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Kurzfassung

Die manuelle Annotation von Skalar- und Vektorfelddaten zum Zwecke des iiberwachten
maschinellen Lernens bedeutet einen hohen zeitlichen Aufwand. Zusétzlich verursachen
die heute gangigen rechteckigen Selektionsregionen Ungenauigkeiten. Als Reaktion darauf
wird ein System vorgestellt, das die Annotation mittels allgemeiner polygonaler Regionen
ermoglicht. Es bietet die Moglichkeit, die Visualisierung der Skalar- bzw. Vektorfelder fle-
xibel zu wechseln. Dazu wird ein entsprechendes Plugin-System realisiert. Ebenso ist es
moglich, die Berechnungsmethode der Merkmalsvektoren schnell und einfach durch Plugins
auszutauschen. Das Rahmenwerk unterstiitzt die Verwaltung von Annotationsprojekten. In
Kombination mit dem Plugin-System fiir die Visualisierung der zu annotierenden Daten und
die Generierung der Merkmalsvektoren ist ein flexibles und leistungsfahiges Rahmenwerk
entstanden. Als theoretische Basis werden in dieser Arbeit einige maschinelle Lernverfahren
und ihre Evaluation, Grundlagen der Merkmalsvektorkonstruktion und die Vektorfeldvi-
sualisierung mit Line Integral Convolution eingefithrt. Darauf folgt eine Beschreibung des
entstandenen Systems und seine Auswertung, die den Vorteil der polygonalen Regionen
gegeniiber den Rechtecken belegen kann. Zum Schluss wird ein Ausblick auf mogliche
Verbesserungen des Rahmenwerks gegeben.

Abstract

Manual annotation of scalar and vector field data for supervised machine learning causes a
large temporal effort. Additionally, the rectangular regions which are popular for selection
today are responsible for inaccuracies. As a reaction a system is introduced that enables
annotation with arbitrary polygonal regions. It offers the option to flexibly substitute the
visualization of the scalar or vector field. Therefor a corresponding plugin system is realized.
Likewise it is possible to substitute the method of feature vector calculation fast and easily
through plugins. The framework supports the management of annotation projects. In combi-
nation with the plugin system for data visualization and feature vector calculation a flexible
and powerful was developed. As a theoretical base, several machine learning algorithms and
their evaluation as well as the foundations of feature vector engineering and vector field
visualization with line integral convolution are introduced. This is followed by a description
of the system and its evaluation, which can verify the advantage of the polygonal regions over
the rectangles. Finally an outlook on possible improvements of the framework is given.
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1 Einleitung

Seit den Anfingen der Forschung auf dem Gebiet der kiinstlichen Intelligenz wird auch
versucht, Maschinen das Lernen beizubringen. Bis heute wurden zu diesem Zweck zahlrei-
che verschiedene Algorithmen und Methoden entwickelt, die zunehmend beeindruckende
Leistungen aufweisen konnen.

Um die Reprasentation realer Objekte zu lernen, benétigen viele Algorithmen annotierte
Daten. Das bedeutet, dass die Daten als Paare aus Objektbeschreibung und Klassenzuweisung
vorliegen miissen.

Handelt es sich bei den Daten um Skalar- oder Vektorfelddaten, stellt sich die Aufgabe oft
wie folgt: Aus den Datensitzen miissen Regionen ausgewéhlt werden, die einer bestimmten
Objektklasse angehoren, als Beispiel seien hier Wirbel genannt. Diese miissen in eine fiir
den Algorithmus verwendbare Form iibertragen werden, in der Regel sind dies numerische
Merkmalsvektoren. Eine grof3e Zahl solcher Merkmalsvektoren in Verbindung mit ihrer
jeweiligen Klasse kann schliefllich zum Training eines Klassifikators verwendet werden.
Diese Aufgabe birgt drei Probleme, die es zu 16sen gilt:

+ Die gewohnlich im Rahmen solcher Anwendungen verwendeten rechteckigen Selekto-
ren sind fiir komplexere Formen zu ungenau.

« Da die Menge an verfiigbaren Trainingsdaten oft einen grofleren Einfluss auf die
Leistung eines Klassifikators hat als die Qualitat des Algorithmus, wird ein immenser
zeitlicher Aufwand fiir die Annotation néotig.

« Die Entwicklung geeigneter Merkmalsvektoren ist kompliziert und daher an haufiges
Testen gebunden. Auch hier liegt ein grofler Zeitaufwand vor.

Diese Arbeit beschreibt ein Rahmenwerk zur Selektion und Klassenzuweisung von Regionen
in Skalar- und Vektorfelddaten und zur Berechnung von auf diesen Regionen basierenden
Merkmalsvektorausgabedateien. Um die Ungenauigkeit der Rechtecke zu vermeiden bietet
das System die Moglichkeit, die Daten unter Verwendung beliebiger allgemeiner Polygone
zu selektieren. Auch runde oder nicht konvexe Objekte konnen so mit ausreichender Genau-
igkeit ausgewahlt werden.

Um die Zeit, welche das Annotieren in Anspruch nimmt, moglichst klein zu halten, wird
fir das Rahmenwerk ein Fokus auf Effizienz gelegt. Die Benutzung soll moglichst einfach
erfolgen. Samtliche von der Datenart abhéngigen Module des Programms sind iiber einfaches



1 Einleitung

Laden von Plugins austauschbar.
Ein solches Plugin-System wird auch fiir die Berechnung des Merkmalsvektors verwendet.
Die fiir das Testen verschiedener Vektoren benétigte Zeit wird so deutlich reduziert.

Die Arbeit gibt einen Einblick in die Grundlagen des maschinellen Lernens, um die Notwen-
digkeit geeigneter Trainingsdaten deutlich zu machen und die theoretischen Grundlagen fiir
die am Ende erfolgte Auswertung zur Verfiigung zu stellen. Es folgt eine Einfithrung in die
Konstruktion aussagekraftiger Merkmalsvektoren fiir die Datenrepréasentation. Auflerdem
werden die Visualisierung von Vektorfelddaten mittels Line Integral Convolution, sowie
Auswertungsmethoden fir Klassifikatoren besprochen.

Das System wird schlie8lich anhand einer Systembeschreibung und einer Fallstudie vorge-
stellt. Die dabei entstandenen Ergebnisse werden analysiert und verglichen. Als Beispielan-
wendung orientiert sich die Arbeit an der Annotation von Wirbeln in zweidimensionalen
Vektorfeldern.

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 — Verwandte Arbeiten Dieses Kapitel gibt einen Uberblick tiber Arbeiten, die
auf dem Feld der Annotation von Skalar- und Vektorfeldern, sowie im Bereich der Kon-
struktion von Merkmalsvektoren, verdffentlicht wurden und ordnet das entstandene
System ein.

Kapitel 3 — Grundlagen In diesem Kapitel werden die Grundlagen des maschinellen Ler-
nens, die Konstruktion verschiedener Merkmalsvektoren, die Strémungsvisualisierung
mit Hilfe der Line Integral Convolution und die Evaluation der Leistungsfahigkeit von
Klassifikatoren erklart.

Kapitel 4 — Systembeschreibung Hier findet eine Anforderungsanalyse statt und die Im-
plementierung des Systems wird besprochen. Dabei wird insbesondere auch auf das
entwickelte Plugin-System und die verwendeten Merkmalsvektoren eingegangen.

Kapitel 5 — Fallstudie In diesem Teil der Arbeit wird die Benutzung des System anhand
einer Fallstudie exemplarisch dargestellt. Die dabei gewonnenen Ergebnisse werden
aulerdem verwendet, um die benutzten Merkmalsvektoren sowie die Regionsselektion
mit allgemeinen Polygonen im Vergleich zu Rechtecken zu bewerten.

Kapitel 6 — Zusammenfassung und Ausblick Das letzte Kapitel fasst die Arbeit zusam-
men und gibt einen Ausblick auf weitere Verbesserungsmoglichkeiten.
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2 Verwandte Arbeiten

Die Annotation von Regionen in Skalar- oder Vektorfelddaten, sowie die Verwendung der
daraus gewonnenen Ergebnisse fiir Methoden des maschinellen Lernens, ist Gegenstand
einiger Forschungsarbeiten und Projekte.

So existieren zahlreiche Rahmenwerke fiir die Annotation von Videodaten fiir Computer
Vision und Semantic Web Anwendungen. Das Open Video Annotation Project [RDMN15],
ViPER [MD] und ANVIL [Kip12] sind einige populdre Beispiele.

Die am haufigsten verwendete Form zur Selektion von Daten ist das Rechteck. Ein Projekt,
das dagegen von polygonalen Regionen fiir die Selektion von Daten Gebrauch macht, ist das
Bildannotationswerkzeug LabelMe [RTMF08]. Es wurde fiir die Annotation grofler Mengen
von Bildern entworfen, um eine Datenbank fiir die Forschung im Bereich Computer Vision zu
erstellen. Die Annotation ibernehmen Freiwillige in einem Online-Interface. Die Annotation
von Vektorfelddaten wird durch das Projekt nicht unterstiitzt.

Yang et al. beschéftigen sich ebenfalls mit der Klassifikation von Bildregionen. Sie schlagen
eine Variante von Support Vector Machines vor, die mit annotierten Regionen arbeitet.

Mit der Detektion von Wirbeln in Vektorfelddaten beschéftigen sich Zhang et al. [ZDM+14].
Sie entwickeln ein Boosting-Verfahren, um die Leistungsfahigkeit der Klassifikation zu
steigern. Die Annotation der Regionen erfolgt durch einen Experten.

Mit Wirbeln beschiftigen sich auch Daniels II et al. in [DANS10]. Sie entwerfen ein System
fiir die interaktive Identifikation geeigneter Merkmale durch den Nutzer. Zum Einsatz kommt
dafiir eine texturbasierte Visualisierung, die Abbildung geschieht hier aber bereits in einem
geclusterten Attributsraum. Die verwendeten Daten sind dreidimensionale Vektorfelddaten.
In ihrer Arbeit beschaftigen sich die Autoren auflerdem mit Merkmalsdesign fiir die Klassifi-
zierung von Wirbeln.

