Institut fiir Parallele und Verteilte Systeme
Maschinelles Lernen und Robotik

Universitat Stuttgart

Universitatsstral3e 38
D-70569 Stuttgart

Bachelorarbeit Nr. 233

Nicht-Markov Feature Entdeckung
far echte Roboter

Kai Kalberer
Studiengang: Softwaretechnik
Priifer/in: Prof. Dr. rer. nat. Marc Toussaint
Betreuer/in: M. Sc. Stefan Otte

Dipl.-Phys. Robert Lieck

Beginn am: 11. Mai 2015

Beendet am: 10. November 2015

CR-Nummer: 1.2.9

Kurzfassung

In der vorliegenden Bacheloarbeit soll mit Hilfe des PULSE-Algorithmus [LT15] ein pradikati-
ves Umgebungsmodell in einer realen Umgebung erlernt werden. Dies wird mit Hilfe des PR2
von Willow Garage, der sich in einem Raum ohne jeglicher Vorkenntnisse mit verschiedenen
Knépfen und einer verschlossenen Tiir befindet, umgesetzt werden. Er sollte hierzu erlernen
konnen, durch welchen Knopfdruck er die Tiir fiir wie viele Zeitschritte 6ffnen kann.

Zu Beginn wird in das Thema eingeleitet und einige verwandte Arbeiten beschrieben. Darauf
folgen die theoretischen Grundlagen sowie die Funktionsweise des Algorithmus.

Im Anschluss wird der Versuchsaufbau, der verwendete Roboter und dessen Betriebssystem
sowie verschiedene verwendete Module dargestellt.

Im praktischen Teil der Arbeit wird mit Hilfe einer Simulation der realen Umgebung ein Ver-
gleich verschiedener Strategien durchgefiihrt. Bei diesem wird gezeigt, dass der Algorithmus
in einer echten Umgebung tatsachlich angewendet werden kann. Zugleich wird die Strategie,
die die besten Ergebnisse liefert bestimmt.

Danach folgt die Umsetzung auf dem PR2. Die verschiedenen Anforderungen, die der PR2
erfilllen muss werden beschrieben und deren Umsetzung erklart.

Eine kurze Zusammenfassung aller Ergebnisse sowie ein Ausblick iiber mogliche Weiterent-
wicklungen schlieflen die Arbeit ab.

Inhaltsverzeichnis

Einleitung

1.1 Motivation
1.2 Zielder Arbeit
1.3 Gliederung
1.4 Verwandte Arbeiten

Theoretischer Hintergrund

2.1 Reinforcement Learning
2.2 MarkovProzesse
2.21 Markov Eigenschaft 0.
222 MarkovKette
2.23 Markov Decision Process oL,
2.2.4 Partially Observable Markov Decision Process
23 TDLearning e
24 Regularization L
25 FeatureExpansion o oL
2.6 Vorstellung PULSE Algorithmus,
2.6.1 Temporally extended features
2.6.2 Der Algorithmus Lo
Hintergrund zur praktischen Umsetzung
3.1 Versuchsaufbau
3.2 PR2 . e e
3.3 Robot Operating System
33.1 UberROS
3.3.2 Funktionsweise o L.
3.3.3 Paketstruktur
3.4 Verwendete ROSModule
34.1 ar track alvar.
342 pr2_2dnav

3.4.3 Motion Generation e

4 Simulation

4.1 Simulierte Welt
4.1.1 Strategien

4.2 Evaluation

5 Umsetzung auf dem PR2

5.1 Anforderungen
52 Umsetzung e

5.2.1 Perzeption
5.2.2 Navigation.
5.2.3 Driicken der Knopfe .
524 Turoffnen
525 Ablauf

5.2.6 Probleme mit dem PR2
6 Zusammenfassung und Ausblick

Literaturverzeichnis

42.1 Qualitative Analyse
4.2.2 Quantitative Analyse

21
21
22
23
23
26

31
31
31
31
32
32
33
34
34

37

43

1 Einleitung

1.1 Motivation

Roboter gewannen in der Vergangenheit, vor allem in der Industrie immer mehr an Bedeutung.
Mit ihnen konnten viele Arbeitsschritte sehr vereinfacht und beschleunigt werden. Bisher
beschrankt sich ihr Einsatz jedoch meistens auf fest definierte, immer gleich bleibende
Aufgaben, sodass die Roboter nur sehr spezifisch eingesetzt werden kénnen. Sie handeln
zwar in gewisser Weise auch autonom, kénnen ihre Aufgabe aber meist nur sehr begrenzt,
je nach Sensorinformationen, variieren und erfordern trotzdem immer wieder ein Eingreifen
durch Menschen.

Im Bereich der Personal Robotics ist das oben beschriebene ,autonome® Handeln jedoch meist
nicht ausreichend. Hier sollen die Roboter moglichst viele Dinge autonom und komplett
ohne das Eingreifen von Menschen machen konnen. Es ist also meist notwendig, dass die
Roboter ,lernen® konnen um somit den Bediirfnissen der Benutzer zu entsprechen. So sollen
sie zum Beispiel nicht nur in einer bestimmten Umgebung funktionieren, sondern bei jedem
Endnutzer auf gleiche Weise. Somit ist es notwendig, dass sie frei in einer unbekannten
Umgebung navigieren konnen und dabei Erfahrungen sammeln, um den verschiedenen
Aufgaben, welche ihnen gestellt werden, nachkommen zu kénnen. Aufierdem miissen sie
in der Lage sein Dinge in Relation setzen zu kdnnen um ,komplexe® Aufgaben zu losen.
Nehmen wir hier als Beispiel den Auftrag, dem Benutzer ein kaltes Getrank zu bringen.
Dafiir muss der Roboter in der Lage sein zum Kiihlschrank zu navigieren, diesen zu 6ffnen,
ein Getrank beziehungsweise das gewiinschte Getriank zu erkennen, dieses zu greifen, die
Tir zu schlieffen, mit dem Getrank zuriick zum Nutzer zu navigieren und ihm dieses dann
zu iibergeben. Es werden fiir diese, fiir einen Menschen, triviale Aufgabe schon sehr viele
Dinge von einem Roboter verlangt. Er soll sie jedoch nicht nur in einer Umgebung ausfithren
konnen, sondern sogar in vielen verschiedenen. Hierzu muss der Roboter also den Weg zum
Kiihlschrank erkennen, das Offnen der Tiir, das Identifizieren des gewollten Getrinkes, das
richtige Greifen sowie das Schlieflen der Tiir beherrschen und den Riickweg finden.

Deshalb wird es immer wichtiger eine Moglichkeit zu finden, wie Roboter selbstdandig ein
Weltmodell erlernen konnen um den Aufgaben, welche sie erfiillen miissen gerecht zu werden,
um von der sehr beschrankten, durch fest programmierte Ablaufe erzeugten, Einsetzbarkeit
weg zu kommen und ein wirklich autonomes Handeln voranzutreiben.

1 Einleitung

1.2 Ziel der Arbeit

In dieser Arbeit soll mit Hilfe des PR2, einem Roboter, welcher mit ROS (Robot Operating Sys-
tem) funktioniert, eine Moglichkeit zum Erlernen eines Weltmodells getestet werden. Hierzu
sollen mit Hilfe der Sensoren und Aktuatoren des PR2 zuerst Daten gesammelt werden, diese
auf eine, fiir den PULSE-Algorithmus[LT15], geeignete Abstraktionsebene gebracht werden,
um sie danach vom Algorithmus auswerten zu lassen und damit ein Weltmodell der Roboter-
umgebung zu finden. Des Weiteren sollen verschiedene Strategien zur Wahl der néchsten
Aktion getestet werden, um die Beste dieser Strategien zu bestimmen. Dafiir wird zuerst
eine Simulation durchgefiihrt, um mit ihr die vielversprechendsten Strategien zu bestimmen,
welche dann auf dem PR2 in der realen Welt getestet werden sollen. Der Versuchsaufbau ist
hierbei ein relativ einfacher: Der Roboter befindet sich in einem kleinen Raum, in welchem
sich einige Knopfe und eine Tiir befinden. Er soll in diesem, ihm unbekannten Raum, nun ein
moglichst korrektes Weltmodell zum Offnen der Tir mit Hilfe von PULSE[LT15] ermitteln.

1.3 Gliederung

Die Arbeit ist folgendermaflen gegliedert:

Kapitel 2 — Theoretischer Hintergrund: Hier werden zunéchst theoretische Grundlagen,
die zum Verstindnis des PULSE-Algorithmus[LT15] notig sind, erarbeitet und anschlie-
Bend kurz die Funktion des Algorithmus beschrieben.

Kapitel 3 — Hintergrund zur praktischen Umsetzung: In diesem Kapitel werden Hinter-
griinde fiir die praktische Umsetzung aufgezeigt. Es wird kurz auf das Roboter Opera-
ting System (ROS) eingegangen. Der PR2 und die verwendbaren Sensoren/Aktuatoren
werden beschrieben. Aulerdem werden die Wichtigsten verwendeten Pakete kurz
erlautert.

Kapitel 4 — Simulation: Hier wird die Simulierte Welt vorgestellt, welche zur Simulation
verwendet wird. Auflerdem werden die getesteten Strategien evaluiert.

Kapitel 5 — Umsetzung auf dem PR2: In diesem Kapitel wird die praktische Umsetzung
beschrieben und dokumentiert sowie die gesammelten Ergebnisse evaluiert.

Kapitel 6 — Zusammenfassung und Ausblick Dieses Kapitel fasst die Ergebnisse der Ar-
beit zusammen und stellt Ankniipfungspunkte vor.

1.4 Verwandte Arbeiten

1.4 Verwandte Arbeiten

Das Rahmenwerk der Partially Observable Markov Decision Processes (POMDP) wurde in
der Forschung, beziehungsweise in der praktischen Anwendung der Robotik, schon oft ver-
wendet. Ein grofles Problem dabei ist in der Regel, dass fiir grofle Zustands- beziehungsweise
Aktionsmengen die Rechenzeit zu lange fiir den Einsatz auf echten Robotern ist. Deshalb
verwenden viele der Ansiatze Methoden, um die Menge der Zustdnde/Aktionen im aktuellen
Moment in Untermengen zu teilen, mit dem Ziel die Problemgrofle zu verringern.

In [PMP*03] wurde dieser Ansatz beispielsweise verfolgt um einen Roboter zur Assistenz in
der Krankenpflege zu programmieren. Dieser soll anhand von seinen Sensordaten wéhrend
der Interaktion mit Menschen die richtigen Entscheidungen treffen, um diese moglichst
zuverlassig bei alltaglichen Dingen zu unterstiitzen sowie Krankenpflegern zu assistieren. Da
fiir einen Assistenzroboter viele der Aktionen in Echzeit gew&hlt werden miissen, wurde eine
Hierarchie zum Rahmenwerk hinzugefiigt. Diese soll die grofle Aktionsmenge in kleinere
Teilmengen zerteilen, um somit fiir bestimmte Situationen nur ein POMDP mit kleinerem
Aktionsraum losen zu miissen. Dies fithrt zur schnelleren Berechenbarkeit und deshalb auch
zur schnelleren Auswahl einer Aktion .

In [SV04] wurde das Lésen von POMDP’s zur Roboterplanung verwendet. Hierbei wurden
die ,belief states” in Teilmengen unterteilt, um das Losen der Probleme zu beschleunigen.
Der entwickelte Algorithmus wurde dann in einer simulierten Robotikumgebung getestet, in
welcher er in einer ihm unbekannten Umgebung Briefe ausliefern soll.

