Institute for Visualization and Interactive Systems

University of Stuttgart
UniversitatsstraBe 38
D-70569 Stuttgart

Bachelorarbeit Nr. 237

Camera-Based Finger Recognition
to Improve Touchscreen Input

Stephan Roth

Course of Study: Informatik
Examiner: Jun.-Prof. Dr. Niels Henze
Supervisor: Dipl.-Inf. Sven Mayer,

Dipl.-Inf. Dominik Weber

Commenced: May 5, 2015

Completed: November 4, 2015

CR-Classification: H.5.2

Abstract

Today’s mobile devices have changed the way of interaction with computers. The touchscreen
has to fulfill all requirements that prior were fulfilled by input devices like mouse and keyboard.
These offer multiple levels of interaction through different mouse buttons and modifier keys.
Instead, the input on touchscreens is flat. Additional dimensions like the touch duration extend
the input vector but decrease input speed. Other options like movements gestures or input with
multiple fingers are less accurate and require more space. To enable multiple levels of input on
the touch screen we take the finger type as an additional dimension into account. We envision,
that this is faster and more intuitive for users. Related work shows a wide range of possibilities
in hand and gesture detection, but little methods on finger recognition. We enrich previous
work by investigating a method for fully mobile prototypes. Touchscreens in today’s mobile
devices are not able to detect the finger types, while the finger touches the screen. Hence, we
build our own prototype by combining a tablet with a camera. We iteratively detected image
features and trained finger recognition. We created a model based on data we collected in
an experiment. Within 20 frames our method detects up to 72% accuracy of our participants’
hands and recognizes the correct finger with 70% accuracy.

Kurzfassung

Durch mobile Gerate hat sich unsere Interaktion mit Computern verdndert. Vom Touchscreen
wird erwartet, dass er dieselben Anforderungen wie Maus und Tastatur erfiillen kann. Diese
verfiigen im Gegensatz zum Touchscreen {iber mehrere Eingabeebenen, wie Maustasten und
Steuerungstasten. Zwar konnen zusétzliche Eigenschaften wie die Dauer einbezogen werden,
doch dies verlangsamt die Eingabe. Andere Moglichkeiten wie Bewegungsgesten und die
Benutzung mehrerer Finger besitzen eine geringere Prazision und bendtigen mehr Platz. Wir
mochten dagegen die Eingabe erweitern indem wir den Fingertyp in Betracht ziehen. Wir ver-
muten, dass dies sowohl schneller als auch intuitiver nutzbar ist. In verwandten Arbeiten wird
eine Vielzahl an Moglichkeiten fiir Hand- und Gestenerkennung prasentiert. Dagegen ist Fin-
gererkennung weitgehend unerforscht. Um dies zu @ndern, untersuchen wir eine Moglichkeit
fiir vollstdndig mobile Gerédte. Heutzutage sind Touchscreens nicht fihig den tippenden Finger
zu bestimmen. Deshalb haben wir einen eigenen Prototyp entworfen, der aus einem Tablet und
einer Kamera besteht. In einem iterativen Prozess wurden Merkmale der Finger untersucht und
eine Fingererkennung trainiert. Wir haben dabei auf Daten zuriickgegriffen, die wir in einer
Studie gesammelt haben. Innerhalb von 20 Frames erkennt unsere Methode Hinde mit 72%
Genauigkeit. Auf diesen wird, mit einer Genauigkeit von 70% erkannt, um welchen Finger es
sich handelt.

Contents

1 Introduction
1.1 Outline e e e e e e

2 Related Work
2.1 Natural Ways of Interacting ittt ittt
2.2 Interaction with Touchscreens
2.3 Existing Finger Recognition
2.4 Hand Detection i i v i i i e e e e e e e e
2.5 Hand Gesture Recognition i it
2.6 Summary and Discussion e e e

3 Data Acquisition
3.1 Apparatus e e e e e e e e e e e e e
3.2 DeSIgN L e e e e e e e
3.3 Participants e e e e e e e e e e e
3.4 Procedure e e e e e
3.5 DataSet L e e e e e e
3.6 Summaryand Discussion. oo e e e e e e e e e e e

4 Data Analysis
4.1 Hand Detection v i v v i et e e e e e e e e e e e
4.2 Finger Recognition i i i e e e e e
4.3 Summary and DiscusSion oo o e e e e e e e e e e e

5 Evaluation
5.1 Measured Results and Raw NASA-TLX
5.2 Feedback e
5.3 Summary and DiscuSSiOno e e e e e e e e e e

6 Conclusion and Future Work
6.1 Conclusiont i v i e e e e e
6.2 Future Work o o e e e

Bibliography

11
12

13
13
14
16
17
18
19

21
21
24
26
26
26
27

29
29
36
38

39
39
42
44

45
45
46

49

List of Figures

2.1 Prototype by Colleyand Hakkila 16
3.1 Photography of Our Prototype« o v i i ittt 22
3.2 Our Prototype’s Fieldof View 23
3.3 Examples of the Study App Screens 25
4.1 Finger Recognition Pipeline 30
4.2 Hand Detection Pipeline asImage Flow 31
4.3 Example for Edges in the LEAP MOTION’sSImage 32
4.4 Examples of Different Overlap Values 34
4.5 Evaluation of Hand Detection, 35
5.1 Results of the Twelve Raw NASA-TLX, 41
5.2 Overall Workload for Finger 42

List of Tables

4.1 Results of First Finger Recognition 36
4.2 Results of the Improved Finger Recognition 37
5.1 Measured Resultsof the Study, 40

List of Acronyms

CPU Central Processing Unit

ID Identification Number

LEAP MOTION Leap Motion Sensor: an Infrared Stereo Camera
LED Light Emitting Diode

NASA-TLX NASA Task Load Index

OPENCV Open Source Computer Vision

PC Personal Computer

SDK Software Development Kit

1 Introduction

Interaction with computers changed with the increasing varieties of device types. At the
beginning they were room filling machines, today they range from large server systems to small
smartwatches. Improvements in rechargeable battery technologies paved the way for mobile
devices. Processor efficiency increases together with better power saving modes, making it
possible to use computer devices of any kind over hours without an external power source.
Devices shrunk and were combined, e.g. smartphones are able to replace compact cameras,
personal digital assistants and cell phones. Today’s tablets become powerful enough for typical
use cases of Personal Computers (PCs), like office work and web browsing.

Due to the form factor of smartphones and tablets the interaction techniques changed. In 1963
the HP 150 had one of the first touchscreens. On smartphones and tablets the touchscreen
is a powerful and intuitive way of interacting. On one side it represents contents like other
displays. On other side it is introduced as replacement for mouse and keyboard.

Keyboard and mouse are input devices that were sophisticated since they were invented.
Today they are powerful input devices through multiple layers of input. In contrast input
on touchscreens is flat. On the one hand, it is able to detect multiple touch points and their
assigned movement. On the other hand, multiple touch points are difficult to handle with high
accuracy. Fingers require space and therefore multiple fingers are less accurate than one. A
user could perform multiple actions for one mouse pointer position. Each mouse button has a
clear sense-making function that can be used with respect to the content. Touch instead offers
that there is a touch and nothing more.

On the technical point of view tapping on the touchscreen is recognized as area. For simpler
interface programming this value is translated into an input vector which contains entries
like position, duration and pressure. A mouse has each mouse button as a possible input
dimension. Instead of pressure on a touchscreen, mouse buttons are binary and can be used
in combinations on the same position. On keyboards there are modifier keys like CONTROL
and SHIFT. They are, like mouse buttons, binary input dimensions. Today a part of these
input dimensions is the same on all devices and systems. The left mouse button stands for
activating a function, the right mouse button opens a context menu. Holding the SHIFT-KEY
toggles higher and lower case letters, the CONTROL-KEY in combination with another key can
activate program functions directly. On today’s touchscreens multiple layers of input can be
achieved by additional input values like touch duration, movement, or finger count. Duration
and movement take more time than tapping. Movement of fingers and finger count, often

11

1 Introduction

called as touch gestures, are less accurate in position. Hence, techniques like ApPLE’S 3D
ToucH take the pressure as additional input dimension into account. As a result, they can
distinguish between light pressure, normal pressure and strong pressure. We think that finger
types are a more intuitive alternative or supplement.

Colley and Hakkila [CH14] tested the behavior of finger depending actions. Therefore they
used a Leap Motion sensor! (LEAP MOTION): an infrared stereo camera. In user study they
conducted, a static prototype was deployed. In contrast we want to test if finger recognition
on mobile prototypes is possible.

In the last few years, manufactures produced tablets with multiple processor cores. This
enables higher calculation power for games, but a better power saving if the device is idle. For
normal work like office work, image viewing or simple games, often only a small part of the
available calculation power is needed. We see the unused resources as potential for new input
methods, e.g. the LEAP MOTION consumes more energy than regular cameras because it has
an integrated light source and applies imaging algorithms on its field of view.

We combined LEAP MOTION with a tablet such that the field of view contains the hand when
touching the screen. In our first tests we discovered that the LEAP MOTION’s hand detection
method does not work in our case. Hence, we conducted a user study to collect data for
training and evaluating. We asked our participants to fill in questionnaires to get feedback and
insights about the workload. Based on the collected image data, we trained a hand detection.
Hands are detected by weighting edges with the optical flow and filtering of periphery edges.
We manually labeled hands in the train data to enable an evaluation. Based on this labels, our
hand detection was improved by empirical searching for parameters. Our finger recognition is
based on our results of the hand detection. We use a classifier to recognize the touching finger
by the distance to known hand images.

1.1 Outline

Chapter 2 — Related Work: Related work that shares context with this work.

Chapter 3 — Data Acquisition: We describe our used prototype. We conducted a study to
collected data for finger recognition training.

Chapter 4 — Data Analysis: In this chapter we present the used pipeline and detection results.

Chapter 5 - Evaluation: Evaluation of our study and possible influence on finger recognition
usage by users. Also the participants’ feedback is handled.

Chapter 6 — Conclusion and Future Work: Our research and results are summarized. We
also show where we see potential for future work.

1http ://leapmotion.com

12

http://leapmotion.com

2 Related Work

Today we see a diverse range of input methods for computers and mobile devices. The large
amount of research done in this decade indicates there is still a wide range of open possibilities.
The input vector of touchscreens is mostly limited to the 2D position. Thus the input vector
can be extended to create more freedom for the user, a more intuitive interaction or simpler
user interfaces. Touchscreens are established as a powerful connection between content and
interaction. Usability can be improved by higher accuracy. Nevertheless, touch interaction
is restricted in its possibilities. Thus additional sensors are used to improve input methods
or even generate new interaction methods. One possibility is to use cameras as an explicit
input sensor. This enables extending the touch input vector with finger recognition as new
dimension.

We decide between detection methods and recognition methods as follows: Detection methods
detect the visibility of an object and can be used to detect position and size. Recognition
additionally describes the object. For example, a finger detection detects the position of a
finger in an image and the recognition adds the finger type.

