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Kurzfassung

In der vorliegenden Bacheloarbeit soll mit Hilfe des PULSE-Algorithmus [LT15] ein prädikati-

ves Umgebungsmodell in einer realen Umgebung erlernt werden. Dies wird mit Hilfe des PR2

von Willow Garage, der sich in einem Raum ohne jeglicher Vorkenntnisse mit verschiedenen

Knöpfen und einer verschlossenen Tür befindet, umgesetzt werden. Er sollte hierzu erlernen

können, durch welchen Knopfdruck er die Tür für wie viele Zeitschritte öffnen kann.

Zu Beginn wird in das Thema eingeleitet und einige verwandte Arbeiten beschrieben. Darauf

folgen die theoretischen Grundlagen sowie die Funktionsweise des Algorithmus.

Im Anschluss wird der Versuchsaufbau, der verwendete Roboter und dessen Betriebssystem

sowie verschiedene verwendete Module dargestellt.

Im praktischen Teil der Arbeit wird mit Hilfe einer Simulation der realen Umgebung ein Ver-

gleich verschiedener Strategien durchgeführt. Bei diesem wird gezeigt, dass der Algorithmus

in einer echten Umgebung tatsächlich angewendet werden kann. Zugleich wird die Strategie,

die die besten Ergebnisse liefert bestimmt.

Danach folgt die Umsetzung auf dem PR2. Die verschiedenen Anforderungen, die der PR2

erfüllen muss werden beschrieben und deren Umsetzung erklärt.

Eine kurze Zusammenfassung aller Ergebnisse sowie ein Ausblick über mögliche Weiterent-

wicklungen schließen die Arbeit ab.
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1 Einleitung

1.1 Motivation

Roboter gewannen in der Vergangenheit, vor allem in der Industrie immermehr an Bedeutung.

Mit ihnen konnten viele Arbeitsschritte sehr vereinfacht und beschleunigt werden. Bisher

beschränkt sich ihr Einsatz jedoch meistens auf fest definierte, immer gleich bleibende

Aufgaben, sodass die Roboter nur sehr spezifisch eingesetzt werden können. Sie handeln

zwar in gewisser Weise auch autonom, können ihre Aufgabe aber meist nur sehr begrenzt,

je nach Sensorinformationen, variieren und erfordern trotzdem immer wieder ein Eingreifen

durch Menschen.

Im Bereich der Personal Robotics ist das oben beschriebene „autonome“ Handeln jedoch meist

nicht ausreichend. Hier sollen die Roboter möglichst viele Dinge autonom und komplett

ohne das Eingreifen von Menschen machen können. Es ist also meist notwendig, dass die

Roboter „lernen“ können um somit den Bedürfnissen der Benutzer zu entsprechen. So sollen

sie zum Beispiel nicht nur in einer bestimmten Umgebung funktionieren, sondern bei jedem

Endnutzer auf gleiche Weise. Somit ist es notwendig, dass sie frei in einer unbekannten

Umgebung navigieren können und dabei Erfahrungen sammeln, um den verschiedenen

Aufgaben, welche ihnen gestellt werden, nachkommen zu können. Außerdem müssen sie

in der Lage sein Dinge in Relation setzen zu können um „komplexe“ Aufgaben zu lösen.

Nehmen wir hier als Beispiel den Auftrag, dem Benutzer ein kaltes Getränk zu bringen.

Dafür muss der Roboter in der Lage sein zum Kühlschrank zu navigieren, diesen zu öffnen,

ein Getränk beziehungsweise das gewünschte Getränk zu erkennen, dieses zu greifen, die

Tür zu schließen, mit dem Getränk zurück zum Nutzer zu navigieren und ihm dieses dann

zu übergeben. Es werden für diese, für einen Menschen, triviale Aufgabe schon sehr viele

Dinge von einem Roboter verlangt. Er soll sie jedoch nicht nur in einer Umgebung ausführen

können, sondern sogar in vielen verschiedenen. Hierzu muss der Roboter also den Weg zum

Kühlschrank erkennen, das Öffnen der Tür, das Identifizieren des gewollten Getränkes, das

richtige Greifen sowie das Schließen der Tür beherrschen und den Rückweg finden.

Deshalb wird es immer wichtiger eine Möglichkeit zu finden, wie Roboter selbständig ein

Weltmodell erlernen können um den Aufgaben, welche sie erfüllenmüssen gerecht zu werden,

um von der sehr beschränkten, durch fest programmierte Abläufe erzeugten, Einsetzbarkeit

weg zu kommen und ein wirklich autonomes Handeln voranzutreiben.
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1 Einleitung

1.2 Ziel der Arbeit

In dieser Arbeit soll mit Hilfe des PR2, einem Roboter, welcher mit ROS (Robot Operating Sys-

tem) funktioniert, eine Möglichkeit zum Erlernen eines Weltmodells getestet werden. Hierzu

sollen mit Hilfe der Sensoren und Aktuatoren des PR2 zuerst Daten gesammelt werden, diese

auf eine, für den PULSE-Algorithmus[LT15], geeignete Abstraktionsebene gebracht werden,

um sie danach vom Algorithmus auswerten zu lassen und damit ein Weltmodell der Roboter-

umgebung zu finden. Des Weiteren sollen verschiedene Strategien zur Wahl der nächsten

Aktion getestet werden, um die Beste dieser Strategien zu bestimmen. Dafür wird zuerst

eine Simulation durchgeführt, um mit ihr die vielversprechendsten Strategien zu bestimmen,

welche dann auf dem PR2 in der realen Welt getestet werden sollen. Der Versuchsaufbau ist

hierbei ein relativ einfacher: Der Roboter befindet sich in einem kleinen Raum, in welchem

sich einige Knöpfe und eine Tür befinden. Er soll in diesem, ihm unbekannten Raum, nun ein

möglichst korrektes Weltmodell zum Öffnen der Tür mit Hilfe von PULSE[LT15] ermitteln.

1.3 Gliederung

Die Arbeit ist folgendermaßen gegliedert:

Kapitel 2 – Theoretischer Hintergrund: Hier werden zunächst theoretische Grundlagen,

die zum Verständnis des PULSE-Algorithmus[LT15] nötig sind, erarbeitet und anschlie-

ßend kurz die Funktion des Algorithmus beschrieben.

Kapitel 3 – Hintergrund zur praktischen Umsetzung: In diesem Kapitel werden Hinter-

gründe für die praktische Umsetzung aufgezeigt. Es wird kurz auf das Roboter Opera-

ting System (ROS) eingegangen. Der PR2 und die verwendbaren Sensoren/Aktuatoren

werden beschrieben. Außerdem werden die Wichtigsten verwendeten Pakete kurz

erläutert.

Kapitel 4 – Simulation: Hier wird die Simulierte Welt vorgestellt, welche zur Simulation

verwendet wird. Außerdem werden die getesteten Strategien evaluiert.

Kapitel 5 – Umsetzung auf dem PR2: In diesem Kapitel wird die praktische Umsetzung

beschrieben und dokumentiert sowie die gesammelten Ergebnisse evaluiert.

Kapitel 6 – Zusammenfassung und Ausblick Dieses Kapitel fasst die Ergebnisse der Ar-

beit zusammen und stellt Anknüpfungspunkte vor.
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1.4 Verwandte Arbeiten

1.4 Verwandte Arbeiten

Das Rahmenwerk der Partially Observable Markov Decision Processes (POMDP) wurde in

der Forschung, beziehungsweise in der praktischen Anwendung der Robotik, schon oft ver-

wendet. Ein großes Problem dabei ist in der Regel, dass für große Zustands- beziehungsweise

Aktionsmengen die Rechenzeit zu lange für den Einsatz auf echten Robotern ist. Deshalb

verwenden viele der Ansätze Methoden, um die Menge der Zustände/Aktionen im aktuellen

Moment in Untermengen zu teilen, mit dem Ziel die Problemgröße zu verringern.

In [PMP
+
03] wurde dieser Ansatz beispielsweise verfolgt um einen Roboter zur Assistenz in

der Krankenpflege zu programmieren. Dieser soll anhand von seinen Sensordaten während

der Interaktion mit Menschen die richtigen Entscheidungen treffen, um diese möglichst

zuverlässig bei alltäglichen Dingen zu unterstützen sowie Krankenpflegern zu assistieren. Da

für einen Assistenzroboter viele der Aktionen in Echzeit gewählt werden müssen, wurde eine

Hierarchie zum Rahmenwerk hinzugefügt. Diese soll die große Aktionsmenge in kleinere

Teilmengen zerteilen, um somit für bestimmte Situationen nur ein POMDP mit kleinerem

Aktionsraum lösen zu müssen. Dies führt zur schnelleren Berechenbarkeit und deshalb auch

zur schnelleren Auswahl einer Aktion .

In [SV04] wurde das Lösen von POMDP’s zur Roboterplanung verwendet. Hierbei wurden

die „belief states“ in Teilmengen unterteilt, um das Lösen der Probleme zu beschleunigen.

