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Kurzfassung

Die Lattice Boltzmann Methode ist ein beliebtes Verfahren zur Simulation von Stréomungen v.a. wegen
der schnellen Berechnung. Bei diesem mesoskopischen Modell wird die Fluidbewegung mithilfe von
probabilistischen Verteilungen erzeugt. Diese werden auf dem Gitter an umliegende Punkte tibertragen,
was dann den Fluss bildet. Die Verteilung werden tiber die Beriicksichtigung der Partikelkollisionen
bestimmt.

Fiir die Kopplung mit der Festkorper-Simulation miissen verschiedene Probleme geldst werden. So
muss diese in den Programmablauf integriert werden und die Festkorper in das Gitter der Lattice
Boltzmann Methode. Dann miissen neue Randbedingungen definiert werden, da die Festkorper nicht
diskretisiert sind. Eine Folge der Kopplung ist auch, dass nun Initialisierungsverfahren fiir Zellen
benotigt werden. Zuletzt miissen noch die Festkérper vom Fluid angetrieben werden.

Die Kopplungsverfahren werden analysiert. Dabei wird besonderen Wert auf die Echtzeitfahigkeit
gelegt. Es sollen sich sowohl die Lattice Boltzmann Simulation, als auch die Festkorper richtig
verhalten. Dafiir wird iberprift, ob die Erhaltungssétze der Lattice Boltzmann Methode noch gelten,
und das Stromungsbild untersucht. Bei den Festkorpern wird auf richtige Beschleunigung und Rotation
getestet. Fur den Vergleich der Verfahren werden die Unterschiede nicht analytisch, sondern optisch
bestimmt, da der Benutzer die Simulationsergebnisse in Echtzeit visuell wahrnimmt. Dazu gehort
auch die Untersuchung der Laufzeit.
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1. Einleitung

Stromungssimulation wird in vielen Felder der Forschung genutzt. So kénnen z.B. die aerodynami-
schen Eigenschaften von Fahrzeugen oder das Verhalten eines Feuers in Brandszenarien (siehe [Pfi12])
analysiert werden. Es werden aber auch in der Computergrafik immer haufiger realistische Simulatio-
nen verlangt. Bei den Special Effects in der Filmindustrie wird sehr hohen Wert auf Realismus gelegt
und es werden deshalb aufwendige Simulationen verwendet, auch fiir Strémungen. Mit der immer
weiter zunehmenden Leistung der Heim-PCs wird auch in der Spieleindustrie bei Computerspielen
verstiarkt auf das Simulieren von physikalischen Vorgiangen gesetzt. Um die Stromungssimulation
auch effektiv nutzen zu kénnen, muss sie ausreichend adaptiv sein, damit sie sich dem fiir den Nutzer
interessanten Anwendungsfall anpassen kann. Dazu gehort auch die in dieser Arbeit behandelte
Kopplung von Stromungssimulation und Festkdrpern.

Fiir die Simulation von Stromungen gibt es verschiedene Modelle. Diese kann man in drei Kategorien
unterteilen:

 makroskopische Modelle
» mikroskopische Modelle
» mesoskopische Modelle

Makroskopische Modelle betrachten das Fluid als eine Einheit. Sie berechnen die Fluideigenschaften
ohne Riicksicht darauf zu nehmen, dass das Fluid eigentlich aus Partikeln besteht. Diese Modelle
werden durch partielle Differenzialgleichungen beschrieben. Makroskopische Modelle bei Stromungen
sind die Navier-Stokes-Gleichungen und deren Erweiterungen. Genaueres zu diesen erfihrt man in
[Con38].

Im Gegensatz zu den makroskopischen Modellen ignorieren die mikroskopischen das Gesamtbild
und betrachten stattdessen die einzelnen Partikel des Fluids. Dabei werden die Wechselwirkungen
zwischen den Fluidpartikeln und deren resultierende Bewegung berechnet. Dadurch erhilt man
ein Stromungsbild auf dem Gebiet. Zu den mikroskopischen Modellen zdhlt die Molekulardynamik,
welche in [Rap04] erldutert wird.

Die mesoskopischen Modelle bilden einen Mittelweg zwischen den makroskopischen und mikrosko-
pischen. Sie haben eine grobkornige Darstellung des Fluids dhnlich wie bei den makroskopischen
Modellen, beriicksichtigen aber noch die Eigenschaften der Partikelkollisionen, wie es bei den mi-
kroskopischen Modellen iiblich ist. Zu diesen mesoskopischen Modellen z&hlt die Lattice Boltzmann
Methode (LBM).

Bei den Modellen wird weiterhin noch zwischen Lagrange’schen und Euler’schen Methoden unter-
schieden.



1. Einleitung

Lagrange’sche Methoden betrachten jeweils die einzelnen Partikel des Fluids und verfolgen diese
im Gebiet. Dabei kénnen die Partikel auch aus groflen Atom- bzw. Molekiil-Gruppen bestehen. So
teilt die Smoothed Particles Hydrodynamics (SPH) Methode das Fluid in Partikel und approximiert in
jedem Zeitschritt deren Eigenschaften mithilfe von Integralinterpolation. [Mon92] liefert einen guten
Einstieg fiir weitere Recherchen beziiglich SPH.

Bei Euler’schen Methoden hingegen hat man mehrere ortsfeste Beobachter, die die Eigenschaften
des Fluids an einer bestimmten Stelle auf dem Gebiet bestimmen. Bringt man diese Beobachter in
uniformen Abstinden auf dem Gebiet an, erhalt man ein Gitter. Daher arbeiten Euler’sche Methoden
meist auf Gittern. Dazu gehort auch die Lattice Boltzmann Methode. Diese berechnet verschiedene
Eigenschaften des Fluids, wie z.B. die Dichte oder die Stromungsgeschwindigkeit, fiir jeden Gitter-
punkt.

In dieser Arbeit wird die Lattice Boltzmann Methode verwendet, da diese u.a. aufgrund des lokalen
Operators sowohl einfach zu implementieren, als auch schnell zu berechnen ist. Damit wird das
Erreichen einer Simulation in Echtzeit ein realistisches Ziel.

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 — LBM Grundlagen: Hier werden die Grundlagen der Lattice Boltzmann Methode be-
schrieben.

Kapitel 3 — Kopplungsmethoden und Implementierung stellt die verwendeten Kopplungsme-
thoden vor und liefert Hinweise fiir die Implementierung.

Kapitel 4 — Anwendung und Analyse zeigt eine Anwendung und die Analyse der vorgestellten
Methoden.

Kapitel 5 — Fazit und Ausblick fasst die Ergebnisse der Arbeit zusammen und liefert einen Aus-
blick.
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2. LBM Grundlagen

Die Lattice Boltzmann Methode ist ein Verfahren zur Simulation von Strémungen auf einem Gitter. Sie
arbeitet auf mesoskopischer Skala und somit mit Populationen auf den Gitterpunkten. Verteilungen
beschreiben den probabilistischen Ubergang von Fluid auf die umliegenden Punkte. Die Berechnungen
dieser Verteilungen beziehen die Eigenschaften der Partikelkollisionen mit ein. Ein Zeitschritt der
Simulation besteht aus dem Berechnen und darauf folgenden Ubergeben der Verteilungen an die
angrenzenden Gitterpunkte. Auf dem Rand des Gebietes werden Randbedingungen definiert.

Die Korrektheit des Verfahrens wird mithilfe der Chapman-Enskog-Erweiterung bewiesen. Diese
zeigt die Approximation der Navier-Stokes-Gleichungen.

2.1. Die Lattice Boltzmann Methode

Bei der Lattice Boltzmann Methode handelt es sich um einen zelluliren Automaten. Ein solcher wird
mit folgenden Grofien beschrieben:

« ein Raum/Gebiet €2

« eine Nachbarschaft NV

« eine Zustandsmenge L

« eine Zustandsiibergangsfunktion ¢ : LY — L

Fiir das Gebiet €2 wird das LBM-Gitter verwendet. Eine Nachbarschaft N muss gew#hlt werden. Fiir
den 2D-Fall wird hier das D2Q9-Modell verwendet. Dieses wird in Abbildung 2.1 dargestellt. Dabei
bewegen sich die Fluidpartikel mit einer diskreten Geschwindigkeit c; in i-Richtung (i € {0, ..., 8}).
Die Partikel konnen sich in einem Zeitschritt nur um eine Zelle weiterbewegen, d.h. es gibt ein
festes Ax, das in jeder Richtung jeweils den Abstand zum néichsten Gitterpunkt betragt. Das fithrt in
Verbindung mit den diskreten Geschwindigkeiten c; zu einem festes At, also einen festen Zeitschritt.
Das hat den Vorteil, dass man nicht extra die obere Schranke des Zeitschrittes bestimmen muss, wie
z.B. bei makroskopischen Modellen auf Basis der Navier-Stokes-Gleichungen.

Auf den Gitterpunkten der Lattice Boltzmann Methode sind Populationen von Fluidpartikeln vorhan-
den. Da deren Werte kontinuierliche, reelle Zahlen sind, setzt man die Zustandsmenge I. = R. Unter
der Annahme von molekularem Chaos kann die Zustandsiibergangsfunktion 9, die die Verteilung
dieser Populationen in jedem Zeitschritt bestimmt, mithilfe der Boltzmann-Gleichung berechnet

11



2. LBM Grundlagen

co = 0(8)
cL = c(é)
C2 = C<—O1)
cs= ()
ca= )
C5 = C(_11)
c6= (7))
cr= ()
cs = cfy)

Abbildung 2.1.: Darstellung des D2Q9-Modells auf einem Gitterpunkt mit den dazugehorigen Ge-

schwindigkeiten. Die Nummerierung der Pfeile entspricht der Richtung i. ¢ = %

wird zum Beginn der Simulation festgelegt.

werden. Molekulares Chaos geht davon aus, dass die Geschwindigkeiten von kollidierenden Fluidpar-
tikeln unabhéngig sind von der Position und nicht korrelieren. Hier wird wie in [Lad94] ein diskretes
Gegenstiick der Boltzmann-Gleichung verwendet:

(2.1) filx + ciAt, t + At) — fi(x,t) = Ai(f)

A;(f) ist dabei der Kollisionsterm. f; mit ¢ = 0, ..., 8 sind die Verteilungen in der entsprechenden
i-Richtung. Die Boltzmann-Gleichung wird in zwei Schritte geteilt.

