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1 Einleitung

Nehmen wir an, wir wollen ein dreidimensionales Geländemodell der uns umgebenden Gegend
erstellen, so wie es zum Beispiel im bekannten Computerprogramm Google Earth zu sehen
ist. Wenn wir nicht gerade einen Satelliten o.Ä. zur Verfügung haben, können wir bspw.
an verschiedenen, einzelnen Punkten der Erdober�äche die Höhe über dem Meeresspiegel
messen, etwa mittels eines GPS-Empfängers. Da wir aus Gründen des Aufwands nicht an
beliebig vielen Punkten (die beliebig dicht beieinanderliegen) messen können, müssen wir die
sich ergebenden, diskreten Punkte irgendwie zu einer kontinuierlichen Fläche �verbinden�.

Genau das ist das Problem bei der Approximation unregelmäÿig verteilter Daten (engl.
scattered data): Es seien m paarweise verschiedene Punkte xi ∈ Rd mit zugehörigen Daten
fi (i = 1, . . . ,m) gegeben (in unserem Beispiel wäre d = 2). Gesucht ist eine bivariate,
reellwertige Funktion f aus einem bestimmten Funktionenraum, so dass f die gegebenen
Daten in einem gewissen Sinne �bestmöglich� approximiert. Ein ähnliches Problem ist die
Interpolation, bei der sogar f(xi) = fi für i = 1, . . . ,m gelten soll.

Die Daten heiÿen �unregelmäÿig verteilt�, weil wir im Allgemeinen nicht annehmen kön-
nen, dass diese auf einem regulären Gitter liegen. Im obigen Beispiel können wir evtl. nicht
immer genau an Punkten eines Gitters messen, weil einige Stellen unerreichbar sind (etwa in
Gebäuden). Liegen die Daten auf einem regelmäÿigen Gitter, so ist die Approximation erheb-
lich einfacher, was man schon daran erkennt, dass der in dieser Arbeit vorgestellte Algorith-
mus hauptsächlich damit beschäftigt ist, durch lokale Polynom-Approximation Gitterdaten
aus den unregelmäÿig verteilten Daten zu generieren.

Die Erstellung von sog. DEM (digitalen Geländemodellen, engl. digital elevation models)
ist nicht die einzige Anwendung der Approximation unregelmäÿig verteilter Daten. In [1]
werden weitere Anwendungsmöglichkeiten aufgezählt:

• Das Gravitationsfeld der Erde ist zwar schon an vielen verschiedenen Punkten der Erde
exakt vermessen worden, aber es gibt kein allgemeines physikalisches Modell, das für
die meisten Anwendungen hinreichend genau wäre.

• Eine notwendige Farbkorrektur bei der Verarbeitung von Farb�lmen kann für bestimm-
te Testfarben angemessen bestimmt werden. Farbkorrekturen für die anderen Farben
können dann durch Interpolation errechnet werden.

• Bei der Öl-Prospektion (Lagerstätten-Erkundung) sind viele Daten nahe von Test-
Bohrlöchern vorhanden. Sonst sind die Daten sehr dünn und damit ziemlich unre-
gelmäÿig verteilt.

Unregelmäÿig verteilte Daten treten im Prinzip überall dort auf, wo eine Messgröÿe nur an
unregelmäÿigen, diskreten Punkten genau bestimmt werden kann, etwa weil sie wegen ihrer
Kompliziertheit allgemein nicht zu beschreiben ist (oder weil man eine exakte Beschreibung
gar nicht kennt). Wertet man eine Approximation von unregelmäÿig verteilten Daten an
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1 Einleitung

Abbildung 1.1: Bilddeformation mit MLS (Quelle: [22])

denselben Datenpunkten aus, erhält man ein einfaches Glättungsverfahren, was eine weitere
(sehr allgemeine) Anwendung darstellt.

Des Weiteren ist laut [18] die weiter unten vorgestellte Methode von LS (bzw. von
WLS/MLS) für die Approximation unregelmäÿig verteilter Daten in der Computergra�k
weit verbreitet: Ein Anwendungsbereich wäre die Deformation von digitalen Bildern mittels
der Interpolation unregelmäÿig verteilter Daten, wobei jede der vorhandenen (allgemeinen)
Methoden angewendet werden kann. Gra�sche Beispiele für Methoden, die auf Triangulie-
rungen, inversen Distanzwichtungen oder radialen Basisfunktionen basieren, �nden sich in
[20] � man kann aber auch die Methode der MLS anwenden: In [22] wird damit beispielhaft
das berühmte Gesicht der Mona Lisa zum Lächeln gebracht und ein wenig schlanker gemacht
(siehe Abbildung 1.1).

Viele Verfahren zur Approximation bzw. Interpolation unregelmäÿig verteilter Daten
existieren bereits, von denen wir natürlich nicht alle hier nennen können:

Bei der Methode der kleinsten Quadrate (least squares, LS) minimiert man das Feh-
lerfunktional ELS(f) :=

∑
i |f(xi)− fi|2 über einen gewissen Funktionenraum, z. B. d-variate

Polynome oder Splines mit einem bestimmten Grad. Durch Wahl eines festen Punkts x∗ ∈ Rd
und Multiplikation mit einer Gewichtsfunktion ϕ, einer sog. radialen Basisfunktion (zum
Beispiel ϕ(r) = exp(−r2/h2) mit h > 0), erhält man die gewichtete Methode der kleinsten
Quadrate (WLS) mit dem Funktional EWLS(f) :=

∑
i ϕ(‖x∗ − xi‖)|f(xi) − fi|2. Lässt man

den Punkt x∗ variieren, so erhält man die Methode der moving least squares (MLS). Eine
kurze Einführung in LS/WLS/MLS ist in [18] zu �nden.

Die Methode der radialen Basisfunktionen (RBF) ist etwas allgemeiner als die WLS-
Methode und verwendet nur eine Linearkombination f(x) =

∑
i λiϕ(‖x− xi‖) von Gewichts-

funktionen (siehe [5]).
Eine weitere Methode erfordert die Erstellung einer geeigneten Triangulierung (z. B.

mit der Delaunay-Triangulation), also die Vernetzung der Datenpunkte xi zu Dreiecken, und
verwendet dann Finite Elemente zur Approximation ([1]). Im einfachsten Fall wird zwischen
den Eckpunkten der Dreiecke linear interpoliert.

Die Methode der inversen Distanzwichtung (IDW), die nach einer Arbeit [26] von
Donald Shepard im englischen Sprachraum auch Shepard's method heiÿt, geht ähnlich vor wie
die RBF-Methode und schreibt die Approximation als Linearkombination f(x) =

∑
i fiwi(x)

von Gewichtsfunktionen wi(x) = ‖x− xi‖−p /
∑

j ‖xj − xi‖−p (siehe [1, 9]).
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Abbildung 1.2: Algorithmus zur Spline-Approximation unregelmäÿig verteilter Daten

Schlieÿlich ist noch die etwas kompliziertere Methode des Kriging zu erwähnen. Sie
wurde durch Georges Matheron (z. B. [17]) entwickelt, der durch die Masterarbeit [16] des
Geostatistikers Danie G. Krige inspiriert wurde, der seinerseits die Verfügbarkeit von Boden-
schätzen anhand von empirischen Daten untersuchte (siehe [7] zur Geschichte des Kriging),
und berücksichtigt die unterschiedliche räumliche Varianz bei der unregelmäÿigen Verteilung
der Datenpunkte.

Ein Vergleich von einigen etablierten Algorithmen für den Fall der Interpolation �ndet
sich in [9] und in [1].

Die in dieser Arbeit vorgestellte Methode besteht aus zwei Teilen (siehe Abbildung 1.2):
Zunächst werden aus den unregelmäÿig verteilten Daten per lokaler Polynom-Approximation
Daten auf Punkten erzeugt, die auf einem regelmäÿigen Gitter liegen. Anschlieÿend werden
per Quasi-Interpolation die Koef�zienten eines Quasi-Interpolanten ermittelt, der hier eine
Linearkombination

Qf =
∑

k∼D
(Qkf)bnk,h

von bivariaten B-Splines bnk,h mit äquidistanten Knoten ist. Die Darstellung als Linearkombi-
nation von B-Splines auf regulären Gittern hat dabei mehrere Vorteile: Die Beschreibung ist
einfach (im Prinzip gibt es für jeden Grad nur eine Basisfunktion bn = bn0,1, die skaliert und
verschoben wird) und es existieren einfache und sehr effektive Algorithmen u. a. zur Auswer-
tung und Ableitung des Splines. Der so entstehende Algorithmus erlaubt eine dynamische
Einstellung des Approximationsgrades und benötigt keine Triangulierung der Datenpunkte.
Auÿerdem kann dieser leicht auf verschiedene Grade in den Koordinaten (was bei partiellen
Ableitungen von Splines vorkommt) und höhere Dimensionen verallgemeinert werden.

Aufbau der Arbeit

In dieser Arbeit beschäftigen wir uns zunächst in Kapitel 2 kurz mit den für das weitere
Verständnis wichtigen De�nitionen und Sätzen bezüglich bivariaten Polynomen, B-Splines
und Spline-Funktionen.
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Anschlieÿend werden wir uns in Kapitel 3 mit der Methode der Quasi-Interpolation in
zwei Variablen vertraut machen und die Schwierigkeiten von bivariater Polynom-Approxima-
tion erklären. Am Ende dieses Kapitels werden wir diese zwei �Bausteine� zu dem in dieser
Arbeit vorgestellten Algorithmus zusammensetzen.

Dessen MATLAB-Implementierung werden wir in Kapitel 4 besprechen. Dabei gehen
wir ausführlich auf die Funktionsweise des Algorithmus ein und werden diese schrittweise
anhand eines Beispiels erklären. Zusätzlich werden wir ein paar numerische Eigenschaften
des Algorithmus analysieren.

In Kapitel 5 werden wir schlieÿlich den Algorithmus als beispielhafte Anwendung ver-
wenden, um Gewichtsfunktionen für Finite Elemente zu konstruieren.

Anhang A enthält eine Liste der auf der dieser Arbeit als Anhang beiliegenden CD-ROM
vorhandenen Dateien.

Notation

De�nitionen, Beispiele, Algorithmen und Sätze sind innerhalb jedes Kapitels durchgehend
nummeriert, wobei Beweise und nicht-bewiesene Sätze mit 2 beendet werden. De�nitionen,
Beispiele und Algorithmen enden mit ♦.

Wir schreiben N := {1, 2, 3, . . . } für die natürlichen Zahlen. Wenn wir die Null explizit
mit einschlieÿen wollen, schreiben wir N0 := N ∪ {0}.

Ein Gebiet D ⊂ Rm ist eine nicht-leere, zusammenhängende, offene Teilmenge von Rm.
Die Menge C(D) ist die Menge aller stetigen Funktionen auf D. Landau-Notation erfolgt mit
der O-Schreibweise.

Wenn es die Umstände zulassen und der entstehende Ausdruck immer noch eindeutig
ist, lassen wir manchmal unwichtige Indizes weg, zum Beispiel bk := bnk,h. Falls wir einen
Skalar an die Stelle schreiben, an der nach De�nition eigentlich ein Vektor stehen müsste,
meinen wir einen Vektor der passenden Gröÿe, der nur den Skalar enthält, also z. B.

bn(k1,k2),h := b
(n,n)
(k1,k2),(h,h)

, h > 0, n ∈ N.

Um die explizite Angabe von meist komplizierten Indexmengen (beispielsweise bei Sum-
men) zu vermeiden, schreiben wir zum Beispiel k ∼ D anstelle der Indexmenge. In diesem
Fall wird über alle relevanten Elemente summiert, d. h. die Elemente, die auf dem Gebiet D
nicht verschwinden. Aufgrund der globalen De�nition von B-Splines könnten wir meist sogar
über Z bzw. Z2 summieren (und die Indexmenge weglassen).

x = (xi)i=1,...,d bezeichnet einen Vektor mit den d Einträgen x1, . . . , xd. Wenn nichts
anderes angegeben ist, dann ist ‖x‖ := ‖x‖2 die euklidische Norm von x ∈ Rd, die durch das
euklidische Skalarprodukt 〈x, y〉 für x, y ∈ Rd induziert wird.

Der Abstand eines Punktes x ∈ Rd zu einer Menge M ⊂ Rd wird mit dist(x,M) :=
infy∈M ‖x− y‖2 bezeichnet. Der Träger supp f := {x ∈ Rm | f(x) 6= 0} einer Funktion f ist
der Abschluss der Nichtnullstellenmenge.
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2 Bivariate Splines

In diesem Kapitel werden wir die grundlegenden De�nitionen und Eigenschaften von bivaria-
ten Polynomen (Abschnitt 2.1), B-Splines (Abschnitt 2.2) und Splines (Abschnitt 2.3) kurz
benennen und wiederholen. Dies geschieht zu dem Zweck, dass die vorgestellte Approxima-
tionsmethode im weiteren Verlauf der Arbeit auf eindeutigen und gemeinsamen De�nitionen
fuÿt. Es ist bekannterweise keineswegs so, dass es immer nur eine Möglichkeit der De�nition
bei mathematischen Begriffen gibt. Es gibt allein schon mehrere Möglichkeiten, (bivariate)
Polynome oder B-Splines zu de�nieren (beispielsweise die De�nition von B-Splines in [13] vs.
[14]). Diese De�nitionen sind selbstredend äquivalent, allerdings muss für das beabsichtigte
Ziel eine passende De�nition ausgesucht werden.

Bei den vorgestellten De�nitionen und Sätzen folgen wir weitgehend den Darstellungen
in [14]. Wir werden aus Gründen des Umfangs und der Redundanz Sätze nur angeben und
nicht beweisen.

2.1 Bivariate Polynome

Bivariate Polynome sind �natürliche� Verallgemeinerungen von Polynomen einer Variablen
auf zwei Variablen. Man kann ein bivariates Polynom p als eine Funktion von zwei Variablen
x1 und x2 auffassen, so dass p(·, x2) bzw. p(x1, ·) für jedes x1 und x2 stets univariate Polynome
in der ersten bzw. zweiten Variablen sind.

De�nition 2.1 (bivariates Polynom). Ein bivariates Polynom p vom Koordinatengrad n =
(n1, n2) ist eine Linearkombination von Monomen:

p(x) =
∑

k≤n
ckx

k, xk = xk11 x
k2
2 , (2.1)

mit Koef�zienten ck ∈ R und cn 6= 0. Die Summation erfolgt über alle Multiindizes k ∈ N2
0,

die in jeder Komponente nicht gröÿer als n sind: kν ≤ nν für ν = 1, 2.
Die bivariaten Polynome vom Koordinatengrad ≤ n bilden einen Vektorraum, der mit

Pn bezeichnet wird. Er hat die R-Dimension (n1+1)·(n2+1), denn die Monome xk mit k ≤ n
bilden eine Basis von Pn. Wir scheiben Pn(D), falls x auf ein bestimmtes Gebiet D ⊂ R2

beschränkt ist. ♦

Alternativ kann man Polynome auch über den sogenannten totalen Grad de�nieren, der
gleich der maximalen Summe der Grade der Exponenten für jedes Monom ist. Allerdings stellt
sich bei der später eingeführten Tensorprodukt-Struktur für B-Splines (siehe Abschnitt 2.2)
heraus, dass dies kein guter Ansatz ist: Die partielle Ableitung eines B-Splines mit gleichem
Koordinatengrad in beiden Variablen ist eine Differenz von B-Splines, deren Koordinaten-
grade in den Variablen unterschiedlich sind (Satz 2.5).
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2 Bivariate Splines

2.2 B-Splines

Polynome eignen sich nicht besonders gut für die Interpolation oder Approximation einer
groÿen Anzahl von Daten. Für die Interpolation von n + 1 Datenpunkten benötigt man im
univariaten Fall i. A. ein Polynom vom Grad n. Sind nun sehr viele Daten gegeben, dann wer-
den die Polynomgrade ziemlich hoch sein. Dabei ergeben sich mitunter starke Oszillationen
zwischen den interpolierten Daten, ein Effekt, der auch als Runge-Effekt bekannt ist. Daher
ist die Interpolation mit Polynomen vom Grad gröÿer als vier nicht üblich.

Einen möglichen Ausweg bieten Splines, also stückweise Polynome. Weil sie auf jedem
Abschnitt ein Polynom sind, sind sie sich ähnlich einfach zu handhaben wie Polynome. Gleich-
zeitig treten aber keine Oszillationen bei Interpolation oder Approximation auf, da der ma-
ximale Polynomgrad auf jedem Stück gleich ist.

Für eine Basis des Spline-Raums gibt es natürlich viele Möglichkeiten. B-Splines haben
sich nicht zuletzt durch ihre vielen schönen Eigenschaften und durch die einfachen Rekur-
sionsformeln etabliert. Sie wurden durch Isaac J. Schoenberg 1946 zuerst eingeführt, der
allerdings immer behauptet hat, dass sie schon Laplace bekannt gewesen seien (siehe [4]).

