
Institut für Visualisierung und Interaktive Systeme

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit Nr. 208

Mining und Visualisierung von
Prozessen in einem komplexen

Softwaresystem

Fabian Gajek

Studiengang: Informatik

Prüfer/in: Prof. Dr. Thomas Ertl

Betreuer/in: Dipl.-Inf. Dominik Herr,
Dr. Steffen Lohmann

Beginn am: 22. April 2015

Beendet am: 22. Oktober 2015

CR-Nummer: H.5.2, K.6.3

Kurzfassung

Komplexe Software-Anwendungssysteme haben oft eine Vielzahl an Prozessen, welche
mit sehr vielen Teilkomponenten interagieren. Da bei einer agilen Entwicklung häufig die
bestehenden Prozesse nicht ausreichend dokumentiert oder Änderungen nicht übertragen
werden, wird die Entwicklung und Wartung deutlich erschwert. Process-Mining bietet
Techniken, die Prozessmodelle mit den reellen Prozessen zu synchronisieren. Diese Arbeit
untersucht die Anwendung von Business-Process-Mining auf komplexen Softwaresystemen
anhand von Daten aus der Automobilindustrie und die visuelle Aufbereitung der erstellten
Modelle, mit dem Ziel die Analyse der Prozesse zu erleichtern. Dazu werden die Darstellung
der Prozessmodelle mithilfe eines kräftebasierten Layouts optimiert und die dem Modell
zugrunde liegenden Abläufe in die Visualisierung integriert.

Abstract

Complex software systems often contain a lot of processes that communicate between many
different subsystems. Agile development leads to under-documented processes or changes
which are not synchronized between implementation and model. This complicates the
development andmaintenance of the system. ProcessMining offers techniques to synchronize
the real world with the model. This thesis investigates the application of Business Process
Mining to complex software systems and the subsequent visual presentation of the mined
models using example data from the automotive industry. The visualization of the model
is optimized using a force directed layout and augmented through the integration of the
underlying traces.

3

Inhaltsverzeichnis

1. Einleitung und Aufgabenstellung 9
1.1. Situation . 10
1.2. Aufgabe . 10
1.3. Lösungsansatz . 11
1.4. Gliederung . 12

2. Grundlagen 13
2.1. Prozessmodellierung . 13
2.2. Petri-Netze . 14

2.2.1. Grafische Repräsentation . 14
2.2.2. Mathematische Definition und Notation 16
2.2.3. Workflow-Netze . 20

2.3. Business Process Model and Notation (BPMN) 21
2.3.1. BPMN-Elemente . 21

2.4. Information Retrieval . 23
2.5. Process-Mining . 24

2.5.1. Data-Mining . 25
2.5.2. Logs, Traces und Events . 25
2.5.3. Extensible Event Stream (XES) . 26

2.6. Process-Discovery . 27
2.6.1. Qualitätsindikatoren . 28
2.6.2. α-Algorithmus . 30
2.6.3. Grenzen des α-Algorithmus . 33
2.6.4. Evolutionärer Ansatz . 35

2.7. Visualisierung von Graphen . 37
2.7.1. Kräftebasiertes Layout . 39

2.8. Verwandte Arbeiten . 40

3. Konzept 45
3.1. Vorverarbeitung der Logdaten . 45
3.2. Process-Mining . 46
3.3. Visualisierung und visuelle Analyse . 47

5

3.4. Hierarchisierung der Traces und der Modelle 47
3.4.1. Bezeichnerkonvention der Hierarchie 48
3.4.2. Vorteile . 48
3.4.3. Nutzung der Hierarchie in der Process-Discovery 49

4. Implementierung 51
4.1. Ausgangssituation und Daten . 51

4.1.1. Das Anwendungssystem . 51
4.1.2. Elasticsearch . 52
4.1.3. Tracking-ID . 52

4.2. Architektur . 53
4.3. REST-Schnittstelle . 54

4.3.1. Endpunkt zum Erstellen eines Logs 56
4.3.2. Endpunkte zur Verwaltung der Dateien 56
4.3.3. Endpunkte zur Process-Discovery . 59
4.3.4. Endpunkte für die Graphen der Modelle 60

4.4. Erstellen der Traces . 61
4.5. Mining der Modelle . 63
4.6. Besonderheiten der Hierarchisierung . 64

4.6.1. Hierarchie in der Erstellung der Traces 64
4.7. Visualisierung von Petri-Netzen und BPMN 65

4.7.1. Interaktion mit der Visualisierung des Graphen 66
4.8. Hierarchie in der Visualisierung der Modelle 67
4.9. Anzeigen des zugrundeliegenden Logs . 68
4.10. Visualisierung von Traces in einem Model 68

5. Evaluation durch Expertenstudie 71
5.1. Durchführung der Expertenstudie . 71
5.2. Ergebnisse der Expertenbefragung . 72

5.2.1. Analyse der Multiple-Choice-Fragen 72
5.2.2. Analyse der Diskussion und Freitextfragen 73

6. Fazit und Ausblick 75

A. Anhang: Expertenstudie 77
A.1. Dokumente der Expertenbefragung . 77
A.2. Antworten der Multiple-Choice Fragen . 90

Literaturverzeichnis 95

6

Abbildungsverzeichnis

2.1. Feuern einer Transition . 14
2.2. Einfaches Petri-Netz . 15
2.3. Petri-Netz Erzeuger-Verbraucher . 15
2.4. Petri-Netz kritischer Abschnitt . 16
2.5. Beschriftetes Petri-Netz . 19
2.6. Beispiel Workflow-Netzes . 21
2.7. BPMN-Elemente . 22
2.8. Simples BPMN . 23
2.9. XES-Schema . 27
2.10. Blumen-Petri-Netz . 29
2.11. Blumen-BPMN . 29
2.12. Petri-Netz mit allen Pfaden . 30
2.13. Petri-Netz für L2 . 31
2.14. WF-Netz mit Schleifen . 34
2.15. WF-Netz aus L3 . 34
2.16. Knoten-Kanten-Diagramm . 38
2.17. Einfaches kräftebasiertes Layout . 41
2.18. Baum mit kräftebasiertem Layout . 41
2.19. Kommunikationsgraph . 42
2.20. Petri-Netz mit Deadlock . 43

3.1. Verarbeitungs-Pipeline . 45
3.2. Ablauf hierarchisches Mining . 49
3.3. Subprozess Petri-Netz . 50

4.1. Architektur des Systems . 53
4.2. Webapp . 55
4.3. Webapp mit ausgeblendeter Seitenleiste. 55
4.4. XES-Dialog . 57
4.5. PNML-Dialog . 57
4.6. Visualisierung Petri-Netz . 65
4.7. Visualisierung BPMN . 66
4.8. Petri-Netz einer frühen Version . 66
4.9. Einfrieren eines Knoten . 67

7

4.10. Expandieren eines Knoten . 68
4.11. Auflistung der Traces . 69
4.12. Trace-Filter . 69
4.13. Verbindung der Transitionen . 70
4.14. Visualisierung der Markenpfade . 70

Tabellenverzeichnis

2.1. Datenset Café . 25
2.2. Relationen für L1. 31
2.3. Relationen für L2 . 31

Verzeichnis der Listings

4.1. Elasticsearch Eintrag . 62
4.2. ProM-BeanShell-Skript . 64

Verzeichnis der Algorithmen

2.1. α-Algorithmus . 32
2.2. Generischer evolutionärer Algorithmus . 36

8

1. Einleitung und Aufgabenstellung

Komplexe Anwendungssysteme bestehen aus vielen Komponenten, welche auf verschiedenen
Knoten ausgeführt werden und über Schnittstellen miteinander kommunizieren. Anfragen
betreten das System an einer Komponente und werden danach mit großem Zusammenspiel
der Subsysteme abgearbeitet. Je nach Größe des Systems ist es schwierig, den Überblick
über den Ablauf von Verarbeitungen zu haben. Deswegen sind die entsprechenden Abläufe
meist genau spezifiziert und dokumentiert. Jedoch ist der Idealzustand von einem vollständig
spezifizierten System und einer genau der Spezifikation entsprechenden Implementierung
in der Praxis oft nicht vorzufinden. Zum einen werden Abläufe von Verarbeitungen in der
Implementierung geändert, gerade heutzutage durch die weite Verbreitung von agiler Soft-
wareentwicklung, und dabei vergessen die entsprechende Spezifikation an die Änderungen
anzupassen. Des weiteren kann es passieren, dass neue Abläufe eingeführt werden und nicht
ausreichend oder gar nicht dokumentiert werden. Es existiert eine Vielzahl von weiteren
Ursachen, z.B. Fehler in der Implementierung, warum die Abläufe im fertigen System nicht
der Spezifikation entsprechen.

Business-Process-Mining verspricht, dieses Problem zu lösen. Es zielt im Allgemeinen darauf
ab, die Ausführung von Businessprozessen auf das Ausführungsmodell zurückzuführen. Dafür
bietet es Algorithmen, um Prozessabläufe auf Übereinstimmung mit dem Prozessmodell zu
validieren, Prozessmodelle nur aus dokumentierten Abläufen zu erstellen und Techniken
um existierende Modelle anhand in der Praxis gemessener Daten zu verbessern. Da diese
Konzepte auch auf Abläufe in Softwaresystemen angewendet werden können, bietet Process-
Mining eine Möglichkeit, um oben genannte Probleme zu verbessern. Die Dokumentation
kann ohne großen Aufwand aktuell gehalten werden durch Algorithmen, die Ablaufmodelle
aus den Abläufen erstellen, oder durch Systeme, welche Abweichung von dem spezifizierten
Kontrollfluss erkennt.

Diese Arbeit beschäftigt sich mit dem Erstellen von Prozessmodellen aus Logeinträgen großer
Anwendungssysteme. Die anderen Techniken des Process-Mining werden nicht untersucht.
Dazu werden reale Daten eines Backendsystemes eines deutschen Autoherstellers verwendet,
um den Ansatz zu testen.

Da die erzeugten Modelle von Menschen verstanden und interpretiert werden sollen, wird
untersucht, ob eine geeignete Visualisierung die Analyse unterstützt. Zusätzlich dazu werden
die Abläufe aus den Logdaten in die Darstellung integriert, um die Plausibilität und das
Verständnis des erzeugten Modelles zu unterstützen.

9

1. Einleitung und Aufgabenstellung

1.1. Situation

In der Automobilindustrie werden immer mehr computergesteuerte Dienste im Auto ange-
boten. Dies geht von elektronischen Fahrt unterstützenden Systemen bis hin zu Unterhal-
tungselektronik, mit der man im Auto im Internet surfen kann. Aber es existiert auch eine
Klasse von Diensten, die über die Elektronik des Autos hinaus mit Backendsystemen beim
Hersteller kommunizieren. Dabei handelt es sich um Dienste, welche die Fernsteuerung des
Autos durch den Nutzer ermöglichen oder Information über den Zustand des Autos, etwa
der Benzinstand, bereitstellen. Für diese Dienste werden komplexe Softwaresysteme bei den
Herstellern aufgebaut in denen zum Teil größere Prozesse ablaufen. Dies hat seine Gründe
auch in der Vielfalt der Fahrzeugausstattungen und der Forderung nach Datenschutz und
Informationssicherheit, die bei den Bewegungsdaten eines Autos eine große Bedeutung ha-
ben. Diese Arbeit soll untersuchen, wie die Process-Discovery die Entwicklung und Wartung
eines solchen Systemes verbessern kann.

1.2. Aufgabe

Das Ziel der Arbeit ist die Verbesserung der Analyse von Prozessen in komplexen Soft-
waresystemen wie das oben beschriebene. Dazu sollen geeignete Prozessmodelle aus den
vorhandenen Logdaten des Softwaresystems extrahiert werden. Auch soll eine passende
Visualisierung entwickelt werden und um Interaktionsmöglichkeiten erweitert werden, um
eine Analyse der Prozesse weiter zu verbessern. Das Ziel der Arbeit ist ein System, mit dem
die Erstellung von Prozessmodellen möglich ist, welche die Analyse von Abläufen vereinfa-
chen. Dabei sollen auch tatsächliche Prozesse mit gegeben Modellen verglichen werden, um
Abweichung und Probleme zu erkennen.

Diese Arbeit verbindet das Process-Mining oder genauer die Process-Discovery mit Tech-
niken der Visualisierung. Gleichzeitig untersucht sie die Anwendbarkeit von Techniken
der Process-Discovery auf Abläufe in Softwaresystemen. Dazu werden reale Daten aus der
Automobilindustrie verwendet und Experten des analysierten zu einer Studie herangezogen.
Die folgenden Arbeitsschritte sind Aufgabe der Arbeit:

1. Auseinandersetzung mit den Logdaten und verwandten Arbeiten

2. Konzeption und Entwicklung eines prototypischen Systems

3. Anwendung des entwickelten Systems auf die vorhandenen Logdaten

4. Evaluation des entwickelten Ansatzes mittels einer Expertenbefragung

5. Auswertung und Diskussion der Evaluationsergebnisse

10

1.3. Lösungsansatz

1.3. Lösungsansatz

Die Entwicklung des Systems ist aufgeteilt nach den Komponenten, welche die einzelnen
Verarbeitungsschritte übernehmen sollen.

1. Die gegeben Logdaten müssen analysiert werden und daraus ein Konzept entwickelt
werden, das es ermöglicht aus den existierenden Logeinträgen, in natürlicher Sprache,
eine strukturierte XES-Datei (Unterabschnitt 2.5.3) für einen bestimmten Prozess
erstellt werden kann. Aufbauend auf diesem Konzept wird dieser Ablauf in einer
Komponente des Systems implementiert, welche diese Verarbeitung automatisiert mit
möglichst geringer Nutzerinteraktion übernimmt.

2. Der nächste Schritt der Verarbeitung ist die Erstellung eines Prozessmodells. Daher
sollte das Konzept entworfen werden, wie diese aus einem Log erstellt werden kann.
Dabei ist zu überlegen, welche vorhandenen Algorithmen aus dem Process-Mining
verwendet werden sollen, wie diese implementiert und gegebenenfalls konfiguriert
werden. Daraus sollte eine Komponente entstehen, welche als Eingabe Logdaten (mög-
licherweise auch die Wahl eines Algorithmus) und als Ausgabe ein Prozess Modell
liefert. Es sollte möglich sein, das Modell sowohl als Petri-Netz als auch als BPMN zu
bekommen.

3. Nach der Erstellung der Modelle müssen diese visualisiert werden. Dazu ist es nötig zu
überlegen wie Petri-Netze und BPMN am besten visualisiert werden können und wie
diese noch um zusätzliche Interaktion oder Visualisierung erweitert werden können,
um die Analyse zu verbessern. Dies sollte in einem Frontend zusammengefasst werden,
das nicht nur die Diagramme visualisiert, sondern auch die anderen Komponenten mit
möglich wenig Aufwand steuert.

11

1. Einleitung und Aufgabenstellung

1.4. Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Grundlagen: Hier werden die Grundlagen dieser Arbeit beschrieben. Diese
reichen von der Businessprozessmodellierung bis hin zur Visualisierung von Graphen.

Kapitel 3 – Konzept: Beschreibung des entwickelten Konzeptes für das prototypische Sys-
tem.

Kapitel 4 – Implementierung: Dieses Kapitel beschreibt die Implementierung des proto-
typischen Systems.

Kapitel 5 – Evaluation durch Expertenstudie: Die Evaluation des erstellten Systemsmit-
tels einer Expertenstudie.

Kapitel 6 – Fazit und Ausblick: Dieses Kapitel fasst die Ergebnisse der Arbeit zusammen
und stellt Anknüpfungspunkte vor.

12

2. Grundlagen

Dieses Kapitel beschreibt die Grundlagen, die in dieser Arbeit verwendet werden. Ange-
fangen wird mit einer Einführung in die Prozessmodellierung (Abschnitt 2.1). Dabei liegt
der Schwerpunkt auf den Petri-Netzen (Abschnitt 2.2). Darauf folgt das Business Process
Model and Notation (kurz BPMN) in Abschnitt 2.3. Der Abschnitt über Information Retrieval
(Abschnitt 2.4) gibt eine kurze Einführung, wie Dokumente durchsuchbar gemacht werden
können. Folgend beschreibt ein großer Teil das Process Mining (Abschnitt 2.5) und dessen
Teilgebiet der Process Discovery (Abschnitt 2.6). Schlussendlich folgt die Visualisierung von
Graphen (Abschnitt 2.7), die nötig für die Darstellung der Prozessmodelle ist.

2.1. Prozessmodellierung

Große Unternehmen nutzen Prozessmodellierungen, um ihre Vielzahl von großen Prozessen
zu verwalten. Nur so ist es ihnen möglich zum Beispiel auf personelle Änderungen zu reagie-
ren oder Schwachstellen in den Prozessen zu finden. In der Managementebene wird viel mit
Prozessflussmodellen gearbeitet, da diese möglicherweise nicht die praktische Anwendung
der Prozesse vor Ort gesehen haben. Auch ein Konformitätscheck, die Überprüfung ob sich
einzelnen Personen auch an die vorgeben Prozesse halten um die geplanten Anforderungen
zu erfüllen, ist nur mit klar definierten Prozessen möglich. Oft werden diese zum Teil in-
formell, etwa mit PowerPoint-Diagrammen spezifiziert. Es werden aber auch immer mehr
formale Sprachen, z. B. BPMN, genutzt um die Prozesse zu beschreiben. Durch die klare und
formale Definition der Bedeutung dieser Sprachen können Modelle, welche mit den formalen
Notationen erstellt wurden, besser analysiert und sogar simuliert werden. Dadurch ergeben
sich viele Erkenntnisse, die ohne (formale) Modellierung nur schwer möglich wären.

Dabei existiert eine Vielzahl von formalen Notationen um Prozesse zu beschreiben. Diese
Arbeit wird nur Petri-Netze und BPMN verwenden. Dies stellt keine Einschränkung an den
Gehalt gewonnener Erkenntnisse dar. Da andere existierende Notationen auf den gleichen
Konzepten basieren und zum Teil sogar die gleiche Aussagekraft besitzen, können Erkennt-
nisse direkt übernommen werden und Notationen ineinander umgewandelt werden.

13

2. Grundlagen

...
T

... ...
T

...

Abbildung 2.1.: Bei dem Feuern einer Transition wird aus jedem Vorgänger eine Marke
genommen und in jeden Nachfolger eine Marke gelegt.

2.2. Petri-Netze

Carl Adam Petri begründete die Theorie der Petri-Netze mit seiner Dissertation im Jahre
1962 [Pet62]. Petri-Netze waren eines der ersten Modelle, welche die Möglichkeit besaßen,
nebenläufige Abläufe zu modellieren. Viele grundlegende Ideen lassen sich in modernen
Notationen, wie BPMN oder Aktivitätsdiagrammen der Unified Modeling Language (UML),
wiederfinden. Auch wurden Petri-Netze um verschiedene Arten von Marken semantisch
erweitert, um dem Leser die Bedeutung besser verdeutlichen zu können. Bei diesen soge-
nannten gefärbten Petri-Netzen werden die Marken durch Symbole ausgetauscht, womit
eine Marke eine verständliche Bedeutung bekommt.

2.2.1. Grafische Repräsentation

Grafisch lassen sich Petri-Netze als bipartite Graphen repräsentieren. Dabei existieren zwei
Arten von Knoten, Stellen, welche als Kreise dargestellt sind, und Transitionen, welche durch
Rechtecke repräsentiert werden. Marken (dargestellt durch ausgefüllte Kreise) werden von
den Stellen beinhaltet und definieren den Zustand des Netzes.
Transitionen repräsentieren Ereignisse welche in dem modellierten System eintreten können.
Damit das Ereignis einer Transition ausgeführt werden kann, müssen alle Vorgänger mindes-
tens eine Marke besitzen. Die Vorgänger einer Transition sind alle Stellen, von denen eine
Kante zu der Transition führt. Beim Eintretens des Ereignisses wird aus allen Vorgängern
eine Marke genommen und allen Nachfolgern eine Marke hinzugefügt. Nachfolger sind
dementsprechend die Stellen, zu denen eine Kante von der Transition führt. Dieser Vorgang
des Eintreten eines Ereignisses wird „Feuern“ einer Transition genannt.
Die Stellen grenzen die möglichen Zustände ein, denn die Marken in den entsprechenden
Stellen definieren den Zustand. In einer Stelle können sich im Allgemeinen beliebig viele
Marken befinden. Um die Notation der Petri-Netze näher zu bringen, folgen einige Beispiele,
welche Standardprobleme der nebenläufigen Programmierung modellieren:

14

2.2. Petri-Netze

a

b

Abbildung 2.2.: Einfaches Petri-Netz, das die exklusive Ausführung von a oder b modelliert.

Abbildung 2.3.: Petri-Netz, welches das Erzeuger-Verbraucher-Problem modelliert

Abbildung 2.2 ist ein einfaches Beispiel mit zwei möglichen Abläufen. Dieses Petri-Netz
modelliert die exklusive Ausführung von a oder b. Dabei ist die Abbildung in ihrem Aus-
gangszustand gegeben. Im Petri-Netz aus Abbildung 2.2 wird durch das „Feuern“ einer der
Transitionen die Marke aus der linken in die rechte Stelle bewegt. Danach ist keine Transition
mehr ausführbar, da sich in allen Stellen der eingehenden Kanten eine Marke befinden muss.
Somit modelliert das Netz ein System in dem entweder a oder b einmal ausgeführt werden
kann.

