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KURZFASSUNG

Viele Stérungen in Bildern lassen sich durch einen mathematischen Prozess, die so-
genannte Faltung, beschreiben. Hierzu gehoren insbesondere Bilder, die aufgrund
von Bewegung oder Defokussierung bei der Aufnahme unscharf geworden sind. Das
Thema dieser Arbeit ist die Dekonvolution, auch Entfaltung genannt, d.h. die Wie-
derherstellung dieser urspriinglich scharfen Bilder aus ihren gegebenen unscharfen
Aufnahmen. Ist die genaue Ursache der Storung, d.h. der sogenannte Faltungskern,
bekannt, spricht man von nicht-blinder Dekonvolution. Im Rahmen der Arbeit wer-
den hierfiir zwei Klassen von Verfahren miteinander verglichen: Fourier-basierte Fil-
ter, die das unscharfe Eingangsbild in den Frequenzbereich transformieren und dort
den Faltungsprozess umkehren sowie Variationsansitze, die das gesuchte scharfe Bild
als Minimierer eines geeigneten Energiefunktionals berechnen. Wahrend als Vertre-
ter der Klasse der Fourier-basierten Verfahren der hédufig verwendete Wiener-Filter
betrachtet wird, werden als Vertreter der Variationsansitze Varianten mit homogener
(quadratischer) und kantenerhaltender (subquadratischer) Regularisierung diskutiert.
Auch die numerische Implementierung der einzelnen Verfahren wird im Rahmen der
Arbeit untersucht. Wahrend fiir die Fourier-basierten Verfahren die Schnelle Fourier-
Transformation (FFT) verwendet wird, kommen bei den Variationsansitzen ein ex-
plizites und ein stabilisiertes explizites Schema als Gradientenabstiegsverfahren zum
Einsatz. Im Fall der quadratischen Regularisierung wird zudem noch ein Loser im
Frequenzbereich vorgestellt. Ein Vergleich der beiden Klassen anhand eines Testbildes
mit verschiedenen Faltungskernen schliefit die Arbeit ab.






INHALTSVERZEICHNIS

1

EINLEITUNG
1.1 Motivation . . . . ...
1.2 Aufgabenstellung . . . . ... ... ... ... .. oL oL L
1.3 Aufbauder Arbeit . . .. ... L
MATHEMATISCHE GRUNDLAGEN
21 Bilder . . . ...
2.2 Statistische Groffen . . . . . . . ... Lo
2.3 Storungen . .. .. ..
24 Faltung . . ... .. .
2.4.1 Der eindimensionale Fall . . . ... ... ..............
2.4.2 Der zweidimensionale Fall . . .. ... ... ............
2.4.3 Modellierung der Unschirfeeffekte . . .. ... .. ... ... ..
2.5 Fourier-Transformation. . . . . .. ... ... ... ... ... ...
2.5.1 Die kontinuierliche Fourier-Transformation . ... ... .. ...
2.5.2 Die diskrete Fourier-Transformation . . . . . . ... ... .....
2.5.3 Schnelle Fourier-Transformation . . . . .. ... ... .......
2.5.4 FEigenschaften der Fourier-Transformation . . ... ... ... ..
2.6 Analyse der Faltungskerne . . ... .....................
2.7 Partielle Ableitung . . . ... ... ... ... L o
2.8 Quadratische Variationsansitze zur Entrauschung . . . . . .. ... ...
2.9 Euler-Lagrange-Gleichung . . . .. ... .. ... ... .. .. .......
2.10 Anwendung der Euler-Lagrange-Gleichung . . . . . ... ... ... ...
2.11 Diskretisierung der quadratischen Variationsansdtze . .. ... ... ..
VERFAHREN ZUR DEKONVOLUTION
3.1 Fourier-basierte Methoden . . . . . . . ... ... ... ....... . ...
3.1.1 Inverses Filtern . . . . .. ... ... ... L.
3.1.2 Wiener Filter . . ... ... ... .. ... ... . .. . ..
3.2 Variationsansdtze . ... ... ... ... ... e
3.2.1  Quadratische Variationsansdtze zur Dekonvolution . . . . . . ..
3.2.2 Subquadratische Variationsansitze zur Dekonvolution . . . . . .
EVALUATION
4.1 Generelle Grundbedingungen . . . . . ... ........ .. ... ....
4.2 Parameterverwaltung . . . . . .. .. ... ... Lo oL L
4.3 Auswertung der Parameter . . . ... ... ... ... ... ... ...,
431 WienerFilter . . ... ... ... . . ... L.
4.3.2 Quadratischer Variationsansatz (explizit) . . . . .. ... ... ..
4.3.3 Quadratischer Variationsansatz (stabilisert) . . . . ... ... ...

CONI NI N Ul U1 Ul N R oRoR

A A W W W WWWNNNDNNDNNDNDNNNDNDNRRRRARRRR
AN R 00 0] Ul Ul R NI V01U Ul NN R OO W W DN R O

iii



iv

INHALTSVERZEICHNIS
4.3.4 Quadratischer Variationsansatz (Fourier) . . . . . ... ... ...
4.3.5 Subquadratischer Variationsansatz . . . . ... ... ... ... ..
4.4 Vergleich . . .. ... ... .. ... .
5 ZUSAMMENFASSUNG UND AUSBLICK
5.1 Zusammenfassung . . . . . . ... ...
5.2 Ausblick . . ...
5.2.1 Faltungskerne . . . .. ... ... ... ... ... L.
522 Rauschen . ... ... ... ... .. ... .
523 Faltung. .. .. ... ... .. ... o
5.2.4 Weitere Verfahren. . . . . . ... ... ... . .. L.
52.5 WeitereBilder . . . . . ... .. ..o o oo
LITERATUR
ERKLARUNG



1. EINLEITUNG

1.1 MOTIVATION

Beim Anfertigen digitaler Fotos treten hdufig Schwierigkeiten auf, die unter anderem
auf duflere Einfliisse zuriickzufiihren sind. Unter anderem kommt es vor, dass diverse
Storungen auf Bildern auftreten. Dies kann sich beispielsweise durch Storsignale wie
Rauschen oder durch Unschirfe wie bei Defokussierungen bemerkbar machen. Eine
Moglichkeit ist, erneut ein Bild zu machen, mit der Hoffnung, dass es besser bzw.
schérfer wird als das vorherige Bild. Allerdings gibt es hédufig einmalige Momente,
fir die es keinen weiteren Versuch gibt. Als Alternative bleibt dann nur, das Bild
nachtraglich aufzubereiten, um die Qualitdt zu verbessern.

Da ein grofies Interesse daran besteht, Bilder im Nachhinein zu bearbeiten, besonders
sie qualitativ aufzubereiten, wird im Bereich der Bildverarbeitung an entsprechenden
Formeln, Algorithmen und Methoden geforscht. Der Einsatz solcher automatisierter
Algorithmen ist bei Digitalkameras interessant sein, die nach der Aufnahme eines
Bildes beispielsweise die Schérfe verbessern, um ein nicht gelungenes Foto doch noch
zu nutzen und brauchbar zu machen.

Um solche Methoden zu entwickeln, ist ein grundlegendes Verstdndnis von Stérungen
und Fehlern in Bildern notwendig. Dieses wird erlangt, indem fehlerhafte Bilder, das
heifit Bilder, die mit Storungen behaftet sind und unscharf sein kénnen, simuliert wer-
den. Das dient dazu, die Effekte zu verstehen, die beim Fotografieren auftreten konnen.
Aus diesen fehlerhaften Bildern und vor allem deren Erstellungsweise konnen an-
schliefSend verschiedene Algorithmen abgeleitet werden, die diese Effekte riickgangig
machen. Da diese Methoden nicht immer fehlerfrei arbeiten, werden unterschiedlichs-
te Ansédtze entwickelt, die gewisse Fehler in Bildern schrittweise und durch mehrma-
liges Anwenden herausfiltern. Mithilfe solcher Methoden soll im Allgemeinen unge-
wollten Effekten gegengesteuert und die Bildqualitdt verbessert werden. Ein Beispiel
hierfiir ist die Rekonstruktion unscharfer Bilder.

1.2 AUFGABENSTELLUNG

Die Aufbereitung solcher unscharfer Bilder gehort zu den klassischen Problemen der
Bildverarbeitung. Hierbei wird oft angenommen, dass sich die Unschirfe mathema-
tisch durch eine lineare ortsabhidngige Mittelung benachbarter Grauwerte formulieren
lasst - durch eine sogenannte Faltung. Diese Annahme trifft z.B. auf unscharfe Bilder
zu, die durch ein Verwackeln der Kamera entstanden sind. Typische Ansitze basie-
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ren auf einer Umkehrung der Faltung, der sogenannten Dekonvolution (Entfaltung).
Es wird oft angenommen, dass die Charakteristik der Mittelung, der sogenannte Fal-
tungskern, bekannt ist. Daher handelt es sich dabei um nicht-blinde Dekonvolution.

Die am weitesten verbreiteten Ansdtze fiir diese Art der Problemstellung basieren
auf einer Dekonvolution im Frequenzbereich, auch Fourier-Bereich genannt. Zu ih-
nen gehort der sogenannte Wiener-Filter. Solche linearen Ansitze haben jedoch das
Problem, dass hohe Frequenzen erhebliche Artefakte verursachen kénnen, da diese
Frequenzen bei dem Bildaufnahmeprozess fast vollstindig eliminiert wurden. Bei der
Dekonvolution ist nicht sicher, ob diese Frequenzen bedeutenden Bilddetails zuzu-
ordnen sind oder ob sie im Wesentlichen nur Rauschen entsprechen, das unterdriickt
werden muss, anstatt es durch die Dekonvolution zu verstirken.

In diesem Zusammenhang haben sich globale kontinuierliche Optimierungsansétze,
sogenannte Variationsanséitze, als echte Alternativen etabliert. Diese berechnen das ur-
spriinglich scharfe Bild als Minimierer eines geeigneten Energiefunktionals mit Daten-
und Glattheitsterm. Wahrend der Datenterm das gesuchte und das gegebene Bild
iiber das Faltungsmodell in Beziehung setzen, verhindert der Glattheitsterm eine Ver-
starkung von Rauschen und Artefakten. Um durch ungeeignete Glattheitsannahmen
nicht auch die Schérfe des zu bestimmenden scharfen Bildes zu beeintrachtigen, wur-
den in der Literatur verschiedene adaptive Glattheitsterme vorgestellt. Ein Vergleich
einiger dieser sogenannten Regularisierer findet sich in der Arbeit von Welk et al. [1].

Ziel der Arbeit ist es, die verschiedenen in Welk et al. [1] vorgestellten quadratischen
und subquadratischen Variationsansidtze zu implementieren und zu evaluieren. In
allen Fdllen soll neben der Modellierung auch eine effiziente Implementierung der
Ansidtze durch geeignete numerische Verfahren untersucht werden. Die Evaluation
der implementierten Ansitze soll anhand eines geeigneten Testbildes erfolgen. Hier-
bei soll der Wiener-Filter als lineares Vergleichsverfahren dienen. Dieser soll ebenfalls
implementiert werden.

1.3 AUFBAU DER ARBEIT

Diese Arbeit beschiftigt sich mit der Untersuchung verschiedener Methoden, um un-
scharfe Bilder bestmoglich zu rekonstruieren, wobei diese Methoden besonders auf
Zuverldssigkeit und Qualitat gepriift werden sollen. Zunéchst erfolgt eine Einordnung
in den wissenschaftlichen Zusammenhang und die Problemstellung. Danach werden
in Kapitel 2 die mathematischen Grundlagen bereitgestellt, wie beispielsweise Hinter-
griinde zur Erstellung von geeigneten Bildern, ein verldssliches Mafs zum Vergleich
der Qualitidt der Verfahren und die Fourier-Transformation. Anschliefsend werden in
Kapitel 3 die zu untersuchenden Methoden vorgestellt, welche in Fourier-basierte und
Variationale Ansétze unterteilt werden. In Kapitel 4 folgt die Evaluation dieser Metho-
den. Dies geschieht anhand eines Beispielbildes, das den unterschiedlichen Methoden
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unterzogen wird. Die Methoden und deren Ergebnisse werden danach in Kapitel 5
zusammengefasst. Abschlieffend wird im gleichen Kapitel auf andere Methoden und
mogliche Chancen fiir die Zukunft zur Rekonstruktion von Bildern hingewiesen.
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2. MATHEMATISCHE GRUNDLAGEN

Dieses Kapitel befasst sich mit den Grundlagen der Bildverarbeitung, auf denen unter
anderem die spéter vorgestellten Verfahren basieren. Es folgt zunéchst eine generel-
le Einfithrung in die Eigenschaften von Bildern. Daraufhin werden Moglichkeiten zur
Erstellung der Testbilder diskutiert. Abschliefiend werden die Grundlagen der verwen-
deten Methoden vorgestellt.

2.1 BILDER

In dieser Arbeit werden Grauwertbilder verwendet. Die Bilder bestehen dabei aus ei-
nem rechteckigen, zweidimensionalen Definitionsbereich Q) = (1,7y) x (1,n,). Diese
einzelnen Zellen aus dem Definitionsbereich werden Pixel genannt, denen Zahlen aus
dem Wertebereich zugeordnet werden, die dem jeweiligen Grauwert entsprechen. Der
Wertebereich geht von 0 bis 255, da er durch ein einzelnes Byte gespeichert wird. Hier-
bei gilt die Konvention, dass niedrige Zahlen dunkle und hohe Zahlen helle Grauwer-
te bedeuten. Mithilfe davon lassen sich Bilder durch die Angabe der Gréfie des Bildes
und den entsprechenden Grauwerten der einzelnen Pixel reprasentieren. Haufig wird
ein Bild in der Form f = {ﬁ]|1 =1,...,n4j = 1,...,n,} angegeben, wobei n, fiir
die Grofie des Bildes in x-Richtung und n, fiir die Grofse des Bildes in y-Richtung
steht. Die Information der Bilder kann entweder kontinuierlich oder diskret vorliegen.
Handelt es sich um den kontinuierlichen Fall, so entsprechen die Grauwerte eines Bil-
des oder eines Signals einer stetigen Funktion. Der diskrete Fall unterscheidet sich
darin, dass die Grauwerte nur an den Pixeln vorliegen, d.h. es handelt sich um eine
Funktion, deren Werte in einem bestimmten festen Abstand abgespeichert sind. Der
Abstand entspricht dem Abstand der Pixel. Typischerweise erfolgt die Diskretisierung
durch die Integration tiber die Sensorflache und nicht, wie hdufig im Mathematischen,
durch die Abtastung der kontinuierlichen Funktion.

2.2 STATISTISCHE GROSSEN

Eine wichtige Eigenschaft von Bildern ist der sogenannte Mittelwert y, der dem durch-
schnittlichen Grauwert des Bildes entspricht. Aufgrund der vorherigen Definition von
hohen und niedrigen Grauwerten bedeutet ein hoher Mittelwert ein allgemein helle-
res Bild, wihrend ein niedriger Mittelwert einem allgemein dunkleren Bild zugeordnet
wird. Zur Bestimmung des Mittelwerts werden alle Grauwerte des Bildes aufsummiert
und durch die Grofle des Bildes geteilt, wie in Formel 2.1 beschrieben:
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= 2 Eflf . (2.1)

Tlxi’lyl 1j=1

Mithilfe des Mittelwerts kann die Varianz 02 berechnet werden, wie in der folgenden
Formel 2.2 beschrieben:

ny My

2 Z fij— . (2.2)

nxnyz 1j=1

Die Wurzel der Varianz wird Standardabweichung ¢ genannt. Die Varianz ¢? und die
Standardabweichung ¢ geben an, wie hoch der Kontrast ist und wie viele Details im
Bild vorhanden sind.