In this chapter we first show multiple ways of humans’ natural interacting which are employed
as computer interaction. In the second section we focus on existing finger recognition methods.
Then we show ways how hands can be detected by the camera. If hands are known, they can
be interpreted. Hand gesture recognition has similarities to finger recognition, but the finger
type is not important to detect them. We present and discuss methods in the last section.

2.1 Natural Ways of Interacting

Today’s interaction with mobile devices differs from the interaction with traditional PCs. The
devices are smaller, lighter and work with fewer resources. Nevertheless, they are powerful
computers, equipped with a wide range of input sensors. They have cameras, microphones,
accelerometers, gravity sensors, gyroscopes, and rotational vector sensors. The touchscreen is
established as intuitive connection between content and interaction. Moreover, mobile devices
offer possibilities for new ways of interaction between computers and human.

Humans interact with a large vocabulary. Today’s input possibilities for computers of all kinds
are restricted to a few of them. Since humans are able to manipulate objects with their hands,
the first input methods focused on them. One of the most natural interactions is pointing

13

2 Related Work

at an object in environment. Nowadays mobile devices have enough resources to use this
information as input, but the hardware is often not able to gather the necessary data. If the
user’s requirements cannot be achieved by the internal sensors, then there is a wide range of
possibilities how devices can be extended. External cameras can be used and placed where they
are needed. Internal sensors can be modified, for example the field of view of frontal cameras.
If prototypes like these convince stakeholders, future devices may contain their sensors as
internal sensors.

Yang et al. [Yan+13] used a smartphone with frontal camera to enable periphery based actions.
The field of frontal cameras is designed to contain the users head if the user looks at the screen.
This feature can be used for video calls or photographing oneself. To achieve their goal, they
used a special lens to extend the field of view to surround-seeing. Periphery based actions can
be triggered by finger pointing of the user, the user’s movements, and fingers or touch pens
over the screen. Interaction is possible without holding or touching the device. Also indirect
actions, like leaving the room, can be used. This lens has the disadvantage of heavily distorting
the field of view. While the distortion can be undone, the resulting image quality depends
on the cameras resolution. The lens Yang et al. used was large and reduces users comfort in
carrying such a device.

Gestures are natural for humans. We use them often while communicating to make things clear.
Cutler and Turk [CT98] enabled a static computer to detect and interpret body movements like
flapping or clapping. Therefore, they used a camera which covers a large area with its field of
view. Body position and movement were approximated by an optical flow method. To simplify
the conditions, they reduced the image data by taking only skin colored pixels into account.
For this, hands, head and other skinned parts are separated from background and also a hand
detection can be applied. To enable real-time applications, the optical flow is approximated.

If a device is held, the motion becomes a possible input method. Tapping at different positions
on a mobile device results in typically motion events. McGrath and Li [ML14] used an
accelerometer to detect these events. To increase the difference between their touch events,
they focused on five different positions at the device’s sides. Their method is usable like
additional buttons on the device. Moreover, it is more flexible than hardware buttons, because
it needs less counter pressure. Tap positions can be configured. Furthermore it is possible to
deactivate them if the user does not need them, for example if she turns her device in standby
mode.

2.2 Interaction with Touchscreens

The touchscreen combines digital content and physical input. Thus it is intuitively usable by
hand or pen. However, touchscreens do not recognize the exact region, where users want to
tab. This can be confusing or frustrating for users. Holz and Baudisch [HB11] studied touch
input and described error causes. Users try to point their targets, but angle of view and the

14

2.2 Interaction with Touchscreens

fingers shape and roll trigger another position. Touch positions are not as exact as the position
of a mouse cursor. Touch input can be understood as pointing of the user at a specific point
on the screen. Caused by the finger shape and finger rotation the recognized touch positions
differ up to 4 mm. The head position and therefore the angle of view also influence how users
tap and therefore the error size. Holz and Baudisch improved the touch accuracy to 1.6 mm
with a little spot light that shows the touch position on the finger nail.

Causes for targeting errors on touchscreens, like fingers shape and head positions, are unde-
tectable by touchscreens itself. They only detect the error prone contact area of the finger.
However, it is possible to support the user by shifting the touch position before handling.
Buschek and Alt [BA15] corrected the touch position with a machine learning algorithm. In a
study they asked participants to tap at touch targets and used the measured error to calculate a
position depending correction matrix. While this was device specific, Buschek et al. [BRMS13]
also studied the creation of user based touch correction with normalized correction matrices
that fit any device. Both solutions do not take finger rotation and head position into account.

Correcting the input improves usability and can additionally be used to shrink button sizes
to win content space. Usability can also be improved by a wider range of input dimensions.
Further techniques, like long press, take another dimension of the input vector into account,
like the time. Gestures use the movement and finger count, and if there is no fitting dimension
a new one can be created, like the pressure in APPLE’S 3D TOUCH.

Touchscreens in today’s mobile devices are not able to detect more than the touch region. They
cannot detect if a finger, another skinned part or a touch pen touches the screen. Certainly it can
be made more sensitive to detect finger over the touchscreen. Rogers et al. [Rog+11] showed
that with existing touch hardware it is possible to predict the orientation of the touching finger.
This enables a context based correction of the touch position. It also makes new interaction
concepts possible, like their high-precision bimanual pointing where the pointing directions of
two touching fingers are taken into account.

Touchscreens are frequently used by finger, but there is a difference between individual finger
types in size and comfort. The thumb for example has fewer degrees of freedom compared
to other fingers. The index finger is more comfortable to use than the little finger. To proof
this Colley and Hékkila [CH14] tested the topic in multiple user studies and with a stationary
prototype which contains a LEAP MOTION. Their results show that fingers differ significantly in
performance and comfort. The subjective rating of their participants showed that the index
finger is the most comfortable and fastest finger. With increasing distance to the index finger,
speed and performance decreases. So the little finger takes the lowest rating. The thumb has a
large variance in comfort, but value based it stays between middle finger and ring finger. Index
finger and middle finger are the most accurate. In a second study they measured the error per
finger at touch screen positions. Their result showed that hitting targets in the corners is more
difficult than in the middle. Especially hitting the upper left corner with ring finger or middle
finger is very hard. In their third study the concept of finger specific functions was tested. In
Figure 2.1 their functional prototype with a smartphone and a LEAP MOTION can be seen. The

15

2 Related Work

Phone with finger,
specific|Phonebook
and Gallery/apps!

PC running
finger
recognition
algorithm

Figure 2.1: Prototype by Colley and Hakkild [CH14] for exploring finger specific input.

LEAP MOTION has integrated hand detection algorithms. On the smartphone they run two
sample applications with per finger functions. Their participants’ response was positive for
functionality. Negative response mainly focused on comfort of different fingers. Uncomfortable
fingers are suitable for position independent functions or critical functions like deletion.

2.3 Existing Finger Recognition

In this work we distinguish between detection and recognition as follows: A detection finds
position and shape of an object. All touchscreens are able to detect fingers on their surface. A
recognition additionally detects the object itself and describes it. Today’s mobile devices are
not able to determine the type of a touching finger. Colley and Hakkila [CH14] used LEAP
MOTION, an infrared stereo camera with an integrated light source. It is shipped with detection
methods for hands, arms and fingers. Also tools like a pen can be detected. Nevertheless,
finger recognition is studied on touch tables.

On touch tables other detection methods for hands and fingers than on mobile devices can be
deployed. The device is static and larger in its size. Seamless presentation of content and touch
detection has to handle different challenges. The touch technique used by mobile devices is not
scalable. Hence, there are other finger detection methods. Chen et al. [Che+11] utilized an
infrared camera to detect fingers on the tables surface. This technique is not able to distinguish
between fingers and therefore is a finger detection.

16

2.4 Hand Detection

Marquardt et al. [Mar+11] created a tagged glove to interact with a touch table. Hand and
finger recognition is more simple if the fingers are marked. On one side, this way of finger
recognition is reduced to tag detection which is more design depending and less error prone.
On other side, it is only possible if users accept the tags on their hands. Marquardt uses
a glove which on the one hand is uncomfortable in warm areas. As an advantage the tags
can removed from the hand any time without destroying it and can be utilized by any other
person. Furthermore this technique can be used on other touch devices, if there is a suitable
tag detector.

Finger recognition by position is possible but we only mention it for the sake of completeness.
Azenkot et al. [Aze+12] used the finger position to detect which finger has touched the screen.
They did not use any visible content and therefore their technique can also be done with any
other touch sensitive surface. Blind typing is possible with this technique. Today’s touchscreens
are not suitable for real finger recognition.

2.4 Hand Detection

Already mentioned in Section 2.1 are camera-based methods that are able to detect hands.
We also introduced the LEAP MOTION that was utilized by Colley and Hakkila [CH14]. In
this section we present different ways how hands can be detected. Kang et al. [KNRO8]
presented different models for hand and finger detection for cameras. The first group of
models approximates the hand position and gesture as a hand model. A 3D-description of the
hands surface is called volumetric model. To derive the hand gesture and positions the model
has to be varied until it fits with the camera image. On one hand these models require many
parameters and are too complex to be calculated in real time. On other hand they represent
hands fairly realistic. Another hand representation is the skeleton model. A virtual skeleton
that fits human hands and contains its physical possibilities is used to approximate a hand on
an image. The LEAP MOTION also describes hands as a skeleton model. The second group of
models is appearance based models that only take visible features into account. The presented
variety contains deformable templates, hand image sequences and shape models. These models
also show that hand detections work hand in hand with finger detection methods.

Skin color is often used for hand detection. Its robustness depends on the environment light.
Darkness or colored light confuses these methods. Also skin colored objects except the hand
may lead to errors. Kolsch and Turk [KT04a] created a fast hand tracking algorithm for image
sequences. Hands are tracked by their two dimensional position in the image. This hand
detection is color-based and uses multiple features to detect the hands position. Positive
features are connected to flocks of features. For their participants wore long-sleeved clothes,
the center of these flocks lays over the hand. In further images, feature positions can be reused
if they stay positive. If a featured position got an unsuspected color value, it is deleted. New
features are created from skin colored pixels to keep the hand tracked.

17

2 Related Work

If the hands shape stays roughly constant it is a possible feature for tracking. The condensation
method of Isard and Blake [IB96] is able to follow a hand in an image sequence. The
condensation algorithm is a shape model and works with complex background. Their algorithm
was able to run in real-time with 25 Hz on a computer with 200 MHz CPU frequency. Thus,
today’s mobile devices are able to run this algorithm. This method is not restricted to hands
but can detect other objects like faces. We assume that changes in the shape, like clenching
one’s fist, may confuse this method.

More robustness to background can be achieved with depth cameras. Ren et al. [RYZ11] used
a Microsoft Kinect to detect hands in images. They identified fingers at detected hands by
iterating over the hands contour. While they only used it to distinguish between gestures, it
may be possible to extend their method to finger recognition, if the hand is in midair. Through
our search we found multiple papers which focus on hand gesture recognition without hand
detection. These papers are discussed in the following section.