Im Folgenden werden nur uniforme B-Splines betrachtet, weil nur diese von der hier
vorgestellten bivariaten Approximationsmethode benötigt werden. Für eine allgemeinere De-
�nition und die zugrunde liegende Theorie sei auf [14] bzw. [23] verwiesen. Folgende Rekursion
(für allgemeine B-Splines) wurde 1972 durch de Boor ([3]) und Cox ([6]) bewiesen, weswegen
die Formel (2.2) auch Cox-de-Boor-Rekursionsformel heiÿt.

De�nition 2.2 (univariater B-Spline). Der (uniforme) univariate B-Spline bn vom Grad n
ist de�niert durch die Rekursion

bn(x) :=
1

n

(
xbn−1(x) + (n+ 1− x)bn−1(x− 1)

)
, (2.2)

startend mit der charakteristischen Funktion

b0(x) := χ[0,1)(x) =

{
1 falls x ∈ [0, 1),

0 sonst.
(2.3)

0, . . . , n+ 1 sind die Knoten von bn und die Intervalle [`, `+ 1), ` = 0, . . . , n, heiÿen Knoten-
intervalle von bn. Allgemeine uniforme B-Splines bnk,h für die Gitterweite h > 0 ergeben sich
aus bn durch Skalierung und Verschiebung: bnk,h(x) := bn(x/h− k), k ∈ Z. ♦

Die ersten vier uniformen B-Splines sind in Abbildung 2.1 dargestellt. Es handelt sich um
die Grade 0, 1, 2, 3, die aus den oben erwähnten Gründen am häu�gsten verwendet werden.

B-Splines erfreuen sich an folgenden grundlegenden Eigenschaften:

Satz 2.3 (Eigenschaften von univariaten B-Splines). Der B-Spline bn vom Grad n verschwin-

det auÿerhalb von [0, n + 1). Auf jedem Knotenintervall ist bn ein nicht-negatives Polynom

vom Grad ≤ n.
bn ist an jedem Knoten n-fach stetig differenzierbar. Die Ableitung erfolgt durch Dif-

ferenzenbildung zwischen B-Splines vom Grad n− 1:

d

dx
bn(x) = bn−1(x)− bn−1(x− 1). (2.4)

6



2.2 B-Splines
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Abbildung 2.1: uniforme, univariate B-Splines vom Grad 0, 1, 2, 3
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Abbildung 2.2: uniforme, bivariate B-Splines auf ihrem Träger

Wir können die Differentiationsformel auch umschreiben (siehe [14]) zu

bn(x) =

∫ 1

0
bn−1(x− y)dy, (2.5)

so dass bn als Ergebnis des Prozesses einer Mittelwertbildung über bn−1 verstanden werden
kann (Faltung von χ[0,1) mit b

n−1). Alternativ zur Rekursionsformel (2.2) kann man B-Splines
auch über die Formel (2.5) de�nieren, so geschehen in [13].

Ausgehend von den univariaten B-Splines de�nieren wir bivariate B-Splines als Tensor-
produkte von B-Splines einer Variablen:

De�nition 2.4 (bivariater B-Spline). Ein (uniformer) bivariater B-Spline bnk,h vom Grad
n = (n1, n2) für die Gitterweite h = (h1, h2) ist ein Produkt von univariaten B-Splines:

bnk,h(x) := bn1
k1,h1

(x1) · bn2
k2,h2

(x2), k = (k1, k2) ∈ Z2. (2.6)

Zusätzlich de�nieren wir bn := bn0,1. ♦

In Abbildung 2.2 sind die B-Splines bn für den Fall n = 1 und n = 2 dargestellt.
[14] zählt ein paar Vor- und Nachteile der Tensorprodukt-Konstruktion auf. Zu den wich-

tigsten Vorteilen gehört, dass sie einfach zu beschreiben ist und dass sich die Eigenschaften
von univariaten B-Splines leicht übertragen:
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2 Bivariate Splines

Satz 2.5 (Eigenschaften von bivariaten B-Splines). Der bivariate B-Spline bnk,h vom Grad

n verschwindet auÿerhalb des Rechtecks [k1, k1 + n1 + 1)h1 × [k2, k2 + n2 + 1)h2. Auf jedem
Gitterrechteck [`1, `1+1)h1× [`2, `2+1)h2, ` = (`1, `2) ∈ Z2, ist bnk,h ein nicht-negatives, biva-

riates Polynom vom Koordinatengrad ≤ n. Auf jeder Parallelen zur ν-ten Koordinatenachse

ist bnk,h ein Vielfaches von bnνkν ,hν , ν = 1, 2.
bnk,h ist in xν-Richtung nν-fach stetig differenzierbar. Die Ableitung erfolgt durch Dif-

ferenzenbildung zwischen B-Splines vom Grad n− eν :

∂

∂xν
bnk,h =

1

hν

(
bn−eνk,h − bn−eνk+eν ,h

)
, ν = 1, 2, (2.7)

wobei eν ∈ R2 der ν-te Einheitsvektor ist.

Einer der Hauptnachteile ist, dass die B-Spline-Basis nicht lokal verfeinert werden kann,
denn Änderungen wirken sich wegen der Tensorprodukt-Struktur global aus. Dafür kann man
z. B. hierarchische Basen verwenden (siehe [13, 14]).

2.3 Spline-Funktionen

Aufbauend auf den vorherigen De�nitionen können wir jetzt bivariate Splines de�nieren. Es
ist naheliegend, wie diese De�nition im univariaten Fall aussieht, daher gehen wir aus Red-
undanzgründen sofort zu zwei Variablen über. Die Auswertung von Splines erfolgt mit dem
einfachen Algorithmus von de Boor ([2]), basierend auf dem Algorithmus von de Casteljau
für Bézier-Kurven.

De�nition 2.6 (bivariater Spline). Ein (uniformer) bivariater Spline p vom Koordinaten-
grad ≤ n = (n1, n2) mit der Gitterweite h = (h1, h2) auf dem Gebiet D ⊂ R2 ist eine
Linearkombination der B-Splines, die auf D nicht verschwinden:

p(x) =
∑

k∼D
ckb

n
k,h(x), x ∈ D. (2.8)

Der Raum aller solcher bivariaten Splines wird mit Snh (D) bezeichnet.
Die B-Splines bnk,h sind für festes n und h linear unabhängig, das heiÿt, die Koef�zienten

ck von p sind eindeutig bestimmt. ♦

Algorithmus 2.7 (de Boor). Es seien p =
∑

k∈D ckb
n
k,h ∈ Snh (D) ein bivariater Spline und

x = (x1, x2) ∈ D. Dann kann p(x) wie folgt berechnet werden:

(a) Bestimme ` = (`1, `2) und t = (t1, t2) mit xν = (`ν + tν)hν und t ∈ [0, 1)2.

(b) De�niere zunächst ak1 := (c(k1,k2))k2=`2−n2,...,`2 . Für i = n1, . . . , 1 berechne sukzessive
a`1−j ← γa`1−j + (i− γ)a`1−j−1 für j = 0, . . . , i− 1, wobei γ := j + t1. Bezeichne den
resultierenden Vektor als (pk2)k2=`2−n2,...,`2 := a`1 .

(c) Für i = n2, . . . , 1 berechne sukzessive p`2−j ← γp`2−j+(i−γ)p`2−j−1 für j = 0, . . . , i−1,
wobei γ := j + t2. Dann gilt am Ende p(x) = p`2/(n1!n2!). ♦

Ziel der in dieser Arbeit vorgestellten Approximationsmethode wird es sein, passende
Koef�zienten ck ∈ R eines bivariaten Splines so zu �nden, dass die vorgegebenen Daten
�möglichst gut� angenähert werden.
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3 Quasi-Interpolation und lokale
Polynom-Approximation

Nachdem wir im letzten Kapitel die wesentlichen De�nitionen als Grundlage für die weitere
Arbeit vorgestellt haben, werden wir in diesem Kapitel die Approximationsmethode erar-
beiten, um die es im Rahmen dieser Arbeit geht. Zunächst werden wir in Abschnitt 3.1 die
sog. Quasi-Interpolation in einer und in zwei Variablen erklären und ihre Eigenschaften nen-
nen. Anschlieÿend kümmern wir uns in Abschnitt 3.2 um die Generierung der benötigten
Zwischendaten auf einem regulären Gitter. Schlieÿlich werden wir in Abschnitt 3.3 diese bei-
den Schritte zusammenführen und das in diesem Abschnitt ausformulierte Problem mit einer
Kombination von lokaler Polynom-Approximation und Quasi-Interpolation numerisch lösen.

3.1 Univariate und bivariate Quasi-Interpolation

3.1.1 Quasi-Interpolation in einer Variablen

Bei der in dieser Arbeit vorgestellten Approximationsmethode handelt es sich um eine Spline-
Approximation. Das bedeutet, dass die gegebenen Daten durch eine Spline-Funktion p(x) =∑

k∼D ckb
n
k,h(x) mit gewissen Koef�zienten ck ∈ R angenähert werden sollen. Um Fehler-

abschätzungen beweisen zu können, benötigen wir gewisse Vorbedingungen an die Bildungs-
methode dieser Koef�zienten. Eine Möglichkeit ist dabei die sogenannte Quasi-Interpolation.

Bei Quasi-Interpolation handelt es sich um ein lineares Spline-Approximations-Schema
([14]). Unter recht milden und �natürlichen� Voraussetzungen kann gezeigt werden, dass
Quasi-Interpolation eine ef�ziente Methode zur Approximation mit Splines darstellt.

Wir verfahren wieder wie in [14], jedoch werden wir aus Gründen der Kürze und der Ein-
fachheit wie im letzten Kapitel nur uniforme Knotenfolgen betrachten. Für den allgemeinen
Fall sei auf [14] verwiesen.

De�nition 3.1 (univariate Quasi-Interpolation). Eine Abbildung

Q : C(D)→ Snh (D), f 7→ Qf =
∑

k∼D
(Qkf)bnk,h, (3.1)

mit dem Gebiet D ⊂ R, der Gitterweite h > 0 und dem Grad n ∈ N0 heiÿt Quasi-
Interpolationsoperator, falls

(a) Qk für alle k ∈ Z ein lokal beschränktes, lineares Funktional ist, das heiÿt, es gibt ein
‖Q‖, so dass für alle k ∈ Z

Qk : C(D)→ R linear, |Qkf | ≤ ‖Q‖ ‖f‖∞,[k,k+n+1)h , (3.2)

für alle f ∈ C(D) mit dem Supremum ‖f‖∞,U := supx∈U |f(x)| von f ∈ C(D) auf
U ⊂ R, und

9



3 Quasi-Interpolation und lokale Polynom-Approximation

(b) Q jedes Polynom vom Grad ≤ n auf sich selbst abbildet, d. h. Qp = p auf D für alle
p ∈ Pn(D). Äquivalent dazu ist, dass für alle y ∈ R und k ∼ D gilt, dass

Qkp = ψk(y) mit p(x) := (x− y)n,

ψk(y) := ((k + 1)h− y) · · · ((k + n)h− y).
(3.3)

Das Bild Qf von f unter Q nennen wir Quasi-Interpolant und die Berechnung von Qf heiÿt
Quasi-Interpolation. ♦

Die erste Bedingung (3.2) für einen univariaten Quasi-Interpolanten stellt sicher, dass
der Quasi-Interpolationsoperator linear ist und dass die Bilder Qkf der lokalen Funktionale
Qk nur von Werten von f im Träger von bnk,h abhängen. Die letztgenannte Tatsache ist

sinnvoll, weil eine Veränderung f → f̃ von f in einem bestimmten Bereich natürlich nur die
WerteQkf beein�ussen sollte, bei denen die entsprechenden B-Splines im veränderten Bereich
nicht verschwinden. Gleichzeitig sollten die Beträge |Qkf | der Koef�zienten des entstehenden
Splines gleichmäÿig durch das Maximum von f auf dem Träger von bnk,h beschränkt sein.

Die zweite Bedingung (3.3) ist die wichtigere, denn durch sie wird sichergestellt, dass
Polynome vom Grad ≤ n durch den Operator unverändert bleiben. Zu beachten ist, dass das
für sich noch nicht impliziert, dass jeder Spline auf sich selbst abgebildet wird (das heiÿt,
in diesem Fall wäre Q|Snh (D) = idSnh (D) und Q eine Projektion). In [14] wird gezeigt, dass
dies aber für Quasi-Interpolanten gilt, bei denen jedes Funktional Qk nur von Werten von
f in einem einzigen Knotenintervall in D abhängt. Die wesentliche Idee dabei ist, dass ein
Spline auf einem einzigen Knotenintervall einfach nur ein Polynom ist, das vom Operator auf
sich selbst abgebildet wird. Wenn die Konstante ‖Q‖ zusätzlich nur vom Grad n abhängt �
nicht von h oder im allgemeinen Fall von der Knotenfolge �, dann sprechen wir von einem
Standard-Projektor.

Mit den relativ schwachen Voraussetzungen eines Quasi-Interpolanten kann man zeigen
(siehe z. B. [14]), dass der Fehler bei der Quasi-Interpolation die Ordnung O(hn+1) hat:

Satz 3.2 (Fehler der Quasi-Interpolation). Es sei Q, f 7→ Qf =
∑

k∼D(Qkf)bnk,h, ein Quasi-

Interpolationsoperator. Dann gilt für den Fehler in einem Punkt x ∈ D:

|f(x)− (Qf)(x)| ≤ ‖Q‖
(n+ 1)!

∥∥∥f (n+1)
∥∥∥
∞,Dx

h(x)n+1. (3.4)

Dabei ist Dx die Vereinigung der Träger der für x relevanten B-Splines und

h(x) := maxy∈Dx |y − x| der maximale Abstand von y zum Rand von Dx.

Natürlich können wir die angegebene lokale Fehlerabschätzung auch zu einer globalen
Formel abschwächen, indem wir in (3.4) die Norm

∥∥f (n+1)
∥∥
∞,Dx durch

∥∥f (n+1)
∥∥
∞ und h(x)

durch (n + 1)h ersetzen (die im uniformen Fall konstante Länge der Träger der B-Splines).
Man kann sogar allgemeiner den Fehler der Ableitungen der Ordnung j = 0, . . . , n bis auf eine
Konstante, die nur von n abhängt, durch ‖Q‖ multipliziert mit

∥∥f (n+1)
∥∥
∞,Dx und h(x)n+1−j

abschätzen. Da die Approximation der Ableitungen zwar auch nützlich, aber in dieser Arbeit
nicht behandelt wird, wird hier nicht weiter darauf eingegangen.
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3.1 Univariate und bivariate Quasi-Interpolation

3.1.2 Wahl der linearen Funktionale

Für die Wahl der Funktionale Qk existieren mehrere Möglichkeiten. Dabei stellt man Qkf
meist als Linearkombination von Werten von f im Träger [k, k + n+ 1]h von bnk,h dar:

Qkf =

mk∑

α=0

wk,αf(xk,α) (3.5)

mit Gewichten wk,α und Stützstellen xk,α. (Wir betrachten nur stetige B-Splines, so dass der
Unterschied zwischen dem hier gewählten Bereich [k, k + n + 1]h der Stützstellen und der
Bereich [k, k+n+1)h der Maximumsnorm in (3.2) unerheblich ist.) Dies hat bei Speicherung
der Gewichte und der Stützpunkte in einer Tabelle den Vorteil, dass die Koef�zienten Qkf
des Splines Qf schnell berechnet werden können � es muss z. B. kein lineares Gleichungs-
system gelöst werden. Auÿerdem ist die erste Bedingung (3.2) für einen Quasi-Interpolanten
automatisch erfüllt, wenn

∑mk
α=0 |wk,α| ≤ ‖Q‖ für alle k ∼ D, da

|Qkf | ≤
mk∑

α=0

|wk,α||f(xk,α)| ≤ ‖f‖∞,[k,k+n+1]h ·
mk∑

α=0

|wk,α|. (3.6)

Die zweite Bedingung (3.3) für einen Quasi-Interpolanten kann für den Fall mk konstant
gleich n auch einfach geprüft werden, siehe unten.

Wir betrachten nun zwei Beispiele für Quasi-Interpolationsfunktionale für D = R.