In [VT15] wurde mit Hilfe von Reinforcement Learning in Verbindung mit POMDP’s ein
Planungsalgorithmus zur Objektmanipulation entwickelt. Dieser sollte ausschlieflich anhand
des Force Feedbacks lernen. Es wird anstatt alle moglichen Losungen zu simulieren, so wie
es bei den meisten Losungsansiatzen der POMDP’s wiblich ist, die zeitaufwiandige Simulation
durch Trajektorienoptimierung ersetzt. Zugleich wird aber auch wieder nur eine Teilmenge
der POMDP’s in jedem Schritt betrachtet.

Ein anderer Algorithmus, welcher auch auf typischen Robotikanwendungen getestet wurde,
wird in [KHLO08] beschrieben. Der sogenannte SARSOP-Algorithmus berechnet ,,optimally
reachable belief states®, um das Losen von POMDP’s zu beschleunigen. Der Ansatz wurde
auf Navigations-, Greif- und Explorationsproblemen getestet, wie sie auch in der Robotik

ublich sind.

2 Theoretischer Hintergrund

2.1 Reinforcement Learning

Um Wissen zu erlangen, muss der Mensch lernen. Hierzu werden uns teilweise Sachen von
Anderen gezeigt oder wir schauen Anderen zu und reproduzieren ihr Verhalten. Wenn jedoch
niemand da ist um uns zu lehren, bleibt selbst Menschen meist nichts anderes iibrig, als
Dinge auszuprobieren um dann anhand des Beobachteten selbst Schliisse zu ziehen, was wir
durch unser Handeln verursacht haben und ob es uns weiter bringt oder nicht.

Im Prinzip verfolgt ,Reinforcement Learning” genau diesen Ansatz:

Dem Lernenden wird nicht explizit gesagt, was er als nachstes tun soll. Viel mehr soll er durch
sein Handeln probieren, mit welchen Aktionen er einen moglichst hohen ,Gewinn® erzielen
kann. Er soll also herausfinden, durch welche Aktion er seinen Reward maximieren kann.
Dieser Reward wird meist als eine Zahl dargestellt, wobei zum Beispiel 1 einen geringen
Reward darstellt und 10 eventuell das Maximum. Auch negative Rewards sind als ,Bestrafung®
fiir schlechtes Handeln moglich. Da dieser Reward auf lange Sicht maximiert werden soll,
ist es nicht immer sinnvoll in jedem Schritt die Aktion zu wahlen, welche den momentan
besten Reward verspricht. Der langfristige Reward muss im Auge behalten werden.

Beim ,Reinforcement Learning” steht nicht die Lernmethode im Vordergrund, sondern viel
mehr das Finden des Lernproblems. Die zentrale Idee ist also, die wichtigsten Aspekte des
Problems zu finden und anhand von diesen, mit Hilfe der Umgebung, ein Ziel zu erreichen.
Dazu muss der Lernende seine Umgebung wahrnehmen, Aktionen ausfithren und Ziele in
der Umgebung haben. In diesem konkreten Beispiel muss der PR2 mit Hilfe seiner Sensoren
den Raum wahrnehmen, mit seinen Aktuatoren Knopfe driicken, Tiiren 6ffnen und als Ziel
die Aktionen finden, welche die Tiir entriegeln.

Ein zentraler Aspekt im ,Reinforcement Learning” ist das Abwégen zwischen ,exploration®,
also etwa erforschen und ,exploitation®, also etwa ausnutzen. Da der Lernende zwar auf der
einen Seite einen moglichst hohen Reward erhalten mochte, welchen er durch das Ausfithren
von ,bewihrten® Aktionen erhalten kann, er aber um Aktionen mit hohem Reward zu finden
auch Aktionen austesten muss, die er noch nie benutzt hat. Er muss ausnutzen was er weif
und trotzdem immer wieder erforschen, ob es evenutell noch bessere Aktionen gibt um
seinen Reward im Ganzen zu maximieren. [SB98]

2 Theoretischer Hintergrund

Elemente des Reinforcement Learning

Policy Die Policy beschreibt die Strategie, in welcher der Lernende seine Aktionen aus-
wihlt. Dies kann sowohl eine Berechnung, eine gleichbleibende Reihenfolge und eine Tabelle
sein, oder auch einfach nur per Zufall gewahlt werden. Oft sind sie jedoch stochastisch und
wiahlen Aktionen basierend auf Annahmen, die am Wahrscheinlichsten passieren werden
und den grofiten Reward erbringen. Die policy wird durch 7 dargestellt.

Reward Funktion Das langfristige Maximieren der erhaltenen Rewards beschreibt prin-
zipiell das Ziel im Reinforcement Learning. Die Reward Funktion legt fiir jeden Zustand
fest, wie viel er zum Erfiillen des jeweiligen Ziels beitrdagt. Deshalb muss sie jedem Zustand
einen numerischen Wert zuweisen, der den Nutzen des Zustandes reprasentiert. Die Reward
Funktion R : S X A — R weiflt einer im Zustand s gewéhlten Aktion a einen numerischen
Reward zu. Sie stellt dabei nur den direkt erhaltenen Reward dar.

Value Funktion Im Gegensatz zur Reward Funktion soll die Value Funktion den langfristi-
gen Gewinn approximieren. Grob gesagt wird durch sie also der nach dem Ausfiihren einer
Aktion zu erwartende Gesamtgewinn dargestellt. Dieser langfristige Reward ist natiirlich
von der Policy abhangig, da diese bestimmt welche Aktionen ausgefithrt werden sollen.

V™ (s) = Ex{ro +yr1 +7*ro + ...|s, = s}
= R(s,m(s)) +7 s P(s']s,m(s))V7™(s)

Die sogenannte Value-Funktion V stellt also fiir die Pocliy 7 und den Startzustand s den
erwarteten Reward dar. Sollen zusatzlich noch die gewéhlten Aktionen beriicksichtigt werden,
so kann die state-action value - Funktion, oder auch Q-Funktion genannt, verwendet werden.
Diese reprasentiert dann den erwarteten Reward aus dem Startzustand s, wenn als erstes die
Aktion a gewahlt wird.

Q" (s,a) = R(s,a) + 728, P(s']s,a)Q™(s',7(s"))

Wenn hier die optimale Funktion gefunden wurde, kann eine optimale Policy mit Hilfe von:
7*(s) = argmax,Q*(s,a) gefunden werden, wobei Q*(s, a) je nach Funktion mit V*(s)
substituiert werden kann.

Die Value Funktionen beruhen auf dem Optimalitatsprinzip von Bellman, welches besagt,
dass jede Teillosung einer optimalen Losung auch optimal sein muss.

2.2 Markov Prozesse

Modell Im Reinforcement Learning wird zwischen model-free und model-based Varianten
unterschieden, da entweder ohne ein Modell, nur durch trial-and-error, ein Reinforcement
Problem gel6st werden kann. Genauso gut kann aber auch ein Modell verwendet werden
das probiert, den néchsten Zustand und seinen Reward vorherzusagen und anhand von
dieser Information die nachste Aktion zu wahlen. Somit kann mit einem Modell eine bessere
Planung betrieben werden.

[SBYS]

2.2 Markov Prozesse

2.2.1 Markov Eigenschaft

Die Markov Eigenschaft bezeichnet eine ,erinnerungslose” Form eines stochastischen Prozes-
ses beziehungsweise eines Zustandsiibergangs. Das heif3t, wenn jeder zukiinftige Zustand des
Prozesses immer nur von dem direkt vorhergehenden Zustand abhangig ist und nicht von der
Folge der Zustande in der Vergangenheit, so erfiillt er die Eigenschaft, dass die konditionelle
Wahrscheinlichkeitsverteilung der zukiinftigen Zustande nur vom momentanen Zustand
abhéngig ist.

Formal geschrieben ist die Wahrscheinlichkeitsverteilung:

!
Pri{sis1 = 8,101 = 7S, a4, 14, St—1, A1, .-, 71, S0, Ao }

Wenn die Markov Eingeschaft erfiillt ist, reicht es jedoch nur die Abhangigkeit von dem
direkt vorhergehenden Zustand und der gewihlten Aktion zu betrachten:

Pr{s;s1 = 8,11 = rls, ai}

Andersherum gesagt, wenn beide Formeln das gleiche Ergebnis fiir einen Zustand liefern,
besitzt dieser die Markov Eigenschaft, wenn dies fiir alle Zustande zutrifft, besitzt der ganze
Prozess die Markov Eigenschaft.

Alle Prozesse beziehungsweise Features, die diese Eigenschaft nicht erfiillen sind somit
Nicht-Markov. [SB98]

2 Theoretischer Hintergrund

!
" /
l l

<03

(?H_ —— (8
0,5
| A

0,1 0,9

Abbildung 2.1: Beispiel Markov Kette mit drei Zustdnden

2.2.2 Markov Kette

Eine Markov Kette beschreibt einen Prozess, der zufillige Zustandsiiberginge in einem
Zustandsraum beschreibt, welche die Markov Eigenschaft erfiillen. In Abbildung 2.1 ist
eine einfache Markov Kette mit drei Zustinden visualisiert. Jeder Zustand hat dabei zwei
Uberginge in einen Folgezustand, welcher mit Wahrscheinlichkeiten angegeben ist. Die Uber-
gangswahrscheinlichkeiten sind alle nur vom momentanen Zustand abhéngig und erfiillen
somit die Markov Eigenschaft. Die Markov Kette wird dabei durch den Zustandsraum {A,B,C},
die Ubergangswahrscheinlichkeiten, die an den Ubergéngen stehen, und dem Startzustand
A definiert. Des Weiteren muss fiir Markov Ketten gewahrleistet sein, dass es immer einen
nichsten Zustand gibt und der Prozess nicht terminiert.

Eine Markov Kette, die nur vom vorhergehenden Zustand abhangt wird first-order genannt.
Man kann das Modell zu einer hoheren Ordnung erweitern, also M th_order, sodass nicht nur
der direkt vorherige Zustand Einfluss auf den Momentanen hat, sondern die M Vorhergehen-
den. Dies macht nur bis zu einem gewissen Grad Sinn, da die Menge der Parameter dabei
exponentiell mit M wichst.

2.2.3 Markov Decision Process

Die oben genannte Markov Kette kann zu einem méchtigeren Rahmenwerk erweitert werden:
dem Markov Decision Process (MDP). Dieser Prozess findet vor allem im Reinforcement Lear-
ning hiufige Verwendung. Zusitzlich zum Zustandsraum, den Ubergangswahrscheinlichkei-
ten und dem Startzustand, wird der MDP noch durch den Aktionsraum, eine Rewardfunktion
und einen Discountfaktor beschrieben. Im Gegensatz zur Markov Kette ist der Prozess nicht
vollstandig zufallig, sondern wird zusatzlich von Entscheidungen durch das Wahlen von
verschiedenen Aktionen beeinflusst, wie es ein Lernender im Reinforcement Learning tun

2.2 Markov Prozesse

wiirde. Da jedoch in einer unbekannten, beziehungsweise zumindest partiell unbekannten,
Umgebung nicht immer fest steht was nach dem Ausfithren einer Aktion passiert, besteht
weiterhin eine Zufallskomponente, die nach Wahl einer Aktion den Folgezustand beeinflusst.
Die Rewardfunktion soll bestimmen, ob eine Aktion ,gut” oder ,schlecht” ist, wahrend der
Discountfaktor den Unterschied der Relevanz zwischen direkten und zukiinftigen Rewards
reprasentiert.

