Institut fiir Softwaretechnologie
Abteilung Programmiersprachen
Universitdt Stuttgart
Universitétsstrafie 38
D-70569 Stuttgart

Bachelorarbeit Nr. 262

Automatisierter Vergleich von
Codeklonerkennungsergebnissen

Studiengang:
Priifer:
Betreuer:
Beginn am:

Beendet am:

CR-Nummer:

Simon Gaiser

Informatik

Prof. Dr. Erhard Plédereder
Torsten Gorg

15.10.2015

15.04.2016

D.2.7, D.34

Abstract

Als Codeklon bezeichnet man mehrere semantisch dhnliche Teile eines Programms. Diese kdnnen
beispielsweise durch ,,Copy & Paste” entstehen und erschweren die Wartung von Software. Es gibt
verschiedene Verfahren um Codeklone zu finden. Méchte man zwei Verfahren zur Erkennung von
Codeklonen vergleichen, bietet es sich an, die bei gleicher Eingabe gefundenen Klonmengen zu ver-
gleichen. Dabei ist man besonders an der Differenzmenge interessiert, also die Klone die nur durch
eines der beiden Verfahren erkannt wurden. Da die Ergebnissmengen in der Regel grofl sind, beno-
tigt man eine automatische Vergleichsmoglichkeit. Diese Arbeit beschéftigt sich damit, wie man die
Ausgabe verschiedener Klonerkenner automatisch vergleichen kann. Hierbei wird besonders darauf
eingegangen, dass die Klone auf Text-, AST- oder PDG-Ebene dargestellt werden kénnen und als
Klonpaar oder Klongruppe vorliegen kénnen. Des Weiteren werden die Klone so verglichen, dass
auch dhnlich aber nicht identisch erkannte Klone gefunden und entsprechend behandelt werden.
Auflerdem beschéftigt sich diese Arbeit damit, wie Klone aus AST- und PDG-Ebene in Knoten-
mengen und diese wiederum in Quelltextfragmente umgewandelt werden kénnen. Zum Schluss wird
die erstellte Software noch zur Evaluation auf ein realitdtsnahes Beispiel angewandst.

Inhaltsverzeichnis

1 Einfiihrung

1.1 Aufgabenstellung

1.2 Uberblick
2 Grundlagen

2.1 Codeklone,

2.2 Klonerkennung

2.3 Klondarstellung

2.4 Vergleich von Klonerkennungsverfahren
25 Bauhaus

3 Spezifikation

3.1 Eingabe
3.1.1 Klonpaare
3.1.2 Klongruppen
3.2 Ausgabe L.
4 Losungsansatz
4.1 Vergleich.
4.1.1 Vergleich von Klonmengen
4.1.2 Vergleich einzelner Klone
4.2 Konvertierung der Klondarstellungen . .

4.2.1 Umwandlung von AST-Klonen zu

einfachen Graphklonen

4.2.2 Umwandlung von Graphklonen mit Zuordnung zu einfachen Graphklonen .
4.2.3 Einfache Graphklone zu Textklone

5 Entwurf

6 Evaluierung

6.1 Nur vom PDG-Klonerkenner gefundene Klone

6.2 Nur von ccdiml gefundene Klone oo

6.3 Von beiden Werkzeugen gefundene Klone

6.4 Zusammenfassung oL oL
7 Fazit

7.1 Ausblick

8 Quellen und Referenzen

20

22
23
23
23
25

27
27

28

Kapitel 1
Einfiihrung

Als Codeklon bezeichnet man Quellcodestiicke, die semantisch dhnlich sind. Codeklone kénnen aus
verschiedenen Griinden entstehen, beispielsweise durch das Kopieren von Programmstiicken. Da
Codeklone die Wartung von Software erschweren, ist es wiinschenswert, Codeklone automatisiert
zu erkennen. Es gibt verschiedene Verfahren zur Codeklonerkennung. Die Algorithmen kénnen auf
verschiedenen Darstellungsebenen des zu untersuchenden Programms arbeiten. Zum Beispiel direkt
auf dem Quelltext, dem abstrakten Syntaxbaum (AST) oder dem Programmabhéngigkeitsgraph
(PDG).

Die Klone koénnen je nach verwendetem Erkennungsverfahren in verschiedenen Darstellungsformen
vorliegen. Zwar lassen sich die Darstellungen auf AST- oder PDG-Ebene auf Textstiicke abbilden,
allerdings gehen hierbei gegebenenfalls Informationen verloren. So kdnnten sich zum Beispiel zwei
PDG-Klone darin unterscheiden, welche Datenabhéngigkeiten Teil des Klones ist. Dies ldsst sich
nicht in einer quelltext-basierten Darstellung von Klonen abbilden. Von daher ist es wiinschens-
wert, dass man zwei Verfahren, die auf der gleichen Darstellungsebene arbeiten, auch auf dieser
vergleichen kann.

Des Weiteren ist zu beachten, dass zwei Klonerkennungsverfahren zwei sehr dhnliche, aber nicht
identische Klone erkennen kénnen. Beispielweise kann ein Verfahren eine kopierte Schleife als Klon
erkennen und ein anderes Verfahren findet zusétzlich die weiter oben stehende Initialisierung der
Schleifenvariable. Auch dies sollte bei dem Vergleich zweier Klonmengen erkannt werden.

Um verschiedene Verfahren zur Klonerkennung zu vergleichen, bietet es sich an, diese auf ein reales
Softwareprojekt anzuwenden und dann die Ergebnisse zu vergleichen. Hierbei ist man besonders an
der Klondifferenzmenge interessiert. Also an den Klonen, die nur eines der Verfahren erkannt hat.
Da die zu vergleichende Menge in der Regel grof} ist, ist dies in der Praxis fast nur automatisiert
moglich. Diese Arbeit beschéftigt sich mit eben diesem automatischen Vergleich.

1.1 Aufgabenstellung

Ziel dieser Arbeit ist, es eine Software zu erstellen, die es ermdglicht, die Ergebnisse zweier Co-
deklonerkennungen automatisiert zu vergleichen. Hierbei sollen Klone auf verschiedenen Darstel-
lungsebenen unterstiitzt werden: als Quelltextstiick, als AST-Teilbaum und als PDG-Teilgraph.
Auflerdem sollen sowohl Klonpaare als auch Klongruppen verarbeitet werden kénnen. Die Klone
aus den beiden Eingabemengen liegen hierbei in der gleichen Darstellungsform vor. Dabei sollen
auch dhnliche aber nicht identische Klone erkannt werden kénnen.

Des Weiteren soll es moglich sein, Klone aus der AST-, und PDG-Darstellungen in Knotenmengen
und diese in die Darstellung als Quelltextstiick umzuwandeln.

Die Eingabe liegt dabei in Form der IML-Zwischendarstellung aus dem Programmanalyseframe-
work Bauhaus vor.

1.2 Uberblick

Nach der Einleitung wird zuerst auf einige Grundlagen eingegangen, auf welche dann im Folgenden
aufgebaut wird. Dann wird die zu Beginn erarbeitete Spezifikation der Eingabedaten beschrieben
und auf die Form der Ausgabe eingegangen. Das darauffolgende Kapitel stellt die erarbeiteten
Verfahren zum Vergleich von Klonmengen vor. Darin wird auch das Verfahren zum Umwandeln
zwischen den Klondarstellungen beschrieben. Im Anschluss wird die Gestaltung der Implementie-
rung vorgestellt. Diese wird dann anhand einer Beispieleingabe evaluiert. Das letzte Kapitel fasst
dann die Arbeit nochmal kurz zusammen und zeigt mégliche Verbesserungs- und Ergénzungsmog-
lichkeiten auf.

Kapitel 2

Grundlagen

2.1 Codeklone

Ein Codeklon (in dieser Arbeit in der Regel kurz als Klon bezeichnet) sind zwei oder mehrere
Stiicke eines Programms, welche semantisch &hnlich sind. Es gibt verschiedene Méglichkeiten, wie
diese entstehen konnen. Die offensichtlichste Moglichkeit ist durch Kopieren und Einfiigen (,,Copy
& Paste”). Dabei kopiert der Entwickler ein Stiick Quellcode, dass die gewiinschte Funktionalitét
schon (teilweise) umsetzt und fiigt es an einer anderen Stelle ein. Gegebenenfalls verdndert er den
kopierten Quellcode zusétzlich. Andere Moglichkeiten fiir die Entstehung von Codeklonen sind das
mehrfache Schreiben gleicher, beziehungweise dhnlicher Funktionalitdten oder das Zusammenfiih-
ren unterschiedlicher Quelltexte. (Siehe [1],[2])

Klone sind in der Regel unerwiinscht, da sie die Wartung von Software erschweren kénnen [1].
Findet man beispielsweise einen Fehler in einem Teil des Programms, wird er an der anderen
Stelle nicht automatisch mit korrigiert. Da Klone in aller Regel aufgrund ihrer Entstehung nicht
dokumentiert sind, heifit das, dass man den Fehler vermutlich mehrfach finden und beheben muss.