Die vorliegende Arbeit Gibertragt die Flexibilitat und einfache Benutzbarkeit der vorhan-
denen Annotationswerkzeuge fiir Videos und Bilder auf die Doméane der Vektorfelddaten,
um die Erstellung einer ausreichend grofien Datenbasis fiir das Training von maschinellen
Lernverfahren zu erleichtern. Dabei sind, wie fiir Bilddaten bereits geschehen, polygonale
Regionen selektierbar.

11



2 Verwandte Arbeiten

Abbildung 2.1: Regionsauswahl in LabelMe. Quelle: http://labelme.csail.mit.edu/
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3 Grundlagen

In diesem Kapitel werden die Algorithmen und Konzepte, die der entwickelten Anwen-
dung und der Auswertung zugrunde liegen, erldutert. Abschnitt 3.1 bietet eine Einfithrung
in die Methoden des maschinellen Lernens und stellt einige dafiir wichtige Algorithmen
vor. Abschnitt 3.2 beschéftigt sich mit der Konstruktion von Merkmalsvektoren fiir eine
aussagekraftige Reprasentation von Daten, die von maschinellen Lernverfahren genutzt
werden kann. Im darauf folgenden Abschnitt 3.3 wird die Visualisierung von Vektorfelddaten
besprochen, die fiir das Annotieren solcher Daten unerlasslich ist. Schliefilich widmet sich
Abschnitt 3.4 der Auswertung von Lernverfahren. Die darin vorgestellten Konzepte kommen
in Kapitel 5 bei der Bewertung zum Einsatz.

3.1 Maschinelles Lernen

Ein System, das lernt, sei es ein Lebewesen oder eine Maschine, muss sehr allgemein ge-
sprochen, im Stande sein, aus Erfahrungen Wissen zu gewinnen. Dieses Wissen wird dann
eingesetzt, um Vorhersagen iiber die Zukunft zu machen, oder die Leistung des Systems in
Konfrontation mit einer neuen Situation zu verbessern.

Im Falle des maschinellen Lernens bedeutet das meist, aus einem gegebenen Trainingsda-
tensatz ein Modell fiir die Daten zu ermitteln. Ein solches hat die Form einer Funktion, die
von Ein- auf Ausgabedaten abbildet. Ziel ist dabei eine gute Generalisierung. Diese zeichnet
sich dadurch aus, dass das Modell sowohl fiir die vorhandenen Trainingsdaten, als auch
fir zuktnftige, beim Lernen unbekannte Testdaten einen moglichst kleinen Fehler bei der
Vorhersage der Ausgabe macht.

Unter dem Oberbegriff ,Maschinelles Lernen® werden einige verschiedene Lernszenari-
en zusammengefasst. Eine wichtige Abgrenzung der Szenarien stellen hier die vorhandenen
Ausgabedaten dar.

Beim uniiberwachten Lernen liegen die verfiigbaren Daten ohne Ausgabewerte vor:
D = {#;},. Das Ziel bei dieser Form des Lernens ist oft das Clustering der Daten (Einteilung
in Gruppen mit dhnlichen Eigenschaften) oder das Erlernen einer impliziten Reprisenta-
tion in einer niedrigeren Dimension, beispielsweise mit dem Ziel der Kompression von Daten.
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3 Grundlagen

Im Gegensatz dazu liegen beim iiberwachten Lernen die Trainingsdaten mit dazuge-
hérigen Ausgabewerten vor: D = {Z;, y;} Y ,. Die Ausgabe kann dabei kontinuierlich oder
diskret sein. Zielsetzung ist hier fiir gewohnlich das Lernen einer Funktion, die Eingabewerte
auf eine Ausgabe abbildet. Im Falle von diskreten Ausgabewerten spricht man hier auch von
Klassifizierung.

Uberwachtes Lernen beinhaltet immer auch die Gefahr von Uberanpassung. Trainingsdaten
spiegeln in den meisten Fallen nicht genau die Funktion wider, die die Daten erzeugt hat,
sondern sind durch Rauschsignale gestort. Ein iiberwachtes Lernverfahren lauft Gefahr, eben
diese Storsignale mit zu lernen. Dies wird bei einem Grof3teil der vorhandenen Algorithmen
verhindert, indem die Komplexitat des gelernten Modells beschrénkt oder eine hohe Komple-
xitat bestraft wird (oft Regularisierung genannt).

Ein dritter Fall ist das halb iiberwachte Lernen, bei dem ein kleiner Teil der Daten mit
(unter Umstéanden unsicheren) Ausgabewerten vorliegt, ein Grofteil jedoch ohne. Ausgangs-
lage ist oft eine eigentlich ungeniigende Menge an gegebenen Ausgabewerten, zum Beispiel
wegen zu hohen Aufwands der Erstellung solcher Datensétze. Unter Verwendung von zu-
satzlichen Daten ohne Ausgabewerte kann das erzielte Ergebnis oft verbessert werden.

Anwendungen des maschinellen Lernens finden sich bei Regierungsorganisationen [Hic13],
in verschiedenen Bereichen der Wirtschaft [Var14] sowie in Forschung und Wissenschaft
[MDO01]. Beispiele reichen von Gesichts- und Spracherkennung tiber Spam Filter bis hin zum
Bildverstehen.

In dieser Arbeit kommt maschinelles Lernen in Form der Klassifizierung zum Einsatz. Das
heif3t, die Trainingsdaten liegen als

D = {fz',yz'}fiﬁ ZeR" y, €Y CN

vor, wobei Y die Menge aller Klassen ist. Zu erlernen ist dabei in der Regel eine Funktion
der Form
F: R"—=Y.

Da die meisten Algorithmen nicht direkt mit der Eingabe ¥ arbeiten, sondern die Daten mit
Hilfe eines Merkmalsvektors repréasentieren (siehe auch Abschnitt 3.2), wird beispielsweise
eine Funktion ¢ definiert, die den Eingabevektor in einen Merkmalsraum der Dimension &
abbildet:

¢:R" = R*

Im Folgenden sind einige wichtige Algorithmen des maschinellen Lernens beschrieben. Die
logistische Regression ist eine Anpassung gangiger Regressionsverfahren an das Problem
der Klassifizierung. Support Vector Machines (SVMs) sind sogenannte ,Large Margin
Classifier”, das heif3t, sie teilen den Merkmalsraum anhand einer Entscheidungsgrenze, so
dass jedes Beispiel des Trainingsdatensatzes einen mdoglichst hohen Abstand zu der Ent-
scheidungsgrenze hat. Entscheidungsbiume lernen eine Reihe von Regeln, um Daten zu

14



3.1 Maschinelles Lernen

klassifizieren.
Meta-Lernverfahren wie Boosting oder Bagging konnen die Ergebnisse vorhandener Ler-
nalgorithmen weiter verbessern, sie werden am Ende des Abschnitts behandelt.

3.1.1 Logistische Regression

Die Logistische Regression ist ein statistisches Analyseverfahren, das verwendet wird, um
eine Klassifizierungsfunktion zu lernen. Sie ist bei geeigneter Wahl des Merkmalsvektors
sehr leistungsfahig, da zum Beispiel auch nichtlineare Merkmale verwendet werden kon-
nen. Der Einfachheit halber wird hier nur der binire Fall mit zwei Klassen betrachtet, die
Trainingsdaten liegen also in der Form

D = {7y} yi € {-1,1}
vor. Dementsprechend ist die zu lernende Funktion
F: R"—={-1,1}
Fiir die Regression wird F' durch eine reellwertige Diskriminanzfunktion
f:R"x{-1,1} - R
dargestellt, die folgende Bedingung erfiillen muss:

F: ¥ argmax f(Z,y)
y

Das impliziert, dass f einen hohen Wert hat, wenn y die korrekte Klasse zu ¥ ist und einen
niedrigen sonst. Eine solche Funktion kann recht einfach parametrisiert werden. O.B.d.A.
nehmen wir an, dass f(Z, —1) = 0. Aulerdem gehen wir davon aus, dass die Daten auf einen
beliebigen Merkmalsvektor ¢(Z) € R* abgebildet werden. Aus diesem Vektor kann ein neuer
Merkmalsvektor ¢ (7, y) folgendermaflen berechnet werden:

o(Z,y) = [y = 1] ¢(7)

Die Diskriminanzfunktion f kann dann linear in den Eigenschaften parametrisiert werden:

k
F(@y) = ¢;(%,9)8; = 6(Z,y)"
=1

Die Parameter ; konnen dabei als Maf} fiir die Wichtigkeit bestimmter Eigenschaften fiir
die Zugehorigkeit zur Klasse 1 betrachtet werden. Die Funktion f kann auch als Wahrschein-
lichkeit der Klassenzugehorigkeit interpretiert werden

ef('fvl) ez

= T3 ey it o) =
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3 Grundlagen

wobei man o die logistische Sigmoidfunktion nennt. Ein optimales 3 kann nun gefunden
werden, indem die Kostenfunktion

K(F) = = logp(yi, @) + A 5]

i=1

minimiert wird. A|| ]2 ist hierbei ein Regularisierungsterm um Uberanpassung zu verhindern.
Das gelernte /3 ergibt sich also aus

gopt. - argmin K( _‘)
3

Mangels analytischer Losung dieser Gleichung wird Eopt, durch iterative Methoden, wie bei-
spielsweise das Newton-Verfahren, berechnet. Unter Zuhilfenahme der gelernten Parameter
lasst sich ein neues Element & durch die Berechnung folgender Formel berechnen:

9= Sign@(f)Tgopt-)

3.1.2 Support Vector Machines

Support Vector Machines legen eine Entscheidungsgrenze in Form einer Hyperebene durch
den Merkmalsraum fest, anhand welcher Eingabewerte klassifiziert werden. Die Besonderheit
von SVMs liegt hierbei darin, dass die Lage der Grenze so gewéhlt wird, dass alle erlernten
Beispiele einen Mindestabstand von ihr haben. Dieser Abstand wird Rand (eng.: margin)
genannt und hangt nur von den Punkten ab, die der Entscheidungsgrenze am nachsten liegen.
Die Hyperebene lésst sich anhand dieser Punkte vollstandig beschreiben, weshalb man sie
Stuitzvektoren (— Support Vectors) nennt.