Formal ist ein MDP also ein 5-Tupel (S, A, P,(s, s'), Ra(s, s'),v) mit:

S als endlichen Zustandsraum

A als endlichen Aktionsraum

P,(s,s") = Pr{syy1 = §'|sy = s,a; = a} also der Ubergangswahrscheinlichkeit von s
nach s’ nachdem Aktion a gewahlt wurde

R.(s,s") = E{ris1|s: = s,a; = a, ;41 = s’} als den erwarteten Reward, nach Wahl
von a in Zustand s mit dem Folgezustand s’

« v € {0, 1} als Discountfaktor
[SB9S]

Das Hauptproblem von MDP’s stellt oft das Finden einer Policy dar, um Aktionen in Ab-
hingikeit zum aktuellen Zustand auszuwéhlen. Ziel ist dann, mit Hilfe dieser Policy 7 (s)
Aktionen moglichst so zu wéhlen, dass langfristig gesehen der grofite Reward erzielt wird.
Fiir einen unendlichen Horizont also:

oo
max Zthat(st, St11)
t=0

In Abbildung 2.2 ist ein beispielhafter MDP dargestellt. Im Gegensatz zu Abbildung 2.1 sind
die Ubergénge nicht mehr nur zufillig, sondern auch abhingig von der Wahl der Aktionen.
Auflerdem kommen zusétzlich die Rewards hinzu, die in der Abbildung in griin dargestellt
sind.

2.2.4 Partially Observable Markov Decision Process

Es ist offensichtlich, dass die ,reale® Welt sehr viel komplexer ist als nur von einem direkt
vorhergehenden Gesamtzustand abhangig zu sein, sondern auch von vielen Aktionen die in
der Vergangenheit ausgefithrt wurden.

Wie schon beschrieben, soll im vorliegenden konkreten Fall ein Roboter herausfinden, wie er
eine Tur 6ffnen kann. Hierzu muss er Aktionen ausfuhren, die ihn in einen nichsten Zustand
fithren, der laut dem MDP unabhéngig von allen Aktionen davor wére. Dies wiirde auch

2 Theoretischer Hintergrund

T
Ilf/ h T 0,5 "“
C\K || ’/ —(Sz
Padt S1 II"-., i 8;2(- 4
{ | - 0}\5 I\I O 2} II‘
| LY 0,7/
- Na 08 JR=1

Abbildung 2.2: Beispiel Markov Decision Process mit 3 Zustanden und 2 Aktionen

zutreffen, wenn der Roboter nur einen Knopf driicken miisste und dann direkt die Tir 6ffnen
konnte. Sobald er jedoch eine Kombination von Knépfen driicken muss oder ein Knopf die
Tir fir mehr als einen Zeitschritt offen halt, ist die Markov Eigenschaft nicht mehr erfillt.
Deshalb reicht das Modell der MDP’s dafiir nicht aus.

Partially Observable Markov Decision Processes, kurz POMDP, erweitern das MDP Modell so,
dass es fiir diese Zwecke anwendbar ist. Die zugrunde liegende Struktur der MDP’s bleibt die
Gleiche, es werden jedoch zusitzlich, zu den bereits beschriebenen Attributen, Observationen
hinzugefiigt. Anstatt direkt den momentanen Zustand iiberwachen zu konnen, erhalt man
,hur” eine Beobachtung, also einen Hinweis, in welchem Zustand man sich befinden. Diese
Beobachtung kann wieder probabilistisch sein, was dazu fithrt, dass zusatzlich auch noch ein
Observationsmodell erzeugt werden muss. Dieses reprasentiert die Wahrscheinlichkeit, in
welchem Zustand man sich nach einer Observation befindet. Es miissen hierbei nicht alle
ausgefithrten Aktionen gespeichert werden. Eine Wahrscheinlichkeitsverteilung iiber alle
moglichen Zustédnde zu haben, die mit jeder neuen Aktion und Observation aktualisiert wird,
ist ausreichend, da in dieser Verteilung alle bisher gesammelten Erkenntnisse enthalten sind.

Formal wird das 5-Tupel der MDP’s zu einem 7-Tupel (S, A, P, R, 2, O,) erweitert:

« S, A, P, Rund v sind gleich zu den MDP’s
+ (2 ist die Menge der Observationen

« O: 5 x A— Qistdie Menge der bedingten Observationswahrscheinlichkeit

[KLC98]

10

2.3 TD Learning

2.3 TD Learning

Temporal Difference Learning beschreibt eine Methode um die Value-Funktion basierend auf
bisherigen Abschatzungen und neuen Beobachtungen zu aktualisieren, um so eine bessere
Vorhersage iber die Values zu erhalten. Fiir einen Zustand s; in Zeitschritt t soll V' (s;)
basierend auf den nachfolgenden Ereignissen angepasst werden. Monte Carlo Methoden
warten hierbei auf das endgiiltige Ergebnis dieser Ereignisse. Im Gegensatz hierzu wird
beim TD Learning immer direkt im néchsten Zeitschritt die Schatzung mit einer neueren
Schétzung aktualisiert und nicht auf wirkliche Ergebnisse gewartet. V' (s;) wird direkt mit
dem erhaltenen Reward und der Schiatzung von V des Folgezustands aktualisiert:

Vi(se) < V() +alryr + V(s — V(s)]

Dabei beschreibt die Lernrate o, inwieweit die Schitzung von V (s) mit jeder neuen Schétzung
angepasst wird. [SB98]

2.4 Regularization

Oft sind die beim Lernen gesammelten Daten sehr gestreut und fithren dazu, dass es zu einem
,Overfitting” kommt, dass das Modell die Features sozusagen auswendig lernt und deshalb
nur genau diese erkennen kann. Somit findet keine Generalisierung der Trainingsdaten
statt. Deshalb wird eine sogenannte ,Regularization auf die Daten angewendet, um das
,Overfitting“ soweit wie moglich zu reduzieren und ein moglichst aussagekraftiges Modell
der Daten zu erhalten, welches auch dhnliche Features als richtig erkennen kann. Mit der
Regularisierung kann die Komplexitat des gewiinschten Modells bestimmt werden, um eine
moglichst gute Vorhersage zu erhalten. Dabei muss die Regularisierung so erfolgen, dass das
Modell auf der einen Seite nicht overfitted, da es zu komplex ist, beziehungsweise underfitted,
da es zu simpel ist. Um dies zu erreichen, wird zur Zielfunktion ein Regularisierungsterm
hinzugefiigt. Zum Beispiel fiir L,-Regularization die Summe der Betrdge aller Koeffizienten
A Zle | 3;], wobei lambda den Regularisierungsparameter bestimmt und beta die Koeffizien-
ten. Mit der L;-Regularization findet aulerdem eine Vorauswahl der Features statt, da viele
der Features auf null abgebildet werden, sodass diese nicht weiter betrachtet werden miissen.
Deshalb entsteht nach der Regularisierung ein spéarlicheres Featureset.

2.5 Feature Expansion

Der Ansatz der Feature Expansion besteht darin, vorhandene Features mit Basisfeatures,
welche meist erst einmal gefunden werden miissen, zu kombinieren, um so mehr Features, die
aussagekraftig sein konnten zu erhalten. Es sollen durch Konjunktion verschiedener Features

11

2 Theoretischer Hintergrund

yméachtigere” Features erzeugt werden. Mit diesen zusitzlichen Features kann dann eine
bessere Approximation der Value-Funktion erfolgen, um so zu einem besseren Endergebnis
der ganzen Vorhersage zu kommen. Des Weiteren werden die erzeugten Features, welche
ein bestimmtes Gewicht erhalten in das endgiiltige Featureset aufgenommen. Es konnen
dabei jedoch auch viele unnotige Features entstehen, welche dann die Rechenzeit unnétig
verlangern oder die Vorhersage negativ beeinflussen.

2.6 Vorstellung PULSE Algorithmus

Der PULSE Algortihmus[LT15] soll oben beschriebene POMDP mit verzogerten Kausalititen
l16sen konnen. Hierzu verwendet er eine Kombination der Ansatze aus Feature Expansion
und L;-Regularisation im TD-Learning.

2.6.1 Temporally extended features

Der Algorithmus verwendet eine Menge 7 von ,Temporally extended features® (im Folgenden
TEF), um POMDP’s zu 16sen. T beschreibt alle moglichen Abbildungen der Historie (A x
O x R)*, also Aktion-Observation-Reward Tripeln, auf reelle Zahlen R. Der Algorithmus
verwendet in jeder Iteration aber nur eine Teilmenge von 7, welche aus einer Funktion
N* :P(T) — P(T), fir welche P(T) die Potenzmenge von T beschreibt, generiert wird.
Das heif3t fiir eine gegebene Menge an Features F ist N7 (F) eine Menge von Feature
Kandidaten, welche dazu verwendet werden, um die kleinste Teilmenge Ty+ C 7 die unter
T abgeschlossen ist, zu erforschen.

Um zeitlich verzogerte Kausalitidten zu beschreiben werden Basisfeatures B, die aus den
einzigartigen Aktionen, Observationen und Rewards fiir jeden Zeitschritt bestehen, mit-
einander verlinkt, um daraus neue Features zu erzeugen. N'* wird so definiert, dass es aus
allen moglichen Konjunktionen von bereits vorhandenen Features und den Basisfeatures, die
neuen Feature Kandidaten erzeugt. Um nicht zu weit in die Vergangenheit zu gehen wird des
Weiteren N'* so modifiziert, dass es immer nur die Basisfeatures aus einem vorausgehenden
Schritt verwendet und maximal zu einem Zeithorizont ¢,,,;,, = —k zuriickgeht. [LT15]

2.6.2 Der Algorithmus

Der Algorithmus verwendet die oben beschriebenen TEF’s, die mit Hilfe von N’ erzeugt
wurden, um die bereits vorhandene Menge an Features zu erweitern und diese ebenfalls
zu Uberprifen. Mit Hilfe von L;-regularization in der Zielfunktion werden alle tiberfliissig
erzeugten Features dann wiederum geldscht. Dies fithrt dazu, dass die Menge der Features
im Algorithmus sozusagen ,pulsiert®, da in jeder Iteration zuerst neue Features hinzugefugt

12

2.6 Vorstellung PULSE Algorithmus

Algorithmus 2.1 PULSE Algorithmus aus [LT15]

procedure MAIN(V ', O, D)
Initialize : F < 0,0 « ()
repeat
GROW_FEATURE_SET(F, O, N'Y)
O < argmingO(F,0,D) // Hier werden die Gewichte der Features optimiert
SHRINK_FEATURE_SET(F, O)
until O, F, O do not change
return F, ©
end procedure
procedure GROW_FEATURE_SET(F, ©, N'T)
Initialize : F* < NT(F)
forall f € 7" do
if f ¢ F then
@f +— 0
end if
end for
F+— FUFT
end procedure
procedure SHRINK_FEATURE_SET(F, O)
forall f € F do
if ©is0 then
F«—F\f
end if
end for
end procedure

werden, direkt im Anschluss jedoch auch alle unnétig erzeugten Features wieder geldscht
werden. Durch wiederholtes Anwenden fithren N'* und die Zielfunktion dazu, dass ein
Optimum erreicht wird. Im Algorithmus 2.1 ist der Ablauf dargestellt. Hierbei bezeichnen O
die Zielfunktion, © die Gewichte der Features und D die Daten, welche an den Algorithmus
tibergeben werden sollen. Der Algorithmus kann in einer model-based und einer model-free
Variante verwendet werden. In vorliegendem Fall wird die model-based Variante angewandt,
die TEF’s mit conditional random fields(CRF) verbindet. Hierbei beschreiben die CRF’s die
Wahrscheinlichkeiten fiir die nachsten Observationen und Rewards in Abhéngigkeit vom
aktuellen Zustand und der gewahlten Aktion.[LT15]

13

3 Hintergrund zur praktischen
Umsetzung

3.1 Versuchsaufbau

Der Versuchsaufbau ist relativ einfach. Der Roboter befindet sich in einem Raum ohne jegliche
Vorkenntnisse von diesem. In ihm befinden sich zudem einige Knopfe, die zur Vereinfachung
der Perzeption durch Alvar Marker dargestellt sind. Jeder dieser Alvar Marker hat eine
eindeutige ID, mit welcher der Roboter die ,Knopfe® identifizieren kann. Des Weiteren gibt
es eine Tiir, welche zu Beginn verschlossen ist. Da es zu aufwendig wire einen wirklichen
Mechanismus dafiir zu entwickeln, wird die Tiir zu gehalten, bis der Roboter den Knopf,
der die Tiir entriegelt, driickt. Nun soll der Roboter fiir eine bestimmte Zeit Daten sammeln,
um so spater moglichst genau ermitteln zu kénnen, durch welchen Knopfdruck/welche
Kombination von verschiedenen Knopfen er die Tiir 6ffnen kann.