(2.2) fi*(X, t) = fi(xv t) + Az(f)
(2.3) fi (X + c; At t + At) = I (X, t)

(2.2) wird Kollisionschritt, (2.3) Strémungsschritt genannt. Bei diesem Zwei-Schritt-Verfahren handelt
es sich um ein Push Schema, da die Verteilungen direkt nach der Kollision propagiert werden. Dieser
Vorgang wird in Abbildung 2.2 verdeutlicht. Im Gegensatz dazu werden bei der Pull-Variante die
Verteilungen am Anfang eines Zeitschrittes aus den umliegenden Zellen ausgelesen. Die verschiedenen
Propagierungsschritte werden in [WZHW94] erlautert.

Als Kollisionsterm A;( f) wird hier der BGK-Operator verwendet:

(2.4) Nilf) = ——(fi= fi*)

T ist die Relaxationszeit des Gitters. Diese bestimmt wie schnell sich das Fluid an das Gleichgewicht
annahert und hat direkten Einfluss auf die Viskositit v des Fluids.

(2.5) v = 2dt(t — 0.5)

12



2.1. Die Lattice Boltzmann Methode

N 1 e
\1/ Kollisionsschritt '\T/' Stromungsschritt
Zi< — Zi< = Ui
b

Abbildung 2.2.: Darstellung der Verteilungen iiber einen Zeitschritt hinweg fiir eine Zelle mit ihren
Nachbarn.

Dabei ist c; = % die Lattice-Schallgeschwindigkeit.

/{9 ist die Equilibriumsfunktion. Sie approximiert mithilfe einer Taylor-Entwicklung die Maxwell-
Boltzmann-Gleichgewichtsverteilung f(°) und damit die stationire Lésung der Boltzmann-Gleichung,
also das lokale Gleichgewicht.

—4 -2
Cs (Ci . u)2 _ Cs u2

26)  f1(xt) = [ (p(x, 1), u(x, 1) = wip |1+ c5%e; - ut =

Als Parameter werden Dichte und Flussgeschwindigkeit an einem Gitterpunkt an der Stelle x benétigt.
Diese beiden Werte werden aus den einkommenden Verteilungen berechnet.

8
(2.7) p(x,t) = 2 fi

8
(2.8) u(x,t) = ﬁg{)ﬁci

Die Gewichte w; fur das D2Q9-Modell sind wie folgt:

(2.9) wo= 3
(2.10) Wwigsa= &
(2.11) w5678 = 30

Eine Gewichtung ist notwendig, da sich die Langen der diskreten Geschwindigkeiten c; unterscheiden
und beriicksichtigt werden miissen.

Damit ein LBM-Modell korrekt funktioniert, miissen die Erhaltungssitze der Navier-Stokes-
Gleichungen gelten. Das sind Massenerhaltung, Impulserhaltung und Energieerhaltung. Eine Anwen-
dung dieser Sitze findet sich in [Sch08]. Darin wird u.a. die Massenerhaltung und Impulserhaltung
definiert.

13



2. LBM Grundlagen

Fir die Massenerhaltung muss gelten:

(2.12) <Z ffq> —p= 0
(2.13) ZAz<f) -0

Fir die Impulserhaltung muss gelten:

(2.14) (Z fchl) —pu= 0

(2.15) S Aci= 0

Fir eine ausfihrlichere Einfithrung der LBM-Grundlagen werden [Suc01] und [WG00] empfohlen.

2.2. Randbedingungen

Hier werden vier Arten von Randbedingungen vorgestellt. Periodische Randbedingungen stellen
sinnvolle Ergebnisse sicher, auch wenn das Feld nicht durch Wénde begrenzt ist, no-slip bounce-back
Randbedingungen beschreiben die Abstoffung von einer Wand. Zusétzlich werden auch noch Ein-
und Ausfluss als Randbedingung definiert.

Im Allgemeinen gibt es ein Gebiet 2. Dieses Gebiet hat den Rand 0f2. Das Verhalten von f;(x +
c;At,t + At) ist dabei nicht vollstindig spezifiziert, wenn x + ¢; At € 92 oder wenn x € 92 und
x + ¢; At € (). Das sind die Verteilungen, die vom Gebiet in den Rand fithren, und die, die vom Rand
in das Gebiet zuriickkommen. Randbedingungen miissen diese Verteilungen definieren, damit die
LBM mit dem Rand umgehen kann.

2.2.1. Periodische Randbedingungen

Die einfachste Methode ist die der periodischen Randbedingungen. Dabei werden Verteilungen, die auf
den Rand treffen, auf die andere Seite des Gebiets iibertragen. Dies erreicht man, indem man fiir jede
Richtung (auler ¢ = 0) an der jeweiligen Seite des Rands eine Replikation des Gebietes legt. Bei dem
D2Q9-Modell legt man also das Feld acht mal um sich herum und hat dann einen neun Felder Wiirfel.
Da die LBM lediglich mit den benachbarten Gitterzellen arbeitet, benétigt man nur eine Zellschicht
der Kopien um das eigentliche Gebiet herum. Diese wird in Abbildung 2.3 veranschaulicht.

Wihrend des Stromungsschrittes dienen die Replikationen als Referenz auf das Feld. Die Verteilungen
werden dann in die passende Gitterzelle geschrieben.

14



2.2. Randbedingungen

(2,2) (0,2) (1,2) (2,2) (0,2)

(2,0) (0,0) (1,0) (2,0) (0,0)

(2,1) (01) | (1.1) | (21) (0,1)

(2,2) 02) | 1.2) | (2,2) (0,2)

(2,0) (0,0) | (1,0) | (2,0) (0,0)

Abbildung 2.3.: Imaginire Zellschicht um das Gitter, die zeigt, wohin Verteilungen gestreamt werden.

2.2.2. No-slip bounce-back Randbedingungen

Befindet sich am Rand des Fluids eine feste Wand, werden im Rahmen der vorliegenden Arbeit
no-slip bounce-back Randbedingungen verwendet. Wande werden in das LBM-Gitter integriert,
indem dry-nodes und wet-nodes definiert werden. Dry-nodes sind Gitterpunkte, die zur Wand zahlen,
wet-nodes sind Fluidgitterpunkte. So konnen auch komplexe Geometrien verwendet werden, indem
man passende Gitterpunkte in dry-nodes dndert. Um die von der Wand reflektierten Verteilungen
zu bestimmen, muss man festlegen, wo sich der Rand der Wand, also die Wand-Fluid-Grenze, in
der Simulation befindet. Dabei werden zwei Fille unterschieden: Die Grenze liegt genau auf den
dry-nodes, on-grid genannt, oder genau zwischen dry-nodes und wet-nodes, also mid-grid. Hier
wurde die on-grid Variante benutzt. Diese reflektiert die ausgehenden Verteilungen auf den gleichen
Fluidpunkt zuriick. Abbildung 2.4 veranschaulicht dieses Verfahren.

Rechnerisch erhélt man die einkommenden Verteilungen an einem Fluidpunkt vom Rand wie folgt:

f4 (X, t+ At) = f; (X, t)
(2.16) Frx, b+ AD = f2(x,1)
fa(xt+At) = fi(x,1)

Diese Methode funktioniert nur fiir statische Wénde, kann aber auf bewegliche wie folgt erweitert
werden: Hat man einen beweglichen Rand, muss man diese Bewegung in die reflektierten Verteilungen
miteinberechnen. Dafiir wird in die Gleichung der no-slip Randbedingungen ein Geschwindigkeitsterm
eingefiigt, wie in [Neul3] vorgestellt.

2 _
(2.17) f(x,t+dt) = fi(x,t) — gwipw(ci -Vy)  miti, sodass ¢; = —¢;

S

15



2. LBM Grundlagen

Abbildung 2.4.: Verteilungen bei on-grid no-slip bounce-back Randbedingungen. Blau sind wet-
nodes bzw. vom Fluid ausgehende Verteilungen, schwarz sind dry-nodes und griin
sind von der Wand reflektierte Verteilungen. Die Zahlen entsprechen der Richtung
i.

pw = p(x,t) ist dabei die Dichte in der aktuellen Zelle, v,, die Geschwindigkeit, mit der sich die Wand
bewegt. Trotz der Bewegung des Randes geht man davon aus, dass dieser sich in jedem Zeitschritt
on-grid befindet.

2.2.3. Einfluss

Der Einfluss sorgt dafiir, dass Fluid in das Gebiet einstrémt. Da dieser Strom unabhangig vom be-
reits vorhanden Fluid im Gebiet ist, konnen die einkommenden Verteilungen ignoriert werden. Die
ausgehenden Verteilungen werden auf einen meist konstanten Wert gesetzt, der dann die Geschwin-
digkeit des Fluids in der Stromung bestimmt. Dafiir bieten sich die Equilibriumsverteilungen an. Diese
ermoglichen das Erzeugen einer Strémung mit einer bestimmten Geschwindigkeit ug und Dichte

PE-
(2.18) fi=f{"(ug, pp)

Die Equilibriumsverteilungen werden dabei wie in Gleichung 2.6 berechnet.

Zusatzlich gibt es auch ungerichtete Einstromungen. Bei diesen ,schwappt® das Fluid sozusagen
gleichméafig in das Gebiet {iber. Dabei kann man die ausgehenden Verteilungen mit einer Konstanten
cg bestimmen.

(2.19) fi = wicg

16



2.2. Randbedingungen

Poiseuille-Fluss Ein Poiseuille-Fluss ist ein spezifisches Stromungsbild, das sich unter bestimmten
Voraussetzungen in einem Kanal bilden kann. Ein Kanal ist dabei definiert als ein Gebiet, das an den
Réndern durch eine feste Wand begrenzt ist, an einer Seite einen Einfluss und an der gegeniiberlie-
genden einen Ausfluss hat. Um einen Poiseuille-Fluss zu erhalten, muss die Geschwindigkeit des
einflieBenden Fluids geringer sein, je naher der Gitterpunkt des Einflusses zum Rand ist. Das fithrt zu
einem parabelformigen Geschwindigkeitsprofil (sieche Abbildung 2.5). Die folgende Vorschrift aus

0.39
— vebclty (Magnitude)

016
0.144
0,12

0.1

006
0.044

002

Abbildung 2.5.: Geschwindigkeitsprofil eines Querschnitts der Strémung eines Poiseuille-Flusses.

