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Abstract

The Internet of Things (IoT) is an upcoming technological complex of themes, whereby the
recognition of complex events, happened in the real world, is no more neglectable for any
new application. Complex Event Processing (CEP) builds a middleware to generate due a
operator network complex events for a application out of simple input events from e.g. some
sensors and thereby it should stay in a real-time latency budget at all. Since we concentrate
on parallelized CEP operators and more especially on the framework PACE, the latency of
one operator can be influenced by several factors, e.g. adapting the parallelization degree
and or or using batch scheduling. To adjust the different factors more perfectly, we need to
know the latency of the splitting and the merging before the specific situation comes up in the
real process, whereby the prediction of the splitting’s latency is a more interesting question.
By analyzing the latency of the splitting in the framework PACE we determine that the most
influencing parameter of the latency is the number of opened selections and give a solving
approach by predicting the latency of the splitting with regression learning and some time
series predictions. Finally we will see that our predictions deliver nice results without outliers
and that our approach is simple enough to not generate a higher runtime or rather a higher
latency by asking for and calculating the prediction.

Kurzfassung

Das Internet of Things (IoT) ist eine aufkommende technologische Thematik, wobei die
Erkennung von komplexen Ereignissen, welche in der realen Welt geschehen, für neue App-
likationen nicht mehr zu vernachlässigen ist. Complex Event Processing (CEP) erstellt eine
Middleware um Mittels eines Netzes von Operatoren für eine Applikation komplexe Ereignisse
aus, von z.B. Sensoren erkannten, simplen Ereignissen zu generieren und dabei sollte es
im Gesamten in einem Echtzeit-Latenzbudget bleiben. Nachdem wir uns auf parallelisierte
CEP Operatoren konzentrieren und genauer auf das Framework PACE, kann die Latenz eines
Operators durch verschiedene Faktoren beeinflusst werden, z.B. durch die Veränderung des
Parallelisierungsgrades und/oder durch das Einsetzen von batch scheduling. Um die unter-
schiedlichen Einflussfaktoren besser einstellen zu können müssen wir die Latenz des Splittings
und des Mergings vor der bestimmten Situation kennen, wobei die Vorhersage der Latenz des
Splittings eine weitaus interessantere Fragestellung ist. Wir haben bei der Analyse der Latenz
des Splittings im Framework PACE herausgefunden, dass der am meisten beeinflussende Pa-
rameter die Zahl der offenen Selections ist und geben dahingehend einen Lösungsvorschlag um
mit Regression und time series prediction die Latenz des Splittings vorherzusagen. Schließlich
werden wir sehen, dass unsere Vorhersagen gute Ergebnisse ohne Außreiser ausgeben und
dass unsere Lösung simpel genug ist um bei der Erfragung und Berechnung der Vorhersage
keine längere Laufzeit bzw. größere Latenz zu generieren.
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1 Introduction

The Internet of Things (IoT) is an upcoming technological complex of themes with many new
possibilities and challenges to deal with. It is mostly the term for getting all things we use in
our everyday life connected to the Internet and giving them at least some sort of thinking. It is
a kind of thinking, because at least every thing gets personal suited for the end-user and or or
is maintained by itself at practical work. We call such things "smart things". On the assumption
that we just equip any device with a little chip and or or with a sensor, we can process all
generated data, with e.g. cloud computing, to control those smart things remotely. The IoT is
one of the topics of research, where as a result every new application or even sensor will rise
our level of comfort.

When we consider any application using smart things, we note that even an application using
just one type of sensors in the real world to gather information could be busy by processing all
incoming events. Thus the application does not stay in real-time computing. So it is nice to
have a system between the application, or even the user, and the sensors. Such a middleware
is realized by a Complex Event Processing (CEP) System. Those CEP Systems are accomplished
in a distributed network of operators, the so called operator-graph. This structure is needed
for striking faster computing time and operating on a extraordinary wide field of sensors to
gather the needed information.

To handle a specific situation just in time or even give the user the chance to react in time, our
applications need to compute in real-time. Supposing such a low latency for our application,
concludes that also our whole system of sensor, CEP and application must gather, provide and
infer information in real-time.

