Institut fur Softwaretechnologie

Universitat Stuttgart
Universitatsstrale 38

D-70569 Stuttgart

Bachelorarbeit Nr. 226

Automatisierte Transformation
von Daten aus Software
Repositories und ihre

Vorbereitung fur Data Mining

Simon Lehmann

Studiengang: Softwaretechnik

Prufer/in: Prof. Dr. rer. Nat. Stefan Wagner
Betreuer/in: M.Sc. Jasmin Ramadani

Beginn am: 4. Mai 2015

Beendet am: 3. November 2015

CR-Nummer: D.2.12, E.2

Kurzfassung

Bei dem Prozess der Softwareentwicklung werden viele verschiedene Dokumente und Daten
erstellt, die wichtig fur das Projekt sind, aber gleichzeitig nicht zu dem Programmcode
gehoren. Seien es die Arbeitspakete jedes einzelnen Entwicklers, die Dokumentationen zur
Einarbeitung in einzelne Themengebiete und Testfélle oder auch Metadaten der
Versionsverwaltung. Diese Daten sollen eingelesen, verarbeitet und in eine Datenbank
gespeichert werden, damit sie danach analysiert und ausgewertet werden konnen. Der
Prozess der Transformation soll mithilfe von Datenstromen durchgefuhrt werden, ohne dass

weitere Dateien erstellt werden kénnen.

Im Rahmen dieser Bachelorarbeit wurde ein Programm entwickelt, welches die Daten von
drei bestehenden Formaten erfasst, verarbeitet und abspeichert. Dazu wurde analysiert mit
welchem Verfahren die Transformationen durchgefiihrt wurden und wie der gewiinschte
Ablauf funktionieren sollte. Aus diesen Informationen ist ein Konzept fir das Programm

entstanden und aus diesem wurde die Software entwickelt wurde.

Das komplette Programm ist bisher fiir Datentransformation von Metadaten eines
Repositories und Datenformate wie CSV-Dateien konstruiert. Dabei werden alle
Transformationen in einer MySQL-Datenbank gespeichert. Ein wichtiger Aspekt des
Konzepts ist die Erweiterbarkeit. Es sollen noch weitere Formate transformiert werden

kénnen und deswegen muss das Programm leicht erweitert sein.

Abstract

In the process of software development many different documents and sets of data are
created. These are important for the project but at the same time do not belong in the
program code. This may be the work of each single developer or the documentation for
incorporation into individual topics and test cases or metadata of the software repository.
These sets of data should be read, processed and stored in a database so they can be
analyzed and evaluated. The process of transformation should be executed with data

streams without creating new files or other external data while the process is running.

In the context of this thesis a program was developed that captured, processed and stored
data out of three different formats. For this cause it was analyzed through which method
the transformation was executed and how the desired process had to work. With this
information a software concept was created and out of this the software itself was

developed.

The complete program was developed for the data transformation of metadata of a
repository and data format like CSV-files. With this all the transformations are stored in a
MySQL database. An important aspect of the plan is the extensibility. There are other
formats that should be transformed and because of that the software should be easy to

extend.

Inhaltsverzeichnis

L EINTEITUNG oot 7
1.1 IMIOTIVALION ...t bbbttt 7
1.2 AUTDau des DOKUMENTS........ccciiiiiiiireieiie e 8

2 GrUNAIAGEN ... et 9
P8 R 1 | m (=T o [0 1] | (o] Y2 SO P PP 9

2.1.1 SOftWAre-REPOSITONY ...ccueeviiieiieecie et e e nre e 9
0 I € 1| USSR 9
P O - - W 1Y, 101 1o OSSPSR 11
2.3 Entity-Relationship-MOdelccoooiiiiiiiiie s 11
2.4 MySQL-DAtenbanK.........c.coiuiiiiiiiieiie et 13
241 IDBC et nrae e 13

B AN AIY S i e a e e e et aaeae 15
3.1 ISt ZUSTANG. ...t 15
3.2 SOH ZUSEANM ... 15
3.3 Datenformate der Transformation............cocooveieieiiieienenseeeee s 16

331 COMMIT .ttt 16
3132 ISSUB et 17
3.3.3 DIOCU ...ttt 17

4 ENtWUIT UNA KONZEPT .oouiiii e e e e e e e e e e e eenes 19

A1 ATCRITEKEUN ... 19
4.1.1 Model-View-Controller KONZEPtccooovvieeiiiieiieie e 19
4.1.2 ErweiterbarkeitSKONZEPLEccvoiviiiiiiiiiiieeee e 21

4.2 DatenbankKONZEPLc..oiviiiiiiiiiieiis e 23

4.3 TransformationSKONZEPLc.eeiiieiie it 24
4.3.1 DatenerfaSSUNQccueiveirerieiieseeieseesieesieseesee e eseessaesseesaesseesseenaesneeseeensenns 24
4.3.2 DatenVerarbDeitungccccooeiiiiiiiieieese e 24
4.3.3 DatenspeIChEIUNGciieieiiece et 24
5 IMPIemMENTIEIUNG oo 27
5.1 BenutzeroberflaChe......... ..o 27
5.1.1 HaUPANSICNL.......viiiiiicece e 27
5.1.2 EINStellungSanSiCNL...........coviiiiiiiiiiiiieeeeee e 29
5.1.3 BenachriChtigUnQgeNncovi it 30
5.1.4 BenUIZDAIKEITocveiiiiiiiiciee e 33
5.2 Verwaltung der EinstellUngencocoiiiiiiiiiiicee s 37
5.3 TranSfOrMAatIONccviuiiiiiiiiee e 39
531 Commit-TranSformMation...........coociriiiriniinieiese e 39
5.3.2 Issue- und DOcCU-Transformaton............coceeeoireneiisienenescsee e 41
5.4 Datenlbertragung in die MySQL-Datenbank...........cccccervveveiiierieeresieseese e 43
ORIV =1 [To [T =T U o Yo PPN 45
6.1 PerOIMANZ......cuiiiiiiiiee ettt 45
7 ZUSAMMENTASSUNG ..iiiieeeiiiiiiiie e e ettt e e e e e e e e e e eeaneenne a7
T L FAZIT o 47

7.2 WEITEIE SCRITIE ... 48

1 Einleitung

In der Einleitung wird die Problemstellung dieser Arbeit aufgezeigt sowie der Aufbau dieses

Dokuments.

1.1 Motivation

Bei der Softwareentwicklung wird in den meisten Fallen eine Versionsverwaltung flr den
Prozess der Entwicklung bereitgestellt. Somit l&sst sich zu jedem Zeitpunkt auf eine alte oder
auch immer wieder auf die aktuelle Version der Software zugreifen. Damit ist gewahrleistet,
dass keine Daten sowie Dateien, die zu dem Projekt gehdren, verloren gehen konnen. Diese
Daten- und Versionsverwaltung nennt man ,,Repository*. Dariiber hinaus liegen in einem
Repository Metadaten, die Informationen enthalten, welche zeigen, zu welchem Zeitpunkt
der Entwickler die Dateien verandert hat. Jede Verdnderung der Daten bewirkt eine neue

Version der Software im Repository.

Diese Metadaten wurden bisher meist nur als Informationsquelle fur den Projektverlauf
benutzt. Dabei konnen diese Informationen mithilfe der richtigen Analysealgorithmen
Verlaufsinformationen und Problemfalle friihzeitig aufzeigen. Denn durch Verbindungen
zwischen Entwickler und Dateien und ihren mehrfache Veranderungen ist Kohéarenz

zwischen den Daten zu entdecken.

Far die Algorithmen miussen die Informationen vorbereitet und in eine Datenbank
transferiert werden. Hier beginnt die Aufgabe dieser Bachelorarbeit. Denn die Metadaten
sind bisher Rohdaten, die als Textdokument abgelegt sind. Es soll ein neues Programm
entwickelt werden, welches ohne Hilfe von Dateien die Informationen in eine Datenbank
iibertragen. Diese Informationen sind bisher ,,Commit“-Daten, wobei ein ,,Commit* eine
Anderung eines Entwicklers im Repository ist. Das gleicht , Issue“-Daten. Diese sind
Arbeitspakete eines jeden Entwicklers, welche unabhéngig von einem Repository in einer

Datei gespeichert sind. Als letztes sind es die Dokumentationsdaten, die, sowie die ,,Issue*-

1. Einleitung

Daten, in einer Datei gehalten werden. Das Programm sollte so konzipiert sein, dass aber

noch weitere Informationen in die Datenbank transformiert werden kdnnen.

1.2 Aufbau des Dokuments

Diese Arbeit ist folgendermafen gegliedert:

Kapitel 2 — Grundlagen: beschreibt den fachlichen Hintergrund der Arbeit

Kapitel 3 — Analyse: beschreibt den aktuellen und den gewiinschten Umgang mit den

Daten, sowie den Ablauf der Transformation
Kapitel 4 — Entwurf und Konzept: stellt die entworfenen Losungsansatze dar

Kapitel 5 — Implementierung: beschreibt die Umsetzung der Konzepte und wie diese

implementiert wurden
Kapitel 6 — Validierung: stellt die Laufzeitanalyse des Programms vor

Kapitel 7 — Zusammenfassung: beschreibt die gewonnenen Ergebnisse sowie die

mogliche Weiterentwicklung

2 Grundlagen

Um alle Aspekte dieser Arbeit zu verstehen, mussen einige Begrifflichkeiten geklart werden.

Diese werden im Folgenden beschrieben, um eine Grundlage fir die Arbeit zu schaffen.