[ST96] erzeugt ein solches:

y(H —y)

(2.20) u(0,y) = 4Umax 72

H ist die Hohe des Kanals, die langs zur Einfluss-Fluid-Grenze verlduft, und up,,x die maximale
Geschwindigkeit. Die feste Wand zahlt bei dieser Berechnung nicht zum Kanal. Die berechneten
Geschwindigkeiten konnen dann zur Bestimmung der Verteilungen in Gleichung (2.18) eingesetzt
werden.

2.2.4. Ausfluss

Um einen gleichmafigen Fluss zu erhalten, darf nur genau so viel Fluid das System am Ausfluss
verlassen, wie ihm am Einfluss zugefiihrt wird. Dies wird mit porous-plug Randbedingungen erreicht.
Dabei wird ein Teil des Fluids das an den Ausfluss kommt wieder zuriick reflektiert. Der Anteil wird
so gewahlt, dass die Masseerhaltung gesichert ist. Dafiir wird in [Suc01] ein r definiert mit:

U — Uin

221) r=1+4
@21) r=1+43—

u ist die Geschwindigkeit des Fluids am Ausfluss, w;, die Einflussgeschwindigkeit. Wenn v = sy,
missen keine Verteilungen reflektiert werden und » = 1. Ist u > w;;,, miissen Verteilungen tiber-
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2. LBM Grundlagen

reflektiert werden (r > 1). Dementsprechend werden bei < 1 die reflektierten Verteilungen so
gesetzt, dass die Stromung zum Ausfluss beschleunigt.

Unter der Annahme, dass © und u;, konstant ist, hat man ein konstantes » und damit konstante vom
Ausfluss reflektierte Verteilungen. Das fithrt zu einer vereinfachten Ausfluss-Randbedingung:

(2.22) fi = wica

Diese benétigt weniger Rechenzeit, da die Verteilungen nur einmalig zu Beginn der Simulation berech-
net werden. Trifft die Annahme jedoch nicht zu, kann das zu einer Verletzung der Massenerhaltung
fithren.
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3. Kopplungsmethoden und Implementierung

Koppelt man eine LBM-Simulation mit einer Festkorper-Engine kommen verschiedene Probleme
auf, fiir die man Losungen finden muss. Zuerst miissen die Festkorper in das LBM-Gitter eingebettet
werden, damit diese von der LBM-Simulation beriicksichtigt werden kénnen. Dabei wird der Fest-
korper als Wand gesehen. Da dieser sich nicht genau dem Gitter anpasst, ben6tigt man spezielle
Randbedingungen. Eine Folge der Bewegung der Festkorper ist, dass Fluidzellen reaktiviert werden,
welche passend initialisiert werden miissen. Das schlieBt den Einfluss des Festkorpers auf das Fluid ab.
Man benétigt noch den Einfluss des Fluids auf den Festkorper. Dazu ist eine Berechnung der Kraft aus
der LBM-Simulation notwendig. Diese muss noch in Translation und Rotation umgerechnet werden.
In Abbildung 3.1 werden die Vorgénge dargestellt.

Abbildung 3.1.: Veranschaulichung der Kopplungsvorgéinge. Graue Gitterzellen sind inaktiv, orange
missen initialisiert und griine deaktiviert werden. Blaue Pfeile sind Verteilungen,
die auf den Festkorper treffen, griine die reflektierten Verteilungen. Schwarze Pfeile
zeigen die Bewegungen des Festkorpers

In dieser Arbeit wird sich auf den 2D-Fall und auf kreisf6rmige Festkorper beschrankt.
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3. Kopplungsmethoden und Implementierung

3.1. Einbinden der Festkorper in die LBM-Simulation

Das Einbinden der Festkorper erfolgt auf zwei Ebenen. Einerseits muss die Festkorper-Engine in den Si-
mulationsablauf eingebunden werden, andererseits miissen die Festkorper bei den LBM-Berechnungen
beriicksichtigt werden. Die Festkorper-Engine ist hierbei fiir das Aktualisieren der Positionen und
Geschwindigkeiten der Festkorper zustandig.

Die Lattice Boltzmann Methode arbeitet mit Gitterzellen. Gitterzellen, die nun aber von einem Fest-
korper bedeckt sind, miissen fiir die Berechnungen ignoriert werden, da die LBM-Simulation nur mit
Fluidzellen arbeiten kann. Das liegt daran, dass die Lattice Boltzmann Methode die Navier-Stokes
Gleichung approximiert und damit nur fiir Fluidzellen definiert ist. Daher muss man Zellen fiir
die LBM-Berechnungen je nach Position der Festkorper deaktivieren bzw. reaktivieren. In diesem
Zusammenhang werden Zellen im Folgenden auch als aktiv/inaktiv klassifiziert. Da die Rénder von
Festkorpern selten perfekt auf den Zellgrenzen liegen, erfolgt die Auswahl der inaktiven Zellen
mithilfe eines Algorithmus. Dabei muss darauf geachtet werden, dass dieser konform mit den Kopp-
lungsmethoden arbeitet. Dies ist insbesondere fiir die Randbedingungen wichtig, da diese teilweise
davon ausgehen, dass sich der tatsiachliche Rand zwischen einem inaktiven und aktiven Gitterpunkt
befindet. Hier wurden alle Zellen, deren Zellmittelpunkt innerhalb des Festkorpers liegt, deaktiviert
(siehe Abbildung 3.2). Der Zellmittelpunkt der Gitterzelle entspricht dem Gitterpunkt des LBM-Gitters.
Uber diese Definition ist die Zuweisung der Gitterzellen einfach zu erreichen.

Abbildung 3.2.: Aktive/Inaktive Gitterzellen bei einem kreisférmigen Festkorper auf dem Gitter.
Inaktive Gitterzellen sind grau.

Fir die LBM-Berechnungen miissen bestimmte Eigenschaften der Festkérper vorhanden sein. Diese
miissen vor den Berechnungen tibertragen werden und sind:

« Position

« Radius
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3.1. Einbinden der Festkérper in die LBM-Simulation

+ Geschwindigkeit

Position und Radius werden benétigt um die Gitterpunkte dem Festkorper zuzuweisen. Die Ge-
schwindigkeit verwendet man fiir die Initialisierung reaktivierter Fluidpunkte hinter dem Festkorper.
Zusétzlich miissen nach den Berechnungen Daten an die Festkorper-Engine tibergeben werden:

« Kraft auf Festkorper

« Drehmoment der Festkorper

Kraft und Drehmoment werden wiahrend der LBM-Simulation berechnet, da dort alle notwendigen
Daten vorhanden sind. Die Festkorper-Engine verwendet diese, um den translatorischen und den
rotatorischen Anteil der Bewegung zu bestimmen.

Die explizite Aktualisierung der Festkorper in der Festkorper-Engine erméglicht, die Festkorper-
Eigenschaften nur alle n LBM-Zeitschritte zu bestimmen. Die Gréf3e von n ist abhéngig von der
maximalen Geschwindigkeit der Festkorper. Zu jeder Zeit muss gewéhrleistet sein, dass die Festkorper
sich nicht um mehr als eine Zellgrofle verschieben, da nur eine Reihe von Zellen in jedem Schritt
initialisiert werden kann. Genaueres hierzu in Abschnitt 3.3.4.

LBM-Simulation Festkoérper-Engine (RBE)
LBM-Zeitschritt ¢ < > RBE-Zeitschritt ¢
LBM-Zeitschritt ¢ + At
At ¢ Aty
n
= nAt
LBM-Zeitschritt t 4+ (n — 1)At
v v
\ LBM-Zeitschritt ¢ + nAt <€ > RBE-Zeitschritt ¢ + At, v
y

<

v

Abbildung 3.3.: Kopplung des Programmablaufs der LBM-Simulation und der Festkérper-Engine.

Abbildung 3.3 zeigt einen Ausschnitt des seriellen Programmablaufs, der die Einbindung der
Festkorper-Engine und dessen Interaktion mit der LBM-Simulation zeigt.
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3. Kopplungsmethoden und Implementierung

3.2. Randbedingungen

Bewegte Festkorper benotigen bewegliche Rander. Die entsprechenden Randbedingungen wurden
bereits in Abschnitt 2.2.2 vorgestellt. Das on-grid Verfahren kann dabei direkt auf die deaktivierten
Gitterpunkte angewendet werden.

Genauere Ergebnisse liefert eine Interpolation tiber umliegende Fluidgitterpunkte mit Beriicksichti-
gung des Abstands zum Festkorper. Dadurch wird die tatsachliche Form des Festkorpers betrachtet,
anstatt die auf die Gitterzellen zugeschnittene. Dazu wird der Abstand ¢ vom Fluidgitterpunkt zum
Rand des Festkorpers in Richtung der Geschwindigkeit c; benétigt. ¢ liegt auf dem Intervall (0, 1],
da fur ¢ < 0 der Fluidgitterpunkt inaktiv ist und fiir ¢ > 1 ein anderer Fluidpunkt zwischen dem
aktellen und dem Festkorper-Rand liegt. Ein einfaches, geometrischen Verfahren zur Berechnung von
q kann man [ITR08] entnehmen.