Da der Roboter verschieden lange zur Ausfitlhrung der Aktionen benétigt, wird jedes Aus-
fihren einer Aktion als ein Zeitschritt gelten, unabhangig davon, wie lange der Roboter
tatsachlich benétigt.

3.2 PR2

Der PR2 ist ein Forschungs- und Entwicklungsroboter, der mit dem Robot Operating System
(ROS) betrieben wird. Er wurde speziell zur Verwendung in der Personal Robotic entwickelt.
Hierzu besitzt der PR2(siehe Abbildung 3.1) eine mobile Basis mit vier steuerbaren Radern,
um sich in einer natiirlichen menschlichen Umgebung mit einer Geschwindigkeit von etwa
1m/s frei bewegen zu konnen. Damit er mit dieser Basis sicher zu seinem Ziel gelangen
kann ohne an Hindernissen zu scheitern beziehungsweise mit Menschen zu kollidieren,
besitzt der PR2 neben der Positionsbestimmung tiber Odometrie anhand seines Antriebs
sowohl an seiner Basis als auch an seinem Oberkorper jeweils einen Laserscanner, um
Hindernisse zu erkennen und zu meiden. Am Oberkorper des PR2 befinden sich zwei Arme
mit jeweils sieben Gelenken, was zu einem hohen Bewegungsradius der Arme fiithrt. Am
Ende der Arme befinden sich als Endeffektoren Gripper die sich drehen lassen, um so immer
aus dem richtigen Winkel greifen zu konnen. An den Endeffektoren sind zusatzlich noch

15

3 Hintergrund zur praktischen Umsetzung

Abbildung 3.1: Links der Vesuchsaufbau: Die untere Marker Reihe als Knépfe und ein
Marker an der Tiirklinke.
Rechts: Der PR2 von Willow Garage.

~Force Torque Sensoren“ angebracht, welche man verwenden kann, um ab einem gewissen
Threshold eine Bewegung zu stoppen. Am Kopf des PR2, welcher sich um 350° drehen und
um 115° neigen lasst, befinden sich verschiedene Kameras sowie eine zusétzliche Microsoft
Kinect. Durch diese konnen Pointclouds sowie normale Bildstreams zur Erkennung von
Objekte verwendet werden. Auch an den beiden Armen ist jeweils, direkt hinter dem Gripper,
eine Kamera angebracht. Um alle Aktuatoren und Sensoren anzusteuern und verwenden zu
konnen, sind in der Basis des PR2 zwei Onboard Server verbaut. [PR215]

3.3 Robot Operating System

3.3.1 Uber ROS

ROS ist ein fiir Roboter entwickeltes Framework, welches es ermoglicht, robuste Software
fir Roboter zu schreiben. In ihm werden die benétigten Konventionen beschrieben. Des
Weiteren beinhaltet es eine Sammlung von vielen verschiedenen Tools, beispielsweise zur
Visualisierung von Sensordaten, einer Simulation des Roboters zum Testen der entwickelten
Software und vielen Weiteren. Aufierdem beinhaltet es eine grofie Sammlung an Paketen die
verwendet werden konnen. Die fiir diese Arbeit relevanten Pakete werden im Teil Verwendete
ROS Module vorgestellt. Zu den direkt von ROS gestellten Paketen kommen aufierdem noch

16

3.3 Robot Operating System

viele Pakete, die im groflen Ecosystem von ROS zu finden sind, da jeder seine Pakete zur
freien Verfiigung stellen kann. [ros15a]

3.3.2 Funktionsweise

Eine der wichtigsten Komponenten von ROS ist das Message Passing System. Dieses ermog-
licht die Implementierung der Software mit Hilfe von verschiedenen Knoten umzusetzen.
Hierbei hat durch das Message Passing System jeder Knoten ein klares Interface und die Funk-
tionen sind in einzelne Module getrennt. Die Knoten kénnen entweder kontinuierlich iiber
Publisher und Subscriber miteinander kommunizieren und Daten senden beziehungsweise
empfangen oder mit Hilfe von Services und Service Proxies Remote Procedure Calls ausfiih-
ren, um einzelne Funktionen nur nach einem bestimmten Aufruf auszufiithren. Erleichtert
wird dies durch viele verfugbare ,Standart Robot Messages®, die die einfache Kommunikation
innerhalb des Ecosystems ermoglichen.[ros15b]

Die Kommunikation zwischen den Knoten erfolgt tiber eine direkte TCP/IP-basierte Verbin-
dung. Sie wird jedoch erst ermoglicht, wenn ein sogenannter ,ROS Master” verfiigbar ist.
Dieser agiert als eine Art Namensserver:

+ Ein Knoten, der Daten publishen will, benachrichtigt den Master Knoten, welcher die
Information des Knotens abspeichert. Es wird jedoch noch nicht begonnen Daten zu
publishen.

« Will ein Knoten auf eine Topic subscriben, fragt er beim Master Knoten an ob die
gewiinschte Topic vorhanden ist.

« Sobald der Master Knoten fiir eine vorhandene Topic eine Anfrage erhilt, benach-
richtigt er sowohl Publisher als auch Subscriber und es wird eine direkte Verbindung
zwischen den Beiden aufgebaut.

« Der Publisher sendet Messages an den Subscriber.

Ohne den Master Knoten konnen keine anderen Knoten laufen. Deshalb muss dieser immer
zuerst gestartet werden.[ros15d]

Fiir jeden Publisher wird eine fest definierte Message festgelegt. Analog dazu muss fiir jeden
Service eine .srv-Datei definiert sein, welche die jeweiligen request- und response-messages
enthalt. Aulerdem muss zum erfolgreichen Subscriben auf eine gepublishte Topic gewéhr-
leistet sein, dass der Message-Typ des Subscribers mit dem Publisher tibereinstimmt, da
ansonsten keine Nachrichten empfangen werden kénnen. Selbes gilt auch fiir Services, wo
die jeweiligen .srv-Typen iibereinstimmen miissen.[ros15c]

In Schaubild 3.3 sind beispielhaft drei Knoten dargestellt. Knoten A published eine fest
definierte Message als Topic. Knoten B und C kdnnen nun auf diese Topic subscriben um die

17

3 Hintergrund zur praktischen Umsetzung

Master

1) Advertise (Topic 2) Subscribe (Topic)

ublish.ms i
Node A R Svivirirties Gel Topic Jeeeen subseribe..y, Node B

L -
3) Direkte Verbindung zwischen A und B aufgebaut

Abbildung 3.2: Beispiel Verbindungsaufbau zwischen zwei Knoten

ublish.ms i
Node A R Sviviierios A (R P subscribe . Node B
offers Service s

request.srv :
Service call s subscribe

response.s

Mode C

Abbildung 3.3: Funktionsweise des ROS Message Passing Systems

Informationen, die Knoten A sendet zu empfangen. Aulerdem bietet A einen Service s an,
welcher tiber einen Remote Procedure Call aufgerufen werden kann. Im Schaubild sendet C
einen solchen Aufruf mit den entsprechenden Messages an A und erhalt nach Ausfithrung

der Methode die jeweilige Response-Message zurtick.

3.3.3 Paketstruktur

An oberster Stelle der ROS Paketstruktur steht ein Workspace, in welchem die einzelnen
Komponenten zusammengefithrt werden. In diesem Workspace kénnen die einzelnen Packa-

18

3.4 Verwendete ROS Module

ges abgelegt werden. Packages enthalten die Software fiir die einzelnen Module. In ihnen
befinden sich die verschiedenen Knoten, die ROS-abhangigen Bibliotheken, Datensétze, Res-
sourcen und Konfigurationsdateien. Des Weiteren werden die Message- und Service-files im
Package abgelegt. Uber den Workspace konnen alle in ihm befindlichen Packages auf einmal
kompiliert werden. Hierbei werden auch die Messages und Services so erzeugt, dass sie dann
verwendbar gemacht werden.[ros15c]

3.4 Verwendete ROS Module

3.4.1 ar_track_alvar

Das Paket ar_track_alvar ist ein Wrapper fir die Software Bibliothek ,ALVAR®, welche
dazu gemacht wurde, um virtuelle und augmented Reality Anwendungen zu erstellen. Es
beinhaltet eine Vielzahl an Funktionen. Fiir die Anwendung am PR2 ist aber hauptséachlich
die Markererkennung wichtig. Hierfiir bietet ,ALVAR" die Moglichkeit eine sehr genaue
Marker Pose zuriickzugeben. Mit ar_track_alvar kann genau diese Funktion auf dem PR2
oder mit jeder anderen ROS-fahigen Kamera genutzt werden. Hierzu muss lediglich ein
Jaunch-file gestartet werden. Wenn der Knoten des Paketes gestartet ist, wird ein Publisher
gestartet, der fiir jeden erkannten Marker dessen Position und Orientierung sowie seine ID
und andere Daten versendet. Von dieser Topic kénnen dann wiederum die Daten ausgelesen
werden, um eine genaue Position des Markers zu erhalten und zum Beispiel an diese zu
navigieren.[art15] [Fin15]

3.4.2 pr2_2dnav

Pr2_2dnav ist ein Paket, welches es dem PR2 erméglicht autonom durch eine Umgebung zu
navigieren. Hierzu kann das Paket mit oder ohne SLAM gestartet werden. SLAM steht fiir
~Simultaneous Localization and Mapping“ und beschreibt ein Verfahren, mit welchem ein
mobiler Roboter, wie der PR2, wihrend der Navigation eine Karte seiner Umgebung erstellen
und sich dann in dieser lokalisieren kann. Wird das Paket ohne SLAM gestartet muss ihm
eine Karte der Umgebung tibergeben werden.

