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Abstract

Modularization is a central aspect of software quality, a well-structured hierarchy of
classes and packages crucial for maintainability. There is not one perfect package
structure, but several measures exists that suggest how a good modularization could
look like. The key is to compare these suggested hierarchies to the current hierarchy
to improve it.

This thesis presents a visualization for comparing one hierarchy to a set of alternative
hierarchies of the same underlying items. It is based on icicle plots that are drawn as
small multiples. Inner nodes are color coded according to their similarity to nodes of
the other hierarchies. The user can select arbitrary sets of leaf nodes to further inspect
their cumulative similarity to the nodes of all hierarchies. The visualization is put in
context of software modularization by using its terminology and providing features
such as to show the source code. It aims to be easy to use once the idea is explained
and invites the user to explore the data set.

Kurzfassung

Modularisierung ist ein zentraler Aspekt der Softwarequalitiatssicherung. Eine gut
strukturierte Klassen- und Pakethierarchie trégt in besonderem Mal3e zur Wartbarkeit
eines Systems bei. Aus verschiedenen Metriken konnen verschiedene Paketstrukturen
abgeleitet werden und keine davon hat den Anspruch, die einzig korrekte zu sein. Aus
dem Vergleich der generierten Hierarchien mit der existierenden Paketstruktur kénnen
Verbesserungsvorschlidge abgeleitet werden.

In dieser Ausarbeitung wird eine Visualisierung vorgestellt, mit der eine Hierarchie mit
einer Menge anderer Hierarchien derselben Klasse verglichen werden kann. Sie basiert
auf dem Icicle-Plot-Ansatz und zeigt die Baume als Small-Multiples-Visualisierung
nebeneinander an. Innere Knoten sind entsprechend ihrer Ahnlichkeit zu Knoten der
anderen Hierarchien eingefiarbt. Der Benutzer kann beliebige Mengen von Klassen
auswihlen, um deren kumulative Ahnlichkeit zu anderen Knoten genauer zu unter-
suchen. Die Visualisierung ist durch die Terminologie und spezielle Funktionalitit wie
die Quellcodeanzeige in den Kontext der Softwaremodularisierung eingebettet. Sie
soll fiir Benutzer, die mit den Konzepten vertraut sind, einfach zu bedienen sein und
dazu einladen, den Datensatz zu erforschen.
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1 Introduction

Large software systems consist of thousands of modules, each representing a small
piece of the whole application. In modern object-oriented programming languages,
these modules are in turn organized in a hierarchy of packages (or namespaces,
like they are called in other languages). Determining which modules should belong
to which packages is a responsible task because it affects how well the software is
understood and thus has an influence on maintainability.

There are several principles that should be respected when structuring of software
modules, such as high cohesion and low coupling, information hiding, or Conway’s
Law. It is possible to deduce concepts for coupling between modules and thus create
a graph. By applying a clustering algorithm on this graph, a package structure that
complies to one of the concepts can be automatically generated.

However, the different coupling concepts often contradict each other. They reflect
guidelines rather than instructions for creating a good package structure. And, most
importantly, modularizations grow slowly and the developers would be highly confused
if the structure changed overnight. Instead, to improve the package structure of an
existing application, the automatically generated clusterings should be compared to
the existing modularization. A developer then can identify similarities for parts of the
modularization that follow one or more principles or differences where the structure
may be improved.

To support this comparison, a visualization is to be developed. It should be based on
the existing package structure to give the user comfort of the familiar. For each package,
it has to become evident how similar it is to the generated clusterings. Packages with
good matches in the clustering hierarchies should be easily spotted. Ideally, a closer
inspection reveals the reasoning behind packages and thus provide insights that would
not be apparent from just looking at the source code.

The visualization presented in this work assists software developers in several ways.
The first one is refactoring code by restructuring the packages and has already been
touched on. The visualization provides support for packages that are already backed by
a known metric. It also hints at packages with low resemblance to any clusters. When



1 Introduction

those are inspected, the visualization shows whether modifications of the package,
such as through union or division, would improve the similarity to clusterings.

Secondly, the visualization aids a developer who is new to a software project in deciding
where to put a new class. If one is not yet comfortable with the package structure,
it may be hard to find out how exactly each package is defined. The visualization
tool gives hints at which rules have been followed creating certain packages. This
provides more confidence in choosing the right package than just looking at the name
and glancing over the contained classes.

More generally, the visualization assists in understanding source code by pointing
out which classes belong to each other in which sense. The special focus on package
structure supports analysts by providing a known structure as guide in a field of new
information.

1.1 Coupling Concepts

The data used in the visualization is based on six different concepts of code coupling
which will be briefly introduced here. This collection has been adopted from Beck and
Diehl [BD11].

1.1.1 Structural Dependencies

Stevens et al. [SMC74] have introduced the concept of code coupling, the degree to
which modules depend on each other, and cohesion, indicating how much the parts
of are related. Low coupling is a sign of solid modules which can mostly work on
their own and thus can be reused and changed independently. A system of highly
coupled modules, on the other hand, is hard to maintain because altering one module
likely requires adjusting other modules, too. The cohesion metric indicates whether
a module could be split up while still preserving low coupling. If there are multiple
independent clusters in one module, i.e., the cohesion is low, the module likely serves
two purposes and should be divided.

Structural dependencies are a metric for measuring coupling and cohesion. The
dependencies between classes in the same module should be high whereas those
between classes of different modules should be low.

10



1.1 Coupling Concepts

We will use three definitions of dependency [BD11]:

» Usage: A class depends on another one if it refers to it or one of its methods in a
method body.

* Aggregation: A class depends on another one if it has a field of its type.

* Inheritance: A class depends on another one if it extends it.

1.1.2 Fan-Out Similarity

A second principle for good software modularization is Information Hiding, introduced
by Parnas [Par71]. He claims that a good programmer uses all information available
about the system and dependencies to write efficient programs. However, this informa-
tion is based on design decisions that may change over time. Therefore, he advocates
hiding this information from the user, so that the dependent modules still work when
design decisions of dependencies change. Parnas also suggests to use this principle as
criterion for software modularization [Par72].

Schwanke [Sch91] extends this idea and provides an “information sharing heuristic”:
Classes that use the same modules are likely to share design decisions. Beck and Diehl
[BD11] apply this heuristic to the three definitions of module dependency as given
above. A feature vector that represents the dependency of one class to each other class
is created. These feature vectors are compared using the cosine similarity measure so
that the vector lengths, i.e., the absolute numbers of dependencies of a class, are not
taken into account. Classes with similar feature vectors are assumed to share common
information and thus are coupled.

For each of the three dependency definitions, two fan-out coupling measures are
generated: one using dependencies to internal classes, the other one taking only
external libraries into account.

1.1.3 Evolutionary Coding

Information hiding allows local changes of modules without having to alter classes
of other modules. This implication can also be reversed: Classes that often have
to be touched at the same time should be grouped in a module. The concept of
evolutionary coding uses the history of source code changes to identify classes that are
often changed together. We use two variants: The support value which represents the
absolute number of common changes and the confidence value which is normalized to

11
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the total number of changes of the first class. These information are taken from the
project’s version control repository. Details are described by Beck and Diehl [BD11].

1.1.4 Code Ownership

Conway’s Law [Con68] states that the organization structure is at some point reflected
by the structure of a software system. This means that classes that are maintained
by the same group of developers tend to be grouped in the same modules. Following
this train of thought, designing a package structure that does not respect this principle
would be pointless because future, natural, changes to the modularizations would
introduce it again. Additionally, it allows developers to familiarize themselves with
modules they have to work with and hides parts of the system they do not need to
interact with.

Like evolutionary coding, the code ownership coupling can be derived from source
control. Once again, feature vectors and the cosine similarity are used. We use two
variants, one where the number of changes to a class is taken into account, and one
where just the fact that a person changed a class matters.

1.1.5 Code Clones

While code clones should generally be avoided, sometimes they serve a valid purpose
such as performance improvement or dependency reduction. In either case, if the code
clone had been avoided, there would be a different kind of coupling. For example, if a
method call is inlined into two classes, the two method calls are removed and thus the
fan-out similarity is avoided [BD11]. For this reason, code clones are used as coupling
concept. Code Clones are are classified in four types [RC07], of which the first two
have been chosen. Type I clones are identical pieces of code, ignoring indentation and
code layout. Type II allows renaming of identifiers.

1.1.6 Semantic Similarities

This coupling disregards the special syntax of source code and instead only takes the
actual English words into account. Standard text similarity measurements such as tf-idf
(term frequency, inverse document frequency [Cho10]) can be used to measure the
similarity of two classes. Preprocessing includes removing license texts and splitting
camel case identifiers into their parts.

12



1.2 Clustering

1.2 Clustering

All these coupling concepts can be formalized into functions that take two classes as
arguments and map them to a coupling value. This value is normalized to the range
from O to 1.

As both arguments are discrete and finite, a similarity function can also be represented
by a graph. The graph contains one node for each class. Every pair of classes that,
when being applied to the coupling function, results in a non-zero coupling value is
connected by an edge; the coupling value being the edge weight.

By analyzing these graphs, clusters of highly-connected nodes can be found. A cluster-
ing algorithm finds recursive clusters of nodes and thus generates a hierarchy from the
coupling values. Now, the underlying graph structure can be discarded for the most
part. The hierarchies contain the useful information of class clusters in condensed form.
Only for detailed inspection, the original graphs or coupling values might become
useful again.

1.3 Asymmetric Comparison

After the clustering process, there are several hierarchies — one for the original package
structure, and one for each clustering. They all have the same set of nodes, i.e., the
classes, but the edge set is different. The purpose of the visualization is to show the
differences between the edge sets of the visualizations.

There are two kinds of comparisons: symmetric and asymmetric. In a symmetric
comparison, all objects to be compared are considered equal, they are all compared to
each other. This is the most general approach and would show the most information.
However, in our case, the hierarchies are not equal: The original structure takes a
special place as the reference hierarchy. Therefore, an asymmetric comparison is
used. The reference hierarchy, also called primary hierarchy, is compared to all the
hierarchies derived from the clustering algorithms, called secondary hierarchies.

13



1 Introduction

Outline

The rest of this thesis will be structured as follows:

Chapter 2 — Related Work presents existing approaches to visually comparing hierar-
chies.

Chapter 3 - Visualization introduces the visualization, explains its details and justi-
fies design decisions.

Chapter 4 - Implementation gives an overview over the architecture of the visual-
ization tool, technologies and technical design decisions.

Chapter 5 - Evaluation features a small case study that uses the visualization to
explore the package structure of two open source software projects.

Chapter 6 — Conclusion summarizes the work of this thesis, compares the evaluation
results to the goals introduced in the introduction and proposes future work.

14



2 Related Work

Tree visualization is a common task across a wide range of domains due to the abstract
and reusable concept of trees. Tree comparisons, on the other hand, are much less
researched. Comparisons of multiple trees are especially rare to find.

There is however one science field with a task very similar to ours. Systematic biology
tries to find the correct evolutionary trees of all the species. Observed information,
e.g., DNA sequence data, are used as input for algorithmns that try to find evolutionary
trees that explain these observations. However, there is not one such resulting tree but
many, and they must be considered in total to derive substantial theories about the
evolution [AKO02].