Mit diesem ¢ konnen die Verteilungen berechnet werden, die der Rand reflektiert. Hierfiir wird die in
[BFL01] vorgestellte Methode um den Einfluss der Dichte auf den Geschwindigkeitsterm erweitert:
filx t+dt) = 2¢f7 (x,1) + (1 = 29) £ (x = €4, t) = 2wipwgCiv 4 <

(31) * - *
fg(X,t + dt) = %fz (X’t) + 2q27qlf{ (th) - %wip’wéc’ivw q >

N DO~

Dabei werden zwei Falle unterschieden: ¢ < % und ¢ > % Das liegt daran, dass die zum Fluidgitter-
punkt reflektierten Partikel aufgrund des diskreten Ax ihren Ursprung zwischen zwei Gitterpunkten
haben miissten. Da Populationen allerdings nur auf diesen definiert sind, werden die Verteilungen
interpoliert. Je nachdem zwischen welchen zwei Gitterpunkten der Urprung der Verteilungen sein
miisste, wird dann eine andere Formel benétigt. Diese Problematik wird in Abbildung 3.4 veranschau-
licht.

— | |

I
a

Abbildung 3.4.: Darstellung der Interpolationsproblematik bei den Randbedingungen fiir ¢ > 0.5
(links) und ¢ < 0.5 (rechts). Aktive Gitterpunkte sind blau, inaktive grau. Die
schwarzen Pfeile zeigen den Weg der fiktiven zum Fluidgitterpunkt reflektierten
Partikel. Rote Pfeile symbolisieren die Verteilungen die Interpoliert werden (siehe
auch Abbildung 2.2).

Eine weitere Methode wird in [ITR08] vorgestellt. Diese vereint die beiden Interpolationsformeln
und kommt dadurch mit nur einer Formel fiir die Randabstoflung aus. Die Gleichung wird dafiir an
die hier verwendeten LBM-Formeln angepasst:

ot +dt) = o [(1—q)- f7(x —cit)
+q - fz* (Xv t)
+q- f{* (X7 t)
—2wipwécivw}

(3.2)

22



3.3. Initialisieren von neuen Fluidzellen

3.3. Initialisieren von neuen Fluidzellen

Da sich die Festkorper durch das Fluid bewegen, dndern auch die Zellen ihren Zustand von aktiv
nach inaktiv und wieder zu aktiv zuriick. Dies wird in Abbildung 3.5 veranschaulicht.

Abbildung 3.5.: Wechsel der Gitterzellen von aktiv nach inaktiv (griin) und von inaktiv nach aktiv
(orange).

Wechselt eine Zelle ihren Zustand von Fluid zu Festkorper, kann man ihren Inhalt einfach 16schen.
Das liegt daran, dass das enthaltene Fluid durch die Randbedingungen (Abschnitt 3.2) schon verdrangt
wurde und inaktive Zellen keine Werte benétigen.

Wechselt eine Zelle ihren Zustand von Festkorper zu Fluid, enthalt sie keine sinnvollen Werte fiir
die LBM-Simulation. Damit diese trotzdem stabil l4uft, miissen die Zellen mit passenden Werten
initialisiert werden. Dafiir gibt es verschiedene Methoden, die sich sowohl in ihrer Genauigkeit, als
auch in ihrer Komplexitat unterscheiden.

3.3.1. Standardinitialisierung
Die Standardinitialisierung belegt die Zelle mit Default-Werten. Es wird kein Bezug auf den um-

gebenden Fluss genommen, was diese Methode sehr schnell, aber auch sehr ungenau macht. Die
Verteilungen werden wie folgt gesetzt:

(3.3) filx,t) = w;
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3. Kopplungsmethoden und Implementierung

Das sind die Verteilungen, die fiir den Kollisionsschritt (Gleichung (2.2)) im Zeitschritt ¢ verwendet
werden. Dadurch ergeben sich folgende Werte fiir die Parameter der Equilibriumsverteilung f“?:

(3.4) p=>fi=> wi=1
1
(3.5) u=- > fiei = (0,07
Indem man die Dichte auf 1 und die Geschwindigkeit auf 0 setzt, erhélt man die einfachste, stabile

Initialisierung einer Zelle. Diese Methode nimmt an, dass der lokal eingefiihrte Fehler ausreichend
klein ist, so dass er sich schnell dem lokalen Gleichgewicht anpasst.

3.3.2. Equilibriumsinitialisierung

Eine Methode, die den Fluss und den Festkorper beriicksichtigt, ist die Equilibriumsinitialisierung.
Diese wird in [Neu13] erlautert. Dabei wird die Initialisierung in folgende Schritte aufgeteilt:

1. Interpolieren der Dichte

Fir die Dichte wird das arithmetische Mittel der Dichten der umliegenden Zellen verwendet.
Dabei gilt es zu beachten, dass nicht in jeder umliegenden Zelle auch eine Dichte vorhanden
ist, da diese teilweise vom Festkorper verdeckt und daher inaktiv sind.

2. Bestimmen der Geschwindigkeit des Flusses iiber die Geschwindigkeit des Festkorpers

Fir die Geschwindigkeit ibernimmt man die des Festkorpers am néachsten Oberflaichenpunkt.
Da hier nur kreisférmige Festkorper verwendet werden, entspricht die Geschwindigkeit an
einem beliebigen Oberflachenpunkt der des Festkorpers.

3. Berechnung der einkommenden Verteilungen

Mit Dichte und Geschwindigkeit sind alle Parameter fiir die Equilibriumsverteilung vorhanden.
Diese wird fiir die Initialisierung der Verteilungen verwendet.

(3-6) fl = fieq (uclosest’ pint)

Die erhaltenen Verteilungen f; werden im Kollisionsschritt verwendet.

3.3.3. Non-Equilibriumsinitialisierung

Die Non-Equilibriumsinitialisierung funktioniert im Prinzip wie die Equilibriumsinitialisierung. Der
Unterschied besteht darin, dass im letzten Schritt bei der Berechnung der Verteilungen auch ein
Non-Equilibriumsteil miteinbezogen wird.

Bei einem normalen LBM-Schritt werden die einkommenden Verteilungen in einem Kollisionsschritt
aus Non-Equilibriums- und Equilibriumsverteilungen berechnet. Bei der Equilibriumsinitialisierung
sind diese einkommenden Verteilungen nicht vorhanden. Daher werden sie mit den speziell berechne-
ten Equilibriumsteil approximiert. In dieser Approximation fehlt allerdings der Non-Equilibriumsteil
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3.3. Initialisieren von neuen Fluidzellen

komplett und ist daher zwangslaufig nicht optimal. Bei der Non-Equilibriumsinitialisierung wird daher
fiir die Schéatzung der einkommenden Verteilungen zusitzlich noch ein Non-Equilibriumsteil verwen-
det. Diesen erhilt man durch Extrapolation. Hier wird eine Extrapolation ersten Grades verwendet,
da auch hohere Grade kein besseres Ergebnis liefern wiirden (siehe [Cai08]). Extrapolieren ersten
Grades entspricht dem Kopieren der Non-Equilibriumsverteilungen eines benachbarten Gitterpunktes.
Die einkommenden Verteilungen werden dann mit dem arithmetischen Mittel von diesen und den
Equilibriumsverteilungen bestimmt:

fieq (uclosest> pint) + fineqex
2

(3.7) fi=
1" sind die durch Extrapolation erhaltenen Non-Equilibriumsverteilungen. Der hier verwendete
Mittelwert entspricht einem Kollisionsschritt (Gleichung 2.2) mit 7 = 2 und ist damit konform
mit dem Gedanken, dass die einkommenden Verteilungen aus einem Kollisionsschritt des letzten
Zeitschrittes stammen.

3.3.4. Grenzen der Initialisierung

Wie bereits in Abschnitt 3.1 angedeutet kann man auf diese Weise nicht beliebig viele Zellen in-
itialisieren. Das hangt mit der Interpolation der Dichten zusammen. Diese geht davon aus, dass in
manchen der umliegenden Zellen sinnvolle Werte vorhanden sind. Sobald sich der Festkérper jedoch
so schnell bewegt, dass mehr als eine Reihe von zu initialisierenden Zellen entsteht, kann dies nicht
mehr gewihrleistet werden (siehe Abbildung 3.6).

|— - ~|
-

Abbildung 3.6.: Initialisierung von Zellen in der zweiten Reihe. Orange: Zellen die normal initialisiert
werden konnen, Rot: kritische Zellen die keine Daten von umliegenden interpolieren
konnen.
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3. Kopplungsmethoden und Implementierung

Bei der Standardinitialisierung gibt es dieses Problem auch, da diese davon ausgeht, dass sich die Werte
einpendeln. Dies wird allerdings stark beeintrachtigt, wenn Zellen in mehreren Reihen initialisiert
werden.

3.4. Krafteinwirkung auf die Festkorper

Um die Kraft zu bestimmen, die das Fluid auf den Festkorper ausiibt, wird die in [ITR08] vorgeschlagene
Methode verwendet. Diese benutzt nur bereits vorhandene Komponenten und ist damit einfach und
schnell zu berechnen.

8

(3.8) Fp=> > cilfilxp,t) + fi(xs, t)| Ax/At

xp 1=0

f5(x¢, t) sind die Fluidverteilungen, die auf den Festkorper P treffen, wobei xy = xp —c;At. f;(xp,t)
sind die dazugehorigen reflektierten Verteilungen. Diese kann man in Abbildung 3.7 sehen. Ist x

Abbildung 3.7.: Die auf den Festkorper treffenden (blau) und die zugehérigen reflektierten Vertei-
lungen (griin) beispielhaft fiir einige Gitterzellen.

kein Fluidgitterpunkt, sind beide Verteilungen 0.

3.5. Bewegen der Festkorper

Grundsatzlich gibt es bei der Bewegung eines Festkorpers in einem Fluid zwei Arten zu unterscheiden:
die Translation und die Rotation um die eigene Achse.
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3.5. Bewegen der Festkdrper

3.5.1. Translation

Um diese Bewegung zu berechnen, muss zunéchst die Beschleunigung mit Hilfe des zweiten New-
ton’schen Gesetzes ermittelt werden.

Fp,
mp

(3.9) apt =

Fp; ist die Kraft F p aus Gleichung (3.8) im Zeitschritt ¢, mp die Masse des Festkorpers P. Damit
kann nun auch die Geschwindigkeit und die neue Position des Festkorpers berechnet werden.