Der entwickelte Algorithmus wurde dann in einer simulierten Robotikumgebung getestet, in

welcher er in einer ihm unbekannten Umgebung Briefe ausliefern soll.

In [VT15] wurde mit Hilfe von Reinforcement Learning in Verbindung mit POMDP’s ein

Planungsalgorithmus zur Objektmanipulation entwickelt. Dieser sollte ausschließlich anhand

des Force Feedbacks lernen. Es wird anstatt alle möglichen Lösungen zu simulieren, so wie

es bei den meisten Lösungsansätzen der POMDP’s üblich ist, die zeitaufwändige Simulation

durch Trajektorienoptimierung ersetzt. Zugleich wird aber auch wieder nur eine Teilmenge

der POMDP’s in jedem Schritt betrachtet.

Ein anderer Algorithmus, welcher auch auf typischen Robotikanwendungen getestet wurde,

wird in [KHL08] beschrieben. Der sogenannte SARSOP-Algorithmus berechnet „optimally

reachable belief states“, um das Lösen von POMDP’s zu beschleunigen. Der Ansatz wurde

auf Navigations-, Greif- und Explorationsproblemen getestet, wie sie auch in der Robotik

üblich sind.
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2 Theoretischer Hintergrund

2.1 Reinforcement Learning

UmWissen zu erlangen, muss der Mensch lernen. Hierzu werden uns teilweise Sachen von

Anderen gezeigt oder wir schauen Anderen zu und reproduzieren ihr Verhalten. Wenn jedoch

niemand da ist um uns zu lehren, bleibt selbst Menschen meist nichts anderes übrig, als

Dinge auszuprobieren um dann anhand des Beobachteten selbst Schlüsse zu ziehen, was wir

durch unser Handeln verursacht haben und ob es uns weiter bringt oder nicht.

Im Prinzip verfolgt „Reinforcement Learning“ genau diesen Ansatz:

Dem Lernenden wird nicht explizit gesagt, was er als nächstes tun soll. Viel mehr soll er durch

sein Handeln probieren, mit welchen Aktionen er einen möglichst hohen „Gewinn“ erzielen

kann. Er soll also herausfinden, durch welche Aktion er seinen Reward maximieren kann.

Dieser Reward wird meist als eine Zahl dargestellt, wobei zum Beispiel 1 einen geringen

Reward darstellt und 10 eventuell das Maximum. Auch negative Rewards sind als „Bestrafung“

für schlechtes Handeln möglich. Da dieser Reward auf lange Sicht maximiert werden soll,

ist es nicht immer sinnvoll in jedem Schritt die Aktion zu wählen, welche den momentan

besten Reward verspricht. Der langfristige Reward muss im Auge behalten werden.

Beim „Reinforcement Learning“ steht nicht die Lernmethode im Vordergrund, sondern viel

mehr das Finden des Lernproblems. Die zentrale Idee ist also, die wichtigsten Aspekte des

Problems zu finden und anhand von diesen, mit Hilfe der Umgebung, ein Ziel zu erreichen.

Dazu muss der Lernende seine Umgebung wahrnehmen, Aktionen ausführen und Ziele in

der Umgebung haben. In diesem konkreten Beispiel muss der PR2 mit Hilfe seiner Sensoren

den Raum wahrnehmen, mit seinen Aktuatoren Knöpfe drücken, Türen öffnen und als Ziel

die Aktionen finden, welche die Tür entriegeln.

Ein zentraler Aspekt im „Reinforcement Learning“ ist das Abwägen zwischen „exploration“,

also etwa erforschen und „exploitation“, also etwa ausnutzen. Da der Lernende zwar auf der

einen Seite einen möglichst hohen Reward erhalten möchte, welchen er durch das Ausführen

von „bewährten“ Aktionen erhalten kann, er aber um Aktionen mit hohem Reward zu finden

auch Aktionen austesten muss, die er noch nie benutzt hat. Er muss ausnutzen was er weiß

und trotzdem immer wieder erforschen, ob es evenutell noch bessere Aktionen gibt um

seinen Reward im Ganzen zu maximieren. [SB98]
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2 Theoretischer Hintergrund

Elemente des Reinforcement Learning

Policy Die Policy beschreibt die Strategie, in welcher der Lernende seine Aktionen aus-

wählt. Dies kann sowohl eine Berechnung, eine gleichbleibende Reihenfolge und eine Tabelle

sein, oder auch einfach nur per Zufall gewählt werden. Oft sind sie jedoch stochastisch und

wählen Aktionen basierend auf Annahmen, die am Wahrscheinlichsten passieren werden

und den größten Reward erbringen. Die policy wird durch π dargestellt.

Reward Funktion Das langfristige Maximieren der erhaltenen Rewards beschreibt prin-

zipiell das Ziel im Reinforcement Learning. Die Reward Funktion legt für jeden Zustand

fest, wie viel er zum Erfüllen des jeweiligen Ziels beiträgt. Deshalb muss sie jedem Zustand

einen numerischen Wert zuweisen, der den Nutzen des Zustandes repräsentiert. Die Reward

Funktion R : S × A→ R weißt einer im Zustand s gewählten Aktion a einen numerischen

Reward zu. Sie stellt dabei nur den direkt erhaltenen Reward dar.

Value Funktion Im Gegensatz zur Reward Funktion soll die Value Funktion den langfristi-

gen Gewinn approximieren. Grob gesagt wird durch sie also der nach dem Ausführen einer

Aktion zu erwartende Gesamtgewinn dargestellt. Dieser langfristige Reward ist natürlich

von der Policy abhängig, da diese bestimmt welche Aktionen ausgeführt werden sollen.

V π(s) = Eπ{r0 + γr1 + γ2r2 + ...|so = s}
= R(s, π(s)) + γ

∑
s′ P (s′|s, π(s))V π(s′)

Die sogenannte Value-Funktion V stellt also für die Pocliy π und den Startzustand s den

erwarteten Reward dar. Sollen zusätzlich noch die gewählten Aktionen berücksichtigt werden,

so kann die state-action value - Funktion, oder auch Q-Funktion genannt, verwendet werden.

Diese repräsentiert dann den erwarteten Reward aus dem Startzustand s, wenn als erstes die

Aktion a gewählt wird.

Qπ(s, a) = R(s, a) + γ
∑

s′ P (s′|s, a)Qπ(s′, π(s′))

Wenn hier die optimale Funktion gefunden wurde, kann eine optimale Policy mit Hilfe von:

π∗(s) = argmaxaQ∗(s, a) gefunden werden, wobei Q∗(s, a) je nach Funktion mit V ∗(s)
substituiert werden kann.

Die Value Funktionen beruhen auf dem Optimalitätsprinzip von Bellman, welches besagt,

dass jede Teillösung einer optimalen Lösung auch optimal sein muss.
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2.2 Markov Prozesse

Modell Im Reinforcement Learning wird zwischen model-free und model-based Varianten

unterschieden, da entweder ohne ein Modell, nur durch trial-and-error, ein Reinforcement

Problem gelöst werden kann. Genauso gut kann aber auch ein Modell verwendet werden

das probiert, den nächsten Zustand und seinen Reward vorherzusagen und anhand von

dieser Information die nächste Aktion zu wählen. Somit kann mit einem Modell eine bessere

Planung betrieben werden.

[SB98]

2.2 Markov Prozesse

2.2.1 Markov Eigenschaft

Die Markov Eigenschaft bezeichnet eine „erinnerungslose“ Form eines stochastischen Prozes-

ses beziehungsweise eines Zustandsübergangs. Das heißt, wenn jeder zukünftige Zustand des

Prozesses immer nur von dem direkt vorhergehenden Zustand abhängig ist und nicht von der

Folge der Zustände in der Vergangenheit, so erfüllt er die Eigenschaft, dass die konditionelle

Wahrscheinlichkeitsverteilung der zukünftigen Zustände nur vom momentanen Zustand

abhängig ist.

Formal geschrieben ist die Wahrscheinlichkeitsverteilung:

Pr{st+1 = s′, rt+1 = r|st, at, rt, st−1, at−1, ..., r1, s0, a0}

Wenn die Markov Eingeschaft erfüllt ist, reicht es jedoch nur die Abhängigkeit von dem

direkt vorhergehenden Zustand und der gewählten Aktion zu betrachten:

Pr{st+1 = s′, rt+1 = r|st, at}

Andersherum gesagt, wenn beide Formeln das gleiche Ergebnis für einen Zustand liefern,

besitzt dieser die Markov Eigenschaft, wenn dies für alle Zustände zutrifft, besitzt der ganze

Prozess die Markov Eigenschaft.