2.2 Klonerkennung

Aus den gerade beschriebenen Griinden, méchte man Klone automatisch finden kénnen. Dazu gibt
es verschiedene Ansétze. Diese unterscheiden sich sowohl im Vorgehen als auch darin, auf welche
der Darstellungsebenen der Programmanalyse sie aufbauen.

Die Klonerkennung kann direkt auf Quelltextebene, beziehungsweise dem in Token umgewandel-
ten Quelltext arbeiten. Das Verfahren nach Baker [4] beispielsweise wandelt jede Zeile auf Basis
der darin vorkommenden Token in einen sogenannten prev-String um, der das Muster der Zeile
unabhéngig von Details wie Variablennamen abbilden soll. Mit Hilfe eines Suffix-Baumes werden
dann gleiche Muster und somit dhnliche Zeilen gefunden und zu Klonen zusammengefasst.

Eine weitere Moglichkeit besteht darin, den bei der Programmanalyse oder Kompilierung erstellten
abstrakten Syntaxbaum (abstract syntax tree; AST) zu Nutzen, um darin dhnliche Programmteile
zu finden. Das Verfahren nach Baxter [5] beispielsweise sucht nach dhnlichen Teilbdumen in einem
AST. Da ein paarweiser Vergleich aller Teilbdume sehr aufwindig wére, wird eine Hashfunkti-
on genutzt, die dhnliche Teilbdume auf den selben Wert abbildet. Damit miissen dann nur noch
Teilbdume mit gleichem Hashwert verglichen werden.

Dariiber hinaus kann man sich noch weitere Ergebnisse von Programmanalysen zu Nutze machen.
Dazu arbeiten Verfahren, wie beispielsweise das nach Krinke [6], auf dem Programmabhéngigkeits-
graph (program dependency graph; PDG). In diesem sind zusétzlich Daten- und Kontrollabhén-

gigkeiten abgebildet. Das Verfahren nach Krinke sucht nach Klonen, indem es dhnliche Teilgraphen
des PDG identifiziert.

Wenn im Folgenden von Klon die Rede ist, ist in aller Regel das Ergebnis eines Klonerkennungs-
verfahren gemeint. Also das, was ein Klonerkennungsverfahren als Klon eingestuft hat. Ob es sich
dabei tatsichlich um zwei Klonfragmente handelt, die man als Klon einstufen sollte (,,true posi-
tive”), ist dabei nicht sicher. So erzeugen zum Beispiel die meisten Verfahren, wenn sie ,zu fein”
eingestellt sind Klone, die nur kleine gemeinsame Teilausdriicke darstellen, die man aber nicht als
Klon einstufen wiirde (,false positive”).

2.3 Klondarstellung

So wie die Klonerkennungen auf verschiedenen Darstellungsformen des Programms arbeiten, kann
man auch einen Klon verschieden darstellen.

Zum Einen stellt sich die Frage, wie man ein Stiick eines Programms darstellt. Dies ldsst sich
als Stiick des Quelltextes, als Teilbaum eines ASTs oder als Teilgraph eines PDGs darstellen.
Hierfiir wird in dieser Arbeit der Begriff Klonfragment genutzt. Ublich ist auch die Bezeichnung
Codefragment, was aber zum Beispiel im Falle eines PDGs nur bedingt zutreffend ist, da dieser
auch Eigenschaften wie Datenabhéngigkeiten abbildet.

Des Weiteren stellt sich die Frage, wie man Klonfragmente zu einem Klon zusammenfasst. Dabei
gibt es primér zwei Varianten: Klonpaare und Klongruppen (teilweise auch Klonklasse genannt).
Andere Varianten, wie die von Stefan Bellon in [2] beschriebene Klonrelationenmenge, werden nicht
betrachtet. Wenn nicht nadher spezifiziert, sind beide Varianten gemeint. Wenn ein Paar von zwei
Klonen gemeint ist wird in dieser Arbeit teilweise der Begriff Tupel verwendet um die Verwechslung
mit Klonpaar zu vermeiden.

Bei einem Klonpaar werden zwei Klonfragmente zu einem Paar zusammengefasst. Bei einer Klon-
gruppe hingegen werden eine ganze Menge von Klonfragmenten, die einander dhnlich sind, zusam-
mengefasst. Ob die Klonbeziehung transitive Eigenschaften hat, hingt von den konkreten Kloner-
kennungsverfahren ab [2].

2.4 Vergleich von Klonerkennungsverfahren

Durch die verschiedenen Ansétze zum Finden von Klonen stellt sich natiirlich die Frage, wie man
diese vergleichen kann. Dabei gibt es sowohl den Fall, dass man zwei Varianten eines Algorithmus
vergleichen will, um eventuell Unterscheide zu finden, als auch, dass man zwei deutlich verschiedene
Verfahren vergleichen mochte.

Hierbei bietet es sich an, eine realistische Eingabe einer Klonerkennung zu nehmen, also ein nicht
triviales Softwareprojekt und die zu vergleichenden Algorithmen darauf auszufiihren [2]. Damit
erhélt man zwei Klonmengen. Diese miissen nun verglichen werden, um beispielsweise Klone zu
finden, die nur von einem Verfahren gefunden werden. Da die erkannten Klonmengen in der Regel
grof} sind, sollte dieser Vergleich automatisch moglich sein.

Genau dieser automatisierte Vergleich zweier Klonmengen ist Gegenstand dieser Arbeit. Hierbei ist
die Diplomarbeit von Stefan Bellon zu erwéahnen [2]. In dieser vergleicht er verschiedene Werkzeuge
zur Erkennung von Codeklonen. Dazu hat er auch eine Software erstellt, um Mengen von Textklo-
nen automatisch zu vergleichen. Diese Arbeit unterscheidet sich von der Arbeit Bellons darin, dass
die Darstellung von Textklonen erweitert wird, sodass auch nicht zusammenhédngende Quelltext-
stiicke ein Klonfragment bilden kénnen. Vor allem werden zusétzlich noch die Darstellungsformen
von Klonen auf AST- und PDG-Ebene betrachtet. Allerdings betrachtet diese Arbeit nur Verfahren
zum Vergleich von Klonmengen und untersucht damit nicht konkrete Klonerkennungswerkzeuge.

2.5 Bauhaus

Bauhaus ist ein an der Universitat Stuttgart entwickeltes Programmanalyse-Framework [3]. Fiir
diese Arbeit ist vor allem die dazugehorige Zwischendarstellung IML relevant. IML ist ein Graph,
welcher zum Einen das zu analysierende Programm in Form eines, mit einigen Zusatzinformationen
(wie zum Beispiel Quelltextreferenzen), angereicherten ASTs und zum Anderen weitere Program-
manalyseergebnisse enthélt.

IML besteht aus einigen nativen Datentypen und mit Hilfe einer einfachen Beschreibungssprache
definierten Knotentypen. Diese Beschreibungssprache ermoglicht es, die Knotentypen mittels von
Klassenhierarchien und Interfaces objektorientiert zu gestalten. Bauhaus generiert auf Basis dieser
Beschreibung automatisch entsprechenden Code, welcher die Datenstrukturen zur Reprasentation
des Graphen enthélt und Manipulationen des Graphen erlaubt. Des Weiteren stellt Bauhaus fiir
den IML-Graphen De-/Serialisierungsfunktionen bereit. Dabei unterstiitzt Bauhaus verschiedene
Programmiersprachen, wobei der Grof3teil von Bauhaus Ada nutzt.

Die einzelnen Analysewerkzeuge in Bauhaus arbeiten in der Regel so, dass sie die bisherigen Ana-
lyseergebnisse in Form eines IML-Graphen einlesen. Auf Basis des eingelesenen Graphen fithren
sie dann ihre Analyse durch und exportieren das Ergebnis erneut als IML-Graph, der nun mit
den Analyseergebnissen angereichert ist. Eine Ausnahme hiervon bildet das Frontend, welches den
Quelltext einliest und als angereicherten AST in Form eines IML-Graphen ausgibt.