While this description is surely oversimplified, it shows how closely related systematics
in biology is to software modularizations. Species are the equivalent to classes.
Observations about creatures and how they can be found in multiple species correspond
to the coupling concepts we have defined for related classes. Species that share a lot of
DNA sequences are considered close to each other the same way as classes are related
when they, e.g., share code clones. The algorithms trying to explain observations about
species in terms of evolution are, in their kind, similar to the clustering algorithm that
turns the coupling matrices of classes into hierarchies. Thus, many tree comparison
visualizations are created for application in biology.

Graham and Kennedy [GK10] have surveyed and classified existing visualizations for
trees as well as comparisons between two and more trees. This chapter will describe
those that most closely fit into our task.

2.1 TreeJuxtaposer

TreeJuxtaposer [MGT 03] is a tool from the context of systematic biology. It can be
used to compare multiple trees, but only two at a time. The two trees are displayed
side-by-side as node-link diagrams with rectangular layout. To support the user in
the comparison process, node links can be colored in different ways, most of them

15
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depending on a node similarity value. This value is defined by the number of leaf
nodes shared between two inner nodes: Nodes with roughly the same set of leaf nodes
are considered similar. Next, the best corresponding node of a node A is defined as the
node of the other hierarchy with the highest similarity to node A.

There are four modes that determine how nodes are colored. In the first color mode,
when the user select a node in one hierarchy, the best corresponding of the other three
is highlighted. Also, the leaves of the selected node are enclosed in a rectangle to
highlight the extend of the selected node. The second mode is a simple search for a
node by known by name. The third color mode allows to find structural differences by
coloring all nodes that do not have an exact corresponding node in the other hierarchy
red. In the fourth mode, the user can select a subtree, and all nodes in this subtree
as well as the best corresponding nodes of the selected nodes are highlighted in a
user-specified color.

These features allow an efficient comparison of two trees. Automatic detection of best
corresponding nodes provides great support and leads the user to points of interest.
The interaction features can be used to inspect individual subtrees and thereby support
or refute theories about structural differences.

2.2 DoubleTree

DoubleTree [PLCB04] also has been created for biologists. The application divides its
main window vertically into two areas that each display one of the hierarchies. For
tree visualization, they use a node-link diagram.

Comparison is a very interactive process in this tool. By default, both trees are collapsed.
Nodes can be expanded by clicking on them. This also highlights the corresponding
node in the second hierarchy. If the selected node maps to several nodes, they are all
highlighted.

The visualization is suitable for exploring deep hierarchies. By looking at and following
highlighted nodes in the second hierarchy, it becomes clear which nodes have very
similar matches in the second tree, and which are mapped to multiple nodes or to
none. The user can search for nodes by name, which then are expanded in the first
hierarchy. That way, the path to said node and the path to the corresponding nodes
can be compared.

The authors decided against using lines to link corresponding nodes of both hierarchies
because it would generate too much clutter. These lines could be confused with those

16



2.3 Linked Icicle Plots

representing parent-child relations as part of the node-link diagram. Instead, only a
generic background color for matched nodes is used.

The visualization could theoretically be scaled up to multiple trees, by dividing the
window into multiple areas each containing one tree. The interaction could be mapped
directly — selecting a node in the first hierarchy could focus corresponding nodes in all
the other hierarchies.

However, it only compares nodes on a local basis. The tool never considers whole
trees. In fact, when the user switches to a node on a different branch, the other branch
is closed — only nodes in one straight path from the root to an inner or leaf node, and
their direct children, can be viewed at once. This seriously limits its use at comparing
moderately sized trees with no specific goal in mind.

2.3 Linked Icicle Plots

Holten and Van Wijk [HVWO0S8] present a visualization for two trees. They are displayed
as icicle plots that grow from the top down and from the bottom up, respectively. At
places where the depth is smaller, nodes are stretched vertically. This evens out the
inner surface and a rectangular space is left in between the two trees.

In this space, links between leaf nodes are drawn. In the most basic mode, the links
go in a straight line between corresponding nodes. This only shows which leaf nodes
have moved; structural change is hard to identify. The power lies in edge bundling,
which can be toggled for individual layers of both hierarchies. The stronger edges are
bundled, the better structural changes are depicted. Following the flow of an edge
bundle, one can easily see if it splits in multiple nodes at the other hierarchy or if
multiple nodes are merged.

The user can interact with the visualization by drawing a line through the bundled
links. This selects all edges crossing the line. Nodes completely covered by the
selection are highlighted in green; those partially selected in blue. The visualization
then automatically zooms into the selection.

This approach would fit very well to a comparison of two class hierarchies. In contrast
to TreeJuxtaposer and DoubleTree, this visualization always displays all nodes in a
compact manner. Finding corresponding leaf nodes and inner nodes would also be
possible using the different edge bundling levels.

Nonetheless, it is not suitable for a comparison of multiple trees. In principle, one
could add icicle plots at the left and right border, or even arrange more icicle plots

17
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in a polygon shape. But there would still only be one central area for the inter-tree
edges. Even if, as in an asymmetric comparison, each tree would only need links to
one primary hierarchy, there would still most certainly be too many edges to display.

2.4 Multiple Trees

There are several visualizations showing trees as small multiples. Telea’s and Auber’s
Code Flow [TA08], for example, visualizes source code changes with a set of horizontally
distributed tree visualizations. Between each two adjacent trees, edges connect
correlating nodes, forming a parallel coordinates diagram. Via coloring, changes can
be traced across the whole set of trees.

This approach however is only useful if there is some kind of ordering between the
trees. In the previous example, as in many others, this ordering is time. In our case,
there is no ordering, so drawing edges between adjacent trees would be arbitrary and
it would not be possible to compare one tree to all others.

Graham and Kennedy [GKO5] use multiple icicle plots stacked vertically. To detect
structural change, they look for nodes with changed parent nodes. Interaction allows
to focus on subtrees. This visualization is a good fit to compare very similar hierarchies,
as it focuses on individual movements. In our case, however, there are often very large
structural differences.

2.5 Summary

While there are existing visualizations for comparison of multiple trees, they do not
fit well for the given task of comparing package structure to clusterings. Holten’s
linked icicle plots would be great for a comparison of two package structures because
it highlights structural changes on a large scale well, but it does not scale to multiple
trees. TreeJuxtaposer could be applied to multiple trees but does not offer interaction
to support the user in aggregating information from all trees at the same time. Parallel
coordinate visualizations only work well for ordered sets of trees.

However, several lessons have been learned. Edge drawing between multiple trees
generates too much clutter; color mapping is a better fit. Small multiple diagrams of a
condensed tree visualization like icicle plots allow to display trees of a few hundred
nodes at once and thus can give a good overview. And it is important that the tool

18



2.5 Summary

calculates a similarity metric so that it can actively aid the user to structural changes
and interesting parts.

19






3 Visualization

In this chapter, the visualization will be presented. After introducing the approach and
describing the essential parts of the visualization, design decisions will be discussed in
detail and possible alternatives presented.

The application consists of three layout sections (see Figure 3.1): a header that allows
to choose a software project, the content pane containing the icicle plots, and a sidebar
for further information.

The whole application is depicted in Figure 3.2. In the content pane, all selected
hierarchies are displayed side-by-side as icicle plots, forming a small-multiples visu-
alization. The primary hierarchy, called packages because it resembles the original
package structure, is always at the very left. This emphasizes its special role in the
comparison. The other icicle plots visualize one clustering hierarchy each. The user can
choose which clusterings are shown and rearrange the chosen ones by drag and drop
(see Section 3.8 for details). Each icicle plot has a heading labeling it with the cluster
identifier (or packages for the primary hierarchy). The background color of the heading
as well as the icicle’s border color are generated rom the cluster identifier and provide
a subtle visual grouping of clusterings of the same category (see Section 3.10).

Project Selection Clustering Selection

Content Pane (Icicle Plots) Sidebar

Figure 3.1: Application Layout
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Figure 3.2: Overview of the Application

In the icicle plots, there are three different kinds of nodes: the root node, painted
blue; inner nodes, colored according to similarity values (see Section 3.3); and the
leaf nodes representing classes, whose color depends on the selection status (see
Section 3.6). The ordering of the primary hierarchy is alphabetical; the nodes in the
secondary hierarchies are rearranged to reflect the ordering of the primary hierarchy
as close as possible (see Section 3.7)

The sidebar initially explains the functionality of the application in a few words. As
soon as a selection has been made, it lists the selected class names and provides access
to the source code (see Section 3.11). Below, a table lists the clusters that most closely
resemble the selection. The table will be explained in Section 3.9.

3.1 Single Tree Visualization

Before thinking about comparison, the representation of single trees has to be chosen.
Graham and Kennedy describe four basic principles of how trees can be presented:
linking, indentation, stacking and nesting [GK10]. All of them are well-studied and
therefore only briefly introduced here. In the following, it is outlined how well they fit
the given task.
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3.1 Single Tree Visualization

3.1.1 Node-Link Diagrams

In node-link diagrams, the root node, all inner nodes, and the leaves are represented
by shapes that are connected by lines. They are intuitively understood - in this context,
classes would be attached to their packages, and those to the enclosing packages. Also,
it is easy to find out which nodes are connected, i.e., which classes belong to which
package, just by following the links.

There are several ways to lay out a node-link diagram. Comparisons of long and wide
hierarchies benefit from a predictable and structured layout. Rectangular or slanted
layouts fulfill this property by ordering the nodes hierarchically in one direction. On
the one hand, leaf labels can be aligned at the far end of the visualization, so their
labels can be scanned easily. This would be a real advantage for the given task. Inner
node labels, on the other hand, are hard to place without causing occlusion with the
links — and after all, the inner node labels in our visualizations are the package names,
one of the most important texts because the user is familiar with them. Additionally;,
the diagram would take at least as much height as the number of classes multiplied
with font size. Class names could be omitted, but then the diagram would be simple a
grid of connected lines and hard to perceive.

There are also circular layouts which, depending on the depth of the hierarchy, may
scale better because labels are arranged on two axes. This is equally a disadvantage in
the context of comparing nodes in a small-multiples visualization because both axes
are used up for the one visualization and there is no natural axis on which multiple
instances could be aligned and still be easily compared.

3.1.2 Indentation

Links between the nodes generate a lot of visual clutter and take away space that could
be used for the nodes themselves. Indentation-based tree visualizations encode all
information about the hierarchy in the node placement instead. They are known to
computer users because file browsers usually display directory structures as indented
tree views. IDEs also use them to visualize package structures, which makes them a
good candidate for this visualization.

They are very clean: there is no clutter and no redundancy. Indentation trees also scale
well: if the space suffices to display all the nodes’ names, the nodes can be condensed
to small rectangles, even to the size of one pixel, as Burch et al demonstrate [BRW10].
The colors of these rectangles or pixels can still be used to encode information on a
per-node basis.
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3 Visualization

Finally, the layout algorithms are really simple and fast, a whole tree can be rendered
in linear time.