Zur Navigation wird der sogenannte Navigation Stack verwendet. Uber diesen kann dem
Roboter eine Position innerhalb der Karte tibergeben werden, um dorthin zu navigieren.
Hierzu wird anhand der Karte ein globaler Plan erstellt, der den kiirzesten Weg zum Ziel
beschreibt. Zusatzlich wird noch ein lokaler Plan anhand der direkten Sensordaten des
Roboters erstellt, um zum Beispiel Hindernisse, die nicht auf der Karte erkennbar sind, zu
umfahren. Sollte das Hindernis nicht direkt umfahren werden kénnen, wird iiber den globalen
Plan ein anderer Weg gesucht.[2dn15]

19

3 Hintergrund zur praktischen Umsetzung

3.4.3 Motion Generation

Um Bewegungen des Roboters zu erzeugen wurde ein am MLR Institut entwickelter low-
level real-time Controller verwendet. Dieser lasst sich iiber ein high-level Action Interface,
welches in Python implementiert ist und dem Benutzer ermdoglicht Actions auszufiithren,
verwenden. Davon bietet es Verschiedene, welche angepasst werden konnen, um die ge-
wiinschten Aktionen auszufithren. Abgeleitet werden alle Actions von einer Activity. Einige
dieser abgeleiteten Activities sind schon gegeben, wie etwa eine ReachActivity, von welcher
wiederum eine reach_marker-Funktion erzeugt werden kann. Auflerdem konnen auch eigene
Activites erzeugt werden. Des Weiteren gibt es die Moglichkeit mehrere Aktionen zu einem
Plan zusammenzufassen. Hierzu gibt es einen ,with“-Teil, in dem Aktionen, die dauerhaft
bis zum Beendigen des Planes ausgefiihrt werden enthalten sind und einen ,plan®-Teil, in
welchem sich die nacheinander auszufithrenden Aktionen befinden. Im ,plan“-Teil konnen
aulerdem Tupel erzeugt werden, die gleichzeitig ausgefiithrt werden. Nach Beendigung der
letzten Aktion im ,plan®-Teil wird der ganze Plan, also auch der ,with“-Teil, beendet.

20

4 Simulation

4.1 Simulierte Welt

Die ,Simulierte Welt” wurde in Python implementiert, um den PULSE-Algorithmus[LT15] zu
testen und die Perfomanz verschiedener Strategien, zur Wahl der Aktionen, zu vergleichen.
Sie soll moglichst die realen Bedingungen simulieren. In der ,Simulierten Welt* kénnen
deshalb dquivalent zum realen Versuchsaufbau mehrere ,Knopfe“ und ,Tiren“ erzeugt
werden. Diese werden dann zufallig miteinander verlinkt, sodass jedem Knopf entweder eine
zu 6ffnende Tiire zugewiesen wird oder auch keine. Auflerdem wird zufallig bestimmt fiir
wie viele Zeitschritte die Tiir gedffnet bleibt.

In Abbildung 4.1 ist das UML-Diagramm zur ,Simulierten Welt® visualisiert. Um eine Obser-
vation zu starten, muss zuerst ein Objekt der Klasse Observation erzeugt werden. Auflerdem
muss ein Environment erzeugt werden, welchem tibergeben wird, wie viele Knopfe und Tiiren
sich in der Simulation befinden sollen. Anhand von diesen Zahlen werden dann die Knopfe
und Tiren generiert. Dabei wird den Knépfen zufallig eine oder auch keine Tiir zugewiesen,
welche sie dann durch Aufruf der Methode ,push_button()” fir eine ihnen ebenfalls zufillig
zugewiesen Zeitraum 6ffnen. Auflerdem wird ein Objekt der Klasse Strategy erzeugt, dem die
Liste der Knopfe und der Tiiren iibergeben wird. Zum Starten der eigentlichen Observation
muss die Methode ,observe” mit einem Parameter, welcher die zu benutzende Strategie und
die Menge der zu observierenden Zeitschritte festlegt, aufgerufen werden. Nun wird fiir den
festgelegten Zeitraum in jedem Schritt, je nach Strategie, entweder ein Knopf gedriickt oder
eine Tur geoffnet. Es wird dabei ein 3-Tupel der ausgefiihrten Aktion, der resultierenden
Beobachtung und dem Reward, welcher nur durch Offnen der Tiir erhalten wird, in die Liste
der gesammelten Daten gespeichert. Da die Observationen in beschriebenem Fall irrelevant
sind, wird fiir diese immer eine Null in die gesammelten Daten geschrieben.

21

4 Simulation

<crzeugt button no wviele

erzeugt door no vielew

Button

+name: String
+door: Door = None : : Door

: 0...1 werden von Environment werlink "
+counter: int = None +name: String
+index: int +index: int
+ init (name:String,index:int) +locked: Boolean = Trug
+step()
+add_door_to_unlock{door:Door,duration:intf)
+push_buttoen()

Strategy
+buttons: Environment.buttons
+doors: Environment.doors

+_init__ (environment:Environment

Environment

+buttons: []

+randemly choose button()
+randemly_choose_door ()
+use_alternating_randem_strat()

doors: []

+__init_ (butten_no:int,door_no:int
+print_actions()

+use_random_strat()
+door_more_often()

Observation

+env: Environment(button no, door no
+time_steps: int

+observations: []

+data: []

+strategy: Strategy(env)

+_ init__(time_steps:int)

+observe (use_strategy:String)
+print_observation()

Abbildung 4.1: UML Diagramm der Simulierten Welt

4.1.1 Strategien

Folgende Strategien wurden zum Testen implementiert:

Random In jedem Schritt soll eine zufallige Aktion gewiahlt werden. Es ist dabei egal, ob
es sich um das Driicken eines Knopfes oder das Offnen der Tiir handelt.

AlterningRandom Hierbei wird immer abwechselnd ein Knopf gedriickt und dann pro-

biert eine Tir zu 6ffnen.

TwoButtons Es werden immer zwei Knopfe gedriickt und dann probiert eine Tiir zu

offnen.

NoDoubleUsage Die Aktionen werden wie bei der Random-Strategie gewahlt, jedoch
wird der gedriickte Knopf aus der Liste geloscht, um zuerst alle anderen Kndpfe zu driicken.
Ist kein Knopf mehr verfiigbar, werden wieder alle zur Liste hinzugefiigt.

22

4.2 Evaluation

DoorMoreOften Hierbei werden die Aktionen ebenfalls zufallig gewahlt. Jedoch ist die
Chance, die Tiir zu probieren, zehnmal so wahrscheinlich als Knopfe zu driicken.

4.2 Evaluation

Zur Evaluation des Algorithmus, in Verbindung mit den fiinf zuvor genannten Strategien zum
Sammeln der Testdaten, wurden qualitative und quantitative Tests durchgefiihrt. Mit deren
Ergebnissen soll tiberpriift werden, ob der Algorithmus tiberhaupt fiir eine solche Anwendung
geeignet beziehungsweise sinnvoll ist. Zugleich soll die ,beste” Strategie bestimmt werden,
welche dann auf dem PR2 zu verwenden ist.

4.2.1 Qualitative Analyse

Zur qualitativen Auswertung wurden fiir die verschiedenen Anséatze jeweils Testdaten in
der gleichen Grofle erzeugt, welche dann an den Algorithmus tibergeben wurden, um mit
Hilfe von ihnen die Features zu erlernen. Im Anschluss wurde fiir jede Strategie tiberpriift
ob die relevanten Features vorhanden sind und wie schwer diese gewichtet sind. Zugleich
sollen die Ergebnisse der einzelnen Strategien miteinander verglichen werden, um so ein
Fazit ziehen zu konnen.

Erlauterung der Features Die Features sind immer gleich aufgebaut:
idx weight basis-features

Hierbei beschreibt die idx eine eindeutige Kennung des jeweiligen Features. Das Gewicht
bezeichnet die Aussagekraft des Features: Je hoher desto wahrscheinlicher. Die Basis-Features
zeigen wie die jeweiligen Features zusammen gesetzt sind. Sind die Gewichte negativ, ist
ein Feature unwahrscheinlich. Alle Features treten immer paarweise mit positivem und
negativem Gewicht auf.

Als Beispiel fiir diesen Fall:
idx weight basis-features

13 -11.1503 (1, -7) A r(0, 0)
14 111503 (1,-7) A x(1, 0)

23

4 Simulation

Hierbei bedeutet Feature 13 in etwa: ,Es ist eher unwahrscheinlich, dass wenn Aktion eins
vor sieben Zeitschritten gew#hlt wurde, kein Reward erhalten wurde.”

Feature 14 hingegen wire andersherum gesagt: ,Es ist eher wahrscheinlich, dass wenn Aktion
eins vor sieben Zeitschritten gewahlt wurde, ein Reward erhalten wurde.”

Auflerdem ist zu beachten, dass fiir den hier betrachteten Fall paarweise Features ausreichend
sind, da es nur einen direkten temporalen Zusammenhang zwischen Knopf und Tiir gibt.
Des Weiteren kann auf die Observationen verzichtet werden, da diese gleichbedeutend mit
den Rewards sind. Geht die Tiir auf? — Ja — Reward = 1 — Nein — Reward = 0.

Beim Vergleich der Features reicht es nur die Features mit positiven Gewichten zu betrachten,
da die Aussage beider Features die Gleiche ist.

Beispiel Auswertung In Abbildung 4.2 ist ein beispielhafter Vergleich der gelernten
Featuresets zu sehen. Fiir diesen Vergleich wurde fiir jede Strategie ein Trainingsdatensatz
der Grofie 1000 erzeugt und anschlieffend die resultierenden Features ausgegeben und
gefiltert, um alle Features, welche ein zu geringes Gewicht haben, aus der Auswertung
auszuschlieflen.

Wie dieses Beispiel zeigt, wurden die relevanten Features in unterschiedlichen Farben her-
vorgehoben. ,Wahre” Features sind dunkelgriin markiert, Features die richtig sind aber zu
einem zu spaten Zeitschritt entdeckt wurden sind hellgriin, wéhrend falsche Features rot
sind. Die gelbe Markierung beschreibt die notwendige Aktion, also das Offnen der Tiir zum
Zeitschritt null, da ansonsten kein Reward erhalten werden kann. Wie zu sehen ist, hat die
TwoButton Strategie in diesem Fall am Schlechtesten abgeschnitten, da nur ein falsches
Feature gelernt wurde. Danach kommt die AlterningRandom Strategie, die eines der Features
zu spat entdeckt hat und ein génzlich falsches beinhaltet. Die Random policy hat zwar keine
falschen Features, aber auch hier wurde eines der Features zu spat entdeckt. Die NoDoubleU-
sage und DoorMoreOften Strategien haben die Features richtig entdeckt. Jedoch benétigt die
DoorMoreOften Strategie dazu weniger Features, was bedeutet, dass diese das beste Ergebnis
erzielt hat.

