
Institut für Softwaretechnologie
Abteilung Programmiersprachen

Universität Stuttgart
Universitätsstraße 38
D-70569 Stuttgart

Bachelorarbeit Nr. 262

Automatisierter Vergleich von
Codeklonerkennungsergebnissen

Simon Gaiser

Studiengang: Informatik

Prüfer: Prof. Dr. Erhard Plödereder

Betreuer: Torsten Görg

Beginn am: 15.10.2015

Beendet am: 15.04.2016

CR-Nummer: D.2.7, D.3.4

1

Abstract

Als Codeklon bezeichnet man mehrere semantisch ähnliche Teile eines Programms. Diese können
beispielsweise durch „Copy & Paste” entstehen und erschweren die Wartung von Software. Es gibt
verschiedene Verfahren um Codeklone zu finden. Möchte man zwei Verfahren zur Erkennung von
Codeklonen vergleichen, bietet es sich an, die bei gleicher Eingabe gefundenen Klonmengen zu ver-
gleichen. Dabei ist man besonders an der Differenzmenge interessiert, also die Klone die nur durch
eines der beiden Verfahren erkannt wurden. Da die Ergebnissmengen in der Regel groß sind, benö-
tigt man eine automatische Vergleichsmöglichkeit. Diese Arbeit beschäftigt sich damit, wie man die
Ausgabe verschiedener Klonerkenner automatisch vergleichen kann. Hierbei wird besonders darauf
eingegangen, dass die Klone auf Text-, AST- oder PDG-Ebene dargestellt werden können und als
Klonpaar oder Klongruppe vorliegen können. Des Weiteren werden die Klone so verglichen, dass
auch ähnlich aber nicht identisch erkannte Klone gefunden und entsprechend behandelt werden.
Außerdem beschäftigt sich diese Arbeit damit, wie Klone aus AST- und PDG-Ebene in Knoten-
mengen und diese wiederum in Quelltextfragmente umgewandelt werden können. Zum Schluss wird
die erstellte Software noch zur Evaluation auf ein realitätsnahes Beispiel angewandt.

2

Inhaltsverzeichnis

1 Einführung 4
1.1 Aufgabenstellung . 4
1.2 Überblick . 5

2 Grundlagen 6
2.1 Codeklone . 6
2.2 Klonerkennung . 6
2.3 Klondarstellung . 7
2.4 Vergleich von Klonerkennungsverfahren . 7
2.5 Bauhaus . 8

3 Spezifikation 9
3.1 Eingabe . 9

3.1.1 Klonpaare . 9
3.1.2 Klongruppen . 12

3.2 Ausgabe . 12

4 Lösungsansatz 13
4.1 Vergleich . 13

4.1.1 Vergleich von Klonmengen . 13
4.1.2 Vergleich einzelner Klone . 14

4.2 Konvertierung der Klondarstellungen . 18
4.2.1 Umwandlung von AST-Klonen zu einfachen Graphklonen 19
4.2.2 Umwandlung von Graphklonen mit Zuordnung zu einfachen Graphklonen . 19
4.2.3 Einfache Graphklone zu Textklone . 19

5 Entwurf 20

6 Evaluierung 22
6.1 Nur vom PDG-Klonerkenner gefundene Klone . 23
6.2 Nur von ccdiml gefundene Klone . 23
6.3 Von beiden Werkzeugen gefundene Klone . 23
6.4 Zusammenfassung . 25

7 Fazit 27
7.1 Ausblick . 27

8 Quellen und Referenzen 28

3

Kapitel 1

Einführung

Als Codeklon bezeichnet man Quellcodestücke, die semantisch ähnlich sind. Codeklone können aus
verschiedenen Gründen entstehen, beispielsweise durch das Kopieren von Programmstücken. Da
Codeklone die Wartung von Software erschweren, ist es wünschenswert, Codeklone automatisiert
zu erkennen. Es gibt verschiedene Verfahren zur Codeklonerkennung. Die Algorithmen können auf
verschiedenen Darstellungsebenen des zu untersuchenden Programms arbeiten. Zum Beispiel direkt
auf dem Quelltext, dem abstrakten Syntaxbaum (AST) oder dem Programmabhängigkeitsgraph
(PDG).

Die Klone können je nach verwendetem Erkennungsverfahren in verschiedenen Darstellungsformen
vorliegen. Zwar lassen sich die Darstellungen auf AST- oder PDG-Ebene auf Textstücke abbilden,
allerdings gehen hierbei gegebenenfalls Informationen verloren. So könnten sich zum Beispiel zwei
PDG-Klone darin unterscheiden, welche Datenabhängigkeiten Teil des Klones ist. Dies lässt sich
nicht in einer quelltext-basierten Darstellung von Klonen abbilden. Von daher ist es wünschens-
wert, dass man zwei Verfahren, die auf der gleichen Darstellungsebene arbeiten, auch auf dieser
vergleichen kann.

Des Weiteren ist zu beachten, dass zwei Klonerkennungsverfahren zwei sehr ähnliche, aber nicht
identische Klone erkennen können. Beispielweise kann ein Verfahren eine kopierte Schleife als Klon
erkennen und ein anderes Verfahren findet zusätzlich die weiter oben stehende Initialisierung der
Schleifenvariable. Auch dies sollte bei dem Vergleich zweier Klonmengen erkannt werden.

Um verschiedene Verfahren zur Klonerkennung zu vergleichen, bietet es sich an, diese auf ein reales
Softwareprojekt anzuwenden und dann die Ergebnisse zu vergleichen. Hierbei ist man besonders an
der Klondifferenzmenge interessiert. Also an den Klonen, die nur eines der Verfahren erkannt hat.
Da die zu vergleichende Menge in der Regel groß ist, ist dies in der Praxis fast nur automatisiert
möglich. Diese Arbeit beschäftigt sich mit eben diesem automatischen Vergleich.

1.1 Aufgabenstellung

Ziel dieser Arbeit ist, es eine Software zu erstellen, die es ermöglicht, die Ergebnisse zweier Co-
deklonerkennungen automatisiert zu vergleichen. Hierbei sollen Klone auf verschiedenen Darstel-
lungsebenen unterstützt werden: als Quelltextstück, als AST-Teilbaum und als PDG-Teilgraph.
Außerdem sollen sowohl Klonpaare als auch Klongruppen verarbeitet werden können. Die Klone
aus den beiden Eingabemengen liegen hierbei in der gleichen Darstellungsform vor. Dabei sollen
auch ähnliche aber nicht identische Klone erkannt werden können.

Des Weiteren soll es möglich sein, Klone aus der AST-, und PDG-Darstellungen in Knotenmengen
und diese in die Darstellung als Quelltextstück umzuwandeln.

Die Eingabe liegt dabei in Form der IML-Zwischendarstellung aus dem Programmanalyseframe-
work Bauhaus vor.

4

1.2 Überblick

Nach der Einleitung wird zuerst auf einige Grundlagen eingegangen, auf welche dann im Folgenden
aufgebaut wird. Dann wird die zu Beginn erarbeitete Spezifikation der Eingabedaten beschrieben
und auf die Form der Ausgabe eingegangen. Das darauffolgende Kapitel stellt die erarbeiteten
Verfahren zum Vergleich von Klonmengen vor. Darin wird auch das Verfahren zum Umwandeln
zwischen den Klondarstellungen beschrieben. Im Anschluss wird die Gestaltung der Implementie-
rung vorgestellt. Diese wird dann anhand einer Beispieleingabe evaluiert. Das letzte Kapitel fasst
dann die Arbeit nochmal kurz zusammen und zeigt mögliche Verbesserungs- und Ergänzungsmög-
lichkeiten auf.

5

Kapitel 2

Grundlagen

2.1 Codeklone

Ein Codeklon (in dieser Arbeit in der Regel kurz als Klon bezeichnet) sind zwei oder mehrere
Stücke eines Programms, welche semantisch ähnlich sind. Es gibt verschiedene Möglichkeiten, wie
diese entstehen können. Die offensichtlichste Möglichkeit ist durch Kopieren und Einfügen („Copy
& Paste”). Dabei kopiert der Entwickler ein Stück Quellcode, dass die gewünschte Funktionalität
schon (teilweise) umsetzt und fügt es an einer anderen Stelle ein. Gegebenenfalls verändert er den
kopierten Quellcode zusätzlich. Andere Möglichkeiten für die Entstehung von Codeklonen sind das
mehrfache Schreiben gleicher, beziehungweise ähnlicher Funktionalitäten oder das Zusammenfüh-
ren unterschiedlicher Quelltexte. (Siehe [1],[2])

Klone sind in der Regel unerwünscht, da sie die Wartung von Software erschweren können [1].
Findet man beispielsweise einen Fehler in einem Teil des Programms, wird er an der anderen
Stelle nicht automatisch mit korrigiert. Da Klone in aller Regel aufgrund ihrer Entstehung nicht
dokumentiert sind, heißt das, dass man den Fehler vermutlich mehrfach finden und beheben muss.

