Universitat Stuttgart Sommersemester 2012
Fakultdt 8: Mathematik und Physik
Fachbereich Mathematik, IMNG

Bachelorarbeit

Spline-Approximation unregelmaflig
verteilter Daten

Julian Valentin

JR
fn
o il
”'I':Q
2

Betreuer: Prof. Dr. Klaus Héllig
Datum der Abgabe: 14. August 2012

Inhaltsverzeichnis

Vorwort
1 Einleitung

2 Bivariate Splines
2.1 Bivariate Polynome
2.2 B-Splineso e
2.3 Spline-Funktionen L

3 Quasi-Interpolation und lokale Polynom-Approximation
3.1 Univariate und bivariate Quasi-Interpolation
3.1.1 Quasi-Interpolation in einer Variablen
3.1.2 Wahl der linearen Funktionale
3.1.3 Bivariate Quasi-Interpolation
3.2 Bivariate Polynom-Approximation
3.3 Spline-Approximation durch Quasi-Interpolation
3.3.1 Vorbemerkungen o
3.3.2 Formulierung des Approximationsproblems und der Losung

4 Implementierung
4.1 Aufbau und Aufruf der Programme,
4.1.1 Allgemeines
4.1.2 Beispieldaten L
4.1.3 Ermittlung der Gitterweite L.
4.1.4 Berechnung der Spline-Approximation
4.1.5 Evaluation und Visualisierung
4.2 Beispiele aus der Wirklichkeit 00000
4.3 Numerische Aspekte
4.3.1 Genauigkeit
4.3.2 Konvergenz
4.3.3 Geschwindigkeito

5 Anwendung bei Gewichtsfunktionen fiir Finite Elemente
0.1 Motivatlon oL e
5.1.1 Finite Elemente
5.1.2 Gewichtsfunktionen Lo
5.2 Aufbau und Aufruf der Programme 0L
5.2.1 Allgemeines
5.2.2 Beispiel und GUI

11
13
16
18
18
19

21
21
21
22
23
23
26
26
28
28
29
30

31
31
31
32
33
33
33

1il

5.2.3 Erstellung des Spline-Rands 0oL 34

5.2.4 FErzeugung der unregelmifig verteilten Daten 35

5.2.5 Evaluation und Visualisierungo oL 39

5.3 Numerische Aspekte 39

A Inhalt der CD-ROM vii
Li ichni i

v

Vorwort

Als Erstes bedanke ich mich bei meinem Betreuer, Professor Dr. Klaus Hollig, fiir die Unter-
stiitzung in der Schaffensphase dieser Arbeit. Zusdtzlich danke ich ihm fiir die Vorlesungen,
die mir stets gezeigt haben, was fiir eine schéne Wissenschaft Mathematik sein kann.

Auferdem geht ein Dankeschén an Herrn Jérg Horner, der mir seine Funktion fiir die
Spline-Auswertung spl_eval und eine Version des sehr intuitiv bedienbaren splineplotters
hat zukommen lassen.

Ein Dank geht auch an die vielen Menschen, die zum Beispiel mit der Entwicklung von
WTEX-Paketen (und natiirlich ¥ TEX selbst) die Erstellung einer dsthetischen Bachelorarbeit
von der technischen Seite her fast schon zum Kinderspiel gemacht haben.

Last but not least bedanke ich mich bei meiner Familie fiir den Beistand und die Riick-
sicht, nicht nur wiahrend der letzten paar Monate.

Bietigheim-Bissingen, im August 2012
Julian Valentin

1 Einleitung

Nehmen wir an, wir wollen ein dreidimensionales Geldndemodell der uns umgebenden Gegend
erstellen, so wie es zum Beispiel im bekannten Computerprogramm Google FEarth zu sehen
ist. Wenn wir nicht gerade einen Satelliten o. A. zur Verfiigung haben, kénnen wir bspw.
an verschiedenen, einzelnen Punkten der Erdoberfliche die Hohe iiber dem Meeresspiegel
messen, etwa mittels eines GPS-Empfingers. Da wir aus Griinden des Aufwands nicht an
beliebig vielen Punkten (die beliebig dicht beieinanderliegen) messen konnen, miissen wir die
sich ergebenden, diskreten Punkte irgendwie zu einer kontinuierlichen Fliche ,yerbinden®.

Genau das ist das Problem bei der Approximation unregelméfig verteilter Daten (engl.
scattered data): Es seien m paarweise verschiedene Punkte z; € RY mit zugehdrigen Daten
fi (i = 1,...,m) gegeben (in unserem Beispiel wire d = 2). Gesucht ist eine bivariate,
reellwertige Funktion f aus einem bestimmten Funktionenraum, so dass f die gegebenen
Daten in einem gewissen Sinne ,bestmdglich® approximiert. Ein dhnliches Problem ist die
Interpolation, bei der sogar f(x;) = f; fiir i = 1,...,m gelten soll.

Die Daten heifien ,unregelméfig verteilt, weil wir im Allgemeinen nicht annehmen kén-
nen, dass diese auf einem reguléren Gitter liegen. Im obigen Beispiel kénnen wir evtl. nicht
immer genau an Punkten eines Gitters messen, weil einige Stellen unerreichbar sind (etwa in
Gebauden). Liegen die Daten auf einem regelméfigen Gitter, so ist die Approximation erheb-
lich einfacher, was man schon daran erkennt, dass der in dieser Arbeit vorgestellte Algorith-
mus hauptsichlich damit beschiftigt ist, durch lokale Polynom-Approximation Gitterdaten
aus den unregelméRig verteilten Daten zu generieren.

Die Erstellung von sog. DEM (digitalen Geldndemodellen, engl. digital elevation models)
ist nicht die einzige Anwendung der Approximation unregelméfig verteilter Daten. In [1]
werden weitere Anwendungsmoglichkeiten aufgezihlt:

e Das Gravitationsfeld der Erde ist zwar schon an vielen verschiedenen Punkten der Erde
exakt vermessen worden, aber es gibt kein allgemeines physikalisches Modell, das fiir
die meisten Anwendungen hinreichend genau wére.

e Line notwendige Farbkorrektur bei der Verarbeitung von Farbfilmen kann fiir bestimm-
te Testfarben angemessen bestimmt werden. Farbkorrekturen fiir die anderen Farben
konnen dann durch Interpolation errechnet werden.

e Bei der Ol-Prospektion (Lagerstitten-Erkundung) sind viele Daten nahe von Test-
Bohrléchern vorhanden. Sonst sind die Daten sehr diinn und damit ziemlich unre-
gelmifig verteilt.

Unregelmaifig verteilte Daten treten im Prinzip iiberall dort auf, wo eine Messgrdfse nur an
unregelmifigen, diskreten Punkten genau bestimmt werden kann, etwa weil sie wegen ihrer
Kompliziertheit allgemein nicht zu beschreiben ist (oder weil man eine exakte Beschreibung
gar nicht kennt). Wertet man eine Approximation von unregelmifig verteilten Daten an

1 Einleitung

Abbildung 1.1: Bilddeformation mit MLS (Quelle: [22])

denselben Datenpunkten aus, erhélt man ein einfaches Glattungsverfahren, was eine weitere
(sehr allgemeine) Anwendung darstellt.

Des Weiteren ist laut [18] die weiter unten vorgestellte Methode von LS (bzw. von
WLS/MLS) fiir die Approximation unregelmifig verteilter Daten in der Computergrafik
weit verbreitet: Ein Anwendungsbereich wére die Deformation von digitalen Bildern mittels
der Interpolation unregelmifig verteilter Daten, wobei jede der vorhandenen (allgemeinen)
Methoden angewendet werden kann. Grafische Beispiele fiir Methoden, die auf Triangulie-
rungen, inversen Distanzwichtungen oder radialen Basisfunktionen basieren, finden sich in
[20] — man kann aber auch die Methode der MLS anwenden: In [22] wird damit beispielhaft
das beriihmte Gesicht der Mona Lisa zum Léicheln gebracht und ein wenig schlanker gemacht
(siehe Abbildung 1.1).

Viele Verfahren zur Approximation bzw. Interpolation unregelmifsig verteilter Daten
existieren bereits, von denen wir natiirlich nicht alle hier nennen kénnen:

Bei der Methode der kleinsten Quadrate (least squares, LS) minimiert man das Feh-
lerfunktional Ers(f) := >, |f(x;) — fi? iiber einen gewissen Funktionenraum, z. B. d-variate
Polynome oder Splines mit einem bestimmten Grad. Durch Wahl eines festen Punkts z* € R¢
und Multiplikation mit einer Gewichtsfunktion ¢, einer sog. radialen Basisfunktion (zum
Beispiel (1) = exp(—r2/h?) mit h > 0), erhilt man die gewichtete Methode der kleinsten
Quadrate (WLS) mit dem Funktional Ewrs(f) := >, o(|lz* — 2i||)| f(z;) — fi|*. Lisst man
den Punkt z* variieren, so erhdlt man die Methode der moving least squares (MLS). Eine
kurze Einfithrung in LS/WLS/MLS ist in [18] zu finden.

Die Methode der radialen Basisfunktionen (RBF) ist etwas allgemeiner als die WLS-
Methode und verwendet nur eine Linearkombination f(z) = >, Ai¢(||z — x;]|) von Gewichts-
funktionen (siehe [5]).

Eine weitere Methode erfordert die Erstellung einer geeigneten Triangulierung (z. B.
mit der Delaunay-Triangulation), also die Vernetzung der Datenpunkte x; zu Dreiecken, und
verwendet dann Finite Elemente zur Approximation ([1]). Im einfachsten Fall wird zwischen
den Eckpunkten der Dreiecke linear interpoliert.

Die Methode der inversen Distanzwichtung (IDW), die nach einer Arbeit [26] von
Donald Shepard im englischen Sprachraum auch Shepard’s method heifst, geht dhnlich vor wie
die RBF-Methode und schreibt die Approximation als Linearkombination f(z) =, fiw;(z)
von Gewichtsfunktionen w;(z) = ||z — ;|77 / 3=, |2 — 24| 7" (siehe [1, 9]).

ke
2 e
\\

%
B
S SRS

s s

Abbildung 1.2: Algorithmus zur Spline-Approximation unregelméifig verteilter Daten

SchlieRlich ist noch die etwas kompliziertere Methode des Kriging zu erwdhnen. Sie
wurde durch Georges Matheron (z.B. [17]) entwickelt, der durch die Masterarbeit [16] des
Geostatistikers Danie G. Krige inspiriert wurde, der seinerseits die Verfiigbarkeit von Boden-
schétzen anhand von empirischen Daten untersuchte (siche [7] zur Geschichte des Kriging),
und berticksichtigt die unterschiedliche rdumliche Varianz bei der unregelméfigen Verteilung
der Datenpunkte.

Ein Vergleich von einigen etablierten Algorithmen fiir den Fall der Interpolation findet
sich in 9] und in [1].

Die in dieser Arbeit vorgestellte Methode besteht aus zwei Teilen (siehe Abbildung 1.2):
Zunichst werden aus den unregelmifhig verteilten Daten per lokaler Polynom-Approximation
Daten auf Punkten erzeugt, die auf einem regelmifkigen Gitter liegen. Anschliefsend werden
per Quasi-Interpolation die Koeffizienten eines Quasi-Interpolanten ermittelt, der hier eine
Linearkombination

Qf = > (Quf)bis

k~D

von bivariaten B-Splines bZ,h mit dquidistanten Knoten ist. Die Darstellung als Linearkombi-
nation von B-Splines auf reguldren Gittern hat dabei mehrere Vorteile: Die Beschreibung ist
einfach (im Prinzip gibt es fiir jeden Grad nur eine Basisfunktion 6" = bf ;, die skaliert und
verschoben wird) und es existieren einfache und sehr effektive Algorithmen u. a. zur Auswer-
tung und Ableitung des Splines. Der so entstehende Algorithmus erlaubt eine dynamische
Einstellung des Approximationsgrades und bendétigt keine Triangulierung der Datenpunkte.
Aufserdem kann dieser leicht auf verschiedene Grade in den Koordinaten (was bei partiellen
Ableitungen von Splines vorkommt) und hoéhere Dimensionen verallgemeinert werden.

Aufbau der Arbeit

In dieser Arbeit beschiiftigen wir uns zunfichst in Kapitel 2 kurz mit den fiir das weitere
Verstédndnis wichtigen Definitionen und Sétzen beziiglich bivariaten Polynomen, B-Splines
und Spline-Funktionen.

Anschlieftend werden wir uns in Kapitel 3 mit der Methode der Quasi-Interpolation in
zwei Variablen vertraut machen und die Schwierigkeiten von bivariater Polynom-Approxima-
tion erkldren. Am Ende dieses Kapitels werden wir diese zwei , Bausteine” zu dem in dieser
Arbeit vorgestellten Algorithmus zusammensetzen.

Dessen MATLAB-Implementierung werden wir in Kapitel 4 besprechen. Dabei gehen
wir ausfithrlich auf die Funktionsweise des Algorithmus ein und werden diese schrittweise
anhand eines Beispiels erkldren. Zusétzlich werden wir ein paar numerische Eigenschaften
des Algorithmus analysieren.

In Kapitel 5 werden wir schliefslich den Algorithmus als beispielhafte Anwendung ver-
wenden, um Gewichtsfunktionen fiir Finite Elemente zu konstruieren.

Anhang A enthilt eine Liste der auf der dieser Arbeit als Anhang beiliegenden CD-ROM
vorhandenen Dateien.

Notation

Definitionen, Beispiele, Algorithmen und Sétze sind innerhalb jedes Kapitels durchgehend
nummeriert, wobei Beweise und nicht-bewiesene Sitze mit O beendet werden. Definitionen,
Beispiele und Algorithmen enden mit ¢.

Wir schreiben N := {1,2,3,...} fiir die nattirlichen Zahlen. Wenn wir die Null explizit
mit einschliefsen wollen, schreiben wir Ny := N U {0}.

Ein Gebiet D C R™ ist eine nicht-leere, zusammenhéngende, offene Teilmenge von R™.
Die Menge C(D) ist die Menge aller stetigen Funktionen auf D. Landau-Notation erfolgt mit
der O-Schreibweise.

Wenn es die Umsténde zulassen und der entstehende Ausdruck immer noch eindeutig
ist, lassen wir manchmal unwichtige Indizes weg, zum Beispiel by = bgh. Falls wir einen
Skalar an die Stelle schreiben, an der nach Definition eigentlich ein Vektor stehen miisste,
meinen wir einen Vektor der passenden Groke, der nur den Skalar enthélt, also z. B.

Vs = Ve umys B> 0, nEN.

Um die explizite Angabe von meist komplizierten Indexmengen (beispielsweise bei Sum-
men) zu vermeiden, schreiben wir zum Beispiel k& ~ D anstelle der Indexmenge. In diesem
Fall wird iiber alle relevanten Elemente summiert, d. h. die Elemente, die auf dem Gebiet D
nicht verschwinden. Aufgrund der globalen Definition von B-Splines kdnnten wir meist sogar
iiber Z bzw. Z? summieren (und die Indexmenge weglassen).

& = (24)i=1,..4 bezeichnet einen Vektor mit den d Eintrdgen zi,...,z4. Wenn nichts
anderes angegeben ist, dann ist ||z|| := ||z||, die euklidische Norm von = € R?, die durch das
euklidische Skalarprodukt (x,y) fiir 2,y € R? induziert wird.

Der Abstand eines Punktes € R? zu einer Menge M C R wird mit dist(z, M) :=
infyenr ||z — y||, bezeichnet. Der Trager supp f := {x € R™ | f(x) # 0} einer Funktion f ist
der Abschluss der Nichtnullstellenmenge.

2 Bivariate Splines

In diesem Kapitel werden wir die grundlegenden Definitionen und Eigenschaften von bivaria-
ten Polynomen (Abschnitt 2.1), B-Splines (Abschnitt 2.2) und Splines (Abschnitt 2.3) kurz
benennen und wiederholen. Dies geschieht zu dem Zweck, dass die vorgestellte Approxima-
tionsmethode im weiteren Verlauf der Arbeit auf eindeutigen und gemeinsamen Definitionen
fufst. Es ist bekannterweise keineswegs so, dass es immer nur eine Mdglichkeit der Definition
bei mathematischen Begriffen gibt. Es gibt allein schon mehrere Moglichkeiten, (bivariate)
Polynome oder B-Splines zu definieren (beispielsweise die Definition von B-Splines in [13] vs.
[14]). Diese Definitionen sind selbstredend &quivalent, allerdings muss fiir das beabsichtigte
Ziel eine passende Definition ausgesucht werden.

Bei den vorgestellten Definitionen und Sitzen folgen wir weitgehend den Darstellungen
in [14]. Wir werden aus Griinden des Umfangs und der Redundanz Sétze nur angeben und
nicht beweisen.

2.1 Bivariate Polynome

Bivariate Polynome sind ,natiirliche Verallgemeinerungen von Polynomen einer Variablen
auf zwei Variablen. Man kann ein bivariates Polynom p als eine Funktion von zwei Variablen
x1 und x4y auffassen, so dass p(+, z2) bzw. p(x1, -) fiir jedes x; und x3 stets univariate Polynome
in der ersten bzw. zweiten Variablen sind.

Definition 2.1 (bivariates Polynom). Ein bivariates Polynom p vom Koordinatengrad n =
(n1,n2) ist eine Linearkombination von Monomen:

pla) =Y ca®, oF =aftal?, (2.1)
k<n

mit Koeffizienten c; € R und ¢, # 0. Die Summation erfolgt iiber alle Multiindizes k € N2,
die in jeder Komponente nicht gréker als n sind: k, < n, fiir v =1,2.

Die bivariaten Polynome vom Koordinatengrad < n bilden einen Vektorraum, der mit
P" bezeichnet wird. Er hat die R-Dimension (n;+1)-(ng+1), denn die Monome z* mit k& < n
bilden eine Basis von P". Wir scheiben P"(D), falls x auf ein bestimmtes Gebiet D C R?
beschrankt ist. O

Alternativ kann man Polynome auch iiber den sogenannten totalen Grad definieren, der
gleich der maximalen Summe der Grade der Exponenten fiir jedes Monom ist. Allerdings stellt
sich bei der spéter eingefiihrten Tensorprodukt-Struktur fiir B-Splines (siche Abschnitt 2.2)
heraus, dass dies kein guter Ansatz ist: Die partielle Ableitung eines B-Splines mit gleichem
Koordinatengrad in beiden Variablen ist eine Differenz von B-Splines, deren Koordinaten-
grade in den Variablen unterschiedlich sind (Satz 2.5).

2 Bivariate Splines

2.2 B-Splines

Polynome eignen sich nicht besonders gut fiir die Interpolation oder Approximation einer
groken Anzahl von Daten. Fiir die Interpolation von n 4+ 1 Datenpunkten benétigt man im
univariaten Fall i. A. ein Polynom vom Grad n. Sind nun sehr viele Daten gegeben, dann wer-
den die Polynomgrade ziemlich hoch sein. Dabei ergeben sich mitunter starke Oszillationen
zwischen den interpolierten Daten, ein Effekt, der auch als Runge-Effekt bekannt ist. Daher
ist die Interpolation mit Polynomen vom Grad grofser als vier nicht iiblich.