(3.10) Vptratp = Vpytapg - Aty

(3.11) XptrAtp = XPt + Vpiyare - Aty

Dabei ist At,, der Zeitschritt der Festkorper. Fiir die Berechnungen benétigt man eine geeignete Initia-
lisierung der Position xp und Geschwindigkeit v p . Die initiale Position muss so gewéhlt werden,
dass der Festkorper sich innerhalb der Fluid-Doméne befindet, und die initiale Geschwindigkeit darf
nicht zu grof sein, da die Simulation sonst instabil wird.

3.5.2. Rotation

Um die Rotation eines Festkorpers um die eigene Achse zu bestimmen, ben6tigt man das Drehmo-
ment. Dieses wird aus der Kraft Fy,, auf den Festkorpergitterpunkt xp und dem Vektor dy,, p vom
Schwerpunkt des Festkorpers zum Randpunkt, an dem die Kraft anliegt, berechnet. Fy, leitet sich
von der Gleichung der Krafteinwirkung (3.8) her und wird zum Zeitpunkt ¢ wie folgt bestimmt:

8
(3.12) FxP,t = Zci[fi(Xp,t) +fg(Xf,t)]

1=0
Der Distanzvektor wird aus dem Schwerpunkt sp und den Koordinaten des Festkorpergitterpunktes
x p berechnet und muss noch auf die passende Grof3e skaliert werden, da die Koordinaten der Gitter-
punkte diskret sind. Bei kreisformigen Festkorpern sind alle Oberflachenpunkte gleich weit entfernt.
Als Skalierungsfaktor wird daher der Radius des Festkorpers rp verwendet.

Xp —Sp

(3.13) dso p = o
xp —sp|

P

Damit wird der Drehmoment mit folgender Gleichung berechnet, die eine auf den 2D-Fall vereinfachte
Variante der aus [Neul3] ist:

(3,14) TPt = Z((dsox,P)m(Fvat)y - (dsox,P)y(Fxp,t)x)

Xp

(*) liefert dabei die x-Komponente eines Vektors. ),  iteriert iiber die Festkorpergitterpunkte. Es
muss noch das Triagheitsmoment des Festkorpers Ip bestimmt werden. Fiir eine Scheibe gilt:

2
(3.15) Ip= %
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3. Kopplungsmethoden und Implementierung

Nun kann die Winkelbeschleunigung o p; berechnet werden.

TPt
Ip

(3.16) apt =

Damit kann Winkelgeschwindigkeit wp und Winkel ¢p fiir den nichsten Zeitschritt bestimmt
werden.

(3.17) WpttAtp = wpt +apy - Atp
(3.18) OPi+Aty = PPt + WP, - Atp

Der Winkel ¢p ;1 ist die Ausrichtung des Festkorpers P zum Zeitschritt ¢ + 1 und liegt im Intervall
[0, 360). Erhilt man einen Wert auflerhalb dieses Intervalls, wird dieser mithilfe des Modulo-Operators
korrigiert.

3.6. Implementierungshinweise

Festkoérper im LBM-Gitter Die LBM-Simulation erfolgt auf einem n x m-Zellgitter. Jede dieser
Zellen hat einen Typ (Fluid, Rand, Einfluss, Ausfluss). Der Typ muss zur Abfrage gespeichert sein.
Dafiir wird ein Flag-Gitter verwendet, in welchem unter der Position jeder Zelle ihr Typ kodiert ist.
Beim Einbinden der Festkorper muss auch dieses Flag-Gitter erweitert werden. Dafiir bieten sich zwei
Maoglichkeiten an:

1. Integration in das vorhandene Flag-Gitter mit einer neuen Flag

2. Neues Flag-Gitter, das zwischen Festkorper und nicht Festkorper unterscheidet

Das Problem bei der Integration ist, dass sich die Festkorper stindig bewegen. Dadurch miissen
die Festkorper-Flags nach jedem Festkorper-Zeitschritt aktualisiert werden. Die Standardflags der
LBM-Simulation &ndern sich nur, wenn das Gebiet manuell z.B. durch das Einfiigen von Randern
verandert wird.

Fiir den Vergleich der beiden Methoden muss die Performance von Update und Typabfrage in Betracht
gezogen werden.

Bei Methode 1 miissen bei einem Update die alten Festkorperflags entfernt und die neuen gesetzt
werden. Unter der Annahme, dass die Iteration tiber die Festkorperflags zum Entfernen bzw. Setzen
die Laufzeit O(k) hat, ist die Laufzeit des Update-Vorgangs 2 - O(k). Dabei ist k die Anzahl der
Festkorpergitterpunkte. Methode 2 schafft das Update dagegen in O(k), da die Flags nicht auf den
Ursprungswert zuriickgesetzt werden missen. Dies erreicht man u.a. mit aufsteigenden Flagwerten.
Dafiir wird bei jedem Update der aktuelle Flagwert erhoht und die Festkorperflags damit gesetzt.
Dann gilt, dass alle Flags ungleich dem aktuellen Flagwert als nicht Festkorper gelten. Das Loschen
der Flags ist erst notwendig, wenn der aktuelle Flagwert das Maximum erreicht hat und wieder auf 0
springt.

28



3.6. Implementierungshinweise

Die Typabfrage bei Standard-LBM erfolgt mithilfe von Switch-Case. Methode 1 fiigt in diese einen
zusitzlichen Case ein. Wird dieser am Ende eingefiigt, hat man Mehrkosten beziiglich der ungekop-
pelten LBM-Simulation in O(k). Bei Methode 2 benétigt man zusétzlich eine if-Abfrage. Setzt man
diese um die Switch-Case Anweisung, hat man Mehrkosten in O(n - m) (da n x m-Gitter).

Da die relativen Kosten (relativ zu k bzw n, m) des Updates hoher sind als die der Typabfrage, gilt:
Solange k nicht sehr klein ist, hat Methode 2 eine bessere Performance als Methode 1.

Parallelitat Aufgrund der Gitterstruktur ist die LBM-Simulation perfekt fiir Parallelisierung geeig-
net. Das Einbinden der Festkorper fithrt jedoch dazu, dass fiir manche Berechnungen, z.B. die der
Interpolation der Dichte bei der Initialisierung (siche Abschnitt 3.3), Daten aus anderen Zellen benétigt
werden. Dieses Problem wird hier geldst, indem alle nétigen Daten aus dem vorherigen Zeitschritt
verwendet werden, anstatt an den Gitterpunkten, an denen die Daten schon berechnet wurden, die
Werte des aktuellen Zeitschrittes zu nutzen. Dies senkt zwar die Genauigkeit der Simulation, macht
diese aber auch einfacher und damit schneller durchfithrbar. Das ist insbesondere wichtig fir die
Echtzeitfahigkeit.

Kraftberechnung Die Gleichung zur Berechnung der Kraft auf den Festkoérper (3.8) ist eine Summe
iber alle Festkorpergitterpunkte. Da diese in der LBM-Simulation ignoriert werden, miisste man am
Ende eines Zeitschrittes noch extra die Kraft bestimmen. Um den Zeitaufwand der LBM-Simulation
so gering wie moglich zu halten, wird die Kraftberechnung integriert. Betrachtet man die Gleichung
genauer, sieht man, dass alle verwendeten Variablen auch bei der Berechnung der reflektierten
Verteilungen vorkommen (Abschnitt 3.2). Dadurch kénnen die jeweiligen Komponenten der Kraft
direkt mit der Randabstoflung am Festkorper bestimmt werden.

(3.19) Fp= Y cilfilxp,t)+ fi(x;,t)]Ax/At
fg(vat)

Bindet man diese Gleichung korrekt in die Simulation - ndmlich nach dem Kollisionsschritt - ein,
erhélt man:

(3.20) Fp= Y clfif(xpt—At)+ ff(xp.t — At)|Ax/At
[ (xpt—At)

Auf diese Art und Weise wird auch die Berechnung des Drehmoments in den Simulationsablauf
integriert.
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4. Anwendung und Analyse

4.1. Stromungssimulation Talfer

Talfer ist ein 2D-Spiel, bei dem der Spieler versucht Festkorper in einen Zielbereich zu bewegen.
Allerdings existiert auf dem Spielfeld eine Stromung, die die Festkorper von diesem Zielbereich
ablenken bzw. an ihm vorbeifithren. Mithilfe einer Kinect-Steuerung kann der Spieler Einfluss auf
die Festkorper nehmen, indem er durch Armbewegungen Krifte auf sie erzeugt. Die Strémung wird
mit der Lattice Boltzmann Methode simuliert, wie in Kapitel 2 erldutert. Im Orginal-Talfer ist die
LBM-Simulation nur einseitig mit der Festkorper-Engine gekoppelt. Diese berechnet namlich die
Krafteinwirkung auf die Festkorper tiber die Geschwindigkeit des darunter liegenden Fluids, also der
Fluidgeschwindigkeit uy an dem Gitterpunkt der am nichsten zum Mittelpunkt des Festkérpers liegt.

Uy Pfi2
(4.1) Fp = — - —|us["Ap
gl 27

Ap ist der Flacheninhalt des Festkorpers P. Die Rotation wird auch mithilfe des darunterliegenden
Fluids bestimmt. Der Festkorper hat jedoch keinen Einfluss auf das Fluid. Diese Vorgénge werden
nun von den in Kapitel 3 beschriebenen Kopplungsverfahren ersetzt.

Das Spielfeld Das Spielfeld wird zu einem Gitter diskretisiert. Dabei hat jeder Gitterpunkt einen
Typ. Die moéglichen Typen sind: Wand, Fluid, Einfluss, Ausfluss, Ziel. Die Grofie und Typkonfiguration
des Spielfeld-Gitters wird aus einer Bilddatei ausgelesen, indem bestimmten Farben ein bestimmter
Typ zugewiesen wird. Das Spielfeld-Gitter wird dann als Flag-Field fiir die LBM-Simulation verwendet.
Ein Beispiel-Spielfeldbild ist in Abbildung 4.1 zu sehen.

Visualisierung Da Talfer auf Fluidstromung in 2D basiert, wird eine Visualisierung benétigt, die
diese Stromungen zeigt. Dafiir wird die Richtung der Fluidgeschwindigkeiten mithilfe von Pfeilen
dargestellt und deren Grof8e farblich kodiert. Blau steht dabei fiir eine niedrige Geschwindigkeit, Rot
fiir eine hohe. Abbildung 4.2 zeigt einen Frame der Ausgabe von Talfer.