Wie schon bei der logistischen Regression betrachten wir nur den dualen Fall mit

D ={%,y}X; yi € {-1,1}.

Die gesuchte Hyperebene kann durch einen Normalenvektor 5 und ein Bias (3, beschrieben
werden, so dass die Zugehorigkeit zu einer Klasse mit

F(@) = sign(z7 5 + Bo)

entschieden werden kann. Der Normalenvektor wird bestimmt, indem das folgende Minimum
berechnet wird:

min ||B_’||2 —l—C’Z& mit C' >0 sodassy; f(7;) >1—&; & >0

B,€,80 i=1

Die Nebenbedingung gibt an, dass alle Instanzen des Trainingsdatensatzes korrekt, bis auf eine
Uberschussvariable &;, klassifiziert werden miissen. Diese Variable nimmt einen Wert grofier
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3.1 Maschinelles Lernen

null an, wenn die Instanz falsch klassifiziert wurde und ist ndtig, da nicht alle Daten linear
separierbar sind. Das Optimierungsproblem beinhaltet zwei zu minimierende Dimensionen:
Zum einen maximiert sie den margin (dquivalent zur Minimierung der quadratischen Norm
von 5 , siehe [Vap82]) und zum anderen minimiert sie den Fehler. Das Zulassen kleiner Fehler
kann als Regularisierung betrachtet werden, die Konstante C regelt ihr Maf3.

Das obige Problem wird fiir gewo6hnlich in seiner dualen Form gel6st, dazu wird 5 als
Linearkombination aus den Eingabewerten des Trainingsdatensatzes geschrieben:

n

p= Z QYT
i=1

Die Variable «; ist dabei ein Indikator, der angibt ob y; f(Z;) > 1 — &; gilt. Die duale Form
kann unter Verwendung von Lagrange-Multiplikatoren [Ber99] gewonnen werden und fiihrt
zu - . .
max —; Z Z Oéickjyiyjf;rfj + Z a; sodass 0 < a; < Z a;y; = 0.
i=1j=1 i=1 i=1

Da das Optimierungsproblem in der letzten Schreibweise nur noch Z #; verwendet kann
an dieser Stelle sehr einfach ein Wechsel in den Merkmalsraum vollzogen werden, indem
stattdessen ¢(7;) " (Z;) verwendet wird. Es ist sogar mdglich an Stelle des Skalarprodukts
eine beliebige Kernelfunktion k(Z;, ¥;) zu verwenden. Arbeitet diese in einem implizit ho-
herdimensionalen Raum, ist als Ergebnis im Eingaberaum auch eine nicht-lineare oder nicht
zusammenhéngende Entscheidungsgrenze moglich. Die angepasste Klassifizierungsfunktion
nimmt dann diese Form an:

f(Z) = sign < z”: ik (T, T) + 50)

i=1

3.1.3 Entscheidungsbaume

Im Gegensatz zu logistischer Regression und Support Vector Machines wird bei Entschei-
dungsbdumen keine mathematische Funktion erlernt. Stattdessen wird ein Bindrbaum aus
logischen Regeln erstellt, um Eingabedaten zu klassifizieren. Jeder Knoten des Baums enthalt
eine Regel, wiahrend in den Bléttern jeweils eine der Klassen steht. Um eine Instanz zu
klassifizieren, wird an der Wurzel begonnen und abhéngig vom Wahrheitswert der Regel in
Hinblick auf die Eingabe entschieden, welcher Kindknoten als nachstes gewahlt wird. Wird
ein Blatt erreicht, wird die entsprechende Klasse ausgegeben.

Der bekannteste Algorithmus fiir die Erstellung eines solchen Baums ist CART (classification
and regression tree) [BFOS84]. CART unterteilt den Merkmalsraum in k£ durch den Baum
definierte disjunkte rechteckige Regionen R. Um eine bisher ungeteilte Region R, aufzuteilen,
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3 Grundlagen

wird eine Dimension a des Merkmalsraum und ein Schwellenwert ¢ nach folgendem Prinzip
gewdhlt:

min <min > (y; — c1)* + min > (yi — 02)2>

at l i:qﬁ(xi)ERj/\qS(mi)aSt 2 i:¢($i)€Rj/\¢(!L‘i)a>t

Bildlich kann man sich das so vorstellen, dass entlang jeder Dimension eine Hyperebene
bewegt wird, welche die Region in zwei Teile aufteilt. In diesen beiden Teilen wird jeweils
die ,Ahnlichkeit” der Klassen der darinliegenden Instanzen bewertet. Die beste Aufteilung
wird dann als Regel der Form ¢(z), > t ibernommen. Sind in einer Region alle Daten
der gleichen Klasse zugeordnet, wird ein Blatt dieser Klasse erstellt, anstatt eine erneute
Aufteilung vorzunehmen.

Die maximale Tiefe des Entscheidungsbaumes kann entweder vorher festgelegt oder mittels
Pruning verringert werden. Dafiir wird iterativ der Knoten entfernt, der am wenigsten zu

n

> (yi = f(o(@:)))?

i=1

beitragt. Wie stark der Baum auf diese Art beschnitten wird ist mit den Regularisierungs-
methoden anderer Algorithmen vergleichbar. Nach Konstruktion des Entscheidungsbaums
kann f zur Klassifizierung genutzt werden:

f(z) = Z:cj[x € Ryl

c; ist die Klasse, die dem Blatt /?; zugeordnet wurde.

3.1.4 Boosting

Sowohl Boosting als auch Bagging zdhlen zu den Meta-Lernverfahren. Sie arbeiten mit
Hilfe anderer Lernverfahren, indem sie die Ausgaben mehrerer gelernter Modelle gewichtet
mitteln. Diese Modelle sind oft mit recht einfachen Lernverfahren wie Entscheidungsbdaumen
gewonnen.

Beim Boosting konnen die verwendeten Modelle verschiedenen Typs sein. Man spricht bei
den einzelnen Klassifikatoren oft von schwachen Klassifikatoren, ihre einzeln betrachtete
Leistungsfahigkeit ist meist maflig. Die zum Training eingesetzten Daten werden beim
Boosting fiir jedes Modell anders gewichtet. Ein populdrer Vertreter dieser Methode ist
AdaBoost [FS97], das erstmals 1997 von Robert E. Schapire und Yaov Freund beschrieben
wurde. Dieser Algorithmus ist hier beschrieben.

Die Ausgangslage ist wieder ein binéres Klassifizierungsproblem mit Trainingsdaten D =
{Zi, v )Y, yi € {—1,1}. Gegeben sei ein Algorithmus um Klassifikatoren der Form G (z) €
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3.1 Maschinelles Lernen

{—1, 1} zu trainieren. Ziel ist es, eine Reihe von Klassifikatoren G, ..., Gj; auf gewichteten
Instanzen der Trainingsdaten zu trainieren, um einen neuen Klassifikator zu erhalten:

G(x) = sign 2—31 G ()

Die Gewichtung der Daten einer jeden Instanz wird dabei jeweils aus dem Fehler der vorher
trainierten Instanz gewonnen. Falsch klassifizierte Trainingsdaten werden dabei starker
gewichtet, wihrend eine korrekte Einschitzung zu keiner Veranderung fiihrt. Algorithmus 3.1
zeigt den Algorithmus, mit dem die Klassifikatoren und Gewichte erstellt werden. Aufierdem
werden die Gewichte o, ..., a)s ermittelt, die den Beitrag der einzelnen Lerner zum neuen
Klassifikator bestimmen. Die so gewonnenen (,,, und o, konnen dann zur Berechnung von

Algorithmus 3.1 AdaBoost
Input: D
Output: G a1 m

for all i=1,...M do

1

end for
for all m=1,...M do
Trainiere G,,, auf dem mit w; gewichteten Datensatz
fehler,, = Zi:lwi%i#fm(xi)]
i=1 ?
Q= log(iﬁfgﬁljy)
for all j=1,...M do
W; = W eXp(O‘m[yi # Gm(xz)])
end for
end for

G(z) und damit zur Klassifizierung verwendet werden.

3.1.5 Bagging

Auch Bagging verwendet einen Satz von Klassifikatoren des selben Typs, im Gegensatz
zum Vorgehen beim Boosting werden die Trainingsdaten aber nicht gewichtet. Stattdessen
wird jeder Klassifikator auf einer Bootstrap-Stichprobe trainiert. Diese ist eine gleichverteilt
zufillige Auswahl aus dem Datensatz. Sie hat die gleiche Grofle wie der Trainingsdaten-
satz, Doppeltziehungen sind aber erlaubt. Bei Vorhandensein von M Klassifikatoren, die
jeweils eine Diskriminanzfunktion f,,(x) trainieren, erhélt man die Diskriminanzfunktion
des Bagging-Verfahrens durch einfaches Mitteln:

@)= 37 3 fulo
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3 Grundlagen

Random Forests

Ein bekanntes Beispiel fiir Bagging, das auch in Kapitel 5 zum Einsatz kommt, sind die Random
Forests. Ein Random Forest wird mittels Bagging aus Entscheidungsbaumen gewonnen.
Zusétzlich zur Randomisierung des Trainingsdatensatzes wird aulerdem bei der Aufteilung
einer Region die zu teilende Dimension nur aus einer zufalligen, oft sehr kleinen Teilmenge
der Merkmale gewahlt.

3.2 Merkmalsvektoren

Als Merkmalsvektor bezeichnet man im Bereich des maschinellen Lernens einen Vektor aus
numerischen Merkmalen, die ein Objekt reprasentieren. Dies ist n6tig, da viele Lernalgorith-
men, beispielsweise die in Abschnitt 3.1, auf der Verwendung von numerischen Vektoren
beruhen. Die Merkmale kénnen dabei von einfachen Dingen, wie der Position im Raum, bis
hin zu komplexen zusammengesetzten Berechnungen reichen.