Kapitel 3

Spezifikation

3.1 Eingabe

Die Eingabe besteht stets aus zwei Mengen von Klonen. Dieses Kapitel beschreibt die Darstel-
lung der verschiedenen moglichen Eingabeklonmengen. Beide Mengen miissen Klone der selben
Darstellungsform enthalten. Die Diagramme zeigen die Darstellung in der IML-Klassenhierarchie.
Implementierungsdetails sind teilweise zum Zwecke der besseren Ubersichtlichkeit ausgelassen.

Das Ergebnis einer Klonerkennung besteht stets aus einer Menge von Klonen. Die Klone sind
entweder Klonpaare oder Klongruppen. In IML ist dies mit der Klasse Abstract_Clone_Tool_Info
implementiert. Diese ist eine Unterklasse von Analysis_Tool_Info. Analysis_Tool_Info dient
als Uberklasse fiir Analyseergebnisse. Von Abstract_Clone_Tool_Info gibt es je eine konkrete
Auspriagung fiir Mengen von Klonpaaren beziehungsweise Klongruppen. Sieche Abbildung 3.1.

3.1.1 Klonpaare

Ein Klonpaar (im Folgenden auch CP) besteht aus zwei Klonfragmenten (CP.CF; und CP.CFy), die
der Klonerkennungsalgorithmus als Klon voneinander eingestuft hat. Wie die beiden Klonfragmente
dargestellt sind, hdngt davon ab, auf welcher Darstellungsebene der Algorithmus arbeitet und wird
in den nachfolgenden Abschnitten beschrieben. Welches Klonfragment als erstes beziehungsweise
als zweites bezeichnet wird, ist willkiirlich und hat somit keine Bedeutung.

|Ana|ysis_TooI_Info |

| Abstract_Clone_Tool_Info |

7
| |

Clone_Pairs_Tool_Info | | Clone_Groups_Tool_Info
0..* 0..*
| Abstract_Clone_Pair | | Abstract_Clone_Group |

Abbildung 3.1: Klassendiagramm zur IML-Dartsellung von Klonerkennungsergebnissmengen

| Abstract_Clone_Pair |

A

Graph_CIIone_Pairl | CIonei_Pair |

First
Second

Clone_Fragment

Abbildung 3.2: Klassendiagramm zur IML-Darstellung von Klonpaaren

Clone_Fragment

1 .. *
Text_Positional_Clone_Fragment HI Scattered_Text_Positional_Clone_Fragment
Filepath: Identifier

Start_Pos
End_Pos

Text_Position

Line: Natural
Column: Natural

Abbildung 3.3: Klassendiagramm zur IML-Darstellung von Textklonfragmenten

In IML werden Klonpaare durch die Klasse Clone_Pair abgebildet. Die Darstellung von Graphklo-
nen mit Zuordnung bendtigt eine etwas andere Darstellung (siehe unten). Daher werden diese bei-
den Varianten von Klonpaaren als Abstract_Clone_Pair zusammengefasst. Siehe Abbildung 3.2.

3.1.1.1 Textklonpaare

Im Falle von Textklonpaaren besteht ein Klonfragment aus einem oder mehreren Quelltextstiicken.
Diese werden jeweils durch den Pfad der betreffenden Datei und der Anfangs- und Endposition
darin beschrieben. Siehe Abbildung 3.3.

3.1.1.2 AST-Klonpaare

Bei AST-Klonpaaren besteht ein Klonfragment aus einem oder mehreren direkt aufeinanderfolgen-
den AST-Knoten. Mit einem AST-Knoten ist jeweils auch implizit der gesamte Teilbaum darunter
gemeint.

Abbildung 3.4 zeigt die IML-Darstellung. IML_Root bezeichnet die Elternklasse fiir alle nicht na-
tiven Knotentypen im IML-Graphen. In diesem Fall sollte es sich um einen Knoten des ASTs han-
deln. Die etwas inkonsistente Benennung mit Clone_Statment_Fragment beziehungsweise Clone_-
Sequence_Fragment riihrt daher, dass dieser Teil bereits aus der ccdiml-Implementierung in Bau-
haus vorhanden war.

3.1.1.3 Einfache Graphklonpaare

In der einfachen Graphklonpaardarstellung sind die beiden Klonfragmente eine Menge von Knoten.
Der Knotentyp ist nicht ndher spezifiziert, dabei ist aber priméar an Knoten aus einem PDG gedacht.
Die Implementierung trifft iber die Art der Knoten aber keine weiteren Annahmen. Abgesehen

10

Clone_Fragment

/\
Clone_Statement_Fragment | | Clone_Sequence_Fragment
Start_Node
IML_Root | > End_Node

Abbildung 3.4: Klassendiagramm zur IML-Darstellung von AST-Klonfragmenten

Clone_Fragment

| Graph_Clone_Fragment |

1..%

| IML_Rootl

Abbildung 3.5: Klassendiagramm zur IML-Darstellung von einfachen Graphklonfragmenten

davon, dass in Abschnitt 4.2.3 diese einer Quelltextposition zuordenbar sein sollten. Abbildung 3.5
zeigt die Umsetzung in IML.

3.1.1.4 Graphklonpaare mit Zuordnung

Neben der gerade beschrieben einfachen Darstellung von Graphklonpaaren, wird auch noch eine
zweite Form unterstiitzt. Hierbei wird zusétzlich eine bijektive Abbildung zwischen den Klonfrag-
menten angegeben m : CF; — CF5. Hiermit gibt der Erkennungsalgorithmus an, wie er die Knoten
aus dem einen Fragment, den Knoten aus dem Anderen zuordnet.

Da IML keine Hashmaps oder Vergleichbares unterstiitzt, wird, wie Abbildung 3.6 zeigt, jeder
Knoten aus dem ersten Fragment zusammen mit dem geméafl m dazugehorigen Knoten aus dem
zweiten Fragment zu einem Nodes_Match-Objekt zusammengefasst. Die Menge dieser Knotenpaare
ergibt das Klonpaar. In dieser Darstellung sind die beiden Fragmente implizit durch die Menge
aller ersten beziehungsweise zweiten Elemente der Nodes_Match-Objekte gegeben.

| Graph_CIone_Pairl

1..%

| Nodes_Match |

First
Second

| IML_Rootl

Abbildung 3.6: Klassendiagramm zur IML-Darstellung von Graphklonpaaren mit Zuordnung

11

| Abstract_Clone_Group |

|
Clone_Group |Graph_CIone_Group

1..% 1..*

Clone_Fragment | | Nodes_Group_Match |

1..* | <<ordered>>

| IML_Rootl

Abbildung 3.7: Klassendiagramm zur IML-Darstellung von Klongruppen

3.1.2 Klongruppen

Bei Klongruppen werden nicht ein Paar von zwei dhnlichen Klonfragmenten zu einem Klon zusam-
mengefasst, sondern es wird gleich eine ganze Gruppen von identischen (beziehungsweise dhnlichen)
Fragmenten zu einer Klongruppe zusammengefasst. Die einzelnen Klonfragmente werden wieder
wie im Falle der Klonpaare dargestellt.

Abbildung 3.7 zeigt die Darstellung in IML. Fiir die IML-Darstellung von Graphklongruppen mit
Zuordnung der einzelnen Knoten zu den entsprechenden Knoten in den anderen Fragmenten wird
wieder der selbe ,Trick” wie bei den Klonpaaren verwendet. Hier hingegen besteht ein Nodes_-
Group_Match aus mehreren Knoten. Die Anzahl der Elemente in der Liste Nodes_Group_Match
muss fiir alle Elemente einer Graph_Clone_Group gleich sein. Diese Anzahl entspricht der Zahl an
Fragmenten, aus welche diese Klongruppe besteht. Sollte es fiir eine Zuordnungsmenge (Nodes_-
Group_Match) in einem Fragment keinen passenden Knoten geben, ist der entsprechende Eintrag
in der Liste dieses Fragmentes leer zu lassen.

3.2 Ausgabe

Die Ausgabe besteht aus einer Liste mit Eintrégen, die jeweils eine der folgenden Formen haben:
1. Ein Klon, der nur in der ersten Eingabemenge vorkommt.
2. Je ein Klon aus den beiden Mengen und ein Wert, der die Ahnlichkeit beider Klone angibt.
3. Ein Klon, der nur in der zweiten Eingabemenge vorkommt.