24

4.2 Evaluation

dx |weight | weight basis-features... idx |weight| weight basis-features... idx |weight| welight basis-features...
5 368.441 368.441 a(1, -8) " r{0, 0)

5 107.98 107.968 a(4,-9) * r(0, 0) 3 385.032 385.032 a(1,-8) ~ r{0, 0)
8 253.673 253.673 a(4,-8) " r(1,0) 9 272426 272.426 a(3,-8) * r{0, 0) 5 123.855 123.855 a(4, -8) * r(0, 0)
w0 OGRS SER A,)l @) 11 280622 280.622 a4, -8) A {0, 0) 7 39.501 39.501 a(1,-7) * (0, 0)
E iggzz‘; ig:;:‘; 3‘3";’2“3'3’ 14 111926 111.926 a(2,-7) *r{1,0) 9 123.997 123.997 al4,-7) * (0, 0)
1 seacoe aeecon :;4::6;ﬁ:1:0; 19 379.774 379.774 a(1, -6) * {0, 0) 12 685.095 685.095 a(4, -6) ~ r(1, 0)
22 743126 743.126 a(2,-6) “r(1,0) 13 638667 638.667 a(3,-5) " r(0,0)
20 461554 461854 a(2,-5) Ar(1, 0) 23 382123 382.123 a(3,-6) ~ {0, 0) 15 123527 123.527 a(4,-5) * (0, 0)
21 546.607 546.607 a(3,-5) " r(0, 0) 25 343.457 343.457 a(4, -6) " r{0, 0) 17 614.867 514.867 a(3, -4) " r(0, 0)
23 110713 110.713 a(4,-5) A r{0, 0) 30 876.228 876.228 a(2,-5) ~ r{1,0) 19 135062 135.062 a(d,-4) A r(0, 0)
26 255.882 255.882 a(4, -4) A r(1, 0) 31 800.787 800.787 a(3, -5) ~ r{0, D) 24 719.108 719.108 a(4,-3) ~r(1,0)
28 472.117 472117 a(1,-3) A ¥(1,0) 33 828.296 828.296 al4, -5) * r{0, 0} 27 640.356 640.356 a(3,-2) " r(0, 0)
30 385.976 385.976 a(2,-3) A r(1,0) 38 331.518 331.918 a(2,-4) *r{1,0) 29 14.583 14.593 a(4,-2) ~ (0, 0)
31 539.839 539.839 a(3,-3) " r(0, 0) 39 573.558 573.558 a(3, -4) A r{0, 0) 31 653.244 653.244 a(3,-1) ~r(0,0)
33 115623 115.623 a(4,-3)*r(0,0) 41 637.845 637.845 a(4, -4) * r{0, 0) 33 160.743 160.743 al4,-1) ~ (0, 0)
38 259.561 259.561 a(4,-2) *r(1, 0) 44 12.975 12.975 a(1,-3) ~ r{1,0) 35 281.625 281.625 a(1,0) * r(0, 0)
40 49.052 43.052 a(1,-1) * r(1, 0) 46 314.688 314.688 a(2, -3) A r{1,0) 37 283337 283.337 a(2,0) r(0, 0)
42 50.503 50.503 a(2,-1) : r(1,0) 47 626.518 626.518 a(3,-3) ~ r{0, 0) 42 106.311 106.311 a(4, 0) ~ r(1, 0}
:: iii;i iji;f :SHASEE; 49 595.496 595.496 a(4,-3) * r{0, 0) 45 137.233 137.2331(0,0)
47 26.824 26.824 2(2, 0) * 1(0, 0) 52 361023 361.023 a(1,-2) “r(L, 0}

55 571.257 571.257 a(3,-2) ~ r(0, 0)

57 581.863 581.863 afd, -2) A (0, O}

60 820597 820.597 a{1,-1) A r(1,0)

63 768.303 768.303 a(3, -1) ~r(0, 0)

65 779.052 779.052 a(4, -1) ~r(0, 0)

67 120.939 120.939 a(1, 0) ~ r(0, 0)

89 681908 681.908 a(2,0) A (0, 0)

idx |weight| weight basisfeatures... 72 470.337 470.337 a(a,0) A r(1,0) idx |weight| weight basis-features...
1 150.888 150.888 a(1,-9) ~r{0, 0) 1 121.537 121.537 a(1,-9) ~ r{0, 0)
3 290621 290.621 a(2,-8) A r{0, 0)

50 312.999 312.999 a(4,0) ~r(1,0)

7 107.763 107.763 a(4,-8) ~ (0, 0)

9 300.871 300.871 a(4, -8) ~ r{0, 0) 10 106.964 106.964 a(2,-7) * r{1,0)
1 299915 299,915 a(1,-7) A {0, 0) 11 172571 172.571 a(4,-7) ~ {0, 0)
14 982083 982.083 a(2,-7) “r{1,0) 14 956717 956.717 a(2,-6) * r(1,0)
15 236.125 236.125 a(4, -7) A r{0, 0) 15 223.700 223.709 a(4,-6) * r{0, 0)
20 166.012 166.012 a(2, -6) A r{1,0)

22 165.088 165.088 a(4, -6) A r{1, 0) 20 934.227 934.227 a(2,-5) * r{1,0)

21 44127 44.127 a(3,-5)*r(0,0)

26 75.991 75.991 a(2, -5) A r(1, 0) 23 433.684 433.684 a(4, -5) * {0, 0)
27 957.405 957.405 a(3,-5) ~ (0, 0) 26 959.968 959.968 a(1, -4) A r{1,0)
29 567.849 567.849 a(4, -5) r{0, 0) 28 943.018 943.018 a(2, -4) A r(1,0)
32 162.717 162.717 a(1, -4) A r(1,0) 29 631.436 631.436 a(3,-4) {0, 0)
34 955.406 955.406 a(2, -4) * r(1, 0) 31 392.637 392.637 a(4,-4) r{0, 0)
35 100.196 100.196 a(3, -4) A {0, 0) 34 798.916 798.916 a(1,-3) A r{1,0)
37 712.336 712.336 a(4, -4) A {0, 0) 36 838.813 838.813 a(2,-3) * r{1,0)
40 417.572 417,572 a(1,-3) A (1, 0) 37 508.937 608.937 a(3,-3) r{0, 0)
42 605.334 605.334 a(2, -3) A r(1,0) 39 837.387 837.387 a(4,-3) ~ {0, 0)
43 101.675 101.675 a(3, -3) A r(0, 0) 42 821.036 821.036 a(1,-2) * r{1,0)
45 644.131 644.131 a(4, -3) A r{0, 0) 44 794.305 794.305 a(2,-2) r(1, 0)
48 476.057 476.057 a(1,-2) Ar(1, 0) 45 26.912 26.912 a(3,-2) * {0, 0)
50 321.473 321.473 a(2,-2) ~r{1,0) 47 623.291 623.291 a(4,-2) ~ r{0, 0)
51 665.086 665.086 a(3, -2) A r{0, 0) 50 119.933 119.933 a(1,-1) A r(1, 0)
53 789.445 789.445 a(4, -2) A {0, 0) 52 893.649 893.649 a(2,-1) *r(1,0)
56 541.222 541.222 a(1,-1) A r(1,0) 53 466.194 466.194 a(3,-1) ~ (0, 0)
58 22.801 22.891 a(2,-1) A r(1, 0) 55 672.689 672.689 a(4,-1) * r{0, 0)
59 684.835 684.835 a(3,-1) r(0, 0) 58 309.665 309.665 a(4,0) ~ r(1,0)
61 678.663 678.663 a(4, -1) A r(0, 0) 59 399.798 359.798 (0, 0)

63 66.864 66.864 a(1,0) * r(0, 0)
65 103.697 103.697 a(2, 0) ~ r(0, 0)
67 214.827 214.827 a(3, 0) ~ r(0, 0)
70 455756 455.756 a(4,0) A r(1,0)

Abbildung 4.2: Die gefilterten gelernten Featuresets der verschiedenen Strategien, v.L.n.r.: Al-
terningRandom, Random, TwoButton, NoDoubleUsage und DoorMoreOften.
Dunkelgriin sind die wirklich bendtigten Features, rot die falsch gelernten
Features, hellgriin richtig gelernte Features, welche aber zu einem zu spéten
Zeitpunkt gefunden wurden und gelb die notwendige Aktion um einen
Reward zu erhalten. In diesem Beispiel war die Umgebung wie folgt: Knopf
2 offnet die Tiir fiir acht Zeitschritte und Knopf 1 fiir finf Zeitschritte.

25

4 Simulation

Fazit Bei dem qualitativen Vergleich hat sich gezeigt, dass mit manchen der anfanglich
bedachten Strategien die wirklichen Aktionen nicht oder nur bedingt in den Features zu
finden waren. Dies begriindet sich dadurch, dass das Offnen der Tiir relativ selten probiert
wird. Bei der Random Strategie wird die Tiir beispielsweise durchschnittlich nur jedes vierte
Mal ausgewdhlt, das bedeutet, dass wenn zuerst alle Knopfe gedriickt werden die Tiir auf
jeden Fall geoffnet werden kann. Dies fihrt dazu, dass die ,wirklichen® Features zum Teil
gar nicht gelernt werden konnen, da der Zusammenhang nicht aus den Trainingsdaten
hervorgeht. Trotzdem waren bei der gewéhlten Trainingsdatengro3e von 1000 die Ergebnisse
bei allen Policies relativ gut. Am Schlechtesten schnitten AlterningRandom und TwoButtons
ab, da bei diesen Strategien immer nur in geraden Schritten beziehungsweise in jedem
dritten Schritt die Tiir ge6ffnet wird, somit konnen manche Features also nie getestet werden.
Wenn Knopf 2 die Tir beispielsweise fiir zwei Zeitschritte 6ffnet, wird das Feature mit
AlterningRandom nie ermittelt werden konnen, da im ungeraden Zeitschritt der Knopf
gedriickt wird und im Geraden die Tiir ge6ffnet wird. Dies bedeutet, dass nur eine temporale
Abhéngigkeit von einem Zeitschritt gezeigt werden kann. Die gelernten Featuresets der
anderen Strategien enthielten die Ergebnisse meist, am Zuverlassigsten war jedoch die
Strategie DoorMoreOften.

4.2.2 Quantitative Analyse

Zum quantitativen Vergleich sollten die Durchschnittswahrscheinlichkeiten (,mean like-
lihoods®) der mit Hilfe der Strategien erzeugten Modelle verglichen werden. Dazu wurden
fiir jede Strategie in mehreren Iterationen jeweils Trainingsdaten der Groéflen 25, 50, 100, 250,
500 und 1000 gesammelt und innerhalb jeder Iteration fiir jede der Gré3en ein Modell gelernt.
Mit diesem Modell wurde dann jeweils zehnmal die mean-likelihood auf einem Testdatensatz
der Grofie 1000, welcher zufillig erstellt wird, berechnet und von diesen zehn Durchlaufen
der Durchschnitt bestimmt. Danach wurden die Daten abgespeichert, um diese zum Erstellen
verschiedener Plots zu benutzen.

26

4.2 Evaluation

Algorithmus 4.1 Pseudocode zur Veranschaulichung des Datensammelprozess

generate environment
for all policies do
for set_size in [25, 50, 100, 250, 500, 1000] do
generate traindata with policy and set_size
setup model of PULSE
fit data
tune the weights
fornin 1..10 do
generate testdata
likelihood += mean_likelihood of model
end for
mean = likelihood/10
append run_no, set_size, mean and the policy to file
end for
end for

27

4 Simulation

Vergleich der Strategien

10 . —
08
0.6
o
]
Is]
=
T
=
04
policy
0.2 —— alternating random
——— random
—— use_twobutton_strat
—— no_double_usage_random_strat
door_more_often
0.0
200 400 600 800 1000
set_size

Abbildung 4.3: Plot mit einer Umgebung in der eine der Aktionen die Tiir fiir 5 Zeitschritte
offnet.

Wie Abbildung 4.3 visualisiert, kommt die DoorMoreOften-Strategie mit kleineren Featuresets
schon zu einem guten Ergebnis. Dies begriindet sich dadurch, dass bei dieser Strategie
zehnmal so oft die Tiir geoffnet als ein Knopf gedriickt wird. Somit kann viel genauer
bestimmt werden, wie lange eine Tir nach Driicken eines Knopfes wirklich gedftnet ist.

Die Strategien NoDoubleUsage und Random kommen mit einem Datensatz der grof3 genug
ist auch zu einem sehr guten Ergebnis.