In the physically world, the workload of new events triggered by sensors is a quite high
burden. Hence the nodes of the CEP System, the operators, shall be parallelized. A parallelized
framework is in our approach quite similar to map reduce and every operator node is replaced
by this model. So in our approach the input stream received by an operator node and the first
instance is the so called splitter. This splitter splits the stream to interchangeable instances of
the same operator. Those instances working like the specific operator before parallelization. To
get just one output stream in beyond, a merger will merge the outputs of the instances to one
output stream.

For staying in real-time we have a confined latency budget, which is deployed to all operators
and so to the parallelized framework of one operator node. In preceding work the instances
of the operators were investigated in regard to such a latency budget. It was determined
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1 Introduction

by concerning latency bounds, that the resources, in this context the computing power and
the CEP network, can be adjusted by adapting dynamically the parallelization degree and by
conducting batch scheduling. [MTKR15]

With a runtime environment in the framework, we also have the ability to assign a latency
budget to one specific node. This budget allows to save resources for processing the events
and still stay in real-time computing. For instance with the trade-offs (1) buffering level or
rather buffering delay versus resources, which is known as parallelization degree and (2)
communication overhead versus processing delay, which is known as batch scheduling. So we
can adjust only parameters at the part of the operator instances. To comply the specific latency
budget in one parallelized operator, we need to know the latency of the splitter and the merger,
because then we know the latency, which is left for the operator instances. For adjusting
the latency of the operator instances a specific lead time is needed, because for example the
starting of a new instance will take some time. Thus there is a need to predict the latency of
the splitter’s splitting, because it will help to react nearly perfectly on every upcoming situation.
Further on it is one step to have no longer a problem to stay with a parallelized CEP System
in real-time computing. In this work we want to concentrate on the prediction of latency of
the splitting. This prediction can be taken to adjust the framework in a way that the defined
latency budget is not overdrew and more in detail we can easily change our parallelization
degree and instruct our batch scheduling in a better kind of way.

In the following the content is structured in that kind, that we will first introduce in chapter 2
the Complex Event Processing System and the model of our parallelized framework. In addition
we define the terms latency and latency budget in our context and give a overview on related
work at CEP systems. Afterwards we will term our special issue, the LoS issue, and analyze
what are influencing parameters and how we want to deal with it in chapter 3. In chapter 4 we
will introduce some prediction techniques and compare different models of the same technique,
to specify which model should be the best for our purpose. Thereby we will use them all for
our solving approach of the LoS issue. Beyond we utilize those models to get a solution for our
problem. The final solving approach will then be invented in chapter 5. After that, in chapter 6
we will evaluate our system with a mostly realistic scenario, to get a view how it works in
practice, and discover a naive approach for comparison with our approach. Finally in chapter 7
we will summarize the results of this work and give a prospect, how we could use this in future
work.
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2 Complex Event Processing

In this chapter, we first introduce the model of a CEP system and give some overview, what
is also possible with CEP systems by linking to related work. Furthermore we conclude the
relevance of parallel CEP systems and brief the model of our framework. As a slide-in we
will conclue this chapter with the definition of the terms, latency and latency budget in our
context.

2.1 CEP Systems

Complex Event Processing (CEP) was originally invented by D. Luckham in [Luc02]. According
to [BK09] CEP is the state-of-the-art to detect and react on events in situational applications.
Moreover [EB09] says that CEP has more than one roots at research and that CEP is moreover
a general term of methods, techniques and tools for processing events in the same time as they
are happen. As [KKR10] profiles Cordies, we have a method to distribute a CEP system and are
not limited due a fact of a centralized system or a synchronous communication. Further on our
comprehension of a CEP system builds on the system models in [VKR11, KORR12, SKRR13,
KMR+13, OKRR13, OKR+14b, MKR15, MKR14]. As to see in figure 2.1, to detect events in
the world, the basis of every CEP system are the sensors or rather sources. The sensors may
also be realized in a so called sensor network. As the name terms, a few or likely more sensors
are connected in one network. It is recommend because the CEP system just need one stream
for more than one sensor. Thus it is easier to handle complex situations in the system and so in
the application. Next, is to be named, all sensors will push the events through a event stream
to the actual CEP system, which provides a network of operators. Finally, after processing all
events, the more complex events will reach the consumers or rather the applications.

So the heart of a CEP are operators, where one of those ω process the incoming event stream
Iω to more complex events and deliver them in the outgoing event stream Oω. This is also
called the correlation function and defined as fω : Ein 7→ Eout. To get a better understanding
we could think about a traffic monitoring system as in [MKR15, MKR14].