2.3 STORUNGEN

Storungen treten in Bildern h&dufig auf und sind ein bekanntes Thema. Dabei gibt es
viele Quellen und Arten fiir solche auftretenden Beeintrdachtigungen. Die in dieser
Arbeit behandelte Storungsart ist die Unschérfe. Hierbei werden drei Falle untersucht:

¢ Defokussierung
* Bewegung, z.B. wihrend der Aufnahme eines Fotos

¢ atmosphaérische Storungen, z.B. bei Teleskopen

Zur Berechnung, wie stark die Storung das Bild beeinflusst hat, gibt es einige Hilfs-
mittel und entsprechende Ansitze. Sei dazu f = f;; eine gestorte Version des Bildes
g = gij- Der mittlere quadratische Fehler (MSE) dieser Bilder kann dann durch Sum-
mierung der Differenzen aller Pixel beider Bilder und anschliefiende Mittelung berech-
net werden. Hierbei gilt die Konvention, dass ein kleiner MSE eine grofiere Ahnlichkeit
der Bilder bedeutet und damit weniger Storungen vorhanden sind. Also ist die Qua-
litat eines Bildes umgekehrt proportional zum MSE-Wert. Die dazugehorige Formel
2.3 lautet:

iZfl —8ij)* - (2.3)

E(
M fg xnyllj

Die andere Alternative ist der Spitzen-Signal-Rausch-Abstand (PSNR). Die dazugeho-
rige Einheit ist Dezibel. Je grofier der Wert ist, desto dhnlicher sind sich die Bilder. Die
folgende Formel 2.4 nimmt als hochsten Grauwert den Wert 255 an:

2557
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Der Einfachheit halber wird angenommen, dass die jeweilige Stérung an allen Stellen
des Bildes gleich stark auftritt. Solche Effekte werden modelliert, indem die Grauwerte
in einem bestimmten Bereich gewichtet gemittelt werden, um das unscharfe Bild zu
berechnen. Die Grofse des Einflussbereichs hédngt einerseits davon ab, welche Form
und welche Grofe als Unscharfeeffekt gewahlt wird. Dieses gewichtete Mitteln wird
mathematisch durch die sogenannte Faltung beschrieben.

2.4 FALTUNG

Im Folgenden wird die Faltung zundchst im eindimensionalen Fall erkldrt und an-
schliefend auf den zweidimensionalen Fall ausgeweitet. Dazu werden zwei gleich
grofle Bilder benoétigt, die ein neues gefaltetes Bild ergeben. Hierbei werden besonders
diskrete Bilder betrachtet. Zum Schluss wird erkldrt, wie die Faltung zur Modellierung
der Unschirfeeffekte verwendet werden kann.

2.4.1 Der eindimensionale Fall

Die Faltung zweier eindimensionaler diskreter Signale f = (fi)icz und ¢ = (gi)iez
wird mathematisch durch folgende Formel 2.5 beschrieben:

(f*&)i= ) fi-x & - (2.5)

keZ

Falls die beiden eindimensionalen Signale kontinuierlich sind, wird Formel 2.6 ange-
wendet:

(Frg)i= [ flr—x) g(x)ax’ . 26)

2.4.2 Der zweidimensionale Fall

Die Faltung zweier zweidimensionaler diskreter Bilder f = (f; ;)i jcz und & = (gi ;)i jez
wird mathematisch durch folgende Formel 2.7 beschrieben:

(f*8)ij= Y Y fi-kji &I - (2.7)

keZ 1eZ

Falls die beiden zweidimensionalen Signale kontinuierlich sind, wird Formel 2.8 ange-
wendet:

(f*g)i,jIAAf<X—X’,y—y’) g, y")dx'dy" . (2.8)
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Abbildung 2.1: Dieser Faltungskern hat die Form eines Punktes in der Mitte des Bildes. Bei
dieser Faltung erhilt der Faltungskern das zu faltende Bild. Daher sind Resul-
tat und Ursprungsbild gleich. Links: Punkt-férmiger erhaltender Faltungskern.
Rechts: Resultat der Faltung.

2.4.3 Modellierung der Unschiirfeeffekte

Bei der Verwendung der Faltung wird die erste Komponente als Signal oder Bild
bezeichnet. Die zweite Komponente wird Faltungskern genannt. Um die unterschied-
lichen Unschérfeeffekte zu modellieren, wird fiir das Bild immer das Eingangsbild
verwendet, auf das der Effekt angewendet werden soll. Fiir den Faltungskern gibt es
verschiedene Moglichkeiten, je nach gewiinschtem Effekt. Da diese Arbeit die drei
oben genannten Effekte Defokussierung, Bewegung und atmosphérische Stérung be-
handelt, werden nun die drei dafiir vorgesehenen Faltungskerne erkléart. Zuvor wird
ein einfacher Faltungskern vorgestellt.

Die Einfachheit dieses Faltungskerns liegt darin, dass ausschliefslich das Pixel im Mit-
telpunkt des Faltungskerns das Gewicht 1 erhdlt. Alle anderen Pixel besitzen den Wert
0. Die Besonderheit des Faltungskerns ist, dass bei der Faltung mit einem anderen be-
liebigen Bild stets genau dieses andere Bild resultiert. Das liegt daran, dass fiir die
Berechnung eines Pixels des gefalteten Bildes jedes Mal nur genau das eine Pixel des
Bildes verwendet wird, da die anderen Pixel alle mit 0 gewichtet werden. Insbesonde-
re erhilt dieser Faltungskern den Grauwert des Ursprungsbildes. Eine zu Visualisie-
rungszwecken skalierte Version des Faltungskerns ist zusammen mit dem gefalteten
Resultat auf der Abbildung 2.1 zu sehen.

Um den Effekt einer Defokussierung zu erreichen, wird ein Faltungskern in Form ei-
nes Zylinders gewdhlt (siehe Abbildung 2.2). Dabei entspricht der Mittelpunkt des
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Abbildung 2.2: Dieser Faltungskern hat die Form eines Kreises. Er stellt eine Zylinder-
Funktion dar und modelliert den Effekt der Defokussierung. Links: Zylinder-
formiger Faltungskern. Rechts: Resultat der Faltung.

Zylinders dem Mittelpunkt des Faltungskerns. Der Radius kann beliebig gewahlt wer-
den, je nachdem, wie stark das Bild hinterher defokussiert sein soll. Als obere Grenze
gilt, dass der Radius kleiner als die Halfte der kleineren Bildldnge sein muss. Alle Wer-
te auflerhalb des Radius haben das Gewicht 0, entsprechen also der Farbe Schwarz. Im
Gegensatz dazu haben die Pixel innerhalb des Radius ein konstantes Gewicht, welches
sich insgesamt zu 1 summiert.

Der zweite zu modellierende Effekt ist die Bewegung. Dazu wird eine sogenannte Box-
funktion genutzt (siehe Abbildung 2.3). Die Eigenschaft dieser Boxfunktion ist, dass
sie einer Linie entspricht. Dazu gilt, dass der Mittelpunkt dieser Linie, wie beim ersten
Effekt, der Mittelpunkt des Faltungskerns ist. Anschlieffend wird die Linie definiert,
indem mithilfe eines Radius ihre Lange bestimmt wird und ein Winkel die Bewe-
gungsrichtung des Effekts beschreibt. Als obere Grenze des Radius gilt, dass er, wie
im ersten Fall, kleiner als die Halfte der kleineren Lange des Bildes sein muss. Alle
Pixel, die auf der dadurch beschriebenen Linie liegen, erhalten wieder ein konstantes
Gewicht, welches sich zu 1 summiert; alle anderen bekommen das Gewicht 0.

Die atmosphérische Storung wird durch eine sogenannte Gauf3-Funktion modelliert.
Im Zweidimensionalen entspricht die Gaufi-Funktion der folgenden Gleichung 2.9:

_ 1 —(x—m)* = (y —p)?
w(x,y) = 55 exp( 752 ) - (2.9)
Als Mittelpunkt dieser Funktion wird, wie in beiden vorhergehenden Fallen, der Mit-

telpunkt des Faltungskerns gewdhlt. Da ca. 99,73% aller Messwerte der Funktion im

9
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Abbildung 2.3: Dieser Faltungskern hat die Form einer geraden Linie. Er stellt eine Box-
Funktion dar und modelliert den Effekt der Bewegung. Links: Box-formiger
Faltungskern. Rechts: Resultat der Faltung.

Intervall der Abweichung +3¢ zu finden sind, wird die Funktion auf diese Lange be-
grenzt. In diesem Fall gibt es eine Abstufung der Gewichte, da der Pixelwert durch
die Funktion beschrieben wird und daher nicht nur entweder 0 oder eine Konstante
betrdgt. Dargestellt wird dieser Faltungskern, nachdem er zu Anschauungszwecken
skaliert wurde, zusammen mit dem gefalteten Resultat auf der Abbildung 2.4.

In allen drei Féllen ist die oben bereits angesprochene Normalisierung des Faltungs-
kerns wichtig. Das bedeutet, die Gewichte miissen sich zu 1 summieren. Dies ist nétig,
damit sich der durchschnittliche Grauwert des urspriinglichen Bildes nicht verandert
und die Helligkeit des Ursprungsbildes nicht manipuliert wird. Nach der Diskussi-
on der verschiedenen Faltungskerne soll nun die Fourier-Transformation vorgestellt
werden. Diese Transformation erlaubt die effiziente Faltung von Bildern mit grofien
Faltungskernen. Insbesondere lédsst sich bei nn Pixeln die Komplexitdt der Faltung von
O(n?) auf O(nlogn) im Eindimensionalen und von O(n?) auf O(nlog v/n) bei quadra-
tischen Bildern im Zweidimensionalen reduzieren. Dies spart wertvolle Rechenzeit.

2.5 FOURIER-TRANSFORMATION

Die Fourier-Transformation betrachtet Bilder als zweidimensionale Signale und wan-
delt sie, wie bei Betrachtung von Audiosignalen tiblich, in ihre Frequenzen beziiglich x-
und y-Richtung um. Sie kann als eine Art Basiswechsel gesehen werden, wobei trigono-
metrische Basisfunktionen verwendet werden. Zu beachten ist, dass die Fourier-Trans-
formation im komplexen Zahlenbereich arbeitet. Zunéchst wird die Fourier-Transfor-
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Abbildung 2.4: Dieser Faltungskern hat die Form eines Kreises, der nach auflen dunkler
wird. Er stellt eine Gaufi-Funktion dar und modelliert den Effekt einer atmo-
sphérischen Storung. Links: Gaufs-férmiger Faltungskern. Rechts: Resultat der
Faltung.

mation im kontinuierlichen Fall vorgestellt, wobei unter ein- und zweidimensional
unterschieden wird. Im Anschluss daran folgt die Fourier-Transformation im diskre-
ten Fall, ebenfalls im Ein- und Zweidimensionalen. Bevor abschliefSfend noch einige
Eigenschaften beziiglich der Berechnung der Fourier-Transformation erldutert wer-
den, wird die schnelle Fourier-Transformation kurz erkldrt. Grundlagen zur Fourier-
Transformation sind in [2] und [3] zu finden.

2.5.1 Die kontinuierliche Fourier-Transformation

Die Formel der Fourier-Transformation im kontinuierlichen eindimensionalen Fall mit
einer Funktion f(x) lautet (wobei fiir die imagindre Einheit i gilt > = —1):

fw) = Fifw) = [ flxe>mrax (2.10)

Es findet also ein Basiswechsel der Funktion f mit der Basisfunktion g,(x) = gi2mux

statt, wobei u einer bestimmten Frequenz entspricht.

Fiir die Fourier-Transformation gibt es auch eine Umkehrfunktion. Die inverse Fourier-
Transformation zur Funktion f, lautet:

F) = F A = [ et au (2.11)

11
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Zusammenfassend lédsst sich sagen, dass die Fourier-Transformation ein Signal durch
den Basiswechsel in seine Frequenzkomponenten umwandelt. Die inverse Fourier-
Transformation hingegen synthetisiert aus den Frequenzen durch Verwendung der
gleichen Basis wieder das urspriingliche Signal.

Aus der Fourier-Transformation lassen sich weitere Besonderheiten berechnen. Das
Fourierspektrum wird durch den Absolutwert |f| beschrieben. Der Winkel arg(f(u))
wird Phasenwinkel genannt. AuRerdem lasst sich das Leistungsspektrum durch | f(u)|?
berechnen. Der Fokus liegt meist auf dem Fourierspektrum oder dem Leistungsspek-
trum, da es die Bedeutung einer Frequenz u im Signal f symbolisiert.

Wenn die Fourier-Transformation auf eine zweidimensionale Funktion ausgeweitet
wird, ergibt sich folgende Formel:

flwo) = FIfwo) = [ [ flype 2o axay (2.12)

Die inverse Fourier-Transformation ldsst sich auf eine dhnliche Weise herleiten:

Flon) = F A = [ [ fwoe ot aude . (@as)

Eine wichtige Eigenschaft, welche die Fourier-Transformation beziiglich der Berech-
nung hoherer Dimensionen mit sich bringt, ist die Separierbarkeit. Das bedeutet, dass
die Fourier-Transformation im Hoherdimensionalen nacheinander durch die Berech-
nung der einzelnen Dimensionen berechnet werden kann. Gezeigt wird dies in Formel
2.14:

/oo /oo f(x,y)e_jzn(ux-i-vy) dxdy _ /00 </°° f(JC)e_i27mx dx) e—i27wy dy . (2'14)

2.5.2 Die diskrete Fourier-Transformation

Im Falle eines diskreten eindimensionalen endlichen Signals f = (fo, ..., fm_1)7, wird
die diskrete Fourier-Transformation angewandt, deren Formel folgendermafen lautet
(fur p =0,..., M — 1 und der imagindren Einheit i mit 2= —1):

- 1 ML i27'tpm>
= — exp | —

f p / M m;o f m p < M

Die dazugehorige inverse Fourier-Transformation im diskreten Fall ist auf folgende

Weise definiert (fiir m =0,..., M — 1):

(2.15)

1 A=, 2
fu= = X frexp <Z 7;/’;’”) . (2.16)
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Besonderheiten, wie Fourierspektrum, Phasenwinkel und Powerspektrum, die bei der
kontinuierlichen Fourier-Transformation aufgetaucht sind, konnen auf die gleiche Art
und Weise im diskreten Fall berechnet werden. Ihre Giiltigkeit und Aussagekraft bleibt
somit erhalten. Allerdings hat das Fourierspektrum seinen Mittelpunkt bei (0,0). Um
es also in der Mitte des Bildes anzuzeigen, ist es notig, das Ursprungsbild geeignet
zu modifizieren. Dazu wird das Shift-Theorem verwendet, das in den Eigenschaften
erklart wird und dazu dient, ein Bild periodisch zu verschieben.

Auch die diskrete Fourier-Transformation ist, wie im kontinuierlichen Fall, auf hohere
Dimensionen erweiterbar. Liegt nun ein zweidimensionales Bild f = (fy) vor mit
m=20,....M—1undn =20,...,N — 1, so lautet die diskrete Fourier-Transformation
(furp=0,...,M—1,9=0,...,N—=1):

—1N-1 .
pr,q Z menexp( 27 pm) exp <—127I-:an> . (2.17)

mOn

Ahnlich lisst sich auch die inverse diskrete zweidimensionale Fourier-Transformation
herleiten (mitm =0,... M—1,n=0,...,N —1):

fmn = \/7 ZlNzlfMeXP <12 pm) P<127;]W> . (2.18)

p=0 g=
Wie auch die kontinuierliche, ist die diskrete Fourier-Transformation in die einzelnen
Dimensionen separierbar und somit getrennt berechenbar.

2.5.3 Schnelle Fourier-Transformation

Da die Fourier-Transformation quadratische Komplexitat besitzt, das heifst O(nz), und
damit eine Vielzahl an Berechnungsschritten benétigt, wird hier zur schnelleren Be-
rechnung die Fast Fourier-Transformation (FFT) vorgeschlagen. Sie macht sich zu-
nutze, dass das Problem der Berechnung der Fourier-Transformation in zwei Sub-
probleme mit der halben Linge aufgeteilt wird. Dies wird solange fortgesetzt, bis
die Signalldnge 1 betrdgt, um anschlieffend aus dem Resultat durch schrittweise Ver-
kniipfung die vollstindige Fourier-Transformation zu berechnen. Der Vorteil besteht
in der hohen Effizienz durch das Teilen des Problems. Dadurch kann die Komplexitat
auf O(nlog v/n) reduziert werden. Allerdings bedeutet das, dass die Linge des Signals
oder Bildes eine Zweierpotenz sein muss.

2.5.4 Eigenschaften der Fourier-Transformation

Die hier vorgestellten Eigenschaften beziehen sich sowohl auf die kontinuierliche, als
auch auf die diskrete Fourier-Transformation. Die meisten davon gelten in beiden
Féllen. Zwei davon bleiben allerdings nur durch Approximation bestehen.

