Institut fir Visualisierung und Interaktive Systeme
Universitat Stuttgart

UniversitatsstraBe 38
D-70569 Stuttgart

Bachelorarbeit Nr. 208

Mining und Visualisierung von
Prozessen in einem komplexen

Softwaresystem
Fabian Gajek
Studiengang: Informatik
Prifer/in: Prof. Dr. Thomas Ertl
Betreuer/in: Dipl.-Inf. Dominik Herr,

Dr. Steffen Lohmann

Beginn am: 22. April 2015

Beendet am: 22. Oktober 2015

CR-Nummer: H.5.2, K.6.3

Kurzfassung

Komplexe Software-Anwendungssysteme haben oft eine Vielzahl an Prozessen, welche
mit sehr vielen Teilkomponenten interagieren. Da bei einer agilen Entwicklung haufig die
bestehenden Prozesse nicht ausreichend dokumentiert oder Anderungen nicht tibertragen
werden, wird die Entwicklung und Wartung deutlich erschwert. Process-Mining bietet
Techniken, die Prozessmodelle mit den reellen Prozessen zu synchronisieren. Diese Arbeit
untersucht die Anwendung von Business-Process-Mining auf komplexen Softwaresystemen
anhand von Daten aus der Automobilindustrie und die visuelle Aufbereitung der erstellten
Modelle, mit dem Ziel die Analyse der Prozesse zu erleichtern. Dazu werden die Darstellung
der Prozessmodelle mithilfe eines kraftebasierten Layouts optimiert und die dem Modell
zugrunde liegenden Ablaufe in die Visualisierung integriert.

Abstract

Complex software systems often contain a lot of processes that communicate between many
different subsystems. Agile development leads to under-documented processes or changes
which are not synchronized between implementation and model. This complicates the
development and maintenance of the system. Process Mining offers techniques to synchronize
the real world with the model. This thesis investigates the application of Business Process
Mining to complex software systems and the subsequent visual presentation of the mined
models using example data from the automotive industry. The visualization of the model
is optimized using a force directed layout and augmented through the integration of the
underlying traces.

Inhaltsverzeichnis

1.

Einleitung und Aufgabenstellung

1.1. Situation
1.2. Aufgabe
1.3. Losungsansatz
1.4. Gliederung
Grundlagen
2.1. Prozessmodellierung
2.2. Petri-Netze e
2.2.1. Grafische Repréasentation
2.2.2. Mathematische Definition und Notation
2.23. Workflow-Netze
2.3. Business Process Model and Notation (BPMN)
23.1. BPMN-Elemente
2.4. Information Retrieval
2.5. Process-Mining Lo e
25.1. Data-Mining L e
2.5.2. Logs, TracesundEvents
2.5.3. Extensible Event Stream (XES)
2.6. Process-Discovery e
2.6.1. Qualitatsindikatoren L.
2.6.2. «a-Algorithmus
2.6.3. Grenzen des a-Algorithmus oo 0L
2.6.4. Evolutiondrer Ansatz
2.7. Visualisierung von Graphen
2.7.1. Kriéftebasiertes Layout L.
2.8. Verwandte Arbeiten L L Lo
Konzept
3.1. Vorverarbeitung der Logdaten
3.2. Process-Mining L
3.3. Visualisierung und visuelle Analyse

10
10
11
12

13
13
14
14
16
20
21
21
23
24
25
25
26
27
28
30
33
35
37
39
40

45
45
46
47

3.4. Hierarchisierung der Traces und der Modelle
3.4.1. Bezeichnerkonvention der Hierarchie
34.2. Vorteile
3.4.3. Nutzung der Hierarchie in der Process-Discovery

Implementierung
4.1. Ausgangssituationund Daten L.
4.1.1. Das Anwendungssystem
4.1.2. Elasticsearch oo
4.13. Tracking-ID
4.2. Architektur
4.3. REST-Schnittstelle
43.1. Endpunkt zum Erstellen einesLogs
4.3.2. Endpunkte zur Verwaltung der Dateien
4.3.3. Endpunkte zur Process-Discovery
4.3.4. Endpunkte fiir die Graphen der Modelle
4.4. Erstellender Traces
45. Miningder Modelle
4.6. Besonderheiten der Hierarchisierung
4.6.1. Hierarchie in der Erstellung der Traces
4.7. Visualisierung von Petri-Netzenund BPMN
4.7.1. Interaktion mit der Visualisierung des Graphen
4.8. Hierarchie in der Visualisierung der Modelle
4.9. Anzeigen des zugrundeliegendenLogs L.
4.10. Visualisierung von Traces in einem Model

Evaluation durch Expertenstudie

5.1. Durchfiihrung der Expertenstudie

5.2. Ergebnisse der Expertenbefragung L.
5.2.1. Analyse der Multiple-Choice-Fragen
5.2.2. Analyse der Diskussion und Freitextfragen.

Fazit und Ausblick

. Anhang: Expertenstudie
A.1. Dokumente der Expertenbefragung
A.2. Antworten der Multiple-Choice Fragen

Literaturverzeichnis

51
51
51
52
52
53
54
56
56
59
60
61
63
64
64
65
66
67
68
68

71
71
72
72
73

75

77
77
90

95

Abbildungsverzeichnis

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
2.9.
2.10.
2.11.
2.12.
2.13.
2.14.
2.15.
2.16.
2.17.
2.18.
2.19.
2.20.

3.1.
3.2.
3.3.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.

Feuern einer Transition, 14
Einfaches Petri-Netz 15
Petri-Netz Erzeuger-Verbraucher 15
Petri-Netz kritischer Abschnitt 16
Beschriftetes Petri-Netz 19
Beispiel Workflow-Netzes 21
BPMN-Elemente 22
Simples BPMN 23
XES-Schema 27
Blumen-Petri-Netz 29
Blumen-BPMN 29
Petri-Netz mitallen Pfaden 30
Petri-Netz fiir Lo e 31
WEF-Netz mit Schleifen, 34
WE-Netzaus Ls e 34
Knoten-Kanten-Diagramm 38
Einfaches kréftebasiertes Layout 41
Baum mit kraftebasiertem Layout 41
Kommunikationsgraph o . 42
Petri-Netz mit Deadlock 43
Verarbeitungs-Pipeline 45
Ablauf hierarchisches Mining 49
Subprozess Petri-Netz Lo 50
Architektur des Systems 53
Webapp 55
Webapp mit ausgeblendeter Seitenleiste. 55
XES-Dialog 57
PNML-Dialog e 57
Visualisierung Petri-Netz 65
Visualisierung BPMNo 66
Petri-Netz einer frithen Version 66
Einfrieren einesKnoten L L 67

4.10. Expandieren eines Knoten 68

4.11. Auflistung der Traces 69

4.12. Trace-Filter 69

4.13. Verbindung der Transitionen 70

4.14. Visualisierung der Markenpfade 70
Tabellenverzeichnis

21. DatensetCafé 25

2.2. Relationenfur Lq. 31

2.3. Relationenfur Lo 31
Verzeichnis der Listings

4.1. Elasticsearch Eintrag 62

4.2. ProM-BeanShell-Skript 64
Verzeichnis der Algorithmen

2.1. oa-Algorithmus 32

2.2. Generischer evolutiondrer Algorithmus 36

1. Einleitung und Aufgabenstellung

Komplexe Anwendungssysteme bestehen aus vielen Komponenten, welche auf verschiedenen
Knoten ausgefithrt werden und iiber Schnittstellen miteinander kommunizieren. Anfragen
betreten das System an einer Komponente und werden danach mit grofflem Zusammenspiel
der Subsysteme abgearbeitet. Je nach Grofle des Systems ist es schwierig, den Uberblick
tber den Ablauf von Verarbeitungen zu haben. Deswegen sind die entsprechenden Ablaufe
meist genau spezifiziert und dokumentiert. Jedoch ist der Idealzustand von einem vollstandig
spezifizierten System und einer genau der Spezifikation entsprechenden Implementierung
in der Praxis oft nicht vorzufinden. Zum einen werden Abliaufe von Verarbeitungen in der
Implementierung geandert, gerade heutzutage durch die weite Verbreitung von agiler Soft-
wareentwicklung, und dabei vergessen die entsprechende Spezifikation an die Anderungen
anzupassen. Des weiteren kann es passieren, dass neue Ablaufe eingefithrt werden und nicht
ausreichend oder gar nicht dokumentiert werden. Es existiert eine Vielzahl von weiteren
Ursachen, z.B. Fehler in der Implementierung, warum die Ablaufe im fertigen System nicht
der Spezifikation entsprechen.

Business-Process-Mining verspricht, dieses Problem zu lésen. Es zielt im Allgemeinen darauf
ab, die Ausfithrung von Businessprozessen auf das Ausfithrungsmodell zuriickzufithren. Dafiir
bietet es Algorithmen, um Prozessabldufe auf Ubereinstimmung mit dem Prozessmodell zu
validieren, Prozessmodelle nur aus dokumentierten Ablaufen zu erstellen und Techniken
um existierende Modelle anhand in der Praxis gemessener Daten zu verbessern. Da diese
Konzepte auch auf Ablaufe in Softwaresystemen angewendet werden konnen, bietet Process-
Mining eine Moglichkeit, um oben genannte Probleme zu verbessern. Die Dokumentation
kann ohne groflen Aufwand aktuell gehalten werden durch Algorithmen, die Ablaufmodelle
aus den Abldufen erstellen, oder durch Systeme, welche Abweichung von dem spezifizierten
Kontrollfluss erkennt.

Diese Arbeit beschaftigt sich mit dem Erstellen von Prozessmodellen aus Logeintragen grofier
Anwendungssysteme. Die anderen Techniken des Process-Mining werden nicht untersucht.
Dazu werden reale Daten eines Backendsystemes eines deutschen Autoherstellers verwendet,
um den Ansatz zu testen.

Da die erzeugten Modelle von Menschen verstanden und interpretiert werden sollen, wird
untersucht, ob eine geeignete Visualisierung die Analyse unterstiitzt. Zusatzlich dazu werden
die Ablaufe aus den Logdaten in die Darstellung integriert, um die Plausibilitdt und das
Verstandnis des erzeugten Modelles zu unterstiitzen.

1. Einleitung und Aufgabenstellung

1.1. Situation

In der Automobilindustrie werden immer mehr computergesteuerte Dienste im Auto ange-
boten. Dies geht von elektronischen Fahrt unterstiitzenden Systemen bis hin zu Unterhal-
tungselektronik, mit der man im Auto im Internet surfen kann. Aber es existiert auch eine
Klasse von Diensten, die iiber die Elektronik des Autos hinaus mit Backendsystemen beim
Hersteller kommunizieren. Dabei handelt es sich um Dienste, welche die Fernsteuerung des
Autos durch den Nutzer ermdglichen oder Information iiber den Zustand des Autos, etwa
der Benzinstand, bereitstellen. Fiir diese Dienste werden komplexe Softwaresysteme bei den
Herstellern aufgebaut in denen zum Teil grofiere Prozesse ablaufen. Dies hat seine Griinde
auch in der Vielfalt der Fahrzeugausstattungen und der Forderung nach Datenschutz und
Informationssicherheit, die bei den Bewegungsdaten eines Autos eine grof3e Bedeutung ha-
ben. Diese Arbeit soll untersuchen, wie die Process-Discovery die Entwicklung und Wartung
eines solchen Systemes verbessern kann.

1.2. Aufgabe

Das Ziel der Arbeit ist die Verbesserung der Analyse von Prozessen in komplexen Soft-
waresystemen wie das oben beschriebene. Dazu sollen geeignete Prozessmodelle aus den
vorhandenen Logdaten des Softwaresystems extrahiert werden. Auch soll eine passende
Visualisierung entwickelt werden und um Interaktionsmoéglichkeiten erweitert werden, um
eine Analyse der Prozesse weiter zu verbessern. Das Ziel der Arbeit ist ein System, mit dem
die Erstellung von Prozessmodellen moglich ist, welche die Analyse von Ablaufen vereinfa-
chen. Dabei sollen auch tatsdchliche Prozesse mit gegeben Modellen verglichen werden, um
Abweichung und Probleme zu erkennen.

Diese Arbeit verbindet das Process-Mining oder genauer die Process-Discovery mit Tech-
niken der Visualisierung. Gleichzeitig untersucht sie die Anwendbarkeit von Techniken
der Process-Discovery auf Ablaufe in Softwaresystemen. Dazu werden reale Daten aus der
Automobilindustrie verwendet und Experten des analysierten zu einer Studie herangezogen.
Die folgenden Arbeitsschritte sind Aufgabe der Arbeit:

1. Auseinandersetzung mit den Logdaten und verwandten Arbeiten
2. Konzeption und Entwicklung eines prototypischen Systems

Anwendung des entwickelten Systems auf die vorhandenen Logdaten

W

Evaluation des entwickelten Ansatzes mittels einer Expertenbefragung

5. Auswertung und Diskussion der Evaluationsergebnisse

10

1.3. Lésungsansatz

1.3. Losungsansatz

Die Entwicklung des Systems ist aufgeteilt nach den Komponenten, welche die einzelnen
Verarbeitungsschritte iibernehmen sollen.

1. Die gegeben Logdaten miissen analysiert werden und daraus ein Konzept entwickelt
werden, das es ermdglicht aus den existierenden Logeintrégen, in natiirlicher Sprache,
eine strukturierte XES-Datei (Unterabschnitt 2.5.3) fiir einen bestimmten Prozess
erstellt werden kann. Aufbauend auf diesem Konzept wird dieser Ablauf in einer
Komponente des Systems implementiert, welche diese Verarbeitung automatisiert mit
moglichst geringer Nutzerinteraktion tibernimmt.

2. Der nachste Schritt der Verarbeitung ist die Erstellung eines Prozessmodells. Daher
sollte das Konzept entworfen werden, wie diese aus einem Log erstellt werden kann.
Dabei ist zu tiberlegen, welche vorhandenen Algorithmen aus dem Process-Mining
verwendet werden sollen, wie diese implementiert und gegebenenfalls konfiguriert
werden. Daraus sollte eine Komponente entstehen, welche als Eingabe Logdaten (mog-
licherweise auch die Wahl eines Algorithmus) und als Ausgabe ein Prozess Modell
liefert. Es sollte moglich sein, das Modell sowohl als Petri-Netz als auch als BPMN zu
bekommen.

3. Nach der Erstellung der Modelle miissen diese visualisiert werden. Dazu ist es notig zu
iiberlegen wie Petri-Netze und BPMN am besten visualisiert werden kénnen und wie
diese noch um zusatzliche Interaktion oder Visualisierung erweitert werden koénnen,
um die Analyse zu verbessern. Dies sollte in einem Frontend zusammengefasst werden,
das nicht nur die Diagramme visualisiert, sondern auch die anderen Komponenten mit
moglich wenig Aufwand steuert.

11

1. Einleitung und Aufgabenstellung

1.4. Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 — Grundlagen: Hier werden die Grundlagen dieser Arbeit beschrieben. Diese
reichen von der Businessprozessmodellierung bis hin zur Visualisierung von Graphen.

Kapitel 3 — Konzept: Beschreibung des entwickelten Konzeptes fiir das prototypische Sys-
tem.

Kapitel 4 — Implementierung: Dieses Kapitel beschreibt die Implementierung des proto-
typischen Systems.

Kapitel 5 — Evaluation durch Expertenstudie: Die Evaluation des erstellten Systems mit-
tels einer Expertenstudie.

Kapitel 6 — Fazit und Ausblick: Dieses Kapitel fasst die Ergebnisse der Arbeit zusammen
und stellt Ankniipfungspunkte vor.

12

2. Grundlagen

Dieses Kapitel beschreibt die Grundlagen, die in dieser Arbeit verwendet werden. Ange-
fangen wird mit einer Einfiihrung in die Prozessmodellierung (Abschnitt 2.1). Dabei liegt
der Schwerpunkt auf den Petri-Netzen (Abschnitt 2.2). Darauf folgt das Business Process
Model and Notation (kurz BPMN) in Abschnitt 2.3. Der Abschnitt iiber Information Retrieval
(Abschnitt 2.4) gibt eine kurze Einfithrung, wie Dokumente durchsuchbar gemacht werden
konnen. Folgend beschreibt ein grofier Teil das Process Mining (Abschnitt 2.5) und dessen
Teilgebiet der Process Discovery (Abschnitt 2.6). Schlussendlich folgt die Visualisierung von
Graphen (Abschnitt 2.7), die nétig fiir die Darstellung der Prozessmodelle ist.

2.1. Prozessmodellierung

Grofle Unternehmen nutzen Prozessmodellierungen, um ihre Vielzahl von groflen Prozessen
zu verwalten. Nur so ist es ihnen méglich zum Beispiel auf personelle Anderungen zu reagie-
ren oder Schwachstellen in den Prozessen zu finden. In der Managementebene wird viel mit
Prozessflussmodellen gearbeitet, da diese moglicherweise nicht die praktische Anwendung
der Prozesse vor Ort gesehen haben. Auch ein Konformitatscheck, die Uberpriifung ob sich
einzelnen Personen auch an die vorgeben Prozesse halten um die geplanten Anforderungen
zu erfiillen, ist nur mit klar definierten Prozessen moglich. Oft werden diese zum Teil in-
formell, etwa mit PowerPoint-Diagrammen spezifiziert. Es werden aber auch immer mehr
formale Sprachen, z. B. BPMN, genutzt um die Prozesse zu beschreiben. Durch die klare und
formale Definition der Bedeutung dieser Sprachen konnen Modelle, welche mit den formalen
Notationen erstellt wurden, besser analysiert und sogar simuliert werden. Dadurch ergeben
sich viele Erkenntnisse, die ohne (formale) Modellierung nur schwer méglich waren.

Dabei existiert eine Vielzahl von formalen Notationen um Prozesse zu beschreiben. Diese
Arbeit wird nur Petri-Netze und BPMN verwenden. Dies stellt keine Einschrankung an den
Gehalt gewonnener Erkenntnisse dar. Da andere existierende Notationen auf den gleichen
Konzepten basieren und zum Teil sogar die gleiche Aussagekraft besitzen, konnen Erkennt-
nisse direkt iibernommen werden und Notationen ineinander umgewandelt werden.

13

2. Grundlagen

\‘//ﬁ.\‘\ / \ / \ \‘/V \\
&/ -/ N /\ N/
“’/""‘\ \A // \ ’/ \ \A (/’"‘\‘
& @ N2 »*)
{/./77.\]/// \/. \\ \/ .\\(// \//a\\
LY Y &/ N

Abbildung 2.1.: Bei dem Feuern einer Transition wird aus jedem Vorganger eine Marke
genommen und in jeden Nachfolger eine Marke gelegt.

2.2. Petri-Netze

Carl Adam Petri begriindete die Theorie der Petri-Netze mit seiner Dissertation im Jahre
1962 [Pet62]. Petri-Netze waren eines der ersten Modelle, welche die Moglichkeit besafien,
nebenldufige Ablaufe zu modellieren. Viele grundlegende Ideen lassen sich in modernen
Notationen, wie BPMN oder Aktivitatsdiagrammen der Unified Modeling Language (UML),
wiederfinden. Auch wurden Petri-Netze um verschiedene Arten von Marken semantisch
erweitert, um dem Leser die Bedeutung besser verdeutlichen zu kénnen. Bei diesen soge-
nannten gefirbten Petri-Netzen werden die Marken durch Symbole ausgetauscht, womit
eine Marke eine verstandliche Bedeutung bekommt.

2.2.1. Grafische Reprasentation

Grafisch lassen sich Petri-Netze als bipartite Graphen reprasentieren. Dabei existieren zwei
Arten von Knoten, Stellen, welche als Kreise dargestellt sind, und Transitionen, welche durch
Rechtecke reprasentiert werden. Marken (dargestellt durch ausgefiillte Kreise) werden von
den Stellen beinhaltet und definieren den Zustand des Netzes.

Transitionen reprasentieren Ereignisse welche in dem modellierten System eintreten konnen.
Damit das Ereignis einer Transition ausgefiihrt werden kann, miissen alle Vorganger mindes-
tens eine Marke besitzen. Die Vorganger einer Transition sind alle Stellen, von denen eine
Kante zu der Transition fithrt. Beim Eintretens des Ereignisses wird aus allen Vorgangern
eine Marke genommen und allen Nachfolgern eine Marke hinzugefiigt. Nachfolger sind
dementsprechend die Stellen, zu denen eine Kante von der Transition fithrt. Dieser Vorgang
des Eintreten eines Ereignisses wird ,Feuern® einer Transition genannt.

Die Stellen grenzen die moglichen Zustande ein, denn die Marken in den entsprechenden
Stellen definieren den Zustand. In einer Stelle konnen sich im Allgemeinen beliebig viele
Marken befinden. Um die Notation der Petri-Netze niaher zu bringen, folgen einige Beispiele,
welche Standardprobleme der nebenlaufigen Programmierung modellieren:

14

2.2. Petri-Netze

0

Abbildung 2.2.: Einfaches Petri-Netz, das die exklusive Ausfithrung von a oder b modelliert.

e Nl ™~ e N \
7 N\) .‘
Aufaabe erzeugt \ / Verbraucher bereit
/ g & \ ‘ zum Verarbeiten l
/ v . |
. N
Flige Aufgabezur | p/ _ ® 5| Nehme Task aus
Erzeuge) e/ Verarbeite
g Warteschlange hinzu = Warteschlange
A] Warteschlange LY wl
\ / \ /
\ / N /
S TN i g — L
— e ———(@)—
S N

Verbraucher bereit
zum Empfangen

Abbildung 2.3.: Petri-Netz, welches das Erzeuger-Verbraucher-Problem modelliert

Erzeuger bereit

Abbildung 2.2 ist ein einfaches Beispiel mit zwei moglichen Ablaufen. Dieses Petri-Netz
modelliert die exklusive Ausfithrung von a oder b. Dabei ist die Abbildung in ihrem Aus-
gangszustand gegeben. Im Petri-Netz aus Abbildung 2.2 wird durch das ,Feuern® einer der
Transitionen die Marke aus der linken in die rechte Stelle bewegt. Danach ist keine Transition
mehr ausfithrbar, da sich in allen Stellen der eingehenden Kanten eine Marke befinden muss.
Somit modelliert das Netz ein System in dem entweder a oder b einmal ausgefithrt werden
kann.