Abbildung 2.3 zeigt ein Standardproblem der nebenläufigen Ausführung von Prozessen. Das
Erzeuger-Verbraucher-Problem. Dabei geht es im Allgemeinen darum, dass eine oder mehrere
Entitäten, die Produzenten, Aufgaben erzeugen, die von einer oder mehreren Entitäten, den
Verbrauchern, abgearbeitet werden. In der hier dargestellten Modellierung mit einem Erzeu-
ger und einem Verbraucher, kann der Erzeuger beliebig viele Marken in der Warteschlange
erzeugen, da sich die Marke im Modell immer im Kreis mit den Stellen „Aufgabe erzeugt“
und „Erzeuger bereit“ bewegt. Bei jeder Runde wird eine Marke in die Warteschlange gelegt.
Die Marken in der zentralen Stelle repräsentieren die Aufträge, welche abgearbeitet werden
sollen. Der Verbraucher kann nur dann arbeiten, wenn sich mindestens eine Marke in der

15

2. Grundlagen

A betritt den
kritischen
Abschnitt

A verlässt den
kritischen
Abschnitt

A im kritischen
Abschnitt

B betritt den
kritischen
Abschnitt

B im kritischen
Abschnitt

B verlässt den
kritischen
Abschnitt

Abbildung 2.4.: Petri-Netz, welches den kritischen Abschnitt modelliert.

Warteschlange sich befindet. Dieses grundlegende Verhalten lässt sich sehr anschaulich mit
Petri-Netzen modellieren.

Auch Abbildung 2.4 zeigt die Darstellung eines Problems aus der nebenläufigen Program-
mierung: das Problem des kritischen Abschnittes. Dabei geht es darum einen bestimmten
Codeabschnitt so zu schützen, dass er nur von einem Prozess gleichzeitig betreten werden
kann. Das gegebene Modell verdeutlicht dies für zwei „Akteure“, A und B. Dabei existieren
drei Zustände: A, B oder niemand befindet sich mit der Ausführung im kritischen Abschnitt.
Dabei ist auch vor allem sichergestellt, dass A nur den kritischen Abschnitt betreten kann,
wenn B sich nicht darin befindet und umgekehrt.

Weitere Beispiele und Erklärungen sind in [Rei85] zu finden.

2.2.2. Mathematische Definition und Notation

Die mathematischen Definitionen und Notationen sind aus [Rei85] und [VDA11] übernom-
men.
Definition 2.2.1 (Petri-Netz [VDA11])
Ein Petri-Netz sei definiert als ein Triple N :

N = (S, T, F)

16

2.2. Petri-Netze

S und T sind endliche Mengen und es gilt:

S ∩ T = ∅
F ⊆ (S × T) ∪ (T × S)

S entspricht der Menge der Stellen, die Menge T beinhaltet alle Transitionen und F be-
schreibt die Flussrelation (entsprechend den Kanten im Graphen), sowohl von Stellen nach
Transitionen als auch umgekehrt.

Multimengen [VDA11]

In der Prozessmodellierung reichen normale Mengen oft nicht aus. Zum Beispiel
kann in einer Stelle eines Petri-Netzes nicht nur eine oder keine Marke sein, sondern
auch mehrere. Daher ist es sinnvoll Multimengen einzuführen, bei denen ein Element
auch eine Kardinalität besitzt oder mehrmals in einer Menge vorkommen kann. Die
aufzählende Notation soll dazu mit „[“ und „]“ abgegrenzt werden. Mehrere gleiche
Elemente können zu einem zusammengefasst werden, welches die Kardinalität in der
Potenz trägt. Das folgende Beispiel beschreibt eine Multimenge M mit einem a, zwei b
und drei c. Dabei sind die gegebenen Notationen äquivalent.

M = [a, b, b, c, c, c] = [a, b2, c2, c] = [a, b2, c3]

Anders kann eine Multimenge auch als ein Tupel M = (D, γ) angesehen werden.
Wobei D eine Menge und γ : D → N0. M ist hierbei eine Multimenge über D und
γ ordnet jedem Element eine Anzahl aus N0 zu. Nicht enthaltene Elemente werden
dabei einfach auf die 0 abgebildet. Dieser Zusammenhang wird auch mit M ∈ B(D)
annotiert.
Es folgt die Definition von Untermengen, welche mit ≤ annotiert werden: Für zwei
Multimengen A = (D, γA), B = (D, γB) ∈ B(D) gilt

A ≤ B ⇔ ∀x ∈ D : γA(x) ≤ γB(x)

Die Summe zweier Multimengen A = (D, γA), B = (D, γB) ∈ B(D) sei definiert als
Summe der Kardinalitäten:

A
⊎

B = (D, γAB), γAB(x) = γa(x) + γb(x)

Definition 2.2.2 (Markiertes Petri-Netz [VDA11])
Ein markiertes Petri-Netz ist ein Tupel (N, M) bestehend aus einem Petri-Netz N = (S, T, F)
und einer Multimenge M ∈ B(S). Dabei stellt M die vorhandenen Marken dar und wird als
Markierung bezeichnet.

17

2. Grundlagen

Um auch mehrere Marken in einer Stelle modellieren zu können, ist M eine Multimenge.
Die folgende Menge M1 repräsentiert die Markierung aus Abbildung 2.3:

M1 = [Aufgabe erzeugt,Warteschlange3,Verbraucher bereit zum Empfangen]

Oft ist für die Modellierung eines Prozesses ein markiertes Petri-Netz (N, M0) gegeben.
Dabei stellt M0 die initiale Markierung des Modells dar.

Die folgende Definition beschreibt Vorgänger und Nachfolger in einem Petri-Netz:

Definition 2.2.3 (Vorgänger und Nachfolger [VDA11])
Sei ein Petri-Netz N = (S, T, F) gegeben, dann sind folgende Mengen für x ∈ S ∪ T definiert:

x = {y |(y, x) ∈ F }
x = {y |(x, y) ∈ F }

x beschreibt die Menge der Vorgänger und x die Menge der Nachfolger des Elementes x.
Falls x ∈ S, dann x, x ⊆ T und analog dazu falls x ∈ T , dann x, x ⊆ S.

Definition 2.2.4 (Feuern einer Transition [VDA11])
Für eine Transition t eines markierten Petri-Netzes N, M , definieren wir die Relation (N, M)[t⟩.

(N, M)[t⟩ ⇔ t ≤M

Falls diese Relation für eine gegebene Markierung erfüllt ist, dann wird die Transition als aktiv
bezeichnet.

Wenn (N, M)[t⟩ für beliebiges t gilt, dann sei folgende Feuerrelation definiert:

(N, M)[t⟩(N, M ′)⇔M ′ = (M\ x)
⊎

x

(N, M)[t⟩(N, M ′) annotiert die Markierung, die entsteht, wenn die aktive Transition t ge-
feuert wird. Dabei wird von jeder Stelle aus x eine Marke genommen und jeder Stelle aus
x einer Marke hinzugefügt. Zum Beispiel gilt für Abbildung 2.2 (N, [links])[a⟩, da in der
abgebildeten Markierung a aktiv ist und (N, [links])[a⟩(N, [rechts]), da beim Feuern von a
die Marke aus links in rechts wandert.

Eine Feuersequenz ist die Liste von nacheinander ausführbaren Transitionen. Dies lässt sich
mit der gegebenen Relation folgendermaßen definieren:

Definition 2.2.5 (Feuersequenz [VDA11])
Eine geordnete Multimenge σ = ⟨t1, ..., tn⟩ ist eine Feuersequenz von (N, M0) falls die Markie-
rungen M1, ..., Mn existieren für die gilt:

∀i ∈ {1, ..., n} : (N, Mi−1)[ti⟩ ∧ (N, Mi−1)[ti⟩(N, Mi)

18

2.2. Petri-Netze

a a

Abbildung 2.5.: Einfaches Beispiel, das die Notwendigkeit der Definition von beschrifteten
Petri-Netzen zeigt.

Eine Markierung M gilt als erreichbar in einem markierten Petri-Netz N, M0 wenn eine
Feuersequenz von M0 nach M existiert. Die Menge aller erreichbaren Markierungen wird
mit [N, M0⟩ annotiert.

Definition 2.2.6 (Beschriftetes Petri-Netz [VDA11])
Ein beschriftetes Petri-Netz sei ein Tupel:

N = (S, T, F, A, b)

Dabei sei A eine Menge von Aktionsbeschriftungen und b : T → A eine Beschriftungsabbildung.

Der Sinn der beschrifteten Petri-Netze mag nicht einleuchten, da auch der Unterschied zu
den bisherigen Netzen nicht groß ist. Sie dienen vor allem dazu, die Eins-zu-eins-Beziehung
von Transition und der Beschriftung der Transition aufzulösen. Abbildung 2.5 zeigt ein Netz,
welches mit der vorherigen Definition nicht korrekt wäre, da T eine Menge ist und nur
einmal a enthalten kann. Um diese Einschränkung aufzuheben, werden Transitionen und
ihre Beschriftungen getrennt. Somit sind die Transitionen aus Abbildung 2.5 unterschied-
lich, werden aber auf dieselbe Beschriftung (Aktion) abgebildet. Somit ist es möglich die
Ausführung von genau zweimal a hintereinander zu modellieren.

Da bei einem beschrifteten Petri-Netz jeder Transition explizit eine Beschriftung zugeordnet
wird, die als die auszuführende Aktion angesehen werden kann, definieren wir noch die
spezielle Beschriftung τ (Tau). Dieses Symbol steht explizit für keine Aktion und dient zur
Modellierung eines Zustandsüberganges im Modell, der aber keine sichtbare Folge oder
Aktion besitzt. Dies ermöglicht z. B. eine einfachere Darstellung einer bedingten Anweisung,
bei der eine Aktion entweder ausgeführt wird oder nicht. Sie kann sozusagen übersprun-
gen werden. Die τ -Beschriftung erweitert die Semantik der beschrifteten Petri-Netze und
ermöglicht bessere und übersichtlichere Modellierungen.

Eigenschaften von Petri-Netzen

Es werden einige essenzielle Eigenschaften vonmarkierten Petri-Netzen definiert [VDA11].

k-Beschränktheit Ein markiertes Petri-Netz (N, M0) ist k-beschränkt, wenn keine mögli-
che erreichbare Markierung M ∈ [N, M0⟩ existiert, für die sich in einer Stelle mehr
als k Marken befinden.

19

2. Grundlagen

1-Beschränktheit Ein markiertes Netz ist sicher, wenn es 1-beschränkt ist, d. h. zu keinem
späteren Zeitpunkt kann sich in einer Stelle mehr als eine Marke befinden.

Verklemmen Ein markiertes Petri-Netz ist frei von Verklemmen, wenn sich keine Markie-
rung erreichen lässt, bei der keine Transition mehr feuern kann.

Lebendigkeit Eine Transition t eines markierten Petri-Netzes ist lebendig, wenn es eine
mögliche Folge von ausführbaren Transitionen gibt welche t beinhaltet.

2.2.3. Workflow-Netze

Da Petri-Netze eine sehr weitreichende Semantik besitzen und damit sehr viele Konstrukte
möglich sind, von denen einige nicht für die Betrachtung von Businessprozessen nötig sind,
wird eine Untermenge der Petri-Netze eingeführt. Nach [VDA11] werden diese Workflow-
Netze genannt. Diese sind Petri-Netze, welche eine dedizierte Startstelle und eine dedizierte
Endstelle besitzen.
Definition 2.2.7 (Workflow-Netz [VDA11])
Sei N = (S, T, F, A, b) ein beschriftetes Petri-Netz. N ist ein Workflow-Netz genau dann wenn:

1. Es existiert eine Stelle i ∈ S für die gilt x = ∅

2. Es existiert eine Stelle o ∈ S für die gilt x = ∅

3. Für alle x ∈ S ∪ T existiert ein Pfad (in dem gerichteten Graphen) von i nach x.

4. Für alle x ∈ S ∪ T existiert ein Pfad (in dem gerichteten Graphen) von x nach o.

Diese Petri-Netze besitzen jeweils eine Quelle (i) an der alle möglichen Abläufe starten und
eine Senke (o) an der alle möglichen Aktionsabläufe enden.

Abbildung 2.6 zeigt ein Workflow-Netz, mit einer Startstelle, aus welcher nur Kanten ent-
springen, und einer Endstelle, die nur eingehenden Fluss besitzt und somit das Ende der
Ausführung bedeutet. Um die schon gezeigten Petri-Netze einmal einzuordnen: Abbildung 2.2
und Abbildung 2.5 sind Workflow-Netze, während Abbildung 2.3 und Abbildung 2.4 keine
sind.

Definition Korrektheit [VDA11]

Nach van der Aalst [VDA11] ist ein Workflow-Netz genau dann korrekt wenn folgende
Bedingungen erfüllt sind:

Sicherheit (N, [i]) ist sicher, d. h. zu keinem Zeitpunkt beinhaltet eine Stelle mehr als eine
Marke.

20

2.3. Business Process Model and Notation (BPMN)

a

b

c

d

Abbildung 2.6.: Beispiel eines Workflow-Netzes.

Angemessene Beendigung Falls o ∈M für eine MarkierungM ∈ [N, [i]⟩, so istM = [o].
Das bedeutet, falls sich eine Marke in der Senke befindet, ist die Ausführung sicher
beendet, keine Transition ist mehr aktiv und es befindet sich auch keine Markierung
in einer anderen Stelle.

Mögliche Beendigung [o] ∈ [N, M⟩ für alle M ∈ [N, [i]⟩.

Abwesenheit von toten Teilen Für (N, [i]) sind alle Transitionen lebendig.

2.3. Business Process Model and Notation (BPMN)

Eine andere weit verbreitete Notation zur Prozessmodellierung ist das Business Process
Model and Notation (kurz BPMN). Die aktuelle Version 2.0 ist in [bpm11] spezifiziert. BPMN
hat eine sehr reiche Semantik durch viele verschiedene Komponenten, welche einzelne
allgemeine Eigenschaften und Ereignisse von Businessprozessen modellieren.

2.3.1. BPMN-Elemente

Abbildung 2.7 zeigt die für die Prozessmodellierung wichtigsten Elemente der BPMN. Die
einzelnen Elemente werden durch gerichtete Kanten verbunden, welche den Kontrollfluss
beschreiben. Dieser Fluss kann analog zu den Petri-Netzen als eine Bewegung von Marken
durch den Graphen angesehen werden. Diese Marken fließen entlang der Kontrollflusskanten
und werden an den Gateways entsprechend verändert. Gateways treten in zwei Varianten
auf. Die erste hat die Aufgabe den Kontrollfluss aufzutrennen. Dies wird durch mehrere
ausgehende Kanten annotiert. Entsprechend führt die zweite Variante den Kontrollfluss
wieder zusammen. Das wird durch mehrere eingehende Kanten annotiert. Beide Varianten
können auch in einem Gateway kombiniert werden.
Abbildung 2.8 zeigt ein BPMN, das die exklusive Ausführung von a oder b modelliert. Dabei
spaltet das linke exklusive Gateway den Kontrollfluss auf genau einen Pfad auf. Das rechte
exklusive Gateway führt die möglichen Ausführungspfade wieder zusammen.

21

2. Grundlagen

Start Event

End Event

Exklusives
Gateway

Inklusives
Gateway

Paralleles
Gateway

Aufgabe/Event

Abbildung 2.7.: Die Abbildung zeigt einen Ausschnitt der vorhandenen BPMN-Elemente.

Folgend werden BPMN-Elemente aus Abbildung 2.7 beschrieben:

Aufgabe (engl. Task) Repräsentiert eine atomare Aufgabe, die nicht weiter zu unterteilen
und ein Teil des Prozesses ist.

Paralleles Gateway Das aufspaltende Gateway gibt den Kontrollfluss an alle ausgehende
Kanten weiter. In der zusammenführenden Variante gibt das Gateway den Fluss erst
weiter, wenn dieser aus allen eingehenden Kanten bereitsteht.

Exklusives Gateway In der aufteilenden Rolle gibt das Gateway den Kontrollfluss an genau
eine ausgehende Kante weiter. Beim Zusammenführen wird jeder einzelne eingehenden
Kontrollfluss propagiert.

Inklusives Gateway Das splittende Gateway propagiert den Fluss an mindestens eine
ausgehende Kante und das zusammenführende Gateway wartet auf alle Flüsse, die auf
Pfaden der eingehenden Kanten aktiv sind.

Startereignis Beginn des Kontrollflusses.

Endereignis Ende des Kontrollflusses.

22

2.4. Information Retrieval

a

b

Abbildung 2.8.: Beispiel für ein simples BPMN, äquivalent zum Petri-Netz in Abbildung 2.2.

2.4. Information Retrieval

Für Software ist es leicht, jeden einzelnen Schritt einer Ausführung zu dokumentieren und
auszugeben. Daher werden in Softwaresystemen viele Daten geloggt, um in einem Fehlerfall
nachvollziehen zu können, was genau falsch gelaufen ist. Die Ausgaben der Programme
werden meistens in Logdateien geschrieben. Eine Logdatei wird oft für einen bestimmten
Zeitraum abgeschlossen (z. B. für jeden Tag eine) und jeder einzelne Eintrag in einem Log
mit einem genauen Zeitstempel versehen. Zwar ist die Erstellung der Logs einfach, für das
Extrahieren von Informationen, alleine schon das Finden einzelner Einträge für bestimmten
Zeiten, ist das jedoch nicht praktikabel, denn die Dateien müssen dazu linear durchgesucht
werden. Daher ist es sinnvoll die Einträge zu indexieren. Dazu werden vermehrt Suchma-
schinen verwendet. Suchmaschinen passen gut zu Logdaten, da diese oft eine mangelnde
Struktur besitzen, da die Nachricht in natürlicher Sprache verfasst ist.
Suchmaschinen bieten nun eine Menge an Operationen um die Logs zu durchsuchen. Zu-
sätzlich lassen sich Metriken berechnen, die für das Data-Mining interessant sind.
Es existieren eine fertige Apache Lucene [luc15], welche das Implementieren eines solchen
Systems unterstützen und sehr vereinfachen. Drauf baut die speziell für Programmdaten
gedachte Sachmaschine Elasticsearch auf.

Elasticsearch, Kibana und Logstash

Elasticsearch ist eine Open-Source-Suchmaschine die für die schnelle Indizierung und
Verarbeitung vom Applikationsdaten gedacht ist (siehe https://www.elastic.co

und Abschnitt 2.4). Damit ist es unter anderem möglich in Echtzeit Performance-
Indikatoren, wie die Anzahl an Aufrufen eines Service zu berechnen. Dazu werden
meistens die durch die Applikationen erstellten Log-Daten an das System geschickt
und indiziert. Zu diesem Zweck existiert unterstützend Logstash. Dies überwacht die

23

https://www.elastic.co

2. Grundlagen

Logdateien der zu überprüfenden Anwendungen, strukturiert die Einträge mit Hilfe
von regulären Ausdrücken und sendet die Daten an den Indexer des Elasticsearch.
Kibana ist eine leichtgewichtige Webapp, welche einen schnellen und einfachen Zugriff
auf die in Elasticsearch gespeicherten Daten bietet und Möglichkeiten zur Berechnung
und Darstellung analytischer Werte (z. B. Anzahl bestimmter Einträge) stellt. Kibana
bietet, nach dem Sinne von Information Retrival, auch eine Suche über den Logdaten
an.

2.5. Process-Mining

Im idealisierten Konzept der Prozessmodellierung wird ein Modell von der Managementebe-
ne eines Unternehmens erstellt und eben dieses wird danach von betroffenen Personen dem
Modell entsprechend umgesetzt und implementiert. In der reellen Welt ist dies aus verschie-
denen Gründen leider oft nicht der Fall. Es kommt oft vor, dass kein Modell für einen Prozess
existiert, da dieser einfach aus gegebenen Anforderungen erschaffen wurde und durch die
praktische Ausführung optimiert wurde. Falls für einen Prozess ein Modell existiert, so ist
dieses vielleicht nicht formal oder es existiert ein gutes formales Modell, die Ausführungen
des Prozesses weichen aber von der Spezifikation ab. Diese Abweichungen können eine
Optimierung der ausführenden Personen sein oder auch einfach eine willkürliche Handlung,
die den Prozess verschlechtert.

Das Ziel von Process-Mining ist die Verbesserung oben genannter Probleme. Zum einen
soll es die Erstellung von Modellen aus den Log-Daten der Instanziierung der Prozesse
ermöglichen. Dieser Teil wird hauptsächlich in dieser Arbeit verwendet. Zum anderen bietet
Process-Mining auch die Möglichkeit die Ausführung der Prozesse zu evaluieren, indem die
Aufzeichnungen mit dem Modell durchgespielt werden und somit Konformität nachgewiesen
werden kann. Außerdem ist es mithilfe der Daten nun auch möglich, das gegebene Modell
zu verbessern. Zum Beispiel können Teile eines Modells entfernt werden, die in der Praxis
nicht verwendet werden.

Process-Mining ermöglicht eine Vielzahl an verschiedene Ansichten auf die Daten der ausge-
führten Prozesse. Zum Beispiel können die Interaktionen zwischen den beteiligten Personen
betrachtet werden [WF94]. Eine andere Möglichkeit ist eine zeitliche Analyse, bei der Aus-
führungsdauer und Wartezeiten analysiert und optimiert werden können. Auch kann der
Verbrauch von Ressourcen betrachtet werden. Die höchste Komplexität bietet die Kontroll-
flussansicht, bei der die Abhängigkeiten von Aufgaben und deren relative Ausführungsrei-
henfolge betrachtet werden. Das Erstellen von Ablaufmodellen wird im Process-Discovery
genannt und stellt die Technik aus dem Process-Mining dar die in dieser Arbeit verwendet
wird.

24

2.5. Process-Mining

Cappuccino Latte Espresso Americano Ristretto Tee Muffin Bagel
1 0 0 0 0 0 1 0
0 2 0 0 0 0 1 1
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 2 0
0 0 0 1 1 0 0 0
...

Tabelle 2.1.: Datensatz der Bestellungen eines Cafés aus [VDA11].

Process-Mining ist in Relation zu gegeben anderen Disziplinen nach van der Aalst [VDA11]
zwischen Prozessmodellierung und Data-Mining anzuordnen.

2.5.1. Data-Mining

Data-Mining ist eineWissenschaft, welche die Möglichkeiten untersucht, aus großenMengen
von Daten verwertbare Informationen zu extrahieren. Das Ziel dabei sind häufig aggregierte
Werte, erkannte Muster oder Modelle, welche den Daten zugrunde liegen könnten.