13
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Die erste wichtige Eigenschaft, die in beiden Fillen uneingeschréankt gilt, ist die Linea-
ritdt. Sie besagt, dass die Fourier-Transformation der Addition zweier Funktionen f
und g, die mit den Skalaren a4 und b multipliziert werden, aufgeteilt werden kann in
die einzelnen Fourier-Transformationen der beiden Funktionen, die hinterher durch
a und b skaliert und anschlieffend addiert werden. Formal wird das Theorem durch
Formel 2.19 beschrieben.

Flaf +bg] =aF[f] +bF[g], Va,beR . (2.19)

Eine zweite wichtige Eigenschaft ist das zuvor kurz erwédhnte Shift-Theorem. Es wird
durch Formel 2.20 beschrieben. Eine Verschiebung der Funktion fiihrt im Frequenz-
bereich zur Multiplikation mit einem komplexen Skalar und umgekehrt. Diese Eigen-
schaft gilt sowohl im kontinuierlichen als auch im diskreten Fall. Zu beachten ist, dass
in diesem Fall der Phasenwinkel gedreht, das Fourierspektrum jedoch nicht davon be-
einflusst wird. Somit gilt fiir die Fourier-Transformation die Verschiebungsinvarianz.

FIf(x = x0,y = yo)](u,0) = e~ 27 00+0) F[f] (1, 0) . (2.20)

Eine weitere Eigenschaft ist das Faltungstheorem. Es besagt, dass die Fourier-Transfor-
mation einer Faltung zweier Funktionen der Multiplikation der Fourier-Transformation
beider Funktionen entspricht. Dies erleichtert die Berechnung der Faltung, da auf diese
Weise nur eine Multiplikation pro Pixel stattfindet, was bei n Pixeln zu einer Komple-
xitdt von O(n) fiithrt. Zu beachten ist, dass es sich um eine komplexe Multiplikation
handelt. Im Gegensatz dazu wurden bei der Faltung ansonsten alle Pixel in die Be-
rechnung mit einbezogen, was einer Komplexitit von O(n?) entspricht. Jedoch ist zu
bedenken, dass die Funktionen zuvor mithilfe der Fourier-Transformation umgewan-
delt und hinterher mit der inversen Fourier-Transformation wieder zurtickgewandelt
werden miissen. Allerdings ist dieser Rechenaufwand meist geringer als die normale
Berechnung der Faltung, vor allem wenn die schnelle Fourier-Transformation (FFT)
verwendet wird, was, wie bereits oben beschrieben, eine Komplexitidt von O(nlog /n)
bedeutet. Zu beachten ist bei der Anwendung auf diskrete Signale und Bilder, dass die
Fourier-Transformation eine unendliche Fortsetzung des Signals oder Bildes durch
wiederholte Kopien nebeneinander annimmt. Dies ist typischerweise nicht der Fall,
weshalb dieses Verfahren an Grenzen stofien kann. Als Formel ausgedriickt, lautet das
Faltungstheorem:

Flfgl=c-Flfl- Flgl , (2.21)

wobei der Vorfaktor ¢ durch die Definition der Fourier-Transformation als Orthonor-
malbasiswechsel zustande kommt. Er entspricht dem inversen Vorfaktor der Hintrans-
formation. Diese Definition bezieht sich auch auf die zukiinftigen Vorkommen des
Vorfaktors c.
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Fiir das Faltungstheorem gibt es ein dhnliches Theorem, das sich auf die Faltung
im Fourierbereich bezieht, das Multiplikationstheorem. Es besagt, dass die Fourier-
Transformation eines Produkts zweier Funktionen einer Faltung der beiden Fourier-
transformierten Funktionen. Definiert wird es in Formel 2.22:

Flf-gl=c-FlflxFlgl . (2.22)

Bei der ndchsten Eigenschaft handelt es sich um das Ableitungstheorem. Es besagt,
dass die Fourier-Transformation der Ableitung einer Funktion einer Multiplikation
mit der entsprechenden Frequenz im Fourier-Bereich entspricht. Daraus ergibt sich:

an+m f
F [axnaym} = (i2mtu)" (i2wo)" F[f](u,v) . (2.23)
Die beiden Eigenschaften, die nur begrenzt im diskreten Bereich gelten, sind das Ska-
lierbarkeitstheorem und die Rotationsinvarianz. Ersteres bezieht sich auf die Fourier-
Transformation einer Funktion mit skalierten Funktionsvariablen. Dies hat eine Skalie-
rung der Fourier-Transformation der Funktion und der Funktionsvariablen der Fourier-
Transformation zur Folge, wie in Formel 2.24 gezeigt wird.
1 u o

Fifax b)) = o FUIEF) Vab e RV} (2:24)
Die Rotationsvarianz sagt lediglich aus, dass im Falle einer Drehung des Bildes, auch
die Fourier-Transformation mit demselben Winkel gedreht wird.

Abbildung 2.5: Es wird das Bild zusammen mit seinem zugehorigen Fourierspektrum gezeigt.
Links: Originalbild. Rechts: Fourierspektrum des Originalbildes.
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2.6 ANALYSE DER FALTUNGSKERNE

Es folgt nun eine kurze Analyse der Faltungskerne. Um ihre Auswirkungen besser
nachvollziehen zu kénnen, vor allem bei der Faltung, werden sie zundchst im Fourier-

Abbildung 2.6: Es wird das Fourierspektrum des Kernels zusammen mit dem Fourier-
spektrum des gefalteten Bildes gezeigt. Links: Fourierspektrum des Punkt-
formigen erhaltenden Faltungskerns. Rechts: Fourierspektrum des gefalteten
Bildes.

Abbildung 2.7: Es wird das Fourierspektrum des Kernels zusammen mit dem Fourierspek-
trum des gefalteten Bildes gezeigt. Links: Fourierspektrum des Box-formigen
Faltungskerns. Rechts: Fourierspektrum des gefalteten Bildes.
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bereich betrachtet. Dazu wird am besten das Fourierspektrum verwendet. Die genaue
Definition der Faltungskerne wurde bereits oben beschrieben. Wie oben bereits ge-
nannt, symbolisiert das Fourierspektrum die Bedeutung einer Frequenz u im Signal
bzw. Bild f. Die Spektra wurden so skaliert, dass ein Grauwert von 255 einem Ge-

Abbildung 2.8: Es wird das Fourierspektrum des Kernels zusammen mit dem Fourierspek-
trum des gefalteten Bildes gezeigt. Links: Fourierspektrum des Zylinder-
formigen Faltungskerns. Rechts: Fourierspektrum des gefalteten Bildes.

Abbildung 2.9: Es wird das Fourierspektrum des Kernels zusammen mit dem Fourierspek-
trum des gefalteten Bildes gezeigt. Links: Fourierspektrum des Gauf-formigen
Faltungskerns. Rechts: Fourierspektrum des gefalteten Bildes.
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Tabelle 2.1: MSE-Wertetabelle der Faltungskerne. Der Wert gibt an, wie sehr sich das unscharfe
Bild, das mit dem zugehorigen Faltungskern gefaltet wurde, vom Originalbild un-
terscheidet. Je grofier der MSE-Wert, desto grofier auch der Unterschied. Die Werte
zu den Parametern der Faltungskerne sind in Klammern dahinter aufgefiihrt.

Faltungskern ‘ MSE

Identitit 0
Box (Winkel ¢ = 0°, Radius = 5 Pixel) | 477,993530
Box (Winkel ¢ = 35°, Radius = 8 Pixel) | 628,687805

Zylinder (Radius = 5 Pixel) 534,411377
Zylinder (Radius = 8 Pixel) 729,357117
GausB3 (0 = 3) 518,283447
GausB3 (0 =5) 751,276062

wicht von 1 entspricht. Zunéchst ist auf der Abbildung 2.5 das Originalbild mit dem
zugehorigen Fourierspektrum zu sehen.

Auf den ersten Blick ist beim Fourierspektrum des Faltungskerns, der das Bild ohne
Verdnderung nur erhilt, wenig zu erkennen (siehe Abbildung 2.6). Es handelt sich um
ein vollstandig weifSes Bild. Dies liegt daran, dass der Wert immer 255 ist, da jedes
Pixel des Bildes im Fourierbereich mit 1 multipliziert wird. Das ist notwendig, damit
kein Pixel verdndert wird, was bedeutet, dass jede Frequenz im Bild gleich wichtig
ist. Dies wirkt sich auf das Fourierspektrum des Faltungskerns aus, wodurch er weifs
erscheint.

Im Falle der Bewegung wird eine sogenannte Boxfunktion als Faltungskern verwen-
det. Wird diese in den Fourierbereich transformiert (siehe Abbildung 2.7), so entsteht
daraus eine Sinc-Funktion, die folgendermafsen definiert ist:
. sin(7rx)

sinc(x) = — (2.25)
Auch im Falle der Defokussierung, bei der eine Zylinderfunktion eingesetzt wird,
kommt es zu einem dhnlichen Spektrum (siehe Abbildung 2.8), da eine Zylinderfunk-
tion nur eine einmal im Kreis gedrehte Boxfunktion ist.

Im Gegensatz dndert sich die Gaufs-Funktion kaum. Dies liegt daran, dass die Fourier-
Transformation einer Gaufs-Funktion wieder eine GaufS-Funktion ergibt (siehe Abbil-
dung 2.9).

Eine weitere beobachtbare Auswirkung der Faltung des Bildes mit den unterschiedli-
chen Faltungskernen ist der MSE. In der folgenden Tabelle 2.1 ist aufgelistet, wie grofs
der Unterschied im Mittel zwischen dem Ursprungsbild und dem gefalteten Bild ist.
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Es folgt eine kurze Erlduterung beztiglich der Notationen und Bedeutungen hinsicht-
lich partieller Ableitungen, wie sie beispielsweise auch in [3] beschrieben sind. Dies ist
insbesondere bei Funktionen mit mehreren Variablen interessant. Als Bedingung gilt,
dass die Funktion stetig und differenzierbar sein muss. Die partielle Ableitung einer
Funktion entspricht dann der Ableitung der Funktion nach genau einer Variablen, wo-
bei andere Variablen als Konstanten angesehen werden. Es folgt ein einfaches Beispiel,
bei dem zunéchst die Funktion, definiert in Formel 2.26, und anschlieflend jeweils die
partielle Ableitung einer Variablen gebildet wird, wie in den Formeln 2.27 und 2.28
gezeigt wird:

f(x,y) = sin(x) + xy° , (2.26)
o (x,y) = cos(x) + 4 (227)
gj;(x,y) = 3xy” . (2.28)
Folgende Notationen konnen fiir partielle Ableitungen verwendet werden:
o=t (2:29)

Partielle Ableitungen kénnen auch nacheinander erfolgen, um Ableitungen hoherer
Ordnung zu ermoglichen. Hierbei ist es moglich, nacheinander nach verschiedenen
Variablen abzuleiten. Es gilt die folgende Schreibweise, wobei die Indizes vertauschbar
sind:

o (of\ _ &f _ . _
M <ay> = 9xdy _fxy —fyx . (2.30)

Werden die partiellen Ableitungen als Spaltenvektor angeordnet, so handelt es sich
um den Nabla-Operator V. Er ist im Zweidimensionalen folgendermafien definiert:

Oy
V= (E)y) . (2.31)

Wird der Nabla-Operator auf eine Funktion angewendet, ergibt dies die partiellen
Ableitungen der Funktion als Spaltenvektor, beschrieben durch Formel 2.32:

V= @;) . (2.32)

Das Produkt einer Vektor-wertigen Funktion f(x,y) = (fi(x,y), f2(x,y))T mit dem
Nabla-Operator wird Divergenz genannt. Die Definition lautet wie folgt:
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divf = VIf = (9x,9y) (ﬁ) =0xf1+0yf2 . (2.33)

Die letzte Definition, die fiir partielle Ableitungen wichtig ist, gilt dem Laplace-Opera-
tor. Er setzt sich zusammen aus dem Produkt der Divergenz und dem Gradient einer
Funktion, wie in Formel 3.11 gezeigt wird:

Oxf

A = div(Vf) = (3:,3,) (ay !

> = Oxxf +0yyf . (2.34)

2.8 QUADRATISCHE VARIATIONSANSATZE ZUR ENTRAUSCHUNG

Variationale Ansédtze gehoren zu einer Klasse von Verfahren zur Bildentrauschung.
Ansétze zum Bildentrauschen sind beispielsweise in [4] und [5] zu finden. Sie basieren
auf der Annahme, dass das entrauschte Bild ein Optimalitdtskriterium erfiillt, das in
Form eines Energiefunktionals gegeben ist. Wenn man dazu annimmt, dass im Bild
etwas Rauschen enthalten ist, kann folgendes variationales Modell verwendet werden.
Die Formel verbindet zwei Anforderungen an das gefilterte Bild: Einerseits soll es so
dhnlich wie moglich am Ursprungsbild f sein, andererseits soll es so glatt wie moglich
sein. Fiir den zweidimensionalen kontinuierlichen Fall ergibt sich daraus folgende
Formel (f und u sind zweidimensionale kontinuierliche Funktionen):

Brw) = 5 [ (u= £ +alVuP)dxdy 239

Hierbei soll das gefilterte Signal u dieses Energiefunktional minimieren, damit es der
optimalen Losung moglichst nahe kommt. Der erste Teil dieses Terms, bestehend aus
der quadrierten Differenz der beiden Signale, sorgt fiir die Ahnlichkeit zwischen dem
Ursprungsbild f und dem gefilterten Bild u. Es handelt sich dabei um den Datenterm.
Der zweite Teil, also der Gradient von u mit seinem Vorfaktor, ist fiir die Glattheit ver-
antwortlich. Daher wird dieser Term Glattheitsterm genannt. Der Glattheitsterm wird
in dieser Methode quadriert, welche hédufig auch Whittaker-Tikhonov-Regularisation
genannt wird. Bei &« handelt es sich um einen Parameter, der zur Regularisierung dient,
das heifst, wie stark die Glattung eingreift. Je grofier a ist, desto glatter wird das Bild
und desto weniger fallen kleine Stérungen auf.

Um das Energiefunktional zu minimieren und damit eine bestmogliche Losung zu
erhalten, muss die Ableitung des Energiefunktionals gebildet und nach u gelost wer-
den. Dazu wird als Hilfsmittel die Euler-Lagrange-Gleichung verwendet, welche in
den folgenden beiden Kapiteln vorgestellt und auf das Energiefunktional angewendet
werden soll.



2.9 EULER-LAGRANGE-GLEICHUNG

2.9 EULER-LAGRANGE-GLEICHUNG

Da es sich beim Theorem zur Euler-Lagrange-Gleichung um ein sehr komplexes Theo-
rem handelt, wird nur die Hauptaussage festgehalten. Weitergehende Informationen
dazu und der Anwendung sind beispielsweise in [6] und [7] zu finden. Im Fall dieser
Arbeit bezieht sich das Theorem auf das Minimieren des Energiefunktionals. Es wird
angenommen, dass eine Funktion u(x) zwischen zwei Grenzen a und b existiert, die
das folgende Funktional in Formel 2.36 minimiert:

b
E(u) :/a F(x,u,u’)dx . (2.36)

Gilt obiges, so muss die Funktion u(x) die Euler-Lagrange-Gleichung in Formel 2.37
erfiillen, die folgendermafsen definiert ist:

d
Fu— 2Fu=0. (2.37)

Hinzu kommen sogenannte natiirliche Randbedingungen, die fiir x = a und x = b
ebenfalls immer erfiillt sein miissen. Sie lauten wie folgt:

F,=0. (2.38)

Daraus folgt, dass wenn ein u gesucht ist, welches das gegebene Funktional minimiert,
zur Losung des Problems die Euler-Lagrange-Gleichungen nach diesem u geltst wer-
den miissen, um das Optimum zu finden. Dieser Zusammenhang erleichtert das Fin-
den und Berechnen des Optimums u zur Minimierung des Funktionals. Das Optimum
u* ist so definiert, dass es sich dabei um das u handelt, welches das Energiefunktional
zu 0 minimiert.