Das Ahnlichkeitsmafl im zweiten Fall ist eine Zahl zwischen 0 und 1 (1 entspricht ,identisch”),
welche die Ahnlichkeit der beiden Klone beschreiben soll. Siche Abschnitt 4.1.2 fiir Details. Ein
Klon kann in mehreren Eintrdgen der zweiten Form auftauchen, da er zu verschiedenen Klonen
aus der anderen Menge &hnlich sein kann.

Ab welchem Ahnlichkeitsmaf zwei Klone als zusammenpassend eingestuft werden, und damit einen
Eintrag von Typ 2 bilden, lédsst sich einstellen.

Diese Ergebnismenge lésst sich nach den Eintragen filtern, an denen man interessiert ist. Vergleicht
man beispielsweise zwei verschiedene Verfahren, ist man daran interessiert, welche Klone nur von
einem der beiden Verfahren erkannt wurden. Hierzu betrachtet man die Eintrdge von Typ 1 bezie-
hungsweise Typ 3. Interessant sind auch Klone, die dhnlich aber nicht identisch sind. Diese kann
man ndher betrachten, um zu untersuchen, warum die zwei Verfahren sich hier unterscheiden. Dazu
filtert man die Eintriige von Typ 2 nach ihrem Ahnlichkeitsmaf.

12

Kapitel 4

Losungsansatz

4.1 Vergleich

Dieser Abschnitt beschreibt das Verfahren zum Vergleich zweier Klonerkennungsergebnisse. Dieses
Verfahren ist zweigeteilt. Der eine Teil, welcher im ersten Abschnitt beschrieben ist, beschaftigt
sich mit der Strategie welche Klone paarweise verglichen werden miissen. Der paarweise Vergleich,
welcher im zweiten Abschnitt beschrieben wird, ordnet den zwei gegebenen Klonen ein Ahnlich-
keitsmafl zu. Entsprechend der Ergebnisse der einzelnen Vergleiche, werden die Klone in die oben
beschriebene Ergebnismenge einsortiert.

4.1.1 Vergleich von Klonmengen

Dieser Abschnitt beschreibt, wie zwei Mengen von Klonen (d.h. Klonpaare oder Klongruppen)
verglichen werden. Dazu bendtigt man eine Strategie, welche Paare von Klonen man auf Ahnlich-
keit testen mochte. Natiirlich muss dabei sichergestellt sein, dass keine Klone, die dhnlich sind,
ausgelassen werden.

4.1.1.1 Naiver Ansatz

Der naive Ansatz ist, jeden Klon aus der ersten Menge mit jedem Klon der zweiten Menge zu
vergleichen. Dieser Ansatz hat den Vorteil, dass er offensichtlich korrekt ist. Auflerdem trifft er
keine weitere Annahmen iiber die Eigenschaften der Klone. Allerdings werden quadratisch viele
Vergleiche benotigt.

4.1.1.2 Hashbasierter Vergleich

Beim naiven Ansatz werden viele Klone verglichen, die offensichtlicher Weise nicht dhnlich sein
konnen. Betrachtet man beispielsweise Textklone, ist es klar, dass zwei Klone deren Fragmente
nur verschiedene Dateien betreffen, nicht zueinander &dhnlich sein kénnen. Daraus ist die Idee
entstanden, dass man Mengen fiir jeden Dateipfad bildet und anschliefend nur Klone, die dieselbe
Datei betreffen, vergleichen muss.

Die Idee wurde dahingehend erweitert, dass nicht nur der Dateipfad verwendet werden kann, son-
dern, dass ein Klon auf eine Menge von Hashwerten abgebildet wird. In dem gerade beschriebenen
Beispiel wire das die Menge aller Hashwerte, der von einem Klon abgedeckten Dateien.

Im Allgemeinen muss diese Funktion die Eigenschaft haben, dass der Schnitt der Hashmengen
zweier Klone genau dann leer ist, wenn die zwei Klone nicht &hnlich sein kénnen.

13

// build hashmap for the given set of clones
function to_hashmap(clones)
map = new Hashmap Hashvalue => (Set of Clones);
for clone in clones 1loop
for i in list_of_hashes(clone) loop
map.put (i, clone);
end ;
end;
return map;
end;

// compare two sets of clones

function compare(a, b)
compared := new Set of (Clone, Clone);
map_a to_hashmap (a);
map_b to_hashmap (b);

for (k, clones) in map_a loop
for i in clones 1loop
for j in map_b.get (k) loop
if not compared.contains((i, j)) then
// compare i and j
compared.put ((i, j));
end;
end;
end ;
end;

//

end;

Abbildung 4.1

Um damit Klonmengen effizienter zu vergleichen, werden mit Hilfe dieser Funktion die Klone der
beiden Eingabemengen in jeweils eine Hashmap sortiert. Eine Hashmap enthélt fiir jeden Hashwert
die Menge der Klone, die darauf abgebildet werden.

Nun miissen die fiir einen Hashwert in der ersten Hashmap enthaltenen Klone, mit denen fiir den
selben Wert aus der zweiten Hashmap verglichen werden. Dabei kénnen schon verglichene Paare
von Klonen iibersprungen werden.

Dieses Verfahren wird als Pseudocode in Abbildung 4.1 nochmals verdeutlicht. 1ist_of_hashes
bezeichnet dabei die Funktion, die dem Klon, wie gerade beschrieben, eine Menge an Hashwerten
zuordnet. Der paarweise Vergleich ist im Pseudocode nur mit einem Kommentar angedeutet.

Der Effizienzgewinn héngt natiirlich sehr von der gewidhlten Funktion und der Gestalt der Ein-
gabedaten ab. Im Worst-Case werden weiterhin quadratisch viele Vergleiche benétigt. Allerdings
sollte dies fiir typische Eingaben die Zahl der Vergleiche deutlich reduzieren.

In dieser Arbeit wird ausschliellich die Verwendung von zu Klonen gehérenden Dateipfaden be-
trachtet. Nachteil dieser Methode ist, dass man zwar Textklonen und AST-Klonen direkt Dateipfa-
den zuordnen kann, dies fiir Graphknoten im Allgemeinen aber nicht gilt.

4.1.2 Vergleich einzelner Klone

Nun betrachten wir, wie sich ein Paar von Klonen vergleichen lésst. Konkret méchten wir das Paar
auf ein AhnlichkeitsmaB abbilden. Das Ahnlichkeitsma8 ist ein Wert zwischen 0 und 1. Wobei es 0
sein soll, wenn die Klone vollig verschieden sind und 1, falls diese identisch sind. Es werden keine
weiteren Einschrankungen fiir das Ahnlichkeitsmafl gefordert.

14

4.1.2.1 Textklonpaare

Fiir Textklone wird die von Stefan Bellon in [2] als good bezeichnete Funktion gewéhlt. Diese
betrachtet das Verhéltnis der sich iiberlappenden Zeilen der Klonfragmente zu der Gesamtzahl der
Zeilen.

[lines(CF;) N lines(CFs)|
1 F{,CFy) =
overlap(CF1, CF2) [lines(CF7) U lines(CF4)|

Wobei lines(CF) die Menge der von dem Klonfragment CF iiberdeckten Zeilen angibt.

Um nun zwei Klonpaare miteinander zu vergleichen, betrachtet man die Uberlappung der jeweiligen
Klonfragmente. Dabei ist zu beachten, dass die Zuordnung vom ersten und zweiten Klonfragment
keine Bedeutung hat und man daher beachten muss, dass das erste Klonfragment des ersten Klon-
paares zu dem zweiten Klonfragment des zweiten Klonpaares passen kann.

Stefan Bellon behandelt dieses Problem, indem er die Klonfragmente anhand der Quelltextpositio-
nen ordnet. Daher muss er nur das erste Fragment des einen Klonpaares mit dem ersten Fragment
des anderen Klonpaares vergleichen.

similarity(CPy, CPy) = min(overlap(CP;.CFy, CP5.CFy),
overlap(CP1 .CFQ7 CPQCFQ))

Dies ist in unserem Fall nicht moglich, da ein Klonfragment nicht nur aus einem einzelnen zusam-
menhédngenden Quelltextstiick bestehen kann, sondern auch aus mehreren verteilten Quelltext-
stiicken. Daher lassen sich die Klonfragmente nicht einfach ordnen. Von daher miissen wir beide
Kombinationen vergleichen:

similarity(CP;, CP3) = max(min(overlap(CP;.CF;, CP2.CFy),
overlap(CP;.CF2, CP5.CF5))
min(overlap(CP;.CFy, CP2.CF5),

overlap(CP;.CF3, CP3.CFy)))

Um overlap zu berechnen, wird nicht wirklich die Mengen der von einem Klonfragment abgedeckten
Zeilen gebildet und anschliefend Schnitt beziehungsweise Vereinigung erzeugt. Dazu werden die in
einem Fragment enthaltenen Textstiicke bereits beim Einlesen nach ihrer Position sortiert. Dann
lasst sich overlap in einem Durchlauf iiber die Liste der Textstiicke der Fragmente berechnen, wie
der Pseudocode in Abbildung 4.2 zeigt. Der Ubersichtlichkeit halber, geht der Pseudocode davon
aus, dass alle Textstiicke zur selben Datei gehoren.

