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Kurzfassung

Eye-Tracking gewann als Hilfsmittel zur Evaluation von Benutzerschnittstellen und Visualisierun-
gen in den letzten Jahren stets an Beliebtheit. Ein Vergleich der Losungsstrategien verschiedener
Personen kann anhand der Blickpfade, auch Scanpaths genannt, durchgefiithrt werden. Fiir diese
Aufgabe fehlt zurzeit noch eine optimale Methode. Bereits existierende Arbeiten verwenden unter
anderem Algorithmen zum String-Vergleich, um die Ahnlichkeit zwischen Scanpaths zu ermitteln.
Diese Algorithmen konnen durch Parameter beeinflusst werden. Auch eine Vorverarbeitung der
Blickpfade ist durch Methoden mit weiteren Parametern moglich. Angesichts der Vielzahl von denk-
baren Kombinationen ist eine Auswahl der optimalen Parameter schwer. In dieser Arbeit werden
unterschiedliche Ansétze fiir den Vergleich von Scanpaths untersucht. Dazu gehoren unter anderem
die Levenshtein-Distanz und der Algorithmus von Needleman und Wunsch, die einen Wert fiir die
Ahnlichkeit von Strings berechnen. Fiir diese Ansitze werden Erweiterungen zur Vorverarbeitung
der Scanpaths und Einbeziehung weiterer Informationen in den Vergleich erarbeitet. Eine Evaluation
in drei Versuchen mit generierten und real aufgezeichneten Eye-Tracking-Daten zeigt anschlieffend,
welche der Parameterkonfigurationen sich in der Praxis bewahren.

Abstract

Eye tracking has recently become a popular technique for evaluating user interfaces and visualizations.
A comparison of strategies used by participants to solve a task can be done using so-called scanpaths.
There is still a need for an optimal method for the comparison of those paths. Previous approaches
often use string comparison algorithms to determine the similarity between scanpaths. Various
parameters can affect the behavoiur of those algorithms. Additionally, methods requiring even more
parameters can pre-process scanpaths. Due to the number of possible combinations, choosing optimal
parameters is a non-trivial task. Different existing approaches dealing with scanpath comparison are
examined in this work, including the string comparison algorithms from Levenshtein and Needleman-
Wunsch. Possible extensions regarding pre-processing and the inclusion of further information into
the comparison are developed. The results are then evaluated in three experiments using generated
and real world eye tracking data to demonstrate the performance of different parameter configurations
in practical data analysis.
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1 Einleitung

Eye-Tracking ist zu einer beliebten Technik in Industrie und Forschung geworden. Die Erfassung und
Analyse der Augenbewegungen von Studienteilnehmern erméglicht unter anderem Riickschliisse auf
die von ihnen verwendete Strategie bei der Losung einer Aufgabe. Untersucht werden kann dabei
beispielsweise, welche Objekte wann, wie lange und in welcher Reihenfolge angeschaut wurden.
Eine langer andauernde Betrachtung eines Objektes kann sowohl Interesse als auch Probleme beim
Verstiandnis widerspiegeln.

Aufschlussreich ist in vielen Fallen der Vergleich von mehreren Probanden beziiglich ihrer Losungs-
strategie. Statt einer bloflen Gegeniiberstellung von statistischen Daten zur Verteilung der visuellen
Aufmerksambkeit iiber Zeit und Raum, konnen auch sogenannte Scanpaths verglichen werden (siehe
Abb. 1.1). Diese beschreiben den Pfad, den der Blick einer Person auf einem betrachteten Stimulus
genommen hat, Blickpunkt fiir Blickpunkt. Es wurden bereits einige Techniken zum Vergleich dieser
Pfade entwickelt, jedoch besteht weiterhin Bedarf nach einer Methode zur optimalen Ermittlung der
Ahnlichkeit zwischen Scanpaths und damit der Strategie zweier Personen. Keiner der existierenden
Ansitze kann in jeder Situation tiberzeugen.

Abbildung 1.1: Beispiel eines Scanpaths, dargestellt durch Kreise fiir Fixationen (Blickpunkte) und
Linien fiir Sakkaden (Augenbewegungen). Die Grofie der Kreise visualisiert die
Fixationsdauer.



1 Einleitung

Ziel dieser Arbeit ist eine Gegeniiberstellung der vorhandenen Vergleichsmetriken sowie der Mog-
lichkeiten, diese anzupassen oder zu erweitern. Dabei kommen unterschiedliche, teils datenabhangige
Parameter zum Einsatz. In einer Evaluation soll herausgefunden werden, welche Metrik unter welcher
Konfiguration am besten fiir den Vergleich von Scanpaths geeignet ist.

Diese Ausarbeitung ist in acht Kapitel gegliedert. Kapitel 2 und 3 behandeln die zum Verstidndnis
benoétigten Grundlagen sowie die Aufgabenstellung und den groben Lésungsansatz. Danach werden
in Kapitel 4 bereits vorhandene, thematisch verwandte Arbeiten vorgestellt. Im fiinften Kapitel
wird das fiir diese Arbeit entwickelte Konzept erlautert. Die beiden folgenden Kapitel beschaftigen
sich mit der Implementierung und Evaluation eines Prototypen. Zum Schluss werden die dabei
entstandenen Ergebnisse im letzten Kapitel zusammengefasst und ein Ausblick auf mogliche weitere
Forschungsarbeiten gezeigt.
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2 Grundlagen

Dieses Kapitel behandelt die grundlegenden Themen dieser Arbeit, die fiir das Verstandnis der
darauffolgenden Kapitel relevant sind. Zunichst wird die Funktion des Auges und seiner Bewegungen
erlautert. Im zweiten Abschnitt folgen einige Grundlagen zum Eye-Tracking. Daraufhin werden
Ansitze zur Bestimmung der Ahnlichkeit von Scanpaths oder Zeichenketten vorgestellt. AbschlieBend
wird auf die Themen Clustering und Visualisierung eingegangen.

2.1 Das menschliche Auge

Die optische Wahrnehmung ist der Primérsinn des Menschen mit einem Anteil von 95 Prozent an
den von allen Sinnesorganen gesammelten Informationen [52]. In den folgenden Abschnitten werden
der Aufbau, die Funktionsweise und die verschiedenen Bewegungstypen des menschlichen Auges
erlautert.

2.1.1 Anatomie und Funktionsweise

Das menschliche Auge besteht im Wesentlichen aus dem von Muskeln bewegten Augapfel, der
wiederum Pupille, Glaskoérper und Netzhaut, auch Retina genannt, enthélt. Eine Darstellung dieser
anatomischen Bestandteile ist in Abb. 2.1 dargestellt. Um ein Objekt sehen zu kénnen, muss dieses
Licht abstrahlen oder reflektieren. Die vom Auge wahrgenommenen Lichtstrahlen gehen dann vom
Objekt aus durch die Offnung der Pupille. Um das Objekt scharfzustellen, wird die Linse von den
sie umgebenden Muskeln so verformt, dass sie die Strahlen auf einen Bereich auf der Netzhaut
projiziert. Die Netzhaut enthélt zwei Arten von lichtempfindlichen Sinneszellen, die sogenannten
Stidbchen und Zapfen. Stabchen kénnen schwaches Licht wahrnehmen, wodurch sie sich, im Gegensatz
zu den Zapfen, zum Sehen bei Dunkelheit eignen. Mit ihnen kann jedoch nur ein monochromes
Graustufenbild der Umgebung wahrgenommen werden. Bei ausreichendem Licht verbessert sich die
Wahrnehmung daher stark durch die von den Zapfen aufgenommenen Farbinformationen. Es gibt
drei Varianten von Zapfen, die fiir jeweils unterschiedliche Lichtspektren empfindlich sind. Dabei
entsprechen die Zapfentypen S, M und L in etwa jeweils den Farben Blau, Griin und Rot. Der gréfite
Teil der Netzhaut setzt sich fast ausschlie8lich aus Stdbchen und nur vereinzelt aus Zapfen zusammen,
wodurch hier kein Farbsehen moéglich ist. Hierhin wird durch die Linse das sogenannte periphere
Blickfeld projiziert. Dies ist der Bereich des gesehenen Bildes, der nur unscharf wahrgenommen
wird. Er macht den Hauptteil des Sichtbereiches aus. Scharfes Sehen findet hingegen nur in einem
kleinen Bereich der Netzhaut statt. Er wird als Fovea Centralis oder gelber Fleck bezeichnet. In einem
Umkreis von rund 1,5 Millimeter befinden sich hier keine Stabchen, dafiir etwa 140.000 Zapfen pro
Quadratmillimeter [37, 44]. Durch diese hohe Dichte an Sinneszellen ergibt sich eine entsprechend
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2 Grundlagen
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Abbildung 2.1: Die Anatomie des menschlichen Auges. Hier ist ein horizontaler Schnitt durch
den rechten Augapfel abgebildet, wobei die Blickrichtung nach oben zeigt. Hinter
Hornhaut (Cornea) und Pupille befindet sich die Linse, die das eintreffende Licht auf
die Netzhaut (Retina) projiziert. Diese enthilt lichtempfindliche Sinneszellen. Der
Bereich der hochsten Auflésung befindet sich in der Fovea. An der Stelle, an der der
Sehnerv die Netzhaut durchlauft, wird hingegen kein Licht wahrgenommen [47].

hohe Bildauflésung. Wie relevant dieser Bereich fiir die Wahrnehmung ist, zeigt sich auch darin,
dass ungefihr die Halfte der Nervenfasern des Sehnervs ausschlie8lich die dort aufgenommenen
Informationen weiterleiten [16]. Um ein grof8eres Bild scharf wahrnehmen zu kénnen, muss jedes
markante Detail, vor allem Punkte und Linien, vom Auge so fokussiert werden, dass das von ihm
ausgehende Licht in die Fovea gelangt. Um dies zu erreichen, wird der komplette Augapfel durch drei
Muskelpaare um Nick-, Gier- und Rollachse gedreht [15]. Dieser Bewegungsapparat ist in Abb. 2.2
dargestellt.

2.1.2 Metriken zur Augenbewegung

Durch die Bewegungen, die das Auge zum Fokussieren verschiedener Punkte im Raum vornimmt,
ergeben sich verschiedene Ereignisse. Diese werden im Folgenden aufgefiihrt. Ein Vergleich der
typischerweise vorkommenden Werte fiir Dauer, Amplitude und Geschwindigkeit ist in der Tabelle 2.1
zu finden.
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2.1 Das menschliche Auge

Abbildung 2.2: Der Bewegungsapparat des Auges. Drei Muskelpaare steuern die Bewegung des

Augapfels, um schnell und prazise einen Blickpunkt nach dem anderen zu fokussieren.
Vom Augapfel aus nach rechts verlaufen die Muskeln zur Neigung der Blickrichtung
nach oben und unten. Der Muskel, der in dieser Graphik vor dem Augapfel zu sehen
ist und sein Konterpart auf der gegeniiberliegenden Seite neigen den Blick seitwirts.
Die verbleibenden, diagonalen Muskeln rollen den Augapfel um die Blickachse herum.
Das Bild wurde iibernommen von P. J. Lynch [25] und zugeschnitten.

Sakkade. Als Sakkade wird der Sprung von einem Fokuspunkt zum nachsten bezeichnet. Sie ist

die schnellste Bewegung, die der Mensch ausfithren kann. Ihre Dauer betrigt etwa 30 bis 80
Millisekunden. Um den angezielten Punkt zu fokussieren, sind oft mehrere aufeinanderfolgende
Sakkaden notwendig. Ein Grund dafiir ist die Tatsache, dass selten der gerade Weg genommen
wird und sich wahrend einer durchgefiihrten Sakkade das Zielobjekt relativ zum Kopf des Be-
trachters bewegt haben kann. Weiterhin kommt es oft vor, dass iiber das Ziel hinaus geschossen
wird, beispielsweise bei Sakkaden iiber grofie Abstande. Dieser Fehler wird dann durch als
Glissaden bezeichnete Korrektur-Sakkaden berichtigt. Wahrend eine Sakkade stattfindet, ist die
Wahrnehmung unterbrochen, sodass der Mensch fiir diesen kurzen Moment blind ist.

Fixation. Eines der wichtigsten Ereignisse ist die Fixation. Diese etwas irrefithrende Bezeichnung

Drift.

steht fiir einen Moment, in dem das Auge zwar nicht komplett stillsteht, aber immerhin innerhalb
eines gewissen Bereichs verweilt. Fixationen kénnen kurz sein, etwa in der Groflenordnung von
10 Millisekunden, sich aber auch iiber eine Zeitspanne von mehreren Sekunden erstrecken [15].
In der Regel findet wihrend einer Fixation die Aufnahme von visueller Information durch das
Auge in das Gehirn statt.

Drifts finden ebenfalls wahrend Fixationen statt. Sie bezeichnen ein langsames Abgleiten des
Auges von seinem eigentlich anvisierten Ziel.

Mikrosakkade. Um nicht zu weit von der urspriinglich fixierten Stelle abzudriften, korrigiert der

Bewegungsapparat des Auges die durch Drifts entstandenen Abweichungen mittels Mikrosak-
kaden.

Verfolgung (Smooth Pursuit). Folgt das Auge einem sich eher langsam bewegenden Objekt, ge-

schieht dies durch einen sogenannten Smooth Pursuit. Im Gegensatz zu Sakkaden ist hier eine
Bewegung des fixierten Objekts eine notwendige Voraussetzung.

13



2 Grundlagen

Typ Dauer (ms) Amplitude Geschwindigkeit
Fixation 200-300 - -

Sakkade 30-80 4-20° 30-500°/s
Glissade 10-40 0.5-2° 20-140°/s
Smooth Pursuit - - 10-30°/s
Mikrosakkade  10-30 10-40 15-50°/s

Beben - <1 20'/s (Spitze)
Drift 200-1000 1-60 6-25'/s

Tabelle 2.1: Vergleich von typischen Werten der verschiedenen Metriken fiir Augenbewegungen.
Riumliche Daten sind hier in visuellen Grad (°) oder Minuten (, 60'=1°) angegeben. Die
Daten wurden iibernommen von Holmqvist, Nystrom et al. [15].

2.2 Eye-Tracking

Eye-Tracking, zu deutsch in etwa Blickerfassung, bezeichnet die Aufnahme von Augenpositionen
und -bewegungen. In diesem Abschnitt sollen der Nutzen und die fiir die Durchfithrung von Studien
verwendeten Techniken aufgezeigt werden.

2.2.1 Motivation und Anwendungsmaglichkeiten

Es wird bei der Durchfithrung von Eye-Tracking-Studien im Allgemeinen davon ausgegangen, dass die
fixierte Stelle eines Bildes auch derjenigen Information entspricht, mit dem das Gehirn des Probanden
gerade beschaftigt ist. Diese Annahme wird auch als Eye-Mind-Hypothese bezeichnet [18]. Ein Problem
bei der Analyse von Eye-Tracking-Daten stellt daher das periphere Sehen dar. Teilweise entspricht
die gerade fixierte Stelle des Stimulus nicht der wahrgenommenen Information. Dies kann auch der
Fall sein, wenn der Betrachter zwar auf einen Punkt fixiert, gleichzeitig aber gedanklich mit etwas
anderem beschéftigt ist.

Trotz dieser Schwiche hat sich Eye-Tracking als Indikator fiir gedankliche Strategien in der Forschung
bewihrt. Von Studien zur Benutzerfreundlichkeit, etwa von Software und Automobilarmaturen, bis
hin zur Marktforschung gibt es weitreichende Anwendungsgebiete [9].

2.2.2 Stimulus

Als Stimulus wird beim Eye-Tracking das Bild bezeichnet, dass vom Probanden wihrend einer Studie
gesehen wird. Dabei kann es sich unter anderem um eine Photographie, ein Video, eine Benutzer-
oberflache oder die reale Umgebung handeln. In vielen Fillen, etwa bei Usability-Studien, kann der
Proband mit der Quelle des Stimulus interagieren und diesen damit verandern. Eine Aufzeichnung
des vom Probanden gesehenen Bildes erleichtert die Analyse und Visualisierung der gesammelten
Daten.
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2.2 Eye-Tracking

2.2.3 Techniken

Wihrend die ersten Eye-Tracker noch mit Fotoplatten arbeiteten, wird bei modernen Geréten eine
Kamera in Kombination mit infraroter Beleuchtung genutzt, um ein Bild der Augen aufzuzeichnen.
Dabei wird das unterschiedliche Reflexionsverhalten der von aufien sichtbaren Augenpartien genutzt,
um die Pupille und die Hornhaut zu identifizieren. Anschlieend kann durch deren Position die
Blickrichtung berechnet werden. Vor der Durchfithrung einer Studie muss das Gerét in der Regel erst
fir jeden Probanden kalibriert werden. Dabei werden oft nacheinander mehrere Punkte angezeigt,
die vom Betrachter zu fixieren sind.

Bei der Auswertung des Kamerabildes und anderer Sensoren, zum Beispiel Pulsmessgerite oder
Elektroenzephalographen, konnen noch weitere Daten gesammelt werden. Dazu gehort die Erkennung
geschlossener Augen, die zur Vermeidung fehlerhaft erkannter Fixationen notwendig ist. Weiterhin
kann die Grofie der Pupille gemessen werden, welche unter anderem ein Indikator fiir Erschopfung
oder mentale Belastung ist. Manche Eye-Tracker werten lediglich die Daten fiir ein Auge aus, wahrend
andere binokular messen, um eine héhere Genauigkeit zu erreichen, etwa im dreidimensionalen
Raum. Dabei muss beachtet werden, dass die Blickrichtung des einen Auges von der des anderen
leicht abweichen kann [3].

User camera

socaker | S W

Ventilation Eye tracking sensors

r [ 1

Abbildung 2.3: Schematische Darstellung eines Bildschirm-basierten Eye-Trackers. Dieses Modell
besitzt eine integrierte Kamera am oberen Rand zur Aufnahme des Benutzers. Am
unteren Rand befinden sich aufler den verbauten Lautsprechern die eigentlichen
Eye-Tracking Sensoren, also die Kameras, die fiir die Aufzeichnung der Augenbe-
wegungen zustandig sind. Eine Liiftung schiitzt die Hardware vor Uberhitzung. Die
Abbildung entstammt dem Benutzerhandbuch des gezeigten Gerites und wurde
leicht bearbeitet [41].
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2 Grundlagen

Usability-Studien fiir Software werden oft unter Verwendung eines Bildschirm-basierten Eye-Trackers
durchgefiihrt, welcher in Abb. 2.3 veranschaulicht wird. Er zeigt den jeweiligen Stimulus an und
enthélt andererseits auch die Kamera, sodass eine Abstimmung zwischen den Positionen von Anzeige-
und Aufzeichnungsgerit nur einmalig vom Hersteller vorgenommen werden muss. Allerdings sollten
Bewegungen des Probanden vermieden werden und der Abstand zwischen Augen und Bildschirm
konstant bleiben.

So genannte Head-Mounted Eye-Tracker erlauben es dem Probanden, seinen Kopf und sich selbst frei zu
bewegen. Dabei wird in der Regel zusétzlich ein Video von der gesehenen Umgebung aufgenommen,
um Fixationen spater darauf abbilden zu konnen. Hier kann es auch notwendig sein, die Ausrichtung
des Kopfes im Raum zu erfassen, um in Kombination mit den Blickrichtungen der Augen das fixierte
Objekt zu berechnen.

Die Qualitdt der Daten héngt stark von der Leistungsfihigkeit der Hard- und Software ab. Die
Abtastfrequenz von Eye-Trackern liegt je nach Modell zwischen 25 und mehreren tausend Hertz. Dem
Nyquist-Shannon Sampling Theorem folgend muss die Samplingfrequenz mindestens dem Doppelten
der maximalen Signalfrequenz entsprechen, um Aliasing-Effekte zu vermeiden. So ist nach einer
Aufzeichnung beispielsweise nur bekannt, zwischen welchen Samples eine Sakkade begonnen hat,
der Messfehler ist also umgekehrt proportional zur Samplingfrequenz [15]. Nach oder auch schon
wiahrend der Aufnahme werden die Rohdaten mit den einzelnen Blickpunkten weiterverarbeitet.
Mit Hilfe von Thresholding wird abgegrenzt, welche davon zu welcher Fixation gehéren und wann
Sakkaden stattgefunden haben.

2.2.4 Scanpath

Der Begrift Scanpath wurde 1971 von David Noton und Lawrence Stark eingefithrt, um das Seh-
verhalten von Probanden bei der Wahrnehmung von Mustern zu beschreiben [31]. Er bezeichnet
eine Folge von nach einander ausgefiithrten Fixationen und den zwischen ihnen liegenden Sakkaden
bei der Wahrnehmung von visuellen Stimuli. Es hatte sich herausgestellt, dass ein Betrachter bei
der wiederholten Prasentation eines Bildes dessen Details jeweils in einer dhnlichen Reihenfolge
fixierte. Dagegen zeigten verschiedene Probanden bei dem selben Bild unterschiedliche Betrachtungs-
strategien. Auch zwischen unterschiedlichen Bildern, die von der selben Person gesehen wurden,
ergaben sich jeweils andere Scanpaths.

Oft werden Scanpaths durch ihre Fixationen, beziehungsweise deren Positionen, gespeichert und
dargestellt. Dabei werden Fixationen durch Kreise oder Symbole représentiert, die durch den Sakkaden
entsprechende Linien verbunden sind, wie in Abb. 2.4 und 2.5 gezeigt. Eine zusatzliche Visualisie-
rung der Fixationsdauer kann durch eine entsprechende Grofie der Kreisflichen umgesetzt werden.
Wurde ein Stimulus in Bereiche, wie etwa Areas Of Interest, eingeteilt, kann die Position auf den
jeweiligen Bereich, in dem die Fixation liegt, verallgemeinert werden (siehe nachsten Abschnitt).
Andere Repriasentationsarten sind zum Beispiel Sequenzen von Sakkadenwinkeln und -distanzen
oder Fixationsdauern [10].
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2.2 Eye-Tracking

2.2.5 Area of Interest

Um die Analyse von Eye-Tracking-Daten zu vereinfachen, kann der visuelle Stimulus in Bereiche
aufgeteilt werden. Diese werden oft als Area Of Interest, kurz AOL oder Region Of Interest, bezie-
hungsweise ROI bezeichnet.

Mit ihrer Hilfe ist es moglich, die Positionen von Vorkommnissen, vor allem von Fixationen, einem Teil
des gesehenen Bildes zuzuordnen. Dieser Schritt verringert die Komplexitat der gesammelten Daten
und vereinfacht damit die weitere Analyse. Durch die Diskretisierung, beziehungsweise rdaumliches
Downsampling, ergibt sich allerdings auch das Problem, dass weit auseinander liegende Fixationen
innerhalb der selben AOI woméglich gleich behandelt werden. Wahrenddessen kénnten Fixationen,
die trotz dhnlicher Position zu verschiedenen AOIs gehéren, als unterschiedlich betrachtet werden.

Fiir die eigentliche Aufteilung eines Stimulus in AQOIs gibt es verschiedene Ansétze. Der erste besteht
darin, ein Gitter iiber den Stimulus zu legen, was zu regelméfligen, jeweils gleich grofien Regionen
fihrt. Auch eine manuelle semantische Gliederung des gezeigten Inhalts ist moglich, sofern die
Semantik der Bereiche bekannt und abgrenzbar ist. Eine dritte Moglichkeit ist die automatische
Erzeugung von AOIs durch Attention-Maps oder Clustering, welche in den Abschnitten 2.3.1 und 2.4.1
behandelt. In den zwei folgenden Abschnitten werden die jeweiligen Vor- und Nachteile sowie
mogliche Anwendungsgebiete von gitterformigen und semantischen AOIs aufgefiihrt.

Gitterférmige AOls

Bei dieser Art von AOIs wird der meist rechteckige Stimulus so aufgeteilt, dass sich gleichmafig
verteilte und in ihren Maflen identische Bereiche ergeben, wie Abb. 2.4 zeigt.

Vorteilhaft ist hier vor allem, dass die Erzeugung der AOIs vollig unabhéngig vom Stimulus ist, wo-
durch die Anwendung bei unklarer Semantik oder dynamischen Bilddaten erleichtert wird. Beispiele
fiir Stimuli ohne klar abgrenzbare semantische Bereiche sind Fotografien, Filme oder aufgezeichnete
Bewegungen des Probanden in der realen Welt. Damit eignen sich gitterférmige AOIs auch insbeson-
dere fiir Falle, in denen eine Nutzung von semantischen AOIs problematisch ist. Da die Festlegung
der AOIs automatisch geschieht, wird zudem die Vorbereitung der Analyse vereinfacht, allerdings
muss ein sinnvoller Parameter fiir die Auflosung, also die Grofie der AOIs, gefunden werden.

Semantische AOls

Eine semantische Gliederung des Stimulus ist mit einem gewissen Aufwand verbunden. In vielen Féllen
miussen die jeweiligen Grenzen manuell festgelegt werden, auch wenn es beispielsweise bei HTML-
Dokumenten oder dhnlichen Benutzeroberflachen moglich ist, sie automatisch zu generieren. Abb. 2.5
zeigt eine Webseite mit AOIs iiber den einzelnen Bestandteilen des Layouts und zwei Scanpaths.

Auch bei Fotografien kann durch eine automatische Objekterkennung auf manuelle Arbeit verzichtet
werden, dabei kann jedoch die Qualitat der Ergebnisse leiden. Eine weitere Moglichkeit fiir die
Erzeugung der AOIs ist die Benutzung von Scanpaths und Attention Maps mit Hilfe von Grenzwerten
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Abbildung 2.4: Ein gitterformiges Area-of-Interest-Schema mit durch Buchstaben gekennzeichneten
AOIs ohne dargestellten Stimulus. Dariiber sind zwei Scanpaths zu sehen, die durch
Punkte fiir Fixationen und Linien fiir die dazwischen liegenden Sakkaden visualisiert
sind. Die Pfeile geben dabei die Richtung der Sakkaden und damit die Reihenfolge
der Fixationen an. Die beiden Pfade konnen nach den die Fixationen enthaltenden
AOIs durch die Zeichenketten BETRV (schwarz) und BLJTV (weif}) repréisentiert

Abbildung 2.5: Zwei Scanpaths als Linien tiber einem Stimulus visualisiert. Es handelt sich hier-
bei um eine Webseite, die in semantische AOIs eingeteilt wurde. Beide Scanpaths
starten bei den mit einem Plus markierten Fixationen und entsprechen den aus
AOI-Aufenthalten zusammengesetzten Zeichenketten CCABDFEFF (durchgezogen,
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2.2 Eye-Tracking

oder Clustering, wobei in diesen Fillen die Semantik nur indirekt tiber das Betrachtungsverhalten der
Probanden mit einbezogen wird.

Liegt ein Stimulus vor, bei dem keine klare Abgrenzung zwischen semantisch unterschiedlichen
Bereichen existiert, kann sowohl die automatische, als auch die manuelle Festlegung der AOI Grenzen
problematisch sein. Dies ist auch der Fall, wenn komplexe oder feine Muster enthalten sind. Auch
wenn sich das Bild oft veréindert, ist es oft nicht praktikabel, firr jeden Zeitpunkt oder Frame die
jeweiligen Positionen zu verdndern. Insofern eignet sich dieser Ansatz vor allem fiir klar strukturierte,
semantisch eindeutig zuzuordnende und weitgehend statische Inhalte.

Im Gegensatz zu gitterférmigen AOIs ist die Form hier frei wéhlbar, es sind also auch Ellipsen oder
Polygone einsetzbar. Zusitzlich kénnen sich Uberschneidungen zwischen verschiedenen Bereichen
ergeben, wodurch sich auch semantische Beziehungen darstellen lassen kénnen. Zeigt ein Bild beispiels-
weise mehrere Personen, konnte es sinnvoll sein, fiir jedes Gesicht eine eigene Sub-AOI anzulegen,
die innerhalb der AOI der Person liegt und als deren Kind gekennzeichnet ist. Dies konnte man weiter
fortsetzen und etwa die Augen als dem Gesicht untergeordnete Bereiche festlegen.

Auch eine Gruppierung von AOIs mit dhnlicher Bedeutung ist méglich. Bei obigem Beispiel wire
eine Gruppe fir alle Personen denkbar, sodass bei der spateren Analyse der Daten leicht feststellbar
wird, wann der Proband seinen Fokus auf eine Person gelegt hat, unabhingig davon, welche genau es
war.

