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Kurzfassung

Die manuelle Annotation von Skalar- und Vektorfelddaten zum Zwecke des überwachten

maschinellen Lernens bedeutet einen hohen zeitlichen Aufwand. Zusätzlich verursachen

die heute gängigen rechteckigen Selektionsregionen Ungenauigkeiten. Als Reaktion darauf

wird ein System vorgestellt, das die Annotation mittels allgemeiner polygonaler Regionen

ermöglicht. Es bietet die Möglichkeit, die Visualisierung der Skalar- bzw. Vektorfelder fle-

xibel zu wechseln. Dazu wird ein entsprechendes Plugin-System realisiert. Ebenso ist es

möglich, die Berechnungsmethode der Merkmalsvektoren schnell und einfach durch Plugins

auszutauschen. Das Rahmenwerk unterstützt die Verwaltung von Annotationsprojekten. In

Kombination mit dem Plugin-System für die Visualisierung der zu annotierenden Daten und

die Generierung der Merkmalsvektoren ist ein flexibles und leistungsfähiges Rahmenwerk

entstanden. Als theoretische Basis werden in dieser Arbeit einige maschinelle Lernverfahren

und ihre Evaluation, Grundlagen der Merkmalsvektorkonstruktion und die Vektorfeldvi-

sualisierung mit Line Integral Convolution eingeführt. Darauf folgt eine Beschreibung des

entstandenen Systems und seine Auswertung, die den Vorteil der polygonalen Regionen

gegenüber den Rechtecken belegen kann. Zum Schluss wird ein Ausblick auf mögliche

Verbesserungen des Rahmenwerks gegeben.

Abstract

Manual annotation of scalar and vector field data for supervised machine learning causes a

large temporal effort. Additionally, the rectangular regions which are popular for selection

today are responsible for inaccuracies. As a reaction a system is introduced that enables

annotation with arbitrary polygonal regions. It offers the option to flexibly substitute the

visualization of the scalar or vector field. Therefor a corresponding plugin system is realized.

Likewise it is possible to substitute the method of feature vector calculation fast and easily

through plugins. The framework supports the management of annotation projects. In combi-

nation with the plugin system for data visualization and feature vector calculation a flexible

and powerful was developed. As a theoretical base, several machine learning algorithms and

their evaluation as well as the foundations of feature vector engineering and vector field

visualization with line integral convolution are introduced. This is followed by a description

of the system and its evaluation, which can verify the advantage of the polygonal regions over

the rectangles. Finally an outlook on possible improvements of the framework is given.
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1 Einleitung

Seit den Anfängen der Forschung auf dem Gebiet der künstlichen Intelligenz wird auch

versucht, Maschinen das Lernen beizubringen. Bis heute wurden zu diesem Zweck zahlrei-

che verschiedene Algorithmen und Methoden entwickelt, die zunehmend beeindruckende

Leistungen aufweisen können.

Um die Repräsentation realer Objekte zu lernen, benötigen viele Algorithmen annotierte

Daten. Das bedeutet, dass die Daten als Paare aus Objektbeschreibung und Klassenzuweisung

vorliegen müssen.

Handelt es sich bei den Daten um Skalar- oder Vektorfelddaten, stellt sich die Aufgabe oft

wie folgt: Aus den Datensätzen müssen Regionen ausgewählt werden, die einer bestimmten

Objektklasse angehören, als Beispiel seien hier Wirbel genannt. Diese müssen in eine für

den Algorithmus verwendbare Form übertragen werden, in der Regel sind dies numerische

Merkmalsvektoren. Eine große Zahl solcher Merkmalsvektoren in Verbindung mit ihrer

jeweiligen Klasse kann schließlich zum Training eines Klassifikators verwendet werden.

Diese Aufgabe birgt drei Probleme, die es zu lösen gilt:

• Die gewöhnlich im Rahmen solcher Anwendungen verwendeten rechteckigen Selekto-

ren sind für komplexere Formen zu ungenau.

• Da die Menge an verfügbaren Trainingsdaten oft einen größeren Einfluss auf die

Leistung eines Klassifikators hat als die Qualität des Algorithmus, wird ein immenser

zeitlicher Aufwand für die Annotation nötig.

• Die Entwicklung geeigneter Merkmalsvektoren ist kompliziert und daher an häufiges

Testen gebunden. Auch hier liegt ein großer Zeitaufwand vor.

Diese Arbeit beschreibt ein Rahmenwerk zur Selektion und Klassenzuweisung von Regionen

in Skalar- und Vektorfelddaten und zur Berechnung von auf diesen Regionen basierenden

Merkmalsvektorausgabedateien. Um die Ungenauigkeit der Rechtecke zu vermeiden bietet

das System die Möglichkeit, die Daten unter Verwendung beliebiger allgemeiner Polygone

zu selektieren. Auch runde oder nicht konvexe Objekte können so mit ausreichender Genau-

igkeit ausgewählt werden.

Um die Zeit, welche das Annotieren in Anspruch nimmt, möglichst klein zu halten, wird

für das Rahmenwerk ein Fokus auf Effizienz gelegt. Die Benutzung soll möglichst einfach

erfolgen. Sämtliche von der Datenart abhängigen Module des Programms sind über einfaches
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1 Einleitung

Laden von Plugins austauschbar.

Ein solches Plugin-System wird auch für die Berechnung des Merkmalsvektors verwendet.

Die für das Testen verschiedener Vektoren benötigte Zeit wird so deutlich reduziert.

Die Arbeit gibt einen Einblick in die Grundlagen des maschinellen Lernens, um die Notwen-

digkeit geeigneter Trainingsdaten deutlich zu machen und die theoretischen Grundlagen für

die am Ende erfolgte Auswertung zur Verfügung zu stellen. Es folgt eine Einführung in die

Konstruktion aussagekräftiger Merkmalsvektoren für die Datenrepräsentation. Außerdem

werden die Visualisierung von Vektorfelddaten mittels Line Integral Convolution, sowie

Auswertungsmethoden für Klassifikatoren besprochen.

Das System wird schließlich anhand einer Systembeschreibung und einer Fallstudie vorge-

stellt. Die dabei entstandenen Ergebnisse werden analysiert und verglichen. Als Beispielan-

wendung orientiert sich die Arbeit an der Annotation von Wirbeln in zweidimensionalen

Vektorfeldern.

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Verwandte Arbeiten Dieses Kapitel gibt einen Überblick über Arbeiten, die

auf dem Feld der Annotation von Skalar- und Vektorfeldern, sowie im Bereich der Kon-

struktion von Merkmalsvektoren, veröffentlicht wurden und ordnet das entstandene

System ein.

Kapitel 3 – Grundlagen In diesem Kapitel werden die Grundlagen des maschinellen Ler-

nens, die Konstruktion verschiedener Merkmalsvektoren, die Strömungsvisualisierung

mit Hilfe der Line Integral Convolution und die Evaluation der Leistungsfähigkeit von

Klassifikatoren erklärt.

Kapitel 4 – Systembeschreibung Hier findet eine Anforderungsanalyse statt und die Im-

plementierung des Systems wird besprochen. Dabei wird insbesondere auch auf das

entwickelte Plugin-System und die verwendeten Merkmalsvektoren eingegangen.

Kapitel 5 – Fallstudie In diesem Teil der Arbeit wird die Benutzung des System anhand

einer Fallstudie exemplarisch dargestellt. Die dabei gewonnenen Ergebnisse werden

außerdem verwendet, um die benutzten Merkmalsvektoren sowie die Regionsselektion

mit allgemeinen Polygonen im Vergleich zu Rechtecken zu bewerten.

Kapitel 6 – Zusammenfassung und Ausblick Das letzte Kapitel fasst die Arbeit zusam-

men und gibt einen Ausblick auf weitere Verbesserungsmöglichkeiten.
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2 Verwandte Arbeiten

Die Annotation von Regionen in Skalar- oder Vektorfelddaten, sowie die Verwendung der

daraus gewonnenen Ergebnisse für Methoden des maschinellen Lernens, ist Gegenstand

einiger Forschungsarbeiten und Projekte.

So existieren zahlreiche Rahmenwerke für die Annotation von Videodaten für Computer

Vision und Semantic Web Anwendungen. Das Open Video Annotation Project [RDMN15],

ViPER [MD] und ANVIL [Kip12] sind einige populäre Beispiele.

Die am häufigsten verwendete Form zur Selektion von Daten ist das Rechteck. Ein Projekt,

das dagegen von polygonalen Regionen für die Selektion von Daten Gebrauch macht, ist das

Bildannotationswerkzeug LabelMe [RTMF08]. Es wurde für die Annotation großer Mengen

von Bildern entworfen, um eine Datenbank für die Forschung im Bereich Computer Vision zu

erstellen. Die Annotation übernehmen Freiwillige in einem Online-Interface. Die Annotation

von Vektorfelddaten wird durch das Projekt nicht unterstützt.

Yang et al. beschäftigen sich ebenfalls mit der Klassifikation von Bildregionen. Sie schlagen

eine Variante von Support Vector Machines vor, die mit annotierten Regionen arbeitet.

Mit der Detektion von Wirbeln in Vektorfelddaten beschäftigen sich Zhang et al. [ZDM+14].

Sie entwickeln ein Boosting-Verfahren, um die Leistungsfähigkeit der Klassifikation zu

steigern. Die Annotation der Regionen erfolgt durch einen Experten.

Mit Wirbeln beschäftigen sich auch Daniels II et al. in [DANS10]. Sie entwerfen ein System

für die interaktive Identifikation geeigneter Merkmale durch den Nutzer. Zum Einsatz kommt

dafür eine texturbasierte Visualisierung, die Abbildung geschieht hier aber bereits in einem

geclusterten Attributsraum. Die verwendeten Daten sind dreidimensionale Vektorfelddaten.