Die Euler-Lagrange-Gleichung ldsst sich auch auf den zweidimensionalen Fall tiber-
tragen. Es handelt sich also um ein Funktional der folgenden Form:

E(u) = /QF(x,y, Uy, uy)dxdy . (2.39)
Daraus ergibt sich die folgende Euler-Lagrange-Gleichung:
d d
F, — %Fux — @Fuy =0. (2.40)
Die natiirlichen Randbedingungen fiir den Bildrand 02 mit dem Normalenvektor n
lauten in diesem Fall:
F,
T Uy
n =0 . 2.41
( pu) (2.41)

Die Erweiterung auf noch hohere Dimensionen verlduft entsprechend.
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2.10 ANWENDUNG DER EULER-LAGRANGE-GLEICHUNG

Um die Euler-Lagrange-Gleichung als Loser fiir das Minimierungsproblem eines Ener-
giefunktionals anzuwenden, wird hier zunédchst von zweidimensionalen kontinuierli-
chen Bildern ausgegangen. Damit ergibt sich fiir das Funktional folgende Abhéngigkeit,
gezeigt in den Formeln 2.42, 2.43, 2.44 und 2.45:

1 o
F(-x/ y/ u,uy, My) = E(u - f)z + 5(“% + M;) . (2.42)

Als partielle Ableitungen ergibt sich daraus:

Fu = (M—f) ’ (243)
F,, = auy , (2.44)
Fy, = auy . (2.45)

Das fiihrt zu folgender Euler-Lagrange-Gleichung fiir ein minimierendes u:

O=u—f—adu . (2.46)

Die dazugehorige natiirliche Randbedingung fiir den Rand des Bildes mit dem Nor-
malenvektor 7 lautet:

0=n'Vu=0,u . (2.47)

2.11 DISKRETISIERUNG DER QUADRATISCHEN VARIATIONSANSATZE

Variationale Ansitze sind selbstverstiandlich auch auf diskrete Fille erweiterbar. Da-
durch handelt es sich bei f und u nicht mehr um kontinuierliche Funktionen, sondern
um diskrete Vektoren. Die zu minimierende Formel lautet im eindimensionalen dis-
kreten Fall (f und u sind eindimensionale Signale der Lange N):

1N ,  a =l )
EBr(u) =2 Y (ux—fi)* +5 ) (g —we)” (2.48)
2 k=1 - k=1
Um dieses Energiefunktional zu minimieren, muss die Ableitung insgesamt gleich 0
sein. Dazu werden die partiellen Ableitungen bestimmt, wobei fiir jede gilt, dass auch
sie 0 ergeben muss. Wird dies auf ein Signal u mit der Liange N angewendet, ergeben
sich folgende Gleichungen:
_ %

0= F =u;— fit+a(ug —up) , (2.49)
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9 _ |

0= 30 1-ﬂ+0€(—ui+1 +2ui—ui,1), (lZZ,...,N—l) , (2.50)
O

0= % = UnN — fN + lX(l/lN — uN—l) . (2.51)

Die erste und letzte Gleichung, Formeln 2.49 und 2.51, lassen sich so interpretieren,
dass das Signal am Rand gespiegelt ist. Das bedeutet, dass up = u; und uny; = uy
gilt. Formel 2.50 beschreibt dagegen den allgemeinen Fall fiir die Pixel, welche sich
nicht am Rand befinden. Durch diese Gleichungen lésst sich ein lineares Gleichungs-
system aufstellen, welches gelost werden muss. Sie bilden eine diskretisierte Variante
der Euler-Lagrange-Gleichung.

Es ist moglich, die Formel 2.48 fiir das Energiefunktional auf den zweidimensionalen
diskreten Fall auszuweiten. Bei A/ (i, j) handelt es sich um alle benachbarten Pixel des
aktuell betrachteten Pixels (i, j). Im zweidimensionalen Fall kommen zur Berechnung
fiir jedes Pixel, je nach Position, unterschiedlich viele Nachbarn in Frage. Dies darf
nicht aufler Acht gelassen werden, weswegen die einzelnen Fille separat betrachtet
werden miissen. Befindet sich das betrachtete Pixel in einer Ecke, so hat es nur zwei
angrenzende Nachbarn, wobei diese sich fiir jede Ecke an unterschiedlichen Seiten des
Pixels befinden. Falls sich das Pixel am Rand befindet, gibt es drei Nachbarn, deren
Position abhéngig davon ist, an welchem Rand sich das betrachtete Pixel befindet.
Der letzte Fall ist eher trivial, da es sich hierbei um alle restlichen Pixel handelt, das
heifst alle Pixel, die sich weder am Rand noch in einer Ecke befinden. Diese Pixel
haben immer vier angrenzende Nachbarn, die sich um das Pixel herum befinden. Es
ist in allen Féllen bei der Berechnung des betrachteten Pixels nicht von Bedeutung,
an welcher Position sich seine Nachbarn befinden, das heifst, welchem dieser obigen
Félle der jeweilige Nachbar zugeordnet wird. Somit folgt fiir das Energiefunktional im
Zweidimensionalen:

M ’ o )
Yo\ (= fi) +5 ) (wpg—wij)* | (2.52)

j=1 (Pa)EN (i)

Auch im zweidimensionalen Fall muss das Energiefunktional minimiert werden, um
die bestmogliche Losung zu erhalten. Daraus ergibt sich das lineare Gleichungssystem:

Mz

_1
2

Il
—_

i

wijtas ), (upg— i) = fij - (2.53)
(Pa)EN (i)
Die Erweiterung auf Dimensionen mit m > 2 ist ebenfalls auf diese Weise moglich. Je
hoher die Dimension m jedoch ist, desto grofier wird dadurch der Rechen- und Spei-
cheraufwand, um das Gleichungssystem zu l6sen. Daher werden dafiir meist iterative
Loser verwendet, da sie effizienter sind.
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Insgesamt gilt bei diesen Energiefunktionalen, dass sie minimiert werden sollen. Die
Berechnung des gefilterten Bildes u wird wie durch die Losung der Euler-Lagrange-
Gleichung realisiert. Nach der Diskretisierung erhalten wir ebenfalls 2.53.



3. VERFAHREN ZUR DEKONVOLUTION

Dieses Kapitel behandelt verschiedene Methoden zur Rekonstruktion von Bildern, die
durch einen Faltungsprozess unscharf geworden sind. Dies wird unter anderem durch
eine Dekonvolution, also eine Entfaltung des Bildes, versucht. Dabei werden zwei
Hauptansitze betrachtet. Einerseits gibt es Fourier-basierte Methoden, andererseits
variationale Ansdtze. Im Allgemeinen wird davon ausgegangen, dass unscharfe Bilder
folgendem Bildgebungsprozess unterlegen haben:

fxy) = (hxu)(x,y) +n(x,y) . (3.1)

Hierbei steht f fiir das unscharfe Bild,  ist der (bekannte) Faltungskern und u ent-
spricht dem (unbekannten) idealen Bild. In dieser Arbeit handelt es sich bei dem
idealen Bild um das Originalbild, n steht fiir Rauschen, welches das Bild zusétzlich
stort. Ist das Rauschen hinreichend klein, ist n vernachlédssigbar und wir erhalten die
Vereinfachung;:

fxy) = (hxu)(x,y) . (3-2)

3.1 FOURIER-BASIERTE METHODEN

Diese Methoden beschéftigen sich damit, die Bilder durch eine Fourier-Transformation
in den Fourier-Bereich zu tiberfithren und anschliefSfend durch geeignete Berechnun-
gen die Fehler im Frequenzbild moglichst zu eliminieren. Zu beachten ist, dass auch
der gegebene Kernel in den Fourier-Bereich transformiert wird, um die Dekonvolution
zu ermoglichen. Wird nun obige Formel 3.2 zur Beschreibung eines unscharfen Bildes
verwendet und diese in den Fourier-Bereich transformiert, so ergibt sich durch das
Faltungstheorem die Grundlage fiir die folgenden Verfahren:

A A~

f=ch-a, (33)

wobei ¢ eine Konstante ist, die von der Definition der Fourier-Transformation abhangt
(siehe Abschnitt 2.5.4).

3.1.1 Inverses Filtern

Das inverse Filtern macht sich Formel 3.3 zunutze, um das ideale Bild nach dieser
Formel zu berechnen:
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o=

o1/

B=2-7 - (3-4)
Dadurch sollte es moglich sein, das Bild genau so wieder herzustellen, wie es vor
der Faltung war. Allerdings handelt es sich beim Faltungskern h meist um einen Tief-
passfilter. Das heifdt, dass er niedrige Frequenzen ungehindert durchlédsst und hohe
Frequenzen schwicht und teilweise herausfiltert. Wird nun / im Fourier-Bereich be-
trachtet, bedeutet das, dass der Faltungskern gegen 0 geht und somit bei der Division
einen hohen Multiplikationsfaktor erzeugt. Dadurch werden hohe Frequenzen wie
Rauschen um ein Vielfaches verstarkt. Somit ist das inverse Filtern im Normalfall oh-
ne zusétzliche Stabilisation nicht verwendbar. Haufig wird deshalb das pseudoinverse
Filtern mit einer einfachen Stabilisierung benutzt, definiert durch die folgende Formel:

Lol falls ] > e,

0, sonst.

=
Il

(3-5)

Wie sich anhand der Formel zeigt, wird der Wert von i auf 0 gezwungen, sollte der
Fall eintreten, dass || zu klein wird. Dies fingt die mogliche Verstirkung hoher Fre-
quenzen ab. Jedoch ist abzuwédgen, welcher Wert sich fiir ¢ eignet, da nicht zu viele
Details geloscht werden sollen.

3.1.2  Wiener Filter

Um eine verbesserte Stabilisierung des inversen Filterns zu garantieren, wurde der
Wiener Filter eingefiihrt. Vorgestellt wurde sie in [8]. I wird dabei nicht mehr exakt
mit Hilfe der Formel 3.4 berechnet, sondern nur noch approximiert. Die dazugehorige
Formel fiir das Wiener Filtern lautet:

e
SRR DL (3.6)

c h |AP+K
Der mittlere Term sorgt fiir die Stabilisierung, welche von K abhéngt. Bei K handelt es
sich um einen positiven Parameter, der verhindert, dass bei einem Tiefpassfilter & hohe
Frequenzen verstirkt werden, falls /i gegen 0 geht. Stattdessen geht der Funktionswert
ebenfalls gegen 0. Der Parameter K, der das Verfahren stabilisiert und den Stabilisie-
rungsterm steuert, muss meist abgeschéatzt werden. Dadurch wird deutlich, dass diese
Formel wie ein Bandpassfilter agiert, falls es sich bei & um einen Tiefpassfilter handelt.
Tiefe Frequenzen werden durch das inverse Filtern und hohe Frequenzen durch die
Stabilisierung abgeschwicht, wiahrend mittlere Frequenzen wie beim inversen Filtern
verstarkt werden. Das macht das Wiener Filtern robuster gegeniiber Rauschen und
anderen zusétzlichen Stérungen im Bild. Deswegen wird es auch als eines der besten
linearen Verfahren gesehen, was die Dekonvolution von Bildern angeht.
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3.2 VARIATIONSANSATZE

Eine zweite Klasse von Verfahren zur Dekonvolution, die im Rahmen dieser Arbeit
untersucht werden, wie sie in [1] vorgestellt wurden, sind variationale Ansétze. Diese
wurden bereits in den Abschnitten 2.8 und 2.11 vorgestellt. Als Hilfsmittel zur Mini-
mierung des Energiefunktionals wird die Euler-Lagrange-Gleichung verwendet (siehe
Abschnitte 2.9 und 2.10). Dieses Verfahren soll nun bei der Dekonvolution angewendet
werden.

3.2.1  Quadratische Variationsansitze zur Dekonvolution

Dieser bisherige Ansatz ist jedoch allgemein und 16st nicht das Problem der Dekon-
volution. Um dies zu ermoglichen, muss die Formel erweitert werden, indem der Da-
tenterm durch den Faltungskern modifiziert wird. Dies ist dadurch begriindet, dass
als Bild f das gefaltete Bild verwendet wird. Das gefilterte Bild u soll jedoch nicht
f dhnlich werden, sondern dem urspriinglichen Originalbild. Damit dies moglich ist,
wird u so gefiltert, dass es f genau dann dhnlich wird, wenn u mit dem Faltungskern
h gefaltet wurde. Daraus folgt im kontinuierlichen Fall:

Bp(u) = 5 [ (O u— F +alVuP) dxdy (37)

Auch hier muss der Minimierer gefunden werden, weswegen folgende Euler-Lagrange-
Gleichung entsteht:

O=hx(h*xu—f)—aAu, (3-8)

mit der reflektierenden Randbedingung n'Vu = 0. Hierbei wird angenommen, dass
der Faltungskern symmetrisch ist. Diese Gleichung muss nun diskretisiert und an-
schlieBend gelost werden. Das diskrete Aquivalent zum Funktional 3.7 im Zweidimen-
sionalen lautet zum Beispiel:

N M , 1 )
ZZ ([h*“]i,j— i,]') +§ Z E(”p,q_ui,j) ’ (3.9)

i=1j=1 (p)EN (i)f)

N —

E f (u) =
mit der zugehorigen Euler-Lagrange-Gleichung:

0=[hshsuljj—[h=*flij—a- Y, (upg—uij) - (3.10)
(Pa) €N (irf)
Die folgenden Methoden verwenden zur Berechnung des gefilterten Bildes u nun eben-
diese Formel 3.10, wobei sich bei den einzelnen Verfahren jeweils Unterschiede bei der
Vorgehensweise ergeben, auf welche Weise die Gleichung gelost wird.
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3.2.1.1 Losung durch explizites Verfahren

Das erste Verfahren zur Losung der Euler-Lagrange-Gleichung in 3.10 versucht, sie
mit Gradientenabstieg zu 16sen. Das bedeutet, dass die berechnete Losung, ausgehend
von einem Startwert, iterativ verfeinert wird, um der optimalen Losung u* ndher zu
kommen. Als Beginn der Iteration, also u°, wird das gefaltete Bild f gewahlt. Dadurch,
dass die Faltung mit einem Faltungskern hinzukommt, erhoht sich die Komplexitat
des Gleichungssystem und somit der Rechenaufwand, es zu 16sen. Dieser Ansatz wird
im Folgenden ausschliefdlich diskret betrachtet.