Da ein Stimulus selten komplett von AOIs abgedeckt wird, kann eine Whitespace-AOI in Betracht
gezogen werden, die alle Fixationen enthalt, die keiner anderen zugeordnet werden konnten. Dadurch
wird verhindert, dass ein Ubergang als direkt fehlinterpretiert wird, obwohl er nicht unmittelbar
zwischen zwei inhaltsbezogenen Objekten, sondern iiber eine oder mehrere Fixationen im Whitespace
verlief.

AOI Metriken

Ahnlich zu Fixationen und Sakkaden kommen bei der Verwendung von AOIs Ereignisse vor, die bei
der Beschreibung und Analyse des Blickverhaltens auf dem Stimulus niitzlich sind [15]. Abb. 2.6 stellt
die im Folgenden erlduterten Ereignisse graphisch dar.

AOI-Treffer (Hit). Wenn der Blick des Probanden eine bestimmte AOQI fixiert, nachdem direkt voran-
gegangene Fixationen auf3erhalb von ihr stattfanden, entspricht dies einem AOI-Treffer. Ein
erneuter Treffer kann dementsprechend nur auftreten, wenn die AOI verlassen und sie oder
eine andere erneut fixiert wird. Durch geeignete Filter kann festgelegt werden, dass ein Treffer
erst nach einer gewissen Aufenthaltsdauer giiltig wird.

AOIl-Aufenthalt (Dwell oder Gaze). Ein Aufenthalt dauert an, solange alle weiteren Fixationen nach
einem Treffer in der selben AOI landen und endet mit dem Verlassen der AOIL Alle Fixationen
dazwischen werden diesem Aufenthalt zugeordnet, seine Dauer ist die Summe aller enthaltenen
Fixations- und Sakkadendauern und wird als Dwell-Time bezeichnet.
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N

~~
O Stimulus + Blickpunkt @ Trefferfixation
W Objekt © Fixation Aufenthalt
O Aol /7 Sakkade = Ubergang

Abbildung 2.6: Diese Zeichnung zeigt einen Stimulus mit zwei Objekten, die jeweils in einer recht-
eckigen AOI liegen. Nachdem Blickpunkte zu Fixationen und dazwischen liegenden
Sakkaden zusammengefasst wurden, konnen die Ereignisse Treffer, Aufenthalt und
Ubergang festgestellt werden. Treffer werden dabei durch die erste Fixation in einer
neuen AOI definiert, Aufenthalte zusétzlich durch alle weiteren folgenden Fixationen
in der selben AOL Uberginge finden statt, wenn die nichste Fixation in einer anderen
AOI liegt.

AOI-Ubergang (Transition). Ubergiinge finden statt, wenn eine neue Fixation in einer anderen AOI
liegt als die vorherige. So definieren die letzte Fixation der verlassenen AOI und die gerade
stattgefundene Fixation in der neuen AOI gemeinsam einen Ubergang zwischen diesen beiden
AOIs.

2.3 Vergleich von Scanpaths

Fur die Ahnlichkeit mehrerer Scanpaths gibt es verschiedene Kriterien. Generell sollte die allgemeine
Form und Position der Pfade und die zeitliche Reihenfolge der einzelnen Teilpfade iibereinstimmen.
Auch die Dauer der Fixationen sollte nicht zu stark abweichen [7]. Dabei kénnen auch Pfade als
ghnlich betrachtet werden, die bei dhnlicher Form eine unterschiedliche Skalierung haben. Diese
kann sowohl ridumliche, als auch zeitliche Ausmafie betreffen. Hat ein Pfad eine ahnliche Form, aber
den umgekehrten zeitlichen Verlauf, kann er trotzdem als gleichartig angesehen werden. Das ist
dann der Fall, wenn zwei Probanden den selben Pfad betrachtet haben, jedoch in entgegengesetzter
Richtung.

Alle Kriterien konnen auch auf Teilpfade angewandt werden, sodass zwei Scanpaths anhand der
Vorkommen gemeinsamer Muster verglichen werden. Es kann beispielsweise vorkommen, dass bei
der Losung einer Aufgabe eine bestimmte Teilaufgabe mit derselben Strategie gelost wurde, obwohl
sich der Rest der Losung unterscheidet. Hier besteht also eine partielle Ubereinstimmung.
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Abbildung 2.7: Beispiel dreier Attention-Maps, die als Heat-Maps visualisiert wurden. In dieser
Studie wurde die Lesbarkeit von Graph-Layouts untersucht. Rot steht fiir Stellen
mit hoher Aufmerksambkeit, Gelb und Griin fiir geringere und graue Stellen wurden
iiberhaupt nicht betrachtet [34].

In diesem Abschnitt werden verschiedene Ansétze zum Vergleich von Scanpaths vorgestellt und
verglichen. Attention-Maps, Markov-Modelle und Fixations-basierte Ansétze konzentrieren sich auf
raumliche Daten und beziehen zeitliche Informationen nicht oder nur teilweise ein. Vektor- und String-
basierte Ansitze beziehen raumliche und zeitliche Daten ein, auch wenn diese teilweise quantisiert
und dadurch ungenauer werden. In diesem Kapitel werden Vektor-basierte Ansétze nicht behandelt,
ein Beispiel dafiir wurde in MultiMatch [7, 17] umgesetzt, auf das im Abschnitt 4.2 ausfiihrlich
eingegangen wird.

2.3.1 Attention- und Dwell-Maps

Attention-Maps, auch Saliency-Maps genannt, konnen als eine Funktion tiber dem Stimulus betrachtet
werden, die fiir jeden Punkt angibt, wie lange er vom Betrachter fixiert wurde. Zur Visualisierung
bietet sich eine Heat-Map an, ein Beispiel dafiir zeigt Abb. 2.7.

Eine Dwell-Map entspricht einer durch Areas of Interest quantisierten Attention-Map. Sie besteht aus
einer Auflistung aller AOIs mit ihren zugehoérigen summierten Aufenthaltszeiten, also der Zeit, in der
ein Proband diese AOI insgesamt angesehen hat. Mogliche Darstellungen sind etwa eine zweispaltige
Tabelle mit den Bezeichnungen der AOIs in einer Spalte und den Zeiten in der anderen oder eine
Heat-Map je einer einfarbig ausgefiillten Fldche pro Area of Interest.

Durch Bildung der mathematischen Differenz zweier Maps kann die Ahnlichkeit festgestellt werden,
wie in Abb. 2.8 gezeigt [50]. Auflerdem gibt es mit der Kullback-Leibler-Divergenz, der Receiver-
Operating-Characterisitc-Analysis und der Earth-Mover-Distanz [6] noch weitere Methoden zur Be-
rechnung der Ahnlichkeit von Saliency-Maps [22]. Diese Vergleiche betrachten jedoch alle nur die
raumliche Verteilung der Aufmerksamkeit. Zeitbezogene Informationen werden nur in ihrer Summe
betrachtet und sequentielle Daten ignoriert. Es handelt sich also um eine sogenannte No-History-
Analysis [15].
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(c) Attention map difference

Abbildung 2.8: Zwei Attention-Maps (a, b) und ihre Attention-Map-Differenz (c) [7].

2.3.2 Markov-Modelle

Ein probabilistischer Ansatz zum Vergleich mehrerer Probanden sind Markov Modelle. Sie beschreiben
die Ubergangswahrscheinlichkeiten zwischen AOIs und kénnen mehrere Stufen besitzen [15]. Bei
einem Markov-Modell nullter Ordnung entsprechen die Werte denen einer Dwell-Map und stehen
fur die Wahrscheinlichkeit, dass die jeweilige AOI als nachste besucht wird. Wird auch die zuvor
besuchte AOI in Betracht gezogen, entsteht ein Modell erster Ordnung. Mit jeder weiteren Stufe
kommt ein weiterer Ubergang hinzu, allerdings werden Modelle mit einer Ordnung hoher als zwei
auflerst selten zur Analyse von Eye-Tracking-Daten benutzt.

Da hier auch die zeitliche Abfolge eine Rolle spielt, wird dieser Ansatz als Short-History-Analysis
bezeichnet [15].

Eine Full-History-Analysis hingegen muss den vollstdndigen gemessenen Zeitraum mit allen sequenzi-
ellen Informationen miteinbeziehen, vergleicht also zwei oder mehr Scanpaths in ihrer Gesamtheit
von raumlichen und sequenziellen Daten.

2.3.3 Fixations-basierte Ansatze am Beispiel der Mannan-Distanz

Die Mannan-Distanz wurde direkt fiir den Vergleich von Scanpaths entwickelt [26, 27, 28]. Bei dieser
Metrik werden nur raumliche Informationen mit einbezogen, die zeitliche Reihenfolge der Fixationen
und deren Dauer werden also nicht betrachtet [22]. Die Ahnlichkeit wird untersucht, indem fiir alle
Fixationen aus einem Scanpath der Abstand zwischen ihr und der jeweils néchstliegenden im anderen
Scanpath berechnet wird. Dieser Vorgang wird in beide Richtungen, also von beiden Scanpaths
ausgehend durchgefiihrt.
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Zur Gewichtung der Ahnlichkeit werden zufillig erzeugte Scanpaths gleicher Linge genutzt und ein
Ahnlichkeitsindex I berechnet [22]:

1) I, = {1 - 5] x 100

T

Dabei ist D, der Abstand zwischen zwei zufillig generierten Fixationsmengen und D die Distanz
zwischen den zu vergleichenden Scanpaths. Diese Abstinde werden folgendermafien errechnet:

ng 2 ni 2
m 22 ng 3 ity di;

22) D* =
@2) 2ning(a? + b2)  2ning(a® + b2)

Hierbei sind n1,no die Anzahl der Fixationen beider Scanpaths, dy;, d2; stehen fiir den Abstand
zwischen der ¢-ten beziehungsweise j-ten Fixation in einen Scanpath und der am nichsten gelegenen
im anderen, die Indizes 1 und 2 geben an, aus welchem Scanpath die betrachtete Fixation stammt.
Die Variablen a, b entsprechen den raumlichen Maflen des Stimulus. In Worten gefasst berechnet
Formel 2.2 die Summe der Abstinde zwischen den am nichsten liegenden Paaren von Fixationen und
normalisiert diese zur Anzahl der Fixationen und Grofie des Stimulus. Dieser Wert wird von jedem
der Pfade ausgehend berechnet und die beiden Werte addiert. Ergebnisse des Algorithmus reichen
von 0 fur zufillige Ubereinstimmung bis 100 fiir identische Scanpaths.

Ein Vorteil dieses Ansatzes ist die direkte Nutzung von Fixationspositionen anstatt von durch AOIs
starker quantisierten Daten. Zudem entfillt die Notwendigkeit und Problematik der Festlegung von
AOIs und ihrer Grenzen. Der grofle Nachteil ist die erwahnte Nichtbetrachtung zeitlicher Daten,
wodurch Scanpaths mit dhnlicher Form, aber unterschiedlicher Reihenfolge der Fixationen als dhnlich
betrachtet werden. Es handelt sich also wie bei Attention-Maps um eine No-History-Analysis. Das
kann in vielen Szenarien ausreichend sein, jedoch unter Umstédnden dann nicht, wenn etwa die
Strategie eines Probanden bei der Losung einer Aufgabe untersucht werden soll. Ein Scanpath mit
zeitlich genau umgekehrten Fixationen wiirde hier als identisch gewertet, auch wenn die Strategie
sich unterscheidet. Im Extremfall kénnten alle Fixationen des einen Scanpaths einer einzigen des
anderen Scanpaths zugeordnet werden, was zu einem vollig falschen Ergebnis fithren wiirde [7].
Ein weiteres Problem bei diesem Ansatz ist, wie bei anderen auch, dass die Qualitat des Ergebnisses
unter einer groflen Varianz in der Lange mehrerer Scanpaths leidet. Aufgrund dieser Mangel und
der Verfiigbarkeit verbesserter Varianten, etwa mit einem erzwungenen Eins-zu-Eins-Matchings der
Fixationen, wird die Mannan-Distanz kaum mehr zum Vergleich von Scanpaths eingesetzt.
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2.3.4 String-basierte Anséatze

Im Folgenden werden einige gebrauchliche Ansétze zum Vergleich von Strings vorgestellt. Eine
umfassendere Auflistung ist beispielsweise bei Gomaa und Fahmy [12] zu finden. Diese Gruppe von
Losungsansitzen arbeitet auf Basis von Zeichenketten, die im Falle von Scanpaths meist Serien von
Fixationen reprisentieren. Obwohl die meisten Algorithmen auch die Gemeinsamkeiten, also ein
Matching zwischen den Strings berechnen, ist fiir die Berechnung eines Ahnlichkeitswertes von
Scanpaths im Grunde nur die Gréfie dieses Matchings von Bedeutung.

Hamming Distanz

Die Hamming-Distanz [13] wird unter anderem fuir die Fehlerkorrektur bei Ubertragungen benutzt.
Sie ist eine eher beschrankte Vergleichsmetrik, da bei ihrer Anwendung beide Strings die gleiche
Lange haben miissen. Der Wert fiir die Distanz ergibt sich aus der Anzahl der unterschiedlichen
Stellen. So betragt die Hamming-Distanz zwischen 100111 und 101101 zwei, da sich die Codewdrter
in zwei Bits, hier fett markiert, unterscheiden.

Levenshtein-Distanz

Oft auch als String-Edit-Distanz bezeichnet, berechnet diese Metrik den Abstand zwischen zwei
Zeichenketten, indem Kosten fiir das Einfligen, Loschen und Ersetzen eines Symbols festgelegt wer-
den [23]. Dann werden die minimalen Kosten gesucht, die n6tig sind, um mit diesen drei Operationen
den einen String in den anderen umzuformen.

In der Regel werden fiir Einfiigen und Loschen jeweils Kosten in Hohe von 2 veranschlagt, wahrend
eine Ersetzung 1 kostet. Es sind allerdings auch Funktionen denkbar, welche abhiangig von der
Art oder Position des Zeichens unterschiedliche Kosten berechnen [33]. Ein Beispiel dafiir ist die
Schreibmaschinendistanz, hier sind die Kosten abhéngig von der Entfernung der Tasten.

Um eine Berechnung effizient und ohne Redundanz durchzufithren, wird dynamische Programmierung
genutzt. Fir die Ermittlung der Distanz zweier Strings A und B dient eine Tabelle der Gréfle (n+1) x
(m + 1) als Zwischenspeicher, wobei n = | A| und m = | B| die jeweiligen Léngen der Strings sind.
Tabelle 2.2 zeigt eine solche Tabelle nach der beispielhaften Berechnung der Levenshtein-Distanz
zwischen abbcba und aabbe. In jedem Feld stehen nach der Ausfithrung des Algorithmus die minimalen
Kosten zur Umwandlung eines Teilstrings in den anderen, wobei diese Strings gebildet werden, indem
die Lénge jeweils dem Zeilen- beziehungsweise Spaltenindex abziiglich 1 entspricht.

Zur Vorbereitung wird die erste Zeile mit den Einfiige- und die erste Spalte mit den Loschkosten
initialisiert. Danach wird jede verbleibende Zelle mit folgender Funktion basierend auf den bereits
berechneten Werten ausgefiillt:

T[i —1,7] + Kosten Einfiigen

T[Z - 1,j - 1], fallsAZ == Bj
T[i — 1,y — 1] + Kosten grsetzen: Sonst

T[i,j — 1] + Kosten | gschen

(2.3) T'[i,j] = min
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a b b c b a

0 2 4 6 8 10 12

al 2 0 2 4 6 8 10
a|l 4 2 1 3 5 7 9
bl 6 4 3 1 2 4 6
b| 8 6 5 3 2 4 6
c|10 8 7 5 3 3 5

Tabelle 2.2: Beispieltabelle fiir die Berechnung der Levenshtein-Distanz zwischen den beiden Worten
abbcba und aabbc mit den Kosten 1 fiir Ersetzen und 2 jeweils fiir Einfiigen und Loschen.
Das Ergebnis steht in der Zelle unten rechts, es kommt durch drei Ersetzungen und
eine Einfiigung zustande (alle grau hinterlegt, von links oben nach recht unten). Diese
koénnen durch eine Rickverfolgung gefunden werden, wenn ausgehend vom Ergebnis
nachgesehen wird, woher jeweils das Minimum stammte.

Durch Normalisieren des Ergebnisses d mit der maximalen Scanpathlange, gefolgt von Spiegelung an
der Null und Verschiebung um Eins kann ein Resultat im Bereich zwischen Null und Eins gewonnen
werden, bei dem Null fiir komplett verschiedene und Eins fiir identische Strings steht [15]:

d

Damerau-Levenshtein-Distanz

Die Damerau-Levenshtein-Distanz [5, 43] erweitert den Standard-Levenshtein-Algorithmus um eine
Behandlung von in der Position vertauschter Zeichen, etwa AB und BA. Wihrend bei Levenshtein in
diesem Fall zwei Operationen nétig wiren, wird hier eine Vertauschung angewandt.

Beim Algorithmus éndert sich dabei lediglich die Berechnung der Kosten in der Tabelle, bei der im
Falle einer kreuzweisen Ubereinstimmung an den Positionen i und j nun auch das Feld T'[i — 2, j — 2]
berticksichtigt wird:

mi { Levenshteinkosten fallsi,j > 1und A; = B; 4
(2.5) T[i,j] = min T[i = 2,5 = 2] + ¢ Vertauschen und A;_1 = B;

Levenshteinkosten sonst

Needleman-Wunsch-Algorithmus

Um die Ahnlichkeit von Aminoséure-Sequenzen verschiedener Proteine bestimmen zu kénnen,
entwickelten Saul B. Needleman und Christian D. Wunsch 1969 einen Algorithmus, der ein globales
Matching zweier Zeichenketten berechnet [30].

Dieser auf dynamischer Programmierung basierende Algorithmus sucht einen Pfad mit optimalen
Kosten mittels eine Tabelle mit allen moglichen Matchings. Dabei wird versucht, einen maximalen
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Gap penalty =0 aA__aB
| ] Score=10+0+0=10
aAaC__
Gap penalty =-2 aAaB
| Score=10+(-1)=9
aAaC

Abbildung 2.9: Auswirkungen der Gap Penalty auf das Ergebnis des Algorithmus. Punkte fiir Er-
setzungen entsprechen denen aus Tabelle 2.3 . Bei einer Gap Penalty von -2 wird
auf ein Matching von Liicken zugunsten eines Zeichenmatchings mit -1 Punkten
verzichtet [4].

aA | 10 -1 -5
aB | -1 10 -1
aC| -5 -1 10

Tabelle 2.3: Beispiel fiir die Ersetzungsmatrix beim Algorithmus von Needleman und Wunsch. Sie
enthilt eine Punktzahl fiir die Ersetzung eines Zeichens durch ein anderes. Die negativen
Werte bestrafen eine Ersetzung, etwa aA — aC. In diesem Beispiel ist die Matrix
symmetrisch, sodass die Richtung der Ersetzung keine Rolle bei der Berechnung der
Ahnlichkeit spielt [4].

Wert zu erreichen, indem die Zuordnung zu Zeichenpaaren mit Punkten bewertet wird. Fiir Liicken
im Pfad wird eine Gap-Penalty genannte Strafe angerechnet, beispielsweise -1. Je kleiner diese ist,
desto eher wird auf Liicken verzichtet und stattdessen eine schlechte Zuordnung vorgezogen. Die
Auswirkungen der Gap Penalty werden durch Abb. 2.9 verdeutlicht.

Zum Vergleich zweier Zeichen, im urspriinglichen Ansatz Stellvertreter fiir Aminosauren, wird eine
Ersetzungsmatrix verwendet, ein Beispiel ist in Tabelle 2.3 zu sehen. Die Matrix enthélt fiir jedes
mogliche Zeichenpaar einen Wert fiir dessen Ahnlichkeit, der angibt, wie viele Punkte fiir eine
hypothetische Ersetzung vergeben werden. Eine hohere Zahl in einer Zelle steht fiir eine groflere
Ahnlichkeit zwischen den beiden Zeichen, es werden also mehr Punkte vergeben, wenn diese einander
zugeordnet werden.

Der Algorithmus berechnet das maximale Matching, indem die Tabelle von unten rechts nach oben
links Zeile fur Zeile abgearbeitet wird, siehe Abb. 2.10. Fir jede einzelne Zelle [7, j|] wird der Wert
aus den bereits vorhandenen Werten der Zeile [i + 1] und der Spalte [j + 1] berechnet. Aus ihnen
wird der maximale Wert genommen und zur Punktzahl der aktuell betrachteten Zelle addiert. Diese
Punktzahl wird in der Ersetzungsmatrix nachgeschaut, hiangt also von den beiden zu dieser Zelle
gehorenden Zeichen ab.

Nach dem vollstandigen Ausfiillen der Tabelle wird der optimale Pfad gesucht. Das ist derjenige mit
der maximalen Punktzahl, je hoher diese ist, desto dhnlicher sind die beiden verglichenen Strings.
Er wird gefunden, indem zuriickverfolgt wird, woher der maximale Wert des Berechnungsschritts
kam, angefangen beim Maximum der Tabelle. Fiir jeden Abschnitt des Pfades beginnend bei [i, j]
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2.3 Vergleich von Scanpaths

_A B CN T ROCLCRPM A B CN JROQCL CRPM
Al Als. 7 6 6 5 4 4 3 3 2 1 0 0
J 1 7\7 6 6 6 4 4 3 3 2 1 0 0
C 1 1 1 Clé6 6\7 6 5 4 4 4 3 3 1 0 0
] 1 6 6 6\\5‘$ 4 433 2100
N 1 N[5 5 5 4 5\4 4 3 3 2 1 0 O
R I‘J_ 4 3 3 2 2 0 O R4 4 4 4\4‘5 4 3 3 2 2 0 0O
C|3 3 4 3 3 3]3 4|3|3|1]0]O Ci3 3 4 3 3 3\3‘4\3 31 0 O
K3 3 3 3 3 3 i 3 32 1 0 0 K3 3 3 3 3 3 3 3 3\2 1t 0 0
clz 2 3 2 2 21213 2 3 1 0 0 cl2 2 3 2 2 2 2 3 2 3 1 00
Rz t 1 1 1t 2 TI it 2 0 0 R12 1+ 1 1 1 2 1 1 1 1\2 (O]
Bl1 2 1 1 t 1 TI 11 1 0 0 Bl1 2 1 1 ot 1 1 111 1\0 0
PIO 0 O O O O _O_O ¢ 0 0 1 O P{0O 0O 0O O O 0O 0 0 0 O 0 1 0

Abbildung 2.10: Links: Ein Beispiel fiir die Berechnung der Ahnlichkeit bei Needleman und Wunsch.
Hier wurde 1 Punkt vergeben, falls zwei Zeichen identisch sind, sonst 0 Punkte. Der
Algorithmus geht zeilenweise von unten rechts nach oben links durch die Tabelle.
Dabei wird fiir die aktuell betrachtete Zelle (das oberste eingerahmte Késtchen)
seine eigene Punktzahl, also aufgrund der Ubereinstimmung R = R in diesem Fall
1, zur maximalen Punktzahl der anderen umrandeten Zellen addiert. Diese wird vor
der Betrachtung je nach Entfernung noch um eine Gap-Penalty verringert. Rechts:
Die ausgefiillte Tabelle. In diesem Fall gibt es zwei mogliche Pfade fiir das maximale
Matching. Dieses endet im grofiten Wert der ersten Zeile oder Spalte [30].

werden wieder die Zeile [i 4+ 1] und die Spalte [j + 1] nach ihrem Maximum durchsucht. Dabei wird
zur Beriicksichtigung der eventuell entstehenden Liicke beim Matching eines der Strings eine dem
Abstand des verwendeten Wertes entsprechende Gap-Penalty berechnet. In der Zelle des gewiahlten
Wertes beginnt dann der nachste Abschnitt, bis der Rand der Tabelle erreicht wurde. Es konnen, wie
im verwendeten Beispiel, mehrere maximale Matchings existieren, der entsprechende maximale Wert
in der Berechnungstabelle, der das Ende des Pfades markiert, ist bei diesen jedoch derselbe.

Smith-Waterman-Algorithmus

Der Smith-Waterman-Algorithmus [40] ist eine Variation des Algorithmus von Needleman und
Waunsch, er sucht eine lokale Ubereinstimmung der Strings. Inzwischen gibt es Varianten des Smith-
Waterman-Algorithmus mit verbesserter Genauigkeit [1] oder Alternativen mit héherer Geschwin-
digkeit wie BLAST [2]. Auch dieser Ansatz arbeitet auf Basis dynamischer Programmierung. Im
Gegensatz zu Needleman-Wunsch werden die erste Zeile und die erste Spalte der Berechnungstabelle
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mit Nullen initialisiert. Danach wird die restliche Tabelle nach folgenden Regeln gefiillt (Formel
tibernommen aus [49] und angepasst):

0 @
T(i—1,57—1)+ E(A;, Bj) Match/Mismatch (b)
maxy>1{T(i — k,j) + Wi} Léschung (c)

max;> {1 (4,7 — 1) + Wi} Einfiigung (d)

(2.6) T(i,j) = max

Dass zusitzlich tiber Null maximiert wird, ist eine weitere Modifikation zum Algorithmus von
Needleman und Wunsch. E(a, b) hingegen entspricht der dort verwendeten Ersetzungsmatrix. Der
zuriickgegebene Wert ist umso hoher, je dhnlicher a und b sind. W; dient zur negativen Wertung
von Licken und kann beispielsweise als —¢ gew#hlt werden. Dann steigt der Betrag der negativen
Wertung, etwa beim Fall Léschung mit der Entfernung k des Tabellenfelds T'[i — k, j|, aus dem der
Wert bezogen wird. Zusammengefasst berechnet der Algorithmus fiir jede Zelle das Maximum aus

(a) Null

(b) der Summe aus der diagonal links oben liegenden Zelle und dem Ahnlichkeitswert
(c) der Loschung von unterschiedlich vielen Zeichen

(d) der Einfiigung von unterschiedlich vielen Zeichen.

Im letzten Feld der Tabelle steht nach Durchfithrung des Algorithmus der grofite Wert einer Uberein-
stimmung zwischen zwei Teilstrings von A und B.

Longest Common Subsequence

Gesucht wird hier die langste Sequenz von Zeichen, die in beiden Strings enthalten ist [38]. Dieses
Problem wird als Longest Common Subsequence, kurz LCS, bezeichnet. Auch dieser Ansatz kommt
aus der Bioinformatik und dient dem Auffinden von Ahnlichkeiten zwischen Proteinen oder Ribo-
nukleinsduren. Es sollen bestimmte Léschungs- und Einfigungsbeschriankungen erfiillt werden, die
fir die Genetik wichtige Bedingungen widerspiegeln. Inzwischen wird er aber auch unter anderem
in der Versionsverwaltung verwendet. Im Gegensatz zum Longest Common Substring missen die
Zeichen der LCS in den beiden Eingabestrings nicht direkt hintereinander auftreten. Als einfaches
Beispiel sei als Eingabe ABDCA und ACDA gegeben. Dann sind die LCS dieser zwei Zeichenketten
ACA und ADA. Folgende Vorschrift erméglicht das Finden der LCS zweier Strings mittels dynamischer
Programmierung (Formel iibernommen aus [48] und angepasst).

0 falls ¢ =0oderj =0

(2'7) LCS (Au Bj) =4 LCS (Az‘_l, Bj_1> — Q; falls a; = bj
léngste (LCS (Al, ijl) ,LCS (Aifl, BJ)) falls a; # bj
Fiir die erste Zeile und Spalte entspricht die LCS der leeren Menge (). Jedes weitere Feld der Tabelle

wird dann abhéngig von den zwei dazu gehérenden Zeichen der Strings berechnet. Sind diese identisch,
wird die LCS entsprechend erweitert. LC'S (A;_1, Bj—1) — a; steht hierbei fiir eine Konkatenation
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2.4 Visualisierung von Ahnlichkeiten zwischen Daten

der bisherigen LCS im Feld links oben vom aktuellen mit dem ¢-ten Zeichen des Strings A. Bei
ungleichen Zeichen wird die bisher ldngste Teilsequenz beibehalten, welche sich im Feld links vom
oder tiber dem aktuellen befindet. Fiir die blofle Berechnung der Ahnlichkeit von Scanpaths wiirde es
ausreichen, die Lange der LCS zu kennen. Diese kann mit dem im Listing 2.1 gezeigten Algorithmus

berechnet werden.

function LCSLength(X[1..m], Y[1l..n])
C = array(0..m, 0..n)
for i := 0..m
C[i,0] =0
for j :=0..n
c[e,jl1 =0
for i :=1..m
for j :=1l..n
if X[i] = YI[jl
Cl[i,j] := C[i-1,j-1] + 1
else
C[i,j] := max(C[i,j-1], C[i-1,7])
return C[m,n]

Listing 2.1: Algorithmus zur Berechnung der Lange der Longest Common Subsequence zweier
Strings. Es werden zunéchst die erste Zeile und Spalte der Tabelle mit Nullen initialisiert.
Danach wird diese zeilenweise von oben links nach unten rechts durchlaufen und fiir
jedes Feld die Lange der aktuellen Longest Common Subsequence berechnet. Analog
zur Berechnung der LCS selbst wird bei zwei gleichen Zeichen die Lange inkrementiert,
wihrend bei Ungleichheit die bis zu diesem Zeitpunkt grofte Lange beibehalten wird [48].