2.2 Klonerkennung

Aus den gerade beschriebenen Gründen, möchte man Klone automatisch finden können. Dazu gibt
es verschiedene Ansätze. Diese unterscheiden sich sowohl im Vorgehen als auch darin, auf welche
der Darstellungsebenen der Programmanalyse sie aufbauen.

Die Klonerkennung kann direkt auf Quelltextebene, beziehungsweise dem in Token umgewandel-
ten Quelltext arbeiten. Das Verfahren nach Baker [4] beispielsweise wandelt jede Zeile auf Basis
der darin vorkommenden Token in einen sogenannten prev-String um, der das Muster der Zeile
unabhängig von Details wie Variablennamen abbilden soll. Mit Hilfe eines Suffix-Baumes werden
dann gleiche Muster und somit ähnliche Zeilen gefunden und zu Klonen zusammengefasst.

Eine weitere Möglichkeit besteht darin, den bei der Programmanalyse oder Kompilierung erstellten
abstrakten Syntaxbaum (abstract syntax tree; AST) zu Nutzen, um darin ähnliche Programmteile
zu finden. Das Verfahren nach Baxter [5] beispielsweise sucht nach ähnlichen Teilbäumen in einem
AST. Da ein paarweiser Vergleich aller Teilbäume sehr aufwändig wäre, wird eine Hashfunkti-
on genutzt, die ähnliche Teilbäume auf den selben Wert abbildet. Damit müssen dann nur noch
Teilbäume mit gleichem Hashwert verglichen werden.

Darüber hinaus kann man sich noch weitere Ergebnisse von Programmanalysen zu Nutze machen.
Dazu arbeiten Verfahren, wie beispielsweise das nach Krinke [6], auf dem Programmabhängigkeits-
graph (program dependency graph; PDG). In diesem sind zusätzlich Daten- und Kontrollabhän-

6

gigkeiten abgebildet. Das Verfahren nach Krinke sucht nach Klonen, indem es ähnliche Teilgraphen
des PDG identifiziert.

Wenn im Folgenden von Klon die Rede ist, ist in aller Regel das Ergebnis eines Klonerkennungs-
verfahren gemeint. Also das, was ein Klonerkennungsverfahren als Klon eingestuft hat. Ob es sich
dabei tatsächlich um zwei Klonfragmente handelt, die man als Klon einstufen sollte („true posi-
tive”), ist dabei nicht sicher. So erzeugen zum Beispiel die meisten Verfahren, wenn sie „zu fein”
eingestellt sind Klone, die nur kleine gemeinsame Teilausdrücke darstellen, die man aber nicht als
Klon einstufen würde („false positive”).

2.3 Klondarstellung

So wie die Klonerkennungen auf verschiedenen Darstellungsformen des Programms arbeiten, kann
man auch einen Klon verschieden darstellen.

Zum Einen stellt sich die Frage, wie man ein Stück eines Programms darstellt. Dies lässt sich
als Stück des Quelltextes, als Teilbaum eines ASTs oder als Teilgraph eines PDGs darstellen.
Hierfür wird in dieser Arbeit der Begriff Klonfragment genutzt. Üblich ist auch die Bezeichnung
Codefragment, was aber zum Beispiel im Falle eines PDGs nur bedingt zutreffend ist, da dieser
auch Eigenschaften wie Datenabhängigkeiten abbildet.

Des Weiteren stellt sich die Frage, wie man Klonfragmente zu einem Klon zusammenfasst. Dabei
gibt es primär zwei Varianten: Klonpaare und Klongruppen (teilweise auch Klonklasse genannt).
Andere Varianten, wie die von Stefan Bellon in [2] beschriebene Klonrelationenmenge, werden nicht
betrachtet. Wenn nicht näher spezifiziert, sind beide Varianten gemeint. Wenn ein Paar von zwei
Klonen gemeint ist wird in dieser Arbeit teilweise der Begriff Tupel verwendet um die Verwechslung
mit Klonpaar zu vermeiden.

Bei einem Klonpaar werden zwei Klonfragmente zu einem Paar zusammengefasst. Bei einer Klon-
gruppe hingegen werden eine ganze Menge von Klonfragmenten, die einander ähnlich sind, zusam-
mengefasst. Ob die Klonbeziehung transitive Eigenschaften hat, hängt von den konkreten Kloner-
kennungsverfahren ab [2].

2.4 Vergleich von Klonerkennungsverfahren

Durch die verschiedenen Ansätze zum Finden von Klonen stellt sich natürlich die Frage, wie man
diese vergleichen kann. Dabei gibt es sowohl den Fall, dass man zwei Varianten eines Algorithmus
vergleichen will, um eventuell Unterscheide zu finden, als auch, dass man zwei deutlich verschiedene
Verfahren vergleichen möchte.

Hierbei bietet es sich an, eine realistische Eingabe einer Klonerkennung zu nehmen, also ein nicht
triviales Softwareprojekt und die zu vergleichenden Algorithmen darauf auszuführen [2]. Damit
erhält man zwei Klonmengen. Diese müssen nun verglichen werden, um beispielsweise Klone zu
finden, die nur von einem Verfahren gefunden werden. Da die erkannten Klonmengen in der Regel
groß sind, sollte dieser Vergleich automatisch möglich sein.

Genau dieser automatisierte Vergleich zweier Klonmengen ist Gegenstand dieser Arbeit. Hierbei ist
die Diplomarbeit von Stefan Bellon zu erwähnen [2]. In dieser vergleicht er verschiedene Werkzeuge
zur Erkennung von Codeklonen. Dazu hat er auch eine Software erstellt, um Mengen von Textklo-
nen automatisch zu vergleichen. Diese Arbeit unterscheidet sich von der Arbeit Bellons darin, dass
die Darstellung von Textklonen erweitert wird, sodass auch nicht zusammenhängende Quelltext-
stücke ein Klonfragment bilden können. Vor allem werden zusätzlich noch die Darstellungsformen
von Klonen auf AST- und PDG-Ebene betrachtet. Allerdings betrachtet diese Arbeit nur Verfahren
zum Vergleich von Klonmengen und untersucht damit nicht konkrete Klonerkennungswerkzeuge.

7

2.5 Bauhaus

Bauhaus ist ein an der Universität Stuttgart entwickeltes Programmanalyse-Framework [3]. Für
diese Arbeit ist vor allem die dazugehörige Zwischendarstellung IML relevant. IML ist ein Graph,
welcher zum Einen das zu analysierende Programm in Form eines, mit einigen Zusatzinformationen
(wie zum Beispiel Quelltextreferenzen), angereicherten ASTs und zum Anderen weitere Program-
manalyseergebnisse enthält.

IML besteht aus einigen nativen Datentypen und mit Hilfe einer einfachen Beschreibungssprache
definierten Knotentypen. Diese Beschreibungssprache ermöglicht es, die Knotentypen mittels von
Klassenhierarchien und Interfaces objektorientiert zu gestalten. Bauhaus generiert auf Basis dieser
Beschreibung automatisch entsprechenden Code, welcher die Datenstrukturen zur Repräsentation
des Graphen enthält und Manipulationen des Graphen erlaubt. Des Weiteren stellt Bauhaus für
den IML-Graphen De-/Serialisierungsfunktionen bereit. Dabei unterstützt Bauhaus verschiedene
Programmiersprachen, wobei der Großteil von Bauhaus Ada nutzt.

Die einzelnen Analysewerkzeuge in Bauhaus arbeiten in der Regel so, dass sie die bisherigen Ana-
lyseergebnisse in Form eines IML-Graphen einlesen. Auf Basis des eingelesenen Graphen führen
sie dann ihre Analyse durch und exportieren das Ergebnis erneut als IML-Graph, der nun mit
den Analyseergebnissen angereichert ist. Eine Ausnahme hiervon bildet das Frontend, welches den
Quelltext einliest und als angereicherten AST in Form eines IML-Graphen ausgibt.