There is therefor a distance where passing other vehicles is prohibited. Thereby it is only
important to print a ticket and punish the prohibition of passing, when one car passes another
one. So an application wants to know whether someone passes another car in this zone or
not. For instance, there are two sensors monitoring the line and moreover to see as s1 and s2
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2 Complex Event Processing

Figure 2.1: Operator graph of a CEP Network connecting sources, operator and consumers by
event streams. [MKR15]

in figure 2.1. You can assume hereby also the sensor s1 as pos_1 and the sensor s2 as pos_2.
Furthermore we need as in figure 2.1 two steps in our event processing. The first operator
ω1 detects the incoming and leaving of every car at the distance of passing prohibition by
analyzing the time difference between a pos_1-event and the corresponding pos_2-event. It
results those two events to one event of when they arrived and how long they stay at the line.
The second operator ω3 now compares the time windows of each vehicle and pushes an event
to c1 if and only if a vehicle passes another one in the zone of prohibition.

For that fact it is very important that the CEP system is consistent, i.e. there are only true-
positves and true-negatives. This means there are in the example of traffic monitoring neither
unjustified tickets printed (false-postive events) nor transgressors unpunished (false-negative
events).

Moreover CEP systems can be deployed also in other scenarios. So for instance, it was men-
tioned to take the advantage of CEP systems and benefit by the communication at multiplayer
online games [KTKR10], which use peer2peer systems. Another example is the natural lan-
guage processing for a crowdsourced road traffic alert system in [AGPS15]. On an other
side, CEP systems are also very interesting to work with queries at different locations of the
same user, so it is commonly to achieve a sort of CEP system, which is mobility-aware. One
example for such a mobility-aware CEP system is given in [OKR+14a]. To be mobility-aware
it takes some advantage of the work of [OKRR13], where the migration of parts of an CEP
system was focused and a method to place and migrate was presented. Thereby it uses the
knowledge of an CEP system to improve live migration techniques and save time and band-
width in the infrastructure. Also the point of moving range queries play a central character
of being mobility-aware, because the interest radius of information at a mobile user is mostly
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linked to its location and as he is mobile, he changes his location during time. Thus the
applications on a mobile device consume information at different locations and always need
informations on a given radius around their actual location. [KORR12] adopts the concept of
range queries, propose a mobility-aware event deliver semantics and present a corresponding
execution model. Thus it invents moving range queries to CEP systems. Moreover the events in
a mobility-aware context needed mostly to be detected in a consumer-centric manner to hold
low latency and high quality of the results. To have the possibility of reuse some of events for
another consumer or rather user, [OKR+14b] introduced the RECEP to increase the scalability
of mobile CEP systems. It thereby offers methods to efficiently reuse computations in a mobile
context and withal even save resource requirements.

As CEP is the paradigm of choice to use as a event processing middle-ware or rather infras-
tructure it can be interesting, who can access specific data and gather informations out of
specific events. To preclude unauthorized access on delivered informations over the Internet
or the distributed CEP system, it is recommendatory to apply a access policy for the different
events in a stream. To consolidate such a access policy for CEP systems, [SKRR13] presents
a fine-grained access management for CEP systems. Furthermore a CEP systems should be
fail-safe and support a strong reliability at the delivering of events. Therefore [VKR11] presents
a replication scheme to hold strong reliability in a CEP system, thus a failure of one single
operator node should not impact the correctness of the results. Because strong reliability means
that each complex event is detected and delivered to all consumers or rather applications for
exact once. Due the need of strong reliability in a CEP system, a possible rollback-recovery is
auspicious, because even if one node failes and no others replicas are alive, the CEP system
should hold reliability and consistency. [KMR+13] shows that we even do not need any
checkpoints to apply such a rollback-recovery. The clue for no need of checkpoints is to use
savepoints in time, when the execution solely depends on the incoming events. The incoming
events are reproducible due the prior operators, thus the operators state can be saved without
using checkpoints.