Abbildung 2.3 zeigt ein Standardproblem der nebenlaufigen Ausfithrung von Prozessen. Das
Erzeuger-Verbraucher-Problem. Dabei geht es im Allgemeinen darum, dass eine oder mehrere
Entitaten, die Produzenten, Aufgaben erzeugen, die von einer oder mehreren Entitdten, den
Verbrauchern, abgearbeitet werden. In der hier dargestellten Modellierung mit einem Erzeu-
ger und einem Verbraucher, kann der Erzeuger beliebig viele Marken in der Warteschlange
erzeugen, da sich die Marke im Modell immer im Kreis mit den Stellen ,,Aufgabe erzeugt®
und ,Erzeuger bereit® bewegt. Bei jeder Runde wird eine Marke in die Warteschlange gelegt.
Die Marken in der zentralen Stelle reprasentieren die Auftrage, welche abgearbeitet werden
sollen. Der Verbraucher kann nur dann arbeiten, wenn sich mindestens eine Marke in der

15

2. Grundlagen

A betritt den N A verlasst den
kritischen —p ———» kritischen
Abschnitt N/ Abschnitt

A im kritischen
Abschnitt

=

B verlasst den

B betritt den N
P kritischen

kritischen { ‘
Abschnitt —/ Abschnitt
B im kritischen
Abschnitt

Abbildung 2.4.: Petri-Netz, welches den kritischen Abschnitt modelliert.

Warteschlange sich befindet. Dieses grundlegende Verhalten lasst sich sehr anschaulich mit
Petri-Netzen modellieren.

Auch Abbildung 2.4 zeigt die Darstellung eines Problems aus der nebenldufigen Program-
mierung: das Problem des kritischen Abschnittes. Dabei geht es darum einen bestimmten
Codeabschnitt so zu schiitzen, dass er nur von einem Prozess gleichzeitig betreten werden
kann. Das gegebene Modell verdeutlicht dies fiir zwei ,Akteure®, A und B. Dabei existieren
drei Zustande: A, B oder niemand befindet sich mit der Ausfithrung im kritischen Abschnitt.
Dabei ist auch vor allem sichergestellt, dass A nur den kritischen Abschnitt betreten kann,
wenn B sich nicht darin befindet und umgekehrt.

Weitere Beispiele und Erklarungen sind in [Rei85] zu finden.

2.2.2. Mathematische Definition und Notation

Die mathematischen Definitionen und Notationen sind aus [Rei85] und [VDA11] iibernom-
men.

Definition 2.2.1 (Petri-Netz [VDA11])
Ein Petri-Netz sei definiert als ein Triple N:

N = (S,T,F)

16

2.2. Petri-Netze

S und T sind endliche Mengen und es gilt:

SNT =0
FC(SxT)U(T xS)

S entspricht der Menge der Stellen, die Menge 7" beinhaltet alle Transitionen und £ be-
schreibt die Flussrelation (entsprechend den Kanten im Graphen), sowohl von Stellen nach
Transitionen als auch umgekehrt.

Multimengen [VDA11]

In der Prozessmodellierung reichen normale Mengen oft nicht aus. Zum Beispiel
kann in einer Stelle eines Petri-Netzes nicht nur eine oder keine Marke sein, sondern
auch mehrere. Daher ist es sinnvoll Multimengen einzufiihren, bei denen ein Element
auch eine Kardinalitat besitzt oder mehrmals in einer Menge vorkommen kann. Die
aufzahlende Notation soll dazu mit ,,[“ und ,,]“ abgegrenzt werden. Mehrere gleiche
Elemente konnen zu einem zusammengefasst werden, welches die Kardinalitat in der
Potenz tragt. Das folgende Beispiel beschreibt eine Multimenge M mit einem a, zwei b
und drei c. Dabei sind die gegebenen Notationen dquivalent.

M = [a,b,b,c,c,c] = [a,b?, ¢, c] = [a,b?, ¢’

Anders kann eine Multimenge auch als ein Tupel M = (D,) angesehen werden.
Wobei D eine Menge und v : D — Ny. M ist hierbei eine Multimenge iiber D und
v ordnet jedem Element eine Anzahl aus Ny zu. Nicht enthaltene Elemente werden
dabei einfach auf die 0 abgebildet. Dieser Zusammenhang wird auch mit M € B(D)
annotiert.

Es folgt die Definition von Untermengen, welche mit < annotiert werden: Fiir zwei
Multimengen A = (D, v4), B = (D,vg) € B(D) gilt

A< B&eVreD: yi(z) <vyp(x)

Die Summe zweier Multimengen A = (D,~v4), B = (D, ~yg) € B(D) sei definiert als
Summe der Kardinalitéten:

AW B = (D,vap), 7ap(2) = 7a(2) + ()

Definition 2.2.2 (Markiertes Petri-Netz [VDA11])

Ein markiertes Petri-Netz ist ein Tupel (N, M) bestehend aus einem Petri-Netz N = (S, T, F')
und einer Multimenge M € B(.S). Dabei stellt M die vorhandenen Marken dar und wird als
Markierung bezeichnet.

17

2. Grundlagen

Um auch mehrere Marken in einer Stelle modellieren zu konnen, ist M eine Multimenge.
Die folgende Menge M, reprasentiert die Markierung aus Abbildung 2.3:

M, = [Aufgabe erzeugt, Warteschlange®, Verbraucher bereit zum Empfangen]

Oft ist fur die Modellierung eines Prozesses ein markiertes Petri-Netz (N, M) gegeben.
Dabei stellt M die initiale Markierung des Modells dar.

Die folgende Definition beschreibt Vorganger und Nachfolger in einem Petri-Netz:

Definition 2.2.3 (Vorgianger und Nachfolger [VDA11])
Sei ein Petri-Netz N = (S, T, F') gegeben, dann sind folgende Mengen fir x € S U T definiert:

v ={yl|(y,z) € I'}
ze = {y|(z,y) € F'}

oz beschreibt die Menge der Vorganger und xe die Menge der Nachfolger des Elementes .
Falls x € S, dann ex, ze C T und analog dazu falls x € 7', dann ex, xe C S.

Definition 2.2.4 (Feuern einer Transition [VDA11])
Fiir eine Transition t eines markierten Petri-Netzes N, M, definieren wir die Relation (N, M)|[t).

(N, M)[t) & ot <M
Falls diese Relation fiir eine gegebene Markierung erfiillt ist, dann wird die Transition als aktiv
bezeichnet.

Wenn (N, M)[t) fiir beliebiges t gilt, dann sei folgende Feuerrelation definiert:

(N, M)[£)(N, M") & M’ = (M\eoz) 4] 2o

(N, M)[t)(N, M') annotiert die Markierung, die entsteht, wenn die aktive Transition ¢ ge-
feuert wird. Dabei wird von jeder Stelle aus ez eine Marke genommen und jeder Stelle aus
xe einer Marke hinzugefiigt. Zum Beispiel gilt fiir Abbildung 2.2 (N, [links])[a), da in der
abgebildeten Markierung a aktiv ist und (N, [links|)[a)(N, [rechts]), da beim Feuern von a
die Marke aus links in rechts wandert.

Eine Feuersequenz ist die Liste von nacheinander ausfithrbaren Transitionen. Dies lasst sich
mit der gegebenen Relation folgendermaflen definieren:

Definition 2.2.5 (Feuersequenz [VDA11])
Eine geordnete Multimenge o = (t1, ..., t,,) ist eine Feuersequenz von (N, My) falls die Markie-
rungen My, ..., M, existieren fiir die gilt:

Vie {1,...,n}: (N, M,_1)[t:) A (N, M;_y)[t:;)(N, M)

18

2.2. Petri-Netze

~ L) L)
\> > 2 " _/

Abbildung 2.5.: Einfaches Beispiel, das die Notwendigkeit der Definition von beschrifteten
Petri-Netzen zeigt.

Eine Markierung M gilt als erreichbar in einem markierten Petri-Netz N, M, wenn eine
Feuersequenz von M, nach M existiert. Die Menge aller erreichbaren Markierungen wird
mit [V, M) annotiert.

Definition 2.2.6 (Beschriftetes Petri-Netz [VDA11])
Ein beschriftetes Petri-Netz sei ein Tupel:

N = (S, T, F,A,b)

Dabei sei A eine Menge von Aktionsbeschriftungen und b : T' — A eine Beschriftungsabbildung.

Der Sinn der beschrifteten Petri-Netze mag nicht einleuchten, da auch der Unterschied zu
den bisherigen Netzen nicht grof} ist. Sie dienen vor allem dazu, die Eins-zu-eins-Beziehung
von Transition und der Beschriftung der Transition aufzulésen. Abbildung 2.5 zeigt ein Netz,
welches mit der vorherigen Definition nicht korrekt wire, da T" eine Menge ist und nur
einmal a enthalten kann. Um diese Einschrankung aufzuheben, werden Transitionen und
ihre Beschriftungen getrennt. Somit sind die Transitionen aus Abbildung 2.5 unterschied-
lich, werden aber auf dieselbe Beschriftung (Aktion) abgebildet. Somit ist es moglich die
Ausfiihrung von genau zweimal ¢ hintereinander zu modellieren.

Da bei einem beschrifteten Petri-Netz jeder Transition explizit eine Beschriftung zugeordnet
wird, die als die auszufithrende Aktion angesehen werden kann, definieren wir noch die
spezielle Beschriftung 7 (Tau). Dieses Symbol steht explizit fiir keine Aktion und dient zur
Modellierung eines Zustandsiiberganges im Modell, der aber keine sichtbare Folge oder
Aktion besitzt. Dies ermdglicht z. B. eine einfachere Darstellung einer bedingten Anweisung,
bei der eine Aktion entweder ausgefithrt wird oder nicht. Sie kann sozusagen iibersprun-
gen werden. Die 7-Beschriftung erweitert die Semantik der beschrifteten Petri-Netze und
ermoglicht bessere und tibersichtlichere Modellierungen.

Eigenschaften von Petri-Netzen

Es werden einige essenzielle Eigenschaften von markierten Petri-Netzen definiert [VDA11].

k-Beschranktheit Ein markiertes Petri-Netz (N, M) ist k-beschrinkt, wenn keine mogli-
che erreichbare Markierung M € [N, M,) existiert, fur die sich in einer Stelle mehr
als £ Marken befinden.

19

2. Grundlagen

1-Beschranktheit Ein markiertes Netz ist sicher, wenn es 1-beschrankt ist, d. h. zu keinem
spateren Zeitpunkt kann sich in einer Stelle mehr als eine Marke befinden.

Verklemmen Ein markiertes Petri-Netz ist frei von Verklemmen, wenn sich keine Markie-
rung erreichen lasst, bei der keine Transition mehr feuern kann.

Lebendigkeit Eine Transition ¢ eines markierten Petri-Netzes ist lebendig, wenn es eine
mogliche Folge von ausfithrbaren Transitionen gibt welche ¢ beinhaltet.

2.2.3. Workflow-Netze

Da Petri-Netze eine sehr weitreichende Semantik besitzen und damit sehr viele Konstrukte
moglich sind, von denen einige nicht fiir die Betrachtung von Businessprozessen nétig sind,
wird eine Untermenge der Petri-Netze eingefithrt. Nach [VDA11] werden diese Workflow-
Netze genannt. Diese sind Petri-Netze, welche eine dedizierte Startstelle und eine dedizierte
Endstelle besitzen.

Definition 2.2.7 (Workflow-Netz [VDA11])
Sei N = (S, T, F, A,b) ein beschriftetes Petri-Netz. N ist ein Workflow-Netz genau dann wenn:

1. Es existiert eine Stelle i € S fiir die giltex = ()
2. Es existiert eine Stelle o € S fiir die gilt xe = ()
3. Firallex € SUT existiert ein Pfad (in dem gerichteten Graphen) von i nach x.

4. Fiir allex € S UT existiert ein Pfad (in dem gerichteten Graphen) von x nach o.

Diese Petri-Netze besitzen jeweils eine Quelle (i) an der alle moglichen Abldufe starten und
eine Senke (0) an der alle moglichen Aktionsablaufe enden.

Abbildung 2.6 zeigt ein Workflow-Netz, mit einer Startstelle, aus welcher nur Kanten ent-
springen, und einer Endstelle, die nur eingehenden Fluss besitzt und somit das Ende der
Ausfithrung bedeutet. Um die schon gezeigten Petri-Netze einmal einzuordnen: Abbildung 2.2
und Abbildung 2.5 sind Workflow-Netze, wahrend Abbildung 2.3 und Abbildung 2.4 keine
sind.

Definition Korrektheit [VDA11]

Nach van der Aalst [VDA11] ist ein Workflow-Netz genau dann korrekt wenn folgende
Bedingungen erfiillt sind:

Sicherheit (NN, [i]) ist sicher, d. h. zu keinem Zeitpunkt beinhaltet eine Stelle mehr als eine
Marke.

20

2.3. Business Process Model and Notation (BPMN)

b
_ _ 2 4 — _
/ N A N
(@)r—>» a —») [—»d—»)
\!/ \\,/\\ /V \\,/ \\,/

“A

Abbildung 2.6.: Beispiel eines Workflow-Netzes.

Angemessene Beendigung Falls o € M fiir eine Markierung M € [N, [i]), soist M = [o].
Das bedeutet, falls sich eine Marke in der Senke befindet, ist die Ausfithrung sicher
beendet, keine Transition ist mehr aktiv und es befindet sich auch keine Markierung
in einer anderen Stelle.

Mégliche Beendigung [o] € [N, M) fur alle M € [N, [i]).

Abwesenheit von toten Teilen Fiir (/V, [i]) sind alle Transitionen lebendig.

2.3. Business Process Model and Notation (BPMN)

Eine andere weit verbreitete Notation zur Prozessmodellierung ist das Business Process
Model and Notation (kurz BPMN). Die aktuelle Version 2.0 ist in [bpm11] spezifiziert. BPMN
hat eine sehr reiche Semantik durch viele verschiedene Komponenten, welche einzelne
allgemeine Eigenschaften und Ereignisse von Businessprozessen modellieren.

2.3.1. BPMN-Elemente

Abbildung 2.7 zeigt die fir die Prozessmodellierung wichtigsten Elemente der BPMN. Die
einzelnen Elemente werden durch gerichtete Kanten verbunden, welche den Kontrollfluss
beschreiben. Dieser Fluss kann analog zu den Petri-Netzen als eine Bewegung von Marken
durch den Graphen angesehen werden. Diese Marken flieen entlang der Kontrollflusskanten
und werden an den Gateways entsprechend verandert. Gateways treten in zwei Varianten
auf. Die erste hat die Aufgabe den Kontrollfluss aufzutrennen. Dies wird durch mehrere
ausgehende Kanten annotiert. Entsprechend fiihrt die zweite Variante den Kontrollfluss
wieder zusammen. Das wird durch mehrere eingehende Kanten annotiert. Beide Varianten
konnen auch in einem Gateway kombiniert werden.

Abbildung 2.8 zeigt ein BPMN, das die exklusive Ausfithrung von a oder b modelliert. Dabei
spaltet das linke exklusive Gateway den Kontrollfluss auf genau einen Pfad auf. Das rechte
exklusive Gateway fithrt die moglichen Ausfithrungspfade wieder zusammen.

21

2. Grundlagen

Exklusives
Auf E
ufgabe/Event Gateway
Inklusives
Start Event ©—> Gateway
End Event —>O Paralleles
Gateway

Abbildung 2.7.: Die Abbildung zeigt einen Ausschnitt der vorhandenen BPMN-Elemente.

Folgend werden BPMN-Elemente aus Abbildung 2.7 beschrieben:

Aufgabe (engl. Task) Reprasentiert eine atomare Aufgabe, die nicht weiter zu unterteilen
und ein Teil des Prozesses ist.

Paralleles Gateway Das aufspaltende Gateway gibt den Kontrollfluss an alle ausgehende
Kanten weiter. In der zusammenfithrenden Variante gibt das Gateway den Fluss erst
weiter, wenn dieser aus allen eingehenden Kanten bereitsteht.

Exklusives Gateway In der aufteilenden Rolle gibt das Gateway den Kontrollfluss an genau
eine ausgehende Kante weiter. Beim Zusammenfithren wird jeder einzelne eingehenden
Kontrollfluss propagiert.

Inklusives Gateway Das splittende Gateway propagiert den Fluss an mindestens eine
ausgehende Kante und das zusammenfiithrende Gateway wartet auf alle Fliisse, die auf
Pfaden der eingehenden Kanten aktiv sind.

Startereignis Beginn des Kontrollflusses.

Endereignis Ende des Kontrollflusses.

22

2.4. Information Retrieval

Abbildung 2.8.: Beispiel fiir ein simples BPMN, dquivalent zum Petri-Netz in Abbildung 2.2.

2.4. Information Retrieval

Fiir Software ist es leicht, jeden einzelnen Schritt einer Ausfithrung zu dokumentieren und
auszugeben. Daher werden in Softwaresystemen viele Daten geloggt, um in einem Fehlerfall
nachvollziehen zu kénnen, was genau falsch gelaufen ist. Die Ausgaben der Programme
werden meistens in Logdateien geschrieben. Eine Logdatei wird oft fiir einen bestimmten
Zeitraum abgeschlossen (z. B. fiir jeden Tag eine) und jeder einzelne Eintrag in einem Log
mit einem genauen Zeitstempel versehen. Zwar ist die Erstellung der Logs einfach, fiir das
Extrahieren von Informationen, alleine schon das Finden einzelner Eintrage fiir bestimmten
Zeiten, ist das jedoch nicht praktikabel, denn die Dateien miissen dazu linear durchgesucht
werden. Daher ist es sinnvoll die Eintrdge zu indexieren. Dazu werden vermehrt Suchma-
schinen verwendet. Suchmaschinen passen gut zu Logdaten, da diese oft eine mangelnde
Struktur besitzen, da die Nachricht in natiirlicher Sprache verfasst ist.

Suchmaschinen bieten nun eine Menge an Operationen um die Logs zu durchsuchen. Zu-
satzlich lassen sich Metriken berechnen, die fiir das Data-Mining interessant sind.

Es existieren eine fertige Apache Lucene [luc15], welche das Implementieren eines solchen
Systems unterstiitzen und sehr vereinfachen. Drauf baut die speziell fiir Programmdaten
gedachte Sachmaschine FElasticsearch auf.

Elasticsearch, Kibana und Logstash

Elasticsearch ist eine Open-Source-Suchmaschine die fiir die schnelle Indizierung und
Verarbeitung vom Applikationsdaten gedacht ist (siehe https://www.elastic.co
und Abschnitt 2.4). Damit ist es unter anderem moglich in Echtzeit Performance-
Indikatoren, wie die Anzahl an Aufrufen eines Service zu berechnen. Dazu werden
meistens die durch die Applikationen erstellten Log-Daten an das System geschickt
und indiziert. Zu diesem Zweck existiert unterstiitzend Logstash. Dies iiberwacht die

23

https://www.elastic.co

2. Grundlagen

Logdateien der zu iiberpriiffenden Anwendungen, strukturiert die Eintrage mit Hilfe
von reguldren Ausdriicken und sendet die Daten an den Indexer des Elasticsearch.
Kibana ist eine leichtgewichtige Webapp, welche einen schnellen und einfachen Zugriff
auf die in Elasticsearch gespeicherten Daten bietet und Méglichkeiten zur Berechnung
und Darstellung analytischer Werte (z. B. Anzahl bestimmter Eintrage) stellt. Kibana
bietet, nach dem Sinne von Information Retrival, auch eine Suche tiber den Logdaten
an.

2.5. Process-Mining

Im idealisierten Konzept der Prozessmodellierung wird ein Modell von der Managementebe-
ne eines Unternehmens erstellt und eben dieses wird danach von betroffenen Personen dem
Modell entsprechend umgesetzt und implementiert. In der reellen Welt ist dies aus verschie-
denen Griinden leider oft nicht der Fall. Es kommt oft vor, dass kein Modell fiir einen Prozess
existiert, da dieser einfach aus gegebenen Anforderungen erschaffen wurde und durch die
praktische Ausfiihrung optimiert wurde. Falls fiir einen Prozess ein Modell existiert, so ist
dieses vielleicht nicht formal oder es existiert ein gutes formales Modell, die Ausfithrungen
des Prozesses weichen aber von der Spezifikation ab. Diese Abweichungen konnen eine
Optimierung der ausfithrenden Personen sein oder auch einfach eine willkiirliche Handlung,
die den Prozess verschlechtert.

Das Ziel von Process-Mining ist die Verbesserung oben genannter Probleme. Zum einen
soll es die Erstellung von Modellen aus den Log-Daten der Instanziierung der Prozesse
ermoglichen. Dieser Teil wird hauptsachlich in dieser Arbeit verwendet. Zum anderen bietet
Process-Mining auch die Moglichkeit die Ausfithrung der Prozesse zu evaluieren, indem die
Aufzeichnungen mit dem Modell durchgespielt werden und somit Konformitat nachgewiesen
werden kann. Auflerdem ist es mithilfe der Daten nun auch moglich, das gegebene Modell
zu verbessern. Zum Beispiel konnen Teile eines Modells entfernt werden, die in der Praxis
nicht verwendet werden.

Process-Mining erméglicht eine Vielzahl an verschiedene Ansichten auf die Daten der ausge-
fithrten Prozesse. Zum Beispiel konnen die Interaktionen zwischen den beteiligten Personen
betrachtet werden [WF94]. Eine andere Moglichkeit ist eine zeitliche Analyse, bei der Aus-
fihrungsdauer und Wartezeiten analysiert und optimiert werden kénnen. Auch kann der
Verbrauch von Ressourcen betrachtet werden. Die hochste Komplexitét bietet die Kontroll-
flussansicht, bei der die Abhangigkeiten von Aufgaben und deren relative Ausfithrungsrei-
henfolge betrachtet werden. Das Erstellen von Ablaufmodellen wird im Process-Discovery
genannt und stellt die Technik aus dem Process-Mining dar die in dieser Arbeit verwendet
wird.

24

2.5. Process-Mining

Cappuccino Latte Espresso Americano Ristretto Tee Muffin Bagel

1 0 0 0 0 0 1 0
0 2 0 0 0 0 1 1
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 2 0
0 0 0 1 1 0 0 0

Tabelle 2.1.: Datensatz der Bestellungen eines Cafés aus [VDA11].

Process-Mining ist in Relation zu gegeben anderen Disziplinen nach van der Aalst [VDA11]
zwischen Prozessmodellierung und Data-Mining anzuordnen.