Tabelle 2.1 zeigt einen Ausschnitt eines Datensatzes [VDA11], der die Bestellungen eines
Cafés darstellt. Diese Daten wurden zur Dokumentation der Verkäufe erhoben. Mit Hilfe von
Data-Mining lassen sich diese nutzen, um das Verhalten der Nutzer des Cafés zu analysieren
und Abläufe zu verbessern. Zum Beispiel können Beziehungen zwischen Produkten erkannt
werden, welche Produkte oft und welche niemals zusammen gekauft werden. Mithilfe solcher
Zusammenhänge lässt sich das Verhalten der Kunden besser vorhersagen. Eine einfache
Analyse könnte sein, dass Kunden, die Tee trinken, oft einen Muffin bestellen. Data-Mining
versucht Muster in den Daten oder, im Fall des Process-Mining, Modelle zu finden, welche
die Daten erzeugt haben könnten, um die Realität besser verstehen zu können.

2.5.2. Logs, Traces und Events

Bei der Dokumentation von Prozessen wird oft für jedes Ereignis eine Menge an Eigenschaf-
ten gespeichert. Oft sind es mindesten ein Zeitstempel, das Ereignis und eine ID welche
die Zugehörigkeit zu einem Vorgang beschreibt. (Dies alles ist unter der Annahme, dass
die Einträge zu genau einem Prozess gehören. Falls dies nicht der Fall ist, wird auch eine
Zuordnung zu einen definierten Prozess benötigt.) Weiterhin können dies Eigenschaften
wie eine eindeutige ID des Eintrages, die Lebenszyklus-Veränderung des Ereignisses für den
Eintrag (z.B. Start, Ende), Ressourcen oder beteiligte Personen sein. Das Vorhandensein von

25

2. Grundlagen

Informationen in den Logs ist sehr abhängig von dem System im Einzelnen. Mithilfe aller
dieser Eigenschaften und Techniken des Data-Mining können viele Informationen extrahiert
werden. Diese Arbeit betrachtet aber nur die Kontrollflussrelation der Einträge. Dafür lassen
sich die Einträge auf ihre zeitliche Relation pro Ablauf reduzieren. Es werden die folgenden
Begriffe verwendet [VDA11]:

Event Ereignis welches eine atomare Aktion beschreibt. In den bisherigen Beispielen wäre
die Ausführung von a oder einfach nur a ein Event.

Trace Eine Liste von Events für welche die Kontrollflussrelation definiert ist. D.h. ihre
Ausführungsreihenfolge ist bekannt. Zum Beispiel eine Liste mit den Events a und b,
wobei a vor b ausgeführt wird. Ein Trace wird mit ⟨ und ⟩ annotiert und die Reihenfolge
beschreibt die Kontrollflussrelation. Für das Beispiel wäre das ⟨a, b⟩.

Log Eine Multimenge von Traces, die zum selben Prozess gehören. Formal wird ein Log
über einer Menge A definiert, welche die möglichen Events beschreibt. In der Praxis
wird A als die Menge aller im Log dokumentierter Events angenommen. Ein Log,
welcher aus der Ausführung von Abbildung 2.6 entstanden sein könnte, wäre zum
Beispiel:

L = [⟨a, b, d⟩7, ⟨a, c, d⟩4]

2.5.3. Extensible Event Stream (XES)

Extensible Event Stream (XES) ist XML basiertes Datenformat und standardisiertes Dateifor-
mat zur Beschreibung von Logs [GV14]. Dabei werden die oben beschriebenen Kontrollfluss-
relationen beschrieben und zusätzlich können noch weitere Eigenschaften auf Ebene der
Events, der Traces oder des Logs annotiert werden. Somit sind grundlegende Eigenschaf-
ten sichergestellt und gleichzeitig können beliebige zusätzliche Informationen hinzugefügt
werden.

Die Struktur einer XES-Datei entspricht der Hierarchiestruktur eines Logs im Allgemeinen
(siehe Unterabschnitt 2.5.2). Das XML-Wurzelelement repräsentiert den Log. Es existiert
daher genau ein Log pro Datei. Der Log enthält eine beliebige Anzahl an Traces und dieser
wiederum eine beliebige Anzahl an Events. Dabei können allen Elementen noch zusätzlich
Attribute angehängt werden. Diese definieren bestimmte Eigenschaften der Elemente. Einige
sind im Standard vordefiniert, es können aber beliebige weitere definiert werden um den Log
mit Informationen anzureichern, ohne die Kompatibilität einzuschränken. Einige Attribute,
wie etwa den Namen eines Events, lassen sich nicht weglassen, ohne die Nutzbarkeit der
Daten einzuschränken. In diesem Beispiel des Namens würde ein Bezeichner fehlen, wodurch
viele Techniken des Process-Mining wie die Process-Discovery (siehe Abschnitt 2.6) nicht
möglich sind.

26

2.6. Process-Discovery

Abbildung 2.9.: XES-Schema in UML-2.0-Notation [GV14].

2.6. Process-Discovery

Bei der Process-Discovery wird der Fall betrachtet, dass für ein System oder einen Prozess
kein Kontrollflussmodel gegeben ist. Das Ziel ist es aus aufgenommenen Daten, einem Log,
ein Modell zu extrahieren, das möglichst gut die gesehenen Abläufe erzeugt haben könnte.
Da im Allgemeinen nicht einmal ein eindeutiges optimales Modell existiert (abgesehen von
einigen einfachen Beispielen), ist das Finden eines geeigneten Algorithmus nicht trivial und
es existiert eine Vielzahl von Ansätzen.

Van der Aalst definiert die allgemeine Herausforderung der Process-Discovery, einen Algo-
rithmus zu finden, der für einen Log ein "repräsentatives“ Modell findet [VDA11]. Ein solcher
Algorithmus bekommt einen Log als Eingabe und liefert ein Prozessmodell als Ausgabe.

27

2. Grundlagen

Formal ist es erst einmal unerheblich, in welcher Notation sich das Modell befindet, da die
Algorithmen leicht für andere Notationen angepasst werden können und weil es oft mög-
lich ist die unterschiedlichen Notationen ineinander zu überführen. Van der Aalst [VDA11]
beschreibt das spezielle Problem der Process-Discovery einen Algorithmus zu finden, der
als Ausgabe ein korrektes Workflow-Netz liefert und sich mit diesem Netz jeder einzelne
der gegebenen Traces erzeugen lässt. Zwar sollten alle im Log vorkommenden Traces mit
dem Modell ausführbar sein, neue, nicht im Log vorhandene, Abläufe dürfen aber durch das
Modell erzeugt werden. Dies ist für ein gutes Modell sogar meistens nötig. Zum Beispiel, im
Falle eines Zyklus, sollte sich dieser auch im Modell widerspiegeln. Aufgrund der Endlichkeit
des Logs können jedoch nicht möglichen Traces vorhanden sein. Dadurch kann das Modell
zusätzliche Sequenzen erzeugen. Außerdem ist es im Allgemeinen nötig zu generalisieren,
da sonst das Modell unnötig komplex und nicht mehr verwendbar wird. Trotzdem ist es
auch unbrauchbar zu viel neue Abläufe zu erlauben, da das Modell sonst seine Aussagekraft
verliert. Das erzeugte Netz sollte eine gute Abwägung verschiedener Qualitätsindikatoren
erfüllen.

2.6.1. Qualitätsindikatoren

Um zu bewerten wie geeignet ein Netz für gegebene Traces ist, werden vier Qualitätskriterien
eingeführt [VDA11]:

Eignung (eng. fitness) Kriterium wie viele der gesehenen Verhalten sich mit dem Modell
nachspielen lassen. Ein Petri-Netz mit einer hohen Eignung kann die meisten der
geloggten Sequenzen durch Feuersequenzen nachspielen.

Genauigkeit (eng. precision) Je weniger Verhalten das Modell zulässt, das sich nicht in
den Traces widerspiegelt, desto genauer ist das Modell. Ein vollkommen genaues
Modell würde nur Verhalten zulassen, das im Log sichtbar ist.

Generalisierung (eng. generalization) Ein Mining-Algorithmus sollte aus Sequenzen ein
allgemeines Verhalten ableiten. Leicht verschieden Traces führen bei einer guten Ge-
neralisierung nur zu kleinen Verzweigungen. Im Gegensatz dazu könnte ein schlecht
generalisierendes Modell komplette Traces als Möglichkeiten modellieren (siehe Abbil-
dung 2.12).

Einfachheit (eng. simplicity) Ein gutes Modell sollte so einfach wie möglich sein. Die Ein-
fachheit eines Modelles kann gut über die Anzahl der verwendeten Elemente geschätzt
werden. Ein einfacheres Modell lässt sich besser durch einen Nutzer verstehen.

Da diese Kriterien sich zum Teil gegenseitig widersprechen, ist es nicht einfach, für einen
Algorithmus alle Kriterien zu optimieren. Oft ist es sehr einfach einen Algorithmus zu finden,
der ein Kriterium voll erfüllt, aber dafür in anderen schlecht abschneidet und daher meistens
eher unbrauchbare Modelle liefert. Zum Beispiel wäre ein Algorithmus, der die Eignung

28

2.6. Process-Discovery

a

b c

d e

f

Abbildung 2.10.: Blumen Petri-Netz, das eine schlechte Genauigkeit gegeben über L1 auf-
weist.

a f

b c

ed

Abbildung 2.11.: Blumen BPMN mit schlechter Genauigkeit analog zu Abbildung 2.10.

für ein Petri-Netz optimieren würde, einfach die unterschiedlichen Sequenzen als komplett
getrennten lineare Pfade des Netzes zu erstellen. Dadurch wird immer eine maximale Eignung
und Genauigkeit erreicht, das Netz ist jedoch meisten nicht sehr generalisiert oder einfach.

L2 = [⟨a, b, d, e⟩, ⟨a, c, e⟩, ⟨a, b, c, d, e⟩, ⟨a, b, c, e⟩, ⟨a, d, e⟩, ⟨a, c, d, e⟩]

29

2. Grundlagen

a b d e

...
a c e

a b c e

Abbildung 2.12.: Petri-Netz mit allen Pfaden, das eine perfekte Genauigkeit für L2 hat.

2.6.2. α-Algorithmus

Für den α-Algorithmus müssen zuerst Log basierte Event-Ordnungsrelationen definiert
werden nach [AWM04] und [VDA11].

Für einen Log L werden folgende Relationen definiert:

• a >L b⇔ ∃T = ⟨t1, ..., tn⟩ ∈ L,∃i ∈ {1, ..., n− 1} : ti = a ∧ ti+1 = b.
a >L b gilt genau dann, wenn ein Trace in L existiert in dem b direkt auf a folgt.

• a→L b⇔ a >L b ∧ b ̸>L a

• a#Lb⇔ a ̸>L b ∧ b ̸>L a

• a ∥L b⇔ a >L b ∧ b >L a

Zum Beispiel sei ein Log L1 über A = {a, b, c, d} gegeben.

L1 = [⟨a, c, b, d⟩5, ⟨a, b, c, d⟩, ⟨a, b, c⟩2]

Daraus ergeben sich die folgenden Relationen.

>L1= {(a, b), (a, c), (b, c), (b, d), (c, b), (c, d)}
→L1= {(a, b), (a, c), (b, d), (c, d)}
#L1 = {(a, a), (a, d), (b, b), (c, c), (d, a), (d, d)}
∥L1= {(b, c), (c, b)}

Für alle Paare x, y ∈ A gilt genau eine der folgenden Relationen x →L1 y, y →L1

x, x#L1y, x ∥L1 y. Daher kann dieser Zusammenhang in einer Matrix dargestellt werden
(siehe Tabelle 2.2).

30

2.6. Process-Discovery

a b c d

a # → → #
b ← # ∥ →
c ← ∥ # →
d # ← ← #

Tabelle 2.2.: Relationen für L1.

a

b

c

d

e

f

g

Abbildung 2.13.: Petri-Netz für L2.

Mithilfe dieser Relationen lassen sich nun einzelne Trennungs- und Zusammenführungskon-
strukte herauslesen. Dies wird an dem Beispiel L2 verdeutlicht.

L2 = [⟨a, b, d, e, f, g⟩10, ⟨a, c, d, f, e, g⟩7, ⟨a, b, d, f, e, g⟩16, ⟨a, c, d, e, f, g⟩5]

Das zugrunde liegende Petri-Netz ist in Abbildung 2.13 zu sehen. Von den gegeben Traces
diese Netz zu rekonstruieren, stellt für einen Menschen eine bewältigbare Aufgabe dar, es ist
jetzt zu betrachten, wie sich dies mithilfe der definierten Relationen verallgemeinern lässt.
Dazu steht die Relationsmatrix in Tabelle 2.3.

Für die Events b und c wird der Workflow exklusiv gespalten, d.h. es einer bestimmten
Stelle genau eine der beiden Aktionen durchgeführt. Das Teilen kann durch die Relationen

a b c d e f g

a # → → # # # #
b ← # # → # # #
c ← # # → # # #
d # ← ← # → → #
e # # # ← # ∥ →
f # # # ← ∥ # →
g # # # # ← ← #

Tabelle 2.3.: Relationen für L2.

31

2. Grundlagen

Algorithmus 2.1 α-Algorithmus aus [AWM04]
Eingabe: Ein Log L als eine Multimenge von Traces.

TL = {t | ∃σ ∈ L : t ∈ σ}
TI = {t | ∃σ = ⟨t1, ..., tn⟩ ∈ L : t = t1}
TO = {t | ∃σ = ⟨t1, ..., tn⟩ ∈ L : t = tn}
XL = {(A, B) | A ⊆ TL ∧ A ̸= ∅ ∧B ⊆ TL ∧B ̸= ∅ ∧ ∀a ∈ A ∀b ∈ B : a→L b

∧∀a1, a2 ∈ A : a1#a2 ∧ ∀b1, b2 ∈ B : b1#b2}
YL = {(A, B) ∈ XL | ∀(A′, B′) ∈ XL : A ⊆ A′ ∧B ⊆ B′ ⇒ (A, B) = (A′, B′)}
PL = {p(A, B) | (A, B) ∈ YL} ∪ {iL, oL}
FL = {(a, p(A, B)) | (A, B) ∈ YL ∧ a ∈ A}

∪ {(p(a, b), b) | (A, B) ∈ YL ∧ b ∈ B }
∪ {(iL, t) | t ∈ TI }
∪ {(t, oL) | t ∈ TO }

α(L) =(PL, TL, FL)

Ausgabe: Ein Workflow-Netz α(L).

a→ b, a→ c und b#c beschrieben werden. Da auf a b oder c folgen kann und diese nicht in
direkter Nachbarschaft vorkommen, handelt es sich um exklusive Verzweigung. So ähnlich
ist es auch bei der Zusammenführung, für welche die Relationen b → d, c → d und b#d
gelten. Die Relationen dienen als Grundlage um die entsprechenden Petri-Netz Konstrukte
zu bestimmen. Für die parallel Ausführung sind das analog d→ e, d→ f und e ∥ f für die
Trennung und e→ g, f → g und e ∥ f für die Zusammenführung. Diese Erkenntnisse sind
die Grundlage des α-Algorithmus.

Algorithmus 2.1 beschreibt den α Algorithmus. Dieser beinhaltet die oben besprochene Idee
im 4. Schritt bei der Erstellung von XL. Um einzeln die Schritte durchzugehen: TL beschreibt
die Menge aller Transitionen, die durch die Menge aller in dem Log vorkommenden Events
definiert wird. TI und TO beschreiben die jeweiligen Transitionen, deren entsprechende
Events zu Beginn / Ende eines Trace aufgetreten sind. Die Bedingungen für die Paare von
Mengen in XT beinhaltet die Idee der Bedingungen für eine exklusives Zusammenführen
und Aufteilen. Die parallele Relation wird nur indirekt benutzt, indem die Elemente aus den
einzelnen Mengen mit # in Relation stehen müssen, d.h. dass diese Ereignisse nie in direkter
Nachbarschaft aufgetreten sind. Die Menge YL ist eine Optimierung von XL, welche nur die
maximalen Paare beinhaltet. Alle (A, B) für die ein anderes (A′, B′) in XL existiert, für das
entweder A eine echte Teilmenge von A′ ist oder B eine echte Teilmenge von B′, werden
entfernt. Für jedes Paar aus YL wird nun eine Stelle erstellt. Diese Menge an Stellen plus
jeweils eine für Start und Ende ergeben PL. FL beschreibt die Mengen an Kontrollflussrela-

32

2.6. Process-Discovery

tionen, welche für (A, B) ∈ YL für die entsprechenden Stellen durch eingehenden Fluss von
allen Transitionen aus A und als ausgehenden Fluss zu alle Transitionen aus B beschrieben
werden. Start und Ende werden zusätzlich mit den am Anfang bestimmten ersten und letzten
Transitionen aus TI und TO verbunden. Das Triple (PL, TL, FL) beschreibt das durch den
Algorithmus erzeugte Netz.

Um die Arbeitsweise des Algorithmus zu zeigen, wird er auf L2 angewendet.

TL = {a, b, c, d, e, f, g}
TI = {a}
TO = {g}
XL = {({a}, {b}), ({a}, {c}), ({a}, {b, c}), ({b}, {d}), ({c}, {d}), ({b, c}, {d}),

({d}, {e}), ({d}, {f}), ({e}, {g}), ({f}, {g})}
YL = {({a}, {b, c}), ({b, c}, {d}), ({d}, {e}), ({d}, {f}), ({e}, {g}), ({f}, {g})}
PL = {iL, p({a}, {b, c}), p({b, c}, {d}), p({d}, {e}), p({d}, {f}),

p({e}, {g}), p({f}, {g}), oL}
FL = {(iL, a), (a, p({a}, {b, c})), (p({a}, {b, c}), b), (p({a}, {b, c}), c),

(b, p({b, c}, {d})), (b, p({b, c}, {d})), (p({b, c}, {d}), d), (d, p({d}, {e})),
(d, p({d}, {f})), (p({d}, {e}), e), (p({d}, {f}), f), (e, p({e}, {g})),
(f, p({f}, {g})), (p({e}, {g}), g), (p({f}, {g}), g), (f, oL)}

Dies entspricht, bis auf die fehlenden Bezeichnungen der Stellen, demNetz aus Abbildung 2.13.
Die Bezeichnungen der Stellen können jedoch aus dem Kontext inferiert werden und würden
nur der Übersichtlichkeit schaden. Daher wird die Bezeichnung der Stellen im Allgemeinen
auch weggelassen.

2.6.3. Grenzen des α-Algorithmus

Es lässt sich für einen Algorithmus nicht direkt bestimmen, ob er das korrekte Model für
einen Log erzeugt. Auf Grund der verschiedenen Qualitätskriterien gibt es eine Menge an
Modellen, welche den zugrunde liegenden Prozess gut beschreiben. Daher kann ein solches
Verhalten nur zum Teil untersucht werden, in dem ein Modell erstellt wird, aus diesem Traces
extrahiert werden und schlussendlich betrachtet wird, ob der Algorithmus ein äquivalentes
Modell erzeugt. Eine ausführliche Betrachtung dieses Ansatzes findet sich in [VDA11, 140-
147]. Hier werden einige Beispiele betrachtet, bei denen der α-Algorithmus das zugrunde
liegende Modell nicht zurückgewinnen kann.

33

2. Grundlagen

a

b

c

d

e

f

Abbildung 2.14.:Workflow-Netz mit Schleifen der Größe 1 und 2.

a

b

c

d

e

f

Abbildung 2.15.:Workflow-Netz, das der Alpha Algorithmus aus L3 erstellt.

Probleme mit Schleifen der Länge 1 und 2

Der α-Algorithmus hat Probleme mit Schleifen der Länge 1 und 2, d.h. er erkennt diese nicht
und erstellt ein inkorrektes Workflow-Netz. Dieses Verhalten lässt sich am Besten an einem
Beispiel zeigen. Gegeben sei das Workflow-Netz aus Abbildung 2.14 und ein möglicher Log
L3 mit einigen Traces die mit diesem Netz erzeugt werden können.

L3 = [⟨a, c, d, f⟩, ⟨a, b, c, d, f⟩, ⟨a, c, d, e, d, f⟩, ⟨a, b, b, c, d, e, d, f⟩, ⟨a, b, c, d, e, d, e, d, f⟩]

Abbildung 2.15 zeigt das Modell, welches durch den Algorithmus erstellt wird. Es weißt feh-
lende Kanten an den Transitionen b und e auf. Formal bedeutet dies, dass diese Transitionen
zu jedem Zeitpunkt ausgeführt werden können, da sie keine Abhängigkeiten besitzen. Dies
widerspricht den Forderungen an ein Workflow-Netz und offensichtlich auch dem Log L3.
Bei der Transition b handelt es sich um das Problem, das bei Schleifen der Länge 1 auftritt.
Da im Log b auf b folgt, gilt b ∥L3 b und somit kann b im Schritt 4 des Algorithmus niemals
in einer der Mengen A oder B vorkommen. Somit erhält b keine Kanten. Ähnlich verhält
es sich auch mit e, hier gilt d ∥ e und somit kann d nicht vor oder nach e kommen und
die nötigen Kanten fallen weg. Eine Erweiterung des α-Algorithmus der so genannte α+-
Algorithmus wird von de Medeiros et al. in [MAW03] beschrieben. Durch Einführung von
Vor- und Nachbearbeitungsphasen werden diese Art von Schleifen erkannt und bearbeitet.

34

2.6. Process-Discovery

Probleme mit nicht lokalen Abhängigkeiten

Der α-Algorithmus ist sehr lokal eingeschränkt. Alle Erkenntnisse werden immer aus der
direkten Nachbarschaft von Aktionen im Log erhoben. Daher ist es dem Algorithmus nicht
möglich nicht lokale Abhängigkeiten zu erkennen. Oft ist dies in der Realität jedoch relevant,
da ein Prozess je nachdem durch was er eingeleitet wurde auch anders endet oder weiter
geht. Dies wird anhand des Beispiel-Logs L4 erklärt.