2.2 Parallelized CEP

Parallelization is a very interesting topic for everyone, who is engaged with computer science.
A parallel CEP is not just a temporary fashion in cause of everybody wants to parallelize near
everything. Only a parallel CEP can work with low latency and keep a buffer limit at low
costs. The applications getting more an more complex with regard to more and more sensors
on the world and the world we live in getting faster and faster. So one operator could easily
be overwhelmed with a lot of events pushing from his sensors at nearly the same or also the
same time. In fact of this overwhelming, there are only two options for a linear CEP system.
Either delete some not grave events, which implies a not consistent processing, or just buffer
all events till every event is processed, which entails a high latency at a high workload.
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2 Complex Event Processing

Therefor a parallel CEP system is the answer. To this point more than one idea for parallelize
an CEP system is invented. They can be separated in the intra-operator parallelization and the
data parallelization. We will now go on in this section with three subsections and describe the
termed ideas of parallelize a CEP system. Thereby we closely refer to [MKR15, MKR14].

2.2.1 Intra-operator parallelization

As the name terms, in intra-operator parallelization the site where the parallelization degree
is scheduled are the processing steps. Also know from pipelining, the steps, which can be
run in parallel, are identified by scrutinizing the query. Thus the states and transitions of the
operators are deduced. One of the most common ideas, how a CEP could be parallelized with
intra-operator techniques, is Siddhi, which is presented in [SGLN+11]. Both approach have
their difficulties with high event rates. For instance in the scenario of traffic monitoring, we
consider four different variables in our query. For each car one variable for the beginning of
the line and one for the end. In cause of the interest to punish passing another car, there are in
general always pairs of cars processed. So finally we can have there a parallelization degree of
four with intra-operator parallelization. For a high event rate this is not sufficient, as to see in
[MKR15].

2.2.2 Data parallelization

The data parallelized approaches concentrate more on the data streams. Therefor the input
stream of one operator is split into partitions, which can be processed parallel by a number of
interchangeable instances of one operator. Figure 2.2 gives an overview of such a framework
with a splitter and a merger in front or rather behind the operator instances. According to that,
this framework exchanges one operator node. The operating logic states a partitioning model,
how the splitter has to build the partitions and send those to the operator instances. There is
also a runtime environment for controlling the operator execution, overviewing the accessible
instances and maintaining the parallelization degree. Subsequently the merger warrants a
ordering of all produced events, if this is necessary for the following operators or consumers.
This could be realized by assigning sequence numbers to the events. Some examples for such a
data parallelization can be found in [BDWT13, sto14, MBF14, CCA+10, BMK+11, NRNK10]
to just name some of the available data parallelization approaches.

The fundamental difference between those approaches is the underlying partitioning model.
So far there are three different partitioning models available key-based, run-based and pattern-
sensitive. The key-based partitioning is the prevalent one and for example to find in [sto14,
MBF14, CCA+10, BMK+11, NRNK10]. It partitions the incoming stream by keys, whereby
the key is encoded in every event. The parallelization degree is as a consequence limited to
the number of available keys and the membership of a specific event to one pattern must not
depend on the appearance on other events. But the membership of the events in the traffic
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Figure 2.2: A CEP Operator parallelized with data parallelization. [MKR15]

scenario for instance are strictly related to the appearance of other events. Another point is
that even a common key has not to be available for one specific event. RIP in [BDWT13] is a
run-based approach, which splits the stream in batches, whereby each batch is large enough to
fit a match to a queried pattern. This can cause a massive communication overhead, if patterns
fluctuate in their size and the approach is unable to detect patterns of an unknown size. As
considered in [MKR15] the run-based and the key-based approaches are not consistent enough,
in cause of their named disadvantages and the point that they can not parallelize some types
of operators consistently. This analysis can be found in [MKR15] and moreover it can be seen
that a pattern-sensitive partitioning model is free of these disadvantages and can parallelize all
compared operator types. Thus we concentrate here on the pattern-sensitive model. Here the
input stream is split in selections which enclose the patterns to be detected. There are one or
more selections included in one partition. That means that two selections can be processed
independently and parallel on different instances. An event is consumed, when all operator
instances, where the event has been assigned to, acknowledged it and deleted it from their
splitter queue. So for instance, in our traffic scenario a car will always open a new selection
with its event of type pos_1 and will close this selection with its event of type pos_2. If a car
arrives at our traffic scenario, the new event of pos_1 will be part of every selection, which
is opened when the event arrives. Thereby the event influences the detected pattern of one
specific selection due the fact if there is also a event of the type pos_2 of the same car in the
selection or not. If it is so, it can be detected that the car, which events of type pos_1 and pos_2
are in another selection, overtook the car of the specific selection.
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2 Complex Event Processing

Figure 2.3: The approach of the adaption of the parallelization degree. [MKR15]

2.3 Framework: PACE

For evaluating later on and for understanding the future progress it is required to name, what
the framework we are working with is about.

