bilder durch die Angabe der Größe des Bildes
und den entsprechenden Grauwerten der einzelnen Pixel repräsentieren. Häufig wird
ein Bild in der Form f = { fi,j| i = 1, . . . , nx; j = 1, . . . , ny} angegeben, wobei nx für
die Größe des Bildes in x-Richtung und ny für die Größe des Bildes in y-Richtung
steht. Die Information der Bilder kann entweder kontinuierlich oder diskret vorliegen.
Handelt es sich um den kontinuierlichen Fall, so entsprechen die Grauwerte eines Bil-
des oder eines Signals einer stetigen Funktion. Der diskrete Fall unterscheidet sich
darin, dass die Grauwerte nur an den Pixeln vorliegen, d.h. es handelt sich um eine
Funktion, deren Werte in einem bestimmten festen Abstand abgespeichert sind. Der
Abstand entspricht dem Abstand der Pixel. Typischerweise erfolgt die Diskretisierung
durch die Integration über die Sensorfläche und nicht, wie häufig im Mathematischen,
durch die Abtastung der kontinuierlichen Funktion.

2.2 statistische größen

Eine wichtige Eigenschaft von Bildern ist der sogenannte Mittelwert µ, der dem durch-
schnittlichen Grauwert des Bildes entspricht. Aufgrund der vorherigen Definition von
hohen und niedrigen Grauwerten bedeutet ein hoher Mittelwert ein allgemein helle-
res Bild, während ein niedriger Mittelwert einem allgemein dunkleren Bild zugeordnet
wird. Zur Bestimmung des Mittelwerts werden alle Grauwerte des Bildes aufsummiert
und durch die Größe des Bildes geteilt, wie in Formel 2.1 beschrieben:
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6 mathematische grundlagen

µ( f ) =
1

nxny

nx

∑
i=1

ny

∑
j=1

fi,j . (2.1)

Mithilfe des Mittelwerts kann die Varianz σ2 berechnet werden, wie in der folgenden
Formel 2.2 beschrieben:

σ2( f ) =
1

nxny

nx

∑
i=1

ny

∑
j=1

( fi,j − µ)2 . (2.2)

Die Wurzel der Varianz wird Standardabweichung σ genannt. Die Varianz σ2 und die
Standardabweichung σ geben an, wie hoch der Kontrast ist und wie viele Details im
Bild vorhanden sind.

2.3 störungen

Störungen treten in Bildern häufig auf und sind ein bekanntes Thema. Dabei gibt es
viele Quellen und Arten für solche auftretenden Beeinträchtigungen. Die in dieser
Arbeit behandelte Störungsart ist die Unschärfe. Hierbei werden drei Fälle untersucht:

• Defokussierung

• Bewegung, z.B. während der Aufnahme eines Fotos

• atmosphärische Störungen, z.B. bei Teleskopen

Zur Berechnung, wie stark die Störung das Bild beeinflusst hat, gibt es einige Hilfs-
mittel und entsprechende Ansätze. Sei dazu f = fi,j eine gestörte Version des Bildes
g = gi,j. Der mittlere quadratische Fehler (MSE) dieser Bilder kann dann durch Sum-
mierung der Differenzen aller Pixel beider Bilder und anschließende Mittelung berech-
net werden. Hierbei gilt die Konvention, dass ein kleiner MSE eine größere Ähnlichkeit
der Bilder bedeutet und damit weniger Störungen vorhanden sind. Also ist die Qua-
lität eines Bildes umgekehrt proportional zum MSE-Wert. Die dazugehörige Formel
2.3 lautet:

MSE( f , g) =
1

nxny

nx

∑
i=1

ny

∑
j=1

( fi,j − gi,j)
2 . (2.3)

Die andere Alternative ist der Spitzen-Signal-Rausch-Abstand (PSNR). Die dazugehö-
rige Einheit ist Dezibel. Je größer der Wert ist, desto ähnlicher sind sich die Bilder. Die
folgende Formel 2.4 nimmt als höchsten Grauwert den Wert 255 an:

PSNR( f , g) = 10 log10

(
2552

MSE( f , g)

)
. (2.4)
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Der Einfachheit halber wird angenommen, dass die jeweilige Störung an allen Stellen
des Bildes gleich stark auftritt. Solche Effekte werden modelliert, indem die Grauwerte
in einem bestimmten Bereich gewichtet gemittelt werden, um das unscharfe Bild zu
berechnen. Die Größe des Einflussbereichs hängt einerseits davon ab, welche Form
und welche Größe als Unschärfeeffekt gewählt wird. Dieses gewichtete Mitteln wird
mathematisch durch die sogenannte Faltung beschrieben.

2.4 faltung

Im Folgenden wird die Faltung zunächst im eindimensionalen Fall erklärt und an-
schließend auf den zweidimensionalen Fall ausgeweitet. Dazu werden zwei gleich
große Bilder benötigt, die ein neues gefaltetes Bild ergeben. Hierbei werden besonders
diskrete Bilder betrachtet. Zum Schluss wird erklärt, wie die Faltung zur Modellierung
der Unschärfeeffekte verwendet werden kann.

2.4.1 Der eindimensionale Fall

Die Faltung zweier eindimensionaler diskreter Signale f = ( fi)i∈Z und g = (gi)i∈Z

wird mathematisch durch folgende Formel 2.5 beschrieben:

( f ∗ g)i = ∑
k∈Z

fi−k gk . (2.5)

Falls die beiden eindimensionalen Signale kontinuierlich sind, wird Formel 2.6 ange-
wendet:

( f ∗ g)i =
∫

R
f (x− x′) g(x′) dx′ . (2.6)

2.4.2 Der zweidimensionale Fall

Die Faltung zweier zweidimensionaler diskreter Bilder f = ( fi,j)i,j∈Z und g = (gi,j)i,j∈Z

wird mathematisch durch folgende Formel 2.7 beschrieben:

( f ∗ g)i,j = ∑
k∈Z

∑
l∈Z

fi−k,j−l gk,l . (2.7)

Falls die beiden zweidimensionalen Signale kontinuierlich sind, wird Formel 2.8 ange-
wendet:

( f ∗ g)i,j =
∫

R

∫
R

f (x− x′, y− y′) g(x′, y′) dx′ dy′ . (2.8)
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Abbildung 2.1: Dieser Faltungskern hat die Form eines Punktes in der Mitte des Bildes. Bei
dieser Faltung erhält der Faltungskern das zu faltende Bild. Daher sind Resul-
tat und Ursprungsbild gleich. Links: Punkt-förmiger erhaltender Faltungskern.
Rechts: Resultat der Faltung.

2.4.3 Modellierung der Unschärfeeffekte

Bei der Verwendung der Faltung wird die erste Komponente als Signal oder Bild
bezeichnet. Die zweite Komponente wird Faltungskern genannt. Um die unterschied-
lichen Unschärfeeffekte zu modellieren, wird für das Bild immer das Eingangsbild
verwendet, auf das der Effekt angewendet werden soll. Für den Faltungskern gibt es
verschiedene Möglichkeiten, je nach gewünschtem Effekt. Da diese Arbeit die drei
oben genannten Effekte Defokussierung, Bewegung und atmosphärische Störung be-
handelt, werden nun die drei dafür vorgesehenen Faltungskerne erklärt. Zuvor wird
ein einfacher Faltungskern vorgestellt.

Die Einfachheit dieses Faltungskerns liegt darin, dass ausschließlich das Pixel im Mit-
telpunkt des Faltungskerns das Gewicht 1 erhält. Alle anderen Pixel besitzen den Wert
0. Die Besonderheit des Faltungskerns ist, dass bei der Faltung mit einem anderen be-
liebigen Bild stets genau dieses andere Bild resultiert. Das liegt daran, dass für die
Berechnung eines Pixels des gefalteten Bildes jedes Mal nur genau das eine Pixel des
Bildes verwendet wird, da die anderen Pixel alle mit 0 gewichtet werden. Insbesonde-
re erhält dieser Faltungskern den Grauwert des Ursprungsbildes. Eine zu Visualisie-
rungszwecken skalierte Version des Faltungskerns ist zusammen mit dem gefalteten
Resultat auf der Abbildung 2.1 zu sehen.

Um den Effekt einer Defokussierung zu erreichen, wird ein Faltungskern in Form ei-
nes Zylinders gewählt (siehe Abbildung 2.2). Dabei entspricht der Mittelpunkt des
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Abbildung 2.2: Dieser Faltungskern hat die Form eines Kreises. Er stellt eine Zylinder-
Funktion dar und modelliert den Effekt der Defokussierung. Links: Zylinder-
förmiger Faltungskern. Rechts: Resultat der Faltung.

Zylinders dem Mittelpunkt des Faltungskerns. Der Radius kann beliebig gewählt wer-
den, je nachdem, wie stark das Bild hinterher defokussiert sein soll. Als obere Grenze
gilt, dass der Radius kleiner als die Hälfte der kleineren Bildlänge sein muss. Alle Wer-
te außerhalb des Radius haben das Gewicht 0, entsprechen also der Farbe Schwarz. Im
Gegensatz dazu haben die Pixel innerhalb des Radius ein konstantes Gewicht, welches
sich insgesamt zu 1 summiert.

Der zweite zu modellierende Effekt ist die Bewegung. Dazu wird eine sogenannte Box-
funktion genutzt (siehe Abbildung 2.3). Die Eigenschaft dieser Boxfunktion ist, dass
sie einer Linie entspricht. Dazu gilt, dass der Mittelpunkt dieser Linie, wie beim ersten
Effekt, der Mittelpunkt des Faltungskerns ist. Anschließend wird die Linie definiert,
indem mithilfe eines Radius ihre Länge bestimmt wird und ein Winkel die Bewe-
gungsrichtung des Effekts beschreibt. Als obere Grenze des Radius gilt, dass er, wie
im ersten Fall, kleiner als die Hälfte der kleineren Länge des Bildes sein muss. Alle
Pixel, die auf der dadurch beschriebenen Linie liegen, erhalten wieder ein konstantes
Gewicht, welches sich zu 1 summiert; alle anderen bekommen das Gewicht 0.

Die atmosphärische Störung wird durch eine sogenannte Gauß-Funktion modelliert.
Im Zweidimensionalen entspricht die Gauß-Funktion der folgenden Gleichung 2.9:

w(x, y) =
1

2πσ2 exp (
−(x− µ1)

2 − (y− µ2)2

2σ2 ) . (2.9)

Als Mittelpunkt dieser Funktion wird, wie in beiden vorhergehenden Fällen, der Mit-
telpunkt des Faltungskerns gewählt. Da ca. 99,73% aller Messwerte der Funktion im
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Abbildung 2.3: Dieser Faltungskern hat die Form einer geraden Linie. Er stellt eine Box-
Funktion dar und modelliert den Effekt der Bewegung. Links: Box-förmiger
Faltungskern. Rechts: Resultat der Faltung.

Intervall der Abweichung ±3σ zu finden sind, wird die Funktion auf diese Länge be-
grenzt. In diesem Fall gibt es eine Abstufung der Gewichte, da der Pixelwert durch
die Funktion beschrieben wird und daher nicht nur entweder 0 oder eine Konstante
beträgt. Dargestellt wird dieser Faltungskern, nachdem er zu Anschauungszwecken
skaliert wurde, zusammen mit dem gefalteten Resultat auf der Abbildung 2.4.

In allen drei Fällen ist die oben bereits angesprochene Normalisierung des Faltungs-
kerns wichtig. Das bedeutet, die Gewichte müssen sich zu 1 summieren. Dies ist nötig,
damit sich der durchschnittliche Grauwert des ursprünglichen Bildes nicht verändert
und die Helligkeit des Ursprungsbildes nicht manipuliert wird. Nach der Diskussi-
on der verschiedenen Faltungskerne soll nun die Fourier-Transformation vorgestellt
werden. Diese Transformation erlaubt die effiziente Faltung von Bildern mit großen
Faltungskernen. Insbesondere lässt sich bei n Pixeln die Komplexität der Faltung von
O(n2) auf O(n log n) im Eindimensionalen und von O(n2) auf O(n log

√
n) bei quadra-

tischen Bildern im Zweidimensionalen reduzieren. Dies spart wertvolle Rechenzeit.

2.5 fourier-transformation

Die Fourier-Transformation betrachtet Bilder als zweidimensionale Signale und wan-
delt sie, wie bei Betrachtung von Audiosignalen üblich, in ihre Frequenzen bezüglich x-
und y-Richtung um. Sie kann als eine Art Basiswechsel gesehen werden, wobei trigono-
metrische Basisfunktionen verwendet werden. Zu beachten ist, dass die Fourier-Trans-
formation im komplexen Zahlenbereich arbeitet. Zunächst wird die Fourier-Transfor-
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Abbildung 2.4: Dieser Faltungskern hat die Form eines Kreises, der nach außen dunkler
wird. Er stellt eine Gauß-Funktion dar und modelliert den Effekt einer atmo-
sphärischen Störung. Links: Gauß-förmiger Faltungskern. Rechts: Resultat der
Faltung.

mation im kontinuierlichen Fall vorgestellt, wobei unter ein- und zweidimensional
unterschieden wird. Im Anschluss daran folgt die Fourier-Transformation im diskre-
ten Fall, ebenfalls im Ein- und Zweidimensionalen. Bevor abschließend noch einige
Eigenschaften bezüglich der Berechnung der Fourier-Transformation erläutert wer-
den, wird die schnelle Fourier-Transformation kurz erklärt. Grundlagen zur Fourier-
Transformation sind in [2] und [3] zu finden.

2.5.1 Die kontinuierliche Fourier-Transformation

Die Formel der Fourier-Transformation im kontinuierlichen eindimensionalen Fall mit
einer Funktion f (x) lautet (wobei für die imaginäre Einheit i gilt i2 = −1):

f̂ (u) = F [ f ](u) =
∫ ∞

−∞
f (x)e−i2πux dx . (2.10)

Es findet also ein Basiswechsel der Funktion f mit der Basisfunktion gu(x) = ei2πux

statt, wobei u einer bestimmten Frequenz entspricht.

Für die Fourier-Transformation gibt es auch eine Umkehrfunktion. Die inverse Fourier-
Transformation zur Funktion f̂ , lautet:

f (x) = F−1[ f̂ ](x) =
∫ ∞

−∞
f̂ (u)ei2πux du . (2.11)
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Zusammenfassend lässt sich sagen, dass die Fourier-Transformation ein Signal durch
den Basiswechsel in seine Frequenzkomponenten umwandelt. Die inverse Fourier-
Transformation hingegen synthetisiert aus den Frequenzen durch Verwendung der
gleichen Basis wieder das ursprüngliche Signal.