8

Kapitel 3

Spezifikation

3.1 Eingabe

Die Eingabe besteht stets aus zwei Mengen von Klonen. Dieses Kapitel beschreibt die Darstel-
lung der verschiedenen möglichen Eingabeklonmengen. Beide Mengen müssen Klone der selben
Darstellungsform enthalten. Die Diagramme zeigen die Darstellung in der IML-Klassenhierarchie.
Implementierungsdetails sind teilweise zum Zwecke der besseren Übersichtlichkeit ausgelassen.

Das Ergebnis einer Klonerkennung besteht stets aus einer Menge von Klonen. Die Klone sind
entweder Klonpaare oder Klongruppen. In IML ist dies mit der Klasse Abstract_Clone_Tool_Info
implementiert. Diese ist eine Unterklasse von Analysis_Tool_Info. Analysis_Tool_Info dient
als Überklasse für Analyseergebnisse. Von Abstract_Clone_Tool_Info gibt es je eine konkrete
Ausprägung für Mengen von Klonpaaren beziehungsweise Klongruppen. Siehe Abbildung 3.1.

3.1.1 Klonpaare

Ein Klonpaar (im Folgenden auch CP) besteht aus zwei Klonfragmenten (CP.CF1 und CP.CF2), die
der Klonerkennungsalgorithmus als Klon voneinander eingestuft hat. Wie die beiden Klonfragmente
dargestellt sind, hängt davon ab, auf welcher Darstellungsebene der Algorithmus arbeitet und wird
in den nachfolgenden Abschnitten beschrieben. Welches Klonfragment als erstes beziehungsweise
als zweites bezeichnet wird, ist willkürlich und hat somit keine Bedeutung.

Analysis_Tool_Info

Abstract_Clone_Tool_Info

Clone_Groups_Tool_InfoClone_Pairs_Tool_Info

Abstract_Clone_GroupAbstract_Clone_Pair

0..* 0..*

Abbildung 3.1: Klassendiagramm zur IML-Dartsellung von Klonerkennungsergebnissmengen

9

Abstract_Clone_Pair

Graph_Clone_Pair Clone_Pair

Clone_Fragment

F
i
r
s
t

S
e
c
o
n
d

Abbildung 3.2: Klassendiagramm zur IML-Darstellung von Klonpaaren

Clone_Fragment

Text_Positional_Clone_Fragment
Filepath: Identifier

Scattered_Text_Positional_Clone_Fragment

Text_Position
Line: Natural
Column: Natural

S
t
a
r
t
_
P
o
s

E
n
d
_
P
o
s

1..*

Abbildung 3.3: Klassendiagramm zur IML-Darstellung von Textklonfragmenten

In IML werden Klonpaare durch die Klasse Clone_Pair abgebildet. Die Darstellung von Graphklo-
nen mit Zuordnung benötigt eine etwas andere Darstellung (siehe unten). Daher werden diese bei-
den Varianten von Klonpaaren als Abstract_Clone_Pair zusammengefasst. Siehe Abbildung 3.2.

3.1.1.1 Textklonpaare

Im Falle von Textklonpaaren besteht ein Klonfragment aus einem oder mehreren Quelltextstücken.
Diese werden jeweils durch den Pfad der betreffenden Datei und der Anfangs- und Endposition
darin beschrieben. Siehe Abbildung 3.3.

3.1.1.2 AST-Klonpaare

Bei AST-Klonpaaren besteht ein Klonfragment aus einem oder mehreren direkt aufeinanderfolgen-
den AST-Knoten. Mit einem AST-Knoten ist jeweils auch implizit der gesamte Teilbaum darunter
gemeint.

Abbildung 3.4 zeigt die IML-Darstellung. IML_Root bezeichnet die Elternklasse für alle nicht na-
tiven Knotentypen im IML-Graphen. In diesem Fall sollte es sich um einen Knoten des ASTs han-
deln. Die etwas inkonsistente Benennung mit Clone_Statment_Fragment beziehungsweise Clone_-
Sequence_Fragment rührt daher, dass dieser Teil bereits aus der ccdiml-Implementierung in Bau-
haus vorhanden war.

3.1.1.3 Einfache Graphklonpaare

In der einfachen Graphklonpaardarstellung sind die beiden Klonfragmente eine Menge von Knoten.
Der Knotentyp ist nicht näher spezifiziert, dabei ist aber primär an Knoten aus einem PDG gedacht.
Die Implementierung trifft über die Art der Knoten aber keine weiteren Annahmen. Abgesehen

10

Clone_Fragment

IML_Root

Clone_Sequence_FragmentClone_Statement_Fragment

Start_Node

End_Node

Abbildung 3.4: Klassendiagramm zur IML-Darstellung von AST-Klonfragmenten

Clone_Fragment

Graph_Clone_Fragment

IML_Root

1..*

Abbildung 3.5: Klassendiagramm zur IML-Darstellung von einfachen Graphklonfragmenten

davon, dass in Abschnitt 4.2.3 diese einer Quelltextposition zuordenbar sein sollten. Abbildung 3.5
zeigt die Umsetzung in IML.

3.1.1.4 Graphklonpaare mit Zuordnung

Neben der gerade beschrieben einfachen Darstellung von Graphklonpaaren, wird auch noch eine
zweite Form unterstützt. Hierbei wird zusätzlich eine bijektive Abbildung zwischen den Klonfrag-
menten angegeben m : CF1 → CF2. Hiermit gibt der Erkennungsalgorithmus an, wie er die Knoten
aus dem einen Fragment, den Knoten aus dem Anderen zuordnet.

Da IML keine Hashmaps oder Vergleichbares unterstützt, wird, wie Abbildung 3.6 zeigt, jeder
Knoten aus dem ersten Fragment zusammen mit dem gemäß m dazugehörigen Knoten aus dem
zweiten Fragment zu einem Nodes_Match-Objekt zusammengefasst. Die Menge dieser Knotenpaare
ergibt das Klonpaar. In dieser Darstellung sind die beiden Fragmente implizit durch die Menge
aller ersten beziehungsweise zweiten Elemente der Nodes_Match-Objekte gegeben.

Graph_Clone_Pair

Nodes_Match

IML_Root

1..*

F
i
r
s
t

S
e
c
o
n
d

Abbildung 3.6: Klassendiagramm zur IML-Darstellung von Graphklonpaaren mit Zuordnung

11

Abstract_Clone_Group

Clone_Group Graph_Clone_Group

Clone_Fragment Nodes_Group_Match

IML_Root

1..*

<<ordered>>1..*

1..*

Abbildung 3.7: Klassendiagramm zur IML-Darstellung von Klongruppen

3.1.2 Klongruppen

Bei Klongruppen werden nicht ein Paar von zwei ähnlichen Klonfragmenten zu einem Klon zusam-
mengefasst, sondern es wird gleich eine ganze Gruppen von identischen (beziehungsweise ähnlichen)
Fragmenten zu einer Klongruppe zusammengefasst. Die einzelnen Klonfragmente werden wieder
wie im Falle der Klonpaare dargestellt.

Abbildung 3.7 zeigt die Darstellung in IML. Für die IML-Darstellung von Graphklongruppen mit
Zuordnung der einzelnen Knoten zu den entsprechenden Knoten in den anderen Fragmenten wird
wieder der selbe „Trick” wie bei den Klonpaaren verwendet. Hier hingegen besteht ein Nodes_-
Group_Match aus mehreren Knoten. Die Anzahl der Elemente in der Liste Nodes_Group_Match
muss für alle Elemente einer Graph_Clone_Group gleich sein. Diese Anzahl entspricht der Zahl an
Fragmenten, aus welche diese Klongruppe besteht. Sollte es für eine Zuordnungsmenge (Nodes_-
Group_Match) in einem Fragment keinen passenden Knoten geben, ist der entsprechende Eintrag
in der Liste dieses Fragmentes leer zu lassen.

3.2 Ausgabe

Die Ausgabe besteht aus einer Liste mit Einträgen, die jeweils eine der folgenden Formen haben:

1. Ein Klon, der nur in der ersten Eingabemenge vorkommt.

2. Je ein Klon aus den beiden Mengen und ein Wert, der die Ähnlichkeit beider Klone angibt.

3. Ein Klon, der nur in der zweiten Eingabemenge vorkommt.

Das Ähnlichkeitsmaß im zweiten Fall ist eine Zahl zwischen 0 und 1 (1 entspricht „identisch”),
welche die Ähnlichkeit der beiden Klone beschreiben soll. Siehe Abschnitt 4.1.2 für Details. Ein
Klon kann in mehreren Einträgen der zweiten Form auftauchen, da er zu verschiedenen Klonen
aus der anderen Menge ähnlich sein kann.