In [MTKR15] the framework got the name PACE. It is a parallelized CEP network on the model
of data parallelization. The event stream splitting ensued with a pattern-sensitive splitter.
Moreover it uses two other methods to handle the parallelization so good as possible. Thereby
it mostly tries to realize the context of preferable real-time computing and low computational
costs. One of those methods is the dynamical adaption of the parallelization degree and the
other one is the scheduling of the selections in means of the available operator instances.

This section will go on with a brief of the adaption of the parallelization degree in PACE. Then
we describe the work of the splitter and the merger in PACE more in detail. Further we go on
in this section to mention two different scheduling methods of the splitter, who schedules the
selections in means of the available operator instances.

2.3.1 Parallelization Degree

There is for fast and low cost computing a need of dynamically adapting the parallelization
degree. As mentioned in the introduction in chapter 1, it is absolutely necessary that the
CEP systems work in real-time, but also just need minimized computing power. Therefor we
aim to have always the optimal parallelization degree and in the fact that in practice the
incoming event rate is dynamically changing, we need to adapt our parallelization degree also
dynamically. The optimal degree is here the minimal that keeps the assigned buffer limit with
the required probability. The buffer limit of one node is linked to the underlying hardware
and may also depends on the used programming language and the used data structures. The
most influence on the exact buffer limit has the underlying hardware, so [MKR15] takes for
adapting the parallelization degree an assigned buffer limit.
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2.3 Framework: PACE

The invented approach of [MKR15] defines, how the adaption of the parallelization degree
in PACE works. As to see in figure 2.3 the approach is split in four entities. The workload
prediction and the operator profile give the knowledge to calculate the optimal degree of
parallelization. Further on the actual degree of parallelization could be adapted by the
knowledge of the optimal degree.

The workload is predicted by an model of a time sliding window on different time slices. The
time sliding window ends at a specific time and shifts about a given frequency. The length
of the window is also defined before, but should provide enough time slices to calculate a
established distribution of the inter-arrival time of events. The distribution of the inter-arrival
time has the influence in the prediction of the future workload at a specific time. Thereby the
prediction of an future event becomes ascertained by the workload at the latest measured time
slice.

The given workload at a specific point of time for adapting the parallelization degree is quite
important, but the perfect degree is also influenced by the processing time of the operator.
Therefore the operator is profiled before the actual run-time. The measurements of the
processing time of the given operator with different probably real workloads, lead to a profile
of the operator. This profile could be used to predict the processing time at a specific workload.
So if we know a predicted workload, we could also predict the corresponding processing
time.

With these two influences, the optimal parallelization degree can be calculated. The approach
concentrates thereby on the probability, that one instance will hold the assigned buffer limit.
The buffer gets filled up, when the processing time is appreciable longer than the inter-arrival
time of events. If the probability of staying with the fullness of the buffer in the limit is too
small, the parallelization degree is increased. This increasing stops, when the minimal degree
is found, where the probability is high enough. When the probability is high enough at the
beginning of the calculation, the degree will be decreased until the minimal degree is found.
Note that the parallelization degree has to be recalculated, whenever the predicted workload
changes.

The adaption of the degree is the most simplest part of the approach. Thereby the degree is
changed to the optimal parallelization degree. If there are to much instances, the surplus of
them will be canceled. More interesting is the part, where more instances are needed. The
adaption provides that probably some instances are canceled but not killed yet. If this is the
point, the approach recalls first such canceled instances. When there are no more instances
available for recalling and there is still a need of more, the adaption will start new instances.

2.3.2 Splitter and Merger

The splitter and the merger are the instances we did not explained more in detail yet. The
central point of the work concentrates on the splitter, so it is absolutely necessary to talk over
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2 Complex Event Processing

their practical work at the runtime of PACE. Thus we see their work more in detail at this
subsection. Therefor we take a look on the processing of an arrived event at a CEP node in
PACE.