3.1.3 Stacking

Stacking tree visualizations are very similar to indentation-based graphs in that they
do not have connecting lines and also indent nodes depending on their depth. The
difference lies in the rendering of inner nodes: they do not have a place on the
axis among the leaves but instead take up the space that has been created for the
indentation. The advantage is that less space is wasted and inner nodes get more space.
While leaf nodes can be scaled down to few pixels, inner nodes are large enough to
display their labels, i.e. the package names.

This visualization is not as intuitive as the node-link diagram, and is not as commonly
in use as the indentation-based visualization. This means that users have to take a few
moments to familiarize themselves with it. However, due to its simplicity, it can be
learned fast and interpreted efficiently afterwards.

Rectangular stacking plots are called icicle plots [KL83]. There are also radial ones
(called sunburst), but they have the same problem as radial node-link diagrams
concerning small-multiple visualizations.

For this thesis, icicle plots have been selected because they scale best and offer a
unique shape for each tree that can be recognized and compared.

3.1.4 Nesting

Taking the space compression one level further, nodes can also be drawn inside their
parents. Treemaps [JS91] are an example of this approach. The tree can be fitted
into any rectangular shape perfectly with no extra space. However, it is not trivial
to arrange the nodes in a way that the rectangles stay mostly square. It is possible,
but the arrangement now depends on the aspect ratio of the available space and thus
the appearance changes drastically even when the data does not. This is not ideal for
comparisons.
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3.2 Comparing Hierarchies

3.2 Comparing Hierarchies

After having chosen how to present a single hierarchy, a concept for comparing multiple
hierarchies is needed. This section will summarize the tree comparison approaches as
classified by Graham and Kennedy [GK10].

3.2.1 Animation

Given the abilities of multimedia, using time as dimension for displaying change seems
reasonable. Indeed, the change between two hierarchies could be made clear by
visually moving nodes within the tree structure. In our case, no nodes are added or
removed, so there would be no appearing or disappearing nodes, and watching the
movement of objects would be intuitive.

However, to fully understand the change, the animation would have to be repeated
over and over. It is easy to lose track of hundreds of moving objects. Nodes would
occlude each other. While it might still technically work for comparing two hierarchies,
this approach completely falls short for a comparison with multiple hierarchies. There
is no natural ordering of the modularizations, so animating from one visualization to
the next would not make sense.

As we have chosen a very compact tree visualization before, there is room to dis-
play multiple trees at the same time, so there is no need to use the time as further
dimension.

3.2.2 Agglomeration

Agglomerating trees results in a graph that contains the nodes and edges of all the
trees, the edges being colored according to the tree they come from. This minimizes
the redundancy as the nodes that occur in multiple trees only exist once in the
agglomeration graph. However, the result is a graph and not a tree, so the only
applicable one of the presented tree visualization methods is a node-link diagram,
which has been ruled out for not being scalable and wasting too much space. An
agglomeration of several trees with a few hundreds of classes each would generate
a huge graph with little structure. However, there would be one advantage: When a
cluster is exactly the same as a different cluster or a package, it is drawn as one single
node with edges in multiple colors. Clusters that are very similar but not exactly the
same would still be rendered as two nodes with no special connection.
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3.2.3 Small Multiples

This approach has been invented by Tufte [Tuf83]. The trees are simply put side by
side and presented as if they were separate trees. They can be inspected independently
and compared to each other. Here it is crucial that the shapes of the individual
visualizations are easily perceived. Moreover, their structure should ideally be aligned
to the horizontal and/or vertical axis. To provide two counterexamples, force-directed
node-link diagrams and radial stacked charts are not aligned. Tracking features
between multiple instances of these charts is hard because there are no visual guidelines
to follow. Rectangular stacked charts, on the other hand, are perfectly aligned with
both axes. Jumping between several of them is easier because the horizontal lines
provide a guide whereas the vertical lines cleanly separate the visualizations.

There are ways to support the user comparing the trees. One would be to draw
links between identical nodes in the different trees, similar to parallel coordinates
[ID90]. Again, as for node-link diagrams, the intuition would be met, the idea of equal
things being connected is easily understood. However, like for parallel coordinates,
there would be visual clutter and occlusion. Edge bundling algorithms can be used to
compensate this flaw but the exact linking information would be lost. The inherent
problem with this approach is that it does not work well for more than two trees
because there is no sensible way of drawing the edges between two non-adjacent
trees.

As a general solution, and without adding anything that would introduce clutter,
we can use color to assist the comparison. Nodes can be colored depending on the
similarity to other nodes. The specific color function chosen for our visualization will
be discussed in the next section.

However, while a static color for each node eases the process of finding nodes that
are similar to other nodes, it does not enable the user to identify those other similar
nodes. More specifically, it is hard to even find one node of one tree in a different tree.
To compensate for this, a brushing-and-linking technique can be used. When one or
multiple nodes of one tree are selected, these nodes are highlighted in the other trees.
This obviously solves the problem of finding a single node in the other trees, and it
provides a foundation for finding similar inner nodes because it shows where there are
clusters of highlighted leaf nodes in other trees.

As the animation, agglomeration, and edge-drawing approaches have been ruled out,
the small multiple visualization with colored nodes is chosen for comparison.
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3.3 Node Similarity

3.3 Node Similarity

To be able to color-code nodes according to their similarity, a color mapping needs
to be specified. For an asymmetric comparison like this one, the formula depends on
whether the node is in the primary or in a secondary hierarchy. The primary hierarchy
in this case is the existing package structure and the secondary hierarchies are the
clustering results.

Two clusters are considered similar if they contain mostly the same classes. We
could take subclusters into account, so that two clusters would only be similar if they
contained the same classes and were structured similarly. To evaluate the effective
difference between these two definitions, we have to consider four cases:

* Comparing an innermost package to an innermost cluster. Both definitions lead
to the same result as there are no nested clusters to consider.

* Comparing an innermost package to a cluster containing clusters. The structural
difference between the nodes would decrease their similarity even if both of them
contained exactly the same classes. Thus, even if a cluster is found that exactly
matches one of the packages, but further splits it up into several subclusters,
that cluster would be harder to find because of the decreased similarity value.
However, the cluster would provide substantial information because it does not
only confirm that said package is good, but further provides a suggestion to split
it up. This information should be as visible as possible.

* Comparing an innermost cluster to a package containing subpackages. This case
is similar to the last one. If a cluster has been found that contains exactly the
same classes like a package, but that package is in turn split up into several
subpackages, this should not decrease the similarity value. The cluster still
encourages keeping the package, although it cannot confirm that the subpackages
are useful. The subpackage split might be motivated by a different coupling
concept.

* Comparing a package with subpackages to a cluster with subpackages. If both of
them are structured the same way, their similarity is rightfully high. This would
be an especially good find. It would be appropiate to assign a higher similarity
value to clusters with the exact same subcluster structure than to those which
just share the same classes.

Only in the last case, including structure in the similarity definition would be useful.
Looking at the data, clusters matching single packages is already relatively rare; one
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that matches it in structure is extremely uncommon if it exists at all. For this reason,
only the leaf nodes should affect node similarity.

We use the approach suggested by Beck and Diehl [BWB*14]. The similarity between
two nodes is the overlap of their leaf nodes, as defined by the Jaccard coefficient in
Equation 3.1.

) ANB
(3.1) sim(A,B) = }AUB;

For clusters of the secondary hierarchies, the most similar package is determined; the
cluster’s node value is then the similarity to that package [BWB*14]. For the primary
hierarchy, there is a special case because it has to be compared to multiple hierarchies.
Instead of choosing the most similar node form one hierarchy, the most similar cluster
of all secondary hierarchies is used as reference, and the node value is again the
similarity to that cluster. This allows to spot packages that have a corresponding cluster
(as well as packages without one). However, it provides no direct indication which
cluster is the similar one. To compensate this, brushing and linking (Section 3.6) can
be used, and clicking on a node reveals similar clusters in the sidebar (Section 3.9).

3.4 Node Coloring

The similarity value is mapped to a grayscale from light gray (no similarity) to black
(complete overlap). White is used as background color and thus the nodes should
not be completely white. A scale is not required because the visualization is only
intended to give an intuitive impression. Color is not ideal to communicate exact
values [Mac86]. These will be presented differently, as shown in Section 3.9. Figure 3.3
shows a close-up of nodes with different colors.

This color scale only applies to inner nodes. Root nodes always have the similarity
value 1 to other root nodes because all hierarchies consist of the same classes; the
same applies to leaf nodes for the same reason. It would not provide any information
to paint them black, and furthermore, that would distract from black inner nodes
which are of interest.

The root nodes do not convey any information whatsoever, but if they were left out, an
integral part of the tree would be missing and thus the icicle plots harder to recognize.
Therefore, root nodes are still drawn but only as blue thick lines.
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3.5 Visualizing Borders

Figure 3.3: Node Coloring: The nodes F and J as well as the two black nodes above
have high similarity to package nodes in the primary hierarchy. Nodes in
beige are class nodes.

Leaf nodes convey important information because after all, they represent the classes
that are to be structured. They do not have a similarity value, so their color can be
used for further information. Section 3.6 will describe how selection information is
mapped to their colors.

It would be useful to show this information at inner node level, too, e.g. highlighting
packages that have all classes selected. But considering the fact that nodes can get
small (sometimes even inner nodes are just one pixel high), adding an additional,
separately colored region would introduce too much information and disturb the clean
presentation of icicle plots. As only brightness is used to encode node similarity values,
hue or saturation could theoretically encode this information. But while hue and
brightness can independently be processed preattentively, they still interfere each other
[Cal84].

3.5 Visualizing Borders

As the whole plot consists mostly of rectangles drawn next to each other, it is especially
important to indicate where one rectangle ends and the next one starts. Otherwise, it
would not be possible to distinguish nodes from each other. The easiest and most visible
way of highlighting borders is by leaving space between the rectangles. This approach
is used for vertical borders. All nodes have the same width (with the exception of
leaf nodes, but this does not change the layout), so the horizontal gaps between the
columns are nicely recognizable as white lines.

29



3 Visualization

However, this method cannot be applied to vertical spacing. There are several hundreds
of classes in most projects, so each leaf node is only about one pixel in height. There is
no space for a one pixel gap between each leaf, and even if there would be two pixels
in height available for each leaf node, every other pixel being white would result in a
sparsely filled tree, so that the impression of alternating depth could arise. Even the
inner nodes can be very thin, some only containing one leaf node.

Depending on the rendering technique, using vertical gaps anyway could have different
results. If coordinates of rectangles are rounded before painting, some gaps and some
nodes would be missing, as either the rectangle would round to a height of zero, or
the next rectangle would be rendered directly after the previous because of rounding
errors. So, some nodes are visible and others are invisible, where the exact pattern has
no significance in relation to the actual data. This problem is called alias effect.

The alternative is to use opacity for sub-pixel rendering: If an element is to be painted
in half of one pixel, the color of the element is only applied with opacity of 50% to
that pixel. This is similar to how an image would be scaled down with interpolation.
This solves the alias effect problem, but introduces a new one: nodes appear blurry
and borders are undefined. This is not acceptable, either.