Aus der Fourier-Transformation lassen sich weitere Besonderheiten berechnen. Das
Fourierspektrum wird durch den Absolutwert | f̂ | beschrieben. Der Winkel arg( f̂ (u))
wird Phasenwinkel genannt. Außerdem lässt sich das Leistungsspektrum durch | f̂ (u)|2
berechnen. Der Fokus liegt meist auf dem Fourierspektrum oder dem Leistungsspek-
trum, da es die Bedeutung einer Frequenz u im Signal f symbolisiert.
Wenn die Fourier-Transformation auf eine zweidimensionale Funktion ausgeweitet
wird, ergibt sich folgende Formel:

f̂ (u, v) = F [ f ](u, v) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−i2π(ux+vy) dx dy . (2.12)

Die inverse Fourier-Transformation lässt sich auf eine ähnliche Weise herleiten:

f (x, y) = F−1[ f̂ ](x, y) =
∫ ∞

−∞

∫ ∞

−∞
f̂ (u, v)ei2π(ux+vy) du dv . (2.13)

Eine wichtige Eigenschaft, welche die Fourier-Transformation bezüglich der Berech-
nung höherer Dimensionen mit sich bringt, ist die Separierbarkeit. Das bedeutet, dass
die Fourier-Transformation im Höherdimensionalen nacheinander durch die Berech-
nung der einzelnen Dimensionen berechnet werden kann. Gezeigt wird dies in Formel
2.14:

∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−i2π(ux+vy) dx dy =

∫ ∞

−∞

(∫ ∞

−∞
f (x)e−i2πux dx

)
e−i2πvy dy . (2.14)

2.5.2 Die diskrete Fourier-Transformation

Im Falle eines diskreten eindimensionalen endlichen Signals f = ( f0, . . . , fM−1)
T, wird

die diskrete Fourier-Transformation angewandt, deren Formel folgendermaßen lautet
(für p = 0, . . . , M− 1 und der imaginären Einheit i mit i2 = −1):

f̂p =
1√
M

M−1

∑
m=0

fm exp
(
− i2πpm

M

)
. (2.15)

Die dazugehörige inverse Fourier-Transformation im diskreten Fall ist auf folgende
Weise definiert (für m = 0, . . . , M− 1):

fm =
1√
M

M−1

∑
p=0

f̂p exp
(

i2πpm
M

)
. (2.16)
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Besonderheiten, wie Fourierspektrum, Phasenwinkel und Powerspektrum, die bei der
kontinuierlichen Fourier-Transformation aufgetaucht sind, können auf die gleiche Art
und Weise im diskreten Fall berechnet werden. Ihre Gültigkeit und Aussagekraft bleibt
somit erhalten. Allerdings hat das Fourierspektrum seinen Mittelpunkt bei (0, 0). Um
es also in der Mitte des Bildes anzuzeigen, ist es nötig, das Ursprungsbild geeignet
zu modifizieren. Dazu wird das Shift-Theorem verwendet, das in den Eigenschaften
erklärt wird und dazu dient, ein Bild periodisch zu verschieben.

Auch die diskrete Fourier-Transformation ist, wie im kontinuierlichen Fall, auf höhere
Dimensionen erweiterbar. Liegt nun ein zweidimensionales Bild f = ( fm,n) vor mit
m = 0, . . . , M− 1 und n = 0, . . . , N − 1, so lautet die diskrete Fourier-Transformation
(für p = 0, . . . , M− 1; q = 0, . . . , N − 1):

f̂p,q =
1√
MN

M−1

∑
m=0

N−1

∑
n=0

fm,n exp
(
− i2πpm

M

)
exp

(
− i2πqn

N

)
. (2.17)

Ähnlich lässt sich auch die inverse diskrete zweidimensionale Fourier-Transformation
herleiten (mit m = 0, . . . , M− 1; n = 0, . . . , N − 1):

fm,n =
1√
MN

M−1

∑
p=0

N−1

∑
q=0

f̂p,q exp
(

i2πpm
M

)
exp

(
i2πqn

N

)
. (2.18)

Wie auch die kontinuierliche, ist die diskrete Fourier-Transformation in die einzelnen
Dimensionen separierbar und somit getrennt berechenbar.

2.5.3 Schnelle Fourier-Transformation

Da die Fourier-Transformation quadratische Komplexität besitzt, das heißt O(n2), und
damit eine Vielzahl an Berechnungsschritten benötigt, wird hier zur schnelleren Be-
rechnung die Fast Fourier-Transformation (FFT) vorgeschlagen. Sie macht sich zu-
nutze, dass das Problem der Berechnung der Fourier-Transformation in zwei Sub-
probleme mit der halben Länge aufgeteilt wird. Dies wird solange fortgesetzt, bis
die Signallänge 1 beträgt, um anschließend aus dem Resultat durch schrittweise Ver-
knüpfung die vollständige Fourier-Transformation zu berechnen. Der Vorteil besteht
in der hohen Effizienz durch das Teilen des Problems. Dadurch kann die Komplexität
auf O(n log

√
n) reduziert werden. Allerdings bedeutet das, dass die Länge des Signals

oder Bildes eine Zweierpotenz sein muss.

2.5.4 Eigenschaften der Fourier-Transformation

Die hier vorgestellten Eigenschaften beziehen sich sowohl auf die kontinuierliche, als
auch auf die diskrete Fourier-Transformation. Die meisten davon gelten in beiden
Fällen. Zwei davon bleiben allerdings nur durch Approximation bestehen.
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Die erste wichtige Eigenschaft, die in beiden Fällen uneingeschränkt gilt, ist die Linea-
rität. Sie besagt, dass die Fourier-Transformation der Addition zweier Funktionen f
und g, die mit den Skalaren a und b multipliziert werden, aufgeteilt werden kann in
die einzelnen Fourier-Transformationen der beiden Funktionen, die hinterher durch
a und b skaliert und anschließend addiert werden. Formal wird das Theorem durch
Formel 2.19 beschrieben.

F [a f + bg] = aF [ f ] + bF [g], ∀a, b ∈ R . (2.19)

Eine zweite wichtige Eigenschaft ist das zuvor kurz erwähnte Shift-Theorem. Es wird
durch Formel 2.20 beschrieben. Eine Verschiebung der Funktion führt im Frequenz-
bereich zur Multiplikation mit einem komplexen Skalar und umgekehrt. Diese Eigen-
schaft gilt sowohl im kontinuierlichen als auch im diskreten Fall. Zu beachten ist, dass
in diesem Fall der Phasenwinkel gedreht, das Fourierspektrum jedoch nicht davon be-
einflusst wird. Somit gilt für die Fourier-Transformation die Verschiebungsinvarianz.

F [ f (x− x0, y− y0)](u, v) = e−i2π(ux0+vy0) F [ f ](u, v) . (2.20)

Eine weitere Eigenschaft ist das Faltungstheorem. Es besagt, dass die Fourier-Transfor-
mation einer Faltung zweier Funktionen der Multiplikation der Fourier-Transformation
beider Funktionen entspricht. Dies erleichtert die Berechnung der Faltung, da auf diese
Weise nur eine Multiplikation pro Pixel stattfindet, was bei n Pixeln zu einer Komple-
xität von O(n) führt. Zu beachten ist, dass es sich um eine komplexe Multiplikation
handelt. Im Gegensatz dazu wurden bei der Faltung ansonsten alle Pixel in die Be-
rechnung mit einbezogen, was einer Komplexität von O(n2) entspricht. Jedoch ist zu
bedenken, dass die Funktionen zuvor mithilfe der Fourier-Transformation umgewan-
delt und hinterher mit der inversen Fourier-Transformation wieder zurückgewandelt
werden müssen. Allerdings ist dieser Rechenaufwand meist geringer als die normale
Berechnung der Faltung, vor allem wenn die schnelle Fourier-Transformation (FFT)
verwendet wird, was, wie bereits oben beschrieben, eine Komplexität von O(n log

√
n)

bedeutet. Zu beachten ist bei der Anwendung auf diskrete Signale und Bilder, dass die
Fourier-Transformation eine unendliche Fortsetzung des Signals oder Bildes durch
wiederholte Kopien nebeneinander annimmt. Dies ist typischerweise nicht der Fall,
weshalb dieses Verfahren an Grenzen stoßen kann. Als Formel ausgedrückt, lautet das
Faltungstheorem:

F [ f ∗ g] = c · F [ f ] · F [g] , (2.21)

wobei der Vorfaktor c durch die Definition der Fourier-Transformation als Orthonor-
malbasiswechsel zustande kommt. Er entspricht dem inversen Vorfaktor der Hintrans-
formation. Diese Definition bezieht sich auch auf die zukünftigen Vorkommen des
Vorfaktors c.
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Für das Faltungstheorem gibt es ein ähnliches Theorem, das sich auf die Faltung
im Fourierbereich bezieht, das Multiplikationstheorem. Es besagt, dass die Fourier-
Transformation eines Produkts zweier Funktionen einer Faltung der beiden Fourier-
transformierten Funktionen. Definiert wird es in Formel 2.22:

F [ f · g] = c · F [ f ] ∗ F [g] . (2.22)

Bei der nächsten Eigenschaft handelt es sich um das Ableitungstheorem. Es besagt,
dass die Fourier-Transformation der Ableitung einer Funktion einer Multiplikation
mit der entsprechenden Frequenz im Fourier-Bereich entspricht. Daraus ergibt sich:

F
[

∂n+m f
∂xn∂ym

]
= (i2πu)n(i2πv)mF [ f ](u, v) . (2.23)

Die beiden Eigenschaften, die nur begrenzt im diskreten Bereich gelten, sind das Ska-
lierbarkeitstheorem und die Rotationsinvarianz. Ersteres bezieht sich auf die Fourier-
Transformation einer Funktion mit skalierten Funktionsvariablen. Dies hat eine Skalie-
rung der Fourier-Transformation der Funktion und der Funktionsvariablen der Fourier-
Transformation zur Folge, wie in Formel 2.24 gezeigt wird.

F [ f (ax, by)](u, v) =
1
|ab| F [ f ](

u
a

,
v
b
) ∀a, b ∈ R\{0} . (2.24)

Die Rotationsvarianz sagt lediglich aus, dass im Falle einer Drehung des Bildes, auch
die Fourier-Transformation mit demselben Winkel gedreht wird.

Abbildung 2.5: Es wird das Bild zusammen mit seinem zugehörigen Fourierspektrum gezeigt.
Links: Originalbild. Rechts: Fourierspektrum des Originalbildes.
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2.6 analyse der faltungskerne

Es folgt nun eine kurze Analyse der Faltungskerne. Um ihre Auswirkungen besser
nachvollziehen zu können, vor allem bei der Faltung, werden sie zunächst im Fourier-

Abbildung 2.6: Es wird das Fourierspektrum des Kernels zusammen mit dem Fourier-
spektrum des gefalteten Bildes gezeigt. Links: Fourierspektrum des Punkt-
förmigen erhaltenden Faltungskerns. Rechts: Fourierspektrum des gefalteten
Bildes.

Abbildung 2.7: Es wird das Fourierspektrum des Kernels zusammen mit dem Fourierspek-
trum des gefalteten Bildes gezeigt. Links: Fourierspektrum des Box-förmigen
Faltungskerns. Rechts: Fourierspektrum des gefalteten Bildes.
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bereich betrachtet. Dazu wird am besten das Fourierspektrum verwendet. Die genaue
Definition der Faltungskerne wurde bereits oben beschrieben. Wie oben bereits ge-
nannt, symbolisiert das Fourierspektrum die Bedeutung einer Frequenz u im Signal
bzw. Bild f . Die Spektra wurden so skaliert, dass ein Grauwert von 255 einem Ge-

Abbildung 2.8: Es wird das Fourierspektrum des Kernels zusammen mit dem Fourierspek-
trum des gefalteten Bildes gezeigt. Links: Fourierspektrum des Zylinder-
förmigen Faltungskerns. Rechts: Fourierspektrum des gefalteten Bildes.

Abbildung 2.9: Es wird das Fourierspektrum des Kernels zusammen mit dem Fourierspek-
trum des gefalteten Bildes gezeigt. Links: Fourierspektrum des Gauß-förmigen
Faltungskerns. Rechts: Fourierspektrum des gefalteten Bildes.
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Tabelle 2.1: MSE-Wertetabelle der Faltungskerne. Der Wert gibt an, wie sehr sich das unscharfe
Bild, das mit dem zugehörigen Faltungskern gefaltet wurde, vom Originalbild un-
terscheidet. Je größer der MSE-Wert, desto größer auch der Unterschied. Die Werte
zu den Parametern der Faltungskerne sind in Klammern dahinter aufgeführt.

Faltungskern MSE

Identität 0

Box (Winkel ϕ = 0◦, Radius = 5 Pixel) 477,993530

Box (Winkel ϕ = 35◦, Radius = 8 Pixel) 628,687805

Zylinder (Radius = 5 Pixel) 534,411377

Zylinder (Radius = 8 Pixel) 729,357117

Gauß (σ = 3) 518,283447

Gauß (σ = 5) 751,276062

wicht von 1 entspricht. Zunächst ist auf der Abbildung 2.5 das Originalbild mit dem
zugehörigen Fourierspektrum zu sehen.

Auf den ersten Blick ist beim Fourierspektrum des Faltungskerns, der das Bild ohne
Veränderung nur erhält, wenig zu erkennen (siehe Abbildung 2.6). Es handelt sich um
ein vollständig weißes Bild. Dies liegt daran, dass der Wert immer 255 ist, da jedes
Pixel des Bildes im Fourierbereich mit 1 multipliziert wird. Das ist notwendig, damit
kein Pixel verändert wird, was bedeutet, dass jede Frequenz im Bild gleich wichtig
ist. Dies wirkt sich auf das Fourierspektrum des Faltungskerns aus, wodurch er weiß
erscheint.

Im Falle der Bewegung wird eine sogenannte Boxfunktion als Faltungskern verwen-
det. Wird diese in den Fourierbereich transformiert (siehe Abbildung 2.7), so entsteht
daraus eine Sinc-Funktion, die folgendermaßen definiert ist:

sinc(x) =
sin(πx)

πx
. (2.25)

Auch im Falle der Defokussierung, bei der eine Zylinderfunktion eingesetzt wird,
kommt es zu einem ähnlichen Spektrum (siehe Abbildung 2.8), da eine Zylinderfunk-
tion nur eine einmal im Kreis gedrehte Boxfunktion ist.

Im Gegensatz ändert sich die Gauß-Funktion kaum. Dies liegt daran, dass die Fourier-
Transformation einer Gauß-Funktion wieder eine Gauß-Funktion ergibt (siehe Abbil-
dung 2.9).