Ab welchem Ähnlichkeitsmaß zwei Klone als zusammenpassend eingestuft werden, und damit einen
Eintrag von Typ 2 bilden, lässt sich einstellen.

Diese Ergebnismenge lässt sich nach den Einträgen filtern, an denen man interessiert ist. Vergleicht
man beispielsweise zwei verschiedene Verfahren, ist man daran interessiert, welche Klone nur von
einem der beiden Verfahren erkannt wurden. Hierzu betrachtet man die Einträge von Typ 1 bezie-
hungsweise Typ 3. Interessant sind auch Klone, die ähnlich aber nicht identisch sind. Diese kann
man näher betrachten, um zu untersuchen, warum die zwei Verfahren sich hier unterscheiden. Dazu
filtert man die Einträge von Typ 2 nach ihrem Ähnlichkeitsmaß.

12

Kapitel 4

Lösungsansatz

4.1 Vergleich

Dieser Abschnitt beschreibt das Verfahren zum Vergleich zweier Klonerkennungsergebnisse. Dieses
Verfahren ist zweigeteilt. Der eine Teil, welcher im ersten Abschnitt beschrieben ist, beschäftigt
sich mit der Strategie welche Klone paarweise verglichen werden müssen. Der paarweise Vergleich,
welcher im zweiten Abschnitt beschrieben wird, ordnet den zwei gegebenen Klonen ein Ähnlich-
keitsmaß zu. Entsprechend der Ergebnisse der einzelnen Vergleiche, werden die Klone in die oben
beschriebene Ergebnismenge einsortiert.

4.1.1 Vergleich von Klonmengen

Dieser Abschnitt beschreibt, wie zwei Mengen von Klonen (d.h. Klonpaare oder Klongruppen)
verglichen werden. Dazu benötigt man eine Strategie, welche Paare von Klonen man auf Ähnlich-
keit testen möchte. Natürlich muss dabei sichergestellt sein, dass keine Klone, die ähnlich sind,
ausgelassen werden.

4.1.1.1 Naiver Ansatz

Der naive Ansatz ist, jeden Klon aus der ersten Menge mit jedem Klon der zweiten Menge zu
vergleichen. Dieser Ansatz hat den Vorteil, dass er offensichtlich korrekt ist. Außerdem trifft er
keine weitere Annahmen über die Eigenschaften der Klone. Allerdings werden quadratisch viele
Vergleiche benötigt.

4.1.1.2 Hashbasierter Vergleich

Beim naiven Ansatz werden viele Klone verglichen, die offensichtlicher Weise nicht ähnlich sein
können. Betrachtet man beispielsweise Textklone, ist es klar, dass zwei Klone deren Fragmente
nur verschiedene Dateien betreffen, nicht zueinander ähnlich sein können. Daraus ist die Idee
entstanden, dass man Mengen für jeden Dateipfad bildet und anschließend nur Klone, die dieselbe
Datei betreffen, vergleichen muss.

Die Idee wurde dahingehend erweitert, dass nicht nur der Dateipfad verwendet werden kann, son-
dern, dass ein Klon auf eine Menge von Hashwerten abgebildet wird. In dem gerade beschriebenen
Beispiel wäre das die Menge aller Hashwerte, der von einem Klon abgedeckten Dateien.

Im Allgemeinen muss diese Funktion die Eigenschaft haben, dass der Schnitt der Hashmengen
zweier Klone genau dann leer ist, wenn die zwei Klone nicht ähnlich sein können.

13

// build hashmap for the given set of clones
function to_hashmap (clones)

map = new Hashmap Hashvalue => (Set of Clones);
for clone in clones loop

for i in list_of_hashes (clone) loop
map.put(i, clone);

end;
end;
return map;

end;

// compare two sets of clones
function compare (a, b)

compared := new Set of (Clone , Clone);
map_a = to_hashmap (a);
map_b = to_hashmap (b);

for (k, clones) in map_a loop
for i in clones loop

for j in map_b .get(k) loop
if not compared . contains ((i, j)) then

// compare i and j ...
compared .put ((i, j));

end;
end;

end;
end;

// ...
end;

Abbildung 4.1

Um damit Klonmengen effizienter zu vergleichen, werden mit Hilfe dieser Funktion die Klone der
beiden Eingabemengen in jeweils eine Hashmap sortiert. Eine Hashmap enthält für jeden Hashwert
die Menge der Klone, die darauf abgebildet werden.

Nun müssen die für einen Hashwert in der ersten Hashmap enthaltenen Klone, mit denen für den
selben Wert aus der zweiten Hashmap verglichen werden. Dabei können schon verglichene Paare
von Klonen übersprungen werden.

Dieses Verfahren wird als Pseudocode in Abbildung 4.1 nochmals verdeutlicht. list_of_hashes
bezeichnet dabei die Funktion, die dem Klon, wie gerade beschrieben, eine Menge an Hashwerten
zuordnet. Der paarweise Vergleich ist im Pseudocode nur mit einem Kommentar angedeutet.

Der Effizienzgewinn hängt natürlich sehr von der gewählten Funktion und der Gestalt der Ein-
gabedaten ab. Im Worst-Case werden weiterhin quadratisch viele Vergleiche benötigt. Allerdings
sollte dies für typische Eingaben die Zahl der Vergleiche deutlich reduzieren.

In dieser Arbeit wird ausschließlich die Verwendung von zu Klonen gehörenden Dateipfaden be-
trachtet. Nachteil dieser Methode ist, dass man zwar Textklonen und AST-Klonen direkt Dateipfa-
den zuordnen kann, dies für Graphknoten im Allgemeinen aber nicht gilt.

4.1.2 Vergleich einzelner Klone

Nun betrachten wir, wie sich ein Paar von Klonen vergleichen lässt. Konkret möchten wir das Paar
auf ein Ähnlichkeitsmaß abbilden. Das Ähnlichkeitsmaß ist ein Wert zwischen 0 und 1. Wobei es 0
sein soll, wenn die Klone völlig verschieden sind und 1, falls diese identisch sind. Es werden keine
weiteren Einschränkungen für das Ähnlichkeitsmaß gefordert.

14

4.1.2.1 Textklonpaare

Für Textklone wird die von Stefan Bellon in [2] als good bezeichnete Funktion gewählt. Diese
betrachtet das Verhältnis der sich überlappenden Zeilen der Klonfragmente zu der Gesamtzahl der
Zeilen.

overlap(CF1, CF2) = |lines(CF1) ∩ lines(CF2)|
|lines(CF1) ∪ lines(CF2)|

Wobei lines(CF) die Menge der von dem Klonfragment CF überdeckten Zeilen angibt.

Um nun zwei Klonpaare miteinander zu vergleichen, betrachtet man die Überlappung der jeweiligen
Klonfragmente. Dabei ist zu beachten, dass die Zuordnung vom ersten und zweiten Klonfragment
keine Bedeutung hat und man daher beachten muss, dass das erste Klonfragment des ersten Klon-
paares zu dem zweiten Klonfragment des zweiten Klonpaares passen kann.

Stefan Bellon behandelt dieses Problem, indem er die Klonfragmente anhand der Quelltextpositio-
nen ordnet. Daher muss er nur das erste Fragment des einen Klonpaares mit dem ersten Fragment
des anderen Klonpaares vergleichen.

similarity(CP1, CP2) = min(overlap(CP1.CF1, CP2.CF1),
overlap(CP1.CF2, CP2.CF2))

Dies ist in unserem Fall nicht möglich, da ein Klonfragment nicht nur aus einem einzelnen zusam-
menhängenden Quelltextstück bestehen kann, sondern auch aus mehreren verteilten Quelltext-
stücken. Daher lassen sich die Klonfragmente nicht einfach ordnen. Von daher müssen wir beide
Kombinationen vergleichen:

similarity(CP1, CP2) = max(min(overlap(CP1.CF1, CP2.CF1),
overlap(CP1.CF2, CP2.CF2))

min(overlap(CP1.CF1, CP2.CF2),
overlap(CP1.CF2, CP2.CF1)))

Um overlap zu berechnen, wird nicht wirklich die Mengen der von einem Klonfragment abgedeckten
Zeilen gebildet und anschließend Schnitt beziehungsweise Vereinigung erzeugt. Dazu werden die in
einem Fragment enthaltenen Textstücke bereits beim Einlesen nach ihrer Position sortiert. Dann
lässt sich overlap in einem Durchlauf über die Liste der Textstücke der Fragmente berechnen, wie
der Pseudocode in Abbildung 4.2 zeigt. Der Übersichtlichkeit halber, geht der Pseudocode davon
aus, dass alle Textstücke zur selben Datei gehören.