2.4 Visualisierung von Ahnlichkeiten zwischen Daten

Visualisierungen helfen bei der Analyse komplexer Daten, indem sie diese tibersichtlich und struktu-
riert prasentieren. Im Folgenden wird Clustering als Technik zur Gruppierung von Daten vorgestellt.
Anschlielend werden mit Dendrogrammen und Tree-Maps zwei fiir hierarchische Cluster geeignete
Visualisierungen gezeigt.

2.4.1 Clustering

Zum besseren Verstindnis von Ergebnissen ist es oft hilfreich, dhnliche Daten zu gruppieren.
Clustering-Algorithmen erledigen diese Aufgabe automatisch, sie konnen nach Art der Gruppierung
in flache und hierarchische Ansitze eingeteilt werden.

Ein Beispiel fur flaches Clustering ist der k-means-Algorithmus [24]. Bei ihm werden, je nach ge-
wiinschter Gruppenzahl, aus den einzelnen Daten zufillige Centroide gewahlt. Alle iibrigen Daten
werden dann einer Gruppe mit dem am nachsten liegenden, beziehungsweise ahnlichsten, Centro-
id zugewiesen. Danach wird fiir jede Gruppe das Element als neues Centroid genommen, fiir das
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2 Grundlagen

die Summe der Absténde zu allen anderen Gruppenmitgliedern minimal ist. Anschlieflend werden
die Gruppen aufgelost und die letzten beiden Schritte mit den jeweils neuen Centroiden solange
wiederholt, bis ein Abbruchkriterium erreicht wurde.

Hierarchisches Clustering erzeugt zunéchst eine Hierarchie der Daten, die dann auf einem beliebigen
Niveau abgeschnitten werden kann, um Gruppen zu erzeugen. Dabei gibt es sowohl Top-Down-, als
auch Bottom-Up-Ansdtze. Wahrend bei ersteren zu Beginn nur eine Gruppe existiert, die dann nach
und nach aufgeteilt wird, werden bei letzteren schrittweise Gruppen verschmolzen. An dieser Stelle
wird nur auf eine haufig verwendete, spezielle Form des Bottom-Up-Clustering eingegangen, die als
hierarchisches agglomeratives Clustering, abgekiirzt HAC, bezeichnet wird [29]. Dieses funktioniert
folgendermafien:

+ Zunichst wird fiir jedes einzelne Element eine eigene Gruppe erzeugt.

« Dann werden immer die beiden jeweils dhnlichsten Gruppen zu einer gemeinsamen neuen
Gruppe hinzugefiigt.

« Das wird so lange wiederholt, bis eine festgelegte Anzahl an Gruppen erreicht ist, die verblei-
benden Gruppen zu unterschiedlich sind oder nur noch eine Gruppe iibrig geblieben ist.

Der Grad der Ahnlichkeit kann dabei verschiedenartig berechnet werden. Eine Moglichkeit dafiir
ist der Durchschnitt der Abstande aller moglichen Paare von Elementen, bei denen je eines aus
beiden Clustern genommen wird. Aulerdem kénnen die zwei zueinander dhnlichsten oder unter-
schiedlichsten Elemente aus zwei Gruppen als deren Stellvertreter dienen. Auch die Wahl eines
Gruppen-Centroids als stellvertretendes Most-Central-Element ist moglich. Hierfiir konnte etwa jenes
dienen, das allen anderen Gruppenmitgliedern am dhnlichsten ist. Um redundante Berechnungen zu
sparen, kann eine Matrix mit den jeweiligen Abstanden zwischen allen zu clusternden Daten genutzt
werden.

2.4.2 Dendrogramm

Auch bei Clustern kann eine geeignete Visualisierung die Analyse der Daten erheblich vereinfachen.
Fir eine Hierarchie, also einen Baum mit Wurzel, bietet sich in vielen Féllen ein Dendrogramm an,
wie es in Abb. 2.11 zu sehen ist.

Es besteht aus Beschriftungen fiir die vorhandenen Elemente und Linien, die fiir die Darstellung
der hierarchischen Beziehungen zusténdig sind. Eine Verbindung zwischen zwei Elementen oder
Gruppen steht fur die relative Ahnlichkeit, beispielsweise fiir die Vereinigung dieser beiden beim
Clustering. So zeigt ein Dendrogramm eines geclusterten Datensatzes von unten nach oben die
Reihenfolge der Gruppenvereinigungen an, womit gleichzeitig auch gezeigt wird, welche beiden
Gruppen jeweils in jedem Schritt des Clustering-Algorithmus am dhnlichsten waren. Bei einer grof3en
Anzahl von verarbeiteten Elementen kann die Hierarchie aufgrund ihrer Gréfle, vor allem in der Breite,
uniibersichtlich werden. Kreisformige Layouts versuchen dem entgegenzuwirken und trotzdem die
Lesbarkeit zu erhalten.
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[A][B][C][D][E]

Abbildung 2.11: Ein Cluster dargestellt als Dendrogramm. Unten befinden sich die mit Buchstaben
beschrifteten Elemente, die durch das Clustering hierarchisch gruppiert wurden.
Die Reihenfolge der Aktionen kann von unten nach oben abgelesen werden. Je
ghnlicher zwei Gruppen sind, desto frither wurden sie verschmolzen, was durch eine
sie verbindende Linie gezeigt wird. Die erzeugten Gruppen sind {B, C}, {D, E'},
{B,C,D,E}und{A, B,C, D, E}.In diesem Beispiel wurde erst gestoppt, als nur

noch eine Gruppe iibrig war.

2.4.3 Erweiterbare Baumansicht

Eine interaktive Darstellung einer Hierarchie stellen Baumansichten dar, die beispielsweise in Datei-
managern genutzt werden. Zunichst werden nur die obersten Elemente der Hierarchie angezeigt,
wie etwa Wurzelverzeichnisse, was einen anfinglichen Uberblick vermittelt. Je nach Interesse kann
der Benutzer dann eines oder mehrere der Verzeichnisse meist durch Klicken auf eine Schaltfliache
mit einem Pluszeichen erweitern, wodurch auch deren untergeordnete Elemente gezeigt werden.
Umgekehrt kann ein Verzeichnis durch einen Klick auf ein Minuszeichen reduziert werden. Um zu
verdeutlichen, welche Elemente einem anderen untergeordnet sind, kénnen Linien oder Einriickung
verwendet werden.

Nicht benétige Daten werden in dieser Visualisierung zu einem grofien Teil verborgen, was die
kognitive Last verringert und die Suche nach einem Zielelement beschleunigt. Andererseits ist ein
gewisser Aufwand nétig, um ein Element zu finden, dass sich sehr weit unten in der Hierarchie
befindet, da alle Elternelemente erweitert werden miissen. Zudem funktioniert die Suche nur dann
effizient, wenn der Weg offensichtlich oder bekannt ist, da der Benutzer nicht sehen kann, was sich in
den nicht erweiterten Pfaden befindet.

2.4.4 Tree-Map

Zeigt ein Dendrogramm die Hierarchie von der Seite, so entspricht eine Tree-Map einer Ansicht von
oben. Jede Gruppe und Untergruppe ist von einer Linie umrandet, wodurch die Hierarchie sichtbar wird.
Dabei kann diese Umrandung beliebige Formen haben, Abb. 2.12 zeigt ein Beispiel mit Rechtecken. Im
Vergleich zum Dendrogramm ist jedoch schwerer ersichtlich, wann Gruppen verschmolzen wurden.
Auflerdem kann diese Visualisierung schnell zu schlecht lesbaren Layouts fiithren, da bei einer grof3en
Zahl von Elementen die sie reprasentierenden Fliachen sehr klein werden.
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Abbildung 2.12: Schematische Darstellung einer Tree-Map mit Rechteck-basiertem Layout. Jedes
der Rechtecke entspricht einer Gruppe, die ausgefiillten Flachen reprasentieren
die geclusterten Elemente. Die Stéirke der Linien sowie die Anordnung und Gréf3e

der Rechtecke zeigen die Zugehorigkeit von Elementen und Gruppen zu ihren
tibergeordneten Gruppen. Das Bild wurde itbernommen von [39] und zugeschnitten.

mIlES]

2.4.5 Multidimensionale Skalierung

Bei einer multidimensionalen Skalierung [19] werden Ahnlichkeiten visualisiert, indem die zu zei-
genden Daten auf einem meist zweidimensionalen Bereich so angeordnet werden, dass die Abstande
aller Paare ihren Ahnlichkeiten entsprechen, was dazu fiihrt, dass sich dhnlichere Elemente niher
beieinander befinden als unterschiedlichere. Ein Beispiel fiir diese Visualisierung ist in Abb. 2.13
gezeigt.

= @

Abbildung 2.13: Visualisierung von Ahnlichkeiten mit multidimensionaler Skalierung. Die Elemente
befinden sich umso niher beieinander, je dhnlicher sie sich sind. Der Wert einer
gewihlten Variable wird zuséitzlich durch Farben visualisiert. Das Bild stammt
aus [46] und wurde zugeschnitten.
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3 Aufgabe und Losungsansatz

Dieses Kapitel stellt zunédchst das Szenario (Abschnitt 3.1) vor, in das diese Arbeit eingeordnet ist.
Der zweite Abschnitt (3.2) erlautert die Aufgabenstellung, die durch den im letzten Abschnitt (3.3)
gezeigten Ansatz gelost werden soll.

3.1 Szenario

In letzter Zeit wurde Eye-Tracking eine immer beliebtere Methode zur Evaluation von Benutzer-
schnittstellen. In vielen Fallen ist eine Untersuchung der von Benutzern angewandten Strategien zur
Losung eines Problems hilfreich fiir eine weitere Optimierung der Darstellung. Ein gutes Beispiel dafiir
sind Visualisierungskonzepte, bei denen ein Anwender interaktiv in die gezeigte Ansicht eingreifen
kann. Subjektive Bewertungen, Aufzeichnungen und sogenannte Think-Aloud-Protokolle sind nicht
immer in der Lage, einen Eindruck davon zu liefern, womit die Person in einem bestimmten Moment
gedanklich beschéftigt war. Unterbewusste Vorgange kénnen nur indirekt beobachtet werden. Eye-
Tracking bietet hier eine Alternative, da davon ausgegangen werden kann, dass ein momentan von
den Augen fixiertes Objekt mit hoher Wahrscheinlichkeit jenes ist, mit dem das Gehirn in diesem
Augenblick beschéftigt ist.

Ein bestehendes Problem stellt jedoch die Auswertung der aufgenommenen Augenbewegungen dar.
Eine Reihe von Analyse- und Visualisierungswerkzeugen nimmt sich unter Verfolgung verschiedener
Ansitze dieser Problematik an (siehe Kapitel 4). Gerade beim Vergleich von Scanpaths auf Ahnlichkei-
ten im Blickverhalten und der damit vermuteten Strategie von Probanden wurde noch keine optimale
Loésung gefunden.

3.2 Aufgabenstellung

Das Ziel dieser Forschungsarbeit ist der Vergleich und die Bewertung mehrerer Konzepte zur Grup-
pierung von Scanpaths anhand der Ahnlichkeit der von den Probanden verwendeten Suchstrategien.
Zunichst soll daher eine Recherche zu vorhandenen Metriken zur Berechnung der Ahnlichkeit zwi-
schen Scanpaths, beziehungsweise deren String-Reprasentationen, durchgefithrt werden. Dazu findet
auflerdem eine Suche nach verwandten Arbeiten im Bereich Scanpath-Vergleich und -Visualisierung
statt. Die Ergebnisse dieser Recherche werden in den Kapiteln 2 und 4 beschrieben. Anschlieflend soll
ein Konzept erarbeitet werden, das auf den Ergebnissen der Recherche sowie eigenen Anpassungen
und Erweiterungen beruht. Dieses Konzept soll in einem Prototypen implementiert und anhand
mehrerer Szenarien evaluiert werden.
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3.3 Losungsansatz

Die bei der Recherche gefundenen Vergleichstechniken sollen auf ihre jeweiligen Vor- und Nachteile
hin untersucht werden, um ihre Eignung fiir den Vergleich von Suchstrategien anhand von Scanpaths
zu bewerten. Auflerdem werden Uberlegungen zu moglichen Anpassungen und Erweiterungen
getroffen. Dazu gehort unter anderem eine Einbeziehung der in den AOIs implizit enthaltenen
Informationen iiber deren Ahnlichkeit zueinander. Es soll weiterhin ein Konzept fiir eine geeignete
Aufbereitung und Visualisierung der entstehenden Vergleichsdaten entwickelt werden, um eine fiir den
Analysten leicht verstandliche Reprasentation der Ergebnisse zu schaffen. In einem Experiment soll
schliellich getestet werden, wie leistungsfiahig sich die ausgew#hlten Metriken in unterschiedlichen
Parameter-Konfigurationen bei der Verarbeitung von Testdaten zeigen. Die ungefihre Vorgehensweise
bei diesem Experiment ist in Abb. 3.1 dargestellt.

Vorverarbeitung Vergleich und Bewertung des

Scanpaths 3 © 4 Filterung  [®| Gruppierung [%]  Ergebnisses

gemessen oder verschiedene verschiedene Vergleich von
generiert Stufen und Metriken und erwartetem und
Parameter Parameter tatsachlichem
Ergebnis

Abbildung 3.1: Losungsansatz fiir die Bewertung der Metriken. Die verwendeten Scanpaths konnen
aus einer Studie stammen oder generiert sein. Wichtig ist jedoch, dass die ungefah-
re Ahnlichkeit unter ihnen bekannt ist. Sie werden vorverarbeitet und verglichen,
wobei verschiedene Techniken und Parameter zum Einsatz kommen. Je nach erwar-
tetem Ergebnis wird dann eine Anzahl von Gruppen nach Ahnlichkeit gebildet. Das
Ergebnis wird bewertet, indem die korrekte Gruppierung iiberpriift wird.
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In diesem Kapitel werden verwandte Ansitze und Implementierungen vorgestellt, die sich mit der
Analyse und dem Vergleich von Scanpaths beschiftigen. Wahrend Programme wie ScanMatch und
EyePatterns mit AOIs arbeiten, verfolgt MultiMatch einen vektor-basierten Ansatz, mit dem Scanpaths
in verschiedener Hinsicht verglichen werden konnen. Der mit Parallel-Scanpaths umgesetzte Ansatz
versucht sich hingegen an einer Vereinfachung des Scanpath-Vergleichs mittels Methoden aus dem
Bereich Visual Analytics.

4.1 ScanMatch

Mit ScanMatch [4] wurde eine Toolbox implementiert, mit deren Hilfe Scanpaths auf ihre Ahnlichkeit
hin untersucht werden konnen. Die folgenden Abschnitte erldutern die Vorverarbeitung der Scan-
paths und zum Vergleich verwendete Verfahren. Auflerdem wird die Evaluation zur Beurteilung des
Verfahrens beschrieben. Abschlieend werden die Starken und Schwichen dieses Ansatzes in einem
Fazit zusammengefasst.

4.1.1 Vorverarbeitung

Vor der Durchfithrung des Vergleichs wurden die Scanpaths durch Verwendung einer zeitlichen
Quantisierung so vorverarbeitet, dass auch die Dauer von Fixationen in die Berechnung einflief3t.
Weiterhin wurde ein Schema zur Représentation der AOIs im Scanpath angewandt.

Um zeitliche Information in den Scanpath einzubringen, wurde ein sogenanntes Temporal Binning
eingefiihrt. Dabei wird das dem AOI-Aufenthalt zugeordnete Symbol entsprechend der Aufenthaltszeit
wiederholt in den Scanpath-String eingefiigt. Die Zeitspanne, nach welcher ein weiteres Zeichen
hinzugefiigt wird, wurde auf 50 Millisekunden festgelegt, um die tibliche Fixationsdauer von 100 bis
1000 Millisekunden nach dem Abtasttheorem von Nyquist und Shannon [32] korrekt quantisieren zu
konnen (siehe Abb. 4.1).

Da bei der Nutzung von einzelnen Buchstaben fiir AOI-Kennungen nur eine kleine Zahl von AOIs
moglich ist, wurde eine Kodierung der AOIs mit zwei Buchstaben verwendet. Dabei wurde zur
Verbesserung der Lesbarkeit der jeweils erste Buchstabe kleingeschrieben.
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260 msec

Normal sequence:

B
Seq =ACB

With temporal binning (50-msec bins):

Seq = AACCCCBBBBB

Abbildung 4.1: Ein Beispiel fiir einen Scanpath und dessen String-Reprasentation. Ohne Temporal
Binning wiirden die Fixationen beziehungsweise AOI-Aufenthalte den Scanpath-
String ACB ergeben. Nach einem Binning mit einem Zeichen stellvertretend fiir jeden
Zeitabschnitt von 50 Millisekunden entsteht ein langerer String mit quantisierten
Zeitinformationen [4].

4.1.2 Verfahren

Der Vergleich der Scanpaths basiert auf dem Algorithmus von Needleman und Wunsch [30], der
in Abschnitt 2.3.4 vorgestellt wurde. Dieser Abschnitt erldutert die Wahl der Parameter fiir den
Algorithmus sowie eine Normalisierung anhand dieser Parameter und der Lénge der Scanpath-
Strings.

Die Ersetzungsmatrix fur den Algorithmus von Needleman und Wunsch wurde anhand euklidischer
Distanzen angelegt. Zwei AQOIs gelten als dhnlicher, wenn sie sich rdumlich néher beieinander befinden.
Es sind allerdings auch andere Metriken denkbar, etwa die Ahnlichkeit der Farbe oder semantische
Beziehungen. Entsprechend der Ahnlichkeit der AOIs wird dann die Ersetzungsmatrix fiir den Algo-
rithmus aufgestellt. Um kleinere Punktzahlen fiir nur schwach verwandte AOIs zu erhalten, wurde
ein Grenzwert ermittelt, ab dem der entsprechende Wert in der Ersetzungsmatrix negativ werden soll.
Dafiir wurde die doppelte Standardabweichung aller Sakkadenamplituden genommen.

Ein zusétzlich zu der Ersetzungsmatrix bendtigter Parameter ist die Gap Penalty, die eine Zuordnung
eines Zeichens zu einer Liicke mit negativen Punkten bestraft. Bei ScanMatch wurde aufgrund des
Thresholds, der bereits fiir negative Punkte bei unterschiedlichen AOIs sorgt, eine Gap Penalty von
null gewahlt.

Das Ergebnis des Algorithmus ist fiir lingere Zeichenketten bei gleicher Ahnlichkeit hoher als fiir
kurze. Daher wird eine Normalisierung durchgefiihrt, sodass bei einem Vergleich von zwei identischen
Strings ein Ergebnis von 1 entsteht.

Ergebnis

(4.1) Normalisiertes Ergebnis = - - — — -
Maximum der Ersetzungsmatrix x Lange des langeren Strings
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4.1 ScanMatch

Task 1: From tile aG to tile aT

>

aA aF aG aH al -— aR as aT au aZ

<€

Task 2: From tile aT to tile aG

Abbildung 4.2: Erzeugung von Testdaten bei ScanMatch. Eine Reihe von AOIs wird entweder von
links nach rechts oder umgekehrt fixiert [4].

o=1 Example string:
aGaHalaJaMaJaOaNaPaNaPaR
aGaFalalaKaMaMaOaPaOaQaQ

N

o=3 Example string:
aFaFaFaHaKaLaTaMaOalLaQ
aCaHalaKalaGaQaTaOaMaUaP

N

o0=28 Example string:
aXalaTaMaPaAaNaK
aHaFaRaAaPaGaJalaTaJaHaV

N

Abbildung 4.3: Erzeugung von Testdaten bei ScanMatch. Um verschiedene Scanpaths zu erzeugen,
werden Fixationen zufallig normalverteilt gesetzt. Der Erwartungswert liegt dabei
auf der nach der Aufgabe eigentlich angepeilten AOL Je nach Wert des Parameters o
ergeben sich mehr oder weniger unterschiedliche Strings [4].

4.1.3 Evaluation

ScanMatch wurde in drei Versuchen evaluiert. Beim ersten Versuch kamen kiinstlich erstellte Testdaten
zum Einsatz, um den Ansatz zu testen und mit der etablierten Levenshtein-Distanz zu vergleichen.
Dazu wurden 26 AOIs in einer Reihe angeordnet, wie auf Abb. 4.2 zu sehen. Als hypothetische Aufgabe
wurde das Betrachten aller AOIs zwischen der siebten (aG) und siebt letzten (aT) gewahlt. Dies sollte
in der richtigen Reihenfolge, bei Aufgabe 1 von links nach rechts und bei Aufgabe 2 umgekehrt,
und ohne Auslassung geschehen. Fixationen wurden dann zufillig normalverteilt gesetzt, wobei der
Erwartungswert der Normalverteilung bei jeder Fixation je nach der gewiinschten Scanpath-Richtung
eine AOI weiter nach links beziehungsweise rechts versetzt wurde. Diese Verteilung der Fixationen
und die dadurch erreichte Erzeugung der Scanpaths ist in Abb. 4.3 zu sehen. Der einzige Parameter,
der bei jedem erzeugten Scanpath variiert wurde, ist die Standardabweichung der Normalverteilung.
Je grofler sie ist, desto unterschiedlicher werden die erzeugten Scanpaths.

Auf diese Weise wurden je hundert Scanpaths von links nach rechts und rechts nach links generiert,
wobei die Standardabweichung zwischen 0 und 14 in Schritten von 0,5 verandert wurde. Diese Scan-
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Abbildung 4.4: Vergleich von ScanMatch und Levenshtein-Distanz im ersten Versuch mit auto-
matisch generierten Testdaten. ScanMatch liefert durchgehend bessere Resultate,
insbesondere bei einer Standardabweichung o < 9 [4].

paths wurden dann jeweils mit dem Levenshtein-Algorithmus und dem von Needleman und Wunsch
verglichen. Erwartungsgemaf sollten Scanpaths, die aus der selben Aufgabe resultierten, als dhnlich
bewertet werden. Umgekehrt wurde erwartet, dass nach verschiedenen Aufgaben erzeugte Pfade
vom Algorithmus als zueinander unterschiedlich bewertet werden. Durch k-Means-Clustering wurde
versucht, die Scanpaths nach ihren Aufgaben zu gruppieren und der Prozentsatz der Fehleinordnun-
gen wurde als MaB fiir die Korrektheit des Verfahrens genommen. Abb. 4.4 zeigt diese Prozentsatze
vergleichsweise fiir Levenshtein und ScanMatch, wobei letzteres vor allem bei schwach verrauschten
Daten, aber auch bei grofierem o, deutlich bessere Werte erzielt. Bis zu einer Standardabweichung
von 2,5 ordnet ScanMatch alle Scanpaths fehlerfrei zu.

Beim zweiten Versuch wurden Probanden angewiesen, Zahlen von eins bis neun entweder in Grin
oder Rot und entweder auf- oder absteigend auf dem Stimulus zu fixieren. Dies fithrte erneut zu
zwei verschiedenen Gruppen von Scanpaths. Mit einer Unterteilung in 12x8 gitterférmig angeordne-
ten AOIs und dem Anlegen einer Ersetzungsmatrix basierend auf euklidischen Abstdnden konnte
ScanMatch alle Aufzeichnungen korrekt zuordnen.

Der dritte Versuch verlangte vom Probanden, zwischen mehreren Vorkommen des Buchstaben L, die
verschieden gedreht waren, ein T zu finden und dessen Orientierung anzugeben. Dabei kamen rote und
griine Buchstaben vor. Fir die Ersetzungsmatrix wurde in diesem Versuch Farbe als Ahnlichkeitsmaf}
verwendet, die Werte waren abhéngig von der Farbe des Ziels, also der des gesuchten T. Auch hier war
eine gute Zuordnung der Pfade zu den intendierten Gruppen entsprechend des Suchzieles moglich.

4.1.4 Fazit

Die beiden Vorteile des in ScanMatch gezeigten Ansatzes sind die Einbeziehung zeitlicher Informatio-
nen durch Temporal Binning und die Abhéngigkeit der Ersetzungskosten von der Ahnlichkeit der
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AOIs. Letztere kann unter anderem anhand von euklidischer Distanz, Farbe oder Semantik bestimmt
werden.

Das eingefithrte Temporal-Binning ermoglicht zwar die Einbeziehung der Fixationsdauer, fithrt aber
zu einer zeitlichen Quantisierung. So kénnte eine Fixation, die 130 Millisekunden dauerte, bei einer
Binning-Zeitspanne von 50 Millisekunden zu zwei Zeichen ab- oder zu drei Zeichen aufgerundet
werden [7]. Die Ersetzungsmatrix ist iiber die Zeit der Berechnung konstant und kann daher bei-
spielsweise keinen Lerneffekt oder AOIs mit zeitabhdngiger Ahnlichkeit beriicksichtigen. Aulerdem
ergeben sich die bei der Nutzung von AOIs auftretenden Probleme, etwa dass Fixationen, die innerhalb
einer AOI weit auseinander liegen, als dhnlicher betrachtet werden, als solche, die sich beidseitig
einer AOI-Grenze nahe zusammen befinden.

4.2 MultiMatch

Der in MultiMatch [7, 17] umgesetzte Ansatz basiert auf Vektoren, die Sakkaden exakt reprasentieren.
Scanpaths werden in mehreren Kriterien verglichen, wobei rdumliche und zeitliche Informationen
genutzt werden. Ziel war vor allem eine Erkennung von dhnlichen Formen, auch wenn diese verschie-
den skaliert oder zueinander verschoben sind. Ein Vergleich mit ScanMatch wurde vorgenommen,
um die Leistungsfahigkeit der Implementierung zu zeigen. Auch fiir diesen Ansatz werden die Vorver-
arbeitung, das Vergleichsverfahren und die Evaluation in je einem Abschnitt behandelt und danach
ein Fazit gezogen.

4.2.1 Vorverarbeitung

Um beim eigentlichen Vergleich ein besseres Ergebnis zu erhalten, insbesondere bei kleineren Abwei-
chungen aufgrund von Rauschen, werden die Scanpaths zunéchst vorverarbeitet. Sie werden dazu
durch eine Glattung vereinfacht, wie Abb. 4.5 zeigt. Dabei werden kleinere Gruppen von Sakkaden
unter Verwendung von Grenzwerten fiir Amplituden und Winkelabweichungen zu einer einzelnen
Sakkade zusammengefasst, dhnlich wie bei der Berechnung von Fixationen aus rohen Eye-Tracking-
Daten. Um wichtige Fixationen und Sakkaden beizubehalten, wird vorgeschlagen, diejenigen von der
Zusammenfassung auszunehmen, deren Dauer einen festgelegten Grenzwert tiberschreitet.

4.2.2 Verfahren

Als erster Schritt des eigentlichen Vergleichs wird eine zeitliche Zuordnung der Vektoren beider
Scanpaths zueinander durchgefiihrt. Dies geschieht mit Hilfe einer Vergleichsmatrix mit den jeweiligen
Unterschieden der Vektoren, wobei die Differenz der Vektorldngen in visuellen Grad genutzt wird
(siehe Abb. 4.6). Diese Matrix wird als Graph aufgefasst und durch diesen mittels des Dijkstra-
Algorithmus [8] der kiirzeste Pfad gefunden. Die Vektoren werden dann entsprechend diesem Pfad
einander zugeordnet.

Die Scanpaths konnen nun verglichen werden, indem die Unterschiede in den verschiedenen Di-
mensionen betrachtet werden: Fiir den Vergleich der Form werden die Vektoren subtrahiert und zur
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Abbildung 4.5: Ein Beispiel fiir die Vereinfachung der Scanpaths bei MultiMatch. Links ist der ur-
spriingliche, rechts der vereinfachte Pfad zu sehen. Unter Nutzung von Grenzwerten
findet bei der Vereinfachung eine Zusammenfassung von Vektoren mit dhnlicher
Richtung oder solchen mit geringer Linge an dhnlichen Positionen statt [17].

s1
go|o |6 |7 |5
g° | 1° [10°]12°] 11°
S, | 4 |120]ose| 7° | 3
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(a) Comparison matrix.
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(b) Scanpaths.