Ein guter Merkmalsvektor enthilt Eigenschaften, die fiir den konkreten Anwendungsfall
von Bedeutung sind und eine méglichst gute Unterscheidung der Klassen ermoglichen. Die
Erstellung eines solchen geeigneten Merkmalsvektors fiir eine bestimmtes Lernszenario ist
daher oft ein aufwendiger Prozess, der Wissen iiber die Doméne, sowie ausgiebiges Testen
erfordert.

Einen alternativen Ansatz stellt das automatisierte Lernen geeigneter Merkmale durch spe-
zielle Algorithmen dar. Analog zur Definition in Abschnitt 3.1 wird auch hier zwischen
tiberwachtem und uniiberwachtem Lernen unterschieden, abhéngig davon, ob die Trainings-
daten klassifiziert sind.

Ein populéres Beispiel fiir iiberwachtes Merkmalslernen sind kiinstliche neuronale Netze.
Diese konnen durch die Wahl von ausreichend kleinen verdeckten Schichten so konfiguriert
werden, dass sie eine Repréasentation der Eingabe in kleinerer Dimension lernen [KSH]. Diese
Représentation kann als Merkmalsvektor interpretiert werden.

Eine Anwendung von uniitberwachtem Merkmalslernen ist die Hauptkomponentenanalyse
(englisch: Principal Component Analysis (PCA)). Sie basiert auf dem Ansatz, die vorhan-
denen Daten so in einen Merkmalsraum niedrigerer Dimension abzubilden, dass dabei der
Informationsverlust minimal ist. Das heif3t, dass sich die Daten nach Riickabbildung mog-
lichst wenig von ihrem Original unterscheiden diirfen. Da die dadurch neu gewonnenen
Merkmale Eigenvektoren der Kovarianzmatrix sind, spricht man bei diesen abhingig von
der Anwendung beispielsweise von ,Eigengesichtern®.

Im Folgenden werden einige Beispiele fiir manuell gewonnene Merkmale vorgestellt. Die

letzten vier sind zum Teil speziell fiir die Erkennung von Wirbeln in Vektorfeldern konstruiert
und kommen auch in Kapitel 5 zum Einsatz.
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3.2 Merkmalsvektoren

3.2.1 Lineare und polynomielle Merkmale

Die einfachste Methode um Merkmalsvektoren zu erstellen sind lineare Merkmale. Geht es
beispielsweise um Positionen im Raum kann einfach der Positionsvektor als Merkmalsvektor
verwendet werden. Ein Bild oder Bildausschnitt lasst sich als Vektor mit allen Farb- oder
Helligkeitswerten der Pixel darstellen, dies ist natiirlich auch auf andere Skalar- oder Vek-
torfelder tibertragbar. Mochte man die Korrelation der Komponenten mit beriicksichtigen,
koénnen auch polynomielle Merkmale verwendet werden. Am Beispiel von einer Position

= < = ) kann ein quadratischer Merkmalsvektor ¢(Z) wie folgt berechnet werden:
L2

Dies lasst sich analog auf Polynome héheren Grads erweitern, erzeugt bei hochdimensionalen
Ausgangsdaten wie zweidimensionalen Vektorfeldern aber schnell zu grofie Merkmalsvekto-
ren.

3.2.2 Histogramme

Eine Moglichkeit Vektorfelder oder Teile von Vektorfeldern zu beschreiben, ist ein Histo-
gramm uber die Eigenschaften der darin enthaltenen Datenpunkte anzufertigen. Mogliche
Groflen wiren beispielsweise Richtung, Magnitude oder partielle Ableitungen des Felds. Eine
solche Grofe wird in eine feste Anzahl an Behéltern (eng.: bins) aufgeteilt, in welche die
Datenpunkte einsortiert werden. Das resultierende Histogramm wird als Merkmalsvektor
verwendet.

3.2.3 Histogrammvarianz

Berechnet man wie im vorangegangenen Unterabschnitt beschrieben ein Histogramm tiber
eine Grofie des Vektorfelds, kann dessen Varianz als Merkmal verwendet werden. Das wird
am Beispiel der Stromungsrichtung fir die Erkennung von Wirbeln deutlich: Im Idealfall
eines kreisrunden Wirbels sind alle Richtungen gleich haufig vorhanden, die Varianz des
Histogramms nimmt den Wert null an. Je starker eine oder mehrere Richtungen dominieren,
desto grofier wird die Varianz. Ein Nachteil dieser Methode der Unterscheidung ist die ebenso
erhohte Varianz bei Wirbeln, die eine eher langliche Form aufweisen.
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3 Grundlagen

3.2.4 Magnitude des Durchschnittsvektors

Ein weiteres fiir die in Kapitel 5 klassifizierten Wirbel relevantes Merkmal ist die Magnitude
der Durchschnittsgeschwindigkeit. Dafiir wird tiber alle im (Teil-)Vektorfeld enthaltenen
Datenpunkte ein Durchschnittsvektor berechnet und dessen Betrag als Merkmal verwendet.
Diese Grofle ist interessant, da ein Wirbel durch die Kreisbewegung der Stromung meist
einen Durchschnittsvektor mit niedriger Magnitude hat, wéhrend zum Beispiel eine laminare
Stromung eine hohe Magnitude aufweist. Das Merkmal eignet sich daher zur Unterscheidung.
Nicht zu verwechseln ist die Eigenschaft mit der Durchschnittsmagnitude, die Auskunft
tiber die durchschnittliche Fliegeschwindigkeit gibt, fiir Wirbel allerdings eine eher geringe
Aussagekraft besitzt.

3.2.5 Fluss

Der Fluss gibt an, wie viel Masse in einen Punkt x. hinein und aus ihm hinaus transportiert
wird. Die Berechnung orientiert sich an [DANS10]. Um den Fluss zu ermitteln, wird fiir alle
anderen in der Region vorhandenen Punkte z; das Skalarprodukt aus dem Vektor v; an dieser
Stelle und der Differenz der Punkte x. und z; berechnet. Es beschreibt damit, wie stark der
Fluss an dieser Stelle zu x. hin oder von ihm weg stromt. Die so ermittelten Skalarprodukte
werden schliellich aufsummiert:

Fluz(z.) = ZU;T(%' D)

Damit dieses Maf fiir die Beschreibung von einem Teilvektorfeld aussagekraftig wird, muss
x. sinnvoll gewahlt werden. Der Betrag des Flusses wird minimal, wenn alle Vektoren der
anderen Punkte senkrecht zum Differenzvektor stehen. Dies ist genau dann der Fall, wenn
Z. im Zentrum eines (runden) Wirbels liegt. Daher kann als Merkmal zur Klassifizierung
von Wirbeln der betragsmaflig minimale Fluss iiber alle Punkte verwendet werden:

Fluzseq, = min Flux(x)
xearea

Eine zweite Moglichkeit besteht darin, einen kritischen Punkt zu suchen und seinen Fluss
zu bewerten. Ein solcher Punkt zeichnet sich dadurch aus, dass seine Flussgeschwindigkeit
den Wert null hat. Weil nicht jeder untersuchte Ausschnitt einen kritischen Punkt aufweisen
muss, kann fir z, beispielsweise der Punkt mit der niedrigsten Geschwindigkeit verwendet
werden.

Da das Zentrum eines Wirbels ein kritischer Punkt ist, stellt dieses Vorgehen sicher, dass bei
Vorhandensein eines Wirbels immer dessen Zentrum bewertet wird. Der Unterschied zur
Verwendung des Minimums ist hier, dass dies auch sichergestellt ist, wenn der Wirbel nicht
ausreichend rund ist.
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3.3 Strdmungsvisualisierung

3.3 Stromungsvisualisierung

Vektorfelddaten, wie sie zum Beispiel aus Stromungssimulationen gewonnen werden, besitzen
keine inharente fiir Menschen verstandliche Darstellungsform. Um solche Daten annotieren
zu konnen ist es daher unerlasslich, sie mit Visualisierungsverfahren in eine fiir den Benutzer
interpretierbare Form zu tiberfithren. Eine Mdglichkeit dies zu erreichen besteht darin, die
Stromlinien sichtbar zu machen. Stromlinien sind Kurven deren Ableitung an jedem Punkt
der Geschwindigkeit des Vektorfelds entspricht. Sie stellen damit die Pfade dar, auf denen
sich masselose Partikel durch das Vektorfeld bewegen wiirden.

Eine Visualisierungsmethode, die darauf beruht, ist die ,Line Integral Convolution® (LIC) oder
Linienintegralfaltung. Sie zéhlt zu den texturbasierten Vektorfeldvisualisierungen und wurde
urspriinglich in [CL93] vorgeschlagen. Die Formulierung orientiert sich hier aber an [Wei09].
LIC verwendet als Ausgangstextur ein weiles Rauschen /V und faltet dieses mit Hilfe eines
Faltungskernes entlang der Stromlinien. Im einfachsten Fall wird ein Box-Kernel verwendet,
welcher die Werte einfach mittelt. Die Faltung fithrt zu dhnlichen Grauwerten entlang von
Stromlinien, wiahrend die Korrelation entgegen der Linien gering ist. Fiir den menschlichen
Betrachter wird so ein feldlinienartiges Bild sichtbar. Ein Beispiel ist in Abbildung 3.1 zu
sehen.