Beispiel 3.3 (Standard-Projektor). Zunächst wollen wir einen Standard-Projektor konstru-
ieren, das heiÿt, für k ∈ Z müssen die Stützstellen xk,α alle in einem abgeschlossenen Knoten-
intervall [`, `+1]h liegen. Wir �xieren k ∈ Z und wählen als Intervall das mittlere des Trägers
von bnk,h für gerade n und das linke mittlere Intervall für ungerade n, also ` = k+ bn/2c. Nun
wählen wir n+ 1 äquidistante Punkte in [`, `+ 1]h:

xα =
(
`+

α

n

)
h, α = 0, . . . , n, (3.7)

dargestellt in Abbildung 3.1a. Die zweite Bedingung (3.3) wird dann zu

Qk(· − y)n =

n∑

α=0

wα

((
`+

α

n

)
h− y

)n
=

n∏

β=1

((k + β)h− y) = ψk(y). (3.8)

Beide Seiten sind Polynome in y vom Grad ≤ n, das heiÿt, anstatt die Koef�zienten explizit
auszurechnen und zu vergleichen, setzen wir n+ 1 verschiedene Werte in y ein und benutzen
die Tatsache, dass das interpolierende Polynom eindeutig ist. Kanonischerweise verwendet
man y = xν , ν = 0, . . . , n, denn so erhalten wir das relativ einfache lineare Gleichungssystem

n∑

α=0

wα(α− ν)n =

n∏

β=1

(
nβ − ν − n

⌊n
2

⌋)
, ν = 0, . . . , n, (3.9)

für w0, . . . , wn, das nicht mehr von k und h abhängt. Insbesondere erfüllt die Lösung die erste
Bedingung (3.2), wenn wir ‖Q‖ :=

∑n
α=0 |wα| wählen, und Q ist ein Standard-Projektor. ♦
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3 Quasi-Interpolation und lokale Polynom-Approximation

Tabelle 3.1: Koef�zienten wα des Quasi-Interpolationsoperators in Beispiel 3.4

n Koef�zienten w0, . . . , wn

1 1/2 1/2
2 −1/8 5/4 −1/8
3 −7/48 31/48 31/48 −7/48
4 47/1152 −107/288 319/192 −107/288 47/1152

kh ... lh (l+1)h ... (k+n+1)h

b
k,h
n

(a) Stützstellen in einem Intervall

kh (k+1)h ... (k+n+1)h

b
k,h
n

(b) Stützstellen in den Intervallmittelpunkten

Abbildung 3.1: Wahl der Stützstellen für Quasi-Interpolation vom Grad n = 4

Beispiel 3.4 (weiterer Quasi-Interpolant). Eine andere Möglichkeit für die Konstruktion ei-
nes Quasi-Interpolanten besteht darin, als Stützstellen die Mittelpunkte der Knotenintervalle
zu wählen (Abbildung 3.1b):

xα =

(
k +

1

2
+ α

)
h, α = 0, . . . , n, (3.10)

für festes k ∈ Z. In diesem Fall ist die zweite Bedingung (3.3) äquivalent zu

Qk(· − y)n =

n∑

α=0

wα

((
k +

1

2
+ α

)
h− y

)n
=

n∏

β=1

((k + β)h− y) = ψk(y). (3.11)

Einsetzen von y = xν , ν = 0, . . . , n, liefert nach Kürzen von hn mit

n∑

α=0

wα(α− ν)n =
n∏

β=1

(
β − ν − 1

2

)
, ν = 0, . . . , n, (3.12)

ein lineares Gleichungssystem mit derselben Koef�zientenmatrix wie beim Standard-Projek-
tor. Es handelt sich dabei um eine Toeplitz-Matrix (die Diagonalen beinhalten jeweils nur
einen verschiedenen Eintrag), die für n gerade bzw. ungerade symmetrisch bzw. schief-
symmetrisch ist. Wie beim anderen Quasi-Interpolanten folgt, dass die Lösung weder von
k noch von h abhängt, sondern nur noch vom Grad n. Somit ist die erste Bedingung (3.2) für
einen Quasi-Interpolanten erfüllt und man kann bei der Implementierung die Koef�zienten
für die am meisten genutzten Interpolationsgrade abspeichern. Wir geben in Tabelle 3.1 die
entstehenden Koef�zienten wα, α = 0, . . . , n, für die Grade n = 1, . . . , 4 an. ♦

In [14] wird erwähnt, dass das letztgenannte Quasi-Interpolationsschema besonders vor-
teilhaft ist, weil benachbarte Funktionale alle bis auf zwei Funktionsauswertungen gemeinsam
haben. Der Quasi-Interpolationsoperator aus Beispiel 3.3 hat als Standard-Projektor dagegen
den Vorteil, jeden Spline auf sich selbst abzubilden. Jedoch benötigt dieser für jedes Funktio-
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3.1 Univariate und bivariate Quasi-Interpolation

nal n+ 1 Funktionsauswertungen in jedem Knotenintervall, die somit kaum (nur am Rand)
für andere Funktionale benutzt werden können. Auÿerdem ist der Operator für ungeraden
Grad asymmetrisch, da das mittlere Knotenintervall eines B-Splines nicht eindeutig ist. Aus
diesen Gründen werden wir uns auf den Operator aus Beispiel 3.4 beschränken.

In obigen Beispielen wurde D = R angenommen und der Fall, dass D zum Beispiel ein
endliches Intervall darstellt, auÿer Acht gelassen. In diesem Fall kann es nämlich sein, dass
ein paar der gewählten Stützstellen für die Quasi-Interpolation in den Bereich auÿerhalb von
D fallen. Im Abschnitt 3.3.1 werden wir nochmals auf diese Problematik zurückkommen.

3.1.3 Bivariate Quasi-Interpolation

Die Tensorprodukt-Konstruktion von bivariaten B-Splines lässt sich im allgemeinen Fall der
De�nition 3.1 leider nicht auf die Konstruktion von Quasi-Interpolationsoperatoren in zwei
Variablen übertragen. Zunächst einmal ist überhaupt nicht klar, wie eine solche De�nition
aussehen könnte, denn die univariaten Quasi-Interpolationsfunktionale wirken eben nur auf
Funktionen einer Variablen, das heiÿt, die zu interpolierende, bivariate Funktion müsste ir-
gendwie auf eine Dimension eingeschränkt werden. Auÿerdem sollte nach [14] die optimale
Genauigkeit für beliebige Gebiete erhalten werden, was eine groÿe Schwierigkeit darstellt.

Daher beschränken wir uns im Folgenden auf Quasi-Interpolationsoperatoren mit Funk-
tionalen der Form (3.5) und Gebieten D ⊂ R2, die ein Rechteck sind. Die Anzahl mk der für
das Funktional Qk relevanten Funktionswerte von f nehmen wir dabei der Einfachheit halber
als konstant für alle k an. Wenn das zugrunde liegende Intervall endlich ist, stellt das kein
Problem dar, weil dann mk konstant auf die maximal benötigte Anzahl an Funktionswerten
gesetzt werden kann und �überschüssige� Gewichte auf null gesetzt werden können.

De�nition 3.5 (bivariate Quasi-Interpolation). Es seienD1 undD2 abgeschlossene Intervalle
in R und

Qν : C(Dν)→ Snh (Dν), f 7→ Qνf =
∑

kν∼Dν

(Qν,kνf)bnνkν ,hν , ν = 1, 2, (3.13)

zwei Quasi-Interpolationsoperatoren mit Gitterweiten hν > 0, Graden nν ∈ N0, Gebieten Dν

und Funktionalen der Form

Qν,kνf =

mν∑

αν=0

wν,kν ,ανf(xν,kν ,αν ) (3.14)

mit Gewichten wν,kν ,αν und Stützstellen xν,kν ,αν in [kν , kν + nν + 1]hν , so dass∑mν
αν=0 |wν,kν ,αν | ≤ ‖Qν‖ für alle kν ∼ Dν . Dann heiÿt die Abbildung

Q : C(D)→ Snh (D), f 7→ Qf =
∑

k∼D
(Qkf)bnk,h, (3.15)

mit den Funktionalen Qk, k = (k1, k2), de�niert durch

Qkf :=

m1∑

α1=0

m2∑

α2=0

w1,k1,α1w2,k2,α2f(x1,k1,α1 , x2,k2,α2) (3.16)
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3 Quasi-Interpolation und lokale Polynom-Approximation

bivariater Quasi-Interpolationsoperator mit Gebiet D = D1 × D2, Gitterweite h = (h1, h2)
und Grad n = (n1, n2).

Wieder nennen wir das Bild Qf von f unter Q Quasi-Interpolant und die Berechnung
von Qf heiÿt Quasi-Interpolation. ♦

Zunächst sehen wir, dass diese De�nition tatsächlich Sinn ergibt, indem wir bemerken,
dass der Quasi-Interpolant Qf ein bivariater Spline im Sinne von De�nition 2.6 ist. Die
weiteren Eigenschaften von univariaten Quasi-Interpolationsoperatoren übertragen sich auf
den bivariaten Fall:

Satz 3.6 (Eigenschaften bivariater Quasi-Interpolation). Es sei Q ein bivariater Quasi-

Interpolationsoperator wie in De�nition 3.5. Dann gilt:

(a) Qk ist für alle k ∈ Z2 ein lokal beschränktes, lineares Funktional. Es gibt also ein ‖Q‖,
so dass für alle k ∈ Z2

Qk : C(D)→ R linear,

|Qkf | ≤ ‖Q‖ ‖f‖∞,[k1,k1+n1+1)h1×[k2,k2+n2+1)h2
.

(3.17)

(b) Q bildet jedes bivariate Polynom vom Grad ≤ n auf sich selbst ab, d. h. Qp = p auf D
für alle p ∈ Pn(D).

Beweis. Die Linearität von Qk für Punkt (a) (Qk(f+g) = Qkf+Qkg und Qk(λf) = λ(Qkf)
für f, g ∈ C(D) und λ ∈ R) ist aus der De�nition von Qkf ersichtlich und folgt aus der
Linearität der Summation in (3.16). Die lokale Beschränktheit gilt wegen

|Qkf | ≤
m1∑

α1=0

m2∑

α2=0

|w1,k1,α1 ||w2,k2,α2 ||f(x1,k1,α1 , x2,k2,α2)|. (3.18)

Indem wir die rechte Seite durch das Maximum der Funktionswerte von f multipliziert mit der
Doppelsumme der Gewichtsprodukte abschätzen, erhalten wir die angegebene Behauptung
aufgrund von

m1∑

α1=0

m2∑

α2=0

|w1,k1,α1 ||w2,k2,α2 | ≤ ‖Q1‖ · ‖Q2‖ =: ‖Q‖ . (3.19)

Für Punkt (b) reicht es durch die Marsden-Identität (siehe z. B. [14]), für alle y ∈ R2

Qkp = ψk(y), p(x) := (x− y)n = p1(x1) · p2(x2), pν(xν) := (xν − yν)nν , (3.20)

mit

ψk(y) := ψk1(y1) · ψk2(y2), ψkν (yν) := ((kν + 1)hν − yν) · · · ((kν + nν)hν − yν), (3.21)

zu prüfen, denn die p spannen für y ∈ R2 den Raum Pn der bivariaten Polynome vom Grad
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k
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+1)h
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k,h
n

1/64
−5/32
25/16

Abbildung 3.2: Gewichte eines bivariaten Quasi-Interpolationsoperators basierend auf Bei-
spiel 3.4, hier speziell mit h1 = h2 und n1 = n2 = 2

≤ n auf. Einsetzen in die De�nition ergibt

Qkp =

m1∑

α1=0

m2∑

α2=0

w1,k1,α1w2,k2,α2p(x1,k1,α1 , x2,k2,α2). (3.22)

Diese Doppelsumme kann in zwei Summen aufgespalten werden:
(

m1∑

α1=0

w1,k1,α1p1(x1,k1,α1)

)
·
(

m2∑

α2=0

w2,k2,α2p2(x2,k2,α2)

)
. (3.23)

Die linke groÿe Klammer ist nach (3.14) gleichQ1,k1p1 und die rechte groÿe Klammer ist gleich
Q2,k2p2. Weil die univariaten Quasi-Interpolationsoperatoren Q1 und Q2 ebenfalls Polynome
reproduzieren (Gleichung (3.3)), erhalten wir somit ψk1(y1) · ψk2(y2) = ψk(y).

Die Fehlerabschätzung aus dem univariaten Fall lässt sich durch einen ähnlichen Beweis
(siehe [14]) auf den Fall zweier Variablen übertragen:

Satz 3.7 (Fehler der bivariaten Quasi-Interpolation). Es sei Q, f 7→ Qf =
∑

k∼D(Qkf)bnk,h,
ein bivariater Quasi-Interpolant mit Gebiet D, Gitterweite h = (h1, h2) und Grad n =
(n1, n2). Dann gilt für den Fehler in einem Punkt x ∈ D:

|f(x)− (Qf)(x)| ≤ c(n) ·
(
hn1+1
1

∥∥∥∂n1+1
1 f

∥∥∥
∞,D

+ hn2+1
2

∥∥∥∂n2+1
2 f

∥∥∥
∞,D

)
. (3.24)

Abbildung 3.2 zeigt als Beispiel die Gewichte der Funktionale des bivariaten Quasi-
Interpolationsoperators, der durch Verwendung von Beispiel 3.4 in beiden Variablen entsteht,
hier jeweils mit Grad 2. Unabhängig vom Grad ergeben sich dabei insgesamt drei verschiedene
Gewichte, entsprechend den Kombinationsmöglichkeiten.
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3 Quasi-Interpolation und lokale Polynom-Approximation

3.2 Bivariate Polynom-Approximation

Die vorgestellte Methode der Quasi-Interpolation lässt sich allein noch nicht für die Approxi-
mation unregelmäÿig verteilter Daten verwenden. Bivariate Quasi-Interpolationsoperatoren,
so wie sie in Abschnitt 3.1.3 de�niert wurden, benötigen nämlich die Daten f(x1, x2) auf ei-
nem regelmäÿigen Gitter, das heiÿt, (x1, x2) muss sich (im endlichen Fall) im Kreuzprodukt
zweier endlicher Teilmengen von R be�nden. Um einen Algorithmus der Approximation unre-
gelmäÿig verteilter Daten zu erhalten, müssen wir die von der Quasi-Interpolation benötigten
Daten auf dem regelmäÿigen Gitter aus den unregelmäÿig verteilten Daten erzeugen.

Wir verwenden dazu die sogenannte lokale Polynom-Approximation. �Lokal� deshalb,
weil zur Erzeugung eines Gitterpunkts nur Daten aus einer kleinen Umgebung des Punkts
herangezogen werden, um die Polynom-Grade klein zu halten. Der globale Zusammenhang
zwischen den Gitterpunkten wird dann durch die Quasi-Interpolation hergestellt.

Leider ist bivariate Polynom-Approximation, oder im Spezialfall Polynom-Interpolation,
erheblich schwieriger zu handhaben als der Fall einer Variablen und Gegenstand aktueller
Forschung. Einen guten Überblick über bisher erarbeitete Methoden geben [11, 18, 21].

Die Schwierigkeit multivariater Interpolation erklärt sich folgendermaÿen: Im univariaten
Fall gibt es bekannterweise für n + 1 paarweise verschiedene Punkte x1, . . . , xn+1 ∈ R mit
Daten f1, . . . , fn+1 ∈ R genau ein interpolierendes Polynom p vom Grad ≤ n, d. h. p(xi) =
fi für i = 1, . . . , n + 1. Das interpolierende Polynom lässt sich sogar mit der Lagrange-
Formel explizit angeben (siehe [11, 14]), mit Dividierten Differenzen lässt sich auch Hermite-
Interpolation (Interpolation der Ableitungen) einfach bewerkstelligen.

Anders ist das im multivariaten Fall, zum Beispiel für zwei Variablen: Je nach Lage der
Punkte (x1,i, x2,i) ∈ R2 und der Daten fi, i = 1, . . . , (n1 + 1)(n2 + 1), ist das Interpolati-
onsproblem mit bivariaten Polynomen vom Koordinatengrad ≤ n = (n1, n2) nicht eindeutig
oder sogar unlösbar:

Beispiel 3.8 (nicht eindeutig lösbares, bivariates Interpolationsproblem). Für n1 = n2 = 1
betrachten wir die Daten zeilenweise gegeben durch

X =

(
0 1/2 1 2
0 −1 1 1/2

)T
, f =

(
0 0 0 0

)T
. (3.25)

Wie man leicht durch Rechnung nachprüft, interpoliert das bivariate Polynom

p(x1, x2) = 0 + 1 · x1 + 2 · x2 − 3 · x1x2 (3.26)

vom Koordinatengrad (1, 1) diese Daten. Andererseits interpoliert natürlich auch das Null-
polynom die Daten, also ist die Lösung für diese Datenpunkte nicht eindeutig. ♦

Beispiel 3.9 (unlösbares, bivariates Interpolationsproblem). Nun seien die Daten

X =

(
0 1 2 3
0 0 0 0

)T
, f =

(
0 0 0 1

)T
(3.27)

gegeben. Es kann kein Interpolationspolynom vom Grad ≤ (1, 1) geben, denn auf der Geraden
x2 = 0 wäre dies ein univariates Polynom vom Grad ≤ 1 mit drei Nullstellen. Damit müsste
das Polynom trivial sein und würde den letzten Datenpunkt nicht interpolieren. ♦
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3.2 Bivariate Polynom-Approximation

Man sagt, das Interpolationsproblem für gegebene Datenpunkte (x1,i, x2,i) ∈ R2, i =
1, . . . , (n1 + 1)(n2 + 1), sei wohlgestellt (well posed oder nach [11] poised), falls für beliebige
Daten fi ein Interpolationspolynom p ∈ Pn existiert. In [11] wird dies für beliebige Vektor-
räume V von stetigen Funktionen verallgemeinert, indem man R2 durch Rd, Pn durch V
und (n1 + 1)(n2 + 1) durch dimV ersetzt. Ein Raum V , so dass das Interpolationsproblem
für beliebige (dimV )-viele Punkte aus Rd wohlgestellt ist, heiÿt Haar-Raum. Für den Fall
d ≥ 2 erwähnt [11], dass keine nicht-trivialen Haar-Räume (der Dimension > 1) existieren.
Für uns bedeutet das, dass es für jeden Grad n = (n1, n2) immer paarweise verschiedene
(n1 + 1)(n2 + 1)-viele Punkte in R2 gibt, so dass das Interpolationsproblem nicht poised ist.