Therefore, spacing or borders cannot be used to separate rectangles vertically, at least
not universally. In general, the background color could be alternated between adjacent
nodes to clearly distinguish them. In our visualization, the background color is already
mapped to node similarity and selection as described in the previous section. However,
this color mapping already serves the purpose of node separation well in most cases:
Unless two adjacent nodes have exactly the same similarity value, they are colored
differently and thus can be distinguished.

Another option is to use an inset shadow in the rectangles in the bottom, by drawing a
small and subtle gradient from the normal background color to a slightly darker color.
This does not introduce the problems of a strictly one pixel high spacing between
rectangles because it never exceeds the height of a node. There is also no alias effect
because the shadow only slightly differs from the main background color — for one or
two pixel high rectangles, it is hardly noticeable. In rectangles with more than a few
pixels in height, however, the inset shadow clearly sets the nodes apart. This method
has been chosen for inner nodes because it can be applied consistently to rectangles of
any height.

Leaf nodes are mostly about one pixel in height, so using the inset shadow would be of
little use. However, differentiating between leaves is not necessary: All the leaf nodes
have the same height, are unlabeled and if not selected do not have any directly visible
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information attached to them. To reduce the clutter, leaf nodes are thus uniformly
filled with a solid color.

3.6 Brushing and Linking

As we have seen, coloring gives a good overview but does not provide all required
details. The most important question that cannot be answered just by looking at a set
of colored icicle plots is which two nodes are actually similar to each other. Always
showing this information for all nodes would result in a lot of visual clutter. Therefore,
user interaction is required.

The general idea behind brushing and linking is that the user can select items they are
interested in, and the visualization highlights other occurrences of these selected items
[BC87]. In our case, items of interest are classes, packages, clusters as well as the
whole package tree and clustering trees. To cope with these different kinds of objects,
a selection strategy has to be developed.

The first idea was to expose exactly these object types to the user. They could click
on a package to select the package object, or brush over some classes to select them.
The tool then could show information about the selected objects, their contents (if
applicable) and their relation to other objects, for example, similar clusters.

Selecting a package would be similar to selecting all the classes it contains, and if these
actions would produce a different output, that might be difficult to explain. There
would also be an even more complicated case: should it be possible to select objects of
different types at once? Disallowing this would be inconsistent, as multiple objects
of the same type could be selected (at least for classes, this is crucial, e.g., to select
part of a package). But if it was allowed, what kind of detailed information should be
presented?

The most tricky part about this approach, however, would be to actually work with the
selection. An example workflow can demonstrate this: The user selects an interesting
cluster as starting point. It looks good, however, there are some classes that do not fit
in there, and therefore, the similarity results are not as accurate as they could be. The
user now wants to manually remove these classes to see how the similarity information
changes. The selection is now "Cluster A without classes 1, 2, and 3". Now, the user
spots a different cluster that contains some additional classes that would fit well to the
cluster. The further the user goes into building a good package, the more complex the
selection description gets. At some point, keeping track of all the additions, deletions
and unions is probably of small use.
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Instead of tackling all these issues, the most simple solution has been chosen: Only
classes can be selected, independent of the tree, package or cluster they appear in.
Clicking on a package or cluster selects all its leaves.

To keep the expressive power of the selections, the user must be able to add arbitrary
classes to the selection as well as remove classes from the selection. In addition, there
should be some way of exclusively selecting a particular node, clearing the current
selection and only selecting a chosen node. This mode would be used to navigate
around quickly in the trees and collect information, in a similar way as a user may
click through the files in a file browser to view their details.

So in addition to clicking on nodes, the user must also somehow specify what to do
with the selected node — add, remove, or exclusively select. This could be implemented
by providing three modes that can be toggled by keystrokes or buttons in a toolbar.
This is already known from other applications and can be learned easily. However,
the user needs to remember which mode they are in, and switching the modes is
cumbersome if it needs to be done repeatedly.

Another option are modifier keys that have to be pressed to alter the behavior of a
click. Popular desktop applications, including file browsers and vector graphic editors,
use the control key to add items to the selection or remove them, if they are already
selected. While this solution is not self-explaining (the user needs to be aware of the
fact that pressing the control key changes behavior), it allows to work efficiently with
the selection. No modes have to be remembered, no toolbar buttons pressed.

The control-key solution has been selected for this visualization. There is one special
case: control-clicking on inner nodes that are partially selected, i.e. some of its leaves
are selected and some are not. One valid behavior would be to invert the selection
on a control-click. However, then there would be no way of selecting or deselecting
partially selected nodes completely. Therefore, control-clicking a partially selected
node first selects all the classes therein, making it a fully selected node which, on the
second control-click, would be deselected completely.

In addition to the normal selection by clicking, nodes can be hovered with the mouse.
This is a secondary selection that co-exists with normal selections. Its main purpose is
assisting the selection process by allowing a quick brushing-and-linking functionality
while preserving the main selection.

To represent these selection modes, four colors have to be chosen: unselected, selected,
hovered but unselected as well as hovered and selected. In unselected state, classes
are beige — a light color without qualitative associations that can still be distinguished
from the grayscale of inner nodes. For the main selection, a blue color is used to
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Figure 3.4: Bfushing and Linkihg: The rules péékage has been selected by clicking,
thus all classes of that package are highlighted in light or dark blue. Cluster
A.B is hovered, so classes in this cluster are colored darker.

comply with most existing applications. The hover selection just darkens the node - if
it is selected, the color is dark blue, if not, a darkened beige (see Figure 3.4).

The selection process can take a while. Clicking through the clusters and looking
for classes that would fit in a concept involves several set operations. Options have
to be considered, evaluated and then accepted or dismissed. To quickly get back
to an earlier selection, a selection history has been implemented. Each operation —
exclusive selection, addition or removal — pushes the selection to a stack; undo and
redo functionality is provided to navigate through this stack. This feature is known
and expected from most advanced applications.

In addition to the short-time undo history, it may also be desired to save selections
for future reference or to share them with co-workers. This would be possible by
capturing screenshots without a special functionality of the application. Then, however,
the selection could not be changed afterwards and all interaction functionality like
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brushing and linking through hover or opening source code would no longer be
possible. Therefore, a sharing and bookmarking feature is included in the application.
As the reference implementation is a web application, this is implemented with URLs,
see Section 4.3.1.

3.7 Node Ordering

The nodes of the package tree are ordered alphabetically to conform with the package
views of IDEs. If a class name is known, it can be quickly found by scanning through
the nodes (when the class names are not shown in the diagram itself due to lack of
space, they are displayed as tooltip).

The clustering trees, however, have no inherent order. The classes in a cluster could
be sorted alphabetically, but since the user does not even know in which cluster a
class is, this is not really helpful. To find a class in a clustering tree, it should be
looked up in the packages tree; then the location in other trees can be found using the
brushing-and-linking technique described in Section 3.6.

Therefore, the ordering of the secondary hierarchies can be adjusted to improve the
overall visualization by minimizing the distances between equivalent nodes. In this
context, this means that each class should ideally be at the same vertical position
across all trees. Of course, this can only be approximated.

The hierarchy should stay the same; the order of children of each leaf can be changed.
In the end, each leaf node should be as close as possible to the corresponding leaf in
the primary hierarchy (which is fixed). Ordering of leaf nodes is thus straightforward:
they should occur in the same order as the ones in the primary hierarchy. For inner
nodes, an algorithm has to determine the optimal ordering so that most leaf nodes can
be positioned as well as possible.

The algorithm is based on the work by Sugiyama et al. for reducing edge crossing
in graphs [STT81]. Holten et al. [HVWO08] have applied the concepts to a hierarchy
ordering. We use a similar approach, but can use a simpler algorithm because only one
of the hierarchies needs to be sorted, the other one (the package structure) is fixed.
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The idea is to position inner nodes at the barycenter of their leaf node’s preferred
position — or at least as close as possible to it. The barycenter can be calculated by
Equation 3.2, where p(!) stands for the preferred position of leaf node I.

Zl leaves(v p(l)
(3.2) bary(v) = |Teaves((ij)]

The sort algorithm traverses the tree recursively. It starts at the root node and sorts its
direct children by their bary value. Then it calls itself recursively on each child node.

3.8 Clustering Selection

In our data set, there are 17 different clusterings for each project. Even more could be
generated by adjusting parameters of the clustering algorithm. Comparing them all at
once to the primary hierarchy would not only decrease the application’s performance
but also simply overwhelm the user with information. Therefore, the user can choose
which clusterings should be shown as icicle plots. The button Select Clusterings toggles
a list of all available clusterings that will be shown in the sidebar (see Figure 3.5).
That way, the context of the currently shown clusterings is not lost, and the user can,
e.g., remove a cluster from the content pane.

The clusterings are grouped by the categories introduced in Section 1.1. For each
clustering, a short description is given explaining which classes are considered to be
coupled. The keys that are shown in the icicle plot’s headings are also displayed and
have the same color so that users can more easily relate the items in the selection list
to the icicle plots in the content pane.

The selection changes do not take effect immediately, but only after the user has
pressed the Apply button. The main reason for this is performance: It takes a moment
to calculate the similarity values of the new nodes and recalculate the values of the
primary hierarchy; doing this after each checkbox tick would slow down the user.
Additionally, if a mistake is made and then quickly corrected, the order of the icicle
plots is not changed unintendedly.

In the selection pane, the clusterings have a fixed ordering so that, after having worked
with the application for a while, the user gets accustomed to their location and can
find and toggle them quickly even in new projects. In the content pane, however, the
icicle plots can be rearranged. This allows users to compare two arbitrary hierarchies
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Select Clusterings

Select All - Select None - Invert Selection

Code Clones

v CC.I: Type |
Two classes are coupled (unidirected) if they share Type | clones. The coupling weight is the clone
coverage UCC.

CC.II: Type I
Two classes are coupled (unidirected) if they share Type Il clones. The coupling weight is the clone
coverage UCC.

Code Ownership

¥ CO.Bin: Binary
Two classes are coupled (undirected) if they share common authors. The coupling weight is the cosine
similarity of the binary ownership vectors.

Two classes are coupled (undirected) if they share common authors. The coupling weight is the cosine
similarity of the proportional ownership vectors.

d
Two classes are coupled (undirected) if they were changed together during development. The o

Apply
Figure 3.5: Clustering Selection: Available clusterings are grouped by category and
can be checked individually.

by putting them next to each other. It can also be seen as a secondary selection: If
the most important clusterings are put next to the primary hierarchy, these can be
inspected in detail while there are still some supporting icicle plots further away.