Alle Prozesse beziehungsweise Features, die diese Eigenschaft nicht erfüllen sind somit

Nicht-Markov. [SB98]
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2 Theoretischer Hintergrund

Abbildung 2.1: Beispiel Markov Kette mit drei Zuständen

2.2.2 Markov Kette

Eine Markov Kette beschreibt einen Prozess, der zufällige Zustandsübergänge in einem

Zustandsraum beschreibt, welche die Markov Eigenschaft erfüllen. In Abbildung 2.1 ist

eine einfache Markov Kette mit drei Zuständen visualisiert. Jeder Zustand hat dabei zwei

Übergänge in einen Folgezustand, welcher mit Wahrscheinlichkeiten angegeben ist. Die Über-

gangswahrscheinlichkeiten sind alle nur vom momentanen Zustand abhängig und erfüllen

somit die Markov Eigenschaft. Die Markov Kette wird dabei durch den Zustandsraum {A,B,C},

die Übergangswahrscheinlichkeiten, die an den Übergängen stehen, und dem Startzustand

A definiert. Des Weiteren muss für Markov Ketten gewährleistet sein, dass es immer einen

nächsten Zustand gibt und der Prozess nicht terminiert.

Eine Markov Kette, die nur vom vorhergehenden Zustand abhängt wird first-order genannt.

Man kann das Modell zu einer höheren Ordnung erweitern, also M th
-order, sodass nicht nur

der direkt vorherige Zustand Einfluss auf den Momentanen hat, sondern die M Vorhergehen-

den. Dies macht nur bis zu einem gewissen Grad Sinn, da die Menge der Parameter dabei

exponentiell mit M wächst.

2.2.3 Markov Decision Process

Die oben genannte Markov Kette kann zu einemmächtigeren Rahmenwerk erweitert werden:

dem Markov Decision Process (MDP). Dieser Prozess findet vor allem im Reinforcement Lear-

ning häufige Verwendung. Zusätzlich zum Zustandsraum, den Übergangswahrscheinlichkei-

ten und dem Startzustand, wird der MDP noch durch den Aktionsraum, eine Rewardfunktion

und einen Discountfaktor beschrieben. Im Gegensatz zur Markov Kette ist der Prozess nicht

vollständig zufällig, sondern wird zusätzlich von Entscheidungen durch das Wählen von

verschiedenen Aktionen beeinflusst, wie es ein Lernender im Reinforcement Learning tun
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2.2 Markov Prozesse

würde. Da jedoch in einer unbekannten, beziehungsweise zumindest partiell unbekannten,

Umgebung nicht immer fest steht was nach dem Ausführen einer Aktion passiert, besteht

weiterhin eine Zufallskomponente, die nach Wahl einer Aktion den Folgezustand beeinflusst.

Die Rewardfunktion soll bestimmen, ob eine Aktion „gut“ oder „schlecht“ ist, während der

Discountfaktor den Unterschied der Relevanz zwischen direkten und zukünftigen Rewards

repräsentiert.

Formal ist ein MDP also ein 5-Tupel (S, A, Pa(s, s′), Ra(s, s′), γ) mit:

• S als endlichen Zustandsraum

• A als endlichen Aktionsraum

• Pa(s, s′) = Pr{st+1 = s′|st = s, at = a} also der Übergangswahrscheinlichkeit von s

nach s’ nachdem Aktion a gewählt wurde

• Ra(s, s′) = E{rt+1|st = s, at = a, st+1 = s′} als den erwarteten Reward, nach Wahl

von a in Zustand s mit dem Folgezustand s’

• γ ∈ {0, 1} als Discountfaktor

[SB98]

Das Hauptproblem von MDP’s stellt oft das Finden einer Policy dar, um Aktionen in Ab-

hängikeit zum aktuellen Zustand auszuwählen. Ziel ist dann, mit Hilfe dieser Policy π(s)
Aktionen möglichst so zu wählen, dass langfristig gesehen der größte Reward erzielt wird.

Für einen unendlichen Horizont also:

max
∞∑

t=0
γtRat(st, st+1)

In Abbildung 2.2 ist ein beispielhafter MDP dargestellt. Im Gegensatz zu Abbildung 2.1 sind

die Übergänge nicht mehr nur zufällig, sondern auch abhängig von der Wahl der Aktionen.

Außerdem kommen zusätzlich die Rewards hinzu, die in der Abbildung in grün dargestellt

sind.

2.2.4 Partially Observable Markov Decision Process

Es ist offensichtlich, dass die „reale“ Welt sehr viel komplexer ist als nur von einem direkt

vorhergehenden Gesamtzustand abhängig zu sein, sondern auch von vielen Aktionen die in

der Vergangenheit ausgeführt wurden.

Wie schon beschrieben, soll im vorliegenden konkreten Fall ein Roboter herausfinden, wie er

eine Tür öffnen kann. Hierzu muss er Aktionen ausführen, die ihn in einen nächsten Zustand

führen, der laut dem MDP unabhängig von allen Aktionen davor wäre. Dies würde auch
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2 Theoretischer Hintergrund

Abbildung 2.2: Beispiel Markov Decision Process mit 3 Zuständen und 2 Aktionen

zutreffen, wenn der Roboter nur einen Knopf drücken müsste und dann direkt die Tür öffnen

könnte. Sobald er jedoch eine Kombination von Knöpfen drücken muss oder ein Knopf die

Tür für mehr als einen Zeitschritt offen hält, ist die Markov Eigenschaft nicht mehr erfüllt.

Deshalb reicht das Modell der MDP’s dafür nicht aus.

Partially Observable Markov Decision Processes, kurz POMDP, erweitern das MDPModell so,

dass es für diese Zwecke anwendbar ist. Die zugrunde liegende Struktur der MDP’s bleibt die

Gleiche, es werden jedoch zusätzlich, zu den bereits beschriebenen Attributen, Observationen

hinzugefügt. Anstatt direkt den momentanen Zustand überwachen zu können, erhält man

„nur“ eine Beobachtung, also einen Hinweis, in welchem Zustand man sich befinden. Diese

Beobachtung kann wieder probabilistisch sein, was dazu führt, dass zusätzlich auch noch ein

Observationsmodell erzeugt werden muss. Dieses repräsentiert die Wahrscheinlichkeit, in

welchem Zustand man sich nach einer Observation befindet. Es müssen hierbei nicht alle

ausgeführten Aktionen gespeichert werden. Eine Wahrscheinlichkeitsverteilung über alle

möglichen Zustände zu haben, die mit jeder neuen Aktion und Observation aktualisiert wird,

ist ausreichend, da in dieser Verteilung alle bisher gesammelten Erkenntnisse enthalten sind.

Formal wird das 5-Tupel der MDP’s zu einem 7-Tupel (S, A, P, R, Ω, O, γ) erweitert:

• S, A , P , R und γ sind gleich zu den MDP’s

• Ω ist die Menge der Observationen

• O : S × A→ Ω ist die Menge der bedingten Observationswahrscheinlichkeit

[KLC98]
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2.3 TD Learning

2.3 TD Learning

Temporal Difference Learning beschreibt eine Methode um die Value-Funktion basierend auf

bisherigen Abschätzungen und neuen Beobachtungen zu aktualisieren, um so eine bessere

Vorhersage über die Values zu erhalten. Für einen Zustand st in Zeitschritt t soll V (st)
basierend auf den nachfolgenden Ereignissen angepasst werden. Monte Carlo Methoden

warten hierbei auf das endgültige Ergebnis dieser Ereignisse. Im Gegensatz hierzu wird

beim TD Learning immer direkt im nächsten Zeitschritt die Schätzung mit einer neueren

Schätzung aktualisiert und nicht auf wirkliche Ergebnisse gewartet. V (st) wird direkt mit

dem erhaltenen Reward und der Schätzung von V des Folgezustands aktualisiert:

V (st)← V (st) + α[rt+1 + V (st+1 − V (s)]

Dabei beschreibt die Lernrateα, inwieweit die Schätzung von V (s)mit jeder neuen Schätzung

angepasst wird. [SB98]

2.4 Regularization

Oft sind die beim Lernen gesammelten Daten sehr gestreut und führen dazu, dass es zu einem

„Overfitting“ kommt, dass das Modell die Features sozusagen auswendig lernt und deshalb

nur genau diese erkennen kann. Somit findet keine Generalisierung der Trainingsdaten

statt. Deshalb wird eine sogenannte „Regularization“ auf die Daten angewendet, um das

„Overfitting“ soweit wie möglich zu reduzieren und ein möglichst aussagekräftiges Modell

der Daten zu erhalten, welches auch ähnliche Features als richtig erkennen kann. Mit der

Regularisierung kann die Komplexität des gewünschten Modells bestimmt werden, um eine

möglichst gute Vorhersage zu erhalten. Dabei muss die Regularisierung so erfolgen, dass das

Modell auf der einen Seite nicht overfitted, da es zu komplex ist, beziehungsweise underfitted,

da es zu simpel ist. Um dies zu erreichen, wird zur Zielfunktion ein Regularisierungsterm

hinzugefügt. Zum Beispiel für L1-Regularization die Summe der Beträge aller Koeffizienten

λ
∑k

j=1 |βj|, wobei lambda den Regularisierungsparameter bestimmt und beta die Koeffizien-

ten. Mit der L1-Regularization findet außerdem eine Vorauswahl der Features statt, da viele

der Features auf null abgebildet werden, sodass diese nicht weiter betrachtet werden müssen.