Abbildung 4.6: Die Vergleichsmatrix zweier Scanpaths. Die Werte entsprechen den jeweiligen Dif-

ferenzen der Vektorlangen in visuellen Grad. Kleine Werte stehen fiir dhnliche
Vektoren [15].
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doppelten Bildschirmdiagonale normalisiert. Die Lingen werden ebenfalls durch ihre mathematische
Differenz verglichen und wie der Abstand der Positionen mit der Bildschirmdiagonalen normalisiert.
Die Differenz in der Richtung der Vektoren wird durch 7 normalisiert, der Unterschied zwischen zwei
Fixationsdauern durch die grofiere der beiden. So ergibt sich fiir jede Dimension ein Wert zwischen 0
und 1, wobei 1 fir identisch steht.

4.2.3 Evaluation

MultiMatch wurde mit ScanMatch in seiner Standardkonfiguration in zwei Versuchen verglichen. Der
erste sollte die Anfalligkeit fiir Rauschen in generierten Daten zeigen. Der zweite sollte Vergleichsdaten
zur Leistungsfihigkeit in Hinsicht auf die bekannten Probleme mit AOIs und verschieden skalierte
Scanpaths liefern und verwendete aufgezeichnete Eye-Tracking-Daten von echten Probanden.

Die Vorgehensweise beim ersten Versuch basierte dhnlich der Evaluation von ScanMatch auf zufillig
generierten Scanpaths. Allerdings wurden in diesem Fall zwei verschiedene Pfade erzeugt und von
diesen wiederum zufillig veranderte Varianten erstellt. Dabei wurde jede Fixation in ihrer Position um
einen Wert gedndert, der zufillig normalverteilt ermittelt wurde. Je nach gewiinschter Unterschied-
lichkeit zum originalen Pfad wurde die Standardabweichung zwischen 10 und 90 Prozent der Breite
des Stimulus gewihlt. Als Ergebnis entstanden zwei Gruppen von Scanpaths mit héherer Ahnlichkeit
innerhalb der Gruppen als zwischen ihnen. In diese Gruppen sollen die Pfade spiter eingeordnet wer-
den. Ein Beispiel firr auf diese Weise gewonnene Scanpaths ist in Abb. 4.7 gezeigt. Sowohl MultiMatch
als auch ScanMatch konnten die generierten Pfade nach ihrer Ahnlichkeit einordnen, auch wenn bei
stark verrauschten Daten die Qualitat der Ergebnisse abnahm.

Beim zweiten Versuch wurden, wie bei einer Eye-Tracker-Kalibrierung, nacheinander mehrere Punkte
angezeigt, die vom Probanden fixiert werden sollten. Dabei wurden Punkte aus Pfaden verwendet,
die jeweils in bestimmten Dimensionen dhnlich zueinander sind, siehe Abb. 4.8. Da dieser Versuch
speziell auf die Starken von MultiMatch fokussiert war, ist es nicht iberraschend, dass ScanMatch
hier in seiner Leistung iibertroffen wurde, was vor allem an der Nutzung der AOIs liegt.

4.2.4 Fazit

Durch Verzicht auf AOIs umgeht MultiMatch die bereits erwahnten Probleme dieser Quantisierung. Im
Gegensatz zu ScanMatch entfillt auflerdem auch die zeitliche Quantisierung durch das dort verwendete
Temporal Binning. Der Vergleich von Scanpaths unterschiedlicher Linge wird verbessert. Dies ist fiir
viele vorhandene Metriken ein grof3es Problem gewesen. Ein erheblicher Vorteil dieses Ansatzes ist
zudem, dass Scanpaths anhand mehrerer Dimensionen verglichen werden, wodurch beispielsweise
zwei Pfade, die nur in manchen Dimensionen abweichen, leichter als dhnlich erkennbar sind. Das ist
etwa in Studien niitzlich, in denen manche der Kriterien besonders wichtig oder vernachlissigbar sind,
etwa wenn nur die Form zweier Scanpaths dhnlich sein soll. Anders formuliert zeigt MultiMatch nicht
nur die Ahnlichkeit an, sondern auch worin diese Ahnlichkeit besteht. Durch das Fehlen von AOIs
entstehen jedoch auch Nachteile. So kénnen beim Vergleich zweier Scanpaths keine Informationen
iiber die Semantik der betrachteten Bereiche miteinbezogen werden, wie es bei ScanMatch etwa mit
der Farbe der im Stimulus enthaltenen Symbole méglich war.
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Abbildung 4.7: Zwei zufillig erzeugte Scanpaths (51, S2) und eine Variante (51,), die aus S1 durch
Hinzufiigen von Rauschen entstand. Beim Vergleich der Pfade sollten S1 und S1,,
als zueinander dhnlicher erkannt werden als jeweils zu 52 [7].

1. Random 2. Spatial offset 3. Ordinal offset 4. Reversed

Q}"\\
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5. AOIl boarder 6. Local/Global 7. Scaled

Abbildung 4.8: Beispiele fiir Paare von Scanpaths mit Ahnlichkeit in verschiedenen Vergleichsdi-
mensionen [7].
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Abbildung 4.9: Visualisierung der Scanpath-Ahnlichkeit durch einen Baum, der ausgehend von der
Mitte dargestellt ist. Die Farben stehen fiir Werte einer gewahlten Variablen, in
diesem Fall die an die Probanden gestellte Aufgabe [46] (Bild wurde zugeschnitten).

4.3 EyePatterns

Das Programm EyePatterns [46] bietet dem Benutzer verschiedene Moglichkeiten zum Vergleich von
Scanpaths tiber einem Stimulus mit AOIs.

4.3.1 Verfahren

Als Vergleichsmetriken dienen die Algorithmen von Levenshtein, Needleman und Wunsch sowie
der von Smith und Waterman, die in den Grundlagen dieser Arbeit vorgestellt wurden (siehe Ab-
schnitte 2.3.4 und 2.3.5). Wie bei diesen Algorithmen iiblich, wurden die Scanpaths durch Strings
reprisentiert, die je ein Zeichen fiir jede Fixation enthalten. Um die Anzahl von Fixationen innerhalb
der AOI-Aufenthalte aufler Acht lassen zu kdonnen, wurde eine optionale Zusammenfassung von
mehreren aufeinanderfolgenden identischen Buchstaben zu einem einzelnen Zeichen genutzt.

4.3.2 Visualisierung

Als Ergebnis wird eine Tabelle mit den Ahnlichkeitswerten aller Scanpath-Paare ausgegeben. Aufler-
dem kann ein hierarchisches Clustering durchgefiihrt werden, dessen Resultat als Baum visualisiert
wird, wie in Abb. 4.9 zu sehen. Auch eine Darstellung als Multidimensionale Skalierung ist verfiigbar,
siehe dazu Abschnitt 2.4.5 und Abb. 2.13.

Ein interessantes Feature ist die Erkennung von Mustern, beziehungsweise Teilsequenzen, die in einem
oder mehreren Scanpaths wiederholt vorkommen. Muster aus zwei verschiedenen Scanpaths werden
einander mit dem Algorithmus von Smith und Waterman zugeordnet. Wie diese Zuordnung aussehen
kann, ist in Abb. 4.10 dargestellt. Solche Muster kénnen darauf hindeuten, dass zwei Probanden
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Abbildung 4.10: Visualisierung der einander zugeordneten Muster zweier Scanpaths bei EyePat-
terns [46].

eine dhnliche Strategie verwendeten, jedoch zu unterschiedlichen Zeiten. Mit Hilfe von reguldren
Ausdriicken kénnen beliebige Muster in den Daten gesucht werden, eine Eingabemaske vereinfacht
die Bedienung zusétzlich. Auf diese Weise ist eine Suche nach ungefdhren Ubereinstimmungen
moglich.

4.4 eSeeTrack

Mit eSeeTrack [42] wurde ein Werkzeug entwickelt, das Muster aus Scanpaths extrahiert und visuali-
siert. Dazu werden zwei Zeitleisten und eine baumartige Visualisierung genutzt, wie Abb. 4.11 zeigt.
Es werden sowohl statische als auch dynamische Stimuli unterstiitzt. Das Ziel ist der Vergleich von
mehreren Gruppen von Versuchsteilnehmern.

Vor der Benutzung von eSeeTrack muss der Analyst zuerst AOIs festlegen und die Fixationen die-
sen zuordnen lassen. Bei dynamischen Daten ist eine manuelle Zuordnung nétig. Danach kénnen
die Teilnehmer in bis zu sechs Gruppen eingeteilt werden. Jede dieser Gruppen bekommt je eine
zusammenfassende und eine detaillierte Zeitleiste. Diese sind durch Dreiecksmarken in gleichméfige
Abschnitte nach Probanden unterteilt. Die Fixationen werden innerhalb der Leisten als farbige Bal-
ken visualisiert, die Farbe steht dabei fur die jeweils fixierte AOL So zeichnen sich auf einen Blick
Ahnlichkeiten in der Haufung einer bestimmten AOI bei mehreren Probanden ab.

Die Baumvisualisierungen aller Gruppen werden iiberschneidend dargestellt. Die Wurzel des Baums
ist ein in der Detail-Zeitleiste ausgewahltes Tag. Sie kann links oder rechts vom Baum stehen. Im
ersten Fall werden die nachfolgenden, im zweiten die vorangegangenen Blickmuster gezeigt. So
kann herausgefunden werden, was ein Versuchsteilnehmer vor oder nach einem gewahlten Objekt
betrachtet hat. Die Textgrofle entspricht dabei der relativen Betrachtungshéufigkeit, der am haufigsten
vorkommende Pfad wird oben abgebildet.

Im Gegensatz zu den anderen bereits vorgestellten Arbeiten wird bei dieser kein algorithmischer
Vergleich der Scanpaths durchgefiihrt. Die verwendete Visualisierung kann bei lingeren zu zeigenden
Mustern tiberladen wirken. Allerdings erlauben interaktive Funktionen und die beiden Zeitleisten
eine visuelle Analyse der Daten.
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Abbildung 4.11: Die Benutzeroberfliche von eSeeTrack. Oben befinden sich die Zeitleiste (a) und die
Detail-Zeitleiste (b), mit denen sich der Benutzer einen Uberblick tiber die Fixations-
sequenzen verschaffen kann. Im unteren Bereich kann mit Hilfe einer Baumansicht
(c) herausgefunden werden, welche Sequenzen unmittelbar vor oder nach einer
ausgewahlten Fixation vorkamen. Damit kénnen héufig vorkommende Muster in
den Scanpaths gefunden werden. Rechts stehen Kontrollelemente (d) zur Auswahl
der Daten und Parameter zur Verfiigung [42].

4.5 Parallel-Scanpath-Visualisierung

Wie bei eSeeTrack wurde mit der Parallel-Scanpath-Visualisierung [35] eine Moglichkeit geschaffen,
das Blickverhalten von Probanden zu vergleichen.

4.5.1 Verfahren

Der Ansatz fiir eine tibersichtliche Visualisierung ist die Darstellung von AOIs als parallele Achsen.
Auf diesen Achsen werden die Daten nach der Zeit ihres Auftretens eingezeichnet. Punkte auf diesen
Achsen stehen fur Fixationen oder AOI-Aufenthalte. Die Punkte werden durch Linien verbunden, die
Transitionen zwischen AOIs reprasentieren. Am Rand der Visualisierung befindet sich eine Zeitachse,
welche die Richtung und Koordinaten des zeitlichen Verlaufs anzeigt.

Auf diesem Konzept basieren drei verschiedene Arten von Visualisierungen. Ein Gaze Duration
Sequence Diagram bildet die aufeinanderfolgenden AOI-Aufenthalte entsprechend ihrer Dauer ab.
Vertikale Linienabschnitte stellen AOI-Aufenthalte dar, wahrend horizontale Verbindungen zwischen
den Achsen fiir Ubergénge zwischen zwei AOIs stehen. Einzelne Fixationen werden durch ein Fixation
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Abbildung 4.12: Beispiel fur ein Fixation Point Diagram. Hier wurden die Scanpaths von vier Pro-
banden (blau, griin, braun und violett) gleichzeitig dargestellt. Fiir jeden davon
steht eine eigene Achse pro AQOI zur Verfiigung. Die Punkte entsprechen den aufge-
zeichneten Fixationen, die entsprechend ihres Zeitpunktes und der fixierten AOI in
das Diagramm eingezeichnet wurden. Unmittelbar iibereinander liegende Punkte
gehoren zu einem gemeinsamen AOI-Aufenthalt. Die Aufenthalte sind durch Linien
verbunden, um die zeitliche Abfolge sichtbar zu machen [35].

Point Diagram dargestellt (siehe Abb. 4.12). Ein Gaze Duration Distribution Diagram zeigt nur die
zeitlichen Mittelpunkte der AOI-Aufenthalte, nicht ihre Dauer.

4.5.2 Verbesserung der Darstellung durch Gruppierung

Um die Lesbarkeit der Parallel-Scanpath-Visualisierung bei einer grofleren Anzahl von Scanpaths
zu verbessern, wurde von Raschke et al. [36] eine Gruppierung dhnlicher Pfade eingefiihrt. Die
Ahnlichkeit wurde dabei mittels Levenshtein-Distanz bestimmt. Die Scanpaths einer Gruppe werden
in der Visualisierung mit einer dhnlichen Farbe markiert oder nur noch durch einen Pfad reprisen-
tiert. Dadurch wird der Uberblick tiber die Daten verbessert. Abb. 4.13 zeigt einen Vergleich der
Parallel-Scanpath-Visualisierung ohne und mit Gruppierung. Es wird deutlich, dass der urspriingliche
Ansatz sehr schlecht mit einer hheren Anzahl an Scanpaths skaliert, wihrend eine Zusammenfas-
sung dhnlicher Pfade zu einem Reprisentanten zwar Daten ausblendet, dafiir aber fiir eine bessere
Ubersichtlichkeit der Visualisierung sorgt.
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Abbildung 4.13: Vergleich von Visualisierungen vor (links) und nach (rechts) Gruppierung dhnlicher
Scanpaths. Durch Clustering mit einem Grenzwert von 0,73 fiir die Ahnlichkeit der
Cluster wurden zwei Gruppen erzeugt, die hier von jeweils einem Pfad représentiert
werden. Auflerdem wurden bei der rechten Visualisierung die einzelnen Fixationen
sowie die Dauer der AOI-Aufenthalte nicht in die Visualisierung einbezogen. Da-
durch werden alle Aufenthalte als vertikale Linien gleicher Lange dargestellt. Diese
Mafinahmen verbessern die Lesbarkeit der Visualisierung und vereinfachen den
Vergleich der Gruppen von Scanpaths [36].

Da im Allgemeinen keine feste Anzahl von Gruppen bekannt ist, wird die Gruppierung mittels
hierarchischem Clustering (siehe Abschnitt 2.4.1) vorgenommen. Als Maf3 fiir die Ahnlichkeit zweier
Scanpaths wird die Levenshtein-Distanz verwendet, die optional auch nur fiir einen Teilabschnitt der
Pfade berechnet werden kann. Falls nur ein Scanpath als Reprasentant einer Gruppe dienen soll, wird

derjenige gewihlt, dessen Summe der Abstinde zu allen anderen Pfaden in seiner Gruppe minimal
ist.

Bei der Parallel-Scanpath-Visualisierung wird der Benutzer durch eine Veranschaulichung und op-
tionaler Gruppierung der Pfade bei der Analyse der Daten unterstiitzt. Je nach Interesse konnen
verschiedene Daten gezeigt oder verborgen werden, wie etwa die Dauer der Fixationen. Eine Darstel-
lung der Ahnlichkeitshierarchie findet allerdings nicht statt.
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5 Konzept

In diesem Kapitel wird detailliert auf das erarbeitete Konzept dieser Arbeit eingegangen. Die folgenden
Abschnitte wigen Vor- und Nachteile der vorhandenen Metriken zum Vergleich von Scanpaths und
Strings ab, zeigen Anpassungen und Erweiterungen, die vorgenommen werden konnen, und behandeln
eine mogliche Représentation der zu vergleichenden Scanpaths. Danach wird auf eine Ordnung
und Darstellung der Ergebnisse eines Scanpath-Vergleichs durch Clustering und eine passende
Visualisierung eingegangen. Abschliefend wird ein Konzept fiir die Evaluation der Leistungsfiahigkeit
der verschiedenen Metriken vorgestellt.

5.1 Uberblick

Dieser Abschnitt soll einen Uberblick tiber das anschlieBend ausfiihrlich vorgestellte Konzept vermit-
teln. Alle Schritte sind zudem in Abb. 5.1 schematisch dargestellt.

Rohdaten

—»

1. Zusammen-
fassung
zu Fixationen

Y

Temporal Binning

2. AOI-Matching
und Erzeugung
der Scanpaths

L]

Kompression,
Wahl der Metrik
und Parameter,

Kostenfunktionen,

Normalisierung

Wahl der Abbruch-
bedingungen

Wahl der
Visualisierung

Filter fur kurze
Aufenthalte,
Zusammenfassung
von Aufenthalten

3. Vorverarbeitung
und Filterung
der Scanpaths

>

4. Vergleich der
Scanpaths

>

5. Gruppierung
nach Ahnlichkeit
durch Clustering

>

6. Visualisierung

Abbildung 5.1: Uberblick iiber das Konzept dieser Arbeit. Die vom Eye-Tracker aufgenommenen
Rohdaten werden in den Schritten 1 bis 3 erst zu Fixationen und dann zu Scanpaths
zusammengefasst. Dazu werden nacheinander alle Fixationen eines Probanden der
sie enthaltenden AOI zugeordnet, und deren Kennung an den Scanpath angefiigt.
Hierbei werden bei Temporal Binning mehrere Zeichen proportional zur Dauer der
Fixation hinzu genommen. Im 3. Schritt werden optional Sequenzen identischer
Zeichen zu einem zusammengefasst oder diejenigen unter einer beliebigen Lange
herausgefiltert. Anschliefend werden die Scanpaths paarweise verglichen (Schritt 4),
wobei eine Metrik und ihre Parameter gew#hlt werden kénnen. Nach dem Vergleich
werden die Pfade mittels Clustering gruppiert (Schritt 5). Zuletzt werden im 6. Schritt
die Ergebnisse des Vergleichs und die erzeugten Gruppen visualisiert.
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Das Ziel dieser Arbeit ist die Bestimmung der Ahnlichkeiten zwischen den Suchstrategien mehrerer
Studienteilnehmer. Die Strategien werden anhand der aus den aufgezeichneten Daten gewonnenen
Scanpaths verglichen. Nach dem Vergleich, bei dem verschiedene Metriken zum Einsatz kommen
konnen, werden die Scanpaths gruppiert und die Gruppenhierarchie veranschaulicht. In den folgenden
Absitzen werden die dafiir nétigen Schritte aufgefiihrt, die im restlichen Kapitel ausfiihrlich behandelt
werden.

Nach der Durchfithrung einer Eye-Tracking Studie liegen zunéchst nur die vom Eye-Tracker aufge-
nommenen Rohdaten vor. Diese enthalten fiir jeden Zeitpunkt, zu dem ein Sample aufgenommen
wurde, die Positionen der Blicke der Probanden. Diese Daten werden in der Regel bereits durch eine
dem Eye-Tracker beiliegende Software unter Nutzung von zeitlichen und raumlichen Grenzwerten zu
Fixationen zusammengefasst. In dieser Arbeit wird davon ausgegangen, dass dieser Schritt bereits
vollzogen wurde. Als Eingabe stehen also Fixationen inklusive Informationen tiber Position, Zeit-
punkt, Dauer und Proband zur Verfiigung. Aufflerdem muss fiir jede AOI bekannt sein, welchen Teil
des Stimulus sie abdeckt, beispielsweise indem die Eckpunkte einer rechteckigen AQI gespeichert
wurden.

Im nichsten Schritt werden mit Hilfe dieser Informationen fiir einen Stimulus alle Fixationen eines
Probanden der AOI zugeordnet, in deren Bereich sie auftraten (siehe Abschnitt 5.2.1). An dieser Stelle
kann direkt eine zeitliche Quantisierung mittels Temporal Binning stattfinden. Anschliefend kénnen
AOI-Aufenthalte, die bisher durch einen Teilstring identischer Zeichen représentiert wurden, zu einem
einzelnen Zeichen zusammengefasst oder je nach Linge herausgefiltert werden.

Danach findet der eigentliche Vergleich der Scanpaths mit einer der Metriken statt. Die Ergebnisse
dieses Vergleichs ermoglichen eine Gruppierung der Scanpaths anhand ihrer Ahnlichkeit. SchliefSlich
konnen die Ahnlichkeitswerte und die erzeugten Gruppen visualisiert werden, um das Verstandnis
der Ergebnisse zu erleichtern.

5.2 Scanpaths

Scanpaths stellen einen abstrakten Datentyp dar. Die folgenden Unterabschnitte beschéftigen sich
mit der Reprasentation, Erzeugung, Vorverarbeitung und Kompression von Scanpathdaten.

5.2.1 Reprasentation und Erzeugung von Scanpaths

Bei den in Kapitel 4 vorgestellten verwandten Arbeiten wurden in der Regel Strings verwendet, in
denen Zeichen wie etwa Buchstaben fiir Fixationen oder AOI-Aufenthalte stehen. Vorteile dieser
Représentation sind die vereinfachte Darstellung im Vergleich zu Sakkaden-Vektoren und der gespei-
cherte Bezug zu den AOQIs, in denen wiederum Informationen iiber deren Ahnlichkeit und Semantik
enthalten sein kénnen. Weiterhin konnen Strings direkt mit den verschiedenen String-Vergleichs-
Algorithmen verarbeitet werden, weshalb dieses Prinzip mit einigen Erweiterungen iibernommen
wird. Dabei muss jedoch der Nachteil einer Quantisierung von rdumlichen und zeitlichen Daten in
Kauf genommen werden, die etwa bei Vektoren entfllt.
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5.2 Scanpaths

Die Scanpaths werden aus aufgenommenen Eye-Tracking-Daten gebildet, indem fiir jeden Probanden
die zu diesem gehorenden Fixationen durchlaufen werden. Dabei wird chronologisch vorgegangen,
in der Reihenfolge, in der die Fixationen in der Studie tatsachlich stattfanden. Fiir jede Fixation wird
anhand ihrer Position bestimmt, in welcher AOI sie sich befand, und die Kennung dieser AOI in den
Scanpath eingefiigt. So referenzieren die Zeichen des Scanpath-Strings zunéchst nur die AQL in der
die zu dem Zeichen gehorende Fixation stattgefunden hat.

5.2.2 Mdéglichkeiten zur Vorverarbeitung

Um die Ergebnisse eines Vergleichs unter Beriicksichtigung weiterer Informationen oder besonderer
Anforderungen zu verbessern oder die Berechnung zu beschleunigen, konnen die Scanpaths nach ihrer
Erzeugung noch eine Reihe aus Vorverarbeitungsphasen durchlaufen. Diese werden im Folgenden
vorgestellt und sind in Abb. 5.2 dargestellt.

Scanpaths
mit einem Zeichen AAABBCAACCCB
pro Fixation

\ 4

Temporal Binning AAAAAABBBBCAAAACCCBB

\ 4

Filtern kurzer
Zeichensequenzen

A 4
Zusammenfassung
von AOI- ABAC
Aufenthalten

\ 4

AAAAAABBBBAAAACCC

Vergleich

Abbildung 5.2: Vorverarbeitung der Scanpaths. Links sind die Schritte zu sehen, welche von den
Pfaden durchlaufen werden. Jeder davon ist optional und es kann eine beliebige
Kombination in der hier dargestellten Reihenfolge gebildet werden. Rechts ist ein
Beispiel fur einen Scanpath zu sehen, der alle Schritte durchlauft. Hier wirkte sich
beim Temporal Binning die Dauer der Fixationen in den AOIs A und B so aus,
dass sich die zu ihnen gehorenden Zeichen jeweils verdoppelt haben, wahrend
die Fixationsdauer in C nur fiir je ein Zeichen reicht. Im nichsten Schritt wurden
Zeichenfolgen mit weniger als drei identischen Zeichen herausgefiltert. Zum Schluss
wurden die verbleibenden AOI-Aufenthalte zu einem Zeichen zusammengefasst. Die
Kombination von Binning und Filterung erlaubte eine Filterung der Daten nach
Dauer statt Anzahl der Fixationen.
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5 Konzept

Wie bei ScanMatch [4] kann die Fixationsdauer mittels Temporal Binning einbezogen werden, durch
eine der Zeitspanne entsprechende Wiederholung der AOI-Bezeichnung. Dazu wird eine bestimmte
Zeit festgelegt, ab der ein zusatzliches Zeichen hinzugefiigt werden soll. Dieser zeitliche Grenzwert
betragt standardméafliig 50 Millisekunden, kann aber auch je nach Samplingrate des Eye-Trackers oder
Dauer der gemessenen Fixationen angepasst werden. Dann wird die Dauer der Fixation durch diesen
Wert geteilt und das korrekt gerundete Ergebnis als Anzahl der einzufiigenden Zeichen gewahlt. Die
Auswirkungen dieser zeitlichen Quantisierung wird in Abb. 5.2 gezeigt.

Falls vom Analysten fiir eine bestimmte Studie als sinnvoll erachtet, konnen kurze und dadurch
weniger relevante AOI-Aufenthalte herausgefiltert werden. Als kurz gilt dabei ein Aufenthalt, der
im String durch weniger als eine von Analysten festgelegte Anzahl von Zeichen représentiert wird.
Fir diesen Wert empfiehlt sich die typischerweise zu erwartende Zahl von Fixationen, bei der ein
Aufenthalt noch keine Bedeutung fiir die Auswertung der Studie hat. Wurde Temporal Binning
verwendet, kann eine Zeit in Millisekunden dividiert durch den zeitlichen Grenzwert des Binnings
als Wert gewahlt werden. Bei einem Grenzwert von drei Zeichen, was bei einem 50 Millisekunden
Grenzwert beim Temporal Binning etwa einer Zeit von 150 Millisekunden entspricht, wird beispiels-
weise der String AAAAAABBBBCAAAACCCBB zu AAAAAABBBBAAAACCC. Durch diese Option
kann Rauschen in den Daten reduziert werden, das etwa dadurch entstehen kann, dass manche der
gemessenen Fixationen am Rand einer AOI auflerhalb von dieser liegen, obwohl hauptséachlich das
Objekt innerhalb der AOI betrachtet wurde. Abb. 5.3 zeigt, wie ein solcher Scanpath aussehen kann.

Durch die Wahl von héheren Grenzwerten kann die Analyse aulerdem auf AOI-Aufenthalte be-
schriankt werden, die eine bestimmte minimale Aufmerksamkeit widerspiegeln. So werden Aufent-
halte mit nur wenigen Fixationen oder, falls Temporal Binning genutzt wurde, von kurzer Dauer
herausgefiltert. Diese konnen entstehen, wenn der Betrachter zwischen zwei entfernten AOIs wech-
selt, und Fixationen in dazwischen liegenden AQOIs aufgezeichnet werden, obwohl der Betrachter mit
dem dortigen Bildausschnitt nicht gedanklich beschaftigt war.

Abbildung 5.3: Ein Beispiel fiir die Auswirkung von Rauschen auf einen Scanpath. Wahrend die
meisten Blickpunkte innerhalb der AOI 1 liegen, die das betrachtete Objekt umgibt,
wurde ein Blickpunkt im Bereich von AOI 2 gemessen. Er wurde als eigene Fixation
angesehen und sorgt nun fiir eine Unterbrechung des ansonsten langeren Aufenthalts
in AOI 1. Solche Abweichungen kénnen durch das Filtern kurzer Sequenzen gleicher
Zeichen vermindert werden.
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5.2 Scanpaths

Zuletzt konnen die erzeugten Strings vereinfacht werden, indem aufeinanderfolgend wiederholte
Zeichen zu einem einzelnen zusammengefasst werden, wodurch beispielsweise aus AAAAAABBB-
BAAAACCC der einfachere String ABAC entsteht. Dies kann sinnvoll sein, wenn bei der Analyse nur
die Reihenfolge der betrachteten AOIs von Bedeutung ist, wihrend die Aufenthaltsdauer nebensich-
lich fiir das Ergebnis der Studie ist. Bei dieser Option werden die Pfade oft stark verkiirzt, was sich
positiv auf den Aufwand und damit die Dauer der weiteren Verarbeitung auswirkt.