Einen méglichen Ausweg bieten Splines, also stiickweise Polynome. Weil sie auf jedem
Abschnitt ein Polynom sind, sind sie sich &hnlich einfach zu handhaben wie Polynome. Gleich-
zeitig treten aber keine Oszillationen bei Interpolation oder Approximation auf, da der ma-
ximale Polynomgrad auf jedem Stiick gleich ist.

Fiir eine Basis des Spline-Raums gibt es natiirlich viele Moglichkeiten. B-Splines haben
sich nicht zuletzt durch ihre vielen schonen FEigenschaften und durch die einfachen Rekur-
sionsformeln etabliert. Sie wurden durch Isaac J. Schoenberg 1946 zuerst eingefiihrt, der
allerdings immer behauptet hat, dass sie schon Laplace bekannt gewesen seien (siehe [4]).

Im Folgenden werden nur uniforme B-Splines betrachtet, weil nur diese von der hier
vorgestellten bivariaten Approximationsmethode beno6tigt werden. Fiir eine allgemeinere De-
finition und die zugrunde liegende Theorie sei auf [14] bzw. [23] verwiesen. Folgende Rekursion
(fiir allgemeine B-Splines) wurde 1972 durch de Boor ([3]) und Cox ([6]) bewiesen, weswegen
die Formel (2.2) auch Cox-de-Boor-Rekursionsformel heifst.

Definition 2.2 (univariater B-Spline). Der (uniforme) univariate B-Spline " vom Grad n
ist definiert durch die Rekursion

1
b"(z) := — (acb"_l(x) +(n+1-a)" Yz-1)), (2.2)
n
startend mit der charakteristischen Funktion

1 fallsz €]0,1),

2.3
0 sonst. (2:3)

bo(x) = X[O,l)(x) = {

0,...,n+ 1 sind die Knoten von b" und die Intervalle [¢,¢+ 1), £ = 0,...,n, heiken Knoten-
intervalle von b". Allgemeine uniforme B-Splines by, fiir die Gitterweite h > 0 ergeben sich
aus 0" durch Skalierung und Verschiebung: by, , (z) := 0" (x/h — k), k € Z. O

Die ersten vier uniformen B-Splines sind in Abbildung 2.1 dargestellt. Es handelt sich um
die Grade 0,1, 2, 3, die aus den oben erwdhnten Griinden am haufigsten verwendet werden.
B-Splines erfreuen sich an folgenden grundlegenden Eigenschaften:

Satz 2.3 (Eigenschaften von univariaten B-Splines). Der B-Spline b™ vom Grad n verschwin-
det auflerhalb von [0,n + 1). Auf jedem Knotenintervall ist b ein nicht-negatives Polynom
vom Grad < n.

b" ist an jedem Knoten n-fach stetig differenzierbar. Die Ableitung erfolgt durch Dif-
ferenzenbildung zwischen B-Splines vom Grad n — 1:

%bn(x) =") =" N - 1). O (24)

2.2 B-Splines

bo
1 bl
b2
b3
0.5
0 1 1 Il J
0 0.5 1 1.5 2 2.5 3 3.5 4

Abbildung 2.1: uniforme, univariate B-Splines vom Grad 0,1,2,3

00 00
(a) bilinear: b (b) biquadratisch: b2

Abbildung 2.2: uniforme, bivariate B-Splines auf ihrem Trager

Wir kénnen die Differentiationsformel auch umschreiben (siehe [14]) zu

1
@) = [0w =y (2.5)

so dass b” als Ergebnis des Prozesses einer Mittelwertbildung iiber "1 verstanden werden
kann (Faltung von x(o 1y mit 6"~ '). Alternativ zur Rekursionsformel (2.2) kann man B-Splines
auch iiber die Formel (2.5) definieren, so geschehen in [13].

Ausgehend von den univariaten B-Splines definieren wir bivariate B-Splines als Tensor-
produkte von B-Splines einer Variablen:

Definition 2.4 (bivariater B-Spline). Ein (uniformer) bivariater B-Spline b7, vom Grad
n = (n1,ng) fiir die Gitterweite h = (hq, h2) ist ein Produkt von univariaten B-Splines:

Z’h(x) = bzll,hl (1‘1) . ij}M (.'L'Q), k= (]{21, k‘Q) S ZQ. (2.6)
Zuséatzlich definieren wir b" := 8”71. O

In Abbildung 2.2 sind die B-Splines b fiir den Fall n = 1 und n = 2 dargestellt.

[14] z&hlt ein paar Vor- und Nachteile der Tensorprodukt-Konstruktion auf. Zu den wich-
tigsten Vorteilen gehort, dass sie einfach zu beschreiben ist und dass sich die Eigenschaften
von univariaten B-Splines leicht {ibertragen:

2 Bivariate Splines

Satz 2.5 (Eigenschaften von bivariaten B-Splines). Der bivariate B-Spline b}, vom Grad
n verschwindet auferhalb des Rechtecks [ki, ki + ni + 1)hy X [ka, ko + no + 1)hé. Auf jedem
Gitterrechteck [(1, 014 1)hy X [la, la+1)ho, € = (£1,42) € Z2, ist b, ein nicht-negatives, biva-
riates Polynom vom Koordinatengrad < n. Auf jeder Parallelen zur v-ten Koordinatenachse
ist by), ein Vielfaches von by” , v =1,2.

by, 15t in xy-Richtung ny-fach stetig differenzierbar. Die Ableitung erfolgt durch Dif-
ferenzenbildung zwischen B-Splines vom Grad n — e, :

0 1
%bz,h = hf (bz’;@u — bz—:::,h) s VvV = 1,2, (27)
wobei e, € R? der v-te Einheitsvektor ist. L]

Einer der Hauptnachteile ist, dass die B-Spline-Basis nicht lokal verfeinert werden kann,
denn Anderungen wirken sich wegen der Tensorprodukt-Struktur global aus. Dafiir kann man
z.B. hierarchische Basen verwenden (siehe [13, 14]).

2.3 Spline-Funktionen

Aufbauend auf den vorherigen Definitionen kénnen wir jetzt bivariate Splines definieren. Es
ist naheliegend, wie diese Definition im univariaten Fall aussieht, daher gehen wir aus Red-
undanzgriinden sofort zu zwei Variablen iiber. Die Auswertung von Splines erfolgt mit dem
einfachen Algorithmus von de Boor (|2]), basierend auf dem Algorithmus von de Casteljau
fiir Bézier-Kurven.

Definition 2.6 (bivariater Spline). Ein (uniformer) bivariater Spline p vom Koordinaten-
grad < n = (n1,n2) mit der Gitterweite h = (h1, hg) auf dem Gebiet D C R? ist eine
Linearkombination der B-Splines, die auf D nicht verschwinden:

px) = exbfu(x), €D, (2.8)
k~D

Der Raum aller solcher bivariaten Splines wird mit S}'(D) bezeichnet.

Die B-Splines b, sind fiir festes n und h linear unabhéngig, das heift, die Koeffizienten
¢ von p sind eindeutig bestimmt. O
Algorithmus 2.7 (de Boor). Es seien p = ;. exby;, € S;j(D) ein bivariater Spline und
x = (x1,22) € D. Dann kann p(z) wie folgt berechnet werden:

(a) Bestimme ¢ = (f1,0) und t = (t1,t2) mit =, = (£, +1t,)h, und t € [0,1)2.

(b) Definiere zunéchst ak, := (C(k; ko)) ko=tr—no,... 0o+ Fiir @ = n1,...,1 berechne sukzessive
ap,—j < vap,—; + (i —y)ag,—j—1 fur j =0,...,9 — 1, wobei v := j 4 t;. Bezeichne den
resultierenden Vektor als (Pi,)ky=to—no,....00 1= e, -

(c) Fiiri = ng,..., 1 berechne sukzessive pp,_; = Ypg,—j+(i—7)pey—j—1 flir j = 0,...,i—1,
wobei v := j + t3. Dann gilt am Ende p(z) = py,/(n1!na!). O

Ziel der in dieser Arbeit vorgestellten Approximationsmethode wird es sein, passende
Koeffizienten c; € R eines bivariaten Splines so zu finden, dass die vorgegebenen Daten
,moglichst gut angen&hert werden.

3 Quasi-Interpolation und lokale
Polynom-Approximation

Nachdem wir im letzten Kapitel die wesentlichen Definitionen als Grundlage fiir die weitere
Arbeit, vorgestellt haben, werden wir in diesem Kapitel die Approximationsmethode erar-
beiten, um die es im Rahmen dieser Arbeit geht. Zunichst werden wir in Abschnitt 3.1 die
sog. Quasi-Interpolation in einer und in zwei Variablen erkldren und ihre Eigenschaften nen-
nen. Anschliekend kiimmern wir uns in Abschnitt 3.2 um die Generierung der bendtigten
Zwischendaten auf einem reguldren Gitter. Schliefslich werden wir in Abschnitt 3.3 diese bei-
den Schritte zusammenfiihren und das in diesem Abschnitt ausformulierte Problem mit einer
Kombination von lokaler Polynom-Approximation und Quasi-Interpolation numerisch 16sen.

3.1 Univariate und bivariate Quasi-Interpolation

3.1.1 Quasi-Interpolation in einer Variablen

Bei der in dieser Arbeit vorgestellten Approximationsmethode handelt es sich um eine Spline-
Approximation. Das bedeutet, dass die gegebenen Daten durch eine Spline-Funktion p(z) =
> k~p kbR, (2) mit gewissen Koeffizienten ¢y € R angenéihert werden sollen. Um Fehler-
abschitzungen beweisen zu konnen, benotigen wir gewisse Vorbedingungen an die Bildungs-
methode dieser Koeffizienten. Eine Mdglichkeit ist dabei die sogenannte Quasi-Interpolation.

Bei Quasi-Interpolation handelt es sich um ein lineares Spline-Approximations-Schema
([14]). Unter recht milden und ,natiirlichen® Voraussetzungen kann gezeigt werden, dass
Quasgi-Interpolation eine effiziente Methode zur Approximation mit Splines darstellt.

Wir verfahren wieder wie in [14], jedoch werden wir aus Griinden der Kiirze und der Ein-
fachheit wie im letzten Kapitel nur uniforme Knotenfolgen betrachten. Fiir den allgemeinen
Fall sei auf [14] verwiesen.

Definition 3.1 (univariate Quasi-Interpolation). Eine Abbildung
Q: (D) = SE(D), [Qf =) (QufIbn: (3.1)

k~D

mit dem Gebiet D C R, der Gitterweite o > 0 und dem Grad n € Ny heifst Quasi-
Interpolationsoperator, falls

(a) Qy fir alle k € Z ein lokal beschrinktes, lineares Funktional ist, das heifit, es gibt ein
|Q]|, so dass fiir alle k € Z

Qr: C(D) = R linear, |Qrf| < [|QUF oo,k ktnt1)n > (3.2)

fiir alle f € C(D) mit dem Supremum ||f| . = sup,ey |f(z)| von f € C(D) auf
U C R, und

3 Quasi-Interpolation und lokale Polynom-Approximation

(b) @ jedes Polynom vom Grad < n auf sich selbst abbildet, d.h. @p = p auf D fiir alle
p € P*(D). Aquivalent dazu ist, dass fiir alle y € R und k ~ D gilt, dass

Qrp = Yr(y) mit p(x) = (z —y)",

Ur(y) = ((k+1)h—1y)---((k+n)h—1y). (3.3)

Das Bild Qf von f unter) nennen wir Quasi-Interpolant und die Berechnung von Q f heift
Quasi-Interpolation. O

Die erste Bedingung (3.2) fiir einen univariaten Quasi-Interpolanten stellt sicher, dass
der Quasi-Interpolationsoperator linear ist und dass die Bilder @ f der lokalen Funktionale
Q@ nur von Werten von f im Triger von b’,;h abhéngen. Die letztgenannte Tatsache ist

sinnvoll, weil eine Verdnderung f — fvon f in einem bestimmten Bereich natiirlich nur die
Werte (i f beeinflussen sollte, bei denen die entsprechenden B-Splines im verédnderten Bereich
nicht verschwinden. Gleichzeitig sollten die Betrége |Qy f| der Koeffizienten des entstehenden
Splines gleichméahig durch das Maximum von f auf dem Tréger von by , beschrénkt sein.

Die zweite Bedingung (3.3) ist die wichtigere, denn durch sie wird sichergestellt, dass
Polynome vom Grad < n durch den Operator unverédndert bleiben. Zu beachten ist, dass das
fiir sich noch nicht impliziert, dass jeder Spline auf sich selbst abgebildet wird (das heift,
in diesem Fall wére Q|sn(p) = idgp(p) und Q eine Projektion). In [14] wird gezeigt, dass
dies aber fiir Quasi-Interpolanten gilt, bei denen jedes Funktional () nur von Werten von
f in einem einzigen Knotenintervall in D abhéngt. Die wesentliche Idee dabei ist, dass ein
Spline auf einem einzigen Knotenintervall einfach nur ein Polynom ist, das vom Operator auf
sich selbst abgebildet wird. Wenn die Konstante ||Q|| zusétzlich nur vom Grad n abhéngt —
nicht von h oder im allgemeinen Fall von der Knotenfolge —, dann sprechen wir von einem
Standard-Projektor.

Mit den relativ schwachen Voraussetzungen eines Quasi-Interpolanten kann man zeigen
(siehe z. B. [14]), dass der Fehler bei der Quasi-Interpolation die Ordnung O(h™*!) hat:

Satz 3.2 (Fehler der Quasi-Interpolation). Es sei @, f — Qf = ZkND(Qkf)bZ,h, etn Quasi-
Interpolationsoperator. Dann gilt fiir den Fehler in einem Punkt x € D:

1Qll H (+1)H +1
— < " h(x)™ ™. A4
@) = @@ < 2 E s 1] hew) (3.4
Dabei ist D, die Vereinigung der Trdager der fir x relevanten B-Splines und

h(x) := maxyep, |y — x| der mazimale Abstand von y zum Rand von D,. O

Natiirlich kénnen wir die angegebene lokale Fehlerabschiatzung auch zu einer globalen
Formel abschwiichen, indem wir in (3.4) die Norm || f("1)]|__ p, durch | £+, und h(z)
durch (n + 1)h ersetzen (die im uniformen Fall konstante Léihge der Triager der B-Splines).
Man kann sogar allgemeiner den Fehler der Ableitungen der Ordnung j = 0,...,n bis auf eine
Konstante, die nur von n abhéngt, durch ||Q|| multipliziert mit Hf(”“) Hoo’DT und h(z)" 17
abschétzen. Da die Approximation der Ableitungen zwar auch niitzlich, aber in dieser Arbeit
nicht behandelt wird, wird hier nicht weiter darauf eingegangen.

10

3.1 Univariate und bivariate Quasi-Interpolation

3.1.2 Wahl der linearen Funktionale

Fiir die Wahl der Funktionale Q) existieren mehrere Mdglichkeiten. Dabei stellt man @ f
meist als Linearkombination von Werten von f im Trager [k, k + n + 1]h von by , dar:

Qrf =Y weaf(Tka) (3.5)

a=0

mit Gewichten wy, o und Stiitzstellen xy, o. (Wir betrachten nur stetige B-Splines, so dass der
Unterschied zwischen dem hier gewé#hlten Bereich [k, k + n + 1]h der Stiitzstellen und der
Bereich [k, k+mn-+1)h der Maximumsnorm in (3.2) unerheblich ist.) Dies hat bei Speicherung
der Gewichte und der Stiitzpunkte in einer Tabelle den Vorteil, dass die Koeffizienten Q. f
des Splines @ f schnell berechnet werden kénnen — es muss z. B. kein lineares Gleichungs-
system gelost werden. Auferdem ist die erste Bedingung (3.2) fiir einen Quasi-Interpolanten
automatisch erfiillt, wenn > " |wy o] < ||Q|| fiir alle k ~ D, da

my m
Qrf| < Z ‘wk,aHf(xk:,a” < ”fHOO,[k,k-s-nH]h ’ Z |wk’,a : (3.6)
a=0

a=0

Die zweite Bedingung (3.3) fiir einen Quasi-Interpolanten kann fiir den Fall my, konstant
gleich n auch einfach gepriift werden, siehe unten.
Wir betrachten nun zwei Beispiele fiir Quasi-Interpolationsfunktionale fiir D = R.

Beispiel 3.3 (Standard-Projektor). Zunéichst wollen wir einen Standard-Projektor konstru-
ieren, das heifst, fiir & € Z miissen die Stiitzstellen xy, ,, alle in einem abgeschlossenen Knoten-
intervall [¢, £+ 1]h liegen. Wir fixieren k € Z und wiahlen als Intervall das mittlere des Trégers
von b}, fiir gerade n und das linke mittlere Intervall fiir ungerade n, also £ = k+ |n/2]. Nun
withlen wir n + 1 dquidistante Punkte in [, £ + 1]h:

xa:<€+%)h, a=0,...,n, (3.7)

dargestellt in Abbildung 3.1a. Die zweite Bedingung (3.3) wird dann zu

Q0 =Y wa (e S h-y) = [T+ ah-n=wt. 63
a=0 B=1

Beide Seiten sind Polynome in y vom Grad < n, das heifit, anstatt die Koeffizienten explizit
auszurechnen und zu vergleichen, setzen wir n + 1 verschiedene Werte in y ein und benutzen
die Tatsache, dass das interpolierende Polynom eindeutig ist. Kanonischerweise verwendet

man y = x,, ¥ =0,...,n, denn so erhalten wir das relativ einfache lineare Gleichungssystem
n n n
Zwa(a—u)”:H<n5—y—nL§J>, v=_0,...,n, (3.9)
a=0 p=1
flir wo, . . . , wy, das nicht mehr von k und h abhingt. Insbesondere erfiillt die Lésung die erste

Bedingung (3.2), wenn wir [|Q|| := Y »_, |wa| wihlen, und @ ist ein Standard-Projektor. ¢

11

3 Quasi-Interpolation und lokale Polynom-Approximation

Tabelle 3.1: Koeffizienten w,, des Quasi-Interpolationsoperators in Beispiel 3.4

n Koeffizienten wy, ..., w,
1 1/2 1/2
2 -1/8 5/4 -1/8
3 —7/48 31/48 31/48 —7/48
4 47/1152 —107/288 319/192 —107/288 47/1152
n n
A\ /bk\h'\
kh Ih (+1)h w. (k+n+1)h kh (k+1)h (k+n+1)h
(a) Stiitzstellen in einem Intervall (b) Stiitzstellen in den Intervallmittelpunkten

Abbildung 3.1: Wahl der Stiitzstellen fiir Quasi-Interpolation vom Grad n =4

Beispiel 3.4 (weiterer Quasi-Interpolant). Eine andere Mdglichkeit fiir die Konstruktion ei-
nes Quasi-Interpolanten besteht darin, als Stiitzstellen die Mittelpunkte der Knotenintervalle
zu wéhlen (Abbildung 3.1b):

1
aca:<k‘—|—2+a>h, a=0,...,n, (3.10)

fiir festes k € Z. In diesem Fall ist die zweite Bedingung (3.3) dquivalent zu

n

Qo) = <(k+ ; +a) h— y) [+ AR -y) =), (31D)
a=0

B=1
Einsetzen von y = x,, v =0, ..., n, liefert nach Kiirzen von A" mit
n n 1
Zwa(a—u)”zn(ﬁ—y—2>, v=0,...,n, (3.12)

ein lineares Gleichungssystem mit derselben Koeffizientenmatrix wie beim Standard-Projek-
tor. Es handelt sich dabei um eine Toeplitz-Matrix (die Diagonalen beinhalten jeweils nur
einen verschiedenen Eintrag), die fiir n gerade bzw. ungerade symmetrisch bzw. schief-
symmetrisch ist. Wie beim anderen Quasi-Interpolanten folgt, dass die Losung weder von
k noch von h abhingt, sondern nur noch vom Grad n. Somit ist die erste Bedingung (3.2) fiir
einen Quasi-Interpolanten erfiillt und man kann bei der Implementierung die Koeffizienten
fiir die am meisten genutzten Interpolationsgrade abspeichern. Wir geben in Tabelle 3.1 die
entstehenden Koeffizienten w,, a = 0,...,n, fir die Grade n =1,...,4 an. O

In [14] wird erwéhnt, dass das letztgenannte Quasi-Interpolationsschema besonders vor-
teilhaft ist, weil benachbarte Funktionale alle bis auf zwei Funktionsauswertungen gemeinsam
haben. Der Quasi-Interpolationsoperator aus Beispiel 3.3 hat als Standard-Projektor dagegen
den Vorteil, jeden Spline auf sich selbst abzubilden. Jedoch benétigt dieser fiir jedes Funktio-

12

3.1 Univariate und bivariate Quasi-Interpolation

nal n + 1 Funktionsauswertungen in jedem Knotenintervall, die somit kaum (nur am Rand)
flir andere Funktionale benutzt werden konnen. Aufierdem ist der Operator fiir ungeraden
Grad asymmetrisch, da das mittlere Knotenintervall eines B-Splines nicht eindeutig ist. Aus
diesen Griinden werden wir uns auf den Operator aus Beispiel 3.4 beschrianken.