Lediglich AlterningRandom sowie die TwoButtonStrat fithren zu weniger guten Ergebnissen,
was auf die schon bereits beschriebenen Eigenschaften dieser Strategien zuriickzufithren
ist.

Das teilweise vorkommende Abfallen der Werte bei grofieren Datensatze erklart sich dadurch,
dass bei den kleinen Datensatze die bendtigten Features gar nicht vorhanden sind und
die Vorhersage somit zu einem besseren Wert kommen kann, als wenn mehrere Features

28

4.2 Evaluation

vorhanden sind. Auflerdem ist zu beachten, dass teilweise auch die Qualitdt der zufillig
ermittelten Trainings- sowie Testdaten zu schlechteren Ergebnissen fithren kann.

1.0

likelihood

pelicy

— alternating ran

= random

—— use_twobutton_strat

—— no_double_usage_random_strat
door_more_often

600 800 1000

set_size

0.8

06

folicy

o —— alternating random
2 —— random
% —— use_twobutton_strat
= —— no_double_usage_random_strat
0.4 door_more_often
0.2
o Wy ——— = :
200 400 600 800 1000
set_size

Abbildung 4.4: Weitere Ablaufe mit anderen Umgebungen: Oben je ein Knopf fiir 5 und 2
Zeitschritte. Unten fiir je 5 und 7 Zeitschritte.

29

5 Umsetzung auf dem PR2

In diesem Kapitel wird beschrieben wie das bisher erarbeitete auf dem PR2 umgesetzt
wurde.

5.1 Anforderungen

Um die beschriebene Aufgabe bewaltigen zu konnen muss der PR2 zu Folgendem in der Lage
sein:

1. Erkennen der Knopfe sowie der Tirklinke
2. Erreichen der Knopfe und Tir

3. Driicken der Knopfe

4. Offnen der Tir

5. Validierung seiner Aktionen

5.2 Umsetzung

5.2.1 Perzeption

Fiir die Perzeption wurde das in Abschnitt 3.4 vorgestellte ar_track_alvar-Paket verwendet.
Wie bereits beschrieben, wurden zur Erleichterung des Aufbaus statt Knopfen lediglich
Marker verwendet. Dies lasst sich dadurch begriinden, da die Erkennung der Marker im
Vergleich zu anderen Perzeptionsmethoden aufierordentlich gut funktioniert und somit fiir
einen Ablauf, der so robust wie moglich funktionieren soll, die beste Moglichkeit darstellt.
Des Weiteren wird die Position der Marker sehr genau bestimmt, wodurch es lediglich
geringe Abweichungen gibt. Zur Erkennung der Tirklinke wurde ein kleiner Marker an
dieser angebracht.

31

5 Umsetzung auf dem PR2

5.2.2 Navigation

Eigentlich sollte fiir die Navigation das in Abschnitt 3.4 beschriebene Paket pr2_2dnav
verwendet werden, da dieses eine Hinderniserkennung sowie einen lokalen und globalen
Planer zur Verfiigung stellt. Somit kann die Navigation im Raum selbst mit vorhandenen
Hindernissen erfolgen. Leider gab es Probleme bei der Verwendung mit pr2_2dnav und dem
verwendeten Controller. Bei diesem werden fiir jedes nicht angesteuerte Gelenk, die Motoren
deaktiviert. Dies fiithrt beispielswiese dazu, dass die Arme sich lose bewegen. Eigentlich stellt
dies fiir die tatsachliche Navigation kein Problem dar, da nur die Rader angesteuert werden
missen wenn die Arme, aufgrund dessen, dass sie sich lose bewegen, jedoch in das Sichtfeld
des Laserscanners kommen, so erkennt der PR2 diese als mogliches Hindernis, was wiederum
dazu fiihrt, dass er beginnt einen Plan zu erstellen um dieses ,Hindernis“ zu umfahren.
Offensichtlicherweise ist es ihm aber unmdéglich seine eigenen Arme zu umfahren, was dazu
fuhrt, dass sich der PR2 um sich selbst dreht. Dieses Problem lasst sich auch nicht durch
ansteuern der Armgelenke tiber das Controllerinterface 16sen, da der Controller dann alle
anderen Gelenke blockiert. Dies fithrt dazu, dass pr2_2dnav die Réader nicht mehr ansteuern
kann und der Roboter auf der Stelle stehen bleibt.

Daher wurde auf die Hinderniserkennung verzichtet und fiir die Navigation direkt das
Actioninterface verwendet. Dies ist jedoch kein grofies Problem, da der PR2 zur Sammlung
der Daten fiir den Algorithmus, keine groflen Strecken zuriicklegen muss. Er muss lediglich
zu einer Startposition, dann entweder zu einem Knopf oder der Tiir und anschlieSend wieder
zurlick zur Startposition navigieren. Die Startposition ist dabei eine fest definierte Stelle, die
fiir jeden Durchlauf gleich ist.

Das Navigieren zu den Knopfen beziehungsweise der Tiir wird anhand der Positionsdaten,
die das ar_track_alvar-Paket zur Verfiigung stellt, durchgefithrt. Der PR2 positioniert sich
dadurch direkt vor dem entsprechenden Marker in einem Abstand von einem halben Meter.

5.2.3 Dricken der Knopfe

Nachdem sich der PR2 von seiner Startposition zu dem entsprechenden Knopf bewegt hat
und in seiner Grundposition einen halben Meter vor diesem steht, beginnt er den Knopf zu
driicken. Hierzu wird iiber den verwendeten Controller eine Aktivitat gestartet, bei welcher
der PR2 seinen rechten Endeffektor relativ zu der Markerposition an der Wand ausrichtet
und diesen dann mit der Spitze des Endeffektors beriihrt.

Wie bereits beschrieben, befindet sich an der Spitze ein sogenannter Force-Torque-Sensor,
welcher beim Uberschreiten eines Thresholdes ein Signal zuriick gibt. Eigentlich sollte dieser
verwendet werden, um beim Erhalten des Signals die Aktion des Knopfdrucks zu beenden
und zu speichern, dass dieser erfolgreich war. Falls das Signal nicht empfangen wird, so wird
nichts gespeichert und die nachste Aktion beginnt.

32

5.2 Umsetzung

Da es Probleme mit dem Sensor gab, wurde entschieden auf das Validieren der Aktion zu
verzichten und davon auszugehen, dass der Knopfdruck immer erfolgreich ist.

Nach dem Ausfithren des Knopfdrucks nimmt der Roboter wieder die Grundposition ein und
bewegt sich in dieser zuriick zur Startposition.

5.2.4 Tur offnen

Abbildung 5.1: Ablauf des Offnens der Tiir

Analog zum Knopfdruck befindet sich der PR2 vor dem Offnen der Tiir in seiner Grund-
position einen halben Meter von der Tiurklinke entfernt (wie im ersten Bild zu sehen). Um
diese zu betatigen wird eine Folge von verschiedenen Aktionen ausgefiihrt. Der PR2 richtet
seinen linken Gripper mit einem Offset von 10 cm nach links und 5 cm nach vorn zur Tiir
aus und offnet den Gripper dabei. Dann richtet er ihn so aus, dass er die Klinke fast gerade
von vorn greifen kann und bewegt diesen dann 5cm nach vorn und schlief3t den Gripper
wieder. Im Normalfall, hat er die Klinke dann fest umschlossen. Um nun die Tir zu 6flnen
wird der Gripper viermal, immer abwechselnd um 10° gedreht und um einige Zentimeter
nach unten bewegt. Danach ,zieht“ der PR2 seinen Arm zu sich heran. Da die Tiir keinen
Schliefmechanismus hat, wird diese von Hand zugehalten. Dazu wird die Klinke nach oben
gedriickt, sodass sich diese, bei verschlossener Tiir, nicht nach unten bewegen lasst. Der
PR2 kann einen Kraftsensor in seinem Grippergelenk verwenden, um bei einem zu grof3en

33

5 Umsetzung auf dem PR2

Kraftaufwand seine Aktion abzubrechen. Sollte dieser Abbruch erfolgen, wird die Aktion mit
einem Reward von 0 gespeichert, ansonsten mit 1. Nachdem die Tiir ge6ffnet wurde oder ein
Abbruch erfolgt ist, wird der Gripper wieder gedftnet und der Arm nach hinten bewegt.

Da der PR2 kurz vor Abschluss der Arbeit einen Defekt hatte, konnte der Kraftsensor nicht
mehr in Gang gebracht werden, weshalb dieser Punkt zum Abschluss der Arbeit noch offen
steht.

Im Anschluss wird die Grundposition erneut eingenommen und wieder zur Startposition na-
vigiert. Falls die Tur geoffnet wurde, muss diese fiir den weiteren Verlauf des Datensammelns
wieder manuell geschlossen werden.

5.2.5 Ablauf

Tripel speichern:
. Ja Aktion
Navigation H Tir 6ffnen Observal tion [
Reward = 1
ein

a PULSE-Algorithmus
mit gesammel Iten

Tripel speichern:
o Aktion
Navigation H Knopf driicken }——' Observation

Reward = 0

Abbildung 5.2: Flussdiagramm zum Ablauf des Datensammelprozesses

In Abbildung 5.2 ist der Ablauf des Datensammelprozesses zu sehen. Der Roboter startet
aus der Startposition und wahlt dann anhand einer der zuvor definierten Strategien (vgl.
Kapitel 4) eine Aktion aus. Diese Aktion wird dann, wie bereits beschrieben, ausgefiihrt.
Nach dem Ausfithren werden das jeweilige Aktion-Observation-Reward-Tripel (A x O x R)
abgespeichert. Der ganze Ablauf wird fiir k-time-steps, die zu Beginn des Ablaufs festgelegt
werden, durchgefithrt. Nachdem k-Aktionen ausgefiithrt wurden, wird der Ablauf beendet und
die Daten an den PULSE-Algorithmus tibergeben, um mit Hilfe von diesem eine Vorhersage
tiber das Weltmodell zu erhalten.

5.2.6 Probleme mit dem PR2

Der grundsétzliche Ablauf des Ausfithrens von Aktionen funktioniert zum Zeitpunkt der
Abgabe dieser Arbeit relativ robust. Leider gab es jedoch Probleme mit den Force-Torque-
Sensoren zum Verifizieren der Aktionen.

34

5.2 Umsetzung

Deshalb wurde schon relativ frithzeitig auf das Verifizieren des Knopfdruckes verzichtet. Es
wire zwar fiir einen realitatsndheren Ablauf gut, spielt aber fiir den hier definierten keine
Rolle, da keine Rewards fiir das Driicken der Knopfe verteilt werden. Es reicht somit aus die
Aktion einfach als Solche zu speichern.

Beim Offnen der Tir wire diese Verifikation wichtig gewesen. Daher wurden hierbei ver-
schiedene Ansitze getestet, um auch ohne die Sensoren auszukommen. Da der PR2 aber in
den letzten Wochen vor Abschluss dieser Arbeit nicht mehr funktionstiichtig war, konnten
weder die Sensoren in Gang gebracht werden, noch konnten andere Ansétze getestet und
umgesetzt werden. Somit bleibt der Punkt zur Verifikation der Aktionen auch nach Abschluss
dieser Arbeit offen.

Ungliicklicherweise wurden, als der PR2 noch funktionstiichtig war, lediglich kleinere Funkti-
onstests durchgefiihrt, was bedeutet, dass der Algorithmus nie auf mit dem PR2 gesammelten
Daten ausgefithrt wurde. Diese Experimente sollten erst durchgefithrt werden, wenn entwe-
der klar gewesen wire, dass die Verifikation nicht mehr umsetzbar ist oder diese funktionieren
wiirde.