Abbildung 3.1: Visualisierung mittels Line Integral Convolution.
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3 Grundlagen

Um den Grauwert des Pixels der Visualisierung D an der Position Z bestimmen zu konnen,
muss zuerst eine Stromlinie o (s) berechnet werden, die mit der Bogenlinge s parametrisiert
ist und die Position 7 enthalt (o(sg) = 7). Dafiir kann die Differentialgleichung

do(r)
0 (o)

mit der Anfangsbedingung o(7y) = 7 gelost werden, wobei v das Vektorfeld ist. Der Parame-
ter 7 entspricht nicht notwendigerweise der Bogenlange, berechnet man die Stromlinie im
normierten Vektorfeld, ist dies aber erfullt:

do(s) _ v(a(s))
ds  [o(o(s))]

Die Anfangsbedingung ist hier entsprechend o(sy) = Z. Die Berechnung des Grauwerts
erfolgt dann durch die Auswertung des Integrals

SO+Le

D(7) = / k(s — so)N(o(s))ds.
so—Ls

k ist hierbei ein Faltungskern mit dem Trager [—Ls, L.]. Die in Kapitel 4 beschriebene

Anwendung verwendet hierfiir einen Gauf3-Filter wie er zum Beispiel in [NA02] beschrieben

wird, da dieser ein besseres spektrales Verhalten als ein Box-Kernel erzielt.

Fir die Annotation der Daten kann aufler den Stromlinien auch die Lage von kritischen
Punkten 7. interessant sein. Diese sind in einem Vektorfeld einfach zu identifizieren, da fur
sie gilt: v(Z,.) = 0. Bei Bedarf konnen diese Punkte zusatzlich markiert werden.

3.4 Evaluationsverfahren

Da die Wahl eines Algorithmus und der entsprechenden Parameter, sowie die Konstruktion
eines geeigneten Merkmalsvektors sich meist sehr schwierig gestalten und das Bewerten
verschiedener Ansitze auf theoretischem Weg kaum moglich ist, kann beim maschinellen
Lernen fiir gewohnlich nicht auf eine aussagekraftige und gut vergleichbare Auswertung
verzichtet werden.

Das allgemeinste und vermutlich am weitesten verbreitete Verfahren ist hierbei die Verwen-
dung eines Trainings- und eines ebenfalls vorklassifizierten Testdatensatzes. Das Modell
wird mit dem Trainingsdatensatz erlernt und seine Leistung danach mit Hilfe des Testda-
tensatzes bewertet. Das kann zum Beispiel mit einer Konfusionsmatrix und diversen daraus
abgeleiteten Groflen geschehen. Das Moving Window Verfahren ist dagegen eigentlich der
Anwendung von erlernten Modellen entnommen, kann aber auch zur Evaluation eingesetzt
werden.

24
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Tabelle 3.1: Beispiel einer Konfusionsmatrix

Klassifiziert als: ‘ Klasse A Klasse B

Klasse A 122 13
Klasse B 7 33

3.4.1 Cross Validation

Die Cross Validation (eng.: Kreuzvalidierung) ist ein Sonderfall der Verwendung von
Trainings- und Testdatensatz. Sie arbeitet nur auf einem grofien Datensatz. Bei der Evaluation
wird folgendermafien vorgegangen: Ein fester Parameter k legt fest, in wie viele gleichmach-
tige Teilmengen der Datensatz zerlegt wird. Jeder dieser Datensitze wird dann einmal als
Testdatensatz verwendet, wahrend die Vereinignung iiber die restlichen k — 1 Teilmengen als
Trainingsdatensatz fungiert. Die auf diese Art gewonnenen Ergebnisse werden zum Schluss
gemittelt und als Gesamtergebnis verwendet.

Cross Validation kommt auch haufig zum Einsatz, um Parameter von Lernalgorithmen
automatisch zu wiahlen. Dafiir wird fiir eine grof3e Zahl moglicher Parameterwerte unter
Verwendung von Cross Validation der mittlere Fehler tiber alle k£ Testdatensatzen ermittelt.
Der Wert, welcher den niedrigsten durchschnittlichen Fehler zur Folge hat, wird fiir den
Parameter verwendet.

3.4.2 Konfusionsmatrix

Ein verbreitetes Evaluationsverfahren im maschinellen Lernen ist die Verwendung einer
sogenannten Konfusionsmatrix und daraus resultierender Mafle. In einer solchen Matrix
entspricht eine Dimension der tatsachlichen, die andere der vom Modell bestimmten Klasse.
Die Eintrage entsprechen Aussagen der Form: ,x Instanzen der Klasse a wurden als Klasse b
erkannt®. Tabelle 3.1 zeigt beispielhaft eine Konfusionsmatrix. Im Falle eines dualen Klassifi-
zierungsproblems enthalt die Diagonale also die Zahl der korrekt klassifizierten Instanzen
(true positive (TP) und true negative (TN)) wiahrend die beiden anderen Eintrage die Zahl
der falsch klassifizierten Instanzen enthalt (false positive (FP) und false negative (FN)).
Aus dieser Matrix lassen sich Groflen mit statistischer Bedeutung ableiten, von denen einige
hier beschrieben sind.
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Sensitivitat

Die Sensitivitat oder True-Positive-Rate (auch: recall) gibt an, wie grof3 der Anteil der korrekt
als positiv erkannten Instanzen an der Menge aller positiven Instanzen ist. Sie berechnet sich
wie folgt:

TP

TP-rate — —
rate = b T EN

False-Negative-Rate

Die False-Negative-Rate ist entsprechend zur Sensitivitit definiert und gibt an, wie grof3 der
Anteil der falsch als negativ klassifizierten Instanzen an der Menge aller positiven Instanzen
ist:

FN

FN-rate = ———— =1 — TP-rat
rate TP+ FN rate

Spezifitat

Die Spezifitat oder True-Negative-Rate gibt an, wie hoch der Anteil der korrekt als negativ
erkannten Instanzen an der Menge aller negativen Instanzen ist:

TN

TN-rate = —
e TN+ FP

False-Positive-Rate

Auch zur Spezifitat gibt es eine entsprechende zweite Rate. Die False-Negative-Rate gibt
an, wie grof3 der Anteil der falsch als positiv klassifizierten Instanzen an der Menge aller
negativen Instanzen ist:

FP

FP-rate = ———— =1 — TN-rat
rate TN+ FP rate

Genauigkeit und Trennfahigkeit

Die Genauigkeit oder Precision gibt an, wie viele der als positiv klassifizierten Instanzen,
dies tatsdchlich auch sind. Sie ist damit ein Maf fiir die Relevanz einer positiv-Bewertung.

Berechnet wird sie durch:
TP

TP+ FP

Precision =
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Analog dazu ist die Trennfahigkeit oder Negative Prediction Value (NPV) definiert:

NPV = N
TN+ FN

Korrekt- und Falschklassifikationsrate

Die Korrektklassifikationsrate (KKR) gibt an, wie hoch der Anteil der korrekt klassifizierten
Instanzen an der Gesamtzahl der Instanzen ist. Analog dazu ist die Falschklassifikationsrate
(FKR) definiert:

TP +TN FP+FN

TP+ FP+TN + FN TP+ FP+TN+ FN

=1 —-KKR

F-MaB

Das F-Maf} kombiniert Genauigkeit und Sensitivitit in dem es das harmonisches Mittel

bildet.
2 X Precision x TP-rate

Precision + TP-rate

3.4.3 Moving Window

Das Moving Window Verfahren findet haufig Anwendung, wenn Bilder oder vergleichbare
Daten, auf bestimmte Merkmale untersucht werden sollen. Es ist auch auf beliebige Vektor-
felddaten anwendbar. Das Vorgehen bei der Detektion von Objekten innerhalb solcher Daten
ist fur gewohnlich zuerst den zu untersuchenden Bereich als Merkmalsvektor zu repréasen-
tieren und ihn anschlieffend anhand des Vektors von einem zuvor trainierten Klassifikator
einordnen zu lassen.

Wurde dieser Klassifikator fiir Klassen erstellt, die raumlich begrenzten Merkmalen des
Skalar- oder Vektorfelds entsprechen, ergibt sich eine etwas komplexere Problemstellung.
Statt nur die Existenz eines solchen Merkmals festzustellen ist namlich in der Regel auch die
Position und Grof3e des Merkmals von Interesse.

Eine Methode, die dieses Problem 16st, ist das Moving Window Verfahren. Dabei werden
Teilausschnitte des Felds separiert und dann klassifiziert. Diese Ausschnitte haben die Form
von Rechtecken, die iterativ verkleinert werden. Fiir jede Rechteckgrof3e, wird das Rechteck
iber alle voneinander verschiedenen moglichen Positionen im Gesamtfeld gelegt. Fiir jede
dieser Positionen wird dann ein Merkmalsvektor berechnet und eine Klassifizierung vorge-
nommen.

Bildlich kann man sich ein Fenster vorstellen, durch das der Klassifikator auf die Daten
blickt. Dieses Fenster wird iber den gesamten Datensatz bewegt und danach verkleinert, um
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3 Grundlagen

von vorne zu beginnen. Von dieser Vorstellung des Verfahrens stammt auch der Name der
Methode.

Wird ein Ausschnitt als ein Objekt von Interesse klassifiziert, ist sofort auch dessen Position
und Grofle bekannt. Da beim Moving Window Verfahren viele Ausschnitte betrachtet werden,
die rdumlich nah beieinander liegen und eine dhnliche Grofie haben, fithrt ein gesuchtes
Objekt meist zu einer Vielzahl von positiven Klassifizierungen. Eine Weiterverarbeitung
der gewonnenen Ergebnisse ist deshalb in der Regel unerlasslich. Eine Moglichkeit, die
gewonnen Ergebnisse zu visualisieren, wird im nachsten Abschnitt besprochen.

Prediction Ratio

Halt man fiir jeden Punkt des Felds fest, in wie vielen klassifizierten Ausschnitten er enthal-
ten war und wie viele dieser Ausschnitte als positiv klassifiziert wurden, kann man einen
Quotienten berechnen, der Auskunft dariiber gibt, wie wahrscheinlich es ist, dass besagter
Punkt Teil eines gesuchten Objekts ist.

|[{Rechteck R | p € RAG(¢(R)) = 1}

PR(p) =
(p) |[{Rechteck R | p € R}|

Berechnet man PR fir jeden Punkt des Felds und farbt die Visualisierung des Felds pro-
portional dazu, kann sichtbar gemacht werden, auf welchen Bereichen der Klassifikator
besonders héufig ein positives Ergebnis zuriickgegeben hat.