Bei diesem Variationsansatz wird nun die ausmultiplizierte Euler-Lagrange-Gleichung
verwendet, um die einzelnen Komponenten separat berechnen zu kénnen. Da dieser
Variationsansatz im Diskreten betrachtet wird, wird der Laplace-Operator des Glatt-
heitsterms folgendermafien ersetzt:

aldulij=a- Y (upg—uij) (3.11)
(pa) €N (if)
Zundchst wird bei der Euler-Lagrange-Gleichung von der Trennung der beiden Bilder
u und f ausgegangen, um den Zusammenhang zwischen dem gefalteten Bild f und
dem Originalbild u nachzuvollziehen. Es folgt:

hshsulyj—a- Y (upg—uyj) = [h*flij . (3.12)
()N (i)
Anschliefiend wird die Formel 3.12 umgestellt, damit ein Gleichungssystem mit 0 als
Losung entsteht, worauf die nédchsten Schritte basieren, um das Optimum zu bestim-
men:

0= —[hxhsuljj+a- Y. (upg—uy)+[hxfli . (3.13)
(Pa)EN (i)

Nun wird ein iterativer Losungsprozess eingefiihrt. Es wird angenommen, dass nach
einer bestimmten Anzahl an Schritten das optimale u* fiir diese Gleichung gefunden
wird. Wird also obige Gleichung 3.13 auf das gefundene Optimum u* angewendet,
ergibt sich wiederum u*. Das bedeutet, dass die Differenz zwischen diesen zwei Zeit-
schritten gleich 0 ist. Damit gilt fiir einen bestimmten Zeitpunkt k mit einer Zeitschritt-
weite T:

K+l _

Mij M
LD E—" — '

pe (3.14)
Zur Losung des Gleichungssystems wird diese Annahme in die Euler-Lagrange-Glei-

chung 3.13 eingesetzt:
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Wk gk

i ui,'
%] = —[h*h*uk]i,j-i-a- Z (Mp,q_ui,]')+ [h*f]i,j ) (3.15)
(P EN (i)

Das neue 11 des neuen Zeitschritts berechnet sich also aus dem u¥ des alten Zeit-
schritts durch folgende Berechnungsvorschrift:

wilt =l | ks Y (upg—ui) F e fli | . (3.16)
(pg)EN (i)f)

Nun wird klar, dass ausgehend vom alten Bild u* das neue Bild u**! berechnet wird,
indem dem negativen Gradienten mit Schrittweite T gefolgt wird. Durch dieses Ab-
wartsgehen in der Energielandschaft wird die zugrunde liegende Energie (lokal) mi-
nimiert. Auf diese Weise konnen nach beliebig vielen Zeitschritten immer neue u* be-
rechnet werden, die dazu dienen, ein weiteres 151 zu berechnen. Iterationsbeginn u°
ist das gegebene Bild f, welches dem mit dem Faltungskern h gefalteten Originalbild
entspricht. Die Variable, die unter anderem bestimmt, wie schnell sich der Losung
angendhert wird, ist 7. Sie entspricht der Zeitschrittweite. Die Schwierigkeit bei der
Wahl der Grofle von T ist, dass T nicht zu grofs gewéahlt werden darf, da sonst die Zeit-
schrittweite zu grof8 ist und moglicherweise tiber das Ziel hinausgegangen und dem
Optimum u* nicht sehr nahe gekommen wird. Wird 7 allerdings zu klein gewdhlt,
wird eine sehr grofse Anzahl an Iterationen benétigt, bis die Distanz zum Optimum u*
gering genug ist. Eine Moglichkeit diesem Problem entgegenzuwirken, ist, zu Beginn
ein grofies T zu wiahlen. Nach einer bestimmten Anzahl an Iterationsschritten wird das
Losen des Gleichungssystems mit einem kleineren 7 fortgesetzt. Dies kann beliebig oft
wiederholt werden, bis das Optimum u* nahe genug ist. Insgesamt gilt, dass die An-
zahl an Iterationsschritten, bis das Verfahren abgebrochen wird, auf unterschiedliche
Weise festgelegt werden kann. Eine Moglichkeit ist, eine feste Zahl festzulegen. Alter-
nativ kann so lange gerechnet werden, bis die Energie klein genug ist oder sich nur
noch wenig dndert.

3.2.1.2 Losung durch stabilisertes explizites Verfahren

Der folgende Variationsansatz ist eine Variante des eben vorgestellten Losungsansatzes.
Dieser Ansatz basiert hauptsdchlich auf der Berechnungsvorschrift in Formel 3.15,
verwendet jedoch zusétzlich die Annahme, dass bei der Diskretisierung des Laplace-
Operators das momentan berechnete Pixel und seine Nachbarn getrennt betrachtet
werden. [N (i, )| entspricht dabei der Anzahl an Nachbarn des aktuell betrachteten
Pixels (i, ). Es gilt dabei:
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E (Upqg — uij) = Z Upg — Z Uij = E upq — N (i j)uij
()N (if) (pa) €N (irf) (pa) €N (irf) ()N (if)
(3.17)
Nun basiert die Berechnung darauf, dass das zentrale Pixel aus dem neuen Iterations-

schritt k + 1 ist, wiahrend seine Nachbarn aus dem alten Iterationsschritt k sind. Damit
entspricht die Euler-Lagrange-Gleichung;:

k+1 k
i B ul ] ..
% =[xl —al NG +a- Y up, xSl (3.18)
(p.a)EN (i)

Wird diese Gleichung 3.18 nach dem neuen Iterationsschritt umgestellt, um das neue
u*+1 zu berechnen, folgt:

SR — ”gj (= [l b u i+ a0 Yo gyenigy Wpg + [ fij)
& 1+ ta|N(i,7§)]
Hier gelten, genau wie beim vorherigen Variationsansatz, die Vorschldge zur An-
zahl der Iterationsschritte und Grofie der Zeitschrittweite 7. Allerdings kann durch
die Stabilisierung die Zeitschrittweite T grofier gewahlt werden als beim vorherigen
Losungsansatz, weswegen das stabilisierte Verfahren dadurch meist schneller zu einer
guten Losung kommt.

(3-19)

3.2.1.3 Ldsung im Fourier-Bereich

Der nédchste Ansatz zur Losung der Euler-Lagrange-Gleichung in 3.10 ist Fourier-
basiert. Es wird dabei das Faltungstheorem (siehe Abschnitt 2.5.4) genutzt, um die
Euler-Lagrange-Gleichung zu l6sen. Zu beachten ist, da hier im Fourier-Bereich gerech-
net wird, dass alle Rechenoperationen im Komplexen stattfinden. Wird die Fourier-
Transformation auf die Euler-Lagrange-Gleichung 3.10 angewendet, folgt:

c- F(h)-(c-F(h) - F(u) = F(f)) — aF (thxx) — «F (1tyy) =0 . (3.20)

Fiir die beiden Ableitungen zweiter Ordnung wird das Ableitungstheorem verwendet
(siehe Abschnitt 2.5.4). Damit lautet deren Fourier-Transformation:

Flugy) = (2p)* F(u) , (3.21)

F(uyy) = (i27tq)* F(u) . (3.22)

Um nun das gewiinschte Bild zu erhalten, muss die Fourier-transformierte Euler-
Lagrange-Gleichung nach u aufgelost werden:
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_ cFmEp .
2 F(h)F(h)+a-4m2(p>+42) 323

F(u)

Bei Formel 3.23 ist die Ahnlichkeit dieses Ansatzes zum Inversen Filtern, genauer
gesagt zum Wiener Filter, zu beachten. Durch eine Umformung lésst sich zeigen, dass
sich die Vorgehensweisen zur Berechnung von u dhneln. Allerdings wird beim Wiener
Filter die Stabilisierung durch den konstanten Parameter K gewdhrleistet, wohingegen
in diesem Ansatz der nicht-konstante Glattheitsterm zu einer Stabilisierung im Nenner
fihrt.

Das Ergebnis wird durch den Parameter a beeinflusst, der die Glattheit des Bildes
wihrend der Rekonstruktion reguliert. Ublicherweise wird dieser Parameter recht
klein gewdahlt, um Kanten im Bild zu behalten und diese nicht zu stark zu glitten.
Nachdem u entsprechend berechnet wurde, muss das Ergebnis zuriicktransformiert
werden. Somit folgt zur Berechnung von u mithilfe der Fourier-Transformation die
Gleichung 3.24:

L c- F(WF(f)
n=7 1(cZ-f<h>f<h>+a-4n2<p2+q2>>

Dieser Ansatz macht sich also die Euler-Lagrange-Gleichung zur Minimierung des
Energiefunktionals zunutze, um sie durch eine Fourier-Transformation zu lésen. Da
hier sofort eine Losung approximiert werden kann, ohne durch mehrfache Iterationen
ein Optimum zu finden, handelt es sich bei diesem Verfahren um den schnellsten
quadratischen Ansatz. Allerdings hingt die Qualitdt ausschliefllich vom Parameter a
ab.

(3.24)

3.2.2  Subquadratische Variationsansiitze zur Dekonvolution

Die vorherigen Variationsansédtze haben einen quadratischen Glattheitsterm, wodurch
sich auch der Name dafiir ableiten ldsst. Es handelt sich um quadratische Variations-
ansitze. Der Nachteil ist, dass Abweichungen von der Glattheit quadratisch eingehen
und damit aus Energiesicht sehr teuer sind. Das Ergebnis ist deshalb typischerweise
zu glatt. Um scharfe Kanten im Ergebnisbild attraktiver zu machen, miissen Abwei-
chungen von der Glattheit weniger stark, zum Beispiel linear, bestraft werden. Hier-
zu wird eine subquadratische Bestrafungsfunktion ¢ eingefiihrt. Damit ldsst sich das
Energiefunktional subquadratischer Ansétze zu folgender Formel im kontinuierlichen
zweidimensionalen Fall umschreiben:

Ep(u) = [ (heu—f)? +ap(|Vuf) dxdy . (3:25)

Anhand der Formel 3.25 ldsst sich erkennen, dass der Datenterm, der sich auf die
Ahnlichkeit bezieht, gleich belassen wird, wahrend der Glattheitsterm um die bereits
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erwdhnte Funktion erweitert wird. Daraus ladsst sich die erforderte Euler-Lagrange-
Gleichung 3.26 ableiten, die gleich 0 gesetzt werden muss, um das Energiefunktional,
wie bei den quadratischen Ansétzen, zu minimieren.

0=hx(h*u—f)—adiv(y (|Vul*)Vu) , (3.26)
mit reflektierender Randbedingung n'Vu = 0.

Wird fiir die Funktion i der Wert selbst verwendet, also §(s?*) = s2, so ergibt sich
fir die Ableitung ¢’(s?) = 1, was, wenn es in das Energiefunktional 3.25 und die
Euler-Lagrange-Gleichung 3.26 eingesetzt wird, den quadratischen Ansatz ergibt. Fiir
1 muss eine passende Funktion gefunden werden, die Kanten erhilt, also einen grofsen
Wert fiir den Gradienten berticksichtigt. Dagegen soll sie gldtten, wenn der Gradient
klein ist. Mit diesen Vorschriften ergibt sich beispielsweise folgende subquadratische
Funktion 3.27 und deren Ableitung 3.28, die im Weiteren verwendet wird.

SZ
P(s?) = 2A% 1+ TP 2M%, (3.27)

G E—— (3.28)

V1+S

Die Funktion 3.27 ist abhdngig von einem Parameter A, der die Bewertung des Gradi-
enten beeinflusst. Es kann gezeigt werden, dass die Funktion ¢’ fiir groe Werte fiir
A gegen 1 geht und somit lineare Diffusion erzeugt. Werden hingegen kleine Werte
fir A gewédhlt, dominiert der Gradient, weswegen Kanten erhalten bleiben, da dort ¢’
gegen 0 geht und der Diffusionsterm abgeschaltet wird. Daher eignen sich kleinere
Werte besser zur Kantenerhaltung, wodurch bessere Resultate erzielt werden sollen.
Das Energiefunktional wird im diskreten zweidimensionalen Fall verwendet, daher
lautet die fiir diesen Fall abgewandelte Formel folgendermafen:

1y M 2w 1 )
Be(u) =5 ) ) | (h*ulij—fij))" +5-¢ Yo S(upg—uif) . (3-29)
2 2 \paerp 2

eN

Es folgt fiir die Euler-Lagrange-Gleichung:

0=[hsxhxuljj—[hxflij—a- )
(pa)eN(i,f)

Fiir die Auswertung der Ableitung von 1 gilt fiir einen Pixel (7, j)

e
< Wit ), W) G

1 1 1 1
v =9 <2(”i+1,j — uj;)* + 5 i = ui—1,)” + 5 (tijr1 = ;i j)* + 5 (i = ”i,j1)2> ,

(3-31)
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wobei fiir Pixel in den Ecken und am Rand separate Fille betrachtet werden miissen,
falls nicht von einem gespiegelten Rand ausgegangen wird.

3.2.2.1  Losung durch explizites Verfahren

Auch fiir den subquadratischen Ansatz wird das explizite Verfahren des quadrati-
schen Ansatzes verwendet, gezeigt in Formel 3.15, indem die Differenz zwischen zwei
Berechnungsschritten u**! und u* genutzt wird, abhingig von einem Parameter t.
Damit ergibt sich fiir die allgemeine Berechnungsvorschrift folgende Formel:

4y ) (¥} + ¥))
%:—[h*h*uk]i,j+[h*f]i,j+oc Z ) (Z,szlq'(u?,j_”];,q)>
(Pg)EN (i)f)
(3-32)

Um den neuen Iterationsschritt u**1 aus dem vorherigen Zeitschritt u* zu berechnen,
wird die Formel 3.32 umgestellt, sodass sich dafiir folgendes ergibt:

k+1

/ /
“ﬁl = u@—i—r —[h*h*uk]i,j+ s flij+a ), (W : (ui-‘,]-—u];,q)>
(Pa) €N (i f)

(3:33)
Weiterhin konnen hier dhnliche Modifikationen wie beim quadratischen Variationsan-
satz vorgenommen werden, wie beispielsweise das stabilisierte explizite Schema. Ei-
ne Losung der Euler-Lagrange-Gleichung im Fourier-Bereich wie beim quadratischen
Variationsansatz ist beim subquadratischen Ansatz aufgrund der Nichtlinearitdt und
Pixelabhingigkeit von ¢’ nicht moglich.
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4. EVALUATION

Dieses Kapitel thematisiert die Ausarbeitung, Implementierung und Evaluierung der
Ergebnisse der im vorherigen Kapitel erwdhnten Ansitze und Methoden. Dabei ist vor
allem der Vergleich der Verfahren miteinander interessant, um ein aussagekraftiges
Fazit zu ermoglichen. Einerseits werden die variationalen Ansdtze mit den Fourier-
basierten Methoden verglichen, andererseits miissen sie einander gegeniibergestellt
werden. Hierbei sind insbesondere die Unterschiede zwischen den MSE-Werten der
Verfahren zueinander bedeutsam, weshalb diese Werte als Maf§ genommen werden.
Speziell um die Variationsansidtze miteinander zu vergleichen, wird die Anzahl an
Iterationsschritten variiert. Zunichst folgen einige Grundbedingungen, die fiir die Ex-
perimente festgesetzt wurden. Daraufhin werden die Parameter diskutiert und ihre
Auswirkungen auf die Verfahren getestet. Abschliefiend erfolgt der Vergleich.

4.1 GENERELLE GRUNDBEDINGUNGEN

Bei der Evaluation der Verfahren wurde als originales Ursprungsbild das Bild des
Kameramanns (siehe Abbildung 4.2) verwendet. Es handelt sich dabei um ein Bild
ausschliefllich in Graustufen, wobei die Skala fiir diese Grauwerte von 0, dem nied-
rigsten Wert und damit dem dunkelsten Grauton, also Schwarz, bis hin zu 255, dem
hochsten und somit hellsten Grauton, also Weifs, reicht. Die Grofse des Bildes ist 256 x
256 Pixel.

Abbildung 4.1: Hier werden die drei Faltungskerne gezeigt, mit denen das Originalbild gefal-
tet wird. Links: Gauf-formiger Faltungskern, der eine atmospharische Stérung
modelliert. Mitte: Box-férmiger Faltungskern, der eine Bewegung modelliert.
Rechts: Zylinder-formiger Faltungskern, der eine Defokussierung modelliert.
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Abbildung 4.2: Hier werden das Originalbild und die gefalteten Bilder gezeigt. Die gefalte-
ten Bilder werden den vorgestellten Verfahren unterzogen und die Resulta-
te mit dem Originalbild verglichen. Oben links: Originalbild. Oben rechts:
Gaufi-gefaltetes Bild. Unten links: Box-gefaltetes Bild. Unten rechts: Zylinder-
gefaltetes Bild.

Fiir die Modellierung der Unschérfeeffekte wurde dieses Bild jeweils mit einem Effekt
versehen. Die Defokussierung wird, wie bereits erwédhnt, durch einen Faltungskern
in Form eines Zylinders dargestellt, wobei im Folgenden fiir die Grofie des Radius
der Wert 5 gewdhlt wurde. Auch die Grofie des Radius der Boxfunktion, welche eine
Bewegung modelliert, entspricht dem Wert 5. Der Winkel ¢ wurde gleich 0 gewihlt,
das heifit, es handelt sich um eine horizontale Bewegung. Um den letzten Effekt dar-
zustellen, wurde die Gauf3-Funktion mit dem Wert 3 fiir die Standardabweichung ¢
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verwendet. Es folgen die Bilder der drei Faltungskerne (siehe Abbildung 4.1), welche
zu Anschauungszwecken und zur spédteren Berechnung ebenfalls die Grofse von 256 x
256 Pixeln haben.

Die Faltung der Faltungskerne mit dem Bild wurde im Fourier-Bereich realisiert, um
die Rechenzeit zu verkiirzen. Da es sich bei der Grofie der Bilder um 2er-Potenzen
handelt, wurde bei der Fourier-Transformation die FFT verwendet. Die Ergebnisse der
Faltung (siehe Abbildung 4.2) entsprechen den zuvor erwdhnten Unschérfeeffekten.

Die Verfahren wurden jedes Mal mit den gleichen Voraussetzungen auf jedes der ge-
falteten Bilder angewendet.