L4 = [⟨a, b, c⟩, ⟨d, b, e⟩]

Der α-Algorithmus arbeitet nur auf den Relationen zu den direkten Nachbarn. Daher erkennt
er nicht, ob vor dem b ein a oder d war. Er kann auch nicht dem b einem bestimmten Kontext
mitgeben (mit dem sich ein b von einem anderen b unterscheiden lies), mit dessen Hilfe dies
bestimmt werden könnte. Daher erzeugt der Algorithmus ein Modell, dass auch Abfolgen
wie ⟨a, b, e⟩ zulässt.

Auch hier gibt es Ansätze den Algorithmus zu verbessern, aber diese Probleme sollen vor
allem aufzeigen, dass der Algorithmus nur eine gute Grundlage für die Process-Discovery
bietet. Daher gibt es schon eine Menge an weiteren Ansätzen, die das Process-Discovery
Problem zu lösen versuchen. Diese Arbeit betrachtet einen weiteren Ansatz, welcher mit
Hilfe von evolutionären Algorithmen das Process-Discovery-Problem löst.

2.6.4. Evolutionärer Ansatz

Evolutionäre oder genetische Algorithmen stammen aus dem Teilgebiet der künstlichen
Intelligenz und versuchen Probleme zu lösen, in dem sie eine aus der Biologie stammend
Idee auf die Informatik übertragen. Der Algorithmus funktioniert nach dem Prinzip des
„Überleben der Stärksten“. Als Erstes werden Modelle zufällig erstellt. Dann werden die
Modelle wiederholt kombiniert, mutiert und ungeeignete Instanzen entfernt. Dieser ganze
Prozess konvergiert dabei zu einem repräsentativen Prozessmodell.
Das Prinzip der evolutionären Algorithmen hat sich schon in vielen Problemen, z. B. beim
Investment Banking, als nicht nur ein sehr guter Ansatz bewiesen, sondern auch als zum
Teil anderen Ansätzen bei weitem überlegen [ES15].

Algorithmus 2.2 zeigt den Ablauf eines evolutionären Algorithmus. Eine ausführlicher Einfüh-
rung ist in [ES15] nachzulesen. Für eine spezielle Implementierung zur Lösung eins Problems
werden die einzelnen Schritte nur gewählt oder speziell implementiert. Im Allgemeinen
laufen diese jedoch ähnlich ab und können somit schnell auf andere Probleme angewendet
werden:

Initialisierung Die Initialisierung ist das initiale Erstellen der Population. Dabei werden
meistens zufällige Lösungsinstanzen verwendet. Im Fall der Process-Discovery ist
es sinnvoll initiale Modelle zu verwenden, welche zumindest alle vorkommenden

35

2. Grundlagen

Algorithmus 2.2 Das generische Schema eines evolutionären Algorithmus aus [ES15]
INITIALISIERE Population mit einer Menge aus zufälligen Lösungen.
BEWERTE jeden Kandidaten
WIEDERHOLE BIS (ABBRUCHBEDINGUNG wahr)
- WÄHLE Eltern
- KREUZE Paare der Eltern
- MUTIERE die entstandenen Nachfahren
- BEWERTE die neuen Kandidaten
- WÄHLE die Lösungen für die nächste Generation
OD

Events beinhalten, wodurch der Arbeitsaufwand verringert wird, da schneller geeignete
Modelle entstehen.

Bewertung Um nur die Stärksten überleben zu lassen und Schwächere auszusortieren, muss
definiert sein, welche Lösungsinstanzen besser und welche schlechter sind. Daher ist
es nötig eine Abbildung zu definieren, welche die Eignung der Lösungen bewertet.

Auswählen der Eltern Es werden nur ein Teil der Population als Eltern für die nächste
Generation gewählt. Meistens werden nicht einfach nur die Besten genommen, sondern
die Eltern probabilistisch gewählt, wobei die Wahrscheinlichkeit trotzdem proportional
zur Eignung der Instanzen ist. Somit werden schlechte Instanzen mit einer kleinen
Wahrscheinlichkeit, größer als Null, trotzdem als Eltern gewählt.

Kreuzen Hierbei werden zwei oder mehr Eltern genommen um diese zu einer neuen Instanz
zu kombinieren. Hierbei werden Teile aus beiden Eltern übernommen. Diese Instanz
kann geeigneter oder ungeeigneter als die Vorfahren sein.

Mutation Die entstanden Nachfahren werden noch mit einer gewissen Wahrscheinlichkeit
zufällig mutiert. D. h. es ist zufällig, ob die Mutation durchgeführt wird und zufällig,
was die Mutation ändert.

Wählen der nächsten Generation In den meisten Fällen ist die Größe der Population
beschränkt und die neue wird aus den Besten der alten Generation und den neuen
Kandidaten gewählt.

Abbruchbedingung Für die Abbruchbedingung können verschiedene Kriterien gewählt
werden. Die optimale Bedingung wäre abzubrechen, wenn eine Lösung gefunden ist,
die eine Bewertung von 100 % aufweist. Da dies in vielen Fällen gar nicht erreicht
werden kann oder für eine Lösung nicht bestimmt werden kann, dass es sich um die
beste handelt, werden anderen Bedingungen gewählt. Dies sind zum Beispiel oft eine
maximale Anzahl an CPU Zyklen (Zeit), eine bestimmte Anzahl an Generationen oder
es kann auch abgebrochen werden, wenn die Verbesserung der Eignung der besten
Lösungsinstanz für eine bestimmte Zeit unter einem Schwellwert liegt.

36

2.7. Visualisierung von Graphen

De Medeiros et al. beschreiben einen Ansatz wie ein evolutionärer Algorithmus für die
Process-Discovery aussehen könnte [MWA07]. Dazu verwenden sie ein eigenes Prozessmo-
dell, welches sie „Kausal-Matrix“ nennen. Dieses wurde für die Ausführung der evolutionären
Operationen optimiert. Für das Ergebnis lässt sich eine „Kausal-Matrix“ in ein Petri-Netz
umwandeln. Für die Initialisierung nutzen sie pseudo-zufällige Modelle, welche mit Hilfe
von Heuristiken optimiert sind. Für die Bewertung eines Modells werden nur die Kriterien
Eignung und Genauigkeit verwendet (siehe Unterabschnitt 2.6.1). Die Auswahl der Eltern
wird durch ein Auswahlverfahren implementiert, bei dem sie das am besten bewertete Modell
aus 5 zufällig gewählten Lösungsinstanzen nehmen. Für das Kreuzen und die Mutation
schlagen sie Algorithmen vor, deren Umfang größer ist, aber im Essentiellen vorhandene
Instanzen nutzen, um neue zu kreieren. Für die nächste Generation werden die Elite (nur die
besten Instanzen) der alten plus die gesamten neuen Instanzen gewählt. Die Abbruchbedin-
gung wurde über eine maximale Anzahl an Generation n definiert, wobei auch abgebrochen
wird, wenn n

2 Generationen keine Verbesserung der Lösungsinstanzen festgestellt wurde.
Dieser Algorithmus ist vor allem deshalb interessant, da er (wegen dem zugrunde liegenden
Modell) Zusammenhänge wie nicht lokale Abhängigkeiten modellieren kann [MWA07].
Nachteilig sind die teilweise sehr langen Laufzeiten.

Process-Mining-Framework (ProM)

Das Process-Mining-Framework [DMV+05] (kurz ProM) ist ein Softwaretool, in dem
viele Erkenntnisse aus dem Bereich des Process-Mining vereint wurden. Gleichzeitig
ist es auch das einzige System an dem so viele der Algorithmen des Process-Mining
implementiert wurden. Es biete eine Plattform für alle Teilbereiche dieser Wissenschaft.
Auch der α-Algorithmus und eine evolutionärer sind darin vorhanden. Daher ist es am
weitesten verbreitete Werkzeug in dieser Disziplin.

2.7. Visualisierung von Graphen

Ein gerichteter ungewichteter Graph wird in der Mathematik als ein Tupel (V, E) definiert.
Dabei ist V die Menge der Knoten und E ⊆ V × V die Menge der gerichteten Kanten.
Die häufigste und intuitiv verständliche Darstellung von Graphen ist das Knoten-Kanten-
Diagramm. Dabei werden oft Kreise (oder wie bei Petri-Netzen allgemein geometrische
Figuren) zur Darstellung der Knoten verwendet. Die Kanten werden bei gerichteten Graphen
als Pfeile zwischen den Knoten dargestellt.

Ein grundlegendes Problem ist die Positionierung der Knoten um eine übersichtliche und
verständliche Darstellung zu erhalten. Fruchtermann und Reingold [FR91] beschreiben die
folgenden Kriterien, die ein „ästhetisches“ Knoten-Kanten Diagramm erfüllen sollte, das in
einem gegeben Ausschnitt gezeichnet werden soll:

37

2. Grundlagen

1

2

3

45

6
1

2

3

4

5

6

Abbildung 2.16.: Darstellung zweier Knoten-Kanten-Diagramme mit dem gleichen zugrun-
de liegendem Graphen.

1. Gleichmäßige Verteilung der Knoten im Bildausschnitt.

2. Minimierung der Kreuzungen von Kanten.

3. Einheitliche Längen der Kanten.

4. Darstellung von gegebener Symmetrie des Graphen.

5. Grenzen des Bildausschnittes nicht verletzen.

Die Bedeutung einer guten Verteilung der Knoten eines Knoten-Kanten-Diagrammes ist in
Abbildung 2.16 zu sehen. Dabei stellen beide Diagramme den gleichen Graphen dar, da das
linke Diagramm den eingeführten Kriterien besser entspricht ist die Struktur des Graphen
genauer zu sehen und besser verständlich.

38

2.7. Visualisierung von Graphen

2.7.1. Kräftebasiertes Layout

Eine Möglichkeit das oben genante Problem zu lösen ist die Verwendung von physikalischen
Prinzipien. In [FR91] wird ein Ansatz beschrieben, der vom Grundgedanken übernommen
wird.

Die zugrunde liegende Vorstellung ist folgende: Die einzelnen Knoten des Graphen seien
alle elektrostatisch geladene Punktladungen, z. B. metallene Kugeln. Die dadurch entste-
hen Kräfte sorgen für eine gleichmäßige Abstoßung der Knoten untereinander. Die Kanten
zwischen den Knoten sind in diesem Modell Federn, welche den Graphen wiederum zusam-
menhalten. Der Gedanke ist nun dies mit physikalischen Gesetzen zu simulieren, um die
gleichmäßige Verteilung und Symmetrie der Strukturen zu optimieren. Dazu werden die
folgenden Konzepte verwendet:

Hookesches Gesetz

Das hookesche Gesetz besagt, dass bei der Ausdehnung einer Feder, falls diese nicht zu weit
ist, die entstehende entgegenwirkende Kraft proportional zur Länge der Ausdehnung ist
[wik15b].

F = D ·∆l

Für das kräftebasierte Layout hat das zur Folge, dass für die Kanten (entweder einzeln oder
allgemein für alle) die Länge der Feder und deren Stärke spezifiziert werden müssen. Denn
∆l lässt sich dann aus der Differenz des Abstandes der Endknoten und der Länge der Feder
berechnen. Aus der Stärke folgt direkt oder indirekt die Proportionalitätskonstante D.

Coulombsches Gesetz

Die andere, anstoßende Kraft entsteht aus dem coulombschen Gesetz. Dieses besagt, dass die
Kraft zwischen zweier elektrostatisch geladener Punktladungen proportional zu jeweils den
beiden Ladungen und invers proportional zum Quadrat des Abstandes ist [wik15a].

F = 1
4πϵ0

q1 · q2

r2

Die Konstante ist dabei für die Layoutsimulation nicht so interessant. Angegeben werden
müssen daher nur die Ladungen der einzelnen Knoten.

39

2. Grundlagen

Barnes-Hut-Approximation

Die Implementierung aus [d3215] nutzt die Barnes-Hut-Approximation, um die Berechnung
der abstoßenden Kräfte zu beschleunigen. Da normalerweise bei einem solchen Typ von
Simulation der Aufwand in O(n2) in der Größe der Elemente (hier Knoten) wächst, wurde
J. Barnes und P. Hut eine Annäherung entwickelt [BH86]. Diese basiert auf der Idee, dass ab
einem gewissen Abstand die Kräfte nicht mehr so genau berechnet werden müssen, da mit
großem Abstand der Einfluss schnell kleiner wird.

Der Algorithmus arbeitet dabei auf einem Quadtree, welcher den zweidimensionalen Raum
und die Elemente unterteilt (in einem dreidimensionalen wäre es ein Octtree). Anstatt für
jedes Element die Kräfte mit allen anderen Elementen zu berechnen, wird dies nur für
Elemente in nächster Nähe getan. Für Quadrate, welche eine größere Entfernung besitzen,
wird die Kraft zu einem virtuellen, für die Elemente des Quadrates stellvertretenden, Element
berechnet. Diese Vereinfachung sorgt für eine drastische Verbesserung der Zeitkomplexität
auf O(n log n).

Zusammenfassung und Beispiele

Durch die Kombination dieser Konzepte entsteht ein Algorithmus, der eine gute Performanz
hat. Der Algorithmus ist ein iterativer Prozess, bei dem initial die Knoten zufällig verteilt
werden. In jeder Iteration werden die anziehenden und abstoßenden Kräfte berechnet und
anschließende die Knoten entsprechend verschoben. Damit der Prozess auch sicher in einen
stabilen Zustand kommt, wird ein Abschwächungsfaktor integriert. Dieser wird nach jeder
Iteration verringert, um somit die Kräfte immer geringer werden zu lassen und das Layout
in einen stabilen Zustand zu geleiten. Die Abbildung 2.17 und Abbildung 2.18 zeigen zwei
Beispiele, welche mit dem D3-Framework erstellt wurden und Ergebnisse des kräftebasierten
Layouts zeigen.

2.8. Verwandte Arbeiten

Dieser Abschnitt verweist auf verwandte Arbeiten, die zu Teilen in Arbeit verwendete
Konzepte besprechen. Dabei existieren zwei Typen an relevanten Arbeiten, die einen, welche
Problemstellungen des Process-Mining erörtern und die anderen, welche Visualisierungen,
gerade von Graphen und Modellnotationen, besprechen.

In [ARW+07] untersuchen van der Aalst et. al die Anwendung des Business-Process-Mining
anhand echter Daten. Diese Daten stammen aus den Logs der Prozess einer Abteilung der
staatlichen Tiefbaubehörde. Dabei verwenden sie für die Erstellung der Prozessmodelle einen
heuristischen Ansatz [WA03, VDA11] im Gegensatz zu dieser Arbeit, die sich auf den α-

40

2.8. Verwandte Arbeiten

Abbildung 2.17.: Ein simpler Graph mit Symmetrie, die gut durch das kräftebasierte Layout
zum Vorschein kommt. [mbo12]

Abbildung 2.18.: Knoten-Kanten-Diagramm eines Baumes, dessen Struktur gleichmäßig
verteilt wird, durch das kräftebasierte Layout. [mbo11]

41

2. Grundlagen

Abbildung 2.19.: Erstellter Kommunikationsgraph aus [ARW+07].

[AWM04] und den evolutionären Algorithmus beschränkt [MWA07]. Dabei kommen sie zu
dem Ergebnis, dass in der Praxis erwartete Probleme, wie Rauschen (fehlerhafte Abläufe
oder Traces), sich gut durch den heuristischen Ansatz lösen können und auch das ProM-
Framework schon für praktische Aufgaben brauchbar ist. Auf eine gute visuelle Aufbereitung
ihrer erstellten Ergebnisse legen sie dabei weniger Wert, wie sich gut in Abbildung 2.19
sehen lässt.

Wil van der Aalst beschreibt in [VDA13] die wachsende Bedeutung des Process-Mining
für Webservices und Systeme mit serviceorientierter Architektur. Dabei untersucht er die
theoretischen Problematiken die bei der Erstellung von System entstehen welche sehr auf
Webservices, gerade auch mit Kommunikation über die Grenzen einer einzigen Organisation
hinweg, basieren. So sei ein großes Problem, dass bei der Entwicklung die Abläufe in anderen
Services nicht bewusst sind, da sie zum Teil gar nicht dokumentiert sind. Da sich der ganze
Prozess aber über mehrere Systeme streckt, kann es zu unvorhergesehen Problemen, z.
B. Deadlocks, kommen. Ein Deadlock ist eine Markierung (welche nicht die Endzustand-
Markierung ist), bei dem keine aktive Transition mehr existiert, d. h. keine Aktionen sind
mehr möglich, obwohl der Prozess noch nicht geendet hat. Das Netz in Abbildung 2.20
kommt in einen solchen Zustand nach der Ausführung von ⟨po, ro, sp, sr⟩. Dies ist nur zu
erkennen, wenn das gesamte Netz bekannt ist. Diese Beschreibung ist nur theoretischer
Natur und verdeutlicht die Bedeutung des Prozess-Mining für Webservices und welche
Herausforderungen noch zu bewältigen sind. Das in der vorliegenden Arbeit verwendete

42

2.8. Verwandte Arbeiten

Abbildung 2.20.: Petri-Netz von zwei Webservices mit einem enthalten Deadlock [VDA13]

System ist auch von serviceorientierter Natur, hat jedoch nicht alle diese Probleme, da das
System nicht über die Organisationsgrenzen hinaus geht.

Eine dazu passende Arbeit ist [AV08]. In dieser wird die Anwendung von Process-Mining auf
ein System mit einer IBM Websphere Umgebung untersucht. Van der Aalst und Verbeek be-
trachten dabei welche unterstützenden System Websphere für das Process-Mining mitbringt
und wie sich damit Daten für das ProM-Framework gewinnen lassen. Dabei gehe sie nur
auch die technischen Einzelheiten von Websphere ein und beschreiben keinen Fall, den sie
mit dem System analysiert haben. Sie beschreiben Ansätze, wie solche serviceorientierten
Softwaresystememit dem Process-Mining verbunden werden können. Im Gegensatz zu dieser
Arbeit betrachten sie dabei keine realen Daten und überprüfen damit nicht die praktische
Anwendbarkeit. Auch unterscheidet sich, dass diese Arbeit das ProM-Framework nur für
die Mining-Algorithmen verwendet und Visualisierung und Analyse selber übernimmt und
erweitert.

43

2. Grundlagen

Cook und Wolf gehen einen etwas anderen Ansatz in [CW98]. Ihr Ziel ist dasselbe wie auch
in dieser Arbeit, die Erstellung von Prozess Modellen für Software mit Hilfe von Eventdaten.
Dabei sehen sie auch die Bedeutung der Einfachheit und Automatisierung der Erstellung
solcher Modelle, um die Wartung von Software zu vereinfachen. Dabei nutzen sie nicht
die Techniken des Process-Mining [VDA11], sondern sie verwenden Techniken aus dem
Machine Learning wie neuronale Netzwerke und Markov-Modelle. Sie verwenden auch
ähnliche Qualitätsindikatoren (siehe Unterabschnitt 2.6.1) um die erstellten Modelle zu
bewerten, da dies für Algorithmen aus der künstlichen Intelligenz nötig ist.

Die bisherigen Arbeiten betrachten alle das Herausfinden des Prozessflusses und weniger
die Visualisierung der entstandenen Modelle. Eine Arbeit die kräftebasierte Layouts für
die Visualisierung von formalen Notationen benutzt ist [Dwy01]. Dwyer untersucht dabei
wie kräftebasierte Layouts für die Visualisierung von UML-Klassendiagrammen verwendet
werden können. Dabei werden diese im Dreidimensionalen modelliert und angezeigt. Dabei
bewertet er den kräftebasierten Ansatz als gelungen und eine Analyse unterstützend.

44

3. Konzept

Dieses Kapitel erörtert das in dieser Arbeit zu untersuchende Konzept.

Es wurde ein Konzept zum Mining und zur Visualisieren der Prozesse entworfen. Dazu
sind die in Abbildung 3.1 als Verarbeitungs-Pipeline dargestellten Verarbeitungsschritte
notwendig. Die Logdaten sind in einem Datenspeicher vorhanden. Die darin vorhandenen
Logeinträge werden gefiltert und in das XES-Format umgewandelt (siehe Vorverarbeitung der
Logdaten). Danach werden aus den erstellten Traces Prozessmodelle erstellt (siehe Process-
Mining). Und schließlich werden die Modelle und Traces für eine gute Analyse passend
visualisiert (Visualisierung und visuelle Analyse).

Zusätzlich wurde ein Konzept entwickelt, das die Hierarchie der Serviceaufrufe zur Optimie-
rung der Verarbeitung nutzt (Bezeichnerkonvention der Hierarchie).

3.1. Vorverarbeitung der Logdaten

Die einzelnen Logeinträge, die direkt aus der Datenquelle stammen, lassen sich nicht direkt
in einem Process-Mining-Tools verwenden, denn zum einen müssen die Daten ein vom
Process-Mining-Framework (ProM) [DMV+05] lesbares Format gebracht werden (hier XES),
zum anderen müssen spezielle Einträge als relevant eingestuft werden und auf entsprechende
Events abgebildet werden. Bei dem vorliegenden System werden nur der Beginn der Ausfüh-
rung eines Services und die Beendigung der Ausführung auf Events abgebildet. Alle anderen
Einträge werden nicht betrachtet, könnten jedoch teilweise für weitere Verbesserungen der
Process-Discovery oder andere Arten des Process-Mining durchaus relevant sein.

DatenquelleDatenquelle

Vorverarbeitug der
Log Daten

Rohdaten
Mining der

Modelle mit ProM
XES

Visualisierung der
Modelle

PNML

BPMN

Abbildung 3.1.: Darstellung der Verarbeitungsschritte in einer Pipeline.

45

3. Konzept

Die Einträge beinhalten Start und Ende der Services und deren Zuordnung zu einem Vorgang.
Was bei den vorliegenden Daten leider fehlt, ist die Zuordnung der Vorgänge zu einem Prozess
oder einem Use-Case. Eine Zuordnung der Traces zu einem Prozess ist aber unbedingt nötig,
um ein verwertbares Modell zu bekommen, gerade bei einem System mit einer großen
Zahl an Services und Prozessen. Daher wurde die folgende Heuristik für die Zuordnung
zu einem Prozess gewählt: Um die Traces für ein Prozessmodell zu bekommen, wird ein
bestimmter Service gewählt. Dieser dient als Filter, um nur Traces zu behalten, welche bei
der Ausführung diesen Service verwenden. Dabei ist zu beachten, dass einige Services nicht
geeignet sind, da sie von einer Vielzahl an anderen Services verwendet werden. Viele Prozesse
oder Anwendungsfälle haben aber einen Service, der ausschließlich von diesen verwendet
wird und die Traces somit charakterisieren können.

Nach dem ausführlichen Filtern der Einträge werden die Traces in das XES-Format, dabei
werden Traces über die Tracking-ID definiert. Events erhalten ihre relative Reihenfolge
über die Sortierung nach ihrem Zeitstempel, an dem der Eintrag in den Log eingetragen
wurde. Der Name ergibt sich über den Service. Start und Ende eines Service werden auf die
entsprechende Lebenszyklus Definitionen in XES abgebildet.

3.2. Process-Mining

Der nächste Verarbeitungsschritt ist das Erstellen geeignet Modelle aus den Logdaten. Die
Logdaten aus der Datenquelle liegen nach dem vorherigen Verarbeitungsschritt als XES vor.
Dazu werden zwei Algorithmen verwendet, zum einen der α-Algorithmus (siehe Unterab-
schnitt 2.6.2) und zum anderen eine Implementierung des evolutionären Ansatzes (siehe
Unterabschnitt 2.6.4). Dabei sollen die Algorithmen nicht selber implementiert werden, son-
dern das vorhandene ProM-Framework genutzt werden, um aus den vorliegenden Logdaten
Modelle zu generieren. Deshalb ist auch nötig, dass die Ausgabe des ersten Verarbeitungs-
schrittes in einem standardisierten Format ist. Der Aufruf des ProM-Frameworks sollte ohne
Hilfe des Nutzers geschehen, über die Nutzung einer Kommandozeilen-Schnittelle. Nach
der Terminierung der Algorithmen liegen Petri-Netz oder BPMN in einem standardisierten
Format vor, welches wiederum vom zu entwickelnden System gelesen und weiter verarbeitet
wird. Für den α-Algorithmus ist es kein Problem ihn ohne Nutzereingaben auszuführen, da er
keine weiteren Eingaben benötigt außer den Logdaten. Für einen evolutionären Algorithmus
ist dies nicht der Fall, dieser besitzt eine Vielzahl an Parametern, wie Größe der Population,
Koeffizienten der Bewertungsfunktion, etc.. Um die Komplexität des Systems aber nicht
unnötig zu vergrößern, werden diese manuell auf einen Standardwert gesetzt. Dazu werden
empfohlene Standardwerte verwendet.

46

3.3. Visualisierung und visuelle Analyse

3.3. Visualisierung und visuelle Analyse

Der letzte Verarbeitungsschritt ist die visuelle Aufbereitung der Modelle (Petri-Netze und
BPMN). Dabei ist zum einen eine übersichtliche Darstellung der Graphen notwendig, zum
anderen soll auch noch eine visuelle Unterstützung implementiert werden für das Verständnis,
wie aus den gegebenen Logdaten das Modell entstanden ist.

Für die übersichtliche Darstellung der Graphen können ein kräftebasiertes Layout oder andere
Techniken verwendet werden. Damit werden die Knoten gleichmäßig verteilt mit wenigen
Kantenüberschneidungen. Bei dem Layout ist zusätzlich zu beachten, dass die Rotation
des Graphen nicht vernachlässigt wird. Im Allgemeinen wird bei einem kräftebasierten
Layout die Rotation nicht in die Optimierung miteinbezogen. Die Übersichtlichkeit eines
Prozessmodelles ist aber nicht rotationsinvariant.

Zur Unterstützung des Verständnisses der erstellten Graphen und zur Darstellen der Plausi-
bilität soll die Visualisierung eine Möglichkeit bieten, die zugrunde liegenden Traces anzu-
zeigen. Dazu soll es möglich sein für einen ausgewählten Trace den Verlauf der Ausführung
im Modell anzuzeigen. Dies versichert dem Nutzer, dass ein aufgenommener Ablauf auch
tatsächlich mit dem Modell ausführbar ist. Außerdem bieten diese beispielhaften Ausführun-
gen einen guten Anhaltspunkt um das Modell schneller zu verstehen, da der Nutzer eine
Ausführungsmöglichkeit sieht und auch schneller erkennt, welche anderen Möglichkeiten
noch existieren. Zusätzlich soll noch die Möglichkeit bestehen, die Traces nach Transitionen
Filtern zu können um die Anzahl der zugrunde liegenden Traces zu erkennen. Damit kann
ein Nutzer die Signifikanz eines Teilmodells abschätzen.

3.4. Hierarchisierung der Traces und der Modelle

Aufgrund der reellen Anwendung des Systems können einzelne Traces schnell sehr lang
werden und damit auch größere Modelle zur Folge haben. Dies beeinflusst nicht nur die
Visualisierung, sondern auch das Mining der Modelle. Obwohl der α-Algorithmus keine
Probleme mit größeren Traces in Bezug auf seine Laufzeit hat, schränken die Probleme des
Algorithmus den Nutzen in der Praxis ein (siehe Unterabschnitt 2.6.3). Der evolutionäre
Algorithmus hingegen skaliert schlecht in der Größe des Logs und in der Größe des Modelles.
Daher wurde ein Ansatz entworfen, der zwar nicht das Problem löst, aber einige Verbesse-
rungen mit sich bringt.
Die grundlegende Idee ist die folgende: In einem Softwaresystem sind viele Aufrufe nicht auf
der obersten Ebenen, sondern Unteraufrufe eines weiteren Services. Dieser Zusammenhang
soll genutzt werden, indem jedem Event-Eintrag sein aufrufender Service mitgegeben wird.

47

3. Konzept

3.4.1. Bezeichnerkonvention der Hierarchie

Um ein Event oder einen Task in seinen Kontext einzuordnen, soll es mit der globalen Auf-
rufhierarchie bezeichnet werden. Dazu wird der Stapel der übergeordneten Task, jeweils mit
einem „::“ getrennt, vor den Bezeichner geschrieben. Den Zustandsübergang des Lebens-
zyklus (in diesem Fall nur „start“ oder „complete“) wird getrennt mit einem „+“ nach dem
Bezeichner angefügt. Die Konvention zur Integration des Lebenszyklus in den Bezeichner
wurde aus ProM übernommen. Zur Erklärung sei folgender Beispiel-Trace gegeben.

σ =⟨a+start, a::b+start, a::b::c+start, a::b::c+complete, a::b+complete,
a+complete,d+start, d::b+start, d::b+complete,d+complete⟩

Wie oben zu sehen ist, wird b, wenn es im Kontext von a verwendet wird, mit a::b bezeichnet
und entsprechend im Kontext von d mit d::b. Damit werden diese beiden Events mit einem
anderen Bezeichner versehen und werden von dem α-Algorithmus nicht als dasselbe Event
betrachtet. Wie oben am Beispiel von c zu sehen ist, werden weiter verschachtelte Aufrufe
mit der gesamten Hierarchie versehen. In diesem Beispiel wird c mit a::b::c bezeichnet, da es
im Kontext von b aufgerufen wurde, welches wiederum dem Kontext von a entspringt.

3.4.2. Vorteile

Auch die entstehenden Modelle sollen zuerst diese Bezeichnung behalten, d. h. die globalen
Bezeichner in der Beschreibung verwenden und später in der Visualisierung nur noch die
lokalen Bezeichner verwenden, um die Übersichtlichkeit zu verbessern. Daraus ergeben sich
insgesamt beim Erstellen und der Visualisierung die folgenden Vorteile:

• Die Genauigkeit der vom α-Algorithmus erstellten Petri-Netze wird verbessert, da das
Problem der nicht lokalen Abhängigkeiten verhindert wird (siehe Abschnitt 2.6.3).

• Anstatt ein Modell für den globalen Prozess zu erstellen, kann für jeden Subprozess ein
eigenes Modell erstellt werden. Dies lässt sich so weit optimieren, dass für jedes Präfix
(Teilbezeichner vor dem letzten „::“) ein flaches Modell erstellt wird. Dies bedeutet,
dass keine Events betrachtet werden, welche eine Ebene tiefer oder höher (bis auf
das Start und Ende Event das dem Präfix entspricht). Damit für jeden Subprozess ein
Modell erstellt in welchem nur die direkt untergeordneten Aufrufe verwendet werden.
Durch das rekursive Einsetzen jedes Modells der Subprozesse in das globale Modell
(das auch nur mit globalen Events erstellt wurde) lässt sich das Modell des gesamten
Prozesses erstellen.

• Durch das Übernehmen der hierarchischen Bezeichner in das Modell ist eindeutig,
welche Task anderen untergeordnet sind. Dies kann somit ausgenützt werden, um die
einem Task untergeordneten Subtask ein- und ausblenden zu können. Dies sorgt für
eine übersichtlichere Darstellung und hilft somit dem Verständnis des Modells.

48

3.4. Hierarchisierung der Traces und der Modelle

Universaler LogUniversaler Log Unterteilte LogsUnterteilte Logs

Mining der
Modelle

Unterteilte ModelleUnterteilte Modelle Universales ModellUniversales Modell

Nach Subtasks
aufspalten

Submodelle einsetzen

Abbildung 3.2.: Verarbeitungsablauf, welcher die Hierarchie des Logs nutzt.

• Auch die räumliche Verteilung der Knoten des Graphen kann mit der Hierarchie
optimiert werden, indem das Modell zuerst nur die globalen Elemente beinhaltet
und der Rest ausgeblendet ist. Damit wird die Anzahl der Knoten reduziert und eine
Optimierung des Layouts liefert bessere Ergebnisse.

3.4.3. Nutzung der Hierarchie in der Process-Discovery

Wenn Subevents im Log als solche annotiert sind, ist es sinnvoll für jeden Subprozess das
Modell getrennt zu erstellen. Dazu wird, wie in Abbildung 3.2 abgebildet, der gesamte
Log in kleinere Logs unterteilt, welche jeweils nur die Events beinhalten, die direkt zu
einem bestimmten Subprozess gehören. Das sind zum einen das Start- und Ende-Event eines
Subprozesses und zum anderen direkt in diesem Kontext ausgeführte Start-Events (es ist nur
ein Event nötig welches repräsentativ für den ausgeführten Subprozess steht). Außerdem
wird ein globaler Log erstellt, der nur die Einträge enthält, die nicht im Kontext eines anderen
Service aufgerufen wurden. Nach dem Erstellen der Modelle für jeden Log einzelnen, werden
die Modelle für die Subprozesse an entsprechender Stelle rekursiv in das aus dem globalen
Log entstandenen Modell eingesetzt. Dies geschieht, indem die repräsentative Transition
entfernt wird und das Ziel aller eingehenden Kanten auf die Start-Transition des Subnetzes
geändert wird. Genauso wird der Ursprung der ausgehenden Kanten auf die Ende-Transition
des Subnetzes geändert.

Dies soll an einem Beispiel verdeutlicht werden.

L = [⟨a+start, a::b+start, a::b+complete, a+complete,d+start,d+complete⟩,
⟨a+start, ::c+start, a::c+complete, a+complete,d+start,d+complete⟩]

Daraus entsteht folgender globaler Log:

Lglobal = [⟨a+start,d+start⟩,
⟨a+start,d+start⟩]

49

3. Konzept

a+start

a::b+start

a::c+start

a+complete

a+start d+start

Abbildung 3.3.: Globales Petri-Netz und Petri-Netz für Subprozess a. Die Transition a+start
wird durch sein Subprozess-Modell ersetzt.

Und folgende lokale Logs für jeden einzelnen Subprozess:

La = [⟨a+start, a::b+start, a+complete⟩,
⟨a+start, a::c+start, a+complete⟩]

La::b = [⟨a::b+start, a::b+complete⟩]
La::c = [⟨a::c+start, a::c+complete⟩]

Ld = [⟨d+start,d+complete⟩]

In Abbildung 3.3 sind Petri-Netze für die Logs Lglobal und La abgebildet. Außerdem zeigt die
Abbildung das Ersetzen der a+start Transition durch das Petri-Netz des Subprozesses von
a.

Für den α-Algorithmus hat das keine großen Vorteile. Für den evolutionären Algorithmus
ist der Vorteil hingegen immens, da die Komplexität linear in der Größe des Modells und der
Größe des Logs wächst und beides durch den Ansatz reduziert wird.

50

4. Implementierung

Diese Kapitel beschreibt die Implementierung des untersuchten prototypischen Systems.
Dieses greift die Gedanken aus Kapitel 3 auf.

4.1. Ausgangssituation und Daten

Diese Arbeit nutzt reale Daten aus einem komplexen Anwendungssystem eines großen
deutschen Autoherstellers. Sie soll eine mögliche Verbesserung des Verständnisses und der
Wartbarkeit des Systemes untersuchen und Process-Mining auf komplexen Anwendungs-
systemen anwenden. Die Nutzung der realen Daten bietet zum einen bessere Beurteilung
des Konzeptes auf Praxistauglichkeit, zum anderen müssen keine Testdaten erstellt werden.
Ziel der Untersuchung ist es, die Prozesse, welche in dem System ablaufen, in einem Prozess-
flussmodell darzustellen. Diese Darstellung sollte ein besseres und tieferes Verständnis des
Kommunikationsflusses bieten. Vor allem sollten diese Modelle auch eine weitreichende Ver-
besserung bestehender Systeme zur Analyse bieten. Eine besondere Beachtung soll auch die
Visualisierung der erstellten Modelle und eine unterstützende Darstellung der Daten in dem
Modell bekommen, die dazu dienen sollen dem Anwender eine bessere Nachvollziehbarkeit
des Erstellungsprozesses zu bieten.

4.1.1. Das Anwendungssystem

Das gegebene Anwendungssystem besteht im ganzen aus ca. 30 autonomen Systemen, welche
nach der serviceorientierten Architektur Dienste anbieten. Anfragen von außen, z. B. im Auto
oder auf einer Webseite ausgelöst, können zum Teil die Mitwirkung von vielen Systemen zur
Folge haben. Durch die hohe Komplexität und einer relativ häufigen Zahl an Deployments,
gibt es oft keine Dokumentation des Prozessflusses oder diese weicht von der Realität ab.
Das Process-Mining bietet viele Methodiken, um hier Abhilfe zu schaffen. Diese Arbeit wird
sich aus Sicht der Process-Discovery (siehe Abschnitt 2.6) an das Problem annähern. D. h.
es soll versucht werden ein System zu entwickeln, welches für die ablaufenden Prozesse
möglichst passende Modelle erstellt. Andere Sichten wie Kommunikationsgraphen, welche
auch oft beim Process-Mining erstellt werden [VDA11], sind nicht Teil dieser Arbeit sollten
jedoch in einem praktischen System nicht vernachlässigt werden.

51

4. Implementierung

Um ein Modell des Prozessflusses entdecken zu können, müssen Prozessabläufe ausführlich
dokumentiert werden. In diesem Fall ist dies gegeben durch Logeinträge, die bei jedem
Aufruf und jedem Abschluss eines Services geschrieben werden, diese sind durch die Texte
„Application enter“ und „Application exit“ identifiziert. Der aufgerufene Service und das
System sind in eigenen Feldern gegeben. Damit haben diese Logs nicht höchste Qualität nach
[VDAAM+12], aber sind noch gut für das Process-Mining geeignet, wenn eine geeignete
Vorverarbeitung stattfindet. Diese zwei Typen von Einträgen sollen die Einzigen sein, die
von dem System betrachtet werden, alle anderen Einträge werden ignoriert.

4.1.2. Elasticsearch

Für die Logdaten der Systeme existiert eine Elasticsearch-Instanz, welche diese speichert und
indiziert. Das bestehende System zur Analyse des Prozessflusses basiert auf einer Kibana-
Instanz die Elasticsearch als Datenquelle nutzt. Kibana bietet einen verbesserten Zugriff
auf die rohen Daten aus Elasticsearch. Es bietet einfach zu erstellende Diagramme, welche
aus den Daten berechnete Metriken darstellen. Dies kann zum Beispiel die Anzahl von
Aufrufen bestimmter Services sein. Darüber hinaus bietet Kibana aber kein großes Data-
Mining, sondern nur eine bessere Möglichkeit auf die Daten aus Elasticsearch zuzugreifen
und diese zu verstehen. Kibana ist die aktuell genutzte Analysemethode der gegebenen Daten.
Gegen diese wird der Ansatz verglichen und auf eine Verbesserung der Analysemöglichkeiten
untersucht. Damit die Logdaten von den System in das Elasticsearch gelangen wird Logstash
auf den Instanzen ausgeführt und liefert die Logdaten an den Indexer des Elasticsearch
weiter.

4.1.3. Tracking-ID

Ein allgemeines Problem in Logs ist die Korrelation der Einträge, die Zuordnung zu einem
Prozess und zu einem Vorgang. Wenn zum Beispiel in einem Log ein Fehler auftaucht, so
sind zur Findung der Ursache die zum gleichen Vorgang gehörenden Einträge interessant.
Diese befinden sich nicht nur im gleichen Log, sondern auch in anderen Logs, welche zum
Teil sich auf mehreren verschiedenen Systemen befinden. Dabei löst das oben beschriebene
System mit Logstash und Elasticsearch das Problem, die Daten an einen zentralen Ort zu
sammeln. Die Sortierung der Einträge nach Vorgängen ist damit jedoch nicht gelöst.
Das Problem der Korrelation all dieser Einträge wurde in dem vorliegenden System folgen-
dermaßen gelöst: Zu Beginn der Abarbeitung, wenn eine Anfrage zum ersten Mal das System
betritt, wird eine eindeutige Identifikationsnummer erstellt. Diese wird bis zur vollständigen
Abarbeitung der Anfrage von System zu System mitgeführt und auch allen Logeinträgen
hinzugefügt. Somit können alle zu einer Anfrage gehörenden Einträge bestimmt werden.
Diese Tracking-ID ermöglicht erst das Process-Mining, da damit die Traces eines Vorganges
erstellt werden können, in dem nach einer bestimmten Tracking-ID gefiltert wird.

52

4.2. Architektur

XES FilesXES Files PNML/BPMN FilesPNML/BPMN Files

D3 based Webapp (5)D3 based Webapp (5)

Tomcat Application Server

GET Petri Net/BPMN Service (4)

Miner Service (2)

Logs to XES Addon (1)

ProM Command Line
Interface Wrapper (3)

REST

Mysql DatabaseElasticsearch

Abbildung 4.1.: Architektur des Systems.

4.2. Architektur

Die Systemarchitektur ist abgebildet in Abbildung 4.1. Die Hauptanwendung läuft in einem
Tomcat-Applikation-Server, es handelt sich um eine Java-RS J2EE Anwendung. Die Visualisie-
rung wird ausgelagert eineWebanwendung, um das Data Driven Documents (D3) Framework
verwenden zu können. Über die Java Persistence API wird eine MySQL-Datenbank an das
System angebunden, um die anfallenden Daten persistent speichern zu können. Die er-
zeugten Dateien (Logs und Modelle) werden im Dateisystem gehalten und darüber auch
dem Process-Mining-Framework (ProM), beim Aufruf über die Kommando Zeile, übergeben.
Das System bietet eine Webservice Schnittstelle nach dem Representational State Transfer
(REST) Paradigma, dessen Endpunkte von der Webapp aufgerufen werden. Die von der API
ausgegebenen Daten sind ausschließlich im JSON-Format.

Die Quelle für die Daten stellt das Elasticsearch dar (siehe Unterabschnitt 4.1.2). Dieses bietet
eine REST-API um Anfragen gegeben die Daten auszuführen und liefert diese in einem, für
NoSQL typisch, JSON-Format zurück. Die Aufgabe der „Logs to XES“ (siehe Abbildung 4.1
(1)) Komponente ist die Vorverarbeitung der gegebenen Daten und die Umwandlung in das
XES-Format. Diese Komponente ist die Einzige vom dem untersuchten Anwendungssystem

53

4. Implementierung

abhängige Komponente. Die restliche Anwendung kann auch mit vorhanden XES-Dateien
verwendet werden und kann somit allgemein genutzt werden.

Der nächste Schritt der Verarbeitung wird vom „Miner Service“ (siehe Abbildung 4.1 (2))
gesteuert. Dieser bietet einen Endpunkt für die Erzeugung von Modellen aus den vorhan-
denen Logs (XES-Dateien). Dieser Prozess wird durch das ProM-Framework durchgeführt.
Dazu existiert ein Wrapper (siehe Abbildung 4.1 (3)), welcher die Steuerung von ProM über
die Kommandozeile übernimmt. Dabei kann zwischen dem α- und einem evolutionären
Algorithmus gewählt werden. Als Ausgabe entstehen Petri-Netze oder BPMNs.

Die letzte Komponente (siehe Abbildung 4.1 (4)) dient der Lieferung der vorhandenenModelle
an dieWebapp. Um die Verwendung zu vereinfachen, werden diese nicht in dem vorliegenden
Format, die direkte Ausgabe von ProM, sondern in einem eigenen vereinfachten JSON-Format
übergeben. Die Dateiformate PNML und BPMN sind beide XML-basiert und enthalten beide
um einiges mehr Informationen als für Beschreibung und Darstellung des zugrunde liegenden
Modells nötig ist. Deshalb ist eine Umwandlung in ein reduziertes JSON-Format sinnvoll
und auch für die Verarbeitung im D3-Framework von großem Vorteil.

Das Userinterface des Systems ist als Webapp (siehe Abbildung 4.1 (5)) realisiert. Dadurch
werden Datenhaltung und UI klar getrennt und für die Visualisierung können die Vorteile
von D3 und die Geschwindigkeit der Render-Engine der Browser ausgenutzt werden. Die
Aufgabe der Webapp ist vor allem die Visualisierung der Petri-Netze und BPMN-Modelle,
aber auch eine Flussvisualisierung der Traces des Logs, aus dem das Modell entstanden
ist. Indem die beobachteten Abläufe im Modell gezeigt werden, soll die Entstehung und
Bedeutung des Modells besser verständlich gemacht werden.