When a event arrives at a CEP node, first of all it will reach the incoming event queue of
the splitter. Then, when the splitter begin to work with the event, it will first decide if this
event opens a new selection. Afterwards it will schedule the event in order of the underlying
scheduling method, to decide whether an event should be send to an specific operator node
or not. It will decide the preferably best distribution over all instances, thus stay with all
computing in the given latency budget. Note, that if the scheduling strategy is quite simple,
the latency budget will not play a role for the decision. Finally it will decide, if the event closes
an existing selection. The decisions upon opening and closing selections are based on the
user-defined query or rather the functional definition of this node. We call those decisions by
the predicates PStart and PClose. Note, that one specific event can be part of many overlapping
selections and that the overlapping of selections is not an exceptional case, but the mostly
normal case. Moreover it needs to be mentioned that PStart is simply evaluate once a time
for each event, but whereas PClose is evaluated for each pair of all opened selections and the
specific event.

After this procedure the event stays in the outgoing queues of the splitter. Every operator
instance possesses its own outgoing queue at the splitter. The event is copied to all queues in
dependence on, whether it is send to the specific instance or not. The event will be removed
from one outgoing splitter queue, when the applied instance processed the event. All instances
process their incoming events sequentially in the scope of each selection it is part of. The finally
step of the event, is the point, where the splitter removes the last occurrence of the event
in any outgoing queue. When a selection is closed by this event, the splitter will delete the
specific selection or rather selections from is set of opened selections. Hence the merger starts
to reorder the selection result with all other closed selection results to an outgoing stream.
Thereby, most commonly, the outgoing events are in order of the arrival time of the applied
start event of the selection, which resulted in the outgoing event.

2.3.3 The Splitter’s Scheduling

As the inter-arrival time of the events and so on new selections could dynamically change,
we need a scheduling of the new selections by the splitter. This scheduling should determine,
which operator instances have to work with the new selection. In this connection we can think
about two different scheduling methods, a Round-Robin scheduling and a predictive batch
scheduling. Note that there could be of course more ideas for scheduling the selections. But
rather it is to say, that we prefer the predictive batch scheduling of [MTKR15] for PACE as it is
the most auspicious so far.
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The Round-Robin is the probably easiest scheduling method so far. It assigns each operator
instance one selection in one round. When it has assigned one selection to all running instances,
the scheduler begin its round again at the first one. If there are the same number of instances as
the number of selections, all instances compute one selection at a time. Else if there are more
opened selections than instances every instance has to work on around #selections

#instances selections at
the same time. Of course the selections are not split in a smaller part. So every selection will
be adapted by exact one instance. The fraction builds the common number of selections at one
instance.

The predictive batch scheduling of [MTKR15] differs there a lot. While Round-Robin simply
assign every instance one selection, it usually generates a communication overhead. One event
can be a member of quite a lot selections and therefor it has to be delivered to every instance
working on one of these selections, where the specific event is part of. The predictive batch
scheduling approach introduces a batch of one ore more selections at one operator instance.
Note that if there are more selections opened, than instances available, Round-Robin will also
create some sort of batch. The difference is therefor, that the predictive batch scheduling
will do this in common of its predictions and not due the coincidence that there are more
selections than operator instances. The batching decreases the communication overhead, but
in contrast the workload of one instance increases. The approach handles this trade-off with
two predictions. The prediction of all events of the batch is one of the predictions. So the
splitter predictively knows all events of the specific batch. Even if they already arrived or will
arrive in future progress. The prediction of the processing latency is the other prediction in the
scheduler. So the splitter knows the processing latency and can compare it with the time to
stay all over in real-time computing. More details on the used batch scheduling approach can
be found in [MTKR15].

2.4 Latency and Latency Budget

When we talked about the parallelization of a CEP network, we mostly come back to the
argument of the need of real-time computing. In this context it is quite important to name the
terms latency and latency budget.

The latency is like anywhere else a time delay and moreover in our circumstances the delay
between the input of one event and the outgoing result at one working instance. Hereby the
working instances are not only the interchangeable operator instances, but rather all instances
working on the event streams. Thus the instances of one operator, the splitter and the merger.
Furthermore we like to assume the latency of one parallelized operator node or rather the
whole system. Thereby the latency is specified by the situational changeable critical path of the
framework or rather the network. While the events are fluctuating by time, the parallelization
degree and our batch scheduling will therefor be dynamically changed. The critical path in
one node or rather in the whole system will as impact also change dynamically.
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Figure 2.4: Graphical depiction of the latency budget of one CEP node.