Deshalb entsteht nach der Regularisierung ein spärlicheres Featureset.

2.5 Feature Expansion

Der Ansatz der Feature Expansion besteht darin, vorhandene Features mit Basisfeatures,

welche meist erst einmal gefunden werden müssen, zu kombinieren, um so mehr Features, die

aussagekräftig sein könnten zu erhalten. Es sollen durch Konjunktion verschiedener Features
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„mächtigere“ Features erzeugt werden. Mit diesen zusätzlichen Features kann dann eine

bessere Approximation der Value-Funktion erfolgen, um so zu einem besseren Endergebnis

der ganzen Vorhersage zu kommen. Des Weiteren werden die erzeugten Features, welche

ein bestimmtes Gewicht erhalten in das endgültige Featureset aufgenommen. Es können

dabei jedoch auch viele unnötige Features entstehen, welche dann die Rechenzeit unnötig

verlängern oder die Vorhersage negativ beeinflussen.

2.6 Vorstellung PULSE Algorithmus

Der PULSE Algortihmus[LT15] soll oben beschriebene POMDP mit verzögerten Kausalitäten

lösen können. Hierzu verwendet er eine Kombination der Ansätze aus Feature Expansion

und L1-Regularisation im TD-Learning.

2.6.1 Temporally extended features

Der Algorithmus verwendet eineMenge T von „Temporally extended features“ (im Folgenden

TEF), um POMDP’s zu lösen. T beschreibt alle möglichen Abbildungen der Historie (A×
O ×R)∗

, also Aktion-Observation-Reward Tripeln, auf reelle Zahlen R. Der Algorithmus

verwendet in jeder Iteration aber nur eine Teilmenge von T , welche aus einer Funktion
N+ : P(T )→ P(T ), für welche P(T ) die Potenzmenge von T beschreibt, generiert wird.

Das heißt für eine gegebene Menge an Features F ist N+(F) eine Menge von Feature

Kandidaten, welche dazu verwendet werden, um die kleinste Teilmenge TN + ⊆ T die unter

T abgeschlossen ist, zu erforschen.

Um zeitlich verzögerte Kausalitäten zu beschreiben werden Basisfeatures B, die aus den
einzigartigen Aktionen, Observationen und Rewards für jeden Zeitschritt bestehen, mit-

einander verlinkt, um daraus neue Features zu erzeugen. N+
wird so definiert, dass es aus

allen möglichen Konjunktionen von bereits vorhandenen Features und den Basisfeatures, die

neuen Feature Kandidaten erzeugt. Um nicht zu weit in die Vergangenheit zu gehen wird des

Weiteren N+
so modifiziert, dass es immer nur die Basisfeatures aus einem vorausgehenden

Schritt verwendet und maximal zu einem Zeithorizont tmin = −k zurückgeht. [LT15]

2.6.2 Der Algorithmus

Der Algorithmus verwendet die oben beschriebenen TEF’s, die mit Hilfe von N+
erzeugt

wurden, um die bereits vorhandene Menge an Features zu erweitern und diese ebenfalls

zu überprüfen. Mit Hilfe von L1-regularization in der Zielfunktion werden alle überflüssig

erzeugten Features dann wiederum gelöscht. Dies führt dazu, dass die Menge der Features

im Algorithmus sozusagen „pulsiert“, da in jeder Iteration zuerst neue Features hinzugefügt
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Algorithmus 2.1 PULSE Algorithmus aus [LT15]

procedure Main(N+
, O, D)

Initialize :F ← ∅, Θ← ∅
repeat

grow_feature_set(F , Θ,N+
)

Θ← argminΘO(F , Θ,D) // Hier werden die Gewichte der Features optimiert

shrink_feature_set(F , Θ)

until O, F , Θ do not change

return F , Θ
end procedure
procedure grow_feature_set(F , Θ,N+

)

Initialize :F+ ← N+(F)
for all f ∈ F+ do

if f ̸∈ F then
Θf ← 0

end if
end for
F ← F ∪ F+

end procedure
procedure shrink_feature_set(F , Θ)

for all f ∈ F do
if Θf is0 then
F ← F \ f

end if
end for

end procedure

werden, direkt im Anschluss jedoch auch alle unnötig erzeugten Features wieder gelöscht

werden. Durch wiederholtes Anwenden führen N+
und die Zielfunktion dazu, dass ein

Optimum erreicht wird. Im Algorithmus 2.1 ist der Ablauf dargestellt. Hierbei bezeichnen O
die Zielfunktion, Θ die Gewichte der Features und D die Daten, welche an den Algorithmus

übergeben werden sollen. Der Algorithmus kann in einer model-based und einer model-free

Variante verwendet werden. In vorliegendem Fall wird die model-based Variante angewandt,

die TEF’s mit conditional random fields(CRF) verbindet. Hierbei beschreiben die CRF’s die

Wahrscheinlichkeiten für die nächsten Observationen und Rewards in Abhängigkeit vom

aktuellen Zustand und der gewählten Aktion.[LT15]
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3 Hintergrund zur praktischen
Umsetzung

3.1 Versuchsaufbau

Der Versuchsaufbau ist relativ einfach. Der Roboter befindet sich in einem Raum ohne jegliche

Vorkenntnisse von diesem. In ihm befinden sich zudem einige Knöpfe, die zur Vereinfachung

der Perzeption durch Alvar Marker dargestellt sind. Jeder dieser Alvar Marker hat eine

eindeutige ID, mit welcher der Roboter die „Knöpfe“ identifizieren kann. Des Weiteren gibt

es eine Tür, welche zu Beginn verschlossen ist. Da es zu aufwendig wäre einen wirklichen

Mechanismus dafür zu entwickeln, wird die Tür zu gehalten, bis der Roboter den Knopf,

der die Tür entriegelt, drückt. Nun soll der Roboter für eine bestimmte Zeit Daten sammeln,

um so später möglichst genau ermitteln zu können, durch welchen Knopfdruck/welche

Kombination von verschiedenen Knöpfen er die Tür öffnen kann.

Da der Roboter verschieden lange zur Ausführung der Aktionen benötigt, wird jedes Aus-

führen einer Aktion als ein Zeitschritt gelten, unabhängig davon, wie lange der Roboter

tatsächlich benötigt.

3.2 PR2

Der PR2 ist ein Forschungs- und Entwicklungsroboter, der mit dem Robot Operating System

(ROS) betrieben wird. Er wurde speziell zur Verwendung in der Personal Robotic entwickelt.

Hierzu besitzt der PR2(siehe Abbildung 3.1) eine mobile Basis mit vier steuerbaren Rädern,

um sich in einer natürlichen menschlichen Umgebung mit einer Geschwindigkeit von etwa

1m/s frei bewegen zu können. Damit er mit dieser Basis sicher zu seinem Ziel gelangen

kann ohne an Hindernissen zu scheitern beziehungsweise mit Menschen zu kollidieren,

besitzt der PR2 neben der Positionsbestimmung über Odometrie anhand seines Antriebs

sowohl an seiner Basis als auch an seinem Oberkörper jeweils einen Laserscanner, um

Hindernisse zu erkennen und zu meiden. Am Oberkörper des PR2 befinden sich zwei Arme

mit jeweils sieben Gelenken, was zu einem hohen Bewegungsradius der Arme führt. Am

Ende der Arme befinden sich als Endeffektoren Gripper die sich drehen lassen, um so immer

aus dem richtigen Winkel greifen zu können. An den Endeffektoren sind zusätzlich noch
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Abbildung 3.1: Links der Vesuchsaufbau: Die untere Marker Reihe als Knöpfe und ein

Marker an der Türklinke.

Rechts: Der PR2 von Willow Garage.

„Force Torque Sensoren“ angebracht, welche man verwenden kann, um ab einem gewissen

Threshold eine Bewegung zu stoppen. Am Kopf des PR2, welcher sich um 350° drehen und

um 115° neigen lässt, befinden sich verschiedene Kameras sowie eine zusätzliche Microsoft

Kinect. Durch diese können Pointclouds sowie normale Bildstreams zur Erkennung von

Objekte verwendet werden. Auch an den beiden Armen ist jeweils, direkt hinter dem Gripper,

eine Kamera angebracht. Um alle Aktuatoren und Sensoren anzusteuern und verwenden zu

können, sind in der Basis des PR2 zwei Onboard Server verbaut. [PR215]

3.3 Robot Operating System

3.3.1 Über ROS

ROS ist ein für Roboter entwickeltes Framework, welches es ermöglicht, robuste Software

für Roboter zu schreiben. In ihm werden die benötigten Konventionen beschrieben. Des

Weiteren beinhaltet es eine Sammlung von vielen verschiedenen Tools, beispielsweise zur

Visualisierung von Sensordaten, einer Simulation des Roboters zum Testen der entwickelten

Software und vielen Weiteren. Außerdem beinhaltet es eine große Sammlung an Paketen die

verwendet werden können. Die für diese Arbeit relevanten Pakete werden im Teil Verwendete

ROS Module vorgestellt. Zu den direkt von ROS gestellten Paketen kommen außerdem noch
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viele Pakete, die im großen Ecosystem von ROS zu finden sind, da jeder seine Pakete zur

freien Verfügung stellen kann. [ros15a]

3.3.2 Funktionsweise

Eine der wichtigsten Komponenten von ROS ist das Message Passing System. Dieses ermög-

licht die Implementierung der Software mit Hilfe von verschiedenen Knoten umzusetzen.