4.3. REST-Schnittstelle

„REpresentational State Transfer“ (REST) ist eine Architektur für die Schnittstellen von
Webservices [BS07]. Diese nutzt meistens den HTTP-Standard und dessen verschiedene
Operationsmodi, um Ressourcen abzurufen und zu manipulieren.

Da das System in ein Backendsystem und eineWebapp ausgeteilt ist, wird die Kommunikation
dieser Komponenten locker über eine REST-Schnittstelle implementiert. Die Funktionen
dieser Schnittstelle werden in diesem Abschnitt genauer beschrieben. Dies dient auch der
Vorstellung der Funktionalität, die das Backendsystem bietet. Dazu werden die wichtigen
Endpunkte und deren Verhalten vorgestellt. Ergebnisse und Parameter sind alle im JSON-
Format, mit Ausnahme der Aufrufe welche „GET“ aufgerufen werden. Bei diesen sind die
Parameter in die URL codiert.

54

4.3. REST-Schnittstelle

Abbildung 4.2.: Die Darstellung zeigt die Webapp mit angezeigtem Log. Im Modell wird
der Pfad des Trace 1 visualisiert.

Abbildung 4.3.: Durch das Ausblenden der UI-Elemente entsteht mehr Platz für die Visuali-
sierung und die Übersichtlichkeit wird erhöht.

55

4. Implementierung

4.3.1. Endpunkt zum Erstellen eines Logs

Der folgende Endpunkt bietet Zugriff auf die Komponente zur Erstellung einer XES-Datei.
Beim Aufrufen der Prozedur wird asynchron der Prozess gestartet. Nach der Fertigstellung
wird die XES-Datei in das System eingetragen und der Endpunkt zur Auflistung der XES-
Dateien (siehe Unterabschnitt 4.3.2) liefert eine Liste, welche die erzeugte Datei beinhaltet.

Endpunkt: XES erstellen
Beschreibung: Endpunkt zum Starten des Prozesses zur Erstellung einer

XES-Datei aus den Logdaten des Anwendungssystems.
URL: /createXES
Type POST

Parameters
Bezeichner: Datentyp Beschreibung
service String Der Name des Service, nach dem die Log gefiltert werden

(siehe Abschnitt 3.1).
traceCount Integer Anzahl der Traces die erstellt werden sollen.
range Integer Anzahl an Tagen, die einen Zeitraum seit dem aktuellen Da-

tum definieren. Die Daten für die zu erstellen Logs werden
nur aus diesem Zeitraum gewählt.

environment String Definiert von welcher Umgebung (Test, Integration, Produkti-
on, ...) das Elasticsearch verwendet werden soll, das als Quelle
der Daten dient.

Ergebnis
Bezeichner: Datentyp Beschreibung
info String Nachricht, welche das erfolgreiche Starten des Vorgangs aus-

gibt.

4.3.2. Endpunkte zur Verwaltung der Dateien

Das System verwaltet die Dateien von Logs und Modellen. Dabei werden diese nicht direkt
herausgegeben, sondern bei Aufrufen von Prozeduren wird die ID einer Datei als entspre-
chender Parameter übergeben. Die einzige direkte Möglichkeit Dateien hochzuladen existiert
für das Hochladen von XES-Dateien in das System. Die Dateien für Modelle können nur
erzeugt werden indem der Endpunkt der Process-Discovery (siehe Unterabschnitt 4.3.3)
aufgerufen wird und dieser den Mining-Prozess startet, dessen Ergebnis wiederum eine
Datei ist. Für die einzelnen Dateien existieren Einträge in der Datenbank. Dies dient nicht
nur der besseren Verwaltung, sondern auch zusätzlichen Metainformationen, wie z. B. dem
Algorithmus mit dem ein Modell erstellt wurde.

56

4.3. REST-Schnittstelle

Abbildung 4.4.: Die Darstellung zeigt die Tabelle mit einer XES-Datei aus der Webapp.
Über einen Popup-Dialog lässt sich der zu verwendende Algorithmus zum
Mining auswählen.

Abbildung 4.5.: Liste der Petri-Netze aus der Webapp.

Datentyp: Datei
Bezeichner: Datentyp Beschreibung
fileName String Der Name der Datei.
id Integer Identifikations-Zahl, welche für die jeweiligen Subtypen ein-

deutig sind.

Datentyp: XES-Datei
Erweitert: Datei
Bezeichner: Datentyp Beschreibung
uploadDate Date Zeitpunkt, zu dem die XES-Datei hochgeladen oder erstellt

wurde.

57

4. Implementierung

Datentyp:Modell-Datei
Erweitert: Datei
Bezeichner: Datentyp Beschreibung
miningDate Date Zeitpunkt, zu dem dasModell durch Process-Discovery

erstellt wurde.
miningAlgorithm String Name des Algorithmus, mit dem das Modell erstellt

wurde
sourceOriginalName String Name der XES-Datei, aus der das Modell erstellt wur-

de.
sourceId Integer ID der XES-Datei, aus der das Modell erstellt wurde.

Datentyp: PNML-Datei
Erweitert: Modell-Datei

Datentyp: BPMN-Datei
Erweitert: Modell-Datei

Endpunkt: Liste der XES-Dateien
Beschreibung: Liefert eine Liste aller erstellten oder hochgeladenen XES-Dateien.
URL: /xes
Type GET

Ergebnis
Ein JSON-Array mit Elementen vom Typ XES-Datei.

Endpunkt: Hochladen einer XES-Datei
Beschreibung: Hochladen einer XES-Datei über „multipart/form-data“.

(Nützlich um das System auch mit anderen Daten als die
aus dem Elasticsearch zu verwenden und zu testen.)

URL: /xes/upload
Type POST

Parameters
Bezeichner: Datentyp Beschreibung
file Datei Datei, welche hochgeladen wird.

Endpunkt: Liste der PNML-Dateien
Beschreibung: Liefert eine Liste aller erstellten oder hochgeladener PNML-Dateien.
URL: /pnml
Type GET

Ergebnis
Ein JSON-Array mit Elementen vom Typ PNML-Datei.

58

4.3. REST-Schnittstelle

Endpunkt: Liste der BPMN-Dateien
Beschreibung: Liefert eine Liste aller erstellter oder hochgeladener BPMN-Dateien.
URL: /bpmn
Type GET

Ergebnis
Ein JSON-Array mit Elementen vom Typ BPMN-Datei.

4.3.3. Endpunkte zur Process-Discovery

Folgende Endpunkte dienen dazu, den Prozess der Process-Discovery zu starten. Dabei
werden dem Endpunkt die ID eines Logs und der entsprechende Algorithmus überge-
ben. Der Prozess wird asynchron gestartet, da das Mining sehr lange Laufzeiten besitzen
kann. Nach der erfolgreichen Terminierung des Vorganges wird das erzeugte Modell in
den entsprechenden Endpunkten angezeigt. Aufgrund von technischen Einschränkungen
des ProM-Framework ist das Ergebnis des α-Algorithmus nur ein Petri-Netz, während
beim evolutionären Algorithmus sowohl ein Petri-Netz als auch eine BPMN erzeugt wird.

Endpunkt: Liste der verfügbaren Algorithmen.
Beschreibung: Liste aller Algorithmen, welche für die Process-Discovery verwendet

werden können.
URL: /mining/algorithms
Type GET

Ergebnis
Ein JSON-Objekt as Wörterbuch mit dem Bezeichner des Algorithmus
als Schlüssel und einer kurzen Beschreibung als Wert.

Endpunkt: Starte Mining-Prozess.
Beschreibung: Stößt asynchron den Prozess zu Erstellung eines Prozess-

modells aus einem Log an.
URL: /mining/run
Type POST

Parameters
Bezeichner: Datentyp Beschreibung
xesId Integer ID des zu verwendenden Logs (XES-Datei).
miningAlgorithm String Bezeichner des Mining-Algorithmus, der verwendet wer-

den soll.
Ergebnis

Bezeichner: Datentyp Beschreibung
status String Nachricht, welche das erfolgreiche Starten des Vorgangs

ausgibt.

59

4. Implementierung

4.3.4. Endpunkte für die Graphen der Modelle

Die folgenden Endpunkte liefern die vorhandenen Modelle zurück. Dabei wandeln sie die in
den Dateien vorliegende XML-basierte Darstellung in eine für die Webapp gut zu verarbei-
tende JSON-Darstellung um.

Datentyp: Graph
Beschreibung: Beschreibt die Elemente eines Graphen zur Darstellung eines

Petri-Netzes oder eines BPMN.
Bezeichner: Datentyp Beschreibung
nodes Array Array mit Elementen des Typ Node.
links Array Array mit Elementen des Typ Link.

Datentyp: Node
Bezeichner: Datentyp Beschreibung
type String Beschreibt den Knotentyp des Elements. Falls der zugrunde

liegende Graph ein Petri-Netz ist, sind mögliche Werte „transi-
tion“ und „place“. Bei BPMN sind „start“, „end“, „task“ und die
Bezeichnungen für Gateways („AND“, „OR“, „XOR“) möglich.

id Integer Ein für den Graphen eindeutiger identifizierender Wert.
desc String (optional) Beschriftung des Knoten. Daher nur bei Knoten mit

Beschriftung.
tau Boolean (optional) Beschreibt bei Transitionen, ob es sich um eine stille

Transition handelt. Der Standard Wert, wenn nicht angegeben
ist „false“.

start Boolean (optional) Beschreibt, ob es sich bei diesem Element um das
eindeutige Startelement handelt. Wenn nicht angegeben: „false“.

end Boolean (optional) Beschreibt, ob es sich bei diesem Element um das
eindeutige Endelement handelt. Wenn nicht angegeben: „false“.

Datentyp: Link
Bezeichner: Datentyp Beschreibung
source Integer ID des Node-Objektes, aus dem die Kante entspringt.
target Integer ID des Node-Objektes, das Ziel der Kante ist.

60

4.4. Erstellen der Traces

Endpunkt: Graph eines PNML.
Beschreibung: Liefert den Graph einer PNML Datei.
URL: /graph/pnml
Type GET

Parameters
Bezeichner: Datentyp Beschreibung
id Integer Id der PNML-Datei.

Ergebnis
Ein Objekt des Typ Graph, welcher das Petri-Netz darstellt.

Endpunkt: Graph eines BPMN.
Beschreibung: Liefert den Graph einer BPMN Datei.
URL: /graph/bpmn
Type GET

Parameters
Bezeichner: Datentyp Beschreibung
id Integer Id der BPMN-Datei.

Ergebnis
Ein Objekt des Typ Graph, welcher das BPMN darstellt.

4.4. Erstellen der Traces

Der erste Verarbeitungsschritt ist die Erstellung der Extensible Event Stream Dateien aus
den Einträgen, welche das untersuchte Anwendungssystem in Log Dateien schreiben und
die dann über das Elasticsearch zugänglich gemacht werden. Das Format eines solchen
Eintrages zeigt Listing 4.1 an einem Beispiel. Als aller erstes ist es nötig ein nicht die Einträge
aller Aktionen zu betrachten, da sonst versucht werden würde ein Modell für das gesamte
System zu erstellen. Dies wäre nicht nur sehr aufwendig, sondern auch das Ergebnis wäre so
komplex, dass es nicht für einen Menschen direkt verständlich wäre und somit auch keinen
Nutzen darstellen würde.

Als Filter wurde die Beteiligung eines Ablaufes an einem Service genutzt, da leider keine
Zuordnung von tatsächlichen Use-Cases des Systems zu den einzelnen Abläufen gemacht
werden konnte. Da für die meisten Use-Cases ein Service existiert der ausschließlich von
diesem aufgerufen wird, kann über die Filterung nach diesem ein Log für einen Use-Case
erstellt werden.

Zusätzliche Parameter sind noch der Zeitraum und die ungefähre Menge an zu erstellenden
Traces. Damit werden mit dem Filter nach einem Service eine Menge von Tracking-IDs (siehe
Unterabschnitt 4.1.3) erstellt.

61

4. Implementierung

Listing 4.1 Beispielhafte Darstellung eines Eintrages in Elasticsearch in JSON (NoSQL-Stil).
{

"APP" : "System1",

"Service" : "ServiceA",

"message" : "Application exit with error code 0.",

"timestamp" : "2015-10-21T16:29:00-08:00",

"trackingID" : "1234-ABCD-123456789ABC-DEF1-2345"

}

Workaround wegen Textindizierung der Tracking-ID

Da Elasticsearch auf Apache Lucene basiert, einem Framework für die Indizierung
von Texten, ist die Standardindizierung der Volltextindizierung. Da die Tracking-ID
aus mehreren Strings (Hexdarstellung) besteht, welche mit Bindestrich miteinander
verbunden sind (siehe Listing 4.1), wird die Tracking-ID in wie ein Satz mit mehreren
Worten angesehen. Dadurch sind nur die einzelnen Teile im Index, nicht aber die
komplette ID, und es ist nicht möglich direkt eine Anfrage zu stellen, welche die mit
einem Service assoziierten Tracking-IDs zurückliefert. Die beste Lösung wäre die
korrekte Indizierung der Tracking-ID zu veranlassen. Da dies jedoch für Dauer der
Arbeit eine lange dauernde Aufgabe wäre, die nur unnötige Verzögerung mit sich
gebracht hätte, wurde folgender Workaround gewählt:
Es werden die mit einem Service assoziierten Teilwörter der Tracking-ID vom Ela-
sticsearch gefordert. Aus diesen werden die Wörter der Länge zwölf herausgefiltert,
da es in jeder ID nur einen Teil dieser Länge gibt. Und letztendlich ein Eintrag von
Elasticsearch gefordert, der dieses Wort in der Tracking ID beinhaltet, um somit eine
vollständige Tracking ID zu erhalten.

Für die gegebene Menge IDs werden nun alle Einträge angefordert, die entweder “application
enter“ oder mit “application exit“ beinhalten. Logeinträge mit diesen beiden Texten werden
bei Start und Beendigung eines Services erstellt. Die Sicht wird somit auf diese beiden
Ereignisse beschränkt.

Der letzte Schritt ist die gegebenen Eigenschaften der Einträge auf definierte Attribute von
XES zu übertragen. Dabei werden die Gesamten im Vorgang erstellen Daten als ein Log
angesehen. Die Gesamtheit einer Tracking-ID zugehörigen Elemente sind ein Trace und die
einzelnen Einträge, geordnet nach ihrer zeitlichen Abfolge, sind die Events. Einige Attribute
der Events sind folgendermaßen gegeben:

time:timestamp = timestamp
concept:name = APP:Service

lifecycle:transition =
{

start , falls der Eintrag “application enter“ beinhaltet
complete , falls der Eintrag “application exit“ beinhaltet

62

4.5. Mining der Modelle

Mit Hilfe von OpenXES, der Referenzimplementierung des XES-Standards, wird der beschrie-
benen Log erstellt und in das XML-Format serialisiert. Zusätzlich wird ein Eintrag in der
SQL-Datenbank erstellt, welcher der besseren Verwaltung der Dateien dient.

4.5. Mining der Modelle

Der nächste Verarbeitungsschritt ist das Erstellen vonModellen für die gegebenen Logs. Dafür
wird auf das ProM-Framework zurückgegriffen. Der Aufruf der Algorithmen wurde über das
gegebene Command-Line-Interface [pro15] aufgeführt. Dieses bekommt als Eingabe die Datei
eines BeanShell[bea] Skriptes gegeben, welches darauf im Kontext des ProM-Framework
ausgeführt wird. Die Sprache ist mit einigen Befehlen für die Verwendung der einzelnen
Komponenten angereichert. Dadurch werden die Schritte ausgeführt, die normalerweise
über das GUI des ProM-Framework ausgeführt werden:

1. Laden des XES-Logs

2. Mining eines Modells aus dem Log

3. (optional: falls nötig Konvertieren des Ausgabemodells in die gewünschte Notation)

4. Serialisieren des Modells (Schreiben in Datei)

Es existieren einige Plugins des Framework, welche sich nur über das GUI aufrufen lassen
und die nötigen Schnittstellen für die Kommandozeilen Ausführung nicht implementieren.
Trotzdem ist diese Lösung besser, als die Komponenten des ProM-Frameworks direkt einzu-
binden. Listing 4.2 zeigt das Script für den α-Algorithmus. Für den Aufruf des evolutionären
Algorithmus fehlt leider das Interface für die Verwendung ohne UI (in der verwendeten
ProM-Version 6.5). Daher musste hier der weg über direkte Aufrufe gegangen werden, um
die Funktionalität trotzdem nutzen zu können. Dies forderte an mehreren Stellen auch die
Nutzung von Reflexion, um versteckte Methoden zugänglich zu machen. So wurde aber eine
korrekte Implementierung der Algorithmen und damit die Qualität der erstellten Modelle
sichergestellt. Für die Parameter des evolutionären Algorithmus wurden sinnvolle Werte
(die vom ProM empfohlenen) gewählt und diese im Skript hart-codiert. Dies verringert die
Komplexität des Systems und verhindert Verwirrung beim User die durch Eingabe der Werte
entstehen könnten.

63

4. Implementierung

Listing 4.2 BeanShell-Skript, welches für die Ausführung des α-Algorithmus aus dem ProM
verwendet wurde.

Properties prop = System.getProperties();

log = open_xes_log_file(

prop.getProperty("de.fabiangajek.prom.cli.xesFile"));

net_and_marking = alpha_miner(log);

net = net_and_marking[0];

File net_file = new File(

prop.getProperty("de.fabiangajek.prom.cli.pnmlFile"));

pnml_export_petri_net_(net, net_file);

System.exit(0);

4.6. Besonderheiten der Hierarchisierung

Die in Abschnitt 3.4 besprochenen Konzepte zum Ausnutzen von Hierarchien wurden auch
implementiert und werden in diesem Abschnitt vorgestellt. Strukturiert ist dies nach den
Verarbeitungsschritten.

4.6.1. Hierarchie in der Erstellung der Traces

Für die Erstellung der Traces war von Bedeutung, dass in den Logs nicht dokumentiert
wurde, von welchem Service ein andere Service aufgerufen wurde. Nach Rücksprache mit
einem Experten des Systemes und durch empirische Beobachtung der Logdaten wurde davon
ausgegangen, dass es innerhalb einer Ausführung eines Prozesses keine parallelen Abläufe
gibt. Daher werden die betrachteten Einträge, die Start und Ende von Prozessen darstellen,
einfach wie bei der Unterprogramm Ausführung mit einem Stack verwaltet. Die Einträge
liegen in zeitlich sortierter Form vor, es existiert ein zu Anfang leerer Stack und in die darauf
wird Folgendes für jeden Eintrag eines Traces ausgeführt:

1. Falls der Eintrag einen Start dokumentiert, lege den Bezeichner auf den Stack.

2. Nutze den vollständigen Bezeichner, der durch den Stack beschrieben ist, für den Even-
teintrag in die XES-Datei. Die Notation wird wie in Unterabschnitt 3.4.1 beschrieben
umgesetzt.

64

4.7. Visualisierung von Petri-Netzen und BPMN

Abbildung 4.6.: Die Abbildung zeigt Darstellung eines Petri-Netzes, wie sie im Prototyp
verwendet wird.

3. Setzte den Lebenszyklus des Events auf den entsprechenden Wert (“start“ oder “com-
plete“).

4. Falls der Eintrag ein Ende dokumentiert, entferne das oberste Element vom Stack.

Die so erstellten Logs können ohne Änderungen von einem Mining-Algorithmus verwendet
werden.

4.7. Visualisierung von Petri-Netzen und BPMN

Die Darstellung der Graphen erfolgt innerhalb der Webapp. Dazu wird, um eine gut skalier-
bare Darstellung zu bekommen, ein SVG-Element verwendet und dessen Elemente mithilfe
der D3-Bibliothek manipuliert. Die Visualisierung von Petri-Netzen und BPMN unterscheidet
sich dabei wenig, wenn Transitionen analog zu Task angesehen werden.

Für die Darstellung der Modelle als Graphen soll das D3-Framework und die damit gegebene
Implementierung von kräftebasierten Layouts (siehe Unterabschnitt 2.7.1) verwendet werden.
Da D3 in Javascript implementiert und auf die Verwendung in einem Browser ausgelegt
ist, sollte die Komponente der Visualisierung am Besten als Webapp ausgelegt sein und
über Schnittstellen mit dem Rest des Systems kommunizieren. Zur besseren Verarbeitung
der Daten in Javascript und D3 ist es außerdem sinnvoll die übergebenen Daten schon im
JSON-Format zu übergeben.

Um die Elemente der Graphen übersichtlich zu verteilen, wird ein kräftebasiertes Layout ver-
wendet (siehe Unterabschnitt 2.7.1). Da es möglich ist die Position einzelnen Knoten (Stellen,
Transitionen, Task, ...) im kräftebasierten Layout einzufrieren, wird dies initial für den Start-
und Endknoten getan. Außerdem wird der Startknoten links und der Endknoten rechts im
Bereich des Layouts angeordnet, damit sich der Graph von links nach rechts ausrichtet. Dies
dient der besseren Erkennung des Modells, da durch die geordnete Darstellung übersicht-
licher ist und sich immer horizontal ähnlich ausrichtet. Abbildung 4.6 und Abbildung 4.7
zeigen wie das für ein globales Modell (alle Unterprozesse sind eingeklappt) aussieht.

65

4. Implementierung

Abbildung 4.7.: Die Abbildung zeigt Darstellung eines BPMN, wie sie im Prototyp verwen-
det wird.

Abbildung 4.8.: Visualisierung eines Petri-Netzes wie sie in einer ersten Version des Systems
verwendet wurde.