15

function text_fragment_overlap(a, b)
return max (0,
min(a.end_pos.line, b.end_pos.line) -
max (a.start_pos.line, b.start_pos.line) + 1);
end;

// calculate overlap of two code fragments (each a list of text
function overlap(cf_a, cf_b)

cut = 0;

union = O0;

i = 0;

j =03

a = cf_alil;

b = cf_aljl;

union += a.end_pos.line - a.start_pos.line + 1;
union += b.end_pos.line - b.start_pos.line + 1;
loop

cut += text_fragment_overlap(a, b);

if a.end_pos.line < b.end_pos.line

i += 1;

break if i >= length(cf_a);

a := cf_alil;

union += a.end_pos.line - a.start_pos.line + 1;
else

jo+= 1

break if j >= length(cf_b);
b = cf_aljl;
union += b.end_pos.line - b.start_pos.line + 1;
end ;
end ;

while i < length(cf_a) - 1 do

i += 1;

a := cf_alil;

union += a.end_pos.line - a.start_pos.line + 1;
end ;

while j < length(cf_b) - 1 do

j =1

b := cf_bl[il;

union += b.end_pos.line - b.start_pos.line + 1;
end;
union -= cut;

return cut / union;
end;

Abbildung 4.2

16

fragments)

4.1.2.2 AST-Klonpaare

Fir AST-Klonpaare lasst sich ein sehr &hnliche Funktion nutzen. overlap wird wie folgt ersetzt:

|subtree(CF;) N subtree(CF7)|
1 F1,CFq) =
overlap(CFy, CF) |subtree(CF;) U subtree(CF5)|

Wobei subtree(CF) die Menge der AST-Knoten in dem durch CF gebildeten Teilbaum sind.

Wie im Falle der Textklone, kann auch hier overlap effizienter berechnet werden, als tatséchlich die
Schnitt- beziehungsweise Vereinigungsmengen zu bilden. Dazu wird entweder beim ersten Besuch
eines Knotens oder bereits im Voraus die Grofle des darunterliegenden Teilbaumes berechtnet.
Um den Schnitt und die Vereinigung zweier Knoten zu ermitteln, wird die Grée der jeweiligen
Teilbdume verglichen. Ist diese identisch, kdnnen sie sich nur iiberlappen, wenn es sich um den
selben Knoten handelt. Falls sie unterschiedliche Gréfen haben, wird von dem kleineren Knoten
ausgehend in Richtung Wurzel gegangen und getestet ob der anderen Knoten getroffen wird. Ist
dies der Fall, kann anhand der bekannten Teilbaumgrofien overlap berechnet werden, ansonsten
iiberlappen sich die Knoten nicht.

4.1.2.3 Einfache Graphklonpaare

Auch hier wird die Ahnlichkeitsfunktion fiir Textklonpaare verwendet. In diesem Fall ist overlap
direkt die Uberdeckung der beiden Klonfragmente:

_|CFy NCFy|

overlap(CF1, CF2) = [ar 0 ar, |

4.1.2.4 Graphklonpaare mit Zuordnung

Fiir Graphklonpaare mit Zuordnung ist ein leicht anderer Ansatz notig, da hier noch die Abbildung
zwischen den beiden Knotenmengen zu betrachten ist. Seien m; und ms die beiden Zuordnungen:

mq CPl.CFl — CPlCFg
ma : CPQCFl — CPQCFQ

Nun werden die dazugehérigen Relationen M; und My betrachtet, wobei M} die Relation zur
Umkehrabbildung von mg sei.

M, C (CPlCFl X CP1CF2)
My C (CPQCFl X CPQCFQ)
Mé C (CPQCFQ X CPQCFl)

Als Ahnlichkeitsmafl wird das Verhéltnis, der identisch zugeordneten Knotenpaare zu der Gesamt-
zahl, gewahlt. Dabei muss wieder beachtet werden, dass erstes und zweites Klonfragment vertauscht
sein koénnen.

My N Ms| |My N M
similarity (CPy, CP2) = max <| 1N M| [Min 2|>

|M; U Msy|™ | My U M}

17

4.1.2.5 Klongruppen

Im Falle von Klongruppen handelt es sich jeweils um eine Menge von Klonfragmenten CG; und
CGa. Im Folgenden gehen wir davon aus, dass die erste Klongruppe die Kleinere ist |CG1| < |CGa|
(ansonsten tauschen).

Fiir das Ahnlichkeitsmaf ordnen wir jedem Klonfragment aus der ersten Klongruppe mit Hilfe der
oben definierten overlap-Funktion das am besten passende Fragment aus der zweiten Klongruppe
zu. Die overlap werden aufsummiert und durch die Anzahl an Klonfragmenten in der gréfleren
Klongruppe geteilt. Damit wird im Prinzip der durchschnittliche overlap berechnet.

1
similarity(CGy, CGs) = m Z jlencaé(2 overlap(i, j)
i€CG

Hierbei wird jeweils der beste overlap-Wert genommen. Daher kann es sein, dass fiir mehrere Klon-
fragmente das selbe Klonfragment aus der zweiten Klongruppe ,zugeordnet” wird. Somit wird in
diesem Fall die Ahnlichkeit zu gut abgeschitzt. Dies liese sich beheben, indem anstatt des Maxi-
mums, die grofite gewichtete Paarung berechnet wird. Dieses Vorgehen ist allerdings aufwéndiger
[7] und wird daher nicht verwendet.

Diese Methode kann fiir Text-, AST- und einfache Graphklone genutzt werden. Die overlap-Funk-
tion ist, jeweils wie fiir entsprechende Klonpaare beschrieben, definiert.

4.1.2.6 Graphklongruppen mit Zuordnung

Fir Graphklongruppen mit Zuordnung ergibt sich das Problem, dass das Verfahren fiir Klonpaare
nicht iibertragbar ist, da es zu viele Moglichkeiten gibt, wie das Zuordnungs-Tupel sortiert sein
kann. Daher wird eine Kombination aus zwei Ahnlichkeitsmaflen genutzt.

Zum Einen wird das oben beschriebene Ahnlichkeitsma$ fiir einfache Klongruppen verwendet.
Dadurch wird der Fall abgedeckt, dass sich die Knotenmengen der Klonfragmente in den beiden
Klongruppen unterscheiden. Allerdings wird die Zuordnung der Knoten zueinander ignoriert. Dieser
Wert wird im folgenden mit sim; bezeichnet.

Zum Anderen wird dazu analog ein Ahnlichkeitsma$ fiir die Zuordnung bestimmt. Eine Zuordnung
ist gegeben durch die Menge M aller n-Tupel. n ist hierbei die Anzahl an Klonfragmenten in
der Klongruppe. Als M’ bezeichnen wir die Menge, in der die Tupel durch eine entsprechende
Menge ersetzt wurden. Damit wird zwar die Zuordnung zu den einzelnen Klonfragmenten verloren,
dafiir lassen sich diese Mengen einfach vergleichen. Seien M| und M} die Zuordnungen der beiden
gegebenen Klongruppen und sei |M]| < |M}|. Analog zu oben erhalten wir schliefflich sims.

1 li Nl
X T A
| M| jemy |iU |

simy =
i€ M

Dieses Ahnlichkeitsmaf wird schlechter, falls sich die Zuordnungen der beiden Klongruppen unter-
scheiden. Allerdings wird die Zuordnung der Knoten zu den Klongruppen ignoriert. Daher werden
beide Mafle kombiniert.

similarity(CGy, CGs) = min(sim, sims)

4.2 Konvertierung der Klondarstellungen

In diesem Abschnitt wird beschrieben, wie sich AST-und Graphklone mit Zuordnung in einfache
Graphklone umwandeln lassen. Diese wiederum konnen auf Textklone abgebildet werden. Dabei

18

werden effektiv nur die Klonfragmente umgewandelt. Ob es sich sich um ein Klonpaar oder eine
Klongruppe handelt, bleibt unveréndert.