2.5.1. Data-Mining

Data-Mining ist eine Wissenschaft, welche die Moglichkeiten untersucht, aus groflen Mengen
von Daten verwertbare Informationen zu extrahieren. Das Ziel dabei sind haufig aggregierte
Werte, erkannte Muster oder Modelle, welche den Daten zugrunde liegen konnten.

Tabelle 2.1 zeigt einen Ausschnitt eines Datensatzes [VDA11], der die Bestellungen eines
Cafés darstellt. Diese Daten wurden zur Dokumentation der Verkaufe erhoben. Mit Hilfe von
Data-Mining lassen sich diese nutzen, um das Verhalten der Nutzer des Cafés zu analysieren
und Ablaufe zu verbessern. Zum Beispiel konnen Beziehungen zwischen Produkten erkannt
werden, welche Produkte oft und welche niemals zusammen gekauft werden. Mithilfe solcher
Zusammenhéange lasst sich das Verhalten der Kunden besser vorhersagen. Eine einfache
Analyse konnte sein, dass Kunden, die Tee trinken, oft einen Muffin bestellen. Data-Mining
versucht Muster in den Daten oder, im Fall des Process-Mining, Modelle zu finden, welche
die Daten erzeugt haben konnten, um die Realitdt besser verstehen zu kénnen.

2.5.2. Logs, Traces und Events

Bei der Dokumentation von Prozessen wird oft fiir jedes Ereignis eine Menge an Eigenschaf-
ten gespeichert. Oft sind es mindesten ein Zeitstempel, das Ereignis und eine ID welche
die Zugehorigkeit zu einem Vorgang beschreibt. (Dies alles ist unter der Annahme, dass
die Eintrdge zu genau einem Prozess gehoren. Falls dies nicht der Fall ist, wird auch eine
Zuordnung zu einen definierten Prozess benotigt.) Weiterhin konnen dies Eigenschaften
wie eine eindeutige ID des Eintrages, die Lebenszyklus-Veranderung des Ereignisses fiir den
Eintrag (z.B. Start, Ende), Ressourcen oder beteiligte Personen sein. Das Vorhandensein von

25

2. Grundlagen

Informationen in den Logs ist sehr abhdngig von dem System im Einzelnen. Mithilfe aller
dieser Eigenschaften und Techniken des Data-Mining konnen viele Informationen extrahiert
werden. Diese Arbeit betrachtet aber nur die Kontrollflussrelation der Eintrdge. Dafiir lassen
sich die Eintrage auf ihre zeitliche Relation pro Ablauf reduzieren. Es werden die folgenden
Begriffe verwendet [VDA11]:

Event Ereignis welches eine atomare Aktion beschreibt. In den bisherigen Beispielen ware
die Ausfithrung von a oder einfach nur a ein Event.

Trace Eine Liste von Events fiir welche die Kontrollflussrelation definiert ist. D.h. ihre
Ausfithrungsreihenfolge ist bekannt. Zum Beispiel eine Liste mit den Events a und b,
wobei a vor b ausgefithrt wird. Ein Trace wird mit (und) annotiert und die Reihenfolge
beschreibt die Kontrollflussrelation. Fiir das Beispiel wire das (a, b).

Log Eine Multimenge von Traces, die zum selben Prozess gehoren. Formal wird ein Log
tiber einer Menge A definiert, welche die moglichen Events beschreibt. In der Praxis
wird A als die Menge aller im Log dokumentierter Events angenommen. Ein Log,
welcher aus der Ausfithrung von Abbildung 2.6 entstanden sein konnte, wire zum
Beispiel:

L = [{a,b.d)", (a, . d)"]

2.5.3. Extensible Event Stream (XES)

Extensible Event Stream (XES) ist XML basiertes Datenformat und standardisiertes Dateifor-
mat zur Beschreibung von Logs [GV14]. Dabei werden die oben beschriebenen Kontrollfluss-
relationen beschrieben und zusétzlich konnen noch weitere Eigenschaften auf Ebene der
Events, der Traces oder des Logs annotiert werden. Somit sind grundlegende Eigenschaf-
ten sichergestellt und gleichzeitig konnen beliebige zusatzliche Informationen hinzugefiigt
werden.

Die Struktur einer XES-Datei entspricht der Hierarchiestruktur eines Logs im Allgemeinen
(siehe Unterabschnitt 2.5.2). Das XML-Wurzelelement reprasentiert den Log. Es existiert
daher genau ein Log pro Datei. Der Log enthilt eine beliebige Anzahl an Traces und dieser
wiederum eine beliebige Anzahl an Events. Dabei konnen allen Elementen noch zusétzlich
Attribute angehéngt werden. Diese definieren bestimmte Eigenschaften der Elemente. Einige
sind im Standard vordefiniert, es konnen aber beliebige weitere definiert werden um den Log
mit Informationen anzureichern, ohne die Kompatibilitit einzuschrénken. Einige Attribute,
wie etwa den Namen eines Events, lassen sich nicht weglassen, ohne die Nutzbarkeit der
Daten einzuschranken. In diesem Beispiel des Namens wiirde ein Bezeichner fehlen, wodurch
viele Techniken des Process-Mining wie die Process-Discovery (siehe Abschnitt 2.6) nicht
moglich sind.

26

2.6. Process-Discovery

<declares>

<defines>

<defines>

Classifier

1 <defines>
<trace-global> E
<event-global> _l-I- R
4: Attribute : Key
| <contains> peeeee .t“ "
‘ E <orders>

<contains>

<contains> List

Container
String
Date

Float

000t

Boolean

Q08

Abbildung 2.9.: XES-Schema in UML-2.0-Notation [GV14].

2.6. Process-Discovery

Bei der Process-Discovery wird der Fall betrachtet, dass fiir ein System oder einen Prozess
kein Kontrollflussmodel gegeben ist. Das Ziel ist es aus aufgenommenen Daten, einem Log,
ein Modell zu extrahieren, das moglichst gut die gesehenen Ablaufe erzeugt haben koénnte.
Da im Allgemeinen nicht einmal ein eindeutiges optimales Modell existiert (abgesehen von
einigen einfachen Beispielen), ist das Finden eines geeigneten Algorithmus nicht trivial und
es existiert eine Vielzahl von Ansatzen.

Van der Aalst definiert die allgemeine Herausforderung der Process-Discovery, einen Algo-
rithmus zu finden, der fiir einen Log ein "reprasentatives” Modell findet [VDA11]. Ein solcher
Algorithmus bekommt einen Log als Eingabe und liefert ein Prozessmodell als Ausgabe.

27

2. Grundlagen

Formal ist es erst einmal unerheblich, in welcher Notation sich das Modell befindet, da die
Algorithmen leicht fiir andere Notationen angepasst werden konnen und weil es oft mog-
lich ist die unterschiedlichen Notationen ineinander zu tiberfithren. Van der Aalst [VDA11]
beschreibt das spezielle Problem der Process-Discovery einen Algorithmus zu finden, der
als Ausgabe ein korrektes Workflow-Netz liefert und sich mit diesem Netz jeder einzelne
der gegebenen Traces erzeugen lasst. Zwar sollten alle im Log vorkommenden Traces mit
dem Modell ausfithrbar sein, neue, nicht im Log vorhandene, Ablaufe diirfen aber durch das
Modell erzeugt werden. Dies ist fiir ein gutes Modell sogar meistens notig. Zum Beispiel, im
Falle eines Zyklus, sollte sich dieser auch im Modell widerspiegeln. Aufgrund der Endlichkeit
des Logs konnen jedoch nicht moglichen Traces vorhanden sein. Dadurch kann das Modell
zusitzliche Sequenzen erzeugen. Auflerdem ist es im Allgemeinen nétig zu generalisieren,
da sonst das Modell unnétig komplex und nicht mehr verwendbar wird. Trotzdem ist es
auch unbrauchbar zu viel neue Ablaufe zu erlauben, da das Modell sonst seine Aussagekraft
verliert. Das erzeugte Netz sollte eine gute Abwagung verschiedener Qualitatsindikatoren
erfiillen.

2.6.1. Qualitatsindikatoren

Um zu bewerten wie geeignet ein Netz fiir gegebene Traces ist, werden vier Qualitatskriterien
eingefithrt [VDA11]:

Eignung (eng. fithess) Kriterium wie viele der gesehenen Verhalten sich mit dem Modell
nachspielen lassen. Ein Petri-Netz mit einer hohen Eignung kann die meisten der
geloggten Sequenzen durch Feuersequenzen nachspielen.

Genauigkeit (eng. precision) Je weniger Verhalten das Modell zulasst, das sich nicht in
den Traces widerspiegelt, desto genauer ist das Modell. Ein vollkommen genaues
Modell wiirde nur Verhalten zulassen, das im Log sichtbar ist.

Generalisierung (eng. generalization) Ein Mining-Algorithmus sollte aus Sequenzen ein
allgemeines Verhalten ableiten. Leicht verschieden Traces fiithren bei einer guten Ge-
neralisierung nur zu kleinen Verzweigungen. Im Gegensatz dazu konnte ein schlecht
generalisierendes Modell komplette Traces als Moglichkeiten modellieren (siehe Abbil-
dung 2.12).

Einfachheit (eng. simplicity) Ein gutes Modell sollte so einfach wie moglich sein. Die Ein-
fachheit eines Modelles kann gut iiber die Anzahl der verwendeten Elemente geschatzt
werden. Ein einfacheres Modell lésst sich besser durch einen Nutzer verstehen.

Da diese Kriterien sich zum Teil gegenseitig widersprechen, ist es nicht einfach, fiir einen
Algorithmus alle Kriterien zu optimieren. Oft ist es sehr einfach einen Algorithmus zu finden,
der ein Kriterium voll erfullt, aber dafiir in anderen schlecht abschneidet und daher meistens
eher unbrauchbare Modelle liefert. Zum Beispiel wére ein Algorithmus, der die Eignung

28

2.6. Process-Discovery

Y
e o)

Abbildung 2.10.: Blumen Petri-Netz, das eine schlechte Genauigkeit gegeben tiber L; auf-
weist.

B miy
O— s | <X 1 O

Abbildung 2.11.: Blumen BPMN mit schlechter Genauigkeit analog zu Abbildung 2.10.

fiir ein Petri-Netz optimieren wiirde, einfach die unterschiedlichen Sequenzen als komplett
getrennten lineare Pfade des Netzes zu erstellen. Dadurch wird immer eine maximale Eignung
und Genauigkeit erreicht, das Netz ist jedoch meisten nicht sehr generalisiert oder einfach.

Ly = [{a,b,d,€),{a,c,e),(a,b,c,d,e),{a,b, c,e) {ade) (a,cd,e)l

29

2. Grundlagen

2\ Y N
{ b ! } d
a > b e d R e
N N o) Mg
e g g
o000
s sl b el el

Abbildung 2.12.: Petri-Netz mit allen Pfaden, das eine perfekte Genauigkeit fiir L, hat.

2.6.2. a-Algorithmus

Fir den a-Algorithmus miissen zuerst Log basierte Event-Ordnungsrelationen definiert
werden nach [AWMO04] und [VDA11].

Fiir einen Log L werden folgende Relationen definiert:

ea>p be dT = <t1,...,tn> eL,Fie {1,...,7?,— 1} cti=aANti 1 =0
a >, b gilt genau dann, wenn ein Trace in L existiert in dem b direkt auf a folgt.

-CL—)Lb<:>CL>Lb A b?éLCL
J G#Lb@a?é[/b N b;éLa

oa||Lb<:>a>Lb N b>LCL

Zum Beispiel sei ein Log L, tber A = {a, b, ¢, d} gegeben.

Ll = [<a’ C’ b7 d>57 <a/7 b? C’ d>7 <a7 b’ C>2]

Daraus ergeben sich die folgenden Relationen.

#rL, = {(CL, CL), (av d): (
(

||L1:

Fir alle Paare xz,y € A gilt genau eine der folgenden Relationen z —, v,y —p,
x,x#1,Y,2 ||z, y. Daher kann dieser Zusammenhang in einer Matrix dargestellt werden
(siehe Tabelle 2.2).

30

2.6. Process-Discovery

C
N

I
#
<

=% 1|

QL O o
=T T 3%,|e

SO SIS

Tabelle 2.2.: Relationen fir L;.

a d g @

Abbildung 2.13.: Petri-Netz fiir L.

Mithilfe dieser Relationen lassen sich nun einzelne Trennungs- und Zusammenfithrungskon-
strukte herauslesen. Dies wird an dem Beispiel L, verdeutlicht.

L2 = [<a’7 b7 d767 f7 g>107 <a7 C7 d? f7€7 g>77 <a7 b7 d? f? e7g>167 <a'7 C? d? 6? f? g>5]

Das zugrunde liegende Petri-Netz ist in Abbildung 2.13 zu sehen. Von den gegeben Traces
diese Netz zu rekonstruieren, stellt fiir einen Menschen eine bewaltigbare Aufgabe dar, es ist
jetzt zu betrachten, wie sich dies mithilfe der definierten Relationen verallgemeinern lésst.
Dazu steht die Relationsmatrix in Tabelle 2.3.

Fir die Events b und ¢ wird der Workflow exklusiv gespalten, d.h. es einer bestimmten
Stelle genau eine der beiden Aktionen durchgefiihrt. Das Teilen kann durch die Relationen

SSRRE SRR
T 3= | %3 H|—
SRS

<_

Q % 0O Q 0 o

HFHRIEFHRT T IR
HFFHRITHRE]|
IFHRIETIHRHE Lo
=TT L

Tabelle 2.3.: Relationen fir L.

31

2. Grundlagen

Algorithmus 2.1 a-Algorithmus aus [AWMO04]
Eingabe: Ein Log L als eine Multimenge von Traces.

T,={t|JoeL:teo}
Ty ={t|3do=(t1,...tn) E Lt =1t}
To=At|3o = (t1,...tn,) EL:t=1,}
X, ={(A,B)|ACT, NA#ADABCT,AB#0AYac AVbE B :a—.b
AYay,ay € A ayFtas ANVby, by € B : bi#by}
Y: ={(A,B) € X; |V(A,BYe X, : ACAANBC B = (A B) = (A, B)}
P, ={p(A,B)[(A,B) € Y} U{i, oL}
Fi ={(a,p(A, B)) | (A, B) € Yy na € A}
U{(p(a,b),b)| (A,B) e Y, ANbe B}
U{(ip,t)|teTr}
U{(t,or) |t € To}
(L) =(P, Ty, FL)

Ausgabe: Ein Workflow-Netz «(L).

a — b, a — c und b#-c beschrieben werden. Da auf a b oder c folgen kann und diese nicht in
direkter Nachbarschaft vorkommen, handelt es sich um exklusive Verzweigung. So dhnlich
ist es auch bei der Zusammenfithrung, fiir welche die Relationen b — d, ¢ — d und b#d
gelten. Die Relationen dienen als Grundlage um die entsprechenden Petri-Netz Konstrukte
zu bestimmen. Fiir die parallel Ausfithrung sind das analog d — e, d — fund e || f fiir die
Trennung und e — ¢, f — gund e || f fir die Zusammenfithrung. Diese Erkenntnisse sind
die Grundlage des a-Algorithmus.

Algorithmus 2.1 beschreibt den o Algorithmus. Dieser beinhaltet die oben besprochene Idee
im 4. Schritt bei der Erstellung von X ;. Um einzeln die Schritte durchzugehen: T}, beschreibt
die Menge aller Transitionen, die durch die Menge aller in dem Log vorkommenden Events
definiert wird. 77 und T beschreiben die jeweiligen Transitionen, deren entsprechende
Events zu Beginn / Ende eines Trace aufgetreten sind. Die Bedingungen fiir die Paare von
Mengen in X7 beinhaltet die Idee der Bedingungen fiir eine exklusives Zusammenfiithren
und Aufteilen. Die parallele Relation wird nur indirekt benutzt, indem die Elemente aus den
einzelnen Mengen mit # in Relation stehen miissen, d.h. dass diese Ereignisse nie in direkter
Nachbarschaft aufgetreten sind. Die Menge Y7, ist eine Optimierung von X, welche nur die
maximalen Paare beinhaltet. Alle (A, B) fiir die ein anderes (A’, B’) in X, existiert, fur das
entweder A eine echte Teilmenge von A’ ist oder B eine echte Teilmenge von B’, werden
entfernt. Fiir jedes Paar aus Y7, wird nun eine Stelle erstellt. Diese Menge an Stellen plus
jeweils eine fiir Start und Ende ergeben P;. F, beschreibt die Mengen an Kontrollflussrela-

32

2.6. Process-Discovery

tionen, welche fir (A, B) € Y}, fur die entsprechenden Stellen durch eingehenden Fluss von
allen Transitionen aus A und als ausgehenden Fluss zu alle Transitionen aus B beschrieben
werden. Start und Ende werden zusatzlich mit den am Anfang bestimmten ersten und letzten
Transitionen aus 77 und Ty verbunden. Das Triple (P, T}, F1) beschreibt das durch den
Algorithmus erzeugte Netz.

Um die Arbeitsweise des Algorithmus zu zeigen, wird er auf L, angewendet.

Ty, ={a,b,c,d,e, f,g}

Tr ={a}

To ={g}

X ={({a},{b}), ({a}.,{c}), ({a}, {b, c}), ({b}, {d}), ({c}. {d}), ({b, c}, {d}),
({d}. {e}), {d}. {f}), ({e}. {g}), {f}. {9}

Ve ={({a},{b,c}), ({b; c}. {d}), ({d}. {e}), ({d}, {f}), ({e}, {g}). {f}. {g})}

P ={ir,p({a},{b,c}),p({b,c}, {d}),p({d}, {e}),p({d}. {/}),

p({e}. {9}),p({f}.{9}),0r}

Fr, ={(ir, a), (a,p({a}, {b,c})), (p({a}, {b, c}),), (p({a}, {b,c}), c),
(0,p({b, ¢}, {d})), (b, p({b, c}, {d})), (p({b, c}, {d}), d), (d, p({d}, {e})),
(d,p({d}, {f})), (p({d},{e}), e), (p({d}, {f}), f), (e, p({e}, {g})),
(f,p(1 Ag}): (p({e}, {g}). 9), (({ f}.{g}): 9), (f,0r)}

Dies entspricht, bis auf die fehlenden Bezeichnungen der Stellen, dem Netz aus Abbildung 2.13.
Die Bezeichnungen der Stellen kénnen jedoch aus dem Kontext inferiert werden und wiirden
nur der Ubersichtlichkeit schaden. Daher wird die Bezeichnung der Stellen im Allgemeinen
auch weggelassen.

2.6.3. Grenzen des a-Algorithmus

Es lasst sich fiir einen Algorithmus nicht direkt bestimmen, ob er das korrekte Model fiir
einen Log erzeugt. Auf Grund der verschiedenen Qualitatskriterien gibt es eine Menge an
Modellen, welche den zugrunde liegenden Prozess gut beschreiben. Daher kann ein solches
Verhalten nur zum Teil untersucht werden, in dem ein Modell erstellt wird, aus diesem Traces
extrahiert werden und schlussendlich betrachtet wird, ob der Algorithmus ein dquivalentes
Modell erzeugt. Eine ausfiihrliche Betrachtung dieses Ansatzes findet sich in [VDA11, 140-
147]. Hier werden einige Beispiele betrachtet, bei denen der a-Algorithmus das zugrunde
liegende Modell nicht zuriickgewinnen kann.

33

2. Grundlagen

e

(@—» a -) ¢

C

@O0 OO

Abbildung 2.15.: Workflow-Netz, das der Alpha Algorithmus aus L erstellt.

Probleme mit Schleifen der Léange 1 und 2

Der a-Algorithmus hat Probleme mit Schleifen der Lange 1 und 2, d.h. er erkennt diese nicht
und erstellt ein inkorrektes Workflow-Netz. Dieses Verhalten lasst sich am Besten an einem
Beispiel zeigen. Gegeben sei das Workflow-Netz aus Abbildung 2.14 und ein méglicher Log
L3 mit einigen Traces die mit diesem Netz erzeugt werden konnen.

Ly = [{a,c,d, f),{a,b,c,d, f),{a,c,d e d, f),{a,bb,c,d e,d, f) {ab,c,dede,d,f)]

Abbildung 2.15 zeigt das Modell, welches durch den Algorithmus erstellt wird. Es weif3t feh-
lende Kanten an den Transitionen b und e auf. Formal bedeutet dies, dass diese Transitionen
zu jedem Zeitpunkt ausgefithrt werden konnen, da sie keine Abhangigkeiten besitzen. Dies
widerspricht den Forderungen an ein Workflow-Netz und offensichtlich auch dem Log Ls.
Bei der Transition b handelt es sich um das Problem, das bei Schleifen der Lange 1 auftritt.
Da im Log b auf b folgt, gilt b ||, b und somit kann b im Schritt 4 des Algorithmus niemals
in einer der Mengen A oder B vorkommen. Somit erhélt b keine Kanten. Ahnlich verhélt
es sich auch mit e, hier gilt d || e und somit kann d nicht vor oder nach e kommen und
die nétigen Kanten fallen weg. Eine Erweiterung des a-Algorithmus der so genannte a-+-
Algorithmus wird von de Medeiros et al. in [MAWO03] beschrieben. Durch Einfithrung von
Vor- und Nachbearbeitungsphasen werden diese Art von Schleifen erkannt und bearbeitet.

34

2.6. Process-Discovery

Probleme mit nicht lokalen Abhéngigkeiten

Der a-Algorithmus ist sehr lokal eingeschrankt. Alle Erkenntnisse werden immer aus der
direkten Nachbarschaft von Aktionen im Log erhoben. Daher ist es dem Algorithmus nicht
moglich nicht lokale Abhéngigkeiten zu erkennen. Oft ist dies in der Realitét jedoch relevant,
da ein Prozess je nachdem durch was er eingeleitet wurde auch anders endet oder weiter
geht. Dies wird anhand des Beispiel-Logs L, erklart.

Ly = [{a,b,c),(d,b,e)]

Der a-Algorithmus arbeitet nur auf den Relationen zu den direkten Nachbarn. Daher erkennt
er nicht, ob vor dem b ein a oder d war. Er kann auch nicht dem b einem bestimmten Kontext
mitgeben (mit dem sich ein b von einem anderen b unterscheiden lies), mit dessen Hilfe dies
bestimmt werden konnte. Daher erzeugt der Algorithmus ein Modell, dass auch Abfolgen
wie (a, b,) zulasst.