As mentioned in Section 3.6, the current selection can be bookmarked and shared.
It would be desirable to include clustering selection and order would be included in
this functionality so that the exact representation can be shared. However, for the
undo feature, there are advantages as well as disadvantages. On the one hand, it
would be nice and consistent to cover the whole selection data in the history, so that
pressing the undo button returns the user to the previous view. On the other hand,
tracking the selection history independently from the clustering enables another use
case: reviewing previous selections with a different set of clusterings. For example,
after having explored a few sets of classes, the user might decide to see if there would
be more similar clusters if another clustering has been added. This is easier if the
clustering selection is not included in the undo history as the selection can simply be
changed, and then the undo history traversed to reload the past selections.
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Most similar clusters:

ap , @ #
100% = 46 / 46 netsourceforge.pmd.cpd 46
88% = 45 / 51 » Cluster A.D 50
85% = 39 / 46 SD.Use » Cluster D 39
50% = 23 / 46 FO.Usel » Cluster C 23
20% = 9 / 46 SD.Inh » Cluster | 9
13% = 6 [/ 46 SD.Agg » Cluster E 6
10% = 45 / 434 CO.Bin » Cluster A 433
8% = 44 / 534 FO.UseE » Cluster A 532
5% = 4 / 79 CC.l» Cluster A.C 37
2% = 1/ 46 » net.sourceforge.pm... 1

Figure 3.6: Similar Cluster List for a package of the PMD project

3.9 Similar Cluster List

Similarity information is encoded in node colors. This works well for an overview and
as basis for discovery, but lacks in details. Brushing and linking allows users to identify
classes across all hierarchies. However, it still does not provide a full explanation of a
node’s color. A node of a secondary hierarchy is dark if there is a package that contains
mostly the same classes. In this case, it is easy enough to identify the corresponding
package because most of its children are selected. The lower the similarity is, however,
the harder it is to find the most relevant package. In the worst case, the user would
have to manually count the selected classes. For the primary hierarchy, the problem
is even more prominent: Selecting a package highlights various classes in all the
secondary hierarchies. To find out which one is the most similar one, the user would
have to count classes across the whole visualization. Again, for the extreme cases of
strong similarity, this is possible, but at some point, an additional guide is required.

The list of similar clusters solves this problem. It is displayed in the sidebar to the
right of the content pane and always shown when there is a selection. For each of the
selected clusterings as well as for the primary hierarchy; it lists the cluster or package
with the highest similarity to the selection set. If the user selected an inner node
directly by clicking on it, that node is listed at the top because it has 100% similarity
to the set of selected classes. For nodes of the primary hierarchy, the next item in the
list is the clustering that determined the package’s color coding.
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Each entry in the list of similar clusters consists of five columns (see Figure 3.6). The
first one is a bar chart visualizing the similarity value which is the Jaccard coefficient
[AHSO08] of the selection and the cluster. This is a value between 0% and 100%, so a
bar chart that is filled accordingly provides a natural visual representation. Inside the
bar chart, the percentage value is shown for detailed information.

Next to the bar chart, the absolute values of intersection and union are given. That is,
the number of classes that occur in the selection and in the cluster, and the number
of classes that are either in the selection or in the cluster. The quotient of these
numbers is the definition of the Jaccard coefficient, so they provide more details and
an explanation of the similarity value at the same time. In the list, these three columns
are represented as mathematical equation: The similarity value is the intersection
divided by the union.

The fourth column is simply the cluster name. For packages, this is the fully qualified
package name; otherwise, the clustering name is given (colored the same way as icicle
plot headings) followed by the qualified cluster identifier (e.g., Cluster G.F.A).

In the last column, the size of each cluster is given. This value could be derived,
e.g., from the size of the union minus the number of selected classes. And for very
similar clusters, the cluster size must be very similar to the selection size. Clusters
that are further down in the list, however, can have one of three reasons for not being
considered similar: either they contain too much classes (large union), too few classes
(small intersection) or the wrong classes (small intersection and medium-sized union).
The cluster size allows to differentiate between these as one value: a large number
means too much classes, a low number too few classes and a value around the selection
size identifies clusters with just wrong classes — each time assuming that the similarity
value is low.

Hovering over an item highlights the icicle plot in the content pane by applying a drop
shadow. Changing background color would be more prominent, but also interfere with
other meanings of color in the visualization. This provides a further way of finding
the icicle plot besides color coding of the clusterings. Additionally, hovering a list item
triggers the hover selection: The classes in the hovered item will be painted slightly
darker. As the main selection is kept, there are now four possible states for classes:
Classes without selection (drawn in beige) are neither in the selection set, nor in the
hovered cluster. Yellow items are not in the selection set either, but contained in the
hovered cluster. Blue items are selected, but not in the hovered cluster. Dark blue
items are in the intersection. That way, the intersection and union numbers can be
explained.
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3.10 Clustering Colors

The significance of unique colors for clusterings has been stated several times. They are
required because clusterings occur in multiple places in the application — as headings of
icicle plots, in the clustering selection and in the list of similar clusters. Colors provide
a way to visually connect them. But this is not the only reason. There is actually
information encoded in the colors: The color hue is determined by the clustering
group. The groups are also used in the clustering selection (see Section 3.8) and used
as prefix of clustering identifiers. Thus, the meanings of colors should become clear
after having worked with the application for a while.

The mapping between clustering identifiers and colors should stay stable, even if
clusterings are added in the future. This could be solved by a statically configured
mapping file; however, that would not be flexible. Therefore, the color is derived from
the clustering identifier using a hash function. Clustering group should be represented
as hue, the individual clustering instance as brightness. The clustering identifiers
always follow the syntax group.instance, so they are split at the dot. Then, both
parts are hashed individually, the hash is converted to an integer and a modulus with
the desired resolution is calculated (two bytes are more than sufficient for hue or
brightness generation). Finally, the resulting value is mapped to the respective range —
0° to 360° for hue, and 25% to 75% for brightness.

The result is not ideal, because it is still possible that two different clustering groups are
represented by the same or very similar hues, and the same can be said about clustering
instances and their brightness values. For example, in the reference implementation, CC
(code clones) and SD (structural dependencies) both use the green as base color, CC’s
one being a little more blueish. However, the other four groups can be distinguished
easily. In any case, hashing is a simple way to put semantic meaning into colors.

3.11 Source Code View

Although the general approach of the suggested visualization technique could be
applied to hierarchy comparison in general, the purpose of this thesis is to put the
visualization into the context of software modularization comparison. This is already
done by using the terms class and package, labeling nodes with fully-qualified names
and obviously by using sample data from software modularizations.

However, to integrate seamlessly into the process of software development and main-
tenance, more specifically into the refactoring phase, the user should be supported
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ClusterCompare [FYD) v Select Clusterings
Close
/** 46 classes selected
* BsD-style license; for more info see http://pmd.sourceforge.net/license.html
- net.sourceforge.pmd.cpd.Match
package net.sourceforge.pmd.cpd; net.sourceforge.pmd.cpd.cppast. TokenMgrErrc
import net.sourceforge.pnd.PMD; net.sourceforge.pmd.cpd.MatchAlgorithm
net.sourceforge.pmd.cpd.AnyLanguage

import java.util.Comparator;
import java.util.Iterator; net.sourceforge.pmd.cpd.CPD

import Java.util.set; net.sourceforge.pmd.cpd.CPDListener
import java.util.Treeset; h
net.sourceforge.pmd.cpd.CPDNullListener

public class Match implements Comparablectatch> { net.sourceforge.pmd.cpd.CPDTask
private int tokenCount; net.sourceforge.pmd.cpd.CPPLanguage
private int lineCount; »
private Set<TokenEntry> markset = new Treeset<TokenEntry>(); =SR2 eI Gl P e e )y
private TokenEntry[] marks = new TokenEntry[2]; net.sourceforge.pmd.cpd.CSVRenderer

private String code;

Figure 3.7: The source code view as shown after clicking a class name

with additional information specific to the source code nature of these hierarchies.
Full integration into the Integrated Developer Environment (IDE) would probably be
the best approach. But it would also be the hardest to master completely: The user
would expect the visualization to reflect source code changes and refactorings done in
the IDE. Concluding, the whole clustering process has to be implemented in an IDE
add-on. While this approach may be of interest to further studies in this area, the
reference implementation in this thesis leaves out the IDE integration. See Section 4.1
for details.

To nevertheless provide a basic way of interacting with the presented software artifacts,
a source code view exists. Clicking on a class in the selection pane shows its source
code. It temporarily replaces the content pane with the icicle plots, so that the selection
pane is still visible and the user can switch between classes. The source code view also
supports syntax highlighting.
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This chapter presents the tool from a technical point of view. It shows how the
visualization has been implemented, which technical design decisions have been made
and what technical difficulties have arisen and how they have been treated.

4.1 Choice of Technology

For the choice of programming language and framework, there had been a few
requirements:

* The framework should offer a solid graphics foundation. The software consists
mainly of one visualization and it would be a waste of time to develop it on
low-level graphic functions.

* The framework needs to be flexible. While the visualizations are based on
existing work, they need to be customized to fit into the whole system. Full
control over the appearance is required to experiment with new ideas.

* The language should allow fast prototyping. In the beginning of the project, only
the most important aspects of the software had been specified. Many decisions
had been made during the implementation phase. A language that allows to get
started fast and to implement changes quickly is an important prerequisite for
such an approach.

* Performance matters, because the user has to interact with the visualization. The
application should feel responsive.

For software development related tools, the Eclipse platform is often used. It offers a
cross-platform framework for creating user interfaces, accessing files and much more.
By releasing a tool as a plug-in, it can be integrated into an existing IDE. This allows
for a seamless workflow that involves interacting with the tool while navigating or
editing the source code.
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However, these advantages would be of little to no use for the tool developed for
this thesis. The source code cannot be processed directly into the visualizations — a
whole fleet of tools is needed to extract all the information necessary for the different
coupling concepts, ranging from static analysis to extracting information from the
source control. It would have been out of scope of this thesis to integrate all these
tools into Eclipse. Instead, the data has been produced in advance and thus can be
loaded in any environment.

While there are libraries for SWT (the UI foundation of Eclipse) that support drawing
various charts (Prefuse, SWTChart, XYChart), they do not offer the flexibility needed.
So either the foundation would have been missing, or the ability to change every detail
of the presentation. In addition, Java tends to be rather slow to develop and minor
adjustments can make up a substantial piece of code.

The alternative had been web technologies. A relatively new framework from 2011,
called D3 (Data Driven Documents)! offers a foundation to develop all kinds of
visualizations. It is built upon SVG (Scalable Vector Graphics) and thus natively
supports basic shapes, bezier curves, gradients, shadows, animations and more. The
visual elements can be bound to data and easily updated when the data changes.

Many examples demonstrate the capabilities of D3 and show how to implement certain
visualizations. There is also one for Icicle Plots? implemented in less than 50 lines. This
is possible because D3 already provides utility functions like color mapping, different
scale types and for the actual drawing functions. The most important feature of D3
for this use case is the partition layout. It accepts a tree structure and calculates the
coordinates of all nodes to form an Icicle Plot.

The logic is coded in JavaScript. It is a language in motion, at the time writing several
useful features are in different stages of design and implementation. To make use of
these features, the Babel transpiler (JavaScript to JavaScript compiler) is used that
translates the new language constructs into equivalent pieces of JavaScript that is
understood by current modern browsers.

Grunt is used as build tool. It watches the files and recompiles the application when a
script or style file has been changed. It then updates the browser and reloads the page
if necessary. This enables a fast change-and-review cycle which greatly eases the agile
development process.

Thttp://d3js.org/
2http://bl.ocks.org/mbostock/1005873
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4.2 Data Format

This tool stack offers a graphics framework, is flexible and allows for fast prototyping,
so it fulfills three of the four initial requirements. However, the performance aspect
has to be evaluated. Browsers are known to be slow when there are lots of elements in
one page, and the icicle implementation in D3 creates at least one element per class.
Therefore, there will be a soft limit in the number of clusterings that can be shown
simultaneously while still being responsive.