Hierbei hat durch das Message Passing System jeder Knoten ein klares Interface und die Funk-

tionen sind in einzelne Module getrennt. Die Knoten können entweder kontinuierlich über

Publisher und Subscriber miteinander kommunizieren und Daten senden beziehungsweise

empfangen oder mit Hilfe von Services und Service Proxies Remote Procedure Calls ausfüh-

ren, um einzelne Funktionen nur nach einem bestimmten Aufruf auszuführen. Erleichtert

wird dies durch viele verfügbare „Standart Robot Messages“, die die einfache Kommunikation

innerhalb des Ecosystems ermöglichen.[ros15b]

Die Kommunikation zwischen den Knoten erfolgt über eine direkte TCP/IP-basierte Verbin-

dung. Sie wird jedoch erst ermöglicht, wenn ein sogenannter „ROS Master“ verfügbar ist.

Dieser agiert als eine Art Namensserver:

• Ein Knoten, der Daten publishen will, benachrichtigt den Master Knoten, welcher die

Information des Knotens abspeichert. Es wird jedoch noch nicht begonnen Daten zu

publishen.

• Will ein Knoten auf eine Topic subscriben, fragt er beim Master Knoten an ob die

gewünschte Topic vorhanden ist.

• Sobald der Master Knoten für eine vorhandene Topic eine Anfrage erhält, benach-

richtigt er sowohl Publisher als auch Subscriber und es wird eine direkte Verbindung

zwischen den Beiden aufgebaut.

• Der Publisher sendet Messages an den Subscriber.

Ohne den Master Knoten können keine anderen Knoten laufen. Deshalb muss dieser immer

zuerst gestartet werden.[ros15d]

Für jeden Publisher wird eine fest definierte Message festgelegt. Analog dazu muss für jeden

Service eine .srv-Datei definiert sein, welche die jeweiligen request- und response-messages

enthält. Außerdem muss zum erfolgreichen Subscriben auf eine gepublishte Topic gewähr-

leistet sein, dass der Message-Typ des Subscribers mit dem Publisher übereinstimmt, da

ansonsten keine Nachrichten empfangen werden können. Selbes gilt auch für Services, wo

die jeweiligen .srv-Typen übereinstimmen müssen.[ros15c]

In Schaubild 3.3 sind beispielhaft drei Knoten dargestellt. Knoten A published eine fest

definierte Message als Topic. Knoten B und C können nun auf diese Topic subscriben um die
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Abbildung 3.2: Beispiel Verbindungsaufbau zwischen zwei Knoten

Abbildung 3.3: Funktionsweise des ROS Message Passing Systems

Informationen, die Knoten A sendet zu empfangen. Außerdem bietet A einen Service s an,

welcher über einen Remote Procedure Call aufgerufen werden kann. Im Schaubild sendet C

einen solchen Aufruf mit den entsprechenden Messages an A und erhält nach Ausführung

der Methode die jeweilige Response-Message zurück.

3.3.3 Paketstruktur

An oberster Stelle der ROS Paketstruktur steht ein Workspace, in welchem die einzelnen

Komponenten zusammengeführt werden. In diesem Workspace können die einzelnen Packa-
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ges abgelegt werden. Packages enthalten die Software für die einzelnen Module. In ihnen

befinden sich die verschiedenen Knoten, die ROS-abhängigen Bibliotheken, Datensätze, Res-

sourcen und Konfigurationsdateien. Des Weiteren werden die Message- und Service-files im

Package abgelegt. Über den Workspace können alle in ihm befindlichen Packages auf einmal

kompiliert werden. Hierbei werden auch die Messages und Services so erzeugt, dass sie dann

verwendbar gemacht werden.[ros15c]

3.4 Verwendete ROS Module

3.4.1 ar_track_alvar

Das Paket ar_track_alvar ist ein Wrapper für die Software Bibliothek „ALVAR“, welche

dazu gemacht wurde, um virtuelle und augmented Reality Anwendungen zu erstellen. Es

beinhaltet eine Vielzahl an Funktionen. Für die Anwendung am PR2 ist aber hauptsächlich

die Markererkennung wichtig. Hierfür bietet „ALVAR“ die Möglichkeit eine sehr genaue

Marker Pose zurückzugeben. Mit ar_track_alvar kann genau diese Funktion auf dem PR2

oder mit jeder anderen ROS-fähigen Kamera genutzt werden. Hierzu muss lediglich ein

.launch-file gestartet werden. Wenn der Knoten des Paketes gestartet ist, wird ein Publisher

gestartet, der für jeden erkannten Marker dessen Position und Orientierung sowie seine ID

und andere Daten versendet. Von dieser Topic können dann wiederum die Daten ausgelesen

werden, um eine genaue Position des Markers zu erhalten und zum Beispiel an diese zu

navigieren.[art15] [Fin15]

3.4.2 pr2_2dnav

Pr2_2dnav ist ein Paket, welches es dem PR2 ermöglicht autonom durch eine Umgebung zu

navigieren. Hierzu kann das Paket mit oder ohne SLAM gestartet werden. SLAM steht für

„Simultaneous Localization and Mapping“ und beschreibt ein Verfahren, mit welchem ein

mobiler Roboter, wie der PR2, während der Navigation eine Karte seiner Umgebung erstellen

und sich dann in dieser lokalisieren kann. Wird das Paket ohne SLAM gestartet muss ihm

eine Karte der Umgebung übergeben werden.

Zur Navigation wird der sogenannte Navigation Stack verwendet. Über diesen kann dem

Roboter eine Position innerhalb der Karte übergeben werden, um dorthin zu navigieren.

Hierzu wird anhand der Karte ein globaler Plan erstellt, der den kürzesten Weg zum Ziel

beschreibt. Zusätzlich wird noch ein lokaler Plan anhand der direkten Sensordaten des

Roboters erstellt, um zum Beispiel Hindernisse, die nicht auf der Karte erkennbar sind, zu

umfahren. Sollte das Hindernis nicht direkt umfahren werden können, wird über den globalen

Plan ein anderer Weg gesucht.[2dn15]
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3.4.3 Motion Generation

Um Bewegungen des Roboters zu erzeugen wurde ein am MLR Institut entwickelter low-

level real-time Controller verwendet. Dieser lässt sich über ein high-level Action Interface,

welches in Python implementiert ist und dem Benutzer ermöglicht Actions auszuführen,
verwenden. Davon bietet es Verschiedene, welche angepasst werden können, um die ge-

wünschten Aktionen auszuführen. Abgeleitet werden alle Actions von einer Activity. Einige
dieser abgeleiteten Activities sind schon gegeben, wie etwa eine ReachActivity, von welcher

wiederum eine reach_marker-Funktion erzeugt werden kann. Außerdem können auch eigene

Activites erzeugt werden. Des Weiteren gibt es die Möglichkeit mehrere Aktionen zu einem

Plan zusammenzufassen. Hierzu gibt es einen „with“-Teil, in dem Aktionen, die dauerhaft

bis zum Beendigen des Planes ausgeführt werden enthalten sind und einen „plan“-Teil, in

welchem sich die nacheinander auszuführenden Aktionen befinden. Im „plan“-Teil können

außerdem Tupel erzeugt werden, die gleichzeitig ausgeführt werden. Nach Beendigung der

letzten Aktion im „plan“-Teil wird der ganze Plan, also auch der „with“-Teil, beendet.
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4.1 Simulierte Welt

Die „Simulierte Welt“ wurde in Python implementiert, um den PULSE-Algorithmus[LT15] zu

testen und die Perfomanz verschiedener Strategien, zur Wahl der Aktionen, zu vergleichen.

Sie soll möglichst die realen Bedingungen simulieren. In der „Simulierten Welt“ können

deshalb äquivalent zum realen Versuchsaufbau mehrere „Knöpfe“ und „Türen“ erzeugt

werden. Diese werden dann zufällig miteinander verlinkt, sodass jedem Knopf entweder eine

zu öffnende Türe zugewiesen wird oder auch keine. Außerdem wird zufällig bestimmt für

wie viele Zeitschritte die Tür geöffnet bleibt.