Auch hier gibt es Ansatze den Algorithmus zu verbessern, aber diese Probleme sollen vor
allem aufzeigen, dass der Algorithmus nur eine gute Grundlage fiir die Process-Discovery
bietet. Daher gibt es schon eine Menge an weiteren Ansitzen, die das Process-Discovery
Problem zu losen versuchen. Diese Arbeit betrachtet einen weiteren Ansatz, welcher mit
Hilfe von evolutioniren Algorithmen das Process-Discovery-Problem 16st.

2.6.4. Evolutionarer Ansatz

Evolutiondre oder genetische Algorithmen stammen aus dem Teilgebiet der kiinstlichen
Intelligenz und versuchen Probleme zu 16sen, in dem sie eine aus der Biologie stammend
Idee auf die Informatik tibertragen. Der Algorithmus funktioniert nach dem Prinzip des
»Uberleben der Stirksten®. Als Erstes werden Modelle zufillig erstellt. Dann werden die
Modelle wiederholt kombiniert, mutiert und ungeeignete Instanzen entfernt. Dieser ganze
Prozess konvergiert dabei zu einem repréasentativen Prozessmodell.

Das Prinzip der evolutionaren Algorithmen hat sich schon in vielen Problemen, z. B. beim
Investment Banking, als nicht nur ein sehr guter Ansatz bewiesen, sondern auch als zum
Teil anderen Ansatzen bei weitem tiberlegen [ES15].

Algorithmus 2.2 zeigt den Ablauf eines evolutiondren Algorithmus. Eine ausfiihrlicher Einfiih-
rung ist in [ES15] nachzulesen. Fiir eine spezielle Implementierung zur Losung eins Problems
werden die einzelnen Schritte nur gewéhlt oder speziell implementiert. Im Allgemeinen
laufen diese jedoch dhnlich ab und kénnen somit schnell auf andere Probleme angewendet
werden:

Initialisierung Die Initialisierung ist das initiale Erstellen der Population. Dabei werden
meistens zufillige Losungsinstanzen verwendet. Im Fall der Process-Discovery ist
es sinnvoll initiale Modelle zu verwenden, welche zumindest alle vorkommenden

35

2. Grundlagen

Algorithmus 2.2 Das generische Schema eines evolutiondren Algorithmus aus [ES15]
INITIALISIERE Population mit einer Menge aus zufilligen Losungen.

BEWERTE jeden Kandidaten

WIEDERHOLE BIS (ABBRUCHBEDINGUNG wahr)

- WAHLE Eltern

- KREUZE Paare der Eltern

- MUTIERE die entstandenen Nachfahren

- BEWERTE die neuen Kandidaten

- WAHLE die Losungen fiir die nachste Generation

OD

Events beinhalten, wodurch der Arbeitsaufwand verringert wird, da schneller geeignete
Modelle entstehen.

Bewertung Um nur die Stiarksten iiberleben zu lassen und Schwichere auszusortieren, muss
definiert sein, welche Losungsinstanzen besser und welche schlechter sind. Daher ist
es notig eine Abbildung zu definieren, welche die Eignung der Losungen bewertet.

Auswaihlen der Eltern Es werden nur ein Teil der Population als Eltern fiir die nachste
Generation gewahlt. Meistens werden nicht einfach nur die Besten genommen, sondern
die Eltern probabilistisch gew&hlt, wobei die Wahrscheinlichkeit trotzdem proportional
zur Eignung der Instanzen ist. Somit werden schlechte Instanzen mit einer kleinen
Wahrscheinlichkeit, groler als Null, trotzdem als Eltern gewahlt.

Kreuzen Hierbei werden zwei oder mehr Eltern genommen um diese zu einer neuen Instanz
zu kombinieren. Hierbei werden Teile aus beiden Eltern ibernommen. Diese Instanz
kann geeigneter oder ungeeigneter als die Vorfahren sein.

Mutation Die entstanden Nachfahren werden noch mit einer gewissen Wahrscheinlichkeit
zufallig mutiert. D. h. es ist zufallig, ob die Mutation durchgefiihrt wird und zufillig,
was die Mutation dndert.

Wahlen der nachsten Generation In den meisten Fillen ist die Grofie der Population
beschrankt und die neue wird aus den Besten der alten Generation und den neuen
Kandidaten gewéhlt.

Abbruchbedingung Fiir die Abbruchbedingung kénnen verschiedene Kriterien gewahlt
werden. Die optimale Bedingung wire abzubrechen, wenn eine Losung gefunden ist,
die eine Bewertung von 100 % aufweist. Da dies in vielen Féllen gar nicht erreicht
werden kann oder fiir eine Losung nicht bestimmt werden kann, dass es sich um die
beste handelt, werden anderen Bedingungen gewahlt. Dies sind zum Beispiel oft eine
maximale Anzahl an CPU Zyklen (Zeit), eine bestimmte Anzahl an Generationen oder
es kann auch abgebrochen werden, wenn die Verbesserung der Eignung der besten
Losungsinstanz fiir eine bestimmte Zeit unter einem Schwellwert liegt.

36

2.7. Visualisierung von Graphen

De Medeiros et al. beschreiben einen Ansatz wie ein evolutiondrer Algorithmus fiir die
Process-Discovery aussehen konnte [MWAOQ7]. Dazu verwenden sie ein eigenes Prozessmo-
dell, welches sie ,Kausal-Matrix“ nennen. Dieses wurde fiir die Ausfithrung der evolutionaren
Operationen optimiert. Fiir das Ergebnis lésst sich eine ,Kausal-Matrix” in ein Petri-Netz
umwandeln. Fir die Initialisierung nutzen sie pseudo-zufillige Modelle, welche mit Hilfe
von Heuristiken optimiert sind. Fiir die Bewertung eines Modells werden nur die Kriterien
Eignung und Genauigkeit verwendet (siehe Unterabschnitt 2.6.1). Die Auswahl der Eltern
wird durch ein Auswahlverfahren implementiert, bei dem sie das am besten bewertete Modell
aus 5 zufillig gewéhlten Losungsinstanzen nehmen. Fiir das Kreuzen und die Mutation
schlagen sie Algorithmen vor, deren Umfang grofler ist, aber im Essentiellen vorhandene
Instanzen nutzen, um neue zu kreieren. Fiir die nachste Generation werden die Elite (nur die
besten Instanzen) der alten plus die gesamten neuen Instanzen gewahlt. Die Abbruchbedin-
gung wurde iiber eine maximale Anzahl an Generation n definiert, wobei auch abgebrochen
wird, wenn 7 Generationen keine Verbesserung der Lésungsinstanzen festgestellt wurde.
Dieser Algorithmus ist vor allem deshalb interessant, da er (wegen dem zugrunde liegenden
Modell) Zusammenhinge wie nicht lokale Abhangigkeiten modellieren kann [MWAO7].
Nachteilig sind die teilweise sehr langen Laufzeiten.

Process-Mining-Framework (ProM)

Das Process-Mining-Framework [DMV™'05] (kurz ProM) ist ein Softwaretool, in dem
viele Erkenntnisse aus dem Bereich des Process-Mining vereint wurden. Gleichzeitig
ist es auch das einzige System an dem so viele der Algorithmen des Process-Mining
implementiert wurden. Es biete eine Plattform fiir alle Teilbereiche dieser Wissenschaft.
Auch der a-Algorithmus und eine evolutiondrer sind darin vorhanden. Daher ist es am
weitesten verbreitete Werkzeug in dieser Disziplin.

2.7. Visualisierung von Graphen

Ein gerichteter ungewichteter Graph wird in der Mathematik als ein Tupel (V, F) definiert.
Dabei ist V' die Menge der Knoten und £ C V' x V die Menge der gerichteten Kanten.
Die haufigste und intuitiv verstidndliche Darstellung von Graphen ist das Knoten-Kanten-
Diagramm. Dabei werden oft Kreise (oder wie bei Petri-Netzen allgemein geometrische
Figuren) zur Darstellung der Knoten verwendet. Die Kanten werden bei gerichteten Graphen
als Pfeile zwischen den Knoten dargestellt.

Ein grundlegendes Problem ist die Positionierung der Knoten um eine tibersichtliche und
verstandliche Darstellung zu erhalten. Fruchtermann und Reingold [FR91] beschreiben die
folgenden Kriterien, die ein ,asthetisches” Knoten-Kanten Diagramm erfiillen sollte, das in
einem gegeben Ausschnitt gezeichnet werden soll:

37

2. Grundlagen

Abbildung 2.16.: Darstellung zweier Knoten-Kanten-Diagramme mit dem gleichen zugrun-

3
4.
5.

de liegendem Graphen.

. Gleichmaflige Verteilung der Knoten im Bildausschnitt.

Minimierung der Kreuzungen von Kanten.

. Einheitliche Langen der Kanten.

Darstellung von gegebener Symmetrie des Graphen.

Grenzen des Bildausschnittes nicht verletzen.

Die Bedeutung einer guten Verteilung der Knoten eines Knoten-Kanten-Diagrammes ist in
Abbildung 2.16 zu sehen. Dabei stellen beide Diagramme den gleichen Graphen dar, da das
linke Diagramm den eingefiihrten Kriterien besser entspricht ist die Struktur des Graphen
genauer zu sehen und besser verstandlich.

38

2.7. Visualisierung von Graphen

2.7.1. Kraftebasiertes Layout

Eine Moglichkeit das oben genante Problem zu l6sen ist die Verwendung von physikalischen
Prinzipien. In [FR91] wird ein Ansatz beschrieben, der vom Grundgedanken iibernommen
wird.

Die zugrunde liegende Vorstellung ist folgende: Die einzelnen Knoten des Graphen seien
alle elektrostatisch geladene Punktladungen, z. B. metallene Kugeln. Die dadurch entste-
hen Krafte sorgen fiir eine gleichmaflige Abstoflung der Knoten untereinander. Die Kanten
zwischen den Knoten sind in diesem Modell Federn, welche den Graphen wiederum zusam-
menhalten. Der Gedanke ist nun dies mit physikalischen Gesetzen zu simulieren, um die
gleichmaflige Verteilung und Symmetrie der Strukturen zu optimieren. Dazu werden die
folgenden Konzepte verwendet:

Hookesches Gesetz

Das hookesche Gesetz besagt, dass bei der Ausdehnung einer Feder, falls diese nicht zu weit
ist, die entstehende entgegenwirkende Kraft proportional zur Lange der Ausdehnung ist
[wik15b].

F=D-Al

Fir das kraftebasierte Layout hat das zur Folge, dass fir die Kanten (entweder einzeln oder
allgemein fiir alle) die Lange der Feder und deren Starke spezifiziert werden miissen. Denn
Al lasst sich dann aus der Differenz des Abstandes der Endknoten und der Lénge der Feder
berechnen. Aus der Stérke folgt direkt oder indirekt die Proportionalitatskonstante D.

Coulombsches Gesetz

Die andere, anstof3ende Kraft entsteht aus dem coulombschen Gesetz. Dieses besagt, dass die
Kraft zwischen zweier elektrostatisch geladener Punktladungen proportional zu jeweils den
beiden Ladungen und invers proportional zum Quadrat des Abstandes ist [wik15a].

_ I q1-q
dreg 12

F

Die Konstante ist dabei fiir die Layoutsimulation nicht so interessant. Angegeben werden
miissen daher nur die Ladungen der einzelnen Knoten.

39

2. Grundlagen

Barnes-Hut-Approximation

Die Implementierung aus [d3215] nutzt die Barnes-Hut-Approximation, um die Berechnung
der abstoflenden Krafte zu beschleunigen. Da normalerweise bei einem solchen Typ von
Simulation der Aufwand in O(n?) in der Gré8e der Elemente (hier Knoten) wichst, wurde
J. Barnes und P. Hut eine Anndherung entwickelt [BH86]. Diese basiert auf der Idee, dass ab
einem gewissen Abstand die Krafte nicht mehr so genau berechnet werden miissen, da mit
groflem Abstand der Einfluss schnell kleiner wird.

Der Algorithmus arbeitet dabei auf einem Quadtree, welcher den zweidimensionalen Raum
und die Elemente unterteilt (in einem dreidimensionalen wire es ein Octtree). Anstatt fiir
jedes Element die Krafte mit allen anderen Elementen zu berechnen, wird dies nur fiir
Elemente in néchster Nahe getan. Fiir Quadrate, welche eine grolere Entfernung besitzen,
wird die Kraft zu einem virtuellen, fiir die Elemente des Quadrates stellvertretenden, Element
berechnet. Diese Vereinfachung sorgt fiir eine drastische Verbesserung der Zeitkomplexitat
auf O(nlogn).

Zusammenfassung und Beispiele

Durch die Kombination dieser Konzepte entsteht ein Algorithmus, der eine gute Performanz
hat. Der Algorithmus ist ein iterativer Prozess, bei dem initial die Knoten zufallig verteilt
werden. In jeder Iteration werden die anziehenden und abstoflenden Kriafte berechnet und
anschlieBende die Knoten entsprechend verschoben. Damit der Prozess auch sicher in einen
stabilen Zustand kommt, wird ein Abschwachungsfaktor integriert. Dieser wird nach jeder
Iteration verringert, um somit die Kréafte immer geringer werden zu lassen und das Layout
in einen stabilen Zustand zu geleiten. Die Abbildung 2.17 und Abbildung 2.18 zeigen zwei
Beispiele, welche mit dem D3-Framework erstellt wurden und Ergebnisse des kréftebasierten
Layouts zeigen.

2.8. Verwandte Arbeiten

Dieser Abschnitt verweist auf verwandte Arbeiten, die zu Teilen in Arbeit verwendete
Konzepte besprechen. Dabei existieren zwei Typen an relevanten Arbeiten, die einen, welche
Problemstellungen des Process-Mining erdrtern und die anderen, welche Visualisierungen,
gerade von Graphen und Modellnotationen, besprechen.

In [ARW107] untersuchen van der Aalst et. al die Anwendung des Business-Process-Mining
anhand echter Daten. Diese Daten stammen aus den Logs der Prozess einer Abteilung der
staatlichen Tiefbaubehorde. Dabei verwenden sie fiir die Erstellung der Prozessmodelle einen
heuristischen Ansatz [WA03, VDA11] im Gegensatz zu dieser Arbeit, die sich auf den a-

40

2.8. Verwandte Arbeiten

Abbildung 2.17.: Ein simpler Graph mit Symmetrie, die gut durch das kraftebasierte Layout
zum Vorschein kommt. [mbo12]

Abbildung 2.18.: Knoten-Kanten-Diagramm eines Baumes, dessen Struktur gleichméflig
verteilt wird, durch das kraftebasierte Layout. [mbo11]

41

2. Grundlagen

Abbildung 2.19.: Erstellter Kommunikationsgraph aus [ARW07].

[AWMO04] und den evolutionaren Algorithmus beschrankt [MWAO7]. Dabei kommen sie zu
dem Ergebnis, dass in der Praxis erwartete Probleme, wie Rauschen (fehlerhafte Ablaufe
oder Traces), sich gut durch den heuristischen Ansatz 16sen kéonnen und auch das ProM-
Framework schon fiir praktische Aufgaben brauchbar ist. Auf eine gute visuelle Aufbereitung
ihrer erstellten Ergebnisse legen sie dabei weniger Wert, wie sich gut in Abbildung 2.19
sehen lasst.

Wil van der Aalst beschreibt in [VDA13] die wachsende Bedeutung des Process-Mining
fir Webservices und Systeme mit serviceorientierter Architektur. Dabei untersucht er die
theoretischen Problematiken die bei der Erstellung von System entstehen welche sehr auf
Webservices, gerade auch mit Kommunikation tiber die Grenzen einer einzigen Organisation
hinweg, basieren. So sei ein grof3es Problem, dass bei der Entwicklung die Abldufe in anderen
Services nicht bewusst sind, da sie zum Teil gar nicht dokumentiert sind. Da sich der ganze
Prozess aber iiber mehrere Systeme streckt, kann es zu unvorhergesehen Problemen, z.
B. Deadlocks, kommen. Ein Deadlock ist eine Markierung (welche nicht die Endzustand-
Markierung ist), bei dem keine aktive Transition mehr existiert, d. h. keine Aktionen sind
mehr moglich, obwohl der Prozess noch nicht geendet hat. Das Netz in Abbildung 2.20
kommt in einen solchen Zustand nach der Ausfithrung von (po, ro, sp, sr). Dies ist nur zu
erkennen, wenn das gesamte Netz bekannt ist. Diese Beschreibung ist nur theoretischer
Natur und verdeutlicht die Bedeutung des Prozess-Mining fiir Webservices und welche
Herausforderungen noch zu bewaltigen sind. Das in der vorliegenden Arbeit verwendete

42

2.8. Verwandte Arbeiten

customer
service

supplier
service

send
rejection

Abbildung 2.20.: Petri-Netz von zwei Webservices mit einem enthalten Deadlock [VDA13]

System ist auch von serviceorientierter Natur, hat jedoch nicht alle diese Probleme, da das
System nicht iiber die Organisationsgrenzen hinaus geht.

Eine dazu passende Arbeit ist [AV08]. In dieser wird die Anwendung von Process-Mining auf
ein System mit einer IBM Websphere Umgebung untersucht. Van der Aalst und Verbeek be-
trachten dabei welche unterstiitzenden System Websphere fiir das Process-Mining mitbringt
und wie sich damit Daten fiir das ProM-Framework gewinnen lassen. Dabei gehe sie nur
auch die technischen Einzelheiten von Websphere ein und beschreiben keinen Fall, den sie
mit dem System analysiert haben. Sie beschreiben Ansatze, wie solche serviceorientierten
Softwaresysteme mit dem Process-Mining verbunden werden kénnen. Im Gegensatz zu dieser
Arbeit betrachten sie dabei keine realen Daten und tiberpriifen damit nicht die praktische
Anwendbarkeit. Auch unterscheidet sich, dass diese Arbeit das ProM-Framework nur fur
die Mining-Algorithmen verwendet und Visualisierung und Analyse selber tibernimmt und
erweitert.

43

2. Grundlagen

Cook und Wolf gehen einen etwas anderen Ansatz in [CW98]. Ihr Ziel ist dasselbe wie auch
in dieser Arbeit, die Erstellung von Prozess Modellen fiir Software mit Hilfe von Eventdaten.
Dabei sehen sie auch die Bedeutung der Einfachheit und Automatisierung der Erstellung
solcher Modelle, um die Wartung von Software zu vereinfachen. Dabei nutzen sie nicht
die Techniken des Process-Mining [VDA11], sondern sie verwenden Techniken aus dem
Machine Learning wie neuronale Netzwerke und Markov-Modelle. Sie verwenden auch
dhnliche Qualititsindikatoren (siehe Unterabschnitt 2.6.1) um die erstellten Modelle zu
bewerten, da dies fiir Algorithmen aus der kiinstlichen Intelligenz nétig ist.

Die bisherigen Arbeiten betrachten alle das Herausfinden des Prozessflusses und weniger
die Visualisierung der entstandenen Modelle. Eine Arbeit die kraftebasierte Layouts fiir
die Visualisierung von formalen Notationen benutzt ist [Dwy01]. Dwyer untersucht dabei
wie kréftebasierte Layouts fiir die Visualisierung von UML-Klassendiagrammen verwendet
werden konnen. Dabei werden diese im Dreidimensionalen modelliert und angezeigt. Dabei
bewertet er den kraftebasierten Ansatz als gelungen und eine Analyse unterstiitzend.

44

3. Konzept

Dieses Kapitel erortert das in dieser Arbeit zu untersuchende Konzept.

Es wurde ein Konzept zum Mining und zur Visualisieren der Prozesse entworfen. Dazu
sind die in Abbildung 3.1 als Verarbeitungs-Pipeline dargestellten Verarbeitungsschritte
notwendig. Die Logdaten sind in einem Datenspeicher vorhanden. Die darin vorhandenen
Logeintrage werden gefiltert und in das XES-Format umgewandelt (sieche Vorverarbeitung der
Logdaten). Danach werden aus den erstellten Traces Prozessmodelle erstellt (siche Process-
Mining). Und schliellich werden die Modelle und Traces fiir eine gute Analyse passend
visualisiert (Visualisierung und visuelle Analyse).

Zusatzlich wurde ein Konzept entwickelt, das die Hierarchie der Serviceaufrufe zur Optimie-
rung der Verarbeitung nutzt (Bezeichnerkonvention der Hierarchie).

3.1. Vorverarbeitung der Logdaten

Die einzelnen Logeintrage, die direkt aus der Datenquelle stammen, lassen sich nicht direkt
in einem Process-Mining-Tools verwenden, denn zum einen miissen die Daten ein vom
Process-Mining-Framework (ProM) [DMV*05] lesbares Format gebracht werden (hier XES),
zum anderen miissen spezielle Eintrage als relevant eingestuft werden und auf entsprechende
Events abgebildet werden. Bei dem vorliegenden System werden nur der Beginn der Ausfiih-
rung eines Services und die Beendigung der Ausfithrung auf Events abgebildet. Alle anderen
Eintrage werden nicht betrachtet, konnten jedoch teilweise fiir weitere Verbesserungen der
Process-Discovery oder andere Arten des Process-Mining durchaus relevant sein.

Mining der ‘ PNML Visualisierung der

Modell it ProM Modell
odelle mi ro‘BPMN odelle

Rohdaten- Vorverarbeitug der L XES
Log Daten ‘

Datenquelle

Abbildung 3.1.: Darstellung der Verarbeitungsschritte in einer Pipeline.

45

3. Konzept

Die Eintrage beinhalten Start und Ende der Services und deren Zuordnung zu einem Vorgang.
Was bei den vorliegenden Daten leider fehlt, ist die Zuordnung der Vorgange zu einem Prozess
oder einem Use-Case. Eine Zuordnung der Traces zu einem Prozess ist aber unbedingt nétig,
um ein verwertbares Modell zu bekommen, gerade bei einem System mit einer grofien
Zahl an Services und Prozessen. Daher wurde die folgende Heuristik fiir die Zuordnung
zu einem Prozess gewéahlt: Um die Traces fiir ein Prozessmodell zu bekommen, wird ein
bestimmter Service gewahlt. Dieser dient als Filter, um nur Traces zu behalten, welche bei
der Ausfithrung diesen Service verwenden. Dabei ist zu beachten, dass einige Services nicht
geeignet sind, da sie von einer Vielzahl an anderen Services verwendet werden. Viele Prozesse
oder Anwendungsfille haben aber einen Service, der ausschliefilich von diesen verwendet
wird und die Traces somit charakterisieren konnen.