4.2 Data Format

To reduce the amount of work for the visualization tool, the data format has been
chosen to be easily readable by JavaScript. For each project and within that project for
each clustering plus for the original package structure, there is a JSON file accessible
by a GET request. The contents of these JSON files is described as an example in listing
4.1.

While this format can be processed directly with JavaScript, it is still close enough
to the original data generated by the clustering tool that this conversion process is
straightforward and the main logic resides in the visualization tool and not in the
converter. For this reason, there had not been need to change the converter’s source
code except for few bug fixes.

4.3 Architecture

The application roughly follows the Model-View-Controller principle, although not in
the classic manner.

4.3.1 Model and ViewModel

There is only one entry point for all model data, the ViewModel class, which in turn
contains an instance of the Model class. Model provides access to the persistent data,
such as the list of projects, information about clusterings and the trees. Apart from
this Model instance, ViewModel describes the application state, i.e. what is required
to reconstruct what is currently visible on screen, given the persistent model data.
The application state is serialized into the URL so that individual views can be book-
marked and shared as well as navigated through using the browser’s back and forward
buttons.
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Listing 4.1 Tree Data Format

1 {
2 project: "Name of the software project the classes are taken from",
3 couplingConcept: "identifier of the coupling concpet, e.g. SD.Inh, or
packages for original structure",
4 | clustering: {
5 tool: "the name of the clustering tool used",
6 summary: "short, human-readable information about the clustering
tool/algorithm used"
71 Y,
8 root: {
9 name: "display name for the node",
10 qualifiedName: "complete class name, for leaves",
11 children: [
12 {
13 name: "a child node",
14 qualifiedName: "complete class name, for leaves",
15 children: [
16 { (node) }
17 ]
18 }
19 ]
20 }
21 |}

The trees are not exposed exactly like they are represented in the Tree Data Structure.
NodeFactory inspects the nodes and determines a class for each node. There are
separate classes for Class, Package, Cluster and the RootNode. They are all subclasses
of Node and override some of its methods and properties. That way, the presentation
of nodes can be adjusted for each node type individually. For example, the label for
package nodes is the package name, whereas the label for clusterings is a generated
letter sequence denoting its index within the parent.

As previously stated, the ViewModel serializes its state into the URL. The selection state
accounts for the largest amount of data because it takes one bit per class. Directly
encoding this into the URL would not be practical. For example, the PMD data set
contains more than 550 classes - that would be about 70 bytes, or 105 characters in
base64 encoding. These urls would be rather inconvenient to share. However, the
selections are normally not totally random, but tend to be in line with the package
structure to some extend. This is obviously true for selecting packages but applies
also to the most interesting clusters, those who have some resemblance to packages.
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This means that when sorting the classes by their qualified names, the selections tend
to roughly consist of one or multiple ranges. This is exactly what general purpose
compressing algorithms are made for. Therefore, the deflate algorithm [Deu96] is used
to compress the bit sequence of selected classes. Common selections can be stored in
50 to 60 characters (base64-encoded).

4.3.2 Visualization

To follow best practices in terms of low coupling and maintainability, the view module
(for the visualization) has mostly been decoupled from the model module. While the
view module obviously has to access the model for the data, it does not have to know
how the data is received, organized and how, e.g., the similarity values are calculated.
The model module does not even have to know the view at all.

The Icicle class, which is responsible for rendering an icicle plot, receives the tree to
draw, the place where to put it, as well as a function mapping a node to its color value
as parameters. The technology used for rendering the node is arbitrary and can be
changed any time. This has been proved useful as will be seen in Section 4.4.

These icicles are wrapped in boxes called VizItems which decorate them with a title and
border and allow the user to drag them. The items are grouped in one VizContainer
which determines which trees to show from the view model and also synchronizes the
ordering of the items with the view model.

4.3.3 Controllers

The modules introduced in the visualization section are a mixture of controller and
view because they define the presentation and are also responsible for data binding
and event handling. However, they are still decoupled in that they take the data
providers as arguments. The main module acts as dependency injector: it instantiates
the model, initializes the controllers, and connects both.

4.4 Rendering Performance

The sample data set contains projects from 99 classes (Cobertura) to 656 classes
(JHotDraw) and 17 clusterings, thus up to 18 trees including the primary hierarchy. If
all clusterings are selected, more than 5200 leaf nodes are to be drawn, not counting
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the inner nodes. The application should be responsive even when all clusterings are
selected, so it has to cope with several thousands of nodes that are visible simultane-
ously. The interaction features described in Section 3.6 Brushing and Linking require
the node background of any number of nodes to be changed when the user moves the
mouse over the trees.

4.4.1 SVG

The traditional way of creating visualizations with D3 is by breaking it down into basic
graphic elements like lines, rectangles or text labels. For each of these element, an SVG
object is created, assigned with its properties and bound to data. An icicle plot, for
example, consists in its most basic form of one rectangle per node plus a text element
for each node that should be labeled.

Using SVG for icicle plot visualizations means that for each node in each tree, at least
one SVG element is required. All these elements are managed by the browser which
provides a set of features like event handling, styling with Cascading Style Sheets or
inspection in the developer console. This overhead is not neglectable and can result
in a significant performance loss if several thousands of elements are loaded in the
document.

In the first iteration, this SVG approach has been used. If only two or three clusterings
are selected, the application still feels responsive, although the frame rate regularly
drops below 30 frames per seconds in Chrome on a modern desktop computer. When
ten clusterings are displayed at once, every action including node hovering, clustering
reorder or horizontal scrolling in the content pane feels sluggish with a constant frame
rate between five and ten frames per second.

4.4.2 Throttle

This is especially a problem for the brushing and linking functionality: Moving the
mouse vertically down on an icicle plot triggers a mouse enter and leave event for
each node in that layer. These events are queued by the browser and handled one
after the other. Each time, the nodes to be highlighted, i.e., the classes those in the
hovered cluster in all trees, have to be computed and their background color changed.
When this process takes longer than the user to move over the nodes, the highlighting
lags behind the cursor movement and the application feels very unresponsive.
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To reduce this problem, the hover events are throttled. This means that not every hover
event is processed directly, but only the last one of one continuous cursor movement.
If the user moves the mouse quickly over the chart, nothing happens. Just when they
take a short break over one node, this node is considered hovered and the highlighting
adjusted. There are no events queued so the reaction is as quick as possible. This is
implemented by deferring the event handler for a set amount of time, for example, 100
milliseconds. Each time a new event occurs, the last deferred event handler is canceled
and the new one scheduled for 100 milliseconds from the time of its occurrence. That
way, always the last event is scheduled, and it only is handled when there is no event
for 100 milliseconds.

4.4.3 Canvas Rendering

However, the problem of overall low performance and slow reaction times is not solved
by this trick. Therefore, an alternative implementation for icicle plot rendering has
been tried.

Apart from SVG documents, the Web provides another technology for drawing with
basic shapes: The 2D canvas [CWG"14]. The features are comparable as it also
supports drawing rectangles, paths and text. The concept is different though: In SVG,
graphic elements are created as objects and then kept so that they can be manipulated
afterwards and scaled as required. Using canvas, graphics are drawn imperatively
directly on the drawing area and apart from the pixel colors, no information is persisted.
When data changes or the window has been resized, the graph or parts of it have to be
redrawn manually.

On the one hand, this shifts the responsibility of redrawing existing but changed
structures efficiently to the application code, so optimizations on the browser vendor’s
side are more limited in their nature. For example, in SVG documents, the browser
could decide to not draw elements that are completely covered by a different element;
this logic would have to be implemented manually in the application code using canvas.
On the other hand, SVG documents can get very complex, so when optimizing a SVG
renderer, many corner cases have to be taken into account. Especially for simple
visualizations, manual optimization are easier to implement.

In our case, the large number of elements is a problem with the SVG approach,
therefore the performance is low even if the icicles do not change at all, e.g., when
scrolling the contents pane or reordering clusterings. Using the canvas approach, there
are no persistent objects so these interactions are not impacted by the number of
classes.
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Interaction via brushing and linking requires parts of the icicle plot being redrawn
on cursor movement. This whole task can be greatly optimized with the canvas
approach. Instead of registering thousands of event listeners, each tree only requires
one mousemove and one mouseleave listener. In this listener, the node under the cursor
is calculated by applying the scale functions used for drawing the rectangles in reverse
and then traversing the tree from root to the hovered layer. For each level, the child
node under the cursor is determined by comparing the vertical coordinate to the
known vertical position of each child node.

Updating the colors of an icicle plot when the main or hover selection changes is faster,
too: No expensive DOM manipulation is required, only the rectangles of nodes whose
selection status changed have to be repainted.

Both alternatives — the SVG as well as the canvas approach — have been implemented
and thus can be compared directly. That way, the superiority of the canvas method is
evident: Even with all clusterings selected, on a modern desktop computer interactions
such as node reordering or brushing and linking respond without noticeable delay.
Therefore, the canvas approach has been chosen in the final implementation.

4.5 Data Gathering

The visualization is mostly agnostic to the data it represents. Basically, a set of classes
is required that is organized in some kind of package or namespace structure. For
each secondary hierarchy, a coupling concept has to be defined — a matrix indicating
which classes are related. This matrix is used as input of a clustering algorithm which
produces a tree of clusters.

The data used for the illustrations in this thesis have been gathered by Beck and Diehl
[BD11]. They provided a Java library for reading the coupling data as graphs. This
library has been used and extended to an automatic tool, called cluster converter, that
reads the graphs, calls an external clustering program and finally saves the resulting
trees in individual files.

Rosvall’s and Bergstrom’s tool infohiermap [RB11] has been used to cluster the graphs.
It is written in C++ and can be compiled on linux via a simple make command. The
resulting binary can be executed with arguments to specify source and target files
as well as options. It generates a clustered tree in a text file format with the .tree
extension. The .tree files list each leaf in one line with three columns: the hierarchy
path (a colon-separated list of intermediate nodes from the root to the leaf node), a
weight value and the node identifier. Inner nodes are not represented by text lines
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but can only be derived from the hierarchy path of the leaf nodes they contain. This
format is not ideal for processing in a JavaScript application, so the cluster converter
tool also converts the .tree files to the JSON format described in Section 4.2.

The tool only has be be run once per data, then all information are available as static
files. Therefore, no back-end is required for the visualization application; it can be
served from a standard web server like Apache3.

The source code view feature of Section 3.11 downloads source code on demand
and expects the files to be in a subdirectory of the project directory. They have to be
copied to this location in order to complete a set of data that can be processed by the
visualization application.

4.5.1 Data Preprocessing

Apart from format conversions, the data generated by the clustering program can
mostly be used as-is, with one notable exception. The clustering algorithm never
generates clusters that contain both subclusters and leaf nodes. Leaf nodes that would
occur besides inner nodes are therefore wrapped in their own subcluster with just the
one child node. In the visualization, those leaf nodes would be displayed one level
deeper than they really are. There is also no semantic significance of this behavior.