4.2.1 Umwandlung von AST-Klonen zu einfachen Graphklonen

Um einen AST-Klon in einen einfachen Graphklon umzuwandeln, werden die zu den AST-Knoten
der Klonfragmente gehérenden Teilbdume gebildet. Die in diesen Teilbdumen enthaltenen Knoten
bilden die Menge, die das jeweilige Klonfragment des einfachen Graphklon bilden.

4.2.2 Umwandlung von Graphklonen mit Zuordnung zu einfachen Graph-
klonen

Um ein Graphklon mit Zuordnung in einen einfachen Graphklon umzuwandeln, wird die Menge, die
das jeweilige Klonfragment bildet genommen und als Klonfragment fiir den einfachen Graphklon
verwendet. Dabei geht die Zuordnung der Knoten der Klonfragmente verloren.

4.2.3 Einfache Graphklone zu Textklone

Um nun ein Klonfragment eines einfachen Graphklons, also eine Menge an Knoten, in ein Text-
klonfragment umzuwandeln, werden zuerst den einzelnen Knoten die jeweilige Quelltextposition
zugeordnet. Dazu wird eine bereits vorhandene Funktion genutzt, die zu einem Knoten Anfangs-
und Endposition angibt. Dies ist allerdings nur fiir Knoten moglich, die direkt einem syntaktischen
Element des Quelltextes zuzuordnen sind, wie beispielsweise einer Zuweisung. Knoten bei denen
dies nicht moglich ist, werden im Moment ignoriert. In einigen Féllen liele sich das noch verbes-
sern. Allerdings gibt es auch Knotentypen, bei denen es nicht klar ist, welche Quelltextposition
zugeordnet werden soll.

Nun miissen diese Quelltextstiicke zu einem Textklonfragment zusammengefasst werden. Dazu
wurden zwei Verfahren verwendet.

4.2.3.1 Zusammenfassen zu mehrere Textstiicke

Bei diesem Verfahren werden die zu den einzelnen Knoten gehtérenden Textstiicke nur zusammen-
gefasst, wenn diese direkt aneinander liegen. So kann das resultierende Klonfragment aus mehreren
unzusammenhéngenden Textstiicken bestehen. Dies ist besonders vorteilhaft, wenn das Graphklon-
fragment nichtzusammenhéngende Teile des Quelltextes abdeckt. Dies ist beispielsweise bei PDG-
basierten Verfahren iiblich.

Der Nachteil ist, dass dieses Verfahren nur zeilenweise arbeiten kann. Dies liegt daran, dass es auf
Spaltenebene nicht einfach festzustellen ist, ob zwei Textstiicke effektiv aneinander liegen. Dies ist
der Fall, da beispielsweise in dem Codestiick b + ¢, den Zwischenraumen keine AST-Knoten zuor-
denbar sind. Wiirde also die Spalteninformation beim Zusammenfassen der Textstiicke betrachtet
werden, wéren dies drei getrennte Textstiicke. Zwei Textstiicke, welche die Variablen abdecken
und ein Textstiick, das den Plusoperator abdeckt. Diese miissten also intelligent zusammengefasst
werden, was aufwindig ist.

4.2.3.2 Zusammenfassen zu einem einzelnen Textstiick

Entstand das einfache Graphklonfragment beispielsweise durch das Umwandeln von einem AST-
Klonfragment, weifl man, dass diese Knoten sinnvoll zu einem Textstiick zusammenfassbar sind.
Daher wird im zweiten Verfahren (pro Datei) ein Textstiick anhand der kleinsten Start- bezie-
hungsweise der grofiten Endposition gebildet. Dies hat den Vorteil, dass hierbei auch die Spalten-
informationen erhalten bleiben kdnnen.

19

Kapitel 5

Entwurf

Dieses Kapitel soll eine Ubersicht iiber die Gestaltung der Implementierung geben. Die Software
wurde in Ada implementiert. Zum Entwurf wurden hauptséichlich das Paradigma der Objektorien-
tierung genutzt. Im Allgemeinen wurde darauf geachtet, dass sich einzelne Teile gut tauschen lassen,
so dass es zum Beispiel moglich ist, ein weiteres Eingabeformat oder eine andere Vergleichsstrategie
zu unterstiitzen.

Das Diagramm in Abbildung 5.1 gibt einen Uberblick iiber den Datenfluss bei der Durchfiihrung
eines Vergleiches. Die einzelnen Bezeichner sind hierbei aus der Implementierung iibernommen.

InputList und Result dienen hierbei zur Repréisentation der Eingabe beziehungsweise Ausga-
bemengen. Die Klone sind dabei in etwa so dargestellt wie in Abschnitt 3.1 vorgestellt. Der si-
gnifikanteste Unterschied ist, dass die Graphklonpaare mit Zuordnung als Hashmap abgebildet
werden.

Bei den anderen Késtchen im Diagramm handelt es sich um abstrakte Klassen, von denen es jeweils
verschiedene Implementierungen gibt, um die verschiedenen Darstellungen, Vergleichsoperationen,
etc. zu unterstiitzen. Diese werden im Folgenden auch als Module bezeichnet.

Ein Input-Modul liest eine Menge aus Klonen aus einer Datei mit dem von ihm unterstiitzten Da-
teiformat. Daraus erzeugt es eine InputList, welche die Menge der eingelesene Klone darstellt. Fiir
jede unterstiitzte Kombination aus Klondarstellung und Eingabeformat gibt es eine entsprechende
Implementierung. Beispielsweise liest Text_CSV_Input Textklonpaare aus einer CSV-Datei und
Tree_IML_Input liest AST-Klonpaare aus einer IML-Datei, die wie in Abschnitt 3.1.1 gestaltet
ist.

Die beiden eingelesenen Mengen werden dann mit einem Diff-Modul verglichen. Siehe Abschnitt 4.1.1
fiir die beiden in dieser Arbeit vorgestellten Vergleichsstrategien.

Zwei Klone vergleicht das Diff-Modul mit Hilfe eines Comparator-Moduls, welches deren Ahnlich-
keit, wie in Abschnitt 4.1.2 beschrieben ermittelt.

Comparator
e memeen Input Lists
E ; . Result
: o Input : A Diff Result Output —
--------- 2% B

Abbildung 5.1: Ubersicht iiber den Datenfluss beim Vergleich zweier Klonmengen

20

—| Input

Converter | Output |——
1
1

Abbildung 5.2: Ubersicht iiber den Datenfluss beim Konvertieren zwischen verschiedenen Klondar-
stellungsformen

Das Ergebnis wird anschliefend von einem ResultOutput Modul wieder in eine Datei geschrieben.

Die Umwandlung verschiedener Klondarstellungen verlduft wie in Abbildung 5.2 verdeutlicht. Hier-
bei bezeichnet Converter das Modul, welches eine der drei in Abschnitt 4.2 beschriebenen Um-
wandlungen durchfiihrt. Das Ergebnis ist wieder eine Klonmenge. Diese wird von einem Output-
Modul in eine Datei geschrieben.

In der aktuellen Version wird fiir die Ein-/Ausgabe der Klonmengen primér IML verwendet. Fiir
Textklone wird aktuell noch CSV als Format unterstiitzt. Die Ausgabe des Vergleichsergebnisses
erfolgt im Moment in einem CSV-Format.

21

Kapitel 6

Evaluierung

Zur Evaluierung des erstellten Werkzeuges, wurde es beispielhaft angewandt. Als Klonerkennung
wurde zum Einem ccdiml und zum Anderen ein im Moment von Torsten Gorg in Entwicklung
befindender PDG-basierter Klonerkenner verwendet. ccdiml ist ein von Stefan Bellon entwickelter
Klonerkenner, der das AST-basierte Verfahren nach Baxter [5] implementiert und ist Bestandteil
von Bauhaus. Fiir Bauhaus existiert ein Satz von bereits zur Analyse vorbereiteten Open-Sour-
ce-Projekten. Beide Werkzeuge bauen auf Bauhaus auf, daher wurde eines dieser Open-Source-
Projekte gewdhlt und mit beiden Klonerkennern analysiert.

Bei dem analysierten Softwareprojekt handelt es sich um gnuplot, ein unter einer freien Lizenz
verfiigbares Werkzeug zum Plotten von Daten und Funktionen. Gnuplot ist in C geschrieben. Es
wurde Version 4.0.0 von gnuplot verwendet.