To stay at practical work in real-time computing we need to compute in a certain time limit.
We call this limit the latency budget. More precisely it exist quite a lot time limits in one
system to stay finally in real-time. As to see in figure 2.4, the latency budget could also be the
time limit for exact one operator node in the CEP network. Rather its possible to calculate
latency budgets for every step in den process, when we know a limit for an superior level of
abstraction. For instance, an application could define a latency budget for one event reaching
the CEP Network until it arrives at the application. Therefor the CEP system can now calculate
the budget dynamically at the process and try to stay in the latency budget. It can follow
different strategies to do so, but finally it is only interesting that the CEP system does not need
more time than it has got from the application by the latency budget. So finally we got some
latency budget for one node in the CEP network as you can see in figure 2.4.
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3 LoS issue

The central context of this chapter will be the definition of the Latency-of-Splitting (LoS) issue,
which we want to solve in this work. To get a better understanding, why this issue is significant
to contemplate about, we first introduce this chapter with a motivation. After this we will give
a definition of the LoS issue. Finally we will close the chapter with a first analysis of the LoS
issue. The analysis is there for concentrating on two points:

• identify the parameters, which we should observe to evaluate a smart result.

• lead to an first idea, how to solve the LoS issue.

3.1 Motivation

In the usage of CEP systems for handling complex and staggering situations in real-time,
parallelization becomes momentous. One cause is the possible high load of different events
generated by thousands of thousand sensors, which could generate an extraordinary overhead
at one node. In the sequel of parallelization the dynamically changeable computation power
is very important. On one hand applications should always be optimized as most as possible
to realize low-energy computing and make it possible to get scheduled by an operating
system without a consequence of a too high latency in doing a distinctive step. On the other
hand applications should always stay in real-time computation for an optimal reaction flow.
Sometimes this trade-off is hard to implement or rather hard to explore at a local optimum.
As proved in preliminary work the framework PACE is an auspicious option to handle this
parallelization trade-off at CEP systems.

PACE could be optimized by profiling the performance of the merger and the splitter. This
profiles will lead to easily predict and dynamically change the parameters of parallelization
in PACE and stay all time in real-time computing. Because if we know the latency of the
splitter and the merger at a specific point of time, we also know our remaining latency budget
for the operator instances. We can assume, that an increasing of the parallelization degree
takes some time. In fact, we need to spend some time to get more computing power of the
cloud in practice. If we assume, that such a startup of a new instance will take one minute,
it would be nice to know, when we need more instances to handle the upcoming situation in
real-time. So we want to know the point of time, when we need more instances than now
to react fast enough. As one minute is in real-time computing a really long time, we want to
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recognize future requirements before the situation, where we need them, came up to process
it. So when we know the latency profiles of the splitter and the merger, we can predict the
future requirements. With this prediction the parallelization degree and the batch scheduling
could be adjusted more perfectly for every upcoming scenario of the CEP progress. Important
is, that we not only adjust them, you can infer that we also prepare the whole framework
for an predicted upcoming situation. This leads to a CEP system, which uses only as much
computing power of an CPU or cloud computing architecture as needed, but even enough to
stay in the given latency budget. Moreover the applications, who uses the CEP system, could
define a personal latency budget for all needed informations. Thus they can ensure a real-time
processing over all events reaching the application. The applications could define the latency
budget, because they know the future steps in their process for designated events. Thereby
they can contemplate about the differences in the future progress and so define the latency
budget for the CEP system, to stay after all in real-time computing.

The knowledge of the latencies of splitter and merger, can moreover be separated. First, the
splitter and the merger differ in their work, hence in their latency. So for knowing the splitter’s
latency we have to think about other methods than for knowing the merger’s latency. Moreover
the latency of the splitter is influenced by two separated factors. These factors are the runtime
of the splitting and of the scheduling. The splitting is the point, where the decisions upon
PStart and PClose are made. Thereby the inter-arrival time of events and the evaluation of the
predicates will probably influence the runtime of the splitting at most. Whereas the scheduling
is the part, where the selections are scheduled by the splitter in means of the available operator
instances. This runtime is probably mostly influenced by the underlying scheduling strategy.
For instance, a Round-Robin scheduler will never take as much time to process as the predictive
batch scheduling. All parts have their need to contemplate about them. