Institut fir Visualisierung und Interaktive Systeme

Universitat Stuttgart
UniversitatsstraBe 38
D-70569 Stuttgart

Bachelorarbeit Nr. 210

Entwicklung eines
Benchmark-Generators zum
Testen von
Ontologievisualisierungen

Vincent Link
Studiengang: Softwaretechnik
Prifer/in: Prof. Dr. Thomas Ertil
Betreuer/in: Dr. Steffen Lohmann,

Dipl.-Inf. Florian Haag

Beginn am: 15. April 2015

Beendet am: 15. Oktober 2015

CR-Nummer: .2.4,1.7.2

Kurzfassung

Mit Ontologien wird die Struktur von Informationen und Wissen hauptsichlich in der Web Ontology
Language (OWL) beschrieben. Aufgrund des Umfangs und der hohen Komplexitéit solcher Onto-
logien werden mit Ontologievisualisierungen die beschriebenen Konzepte und deren Beziehungen
anschaulicher dargestellt. Damit diese Visualisierungen effektiv getestet werden konnen, werden
Benchmark-Ontologien benétigt. In dieser Arbeit wird OntoBench, ein Generator fiir solche Ontolo-
gien, in Form einer Webanwendung konzipiert und implementiert, sodass sich diese systematisch
und flexibel erstellen lassen. Mit den generierten Ontologien soll primar die Konformitat zur OWL-
Spezifikation testbar sein; die Skalierbarkeit oder Performanz der Visualisierung stehen hierbei nicht
im Vordergrund. Abschlieffend wird dieser Ansatz an drei Visualisierungen evaluiert und ein Ausblick
auf mogliche Erweiterungen gegeben.

Inhaltsverzeichnis

1. Einleitung

2. Grundlagen und verwandte Arbeiten
2.1. Fachliche Grundlagen
22. OntoViBe
2.3. Lehigh University Benchmark und Erweiterungen
2.4. W3C-Testontologien e
2.5. Protégé und andere Ontologie-Editors
2.6. Uberblick und Zusammenfassung

3. Konzept
3.1, Uberblick e
3.2. Ontologie
3.3. Architektur. e
3.4. Weboberflache
3.5, Server. e e

4. Implementierung
4.1. Verwendete Technologien
42. Entwurf.
4.3. Webschnittstelle — Spezifikation oo L
44. Weboberflaiche
4.5, SEIVET i e

5. Evaluation
5.1. Funktionalitit der Anwendung
5.2. Testen von Ontologievisualisierungen

6. Zusammenfassung und Ausblick
6.1. Fazit. e e e e
6.2. Ausblick e

A. Unterstitzte OWL-Elemente

Literaturverzeichnis

11
11
12
13
14
14
15

17
17
17
27
28
33

37
37
40
41
44
48

55
55
58

63
63
64

67

69

Abbildungsverzeichnis

2.1.

3.1.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.
4.10.

5.1.
5.2.
5.3.
5.4.

Screenshot des Ontologie-Editors Protégé 15
Feature-Grid - Platznutzung bei unterschiedlichen Layouts 29
Grober Entwurf der Architektur 40
Architektur der Weboberflache 44
Weboberfliche — Der Quick Guide 46
Weboberflaiche — Die Tabs 46
Weboberflache — Die Presets e 47
Weboberfliche — Die Features 47
Weboberfliche — Der Generator e 48
Weboberflache — Die Ontologie 48
Architektur der serverseitigen Anwendungo 49
Entity-Relation-Modell der Datenbank 53
Evaluierung von WebVOWL - Falsche Darstellung 59
Evaluierung von WebVOWL - Fehlende Elemente 60
Evaluierung von OWLGrEd — Inkonsistenz 61
Evaluierung von OWLGrEd - Fehlendes Element 62

Tabellenverzeichnis

3.1.

Vergleich von RDF/XML mit anderen Syntaxen 24

Verzeichnis der Listings

4.1.

Definition eines Gitternetzes mit Semantic UL 45

4.2. Verkniipfen der Schnittstellen-URL mit einer Java-Methode
4.3. Aufbau eines Features im Programmcode L.

1. Einleitung

Im Zuge des Semantic Webs und seiner steigenden Verbreitung miissen Wissen und Informationen
strukturiert zuganglich gemacht werden. Mit Hilfe von Ontologien werden diese Strukturen beschrie-
ben, sodass sie einheitlich vorliegen und auch von Computern interpretiert werden kénnen. Die
Ontologien sind grof3tenteils in der Web Ontology Language (OWL) geschrieben und aufgrund des
groflen Umfangs und der hohen Komplexitat nur schwer vom Menschen erfassbar. Um bei dieser
Aufgabe zu unterstiitzen, entstanden eine Reihe von Ontologievisualisierungen, die die beschriebenen
Konzepte und Beziehungen anschaulich darstellen.

Wird eine Visualisierung fiir OWL-Ontologien entwickelt, sollte sie mittels einer geeigneten Ontologie
auf ihre korrekte Funktionalitit getestet werden. Reale Ontologien sind hier nicht zweckméfig, da
sie nicht alle moglichen OWL-Konstrukte verwenden, und geeignete Benchmark-Ontologien sind
rar. Es ist durchaus moglich, dass eine Ontologievisualisierung auch ohne Benchmark-Ontologien
fehlerfrei entwickelt sein kann; bisher gibt es jedoch kaum Mdéglichkeiten, wie diese Eigenschaft
bestatigt werden konnte.

In dieser Arbeit wird die Anwendung OntoBench konzipiert und implementiert, mit der sich
Benchmark-Ontologien hierfiir systematisch und flexibel erstellen lassen. Mit generierten Onto-
logien wird der Ansatz gegen Ende an drei Visualisierungen getestet. Abschlieffend wird ein Fazit
gezogen und auf mogliche Erweiterungen und Forschungsbereiche eingegangen.

Gliederung

Der Inhalt dieser Arbeit ist iiber die weiteren Kapitel wie folgt strukturiert:

Kapitel 2 — Grundlagen und verwandte Arbeiten: Im nichsten Kapitel werden kurz und biindig
die fachlichen Grundlagen dieser Arbeit nahegebracht. Anschlielend werden verwandte Arbei-
ten betrachtet und diese Arbeit zwischen diesen positioniert.

Kapitel 3 — Konzept: Alle Entwurfs- und Designentscheidungen beziiglich des Generators und der
generierten Ontologien werden in diesem Kapitel begriindet. Damit stellt es die Grundlage fiir
die Implementierung dar.

Kapitel 4 — Implementierung: In diesem Kapitel wird auf die technischen Details der Implementie-
rung eingegangen. Nach Skizzieren der Architektur werden die einzelnen Komponenten der
Anwendung beschrieben.

Kapitel 5 — Evaluation: Der fiir OntoBench gewéhlte Ansatz wird im vorletzten Kapitel zum einen
anhand der Anwendung selbst und auflerdem auch an drei Visualisierungen evaluiert.

1. Einleitung

Kapitel 6 — Zusammenfassung und Ausblick: Mit einem Fazit und einem Ausblick auf mégliche
Erweiterungen, wird die Arbeit in diesem Kapitel abschlossen.

10

2. Grundlagen und verwandte Arbeiten

Im Folgenden wird zuerst eine kurze Ubersicht tiber die fachlichen Themen gegeben. Anschlieflend
werden verwandte Arbeiten nach bestem Wissen beschrieben und mit dieser Arbeit verglichen.

2.1. Fachliche Grundlagen

Bevor direkt in die fachliche Diskussion eingestiegen wird, soll eine kurze Einfithrung in das The-
mengebiet gegeben werden.

2.1.1. Semantic Web

Im heutigen Internet werden Informationen hauptséchlich in einer fiir den Menschen lesbaren Form
angeboten. Von Computern kénnen diese schlecht verarbeitet werden, da ihre Form zum einen nicht
standardisiert ist und zum anderen der Inhalt aus Texten nur schwer extrahiert werden kann. Das
Semantic Web soll deshalb dem heutigen Internet eine Struktur geben, welche die Informationen in
einer fiir Computer interpretierbaren Form im sogenannten Web of data beschreibt. [BLHL'01]

2.1.2. Ontologien

Uber das Semantic Web allein erhalten Computer nur den reinen Zugriff auf Informationen. Damit
diese aber genutzt werden kénnen, wird in Ontologien zum einen die Struktur der Informationen
beschrieben. Computer kénnen dadurch unterschiedliche Informationen miteinander verkniipfen
und interpretieren. Zum anderen enthalten Ontologien Inferenzregeln, mit denen Riickschliisse aus
in dieser Struktur vorliegenden Daten gezogen werden kénnen. [BLHL'01]

In einem vereinfachten Beispiel liegen dem Computer Vorlesungen und Studenten als Daten vor, iiber
die sonst keine Informationen bekannt sind. Sagt man mit einer Ontologie, dass Studenten Vorlesungen
besuchen kénnen, kann der Computer diese nun verkniipfen. Erweitert man die Ontologie um die
Information, dass ein Student immatrikuliert sein muss, um eine Vorlesung zu besuchen, kénnen
alle Studenten gefunden werden, die keine Vorlesung besuchen diirfen. Zusammengefasst, kann der
Computer durch eine Ontologie Schlussfolgerungen aus den Daten ziehen.

11

2. Grundlagen und verwandte Arbeiten

2.1.3. OWL

Damit Ontologien von einem Computer interpretiert werden kénnen, miissen sie in einer Sprache
formuliert sein, die er verstehen kann. Eine solche Sprache ist die Web Ontology Language, kurz OWL,
welche die Empfehlung des World-Wide-Web-Consortium ist und deshalb als einzige in dieser Arbeit
beriicksichtigt wird. OWL 2 ist die aktuelle Version der Web Ontology Language, welche OWL 1 um
neue Konstrukte erweitert. [W3C12]

Ein Grof3teil von OWL lasst sich durch die drei Grundelemente Classes, Properties und Individuals,
auf Deutsch Klassen, Eigenschaften und Individuen, erklaren. Eine Klasse ist eine Abstraktion von
konkreten Dingen und gruppiert diese anhand gemeinsamer Merkmale. Solch ein konkretes Ding
wird als Individuum bezeichnet. Individuen einer Klasse kénnen in Relation mit Individuen anderer
oder derselben Klasse stehen, was als Property bezeichnet wird. [HKP'12]

Auf das obige Beispiel bezogen, stellen Vorlesung und Student Klassen dar. Die Klasse Student hat
dabei die Eigenschaft, dass sie die Klasse Vorlesung besucht. Das Individuum Hoéhere Mathematik
konnte also von dem Individuum Barbara Mustermann besucht werden.

Klassen beziehungsweise Individuen konnen zwei unterschiedliche Arten von Eigenschaften verbin-
den. Eine Vorlesung hat beispielsweise die Eigenschaft maximale Teilnehmeranzahl. Hierbei spricht
man von einer Data Property, da sie einen reinen Wert beschreibt. Mit einer Object Property werden im
Gegensatz dazu Eigenschaften beschrieben, die sich auf eine Klasse beziehungsweise deren Individuen
beziehen.

OWL definiert mehrere Sprachkonstrukte, mit denen unter anderem diese drei Grundelemente
beschrieben werden. Klassen lassen sich zum Beispiel durch eine explizite Aufzahlung der Individuen
oder auch durch eine Vereinigung anderer Klassen definieren. [BHH*04]

2.1.4. OWL-Profile

OWL-Profile definieren Subsets der Konstrukte von OWL, welche fiir unterschiedliche Anwendungs-
gebiete von Ontologien benétigt werden. Eine Ontologie ist mit einem bestimmten Profil konform,
wenn sie nur die Konstrukte verwendet, die in diesem definiert sind.

So sollten manche OWL-Konstrukte nicht in einer Ontologie verwendet werden, um beispielsweise
beim Reasoning moglichst effizient Schlussfolgerungen aus einer Ontologie und Daten ziehen zu
konnen. [BHH04]

2.2. OntoViBe

Haag et al. stellen mit OntoViBe [HLNE14a] ein Set von Ontologien zum Testen von Ontologievisuali-
sierungen vor. Momentan befindet sich OntoViBe in Version 2, welche den in [HLNE14b] vorgestellten
Vorganger um weitere Testfille und Elemente von OWL erweitert.

Die Ontologien decken einen grofien Bereich der OWL 2-Konstrukte ab. Sie enthalten auflerdem
auch DC-Annotationen [DCM12] und Konstrukte, die fiir Testfille der hauptsachlich graphbasierten

12

2.3. Lehigh University Benchmark und Erweiterungen

Ontologievisualisierungen gedacht sind. In einem dieser Testf#lle verbinden zum Beispiel mehrere
Properties zwei Klassen, wodurch in einem Graphen die Uberlagerung von Kanten getestet werden
kann.

Beim Design wurde darauf geachtet, dass die einzelnen Ontologien moglichst kompakt sind und
in der Visualisierung somit wenige Elemente wiederholt werden. Das wird zum einen dadurch
erreicht, indem bereits definierte Elemente eines Typs von anderen Elementen wiederverwendet
werden, wodurch sich eine starke Verflechtung der einzelnen Testfélle ergibt. Zum anderen erzeugt
die Aufteilung auf vier Ontologien in geringem Mafle eine Modularitit, sodass nicht alle Testfille auf
einmal visualisiert werden miissen.

Mit der Minimal-Ontologie bietet OntoViBe eine leere Ontologie, die fiir eine Visualisierung das
Minimum einer giiltigen Eingabemenge darstellt. Die Core-Ontologie enthalt die meisten Elemente
von OntoViBe und deckt einen grofien Bereich von OWL 2 ab. Sie referenziert Elemente aus der
Imported-Ontologie, um den Fall einer Visualisierung von mehreren zusammenhangenden Ontologien
zu testen. Aufgrund des grof3en Spielraums an moglichen Kombinationen von Kardinalitéten, liegen
diese separat in der Cardinality-Ontologie.

2.3. Lehigh University Benchmark und Erweiterungen

In [GPHO5] stellen Guo et al. mit dem Lehigh University Benchmark (LUBM) eine Test-Suite fiir
Ontologiesysteme vor. In diesen Systemen konnen Daten aus dem Semantic Web gespeichert, abgefragt
oder fiir das Reasoning werden. Die Suite baut auf Benchmarks fiir Datenbanken auf, welche aber an
die Eigenschaften des Semantic Webs angepasst sind.

LUBM besteht aus mehreren Komponenten, von denen die Ontologie nur einen Teil darstellt. Mit
einem Generator fiir Instanzen von Klassen der Ontologie, konnen beliebig grofie Testdaten generiert
werden, um sowohl kleinere als auch grofie Systeme zu testen. Mit einem Set von Abfragen kann das
System anschlieBend unter Verwendung von vordefinierten Performanzmetriken bewertet werden.

Die Ontologie selbst basiert auf Benchmark-Daten, die die Struktur des Universitdtskontexts beschreibt.
Sie verwendet aufierdem nur die Syntax des OWL Lite-Profils, mit der ein effizientes Reasoning in
dem getesteten System genutzt werden kann.

2.3.1. Lehigh Bibtex Benchmark

Der in [WGQHO5] vorgestellte Lehigh Bibtex Benchmark verbessert den Generator der LUBM-Suite.
Mit Hilfe eines probabilistischen Modells konnen im Lehigh Bibtex Benchmark auch Instanzen von
Klassen beliebiger Ontologien generiert werden, welche sich also nicht unbedingt auf den Universi-
tiatskontext beziehen miissen. Dadurch kann mit dieser Benchmark-Suite ein breiteres Spektrum an
Anwendungsgebieten modelliert und getestet werden.

13

2. Grundlagen und verwandte Arbeiten

2.3.2. University Ontology Benchmark

Ma et al. erweitern mit dem University Ontology Benchmark (UOBM) die LUBM-Suite, um das Testen
von Reasonern und der Skalierbarkeit eines mit Ontologien arbeitenden Systems zu verbessern.

UOBM bietet zwei Ontologien, die die OWL Lite-Syntax beziehungsweise die OWL DL-Syntax im
Gegensatz zu LUBM vollstandig abdecken. Aulerdem wurde der Generator in der Hinsicht optimiert,

dass er die generierten Instanzen besser miteinander verkniipft, woraus sich insgesamt realitdtsnahe
Daten ergeben. [MYQ™106]

2.4. W3C-Testontologien

Vom World-Wide-Web-Consortium wurden mit den Spezifikationen von OWL 1 [CR04] und OWL 2
[SHKG12] auch verschiedene, kleinere Testontologien veroffentlicht. Mit diesen Ontologien soll zum
einen die korrekte Verwendung von OWL gezeigt werden. Zum anderen sind sie aber auch dafiir
gedacht, dass Anwendungen, die mit OWL-Ontologien arbeiten, auf ihre Konformitat zur Spezifikation
getestet werden kénnen.

Der grofite Teil der Ontologien ist zum Testen von Syntax, speziellen Problemstellungen von OWL
oder Reasonern gedacht. Fiir wenige OWL-Konstrukte existieren jedoch auch eigene Testontologien,
sodass diese separat getestet werden konnen. Bei einem grofien Teil der Ontologien sind aufierdem
auch die OWL-Profile angegeben, zu denen die jeweilige Ontologie konform ist.

2.5. Protégé und andere Ontologie-Editors

Protégé’ ist ein Ontologie-Editor, der ein méchtiges Framework und Vielzahl darauf aufbauender
Plugins, wie unter anderem Visualisierungen, mit sich bringt. Knublauch et al. bezeichnen Protégé in
[KHM*05] als die fiihrende Anwendung zum Erstellen und Bearbeiten von Ontologien. Aufgrund
seiner weiten Verbreitung und der guten Unterstiitzung von OWL, wihle ich Protégé reprasentativ
fiir andere, dhnliche Ontologie-Editors.

Mit einem Ontologie-Editor konnten eigene Benchmark-Ontologien zum Testen einer Visualisierung
erstellt werden. Protégé bietet dabei einen groflen Spielraum an Kombinationsméglichkeiten der OWL-
Konstrukte, womit eine Ontologie auf eine bestimmte Ontologievisualisierung zugeschnitten werden
kann. Fur den Verlauf der Entwicklung einer Visualisierung kann sich diese Methode eignen, da
einzelne, inkrementelle Anpassungen an der Benchmark-Ontologie mit wenig Aufwand vorgenommen
werden konnen.

Wird solch eine Ontologie mehrmals in unterschiedlicher Form benétigt, lohnt sich der Aufwand
aufgrund der groflen Anderungen nicht. So sind mehrere Benutzereingaben nétig, um bereits kleinere
Testfille zu konstruieren. Neben der Tatsache, dass zu Beginn geeignete Testfille gewahlt werden

'http://protege.stanford.edu/

14

http://protege.stanford.edu/

2.6. Uberblick und Zusammenfassung

<4 wine (http://www.w3.0rg/ TR/2003/PR-owl-guide-20031209/wine) : [http://www.w3.0rg/TR/owl-guide/wine.rdf] - O X
File Edit View Reasoner Tools Refactor Window Help

<@ | > | ® wine (hitp: 3.0rg/TR/2003/PR-owl-guide-20031209/wine!)
Active Ontology x| Entities x| Object Properties x| Individuals by class x| OntoGraf x

Class hierarchy | Class hierarchy (inferred) Class Annotations | Class Usage

Annotations

¥ @ Thing -
- @ ConsumableThing
& Fruit
NenConsumableThing =~
Region Equivalent To =
Vintage {Red , Rose , White}
VintageYear
h Wine = wine
¥ - & WineDescriptor) i
H WineDescriptor
WineTaste
Winery General class axiom:

SubClass Of

WineColor or WineTaste

Instances
#Red
#Rose
White

To use the reasoner click Reasoner O Start reasoner v/ Show Inferences

Abbildung 2.1.: Die Oberflache des Ontologie-Editors Protégé, in dem die Wine-Ontologie bearbeitet
wird.

missen, erfordert die Bedienung eines Ontologie-Editors unter Umstdnden eine gute Kenntnis des
Programms, um tiberhaupt alle OWL-Konstrukte finden zu kénnen.

2.6. Uberblick und Zusammenfassung

Bei den meisten der aufgefithrten Arbeiten liegt der Fokus auf einem anderen Thema als bei dieser
Arbeit. Sie sind zum Testen von Reasonern und Ontologiesystemen gedacht, und versuchen diese
durch grofle Datenmengen oder auch spezielle OWL-Konstrukte zu vergleichen. Auflerdem sind die
Ontologien dieser Arbeiten auf OWL 1 beschrankt und unterstiitzen Konstrukte von OWL 2 somit
nicht.

OntoViBe hingegen dhnelt dem Thema dieser Bachelorarbeit am stiarksten, da der Fokus auf dem
Testen von Visualisierungen liegt. OntoViBe besteht zwar aus mehreren Modulen; ein systematisches
Testen einer bestimmten Gruppe von OWL-Elementen ist damit jedoch nicht méglich. Aulerdem
wird OWL 2 nicht vollstindig abgedeckt.

Mit Protégé konnte prinzipiell eine Benchmark-Ontologie erstellt werden, welche auflerdem auch
auf eine spezielle Ontologievisualisierung angepasst werden kann. Der erforderliche Aufwand ist
hierbei jedoch relativ grofy und die resultierende Ontologie aufgrund des Entstehungsprozesses stark
auf eine einzelne Visualisierung beschrankt.

Mit dem Ergebnis dieser Arbeit soll es moglich sein, eine Ontologievisualisierung und die unterstiitzten
OWL-Konstrukte modular und systematisch zu validieren. Es sollen alle Konstrukte von OWL 2 separat
auswahlbar sein, um eine grofitmogliche Flexibilitit beim Erstellen einer Benchmark-Ontologie zu

15

2. Grundlagen und verwandte Arbeiten

erhalten. Hierbei sollen aber trotzdem Module angeboten werden, die die einzelnen OWL-Konstrukte
systematisch zusammenfassen. Im Gegensatz zum manuellen Erstellen mit beispielsweise Protégé,
sollen hiermit vordefinierte Testfille kombinierbar sein, sodass der Gesamtaufwand auf ein Minimum
beschrankt ist.

16

3. Konzept

In diesem Kapitel wird zuerst ein Uberblick des Gesamtkonzepts gegeben. In den folgenden Ab-
schnitten wird das Konzept dann in seinen grundlegenden Teilen erklart und die Entscheidungen, die
wihrend dieser Arbeit gefallen sind, begriindet.

3.1. Uberblick

OntoBench soll dem Benutzer eine Ubersicht der Elemente geben, aus denen der Generator eine Onto-
logie erstellen kann. Die Elemente sollen einzeln auswéhlbar sein, damit zum einen Visualisierungen
getestet werden konnen, deren Entwicklung sich erst im Anfangsstadium befindet. Zum anderen
muss eine Visualisierung auch nicht alle OWL-Konstrukte darstellen konnen, was zum Beispiel der
Fall ist, wenn nur bestimmte OWL-Profile, also Subsets der OWL-Spezifikation, abgebildet werden
sollen. Fur diese Profile bietet es sich an, dem Nutzer eine Vorauswahl der Elemente zu bieten, die in
diesen Profilen enthalten sind. Nach dem Generieren soll man die Ontologie entweder herunterladen
konnen oder eine eindeutige URL erhalten, mit der sie auch iiber das Internet abgerufen werden
kann.

Der Generator soll iber eine Weboberflache ansprechbar sein. In einer Anfrage werden die Be-
nutzereingaben iiber eine Schnittstelle an den Server geleitet, der daraufhin die Ontologie erstellt
und diese in seiner Antwort zuriickgibt. Dem Anwender soll die Ontologie anschlieffend angezeigt
werden.

3.2. Ontologie

In den folgenden Abschnitten wird beschrieben, was mit einer generierten Ontologie getestet werden
konnen soll und wie genau sie aufgebaut sein muss.

3.2.1. Umfang

Theoretisch soll mit den Ontologien alles getestet werden konnen, was in Frage kommt. Eine grobe
Richtung hierfiir ergibt sich aus dem Begriff Ontologievisualisierungen aus der Aufgabenstellung.
Zum einen sollen Eigenschaften einer Ontologie getestet werden, zum anderen Eigenschaften von
moglichen Visualisierungen mit Bezug auf die Ontologie.

17

3. Konzept

Testbarkeit der Ontologie

Ontologien sollen nach Empfehlung des W3C in der Web Ontology Language (OWL) geschrieben
werden. OWL bietet vordefinierte Konstrukte, mit denen man Aussagen definieren kann. Durch diese
Konstrukte lassen sich unter anderem Klassen definieren (zum Beispiel Menschen), diese mit einer
Eigenschaft beschreiben (Menschen konnen sehen) oder die Eigenschaften genauer einschranken
(Menschen haben genau zwei Augen).

In einer Ontologievisualisierung, welche alle verfiigbaren Informationen darstellt, miissten nun auch
alle Aussagen visualisiert werden. Auf die Beispiele bezogen, miisste man als Nutzer die Gruppe von
Menschen erkennen kdnnen. Man miisste auch sehen, dass die Menschen eine bestimmte Eigenschaft
haben, oder dass eine Eigenschaft eingeschrankt ist. Es ist deshalb grundlegend, dass alle Elemente
der Sprache, mit denen ich meine Aussagen formulieren kann, getestet werden kénnen sollen.

Damit wire aber nur eine Dimension abgedeckt; die Kombination verschiedener OWL-Elemente wire
hierbei nicht beriicksichtigt, was aber auch bewusst so sein soll. Wiirde man spezielle Kombinationen
und Strukturen testen wollen, gibe es zwei Moglichkeiten: Visualisierungen einzelner OWL-Elemente
werden miteinander verkniipft oder es entsteht ein neue Darstellung fiir diese.

Eine besondere Darstellung einer komplexen Struktur kann aber nicht getestet werden, da sie zu
spezifisch fiir eine Visualisierung ist. Hierfiir misste also Details der zu testenden Visualisierungen
vorhanden sein, was zur Folge hitte, dass Ontologien von OntoBench nicht mehr allgemein gehalten
wiren. Deshalb sollen spezielle Kombinationen von OWL-Konstrukten explizit nicht testbar sein.

Testbarkeit der Visualisierung

Bis jetzt wire die Funktionalitat der Visualisierung hinsichtlich der unterstiitzten OWL-Elemente
testbar. Beim Ansatz einer graphbasierten Visualisierung wire aber vielleicht interessant, wie sich
diese mit besonders vielen Knoten oder mit besonders vielen Kanten zwischen zwei Knoten verhalt,
also wie sie skaliert. Dieser Aspekt soll allerdings nicht im Fokus stehen, da alle verschiedenen
Visualisierungskonzepte und die Visualisierungen bekannt sein miissten, um die Skalierbarkeit dieser
zu testen.

Der Fokus soll viel eher darauf liegen, bestimmte Fallstricke oder Besonderheiten von OWL mit Bezug
zu Visualisierungen testen zu konnen. Einige Ideen stammen von der Entwicklung an WebVOWL,
an der ich mitgewirkt habe und diese Fallstricke selbst erleben durfte. Aus diesen Erfahrungen lasst
sich aber nicht direkt auf andere Visualisierungen schlieflen, da manche Testfalle erst durch die
graphbasierte Visualisierung von VOWL [LNHE14] erm6glicht wurden; sie bilden allerdings ein gutes
Fundament.

3.2.2. Feature
Die Begriffe Element oder Konstrukt beziehen sich bisher hauptsichlich auf OWL. In Ontologien

konnen aber auch kleinere Konstrukte aus mehreren OWL-Elementen verwendet werden, weshalb
diese unter einem neuen Begriff zusammengefasst werden sollen. Da OntoBench in der englischen

18

3.2. Ontologie

Sprache verfiigbar sein wird, habe ich den kurzen englischen Begriff Feature gewihlt, der einen
Testfall beschreibt. Ein Feature ist ein Bestandteil der generierten Ontologie und sollte seinen Inhalt
durch eine sprechende Bezeichnung ausdriicken. Feature wird im Folgenden auch als Synonym fiir
ein Element von OWL verwendet, wenn dieses explizit durch das Feature getestet werden kénnen

soll.

3.2.3. Anforderungen an die Features

Bei der Auswahl der OWL-Elemente und beim Definieren der Features sollen die folgenden An-
forderungen eingehalten werden, um eine moglichst nitzliche und aussagekraftige Ontologie zu
erhalten.

Kompakte Definition der Features

Ein Feature soll so knapp wie moéglich in der Ontologie definiert werden, aber dabei trotzdem seine
Anforderungen erfilllen. Dadurch kann die Ontologie beziehungsweise ein einzelnes Feature in der
Ontologie einfacher und schneller nachvollzogen werden, als wenn komplexe Konstrukte verwendet
werden.

Der Hauptgrund hierfiir ist allerdings, dass durch ein zu komplexes Feature eventuell zu viele andere
OWL-Elemente, also auch indirekt andere Features, miteinbezogen werden wiirden. So wiirde der
Anwender zum einen einen unerwartet grofien Raum an anderen Features abdecken, der ihm aus der
Beschreibung des einen Features vielleicht gar nicht deutlich wurde und den er gar nicht testen will.
Zum anderen wirden aber vielleicht auch OWL-Elemente miteinbezogen, die von der zu testenden
Visualisierung gar nicht unterstiitzt werden. Dadurch kénnte die generierte Ontologie unbrauchbar
werden, weil die Visualisierung eventuell die Darstellung komplett verweigert. Die Kombination
eines geforderten mit einem unerwarteten Feature konnte aber auch eine andere Darstellung des
geforderten Features zur Folge haben.

Unabhéngige Definition der Features

Diese Anforderung ist der obigen in der Hinsicht dhnlich, dass unerwartete Nebenwirkungen der
Ontologie auf die Visualisierung vermieden werden sollen.

Einzelne Features, die die gleichen OWL-Elemente nutzen, sollen mdglichst unabhiangig voneinander
definiert werden. OWL-Elemente sollen also bewusst mehrfach definiert und einmalig verwendet
werden. Dadurch soll es ebenfalls leichter sein, ein Feature in der Ontologie nachvollziehen zu kénnen.
Es ergibt sich aber auch der Vorteil, dass unabhangige Features in der Visualisierung voraussichtlich
getrennt voneinander dargestellt werden. Dadurch kénnen die eingegebenen Testdaten leichter
verifiziert und Fehler in der Visualisierung einfacher dem Feature beziehungsweise den zugrunde
liegenden OWL-Elementen zugeordnet werden.

19

3. Konzept

Benennung der OWL-Konstrukte eines Features

Die OWL-Konstrukte, die von einem Feature verwendet werden, sollen keine zufalligen, sondern
aussagekriftige IRIs beziehungsweise Namen erhalten. Da diese Namen in der Visualisierung an-
gezeigt werden, sollen sie die Bezeichnung des getesteten Features beinhalten. Beim Validieren der
Visualisierung kann somit schnell erkannt werden, ob ein Feature anders als beabsichtigt visualisiert
wird und welche Features nicht oder nicht vollstandig visualisiert werden.

Werden mehrere OWL-Elemente fir ein Feature verwendet, sollen trotzdem alle Elemente die Bezeich-
nung des Features beinhalten. Wird zum Beispiel eine owl:0bjectProperty getestet, sollen auch die
beiden umliegenden Klassen zumindest ObjectProperty im Namen haben, damit die Zugehorigkeit
zum Feature erkennbar bleibt.

In den Ontologien von OntoViBe [HLNE14a] wird das dhnlich gehandhabt. Jedes Konstrukt hat
einen Namen, der schnell auf den Testfall schlieffen lasst. Da OntoViBe allerdings die einzelnen
Testfille starker miteinander vernetzt, wird in der Visualisierung nicht unbedingt klar, ob alle
OWL-Konstrukte auch wirklich zu dem visualisierten Testfall gehoren. So wird fiir den Testfall
des owl:intersectionOf-Elements unter anderem ein Element mit dem Namen DeprecatedClass
genutzt, sodass nicht direkt klar ist, ob dieses iiberhaupt dazu gehort.

Kompakte Darstellung der Ontologie

Je mehr OWL-Elemente in der Ontologie aufgefiihrt sind, desto mehr Elemente miissen auch vi-
sualisiert werden. Durch eine kompakte und knappe Definition eines Features wird auch dessen
Visualisierung zumindest in einem gewissem Umfang kompakt gehalten. Um aber die Gesamtmenge
der dargestellten OWL-Elemente niedrig zu halten, muss in gewissem Mafle die Anforderung nach
einer unabhéngigen Definition gebrochen werden.

Eine Property ist eine Eigenschaft, die ein OWL-Element mit einem anderen beschreibt. Fiir jede
Property werden mindestens drei Elemente benétigt: Das beschriebene Element, die Property und das
beschreibende Element. Wie in OntoViBe [HLNE14a] sollte urspriinglich ein einziges Element gew#hlt
werden, welches alle Properties beschreiben. Hierdurch kann die Gesamtmenge der OWL-Elemente
in der Ontologie, die fiir Properties benétigt werden, um annéhernd ein Drittel reduziert werden.

Bei Feldversuchen wihrend und nach der Entwicklung zeigte sich jedoch in manchen Visualisie-
rungen, dass die grofie Anzahl an Properties, die dasselbe Element beschreiben, die Visualisierung
uniibersichtlich erscheinen lief8. Im Endeffekt lies sich dann wegen Uberdeckungen die Funktionalitit
der Visualisierung schlechter bewerten. Als Maflinahme dagegen ist die Anzahl, wie oft ein Element
beschrieben werden kann, beschriankt. Nach Erreichen der Schranke wird dynamisch ein neues,
beschreibendes Element verwendet.

3.2.4. OWL-Features

Wie bereits beschrieben, sollten in jedem Fall alle Elemente der Web Ontology Language zum Generie-
ren einer Ontologie zur Auswahl stehen. Eine ausfiihrliche Auflistung bietet die OWL 2 Quick Reference

20

3.2. Ontologie

[BKMPS12]. Die unterstiitzten OWL-Konstrukte sind in einer Tabelle in Anhang A aufgelistet. Auf
dieser Tabelle aufbauend werden im Folgenden nur ausgenommene OWL-Konstrukte erlautert und
weitere Testfélle beschrieben.

Ausnahmen

Aufgrund einer fehlenden Implementierung in der verwendeten Programmbibliothek oder fehlender
Parametrisierung der Features kénnen manche OWL-Konstrukte nicht verwendet werden.

So wihlt die Bibliothek in einem Fall bei zwei verschiedenen, syntaktisch unterschiedlichen Elemen-
ten automatisch ein semantisch dquivalentes Element. Mit owl:differentFrom kann die Aussage
getroffen werden, dass sich ein Individual von einem anderen unterscheidet. Um mehrere Individuals
als paarweise verschieden zu deklarieren, wird owl:Al1Different verwendet. Das OWL-Element
owl:differentFrom kann die Bibliothek mindestens in der Turtle-Syntax nicht ausgeben, dafiir
allerdings das semantisch dquivalente Gegenstiick owl:Al1Different.

Fiir Konstrukte wie owl:imports oder owl:versionIRI wiren Benutzereingaben dringend not-
wendig, um hier giiltige Werte verwenden zu kénnen. Auflerdem kann owl:onProperties meines
Wissens nach nicht von der verwendeten Programmbibliothek fiir eine Ontologie beriicksichtigt
werden.

Mehrsprachige Annotationen

OWL bietet mit Annotationen eine Moglichkeit, wie der gesamten Ontologie oder einzelnen Elementen
weitere Informationen angehéngt werden kénnen. So kann mit owl:versionInfo beispielsweise
mitgeteilt werden, in welcher Version die Ontologie vorliegt. Mit rdfs:label kann der Ontologie
oder einem einzelnen Element eine Bezeichnung gegeben werden.

Wie in der OWL 2 Syntax [MPSP12] unabhingig von der Definition der OWL-Elemente beschrieben,
soll die Spezifikation durch mehrsprachige Annotationen noch in gréoflerem Umfang abgedeckt
werden.

3.2.5. Visualisierungs-Features
Aufler fiir Elemente von OWL sollen noch weitere Features angeboten werden, deren Fokus auf der

Kombination von OWL-Konstrukten liegt, die Ontologievisualisierungen Schwierigkeiten bereiten
konnten.

21

3. Konzept

Viele Individuals

Eine Klasse kann theoretisch eine beliebig grofie Anzahl an Individuals haben, die zu dieser Klasse
gehoren. Bei der Klasse Mensch konnte eine Visualisierung beispielsweise mehr als 7 Milliarden
Individuals anzeigen, wiahrend die Anzahl der Individuals der Klasse Sinnesorgan nicht mal den
zweistelligen Bereich tiberschreiten wiirde. In einer Visualisierung konnten die einzelnen Individuals
allerdings auch gar nicht, nur als Zahl oder auch durch visuelle Attribute kenntlich gemacht werden.
Daher sollen unterschiedliche Mengen von Individuals testbar sein.

Reflexive Eigenschaften

Eine reflexive Eigenschaft einer Klasse verweist auf die Klasse selbst. So hat beispielsweise jedes
Individual der Klasse Mensch die Eigenschaft hatVerwandten, welche wieder auf die Klasse Mensch
zeigt.

Bei einer graphbasierten Visualisierung, wird eine Eigenschaft tiblicherweise als Kante zwischen zwei
Knoten gezeichnet werden, die jeweils Klassen repriasentieren. Wird genauso bei einer reflexiven
Eigenschaft vorgegangen, konnte die Kante versteckt sein, da der Start- und Zielpunkt gleich sind.
Da sich die Problemstellung bei mehreren reflexiven Eigenschaften einer einzelnen Klasse erschwert,
soll es hierfiir extra Testfille geben.

Parallele Eigenschaften

Zwischen zwei Klassen, wie beispielsweise Angestellter und Chef, konnen mehrere Eigenschaften
bestehen. So waren arbeitetFiir, istVerwandtMit oder istNachfolgerVon mogliche Beispiele.

In einer graphbasierten Visualisierung konnten in diesem Fall mehrere Kanten zwischen zwei Knoten
verlaufen, wodurch es unter anderem zu Uberdeckungen kommen konnte. Damit diese Fille testbar
sind, soll es moglich sein, eine unterschiedliche Anzahl ,paralleler” Eigenschaften zu testen.

Weitere Annotationen

In der OWL-Spezifikation sind, wie in einem vorigen Abschnitt beschrieben, bereits einige Annota-
tionen vordefiniert. Es konnen aber ebenfalls eigene oder an anderer Stelle definierte Annotationen
verwendet werden.

Ein prominentes Beispiel sind die DCMI Metadata Terms [DCM12]. Sie bieten Annotationen wie
dc:creator, um den Erzeuger einer Ressource zu beschreiben, oder dc:description, mit der eine
Ressource genauer beschrieben werden kann. So konnte damit eine mit owl:versionInfo anno-
tierte Ontologie um Versionshinweise ergianzt werden und Anderungen zu den vorigen Versionen
aufzeigen.

Wird eine Ontologie nun visualisiert, konnen auch die Annotationen besonders dargestellt werden. So
ist zum Beispiel wichtig zu wissen, wenn eine Ontologie oder Konstrukte von OWL-Elementen durch

22

3.2. Ontologie

die Annotation owl:deprecated als veraltet markiert sind. Mit weiteren, nicht in OWL 2 definierten
Annotationen kann die Visualisierung weiter ergénzt werden.

3.2.6. OWL-Profile

Wie bereits in den Grundlagen in Unterabschnitt 2.1.4 vorgestellt, definieren OWL 1 und OWL 2
sogenannte Profile, die Untermengen der in der Spezifikation beschrieben Sprache sind.

Eine Ontologie, die sich nach den Profilen OWL Lite oder OWL DL richten soll, kann relativ einfach
erstellt werden. OWL DL baut auf OWL Lite auf und stellt dadurch eine einfache Erweiterung dar.
Im Gegensatz zu den Einschrinkungen von OWL Full, enthalten sie Regeln beziiglich der erlaubten
OWL-Elemente und eine Einschriankung eines einzelnen Wertebereichs. Da sich mit OWL DL aber
bereits alle Elemente der OWL 1 Spezifikation abbilden lassen und OWL Full gewisser weise nur
Restriktionen beziiglich dem Aufbau von Konstrukten enthélt, soll OWL Full nicht als Profil angeboten
werden. Diese Entscheidung ist konsistent mit der Definition des Umfangs, nach der keine Strukturen
mit der generierten Ontologie getestet werden konnen miissen.

OWL EL, QL und RL sind im Vergleich zu den vorigen Profilen wesentlich komplexer, da sie nicht
nur binér angeben, welche Elemente im Profil enthalten sind. So existieren hier Einschrankungen, die
die Kombination von zwei oder mehr OWL-Elementen nur zulassen, wenn diese bestimmte Werte
haben. Im Gegensatz zu den Profilen von OWL 1 bauen die Profile von OWL 2 auch nicht aufeinander
auf. Dadurch treten teilweise widerspriichliche Einschrankungen beziiglich desselben Elements der
Spezifikation auf. Folglich kénnen mit in Konflikt stehenden Features nicht alle Profile abgedeckt
werden, weshalb separate Features fiir diese benétigt werden.

Um Duplikate der Features zu vermeiden, werden nicht fiir jedes Profil alle Features separat angelegt.
Features fiir ein OWL-Element werden nur dann doppelt angelegt, wenn dort ein Konflikt besteht.
Falls ein Feature in einem Profil ohne Einschrankungen und im anderen nur mit Einschrankungen
verwendet werden darf, wird dieses an die Einschrankung angepasst und anschliefend von beiden
Profilen rechtméfig verwendet.

3.2.7. Syntax

Damit die generierte Ontologie von einer Visualisierung oder von anderen Anwendungen genutzt
werden kann, muss sie in ein Datenformat gebracht werden, das diese interpretieren konnen. Das
Datenformat ist hierbei durch die Syntax einer Ontologie gegeben. Im OWL 2 Overview [W3C12] sind
verschiedene Syntaxen genannt, in welche eine Ontologie serialisiert werden kann.

Nach diesem OWL-Dokument muss RDF/XML von allen Tools unterstiitzt werden, die mit OWL 2
arbeiten. Es dient dabei als das primére Austauschformat fiir Ontologien. Deshalb ist es essentiell,
dass die Anwendung eine Ontologie in dieser Syntax ausgeben kann.

Wiéhrend der Implementierung zeigte sich, dass Ontologien mit sehr geringem Aufwand in einer der
Syntaxen aus Tabelle 3.1 ausgegeben werden konnen. Aus diesem Grund stehen in der Anwendung
alle genannten zur Auswahl.

23

3. Konzept

Syntax Unterschiede im Vergleich zu RDF/XML

OWL/XML Einfacher von Anwendungen zu verarbeiten, die mit XML arbeiten kénnen.

Functional Syntax | Bringt die formale Struktur besser zum Ausdruck.

Manchester Syntax | Einfacher, um Ontologien lesen oder schreiben zu kénnen.

Turtle Einfacher, um RDF-Tripel lesen oder schreiben zu kénnen.

Tabelle 3.1.: Vergleich der obligatorischen RDF/XML-Syntax mit anderen, optionalen Syntaxen fiir
Ontologien.

Standard-Syntax

Wenn eine Ontologie iiber eine URL abgerufen wird, muss standardmafig auf jeden Fall RDF/XML
angeboten werden; andere Syntaxen kdnnen optional auch zur Verfiigung stehen. Wenn die Ontologie
generiert und anschliefend angezeigt wird, wiirde sich nach dem OWL 2 Overview die Manchester
Syntax beziehungsweise Turtle hierfiir eher eignen, siehe Tabelle 3.1.

Mit der Manchester Syntax waren allerdings im Gegensatz zu Turtle alle IRIs ausgeschrieben, worunter
die Lesbarkeit meiner Meinung nach stark litt. Da im Vergleich dazu die ausgegebene Ontologie in
Turtle fiir den langen, gemeinsamen Teil der IRI einen Prifix verwendet und die Ontologie deshalb
lesbar blieb, sollte Turtle die Standardsyntax fiir die Anzeige in der Oberflache sein.

Syntax eines OWL-Element in der Ubersicht

Fiir Features von OWL-Konstrukten soll die Bezeichnung dem testbaren Konstrukt entsprechen.
Ebenso wie die ganze Ontologie kann ein einzelnes OWL-Element in verschiedenen Syntaxen unter-
schiedlich aussehen.

Die Functional Syntax wiirde sich zur Anzeige der OWL-Elemente eignen, da sie in den meisten
OWL 2-Dokumenten verwendet wird und somit bekannt ist. Fiir die Anzeige der einzelnen Elemente
ist sie allerdings ungeeignet, da Elemente aus anderen Syntaxen nicht unbedingt auf sie abbildbar sind.
So wird mit Al1DisjointClasses ausgesagt, dass eine beliebige Menge von Klassen verschieden
sind. Im Gegensatz hierzu unterscheidet RDF zwischen owl:disjointWith fiir zwei Klassen und
owl:allDisjointClasses fiir eine beliebige Anzahl.

Damit alle OWL-Konstrukte und nicht nur die in einer Syntax vorhandenen testbar sind, soll bei der
Anzeige der OWL-Elemente auf RDF gesetzt werden.

3.2.8. URL und IRI

Da die generierten Ontologien iiber das Internet abgerufen werden kénnen sollen, miissen sie eine URL
besitzen, die auf sie zeigt. Beim Generieren kann dem Server in extra Datenpaketen noch mitgeteilt
werden, welchen Inhalt die Ontologie haben soll. Im Gegensatz dazu ist beim Abruf iiber eine URL
diese die einzige Informationsquelle fiir den Server. In der URL miissen also alle Informationen codiert
sein, die der Server braucht, um die Ontologie zu bestimmen. Mit derselben URL soll auch immer die

24

3.2. Ontologie

gleiche Ontologie abgerufen werden kénnen. Die URL der Ontologie kann aulerdem auch als IRI der
Ontologie verwendet werden.

Die URL wird immer mit einem konstanten Teil beginnen, welcher auf den Webserver verweist,
von dem die Ontologien abgerufen werden koénnen. Ein Beispiel wire die folgende Adresse:
http://www.ontologie-generator.de/generated-ontologies/. Dieser Teil hingt zum einen von
der verfiigbaren Internetadresse und den Laufzeitbedingungen des Servers ab. Zum anderen enthélt
er keine genauen Informationen, mit denen auf eine spezielle Ontologie geschlossen werden konnte.
Daher soll hier nur der variable Teil der URL erklart werden, durch den eine Ontologie identifiziert
werden kann.

Features als Parameter

Um leicht von einer URL auf die generierte Ontologie zu schlielen, ist es am einfachsten, alle
enthaltenen Features der Ontologie darin zu codieren. So konnte man jedem Feature eine eindeutige
Nummer zuweisen und dann die Nummern der zu generierenden Features in der URL konkatenieren.
Da so eine Adresse aber nicht wirklich sprechend wire, sollen kurze Namen der Features anstelle von
Zahlen verwendet werden: http://.../?features=owlclass, functionalproperty, loops,owlthing

Bei gut gewihlten Namen kann bereits mit der URL der Inhalt der Ontologie grob bestimmt werden.
Auflerdem kann auch leicht die Liste der Features reduziert werden, falls einzelne Features doch nicht
benotigt werden und die Lange der URL tiberschaubar ist. Sobald der Server dann eine Anfrage tiber
diese Adresse erhalt, kann er die Ontologie mit den gewahlten Features erstellen.

Der Server miisste bei dieser Methode weder Informationen zu generierten Ontologien noch die
Ontologien selbst speichern. Als Nachteil konnte sich herausstellen, wenn die Generierung aus
der URL durch eine grofie Anzahl an Aufrufen eine zu starke Rechenlast erzeugt, die den Server
im ungunstigsten Fall iberlastet. Gegebenenfalls wiare dann aber eine Art Zwischenspeicher eine
Losung.

Kiirzere URL

Von meinen Betreuern wurde bei einem Treffen angesprochen, dass eine URL, welche alle Features
enthilt, schlecht in sozialen Netzwerken oder auf Plattformen wie Twitter geteilt werden kann.
Dieses Argument ist allerdings nicht allgemeingiiltig fiir alle Plattformen. Twitter verwendet fir alle
URLs einen eigenen Linkkiirzer, der unabhéngig von der urspriinglichen URL immer Adressen mit
einer Lange von 22 Zeichen! erzeugt. Facebook zeigt lange URLs verkiirzt an und besitzt ebenfalls
einen eigenen Linkverkiirzer, der auf Mobilgeriten Einsatz findet.> Da bei E-Mails und anderen
Kommunikationsmitteln wie beispielsweise Chats eine solche Linkverkiirzungsfunktion meist aber
nicht vorhanden ist, soll eine Ontologie auch mit einer kiirzeren URL angeboten werden.

'https://support.twitter.com/articles/475280
thtps://www.facebook.com/notes/the-next-web/fbme-facebooks-new-url-shortener/204973923321

25

https://support.twitter.com/articles/475280
https://www.facebook.com/notes/the-next-web/fbme-facebooks-new-url-shortener/204973923321

3. Konzept

Bei etwa 50 ausgewdhlten Features und einer durchschnittlichen Lange eines Bezeichners von zehn
Zeichen wire allein der dynamische Teil der URL bereits 500 Zeichen lang. Dazu miissten noch die
Anzahl der Trennzeichen und die Lange des vorderen Teils addiert werden.

Mit kleingeschriebenen, alphanumerischen Bezeichnern und einer festen Lange von zwei Zeichen,
kénnten immerhin (26 + 10)? = 1296 Features identifiziert werden. Um weiter zu komprimieren,
konnten durch die bekannte Lange der Bezeichner die Trennzeichen ausgelassen werden. Doch selbst
hier hétte der dynamische Teil der URL eine Lange von 100 Zeichen.

Folglich soll die URL noch stérker verkiirzt werden, wodurch sie weniger Informationen enthalten
kann. Wenn die URL den Inhalt einer Ontologie nicht vollstdndig definieren kann, miissen die
verlorenen Informationen an einer anderen Stelle gespeichert werden — also auf dem Server.

Nach einer ersten Idee soll nach jedem Generieren eine aufsteigende numerische ID mit den verwende-
ten Features in einer Datenbank gespeichert werden. Die ID kann anschlieffend in der URL verwendet
und vom Server zu den Features decodiert werden. Der Vorteil liegt klar auf der Hand: So kénnen
beispielsweise mit einer 6-stelligen ID eine Millionen Ontologien identifiziert werden. Die URL wére
damit drastisch verkiirzt, was an diesem Beispiel deutlich gemacht wird: http://.../id/265/.

Nach einer ersten Implementierung ist die Vorhersagbarkeit anderer IDs aufgefallen, da es sich
bei der ID nur um eine inkrementierte Zahl handelt; das wire bei dieser Anwendung aber nicht
weiter schlimm. Ein grofieres Problem ist, dass zwei Ontologien mit den gleichen Features zwei
unterschiedliche IDs haben kénnen. Da voraussichtlich OWL-Profile, Ontologien mit allen und mit
keinen Features hédufig getestet werden, wiirde die Gré3e der IDs nur unnétig aufgebldht werden,
wenn fiir diese jedes Mal eine neue ID angelegt werden wiirde. Daher sollen Duplikate vermieden
werden und identische Ontologien die gleiche ID erhalten.

Lange IRIs und Probleme in Tools

Standardméflig wurde immer die lange URL zu einer Ontologie mit einer langen IRI angeboten; die
IRI glich also der URL. Die kurze URL sollte explizit angefordert werden, wenn sie benétigt wurde,
um Speicher auf dem Server zu sparen. Mit der langen URL und IRI traten aber Bugs wie tiber den
Bildschirmrand ragende Textfelder in Tools wie Protégé auf, welche die IRI der Ontologie anzeigten.
Daher werden lange und kurze URLs und IRIs wie folgt verwendet:

« Die lange URL bleibt verfiigbar, damit erkennbar ist, was in der Ontologie enthalten ist.
« Die kurze URL bleibt verfiigbar, damit die Ontologie besser geteilt werden kann.

+ Die Ontologie verwendet als IRI immer die kurze URL, um Tools und Visualisierungen bei der
Anzeige zu entlasten.

26

3.3. Architektur

Angabe der Syntax

Bis jetzt ist die Auswahl der Syntax der generierten Ontologie vollig iibergangen worden. Ohne eine
explizite Angabe soll RDF/XML verwendet werden, da diese Syntax von allen OWL 2 Tools unterstiitzt
werden muss.

Die Syntax der Ontologie soll durch die zugehorige Dateiendung in der URL angegeben werden.
Dadurch kann der Anwender auf einen Blick sehen, in welchem Format ihm die Ontologie vorliegt
und kann sie gegebenenfalls schnell &ndern. Wenn die Ontologie lokal gespeichert wird, kann sie
durch die richtige Dateiendung auch direkt mit etwaigen Standardprogrammen ge6ffnet werden.

Die URL soll wie folgt aussehen: http://.../1d/265.owl. In diesem Fall signalisiert .owl, dass die
RDF/XML-Syntax benotigt wird.

3.3. Architektur

Die Entscheidung fiir eine Webanwendung fiel relativ schnell. Zum einen sollte - wie bereits oben
erwiahnt - die generierte Ontologie auf jeden Fall iiber eine URL abgerufen werden kdnnen. Dafiir
misste die Anwendung eine Netzwerkschnittstelle beispielsweise zum Internet bieten.

Fiir eine Weboberflache spricht auch, dass diese von praktisch jedem moglichen Nutzer aufgerufen
werden kann. Aufgrund des Themengebiets werden die allermeisten Nutzer einen Computer oder ein
ahnliches Gerat mit einem Internetanschluss besitzen. Falls der Zugriff zum Internet nicht dauerhaft
verfiigbar ist, kann man eine generierte Ontologie immer noch herunterladen und lokal testen.
Alternativ konnte man die Anwendung auch bei sich lokal starten, um auch offline die Moglichkeit
zu haben, eine Ontologie zu generieren.

Aus technischer Sicht bietet der Zugriff iber eine Internetseite dem Nutzer den Vorteil, dass er nicht
die komplette Anwendung herunterladen und installieren muss. Gegebenenfalls miissten davor sogar
noch Abhingigkeiten oder Laufzeitumgebungen wie beispielsweise Java oder das .NET-Framework
installiert werden, damit sie tiberhaupt gestartet werden konnte. Mit Eingabe der Internetadresse
oder einem Klick auf einen Link, der auf die Webseite verweist, ist der Anwender bereits in der Lage,
OntoBench in vollem Umfang zu nutzen.

Da der Webbrowser die Laufzeitumgebung stellt, muss man als Entwickler hierbei auf die grofle Anzahl
verschiedener Umgebungsbedingungen Riicksicht nehmen. So kénnen zum Beispiel Mozilla Firefox,
Google Chrome oder Microsoft Edge in unterschiedlichsten Versionen verwendet werden, welche die
Webseiten meist nicht exakt gleich darstellen. Weiterhin kénnen diese auf unterschiedlichen Betriebs-
systemen wie Microsoft Windows, Mac OS X oder einer der vielen Linux-Distributionen wiederum
auch in unterschiedlichen Versionen laufen. Diese konnen sich zum Beispiel in den verfiigbaren
Schriftsitzen unterscheiden, weshalb die Texte auf der Webseite eventuell unterschiedlich aussehen
wiirden. Anhand dieser kleinen Liste von Faktoren sieht man schnell, dass bei der Entwicklung einer
Webanwendung auf jeden Fall Wert auf die Kompatibilitit gelegt werden muss.

Auf Entwicklerseite bringt eine Weboberfliche allerdings auch einige Vorteile mit sich. Die Gestaltung
eines ansehnlichen Internetauftritts ist mit Verwendung eines gut ausgestatteten Frameworks relativ

27

3. Konzept

einfach. Diese Frameworks bieten dem Entwickler meist eine grofle Anzahl durchdachter und auch
vom Stil her zueinander passender Komponenten, aus denen die Oberfldche aufgebaut werden kann.

Als wohl bekanntestes Beispiel eines solchen Frameworks gilt Bootstrap® von Twitter. Deren Entwickler
haben zum Beispiel darauf geachtet, dass verschiedene Browser dessen Elemente moglichst gleich
darstellen. Das Framework bietet auflerdem auch ein System an, mit dem sich das Design der Webseite
automatisch an verschiedene Displaygréf3en anpassen lasst und somit nicht nur an normalen Desktop-
PCs, sondern beispielsweise auch an Smartphones bedient werden kann. Dadurch kann man als
Entwickler einen grofieren Fokus auf ein stimmiges Design und die Implementierung der Logik der
Webanwendung legen.

Ein weiterer Aspekt fiir mich ist, dass ich bereits Erfahrung bei der Entwicklung von Webanwendungen
habe und mit den Technologien vertraut bin. Da ich an der Universitit, in meiner Freizeit und
bei der Arbeit mit Webtechnologien beziehungsweise einer Webanwendung arbeite, kann ich den
Implementierungsaufwand hierfiir relativ gut abschatzen.

3.4. Weboberflache

Beim Aufruf der Weboberflidche soll der Nutzer nicht iiberfordert werden und eine Vorstellung
bekommen, wie er diese bedienen kann. Um die Oberflache einfach zu gestalten, sollen die Auswahl
der Features und das Generieren der Ontologie getrennt angezeigt werden. Es soll aulerdem eine
Einfithrung geben, die dem Anwender einen Uberblick tiber die Funktionen bietet.

Die Aufspaltung der Weboberflache in die zwei genannten Bereiche ist moglich, da sie unabhéngig
voneinander genutzt werden kdnnen: Solange man auswéhlt, was in der Ontologie enthalten sein soll,
legt man ausschliefSlich deren Inhalt fest. Im Anschluss daran wird die Form der Ontologie festgelegt,
diese dann generiert und dem Nutzer die URL und die Ontologie angezeigt.

Diese Idee hitte man umsetzen kénnen, indem man nach dem Bestatigen der Auswahl auf eine
andere Seite zum Generieren weiterleitet, ahnlich wie es Uiblicherweise bei Anmeldeformularen auf
Internetseiten funktioniert. Der Nachteil hierbei ist allerdings, dass man nicht wieder ,kurz” zur
Auswahl zuriickspringen kann, um sie zu dndern, weil ein neuer Seitenaufruf stattfindet. Aulerdem
miissten die gewahlten Features bei jedem Seitenwechsel mitgesendet werden, damit die Anwendung
weif}, was generiert werden soll beziehungsweise was ausgewéhlt ist. Daher soll die Webanwendung
nur aus einer einzigen Seite bestehen, die einen offensichtlichen Weg zum Wechsel zwischen den
verschiedenen Inhalten bietet.

3.4.1. Feature-Ubersicht

Der Anwender soll eine Ubersicht iiber die Features, also die Elemente, aus denen der Generator eine
Ontologie erstellen kann, erhalten. Wie beispielsweise in der OWL-Spezifikation getan, kann jedes
OWL-Element einer Kategorie zugeordnet werden. Aufgrund der relativ groflen Anzahl an Features

*http://getbootstrap.com/

28

http://getbootstrap.com/

3.4. Weboberflache

macht es Sinn, diese in den jeweiligen Kategorien zu gruppieren. Durch Verwendung einer bekannten
Anordnung kann es dem Benutzer somit spiter leichter fallen, sich in der Ubersicht zurechtzufinden.
Diese Kategorien wurden fir OntoBench leicht angepasst, um &dhnliche OWL-Konstrukte besser zu
gruppieren.

Ein Ansatz, die Features in Kategorien anzuzeigen, war die Verwendung einer Baumstruktur. Hatte
man diese verwendet, konnte die Weboberflache eventuell sogar auf eine einzige Seite gebracht werden.
Man kann sich das wie beim Dateiexplorer von Windows vorstellen, nur dass statt der Ordnerstruktur
links die Elemente in einem Baum dargestellt waren und im restlichen Teil die Oberfliche zum
Generieren sein wirde. Die Vorteile sind klar: Eine kompaktere Oberfliche, mit der auflerdem auch
schneller die Auswahl geandert und neu generiert werden kann.

Fir mich tiberwiegen die Nachteile allerdings deutlich. Das beginnt bereits beim Definieren des
Anfangszustandes der Baumdarstellung. Moglich wire, dass entweder alle Kategorien geschlossen
oder geodffnet sind. Wiren sie gedfinet, wire die Liste wegen der groffen Anzahl an Elementen sehr
lang. Wiren sie geschlossen, miisste man erst alle Teilbdume aufklappen, bevor man ein Feature
anwihlen konnte. Da in diesem Fall die einzelnen Features nicht sichtbar sind, kann der Anwender
auch nicht wissen, wonach genau er iiberhaupt suchen kann.

Unabhingig von der Darstellung muss der Anwender auch eine Auswahl téitigen konnen. Da das
entweder an den Elementen selbst oder auch durch das Hinzufligen einer Vorauswahl geschehen
konnte, ware die Ansicht schon ziemlich tiberladen. Dazu kommt auch noch, dass das Layout auf
kleineren Bildschirmen kaum skaliert. Der Platz wiirde vielleicht reichen, um die Bedienelemente fur
das Generieren neben den Baum zu setzen; um die generierte Ontologie zusatzlich anzuzeigen, ware
es meiner Meinung nach zu eng. Wenn man die zwei Bereiche vertikal nebeneinander anordnet, ware
das Platzproblem gelGst; der Vorteil der kompakten Darstellung hitte sich aber damit erledigt. Daher
habe ich mich fiir ein simpleres Layout entschieden, welches auch auf Mobilgeriten, auf welchen
man eventuell auch seine Visualisierung testen mochte, bedienbar bleibt.