Thus, nodes containing only one child are unwrapped before being processed. To keep
the cluster converter tool as simple as possible, this logic has been implemented in
the JavaScript part. The NodeFactory class which converts the JSON input into a tree
structure with the correct classes tackles this issue. Before even creating the node
instances, it iterates over each node and replaces nodes that have only one child with
exactly this child.

3https://httpd.apache.org
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5 Evaluation

In this final chapter, the visualization will be tested in a small case study using two
Java projects. The study has been performed by the author of this thesis and thus
might be biased towards people who already know the visualization well. The purpose
of the study is not to find out how fast users can learn to work with the visualization,
but rather to determine whether the clustering data can effectively be analyzed by a
user already familiar with the visualization.

To maximize possible findings, all clusterings have initially been selected for both
projects.

5.1 Example: PMD

PMD! is a source code analyzer for several languages including Java, JavaScript and
XML. It uses a set of rules to find common programming mistakes like unused variables
or dead code.

The PMD package structure is relatively flat; most packages are located directly under
the net.sourceforge.pmd package and the maximum depth after this root package is
four for net.sourceforge.pmd.util.viewer.gui.menu. As seen in Figure 5.1, the top
two thirds of the first level packages have dark colors; clicking on the lighter ones of
these reveals that with one exception they all have a corresponding cluster of at least
70% similarity. The most similar clusters for the lower third has between 25% and
37% similarity.

To get an overview of the secondary hierarchies, they have been selected all at first.
This shows many points of interest. Especially SD.Use, SD.Inh as well as the two EC
clusterings have several clusters with high similarity values. However, there are also
useless clusterings like FO.UseE or SS.Tfidf which mainly consist of one big cluster.
They have been removed in the following analysis to focus on the most promising

Thttps://pmd.github.io/
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clusterings. The new ordering is SD.Use, SD.Agg, SD.Inh, EC.Conf, EC.Sup, CC:I, CC.II,
FO.Usel, FO.Inhl, FO.AggE, FO.Aggl.

5.1.1 Inspecting one Package

Interestingly, while the lower third of the first level has overall low similarity values,
at the second level, there packages with better matches, util.viewer being the best
among them. It has two perfect matches, in EC.Sup and EC.Conf each (see Figure 5.2).
This suggest the classes of this package have often been modified together.

Next up are two clusterings of the Structural Dependencies group at 60% and 53%.
The percentages are rather low, but looking at the other columns shows that they are
approximate subsets of the util.viewer package: SD.Use shares 12 classes with the
package and is 13 classes in size, so it contains one additional class. SD.Agg even is
a perfect subset with 10 classes. By clicking on the SD.Use row, it can be confirmed
that SD.Agg is in turn a subset of that clustering. So these 10 classes have really strong
evidence for being in one package. Using the back button of the browser, the previous
selection is restored.
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Figure 5.1: Evaluation: PMD Project

52



5.2 Example: Wicket

Most similar clusters:

ap ; @ #
100% = 19 / 19 net.sourceforge.pmd.util.viewer 19
100% = 19 / 19 » Cluster A.G 19
W00%EN = 19 / 19 » Cluster A.E 19
60% = 12 / 20 SD.Use » Cluster AF 13
53% = 10 / 19 SD.Agg» Cluster A.C 10
46% = 12 / 26 FO.Aggl» Cluster A 19
B7% = 7 [ 19 SD.Inh» Cluster L 7
26% = 5 / 19 FO.Inhl » Cluster Q 5
26% = 5 / 19 FO.Usel » Cluster A.l 5
23% = 5 [ 22 FO.AggE » Cluster G 8
11% = 2 [ 19 CC.l» Cluster AX 2
5% = 1 / 19 CC.ll » net.sourceforge. pmd.util.vi... 1

Figure 5.2: List of most similar clusters of package util.viewer

The next question is which classes are not included in the SD clusterings. It can be
answered by clicking on the cluster A.F in the visualization two times with the Control
key pressed down. Most of the classes are unclustered, and the remaining two occur in
a subcluster of A and thus in the same top-level cluster. This cluster, however, is only
light gray and with the hover action it quickly becomes clear that it has no support in
the primary nor in any of the secondary hierarchies.

5.1.2 Combining two Packages

Cluster A.A is the darkest of CC.I, and selecting it shows that it contains a majority
of the classes of ast and jsp.ast. The list of most similar clusters states 68% as the
similarity, but one expects this value to be higher if both AST-related packages would
be considered together. This assumption is verified by clicking selecting both packages
via Control-click: The new similarity is 77%.

5.2 Example: Wicket

Apache Wicket? is a component-based Java web framework. Again, clusterings with
few clusters or extremely low similarity values have been excluded, and they are
exactly the same like in the PMD data set.

2https://wicket.apache.org/
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Wicket is structured in many small packages, the majority having fewer than ten classes.
Throughout the whole hierarchy, most packages have good matches with similarity
values above 80%. The values of the largest four high-level packages, covering 470
classes, have similarity values below 35%, though.

5.2.1 Converter Classes

Wicket contains a few classes for converting values like numbers and dates to strings
and back. Those are organized in the package util.convert. The whole package
is backed by the two Evolutionary Coding clusterings with just four classes missing.
Two of the classes of util.convert that are not in these clusterings are indeed not
directly related to converters: ILocalizable annotates a class that needs localization
information, and LocalizableAdapter is a simple implementation of this interface
(they are used by converters though).

Cluster F of SD.Inh almost exactly matches the converters subpackage which is obvious
because all converters inherit from AbstractConverter. The cluster also contains the
interface IConverter. Although it is not part of the class hierarchy, all converters
implement this interface, so it is correct for it to occur in the cluster. The developers of
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L oL

Figure 5.4: The two clusterings SD.Use and SD.Agg have relatively low similarity
values.

Wicket have not included it in the converters package. There is nothing wrong with
this decision, especially because of the package name, but it is noteworthy anyway.

5.2.2 Low Coupling, High Cohesion

The coupling concepts SD.Use and SD.Agg are most related to the principle of Low
Coupling and High Cohesion. Thus, in a good package structure, there should be many
matches between packages and clusters of those clusterings.

However, having only these two clusterings selected, the icicle plots are colored rather
light (see Figure 5.4. Apart from two exceptions of 67% and 69%, which can be
easily spotted, the clusters of SD.Agg have similarity values of 50% and below (see
Figure 5.4.

SD.Use looks better: It contains four clusters of 80% similarity and higher. Two of them
belong to the same package as the two top clusters of SD.Agg which can be both seen
in the list of similar clusters and by the brushing and linking highlighting.
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6 Conclusion

In this thesis, a visualization has been developed that compares the package structure
of a software project to other hierarchies of the same classes, generated by clustering
algorithms. Icicle plots are used for the individual hierarchies as a compact presenta-
tion. Clusterings can be selected and shown side by side to the main package structure
in a small multiples diagram. Color coding conveys the information of node similarity
between all the hierarchies. These general design decisions have been discussed and
explained in Chapter 3 up to Section 3.4.

Afterwards, extensions were made that enhance the comparison process and allow
to generate more insights. Brushing and Linking (Section 3.6) as the main means
of interaction is coupled with a cluster list (Section 3.9). Secondary aspects of the
visualization like node ordering or border visualization have been considered, too.

As documented in Chapter 4, the visualization is implemented as a web application.
Modularization and clustering data of 17 open source projects have been converted to
the tool’s custom data format and are included in the application. In a small case study
in Chapter 5, the visualization has been evaluated on two open source projects.

6.1 Evaluation Results

The icicle plots of individual hierarchies visualize the trees in a suitable manner: A
whole software project can be displayed multiple times at once on a normal computer
screen. Especially for developers that are not familiar with a project, having the
complete package structure visible at once gives a good overview. Of course, class
names are not visible at once, but they are not required for a first overview. Yet, the
tooltip functionality that displays class or package names on demand is useful to get
an idea of which classes are in a given package.

The node coloring reveals at a first glance how similar the chosen software project is
to the clustering results. If there are many black or dark gray rectangles, the chances
are high that useful matches are to be found. Uninteresting clusterings, for example,
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flat ones or trees with very low similarity values can be dismissed and removed quickly.
Reordering the remaining hierarchies allows to put the focus on the most promising
clusterings.

On a second glance, interesting nodes can be identified again by considering color.
Dark nodes with high similarity obviously stand out, but it is also possible to find
those with medium or low similarity values by keeping the specific color in mind and
scanning the hierarchy vertically.

The node ordering algorithm works well: If multiple clusterings have clusters that are
very similar to each other, they occur roughly on one horizontal line. This allows to
quickly identify clusters that are backed by multiple clusterings. This initial assumption
can be verified by hovering over one of the packages and to see if the other packages
are highlighted as well.

The list of most similar clusters can be used to derive several insights. The percentage
bars show the similarity distribution in form of a histogram. This supplements the node
color with the information if there is only one or several nodes with that similarity
value. The other numerical columns show whether the similarity value is decreased
due to missing classes or additional classes in the clustering. It could however be
considered to write the numbers of additional and missing classes in the table so that
the user does not have to calculate those themselves. Overall, the application feels very
responsive, most reactions to mouse movements and clicks are instant on a modern
computer!.

The visualization gives a good overview and entry point into a package structure. It not
only presents the actual package structure but also explains it: Depending on which
clustering has high similarity, it can be derived which of the principles introduced in
Section 1.1 are followed in which packages. That way, developers new to a project are
assisted in figuring out where to put new classes.

However, to actually suggest well-founded restructurings, the visualization alone does
not suffice. It is still necessary to know the source code in order to fully understand
the reasoning behind each package. But the visualization can support developers
in the restructuring task by highlighting packages of interest and providing possible
explanations for them.

!Clicking on a cluster containing several hundreds of classes involves a slight delay.
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6.2 Future Work

During the development of this visualization tool, many promising ideas came up that
had to be postponed to future versions due to of lack of time. This section glances
briefly over the suggestions and explains why they would be useful.

6.2.1 Matrix View

While the icicle plots are a good visualization of clustering results, they do not convey
the underlying data in its details. It may be desirable to determine why exactly a set
of classes have been clustered. Therefore, the user may wish to see the raw coupling
matrix. It is essentially a directed or undirected graph with all the classes and coupling
values on the edges. A node-link diagram would not be suitable because of the high
number of classes and especially the high connectivity. Instead, the matrix could be
presented as a table with class names at the horizontal and vertical axis.

This matrix view should be accessible from the clusterings. It would also be possible to
highlight clusters in the matrix view by changing the background color of all contained
classes, so an entry from a cluster node would also be possible.

6.2.2 Comparing Selections

It is possible to select a set of arbitrary classes which then can be inspected in the list of
similar clusters. This idea could be extended to a comparison between two selections:
The user would save a selection to a temporary place, make a new one and press a
button to compare those. Then, a Venn diagram [Ven80] would be shown visualizing
how many and which classes are contained in both selections compared to the classes
that occur just in one selection.