Dazu wurde zuerst das Bauhaus-Frontend aufgefiihrt, um aus dem Quellcode die IML-Darstellung
zu erzeugen. Darauthin wurden, die vom PDG-basierten Klonerkenner benttigten Analyseergeb-
nisse (Zeigeranalyse, Kontrollflussanalyse, SSA, etc.), mit den entsprechenden Bauhauswerkzeugen
erzeugt. Die resultierenden IML-Graphen konnten nun von beiden Klonerkennungswerkzeugen ana-
lysiert werden.

Der PDG-Klonerkenner war so konfiguriert, dass er nur Klonfragmente, die mindestens 10 Knoten
enthalten, ausgibt. Mit dieser Einstellung fand er 7082 Klone.

Da der PDG-Klonerkenner viele kleine Klone erkannt hatte wurde ccdiml auch so konfiguriert,
dass es kleine Klone erkennt. Konkret wurde ccdiml im ,feinen”-Modus (das heifit, dass es auch
kleine Statements als Klone betrachtet) mit einer Mindestlidnge von drei Zeilen betrieben.

Um die beiden Ausgaben vegleichen zu konnen, wurden sie wie in Abschnitt 4.2 beschrieben in
Textklone umgewandelt.

Die erstellte Software fand 7017 Klone, die nur der PDG-Erkenner gefunden hat, 183 Klone die nur
ccdiml gefunden hat und 72 Tupel von Klonen, die einander &hnlich sind. Die Summe ist grofer
als die Gesamtzahl der Klone, da ein Klon zu mehreren verschiedenen Klonen dhnlich sein kann.

Von den nur durch eines der Werkzeuge erkannten Klonen, wurden jeweils fiinf zufillig ausgewéhlt
und von Hand betrachtet.

In den Abbildungen ist jeweils das erste Klonfragment rot und das zweite griin markiert. Zeigt die

Abbildung zwei Klonpaare, zeigt die linken Markierungen das Klonpaar des PDG-Klonerkenners
und die rechten Markierungen das Klonpaar, dass ccdiml gefunden hat.

22

src/gplt x1l.c:
[...]
3444 #define KNOWN_KEYSYMS(gp_ keysym)

\

3445 if (plot == current plot) { \
3446 gp_exec_event(GE_keypress, \
3447 (int)RevX(event->xkey.x), (int)RevY(event->xkey.y), \
3448 gp_keysym, 0); \
3449 } \
3450 return;
[...]
3486 case XK Prior: /* XXX */

B 3487 KNOWN_KEYSYMS (GP_PageUp) ;
3488 case XK Next: /* XXX */
[...]
3536 #ifdef XK KP_End
3537 case XK KP_End:

B 3538 KNOWN KEYSYMS (GP_KP End);

3539 #endif
[...]

Abbildung 6.1

6.1 Nur vom PDG-Klonerkenner gefundene Klone

Von den fiinf gewédhlten Klonen, die nur der PDG-Klonerkenner gefunden hatte, handelt es sich
bei vieren um Klone, die eine einzelne Quelltextzeile umfassen und in der Tat sehr dhnlich sind.
Bei drei dieser Klone handelt es sich, wie in Abbildung 6.1 gezeigt, um einen Zweig eines switch-
Statements, welches Tastendriicke verarbeitet.

Diese Klone sind unterhalb des Schwellwerts von drei Zeilen, der bei ccdiml eingestellt war und
konnten daher von diesem nicht erkannt werden. Dies ist mutmafllich auch einer der Griinde,
warum der PDG-Klonerkenner sehr viel mehr Klone gefunden hat als ccdiml.

Der eine verbleibende Klon (siehe Abbildung 6.2) ist ein Reihe von iiber viele Zeilen zerstreuten
Anweisungen, die auf die selben Variablen zugreifen. Diese weisen zwar Ahnlichkeiten auf, allerdings
sind sie nicht als ,,echter” Klon zu betrachten.

6.2 Nur von ccdiml gefundene Klone

Bei den fiinf betrachteten Klonen die nur von ccdiml erkannt wurden handelt es sich bei allen
um Anweisungsfolgen die zwar etwas dhnlich sind, allerdings keinen ,,echten” Klon bilden wie das
Beispiel in Abbildung 6.3 zeigt.

6.3 Von beiden Werkzeugen gefundene Klone

Von den Klonen, die von beiden Werkzeugen gefunden wurden, wurden die fiinf Tupel betrachtet,
die sich, nach dem verwendeten Ahnlichkeitsmaf}, am dhnlichsten sind.

Bei zwei dieser Klone handelt es sich um ,,richtige” Klone. Bei diesen Klonen wiirde es sich anbieten,
die Funktionalitdt in eine Funktion auszulagern und so die Doppelung zu reduzieren. Wie man an
dem Beispiel in Abbildung 6.4 sieht, erkennen hier beide Werkzeuge effektiv den selben Klon.

Bei dem in Abbildung 6.5 gezeigten Tupel erkannten auch beide Werkzeuge den selben Klon:

Hier enthélt der durch dem PDG-Klonerkenner erkannte Klon zusétzlich die Referenz auf die
verwendeten Variablen. ccdiml erkennt dagegen, dass die nachfolgende Zeile auch noch zu dem
Klon gehort.

23

src/gplt x1l.c:

[...
3908
3909
3910
[...
3923
3924
3925
[...
4013
4014
4015
[...
4019
4020
4021
[...
4026
4027

4028 #if

[...
4071
4072
4073
4074
4075
4076
[..

]

]

]

]

]

]

-1

XrmInitialize();
XrmParseCommand (&dbCmd, options, Nopt, Name, &Argc, Argv);

if (Argc > 1) {

}

if (pr_GetR(dbCmd, ".display"))
ldisplay = (char *) value.addr;

XrmMergeDatabases (dbCmd, &db);

/* a specific visual can be forced by the X resource visual */

(char *) 0;

db string = pr GetR(db, ".visual") ? (char *) value.addr :
if (db_string) {
for (1 = 0; *ptr; i++, ptr++) {
if (!strcmp(db _string, *ptr)) {
0
/* check database for maxcolors */
db string = pr GetR(db, ".maxcolors") ? (char *) value.addr :

if (db_string) {

int itmp;

if (sscanf(db string, "%d",

if (itmp <= 0) {

Abbildung 6.2

src/gplt x1l.c:

[...
2387
2388
2389
2390
2391
2392
[...
2436
2437
2438
2439
2440

[...]

]

]

&itmp)) {

#ifdef EXPORT SELECTION
export _graph(plot);

#endif

UpdateWindow(plot);

#ifdef USE_MOUSE

#ifdef USE_MOUSE

EventuallyDrawMouseAddOns (plot);

XFlush(dpy);

Abbildung 6.3

src/gpexecute.c:

[

154
155
156
157
158
167
168
169
170
171

]

]

{

gpe fifo t *base = malloc(sizeof(gpe fifo t));
/* fprintf(stderr, "(gpe init) \n");

assert(base);

base->next = (gpe fifo t *) 0;

if ((*base)->prev) {
gpe fifo t *new = malloc(sizeof(gpe fifo t));

/* fprintf(stderr, "(gpe_push) \n"); */

assert(new);
(*base) ->prev->next

Abbildung 6.4

24

new;

*/

(char *) 0;

src/gplt x1l.c:

[...]

963 static void

I 964 delete plot(plot struct *plot)

965 {
[...]
969
I 970 for (i = 0; i < plot->ncommands; ++1i)
971 free(plot->commands[i]);
972 plot->ncommands = 0;
973

[...1]
1012 static void
1013 prepare plot(plot struct *plot, int term number)
1014 {
1015 int 1i;
1016
1017 for (i = 0; i < plot->ncommands; ++i)
1018 free(plot->commands[i]);
1019 plot->ncommands = 0;
1020
[...]

Abbildung 6.5

Die beiden restlichen betrachteten Tupel betreffen einen von ccdiml erkannten Klon, der zu zwei
verschiedenen von dem PDG-Klonerkenner erkannten Klonen &dhnlich ist. Exemplarisch ist eines
der Tupel in Abbildung 6.6 gezeigt. Hierbei handelt es sich um einen kleinen Klon, wobei die von
dem PDG-Klonerkenner zusétzlich gewédhlte Zeile willkiirlich erscheint.

6.4 Zusammenfassung

Die Ergebnisse des Vergleiches scheinen plausibel. Die Menge der nur von einem der beiden Werk-
zeuge erkannten Klonmengen ist in diesem Fall eher nicht hilfreich, da beide Werkzeuge ,,zu emp-
findlich” eingestellt sind und viele Klone erkennen die keine ,,echten” sind. Aus dieser Menge wurden
erfolgreich die von beiden erkannten Klone herausgefiltert. An dem oben gezeigten Beispiel wird
ersichtlich, wie sich die beiden erkannten Klone unterscheiden. Fiir den Vergleich benétigte die
Software auf einem ,,AMD Opteron 6174” ca. 9,0 Sekunden.