4.2 PARAMETERVERWALTUNG

Vor dem eigentlichen Vergleich folgen nun einige Voraussetzungen, die fiir die ein-
zelnen Verfahren getroffen wurden. Es wird die Qualitdt der Parameter getestet, die
in den Methoden verwendet werden. Um die Auswirkungen der Parameter besser
einschitzen zu konnen, wird immer nur ein Parameter verdndert.

Beim Wiener Filter ist K der einzige beeinflussbare Parameter, der im Term zur Stabi-
lisierung vorhanden ist. Dieser Parameter wirkt sich darauf aus, wie stark die Stabi-
lisierung in die Berechnung eingreift, was insbesondere bei Rauschen erforderlich ist.
Ublicherweise werden jedoch fiir K sehr kleine Zahlen gewihlt.

Der explizite quadratische Variationsansatz und der stablisierte explizite quadratische
Variationsansatz haben die gleichen Parameter. Einerseits handelt es sich um den Pa-
rameter «, der sich auf den Glattheitsterm auswirkt. Der zweite Parameter, der nur
bei den iterativen Losungsverfahren existiert, jedoch nicht bei der Fourier-basierten
Losung, ist 7. Er entspricht der sogenannten Zeitschrittweite und sagt im Prinzip aus,
wie grofs der Schritt zwischen zwei Iterationsschritten k und k + 1 ist. Das bedeutet,
er bestimmt, wie schnell sich der Losung, also dem Minimum des Energiefunktionals,
gendhert wird. Wird T zu groff gewdhlt, so kann es passieren, dass zu grofse Schritte
gemacht werden und das Minimum passiert wird, also die Losung wieder grofser wird.
Ein moglicher Vorschlag, der bereits bei den angewandten Methoden vorgeschlagen
wurde, ist die Anpassung von T wihrend des Rechenprozesses. Ist die Distanz zum
Optimum sehr grof, so eignen sich grofie Werte fiir T besser. Sollte die Entfernung
zum Optimum sehr gering werden oder das Optimum sogar iiberschritten worden
sein, so kann der letzte Iterationsschritt mit einem kleineren T wiederholt werden.
Die Wahl des Wertes fiir diesen Parameter beeinflusst direkt die Anzahl an Iterations-
schritten. So ergeben 10 Iterationen mit T = 1 das gleiche Ergebnis wie 100 Iterationen
mit T = 0,1. Der letzte Parameter, der ebenfalls nur bei den iterativen Losungen eine
Rolle spielt, ist die Anzahl der Iterationsschritte. Je grofier die Anzahl, desto nédher
liegt die optimale Losung, also das Minimum. Jedoch bedeutet eine héhere Anzahl an
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Iterationsschritten eine ldangere Rechenzeit. Deshalb ist zu entscheiden, wie viele Itera-
tionsschritte sinnvoll sind. Wie bereits erwéhnt, ist eine Moglichkeit, eine feste Zahl an
Schritten vorzugeben. Die Alternative dazu ist, die Anzahl entweder vom MSE oder
von der Grofse des Energiefunktionals abhdngig zu machen. Wenn der MSE oder das
Energiefunktional klein genug sind, bedeutet das, dass die Losung sehr nah ist und
der Rechenprozess somit mit der aktuellen Losung abgebrochen werden kann.

Beim subquadratischen Variationsansatz kommt zu den Parametern des quadratischen
Ansatzes noch ein weiterer Parameter dazu, ndmlich A, der die Funktion ¢ reguliert
und sich auf die Kantenglattung auswirkt. Das bedeutet, dass hier vier verschiedene
Parameter einwirken, durch deren Zusammenhang sich das Ergebnis bei Verdnderung
von Parameterwerten teilweise stirker variieren kann.

4.3 AUSWERTUNG DER PARAMETER

Im Folgenden werden die eigentlichen Experimente der Verfahren an den unscharfen
Bildern und deren Ergebnisse vorgestellt. Zunédchst gilt es, jedes Verfahren einzeln zu
testen und die Auswirkungen der Parameter auf den jeweiligen Ansatz festzustellen.
Hierbei wird jede Methode auf jedes der gefalteten Bilder angewendet, welche die drei
unterschiedlichen Unschéarfeeffekte simulieren. Die Auswertung der Ergebnisse findet
anhand des resultierenden MSE-Wert statt.

4.3.1  Wiener Filter

Der Wiener Filter hat nur einen Parameter, der beeinflussbar ist. Es handelt sich da-
bei um K, einen Parameter, der den Term zur Stabilisierung reguliert. Die Hypothese
vor Ausfithrung des Experiments ist, dass je grofier K, desto grofier ist der Stabilisie-
rungsterm. Daraus folgt, dass das Ergebnisbild nach der Berechnung fiir ein grofieres
K schlechter, das heifit weiter entfernt vom urspriinglichen Originalbild ist, als fiir ein

Tabelle 4.1: MSE-Wertetabelle des Wiener Filters. In der Zeile steht der jeweilige Wert des Pa-
rameters K, wihrend in der Spalte das unscharfe Bild steht, auf welches das Ver-
fahren angewendet wurde.

Parameterwert ‘ Gaufs ‘ Box ‘ Zylinder
Vorher | 518,283447 | 477,993530 | 534,411377
K=10"1 601,703674 | 461,375458 | 562,387329
K=10"° 219979202 | 1757151 | 9,749884
K =10"10 50,765614 | 0,000004 | 0,029170
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Abbildung 4.3: Zu sehen sind die Ergebnisbilder des Wiener Filters mit unterschiedlichen
Werten fiir den Parameter K. In diesem Fall wurde der Wiener Filter auf das
Gauf3-gefaltete Bild angewendet. Oben links: Originalbild. Oben rechts: Wie-
ner Filter mit K = 10~!. Unten links: Wiener Filter mit K = 10~°. Unten rechts:
Wiener Filter mit K = 1010,

kleineres K. Das Experiment wird fiir drei unterschiedliche Werte fiir K durchgefiihrt.
Es werden die Werte 1071, 10~> und 1010 getestet und deren MSE-Werte verglichen,
um die Hypothese zu tiberpriifen.

Werden die MSE-Werte aus der Tabelle 4.1 fiir jedes Bild getrennt betrachtet, wird
deutlich, dass die Hypothese in allen drei Fallen stimmt. Je kleiner das K im Stabilisie-
rungsterm gewdhlt wird, desto kleiner ist der zugehorige MSE-Wert im Vergleich mit
dem Originalbild, was bedeutet, dass das berechnete Ergebnisbild dadurch dhnlicher
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Abbildung 4.4: Zu sehen sind die Ergebnisbilder des Wiener Filters mit unterschiedlichen
Werten fiir den Parameter K. In diesem Fall wurde der Wiener Filter auf das
Box-gefaltete Bild angewendet. Oben links: Originalbild. Oben rechts: Wiener
Filter mit K = 10~!. Unten links: Wiener Filter mit K = 107°. Unten rechts:
Wiener Filter mit K = 1010,

dem Originalbild wird. Insbesondere ist zu sehen, dass fiir das kleinste gewdhlte K
das berechnete Bild im Falle des Box- und des Zylinder-Faltungskerns fast exakt dem
Originalbild entspricht. Dies bedeutet eine gute Losung. Im Gegensatz dazu kann fiir
den grofiten Wert festgestellt werden, dass das Ergebnis im Falle des Gaufs- und des
Zylinder-Faltungskerns schlechter ist als das gefaltete Bild.
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Abbildung 4.5: Zu sehen sind die Ergebnisbilder des Wiener Filters mit unterschiedlichen
Werten fiir den Parameter K. In diesem Fall wurde der Wiener Filter auf das
Zylinder-gefaltete Bild angewendet. Oben links: Originalbild. Oben rechts:
Wiener Filter mit K = 10~!. Unten links: Wiener Filter mit K = 10~°. Unten
rechts: Wiener Filter mit K = 10~10.

4.3.2  Quadratischer Variationsansatz (explizit)

Im Gegensatz zum vorherigen Ansatz gibt es beim expliziten quadratischen Variations-
ansatz mit Gradientenabstieg drei Parameter, die das Resultat beeinflussen. Der erste
Parameter ist «, der sich auf den Glattheitsterm auswirkt. Es gilt der Zusammenhang
zwischen Parameter und Term, dass je grofier « ist, desto grofier wird der Glattheits-
term und desto glatter wird das Ergebnisbild. Beim zweiten Parameter handelt es sich
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Tabelle 4.2: MSE-Wertetabelle des expliziten Verfahrens. In der Zeile steht der jeweilige Wert
des Parameters «, wiahrend in der Spalte das unscharfe Bild steht, auf welches das
Verfahren angewendet wurde.

Parameterwert ‘ Gauf3 ‘ Box ‘ Zylinder
Vorher | 518,283447 | 477,993530 | 534,411377
x=10"" 391,709717 | 287,494263 | 371,147827
=107 331,116943 | 112,018044 | 218,962311
x =107 330,414459 | 104,770164 | 212,561523

Tabelle 4.3: MSE-Wertetabelle des expliziten Verfahrens. In der Zeile steht der jeweilige Wert
des Parameters 7, wiahrend in der Spalte das unscharfe Bild steht, auf welches das

Verfahren angewendet wurde.

Parameterwert ‘ Gaufs ‘ Box ‘ Zylinder
Vorher | 518,283447 | 477,993530 | 534,411377
T =102 478,404999 | 436,903290 | 496,214203
T=10"" 399,707092 | 301,609619 | 398,057465
=1 330,414459 | 104,770164 | 212,561523

um den Parameter 7, welcher fiir die Zeitschrittweite steht. Er gibt an, wie grof3 die
Schritte Richtung Optimum gemacht werden, das heifit, wie schnell sich der optimalen
Losung angendhert wird. Hinweise zur Wahl von Werten fiir T wurden bereits weiter
oben genannt. Der letzte Parameter bezieht sich auf die Anzahl an Iterationsschritten,
die bei der Berechnung durchgefiihrt werden sollen. Je mehr Berechnungsschritte ge-
macht werden, desto geringer ist die Distanz zur Losung. Dieser Parameter beeinflusst
nicht direkt die Qualitdt der Losung. Bei der Wahl dieses Parameters ist zu beachten,
dass je grofser er ist, desto langer wird gerechnet und desto linger braucht es, um
an eine Losung zu kommen. Es ist empfehlenswert, die Zahl an Iterationsschritten
zu begrenzen oder nach einer bestimmten Anzahl abzubrechen, sobald die Lésung
nahe genug ist oder sich nicht mehr viel dndert. Im Folgenden werden die drei Para-
meter einzeln getestet, um ihre Auswirkungen auf die Losung besser zu beobachten.
Die anderen beiden Parameter werden wéhrend des Tests mit einem konstanten Wert
belegt.

Der erste Test beschiftigt sich mit dem Parameter «. Fiir & wurden die drei Werte
1071, 1073 und 10> getestet. T wurde fiir diesen Test der Wert 1 zugewiesen und
es wurden 100 Iterationsschritte durchgefiihrt. Bei diesem Verfahren ist anhand der



Abbildung 4.6: Zu sehen sind die Ergebnisbilder des expliziten quadratischen Variationsansat-
zes mit Gradientenabstieg nach unterschiedlich vielen Iterationen. In diesem
Fall wurde der explizite quadratische Variationsansatz auf das Gauf3-gefaltete
Bild angewendet. Oben links: 100 Iterationen. Oben mittig: 300 Iterationen.
Oben rechts: 500 Iterationen. Unten links: 1000 Iterationen. Unten mittig: 2000

4.3 AUSWERTUNG DER PARAMETER

Iterationen. Unten rechts: 3000 Iterationen.

Tabelle 4.4: MSE-Wertetabelle des expliziten Verfahrens. In der Zeile steht die jeweilige Anzahl
an Iterationsschritten, wahrend in der Spalte das unscharfe Bild steht, auf welches

das Verfahren angewendet wurde.

Parameterwert Gaufs Box Zylinder

Vorher 518,283447 | 477,993530 | 534,411377
100 Iterationen | 330,414459 | 104,770164 | 212,561523
300 Iterationen | 305,849640 | 61,547993 | 140,473389
500 Iterationen | 295,874390 | 50,786339 | 116,434662
1000 Iterationen | 283,314178 | 41,529095 | 95,148331
2000 Iterationen | 271,968903 | 36,884361 | 87,931831
3000 Iterationen | 266,149658 | 36,213993 | 90,060371
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Abbildung 4.7: Zu sehen sind die Ergebnisbilder des expliziten quadratischen Variationsan-
satzes mit Gradientenabstieg mit unterschiedlichen Werten fiir den Parameter
«. In diesem Fall wurde der explizite quadratische Variationsansatz auf das
Box-gefaltete Bild angewendet. Oben links: 100 Iterationen. Oben mittig: 300
Iterationen. Oben rechts: 500 Iterationen. Unten links: 1000 Iterationen. Unten
mittig: 2000 Iterationen. Unten rechts: 3000 Iterationen.

Tabelle 4.2 zu sehen, dass je kleiner a gewdhlt wird, desto kleiner ist der MSE-Wert
und desto besser ist das Ergebnisbild. Wird « bei diesem Verfahren kleiner als 10~°
gewdhlt, so wird die Losung nur geringfiigig besser, sodass dadurch keine wirkliche
Verbesserung erfolgt. AufSerdem sollte a nicht zu klein gewédhlt werden, um hohe
Frequenzen weiterhin abzuschwichen und fiir ein glatteres Ergebnis zu sorgen. Da
in diesem Verfahren die Qualitdt abhédngig ist von mehr als einem Parameter und
insbesondere vom Zusammenhang zwischen « und 7, erreicht man nicht schon nach
100 Iterationen das Optimum. Dennoch ist das Ergebnis in allen Féllen besser als das
gefaltete Bild.

Der zweite Test zur Beobachtung des Verhaltens von 7 in Hinsicht auf den Rechen-
prozess erfolgte mit dem Wert 107> fiir &, da sich dieser Wert im vorherigen Test als
geeignet herausgestellt hat. Weiterhin wurden wieder 100 Iterationen durchgefiihrt.
Fiir T wurden die Werte 1072, 10! und 1 verwendet. Bei T verhilt es sich laut Tabelle
4.3, wie es durch die Hypothese bereits vermutet wurde, genau gegenteilig wie bei
«. Je grofler der Wert fiir 7, desto besser wird das Ergebnis. Wird 7 jedoch zu grofs
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Abbildung 4.8: Zu sehen sind die Ergebnisbilder des expliziten quadratischen Variationsan-
satzes mit Gradientenabstieg mit unterschiedlichen Werten fiir den Parameter
«. In diesem Fall wurde der explizite quadratische Variationsansatz auf das
Zylinder-gefaltete Bild angewendet. Oben links: 100 Iterationen. Oben mittig:
300 Iterationen. Oben rechts: 500 Iterationen. Unten links: 1000 Iterationen.
Unten mittig: 2000 Iterationen. Unten rechts: 3000 Iterationen.

gewihlt, was hier nicht aufgezeigt wird, da es schwierig zu modellieren ist, wird das
gewiinschte Optimum iiberschritten und teilweise ein schlechteres Bild erhalten, als
das vorherige gefaltete Bild. Auch hier ist das Zusammenspiel zwischen den Parame-
tern T und a bemerkbar, weswegen nicht sofort nach bereits 100 Iterationen ein Bild
berechnet wurde, das fast exakt dem Optimum entspricht. Die Ergebnisse sind aber
wie bereits beim vorherigen Test besser als das vorherige gefaltete Bild.