2.5 Hand Gesture Recognition

Humans use different ways of communicating. One of the natural possibilities is speech.
Unfortunately, not everyone is able to speak. Dumb people often use gestures to communicate
with others but not everyone is able to understand them. Nowadays researchers develop
methods to enable computers to recognize hand gestures and translate them to speech. Also
controlling devices through camera-based gesture recognition is possible and used in games.

Edges are important image features. Ravikiran et al. [Rav+09] used the canny edge detec-
tor [Can86] to interpret hands in images. They derived fingertip positions from the bend of
image edges. In relation to the whole hand gestures are derived. Their focus lays on sign
language recognition and therefore in detection of specific hand gestures in midair. Although
each gesture is a unique combination of hand rotation and stretching of different fingers, the
fingers types are not important.

The goal of Kang et al. [KNRO8] was enabling sign based input. Therefore, they take
images from hands in midair with a flat background. Skin colored blobs are separated and
morphological operations are applied. Fingers are separated from the hand and used to identify
all hand depending blobs. As last step the collected information is used as input. The evaluated
their method by enabling it as input for a calculator. The disadvantage of this method is the
dependence on environment light. Darkness or colored light confuses the detection.

If conditions ensure that the image only contains the hand and that hand gestures are unique,
hand gestures are recognizable by image frequencies as shown by Kolsch and Turk [KT04b].
They used cropped and normalized hands for their detection and compared the similarity to an
artifact-free Fourier transformation of the mean of hand images with specific unambiguous
gestures. We assume that the image frequencies cannot be used for finger recognition. In the

18

2.6 Summary and Discussion

case of Kolsch and Turk there was a large difference between the hand gestures. But there are
nearly infinity possible hand gestures for one specific tapping finger. Moreover similar gestures
for different fingers are possible.

Machine learning algorithms are also able to classify hand gestures. Mackie and Mc-
Cane [MMO4] used a decision tree to distinguish generated hand postures in images. Their
images did not contain noise, color of background and hand were flat. However, machine
learning algorithms are powerful and able to determine relevant features that work on real
data.

The previously described methods focused on detection of a known set of hand gestures.
However, the hand posture itself can be interpreted. Lee and Lee [LL11] searched hands in
images. Stretched fingers are detected, fingertip position approximated together with the
fingers direction. This method can be used as mouse replacement. They used finger movement
as drawing actions and swinging in and out a finger as tapping.

2.6 Summary and Discussion

There are multiple ways of interaction with today’s mobile devices. Methods are based on
humans’ natural interaction methods like speech and using the hands to manipulate the
world. The touchscreen connects the presentation of virtual objects with physical actions.
However, today’s touchscreens are limited in their detection accuracy and dimension of the
input vector.

Touchscreens are not able to detect what kind of objects touch the screen. Fingers and touch
pens appear as touch areas and are translated into touch points. This causes shifts between
target and detected touch point. Holz and Baudisch [HB11] addressed multiple error causes
like the finger shape, angle and the users angle of view. Shifting matrices can be used to shrink
the erroneous shift [BA15; BRMS13].

To improve touchscreen input new input dimension can be created. APPLE used pressure in its
3D ToucH technology. Rogers et al. [Rog+11] technique ANGLEPOSE enabled detection of the
finger orientation with existing touch hardware. Colley and Hékkilda [CH14] conducted user
studies with a static prototype to test behavior of finger recognition as input dimension.

There is no deeper research in finger recognition as far as we know. The simplest possibility
is marking the fingers with tags and detect fingers indirectly. Efficiency of this method
depends on design of these tags. Marquardt et al. [Mar+11] used a tagged glove to enable
finger recognition for touch tables. There are also sensors like the LEAP MOTION, where the
manufacturer offers hand detection methods. In case of the LEAP MOTION there is public
accessible information which method they use, as far as we know.

19

2 Related Work

Hand detection methods exist in multiple variations. We showed hand detections that depend
on skin color [KT04a; LL11], optical flow [CT98], shape [IB96] or depth images [RYZ11]. Skin
color is usable, if there is color information and the light conditions satisfy the requirements.
In static scenes the motion of hands is enough to track them. On mobile prototypes the
background motion has to be filtered. Shape models are robust to complex background, but
they need information about the shape. Depth images allow a separation between hands in
midair. Detecting hands which touch a screen may be more difficult, because the screen has to
be separated from the hand.

Often hand detection is the first step for gesture recognition, whereby gestures are special
hand postures. For this hands and their fingers are detected and interpreted. This can be done
by analyzing edges [Rav+09] or applying morphological operations on skin colored image
parts [KNRO8; LL11]. Detected hand postures can be classified by decision trees [MMO04].
Additionally, if the hand detection accuracy is high enough, image frequencies can also be
used as feature [KT04b]. We distinguish finger recognition from gesture recognition and finger
detection because the finger type is important for finger recognition but not for both others.

In this work we address the open question how we can recognize the finger type while using
touchscreen input. To do so we built a working mobile prototype and conducted a study to
evaluate and analyze it. The next chapter fully describes the prototype in detail, the study and
our achieved data set.

20

3 Data Acquisition

Our goal is finger recognition on a mobile prototype. From related work we know that
camera based hand detection is possible. Finger recognition on the contrary is restricted. The
manufacturers of LEAP MOTION studied this method, but only for a few cases. However, hand
gestures are well understood.

Colley and Hakkild [CH14] tested usability of finger recognition in multiple user studies. For
this they used a LEAP MOTION in a stationary prototype. Their results show that finger detection
is a powerful way of interacting. Our work focuses on enabling mobility to users. Therefore,
we build our own prototype which is described in the first section of this chapter. Using this
prototype we conducted a user study to collect data to train our own finger recognition method.
Design, participants and procedure of our user study are described in the middle of this chapter.
Furthermore our received data set and its properties are presented. At the end we summarize
and discuss the content of this chapter.

3.1 Apparatus

Our goal is to extend the input vector of touchscreens on mobile devices. For realizing the
finger recognition we connected a tablet device and a LEAP MOTION which is an infrared
stereo camera. We decided to use a LEAP MOTION sensor because we know it from related
work [CH14]. The LEAP MOTION is developed for hand recognition. It comes with Software
Development Kit (SDK)!, containing a hand, finger and tool recognition functions. Recognized
hands can directly be accessed by using their virtual skeleton model. It is not guaranteed that
this hand detection works in all situations because the manufacturer of the LEAP MOTION
made assumptions. They expect the hand in a distance of at least 7 cm. Also, they assume that
the users lay the LEAP MOTION in front of them on a table or mount it on a OKULUS DK22.
Therefore, they assume to see the whole hand with fingers from below or above.

Like Colley and Hakkild [CH14] did, a way of building a working prototype with hand
recognition ability is to lay the LEAP MOTION under the touchscreen, as visible in Figure 2.1.
Also, the LEAP MOTION can be mounted above the screen such that the user can work below it.

1http ://developer.leapmotion.com
2ht't:p ://leapmotion.com/product/vr

21

 http://developer.leapmotion.com
http://leapmotion.com/product/vr

3 Data Acquisition

Mounted
LEAP MOTION

Figure 3.1: Our prototype for data acquisition in the user study. Showing the tablet, the LEAP
MoTION and its mounting. The distance between the displayed hand symbol and
the LEAP MOTION amounts to 8 cm.

Such a prototype is not comfortable for daily use, because it is too big. Instead we mount the
LEAP MOTION at the top of our tablet, as visible in Figure 3.1. The top of the tablet screen stays
closer than 7 cm from the LEAP MOTION. Thus, we win more compactness of the prototype.
Middle and lower parts of the tablets front face are in the interaction range given by the
manufacturer. In Figure 3.2 an example frame of the resulting field of view is shown. It covers
the whole area over the touchscreen, but there is a large difference between both views. The
LEAP MOTIONS aperture angle of 150 degree ensures that we can observe tapping hands at any
position on the screen. We decided to use only the portrait orientation of the tablet to minimize
lens distortion in the upper corners. If we would use the horizontal orientation of the tablet
then the LEAP MOTION requires a distance to the tablet to cover these corners. As a result of
our mounting the tablet is a static object in the field of view while user and background are
allowed to move.

When testing the hand detection algorithms of the LEAP MOTION these were not able to detect
touching hands on out prototype. According to the LEAP MOTIONs manufacturer®, they use
algorithms to remove ambient light and background objects like the head. Only to objects
which are probably hands or tools, a 3D-reconstruction is applied and used to filter hands and

*http://blog.leapmotion.com/hardware- to- software- how-does-the- leap-motion- controller-work/

22

http://blog.leapmotion.com/hardware-to-software-how-does-the-leap-motion-controller-work/

3.1 Apparatus

(a) Left image (b) Right image

Figure 3.2: Our prototype’s field of view. The lower quarters of both images show the mounting
of the LEAP MOTION at the upper side of the tablet. The tablets screen is visible in
the middle where mirror images appear. Screen content is not visible, because it
contains no infrared light.

tools. Since the tablets screen is close to the LEAP MOTION, this is also true for the hands.
Thus, we assume two main factors that disable the hand detection. First, the tablet which is
too bright for a background object. Second, the lens distortion has too much influence on
touching hands and disables an accurate hand reconstruction. The latter in combination with
perspective effects covering of fingers by other fingers or palm of the hand. This effect is visible
in Figure 3.2 where the thumb is hidden behind the index finger. It is possible that fingers
are visible in only one of both images. Hand posture and rotation can be important factors.
Nevertheless, hands are bright objects with clear edges if touching the screen. This is why we
trained our own hand detection and finger recognition.

The LEAP MOTION SDK interface is compatible to fourteen programming languages and
program libraries, like Java and Python which we are using. The SDK uses the observer pattern
to inform about new available frames. Depending on user settings the LEAP MOTION can
offer up to 120 frames per second according to the manufacturer. Each frame contains two
grey-level images with a resolution of 640 x 240 pixels. The LEAP MOTION has infrared LEDs
inside to light the scene in front of the cameras. Thus hands over the screen appear as bright
objects in the field of view.

As a tablet device we utilize a SAMSUNG GALAXY TAB 8.4 PRo. It supports the current alpha
version of the LEAP MOTIONS ANDROID SDK due to the powerful CPU and the 2 gigabyte
of memory. Open Source Computer Vision Library4 [BraO0] (OPENCV), a computer vision
library, is available for the tablets system Android. In this way we built a base for future work.
On the hardware side the tablets screen does not emit infrared light and is therefore black
on all images of the LEAP MOTION as visible in Figure 3.2. We used a black version of the
tablet, because of the LEAP MOTION’s infrared light source. A bright device surface reflects
the infrared light except on the content area of the screen. While testing our prototype with a

4ht'tp://opencv.org

23

http://opencv.org

3 Data Acquisition

bright mounting and a white tablet we found that this creates sharp edges and bright regions.
These regions were hard to distinguish from the hand. In addition, the resulting images were
always overexposed.