4.7.1. Interaktion mit der Visualisierung des Graphen

Um den Graphen besser darzustellen, sind dem User einige Interaktionsmöglichkeiten gege-
ben, welche die Darstellung beeinflussen:

Einfrieren eines Knoten Über ein Kontextmenü ist es möglich einzelne Task, Transitionen
oder anderen Elemente einzufrieren. Dadurch werden die Positionen vom kräftebasier-
ten Layout nicht verändert. Zusammen mit dem Verschieben eines Knoten kann
so die Darstellung manuell noch weiter optimiert werden. Wenn die Position eines

66

4.8. Hierarchie in der Visualisierung der Modelle

Abbildung 4.9.: Vorgang des Einfrierens der Position eines Knoten. Die eingefrorene Positi-
on wird über eine dunklere Farbe dargestellt.

Knoten eingefroren ist, wird dies visuell über eine leicht dunklere Farbe des Elementes
dargestellt. Über das Kontextmenü ist auch das Aufheben des Einfrieren möglich.

Verschieben eines Knoten Durch das Drücken, Halten der linken Maustaste und dem
Verschieben der Maus, kann ein User beliebige Knoten an eine andere Stelle schieben.
Während und nach dem Verschieben wird das Layout Kräfte basiert optimiert. Dabei ist
das gezogene Element während des Vorganges auf die Position der Maus fest. Nach dem
Loslassen der Maustaste bleibt der Knoten, abhängig davon, ob die Position eingefroren
wurde, stehen oder seine Position wird durch die Kräfte optimiert.

Zoomen und Verschieben Über das Mausrad und durch Ziehen mit gedrückter linker
Maustaste (außer auf Knoten) lässt sich die Darstellung des Graphen fast beliebig
verschieben, vergrößern und verkleinern. Das Zoomen der Darstellung wird dabei um
die Position des Mauszeigers vorgenommen.

4.8. Hierarchie in der Visualisierung der Modelle

Dadurch, dass die globalen Bezeichner der einzelnen Task bis in das Modell mitgezogen
werden, ist es möglich dies auszunutzen, um Subprozess aus- und einzublenden. Initial
werden alle Submodelle ausgeblendet, um einen möglichst kleinen Graphen zu bekommen,
dessen visuelle Optimierung damit vereinfacht wird. Visuell werden Transitionen oder Tasks,
deren Subprozess ausgeblendet wird, gelb hinterlegt und ein Plus ist an der oberen rechten
Ecke zu sehen, über das sich der Subprozess einblenden lässt (siehe Abbildung 4.10). Das
Anzeigen des Subgraphen läuft ab wie beim Zusammensetzen der lokalen Modelle (siehe
Unterabschnitt 3.4.3). Expandierte Transitionen sind grün hinterlegt und besitzen ein Minus
in der rechten oberen Ecke, dieses dient zum erneuten Ausblenden des Unterprozesses.
Transitionen ohne Subprozess sind auch grün hinterlegt, ihnen fehlt aber das Minus zum
Einklappen.

67

4. Implementierung

Expandieren

Abbildung 4.10.: Durch einen Klick auf das Plus eines Knoten wird dieser expandiert. D. h.
die Transition wird ersetzt durch den entsprechenden Subprozess (siehe
Abbildung 3.3).

4.9. Anzeigen des zugrundeliegenden Logs

Um nicht nur das Modell zu verstehen, sondern auch warum es so aussieht, werden zum
Graphen auch die einzelnen Traces angezeigt, aus denen dieser entstanden ist.

Dabei werden, wie in Abbildung 4.11 zu sehen ist, die einzelnen unterschiedlichen Traces
angezeigt. Wenn mehrere äquivalente Traces im Log vorhanden sind, so ist dies über die
Anzahl (engl. Count) angegeben. Traces mit einer hohen Anzahl stellen das häufige Verhalten
dar. Traces mit kleineren Anzahlen sind auch interessant, da diese entweder Randverhalten
oder möglicherweise auch Fehlverhalten darstellen.

Um noch genauer zu untersuchen welcher Teil des Modells durch welche Traces entstanden
ist, lässt sich der Log nach einzelnen Transitionen filtern.

4.10. Visualisierung von Traces in einem Model

Um die Plausibilität des Modells zu verbessern, ist es möglich, einen oder mehrere Traces
visuell im Modell anzuzeigen. Dazu wurden zwei verschiedene Ansätze implementiert. Der
Erste verbindet nur alle Transitionen aus einem Trace in genau der Reihenfolge, in der sie

68

4.10. Visualisierung von Traces in einem Model

Abbildung 4.11.: Die einzelnen Traces des Logs werden mit dem Modell angezeigt, um
Verständnis und Plausibilität des Modells zu unterstützen.

Abbildung 4.12.: Über das Kontextmenü lassen sich die Traces nach Transitionen filtern.

auch dort vorkommen (ausgeblendete Transitionen werden immer übersprungen). Dies ist
in Abbildung 4.13 dargestellt für den Trace 2 der in Abbildung 4.11 zu sehen ist.

Der zweite Ansatz versucht die Bewegung der Marken zu visualisieren, indem es eine Linie
durch die Pfade zeichnet, an denen sich eine Marke für den Vorgang bewegen würde. Dies
ist in Abbildung 4.14 abgebildet.

69

4. Implementierung

Abbildung 4.13.: Visuelle Darstellung eines Traces durch Verbindung der entsprechenden
Transitionen.

Abbildung 4.14.: Visuelle Darstellung eines Traces durch die Markierung des Pfades der
beteiligten Marken.

70

5. Evaluation durch Expertenstudie

Dieses Kapitel beschreibt die Evaluation des implementierten Systems mittels einer Exper-
tenstudie. Dazu wurden einer kleinen Runde von Experten des untersuchten Anwendungs-
systems das Tool vorgestellt und anschließend von diesen evaluiert. Der erste Abschnitt
beschreibt die Durchführung der Studie, während der zweite Teil die gewonnenen Erkennt-
nisse aufbereitet.

5.1. Durchführung der Expertenstudie

Die Expertenstudie wurde als Kombination aus Expertenbefragung und Fokusgruppe durch-
geführt. Das bedeutet, alle Probanden waren gleichzeitig in einem Raum. Dabei wurde ihnen
der Prototyp vorgestellt und sie mussten dazu Fragen beantworten. Außerdem sollten sie in
einer anschließenden Diskussion noch weitere Erkenntnisse ausarbeiten. Die bei der Studie
verwendeten Dokumente befinden sich in Abschnitt A.1. Zur Unterstürzung der Demonstrati-
on wurde den Probanden eine Anleitung ausgehändigt, welche die vorgestellten Interaktions-
und Analysemöglichkeiten noch einmal erklärt. Bei der Durchführung der Studie wurde ein
Modell verwendet, das aus den Logdaten des untersuchten Anwendungssystemes generiert
wurde. Den Experten wurde zum Vergleich ein existierendes Modell des gleichen Ablaufes
gezeigt. Das generierte Modell deckte aufgrund von mangelnder Abdeckung der verwen-
deten Logdaten nur einen Teil der Abläufe ab. Daher war der Vergleich der Modelle leicht
eingeschränkt.

Für die Studie haben sich vier Experten zur Teilnahme bereit erklärt. Die Teilnehmer waren
31 bis 50 Jahre alt und die jeweilige Berufserfahrung reichte von sieben bis 25 Jahre. Dabei
haben zwei der vier Experten promoviert. Die Aufgaben der Teilnehmer im Unternehmen
sind thematisch beim Betrieb von Systemen und im Management angeordnet.

Bei der Durchführung sollte nach Plan die Diskussion nach der Beantwortung der Fragen sein.
Durch Zwischenfragen während der Demonstration des Programmes wurde die Diskussion
praktisch in die Demonstration vorgezogen. Die entstandenen Erkenntnisse sind trotzdem
sehr aufschlussreich und gut zu verwerten.

71

5. Evaluation durch Expertenstudie

5.2. Ergebnisse der Expertenbefragung

In diesem Abschnitt werden die Ergebnisse der Expertenstudie besprochen. Dabei wer-
den zum einen die Antworten der Probanden zu den Multiple-Choice Fragen analysiert
(siehe Abschnitt A.2 - Antworten der Multiple-Choice Fragen), zum anderen die weiteren
Anmerkungen der Probanden zusammengefasst.

5.2.1. Analyse der Multiple-Choice-Fragen

Durch die geringe Anzahl an Probanden sind die Aussagen der Antworten eingeschränkt.
Trotzdem lassen sich Fragen nutzen, bei denen die Antworten einen klaren Trend zeigen.

Die Multiple-Choice-Fragen hatten eine Skala von 1 bis 5. Dabei sollte jeweils eine Aussage
zum Prototypen beantwortet werden. Die Fragen waren zu den folgenden Themen:

1. Bedarf für Process-Mining im Unternehmen.

2. Nutzen der verwendeten Visualisierungen.

3. Nutzen von Process-Mining im Allgemeinen.

Die Antworten zeigen die Meinung der Experten, dass eine solche Software zum Mining
von Prozessen in ihren (und auch in anderen) Unternehmen Verwendung finden würde.
Die unterschiedlichen Antworten bei den Fragen nach Häufigkeit der Verwendung und
persönlicher Unterstützung lassen sich vor allem auf unterschiedliche Aufgabengebiete der
Experten zurückführen. Daraus folgt auch eine andere Sicht auf die Anwendbarkeit der
Software. Nutzen sahen die Experten vor allem in der Erkennung von Abweichung, gerade
auch im Zusammenhang mit dem Finden von Fehlern und bei der Prozessdokumentation.

Für die unterstützenden Elemente lässt sich sicher sagen, dass die textuelle Auflistung der
Traces unübersichtlich ist. Dies mag auch an komplexen global Bezeichner liegen oder einfach
an der Unübersichtlichkeit von vielen gleichen Zeichen und Wörtern. Die visuelle Unterstüt-
zung dagegen kam besser an und die Meinung der Experten ist es, dass die Visualisierung
des Kontrollflusses der einzelnen Traces “sehr stark“ das Verständnis des Modells fördert.
Die Darstellung des Graphen mit einem interaktiven kräftebasierten Layout wurde auch gut
angenommen.

Nach der Meinung der Probanden sind Teile der Funktionalität eines solchen Programmes
gegeben. Das System nutzt auch schon vorhandene Systeme, welche die Fehlererkennung
unterstützen sollen (Elasticsearch, Kibana). Da keine der vorhandenen Systeme Modelle aus
den Daten erstellt, sind große Teile aber auch noch nicht abgedeckt.

72

5.2. Ergebnisse der Expertenbefragung

5.2.2. Analyse der Diskussion und Freitextfragen

Die Probanden wurden zur Diskussion angeregt und sie bekamen Freitextfragen. In diesen
sollte sie beurteilen wie ein dem Prototypen entsprechendes Programm verwendet werden
kann, was ihnen gefallen hat oder was sie verbessern würden.

Die Reaktionen über das vorgestellte Programm reichen von vielen positiven Rückmel-
dungen über das interaktive kräftebasierte Layout des Graphen bis zu einigen negativen
Anmerkungen zur Unvollständigkeit des Modells.

Die Meinung der Probanden zu den Anwendungsmöglichkeiten entsprechen sehr den An-
wendungen des Process-Mining im Allgemeinen: “Verifikation von Prozessen“, “Analyse“,
“Optimierung [der Prozesse]“, “Reverse Engineering“ der Prozesse. Dies zeigt auch das Be-
dürfnis von Systemen mit solcher Funktionalität, denn das Process-Mining sieht andere
Algorithmen und Prozesse als die implementieren als Lösung für einige dieser Anwendungen
vor.

Der wichtigste Kritikpunkt des Systems war die Unvollständigkeit der vorhandenen Traces
und deswegen auch des Modells. Dies zu lösen fordert einige Voraussetzungen. Denn um
eine gute Process-Discovery, oder Process-Mining im Allgemeinen, durchführen zu können,
müssen die Prozesse erst gut formal im Log dokumentiert werden [VDAAM+12]. Deshalb
gehört zu einer reifen Implementierung eines Process-Mining-Systems auch eine informative
und formale Dokumentation abgelaufener Prozesse. Durch die prototypischen Eigenschaften
des implementierten Programmes und einem nicht auf das Process-Mining ausgelegten
Systemes waren solche Voraussetzungen nicht gegeben.

Ein Kritikpunkt eines Experten war vor allem die Einschränkung der Prozesssicht auf eine
Top-Level-Sicht. Es lassen sich zwar Unterprozesse einblenden, der erste Eindruck liegt
aber auf dem Ablauf des Service, welcher beim Eintritt in das System aufgerufen wird.
Unterprozesse, bei denen die entscheidenden Abläufe stattfinden, können in den Hintergrund
rücken.

Als eine Verbesserung wurde vorgeschlagen, auch Veränderungen amModell zu visualisieren.
Wenn ein solches Tool produktiv in einem System verwendet würde, so ist es möglich, täglich
Änderungen am Modell vorzunehmen. Der Vorschlag ist die Änderungen am Modell von
einem Zeitpunkt zum Nächsten hervorzuheben. Dadurch könnten dann Prozessänderungen
dargestellt und analysiert werden. Außerdem besteht die Möglichkeit, plötzlich auftretendes
Fehlverhalten zu erkennen.

73

5. Evaluation durch Expertenstudie

Es wurde gezeigt, dass Process-Mining-Tools viele Anwendungen finden und dringend
benötigt wird. Trotz der prototypischen Implementierung waren die Experten schon an
der Verwendung der Software interessiert. Jedoch wären für einen produktiven Einsatz
noch Verbesserungen vorzunehmen, gerade auch in der Erstellung der Logs. Und außerdem
existieren eine Vielzahl an Möglichkeiten zur Maximierung des Analysepotenzials eines
Process-Mining-Tools.

74

6. Fazit und Ausblick

In diesem Kapitel werden zunächst das Konzept, die Implementierung und die Expertenstudie
zusammengefasst. Darauf folgt ein Ausblick über mögliche Erweiterungen am Konzept und
an der Implementierung des Prototypen.

Fazit

In dieser Arbeit wurden die Anwendbarkeit der Process-Discovery auf Anwendungssyste-
me und ein Ansatz zur Optimierung der Darstellung und dem Verständnis des erstellten
Kontrollflussmodells untersucht.

Das Konzept des Verarbeitungsprozesses wurde in drei Schritte aufgeteilt: zuerst die Vorver-
arbeitung der Logdaten des Anwendungssystems, dessen Aufgabe die Filterung auf relevante
Einträge und die Umwandlung in ein standardisiertes Log-Format für Process-Mining ist.
Folgenden wird ein Prozessmodell aus den Daten erstellt mit Hilfe eines Process-Discovery-
Algorithmus. Schlussendlich werden Modell und Logdaten verwendet, um dem Nutzer eine
visuelle Analyse zu bieten, welche nicht nur eine Darstellung des Modells ist, sondern auch
eine Verbindung von aufgenommen Abläufen und Prozessmodell erstellt.

Der implementierte Prototyp wurde als eine Webapp mit einem Backend implementiert. Die
Anwendung auf dem Server bietet dabei Funktionalität zum Erstellen von Logs aus einer
Elasticsearch Instanz und zumMining von Petri-Netzen und BPMN. DieWebapp stellt die Mo-
delle grafisch dar und nutzt dabei ein kräftebasiertes Layout. Zusätzlich werden die zugrunde
liegende Abläufe textuell aufgelistet und auch visuell in der Darstellung angezeigt.

Für die Evaluation des Ansatzes wurden Daten eines Anwendungssystems eines Automobil-
herstellers verwendet. Das System wurde danach mittels einer Expertenstudie analysiert,
deren Teilnehmer Mitarbeiter eben dieses Automobilherstellers waren. Die Ergebnisse der
Studie zeigten auf, dass Process-Discovery in Anwendungssystemen großes Potenzial hat
und das Bedürfnis zur Analyse der abgelaufenen Prozesse ebenfalls sehr groß ist. Auch die
visuelle Unterstützung wurde gut bewertet und half dem Verständnis der Modelle.

75

6. Fazit und Ausblick

Ausblick

Das Konzept und der implementierte Prototyp zeigten sich in der Expertenstudie schon als
sehr nützlich. Trotzdem existieren noch einige Aspekte, die einer Verbesserung unterzogen
werden sollten oder deren Umsetzung den Nutzen sehr steigern könnten.

Optimierung der Hierarchisierung in der Visualisierung

Um das Erstellen der Modelle zu beherrschen, wurden Aufrufhierarchien eingeführt. Diese
werden weiter in der Darstellung der Modelle verwendet um Unterprozesse aus- und ein-
zublenden. Dadurch wird die Sicht sehr auf die Oberste Ebene fixiert und Unterprozesse
sind meist weniger übersichtlich zu analysieren. Dies könnte verbessert werden, durch vi-
suelle Darstellung der Aufrufebenen oder durch die Möglichkeit Unterprozesse als eigene
Prozessmodelle in einem neuen Fenster darstellen zu lassen.

Verlauf von Änderungen

Eine mögliche Verbesserung, welche die Analyse sehr unterstützen würde, ist die Nutzung
von regelmäßigen Erstellungen des Prozessmodelles um Veränderungen zu erkennen. Ein
solches System zum Erstellen der Prozessmodelle macht es einfach jeden Tag ein Modell auf
den aktuellen Logdaten zu erstellen. Dies gibt die Möglichkeiten Änderungen der Abläufe,
gerade beim Umzug auf eine neue Version, durch das System zu erkennen, zu visualisieren
und durch Experten zu analysieren.

Integration weiterer Algorithmen und Techniken des Process-Mining

Das Konzept und der implementierte Prototyp verwenden nur zwei Algorithmen der Process-
Discovery. Daher sollte das System um weitere Algorithmen zum Erstellen von Prozess-
modellen erweiterte werden, um die Ergebnisse vergleichen zu können. Einen größeren
Nutzen hätte aber die Implementierung weiter Process-Mining Techniken. Sinnvoll wäre die
Analyse von Laufzeiten einzelner Services um Abläufe zu optimieren. Oder eine weitere gute
Erweiterung wäre die Überprüfung von Abläufen in Echtzeit auf die Konformität mit dem
Modell. Schlussendlich wäre es sinnvoll das System um die Vielzahl an schon untersuchten
Techniken des Process-Mining zu erweitern, um den Erkenntnisgehalt zu maximieren.

76

A. Anhang: Expertenstudie

A.1. Dokumente der Expertenbefragung

Anmerkung: Die Darstellungen des Programmes wurden aus Datenschutzgründen zensiert.
Daher entsprechen die Abbildungen nicht die den Experten vorgelegten.

77

Einverständniserklärung	zur	Expertenstudie	
	
Es	wird	eine	Expertenstudie	zu	einer	Bachelorarbeit	der	Universität	Stuttgart	durchgeführt.	
Die	Studie	ist	wie	folgt	aufgebaut.	
	

1. Darstellung	des	Ablaufes	der	Studie	und	Belehrung	zu	den	Rechten	
2. Allgemeine	Fragen	zur	Person	der	Probanden	
3. Darstellung	der	allgemeinen	Bedienung	des	Programmes	
4. Vorstellung	eines	möglichen	Anwendungsfalles	
5. Beantwortung	der	Testfragen	
6. Fragen	und	Diskussion	zum	Programm	

	
Hiermit	werden	Sie	darüber	aufgeklärt,	dass	Sie	jederzeit	die	Möglichkeit	haben	

• die	Studie	abzubrechen,	sowohl	während	der	Einführung	als	auch	jederzeit	während	
der	Durchführung,	

• den	Raum	zu	verlassen	oder	
• eine	Pause	zu	machen.	
• Außerdem	können	Sie	Fragen	die	Sie	nicht	beantworten	können/wollen	(gerade	bei	

den	Fragen	zur	Person)	einfach	unbeantwortet	lassen.	
	
	
Die	angegebenen	Daten	werden	anonymisiert,	vertraulich	behandelt	und	nur	zur	
Auswertung	der	Studie	genutzt.	
	
	

• Die	Studie	wird	mindestens	30	Minuten	dauern.	
	
	
	
Mit	meiner	Unterschrift	bestätige	ich,	dass	ich	die	obigen	Punkte	gelesen	habe	und	ihnen	
zustimme.	
	
Ort,	Datum	 	 	 	 	 	 Unterschrift	
____________________________________	 __________________________________	
	

Fragen	zur	Person	
	
	
Berufsausbildung/Abschluss:	 ______________________________________	
	
	
Aktuelle	Aufgaben		 	 ______________________________________	
im	Unternehmen:	 	 	 	

Berufserfahrung	(ca.):	 	 ______	Jahre	
	
Geschlecht:	 	 	 	 []	m	 []	w	
	
Alter	 	 	 	 	 ______		
	
	
	

	 1	

Fragen	zum	Programm	
	
Gehen	Sie	im	Folgenden	davon	aus,	das	Programm	sei	vollständig	
implementiert	und	marktreif.	
	
	
Wie	schätzen	Sie	den	Bedarf	eines	solchen	Programmes	im	Unternehmen	ein?	
Von	1	(kein	Bedarf)	bis	5	(sehr	hoher	Bedarf)	
	

1	 2	 3	 4	 5	
	 	 	 	 	
	
Wenn	ein	solches	Programm	in	ihrem	Unternehmen	genutzt	würde,	wie	häufig,	
denken	Sie,	würde	es	verwendet	werden?	
	

nie	 Einmal	im	
Monat	

Einmal	pro	
Woche	

Täglich	 Mehrmals	
täglich	

	 	 	 	 	
	
Wie	sehr	würde	ein	solches	Programm	Sie	bei	ihren	jetzigen	Tätigkeiten	
unterstützen?	
Von	1	(keine	Unterstützung)	bis	5	(starke	Unterstützung)	
	

1	 2	 3	 4	 5	
	 	 	 	 	
	
Wo/wofür	sehen	Sie	Einsatzmöglichkeiten	für	dieses	Programm?	