Denkbar ist auch, mittels Analyse der Gradienten von PR oder mit Hilfe von einem fes-
ten Schwellenwert Bereiche einzugrenzen, die dann als gefundene Objekte ausgegeben
werden.
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In diesem Kapitel wird das System beschrieben, das im Rahmen dieser Arbeit entstanden
ist. Dazu wird in Abschnitt 4.1 eine Anforderungsanalyse erstellt, aus deren Ergebnissen die
in Abschnitt 4.2 beschriebene Umsetzung resultiert. In 4.3 wird néher auf das entwickelte
Plugin-System eingegangen, wiahrend sich Abschnitt 4.4 den verwendeten Merkmalsvektoren
widmet.

4.1 Anforderungsanalyse

Ziel der Entwicklung ist ein Programm, dass die Annotation von Skalar- und Vektorfeldern,
sowie die Erstellung einer Merkmalsvektorausgabedatei ermoglicht. An das Rahmenwerk
sind dabei einige Anforderungen gestellt, die hier erldutert werden. Der Fokus liegt dabei zum
einen auf einem simplen und effizienten Arbeitsablauf und zum anderen auf der Flexibilitat
und Wiederverwendbarkeit in Hinsicht auf die speziellen Anforderungen des einzelnen
Nutzers.

1. Um das OpenCV Framework [Ope] verwenden zu kénnen und um eine einfache
Weiterentwicklung oder Anpassung zu ermoglichen, soll das System in C++ unter
Verwendung von Qt [Qt] entstehen.

2. Es muss einen Auswahlmechanismus fiir Daten geben und die Verwaltung mehrerer
eingelesener Datensatze soll méglich sein. Damit verschiedene Datentypen unterstiitzt
werden konnen, soll das System Plugins unterstiitzen, welche die Datei einlesen.

3. Die geladenen Daten miissen in eine reprasentative Abbildung tiberfithrt werden.
Diese Visualisierung soll ebenso durch ein Plugin iibernommen werden, so dass der
Nutzer beliebige Visualisierungsmethoden implementieren und mit dem Rahmenwerk
verwenden kann.

4. Es muss ein Mechanismus implementiert werden, der die Selektion und Klassenzuwei-
sung von Regionen im Datensatz erlaubt. Das Auswiahlen von Regionen soll mit Hilfe
beliebiger polygonaler Formen geschehen.

Auflerdem soll es, wie schon bei den eingelesenen Daten, die Moglichkeit zur Verwal-
tung der Annotationen geben.
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5. Projekte sollen zur spateren Fortsetzung der Arbeit gespeichert und geladen werden
konnen. Ein Projekt beinhaltet dabei eine Liste der ausgewéhlte Dateien, sowie alle
darin selektierten Regionen und ihre Klassen.

6. Das System soll auf Wunsch eine Merkmalsvektorausgabedatei erzeugen, die anhand
der annotierten Regionen berechnet wird. Dies soll durch ein drittes Plugin umgesetzt
werden, damit Nutzer leicht mit verschiedenen Designs experimentieren und diese
vergleichen kénnen.

4.2 Umsetzung

Aus der Anforderungsanalyse hat sich das in Abbildung 4.1 gezeigte System entwickelt.
Das Bild zeigt einen Screenshot des Programms wahrend der Verwendung und soll hier zur
Erlauterung der Benutzung dienen.

Markierung 1 zeigt ein Listenelement, in dem die geladenen Dateien des aktuellen Projekts
zu sehen sind. Hier kann der Nutzer auswahlen, in welcher Datei er Annotationen vor-
nehmen mochte. Es ist auBerdem méglich die angewaihlte Datei mittels Tastaturbefehl
oder uiber die Meniileiste aus dem Projekt zu entfernen.

Markierung 2 kennzeichnet ein zweites Listenelement, in dem die Regionen aufgezéhlt
sind, die in der aktuellen Datei selektiert wurden. Diese sind durchnummeriert und
zusatzlich nach der jeweiligen ihnen zugeordneten Klasse benannt.

Uber ein Kontrollkdstchen neben jedem Eintrag kann ausgewahlt werden, ob die
entsprechende Region in die Visualisierung gezeichnet werden soll. Wie schon bei der
Dateiliste konnen auch hier einzelne Regionen aus dem Projekt entfernt werden.

Markierung 3 zeigt die Visualisierung der Daten. Um sowohl kleine als auch gréflere Re-
gionen exakt selektieren zu konnen, ist es moglich in die Abbildung hinein- und aus
ihr heraus zu zoomen.

Markierung 4 kennzeichnet die Meniileiste sowie die Auswahl der Selektionsart. Letztere
bietet die Wahl zwischen rechteckiger und polygonaler Selektion und kann zusatzlich
auch tber Tastaturkiirzel gesteuert werden. Die Meniileiste bietet neben der schon
genannten Moglichkeit Dateien oder Regionen aus dem Projekt zu entfernen, Optionen
zum Laden, Speichern und Neuanlegen von Projekten, zur Auswahl neuer Daten, zum
Schreiben von Merkmalsvektorausgabedateien und zum Importieren von Plugins.

Markierung 5 vertritt den Selektions- und Klassenzuordnungsmechanismus. Die Region
wird durch Mausklicks auf die gewiinschten Eckpunkte ausgewahlt. Dieser Prozess
wird durch Auswahl des letzten Eckpunkts mit einem Rechtsklick im Falle der Polygone
oder durch Auswabhl eines zweiten Punktes bei Rechtecken beendet (die Wahl der linken
oberen und rechten unteren Ecke gentigt).
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4.3 Plugin-System

Ein Dialog fordert zur Eingabe des Klassennamens auf und lasst zusétzlich eine Farbe
fiir die Klasse wahlen, falls diese bis zu diesem Zeitpunkt noch nicht existiert.

Das oben beschriebene System fithrt zu dem in Abbildung 4.2 dargestellten Arbeitsablauf.
Gestrichelte Pfeile entsprechen hierbei optionalen Arbeitsschritten, wéhrend die durchge-
zogenen Pfeile Schritte beschreiben, die zur Erstellung einer Ausgabedatei in Form von
Merkmalsvektoren unerlasslich sind.

Nachdem ein neues Projekt erstellt oder ein bereits vorhandenes geladen wurde, muss unter
Umstanden das Plugin getauscht werden, das fiir das Laden der Dateien zusténdig ist. Dies
ist der Fall, wenn das Dateiformat nicht durch das Standard-Plugin unterstiitzt ist. Danach
konnen beliebig viele Dateien in das Projekt geladen werden.

Der nachste Schritt im Arbeitsablauf ist die Selektion und Klassenzuweisung der fiir den
Nutzer relevanten Regionen. Selbstverstandlich konnen auch wihrend des Annotierens neue
Daten nachgeladen werden.

Ist die aktuelle Visualisierungsmethode an einigen Stellen zu ungenau, oder braucht der
Nutzer aus anderen Griinden eine alternative Darstellungsform, kann er das Visualisierungs-
Plugin tauschen. Die Daten und Annotationen bleiben erhalten, lediglich die Darstellung des
Skalar- oder Vektorfelds wird geandert.

Falls der Nutzer die Arbeit unterbrechen muss, kann er das Projekt speichern und zu einem
spateren Zeitpunkt wieder laden. Er kann die Arbeit dann genau an dem Punkt fortsetzen,
an dem er aufgehort hat. Mochte er eine Merkmalsvektorausgabedatei erzeugen, kann er das
jederzeit im Arbeitsablauf tun. Benoétigt er einen anderen Merkmalsvektor muss er nur das
entsprechende Plugin austauschen und erneut eine Ausgabedatei erzeugen.

4.3 Plugin-System

Plugins in C++ werden gewohnlich in Form von dynamic linked libraries (DLLs) zur Verfii-
gung gestellt. Eine solche Bibliothek implementiert einige Funktionen, die das Hauptpro-
gramm dann ausfithrt. Dafiir hat die DLL eine Funktion, die dem Programm als Einstiegspunkt
dient, um die Bibliothek zu laden. Die tibrigen Funktionen miissen iiber ihren Namen aufge-
rufen werden, der aber aufgrund des sogenannten name mangling in der Regel nicht dem
originalen Funktionsnamen entspricht, sondern durch den Compiler generiert wird.

Bei der Verwendung von DLLs kénnen insbesondere beim Einsatz verschiedener Compiler,
aber auch beim Einsatz verschiedener Generationen des gleichen Compilers, Probleme auf-
treten, die das Laden des Plugins verhindern.

Zum einen unterscheidet sich das name mangling bei verschiedenen Compilern und zum
anderen hat die Standardbibliothek von C++ keinen einheitlichen Binarstandard, was zu Feh-
lern bei der Verwendung von nicht grundlegenden Datentypen fithren kann. Beides umgeht
das eingesetze Plugin-System, um die Benutzung moglichst unanfallig fiir Fehler zu gestalten.
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4 Systembeschreibung

Um das name mangling zu verhindern, verwendet das Hauptprogramm jeweils nur ei-
ne Funktion der Plugins, die einen Zeiger auf ein Objekt zuriickgibt, welches das Interface
implementiert. Diese Funktion wird fiir den Compiler als C-Funktion deklariert, was das
mangling verhindert.

Damit das so erhaltene Objekt normal verwendet werden kann, diirfen dessen vom Haupt-
programm aufgerufenen Methoden nur grundlegende Datentypen verwenden. Diese Ein-
schrankung fiihrt zu den eher unhandlichen Interfaces 4.1, 4.2 und 4.3. Um die Arbeit mit den
Schnittstellen zu erleichtern, enthalt jede Interface-Header-Datei zusitzlich eine abstrakte
Klasse, die einen Grof3teil der Funktionen implementiert und die darin ibergebenen Daten in
sinnvollere Datentypen iiberfiihrt. Ein Plugin-Autor kann, statt direkt das Interface zu imple-
mentieren, dann von dieser Klasse erben und muss nur noch die eigentliche Funktionalitat
programmieren.