For data collection we built a simple Java program to record the provided images in real time.
The tablets memory and storage space are restricted. So we used another device, a laptop, for
recording. To reduce calculation effort during the study we do not apply any imaging algorithm
and save each frame with a time stamp as binary stream. This is necessary because storing the
images needs time, while our finger recognition has no need to reuse images. This requires a
conversion of the saved files to train our algorithms, but this can be made in one step.

3.2 Design

The study focuses on collecting data to train and evaluate hand detection and finger recognition
challenges. Therefore, a repeated measure design was used to create comparable data. In this
case data means the image data from the LEAP MOTION which were recorded by a laptop, and
all data about our participants and actual study state which were collected by the tablet in our
prototype. The tablet collected sensor data from accelerator, gyroscope and magnetic field
sensor. Additionally, it saved all touch events together with target and touch position. All of
this data contains also a time stamp. We synchronized clocks of these devices over network
connection for easier combination of the data. Touch targets where given as dependent
variables. The sensor data were used to decide if the participants held the tablet in the left
hand or if it laid on the table during the study. This knowledge was used as independent
variable.

We used a desktop PC as extra device for questionnaires. We asked each participant about age,
gender, profession, experience with touchscreens, and if they are right-hander or left-hander.
During the study we asked the participants to fill in twelve raw NASA Task Load Index [Har06]
(NASA-TLX) one after each task or subtask. At the end we asked them for feedback about the
study and about ideas, where finger detection can make sense. We also asked them to rate if
they would use it or not.

The study was structured as follows:
Task 1: 40 times tabbing at given positions for each finger in 5 subtasks
Task 2: 80 times tabbing at given positions with given finger
Task 3: 40 times line drawing with given start and end point for each finger

Task 4: 80 times line drawing with given start and end point with given finger in 5 subtasks

24

3.2 Design

‘ SAMSUNG
|
\ Cl e <)

SAMSUNG

(a) Tabbing in task 1 and 2. (b) Line drawing in task 3 and 4.

Figure 3.3: Examples of the study screens. The blue cross hair is the tabbing target (a) or
starting point (b). The red cross hair shows the end point (b). The hand symbol
indicates the finger for tapping or line drawing. In this case it is the ring finger.

Our study application interface was simple, as visible in Figure 3.3. In task 1, shown on the
left side, we used a grid of 5 x 8 targets in randomized order for each finger. Also the order of
fingers was randomized to prevent side effects. After each condition we asked to answer a raw
NASA-TLX to get insights if there are any fatigue effects during the study.

Task 2 was similar to task 1. We additionally changed the stated finger between the positions.
Each finger was used 16 times in randomized order. We designed the second task to have
deeper insights on hand posture, switching fingers during interaction could lead to different
postures. So we asked the participants to change the finger, to see if the hand gestures will be
more different.

Tasks 3 and 4 were similar to the ones before. An example picture of these tasks is shown in
Figure 3.3 (b). In addition to the tasks before we added red crosshairs on the same grid point
positions with an offset to the blue one. In these tasks, our participants were asked to draw a
line from the blue crosshair to the red crosshair. We did not give them an explicit line to follow
as this is an analogy to drag and drop operations where the way is not important.

25

3 Data Acquisition

3.3 Participants

We recruited 22 participants (4 female) through our university mailing list. All of them were
students of computer science or software engineering. They all reported good or very good
touch screen experiences. Average age of the participants was 22.15 years (SD = 3.22) with a
range between 19 and 31 years. Three of them were left handed, but also used the right hand
in our tasks.

3.4 Procedure

First we welcomed our participants and informed them about the procedure of the study.
Second we asked them to fill in a consent form and a questionnaire with personal data. We
explained the study app and our first task. The participants were informed by a special screen
with light blue background color and a short dialog when they fulfilled a task or subtask. After
they fulfilled the first subtask of task 1, we showed them the first NASA-TLX. The NASA-TLX
is a questionnaire designed to record the workload of a task. We asked them to fill it in
spontaneous to reduce stretching of the truth. After each of the following subtasks and tasks
we asked them to fill in another NASA-TLX. During the study we guided them and informed
them about the requirements of each task and answered questions about the study. After the
last NASA-TLX we asked them about study feedback and possible usage of finger detection.
It was also written in a questionnaire. When our participants left, we served each of them
chocolate as a reward.

3.5 Data Set

Our collected data contains video files, taken with the LEAP MOTION sensor and data about the
study itself, like indicated finger, positions of fingers and targets. We received about 5 hours
and 50 minutes of uncompressed video files with an average frame rate of 110 frames per
second. Each video frame contains two images with a resolution of 640 x 240 pixels. For each
participant we got 280 tapping scenes and 280 line-drawing scenes. There are situations within
the video files where no finger is visible on our screen. This happened when participants took
time for searching the next cross or if they filled out a raw NASA-TLX in task 1 and 3.

We recorded 12,320 touch events, from touch down to touch up, together with study data, like
indicated finger, cross positions, and touch positions. Thus, we are able to detect wrong finger
positions and accidental loss of contact with the screen. The data also contains confusion
errors where participants used the wrong finger. For the first two tasks we corrected the data
while training the finger recognition in Section 4.2 and got an error rate of 1.8% (95 taps).

26

3.6 Summary and Discussion

Captured sensor data from magnetic field sensor, accelerator and gyroscope amounted to
556.4 MB. With their help we identified 6 participants who held the tablet in their hand while
other 15 laid it on the table. The last group contained all three left-handers. Although they
used their right hand we put them in a separate set to prevent any side effects. In Chapter 5
we discuss study results which are independent from our aim to collect data for algorithm
training.

3.6 Summary and Discussion

In this chapter we introduced our prototype which we used to collect data in our study. We
connected a LEAP MOTION sensor which is an infrared stereo camera with a tablet. To ensure
the field of view contains the whole area over the screen, we mounting was installed at the
tablets top. The LEAP MOTION manufacturers hand detection algorithms are unable to detect
touching hands, caused by our mounting position and the resulting distortion.

Our study was structured into four tasks with a questionnaire about personal data at the
beginning and another questionnaire about feedback at the end. In task 1 and 2 we asked our
participants to tap with an indicated finger on cross hair targets on the screen. While in task
1 each finger was used in its own subtask, in task 2 we randomly switched between fingers.
After each subtask in task 1 and after task 2 we asked our participants to fill in a NASA-TLX
which is a questionnaire that is designed to capture information about workload. Task 3 and 4
were repetitions of task 1 and task 2, except that tapping was replaced by drawing a line from
a start cross hair to an end cross hair.

We collected video files for each task with the LEAP MOTION sensor. The tablet collected all
study data, like targets, indicated fingers, any touch event, and the device motion. With the
NASA-TLX we reported subjective workload ratings of each finger, each task, and the whole
study. Additionally, we recorded feedback about the study and ideas of finger recognition use
cases from our participants.

27

4 Data Analysis

In this chapter we analyze the collected image data from our data acquisition study. Our focus
lays on detecting one single finger of the right hand at a touching moment. For this we built a
pipeline which is shown in Figure 3.2.

In the first section we will describe our hand detection. At the beginning we describe the
data we use for training and how we extract them from our collected data. From related
work we know that gesture recognition with edge detection is possible on images with flat
background [Rav+09]. We also know that optical flow can be used to find moving hands in an
image [CT98]. Our hand detection is based on the assumption that a hand has to move before
the screen is touched. Therefore, a combination of optical flow and edge detection is used. All
parts of the hand detection are described and brought together. Furthermore, we describe how
we chose parameters and how our evaluation process works.

The second section concentrates on finger recognition. It is trained on hand images, extracted
by results of our hand detection. For our finger detection we have to handle factors like lens
distortion, hidden fingers, and different hand gestures per finger. It is also possible that there
are similar gestures for different fingers. To simplify this challenge we assume that there are
similarities between hands with the same touching finger type.

4.1 Hand Detection

The LEAP MOTION offers only gray-level images which stand for the infrared channel. In
consequence we cannot use any skin color detection, but human skin is a good infrared light
reflector as visible in Figure 3.2. The LEAP MOTION uses three cone shaped light beams to
ensure a minimum brightness of the illuminated hands. As a result, at the image borders we
have to consider a loss of the hand brightness.

As we want to create a new input dimension, we want to keep the reaction time as short as
possible. Therefore, we have to recognize the specific finger in the moment it touches the
screen. Since hand detection is our first step, we train hand detection to find the hand before
the touch event is recognized by the touch screen.

If the user is going to tap we assume that at least one finger has to move. Also hand detection
by optical flow is possible [CT98] but not efficient enough for fast hand detection if calculated

29

4 Data Analysis

{ Image sequenze]

[Edge detection J [Optical flow J
Hand Detection \ /

Hand extraction

y

Finger recognition

Figure 4.1: The finger recognition pipeline.

with high accuracy. On the hands in our images there are less good-to-track-features. Thus, we
are using Farnebécks two image based dense optical flow variant [Far03] which is implemented
in OPENCV. Between these images movement of any visible object is approximated. There are
also feature based optical flow methods but the hands in our images did not show enough
features to be tracked.

To develop our hand detection algorithm we extracted images from the first two tasks of all
participants. We used the captured touch down events to extract series of 20 frames out of
the video files, whereby the last frame shows the moment when the finger touches the screen.
Therefore, we manually shifted the video files with a time offset to remove latency of the
touch screen. The latency was about 10 ms, due to the frame rate of 110 frames per second
we cannot approximate it with a higher accuracy. Each of our extracted frame series comes
with time stamps. Together with all other captured time series we build a data base. The time
distances between two time stamps in this data have a big variance. Our analysis is image
based, therefore we interpolated values of the other time series to fit the image time stamps.
We used linear interpolation to fill the gaps.

Each entry in our database contains the following data: The frame series, containing left and
right images per frame, ID of the participant, indicated finger and aim position, touch position
and sensor data. For evaluation we inserted the hand region for each image at touch time.
We manually added them as a rectangle, approximating a perfect hand detection result. The
rectangle contains as much of the fingers as visible, but as less periphery as needed. In the
following we call them hand labels.

30

4.1 Hand Detection

Figure 4.2: Hand detection pipeline as image flow. Arrangement according to Figure 4.1. Edge
detection (left) and optical flow (right) are calculated and used for hand detection
(bottom).

For hand detection we used the grey deposited region in our pipeline model visible in Figure 4.1.
In Figure 4.2 example images of each of the steps are shown. At the beginning of this pipeline
we approximate the optical flow for the whole image, shown on the right in Figures 4.1 and 4.2.
The most important part of the result will be the down movement which is presented with the
red color channel. This gives us an approximated hand region with noise. In bright regions like
near fingers cups the LEAP MOTION crops values to the maximum value. In affected regions
approximation of zero movement is a known issue. At the beginning we selected parameters
for the optical flow by visual examination. Also the time distance of the selected images is a
parameter.