	 2	

Wie	beurteilen	Sie	die	Plausibilität	der	Prozessmodelle?	
Bedenken	Sie	dabei,	dass	nicht	alle	Aufrufe	von	Services	geloggt	werden.	
Von	1	(gar	nicht	plausibel)	bis	5	(komplett	plausibel)	
	

1	 2	 3	 4	 5	
	 	 	 	 	
	
Wie	sehr	unterstützt	die	textuelle	Auflistung	der	Traces	die	Plausibilität?	
Von	1	(gar	nicht)	bis	5	(sehr	stark)	
	

1	 2	 3	 4	 5	
	 	 	 	 	
	
	
Wie	sehr	unterstützt	die	visuelle	Darstellung	der	Traces	der	Plausibilität?	
Von	1	(gar	nicht)	bis	5	(sehr	stark)	
	

1	 2	 3	 4	 5	
	 	 	 	 	
	
	
Wie	sehr	hilft	die	visuelle	Darstellung	der	Traces	dem	Verständnis	des	Modells?	
Von	1	(gar	nicht)	bis	5	(sehr	stark)	
	

1	 2	 3	 4	 5	
	 	 	 	 	
	
Wie	übersichtlich	finden	Sie	die	Darstellung	der	Graphen?	
Von	1	(komplett	unübersichtlich)	bis	5	(sehr	übersichtlich)	
	

1	 2	 3	 4	 5	
	 	 	 	 	
	
	
Wie	ansprechend	finden	Sie	die	interaktive	Darstellung	der	kräftebasierten	
Layouts	(Bewegung	der	Elemente	in	Echtzeit)?	
Von	1	(sehr	störend)	bis	5	(sehr	ansprechend)	
	

1	 2	 3	 4	 5	
	 	 	 	 	
	

	 3	

Denken	Sie,	dass	bestehende	Systeme	die	Funktionalität	dieses	Programms	
schon	abdecken?	
Von	1	(keine	Funktionalität	ist	bereits	abgedeckt)		
bis	5	(die	Funktionalität	ist	vollständig	abgedeckt)	
	

1	 2	 3	 4	 5	
	 	 	 	 	
	
	
Wie	schätzen	Sie	den	Nutzen	des	Programmes	ein,	um	Prozessabweichungen	
zu	erkennen?	
Von	1	(kein	Nutzen)	bis	5	(sehr	großer	Nutzen)	
	

1	 2	 3	 4	 5	
	 	 	 	 	
	
Wie	schätzen	Sie	den	Nutzen	des	Programmes	zur	Dokumentation	von	
Prozessen	ein?	
Von	1	(kein	Nutzen)	bis	5	(sehr	großer	Nutzen)	
	

1	 2	 3	 4	 5	
	 	 	 	 	
	
Wie	schätzen	Sie	den	Nutzen	des	Programmes	für	die	agile	Entwicklung	von	
Web	Services?	
Von	1	(kein	Nutzen)	bis	5	(sehr	großer	Nutzen)	
	

1	 2	 3	 4	 5	
	 	 	 	 	
	
Was	hat	Ihnen	gut	gefallen?	

Was	hat	Ihnen	nicht	gefallen?	

	 4	

Was	würden	Sie	verbessern?	

Sonstiges	/	weitere	Anregungen:	

Vielen	Dank	für	Ihre	Teilnahme!	
	

	 1	

Anleitung	Process-Mining-Tool	
	

Visualisierung	eines	Petri-Netzes	

	

Visualisierung	eines	BPMN-Diagrammes	
	

	
	
	
	
Die	Interaktionsmöglichkeiten	sind	für	beide	Darstellungen	gleich,	
daher	werden	in	den	Beispielen	nur	Petri-Netze	verwendet.	 	

	 2	

Expandieren	von	Subgraphen	
Über	die	Plus	und	Minus	Zeichen	lassen	sich	Subgraphen	expandieren	und	ausblenden.	

	

	
	
Oder	auch	über		

	
	

Einfrieren	von	Knoten	
	

	
	 	

	 3	

Darstellung	der	Traces	
Rechts	unter	dem	Punkt	Traces	sind	im	die	geloggten	Traces	zu	sehen.	Äquivalente	Abläufe	
sind	zu	einem	Trace	zusammengefasst	und	die	Menge	angegeben.	

	
	
	

Über	die	„show	path“-Checkbox	können	die	Traces	wiederum	im	Graphen	angezeigt	werden.	
	

	
	
Um	herauszufinden	welche	Abläufe	zu	einem	Teil	des	Modells	führen,	lassen	sich	die	Traces	
auch	nach	einzelnen	Transitionen/Tasks	filtern.	

	

	 1	

Ablauf	Expertenbefragung	
	
1. Begrüßung	

2. Erklärung	des	Ablaufes	

2.1. 	Einführung	und	Belehrung	

2.2. 	Allgemeine	Fragen	zur	Person	der	Probanden	

2.3. 	Vorstellung	des	Programmes	–	allgemeine	Bedienung	

2.4. 	Darstellung	eines	Anwendungsfalles	

2.5. 	Ausfüllen	des	Fragebogens	

2.6. 	Allgemeine	Frage	und	Diskussionsrunde	

3. Austeilen	der	Einverständniserklärung	

3.1. 	Hinweis	auf	Recht	jederzeit	Aufzuhören	oder	den	Raum	zu	verlassen.	

3.2. 	Einsammeln	der	Einverständniserklärung	

4. Austeilend	der	Fragen	zur	Person	

4.1. 	Hinweis,	dass	die	Angaben	freiwillig	sind	

4.2. 	Einsammeln	der	Fragen	

5. Austeilen	der	Anleitungen	

5.1. 	Diese	dienen	zur	Unterstützung	der	Demonstration	

6. Demonstration	

6.1. 	Darstellung	der	Startseite	

6.2. 	Vorstellen	der	Datei	Listen	

	 2	

6.3. 	Reiter	zum	Erstellen	von	XES-Traces	mit	Logs	aus	dem	Elasticsearch	

6.4. 	Öffnen	eines	Petri-Netzes	und	eines	BPMN	

6.4.1. Da	alle	Interaktionen	bei	der	BPMN	Visualisierung	analog	zu	Petri-

Netzen	sind,	werden	im	weiteren	nur	Petri-Netze	zur	Demonstration	

verwendet	werden.	

6.4.2. Am	vorhanden	Beispiel	kurz	Petri-Netze	wiederholen	

6.5. Vorstellen	der	Hierarchie	des	Graphen	

6.5.1. Ausklappen	eines	Knoten	

6.5.2. Einklappen	eines	Knoten	

6.5.3. Ausklappen	eines	Knoten	und	all	seiner	Unterknoten	

6.6. 	Vorstellung	des	Kräfte-basierten	Layouts	

6.6.1. Ziehen	der	Enden	

6.6.2. Verschieben	von	Knoten,	sodass	sich	ein	anderes	Layout	bildet	

6.6.3. Einfrieren	von	Knoten	

6.6.3.1. Positionieren	der	eingefrorenen	Knoten	

6.7. 	Darstellung	der	Traces	

6.7.1. Erklärung	der	Notation	

6.7.2. Zwei	Arten	der	Visualisierung	der	Traces	im	Modell	

6.7.3. Filtern	der	Traces	nach	Transitionen	/	Anteil	einer	Verzweigung	an	

Abläufen	

	 	

	 3	

7. Vergleich	des	vorgestellten	Modells	mit	dem	definierten	Modell	

7.1. 	Darstellen	des	erstellen	Modells	im	vorhanden	Modell	

7.2. 	Hinweis	auf	die	Unvollständigkeit	der	Log-Daten	

7.2.1. Daher	auch	nur	Ausschnitt	des	Prozesses	im	erstellten	Modell	

8. Austeilen	des	Fragebogens	

8.1. 	5-7	Minuten	Zeit	zur	Beantwortung	

8.2. 	Warten	bis	alle	fertig	

8.3. 	Hinweis,	dass	bei	Sonstiges	Gedanken	eingetragen	werden	können	die	

bei	der	Diskussion	einfallen	

9. 	Fragen	und	Diskussion	

10. 	Abschluss	und	Danksagung	

A. Anhang: Expertenstudie

A.2. Antworten der Multiple-Choice Fragen

Frage 1

Frage Wie schätzen Sie den Bedarf eines solchen Programmes im Unternehmen ein?
Von 1 (kein Bedarf) bis 5 (sehr hoher Bedarf)

Antworten 5 5 5 4

Mittelwert 4, 75

Standardabweichung 0, 43

Frage 2

Frage Wenn ein solches Programm in ihrem Unternehmen genutzt würde, wie häufig,
denken Sie, würde es verwendet werden?

Antworten Täglich Einmal im Monat Täglich Einmal im Monat

Frage 3

Frage Wie sehr würde ein solches Programm Sie bei ihren jetzigen Tätigkeiten unterstützen?
Von 1 (keine Unterstützung) bis 5 (starke Unterstützung)

Antworten 3 3 5 4

Mittelwert 3, 75

Standardabweichung 0, 83

Frage 4

Frage Wie beurteilen Sie die Plausibilität der Prozessmodelle? Bedenken Sie dabei, dass
nicht alle Aufrufe von Services geloggt werden.
Von 1 (gar nicht plausibel) bis 5 (komplett plausibel)

Antworten 4 3,5 4 4

Mittelwert 3, 88

Standardabweichung 0, 22

90

A.2. Antworten der Multiple-Choice Fragen

Frage 5

Frage Wie sehr unterstützt die textuelle Auflistung der Traces die Plausibilität?
Von 1 (gar nicht) bis 5 (sehr stark)

Antworten 3 5 3 2

Mittelwert 3, 25

Standardabweichung 1, 09

Frage 6

Frage Wie sehr unterstützt die visuelle Darstellung der Traces der Plausibilität?
Von 1 (gar nicht) bis 5 (sehr stark)

Antworten 5 5 5 1

Mittelwert 4, 73

Standardabweichung 1, 73

Frage 7

Frage Wie sehr hilft die visuelle Darstellung der Traces dem Verständnis des Modells?
Von 1 (gar nicht) bis 5 (sehr stark)

Antworten 5 5 5 5

Mittelwert 5

Standardabweichung 0

Frage 8

Frage Wie übersichtlich finden Sie die Darstellung der Graphen?
Von 1 (komplett unübersichtlich) bis 5 (sehr übersichtlich)

Antworten 4 3,5 4 5

Mittelwert 4, 13

Standardabweichung 0, 54

91

A. Anhang: Expertenstudie

Frage 9

Frage Wie ansprechend finden Sie die interaktive Darstellung der kräftebasierten Layouts
(Bewegung der Elemente in Echtzeit)?
Von 1 (sehr störend) bis 5 (sehr ansprechend)

Antworten 5 3,5 5 5

Mittelwert 5, 63

Standardabweichung 0, 65

Frage 10

Frage Denken Sie, dass bestehende Systeme die Funktionalität dieses Programms schon
abdecken?
Von 1 (keine Funktionalität ist bereits abgedeckt) bis 5 (die Funktionalität ist vollständig
abgedeckt)

Antworten 3 2 3 2

Mittelwert 2, 5

Standardabweichung 0, 5

Frage 11

Frage Wie schätzen Sie den Nutzen des Programmes ein, um Prozessabweichungen zu
erkennen?
Von 1 (kein Nutzen) bis 5 (sehr großer Nutzen)

Antworten 4 5 4 5

Mittelwert 4, 5

Standardabweichung 0, 5

92

A.2. Antworten der Multiple-Choice Fragen

Frage 12

Frage Wie schätzen Sie den Nutzen des Programmes zur Dokumentation von Prozessen
ein?
Von 1 (kein Nutzen) bis 5 (sehr großer Nutzen)

Antworten 4 4 4 5

Mittelwert 4, 25

Standardabweichung 0, 43

Frage 13

Frage Wie schätzen Sie den Nutzen des Programmes für die agile Entwicklung von Web
Services?
Von 1 (kein Nutzen) bis 5 (sehr großer Nutzen)

Antworten 2 4 3 4

Mittelwert 3, 5

Standardabweichung 0, 83

93

Literaturverzeichnis

[ARW+07] W. M. van der Aalst, H. A. Reijers, A. J. Weijters, B. F. van Dongen, A. A.
De Medeiros, M. Song, H. Verbeek. Business process mining: An industri-
al application. Information Systems, 32(5):713–732, 2007. (Zitiert auf den
Seiten 40 und 42)

[AV08] W. M. van der Aalst, H. E. Verbeek. Process Mining in Web Services: The
WebSphere Case. IEEE Data Eng. Bull., 31(3):45–48, 2008. (Zitiert auf Seite 43)

[AWM04] W. Van der Aalst, T. Weijters, L. Maruster. Workflow mining: Discovering
process models from event logs. Knowledge and Data Engineering, IEEE
Transactions on, 16(9):1128–1142, 2004. (Zitiert auf den Seiten 30, 32 und 40)

[bea] BeanShell (Version vom 05.09.2015). URL https://en.wikipedia.org/wik

i/BeanShell. (Zitiert auf Seite 63)

[BH86] J. Barnes, P. Hut. A hierarchical O (N log N) force-calculation algorithm. 1986.
(Zitiert auf Seite 40)

[bpm11] BPMN 2.0, 2011. URL http://www.omg.org/spec/BPMN/2.0/. (Zitiert auf
Seite 21)

[BS07] T. Bayer, D. M. Sohn. REST Web Services–. Eine Einfuehrung (November 2002)
http://www. oio. de/public/xml/rest-webservices. pdf, 2007. (Zitiert auf Seite 54)

[CW98] J. E. Cook, A. L. Wolf. Discovering models of software processes from event-
based data. ACM Transactions on Software Engineering and Methodology
(TOSEM), 7(3):215–249, 1998. (Zitiert auf Seite 44)

[d3215] Force Layout, 2015. URL https://github.com/mbostock/d3/wiki/Force-
Layout. (Zitiert auf Seite 40)

[DMV+05] B. F. van Dongen, A. K. A. de Medeiros, H. Verbeek, A. Weijters, W. M. Van
Der Aalst. The ProM framework: A new era in process mining tool support. In
Applications and Theory of Petri Nets 2005, S. 444–454. Springer, 2005. (Zitiert
auf den Seiten 37 und 45)

[Dwy01] T. Dwyer. Three dimensional UML using force directed layout. In Proceedings
of the 2001 Asia-Pacific symposium on Information visualisation-Volume 9, S.
77–85. Australian Computer Society, Inc., 2001. (Zitiert auf Seite 44)

95

https://en.wikipedia.org/wiki/BeanShell
https://en.wikipedia.org/wiki/BeanShell
http://www.omg.org/spec/BPMN/2.0/
https://github.com/mbostock/d3/wiki/Force-Layout
https://github.com/mbostock/d3/wiki/Force-Layout

Literaturverzeichnis

[ES15] A. E. Eiben, J. E. Smith. Introduction to Evolutionary Computing. Springer
Berlin Heidelberg, 2015. (Zitiert auf den Seiten 35 und 36)

[FR91] T. M. Fruchterman, E. M. Reingold. Graph drawing by force-directed place-
ment. 1991. (Zitiert auf den Seiten 37 und 39)

[GV14] C. W. Günther, E. Verbeek. XES - Standard Definition, 2014. URL http://www.
xes-standard.org/_media/xes/xesstandarddefinition-2.0.pdf. (Zi-
tiert auf den Seiten 26 und 27)

[luc15] Apache Lucene, 2015. URL https://lucene.apache.org/core/. (Zitiert
auf Seite 23)

[MAW03] A. K. A. de Medeiros, W. M. van der Aalst, A. Weijters. Workflow mining:
Current status and future directions. In On the move to meaningful internet
systems 2003: Coopis, doa, and odbase, S. 389–406. Springer, 2003. (Zitiert auf
Seite 34)

[mbo11] Collapsible Force Layout, 2011. URL http://bl.ocks.org/mbostock/106

2288. (Zitiert auf Seite 41)

[mbo12] Sticky Force Layout, 2012. URL http://bl.ocks.org/mbostock/3750558.
(Zitiert auf Seite 41)

[MWA07] A. K. A. de Medeiros, A. J. Weijters, W. M. van der Aalst. Genetic process
mining: an experimental evaluation. Data Mining and Knowledge Discovery,
14(2):245–304, 2007. (Zitiert auf den Seiten 37 und 42)

[Pet62] C. A. Petri. Kommunikation mit automaten. 1962. (Zitiert auf Seite 14)

[pro15] Tutorial: Automating Process Mining with ProM’s Command Line In-
terface, 2015. URL https://dirksmetric.wordpress.com/2015/03/11

/tutorial-automating-process-mining-with-proms-command-line-

interface/. (Zitiert auf Seite 63)

[Rei85] W. Reisig. Petri nets: an introduction, Band 4. Springer Science & Business
Media, 1985. (Zitiert auf Seite 16)

[VDA11] W. Van Der Aalst. Process mining: discovery, conformance and enhancement of
business processes. Springer Science & Business Media, 2011. (Zitiert auf den
Seiten 16, 17, 18, 19, 20, 24, 25, 26, 27, 28, 30, 33, 40, 44 und 51)

[VDA13] W. Van Der Aalst. Service mining: Using process mining to discover, check,
and improve service behavior. Services Computing, IEEE Transactions on,
6(4):525–535, 2013. (Zitiert auf den Seiten 42 und 43)

96

http://www.xes-standard.org/_media/xes/xesstandarddefinition-2.0.pdf
http://www.xes-standard.org/_media/xes/xesstandarddefinition-2.0.pdf
https://lucene.apache.org/core/
http://bl.ocks.org/mbostock/1062288
http://bl.ocks.org/mbostock/1062288
http://bl.ocks.org/mbostock/3750558
https://dirksmetric.wordpress.com/2015/03/11/tutorial-automating-process-mining-with-proms-command-line-interface/
https://dirksmetric.wordpress.com/2015/03/11/tutorial-automating-process-mining-with-proms-command-line-interface/
https://dirksmetric.wordpress.com/2015/03/11/tutorial-automating-process-mining-with-proms-command-line-interface/

Literaturverzeichnis

[VDAAM+12] W. Van Der Aalst, A. Adriansyah, A. K. A. de Medeiros, F. Arcieri, T. Baier,
T. Blickle, J. C. Bose, P. van den Brand, R. Brandtjen, J. Buijs, et al. Process
mining manifesto. In Business process management workshops, S. 169–194.
Springer, 2012. (Zitiert auf den Seiten 52 und 73)

[WA03] A. Weijters, W. M. Van der Aalst. Rediscovering workflow models from
event-based data using little thumb. Integrated Computer-Aided Engineering,
10(2):151–162, 2003. (Zitiert auf Seite 40)

[WF94] S. Wasserman, K. Faust. Social network analysis: Methods and applications,
Band 8. Cambridge university press, 1994. (Zitiert auf Seite 24)

[wik15a] Coulomsches Gesetz, 2015. URL https://de.wikipedia.org/wiki/Coul

ombsches_Gesetz. (Zitiert auf Seite 39)

[wik15b] Hookesches Gesetz, 2015. URL https://de.wikipedia.org/wiki/Hookes

ches_Gesetz. (Zitiert auf Seite 39)

Alle URLs wurden zuletzt am 20. 10. 2015 geprüft.

97

https://de.wikipedia.org/wiki/Coulombsches_Gesetz
https://de.wikipedia.org/wiki/Coulombsches_Gesetz
https://de.wikipedia.org/wiki/Hookesches_Gesetz
https://de.wikipedia.org/wiki/Hookesches_Gesetz

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wörtlich oder sinngemäß aus anderen Wer-
ken übernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Prüfungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollständig
veröffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

	1 Einleitung und Aufgabenstellung
	1.1 Situation
	1.2 Aufgabe
	1.3 Lösungsansatz
	1.4 Gliederung

	2 Grundlagen
	2.1 Prozessmodellierung
	2.2 Petri-Netze
	2.2.1 Grafische Repräsentation
	2.2.2 Mathematische Definition und Notation
	2.2.3 Workflow-Netze

	2.3 Business Process Model and Notation (BPMN)
	2.3.1 BPMN-Elemente

	2.4 Information Retrieval
	2.5 Process-Mining
	2.5.1 Data-Mining
	2.5.2 Logs, Traces und Events
	2.5.3 Extensible Event Stream (XES)

	2.6 Process-Discovery
	2.6.1 Qualitätsindikatoren
	2.6.2 -Algorithmus
	2.6.3 Grenzen des -Algorithmus
	2.6.4 Evolutionärer Ansatz

	2.7 Visualisierung von Graphen
	2.7.1 Kräftebasiertes Layout

	2.8 Verwandte Arbeiten

	3 Konzept
	3.1 Vorverarbeitung der Logdaten
	3.2 Process-Mining
	3.3 Visualisierung und visuelle Analyse
	3.4 Hierarchisierung der Traces und der Modelle
	3.4.1 Bezeichnerkonvention der Hierarchie
	3.4.2 Vorteile
	3.4.3 Nutzung der Hierarchie in der Process-Discovery

	4 Implementierung
	4.1 Ausgangssituation und Daten
	4.1.1 Das Anwendungssystem
	4.1.2 Elasticsearch
	4.1.3 Tracking-ID

	4.2 Architektur
	4.3 REST-Schnittstelle
	4.3.1 Endpunkt zum Erstellen eines Logs
	4.3.2 Endpunkte zur Verwaltung der Dateien
	4.3.3 Endpunkte zur Process-Discovery
	4.3.4 Endpunkte für die Graphen der Modelle

	4.4 Erstellen der Traces
	4.5 Mining der Modelle
	4.6 Besonderheiten der Hierarchisierung
	4.6.1 Hierarchie in der Erstellung der Traces

	4.7 Visualisierung von Petri-Netzen und BPMN
	4.7.1 Interaktion mit der Visualisierung des Graphen

	4.8 Hierarchie in der Visualisierung der Modelle
	4.9 Anzeigen des zugrundeliegenden Logs
	4.10 Visualisierung von Traces in einem Model

	5 Evaluation durch Expertenstudie
	5.1 Durchführung der Expertenstudie
	5.2 Ergebnisse der Expertenbefragung
	5.2.1 Analyse der Multiple-Choice-Fragen
	5.2.2 Analyse der Diskussion und Freitextfragen

	6 Fazit und Ausblick
	A Anhang: Expertenstudie
	A.1 Dokumente der Expertenbefragung
	A.2 Antworten der Multiple-Choice Fragen

	Literaturverzeichnis