Der letzte Test fiir den Parameter, der die Zahl an Iterationsschritten vorgibt, wurde
mit dem Wert 1072 fiir « und dem Wert 1 fiir den Parameter T durchgefiihrt, da diese
Werte bei den vorherigen Experimenten gute Resultate lieferten. Fiir die Zahl an Itera-
tionsschritten wurden die Werte 100, 300, 500, 1000, 2000 und 3000 gew&hlt. Auch bei
der Anzahl der Iterationen ist in Tabelle 4.4 zu sehen, dass je hdufiger der Rechenpro-
zess durchgefiihrt wird, das heifst, je mehr Iterationen gemacht werden, desto besser
wird das Resultat. Das bedeutet, dass auch in diesem Fall die Hypothese bestitigt
wird. Hinsichtlich der MSE-Werte beim letzten Wert von 3000 Iterationsschritten ist
zu sehen, dass das Ergebnis im Falle des Box- und des Zylinder-Faltungskerns relativ
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nahe am Optimum ist. Allerdings bedeutet dies, dass fiir ein gutes Ergebnis eine hohe
Anzahl an Iterationsschritten nétig ist, was wiederum zu einer langen Laufzeit des
Rechenprozesses fiihrt. Eine Moglichkeit, dies zu verhindern, ist, nach einer bestimm-
ten Anzahl von Schritten aufzuhoren, wenn die Losung gut genug ist oder sich nur
geringfiigig verbessert, um weitere Rechenzeit einzusparen. Fiir alle gefalteten Bilder
ist zu sehen, dass der MSE-Wert immer weiter abnimmt und insbesondere nie grofier
als der MSE-Wert des gefalteten Bildes wird. Nur im Falle des Zylinder-Faltungskerns
ist eine geringe Verschlechterung des MSE-Werts von 2000 nach 3000 Iterationen zu
erkennen. Deswegen ist anzunehmen, dass das bestmdogliche Ergebnis mit diesen Pa-
rametereinstellungen zwischen 2000 und 3000 Iterationen liegt.

4.3.3 Quadratischer Variationsansatz (stabilisert)

Die Parameter des stabilisierten expliziten quadratischen Variationsansatzes entspre-
chen denen des expliziten Verfahrens. Da die Parameter iibereinstimmen und die glei-
chen Terme bei der Berechnung beeinflussen, kann deren Bedeutung und Wirkweise
auf diesen Fall iibertragen werden. Daher wird auf deren Test und die Uberpriifung
der Hypothesen verzichtet, da sie durch das vorherige Verfahren bereits belegt wurden.
Wie bereits bei der Vorstellung des stabilisierten expliziten Verfahrens erwdhnt wurde,
konnen durch die Stabilisierung allerdings groflere Werte fiir die Zeitschrittweite T
gewdhlt werden, wodurch dieses Verfahren schneller zu einer Losung kommt.

4.3-4 Quadratischer Variationsansatz (Fourier)

Wie auch der Wiener Filter hat der quadratische Variationsansatz mit Losung im
Fourier-Bereich nur einen Parameter, welcher sich auf die Berechnung auswirkt. In
diesem Fall reguliert er den Glattheitsterm, der bestimmt, wie stark das Bild an sich
und insbesondere Kanten geglittet werden. Die Hypothese dazu besagt, dass je grofier

Tabelle 4.5: MSE-Wertetabelle der Losung im Fourier-Bereich. In der Zeile steht der jeweilige
Wert des Parameters a, wahrend in der Spalte das unscharfe Bild steht, auf welches
das Verfahren angewendet wurde.

Parameterwert Gaufs Box Zylinder
Vorher 518,283447 | 477,993530 | 534,411377
a=10"1 401,059387 | 294,161896 | 382,607605
a=10"° 223,674255 | 3,966199 | 17,799452
a=10"10 60,596283 | 0,000006 0,073349
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Abbildung 4.9: Zu sehen sind die Ergebnisbilder des Fourier-basierten quadratischen Varia-
tionsansatzes mit unterschiedlichen Werten fiir den Parameter a. In diesem
Fall wurde der Fourier-basierte quadratische Variationsansatz auf das Gauf3-
gefaltete Bild angewendet. Oben links: Originalbild. Oben rechts: Fourier-
basierter quadratischer Variationsansatz mit « = 10~!. Unten links: Fourier-
basierter quadratischer Variationsansatz mit « = 10~°. Unten rechts: Fourier-
basierter quadratischer Variationsansatz mit a = 1071,

der Wert von « ist, desto grofier ist der Glattheitsterm, wodurch die Glattung starker
eingreift. Fiir das Resultat bedeutet dies, dass es vermutlich fiir grofiere a schlechter
und weiter entfernt vom Originalbild ist, als fiir kleinere a. Daher werden fiir « die
drei Werte 1071, 107> und 1010 getestet.
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Abbildung 4.10: Zu sehen sind die Ergebnisbilder des Fourier-basierten quadratischen Varia-
tionsansatzes mit unterschiedlichen Werten fiir den Parameter «. In diesem
Fall wurde der Fourier-basierte quadratische Variationsansatz auf das Box-
gefaltete Bild angewendet. Oben links: Originalbild. Oben rechts: Fourier-
basierter quadratischer Variationsansatz mit « = 10~!. Unten links: Fourier-
basierter quadratischer Variationsansatz mit « = 10~°. Unten rechts: Fourier-
basierter quadratischer Variationsansatz mit a = 10710,

Anhand der MSE-Werte aus der Tabelle 4.5 ist zu sehen, dass die Hypothese fiir jeden
der drei Fille, das heifst fiir jedes der drei Bilder, stimmt. Das bedeutet, dass sich bei
kleineren Werten fiir « bessere Resultate fiir das Ergebnisbild im Vergleich zum Origi-
nalbild erzielen lassen. Auch bei diesem Verfahren ist beim kleinsten gewdhlten Wert
zu sehen, dass der MSE-Wert bei den Bildern, die mit dem Box-Faltungskern und mit
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Abbildung 4.11: Zu sehen sind die Ergebnisbilder des Fourier-basierten quadratischen Va-
riationsansatzes mit unterschiedlichen Werten fiir den Parameter «. In die-
sem Fall wurde der Fourier-basierte quadratische Variationsansatz auf das
Zylinder-gefaltete Bild angewendet. Oben links: Originalbild. Oben rechts:
Fourier-basierter quadratischer Variationsansatz mit « = 10~!. Unten links:
Fourier-basierter quadratischer Variationsansatz mit « = 10~°. Unten rechts:
Fourier-basierter quadratischer Variationsansatz mit « = 10710,

dem Zylinder-Faltungskern gefaltet wurden, sehr klein ist, was bedeutet, dass deren
Endergebnisse nach der Berechnung fast exakt dem Originalbild entsprechen. Im Ge-
gensatz zum Wiener Filter, der ebenfalls nur von einem Parameter beeinflusst wurde,
kann hier selbst beim grofiten Wert fiir a festgestellt werden, dass eine Verbesserung

vorliegt.
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4.3.5 Subquadratischer Variationsansatz

Drei der Parameter des subquadratischen Variationsansatzes stimmen zwar mit de-
nen des quadratischen {iberein, jedoch werden ihre Auswirkungen auf das Ergebnis
nochmals untersucht, da noch ein weiterer Parameter das Resultat beeinflusst. Die
Aufgabe der drei Parameter a, T und Iterationszahl wurde bereits beim vorherigen

Tabelle 4.6: MSE-Wertetabelle des subquadratischen Variationsansatzes. In der Zeile steht der
jeweilige Wert des Parameters &, wéhrend in der Spalte das unscharfe Bild steht,
auf welches das Verfahren angewendet wurde.

Parameterwert Gauf3 Box Zylinder

Vorher 518,283447 | 477,993530 | 534,411377
a=10"1 329,326752 | 103,840309 | 212,928452
x=10"3 330,393860 | 104,683777 | 212,494446
a=10"° 330,407013 | 104,697884 | 212,495239

auf welches das Verfahren angewendet wurde.

Tabelle 4.7: MSE-Wertetabelle des subquadratischen Variationsansatzes. In der Zeile steht der
jeweilige Wert des Parameters 7, wihrend in der Spalte das unscharfe Bild steht,

Parameterwert ‘ Gauf3 ‘ Box ‘ Zylinder
Vorher | 518,283447 | 477,993530 | 534,411377
T =102 478,418884 | 436,800747 | 396,200073
T=10"! 399,690765 | 301,684723 | 398,001038
=1 329,326752 | 103,840309 | 212,928452

auf welches das Verfahren angewendet wurde.

Tabelle 4.8: MSE-Wertetabelle des subquadratischen Variationsansatzes. In der Zeile steht der
jeweilige Wert des Parameters A, wihrend in der Spalte das unscharfe Bild steht,

Parameterwert ‘ Gauf3 ‘ Box ‘ Zylinder
Vorher | 518,283447 | 477,993530 | 534,411377
A=1 324,067780 | 108,601463 | 222,902115
A =10""1 329,326752 | 103,840309 | 212,928452
A =102 330,274719 | 104,564674 | 212,496231




Tabelle 4.9: MSE-Wertetabelle des expliziten subquadratischen Variationsansatzes. In der Zeile
steht die jeweilige Anzahl an Iterationsschritten, wéihrend in der Spalte das un-
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scharfe Bild steht, auf welches das Verfahren angewendet wurde.

Parameterwert Gauf Box Zylinder
Vorher 518,283447 | 477,993530 | 534,411377
100 Iterationen | 329,326752 | 103,840309 | 212,928452
300 Iterationen | 301,861572 | 54,338737 | 135,996246
500 Iterationen | 289,210785 | 38,761833 | 106,131157
1000 Iterationen | 271,343353 | 22,952026 | 72,634109
2000 Iterationen | 253,151520 | 14,059612 | 50,602684
3000 Iterationen | 243,255356 | 11,803420 | 43,677567

51

Abbildung 4.12: Zu sehen sind die Ergebnisbilder des expliziten subquadratischen Variations-
ansatzes nach unterschiedlich vielen Iterationen. In diesem Fall wurde der ex-
plizite subquadratische Variationsansatz auf das Gaufs-gefaltete Bild angewen-
det. Oben links: 100 Iterationen. Oben mittig: 300 Iterationen. Oben rechts:
500 Iterationen. Unten links: 1000 Iterationen. Unten mittig: 2000 Iterationen.
Unten rechts: 3000 Iterationen.
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Ansatz beschrieben und ist beim subquadratischen Ansatz gleich. Beim vierten Para-
meter handelt es sich um A, der angibt, wie stark bzw. schwach Kanten durch die
Funktion ¢ geglittet werden sollen. Je kleiner der Wert von A, desto mehr sollen sie
erhalten bleiben, da dadurch der Wert des Gradienten in der Funktion wichtiger wird.

Wie auch beim quadratischen Ansatz beschiftigt sich der erste Test mit der Auswir-
kung des Paramters a. Dazu werden die drei Werte 10~!, 1073 und 107° fiir a getestet.
Die Konstanten in diesem Test sind 100 Iterationen, T = 1 und A = 10~!. Es ist zu
sehen, dass in allen Fillen eine Verbesserung zum vorherigen gefalteten Bild vorliegt.
Anhand der MSE-Werte aus Tabelle 4.6 wird deutlich, dass je grofier a wird, desto
besser wird im Allgemeinen das entstehende Resultat. Allerdings ist der Unterschied
zwischen den Werten so gering, dass andere Werte fiir « nur geringfiigig bessere oder
schlechtere Ergebnisse liefern. Dieses Ergebnis unterscheidet sich vom Ergebnis des
expliziten quadratischen Ansatzes, bei dem fiir kleinere Werte ein deutlich besseres
Bild herauskam. Der Grund dafiir ist die bereits angesprochene Funktion ¢, die sich
auf die Erhaltung von Kanten auswirkt. Dadurch wird mit einem grofieren Wert fiir

Abbildung 4.13: Zu sehen sind die Ergebnisbilder des expliziten subquadratischen Variations-
ansatzes mit unterschiedlichen Werten fiir den Parameter «. In diesem Fall
wurde der explizite subquadratische Variationsansatz auf das Box-gefaltete
Bild angewendet. Oben links: 100 Iterationen. Oben mittig: 300 Iterationen.
Oben rechts: 500 Iterationen. Unten links: 1000 Iterationen. Unten mittig:
2000 Iterationen. Unten rechts: 3000 Iterationen.
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« ein glatteres Bild mit wenigen hohen Frequenzen erzeugt, welches aber gleichzeitig
Kanten besitzt. Da das Bild am Ende glatt genug und hohe Frequenzen abgeschwécht
sein sollen, wird in den folgenden Tests fiir den Parameter « der Wert 10~! gewdahlt.

Im zweiten Test ging es um die Auswirkungen von T auf den Rechenprozess. Getestet
wurden die Werte 1072, 10~ ! und 1. Die Werte fiir A und die Zahl an Iterationsschritten
bleiben wie beim ersten Test, wihrend &, wie bereits erwidhnt, mit dem konstanten
Wert von 107! belegt wird. Auch in diesem Fall bestitigt die Tabelle 4.7 die gleichen
Auswirkungen von T auf das Resultat, wie bereits bei den quadratischen Ansétzen. Je
grofler T gewdhlt wird, mit desto grofieren Schritten wird sich der optimalen Losung
u* in der gleichen Anzahl an Iterationen genédhert. Auch hier wird eine Verbesserung
zum gefalteten Bild deutlich.

Diesmal werden verschiedene Werte fiir den Parameter A getestet. Dazu wurden die
Werte 1, 10! und 102 verwendet. Die Zahl an Iterationsschritten wurde wieder auf
100 festgelegt, wahrend « der Wert 10~! und 7 der Wert 1 zugewiesen wurde. Zu be-

Abbildung 4.14: Zu sehen sind die Ergebnisbilder des expliziten subquadratischen Variati-
onsansatzes mit unterschiedlichen Werten fiir den Parameter «. In diesem
Fall wurde der explizite subquadratische Variationsansatz auf das Zylinder-
gefaltete Bild angewendet. Oben links: 100 Iterationen. Oben mittig: 300 Ite-
rationen. Oben rechts: 500 Iterationen. Unten links: 1000 Iterationen. Unten
mittig: 2000 Iterationen. Unten rechts: 3000 Iterationen.
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obachten ist, dass sich fiir jedes Bild ein anderer Wert eignet. Das liegt unter anderem
an der Form der Faltungskerne, ihre Auswirkungen bei der Faltung und ihr Einfluss
auf Kanten. Da der Wert 10~! im Mittel das beste Resultat liefert, wird er bei den Tests
zur Erhaltung von Kanten verwendet. Weiterhin ist aus der Tabelle abzuleiten, dass
die resultierenden Bilder nie schlechter als das gefaltete Bild sind.

Beim letzten Test wurde die Anzahl an Iterationsschritten variiert, wiahrend «, T und
A konstant waren. Dazu galt « = 107!, 7 = 1 und A = 10~L. Es wurden 100, 300,
500, 1000, 2000 und 3000 Iterationen durchgefiihrt. Je mehr Iterationsschritte gemacht
werden, desto geringer ist die Distanz zum Optimum. Dies ist auch anhand der MSE-
Werte aus der Tabelle 4.9 zu erkennen. Allerdings gibt es kein Maximum an Iterations-
schritten, weshalb ab einer bestimmten Anzahl die Berechnung abgebrochen werden
kann, wenn die Losung gut genug ist oder sich nicht mehr viel dndert. Das ist der Fall,
wenn beispielsweise der MSE-Wert klein genug ist. Insbesondere ist anhand der MSE-
Werte aus der letzten Zeile mit 3000 Iterationen zu erkennen, dass die Losung nur
noch sehr langsam besser wird und deswegen eine grofse Anzahl an Iterationen not-
wendig ist, um eine erkennbare Verbesserung zu erzeugen. Fiir alle gefalteten Bilder
ist abzulesen, dass der MSE-Wert immer abnimmt und insbesondere immer kleiner ist
als der MSE-Wert des gefalteten Bildes.

4.4 VERGLEICH

Nun sollen die Verfahren mit geeigneten Parametern bewertet und verglichen wer-
den. Dazu dient vor allem der MSE-Wert, der sich als Maf3 fiir die Qualitdt gut eignet,
da er angibt, wie sehr sich das berechnete Bild vom tatsédchlichen Originalbild unter-
scheidet. Je kleiner der MSE-Wert ist, desto besser das Ergebnis und desto besser der

Tabelle 4.10: MSE-Wertetabelle aller Verfahren im Vergleich. Es wurden die besten Ergebnisse
der Methoden verglichen. In der Zeile steht der jeweilige Ansatz, wihrend in der
Spalte das unscharfe Bild steht, auf welches das Verfahren angewendet wurde.