We improve our hand detection with the canny edge detector [Can86] shown on the left in
Figure 4.2. It guarantees that each edge has a thickness of exactly one pixel. It depends on
two parameters an upper and a lower threshold. The edges taken into account are influenced
by the upper threshold. The length of these edges is influenced by the lower threshold. Edges
are indicated by an image where the upper threshold is applied. Only these edges are taken
from an image where the lower threshold is applied. As final step the thickness of the edges is
set to one pixel.

31

4 Data Analysis

RN .
Reflection on user’s eyeglass

%\3
Mirror Image
/ /

Hand edges

Other Periphery
N / =
/ = N ——
Mount of the LEAP MOTION S -

Figure 4.3: Example for edges in the LEAP MOTION’s image together with causes.

We chose the parameters of the canny edge detector to detect only contrast rich edges. In
Figure 4.3 we present one example of an edge image. Calculated edges are weighted with
the result of the optical flow and are post filtered. The movement of an edge is approximated
as the sum over the down movement in its bounding box. This eliminates static edges like
edges on the prototype itself. Positional filtering is also applied. Edges in the upper regions are
in the peripheral or part of hands that fill nearly the whole image when touching. In latter
case this edges will be long. Our assumption is that edges of the periphery will end far away
from the visible screen and therefore we can ignore edges where the lowest point is far above.
We also use positional filtering to reduce edges of the mirror image. Here our assumption is
similar. Edges of the mirror image can only appear on the visible screen and therefore start in
this region. Here we filter according to the highest pixel of an edge. We first approximated
values for these filter methods and refined them empirical.

The loss of brightness at the sides of the image results in a cut of the edges. This phenomenon
also appears at the top of the image. To reduce it we enlarge of contrast and increase brightness
in these regions. We are using a pixel-wise static factor which is multiplied onto each frame
before edge detection. The factor map contains float values larger or equal to one. Towards
the edges the value increases. For our prototype we are using simple rectangles near the edges
together with Gaussian blur to create a soft blending.

A value for the movement set to 0.05 seemed to work reasonable good in our first try. The
upper border for our filtering was set to 40 pixels because this removed perfectly the reflections
caused by eyeglasses worn by some of our participants. The screen appears between the 120th
and the 152nd pixel row. Therefore, our lower border is set to 120 pixels. Additionally, we
can crop the lower part of the image completely for it never contains touching fingers or parts
of the hand. With respect to the finger size we crop only away the image parts under row
180. This value is also refined in empirical way. In the same way we choose the size of the
rectangles in our mask image, its value, and parameters of the Gaussian blur.

32

4.1 Hand Detection

The last step of our hand detection is the selection of the potential hand region. Our simple
approach is that it is the minimal region that contains all selected edges. Sometimes these
edges can be connected with edges of the periphery. Sometimes unimportant edges near the
hand are selected or edges on the body of the user. Therefore, we do not only take the actual
found region into account but also the previously found hand regions. To stabilize the region,
we compute the median of multiple detected border values of our region. The maximal count
of influencing borders is also a parameter.

We evaluate our hand regions with the hand labels. We compare the detected region with our
label by aid of the function f(D,L) =2 - % € [0,1] where F' is our detected hand region
and L is the hand label. The result we call overlap value. A result of O means no overlap of
both regions, a perfect match will get a result of 1. In Figure 4.4 examples for different overlap
values are given. We assume that our hand labels do match well but are not perfect. Hence, an
overlap value larger than 0.95 is a perfect match. An overlap value larger than 0.75 shows
large parts of the hand but fewer peripheries. It is possible that parts of the hand are cropped
away like the little finger if stretched away in the darker side area. For later finger recognition
the most important property of the hand is the touching finger and therefore the lower bound

of the detected region.

Putting all parameters together we have 22 to train. Three of them are floating point numbers
without limits. We are using a train loop to automatically modify and evaluate our config-
urations. For each parameter configuration we test if an increase or decrease will improve
the overall count of detected regions with at least 0.75 overlap value. Thus we divided our
database into three parts. We assigned 14 participants as train data, four were used for
evaluation. The three left-handers form an extra set because we do not know if their gestures
differ from right-handers. Participants who hold the tablet in the hand were split into a train
set and test set such that the proportions were as similar as possible.

Our train algorithm takes into account how often a parameter was used to search for a better
value. It loops over all parameters and tests each with higher and lower values in the valid
range. With respect to the context the step width of each parameter is different. At the
beginning we chose the steps based on the last digit of our start values. After the training
converges we lowered them to a tenth. If this was not possible we chose the next valid value
larger than zero. For each direction we tested as long as our evaluation value increased but
tested no less than two new configurations. At the end the best of these configurations is
taken. The next parameter is chosen by time it was tested. Parameters that were less frequently
modified are preferred. With a probability of 12.5% it randomizes the order of the parameters.
With another probability of 12.5% the train algorithm will return the best known configuration
of all tested possibilities. Thus it will not test the same path of configurations multiple times
when the test will not increase the best parameter configuration. This procedure will not
guarantee a global maximum but will increase the detection rate on our database as visible in
Figure 4.4.

33

4 Data Analysis

(a) Overlap value 0.3 (b) Overlap value 0.4

(c) Overlap value 0.5 (d) Overlap value 0.6
A :
(e) Overlap value 0.7 (f) Overlap value 0.8

(g) Overlap value 0.9 (h) Overlap value 1.0

Figure 4.4: Examples of different overlap values. Manually selected hand regions are green,
red regions show the result of a hand detection. We assume that an overlap value
higher than 0.75 is enough to recognize the correct finger.

We calculated an overlap value for each image sequence of the first two tasks. In Figure 4.5
our results are shown as box plots, whereby all outliers are shown as red crosses. Interesting
points are outliers at the bottom which show that there are sequences where the hand was
never found. Also important is the density increase of outliers with increasing overlap value
as can be seen at the trained result for the train set and the left-hander set, and especially
at all best-of-two results. We see this as a potential for further improvements of the hand
detection.

34

4.1 Hand Detection

Comparison of different hand detection algorithms

100 . - T

. | —t | L L —
]
* \ % 7
80 x T | * T : I
| | |
| T | ! |
T \ I | ! jﬁ
1 | 1
g 60 ! - H X !
c} 1 , i ¥
=] ! 1 i
= ! 1 i i T
P ! : i
S 40 I T. % T I
+ ¥ . i
¥ i ¥ *
I f
2f ; : : .
£ T f
: T '
; : f
4 F

C L I r L
Untrained Trained Best of two Trained Best of two Trained Best of two
Algorithm Variation

Figure 4.5: Comparison of detection variance between different sets of data. Rightmost the
result for the untrained hand detection algorithm on the training set. Then pair
wise the results for trained algorithm and best result of two sequences for train
data, test data and left hander dataset.

On our first test the algorithm detected 68.43% in the train data set with an overlap value
of 0.75 or more. After our training it detects 83.33% of all hands in the train data. In our
evaluation set it achieves 71.71% of all hands. Possible reasons for this result are overfitting or
our evaluation set selection. Since the LEAP MOTION is a stereo camera we are able to see the
same scene from two different positions. Assuming that a bad detected hand will result in a
bad finger recognition we tested only taking into account the best of both image sequences
in the frame sequence. This increases the results for the same configuration to 92.37% in the
train data and to 82.13% in our evaluation set. For the left-handers the detection rate with the
trained algorithm achieves 79.81% and 89.01% if only the best of both sequences is taken into
account. We see that our algorithm also works for left-handers if they use their right hand.

During analysis of the train results we observed difficult situations that are not handled with
our current hand detection method. For example, our algorithm only detects one hand. At
this point, a second moving hand results in enlargement of the hand region and therefore in a
huge shrink in the overlap value. Other moving and bright objects also confuse the algorithm.
We improved this drawback with our position depending filtering which removes objects like
bright reflections eyeglasses. Another difficult situation appears if the users move their hand
too slowly. In combination with movement of the visible body or background this leads to
situations where the optical flow is too ambiguous to select the hand region.

35

4 Data Analysis

Index Middle Ring Little
Finger Finger Finger Finger
Thumb 62.29 19.83 8.35 4.87 4.65
Index Finger 20.27 45.88 21.52 7.73 4.60
Middle Finger 7.42 22.43 47.33 14.40 8.42
Ring Finger 5.57 9.26 19.50 47.66 18.00
Little Finger 6.88 8.06 12.66 23.57 48.84

Thumb

Table 4.1: Results of first finger recognition approach. The rows stand for the specified finger.
The columns show the classification results in percent.

4.2 Finger Recognition

We apply a supervised finger classification algorithm for our finger recognition. To train the
classification we use the detected hand regions in our image sequences. Each sequence has a
specified finger which we use as a label for the classes.

For our first approach we cropped the hands out of the last images of our sequences where
the hand touches the screen. To enable better comparison of the images with different sizes
we scale and extend them. The target size is derived from the sizes of the detected results by
using the mean. All images are scaled to fit into the target size. We do so because on one hand
we do not add too much interpolated data, on other hand we want to keep the loss of details
low. It is possible that the aspect ratio is an important feature. We kept it and extended the
scaled images with a black border, such that they are centered in an image with our target size.
We call this images template images.

To classify a new image, we first scale and extend it like our template images. Then we compare
it with each template image by calculating the absolute value of the difference between each
pixel. The lower the sum of these differences the higher is the similarity. In the regions where
the scaled source images overlap this is true. In all other cases the difference is equivalent to
the brightness of the template image, the new image, or black. Using only the region where
image and template image overlap results in a loss of information and decreases the correct
classified results to a fifth. This is not better than guessing or taking the same finger for all
images. To prevent this effect we used the whole image region for detection.

Our database contains about 500 detected hand images for each participant. For each of these
participants we used all others to train. Each image was classified and we stored the result in a
confusion matrix. At the end we summed up all matrices and normalized them. The result is
shown in Table 4.1. The rows stand for the specified finger and the columns for the detected
finger. Our aim is to increase the values on the main diagonal.

36

4.2 Finger Recognition

Index Middle Ring Little
Finger Finger Finger Finger

Thumb

Thumb 73.45 16.11 3.94 3.40 3.10

Index Finger 19.27 66.79 10.20 2.15 1.59
Middle Finger 5,51 13.03 71.24 6.00 4.23
Ring Finger 3.34 2.26 9.43 70.22 14.74
Little Finger 5.12 1.98 448 1257 75.86

Table 4.2: Results of the improved finger recognition approach. The rows stand for the
specified finger. The columns show the classification results in percent.

For our second approach we used another data selection and preparation. Instead of adding a
black border we extending the scaled image with image periphery. We enlarged the detected
region in either x- or y-direction to fit the aspect ratio of the target size. The detected region
was kept in the center. However, it is possible that the new region grows beyond the image
boundaries. Instead of leaving these regions black we extend the image data. For each pixel
where no image data exist we choose the color of the nearest pixel with image data.