In obigen Beispielen wurde D = R angenommen und der Fall, dass D zum Beispiel ein
endliches Intervall darstellt, aulser Acht gelassen. In diesem Fall kann es némlich sein, dass
ein paar der gewidhlten Stiitzstellen fiir die Quasi-Interpolation in den Bereich auferhalb von
D fallen. Im Abschnitt 3.3.1 werden wir nochmals auf diese Problematik zuriickkommen.

3.1.3 Bivariate Quasi-Interpolation

Die Tensorprodukt-Konstruktion von bivariaten B-Splines lésst sich im allgemeinen Fall der
Definition 3.1 leider nicht auf die Konstruktion von Quasi-Interpolationsoperatoren in zwei
Variablen iibertragen. Zunichst einmal ist iiberhaupt nicht klar, wie eine solche Definition
aussehen konnte, denn die univariaten Quasi-Interpolationsfunktionale wirken eben nur auf
Funktionen einer Variablen, das heifst, die zu interpolierende, bivariate Funktion miisste ir-
gendwie auf eine Dimension eingeschrinkt werden. Auferdem sollte nach [14] die optimale
Genauigkeit fiir beliebige Gebiete erhalten werden, was eine groke Schwierigkeit darstellt.

Daher beschrénken wir uns im Folgenden auf Quasi-Interpolationsoperatoren mit Funk-
tionalen der Form (3.5) und Gebieten D C R?, die ein Rechteck sind. Die Anzahl my, der fiir
das Funktional Q)i relevanten Funktionswerte von f nehmen wir dabei der Einfachheit halber
als konstant fiir alle k an. Wenn das zugrunde liegende Intervall endlich ist, stellt das kein
Problem dar, weil dann mj konstant auf die maximal bendtigte Anzahl an Funktionswerten
gesetzt werden kann und ,jiberschiissige Gewichte auf null gesetzt werden kénnen.

Definition 3.5 (bivariate Quasi-Interpolation). Es seien D; und D9 abgeschlossene Intervalle
in R und

Qu: C(D,) = SP(Dy), frrQuf= > (Quu by, ., v=12, (3.13)

ky~D,

zwei Quasi-Interpolationsoperatoren mit Gitterweiten h, > 0, Graden n, € Ny, Gebieten D,,
und Funktionalen der Form

my
Qll,k,,f = Z wl/:ku,auf<m1/>ku7au) (314)
a,=0

mit Gewichten w, j, o, und Stiitzstellen x, y, o, in [k, ky, + 1y, + 1]hy, so dass
Y v Wy ky 0, | < 1|Qy]| fiir alle &, ~ D,,. Dann heift die Abbildung

Q: (D) = Sp(D), = Qf =Y (QrfIbin, (3.15)

k~D

mit den Funktionalen Qg, k = (k1, k2), definiert durch

mi me
Qk’f = Z Z wl,kl,a1w2,k2,o¢2f(-rl,k:l,()q7$2,k27a2) (316)

a1=0 a2=0

13

3 Quasi-Interpolation und lokale Polynom-Approximation

bivariater Quasi-Interpolationsoperator mit Gebiet D = Dy x Da, Gitterweite h = (hq, ha)
und Grad n = (n1,n2).

Wieder nennen wir das Bild Qf von f unter @) Quasi-Interpolant und die Berechnung
von @ f heifit Quasi-Interpolation. O

Zunichst sehen wir, dass diese Definition tatséichlich Sinn ergibt, indem wir bemerken,
dass der Quasi-Interpolant Qf ein bivariater Spline im Sinne von Definition 2.6 ist. Die
weiteren Eigenschaften von univariaten Quasi-Interpolationsoperatoren iibertragen sich auf
den bivariaten Fall:

Satz 3.6 (Eigenschaften bivariater Quasi-Interpolation). Es sei @ ein bivariater Quasi-
Interpolationsoperator wie in Definition 3.5. Dann gilt:

(a) Qy ist fiir alle k € Z* ein lokal beschrinktes, lineares Funktional. Es gibt also ein ||Q||,
so dass fiir alle k € 72

Qr: C(D) — R linear, (3.17)
‘Qk‘f‘ S HQH Hf”oo,[kl,lirn1+1)h1><[k27k2+n2+1)h2 . .

(b) Q bildet jedes bivariate Polynom vom Grad < n auf sich selbst ab, d. h. Qp = p auf D
fir alle p € P*(D).

Beweis. Die Linearitat von Qy fiir Punkt (a) (Qr(f+9) = Qrf + Qg und Qr(A\f) = AM(Qxf)
fir f,g € €(D) und A € R) ist aus der Definition von Qf ersichtlich und folgt aus der

Linearitdt der Summation in (3.16). Die lokale Beschranktheit gilt wegen

mi msg

Qrf] < Z Z ‘wlykLQIHwQ,kQ:a2Hf(x1,klzal7x2»k27a2)" (3.18)

a1=0 a2=0

Indem wir die rechte Seite durch das Maximum der Funktionswerte von f multipliziert mit der
Doppelsumme der Gewichtsprodukte abschétzen, erhalten wir die angegebene Behauptung
aufgrund von

mip ma
DY Wik anllw2kasl < @1 - 1Q2] = Q- (3.19)

a1=0 az=0
Fiir Punkt (b) reicht es durch die Marsden-Identitiit (siehe z. B. [14]), fiir alle y € R?
Qrp = Yr(y), p(x):=(z—y)" =pi(z1) - pa(2), polay) = (2, —w)™, (3:20)
mit
Ve(y) = Vi, (1) - Yo (y2), W, (W) = ((hy + Dho —9) -+ (kv + m) o —), (3.21)

zu priifen, denn die p spannen fiir y € R? den Raum P" der bivariaten Polynome vom Grad

14

3.1 Univariate und bivariate Quasi-Interpolation

(k,+n,+1)h,
O O O
. O 1/64
supp bk’h + O & O O -5/32
{ 25/16
O O O
K,h,
k.h, (k,+n +1h,

Abbildung 3.2: Gewichte eines bivariaten Quasi-Interpolationsoperators basierend auf Bei-
spiel 3.4, hier speziell mit h; = ho und ny = no = 2

< n auf. Einsetzen in die Definition ergibt

mi1 mso

Qrp = Z Z W1 k1 01 W2 k2,02 P(T1 k1,00 T2,k2,00)- (3.22)

a1=0a2=0

Diese Doppelsumme kann in zwei Summen aufgespalten werden:

mi m2
(Z wl,k1,a1p1($1,k1,a1)> . (Z w2,k2,a2p2(552,k2,a2)> . (323)

a1=0 az=0

Die linke grofse Klammer ist nach (3.14) gleich Q1 x, p1 und die rechte grofe Klammer ist gleich
Q2,1,p2. Weil die univariaten Quasi-Interpolationsoperatoren)1 und Q)2 ebenfalls Polynome
reproduzieren (Gleichung (3.3)), erhalten wir somit ¥, (y1) - ¥, (y2) = Vi (y). O

Die Fehlerabschiatzung aus dem univariaten Fall lasst sich durch einen dhnlichen Beweis
(siehe [14]) auf den Fall zweier Variablen tibertragen:

Satz 3.7 (Fehler der bivariaten Quasi-Interpolation). Es sei Q, f — Qf = > . p(Qrf)b},,
ein bivariater Quasi-Interpolant mit Gebiet D, Gitterweite h = (hi,hs) und Grad n =
(n1,n2). Dann gilt fir den Fehler in einem Punkt x € D:

f(@) = (Qf)(@)] < ¢(n) - <h?l+l |

a{tﬁrlf“ + h32+1 ‘
00,D

832“"0“00,13) . (3.24)

O

Abbildung 3.2 zeigt als Beispiel die Gewichte der Funktionale des bivariaten Quasi-
Interpolationsoperators, der durch Verwendung von Beispiel 3.4 in beiden Variablen entsteht,
hier jeweils mit Grad 2. Unabhéngig vom Grad ergeben sich dabei insgesamt drei verschiedene
Gewichte, entsprechend den Kombinationsmaoglichkeiten.

15

3 Quasi-Interpolation und lokale Polynom-Approximation

3.2 Bivariate Polynom-Approximation

Die vorgestellte Methode der Quasi-Interpolation 14sst sich allein noch nicht fiir die Approxi-
mation unregelméfig verteilter Daten verwenden. Bivariate Quasi-Interpolationsoperatoren,
so wie sie in Abschnitt 3.1.3 definiert wurden, benétigen namlich die Daten f(x1,z2) auf ei-
nem regelmifigen Gitter, das heifit, (x1, z2) muss sich (im endlichen Fall) im Kreuzprodukt
zweier endlicher Teilmengen von R befinden. Um einen Algorithmus der Approximation unre-
gelméfig verteilter Daten zu erhalten, miissen wir die von der Quasi-Interpolation benétigten
Daten auf dem regelméfbigen Gitter aus den unregelméfig verteilten Daten erzeugen.

Wir verwenden dazu die sogenannte lokale Polynom-Approximation. ,Lokal* deshalb,
weil zur Frzeugung eines Gitterpunkts nur Daten aus einer kleinen Umgebung des Punkts
herangezogen werden, um die Polynom-Grade klein zu halten. Der globale Zusammenhang
zwischen den Gitterpunkten wird dann durch die Quasi-Interpolation hergestellt.

Leider ist bivariate Polynom-Approximation, oder im Spezialfall Polynom-Interpolation,
erheblich schwieriger zu handhaben als der Fall einer Variablen und Gegenstand aktueller
Forschung. Einen guten Uberblick iiber bisher erarbeitete Methoden geben [11, 18, 21].

Die Schwierigkeit multivariater Interpolation erklart sich folgendermafien: Im univariaten

Fall gibt es bekannterweise fiir n + 1 paarweise verschiedene Punkte x1,...,2,41 € R mit
Daten fi,..., fn+1 € R genau ein interpolierendes Polynom p vom Grad < n, d.h. p(z;) =
fi fir ¢ = 1,...,n 4+ 1. Das interpolierende Polynom lisst sich sogar mit der Lagrange-

Formel explizit angeben (siehe [11, 14]), mit Dividierten Differenzen lasst sich auch Hermite-
Interpolation (Interpolation der Ableitungen) einfach bewerkstelligen.

Anders ist das im multivariaten Fall, zum Beispiel fiir zwei Variablen: Je nach Lage der
Punkte (z1,,72;) € R? und der Daten f;, i = 1,...,(ny + 1)(n2 + 1), ist das Interpolati-
onsproblem mit bivariaten Polynomen vom Koordinatengrad < n = (nj,n2) nicht eindeutig
oder sogar unlosbar:

Beispiel 3.8 (nicht eindeutig losbares, bivariates Interpolationsproblem). Fiir ny = ng =1
betrachten wir die Daten zeilenweise gegeben durch

T
X:<8 1_/12 1 132> , f=0 00 0. (3.25)

Wie man leicht durch Rechnung nachprift, interpoliert das bivariate Polynom
p(ri,29) =041 21 +2 20— 32129 (3.26)

vom Koordinatengrad (1,1) diese Daten. Andererseits interpoliert natiirlich auch das Null-
polynom die Daten, also ist die Losung fiir diese Datenpunkte nicht eindeutig. O

Beispiel 3.9 (unlosbares, bivariates Interpolationsproblem). Nun seien die Daten

01 2 3\" T
X:(O 00 o) , f=(0 00 1) (3.27)

gegeben. Es kann kein Interpolationspolynom vom Grad < (1, 1) geben, denn auf der Geraden
x2 = 0 wire dies ein univariates Polynom vom Grad < 1 mit drei Nullstellen. Damit miisste
das Polynom trivial sein und wiirde den letzten Datenpunkt nicht interpolieren. O

16

3.2 Bivariate Polynom-Approximation

Man sagt, das Interpolationsproblem fiir gegebene Datenpunkte (z1;,72;) € R?, i =
1,...,(n1+ 1)(n2 + 1), sei wohlgestellt (well posed oder nach [11] poised), falls fiir beliebige
Daten f; ein Interpolationspolynom p € P" existiert. In [11] wird dies fiir beliebige Vektor-
rdume V von stetigen Funktionen verallgemeinert, indem man R? durch R? P" durch V
und (ny 4+ 1)(n2 + 1) durch dim V' ersetzt. Ein Raum V, so dass das Interpolationsproblem
fiir beliebige (dim V)-viele Punkte aus R? wohlgestellt ist, heikt Haar-Raum. Fiir den Fall
d > 2 erwihnt [11], dass keine nicht-trivialen Haar-Raume (der Dimension > 1) existieren.
Fiir uns bedeutet das, dass es fiir jeden Grad n = (n1,n2) immer paarweise verschiedene
(n1 + 1)(ng + 1)-viele Punkte in R? gibt, so dass das Interpolationsproblem nicht poised ist.

Damit hangt auch die Eindeutigkeit der Losung eines polynomiellen Approximationspro-
blems von der Lage der Datenpunkte ab. Bei der Polynom-Approximation sind mindestens
(n1+1)(ng + 1)-viele, paarweise verschiedene Datenpunkte gegeben, also (71, 72;) € R? mit
fie Rfuri=1,...,m mit m > (n; + 1)(n2 + 1). Gesucht ist ein bivariates Polynom p vom
Grad < n = (n1,n2), das diese Punkte bestmoglich approximiert. ,,Bestmoglich® heift hier,
dass die Summe der Fehlerquadrate minimiert wird, das heifst, fiir alle ¢ € P" gilt

m

E(p) <E(q), E(q):=)_la(w1s, z2:) — fil”. (3.28)
i=1
Daher nennt man das Verfahren auch die Methode der kleinsten Fehlerquadrate.

Man kann ein solches Minimierungsproblem mit Hilfe linearer Gleichungssysteme (LGS)
umformulieren: Das gesuchte Polynom p mit Koeffizienten c sei

p(ZE) = Z Ck$k> c= (C(O,O)’ C(1,0)5 -+ -5 C(n1,0)5 €(0,1)5 €(1,1)5 - - - 5 C(ng,1)5 - -+ C(n1,n2)>T' (329)
k<n

Mit der (m x (n; + 1)(n2 + 1))-Matrix A mit den Zeilen a;, i = 1,...,m, und der rechten
Seite f, beides definiert durch

ai = (1@, @Y, B2, 015000, - @50, ahaB2), f = (f1yes)T (3.30)

erhalten wir ein im Allgemeinen iiberbestimmtes LGS Ac = f, so dass das Quadrat der
euklidischen Norm vom Residuum des LGS der Fehlerquadratsumme entspricht:

E(p) = | Ac— fl3- (3.31)

Eine Losung ¢ des Minimierungsproblems ist nun &quivalent (siehe [18, 24]) zu den
Losungen der Normalengleichungen

AT Ac = ATf. (3.32)

Dieses LGS ist eindeutig 1osbar, wenn A vollen Rang hat (was i. A. nicht der Fall ist, siehe
oben). Zusitzlich ist AT A symmetrisch und positiv definit ([24]), so dass dieses LGS mit
Hilfe geeigneter Methoden, z. B. mit dem CG-Verfahren, numerisch gelést werden kann.
Fiir unsere im Folgenden vorgestellte Approximationsmethode unregelmifig verteilter
Daten werden wir Polynom-Approximation statt -Interpolation verwenden, weil die genaue
Zahl an Daten lokal um einen zu berechnenden Gitterpunkt herum nicht bekannt sein wird.

17

3 Quasi-Interpolation und lokale Polynom-Approximation

3.3 Spline-Approximation durch Quasi-Interpolation

3.3.1 Vorbemerkungen

Nun haben wir uns alle Voraussetzungen erarbeitet, die wir fiir die Formulierung des Appro-
ximationsproblems und dessen Losung bendtigen. Um zwei kleinere Details haben wir uns
dabei noch nicht gekiimmert:

Erstens wurde in Abschnitt 3.2 nicht spezifiziert, welche Punkte fiir die Generierung eines
Gitterpunkts fiir die Quasi-Interpolation bei der ,lokalen* Polynom-Approximation verwendet
werden. Damit das in den Gleichungen (3.29) und (3.30) definierte LGS iiberbestimmt ist,
miissen in jedem Fall mindestens (n; + 1)(n2 + 1)-viele Punkte verwendet werden, wobei
n = (n1,n2) den Grad der verwendeten Approximation bezeichnet. Wir werden deshalb von
den gegebenen Daten voraussetzen, dass zusitzlich eine Gitterweite h = 1/H > 0 gegeben
ist und sich in jedem Gitterquadrat mindestens ein Datenpunkt befindet. Wenn wir einen
Gitterpunkt fiir die Quasi-Interpolation erzeugen wollen, werden wir alle Datenpunkte aus
den umliegenden Gitterquadraten nehmen, und zwar aus mindestens so vielen, so dass das
LGS iiberbestimmt ist. Dies ist natiirlich nur die grobe Idee, die exakte Ausformulierung
erfolgt spater im Abschnitt 3.3.2.