Select all Select none Invert selection

Data Range Expressions

owl:complementOf (Data Range)
owl:intersectionOf (Data Range, OWL 2)
owl:intersectionOf (Data Range)
owl:oneOf (Data Range, OWL 2 EL)
owl:oneOf (Data Range)

owl:unionOf (Data Range)

Select all Select none Invert selection Selectall Select none Invert selection

Data Range Expressions Class Expression Axioms
owl:complementOf (Data Range) owl:AllDisjointClasses
owl:intersectionOf (Data Range, OWL 2) owl:disjointUnionOf
owl:intersectionOf (Data Range) owl:disjointWith
owl:oneOf (Data Range, OWL 2 EL) owl:equivalentClass
owl:oneOf (Data Range) rdfs:subClassOf

owl:unionOf (Data Range)

Abbildung 3.1.: Im oberen Teil der Abbildung ist deutlich erkennbar, dass Raum ungenutzt bleibt.
Durch eine zweispaltige Ansicht wird dieser besser genutzt.

29

3. Konzept

Als einfache Alternative sollen die Kategorien mit ihren Features auf einer eigenen Seite angezeigt
werden. Nach einer ersten Idee sollten diese dann untereinander aufgelistet werden. Wihrend der
Implementierung zeigte sich aber, dass die Webseite in der Breite nicht wirklich gefiillt war und ein
grofler Teil ungenutzt blieb. Daher werden die Kategorien in einer zweispaltigen Tabelle dargestellt.
Die einzelnen Zellen bestehen aus dem Titel der Kategorie und der Auflistung der Features. Im
Gegensatz zu den Kategorien ist diese Liste alphabetisch sortiert. Durch diese Sortierung lassen sich
bestimmte Elemente schneller finden als in einer unsortierten Liste, bei der im schlechtesten Fall alle
Elemente angeschaut werden miissen, um das zu finden, was man sucht (Hicksches Gesetz).

3.4.2. Presets

Wie schon mehrfach erwiahnt, soll es auch moglich sein eine Vorauswahl an Elementen hinzuzufiigen.
Hier bieten sich ohne Frage die Profile von OWL an. Sie sollen in der Oberfliche prominent dargestellt
werden, da es schneller ist, eine grobe Auswahl zu treffen und diese dann mit wenig Aufwand an
seine Vorstellung anzupassen, als alle Elemente einzeln auszuwéhlen. Das gilt natiirlich nur, wenn
eine Vorauswahl vorhanden ist, die zumindest grob die gewiinschten Elemente enthalt. Die Auswahl
soll daher auch vor der Tabelle der Features platziert werden und etwas hervorgehoben sein.

Die Funktionsweise fiir das Anwihlen der Elemente nach Auswahl eines Presets war lingere Zeit
unklar, da die folgenden Moglichkeiten zur Auswahl standen.

Auswahl tiber Schalter

Meine erste Idee war eine Art Schalter, den der Nutzer an- und abwahlen kann, um dadurch die
zugehorigen Features an- beziehungsweise abzuwihlen.

Was sollte aber passieren, wenn ein paar Elemente bereits vom Nutzer angeklickt wurden: Sollten
manuell veranderte Elemente nicht mehr durch die Vorauswahl verandert werden? Falls man sich
hierfir entscheidet, miisste man transparent machen, dass die Vorauswahl nicht vollstindig ange-
wendet werden konnte. Wenn aber mehrere Schalter aktiv gesetzt werden wiirden, verliert man als
Anwender schnell die Ubersicht, welche Vorauswahl denn inwiefern ausgewihlt ist. Der Einfachheit
halber konnte man aber immer die vorherigen Benutzereingaben iiberschreiben, da die Auswahl eines
Presets auch eine Benutzereingabe ist.

Was passiert, wenn der Nutzer manuell exakt die Elemente auswahlt, die eine Vorauswahl bilden:
Sollte der Schalter dann automatisch gesetzt werden? Die automatische Auswahl kénnte sehr niitzlich
sein, da der Anwender sehen kann, wie er seine manuelle Auswahl vereinfachen kann. Falls die
Auswahl im Anschluss noch erweitert werden wiirde, musste der Schalter des Presets aber wieder
abgewihlt werden, da sonst impliziert wiirde, dass das Preset die Auswahl immer noch abbildet. Fiir
den Fall, dass die Auswahl die Vereinigung von Vorauswahlen bildet, miisste auch noch ein Verhalten
definiert werden.

Die Fragestellung, an dem die Wahl von Schaltern scheiterte, ist aber die folgende: Was passiert, wenn
zwel Presets sich tiberschneiden und ein Konflikt entsteht, weil ein Preset ein Feature verbietet, ein
anderes dieses aber benétigt? Eine Moglichkeit wire, dass Schalter, die Konflikte erzeugen, nicht

30

3.4. Weboberflache

gleichzeitig ausgewahlt werden diirfen. Hierfiir miisste zuerst fiir jedes Paar von Vorauswahlen
bekannt sein, ob diese miteinander verwendet werden konnen. Dann miisste wie beim ersten Problem
dem Anwender in der Oberfliche erklart werden, was moglich ist und was Probleme verursacht.
Meiner Meinung nach verkompliziert das aber den Prozess unnétig, weshalb ich diese Losung nicht
in Betracht ziehen wollte.

Auswahl liber einfache Schaltflache

Nach Uberdenken der gesamten Funktion kam ich auf die folgende, relativ simple Losung: Es soll nur
moglich sein, Giber eine Schaltfliche Elemente zur Auswahl hinzuzufiigen.

Eine Vorauswahl soll nur dazu dienen, dem Anwender die Auswahl der einzelnen Elemente zu
vereinfachen, indem sie vorschldgt, welche Gruppe davon er generieren und testen konnte. Figt
man mehrere Vorauswahlen hinzu, méchte man meiner Meinung nach auch alle davon gleichzeitig
testen. Dabei sollte dem Nutzer aber klar sein, dass die bisherige Auswahl durch eine Vorauswahl
nur erweitert wird. Hat der Nutzer bereits manuell Features angewahlt, wird durch Hinzufiigen der
Vorauswahl die Menge der Features also nur erweitert. Hat der Nutzer davor Features abgewahlt, dann
sollen diese wieder angew#hlt werden. Die Auswahl eines Presets ist wie bereits oben beschrieben
eine Benutzereingabe, die eben auch vorherige Benutzereingaben iiberschreiben kann. Solange der
Name einer Vorauswahl auch gut beschreibt, was dazu gehort, wird das erneute Anwéhlen eines
einzelnen Features fiir den Nutzer auch nicht tiberraschend sein.

Grundlegend ist aber in jedem Fall, dass man als Benutzer erkennen kénnen soll, dass es sich um eine
Vorauswahl handelt und diese eine Auswahl hinzufigt.

3.4.3. Generator

Die Oberflache zum Generieren der Ontologie ist der dritte und letzte Teil der Weboberflache. Zu
dieser gehort auch, dass der Anwender eine generierte Ontologie zum einen herunterladen und zum
anderen tiber einen Hyperlink tiber das Internet aufrufen kann.

Einstellungen und Generieren

Bevor die Ontologie generiert wird, sollte die Syntax ausgewahlt werden kénnen, in der sie angeboten
werden soll. Als Syntax soll wie bereits beschrieben standardmaflig Turtle angeboten werden; die
anderen Syntaxen sind aber ebenfalls auswahlbar.

Da der Anwender an dieser Stelle angegeben hat, was in der Ontologie enthalten sein soll und in
welcher Form sie ausgegeben wird, kann er die Generierung nun starten. Initial sollte man nun auf
eine Schaltflache klicken, um den Prozess anzustof3en.

Wiéhrend der Entwicklung hat sich aber gezeigt, dass der lokale Server sehr schnell auf die Anfrage
reagierte, die Ontologie generierte und diese in der jeweiligen Syntax zuriick gab. Nach ein paar
Messungen mit den Entwickler-Tools in Mozilla Firefox und Google Chrome dauerte das Generieren

31

3. Konzept

bei verschiedenen Auswahlen und beim Wechseln der Syntax in jedem Fall weniger als 60ms. Nach
maximal 100ms war die generierte Ontologie dann auch in der Oberfliche dargestellt.

Da die Ergebnisse von einer lokalen Anwendung auf einer relativ aktuellen Entwicklermaschine aber
nicht wirklich reprasentativ fiir den Produktiveinsatz der Anwendung sind, bei dem die Anfragen
iiber das Internet gesendet werden und der Server stirker ausgelastet sein kann, wiederholte ich den
Versuch mit einem passenderen Aufbau. Die komplette Anwendung lief dann bei Heroku* auf einem
Server mit dem kleinsten Ressourcenpaket. Uber eine vergleichsweise schlechte WiFi-Verbindung ist
die Ontologie trotzdem noch nach durchschnittlich 500ms angezeigt worden.

Daher wird die Ontologie jedes mal automatisch generiert, sobald der Anwender zum Generator
gewechselt oder eine Einstellung in dieser Oberfliche vornimmt.

Abrufen der URL der Ontologie

Wie zu Beginn dieses Abschnitts bereits erwihnt, soll nach dem Generieren die Ontologie und ein Link
zu dieser angeboten werden. Der Link soll noch im oberen Bereich der Webseite iiber der Ontologie
stehen, da diese gegebenenfalls sehr lang werden kann. Um den Link schnell an einer anderen Stelle
verwenden zu konnen, hitte sich eine Funktion angeboten, mit der man den Link auf Knopfdruck in
die Zwischenablage kopieren konnte. Da diese Funktion allerdings nur mit Hilfe von einem extra
Adobe Flash-Plugin umgesetzt werden konnte und sich diese Technologie auf dem absteigenden Ast
befindet, habe ich die Funktion nicht eingebaut.

Erst im Juli 2015 wurden nach mehreren gréfieren Sicherheitsliicken fiir kurze Zeit alle in Adobe Flash
geschriebenen Plugins in Mozilla Firefox blockiert, da diese Schadcode auf die Rechner der Benutzer
hitten schleusen konnen.> Ab September 2015 wird Flash zumindest in Google Chrome teilweise
pausiert werden [Ber15]. Damit wre die Funktion nicht ohne Weiteres einsetzbar. Eventuell konnten
die Warnmeldungen der Browser sogar die Anwender irritieren und schlimmstenfalls abschrecken.

Deshalb wurde die folgende Alternativlosung gewahlt: Der Anwender muss nur das Eingabefeld
auswihlen und kann den markierten Link entweder iiber das Kontextmenu oder auch mit dem

Standard-Tastenkiirzel + kopieren.

Dem Anwender sollen auflerdem eine lange und kurze URL zur Ontolgie angezeigt werden, vergleiche
Abschnitt 3.2.8. Gegen das gleichzeitige Anzeigen der urspriinglichen, lingeren und der kiirzeren
Internetadresse spricht fiir mich, dass dadurch nur unnétig Platz in der Oberflache verbraucht wiirde,
da eher selten beide Adressen benétigt werden. Unvertraute Anwender kénnten auch etwas verwirrt
werden, da vielleicht nicht direkt klar ist, ob die zwei unterschiedlichen URLs auf dieselbe Ressource,
also dieselbe Ontologie, zeigen. Daher soll in der Oberflache in der Ndhe der angezeigten URL ein
Schalter platziert sein, mit der sich zwischen der langen und der kurzen URL wechseln lasst.

*Heroku bietet eine Plattform fiir Cloud-Anwendungen, mehr dazu in Abschnitt 4.1.3.
5ht‘cps ://addons.mozilla.org/de/firefox/blocked/p946

32

https://addons.mozilla.org/de/firefox/blocked/p946

3.5. Server

Herunterladen der Ontologie

Wie bei der URL bietet es sich an, die Schaltflache zum Starten des Downloads tiber der angezeigten
Ontologie zu platzieren. Theoretisch hitte man als Anwender die Ontologie auch iiber die bereitge-
stellte URL anzeigen und beispielsweise im Browser herunterladen und abspeichern kénnen. Durch
die extra Schaltflache wird dem Anwender aber an dieser Stelle die Bedienung erleichtert und die
Moglichkeit zum Herunterladen noch einmal explizit gezeigt.

Anzeigen der Ontologie

Die letzte Komponente der Oberfliche des Generators soll die Anzeige der generierten Ontologie
sein. Der Anwender soll die Ontologie sehen kénnen, ohne sie zuerst herunterladen zu miissen. So
kann er zum einen direkt iiberpriifen, was genau generiert wurde und sich ein Bild davon machen.
Zum anderen kann er so aber auch schnell sehen, wonach genau er in der Visualisierung schauen
miisste (beispielsweise nach dem genauen Namen eines Elements). Dieser Fall konnte vor allem dann
auftreten, wenn er die URL der Ontologie in die zu testende Visualisierung eingespielt hat und die
Ontologie selbst somit nicht mehr vorliegt. Wie auch die URL soll die Ontologie nach einer einfachen
Auswahl markiert werden, damit sie direkt kopiert werden kann.

Fir die Anzeige hatte sich noch angeboten, den Inhalt durch Hervorheben der vordefinierten Syntax
lesbarer zu machen. So kdnnten beispielsweise Schliisselworte beim Scrollen iiber die Ontologie
schneller ins Auge springen und der Aufbau der Ontologie vielleicht auch schneller ersichtlich sein.
Aufgrund fehlender Bibliotheken, die die spezielle Syntax einer Ontologie unterstiitzen wiirden,
konnte diese Idee leider nicht umgesetzt werden. Um eine strukturiertere Ansicht der Ontologie
zu erhalten, bietet sich aber sowieso eher Protégé oder ein anderer Ontologie-Editor an. Durch die
fachliche Unterstiitzung in der Anwendung kann der Benutzer die Ontologie nach dem Download
auch besser als in einem einfachen Texteditor anpassen.

3.5. Server

Im Gegensatz zur Weboberflache fillt das Konzept fiir den Teil der Anwendung, die auf dem Server
lauft, bewusst wesentlich schlanker aus.

Die Serverseite lduft bei Betrieb der Anwendung im Hintergrund. Solange die Weboberfldche und die
dort angebotenen Daten, welche in den vorigen Abschnitten beschrieben wurden, spezifiziert sind,
ist der Server prinzipiell austauschbar. Der Server wird gewissermafien indirekt spezifiziert: Zum
einen von auflen Uber die Schnittstelle zur Weboberflache, zum anderen von innen uber die erwartete
Funktionalitat und die Daten, die er generieren muss.

3.5.1. Anforderungen an den Server

Die Anforderungen an den Server konnen den folgenden, abstrakten Komponenten zugeordnet
werden.

33

3. Konzept

Webschnittstelle

Der Server muss auf jeden Fall eine Webschnittstelle anbieten. Uber die soll die Weboberfldche mit
den dynamischen Daten, wie beispielsweise den verfiigbaren Features, die der Generator im Server
unterstiitzt, befiillt werden. Auflerdem werden iiber diese Schnittstelle die einzelnen Ontologien zum
Beispiel aus den getesteten Visualisierungen heraus abrufbar sein.

Die Weboberflache soll vollig dynamisch aufgebaut sein, damit unter anderem die unterstiitzen
Features oder die Vorauswahlen nicht an zwei Stellen gepflegt werden miissen. Wenn der Server und
die Oberfliache sehr stark entkoppelt sind, bietet sich so auch die Moglichkeit, dass die Oberflache leicht
ausgetauscht werden kann oder weitere Oberflaichen angeboten werden kénnen. Das konnte dann
rein theoretisch eine Desktop-Anwendung oder eine eigene Android-App sein. Fehlende Redundanz
der Daten bedeutet aulerdem auch, dass Anderungen schnell an einer Stelle vorgenommen werden
koénnen und andere Vorkommen nicht vergessen werden kénnen.

Die folgenden Daten miissen daher vom Server iiber die Schnittstelle bereitgestellt werden:
« Die Features, die generiert werden konnen.
+ Die Kategorien, denen die Features zugeordnet sind.

« Die Presets.

Die Syntaxen, in denen die Ontologie ausgegeben werden kann.
+ Die generierte Ontologie mit einer langen URL.
« Die generierte Ontologie mit einer kurzen URL.

Natiirlich muss auch eine Kommunikation zum Server hin méglich sein, iiber die die Ontologie
generiert werden kann. Hierfiir kommen die folgenden Daten in Frage:

« Die Features, die generiert werden sollen.
« Die Syntax, in der die generierte Ontologie ausgegeben werden soll.

Mit einer Webschnittstelle, die die genannten Daten verarbeiten und liefern kann, wére die Webober-
flache, wie sie in Abschnitt 3.4 konzipiert wurde, voll funktionsfahig.

Generator

Die nichste und zentrale Komponente ist der Generator der Ontologien. Die grundlegenden Eingabe-
daten wurden bereits im vorigen Abschnitt aufgefiihrt: Die Features und die Syntax.

Initial sind nur die Features, die in der generierten Ontologie enthalten sein sollen, relevant. Der
Generator soll dann aus den geforderten Features die Ontologie erstellen. Hierbei ist zu beachten, dass
selbstverstandlich alle geforderten Features beriicksichtigt werden sollen, aber auch kein einziges
Feature mehr. Wiirde die Ontologie umfangreicher als gefordert, konnte wegen mangelnder Unter-
stiitzung einzelner Elemente gegebenenfalls der gesamte Test der Visualisierung nicht durchgefiihrt
werden.

34

3.5. Server

Wihrend der Entwicklung hat sich gezeigt, dass die Ontologie mit einer eigenen IRI identifiziert sein
sollte. Da sich diese dann auch in der Ontologie wiederfindet, miisste sie eigentlich als zusatzlicher
Eingabeparameter gewertet werden. Bei den Anforderungen an die Webschnittstelle ist dieser Parame-
ter aber nicht aufgefiihrt, da die IRI nicht iber die Schnittstelle geliefert werden kann. Eine korrekte,
erreichbare IRI kann, dhnlich wie die lange oder kurze URL, nur vom Server generiert werden.

Im Anschluss an die Generierung soll die Ontologie mit der geforderten Syntax tiber die Webschnitt-
stelle ausgegeben werden.

Datenbank

Im urspriinglichen Prozess war es nicht erforderlich, dass die Serveranwendung etwas speichern
musste. Alle benédtigten Daten konnten tiber die Webschnittstelle ausgetauscht werden, sodass der
Server nie einen anderen Zustand hatte als bei Inbetriebnahme. Das @nderte sich aber durch die
Anforderung, eine kurze URL zu einer Ontologie ausgeben zu kénnen.

In der urspriinglichen, langen URL waren alle Informationen erhalten, die der Server zur Generierung
benotigte: Die Namen der Features waren hintereinander aufgelistet und auch die Syntax konn-
te angegeben werden. Theoretisch hitte man die Auflistung der Namen noch verkiirzen kénnen,
was aber keine gute Losung wire, da man mit einer grofen Feature-Anzahl trotzdem noch relativ
lange URLs erhalten wiirde. Daher soll eine generierte Ontologie mit einer eindeutigen, kurzen
Identifikationsnummer versehen werden, welche auch in der kurzen URL verwendet werden kann.

Eine Idee war, bei jeder Generierung einen Zahler um eins zu erhohen und die Zahl dann als ID
der Ontologie zu verwenden. Damit wiirden aber unnétig viele IDs angelegt, weil wiederholte
Generierungen mit gleichen Eingabeparametern unterschiedliche IDs erhalten wiirden. Um die
Anzahl der IDs gering und die IDs damit kurz zu halten, sollen dquivalente Ontologien die gleiche ID
erhalten.

Der Server muss also die ID mit den Features der Ontologie verkniipfen und abspeichern, sodass er
auch spater anhand der kurzen URL in Erfahrung bringen kann, welche Features in der Ontologie
enthalten sein sollen.

35

4. Implementierung

In diesem Kapitel wird die Umsetzung der Anforderungen und Ideen aus dem im vorigen Kapitel
vorgestellten Konzept beschrieben. Eingeleitet wird mit einer Ubersicht iiber die Technologien und
der Umgebung, in der die Software entwickelt wird. Danach wird die Architektur der Anwendung
gezeigt und deren Umsetzung anschliefSend genauer beschrieben.

4.1. Verwendete Technologien

Zu Beginn wird ein Uberblick tiber die eingesetzten Technologien gegeben. Hierzu zahlen die verwen-
deten Programmiersprachen, aber auch Software, die wihrend des Entwicklungsprozesses genutzt
wird, um diesen moglichst reibungslos ablaufen zu lassen.

4.1.1. Programmiersprachen

Durch die Anforderung an eine Webanwendung ist eine Hélfte der Technologien praktisch festgelegt:
HTML, CSS und JavaScript werden fiir die Weboberflache eingesetzt. Dabei soll das aktuellere Java-
Script 5 verwendet werden, welches einige syntaktische Verbesserungen und bessere Grundlagen
fiir eine Modularisierung mitbringt. Da JavaScript 5 schlecht von alteren Browsern unterstiitzt wird,
muss es fiir die Verwendung im Browser mit Babel' zu JavaScript 4 kompiliert werden.

Im Gegensatz hierzu kam der Impuls fiir die Serverseite aus einer anderen Richtung. OWL2VOWL?,
eine Anwendung, die Ontologien in ein fiir die Ontologievisualisierung WebVOWL [LLMN14] in-
terpretierbares Format konvertiert, habe ich wihrend meiner Tatigkeit als studentische Hilfskraft
mitentwickelt. Nach einer relativ kurzen Suche fiel die Entscheidung damals auf die Programmbiblio-
thek OWL API®, welche in [HB11] vorgestellt wird.

Eine weitere Programmbibliothek zum Arbeiten mit Ontologien ist Apache Jena. Wegen fehlender
OWL 2-Unterstiitzung* kam diese aber im Vergleich zur wesentlich besser ausgestatteten OWL API
nicht in Betracht.

Eine Programmbibliothek sollte auf jeden Fall verwendet werden, da es sich bei OWL um ein relativ
komplexes Fachgebiet handelt. Die technische Unterstiitzung beim Arbeiten mit den einzelnen

"https://babeljs.io/
*https://github.com/VisualDataWeb/OWL2VOWL
*http://owlapi.sourceforge.net/<
*https://jena.apache.org/documentation/ontology/

37

https://babeljs.io/
https://github.com/VisualDataWeb/OWL2VOWL
http://owlapi.sourceforge.net/<
https://jena.apache.org/documentation/ontology/

4. Implementierung

OWL-Elementen, deren Kombinierung, den verschiedenen Syntaxen und den komplex aufgebauten
OWL 2-Profilen kann den Aufwand wesentlich verringern.

Da die OWL API bereits bei OWL2VOWL gezeigt hat, dass sie sehr beim Erstellen und Verarbeiten
von Ontologien helfen kann und auflerdem auch aktiv weiterentwickelt wird, sollte sie hier verwendet
werden. Da sie in der mir vertrauten Programmiersprache Java geschrieben ist, wird die serverseitige
Anwendung ebenfalls in Java programmiert.

4.1.2. Build und Dependency-Management
Back-End

Als Buildsystem wird Apache Maven® verwendet, welches fiir die Entwicklung mit Java geeignet ist.
Mit Maven werden in diesem Projekt die Quellcode-Dateien kompiliert, Tests ausgefithrt und die
kompilierten Dateien in einen lauffahigen . jar-Container gepackt.

Eine weitere Kernfunktion von Maven ist, die Programmbibliotheken in Form von Abhéngigkeiten
zu verwalten. Zu diesen Abhéngigkeiten z&hlen zum Beispiel die OWL API, niitzliche Bibliotheken,
die die Entwicklung vereinfachen, oder auch das Framework, mit dem die Webanwendung realisiert
wird. Maven sorgt dafiir, dass jede Abhéngigkeit in einer bestimmten Version vorliegt. Dadurch lasst
sich auch schnell auf weiteren Systemen, wie beispielsweise dem eigenen Laptop, die Entwicklungs-
umgebung aufsetzen. Es ist dann sichergestellt, dass auch dort exakt die gleiche Anwendung erstellt
wird.

Front-End

Da Maven nicht nativ mit Webtechnologien wie JavaScript zurecht kommt, wird dafiir ein separates
Buildsystem verwendet. Mit einem Plugin® fiir Maven lassen sich beide Buildsysteme kombinieren.

Zu den bekannteren Buildsystemen fiir Webtechnologien zihlen Grunt” und Gulp®, welche beide sehr
ahnlich sind. Grunt wird bei der Ontologievisualisierung WebVOWL fiir 4hnliche Aufgaben wie Maven
in dieser Bachelorarbeit verwendet. Die Hauptfunktionalitat von Grunt ist, bestimmte Aufgaben
mit unterschiedlichsten Zielen — beispielsweise einzelne Schritte des Buildprozesses — auszufiithren.
Diese Aufgaben werden Grunt durch Plugins zur Verfiigung gestellt und kénnen anschlieflend
in einer Konfigurationsdatei angepasst und kombiniert werden. Gulp unterscheidet sich zu Grunt
hauptsiachlich dadurch, dass temporare Dateien im Build-Prozess in den Arbeitsspeicher gelegt werden,
wodurch sich der Prozess beschleunigen kann.

Aus der mit Grunt gesammelten Erfahrung, ist die Konfiguration der Plugins haufig sehr zeitaufwendig,
da jedes einzelne an die verwendeten Technologien und die Projektstruktur angepasst werden muss.

*https://maven.apache.org/
®https://github.com/eirslett/frontend-maven-plugin
"http://gruntjs.com/

8http://gulpjs.com/

38

https://maven.apache.org/
https://github.com/eirslett/frontend-maven-plugin
http://gruntjs.com/
http://gulpjs.com/

4.1. Verwendete Technologien

Als Alternative hierzu stellt sich unter anderem Brunch® auf, auf welches ich erst kurz vor Beginn der
Bachelorarbeit aufmerksam gemacht wurde. Brunch fithrt nicht einfach nur verschiedene Aufgaben
aus Plugins aus, sondern implementiert die typischen Aufgaben fiir Webanwendungen bereits schon
selbst und bietet hiermit einen Standardablauf an. Dazu zdhlen zum Beispiel das Konkatenieren
von Dateien oder auch die Minimierung des Quellcodes, damit Webseiten schneller geladen werden
konnen. Als Folge daraus ergeben sich ein minimaler Konfigurationsaufwand, aber auch etwas weniger
Freiraum bei den Einstellungsmoglichkeiten. Da sich Brunch explizit als Alternative zu den beiden
oben genannten Buildsystemen aufstellt, die Beispielprojekte sehr simpel aussahen und bei mir das
Interesse geweckt war, wird Brunch hier eingesetzt.

0 zum Verwalten der Abhan-

Fiir clientseitige Webanwendungen hat sich die Paketverwaltung bower!
gigkeiten etabliert. Inzwischen findet auch die Paketverwaltung npm '! von serverseitigen JavaScript-
Anwendungen immer weitere Verbreitung bei clientseitigen JavaScript-Anwendungen. Leider ent-
deckte ich einen Bug!? bei der Kombination von npm mit brunch und Windows, wodurch sie aufler

Betracht fiel.

4.1.3. Weiteres

Zur Versionsverwaltung wird ein Git-Repository verwendet. Im Vergleich zu SVN kann ich damit
wesentlich flexibler arbeiten. Ein Beispiel wire, dass man Anderungen in gebiindelten Einheiten
(sogenannte Commits) auch ohne eine verfiigbare Internetverbindung speichern kann. In diesem
Git-Repository sind der Quellcode und alle anderen Dokumente dieser Bachelorarbeit abgelegt. Das
Repository wird auf Github gehostet, ist allerdings nicht 6ffentlich zugénglich.

Um den aktuellen Stand der Entwicklung selbst online testen zu kénnen, ist OntoBench auf Heroku!3
installiert worden. Heroku ist ein Platform-as-a-Service-Dienstleister (PaaS), der unter anderem
Server, eine Laufzeitumgebung oder eine Anbindung ans Internet anbietet. Auf so einer Plattform
konnen Entwickler ihre Anwendungen mit minimalem Aufwand zum Laufen bringen und schnell der
Offentlichkeit zur Verfiigung stellen, ohne sich Gedanken tiber technische Details wie beispielsweise
die Infrastruktur machen zu miissen. Als PaaS-Dienstleister bietet Heroku auflerdem auch eine
Auswahl mehrerer Datenbanken an, welche in dieser Anwendung bendtigt werden. In der kostenlosen
Variante erhalt man einen Server, der maximal 16 Stunden am Tag arbeiten darf, was fiir dieses Projekt
aber ausreicht.

Heroku ist auBerdem mit Github verbunden, sodass beim Einpflegen von Anderungen automatisch
die aktuellste Version der Anwendung auf Heroku kompiliert und gestartet wird. Da die Anwendung
in einer komplett neu eingerichteten Umgebung gestartet wird, ist gewahrleistet, dass keine Altlasten
der Software eine neuere Version stéren. Dadurch ist fir mich als Entwickler sichergestellt, dass die
Anwendung nicht nur auf meinem lokalen System lauftdhig ist. Fiir meine Betreuer hat es auflerdem
den Vorteil, dass sie zu jedem Zeitpunkt den aktuellen Stand testen kdnnen.

’http://brunch.io/

Yhttp://bower.io/

"https://www.npmjs.com/
2https://github.com/brunch/brunch/issues/1009
Bhttps://www.heroku.com/

39

http://brunch.io/
http://bower.io/
https://www.npmjs.com/
https://github.com/brunch/brunch/issues/1009
https://www.heroku.com/

4. Implementierung

Programmiert wird in der Entwicklungsumgebung Intelli] IDEA' von JetBrains. Im Vergleich zum
bekannten Eclipse kann ich mit Intelli] wesentlich effektiver arbeiten, was zum Beispiel von besseren
kontextsensitiven Vorschldgen bei der Autovervollstindigung herrithrt. Auflerdem werden Windows
und Linux als Betriebssysteme verwendet, wodurch auch wieder eine gewisse Grundkompatibilitat
gewihrleistet ist.

4.2. Entwurf

Im Konzept wurde bereits festgelegt, dass eine Webanwendung entwickelt werden soll. Damit ergibt
sich bereits ein bedeutender Aspekt der Architektur: Die Trennung zwischen Server und Client. Der
zweite Aspekt duflert sich durch die Forderung nach dem Speichern von IDs in Verbindung mit dem
Inhalt der Ontologie in einer Datenbank.

Wenn man nun die gesamte Anwendung betrachtet, ergeben sich fiir mich die folgenden, relativ
gut in sich abgeschlossenen Komponenten, welche in Abb. 4.1 abgebildet sind. Die Pfeile zwischen
den einzelnen Komponenten, dem Internet und dem Anwender stehen dabei fiir den Fluss der
Informationen. In Abbildungen der Architektur steht blau fir die Clientseite und orange fiir die
Serverseite.

/ Weboberflache

Anwender

Schnittstelle

Generator >
Datenbank

Abbildung 4.1.: Eine Ubersicht tiber die groben Komponenten der gesamten Anwendung und deren
Informationsfluss. Die eingefarbten Komponenten sind Teil von OntoBench.

4.2.1. Weboberflache

Die Weboberflache ist der Teil der Anwendung, der direkt vom Anwender angesprochen wird. Hier
findet die Anzeige und Auswahl der Features und Presets statt, aus denen der Anwender die Ontologie
generieren kann. Zusétzlich gibt es auch die Moglichkeit, eine spezielle Syntax fiir die Ontologie
wiahlen zu konnen. Die Weboberflache soll keinerlei Informationen iiber die verfiigbaren Features,
Kategorien, Presets und Syntaxen speichern, denn diese sollen vom Server zentral bereitgestellt
werden.

Es soll noch einmal angemerkt sein, dass sich die Laufzeitumgebungen vom Server und der Web-
oberflache unterscheiden. Zwar liegen die Dateien von beiden auf einem Server, allerdings wird
die Weboberfliache in den Browsers des Benutzers geladen und dann dort ausgefiithrt. Um mit dem

“https://www.jetbrains.com/idea/

40

https://www.jetbrains.com/idea/

4.3. Webschnittstelle — Spezifikation

Server zu kommunizieren, ist deshalb eine Webschnittstelle nétig, die tiber das Internet angesprochen
werden kann.

4.2.2. Webschnittstelle

Die Schnittstelle steht zwischen der Weboberfldche und dem Server. Uber die Schnittstelle werden
Daten in beide Richtungen ausgetauscht; eine genaue Auflistung dieser befindet sich im Konzept in
Abschnitt 3.5.1. Die Schnittstelle hat keinen eigenen Zustand und reicht nur Daten zwischen den
beiden umliegenden Komponenten durch.

Abgesehen davon, kann eine Ontologie auch tber ihre eindeutige URL abgerufen werden, wobei die
Weboberflache iibergangen wird. Nach meiner Vorstellung tritt der Fall dann ein, wenn die Ontologie
zum Validieren einer Visualisierung eingelesen und verarbeitet wird; prinzipiell sollen aber auch
andere Szenarien nicht ausgeschlossen werden.

4.2.3. Generator

Der Generator stellt praktisch das Herzstiick der Anwendung dar und enthélt den grofiten Teil der
Logik. Hier werden die Daten von der Webschnittstelle in Empfang genommen und ausgewertet.
Anschlieflend wird daraus die Ontologie erzeugt und tiber die Webschnittstelle zuriickgegeben.

Um eine Ontologie aus einer kurzen ID generieren zu kénnen, miissen die beinhalteten Features
mitsamt der ID abgespeichert werden, wofiir eine Datenbank erforderlich ist.

4.2.4. Datenbank

Die Datenbank enthilt grundséatzlich keine Logik; sie dient ausschlieBlich als persistenter Speicherort.
Die zu speichernden Daten bestehen aus einer ID in Verbindung mit den zugehorigen Features.

4.3. Webschnittstelle — Spezifikation

Wie oben beschrieben, steht zwischen der Serveranwendung und der clientseitigen Weboberflache
eine Schnittstelle. Da sie zentral fiir die Planung der beiden umgebenden Komponenten ist, soll sie
hier auch als erstes spezifiziert werden. Auf die Beschreibung der Technologien folgt die genaue
Spezifikation der Schnittstelle.

41

4. Implementierung

4.3.1. Technologien

Die Schnittstelle soll das REST-Architekturmuster!® implementieren, mit welchem die hier verwende-
ten Technologien einfach miteinander kommunizieren konnen. Uber HT TP werden Daten zwischen
den Kommunikationspartnern ausgetauscht. Der gesamte Zustand der Kommunikation befindet
sich dabei ausschliellich in den Nachrichten. Bei einer Client-Server-Architektur wie in dieser An-
wendung, ergeben sich dadurch einige Vorteile. Wenn viele Anwender die Software gleichzeitig
bedienen, werden viele Anfragen an den Server gesendet. Da der Server keinerlei Informationen zu
den Anfragen der Anwender sammelt, wird nicht direkt zusétzlicher Speicher benétigt, um allein die
Kommunikation bei vielen Anfragen instand zu halten. Die Kommunikationspartner sind dadurch
gut voneinander entkoppelt. Aulerdem wird REST beziehungsweise die Kommunikation itber HTTP
von JavaScript aus bereits gut unterstiitzt.

Die kommunizierten Daten kénnten dabei als Reintext iibermittelt werden. Um aber eine gewisse
Struktur zu verwenden, wird meistens auf XML oder JSON als Datenformat gesetzt. JavaScript kann
ohne Weiteres JSON, ausgeschrieben JavaScript Object Notification, interpretieren und verarbeiten.
Da JSON aufierdem kompakter und meiner Meinung nach lesbarer als XML ist, wird es hier als
Datenformat verwendet.

4.3.2. Features

Von der Schnittstelle erwartet die Weboberflidche eine Liste der verfiigbaren Features. Die einzelnen
Features konnen auf die folgenden drei Eigenschaften reduziert werden:

Name Der Name soll entweder das dahinterstehende OWL-Element identifizieren oder
allgemein das Feature beschreiben.

Kategorie-ID Die Features sollen fiir eine bessere Ubersicht gruppiert werden, wofiir die zugehorige
Kategorie benoétigt wird. Wie im folgenden Abschnitt beschrieben ist, wird hier nur
die ID einer Kategorie benétigt.

Token Eigentlich sollte ein Name eines Features bereits eindeutig sein. Um ein Feature aber
kompakt und eindeutig identifizieren zu kdnnen, soll ein kurzes Token verwendet
werden.

Eventuell kénnten auch eine etwas langere Beschreibung und weitere Informationen wie beispiels-
weise die zugehorigen OWL-Profile iibertragen werden. Um den Aufwand aber gering zu halten,
werden sprechende, kurze Namen fiir die einzelnen Features gewahlt.

15ht‘cp 1/ /www.ibm.com/developerworks/library/ws- restful/

42

http://www.ibm.com/developerworks/library/ws-restful/

4.3. Webschnittstelle — Spezifikation

4.3.3. Kategorien

Da mehrere Features in einer Kategorie liegen, wiirde man eine grofle Redundanz erhalten, wenn
jedes einzelne Feature alle Informationen zu seiner Kategorie enthilt. Deshalb sollen die Kategorien
getrennt von den Features iiber die Schnittstelle angeboten werden.

Ich habe mich dafiir entschieden, die Kategorie eines Features diesem fest zuzuordnen. Dadurch ist
gewahrleistet, dass jedes Feature auch nur exakt einer Kategorie zugeordnet sein kann. Die andere,
ahnliche Moglichkeit wire gewesen, die Kategorie als Container zu betrachten, in dem die einzelnen
Features liegen; der Unterschied zur vorigen Variante ist aber nicht mafigeblich.

Die Schnittstelle bietet eine Liste der Kategorien an, welche die einzelnen Kategorien wie folgt
beschreibt:

ID Die ID, mit der die Kategorie bei den Features referenziert wird.
Name Der Name der Kategorie.

Index Durch den Index kénnen alle Kategorien untereinander sortiert werden.

4.3.4. Presets

Im Gegensatz zu den Kategorien kann ein Feature mehreren Presets zugeordnet sein. Daher habe ich
die Beziehung von Features zu den Presets umgedreht, wie es alternativ bei den Kategorien moglich
gewesen wire. Ein Preset ist also ein Container, der eine Menge von Features enthilt.

Wie bei den Abschnitten zuvor, wird auch hier wieder eine Liste angeboten. Die einzelnen Presets
darin sind wie folgt konstruiert:

Name Der Name des Presets.

Features Eine Auflistung der Features. Hier sollen nur die Token und nicht die ganzen Features
enthalten sein.

Index Wie bei den Kategorien macht es auch hier Sinn, die einzelnen Presets sortieren zu
konnen. Als Beispiel kénnten die aufeinander aufbauenden OWL 1-Profile geordnet
aufgelistet werden.

4.3.5. Syntaxen

Aus der Liste der verfiigbaren Syntaxen kann der Anwender in der Oberfliche wihlen. Die getroffene
Auswahl wird anschliefend zum Generieren der Ontologie verwendet.

Name Der Name der Syntax.

Dateiendung Die Dateiendung des Datenformats einer Syntax. Sie soll wie in Abschnitt 3.2.8
in der URL angegeben werden.

Standardauswahl Eine Angabe, ob diese Syntax standardmaflig gew&hlt werden soll.

43

4. Implementierung

4.3.6. Ontologie

Im Gegensatz zu den vorigen Methoden der Schnittstelle nimmt der Server zum Generieren der
Ontologie Daten entgegen. Hierbei soll die URL als einzige Informationsquelle dienen.

In der langen URL wird der Inhalt der Ontologie durch eine Auflistung der Feature-Tokens angegeben,
in der kurzen URL nur durch die ID. Beide URLs haben gemeinsam, dass dhnlich wie . html bei vielen
Webseiten die Dateiendung der Ontologie die Syntax angeben sollen, wie es auch in Abschnitt 3.2.8
abgebildet ist. Als Antwort soll dann direkt die Ontologie zuriickgegeben werden.

4.4. Weboberflache

Die Weboberflache basiert fast vollstindig auf den iiber die Schnittstelle bereitgestellten Daten. Sie
wird dynamisch aus ihnen generiert und ist deshalb sehr flexibel aufgebaut. Da ihre Funktionalitat
sehr iberschaubar ist, wird die Architektur nur relativ knapp beschrieben. AnschlieBend wird ein
ausfiihrlicher Uberblick tiber die einzelnen Komponenten der Oberfliche gegeben.

4.41. Entwurf

Die Weboberflache soll aus einer einzigen Webseite bestehen. Auf dieser Webseite kann der Nut-
zer zwischen Tabs fiir die Auswahl der Features und die Generierung und Ausgabe der Ontologie
wechseln.

)
Feature-Ubersicht

Auswahl Features,

E——— URL-

Generator

))

Ontologie f Ontologie——
- Qntolog Anzeige der Ontologie

URL N ontologie & URL “;URL

(RS
Abbildung 4.2.: Die Architektur der Weboberflache mitsamt des Datenflusses.

Anwender

Die Oberfldche der Webseite erhélt ihre Struktur durch HTML und wird mit CSS gestaltet. Mit
JavaScript werden die dynamischen Inhalte in die Oberfliche eingebaut, Feedback zu Benutzerinter-
aktionen gegeben und die Webschnittstelle iiber das Internet angesprochen.

4.4.2. GUI Framework
Um schnell eine einheitliche und hiibsche Weboberflache aufzubauen, verwende ich das GUI-

Framework Semantic UI'®. Mit Semantic Ul werden Webseiten mit natiirlichsprachlichen Bezeichnern

http://semantic-ui.com/

44

http://semantic-ui.com/

4.4. Weboberflache

gestaltet. Da diese sehr intuitiv gew#hlt sind, kénnen unbekannte Bezeichner oft erraten werden.
Auflerdem bleibt der Quellcode hierbei sehr lesbar, da er ziemlich selbst beschreibend ist. Semantic Ul
erweitert nicht nur bereits von Browsern unterstiitzte HTML-Elemente wie Checkboxen, sondern
bietet auch eine Vielzahl neuer Komponenten wie beispielsweise eine Fortschrittsanzeige an.