Eine weitere beobachtbare Auswirkung der Faltung des Bildes mit den unterschiedli-
chen Faltungskernen ist der MSE. In der folgenden Tabelle 2.1 ist aufgelistet, wie groß
der Unterschied im Mittel zwischen dem Ursprungsbild und dem gefalteten Bild ist.
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2.7 partielle ableitung

Es folgt eine kurze Erläuterung bezüglich der Notationen und Bedeutungen hinsicht-
lich partieller Ableitungen, wie sie beispielsweise auch in [3] beschrieben sind. Dies ist
insbesondere bei Funktionen mit mehreren Variablen interessant. Als Bedingung gilt,
dass die Funktion stetig und differenzierbar sein muss. Die partielle Ableitung einer
Funktion entspricht dann der Ableitung der Funktion nach genau einer Variablen, wo-
bei andere Variablen als Konstanten angesehen werden. Es folgt ein einfaches Beispiel,
bei dem zunächst die Funktion, definiert in Formel 2.26, und anschließend jeweils die
partielle Ableitung einer Variablen gebildet wird, wie in den Formeln 2.27 und 2.28

gezeigt wird:

f (x, y) = sin(x) + xy3 , (2.26)

∂ f
∂x

(x, y) = cos(x) + y3 , (2.27)

∂ f
∂y

(x, y) = 3xy2 . (2.28)

Folgende Notationen können für partielle Ableitungen verwendet werden:

∂ f
∂x

= ∂x f = fx . (2.29)

Partielle Ableitungen können auch nacheinander erfolgen, um Ableitungen höherer
Ordnung zu ermöglichen. Hierbei ist es möglich, nacheinander nach verschiedenen
Variablen abzuleiten. Es gilt die folgende Schreibweise, wobei die Indizes vertauschbar
sind:

∂

∂x

(
∂ f
∂y

)
=

∂2 f
∂x∂y

= fxy = fyx . (2.30)

Werden die partiellen Ableitungen als Spaltenvektor angeordnet, so handelt es sich
um den Nabla-Operator ∇. Er ist im Zweidimensionalen folgendermaßen definiert:

∇ =

(
∂x

∂y

)
. (2.31)

Wird der Nabla-Operator auf eine Funktion angewendet, ergibt dies die partiellen
Ableitungen der Funktion als Spaltenvektor, beschrieben durch Formel 2.32:

∇ f =

(
∂x f
∂y f

)
. (2.32)

Das Produkt einer Vektor-wertigen Funktion f (x, y) = ( f1(x, y), f2(x, y))T mit dem
Nabla-Operator wird Divergenz genannt. Die Definition lautet wie folgt:
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div f = ∇T f = (∂x, ∂y)

(
f1

f2

)
= ∂x f1 + ∂y f2 . (2.33)

Die letzte Definition, die für partielle Ableitungen wichtig ist, gilt dem Laplace-Opera-
tor. Er setzt sich zusammen aus dem Produkt der Divergenz und dem Gradient einer
Funktion, wie in Formel 3.11 gezeigt wird:

∆ f = div(∇ f ) = (∂x, ∂y)

(
∂x f
∂y f

)
= ∂xx f + ∂yy f . (2.34)

2.8 quadratische variationsansätze zur entrauschung

Variationale Ansätze gehören zu einer Klasse von Verfahren zur Bildentrauschung.
Ansätze zum Bildentrauschen sind beispielsweise in [4] und [5] zu finden. Sie basieren
auf der Annahme, dass das entrauschte Bild ein Optimalitätskriterium erfüllt, das in
Form eines Energiefunktionals gegeben ist. Wenn man dazu annimmt, dass im Bild
etwas Rauschen enthalten ist, kann folgendes variationales Modell verwendet werden.
Die Formel verbindet zwei Anforderungen an das gefilterte Bild: Einerseits soll es so
ähnlich wie möglich am Ursprungsbild f sein, andererseits soll es so glatt wie möglich
sein. Für den zweidimensionalen kontinuierlichen Fall ergibt sich daraus folgende
Formel ( f und u sind zweidimensionale kontinuierliche Funktionen):

E f (u) =
1
2

∫
Ω
((u− f )2 + α|∇u|2) dx dy . (2.35)

Hierbei soll das gefilterte Signal u dieses Energiefunktional minimieren, damit es der
optimalen Lösung möglichst nahe kommt. Der erste Teil dieses Terms, bestehend aus
der quadrierten Differenz der beiden Signale, sorgt für die Ähnlichkeit zwischen dem
Ursprungsbild f und dem gefilterten Bild u. Es handelt sich dabei um den Datenterm.
Der zweite Teil, also der Gradient von u mit seinem Vorfaktor, ist für die Glattheit ver-
antwortlich. Daher wird dieser Term Glattheitsterm genannt. Der Glattheitsterm wird
in dieser Methode quadriert, welche häufig auch Whittaker-Tikhonov-Regularisation
genannt wird. Bei α handelt es sich um einen Parameter, der zur Regularisierung dient,
das heißt, wie stark die Glättung eingreift. Je größer α ist, desto glatter wird das Bild
und desto weniger fallen kleine Störungen auf.

Um das Energiefunktional zu minimieren und damit eine bestmögliche Lösung zu
erhalten, muss die Ableitung des Energiefunktionals gebildet und nach u gelöst wer-
den. Dazu wird als Hilfsmittel die Euler-Lagrange-Gleichung verwendet, welche in
den folgenden beiden Kapiteln vorgestellt und auf das Energiefunktional angewendet
werden soll.
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2.9 euler-lagrange-gleichung

Da es sich beim Theorem zur Euler-Lagrange-Gleichung um ein sehr komplexes Theo-
rem handelt, wird nur die Hauptaussage festgehalten. Weitergehende Informationen
dazu und der Anwendung sind beispielsweise in [6] und [7] zu finden. Im Fall dieser
Arbeit bezieht sich das Theorem auf das Minimieren des Energiefunktionals. Es wird
angenommen, dass eine Funktion u(x) zwischen zwei Grenzen a und b existiert, die
das folgende Funktional in Formel 2.36 minimiert:

E(u) =
∫ b

a
F(x, u, u′) dx . (2.36)

Gilt obiges, so muss die Funktion u(x) die Euler-Lagrange-Gleichung in Formel 2.37

erfüllen, die folgendermaßen definiert ist:

Fu −
d

dx
Fu′ = 0 . (2.37)

Hinzu kommen sogenannte natürliche Randbedingungen, die für x = a und x = b
ebenfalls immer erfüllt sein müssen. Sie lauten wie folgt:

Fu′ = 0 . (2.38)

Daraus folgt, dass wenn ein u gesucht ist, welches das gegebene Funktional minimiert,
zur Lösung des Problems die Euler-Lagrange-Gleichungen nach diesem u gelöst wer-
den müssen, um das Optimum zu finden. Dieser Zusammenhang erleichtert das Fin-
den und Berechnen des Optimums u zur Minimierung des Funktionals. Das Optimum
u* ist so definiert, dass es sich dabei um das u handelt, welches das Energiefunktional
zu 0 minimiert.

Die Euler-Lagrange-Gleichung lässt sich auch auf den zweidimensionalen Fall über-
tragen. Es handelt sich also um ein Funktional der folgenden Form:

E(u) =
∫

Ω
F(x, y, u, ux, uy) dx dy . (2.39)

Daraus ergibt sich die folgende Euler-Lagrange-Gleichung:

Fu −
d

dx
Fux −

d
dy

Fuy = 0 . (2.40)

Die natürlichen Randbedingungen für den Bildrand ∂Ω mit dem Normalenvektor n
lauten in diesem Fall:

nT
(

Fux

Fuy

)
= 0 . (2.41)

Die Erweiterung auf noch höhere Dimensionen verläuft entsprechend.
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2.10 anwendung der euler-lagrange-gleichung

Um die Euler-Lagrange-Gleichung als Löser für das Minimierungsproblem eines Ener-
giefunktionals anzuwenden, wird hier zunächst von zweidimensionalen kontinuierli-
chen Bildern ausgegangen. Damit ergibt sich für das Funktional folgende Abhängigkeit,
gezeigt in den Formeln 2.42, 2.43, 2.44 und 2.45:

F(x, y, u, ux, uy) =
1
2
(u− f )2 +

α

2
(u2

x + u2
y) . (2.42)

Als partielle Ableitungen ergibt sich daraus:

Fu = (u− f ) , (2.43)

Fux = αux , (2.44)

Fuy = αuy . (2.45)

Das führt zu folgender Euler-Lagrange-Gleichung für ein minimierendes u:

0 = u− f − α∆u . (2.46)

Die dazugehörige natürliche Randbedingung für den Rand des Bildes mit dem Nor-
malenvektor n lautet:

0 = nT∇u = ∂nu . (2.47)

2.11 diskretisierung der quadratischen variationsansätze

Variationale Ansätze sind selbstverständlich auch auf diskrete Fälle erweiterbar. Da-
durch handelt es sich bei f und u nicht mehr um kontinuierliche Funktionen, sondern
um diskrete Vektoren. Die zu minimierende Formel lautet im eindimensionalen dis-
kreten Fall ( f und u sind eindimensionale Signale der Länge N):

E f (u) =
1
2

N

∑
k=1

(uk − fk)
2 +

α

2

N−1

∑
k=1

(uk+1 − uk)
2 . (2.48)

Um dieses Energiefunktional zu minimieren, muss die Ableitung insgesamt gleich 0
sein. Dazu werden die partiellen Ableitungen bestimmt, wobei für jede gilt, dass auch
sie 0 ergeben muss. Wird dies auf ein Signal u mit der Länge N angewendet, ergeben
sich folgende Gleichungen:

0 =
∂E f

∂u1
= u1 − f1 + α(u1 − u2) , (2.49)
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0 =
∂E f

∂ui
= ui − fi + α(−ui+1 + 2ui − ui−1), (i = 2, . . . , N − 1) , (2.50)

0 =
∂E f

∂uN
= uN − fN + α(uN − uN−1) . (2.51)

Die erste und letzte Gleichung, Formeln 2.49 und 2.51, lassen sich so interpretieren,
dass das Signal am Rand gespiegelt ist. Das bedeutet, dass u0 = u1 und uN+1 = uN

gilt. Formel 2.50 beschreibt dagegen den allgemeinen Fall für die Pixel, welche sich
nicht am Rand befinden. Durch diese Gleichungen lässt sich ein lineares Gleichungs-
system aufstellen, welches gelöst werden muss. Sie bilden eine diskretisierte Variante
der Euler-Lagrange-Gleichung.

Es ist möglich, die Formel 2.48 für das Energiefunktional auf den zweidimensionalen
diskreten Fall auszuweiten. Bei N (i, j) handelt es sich um alle benachbarten Pixel des
aktuell betrachteten Pixels (i, j). Im zweidimensionalen Fall kommen zur Berechnung
für jedes Pixel, je nach Position, unterschiedlich viele Nachbarn in Frage. Dies darf
nicht außer Acht gelassen werden, weswegen die einzelnen Fälle separat betrachtet
werden müssen. Befindet sich das betrachtete Pixel in einer Ecke, so hat es nur zwei
angrenzende Nachbarn, wobei diese sich für jede Ecke an unterschiedlichen Seiten des
Pixels befinden. Falls sich das Pixel am Rand befindet, gibt es drei Nachbarn, deren
Position abhängig davon ist, an welchem Rand sich das betrachtete Pixel befindet.
Der letzte Fall ist eher trivial, da es sich hierbei um alle restlichen Pixel handelt, das
heißt alle Pixel, die sich weder am Rand noch in einer Ecke befinden. Diese Pixel
haben immer vier angrenzende Nachbarn, die sich um das Pixel herum befinden. Es
ist in allen Fällen bei der Berechnung des betrachteten Pixels nicht von Bedeutung,
an welcher Position sich seine Nachbarn befinden, das heißt, welchem dieser obigen
Fälle der jeweilige Nachbar zugeordnet wird. Somit folgt für das Energiefunktional im
Zweidimensionalen:

E f (u) =
1
2

N

∑
i=1

M

∑
j=1

(ui,j − fi,j
)2

+
α

2 ∑
(p,q)∈N (i,j)

(up,q − ui,j)
2

 . (2.52)

Auch im zweidimensionalen Fall muss das Energiefunktional minimiert werden, um
die bestmögliche Lösung zu erhalten. Daraus ergibt sich das lineare Gleichungssystem:

ui,j + α · ∑
(p,q)∈N (i,j)

(up,q − ui,j) = fi,j . (2.53)

Die Erweiterung auf Dimensionen mit m > 2 ist ebenfalls auf diese Weise möglich. Je
höher die Dimension m jedoch ist, desto größer wird dadurch der Rechen- und Spei-
cheraufwand, um das Gleichungssystem zu lösen. Daher werden dafür meist iterative
Löser verwendet, da sie effizienter sind.
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Insgesamt gilt bei diesen Energiefunktionalen, dass sie minimiert werden sollen. Die
Berechnung des gefilterten Bildes u wird wie durch die Lösung der Euler-Lagrange-
Gleichung realisiert. Nach der Diskretisierung erhalten wir ebenfalls 2.53.



3. V E R FA H R E N Z U R D E K O N V O L U T I O N

Dieses Kapitel behandelt verschiedene Methoden zur Rekonstruktion von Bildern, die
durch einen Faltungsprozess unscharf geworden sind. Dies wird unter anderem durch
eine Dekonvolution, also eine Entfaltung des Bildes, versucht. Dabei werden zwei
Hauptansätze betrachtet. Einerseits gibt es Fourier-basierte Methoden, andererseits
variationale Ansätze. Im Allgemeinen wird davon ausgegangen, dass unscharfe Bilder
folgendem Bildgebungsprozess unterlegen haben:

f (x, y) = (h ∗ u)(x, y) + n(x, y) . (3.1)

Hierbei steht f für das unscharfe Bild, h ist der (bekannte) Faltungskern und u ent-
spricht dem (unbekannten) idealen Bild. In dieser Arbeit handelt es sich bei dem
idealen Bild um das Originalbild, n steht für Rauschen, welches das Bild zusätzlich
stört. Ist das Rauschen hinreichend klein, ist n vernachlässigbar und wir erhalten die
Vereinfachung:

f (x, y) = (h ∗ u)(x, y) . (3.2)

3.1 fourier-basierte methoden

Diese Methoden beschäftigen sich damit, die Bilder durch eine Fourier-Transformation
in den Fourier-Bereich zu überführen und anschließend durch geeignete Berechnun-
gen die Fehler im Frequenzbild möglichst zu eliminieren. Zu beachten ist, dass auch
der gegebene Kernel in den Fourier-Bereich transformiert wird, um die Dekonvolution
zu ermöglichen. Wird nun obige Formel 3.2 zur Beschreibung eines unscharfen Bildes
verwendet und diese in den Fourier-Bereich transformiert, so ergibt sich durch das
Faltungstheorem die Grundlage für die folgenden Verfahren:

f̂ = c · ĥ · û , (3.3)

wobei c eine Konstante ist, die von der Definition der Fourier-Transformation abhängt
(siehe Abschnitt 2.5.4).