15

function text_fragment_overlap (a, b)
return max (0,

min(a. end_pos .line , b. end_pos .line) -
max(a. start_pos .line , b. start_pos .line) + 1);

end;

// calculate overlap of two code fragments (each a list of text fragments)
function overlap (cf_a , cf_b)

cut = 0;
union = 0;

i = 0;
j = 0;

a = cf_a[i];
b = cf_a[j];
union += a. end_pos .line - a. start_pos .line + 1;
union += b. end_pos .line - b. start_pos .line + 1;

loop
cut += text_fragment_overlap (a, b);

if a. end_pos .line < b. end_pos .line
i += 1;
break if i >= length (cf_a);
a := cf_a[i];
union += a. end_pos .line - a. start_pos .line + 1;

else
j += 1;
break if j >= length (cf_b);
b = cf_a[j];
union += b. end_pos .line - b. start_pos .line + 1;

end;
end;

while i < length (cf_a) - 1 do
i += 1;
a := cf_a[i];
union += a. end_pos .line - a. start_pos .line + 1;

end;

while j < length (cf_b) - 1 do
j += 1;
b := cf_b[i];
union += b. end_pos .line - b. start_pos .line + 1;

end;

union -= cut;

return cut / union ;
end;

Abbildung 4.2

16

4.1.2.2 AST-Klonpaare

Für AST-Klonpaare lässt sich ein sehr ähnliche Funktion nutzen. overlap wird wie folgt ersetzt:

overlap(CF1, CF2) = |subtree(CF1) ∩ subtree(CF2)|
|subtree(CF1) ∪ subtree(CF2)|

Wobei subtree(CF) die Menge der AST-Knoten in dem durch CF gebildeten Teilbaum sind.

Wie im Falle der Textklone, kann auch hier overlap effizienter berechnet werden, als tatsächlich die
Schnitt- beziehungsweise Vereinigungsmengen zu bilden. Dazu wird entweder beim ersten Besuch
eines Knotens oder bereits im Voraus die Größe des darunterliegenden Teilbaumes berechtnet.
Um den Schnitt und die Vereinigung zweier Knoten zu ermitteln, wird die Größe der jeweiligen
Teilbäume verglichen. Ist diese identisch, können sie sich nur überlappen, wenn es sich um den
selben Knoten handelt. Falls sie unterschiedliche Größen haben, wird von dem kleineren Knoten
ausgehend in Richtung Wurzel gegangen und getestet ob der anderen Knoten getroffen wird. Ist
dies der Fall, kann anhand der bekannten Teilbaumgrößen overlap berechnet werden, ansonsten
überlappen sich die Knoten nicht.

4.1.2.3 Einfache Graphklonpaare

Auch hier wird die Ähnlichkeitsfunktion für Textklonpaare verwendet. In diesem Fall ist overlap
direkt die Überdeckung der beiden Klonfragmente:

overlap(CF1, CF2) = |CF1 ∩ CF2|
|CF1 ∪ CF2|

4.1.2.4 Graphklonpaare mit Zuordnung

Für Graphklonpaare mit Zuordnung ist ein leicht anderer Ansatz nötig, da hier noch die Abbildung
zwischen den beiden Knotenmengen zu betrachten ist. Seien m1 und m2 die beiden Zuordnungen:

m1 : CP1.CF1 → CP1.CF2
m2 : CP2.CF1 → CP2.CF2

Nun werden die dazugehörigen Relationen M1 und M2 betrachtet, wobei M ′
2 die Relation zur

Umkehrabbildung von m2 sei.

M1 ⊂ (CP1.CF1 × CP1.CF2)
M2 ⊂ (CP2.CF1 × CP2.CF2)
M ′

2 ⊂ (CP2.CF2 × CP2.CF1)

Als Ähnlichkeitsmaß wird das Verhältnis, der identisch zugeordneten Knotenpaare zu der Gesamt-
zahl, gewählt. Dabei muss wieder beachtet werden, dass erstes und zweites Klonfragment vertauscht
sein können.

similarity(CP1, CP2) = max

(
|M1 ∩M2|
|M1 ∪M2|

,
|M1 ∩M ′

2|
|M1 ∪M ′

2|

)

17

4.1.2.5 Klongruppen

Im Falle von Klongruppen handelt es sich jeweils um eine Menge von Klonfragmenten CG1 und
CG2. Im Folgenden gehen wir davon aus, dass die erste Klongruppe die Kleinere ist |CG1| ≤ |CG2|
(ansonsten tauschen).

Für das Ähnlichkeitsmaß ordnen wir jedem Klonfragment aus der ersten Klongruppe mit Hilfe der
oben definierten overlap-Funktion das am besten passende Fragment aus der zweiten Klongruppe
zu. Die overlap werden aufsummiert und durch die Anzahl an Klonfragmenten in der größeren
Klongruppe geteilt. Damit wird im Prinzip der durchschnittliche overlap berechnet.

similarity(CG1, CG2) = 1
|CG2|

∑
i∈CG1

max
j∈CG2

overlap(i, j)

Hierbei wird jeweils der beste overlap-Wert genommen. Daher kann es sein, dass für mehrere Klon-
fragmente das selbe Klonfragment aus der zweiten Klongruppe „zugeordnet” wird. Somit wird in
diesem Fall die Ähnlichkeit zu gut abgeschätzt. Dies liese sich beheben, indem anstatt des Maxi-
mums, die größte gewichtete Paarung berechnet wird. Dieses Vorgehen ist allerdings aufwändiger
[7] und wird daher nicht verwendet.

Diese Methode kann für Text-, AST- und einfache Graphklone genutzt werden. Die overlap-Funk-
tion ist, jeweils wie für entsprechende Klonpaare beschrieben, definiert.

4.1.2.6 Graphklongruppen mit Zuordnung

Für Graphklongruppen mit Zuordnung ergibt sich das Problem, dass das Verfahren für Klonpaare
nicht übertragbar ist, da es zu viele Möglichkeiten gibt, wie das Zuordnungs-Tupel sortiert sein
kann. Daher wird eine Kombination aus zwei Ähnlichkeitsmaßen genutzt.

Zum Einen wird das oben beschriebene Ähnlichkeitsmaß für einfache Klongruppen verwendet.
Dadurch wird der Fall abgedeckt, dass sich die Knotenmengen der Klonfragmente in den beiden
Klongruppen unterscheiden. Allerdings wird die Zuordnung der Knoten zueinander ignoriert. Dieser
Wert wird im folgenden mit sim1 bezeichnet.

Zum Anderen wird dazu analog ein Ähnlichkeitsmaß für die Zuordnung bestimmt. Eine Zuordnung
ist gegeben durch die Menge M aller n-Tupel. n ist hierbei die Anzahl an Klonfragmenten in
der Klongruppe. Als M ′ bezeichnen wir die Menge, in der die Tupel durch eine entsprechende
Menge ersetzt wurden. Damit wird zwar die Zuordnung zu den einzelnen Klonfragmenten verloren,
dafür lassen sich diese Mengen einfach vergleichen. Seien M ′

1 und M ′
2 die Zuordnungen der beiden

gegebenen Klongruppen und sei |M ′
1| ≤ |M ′

2|. Analog zu oben erhalten wir schließlich sim2.

sim2 = 1
|M ′

2|
∑

i∈M ′
1

max
j∈M ′

2

|i ∩ j|
|i ∪ j|

Dieses Ähnlichkeitsmaß wird schlechter, falls sich die Zuordnungen der beiden Klongruppen unter-
scheiden. Allerdings wird die Zuordnung der Knoten zu den Klongruppen ignoriert. Daher werden
beide Maße kombiniert.

similarity(CG1, CG2) = min(sim1, sim2)

4.2 Konvertierung der Klondarstellungen

In diesem Abschnitt wird beschrieben, wie sich AST-und Graphklone mit Zuordnung in einfache
Graphklone umwandeln lassen. Diese wiederum können auf Textklone abgebildet werden. Dabei

18

werden effektiv nur die Klonfragmente umgewandelt. Ob es sich sich um ein Klonpaar oder eine
Klongruppe handelt, bleibt unverändert.