In Abbildung 4.1 ist das UML-Diagramm zur „Simulierten Welt“ visualisiert. Um eine Obser-

vation zu starten, muss zuerst ein Objekt der Klasse Observation erzeugt werden. Außerdem

muss ein Environment erzeugt werden, welchem übergeben wird, wie viele Knöpfe und Türen

sich in der Simulation befinden sollen. Anhand von diesen Zahlen werden dann die Knöpfe

und Türen generiert. Dabei wird den Knöpfen zufällig eine oder auch keine Tür zugewiesen,

welche sie dann durch Aufruf der Methode „push_button()“ für eine ihnen ebenfalls zufällig

zugewiesen Zeitraum öffnen. Außerdem wird ein Objekt der Klasse Strategy erzeugt, dem die

Liste der Knöpfe und der Türen übergeben wird. Zum Starten der eigentlichen Observation

muss die Methode „observe“ mit einem Parameter, welcher die zu benutzende Strategie und

die Menge der zu observierenden Zeitschritte festlegt, aufgerufen werden. Nun wird für den

festgelegten Zeitraum in jedem Schritt, je nach Strategie, entweder ein Knopf gedrückt oder

eine Tür geöffnet. Es wird dabei ein 3-Tupel der ausgeführten Aktion, der resultierenden

Beobachtung und dem Reward, welcher nur durch Öffnen der Tür erhalten wird, in die Liste

der gesammelten Daten gespeichert. Da die Observationen in beschriebenem Fall irrelevant

sind, wird für diese immer eine Null in die gesammelten Daten geschrieben.
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Abbildung 4.1: UML Diagramm der Simulierten Welt

4.1.1 Strategien

Folgende Strategien wurden zum Testen implementiert:

Random In jedem Schritt soll eine zufällige Aktion gewählt werden. Es ist dabei egal, ob

es sich um das Drücken eines Knopfes oder das Öffnen der Tür handelt.

AlterningRandom Hierbei wird immer abwechselnd ein Knopf gedrückt und dann pro-

biert eine Tür zu öffnen.

TwoButtons Es werden immer zwei Knöpfe gedrückt und dann probiert eine Tür zu

öffnen.

NoDoubleUsage Die Aktionen werden wie bei der Random-Strategie gewählt, jedoch

wird der gedrückte Knopf aus der Liste gelöscht, um zuerst alle anderen Knöpfe zu drücken.

Ist kein Knopf mehr verfügbar, werden wieder alle zur Liste hinzugefügt.
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DoorMoreOften Hierbei werden die Aktionen ebenfalls zufällig gewählt. Jedoch ist die

Chance, die Tür zu probieren, zehnmal so wahrscheinlich als Knöpfe zu drücken.

4.2 Evaluation

Zur Evaluation des Algorithmus, in Verbindung mit den fünf zuvor genannten Strategien zum

Sammeln der Testdaten, wurden qualitative und quantitative Tests durchgeführt. Mit deren

Ergebnissen soll überprüft werden, ob der Algorithmus überhaupt für eine solche Anwendung

geeignet beziehungsweise sinnvoll ist. Zugleich soll die „beste“ Strategie bestimmt werden,

welche dann auf dem PR2 zu verwenden ist.

4.2.1 Qualitative Analyse

Zur qualitativen Auswertung wurden für die verschiedenen Ansätze jeweils Testdaten in

der gleichen Größe erzeugt, welche dann an den Algorithmus übergeben wurden, um mit

Hilfe von ihnen die Features zu erlernen. Im Anschluss wurde für jede Strategie überprüft

ob die relevanten Features vorhanden sind und wie schwer diese gewichtet sind. Zugleich

sollen die Ergebnisse der einzelnen Strategien miteinander verglichen werden, um so ein

Fazit ziehen zu können.

Erläuterung der Features Die Features sind immer gleich aufgebaut:

idx weight basis-features

Hierbei beschreibt die idx eine eindeutige Kennung des jeweiligen Features. Das Gewicht

bezeichnet die Aussagekraft des Features: Je höher desto wahrscheinlicher. Die Basis-Features

zeigen wie die jeweiligen Features zusammen gesetzt sind. Sind die Gewichte negativ, ist

ein Feature unwahrscheinlich. Alle Features treten immer paarweise mit positivem und

negativem Gewicht auf.

Als Beispiel für diesen Fall:

idx weight basis-features

13 -11.1503 (1, -7) ∧ r(0, 0)

14 11.1503 (1, -7) ∧ r(1, 0)
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Hierbei bedeutet Feature 13 in etwa: „Es ist eher unwahrscheinlich, dass wenn Aktion eins

vor sieben Zeitschritten gewählt wurde, kein Reward erhalten wurde.“

Feature 14 hingegen wäre andersherum gesagt: „Es ist eher wahrscheinlich, dass wenn Aktion

eins vor sieben Zeitschritten gewählt wurde, ein Reward erhalten wurde.“

Außerdem ist zu beachten, dass für den hier betrachteten Fall paarweise Features ausreichend

sind, da es nur einen direkten temporalen Zusammenhang zwischen Knopf und Tür gibt.

Des Weiteren kann auf die Observationen verzichtet werden, da diese gleichbedeutend mit

den Rewards sind. Geht die Tür auf?→ Ja — Reward = 1→ Nein — Reward = 0.

Beim Vergleich der Features reicht es nur die Features mit positiven Gewichten zu betrachten,

da die Aussage beider Features die Gleiche ist.

Beispiel Auswertung In Abbildung 4.2 ist ein beispielhafter Vergleich der gelernten

Featuresets zu sehen. Für diesen Vergleich wurde für jede Strategie ein Trainingsdatensatz

der Größe 1000 erzeugt und anschließend die resultierenden Features ausgegeben und

gefiltert, um alle Features, welche ein zu geringes Gewicht haben, aus der Auswertung

auszuschließen.

Wie dieses Beispiel zeigt, wurden die relevanten Features in unterschiedlichen Farben her-

vorgehoben. „Wahre“ Features sind dunkelgrün markiert, Features die richtig sind aber zu

einem zu späten Zeitschritt entdeckt wurden sind hellgrün, während falsche Features rot

sind. Die gelbe Markierung beschreibt die notwendige Aktion, also das Öffnen der Tür zum

Zeitschritt null, da ansonsten kein Reward erhalten werden kann. Wie zu sehen ist, hat die

TwoButton Strategie in diesem Fall am Schlechtesten abgeschnitten, da nur ein falsches

Feature gelernt wurde. Danach kommt die AlterningRandom Strategie, die eines der Features

zu spät entdeckt hat und ein gänzlich falsches beinhaltet. Die Random policy hat zwar keine

falschen Features, aber auch hier wurde eines der Features zu spät entdeckt. Die NoDoubleU-

sage und DoorMoreOften Strategien haben die Features richtig entdeckt. Jedoch benötigt die

DoorMoreOften Strategie dazu weniger Features, was bedeutet, dass diese das beste Ergebnis

erzielt hat.

24



4.2 Evaluation

Abbildung 4.2: Die gefilterten gelernten Featuresets der verschiedenen Strategien, v.l.n.r.: Al-
terningRandom, Random, TwoButton, NoDoubleUsage und DoorMoreOften.

Dunkelgrün sind die wirklich benötigten Features, rot die falsch gelernten

Features, hellgrün richtig gelernte Features, welche aber zu einem zu späten

Zeitpunkt gefunden wurden und gelb die notwendige Aktion um einen

Reward zu erhalten. In diesem Beispiel war die Umgebung wie folgt: Knopf

2 öffnet die Tür für acht Zeitschritte und Knopf 1 für fünf Zeitschritte.
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Fazit Bei dem qualitativen Vergleich hat sich gezeigt, dass mit manchen der anfänglich

bedachten Strategien die wirklichen Aktionen nicht oder nur bedingt in den Features zu

finden waren. Dies begründet sich dadurch, dass das Öffnen der Tür relativ selten probiert

wird. Bei der Random Strategie wird die Tür beispielsweise durchschnittlich nur jedes vierte

Mal ausgewählt, das bedeutet, dass wenn zuerst alle Knöpfe gedrückt werden die Tür auf

jeden Fall geöffnet werden kann. Dies führt dazu, dass die „wirklichen“ Features zum Teil

gar nicht gelernt werden können, da der Zusammenhang nicht aus den Trainingsdaten

hervorgeht. Trotzdem waren bei der gewählten Trainingsdatengröße von 1000 die Ergebnisse

bei allen Policies relativ gut. Am Schlechtesten schnitten AlterningRandom und TwoButtons

ab, da bei diesen Strategien immer nur in geraden Schritten beziehungsweise in jedem

dritten Schritt die Tür geöffnet wird, somit können manche Features also nie getestet werden.

Wenn Knopf 2 die Tür beispielsweise für zwei Zeitschritte öffnet, wird das Feature mit

AlterningRandom nie ermittelt werden können, da im ungeraden Zeitschritt der Knopf

gedrückt wird und im Geraden die Tür geöffnet wird. Dies bedeutet, dass nur eine temporale

Abhängigkeit von einem Zeitschritt gezeigt werden kann. Die gelernten Featuresets der

anderen Strategien enthielten die Ergebnisse meist, am Zuverlässigsten war jedoch die

Strategie DoorMoreOften.

4.2.2 Quantitative Analyse

Zum quantitativen Vergleich sollten die Durchschnittswahrscheinlichkeiten („mean like-

lihoods“) der mit Hilfe der Strategien erzeugten Modelle verglichen werden. Dazu wurden

für jede Strategie in mehreren Iterationen jeweils Trainingsdaten der Größen 25, 50, 100, 250,

500 und 1000 gesammelt und innerhalb jeder Iteration für jede der Größen ein Modell gelernt.

Mit diesem Modell wurde dann jeweils zehnmal die mean-likelihood auf einem Testdatensatz

der Größe 1000, welcher zufällig erstellt wird, berechnet und von diesen zehn Durchläufen

der Durchschnitt bestimmt. Danach wurden die Daten abgespeichert, um diese zum Erstellen

verschiedener Plots zu benutzen.
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Algorithmus 4.1 Pseudocode zur Veranschaulichung des Datensammelprozess

generate environment

for all policies do
for set_size in [25, 50, 100, 250, 500, 1000] do

generate traindata with policy and set_size

setup model of PULSE

fit data

tune the weights

for n in 1...10 do
generate testdata

likelihood += mean_likelihood_of_model

end for
mean = likelihood/10

append run_no, set_size, mean and the policy to file

end for
end for
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4 Simulation

Vergleich der Strategien

Abbildung 4.3: Plot mit einer Umgebung in der eine der Aktionen die Tür für 5 Zeitschritte

öffnet.

Wie Abbildung 4.3 visualisiert, kommt die DoorMoreOften-Strategiemit kleineren Featuresets

schon zu einem guten Ergebnis. Dies begründet sich dadurch, dass bei dieser Strategie

zehnmal so oft die Tür geöffnet als ein Knopf gedrückt wird. Somit kann viel genauer

bestimmt werden, wie lange eine Tür nach Drücken eines Knopfes wirklich geöffnet ist.

Die Strategien NoDoubleUsage und Random kommen mit einem Datensatz der groß genug

ist auch zu einem sehr guten Ergebnis.

Lediglich AlterningRandom sowie die TwoButtonStrat führen zu weniger guten Ergebnissen,

was auf die schon bereits beschriebenen Eigenschaften dieser Strategien zurückzuführen

ist.

Das teilweise vorkommende Abfallen derWerte bei größeren Datensätze erklärt sich dadurch,

dass bei den kleinen Datensätze die benötigten Features gar nicht vorhanden sind und

die Vorhersage somit zu einem besseren Wert kommen kann, als wenn mehrere Features
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4.2 Evaluation

vorhanden sind. Außerdem ist zu beachten, dass teilweise auch die Qualität der zufällig

ermittelten Trainings- sowie Testdaten zu schlechteren Ergebnissen führen kann.

Abbildung 4.4:Weitere Abläufe mit anderen Umgebungen: Oben je ein Knopf für 5 und 2

Zeitschritte. Unten für je 5 und 7 Zeitschritte.
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5 Umsetzung auf dem PR2

In diesem Kapitel wird beschrieben wie das bisher erarbeitete auf dem PR2 umgesetzt

wurde.

5.1 Anforderungen

Um die beschriebene Aufgabe bewältigen zu können muss der PR2 zu Folgendem in der Lage

sein:

1. Erkennen der Knöpfe sowie der Türklinke

2. Erreichen der Knöpfe und Tür

3. Drücken der Knöpfe

4. Öffnen der Tür

5. Validierung seiner Aktionen

5.2 Umsetzung

5.2.1 Perzeption

Für die Perzeption wurde das in Abschnitt 3.4 vorgestellte ar_track_alvar-Paket verwendet.

Wie bereits beschrieben, wurden zur Erleichterung des Aufbaus statt Knöpfen lediglich

Marker verwendet. Dies lässt sich dadurch begründen, da die Erkennung der Marker im

Vergleich zu anderen Perzeptionsmethoden außerordentlich gut funktioniert und somit für

einen Ablauf, der so robust wie möglich funktionieren soll, die beste Möglichkeit darstellt.

Des Weiteren wird die Position der Marker sehr genau bestimmt, wodurch es lediglich

geringe Abweichungen gibt. Zur Erkennung der Türklinke wurde ein kleiner Marker an

dieser angebracht.
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5.2.2 Navigation

Eigentlich sollte für die Navigation das in Abschnitt 3.4 beschriebene Paket pr2_2dnav

verwendet werden, da dieses eine Hinderniserkennung sowie einen lokalen und globalen

Planer zur Verfügung stellt. Somit kann die Navigation im Raum selbst mit vorhandenen

Hindernissen erfolgen. Leider gab es Probleme bei der Verwendung mit pr2_2dnav und dem

verwendeten Controller. Bei diesem werden für jedes nicht angesteuerte Gelenk, die Motoren

deaktiviert. Dies führt beispielswiese dazu, dass die Arme sich lose bewegen. Eigentlich stellt

dies für die tatsächliche Navigation kein Problem dar, da nur die Räder angesteuert werden

müssen wenn die Arme, aufgrund dessen, dass sie sich lose bewegen, jedoch in das Sichtfeld

des Laserscanners kommen, so erkennt der PR2 diese als mögliches Hindernis, was wiederum

dazu führt, dass er beginnt einen Plan zu erstellen um dieses „Hindernis“ zu umfahren.

Offensichtlicherweise ist es ihm aber unmöglich seine eigenen Arme zu umfahren, was dazu

führt, dass sich der PR2 um sich selbst dreht. Dieses Problem lässt sich auch nicht durch

ansteuern der Armgelenke über das Controllerinterface lösen, da der Controller dann alle

anderen Gelenke blockiert. Dies führt dazu, dass pr2_2dnav die Räder nicht mehr ansteuern

kann und der Roboter auf der Stelle stehen bleibt.

Daher wurde auf die Hinderniserkennung verzichtet und für die Navigation direkt das

Actioninterface verwendet. Dies ist jedoch kein großes Problem, da der PR2 zur Sammlung

der Daten für den Algorithmus, keine großen Strecken zurücklegen muss. Er muss lediglich

zu einer Startposition, dann entweder zu einem Knopf oder der Tür und anschließend wieder

zurück zur Startposition navigieren. Die Startposition ist dabei eine fest definierte Stelle, die

für jeden Durchlauf gleich ist.

Das Navigieren zu den Knöpfen beziehungsweise der Tür wird anhand der Positionsdaten,

die das ar_track_alvar-Paket zur Verfügung stellt, durchgeführt. Der PR2 positioniert sich

dadurch direkt vor dem entsprechenden Marker in einem Abstand von einem halben Meter.

5.2.3 Drücken der Knöpfe

Nachdem sich der PR2 von seiner Startposition zu dem entsprechenden Knopf bewegt hat

und in seiner Grundposition einen halben Meter vor diesem steht, beginnt er den Knopf zu

drücken. Hierzu wird über den verwendeten Controller eine Aktivität gestartet, bei welcher

der PR2 seinen rechten Endeffektor relativ zu der Markerposition an der Wand ausrichtet

und diesen dann mit der Spitze des Endeffektors berührt.

Wie bereits beschrieben, befindet sich an der Spitze ein sogenannter Force-Torque-Sensor,

welcher beim Überschreiten eines Thresholdes ein Signal zurück gibt. Eigentlich sollte dieser

verwendet werden, um beim Erhalten des Signals die Aktion des Knopfdrucks zu beenden

und zu speichern, dass dieser erfolgreich war. Falls das Signal nicht empfangen wird, so wird

nichts gespeichert und die nächste Aktion beginnt.
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Da es Probleme mit dem Sensor gab, wurde entschieden auf das Validieren der Aktion zu

verzichten und davon auszugehen, dass der Knopfdruck immer erfolgreich ist.

Nach dem Ausführen des Knopfdrucks nimmt der Roboter wieder die Grundposition ein und

bewegt sich in dieser zurück zur Startposition.

5.2.4 Tür öffnen

Abbildung 5.1: Ablauf des Öffnens der Tür

Analog zum Knopfdruck befindet sich der PR2 vor dem Öffnen der Tür in seiner Grund-

position einen halben Meter von der Türklinke entfernt (wie im ersten Bild zu sehen). Um

diese zu betätigen wird eine Folge von verschiedenen Aktionen ausgeführt. Der PR2 richtet

seinen linken Gripper mit einem Offset von 10 cm nach links und 5 cm nach vorn zur Tür

aus und öffnet den Gripper dabei. Dann richtet er ihn so aus, dass er die Klinke fast gerade

von vorn greifen kann und bewegt diesen dann 5cm nach vorn und schließt den Gripper

wieder. Im Normalfall, hat er die Klinke dann fest umschlossen. Um nun die Tür zu öffnen

wird der Gripper viermal, immer abwechselnd um 10° gedreht und um einige Zentimeter

nach unten bewegt. Danach „zieht“ der PR2 seinen Arm zu sich heran. Da die Tür keinen

Schließmechanismus hat, wird diese von Hand zugehalten. Dazu wird die Klinke nach oben

gedrückt, sodass sich diese, bei verschlossener Tür, nicht nach unten bewegen lässt. Der

PR2 kann einen Kraftsensor in seinem Grippergelenk verwenden, um bei einem zu großen
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Kraftaufwand seine Aktion abzubrechen. Sollte dieser Abbruch erfolgen, wird die Aktion mit

einem Reward von 0 gespeichert, ansonsten mit 1. Nachdem die Tür geöffnet wurde oder ein

Abbruch erfolgt ist, wird der Gripper wieder geöffnet und der Arm nach hinten bewegt.