25

src/getcolor.c:

[...]

147 #define CONSTRAIN(x) ((x)<@ ? 0 : ((x)>1 ?2 1 : (x)))
[...]

695 static void CIEXYZ 2 RGB(rgb color *col)

I I 696 {

697 double x,y,z;
[| 698 X = col->r; y = col->g; z = col->b;
699 col->r = CONSTRAIN(1.9100*x - 0.5338*y - 0.2891*z);
700 col->g = CONSTRAIN(-0.9844*x + 1.9990*y - 0.0279*z);
[| 701 col->b = CONSTRAIN(0.0585*x - 0.1187*y - 0.9017*z);
702 }
[...]
703

704 static void YIQ 2 RGB(rgb color *col)
I 705 {
[

706 double y,1i,q;

707 y = col->r; i = col->g; g = col->b;
708 col->r = CONSTRAIN(y - 0.956*i + 0.621*q);
709 col->g = CONSTRAIN(y - 0.272*i - 0.647*q);

[| 710 col->b = CONSTRAIN(y - 1.105*i - 1.702%*q);
711 }

Abbildung 6.6

26

Kapitel 7

Fazit

In dieser Arbeit wurde ein Verfahren zum Vergleich von Klonmengen erarbeitet. Hierbei wurde
besonders darauf eingegangen, dass die Klone in verschiedenen Darstellungsformen vorliegen kon-
nen. Des Weiteren wurde ein Verfahren zum Umwandeln von AST- und PDG-Klonen in Textklone
erarbeitet.

Diese Verfahren wurden in Form eines Softwarewerkzeuges implementiert. Besonders darauf ge-
achtet wurde, die Software modular zu gestalten, sodass sich einzelne Teil leicht tauschen, bezie-
hungsweise ergénzen lassen. So lasst sich zum Beispiel ein weiteres Eingabeformat oder ein anderes
Vergleichsverfahren fiir Klonpaare einfach hinzuzufiigen. Der von Bauhaus unabhéngige Teil der
Software ist unter der MIT-Lizenz verfiigbar [8].

7.1 Ausblick

Abschlieflend sollen noch ein paar Verbesserungs- und Ergdnzungsméglichkeiten aufgezeigt werden.

e Fiir den Spezialfall von Textklonpaaren, die aus einem zusammenhédngenden Textfragment
bestehen, lisst die Anzahl der bendtigten paarweisen Vergleiche noch verringern, indem die
Klonpaare nach der Textposition ihrer Fragmente sortiert werden.

e Fiir den Vergleich zweier Klongruppen lisst sich eventuell ein effizienteres Ahnlichkeitsmaf
finden.

e Fiir die manuelle Betrachtung der Ergebnismenge wére eine Visualisierung der Klone sehr
hilfreich. Fiir Textklone sollte das nicht schwer umzusetzen sein. Die kompakte Visualisierung
von Graphklonen ist hingegen eine schwierige Aufgabe.

e Die Umwandlung von Graphklonfragmente in Quelltextfragmente lésst sich verbessern, indem
die Behandlung von Knoten, die nicht direkt einem syntaktischen Element zuzuordnen sind,
verbessert wird.

e Die Effizienz der Implementierung lésst sich an einigen Stellen noch verbessern.

e Es gibt noch einige Aspekte der Implementierung, die evaluiert werden koénnen.

27

Kapitel 8

Quellen und Referenzen

1]

[7]

Chanchal Kumar Roy und James R. Cordy, ,,A Survey on Software Clone Detection Research*,
Technical Report No. 2007-541, School of Computing, Queen’s University at Kingston, 2007.
http://research.cs.queensu.ca/TechReports/Reports/2007-541.pdf

Stefan Bellon, ,, Vergleich von Techniken zur Erkennung duplizierten Quellcodes®, Diplomarbeit
Nr. 1998, Institut fiir Softwaretechnologie, Universitit Stuttgart, 2002.
http://www.bauhaus-stuttgart.de/bauhaus/papers/DIP-1998.pdf

Aoun Raza, Gunther Vogel und Erhard Plodereder, ,Bauhaus - A Tool Suite for Profram
Analysis and Reverse Engineering®, In Reliable Software Technologies, Ada-FEurope 2006, LN-
CS(4006) Seiten 71-82, 2006.
http://www.bauhaus-stuttgart.de/bauhaus/papers/bauhaus.pdf

Brenda S. Baker, ,On Finding Duplication and Near-Duplication in Large Software Systems®,
In Proceedings of 2nd Working Conference on Reverse Engineering, IEEE Seiten 86—95, 1995.

Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna und Lorraine Bier, ,,Clone
Detection Using Abstract Syntax Trees“, In Proceedings of the International Conference on
Software Maintenance Seiten 368-377, 1998.

Jens Krinke, , Identifying Similar Code with Program Dependence Graphs®, In Proceedings of
the Eighth Working Conference On Reverse Engineering (WCRE’01), 2001.

James Munkres , Algorithms for the Assignment and Transportation Problems® In Journal of
the Society of Industrial and Applied Mathematics Vol. 5, Nr. 1, Seite 32-38, 1957.

[8] https://ccdiff.ipsumj.de/

28

http://research.cs.queensu.ca/TechReports/Reports/2007-541.pdf
http://www.bauhaus-stuttgart.de/bauhaus/papers/DIP-1998.pdf
http://www.bauhaus-stuttgart.de/bauhaus/papers/bauhaus.pdf
https://ccdiff.ipsumj.de/

29

Erklarung

Ich versichere, diese Arbeit selbststandig verfasst zu haben.

Ich habe keine anderen als die angegebenen Quellen benutzt und alle wortlich oder sinngeméf aus
anderen Werken tibernommene Aussagen als solche gekennzeichnet.

Weder diese Arbeit noch wesentliche Teile daraus waren bisher Gegenstand eines anderen Prii-
fungsverfahrens.

Ich habe diese Arbeit bisher weder teilweise noch vollstindig veroffentlicht.

Das elektronische Exemplar stimmt mit allen eingereichten Exemplaren iiberein.

Stuttgart, 15.04.2016, Simon Gaiser

30

	Titelblatt
	Abstract
	Inhaltsverzeichnis
	1 Einführung
	1.1 Aufgabenstellung
	1.2 Überblick

	2 Grundlagen
	2.1 Codeklone
	2.2 Klonerkennung
	2.3 Klondarstellung
	2.4 Vergleich von Klonerkennungsverfahren
	2.5 Bauhaus

	3 Spezifikation
	3.1 Eingabe
	3.1.1 Klonpaare
	3.1.1.1 Textklonpaare
	3.1.1.2 AST/Klonpaare
	3.1.1.3 Einfache Graphklonpaare
	3.1.1.4 Graphklonpaare mit Zuordnung

	3.1.2 Klongruppen

	3.2 Ausgabe

	4 Lösungsansatz
	4.1 Vergleich
	4.1.1 Vergleich von Klonmengen
	4.1.1.1 Naiver Ansatz
	4.1.1.2 Hashbasierter Vergleich

	4.1.2 Vergleich einzelner Klone
	4.1.2.1 Textklonpaare
	4.1.2.2 AST/Klonpaare
	4.1.2.3 Einfache Graphklonpaare
	4.1.2.4 Graphklonpaare mit Zuordnung
	4.1.2.5 Klongruppen
	4.1.2.6 Graphklongruppen mit Zuordnung

	4.2 Konvertierung der Klondarstellungen
	4.2.1 Umwandlung von AST/Klonen zu einfachen Graphklonen
	4.2.2 Umwandlung von Graphklonen mit Zuordnung zu einfachen Graphklonen
	4.2.3 Einfache Graphklone zu Textklone
	4.2.3.1 Zusammenfassen zu mehrere Textstücke
	4.2.3.2 Zusammenfassen zu einem einzelnen Textstück

	5 Entwurf
	6 Evaluierung
	6.1 Nur vom PDG/Klonerkenner gefundene Klone
	6.2 Nur von ccdiml gefundene Klone
	6.3 Von beiden Werkzeugen gefundene Klone
	6.4 Zusammenfassung

	7 Fazit
	7.1 Ausblick

	8 Quellen und Referenzen
	Erklärung