Nach dem ausfiihrlichen Filtern der Eintrage werden die Traces in das XES-Format, dabei
werden Traces iiber die Tracking-ID definiert. Events erhalten ihre relative Reihenfolge
tiber die Sortierung nach ihrem Zeitstempel, an dem der Eintrag in den Log eingetragen
wurde. Der Name ergibt sich iiber den Service. Start und Ende eines Service werden auf die
entsprechende Lebenszyklus Definitionen in XES abgebildet.

3.2. Process-Mining

Der nachste Verarbeitungsschritt ist das Erstellen geeignet Modelle aus den Logdaten. Die
Logdaten aus der Datenquelle liegen nach dem vorherigen Verarbeitungsschritt als XES vor.
Dazu werden zwei Algorithmen verwendet, zum einen der a-Algorithmus (siehe Unterab-
schnitt 2.6.2) und zum anderen eine Implementierung des evolutionidren Ansatzes (siehe
Unterabschnitt 2.6.4). Dabei sollen die Algorithmen nicht selber implementiert werden, son-
dern das vorhandene ProM-Framework genutzt werden, um aus den vorliegenden Logdaten
Modelle zu generieren. Deshalb ist auch nétig, dass die Ausgabe des ersten Verarbeitungs-
schrittes in einem standardisierten Format ist. Der Aufruf des ProM-Frameworks sollte ohne
Hilfe des Nutzers geschehen, tiber die Nutzung einer Kommandozeilen-Schnittelle. Nach
der Terminierung der Algorithmen liegen Petri-Netz oder BPMN in einem standardisierten
Format vor, welches wiederum vom zu entwickelnden System gelesen und weiter verarbeitet
wird. Fiir den a-Algorithmus ist es kein Problem ihn ohne Nutzereingaben auszufiihren, da er
keine weiteren Eingaben bendtigt auler den Logdaten. Fiir einen evolutiondren Algorithmus
ist dies nicht der Fall, dieser besitzt eine Vielzahl an Parametern, wie Grofle der Population,
Koeflizienten der Bewertungsfunktion, etc.. Um die Komplexitdt des Systems aber nicht
unnotig zu vergroflern, werden diese manuell auf einen Standardwert gesetzt. Dazu werden
empfohlene Standardwerte verwendet.

46

3.3. Visualisierung und visuelle Analyse

3.3. Visualisierung und visuelle Analyse

Der letzte Verarbeitungsschritt ist die visuelle Aufbereitung der Modelle (Petri-Netze und
BPMN). Dabei ist zum einen eine tibersichtliche Darstellung der Graphen notwendig, zum
anderen soll auch noch eine visuelle Unterstiitzung implementiert werden fiir das Verstandnis,
wie aus den gegebenen Logdaten das Modell entstanden ist.

Fiir die iibersichtliche Darstellung der Graphen kénnen ein kréftebasiertes Layout oder andere
Techniken verwendet werden. Damit werden die Knoten gleichméaflig verteilt mit wenigen
Kanteniiberschneidungen. Bei dem Layout ist zusatzlich zu beachten, dass die Rotation
des Graphen nicht vernachlassigt wird. Im Allgemeinen wird bei einem kréaftebasierten
Layout die Rotation nicht in die Optimierung miteinbezogen. Die Ubersichtlichkeit eines
Prozessmodelles ist aber nicht rotationsinvariant.

Zur Unterstiitzung des Verstandnisses der erstellten Graphen und zur Darstellen der Plausi-
bilitat soll die Visualisierung eine Moglichkeit bieten, die zugrunde liegenden Traces anzu-
zeigen. Dazu soll es moglich sein fiir einen ausgewéahlten Trace den Verlauf der Ausfithrung
im Modell anzuzeigen. Dies versichert dem Nutzer, dass ein aufgenommener Ablauf auch
tatsdchlich mit dem Modell ausfiihrbar ist. Auflerdem bieten diese beispielhaften Ausfiithrun-
gen einen guten Anhaltspunkt um das Modell schneller zu verstehen, da der Nutzer eine
Ausfithrungsmoglichkeit sieht und auch schneller erkennt, welche anderen Moglichkeiten
noch existieren. Zusétzlich soll noch die Moglichkeit bestehen, die Traces nach Transitionen
Filtern zu kénnen um die Anzahl der zugrunde liegenden Traces zu erkennen. Damit kann
ein Nutzer die Signifikanz eines Teilmodells abschatzen.

3.4. Hierarchisierung der Traces und der Modelle

Aufgrund der reellen Anwendung des Systems konnen einzelne Traces schnell sehr lang
werden und damit auch grofliere Modelle zur Folge haben. Dies beeinflusst nicht nur die
Visualisierung, sondern auch das Mining der Modelle. Obwohl der a-Algorithmus keine
Probleme mit grofieren Traces in Bezug auf seine Laufzeit hat, schranken die Probleme des
Algorithmus den Nutzen in der Praxis ein (siehe Unterabschnitt 2.6.3). Der evolutionire
Algorithmus hingegen skaliert schlecht in der Groé8e des Logs und in der Grof3e des Modelles.
Daher wurde ein Ansatz entworfen, der zwar nicht das Problem 16st, aber einige Verbesse-
rungen mit sich bringt.

Die grundlegende Idee ist die folgende: In einem Softwaresystem sind viele Aufrufe nicht auf
der obersten Ebenen, sondern Unteraufrufe eines weiteren Services. Dieser Zusammenhang
soll genutzt werden, indem jedem Event-Eintrag sein aufrufender Service mitgegeben wird.

47

3. Konzept

3.4.1. Bezeichnerkonvention der Hierarchie

Um ein Event oder einen Task in seinen Kontext einzuordnen, soll es mit der globalen Auf-
rufhierarchie bezeichnet werden. Dazu wird der Stapel der tibergeordneten Task, jeweils mit
einem ,,::“ getrennt, vor den Bezeichner geschrieben. Den Zustandsiibergang des Lebens-
zyklus (in diesem Fall nur ,start” oder ,complete”) wird getrennt mit einem ,,+“ nach dem
Bezeichner angefiigt. Die Konvention zur Integration des Lebenszyklus in den Bezeichner
wurde aus ProM iibernommen. Zur Erklarung sei folgender Beispiel-Trace gegeben.

o =(a+start, a:b+start, a:b:c+start, a::b::c+complete, a:b+complete,

a+complete, d+start, d::b+start, d::b+complete, d+complete)

Wie oben zu sehen ist, wird b, wenn es im Kontext von a verwendet wird, mit a::b bezeichnet
und entsprechend im Kontext von d mit d::b. Damit werden diese beiden Events mit einem
anderen Bezeichner versehen und werden von dem «a-Algorithmus nicht als dasselbe Event
betrachtet. Wie oben am Beispiel von ¢ zu sehen ist, werden weiter verschachtelte Aufrufe
mit der gesamten Hierarchie versehen. In diesem Beispiel wird ¢ mit a::b::c bezeichnet, da es
im Kontext von b aufgerufen wurde, welches wiederum dem Kontext von a entspringt.

3.4.2. Vorteile

Auch die entstehenden Modelle sollen zuerst diese Bezeichnung behalten, d. h. die globalen
Bezeichner in der Beschreibung verwenden und spater in der Visualisierung nur noch die
lokalen Bezeichner verwenden, um die Ubersichtlichkeit zu verbessern. Daraus ergeben sich
insgesamt beim Erstellen und der Visualisierung die folgenden Vorteile:

+ Die Genauigkeit der vom a-Algorithmus erstellten Petri-Netze wird verbessert, da das
Problem der nicht lokalen Abhéngigkeiten verhindert wird (siehe Abschnitt 2.6.3).

« Anstatt ein Modell fiir den globalen Prozess zu erstellen, kann fiir jeden Subprozess ein
eigenes Modell erstellt werden. Dies lasst sich so weit optimieren, dass fiir jedes Prafix
(Teilbezeichner vor dem letzten ,,::“) ein flaches Modell erstellt wird. Dies bedeutet,
dass keine Events betrachtet werden, welche eine Ebene tiefer oder hoher (bis auf
das Start und Ende Event das dem Prafix entspricht). Damit fiir jeden Subprozess ein
Modell erstellt in welchem nur die direkt untergeordneten Aufrufe verwendet werden.
Durch das rekursive Einsetzen jedes Modells der Subprozesse in das globale Modell
(das auch nur mit globalen Events erstellt wurde) lasst sich das Modell des gesamten
Prozesses erstellen.

« Durch das Ubernehmen der hierarchischen Bezeichner in das Modell ist eindeutig,
welche Task anderen untergeordnet sind. Dies kann somit ausgeniitzt werden, um die
einem Task untergeordneten Subtask ein- und ausblenden zu kénnen. Dies sorgt fiir
eine tibersichtlichere Darstellung und hilft somit dem Verstandnis des Modells.

48

3.4. Hierarchisierung der Traces und der Modelle

LNach Subtasks Mining der Submodelle einsetzen—|
aufspalten Modelle

Universaler Log Unterteilte Logs Unterteilte Modelle Universales Modell

Abbildung 3.2.: Verarbeitungsablauf, welcher die Hierarchie des Logs nutzt.

+ Auch die raumliche Verteilung der Knoten des Graphen kann mit der Hierarchie
optimiert werden, indem das Modell zuerst nur die globalen Elemente beinhaltet
und der Rest ausgeblendet ist. Damit wird die Anzahl der Knoten reduziert und eine
Optimierung des Layouts liefert bessere Ergebnisse.

3.4.3. Nutzung der Hierarchie in der Process-Discovery

Wenn Subevents im Log als solche annotiert sind, ist es sinnvoll fiir jeden Subprozess das
Modell getrennt zu erstellen. Dazu wird, wie in Abbildung 3.2 abgebildet, der gesamte
Log in kleinere Logs unterteilt, welche jeweils nur die Events beinhalten, die direkt zu
einem bestimmten Subprozess gehoren. Das sind zum einen das Start- und Ende-Event eines
Subprozesses und zum anderen direkt in diesem Kontext ausgefiihrte Start-Events (es ist nur
ein Event notig welches reprasentativ fiir den ausgefiithrten Subprozess steht). Aulerdem
wird ein globaler Log erstellt, der nur die Eintrage enthalt, die nicht im Kontext eines anderen
Service aufgerufen wurden. Nach dem Erstellen der Modelle fiir jeden Log einzelnen, werden
die Modelle fiir die Subprozesse an entsprechender Stelle rekursiv in das aus dem globalen
Log entstandenen Modell eingesetzt. Dies geschieht, indem die reprasentative Transition
entfernt wird und das Ziel aller eingehenden Kanten auf die Start-Transition des Subnetzes
geandert wird. Genauso wird der Ursprung der ausgehenden Kanten auf die Ende-Transition
des Subnetzes geandert.

Dies soll an einem Beispiel verdeutlicht werden.

L = [(a+start, a:b+start, a:b+complete, a+complete, d+start, d+complete),

(a+start, ::c+start, a::c+complete, a+complete, d+start, d+complete)]

Daraus entsteht folgender globaler Log:

Lgiopar = [(a+start, d+start)

(a+start, d+start)|

49

3. Konzept

Y N N

(+hart P I d+start | ()

X K X] e)
a::b+start

X- a+start —NQK)().—p a+complete X

a::ctstart

Abbildung 3.3.: Globales Petri-Netz und Petri-Netz fiir Subprozess a. Die Transition a+start
wird durch sein Subprozess-Modell ersetzt.

Und folgende lokale Logs fiir jeden einzelnen Subprozess:

L, = [(a+start, a:b+start, a+complete),
(a+start, a:c+start, a+complete)]
L., = [(a:b+start, a:b+complete)]
Lq... = [(a:c+start, a::c+complete)]
L, = [(d+start, d+complete)]

In Abbildung 3.3 sind Petri-Netze fiir die Logs L g5 und L, abgebildet. Aufierdem zeigt die
Abbildung das Ersetzen der a+start Transition durch das Petri-Netz des Subprozesses von
a.

Fir den a-Algorithmus hat das keine grofien Vorteile. Fiir den evolutionaren Algorithmus
ist der Vorteil hingegen immens, da die Komplexitat linear in der Grofie des Modells und der
Grofle des Logs wichst und beides durch den Ansatz reduziert wird.

50

4. Implementierung

Diese Kapitel beschreibt die Implementierung des untersuchten prototypischen Systems.
Dieses greift die Gedanken aus Kapitel 3 auf.

4.1. Ausgangssituation und Daten

Diese Arbeit nutzt reale Daten aus einem komplexen Anwendungssystem eines grof3en
deutschen Autoherstellers. Sie soll eine mogliche Verbesserung des Verstdndnisses und der
Wartbarkeit des Systemes untersuchen und Process-Mining auf komplexen Anwendungs-
systemen anwenden. Die Nutzung der realen Daten bietet zum einen bessere Beurteilung
des Konzeptes auf Praxistauglichkeit, zum anderen miissen keine Testdaten erstellt werden.
Ziel der Untersuchung ist es, die Prozesse, welche in dem System ablaufen, in einem Prozess-
flussmodell darzustellen. Diese Darstellung sollte ein besseres und tieferes Verstandnis des
Kommunikationsflusses bieten. Vor allem sollten diese Modelle auch eine weitreichende Ver-
besserung bestehender Systeme zur Analyse bieten. Eine besondere Beachtung soll auch die
Visualisierung der erstellten Modelle und eine unterstiitzende Darstellung der Daten in dem
Modell bekommen, die dazu dienen sollen dem Anwender eine bessere Nachvollziehbarkeit
des Erstellungsprozesses zu bieten.

4.1.1. Das Anwendungssystem

Das gegebene Anwendungssystem besteht im ganzen aus ca. 30 autonomen Systemen, welche
nach der serviceorientierten Architektur Dienste anbieten. Anfragen von auflen, z. B. im Auto
oder auf einer Webseite ausgeldst, konnen zum Teil die Mitwirkung von vielen Systemen zur
Folge haben. Durch die hohe Komplexitat und einer relativ haufigen Zahl an Deployments,
gibt es oft keine Dokumentation des Prozessflusses oder diese weicht von der Realitat ab.
Das Process-Mining bietet viele Methodiken, um hier Abhilfe zu schaffen. Diese Arbeit wird
sich aus Sicht der Process-Discovery (siehe Abschnitt 2.6) an das Problem annéhern. D. h.
es soll versucht werden ein System zu entwickeln, welches fiir die ablaufenden Prozesse
moglichst passende Modelle erstellt. Andere Sichten wie Kommunikationsgraphen, welche
auch oft beim Process-Mining erstellt werden [VDA11], sind nicht Teil dieser Arbeit sollten
jedoch in einem praktischen System nicht vernachléssigt werden.

51

4. Implementierung

Um ein Modell des Prozessflusses entdecken zu konnen, miissen Prozessablaufe ausfiithrlich
dokumentiert werden. In diesem Fall ist dies gegeben durch Logeintrage, die bei jedem
Aufruf und jedem Abschluss eines Services geschrieben werden, diese sind durch die Texte
~2Application enter” und ,Application exit” identifiziert. Der aufgerufene Service und das
System sind in eigenen Feldern gegeben. Damit haben diese Logs nicht hochste Qualitit nach
[VDAAM™12], aber sind noch gut fiir das Process-Mining geeignet, wenn eine geeignete
Vorverarbeitung stattfindet. Diese zwei Typen von Eintragen sollen die Einzigen sein, die
von dem System betrachtet werden, alle anderen Eintrage werden ignoriert.

4.1.2. Elasticsearch

Fiir die Logdaten der Systeme existiert eine Elasticsearch-Instanz, welche diese speichert und
indiziert. Das bestehende System zur Analyse des Prozessflusses basiert auf einer Kibana-
Instanz die Elasticsearch als Datenquelle nutzt. Kibana bietet einen verbesserten Zugrift
auf die rohen Daten aus Elasticsearch. Es bietet einfach zu erstellende Diagramme, welche
aus den Daten berechnete Metriken darstellen. Dies kann zum Beispiel die Anzahl von
Aufrufen bestimmter Services sein. Dariiber hinaus bietet Kibana aber kein grofies Data-
Mining, sondern nur eine bessere Moglichkeit auf die Daten aus Elasticsearch zuzugreifen
und diese zu verstehen. Kibana ist die aktuell genutzte Analysemethode der gegebenen Daten.
Gegen diese wird der Ansatz verglichen und auf eine Verbesserung der Analysemoglichkeiten
untersucht. Damit die Logdaten von den System in das Elasticsearch gelangen wird Logstash
auf den Instanzen ausgefiihrt und liefert die Logdaten an den Indexer des Elasticsearch
weiter.

4.1.3. Tracking-ID

Ein allgemeines Problem in Logs ist die Korrelation der Eintrage, die Zuordnung zu einem
Prozess und zu einem Vorgang. Wenn zum Beispiel in einem Log ein Fehler auftaucht, so
sind zur Findung der Ursache die zum gleichen Vorgang gehorenden Eintrage interessant.
Diese befinden sich nicht nur im gleichen Log, sondern auch in anderen Logs, welche zum
Teil sich auf mehreren verschiedenen Systemen befinden. Dabei 16st das oben beschriebene
System mit Logstash und Elasticsearch das Problem, die Daten an einen zentralen Ort zu
sammeln. Die Sortierung der Eintrdge nach Vorgangen ist damit jedoch nicht geldst.

Das Problem der Korrelation all dieser Eintrage wurde in dem vorliegenden System folgen-
dermaflen gel6st: Zu Beginn der Abarbeitung, wenn eine Anfrage zum ersten Mal das System
betritt, wird eine eindeutige Identifikationsnummer erstellt. Diese wird bis zur vollstindigen
Abarbeitung der Anfrage von System zu System mitgefiithrt und auch allen Logeintragen
hinzugefiigt. Somit konnen alle zu einer Anfrage gehorenden Eintrage bestimmt werden.
Diese Tracking-ID ermoglicht erst das Process-Mining, da damit die Traces eines Vorganges
erstellt werden konnen, in dem nach einer bestimmten Tracking-ID gefiltert wird.

52

4.2. Architektur

& &

Elasticsearch Mysql Database

Tomcat Application Server

Logs to XES Addon (1)

GET Petri Net/BPMN Service (4)

Miner Service (2) D3 based Webapp (5)

ProM Command Line

Interface Wrapper (3) %

PNML/BPMN Files

XES Files

Abbildung 4.1.: Architektur des Systems.

4.2. Architektur

Die Systemarchitektur ist abgebildet in Abbildung 4.1. Die Hauptanwendung lauft in einem
Tomcat-Applikation-Server, es handelt sich um eine Java-RS J2EE Anwendung. Die Visualisie-
rung wird ausgelagert eine Webanwendung, um das Data Driven Documents (D3) Framework
verwenden zu konnen. Uber die Java Persistence API wird eine MySQL-Datenbank an das
System angebunden, um die anfallenden Daten persistent speichern zu konnen. Die er-
zeugten Dateien (Logs und Modelle) werden im Dateisystem gehalten und dariiber auch
dem Process-Mining-Framework (ProM), beim Aufruf iiber die Kommando Zeile, iibergeben.
Das System bietet eine Webservice Schnittstelle nach dem Representational State Transfer
(REST) Paradigma, dessen Endpunkte von der Webapp aufgerufen werden. Die von der API
ausgegebenen Daten sind ausschliefllich im JSON-Format.

Die Quelle fiir die Daten stellt das Elasticsearch dar (siehe Unterabschnitt 4.1.2). Dieses bietet
eine REST-API um Anfragen gegeben die Daten auszufithren und liefert diese in einem, fiir
NoSQL typisch, JSON-Format zuriick. Die Aufgabe der ,Logs to XES® (siehe Abbildung 4.1
(1)) Komponente ist die Vorverarbeitung der gegebenen Daten und die Umwandlung in das
XES-Format. Diese Komponente ist die Einzige vom dem untersuchten Anwendungssystem

53

4. Implementierung

abhéngige Komponente. Die restliche Anwendung kann auch mit vorhanden XES-Dateien
verwendet werden und kann somit allgemein genutzt werden.

Der néchste Schritt der Verarbeitung wird vom ,Miner Service® (siche Abbildung 4.1 (2))
gesteuert. Dieser bietet einen Endpunkt fir die Erzeugung von Modellen aus den vorhan-
denen Logs (XES-Dateien). Dieser Prozess wird durch das ProM-Framework durchgefiihrt.
Dazu existiert ein Wrapper (sieche Abbildung 4.1 (3)), welcher die Steuerung von ProM iiber
die Kommandozeile tibernimmt. Dabei kann zwischen dem «- und einem evolutioniren
Algorithmus gewahlt werden. Als Ausgabe entstehen Petri-Netze oder BPMNs.

Die letzte Komponente (siehe Abbildung 4.1 (4)) dient der Lieferung der vorhandenen Modelle
an die Webapp. Um die Verwendung zu vereinfachen, werden diese nicht in dem vorliegenden
Format, die direkte Ausgabe von ProM, sondern in einem eigenen vereinfachten JSON-Format
ibergeben. Die Dateiformate PNML und BPMN sind beide XML-basiert und enthalten beide
um einiges mehr Informationen als fiir Beschreibung und Darstellung des zugrunde liegenden
Modells nétig ist. Deshalb ist eine Umwandlung in ein reduziertes JSON-Format sinnvoll
und auch fiir die Verarbeitung im D3-Framework von groflem Vorteil.

Das Userinterface des Systems ist als Webapp (siehe Abbildung 4.1 (5)) realisiert. Dadurch
werden Datenhaltung und UI klar getrennt und fiir die Visualisierung konnen die Vorteile
von D3 und die Geschwindigkeit der Render-Engine der Browser ausgenutzt werden. Die
Aufgabe der Webapp ist vor allem die Visualisierung der Petri-Netze und BPMN-Modelle,
aber auch eine Flussvisualisierung der Traces des Logs, aus dem das Modell entstanden
ist. Indem die beobachteten Abldufe im Modell gezeigt werden, soll die Entstehung und
Bedeutung des Modells besser verstiandlich gemacht werden.

4.3. REST-Schnittstelle

~REpresentational State Transfer” (REST) ist eine Architektur fir die Schnittstellen von
Webservices [BS07]. Diese nutzt meistens den HTTP-Standard und dessen verschiedene
Operationsmodi, um Ressourcen abzurufen und zu manipulieren.