In Listing 4.1 ist ein Auszug aus dem Code zu sehen, der die Ubersicht der Features beschreibt. Die
div-Elemente stellen reine Container dar, die selbst keine Funktion besitzen. Im dufleren Element
wird mit den CSS-Klassen ein zweispaltiges Gitternetz aufgespannt. Darin liegen die Container fiir
die Kategorien der Features. Um nun ein einspaltiges Gitter zu erhalten, wiirde man blof8 two columns
durch one column ersetzen.

Listing 4.1 Definition eines Gitternetzes mit Semantic UL

<div class="ui two columns grid">
<div class="ui column">...</div>
<div class="ui column">...</div>
</div>

Semantic Ul ist eine Erweiterung von jQuery'’. In JavaScript kann mit jQuery leicht der HTML-Code
manipuliert werden oder auch die Logik fiir Benutzerinteraktionen implementiert werden. jQuery
bietet auflerdem eine sehr gut abstrahierende Schnittstelle zum Internet an, die in OntoBench fiir die
Kommunikation mit dem Server verwendet wird.

4.4.3. Module

Der JavaScript-Quellcode fiir die Weboberflache ist in drei Module aufgeteilt. Das erste Modul enthalt
allgemeine Funktionen, die fiir die gesamte Webseite verwendet werden. Von hier aus werden alle
Komponenten initialisiert, die dynamischen Daten vom Server abgefragt und diese anschlieflend in
die Oberflache geladen. Zu diesen Komponenten gehéren die mit Semantic Ul realisierten Tabs oder
auch die Presets.

Im néichsten Modul befindet sich die Logik der Feature-Ubersicht. Hier wird das Gitternetz mit den
Kategorien und deren Features konstruiert und in die Oberflache geladen.

Die Generator-Oberfliache liegt als weiterer grofier Teil ebenfalls in einem eigenen Modul. In diesem
wird aus den ausgewdhlten Features die URL fiir die Ontologie erstellt, die Anfrage zum Server
gesendet und anschliefend die erhaltene Ontologie mitsamt der jeweiligen URL dargestellt.

4.4.4. Komponenten

Die Weboberflache ist aus mehreren, kleineren Komponenten aufgebaut. Im HTML-Code werden
diese angeordnet, sodass die Struktur der Oberflache festgelegt wird.

"https://jquery.com/

45

https://jquery.com/

4. Implementierung

Quick Guide

Quick Guide x

1 Choose the elements you want to test or select a preset.
2 Switch to the "Generator" tab to generate the ontology.
3 Test your visualization by using the URL or the downloaded ontology.

Abbildung 4.3.: Zu Beginn wird dem Anwender die grundlegende Funktionalitat erklart.

Um dem Anwender zu erklaren, wie er eine Ontologie generieren kann, werden die bendtigten Schritte
in Kiirze beschrieben. Diese Kurzanleitung ist im oberen Teil der Webseite iber den Tabs platziert,
damit sie auch beim Wechsel zwischen diesen sichtbar ist. Sie hebt sich aulerdem auch gegeniiber
anderer Elemente farblich hervor.

Der Quick Guide wird meiner Meinung nach nur zu Beginn als Einstiegshilfe benétigt; im weiteren
Zeitverlauf belegt er unnotigerweise Platz in der Oberflache. Daher kann er mit einem Klick auf die
in Abb. 4.3 oben rechts dargestellte Schaltfliche dauerhaft geschlossen werden.

Beim Anwender wird dabei lokal ein sogenannter Cookie gespeichert. Ein Cookie kann mit einen
Namen, Textinhalt und einer Giltigkeitsdauer vom JavaScript-Code aus erstellt und gelesen wer-
den. Wird die Kurzanleitung geschlossen, wird ein Cookie mit einer unbegrenzten Giiltigkeitsdauer
erstellt. Sobald der Nutzer die Webseite erneut aufruft, wird die Existenz des Cookies gepriift und
gegebenenfalls die Anleitung ausgeblendet.

Tabs

Features Generator

Abbildung 4.4.: Um die Weboberflache tibersichtlich zu halten, wird der Inhalt auf zwei separaten
Ansichten dargestellt. Uber Tabs kann zwischen diesen gewechselt werden.

Die Feature-Ubersicht und der Generator sind in unterschiedlichen Ansichten platziert. Uber die Tabs
aus Abb. 4.4 kann der Anwender zwischen diesen wechseln. Sobald man den Generator-Tab 6ffnet,
wird im Hintergrund die Generierung der Ontologie angestof3en.

Presets

Im oberen Bereich des Feature-Tabs sind die Presets besonders hervorgehoben, da sie fiir den Anwender
eine grofie Zeitersparnis darstellen kénnen. Um zu signalisieren, dass es sich um keine Schalter handelt,
die die Features der Presets an- beziehungsweise abwéhlen, ist dem Namen jedes Presets ein Plus-
Icon vorangestellt. Der Nutzer soll hieraus erkennen, dass die Features ausschlie8lich zur Auswahl
hinzugefiigt werden.

46

4.4. Weboberflache

+ OWL Lite + OWL DL + OWL 2EL + owL2QL + OWL 2RL

Abbildung 4.5.: Die Presets werden besonders hervorgehoben, da sie dem Anwender die Auswahl
der Features wesentlich erleichtern.

Beim Aufruf der Weboberflache werden die verfiigbaren Presets vom Server abgefragt und anschlie-
Bend die einzelnen Schaltfldchen erstellt. Semantic UI sorgt hierbei dafiir, dass trotz dynamischer
Anzahl alle GUI-Elemente die gleiche Grofle besitzen. Da die Schaltflachen bei niedrigeren Auflo-
sungen zu klein sind, werden sie mit Hilfe von Semantic UI nicht mehr nebeneinander sondern
untereinander platziert.

Features

Select all Select none Invert selection

Data Ranges

DatatypeRestriction

| owl:complementOf
owl:intersectionOf

«| owl:intersectionOf (adjusted to OWL 2)
owl:oneOf

| owl:oneOf (adjusted to OWL 2 EL)

| owl:unionOf
rdfs:Datatype

Abbildung 4.6.: Die Features einer Kategorie liegen jeweils in einem eigenen Container.

Die Features werden nach ihrer Kategorie gruppiert und anschliefend in abgeschlossenen Containern
wie in Abb. 4.6 angezeigt. Diese Container werden in der Feature-Ubersicht in einem zweispaltigen
Gitter angeordnet.

In jedem Container sind oben drei Schaltflachen platziert, die grobere Auswahlmoglichkeiten bieten.
So kann man pro Container alle Features an- ober abwahlen und die aktuelle Auswahl invertieren,
was vor allem bei grofleren Containern praktisch ist. Die gleichen Schaltflachen liegen auch nochmal
tiber allen Containern, um die Features aller Kategorien gleichzeitig manipulieren zu kénnen.

Darunter liegt der eigentliche Inhalt: Der Name der Kategorie und die einzelnen Features. Hinter dem
Namen eines Features werden gegebenenfalls erlduternde Informationen angezeigt, wenn beispiels-
weise ein Feature explizit fiir ein OWL Profil konstruiert ist. Der Anwender kann die Features mit
einem einfachen Klick zur Auswahl hinzufiigen beziehungsweise von dieser entfernen.

Generator
Der zweite Tab enthilt Komponenten, die den Generator und die Ontologie betreffen. Uber das in

Abb. 4.7 links abgebildete Dropdown-Menu kann die Syntax der Ontologie eingestellt werden. Direkt
nach einer Anderung wird wie beim Wechseln der Tabs die Ontologie erneut generiert. In der Mitte

47

4. Implementierung

Turtle Syntax v http://localhost:8080/ontology/1/1.ttl Short URL ~ = Download

Abbildung 4.7.: Die GUI-Komponenten, mit denen der Generator konfiguriert und die Ontologie
genutzt werden kann.

der Abbildung wird die URL der Ontologie angezeigt. Uber einen Schalter kann hier zwischen der
langen und der kurzen URL gewechselt werden. Sobald der Anwender das Feld fokussiert, wird die
URL markiert und ist somit direkt kopierbar. Mit einem Klick auf den Download-Button auf der
rechten Seite kann die Ontologie heruntergeladen werden.

Unter den oben beschriebenen Elementen wird die generierte Ontologie angezeigt. Sie wird wie die
URL markiert, sobald das Feld im Fokus liegt und kann dadurch auch ohne einen Download extrahiert
werden.

@prefix : <http://localhost:8080/ontology/1/> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix xml: <http://www.w3.org/XML/1998/namespace> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
@base <http://localhost:8080/ontology/1/> .

<http://localhost:8080/ontology/1/> rdf:type owl:Ontology .

Generated by the OWL API (version 4.0.2.20150417-2043) http://owlapi.sourceforge.net

Abbildung 4.8.: Die Anzeige der generierten Ontologie, welche in diesem Fall keine Features enthalt.

4.5. Server

Im Gegensatz zur Weboberflache ist die auf dem Server laufende Anwendung wesentlich komplexer.
Hier liegen neben den Daten fiir die Oberfldche die komplette Logik und ein Datenspeicher fiir den
Inhalt bereits generierter Ontologien.

4.5.1. Architektur

Im Entwurf in Abb. 4.1 haben sich bereits die groben Komponenten gezeigt, die der Weboberflache
auf der Serverseite gegeniiberstehen. Auf die Implementierung bezogen, haben sich daraus die in
Abb. 4.9 abgebildeten Komponenten ergeben.

Die Webschnittstelle stellt entweder Daten bereit, wie beispielsweise die verfiigbaren Features, oder
nimmt Parameter zum Generieren einer Ontologie an. Diese Parameter konnen entweder eine direkte
Auflistung der Features oder eine ID sein, welche erst in die dahinter stehenden Features aufgeschliis-
selt werden muss. Daraufhin kann der Generator angesprochen und die resultierende Ontologie iiber
die Schnittstelle zuriickgegeben werden.

48

4.5. Server

Anfrage—> ID: >
g Webschnittstelle \ >
Antwort——

Features Features

Ontologie

Datenbank

Generator

Abbildung 4.9.: Die Architektur der serverseitigen Anwendung.

4.5.2. Framework

Durch Spring Boot'®, das auf dem Spring Framework!® aufbaut, kann schnell eine Webanwendung mit
REST-Schnittstelle implementiert werden. Mit Spring Boot sollen Entwickler ohne eine aufwendige
Konfiguration vieler separater Bibliotheken schnell eine startbare Anwendung bauen kénnen. Hierfiir
werden ubliche Anwendungsfille wie eine Webschnittstelle oder die Kommunikation mit einer
Datenbank von Spring Boot gekapselt und vorkonfiguriert. Anstatt viele einzelne Bibliotheken erst
an die Anwendung anpassen zu miissen, kann direkt ihre Funktionalitit genutzt werden. Da die
vorkonfigurierten Einstellungen von Spring Boot allerdings nicht fiir jedes Anwendungsgebiet passen,
koénnen auch noch Feinjustierungen erledigt werden.

Abgesehen von einer sehr guten Abstrahierung der Implementierung einer Webschnittstelle oder
der Datenbankkommunikation kann mit Spring Dependency Injection sehr flexibel eingesetzt werden.
Unter Dependency Injection versteht man, dass eine Klasse nicht selbst Objekte anderer Klassen
instantiiert, sondern sie diese von auflen beispielsweise tiber den Konstruktor erhélt. Dadurch werden
einzelne Module einer Anwendung besser voneinander entkoppelt.

Auf diese Anwendung bezogen, konnte beispielsweise das Generieren der Ontologie aus einer URL
ohne einen funktionsfahigen Generator getestet werden. Hierfiir miisste ein sogenannter Stub des
Generators implementiert werden. Dieser Stub liefert vordefinierte Antworten, in diesem Fall immer
dieselbe Ontologie. Wird nun eine Anfrage an die bereits implementierte Webschnittstelle simuliert,
fragt diese beim Generator nach der Ontologie und gibt sie anschlieflend an die simulierte Anfrage
zuriick. Da der Generator von aufien in die Webschnittstelle gegeben wurde, war dieser zu keinem
Zeitpunkt bewusst, dass es sich nicht um einen voll funktionsfahigen Generator, sondern um einen
Stub handelt. Zusammengefasst wire dadurch bestatigt, dass die implementierte Webschnittstelle
korrekt funktioniert. Nun konnte der Fokus auf die Implementierung des Generators gelegt werden.

4.5.3. Webschnittstelle

Zu Beginn der Entwicklung lag der Fokus stark auf der Webschnittstelle. Sobald diese funktionsfahig
war, konnte namlich auch parallel mit der Implementierung der Weboberfliche begonnen werden.

Bhttp://projects.spring.io/spring-boot/
19h‘c‘cp://spring .1io/

49

http://projects.spring.io/spring-boot/
http://spring.io/

4. Implementierung

Dadurch konnte ich einzelne Anforderungen an die gesamte Anwendung bereits frithzeitig in soge-
nannten End-to-End-Tests testen. Eine dieser Anforderungen war beispielsweise das Anzeigen einer
Kategorie mitsamt der zugehorigen Features.

Zuordnung der URLs

Damit Spring erkennt, dass eine Webschnittstelle konfiguriert werden soll, muss eine Java-Klasse mit
@RestController annotiert werden. In dieser Klasse werden dann Methoden beschrieben, die die
Funktionalitat der Schnittstelle implementieren.

Eine Methode wird wie in Listing 4.2 auf eine URL gemappt. In der Annotation @RequestMapping
wird beschrieben, dass es sich um den Pfad /ontology/ mit dem Parameter features handelt.
Spring verarbeitet diese Annotation beim Start der Anwendung und verkniipft sie mit dem Pfad
der Webschnittstelle. In diesem Fall wire /ontology/?features=owlthing,owlclass eine giiltige
Adresse.

Listing 4.2 Verkniipfen der Schnittstellen-URL mit einer Java-Methode.

@RequestMapping(value = "/ontology/", params = "features")
public OWLOntology ontology(@RequestParam("features") List<Feature> features) {
// generate and return the ontology

}

Spring verkniipft aber nicht nur URLs mit einer bestimmten Java-Methode, sondern kann auch die
textuellen Parameter in Java-Objekte konvertieren.

Konvertieren von Werten

An der Schnittstelle findet die Konvertierung von Parametern der URL in Java-Objekte und umgekehrt
von Java-Objekten in eine Textform statt.

Beim Einlesen der URL kann Spring mit einem speziellen Konverter Parameter der URL in einen
bestimmten Java-Typen umwandeln. In Listing 4.2 wird beispielsweise eine Auflistung von Tokens in
eine Liste von Feature-Objekten gebracht. Fiir jede benétigte Konvertierung der Parameter ist deshalb
ein eigener Konverter implementiert.

Fiir die Ausgabe von Daten tiber die Schnittstelle miissen diese laut der Schnittstellenbeschreibung
entweder in JSON oder in einer Syntax fiir Ontologien vorliegen. Die Konvertierung von Objekten in
das JSON-Format ist mit Spring trivial, da es diese Funktionalitit bereits standardméflig unterstiitzt.
Im Gegensatz hierzu ist die Ausgabe der Ontologie in einer speziellen Syntax komplizierter.

Die Anwendung muss zuerst erkennen, welche Syntax angefordert wird. Spring bietet hierfiir eine
Schnittstelle, mit der mit Hilfe einer Mustererkennung die Dateiendung der Syntax aus der URL ausge-
lesen wird. AnschlieBend wird mit einem Konverter die Ontologie durch die OWL API umgewandelt
und ausgegeben.

50

4.5. Server

4.5.4. Generator

Der Generator ist generisch implementiert und besitzt selbst keine fachliche Funktionalitét. Seine
Eingabeparameter sind eine leere Ontologie und die Objekte der zu berticksichtigenden Features, die
er zum Beispiel von der Schnittstelle erhalt. In diesen Objekten ist der Code gekapselt, mit dem die
Ontologie durch die OWL API beim Generieren gefullt wird.

Aufbau eines Features

Jedes Feature ist in einer separaten Klasse implementiert und von anderen Features entkoppelt. Die
einzelnen Features sind alle analog zum Code-Ausschnitt aus Listing 4.3 aufgebaut.

Listing 4.3 Die Implementierung des owl:Thing Features (vereinfacht).

public class OWLThingFeature {
public void addToOntology(OWLOntology ontology) {
// add OWL elements to ontology
}

public String getName() {
return "owl:Thing";

}

public String getToken() {
return "thing";

}

public FeatureCategory getCategory() {
return FeatureCategory.PREDEFINED_CLASSES;
}
}

Die Methode addToOntology stellt dabei das Herzstiick jedes Features dar. In dieser Methode werden
iber die OWL API die entsprechende Struktur von OWL-Elementen konstruiert und anschliefend
zur Ontologie hinzugefiigt. Beim Generieren ruft der Generator diese Methode zusammen mit der
Ontologie, die zu diesem Zeitpunkt erstellt wird, auf.

Im unteren Bereich der Klasse wird sozusagen der Steckbrief eines Features erstellt. Fiir jedes Feature
ist hier der Name und sein eindeutiges Token angegeben. Es wird ebenso auf die zugehorige Kategorie
verwiesen.

Beim Start der Anwendung tragen sich alle verfiigbaren Features in einer zentralen Registrierung ein.
Um mogliche Probleme aufgrund mehrfach vorkommender Tokens oder Namen zu vermeiden, findet
hier eine Validierung dieser Attribute statt. Sollte sich ein Duplikat eingeschlichen haben, wird der
Start der Anwendung mit einem Verweis darauf verweigert. Die Registrierung wird auflerdem auch
von der Webschnittstelle angesprochen, wenn alle verfiigbaren Features abgerufen werden.

51

4. Implementierung

4.5.5. Datenbank

Um eine ID mit einer unbestimmten Menge an Features zu verkniipfen, werden diese in einer relatio-
nalen Datenbank abgelegt.

Initialisierung der Datenbank

In der Anwendung verwende ich standardmafig die HyperSQL?°-Datenbank (auch HSQLDB genannt),
welche tiber Maven als Abhéingigkeit eingebunden ist. Fiir die Entwicklung bietet diese Datenbank
einen enormen Vorteil, da sie im memory-only-Modus mit der Anwendung gestartet werden kann.
Das heif3t, dass die Datenbank nur im Arbeitsspeicher existiert und auch nur, solange die Anwendung
lauft. Beim Start der Anwendung liegt somit immer eine leere Datenbank vor, wodurch keine Altlasten
aus vorherigen Entwicklungsschritten vorhanden sind.

Um eine Datenbank von Java aus zu verwenden, muss zuerst eine Verbindung zu dieser aufgebaut
werden. Spring ist unter anderem fiir HSQLDB vorkonfiguriert und kann dadurch automatisch die
Verbindung zur Datenbank herstellen, insofern diese im memory-only-Modus gestartet wird.

Im Produktiveinsatz soll die Datenbank die Daten allerdings dauerhaft und nicht nur fiir die Laufzeit
der Anwendung speichern. In diesem Fall verwendet man eine Datenbank, die separat gestartet wird.
Mit Heroku Postgres®! bietet Heroku eine solche Datenbank an.

Auf Heroku kann die Anwendung mit Heroku Postgres verbunden werden. Heroku stellt die Adresse
der Datenbank und die Zugangsdaten iiber eine Umgebungsvariable des Systems bereit. Wird die
Anwendung gestartet, muss zwischen der externen Heroku Postgres-Datenbank oder der HyperSQL-
Datenbank im memory-only-Modus entschieden werden. An dieser Stelle wird Spring durch Uberprii-
fen der Umgebungsvariablen mitgeteilt, welche Datenbank verwendet werden soll und gegebenenfalls
welche Zugangsdaten zu dieser Datenbank gehoren.

Entity-Relation-Modell der Datenbank

Die Daten, die fiir das Speichern einer Generierung benétigt werden, sind wie folgt aufgebaut: Zum
einen gibt es die Generierung, zum anderen die einzelnen Features. Jede Generierung ist mit einer
unbestimmte Menge an Features verkniipft.

Wird diese Datenstruktur auf eine Datenbank abgebildet, ergibt sich das in Abb. 4.10 gezeigte Entity-
Relation-Modell. Die Entitit Generierung (englisch Generation) wird tiber ihre ID eindeutig identifiziert.
Die Entitét Feature wird durch das jeweilige Token eindeutig identifiziert.

Verkniipft werden beide Entitéiten in einer sogenannten Junction-Table, die in der Abbildung blau
dargestellt ist. Diese Tabelle enthéilt einzelne Parameter, die eine Generierung und ein Feature refe-
renzieren.