Damit hängt auch die Eindeutigkeit der Lösung eines polynomiellen Approximationspro-
blems von der Lage der Datenpunkte ab. Bei der Polynom-Approximation sind mindestens
(n1 +1)(n2 +1)-viele, paarweise verschiedene Datenpunkte gegeben, also (x1,i, x2,i) ∈ R2 mit
fi ∈ R für i = 1, . . . ,m mit m ≥ (n1 + 1)(n2 + 1). Gesucht ist ein bivariates Polynom p vom
Grad ≤ n = (n1, n2), das diese Punkte bestmöglich approximiert. �Bestmöglich� heiÿt hier,
dass die Summe der Fehlerquadrate minimiert wird, das heiÿt, für alle q ∈ Pn gilt

E(p) ≤ E(q), E(q) :=

m∑

i=1

|q(x1,i, x2,i)− fi|2. (3.28)

Daher nennt man das Verfahren auch die Methode der kleinsten Fehlerquadrate.

Man kann ein solches Minimierungsproblem mit Hilfe linearer Gleichungssysteme (LGS)
umformulieren: Das gesuchte Polynom p mit Koef�zienten c sei

p(x) =
∑

k≤n
ckx

k, c = (c(0,0), c(1,0), . . . , c(n1,0), c(0,1), c(1,1), . . . , c(n1,1), . . . , c(n1,n2))
T . (3.29)

Mit der (m × (n1 + 1)(n2 + 1))-Matrix A mit den Zeilen ai, i = 1, . . . ,m, und der rechten
Seite f , beides de�niert durch

ai = (1, x1,i, . . . , x
n1
1,i, x2,i, x1,ix2,i, . . . , x

n1
1,ix2,i, . . . , x

n1
1,ix

n2
2,i), f = (f1, . . . , fm)T , (3.30)

erhalten wir ein im Allgemeinen überbestimmtes LGS Ac = f , so dass das Quadrat der
euklidischen Norm vom Residuum des LGS der Fehlerquadratsumme entspricht:

E(p) = ‖Ac− f‖22 . (3.31)

Eine Lösung c des Minimierungsproblems ist nun äquivalent (siehe [18, 24]) zu den
Lösungen der Normalengleichungen

ATAc = AT f. (3.32)

Dieses LGS ist eindeutig lösbar, wenn A vollen Rang hat (was i. A. nicht der Fall ist, siehe
oben). Zusätzlich ist ATA symmetrisch und positiv de�nit ([24]), so dass dieses LGS mit
Hilfe geeigneter Methoden, z. B. mit dem CG-Verfahren, numerisch gelöst werden kann.

Für unsere im Folgenden vorgestellte Approximationsmethode unregelmäÿig verteilter
Daten werden wir Polynom-Approximation statt -Interpolation verwenden, weil die genaue
Zahl an Daten lokal um einen zu berechnenden Gitterpunkt herum nicht bekannt sein wird.
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3 Quasi-Interpolation und lokale Polynom-Approximation

3.3 Spline-Approximation durch Quasi-Interpolation

3.3.1 Vorbemerkungen

Nun haben wir uns alle Voraussetzungen erarbeitet, die wir für die Formulierung des Appro-
ximationsproblems und dessen Lösung benötigen. Um zwei kleinere Details haben wir uns
dabei noch nicht gekümmert:

Erstens wurde in Abschnitt 3.2 nicht spezi�ziert, welche Punkte für die Generierung eines
Gitterpunkts für die Quasi-Interpolation bei der �lokalen� Polynom-Approximation verwendet
werden. Damit das in den Gleichungen (3.29) und (3.30) de�nierte LGS überbestimmt ist,
müssen in jedem Fall mindestens (n1 + 1)(n2 + 1)-viele Punkte verwendet werden, wobei
n = (n1, n2) den Grad der verwendeten Approximation bezeichnet. Wir werden deshalb von
den gegebenen Daten voraussetzen, dass zusätzlich eine Gitterweite h = 1/H > 0 gegeben
ist und sich in jedem Gitterquadrat mindestens ein Datenpunkt be�ndet. Wenn wir einen
Gitterpunkt für die Quasi-Interpolation erzeugen wollen, werden wir alle Datenpunkte aus
den umliegenden Gitterquadraten nehmen, und zwar aus mindestens so vielen, so dass das
LGS überbestimmt ist. Dies ist natürlich nur die grobe Idee, die exakte Ausformulierung
erfolgt später im Abschnitt 3.3.2.

Zweitens haben wir bei den Beispielen der univariaten Quasi-Interpolationsoperatoren im
Abschnitt 3.1.2 angenommen, dass der entstehende Quasi-Interpolant Qf auf der kompletten
reellen Achse D = R de�niert sein soll. Allerdings treten in der Praxis Daten, die sich nicht
in einer kompakten Teilmenge von R be�nden, so gut wie nie auf. Normalerweise hat man es
mit Daten zu tun, die sich nach Transformation im Einheitsquadrat [0, 1]2 be�nden � für die
univariaten Beispiele bedeutet das D = [0, 1]. Das stellt in der Tat ein Problem dar, denn
die zu interpolierende Funktion f ist nach De�nition 3.1 i. A. nur auf D de�niert. Die für D
relevanten Funktionale des Quasi-Interpolationsoperators aus Beispiel 3.4 benötigen jedoch
bis zu n Werte auf jeder Seite auÿerhalb von D.

Für die Lösung des zweiten Problems existieren wiederum zwei Lösungsmöglichkeiten:
Die erste, aufwendigere Lösung ist die Modi�kation der Funktionale, die Funktionswerte au-
ÿerhalb von D benötigen. Dabei verändert man bei diesen Funktionalen die Stützstellen xk,α
in Gleichung (3.5), so dass sich diese innerhalb von D be�nden, aber immer noch in supp bnk,h
liegen. In Abbildung 3.3 ist eine mögliche Veränderung der ersten beiden Funktionale des
univariaten Quasi-Interpolationsoperators aus Beispiel 3.4 zusammen mit dem ersten unver-
änderten Funktional für den Grad n = 2 und das Gebiet D = [0, 1] gezeigt. Die veränderten
Gewichte kann man nach der gleichen Vorgehensweise wie in Beispiel 3.4 berechnen. Na-
türlich könnte man die dargestellte Modi�kation auch auf andere Grade verallgemeinern.
Aus Platzgründen und weil diese Art der Lösung des �Problems mit dem Rand� für unse-
ren Algorithmus nicht verwendet wird, verzichten wir auf eine tiefer gehende Analyse dieser
Lösungsmöglichkeit.

Die zweite, sozusagen �billigere� Lösung, die wir aus Gründen der Einfachheit im Folgen-
den verwenden werden, besteht in der Forderung an die gegebenen Daten, dass auch auÿerhalb
des Gebiets, auf dem der resultierende Quasi-Interpolant de�niert ist, Daten gegeben sind.
Diese Erweiterung des De�nitionsbereichs der Daten erfolgt genau so weit, dass die Funktio-
nale des Quasi-Interpolationsoperators, die Funktionswerte auÿerhalb von D benötigen, diese
auch bekommen. Genauer wird auch dies im nächsten Abschnitt formuliert.
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3.3 Spline-Approximation durch Quasi-Interpolation
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Abbildung 3.3: erste drei modi�zierte Funktionale mit Stützstellen und entsprechenden B-
Splines des Quasi-Interpolationsoperators aus Beispiel 3.4 für n = 2

3.3.2 Formulierung des Approximationsproblems und der Lösung

Die beiden eben erwähnten kleineren Schwierigkeiten gehen direkt schon in die Formulierung
des zu lösenden Approximationsproblems ein. Aus Gründen der Verständlichkeit gehen wir
dabei von derselben Gitterweite und demselben Grad in beiden Dimensionen aus. Es ist
jedoch nicht schwierig, den vorgestellten Algorithmus auf beliebige Gitterweiten h = (h1, h2)
mit hν = 1/Hν und Hν ∈ N und Grade n = (n1, n2) mit nν ∈ N, ν = 1, 2, zu verallgemeinern.

De�nition 3.10 (Approximationsproblem). Gegeben seien die Gitterweite h := 1/H > 0
mit H ∈ N, der Grad n ∈ N und die Daten

(x1,i, x2,i) ∈ [−rh, 1 + rh]2, fi ∈ R, i = 1, . . . ,m, (3.33)

mit

r1 := dn/2e, r2 := n, r := r1 + r2, (3.34)

so dass sich in jedem Gitterquadrat mindestens ein Datenpunkt be�ndet, das heiÿt, für alle
(i1, i2) ∈ {−r, . . . ,H + r − 1}2 gibt es ein i ∈ {1, . . . ,m} mit

(x1,i, x2,i) ∈ [i1, i1 + 1)h× [i2, i2 + 1)h. (3.35)

Dabei zählen wir Punkte auf dem rechten oder oberen Rand als noch zum letzten Gitterqua-
drat gehörend, das heiÿt, für i1 = H + r− 1 bzw. i2 = H + r− 1 ersetzen wir das linke bzw.
rechte Intervall durch die abgeschlossene Version.

Gesucht ist eine bivariate Spline-Approximation

p =
∑

k∼D
ckb

n
k,h ∈ Snh (D) (3.36)

auf dem Einheitsquadrat D = [0, 1]2, die aus den Daten mit lokaler Polynom-Approximation
und Quasi-Interpolation ermittelt wird. ♦
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3 Quasi-Interpolation und lokale Polynom-Approximation

Zunächst einmal ist klar, dass die Einschränkung der Daten auf das erweiterte Einheits-
quadrat [−rh, 1 + rh]2 keine Beschränkung der Allgemeinheit darstellt, denn andere Daten
lassen sich einfach auf dieses Quadrat skalieren � am Ende muss man natürlich die Spline-
Approximation p aus (3.36) entsprechend zurückskalieren.

Die beiden Zahlen r1 und r2 stellen die Anzahl der vom Algorithmus auÿerhalb des
Gebiets D = [0, 1]2 zusätzlich benötigten Gitterquadrate dar. Zunächst einmal verwendet die
lokale Polynom-Approximation zur Berechnung eines Gitterpunkts für n gerade genau (n+1)2

Gitterquadrate mit dem Gitterquadrat in der Mitte, das den zu berechnenden Gitterpunkt
enthält. Das ergibt dann in jede Richtung n/2 zusätzliche Gitterquadrate. Im ungeraden Fall
benötigen wir immer noch mindestens (n + 1)2 Gitterquadrate, allerdings ist die Situation
hier asymmetrisch. Damit das Gitterquadrat mit dem zu berechnenden Gitterpunkt immer
noch in der Mitte liegt, verwenden wir stattdessen (n+ 2)2 Gitterquadrate, wir tun also so,
als wäre der Grad um eins gröÿer. Für beide Fälle (n gerade und n ungerade) ergeben sich
also r1 = dn/2e zusätzliche Gitterquadrate in jede Richtung.

Wie oben in Abschnitt 3.3.1 bemerkt, benötigt aber auch die Quasi-Interpolation bis
zu r2 = n zusätzliche Funktionswerte auÿerhalb des Gebiets, auf dem der Quasi-Interpolant
de�niert ist. Insgesamt brauchen wir also r = r1 + r2 zusätzliche Gitterquadrate in jede
Richtung.

Der Algorithmus zur Bestimmung der Spline-Approximation ist aus diesen Bemerkungen
vielleicht schon ersichtlich, wir formulieren ihn als Ergebnis dieses Kapitels wie folgt:

Algorithmus 3.11 (Algorithmus zur Bestimmung der Spline-Approximation). Gegeben sei
das Approximationsproblem aus De�nition 3.10. Daraus bestimmen wir die bivariate Spline-
Approximation p aus (3.36) wie folgt:

(a) lokale Polynom-Approximation: Für alle (i1, i2) ∈ {−r2, . . . ,H + r2− 1}2 wähle jeweils
alle Punkte aus den Gitterquadraten aus (im Sinne von De�nition 3.10), die die Indizes
(j1, j2) ∈ {i1−r1, . . . , i1+r1}×{i2−r1, . . . , i2+r1} besitzen. Es sei p(i1,i2) das bivariate
Polynom, das diese Punkte gemäÿ (3.28) approximiert. De�niere

f((i1 + 1/2)h, (i2 + 1/2)h) := p(i1,i2)((i1 + 1/2)h, (i2 + 1/2)h) (3.37)

als den Wert des Gitterpunkts an der Position ((i1 + 1/2)h, (i2 + 1/2)h).

(b) Quasi-Interpolation: Es sei

Q : C(D)→ Snh (D), f 7→ Qf =
∑

k∼D
(Qkf)bnk,h, (3.38)

der bivariate Quasi-Interpolationsoperator, der durch Verwendung von Beispiel 3.4 mit
Grad n in beiden Koordinaten hervorgeht. Dann ist

p := Qf, (3.39)

wobei obige bei (a) de�nierten Daten bei der Berechnung der Koef�zienten von Qf
verwendet werden. ♦

Illustrationen und weitere Erklärungen zur Funktionsweise des Algorithmus �nden sich
im nächsten Kapitel 4.

20



4 Implementierung

Ziel dieses Kapitels wird es sein, die Verwendung und die Eigenschaften der auf der bei-
gelegten CD-ROM in MATLAB vorliegenden Implementierung des Algorithmus zur Spline-
Approximation unregelmäÿig verteilter Daten zu erklären. Dabei werden wir nur auf die
Implementierung des grundlegenden Algorithmus 3.11 eingehen. Den Algorithmus, der als
Anwendung FE-Gewichtsfunktionen approximiert, werden wir separat im nächsten Kapitel 5
erläutern.

Zunächst erklären wir in Abschnitt 4.1 den grundlegenden Aufbau der Programme sowie
deren Aufruf anhand von Beispielen. In Abschnitt 4.2 werden wir den Algorithmus auf reale
Daten anwenden und somit seine Praxistauglichkeit testen. Schlieÿlich werden wir in Ab-
schnitt 4.3 numerische Eigenschaften des Algorithmus untersuchen, zum Beispiel Konvergenz
oder Zeitbedarf.

Eine Übersicht der auf der CD-ROM enthaltenen Dateien be�ndet sich in Anhang A.

4.1 Aufbau und Aufruf der Programme

4.1.1 Allgemeines

Die auf der CD-ROM be�ndliche Implementierung wurde mit der zum Zeitpunkt der Fertig-
stellung dieser Arbeit neuesten verfügbaren MATLAB-Version R2012a (7.14.0.739) program-
miert. Beim zugrunde liegenden Betriebssystem handelt es sich um ein 64-Bit-Linux-System
mit Ubuntu 12.04. Es waren zwar alle MATLAB-Toolboxes verfügbar, jedoch wurde dar-
auf geachtet, dass das Programm auch auf einem System läuft, auf dem nur das MATLAB-
Basisprogramm installiert ist. Des Weiteren sollte das Programm ohne Schwierigkeiten zudem
mit älteren MATLAB-Versionen und auf anderen Betriebssystemen (wie Windows) laufen.

Konkrete Laufzeiten für einzelne Testläufe wurden auf einem zum Zeitpunkt der Fer-
tigstellung dieser Arbeit durchschnittlichen Computer mit Vierkernprozessor (Intel Core 2
Quad Q8200, 4× 2,33GHz) und 4GB Arbeitsspeicher gemessen.

Die MATLAB-Programme sind in sog. Paketen (packages) gegliedert, was Namens-
kon�ikte vermeidet und die Wiederverwendbarkeit in anderen Programmen verbessert. Das
Hauptpaket trägt den Namen ScatteredData. Darunter be�nden sich verschiedene Unter-
pakete, davon sind am wichtigsten ScatteredData.SplineApproximation und ScatteredData.

WeightFunctions. Zur Verwendung wechselt man in das Elternverzeichnis von +ScatteredData

oder man bindet das Elternverzeichnis in den MATLAB-Pfad ein.
Eine Übersicht der vorhandenen Pakete erhält man wie üblich mit help ScatteredData.

Der Quellcode ist mit ausführlichen Hilfetexten und Kommentaren versehen.
Das Programmpaket besitzt globale Optionen, die sich mit den Routinen ScatteredData.

change_settings und ScatteredData.print_settings ändern bzw. ausgeben lassen. Die ver-
fügbaren Optionen use_mex und print_status_messages beein�ussen die Verwendung von
MEX bzw. die Ausgabe von Statusmeldungen bei der Berechnung.
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4 Implementierung

4.1.2 Beispieldaten

In diesem Abschnitt werden wir die Funktionsweise der Programme anhand eines Beispiels
mit �ktiven Daten erklären. Dazu wurden als Grundlage die sog. Halton-Punkte ausgewählt,
die zunächst in [12] de�niert wurden. Im eindimensionalen Fall heiÿt die entsprechende Folge
van-der-Corput-Folge (ϕb(n))n∈N0 . Sie lässt sich folgendermaÿen herleiten: Man wählt eine
feste Basis b ∈ N. Um ϕb(n) für n ∈ N0 zu berechnen, schreiben wir zunächst n zur Basis
b, d. h. n =

∑m
i=0 nib

i = (nm · · ·n1n0)b. Dann ist ϕb(n) :=
∑m

i=0 nib
−i−1, wir drehen also

(nm · · ·n1n0)b um und lesen die entstehende Zahl als Nachkommaanteil. Eine mehrdimensio-
nale Verallgemeinerung erhalten wir, indem wir einen Vektor (ϕb1(n), . . . , ϕbd(n)) ∈ [0, 1)d

mit paarweise verschiedenen Basen bν bilden. In der Praxis werden meist die ersten d Prim-
zahlen verwendet. Eine solche Folge wird Halton-Folge genannt. Sie hat den Vorteil, dass
sie im Gegensatz zu pseudozufälligen Punkten das Einheitsquadrat gleichmäÿig gut abdeckt,
einfach zu berechnen und deterministisch ist, das heiÿt, hintereinander ausgeführte Aufrufe
ergeben dieselben Punkte.