Da das System in ein Backendsystem und eine Webapp ausgeteilt ist, wird die Kommunikation
dieser Komponenten locker iiber eine REST-Schnittstelle implementiert. Die Funktionen
dieser Schnittstelle werden in diesem Abschnitt genauer beschrieben. Dies dient auch der
Vorstellung der Funktionalitat, die das Backendsystem bietet. Dazu werden die wichtigen
Endpunkte und deren Verhalten vorgestellt. Ergebnisse und Parameter sind alle im JSON-
Format, mit Ausnahme der Aufrufe welche ,GET“ aufgerufen werden. Bei diesen sind die
Parameter in die URL codiert.

54

4.3. REST-Schnittstelle

Path over Transitions Path over Places and Transitions Traces currently visible: 18 out of 19

w

il - Trace1- Count:1

<

=

L show path

name lifecycle

System1-ServiceA start
System1-ServiceA::System2-

) start
ServiceB

System1-ServiceA::System2-

ServiceB::System3-ServiceC Start

L= 1 Systgml—ServiceA::Systng— complete
ServiceB::System3-ServiceC
:Zi\t/iecr:;—SemceA::SystemZ— complete
System1-ServiceA complete
System1-ServiceD start
System1-ServiceD complete

» Trace 2 - Count: 5
» Trace 3 - Count: 8

» Trace 4 - Count: 4

Filter:

System1-ServiceD+start x

Abbildung 4.2.: Die Darstellung zeigt die Webapp mit angezeigtem Log. Im Modell wird
der Pfad des Trace 1 visualisiert.

Traces

=

1 System.
ServiceD ServiceE
st st

o (=7 O O

R
O
L] L]

Abbildung 4.3.: Durch das Ausblenden der UI-Elemente entsteht mehr Platz fiir die Visuali-
sierung und die Ubersichtlichkeit wird erhoht.

55

4. Implementierung

4.3.1. Endpunkt zum Erstellen eines Logs

Der folgende Endpunkt bietet Zugrift auf die Komponente zur Erstellung einer XES-Datei.

Beim Aufrufen der Prozedur wird asynchron der Prozess gestartet. Nach der Fertigstellung

wird die XES-Datei in das System eingetragen und der Endpunkt zur Auflistung der XES-

Dateien (siehe Unterabschnitt 4.3.2) liefert eine Liste, welche die erzeugte Datei beinhaltet.
Endpunkt: XES erstellen

Beschreibung: | Endpunkt zum Starten des Prozesses zur Erstellung einer

XES-Datei aus den Logdaten des Anwendungssystems.

URL: /createXES

Type POST

Parameters

Bezeichner: Datentyp | Beschreibung

service String Der Name des Service, nach dem die Log gefiltert werden
(siehe Abschnitt 3.1).

traceCount Integer Anzahl der Traces die erstellt werden sollen.

range Integer Anzahl an Tagen, die einen Zeitraum seit dem aktuellen Da-

tum definieren. Die Daten fiir die zu erstellen Logs werden
nur aus diesem Zeitraum gewahlt.

environment | String Definiert von welcher Umgebung (Test, Integration, Produkti-
on, ...) das Elasticsearch verwendet werden soll, das als Quelle
der Daten dient.

Ergebnis
Bezeichner: Datentyp | Beschreibung
info String Nachricht, welche das erfolgreiche Starten des Vorgangs aus-
gibt.

4.3.2. Endpunkte zur Verwaltung der Dateien

Das System verwaltet die Dateien von Logs und Modellen. Dabei werden diese nicht direkt
herausgegeben, sondern bei Aufrufen von Prozeduren wird die ID einer Datei als entspre-
chender Parameter iibergeben. Die einzige direkte Moglichkeit Dateien hochzuladen existiert
fir das Hochladen von XES-Dateien in das System. Die Dateien fiir Modelle konnen nur
erzeugt werden indem der Endpunkt der Process-Discovery (siehe Unterabschnitt 4.3.3)
aufgerufen wird und dieser den Mining-Prozess startet, dessen Ergebnis wiederum eine
Datei ist. Fiir die einzelnen Dateien existieren Eintrdge in der Datenbank. Dies dient nicht
nur der besseren Verwaltung, sondern auch zusatzlichen Metainformationen, wie z. B. dem
Algorithmus mit dem ein Modell erstellt wurde.

56

4.3. REST-Schnittstelle

@ PNML Files BPMN Files XES from Elastic

id file upload date
1 | anonym.xes 2015-10-20 16:24:08.0 mine model
Datei auswahlen Keine ausgewdhlt Upload
Available Mining Algorithms x

[Global alpha algorithm]’
e Alpha algorithm locally on every level

e Evolutunary tree miner locally on every level

Abbildung 4.4.: Die Darstellung zeigt die Tabelle mit einer XES-Datei aus der Webapp.
Uber einen Popup-Dialog lasst sich der zu verwendende Algorithmus zum
Mining auswéhlen.

XES Files ‘M BPMN Files XES from Elastic
0 e miningdate miningalgorithm | source | |

. o 2015-10-20 Evolutunary tree miner visualize
(N |pYauikOpeer2iaeiaticipam 16:24:45.0 locally on every level anonym.xes graph

Abbildung 4.5.: Liste der Petri-Netze aus der Webapp.

Datentyp: Datei

Bezeichner: | Datentyp | Beschreibung
fileName String Der Name der Datei.

id Integer Identifikations-Zahl, welche fiir die jeweiligen Subtypen ein-
deutig sind.

Datentyp: XES-Datei

Erweitert: Datei

Bezeichner: | Datentyp | Beschreibung

uploadDate | Date Zeitpunkt, zu dem die XES-Datei hochgeladen oder erstellt
wurde.

57

4. Implementierung

Datentyp: Modell-Datei

Erweitert: Datei
Bezeichner: Datentyp | Beschreibung
miningDate Date Zeitpunkt, zu dem das Modell durch Process-Discovery

erstellt wurde.

miningAlgorithm String Name des Algorithmus, mit dem das Modell erstellt

wurde

sourceOriginalName | String Name der XES-Datei, aus der das Modell erstellt wur-

de.

sourceld

Integer ID der XES-Datei, aus der das Modell erstellt wurde.

Datentyp: PNML-Datei

Erweitert: ‘ Modell-Datei

Datentyp: BPMN-Datei

Erweitert: ‘ Modell-Datei

Endpunkt: Liste der XES-Dateien

Beschreibung: | Liefert eine Liste aller erstellten oder hochgeladenen XES-Dateien.
URL: /xes
Type GET

Ergebnis

Ein JSON-Array mit Elementen vom Typ XES-Datei.

Endpunkt: Hochladen einer XES-Datei

Beschreibung: | Hochladen einer XES-Datei tiber ,multipart/form-data®.
(Nutzlich um das System auch mit anderen Daten als die
aus dem Elasticsearch zu verwenden und zu testen.)

URL: /xes/upload

Type POST

Parameters

Bezeichner: Datentyp | Beschreibung

file Datei Datei, welche hochgeladen wird.

Endpunkt: Liste der PNML-Dateien

Beschreibung: | Liefert eine Liste aller erstellten oder hochgeladener PNML-Dateien.

URL: /pnml

Type GET

Ergebnis

Ein JSON-Array mit Elementen vom Typ PNML-Datei.

58

4.3. REST-Schnittstelle

Endpunkt: Liste der BPMN-Dateien
Beschreibung: | Liefert eine Liste aller erstellter oder hochgeladener BPMN-Dateien.
URL: /bpmn
Type GET

Ergebnis
Ein JSON-Array mit Elementen vom Typ BPMN-Datei.

4.3.3. Endpunkte zur Process-Discovery

Folgende Endpunkte dienen dazu, den Prozess der Process-Discovery zu starten. Dabei

werden dem Endpunkt die ID eines Logs und der entsprechende Algorithmus tiberge-

ben. Der Prozess wird asynchron gestartet, da das Mining sehr lange Laufzeiten besitzen

kann. Nach der erfolgreichen Terminierung des Vorganges wird das erzeugte Modell in

den entsprechenden Endpunkten angezeigt. Aufgrund von technischen Einschrankungen

des ProM-Framework ist das Ergebnis des a-Algorithmus nur ein Petri-Netz, wahrend

beim evolutionaren Algorithmus sowohl ein Petri-Netz als auch eine BPMN erzeugt wird.
Endpunkt: Liste der verfiigbaren Algorithmen.

Beschreibung: | Liste aller Algorithmen, welche fiir die Process-Discovery verwendet

werden konnen.

URL: /mining/algorithms

Type GET

Ergebnis
Ein JSON-Objekt as Worterbuch mit dem Bezeichner des Algorithmus
als Schliissel und einer kurzen Beschreibung als Wert.

Endpunkt: Starte Mining-Prozess.

Beschreibung: Stof3t asynchron den Prozess zu Erstellung eines Prozess-
modells aus einem Log an.
URL: /mining/run
Type POST
Parameters

Bezeichner: Datentyp | Beschreibung
xesld Integer ID des zu verwendenden Logs (XES-Datei).
miningAlgorithm | String Bezeichner des Mining-Algorithmus, der verwendet wer-

den soll.

Ergebnis

Bezeichner: Datentyp | Beschreibung
status String Nachricht, welche das erfolgreiche Starten des Vorgangs

ausgibt.

59

4. Implementierung

4.3.4. Endpunkte fur die Graphen der Modelle

Die folgenden Endpunkte liefern die vorhandenen Modelle zuriick. Dabei wandeln sie die in
den Dateien vorliegende XML-basierte Darstellung in eine fiir die Webapp gut zu verarbei-
tende JSON-Darstellung um.

Datentyp: Graph
Beschreibung: | Beschreibt die Elemente eines Graphen zur Darstellung eines
Petri-Netzes oder eines BPMN.

Bezeichner: Datentyp | Beschreibung

nodes Array Array mit Elementen des Typ Node.

links Array Array mit Elementen des Typ Link.

Datentyp: Node

Bezeichner: | Datentyp | Beschreibung

type String Beschreibt den Knotentyp des Elements. Falls der zugrunde
liegende Graph ein Petri-Netz ist, sind mogliche Werte ,transi-
tion® und ,place”. Bei BPMN sind ,start®, ,end®, ,task® und die
Bezeichnungen fiir Gateways (,AND, ,OR", ,XOR") moglich.

id Integer Ein fiir den Graphen eindeutiger identifizierender Wert.

desc String (optional) Beschriftung des Knoten. Daher nur bei Knoten mit
Beschriftung.

tau Boolean | (optional) Beschreibt bei Transitionen, ob es sich um eine stille
Transition handelt. Der Standard Wert, wenn nicht angegeben
ist false®.

start Boolean | (optional) Beschreibt, ob es sich bei diesem Element um das
eindeutige Startelement handelt. Wenn nicht angegeben: ,false®.

end Boolean | (optional) Beschreibt, ob es sich bei diesem Element um das
eindeutige Endelement handelt. Wenn nicht angegeben: ,false®.

Datentyp: Link

Bezeichner: | Datentyp | Beschreibung

source Integer ID des Node-Objektes, aus dem die Kante entspringt.

target Integer ID des Node-Objektes, das Ziel der Kante ist.

60

4 4. Erstellen der Traces

Endpunkt: Graph eines PNML.
Beschreibung: | Liefert den Graph einer PNML Datei.
URL: /graph/pnml
Type GET

Parameters

Bezeichner: Datentyp | Beschreibung
id Integer Id der PNML-Datei.
Ergebnis
Ein Objekt des Typ Graph, welcher das Petri-Netz darstellt.

Endpunkt: Graph eines BPMN.
Beschreibung: | Liefert den Graph einer BPMN Datei.
URL: /graph/bpmn
Type GET

Parameters

Bezeichner: Datentyp | Beschreibung

id Integer Id der BPMN-Datei.
Ergebnis

Ein Objekt des Typ Graph, welcher das BPMN darstellt.

4.4. Erstellen der Traces

Der erste Verarbeitungsschritt ist die Erstellung der Extensible Event Stream Dateien aus
den Eintragen, welche das untersuchte Anwendungssystem in Log Dateien schreiben und
die dann iber das Elasticsearch zuganglich gemacht werden. Das Format eines solchen
Eintrages zeigt Listing 4.1 an einem Beispiel. Als aller erstes ist es nétig ein nicht die Eintrége
aller Aktionen zu betrachten, da sonst versucht werden wiirde ein Modell fiir das gesamte
System zu erstellen. Dies wire nicht nur sehr aufwendig, sondern auch das Ergebnis wire so
komplex, dass es nicht fiir einen Menschen direkt verstdndlich wére und somit auch keinen
Nutzen darstellen wiirde.

Als Filter wurde die Beteiligung eines Ablaufes an einem Service genutzt, da leider keine
Zuordnung von tatsichlichen Use-Cases des Systems zu den einzelnen Ablaufen gemacht
werden konnte. Da fiir die meisten Use-Cases ein Service existiert der ausschliefilich von
diesem aufgerufen wird, kann iiber die Filterung nach diesem ein Log fiir einen Use-Case
erstellt werden.

Zusétzliche Parameter sind noch der Zeitraum und die ungefidhre Menge an zu erstellenden
Traces. Damit werden mit dem Filter nach einem Service eine Menge von Tracking-IDs (siehe
Unterabschnitt 4.1.3) erstellt.

61

4. Implementierung

Listing 4.1 Beispielhafte Darstellung eines Eintrages in Elasticsearch in JSON (NoSQL-Stil).

{

"APP" : ,

"Service" : ,

"message" :)
"timestamp" : ,
"trackingID"

}

Workaround wegen Textindizierung der Tracking-ID

Da Elasticsearch auf Apache Lucene basiert, einem Framework fiir die Indizierung
von Texten, ist die Standardindizierung der Volltextindizierung. Da die Tracking-ID
aus mehreren Strings (Hexdarstellung) besteht, welche mit Bindestrich miteinander
verbunden sind (siehe Listing 4.1), wird die Tracking-ID in wie ein Satz mit mehreren
Worten angesehen. Dadurch sind nur die einzelnen Teile im Index, nicht aber die
komplette ID, und es ist nicht moglich direkt eine Anfrage zu stellen, welche die mit
einem Service assoziierten Tracking-IDs zuriickliefert. Die beste Losung ware die
korrekte Indizierung der Tracking-ID zu veranlassen. Da dies jedoch fiir Dauer der
Arbeit eine lange dauernde Aufgabe wire, die nur unnétige Verzogerung mit sich
gebracht hitte, wurde folgender Workaround gewéhlt:

Es werden die mit einem Service assoziierten Teilworter der Tracking-ID vom Ela-
sticsearch gefordert. Aus diesen werden die Worter der Lange zwolf herausgefiltert,
da es in jeder ID nur einen Teil dieser Lange gibt. Und letztendlich ein Eintrag von
Elasticsearch gefordert, der dieses Wort in der Tracking ID beinhaltet, um somit eine
vollstandige Tracking ID zu erhalten.

Fur die gegebene Menge IDs werden nun alle Eintrage angefordert, die entweder “application
enter” oder mit “application exit” beinhalten. Logeintrage mit diesen beiden Texten werden
bei Start und Beendigung eines Services erstellt. Die Sicht wird somit auf diese beiden
Ereignisse beschrankt.

Der letzte Schritt ist die gegebenen Eigenschaften der Eintrdge auf definierte Attribute von
XES zu iibertragen. Dabei werden die Gesamten im Vorgang erstellen Daten als ein Log
angesehen. Die Gesamtheit einer Tracking-ID zugehéorigen Elemente sind ein Trace und die
einzelnen Eintrage, geordnet nach ihrer zeitlichen Abfolge, sind die Events. Einige Attribute
der Events sind folgendermafien gegeben:

time:timestamp = timestamp

concept:name = APP:Service

. o start , falls der Eintrag “application enter” beinhaltet
lifecycle:transition = . « . e
complete , falls der Eintrag “application exit” beinhaltet

62

4.5. Mining der Modelle

Mit Hilfe von OpenXES, der Referenzimplementierung des XES-Standards, wird der beschrie-
benen Log erstellt und in das XML-Format serialisiert. Zuséatzlich wird ein Eintrag in der
SQL-Datenbank erstellt, welcher der besseren Verwaltung der Dateien dient.

4.5. Mining der Modelle

Der nachste Verarbeitungsschritt ist das Erstellen von Modellen fiir die gegebenen Logs. Dafiir
wird auf das ProM-Framework zuriickgegriffen. Der Aufruf der Algorithmen wurde iiber das
gegebene Command-Line-Interface [pro15] aufgefiihrt. Dieses bekommt als Eingabe die Datei
eines BeanShell[bea] Skriptes gegeben, welches darauf im Kontext des ProM-Framework
ausgefiihrt wird. Die Sprache ist mit einigen Befehlen fiir die Verwendung der einzelnen
Komponenten angereichert. Dadurch werden die Schritte ausgefiihrt, die normalerweise
tiber das GUI des ProM-Framework ausgefiihrt werden:

1. Laden des XES-Logs

2. Mining eines Modells aus dem Log

3. (optional: falls notig Konvertieren des Ausgabemodells in die gewiinschte Notation)
4. Serialisieren des Modells (Schreiben in Datei)

Es existieren einige Plugins des Framework, welche sich nur tiber das GUI aufrufen lassen
und die nétigen Schnittstellen fiir die Kommandozeilen Ausfithrung nicht implementieren.
Trotzdem ist diese Losung besser, als die Komponenten des ProM-Frameworks direkt einzu-
binden. Listing 4.2 zeigt das Script fiir den a-Algorithmus. Fir den Aufruf des evolutionaren
Algorithmus fehlt leider das Interface fiir die Verwendung ohne UI (in der verwendeten
ProM-Version 6.5). Daher musste hier der weg iiber direkte Aufrufe gegangen werden, um
die Funktionalitat trotzdem nutzen zu kdnnen. Dies forderte an mehreren Stellen auch die
Nutzung von Reflexion, um versteckte Methoden zuganglich zu machen. So wurde aber eine
korrekte Implementierung der Algorithmen und damit die Qualitat der erstellten Modelle
sichergestellt. Fiir die Parameter des evolutiondren Algorithmus wurden sinnvolle Werte
(die vom ProM empfohlenen) gew&hlt und diese im Skript hart-codiert. Dies verringert die
Komplexitat des Systems und verhindert Verwirrung beim User die durch Eingabe der Werte
entstehen konnten.

63

4. Implementierung

Listing 4.2 BeanShell-Skript, welches fiir die Ausfithrung des a-Algorithmus aus dem ProM
verwendet wurde.
Properties prop = System.getProperties();

log = open_xes_log_file(
prop.getProperty("de.fabiangajek.prom.cli.xesFile"));

net_and_marking = alpha_miner(log);
net = net_and_marking[0];

File net_file = new File(
prop.getProperty("de.fabiangajek.prom.cli.pnmlFile"));

pnml_export_petri_net_(net, net_file);

System.exit(0);

4.6. Besonderheiten der Hierarchisierung

Die in Abschnitt 3.4 besprochenen Konzepte zum Ausnutzen von Hierarchien wurden auch
implementiert und werden in diesem Abschnitt vorgestellt. Strukturiert ist dies nach den
Verarbeitungsschritten.

4.6.1. Hierarchie in der Erstellung der Traces

Fir die Erstellung der Traces war von Bedeutung, dass in den Logs nicht dokumentiert
wurde, von welchem Service ein andere Service aufgerufen wurde. Nach Riicksprache mit
einem Experten des Systemes und durch empirische Beobachtung der Logdaten wurde davon
ausgegangen, dass es innerhalb einer Ausfithrung eines Prozesses keine parallelen Ablaufe
gibt. Daher werden die betrachteten Eintrdge, die Start und Ende von Prozessen darstellen,
einfach wie bei der Unterprogramm Ausfithrung mit einem Stack verwaltet. Die Eintrage
liegen in zeitlich sortierter Form vor, es existiert ein zu Anfang leerer Stack und in die darauf
wird Folgendes fiir jeden Eintrag eines Traces ausgefiihrt:

1. Falls der Eintrag einen Start dokumentiert, lege den Bezeichner auf den Stack.

2. Nutze den vollstandigen Bezeichner, der durch den Stack beschrieben ist, fiir den Even-
teintrag in die XES-Datei. Die Notation wird wie in Unterabschnitt 3.4.1 beschrieben
umgesetzt.

64

4.7. Visualisierung von Petri-Netzen und BPMN

) O

Abbildung 4.6.: Die Abbildung zeigt Darstellung eines Petri-Netzes, wie sie im Prototyp
verwendet wird.

3. Setzte den Lebenszyklus des Events auf den entsprechenden Wert (“start” oder “com-
plete®).

4. Falls der Eintrag ein Ende dokumentiert, entferne das oberste Element vom Stack.

Die so erstellten Logs konnen ohne Anderungen von einem Mining-Algorithmus verwendet
werden.

4.7. Visualisierung von Petri-Netzen und BPMN

Die Darstellung der Graphen erfolgt innerhalb der Webapp. Dazu wird, um eine gut skalier-
bare Darstellung zu bekommen, ein SVG-Element verwendet und dessen Elemente mithilfe
der D3-Bibliothek manipuliert. Die Visualisierung von Petri-Netzen und BPMN unterscheidet
sich dabei wenig, wenn Transitionen analog zu Task angesehen werden.

Fiir die Darstellung der Modelle als Graphen soll das D3-Framework und die damit gegebene
Implementierung von kraftebasierten Layouts (siehe Unterabschnitt 2.7.1) verwendet werden.
Da D3 in Javascript implementiert und auf die Verwendung in einem Browser ausgelegt
ist, sollte die Komponente der Visualisierung am Besten als Webapp ausgelegt sein und
tiber Schnittstellen mit dem Rest des Systems kommunizieren. Zur besseren Verarbeitung
der Daten in Javascript und D3 ist es auflerdem sinnvoll die iibergebenen Daten schon im
JSON-Format zu iibergeben.