Als Input wird das Spielfeld als Flag-Field, die Fluidgeschwindigkeiten aus der LBM-Simulation und
die Festorper-Daten aus der Festkorper-Engine benétigt. Der erzeugte Frame wird dann als Ausgabe
an den Video-Output iibergeben.
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4. Anwendung und Analyse

Abbildung 4.1.: Beipiel eines Bildes, das in ein Spielfeld konvertiert werden kann. (Schwarz: Wand,
Weif3: Fluid, Rot: Einfluss, Blau: Ausfluss, Griin: Ziel).

X FPS: 51.741294 ORESREY

H B Points: 6  Time: 206:58 [HEEN

Abbildung 4.2.: Standbild eines laufenden Talfer-Spiels.

Die vollstandige Pipeline Die einzelnen Teile des Programms werden in einer Pipeline zusam-
mengefiigt. Diese Pipeline besteht aus folgenden Modulen:

» Image Input

liest die Bilddatei des Spielfelds ein. Die Bilddatei muss dabei der besprochenen Farbcodierung
entsprechen.

« Image Processing

wandelt die Bilddaten in ein verwendbares Flag-Field um. Dabei werden die einzelnen Farben
in die dazugehorigen Flags konvertiert. Jeder Pixel wird ein Punkt des Flag-Fields.

- LBM
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4.1. Stromungssimulation Talfer

fihrt die Simulation der Lattice Boltzmann Methode durch. Dabei werden wihrend eines
Simulationsdurchlaufes mehrere LBM-Zeitschritte ausgefiihrt. Das Flag-Field wird in ein LBM-
internes Gitter konvertiert.

« RBE

implementiert die Festkorper-Engine. Sie berechnet Winkelgeschwindigkeit und Kraft fir
jeden Festkorper. Die Festkorper bestimmen dann mithilfe der seit der letzten Aktualisierung
vergangenen Zeit Position und Ausrichtung.

« Kinect

erlaubt dem Spieler eine Interaktion mit dem Programm. Er kann mit Handbewegungen Krafte
auf die Festkorper ausiiben.

« Visualisierung

wandelt die berechneten Daten in ein Bild um. Dabei werden u.a. die Richtungspfeile der
Stromung erzeugt und die Kinect-Kréfte dargestellt. Das Flag-Field wird hier wieder in Bilddaten
konvertiert.

 VideoOutput
gibt das erzeugte Bild auf dem Bildschirm aus. Dafiir wird OpenGL verwendet.

Abbildung 4.3 zeigt die Pipeline.

Video Output

Visualisierung

Kinect

v

Spielfeld- ———>
i — === Imagelnput [—— Image Processing |— LBM RBE
datei <

Abbildung 4.3.: Pipeline der Stromungssimulation Talfer. Beginn ist bei ,Image Input®. Bereits vor-
handene Komponenten sind schwarz, fiir die Kopplung eingefiigte rot.

Damit die Kopplungsmethoden korrekt implementiert werden konnten, wurde die Pipeline des
Original Talfers erweitert.
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4. Anwendung und Analyse

4.2. Analyse der Kopplungsmethoden

Die Analyse der Kopplungsmethoden gliedert sich wie folgt:
1. Verifikation
2. Vergleich der Verfahren
3. Laufzeitanalyse

Die Verifikation tiberpriift, ob unser Verfahren angemessene Ergebnisse liefert. Bevor man darauf
eingehen kann, welches der Verfahren sich besser eignet, muss gezeigt werden, dass sie sich iiberhaupt
wie erwartet verhalten.

Im Vergleich der Verfahren wird iiberpriift, welche der unterschiedlichen Verfahren, die in Abschnitt
3 vorgestellt wurden, sich besser eignet.

Bei der Laufzeitanalyse werden die Auswirkungen der Kopplungsverfahren auf die Laufzeit unter-
sucht.

Davor miissen aber noch die Modalitdten geklart werden.

4.2.1. Testmethodik

Fiir die Tests wurden die jeweiligen Kopplungsmethoden im bereits vorgestellten Talfer umgesetzt.
Als Feld wurde ein Kanal gewahlt. Dieser besteht in x-Richtung aus 2,5% feste Wand, 5% Einfluss,
85% Fluid, 5% Ausfluss und dann wieder 2,5% feste Wand. In y-Richtung ist 5% feste Wand, 90% Fluid
und wieder 5% feste Wand. Das Verhaltnis von Breite zu Hohe ist 2:1. Abbildung 4.4 zeigt den hier
spezifizierten Kanal.

Abbildung 4.4.: Das Feld, das im folgenden als Testkanal fiir die Analyse der Methoden im Talfer
verwendet wird. Der Farbcode ist analog zu dem in Abschnitt 4.1.

In diesem Kanal wird dann ein Poiseuille-Fluss erzeugt. Fiir den Ausfluss werden die vereinfachten
Randbedingungen benutzt. Die dafiir verwendeten Standardparameter sieht man in Tabelle 4.1.
Abbildung 4.5 veranschaulicht die entstehende Stromung.

In diesen bestehenden Poiseuille-Fluss wurde dann ein Festkorper eingefiigt. Wenn nicht extra
angegeben, wurde als Standardverfahren fiir die Randbedingungen die Methode von [ITR08] und fiir

34



4.2. Analyse der Kopplungsmethoden

—

%

Visualisierung des Poiseuille-Flusses im Kanal.

Abbildung 4.5.: Visualisierung des Poiseuille-Flusses im Kanal. Die Farbskala zeigt die Gré3e der
Flussgeschwindigkeit. Blau steht fiir niedrige Geschwindigkeit, rot fiir hohe.

Konstante Beschreibung Wert
Un max. Geschwindigkeit fiir den Poiseuille-Fluss 0.3
PE Dichte am Einfluss 14
cA Ausflusskonstante 0.8
T Relaxationszeit 0.66
w Breite des Feldes 400
H Hohe des Feldes 200
X0 Startposition des Festkorpers (60.0,100.0)"
Vo Startgeschwindigkeit des Festkorpers (0.0,0.0)"
rp Radius des Festkorpers 10

Tabelle 4.1.: Standardparameter fiir den bei den Tests verwendeten Poiseuille-Fluss.

die Initialisierung die Equilibriumsinitialisierung verwendet. Die Daten des Rechners, auf dem die
Tests durchgefithrt wurden, zeigt Tabelle 4.2.

4.2.2. Verifikation

Bevor die Verfahren individuell verglichen werden kénnen, muss die Korrektheit von diesen verifiziert
werden. Dabei werden zwei Teile unterschieden: Die Verifikation der LBM-Fluidsimulation und die
der Festkorper.

Art Verwendet
Prozessor Intel Quad Core i3-3225 CPU @ 3.30GHz
Arbeitsspeicher 4Gb

Tabelle 4.2.: Relevante Daten des Rechners, der fur die Tests verwendet wurde.
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4. Anwendung und Analyse

Fir die Verifikation der LBM-Fluidsimulation werden folgende Punkte untersucht:
+ Massenerhaltung
 Impulserhaltung
 Stromungsbild

Die Notwendigkeit der Massen- und Impulserhaltung leitet sich von den Navier-Stokes-Gleichungen
ab. Das Stromungsbild soll dem einer Standard-Fluidsimulation entsprechen.

Fur die Festkorper wird folgendes tiberpriift:
« Konvergenz von Geschwindigkeit und Kraft
« Anpassung der Geschwindigkeit an den Fluss
+ Rotationsrichtung

Die Festkorpergeschwindigkeit muss sich stets an die des umgebenden Flusses anpassen. Dabei miissen
Kraft und Geschwindigkeit konvergieren. Da die Rotationsgeschwindigkeit in einem konstanten Fluss
nicht konvergiert, da keine bremsenden Kréfte beriicksichtigt werden, wird nur die Rotationsrichtung
getestet.

LBM-Fluidsimulation

Die Massenerhaltung wurde tiber die Gleichungen (2.12) und (2.13) gepriift. Da es sich bei der Lattice
Boltzmann Methode um ein numerisches Verfahren handelt, sind kleinere Unebenheiten zu erwarten.
In Abbildung 4.7 sieht man die Massenerhaltung bei der ungekoppelten LBM-Simulation. Abbildung
4.7 zeigt die Differenz der Massenerhaltung von der Simulation mit und ohne Kopplung. Man kann
erkennen, dass wiahrend der Beschleunigung des Festkorpers die Massenerhaltung weniger eingehal-
ten wird. Der Wert ist allerdings nur sehr gering und kann daher vernachlissigt werden (Die Masse
des Fluids auf dem Gebiet ist ~ 80000). Sobald der Festkérper mit konstanter Geschwindigkeit mit
dem Fluss schwimmt, pendelt die Differenz um den Nullpunkt und sollte sich in etwa ausgleichen.

Das Uberpriifen der Impulserhaltung mit den Gleichungen (2.14) und (2.15) funktioniert wie das der
Massenerhaltung. Abbildung 4.8 zeigt die Grundlinie der ungekoppelten LBM-Simulation, Abbildung
4.9 die Differenz. Wie auch bei der Massenerhaltung, weichen die Impulserhaltung der gekoppelten
Simulation stérker ab, je hoher die Beschleunigung des Festkorpers ist. Die Abweichung der Impulser-
haltung ist dabei starker als die der Massenerhaltung und bleibt selbst bei konstanter Geschwindigkeit
durchgehend iiber null. Es gilt aber wieder, dass der Fehler sehr gering und dadurch vernachlassigbar
ist.

Die Graphen der Massen- und Impulserhaltung wurden mit einem Gauss-Filter mit Kernelgrofie 401,
o = 150 und p = 0 geglattet. Dabei ist zu beachten, dass durch die starke Glattung die Werte am
Rand des Definitionsbereiches sehr ungenau sein kénnen.