This feature would serve as a zoom and focus functionality. When one cluster (or
several combined) is to be compared to an existing package, the complete icicle plots
are not ideal because they contain many unrelated classes. The classes are still only
few pixels high in the icicle plots, so it can sometimes be hard to see which class is
selected. This feature would limit the visualization to the two selections of interest
and thus provide better visibility.
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6.2.3 Alternative Similarity Aggregations

The coloring of nodes in the secondary hierarchy is straightforward: It depicts the
similarity of the most similar node in the primary hierarchy. The coloring of nodes
in the primary hierarchy, however, has to be some kind of aggregation: There are
multiple secondary hierarchies which all have one most similar cluster with its own
similarity value. Currently, the maximum of those values has been chosen for the
coloring. This makes sure no package with a good match is missed.

Sometimes, it would be good to know how many clusterings have similar clusters to a
package. This question can roughly be answered by looking for clusters at the same
vertical position, as has been illustrated in Section 6.1. Showing this information in
the package nodes themselves would however be much more visible.

Therefore, a possible extension would be to let the user select an aggregation function.
The default can still be the maximum. Average and minimum would be sensible only
if very few clusterings have been selected and there is high correlation between all of
the clusterings and the package structure. However, an aggregation like second best
could still be applied to many clusterings and provide the useful information of which
packages are backed with high similarity to more than one clustering.

6.2.4 Two-Hierarchy Comparison

In Section 2.3 of the Related Work chapter, Holten’s and Van Wijk’s two-tree comparison
[HVWO08] stand out as a especially suitable visualization for comparing two package
hierarchies. It does not scale well to a multi-hierarchy comparison, but could serve as
extension to the small multiple visualization. The core idea is to draw bundled edges
between two icicle plots. One of them has to be mirrored so that they face each other.
This feature could be seamlessly added to the visualization: When the user drags one
icicle plot onto another one, they could be selected for dual comparison. Then, the
right one would be mirrored and bundled edges drawn between them.

60



Bibliography

[AHSO08]

[AKOZ2]

[BC87]

[BD11]

[BRW10]

[BWB*14]

[Cal84]

P. Achananuparp, X. Hu, X. Shen. The Evaluation of Sentence Simi-
larity Measures. In Proceedings of the 10th International Conference on
Data Warehousing and Knowledge Discovery, DaWaK ’08, pp. 305-316.
Springer-Verlag, Berlin, Heidelberg, 2008. URL http://dx.doi.org/10.
1007/978-3-540-85836-2_29. (Cited on page 38)

N. Amenta, J. Klingner. Case study: Visualizing sets of evolutionary trees.
In Information Visualization, 2002. INFOVIS 2002. IEEE Symposium on, pp.
71-74. IEEE, 2002. (Cited on page 15)

R. A. Becker, W. S. Cleveland. Brushing Scatterplots. Technometrics,
29(2):127-142, 1987. URL http://dx.doi.org/10.2307/1269768. (Cited
on page 31)

F. Beck, S. Diehl. On the Congruence of Modularity and Code Coupling.
In SIGSOFT/FSE ’11 and ESEC ’11: Proceedings of the 19th ACM SIGSOFT
Symposium on the Foundations of Software Engineering and 13th European
Software Engineering Conference, pp. 354-364. ACM, 2011. URL http:
//dx.doi.org/10.1145/2025113.2025162. (Cited on pages 10, 11, 12
and 48)

M. Burch, M. Raschke, D. Weiskopf. Indented pixel tree plots. In Advances
in Visual Computing, pp. 338-349. Springer, 2010. (Cited on page 23)

F. Beck, F.-J. Wiszniewsky, M. Burch, S. Diehl, D. Weiskopf. Asymmetric
Visual Hierarchy Comparison with Nested Icicle Plots. In Joint Proceedings
of the Fourth International Workshop on Euler Diagrams and the First
International Workshop on Graph Visualization, pp. 53-62. 2014. (Cited
on page 28)

T. C. Callaghan. Dimensional interaction of hue and brightness in preat-
tentive field segregation. Perception & Psychophysics, 36(1):25-34, 1984.
URL http://dx.doi.org/10.3758/BF03206351. (Cited on page 29)

61


http://dx.doi.org/10.1007/978-3-540-85836-2_29
http://dx.doi.org/10.1007/978-3-540-85836-2_29
http://dx.doi.org/10.2307/1269768
http://dx.doi.org/10.1145/2025113.2025162
http://dx.doi.org/10.1145/2025113.2025162
http://dx.doi.org/10.3758/BF03206351

Bibliography

[Chol0]

[Con68]

[CWGT14]

[Deu96]

[GKO5]

[GK10]

[HVWO08]

[ID90]

[JS91]

[KL83]

[Mac86]

[MGT*03]

62

G. Chowdhury. Introduction to Modern Information Retrieval, Third Edition.
Facet Publishing, 3rd edition, 2010. (Cited on page 12)

M. E. Conway. How do committees invent? Datamation Journal, 14(4):28-
31, 1968. (Cited on page 12)

R. Cabanier, T. Wiltzius, E. Graff, I. Hickson, J. Munro. HTML Canvas
2D Context. Last call WD, W3C, 2014. URL http://www.w3.0rg/TR/2014/
WD-2dcontext-20140520/. (Cited on page 47)

L. P. Deutsch. DEFLATE compressed data format specification version 1.3.
1996. (Cited on page 45)

M. Graham, J. Kennedy. Extending taxonomic visualisation to incorporate
synonymy and structural markers. Information Visualization, 4(3):206—
223, 2005. (Cited on page 18)

M. Graham, J. Kennedy. A Survey of Multiple Tree Visualisation. Infor-
mation Visualization, 9(4):235-252, 2010. URL http://dx.doi.org/10.
1057/ivs.2009.29. (Cited on pages 15, 22 and 25)

D. Holten, J. J. Van Wijk. Visual comparison of hierarchically organized
data. Computer Graphics Forum, 27(3):759-766, 2008. (Cited on pages 17,
34 and 60)

A. Inselberg, B. Dimsdale. Parallel Coordinates: A Tool for Visualizing
Multi-dimensional Geometry. In Proceedings of the 1st Conference on
Visualization ’90, VIS 90, pp. 361-378. IEEE Computer Society Press, Los
Alamitos, CA, USA, 1990. (Cited on page 26)

B. Johnson, B. Shneiderman. Tree-Maps: A Space-filling Approach to the
Visualization of Hierarchical Information Structures. In Proceedings of the
2Nd Conference on Visualization '91, VIS '91, pp. 284-291. IEEE Computer
Society Press, Los Alamitos, CA, USA, 1991. (Cited on page 24)

J. Kruskal, J. Landwehr. Icicle Plots: Better displays for hierarchical
clustering. The American Statistican, 37(2), 1983. (Cited on page 24)

J. Mackinlay. Automating the Design of Graphical Presentations of Re-
lational Information. ACM Trans. Graph., 5(2):110-141, 1986. URL
http://dx.doi.org/10.1145/22949.22950. (Cited on page 28)

T. Munzner, F. Guimbretiere, S. Tasiran, L. Zhang, Y. Zhou. TreeJuxtaposer:
Scalable Tree Comparison Using Focus+Context with Guaranteed Visibility.
In ACM SIGGRAPH 2003 Papers, SIGGRAPH ’03, pp. 453-462. ACM, New


http://www.w3.org/TR/2014/WD-2dcontext-20140520/
http://www.w3.org/TR/2014/WD-2dcontext-20140520/
http://dx.doi.org/10.1057/ivs.2009.29
http://dx.doi.org/10.1057/ivs.2009.29
http://dx.doi.org/10.1145/22949.22950

Bibliography

[Par71]

[Par72]

[PLCB04]

[RB11]

[RCO7]

[Sch9o1]

[SMC74]

[STT81]

[TAO8]

[Tuf83]

[Ven80]

York, NY, USA, 2003. URL http://dx.doi.org/10.1145/1201775.882291.
(Cited on page 15)

D. L. Parnas. Information distribution aspects of design methodology. IFIP
Congress, 1971. (Cited on page 11)

D. L. Parnas. On the Criteria to Be Used in Decomposing Systems into
Modules. Commun. ACM, 15(12):1053-1058, 1972. URL http://doi.
acm.org/10.1145/361598.361623. (Cited on page 11)

C. S. Parr, B. Lee, D. Campbell, B. B. Bederson. Visualizations for taxonomic
and phylogenetic trees. Bioinformatics, 20(17):2997-3004, 2004. (Cited
on page 16)

M. Rosvall, C. T. Bergstrom. Multilevel Compression of Random Walks on
Networks Reveals Hierarchical Organization in Large Integrated Systems.
PLoS ONE, 6:18209, 2011. URL http://dx.doi.org/10.1371/journal.
pone.0018209. (Cited on page 48)

C. K. Roy, J. R. Cordy. A Survey on Software Clone Detection Research.
Technical Report, Queen’s University, 115, 2007. (Cited on page 12)

R. W. Schwanke. An Intelligent Tool for Re-engineering Software Mod-
ularity. In Proceedings of the 13th International Conference on Software
Engineering, ICSE '91, pp. 83-92. IEEE Computer Society Press, Los Alami-
tos, CA, USA, 1991. (Cited on page 11)

W. P. Stevens, G. J. Myers, L. L. Constantine. Structured Design. IBM Syst.
J., 13(2):115-139, 1974. URL http://dx.doi.org/10.1147/sj.132.0115.
(Cited on page 10)

K. Sugiyama, S. Tagawa, M. Toda. Methods for visual understanding
of hierarchical system structures. Systems, Man and Cybernetics, IEEE
Transactions on, 11(2):109-125, 1981. (Cited on page 34)

A. Telea, D. Auber. Code flows: Visualizing structural evolution of source
code. Computer Graphics Forum, 27(3):831-838, 2008. (Cited on page 18)

E. R. Tufte. The visual display of quantitative information. Graphics Press,
1983. (Cited on page 26)

J. Venn. 1. On the diagrammatic and mechanical representation of propo-
sitions and reasonings. The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 10(59):1-18, 1880. (Cited on page 59)

63


http://dx.doi.org/10.1145/1201775.882291
http://doi.acm.org/10.1145/361598.361623
http://doi.acm.org/10.1145/361598.361623
http://dx.doi.org/10.1371/journal.pone.0018209
http://dx.doi.org/10.1371/journal.pone.0018209
http://dx.doi.org/10.1147/sj.132.0115

Bibliography

All links were last followed on October 10, 2015.

64



Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature



	1 Introduction
	1.1 Coupling Concepts
	1.2 Clustering
	1.3 Asymmetric Comparison

	2 Related Work
	2.1 TreeJuxtaposer
	2.2 DoubleTree
	2.3 Linked Icicle Plots
	2.4 Multiple Trees
	2.5 Summary

	3 Visualization
	3.1 Single Tree Visualization
	3.2 Comparing Hierarchies
	3.3 Node Similarity
	3.4 Node Coloring
	3.5 Visualizing Borders
	3.6 Brushing and Linking
	3.7 Node Ordering
	3.8 Clustering Selection
	3.9 Similar Cluster List
	3.10 Clustering Colors
	3.11 Source Code View

	4 Implementation
	4.1 Choice of Technology
	4.2 Data Format
	4.3 Architecture
	4.4 Rendering Performance
	4.5 Data Gathering

	5 Evaluation
	5.1 Example: PMD
	5.2 Example: Wicket

	6 Conclusion
	6.1 Evaluation Results
	6.2 Future Work

	Bibliography