4.2.1 Umwandlung von AST-Klonen zu einfachen Graphklonen

Um einen AST-Klon in einen einfachen Graphklon umzuwandeln, werden die zu den AST-Knoten
der Klonfragmente gehörenden Teilbäume gebildet. Die in diesen Teilbäumen enthaltenen Knoten
bilden die Menge, die das jeweilige Klonfragment des einfachen Graphklon bilden.

4.2.2 Umwandlung von Graphklonen mit Zuordnung zu einfachen Graph-
klonen

Um ein Graphklon mit Zuordnung in einen einfachen Graphklon umzuwandeln, wird die Menge, die
das jeweilige Klonfragment bildet genommen und als Klonfragment für den einfachen Graphklon
verwendet. Dabei geht die Zuordnung der Knoten der Klonfragmente verloren.

4.2.3 Einfache Graphklone zu Textklone

Um nun ein Klonfragment eines einfachen Graphklons, also eine Menge an Knoten, in ein Text-
klonfragment umzuwandeln, werden zuerst den einzelnen Knoten die jeweilige Quelltextposition
zugeordnet. Dazu wird eine bereits vorhandene Funktion genutzt, die zu einem Knoten Anfangs-
und Endposition angibt. Dies ist allerdings nur für Knoten möglich, die direkt einem syntaktischen
Element des Quelltextes zuzuordnen sind, wie beispielsweise einer Zuweisung. Knoten bei denen
dies nicht möglich ist, werden im Moment ignoriert. In einigen Fällen ließe sich das noch verbes-
sern. Allerdings gibt es auch Knotentypen, bei denen es nicht klar ist, welche Quelltextposition
zugeordnet werden soll.

Nun müssen diese Quelltextstücke zu einem Textklonfragment zusammengefasst werden. Dazu
wurden zwei Verfahren verwendet.

4.2.3.1 Zusammenfassen zu mehrere Textstücke

Bei diesem Verfahren werden die zu den einzelnen Knoten gehörenden Textstücke nur zusammen-
gefasst, wenn diese direkt aneinander liegen. So kann das resultierende Klonfragment aus mehreren
unzusammenhängenden Textstücken bestehen. Dies ist besonders vorteilhaft, wenn das Graphklon-
fragment nichtzusammenhängende Teile des Quelltextes abdeckt. Dies ist beispielsweise bei PDG-
basierten Verfahren üblich.

Der Nachteil ist, dass dieses Verfahren nur zeilenweise arbeiten kann. Dies liegt daran, dass es auf
Spaltenebene nicht einfach festzustellen ist, ob zwei Textstücke effektiv aneinander liegen. Dies ist
der Fall, da beispielsweise in dem Codestück b + c, den Zwischenräumen keine AST-Knoten zuor-
denbar sind. Würde also die Spalteninformation beim Zusammenfassen der Textstücke betrachtet
werden, wären dies drei getrennte Textstücke. Zwei Textstücke, welche die Variablen abdecken
und ein Textstück, das den Plusoperator abdeckt. Diese müssten also intelligent zusammengefasst
werden, was aufwändig ist.

4.2.3.2 Zusammenfassen zu einem einzelnen Textstück

Entstand das einfache Graphklonfragment beispielsweise durch das Umwandeln von einem AST-
Klonfragment, weiß man, dass diese Knoten sinnvoll zu einem Textstück zusammenfassbar sind.
Daher wird im zweiten Verfahren (pro Datei) ein Textstück anhand der kleinsten Start- bezie-
hungsweise der größten Endposition gebildet. Dies hat den Vorteil, dass hierbei auch die Spalten-
informationen erhalten bleiben können.

19

Kapitel 5

Entwurf

Dieses Kapitel soll eine Übersicht über die Gestaltung der Implementierung geben. Die Software
wurde in Ada implementiert. Zum Entwurf wurden hauptsächlich das Paradigma der Objektorien-
tierung genutzt. Im Allgemeinen wurde darauf geachtet, dass sich einzelne Teile gut tauschen lassen,
so dass es zum Beispiel möglich ist, ein weiteres Eingabeformat oder eine andere Vergleichsstrategie
zu unterstützen.

Das Diagramm in Abbildung 5.1 gibt einen Überblick über den Datenfluss bei der Durchführung
eines Vergleiches. Die einzelnen Bezeichner sind hierbei aus der Implementierung übernommen.

InputList und Result dienen hierbei zur Repräsentation der Eingabe beziehungsweise Ausga-
bemengen. Die Klone sind dabei in etwa so dargestellt wie in Abschnitt 3.1 vorgestellt. Der si-
gnifikanteste Unterschied ist, dass die Graphklonpaare mit Zuordnung als Hashmap abgebildet
werden.

Bei den anderen Kästchen im Diagramm handelt es sich um abstrakte Klassen, von denen es jeweils
verschiedene Implementierungen gibt, um die verschiedenen Darstellungen, Vergleichsoperationen,
etc. zu unterstützen. Diese werden im Folgenden auch als Module bezeichnet.

Ein Input-Modul liest eine Menge aus Klonen aus einer Datei mit dem von ihm unterstützten Da-
teiformat. Daraus erzeugt es eine InputList, welche die Menge der eingelesene Klone darstellt. Für
jede unterstützte Kombination aus Klondarstellung und Eingabeformat gibt es eine entsprechende
Implementierung. Beispielsweise liest Text_CSV_Input Textklonpaare aus einer CSV-Datei und
Tree_IML_Input liest AST-Klonpaare aus einer IML-Datei, die wie in Abschnitt 3.1.1 gestaltet
ist.

Die beiden eingelesenen Mengen werden dann mit einem Diff-Modul verglichen. Siehe Abschnitt 4.1.1
für die beiden in dieser Arbeit vorgestellten Vergleichsstrategien.

Zwei Klone vergleicht das Diff-Modul mit Hilfe eines Comparator-Moduls, welches deren Ähnlich-
keit, wie in Abschnitt 4.1.2 beschrieben ermittelt.

Input

Input Lists

A

B

Diff

Comparator

Result
Result
Output out

2×

Abbildung 5.1: Übersicht über den Datenfluss beim Vergleich zweier Klonmengen

20

Input Converter Output out

1..2

Abbildung 5.2: Übersicht über den Datenfluss beim Konvertieren zwischen verschiedenen Klondar-
stellungsformen

Das Ergebnis wird anschließend von einem ResultOutput Modul wieder in eine Datei geschrieben.

Die Umwandlung verschiedener Klondarstellungen verläuft wie in Abbildung 5.2 verdeutlicht. Hier-
bei bezeichnet Converter das Modul, welches eine der drei in Abschnitt 4.2 beschriebenen Um-
wandlungen durchführt. Das Ergebnis ist wieder eine Klonmenge. Diese wird von einem Output-
Modul in eine Datei geschrieben.

In der aktuellen Version wird für die Ein-/Ausgabe der Klonmengen primär IML verwendet. Für
Textklone wird aktuell noch CSV als Format unterstützt. Die Ausgabe des Vergleichsergebnisses
erfolgt im Moment in einem CSV-Format.

21

Kapitel 6

Evaluierung

Zur Evaluierung des erstellten Werkzeuges, wurde es beispielhaft angewandt. Als Klonerkennung
wurde zum Einem ccdiml und zum Anderen ein im Moment von Torsten Görg in Entwicklung
befindender PDG-basierter Klonerkenner verwendet. ccdiml ist ein von Stefan Bellon entwickelter
Klonerkenner, der das AST-basierte Verfahren nach Baxter [5] implementiert und ist Bestandteil
von Bauhaus. Für Bauhaus existiert ein Satz von bereits zur Analyse vorbereiteten Open-Sour-
ce-Projekten. Beide Werkzeuge bauen auf Bauhaus auf, daher wurde eines dieser Open-Source-
Projekte gewählt und mit beiden Klonerkennern analysiert.

Bei dem analysierten Softwareprojekt handelt es sich um gnuplot, ein unter einer freien Lizenz
verfügbares Werkzeug zum Plotten von Daten und Funktionen. Gnuplot ist in C geschrieben. Es
wurde Version 4.0.0 von gnuplot verwendet.

Dazu wurde zuerst das Bauhaus-Frontend aufgeführt, um aus dem Quellcode die IML-Darstellung
zu erzeugen. Daraufhin wurden, die vom PDG-basierten Klonerkenner benötigten Analyseergeb-
nisse (Zeigeranalyse, Kontrollflussanalyse, SSA, etc.), mit den entsprechenden Bauhauswerkzeugen
erzeugt. Die resultierenden IML-Graphen konnten nun von beiden Klonerkennungswerkzeugen ana-
lysiert werden.

Der PDG-Klonerkenner war so konfiguriert, dass er nur Klonfragmente, die mindestens 10 Knoten
enthalten, ausgibt. Mit dieser Einstellung fand er 7082 Klone.

Da der PDG-Klonerkenner viele kleine Klone erkannt hatte wurde ccdiml auch so konfiguriert,
dass es kleine Klone erkennt. Konkret wurde ccdiml im „feinen”-Modus (das heißt, dass es auch
kleine Statements als Klone betrachtet) mit einer Mindestlänge von drei Zeilen betrieben.

Um die beiden Ausgaben vegleichen zu können, wurden sie wie in Abschnitt 4.2 beschrieben in
Textklone umgewandelt.

Die erstellte Software fand 7017 Klone, die nur der PDG-Erkenner gefunden hat, 183 Klone die nur
ccdiml gefunden hat und 72 Tupel von Klonen, die einander ähnlich sind. Die Summe ist großer
als die Gesamtzahl der Klone, da ein Klon zu mehreren verschiedenen Klonen ähnlich sein kann.

Von den nur durch eines der Werkzeuge erkannten Klonen, wurden jeweils fünf zufällig ausgewählt
und von Hand betrachtet.

In den Abbildungen ist jeweils das erste Klonfragment rot und das zweite grün markiert. Zeigt die
Abbildung zwei Klonpaare, zeigt die linken Markierungen das Klonpaar des PDG-Klonerkenners
und die rechten Markierungen das Klonpaar, dass ccdiml gefunden hat.

22

src/gplt_x11.c:
[...]
3444 #define KNOWN_KEYSYMS(gp_keysym) \
3445 if (plot == current_plot) { \
3446 gp_exec_event(GE_keypress, \
3447 (int)RevX(event->xkey.x), (int)RevY(event->xkey.y), \
3448 gp_keysym, 0); \
3449 } \
3450 return;
[...]
3486 case XK_Prior: /* XXX */
3487 KNOWN_KEYSYMS(GP_PageUp);
3488 case XK_Next: /* XXX */
[...]
3536 #ifdef XK_KP_End
3537 case XK_KP_End:
3538 KNOWN_KEYSYMS(GP_KP_End);
3539 #endif
[...]

Abbildung 6.1

6.1 Nur vom PDG-Klonerkenner gefundene Klone

Von den fünf gewählten Klonen, die nur der PDG-Klonerkenner gefunden hatte, handelt es sich
bei vieren um Klone, die eine einzelne Quelltextzeile umfassen und in der Tat sehr ähnlich sind.
Bei drei dieser Klone handelt es sich, wie in Abbildung 6.1 gezeigt, um einen Zweig eines switch-
Statements, welches Tastendrücke verarbeitet.

Diese Klone sind unterhalb des Schwellwerts von drei Zeilen, der bei ccdiml eingestellt war und
konnten daher von diesem nicht erkannt werden. Dies ist mutmaßlich auch einer der Gründe,
warum der PDG-Klonerkenner sehr viel mehr Klone gefunden hat als ccdiml.

Der eine verbleibende Klon (siehe Abbildung 6.2) ist ein Reihe von über viele Zeilen zerstreuten
Anweisungen, die auf die selben Variablen zugreifen. Diese weisen zwar Ähnlichkeiten auf, allerdings
sind sie nicht als „echter” Klon zu betrachten.

6.2 Nur von ccdiml gefundene Klone

Bei den fünf betrachteten Klonen die nur von ccdiml erkannt wurden handelt es sich bei allen
um Anweisungsfolgen die zwar etwas ähnlich sind, allerdings keinen „echten” Klon bilden wie das
Beispiel in Abbildung 6.3 zeigt.

6.3 Von beiden Werkzeugen gefundene Klone

Von den Klonen, die von beiden Werkzeugen gefunden wurden, wurden die fünf Tupel betrachtet,
die sich, nach dem verwendeten Ähnlichkeitsmaß, am ähnlichsten sind.

Bei zwei dieser Klone handelt es sich um „richtige” Klone. Bei diesen Klonen würde es sich anbieten,
die Funktionalität in eine Funktion auszulagern und so die Doppelung zu reduzieren. Wie man an
dem Beispiel in Abbildung 6.4 sieht, erkennen hier beide Werkzeuge effektiv den selben Klon.

Bei dem in Abbildung 6.5 gezeigten Tupel erkannten auch beide Werkzeuge den selben Klon:

Hier enthält der durch dem PDG-Klonerkenner erkannte Klon zusätzlich die Referenz auf die
verwendeten Variablen. ccdiml erkennt dagegen, dass die nachfolgende Zeile auch noch zu dem
Klon gehört.

23

src/gplt_x11.c:
[...]
3908 XrmInitialize();
3909 XrmParseCommand(&dbCmd, options, Nopt, Name, &Argc, Argv);
3910 if (Argc > 1) {
[...]
3923 }
3924 if (pr_GetR(dbCmd, ".display"))
3925 ldisplay = (char *) value.addr;
[...]
4013
4014 XrmMergeDatabases(dbCmd, &db);
4015
[...]
4019 /* a specific visual can be forced by the X resource visual */
4020 db_string = pr_GetR(db, ".visual") ? (char *) value.addr : (char *) 0;
4021 if (db_string) {
[...]
4026 for (i = 0; *ptr; i++, ptr++) {
4027 if (!strcmp(db_string, *ptr)) {
4028 #if 0
[...]
4071 /* check database for maxcolors */
4072 db_string = pr_GetR(db, ".maxcolors") ? (char *) value.addr : (char *) 0;
4073 if (db_string) {
4074 int itmp;
4075 if (sscanf(db_string, "%d", &itmp)) {
4076 if (itmp <= 0) {
[...]

Abbildung 6.2

src/gplt_x11.c:
[...]
2387 #ifdef EXPORT_SELECTION
2388 export_graph(plot);
2389 #endif
2390
2391 UpdateWindow(plot);
2392 #ifdef USE_MOUSE
[...]
2436 #ifdef USE_MOUSE
2437 EventuallyDrawMouseAddOns(plot);
2438
2439 XFlush(dpy);
2440
[...]

Abbildung 6.3

src/gpexecute.c:
[...]
 154 {
 155 gpe_fifo_t *base = malloc(sizeof(gpe_fifo_t));
 156 /* fprintf(stderr, "(gpe_init) \n"); */
 157 assert(base);
 158 base->next = (gpe_fifo_t *) 0;
[...]
 167 if ((*base)->prev) {
 168 gpe_fifo_t *new = malloc(sizeof(gpe_fifo_t));
 169 /* fprintf(stderr, "(gpe_push) \n"); */
 170 assert(new);
 171 (*base)->prev->next = new;
[...]

Abbildung 6.4

24

src/gplt_x11.c:
[...]
 963 static void
 964 delete_plot(plot_struct *plot)
 965 {
[...]
 969
 970 for (i = 0; i < plot->ncommands; ++i)
 971 free(plot->commands[i]);
 972 plot->ncommands = 0;
 973
[...]
1012 static void
1013 prepare_plot(plot_struct *plot, int term_number)
1014 {
1015 int i;
1016
1017 for (i = 0; i < plot->ncommands; ++i)
1018 free(plot->commands[i]);
1019 plot->ncommands = 0;
1020
[...]

Abbildung 6.5

Die beiden restlichen betrachteten Tupel betreffen einen von ccdiml erkannten Klon, der zu zwei
verschiedenen von dem PDG-Klonerkenner erkannten Klonen ähnlich ist. Exemplarisch ist eines
der Tupel in Abbildung 6.6 gezeigt. Hierbei handelt es sich um einen kleinen Klon, wobei die von
dem PDG-Klonerkenner zusätzlich gewählte Zeile willkürlich erscheint.