®http://hsqldb.org/
https://www.heroku.com/postgres

52

http://hsqldb.org/
https://www.heroku.com/postgres

4.5. Server

GENERATION_FEATURE
GENERATION FEATURE
FK GENERATION_ID

PK ID _— S——————— PK TOKEN
FK FEATURE_TOKEN

Abbildung 4.10.: Das Entity-Relation-Modell der Datenbank.

Im jetzigen Zustand sind die einzelnen Tabellen noch relativ leer. In Zukunft kénnten allerdings
noch weitere Informationen wie beispielsweise das Datum der Generierung gespeichert werden. Eine
andere, wichtige Idee fir eine Erweiterung ist in Abschnitt 6.2 weiter ausgefiihrt.

Speichern und Lesen der Java-Objekte

Die Java Persistence APL kurz JPA, spezifiziert, wie Klassen durch Java-Annotationen auf ein Daten-
bankmodell abgebildet werden kénnen. Die Annotationen enthalten beispielsweise Tabellen- oder
Spaltennamen.

Spring bringt die Anwendungsbibliothek Hibernate*? mit sich, welche eine funktionsfihige Imple-
mentierung der JPA darstellt. Hibernate verarbeitet die Annotationen und erstellt daraufthin im
Hintergrund mit SQL-Befehlen die erforderliche Tabellenstruktur.

Zum Speichern und Lesen der gespeicherten Daten wird ein sogenanntes Repository von Spring
verwendet. In einem Repository kapselt Spring die Hibernate-Bibliothek, um die Schnittstelle zur
Datenbank noch weiter zu abstrahieren. So werden ohne eine einzige Zeile SQL alle Datenbankopera-
tionen vom Java-Code aus gesteuert.

%http://hibernate.org/orm/

53

http://hibernate.org/orm/

5. Evaluation

Die Ziele dieser Bachelorarbeit kénnen aus unterschiedlichen Sichtweisen definiert werden. In diesem
Kapitel wird zum einen die entwickelte Anwendung an sich und die generierte Ontologie tiberpriift.
Zum anderen wird getestet, inwiefern die Funktionalitit einer Ontologievisualisierung mit dieser
Anwendung validiert werden kann.

5.1. Funktionalitat der Anwendung

Damit die Anwendung selbst als lauffahig bezeichnet werden kann, muss sie in einem praxisnahen
Umfeld mit einer entsprechenden Umgebung funktionieren. Auflerdem muss auch bestatigt werden,
dass sie die geforderte Funktionalitat leistet.

5.1.1. Umgebungsbedingungen

Die Anwendung kann auf unterschiedlichen Betriebssystemen betrieben und genutzt werden. Auf
der Serverseite wird das unter anderem durch Verwenden von Java als Programmiersprache erreicht.
Eine Java-Anwendung wird nédmlich in einer sogenannten Java Virtual Machine, kurz JVM gestartet.
Die JVM bietet der Java-Anwendung eine vordefinierte Laufzeitumgebung, in der Eigenschaften der
Systemumgebung gekapselt werden.

Dieser Aspekt wurde zum einen dadurch getestet, dass die Anwendung auf Heroku parallel zur
Entwicklung und auch danach fiir weitere Tests intern genutzt wurde. Heroku bietet unter anderem
verschiedene Anwendungsserver in der Cloud, die sich hauptsachlich in der verfiigbaren Leistung
unterscheiden. In diesem Fall wurde zwar nur die kostengiinstigste Variante gewahlt, welche allerdings
trotzdem eine praxisnahe Laufzeitumgebung bietet.

Zum anderen wurde auch auf einem Laptop mit der Linux-Distribution Arch Linux und auf einem PC
mit Windows 8 und Windows 10 entwickelt und getestet, wodurch dieser Gesichtspunkt in gewissem
Maf} auch nochmal bestétigt wird.

Die Weboberfliche, also der clientseitige Teil der Anwendung, ist ebenfalls in unterschiedlichen
Browsern lauffihig. Das wurde einerseits dadurch erreicht, dass die Anwendungsbibliothek jQuery!
browserspezifische Feinheiten beim Verarbeiten von Benutzeraktionen oder dem Verdndern des
HTML-Dokuments hinter einer einheitlichen Schnittstelle versteckt. Andererseits werden Eigenheiten

'https://jquery.com/browser-support/

55

https://jquery.com/browser-support/

5. Evaluation

beziiglich des Designs mit dem GUI-Framework Semantic UI? behandelt, wodurch die Oberfliche in
den unterstiitzten Browsern ein einheitliches Design bietet.

Wie auch die Serveranwendung, ist die Weboberfldche in den aktuellen Versionen einiger Browser
getestet worden. Hierzu gehoéren Mozilla Firefox 40 + 41, Google Chrome 44 + 45 und Microsoft Edge.

5.1.2. Validierung der generierten Ontologie

Beim Uberpriifen der generierten Ontologie kann zwischen einzelnen Teilen weiter differenziert
werden. In den nichsten Abséatzen wird nach dem Bottom-up-Prinzip von den kleinsten Bestandteilen
der Ontologie zur gesamten Ontologie gefolgert.

OWL-Elemente der Features

Wihlt der Anwender ein Feature eines bestimmten OWL-Elements aus, soll dieses auch in der
Ontologie enthalten sein. Optimal wire nun, wenn fiir jedes Feature ein automatisch Test vorhanden
wire, der dessen Funktionalitat bestatigt. Diese Tests sind allerdings nicht vorhanden.

Beim Generieren werden iiber die OWL API die OWL-Elemente zur Ontologie hinzugefiigt. Der Code
hierfiir ist durch die OWL-nahen Methoden und Objekte der OWL API sehr kompakt. Im Gegensatz
dazu ist der Aufwand zum Lesen der Ontologie mit Hilfe der OWL API unverhiltnismafiig grof3. Bei
tiber 100 Features wére dadurch ein zu grofler Teil des verfiigbaren Zeitrahmens beansprucht worden.
Da die einzelnen Features im Programmcode gut voneinander isoliert sind und bei der Entwicklung
jedes Feature mindestens einmal in der Ontologie iiberprift wurde, wurden automatische Tests hierfiir
ausgelassen.

OWL-Profile

Die Features stellen die elementaren Bestandteile dar aus denen die Ontologie generiert werden kann
und sind nach obiger Annahme korrekt implementiert. Die OWL-Profile, die in dieser Anwendung
durch Vorauswahlen von Features realisiert sind, stellen die nichste, zu priifende Ebene dar.

Die beiden OWL 1-Profile OWL Lite und OWL DL lassen sich manuell sehr einfach priifen. Fir
beide Profile wird im OWL Language Overview in [MHO04] fiir jedes OWL-Element die eindeutige
Aussage getroffen, ob dieses im jeweiligen Profil erlaubt ist. Fiir diese Profile von OWL 1 habe ich
keine automatische Validierung gefunden, weshalb sie nur manuell gepriift wurden.

Fir OWL 2-Profile gibt es keine vollstaindige Auflistung fiir jedes einzelne OWL-Element. In den OWL 2
Language Profiles in [MGH™ 12] finden sich teils Listen erlaubter Elemente, teils Listen verbotener
Elemente und teils Listen von Elementen, fiir die der Kontext anderer Elemente eine Rolle spielt. Da
diese drei Listen zum einen nicht alle moglichen OWL-Elemente abdecken und zum anderen - falls
erforderlich — keinen erlaubten Kontext angeben, sind sie fiir die Validierung von OWL 2-Profilen

thtps ://github.com/Semantic-0rg/Semantic-UI#browser-support

56

https://github.com/Semantic-Org/Semantic-UI#browser-support

5.1. Funktionalitat der Anwendung

nicht ausreichend. Sie werden allerdings durch eine vollstindige und komplexere Syntaxbeschreibung
im unteren Bereich des Dokuments komplettiert.

Fir OWL 2 bietet die OWL API fiir alle Profile eine automatische Validierung. Beim Implementieren der
OWL 2 Profile in der Anwendung verwendete der Einfachheit halber diese Profile anfangs als einzige
Priifung. Als ich die Ergebnisse der automatischen Validierung verifizierte, stief3 ich allerdings auf
einige Inkonsistenzen zwischen den Priifungen der OWL API und der Spezifikation in [MGH'12].

Nach mehrfacher Prifung meiner Ergebnisse begann ich die gesamten Profile allein mit der Spe-
zifikation als Quelle zu implementieren. Anschlieend verwendete ich meine Implementierung als
Referenz, um die Profile OWL 2 EL, OWL 2 QL und OWL 2 RL der OWL API zu validieren, und meldete
die Ergebnisse den Entwicklern auf Github®. Die Entwickler priiften meine Funde und bestitigten,
dass die OWL API in manchen Fillen falschlicherweise Warnungen meldete (false positive) und in
einem Fall keine Warnung zeigte (false negative). In der fiir Oktober 2015 angekiindigten Version
4.1.0 werden diese Fehler in der OWL API behoben sein.

Wiéhrend der Diskussion auf Github ergab sich allerdings auch die weitreichendere Erkenntnis, dass
die Spezifikation der OWL 2 Profile einen Fehler enthalt?. Einfach erklart liegt der Fehler darin, dass
ein bestimmter Typ von OWL-Elementen (die Datatypes) nur aus einer in den Profilen beschriebene
Menge stammen darf. Gleichzeitig wird aber an einer anderen Stelle erlaubt, dass beliebige Elemente
dieses Typs verwendet werden diirfen.

Struktur und Syntax

Bei der Ontologie selbst kann einerseits ihre Struktur und die Kombination der verschiedenen OWL-
Elemente betrachtet werden.

Mit der OWL API sollten nur giiltige Ontologien erstellt werden kénnen. Das wird unter anderem
dadurch erreicht, dass mittels statischer Typisierung alle Restriktionen aus der Spezifikation auf
den Java-Code tibertragen werden. Es existieren im Quellcode der OWL API aber auch zusétzliche
Prifungen mit denen weitere mogliche Fehlerfille abgefangen werden.

Die OWL API validiert zwar beim Erstellen und beim Einlesen eine Ontologie; dennoch wére ein
Fehler in beiden Komponenten nicht ausgeschlossen, wenn sie beispielsweise vom selben Entwickler
programmiert wurden. Daher wire eine externe Validierung als zusatzlicher Faktor wiinschenswert.
Leider existieren hierfiir nur der Manchester OWL Validator® und Protégé [KHM*05], welche allerdings
beide die OWL API verwenden. Auf3er mit der OWL API habe ich die Ontologie in verschiedenen
Syntaxen nach bestem Wissen auch selbst auf ihre Korrektheit beziiglich der OWL-Spezifikation
uberpriift.

Die Syntax der Ontologie lasst sich im Gegensatz zur Struktur leichter iiberpriifen, da sie nicht
unbedingt OWL-spezifisch ist. Fiir die obligatorische RDF/XML-Syntax konnte der RDF Validator®

*https://github.com/owlcs/OWL~API/issues/435
*https://lists.w3.org/Archives/Public/public-owl- comments/2015Aug/0000.html
>http://mowl-power.cs.man.ac.uk:8080/validator/
®http://www.w3.0rg/RDF/Validator/

57

https://github.com/owlcs/OWL~API/issues/435
https://lists.w3.org/Archives/Public/public-owl-comments/2015Aug/0000.html
http://mowl-power.cs.man.ac.uk:8080/validator/
http://www.w3.org/RDF/Validator/

5. Evaluation

des W3C verwendet werden. Da ich fiir die anderen Syntaxen keine offiziellen Validatoren finden
konnte, sind sie nicht extra tiberpriift worden.

Zusammengefasst kann man also sagen, dass die Korrektheit zur Spezifikation stark von der OWL API
abhingt. Sie wird aber auch durch weitere eigene Priifungen bestatigt.

5.2. Testen von Ontologievisualisierungen

Mit der graphbasierten Web-Visualisierung WebVOWL, der hierarchischen Visualisierung OWLViz
und dem auf UML basierenden O WLGrEd Ontology Visualizer sollen im Folgenden die Tauglichkeit
der Software bewertet werden.

Die Entscheidung fiel auf diese drei Visualisierungen, da sie sich stark in ihren Ansitzen und in der
Unterstiitzung von OWL unterscheiden, wodurch eine moglichst vielfaltige Testumgebung erreicht
wird.

5.2.1. Ablauf

Bei allen Visualisierungen soll nach dem gleichen Ablauf vorgegangen werden, um vergleichbare
Ergebnisse zu erhalten. Die Auswahl der Features darf sich bei den Visualisierungen unterscheiden, da
auf ihre Fahigkeiten Riicksicht genommen werden soll, denn es macht keinen Sinn, die Visualisierung
nicht unterstiitzter OWL-Elemente zu testen.

1. Die Weboberflache von OntoBench wird aufgerufen.

2. Es werden Features fiir die jeweilige Visualisierung gewahlt.

3. Die Ontologie wird generiert.

4. Es wird eine von der Visualisierung unterstiitzte Syntax ausgewahlt.

5. Die Ontologie wird iiber den einfachsten Weg in die Visualisierung geladen (URL oder herun-
tergeladene Datei).

6. Es wird versucht, mogliche Mangel der Visualisierung zu finden.

5.2.2. WebVOWL

WebVOWL [LLMN14] ist eine webbasierte Visualisierung, die Ontologien als Graphen visualisiert.
Thre visuelle Notation ist in der VOWL-Spezifikation’ definiert. Ontologien werden von WebVOWL
nicht direkt eingelesen und dargestellt, da das Verarbeiten der Ontologie im Browser zu aufwendig ist.
Stattdessen wird eine Ontologie im Hintergrund von der serverseitigen Anwendung OWL2VOWL in
ein fiir WebVOWL lesbares Format konvertiert. Getestet wird WebVOWL in der Version beta 0.4.0.

"http://vowl.visualdataweb.org/v2/

58

http://vowl.visualdataweb.org/v2/

5.2. Testen von Ontologievisualisierungen

WebVOWL kann nur einen Teil von OWL visualisieren, welcher in der zugehorigen Spezifikation
beschrieben ist. Die Syntax einer Ontologie kann aber beliebig gewahlt werden, da OWL2VOWL
selbst die OWL API verwendet und somit alle Syntaxen lesen kann, die zur Auswahl stehen.

Da ich einer der Hauptentwickler von WebVOWL bin, ist mir die Visualisierung sehr vertraut. Fir
die Auswertung hat das den Vorteil, dass mir auch kleine Abweichungen von der spezifizierten
Funktionalitat auffallen.

Ablauf

In der Weboberflache der Anwendung wéhle ich die von VOWL unterstiitzten Elemente aus. An-
schlieflend generiere ich die Ontologie und kopiere die lange URL. In der Visualisierung wird dann
die URL in der Oberfliche eingefiigt und die Ontologie in die Visualisierung geladen.

In der visualisierten Ontologie achte ich zunachst auf Auffalligkeiten. Danach wechsele ich in der
Anwendung zur Ubersicht der Features, um alle einzeln nacheinander iiberpriifen zu kénnen.

Auffalligkeiten

Beim ersten Blick auf die visualisierte Ontologie fiel mir die Konstellation aus Abb. 5.1 auf, welche
nicht auftreten diirfte. Laut der Spezifikation von VOWL miissten owl:Thing und owl:Nothing gleich
dargestellt werden. Die beiden kreisférmigen Knoten unterscheiden sich jedoch deutlich.

-
7/ \
\ .
Thing Nothing
7 (external)
N - -

Abbildung 5.1.: Laut der Spezifikation von WebVOWL miissten Thing und Nothing gleich dargestellt
werden.

Ein weiterer Fehler ist, dass keine OWL-Elemente vom Feature owl: complementOf angezeigt werden.
Auflerdem wurde das Feature owl:maxCardinality nicht korrekt angezeigt. In Abb. 5.2 sieht man
deutlich, dass auf der rechten Seite keine Kardinalitidten angezeigt werden.

5.2.3. OWLViz

OWLViz® visualisiert nur Hierarchien von Klassen. Die Visualisierung kann iiber ein Protégé-Plugin
verwendet werden.

8http://protegewiki.stanford.edu/wiki/OWLViz

59

http://protegewiki.stanford.edu/wiki/OWLViz

5. Evaluation

ObjectMinCar... ObjectMinCar... ObjectMaxCar...]| ObjectMaxCar...

- 2.
Abbildung 5.2.: Wihrend owl:minCardinality abgebildet wird (links), fehlt die Darstellung von
owl:maxCardinality.

Die generierten Ontologien sind nicht direkt zum Testen dieser Visualisierung geeignet, da sie
hauptséchlich aus flachen Konstrukten bestehen. Es kann aber trotzdem getestet werden, ob OWLViz
alle moglichen Deklarationen einer Klasse visualisieren kann.

Ablauf

In der Weboberfliche wihle ich mit wenigen Klicks auf Select All alle moglichen Features aus, die
Klassen beschreiben konnen. Nach dem Generieren, lade ich die Ontologie herunter und 6ffne sie
direkt in Protégé. OWLViz zeigt dort eine Liste aller visualisierten Klassen, welche ich mit den
ausgewahlten Features abgleiche.

Auffélligkeiten

Beim Evaluieren der visualisierten Ontologie sind mir keine Fehler aufgefallen. Das liegt unter
anderem auch daran, dass die Visualisierung schon seit mindestens 2005 existiert und somit viele
Fehler bereits gefunden wurden. Gleichzeitig deckt die Visualisierung auch nicht alle moglichen
OWL-Elemente, sondern nur einen kleineren Bereich, ab. Auflerdem werden Hierarchien visualisiert,
die mit OntoBench nicht gut getestet werden konnen.

5.2.4. OWLGrEd

Der OWLGrEd Ontology Visualizer [LGB14] ist eine Webanwendung, die Ontologien mit einer UML-
basierten Notation visualisiert. Fiir diese Visualisierung ist eine Notation® der unterstiitzten Elemente
vorhanden.

*http://owlgred.lumii.lv/notation

60

http://owlgred.lumii.lv/notation

5.2. Testen von Ontologievisualisierungen

Ablauf

In der Weboberflache wihle ich wie bei OWLViz tiber die Select All-Schaltflichen die Kategorien aus,
die von der Visualisierung unterstiitzt werden. Anschliefend generiere ich die Ontologie und lade
sie herunter. Auf der Webseite von OWLGrEd lade ich die generierte Ontologie hoch und lasse sie
visualisieren. Da mir OWLGrEd unbekannt ist, durchstobere ich die Visualisierung und versuche
anhand der Bezeichner der OWL-Elemente Auffilligkeiten zu finden.

Auffalligkeiten

Beim ersten Fund handelt es sich um eine Inkonsistenz in der Visualisierung. In der Ontologie sind
drei Properties enthalten, die alle 4quivalent sind. Diese Properties sind in Abb. 5.3 abgebildet. Mir
ist aufgefallen, dass nur bei einer Property die anderen beiden dquivalenten Properties angegeben
sind (griiner Rahmen). Bei den anderen beiden Properties fehlt die zweite 4quivalente Property (roter
Rahmen).

f_‘ EquivalentObjectProperty_Range3 |

lequivalentObjectProperty_3

I =equivalentObjectProperty 2} |

FW

. equivalentObjectProperty_2
Thing k | {=equivalentObjectProperty_3,
I =equivalentObjectProperty 1}
——
EquivalentObjectProperty_Range2 q
equivalentObjectProperty_1
|(=equivalentObjectPropeny_2} |

N_| EquivalentObjectProperty_Range1 |

Abbildung 5.3.: Erwartungsgemaf sollten die drei hervorgehobenen Kastchen jeweils die zwei
Elemente enthalten.

An einer anderen Stelle handelt es sich um ein dhnliches Problem wie beim ersten Fund. Da es
hier allerdings keine Stelle gibt, an der die Informationen korrekt angezeigt werden, stufe ich es
als einen Fehler ein. In Abb. 5.4 sollten im rot eingerahmten Bereich eigentlich hasKeyProperty_1
und hasKeyProperty_2 stehen. Die Visualisierung scheint allerdings nur einen Wert fiir den Key
anzeigen zu kénnen, obwohl laut offiziellen OWL-Dokumenten mehrere Keys erlaubt sind*’.

1Oh‘c‘cp 1/ /www.w3.0rg/TR/owl2-new- features/#F9: _Keys

61

http://www.w3.org/TR/owl2-new-features/#F9:_Keys

5. Evaluation

HasKeyPropertyRange_2

hasKeyProperty 2

Thing |, I

HasKeyClass

|key = hasKeyProperty 2 |

hasKeyProperty_1:string

Abbildung 5.4.: Die Visualisierung zeigt nur eine der beiden Properties als Key an.

62

6. Zusammenfassung und Ausblick

In dieser Bachelorarbeit wurde OntoBench, eine Anwendung zum Generieren von Benchmarkontolo-
gien fiir Ontologievisualisierungen, konzipiert und implementiert. Mit diesen Ontologien kann eine
Visualisierung primér auf ihre Konformitat zur OWL-Spezifikation getestet werden.

In Kapitel 3 wurde zuerst der Umfang der generierten Ontologien definiert und anschlieflend die
Struktur genauer festgelegt. Darauf aufbauend wurde die Entscheidung zur Wahl einer Webanwen-
dung begriindet und die Funktionalitat dieser spezifiziert. Anhand dieses Konzepts ist OntoBench,
wie in Kapitel 4 beschrieben, implementiert worden. Die Anwendung und der gewéhlte Ansatz
wurden abschlieflend in Kapitel 5 an drei Ontologievisualisierungen getestet und die gesammelten
Erfahrungen dokumentiert.

6.1. Fazit

Bei der Evaluierung des Ansatzes anhand der drei Visualisierungen konnten mit verschiedenen
generierten Ontologien einige Fehler gefunden werden. Die gute Benennung der OWL-Konstrukte,
die zu den einzelnen Features gehoren, hat das Uberpriifen einzelner Features wesentlich erleichtert.
Wenn die Ontologien zu viele Features enthielten, fiel der Abgleich mit der Visualisierung oft schwer,
da sie oft zu komplex wurde. Hier konnten als Abhilfe mehrere kleinere Ontologien generiert werden,
die eine tbersichtlichere Darstellung erzeugten.

Aufgrund der breiten Verwendung der OWL API in allen getesteten Visualisierungen war fiir keine
von diesen eine spezielle Syntax der Ontologie erforderlich. Ebenso hat die Moglichkeit, bestimm-
te OWL-Profile mit der Ontologie zu testen, keine Anwendung finden kénnen, da die Angaben
der OWL-Unterstiitzung nur auf Ebene der Kategorien getroffen wurden. Hier hat sich jedoch die
Auswahlmoglichkeit mehrerer Features einer Kategorie bezahlbar gemacht.

Es fiel unter anderem auf, dass vor allem bei gréf3eren Ontologien eine Checkliste der in der Ontologie
enthaltenen Features hilfreich gewesen wiare, mit welcher man Visualisierungen systematischer
iberpriifen konnte. Dadurch wire es auch unwahrscheinlicher geworden, dass beim Abgleichen
einzelne Features vergessen werden, die zwar in der Ontologie enthalten sind, aber nicht in der
Visualisierung angezeigt werden.

Die generierten Ontologien decken einen breiten Rahmen an Testfallen fiir eine Ontologievisuali-
sierung ab. Dennoch sind zum Verifizieren von méglichen Fehlern gelegentlich speziellere OWL-
Konstrukte erforderlich gewesen. Fiir diesen Fall ist es aber moglich mit Hilfe von einem Ontologie-
Editor wie Protégé Detailanpassungen an einer generierten Ontologie im Nachhinein manuell vorzu-
nehmen.

63

6. Zusammenfassung und Ausblick

6.2. Ausblick

Beim Testen der Visualisierungen haben sich noch weitere Moglichkeiten gezeigt, mit denen die
Anwendung verbessert werden konnte. Diese werden mit weiteren Ideen, mit denen der Ansatz
verbessert werden konnte, im Folgenden beschrieben.

6.2.1. Generierte Features auflisten

Damit die Visualisierung mit einer generierten Ontologie verglichen werden kann, muss momentan
noch auf die Auswahl aus der Feature-Ubersicht zuriickgegriffen werden, um einen Uberblick iiber
den Inhalt der Ontologie zu erhalten. Wenn eine Liste mit den generierten Features zusammen mit
der Ontologie abrufbar wire, konnte diese auch gespeichert werden, um eine Visualisierung zu einem
spateren Zeitpunkt zu testen. Eine weitere Verbesserung wire, wenn diese Liste auch im Nachhinein
durch die URL beziehungsweise anhand der ID abgerufen werden konnte.

6.2.2. OWL-Elemente von Features anzeigen

Beim Abgleich der Visualisierung mit der generierten Ontologie und den zugehérigen Features,
miissen momentan die genauen OWL-Elemente erraten werden. Durch eine Benennung der OWL-
Elemente wird zwar klar, zu welchem Feature sie gehoren; welche Elemente ein Feature umfasst, ist
dabei allerdings unbekannt.

Wiirde ergénzend zum vorigen Verbesserungsvorschlag auch eine Liste der OWL-Elemente eines
Features angezeigt werden, konnte die Visualisierung explizit nach diesen durchsucht werden. Damit
wiirde auffallen, wenn eine Visualisierung ein Feature nicht vollstindig anzeigt.

6.2.3. Features parametrisieren

An einigen Stellen hat sich gegen Ende der Implementierung und auch beim Evaluieren gezeigt,
dass eine Parametrisierung der einzelnen Features eine wichtige Erweiterung darstellt. So konnten
beispielsweise Kardinalititen, Datentypen oder auch die Anzahl an dquivalenten Elementen oder
Individuals parametrisiert werden. Dadurch wiirden separate Features fiir Kardinalitaten der unter-
schiedlichen OWL-Profile wegfallen. Die Parameter werden aber auch fiir flexiblere Annotationen
oder Properties einer Ontologie wie beispielsweise owl:imports benotigt.

Die grofie Herausforderung hierbei stellt vor allem die Validierung der vielen méglichen Parameterty-
pen und der Umgang mit eventuellen Fehlern dar. Ansonsten konnte diese Anpassung ohne grofie
strukturelle Anderungen vorgenommen werden.

64

6.2. Ausblick

6.2.4. Mehr visualisierungsspezifische Testfélle

Bisher stehen neben den Features fiir OWL-Konstrukte auch wenige visualisierungspezifischere
Features zur Auswahl. In einer separaten Arbeit konnten bisherige Visualisierungsansitze fiir Onto-
logien betrachtet werden und aus diesen neue Testfalle im Zusammenhang mit bestimmten OWL-
Konstrukten abgeleitet werden. Eventuell konnten auch Entwickler von Ontologievisualisierungen
befragt werden, ob ihnen bei der Entwicklung mégliche Fallstricke aufgefallen oder begegnet sind.

65

A. Unterstutzte OWL-Elemente

OWL-Konstrukt Verfiigbar OWL-Konstrukt Verfiigbar
Anonymous Individual v owl:minQualifiedCardinality

owl:AllDifferent v owl:NamedIndividual

owl:AllDisjointClasses v owl:NegativePropertyAssertion
owl:AllDisjointProperties v owl:Nothing

owl:allValuesFrom v owl:ObjectProperty

owl:annotatedProperty

owl:annotatedSource

owl:onClass

owl:onDataRange

v

v

v

v

v

v

v
owl:annotatedTarget owl:onDatatype v
owl:Annotation owl:oneOf v
owl:AnnotationProperty v owl:onProperties -
owl:assertionProperty v owl:onProperty v
owl:AsymmetricProperty v owl:Ontology v
owl:Axiom owl:priorVersion -
owl:backwardCompatibleWith owl:propertyChainAxiom v
owl:bottomDataProperty (4 owl:propertyDisjointWith v
owl:bottomObjectProperty v owl:qualifiedCardinality v
owl:cardinality v owl:ReflexiveProperty v
owl:Class v owl:Restriction v
owl:complementOf v owl:sameAs v
owl:dataComplementOf v owl:someValuesFrom v
owl:DatatypeProperty v owl:sourcelndividual v
owl:deprecated v owl:targetIndividual v
owl:differentFrom owl:targetValue v
owl:disjointUnionOf v owl:SymmetricProperty v
owl:disjointWith v owl:Thing v
owl:equivalentClass (4 owl: TransitiveProperty v
owl:equivalentProperty v owl:topDataProperty v
owl:FunctionalProperty v owl:topObjectProperty v
owl:hasKey v owl:unionOf v
owl:hasSelf v owl:versionInfo v
owl:hasValue v owl:versionIRI -
owl:imports owl:withRestrictions v
owl:incompatibleWith rdfs:comment v
owliintersectionOf v rdfs:Datatype v
owl:inverseOf v rdfs:domain v
owl:IrreflexiveProperty v rdfs:isDefinedBy -
owl:InverseFunctionalProperty v rdfs:label v
owl:maxCardinality v rdfs:range v
owl:maxQualifiedCardinality v rdfs:seeAlso -
owl:members v rdfs:subClassOf v
owl:minCardinality v rdfs:subPropertyOf v

67

Literaturverzeichnis

[Ber15]

[BHH04]

[BKMPS12]

[BLHL*01]

[CRO4]

[DCM12]

[GPHO5]

[HB11]

[HKP'12]

[HLNE14a]

D. Berger. Chrome-Browser pausiert Flash-Inhalte. heise online, 1
September 2015. URL http://www.heise.de/newsticker/meldung/
Chrome-Browser-pausiert-Flash-Inhalte-2796860.html. (Zitiert auf Seite 32)

S. Bechhofer, F. van Harmelen, J. H. I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider,
L. A. Stein. OWL Web Ontology Language Reference. W3C Recommendation, 10 Fe-
bruary 2004. URL http://www.w3.0rg/TR/2004/REC-owl-ref-20040210/. (Zitiert
auf Seite 12)

J. Bao, E. F. Kendall, D. L. McGuinness, P. F. Patel-Schneider, Herausgeber.
OWL 2 Web Ontology Language: Quick Reference Guide (Second Edition). W3C
Recommendation, 11 December 2012. URL http://www.w3.0rg/TR/2012/
REC-owl2-quick- reference-20121211/. (Zitiert auf Seite 21)

T. Berners-Lee, J. Hendler, O. Lassila, et al. The semantic web. Scientific american,
284(5):28-37, 2001. (Zitiert auf Seite 11)

J.J. Carroll, J. D. Roo, Herausgeber. OWL 2 Web Ontology Language Conformance (Second
Edition). W3C Recommendation, 10 February 2004. URL http://www.w3.0rg/TR/2004/
REC- owl-test-20040210/. (Zitiert auf Seite 14)

DCMI Usage Board. DCMI Metadata Terms. DCMI Recommendation, 14 June 2012.
URL http://dublincore.org/documents/2012/06/14/dcmi-terms/. (Zitiert auf den
Seiten 12 und 22)

Y. Guo, Z. Pan,]J. Heflin. LUBM: A benchmark for OWL knowledge base systems. 7.
Web Sem., 3(2-3):158-182, 2005. URL http://dx.doi.org/10.1016/j.websem.2005.
06.005. (Zitiert auf Seite 13)

M. Horridge, S. Bechhofer. The OWL API: A Java API for OWL ontologies. Semantic
Web, 2(1):11-21, 2011. URL http://dx.doi.org/10.3233/SW-2011-0025. (Zitiert auf
Seite 37)

P. Hitzler, M. Krotzsch, B. Parsia, P. F. Patel-Schneider, S. Rudolph, Herausgeber. OWL 2
Web Ontology Language: Primer (Second Edition). W3C Recommendation, 11 December
2012. URL http://www.w3.0rg/TR/2012/REC-owl2-primer-20121211/. (Zitiert auf
Seite 12)

F.Haag, S. Lohmann, S. Negru, T. Ertl. OntoViBe 2: Advancing the Ontology Visualization
Benchmark. In P. Lambrix, E. Hyvonen, E. Blomgvist, V. Presutti, G. Qi, U. Sattler, Y. Ding,
C. Ghidini, Herausgeber, Knowledge Engineering and Knowledge Management - EKAW

69

http://www.heise.de/newsticker/meldung/Chrome-Browser-pausiert-Flash-Inhalte-2796860.html
http://www.heise.de/newsticker/meldung/Chrome-Browser-pausiert-Flash-Inhalte-2796860.html
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.w3.org/TR/2012/REC-owl2-quick-reference-20121211/
http://www.w3.org/TR/2012/REC-owl2-quick-reference-20121211/
http://www.w3.org/TR/2004/REC-owl-test-20040210/
http://www.w3.org/TR/2004/REC-owl-test-20040210/
http://dublincore.org/documents/2012/06/14/dcmi-terms/
http://dx.doi.org/10.1016/j.websem.2005.06.005
http://dx.doi.org/10.1016/j.websem.2005.06.005
http://dx.doi.org/10.3233/SW-2011-0025
http://www.w3.org/TR/2012/REC-owl2-primer-20121211/

Literaturverzeichnis

[HLNE14b]

[KHM™05]

[LGB14]

[LLMN14]

[LNHE14]

[MGH™12]

70

2014 Satellite Events, VISUAL, EKM1, and ARCOE-Logic, Linképing, Sweden, November
24-28, 2014. Revised Selected Papers., Band 8982 von Lecture Notes in Computer Science,
S. 83-98. Springer, 2014. URL http://dx.doi.org/10.1007/978-3-319-17966-7_9.
(Zitiert auf den Seiten 12 und 20)

F. Haag, S. Lohmann, S. Negru, T. Ertl. OntoViBe: An Ontology Visualization Benchmark.
In V. Ivanova, T. Kauppinen, S. Lohmann, S. Mazumdar, C. Pesquita, K. Xu, Heraus-
geber, Proceedings of the International Workshop on Visualizations and User Interfaces
for Knowledge Engineering and Linked Data Analytics co-located with 19th International
Conference on Knowledge Engineering and Knowledge Management, VISUAL@EKAW 2014,
Linkoping, Sweden, November 24, 2014., Band 1299 von CEUR Workshop Proceedings, S. 14—
27. CEUR-WS.org, 2014. URL http://ceur-ws.org/Vol-1299/paper2.pdf. (Zitiert
auf Seite 12)

H. Knublauch, M. Horridge, M. A. Musen, A. L. Rector, R. Stevens, N. Drummond,
P. W. Lord, N. F. Noy, J. Seidenberg, H. Wang. The Protege OWL Experience. In
B. C. Grau, I. Horrocks, B. Parsia, P. F. Patel-Schneider, Herausgeber, Proceedings of the
OWLED*05 Workshop on OWL: Experiences and Directions, Galway, Ireland, November
11-12, 2005, Band 188 von CEUR Workshop Proceedings. CEUR-WS.org, 2005. URL http:
//ceur-ws.org/Vol-188/subl4.pdf. (Zitiert auf den Seiten 14 und 57)

R. Liepins, M. Grasmanis, U. Bojars. OWLGrEd Ontology Visualizer. In R. Verborgh,
E. Mannens, Herausgeber, Proceedings of the ISWC Developers Workshop 2014, co-located
with the 13th International Semantic Web Conference (ISWC 2014), Riva del Garda, Italy,
October 19, 2014., Band 1268 von CEUR Workshop Proceedings, S. 37-42. CEUR-WS.org,
2014. URL http://ceur-ws.org/Vol-1268/paper7.pdf. (Zitiert auf Seite 60)

S. Lohmann, V. Link, E. Marbach, S. Negru. WebVOWL: Web-based Visualization of
Ontologies. In P. Lambrix, E. Hyvonen, E. Blomgqvist, V. Presutti, G. Qi, U. Sattler, Y. Ding,
C. Ghidini, Herausgeber, Knowledge Engineering and Knowledge Management - EKAW
2014 Satellite Events, VISUAL, EKM1, and ARCOE-Logic, Linkoping, Sweden, November
24-28, 2014. Revised Selected Papers., Band 8982 von Lecture Notes in Computer Science, S.
154-158. Springer, 2014. URL http://dx.doi.org/10.1007/978-3-319-17966-7_21.
(Zitiert auf den Seiten 37 und 58)

S. Lohmann, S. Negru, F. Haag, T. Ertl. VOWL 2: User-Oriented Visualization of Onto-
logies. In K. Janowicz, S. Schlobach, P. Lambrix, E. Hyvonen, Herausgeber, Knowledge
Engineering and Knowledge Management - 19th International Conference, EKAW 2014,
Linkoping, Sweden, November 24-28, 2014. Proceedings, Band 8876 von Lecture Notes
in Computer Science, S. 266—-281. Springer, 2014. URL http://dx.doi.org/10.1007/
978-3-319-13704-9_21. (Zitiert auf Seite 18)

B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue, C. Lutz, Herausgeber. OWL 2 Web
Ontology Language Profiles (Second Edition). W3C Recommendation, 11 December 2012.
URL http://www.w3.0rg/TR/2012/REC-owl2-profiles-20121211/. (Zitiert auf den
Seiten 56 und 57)

http://dx.doi.org/10.1007/978-3-319-17966-7_9
http://ceur-ws.org/Vol-1299/paper2.pdf
http://ceur-ws.org/Vol-188/sub14.pdf
http://ceur-ws.org/Vol-188/sub14.pdf
http://ceur-ws.org/Vol-1268/paper7.pdf
http://dx.doi.org/10.1007/978-3-319-17966-7_21
http://dx.doi.org/10.1007/978-3-319-13704-9_21
http://dx.doi.org/10.1007/978-3-319-13704-9_21
http://www.w3.org/TR/2012/REC-owl2-profiles-20121211/

Literaturverzeichnis

[MHO04] D. L. McGuinness, F. van Harmelen, Herausgeber. OWL Web Ontology Language Over-
view. W3C Recommendation, 10 February 2004. URL http://www.w3.0rg/TR/2004/
REC-owl- features-20040210/#s2. (Zitiert auf Seite 56)

[MPSP12] B. Motik, P. F. Patel-Schneider, B. Parsia, Herausgeber. OWL 2 Web Ontolo-
gy Language: Structural Specification and Functional-Style Syntax (Second Edition).
W3C Recommendation, 11 December 2012. URL http://www.w3.0rg/TR/2012/
REC-owl2-syntax-20121211/. (Zitiert auf Seite 21)

[MYQ106] L.Ma, Y. Yang, Z. Qiu, G. T. Xie, Y. Pan, S. Liu. Towards a Complete OWL Ontology
Benchmark. In Y. Sure, J. Domingue, Herausgeber, The Semantic Web: Research and
Applications, 3rd European Semantic Web Conference, ESWC 2006, Budva, Montenegro,
June 11-14, 2006, Proceedings, Band 4011 von Lecture Notes in Computer Science, S. 125-139.
Springer, 2006. URL http://dx.doi.org/10.1007/11762256_12. (Zitiert auf Seite 14)

[SHKG12] M. Smith, I. Horrocks, M. Krétzsch, B. Glimm, Herausgeber. OWL 2 Web Ontology
Language Conformance (Second Edition). W3C Recommendation, 11 December 2012.
URL http://www.w3.0rg/TR/2012/REC-0owl2-conformance-20121211/. (Zitiert auf
Seite 14)

[W3C12] W3C OWL Working Group, Herausgeber. OWL 2 Web Ontology Language: Document
Overview (Second Edition). W3C Recommendation, 11 December 2012. URL http:
//www.w3.0rg/TR/2012/REC-owl2-overview-20121211/. (Zitiert auf den Seiten 12
und 23)

[WGQHO05] S. Wang, Y. Guo, A. Qasem,]J. Heflin. Rapid Benchmarking for Semantic Web Knowledge
Base Systems. In Y. Gil, E. Motta, V.R. Benjamins, M. A. Musen, Herausgeber, The Semantic
Web - ISWC 2005, 4th International Semantic Web Conference, ISWC 2005, Galway, Ireland,
November 6-10, 2005, Proceedings, Band 3729 von Lecture Notes in Computer Science, S.
758-772. Springer, 2005. URL http://dx.doi.org/10.1007/11574620_54. (Zitiert auf
Seite 13)

Alle URLs wurden zuletzt am 10. 10. 2015 gepriift.

71

http://www.w3.org/TR/2004/REC-owl-features-20040210/#s2
http://www.w3.org/TR/2004/REC-owl-features-20040210/#s2
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
http://dx.doi.org/10.1007/11762256_12
http://www.w3.org/TR/2012/REC-owl2-conformance-20121211/
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/
http://dx.doi.org/10.1007/11574620_54

Erkliarung

Ich versichere, diese Arbeit selbststiandig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wortlich oder sinngemifd aus anderen Werken tibernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Pritifungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-
se noch vollstindig veroffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einleitung
	2 Grundlagen und verwandte Arbeiten
	2.1 Fachliche Grundlagen
	2.2 OntoViBe
	2.3 Lehigh University Benchmark und Erweiterungen
	2.4 W3C-Testontologien
	2.5 Protégé und andere Ontologie-Editors
	2.6 Überblick und Zusammenfassung

	3 Konzept
	3.1 Überblick
	3.2 Ontologie
	3.3 Architektur
	3.4 Weboberfläche
	3.5 Server

	4 Implementierung
	4.1 Verwendete Technologien
	4.2 Entwurf
	4.3 Webschnittstelle – Spezifikation
	4.4 Weboberfläche
	4.5 Server

	5 Evaluation
	5.1 Funktionalität der Anwendung
	5.2 Testen von Ontologievisualisierungen

	6 Zusammenfassung und Ausblick
	6.1 Fazit
	6.2 Ausblick

	A Unterstützte OWL-Elemente
	Literaturverzeichnis