2.1 Git-Repository

,,Git“-Repositories sind Software-Repositories die mit dem Programm ,,Git* erstellt wurden.
Damit geklart wird, was ein Repository ist und was ,,Git“ von anderen Versionsverwaltungen

unterscheidet, werden beide Punkte naher erlautert.

2.1.1 Software-Repository

Ein Repository ist eine Versionsverwaltung flr ein Software-Projekt. Darin wird jede
Anderung bei der Entwicklung eines Programms festgehalten. Bei einer Anderung, welche
in einem Repository als ,,Commit* bezeichnet wird, werden zusitzlich zu den verdnderten
neuen Dateien der Name des Entwicklers, welcher die neuen Dateien einpflegt, das Datum,
eine Anmerkung zu der Anderung, sowie eine Identifikationsnummer fir den neuen

,»Commit* gespeichert.

Der Vorteil einer Versionierung von Softwarestédnden ist, dass jederzeit auf einen <eren
Zustand des Programms zugegriffen werden kann. Dabei koénnen auch gleichzeitig
unterschiedliche Varianten einer Version entwickelt und spéter wieder zusammengefihrt
werden. Das ganze bringt grof3e Flexibilitdt in den Prozess der Entwicklung und auch

Datensicherung von Varianten und Versionen.

2.1.2 Git

In unserem Fall wird das Programm ,,Git benutzt. Es ist dadurch entstanden, dass die

Entwickler des Linux-Systems bis im Jahr 2005 das Versionsverwaltungsprogramm

2. Grundlagen

,,BitKeeper benutzt haben, um ihr Open-Source-Programm zu verwalten [1]. In diesem Jahr
hatte die freie Gemeinschaft von Entwicklern mit der Firma, welche ,,BitKeeper entwickelt
hatte, Differenzen, sodass sich die Linux Entwickler dazu entschlossen haben, ein eigenes
Versionsverwaltungsprogramm zu kreieren. Die finf wichtigsten Eigenschaften, die das
neue Programm enthalten soll, waren Schnelligkeit, Einfachheit, Unterstiitzung von
mehreren tausenden Varianten einer Softwareentwicklung, vollstandig verteilte Speicherung

und groRe Projekte effizient zu handhaben, die ihrem eigenen Linus-System gleichen.

(VersionZ) (Version3> (Version 4) (Version 5)

Ca)(CaD)
Crei (D)

Abbildung 2.1.: Speichert Daten als Anderung der Ursprungsdatei [1]

Diese funf Eigenschaften sind heute immer noch die Merkmale, welche ,,Git* ausmachen.
Um das zu verdeutlichen und die Unterschiede zu anderen Versionierungsprogrammen
aufzuzeigen, wollen wir uns anschauen, wie die Versionsverwaltung aussieht. Die meisten
Systeme betrachten ein zu versionierendes Projekt als eine Menge von Dateien, die im Laufe
der Zeit veréndert werden konnen. Dadurch entstent eine umfassende Liste von

Dateianderungen.

(Version 1) (Version 2) (Version 3) (Version 4) (Version 5)

Abbildung 2.2.: Speichert jede Datei neu, oder erstellt einen Zeiger auf die vorherige Version [1]

10

2. Grundlagen

,Git* hingegen betrachtet die Dateien als eine Einheit jeder Anderung. Immer wenn ein
,Commit® erstellt wird, speichert ,,Git“ das komplette Projekt. Dabei werden Dateien, die
nicht verandert wurden, nicht gespeichert, sondern es wird ein Zeiger auf die urspringliche

Datei festgelegt. Somit entsteht hier eine Liste von Versionen.

2.2 Data Mining

Unter Data Mining versteht man allgemein die Analyse und Auswertung von Daten, im
Besonderen von grof3en Datenmengen. Dabei wird versucht, Kohédrenz zwischen den Daten
zu ermitteln. Um diese Datenmengen auswerten zu kdnnen, missen diese so konzipiert sein,
dass Algorithmen die Daten durchlaufen kénnen und Ergebnisse liefern. Dazu werden in
unserem Fall alle Daten in einer Datenbank gespeichert, damit die Weiterverwendung fir
Data Mining unabhangig von dem Programm der Transformation zur Datenbank gestaltet

werden kann.

2.3 Entity-Relationship-Model

Das ,Entity-Relationship-Model, oder auch ER-Diagramm, ist eine hochwertige
Datenmodellierungstechnik [2]. Sie wurde dafiir entwickelt, dass der Designer einer
Datenbank diese so darstellen kann, dass seine Architektur leichter zu verstehen ist. Peter
Chen hat das ,,entity-relationship-model* aus den drei bis dorthin bestehenden Modellen,
welche das “network model®, das ,,relational model* und das ,,entity set model“ [3] sind,
entwickelt. Thm ist aufgefallen, dass Benutzer und Entwickler sich in Bezug auf
Datenbanken oftmals uneinig sind oder Missverstandnisse entstehen. Deswegen hat er diese

Visualisierung.

11

2. Grundlagen

Auto Reifen

Abbildung 2.3.: Beispiel eines ER-Diagramms

Ein ER-Diagramm hat viele verschiedene Komponenten. Fur das Verstehen des
Datenbankkonzepts werden nur die wichtigsten bendtigt. Deswegen werden nur diese hier
erlautert. Das Modell besteht aus Entity-Klassen, die in Abbildung 2.3 die Komponente Auto
und Reifen sind. Sie werden als Rechtecke dargestellt. Dazu besitzen sie Attribute. Das sind
Ellipsen, die mit ihrer Entity-Klasse verbunden sind. Im Falle des Autos sind das die Farbe,
der Besitzer und das Kennzeichen. Das unterstrichene Attribut ist der eindeutige
Primarschlissel dieser Entitat. Stehen zwei Klassen in Beziehung zu einander, missen beide
mit einer Raute verbunden sein. Diese nennt man Relationstyp und sie tragt einen Namen.
Das sollte immer ein Verb sein, damit die Beziehung zwischen den Entity-Klassen besser
verstanden werden kann. An die Verbindungslinie der Klassen zu dem Relationstyp wird
eine Kardinalitat geschrieben. Sie sagt aus, wie viele Reifen ein Auto haben kann [2]. In
Abbildung 2.3 kénnte man somit einen Satz aus den gegeben Informationen machen: ,,Ein
Auto hat vier Reifen”. Damit konnen leicht Verstindnisprobleme iiberbriickt werden und

deshalb wurde das Modell von Peter Chen entwickelt.

12

2. Grundlagen

2.4 MySQL-Datenbank

In eine Datenbank werden Daten gespeichert. Dabei ist sie so aufgebaut, dass leicht aus einer
Datenbank gelesen, geschrieben und Daten veréndert werden kdnnen. Gleichzeitig kdnnen
in einer Datenbank Eintrdge schnell gefunden und sortiert werden. Die Informationen, die
gespeichert werden konnen, sind einfache Datentypen wie Zahlen und Zeichenfolgen, aber

auch Bilder und Zeitdaten.

Die Datenbank ,,MySQL* ist ein sehr schnelles, robustes, relationales Datenbank-
Managment-System (RDBMS) [4]. Da in dieser Arbeit Daten fiir Data Mining vorbereitet
werden missen, muss eine Datenbank verwendet werden. ,,MySQL® bietet sich, zu dem,
dass sie frei verfligbar ist, an, weil sie leicht zu konfigurieren ist und auf verschiedenen

Systemen funktioniert wie Windows und Linux.

2.4.1 JDBC

Das Programm ,, ATSR* ist in Java geschrieben. Damit auf die MySQL-Datenbank
zugegriffen werden kann, wird eine Schnittstelle zwischen den beiden Komponenten
bendtigt. Diese liefert die Programmierschnittstelle JDBC (Java Database Connectivity).
Damit ist es mdglich, aus Java heraus SQL-Befehle zur Datenbank zu senden und die

Resultate zu erhalten [5].

13

3 Analyse

In der Analysephase wird der aktuelle Zustand des Systems, sofern es bereits ein System
gibt, oder auch der aktuelle Zustand des Verfahrens, betrachtet und ausgewertet. Dariiber

hinaus wird das vom Kunden gewiinschte System definiert.

3.1 Ist Zustand

Bisher werden alle Daten, die spater fir Data Mining gebraucht werden, von ,,Hand*
vorbereitet. Die Log-Daten, welche die Metadaten eines Repositories sind, werden durch die
Befehle in der Kommandozeile in eine Datei ausgelagert und danach einzeln vorbereitet.
Das Ganze funktioniert bei kleineren Softwarestdnden ohne weitere Probleme, allerdings
benoétigt man dafir viel Zeit. Bei groRen Repositories ist es dagegen nicht mehr moglich, die
Auswertung sowie die Vorbereitung fur Data Mining auszufiihren. Es gibt bisher noch
keinen automatisierten Ablauf, um die Daten soweit vorzubereiten, um damit direkte

Ergebnisse erlangen zu kénnen.

3.2 Soll Zustand

Das zu implementierende Programm soll Metadaten eines Software-Repositories
vorbereiten und diese in eine Datenbank schreiben. Der komplette Ablauf der
Datentransformation soll nicht durch Dateienibertragung funktionieren, sondern mithilfe
von ,,Streams®, also Datenstromen, sodass Daten nur durch einen ,,Stream* eingelesen,
verarbeitet und vorbereitet und zum Schluss durch einen ,,Stream* in die Datenbank
geschrieben werden. Dadurch sollte die Transformation eine gute Performanz haben sowie
wenig Speicher verbrauchen. Ein Benutzer soll den geringsten Aufwand haben, um diese
Transformation in Gang zu bringen. Deswegen wird der VVorgang mit nur einem Knopfdruck
ausgefuhrt. Des Weiteren lassen sich bestimmte Arten von CSV-Dateien mit dem Programm

transferieren. Zu Beginn sind diese Formate ,,Issue““-Dateien und ,,Docu‘“-Dateien. In der

15

3. Analyse

Datei ,,Issues stehen alle Arbeitspakete der Entwickler fiir ein Projekt. Die Datei ,,Docu‘
enthélt die Pfade zu den Dokumentationen des Projekts. Alle Informationen sind am Ende
in der Datenbank enthalten. Dazu soll die Datenbank einen Aufbau haben, der fiir das spatere
Data Mining eine gute Performanz hervorbringt. Dazu mussen Backups fur altere Versionen,

sowie andere Projekte die transformiert wurden, erstellt und gespeichert werden.

3.3 Datenformate der Transformation

Die Daten, welche fir Data Mining vorbereitet werden missen, sind unterschiedlich
komplex fir die Transformation. Das liegt daran, dass die Daten aus unterschiedlichen
Quellen bezogen werden. Dieses Kapitel erldutert die Unterschiede, sowie jedes

Datenformat in sich selbst.

3.3.1 Commit

Ein ,,Commit“ ist wohl das komplexeste Format. Das liegt daran, dass ,,Commits* durch
Log-Protokolle abgerufen werden mussen. Da wir das Versionsverwaltungsprogranmm
,,Git“ benutzen und dies ein eigenstandiges Programm, ist muss ein Befehl gesendet werden,
der alle ,,Commit“-Daten abruft. Fir das spatere Data Mining sind aber nicht alle
Informationen wichtig, deswegen muss nur ein Teil davon abgerufen werden. Das sind die
Identifikationsnummer, der Name des Entwicklers, welcher diesen ,,Commit* erstellt hat,
das Datum, wann der Commit erstellt wurde und eine Anmerkung vom Entwickler dazu.
Danach bendtigen wir alle veranderten Dateien zu dem ,,Commit*. In Abbildung 3.1 werden
alle Informationen beispielhaft angezeigt. Dafur wurde ein Log-Befehl an ,,Git* gesendet
und ein ,,Commit* als Beispiel dargestellt.

5486558#Entwickler XYZ#Mon Dec 1 12:13:00 2014 +0100
#created astpa.extension

astpa.extension/.project
astpa.extension/META-INF/MANIFEST .MF
astpa.extension/build.properties
astpa.extension/plugin.xml

astpa.extension/pom.xml
astpa.extension/schema/stepedProcess.exsd

Abbildung 3.1.: Beispiel eines Log-,,Commits*

16

3. Analyse

3.3.2 Issue

Alle ,Issues” eines Projekts stehen in einer CSV-Datei. Sie sind dort aufgelistet und ein
,,Issue* hat 22 Parameter. Davon benétigen wir filir das spétere Data Mining nur drei, Status,
Tracker und die Beschreibung. Ein ,,Issue* bekommt in der Datenbank eine eindeutige

Identifikationsnummer. Diese wird aber nicht von ,,Issue‘-Dateien, sondern intern definiert.

3.3.3 Docu
Das Format des Docu-Dokuments ist noch nicht festgelegt, aber der Pfad und die

Beschreibung sind als Parameter eines Docu-Eintrags enthalten. Sonstige Angaben kdnnen

dazu noch nicht gemacht werden.

17

4 Entwurf und Konzept

In diesem Kapitel wird das entwickelte Konzept dieser Arbeit beschrieben. Dazu gehort die
Architektur des Programms, sowie ecinzelne Aufgaben der ,,ATSR®, die im Vorhinein

geplant und ausgearbeitet werden missen.

4.1 Architektur

Die Idee hinter der Architektur ist, dass das Programm leicht erweiterbar und veranderbar
ist und bleibt, denn es wird in naherer Zukunft weitere Transformationen durchfiihren
mussen. Um diesen Ansprichen zu geniigen, wird das ,,Model-View-Controller*-Konzept

als Architekturmodell benutzt.

4.1.1 Model-View-Controller Konzept

Beim ,,Model-View-Controller“-Konzept, auch ,,MVC*“-Konzept genannt, gibt es drei
separate Teile, in die das Programm unterteilt wird, siehe Abbildung 4.1. Alle haben
unterschiedliche Aufgaben im Programm selbst und kénnen, dadurch, dass sie untereinander

getrennt sind, leicht ausgetauscht werden.

Controller

View f--------------- Model

Abbildung 4.1.:Darstellung des Model-View-Controller Konzepts

19

4. Entwurf und Konzept

Das erste ist die Prasentationsebene. Bei diesem Konzept ,,View* genannt, ist alles enthalten,
was zur Darstellung gehort. In unserem Fall ist dies im Hauptséchlichen die Oberflache fir
den Benutzer, um das Programm einfach und handlich zu bedienen. Im optimalen Fall
,weill*“ die Oberflache nichts und reagiert nur auf Eingaben des Benutzers. Es kann aber
durchaus sein, dass die Prasentationsebene eine Klasse aus dem ,,Model*“ kennen muss fiir

eine leichtere Darstellung von Daten.

Das ,,Model“ hilt alle mdglichen Arten von Daten, was bedeutet, dass keinerlei
Funktionalitaten darin stecken. Die Modellebene ist als einzige unabhdngig von den anderen

beiden Teilen und ist deswegen sehr leicht zu verwalten.

Die Steuerungsebene, hier ,,Controller” genannt, ist wohl die komplizierteste der drei
Schichten. Sie ist zustandig fir die Logik in dem Programm selbst. Wird tiber die Oberflache
eine Eingabe getétigt und vom Benutzer eine Aktion des Programms verlangt, leitet die
,View* die Anforderung direkt weiter an den ,,Controller. Da die Prisentationsschicht
keine Verbindung zur Steuerungsebene hat, gibt es von dem ,,Controller mehrere
Beobachtungsmethoden, welche direkt angesprochen werden, falls die Benutzeroberflache

betatigt wird. Dadurch kénnen die Aktionen und Vorgénge leicht geandert werden.

20

4. Entwurf und Konzept

4.1.2 Erweiterbarkeitskonzepte

Das gesamte Programm dient als Hilfsprogramm fur die Verarbeitung und VVorbereitung von
Daten. Da es noch ganz am Anfang seiner Entwicklung steht, werden mit Sicherheit noch
einige Anderungen vorgenommen werden. Da die Erfahrungen mit dem Programm weitere
Erkenntnisse liefern, werden sie zeigen, in welchem Aufgabenfeld es noch verwendet

werden kann. Deswegen soll die Erweiterbarkeit ein wichtiger Aspekt der Arbeit sein.

Controller
\ 4
<<abstract>>
Transformer
Commit Issue Docu
Transformer Transformer Transformer

Abbildung 4.2.: Konzept der Transformatoren

Fir das Programm missen deswegen zwei Funktionalitaten besonders betrachtet werden.
Dies ist zum einen die Transformation der Metadaten, denn das sind bis jetzt die ,,Commits*
aus den Log-Daten des Repository und die ,,Issues” und ,,Docus“ aus den CSV-Dateien.
Dort kann sich immer wieder etwas dndern und noch eine Transformation hinzukommen.
Deswegen gibt es eine abstrakte Klasse mit Namen ,,Transformer”, von welcher alle
Transformationsklassen abstammen missen. Dadurch ist gegeben, dass jede ,,Transformer-
Klasse bereits den richtigen ,,DatabaseWriter* anspricht und auch der Ablauf einer

Transformation korrekt ist.

21

4. Entwurf und Konzept

Der zweite Punkt ist das Schreiben in die Datenbank. Es ist mdglich, dass eine andere
Datenbank verwendet werden soll. Bisher ist die verwendete Datenbank eine MySQL-
Datenbank. Die abstrakte Klasse ,,Transformer® kennt nur das ,Interface* fiir die
Datenbankbeschreibung. Die Implementierung ist somit leicht ersetzbar und wieder

verwendbar.

<<abstract>>
Transformer

<<interface>>

DatabaseWriter

MySQLWriter

Abbildung 4.3.: Konzept der Architektur von Komponenten zur Beschreibung der Datenbank

Das ganze erlaubt deswegen eine einfache Erweiterbarkeit der beiden Funktionalitaten.
Dadurch ist auch eine grol3e Flexibilitat gewahrleistet, um die Dateien zu ergidnzen oder zu
verandern. Dazu wird der Code nicht so oft dupliziert und wenn an einer Stelle etwas

veréndert wird, muss dies nicht noch an mehreren anderen Stellen getan werden.

22

4. Entwurf und Konzept

4.2 Datenbankkonzept

In der Datenbank werden alle transformierten Daten abgelegt. Da die Daten fur Data Mining
vorbereitet sein sollen, muss die Struktur der Datenbank fir die Weiterverarbeitung
ausgelegt sein. Bei den Tabellen fiir die ,,Issues* und ,,Docus® ist dies leicht gehandhabt,

denn beide bendtigen nur eine Tabelle mit ihren Werten siehe Abbildung 4.4.

Issue Docu

Abbildung 4.4.: ER-Diagramm fir "Issue™- und "Docu"-Tabellen

Die ,,Commit“-Daten benétigen mehrere Tabellen, da sie aus mehreren Einheiten
zusammengesetzt ist. Das Hauptgertist ist der ,,Commit® mit Identifikationsnummer, Name
des Autors, das Erstellungsdatum und die zugehdrige Nachricht. Diese vier Parameter
kdnnen in eine Tabelle untergebracht werden, wobei die Identifikationsnummer der
Primarschlissel ist, wie in Abbildung 4.5 zu sehen. Ein ,,Commit® hat aber auch noch
Dateien die zu ihm gehoren. Eine Datei kann aber auch zu mehreren ,,Commits* gehoren.
Deswegen muss hier ein Relations-Typ eingefugt werden. Daraus entstehen drei Tabellen.
Die Tabelle der Dateien, der ,,Commits* und die Verbindungstabelle in dieser stehen der

anderen Tabellen Primérschlissel falls es eine Relation gibt.

Commit | usage | File

(o) G

Abbildung 4.5.: ER-Diagramm der "Commits"

23

4. Entwurf und Konzept

4.3 Transformationskonzept

Die Transformation soll bei jedem Datenformat gleich ablaufen. Dafur wird sie in drei
Schritte unterteilt. Es beginnt mit dem Erfassen der Daten. danach werden die Daten

verarbeitet und zum Schluss in der Datenbank gespeichert.

4.3.1 Datenerfassung

Die Daten konnen aus verschiedenen Dateien und Strukturen erfasst werden. Bis jetzt gibt
es zwei Quellen. Dazu gehéren ein Repository und CSV-Dateien. Bei beiden kdnnen die
nétigen Informationen mithilfe eines Streams erhalten werden. Dies ist einer der wichtigen
Aspekte dieser Arbeit, denn es soll eine Datenerfassung sein, ohne zusétzliche Dateien sowie
andere externe Formate zu erstellen. Das zu entwickelnde Programm soll bei der
Transformation von allein diesen Stream 6ffnen und die gewinschten Daten abrufen. Die

nétigen Eingaben vom Benutzer sollen schon davor im Programm eingegeben sein.

4.3.2 Datenverarbeitung

Bei der Datenverarbeitung geht es darum, die erhaltenen Daten aufzuteilen und in ein Format
zu packen, das das Interface, welches fir die Speicherung in die Datenbank zusténdig ist,
versteht. Da die Daten sehr unterschiedlich sein kénnen, soll jedes Format seine eigene
Verarbeitung bekommen. Dadurch kann flexibel auf die jeweiligen Anforderungen
eingegangen werden. Da es bisher drei verschiedene Formate gibt, wie in Absatz
Datenformate der Transformation erwahnt, sollen drei Transformationen mit ihren

Verarbeitungen zunéchst entwickelt werden.

4.3.3 Datenspeicherung

Die Speicherung verlauft, was auch hier wieder bei jedem Format gleich ist, nach einem
bestimmten Schema. Das beschreiben fiihrt die implementierte Klasse des Interfaces

,,DatabaseWriter” durch. Der Ablauf, siehe Fehler! Verweisquelle konnte nicht gefunden

24

4. Entwurf und Konzept

erden., startet mit dem Auftrag, die Datenbank zu beschreiben. Zuerst wird Uberprift, ob

die Tabellen, die fur die gerade laufende Transformation bendtigt werden, bereits existieren.

Datenbank soll
beschrieben werden

Y
EX|st|eren die dazu
benotlgten TabeIIen?

& n—P[Tabelle/n erstellen]

Sind d|e Tabellen
leer?

[Backup erstellen]% %

A 4

[Tabellen leeren HTabellen beschreiberﬂ<

Abbildung 4.6.: Ablauf der Speicherung von Daten in die Datenbank

Ist dies nicht der Fall, sollen die Tabellen erstellt und beschrieben werden. Damit ware die
Arbeit abgeschlossen. Gibt es die benotigten Tabellen bereits, muss tberpriift werden, ob sie
leer sind. Falls sie leer sind, kénnen sie genauso beschrieben und die Transformation beendet
werden. In den meisten Féllen sind die Tabellen aber nicht leer, sondern von vorherigen
Transformationen geftllt. Dann muss ein Backup der bereits existierenden
Datenbanktabellen erstellt werden. Damit die Tabellen unterscheidbar sind, bekommen sie,

25

4. Entwurf und Konzept

sobald aus ihnen eine Backup-Tabelle wird, einen Zeitstempel des aktuellen Datums und
Uhrzeit. Der Zeitstempel wird im Namen eingetragen. Danach kann die
Transformationstabelle geleert und neu beschrieben werden. Somit sind alle méglichen
Zustédnde der Datenbank abgedeckt und es koénnen keine Fehler bei der Speicherung

beziiglich der Tabellen entstehen.

26

5 Implementierung

In diesem Kapitel wird die Implementierung des Programms beschrieben. Dies kann in vier
Unterpunkte unterteilt werden. Dazu gehort die Benutzeroberflache. Das betrifft die
Schnittstelle zwischen Benutzer und dem Programm selbst. Die Verwaltung und die
Handhabung der Einstellungen ist ein weiterer Abschnitt. Der wichtigste Punkt wird aber
die Transformation beinhalten, da dies die Hauptfunktion des ,,ATSR* ist. Und zum Schluss

wird die Datenbankverbindung erléautert.

5.1 Benutzeroberflache

Die Benutzeroberflache besteht aus mehreren Komponenten. Diese sind die Hauptansicht,
die Ansicht um die Einstellungen zu &ndern oder auch einzusehen und mehrere
Benachrichtigungen fiir den Benutzer. Dazu gehort zusétzlich die Verbesserung der

Benutzbarkeit.

5.1.1 Hauptansicht

Beim Starten des Programms gelangt der Benutzer zur Hauptansicht, welche im
Programmcode ,, TransformationView* genannt wird. Das ,,TransformationView* ist ein

»JFrame® und wird zur Anzeige von Elementen und Komponenten verwendet.

In Abbildung 5.1 ist die Ansicht in ihre funf Teile aufgegliedert. Am oberen Rand wird die
Mendileiste (a) angezeigt. Von dort aus kann das Programm beendet oder in das Mendi
gewechselt werden, um die Einstellungen zu andern. Direkt darunter ist die Anzeige fur den
Zustand der Datenbankverbindung (b). Ist diese, wie in der Abbildung, griin und die Schrift
lautet ,,connected to database®, dann ist eine Verbindung zu der Datenbank, welche in die
Einstellungen parametriert wurde, moglich. Falls dies nicht moglich ist, ist das Feld rot und
lautet ,,not connected to database®. Es bedeutet, dass mit den gegebenen Einstellungen keine

Verbindung zu einer Datenbank hergestellt werden kann. Die ndchste Komponente der

27

5. Implementierung

(a) —

(c) —

[£ ATSR
-File Settings

Database

—Namm"

Repository

Issue

Transform

Docu

Transform

Transform

(b)

—(d)

— (e)

Abbildung 5.1.: Hauptansicht des Programms ,,ATSR*

Hauptansicht ist das Eingabefeld des Datenbanknamen (c). Dort kann der Name eines

bestehenden Datenbankschemas eingetragen werden oder auch ein neues Schema erstellt

werden, in dem ein Name eines Datenbankschemas eingetragen wird, das es noch nicht gibt.

Der grofite Bereich sind die Transformationsfelder (d). Jedes einzelne steht flr ein

bestimmtes Format aus dem Abschnitt 3.3 , .Datenformate der Transformation“. Die

Funktionalitaten hinter den Buttons, mit der Aufschrift ,,...*, die angelegt sind, um die

Dateien auszuwahlen, sind bei allen gleich. Nur die Datei-Art, welche ausgewéhlt werden

kann, ist unterschiedlich. Fur ein Repository muss ein Ordner eingefuigt werden. Dieser muss
alle Daten des ,,Git“-Repositories enthalten. In Abbildung 5.2 ist das Projekt ,,A-STPA*

28

b

astpa-code

astpa
astpa.extensicn
astpa.feature
astpa.installer
astpa.repository
astpa.tests

workspace

Abbildung 5.2.: Ordnerstruktur eines Software-Repository

5. Implementierung

dargestellt. In diesem Fall misste der Pfad des Ordners, welcher in der Abbildung blau

hinterlegt ist, in das Textfeld eingetragen werden.

Bei den ,,Issues* und ,,Docus* sind es CSV-Dateien. Bei den Buttons fiir die Transformation
wird die des entsprechenden Formats ausgefuhrt. Solange das Programm arbeitet und eine
Ubertragung, Verarbeitung und Speicherung neuer Daten durchfiihrt, kénnen keine neuen
Transformationen gestartet werden. Damit der Benutzer mitbekommt, wie weit die Arbeit
fortgeschritten ist, wird in der Fortschrittsanzeige (e) prozentual angezeigt, wie weit der

Prozess durchgefiihrt wurde.

5.1.2 Einstellungsansicht

Die Ansicht fiir die Einstellungen ist ein ,,JDialog”. Das bedeutet, es ist ein untergeordnetes
Fenster der Hauptansicht. Von hier aus kénnen Werte gedndert werden und nach dem
SchlieRen des Fensters werden die Anderungen, je nach Buttonbetatigung, tibernommen
oder verworfen. In dem Feld ,,Database®, wie in Abbildung 5.3 zu sehen ist, werden alle
Parameter zur Datenbankverbindung angezeigt und sind veranderbar. Um eine Verbindung
herzustellen, wird ein Benutzername mit einem passenden Passwort benétigt und eine IP-
Adresse mit dem richtigen Port. Damit kann eine Verbindung zu einer Datenbank aufgebaut

werden, ohne direkt auf ein Schema oder eine Tabelle zuzugreifen. Der untere Bereich des

Preferences hod
Database

Username: |r|:u:|ﬂ | Database IP: |I|:u:a|h|:|st |

Password: | | Database Port: |33EIE |

Git (oit.exe)

Path: | CAProgram Files\Gitbinigit. exe

OK Cancel

Abbildung 5.3.: Einstellungen mit Standardwerten

29

5. Implementierung

Fensters ist fiir die Einstellungen von ,,Git“. Um die Log-Daten von ,,Git* abrufen zu
kdénnen, ist der Dateipfad der EXE-Datei erforderlich. Dieser muss hier eingetragen sein. Fur
alle finf Werte der Einstellungen, aufRer dem Passwort, gibt es Standardwerte. Das soll dem
Benutzer helfen zu verstehen, was in den Feldern eingetragen werden kann, aber auch Arbeit
ersparen, falls er selbst alle anderen Programme standardmaRig konfiguriert hat. Um die
Anderungen zu bestatigen oder aufzuheben, miissen die beiden Buttons am unteren Rand
betétigt werden. Wird der Bestéatigungsbutton gedruckt, werden die Einstellungsparameter
nach 5.2 ,Verwaltung der Einstellungen® gesichert. Bei dem Button um abzubrechen,
werden alle Anderungen verworfen. Nach dem SchlieBen kommt der Benutzer wieder auf
die Hauptansicht des ,,ATSR* zuriick.

5.1.3 Benachrichtigungen

Durch Betétigen von Buttons werden Transformationen oder andere Aktionen ausgefihrt.
Hier kann es auch vorkommen, dass der Benutzer Fehler bei den Eingaben gemacht hat oder
aullerhalb des Programmes, also im System, unerwartete Fehler aufgetreten sind. Damit der
Anwender weil3, warum ein Problem aufgetreten ist, gibt es verschiedene Arten von
Benachrichtigungen. Dazu gehdren Fehlermeldungen und informative Meldungen, die in
diesem Abschnitt erlautert werden. Alle Nachrichten haben einen Bestatigungsbutton um die

Meldung zu schlieRen. Danach muss der Benutzer selbst das Problem I6sen.

30

5. Implementierung

Informationsmeldungen

Diese Meldungen werden angezeigt, wenn der Benutzer etwas vergessen hat auszuftllen
oder er auf etwas Bestimmtes hingewiesen werden soll, ohne dass bisher ein Fehler gemacht

wurde.

Info >

P
'».\L) You are using ATSR probably for the first time, please check the settings!

Abbildung 5.4.: Nachricht beim ersten starten des "ATSR"

Wenn das Programm das erste Mal auf dem System gestartet wird, wird, wie in Abbildung
5.4 zu sehen ist, eine Nachricht fir den Anwender angezeigt. Darin wird darauf hingewiesen,
dass das Programm zum ersten Mal gestartet wird und deswegen die Einstellungen Gberpruft
und ausgefiillt, werden bevor eine Transformation gestartet wird. Diese Mitteilung wird
direkt am Beginn angezeigt, weil im Normalfall die Standardwerte in den Einstellungen
abgespeichert sind und diese in den meisten Féllen nicht die richtigen Parameter fur die
Datenbankverbindung oder des ,,Git“-Pfad sind.

Die Informationsmeldungen, dass ein Eintrag fehlt, sind nur fur die Hauptansicht. Dort wird
mitgeteilt ob das Feld der auszufiihrenden Transformation leer ist. In Abbildung 5.5 ist die
Meldung (ber das Fehlen des Repository-Pfades zu sehen. Des Weiteren kann im
Startfenster das ,,TransformationView*, das Textfeld fiir den Namen der Datenbank, nicht

beschrieben sein. Auch hier gibt es eine kurze Benachrichtigung.

Info > Infa >

£ &h
\I] Please enter a repository path! \.I) Please enter a database name

OK OK

Abbildung 5.5.: Meldungen wenn Felder ausgelassen wurden

31

5. Implementierung

Fehlermeldungen

Fehlermeldungen sind Probleme, bei denen der Benutzer zusétzlich eingreifen muss, um das
Problem zu beheben. Davon gibt es drei Arten, die nur beim Starten einer Transformation
auftreten konnen. In Abbildung 5.6 sind die jeweiligen Arten dargestelit.

SOL Error 4 1Q Error >
® Ho connection to the database! ® Error with the selected File!
Check the settings! Please check if the file still exists!
OK OK
Repositery Error >

The selected folder is not a Git-Repository or
the git folder is not correct!

0K

Abbildung 5.6.: Fehlermeldungen des Programms "ATSR"

Ein Repository Error ist der einzige, der nur bei der Transformation von ,,Commits*
auftreten kann. Dieses Problem tritt auf, wenn der Ordner, um die Daten zu erfassen, nach
einem ,,Git“-Befehl, der sich alle ,,Commit*“-Daten auslesen lasst, keine Werte in der
Kommandozeile, wie auch in Abschnitt 5.3 ,, Transformation‘ erlautert wird, schreibt.
Denn nur wenn in dem Fall Daten ausgegeben werden, ist der Ordner ein ,,Git*-

Repository, andernfalls ist es nur ein Ordner des Systems.

Die beiden anderen Fehlermeldungen konnen bei jeder Transformation entstehen, denn zum
einen bekommt man einen SQL Error, wenn mit der Datenbankverbindung oder bei der
Beschreibung der Datenbank ein Problem entstanden ist. Dies kann verschiedene Griinde
haben. Von dem Verlieren der Datenbankverbindung wahrend des Schreibens, bis hin zu
fehlerhaften Daten. Zum anderen gibt es 10 Errorsm, die immer dann auftreten kénnen,
wenn eine Verbindung zu einem Format iber einen Datenstrom hergestellt wird. In unserem

Fall sind das Dateien, die per ,,Inputstream* eingelesen werden und bei Repositories wird

32

5. Implementierung

das Programm ,,Git* als Verbindungsglied verwendet, welches die Daten Uber einen

Datenfluss in unser Programm einspeist.

5.1.4 Benutzbarkeit

Durch die vielen Eingabefelder wird das Programm flr den Einstieg sehr schwierig zu
verstehen. Darum mussten Methoden erarbeitet, werden um die Benutzbarkeit des
Programms zu erhohen. Nach dem Buch Usability engineering gibt es funf wichtige
Attribute zur Benutzbarkeit eines Programms [6]. Als ersten Punkt wird die Erlernbarkeit
aufgezéhlt. Das heil3t, die Software soll einfach zu verstehen sein, damit der Benutzer keine
grolRere Einarbeitungszeit bendtigt. Der zweite Punkt ist die Effizienz hinsichtlich des
Anwenders. Dabei ist wichtig, dass, wenn der Benutzer verstanden hat, wie das Programm
funktioniert, die gewinschten Funktionalitdten schnell ausgefiihrt werden konnen. Die
Einpragsamkeit ist der dritte Punkt auf der Liste wichtiger Attribute der Benutzbarkeit. Bei
diesem Begriff ist die Schnelligkeit gemeint, sich an Erlerntes, im Hinblick auf die Software,
zu erinnern. Auch wenn ein langerer Zeitraum vergangen ist. Als vierten Punkt werden
Fehler angesprochen. Hier soll die Fehlerrate des Benutzers niedrig gehalten werden und
leicht handelbar sein, damit der Benutzer seine eigenen Fehler leicht korrigieren kann. Der
letzte Punkt ist die Zufriedenheit, was einen sehr subjektiven Aspekt der Benutzeroberflache

anspricht. Der Anwender soll sich wohl fuhlen wenn er das Programm benutzt.

Um jedem dieser Benutzbarkeitsattribute zu entsprechen, hat das Programm ,,ATSR*
bestimmte Funktionen oder Komponenten, die dem Benutzer helfen und das Benutzten
erleichtern sollen. Beim ersten Starten der Software wird eine Benachrichtigung angezeigt,
die besagt, dass der Anwender die Einstellungen tberprifen soll, bevor er seine erste
Transformation startet. Das betrifft den ersten Punkt der Benutzbarkeit, die Erlernbarkeit
eines Systems. Fiir diesen Aspekt sind im ,,ATSR* noch weitere Hilfen eingebaut. Zunéchst
gibt es in der Hauptansicht eine Anzeige, wie in Abbildung 5.7 zu sehen ist, wobei der
Benutzer direkt erkennen kann, ob eine Verbindung zur Datenbank besteht oder nicht. Falls
die rote Anzeige mit ,,not connected to database* angezeigt wird, muss der Anwender zuerst

in den Einstellungen die Parameter a&ndern oder neu eintragen, damit eine Verbindung zur

33

5. Implementierung

Abbildung 5.7.: Anzeige zur Datenbankverbindung in der Hauptansicht

Datenbank aufgebaut werden kann. Auch hier sind Hilfestellungen fur den Benutzer
angebracht. Zum einen sind hinter den Textfeldern der Datenbank Symbole angebracht. Bei
jeder Anderung der Angaben in den Feldern werden die Parameter Gberpriift. So weif der
Benutzer zu jedem Zeitpunkt, ob seine Eingaben richtig waren oder nicht. Dazu ist eine
textliche Information unterhalb der Felder angegeben. Somit kann der Benutzer genau
identifizieren, wo ein Fehler in den Angaben ist. In Abbildung 5.8 wurde ein falsches

Passwort eingetragen. Da von den vier Parametern immer zwei verknlpft, sind werden

Database
Username: |r|3|:|t | X Database IP: |I|:u:alh|:|5t | L
Password: iz | % Database Port: |3306 | off

Mo Aocess, Lsemame orBnd Fassword are incorrect

Abbildung 5.8.: Einstellungen mit falschem Passwort

immer beide Felder als Fehlerhaft angezeigt und der entsprechende Text unten angefligt. Die
Effizienz des Programms wird dadurch erhoht, dass mehrere Parameter gespeichert werden
und beim erneuten Starten diese wieder eingebunden werden. Somit muss der Benutzer seine
Angaben nicht immer wieder neu einfligen sondern kann direkt eine Transformation, starten
sofern er beim letzten Bedienen alle notwendigen Textfelder ausgefillt hat. Dazu gehéren
alle Parameter, die in der Ansicht fur die Einstellungen eingetragen werden kénnen. Sobald
in diesem Fenster die Werte bestétigt werden, werden sie abgespeichert. Der einzige weitere
Eintrag ist der Name der Datenbank. Dieser wird nach jeder Transformation gesichert. Wie
das Sichern der Werte funktioniert, wird in 5.2 Verwaltung der Einstellungen erklart. Fr
den dritten Punkt, die Einpragsamkeit, gibt es keine spezielle Funktion, aber dadurch, dass
der Benutzer an vielen Stellen Rickmeldungen Uber seine Eingaben bekommt und die
meisten Werte die er eingibt gespeichert werden, wird dieser Aspekt gleichzeitig Unterstltzt.
Um die Fehler moglichst gering zu halten, gibt es entsprechende Mitteilungen. Diese wurden
im vorherigen Abschnitt 5.1.3 beschrieben. Sie sind dafiir da, um dem Benutzer, zusatzlich

zu den Symbolen, Rickmeldung tUber Fehleintrdge zu geben. Des Weiteren bekommt der

34

5. Implementierung

Database
Username: |rnnt | o Database IP: |Inca|hns| | &
Password: |passwnrd | o Database Port: |33EIE | A

Abbildung 5.9.: Uberpriifung der Datenbankverbindung nach Anderung des Inhalts der IP-

Adresse
Anwender Statusmeldungen innerhalb von Prozessen, die das Programm zu erledigen hat.
In den Einstellungen wird nach jeder Anderung in einem Textfeld der Status der Verbindung
abgefragt. Bei den Parametern Port und IP-Adresse kdnnen diese Statusabfragungen bis zu
drei Sekunden dauern. Solange kann der Bestatigungsbutton nicht gedriickt werden und
hinter den Textfeldern wird ein Bearbeitensymbol eingeblendet, sowie in Abbildung 5.9
verdeutlicht. Wahrend der Transformation von Daten muss der Anwender warten, bis diese
vollstdndig abgearbeitet ist. Er kann nicht gleichzeitig zwei Transformationen starten. Damit
auch hier keine Fehler entstehen konnen, bekommt der Benutzer anhand eines
Fortschrittsbalkens mitgeteilt, wie weit der Prozess durchgefiihrt wurde. Die Buttons, um
eine neue Transformation zu starten, sind, solange die Ubertragung von Daten lauft,
deaktiviert wie in Abbildung 5.10 zu sehen ist. Dann kann der Benutzer selbst keine Fehler

machen. Alle anderen Funktionalitditen koénnen dennoch ausgefiihrt werden. Die

| £ ATSR - -
File Settings

Database

Name: |atsrdb |

Repository

|C:1.Users*.repnsitnr§.f |

lssue

Docu

43%

Abbildung 5.10.: "ATSR" wiahrend einer Transformation in der Hauptansicht

35

5. Implementierung

Zufriedenheit fir den Anwender zu optimieren ist die undefinierbarste Aufgabe, denn dieser
Punkt kann nicht so einfach aus einem objektiven Standpunkt heraus gewertet werden, da
das ,,ATSR* ein sehr kleines Programm ist, es nur zwei Ansichten gibt und in diesen beiden
Féllen die Informationen kompakt gehalten sind. Da die Hilfestellung von der Software

ausreichend ist, ist dieser Punkt auch zufriedenstellend.

36

5. Implementierung

5.2 Verwaltung der Einstellungen

Um die Anwendung des Programms zu erleichtern, gibt es fir die Einstellungen eine
automatisierte Speicherungs- und Ladefunktion. Das heil3t, werden die Textfelder in den
Einstellungen gesetzt und vom Benutzer bestatigt, speichert die Anwendung die Werte in
einer extern liegenden Datei. Sobald diese Datei existiert, wird sie beim Starten geladen und
die Parameter in die Textfelder des ,,ATSR* geschrieben. Somit kann der Benutzer auch
nach einer langeren Pause sofort eine vorherig durchgefuhrte Transformation ausfiihren. Das
einzige, was nicht gespeichert wird, sind die Pfade, die im Hauptbildschirm fiir die einzelnen
Transformationen eingetragen werden missen. Das muss immer wieder neu eingetragen
werden. Es gibt genau sechs Parameter, die mit diesem Verfahren gespeichert werden. Die
Datenbankverbindungsdaten, Benutzername, Passwort, IP-Adresse und Port, der ,,Git*“-Pfad,
welcher den Dateipfad der Ausfiihrungsdatei von der Software ,,Git* beinhaltet und zuletzt
den Namen der Datenbank, was als einziger Parameter auRerhalb der Einstellungsansicht

einzutragen ist.

Listing 5.1.: Importiere die Datei, welche die Einstellungsparameter enthalt, in die Klasse

H»ettings.

Settings settings = new Settings{();

FileInputStream fis = new FilelInputStream(settingsFile);
ObjectInputStream in = new ObjectInputStream(fis);
settings = (Settings) in.readObject ()

in.close();

fis.close();

Das gesamte Verfahren verlduft mithilfe des Java Interfaces ,,Serializable. Dafiir wird eine
Klasse erstellt, die dieses Interface implementiert und Werte enthalt. Bei uns ist dies die
Klasse ,,Settings“. Da es nur Parameter gibt, die mit einfachen Datentypen definiert werden
konnen, bietet sich das Interface an. Wenn eine Klasse serialisiert, wird heif3t das in diesem
Kontext, dass diese Klasse sich in einen Byte-Datenstrom transformieren lasst und auch
umgekehrt aus einem Datenstrom von Bytes in eine Klasse zuriick wandeln lasst. Damit
lassen sich mit wenig Aufwand die gewunschten Informationen auslagern und einlesen. In

dem Listing 5.1 ist der Code-Ausschnitt fur das Importieren einer Datei in das Programm.

37

5. Implementierung

Es muss ein Einlesedatenstrom zu der Datei ge6ffnet werden, dann kann mit einem Befehl
die komplette Datei eingelesen und den richtigen Attributen der Klasse zugeordnet werden.
FUr das Exportieren der Datei ist Listing 5.2 ein Ausschnitt des Codes. Auch hier muss ein
Datenstrom geoffnet werden und iiber den ,,write“-Befehl wird die gesamte Klasse als Bytes
in die Datei Ubertragen. Die Datei, welche beschrieben wird, triagt die Endung ,,SER*. Dies

ist ein Indikator fur eine serialisierte Klasse.

Listing 5.2.: Exportieren der Klasse ,,Settings in eine externe Datei.

FileOutputStream fos = new FileOutputStream(settingsFile, false);
ObjectOutputStream out = new ObjectOutputStream(fos);
out.writeObject (settings) ;

out.close();

fos.close();

38

5. Implementierung

5.3 Transformation

Bei dem Kapitel Uber das Transformationskonzept wurde bereits erklart, dass eine
Transformation im Allgemeinen in drei Schritte zu unterteilen ist. Abbildung 5.11 zeigt, wie
das Konzept bei dem ,,ATSR* umgesetzt wurde. Das Einlesen erfolgt anhand eines
Datenflusses, in der Abbildung als Kanal dargestellt, was die geforderten Daten von einer
Datenquelle aullerhalb des Programms bezieht. Die Verarbeitung verlduft synchron zum
Einleseverfahren. Der ,,ATSR* manipuliert die Daten insofern, dass diese vorbereitet und in
das richtige Format gepackt werden, damit das Ausgeben an einem Stuck durchgefuhrt
werden kann. Am Ende werden die gesammelten und verarbeiteten Daten in ein
Datensystem auferhalb der Software gepackt. Dieses System ist eine MySQL-Datenbank.
Der Aufbau sowie das Konzept davon wurde in 4.2 Datenbankkonzept beschrieben.

ATSR

(verarbeiten w
< N\

einlesen ausgeben

N Sy

Abbildung 5.11.: Transformationsiiberblick des "ATSR*

Was zusétzlich bei allen Transformationen gleich ist, ist die Fortschrittsanzeige in der
Hauptansicht. Damit diese immer aktuell bleibt, wurde ein Entwurfsmuster verwendet. Das
Muster heif3t ,,Observer”. Die Transformer werden dadurch zu Objekten, die beobachtet
werden. Somit kann der Controller den Fortschritt erfassen und die Information an den
Fortschrittsbalken weiterleiten. Durch dieses Entwurfsmuster mussen keine manuell
erstellten ,,Listener*, die riickldufig Informationen zum Controller schicken, implementiert

werden.

5.3.1 Commit-Transformation

Um die ,,Commits® in das Programm einzulesen, muss der entsprechende ,,Git“-Befehl,

welcher die Log-Daten abruft, im richtigen Pfad in der Kommandozeile ausgeftihrt werden.

39

5. Implementierung

Die Kommandozeile bietet sich fiir Anfragen an ,,Git* an, denn auf sie kann von dem
,ATSR* aus tiber Datenstrome darauf zugegriffen werden. Das heif3t, es konnen sehr leicht
Eingaben gesendet und Ausgaben ausgelesen werden. Da aber die Kommandozeile ein
externes Programm ist, welches ,,Git* aufrufen soll, muss das Programm aus einem neuen
Prozess angestoRen werden. Genau daflr sind die Zeilen aus Listing 5.3 zustadndig. Des
Weiteren werden dort direkt die Datenstrome abgegriffen und fir die weitere Verarbeitung
instanziiert. Somit lassen sich iiber den ,,PrintWriter Kommandos auf die Konsole ausgeben
und die empfangenen Zeilen konnen direkt iiber den ,,InputStream® eingelesen und

verarbeitet werden.

Listing 5.3.: Eroffnen der Verbindung zu der Kommandozeile

String[] command = { "cmd" };
Process process = Runtime.getRuntime () .exec (command) ;
PrintWriter cmdOut = new PrintWriter (process.getOutputStream());

InputStream cmdIn = process.getInputStream()

Nachdem dies ermdglicht ist, muss der Pfad in der Kommandozeile geéndert werden. Dafur
muss der Pfad des Ordners, welcher in der Hauptansicht flr die Transformation eingefiigt
wurde, mit dem Befehl ,change directory” ausgefiihrt werden. Danach ist der

Ausgangspunkt der Konsole der gewiinschte Ordner.

Nun ist der ,,Git“-Befehl auszufiihren. Da ,,Git* selbst ein eigenstandiges Programm ist,

muss bevor der eigentliche Befehl erfolgt ,,Git“ selbst gedffnet werden. Da aber die

[git] log —--pretty=format:"%h#%an#%ad#%s" --name-only

Abbildung 5.12.: ,,Git*“-Befehl um alle ,,Commits* zu erfassen

Parameter mit dem Offnen kombiniert werden miissen, hat der Befehl zwei Teile. Zum einen
der Dateipfad von ,,Git“, in diesem ist die EXE-Datei anzugeben und zum anderen ,,Git*
spezifische Kommandos. In Abbildung 5.12 ist dieser Teil das eckig umklammerte ,,Git“. In
den Einstellungen ist es das Textfeld, in dem der Benutzer diesen Parameter einzugeben hat.
Der ndchste Parameter bestimmt die Art des Befehls. In unserem Fall ist es ein Log-Befehl.

Dieser gibt flr den aktuellen Systempfad die Log-Daten aus. Wie die Formatierung und die

40

5. Implementierung

Struktur bei der Ausgabe aussehen soll, kann mit zusatzlichen Parametern definiert werden.
Mit der ,,pretty“-Option lassen sich bestimmte Formatierungen generieren. Da wir den
Parameter ,,format, mit einem Nachfolgenden ,,String* hinzugeftigt haben, kbnnen wir eine
komplett individuelle Darstellung der Daten generieren lassen. Die Parameter, welche wir
erhalten wollen, missen mit einem Prozentzeichen voran in dem ,,String™ enthalten sein.
Wir rufen vier Werte ab, die mit einem Hash-Symbol getrennt sind. Der erste Platzhalter
steht flir den abgekiirzten ,,Commit* Hash-Code. Dieser ist eindeutig fur jeden ,,Commit*
und kann zur Identifikation benutzt werden. Der néchste Wert gibt den Namen des Autoren,
der die Anderung vollzogen und somit den ,,Commit“ generiert hat, wieder. Der Platzhalter
an der dritten Stelle steht flr das Erstellungsdatum des ,,Commits* und zuletzt wird die
Nachricht, die zu dem ,,Commit“ gemacht wurde abgefragt. Damit ist die Angabe zur
Formatierung der ,,Commit“-Daten abgeschlossen. Als letztes wird noch die Struktur der
Ausgabe der Dateien zu dem ,,Commit* definiert. Mit dem Parameter ,,name-only* werden
die Daten mit ihren Pfaden untereinander angegeben. Damit sind alle Daten, die fir das

spatere Data Mining wichtig sind, erfasst [1].

All die Informationen, die im vorherigen Abschnitt aufgelistet wurden, werden beim
Ausfiihren des Befehls in die Konsole ausgegeben und dadurch, dass wir diese Ausgabe als
Datenstrom erfasst haben, in den ,,ATSR* eingelesen. Die erhaltenen Daten werden von dem
Programm in die einzelnen Komponenten aufgespalten und in ,,Commit“-Objekte
transferiert. Diese Objekte werden zum Schluss als Liste dem ,,DatabaseWriter* iibergeben.
Der wiederum speichert alle Daten in die Datenbank. Der Ablauf hierfir wird in dem
Abschnitt 5.4 Datentbertragung in die MySQL-Datenbank beschrieben.

5.3.2 Issue- und Docu-Transformaton

Die Transformationen von ,]JIssues“ und ,,Docus® konnen zusammenfassend erldutert
werden, denn bei beiden ist der Ablauf identisch, weil die Datenquelle, aus der alle Daten
bezogen werden, dasselbe Format hat. Die CSV-Dateien, die fiir beide Transformationen die
Daten enthalten, sind fiir jede Spalte mit einem Semikolon getrennt. Der einzige Unterschied

fiir die einzelnen Transformationen sind die Spalten, welche ausgelesen werden.

41

5. Implementierung

Bei den ,,Issues® sind das die Identifikationsnummer, wobei in der Datei diese Spalte eine
fortlaufende Nummerierung ist, der Status, der Typ, auch hier gibt es eine Besonderheit in
der Datenquelle, denn diese Spalte wird dort ,,Tracker genannt, und die Beschreibung des
,Issue®. Bei den ,,Docus® gibt es bisher keine definierte CSV-Datei, aber die drei Spalten,
die mit Sicherheit darin vorkommen und auch von dem Programm eingelesen werden, sind
die ldentifikationsnummer, der Pfad fur die entsprechende Dokumentation und eine

Beschreibung dazu.

Genauso wie bei der Transformation von ,,Commits®, wird ein Datenstrom zur Datenquelle
geoffnet, hier eine einfache Datei, und diese eingelesen. Wahrend dem Einlesen werden die
einzelnen Zeilen verarbeitet und in Objekte des Transformationsformats gepackt. Nachdem
das Verarbeitet aller eingehenden Daten beendet ist, kdnnen die Objekte als Liste dem
,,DatabaseWriter iibergeben werden und dieser speichert die Daten in der Datenbank wie
in Abschnitt 5.4 beschrieben wird.

42

5. Implementierung

5.4 Dateniubertragung in die MySQL-Datenbank

Das Konzept der Datenbankbeschreibung wurde in 4.3.3 Datenspeicherung beschrieben. In
Listing 5.4 ist der Programmcode fiir das Speichern von ,,Commits* anhand des Konzepts
zu sehen. Der ,,.DatabaseWriter” bekommt eine Liste der fertigen ,,Commits* und schreibt

diese mittels JDBC in die Datenbank.

Listing 5.4.: Konzept der Speicherung, in die Datenbank, implementiert bei der

Transformation von ,,Commits*

public void writeCommits (List<Commit> commits) {
if (commitTablesExist()) {
if (!commitTablesAreEmpty()) {
// Create backup of the tables
createCommitBackup () ;
// Clear tables
clearCommitTables () ;
}
} else {
// Create tables
createCommitTables () ;
}
// Describe tables

writeInCommitTables (commits) ;

Daflir muss eine Verbindung mithilfe der Parameter aus den Einstellungen aufgebaut
werden. Wenn dies erfolgreich abgeschlossen wurde und die Speicherung starten soll, wird
der Ablauf gestartet. Zuerst wird Uberprift, ob die Tabellen bereits existieren. Bei einer
,Issue“- oder ,,Docu“-Transformation gibt es nur eine Tabelle in der Datenbank, da gentigt
die Uberprifung dieser einen Tabelle. Bei einer ,,Commit“-Transformation sind drei
Tabellen vorhanden. Nur wenn alle drei bereits existieren, wird die Riickgabe der Funktion
wahr. Danach wird tberprift ob die Tabellen bereits beschrieben wurden. Genau wie im
ersten Schritt miissen bei den ,,Commits* drei Tabellen gepriift werden und nur wenn alle

drei leer sind, wird auch zuriickgegeben, dass die Tabellen leer sind. Bei ,,Issues® und

43

5. Implementierung

,Docus* muss nur eine Tabelle iiberprift werden. Sind sie noch befullt, missen Backups
erstellt werden. Diese bekommen den aktuellen Zeitstempel in den Namen und werden als
separate Tabelle gespeichert. Das geschieht mit jeder einzelnen Tabelle. Erst nach diesem
Punkt konnen die Tabellen geleert werden. Falls die Tabellen im allerersten Schritt noch
nicht existiert haben, missen diese natiirlich noch erstellt werden, bevor sie beschrieben

werden. Die letzte Aufgabe ist das eigentliche Beschreiben der Datenbanktabellen.

Um das Verfahren zu beschleunigen, auch wenn groe Mengen an Daten ibertragen werden,
werden vorbereitete ,,SQL-Statement™ erstellt und diese dann pro ,,Commit*, ,,Issue* oder
,Docu‘ gefiillt. Dabei mussen nur noch die Werte der Daten in den Befehl eingebunden und

ausgefihrt werden.

Listing 5.5.: Beispiel eines vorbereiten SQL-Befehl und befiillen mit Werten anhand eines

,,Commits

String commitQuery = "insert into committable (id, author, date, message)
values (?2,72,2,?2)";

PreparedStatement commitStmt = conn.prepareStatement (commitQuery) ;
commitStmt.setString(l, commit.getId());

commitStmt.setString (2, commit.getAuthor());

commitStmt.setTimestamp (3, new Timestamp (commit.getDate () .getTime()))

commitStmt.setString (4, commit.getMessage()):;

44

6 Validierung

Eine Transformation wird immer tber das komplette Repository ausgefiihrt. Das kann dazu
fiinren, dass die Ubertragungszeit sehr lange dauert. Um dariiber mehr Informationen zu
erhalten, wurden Tests zur Erfassung der Laufzeit gemacht, die in diesem Kapitel prasentiert

werden.

6.1 Performanz

Fir den Test wurde von der Seite ,,github.com® mehrere ,,Open Source“-Software-
Repositories heruntergeladen und auf dem lokalen System gespeichert. Von dort konnten
diese verschiedenen Projekte in Bezug auf ,,Commits®, GroRRe des Projekts und Anzahl an
beteiligten Entwicklern verglichen werden. Dadurch kénnen Aussagen anhand der Laufzeit

und dieser drei Parameter getroffen werden.

Das Diagramm in Abbildung 6.1 zeigt flir jedes getestete Repository hundert ,,Commits* pro
Einheit, die GréRRe des Repsoitories in Megabytes, die Anzahl der Entwickler und die Dauer
einer Transformation, wobei nur Transformationen durchgefiihrt wurdenn bei denen das
LATSR® eine neue Datenbank erstellen musste. Damit sind die Laufzeiten besser
miteinander zu vergleichen, da bei allen der Ablauf der Datenbankbeschreibung gleich war.
Wenn man die Werte einzeln mit der Transformationszeit vergleicht, kann man erkennen,
dass die GrolRe des Projektes, also wie viele Bytes bendétigt werden, keinen Einfluss darauf
hat, wie schnell eine Transformation abgearbeitet wird. Betrachtet man hier im Genaueren
,toaruos® mit ,,nim*, kann man erkennen, dass die GréRe des Repositories sich um 13,3
Megabytes unterscheidet. Dabei ist die Dauer der Ubertragung von ,,nim* mehr als viermal
s0 hoch wie bei ,,tuaruos®. Ein dhnliches Verhalten kann zwischen ,,hextris* und ,,textmate*
erkannt werden. Die beiden anderen Parameter haben ein &dhnlicheres Verhalten zur
Transformationszeit. Dennoch sind die Entwickler nicht ganz so auschlaggebend wie die
Anzahl der ,,Commits“. Wenn man dafiir ,,neovim* und ,,nim*“ vergleicht, bei denen beide

Projekte mehr als 150 verschiedene Entwickler haben, unterscheidet sich der Wert der Dauer

45

6. Validierung

stark. Die Anzahl der ,,Commits* spiegelt die Dauer einer Transformation am besten wieder,

wobeil auch hier definiert werden kann, dass ein ,,Commit™ diese Transformationszeit

benétigt.
Performanz
300
250
200
150
100
) I I |I
0 I I- ml .I II .
brackets neovim osquery alcatraz hextris textmate lighttable toaruos
B 100 Commits B GroRe des Projekts in MB Anzahl Entwickler Transformationszeit in s

Abbildung 6.1.: Test der Transformationszeit anhand von ,,Commits®, GroBe des Projekts und Anzahl
Entwicklern. Alle drei Werte sind von ,,github.com*

Aus diesen Daten kann zusammenfassend gesagt werden, dass die zwei auschlaggebenden
Parameter, die Anzahl der ,,Commits*, sowie die Entwickleranzahl die Ubertragungszeit am
meisten beeinflussen. Die Entwickler fir sich selbst nicht direkt, aber ein Projekt, das viele
Entwickler hat, hat meistens auch viele ,,Commits*“. Und dazu kommen nicht nur kleine
Anderungen am Projekt, sondern auch groBe, die viele Dateiéinderungen pro ,,Commit
beinhalten. Das fiihrt dann zu langeren Laufzeiten bei der Transformation. Die Grolie des

Projekts in Bytes spielt dagegen keine Rolle.

46

7 Zusammenfassung

In diesem Kapitel sind die Ergebnisse zusammengefasst und die mdglichen Verbesserungen

oder Erweiterungen beschrieben.

7.1 Fazit

Die Aufgabe dieser Arbeit war es, ein Programm zu entwerfen und zu implementieren,
welches Daten von Software-Repositories in eine Datenbank Ubertragt. Dabei soll die
gesamte Transformation mithilfe von Datenstromen funktionieren. Damit ist gemeint, dass
keine Dateien fur die Zwischenspeicherung erstellt werden sollen. Genau dafir ist das
Resultat dieser Arbeit ausgelegt und entwickelt worden. Es kann nun Daten aus ,,Git"
extrahieren, fir Data Mining vorbereiten und diese in eine MySQL-Datenbank abspeichern.
Dabei werden keine temporaren Dateien fiir die Ubertragung generiert. Deshalb kann

festgehalten werden, dass die Aufgabe erfillt wurde.

Dazu wurde die Benutzbarkeit des Programms mehrfach erweitert, damit der Benutzer sich
leicht in das ,,ATSR* einarbeiten kann. Dies wurde in der Analysephase nicht mit dem
Stellenwert, den es haben sollte, betrachtet. Dadurch kam Arbeit hinzu, die den Zeitplan am
Ende der Thesis, verzogert hat. Aber es waren sehr gute und wichtige Verbesserungen, wie
sich im Nachhinein feststellen l&sst, denn damit sind die meisten Unklarheiten beim

Benutzen aus dem Weg geraumt worden und es kénnen wesentlich weniger Fehler auftreten.

Was noch unklar ist, ist die Effizienz des Programms in dieser Hinsicht zur Erweiterbarkeit
mit weiteren Formaten. Bisher gibt es drei Formate, von denen zwei eine identische
Datenquelle haben. Bei diesem Punkt kann nicht sicher festgehalten werden, ob es leicht
wird, weitere Formatmodelle hinzuzufuigen, denn es gab keine Testmdéglichkeiten im Bezug
darauf. Genauso ist das Datenformat ,,Docu* noch nicht komplett definiert. Das heil3t, es
gibt keinen spezifizierten Aufbau dieser CSV-Datei und das konnte nur teilweise getestet
und gepriift werden. Dabei kdnnen natiirlich noch Probleme entstehen, da die Schnittstellen

immer ein hohes Fehlerpotential enthalten.

47

7. Zusammenfassung

7.2 Weitere Schritte

Programme, die ganz neu entwickelt wurden, haben meistens grof3es
Verbesserungspotential. Nicht weil sie noch viele Fehler enthalten, sondern da erst bei der
haufigen Benutzung Ideen entstehen, fiir welche weiteren Aufgaben das Programm nditzlich
ware. Fiir das ,,ATSR* gibt es durch Analysen und Tests bisher schon ein paar Ideen fur
Erweiterungen, die aber auf Grund von der begrenzten Zeit nicht mehr umgesetzt werden

konnten.

Der Ablauf der Datenbankbeschreibung kdnnte am meisten veréandert werden. Bisher wird
ein komplettes Software-Repository tbertragen, wenn die Transformation gestartet wird.
Dabei kann es vorkommen, dass dasselbe groRe Repository immer wieder Ubertragen
werden soll und dieser Vorgang dann viel Zeit kostet. Wenn hingegen vor der
Transformation die Datenbank berpruft wird, ob Daten von dem Projekt in der Datenbank
sind und nur noch die neuen ,,Commits* libertragen werden, konnte man hier viel Zeit fiir
den Anwender sparen. Dann sind aber natiirlich mehrere Punkte zu beachten. Wenn nun die
Ubertragung unterbrochen wird, das kann durch den Verlust der Datenbankverbindung oder
abstirzten des eigenen Systems entstehen, dann ist nicht klar, wie konsistent die Daten noch
sind. Hier mussten mehrere Sicherheitsmechanismen eingebaut werden, damit keine Daten
verloren gehen. Das kann bisher nicht passieren, denn wenn ein Fehler bei der Ubertragung
passiert, muss die Transformation von neuem gestartet werden. Als weitere
Erweiterungsmoglichkeit der Datenbankverbindung konnte das komplette Repository vor
der Verarbeitung geklont und lokal abgespeichert werden. Damit kann verhindert werden,
dass der ,,Git“-Befehl bei groRen Repositories aus anderen Netzwerken zu viel Zeit in
Anspruch nimmt. Und bei einem Verbindungsabbruch wirde das Programm selbst solange

keine Probleme bekommen, bis das komplette Projekt geklont wurde.

Alle Erweiterungen sind bisher dafiir da, um das Programm effizienter zu machen. Der letzte
Punkt ist eine Idee, die abhingig vom Einsatz des ,,ATSR“ ist. Es wire auch eine
Mdglichkeit das Programm als Service einzurichten, ohne eine Benutzerflache. Dann kénnte

man taglich Transformationen starten und der Benutzer mdisste sich nur noch mit den

48

7. Zusammenfassung

Tabellen in der Datenbank beschéftigen. Diese Umstrukturierung wére aber nur ein

Fortschritt, wenn dies der Standardfall der Benutzung ware.

49

Literaturverzeichnis

[1] S. Chacon und B. Straub, Pro Git, Apress, 2009.
[2] Riccardi, ,,Data Modeling with Entity-Relationship Diagrams,“ p. 61, 2004.
[3] P. Chen, ,, The entity-relationship model - toward a unified view of data,” pp. 9-36, 1976.

[4] L. Welling und L. Thomson, PHP and MySQL Web development, Sams Publishing,
2003.

[5] Oracle, ,www.oracle.com,“ Oracle Corporation, [Online]. Available:
http://www.oracle.com/technetwork/java/javase/jdbc/index.html. [Zugriff am 29 10
2015].

[6] J. Nielsen, Usability engineering, Elsevier, 1994.

50

Erklarung

Ich versichere, diese Arbeit selbststandig verfasst zu haben.
Ich habe keine anderen als die angegebenen Quellen benutzt
und alle wortlich oder sinngemaR aus anderen Werken
ubernommene Aussagen als solche gekennzeichnet. Weder
diese Arbeit noch wesentliche Teile daraus waren bisher
Gegenstand eines anderen Prufungsverfahrens. Ich habe
diese Arbeit bisher weder teilweise noch vollstandig
veroffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren tberein.

Ort, Datum, Unterschrift

51