3.1.1 Inverses Filtern

Das inverse Filtern macht sich Formel 3.3 zunutze, um das ideale Bild nach dieser
Formel zu berechnen:

25
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û =
1
c
· f̂

ĥ
. (3.4)

Dadurch sollte es möglich sein, das Bild genau so wieder herzustellen, wie es vor
der Faltung war. Allerdings handelt es sich beim Faltungskern h meist um einen Tief-
passfilter. Das heißt, dass er niedrige Frequenzen ungehindert durchlässt und hohe
Frequenzen schwächt und teilweise herausfiltert. Wird nun ĥ im Fourier-Bereich be-
trachtet, bedeutet das, dass der Faltungskern gegen 0 geht und somit bei der Division
einen hohen Multiplikationsfaktor erzeugt. Dadurch werden hohe Frequenzen wie
Rauschen um ein Vielfaches verstärkt. Somit ist das inverse Filtern im Normalfall oh-
ne zusätzliche Stabilisation nicht verwendbar. Häufig wird deshalb das pseudoinverse
Filtern mit einer einfachen Stabilisierung benutzt, definiert durch die folgende Formel:

û =

 1
c ·

f̂
ĥ
, falls |ĥ| > ε,

0, sonst.
(3.5)

Wie sich anhand der Formel zeigt, wird der Wert von û auf 0 gezwungen, sollte der
Fall eintreten, dass |ĥ| zu klein wird. Dies fängt die mögliche Verstärkung hoher Fre-
quenzen ab. Jedoch ist abzuwägen, welcher Wert sich für ε eignet, da nicht zu viele
Details gelöscht werden sollen.

3.1.2 Wiener Filter

Um eine verbesserte Stabilisierung des inversen Filterns zu garantieren, wurde der
Wiener Filter eingeführt. Vorgestellt wurde sie in [8]. û wird dabei nicht mehr exakt
mit Hilfe der Formel 3.4 berechnet, sondern nur noch approximiert. Die dazugehörige
Formel für das Wiener Filtern lautet:

û ≈ 1
c
· 1

ĥ
· |ĥ|2

|ĥ|2 + K
· f̂ . (3.6)

Der mittlere Term sorgt für die Stabilisierung, welche von K abhängt. Bei K handelt es
sich um einen positiven Parameter, der verhindert, dass bei einem Tiefpassfilter h hohe
Frequenzen verstärkt werden, falls ĥ gegen 0 geht. Stattdessen geht der Funktionswert
ebenfalls gegen 0. Der Parameter K, der das Verfahren stabilisiert und den Stabilisie-
rungsterm steuert, muss meist abgeschätzt werden. Dadurch wird deutlich, dass diese
Formel wie ein Bandpassfilter agiert, falls es sich bei h um einen Tiefpassfilter handelt.
Tiefe Frequenzen werden durch das inverse Filtern und hohe Frequenzen durch die
Stabilisierung abgeschwächt, während mittlere Frequenzen wie beim inversen Filtern
verstärkt werden. Das macht das Wiener Filtern robuster gegenüber Rauschen und
anderen zusätzlichen Störungen im Bild. Deswegen wird es auch als eines der besten
linearen Verfahren gesehen, was die Dekonvolution von Bildern angeht.
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3.2 variationsansätze

Eine zweite Klasse von Verfahren zur Dekonvolution, die im Rahmen dieser Arbeit
untersucht werden, wie sie in [1] vorgestellt wurden, sind variationale Ansätze. Diese
wurden bereits in den Abschnitten 2.8 und 2.11 vorgestellt. Als Hilfsmittel zur Mini-
mierung des Energiefunktionals wird die Euler-Lagrange-Gleichung verwendet (siehe
Abschnitte 2.9 und 2.10). Dieses Verfahren soll nun bei der Dekonvolution angewendet
werden.

3.2.1 Quadratische Variationsansätze zur Dekonvolution

Dieser bisherige Ansatz ist jedoch allgemein und löst nicht das Problem der Dekon-
volution. Um dies zu ermöglichen, muss die Formel erweitert werden, indem der Da-
tenterm durch den Faltungskern modifiziert wird. Dies ist dadurch begründet, dass
als Bild f das gefaltete Bild verwendet wird. Das gefilterte Bild u soll jedoch nicht
f ähnlich werden, sondern dem ursprünglichen Originalbild. Damit dies möglich ist,
wird u so gefiltert, dass es f genau dann ähnlich wird, wenn u mit dem Faltungskern
h gefaltet wurde. Daraus folgt im kontinuierlichen Fall:

E f (u) =
1
2

∫
Ω
((h ∗ u− f )2 + α|∇u|2) dx dy . (3.7)

Auch hier muss der Minimierer gefunden werden, weswegen folgende Euler-Lagrange-
Gleichung entsteht:

0 = h ∗ (h ∗ u− f )− α∆u , (3.8)

mit der reflektierenden Randbedingung nT∇u = 0. Hierbei wird angenommen, dass
der Faltungskern symmetrisch ist. Diese Gleichung muss nun diskretisiert und an-
schließend gelöst werden. Das diskrete Äquivalent zum Funktional 3.7 im Zweidimen-
sionalen lautet zum Beispiel:

E f (u) =
1
2

N

∑
i=1

M

∑
j=1

([h ∗ u]i,j − fi,j
)2

+
α

2 ∑
(p,q)∈N (i,j)

1
2
(up,q − ui,j)

2

 , (3.9)

mit der zugehörigen Euler-Lagrange-Gleichung:

0 = [h ∗ h ∗ u]i,j − [h ∗ f ]i,j − α · ∑
(p,q)∈N (i,j)

(up,q − ui,j) . (3.10)

Die folgenden Methoden verwenden zur Berechnung des gefilterten Bildes u nun eben-
diese Formel 3.10, wobei sich bei den einzelnen Verfahren jeweils Unterschiede bei der
Vorgehensweise ergeben, auf welche Weise die Gleichung gelöst wird.
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3.2.1.1 Lösung durch explizites Verfahren

Das erste Verfahren zur Lösung der Euler-Lagrange-Gleichung in 3.10 versucht, sie
mit Gradientenabstieg zu lösen. Das bedeutet, dass die berechnete Lösung, ausgehend
von einem Startwert, iterativ verfeinert wird, um der optimalen Lösung u* näher zu
kommen. Als Beginn der Iteration, also u0, wird das gefaltete Bild f gewählt. Dadurch,
dass die Faltung mit einem Faltungskern hinzukommt, erhöht sich die Komplexität
des Gleichungssystem und somit der Rechenaufwand, es zu lösen. Dieser Ansatz wird
im Folgenden ausschließlich diskret betrachtet.

Bei diesem Variationsansatz wird nun die ausmultiplizierte Euler-Lagrange-Gleichung
verwendet, um die einzelnen Komponenten separat berechnen zu können. Da dieser
Variationsansatz im Diskreten betrachtet wird, wird der Laplace-Operator des Glatt-
heitsterms folgendermaßen ersetzt:

α[∆u]i,j = α · ∑
(p,q)∈N (i,j)

(up,q − ui,j) . (3.11)

Zunächst wird bei der Euler-Lagrange-Gleichung von der Trennung der beiden Bilder
u und f ausgegangen, um den Zusammenhang zwischen dem gefalteten Bild f und
dem Originalbild u nachzuvollziehen. Es folgt:

[h ∗ h ∗ u]i,j − α · ∑
(p,q)∈N (i,j)

(up,q − ui,j) = [h ∗ f ]i,j . (3.12)

Anschließend wird die Formel 3.12 umgestellt, damit ein Gleichungssystem mit 0 als
Lösung entsteht, worauf die nächsten Schritte basieren, um das Optimum zu bestim-
men:

0 = −[h ∗ h ∗ u]i,j + α · ∑
(p,q)∈N (i,j)

(up,q − ui,j) + [h ∗ f ]i,j . (3.13)

Nun wird ein iterativer Lösungsprozess eingeführt. Es wird angenommen, dass nach
einer bestimmten Anzahl an Schritten das optimale u* für diese Gleichung gefunden
wird. Wird also obige Gleichung 3.13 auf das gefundene Optimum u* angewendet,
ergibt sich wiederum u*. Das bedeutet, dass die Differenz zwischen diesen zwei Zeit-
schritten gleich 0 ist. Damit gilt für einen bestimmten Zeitpunkt k mit einer Zeitschritt-
weite τ:

uk+1
i,j − uk

i,j

τ
= 0 . (3.14)

Zur Lösung des Gleichungssystems wird diese Annahme in die Euler-Lagrange-Glei-
chung 3.13 eingesetzt:
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uk+1
i,j − uk

i,j

τ
= −[h ∗ h ∗ uk]i,j + α · ∑

(p,q)∈N (i,j)
(up,q − ui,j) + [h ∗ f ]i,j . (3.15)

Das neue uk+1 des neuen Zeitschritts berechnet sich also aus dem uk des alten Zeit-
schritts durch folgende Berechnungsvorschrift:

uk+1
i,j = uk

i,j + τ

−[h ∗ h ∗ uk]i,j + α · ∑
(p,q)∈N (i,j)

(up,q − ui,j) + [h ∗ f ]i,j

 . (3.16)

Nun wird klar, dass ausgehend vom alten Bild uk das neue Bild uk+1 berechnet wird,
indem dem negativen Gradienten mit Schrittweite τ gefolgt wird. Durch dieses Ab-
wärtsgehen in der Energielandschaft wird die zugrunde liegende Energie (lokal) mi-
nimiert. Auf diese Weise können nach beliebig vielen Zeitschritten immer neue uk be-
rechnet werden, die dazu dienen, ein weiteres uk+1 zu berechnen. Iterationsbeginn u0

ist das gegebene Bild f , welches dem mit dem Faltungskern h gefalteten Originalbild
entspricht. Die Variable, die unter anderem bestimmt, wie schnell sich der Lösung
angenähert wird, ist τ. Sie entspricht der Zeitschrittweite. Die Schwierigkeit bei der
Wahl der Größe von τ ist, dass τ nicht zu groß gewählt werden darf, da sonst die Zeit-
schrittweite zu groß ist und möglicherweise über das Ziel hinausgegangen und dem
Optimum u* nicht sehr nahe gekommen wird. Wird τ allerdings zu klein gewählt,
wird eine sehr große Anzahl an Iterationen benötigt, bis die Distanz zum Optimum u*
gering genug ist. Eine Möglichkeit diesem Problem entgegenzuwirken, ist, zu Beginn
ein großes τ zu wählen. Nach einer bestimmten Anzahl an Iterationsschritten wird das
Lösen des Gleichungssystems mit einem kleineren τ fortgesetzt. Dies kann beliebig oft
wiederholt werden, bis das Optimum u* nahe genug ist. Insgesamt gilt, dass die An-
zahl an Iterationsschritten, bis das Verfahren abgebrochen wird, auf unterschiedliche
Weise festgelegt werden kann. Eine Möglichkeit ist, eine feste Zahl festzulegen. Alter-
nativ kann so lange gerechnet werden, bis die Energie klein genug ist oder sich nur
noch wenig ändert.

3.2.1.2 Lösung durch stabilisertes explizites Verfahren

Der folgende Variationsansatz ist eine Variante des eben vorgestellten Lösungsansatzes.
Dieser Ansatz basiert hauptsächlich auf der Berechnungsvorschrift in Formel 3.15,
verwendet jedoch zusätzlich die Annahme, dass bei der Diskretisierung des Laplace-
Operators das momentan berechnete Pixel und seine Nachbarn getrennt betrachtet
werden. |N (i, j)| entspricht dabei der Anzahl an Nachbarn des aktuell betrachteten
Pixels (i, j). Es gilt dabei:
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∑
(p,q)∈N (i,j)

(up,q − ui,j) = ∑
(p,q)∈N (i,j)

up,q − ∑
(p,q)∈N (i,j)

ui,j = ∑
(p,q)∈N (i,j)

up,q − |N (i, j)|ui,j .

(3.17)
Nun basiert die Berechnung darauf, dass das zentrale Pixel aus dem neuen Iterations-
schritt k + 1 ist, während seine Nachbarn aus dem alten Iterationsschritt k sind. Damit
entspricht die Euler-Lagrange-Gleichung:

uk+1
i,j − uk

i,j

τ
= −[h ∗ h ∗ uk]i,j − α|N (i, j)|uk+1

i,j + α · ∑
(p,q)∈N (i,j)

uk
p,q + [h ∗ f ]i,j . (3.18)

Wird diese Gleichung 3.18 nach dem neuen Iterationsschritt umgestellt, um das neue
uk+1 zu berechnen, folgt:

uk+1
i,j =

uk
i,j + τ(−[h ∗ h ∗ uk]i,j + α ·∑(p,q)∈N (i,j) uk

p,q + [h ∗ f ]i,j)

1 + τα|N (i, j)| . (3.19)

Hier gelten, genau wie beim vorherigen Variationsansatz, die Vorschläge zur An-
zahl der Iterationsschritte und Größe der Zeitschrittweite τ. Allerdings kann durch
die Stabilisierung die Zeitschrittweite τ größer gewählt werden als beim vorherigen
Lösungsansatz, weswegen das stabilisierte Verfahren dadurch meist schneller zu einer
guten Lösung kommt.

3.2.1.3 Lösung im Fourier-Bereich

Der nächste Ansatz zur Lösung der Euler-Lagrange-Gleichung in 3.10 ist Fourier-
basiert. Es wird dabei das Faltungstheorem (siehe Abschnitt 2.5.4) genutzt, um die
Euler-Lagrange-Gleichung zu lösen. Zu beachten ist, da hier im Fourier-Bereich gerech-
net wird, dass alle Rechenoperationen im Komplexen stattfinden. Wird die Fourier-
Transformation auf die Euler-Lagrange-Gleichung 3.10 angewendet, folgt:

c · F (h) · (c · F (h) · F (u)−F ( f ))− αF (uxx)− αF (uyy) = 0 . (3.20)

Für die beiden Ableitungen zweiter Ordnung wird das Ableitungstheorem verwendet
(siehe Abschnitt 2.5.4). Damit lautet deren Fourier-Transformation:

F (uxx) = (i2πp)2 F (u) , (3.21)

F (uyy) = (i2πq)2 F (u) . (3.22)

Um nun das gewünschte Bild zu erhalten, muss die Fourier-transformierte Euler-
Lagrange-Gleichung nach u aufgelöst werden:
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F (u) = c · F (h)F ( f )
c2 · F (h)F (h) + α · 4π2(p2 + q2)

. (3.23)

Bei Formel 3.23 ist die Ähnlichkeit dieses Ansatzes zum Inversen Filtern, genauer
gesagt zum Wiener Filter, zu beachten. Durch eine Umformung lässt sich zeigen, dass
sich die Vorgehensweisen zur Berechnung von u ähneln. Allerdings wird beim Wiener
Filter die Stabilisierung durch den konstanten Parameter K gewährleistet, wohingegen
in diesem Ansatz der nicht-konstante Glattheitsterm zu einer Stabilisierung im Nenner
führt.

Das Ergebnis wird durch den Parameter α beeinflusst, der die Glattheit des Bildes
während der Rekonstruktion reguliert. Üblicherweise wird dieser Parameter recht
klein gewählt, um Kanten im Bild zu behalten und diese nicht zu stark zu glätten.
Nachdem u entsprechend berechnet wurde, muss das Ergebnis zurücktransformiert
werden. Somit folgt zur Berechnung von u mithilfe der Fourier-Transformation die
Gleichung 3.24:

u = F−1
(

c · F (h)F ( f )
c2 · F (h)F (h) + α · 4π2(p2 + q2)

)
. (3.24)

Dieser Ansatz macht sich also die Euler-Lagrange-Gleichung zur Minimierung des
Energiefunktionals zunutze, um sie durch eine Fourier-Transformation zu lösen. Da
hier sofort eine Lösung approximiert werden kann, ohne durch mehrfache Iterationen
ein Optimum zu finden, handelt es sich bei diesem Verfahren um den schnellsten
quadratischen Ansatz. Allerdings hängt die Qualität ausschließlich vom Parameter α

ab.

3.2.2 Subquadratische Variationsansätze zur Dekonvolution

Die vorherigen Variationsansätze haben einen quadratischen Glattheitsterm, wodurch
sich auch der Name dafür ableiten lässt. Es handelt sich um quadratische Variations-
ansätze. Der Nachteil ist, dass Abweichungen von der Glattheit quadratisch eingehen
und damit aus Energiesicht sehr teuer sind. Das Ergebnis ist deshalb typischerweise
zu glatt. Um scharfe Kanten im Ergebnisbild attraktiver zu machen, müssen Abwei-
chungen von der Glattheit weniger stark, zum Beispiel linear, bestraft werden. Hier-
zu wird eine subquadratische Bestrafungsfunktion ψ eingeführt. Damit lässt sich das
Energiefunktional subquadratischer Ansätze zu folgender Formel im kontinuierlichen
zweidimensionalen Fall umschreiben:

E f (u) =
∫

Ω
(h ∗ u− f )2 + αψ(|∇u|2) dx dy . (3.25)

Anhand der Formel 3.25 lässt sich erkennen, dass der Datenterm, der sich auf die
Ähnlichkeit bezieht, gleich belassen wird, während der Glattheitsterm um die bereits
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erwähnte Funktion erweitert wird. Daraus lässt sich die erforderte Euler-Lagrange-
Gleichung 3.26 ableiten, die gleich 0 gesetzt werden muss, um das Energiefunktional,
wie bei den quadratischen Ansätzen, zu minimieren.

0 = h ∗ (h ∗ u− f )− α div(ψ′(|∇u|2)∇u) , (3.26)

mit reflektierender Randbedingung nT∇u = 0.

Wird für die Funktion ψ der Wert selbst verwendet, also ψ(s2) = s2, so ergibt sich
für die Ableitung ψ′(s2) = 1, was, wenn es in das Energiefunktional 3.25 und die
Euler-Lagrange-Gleichung 3.26 eingesetzt wird, den quadratischen Ansatz ergibt. Für
ψ muss eine passende Funktion gefunden werden, die Kanten erhält, also einen großen
Wert für den Gradienten berücksichtigt. Dagegen soll sie glätten, wenn der Gradient
klein ist. Mit diesen Vorschriften ergibt sich beispielsweise folgende subquadratische
Funktion 3.27 und deren Ableitung 3.28, die im Weiteren verwendet wird.

ψ(s2) = 2λ2

√
1 +

s2

λ2 − 2λ2 , (3.27)

ψ′(s2) =
1√

1 + s2

λ2

. (3.28)

Die Funktion 3.27 ist abhängig von einem Parameter λ, der die Bewertung des Gradi-
enten beeinflusst. Es kann gezeigt werden, dass die Funktion ψ′ für große Werte für
λ gegen 1 geht und somit lineare Diffusion erzeugt. Werden hingegen kleine Werte
für λ gewählt, dominiert der Gradient, weswegen Kanten erhalten bleiben, da dort ψ′

gegen 0 geht und der Diffusionsterm abgeschaltet wird. Daher eignen sich kleinere
Werte besser zur Kantenerhaltung, wodurch bessere Resultate erzielt werden sollen.
Das Energiefunktional wird im diskreten zweidimensionalen Fall verwendet, daher
lautet die für diesen Fall abgewandelte Formel folgendermaßen:

E f (u) =
1
2

N

∑
i=1

M

∑
j=1

([h ∗ u]i,j − fi,j
)2

+
α

2
· ψ

 ∑
(p,q)∈N (i,j)

1
2
(up,q − ui,j)

2

 . (3.29)

Es folgt für die Euler-Lagrange-Gleichung:

0 = [h ∗ h ∗ u]i,j − [h ∗ f ]i,j − α · ∑
(p,q)∈N (i,j)

(
(ψ′i,j + ψ′p,q)

2
· (ui,j − up,q)

)
. (3.30)

Für die Auswertung der Ableitung von ψ gilt für einen Pixel (i, j)

ψ′i,j = ψ′
(

1
2
(ui+1,j − ui,j)

2 +
1
2
(ui,j − ui−1,j)

2 +
1
2
(ui,j+1 − ui,j)

2 +
1
2
(ui,j − ui,j−1)

2
)

,

(3.31)
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wobei für Pixel in den Ecken und am Rand separate Fälle betrachtet werden müssen,
falls nicht von einem gespiegelten Rand ausgegangen wird.

3.2.2.1 Lösung durch explizites Verfahren

Auch für den subquadratischen Ansatz wird das explizite Verfahren des quadrati-
schen Ansatzes verwendet, gezeigt in Formel 3.15, indem die Differenz zwischen zwei
Berechnungsschritten uk+1 und uk genutzt wird, abhängig von einem Parameter τ.
Damit ergibt sich für die allgemeine Berechnungsvorschrift folgende Formel:

uk+1
i,j − uk

i,j

τ
= −[h ∗ h ∗ uk]i,j + [h ∗ f ]i,j + α ∑

(p,q)∈N (i,j)

(
(ψ′i,j + ψ′p,q)

2
· (uk

i,j − uk
p,q)

)
.

(3.32)
Um den neuen Iterationsschritt uk+1 aus dem vorherigen Zeitschritt uk zu berechnen,
wird die Formel 3.32 umgestellt, sodass sich dafür folgendes ergibt:

uk+1
i,j = uk

i,j + τ

−[h ∗ h ∗ uk]i,j + [h ∗ f ]i,j + α ∑
(p,q)∈N (i,j)

(
(ψ′i,j + ψ′p,q)

2
· (uk

i,j − uk
p,q)

) .

(3.33)
Weiterhin können hier ähnliche Modifikationen wie beim quadratischen Variationsan-
satz vorgenommen werden, wie beispielsweise das stabilisierte explizite Schema. Ei-
ne Lösung der Euler-Lagrange-Gleichung im Fourier-Bereich wie beim quadratischen
Variationsansatz ist beim subquadratischen Ansatz aufgrund der Nichtlinearität und
Pixelabhängigkeit von ψ′ nicht möglich.





4. E VA L U AT I O N

Dieses Kapitel thematisiert die Ausarbeitung, Implementierung und Evaluierung der
Ergebnisse der im vorherigen Kapitel erwähnten Ansätze und Methoden. Dabei ist vor
allem der Vergleich der Verfahren miteinander interessant, um ein aussagekräftiges
Fazit zu ermöglichen. Einerseits werden die variationalen Ansätze mit den Fourier-
basierten Methoden verglichen, andererseits müssen sie einander gegenübergestellt
werden. Hierbei sind insbesondere die Unterschiede zwischen den MSE-Werten der
Verfahren zueinander bedeutsam, weshalb diese Werte als Maß genommen werden.
Speziell um die Variationsansätze miteinander zu vergleichen, wird die Anzahl an
Iterationsschritten variiert. Zunächst folgen einige Grundbedingungen, die für die Ex-
perimente festgesetzt wurden. Daraufhin werden die Parameter diskutiert und ihre
Auswirkungen auf die Verfahren getestet. Abschließend erfolgt der Vergleich.

4.1 generelle grundbedingungen

Bei der Evaluation der Verfahren wurde als originales Ursprungsbild das Bild des
Kameramanns (siehe Abbildung 4.2) verwendet. Es handelt sich dabei um ein Bild
ausschließlich in Graustufen, wobei die Skala für diese Grauwerte von 0, dem nied-
rigsten Wert und damit dem dunkelsten Grauton, also Schwarz, bis hin zu 255, dem
höchsten und somit hellsten Grauton, also Weiß, reicht. Die Größe des Bildes ist 256 x
256 Pixel.

Abbildung 4.1: Hier werden die drei Faltungskerne gezeigt, mit denen das Originalbild gefal-
tet wird. Links: Gauß-förmiger Faltungskern, der eine atmosphärische Störung
modelliert. Mitte: Box-förmiger Faltungskern, der eine Bewegung modelliert.
Rechts: Zylinder-förmiger Faltungskern, der eine Defokussierung modelliert.

35
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Abbildung 4.2: Hier werden das Originalbild und die gefalteten Bilder gezeigt. Die gefalte-
ten Bilder werden den vorgestellten Verfahren unterzogen und die Resulta-
te mit dem Originalbild verglichen. Oben links: Originalbild. Oben rechts:
Gauß-gefaltetes Bild. Unten links: Box-gefaltetes Bild. Unten rechts: Zylinder-
gefaltetes Bild.

Für die Modellierung der Unschärfeeffekte wurde dieses Bild jeweils mit einem Effekt
versehen. Die Defokussierung wird, wie bereits erwähnt, durch einen Faltungskern
in Form eines Zylinders dargestellt, wobei im Folgenden für die Größe des Radius
der Wert 5 gewählt wurde. Auch die Größe des Radius der Boxfunktion, welche eine
Bewegung modelliert, entspricht dem Wert 5. Der Winkel ϕ wurde gleich 0 gewählt,
das heißt, es handelt sich um eine horizontale Bewegung. Um den letzten Effekt dar-
zustellen, wurde die Gauß-Funktion mit dem Wert 3 für die Standardabweichung σ
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verwendet. Es folgen die Bilder der drei Faltungskerne (siehe Abbildung 4.1), welche
zu Anschauungszwecken und zur späteren Berechnung ebenfalls die Größe von 256 x
256 Pixeln haben.

Die Faltung der Faltungskerne mit dem Bild wurde im Fourier-Bereich realisiert, um
die Rechenzeit zu verkürzen. Da es sich bei der Größe der Bilder um 2er-Potenzen
handelt, wurde bei der Fourier-Transformation die FFT verwendet. Die Ergebnisse der
Faltung (siehe Abbildung 4.2) entsprechen den zuvor erwähnten Unschärfeeffekten.

Die Verfahren wurden jedes Mal mit den gleichen Voraussetzungen auf jedes der ge-
falteten Bilder angewendet.

4.2 parameterverwaltung

Vor dem eigentlichen Vergleich folgen nun einige Voraussetzungen, die für die ein-
zelnen Verfahren getroffen wurden. Es wird die Qualität der Parameter getestet, die
in den Methoden verwendet werden. Um die Auswirkungen der Parameter besser
einschätzen zu können, wird immer nur ein Parameter verändert.

Beim Wiener Filter ist K der einzige beeinflussbare Parameter, der im Term zur Stabi-
lisierung vorhanden ist. Dieser Parameter wirkt sich darauf aus, wie stark die Stabi-
lisierung in die Berechnung eingreift, was insbesondere bei Rauschen erforderlich ist.
Üblicherweise werden jedoch für K sehr kleine Zahlen gewählt.

Der explizite quadratische Variationsansatz und der stablisierte explizite quadratische
Variationsansatz haben die gleichen Parameter. Einerseits handelt es sich um den Pa-
rameter α, der sich auf den Glattheitsterm auswirkt. Der zweite Parameter, der nur
bei den iterativen Lösungsverfahren existiert, jedoch nicht bei der Fourier-basierten
Lösung, ist τ. Er entspricht der sogenannten Zeitschrittweite und sagt im Prinzip aus,
wie groß der Schritt zwischen zwei Iterationsschritten k und k + 1 ist. Das bedeutet,
er bestimmt, wie schnell sich der Lösung, also dem Minimum des Energiefunktionals,
genähert wird. Wird τ zu groß gewählt, so kann es passieren, dass zu große Schritte
gemacht werden und das Minimum passiert wird, also die Lösung wieder größer wird.
Ein möglicher Vorschlag, der bereits bei den angewandten Methoden vorgeschlagen
wurde, ist die Anpassung von τ während des Rechenprozesses. Ist die Distanz zum
Optimum sehr groß, so eignen sich große Werte für τ besser. Sollte die Entfernung
zum Optimum sehr gering werden oder das Optimum sogar überschritten worden
sein, so kann der letzte Iterationsschritt mit einem kleineren τ wiederholt werden.
Die Wahl des Wertes für diesen Parameter beeinflusst direkt die Anzahl an Iterations-
schritten. So ergeben 10 Iterationen mit τ = 1 das gleiche Ergebnis wie 100 Iterationen
mit τ = 0,1. Der letzte Parameter, der ebenfalls nur bei den iterativen Lösungen eine
Rolle spielt, ist die Anzahl der Iterationsschritte. Je größer die Anzahl, desto näher
liegt die optimale Lösung, also das Minimum. Jedoch bedeutet eine höhere Anzahl an
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Iterationsschritten eine längere Rechenzeit. Deshalb ist zu entscheiden, wie viele Itera-
tionsschritte sinnvoll sind. Wie bereits erwähnt, ist eine Möglichkeit, eine feste Zahl an
Schritten vorzugeben. Die Alternative dazu ist, die Anzahl entweder vom MSE oder
von der Größe des Energiefunktionals abhängig zu machen. Wenn der MSE oder das
Energiefunktional klein genug sind, bedeutet das, dass die Lösung sehr nah ist und
der Rechenprozess somit mit der aktuellen Lösung abgebrochen werden kann.