Alle diese Vorverarbeitungs-Operationen sind optional und werden nacheinander in der Reihenfolge
durchgefiihrt, in der sie in diesem Abschnitt behandelt und in Abb. 5.2 gezeigt werden. Sie erlauben
interessante Kombinationen, wie beispielsweise die von Temporal Binning mit dem Filtern kurzer
Aufenthalte. Dadurch wird statt der Anzahl der Fixationen die Dauer der AOI-Aufenthalte fiir ein
Passieren des Filters ausschlaggebend, so dass Aufenthalte unter einer gewissen Dauer herausgefiltert
werden.

5.2.3 Scanpath-Kompression

Vor der Verarbeitung eines String-Paares durch einen der Vergleichsalgorithmen kénnen die zu
vergleichenden Pfade durch Kompression vereinfacht werden. Bei einer Kompression mehrerer
Scanpath-Strings mit dem selben Worterbuch werden in jedem Pfad identische Abschnitte, bezie-
hungsweise Muster, durch den gleichen Worterbuchindex ersetzt. Aus den beiden Scanpaths ABCAC
und BBCAB konnten beispielsweise die Indexsequenzen 1, 4, 3und 2, 4, 2 werden, wenn die Teilsequenz
BCA im Woérterbuch bei Index 4 steht.

Bei der Kompression geht jedoch eine Zuordnung der Zeichen zu den AOIs verloren, weshalb bei
Nutzung von Kompression eine Einbeziehung von AOI-bezogenen Informationen unméoglich wird.
Beim Vergleich der komprimierten Strings durch beispielsweise die Levenshtein-Distanz kénnen daher
nur Kosten verwendet werden, die entweder konstant sind, oder anhand einer Funktion bestimmt
werden (siehe Abschnitt 5.4.4). Die Kompression kann paarweise oder fiir alle Scanpaths mit dem selben
Worterbuch durchgefithrt werden. Da es sich bei allen verglichenen Pfaden um den selben Stimulus
handelt und daher auch die Teilstrategien der Probanden dhnlich sein werden, ist zweitere Moglichkeit
vorzuziehen. Um sicherzustellen, dass bei jeder Durchfithrung der Kompression das Worterbuch den
selben Inhalt aufweist, konnen zunéchst alle Pfade einmal komprimiert werden. Wenn die originalen
Pfade danach ein zweites Mal komprimiert werden, sind bereits alle nétigen Worterbucheintrage
vorhanden und damit fiir alle Kompressionsvorgénge identisch. Die Reihenfolge der Kompressionen
beim Aufbau des Worterbuches beeinflusst dessen Inhalt. Daher sollte bei der Verwendung von
Kompression in verschiedenen Vergleichen darauf geachtet werden, dass die Scanpaths immer gleich
angeordnet sind.
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5.3 Beurteilung der Scanpath-Vergleichs-Metriken

In Abschnitt 2.3 wurden verschiedene Methoden beschrieben, die zum Vergleich von Scanpaths ver-
wendet werden konnen. Da es den Attention-Maps, Markov-Modellen sowie den Fixations-basierten
Ansitzen an der Betrachtung der zeitlichen und vor allem sequenziellen Informationen mangelt,
werden diese nicht weiter in Betracht gezogen. Sie sind nicht in der Lage, Strategien der Proban-
den anhand von Unterschieden in der Reihenfolge der Aktionen zu vergleichen. Vektor-basierte
Methoden sind in dieser Hinsicht iiberlegen und erzielen aufgrund des Verzichts auf AOIs eine hohe
Genauigkeit, da die Fixationspositionen direkt verwendet und nicht auf AOIs quantisiert werden. Sie
konnen jedoch keine semantischen Informationen beriicksichtigen. Die vorgestellten String-basierten
Metriken verarbeiten Scanpaths, in denen sequenzielle Informationen tiber die AOI-Aufenthalte und
teilweise auch zeitliche Informationen enthalten sind. Die verwendeten AOIs lassen sich zudem
semantisch annotieren und kénnen in Beziehungen zueinander gestellt werden. Daher wurden in
dieser Arbeit nur diese Metriken auf ihre jeweiligen Vor- und Nachteile hin untersucht und verglichen.
Eine Zusammenfassung der Ergebnisse findet sich in Tabelle 5.1.

Die Hamming-Distanz scheidet aus, da sie nur fiir Strings mit identischer Lange ausgelegt ist und
andere Metriken wie die Levenshtein-Distanz flexiblere Moglichkeiten fiir die Festlegung von Kosten
oder Punkten fiir dhnliche Stellen erlauben. Letztere ist zudem durch die haufige Verwendung in
verwandten Arbeiten zu einer Standardmethode geworden. Statt ihr kann die Damerau-Levenshtein-
Distanz gewahlt werden, da sie lediglich eine Erweiterung darstellt, und bei passender Konfiguration
die Levenshtein-Distanz berechnen kann. Der Algorithmus von Needleman und Wunsch eignet
sich trotz seiner Komplexitit gut fiir den Vergleich von Scanpaths, da bei ihm die Moglichkeit
besteht, Ahnlichkeitsbeziehungen zwischen AOIs direkt in der Ersetzungsmatrix zu beriicksichtigen.
Der Smith-Waterman-Algorithmus sucht, anders als die eben besprochenen Metriken, nach lokalen
Ubereinstimmungen. Daher eignet er sich zwar zum Finden #hnlicher Teilstrategien, aber nicht
zum Vergleich der Ahnlichkeit der Strategien selbst in ihrer Gesamtheit. Die Longest Common
Subsequence ist aufgrund fehlender Parameter leicht zu verwenden und kann eine interessante
Moglichkeit darstellen, falls ihre Leistungsfihigkeit nicht unverhaltnismafig schlechter ist als die der
anderen Metriken.

5.4 Anpassungen und Erweiterungen der Metriken

Neben der bereits in Abschnitt 2.2.1 angesprochenen Problematik der peripheren Wahrnehmung
und der dadurch geschwichten Aussagekraft der Blickpositionen, gibt es weitere Komplikationen
beim Versuch, Scanpaths zu vergleichen [11]. So kann es bei allen Metriken zu Schwierigkeiten
kommen, wenn sich die Liange der Pfade stark unterscheidet. Hier kann eine Normalisierung nach der
maximalen Lange hilfreich sein. Unterbrechungen zwischen ansonsten langen dhnlichen Teilen der
Scanpaths erschweren den Vergleich. Die Festlegung von Kosten und weiteren Parametern ist selten
eindeutig festlegbar und beeinflusst das Ergebnis enorm, gewiahlte Parameter passen in der Regel nicht
fiir alle Vergleiche in einer grofBen Menge an Scanpaths. Manche der im letzten Abschnitt verglichenen
Metriken bieten Moglichkeiten fiir Verbesserungen hinsichtlich dieser Probleme bei der Anwendung
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5.4 Anpassungen und Erweiterungen der Metriken

Metrik H Vorteile ‘ Nachteile
Hamming- - einfaches Prinzip - Strir'lgs miissgn die selbe Lange h'aben
Distanz - schnelle Berechnung in O(n) - weniger flexibel als E}n.dere Metriken
- es werden AQIs benétigt
- verschiedene Kosten fiir Einfiigung,
Ersetzung, Loschung und
Vertauschung (Damerau-Levenshtein) | - die Ersetzungskosten sind im
(Damerau-) wihlbar, raumliche und semantische | Allgemeinen unabhingig von der
Levenshtein- Ahnlichkeit der AOIs kann Ahnlichkeit zweier AOIs
Distanz miteinbezogen werden - zeitaufwandig (O(m - n))
- wird in vielen Arbeiten zum - es werden AQIs benétigt
Vergleich von Scanpaths benutzt und
stellt daher einen Quasi-Standard dar
- sucht globale Ahnlichkeit
Needleman- - Ersetzungskosten 51r.1.d abhingig von | _ zeitaufwindig (O(max(m, n)?))
den ersetzten AOIs wéhlbar rs
Wunsch . . . - es werden AOIs benétigt
- ist der Standardimplementierung der
Levenshtein-Distanz tiberlegen
- sucht lokale Ahnlichkeit, nicht
Smith- - kann Ahnlichkeiten in Teilstrategien | globale
Waterman finden - zeitaufwandig (O(m - n))
- es werden AOIs benétigt
- beschriankte Alignment-Operationen
im Vergleich zu Levenshtein
Longest - leicht zu implementieren und zu - raumliche und semantische
Common verwenden Ahnlichkeit der AOIs werden nicht
Subsequence - keine Parameter notwendig betrachtet
- zeitaufwandig (O(m - n))
- es werden AOIs benétigt

Tabelle 5.1: Vergleich der vorgestellten String-basierten Scanpath-Vergleichsmetriken anhand ihrer
jeweiligen Vor- und Nachteile. Die Bezeichner m und n bei den angegebenen Laufzeiten
stehen fiir die Langen der verglichenen Strings.

zum Vergleich von Scanpaths. Diese Moglichkeiten werden in den folgenden Unterabschnitten
aufgefithrt und erklért.

5.4.1 Einbeziehung der raumlichen AOI-Distanzen

Bei der Berechnung der Levenshtein-Distanz werden in der Regel konstante Kosten veranschlagt.
Dadurch werden bei der Ersetzungsoperation alle AOIs implizit als paarweise gleich dhnlich betrachtet.
Stattdessen konnen die jeweiligen Ersetzungskosten abhingig von den beiden betroffenen AOIs
gewihlt werden.
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Abbildung 5.4: Raumliche Distanz von AOIs als Ahnlichkeitsmaf. Hier sind der Ubersicht halber nur
die Abstidnde von AQI 1 zu den anderen eingezeichnet (blau). Zur Berechnung der
Abstidnde werden die AOI-Mittelpunkte verwendet. AOIs werden als umso dhnlicher
aufgefasst, je naher sie beieinander sind. Damit wird beriicksichtigt, dass trotz dhn-
licher Suchstrategie der Probanden leichte Unterschiede in den betrachteten AOIs
vorkommen koénnen.

Eine Moglichkeit dafiir sind die euklidischen Abstande der AQOIs, die bei ScanMatch [4] fiir die Erset-
zungsmatrix des Needleman-Wunsch Algorithmus verwendet wurden. Die Kosten fiir Vertauschungen
bei Damerau-Levenshtein konnten auf die selbe Weise festgelegt werden, indem der Abstand der
beiden in der Position vertauschten AOIs in den Wert einfliefit. Das kénnte die negative Auswirkung
kleiner Unterschiede zwischen den Scanpaths auf das Ergebnis des Vergleichs verringern. Dabei
kann je nach Wahl eines Faktors bestimmt werden, inwiefern solche Abweichungen toleriert werden
sollen.

AOIs koénnen eine beliebige Form besitzen, so sind auch dreidimensionale und sich dynamisch
verandernde AOIs moglich. Dadurch kann die Berechnung der Distanz problematisch werden. Es bietet
sich an, den Abstand der beiden AOI-Schwerpunkte zu nutzen, auch wenn diese Punkte beispielsweise
bei nicht konvexen Polygonen auflerhalb der AQOI selbst liegen kénnen. Abb. 5.4 veranschaulicht diese
Abstande. Um Tendenzen im Blickverhalten eines Probanden, wie etwa der starkeren Fokussierung
auf die Mitte eines Bildes als auf den Rand, ausgleichen zu konnen, ist eine Normalisierung durch die
Position der AOI innerhalb des Stimulus denkbar. Eine weitere Normalisierung kann auch Unterschiede
in der Grofle der AOIs und der damit verbundenen hoheren Wahrscheinlichkeit fiir Fixationen in
grofleren AOIs beriicksichtigen.

5.4.2 Einbeziehung semantischer Beziehungen zwischen den AOls

Sofern es sich um semantische AOIs (siehe Abschnitt 2.2.5) handelt, konnen Informationen tiber die
Beziehungen der AOIs untereinander fiir die Bestimmung von deren Ahnlichkeit genutzt werden. Ein
Beispiel dafiir ist ein Etikett auf einem Produkt im Supermarkt, wie Abb. 5.5 schematisch zeigt. Es
kann durch eine eigene AOI innerhalb der Produkt-AOI reprasentiert werden, wobei eine vertikale
Eltern-Kind-Beziehung zwischen beiden besteht. Mehre Produkte kénnen in eine gemeinsame Gruppe
eingeordnet werden, was eine horizontale Beziehung ergibt. Eine solche Beziehung bestiinde auch

56



5.4 Anpassungen und Erweiterungen der Metriken

AOlIs AOI-Hierarchie
Regal AOI Regal AOI
Produkt AOI 1 Produkt AOI 2
g Produkt 3
<C
Name

. Etikett AOI 1 Etikett AOI 3
Preis ‘

Preis ‘

Etikett AO

Produkt Produkt AOI 1 Produkt AOI 2
Name i: i:

Etikett

Etikett AOI 2 Etikett AOI 4

Abbildung 5.5: Ein einfaches Beispiel fiir semantische Beziehungen zwischen mehreren AOIs. Auf
der linken Seite ist die Anordnung der AOIs zu sehen. Der Stimulus ist in diesem
Fall ein Supermarktregal, in dem sich Produkte befinden. Auf diesen sind wiederum
Etiketten angebracht, die den Namen und Preis der Produkte angeben. Fiir alle diese
Objekte wurden passende Bereiche als ineinander verschachtelte AOIs festgelegt.
Rechts ist die aus dieser Verschachtlung entstehende Hierarchie abgebildet.

zwischen zwei Etiketten auf dem selben Produkt, da die beiden entsprechenden Etiketten-AOIs zur
selben Eltern-AOI gehoren.

Je nach Ziel der Studie kann es sinnvoll sein, AOIs mit dhnlicher oder untergeordneter Semantik als
austauschbarer zu betrachten als solche mit unterschiedlicher Bedeutung. Dementsprechend koén-
nen beispielsweise die Ersetzungskosten der verschiedenen Stringvergleichs-Algorithmen angepasst
werden. So kann beriicksichtigt werden, dass etwa das Fixieren eines beliebigen Produktes ausschlag-
gebend und die Unterscheidung der einzelnen Produkte weniger relevant fiir die Analyse ist. Bei
einem Ubergang zwischen zwei Produkt-AOIs kénnen auf diese Weise niedrigere Kosten angerechnet
werden, wodurch die Scanpaths als dhnlicher gelten.

5.4.3 Datengetriebene Ahnlichkeitswerte fiir AOls

Um einen Ahnlichkeitswert fiir zwei AOIs zu bestimmen, konnen die bei einer Studie aufgezeichneten
Daten selbst verwendet werden. Solche datengetriebene Ansitze werden bisher unter anderem dafiir
genutzt, AOIs automatisch festzulegen [21]. Dabei werden Fixationen durch Clustering gruppiert
und fiir die resultierenden Gruppen AOIs angelegt.

Fiir die Ahnlichkeit von AOIs entsprechend dem Blickverhalten von Probanden ist hingegen vor allem
die Ubergangshaufigkeit, beziehungsweise die Wahrscheinlichkeit eines Ubergangs zwischen zwei
AQIs von Bedeutung. Wie bei einem Markov-Modell nullter Ordnung (siehe Abschnitt 2.3.2) kann
dabei betrachtet werden, wie wahrscheinlich es ist, dass eine AOI besucht wird. Soll dies noch in
Abhingigkeit von der gerade betrachteten AOI geschehen, lage ein Markov-Modell erster Ordnung
vor, bei dem die Ubergangswahrscheinlichkeit analysiert wird. Ein Beispiel fiir die Ubergangswahr-
scheinlichkeiten zwischen den AOIs wird in Tabelle 5.2 gezeigt. Die einzelnen Wahrscheinlichkeiten
werden aus der Verteilung der Betrachtungszeit, der Fixationen oder der Uberginge hergeleitet. Eine
Normalisierung kann auch abhangig von der Gréfie und Position der AOIs vorgenommen werden,
um Tendenzen bei der Betrachtung auszugleichen.
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AOI | A B C D
03 03 02 0,2
03 01 04 0,2
0,2 04 03 0,1
0,2 02 01 05

o= »

Tabelle 5.2: Ein Markov-Modell erster Ordnung kann als AOI-Ahnlichkeitsmaf} verwendet werden.
Die Werte in der Tabelle geben die einzelnen Ubergangswahrscheinlichkeiten zwischen
zwei AOIs an. Sie wurden aus den tatsichlich aufgezeichneten Ubergéngen hergeleitet.

5.4.4 Variation von Metrik-Parametern tiber die Zeit

In manchen Fillen sind bei der Analyse der aufgezeichneten Daten bestimmte Zeitabschnitte besonders
relevant oder vernachléssigbar. So beginnen die Probanden bei bildschirmbasierten Studien in der
Regel mit einem Blick auf die Mitte des dargestellten Stimulus. Andererseits kann eine bestimmte
Teilszene wichtiger fiir den Vergleich mehrerer Probanden sein, als das restliche Geschehen. Zudem
werden die erkennbaren Strategien nach anfinglicher Ahnlichkeit oft im Verlauf der Aufnahme immer
undhnlicher, auch aufgrund des sich akkumulierenden Rauschens in den Daten.

Beim Vergleich von Scanpaths konnen diese und weitere Fille berticksichtigt werden, wenn die Kosten
tiber den zeitlichen Verlauf der Daten mittels gewahlter Funktionen gewichtet werden. Ein hoher
beziehungsweise niedriger Funktionswert kann dafiir sorgen, dass Unterschiede zwischen den Scan-
paths in einem speziellen Abschnitt grofie oder vernachléassigbare Auswirkungen auf die insgesamt
berechnete Ahnlichkeit haben. Dabei stehen verschiedene Méglichkeiten fiir die Betrachtung der Zeit
zur Verfiigung. Zundchst kann die Funktion als Parameter den absoluten oder den relativen Zeitpunkt
einer Fixation betrachten. Bei Scanpaths mit unterschiedlicher Linge wiirde die Zeit bei einer relativen
Betrachtung beispielsweise auf einen Wert zwischen Null und Eins normalisiert. Dadurch entspricht
ein Wert von 0, 5 bei beiden Pfaden unabhingig von ihrer Lange jeweils der Mitte des Zeitverlaufs.

Falls Strings fiir die Reprasentation von Scanpaths verwendet werden, fehlt oft eine genaue Zeitangabe
fiir Beginn und Ende der Fixationen. Diese Zeit kann nur anhand der Anzahl der Zeichen zwischen dem
Anfang des Strings und einer bestimmten Stelle abgeschatzt werden. Dabei kann ein Zeichen je nach
erfolgter Vorverarbeitung (siehe Abschnitt 5.2.1) fiir eine Fixation, einen AOI-Aufenthalt oder einen
Zeitabschnitt einer Fixation stehen. Weiterhin kénnen manche der bei der Studie aufgezeichneten
Fixationen im gespeicherten Scanpath fehlen, da sie aulerhalb aller festgelegten AQIs stattfanden
oder herausgefiltert wurden.

Fir die Gewichtungsfunktion selbst kommen verschiedene Alternativen in Frage (siehe Abb. 5.6).
Moglich wire etwa eine konstante Funktion, mit der die Parameter der Metriken zu jedem Zeitpunkt
gleich gewichtet werden. Auf diese Weise kann auf eine Priorisierung verschiedener Zeitabschnitte
verzichtet werden. Um beispielsweise zu Beginn aufgenommene Daten stirker zu gewichten, kann
ein Polynom, eine Logarithmus- oder Exponentialfunktion genutzt werden. Diese kénnen beliebig
skaliert und kombiniert werden. Eine abschnittsweise definierte Funktion erlaubt eine unterschiedliche
Gewichtungsfunktion innerhalb verschiedener Abschnitte.
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Abbildung 5.6: Moglichkeiten zur Festlegung der Gewichtungsfunktion. Eine konstante Funktion
gewichtet jeden Abschnitt gleich (a). Exponentialfunktionen steigen schnell an (b),
wohingegen logarithmische Funktionen immer weiter abflachen, ohne gegen einen
Grenzwert zu konvergieren (c). Partiell definierte Funktionen erlauben beliebige
Kombinationen. In Bild (d) wurde eine exponentielle Funktion mit einer konstanten
so verbunden, dass sich eine stetige Funktion ergibt, Stetigkeit ist jedoch keine
Voraussetzung. Die Bilder wurden erzeugt mit Wolfram Alpha'.

Durch die veranderten Kosten und Punktzahlen dndert sich eventuell der minimale und maximale Wert,
der durch den Algorithmus fiir zwei Scanpaths berechnet werden kénnte, weshalb die Normalisierung
der Ergebnisse angepasst werden muss (siehe Abschnitt 5.4.5).

5.4.5 Normalisierung der Ergebnisse

Sollen mehrere Paare von Scanpaths anhand ihrer jeweiligen Ahnlichkeit gruppiert werden, ist ein
Wert fiir die Ahnlichkeit zweier Strings notwendig, der unabhéngig von deren Linge ist. Die wird
durch eine Normalisierung erreicht, welche im Allgemeinen folgendermafien durchgefithrt wird:

<Resultat> — <minimal mdgliches Resultat>

(5.1)

<maximal mogliches Resultat>

Bei der Levenshtein-Distanz wird in vielen vorhandenen Arbeiten eine Normalisierung mit der Lange
des langeren Strings vorgenommen [15]. Diese Methode ist jedoch nicht ausreichend, wenn aufgrund

"www.wolframalpha.com
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der festgelegten Kosten Ergebniswerte entstehen, die groler als die Stringlédnge sind, da sich dann
fiir das normalisierte Ergebnis ein Wert grofier als Eins ergibt. Stattdessen kann der maximale in der
Berechnungstabelle vorkommende Wert zur Normalisierung herangezogen werden. Der auf diese
Weise gewihlte Wert steht fiir das schlechtest mogliche Ergebnis, das fiir die Ahnlichkeit der beiden
Strings herauskommen kann.

Fir den Algorithmus von Needleman und Wunsch bietet sich eine Normalisierung an, bei der das
berechnete Ergebnis durch das Produkt aus dem Maximum der Ersetzungsmatrix und der Lange
des langeren Strings geteilt wird. Diese Vorgehensweise wurde bei ScanMatch (siehe Abschnitt 4.1)
angewandt und sorgt dafiir, dass sich beim Vergleich zweier identischer Strings immer ein Wert von
Eins ergibt.

Die Longest Common Subsequence zweier Strings kann auf keinen Fall ldnger sein als der kiirzere der
beiden. Daher bietet sich dessen Linge zur Normalisierung an, falls die lokale Ahnlichkeit der Strings
im Vordergrund steht. Da zwei Scanpaths mit verschiedener Lange jedoch als eher unterschiedlich
gelten sollen, wird hier eine Normalisierung anhand der Linge des ldngeren Strings verwendet. Ein
Problem tritt auf, falls die Punktzahlen, im Falle dieser Metrik ein Wert von Eins fiir jedes Zeichen
der LCS, dermaflen gewichtet werden, dass das Ergebnis des Algorithmus hoher ist als die Lange
des langeren Scanpaths. Dann schlagt die Normalisierung fehl, da Werte gréfier Eins herauskommen
konnen, wenn die LCS eine entsprechend grofle Lange hat. Auch hier kann wie bei der Levenshtein-
Distanz der grof3te Wert aus der Berechnungstabelle zur Normalisierung verwendet werden.

5.5 Gruppierung der Scanpaths nach Ahnlichkeit

Zur Gruppierung der Scanpaths wird hierarchisches agglomeratives Clustering genutzt (siche Ab-
schnitt 2.4.1). Der Vorteil dieser Technik ist, dass die Anzahl der zu erzeugenden Gruppen nicht
im Voraus festgelegt werden muss. Stattdessen kann auch nach der Durchfithrung des Clusterings
die erzeugte Hierarchie jederzeit auf einer beliebigen Hohe abgeschnitten werden, wodurch die
Moglichkeit besteht, auch im Nachhinein Gruppen zu erzeugen. Dies kann unter anderem anhand
einer Visualisierung der Hierarchie interaktiv vom Benutzer gesteuert geschehen.

Alternativen wiren ein Top-Down-Ansatz sowie flaches Clustering. Ersteres teilt eine zu Anfang
bestehende Gruppe mit allen Elementen immer weiter auf, bis nur noch ein Element pro Gruppe
verbleibt. Diese Aufteilung ist jedoch aufwéndiger zu implementieren. Flaches Clustering, etwa mittels
k-Means-Algorithmus ermittelt keine Hierarchie und hat daher den Nachteil, dass die Anzahl der
resultierenden Gruppen nicht im Nachhinein festgelegt werden kann.

Beim gewéhlten hierarchischen Clustering werden immer die zwei aktuell dhnlichsten Cluster zu
einem neuen vereinigt. Dabei kann, falls gewiinscht, jederzeit gestoppt werden, sobald die Ahnlichkeit
zwischen allen moglichen Paaren von Clustern einen Grenzwert unterschreitet oder eine minimale
Anzahl von Gruppen erreicht wurde. Die Ahnlichkeit zwischen zwei Clustern wird dabei bestimmt, in-
dem je ein bestimmter Scanpath aus beiden gewahlt wird und diese Scanpaths durch eine der Metriken
verglichen werden. Fir die Auswahl dieser repréasentativen Scanpaths gibt es zwei unterschiedliche
Falle. Bei Clustern mit nur einem Scanpath wird dieser ausgewahlt. Sind mehrere Pfade im Cluster
enthalten, wird ein geeigneter Reprasentant gesucht, der hier als Most Central Scanpath bezeichnet
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5.6 Visualisierung der Ergebnisse

Abbildung 5.7: Veranschaulichung der Bestimmung des Most Central Scanpath. Es wird derjenige
Scanpath als Représentant fiir den Cluster gew#hlt, bei dem die Summe der Absténde
zu allen anderen Mitgliedern des Clusters minimal ist. Damit ist der Repréasentant
am dhnlichsten zu allen Mitgliedern. In dieser Graphik wurden nur die Absténde des
Most Central Scanpath zu den anderen Pfaden dargestellt.

wird (siehe auch Abb. 5.7). Dazu werden alle Scanpaths innerhalb des Clusters miteinander verglichen
und derjenige ausgewihlt, bei dem die Summe der Ahnlichkeiten zu allen anderen am hochsten
ist. Diese Vorgehensweise ist sinnvoll, da keine unterschiedliche Prioritat der Scanpaths vorliegt. In
diesem Fall konnte der wichtigste Scanpath einer Gruppe als Reprisentant gewiahlt werden, wie es
beim Clustering von Wortern geschieht. Ein Vergleich der beiden zentralen Scanpaths zweier Cluster
spiegelt zudem die Ahnlichkeit der Cluster genauer wider als der Vergleich der beiden dhnlichsten
Elemente, der bei einer Single-Linkage vorgenommen wiirde.

5.6 Visualisierung der Ergebnisse

Da die bloflen Ergebnisse der Scanpath-Vergleiche auch nach einer Gruppierung nur schwer zu
analysieren sind, kann eine geeignete visuelle Aufbereitung dem Benutzer das Verstindnis der Daten
deutlich erleichtern. In den folgenden Unterabschnitten wird eine Auswahl von Visualisierungen
gezeigt, mit denen Ahnlichkeiten zwischen einer Menge von Elementen dargestellt werden kénnen.

5.6.1 Vergleichstabelle

Die paarweisen Ahnlichkeiten der Scanpaths untereinander kénnen durch eine Vergleichstabelle
tibersichtlich dargestellt werden. Ein Beispiel dafiir zeigt Tabelle 5.3. Die Beschriftungen der Zeilen
und Spalten enthalten dabei die Namen der Scanpaths, die beispielsweise den Pseudonymen der
Probanden entsprechen konnen. Die Werte im Tabellenfeld 7', j] stehen dann fiir das Ergebnis des
Vergleichs des i-ten Scanpaths mit dem j-ten Scanpath. Sofern die Metrik symmetrisch ist, also die
Reihenfolge der beiden Eingabestrings keine Relevanz auf das Ergebnis des Vergleichs hat, ist auch
die Vergleichstabelle symmetrisch. Diese Eigenschaft spart Zeit bei der Berechnung und Analyse. Eine
zusitzliche farbliche Kodierung der Werte kann dem Benutzer einen besseren Uberblick verschaffen.
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Tabelle 5.3: Vergleichstabelle der Ergebnisse eines Vergleichs von fiinf Scanpaths mit einer gew&hlten
Metrik. In diesem Beispiel wurden die Werte normalisiert, so dass ein Wert von 1 fiir
zwei identische Pfade steht. Die Einfiarbung der Zellen entspricht dem enthaltenen Wert,
wodurch ein Vergleich der Werte einfacher wird. Die Symmetrie der Tabelle erfolgt aus
der Symmetrie der verwendeten Metrik.

[A][B][C][D][E]

Abbildung 5.8: Diese Abbildung zeigt eine Hierarchie, die als Dendrogramm visualisiert wurde. Die
gestrichelte graue Linie deutet einen Schnitt durch die Hierarchie an, mit dem diese
in zwei kleinere Hierarchien geteilt wird. Die Elemente in diesen beiden Baumen
bilden zwei nach Ahnlichkeit von einander getrennte Gruppen.

5.6.2 Dendrogramm und Baumansicht

Als Visualisierung fiir die Gruppenhierarchie wird ein Dendrogramm verwendet (siehe Abschnitt 2.4.2).
Es zeigt die Reihenfolge der beim Clustering vorgenommenen Gruppenvereinigungen und damit
die relativen Ahnlichkeiten zwischen den Daten. Der Benutzer kann hier, wie im obigen Absatz
angesprochen, eine Grenze festlegen, an der die Hierarchie in mehrere Gruppen aufgeteilt wird.

Ahnlich wie beim Dendrogramm wird bei der Baumansicht die Hierarchie der Scanpaths angezeigt.
Allerdings konnen einzelne Cluster in der Ansicht interaktiv erweitert beziehungsweise zusammen-
geklappt werden, um nur die momentan fiir den Benutzer interessanten Daten zu zeigen. Details tiber
die Gruppen kénnen in einer extra Spalte angezeigt werden.

5.7 Evaluation der Leistungsfahigkeit der Metriken

Die zentrale Aufgabe dieser Arbeit ist der Vergleich verschiedener Metriken hinsichtlich ihrer Fahig-
keit, die Ahnlichkeit von Scanpaths festzustellen. Dazu wird ein Konzept fir die Evaluation der von
den Metriken berechneten Ergebnisse benotigt. Diese Evaluation wird durch die vielen wahlbaren
Parameter erschwert, wie etwa die Optionen bei der Erzeugung der Scanpaths und die von vielen
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Algorithmen verwendeten Kosten. Zudem ist es schwer, objektiv zu entscheiden, welche Scanpaths
als dhnlicher gelten sollen als andere.

Um einen Vergleich der Metriken vornehmen zu konnen, werden daher Daten mit einer im Vor-
aus abschitzbaren Ahnlichkeit verwendet. Diese Ahnlichkeit soll erkannt werden, indem nach dem
Vergleich und einem Clustering der Ergebnisse Gruppen entstehen, die den erwarteten Ahnlichkeitsbe-
ziehungen entsprechen. Die fiir die Beschaffung solcher Daten benutzten Anséatze und Moglichkeiten
fiir die Auswertung der entstehenden Resultate werden in den folgenden Abschnitten erlautert.

5.7.1 Erzeugung von Testdaten

Als Benchmark fiir die vielen Moglichkeiten, Scanpaths zu vergleichen, soll eine Reihe von Testdaten
dienen. Diese werden teils maschinell erzeugt und teils aus realen Aufzeichnungen gewonnen.

Ein praktischer Ansatz fiir die Erzeugung einer groflen Menge von Testdaten ist die automatische
Generierung von Scanpaths in mehreren Gruppen analog zur Vorgehensweise bei ScanMatch [4] und
MultiMatch [7], siehe dazu auch die Abschnitte 4.1 und 4.2. Scanpaths kénnen zufillig erzeugt und
diese dann zufillig variiert werden, was zu Gruppen paarweiser Ahnlichkeiten fiihrt. Die detaillierte
Vorgehensweise hierfiir wird in den folgenden Absétzen beschrieben.

Die Lange der zu erzeugenden Pfade wird zwischen zwei Grenzwerten zufillig mit Gleichverteilung
gewahlt, um verschieden lange Pfade zu erhalten. Wie die resultierenden Pfade aussehen, ist anhand
zweier Beispielpfade und ihrer Varianten in Abb. 5.9 gezeigt. Zunéchst werden dazu Punkte mit
normalisierten Koordinaten genutzt. Diese haben Werte zwischen Null und Eins, die zufillig gleich-
verteilt gewahlt und spéiter auf die Ausmafie des Stimulus hoch skaliert werden. Mit zunehmender
Lange wird die erwartete Differenz zwischen zwei zufallig generierten Pfaden immer gréfler, da
es unwahrscheinlich ist, dass Fixationen beide Male in der selben Reihenfolge dhnliche Positionen
einnehmen.

Um nun aus diesen unterschiedlichen Pfaden Gruppen mit untereinander dhnlichen Mitgliedern
zu erhalten, werden Varianten der Pfade gebildet. Dazu werden die einzelnen Punkte um einen
Wert verschoben, der durch eine normalverteilte Zufallsvariable bestimmt wird. Diese soll den
Mittelwert Null haben, die Standardabweichung wird bei jedem neuen Scanpath stufenweise erhoht.
Dadurch entstehen erwartungsgemif3 Varianten, die immer kleiner werdende Ahnlichkeiten mit
dem Originalpfad aufweisen. Eine hohe Ahnlichkeit zwischen Varianten, die aus unterschiedlichen
Originalen gewonnen wurden, ist bei geringer Standardabweichung sehr unwahrscheinlich, da hierfir
jede einzelne Fixation des einen Scanpaths nahe bei der entsprechenden Fixation des anderen liegen
muss. Je hoher die verwendete Standardabweichung ist, desto eher kann dieser Fall auftreten, wodurch
es fir Metriken schwerer wird, die Varianten korrekt dem Original zuzuordnen.

5.7.2 Aufzeichnung von Eye-Tracking-Daten mit bekannter Ahnlichkeit
Um die Leistungsfihigkeit mit realen Eye-Tracking-Daten zu testen, soll ein Versuch mit einer kleinen

Gruppe von Probanden und einem Bildschirm-basierten Eye-Tracker durchgefiihrt werden. Dabei wird
ahnlich wie bei MultiMatch vorgegangen, indem nacheinander Punkte auf dem Bildschirm angezeigt
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Abbildung 5.9: Zwei generierte Scanpaths (blau und orange) mit je zwei Varianten (semitransparent).
Letztere wurden mit verschieden hoher Standardabweichung erzeugt, dargestellt
durch eine hohere Opazitit derjenigen Varianten, die eine geringere Abweichung
zum Original haben. Nicht jede Abweichung &ndert die getroffene AOL

werden, die vom Probanden zu fixieren sind. Die Punkte geben einen von mehreren idealen Scanpaths
vor, wodurch sich automatisch Gruppen mit zueinander dhnlichen Pfaden ergeben. Auf diese Weise
sind die groben Ahnlichkeiten zwischen den Scanpaths bekannt. Diese Gruppen unterscheiden
sich jedoch aufgrund des Einflusses des Probanden und der vorhandenen Messungenauigkeit des
Eye-Trackers. Die Muster-Pfade werden dabei auf die selbe Weise erzeugt, wie zuvor die zufallig
automatisch generierten Testdaten, allerdings ohne Varianten, da diese bei der Aufnahme durch die
Testpersonen geschaffen werden.

5.7.3 Verwendung von Daten aus einer externen Studie

Als dritte Quelle fur die zur Evaluation verwendeten Daten dient ein Datensatz aus einer externen
Studie [20]. Diese wurde mit dem Ziel durchgefiihrt, einen Standard fiir die Evaluation von Eye-
Tracking Visualisierungen und Analysewerkzeugen zu schaffen. Erhoben wurden die Aufzeichnungen
der Probanden beim Betrachten verschiedener Videos. Die Daten eignen sich aufgrund der Tatsache,
dass die Probanden in machen der Aufzeichnungen zwei verschiedene Aufgaben hatten. Daher sollten
sich nach einem Clustering zwei etwa gleich grofie Gruppen von Scanpaths ergeben.
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5.7.4 Auswertung der Ergebnisse

Durch die getroffenen Maf3inahmen bei der Generierung und Aufzeichnung der Daten sind implizite
Gruppen von Scanpaths vorhanden. Die Aufgabe der Vergleichsmetriken besteht nun darin, die
Pfade korrekt zu diesen Gruppen zuzuordnen. Zu diesem Zweck werden die Scanpaths nach der
Durchfiithrung aller moglichen Vergleiche mit einer Metrik mittels hierarchischem agglomerativem
Clustering gruppiert. Da die Anzahl der Gruppen bekannt ist, kann diese als Abbruchskriterum beim
Clustering verwendet werden.

Die Erfolgsquote bei dieser Gruppierung dient dann als Indikator fiir die Leistungsfidhigkeit der
jeweiligen Metrik unter der festgelegten Konfiguration. Es werden also die korrekten Zuordnungen
gezéhlt und deren Anteil an der Gesamtzahl zur Bewertung ausgegeben. Hierfiir werden zunéchst die
jeweils als korrekt geltenden Scanpaths fiir jede Gruppe festgelegt. Dazu wird derjenige Original-
Scanpath als Gruppeneigentiimer gewahlt, dessen Variationen am hiufigsten in ihr vorkommen.
Wurden auf diese Weise mehrere Gruppen vom selben Pfad beansprucht, wird fiir ihn die Gruppe
mit den meisten seiner Variationen ibernommen. Die restlichen Gruppen werden analog verteilt.
Somit wird sichergestellt, dass jeder Scanpath nur zu einer Gruppe gehdren kann. Nun kénnen alle
korrekten Zuordnungen gezéhlt und die Erfolgsquote berechnet werden. Durch diese Vorgehensweise
konnen alle Scanpath-Optionen, die Metriken und deren Parameter in verschiedenen Konstellationen
getestet werden, bis die beste Kombination gefunden wurde.
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6 Implementierung

In diesem Kapitel wird auf die Umsetzung des erarbeiteten Konzepts in einer prototypischen Imple-
mentierung eingegangen. Abb. 6.1 zeigt das Hauptfenster der Anwendung. Die folgenden Abschnitte
erlautern die Herkunft und Verwaltung der benétigten Daten, sowie deren Verarbeitung und die
anschlieende Visualisierung der Ergebnisse.

6.1 Verwendete Programme und Tools

Der Prototyp wurde in der Programmiersprache C# entwickelt, um die Kompatibilitit zu bestehenden
Komponenten zu erleichtern. Als Entwicklungsumgebung wurde das Microsoft Visual Studio 2013
benutzt. Die Datenbank wurde auf einem Microsoft SQL Server verwaltet.

6.2 Nutzung einer Datenbank fur Studiendaten

Bei der Planung und Durchfithrung einer Studie fallt eine vielfaltige Menge von Daten an. Dazu
gehoren beispielsweise Informationen tiber Studienteilnehmer, die verwendeten Stimuli und deren
jeweilige AOIs. Nach der Aufnahme der Eye-Tracking Daten liegen diese als Rohdaten oder auch
zusammengefasst als Fixationen vor. Um diese Daten effizient zu verwalten, bietet sich die Verwendung
einer relationalen Datenbank an. Wie die Struktur einer solchen Datenbank aussehen kann, ist in
Abb. 6.2 zu sehen. Die in dieser Implementierung verwendete Datenbank wurde von fritheren Projekten
ohne weitere Anderungen iibernommen [14].

Dabei enthilt jede Tabelle einen Typ von Daten, etwa Fixationen, und kann Beziehungen zu anderen
Tabellen haben. So kann beispielsweise fiir jede Fixation die Zugehorigkeit zu einem Probanden und
einem Stimulus in einem Tabellenfeld gespeichert werden. Durch die vorhandenen Informationen
iber die AQOIs des Stimulus konnen die Fixationen auch diesen zugeordnet werden.

6.3 Verwaltung der Scanpath-Daten

Um den eigentlichen Pfad und iiber ihn hinausgehende Metainformationen strukturiert speichern zu
konnen, wurde eine eigene Klasse implementiert. Sie enthilt Angaben tiber Proband, Stimulus, AOIs
und die getitigten Vorverarbeitungen (siehe Abschnitt 6.3.5). Damit sind die gespeicherten Scanpaths
unabhéngig von ihrer Herkunft verwendbar. In den folgenden Abschnitten werden die Herkunft und
der Umgang mit den Scanpath-Daten erldutert.
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Abbildung 6.1: Das Hauptfenster des Prototypen. Hier kann unter anderem die Quelle der zu verar-
beiteten Daten ausgewéhlt werden. In der zweiten Spalte ist eine Wahl der Parame-
terbereiche moglich, fiir welche eine entsprechende Anzahl an Testkonfigurationen
erzeugt wird. Eine Konsole zeigt in Kombination mit der Fortschrittsleiste am unteren
Rand den aktuellen Status der Verarbeitung an. Rechts kann nach deren vollstandiger
Durchfithrung fiir eine beliebige Testkonfiguration eine Visualisierung ausgew#hlt
und anzeigt werden.
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6.3 Verwaltung der Scanpath-Daten
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Abbildung 6.2: Die in dieser Arbeit relevanten Datenbanktabellen zur Verwaltung der Studiendaten,
dargestellt als Entity-Relationship-Diagramm. Das Bild wurde erstellt mit Microsoft
Visual Studio 2013 und zur Verbesserung der Lesbarkeit die Schrift nachbearbeitet.

6.3.1 Reprasentation

Wie bereits in Abschnitt 5.2.1 erwéhnt, haben sich Strings zur Reprasentation von Scanpaths etabliert.
Dadurch kénnen sie direkt von den Stringvergleichs-Algorithmen verarbeitet werden. Um die Hand-
habung der Scanpaths in der Implementierung zu erleichtern, wurde in dieser Arbeit stattdessen eine
Liste benutzt, die fiir jede Fixation die ID der zugehorigen AOI als Integer enthalt. Dadurch ergeben
sich praktische Vorteile, wie die Umgehung von Limitationen bei der Benutzung einer einzelnen Ziffer
oder eines Buchstaben bei mehr als zehn beziehungsweise 26 verschiedenen AOIs. Eine Umwandlung
von und zu herkémmlichen Zeichenketten ist dabei ohne weiteres moglich, wobei darauf geachtet
werden muss, dass ein String, der nicht aus AOI-IDs besteht, eine Verwendung von Ahnlichkeits-
werten der AQOIs ausschliefit. Diese konnten jedoch in einer spateren Erweiterung fiir jedes Paar an
Worterbucheintragen berechnet oder manuell festgelegt werden.
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6.3.2 Import aus einer Datei

Scanpaths konnen auch aus einer Datei importiert werden. In diesem Fall stehen allerdings keine
weiteren Informationen tiber die Studie zur Verfiigung, was sich auf die Moglichkeiten zum spateren
Vergleich auswirkt. Die zu importierende Datei enthélt Zahlen, die fiir die Fixationen eines Scanpaths
stehen und jeweils die AOI angeben, in der die Fixation sich befand. Als Dateiformat werden zwei
Alternativen unterstiitzt: Die einfache Variante besteht lediglich aus Zeilen mit je einem Scanpath, die
in Form einer Folge von Ganzzahlen vorliegen miissen. Letztere miissen durch ein Leerzeichen oder
Semikolon getrennt sein. Um Metainformationen des Scanpaths, wie beispielsweise den Namen des
Probanden zu Gibergeben, der auch als Bezeichnung fiir den Scanpath dient, konnen Informationen in
einer festgelegten Reihenfolge und durch Rautezeichen getrennt vor dem Beginn der Zahlenfolge
stehen.

Da nur eine Reihe von AOI-Bezeichnern vorliegt, kann ein importierter Scanpath nicht durch Temporal
Binning mit Zeitinformationen angereichert werden. Allerdings kann schon vor der Erstellung der
Datei eine entsprechende Vorverarbeitung erfolgen. Aufgrund der nicht vorhandenen Informationen
tiber die Ahnlichkeiten der AOIs miissen auf3erdem die Kosten und Punktzahlen bei den Metriken
manuell festgelegt werden (siehe Abschnitt 6.4).

6.3.3 Generierung zufalliger Pfade

Wie in Abschnitt 5.7.1 fiir die Evaluation beschrieben, kénnen die Pfade auch unter Nutzung zufilliger
Punkte generiert werden. Weitere Anwendungsméglichkeiten dieser Option sind beispielsweise Tests
der Visualisierungen oder der Skalierung der Metriken fiir eine grofie Zahl oder Lange von Scanpaths.
Die dafir verwendbare Benutzeroberflache wird in Abb. 6.3 gezeigt. Wie die generierten Scanpaths
aussehen konnen, zeigen die Abbildungen 5.9 und 7.2.

6.3.4 Erzeugung aus der Datenbank

Um Scanpaths aus den in der Datenbank gespeicherten Fixationen zu erzeugen, miissen diese zunachst
der AOI zugeordnet werden, in der sie auftrat. Das geschieht anhand der fiir jede AOI in der Datenbank
enthaltenen Informationen tiber die von ihr abgedeckte Fliche tiber dem Stimulus. In diesem Prototyp
werden vorerst nur rechteckige AOIs unterstiitzt. Nach dieser Zuordnung werden ein Stimulus und
eine Auswahl von Probanden festgelegt, anschlieffend wird fiir jeden Proband der zu ihm gehérende
Scanpath erzeugt. Bereits in diesem Schritt erfolgt die Anwendung des optionalen Temporal Binning,
mit einer vom Benutzer gewahlten Zeitspanne. Die Dauer jeder Fixation wird dann durch diese Zeit
geteilt, das mathematisch korrekt gerundete Ergebnis bestimmt dann die Anzahl der Zeichen, durch
die diese Fixation im Scanpath reprasentiert wird.

6.3.5 Vorverarbeitung und Vereinfachung

Unabhéngig von der Herkunft eines Scanpaths konnen die im Konzept erlduterten Vorverarbei-
tungsschritte Filtern und Zusammenfassen angewandt werden. Bei der Filterung kurzer Sequenzen
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B 7 Scanpath Generator and Presenter = [m} X
AQI| Settings Stimulus Settings

#A0Is vertically: 5 Time between two shown points:

#A0Is horizontally: 8 1 secands

Scanpath Settings

Minimum length: 30 MNumber of variations with different SD: 1
Maximum length: 30 Number of variations with same 5D (per SD): 49
Mumber of paths: 2 Min. standard deviation: 0.1

0.1

Max. standard deviation:

generate scanpaths | export scanpaths as AQ| sequences | | export scanpaths as fixations

4 Scanpath (D1, 30 fix.)
var, Scanpath (ID2, SD 0.1, 30 fix.)
var. Scanpath (ID3, 5D 0.1, 30 fix.)

var, Scanpath (ID3, 5D 0.1, 30 fix.)
var, Scanpath (IDg, SD 0.1, 30 fix.)

| show selected scanpath | | show all scanpaths |
| preview stimulus and AQOls | | start stimulus |
| save settings and scanpaths | | reset to previous save | | reset to default values |

Abbildung 6.3: Das Konfigurationsfenster fiir die randomisierte Scanpath-Generierung. Diese Ober-
flache ermoglicht die Angabe der gewiinschten vertikalen und horizontalen Anzahl
der gitterformigen AOIs und die Wahl verschiedener Optionen fiir die Scanpath-
Erzeugung. So konnen Varianten mit verschiedener Standardabweichung generiert
werden, wobei auch fiur jeden Wert mehrere Varianten moéglich sind. Buttons im
unteren Bereich des Fensters fithren zu verschiedenen Anzeigen des markierten oder
aller Scanpaths.

identischer Zeichen werden jene mit einer Lange unter einem vom Benutzer gesetzten Grenzwert aus
dem Pfad entfernt. Die Zusammenfassung ersetzt aufeinanderfolgende identische Zeichen durch ein
einzelnes, um nur je ein Zeichen pro AOI-Aufenthalt im Pfad zu belassen.

6.3.6 Kompression

Fir die Kompression der Scanpaths wurde der Algorithmus von Lempel, Ziv und Welch (LZW-
Algorithmus) [45] gewéhlt, eine Verbesserung des LZ78 [51]. Er findet unter anderem beim verbreiteten
Bildformat Graphics Interchange Format (GIF) Anwendung. Bei der Kompression einer Zeichenkette
mit diesem Algorithmus wird solange auf ein Worterbuch zugegriffen, bis der aktuell zu verarbeitende
Abschnitt nicht mehr darin vorkommt. Dieser wird dann hinzugefiigt und der Vorgang fortgesetzt.
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Das Ergebnis ist schliellich eine Sequenz von Verweisen auf Worterbucheintrage, durch die der
urspriingliche String verlustfrei wiederhergestellt werden kann.

Der Quellcode fiir die LZW-Kompression wurde zum Teil von Rosetta Code! itbernommen und ange-
passt. Da im Gegensatz zum Original nicht Zeichenketten sondern Listen mit Zahlen komprimiert
werden sollen, wurden als Schliissel fiir das Worterbuch entsprechend Zeichenketten aus den jeweili-
gen Zahlen und dazwischenliegenden Trennzeichen gebildet. Das Ergebnis der Kompression ist eine
Liste von Ganzzahlen, die von den Metriken direkt wie ein Scanpath verwendet werden kann. Dabei
entfallt jedoch die Moglichkeit, AOI-Informationen in den Scanpath-Vergleich einflielen zu lassen, da
kein Bezug mehr zwischen den Zahlen im Pfad und den AOIs besteht. Auch manuell eingetragene
AQI-abhingige Parameter lassen sich daher nicht nutzen (siehe Abschnitt 6.4). Die dazugehorigen
Optionen werden vom Programm automatisch deaktiviert.

Die Kompression der Scanpaths findet im Anschluss an die restlichen Vorverarbeitungsschritte statt,
da sonst andere Vorverarbeitungsschritte unmdglich wiirden. Temporal Binning kann nach einer
Kompression nicht angewandt werden, da kein direkter Bezug zu den Fixationen besteht. Eine Filterung
oder Zusammenfassung der Fixationen ist aus dem selben Grund ebenfalls nicht mehr méglich. Vor
der eigentlichen Kompression der Scanpaths werden zunichst alle Pfade einmal komprimiert, um
ein einheitliches Worterbuch zu schaffen. Die Reihenfolge dieser Kompressionen beeinflusst die
Eintréage, daher sollte sie bei mehreren Vergleichsdurchldufen identisch sein. Nach dieser Vorbereitung
werden die originalen Pfade erneut unter Benutzung dieses Worterbuches komprimiert und die dabei
entstehenden Pfade als Daten fiir den anstehenden Vergleich genutzt.

6.4 Module fir den Vergleich von Scanpaths

Von den im Grundlagenkapitel vorgestellten Metriken wurden im Konzept drei ausgewahlt, die
sich als besonders geeignet fiir diese Arbeit herausstellten. Dies sind die Damerau-Levenshtein-
Distanz, der Algorithmus von Needleman und Wunsch sowie die Longest Common Subsequence. In
diesem Abschnitt werden die implementierten Anpassungen und Erweiterungen der Metriken fiir
den Vergleich von Scanpaths behandelt.

6.4.1 Needleman-Wunsch

Der Algorithmus von Needleman und Wunsch wurde analog zur Vorgehensweise bei ScanMatch [4]
implementiert (siehe auch Abschnitt 4.1). So werden als Werte fiir die Ersetzungsmatrix die eukli-
dischen Abstinde zwischen den AOIs verwendet, mit einem Grenzwert, ab dem die Werte negativ
werden. Dieser betrdgt die doppelte Standardabweichung der Langen aller Sakkaden, die zum aktuel-
len Stimulus vorhanden sind. Durch diese Mafinahme kann die Gap Penalty auf Null gesetzt werden.
Da bei aus Dateien importierten oder randomisiert generierten Scanpaths keine Informationen tiber
die Sakkaden der Probanden vorliegen, werden in diesen Féllen nur positive Werte und eine Gap

'http://rosettacode.org/wiki/LZW_compression#C.23
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6.4 Module fir den Vergleich von Scanpaths

{87 Needleman-Wunsch Metric Settings — O ™
General Settings

Mormalize results Gap penalty: D

Comparison Matrix Settings (using database information)

Costs are based on AQI distances [[] Casts are based an AQI relations
Distance weight: Vertical and horizontal relation weight
v [10 | h |10 |

Comparison Matrix Settings (using custom AQOls)

[] Use custom AQls Score for equal AQIs 1.0

Number of custom AQls: 40 Score for different AQls  ©0

| Re-calculate matrix Matrix is symmetric Colorize matrix

| Save || Load from save || Cancel |

Abbildung 6.4: Einstellungen fiir den Needleman-Wunsch-Algorithmus. Die hier gezeigte Erset-
zungsmatrix enthalt Werte, die aus den Abstanden der 8 mal 5 gitterférmigen AOIs
berechnet wurden, die in der Evaluation Verwendung fanden. In diesem Fall wire
eine manuelle Eingabe mit einigem Aufwand verbunden, auch unter Ausnutzung der
Symmetrie. Eine Einfairbung der Werte nach der Hohe der vergebenen Punktzahlen
sorgt fiir einen besseren Uberblick (siehe auch Abschnitt 6.7.1).
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Penalty von -1 verwendet. Die Abstdnde werden zwischen den Mittelpunkten der AOIs berechnet,
wobei rechteckige Bereiche und Polygone unterstiitzt werden.

Alternativ konnen alle Ahnlichkeitswerte auch manuell vom Benutzer eingetragen werden. Die
Benutzeroberflache dafiir ist in Abb. 6.4 zu sehen. Textfelder bieten die Moglichkeit, die Punktzahlen
abhéngig von der Gleichheit zweier AOIs fiir die gesamte Tabelle festzulegen. Aulerdem ist eine
Bearbeitung jedes Tabellenfeldes moglich, bei aktivierter Symmetrie der Tabelle werden Anderungen
automatisch gespiegelt. Eine Einfirbung der Tabellenfelder in Abhangigkeit von der Hohe des Wertes
verbessert den Uberblick. Dabei werden die Werte vom niedrigsten bis zum héchsten mit verschiede-
nen Farben hinterlegt, die je nach Grofle der Werte aus einem Bereich zwischen zwei Farben gew#hlt
werden. Es wurden zwei zueinander anndahernd komplementére Farben mit dhnlicher Luminanz
gewahlt, um eine feine Abstufung zu erméglichen und die Lesbarkeit nicht zu beeintrachtigen.

Durch die manuelle Angabe der Ahnlichkeitswerte konnen Scanpaths unter Verwendung von AOI-
abhingigen Parametern verglichen werden, auch wenn dem Programm keine vollstindigen Infor-
mationen uber die AOIs vorliegen. Dies ist etwa dann der Fall, wenn die Scanpaths aus einer Datei
importiert wurden und die Datenbank keine Informationen tiber die verwendeten AOIs enthalt.
AuBlerdem konnen durch die manuelle Festlegung der Punktzahlen beliebige Ahnlichkeitskriterien
fir die AOIs beim Vergleich genutzt werden, beispielsweise abhéngig von der Farbe der AOIs.

Je nach semantischer Beziehung der AOIs kénnen die Werte noch durch einen wahlbaren Faktor
gewichtet werden. Es wird hier nach horizontaler und vertikaler Verwandtschaft unterschieden, fiir
welche jeweils verschiedene Faktoren gew#hlt werden konnen. Siehe dazu auch Abschnitt 5.4.2.

Die Gap-Penalty kann ebenso frei gewihlt werden. Bei Nutzung von AOI-abhingigen Ahnlichkeits-
werten mit Grenzwert kann sie auf Null gesetzt werden [4]. Zuletzt kann eine Normalisierung der
Ergebnisse vom Benutzer aktiviert oder deaktiviert werden.

6.4.2 Damerau-Levenshtein

Entsprechend der Implementierung des Algorithmus von Needleman und Wunsch wurde die Berech-
nung der Levenshtein-Distanz um AQOI-abhangige Kosten erweitert. Diese konnen auch in diesem Fall
anhand der Distanzen oder semantischen Beziehungen der AOIs untereinander berechnet werden. Bei
distanzbasierten Kosten werden diese anhand der Stimulusdiagonalen normalisiert und dann mit den
Kosten fiir Einfiigen, beziehungsweise Loschen, multipliziert. Sie liegen damit im Bereich zwischen
Null und dem Wert fiir die Einfiige- und Loschkosten. Die Einbeziehung der AOI-Informationen
betrifft nur die Kosten fiir Ersetzung und die optional deaktivierbare Transposition.

Auch bei dieser Metrik kann die Kostentabelle manuell bearbeitet werden. Die hierfiir zur Verfigung
gestellte Benutzeroberfliche dhnelt der des Moduls fiir den Needleman-Wunsch-Algorithmus, die in
Abb. 6.4 gezeigt ist. In diesem Fall ist die Kostentabelle um eine Reihe und Spalte erweitert. Die letzte
Reihe und Spalte enthalten die Einfiige- beziehungsweise Loschkosten fiir jede AOL Dem Benutzer
stehen statt den Textfeldern fiir Punktzahlen drei Felder fiir die Kosten fiir Einfiigen und Léschen,
Ersetzen und die optionale Transposition zur Verfiigung. Einfiige- und Loschkosten werden in jedem
Fall als konstante Werte vom Benutzer gew#hlt, standardmaflig betragen beide den Wert Zwei.
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6.4.3 Longest Common Subsequence

Fiir die Ermittlung der Ahnlichkeit von zwei Scanpaths durch die Longest Common Subsequence
reicht die Berechnung der Lange dieser Sequenz aus, wofiir der in Abschnitt 2.3.4 gezeigte Algorithmus
implementiert wurde. Durch den Verzicht auf die Bestimmung der LCS selbst wird der Algorithmus
einfacher und daher weniger zeitaufwandig in der Ausfithrung. Dabei kommen keine AOI-bezogenen
Parameter wie bei den anderen beiden Metriken zum Einsatz, da lediglich die Lange der LCS bestimmt
wird, was bedeutet, dass jedes Zeichen in dieser Sequenz einen Punkt zum Ergebnis beitrégt. Die fiir
die Ahnlichkeit zweier Zeichen vergebenen Punkte konnen jedoch durch eine Funktion gewichtet
werden, wodurch auch andere Werte als Eins zu einer Pseudoldnge der LCS aufaddiert werden konnen
(siehe Abschnitt 6.5). Es kann auflerdem wie bei den anderen Metriken festgelegt werden, ob eine
Normalisierung nach der Lange des groieren Scanpaths vorgenommen werden soll.

6.5 Variation von Metrik-Parametern uber die Zeit

Da zeitliche Informationen in den Scanpaths hochstens indirekt durch Temporal Binning vorhanden
sind, musste eine andere Moglichkeit fiir die Bestimmung der vergangenen Zeit an einer Stelle
des Pfades gefunden werden. Als Annidherung fiir diese Zeit dient die Anzahl der Zeichen, die
zwischen dem Beginn des Scanpaths und dieser Stelle stehen. Dieser Wert kann durch die Gesamtlange
normalisiert werden, indem die Anzahl der vorangegangenen Zeichen durch die Gesamtzahl, also die
Lange des Scanpaths, dividiert wird.

Kosten oder Punktzahlen der Vergleichsmetriken werden dann gewichtet, indem bei jeder Berechnung
eine Funktion in Abhéngigkeit von der angeniherten Zeit berechnet und ihr Ergebnis als Skalie-
rungsfaktor fiir den jeweils genutzten Metrik-Parameter verwendet wird. Es wurden dafiir folgende
Funktionen implementiert:

filt)=a-t+b

fa(t) =a-log(t)+ B
f3(t)=a-et +b
fait)=a-B3+b-t2+c-t+d
f5(t) =1

Bei der Wahl der Parameter muss darauf geachtet werden, dass negative Werte zu unerwiinschten
Ergebnissen fithren kénnen. So kommt es dann beispielsweise zu einem umso geringeren Wert fiir
die Levenshtein-Distanz, je unterschiedlicher die Scanpaths sind.
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6.6 Clustering der Scanpaths

Nach dem Vergleich aller Scanpaths sollen diese zu Gruppen zusammengefasst werden, wozu Cluste-
ring angewandt wird. Implementiert wurde fiir diesen Zweck hierarchisches agglomeratives Cluste-
ring, wie in Abschnitt 5.5 beschrieben. Alle dabei erzeugten Cluster werden in einer Baumstruktur
gespeichert, inklusive des Ahnlichkeitswertes, bei dem sie aus zwei der bisherigen Clustern erzeugt
wurden. Diese beiden werden als Kinder des Clusters festgehalten. Auflerdem ist fiir jeden Cluster be-
kannt, welche Elemente er enthilt und welches Level er hat, also wie viele Hierarchiestufen sich unter
ihm befinden. Um die Durchfithrung zu beschleunigen, konnen alle Resultate der Scanpath-Vergleiche
untereinander in einer Matrix gespeichert werden. Wahrend des Clusterings konnen diese dann
dort nachgeschaut werden, wodurch die Notwendigkeit einer zeitaufwendigen erneuten Berechnung
entfallt.

6.7 Visualisierung der Ergebnisse

In dieser Arbeit wurden zwei grundlegend verschiedene Arten von Visualisierungen genutzt. Eine
Tabelle fiir eine vollstandige, aber schwer tiberschaubare Anzeige aller berechneten Ergebnisse sowie
eine vereinfachte Darstellung der sich daraus ergebenden Hierarchie als Dendrogramm und interaktive
Baumansicht.

6.7.1 Vergleichstabelle

Eine Tabellenansicht ermdglicht die Betrachtung aller Vergleichswerte auf einen Blick. Bei einer
grofien Datenmenge leidet darunter jedoch der Uberblick. Um diese Schwiche auszugleichen, wurde
eine Einfarbung in Abhingigkeit von der relativen Grofie eines Wertes verwendet. Die Farben werden
in der prototypischen Implementierung nach der selben Vorgehensweise gew#hlt, wie sie in Abschnitt
6.4.1 beschrieben wurde.

Abb. 6.5 zeigt ein Beispiel fiir diese Visualisierung. Bei den hier gezeigten Daten handelt es sich
um 30 generierte Scanpaths. Diese wurden ausgehend von drei zuvor zufillig erzeugten Pfaden
durch eine ebenfalls zufillige Variation erzeugt. Ohne weitere Vorverarbeitung wurden sie mit dem
Algorithmus von Needleman und Wunsch verglichen, wobei die Ergebnisse normalisiert wurden.
Die Tabelle zeigt eine relativ hohe Ahnlichkeit innerhalb der entsprechenden Gruppen. Zu sehen
ist das anhand der blauen Einfiarbung der entsprechenden Tabellenfelder. Diese nimmt jedoch mit
steigender Standardabweichung der fiir die Erzeugung der Varianten verwendeten Normalverteilung
ab. Trotzdem ist die Ahnlichkeit innerhalb der Gruppen héher als zwischen ihnen.

6.7.2 Dendrogramm und Baumansicht
Im Gegensatz zur Vergleichstabelle werden bei einem Dendrogramm die Ahnlichkeiten nicht explizit

angezeigt. Stattdessen wird die Hierarchie als Baumvisualisierung gezeichnet. In Abb. 6.6 werden
die selben Ergebnisse visualisiert, die zuvor in Abb. 6.5 in einer Tabelle gezeigt wurden. Veranlasst
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[B7 MatrixVisualization - MNeedleman-Wunsch-Algorithm (symmetric, nermalized) = a *

0.6212121212

colorize matrix depending on value
[ hide values

. identical . max. difference

Abbildung 6.5: Visualisierung der Ahnlichkeiten in einem Satz von Scanpaths durch eine Tabelle.
Die Scanpaths wurden alphanumerisch nach dem Namen des Probanden geordnet.
Je nach Wert wurden die Tabellenfelder eingefarbt, Blau steht hierbei fiir eine ho-
he, gelb fiir eine geringe Ahnlichkeit. Ein Tooltip zeigt die ungekiirzten Werte oder
Beschreibungen, die aufgrund der Anzahl der zu zeigenden Elemente keinen Platz fin-
den. Optional kdnnen die Werte auch ausgeblendet oder ohne Einfirbung angezeigt
werden. Ein Klick auf einen Wert 6ffnet ein Fenster, dass die beiden dazugehorigen
Scanpaths anzeigt.
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Cut hierarchy when less than groups remain, or distance/similarity exceeds 0 Cut

Generated|D:0250rignallD:021_SD:0.0400
Generated|D:0240rignallD:021_S0:0.0100
Generated|D:0220rignallD:021_SD:0.0100
Generated|D:0210rignaliD:021_5S0:0.0000
Generated|D:0230rignall2:021_SD:0.0100
Generated|D:0260rignallD:021_50:0.0400
Generated|D:0270ngnallD:021_SC:0.0400
Generated|D:0290rignallD:021_SD:0.0700
Generated|D:0280rignallD:021_S0:0.0700
Generated|D:0300rignall D:021_SD:0.0700

Generated|D:0100rignall D:001_SD:0.0700
Generated|D:0090rignallD:001_SD:0.0700
Generated|D:0080rignall D:001_SD:0.0700
Generated|D:0070rignallD:001_5SD:0.0400
Generated|D:0050rgnallD:001_SC:0.0400
Generated|D:0060rignall D:001_SD:0.0400
Generated|D:0040rignallD:001_SC:0.0100
Generated|D:0030rignall D:001_SD:0.0100
Generated|D:0010rignallD:001_S0:0.0000
Generated|D:0020rignall 2:001_SD:0.0100

Generated|D:0190rignallD:011_SD:0.0700
Generated|2:0180rignallD:011_SD:0.0700
Generated|D:0200ngnallD:011_SC:0.0700
Generated|D:0170rignall D:011_SD:0.0400
Generated|D:0160rignallD:011_S0:0.0400
Generated|D:0150rignallD:011_SD:0.0400
Generated|D:0120rignalliD:011_50:0.0100
Generated|D:0130rignallD:011_SD:0.0100
Generated|D:0110rignallD:011_50:0.0000
Generated|D:0140ngnallD:011_SC:0.0100

Abbildung 6.6: Visualisierung der Ahnlichkeiten durch ein Dendrogramm. Die Hierarchie wurde
vom Benutzer in drei Gruppen geschnitten. Je nach Gruppe wahlt die Visualisierung
automatisch eine Farbe. Die Gruppierung der randomisiert generierten Scanpaths
war dann erfolgreich, wenn jede Gruppe nur Scanpaths enthélt, die Varianten des
selben Originals sind. Alle Pfade wurden in diesem Fall korrekt gruppiert, wie an
der im Namen vermerkten ID des Originalpfades zu erkennen ist.

durch eine Benutzereingabe wurde die Hierarchie auf einem Niveau abgeschnitten, sodass drei
Gruppen entstanden sind. Dabei ist ersichtlich, dass alle Scanpaths korrekt ihrem Original zugeordnet
wurden. Wie erwartet wurden aufferdem Varianten mit dhnlicher Standardabweichung als zueinander
ahnlicher betrachtet. In diesem Fall war die verwendete Metrik unter den gew&hlten Parametern also
fiir den Vergleich geeignet.

Fiir eine bessere Lesbarkeit der Darstellung werden auch hier Farben verwendet, die analog zur
Vergleichstabelle gew#hlt werden. Die Grofie der Graphik und die Textgrofe skalieren automatisch

zur Anzahl der zu zeigenden Scanpaths und zur Fenstergrofle.
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6.7 Visualisierung der Ergebnisse

B Expandable Hierarchy View = O *

Cut hierarchy when less than | 3 | groups remain, or distance/similarity exceeds | 0

Cut Expand all | | Collapse all | Click on a cluster or scanpath to see details
[Cluster]
4 group 01
4 | [C] Cluster ID: 54 (10 elements, merged at 0.34) ID:
4 : . merged at 0. 48
4 | |[C] Cluster ID: 42 (5 elements, merged at 0.64)
[S] GeneratedID:025_OrignallD:021_SD:0.0400 - Cluster ID: 24 MNumber of scanpaths:
4 | [C] Cluster ID: 39 (4 elements, merged at 0.78) 7
[S] GeneratedID:024_CrignallD:021_SD:0.0100 - Cluster ID: 23
4 | [C] Cluster ID: 37 (3 elements, merged at 0.9) Distance or similarity at which cluster was merged:
[5] Generated|D:022_OrignallD:021_5D:0.0100 - Cluster ID: 21 0.5

4 | [C] Cluster ID: 33 (2 elements, merged at 0.94)
[5] GeneratedID:021_OrignallD:021_SD:0.0000 - Cluster ID: 20 Most central scanpath:

[5] Generated|D:023_OrignallD:021_5D:0.0100 - Cluster ID: 22 GeneratedID:025_CrignallD:021_SD:0.0400
4 | |[C] Cluster ID: 46 (2 elements, merged at 0.52)

[5] GeneratedID:026_OrignallD:021_5D:0.0400 - Cluster ID: 25 Members of this group:
[5] GeneratedID:027_OrignallD:021_5D:0.0400 - Cluster ID: 26 - Generated|D:021_CrignallD:021_5D:0.0000
4 | [C] Cluster ID: 53 (3 elements, merged at 0.34) - Generated|D:022_CrignallD:021_5D:0.0100
[5] GeneratedID:029_OrignallD:021_5D:0.0700 - Cluster ID: 28 - Generated|D:023_CrignallD:021_50:0.0100
4 | [C] Cluster ID: 52 (2 elements, merged at 0.36) - Generated|D:024_CrignallD:021_50:0.0100
[5] GeneratedID:028_OrignallD:021_5D:0.0700 - Cluster ID: 27 - Generated|D:025_CrignallD:021_5D:0.0400
[5] GeneratedID:030_OrignallD:021_SD:0.0700 - Cluster ID: 29 - Generated|D:026_CrignallD:021_SD:0.0400

- Generated|D:027_CrignallD:021_SD:0.0400
| group 11

Abbildung 6.7: Visualisierung der Scanpath-Ahnlichkeiten durch eine Baumansicht. Die gezeigten
Daten werden zur Dendrogramm-Visualisierung synchron gehalten, ebenso die
Einfarbung der Gruppen. Jeder Cluster kann erweitert oder zusammengefasst werden.
Bei einem Klick auf einen Scanpath oder Cluster werden dessen Informationen
angezeigt, wie beispielsweise die in einem Cluster enthaltenen Scanpaths.

Die Baumansicht zeigt die Daten synchron zum Dendrogramm an. So werden in Abb. 6.7 die selben
Daten gezeigt, wie in Abb. 6.6. Werden in einem der beiden Fenster die Parameter zur Gruppenbildung
geéndert, so wird diese Anderung auch im anderen Fenster iibernommen. Fiir die Einfiarbung der
Gruppen werden die selben Farben verwendet. Der Benutzer hat die Moglichkeit, Cluster einzuklappen,
um nur momentan relevante Daten anzeigen zu lassen. Uber entsprechende Buttons kénnen alle
Elemente auf einmal auf- oder zugeklappt werden. Zusétzlich kann mit einem Klick auf einen Cluster
oder einen Scanpath eine Auflistung der dazugehorigen Informationen veranlasst werden. Diese zeigt
das Programm dann in einem abgesonderten Bereich an. Hier werden fiir Cluster unter anderem die
enthaltenen Scanpaths aufgelistet und der Wert genannt, bei dem die beiden Kind-Cluster vereinigt
wurden.
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7 Demonstration und Evaluation

Das Ziel dieser Arbeit ist der Vergleich verschiedener Scanpath-Vergleichsmetriken. In diesem Kapitel
werden die durchgefithrten Versuche vorgestellt, mit denen die im Konzept ausgew#hlten Metriken
unter verschiedenen Konfigurationen verglichen werden. Das betrifft insbesondere die Parameter,
sodass beispielsweise unterschiedliche Kosten fiir dier Levenshtein-Distanz angesetzt werden. Die
Longest Common Subsequence unterstiitzt keine eigenen Parameter und wird lediglich durch die
Vorverarbeitung der Scanpaths und die im dritten Versuch verwendeten Gewichtungsfunktionen
beeinflusst.

Auflerdem kommen bei den Versuchen Scanpaths zum Einsatz, die auf unterschiedliche Weise entstan-
den sind. Sie werden weiterhin je nach Versuch einer Vorverarbeitung unterzogen, bei der ebenfalls
verschiedene Einstellungen vorgenommen werden, um eine optimale Konfiguration zu finden. Die
Versuche werden zunehmend realitidtsnaher und damit komplexer. Wahrend im ersten Versuch kiinst-
lich erstellte Daten verarbeitet werden, findet in den beiden anderen Versuchen eine Analyse realer
Eye-Tracking-Daten statt. Diese sind im zweiten Versuch durch Muster im Stimulus beeinflusst, im
dritten Versuch nur durch verschiedene Aufgaben der Probenden.

Bei allen Versuchen sind aufgrund der Generierung oder Beeinflussung bestimmte Erwartungen an die
Ahnlichkeit zwischen den Scanpaths vorhanden. Durch diese Erwartungen ist fiir jeden Scanpath im
Voraus bekannt, zu welcher Gruppe er gehort. Nach dem Vergleich der Scanpaths wird ein Clustering
zur Erzeugung der selben Anzahl von Gruppen aus den Daten durchgefiihrt. So ldsst sich anhand
der Gruppenzuordnungen erkennen, welche Testkonfiguration die vorhandenen Erwartungen am
ehesten erfiillt und damit am geeignetsten erscheint.

7.1 Versuch 1: Randomisiert generierte Testdaten

Um moglichst grofie Datenmengen und damit eine hohere Genauigkeit der Ergebnisse zu erhalten,
wurden im ersten Versuch automatisch generierte Testdaten verwendet. Die folgenden Abschnitte
erldutern die Vorgehensweise zur Erzeugung dieser Daten. Auflerdem wird auf die Konfiguration der
Metriken und die Durchfithrung mehrerer Tests eingegangen. Abschlieflend werden die Ergebnisse
gezeigt und diskutiert.

7.1.1 Erzeugung der Testdaten
Die Testdaten wurden wie in Abschnitt 5.7.1 erldutert generiert. Es wurden dabei zufillig gleichverteilt

Punkte auf einem hypothetischen zweidimensionalen Stimulus platziert, um Muster-Scanpaths zu
erhalten. Diese wurden dann Punkt fiir Punkt zufallig verandert, indem durch eine Normalverteilung
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7 Demonstration und Evaluation

ermittelte Wert auf die Koordinaten der Punkte addiert wurden. Dadurch entstanden Varianten
mit einer durch die Standardabweichung der Normalverteilung kontrollierbarer Ahnlichkeit zum
Original.

Fir die Lange der Scanpaths wurde ein Wert von 60 Fixationspunkten gewahlt, was mehrere Griinde
hat. Zunéchst wird auf diese Weise verhindert, dass Unterschiede in der Lange einen Einfluss auf die
Berechnung der Ahnlichkeit haben. Auflerdem werden aufgrund der zufilligen Scanpath-Generierung
langere Pfade unterschiedlicher zueinander, was eine Unterscheidung der Gruppen fiir die Metriken
zu einfach machen wiirde. Ein weiterer Grund ist die benétigte Rechenzeit, da etwa der Needleman-
Wunsch-Algorithmus eine Komplexitit von O(maxz(m, n)?) aufweist, wobei n und m fiir die Liangen
der verglichenen Scanpaths stehen. Zuletzt passen die Pfade mit der gew&hlten Linge zu den in
Versuch 2 (Abschnitt 7.2) aufgezeichneten Pfaden, die ebenfalls um die 60 Fixationen enthielten.

Der Versuch bestand aus neun getrennten Tests. Fiir jeden der Tests wurden zunichst vier ver-
schiedene Pfade generiert. Von diesen wurden dann wiederum je 100 Varianten erstellt, wobei die
Standardabweichung der Normalverteilung zwischen den Tests in Schritten von 0,1 zwischen 0,1 und
0,5 verandert wurde. Dies entspricht in etwa der bei MultiMatch verwendeten Vorgehensweise (siehe
Abschnitt 4.2.3). Insgesamt entstanden bei dieser Generierung 400 Scanpaths fiir jeden Test.

Bis zu diesem Punkt bestanden die Scanpaths aus Punkten auf einem zweidimensionalen Stimulus.
Diese Punkte wurden im néchsten Schritt gitterférmigen AOIs zugeordnet, wobei das Gitter aus 40
AOQIs in fiinf Reihen und acht Spalten bestand. Die Werte wurden gew#hlt, da dieselben AOIs auch
im néchsten Versuch (siehe Abschnitt 7.2) Verwendung finden sollten, in welchem sie aufgrund des
Monitorformates und der gewahlten Gitterform eine annahernd quadratische Form hatten.

Nach dieser AOI-Zuordnung bestanden die Scanpaths nun nicht mehr aus Fixationspunkten, sondern
aus Zahlen fiir die jeweils zur Fixation gehérenden AOIs. Dadurch kénnen die Scanpaths durch die
Metriken verglichen werden, indem die Zahlen wie Buchstaben in einem String behandelt werden.
AOI-abhingige Parameter werden zudem wihrend der Berechnung anhand der Zahlen in einer Tabel-
le nachgeschaut. Auf eine Vorverarbeitung wurde in diesem Versuch verzichtet. Temporal Binning
konnte aufgrund der mangelnden zeitlichen Komponente nicht angewandt werden. Einige Test hatten
zudem gezeigt, dass Filterung und Zusammenfassung von AOI-Aufenthalten einen vernachlissig-
baren Einfluss auf die Ergebnisse haben, da nur wenige hintereinanderliegende Fixationen in der
selben AOQI landeten. Dies liegt an der verwendeten Methode zur Generierung der Pfade, bei der
die Fixationspunkte zufillig gleichverteilt auf dem Stimulus gesetzt wurden. Eine Filterung wiirde
aus dhnlichen Griinden keine Verbesserung des Vergleichs bewirken, sondern bei einem Grenzwert
von Zwei oder hoher grofie Teile der Scanpaths entfernen. Es wurde zudem beobachtet, dass eine
Kompression der Scanpaths in beinahe jedem Fall eine Verschlechterung des Ergebnisses zur Folge
hatte. Aufgrund dieser Sachverhalte wurden die Vorverarbeitungsschritte erst in den folgenden beiden
Versuchen angewandt, die in den Abschnitten 7.2 und 7.3 behandelt werden.

7.1.2 Konfiguration der Metriken
In jedem Test wurden die Scanpaths mit jeder Metrik verglichen. Dabei kamen bei Damerau-

Levenshtein und Needleman-Wunsch in getrennten Durchlidufen einmal die Standardparameter
und einmal AOI-abhédngige Parameter zum Einsatz. Eine Funktion zur Gewichtung der Parameter
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7.2 Versuch 2: Daten aus einer Benutzerstudie

Metrik / Standardabweichung 0,1 0,2 0,3 0,4 0,5
Longest Common Subsequence 52,00 33,75 29,75 29,00 29,75
Damerau-Levenshtein 100,00 62,00 41,50 30,25 29,75
Damerau-Levenshtein (AOI-abh.) | 40,75 35,25 28,75 28,50 29,25
Needleman-Wunsch 100,00 41,00 31,50 28,50 30,25
Needleman-Wunsch (AOI-abh.) 100,00 84,25 36,50 28,50 30,50

Tabelle 7.1: Ergebnisse des ersten Versuchs. In dieser Tabelle ist der prozentuale Anteil der kor-
rekt nach Originalpfaden gruppierten Scanpaths pro Metrik und Test vermerkt. Die zu
vergleichenden Daten waren randomisiert generierte Scanpaths. Die Algorithmen von
Damerau-Levenshtein und Needleman-Wunsch wurden je einmal mit und einmal ohne
AQI-abhéngige Parameter verwendet, die Longest Common Subsequence unterstiitzt
diese Option nicht.

tiber den zeitlichen Verlauf der Scanpaths wurde nicht verwendet, da alle Pfade die selbe Lange
haben und konzeptbedingt an jeder Stelle erwartet gleich stark verrauscht sind. Daher gibt es keine
Abschnitte, deren Ahnlichkeit im Vergleich zu anderen relevanter sind. Auch eine Normalisierung
der Ergebnisse ist aufgrund der identischen Langen nicht notwendig.

7.1.3 Auswertung und Ergebnisse

Um das Ergebnis bewerten zu konnen, wurde die Anzahl der resultierenden Gruppen entsprechend
den bei der zufilligen Erzeugung der Scanpaths verwendeten originalen Pfaden gewihlt. Diesen
Gruppen sollten nun moglichst alle ihre Varianten zugeordnet werden. Um die Giite der Zuordnung
zu berechnen, wurde der Anteil der korrekt zugeordneten Scanpaths an der Gesamtzahl der Pfade
betrachtet. Die Ergebnisse aufgeteilt nach Test und Metrik sind in Tabelle 7.1 zu sehen.

Erwartungsgemaf sinkt die Qualitat der Ergebnisse mit zunehmender Standardabweichung. Die
Longest Common Subsequence weist dabei schon zu Beginn sehr schwache Ergebnisse auf. Nur bei
schwach verrauschten Daten liegt sie deutlich {iber einem Wert von 25 Prozent korrekter Zuordnun-
gen, der erwartet durch Raten der Zuordnung zu den vier Gruppen zu erreichen wire. In diesem
Versuch konnte die Levenshtein-Distanz nicht von den AOI-abhingigen Parametern profitieren. Der
Algorithmus von Needleman und Wunsch hingegen erreicht mit AOI-abhéngigen Punktzahlen bei
einer Standardabweichung von 0,2 einen mehr als doppelt so guten Wert. Dies liegt moglicherweise
an einer ungiinstigen Wahl des Bereiches liegen, in den die Ersetzungskosten der Levenshtein-Distanz
nach der Normalisierung zur Stimulusdiagonalen skaliert wurden.

7.2 Versuch 2: Daten aus einer Benutzerstudie

Die im ersten Versuch verwendeten Daten haben nur geringe Ahnlichkeit mit den bei einer echten
Eye-Tracking-Studie entstehenden Daten. Ein zweiter Versuch mit echten Probanden soll einen
Kompromiss zwischen Datenmenge und Realismus darstellen. Dabei wurden erneut Scanpaths wie
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7 Demonstration und Evaluation

im ersten Versuch generiert. Deren Pseudofixationen wurden dann auf einem Bildschirm angezeigt
und die Blicke der Probanden aufgezeichnet, wodurch sich Muster in den real aufgezeichneten Daten
vorgeben lielen.

7.2.1 Teilnehmer

An der Studie nahmen sieben Testpersonen im Alter von 20 bis 26 Jahren teil, das Durchschnittsalter
betrug 22,3 Jahre. Finf davon gaben ihr Geschlecht als ménnlich an, eine als weiblich, eine wollte ihr
Geschlecht nicht angeben. Zwei der Personen trugen eine Sehhilfe. Alle Teilnehmer mussten einen
Test fiir Sehstédrke und Farbenblindheit (Ishihara-Test) durchfithren, um die allgemeine Eignung fiir
eine Eye-Tracking Studie festzustellen. Da alle Personen eine korrekte oder korrigierte Sicht hatten,
konnte jede mit der Durchfithrung der Studie fortfahren. Die Studie dauerte insgesamt weniger
als eine halbe Stunde, entschidigt wurden die Teilnehmer, wie im Voraus angekiindigt, mit einem
Sachpreis von geringem Wert.

7.2.2 Gerat

Der in der Benutzerstudie verwendete Eye-Tracker ist der Bildschirm-basierte Tobii T60XL (siehe auch
Abb. 2.3). Der Stimulus wurde im Vollbild bei einer Bildschirmauflosung von 1920x 1200 Pixeln und
einer Diagonalen von 24 Zoll angezeigt. Die Kamera des Eye-Trackers nimmt die fixierte Position mit 60
Samples pro Sekunde auf. Die Genauigkeit unter idealen Bedingungen betrigt laut Hersteller 0.4 Grad
bei binokularer Messung und einem Abstand zwischen Auge und Bildschirm von 65 Zentimetern. Die
aufgenommenen Blickpunkte wurden mit dem Tobii Fixation Filter zu Fixationen zusammengefasst.
Dabei wurden die Standardeinstellungen verwendet, insbesondere ein Abstandsgrenzwert von 35
Pixeln und ein Geschwindigkeitsgrenzwert von 35 Pixeln pro Sample.

7.2.3 Stimulus

Als Stimulus wurden drei Muster-Scanpaths verwendet, die mit der in Abschnitt 5.7.1 beschriebenen
Methode erzeugt wurden. Abb. 7.1 zeigt die Darstellung des Stimulus, wie ihn die Probanden sahen.
Es wurden drei verschiedene Pfade generiert, von denen zwei aus jeweils 27 und einer aus 29 Kreisen
bestanden. Fiir eine optimale Aufzeichnung und spatere Zuordnung der Fixationspositionen wurde
der Stimulus im Vollbild angezeigt. Die Kreise hatten einen Durchmesser von 20 Pixeln, um eine
gute Sichtbarkeit zu erreichen. Durch die geringen Ausmafle und einen Punkt in der Mitte der Kreise
wurde ein genaues Fokussieren erleichtert.