6.4 Zusammenfassung

Die Ergebnisse des Vergleiches scheinen plausibel. Die Menge der nur von einem der beiden Werk-
zeuge erkannten Klonmengen ist in diesem Fall eher nicht hilfreich, da beide Werkzeuge „zu emp-
findlich” eingestellt sind und viele Klone erkennen die keine „echten” sind. Aus dieser Menge wurden
erfolgreich die von beiden erkannten Klone herausgefiltert. An dem oben gezeigten Beispiel wird
ersichtlich, wie sich die beiden erkannten Klone unterscheiden. Für den Vergleich benötigte die
Software auf einem „AMD Opteron 6174” ca. 9,0 Sekunden.

25

src/getcolor.c:
[...]
 147 #define CONSTRAIN(x) ((x)<0 ? 0 : ((x)>1 ? 1 : (x)))
[...]
 695 static void CIEXYZ_2_RGB(rgb_color *col)
 696 {
 697 double x,y,z;
 698 x = col->r; y = col->g; z = col->b;
 699 col->r = CONSTRAIN(1.9100*x - 0.5338*y - 0.2891*z);
 700 col->g = CONSTRAIN(-0.9844*x + 1.9990*y - 0.0279*z);
 701 col->b = CONSTRAIN(0.0585*x - 0.1187*y - 0.9017*z);
 702 }
[...]
 703
 704 static void YIQ_2_RGB(rgb_color *col)
 705 {
 706 double y,i,q;
 707 y = col->r; i = col->g; q = col->b;
 708 col->r = CONSTRAIN(y - 0.956*i + 0.621*q);
 709 col->g = CONSTRAIN(y - 0.272*i - 0.647*q);
 710 col->b = CONSTRAIN(y - 1.105*i - 1.702*q);
 711 }
[...]

Abbildung 6.6

26

Kapitel 7

Fazit

In dieser Arbeit wurde ein Verfahren zum Vergleich von Klonmengen erarbeitet. Hierbei wurde
besonders darauf eingegangen, dass die Klone in verschiedenen Darstellungsformen vorliegen kön-
nen. Des Weiteren wurde ein Verfahren zum Umwandeln von AST- und PDG-Klonen in Textklone
erarbeitet.

Diese Verfahren wurden in Form eines Softwarewerkzeuges implementiert. Besonders darauf ge-
achtet wurde, die Software modular zu gestalten, sodass sich einzelne Teil leicht tauschen, bezie-
hungsweise ergänzen lassen. So lässt sich zum Beispiel ein weiteres Eingabeformat oder ein anderes
Vergleichsverfahren für Klonpaare einfach hinzuzufügen. Der von Bauhaus unabhängige Teil der
Software ist unter der MIT-Lizenz verfügbar [8].

7.1 Ausblick

Abschließend sollen noch ein paar Verbesserungs- und Ergänzungsmöglichkeiten aufgezeigt werden.

• Für den Spezialfall von Textklonpaaren, die aus einem zusammenhängenden Textfragment
bestehen, lässt die Anzahl der benötigten paarweisen Vergleiche noch verringern, indem die
Klonpaare nach der Textposition ihrer Fragmente sortiert werden.

• Für den Vergleich zweier Klongruppen lässt sich eventuell ein effizienteres Ähnlichkeitsmaß
finden.

• Für die manuelle Betrachtung der Ergebnismenge wäre eine Visualisierung der Klone sehr
hilfreich. Für Textklone sollte das nicht schwer umzusetzen sein. Die kompakte Visualisierung
von Graphklonen ist hingegen eine schwierige Aufgabe.

• Die Umwandlung von Graphklonfragmente in Quelltextfragmente lässt sich verbessern, indem
die Behandlung von Knoten, die nicht direkt einem syntaktischen Element zuzuordnen sind,
verbessert wird.

• Die Effizienz der Implementierung lässt sich an einigen Stellen noch verbessern.

• Es gibt noch einige Aspekte der Implementierung, die evaluiert werden können.

27

Kapitel 8

Quellen und Referenzen

[1] Chanchal Kumar Roy und James R. Cordy, „A Survey on Software Clone Detection Research“,
Technical Report No. 2007-541, School of Computing, Queen’s University at Kingston, 2007.
http://research.cs.queensu.ca/TechReports/Reports/2007-541.pdf

[2] Stefan Bellon, „Vergleich von Techniken zur Erkennung duplizierten Quellcodes“, Diplomarbeit
Nr. 1998, Institut für Softwaretechnologie, Universität Stuttgart, 2002.
http://www.bauhaus-stuttgart.de/bauhaus/papers/DIP-1998.pdf

[3] Aoun Raza, Gunther Vogel und Erhard Plödereder, „Bauhaus - A Tool Suite for Profram
Analysis and Reverse Engineering“, In Reliable Software Technologies, Ada-Europe 2006, LN-
CS(4006) Seiten 71–82, 2006.
http://www.bauhaus-stuttgart.de/bauhaus/papers/bauhaus.pdf

[4] Brenda S. Baker, „On Finding Duplication and Near-Duplication in Large Software Systems“,
In Proceedings of 2nd Working Conference on Reverse Engineering, IEEE Seiten 86–95, 1995.

[5] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna und Lorraine Bier, „Clone
Detection Using Abstract Syntax Trees“, In Proceedings of the International Conference on
Software Maintenance Seiten 368–377, 1998.

[6] Jens Krinke, „Identifying Similar Code with Program Dependence Graphs“, In Proceedings of
the Eighth Working Conference On Reverse Engineering (WCRE’01), 2001.

[7] James Munkres „Algorithms for the Assignment and Transportation Problems“, In Journal of
the Society of Industrial and Applied Mathematics Vol. 5, Nr. 1, Seite 32–38, 1957.

[8] https://ccdiff.ipsumj.de/

28

http://research.cs.queensu.ca/TechReports/Reports/2007-541.pdf
http://www.bauhaus-stuttgart.de/bauhaus/papers/DIP-1998.pdf
http://www.bauhaus-stuttgart.de/bauhaus/papers/bauhaus.pdf
https://ccdiff.ipsumj.de/

29

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben.

Ich habe keine anderen als die angegebenen Quellen benutzt und alle wörtlich oder sinngemäß aus
anderen Werken übernommene Aussagen als solche gekennzeichnet.

Weder diese Arbeit noch wesentliche Teile daraus waren bisher Gegenstand eines anderen Prü-
fungsverfahrens.

Ich habe diese Arbeit bisher weder teilweise noch vollständig veröffentlicht.

Das elektronische Exemplar stimmt mit allen eingereichten Exemplaren überein.

Stuttgart, 15.04.2016, Simon Gaiser

30

	Titelblatt
	Abstract
	Inhaltsverzeichnis
	1 Einführung
	1.1 Aufgabenstellung
	1.2 Überblick

	2 Grundlagen
	2.1 Codeklone
	2.2 Klonerkennung
	2.3 Klondarstellung
	2.4 Vergleich von Klonerkennungsverfahren
	2.5 Bauhaus

	3 Spezifikation
	3.1 Eingabe
	3.1.1 Klonpaare
	3.1.1.1 Textklonpaare
	3.1.1.2 AST/Klonpaare
	3.1.1.3 Einfache Graphklonpaare
	3.1.1.4 Graphklonpaare mit Zuordnung

	3.1.2 Klongruppen

	3.2 Ausgabe

	4 Lösungsansatz
	4.1 Vergleich
	4.1.1 Vergleich von Klonmengen
	4.1.1.1 Naiver Ansatz
	4.1.1.2 Hashbasierter Vergleich

	4.1.2 Vergleich einzelner Klone
	4.1.2.1 Textklonpaare
	4.1.2.2 AST/Klonpaare
	4.1.2.3 Einfache Graphklonpaare
	4.1.2.4 Graphklonpaare mit Zuordnung
	4.1.2.5 Klongruppen
	4.1.2.6 Graphklongruppen mit Zuordnung

	4.2 Konvertierung der Klondarstellungen
	4.2.1 Umwandlung von AST/Klonen zu einfachen Graphklonen
	4.2.2 Umwandlung von Graphklonen mit Zuordnung zu einfachen Graphklonen
	4.2.3 Einfache Graphklone zu Textklone
	4.2.3.1 Zusammenfassen zu mehrere Textstücke
	4.2.3.2 Zusammenfassen zu einem einzelnen Textstück

	5 Entwurf
	6 Evaluierung
	6.1 Nur vom PDG/Klonerkenner gefundene Klone
	6.2 Nur von ccdiml gefundene Klone
	6.3 Von beiden Werkzeugen gefundene Klone
	6.4 Zusammenfassung

	7 Fazit
	7.1 Ausblick

	8 Quellen und Referenzen
	Erklärung