Um die Elemente der Graphen iibersichtlich zu verteilen, wird ein kréftebasiertes Layout ver-
wendet (siehe Unterabschnitt 2.7.1). Da es moglich ist die Position einzelnen Knoten (Stellen,
Transitionen, Task, ...) im kraftebasierten Layout einzufrieren, wird dies initial fiir den Start-
und Endknoten getan. Aulerdem wird der Startknoten links und der Endknoten rechts im
Bereich des Layouts angeordnet, damit sich der Graph von links nach rechts ausrichtet. Dies
dient der besseren Erkennung des Modells, da durch die geordnete Darstellung ibersicht-
licher ist und sich immer horizontal dhnlich ausrichtet. Abbildung 4.6 und Abbildung 4.7
zeigen wie das fiir ein globales Modell (alle Unterprozesse sind eingeklappt) aussieht.

65

4. Implementierung

Abbildung 4.7.: Die Abbildung zeigt Darstellung eines BPMN, wie sie im Prototyp verwen-
det wird.

2191dwod+q

Abbildung 4.8.: Visualisierung eines Petri-Netzes wie sie in einer ersten Version des Systems
verwendet wurde.

4.7.1. Interaktion mit der Visualisierung des Graphen

Um den Graphen besser darzustellen, sind dem User einige Interaktionsmoglichkeiten gege-

ben, welche die Darstellung beeinflussen:

Einfrieren eines Knoten Uber ein Kontextmenti ist es moglich einzelne Task, Transitionen
oder anderen Elemente einzufrieren. Dadurch werden die Positionen vom kréftebasier-
ten Layout nicht verdndert. Zusammen mit dem Verschieben eines Knoten kann
so die Darstellung manuell noch weiter optimiert werden. Wenn die Position eines

66

4.8. Hierarchie in der Visualisierung der Modelle

L

Abbildung 4.9.: Vorgang des Einfrierens der Position eines Knoten. Die eingefrorene Positi-
on wird iiber eine dunklere Farbe dargestellt.

Knoten eingefroren ist, wird dies visuell iiber eine leicht dunklere Farbe des Elementes
dargestellt. Uber das Kontextmenii ist auch das Aufheben des Einfrieren méglich.

Verschieben eines Knoten Durch das Driicken, Halten der linken Maustaste und dem
Verschieben der Maus, kann ein User beliebige Knoten an eine andere Stelle schieben.
Wihrend und nach dem Verschieben wird das Layout Krafte basiert optimiert. Dabei ist
das gezogene Element wiahrend des Vorganges auf die Position der Maus fest. Nach dem
Loslassen der Maustaste bleibt der Knoten, abhdngig davon, ob die Position eingefroren
wurde, stehen oder seine Position wird durch die Krafte optimiert.

Zoomen und Verschieben Uber das Mausrad und durch Ziehen mit gedriickter linker
Maustaste (aufler auf Knoten) lasst sich die Darstellung des Graphen fast beliebig
verschieben, vergrofiern und verkleinern. Das Zoomen der Darstellung wird dabei um
die Position des Mauszeigers vorgenommen.

4.8. Hierarchie in der Visualisierung der Modelle

Dadurch, dass die globalen Bezeichner der einzelnen Task bis in das Modell mitgezogen
werden, ist es moglich dies auszunutzen, um Subprozess aus- und einzublenden. Initial
werden alle Submodelle ausgeblendet, um einen moglichst kleinen Graphen zu bekommen,
dessen visuelle Optimierung damit vereinfacht wird. Visuell werden Transitionen oder Tasks,
deren Subprozess ausgeblendet wird, gelb hinterlegt und ein Plus ist an der oberen rechten
Ecke zu sehen, tiber das sich der Subprozess einblenden lasst (siehe Abbildung 4.10). Das
Anzeigen des Subgraphen lauft ab wie beim Zusammensetzen der lokalen Modelle (siehe
Unterabschnitt 3.4.3). Expandierte Transitionen sind griin hinterlegt und besitzen ein Minus
in der rechten oberen Ecke, dieses dient zum erneuten Ausblenden des Unterprozesses.
Transitionen ohne Subprozess sind auch griin hinterlegt, ihnen fehlt aber das Minus zum
Einklappen.

67

4. Implementierung

|

System1
> ServiceA
start

@ Expandieren

System2
»l System1 ServiceF Systeml
ServiceA start ServiceA
start O vl complete
l
System2 Q
» ServiceB
N start

Abbildung 4.10.: Durch einen Klick auf das Plus eines Knoten wird dieser expandiert. D. h.
die Transition wird ersetzt durch den entsprechenden Subprozess (siehe
Abbildung 3.3).

4.9. Anzeigen des zugrundeliegenden Logs

Um nicht nur das Modell zu verstehen, sondern auch warum es so aussieht, werden zum
Graphen auch die einzelnen Traces angezeigt, aus denen dieser entstanden ist.

Dabei werden, wie in Abbildung 4.11 zu sehen ist, die einzelnen unterschiedlichen Traces
angezeigt. Wenn mehrere dquivalente Traces im Log vorhanden sind, so ist dies tiber die
Anzahl (engl. Count) angegeben. Traces mit einer hohen Anzahl stellen das haufige Verhalten
dar. Traces mit kleineren Anzahlen sind auch interessant, da diese entweder Randverhalten
oder moglicherweise auch Fehlverhalten darstellen.

Um noch genauer zu untersuchen welcher Teil des Modells durch welche Traces entstanden
ist, lasst sich der Log nach einzelnen Transitionen filtern.

4.10. Visualisierung von Traces in einem Model

Um die Plausibilitiat des Modells zu verbessern, ist es moglich, einen oder mehrere Traces
visuell im Modell anzuzeigen. Dazu wurden zwei verschiedene Ansitze implementiert. Der
Erste verbindet nur alle Transitionen aus einem Trace in genau der Reihenfolge, in der sie

68

4.10. Visualisierung von Traces in einem Model

Traces currently visible: 19 out of 19

» Trace 1 - Count: 1

show path

System1-ServiceA

hame

System1-ServiceA::System2-ServiceB
System1-ServiceA::System2-ServiceB::System3-ServiceC start

System1-ServiceA::System2-ServiceB::System3-ServiceC complete
System1-ServiceA::System2-ServiceB

System1-ServiceA
System1-ServiceD
System1-ServiceD
System1-ServiceE
System1-ServiceE

» Trace 3 - Count: 8
» Trace 4 - Count: 4

» Trace 5 - Count: 1

lifecycle
start
start

complete
complete
start
complete
start
complete

Abbildung 4.11.: Die einzelnen Traces des Logs werden mit dem Modell angezeigt, um
Verstandnis und Plausibilitit des Modells zu unterstiitzen.

Traces currently visible: 9 out of 19

»l System1
Service™
start

add task to trace filter

|

freeze node

unfold
unfold all

show path

System1-ServiceA

name

System1-ServiceA::System2-ServiceB
System1-ServiceA::System2-ServiceB::System3-ServiceC start

System1-ServiceA::System2-ServiceB::System3-ServiceC complete
System1-ServiceA::System2-ServiceB

System1-ServiceA
System1-ServiceD
System1-ServiceD
System1-ServiceE
System1-ServiceE

» Trace 4 - Count: 4

lifecycle
start
start

complete
complete
start
complete
start
complete

Abbildung 4.12.: Uber das Kontextmenii lassen sich die Traces nach Transitionen filtern.

auch dort vorkommen (ausgeblendete Transitionen werden immer iibersprungen). Dies ist

in Abbildung 4.13 dargestellt fiir den Trace 2 der in Abbildung 4.11 zu sehen ist.

Der zweite Ansatz versucht die Bewegung der Marken zu visualisieren, indem es eine Linie
durch die Pfade zeichnet, an denen sich eine Marke fiir den Vorgang bewegen wiirde. Dies
ist in Abbildung 4.14 abgebildet.

69

4. Implementierung

Abbildung 4.13.: Visuelle Darstellung eines Traces durch Verbindung der entsprechenden
Transitionen.

T
»l
Systemt
start

Abbildung 4.14.: Visuelle Darstellung eines Traces durch die Markierung des Pfades der
beteiligten Marken.

70

5. Evaluation durch Expertenstudie

Dieses Kapitel beschreibt die Evaluation des implementierten Systems mittels einer Exper-
tenstudie. Dazu wurden einer kleinen Runde von Experten des untersuchten Anwendungs-
systems das Tool vorgestellt und anschlieffend von diesen evaluiert. Der erste Abschnitt
beschreibt die Durchfithrung der Studie, wahrend der zweite Teil die gewonnenen Erkennt-
nisse aufbereitet.

5.1. Durchfuhrung der Expertenstudie

Die Expertenstudie wurde als Kombination aus Expertenbefragung und Fokusgruppe durch-
gefiihrt. Das bedeutet, alle Probanden waren gleichzeitig in einem Raum. Dabei wurde ihnen
der Prototyp vorgestellt und sie mussten dazu Fragen beantworten. Aulerdem sollten sie in
einer anschliefenden Diskussion noch weitere Erkenntnisse ausarbeiten. Die bei der Studie
verwendeten Dokumente befinden sich in Abschnitt A.1. Zur Unterstiirzung der Demonstrati-
on wurde den Probanden eine Anleitung ausgehiandigt, welche die vorgestellten Interaktions-
und Analyseméglichkeiten noch einmal erklart. Bei der Durchfithrung der Studie wurde ein
Modell verwendet, das aus den Logdaten des untersuchten Anwendungssystemes generiert
wurde. Den Experten wurde zum Vergleich ein existierendes Modell des gleichen Ablaufes
gezeigt. Das generierte Modell deckte aufgrund von mangelnder Abdeckung der verwen-
deten Logdaten nur einen Teil der Ablaufe ab. Daher war der Vergleich der Modelle leicht
eingeschrankt.

Fiir die Studie haben sich vier Experten zur Teilnahme bereit erklart. Die Teilnehmer waren
31 bis 50 Jahre alt und die jeweilige Berufserfahrung reichte von sieben bis 25 Jahre. Dabei
haben zwei der vier Experten promoviert. Die Aufgaben der Teilnehmer im Unternehmen
sind thematisch beim Betrieb von Systemen und im Management angeordnet.

Bei der Durchfithrung sollte nach Plan die Diskussion nach der Beantwortung der Fragen sein.
Durch Zwischenfragen wéhrend der Demonstration des Programmes wurde die Diskussion
praktisch in die Demonstration vorgezogen. Die entstandenen Erkenntnisse sind trotzdem
sehr aufschlussreich und gut zu verwerten.

71

5. Evaluation durch Expertenstudie

5.2. Ergebnisse der Expertenbefragung

In diesem Abschnitt werden die Ergebnisse der Expertenstudie besprochen. Dabei wer-
den zum einen die Antworten der Probanden zu den Multiple-Choice Fragen analysiert
(siehe Abschnitt A.2 - Antworten der Multiple-Choice Fragen), zum anderen die weiteren
Anmerkungen der Probanden zusammengefasst.

5.2.1. Analyse der Multiple-Choice-Fragen

Durch die geringe Anzahl an Probanden sind die Aussagen der Antworten eingeschrénkt.
Trotzdem lassen sich Fragen nutzen, bei denen die Antworten einen klaren Trend zeigen.

Die Multiple-Choice-Fragen hatten eine Skala von 1 bis 5. Dabei sollte jeweils eine Aussage
zum Prototypen beantwortet werden. Die Fragen waren zu den folgenden Themen:

1. Bedarf fiir Process-Mining im Unternehmen.
2. Nutzen der verwendeten Visualisierungen.
3. Nutzen von Process-Mining im Allgemeinen.

Die Antworten zeigen die Meinung der Experten, dass eine solche Software zum Mining
von Prozessen in ihren (und auch in anderen) Unternehmen Verwendung finden wiirde.
Die unterschiedlichen Antworten bei den Fragen nach Haufigkeit der Verwendung und
personlicher Unterstiitzung lassen sich vor allem auf unterschiedliche Aufgabengebiete der
Experten zuriickfithren. Daraus folgt auch eine andere Sicht auf die Anwendbarkeit der
Software. Nutzen sahen die Experten vor allem in der Erkennung von Abweichung, gerade
auch im Zusammenhang mit dem Finden von Fehlern und bei der Prozessdokumentation.

Fir die unterstiitzenden Elemente lasst sich sicher sagen, dass die textuelle Auflistung der
Traces uniibersichtlich ist. Dies mag auch an komplexen global Bezeichner liegen oder einfach
an der Untbersichtlichkeit von vielen gleichen Zeichen und Woértern. Die visuelle Unterstiit-
zung dagegen kam besser an und die Meinung der Experten ist es, dass die Visualisierung
des Kontrollflusses der einzelnen Traces “sehr stark” das Verstandnis des Modells fordert.
Die Darstellung des Graphen mit einem interaktiven kréftebasierten Layout wurde auch gut
angenommen.

Nach der Meinung der Probanden sind Teile der Funktionalitét eines solchen Programmes
gegeben. Das System nutzt auch schon vorhandene Systeme, welche die Fehlererkennung
unterstiitzen sollen (Elasticsearch, Kibana). Da keine der vorhandenen Systeme Modelle aus
den Daten erstellt, sind grofle Teile aber auch noch nicht abgedeckt.

72

5.2. Ergebnisse der Expertenbefragung

5.2.2. Analyse der Diskussion und Freitextfragen

Die Probanden wurden zur Diskussion angeregt und sie bekamen Freitextfragen. In diesen
sollte sie beurteilen wie ein dem Prototypen entsprechendes Programm verwendet werden
kann, was ihnen gefallen hat oder was sie verbessern wiirden.

Die Reaktionen iiber das vorgestellte Programm reichen von vielen positiven Riickmel-
dungen iiber das interaktive kraftebasierte Layout des Graphen bis zu einigen negativen
Anmerkungen zur Unvollstandigkeit des Modells.

Die Meinung der Probanden zu den Anwendungsmoglichkeiten entsprechen sehr den An-
wendungen des Process-Mining im Allgemeinen: “Verifikation von Prozessen®, “Analyse®,
“Optimierung [der Prozesse]®, “Reverse Engineering” der Prozesse. Dies zeigt auch das Be-
dirfnis von Systemen mit solcher Funktionalitit, denn das Process-Mining sieht andere
Algorithmen und Prozesse als die implementieren als Losung fiir einige dieser Anwendungen
VOr.

Der wichtigste Kritikpunkt des Systems war die Unvollstandigkeit der vorhandenen Traces
und deswegen auch des Modells. Dies zu 16sen fordert einige Voraussetzungen. Denn um
eine gute Process-Discovery, oder Process-Mining im Allgemeinen, durchfithren zu kénnen,
miissen die Prozesse erst gut formal im Log dokumentiert werden [VDAAM™12]. Deshalb
gehort zu einer reifen Implementierung eines Process-Mining-Systems auch eine informative
und formale Dokumentation abgelaufener Prozesse. Durch die prototypischen Eigenschaften
des implementierten Programmes und einem nicht auf das Process-Mining ausgelegten
Systemes waren solche Voraussetzungen nicht gegeben.

Ein Kritikpunkt eines Experten war vor allem die Einschrankung der Prozesssicht auf eine
Top-Level-Sicht. Es lassen sich zwar Unterprozesse einblenden, der erste Eindruck liegt
aber auf dem Ablauf des Service, welcher beim Eintritt in das System aufgerufen wird.
Unterprozesse, bei denen die entscheidenden Ablédufe stattfinden, konnen in den Hintergrund
riicken.

Als eine Verbesserung wurde vorgeschlagen, auch Veranderungen am Modell zu visualisieren.
Wenn ein solches Tool produktiv in einem System verwendet wiirde, so ist es moglich, taglich
Anderungen am Modell vorzunehmen. Der Vorschlag ist die Anderungen am Modell von
einem Zeitpunkt zum Nachsten hervorzuheben. Dadurch kénnten dann Prozessdnderungen
dargestellt und analysiert werden. Aufierdem besteht die Moglichkeit, plétzlich auftretendes
Fehlverhalten zu erkennen.

73

5. Evaluation durch Expertenstudie

Es wurde gezeigt, dass Process-Mining-Tools viele Anwendungen finden und dringend
bendtigt wird. Trotz der prototypischen Implementierung waren die Experten schon an
der Verwendung der Software interessiert. Jedoch wéren fiir einen produktiven Einsatz
noch Verbesserungen vorzunehmen, gerade auch in der Erstellung der Logs. Und auflerdem
existieren eine Vielzahl an Moglichkeiten zur Maximierung des Analysepotenzials eines
Process-Mining-Tools.

74

6. Fazit und Ausblick

In diesem Kapitel werden zunéchst das Konzept, die Implementierung und die Expertenstudie
zusammengefasst. Darauf folgt ein Ausblick iiber mégliche Erweiterungen am Konzept und
an der Implementierung des Prototypen.

Fazit

In dieser Arbeit wurden die Anwendbarkeit der Process-Discovery auf Anwendungssyste-
me und ein Ansatz zur Optimierung der Darstellung und dem Verstdndnis des erstellten
Kontrollflussmodells untersucht.

Das Konzept des Verarbeitungsprozesses wurde in drei Schritte aufgeteilt: zuerst die Vorver-
arbeitung der Logdaten des Anwendungssystems, dessen Aufgabe die Filterung auf relevante
Eintridge und die Umwandlung in ein standardisiertes Log-Format fiir Process-Mining ist.
Folgenden wird ein Prozessmodell aus den Daten erstellt mit Hilfe eines Process-Discovery-
Algorithmus. Schlussendlich werden Modell und Logdaten verwendet, um dem Nutzer eine
visuelle Analyse zu bieten, welche nicht nur eine Darstellung des Modells ist, sondern auch
eine Verbindung von aufgenommen Abldufen und Prozessmodell erstellt.

Der implementierte Prototyp wurde als eine Webapp mit einem Backend implementiert. Die
Anwendung auf dem Server bietet dabei Funktionalitat zum Erstellen von Logs aus einer
Elasticsearch Instanz und zum Mining von Petri-Netzen und BPMN. Die Webapp stellt die Mo-
delle grafisch dar und nutzt dabei ein kraftebasiertes Layout. Zusatzlich werden die zugrunde
liegende Ablaufe textuell aufgelistet und auch visuell in der Darstellung angezeigt.

Fiir die Evaluation des Ansatzes wurden Daten eines Anwendungssystems eines Automobil-
herstellers verwendet. Das System wurde danach mittels einer Expertenstudie analysiert,
deren Teilnehmer Mitarbeiter eben dieses Automobilherstellers waren. Die Ergebnisse der
Studie zeigten auf, dass Process-Discovery in Anwendungssystemen grof3es Potenzial hat
und das Bediirfnis zur Analyse der abgelaufenen Prozesse ebenfalls sehr grofi ist. Auch die
visuelle Unterstiitzung wurde gut bewertet und half dem Verstdndnis der Modelle.

75

6. Fazit und Ausblick

Ausblick

Das Konzept und der implementierte Prototyp zeigten sich in der Expertenstudie schon als
sehr nitzlich. Trotzdem existieren noch einige Aspekte, die einer Verbesserung unterzogen
werden sollten oder deren Umsetzung den Nutzen sehr steigern konnten.

Optimierung der Hierarchisierung in der Visualisierung

Um das Erstellen der Modelle zu beherrschen, wurden Aufrufhierarchien eingefiihrt. Diese
werden weiter in der Darstellung der Modelle verwendet um Unterprozesse aus- und ein-
zublenden. Dadurch wird die Sicht sehr auf die Oberste Ebene fixiert und Unterprozesse
sind meist weniger tibersichtlich zu analysieren. Dies konnte verbessert werden, durch vi-
suelle Darstellung der Aufrufebenen oder durch die Moglichkeit Unterprozesse als eigene
Prozessmodelle in einem neuen Fenster darstellen zu lassen.

Verlauf von Anderungen

Eine mogliche Verbesserung, welche die Analyse sehr unterstiitzen wiirde, ist die Nutzung
von regelmafligen Erstellungen des Prozessmodelles um Veréanderungen zu erkennen. Ein
solches System zum Erstellen der Prozessmodelle macht es einfach jeden Tag ein Modell auf
den aktuellen Logdaten zu erstellen. Dies gibt die Moglichkeiten Anderungen der Ablaufe,
gerade beim Umzug auf eine neue Version, durch das System zu erkennen, zu visualisieren
und durch Experten zu analysieren.

Integration weiterer Algorithmen und Techniken des Process-Mining

Das Konzept und der implementierte Prototyp verwenden nur zwei Algorithmen der Process-
Discovery. Daher sollte das System um weitere Algorithmen zum Erstellen von Prozess-
modellen erweiterte werden, um die Ergebnisse vergleichen zu konnen. Einen gréfieren
Nutzen hétte aber die Implementierung weiter Process-Mining Techniken. Sinnvoll wire die
Analyse von Laufzeiten einzelner Services um Ablaufe zu optimieren. Oder eine weitere gute
Erweiterung wire die Uberpriifung von Ablaufen in Echtzeit auf die Konformitit mit dem
Modell. Schlussendlich wire es sinnvoll das System um die Vielzahl an schon untersuchten
Techniken des Process-Mining zu erweitern, um den Erkenntnisgehalt zu maximieren.

76

A. Anhang: Expertenstudie

A.1. Dokumente der Expertenbefragung

Anmerkung: Die Darstellungen des Programmes wurden aus Datenschutzgriinden zensiert.
Daher entsprechen die Abbildungen nicht die den Experten vorgelegten.

77

Einverstandniserklarung zur Expertenstudie

Es wird eine Expertenstudie zu einer Bachelorarbeit der Universitat Stuttgart durchgefihrt.
Die Studie ist wie folgt aufgebaut.

Darstellung des Ablaufes der Studie und Belehrung zu den Rechten
Allgemeine Fragen zur Person der Probanden

Darstellung der allgemeinen Bedienung des Programmes
Vorstellung eines moglichen Anwendungsfalles

Beantwortung der Testfragen

AN A

Fragen und Diskussion zum Programm

Hiermit werden Sie dariber aufgeklart, dass Sie jederzeit die Moglichkeit haben
¢ die Studie abzubrechen, sowohl wahrend der Einflihrung als auch jederzeit wahrend
der Durchfiihrung,
* den Raum zu verlassen oder
* eine Pause zu machen.
* AuRerdem kénnen Sie Fragen die Sie nicht beantworten kénnen/wollen (gerade bei
den Fragen zur Person) einfach unbeantwortet lassen.

Die angegebenen Daten werden anonymisiert, vertraulich behandelt und nur zur
Auswertung der Studie genutzt.

* Die Studie wird mindestens 30 Minuten dauern.

Mit meiner Unterschrift bestéatige ich, dass ich die obigen Punkte gelesen habe und ihnen
zustimme.