Um uiberpriifen zu kénnen, ob ein realistisches Stromungsbild entsteht, wurden die Geschwindigkeiten
der Stromung mithilfe einer VTK-Ausgabe und Paraview visualisiert (siehe dazu [AGL05]). Abbildung
4.10 zeigt Standbilder der Strémung.
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4.2. Analyse der Kopplungsmethoden

Abbildung 4.6.:

Abbildung 4.7.:

0.004

" Abweichungl ——
0.0035 Abweichung2 ——

0.003
0.0025
0.002
0.0015

0.001

0.0005

Abweichungen von der Massenerhaltung

0 2000 4000 6000 8000 10000
Zeitschritt

Massenerhaltung bei der Standard-LBM-Simulation. ,Abweichung 1“ bezieht sich
dabei auf die Massenerhaltung der Equilibriumsfunktion aus Gleichung (2.14), ,Ab-
weichung 2 auf die des Kollisionsoperators aus Gleichung (2.15).
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Differenz der Massenerhaltungen von gekoppelter und ungekoppelter Simulation.
,Differenz 1° bezieht sich dabei auf die aus Gleichung (2.12), ,Differenz 2 auf die
aus (2.13).
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Abbildung 4.8.: Impulserhaltung bei der Standard-LBM-Simulation. ,Abweichung 1“ bezieht sich
dabei auf die Impulserhaltung der Equilibriumsfunktion aus Gleichung (2.14), ,Ab-
weichung 2“ auf die des Kollisionsoperators aus Gleichung (2.15).

—_ 0.005 . :

0 Differenz1l —
a Differenz2 ——
£ 0.004 |

C

@

o 0.003

3

=

9]

L) 0.002

=

0

=

5 0.001

o

N

E 0 v/mpf
@

£

0 .0.001

0 2000 4000 6000 8000 10000
Zeitschritt

Abbildung 4.9.: Differenz der Impulserhaltungen von gekoppelter und ungekoppelter Simulation.
,Differenz 1° bezieht sich dabei auf die aus Gleichung (2.14), ,Differenz 2 auf die
aus (2.15).
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39
Abbildung 4.10.: Grofle der Stromungsgeschwindigkeiten zu verschiedenen Zeitschritten visualisiert
mithilfe von VTK und paraview.



4. Anwendung und Analyse

t = 60 zeigt das Stromungsbild kurz nach dem Einfiigen des Festkorpers. Es ist zu erkennen, dass sich
langsam das typische Bild entwickelt. Man sieht auch die Schockwelle, die beim Einfiigen erzeugt
wird und die die Messwerte am Anfang verfilscht.

Bei t = 300 ist die Geschwindigkeit des Festkorpers immer noch sehr gering und man sieht das
typische Stromungsbild fiir unbewegte Korper.

Bei t = 1560 ist der Festkorper schon schneller. Dadurch werden weniger Fluidpartikel um diesen
gelenkt und er treibt etwas Fluid vor sich her.

t = 2200 zeigt, dass diese Effekte mit zunehmender Geschwindigkeit des Festkorper auch mehr
werden. Bei ¢ = 3400 wird dann kaum noch Fluid um den Festkorper gelenkt und bei ¢ = 6000
schwimmt der Festkorper letzlich vollstandig mit dem Fluss mit.

Dieses Ergebnis entspricht dem erwarteten Verhalten und der Test kann damit als erfolgreich gewertet
werden.

Festkérper

Damit der Festkorper nicht unbegrenzt beschleunigt, muss die Kraft auf den Festkorper und damit
auch dessen Geschwindigkeit in einem Poiseuille-Fluss konvergieren. Abbildung 4.11 zeigt die Kraft
auf den Festkorper tiber die Zeit fiir die Kopplungsmethoden, Abbildung 4.12 die Geschwindigkeit.
An dieser Stelle reichen jeweils die x-Komponenten, da auch der Fluss nur in x-Richtung fliefit.

2y

E Kraft
4(; 35

L

C 3

]

o

5

©

s

LV

o

o

g

c

]

[ =

o

o

£

Q -05 . . . .
x 0 2000 4000 6000 8000 10000

Zeitschritt

Abbildung 4.11.: x-Komponente der Kraft die auf den Festkorper wirkt abhéngig vom Zeitschritt.
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Abbildung 4.12.: x-Komponente der Geschwindigkeit die auf den Festkorper wirkt abhingig vom
Zeitschritt.

Die Kraft-Kurve konvergiert gegen 0 und damit die Geschwindigkeitskurve gegen einen festen Wert
> (. Das zeigt, dass die Kopplungsverfahren hinsichtlich der Kraft-/Geschwindigkeitskonvergenz
korrekt sind.

Die Geschwindigkeit des Festkorpers in einem Poiseuille-Fluss muss auf der Geschwindigkeitsparabel
in dem Bereich sein, in dem sich der Festkorper befindet, da er damit weder schneller noch langsamer
als der umgebende Fluss ist. Dies wird in Abbildung 4.13 veranschaulicht.

Abbildung 4.14 zeigt das Ergebnis fiir die Standard-Kopplungsverfahren.

Die Festkorpergeschwindigkeit konvergiert gegen einen Wert im erwiinschten Bereich. Damit sind
die Kopplungsverfahren korrekt hinsichtlich der Geschwindigkeit der Korper.

Fir den Test der Rotationsrichtung wurde die Startposition der Festkorper aus der Mitte heraus
jeweils nach oben bzw. nach unten versetzt. Dadurch ist der umgebende Fluss an einer Seite des
Festkorpers schneller. Wird die Startposition nach oben verschoben, ist der Fluss an der Unterseite
schneller und es wird eine Rotation gegen den Uhrzeigersinn erwartet, analog dazu erwartet man bei
der Verschiebung nach unten eine Rotation im Uhrzeigersinn. Diesen Aufbau zeigt Abbildung 4.15.

Das Ergebnis fiir den nach unten verschobenen Festkorper zeigt Abbildung 4.16, fiir den nach oben
verschobenen Abbildung 4.17. Bei dem nach unten verschobenen Festkorper ist die Winkelbe-
schleunigung positiv. Das bedeutet, dass der Festkorper sich im Uhrzeugersinn dreht. Der nach oben
verschobene Festkorper beschleunigt wie erhofft gegen den Uhrzeigersinn. Das zeigt, dass unsere
Rotationsrichtung korrekt ist. Man sieht auch die Konvergenz gegen ein Werteintervall dessen Rén-
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Abbildung 4.13.: Giiltige Festkorpergeschwindigkeit in der Parabel des Poiseuille-Flusses. Der Be-
reich in dem die Geschwindigkeit liegen muss, ist grau markiert. —r und r begren-
zen die Lage des Festkorpers.

der beide > 0 oder beide < 0 sind. Das fiihrt zu der angesprochenen, potentiell endlos steigenden
Winkelgeschwindigkeit.

4.2.3. Ergebnis

Die Verifikation der Kopplungsverfahren war in allen getesteten Punkten erfolgreich. Es wurden
zwar nur die Graphen der als Standard festgelegten Verfahren gezeigt, jedoch wurden die der anderen
Verfahren auch getestet. Dabei waren diese stets korrekt. Die Unterschiede werden im folgenden
Abschnitt erlautert.

4.2.4. Vergleich der Verfahren

Der Vergleich der Verfahren wurde anhand mehrerer Kriterien durchgefiihrt. Dabei wurde sich in
dieser Arbeit auf die visuell erkennbaren Unterschiede beschrinkt und nicht etwa der Fehler analytisch
bestimmt. Die Kriterien sind:

+ Kraft/Geschwindigkeit des Festkorpers
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Abbildung 4.14.: Geschwindigkeit des Festkorpers im Poiseuille-Fluss. —r und r begrenzen die Lage
des Festkorpers.
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Abbildung 4.15.: Skizze des Aufbaus zum Testen der Rotationsrichtung. Der nach oben verschobene
Festkorper ist griin, der nach unten verschobene orange.
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Abbildung 4.16.: Winkelbeschleunigung des nach unten verschobenen Festkorpers abhangig vom
Zeitschritt. Positive Werte bedeuten, dass eine Beschleunigung mit dem Uhrzeiger-
sinn stattfindet.
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Abbildung 4.17.: Winkelbeschleunigung des nach oben verschobenen Festkorpers abhéngig vom
Zeitschritt. Negative Werte bedeuten, dass eine Beschleunigung gegen den Uhrzei-
gersinn stattfindet.
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« Stromungsbild
« Laufzeit

Fiir das Messen der Laufzeit wurde fiir einen Durchlauf des Programms die durchschnittliche Zeit
zwischen den Frames gemessen und daraus die durchschnittlichen FPS berechnet. Da Talfer nicht
mehr als 60 FPS ausgibt, wurde die Anzahl der LBM-Zeitschritte pro Durchlauf auf 4 erhéht. Um den
Einfluss der Festkorper zu vergrofiern, wurde zusatzlich noch der Radius auf 40 gesetzt. Damit die
Simulation stabil bleibt, wurde die Startposition des Festkorpers zu (150, 100)7 geandert.

Mehrere Methoden wurden dabei fiir die Randbedingen und die Initialisierung von Zellen vorge-
stellt.

Die Randbedingungen

Zum Vergleich stehen die Randbedingungen aus [ITR08] (Gleichung (3.2)) und die aus [BFLO01]
(Gleichung (3.1)). Abbildung 4.18 zeigt die Differenz der Kraft auf den Festkorper. An dieser erkennt
man leichte Unterschiede in der berechneten Kraft. Betrachtet man zum Vergleich die Kraft-Kurve
in Abbildung 4.11, sieht man, dass die Gré3e der Abweichung proportional zur Gréf3e der Kraft ist.
Dadurch ist diese Abweichung zu jedem Zeitpunkt relativ gering. Das erkennt man an der Differenz
der Geschwindigkeiten in Abbildung 4.19. Trotz leichter Unterschiede bei der Beschleunigung des
Festkorpers konvergieren beide Geschwindigkeiten auf ungefihr denselben Wert. Die Stromungsbilder
der Verfahren sind nahezu identisch. Dazu zeigt Abbildung 4.20 das Stromungsbild der Bouzidi-
Methode zum Zeitpunkt ¢ = 1560 zum Vergleich mit Abbildung 4.10.