Beim subquadratischen Variationsansatz kommt zu den Parametern des quadratischen
Ansatzes noch ein weiterer Parameter dazu, nämlich λ, der die Funktion ψ reguliert
und sich auf die Kantenglättung auswirkt. Das bedeutet, dass hier vier verschiedene
Parameter einwirken, durch deren Zusammenhang sich das Ergebnis bei Veränderung
von Parameterwerten teilweise stärker variieren kann.

4.3 auswertung der parameter

Im Folgenden werden die eigentlichen Experimente der Verfahren an den unscharfen
Bildern und deren Ergebnisse vorgestellt. Zunächst gilt es, jedes Verfahren einzeln zu
testen und die Auswirkungen der Parameter auf den jeweiligen Ansatz festzustellen.
Hierbei wird jede Methode auf jedes der gefalteten Bilder angewendet, welche die drei
unterschiedlichen Unschärfeeffekte simulieren. Die Auswertung der Ergebnisse findet
anhand des resultierenden MSE-Wert statt.

4.3.1 Wiener Filter

Der Wiener Filter hat nur einen Parameter, der beeinflussbar ist. Es handelt sich da-
bei um K, einen Parameter, der den Term zur Stabilisierung reguliert. Die Hypothese
vor Ausführung des Experiments ist, dass je größer K, desto größer ist der Stabilisie-
rungsterm. Daraus folgt, dass das Ergebnisbild nach der Berechnung für ein größeres
K schlechter, das heißt weiter entfernt vom ursprünglichen Originalbild ist, als für ein

Tabelle 4.1: MSE-Wertetabelle des Wiener Filters. In der Zeile steht der jeweilige Wert des Pa-
rameters K, während in der Spalte das unscharfe Bild steht, auf welches das Ver-
fahren angewendet wurde.

Parameterwert Gauß Box Zylinder

Vorher 518,283447 477,993530 534,411377

K = 10−1 601,703674 461,375458 562,387329

K = 10−5 219,979202 1,757151 9,749884

K = 10−10 50,765614 0,000004 0,029170
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Abbildung 4.3: Zu sehen sind die Ergebnisbilder des Wiener Filters mit unterschiedlichen
Werten für den Parameter K. In diesem Fall wurde der Wiener Filter auf das
Gauß-gefaltete Bild angewendet. Oben links: Originalbild. Oben rechts: Wie-
ner Filter mit K = 10−1. Unten links: Wiener Filter mit K = 10−5. Unten rechts:
Wiener Filter mit K = 10−10.

kleineres K. Das Experiment wird für drei unterschiedliche Werte für K durchgeführt.
Es werden die Werte 10−1, 10−5 und 10−10 getestet und deren MSE-Werte verglichen,
um die Hypothese zu überprüfen.

Werden die MSE-Werte aus der Tabelle 4.1 für jedes Bild getrennt betrachtet, wird
deutlich, dass die Hypothese in allen drei Fällen stimmt. Je kleiner das K im Stabilisie-
rungsterm gewählt wird, desto kleiner ist der zugehörige MSE-Wert im Vergleich mit
dem Originalbild, was bedeutet, dass das berechnete Ergebnisbild dadurch ähnlicher
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Abbildung 4.4: Zu sehen sind die Ergebnisbilder des Wiener Filters mit unterschiedlichen
Werten für den Parameter K. In diesem Fall wurde der Wiener Filter auf das
Box-gefaltete Bild angewendet. Oben links: Originalbild. Oben rechts: Wiener
Filter mit K = 10−1. Unten links: Wiener Filter mit K = 10−5. Unten rechts:
Wiener Filter mit K = 10−10.

dem Originalbild wird. Insbesondere ist zu sehen, dass für das kleinste gewählte K
das berechnete Bild im Falle des Box- und des Zylinder-Faltungskerns fast exakt dem
Originalbild entspricht. Dies bedeutet eine gute Lösung. Im Gegensatz dazu kann für
den größten Wert festgestellt werden, dass das Ergebnis im Falle des Gauß- und des
Zylinder-Faltungskerns schlechter ist als das gefaltete Bild.
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Abbildung 4.5: Zu sehen sind die Ergebnisbilder des Wiener Filters mit unterschiedlichen
Werten für den Parameter K. In diesem Fall wurde der Wiener Filter auf das
Zylinder-gefaltete Bild angewendet. Oben links: Originalbild. Oben rechts:
Wiener Filter mit K = 10−1. Unten links: Wiener Filter mit K = 10−5. Unten
rechts: Wiener Filter mit K = 10−10.

4.3.2 Quadratischer Variationsansatz (explizit)

Im Gegensatz zum vorherigen Ansatz gibt es beim expliziten quadratischen Variations-
ansatz mit Gradientenabstieg drei Parameter, die das Resultat beeinflussen. Der erste
Parameter ist α, der sich auf den Glattheitsterm auswirkt. Es gilt der Zusammenhang
zwischen Parameter und Term, dass je größer α ist, desto größer wird der Glattheits-
term und desto glatter wird das Ergebnisbild. Beim zweiten Parameter handelt es sich
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Tabelle 4.2: MSE-Wertetabelle des expliziten Verfahrens. In der Zeile steht der jeweilige Wert
des Parameters α, während in der Spalte das unscharfe Bild steht, auf welches das
Verfahren angewendet wurde.

Parameterwert Gauß Box Zylinder

Vorher 518,283447 477,993530 534,411377

α = 10−1 391,709717 287,494263 371,147827

α = 10−3 331,116943 112,018044 218,962311

α = 10−5 330,414459 104,770164 212,561523

Tabelle 4.3: MSE-Wertetabelle des expliziten Verfahrens. In der Zeile steht der jeweilige Wert
des Parameters τ, während in der Spalte das unscharfe Bild steht, auf welches das
Verfahren angewendet wurde.

Parameterwert Gauß Box Zylinder

Vorher 518,283447 477,993530 534,411377

τ = 10−2 478,404999 436,903290 496,214203

τ = 10−1 399,707092 301,609619 398,057465

τ = 1 330,414459 104,770164 212,561523

um den Parameter τ, welcher für die Zeitschrittweite steht. Er gibt an, wie groß die
Schritte Richtung Optimum gemacht werden, das heißt, wie schnell sich der optimalen
Lösung angenähert wird. Hinweise zur Wahl von Werten für τ wurden bereits weiter
oben genannt. Der letzte Parameter bezieht sich auf die Anzahl an Iterationsschritten,
die bei der Berechnung durchgeführt werden sollen. Je mehr Berechnungsschritte ge-
macht werden, desto geringer ist die Distanz zur Lösung. Dieser Parameter beeinflusst
nicht direkt die Qualität der Lösung. Bei der Wahl dieses Parameters ist zu beachten,
dass je größer er ist, desto länger wird gerechnet und desto länger braucht es, um
an eine Lösung zu kommen. Es ist empfehlenswert, die Zahl an Iterationsschritten
zu begrenzen oder nach einer bestimmten Anzahl abzubrechen, sobald die Lösung
nahe genug ist oder sich nicht mehr viel ändert. Im Folgenden werden die drei Para-
meter einzeln getestet, um ihre Auswirkungen auf die Lösung besser zu beobachten.
Die anderen beiden Parameter werden während des Tests mit einem konstanten Wert
belegt.

Der erste Test beschäftigt sich mit dem Parameter α. Für α wurden die drei Werte
10−1, 10−3 und 10−5 getestet. τ wurde für diesen Test der Wert 1 zugewiesen und
es wurden 100 Iterationsschritte durchgeführt. Bei diesem Verfahren ist anhand der
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Abbildung 4.6: Zu sehen sind die Ergebnisbilder des expliziten quadratischen Variationsansat-
zes mit Gradientenabstieg nach unterschiedlich vielen Iterationen. In diesem
Fall wurde der explizite quadratische Variationsansatz auf das Gauß-gefaltete
Bild angewendet. Oben links: 100 Iterationen. Oben mittig: 300 Iterationen.
Oben rechts: 500 Iterationen. Unten links: 1000 Iterationen. Unten mittig: 2000
Iterationen. Unten rechts: 3000 Iterationen.

Tabelle 4.4: MSE-Wertetabelle des expliziten Verfahrens. In der Zeile steht die jeweilige Anzahl
an Iterationsschritten, während in der Spalte das unscharfe Bild steht, auf welches
das Verfahren angewendet wurde.

Parameterwert Gauß Box Zylinder

Vorher 518,283447 477,993530 534,411377

100 Iterationen 330,414459 104,770164 212,561523

300 Iterationen 305,849640 61,547993 140,473389

500 Iterationen 295,874390 50,786339 116,434662

1000 Iterationen 283,314178 41,529095 95,148331

2000 Iterationen 271,968903 36,884361 87,931831

3000 Iterationen 266,149658 36,213993 90,060371
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Abbildung 4.7: Zu sehen sind die Ergebnisbilder des expliziten quadratischen Variationsan-
satzes mit Gradientenabstieg mit unterschiedlichen Werten für den Parameter
α. In diesem Fall wurde der explizite quadratische Variationsansatz auf das
Box-gefaltete Bild angewendet. Oben links: 100 Iterationen. Oben mittig: 300
Iterationen. Oben rechts: 500 Iterationen. Unten links: 1000 Iterationen. Unten
mittig: 2000 Iterationen. Unten rechts: 3000 Iterationen.

Tabelle 4.2 zu sehen, dass je kleiner α gewählt wird, desto kleiner ist der MSE-Wert
und desto besser ist das Ergebnisbild. Wird α bei diesem Verfahren kleiner als 10−5

gewählt, so wird die Lösung nur geringfügig besser, sodass dadurch keine wirkliche
Verbesserung erfolgt. Außerdem sollte α nicht zu klein gewählt werden, um hohe
Frequenzen weiterhin abzuschwächen und für ein glatteres Ergebnis zu sorgen. Da
in diesem Verfahren die Qualität abhängig ist von mehr als einem Parameter und
insbesondere vom Zusammenhang zwischen α und τ, erreicht man nicht schon nach
100 Iterationen das Optimum. Dennoch ist das Ergebnis in allen Fällen besser als das
gefaltete Bild.

Der zweite Test zur Beobachtung des Verhaltens von τ in Hinsicht auf den Rechen-
prozess erfolgte mit dem Wert 10−5 für α, da sich dieser Wert im vorherigen Test als
geeignet herausgestellt hat. Weiterhin wurden wieder 100 Iterationen durchgeführt.
Für τ wurden die Werte 10−2, 10−1 und 1 verwendet. Bei τ verhält es sich laut Tabelle
4.3, wie es durch die Hypothese bereits vermutet wurde, genau gegenteilig wie bei
α. Je größer der Wert für τ, desto besser wird das Ergebnis. Wird τ jedoch zu groß
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Abbildung 4.8: Zu sehen sind die Ergebnisbilder des expliziten quadratischen Variationsan-
satzes mit Gradientenabstieg mit unterschiedlichen Werten für den Parameter
α. In diesem Fall wurde der explizite quadratische Variationsansatz auf das
Zylinder-gefaltete Bild angewendet. Oben links: 100 Iterationen. Oben mittig:
300 Iterationen. Oben rechts: 500 Iterationen. Unten links: 1000 Iterationen.
Unten mittig: 2000 Iterationen. Unten rechts: 3000 Iterationen.

gewählt, was hier nicht aufgezeigt wird, da es schwierig zu modellieren ist, wird das
gewünschte Optimum überschritten und teilweise ein schlechteres Bild erhalten, als
das vorherige gefaltete Bild. Auch hier ist das Zusammenspiel zwischen den Parame-
tern τ und α bemerkbar, weswegen nicht sofort nach bereits 100 Iterationen ein Bild
berechnet wurde, das fast exakt dem Optimum entspricht. Die Ergebnisse sind aber
wie bereits beim vorherigen Test besser als das vorherige gefaltete Bild.

Der letzte Test für den Parameter, der die Zahl an Iterationsschritten vorgibt, wurde
mit dem Wert 10−5 für α und dem Wert 1 für den Parameter τ durchgeführt, da diese
Werte bei den vorherigen Experimenten gute Resultate lieferten. Für die Zahl an Itera-
tionsschritten wurden die Werte 100, 300, 500, 1000, 2000 und 3000 gewählt. Auch bei
der Anzahl der Iterationen ist in Tabelle 4.4 zu sehen, dass je häufiger der Rechenpro-
zess durchgeführt wird, das heißt, je mehr Iterationen gemacht werden, desto besser
wird das Resultat. Das bedeutet, dass auch in diesem Fall die Hypothese bestätigt
wird. Hinsichtlich der MSE-Werte beim letzten Wert von 3000 Iterationsschritten ist
zu sehen, dass das Ergebnis im Falle des Box- und des Zylinder-Faltungskerns relativ
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nahe am Optimum ist. Allerdings bedeutet dies, dass für ein gutes Ergebnis eine hohe
Anzahl an Iterationsschritten nötig ist, was wiederum zu einer langen Laufzeit des
Rechenprozesses führt. Eine Möglichkeit, dies zu verhindern, ist, nach einer bestimm-
ten Anzahl von Schritten aufzuhören, wenn die Lösung gut genug ist oder sich nur
geringfügig verbessert, um weitere Rechenzeit einzusparen. Für alle gefalteten Bilder
ist zu sehen, dass der MSE-Wert immer weiter abnimmt und insbesondere nie größer
als der MSE-Wert des gefalteten Bildes wird. Nur im Falle des Zylinder-Faltungskerns
ist eine geringe Verschlechterung des MSE-Werts von 2000 nach 3000 Iterationen zu
erkennen. Deswegen ist anzunehmen, dass das bestmögliche Ergebnis mit diesen Pa-
rametereinstellungen zwischen 2000 und 3000 Iterationen liegt.

4.3.3 Quadratischer Variationsansatz (stabilisert)

Die Parameter des stabilisierten expliziten quadratischen Variationsansatzes entspre-
chen denen des expliziten Verfahrens. Da die Parameter übereinstimmen und die glei-
chen Terme bei der Berechnung beeinflussen, kann deren Bedeutung und Wirkweise
auf diesen Fall übertragen werden. Daher wird auf deren Test und die Überprüfung
der Hypothesen verzichtet, da sie durch das vorherige Verfahren bereits belegt wurden.
Wie bereits bei der Vorstellung des stabilisierten expliziten Verfahrens erwähnt wurde,
können durch die Stabilisierung allerdings größere Werte für die Zeitschrittweite τ

gewählt werden, wodurch dieses Verfahren schneller zu einer Lösung kommt.

4.3.4 Quadratischer Variationsansatz (Fourier)

Wie auch der Wiener Filter hat der quadratische Variationsansatz mit Lösung im
Fourier-Bereich nur einen Parameter, welcher sich auf die Berechnung auswirkt. In
diesem Fall reguliert er den Glattheitsterm, der bestimmt, wie stark das Bild an sich
und insbesondere Kanten geglättet werden. Die Hypothese dazu besagt, dass je größer

Tabelle 4.5: MSE-Wertetabelle der Lösung im Fourier-Bereich. In der Zeile steht der jeweilige
Wert des Parameters α, während in der Spalte das unscharfe Bild steht, auf welches
das Verfahren angewendet wurde.