7.2.4 Durchfihrung

Nach den iiblichen Formalitaten wurden die Probanden iiber ihre Aufgabe informiert. Diese bestand
darin, den aktuell auf dem Bildschirm zu sehenden Kreis so genau wie moglich zu fokussieren.
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7.2 Versuch 2: Daten aus einer Benutzerstudie

Abbildung 7.1: Der fur die Benutzerstudie verwendete Stimulus, wie ihn die Teilnehmer sahen.
Nacheinander wurden einem vorher generierten Muster-Scanpath entsprechend
Kreise im Abstand von je einer Sekunde angezeigt. Der graue Rand dient zur Vermin-
derung der Auswirkung von Ungenauigkeiten des Eye-Trackers im Randbereich des
Bildschirms. Eine vollstindige Darstellung eines Muster-Scanpaths mit allen Kreisen
ist in Abb. 7.2 zu sehen.

Vor der Durchfithrung der Aufnahmen wurde fir jeden Teilnehmer die korrekte Position der Au-
gen tiberprift und einmalig eine 9-Punkte-Kalibrierung des Eye-Trackers vorgenommen, um eine
moglichst genaue Messung sicherzustellen. Danach wurde fiir jeden gezeigten Muster-Scanpath des
Stimulus eine eigene Eye-Tracking-Aufnahme vorgenommen. Jeder Proband bekam zuerst jeden der
drei Pfade einmal zu sehen, danach wurden die Pfade in der gleichen Reihenfolge erneut gezeigt.
Daraus resultierten sechs Aufnahmen pro Versuchsperson, also insgesamt 42 Datensétze.

Bevor der Stimulus selbst angezeigt wurde, musste der Proband durch Betitigen der Enter-Taste
anzeigen, dass er fiir die Bearbeitung der Aufgabe bereit ist. Dieses Event wurde aufgezeichnet und
erlaubte eine spatere Aussortierung von nicht relevanten Daten. Nach dem Tastendruck begann mit
einer Sekunde Verzogerung die Anzeige des eigentlichen Stimulus. Die Kreise der Muster-Scanpaths
wurden dabei fiir je eine Sekunde angezeigt, woraufhin unmittelbar der néchste folgte. Auf diese
Weise sollte den Probanden keine Zeit gelassen werden, etwas anderes als den aktuellen Kreis zu
fokussieren. Auflerdem vereinfacht sich die Auswertung, da der Zeitpunkt des Erscheinens jedes
Kreises bekannt ist. Jeder Durchlauf dauert aufgrund dieser Wartezeit knapp 30 Sekunden.
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7 Demonstration und Evaluation

Abbildung 7.2: Vergleich von Muster-Scanpath (oben) und aufgezeichneten Daten (unten). Im oberen
Bild sind die verwendeten AOIs zu sehen. Die violetten Kreise im unteren Bild stellen

Fixationen dar, die Grofie entspricht der Fixationsdauer. Das untere Bild wurde mit
der Tobii Studio Software erzeugt.
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7.2 Versuch 2: Daten aus einer Benutzerstudie

7.2.5 Auswertung

Abb. 7.2 zeigt vergleichsweise, wie ein aufgezeichneter Scanpath zu einem gew#hlten Muster-Scanpath
aussehen kann. Wo sich im Stimulus ein Kreis befand, wurde teils korrekterweise eine etwa eine Se-
kunde dauernde Fixation erkannt. Manchmal wurden die Blickpunkte zu mehreren kurzen Fixationen
zusammengefasst. Lagen zwei aufeinanderfolgende Kreise weit von einander entfernt, kam es teilwei-
se zu kiirzeren Fixationen zwischen diesen oder hinter dem neuen Kreis. Deren negative Auswirkung
auf den Scanpath-Vergleich kann durch Temporal Binning und Filterung kurzer AOI-Aufenthalte
verringert werden.

Um Stérungen durch nicht relevante Daten zu vermindern, wurden Fixationen aus den Aufzeichnun-
gen entfernt, die vor oder nach der Anzeige des Stimulus stattgefunden hatten. Dabei wurden alle
Fixationen aussortiert, deren Beginn vor dem Betiitigen der Enter-Taste durch den Probanden lag.
Zusatzlich wurden auch Fixationen entfernt, die mehr als 30 Sekunden nach Beginn des Stimulus
endeten. Der Grund dafiir ist, dass die letzte wihrend dem Stimulus aufgezeichnete Fixation stets
auf der Benachrichtigung tiber das Ende desselben in der Mitte des Bildschirms lag. Auf diese Weise
wurden im Schnitt drei bis acht fiir den Versuch nicht benétigte Fixationen entfernt, was etwa zehn
Prozent der urspriinglichen Daten ausmachte.

Fir verschiedene Kombinationen von Vorverarbeitungsparametern wurde je eine eigene Scanpa-
thkonfiguration erstellt. Weiterhin wurden je nach Metrik ebenfalls verschiedene Parameter in
unterschiedlichen Kombinationen gewahlt und dafiir und fiir jede Scanpathkonfiguration eine Test-
konfiguration erzeugt. Mit den Testkonfigurationen wurde jeweils der Vergleich und die Gruppierung
aller Scanpaths vorgenommen, indem die in ihr gespeicherte Metrik unter den ebenfalls enthaltenen
Parameterwerten zum Vergleich aller Scanpaths eingesetzt wurde.

Die bindren Vorverarbeitungsparameter Kompression und Zusammenfassung wurden unabhingig
voneinander je einmal aktiviert und deaktiviert verwendet. Temporal Binning und Filterung wurden
ebenfalls einmal deaktiviert und aktiviert. Fiir die aktivierte Option wurden je drei Schritte mit
verschiedenen Grenzwerten zwischen 45 und 55 Millisekunden beziehungsweise einer Filtergrofie
von 1 bis 3 Zeichen verwendet. Es wurden alle Metriken jeweils mit Standard- und AOI-abhéngigen
Parametern eingesetzt, insofern diese unterstiitzt wurden. Dabei wurden die selben Parameter wie in
Versuch 1 verwendet. Aufgrund der unterschiedlich langen Scanpaths wurde in jedem Fall eine Norma-
lisierung der Ergebnisse angewandt. Auf eine Gewichtung der Metrikparameter mittels zeitabhangiger
Funktionen wurde auch in diesem Versuch verzichtet, da sich die Lange der Pfade nicht wesentlich
unterschied und keine Abschnitte mit besonderer Relevanz vorkamen. Insgesamt entstanden anhand
dieser Parameterbereiche 64 Scanpathkonfigurationen und 256 Testkonfigurationen. Der Prototyp
fiihrte alle Testkonfigurationen parallel aus, die Berechnung der aufwandigsten Konfiguration und
damit die Laufzeit des Tests betrug knapp sieben Stunden auf einem modernen Desktop-PC mit Intel
Xeon CPU (8x3,40 GHz).

7.2.6 Ergebnisse

Aus den ermittelten Erfolgsquoten der 256 Testkonfigurationen wurden Durchschnittswerte fiir
verschiedene Parameterzustande berechnet. Diese sind in Tabelle 7.2 zu sehen.

87



7 Demonstration und Evaluation

Parameter, Metrik angewandt nicht angewandt
Temporal Binning 68,48 57,44
Filter 65,03 67,78
Zusammenfassung 64,92 66,52
Kompression 45,88 77,62
Parameter AOI-abh. 73,85 63,01

LCS 68,56
Damerau-Levenshtein 63,89

Needleman-Wunsch 65,65

Schnitt insgesamt 65,72

Tabelle 7.2: Durchschnittliche Ergebnisse des zweiten Versuchs. In dieser Tabelle sind die Durch-
schnitte der prozentualen Erfolgsquote bei der Zuordnung der Scanpaths zur korrekten
Gruppe aufgefiihrt, je nach Aktivierungsstatus eines Parameters oder einer Metrik. In
diesem Versuch wurden die Daten aus einer Eye-Tracking Studie mit vorgegebenen Pfa-
den analysiert. Ein hoher Wert deutet auf eine positive Auswirkung der entsprechenden
Option hin.

Zunichst fiel bei der Analyse der Ergebnisse auf, dass sich eine Verwendung der Longest Com-
mon Subsequence im Vergleich zum ersten Versuch als unerwartet erfolgreich bei der korrekten
Zuordnung erwies. Dies konnte ein Hinweis sein, dass die bei der Studie aufgezeichneten Daten
Ahnlichkeitsgruppen bildeten, die sehr unterschiedlich zueinander sind, bei gleichzeitig hoher Ahn-
lichkeit der in den Gruppen enthaltenen Scanpaths. Dadurch wurde moglicherweise der Vergleich fiir
den LCS-Algorithmus einfacher, wahrend die anderen beiden Metriken ihre Vorteile nicht ausspielen
konnten.

Temporal Binning fithrt bei aufgezeichneten Daten zu einer deutlichen Verbesserung der Ergebnisse. In
diesem Versuchsdurchlauf verbesserte sich das Resultat um iiber 11 Prozentpunkte, was im Vergleich
zu den anderen Parametern ein relativ hoher Wert ist. Eine Filterung scheint durch die Reduktion der
Daten einen negativen Einfluss zu haben. Im Schnitt wurden die Ergebnisse zudem besser, wenn auf
eine Zusammenfassung von AOI-Aufenthalten verzichtet wurde. Das liegt daran, dass durch diesen
Schritt Unterschiede in den Scanpaths verloren gehen kénnen.

Es zeichnete weiterhin sich ab, dass sich das Ergebnis bei aktivierter Kompression grundsatzlich
verschlechtert. Dabei wurde die Longest Common Subsequence am wenigsten beeinflusst. Trotz
Kompression konnte eine Testkonfiguration eine Erfolgsquote von 73 Prozent erreichen. Der néchst
beste Fall mit aktivierter Kompression war eine Konfiguration mit Needleman-Wunsch, die eine
Quote von 59,52 Prozent hatte. Ein Grund dafiir ist womdglich, dass ein komprimierter Scanpath die
Verwendung von AOI-abhingigen Parametern ausschlief3t.

Die Metriken mit Unterstiitzung fiir AOI-abhéngige Parameter konnten von diesen profitieren. So
verbesserte sich das Ergebnis im Schnitt um 10,84 Prozentpunkte, wenn Informationen iiber die
Ahnlichkeit der AOIs in die Berechnung einbezogen wurden.
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7.3 Versuch 3: Evaluation anhand externer Daten

Parameter, Metrik angewandt nicht angewandt
Temporal Binning 85,28 61,55
Filter 77,98 83,45
Parameter AOI-abh. 73,36 83,33

LCS 93,45
Damerau-Levenshtein 73,59

Needleman-Wunsch 78,05

Schnitt insgesamt 79,35

Tabelle 7.3: Durchschnittliche Ergebnisse des zweiten Durchlaufs in Prozent.

Aufgrund dieser Beobachtungen wurde der Versuch erneut ohne Kompression und Zusammenfassung
durchgefiihrt. Dadurch soll untersucht werden, wie sich die Metriken ohne diese Vorverarbeitungs-
schritte verhalten. Tabelle 7.3 enthélt die dabei gewonnenen Ergebnisse.

Der positive Effekt von Temporal Binning zeichnet sich nun noch deutlicher ab, ebenso die negative
Auswirkung der Filterung. Der Grund fiir die Verschlechterung des Ergebnisses durch die Verwendung
AOI-abhingiger Parameter sind die hohe Erfolgsquote der LCS und die schlechten Ergebnisse der
AQI-abhéngigen Levenshtein-Distanz, die auch ohne Kompression und Filterung im Vergleich zur
Standardimplementierung versagt.

7.3 Versuch 3: Evaluation anhand externer Daten

Um eine Evaluation der Metriken und Vorverarbeitung mit echten Daten durchzufithren, wurden im
dritten Versuch die Aufzeichnungen einer Eye-Tracking-Studie [20] verwendet, die am Institut fiir
Visualisierung und Interaktive Systeme der Universitit Stuttgart durchgefithrt wurde. Das Ziel dieser
Studie war die Erzeugung von Standarddaten zum Testen von Eye-Tracking-Analysewerkzeugen und
-Visualisierungen. Analog zu einem Textkorpus oder Standardbilddaten in der Text- oder Bildverarbei-
tung kann so jede entwickelte Technik anhand der selben Daten evaluiert werden, um vergleichbare
Ergebnisse zu erhalten. Bei diesem Versuch soll festgestellt werden, wie sich die Metriken unter
Verwendung von semantikbasierten Parametern verhalten.

7.3.1 Durchfithrung

Zur Evaluation dieser Arbeit wurde der Datensatz S10' verwendet. Dabei handelt es sich um eine
Aufzeichnung der Augenbewegungen von 25 Probanden, die ein Video betrachteten, in dem Personen
Taschen durch den sichtbaren Bereich tragen. Die Aufgabe bestand darin, eine bestimmte Tasche zu
finden. Dabei gab es zwei Gruppen von Probanden mit verschiedenen Suchzielen. Nach der Aufnahme

'www.visus.uni-stuttgart.de/index.php?id=2345
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wurden dynamische AOIs aus den Daten erzeugt und die Fixationen der Probanden diesen AOIs
zugeordnet, wodurch sich AOI-Label-Scanpaths erstellen liefen.

Die Ahnlichkeit der AOIs kann aufgrund der sich dndernden Position von der fiir diese Arbeit erstellten
Implementierung nicht distanzbasiert berechnet werden. Allerdings kann von einer semantischen
Ahnlichkeit ausgegangen werden, da die AOIs zu Objekten gehéren die verschiedenen Gruppen
zugeordnet werden konnen. In diesem Fall handelt es sich dabei getrennt nach Eigenschaft um
folgende Gruppen: Nach Art des Objekts ergeben sich je eine Gruppe fiir Taschen und eine fiir
Personen. Differenziert nach Farbe entstehen Gruppen fiir rote, gelbe, blaue, rot-weifle, braune und
farblose Objekte.

Abhingig von der Gruppenzugehorigkeit und damit der Semantik kénnen nun die Parameter der
Metriken festgelegt werden, wie in Abb. 7.3 zu sehen ist. Das Ziel dabei ist, dass zwei Scanpaths als
lokal dahnlicher gelten, wenn die gerade verglichenen AOIs in einer oder mehreren gemeinsamen
Gruppen sind. Zum Beispiel gilt eine gelbe Tasche als dhnlicher zu einer anderen gelben Tasche als
zu einer roten oder zu einer Person.

Die Scanpaths der Probanden lagen als Datei vor, in der die Fixationen bereits den AOIs zugeordnet
und durch je eine Zahl repréisentiert wurden. Aufgrund des Samplings der Daten fiir jeden Frame
des Videos entstanden 24 Werte fiir jede Sekunde der Aufzeichnung. Das entspricht einem Temporal
Binning mit einer Zeitspanne von etwa 41,7 Millisekunden. Da dieser Umstand jedoch zu einer
Scanpathliange von circa 2500 bis 3000 Zeichen fithrte, mussten die Daten erst vereinfacht werden,
um eine Auswertung in wenigen Minuten statt einigen Stunden erméglichen. Hierfiir wurden die
AOI-Aufenthalte zu je einem Zeichen zusammengefasst. Eine Filterung kurzer AOI-Aufenthalte fiithrte
im Schnitt zu keiner Anderung des Ergebnisses, weshalb auf diese Option verzichtet wurde, um die
Anzahl der zu berechnenden Testkonfigurationen zu verringern.

In diesem Versuch wurden die Metrikparameter durch eine zeitabhéingige Funktion gewichtet. Dabei
kam eine abschnittsweise definierte Funktion zum Einsatz, die zu den Zeiten ein hoheres Gewicht
zuriickgibt, bei denen im Videostimulus eines oder mehrere der Suchziele zu sehen waren:

a zur Zeit t ist kein Ziel zu sehen
(7'1) fa,b (t) =

b  zur Zeit t ist mindestens ein Ziel zu sehen

Durch diese Gewichtung haben diese relevanten Ausschnitte einen hoheren Einfluss auf das Ergebnis
der Berechnung. Da im Voraus nicht bekannt ist, welche Gewichte sich fiir die Funktionsabschnitte
eignen, wurden drei Kombinationen ausprobiert. Diese sind zusammen mit den dabei entstandenen
Ergebnissen in Tabelle 7.4 aufgefiihrt. Es wurde normalisierte Zeit verwendet, da alle Pfade aufgrund
der Nutzung eines Videos als Stimulus die selben zeitlichen Ausmafe haben und auf diese Weise die
Festlegung der Funktionsabschnitte einfacher zu handhaben ist.

7.3.2 Auswertung und Ergebnisse
Der Versuch bestand aus vier Durchldufen, einmal ohne Gewichtung der Metrik-Parameter und

dreimal mit verschiedenen Funktionsparametern. Um die Auswirkung der AOI-abhéngigen Parameter
auf das Ergebnis des Vergleiches zu untersuchen, soll der Vergleich in diesem Versuch einmal mit
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Abbildung 7.3: AOI-abhangige Parameter der Metriken im dritten Versuch. Oben sind die Kosten
fiir die Levenshtein-Distanz abgebildet, unten die Punktzahlen fiir den Needleman-
Wunsch-Algorithmus. Die Werte ergeben sich aus der Anzahl der Gruppen in denen
beide AOIs enthalten sind. Je hoher diese ist, desto hoher sind die Punktzahlen und
desto niedriger die Kosten, was auch in dieser Graphik durch Farben verdeutlicht
wurde. Bei der Levenshtein-Distanz sind zusitzlich die Kosten fiir Einfiigen und
Loschen in der letzten Zeile beziehungsweise Spalte zu sehen, fiir die der Wert 4
gewahlt wurde.

Standardparametern und einmal mit nach Semantik bestimmten Parametern durchgefiihrt werden.
Nach dem Vergleich werden durch Clustering zwei Gruppen gebildet, da es in der Studie zwei
verschiedene Aufgaben fiir die Probanden gab. Es erweisen sich diejenigen Konfigurationen als
geeignet, bei denen die Scanpaths moglichst korrekt nach Gruppen beziiglich des Zielobjekts der
Probanden zugeordnet werden konnten.

Angesichts eines Erwartungswertes von 50 Prozent beim zufilligen Raten der Zuordnung fallen
die Ergebnisse erniichternd aus. Dies kann ein Hinweis sein, dass die auf Typ und Farbe der AOIs
basierenden Metrikparameter nicht optimal gewahlt wurden.

Ein Vergleich der Gewichtungsfunktionen zeigt, dass eine Betonung bestimmter zeitlicher Abschnitte
in den Scanpaths durchaus einen positiven Einfluss haben kann. Dafiir ist die Wahl einer passenden
Funktion eine wichtige Voraussetzung. Bei der ersten Funktion fy; wurden Teile der Scanpaths
beim Vergleich ignoriert, was womdglich zu einem Verlust von wichtigen Ahnlichkeiten und daher
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Kompression Metrik keine Gewichtung a=0,b=1 a=1,b=2 a=1,b=4
LCS 52 52 64 60
D.-Levenshtein 52 52 56 56

deaktiviert D.-Levenshtein (AOI-abh.) 52 52 60 56
N.-Wunsch 60 56 60 52
N.-Wunsch (AOI-abh.) 60 56 56 64
LCS 60 60 60 52
D.-Levenshtein 60 52 60 52

aktiviert D.-Levenshtein (AOI-abh.) - - - -
N.-Wunsch 56 56 64 52

N.-Wunsch (AOI-abh.) - - . -

Tabelle 7.4: Ergebnisse des dritten Versuchs. In dieser Tabelle ist der prozentuale Anteil der korrekt
zugeordneten Scanpaths pro Metrik und Test vermerkt, einmal fiir deaktivierte und
einmal fir aktivierte Kompression. Bei jedem Test kam eine andere Gewichtungsfunktion
zum Einsatz. Bei Verwendung von Kompression ergaben sich im Schnitt hhere Werte,
obwohl AOI-abhingige Parameter bei komprimierten Scanpaths nicht genutzt werden
konnen.

zu einem schlechteren Ergebnis fithrte. Die zweite Funktion fi o erméglichte die besten Resultate,
bei ihr wurden die als interessant festgelegten Abschnitte doppelt so hoch gewichtet wie der Rest.
Eine vierfache Gewichtung bei fi 4 verschlechterte den Ausgang des Tests. Abgesehen vom AOI-
abhéngigen Needleman-Wunsch-Algorithmus und der Standard-Levenshtein-Distanz wurden die
Quoten dadurch schlechter im Vergleich zur zweiten Funktion.

Eine aktivierte Kompression konnte in manchen Féllen das Ergebnis verbessern, bei der Verwendung
der Gewichtungsfunktion f; 4 gelang es jedoch in keinem Fall. Das liegt womdglich an der Verkiirzung
der Scanpaths, die bei der Kompression nicht fiir jeden Pfad gleich ausfillt und eine Gewichtung der
Abschnitte ungenau werden lasst.
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In diesem letzten Kapitel werden zunichst die Ergebnisse der Evaluation sowie die daraus gefolgerten
Ergebnisse zusammengefasst. Anschliefen werden Moglichkeiten fiir weitere Arbeiten aufgezeigt.

Zusammenfassung

In den Kapiteln zu den Grundlagen (Kapitel 2 und den existierende Arbeiten (Kapitel 4) dieser Arbeit
wurden verschiedene Moglichkeiten zur Vorverarbeitung von Scanpaths sowie mehrere Vergleichs-
metriken analysiert. Darauf aufbauend wurde dann ein Verfahren zum Vergleich der Scanpaths mit
einer Reihe von optionalen Vorverarbeitungsschritten und einer Auswahl von Metriken erarbeitet
und in einem Prototypen umgesetzt.

Die Vorverarbeitungsschritte beginnen dabei mit dem bei ScanMatch (siehe Abschnitt 4.1) verwende-
ten Temporal Binning, welches erwartungsgeméf einen positiven Einfluss hatte. Eine Filterung von
kurzen AOI-Aufenthalten konnte in keinem der Versuche die erhoffte Wirkung zeigen, kann allerdings
bei leicht verrauschten Daten oder bei einem auf lange Aufenthalte begrenzten Interesse eingesetzt
werden. Die Zusammenfassung von AOI-Aufenthalten zu einem Zeichen im Scanpath vereinfachte
die Daten und erschwerte dadurch den Vergleich, in manchen Fillen kann ohne diesen Schritt jedoch
die fiir die Berechnung benétigte Zeit problematisch werden. Eine Kompression von Scanpaths kann
den Vergleich trotz der dadurch nicht mehr verwendbaren AOI-Informationen verbessern. Dies wurde
im dritten Versuch der Evaluation festgestellt. Auflerdem wird durch die Verkiirzung der Scanpaths
der Rechenaufwand beim Vergleich verringert.

Der Algorithmus von Needleman und Wunsch wurde von ScanMatch iibernommen, zusammen mit
dem Ansatz zur Erstellung der Ersetzungsmatrix basierend auf raumlichen oder farblichen Ahnlich-
keiten zwischen den AOQIs. Er wies eine hohe Leistungsfahigkeit auf, vor allem unter Einbeziehung
von AOI-Informationen. Ein Nachteil, vor allem bei langen Scanpaths ist die hohe Laufzeit des Al-
gorithmus. Eine Ubertragung der AOI-abhingigen Parameter auf die Levenshtein-Distanz wurde
vorgenommen, erbrachte jedoch nicht die erhoffte Verbesserung der Leistungsfahigkeit dieser Me-
trik. Bereits bei ScanMatch wurde auflerdem gezeigt, dass der Needleman-Wunsch-Algorithmus der
Standard-Levenshtein-Distanz iiberlegen ist. Die Longest Common Subsequence konnte als Scanpath-
Vergleichsmetrik allenfalls bei schwach verrauschten Daten oder klar erkennbaren Ahnlichkeiten
ein gutes Ergebnis liefern. In diesen Fallen kann sie jedoch durch eine einfache Verwendbarkeit
und hohe Geschwindigkeit im Vergleich zu den anderen Metriken iiberzeugen. Da das Ausmaf} der
Verrauschung im Voraus kaum abzuschatzen ist, empfiehlt sich die Verwendung dieser Metrik nur in
Ausnahmefallen.
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Eine zeitabhéingige Gewichtung der Metrikparameter kann die Ergebnisse des Vergleichs verbes-
sern, sofern eine geeignete Funktion gewéhlt wird. Von den getesteten abschnittsweise definierten
Funktionen erwies sich vor allem eine Gewichtung der Abschnitte mit geringer und hoher Relevanz
im Verhaltnis Eins zu Zwei als geeignet. Werden Abschnitte durch ein Gewicht von Null ignoriert,
verschlechtert sich das Ergebnis.

Fazit

Zum aktuellen Zeitpunkt kann eine klare Empfehlung fiir den Algorithmus von Needleman und
Wunsch unter Verwendung AOI-abhingiger Kosten gegeben werden. Trotz einer hohen Laufzeit iiber-
zeugt die Qualitit der Ergebnisse im Vergleich zu denen der anderen beiden getesteten Metriken.

Eine Vorverarbeitung der Scanpaths durch Temporal Binning verbessert die Erkennung von zeitlichen
Ahnlichkeiten zwischen den Pfaden. Auf die anderen Vorverarbeitungsschritte sollte nur dann vertraut
werden, wenn diese im Rahmen der Studie unnétige Daten entfernen oder eine Vereinfachung
der Scanpaths zur Beschleunigung der Analyse notwendig erscheint. Eine Kompression kann die
Ergebnisqualitit erhohen, falls keine oder nur schwache AOI-Ahnlichkeiten als Metrikparameter
vorhanden sind.

Ausblick

Es konnen in zukiinftigen Arbeiten noch andere Kompressionsalgorithmen getestet werden, da
diese womoglich ein besseres Verhalten beziiglich der Ersetzung dhnlicher Muster in den Scanpaths
aufweisen konnen. Zusitzlich kann eine Unterstiitzung von unscharfen Ubereinstimmungen fiir einen
groben Vergleich der Muster dienen.

Fiir viele in dieser Arbeit verwendete Ansitze sind Erweiterungen moglich. Die Parameter der
Metriken werden im bisherigen Konzept nach euklidischen Abstidnden oder Beziehungen der AOIs
ermittelt. Dabei werden jedoch alle AOIs gleich behandelt, ungeachtet ihrer Gré3e, Form, Position
oder gar der ihnen von den Probanden entgegengebrachten Aufmerksamkeit. Diese Faktoren kénnen
allerdings einen Einfluss auf die entstehenden Scanpaths haben, etwa aufgrund von Tendenzen, eher in
die Mitte des Stimulus zu sehen. Je grofler eine AQOI ist, desto wahrscheinlicher ist es fiir eine Fixation,
sich in dieser AOI zu befinden. Um solche Tendenzen auszugleichen, konnen die Metrikparameter
durch weitere AOI-bezogene Daten gewichtet werden.

Fiir die Wahl der Gewichtungsfunktion besteht eine Vielzahl von Méglichkeiten. In dieser Arbeit
wurde lediglich eine abschnittsweise definierte Funktion verwendet, die je nach Relevanz eines
Abschnitts einen niedrigen oder hohen Wert ausgibt. Hier kénnen noch weitere Ansatze ausprobiert
werden, wie etwa stetige Funktionen oder eine Erh6hung beziehungsweise Verringerung der Gewichte
mit zunehmender Zeit.

Die Festlegung der Parameter nach AOI-Beziehungen kann ausgeweitet werden. Der in dieser Arbeit
entwickelte Prototyp betrachtet nur die Mitgliedschaft einer AOI in einer beliebigen Gruppe. Eine AOI
kann jedoch in mehreren Gruppen enthalten sein, die jeweils verschiedene Ahnlichkeiten implizieren.
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Auch wurde lediglich die direkte Verwandtschaft zwischen Eltern- und Kind-AOI betrachtet. Hier
konnte eine transitive Betrachtung auch noch die Kinder der Kind-AOIs betreffen.

Denkbar ist auch eine Kombination mehrerer Metriken, beispielsweise mit einem Vergleich von
Saliency-Maps, wie es von Le Meur und Baccino beschrieben wurde [22].

Als zusitzliche Visualisierungen konnten Zeitleisten wie in eSeeTrack (siehe Abschnitt 4.4) oder eine
Parallel-Scanpath-Visualisierung (Abschnitt 4.5) in den Prototypen integriert werden.
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