Da der PR2 kurz vor Abschluss der Arbeit einen Defekt hatte, konnte der Kraftsensor nicht

mehr in Gang gebracht werden, weshalb dieser Punkt zum Abschluss der Arbeit noch offen

steht.

Im Anschluss wird die Grundposition erneut eingenommen und wieder zur Startposition na-

vigiert. Falls die Tür geöffnet wurde, muss diese für den weiteren Verlauf des Datensammelns

wieder manuell geschlossen werden.

5.2.5 Ablauf

Abbildung 5.2: Flussdiagramm zum Ablauf des Datensammelprozesses

In Abbildung 5.2 ist der Ablauf des Datensammelprozesses zu sehen. Der Roboter startet

aus der Startposition und wählt dann anhand einer der zuvor definierten Strategien (vgl.

Kapitel 4) eine Aktion aus. Diese Aktion wird dann, wie bereits beschrieben, ausgeführt.

Nach dem Ausführen werden das jeweilige Aktion-Observation-Reward-Tripel (A×O ×R)
abgespeichert. Der ganze Ablauf wird für k-time-steps, die zu Beginn des Ablaufs festgelegt

werden, durchgeführt. Nachdem k-Aktionen ausgeführt wurden, wird der Ablauf beendet und

die Daten an den PULSE-Algorithmus übergeben, um mit Hilfe von diesem eine Vorhersage

über das Weltmodell zu erhalten.

5.2.6 Probleme mit dem PR2

Der grundsätzliche Ablauf des Ausführens von Aktionen funktioniert zum Zeitpunkt der

Abgabe dieser Arbeit relativ robust. Leider gab es jedoch Probleme mit den Force-Torque-

Sensoren zum Verifizieren der Aktionen.
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Deshalb wurde schon relativ frühzeitig auf das Verifizieren des Knopfdruckes verzichtet. Es

wäre zwar für einen realitätsnäheren Ablauf gut, spielt aber für den hier definierten keine

Rolle, da keine Rewards für das Drücken der Knöpfe verteilt werden. Es reicht somit aus die

Aktion einfach als Solche zu speichern.

Beim Öffnen der Tür wäre diese Verifikation wichtig gewesen. Daher wurden hierbei ver-

schiedene Ansätze getestet, um auch ohne die Sensoren auszukommen. Da der PR2 aber in

den letzten Wochen vor Abschluss dieser Arbeit nicht mehr funktionstüchtig war, konnten

weder die Sensoren in Gang gebracht werden, noch konnten andere Ansätze getestet und

umgesetzt werden. Somit bleibt der Punkt zur Verifikation der Aktionen auch nach Abschluss

dieser Arbeit offen.

Unglücklicherweise wurden, als der PR2 noch funktionstüchtig war, lediglich kleinere Funkti-

onstests durchgeführt, was bedeutet, dass der Algorithmus nie auf mit dem PR2 gesammelten

Daten ausgeführt wurde. Diese Experimente sollten erst durchgeführt werden, wenn entwe-

der klar gewesenwäre, dass die Verifikation nicht mehr umsetzbar ist oder diese funktionieren

würde.

Da der PR2 jedoch zu diesem Zeitpunkt bereits nicht mehr verwendbar war, konnten die

wirklichen Tests und Experimente in Verbindungmit demAlgorithmus nicht mehr ausgeführt

werden.
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6 Zusammenfassung und Ausblick

Zu Beginn dieser Arbeit wurde die Relevanz und das Ziel dieser Arbeit beschrieben sowie

ähnliche Ansätze im Kontext der Robotik beleuchtet. Anschließendwurde zunächst der nötige

theoretische Hintergrund geschaffen, um die Funktionsweise des angewendeten Algorithmus

verstehen zu können. Hierbei wurde Basiswissen zum Thema Reinforcement Learning

und Markov Prozesse vorgestellt und zuletzt die Funktionsweise des PULSE Algorithmus

beschrieben.

Nachdem der theoretische Hintergrund dargelegt wurde, wurde Hintergrundwissen zur

praktischen Umsetzung erläutert. Der PR2 und das Robot Operating System (ROS) wurden

vorgestellt und Funktionsweisen erklärt. Zudem wurden die relevanten, zusätzlich verwen-

deten Pakete vorgestellt.

Im praktischen Teil der Bachelorarbeit wurde zuerst die entwickelte Simulationsumgebung

beschrieben, mit Hilfe welcher sowohl Trainings- als auch Testdaten zur Überprüfung des

PULSE-Algorithmus mit verschiedenen Strategien und Datensätzen für die verwendete Um-

gebung gesammelt wurden. Mit diesen wurde sowohl ein qualitativer als auch quantitativer

Vergleich der verschiedenen Ansätze vollzogen und aufgezeigt, inwiefern sich diese zur

Verwendung eignen.

Im letzten Kapitel der Arbeit wurden zunächst die Anforderungen, die der entwickelte Ablauf

auf dem PR2 erfüllen muss aufgezeigt und anhand von diesen die praktische Umsetzung auf

dem PR2 beschrieben. Wie am Ende des Kapitels beschrieben, konnten aufgrund verschie-

dener Probleme nicht alle Anforderungen erfüllt werden und wegen eines Defekts am PR2

auch keine praktischen Testdurchläufe durchgeführt werden. Trotzdem konnte mit Hilfe

der Simulation aufgezeigt werden, dass der PULSE-Algorithmus zum Lösen des definierten

Problems geeignet ist und auch eine relativ gute Perfomanz mit sich bringt. Auch der Ablauf

auf dem PR2 konnte umgesetzt werden, lediglich die offenen Punkte zur Validierung der

Daten sind offen geblieben. Des Weiteren stehen auch noch wirkliche Testläufe aus, jedoch

konnte in kleineren Tests schon aufgezeigt werden, dass die Funktionsweise des PR2 zum

Ausführen der Aktionen gegeben ist, was bedeutet, dass auch die praktischen Durchläufe

zum Sammeln von Trainingsdaten kein Problem darstellen dürften.
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Ausblick

Mit funktionierenden Force-Torque-Sensoren wäre der PR2 in der Lage seine Aktionen zu

validieren. Somit wäre der nächste Schritt, diese Sensoren in Gang zu bringen um die Daten

wirklich autonom sammeln zu können.

Einweiterer Schritt wäre die Verwendung vom beschriebenen pr2_2dnav Paket in Verbindung

mit dem MLR Controller umzusetzen, um eine robuste Navigation gewährleisten zu können

und es dem PR2 zu ermöglichen, sich autonom in einer unbekannten Umgebung bewegen zu

können. Wenn diese Schritte erreicht sind, wäre die nächste sinnvolle Weiterentwicklung

komplett auf Marker zu verzichten und die Perzeption mit Hilfe von anderen Paketen, die

zum Beispiel Knöpfe und die Türklinke auf eine andere Art erkennen können, umzusetzen.

Sollte dies funktionieren, könnte der PR2 in komplett unbekannten Umgebungen eingesetzt

werden und es wäre denkbar komplexere Aufgaben zu testen. Bei diesen Aufgaben könnte

jedoch der Rechenaufwand ein Problem darstellen, sodass das Lernen sehr lange dauern

könnte.

Außerdem stellt sich die Frage, ob es sinnvoll ist ein Weltmodell mit Hilfe von POMDPs

und Reinforcement Learning zu erlernen oder ob es für die meisten Anwendungen nicht

sinnvoller ist dem Roboter das „Wissen“ direkt mit auf denWeg zu geben, da der Aufwand die

Daten zu sammeln und auszuwerten enorm sein kann. Es gibt außerdem viele einschränkende

Faktoren, wie zum Beispiel ungenaue Sensordaten und lange Rechenzeiten. Des Weiteren

müssen die Aktionen vorher fest definiert werden, sodass auch deren Abhängigkeit definiert

werden kann. Dies sollte kein Problem darstellen, da die meisten Roboter in kleinen Domänen

agieren.

Lediglich wenn die Aufgabe des Roboters zum Beispiel das Verlassen eines Labyrinths,

welches jedes Mal eine andere Form annimmt, ist, wäre der hier aufgezeigte Anwendungsfall

eine sinnvolle Methode diese Art von Aufgaben zu lösen.
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