Parameterwert Gauß Box Zylinder

Vorher 518,283447 477,993530 534,411377

α = 10−1 401,059387 294,161896 382,607605

α = 10−5 223,674255 3,966199 17,799452

α = 10−10 60,596283 0,000006 0,073349
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Abbildung 4.9: Zu sehen sind die Ergebnisbilder des Fourier-basierten quadratischen Varia-
tionsansatzes mit unterschiedlichen Werten für den Parameter α. In diesem
Fall wurde der Fourier-basierte quadratische Variationsansatz auf das Gauß-
gefaltete Bild angewendet. Oben links: Originalbild. Oben rechts: Fourier-
basierter quadratischer Variationsansatz mit α = 10−1. Unten links: Fourier-
basierter quadratischer Variationsansatz mit α = 10−5. Unten rechts: Fourier-
basierter quadratischer Variationsansatz mit α = 10−10.

der Wert von α ist, desto größer ist der Glattheitsterm, wodurch die Glättung stärker
eingreift. Für das Resultat bedeutet dies, dass es vermutlich für größere α schlechter
und weiter entfernt vom Originalbild ist, als für kleinere α. Daher werden für α die
drei Werte 10−1, 10−5 und 10−10 getestet.
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Abbildung 4.10: Zu sehen sind die Ergebnisbilder des Fourier-basierten quadratischen Varia-
tionsansatzes mit unterschiedlichen Werten für den Parameter α. In diesem
Fall wurde der Fourier-basierte quadratische Variationsansatz auf das Box-
gefaltete Bild angewendet. Oben links: Originalbild. Oben rechts: Fourier-
basierter quadratischer Variationsansatz mit α = 10−1. Unten links: Fourier-
basierter quadratischer Variationsansatz mit α = 10−5. Unten rechts: Fourier-
basierter quadratischer Variationsansatz mit α = 10−10.

Anhand der MSE-Werte aus der Tabelle 4.5 ist zu sehen, dass die Hypothese für jeden
der drei Fälle, das heißt für jedes der drei Bilder, stimmt. Das bedeutet, dass sich bei
kleineren Werten für α bessere Resultate für das Ergebnisbild im Vergleich zum Origi-
nalbild erzielen lassen. Auch bei diesem Verfahren ist beim kleinsten gewählten Wert
zu sehen, dass der MSE-Wert bei den Bildern, die mit dem Box-Faltungskern und mit
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Abbildung 4.11: Zu sehen sind die Ergebnisbilder des Fourier-basierten quadratischen Va-
riationsansatzes mit unterschiedlichen Werten für den Parameter α. In die-
sem Fall wurde der Fourier-basierte quadratische Variationsansatz auf das
Zylinder-gefaltete Bild angewendet. Oben links: Originalbild. Oben rechts:
Fourier-basierter quadratischer Variationsansatz mit α = 10−1. Unten links:
Fourier-basierter quadratischer Variationsansatz mit α = 10−5. Unten rechts:
Fourier-basierter quadratischer Variationsansatz mit α = 10−10.

dem Zylinder-Faltungskern gefaltet wurden, sehr klein ist, was bedeutet, dass deren
Endergebnisse nach der Berechnung fast exakt dem Originalbild entsprechen. Im Ge-
gensatz zum Wiener Filter, der ebenfalls nur von einem Parameter beeinflusst wurde,
kann hier selbst beim größten Wert für α festgestellt werden, dass eine Verbesserung
vorliegt.
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4.3.5 Subquadratischer Variationsansatz

Drei der Parameter des subquadratischen Variationsansatzes stimmen zwar mit de-
nen des quadratischen überein, jedoch werden ihre Auswirkungen auf das Ergebnis
nochmals untersucht, da noch ein weiterer Parameter das Resultat beeinflusst. Die
Aufgabe der drei Parameter α, τ und Iterationszahl wurde bereits beim vorherigen

Tabelle 4.6: MSE-Wertetabelle des subquadratischen Variationsansatzes. In der Zeile steht der
jeweilige Wert des Parameters α, während in der Spalte das unscharfe Bild steht,
auf welches das Verfahren angewendet wurde.

Parameterwert Gauß Box Zylinder

Vorher 518,283447 477,993530 534,411377

α = 10−1 329,326752 103,840309 212,928452

α = 10−3 330,393860 104,683777 212,494446

α = 10−5 330,407013 104,697884 212,495239

Tabelle 4.7: MSE-Wertetabelle des subquadratischen Variationsansatzes. In der Zeile steht der
jeweilige Wert des Parameters τ, während in der Spalte das unscharfe Bild steht,
auf welches das Verfahren angewendet wurde.

Parameterwert Gauß Box Zylinder

Vorher 518,283447 477,993530 534,411377

τ = 10−2 478,418884 436,890747 396,200073

τ = 10−1 399,690765 301,684723 398,001038

τ = 1 329,326752 103,840309 212,928452

Tabelle 4.8: MSE-Wertetabelle des subquadratischen Variationsansatzes. In der Zeile steht der
jeweilige Wert des Parameters λ, während in der Spalte das unscharfe Bild steht,
auf welches das Verfahren angewendet wurde.

Parameterwert Gauß Box Zylinder

Vorher 518,283447 477,993530 534,411377

λ = 1 324,067780 108,601463 222,902115

λ = 10−1 329,326752 103,840309 212,928452

λ = 10−2 330,274719 104,564674 212,496231
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Tabelle 4.9: MSE-Wertetabelle des expliziten subquadratischen Variationsansatzes. In der Zeile
steht die jeweilige Anzahl an Iterationsschritten, während in der Spalte das un-
scharfe Bild steht, auf welches das Verfahren angewendet wurde.

Parameterwert Gauß Box Zylinder

Vorher 518,283447 477,993530 534,411377

100 Iterationen 329,326752 103,840309 212,928452

300 Iterationen 301,861572 54,338737 135,996246

500 Iterationen 289,210785 38,761833 106,131157

1000 Iterationen 271,343353 22,952026 72,634109

2000 Iterationen 253,151520 14,059612 50,602684

3000 Iterationen 243,255356 11,803420 43,677567

Abbildung 4.12: Zu sehen sind die Ergebnisbilder des expliziten subquadratischen Variations-
ansatzes nach unterschiedlich vielen Iterationen. In diesem Fall wurde der ex-
plizite subquadratische Variationsansatz auf das Gauß-gefaltete Bild angewen-
det. Oben links: 100 Iterationen. Oben mittig: 300 Iterationen. Oben rechts:
500 Iterationen. Unten links: 1000 Iterationen. Unten mittig: 2000 Iterationen.
Unten rechts: 3000 Iterationen.



52 evaluation

Ansatz beschrieben und ist beim subquadratischen Ansatz gleich. Beim vierten Para-
meter handelt es sich um λ, der angibt, wie stark bzw. schwach Kanten durch die
Funktion ψ geglättet werden sollen. Je kleiner der Wert von λ, desto mehr sollen sie
erhalten bleiben, da dadurch der Wert des Gradienten in der Funktion wichtiger wird.

Wie auch beim quadratischen Ansatz beschäftigt sich der erste Test mit der Auswir-
kung des Paramters α. Dazu werden die drei Werte 10−1, 10−3 und 10−5 für α getestet.
Die Konstanten in diesem Test sind 100 Iterationen, τ = 1 und λ = 10−1. Es ist zu
sehen, dass in allen Fällen eine Verbesserung zum vorherigen gefalteten Bild vorliegt.
Anhand der MSE-Werte aus Tabelle 4.6 wird deutlich, dass je größer α wird, desto
besser wird im Allgemeinen das entstehende Resultat. Allerdings ist der Unterschied
zwischen den Werten so gering, dass andere Werte für α nur geringfügig bessere oder
schlechtere Ergebnisse liefern. Dieses Ergebnis unterscheidet sich vom Ergebnis des
expliziten quadratischen Ansatzes, bei dem für kleinere Werte ein deutlich besseres
Bild herauskam. Der Grund dafür ist die bereits angesprochene Funktion ψ, die sich
auf die Erhaltung von Kanten auswirkt. Dadurch wird mit einem größeren Wert für

Abbildung 4.13: Zu sehen sind die Ergebnisbilder des expliziten subquadratischen Variations-
ansatzes mit unterschiedlichen Werten für den Parameter α. In diesem Fall
wurde der explizite subquadratische Variationsansatz auf das Box-gefaltete
Bild angewendet. Oben links: 100 Iterationen. Oben mittig: 300 Iterationen.
Oben rechts: 500 Iterationen. Unten links: 1000 Iterationen. Unten mittig:
2000 Iterationen. Unten rechts: 3000 Iterationen.
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α ein glatteres Bild mit wenigen hohen Frequenzen erzeugt, welches aber gleichzeitig
Kanten besitzt. Da das Bild am Ende glatt genug und hohe Frequenzen abgeschwächt
sein sollen, wird in den folgenden Tests für den Parameter α der Wert 10−1 gewählt.

Im zweiten Test ging es um die Auswirkungen von τ auf den Rechenprozess. Getestet
wurden die Werte 10−2, 10−1 und 1. Die Werte für λ und die Zahl an Iterationsschritten
bleiben wie beim ersten Test, während α, wie bereits erwähnt, mit dem konstanten
Wert von 10−1 belegt wird. Auch in diesem Fall bestätigt die Tabelle 4.7 die gleichen
Auswirkungen von τ auf das Resultat, wie bereits bei den quadratischen Ansätzen. Je
größer τ gewählt wird, mit desto größeren Schritten wird sich der optimalen Lösung
u* in der gleichen Anzahl an Iterationen genähert. Auch hier wird eine Verbesserung
zum gefalteten Bild deutlich.

Diesmal werden verschiedene Werte für den Parameter λ getestet. Dazu wurden die
Werte 1, 10−1 und 10−2 verwendet. Die Zahl an Iterationsschritten wurde wieder auf
100 festgelegt, während α der Wert 10−1 und τ der Wert 1 zugewiesen wurde. Zu be-

Abbildung 4.14: Zu sehen sind die Ergebnisbilder des expliziten subquadratischen Variati-
onsansatzes mit unterschiedlichen Werten für den Parameter α. In diesem
Fall wurde der explizite subquadratische Variationsansatz auf das Zylinder-
gefaltete Bild angewendet. Oben links: 100 Iterationen. Oben mittig: 300 Ite-
rationen. Oben rechts: 500 Iterationen. Unten links: 1000 Iterationen. Unten
mittig: 2000 Iterationen. Unten rechts: 3000 Iterationen.
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obachten ist, dass sich für jedes Bild ein anderer Wert eignet. Das liegt unter anderem
an der Form der Faltungskerne, ihre Auswirkungen bei der Faltung und ihr Einfluss
auf Kanten. Da der Wert 10−1 im Mittel das beste Resultat liefert, wird er bei den Tests
zur Erhaltung von Kanten verwendet. Weiterhin ist aus der Tabelle abzuleiten, dass
die resultierenden Bilder nie schlechter als das gefaltete Bild sind.

Beim letzten Test wurde die Anzahl an Iterationsschritten variiert, während α, τ und
λ konstant waren. Dazu galt α = 10−1, τ = 1 und λ = 10−1. Es wurden 100, 300,
500, 1000, 2000 und 3000 Iterationen durchgeführt. Je mehr Iterationsschritte gemacht
werden, desto geringer ist die Distanz zum Optimum. Dies ist auch anhand der MSE-
Werte aus der Tabelle 4.9 zu erkennen. Allerdings gibt es kein Maximum an Iterations-
schritten, weshalb ab einer bestimmten Anzahl die Berechnung abgebrochen werden
kann, wenn die Lösung gut genug ist oder sich nicht mehr viel ändert. Das ist der Fall,
wenn beispielsweise der MSE-Wert klein genug ist. Insbesondere ist anhand der MSE-
Werte aus der letzten Zeile mit 3000 Iterationen zu erkennen, dass die Lösung nur
noch sehr langsam besser wird und deswegen eine große Anzahl an Iterationen not-
wendig ist, um eine erkennbare Verbesserung zu erzeugen. Für alle gefalteten Bilder
ist abzulesen, dass der MSE-Wert immer abnimmt und insbesondere immer kleiner ist
als der MSE-Wert des gefalteten Bildes.

4.4 vergleich

Nun sollen die Verfahren mit geeigneten Parametern bewertet und verglichen wer-
den. Dazu dient vor allem der MSE-Wert, der sich als Maß für die Qualität gut eignet,
da er angibt, wie sehr sich das berechnete Bild vom tatsächlichen Originalbild unter-
scheidet. Je kleiner der MSE-Wert ist, desto besser das Ergebnis und desto besser der

Tabelle 4.10: MSE-Wertetabelle aller Verfahren im Vergleich. Es wurden die besten Ergebnisse
der Methoden verglichen. In der Zeile steht der jeweilige Ansatz, während in der
Spalte das unscharfe Bild steht, auf welches das Verfahren angewendet wurde.

Verfahren Gauß Box Zylinder

Vorher 518,283447 477,993530 534,411377

Wiener Filter 50,765614 0,000004 0,029170

Quadratischer Variationsansatz (explizit) 266,149658 36,213993 87,931831

Quadratischer Variationsansatz (stabilisiert) 266,138367 36,238888 87,932693

Quadratischer Variationsansatz (Fourier) 60,596283 0,000006 0,073349

Subquadratischer Variationsansatz (explizit) 243,255356 11,803420 43,677567
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Abbildung 4.15: Zu sehen sind die Ergebnisbilder aller vorgestellten Verfahren. In diesem Fall
wurden die Ansätze auf das Gauß-gefaltete Bild angewendet. Oben links:
Originalbild. Oben mittig: Wiener Filter. Oben rechts: Quadratischer Variati-
onsansatz (explizit). Unten links: Quadratischer Variationsansatz (stabilisiert).
Unten mittig: Quadratischer Variationsansatz (Fourier). Unten rechts: Sub-
quadratischer Variationsansatz (explizit).

angewandte Ansatz. Es werden die besten Resultate aller Verfahren und damit die da-
zugehörigen verwendeten Parameter zum Vergleich benutzt. Anschließend soll eine
mögliche Erklärung für die Resultate gefunden werden. Es folgt nun eine Zusammen-
fassung der MSE-Werte für alle gefalteten Bilder (Gauß, Box und Zylinder).