Zweitens haben wir bei den Beispielen der univariaten Quasi-Interpolationsoperatoren im
Abschnitt 3.1.2 angenommen, dass der entstehende Quasi-Interpolant @ f auf der kompletten
reellen Achse D = R definiert sein soll. Allerdings treten in der Praxis Daten, die sich nicht
in einer kompakten Teilmenge von R befinden, so gut wie nie auf. Normalerweise hat man es
mit Daten zu tun, die sich nach Transformation im Einheitsquadrat [0, 1]? befinden — fiir die
univariaten Beispiele bedeutet das D = [0,1]. Das stellt in der Tat ein Problem dar, denn
die zu interpolierende Funktion f ist nach Definition 3.1 i. A. nur auf D definiert. Die fiir D
relevanten Funktionale des Quasi-Interpolationsoperators aus Beispiel 3.4 bendétigen jedoch
bis zu n Werte auf jeder Seite aufserhalb von D.

Fiir die Losung des zweiten Problems existieren wiederum zwei Losungsmoglichkeiten:
Die erste, aufwendigere Losung ist die Modifikation der Funktionale, die Funktionswerte au-
erhalb von D bendétigen. Dabei verdndert man bei diesen Funktionalen die Stiitzstellen xy, o
in Gleichung (3.5), so dass sich diese innerhalb von D befinden, aber immer noch in supp bz’ h
liegen. In Abbildung 3.3 ist eine mogliche Verdnderung der ersten beiden Funktionale des
univariaten Quasi-Interpolationsoperators aus Beispiel 3.4 zusammen mit dem ersten unver-
dnderten Funktional fiir den Grad n = 2 und das Gebiet D = [0, 1] gezeigt. Die verdnderten
Gewichte kann man nach der gleichen Vorgehensweise wie in Beispiel 3.4 berechnen. Na-
tiirlich kénnte man die dargestellte Modifikation auch auf andere Grade verallgemeinern.
Aus Platzgriinden und weil diese Art der Losung des ,Problems mit dem Rand“ fiir unse-
ren Algorithmus nicht verwendet wird, verzichten wir auf eine tiefer gehende Analyse dieser
Lésungsmoglichkeit.

Die zweite, sozusagen ,billigere* Losung, die wir aus Griinden der Einfachheit im Folgen-
den verwenden werden, besteht in der Forderung an die gegebenen Daten, dass auch aufserhalb
des Gebiets, auf dem der resultierende Quasi-Interpolant definiert ist, Daten gegeben sind.
Diese Erweiterung des Definitionsbereichs der Daten erfolgt genau so weit, dass die Funktio-
nale des Quasi-Interpolationsoperators, die Funktionswerte aufferhalb von D bendtigen, diese
auch bekommen. Genauer wird auch dies im nichsten Abschnitt formuliert.

18

3.3 Spline-Approximation durch Quasi-Interpolation

2
b—2,h
D
A 5 A A
—2h -h 0 h 2h 3h
2
b—l,h
D
A s A A
—2h -h 0 h 2h 3h
2
bO,h
D
—2h -h 0 h 2h 3h

Abbildung 3.3: erste drei modifizierte Funktionale mit Stiitzstellen und entsprechenden B-
Splines des Quasi-Interpolationsoperators aus Beispiel 3.4 flir n = 2

3.3.2 Formulierung des Approximationsproblems und der Losung

Die beiden eben erwdhnten kleineren Schwierigkeiten gehen direkt schon in die Formulierung
des zu losenden Approximationsproblems ein. Aus Griinden der Verstédndlichkeit gehen wir
dabei von derselben Gitterweite und demselben Grad in beiden Dimensionen aus. Es ist
jedoch nicht schwierig, den vorgestellten Algorithmus auf beliebige Gitterweiten h = (hy, h2)
mit h, = 1/H, und H, € Nund Grade n = (n1,n2) mit n, € N, v = 1,2, zu verallgemeinern.

Definition 3.10 (Approximationsproblem). Gegeben seien die Gitterweite h := 1/H > 0
mit H € N, der Grad n € N und die Daten

(ZL‘LZ', l’27i) € [—Th, 1+ Th]2, fz € R, 7= 1, oo, m, (3.33)
mit
r1:=[n/2], re:=n, ri=11+79, (3.34)

so dass sich in jedem Gitterquadrat mindestens ein Datenpunkt befindet, das heifst, fiir alle
(i1,d2) € {—r,...,H+7r—1}? gibt esein i € {1,...,m} mit

(21,i,@2,) € [i1,%1 + 1)h X [ig,i2 + 1)h. (3.35)

Dabei zdhlen wir Punkte auf dem rechten oder oberen Rand als noch zum letzten Gitterqua-
drat gehorend, das heikt, fiir i1 = H + 7 — 1 bzw. 19 = H +r — 1 ersetzen wir das linke bzw.
rechte Intervall durch die abgeschlossene Version.

Gesucht ist eine bivariate Spline-Approximation

p=" abi, € Sp(D) (3.36)
k~D

auf dem Einheitsquadrat D = [0, 1]2, die aus den Daten mit lokaler Polynom-Approximation
und Quasi-Interpolation ermittelt wird. O

19

3 Quasi-Interpolation und lokale Polynom-Approximation

Zunichst einmal ist klar, dass die Einschrankung der Daten auf das erweiterte Einheits-
quadrat [—rh, 1 + rh]? keine Beschréinkung der Allgemeinheit darstellt, denn andere Daten
lassen sich einfach auf dieses Quadrat skalieren — am Ende muss man natiirlich die Spline-
Approximation p aus (3.36) entsprechend zuriickskalieren.

Die beiden Zahlen r; und r9 stellen die Anzahl der vom Algorithmus auflerhalb des
Gebiets D = [0, 1] zusitzlich benétigten Gitterquadrate dar. Zuniichst einmal verwendet die
lokale Polynom-Approximation zur Berechnung eines Gitterpunkts fiir n gerade genau (n+1)>
Gitterquadrate mit dem Gitterquadrat in der Mitte, das den zu berechnenden Gitterpunkt
enthélt. Das ergibt dann in jede Richtung n/2 zusitzliche Gitterquadrate. Im ungeraden Fall
bendtigen wir immer noch mindestens (n + 1)? Gitterquadrate, allerdings ist die Situation
hier asymmetrisch. Damit das Gitterquadrat mit dem zu berechnenden Gitterpunkt immer
noch in der Mitte liegt, verwenden wir stattdessen (n + 2)? Gitterquadrate, wir tun also so,
als wire der Grad um eins grofer. Fiir beide Fille (n gerade und n ungerade) ergeben sich
also 1 = [n/2] zusatzliche Gitterquadrate in jede Richtung.

Wie oben in Abschnitt 3.3.1 bemerkt, bendtigt aber auch die Quasi-Interpolation bis
zu r9 = n zusitzliche Funktionswerte aufserhalb des Gebiets, auf dem der Quasi-Interpolant
definiert ist. Insgesamt brauchen wir also r = 7 + 1o zusitzliche Gitterquadrate in jede
Richtung.

Der Algorithmus zur Bestimmung der Spline- Approximation ist aus diesen Bemerkungen
vielleicht schon ersichtlich, wir formulieren ihn als Ergebnis dieses Kapitels wie folgt:

Algorithmus 3.11 (Algorithmus zur Bestimmung der Spline-Approximation). Gegeben sei
das Approximationsproblem aus Definition 3.10. Daraus bestimmen wir die bivariate Spline-
Approximation p aus (3.36) wie folgt:

(a) lokale Polynom-Approzimation: Fiir alle (i1,i2) € {—7r2,..., H +re — 1}? wiihle jeweils
alle Punkte aus den Gitterquadraten aus (im Sinne von Definition 3.10), die die Indizes
(J1,72) € {in—r1,...,i1+r1} x{ia—r1, ..., i2+71} besitzen. Es sei P(iy,in) das bivariate
Polynom, das diese Punkte geméf (3.28) approximiert. Definiere

F(lir + 1/2)h, (12 + 1/2)R) 1= pgs oy (G + 1/2)h, (12 + 1/2R) (3.37)
als den Wert des Gitterpunkts an der Position ((i1 + 1/2)h, (i2 + 1/2)h).

(b) Quasi-Interpolation: Es sei
Q: (D) = Si(D), [Qf = (Qrbis, (3.38)
k~D

der bivariate Quasi-Interpolationsoperator, der durch Verwendung von Beispiel 3.4 mit
Grad n in beiden Koordinaten hervorgeht. Dann ist

p=Qf, (3.39)
wobei obige bei (a) definierten Daten bei der Berechnung der Koeffizienten von Q f
verwendet werden. O

Nlustrationen und weitere Erkldrungen zur Funktionsweise des Algorithmus finden sich
im néchsten Kapitel 4.

20

4 Implementierung

Ziel dieses Kapitels wird es sein, die Verwendung und die Eigenschaften der auf der bei-
gelegten CD-ROM in MATLAB vorliegenden Implementierung des Algorithmus zur Spline-
Approximation unregelmifig verteilter Daten zu erkldren. Dabei werden wir nur auf die
Implementierung des grundlegenden Algorithmus 3.11 eingehen. Den Algorithmus, der als
Anwendung FE-Gewichtsfunktionen approximiert, werden wir separat im néichsten Kapitel 5
erlautern.

Zunichst erkldren wir in Abschnitt 4.1 den grundlegenden Aufbau der Programme sowie
deren Aufruf anhand von Beispielen. In Abschnitt 4.2 werden wir den Algorithmus auf reale
Daten anwenden und somit seine Praxistauglichkeit testen. Schliefslich werden wir in Ab-
schnitt 4.3 numerische Eigenschaften des Algorithmus untersuchen, zum Beispiel Konvergenz
oder Zeitbedarf.

Eine Ubersicht der auf der CD-ROM enthaltenen Dateien befindet sich in Anhang A.

4.1 Aufbau und Aufruf der Programme

4.1.1 Allgemeines

Die auf der CD-ROM befindliche Implementierung wurde mit der zum Zeitpunkt der Fertig-
stellung dieser Arbeit neuesten verfiigharen MATLAB-Version R2012a (7.14.0.739) program-
miert. Beim zugrunde liegenden Betriebssystem handelt es sich um ein 64-Bit-Linux-System
mit Ubuntu 12.04. Es waren zwar alle MATLAB-Toolboxes verfiighar, jedoch wurde dar-
auf geachtet, dass das Programm auch auf einem System lduft, auf dem nur das MATLAB-
Basisprogramm installiert ist. Des Weiteren sollte das Programm ohne Schwierigkeiten zudem
mit dlteren MATLAB-Versionen und auf anderen Betriebssystemen (wie Windows) laufen.

Konkrete Laufzeiten fiir einzelne Testlaufe wurden auf einem zum Zeitpunkt der Fer-
tigstellung dieser Arbeit durchschnittlichen Computer mit Vierkernprozessor (Intel Core 2
Quad Q8200, 4 x 2,33 GHz) und 4 GB Arbeitsspeicher gemessen.

Die MATLAB-Programme sind in sog. Paketen (packages) gegliedert, was Namens-
konflikte vermeidet und die Wiederverwendbarkeit in anderen Programmen verbessert. Das
Hauptpaket trédgt den Namen ScatteredData. Darunter befinden sich verschiedene Unter-
pakete, davon sind am wichtigsten ScatteredData.SplineApproximation und ScatteredData.
WeightFunctions. Zur Verwendung wechselt man in das Elternverzeichnis von +ScatteredData
oder man bindet das Elternverzeichnis in den MATLAB-Pfad ein.

Eine Ubersicht der vorhandenen Pakete erhiilt man wie iiblich mit help ScatteredData.
Der Quellcode ist mit ausfiihrlichen Hilfetexten und Kommentaren versehen.

Das Programmpaket besitzt globale Optionen, die sich mit den Routinen ScatteredData.
change_settings und ScatteredData.print_settings dndern bzw. ausgeben lassen. Die ver-
fligharen Optionen use_mex und print_status_messages beeinflussen die Verwendung von
MEX bzw. die Ausgabe von Statusmeldungen bei der Berechnung.

21

4 Implementierung

4.1.2 Beispieldaten

In diesem Abschnitt werden wir die Funktionsweise der Programme anhand eines Beispiels
mit fiktiven Daten erkldren. Dazu wurden als Grundlage die sog. Halton-Punkte ausgewihlt,
die zunéchst in [12] definiert wurden. Im eindimensionalen Fall heifit die entsprechende Folge
van-der-Corput-Folge (¢p(n))nen,. Sie ldsst sich folgendermafen herleiten: Man wéhlt eine
feste Basis b € N. Um ¢p(n) fiir n € Ny zu berechnen, schreiben wir zundchst n zur Basis
b, d.h. n = 3" nib" = (ny, -+ -ning)p. Dann ist ¢p(n) == > n;b~""1, wir drehen also
(N, - - n1ng)p um und lesen die entstehende Zahl als Nachkommaanteil. Eine mehrdimensio-
nale Verallgemeinerung erhalten wir, indem wir einen Vektor (pp, (n),...,¢p,(n)) € [0,1)4
mit paarweise verschiedenen Basen b, bilden. In der Praxis werden meist die ersten d Prim-
zahlen verwendet. Eine solche Folge wird Halton-Folge genannt. Sie hat den Vorteil, dass
sie im Gegensatz zu pseudozufilligen Punkten das Einheitsquadrat gleichméfig gut abdeckt,
einfach zu berechnen und deterministisch ist, das heifst, hintereinander ausgefiihrte Aufrufe
ergeben dieselben Punkte.

Ein Befehl zur Generierung von Halton-Punkten befindet sich zwar in MATLAB, al-
lerdings nur in der Statistics Toolbox. Weil im Rahmen der vorliegenden Implementierung
auf externe Toolboxes bewusst verzichtet wird, wurde eine eigene Version implementiert, die
vom Programmpaket ,Stochastic Simulation in Java“! stammt, das unter der GPLv3-Lizenz?
verfiigbar ist. Der dort verwendete Algorithmus basiert auf einer anderen Berechnungsweise,
die in [27] beschrieben wird, und ist sowohl hinsichtlich Genauigkeit als auch Schnelligkeit
mit der MATLAB-Version vergleichbar. Die Erzeugung von Halton-Punkten erfolgt mit

X = ScatteredData.Halton.gen_points(n, d, b),

wobei n die Anzahl der Halton-Punkte, d die Anzahl der Dimensionen und b einen Vektor
bezeichnet, der die d-vielen Basen enthilt (fiir d < 3 kann b weggelassen werden).

Die Halton-Punkte geben nur die Position der Datenpunkte im Einheitsquadrat wieder,
allerdings nicht deren Funktionswerte. Um diese zur Verfiigung zu stellen, existieren eben-
falls viele Moglichkeiten. Aufgrund ihrer Omniprésenz in wissenschaftlichen Artikeln iiber
das tibergeordnete Themengebiet (z. B. [19, 28]) wird hier die bekannte Franke-Testfunktion
ScatteredData.Halton.franke verwendet, die zuerst in [10] auf [0, 1] definiert wurde:

(9x—2)2+(9y—2)2> +§ <_(9x+1)2 B 9y+1>

Fla,y) = 3exp(—

4 1 3P 19 10 o
x—T7)>2 —3)2 '
— Sexp(—(0r — 47— (99— 7)) + Jenp(- TN,

Das im Folgenden verwendete Beispiel example_halton, nidmlich die Kombination von
Halton-Punkten mit der Franke-Testfunktion, kann mit der Demonstration

ScatteredData.Halton.demo()

nachvollzogen werden, wobei Einstellungen von diesem Programm interaktiv durch den Be-
nutzer getitigt werden. Das Programm example_halton verwendet dabei die Standardwerte,
d.h. H = 10 Gitterzellen pro Koordinatenrichtung in [0,1]%, ¢ = 2 Halton-Punkte pro Git-

LURL: http://www.iro.umontreal.ca/~simardr/ssj/indexe.html
2URL: http://www.gnu.org/licenses/gpl.txt

22

http://www.iro.umontreal.ca/~simardr/ssj/indexe.html
http://www.gnu.org/licenses/gpl.txt

4.1 Aufbau und Aufruf der Programme

0.5

0.5 1 af b

. 1)
0 05 X, 1 0.5

(@) Halton-Punkte auf [—rh, 1 + rh)]> (b) Werte der Franke-Testfunktion an den Punkten

Abbildung 4.1: (¢ - (H + 2r)?)-viele Halton-Punkte und Werte der Franke-Testfunktion

terzelle, Grad n = 2, die Funktion fun = @ScatteredData.Halton.franke und sd = 0 (keine
Addition von zufélligen Fehlern).

Abbildung 4.1 zeigt die entstehenden Datenpunkte. Gemé&f Definition 3.10 werden auch
aukerhalb des Einheitsquadrats [0, 1]?, auf dem die Spline-Approximation am Ende definiert
sein wird, Datenpunkte benétigt (auf r zusétzlichen Gitterquadraten in jede Richtung).

4.1.3 Ermittlung der Gitterweite

Bei realen Daten (siehe Abschnitt 4.2) wére es laut Definition 3.10 zundchst notwendig,
eine Gitterweite h = 1/H mit H € N zu bestimmen, so dass sich in jedem Gitterquadrat
mindestens ein Datenpunkt befindet. Dies kann mit der Funktion

H = ScatteredData.SplineApproximation.get_opt_grid(X, n)

erledigt werden, wobei sich die Daten X im Einheitsquadrat [0,1]? befinden miissen. Das
Programm ermittelt durch heuristische bindre Suche einen im Allgemeinen akzeptablen Wert
fiir H, der allerdings nicht optimal sein muss (in dem Sinne, dass es kein groferes H* > H
gibt, so dass obige Bedingung ebenfalls erfiillt ist), siehe auch Abbildung 4.2. Der Aufruf

H = ScatteredData.SplineApproximation.get_opt_grid(X, n, ’'strict’)

bewirkt dagegen die Optimalitit des zuriickgegebenen H.

In unserem ,kiinstlichen* Beispiel sind die Punkte schon so von vorneherein konstruiert,
dass sich fiir beliebiges, gegebenes H in jedem Gitterquadrat mindestens ein Datenpunkt
befindet — somit entfallt dieser Schritt bei ScatteredData.Halton.demo().

4.1.4 Berechnung der Spline-Approximation
Die eigentliche Erstellung der Spline-Approximation erfolgt durch

[p, Y] = ScatteredData.SplineApproximation.make(X, f, H, n).

23

4 Implementierung

opt

100 120 140 160 180 200 220 240 260

Abbildung 4.2: Funktionsweise von get_opt_grid am Beispiel von 200000 Halton-Punkten.
Die schwarzen Punkte auf der Zahlengerade reprisentieren die moglichen Wer-
te fiir H und die verschieden hellen, ineinander verschachtelten Rechtecke
stellen die durch die binére Suche durchsuchten Intervalle dar. Der am Ende
zuriickgebene Wert H unterscheidet sich etwas vom optimalen Wert Hop, der
beim Aufruf mit 'strict’ zuriickgegeben wird.