We assume that the image contains unnecessary data like background. The LEAP MOTION is a
light source and therefore the hand is a bright object in our detected hand region. We selected
a threshold that separates background from the hand. For this we used Otsu’s method [Ots79]
which is implemented in the threshold method of OPENCV. It selects a threshold based on the
image histogram and searches for the best separation. All pixel colors higher than the selected
threshold where kept. We normalized them to fit the whole possible value range from 0 to
255 by OPENCV’s histogram equalization method. The images are rearranged such that the
background becomes black and fingers become bright.

The larger values on the main diagonally in Table 4.2 prove that our data preparation works
better than using only the cropped hands. We improved the first approach iteratively and
tested our new configuration after each change to ensure none will lower the detection rate.
However, further increasing the classification rate will result in a better usability. We assume
that classifying multiple detected hands in a sequence enables a better classification at touch
time by taking the most often detected class. Details are left for future work.

During our finger recognition images of participant 24 received the lowest detection results.
We saw that her fingers were not as straight as those of other participants. She also spread out
her fingers like only a few other participants and her finger nails were colored. It is possible
that there are more hand types or hand posture that are not covered by our participants, for
example none of our participants had older hands with wrinkles.

37

4 Data Analysis

4.3 Summary and Discussion

In this chapter we explained how our finger recognition works. We wanted to use a classifier
for finger recognition. Therefore, as a prior step we used hand detection to reduce periphery
in our image sequences.

We extracted 280 sequences for each participant from our collected video files. Each sequence
contains 20 frames with a left and a right image. The sequences were selected from touch data,
such that the last image shows the moment when the participants finger touches the screen.
In this frame we manually labeled the hand to enable automatically evaluation of our hand
detection.

We treated sequences separately for left and right images. As first step in our pipeline we
calculated the optical flow between two images. The edges in the image are determined
in parallel. As a second step these edges were filtered by the motion in their image region.
Location based filter methods were applied. Thereby we received a set of edges that depend
on the hand in consideration. At last stabilization over multiple detected regions in a sequence
was applied. Parameters for this hand detection were optimized empirically. Together with the
option of using only the best detected hand of both image sequences we received a detection
rate of 82.13% in our evaluation.

Our finger detection was trained on the positive results of the hand detection. Thus, we got
about 500 of 560 possible images per participant. We use a supervised best fit classification as
an approach. As distant function we applied the sum over the difference between two images.
Through background removal and stretching of the image histogram we increased the results
to over 70% for all fingers but 66.79% for the index finger. We assume that this result is higher
in practice if multiple images are classified. This is based on observations because the detected
hand region seems to be better before touching the screen.

We also detected that there is an outlier in our finger detection. Participant 24 was classified
worse than any other participant. We assume that our hand sample is not large enough for a
universal model, especially with respect to the age of the participants.

38

5 Evaluation

In Chapter 3 we conducted our user study. In Chapter 4 we trained our camera based finger
recognition with the collected image data. During the study we also collected data that were
not used for training but offered information about finger recognition and its behavior for
future users. In this chapter we first analyze measured results and the raw NASA-TLX of our
user study. We describe effects we observed and show possible causes. Therefore, we analyzed
the measured values of tasks, fingers and our participants’ overall workload. Second we discuss
the study and possible usage for future application with respect to the feedback. We reported
the ideas of our participants, their critics and discuss them.

5.1 Measured Results and Raw NASA-TLX

There is an overall high touch error in our study, as visible in Table 5.1 (a). We assume that
our crosses’ size of 14 x 14 mm was too small. As a consequence, they were hidden under the
participants’ fingers before the contact with the screen. In task 3 and 4 we saw participants
tap and hold for a while, because they started without knowing where to draw the line. The
starting cross in these tasks was easier to detect because of the hand sign which was larger
than the cross itself. Moreover, we observed that especially at drawing tasks the participants
focused more on speed than accuracy. For some participants this triggered the appearance of
the ANDROID status bar which becomes visible in full screen applications if there is a touch
movement from the top side on the screen.

The results of the raw NASA-TLX show a similarity of task 1 and 3 and also a similarity
between task 2 and 4. We connected them the following interpretation. To task 1 and 3
we refer as odd tasks and to task 2 and 4 as even tasks. Also we grouped them together in
Figure 5.1 and Figure 5.2. In the odd tasks the fingers were used one by one. In even tasks the
order of the fingers was randomized.

The order of our tasks was never changed during the study. In Figure 5.1 a clear order in the
workload is visible for all aspects asked in the NASA-TLX. We assume that the exceptions of
task 4 with respect to temporal demand, effort, and frustration are caused by learning effects.
These were possible because we never changed the order of our tasks. During study three
participants stated the conditions of this task correctly before we explained it.

39

5 Evaluation

(a) Touch error in mm (b) Reaction time in ms

Mean SD Mean SD

Task1 11.94 13.50 1106.92 2973.63
Task2 12.12 13.96 1062.40 214.68
Task3 37.36 39.38 1173.79 2905.68
Task4 37.64 39.19 1160.11 270.28

Table 5.1: Measured results of the study. (a) Touch error is the distance between touchpoint
and cross, between touch down and start cross, or between touch up and end cross.
(b) Reaction time is measured between appearance of the target and next touch
down event.

Comparing the tasks with respect to the raw NASA-TLX the largest difference is visible between
tapping with one specific finger and random fingers. As participant 13 stated switching fingers
is annoying. While task 1 shows a value lower than two in a range from 0 to 21, task 3 is more
than three times higher. For line drawing this effect is less explicit. In contrast we observed
learning effects at temporal demand, effort, and frustration. Possibly these learning effect
are the reason why the distance between the drawing tasks is smaller than for tapping tasks.
These results, however, show that switching fingers often decreases the comfort. The results
of performance also show that our participants felt more insecure about their results. Our
collected data in Table 5.1 (b) supports this. We assume that the little improvement in the
measurement of task 4 is caused by the tasks conditions. In task 3 our participants remembered
the specified finger at the beginning. In task 4 they need to identify the start cross before they
knew the stated finger. As a result they took more care in task 4 and less confusion errors
appeared.

The temporal demand shows the fewest change over all tasks. We did not tell our participants
that there was no time limit set but we asked them to carry out the task as early as possible. The
participants were able to do the study in a very high speed or to take as much time as needed.
The small difference between the tasks shows that tapping with changing fingers instead of
only one seems to be slower. Our measured results, however, showed only a difference of a
few milliseconds. We did not take the first cross into account because at the beginning the
task was started during the explanation of the study. The variation for each task seems to be
dominated by the participant’s different speed. For example, participant 5 who stated very
good touch screen experience was twice as fast as participant 12 who was left-hander and used
the right hand. In the randomized tasks the faster participants where more inhibited than the
slower which results in a lower variation. They provide us with an interesting view on our
tasks. Especially the odd tasks are equal in all aspects of the NASA-TLX but frustration. A
similarity can also be found between the even tasks. We never changed the order of the tasks

40

5.1 Measured Results and Raw NASA-TLX

12 50
_ 10 F _ 40+
5 5
= 8f =
o 830t
i~
=R §
s =3
P> = 20
k= <
g 4f g
o >
8
@ ©
2L
0 - , 0
Mental Physical Temporal Performance Effort Frustration Overall
Demand Demand Demand Workload

||:| Task1 [Task3 [Task2 [Task4|

Figure 5.1: Results of the twelve raw NASA-TLX for each task presented with standard error.
Bars for task 1 and task 3 present the mean of all five NASA-TLX in these tasks.
The y-axes do not show the whole possible value range.

and therefore learning effects are a possible reason. The same effect can be seen at temporal
demand and effort but only for the even tasks where the specified finger was randomly selected
for each new target. The overall workload also shows that both tasks are twice the overall
workload of the other tasks. In the even tasks the mental demand is over three times higher
than in the odd tasks. We summarize that switching fingers needs much more time than using
only one.

The overall value for each of the four tasks in our study lays in the lower third of the possible
range. For the odd tasks where only one finger was used per subtask we assume that the result
represents the minimum tapping effort for our study tasks. The difference between odd and
even tasks results from switching fingers and all of its side effects.

To measure the overall workload for each finger we only took the odd tasks into account. After
each subtask we asked our participants to fill out a NASA-TLX. Each could be mapped to exact
one finger. For the even tasks this is not possible because the NASA-TLX contains information
about all fingers. We show the results in Figure 5.2. Interestingly the ring finger’s overall
workload is lower than the overall workload of the index finger for tapping. We see the large
difference between tapping and line drawing for the thumb as important for user interface
design. The thumb seems to be good for tapping on tablet sized screens but not for line
drawing tasks. This may be different for global drawing tasks like scrolling. Also interesting is
the small difference for the little finger. Especially the low value for line drawing since five
of our participants stated in the feedback that this was one of worst finger for tapping. The
ring finger was also stated as a bad finger for touching by four of our participants. The thumb
got two bad opinions while the index finger and the middle finger were only mentioned by

41

5 Evaluation

0.9)

| |EE= Tabbing
1 Following

-1

D
T

ot
T

w
T

O
T

r

Overall Workload < [0, 21]
=~

—_
T

0
Thumb Index Middle Ring Little
Finger Finger Finger Finger

Figure 5.2: Overall workload with standard error for finger for tapping and line drawing with
a specific finger.

one participant as good fingers for touching. Our oldest participant stated that some fingers
are good for tapping while others are better for drawing. Figure 5.2 does not support this
statement but the measured results show what he meant. In his case the thumb was slightly
better for drawing than for tapping. Ring finger and little finger were clearly better in tapping.
During the study we observed that participants lost the contact with the touchscreen more
often while using this fingers.

5.2 Feedback

The feedback about specific fingers was handled in Section 5.1. In this section we analyze
all other written and oral feedback of our participants. The feedback questionnaire handles
feedback about the study itself and our participants’ ideas about where finger recognition is
supporting users.

Our participants had various ideas of how finger recognition can be used as input. Some did
not clarify what they meant and it is possible that they only filled in some text. Sociological
reasons like embarrassment are also possible. For example, one participant stated that finger
recognition can be used for “better interface design”. For the study itself this phenomenon also
appears. Instead of leaving an empty field two participants wrote that “[the study] was good”.
However, one participant stated that he would not use it because he does not like touchscreens
in general. Also he stated that typing on touchscreens is more error-prone, like proved by Sears
et al. [Sea+93]. He also did not understand why we used a NASA-TLX. He did not see any
physical demand. The NASA-TLX was also mentioned by another participant who criticized
the option count per question. He suggested to use only five or seven steps or a continuous

42

5.2 Feedback

slider. Thus he wanted to ease the task for participants. For two other participants the study
seemed to be boring. They stated that background music or making the study more game-like
would improve the joy of the participants. We do not know which effects this would have on
the participants. It is possible that results increase but games do often work with stress and
therefore may increase errors and frustration.