Da der PR2 jedoch zu diesem Zeitpunkt bereits nicht mehr verwendbar war, konnten die
wirklichen Tests und Experimente in Verbindung mit dem Algorithmus nicht mehr ausgefiihrt
werden.

35

6 Zusammenfassung und Ausblick

Zu Beginn dieser Arbeit wurde die Relevanz und das Ziel dieser Arbeit beschrieben sowie
ahnliche Ansatze im Kontext der Robotik beleuchtet. Anschliefend wurde zunachst der notige
theoretische Hintergrund geschaffen, um die Funktionsweise des angewendeten Algorithmus
verstehen zu konnen. Hierbei wurde Basiswissen zum Thema Reinforcement Learning
und Markov Prozesse vorgestellt und zuletzt die Funktionsweise des PULSE Algorithmus
beschrieben.

Nachdem der theoretische Hintergrund dargelegt wurde, wurde Hintergrundwissen zur
praktischen Umsetzung erlautert. Der PR2 und das Robot Operating System (ROS) wurden
vorgestellt und Funktionsweisen erklart. Zudem wurden die relevanten, zusatzlich verwen-
deten Pakete vorgestellt.

Im praktischen Teil der Bachelorarbeit wurde zuerst die entwickelte Simulationsumgebung
beschrieben, mit Hilfe welcher sowohl Trainings- als auch Testdaten zur Uberprifung des
PULSE-Algorithmus mit verschiedenen Strategien und Datensatzen fiir die verwendete Um-
gebung gesammelt wurden. Mit diesen wurde sowohl ein qualitativer als auch quantitativer
Vergleich der verschiedenen Ansitze vollzogen und aufgezeigt, inwiefern sich diese zur
Verwendung eignen.

Im letzten Kapitel der Arbeit wurden zunéchst die Anforderungen, die der entwickelte Ablauf
auf dem PR2 erfiillen muss aufgezeigt und anhand von diesen die praktische Umsetzung auf
dem PR2 beschrieben. Wie am Ende des Kapitels beschrieben, konnten aufgrund verschie-
dener Probleme nicht alle Anforderungen erfiillt werden und wegen eines Defekts am PR2
auch keine praktischen Testdurchldufe durchgefiihrt werden. Trotzdem konnte mit Hilfe
der Simulation aufgezeigt werden, dass der PULSE-Algorithmus zum Losen des definierten
Problems geeignet ist und auch eine relativ gute Perfomanz mit sich bringt. Auch der Ablauf
auf dem PR2 konnte umgesetzt werden, lediglich die offenen Punkte zur Validierung der
Daten sind offen geblieben. Des Weiteren stehen auch noch wirkliche Testldufe aus, jedoch
konnte in kleineren Tests schon aufgezeigt werden, dass die Funktionsweise des PR2 zum
Ausfithren der Aktionen gegeben ist, was bedeutet, dass auch die praktischen Durchlaufe
zum Sammeln von Trainingsdaten kein Problem darstellen diirften.

37

Ausblick

Mit funktionierenden Force-Torque-Sensoren wére der PR2 in der Lage seine Aktionen zu
validieren. Somit wire der nachste Schritt, diese Sensoren in Gang zu bringen um die Daten
wirklich autonom sammeln zu kdnnen.

Ein weiterer Schritt ware die Verwendung vom beschriebenen pr2_2dnav Paket in Verbindung
mit dem MLR Controller umzusetzen, um eine robuste Navigation gewéhrleisten zu kénnen
und es dem PR2 zu ermdglichen, sich autonom in einer unbekannten Umgebung bewegen zu
konnen. Wenn diese Schritte erreicht sind, wire die nichste sinnvolle Weiterentwicklung
komplett auf Marker zu verzichten und die Perzeption mit Hilfe von anderen Paketen, die
zum Beispiel Knopfe und die Tirklinke auf eine andere Art erkennen kénnen, umzusetzen.
Sollte dies funktionieren, konnte der PR2 in komplett unbekannten Umgebungen eingesetzt
werden und es wire denkbar komplexere Aufgaben zu testen. Bei diesen Aufgaben konnte
jedoch der Rechenaufwand ein Problem darstellen, sodass das Lernen sehr lange dauern
konnte.

Auflerdem stellt sich die Frage, ob es sinnvoll ist ein Weltmodell mit Hilfe von POMDPs
und Reinforcement Learning zu erlernen oder ob es fiir die meisten Anwendungen nicht
sinnvoller ist dem Roboter das ,Wissen® direkt mit auf den Weg zu geben, da der Aufwand die
Daten zu sammeln und auszuwerten enorm sein kann. Es gibt auferdem viele einschrédnkende
Faktoren, wie zum Beispiel ungenaue Sensordaten und lange Rechenzeiten. Des Weiteren
miissen die Aktionen vorher fest definiert werden, sodass auch deren Abhangigkeit definiert
werden kann. Dies sollte kein Problem darstellen, da die meisten Roboter in kleinen Doméanen
agieren.

Lediglich wenn die Aufgabe des Roboters zum Beispiel das Verlassen eines Labyrinths,
welches jedes Mal eine andere Form annimmt, ist, ware der hier aufgezeigte Anwendungsfall
eine sinnvolle Methode diese Art von Aufgaben zu l6sen.

Abbildungsverzeichnis

2.1
2.2

3.1
3.2
3.3

4.1
4.2
4.3
4.4

5.1
5.2

Beispiel Markov Kette mit drei Zustanden 8
Beispiel Markov Decision Process mit 3 Zustdnden und 2 Aktionen 10
Versuchsaufbauund PR2o oo 16
Beispiel Verbindungsaufbau zwischen ROS Knoten 18
Funktionsweise des ROS Message Passing Systems 18
UML Diagramm der Simulierten Welt 22
Qualitative Auswertung oo 25
Qualitativer Vergleich o oo 28
Qualitativer VergleichIT. 29
Ablauf des Offnensder Tur 33
Flussdiagramm zum Ablauf des Datensammelprozesses 34

Verzeichnis der Algorithmen

2.1

4.1

PULSE Algorithmus aus [LT15] 13

Pseudocode zur Veranschaulichung des Datensammelprozess 27

41

Literaturverzeichnis

[2dn15]

[art15]

[Fin15]

[KHLO0S]

[KLC98]

[LT15]

PR2_2dnav package ROS Wiki, 2015. URL http://wiki.ros.org/pr2_2dnav.
(Zitiert auf Seite 19)

AR Track Alvar on ROS Wiki, 2015. URL http://wiki.ros.org/ar_track_
alvar. (Zitiert auf Seite 19)

V. T.R. C. of Finland. ALVAR package description, 2015. URL http://virtual.
vtt.fi/virtual/proj2/multimedia/alvar/index.html. (Zitiert auf Seite 19)

H. Kurniawati, D. Hsu, W. S. Lee. SARSOP: Efficient Point-Based POMDP Planning
by Approximating Optimally Reachable Belief Spaces. 2008. (Zitiert auf Seite 3)

L. P. Kaelbling, M. L. Littman, A. R. Cassandra. Planning and acting in partially
observable stochastic domains. Artificial Intelligence 101 (1998) 99—-134, 1998.
(Zitiert auf Seite 10)

R. Lieck, M. Touissant. Discovering temporally extended features for reinforce-
ment learning in domains with delayed causalities. 2015. (Zitiert auf den Seiten 0,
2,12, 13, 21 und 41)

[PMP*03] J.Pineau, M. Montemerlo, M. Pollack, N. Roy, S. Thrun. Towards robotic assistants

[PR215]

[ros15a]

[ros15b]

[ros15c]

[ros15d]

in nursing homes: Challenges and results. Robotics and Autonomous Systems 42
(2003) 271-281, 2003. (Zitiert auf Seite 3)

Willow Garage PR2 Overview and Tech specs, 2015. URL https://www.
willowgarage.com/pages/pr2/overview. (Zitiert auf Seite 16)

About ROS page, 2015. URL http://www.ros.org/about-ros/. (Zitiert auf
Seite 17)

ROS core components, 2015. URL http://www.ros.org/core-components/.
(Zitiert auf Seite 17)

ROS Wiki: Concepts, 2015. URL http://wiki.ros.org/R0S/Concepts. (Zitiert
auf den Seiten 17 und 19)

ROS Wiki: Master, 2015. URL http://wiki.ros.org/Master. (Zitiert auf Sei-
te 17)

43

http://wiki.ros.org/pr2_2dnav
http://wiki.ros.org/ar_track_alvar
http://wiki.ros.org/ar_track_alvar
http://virtual.vtt.fi/virtual/proj2/multimedia/alvar/index.html
http://virtual.vtt.fi/virtual/proj2/multimedia/alvar/index.html
https://www.willowgarage.com/pages/pr2/overview
https://www.willowgarage.com/pages/pr2/overview
http://www.ros.org/about-ros/
http://www.ros.org/core-components/
http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/Master

Literaturverzeichnis

[SB9S]

[SV04]

[VT15]

R. S. Sutton, A. G. Barto. Reinforcement Learning: An Introduction. The MIT Press
Cambridge, Massachusetts London, England, 1998. (Zitiert auf den Seiten 5, 7, 9
und 11)

M. T. J. Spaan, N. Vlassis. A point-based POMDP algorithm for robot planning.
Proceedings of the 2004 IEEE International Conference on Robotics & Automation
New Orleans. LA Aprll2004, 2004. (Zitiert auf Seite 3)

N. A. Vien, M. Toussaint. POMDP Manipulation via Trajectory Optimization.
2015. (Zitiert auf Seite 3)

Alle URLs wurden zuletzt am 08. 11. 2015 gepriift.

44

Erklarung

Ich versichere, diese Arbeit selbststindig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wortlich oder sinngeméf} aus anderen Wer-
ken tibernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Priifungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollstandig
verdffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Motivation
	1.2 Ziel der Arbeit
	1.3 Gliederung
	1.4 Verwandte Arbeiten

	2 Theoretischer Hintergrund
	2.1 Reinforcement Learning
	2.2 Markov Prozesse
	2.2.1 Markov Eigenschaft
	2.2.2 Markov Kette
	2.2.3 Markov Decision Process
	2.2.4 Partially Observable Markov Decision Process

	2.3 TD Learning
	2.4 Regularization
	2.5 Feature Expansion
	2.6 Vorstellung PULSE Algorithmus
	2.6.1 Temporally extended features
	2.6.2 Der Algorithmus

	3 Hintergrund zur praktischen Umsetzung
	3.1 Versuchsaufbau
	3.2 PR2
	3.3 Robot Operating System
	3.3.1 Über ROS
	3.3.2 Funktionsweise
	3.3.3 Paketstruktur

	3.4 Verwendete ROS Module
	3.4.1 ar_track_alvar
	3.4.2 pr2_2dnav
	3.4.3 Motion Generation

	4 Simulation
	4.1 Simulierte Welt
	4.1.1 Strategien

	4.2 Evaluation
	4.2.1 Qualitative Analyse
	4.2.2 Quantitative Analyse

	5 Umsetzung auf dem PR2
	5.1 Anforderungen
	5.2 Umsetzung
	5.2.1 Perzeption
	5.2.2 Navigation
	5.2.3 Drücken der Knöpfe
	5.2.4 Tür öffnen
	5.2.5 Ablauf
	5.2.6 Probleme mit dem PR2

	6 Zusammenfassung und Ausblick
	Literaturverzeichnis