Ein Befehl zur Generierung von Halton-Punkten be�ndet sich zwar in MATLAB, al-
lerdings nur in der Statistics Toolbox. Weil im Rahmen der vorliegenden Implementierung
auf externe Toolboxes bewusst verzichtet wird, wurde eine eigene Version implementiert, die
vom Programmpaket �Stochastic Simulation in Java�1 stammt, das unter der GPLv3-Lizenz2

verfügbar ist. Der dort verwendete Algorithmus basiert auf einer anderen Berechnungsweise,
die in [27] beschrieben wird, und ist sowohl hinsichtlich Genauigkeit als auch Schnelligkeit
mit der MATLAB-Version vergleichbar. Die Erzeugung von Halton-Punkten erfolgt mit

X = ScatteredData.Halton.gen_points(n, d, b),

wobei n die Anzahl der Halton-Punkte, d die Anzahl der Dimensionen und b einen Vektor
bezeichnet, der die d-vielen Basen enthält (für d ≤ 3 kann b weggelassen werden).

Die Halton-Punkte geben nur die Position der Datenpunkte im Einheitsquadrat wieder,
allerdings nicht deren Funktionswerte. Um diese zur Verfügung zu stellen, existieren eben-
falls viele Möglichkeiten. Aufgrund ihrer Omnipräsenz in wissenschaftlichen Artikeln über
das übergeordnete Themengebiet (z. B. [19, 28]) wird hier die bekannte Franke-Testfunktion
ScatteredData.Halton.franke verwendet, die zuerst in [10] auf [0, 1]2 de�niert wurde:

F (x, y) :=
3

4
exp

(
−(9x− 2)2 + (9y − 2)2

4

)
+

3

4
exp

(
−(9x+ 1)2

49
− 9y + 1

10

)

− 1

5
exp
(
−(9x− 4)2 − (9y − 7)2

)
+

1

2
exp

(
−(9x− 7)2 + (9y − 3)2

4

)
.

(4.1)

Das im Folgenden verwendete Beispiel example_halton, nämlich die Kombination von
Halton-Punkten mit der Franke-Testfunktion, kann mit der Demonstration

ScatteredData.Halton.demo()

nachvollzogen werden, wobei Einstellungen von diesem Programm interaktiv durch den Be-
nutzer getätigt werden. Das Programm example_halton verwendet dabei die Standardwerte,
d. h. H = 10 Gitterzellen pro Koordinatenrichtung in [0, 1]2, q = 2 Halton-Punkte pro Git-

1URL: http://www.iro.umontreal.ca/~simardr/ssj/indexe.html
2URL: http://www.gnu.org/licenses/gpl.txt
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4.1 Aufbau und Aufruf der Programme
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(b) Werte der Franke-Testfunktion an den Punkten

Abbildung 4.1: (q · (H + 2r)2)-viele Halton-Punkte und Werte der Franke-Testfunktion

terzelle, Grad n = 2, die Funktion fun = @ScatteredData.Halton.franke und sd = 0 (keine
Addition von zufälligen Fehlern).

Abbildung 4.1 zeigt die entstehenden Datenpunkte. Gemäÿ De�nition 3.10 werden auch
auÿerhalb des Einheitsquadrats [0, 1]2, auf dem die Spline-Approximation am Ende de�niert
sein wird, Datenpunkte benötigt (auf r zusätzlichen Gitterquadraten in jede Richtung).

4.1.3 Ermittlung der Gitterweite

Bei realen Daten (siehe Abschnitt 4.2) wäre es laut De�nition 3.10 zunächst notwendig,
eine Gitterweite h = 1/H mit H ∈ N zu bestimmen, so dass sich in jedem Gitterquadrat
mindestens ein Datenpunkt be�ndet. Dies kann mit der Funktion

H = ScatteredData.SplineApproximation.get_opt_grid(X, n)

erledigt werden, wobei sich die Daten X im Einheitsquadrat [0, 1]2 be�nden müssen. Das
Programm ermittelt durch heuristische binäre Suche einen im Allgemeinen akzeptablen Wert
für H, der allerdings nicht optimal sein muss (in dem Sinne, dass es kein gröÿeres H∗ > H
gibt, so dass obige Bedingung ebenfalls erfüllt ist), siehe auch Abbildung 4.2. Der Aufruf

H = ScatteredData.SplineApproximation.get_opt_grid(X, n, ’strict’)

bewirkt dagegen die Optimalität des zurückgegebenen H.
In unserem �künstlichen� Beispiel sind die Punkte schon so von vorneherein konstruiert,

dass sich für beliebiges, gegebenes H in jedem Gitterquadrat mindestens ein Datenpunkt
be�ndet � somit entfällt dieser Schritt bei ScatteredData.Halton.demo().

4.1.4 Berechnung der Spline-Approximation

Die eigentliche Erstellung der Spline-Approximation erfolgt durch

[p, Y] = ScatteredData.SplineApproximation.make(X, f, H, n).
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Abbildung 4.2: Funktionsweise von get_opt_grid am Beispiel von 200 000 Halton-Punkten.
Die schwarzen Punkte auf der Zahlengerade repräsentieren die möglichen Wer-
te für H und die verschieden hellen, ineinander verschachtelten Rechtecke
stellen die durch die binäre Suche durchsuchten Intervalle dar. Der am Ende
zurückgebene Wert H unterscheidet sich etwas vom optimalen Wert Hopt, der
beim Aufruf mit ’strict’ zurückgegeben wird.

X = (x1,i, x2,i)m×2 und f = (f1, . . . , fm)T enthalten die Daten und H und n bestimmen die
Gitterweite h = 1/H bzw. den Approximationsgrad n. ScatteredData.SplineApproximation.
make führt eigentlich nur zwei Zeilen aus:

Bei der ersten Zeile

Y = ScatteredData.SplineApproximation.gen_grid_data(X, f, H, n)

handelt es sich um den ersten Schritt in Algorithmus 3.11, die Generierung der Gitterda-
ten durch lokale Polynom-Approximation. Zuerst werden dabei die Daten in die Gitterzellen
sortiert, das heiÿt, für jeden Datenpunkt (x1,i, x2,i) werden die Indizes des Gitterquadrats be-
rechnet, in dem sich der Punkt be�ndet. Bei diesem Vorgang werden auch diverse Validierun-
gen vorgenommen, zum Beispiel, ob sich alle Daten im Quadrat [−rh, 1+rh]2 be�nden und ob
jedes Gitterquadrat mindestens einen Datenpunkt enthält. Wie es schon in Algorithmus 3.11
beschrieben wird, wird anschlieÿend für jedes Gitterquadrat Polynom-Approximation mit den
relevanten Punkten durchgeführt. Dazu werden die möglichen Monome in diesen Punkten
ausgewertet und die Koef�zienten des bivariaten Polynoms mittels des Backslash-Operators
ermittelt.

In Abbildung 4.3b ist das Ergebnis für unser Beispiel example_halton abgebildet, zur
Veranschaulichung zusammen mit der Franke-Testfunktion. In Abbildung 4.3a sieht man, für
welche Gitterquadrate gemäÿ Algorithmus 3.11 lokale Polynom-Approximation durchgeführt
wurde: Auf jeder Seite bleibt ein Rand von r1 Gitterquadraten frei. Zugleich sind in dieser
Abbildung als Beispiel die Datenpunkte aus den (2r2 + 1)2-vielen Gitterquadraten hervorge-
hoben, die bei der lokalen Polynom-Approximation für das Gitterquadrat mit Index (0,−1)
relevant sind (zu den Indizes siehe Algorithmus 3.11).

Der zweite Schritt, der durch ScatteredData.SplineApproximation.make umgesetzt wird,
ist die Quasi-Interpolation, die mittels

p = ScatteredData.SplineApproximation.quasi_interp(Y, H, n)

durchgeführt wird. Die Funktion benötigt die Punkte Y aus dem vorherigen Schritt und
gibt die Spline-Approximation p als Struktur in einem Format zurück, das schon in der von
Jörg Hörner entwickelten Funktion ScatteredData.SplineUtil.spl_eval_matlab (ursprüng-
lich spl_eval) verwendet wird. Hauptsächlich besteht der Aufwand für ScatteredData.Spline
Approximation.quasi_interp natürlich darin, die Kontrollpunkte des Splines gemäÿ De�niti-
on 3.5 zu berechnen. Als univariate Gewichte werden die Gewichte von Beispiel 3.4 in Tabel-
le 3.1 verwendet, die für n = 1, . . . , 4 eingespeichert sind. Für n ≥ 5 werden sie dynamisch
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4.1 Aufbau und Aufruf der Programme
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Abbildung 4.3: Ergebnis nach der lokalen Polynom-Approximation
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Abbildung 4.4: Ergebnis der Spline-Approximation für example_halton

als Lösung des zugehörigen LGS (3.12) berechnet, wobei solch hohe Approximationsgrade in
der Praxis selbstverständlich nur selten eingesetzt werden.

Abbildung 4.4 (oder auch das Titelbild, bloÿ ohne Beschriftungen und aus einer anderen
Perspektive) zeigt die resultierende Spline-Approximation für das Beispiel mit den Halton-
Punkten und der Franke-Testfunktion. Man sieht, dass sich der De�nitionsbereich des Splines
auf [0, 1]2 erstreckt, genau so, wie es von uns beabsichtigt war.
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4 Implementierung

4.1.5 Evaluation und Visualisierung

Zur Evaluation des Splines steht die Funktion

e = ScatteredData.SplineUtil.spl_eval(p, t)

zur Verfügung. Bei aktivierter Option use_mex (siehe Abschnitt 4.1.1), die standardmäÿig
eingeschaltet ist, wird eine in C++ implementierte Version des Algorithmus von de Boor
(siehe Algorithmus 2.7) via MEX aufgerufen, die aufgrund Multithreading auf Mehrkern-
prozessoren einen deutlichen Geschwindigkeitsvorteil erbringt. Binaries (fertig kompilierte
Binärdateien) stehen für 64-Bit-Linux und 64-Bit-Windows zur Verfügung. Falls Multithrea-
ding nicht erwünscht oder die Multithreading-Bibliothek pthread.h nicht verfügbar ist, kann
in der Quellcode-Datei ganz oben die Zeile #define SPL_EVAL_MEX_MULTITHREADING auskom-
mentiert werden. Dort kann auch die Anzahl der Threads eingestellt werden.

Wenn die Option use_mex deaktiviert ist, dann wird die weiter oben erwähnte Routine
ScatteredData.SplineUtil.spl_eval_matlab von Jörg Hörner verwendet.

Die Visualisierung des entstehenden Splines geschieht durch

ScatteredData.SplineApproximation.visualize(X, f, H, n, p, Y).

Das Ergebnis sieht dann so ähnlich aus wie in Abbildung 4.4.

4.2 Beispiele aus der Wirklichkeit

Nach der Erklärung der Funktionalität des Programms folgen nun ein paar Illustrationen mit
realen Daten. Alle Darstellungen sind zur besseren Veranschaulichung stark überhöht.

Beispiel 4.1. Abbildung 4.5a zeigt 2590 Datenpunkte aus der Bathymetrie (Topogra�e von
Meeresböden) eines ca. 58 km × 36 km = 2088 km2 groÿen Gebiets vor der amerikanischen
Meeresküste von Texas, ungefähr 300 km südöstlich von Houston. Die Daten sind vom Stand
von 1994 und stammen vom Texas General Land Of�ce (GLO), wobei die Koordinaten auf
Daten der National Oceanic and Atmospheric Administration (NOAA) basieren. Sie wur-
den vom Internetprojekt Koordinates3 aufbereitet und stehen unter der Creative-Commons-
Attribution-3.0-Lizenz4. Die Daten wurden auf das Quadrat [−rh, 1+ rh]2 mit h = 1/22 und
n = 2 transformiert. Die Farbe in den Abbildungen 4.5a und 4.5b und die Werte der ver-
tikalen Achse in Abbildung 4.5b, die die resultierende biquadratische Spline-Approximation
zeigt, entsprechen der Tiefe unter dem Meeresspiegel in Metern. ♦

Beispiel 4.2. In Abbildung 4.6a sieht man 5802 Datenpunkte aus dem in der Literatur (sie-
he zum Beispiel [8, 19, 28]) bekannten, im Internet verfügbaren5 �Gletscher�-Datensatz vol87
von Richard Franke. Die Farbe bzw. vertikale Koordinate in Abbildung 4.6b gibt die Höhe
an, wahrscheinlich in Metern. Wie aus Abbildung 4.6a ersichtlich ist, liegen die Daten als Iso-
hypsen (Linien gleicher Höhe) im Abstand von 25m vor. Leider ist nicht mehr bekannt, z. B.
wo der Gletscher liegt, wann und wie die Auswertung erfolgte oder wie groÿ das betrachtete
Gebiet ist. Abbildung 4.6b zeigt die biquadratische Spline-Approximation mit h = 1/10 und
Höhenlinien im Abstand von 50m. ♦

3URL: http://koordinates.com/layer/786-texas-bathymetry-1994/
4URL: http://creativecommons.org/licenses/by/3.0/
5URL: http://personal.strath.ac.uk/oleg.davydov/Franke_test_data/README
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Abbildung 4.5: Bathymetrie eines Ausschnitts des Meeresbodens vor der Küste von Texas
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Abbildung 4.6: Höhenpunkte eines Gletschers

0 0.5 1

0

0.5

1

 

 

x
1

x
2

m
120

140

160

180

200

220

240

260

280

(a) Position der Datenpunkte in der Draufsicht

0
0.5

1

0
0.5

1

150

200

250

x
1

x
2

(b) Ergebnis der Spline-Approximation

Abbildung 4.7: Höhenpunkte aus dem George Denton Park nahe Wellington, Neuseeland
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Tabelle 4.1: maximaler bzw. mittlerer absoluter Fehler eh bzw. eh und maximaler bzw. mitt-
lerer relativer Fehler εh bzw. εh für obige Beispiele (gerundet)

Fehlerart Texas Gletscher Wellington

eh 2,84m 37,98m 3,58m
eh 0,42m 5,10m 0,36m

εh 3,67% 2,08% 2,58%
εh 2,09% 0,33% 0,19%

Beispiel 4.3. Als abschlieÿendes Beispiel sind in Abbildung 4.7a 19 293 Höhenpunkte aus
dem südwestlich an die neuseeländische Hauptstadt Wellington direkt angrenzenden Geor-

ge Denton Park zu sehen. Die Daten sind vom Stand von 2009 und wurden mittels Lidar
(light detection and ranging), einer dem Radar verwandten Methode zur Entfernungsbestim-
mung, und Fotogrammetrie ermittelt und durch den Stadtrat von Wellington (Wellington

City Council (WCC)) veröffentlicht. Der vorliegende Ausschnitt der Höhenlinien, die mit
nur 1m Abstand sehr genau sind, ist in der Realität ca. 335m× 445m ≈ 14,9 ha groÿ. Die-
se Daten wurden ebenfalls vom Internetprojekt Koordinates6 aufbereitet und stehen unter
der Creative-Commons-Attribution-3.0-Neuseeland-Lizenz7. Die Anzahl der Gitterquadrate
pro Dimension in [0, 1]2 wurde optimal gewählt (siehe Abschnitt 4.1.3) und ist mit H = 39
der guten Auflösung der Daten entsprechend hoch. In Abbildung 4.7b ist das Ergebnis der
biquadratischen Spline-Approximation mit Höhenlinien im Abstand von 20m sichtbar. ♦

4.3 Numerische Aspekte

4.3.1 Genauigkeit

In Tabelle 4.1 sieht man den maximalen und den durchschnittlichen absoluten und relativen
Fehler der Beispiele aus dem vorherigen Abschnitt, jeweils ausgewertet an allen zu approxi-
mierenden Punkten in [0, 1]2.