Verfahren ‘ Gaufs ‘ Box ‘ Zylinder
Vorher | 518,283447 | 477,993530 | 534,411377
Wiener Filter 50,765614 | 0,000004 | 0,029170

Quadratischer Variationsansatz (explizit) 266,149658 | 36,213993 | 87,931831
Quadratischer Variationsansatz (stabilisiert) | 266,138367 | 36,238888 | 87,932693
Quadratischer Variationsansatz (Fourier) 60,596283 0,000006 0,073349
Subquadratischer Variationsansatz (explizit) | 243,255356 | 11,803420 | 43,677567
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Abbildung 4.15: Zu sehen sind die Ergebnisbilder aller vorgestellten Verfahren. In diesem Fall
wurden die Ansidtze auf das Gaufi-gefaltete Bild angewendet. Oben links:
Originalbild. Oben mittig: Wiener Filter. Oben rechts: Quadratischer Variati-
onsansatz (explizit). Unten links: Quadratischer Variationsansatz (stabilisiert).
Unten mittig: Quadratischer Variationsansatz (Fourier). Unten rechts: Sub-
quadratischer Variationsansatz (explizit).

angewandte Ansatz. Es werden die besten Resultate aller Verfahren und damit die da-
zugehorigen verwendeten Parameter zum Vergleich benutzt. Anschliefiend soll eine
mogliche Erkldrung fiir die Resultate gefunden werden. Es folgt nun eine Zusammen-
fassung der MSE-Werte fiir alle gefalteten Bilder (Gauf}, Box und Zylinder).

Wie anhand der Tabelle 4.10 zu sehen ist, erzielen der Wiener Filter und der quadra-
tische Variationsansatz im Fourier-Bereich mit den gewéhlten Parametern die besten
Ergebnisse. Insbesondere stellen sie im Falle des Box- und des Zylinder-Faltungskerns
das Originalbild mit einer minimalen Abweichung wieder her. Der Wiener Filter und
der Fourier-basierte quadratische Variationsansatz liefern vermutlich deshalb so gute
Ergebnisse, da die Faltung mithilfe der Fourier-Transformation realisiert wurde. Da
deren Berechnungen ebenfalls im Fourier-Bereich stattfinden, werden die Nachteile
der Fourier-Transformation riickgangig gemacht und gute Resultate erzielt. Die an-
deren Variationsansitze liefern im Falle des Box- und des Zylinder-gefalteten Bildes
auch gute Ergebnisse, die durch weitere Iterationen verfeinert werden koénnen. Al-
lerdings ist anhand der MSE-Werte fiir das Gauf3-gefaltete Bild abzuleiten, dass der
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Abbildung 4.16: Zu sehen sind die Ergebnisbilder aller vorgestellten Verfahren. In diesem
Fall wurden die Ansétze auf das Box-gefaltete Bild angewendet. Oben links:
Originalbild. Oben mittig: Wiener Filter. Oben rechts: Quadratischer Variati-
onsansatz (explizit). Unten links: Quadratischer Variationsansatz (stabilisiert).
Unten mittig: Quadratischer Variationsansatz (Fourier). Unten rechts: Sub-
quadratischer Variationsansatz (explizit).

explizite quadratische, der stabiliserte explizite quadratische und der explizite sub-
quadratische Variationsansatz den MSE-Wert im Vergleich zum Wert des vorherigen
gefalteten Bildes nur halbieren konnten. In diesem Fall ist eine Verfeinerung entwe-
der durch weitere Iterationen oder durch Anpassung der Parameterwerte, besonders
« zur Regulierung der Glattheit, moglich. Der explizite subquadratische Ansatz er-
zielt bessere MSE-Werte als der explizite quadratische und der stabilisierte explizite
quadratische Variationsansatz. Das ldsst sich darauf zuriickfiihren, dass der subqua-
dratische Variationsansatz die Kanten besser erhilt und damit schirfere Bilder liefert.
Die MSE-Werte des expliziten quadratischen und des stabilisierten expliziten quadra-
tischen Variationsansatzes unterscheiden sich nur geringfiigig. Der Grund dafiir sind
die gleichen Parameterwerte. Zu betonen ist dennoch, dass das stabilisierte Verfahren
tiber die Moglichkeit verfiigt, schneller Ergebnisse zu erzielen, da die Stabilisierung
die Wahl groflerer Werte fiir die Zeitschrittweite T erlaubt.
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Abbildung 4.17: Zu sehen sind die Ergebnisbilder aller vorgestellten Verfahren. In diesem Fall
wurden die Ansétze auf das Zylinder-gefaltete Bild angewendet. Oben links:
Originalbild. Oben mittig: Wiener Filter. Oben rechts: Quadratischer Variati-
onsansatz (explizit). Unten links: Quadratischer Variationsansatz (stabilisiert).
Unten mittig: Quadratischer Variationsansatz (Fourier). Unten rechts: Sub-
quadratischer Variationsansatz (explizit).

Es folgt die Darstellung der Ergebnisse als Bilder. In den Abbildungen 4.15, 4.16 und
4.17 sind die resultierenden Bilder der Verfahren fiir die drei Unscharfeeffekte (Gaufs,
Box und Zylinder) zu sehen.

Insgesamt ldsst sich feststellen, dass alle Verfahren die Bildqualitdt im Vergleich zu
vorher verbessern. Vor allem bei den Variationsansdtzen hingt die Qualitdt des Resul-
tats von den Werten der Parameter ab, da eine Abhéngigkeit zwischen ihnen besteht
und sich das auf die Berechnung auswirkt. Die besten Ergebnisse erzielten der Wiener
Filter und der Fourier-basierte quadratische Ansatz. Dennoch bilden die anderen Va-
riationsansédtze eine Alternative zu diesen Verfahren, insbesondere da ihre Ergebnisse
durch weitere Iterationen verbessert werden kénnen.
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5. ZUSAMMENFASSUNG UND AUSBLICK

5.1 ZUSAMMENFASSUNG

Das Thema der Dekonvolution, also der sogenannten Entfaltung, beschiftigt sich mit
der Rekonstruktion unscharfer Bilder, bei der ihre Qualitit verbessert werden soll. Das
Ziel ist also, durch eine Berechnung das Bild schérfer werden zu lassen. In der Einlei-
tung wurde zunichst gezeigt, dass das Thema besonders im Alltag bei der Aufnahme
von Fotos Anwendung findet und die Entwicklung geeigneter Methoden daher not-
wendig ist. Es folgte eine Zusammenfassung mathematischer Grundlagen, die zum
Verstdandnis der spéter vorgestellten Ansidtze notwendig sind. Im anschlieffenden Ka-
pitel wurden dann die einzelnen Methoden vorgestellt. Die Verfahren lassen sich dabei
in zwei Gruppen aufteilen: die Fourier-basierten und die variationalen Ansitze. Zur
ersten Gruppe gehoren das Inverse Filtern und der Wiener Filter. Ihre Vorgehenswei-
se basiert auf der Fourier-Transformation des unscharfen Bildes und der dortigen Be-
rechnung. Variationale Ansétze hingegen 16sen ein Optimierungsproblem, bei dem ein
Energiefunktional minimiert werden soll. Es wird dabei unterschieden zwischen qua-
dratischen und subquadratischen Variationsansitzen. Vorgestellt wurde das explizite
und das stabilisierte explizite Losungsverfahren mit Gradientenabstieg fiir quadra-
tische Variationsansdtze. Danach wurde eine schnellere Variante im Fourier-Bereich
gezeigt. Der subquadratische Variationsansatz wurde ebenfalls mit einem expliziten
Verfahren gelost.

Bei der abschliefSfenden Evaluation der verschiedenen Verfahren wurden zunéchst ge-
nerelle Grundbedingungen zu den Experimenten vorgegeben. Da alle Verfahren tiber
Parameter verfiigen, welche die Qualitdt der Berechnung beeinflussen, wurden zuerst
ihre Auswirkungen jeweils getestet, um passende Parameterwerte fiir den Vergleich
zu finden. Anschlieffend wurden die Ansédtze bewertet und miteinander verglichen.
Dabei stellte sich heraus, dass der Wiener Filter und der Fourier-basierte quadrati-
sche Variationsansatz die besten Ergebnisse liefern. Vor allem beim Box- und beim
Zylinder-gefalteten Bild wurde eine fast exakte Wiederherstellung erzielt. Der sub-
quadratische Variationsansatz erzeugt bessere und insbesondere schirfere Bilder als
die quadratischen Ansétze, da die Kanten durch die subquadratische Funktion besser
erhalten, hohe Frequenzen jedoch geglittet werden. Dennoch bilden der explizite qua-
dratische, der stabilisierte explizite quadratische und der explizite subquadratische
Variationsansatz eine gute Alternative, da ihre Ergebnisse durch weitere Iterationen
verfeinert werden kdnnen. Zudem héngt ihre Qualitdt von der Wahl geeigneter Para-
meterwerte ab. Die Ergebnisse sind unter Vorbehalt zu betrachten, da die Faltung aus
Komplexitadtsgriinden mithilfe der Fourier-Transformation realisiert wurde und damit
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die Resultate beeinflusst. Bei einer Berechnung der Faltung auf herkémmliche Wei-
se wiirden die Variationsansidtze wahrscheinlich bessere Ergebnisse erzeugen als die
Fourier-basierten Verfahren.

5.2 AUSBLICK

In diesem Abschnitt sollen weitere Moglichkeiten aufgefiihrt werden, die bei den Ex-
perimenten dieser Arbeit aufgrund von Komplexitdtsgriinden oder zur Vereinfachung
nicht berticksichtigt oder ausgelassen wurden.

5.2.1 Faltungskerne

Um in dieser Arbeit die Unschirfeeffekte, die in Bildern auftreten konnen, zu mo-
dellieren, wurden ausschliefslich symmetrische Faltungskerne benutzt. Nicht getestet
wurden nicht-symmetrische Faltungskerne, die in eine beliebige Richtung verschoben
wurden. Daraus ergeben sich neue gefaltete Bilder, die mit den hier erzeugten Bildern
nicht tibereinstimmen. Zu beachten ist bei Experimenten mit nicht-symmetrischen
Faltungskernen, dass bei der Faltung der Fall auftreten kann, dass eine gespiegelte
Version des Faltungskerns verwendet werden muss. Dies tritt beispielsweise bei den
Variationsansitzen auf, bei denen wahrend des Rechenprozesses das zu berechnen-
de u zwei Mal mit dem Faltungskern gefaltet werden muss. Solche Besonderheiten bei
nicht-symmetrischen Faltungskernen miissen beriicksichtigt werden, um ein korrektes
Ergebnis zu gewdhrleisten.

Eine weitere Moglichkeit, die mit den Faltungskernen zusammenhingt, ist, andere
Faltungskerne zu verwenden. In dieser Arbeit wurden fiir die Modellierung von Un-
scharfeeffekten Box-, Zylinder- und Gauf3-Faltungskerne verwendet. Allerdings ist es
moglich, noch andere Funktionen zu nutzen, um Faltungskerne zu erstellen, die wie-
derum andere Auswirkungen auf das Ursprungsbild haben. Dadurch ist es moglich,
die Verfahren auf diese neuen Bilder anzuwenden und ihre Qualitit weiter zu testen.

5.2.2  Rauschen

Beim Rauschen handelt es sich um einen Storeffekt in Bildern, der in dieser Arbeit aus-
gelassen wurde, da die Verfahren ausschliefslich auf Unschérfeeffekte getestet werden
sollten. Um Rauschen zu erzeugen, wird der urspriingliche Wert von Pixeln verdndert.
Dabei gibt es unterschiedliche Vorangehensweisen. Eine Moglichkeit ist additives Rau-
schen. Hierbei wird zum Originalbild ein Rauschwert addiert. Einerseits kann der
Wert beispielsweise aus einer konstanten Funktion oder aus einer Gaufs-Funktion
gewdhlt werden. Die Alternative ist multiplikatives Rauschen, bei dem zum Origi-
nalwert ein Teil dieses Wertes hinzuaddiert wird. Diese beiden Moglichkeiten zum Er-
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zeugen von Rauschen beziehen sich auf alle Pixel. Es ist auch moglich, eine zuféllige
Anzahl an Pixeln zu wéhlen und ausschliefilich deren Wert zu verdndern. Ein Beispiel
hierfiir ist, den Wert entweder auf den hochsten oder niedrigsten Grauwert zu setzen.
Es wird ein sogenanntes Salt-and-Pepper Rauschen erzeugt.

Wird Rauschen in einem Bild verwendet und faltet es anschliefSend, so kann es sein,
dass die Verfahren an diese Aufgabe angepasst werden miissen oder sich teilwei-
se gar nicht mehr eignen. Daher muss das bei Experimenten mit solchen Bildern
berticksichtigt werden.

5.2.3 Faltung

Die Faltung wurde in dieser Arbeit immer durch eine Fourier-Transformation, an-
schlielende Multiplikation im Fourier-Bereich und darauf folgende Riicktransforma-
tion berechnet. Diese Methode spart Rechenzeit, da sie schneller zu berechnen ist,
weswegen sie fiir die Erzeugung von gefalteten Bildern verwendet wurde. Allerdings
ist es moglich, die Faltung auch auf die herkommliche Weise zu berechnen, was
eventuell die Resultate mancher Verfahren beeinflusst und insbesondere die Variati-
onsansidtze bessere Ergebnisse als die Fourier-basierten Anséitze liefern lassen wiirde.
Dies gewdhrleistet eine korrekte Faltung, ohne die im Fourier-Bereich angenommene
unendliche Fortsetzung des gefalteten Signals. Wie bereits erwéhnt, benotigt diese Art
der Faltung mehr Rechenzeit, da fiir jedes einzelne berechnete Pixel die Werte aller
anderen Pixel mit in die Berechnung einfliefSen.

5.2.4 Weitere Verfahren

In dieser Arbeit wurden einige Ansétze vorgestellt, um unscharfe Bilder durch Berech-
nung wieder zu rekonstruieren. Hierbei handelt es sich allerdings nur um eine bei-
spielhafte Auswahl an Verfahren, die auf dieses Problem angewendet werden konnen.
Es gibt noch weitere Ansitze, die es moglich machen, eine Entfaltung des Bildes zu be-
rechnen. Insbesondere wurde bei den hier vorgestellten Methoden die Kenntnis tiber
den Faltungskern, der auf das Ursprungsbild angewendet worden war, genutzt, um
das Ursprungsbild genauer und effizienter zu berechnen. Daher handelte es sich da-
bei um nicht-blinde Dekonvolution. Allerdings ist dies in der Realitét tiblicherweise
nicht der Fall, den genauen Faltungskern zu kennen. Es gibt Berechnungsweisen, die
sogenannte blinde Dekonvolution durchfiihren, wie unter anderem in [9] und [10]
gezeigt wird. Dabei wird neben der Berechnung des Ursprungsbildes auch versucht,
den dazugehorigen Faltungskern zu bestimmen und auf diese Weise das Optimum
zu erhalten. Diese Methoden erfordern weitere Berechnungsvorschriften, die tiber die
hier vorgestellten Verfahren hinausgehen, wobei meist Variationsansétze verwendet
werden.
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5.2.5 Weitere Bilder

Fiir die Versuche zur Qualitdt der Verfahren wurde als Ursprungsbild das Bild des Ka-
meramanns genutzt. Eine mogliche Erweiterung der Experimente ist die Verwendung
anderer Bilder in Graustufen. Daran konnen die beschriebenen und weitere Methoden
ebenfalls getestet werden. Aufserdem ist eine Ausweitung auf farbige Bilder moglich.
Allerdings benoétigt dies auch einen Ausbau der Verfahren, da sie bisher nur auf Bilder
in Graustufen ausgelegt sind. Farbige Bilder sind meist in mehrere Farbkanile aufge-
teilt. So haben beispielsweise Bilder im RGB-Format drei Farbkanile, in denen jeweils
der Anteil der entsprechenden Farbe gespeichert ist. Vorstellbar ist dies als eine Spei-
cherung von drei Bildern in der jeweiligen Farbe, die zusammengesetzt das eigentliche
farbige Bild ergeben. Daher ist fiir die Verfahren nétig, die Berechnung auf die einzel-
nen Farbkanile auszuweiten und jeden separat zu bestimmen, um das urspriingliche
Bild zu berechnen. Da die Farbkanile gemeinsam das Bild ergeben, besteht dennoch
eine weitere Abhdngigkeit, weswegen die bisherigen Berechnungsvorschriften nicht
ausreichen und entsprechend an den bestehenden Fall angepasst werden miissen. Da-
her erfordert die Erhaltung gemeinsamer Kanten der Farbkanile im Bild erweiterte
Modelle.
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