Some ideas were given by multiple participants and therefore we see them as possible test
cases in future work. Six participants stated that games could profit by finger recognition.
Thus, less space for controls is needed and more is left for content presentation. There is
another possible reason that tapping on the correct onscreen button takes more time or is more
error prone than hitting a button on a hardware keyboard. Specific finger input may be as fast
as hitting a hardware button but this requests the detection of multiple fingers.

Another stated possibility is a finger depending context menu as stated by two of our partici-
pants. Not all fingers need to open another menu one person stated, thus it is usable like a
mouse. Also gesture detection was mentioned. On the one hand finger depending gestures
certainly need more cognitive load, on the other hand the same movement can be assigned to
a finger dependent function. The last option reduces required space and increases accuracy for
gestures. Thus more locally dependent gestures are possible. One person stated that finger
recognition is usable as quick start for programs. We think that this idea can be extended to
any global function like opening an app starter similar to the Windows start menu. This menu
opens if the Windows key is pressed without other keys.

Participant 4 stated that he would use finger recognition to improve onscreen keyboards
with a finger depending correction. Another stated that finger recognition may be usable for
authentication. Thus users are able to authenticate themselves without seeing the screen. It
is possible that such an authentication can be hidden more easily from observers. The ideas
of our participant 14 is probably based on the idea of using a touchscreen device without
explicitly looking at the screen. He would use it for remote control software in a railway set,
industry or music player. Map navigation can also profit from finger specific actions.

Nevertheless, our finger detection is probably not acceptable by left-handers. Two of our three
left-handers mentioned that the usage of the right hand affected the study in a negative sense.
We additionally assume that enabling the detection of multiple hands together with separation
of left and right hands increases significant the usability.

Two participants stated that the camera is too big and disturbs. We know that the LEAP MOTION
sensor is too big for an all-day use of our prototype. Possible improvements are integration of a
camera in the device border or utilizing hinges are an option. We showed that using the best of
both camera images increases our hand detection results. If multiple cameras are integrated in
the devices border, for example into the edges, the operation of the system may be simplified.
Multiple cameras which cover the area over the screen may also solve the problem of hidden
fingers.

43

5 Evaluation

5.3 Summary and Discussion

In this Chapter we analyzed the results of the study that are not used for our finger recognition.
We interpreted the results of the raw NASA-TLX, measured results and feedback of our
participants.

Our measured results show a high targeting error, compared to the error measured by Holz
and Baudisch [HB11]. Possible reason is the size of the crosses which is 14mm x 14mm and
therefore hidden at the touch moment. We also observed that especially at drawing tasks the
participants focus laid more on speed than accuracy.

The results of the raw NASA-TLX showed a similarity between tasks with randomized finger
and those without. Therefore, we grouped them as odd tasks which were task 1 and 3 where
no randomization took place. The other tasks form the even group where finger randomization
was used.

We observed that our tasks are much easier to handle without randomization as shown in
Figure 5.1. Our randomization changes the stated finger we asked the participants to use and
increases especially mental demand and frustration. Also we observed learning effects in our
results. This is possible because the order of our tasks was never changed during the study. In
the first two tasks our participants learned that a randomized task follows the ordered task.
In the third they learned that it was the same like the first one but with line drawing instead
of tapping. Thus they assumed conditions of the fourth task correctly. The learning effect is
visible at temporal demand, effort and frustration.

Our per finger view on the raw NASA-TLX in Figure 5.2 shows that tapping is easier than line
drawing. This effect is largest for the thumb and smallest for the little finger. Moreover, based
on statements of our participants, we achieved an order of fingers. From best to worst this
order is index finger, middle finger, thumb, ring finger, and little finger, whereby the biggest
gap is between thumb and ring finger. The latter takes twice as much bad statements.

In the feedback two applications for finger recognition were often stated. First was interaction
with a game. It is possible that our participants do not want to have controls in games which
shrink the content area. Also a finger specific action is possibly less error-prone and therefore
less frustrating. Second idea were finger specific menus in programs which also reduces control
space. Other finger specific functions, like a global program start, where mentions but often
not clarified.

44

6 Conclusion and Future Work

In this chapter we summarize the content of this work. We describe what we did and our
results of finger recognition and participants behavior. Our ideas about future work with finger
recognition are presented in the second section.

6.1 Conclusion

Nowadays interaction with touchscreens is restricted. Our goal is to extend the input dimension
by taking the finger type into account. Colley and Hékkila [CH14] tested users’ behavior with
such methods. While their used prototype was static we want to test if finger recognition is
possible on mobile devices.

We designed a prototype by combining a Leap Motion sensor! (LEAP MOTION) with a tablet
device. The LEAP MOTIONs manufacturer already implemented hand detection methods,
however, these methods do not apply to our prototype. We described our mobile prototype
and how we detect hands and fingers. We mounted a LEAP MOTION at the top of a tablet. We
conducted a study where we used this prototype, a laptop device that recorded videos from
the LEAP MOTION, and a desktop PC which shows NASA-TLX and other questionnaires like
feedback. The goal of the study was the recording of data to train hand detection and finger
recognition for our given conditions.

Our study was structured into four tasks. We asked our participants to tap at cross targets. For
each target a finger was indicated which was used as label in our finger recognition. The first
task was separated into five subtasks whereby each subtask has its unique indicated finger for
forty targets. In the second task eighty targets were shown one by one. The indicated finger
changes randomly from target to target until each finger was used 16 times. Task three and
four were similar to the first both but tapping was replaced by line-drawing. Therefore we
added a second cross to mark the end of the line.

We received 280 tapping scenes for each participant. From recorded video files we extracted
sequences of 20 frames whereby the last frame shows the touch down event of a touch scene.
Each of the frames contains two images with a resolution of 640 x 240 pixel. The LEAP MOTION

http://leapmotion. com

45

http://leapmotion.com

6 Conclusion and Future Work

offers only the infrared channel of taken images. Hence, skin color cannot be used to detect
hands as the LEAP MOTION has an integrated infrared light source. Hands appear as bright
objects in the field of view. We apply an edge detector to each image and approximated the
optical flow in parallel. Visible edges were filtered by motion and position. The hand region
was derived from the remaining edges. At last the detected regions of multiple frames were
stabilized by calculating the median. Parameters for this method were empirically improved.
Our method achieves 71.71% of all hands in the evaluation set reasonable good for finger
recognition.

Our finger recognition is based on the results of our hand detection. We use detected hands as
template images. To increase our detection results we prepared each image by extending the
region to fit the aspect ratio of a target size. As target size we use the mean of all detected hand
sizes. All template images are scaled to the target size and normalized by applying a threshold
and histogram equalization. To classify a new image, we first applied the same operations. As
second step we determine the template image with the smallest distance whose label gives us
information about the touching finger. This classification is based on the assumption that hands
with the same touching finger are similar to each other. Our results also show a detection rate
of over 70% for all fingers but the index finger.

In the evaluation of feedback and measurements in the study we found that using another
finger for each target increases the mental demand and frustration by a factor larger three.
However, we also observed learning effects which decreased the factor especially visible for
temporal demand, effort, and frustration. Also in the second half of our study the differences
were smaller. Participants stated that not all fingers are comfortable for touching. Best ratings
were given for index finger and middle finger, worst were given for the little finger. User
interfaces may use this behavior e.g. to assign critical functions to uncomfortable fingers like
deleting with the little finger.

All in all, the feedback of our participants in the study showed that there is an interest in
fingers as input dimension. Most of our participants stated that it would be useful for open
different menus or as input in a game. Games often use the whole display area to show their
content. Displayed controls will crop space which can be freed if fingers replace the function.

6.2 Future Work

Based on observations during the evaluation we found that the best moment to detect the hand
appears before the actual contact with the screen. As a result, we took sequences before the
touch event. If this assumption is true or does only hold for special cases needs to be tested.
We assume that there is a time range between the decision of the user to take a specific finger
and the touch event of this finger. While our work focuses on the finger recognition possibility
we assume that refining the time range for a detection may improve the results.

46

6.2 Future Work

As an alternative for our hand image classification we tested multiple machine learning
algorithms. Best results were achieved by a neuronal network with two hidden layers. This
network had a high error rate of 50% and did not improve during training. We assume that the
distortion makes it hard to learn which features are relevant. Neuronal networks are learning
from data. Since we trained with only 560 touch scenes from each participant it is possible
that the remaining data set is too small. A larger data acquisition study may help to improve
the learning.

The question how finger specific input should be used is discussed in this work and by Colley
and Hakkila [CH14]. However, it is studied with a small number of participants under lab
conditions. Concentrating on the fundamental challenges works better this way. In contrast,
everyday life has a far higher range of challenges. Changing conditions in background structure,
environment light and motion of different objects in the field of view need to be handled.
Building a database with a wide range of labeled image data may help to refine our method.
Variables can be participants age, gender, skin brightness and if they use the left or right hand.
Furthermore, data should be collected with and without background motion, in dark and bright
environments, and with multiple fingers at once.

Two participants stated that the LEAP MOTION is to big for an all day usage. Integration into
the device is necessary for comfort of future users. We think about multiple possible solutions.
If devices, like smartphones, have a curved touchscreen, it may be possible to integrate cameras
near the screen corners. This way they are able to observe the screen without sticking out of
the device. If the camera does not have to watch all the time, hinges may be used to hide it
inside the device casing. It is also thinkable that no extra camera is needed. Today’s mobile
devices which contain a front camera may be modified with a small mirror or a lens to enable
an observation of the touching fingers.

We mentioned that our method may be used in smartphones. Today the range of devices
which contain a touchscreen is big. There are laptops, ticket machines, tablets, smartphones,
smartwatches and more. We assume that especially devices with small screens may profit from
finger recognition as additional input. On laptops and tablets it may be used like a mouse, on
smartwatches it can be reasonable to assign program wide actions to fingers. User interfaces
may change through finger recognition, but scalability is problematic. The user needs to know
what kind of action hides behind which finger. Most mouses and touchpads offer left click,
right click and scrolling. Users learned that left clicks invoke an action at the mouse position
and that the right button opens a context menu. Hence, we assume that learning two or
three finger dependent functions is not a hard challenge for experienced touchscreen users.
User-centered design studies can test learnability and limits of this technique.

47

Bibliography

[Aze+12]

[BA15]

[BRMS13]

[Bra0O0]

[CH14]

[CT98]

[Can86]

[Che+11]

S. Azenkot, J. O. Wobbrock, S. Prasain, and R. E. Ladner. “Input Finger Detection
for Nonvisual Touch Screen Text Entry in Perkinput.” In: Proceedings of Graphics
Interface 2012. GI’12. Toronto, Ontario, Canada: Canadian Information Processing
Society, 2012, pp. 121-129. 1SBN: 978-1-4503-1420-6. URL: http://dl.acm.org/
citation.cfm?id=2305276.2305297 (cit. on p. 17).