X = (21,4, %24)mx2 und f = (f1,... , fm)T enthalten die Daten und H und n bestimmen die
Gitterweite h = 1/H bzw. den Approximationsgrad n. ScatteredData.SplineApproximation.
make fiihrt eigentlich nur zwei Zeilen aus:

Bei der ersten Zeile

Y = ScatteredData.SplineApproximation.gen_grid_data(X, f, H, n)

handelt es sich um den ersten Schritt in Algorithmus 3.11, die Generierung der Gitterda-
ten durch lokale Polynom-Approximation. Zuerst werden dabei die Daten in die Gitterzellen
sortiert, das heifst, fiir jeden Datenpunkt (1, 2,;) werden die Indizes des Gitterquadrats be-
rechnet, in dem sich der Punkt befindet. Bei diesem Vorgang werden auch diverse Validierun-
gen vorgenommen, zum Beispiel, ob sich alle Daten im Quadrat [—7h, 1+7h]? befinden und ob
jedes Gitterquadrat mindestens einen Datenpunkt enthélt. Wie es schon in Algorithmus 3.11
beschrieben wird, wird anschliefend fiir jedes Gitterquadrat Polynom-Approximation mit den
relevanten Punkten durchgefiihrt. Dazu werden die mdéglichen Monome in diesen Punkten
ausgewertet und die Koeffizienten des bivariaten Polynoms mittels des Backslash-Operators
ermittelt.

In Abbildung 4.3b ist das Ergebnis fiir unser Beispiel example_halton abgebildet, zur
Veranschaulichung zusammen mit der Franke-Testfunktion. In Abbildung 4.3a sieht man, fiir
welche Gitterquadrate geméaf Algorithmus 3.11 lokale Polynom-Approximation durchgefiihrt
wurde: Auf jeder Seite bleibt ein Rand von r; Gitterquadraten frei. Zugleich sind in dieser
Abbildung als Beispiel die Datenpunkte aus den (2rs 4 1)2-vielen Gitterquadraten hervorge-
hoben, die bei der lokalen Polynom-Approximation fiir das Gitterquadrat mit Index (0, —1)
relevant sind (zu den Indizes siehe Algorithmus 3.11).

Der zweite Schritt, der durch ScatteredData.SplineApproximation.make umgesetzt wird,
ist die Quasi-Interpolation, die mittels

p = ScatteredData.SplineApproximation.quasi_interp(Y, H, n)

durchgefiihrt wird. Die Funktion bendtigt die Punkte Y aus dem vorherigen Schritt und
gibt die Spline-Approximation p als Struktur in einem Format zuriick, das schon in der von
Jorg Horner entwickelten Funktion ScatteredData.SplineUtil.spl_eval_matlab (urspriing-
lich spl_eval) verwendet wird. Hauptséchlich besteht der Aufwand fiir ScatteredData.Spline
Approximation.quasi_interp natiirlich darin, die Kontrollpunkte des Splines geméf Definiti-
on 3.5 zu berechnen. Als univariate Gewichte werden die Gewichte von Beispiel 3.4 in Tabel-
le 3.1 verwendet, die fiir n = 1,...,4 eingespeichert sind. Fiir n > 5 werden sie dynamisch

24

4.1 Aufbau und Aufruf der Programme

X2
s x [x x x x x| x x| x]x]x]x
s x [x I xx I x x| x|x]x]x
1) xx [x [x [x x> x]x]x]|x[x]x
XIXEX|IX|X|IX[X|X]|X|X|X|XFIX]|X
) [[x P x x| x| s x| x| x]x]x
) xPx x x x x> [x x| x[x]x
) xPx x x x x> [x x| x[x]x
0.5) xPx x x x x> [x x| x[x]x
) xPx x x x x> [x x| x[x]x
XIXEX|IX|X|IX[X|X]|X|X|X|XFIX]|X
) xPx x x x x> [x x| x[x]x
x o L] x [x [x [x [x| x [x [x]x|x
0)P oo] x [x [x [x| x[x]|x]x]|x]x
) o] %P2 x| x [x| x| x]x]x|x]x]|x
0 05 1

1

0.5

0 %
1 0.5

(@) Draufsicht mit relevanten Punkten fiir (b) durch lokale Polynom-Approximation erzeugte
das Gitterquadrat mit Index (0, —1)

Punkte zusammen mit Franke-Testfunktion

Abbildung 4.3: Ergebnis nach der lokalen Polynom-Approximation

1.2

Abbildung 4.4: Ergebnis der Spline-Approximation fiir example_halton

als Losung des zugehorigen LGS (3.12) berechnet, wobei solch hohe Approximationsgrade in
der Praxis selbstverstédndlich nur selten eingesetzt werden.

Abbildung 4.4 (oder auch das Titelbild, blof ohne Beschriftungen und aus einer anderen

Perspektive) zeigt die resultierende Spline-Approximation fiir das Beispiel mit den Halton-
Punkten und der Franke-Testfunktion. Man sieht, dass sich der Definitionsbereich des Splines
auf [0, 1]? erstreckt, genau so, wie es von uns beabsichtigt war.

25

4 Implementierung

4.1.5 Evaluation und Visualisierung

Zur Evaluation des Splines steht die Funktion
e = ScatteredData.SplineUtil.spl_eval(p, t)

zur Verfiigung. Bei aktivierter Option use_mex (sieche Abschnitt 4.1.1), die standardméfig
eingeschaltet ist, wird eine in C++ implementierte Version des Algorithmus von de Boor
(siehe Algorithmus 2.7) via MEX aufgerufen, die aufgrund Multithreading auf Mehrkern-
prozessoren einen deutlichen Geschwindigkeitsvorteil erbringt. Binaries (fertig kompilierte
Binérdateien) stehen fiir 64-Bit-Linux und 64-Bit-Windows zur Verfiigung. Falls Multithrea-
ding nicht erwiinscht oder die Multithreading-Bibliothek pthread.h nicht verfiigbar ist, kann
in der Quellcode-Datei ganz oben die Zeile #define SPL_EVAL_MEX_MULTITHREADING auskom-
mentiert werden. Dort kann auch die Anzahl der Threads eingestellt werden.

Wenn die Option use_mex deaktiviert ist, dann wird die weiter oben erwdhnte Routine
ScatteredData.SplineUtil.spl_eval_matlab von Joérg Horner verwendet.

Die Visualisierung des entstehenden Splines geschieht durch

ScatteredData.SplineApproximation.visualize(X, f, H, n, p, Y).

Das Ergebnis sieht dann so dhnlich aus wie in Abbildung 4.4.

4.2 Beispiele aus der Wirklichkeit

Nach der Erklarung der Funktionalitit des Programms folgen nun ein paar Illustrationen mit
realen Daten. Alle Darstellungen sind zur besseren Veranschaulichung stark iiberhoht.

Beispiel 4.1. Abbildung 4.5a zeigt 2590 Datenpunkte aus der Bathymetrie (Topografie von
Meeresbdden) eines ca. 58km x 36km = 2088km? grofien Gebiets vor der amerikanischen
Meereskiiste von Texas, ungefdhr 300 km siidéstlich von Houston. Die Daten sind vom Stand
von 1994 und stammen vom Tezas General Land Office (GLO), wobei die Koordinaten auf
Daten der National Oceanic and Atmospheric Administration (NOAA) basieren. Sie wur-
den vom Internetprojekt Koordinates® aufbereitet und stehen unter der Creative-Commons-
Attribution-3.0-Lizenz*. Die Daten wurden auf das Quadrat [—rh, 1+7h]? mit A = 1/22 und
n = 2 transformiert. Die Farbe in den Abbildungen 4.5a und 4.5b und die Werte der ver-
tikalen Achse in Abbildung 4.5b, die die resultierende biquadratische Spline-Approximation
zeigt, entsprechen der Tiefe unter dem Meeresspiegel in Metern. O

Beispiel 4.2. In Abbildung 4.6a sieht man 5802 Datenpunkte aus dem in der Literatur (sie-
he zum Beispiel [8, 19, 28|) bekannten, im Internet verfiigharen® ,Gletscher“-Datensatz vol87
von Richard Franke. Die Farbe bzw. vertikale Koordinate in Abbildung 4.6b gibt die Hohe
an, wahrscheinlich in Metern. Wie aus Abbildung 4.6a ersichtlich ist, liegen die Daten als Iso-
hypsen (Linien gleicher Hohe) im Abstand von 25m vor. Leider ist nicht mehr bekannt, z. B.
wo der Gletscher liegt, wann und wie die Auswertung erfolgte oder wie grofs das betrachtete
Gebiet ist. Abbildung 4.6b zeigt die biquadratische Spline-Approximation mit A = 1/10 und
Hohenlinien im Abstand von 50 m. O

3URL: http://koordinates.com/layer/786- texas- bathymetry- 1994/
AURL: http://creativecommons.org/licenses/by/3.0/
SURL: http://personal.strath.ac.uk/oleg.davydov/Franke_test_data/README

26

http://koordinates.com/layer/786-texas-bathymetry-1994/
http://creativecommons.org/licenses/by/3.0/
http://personal.strath.ac.uk/oleg.davydov/Franke_test_data/README

4.2 Beispiele aus der Wirklichkeit

X
2 3 LT O S O0TH BT AN

M QR RATS Y EUHR R
1fe s NI T A A e S S -6

HAX ¥R A Gk s

1o A EL M OMRT N M)
a:.""!;;. P 2 o -3.. - -8

[. *a%]° jo Jools 9%

r: Pob_d o 4 o 40|

i 4 tis ¥
ONA ORI, * T -10

Gk ANORRRELZN apeise e

05 UK BN IR KRR X q 0 TOA
B 33 KT Ak 2N R -12
et a3 Jae -14

K A !}"ﬁ

fo H .o .'
o o T 2% -16

b Ch/ Pol b ool o ok

Ot D S S EMAE S R R AR A GunE
T T b b rotage e Er -18

0 0.5 1 x m

1
(@) Position der Datenpunkte in der Draufsicht

10
(b) Ergebnis der Spline-Approximation

Abbildung 4.5: Bathymetrie eines Ausschnitts des Meeresbodens vor der Kiiste von Texas

X

2 2000
T 1900

1 =
\ 1800

e Y
| l‘ 1700

0.5 \ !

AL o ot

7 :I\ \‘ 1600

W Y
: 1500
0 ALY \ 1400

\‘-'k
A R 1300
0 0.5 1 X, m

(a) Position der Datenpunkte in der Draufsicht

1800
1700
1600
1500+
1400+

10
(b) Ergebnis der Spline-Approximation

Abbildung 4.6: Hohenpunkte eines Gletschers

T 280

| e 260

240

220

0.5

1 200

al 180

160

140

; 120
1 m

Xl
(@) Position der Datenpunkte in der Draufsicht

0 0.5

11
(b) Ergebnis der Spline-Approximation

Abbildung 4.7: Hohenpunkte aus dem George Denton Park nahe Wellington, Neuseeland

27

4 Implementierung

Tabelle 4.1: maximaler bzw. mittlerer absoluter Fehler e;, bzw. €;, und maximaler bzw. mitt-
lerer relativer Fehler e, bzw. g, fiir obige Beispiele (gerundet)

Fehlerart Texas Gletscher Wellington
en 2,84m 37,98 m 3,58 m
€n 0,42m 5,10m 0,36 m
€n 3,67% 2,08 % 2,58 %
En 2,09 % 0,33 % 0,19%

Beispiel 4.3. Als abschliefsendes Beispiel sind in Abbildung 4.7a 19293 Héhenpunkte aus
dem siidwestlich an die neuseeldndische Hauptstadt Wellington direkt angrenzenden Geor-
ge Denton Park zu sehen. Die Daten sind vom Stand von 2009 und wurden mittels Lidar
(light detection and ranging), einer dem Radar verwandten Methode zur Entfernungsbestim-
mung, und Fotogrammetrie ermittelt und durch den Stadtrat von Wellington (Wellington
City Council (WCC)) verdffentlicht. Der vorliegende Ausschnitt der Héhenlinien, die mit
nur 1 m Abstand sehr genau sind, ist in der Realitit ca. 335 m x 445m = 14,9 ha grof. Die-
se Daten wurden ebenfalls vom Internetprojekt KoordinatesS aufbereitet und stehen unter
der Creative-Commons-Attribution-3.0-Neuseeland-Lizenz’. Die Anzahl der Gitterquadrate
pro Dimension in [0, 1]> wurde optimal gewihlt (siehe Abschnitt 4.1.3) und ist mit H = 39
der guten Aufldsung der Daten entsprechend hoch. In Abbildung 4.7b ist das Ergebnis der
biquadratischen Spline-Approximation mit Hohenlinien im Abstand von 20m sichtbar. ¢

4.3 Numerische Aspekte

4.3.1 Genauigkeit

In Tabelle 4.1 sieht man den maximalen und den durchschnittlichen absoluten und relativen
Fehler der Beispiele aus dem vorherigen Abschnitt, jeweils ausgewertet an allen zu approxi-
mierenden Punkten in [0, 1]2.

Man kann erkennen, dass eine kleinere Gitterweite bei verschiedenen Daten nicht un-
bedingt zu einem kleineren Fehler fiithrt. Beispielsweise ist der Fehler beim Beispiel , Texas*
grofer wie beim Beispiel ,Gletscher”, obwohl beim einen Beispiel H = 22 und beim ande-
ren H = 10 gewdhlt wurde. Dies hat einfach damit zu tun, wie fein die Datenpunkte im
Verhiltnis zu den feinen Strukturen im Geldnde aufgelost sind. Das Beispiel ,, Texas” enthilt
starke Geldndeschwankungen, die aber nur durch wenige Punkte sichtbar sind. Der Verlauf
des Gletschers ist dagegen glatter und die Daten besitzen eine hohere Auflésung. Die Ge-
nauigkeit hdngt also im Wesentlichen von der Komplexitiat der betrachteten Daten sowie von
deren Auflésung ab.

Insgesamt lasst sich jedoch sagen, dass die Genauigkeit des Verfahrens recht gut ist,
besonders, wenn wir die mittleren relativen Fehler fiir den Gletscher und fiir Wellington
betrachten.

SURL: http://koordinates.com/layer/1479-wellington-city-1m-contours-2009/
"URL: http://creativecommons.org/licenses/by/3.0/nz/

28

http://koordinates.com/layer/1479-wellington-city-1m-contours-2009/
http://creativecommons.org/licenses/by/3.0/nz/

4.3 Numerische Aspekte

log 10 &h

6
Iog2 H

Abbildung 4.8: doppeltlogarithmischer Plot des maximalen absoluten Fehlers

Tabelle 4.2: numerische Konvergenzraten (gerundet)

Konvergenzraten

0,3684 1,3205 1,9166 1,7762 1,9832 1,9699 2,0031 1,9676
1,9937 2,3187 3,2701 3.4545 24765 3,1499 2,9578 3,0927
1,3131 1,9934 29270 3,7701 3,8943 3,9607 3,9940 4,0056
2,0779 2,5084 4,5660 54593 50032 53473 5,0443 4,4441

AW N~ S

4.3.2 Konvergenz

Abbildung 4.8 zeigt den maximalen absoluten Fehler ey, der sich durch Ausfiihrung von
ScatteredData.Halton.demo mit unterschiedlichen Gitterweiten h = 1/H und Approxima-
tionsgraden n ergibt (mit ¢ = 2, fun = @ScatteredData.Halton.franke und sd = 0). Der
Fehler ist jeweils an den Halton-Punkten gemessen. In Tabelle 4.2 sieht man die entspre-
chenden numerischen Konvergenzraten, also die Zweierlogarithmen log, ei’;Q der Quotienten
eines Fehlers mit dem Fehler bei halber Gitterweite. Sie liefern einen Anhaltspunkt fiir die
tatsdchliche Konvergenzrate ¢, mit der e, < ch? gilt, und entsprechen den unterschiedlichen
Steigungen in der Abbildung.

Aus der Abbildung ist ersichtlich, dass das Verfahren fiir diese Daten tatséchlich kon-
vergiert. Tabelle 4.2 zeigt, dass sich die Konvergenzrate auf n + 1 einpendelt. Es handelt
sich dabei um die Ordnung, die von Satz 3.7 vorausgesagt wird. Natiirlich berticksichtigt der
Satz den Fehler der lokalen Polynom-Approximation nicht, aber wenn die Punkte nicht allzu
ungiinstig liegen und die Datenpunkte wie hier einer Funktion entsprechen, die lokal wie ein
Polynom ,aussieht”, dann ist der Einfluss des Fehlers der lokalen Polynom-Approximation
nicht sonderlich grof.

Dass bei sehr kleiner Gitterweite h der Fehler insbesondere fiir grofere Grade (hier bei
n = 4 zu sehen) wieder langsamer konvergiert, liegt daran, dass in diesem Bereich Rundungs-
fehler eine immer grofere Rolle spielen. In unserem Beispiel bei n = 4 und H = 2'° muss
fiir jeden zu generierenden Gitterpunkt das Residuum eines LGS mit einer (50 x 25)-Matrix
minimiert werden, deren Eintrige aufgrund der hohen Monom-Potenzen sehr klein sind (bis
1073°). Dementsprechend gibt MATLAB viele Warnungen der Form ,,rank deficient* aus.

29

4 Implementierung

Tabelle 4.3: Ausfithrungszeiten (gerundet)

logo H 2 3 4 5 6 7 8 9 10

gen_grid_data 0,01s 0,02s 0,04s 0,11s 0,34s 1,29s 4,94s 19,1s 76,0s
quasi_interp 0,00s 0,00s 0,01s 0,02s 0,06s 0,15s 0,55s 1,85s 6,64s
spl_eval 0,01s 0,01s 0,03s 0,07s 0,22s 0,97s 4,59s 24,2s 144s
insgesamt 0,02s 0,03s 0,08s 0,19s 0,62s 241s 10,1s 452s 227s

-=x-gen_grid_data
-+ -quasi _interp
—e—spl _eval

—6— insgesamt

6
Iog2 H

Abbildung 4.9: doppeltlogarithmischer Plot der Ausfiihrungszeiten

4.3.3 Geschwindigkeit

Zum Abschluss des Kapitels wollen wir die Geschwindigkeit der vorliegenden Implementie-
rung betrachten. In Tabelle 4.3 und Abbildung 4.9 sieht man die Ausfithrungszeiten von
ScatteredData.Halton.demo mit Parametern wie eben, aufgeschliisselt in die einzelnen Ab-
schnitte gen_grid_data, quasi_interp und spl_eval. Die letzte Funktion ist die Auswertung
der Spline-Approximation auf einem Gitter mit einem Fiinftel der urspriinglichen Gitterweite
(z.B. fiir ein eventuelles Plotten).

Am meisten Zeit bendtigen die Generierung der Gitterdaten und die Auswertung des
Splines. Wir kénnen anhand der Zeiten erkennen, dass gen_grid_data in der Zeit O(H?)
arbeitet (Anzahl der Gitterpunkte steigt quadratisch). quasi_interp arbeitet ungefihr in
O(H'8%) (dem Algorithmus nach eigentlich in O(H?), aber MATLAB scheint den Code zu
beschleunigen), bei spl_eval ist die Zeitkomplexitit aus den Daten nicht ersichtlich (eigent-
lich O(H?), evtl. verlangsamen Speicherallokationen die Ausfiihrung).

An dieser Stelle sei angemerkt, dass die Implementierung mit Hilfe des MATLAB-
Profilers auf Geschwindigkeit optimiert wurde. Zum Beispiel konnte gen_grid_data durch
schnellere Bestimmung der fiir einen Gitterpunkt relevanten Datenpunkte um gleich mehrere
Grofsenordnung beschleunigt werden. Einen weiteren Vorteil bietet die weiter oben erklirte
Spline-Auswertungs-Funktion spl_eval, die (die richtige Einstellung von use_mex vorausge-
setzt) mittels MEX eine parallelisierte Version des Algorithmus von de Boor in C++ aufruft.

Wir halten abschlieftend fest, dass der Algorithmus fiir ,normale” Gitterweiten h eine
durchaus ordentliche Geschwindigkeit besitzt.

30

5 Anwendung bei Gewichtsfunktionen fiir
Finite Elemente

In diesem letzten Kapitel werden wir als Anwendung des Algorithmus die Approximation von
Gewichtsfunktionen fiir Finite Elemente betrachten. Die Natur und den Zweck dieser Ge-
wichtsfunktionen werden wir zunéchst in Abschnitt 5.1 erkldren. Anschliefend folgt, &hnlich
wie im vorherigen Kapitel, in Abschnitt 5.2 eine Beschreibung des Aufbaus und der Art des
Aufrufs der Programme auf beiliegender CD-ROM. Zum Schluss werden wir in Abschnitt 5.3
kurz die Genauigkeit und die Geschwindigkeit des Algorithmus untersuchen.

5.1 Motivation

5.1.1 Finite Elemente

Die Methode der Finiten Elemente (FE) ist eine Methode zur Ldsung von sog. partiellen
Differentialgleichungen (DGL). Diese tauchen besonders hiufig in der Physik auf, kommen
aber auch in anderen Naturwissenschaften wie Chemie und Biologie vor. Ein Beispiel ist
die Poisson-Gleichung —Awu = f, mit der die Auslenkung einer am Rand fest eingespannten
Membran beschrieben werden kann, auf die eine bestimmte Kraft wirkt. Ein anderes Beispiel
ist die eindimensionale Wiarmeleitungsgleichung u; = u,,, die als Verallgemeinerung der
Poisson-Gleichung die Temperaturverteilung in einem Stab beschreibt.

Fiir eine Einfiihrung in die FE-Methode sei man auf [13] verwiesen. Einen Uberblick
iiber die verschiedenen Methoden zur Losung von partiellen Differentialgleichungen findet
man in [24].

Zur Motivation der Gewichtsfunktionen verwenden wir das Modellproblem aus [13], die
Poisson-Gleichung mit homogenen Dirichlet-Randbedingungen

—Au=fin D, wu=0aufdD, (5.1)

fiir ein Gebiet D C R™. Durch Multiplikation mit einer sog. Testfunktion v mit v|gp = 0
und partielle Integration erhélt man die schwache Formulierung des Poisson-Problems:

Vo /D<Vu,Vv>:/va, (5.2)

wobei die Testfunktionen v aus einem geeigneten Raum stammen, zum Beispiel aus einem
sog. Sobolev-Raum. Indem man einen geeigneten (endlich-dimensionalen) Teilraum Bj, zur
Approximation verwendet, v durch v, € By, ersetzt und u durch eine Linearkombination

up, = Zukbk (5.3)
k

31

5 Anwendung bei Gewichtsfunktionen fiir Finite Elemente

einer Basis {by }, von By, bestehend aus den sog. Finiten Elementen, approximiert, erhdlt man
ein LGS, das nach den Koeffizienten uj gelost werden kann (Ritz-Galerkin-Approximation).

Der Standard-FE-Ansatz besteht darin, das Gebiet D zu triangulieren und anschliefsend
auf diesen Elementen lineare, quadratische oder kubische Ansatzfunktionen zu definieren.
Allerdings kann die Erzeugung der Triangulierung je nach Komplexitdt des Gebiets mehr
oder weniger diffizil sein. Aus diesem Grund wire es wiinschenswert, eine Basis fiir By, zu
verwenden, die auf einem reguldren Gitter definiert ist. s erscheint zunéchst naheliegend,
aufgrund der vielen guten Eigenschaften, von denen ein paar bereits in Kapitel 2 aufgezéihlt
wurden, eine B-Spline-Basis zu verwenden.

5.1.2 Gewichtsfunktionen

Leider bringen die rechteckigen Trager der Tensorprodukt-B-Splines mehrere Nachteile mit
sich (siehe [13]). Da es B-Splines gibt, deren Triger nur einen kleinen Schnitt mit dem Gebiet
besitzt, treten Stabilitdtsprobleme auf, die mit der Einfiihrung von gewichteten erweiteren
B-Splines (WEB-Splines) gelost werden koénnen (siehe [15]). Ein anderes Problem ist, dass
die B-Splines per se nicht die homogenen Randbedingungen erfiillen.

Eine Losung des zweiten Problems besteht in der Multiplikation

der Basis mit einer gemeinsamen Gewichtsfunktion w, die auf dem Rand verschwindet. In
[13] werden einige Voraussetzungen an Gewichtsfunktionen w der Ordnung v € Ny gestellt:
Danach sollte w(x) u. a. stetig auf D sein und fiir bestimmte Konstanten c1,ca > 0

ad(z) <w(z) < cod(z), d(x):=dist(z,T')7, (5.5)

fiir alle x € D und eine feste Teilmenge I' C 9D erfiillen. Insbesondere ist w im Inneren des
Gebiets D positiv. Fiir die meisten Anwendungen ist v = 1 (Standard-Gewichtsfunktion), in
diesem Fall verschwindet w(z) linear auf dem Rand.

Rvachev entwickelte ab den 1960er-Jahren die Methode der sog. R-Funktionen (Uberblick
siehe [25]). Mehrere vorzeichenbehaftete Gewichtsfunktionen, die im Inneren von D positiv
und aufierhalb von D negativ sind, fiir verschiedene Gebiete kénnen zu einer Gewichtsfunktion
verschmolzen werden, die einem Gebiet entspricht, das durch boolesche Operationen (wie
Komplement und Schnitt) aus den einzelnen Gebieten hervorgeht.

Fiir Gebiete, die durch eine beliebige Kurve begrenzt sind, muss die Gewichtsfunktion
anderweitig konstruiert werden. Die Abstandsfunktion selbst konnen wir in der Praxis nicht
verwenden, weil sie schon fiir einfachste Gebiete unschone ,Knicke* aufweist (siehe Abbil-
dung 5.1). Auferdem ist sie fiir komplexe Gebiete schwierig zu berechnen, theoretisch miisste
man fiir jeden Auswertungspunkt ein nichtlineares Minimierungsproblem lésen.

Eine Losungsmoglichkeit ist folgende Methode, die in [13] beschrieben wird: In einem
kleinen Streifen nahe dem Rand des Gebiets, wo die Abstandsfunktion noch glatt ist, ver-
wenden wir die wahre Abstandsfunktion d(x). Auf dem iibrigen Gebiet wird die konstante
Einsfunktion benutzt, wobei auf dem Randstreifen glatt iiberblendet wird. Das kann durch
folgende Formel bewerkstelligt werden:

w(z) :=1—max(0,1 —d(z)/d)", d(z):=dist(x,T). (5.6)

32

5.2 Aufbau und Aufruf der Programme

(a) Draufsicht (b) Schrigsicht

Abbildung 5.1: Abstandsfunktion fiir eine Ellipse mit dem nicht-differenzierbaren ,Knick“ in
der Mitte. Man erkennt ihn am leichtesten auf der xs-Achse x1 = 0: Dort gilt
trivialerweise d(x1,z2) = 1 — |z2|.

Dabei beeinflussen die Parameter § und v die Breite des Streifens bzw. die Glattheit des
Ubergangs auf dem inneren Rand des Streifens. & sollte nach [13] kleiner als der minimale
Kriimmungsradius und kleiner als die Hilfte der Breite von kleinen Kan#len gewihlt werden
— zu klein sollte § aber auch nicht sein, damit die Gradienten nicht zu groft werden.

Die so definierte Gewichtsfunktion héngt von der Abstandsfunktion d(z) ab. Um w(x)
schnell berechnen zu kénnen, bietet es sich an, d(x) durch eine Spline-Approximation dy,(z)
im Sinne von Definition 3.10 und Algorithmus 3.11 zu ersetzen. Genau das verwirklicht
das in diesem Kapitel vorgestellte Programm fiir durch Spline-Kurven berandete Gebiete.
Programmiertechnisch kénnen wir bei der Berechnung auf das im letzten Kapitel erklirte
Programm zuriickgreifen, die wesentliche Schwierigkeit ist natiirlich die Erzeugung der Daten.

5.2 Aufbau und Aufruf der Programme

5.2.1 Allgemeines

Fiir die Programme fiir die Approximation von Gewichtsfunktionen gilt sinngeméf, was in
Abschnitt 4.1.1 genannt wurde. Die fiir dieses Kapitel relevanten Programme befinden sich
(groftenteils) im Unterpaket ScatteredData.WeightFunctions. Genaue Hinweise zur Benut-
zung erhdlt man, indem man zum Beispiel help ScatteredData.WeightFunctions.gen_data
eintippt. Aukerdem konnten die umfangreichen Kommentare im Quelltext der Programme
bei der Losung von eventuellen Problemen hilfreich sein.

5.2.2 Beispiel und GUI

Wie in Abschnitt 5.1 erklért, erstellt das Programm zu einem Gebiet, das durch eine ge-
schlossene Spline-Kurve p berandet ist, eine durch (5.6) definierte Approximation der Ge-
wichtsfunktion. ,Geschlossen“ heifst dabei, dass p stetig und T-periodisch fiir ein T" > 0 ist,
also p(t + T) = p(¢t) fur alle t € R. Auch rationale Spline-Kurven (eine Erweiterung von
Spline-Kurven) werden unterstiitzt. Bei diesen definiert man zusétzlich zu den zweidimensio-
nalen Kontrollpunkten skalare Gewichte und bildet dann den Quotienten aus dem Spline mit
gewichteten Kontrollpunkten und dem Spline, der nur die Gewichte als Koeffizienten besitzt.

33

5 Anwendung bei Gewichtsfunktionen fiir Finite Elemente

0.8/
0.6¢.

0.47

0.27

0

0 02 04 06 038 1

Abbildung 5.2: Rand des Testgebiets in example_weight_function

Sie ermoglichen eine grofere Gestaltungsfreiheit als nur mit Spline-Kurven: Zum Beispiel
konnen alle Kegelschnitte (bspw. Kreise) durch quadratische, rationale Spline-Kurven exakt
dargestellt werden, was mit herkémmlichen Spline-Kurven nicht moglich ist (siehe [14]).

Das Beispiel, anhand dessen die Funktionsweise der Programme im Folgenden erldu-
tert wird, wird durch das Programm example_weight_function berechnet. Die verwendete
rationale Spline-Kurve vom Grad 3 besitzt sieben unterschiedliche Kontrollpunkte und ist
zusammen mit dem Kontrollpolygon (grau) in Abbildung 5.2 dargestellt.

Gleichwohl wére es ziemlich mithsam, sich die Kontrollpunkte nur im Texteditor zu
iiberlegen — besser wire es, iiber eine grafische Oberfliche die Spline-Kurve mit der Maus zu
zeichnen und durch einen Knopf direkt das Ergebnis zu sehen. Ebendas bewerkstelligt

ScatteredData.WeightFunctions.demo().

Beim Aufruf dieser grafischen Benutzeroberfliche (GUI) erscheinen drei Grafikfenster. Im ers-
ten Fenster kann man, wie in Abschnitt 5.2.3 erkldrt, den Spline-Rand mit der Maus zeichnen.
Das zweite Fenster besitzt auf der rechten Seite einige Schalter, mit denen die Gitterweite
H, der Approximationsgrad n sowie die Parameter § und v aus Gleichung (5.6) eingestellt
werden konnen. Auf der linken Seite ist der gezeichnete Rand in fett sichtbar, zusammen
mit dem kleinsten Kriimmungskreis, zugehtrigem Kriimmungsradius sowie mit dem Rand
des Streifens mit Breite § als gestrichelte Linie, damit § korrekt eingestellt werden kann —
ahnlich wie in Abbildung 5.2 (nur ohne Kontrollpolygon). Bei einem Klick auf ,, Calculate
erscheint die Spline-Approximation von w aus (5.6) im dritten Fenster. Mit dem Knopf unten
in diesem Fenster kann zwischen der Approximation und den Rohdaten gewechselt werden.
Beendet wird das Programm mit einem Klick auf die entsprechende Taste im zweiten
Fenster oder mit dem Schliefen eines der Fenster (dann werden alle Fenster geschlossen).

5.2.3 Erstellung des Spline-Rands

Der erste Schritt, der zur Erzeugung der Approximation einer Gewichtsfunktion notig ist,
ist natiirlich die Erstellung des Spline-Rands. Entweder man macht dies per Hand direkt im
Code (wie in example_weight_function) oder man benutzt die von Jorg Horner zur Verfiigung
gestellte grafische Funktion

34

5.2 Aufbau und Aufruf der Programme

ScatteredData.SplinePlotter.splineplotter(),

die auch von ScatteredData.WeightFunctions.demo verwendet wird. Sie speichert den Spline
in einer globalen Variable namens SP_Data, wobei sich das Format von der im {ibrigen
Programmpaket von ScatteredData verwendeten Struktur aus ScatteredData.SplineUtil.
spl_eval_matlab (siche Abschnitt 4.1.4) etwas unterscheidet. Die Umrechnung in dieses For-
mat erfolgt durch

s = ScatteredData.SplinePlotter.convert_sp_data(SP_Data).

Die Bedienung von splineplotter gestaltet sich beinahe von selbst: Mit einem Linksklick
in den leeren Bereich setzt man Kontrollpunkte (in Schwarz). Per Rechtsklick kann ein beste-
hender Kontrollpunkt verschoben werden. Kontrollpunkte lassen sich mit der entsprechenden
Schaltfliche am unteren Rand wieder 16schen. Der Grad lésst sich mit dem Schieberegler
daneben einstellen. Um die anfangs uniformen Knoten zu verdndern, kann man mit der rech-
ten Maustaste die Striche unter der Spline-Kurve verschieben. Mit der mittleren Maustaste
kénnen die magentafarbenen Quadrate verschoben werden, die die Gewichte der rationalen
Spline-Kurve reprisentieren. Die Verschiebung zweier Quadrate zu einem Kontrollpunkt hin
erhoht sein Gewicht und ,zieht“ somit die Kurve in Richtung des Punktes.

Fiir unsere Anwendung ist es notwendig, dass die Spline-Kurve durch Betitigung des
entsprechenden Schalters geschlossen wird. Aufferdem sind die Kontrollpunkte unbedingt im
mathematisch positiven Sinne (gegen den Uhrzeigersinn) zu setzen, weil sonst die berechneten
Einheitsnormalen in die falsche Richtung zeigen.

5.2.4 Erzeugung der unregelmillig verteilten Daten

Die Generierung der unregelméfig verteilten Daten, die auf der Abstandsfunktion basieren
und als Grundlage fiir die Spline-Approximation dienen, erfolgt mit

[X, f] = ScatteredData.WeightFunctions.gen_data(sc, H, n),

wobei sc die Spline-Kurve als Struktur (wie von convert_sp_data zuriickgegeben) bezeichnet,
die sich innerhalb von [0, 1]? befindet.

Um die Idee der Datenerzeugung zu erkldren, nehmen wir an, dass der geschlossene
Spline-Rand des Gebiets D eine Jordan-Kurve parametrisiert durch p: [0,1] — [0, 1]? sei,
also p stetig mit p injektiv bis auf p(0) = p(1). Wir unterteilen nun das Parameterintervall
[0,1] in m + 1 (der Einfachheit halber) dquidistante Punkte und ,schiefen® von py := p(tx)
mit t; := k/m orthogonal zu p; := p/(t;) auf Geraden in das Innere von D und in das
Komplement von D (k = 0,...,m). Der Abstand zum Rand d(x) ist nimlich auf einem
hinreichend kleinen Teilstiick einer Geraden (ausgehend vom Randpunkt py) bekannt und
muss nicht berechnet werden: Wenn wir nicht zu weit schiefen (d.h. || geniigend klein)
und ny die Einheitsnormale im Punkt pp nach innen bezeichnet, dann ist d(py + tng) = ¢
(Notation wie in (5.6)). Indem wir auf den Geraden dquidistante Punkte wihlen, erhalten
wir die benétigten unregelméftigen Daten der Abstandsfunktion.

Abbildung 5.3a illustriert die Idee beispielhaft fiir ein unrealistisch kleines m. Wie zu
sehen ist, hingt die optimale Schiefweite (die in der Abbildung zu Demonstrationszwecken
iberall gleich kurz ist) stark vom konkreten Punkt ab. In der Kurve oben links und oben
rechts, wo die Kriimmung grof ist, kann nicht so weit nach innen geschossen werden wie im
unteren Bereich mit kleiner Kriimmung.

35

5 Anwendung bei Gewichtsfunktionen fiir Finite Elemente

< ApkEGdllrk+l)

(a) zum Rand orthogonale Geraden mit dqui- (b) Berechnung der nétigen An-
distanten Punkten zahl m an Punkten

Abbildung 5.3: Generierung der Daten fiir das Testgebiet

Aufterdem gilt es noch die Schwierigkeit zu l6sen, die sich aus Definition 3.10 ergibt: Fiir
jedes Gitterquadrat muss es mindestens einen Datenpunkt geben, der in diesem Gitterquadrat
liegt. Dazu wihlen wir die dquidistanten Punkte auf den orthogonalen Geraden im Abstand
h/2, wobei h = 1/H die gegebene Gitterweite mit H € N bezeichnet. Das reicht jedoch
noch nicht aus, denn wenn m zu klein gewahlt ist, bleiben ebenfalls Gitterquadrate frei. Wie
in Abbildung 5.3b zu sehen ist, kann die Kurve in einer Umgebung eines Punktes, in dem
sie differenzierbar ist, ndherungsweise mit konstanter Kriimmung ki bzw. mit konstantem
Kriimmungsradius 7 := 1/kj betrachtet werden. Wenn wir bei grofem m zwei Punkte
pr und pri1 mit Abstand Apy auf der Kurve wihlen, konnen wir auferdem die Ableitung
p'(t) als konstant ansehen, d.h. Apy, ~ ||p,|| /m. m muss nun so grok gewdhlt werden, dass
die beiden vom Mittelpunkt des (gemeinsamen) Kriimmungskreises ausgehenden Strahlen
hochstens um H voneinander entfernt sind. Dabei berechnet sich der maximale Abstand zum
Rand des Datengebiets als di := v/2(1 + 2rh) (mit 7 wie in Definition 3.10).

Nach dem Strahlensatz sind die Strahlen am Rand also héchstens um

_ Ipill (diky + 1)

d
Apy, - (1 + 1> ~ (5.7)
Tk

m

voneinander entfernt. Wenn dies kleiner als h sein soll (damit jedes Gitterquadrat ,,getroffen®
wird), erhalten wir

m > Hp;ﬁu (dllik + 1)H. (5.8)

Daher wihlen wir mit x(¢) der Kriimmung der Kurve fiir den Parameter ¢

m = Lgl[éa,}ﬁ IFAGIRCEGERVE H-‘ (5.9)

als minimales m. Fine weiter gehende Version des Programms wiirde die Punkte nicht dquidi-
stant wéhlen, sondern die ,Punktdichte auf dem Rand dynamisch durch eine dhnliche Formel
in Abhéngigkeit von Ableitung und Kriimmung berechnen.

36

5.2 Aufbau und Aufruf der Programme

Abbildung 5.4: Ecke im Rand (fett, grau) eines Gebiets mit in das Gebiet zeigenden ortho-
gonalen Geraden in grau, Normalenvektoren und zusétzlichen Radien

Eine weitere Erschwernis ist die Tatsache, dass der Spline-Rand ,Ecken* enthalten kann,
an denen die Kurve nicht stetig differenzierbar ist. Das ist insofern ein Problem, weil be-
stimmte Gitterquadrate aufgrund der Unstetigkeit der Ableitung dann nicht getroffen wer-
den. Abbildung 5.4 zeigt den Ausschnitt eines Gebiets, dessen Rand eine Ecke besitzt (der
Rand wird von rechts nach links durchlaufen). Wir erkennen, dass die zum Rand ortho-
gonalen Geraden den grau unterlegten Bereich zwischen dem links- und dem rechtsseitigen
Normalenvektor n, bzw. n] nicht erreichen. Um diese Schwierigkeit zu beheben, iiberlegen
wir uns, dass in einer Umgebung der Ecke p, = p(t.) im grau unterlegten Bereich genau die
Punkte gleichen Abstand zu p, haben, die sich auf einem Kreisbogen mit Mittelpunkt p,
befinden. Daher kénnen wir eine gewisse Anzahl an Radien ausgehend von p, in das Innere
des Gebiets schieffen und dann genauso verfahren wie bei den orthogonalen Geraden. Diese
Funktionalitét ist im Hilfsprogramm ScatteredData.SplineUtil.get_corner_circles unter-
gebracht, das von ScatteredData.WeightFunctions.gen_data automatisch bei allen nicht ste-
tig differenzierbaren Ecken aufgerufen wird. Es generiert eine gewisse Anzahl von Strahlen,
so dass wie oben am Ende jede Gitterzelle mindestens ein Datenpunkt enthilt.

Die Funktion unterstiitzt auch nach aufen zeigende Ecken, denn dieselben Uberlegungen
konnen natiirlich auch fiir diese durchgefiihrt werden. In diesem Fall ist die Abstandsfunktion
nicht glatt, denn dann gibt es zwangsldufig einen , Knick” im Inneren des Gebiets bei der Hélfte
des Innenwinkels, egal wie klein 0 in (5.6) gewéhlt wird. Im Fall von nach innen zeigenden
Ecken (wie bei obigem Beispiel) ist die Situation umgekehrt, dort befindet sich der Knick bei
den negativen Daten aufserhalb des Gebiets.

Nachdem diese Schwierigkeiten beiseite gerdumt wurden, wird die konkrete Datenerstel-
lung von ScatteredData.WeightFunctions.gen_data wie folgt durchgefiihrt:

(a) Zunéchst werden die Gitterzellen fiir die gegebene Gitterweite h = 1/H mit H € N in
dufkere und innere Zellen sowie Randzellen unterteilt, je nachdem, ob die Gitterzellen
vollstindig im Komplement von D oder in D selbst liegen (oder fiir Randzellen, ob
die Spline-Kurve 0D durch das Innere der Gitterzelle 1duft). Dazu wird eine deutlich
schnellere Version der MATLAB-Funktion inpolygon namens inpoly vom MATLAB
File Exchange benutzt!.

"URL: http://www.mathworks.com/matlabcentral/fileexchange/10391- fast-points-in-polygon-test

37

http://www.mathworks.com/matlabcentral/fileexchange/ 10391-fast-points-in-polygon-test

5 Anwendung bei Gewichtsfunktionen fiir Finite Elemente

D)

Iy
Wi
LI
10 210 876543210
(a) nach dem 1. Schritt (b) nach dem 2. Schritt (c) nach dem 8. Schritt

L N W A~ OO O N

o

Abbildung 5.5: Erzeugung der Daten fiir einen beispielhaften Ausschnitt des Testgebiets

(b) Jedem Gitterquadrat wird eine Zahl zugeordnet, wobei anfangs die Randzellen den
Wert 0, die inneren den Wert 400 und die duferen Zellen den Wert —oo erhalten.

(c) Anschliefend schiefit der Algorithmus auf allen Geraden (orthogonale Geraden und
Strahlen ausgehend von Ecken) um einen Schritt nach innen. Die Schrittweite betrégt
hierbei h/2. Auf allen neu erreichten Gitterzellen (die den Wert 400 beinhalten) wird
die zugeordnete Zahl auf 1 gesetzt.

(d) Der vorherige Schritt wird wiederholt: Die Zahlen der neu erreichten Zellen werden
dann natiirlich auf 2 gesetzt usw. Wenn eine dufere Zelle (mit dem Wert —oo) oder
eine Zelle, deren Wert im i-ten Schritt um mindestens drei kleiner ist als ¢, erreicht
wird, wird die entsprechende Gerade ,deaktiviert, das heifst, auf ihr wird nicht mehr
geschossen. Die Zahl der Geraden, auf denen geschossen wird, nimmt also monoton ab
— wenn sie null erreicht, sind die Daten fiir das Innere des Gebiets erzeugt.

(e) Die Schritte (c) und (d) werden nun sinngeméf nochmals durchgefiihrt, wobei jetzt
nach aufien geschossen wird. Dabei erhalten die Zellen die Werte —1, —2 usw. und in
(d) muss u. a. ,kleiner durch ,grofer* ersetzt werden.

Damit erhélt man verteilte Daten der Abstandsfunktion, wobei die Héhe der inneren Daten-
punkte im i-ten Schritt auf i-h/2 gesetzt wird (bei den duferen Datenpunkten ist i € Z\ Np).

In Abbildung 5.5 ist die Durchfithrung des Algorithmus fiir einen Ausschnitt unseres
Testgebiets schrittweise dargestellt. Die Farbe der Gitterzellen gibt deren zugeordnete Zahl
an (siehe Legende rechts). Dunkelgraue Zellen besitzen den Wert —oo und weifse Zellen den
Wert +o00. Die Kurven zeigen die in den unterschiedlichen Schritten erzeugten Datenpunkte.
Die Zahlen am unteren Rand sagen aus, in welchem Schritt die jeweiligen Daten generiert
wurden (der ,0. Schritt“ in Dunkelblau ist der Rand des Testgebiets). Im gezeigten Ausschnitt
werden erst im 7. Schritt Geraden ,deaktiviert”, was man im mittleren Gitterquadrat an der
roten Kurve erkennen kann. Insgesamt werden fiir das Innere des Testgebiets 14 Schritte
durchgefiihrt, fiir das Komplement sind sogar weitere 26 Schritte notig. Das komplette Er-
gebnis ist fiir H = 20 und n = 2 in Abbildung 5.6a zu sehen.

38

5.3 Numerische Aspekte

O
&
%S

3
X%

&
%
S

&

X
R
&S
R

X
%
&

XX
"

5
£X
R
55
5
X

9
AR
XXX
QL
00

- o%eSegese! S
04 ERETEETE
-0.6 RIS

(a) Daten, die durch ScatteredData.WeightFunctions
gen_data generiert wurden

10

. (b) Approximation der Gewichtsfunktion mit den
Parametern § = 0,07, v =2

Abbildung 5.6: Ergebnis der Datenerzeugung und Approximation der Gewichtsfunktion fiir

das Testgebiet

5.2.5 Evaluation und Visualisierung

Sobald die Daten erzeugt worden sind, wird zunéchst Formel (5.6) auf die Daten durch

w = ScatteredData.WeightFunctions.apply(di

st, delta, gamma)

angewendet, wobei diese Funktion nicht nur im Inneren des Gebiets ein Plateau der Hohe 1

erzeugt, sondern auch im Komplement des Abs

chlusses (mit der Héhe —1). Die so erhaltenen

Daten kénnen dann wie in Abschnitt 4.1.4 beschrieben zur Spline- Approximation verwendet

werden. Der resultierende Spline kann anschli
Routinen ausgewertet werden.
Fiir die Visualisierung stehen zwei Funkti

eBend mit den in Abschnitt 4.1.5 erwahnten

onen bereit: Zum einen konnen die durch die

Funktion ScatteredData.WeightFunctions.gen_data erzeugten Daten durch

ScatteredData.WeightFunctions.visualize_data(X, f, H, n)

geplottet werden, zum anderen kann man die Gewichtsfunktion nach (5.6) mit

ScatteredData.WeightFunctions.visualize(H,

p)

darstellen, wobei p die Spline-Approximation bezeichnet. Die sich ergebenden Plots fiir das

Testgebiet sind jeweils in den Abbildungen 5.6

a und 5.6b sichtbar.

5.3 Numerische Aspekte

In Tabelle 5.1 sind in den ersten beiden Zeilen die absoluten Fehler (Maximum und Mittel-
wert) der Spline-Approximation zu w aus Formel (5.6) fiir das Testgebiet mit verschiedenem
H zu sehen. Die Approximation ist fiir die dargestellten Gitterweiten h = 1/H nicht son-
derlich gut, fiir H = 128 liegt der maximale absolute Fehler immer noch nicht unter einem

39

5 Anwendung bei Gewichtsfunktionen fiir Finite Elemente

Tabelle 5.1: maximaler bzw. mittlerer absoluter Fehler e, bzw. €, und Ausfithrungszeiten ¢y,
fiir das Testgebiet mit n =2, 6 = 0,07 und v = 2 (gerundet)

logs H 2 3 4 5 6 7
en 746-107" 491-107% 1,99-10' 4,13-102 1,03-1072 3,44-1073
en 2,88-107' 1,61-107' 4,82-1072 6,76-10> 8,58-10~* 1,11-10~*
th 0,086 0,085s 0,115 0,135 0,20s 0,48

0 0.2 04 06 038 X, 1

Abbildung 5.7: Zehnerlogarithmus des absoluten Fehlers fiir H = 32

Tausendstel. Das konnte auf die Gradienten von w zuriickzufithren sein, die fiir kleines §
(hier § = 0,07) ziemlich hoch sind. Abbildung 5.7 zeigt den absoluten Fehler fiir H = 32.
Es ist zu erkennen, dass der Fehler in der N#éhe des Rands und der ,Kanten“ (im Abstand
von § im Gebiet bzw. aufserhalb des Gebiets) besonders klein wird. Vor bzw. hinter die-
sen Kanten wird der Fehler noch einmal etwas grofer (aufgrund von Uberschwingungen der
stlickweisen Polynome). Kurioserweise ist der Fehler dort am grofsten, wo der Rand einen
Tangentenvektor parallel zu einer der Koordinatenachsen besitzt, was womdglich etwas mit
der Tensorprodukt-Struktur des Spline-Raums zu tun hat.

Eine Betrachtung des relativen Fehlers ist fiir die Anwendung der Approximation von
Gewichtsfunktionen kaum sinnvoll, da die Spline-Approximation p nicht dieselbe Nullstellen-
menge wie die wahre Gewichtsfunktion w besitzt. Somit ist der relative Fehler, bei dem der
absolute Fehler |w(z1,x2) — p(x1, z2)| durch den Betrag |w(x;, z2)| des wahren Werts geteilt
wird, je nach Dichte der Auswertungspunkte beliebig hoch (in den Nullstellen (x1, z2) von w
mit p(z1,x2) # 0 sogar unendlich bzw. nicht definiert).

In der untersten Zeile in Tabelle 5.1 sind der Vollstandigkeit halber noch die Ausfiih-
rungszeiten von ScatteredData.WeightFunctions.gen_data aufgefiihrt, die ja fiir die Appro-
ximation auf die in Abschnitt 4.3.3 erwdhnten Zeiten addiert werden miissen, aber fiir sich ei-
nigermafien moderat sind. Eine signifikante Beschleunigung kénnte man wahrscheinlich durch
Vektorisierung, Parallelisierung oder Implementierung in C++ erhalten.

40

A Inhalt der CD-ROM

Die als Anhang zu dieser Arbeit beigelegte CD-ROM enthélt neben der MATLAB-Implemen-
tierung der Algorithmen aus Kapitel 4 und 5 im Ordner matlab auch eine elektronische Version
der Arbeit als PDF-Datei im Ordner pdf. Die in C++ geschriebene MEX-Implementierung
spl_eval_mex des Algorithmus von de Boor (siehe Abschnitt 4.1.5) befindet sich in Form von
zwei Eclipse-CDT!-Projekten im Ordner c++. Die Eclipse-Projekte unterscheiden sich nur
in der Architektur (x64-Linux und x64-Windows), beinhalten aber dieselbe Quellcode-Datei
spl_eval_mex.cpp. Soll der Code kompiliert werden, miissen wahrscheinlich einige Pfade in
den Einstellungen von Eclipse verdndert werden.

Die DLLs im Ordner matlab/+ScatteredData/+SplineUtil werden nur benétigt, falls die
Windows-MEX-Version des Algorithmus aufgerufen wird (ansonsten kann man sie l6schen).
Dabei handelt es sich um MATLAB-DLLs und DLLs aus MinGW-w642.

Es folgt eine vollstdndige Liste der auf der CD-ROM vorhandenen Dateien, strukturiert
nach Verzeichnissen (diese sind in fett gedruckt):

Wurzelverzeichnis
Co ottt C++-Implementierungen
I linux
ngg,spl_eval_mex
.cproject
| .project
Release
makefile
| _objects.mk
| sources.mk
| spl_eval_mex.mexa64
src
spl_eval_mex.d
| spl_eval_mex.o
L subdir.mk
L src
ngg,spl,eval,mex.cpp
windows
ngg,spl_eval_mex
.cproject
| .project
L Release

| makefile

LURL: http://www.eclipse.org/cdt/
2URL: http://sourceforge.net/projects/mingw- w64/

Vil

http://www.eclipse.org/cdt/
http://sourceforge.net/projects/mingw-w64/

A Inhalt der CD-ROM

objects.mk
sources.mk
| spl_eval_mex.mexw64

src
| spl_eval_mex.d
| spl_eval_mex.o
subdir.mk
include
| pthread.h
| pthreads_win32_config.h
sched.h
semaphore.h
I lib
| pthread6C2-w64.d1l
L src
ngg,spl_eval_mex.cpp
MAatlab.. ... MATLAB-Programme

example_halton.m

| example_weight_function.m
L +ScatteredData

| Contents.m

| change_settings.m
| print_settings.m

| +Halton

| Contents.m

| demo.m

| franke.m
gen_points.m

| +SplineApproximation
| Contents.m
gen_grid_data.m
| get_opt_grid.m
| _make.m
quasi_interp.m
sort_data.m
visualize.m

| +SplinePlotter

| Contents.m
convert_sp_data.m
rspl_val.m

I spl.val.m
splineplotter.m
L +SplineUtil

| Contents.m
get_corner_circles.m
get_corners.m

viii

| pdf

libgcc_s_sjlj-1.d11
libmex.d1ll
libmx.dll

I libstdc++-6.d11

| pthreadGC2-w64.d11
| spl_deriv_eval.m
spl_diff.m

| spl_.eval.m

| spl_eval_matlab.m
| spl_eval_mex.mexa64
L spl_eval_mex.mexw64

L +Util

Contents.m
curvature.m

| inpoly.m

| input_default.m
L print_status.m

| +WeightFunctions

| Contents.m
apply.m

| demo.m

| gen_data.m
visualize.m
visualize_data.m

l spline-approximation_unregelmaessig_verteilter_daten.pdf

PDF-Dateilen

1X

Literaturverzeichnis

[1]

[10]

[11]
[12]
[13]

[14]
[15]

[16]

P. Alfeld: Scattered Data Interpolation in Three or More Variables. In: Mathematical
Methods in Computer Aided Geometric Design. Hrsg. von T. Lyche und L. L. Schu-
maker. New York: Academic Press, 1989, S. 1-33.

C. de Boor: A Practical Guide to Splines. New York: Springer, 1978.

C. de Boor: On Calculating with B-Splines. In: Journal of Approximation Theory 6.1
(1972), S. 50-62.

C. de Boor: Splines as Linear Combinations of B-Splines. A Survey. In: Approzimation
Theory II. Hrsg. von G. G. Lorentz, C. K. Chui und L. L. Schumaker. New York:
Academic Press, 1976, S. 1-47.

M. D. Buhmann: Radial Basis Functions: Theory and Implementations. Cambridge:
Cambridge University Press, 2003.

M. G. Cox: The Numerical Evaluation of B-Splines. In: IMA Journal of Applied Ma-
thematics 10.2 (1972), S. 134-149.

N. Cressie: The Origins of Kriging. In: Mathematical Geology 22.3 (1990), S. 239-252.

M. Fenn und G. Steidl: Robust Local Approximation of Scattered Data. In: Geometric
Properties for Incomplete Data. Hrsg. von R. Klette u.a. Dordrecht: Springer, 2006,
S. 317-334.

R. Franke: Scattered Data Interpolation: Tests of Some Methods. In: Mathematics of
Computation 38.157 (1982), S. 181-200.

R. Franke und G. Nielson: Smooth Interpolation of Large Sets of Scattered Data. In:
International Journal for Numerical Methods in Engineering 15.11 (1980), S. 1691
1704.

M. Gasca und T. Sauer: Polynomial Interpolation in Several Variables. In: Advances in
Computational Mathematics 12.4 (2000), S. 377-410.

J. H. Halton: On the Efficiency of Certain Quasi-Random Sequences of Points in Fva-
luating Multi-Dimensional Integrals. In: Numerische Mathematik 2.1 (1960), S. 84-90.

K. Hollig: Finite Element Methods with B-Splines. Philadelphia: Society for Industrial
and Applied Mathematics, 2003.

K. Héllig und J. Hoérner: Approzimation and Modeling with B-Splines. Preprint. 2011.

K. Hollig, U. Reif und J. Wipper: Weighted Extended B-Spline Approzimation of Di-
richlet Problems. In: STAM Journal on Numerical Analysis 39.2 (2001), S. 442-462.

D. G. Krige: A Statistical Approach to Some Basic Mine Valuation Problems on the
Witwatersrand. In: Journal of the Chemical, Metallurgical and Mining Society of South
Africa 52.6 (1951), S. 119-139.

x1

Literaturverzeichnis

[17]

[18]

[19]
[20]
[21]
[22]
23]
[24]
[25]

[26]

[27]

28]

G. Matheron: The Intrinsic Random Functions and Their Applications. In: Advances
in Applied Probability 5.3 (1973), S. 439-468.

A. Nealen: An As-Short-As-Possible Introduction to the Least Squares, Weighted Least
Squares and Moving Least Squares Methods for Scattered Data Approzimation and In-
terpolation. Techn. Ber. TU Darmstadt, 2004. URL: http://www.nealen.com/projects/
mls/asapmls. pdf.

J. Prasiswa: Lokale und globale Algorithmen zur Approrimation mit erweiterten B-
Splines. Diss. TU Darmstadt, 2009.

D. Ruprecht und H. Miiller: Image Warping with Scattered Data Interpolation. In: IEEE
Computer Graphics and Applications 15.2 (1995), S. 37—43.

T. Sauer und Y. Xu: On multivariate Lagrange interpolation. In: Mathematics of Com-
putation 64.211 (1995), S. 1147-1170.

S. Schaefer, T. McPhail und J. Warren: Image Deformation Using Moving Least Squa-
res. In: ACM Transactions on Graphics 25.3 (2006), S. 533-540.

L. L. Schumaker: Spline Functions: Basic Theory. 3. Aufl. Cambridge: Cambridge Uni-
versity Press, 2007.

H.-R. Schwarz und N. Kockler: Numerische Mathematik. 7. Aufl. Wiesbaden: Vieweg+
Teubner, 2009.

V. Shapiro: Theory of R-Functions and Applications: A Primer. Techn. Ber. CPA88-3.
Cornell University, 1991.

D. Shepard: A Two-Dimensional Interpolation Function for Irreqularly-Spaced Data.
In: Proceedings of the 1968 23rd ACM national conference. Hrsg. von R. B. Blue, Sr.
und A. M. Rosenberg. New York: ACM, 1968, S. 517-524.

X. Wang und F. J. Hickernell: Randomized Halton Sequences. In: Mathematical and
Computer Modelling 32 (7-8 2000), S. 887-899.

H. Wendland: Local Polynomial Reproduction and Moving Least Squares Approzimati-
on. In: IMA Journal of Numerical Analysis 21.1 (2001), S. 285-300.

Die Internetquelle [18] wird auf den folgenden Seiten vollstdndig wiedergegeben. Hinzugefiigt
wurden nur die Kopfzeile mit Internetadresse und Datum des Herunterladens sowie gelbe
Markierungen im Text zur Hervorhebung der zitierten Stellen.

xii

http://www.nealen.com/projects/mls/asapmls.pdf
http://www.nealen.com/projects/mls/asapmls.pdf

An As-Short-As-Possible Introduction to the Least Squares, Weighted Least
Squares and Moving Least Squares Methods for Scattered Data
Approximation and Interpolation

Andrew Nealen
Discrete Geometric Modeling Group
TU Darmstadt

Abstract

In this introduction to the Least Squares (LS), Weighted Least
Squares (WLS) and Moving Least Squares (MLS) methods, we
briefly describe and derive the linear systems of equations for the
global least squares, and the weighted, local least squares approxi-
mation of function values from scattered data. By scattered data we
mean an arbitrary set of points in R¢ which carry scalar quantities
(i.e. a scalar field in d dimensional parameter space). In contrast
to the global nature of the least-squares fit, the weighted, local ap-
proximation is computed either at discrete points, or continuously
over the parameter domain, resulting in the global WLS or MLS
approximation respectively.

Keywords: Data Approximation, Least Squares (LS), Weighted
Least Squares (WLS), Moving Least Squares (MLS), Linear Sys-
tem of Equations, Polynomial Basis

1 LS Approximation

Problem Formulation. Given N points located at positions x; in
RY where i € [1...N]. We wish to obtain a globally defined function
f(x) that approximates the given scalar values f; at points x; in the
least-squares sense with the error functional J;s = ¥; || £(x;) — fi|*-
Thus, we pose the following minimization problem

min Y"1 £(x;) = fil*, (1
fells Z,’

where f is taken from Hffl, the space of polynomials of total degree
m in d spatial dimensions, and can be written as

fx) =bx)Te=b(x)-¢, 2)

where b(x) = [b{(x),...,bx(x)]7 is the polynomial basis vector
and ¢ = [cq,...,c¢]T is the vector of unknown coefficients, which
we wish to minimize in (1). Here some examples for golynomial
bases: (a) for m =2 and d = 2, b(x) = [1,x,y,x,xy,y*]", (b) for
a linear fit in R® (m = 1, d = 3), b(x) = [1,x,y,2]7, and (c) for
fitting a constant in arbitrary dimensions, b(x) = [1]. In general,
the number & of elements in b(x) (and therefore in ¢) is given by

= im! e [Levin 1998; Fries and Matthies 2003].

Solution. We can minimize (1) by setting the partial derivatives
of the error functional Jyg to zero, i.e. VJig =0 where V =
[0/dci,...,d/dc]T, which is a necessary condition for a mini-
mum. By taking partial derivatives with respect to the unknown co-
efficients cy,...,cx, we obtain a linear system of equations (LSE)

from which we can compute ¢

dJpg/dc; =0: Zzbl (x;)[b(x)) e—f;]=0
dJrs/dey =0: Zsz(Xz‘)[b(Xz’)Tc_ﬁ} =0
dJis/dc,=0: ZZbk(Xi)[b(Xi)Tc - fil=0.

In matrix-vector notation, this can be written as
Y 2b(x;)b(x) e~ f] =

i
2Y b(xi)b(x;) ¢ —b(x;)]

1

|
e

Dividing by the constant and rearranging yields the following LSE
Y b(xi)b(x;) e =Y b(xi)f;, 3)
i i

which is solved as

=L b(xi)b(x)"] Y b(xi) i)

If the square matrix Azg = ¥;b(x;)b(x;)7 is nonsingular (i.e.
det(Ars) # 0), substituting Eqn. (4) into Eqn. (2) provides the
fit function f(x). For small k (k < 5), the matrix inversion
in Eqn. (4) can be carried out explicitly, otherwise numerical
methods are the preferred tool, see [Press et al. 1992] 1 In our
applications, we often use the Template Numerical Toolkit (TNT) 2.

Example. Say our data points live in R? and we wish to fit a
quadratic, bivariate polynomial, i.e. d =2, m = 2 and therefore
b(x) = [1,x,y,x%,xy,y*]" (see above), then the resulting LSE looks
like this

1 X Vi 2 xy 7 1 1
XX xy x| e Xi
) R S U G P R o A
Xiyi XpYio XYy XpYio XpYp X ¢s x’%}’
R R e 1 B B Vi

Consider the set of nine 2D points P; ={(1,1), (1,-1), (-1,1), (-1,-1),
(0,0), (1,0), (-1,0), (0,1), (0,-1)} with two sets of associated func-
tion values fil ={1.0, -0.5, 1.0, 1.0, -1.0, 0.0, 0.0, 0.0, 0.0} and
fi2 ={1.0, -1.0, 0.0, 0.0, 1.0, 0.0, -1.0, -1.0, 1.0}. Figure 1 shows
the fit functions for the scalar fields fi1 and fiz.

Lat the time of writing this report, [Press et al. 1992] was available online
in pdf format through http://www.nr.com/
’http://math.nist.gov/tnt/

=
7AA T AT
L
\ T
22T LTIAY
K
X

Figure 1: Fitting bivariate, quadratic polynomials to 2D scalar
fields: the top row shows the two sets of nine data points (see text),
the bottom row shows the least squares fit function. The coefficient
vectors [cq,...,c]T are [—0.834,—0.25,0.75,0.25,0.375,0.75]7
(left column) and [0.334,0.167,0.0,—0.5,0.5,0.0]” .

Method of Normal Equations. For a different but also very com-
mon notation, note that the solution for ¢ in Eqn. (3) solves the
following (generally over-constrained) LSE (Bc = f) in the least-
squares sense

b’ (x1) fi
Cofe=| |, 5)
b7 (xy) i
using the method of normal equations
B'Be = B'f
¢ = (B"B)7'B'F. (6)

Please verify that Eqns. (4) and (6) are identical.

2 WLS Approximation

Problem Formulation. In the weighted least squares formulation,
we use the error functional Jyrs = ¥; 0 (X —x;||) || £(x;) — ;| for
a fixed point X € R?, which we minimize

min 3" 0(IK—x;) [1£(x) — £ill%, O

m 1

similar to (1), only that now the error is weighted by 6(d) where
d; are the Euclidian distances between X and the positions of data
points X;.

The unknown coefficients we wish to obtain from the solution
to (7) are weighted by distance to X and therefore a function of X.
Thus, the local, weighted least squares approximation in X is written
as

fz(x) =b(x)"e(x) =b(x) - ¢(%), ®)

and only defined locally within a distance R around X, i.e.
Ix—X|| <R.

Weighting Function. Many choices for the weighting function 6
have been proposed in the literature, such as a Gaussian

_d
)

0(d)=e 1,)

where & is a spacing parameter which can be used to smooth out
small features in the data, see [Levin 2003; Alexa et al. 2003].
Another popular weighting function with compact support is the
Wendland function [Wendland 1995]
0(d) = (1—d/h)*(4d/h+1). (10)
This function is well defined on the interval d € [0,A] and further-
more, 8(0) =1, 8(h) =0, 8'(h) = 0 and 8" (h) = 0 (C? continuity).
Several authors suggest using weighting functions of the form
1
0(d)=——=.
@=p

Note that setting the parameter € to zero results in a singularity at
d = 0, which forces the MLS fit function to interpolate the data, as
we will see later.

an

Solution. Analogous to Section 1, we take partial derivatives of the
error functional Jy ;s with respect to the unknown coefficients ¢(X)

Y. 6(di) 2b(x))[b(x;) e(®) ~ fi] =

2Y [6(d)b(xi)b(x;)" e(X) — 0(d)b(x)f;] = 0,
where d; = ||X —x;||. We divide by the constant and rearrange to
obtain

Y 0(d)b(xi)b(x;)" e(X) = Y 0(di)b(xi) f;, (12)

and solve for the coefficients
(%)= [Ze(di)b(xi)b(xi)Trl Ze(di)b(xi)fi- 13)

Obviously, the only difference between Eqns. (4) and (13) are
the weighting terms. Note again though, that whereas the coef-
ficients ¢ in Eqn. (4) are global, the coefficients ¢(X) are local
and need to be recomputed for every X. If the square matrix
Awirs = Y;0(di)b(x;)b(x;)T (often termed the Moment Matrix)
is nonsingular (i.e. der(Awrs) # 0), substituting Eqn. (13) into
Eqn. (8) provides the fit function fx(x).

Global Approximation using a Partition of Unity (PU). By fit-
ting polynomials at j € [1...n] discrete, fixed points X; in the pa-
rameter domain Q, we can assemble a global approximation to our
data by ensuring that every point in Q is covered by at least one
approximating polynomial, i.e. the support of the weight functions
0; centered at the points X; covers Q

Q= supp(6)).
J

Proper weighting of these approximations can be achieved by con-
structing a Partition of Unity (PU) from the 6; [Shepard 1968]

0; — 4
J (X) ZZ | ek (X) b (1)

where }; ¢;(x) = 1 everywhere in Q. The global approximation
then becomes

Fx) =Y 0;(x) b(®)" e(X;). (15)
J

A Numerical Issue. To avoid numerical instabilities due to possi-
bly large numbers in Ay g it can be beneficial to perform the fitting
procedure in a local coordinate system relative to X, i.e. to shift X
into the origin. We therefore rewrite the local fit function in X as

fx(®) =b(x—%)"¢(X) = b(x—X) -¢(x), (16)
the associated coefficients as
c(®) = [Y,0(di)b(xi —X)b(x; —%)"] 'Y 6(di)b(xi —%)fi, (A7)
and the global approximation as

Fx) =Y 0;(x) b(x %)) e(X))- (18)
J

3 MLS Approximation and Interpolation

Method. The MLS method was proposed by Lancaster and Salka-
uskas [Lancaster and Salkauskas 1981] for smoothing and interpo-
lating data. The idea is to start with a weighted least squares for-
mulation for an arbitrary fixed point in]Rd, see Section 2, and then
move this point over the entire parameter domain, where a weighted
least squares fit is computed and evaluated for each point individu-
ally. It can be shown that the global function f(x), obtained from a
set of local functions

FO) = fx(x), min Y O(x—xill) [xx)—fil* 19

X m 1

is continuously differentiable if and only if the weighting function
is continuously differentiable, see Levins work [Levin 1998; Levin
2003].

So instead of constructing the global approximation using
Eqn. (15), we use Eqns. (8) and (13) (or (16) and (17)) and con-
struct and evaluate a local polynomial fit continuously over the en-
tire domain Q, resulting in the MLS fit function. As previously
hinted at, using (11) as the weighting function with a very small €
assigns weights close to infinity near the input data points, forcing
the MLS fit function to interpolate the prescribed function values in
these points. Therefore, by varying € we can directly influence the
approximatimg/interpolating nature of the MLS fit function.

4 Applications

Least Squares, Weighted Least Squares and Moving Least Squares,
have become widespread and very powerful tools in Computer
Graphics. They have been successfully applied to surface recon-
struction from points [Alexa et al. 2003] and other point set surface
definitions [Amenta and Kil 2004], interpolating and approximating
implicit surfaces [Shen et al. 2004], simulating [Belytschko et al.
1996] and animating [Miiller et al. 2004] elastoplastic materials,
Partition of Unity implicits [Ohtake et al. 2003], and many other
research areas.

In [Alexa et al. 2003] a point-set, possibly acquired from a 3D
scanning device and therefore noisy, is replaced by a representa-
tion point set derived from the MLS surface defined by the input
point-set. This is achieved by down-sampling (i.e. iteratively re-
moving points which have little contribution to the shape of the
surface) or up-sampling (i.e. adding points and projecting them to
the MLS surface where point-density is low). The projection proce-
dure has recently been augmented and further analyzed in the work
of Amenta and Kil [Amenta and Kil 2004]. Shen et. al [Shen et al.
2004] use an MLS formulation to derive implicit functions from
polygon soup. Instead of solely using value constraints at points
(as shown in this report) they also add value constraints integrated
over polygons and normal constraints.

References

ALEXA, M., BEHR, J., COHEN-OR, D., FLEISHMAN, S., LEVIN, D.,
AND T. SILVA, C. 2003. Computing and rendering point set surfaces.
IEEE Transactions on Visualization and Computer Graphics 9, 1, 3-15.

AMENTA, N., AND KIL, Y. 2004. Defining point-set surfaces. In Proceed-
gins of ACM SIGGRAPH 2004.

BELYTSCHKO, T., KRONGAUZ, Y., ORGAN, D., FLEMING, M., AND
KRYSL, P. 1996. Meshless methods: An overview and recent devel-
opments. Computer Methods in Applied Mechanics and Engineering
139, 3, 3-47.

FRrIES, T.-P., AND MATTHIES, H. G. 2003. Classification and overview
of meshfree methods. Tech. rep., TU Brunswick, Germany Nr. 2003-03.

LANCASTER, P., AND SALKAUSKAS, K. 1981. Surfaces generated by
moving least squares methods. Mathematics of Computation 87, 141—
158

LEVIN, D. 1998. The approximation power of moving least-squares. Math.
Comp. 67,224, 1517-1531.

LEVIN, D., 2003. Mesh-independent surface interpolation, to appear in ’ge-
ometric modeling for scientific visualization’ edited by brunnett, hamann
and mueller, springer-verlag.

MULLER, M., KEISER, R., NEALEN, A., PAULY, M., GROSS, M., AND
ALEXA, M. 2004. Point based animation of elastic, plastic and melt-
ing objects. In Proceedings of 2004 ACM SIGGRAPH Symposium on
Computer Animation.

OHTAKE, Y., BELYAEV, A., ALEXA, M., TURK, G., AND SEIDEL, H.-P.
2003. Multi-level partition of unity implicits. ACM Trans. Graph. 22, 3,
463-470.

PRESS, W., TEUKOLSKY, S., VETTERLING, W., AND FLANNERY, B.
1992. Numerical Recipes in C - The Art of Scientific Computing, 2nd ed.
Cambridge University Press.

SHEN, C., O’BRIEN, J. F., AND SHEWCHUK, J. R. 2004. Interpolating
and approximating implicit surfaces from polygon soup. In Proceedings
of ACM SIGGRAPH 2004, ACM Press.

SHEPARD, D. 1968. A two-dimensional function for irregularly spaced
data. In Proc. ACM Nat. Conf., 517-524.

WENDLAND, H. 1995. Piecewise polynomial, positive definite and com-
pactly supported radial basis functions of minimal degree. Advances in
Computational Mathematics 4, 389-396.

Figure 2: The MLS surface of a point-set with varying density (the
density is reduced along the vertical axis from top to bottom). The
surface is obtained by applying the projection operation described
by Alexa et. al. [2003]. Image courtesy of Marc Alexa.

Schriftliche Versicherung

Hiermit versichere ich,
1. dass ich die vorliegende Arbeit selbststindig verfasst habe,

2. dass ich keine anderen als die angegebenen Quellen benutzt und alle wortlich oder
sinngemifs aus anderen Werken iibernommenen Aussagen als solche gekennzeichnet
habe,

3. dass Entlehnungen aus dem Internet durch Ausdrucke belegt sind,

4. dass die eingereichte Arbeit weder vollstdndig noch in wesentlichen Teilen Gegenstand
eines anderen Priifungsverfahrens gewesen ist und

5. dass das elektronische Exemplar der Arbeit mit den anderen Exemplaren iiberein-
stimmt.

Bietigheim-Bissingen, den 14. August 2012

Julian Valentin

	Inhaltsverzeichnis
	Vorwort
	Einleitung
	Bivariate Splines
	Bivariate Polynome
	B-Splines
	Spline-Funktionen

	Quasi-Interpolation und lokale Polynom-Approximation
	Univariate und bivariate Quasi-Interpolation
	Quasi-Interpolation in einer Variablen
	Wahl der linearen Funktionale
	Bivariate Quasi-Interpolation

	Bivariate Polynom-Approximation
	Spline-Approximation durch Quasi-Interpolation
	Vorbemerkungen
	Formulierung des Approximationsproblems und der Lösung

	Implementierung
	Aufbau und Aufruf der Programme
	Allgemeines
	Beispieldaten
	Ermittlung der Gitterweite
	Berechnung der Spline-Approximation
	Evaluation und Visualisierung

	Beispiele aus der Wirklichkeit
	Numerische Aspekte
	Genauigkeit
	Konvergenz
	Geschwindigkeit

	Anwendung bei Gewichtsfunktionen für Finite Elemente
	Motivation
	Finite Elemente
	Gewichtsfunktionen

	Aufbau und Aufruf der Programme
	Allgemeines
	Beispiel und GUI
	Erstellung des Spline-Rands
	Erzeugung der unregelmäßig verteilten Daten
	Evaluation und Visualisierung

	Numerische Aspekte

	Inhalt der CD-ROM
	Literaturverzeichnis