ﬂé_ 04 Differenz
a

L]

L

c 0.2

[}

o

3

& 0

o

v

g -0.2

N

—

o

£ -04 +

[m) L . . .

0 2000 4000 6000 8000 10000
Zeitschritt

Abbildung 4.18.: Differenz der Krafte von der Bouzidi- und der Iglberger-Variante.
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Abbildung 4.19.: Differenz der Geschwindigkeiten von der Bouzidi- und der Iglberger-Variante.
Positive Werte bedeuten eine hohere Geschwindigkeit bei der Bouzidi-Methode.

Abbildung 4.20.: Stromungsbild der Simulation mit den Bouzidi-Randbedingungen zum Zeitschritt
t = 1560.
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Das Ergebnis fiir die Laufzeiten zeigt Abbildung 4.21. Ein Simulationsdurchlauf ist dabei ein Durchgang
der Pipeline. Die Iglberger-Randbedingungen haben hier iiberwiegend die bessere Laufzeit.
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Abbildung 4.21.: Laufzeitvergleich der Randbedingungen aus [ITR08] und [BFL01]. Der Durch-
schnitt der FPS ist iiber 100 Simulationsdurchldufe.

Initialisierungsverfahren fiir Zellen

Die verschiedenen Initialisierungsverfahren sind die Standardinitialisierung, die Equilibriumsinitiali-
sierung und die Non-Equilibriumsinitialisierung. Ahnlich wie bei den Randbedingungen haben die
Equilibriums- und die Non-Equilibriumsinitialisierung keine visuell erkennbaren Unterschiede bei
Kraft/Geschwindigkeit bzw. Stromungsbild. Auf die Prasentation von Graphen und Bildern wird
hierbei verzichtet.

Bei der Standardinitialisierung gibt es deutlich sichtbare Unterschiede. Diese entstehen aufgrund der
Tatsache, dass Zellen bewusst falsch (aber stabil) initialisiert werden und sich an den Fluss anpassen
miissen. Bei der auf den Festkorper wirkenden Kraft entstehen dadurch Peaks (siehe Abbildung 4.22)
und bei dem Stromungbild Artefakte hinter dem Festkorper (Abbildung 4.24). Die Auswirkungen
auf die Geschwindigkeit sieht man in Abbildung 4.23. Die Differenz zur Equilibriumsinitialisierung
weist ein dhnliches Zackenmuster auf wie die Kraft-Kurve. Dieses entsteht, da Fluidgitterpunkte
nur in einigen Zeitschritten reaktiviert werden und die Simulation dazwischen keine Initialisierung
vornehmen muss.

Die Laufzeiten sieht man in Abbildung 4.25. Wie erwartet hat die Standardinitialisierung aufgrund
ihrer Einfachheit die beste Laufzeit. Die Non-Equilibriumsinitialisierung benétigt mehr Zeit als die
Equilibriumsinitialisierung, weil zusétzlich noch der Non-Equilibriumsteil berechnet werden muss.
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4. Anwendung und Analyse
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Abbildung 4.22.: Kraftkurve bei der Verwendung der Standardinitialisierung.
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Abbildung 4.23.: Geschwindigkeitsdifferenz von der Verwendung der Standardinitialisierung und
der des Standardverfahrens.
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4.2. Analyse der Kopplungsmethoden

Abbildung 4.24.: Zoom auf das Stromungsbild der Simulation mit der Standardinitialisierung zum
Zeitschritt ¢ = 4440 (links) und ¢ = 4480 (rechts). Dabei reicht die Farbskala
hier von 0.26-0.29 (statt 0-0.29). Hinter dem Festkorper ist deutlich ein Artefakt zu
erkennen.

49
48
47
46
45
44
43
42
41
40
39

‘standard ——

durchschnittliche FPS

2000 4000 6000 8000
Simulationsdurchlauf

Abbildung 4.25.: Laufzeitvergleich der Initialisierungsverfahren
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4. Anwendung und Analyse

4.2.5. Laufzeitanalyse

Hier wird untersucht, wie sich die Laufzeit zur Grofle des Festkorpers verhalt. Das Testverfahren
wurde in Abschnitt 4.2.4 beschrieben. Um die Auswirkung des Festkorperradius zu untersuchen, wurde
dieser beim Laufzeit-Testverfahren in jedem Durchlauf schrittweise verkleinert. Das Ergebnis wird in
Abbildung 4.26 veranschaulicht. Man sieht, dass der Radius des Festkorper kaum Auswirkungen auf
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Abbildung 4.26.: FPS der Simulation in Abhangigkeit vom Radius des Festkorpers.
die Laufzeit hat. Das liegt daran, dass bei Erh6hung des Radius nicht nur die Festkorpergitterzellen an
der Fluidgrenze mehr werden, sondern auch die inaktiven Zellen. Der reine LBM-Teil der Simulation

kann also schneller berechnet werden und gleicht sich hier mit den Mehrkosten fiir den Kopplungsteil
aus. Damit schrankt die Kopplung mit dem Festkorper die Laufzeit der Simulation nicht ein.
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5. Fazit und Ausblick

In dieser Arbeit wurden Kopplungsmethoden fiir die Kopplung der LBM-Simulation mit einer
Festkorper-Engine vorgestellt. Diese mussten zuerst verifiziert werden. Dabei wurden sowohl der
Einfluss von den Festkorpern auf das Fluid, als auch der vom Fluid auf die Festkdrpern tiberpriift.
Beide lieferten zufriedenstellende Ergebnisse, wodurch die Kopplung der Festkorper-Engine mit der
LBM-Simulation als Erfolg gewertet wurde. Ein Vergleich der Verfahren hat gezeigt, dass visuell keine
groflen Unterschiede wahrzunehmen sind, solange man Methoden wihlt, die die vorliegende Physik
ausreichend genau approximieren. So hatte die Standardinitialisierung negative Auswirkungen auf
das Stromungsbild. Eine Echtzeitfihigkeit wurde dabei erreicht, ndmlich etwa dieselbe wie die der un-
gekoppelten Simulation. Das lag daran, dass sich die Mehrkosten der Kopplung mit den Einsparungen
durch die Deaktivierung von Fluidpunkten unabhingig von der Festkorpergrofie ausgeglichen hat.

Fir die Anwendung in einem interaktiven Strémungsloser oder Spiel kam allerdings ein Problem
auf. Die Geschwindigkeiten, bei denen die Simulation stabil l4uft, sind so gering, dass die Festkorper
sich optisch nur sehr langsam fortbewegen. Dadurch ist eine Interaktion nur schwer umzusetzen
bzw. vom Benutzer nachvollziehbar. Eine kiinstliche Skalierung der Festkorpergeschwindigkeit in der
Festkorper-Engine wiirde wiederum die physikalische Korrektheit aufler Kraft setzen.

Ausblick

Im Hinblick auf die Umsetzung als interaktive Stromungsimulation kénnen noch viele Erweiterungen
durchgefithrt werden. So braucht man z.B. die Moglichkeit externe Krifte miteinzubeziehen. Diese
miissen allerdings richtig verarbeitet werden, damit sie die Stabilitat der LBM-Simulation nicht
beeintriachtigen. Zusétzlich konnen noch weitere Arten der Interaktion hinzugefiigt werden, mit denen
der Benutzer ausgewahlte Parameter der Simulation, wie z.B. die maximale Einflussgeschwindigkeit,
beeinflussen kann.

Legt man Wert auf die physikalische Korrektheit, kann man die verschiedenen Verfahren statt nur
optisch auch analytisch vergleichen. Einen Ansatz dazu liefert [Cai08]. Dabei werden die Ergebnisse
der LBM-Simulation mit denen aus den Navier-Stokes-Gleichungen verglichen. Dadurch erhilt man
einen analytischen Fehler, mit welchem man die Verfahren echt ordnen kann. Aufferdem wird in dieser
Arbeit die Verifikation nur fir ein festgesetztes Sample durchgefiihrt. Besser wire ein Verfahren, das
Korrektheit fiir ein bestimmtes Intervall beweist.
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A. Algorithmen

Hier werden Algorithmen fiir die LBM-Simulation und die Festkorper-Engine vorgestellt.

Algorithmus 1 Festkorper-Engine

1: initialiseRigidBodies()
2: while running do

3:  recieveData(F}, 7p)
4. for all RigidBody P do

5 updateRigidBody(P, Fy,[P], 7,[P])
6: end for

7. sendData(RigidBodyData)

8: end while




A. Algorithmen

Algorithmus 2 LBM-Algorithmus fiir einen LBM-Zeitschritt pro Festkorper-Zeitschritt

Symbols:
Kraft auf die Festkorper: F),
Drehmoment auf die Festkorper: 7,

1: initialiseLBM()
2: while running do
3:  recieveData(RigidBodyData)
4: Fp,Tp: {0,0,}
5. // iteriere iiber alle Gitterpunkte
6:  fory =0 to height — 1 do
7: for x = 0 to width — 1 do
8: // Kollisionsschritt
9: if isFluidNode(x, y) then
10: if isCellReactivated(x, y) then
11: initialiseCell(x, y)
12: end if
13: p =computeRho(f;)
14: u =computeVelocity(f;, c;, p)
15: 1{? =computeEquilibriumDist(p, u)
16: J} =computeCollision(f;, f;9, 7)
17: end if
18: /] Stromungsschritt
19: if isFluidNode(x, y) then
20: // in alle Richtungen des D2Q9-Modells
21: for:=0to 8 do
22: if isFluidNode((z, y) + c;) then
23: stream( f;")
24: end if
25: if isRigidBody((z,y) + c;) then
26: fref =computeMovingBoundaryConditions()
27: F,[getRigidBodyIndex((z, y) + ¢;)] = computeForce(fy. )
28: 7p|getRigidBodyIndex((z, y) + ¢;)] = computeTorque(fy.f)
29: stream(fre )
30: end if
31: if isWall((z, y) + c;) then
32: fref =computeStationaryBoundaryConditions()
33: stream( fr )
34: end if
35: end for
36: end if
37: if isInflow(x, y) or isOutFlow(x, y) then
38: streamIntoFluidDomain()
39: end if
40: end for
41:  end for
42:  sendData(F), 7))
43: end while
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