Listing 4.1 Interface des Lade-Plugins

class ILoader {
public:
virtual ~ILoader() {}

virtual void load_file(charx) = 0;

virtual int get_x_dim() = 0;

virtual int get_y_dim() = 0;

virtual int get_vec_dim() = 0;

virtual double get data_at(int y, int x, int vec) = 0;
virtual void release() = 0;

}i

Listing 4.2 Interface des Visualisierungs-Plugins

class IVisualizer {
public:
virtual ~IVisualizer() {}

virtual void pass_data_dim(int width, int height, int vec) = 0;
virtual void pass_data_at(int y, int x, int vec, double data) = 0;
virtual void calc_visualization() = 0;

virtual int get_x_dim() = 0;

virtual int get_y_dim() = 0;

virtual int get_color_at(int y, int x) = 0;

virtual void release() = 0;

1

Das Standard-Plugin fiir die Visualisierung, das auch in Kapitel 5 zum Einsatz kommt, imple-
mentiert Line Integral Convolution, wie sie in Kapitel 3 beschrieben wird. Die verwendeten
Merkmalsvektoren sind in Abschnitt 4.4 erlautert.
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4.4 Verwendete Merkmalsvektoren

Listing 4.3 Interface des Merkmalsvektor-Plugins

class IFeatureVec {
public:
virtual ~IFeatureVec() {}

virtual void pass_num_of_areas(int n) = 0;

virtual void pass_area_label(int area_index, charx label) = 0;

virtual void pass_vector(int area_index, int y, int x, double vecO, double vecl)
= 0;

virtual void save_feature_vector(charx file_name) = 0;

virtual void release() = 0;

};

4.4 Verwendete Merkmalsvektoren

Um den als Standard verwendeten Merkmalsvektor méglichst allgemein und problemun-
abhéngig zu gestalten, kommt hier ein Histogramm zum Einsatz, wie es in Abschnitt 3.2
beschrieben wird. Als aufzuteilende Domane kommt die Richtungen des Geschwindigkeits-
vektors zum Einsatz. Sie wird in acht gleichgrofie Bereiche v; eingeteilt, die jeweils einen
Winkel von 45° einschlieflen. Das resultierende Histogramm H wird normiert, so dass die
Summe tiber alle Richtungen den Wert eins annimmt:

H,(UZ*) _ H(UZ)

> H(v;)

Dies verhindert den Einfluss der Grof3e des Bereichs, dessen Merkmalsvektor berechnet wird.
Als Vergleichsmerkmalsvektor wird in Kapitel 5 ein spezifisch fiir Wirbel entwickelter
Vektor eingesetzt. Dieser enthélt die Magnitude der Durchschnittsgeschwindigkeit, den Fluss

und die Histogrammvarianz des oben beschriebenen Histogramms. Alle drei Grof3en sind
gemaf} der Definiton in Abschnitt 3.2 implementiert.
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91I91]0UUR I9p SUNJ[BMISA (7 ‘USIIR(] USUSPR[AS I9P JYIISIA]() ] SWWRIS0I] S9p SYor[jIaqorazinuag [ '§ Sunpqqy

uauorIdoy
91I2T}OUUY :G ‘OPOYIAWISUOIINI[IS JOp [YeMSNY pun 2)SIANUIN :§ ‘UdJe(] Iop SUNIJISI[ENSIA ¢ ‘UUO0IFY

g=uon [7
L ®von [
zwpon [
£=pon 7

preverou [

¢xeyorTou [7

gxeponTou

L eporTou

grevonou [

6 xev0nTou [

T

3ep'z/eyep/s3(01 d 2581 frgx/ MUY 0N
1epAreiep/s33(01d A5EIRU AOX/ MAQUU 0N
3epx/eep/sal0l 4 AseRpRy /rex/ Mo ULy, an
2P eIRp/5322[01 (25 23RY /r9K/ MUY or|
212/ Mo UU Y 0n
212/ Mo UU Y 0n
212/ Mo UU Y 0n
212/ Mo UU Y 0n
12| 33 /0% 40Uy, HI0n
1ep'b/eiep/s12afo1g 3sEaEy O/ MA0ULY 0N
12p'd feep/s12afo1 g 35EaRY O/ MAOULY N
12p'0/elEp/S13[01d ASEARY P9 MJOULY Ppon
12p°URIEp/S13(01d ASEARY P9 MJOULY ppon
12" fR1EP 513001 352 HIY MO UL 0N
18P /21EP 5130014 ST 1 MO UL ppor
18p/e18p/513(01d /358303 A9/ MAOUUY P10
312 /P94 MJOUU Y p0r
313 /P0%/ MJOULY 01
313 /P0%/ MJOULY 01
313 /P0%/ MJOULY 01
124 /RIEp/ 51331014 /3SERRY /POX/MAOUUY AN
18p'3/218p/513/014 /353 /49 MAOUUY 10N
12p"p/e1ep/513[01 4 /5ERY g/ MO UL H0n
18P eiEp/spalold/aseaEy rox/Mdouuy, ior|
12p'q/eRp/513[01 4 /35E3RY /MO UL H0n|
1ep-e/eiep/spalold/aseaEy rox/Mm4ouuy o)

Qo
q swbnyg  paloig w3 34

Mdouvy [E

34



4.4 Verwendete Merkmalsvektoren

Lade-Plugin tauschen — — » Projekt erstellen/laden

Datensatz laden

A
_— € — — — >
Visualisierungs-Plugin . Merkmalsvektor-
Annotieren ]
tauschen Plugin tauschen
A
VARAN
/ N
/ NI

Merkmalsvektoren

exportieren Projekt speichern

Abbildung 4.2: Arbeitsablauf. Gestrichelte Pfeile sind optionale Arbeitsschritte.
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5 Fallstudie

Die Fallstudie gibt einen Einblick in die Arbeitsweise mit dem entwickelten System und
bespricht damit ermittelte Ergebnisse fiir die Erkennung von Wirbeln.

Ziel ist, einen Satz von 26 Dateien mit Daten aus Stromungssimulationen mit Positiv- und
Negativbeispielen fiir Wirbel zu annotieren. Das soll einmal mit rechteckigen und ein zweites
mal mit allgemein polygonalen Regionen geschehen. Fiir die annotierten Bereiche sollen
dann der histogrammbasierte und der spezifische Merkmalsvektor (sieche Abschnitt 4.4)
exportiert werden.

Die Merkmalsvektorausgabedateien sollen dann verwendet werden, um mit Methoden des
maschinellen Lernens Klassifikatoren zu trainieren und diese zu bewerten. Dafiir kommt die
Bibliothek Weka zum Einsatz [HFH+09].

Initialisieren des Projekts Bevor mit der eigentlichen Annotation begonnen werden
kann, muss ein Projekt erstellt werden. Das explizite Offnen eines neuen Projekts ist aber
nur nétig, wenn ein anderes bereits geoffnet ist, da das System beim Start ein leeres Projekt
erstellt. Die Vorbereitung beschrankt sich daher alleine auf die Auswahl der Daten.

Annotation der Regionen Sobald die Daten geladen sind, kann mit der Selektion relevan-
ter Regionen begonnen werden. Im konkreten Fall bedeutet dies, dass in der Visualisierung
sichtbare Wirbel moglichst genau durch Polygone eingegrenzt und anschliefend mit einem
entsprechenden Label versehen werden. Zusatzlich miissen Regionen markiert werden, in
denen keine Wirbel sind, um die Lernverfahren mit Negativbeispielen zu versorgen. Das
System bietet die Moglichkeit fiir die beiden Klassen kontrastierende Farben zu wihlen, so
dass der Nutzer stets den Uberblick behalten kann. Zu sehen ist dies auch in Abbildung 4.1.

Speichern der Merkmalsvektorausgabedatei Ist die Annotation vollstandig, speichert
der Nutzer eine Merkmalsvektorausgabedatei. Der histogrammbasierte Standardmerkmals-
vektor entspricht hier schon einem der gewiinschten Vektoren. Um den zweiten, spezifischen
Merkmalsvektor zu berechnen und zu speichern, tauscht der Nutzer lediglich das Plugin aus
und lasst erneut eine Ausgabedatei speichern.
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5 Fallstudie

Annotation mit Rechtecken Um auf méglichst einfachem Weg vergleichbare Ergebnisse
mit ausschliefilich rechteckigen Regionen zu erhalten, speichert der Nutzer das Projekt fiir
spatere Verwendungszwecke und beginnt dann, die annotierten Regionen zu ersetzen. Dazu
markiert er jeweils eine moglichst dhnliche rechteckige Region und 16scht dann die nicht
mehr erwiinschte polygonale Variante. Hat er dies mit allen Regionen gemacht, speichert er
wie vorher die beiden unterschiedlichen Ausgabedateien.

Auswertung der Ausgabe Die Auswertung geschieht mit externen Programmen wie in
den Abschnitten 5.1 und 5.2 beschrieben.

5.1 Cross Validation & Konfusionsmatrix

Die durch die beiden Beispiel-Plugins erstellten Ausgabedateien liegen im ,, Attribute-Relation
File Format® (.arff) vor. Dieses Format kann von Weka direkt gelesen werden. Um bei der
Auswertung die Abhéingigkeit von einem bestimmten Lernalgorithmus zu verhindern, wird
jede der vier Ausgabedateien mit drei verschiedenen Methoden getestet:

Logistische Regression Die logistische Regression kommt mit einem Regularisierungs-
parameter von 10~® zum Einsatz.

Random Forest Fiir das Random Forest Verfahren werden jeweils 100 Modelle verwendet.
Die Erstellung erfolgt beim Histogramm-Merkmalsvektor unter Beriicksichtigung von
vier zufalligen Merkmalen, beim spezifischen Merkmalsvektor werden aufgrund der
niedrigeren Anzahl an Merkmalen nur zwei zufallig ausgewahlt.

AdaBoost AdaBoost kommt mit Entscheidungsbdumen als Klassifikatoren zum Einsatz.
Wie schon bei den Random Forests werden jeweils 100 von ihnen verwendet.

Alle Kombinationen aus Ausgabedatei und Lernalgorithmus wurden mit Cross Validation
getestet. Fir den Parameter k wurde der Wert zehn gewahlt, das heift, es wurden jeweils
neunzig Prozent als Trainings- und die restlichen zehn Prozent als Testdatensatz verwendet.
Die Tabelle 5.1 enthélt die Ergebnisse bei Verwendung des Histogramm-Merkmalsvektors,
wiahrend Tabelle 5.2 die des spezifischen Vektors beinhaltet. Anstatt die Konfusionsmatrix
fir jeden Test abzubilden sind hier schon die in Kapitel 3 eingefithrten Mafle berechnet.
Diese bieten eine bessere Vergleichbarkeit, da sie leichter interpretierbar sind.
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5.1 Cross Validation & Konfusionsmatrix

Tabelle 5.1: Ergebnisse unter Verwendung des Histogramm-Vektors

Polygon Rechteck
Log. Regr. R.Forest AdaBoost | Log. Regr. R.Forest AdaBoost

KKR | 90,14 % 94,84 % 94,84 % 89,91 % 93,43 % 93,19 %
FKR 9,86 % 5,16 % 5,16 % 10,09 % 6,57 % 6,81 %

TP-rate 0,95 0,97 0,96 0,94 0,94 0,95
FP-rate 0,14 0,07 0,06 0,14 0,07 0,09
Genauigkeit 0,85 0,92 0,93 0,85 0,92 0,90
F-Maf3 0,90 0,95 0,95 0,90 0,93 0,93

Tabelle 5.2: Ergebnisse unter Verwendung des spezifischen Merkmalsvektors

Polygon Rechteck
Log. Regr. R.Forest AdaBoost | Log. Regr. R.Forest AdaBoost

KKR | 8991 % 90,85 % 89,67 % 86,62 % 86,15 % 84,04 %
FKR 10,09 % 9,15 % 10,33 % 13,38 % 13,85 % 15,96 %

TP-rate 0,92 0,91 0,90 0,90 0,87 0,84
FP-rate 0,12 0,10 0,10 0,16 0,14 0,16
Genauigkeit 0,87 0,89 0,88 0,83 0,84 0,82
F-Maf} 0,89 0,90 0,89 0,86 0,85 0,83

Interpretation der Ergebnisse

Auch wenn die Ergebnisse durchweg als akzeptabel einzustufen sind, lassen sich deutliche
Unterschiede zwischen den verwendeten Merkmalsvektoren, sowie zwischen der Verwen-
dung von rechteckigen und der von allgemeinen polygonalen Regionen ausmachen.

Im Folgenden wird die Leistung der Merkmalsvektoren und die der verwendeten Regionsarten
separat verglichen.

Vergleich der Merkmalsvektoren

Entgegen der intuitiven Erwartung zeigt der Merkmalsvektor auf Basis des Richtungshisto-
gramms durchweg eine hohere Korrektklassifikationsrate als der eigens fiir Wirbel entwor-
fene zweite Merkmalsvektor.

Besonders gravierend sind die Unterschiede in Kombination mit rechteckigen Regionen
und Random Forest oder AdaBoost als Wahl des Lernalgorithmus. Der Griinde hierfiir sind
wahrscheinlich zweierlei Natur: Zum einen hat der spezifische Merkmalsvektor eine sehr
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5 Fallstudie

niedrige Dimension, was den Vorteil der Randomisierung bei Random Forests und der Ge-
wichtung bei AdaBoost stark reduziert. Zum anderen lassen rechteckige Regionen mehr nicht
zum eigentlichen Wirbel gehorende Storsignale zu, welche die Leistung der Klassifikation
einschranken. Darauf geht der nachste Unterabschnitt genauer ein.

Vergleich der Regionsarten

Vergleicht man die Ergebnisse der Merkmalsvektoren, die mit allgemeinen polygonalen
Regionen berechnet wurden, mit denen der rechteckigen Regionen, zeigt sich erwarteter-
weise eine klare Uberlegenheit der Polygone. Sie zeigen mit beiden Merkmalsvektoren und
allen Lernalgorithmen sowohl eine hohere Korrektklassifikationsrate, als auch eine hohere
Genauigkeit und Sensitivitat (TP-rate). Am deutlichsten fallen die Unterschiede aus, wenn
der spezifische Merkmalsvektor verwendet wird.

Grund dafiir ist mit hoher Wahrscheinlichkeit die schlechte Eignung von Rechtecken fiir
die Eingrenzung von Wirbeln. Da Wirbel meist eine runde Form aufweisen, liegen in den
Ecken der Rechtecke oft Bereiche, die eigentlich nicht mehr dem Wirbel zuzuordnen sind. Je
nach Anteil dieser Storsignale an der Region konnen die berechneten Merkmale dadurch
signifikant verfalscht werden. Besonders anfallig sind hier die Mafie des Flusses und der
Magnitude des Durchschnittsvektors. Da beide fiir Wirbel im Idealfall gegen null gehen,
fithren Storsignale bei relativer Betrachtung zu groflen Anderungen.

Da beide Mafle im spezifischen Merkmalsvektor verwendet werden, schneidet dieser dann
auch in Kombination mit rechteckigen Regionen besonders schlecht ab.

5.2 Ergebnisse Moving Window

Eine Méglichkeit, die Leistung eines Klassifikators visuell darzustellen, ist das in Abschnitt
3.4.3 vorgestellte Moving Window Verfahren unter Verwendung der Prediction Ratio. Bei der
Auswertung der verschiedenen Ausgabedateien wird deutlich, dass sich die Leistung nicht
stark genug unterscheidet, um sie mit den Ergebnissen des Moving Window Verfahrens zu
vergleichen.

Es zeigt sich aber auch, dass die trainierten Klassifikatoren die vorhandenen Wirbel grofiten-
teils erkennen konnen. Ein Beispiel mit guter Detektionsleistung findet sich in Abbildung 5.1,
wihrend Abbildung 5.2 einen Datensatz zeigt, in dem die Methode wenig Riickschliisse zulésst.
Beide wurden unter Verwendung polygonaler Regionen, des Histogramm-Merkmalsvektors
und Random-Forests erstellt. Die rote Farbung korreliert hier nicht linear mit der Prediction
Ratio, sondern wird durch die Kubikwurzel ermittelt. Das hat zum Ziel, dass kleinere Bereiche,
die aufgrund der verwendeten Fenstergrofien meist eine niedrigere Ratio aufweisen, nicht
durch grofle Bereiche nahezu ,unsichtbar® gemacht werden.
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5.2 Ergebnisse Moving Window

Abbildung 5.1: Ergebnis einer Anwendung des Moving Window Verfahrens. Der Klassifi-
kator wurde mit Random Forests unter Verwendung polygonaler Regionen
und des histogrammbasierten Merkmalsvektors trainiert.

Nach Einfithrung von Kriterien, um die Prediction Ratio in abgegrenzte Bereiche zu tiber-
fithren, sollten die Klassifikatoren also im Stande sein, Wirbel in unbekannten Daten zu
identifizieren.
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Abbildung 5.2: Ergebnis einer weiteren Anwendung des Moving Window Verfahrens. Die
Trainingsbedingungen sind identisch zu den in Abbildung 5.1 beschriebenen.
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6 Zusammenfassung und Ausblick

In dieser Arbeit wurde ein System zur Annotation von Skalar- und Vektorfelddaten vorge-
stellt. Die Ausgangslage war dabei der hohe zeitliche Aufwand, der nétig ist um Daten fiir
tiberwachtes maschinelles Lernen zu generieren, sowie die durch rechteckige Selektionsre-
gionen verschuldete Ungenauigkeit der Merkmalsvektoren.

Nach Einfithrung der zugrundeliegenden Algorithmen des maschinellen Lernens und einem
Einblick in die Vektorfeldvisualisierung, die Merkmalsvektorkonstruktion und einige géngige
Methoden zur Evaluation von Klassifikatoren wurde das entwickelte System vorgestellt.

Es arbeitet mit allgemeinen Polygonen zur Auswahl der Regionen und besitzt ein Plugin-
System, das den einfachen Austausch des Lademoduls, des Visualisierungsverfahrens sowie
des Moduls zur Erstellung einer Merkmalsvektorausgabedatei ermoglicht. Die Arbeitsablaufe
bei der Annotation werden auf diese Art vereinfacht. Insbesondere der Zeitaufwand fiir
das Testen und Vergleichen verschiedener Merkmalsvektoren sinkt, da fiir ein Annotations-
projekt mehrere Merkmalsvektorausgabedateien durch simples Austauschen des Plugins
generiert werden konnen.

Im anschlieflenden Vergleich zeigte sich ein eindeutiger Vorteil der Verwendung von po-
lygonalen Regionen. Es wurde auch deutlich, dass diese Uberlegenheit vom verwendeten
Merkmalsvektor und dem eingesetzten maschinellen Lernverfahren abhangig ist.

Ausblick

Das beschriebene System ldasst Raum fiir einige Erweiterungen und Verbesserungen. So wére
es beispielsweise wiinschenswert, auch dreidimensionale Daten annotieren zu konnen. Eine
Aggregation kurzer Zeitreihen und die Méglichkeit eine solche zu annotieren wiare ebenso
eine denkbare Erweiterung.

Es existieren bereits einige Verfahren, die automatisch Objekte extrahieren. Interessant wéare
daher eine Kombination der manuellen Annotation mit automatisch erkannten Vorschlagen.
Dies konnte auch als Plugin umgesetzt werden, um den Nutzer die volle Kontrolle zu ermog-
lichen.

Schlieflich sehe ich noch die Mdglichkeit, das Training der Klassifikatoren in die Anwen-
dung zu integrieren und bei Hinzufiigen neuer Annotationen live zu aktualisieren, um dem
Nutzer Feedback iiber die Auswirkungen zu geben. Moglich ware das zum Beispiel durch
das Einbinden einer Bibliothek wie Weka.
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