Man kann erkennen, dass eine kleinere Gitterweite bei verschiedenen Daten nicht un-
bedingt zu einem kleineren Fehler führt. Beispielsweise ist der Fehler beim Beispiel �Texas�
gröÿer wie beim Beispiel �Gletscher�, obwohl beim einen Beispiel H = 22 und beim ande-
ren H = 10 gewählt wurde. Dies hat einfach damit zu tun, wie fein die Datenpunkte im
Verhältnis zu den feinen Strukturen im Gelände aufgelöst sind. Das Beispiel �Texas� enthält
starke Geländeschwankungen, die aber nur durch wenige Punkte sichtbar sind. Der Verlauf
des Gletschers ist dagegen glatter und die Daten besitzen eine höhere Auflösung. Die Ge-
nauigkeit hängt also im Wesentlichen von der Komplexität der betrachteten Daten sowie von
deren Auflösung ab.

Insgesamt lässt sich jedoch sagen, dass die Genauigkeit des Verfahrens recht gut ist,
besonders, wenn wir die mittleren relativen Fehler für den Gletscher und für Wellington
betrachten.

6URL: http://koordinates.com/layer/1479-wellington-city-1m-contours-2009/
7URL: http://creativecommons.org/licenses/by/3.0/nz/
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Abbildung 4.8: doppeltlogarithmischer Plot des maximalen absoluten Fehlers

Tabelle 4.2: numerische Konvergenzraten (gerundet)

n Konvergenzraten

1 0,3684 1,3205 1,9166 1,7762 1,9832 1,9699 2,0031 1,9676
2 1,9937 2,3187 3,2701 3,4545 2,4765 3,1499 2,9578 3,0927
3 1,3131 1,9934 2,9270 3,7701 3,8943 3,9607 3,9940 4,0056
4 2,0779 2,5084 4,5660 5,4593 5,0032 5,3473 5,0443 4,4441

4.3.2 Konvergenz

Abbildung 4.8 zeigt den maximalen absoluten Fehler eh, der sich durch Ausführung von
ScatteredData.Halton.demo mit unterschiedlichen Gitterweiten h = 1/H und Approxima-
tionsgraden n ergibt (mit q = 2, fun = @ScatteredData.Halton.franke und sd = 0). Der
Fehler ist jeweils an den Halton-Punkten gemessen. In Tabelle 4.2 sieht man die entspre-
chenden numerischen Konvergenzraten, also die Zweierlogarithmen log2

eh
eh/2

der Quotienten

eines Fehlers mit dem Fehler bei halber Gitterweite. Sie liefern einen Anhaltspunkt für die
tatsächliche Konvergenzrate q, mit der eh ≤ chq gilt, und entsprechen den unterschiedlichen
Steigungen in der Abbildung.

Aus der Abbildung ist ersichtlich, dass das Verfahren für diese Daten tatsächlich kon-
vergiert. Tabelle 4.2 zeigt, dass sich die Konvergenzrate auf n + 1 einpendelt. Es handelt
sich dabei um die Ordnung, die von Satz 3.7 vorausgesagt wird. Natürlich berücksichtigt der
Satz den Fehler der lokalen Polynom-Approximation nicht, aber wenn die Punkte nicht allzu
ungünstig liegen und die Datenpunkte wie hier einer Funktion entsprechen, die lokal wie ein
Polynom �aussieht�, dann ist der Ein�uss des Fehlers der lokalen Polynom-Approximation
nicht sonderlich groÿ.

Dass bei sehr kleiner Gitterweite h der Fehler insbesondere für gröÿere Grade (hier bei
n = 4 zu sehen) wieder langsamer konvergiert, liegt daran, dass in diesem Bereich Rundungs-
fehler eine immer gröÿere Rolle spielen. In unserem Beispiel bei n = 4 und H = 210 muss
für jeden zu generierenden Gitterpunkt das Residuum eines LGS mit einer (50× 25)-Matrix
minimiert werden, deren Einträge aufgrund der hohen Monom-Potenzen sehr klein sind (bis
10−30). Dementsprechend gibt MATLAB viele Warnungen der Form �rank de�cient� aus.
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Tabelle 4.3: Ausführungszeiten (gerundet)

log2H 2 3 4 5 6 7 8 9 10

gen_grid_data 0,01 s 0,02 s 0,04 s 0,11 s 0,34 s 1,29 s 4,94 s 19,1 s 76,0 s
quasi_interp 0,00 s 0,00 s 0,01 s 0,02 s 0,06 s 0,15 s 0,55 s 1,85 s 6,64 s
spl_eval 0,01 s 0,01 s 0,03 s 0,07 s 0,22 s 0,97 s 4,59 s 24,2 s 144 s

insgesamt 0,02 s 0,03 s 0,08 s 0,19 s 0,62 s 2,41 s 10,1 s 45,2 s 227 s
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Abbildung 4.9: doppeltlogarithmischer Plot der Ausführungszeiten

4.3.3 Geschwindigkeit

Zum Abschluss des Kapitels wollen wir die Geschwindigkeit der vorliegenden Implementie-
rung betrachten. In Tabelle 4.3 und Abbildung 4.9 sieht man die Ausführungszeiten von
ScatteredData.Halton.demo mit Parametern wie eben, aufgeschlüsselt in die einzelnen Ab-
schnitte gen_grid_data, quasi_interp und spl_eval. Die letzte Funktion ist die Auswertung
der Spline-Approximation auf einem Gitter mit einem Fünftel der ursprünglichen Gitterweite
(z. B. für ein eventuelles Plotten).

Am meisten Zeit benötigen die Generierung der Gitterdaten und die Auswertung des
Splines. Wir können anhand der Zeiten erkennen, dass gen_grid_data in der Zeit O(H2)
arbeitet (Anzahl der Gitterpunkte steigt quadratisch). quasi_interp arbeitet ungefähr in
O(H1,85) (dem Algorithmus nach eigentlich in O(H2), aber MATLAB scheint den Code zu
beschleunigen), bei spl_eval ist die Zeitkomplexität aus den Daten nicht ersichtlich (eigent-
lich O(H2), evtl. verlangsamen Speicherallokationen die Ausführung).

An dieser Stelle sei angemerkt, dass die Implementierung mit Hilfe des MATLAB-
Pro�lers auf Geschwindigkeit optimiert wurde. Zum Beispiel konnte gen_grid_data durch
schnellere Bestimmung der für einen Gitterpunkt relevanten Datenpunkte um gleich mehrere
Gröÿenordnung beschleunigt werden. Einen weiteren Vorteil bietet die weiter oben erklärte
Spline-Auswertungs-Funktion spl_eval, die (die richtige Einstellung von use_mex vorausge-
setzt) mittels MEX eine parallelisierte Version des Algorithmus von de Boor in C++ aufruft.

Wir halten abschlieÿend fest, dass der Algorithmus für �normale� Gitterweiten h eine
durchaus ordentliche Geschwindigkeit besitzt.
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5 Anwendung bei Gewichtsfunktionen für
Finite Elemente

In diesem letzten Kapitel werden wir als Anwendung des Algorithmus die Approximation von
Gewichtsfunktionen für Finite Elemente betrachten. Die Natur und den Zweck dieser Ge-
wichtsfunktionen werden wir zunächst in Abschnitt 5.1 erklären. Anschlieÿend folgt, ähnlich
wie im vorherigen Kapitel, in Abschnitt 5.2 eine Beschreibung des Aufbaus und der Art des
Aufrufs der Programme auf beiliegender CD-ROM. Zum Schluss werden wir in Abschnitt 5.3
kurz die Genauigkeit und die Geschwindigkeit des Algorithmus untersuchen.

5.1 Motivation

5.1.1 Finite Elemente

Die Methode der Finiten Elemente (FE) ist eine Methode zur Lösung von sog. partiellen
Differentialgleichungen (DGL). Diese tauchen besonders häu�g in der Physik auf, kommen
aber auch in anderen Naturwissenschaften wie Chemie und Biologie vor. Ein Beispiel ist
die Poisson-Gleichung −∆u = f , mit der die Auslenkung einer am Rand fest eingespannten
Membran beschrieben werden kann, auf die eine bestimmte Kraft wirkt. Ein anderes Beispiel
ist die eindimensionale Wärmeleitungsgleichung ut = uxx, die als Verallgemeinerung der
Poisson-Gleichung die Temperaturverteilung in einem Stab beschreibt.

Für eine Einführung in die FE-Methode sei man auf [13] verwiesen. Einen Überblick
über die verschiedenen Methoden zur Lösung von partiellen Differentialgleichungen �ndet
man in [24].

Zur Motivation der Gewichtsfunktionen verwenden wir das Modellproblem aus [13], die
Poisson-Gleichung mit homogenen Dirichlet-Randbedingungen

−∆u = f in D, u = 0 auf ∂D, (5.1)

für ein Gebiet D ⊂ Rm. Durch Multiplikation mit einer sog. Testfunktion v mit v|∂D = 0
und partielle Integration erhält man die schwache Formulierung des Poisson-Problems:

∀v
∫

D
〈∇u,∇v〉 =

∫

D
fv, (5.2)

wobei die Testfunktionen v aus einem geeigneten Raum stammen, zum Beispiel aus einem
sog. Sobolev-Raum. Indem man einen geeigneten (endlich-dimensionalen) Teilraum Bh zur
Approximation verwendet, v durch vh ∈ Bh ersetzt und u durch eine Linearkombination

uh =
∑

k

ukbk (5.3)
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einer Basis {bk}k von Bh, bestehend aus den sog. Finiten Elementen, approximiert, erhält man
ein LGS, das nach den Koef�zienten uk gelöst werden kann (Ritz-Galerkin-Approximation).

Der Standard-FE-Ansatz besteht darin, das Gebiet D zu triangulieren und anschlieÿend
auf diesen Elementen lineare, quadratische oder kubische Ansatzfunktionen zu de�nieren.
Allerdings kann die Erzeugung der Triangulierung je nach Komplexität des Gebiets mehr
oder weniger dif�zil sein. Aus diesem Grund wäre es wünschenswert, eine Basis für Bh zu
verwenden, die auf einem regulären Gitter de�niert ist. Es erscheint zunächst naheliegend,
aufgrund der vielen guten Eigenschaften, von denen ein paar bereits in Kapitel 2 aufgezählt
wurden, eine B-Spline-Basis zu verwenden.

5.1.2 Gewichtsfunktionen

Leider bringen die rechteckigen Träger der Tensorprodukt-B-Splines mehrere Nachteile mit
sich (siehe [13]). Da es B-Splines gibt, deren Träger nur einen kleinen Schnitt mit dem Gebiet
besitzt, treten Stabilitätsprobleme auf, die mit der Einführung von gewichteten erweiteren
B-Splines (WEB-Splines) gelöst werden können (siehe [15]). Ein anderes Problem ist, dass
die B-Splines per se nicht die homogenen Randbedingungen erfüllen.

Eine Lösung des zweiten Problems besteht in der Multiplikation

Bk := wbk (5.4)

der Basis mit einer gemeinsamen Gewichtsfunktion w, die auf dem Rand verschwindet. In
[13] werden einige Voraussetzungen an Gewichtsfunktionen w der Ordnung γ ∈ N0 gestellt:
Danach sollte w(x) u. a. stetig auf D sein und für bestimmte Konstanten c1, c2 > 0

c1d(x) ≤ w(x) ≤ c2d(x), d(x) := dist(x,Γ)γ , (5.5)

für alle x ∈ D und eine feste Teilmenge Γ ⊂ ∂D erfüllen. Insbesondere ist w im Inneren des
Gebiets D positiv. Für die meisten Anwendungen ist γ = 1 (Standard-Gewichtsfunktion), in
diesem Fall verschwindet w(x) linear auf dem Rand.

Rvachev entwickelte ab den 1960er-Jahren die Methode der sog. R-Funktionen (Überblick
siehe [25]). Mehrere vorzeichenbehaftete Gewichtsfunktionen, die im Inneren von D positiv
und auÿerhalb vonD negativ sind, für verschiedene Gebiete können zu einer Gewichtsfunktion
verschmolzen werden, die einem Gebiet entspricht, das durch boolesche Operationen (wie
Komplement und Schnitt) aus den einzelnen Gebieten hervorgeht.

Für Gebiete, die durch eine beliebige Kurve begrenzt sind, muss die Gewichtsfunktion
anderweitig konstruiert werden. Die Abstandsfunktion selbst können wir in der Praxis nicht
verwenden, weil sie schon für einfachste Gebiete unschöne �Knicke� aufweist (siehe Abbil-
dung 5.1). Auÿerdem ist sie für komplexe Gebiete schwierig zu berechnen, theoretisch müsste
man für jeden Auswertungspunkt ein nichtlineares Minimierungsproblem lösen.

Eine Lösungsmöglichkeit ist folgende Methode, die in [13] beschrieben wird: In einem
kleinen Streifen nahe dem Rand des Gebiets, wo die Abstandsfunktion noch glatt ist, ver-
wenden wir die wahre Abstandsfunktion d(x). Auf dem übrigen Gebiet wird die konstante
Einsfunktion benutzt, wobei auf dem Randstreifen glatt überblendet wird. Das kann durch
folgende Formel bewerkstelligt werden:

w(x) := 1−max(0, 1− d(x)/δ)γ , d(x) := dist(x,Γ). (5.6)
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Abbildung 5.1: Abstandsfunktion für eine Ellipse mit dem nicht-differenzierbaren �Knick� in
der Mitte. Man erkennt ihn am leichtesten auf der x2-Achse x1 = 0: Dort gilt
trivialerweise d(x1, x2) = 1− |x2|.

Dabei beein�ussen die Parameter δ und γ die Breite des Streifens bzw. die Glattheit des
Übergangs auf dem inneren Rand des Streifens. δ sollte nach [13] kleiner als der minimale
Krümmungsradius und kleiner als die Hälfte der Breite von kleinen Kanälen gewählt werden
� zu klein sollte δ aber auch nicht sein, damit die Gradienten nicht zu groÿ werden.

Die so de�nierte Gewichtsfunktion hängt von der Abstandsfunktion d(x) ab. Um w(x)
schnell berechnen zu können, bietet es sich an, d(x) durch eine Spline-Approximation dh(x)
im Sinne von De�nition 3.10 und Algorithmus 3.11 zu ersetzen. Genau das verwirklicht
das in diesem Kapitel vorgestellte Programm für durch Spline-Kurven berandete Gebiete.
Programmiertechnisch können wir bei der Berechnung auf das im letzten Kapitel erklärte
Programm zurückgreifen, die wesentliche Schwierigkeit ist natürlich die Erzeugung der Daten.

5.2 Aufbau und Aufruf der Programme

5.2.1 Allgemeines

Für die Programme für die Approximation von Gewichtsfunktionen gilt sinngemäÿ, was in
Abschnitt 4.1.1 genannt wurde. Die für dieses Kapitel relevanten Programme be�nden sich
(gröÿtenteils) im Unterpaket ScatteredData.WeightFunctions. Genaue Hinweise zur Benut-
zung erhält man, indem man zum Beispiel help ScatteredData.WeightFunctions.gen_data

eintippt. Auÿerdem könnten die umfangreichen Kommentare im Quelltext der Programme
bei der Lösung von eventuellen Problemen hilfreich sein.

5.2.2 Beispiel und GUI

Wie in Abschnitt 5.1 erklärt, erstellt das Programm zu einem Gebiet, das durch eine ge-
schlossene Spline-Kurve p berandet ist, eine durch (5.6) de�nierte Approximation der Ge-
wichtsfunktion. �Geschlossen� heiÿt dabei, dass p stetig und T -periodisch für ein T > 0 ist,
also p(t + T ) = p(t) für alle t ∈ R. Auch rationale Spline-Kurven (eine Erweiterung von
Spline-Kurven) werden unterstützt. Bei diesen de�niert man zusätzlich zu den zweidimensio-
nalen Kontrollpunkten skalare Gewichte und bildet dann den Quotienten aus dem Spline mit
gewichteten Kontrollpunkten und dem Spline, der nur die Gewichte als Koef�zienten besitzt.
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Abbildung 5.2: Rand des Testgebiets in example_weight_function

Sie ermöglichen eine gröÿere Gestaltungsfreiheit als nur mit Spline-Kurven: Zum Beispiel
können alle Kegelschnitte (bspw. Kreise) durch quadratische, rationale Spline-Kurven exakt
dargestellt werden, was mit herkömmlichen Spline-Kurven nicht möglich ist (siehe [14]).

Das Beispiel, anhand dessen die Funktionsweise der Programme im Folgenden erläu-
tert wird, wird durch das Programm example_weight_function berechnet. Die verwendete
rationale Spline-Kurve vom Grad 3 besitzt sieben unterschiedliche Kontrollpunkte und ist
zusammen mit dem Kontrollpolygon (grau) in Abbildung 5.2 dargestellt.

Gleichwohl wäre es ziemlich mühsam, sich die Kontrollpunkte nur im Texteditor zu
überlegen � besser wäre es, über eine gra�sche Ober�äche die Spline-Kurve mit der Maus zu
zeichnen und durch einen Knopf direkt das Ergebnis zu sehen. Ebendas bewerkstelligt

ScatteredData.WeightFunctions.demo().

Beim Aufruf dieser gra�schen Benutzerober�äche (GUI) erscheinen drei Gra�kfenster. Im ers-
ten Fenster kann man, wie in Abschnitt 5.2.3 erklärt, den Spline-Rand mit der Maus zeichnen.
Das zweite Fenster besitzt auf der rechten Seite einige Schalter, mit denen die Gitterweite
H, der Approximationsgrad n sowie die Parameter δ und γ aus Gleichung (5.6) eingestellt
werden können. Auf der linken Seite ist der gezeichnete Rand in fett sichtbar, zusammen
mit dem kleinsten Krümmungskreis, zugehörigem Krümmungsradius sowie mit dem Rand
des Streifens mit Breite δ als gestrichelte Linie, damit δ korrekt eingestellt werden kann �
ähnlich wie in Abbildung 5.2 (nur ohne Kontrollpolygon). Bei einem Klick auf �Calculate�
erscheint die Spline-Approximation von w aus (5.6) im dritten Fenster. Mit dem Knopf unten
in diesem Fenster kann zwischen der Approximation und den Rohdaten gewechselt werden.

Beendet wird das Programm mit einem Klick auf die entsprechende Taste im zweiten
Fenster oder mit dem Schlieÿen eines der Fenster (dann werden alle Fenster geschlossen).

5.2.3 Erstellung des Spline-Rands

Der erste Schritt, der zur Erzeugung der Approximation einer Gewichtsfunktion nötig ist,
ist natürlich die Erstellung des Spline-Rands. Entweder man macht dies per Hand direkt im
Code (wie in example_weight_function) oder man benutzt die von Jörg Hörner zur Verfügung
gestellte gra�sche Funktion
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ScatteredData.SplinePlotter.splineplotter(),

die auch von ScatteredData.WeightFunctions.demo verwendet wird. Sie speichert den Spline
in einer globalen Variable namens SP_Data, wobei sich das Format von der im übrigen
Programmpaket von ScatteredData verwendeten Struktur aus ScatteredData.SplineUtil.

spl_eval_matlab (siehe Abschnitt 4.1.4) etwas unterscheidet. Die Umrechnung in dieses For-
mat erfolgt durch

s = ScatteredData.SplinePlotter.convert_sp_data(SP_Data).

Die Bedienung von splineplotter gestaltet sich beinahe von selbst: Mit einem Linksklick
in den leeren Bereich setzt man Kontrollpunkte (in Schwarz). Per Rechtsklick kann ein beste-
hender Kontrollpunkt verschoben werden. Kontrollpunkte lassen sich mit der entsprechenden
Schalt�äche am unteren Rand wieder löschen. Der Grad lässt sich mit dem Schieberegler
daneben einstellen. Um die anfangs uniformen Knoten zu verändern, kann man mit der rech-
ten Maustaste die Striche unter der Spline-Kurve verschieben. Mit der mittleren Maustaste
können die magentafarbenen Quadrate verschoben werden, die die Gewichte der rationalen
Spline-Kurve repräsentieren. Die Verschiebung zweier Quadrate zu einem Kontrollpunkt hin
erhöht sein Gewicht und �zieht� somit die Kurve in Richtung des Punktes.

Für unsere Anwendung ist es notwendig, dass die Spline-Kurve durch Betätigung des
entsprechenden Schalters geschlossen wird. Auÿerdem sind die Kontrollpunkte unbedingt im
mathematisch positiven Sinne (gegen den Uhrzeigersinn) zu setzen, weil sonst die berechneten
Einheitsnormalen in die falsche Richtung zeigen.

5.2.4 Erzeugung der unregelmäßig verteilten Daten

Die Generierung der unregelmäÿig verteilten Daten, die auf der Abstandsfunktion basieren
und als Grundlage für die Spline-Approximation dienen, erfolgt mit

[X, f] = ScatteredData.WeightFunctions.gen_data(sc, H, n),

wobei sc die Spline-Kurve als Struktur (wie von convert_sp_data zurückgegeben) bezeichnet,
die sich innerhalb von [0, 1]2 be�ndet.

Um die Idee der Datenerzeugung zu erklären, nehmen wir an, dass der geschlossene
Spline-Rand des Gebiets D eine Jordan-Kurve parametrisiert durch p : [0, 1] → [0, 1]2 sei,
also p stetig mit p injektiv bis auf p(0) = p(1). Wir unterteilen nun das Parameterintervall
[0, 1] in m + 1 (der Einfachheit halber) äquidistante Punkte und �schieÿen� von pk := p(tk)
mit tk := k/m orthogonal zu p′k := p′(tk) auf Geraden in das Innere von D und in das
Komplement von D (k = 0, . . . ,m). Der Abstand zum Rand d(x) ist nämlich auf einem
hinreichend kleinen Teilstück einer Geraden (ausgehend vom Randpunkt pk) bekannt und
muss nicht berechnet werden: Wenn wir nicht zu weit schieÿen (d. h. |t| genügend klein)
und nk die Einheitsnormale im Punkt pk nach innen bezeichnet, dann ist d(pk + tnk) = t
(Notation wie in (5.6)). Indem wir auf den Geraden äquidistante Punkte wählen, erhalten
wir die benötigten unregelmäÿigen Daten der Abstandsfunktion.

Abbildung 5.3a illustriert die Idee beispielhaft für ein unrealistisch kleines m. Wie zu
sehen ist, hängt die optimale Schieÿweite (die in der Abbildung zu Demonstrationszwecken
überall gleich kurz ist) stark vom konkreten Punkt ab. In der Kurve oben links und oben
rechts, wo die Krümmung groÿ ist, kann nicht so weit nach innen geschossen werden wie im
unteren Bereich mit kleiner Krümmung.
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Abbildung 5.3: Generierung der Daten für das Testgebiet

Auÿerdem gilt es noch die Schwierigkeit zu lösen, die sich aus De�nition 3.10 ergibt: Für
jedes Gitterquadrat muss es mindestens einen Datenpunkt geben, der in diesem Gitterquadrat
liegt. Dazu wählen wir die äquidistanten Punkte auf den orthogonalen Geraden im Abstand
h/2, wobei h = 1/H die gegebene Gitterweite mit H ∈ N bezeichnet. Das reicht jedoch
noch nicht aus, denn wenn m zu klein gewählt ist, bleiben ebenfalls Gitterquadrate frei. Wie
in Abbildung 5.3b zu sehen ist, kann die Kurve in einer Umgebung eines Punktes, in dem
sie differenzierbar ist, näherungsweise mit konstanter Krümmung κk bzw. mit konstantem
Krümmungsradius rk := 1/κk betrachtet werden. Wenn wir bei groÿem m zwei Punkte
pk und pk+1 mit Abstand ∆pk auf der Kurve wählen, können wir auÿerdem die Ableitung
p′(t) als konstant ansehen, d. h. ∆pk ≈ ‖p′k‖ /m. m muss nun so groÿ gewählt werden, dass
die beiden vom Mittelpunkt des (gemeinsamen) Krümmungskreises ausgehenden Strahlen
höchstens um H voneinander entfernt sind. Dabei berechnet sich der maximale Abstand zum
Rand des Datengebiets als d1 :=

√
2(1 + 2rh) (mit r wie in De�nition 3.10).

Nach dem Strahlensatz sind die Strahlen am Rand also höchstens um

∆pk ·
(
d1
rk

+ 1

)
≈ ‖p

′
k‖ (d1κk + 1)

m
(5.7)

voneinander entfernt. Wenn dies kleiner als h sein soll (damit jedes Gitterquadrat �getroffen�
wird), erhalten wir

m >
∥∥p′k
∥∥ (d1κk + 1)H. (5.8)

Daher wählen wir mit κ(t) der Krümmung der Kurve für den Parameter t

m :=

⌈
max
t∈[0,1]

∥∥p′(t)
∥∥ (d1κ(t) + 1) ·H

⌉
(5.9)

als minimalesm. Eine weiter gehende Version des Programms würde die Punkte nicht äquidi-
stant wählen, sondern die �Punktdichte� auf dem Rand dynamisch durch eine ähnliche Formel
in Abhängigkeit von Ableitung und Krümmung berechnen.
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Abbildung 5.4: Ecke im Rand (fett, grau) eines Gebiets mit in das Gebiet zeigenden ortho-
gonalen Geraden in grau, Normalenvektoren und zusätzlichen Radien

Eine weitere Erschwernis ist die Tatsache, dass der Spline-Rand �Ecken� enthalten kann,
an denen die Kurve nicht stetig differenzierbar ist. Das ist insofern ein Problem, weil be-
stimmte Gitterquadrate aufgrund der Unstetigkeit der Ableitung dann nicht getroffen wer-
den. Abbildung 5.4 zeigt den Ausschnitt eines Gebiets, dessen Rand eine Ecke besitzt (der
Rand wird von rechts nach links durchlaufen). Wir erkennen, dass die zum Rand ortho-
gonalen Geraden den grau unterlegten Bereich zwischen dem links- und dem rechtsseitigen
Normalenvektor n−∗ bzw. n+∗ nicht erreichen. Um diese Schwierigkeit zu beheben, überlegen
wir uns, dass in einer Umgebung der Ecke p∗ = p(t∗) im grau unterlegten Bereich genau die
Punkte gleichen Abstand zu p∗ haben, die sich auf einem Kreisbogen mit Mittelpunkt p∗
be�nden. Daher können wir eine gewisse Anzahl an Radien ausgehend von p∗ in das Innere
des Gebiets schieÿen und dann genauso verfahren wie bei den orthogonalen Geraden. Diese
Funktionalität ist im Hilfsprogramm ScatteredData.SplineUtil.get_corner_circles unter-
gebracht, das von ScatteredData.WeightFunctions.gen_data automatisch bei allen nicht ste-
tig differenzierbaren Ecken aufgerufen wird. Es generiert eine gewisse Anzahl von Strahlen,
so dass wie oben am Ende jede Gitterzelle mindestens ein Datenpunkt enthält.

Die Funktion unterstützt auch nach auÿen zeigende Ecken, denn dieselben Überlegungen
können natürlich auch für diese durchgeführt werden. In diesem Fall ist die Abstandsfunktion
nicht glatt, denn dann gibt es zwangsläu�g einen �Knick� im Inneren des Gebiets bei der Hälfte
des Innenwinkels, egal wie klein δ in (5.6) gewählt wird. Im Fall von nach innen zeigenden
Ecken (wie bei obigem Beispiel) ist die Situation umgekehrt, dort be�ndet sich der Knick bei
den negativen Daten auÿerhalb des Gebiets.

Nachdem diese Schwierigkeiten beiseite geräumt wurden, wird die konkrete Datenerstel-
lung von ScatteredData.WeightFunctions.gen_data wie folgt durchgeführt:

(a) Zunächst werden die Gitterzellen für die gegebene Gitterweite h = 1/H mit H ∈ N in
äuÿere und innere Zellen sowie Randzellen unterteilt, je nachdem, ob die Gitterzellen
vollständig im Komplement von D oder in D selbst liegen (oder für Randzellen, ob
die Spline-Kurve ∂D durch das Innere der Gitterzelle läuft). Dazu wird eine deutlich
schnellere Version der MATLAB-Funktion inpolygon namens inpoly vom MATLAB

File Exchange benutzt1.

1URL: http://www.mathworks.com/matlabcentral/fileexchange/10391-fast-points-in-polygon-test
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Abbildung 5.5: Erzeugung der Daten für einen beispielhaften Ausschnitt des Testgebiets

(b) Jedem Gitterquadrat wird eine Zahl zugeordnet, wobei anfangs die Randzellen den
Wert 0, die inneren den Wert +∞ und die äuÿeren Zellen den Wert −∞ erhalten.

(c) Anschlieÿend schieÿt der Algorithmus auf allen Geraden (orthogonale Geraden und
Strahlen ausgehend von Ecken) um einen Schritt nach innen. Die Schrittweite beträgt
hierbei h/2. Auf allen neu erreichten Gitterzellen (die den Wert +∞ beinhalten) wird
die zugeordnete Zahl auf 1 gesetzt.

(d) Der vorherige Schritt wird wiederholt: Die Zahlen der neu erreichten Zellen werden
dann natürlich auf 2 gesetzt usw. Wenn eine äuÿere Zelle (mit dem Wert −∞) oder
eine Zelle, deren Wert im i-ten Schritt um mindestens drei kleiner ist als i, erreicht
wird, wird die entsprechende Gerade �deaktiviert�, das heiÿt, auf ihr wird nicht mehr
geschossen. Die Zahl der Geraden, auf denen geschossen wird, nimmt also monoton ab
� wenn sie null erreicht, sind die Daten für das Innere des Gebiets erzeugt.

(e) Die Schritte (c) und (d) werden nun sinngemäÿ nochmals durchgeführt, wobei jetzt
nach auÿen geschossen wird. Dabei erhalten die Zellen die Werte −1, −2 usw. und in
(d) muss u. a. �kleiner� durch �gröÿer� ersetzt werden.

Damit erhält man verteilte Daten der Abstandsfunktion, wobei die Höhe der inneren Daten-
punkte im i-ten Schritt auf i ·h/2 gesetzt wird (bei den äuÿeren Datenpunkten ist i ∈ Z\N0).

In Abbildung 5.5 ist die Durchführung des Algorithmus für einen Ausschnitt unseres
Testgebiets schrittweise dargestellt. Die Farbe der Gitterzellen gibt deren zugeordnete Zahl
an (siehe Legende rechts). Dunkelgraue Zellen besitzen den Wert −∞ und weiÿe Zellen den
Wert +∞. Die Kurven zeigen die in den unterschiedlichen Schritten erzeugten Datenpunkte.
Die Zahlen am unteren Rand sagen aus, in welchem Schritt die jeweiligen Daten generiert
wurden (der �0. Schritt� in Dunkelblau ist der Rand des Testgebiets). Im gezeigten Ausschnitt
werden erst im 7. Schritt Geraden �deaktiviert�, was man im mittleren Gitterquadrat an der
roten Kurve erkennen kann. Insgesamt werden für das Innere des Testgebiets 14 Schritte
durchgeführt, für das Komplement sind sogar weitere 26 Schritte nötig. Das komplette Er-
gebnis ist für H = 20 und n = 2 in Abbildung 5.6a zu sehen.
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Abbildung 5.6: Ergebnis der Datenerzeugung und Approximation der Gewichtsfunktion für
das Testgebiet

5.2.5 Evaluation und Visualisierung

Sobald die Daten erzeugt worden sind, wird zunächst Formel (5.6) auf die Daten durch

w = ScatteredData.WeightFunctions.apply(dist, delta, gamma)

angewendet, wobei diese Funktion nicht nur im Inneren des Gebiets ein Plateau der Höhe 1
erzeugt, sondern auch im Komplement des Abschlusses (mit der Höhe −1). Die so erhaltenen
Daten können dann wie in Abschnitt 4.1.4 beschrieben zur Spline-Approximation verwendet
werden. Der resultierende Spline kann anschlieÿend mit den in Abschnitt 4.1.5 erwähnten
Routinen ausgewertet werden.

Für die Visualisierung stehen zwei Funktionen bereit: Zum einen können die durch die
Funktion ScatteredData.WeightFunctions.gen_data erzeugten Daten durch

ScatteredData.WeightFunctions.visualize_data(X, f, H, n)

geplottet werden, zum anderen kann man die Gewichtsfunktion nach (5.6) mit

ScatteredData.WeightFunctions.visualize(H, p)

darstellen, wobei p die Spline-Approximation bezeichnet. Die sich ergebenden Plots für das
Testgebiet sind jeweils in den Abbildungen 5.6a und 5.6b sichtbar.

5.3 Numerische Aspekte

In Tabelle 5.1 sind in den ersten beiden Zeilen die absoluten Fehler (Maximum und Mittel-
wert) der Spline-Approximation zu w aus Formel (5.6) für das Testgebiet mit verschiedenem
H zu sehen. Die Approximation ist für die dargestellten Gitterweiten h = 1/H nicht son-
derlich gut, für H = 128 liegt der maximale absolute Fehler immer noch nicht unter einem
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Tabelle 5.1: maximaler bzw. mittlerer absoluter Fehler eh bzw. eh und Ausführungszeiten th
für das Testgebiet mit n = 2, δ = 0,07 und γ = 2 (gerundet)

log2H 2 3 4 5 6 7

eh 7,46 · 10−1 4,91 · 10−1 1,99 · 10−1 4,13 · 10−2 1,03 · 10−2 3,44 · 10−3

eh 2,88 · 10−1 1,61 · 10−1 4,82 · 10−2 6,76 · 10−3 8,58 · 10−4 1,11 · 10−4

th 0,086 s 0,085 s 0,11 s 0,13 s 0,20 s 0,48 s
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Abbildung 5.7: Zehnerlogarithmus des absoluten Fehlers für H = 32

Tausendstel. Das könnte auf die Gradienten von w zurückzuführen sein, die für kleines δ
(hier δ = 0,07) ziemlich hoch sind. Abbildung 5.7 zeigt den absoluten Fehler für H = 32.
Es ist zu erkennen, dass der Fehler in der Nähe des Rands und der �Kanten� (im Abstand
von δ im Gebiet bzw. auÿerhalb des Gebiets) besonders klein wird. Vor bzw. hinter die-
sen Kanten wird der Fehler noch einmal etwas gröÿer (aufgrund von Überschwingungen der
stückweisen Polynome). Kurioserweise ist der Fehler dort am gröÿten, wo der Rand einen
Tangentenvektor parallel zu einer der Koordinatenachsen besitzt, was womöglich etwas mit
der Tensorprodukt-Struktur des Spline-Raums zu tun hat.

Eine Betrachtung des relativen Fehlers ist für die Anwendung der Approximation von
Gewichtsfunktionen kaum sinnvoll, da die Spline-Approximation p nicht dieselbe Nullstellen-
menge wie die wahre Gewichtsfunktion w besitzt. Somit ist der relative Fehler, bei dem der
absolute Fehler |w(x1, x2)− p(x1, x2)| durch den Betrag |w(x1, x2)| des wahren Werts geteilt
wird, je nach Dichte der Auswertungspunkte beliebig hoch (in den Nullstellen (x1, x2) von w
mit p(x1, x2) 6= 0 sogar unendlich bzw. nicht de�niert).

In der untersten Zeile in Tabelle 5.1 sind der Vollständigkeit halber noch die Ausfüh-
rungszeiten von ScatteredData.WeightFunctions.gen_data aufgeführt, die ja für die Appro-
ximation auf die in Abschnitt 4.3.3 erwähnten Zeiten addiert werden müssen, aber für sich ei-
nigermaÿen moderat sind. Eine signi�kante Beschleunigung könnte man wahrscheinlich durch
Vektorisierung, Parallelisierung oder Implementierung in C++ erhalten.
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A Inhalt der CD-ROM

Die als Anhang zu dieser Arbeit beigelegte CD-ROM enthält neben der MATLAB-Implemen-
tierung der Algorithmen aus Kapitel 4 und 5 im Ordner matlab auch eine elektronische Version
der Arbeit als PDF-Datei im Ordner pdf. Die in C++ geschriebene MEX-Implementierung
spl_eval_mex des Algorithmus von de Boor (siehe Abschnitt 4.1.5) be�ndet sich in Form von
zwei Eclipse-CDT1-Projekten im Ordner c++. Die Eclipse-Projekte unterscheiden sich nur
in der Architektur (x64-Linux und x64-Windows), beinhalten aber dieselbe Quellcode-Datei
spl_eval_mex.cpp. Soll der Code kompiliert werden, müssen wahrscheinlich einige Pfade in
den Einstellungen von Eclipse verändert werden.

Die DLLs im Ordner matlab/+ScatteredData/+SplineUtil werden nur benötigt, falls die
Windows-MEX-Version des Algorithmus aufgerufen wird (ansonsten kann man sie löschen).
Dabei handelt es sich um MATLAB-DLLs und DLLs aus MinGW-w642.

Es folgt eine vollständige Liste der auf der CD-ROM vorhandenen Dateien, strukturiert
nach Verzeichnissen (diese sind in fett gedruckt):

Wurzelverzeichnis

c++................................................................C++-Implementierungen
linux

spl_eval_mex

.cproject

.project

Release

makefile

objects.mk

sources.mk

spl_eval_mex.mexa64

src

spl_eval_mex.d

spl_eval_mex.o

subdir.mk

src

spl_eval_mex.cpp

windows

spl_eval_mex

.cproject

.project

Release

makefile

1URL: http://www.eclipse.org/cdt/
2URL: http://sourceforge.net/projects/mingw-w64/
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objects.mk

sources.mk

spl_eval_mex.mexw64

src

spl_eval_mex.d

spl_eval_mex.o

subdir.mk

include

pthread.h

pthreads_win32_config.h

sched.h

semaphore.h

lib

pthreadGC2-w64.dll

src

spl_eval_mex.cpp

matlab................................................................MATLAB-Programme
example_halton.m

example_weight_function.m

+ScatteredData

Contents.m

change_settings.m

print_settings.m

+Halton

Contents.m

demo.m

franke.m

gen_points.m

+SplineApproximation

Contents.m

gen_grid_data.m

get_opt_grid.m

make.m

quasi_interp.m

sort_data.m

visualize.m

+SplinePlotter

Contents.m

convert_sp_data.m

rspl_val.m

spl_val.m

splineplotter.m

+SplineUtil

Contents.m

get_corner_circles.m

get_corners.m

viii



libgcc_s_sjlj-1.dll

libmex.dll

libmx.dll

libstdc++-6.dll

pthreadGC2-w64.dll

spl_deriv_eval.m

spl_diff.m

spl_eval.m

spl_eval_matlab.m

spl_eval_mex.mexa64

spl_eval_mex.mexw64

+Util

Contents.m

curvature.m

inpoly.m

input_default.m

print_status.m

+WeightFunctions

Contents.m

apply.m

demo.m

gen_data.m

visualize.m

visualize_data.m

pdf...............................................................................PDF-Dateien
spline-approximation_unregelmaessig_verteilter_daten.pdf
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An As-Short-As-Possible Introduction to the Least Squares, Weighted Least
Squares and Moving Least Squares Methods for Scattered Data

Approximation and Interpolation

Andrew Nealen
Discrete Geometric Modeling Group

TU Darmstadt

Abstract

In this introduction to the Least Squares (LS), Weighted Least
Squares (WLS) and Moving Least Squares (MLS) methods, we
briefly describe and derive the linear systems of equations for the
global least squares, and the weighted, local least squares approxi-
mation of function values from scattered data. By scattered data we
mean an arbitrary set of points in Rd which carry scalar quantities
(i.e. a scalar field in d dimensional parameter space). In contrast
to the global nature of the least-squares fit, the weighted, local ap-
proximation is computed either at discrete points, or continuously
over the parameter domain, resulting in the global WLS or MLS
approximation respectively.

Keywords: Data Approximation, Least Squares (LS), Weighted
Least Squares (WLS), Moving Least Squares (MLS), Linear Sys-
tem of Equations, Polynomial Basis

1 LS Approximation

Problem Formulation. Given N points located at positions xi in
Rd where i∈ [1 . . .N]. We wish to obtain a globally defined function
f (x) that approximates the given scalar values fi at points xi in the
least-squares sense with the error functional JLS = ∑i ‖ f (xi)− fi‖2.
Thus, we pose the following minimization problem

min
f∈∏d

m

∑
i
‖ f (xi)− fi‖2, (1)

where f is taken from ∏d
m, the space of polynomials of total degree

m in d spatial dimensions, and can be written as

f (x) = b(x)T c = b(x) · c, (2)

where b(x) = [b1(x), . . . ,bk(x)]T is the polynomial basis vector
and c = [c1, . . . ,ck]

T is the vector of unknown coefficients, which
we wish to minimize in (1). Here some examples for polynomial
bases: (a) for m = 2 and d = 2, b(x) = [1,x,y,x2,xy,y2]T , (b) for
a linear fit in R3 (m = 1, d = 3), b(x) = [1,x,y,z]T , and (c) for
fitting a constant in arbitrary dimensions, b(x) = [1]. In general,
the number k of elements in b(x) (and therefore in c) is given by
k = (d+m)!

m!d! , see [Levin 1998; Fries and Matthies 2003].

Solution. We can minimize (1) by setting the partial derivatives
of the error functional JLS to zero, i.e. ∇JLS = 0 where ∇ =
[∂/∂c1, . . . ,∂/∂ck]

T , which is a necessary condition for a mini-
mum. By taking partial derivatives with respect to the unknown co-
efficients c1, . . . ,ck, we obtain a linear system of equations (LSE)

from which we can compute c

∂JLS/∂c1 = 0 : ∑
i

2b1(xi)[b(xi)
T c− fi] = 0

∂JLS/∂c2 = 0 : ∑
i

2b2(xi)[b(xi)
T c− fi] = 0

...
∂JLS/∂ck = 0 : ∑

i
2bk(xi)[b(xi)

T c− fi] = 0.

In matrix-vector notation, this can be written as

∑
i

2b(xi)[b(xi)
T c− fi] =

2∑
i
[b(xi)b(xi)

T c−b(xi) fi] = 0.

Dividing by the constant and rearranging yields the following LSE

∑
i

b(xi)b(xi)
T c = ∑

i
b(xi) fi, (3)

which is solved as

c = [∑
i

b(xi)b(xi)
T ]
−1 ∑

i
b(xi) fi. (4)

If the square matrix ALS = ∑i b(xi)b(xi)
T is nonsingular (i.e.

det(ALS) 6= 0), substituting Eqn. (4) into Eqn. (2) provides the
fit function f (x). For small k (k < 5), the matrix inversion
in Eqn. (4) can be carried out explicitly, otherwise numerical
methods are the preferred tool, see [Press et al. 1992] 1. In our
applications, we often use the Template Numerical Toolkit (TNT) 2.

Example. Say our data points live in R2 and we wish to fit a
quadratic, bivariate polynomial, i.e. d = 2, m = 2 and therefore
b(x) = [1,x,y,x2,xy,y2]T (see above), then the resulting LSE looks
like this

∑
i




1 xi yi x2
i xiyi y2

i
xi x2

i xiyi x3
i x2

i yi xiy2
i

yi xiyi y2
i x2

i yi xiy2
i y3

i
x2

i x3
i x2

i yi x4
i x3

i yi x2
i y2

i
xiyi x2

i yi xiy2
i x3

i yi x2
i y2

i xiy3
i

y2
i xiy2

i y3
i x2

i y2
i xiy3

i y4
i







c1
c2
c3
c4
c5
c6



= ∑

i




1
xi
yi
x2

i
xiyi
y2

i




fi.

Consider the set of nine 2D points Pi ={(1,1), (1,-1), (-1,1), (-1,-1),
(0,0), (1,0), (-1,0), (0,1), (0,-1)} with two sets of associated func-
tion values f 1

i ={1.0, -0.5, 1.0, 1.0, -1.0, 0.0, 0.0, 0.0, 0.0} and
f 2
i ={1.0, -1.0, 0.0, 0.0, 1.0, 0.0, -1.0, -1.0, 1.0}. Figure 1 shows

the fit functions for the scalar fields f 1
i and f 2

i .

1at the time of writing this report, [Press et al. 1992] was available online
in pdf format through http://www.nr.com/

2http://math.nist.gov/tnt/
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Figure 1: Fitting bivariate, quadratic polynomials to 2D scalar
fields: the top row shows the two sets of nine data points (see text),
the bottom row shows the least squares fit function. The coefficient
vectors [c1, . . . ,c6]

T are [−0.834,−0.25,0.75,0.25,0.375,0.75]T

(left column) and [0.334,0.167,0.0,−0.5,0.5,0.0]T .

Method of Normal Equations. For a different but also very com-
mon notation, note that the solution for c in Eqn. (3) solves the
following (generally over-constrained) LSE (Bc = f) in the least-
squares sense




bT (x1)
...

bT (xN)


c =




f1
...

fN


 , (5)

using the method of normal equations

BT Bc = BT f
c = (BT B)−1BT f. (6)

Please verify that Eqns. (4) and (6) are identical.

2 WLS Approximation

Problem Formulation. In the weighted least squares formulation,
we use the error functional JWLS = ∑i θ(‖x−xi‖) ‖ f (xi)− fi‖2 for
a fixed point x ∈ Rd , which we minimize

min
f∈∏d

m

∑
i

θ(‖x−xi‖) ‖ f (xi)− fi‖2, (7)

similar to (1), only that now the error is weighted by θ(d) where
di are the Euclidian distances between x and the positions of data
points xi.

The unknown coefficients we wish to obtain from the solution
to (7) are weighted by distance to x and therefore a function of x.
Thus, the local, weighted least squares approximation in x is written
as

fx(x) = b(x)T c(x) = b(x) · c(x), (8)

and only defined locally within a distance R around x, i.e.
‖x−x‖< R.

Weighting Function. Many choices for the weighting function θ
have been proposed in the literature, such as a Gaussian

θ(d) = e−
d2

h2 , (9)

where h is a spacing parameter which can be used to smooth out
small features in the data, see [Levin 2003; Alexa et al. 2003].
Another popular weighting function with compact support is the
Wendland function [Wendland 1995]

θ(d) = (1−d/h)4(4d/h+1). (10)

This function is well defined on the interval d ∈ [0,h] and further-
more, θ(0) = 1, θ(h) = 0, θ ′(h) = 0 and θ ′′(h) = 0 (C2 continuity).
Several authors suggest using weighting functions of the form

θ(d) =
1

d2 + ε2 . (11)

Note that setting the parameter ε to zero results in a singularity at
d = 0, which forces the MLS fit function to interpolate the data, as
we will see later.

Solution. Analogous to Section 1, we take partial derivatives of the
error functional JWLS with respect to the unknown coefficients c(x)

∑
i

θ(di) 2b(xi)[b(xi)
T c(x)− fi] =

2∑
i
[θ(di)b(xi)b(xi)

T c(x)−θ(di)b(xi) fi] = 0,

where di = ‖x− xi‖. We divide by the constant and rearrange to
obtain

∑
i

θ(di)b(xi)b(xi)
T c(x) = ∑

i
θ(di)b(xi) fi, (12)

and solve for the coefficients

c(x) = [∑
i

θ(di)b(xi)b(xi)
T ]
−1 ∑

i
θ(di)b(xi) fi. (13)

Obviously, the only difference between Eqns. (4) and (13) are
the weighting terms. Note again though, that whereas the coef-
ficients c in Eqn. (4) are global, the coefficients c(x) are local
and need to be recomputed for every x. If the square matrix
AWLS = ∑i θ(di)b(xi)b(xi)

T (often termed the Moment Matrix)
is nonsingular (i.e. det(AWLS) 6= 0), substituting Eqn. (13) into
Eqn. (8) provides the fit function fx(x).

Global Approximation using a Partition of Unity (PU). By fit-
ting polynomials at j ∈ [1 . . .n] discrete, fixed points x j in the pa-
rameter domain Ω, we can assemble a global approximation to our
data by ensuring that every point in Ω is covered by at least one
approximating polynomial, i.e. the support of the weight functions
θ j centered at the points x j covers Ω

Ω =
⋃

j
supp(θ j).

Proper weighting of these approximations can be achieved by con-
structing a Partition of Unity (PU) from the θ j [Shepard 1968]

ϕ j(x) =
θ j(x)

∑n
k=1 θk(x)

, (14)

where ∑ j ϕ j(x) ≡ 1 everywhere in Ω. The global approximation
then becomes

f (x) = ∑
j

ϕ j(x) b(x)T c(x j). (15)



A Numerical Issue. To avoid numerical instabilities due to possi-
bly large numbers in AWLS it can be beneficial to perform the fitting
procedure in a local coordinate system relative to x, i.e. to shift x
into the origin. We therefore rewrite the local fit function in x as

fx(x) = b(x−x)T c(x) = b(x−x) · c(x), (16)

the associated coefficients as

c(x) = [∑
i

θ(di)b(xi−x)b(xi−x)T ]
−1 ∑

i
θ(di)b(xi−x) fi, (17)

and the global approximation as

f (x) = ∑
j

ϕ j(x) b(x−x j)
T c(x j). (18)

3 MLS Approximation and Interpolation

Method. The MLS method was proposed by Lancaster and Salka-
uskas [Lancaster and Salkauskas 1981] for smoothing and interpo-
lating data. The idea is to start with a weighted least squares for-
mulation for an arbitrary fixed point in Rd , see Section 2, and then
move this point over the entire parameter domain, where a weighted
least squares fit is computed and evaluated for each point individu-
ally. It can be shown that the global function f (x), obtained from a
set of local functions

f (x) = fx(x), min
fx∈∏d

m

∑
i

θ(‖x−xi‖) ‖ fx(xi)− fi‖2 (19)

is continuously differentiable if and only if the weighting function
is continuously differentiable, see Levins work [Levin 1998; Levin
2003].

So instead of constructing the global approximation using
Eqn. (15), we use Eqns. (8) and (13) (or (16) and (17)) and con-
struct and evaluate a local polynomial fit continuously over the en-
tire domain Ω, resulting in the MLS fit function. As previously
hinted at, using (11) as the weighting function with a very small ε
assigns weights close to infinity near the input data points, forcing
the MLS fit function to interpolate the prescribed function values in
these points. Therefore, by varying ε we can directly influence the
approximatimg/interpolating nature of the MLS fit function.

4 Applications

Least Squares, Weighted Least Squares and Moving Least Squares,
have become widespread and very powerful tools in Computer
Graphics. They have been successfully applied to surface recon-
struction from points [Alexa et al. 2003] and other point set surface
definitions [Amenta and Kil 2004], interpolating and approximating
implicit surfaces [Shen et al. 2004], simulating [Belytschko et al.
1996] and animating [Müller et al. 2004] elastoplastic materials,
Partition of Unity implicits [Ohtake et al. 2003], and many other
research areas.

In [Alexa et al. 2003] a point-set, possibly acquired from a 3D
scanning device and therefore noisy, is replaced by a representa-
tion point set derived from the MLS surface defined by the input
point-set. This is achieved by down-sampling (i.e. iteratively re-
moving points which have little contribution to the shape of the
surface) or up-sampling (i.e. adding points and projecting them to
the MLS surface where point-density is low). The projection proce-
dure has recently been augmented and further analyzed in the work
of Amenta and Kil [Amenta and Kil 2004]. Shen et. al [Shen et al.
2004] use an MLS formulation to derive implicit functions from
polygon soup. Instead of solely using value constraints at points
(as shown in this report) they also add value constraints integrated
over polygons and normal constraints.
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