Wie anhand der Tabelle 4.10 zu sehen ist, erzielen der Wiener Filter und der quadra-
tische Variationsansatz im Fourier-Bereich mit den gewählten Parametern die besten
Ergebnisse. Insbesondere stellen sie im Falle des Box- und des Zylinder-Faltungskerns
das Originalbild mit einer minimalen Abweichung wieder her. Der Wiener Filter und
der Fourier-basierte quadratische Variationsansatz liefern vermutlich deshalb so gute
Ergebnisse, da die Faltung mithilfe der Fourier-Transformation realisiert wurde. Da
deren Berechnungen ebenfalls im Fourier-Bereich stattfinden, werden die Nachteile
der Fourier-Transformation rückgängig gemacht und gute Resultate erzielt. Die an-
deren Variationsansätze liefern im Falle des Box- und des Zylinder-gefalteten Bildes
auch gute Ergebnisse, die durch weitere Iterationen verfeinert werden können. Al-
lerdings ist anhand der MSE-Werte für das Gauß-gefaltete Bild abzuleiten, dass der
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Abbildung 4.16: Zu sehen sind die Ergebnisbilder aller vorgestellten Verfahren. In diesem
Fall wurden die Ansätze auf das Box-gefaltete Bild angewendet. Oben links:
Originalbild. Oben mittig: Wiener Filter. Oben rechts: Quadratischer Variati-
onsansatz (explizit). Unten links: Quadratischer Variationsansatz (stabilisiert).
Unten mittig: Quadratischer Variationsansatz (Fourier). Unten rechts: Sub-
quadratischer Variationsansatz (explizit).

explizite quadratische, der stabiliserte explizite quadratische und der explizite sub-
quadratische Variationsansatz den MSE-Wert im Vergleich zum Wert des vorherigen
gefalteten Bildes nur halbieren konnten. In diesem Fall ist eine Verfeinerung entwe-
der durch weitere Iterationen oder durch Anpassung der Parameterwerte, besonders
α zur Regulierung der Glattheit, möglich. Der explizite subquadratische Ansatz er-
zielt bessere MSE-Werte als der explizite quadratische und der stabilisierte explizite
quadratische Variationsansatz. Das lässt sich darauf zurückführen, dass der subqua-
dratische Variationsansatz die Kanten besser erhält und damit schärfere Bilder liefert.
Die MSE-Werte des expliziten quadratischen und des stabilisierten expliziten quadra-
tischen Variationsansatzes unterscheiden sich nur geringfügig. Der Grund dafür sind
die gleichen Parameterwerte. Zu betonen ist dennoch, dass das stabilisierte Verfahren
über die Möglichkeit verfügt, schneller Ergebnisse zu erzielen, da die Stabilisierung
die Wahl größerer Werte für die Zeitschrittweite τ erlaubt.
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Abbildung 4.17: Zu sehen sind die Ergebnisbilder aller vorgestellten Verfahren. In diesem Fall
wurden die Ansätze auf das Zylinder-gefaltete Bild angewendet. Oben links:
Originalbild. Oben mittig: Wiener Filter. Oben rechts: Quadratischer Variati-
onsansatz (explizit). Unten links: Quadratischer Variationsansatz (stabilisiert).
Unten mittig: Quadratischer Variationsansatz (Fourier). Unten rechts: Sub-
quadratischer Variationsansatz (explizit).

Es folgt die Darstellung der Ergebnisse als Bilder. In den Abbildungen 4.15, 4.16 und
4.17 sind die resultierenden Bilder der Verfahren für die drei Unschärfeeffekte (Gauß,
Box und Zylinder) zu sehen.

Insgesamt lässt sich feststellen, dass alle Verfahren die Bildqualität im Vergleich zu
vorher verbessern. Vor allem bei den Variationsansätzen hängt die Qualität des Resul-
tats von den Werten der Parameter ab, da eine Abhängigkeit zwischen ihnen besteht
und sich das auf die Berechnung auswirkt. Die besten Ergebnisse erzielten der Wiener
Filter und der Fourier-basierte quadratische Ansatz. Dennoch bilden die anderen Va-
riationsansätze eine Alternative zu diesen Verfahren, insbesondere da ihre Ergebnisse
durch weitere Iterationen verbessert werden können.





5. Z U S A M M E N FA S S U N G U N D A U S B L I C K

5.1 zusammenfassung

Das Thema der Dekonvolution, also der sogenannten Entfaltung, beschäftigt sich mit
der Rekonstruktion unscharfer Bilder, bei der ihre Qualität verbessert werden soll. Das
Ziel ist also, durch eine Berechnung das Bild schärfer werden zu lassen. In der Einlei-
tung wurde zunächst gezeigt, dass das Thema besonders im Alltag bei der Aufnahme
von Fotos Anwendung findet und die Entwicklung geeigneter Methoden daher not-
wendig ist. Es folgte eine Zusammenfassung mathematischer Grundlagen, die zum
Verständnis der später vorgestellten Ansätze notwendig sind. Im anschließenden Ka-
pitel wurden dann die einzelnen Methoden vorgestellt. Die Verfahren lassen sich dabei
in zwei Gruppen aufteilen: die Fourier-basierten und die variationalen Ansätze. Zur
ersten Gruppe gehören das Inverse Filtern und der Wiener Filter. Ihre Vorgehenswei-
se basiert auf der Fourier-Transformation des unscharfen Bildes und der dortigen Be-
rechnung. Variationale Ansätze hingegen lösen ein Optimierungsproblem, bei dem ein
Energiefunktional minimiert werden soll. Es wird dabei unterschieden zwischen qua-
dratischen und subquadratischen Variationsansätzen. Vorgestellt wurde das explizite
und das stabilisierte explizite Lösungsverfahren mit Gradientenabstieg für quadra-
tische Variationsansätze. Danach wurde eine schnellere Variante im Fourier-Bereich
gezeigt. Der subquadratische Variationsansatz wurde ebenfalls mit einem expliziten
Verfahren gelöst.

Bei der abschließenden Evaluation der verschiedenen Verfahren wurden zunächst ge-
nerelle Grundbedingungen zu den Experimenten vorgegeben. Da alle Verfahren über
Parameter verfügen, welche die Qualität der Berechnung beeinflussen, wurden zuerst
ihre Auswirkungen jeweils getestet, um passende Parameterwerte für den Vergleich
zu finden. Anschließend wurden die Ansätze bewertet und miteinander verglichen.
Dabei stellte sich heraus, dass der Wiener Filter und der Fourier-basierte quadrati-
sche Variationsansatz die besten Ergebnisse liefern. Vor allem beim Box- und beim
Zylinder-gefalteten Bild wurde eine fast exakte Wiederherstellung erzielt. Der sub-
quadratische Variationsansatz erzeugt bessere und insbesondere schärfere Bilder als
die quadratischen Ansätze, da die Kanten durch die subquadratische Funktion besser
erhalten, hohe Frequenzen jedoch geglättet werden. Dennoch bilden der explizite qua-
dratische, der stabilisierte explizite quadratische und der explizite subquadratische
Variationsansatz eine gute Alternative, da ihre Ergebnisse durch weitere Iterationen
verfeinert werden können. Zudem hängt ihre Qualität von der Wahl geeigneter Para-
meterwerte ab. Die Ergebnisse sind unter Vorbehalt zu betrachten, da die Faltung aus
Komplexitätsgründen mithilfe der Fourier-Transformation realisiert wurde und damit
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die Resultate beeinflusst. Bei einer Berechnung der Faltung auf herkömmliche Wei-
se würden die Variationsansätze wahrscheinlich bessere Ergebnisse erzeugen als die
Fourier-basierten Verfahren.

5.2 ausblick

In diesem Abschnitt sollen weitere Möglichkeiten aufgeführt werden, die bei den Ex-
perimenten dieser Arbeit aufgrund von Komplexitätsgründen oder zur Vereinfachung
nicht berücksichtigt oder ausgelassen wurden.

5.2.1 Faltungskerne

Um in dieser Arbeit die Unschärfeeffekte, die in Bildern auftreten können, zu mo-
dellieren, wurden ausschließlich symmetrische Faltungskerne benutzt. Nicht getestet
wurden nicht-symmetrische Faltungskerne, die in eine beliebige Richtung verschoben
wurden. Daraus ergeben sich neue gefaltete Bilder, die mit den hier erzeugten Bildern
nicht übereinstimmen. Zu beachten ist bei Experimenten mit nicht-symmetrischen
Faltungskernen, dass bei der Faltung der Fall auftreten kann, dass eine gespiegelte
Version des Faltungskerns verwendet werden muss. Dies tritt beispielsweise bei den
Variationsansätzen auf, bei denen während des Rechenprozesses das zu berechnen-
de u zwei Mal mit dem Faltungskern gefaltet werden muss. Solche Besonderheiten bei
nicht-symmetrischen Faltungskernen müssen berücksichtigt werden, um ein korrektes
Ergebnis zu gewährleisten.

Eine weitere Möglichkeit, die mit den Faltungskernen zusammenhängt, ist, andere
Faltungskerne zu verwenden. In dieser Arbeit wurden für die Modellierung von Un-
schärfeeffekten Box-, Zylinder- und Gauß-Faltungskerne verwendet. Allerdings ist es
möglich, noch andere Funktionen zu nutzen, um Faltungskerne zu erstellen, die wie-
derum andere Auswirkungen auf das Ursprungsbild haben. Dadurch ist es möglich,
die Verfahren auf diese neuen Bilder anzuwenden und ihre Qualität weiter zu testen.

5.2.2 Rauschen

Beim Rauschen handelt es sich um einen Störeffekt in Bildern, der in dieser Arbeit aus-
gelassen wurde, da die Verfahren ausschließlich auf Unschärfeeffekte getestet werden
sollten. Um Rauschen zu erzeugen, wird der ursprüngliche Wert von Pixeln verändert.
Dabei gibt es unterschiedliche Vorangehensweisen. Eine Möglichkeit ist additives Rau-
schen. Hierbei wird zum Originalbild ein Rauschwert addiert. Einerseits kann der
Wert beispielsweise aus einer konstanten Funktion oder aus einer Gauß-Funktion
gewählt werden. Die Alternative ist multiplikatives Rauschen, bei dem zum Origi-
nalwert ein Teil dieses Wertes hinzuaddiert wird. Diese beiden Möglichkeiten zum Er-
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zeugen von Rauschen beziehen sich auf alle Pixel. Es ist auch möglich, eine zufällige
Anzahl an Pixeln zu wählen und ausschließlich deren Wert zu verändern. Ein Beispiel
hierfür ist, den Wert entweder auf den höchsten oder niedrigsten Grauwert zu setzen.
Es wird ein sogenanntes Salt-and-Pepper Rauschen erzeugt.

Wird Rauschen in einem Bild verwendet und faltet es anschließend, so kann es sein,
dass die Verfahren an diese Aufgabe angepasst werden müssen oder sich teilwei-
se gar nicht mehr eignen. Daher muss das bei Experimenten mit solchen Bildern
berücksichtigt werden.

5.2.3 Faltung

Die Faltung wurde in dieser Arbeit immer durch eine Fourier-Transformation, an-
schließende Multiplikation im Fourier-Bereich und darauf folgende Rücktransforma-
tion berechnet. Diese Methode spart Rechenzeit, da sie schneller zu berechnen ist,
weswegen sie für die Erzeugung von gefalteten Bildern verwendet wurde. Allerdings
ist es möglich, die Faltung auch auf die herkömmliche Weise zu berechnen, was
eventuell die Resultate mancher Verfahren beeinflusst und insbesondere die Variati-
onsansätze bessere Ergebnisse als die Fourier-basierten Ansätze liefern lassen würde.
Dies gewährleistet eine korrekte Faltung, ohne die im Fourier-Bereich angenommene
unendliche Fortsetzung des gefalteten Signals. Wie bereits erwähnt, benötigt diese Art
der Faltung mehr Rechenzeit, da für jedes einzelne berechnete Pixel die Werte aller
anderen Pixel mit in die Berechnung einfließen.

5.2.4 Weitere Verfahren

In dieser Arbeit wurden einige Ansätze vorgestellt, um unscharfe Bilder durch Berech-
nung wieder zu rekonstruieren. Hierbei handelt es sich allerdings nur um eine bei-
spielhafte Auswahl an Verfahren, die auf dieses Problem angewendet werden können.
Es gibt noch weitere Ansätze, die es möglich machen, eine Entfaltung des Bildes zu be-
rechnen. Insbesondere wurde bei den hier vorgestellten Methoden die Kenntnis über
den Faltungskern, der auf das Ursprungsbild angewendet worden war, genutzt, um
das Ursprungsbild genauer und effizienter zu berechnen. Daher handelte es sich da-
bei um nicht-blinde Dekonvolution. Allerdings ist dies in der Realität üblicherweise
nicht der Fall, den genauen Faltungskern zu kennen. Es gibt Berechnungsweisen, die
sogenannte blinde Dekonvolution durchführen, wie unter anderem in [9] und [10]
gezeigt wird. Dabei wird neben der Berechnung des Ursprungsbildes auch versucht,
den dazugehörigen Faltungskern zu bestimmen und auf diese Weise das Optimum
zu erhalten. Diese Methoden erfordern weitere Berechnungsvorschriften, die über die
hier vorgestellten Verfahren hinausgehen, wobei meist Variationsansätze verwendet
werden.
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5.2.5 Weitere Bilder

Für die Versuche zur Qualität der Verfahren wurde als Ursprungsbild das Bild des Ka-
meramanns genutzt. Eine mögliche Erweiterung der Experimente ist die Verwendung
anderer Bilder in Graustufen. Daran können die beschriebenen und weitere Methoden
ebenfalls getestet werden. Außerdem ist eine Ausweitung auf farbige Bilder möglich.
Allerdings benötigt dies auch einen Ausbau der Verfahren, da sie bisher nur auf Bilder
in Graustufen ausgelegt sind. Farbige Bilder sind meist in mehrere Farbkanäle aufge-
teilt. So haben beispielsweise Bilder im RGB-Format drei Farbkanäle, in denen jeweils
der Anteil der entsprechenden Farbe gespeichert ist. Vorstellbar ist dies als eine Spei-
cherung von drei Bildern in der jeweiligen Farbe, die zusammengesetzt das eigentliche
farbige Bild ergeben. Daher ist für die Verfahren nötig, die Berechnung auf die einzel-
nen Farbkanäle auszuweiten und jeden separat zu bestimmen, um das ursprüngliche
Bild zu berechnen. Da die Farbkanäle gemeinsam das Bild ergeben, besteht dennoch
eine weitere Abhängigkeit, weswegen die bisherigen Berechnungsvorschriften nicht
ausreichen und entsprechend an den bestehenden Fall angepasst werden müssen. Da-
her erfordert die Erhaltung gemeinsamer Kanten der Farbkanäle im Bild erweiterte
Modelle.
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