Ort, Datum Unterschrift

Fragen zur Person

Berufsausbildung/Abschluss:

Aktuelle Aufgaben
im Unternehmen:

Berufserfahrung (ca.):
Geschlecht:

Alter

Jahre

[Im[]w

Fragen zum Programm

Gehen Sie im Folgenden davon aus, das Programm sei vollstandig
implementiert und marktreif.

Wie schatzen Sie den Bedarf eines solchen Programmes im Unternehmen ein?
Von 1 (kein Bedarf) bis 5 (sehr hoher Bedarf)

Wenn ein solches Programm in ihrem Unternehmen genutzt wiirde, wie haufig,
denken Sie, wiirde es verwendet werden?

nie

Einmal im
Monat

Einmal pro
Woche

Taglich

Mehrmals
taglich

Wie sehr wiirde ein solches Programm Sie bei ihren jetzigen Tatigkeiten

unterstiitzen?

Von 1 (keine Unterstlitzung) bis 5 (starke Unterstitzung)

4

Wo/wofir sehen Sie Einsatzmoglichkeiten fiir dieses Programm?

Wie beurteilen Sie die Plausibilitat der Prozessmodelle?
Bedenken Sie dabei, dass nicht alle Aufrufe von Services geloggt werden.
Von 1 (gar nicht plausibel) bis 5 (komplett plausibel)

Wie sehr unterstiitzt die textuelle Auflistung der Traces die Plausibilitat?
Von 1 (gar nicht) bis 5 (sehr stark)

Wie sehr unterstitzt die visuelle Darstellung der Traces der Plausibilitat?
Von 1 (gar nicht) bis 5 (sehr stark)

Wie sehr hilft die visuelle Darstellung der Traces dem Verstandnis des Modells?
Von 1 (gar nicht) bis 5 (sehr stark)

Wie Ubersichtlich finden Sie die Darstellung der Graphen?
Von 1 (komplett uniibersichtlich) bis 5 (sehr tGbersichtlich)

1 2 3 4 5

Wie ansprechend finden Sie die interaktive Darstellung der kraftebasierten
Layouts (Bewegung der Elemente in Echtzeit)?
Von 1 (sehr stérend) bis 5 (sehr ansprechend)

Denken Sie, dass bestehende Systeme die Funktionalitat dieses Programms
schon abdecken?

Von 1 (keine Funktionalitat ist bereits abgedeckt)

bis 5 (die Funktionalitat ist vollstandig abgedeckt)

Wie schatzen Sie den Nutzen des Programmes ein, um Prozessabweichungen
zu erkennen?
Von 1 (kein Nutzen) bis 5 (sehr groBer Nutzen)

Wie schatzen Sie den Nutzen des Programmes zur Dokumentation von
Prozessen ein?
Von 1 (kein Nutzen) bis 5 (sehr groRer Nutzen)

Wie schatzen Sie den Nutzen des Programmes fiir die agile Entwicklung von
Web Services?
Von 1 (kein Nutzen) bis 5 (sehr groRRer Nutzen)

Was hat Ihnen gut gefallen?

Was hat Ihnen nicht gefallen?

Was wiirden Sie verbessern?

Sonstiges / weitere Anregungen:

Vielen Dank fiir lhre Teilnahme!

Anleitung Process-Mining-Tool

Visualisierung eines Petri-Netzes

Die Interaktionsmoglichkeiten sind fiir beide Darstellungen gleich,
daher werden in den Beispielen nur Petri-Netze verwendet.

Expandieren von Subgraphen
Uber die Plus und Minus Zeichen lassen sich Subgraphen expandieren und ausblenden.

System1
> ServiceA
start

System2
ServiceF
start
O ’
e O
» ServiceB.
start

Oder auch lber

L
N freeze node » freeze node s -
reeze node
add task to trace filter add task to trace filter
T T 2tk o e

Einfrieren von Knoten
S L

oo IR oo 8

Darstellung der Traces
Rechts unter dem Punkt Traces sind im die geloggten Traces zu sehen. Aquivalente Abl3ufe
sind zu einem Trace zusammengefasst und die Menge angegeben.

Traces currently visible: 19 out of 19

» Trace 1 - Count: 1

~ Trace 2 - Count: 5

“Ishow path

name lifecycle
System1-ServiceA start
System1-ServiceA::System2-ServiceB start

System1-ServiceA::System2-ServiceB::System3-ServiceC start
System1-ServiceA::System2-ServiceB::System3-ServiceC complete

System1-ServiceA::System2-ServiceB complete
System1-ServiceA complete
System1-ServiceD start
System1-ServiceD complete
System1-ServiceE start
System1-ServiceE complete

» Trace 3 - Count: 8

» Trace 4 - Count: 4

» Trace 5 - Count: 1

Uber die ,,show path“-Checkbox kénnen die Traces wiederum im Graphen angezeigt werden.

Um herauszufinden welche Abldufe zu einem Teil des Modells flihren, lassen sich die Traces
auch nach einzelnen Transitionen/Tasks filtern.

.
o Filter:
freeze node
unfold # Systeml-ServiceD+start x

unfold all

Ablauf Expertenbefragung

1.

BegriRung

Erklarung des Ablaufes

2.1. EinfUhrung und Belehrung

2.2. Allgemeine Fragen zur Person der Probanden

2.3. Vorstellung des Programmes — allgemeine Bedienung
2.4. Darstellung eines Anwendungsfalles

2.5. Ausflillen des Fragebogens

2.6. Allgemeine Frage und Diskussionsrunde

Austeilen der Einverstandniserklarung

3.1. Hinweis auf Recht jederzeit Aufzuhdren oder den Raum zu verlassen.
3.2. Einsammeln der Einverstandniserklarung

Austeilend der Fragen zur Person

4.1. Hinweis, dass die Angaben freiwillig sind

4.2. Einsammeln der Fragen

. Austeilen der Anleitungen

5.1. Diese dienen zur Unterstlitzung der Demonstration
Demonstration
6.1. Darstellung der Startseite

6.2. Vorstellen der Datei Listen

6.3. Reiter zum Erstellen von XES-Traces mit Logs aus dem Elasticsearch
6.4. Offnen eines Petri-Netzes und eines BPMN
6.4.1. Da alle Interaktionen bei der BPMN Visualisierung analog zu Petri-
Netzen sind, werden im weiteren nur Petri-Netze zur Demonstration
verwendet werden.
6.4.2. Am vorhanden Beispiel kurz Petri-Netze wiederholen
6.5.Vorstellen der Hierarchie des Graphen
6.5.1. Ausklappen eines Knoten
6.5.2. Einklappen eines Knoten
6.5.3. Ausklappen eines Knoten und all seiner Unterknoten
6.6. Vorstellung des Krafte-basierten Layouts
6.6.1. Ziehen der Enden
6.6.2. Verschieben von Knoten, sodass sich ein anderes Layout bildet
6.6.3. Einfrieren von Knoten
6.6.3.1. Positionieren der eingefrorenen Knoten
6.7. Darstellung der Traces
6.7.1. Erklarung der Notation
6.7.2. Zwei Arten der Visualisierung der Traces im Modell
6.7.3. Filtern der Traces nach Transitionen / Anteil einer Verzweigung an

Ablaufen

7. Vergleich des vorgestellten Modells mit dem definierten Modell
7.1. Darstellen des erstellen Modells im vorhanden Modell
7.2. Hinweis auf die Unvollstandigkeit der Log-Daten
7.2.1. Daher auch nur Ausschnitt des Prozesses im erstellten Modell
8. Austeilen des Fragebogens
8.1. 5-7 Minuten Zeit zur Beantwortung
8.2. Warten bis alle fertig
8.3. Hinweis, dass bei Sonstiges Gedanken eingetragen werden kénnen die
bei der Diskussion einfallen
9. Fragen und Diskussion

10. Abschluss und Danksagung

A. Anhang: Expertenstudie

A.2. Antworten der Multiple-Choice Fragen

Frage 1

Frage Wie schitzen Sie den Bedarf eines solchen Programmes im Unternehmen ein?
Von 1 (kein Bedarf) bis 5 (sehr hoher Bedarf)

Antworten | 5 [5[5 4|
Mittelwert 4,75

Standardabweichung 0, 43

Frage 2

Frage Wenn ein solches Programm in ihrem Unternehmen genutzt wiirde, wie haufig,
denken Sie, wiirde es verwendet werden?

Antworten ’ Taglich | Einmal im Monat | Téaglich | Einmal im Monat

Frage 3

Frage Wie sehr wiirde ein solches Programm Sie bei ihren jetzigen Tatigkeiten unterstiitzen?
Von 1 (keine Unterstiitzung) bis 5 (starke Unterstiitzung)

Antworten | 3 [3[5]4 |

Mittelwert 3,75
Standardabweichung 0, 83

Frage 4

Frage Wie beurteilen Sie die Plausibilitat der Prozessmodelle? Bedenken Sie dabei, dass
nicht alle Aufrufe von Services geloggt werden.
Von 1 (gar nicht plausibel) bis 5 (komplett plausibel)

Antworten | 4 [3,54 [4|
Mittelwert 3,88

Standardabweichung 0, 22

90

A.2. Antworten der Multiple-Choice Fragen

Frage 5

Frage Wie sehr unterstiitzt die textuelle Auflistung der Traces die Plausibilitat?
Von 1 (gar nicht) bis 5 (sehr stark)

Antworten |3 | 5[3 |2 |
Mittelwert 3,25

Standardabweichung 1,09

Frage 6

Frage Wie sehr unterstiitzt die visuelle Darstellung der Traces der Plausibilitat?
Von 1 (gar nicht) bis 5 (sehr stark)

Antworten | 5 | 5[5 1|
Mittelwert 4,73

Standardabweichung 1,73

Frage 7

Frage Wie sehr hilft die visuelle Darstellung der Traces dem Verstandnis des Modells?
Von 1 (gar nicht) bis 5 (sehr stark)

Antworten | 5 | 5[5 |5 |

Mittelwert 5

Standardabweichung 0

Frage 8

Frage Wie tibersichtlich finden Sie die Darstellung der Graphen?
Von 1 (komplett uniibersichtlich) bis 5 (sehr iibersichtlich)

Antworten | 4 [35 [4[5 |
Mittelwert 4,13

Standardabweichung 0, 54

91

A. Anhang: Expertenstudie

Frage 9

Frage Wie ansprechend finden Sie die interaktive Darstellung der kraftebasierten Layouts
(Bewegung der Elemente in Echtzeit)?
Von 1 (sehr storend) bis 5 (sehr ansprechend)

Antworten | 5[35|55 |

Mittelwert 5,63
Standardabweichung 0, 65

Frage 10

Frage Denken Sie, dass bestehende Systeme die Funktionalitédt dieses Programms schon
abdecken?
Von 1 (keine Funktionalitat ist bereits abgedeckt) bis 5 (die Funktionalitat ist vollstandig
abgedeckt)

Antworten |3 [2[3 | 2|

Mittelwert 2,5
Standardabweichung 0,5

Frage 11

Frage Wie schatzen Sie den Nutzen des Programmes ein, um Prozessabweichungen zu
erkennen?
Von 1 (kein Nutzen) bis 5 (sehr gro3er Nutzen)

Antworten | 4 [5[4 |5 |

Mittelwert 4,5
Standardabweichung 0,5

92

A.2. Antworten der Multiple-Choice Fragen

Frage 12

Frage Wie schitzen Sie den Nutzen des Programmes zur Dokumentation von Prozessen
ein?
Von 1 (kein Nutzen) bis 5 (sehr groler Nutzen)

Antworten [4 [4[4[5]
Mittelwert 4,25

Standardabweichung 0,43

Frage 13

Frage Wie schitzen Sie den Nutzen des Programmes fiir die agile Entwicklung von Web
Services?
Von 1 (kein Nutzen) bis 5 (sehr groler Nutzen)

Antworten | 2 | 4[3 |4 |

Mittelwert 3,5
Standardabweichung 0, 83

93

Literaturverzeichnis

[ARW07]

[AV08]

[AWMO04]

[bea]

[BHS6]

[bpm11]

[BS07]

[CW98]

[d3215]

[DMVT05]

[Dwy01]

W. M. van der Aalst, H. A. Reijers, A.]J. Weijters, B. F. van Dongen, A. A.
De Medeiros, M. Song, H. Verbeek. Business process mining: An industri-
al application. Information Systems, 32(5):713-732, 2007. (Zitiert auf den
Seiten 40 und 42)

W. M. van der Aalst, H. E. Verbeek. Process Mining in Web Services: The
WebSphere Case. IEEE Data Eng. Bull.,, 31(3):45-48, 2008. (Zitiert auf Seite 43)

W. Van der Aalst, T. Weijters, L. Maruster. Workflow mining: Discovering
process models from event logs. Knowledge and Data Engineering, IEEE
Transactions on, 16(9):1128—-1142, 2004. (Zitiert auf den Seiten 30, 32 und 40)

BeanShell (Version vom 05.09.2015). URL https://en.wikipedia.org/wik
i/BeanShell. (Zitiert auf Seite 63)

J. Barnes, P. Hut. A hierarchical O (N log N) force-calculation algorithm. 1986.
(Zitiert auf Seite 40)

BPMN 2.0, 2011. URL http://www.omg.org/spec/BPMN/2.0/. (Zitiert auf
Seite 21)

T. Bayer, D. M. Sohn. REST Web Services-. Eine Einfuehrung (November 2002)
http://www. oio. de/public/xml/rest-webservices. pdf, 2007. (Zitiert auf Seite 54)

J. E. Cook, A. L. Wolf. Discovering models of software processes from event-
based data. ACM Transactions on Software Engineering and Methodology
(TOSEM), 7(3):215-249, 1998. (Zitiert auf Seite 44)

Force Layout, 2015. URL https://github.com/mbostock/d3/wiki/Force-
Layout. (Zitiert auf Seite 40)

B. F. van Dongen, A. K. A. de Medeiros, H. Verbeek, A. Weijters, W. M. Van
Der Aalst. The ProM framework: A new era in process mining tool support. In
Applications and Theory of Petri Nets 2005, S. 444-454. Springer, 2005. (Zitiert
auf den Seiten 37 und 45)

T. Dwyer. Three dimensional UML using force directed layout. In Proceedings
of the 2001 Asia-Pacific symposium on Information visualisation-Volume 9, S.
77-85. Australian Computer Society, Inc., 2001. (Zitiert auf Seite 44)

95

https://en.wikipedia.org/wiki/BeanShell
https://en.wikipedia.org/wiki/BeanShell
http://www.omg.org/spec/BPMN/2.0/
https://github.com/mbostock/d3/wiki/Force-Layout
https://github.com/mbostock/d3/wiki/Force-Layout

Literaturverzeichnis

[ES15]

[FR91]

[GV14]

[luc15]

[MAW03]

[mbo11]

[mbo12]

[MWAO7]

[Pet62]
[pro15]

[Rei85]

[VDA11]

[VDA13]

96

A.E. Eiben,]J. E. Smith. Introduction to Evolutionary Computing. Springer
Berlin Heidelberg, 2015. (Zitiert auf den Seiten 35 und 36)

T. M. Fruchterman, E. M. Reingold. Graph drawing by force-directed place-
ment. 1991. (Zitiert auf den Seiten 37 und 39)

C. W. Gunther, E. Verbeek. XES - Standard Definition, 2014. URL http://www.
xes-standard.org/_media/xes/xesstandarddefinition-2.0.pdf. (Zi-
tiert auf den Seiten 26 und 27)

Apache Lucene, 2015. URL https://lucene.apache.org/core/. (Zitiert
auf Seite 23)

A. K. A. de Medeiros, W. M. van der Aalst, A. Weijters. Workflow mining:
Current status and future directions. In On the move to meaningful internet
systems 2003: Coopis, doa, and odbase, S. 389-406. Springer, 2003. (Zitiert auf
Seite 34)

Collapsible Force Layout, 2011. URL http://bl.ocks.org/mbostock/106
2288. (Zitiert auf Seite 41)

Sticky Force Layout, 2012. URL http://bl.ocks.org/mbostock/3750558.
(Zitiert auf Seite 41)

A. K. A. de Medeiros, A. J. Weijters, W. M. van der Aalst. Genetic process
mining: an experimental evaluation. Data Mining and Knowledge Discovery,
14(2):245-304, 2007. (Zitiert auf den Seiten 37 und 42)

C. A. Petri. Kommunikation mit automaten. 1962. (Zitiert auf Seite 14)

Tutorial: Automating Process Mining with ProM’s Command Line In-
terface, 2015. URL https://dirksmetric.wordpress.com/2015/03/11
/tutorial-automating-process-mining-with-proms-command-line-
interface/. (Zitiert auf Seite 63)

W. Reisig. Petri nets: an introduction, Band 4. Springer Science & Business
Media, 1985. (Zitiert auf Seite 16)

W. Van Der Aalst. Process mining: discovery, conformance and enhancement of
business processes. Springer Science & Business Media, 2011. (Zitiert auf den
Seiten 16, 17, 18, 19, 20, 24, 25, 26, 27, 28, 30, 33, 40, 44 und 51)

W. Van Der Aalst. Service mining: Using process mining to discover, check,
and improve service behavior. Services Computing, IEEE Transactions on,
6(4):525-535, 2013. (Zitiert auf den Seiten 42 und 43)

http://www.xes-standard.org/_media/xes/xesstandarddefinition-2.0.pdf
http://www.xes-standard.org/_media/xes/xesstandarddefinition-2.0.pdf
https://lucene.apache.org/core/
http://bl.ocks.org/mbostock/1062288
http://bl.ocks.org/mbostock/1062288
http://bl.ocks.org/mbostock/3750558
https://dirksmetric.wordpress.com/2015/03/11/tutorial-automating-process-mining-with-proms-command-line-interface/
https://dirksmetric.wordpress.com/2015/03/11/tutorial-automating-process-mining-with-proms-command-line-interface/
https://dirksmetric.wordpress.com/2015/03/11/tutorial-automating-process-mining-with-proms-command-line-interface/

Literaturverzeichnis

[VDAAM™12] W. Van Der Aalst, A. Adriansyah, A. K. A. de Medeiros, F. Arcieri, T. Baier,

[WA03]

[WF94]

[wik15a]

[wik15b]

T. Blickle,]J. C. Bose, P. van den Brand, R. Brandtjen, J. Buijs, et al. Process
mining manifesto. In Business process management workshops, S. 169-194.
Springer, 2012. (Zitiert auf den Seiten 52 und 73)

A. Weijters, W. M. Van der Aalst. Rediscovering workflow models from
event-based data using little thumb. Integrated Computer-Aided Engineering,
10(2):151-162, 2003. (Zitiert auf Seite 40)

S. Wasserman, K. Faust. Social network analysis: Methods and applications,
Band 8. Cambridge university press, 1994. (Zitiert auf Seite 24)

Coulomsches Gesetz, 2015. URL https://de.wikipedia.org/wiki/Coul
ombsches_Gesetz. (Zitiert auf Seite 39)

Hookesches Gesetz, 2015. URL https://de.wikipedia.org/wiki/Hookes
ches_Gesetz. (Zitiert auf Seite 39)

Alle URLs wurden zuletzt am 20. 10. 2015 gepriift.

97

https://de.wikipedia.org/wiki/Coulombsches_Gesetz
https://de.wikipedia.org/wiki/Coulombsches_Gesetz
https://de.wikipedia.org/wiki/Hookesches_Gesetz
https://de.wikipedia.org/wiki/Hookesches_Gesetz

Erklarung

Ich versichere, diese Arbeit selbststindig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wortlich oder sinngeméf} aus anderen Wer-
ken tibernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Priifungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollstandig
verdffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einleitung und Aufgabenstellung
	1.1 Situation
	1.2 Aufgabe
	1.3 Lösungsansatz
	1.4 Gliederung

	2 Grundlagen
	2.1 Prozessmodellierung
	2.2 Petri-Netze
	2.2.1 Grafische Repräsentation
	2.2.2 Mathematische Definition und Notation
	2.2.3 Workflow-Netze

	2.3 Business Process Model and Notation (BPMN)
	2.3.1 BPMN-Elemente

	2.4 Information Retrieval
	2.5 Process-Mining
	2.5.1 Data-Mining
	2.5.2 Logs, Traces und Events
	2.5.3 Extensible Event Stream (XES)

	2.6 Process-Discovery
	2.6.1 Qualitätsindikatoren
	2.6.2 -Algorithmus
	2.6.3 Grenzen des -Algorithmus
	2.6.4 Evolutionärer Ansatz

	2.7 Visualisierung von Graphen
	2.7.1 Kräftebasiertes Layout

	2.8 Verwandte Arbeiten

	3 Konzept
	3.1 Vorverarbeitung der Logdaten
	3.2 Process-Mining
	3.3 Visualisierung und visuelle Analyse
	3.4 Hierarchisierung der Traces und der Modelle
	3.4.1 Bezeichnerkonvention der Hierarchie
	3.4.2 Vorteile
	3.4.3 Nutzung der Hierarchie in der Process-Discovery

	4 Implementierung
	4.1 Ausgangssituation und Daten
	4.1.1 Das Anwendungssystem
	4.1.2 Elasticsearch
	4.1.3 Tracking-ID

	4.2 Architektur
	4.3 REST-Schnittstelle
	4.3.1 Endpunkt zum Erstellen eines Logs
	4.3.2 Endpunkte zur Verwaltung der Dateien
	4.3.3 Endpunkte zur Process-Discovery
	4.3.4 Endpunkte für die Graphen der Modelle

	4.4 Erstellen der Traces
	4.5 Mining der Modelle
	4.6 Besonderheiten der Hierarchisierung
	4.6.1 Hierarchie in der Erstellung der Traces

	4.7 Visualisierung von Petri-Netzen und BPMN
	4.7.1 Interaktion mit der Visualisierung des Graphen

	4.8 Hierarchie in der Visualisierung der Modelle
	4.9 Anzeigen des zugrundeliegenden Logs
	4.10 Visualisierung von Traces in einem Model

	5 Evaluation durch Expertenstudie
	5.1 Durchführung der Expertenstudie
	5.2 Ergebnisse der Expertenbefragung
	5.2.1 Analyse der Multiple-Choice-Fragen
	5.2.2 Analyse der Diskussion und Freitextfragen

	6 Fazit und Ausblick
	A Anhang: Expertenstudie
	A.1 Dokumente der Expertenbefragung
	A.2 Antworten der Multiple-Choice Fragen

	Literaturverzeichnis