In ihrer Arbeit beschäftigen sich die Autoren außerdem mit Merkmalsdesign für die Klassifi-

zierung von Wirbeln.

Die vorliegende Arbeit überträgt die Flexibilität und einfache Benutzbarkeit der vorhan-

denen Annotationswerkzeuge für Videos und Bilder auf die Domäne der Vektorfelddaten,

um die Erstellung einer ausreichend großen Datenbasis für das Training von maschinellen

Lernverfahren zu erleichtern. Dabei sind, wie für Bilddaten bereits geschehen, polygonale

Regionen selektierbar.
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2 Verwandte Arbeiten

Abbildung 2.1: Regionsauswahl in LabelMe. Quelle: http://labelme.csail.mit.edu/
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3 Grundlagen

In diesem Kapitel werden die Algorithmen und Konzepte, die der entwickelten Anwen-

dung und der Auswertung zugrunde liegen, erläutert. Abschnitt 3.1 bietet eine Einführung

in die Methoden des maschinellen Lernens und stellt einige dafür wichtige Algorithmen

vor. Abschnitt 3.2 beschäftigt sich mit der Konstruktion von Merkmalsvektoren für eine

aussagekräftige Repräsentation von Daten, die von maschinellen Lernverfahren genutzt

werden kann. Im darauf folgenden Abschnitt 3.3 wird die Visualisierung von Vektorfelddaten

besprochen, die für das Annotieren solcher Daten unerlässlich ist. Schließlich widmet sich

Abschnitt 3.4 der Auswertung von Lernverfahren. Die darin vorgestellten Konzepte kommen

in Kapitel 5 bei der Bewertung zum Einsatz.

3.1 Maschinelles Lernen

Ein System, das lernt, sei es ein Lebewesen oder eine Maschine, muss sehr allgemein ge-

sprochen, im Stande sein, aus Erfahrungen Wissen zu gewinnen. Dieses Wissen wird dann

eingesetzt, um Vorhersagen über die Zukunft zu machen, oder die Leistung des Systems in

Konfrontation mit einer neuen Situation zu verbessern.

Im Falle des maschinellen Lernens bedeutet das meist, aus einem gegebenen Trainingsda-

tensatz ein Modell für die Daten zu ermitteln. Ein solches hat die Form einer Funktion, die

von Ein- auf Ausgabedaten abbildet. Ziel ist dabei eine gute Generalisierung. Diese zeichnet

sich dadurch aus, dass das Modell sowohl für die vorhandenen Trainingsdaten, als auch

für zukünftige, beim Lernen unbekannte Testdaten einen möglichst kleinen Fehler bei der

Vorhersage der Ausgabe macht.

Unter dem Oberbegriff „Maschinelles Lernen“ werden einige verschiedene Lernszenari-

en zusammengefasst. Eine wichtige Abgrenzung der Szenarien stellen hier die vorhandenen

Ausgabedaten dar.

Beim unüberwachten Lernen liegen die verfügbaren Daten ohne Ausgabewerte vor:

D = {x⃗i}N
i=1. Das Ziel bei dieser Form des Lernens ist oft das Clustering der Daten (Einteilung

in Gruppen mit ähnlichen Eigenschaften) oder das Erlernen einer impliziten Repräsenta-

tion in einer niedrigeren Dimension, beispielsweise mit dem Ziel der Kompression von Daten.
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3 Grundlagen

Im Gegensatz dazu liegen beim überwachten Lernen die Trainingsdaten mit dazuge-

hörigen Ausgabewerten vor: D = {x⃗i, yi}N
i=1. Die Ausgabe kann dabei kontinuierlich oder

diskret sein. Zielsetzung ist hier für gewöhnlich das Lernen einer Funktion, die Eingabewerte

auf eine Ausgabe abbildet. Im Falle von diskreten Ausgabewerten spricht man hier auch von

Klassifizierung.

Überwachtes Lernen beinhaltet immer auch die Gefahr von Überanpassung. Trainingsdaten

spiegeln in den meisten Fällen nicht genau die Funktion wider, die die Daten erzeugt hat,

sondern sind durch Rauschsignale gestört. Ein überwachtes Lernverfahren läuft Gefahr, eben

diese Störsignale mit zu lernen. Dies wird bei einem Großteil der vorhandenen Algorithmen

verhindert, indem die Komplexität des gelernten Modells beschränkt oder eine hohe Komple-

xität bestraft wird (oft Regularisierung genannt).

Ein dritter Fall ist das halb überwachte Lernen, bei dem ein kleiner Teil der Daten mit

(unter Umständen unsicheren) Ausgabewerten vorliegt, ein Großteil jedoch ohne. Ausgangs-

lage ist oft eine eigentlich ungenügende Menge an gegebenen Ausgabewerten, zum Beispiel

wegen zu hohen Aufwands der Erstellung solcher Datensätze. Unter Verwendung von zu-

sätzlichen Daten ohne Ausgabewerte kann das erzielte Ergebnis oft verbessert werden.

Anwendungen des maschinellen Lernens finden sich bei Regierungsorganisationen [Hic13],

in verschiedenen Bereichen der Wirtschaft [Var14] sowie in Forschung und Wissenschaft

[MD01]. Beispiele reichen von Gesichts- und Spracherkennung über Spam Filter bis hin zum

Bildverstehen.

In dieser Arbeit kommt maschinelles Lernen in Form der Klassifizierung zum Einsatz. Das

heißt, die Trainingsdaten liegen als

D = {x⃗i, yi}N
i=1; x⃗i ∈ Rn; yi ∈ Y ⊂ N

vor, wobei Y die Menge aller Klassen ist. Zu erlernen ist dabei in der Regel eine Funktion

der Form

F : Rn → Y .

Da die meisten Algorithmen nicht direkt mit der Eingabe x⃗ arbeiten, sondern die Daten mit

Hilfe eines Merkmalsvektors repräsentieren (siehe auch Abschnitt 3.2), wird beispielsweise

eine Funktion φ definiert, die den Eingabevektor in einen Merkmalsraum der Dimension k
abbildet:

φ : Rn → Rk

Im Folgenden sind einige wichtige Algorithmen des maschinellen Lernens beschrieben. Die

logistische Regression ist eine Anpassung gängiger Regressionsverfahren an das Problem

der Klassifizierung. Support Vector Machines (SVMs) sind sogenannte „Large Margin

Classifier“, das heißt, sie teilen den Merkmalsraum anhand einer Entscheidungsgrenze, so

dass jedes Beispiel des Trainingsdatensatzes einen möglichst hohen Abstand zu der Ent-

scheidungsgrenze hat. Entscheidungsbäume lernen eine Reihe von Regeln, um Daten zu
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3.1 Maschinelles Lernen

klassifizieren.

Meta-Lernverfahren wie Boosting oder Bagging können die Ergebnisse vorhandener Ler-

nalgorithmen weiter verbessern, sie werden am Ende des Abschnitts behandelt.

3.1.1 Logistische Regression

Die Logistische Regression ist ein statistisches Analyseverfahren, das verwendet wird, um

eine Klassifizierungsfunktion zu lernen. Sie ist bei geeigneter Wahl des Merkmalsvektors

sehr leistungsfähig, da zum Beispiel auch nichtlineare Merkmale verwendet werden kön-

nen. Der Einfachheit halber wird hier nur der binäre Fall mit zwei Klassen betrachtet, die

Trainingsdaten liegen also in der Form

D = {x⃗i, yi}N
i=1; yi ∈ {−1, 1}

vor. Dementsprechend ist die zu lernende Funktion

F : Rn → {−1, 1}.

Für die Regression wird F durch eine reellwertige Diskriminanzfunktion

f : Rn × {−1, 1} → R

dargestellt, die folgende Bedingung erfüllen muss:

F : x⃗ 7→ argmax
y

f(x⃗, y)

Das impliziert, dass f einen hohen Wert hat, wenn y die korrekte Klasse zu x⃗ ist und einen

niedrigen sonst. Eine solche Funktion kann recht einfach parametrisiert werden. O.B.d.A.

nehmen wir an, dass f(x⃗, −1) = 0. Außerdem gehen wir davon aus, dass die Daten auf einen

beliebigen Merkmalsvektor φ(x⃗) ∈ Rk
abgebildet werden. Aus diesem Vektor kann ein neuer

Merkmalsvektor φ(x⃗, y) folgendermaßen berechnet werden:

φ(x⃗, y) = [y = 1] φ(x⃗)

Die Diskriminanzfunktion f kann dann linear in den Eigenschaften parametrisiert werden:

f(x⃗, y) =
k∑

i=1
φj(x⃗, y)βj = φ(x⃗, y)Tβ⃗

Die Parameter βj können dabei als Maß für die Wichtigkeit bestimmter Eigenschaften für

die Zugehörigkeit zur Klasse 1 betrachtet werden. Die Funktion f kann auch als Wahrschein-

lichkeit der Klassenzugehörigkeit interpretiert werden

p(1|x⃗) = σ(f(x⃗, 1)) = ef(x⃗,1)

1 + ef(x⃗,1) mit σ(z) = ez

1 + ez
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3 Grundlagen

wobei man σ die logistische Sigmoidfunktion nennt. Ein optimales β⃗ kann nun gefunden

werden, indem die Kostenfunktion

K(β⃗) = −
n∑

i=1
log p(yi, x⃗i) + λ∥β⃗∥2

minimiert wird. λ∥β⃗∥2
ist hierbei ein Regularisierungsterm umÜberanpassung zu verhindern.

Das gelernte β⃗ ergibt sich also aus

β⃗opt. = argmin
β⃗

K(β⃗)

Mangels analytischer Lösung dieser Gleichung wird β⃗opt. durch iterative Methoden, wie bei-

spielsweise das Newton-Verfahren, berechnet. Unter Zuhilfenahme der gelernten Parameter

lässt sich ein neues Element x⃗ durch die Berechnung folgender Formel berechnen:

ŷ = sign(φ(x⃗)Tβ⃗opt.)

3.1.2 Support Vector Machines

Support Vector Machines legen eine Entscheidungsgrenze in Form einer Hyperebene durch

denMerkmalsraum fest, anhand welcher Eingabewerte klassifiziert werden. Die Besonderheit

von SVMs liegt hierbei darin, dass die Lage der Grenze so gewählt wird, dass alle erlernten

Beispiele einen Mindestabstand von ihr haben. Dieser Abstand wird Rand (eng.: margin)

genannt und hängt nur von den Punkten ab, die der Entscheidungsgrenze am nächsten liegen.

Die Hyperebene lässt sich anhand dieser Punkte vollständig beschreiben, weshalb man sie

Stützvektoren (→ Support Vectors) nennt.

Wie schon bei der logistischen Regression betrachten wir nur den dualen Fall mit

D = {x⃗i, yi}N
i=1; yi ∈ {−1, 1}.

Die gesuchte Hyperebene kann durch einen Normalenvektor β⃗ und ein Bias β0 beschrieben

werden, so dass die Zugehörigkeit zu einer Klasse mit

f(x⃗) = sign(x⃗Tβ⃗ + β0)

entschieden werden kann. Der Normalenvektor wird bestimmt, indem das folgendeMinimum

berechnet wird:

min
β⃗,ξ⃗,β0

∥β⃗∥2 + C
n∑

i=1
ξi mit C > 0 so dass yif(x⃗i) ≥ 1 − ξi; ξi ≥ 0

DieNebenbedingung gibt an, dass alle Instanzen des Trainingsdatensatzes korrekt, bis auf eine

Überschussvariable ξi, klassifiziert werden müssen. Diese Variable nimmt einen Wert größer
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3.1 Maschinelles Lernen

null an, wenn die Instanz falsch klassifiziert wurde und ist nötig, da nicht alle Daten linear

separierbar sind. Das Optimierungsproblem beinhaltet zwei zu minimierende Dimensionen:

Zum einen maximiert sie den margin (äquivalent zur Minimierung der quadratischen Norm

von β⃗, siehe [Vap82]) und zum anderen minimiert sie den Fehler. Das Zulassen kleiner Fehler

kann als Regularisierung betrachtet werden, die Konstante C regelt ihr Maß.

Das obige Problem wird für gewöhnlich in seiner dualen Form gelöst, dazu wird β⃗ als

Linearkombination aus den Eingabewerten des Trainingsdatensatzes geschrieben:

β⃗ =
n∑

i=1
αiyix⃗i

Die Variable αi ist dabei ein Indikator, der angibt ob yif(x⃗i) ≥ 1 − ξi gilt. Die duale Form

kann unter Verwendung von Lagrange-Multiplikatoren [Ber99] gewonnen werden und führt

zu

max
α

−1
2

n∑
i=1

n∑
j=1

αiαjyiyjx⃗
T
i x⃗j +

n∑
i=1

αi so dass 0 ≤ αi ≤ C;
n∑

i=1
αiyi = 0.

Da das Optimierungsproblem in der letzten Schreibweise nur noch x⃗T
i x⃗j verwendet kann

an dieser Stelle sehr einfach ein Wechsel in den Merkmalsraum vollzogen werden, indem

stattdessen φ(x⃗i)Tφ(x⃗j) verwendet wird. Es ist sogar möglich an Stelle des Skalarprodukts

eine beliebige Kernelfunktion k(x⃗i, x⃗j) zu verwenden. Arbeitet diese in einem implizit hö-

herdimensionalen Raum, ist als Ergebnis im Eingaberaum auch eine nicht-lineare oder nicht

zusammenhängende Entscheidungsgrenze möglich. Die angepasste Klassifizierungsfunktion

nimmt dann diese Form an:

f(x⃗) = sign

(
n∑

i=1
αiyik(x⃗i, x⃗) + β0

)

3.1.3 Entscheidungsbäume

Im Gegensatz zu logistischer Regression und Support Vector Machines wird bei Entschei-

dungsbäumen keine mathematische Funktion erlernt. Stattdessen wird ein Binärbaum aus

logischen Regeln erstellt, um Eingabedaten zu klassifizieren. Jeder Knoten des Baums enthält

eine Regel, während in den Blättern jeweils eine der Klassen steht. Um eine Instanz zu

klassifizieren, wird an der Wurzel begonnen und abhängig vom Wahrheitswert der Regel in

Hinblick auf die Eingabe entschieden, welcher Kindknoten als nächstes gewählt wird. Wird

ein Blatt erreicht, wird die entsprechende Klasse ausgegeben.

Der bekannteste Algorithmus für die Erstellung eines solchen Baums ist CART (classification

and regression tree) [BFOS84]. CART unterteilt den Merkmalsraum in k durch den Baum

definierte disjunkte rechteckige RegionenR. Um eine bisher ungeteilte RegionRj aufzuteilen,
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3 Grundlagen

wird eine Dimension a des Merkmalsraum und ein Schwellenwert t nach folgendem Prinzip

gewählt:

min
a,t

(
min

c1

∑
i:φ(xi)∈Rj∧φ(xi)a≤t

(yi − c1)2 + min
c2

∑
i:φ(xi)∈Rj∧φ(xi)a>t

(yi − c2)2
)

Bildlich kann man sich das so vorstellen, dass entlang jeder Dimension eine Hyperebene

bewegt wird, welche die Region in zwei Teile aufteilt. In diesen beiden Teilen wird jeweils

die „Ähnlichkeit“ der Klassen der darinliegenden Instanzen bewertet. Die beste Aufteilung

wird dann als Regel der Form φ(x)a > t übernommen. Sind in einer Region alle Daten

der gleichen Klasse zugeordnet, wird ein Blatt dieser Klasse erstellt, anstatt eine erneute

Aufteilung vorzunehmen.

Die maximale Tiefe des Entscheidungsbaumes kann entweder vorher festgelegt oder mittels

Pruning verringert werden. Dafür wird iterativ der Knoten entfernt, der am wenigsten zu

n∑
i=1

(yi − f(φ(xi)))2

beiträgt. Wie stark der Baum auf diese Art beschnitten wird ist mit den Regularisierungs-

methoden anderer Algorithmen vergleichbar. Nach Konstruktion des Entscheidungsbaums

kann f zur Klassifizierung genutzt werden:

f(x) =
k∑

j=1
cj[x ∈ Rj]

cj ist die Klasse, die dem Blatt Rj zugeordnet wurde.

3.1.4 Boosting

Sowohl Boosting als auch Bagging zählen zu den Meta-Lernverfahren. Sie arbeiten mit

Hilfe anderer Lernverfahren, indem sie die Ausgaben mehrerer gelernter Modelle gewichtet

mitteln. Diese Modelle sind oft mit recht einfachen Lernverfahren wie Entscheidungsbäumen

gewonnen.

Beim Boosting können die verwendeten Modelle verschiedenen Typs sein. Man spricht bei

den einzelnen Klassifikatoren oft von schwachen Klassifikatoren, ihre einzeln betrachtete

Leistungsfähigkeit ist meist mäßig. Die zum Training eingesetzten Daten werden beim

Boosting für jedes Modell anders gewichtet. Ein populärer Vertreter dieser Methode ist

AdaBoost [FS97], das erstmals 1997 von Robert E. Schapire und Yaov Freund beschrieben

wurde. Dieser Algorithmus ist hier beschrieben.

Die Ausgangslage ist wieder ein binäres Klassifizierungsproblem mit Trainingsdaten D =
{x⃗i, yi}N

i=1; yi ∈ {−1, 1}. Gegeben sei ein Algorithmus um Klassifikatoren der Form G(x) ∈
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3.1 Maschinelles Lernen

{−1, 1} zu trainieren. Ziel ist es, eine Reihe von Klassifikatoren G1, ..., GM auf gewichteten

Instanzen der Trainingsdaten zu trainieren, um einen neuen Klassifikator zu erhalten:

G(x) = sign
M∑

m=1
αmGm(x)

Die Gewichtung der Daten einer jeden Instanz wird dabei jeweils aus dem Fehler der vorher

trainierten Instanz gewonnen. Falsch klassifizierte Trainingsdaten werden dabei stärker

gewichtet, während eine korrekte Einschätzung zu keiner Veränderung führt. Algorithmus 3.1

zeigt den Algorithmus, mit dem die Klassifikatoren und Gewichte erstellt werden. Außerdem

werden die Gewichte α1, ..., αM ermittelt, die den Beitrag der einzelnen Lerner zum neuen

Klassifikator bestimmen. Die so gewonnenen Gm und αm können dann zur Berechnung von

Algorithmus 3.1 AdaBoost

Input: D
Output: G1,...,M ; α1,...,M

for all i=1,...,M do
wi = 1

n

end for
for all m=1,...,M do

Trainiere Gm auf dem mit wi gewichteten Datensatz

fehlerm =
∑n

i=1 wi[yi ̸=Gm(xi)]∑n

i=1 wi

αm = log(1−fehlerm

fehlerm
)

for all j=1,...,M do
wi = wi exp(αm[yi ̸= Gm(xi)])

end for
end for

G(x) und damit zur Klassifizierung verwendet werden.

3.1.5 Bagging

Auch Bagging verwendet einen Satz von Klassifikatoren des selben Typs, im Gegensatz

zum Vorgehen beim Boosting werden die Trainingsdaten aber nicht gewichtet. Stattdessen

wird jeder Klassifikator auf einer Bootstrap-Stichprobe trainiert. Diese ist eine gleichverteilt

zufällige Auswahl aus dem Datensatz. Sie hat die gleiche Größe wie der Trainingsdaten-

satz, Doppeltziehungen sind aber erlaubt. Bei Vorhandensein von M Klassifikatoren, die

jeweils eine Diskriminanzfunktion fm(x) trainieren, erhält man die Diskriminanzfunktion

des Bagging-Verfahrens durch einfaches Mitteln:

f(x) = 1
M

M∑
m=1

fm(x)
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3 Grundlagen

Random Forests

Ein bekanntes Beispiel für Bagging, das auch in Kapitel 5 zumEinsatz kommt, sind die Random

Forests. Ein Random Forest wird mittels Bagging aus Entscheidungsbäumen gewonnen.

Zusätzlich zur Randomisierung des Trainingsdatensatzes wird außerdem bei der Aufteilung

einer Region die zu teilende Dimension nur aus einer zufälligen, oft sehr kleinen Teilmenge

der Merkmale gewählt.

3.2 Merkmalsvektoren

Als Merkmalsvektor bezeichnet man im Bereich des maschinellen Lernens einen Vektor aus

numerischen Merkmalen, die ein Objekt repräsentieren. Dies ist nötig, da viele Lernalgorith-

men, beispielsweise die in Abschnitt 3.1, auf der Verwendung von numerischen Vektoren

beruhen. Die Merkmale können dabei von einfachen Dingen, wie der Position im Raum, bis

hin zu komplexen zusammengesetzten Berechnungen reichen.

Ein guter Merkmalsvektor enthält Eigenschaften, die für den konkreten Anwendungsfall

von Bedeutung sind und eine möglichst gute Unterscheidung der Klassen ermöglichen. Die

Erstellung eines solchen geeigneten Merkmalsvektors für eine bestimmtes Lernszenario ist

daher oft ein aufwendiger Prozess, der Wissen über die Domäne, sowie ausgiebiges Testen

erfordert.

Einen alternativen Ansatz stellt das automatisierte Lernen geeigneter Merkmale durch spe-

zielle Algorithmen dar. Analog zur Definition in Abschnitt 3.1 wird auch hier zwischen

überwachtem und unüberwachtem Lernen unterschieden, abhängig davon, ob die Trainings-

daten klassifiziert sind.

Ein populäres Beispiel für überwachtes Merkmalslernen sind künstliche neuronale Netze.

Diese können durch die Wahl von ausreichend kleinen verdeckten Schichten so konfiguriert

werden, dass sie eine Repräsentation der Eingabe in kleinerer Dimension lernen [KSH]. Diese

Repräsentation kann als Merkmalsvektor interpretiert werden.

Eine Anwendung von unüberwachtem Merkmalslernen ist die Hauptkomponentenanalyse

(englisch: Principal Component Analysis (PCA)). Sie basiert auf dem Ansatz, die vorhan-

denen Daten so in einen Merkmalsraum niedrigerer Dimension abzubilden, dass dabei der

Informationsverlust minimal ist. Das heißt, dass sich die Daten nach Rückabbildung mög-

lichst wenig von ihrem Original unterscheiden dürfen. Da die dadurch neu gewonnenen

Merkmale Eigenvektoren der Kovarianzmatrix sind, spricht man bei diesen abhängig von

der Anwendung beispielsweise von „Eigengesichtern“.

Im Folgenden werden einige Beispiele für manuell gewonnene Merkmale vorgestellt. Die

letzten vier sind zum Teil speziell für die Erkennung vonWirbeln in Vektorfeldern konstruiert

und kommen auch in Kapitel 5 zum Einsatz.
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3.2 Merkmalsvektoren

3.2.1 Lineare und polynomielle Merkmale

Die einfachste Methode um Merkmalsvektoren zu erstellen sind lineare Merkmale. Geht es

beispielsweise um Positionen im Raum kann einfach der Positionsvektor als Merkmalsvektor

verwendet werden. Ein Bild oder Bildausschnitt lässt sich als Vektor mit allen Farb- oder

Helligkeitswerten der Pixel darstellen, dies ist natürlich auch auf andere Skalar- oder Vek-

torfelder übertragbar. Möchte man die Korrelation der Komponenten mit berücksichtigen,

können auch polynomielle Merkmale verwendet werden. Am Beispiel von einer Position

x⃗ =
(

x1
x2

)
kann ein quadratischer Merkmalsvektor φ(x⃗) wie folgt berechnet werden:

φ(x⃗) =



x1
x2
x2

1
x2

2
x1x2


Dies lässt sich analog auf Polynome höheren Grads erweitern, erzeugt bei hochdimensionalen

Ausgangsdaten wie zweidimensionalen Vektorfeldern aber schnell zu große Merkmalsvekto-

ren.

3.2.2 Histogramme

Eine Möglichkeit Vektorfelder oder Teile von Vektorfeldern zu beschreiben, ist ein Histo-

gramm über die Eigenschaften der darin enthaltenen Datenpunkte anzufertigen. Mögliche

Größen wären beispielsweise Richtung, Magnitude oder partielle Ableitungen des Felds. Eine

solche Größe wird in eine feste Anzahl an Behältern (eng.: bins) aufgeteilt, in welche die

Datenpunkte einsortiert werden. Das resultierende Histogramm wird als Merkmalsvektor

verwendet.

3.2.3 Histogrammvarianz

Berechnet man wie im vorangegangenen Unterabschnitt beschrieben ein Histogramm über

eine Größe des Vektorfelds, kann dessen Varianz als Merkmal verwendet werden. Das wird

am Beispiel der Strömungsrichtung für die Erkennung von Wirbeln deutlich: Im Idealfall

eines kreisrunden Wirbels sind alle Richtungen gleich häufig vorhanden, die Varianz des

Histogramms nimmt den Wert null an. Je stärker eine oder mehrere Richtungen dominieren,

desto größer wird die Varianz. Ein Nachteil dieser Methode der Unterscheidung ist die ebenso

erhöhte Varianz bei Wirbeln, die eine eher längliche Form aufweisen.
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3.2.4 Magnitude des Durchschnittsvektors

Ein weiteres für die in Kapitel 5 klassifizierten Wirbel relevantes Merkmal ist die Magnitude

der Durchschnittsgeschwindigkeit. Dafür wird über alle im (Teil-)Vektorfeld enthaltenen

Datenpunkte ein Durchschnittsvektor berechnet und dessen Betrag als Merkmal verwendet.

Diese Größe ist interessant, da ein Wirbel durch die Kreisbewegung der Strömung meist

einen Durchschnittsvektor mit niedriger Magnitude hat, während zum Beispiel eine laminare

Strömung eine hoheMagnitude aufweist. Das Merkmal eignet sich daher zur Unterscheidung.

Nicht zu verwechseln ist die Eigenschaft mit der Durchschnittsmagnitude, die Auskunft

über die durchschnittliche Fließgeschwindigkeit gibt, für Wirbel allerdings eine eher geringe

Aussagekraft besitzt.

3.2.5 Fluss

Der Fluss gibt an, wie viel Masse in einen Punkt xc hinein und aus ihm hinaus transportiert

wird. Die Berechnung orientiert sich an [DANS10]. Um den Fluss zu ermitteln, wird für alle

anderen in der Region vorhandenen Punkte xj das Skalarprodukt aus dem Vektor vj an dieser

Stelle und der Differenz der Punkte xc und xj berechnet. Es beschreibt damit, wie stark der

Fluss an dieser Stelle zu xc hin oder von ihm weg strömt. Die so ermittelten Skalarprodukte

werden schließlich aufsummiert:

Flux(xc) =
∑

j

vT
j (xj − xc)

Damit dieses Maß für die Beschreibung von einem Teilvektorfeld aussagekräftig wird, muss

xc sinnvoll gewählt werden. Der Betrag des Flusses wird minimal, wenn alle Vektoren der

anderen Punkte senkrecht zum Differenzvektor stehen. Dies ist genau dann der Fall, wenn

xc im Zentrum eines (runden) Wirbels liegt. Daher kann als Merkmal zur Klassifizierung

von Wirbeln der betragsmäßig minimale Fluss über alle Punkte verwendet werden:

Fluxarea = min
x∈area

Flux(x)

Eine zweite Möglichkeit besteht darin, einen kritischen Punkt zu suchen und seinen Fluss

zu bewerten. Ein solcher Punkt zeichnet sich dadurch aus, dass seine Flussgeschwindigkeit

den Wert null hat. Weil nicht jeder untersuchte Ausschnitt einen kritischen Punkt aufweisen

muss, kann für xc beispielsweise der Punkt mit der niedrigsten Geschwindigkeit verwendet

werden.

Da das Zentrum eines Wirbels ein kritischer Punkt ist, stellt dieses Vorgehen sicher, dass bei

Vorhandensein eines Wirbels immer dessen Zentrum bewertet wird. Der Unterschied zur

Verwendung des Minimums ist hier, dass dies auch sichergestellt ist, wenn der Wirbel nicht

ausreichend rund ist.
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3.3 Strömungsvisualisierung

3.3 Strömungsvisualisierung

Vektorfelddaten, wie sie zumBeispiel aus Strömungssimulationen gewonnenwerden, besitzen

keine inhärente für Menschen verständliche Darstellungsform. Um solche Daten annotieren

zu können ist es daher unerlässlich, sie mit Visualisierungsverfahren in eine für den Benutzer

interpretierbare Form zu überführen. Eine Möglichkeit dies zu erreichen besteht darin, die

Stromlinien sichtbar zu machen. Stromlinien sind Kurven deren Ableitung an jedem Punkt

der Geschwindigkeit des Vektorfelds entspricht. Sie stellen damit die Pfade dar, auf denen

sich masselose Partikel durch das Vektorfeld bewegen würden.

Eine Visualisierungsmethode, die darauf beruht, ist die „Line Integral Convolution“ (LIC) oder

Linienintegralfaltung. Sie zählt zu den texturbasierten Vektorfeldvisualisierungen und wurde

ursprünglich in [CL93] vorgeschlagen. Die Formulierung orientiert sich hier aber an [Wei09].

LIC verwendet als Ausgangstextur ein weißes Rauschen N und faltet dieses mit Hilfe eines

Faltungskernes entlang der Stromlinien. Im einfachsten Fall wird ein Box-Kernel verwendet,

welcher die Werte einfach mittelt. Die Faltung führt zu ähnlichen Grauwerten entlang von

Stromlinien, während die Korrelation entgegen der Linien gering ist. Für den menschlichen

Betrachter wird so ein feldlinienartiges Bild sichtbar. Ein Beispiel ist in Abbildung 3.1 zu

sehen.

Abbildung 3.1: Visualisierung mittels Line Integral Convolution.
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Um den Grauwert des Pixels der Visualisierung D an der Position x⃗ bestimmen zu können,

muss zuerst eine Stromlinie σ(s) berechnet werden, die mit der Bogenlänge s parametrisiert

ist und die Position x⃗ enthält (σ(s0) = x⃗). Dafür kann die Differentialgleichung

dσ(τ)
dτ

= v(σ(τ))

mit der Anfangsbedingung σ(τ0) = x⃗ gelöst werden, wobei v das Vektorfeld ist. Der Parame-

ter τ entspricht nicht notwendigerweise der Bogenlänge, berechnet man die Stromlinie im

normierten Vektorfeld, ist dies aber erfüllt:

dσ(s)
ds

= v(σ(s))
|v(σ(s))|

Die Anfangsbedingung ist hier entsprechend σ(s0) = x⃗. Die Berechnung des Grauwerts

erfolgt dann durch die Auswertung des Integrals

D(x⃗) =
∫ s0+Le

s0−Ls

k(s − s0)N(σ(s))ds.

k ist hierbei ein Faltungskern mit dem Träger [−Ls, Le]. Die in Kapitel 4 beschriebene

Anwendung verwendet hierfür einen Gauß-Filter wie er zum Beispiel in [NA02] beschrieben

wird, da dieser ein besseres spektrales Verhalten als ein Box-Kernel erzielt.

Für die Annotation der Daten kann außer den Stromlinien auch die Lage von kritischen

Punkten x⃗c interessant sein. Diese sind in einem Vektorfeld einfach zu identifizieren, da für

sie gilt: v(x⃗c) = 0. Bei Bedarf können diese Punkte zusätzlich markiert werden.

3.4 Evaluationsverfahren

Da die Wahl eines Algorithmus und der entsprechenden Parameter, sowie die Konstruktion

eines geeigneten Merkmalsvektors sich meist sehr schwierig gestalten und das Bewerten

verschiedener Ansätze auf theoretischem Weg kaum möglich ist, kann beim maschinellen

Lernen für gewöhnlich nicht auf eine aussagekräftige und gut vergleichbare Auswertung

verzichtet werden.

Das allgemeinste und vermutlich am weitesten verbreitete Verfahren ist hierbei die Verwen-

dung eines Trainings- und eines ebenfalls vorklassifizierten Testdatensatzes. Das Modell

wird mit dem Trainingsdatensatz erlernt und seine Leistung danach mit Hilfe des Testda-

tensatzes bewertet. Das kann zum Beispiel mit einer Konfusionsmatrix und diversen daraus

abgeleiteten Größen geschehen. Das Moving Window Verfahren ist dagegen eigentlich der

Anwendung von erlernten Modellen entnommen, kann aber auch zur Evaluation eingesetzt

werden.
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Tabelle 3.1: Beispiel einer Konfusionsmatrix

Klassifiziert als: Klasse A Klasse B

Klasse A 122 13

Klasse B 7 33

3.4.1 Cross Validation

Die Cross Validation (eng.: Kreuzvalidierung) ist ein Sonderfall der Verwendung von

Trainings- und Testdatensatz. Sie arbeitet nur auf einem großen Datensatz. Bei der Evaluation

wird folgendermaßen vorgegangen: Ein fester Parameter k legt fest, in wie viele gleichmäch-

tige Teilmengen der Datensatz zerlegt wird. Jeder dieser Datensätze wird dann einmal als

Testdatensatz verwendet, während die Vereinignung über die restlichen k − 1 Teilmengen als

Trainingsdatensatz fungiert. Die auf diese Art gewonnenen Ergebnisse werden zum Schluss

gemittelt und als Gesamtergebnis verwendet.

Cross Validation kommt auch häufig zum Einsatz, um Parameter von Lernalgorithmen

automatisch zu wählen. Dafür wird für eine große Zahl möglicher Parameterwerte unter

Verwendung von Cross Validation der mittlere Fehler über alle k Testdatensätzen ermittelt.

Der Wert, welcher den niedrigsten durchschnittlichen Fehler zur Folge hat, wird für den

Parameter verwendet.

3.4.2 Konfusionsmatrix

Ein verbreitetes Evaluationsverfahren im maschinellen Lernen ist die Verwendung einer

sogenannten Konfusionsmatrix und daraus resultierender Maße. In einer solchen Matrix

entspricht eine Dimension der tatsächlichen, die andere der vom Modell bestimmten Klasse.

Die Einträge entsprechen Aussagen der Form: „x Instanzen der Klasse a wurden als Klasse b

erkannt“. Tabelle 3.1 zeigt beispielhaft eine Konfusionsmatrix. Im Falle eines dualen Klassifi-

zierungsproblems enthält die Diagonale also die Zahl der korrekt klassifizierten Instanzen

(true positive (TP) und true negative (TN)) während die beiden anderen Einträge die Zahl

der falsch klassifizierten Instanzen enthält (false positive (FP) und false negative (FN)).
Aus dieser Matrix lassen sich Größen mit statistischer Bedeutung ableiten, von denen einige

hier beschrieben sind.
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Sensitivität

Die Sensitivität oder True-Positive-Rate (auch: recall) gibt an, wie groß der Anteil der korrekt

als positiv erkannten Instanzen an der Menge aller positiven Instanzen ist. Sie berechnet sich

wie folgt:

TP-rate = TP

TP + FN

False-Negative-Rate

Die False-Negative-Rate ist entsprechend zur Sensitivität definiert und gibt an, wie groß der

Anteil der falsch als negativ klassifizierten Instanzen an der Menge aller positiven Instanzen

ist:

FN-rate = FN

TP + FN
= 1 − TP-rate

Spezifität

Die Spezifität oder True-Negative-Rate gibt an, wie hoch der Anteil der korrekt als negativ

erkannten Instanzen an der Menge aller negativen Instanzen ist:

TN-rate = TN

TN + FP

False-Positive-Rate

Auch zur Spezifität gibt es eine entsprechende zweite Rate. Die False-Negative-Rate gibt

an, wie groß der Anteil der falsch als positiv klassifizierten Instanzen an der Menge aller

negativen Instanzen ist:

FP-rate = FP

TN + FP
= 1 − TN-rate

Genauigkeit und Trennfähigkeit

Die Genauigkeit oder Precision gibt an, wie viele der als positiv klassifizierten Instanzen,

dies tatsächlich auch sind. Sie ist damit ein Maß für die Relevanz einer positiv-Bewertung.

Berechnet wird sie durch:

Precision = TP

TP + FP
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Analog dazu ist die Trennfähigkeit oder Negative Prediction Value (NPV) definiert:

NPV = TN

TN + FN

Korrekt- und Falschklassifikationsrate

Die Korrektklassifikationsrate (KKR) gibt an, wie hoch der Anteil der korrekt klassifizierten

Instanzen an der Gesamtzahl der Instanzen ist. Analog dazu ist die Falschklassifikationsrate

(FKR) definiert:

KKR = TP + TN

TP + FP + TN + FN
FKR = FP + FN

TP + FP + TN + FN
= 1 − KKR

F-Maß

Das F-Maß kombiniert Genauigkeit und Sensitivität in dem es das harmonisches Mittel

bildet.

F = 2 × Precision × TP-rate

Precision + TP-rate

3.4.3 Moving Window

Das Moving Window Verfahren findet häufig Anwendung, wenn Bilder oder vergleichbare

Daten, auf bestimmte Merkmale untersucht werden sollen. Es ist auch auf beliebige Vektor-

felddaten anwendbar. Das Vorgehen bei der Detektion von Objekten innerhalb solcher Daten

ist für gewöhnlich zuerst den zu untersuchenden Bereich als Merkmalsvektor zu repräsen-

tieren und ihn anschließend anhand des Vektors von einem zuvor trainierten Klassifikator

einordnen zu lassen.

Wurde dieser Klassifikator für Klassen erstellt, die räumlich begrenzten Merkmalen des

Skalar- oder Vektorfelds entsprechen, ergibt sich eine etwas komplexere Problemstellung.

Statt nur die Existenz eines solchen Merkmals festzustellen ist nämlich in der Regel auch die

Position und Größe des Merkmals von Interesse.

Eine Methode, die dieses Problem löst, ist das Moving Window Verfahren. Dabei werden

Teilausschnitte des Felds separiert und dann klassifiziert. Diese Ausschnitte haben die Form

von Rechtecken, die iterativ verkleinert werden. Für jede Rechteckgröße, wird das Rechteck

über alle voneinander verschiedenen möglichen Positionen im Gesamtfeld gelegt. Für jede

dieser Positionen wird dann ein Merkmalsvektor berechnet und eine Klassifizierung vorge-

nommen.

Bildlich kann man sich ein Fenster vorstellen, durch das der Klassifikator auf die Daten

blickt. Dieses Fenster wird über den gesamten Datensatz bewegt und danach verkleinert, um
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von vorne zu beginnen. Von dieser Vorstellung des Verfahrens stammt auch der Name der

Methode.

Wird ein Ausschnitt als ein Objekt von Interesse klassifiziert, ist sofort auch dessen Position

und Größe bekannt. Da beimMovingWindow Verfahren viele Ausschnitte betrachtet werden,

die räumlich nah beieinander liegen und eine ähnliche Größe haben, führt ein gesuchtes

Objekt meist zu einer Vielzahl von positiven Klassifizierungen. Eine Weiterverarbeitung

der gewonnenen Ergebnisse ist deshalb in der Regel unerlässlich. Eine Möglichkeit, die

gewonnen Ergebnisse zu visualisieren, wird im nächsten Abschnitt besprochen.

Prediction Ratio

Hält man für jeden Punkt des Felds fest, in wie vielen klassifizierten Ausschnitten er enthal-

ten war und wie viele dieser Ausschnitte als positiv klassifiziert wurden, kann man einen

Quotienten berechnen, der Auskunft darüber gibt, wie wahrscheinlich es ist, dass besagter

Punkt Teil eines gesuchten Objekts ist.

PR(p) = |{Rechteck R | p ∈ R ∧ G(φ(R)) = 1}|
|{Rechteck R | p ∈ R}|

Berechnet man PR für jeden Punkt des Felds und färbt die Visualisierung des Felds pro-

portional dazu, kann sichtbar gemacht werden, auf welchen Bereichen der Klassifikator

besonders häufig ein positives Ergebnis zurückgegeben hat.

Denkbar ist auch, mittels Analyse der Gradienten von PR oder mit Hilfe von einem fes-

ten Schwellenwert Bereiche einzugrenzen, die dann als gefundene Objekte ausgegeben

werden.
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4 Systembeschreibung

In diesem Kapitel wird das System beschrieben, das im Rahmen dieser Arbeit entstanden

ist. Dazu wird in Abschnitt 4.1 eine Anforderungsanalyse erstellt, aus deren Ergebnissen die

in Abschnitt 4.2 beschriebene Umsetzung resultiert. In 4.3 wird näher auf das entwickelte

Plugin-System eingegangen, während sich Abschnitt 4.4 den verwendetenMerkmalsvektoren

widmet.

4.1 Anforderungsanalyse

Ziel der Entwicklung ist ein Programm, dass die Annotation von Skalar- und Vektorfeldern,

sowie die Erstellung einer Merkmalsvektorausgabedatei ermöglicht. An das Rahmenwerk

sind dabei einige Anforderungen gestellt, die hier erläutert werden. Der Fokus liegt dabei zum

einen auf einem simplen und effizienten Arbeitsablauf und zum anderen auf der Flexibilität

und Wiederverwendbarkeit in Hinsicht auf die speziellen Anforderungen des einzelnen

Nutzers.

1. Um das OpenCV Framework [Ope] verwenden zu können und um eine einfache

Weiterentwicklung oder Anpassung zu ermöglichen, soll das System in C++ unter

Verwendung von Qt [Qt] entstehen.

2. Es muss einen Auswahlmechanismus für Daten geben und die Verwaltung mehrerer

eingelesener Datensätze soll möglich sein. Damit verschiedene Datentypen unterstützt

werden können, soll das System Plugins unterstützen, welche die Datei einlesen.

3. Die geladenen Daten müssen in eine repräsentative Abbildung überführt werden.

Diese Visualisierung soll ebenso durch ein Plugin übernommen werden, so dass der

Nutzer beliebige Visualisierungsmethoden implementieren und mit dem Rahmenwerk

verwenden kann.

4. Es muss ein Mechanismus implementiert werden, der die Selektion und Klassenzuwei-

sung von Regionen im Datensatz erlaubt. Das Auswählen von Regionen soll mit Hilfe

beliebiger polygonaler Formen geschehen.

Außerdem soll es, wie schon bei den eingelesenen Daten, die Möglichkeit zur Verwal-

tung der Annotationen geben.
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4 Systembeschreibung

5. Projekte sollen zur späteren Fortsetzung der Arbeit gespeichert und geladen werden

können. Ein Projekt beinhaltet dabei eine Liste der ausgewählte Dateien, sowie alle

darin selektierten Regionen und ihre Klassen.

6. Das System soll auf Wunsch eine Merkmalsvektorausgabedatei erzeugen, die anhand

der annotierten Regionen berechnet wird. Dies soll durch ein drittes Plugin umgesetzt

werden, damit Nutzer leicht mit verschiedenen Designs experimentieren und diese

vergleichen können.

4.2 Umsetzung

Aus der Anforderungsanalyse hat sich das in Abbildung 4.1 gezeigte System entwickelt.

Das Bild zeigt einen Screenshot des Programms während der Verwendung und soll hier zur

Erläuterung der Benutzung dienen.

Markierung 1 zeigt ein Listenelement, in dem die geladenen Dateien des aktuellen Projekts

zu sehen sind. Hier kann der Nutzer auswählen, in welcher Datei er Annotationen vor-

nehmen möchte. Es ist außerdem möglich die angewählte Datei mittels Tastaturbefehl

oder über die Menüleiste aus dem Projekt zu entfernen.

Markierung 2 kennzeichnet ein zweites Listenelement, in dem die Regionen aufgezählt

sind, die in der aktuellen Datei selektiert wurden. Diese sind durchnummeriert und

zusätzlich nach der jeweiligen ihnen zugeordneten Klasse benannt.

Über ein Kontrollkästchen neben jedem Eintrag kann ausgewählt werden, ob die

entsprechende Region in die Visualisierung gezeichnet werden soll. Wie schon bei der

Dateiliste können auch hier einzelne Regionen aus dem Projekt entfernt werden.

Markierung 3 zeigt die Visualisierung der Daten. Um sowohl kleine als auch größere Re-

gionen exakt selektieren zu können, ist es möglich in die Abbildung hinein- und aus

ihr heraus zu zoomen.

Markierung 4 kennzeichnet die Menüleiste sowie die Auswahl der Selektionsart. Letztere

bietet die Wahl zwischen rechteckiger und polygonaler Selektion und kann zusätzlich

auch über Tastaturkürzel gesteuert werden. Die Menüleiste bietet neben der schon

genannten Möglichkeit Dateien oder Regionen aus dem Projekt zu entfernen, Optionen

zum Laden, Speichern und Neuanlegen von Projekten, zur Auswahl neuer Daten, zum

Schreiben von Merkmalsvektorausgabedateien und zum Importieren von Plugins.

Markierung 5 vertritt den Selektions- und Klassenzuordnungsmechanismus. Die Region

wird durch Mausklicks auf die gewünschten Eckpunkte ausgewählt. Dieser Prozess

wird durch Auswahl des letzten Eckpunkts mit einem Rechtsklick im Falle der Polygone

oder durch Auswahl eines zweiten Punktes bei Rechtecken beendet (dieWahl der linken

oberen und rechten unteren Ecke genügt).
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4.3 Plugin-System

Ein Dialog fordert zur Eingabe des Klassennamens auf und lässt zusätzlich eine Farbe

für die Klasse wählen, falls diese bis zu diesem Zeitpunkt noch nicht existiert.

Das oben beschriebene System führt zu dem in Abbildung 4.2 dargestellten Arbeitsablauf.

Gestrichelte Pfeile entsprechen hierbei optionalen Arbeitsschritten, während die durchge-

zogenen Pfeile Schritte beschreiben, die zur Erstellung einer Ausgabedatei in Form von

Merkmalsvektoren unerlässlich sind.

Nachdem ein neues Projekt erstellt oder ein bereits vorhandenes geladen wurde, muss unter

Umständen das Plugin getauscht werden, das für das Laden der Dateien zuständig ist. Dies

ist der Fall, wenn das Dateiformat nicht durch das Standard-Plugin unterstützt ist. Danach

können beliebig viele Dateien in das Projekt geladen werden.

Der nächste Schritt im Arbeitsablauf ist die Selektion und Klassenzuweisung der für den

Nutzer relevanten Regionen. Selbstverständlich können auch während des Annotierens neue

Daten nachgeladen werden.

Ist die aktuelle Visualisierungsmethode an einigen Stellen zu ungenau, oder braucht der

Nutzer aus anderen Gründen eine alternative Darstellungsform, kann er das Visualisierungs-

Plugin tauschen. Die Daten und Annotationen bleiben erhalten, lediglich die Darstellung des

Skalar- oder Vektorfelds wird geändert.

Falls der Nutzer die Arbeit unterbrechen muss, kann er das Projekt speichern und zu einem

späteren Zeitpunkt wieder laden. Er kann die Arbeit dann genau an dem Punkt fortsetzen,

an dem er aufgehört hat. Möchte er eine Merkmalsvektorausgabedatei erzeugen, kann er das

jederzeit im Arbeitsablauf tun. Benötigt er einen anderen Merkmalsvektor muss er nur das

entsprechende Plugin austauschen und erneut eine Ausgabedatei erzeugen.

4.3 Plugin-System

Plugins in C++ werden gewöhnlich in Form von dynamic linked libraries (DLLs) zur Verfü-

gung gestellt. Eine solche Bibliothek implementiert einige Funktionen, die das Hauptpro-

grammdann ausführt. Dafür hat die DLL eine Funktion, die dem Programm als Einstiegspunkt

dient, um die Bibliothek zu laden. Die übrigen Funktionen müssen über ihren Namen aufge-

rufen werden, der aber aufgrund des sogenannten name mangling in der Regel nicht dem

originalen Funktionsnamen entspricht, sondern durch den Compiler generiert wird.

Bei der Verwendung von DLLs können insbesondere beim Einsatz verschiedener Compiler,

aber auch beim Einsatz verschiedener Generationen des gleichen Compilers, Probleme auf-

treten, die das Laden des Plugins verhindern.

Zum einen unterscheidet sich das name mangling bei verschiedenen Compilern und zum

anderen hat die Standardbibliothek von C++ keinen einheitlichen Binärstandard, was zu Feh-

lern bei der Verwendung von nicht grundlegenden Datentypen führen kann. Beides umgeht

das eingesetze Plugin-System, um die Benutzung möglichst unanfällig für Fehler zu gestalten.
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4 Systembeschreibung

Um das name mangling zu verhindern, verwendet das Hauptprogramm jeweils nur ei-

ne Funktion der Plugins, die einen Zeiger auf ein Objekt zurückgibt, welches das Interface

implementiert. Diese Funktion wird für den Compiler als C-Funktion deklariert, was das

mangling verhindert.

Damit das so erhaltene Objekt normal verwendet werden kann, dürfen dessen vom Haupt-

programm aufgerufenen Methoden nur grundlegende Datentypen verwenden. Diese Ein-

schränkung führt zu den eher unhandlichen Interfaces 4.1, 4.2 und 4.3. Um die Arbeit mit den

Schnittstellen zu erleichtern, enthält jede Interface-Header-Datei zusätzlich eine abstrakte

Klasse, die einen Großteil der Funktionen implementiert und die darin übergebenen Daten in

sinnvollere Datentypen überführt. Ein Plugin-Autor kann, statt direkt das Interface zu imple-

mentieren, dann von dieser Klasse erben und muss nur noch die eigentliche Funktionalität

programmieren.

Listing 4.1 Interface des Lade-Plugins

class ILoader {
public:

virtual ~ILoader() {}

virtual void load_file(char*) = 0;
virtual int get_x_dim() = 0;
virtual int get_y_dim() = 0;
virtual int get_vec_dim() = 0;
virtual double get_data_at(int y, int x, int vec) = 0;
virtual void release() = 0;

};

Listing 4.2 Interface des Visualisierungs-Plugins

class IVisualizer {
public:

virtual ~IVisualizer() {}

virtual void pass_data_dim(int width, int height, int vec) = 0;
virtual void pass_data_at(int y, int x, int vec, double data) = 0;
virtual void calc_visualization() = 0;
virtual int get_x_dim() = 0;
virtual int get_y_dim() = 0;
virtual int get_color_at(int y, int x) = 0;
virtual void release() = 0;

};

Das Standard-Plugin für die Visualisierung, das auch in Kapitel 5 zum Einsatz kommt, imple-

mentiert Line Integral Convolution, wie sie in Kapitel 3 beschrieben wird. Die verwendeten

Merkmalsvektoren sind in Abschnitt 4.4 erläutert.
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4.4 Verwendete Merkmalsvektoren

Listing 4.3 Interface des Merkmalsvektor-Plugins

class IFeatureVec {
public:

virtual ~IFeatureVec() {}

virtual void pass_num_of_areas(int n) = 0;
virtual void pass_area_label(int area_index, char* label) = 0;
virtual void pass_vector(int area_index, int y, int x, double vec0, double vec1)

= 0;
virtual void save_feature_vector(char* file_name) = 0;

virtual void release() = 0;
};

4.4 Verwendete Merkmalsvektoren

Um den als Standard verwendeten Merkmalsvektor möglichst allgemein und problemun-

abhängig zu gestalten, kommt hier ein Histogramm zum Einsatz, wie es in Abschnitt 3.2

beschrieben wird. Als aufzuteilende Domäne kommt die Richtungen des Geschwindigkeits-

vektors zum Einsatz. Sie wird in acht gleichgroße Bereiche vi eingeteilt, die jeweils einen

Winkel von 45° einschließen. Das resultierende Histogramm H wird normiert, so dass die

Summe über alle Richtungen den Wert eins annimmt:

H ′(vi) = H(vi)∑
i H(vi)

Dies verhindert den Einfluss der Größe des Bereichs, dessen Merkmalsvektor berechnet wird.

Als Vergleichsmerkmalsvektor wird in Kapitel 5 ein spezifisch für Wirbel entwickelter

Vektor eingesetzt. Dieser enthält die Magnitude der Durchschnittsgeschwindigkeit, den Fluss

und die Histogrammvarianz des oben beschriebenen Histogramms. Alle drei Größen sind

gemäß der Definiton in Abschnitt 3.2 implementiert.
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4.4 Verwendete Merkmalsvektoren

Lade-Plugin tauschen Projekt erstellen/laden

Datensatz laden

Annotieren
Visualisierungs-Plugin

tauschen
Merkmalsvektor-
Plugin tauschen

Merkmalsvektoren
exportieren

Projekt speichern

Abbildung 4.2: Arbeitsablauf. Gestrichelte Pfeile sind optionale Arbeitsschritte.
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5 Fallstudie

Die Fallstudie gibt einen Einblick in die Arbeitsweise mit dem entwickelten System und

bespricht damit ermittelte Ergebnisse für die Erkennung von Wirbeln.

Ziel ist, einen Satz von 26 Dateien mit Daten aus Strömungssimulationen mit Positiv- und

Negativbeispielen für Wirbel zu annotieren. Das soll einmal mit rechteckigen und ein zweites

mal mit allgemein polygonalen Regionen geschehen. Für die annotierten Bereiche sollen

dann der histogrammbasierte und der spezifische Merkmalsvektor (siehe Abschnitt 4.4)

exportiert werden.

Die Merkmalsvektorausgabedateien sollen dann verwendet werden, um mit Methoden des

maschinellen Lernens Klassifikatoren zu trainieren und diese zu bewerten. Dafür kommt die

Bibliothek Weka zum Einsatz [HFH+09].

Initialisieren des Projekts Bevor mit der eigentlichen Annotation begonnen werden

kann, muss ein Projekt erstellt werden. Das explizite Öffnen eines neuen Projekts ist aber

nur nötig, wenn ein anderes bereits geöffnet ist, da das System beim Start ein leeres Projekt

erstellt. Die Vorbereitung beschränkt sich daher alleine auf die Auswahl der Daten.

Annotation der Regionen Sobald die Daten geladen sind, kann mit der Selektion relevan-

ter Regionen begonnen werden. Im konkreten Fall bedeutet dies, dass in der Visualisierung

sichtbare Wirbel möglichst genau durch Polygone eingegrenzt und anschließend mit einem

entsprechenden Label versehen werden. Zusätzlich müssen Regionen markiert werden, in

denen keine Wirbel sind, um die Lernverfahren mit Negativbeispielen zu versorgen. Das

System bietet die Möglichkeit für die beiden Klassen kontrastierende Farben zu wählen, so

dass der Nutzer stets den Überblick behalten kann. Zu sehen ist dies auch in Abbildung 4.1.

Speichern der Merkmalsvektorausgabedatei Ist die Annotation vollständig, speichert

der Nutzer eine Merkmalsvektorausgabedatei. Der histogrammbasierte Standardmerkmals-

vektor entspricht hier schon einem der gewünschten Vektoren. Um den zweiten, spezifischen

Merkmalsvektor zu berechnen und zu speichern, tauscht der Nutzer lediglich das Plugin aus

und lässt erneut eine Ausgabedatei speichern.
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5 Fallstudie

Annotation mit Rechtecken Um auf möglichst einfachem Weg vergleichbare Ergebnisse

mit ausschließlich rechteckigen Regionen zu erhalten, speichert der Nutzer das Projekt für

spätere Verwendungszwecke und beginnt dann, die annotierten Regionen zu ersetzen. Dazu

markiert er jeweils eine möglichst ähnliche rechteckige Region und löscht dann die nicht

mehr erwünschte polygonale Variante. Hat er dies mit allen Regionen gemacht, speichert er

wie vorher die beiden unterschiedlichen Ausgabedateien.

Auswertung der Ausgabe Die Auswertung geschieht mit externen Programmen wie in

den Abschnitten 5.1 und 5.2 beschrieben.

5.1 Cross Validation & Konfusionsmatrix

Die durch die beiden Beispiel-Plugins erstellten Ausgabedateien liegen im „Attribute-Relation

File Format“ (.arff) vor. Dieses Format kann von Weka direkt gelesen werden. Um bei der

Auswertung die Abhängigkeit von einem bestimmten Lernalgorithmus zu verhindern, wird

jede der vier Ausgabedateien mit drei verschiedenen Methoden getestet:

Logistische Regression Die logistische Regression kommt mit einem Regularisierungs-

parameter von 10−8
zum Einsatz.

Random Forest Für das Random Forest Verfahren werden jeweils 100 Modelle verwendet.

Die Erstellung erfolgt beim Histogramm-Merkmalsvektor unter Berücksichtigung von

vier zufälligen Merkmalen, beim spezifischen Merkmalsvektor werden aufgrund der

niedrigeren Anzahl an Merkmalen nur zwei zufällig ausgewählt.

AdaBoost AdaBoost kommt mit Entscheidungsbäumen als Klassifikatoren zum Einsatz.

Wie schon bei den Random Forests werden jeweils 100 von ihnen verwendet.

Alle Kombinationen aus Ausgabedatei und Lernalgorithmus wurden mit Cross Validation

getestet. Für den Parameter k wurde der Wert zehn gewählt, das heißt, es wurden jeweils

neunzig Prozent als Trainings- und die restlichen zehn Prozent als Testdatensatz verwendet.

Die Tabelle 5.1 enthält die Ergebnisse bei Verwendung des Histogramm-Merkmalsvektors,

während Tabelle 5.2 die des spezifischen Vektors beinhaltet. Anstatt die Konfusionsmatrix

für jeden Test abzubilden sind hier schon die in Kapitel 3 eingeführten Maße berechnet.

Diese bieten eine bessere Vergleichbarkeit, da sie leichter interpretierbar sind.
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5.1 Cross Validation & Konfusionsmatrix

Tabelle 5.1: Ergebnisse unter Verwendung des Histogramm-Vektors

Polygon Rechteck
Log. Regr. R. Forest AdaBoost Log. Regr. R. Forest AdaBoost

KKR 90,14 % 94,84 % 94,84 % 89,91 % 93,43 % 93,19 %

FKR 9,86 % 5,16 % 5,16 % 10,09 % 6,57 % 6,81 %

TP-rate 0,95 0,97 0,96 0,94 0,94 0,95

FP-rate 0,14 0,07 0,06 0,14 0,07 0,09

Genauigkeit 0,85 0,92 0,93 0,85 0,92 0,90

F-Maß 0,90 0,95 0,95 0,90 0,93 0,93

Tabelle 5.2: Ergebnisse unter Verwendung des spezifischen Merkmalsvektors

Polygon Rechteck
Log. Regr. R. Forest AdaBoost Log. Regr. R. Forest AdaBoost

KKR 89,91 % 90,85 % 89,67 % 86,62 % 86,15 % 84,04 %

FKR 10,09 % 9,15 % 10,33 % 13,38 % 13,85 % 15,96 %

TP-rate 0,92 0,91 0,90 0,90 0,87 0,84

FP-rate 0,12 0,10 0,10 0,16 0,14 0,16

Genauigkeit 0,87 0,89 0,88 0,83 0,84 0,82

F-Maß 0,89 0,90 0,89 0,86 0,85 0,83

Interpretation der Ergebnisse

Auch wenn die Ergebnisse durchweg als akzeptabel einzustufen sind, lassen sich deutliche

Unterschiede zwischen den verwendeten Merkmalsvektoren, sowie zwischen der Verwen-

dung von rechteckigen und der von allgemeinen polygonalen Regionen ausmachen.

Im Folgendenwird die Leistung derMerkmalsvektoren und die der verwendeten Regionsarten

separat verglichen.

Vergleich der Merkmalsvektoren

Entgegen der intuitiven Erwartung zeigt der Merkmalsvektor auf Basis des Richtungshisto-

gramms durchweg eine höhere Korrektklassifikationsrate als der eigens für Wirbel entwor-

fene zweite Merkmalsvektor.

Besonders gravierend sind die Unterschiede in Kombination mit rechteckigen Regionen

und Random Forest oder AdaBoost als Wahl des Lernalgorithmus. Der Gründe hierfür sind

wahrscheinlich zweierlei Natur: Zum einen hat der spezifische Merkmalsvektor eine sehr
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niedrige Dimension, was den Vorteil der Randomisierung bei Random Forests und der Ge-

wichtung bei AdaBoost stark reduziert. Zum anderen lassen rechteckige Regionen mehr nicht

zum eigentlichen Wirbel gehörende Störsignale zu, welche die Leistung der Klassifikation

einschränken. Darauf geht der nächste Unterabschnitt genauer ein.

Vergleich der Regionsarten

Vergleicht man die Ergebnisse der Merkmalsvektoren, die mit allgemeinen polygonalen

Regionen berechnet wurden, mit denen der rechteckigen Regionen, zeigt sich erwarteter-

weise eine klare Überlegenheit der Polygone. Sie zeigen mit beiden Merkmalsvektoren und

allen Lernalgorithmen sowohl eine höhere Korrektklassifikationsrate, als auch eine höhere

Genauigkeit und Sensitivität (TP-rate). Am deutlichsten fallen die Unterschiede aus, wenn

der spezifische Merkmalsvektor verwendet wird.

Grund dafür ist mit hoher Wahrscheinlichkeit die schlechte Eignung von Rechtecken für

die Eingrenzung von Wirbeln. Da Wirbel meist eine runde Form aufweisen, liegen in den

Ecken der Rechtecke oft Bereiche, die eigentlich nicht mehr dem Wirbel zuzuordnen sind. Je

nach Anteil dieser Störsignale an der Region können die berechneten Merkmale dadurch

signifikant verfälscht werden. Besonders anfällig sind hier die Maße des Flusses und der

Magnitude des Durchschnittsvektors. Da beide für Wirbel im Idealfall gegen null gehen,

führen Störsignale bei relativer Betrachtung zu großen Änderungen.

Da beide Maße im spezifischen Merkmalsvektor verwendet werden, schneidet dieser dann

auch in Kombination mit rechteckigen Regionen besonders schlecht ab.

5.2 Ergebnisse Moving Window

Eine Möglichkeit, die Leistung eines Klassifikators visuell darzustellen, ist das in Abschnitt

3.4.3 vorgestellte Moving Window Verfahren unter Verwendung der Prediction Ratio. Bei der

Auswertung der verschiedenen Ausgabedateien wird deutlich, dass sich die Leistung nicht

stark genug unterscheidet, um sie mit den Ergebnissen des Moving Window Verfahrens zu

vergleichen.

Es zeigt sich aber auch, dass die trainierten Klassifikatoren die vorhandenen Wirbel größten-

teils erkennen können. Ein Beispiel mit guter Detektionsleistung findet sich in Abbildung 5.1,

währendAbbildung 5.2 einenDatensatz zeigt, in dem dieMethodewenig Rückschlüsse zulässt.

Beide wurden unter Verwendung polygonaler Regionen, des Histogramm-Merkmalsvektors

und Random-Forests erstellt. Die rote Färbung korreliert hier nicht linear mit der Prediction

Ratio, sondern wird durch die Kubikwurzel ermittelt. Das hat zum Ziel, dass kleinere Bereiche,

die aufgrund der verwendeten Fenstergrößen meist eine niedrigere Ratio aufweisen, nicht

durch große Bereiche nahezu „unsichtbar“ gemacht werden.
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5.2 Ergebnisse Moving Window

Abbildung 5.1: Ergebnis einer Anwendung des Moving Window Verfahrens. Der Klassifi-

kator wurde mit Random Forests unter Verwendung polygonaler Regionen

und des histogrammbasierten Merkmalsvektors trainiert.

Nach Einführung von Kriterien, um die Prediction Ratio in abgegrenzte Bereiche zu über-

führen, sollten die Klassifikatoren also im Stande sein, Wirbel in unbekannten Daten zu

identifizieren.
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Abbildung 5.2: Ergebnis einer weiteren Anwendung des Moving Window Verfahrens. Die

Trainingsbedingungen sind identisch zu den inAbbildung 5.1 beschriebenen.
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6 Zusammenfassung und Ausblick

In dieser Arbeit wurde ein System zur Annotation von Skalar- und Vektorfelddaten vorge-

stellt. Die Ausgangslage war dabei der hohe zeitliche Aufwand, der nötig ist um Daten für

überwachtes maschinelles Lernen zu generieren, sowie die durch rechteckige Selektionsre-

gionen verschuldete Ungenauigkeit der Merkmalsvektoren.

Nach Einführung der zugrundeliegenden Algorithmen des maschinellen Lernens und einem

Einblick in die Vektorfeldvisualisierung, die Merkmalsvektorkonstruktion und einige gängige

Methoden zur Evaluation von Klassifikatoren wurde das entwickelte System vorgestellt.

Es arbeitet mit allgemeinen Polygonen zur Auswahl der Regionen und besitzt ein Plugin-

System, das den einfachen Austausch des Lademoduls, des Visualisierungsverfahrens sowie

des Moduls zur Erstellung einer Merkmalsvektorausgabedatei ermöglicht. Die Arbeitsabläufe

bei der Annotation werden auf diese Art vereinfacht. Insbesondere der Zeitaufwand für

das Testen und Vergleichen verschiedener Merkmalsvektoren sinkt, da für ein Annotations-

projekt mehrere Merkmalsvektorausgabedateien durch simples Austauschen des Plugins

generiert werden können.

Im anschließenden Vergleich zeigte sich ein eindeutiger Vorteil der Verwendung von po-

lygonalen Regionen. Es wurde auch deutlich, dass diese Überlegenheit vom verwendeten

Merkmalsvektor und dem eingesetzten maschinellen Lernverfahren abhängig ist.

Ausblick

Das beschriebene System lässt Raum für einige Erweiterungen und Verbesserungen. So wäre

es beispielsweise wünschenswert, auch dreidimensionale Daten annotieren zu können. Eine

Aggregation kurzer Zeitreihen und die Möglichkeit eine solche zu annotieren wäre ebenso

eine denkbare Erweiterung.

Es existieren bereits einige Verfahren, die automatisch Objekte extrahieren. Interessant wäre

daher eine Kombination der manuellen Annotation mit automatisch erkannten Vorschlägen.

Dies könnte auch als Plugin umgesetzt werden, um den Nutzer die volle Kontrolle zu ermög-

lichen.

Schließlich sehe ich noch die Möglichkeit, das Training der Klassifikatoren in die Anwen-

dung zu integrieren und bei Hinzufügen neuer Annotationen live zu aktualisieren, um dem

Nutzer Feedback über die Auswirkungen zu geben. Möglich wäre das zum Beispiel durch

das Einbinden einer Bibliothek wie Weka.
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