D. Buschek and F. Alt. “TouchML: A Machine Learning Toolkit for Modelling
Spatial Touch Targeting Behaviour.” In: Proceedings of the 20th International
Conference on Intelligent User Interfaces. IUI ’15. ACM. 2015, pp. 110-114. por:
10.1145/2678025.2701381 (cit. on pp. 15, 19).

D. Buschek, S. Rogers, and R. Murray-Smith. “User-specific Touch Models in a
Cross-device Context.” In: Proceedings of the 15th International Conference on
Human-computer Interaction with Mobile Devices and Services. MobileHCI ’13.
ACM, 2013, pp. 382-391. DOI: 10.1145/2493190.2493266 (cit. on pp. 15, 19).

G. Bradski. “The OpenCV Library.” In: Dr. Dobb’s Journal of Software Tools (2000).
URL: http://www.drdobbs.com/open-source/the-opencv-library/184404319
(cit. on p. 23).

A. Colley and J. Hakkila. “Exploring Finger Specific Touch Screen Interaction for
Mobile Phone User Interfaces.” In: Proceedings of the 26th Australian Computer-
Human Interaction Conference on Designing Futures: the Future of Design. OzCHI
'"14. ACM. 2014, pp. 539-548. DOI: 10.1145/2686612.2686699 (cit. on pp. 12,
15-17, 19, 21, 45, 47).

R. Cutler and M. Turk. “View-Based Interpretation of Real-Time Optical Flow
for Gesture Recognition.” In: Third IEEE International Conference on Automatic
Face and Gesture Recognition. Vol. 0. IEEE Computer Society. 1998, p. 416. DOI:
10.1109/AFGR.1998.670984 (cit. on pp. 14, 20, 29).

J. Canny. “A computational approach to edge detection.” In: IEEE Transactions
on Pattern Analysis and Machine Intelligence PAMI-8.6 (1986), pp. 679-698. DOTI:
10.1109/TPAMI.1986.4767851 (cit. on pp. 18, 31).

Y.-L. Chen, W.-Y. Liang, C.-Y. Chiang, T.-J. Hsieh, D.-C. Lee, S.-M. Yuan, and
Y.-L. Chang. “Vision-based Finger Detection, Tracking, and Event Identification
Techniques for Multi-Touch Sensing and Display Systems.” In: Sensors 11.7 (2011),
pp. 6868-6892. DOI: 10.3390/5110706868 (cit. on p. 16).

49

http://dl.acm.org/citation.cfm?id=2305276.2305297
http://dl.acm.org/citation.cfm?id=2305276.2305297
http://dx.doi.org/10.1145/2678025.2701381
http://dx.doi.org/10.1145/2493190.2493206
http://www.drdobbs.com/open-source/the-opencv-library/184404319
http://dx.doi.org/10.1145/2686612.2686699
http://dx.doi.org/10.1109/AFGR.1998.670984
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.3390/s110706868

Bibliography

[FarO3]

[HB11]

[Har06]

[1B96]

[KNRO8]

[KT04a]

[KT04b]

[LL11]

[ML14]

[MMO04]

50

G. Farnebéck. “Two-Frame Motion Estimation Based on Polynomial Expansion.”
In: Image Analysis. Ed. by J. Bigun and T. Gustavsson. Vol. 2749. Lecture Notes
in Computer Science. Springer, 2003, pp. 363-370. DOI: 10.1007/3-540-45103-
X_50 (cit. on p. 30).

C. Holz and P. Baudisch. “Understanding Touch.” In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI’11. ACM. 2011, pp. 2501-
2510. DOI: 10.1145/1978942.1979308 (cit. on pp. 14, 19, 44).

S. G. Hart. “NASA-Task Load Index (NASA-TLX); 20 Years Later.” In: Proceedings
of the Human Factors and Ergonomics Society Annual Meeting. Vol. 50. 9. Sage
Publications. 2006, pp. 904-908. DOI: 10.1177/154193120605000909 (cit. on
p- 24).

M. Isard and A. Blake. “Contour tracking by stochastic propagation of conditional
density.” English. In: Computer Vision — ECCV ’96. Ed. by B. Buxton and R. Cipolla.
Vol. 1064. Lecture Notes in Computer Science. Springer, 1996, pp. 343-356. ISBN:
978-3-540-61122-6. DOI: 10.1007/BFbO015549 (cit. on pp. 18, 20).

S. K. Kang, M. Y. Nam, and P. K. Rhee. “Color based hand and finger detection
technology for user interaction.” In: International Conference on Convergence
and Hybrid Information Technology. ICHIT’08. IEEE. 2008, pp. 229-236. DOI:
10.1109/ICHIT.2008.292 (cit. on pp. 17, 18, 20).

M. Kolsch and M. Turk. “Fast 2D Hand Tracking with Flocks of Features and
Multi-Cue Integration.” In: Proceedings of the 2004 Conference on Computer Vision
and Pattern Recognition Workshop. Vol. 1. CVPRW’04. IEEE. 2004, pp. 158-158.
DOI: 10.1109/CVPR.2004.71 (cit. on pp. 17, 20).

M. Kolsch and M. Turk. “Robust Hand Detection.” In: Proceedings of the Sixth IEEE
international conference on Automatic face and gesture recognition. FGR’ 04. IEEE.
2004, pp. 614-619. DOI: 10.1109/AFGR.2004.1301601 (cit. on pp. 18, 20).

D. Lee and S. Lee. “Vision-based finger action recognition by angle detection and
contour analysis.” In: ETRI Journal 33.3 (2011), pp. 415-422. DOI: 10.4218/
etrij.11.0110.0313 (cit. on pp. 19, 20).

W. McGrath and Y. Li. “Detecting Tapping Motion on the Side of Mobile Devices
by Probabilistically Combining Hand Postures.” In: Proceedings of the 27th Annual
ACM Symposium on User Interface Software and Technology. UIST ’14. ACM. 2014,
pp. 215-219. DOI: 10.1145/2642918.2647363 (cit. on p. 14).

J Mackie and B McCane. “Finger detection with decision trees.” In: University of
Otago, Department of Computer Science (2004), pp. 399-403. URL: http://www.
cs.otago.ac.nz/staffpriv/mccane/publications/ivcnz04-mackie- 1024. pdf
(cit. on pp. 19, 20).

http://dx.doi.org/10.1007/3-540-45103-X_50
http://dx.doi.org/10.1007/3-540-45103-X_50
http://dx.doi.org/10.1145/1978942.1979308
http://dx.doi.org/10.1177/154193120605000909
http://dx.doi.org/10.1007/BFb0015549
http://dx.doi.org/10.1109/ICHIT.2008.292
http://dx.doi.org/10.1109/CVPR.2004.71
http://dx.doi.org/10.1109/AFGR.2004.1301601
http://dx.doi.org/10.4218/etrij.11.0110.0313
http://dx.doi.org/10.4218/etrij.11.0110.0313
http://dx.doi.org/10.1145/2642918.2647363
http://www.cs.otago.ac.nz/staffpriv/mccane/publications/ivcnz04-mackie-1024.pdf
http://www.cs.otago.ac.nz/staffpriv/mccane/publications/ivcnz04-mackie-1024.pdf

Bibliography

[Mar+11]

[Ots79]

[RYZ11]

[Rav+09]

[Rog+11]

[Sea+93]

[Yan+13]

N. Marquardt, J. Kiemer, D. Ledo, S. Boring, and S. Greenberg. “Designing User-,
Hand-, and Handpart-aware Tabletop Interactions with the TouchID Toolkit.”
In: Proceedings of the ACM International Conference on Interactive Tabletops and
Surfaces. ITS ’11. ACM. 2011, pp. 21-30. DOI: 10.1145/2076354.2076358 (cit. on
pp- 17, 19).

N. Otsu. “A Threshold Selection Method from Gray-Level Histograms.” In: IEEE
Transactions on Systems, Man and Cybernetics 9.1 (1979), pp. 62-66. 1SSN: 0018-
9472. DOI: 10.1109/TSMC.1979.4310076 (cit. on p. 37).

Z. Ren, J. Yuan, and Z. Zhang. “Robust hand gesture recognition based on finger-
earth mover’s distance with a commodity depth camera.” In: Proceedings of the
19th ACM international conference on Multimedia. MM ’11. ACM. 2011, pp. 1093-
1096. DOI: 10.1145/2072298.2071946 (cit. on pp. 18, 20).

J Ravikiran, K. Mahesh, S. Mahishi, R Dheeraj, S Sudheender, and N. V. Puyjari.
“Finger detection for sign language recognition.” In: Proceedings of the Inter-
national MultiConference of Engineers and Computer Scientists. Vol. 1. IMECS
2009. 2009, pp. 18-20. URL: http://www.ilaeng.org/publication/IMECS2009/
IMECS2009_pp489-493.pdf (cit. on pp. 18, 20, 29).

S. Rogers, J. Williamson, C. Stewart, and R. Murray-Smith. “AnglePose: Robust,
Precise Capacitive Touch Tracking via 3D Orientation Estimation.” In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’11. ACM.
2011, pp. 2575-2584. DOI: 10.1145/1978942.1979318 (cit. on pp. 15, 19).

A. Sears, D. Revis, J. Swatski, R. Crittenden, and B. Shneiderman. “Investigating
touchscreen typing: the effect of keyboard size on typing speed.” In: Behaviour &
Information Technology 12.1 (1993), pp. 17-22. DOI: 10.1080/01449299308924362
(cit. on p. 42).

X.-D. Yang, K. Hasan, N. Bruce, and P. Irani. “Surround-see: Enabling Peripheral
Vision on Smartphones During Active Use.” In: Proceedings of the 26th Annual
ACM Symposium on User Interface Software and Technology. UIST ’13. ACM. 2013,
pp. 291-300. DOI: 10.1145/2501988.2502049 (cit. on p. 14).

All links were last followed on November 3, 2015.

51

http://dx.doi.org/10.1145/2076354.2076358
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1145/2072298.2071946
http://www.iaeng.org/publication/IMECS2009/IMECS2009_pp489-493.pdf
http://www.iaeng.org/publication/IMECS2009/IMECS2009_pp489-493.pdf
http://dx.doi.org/10.1145/1978942.1979318
http://dx.doi.org/10.1080/01449299308924362
http://dx.doi.org/10.1145/2501988.2502049

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Outline

	2 Related Work
	2.1 Natural Ways of Interacting
	2.2 Interaction with Touchscreens
	2.3 Existing Finger Recognition
	2.4 Hand Detection
	2.5 Hand Gesture Recognition
	2.6 Summary and Discussion

	3 Data Acquisition
	3.1 Apparatus
	3.2 Design
	3.3 Participants
	3.4 Procedure
	3.5 Data Set
	3.6 Summary and Discussion

	4 Data Analysis
	4.1 Hand Detection
	4.2 Finger Recognition
	4.3 Summary and Discussion

	5 Evaluation
	5.1 Measured Results and Raw NASA-TLX
	5.2 Feedback
	5.3 Summary and Discussion

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	Bibliography

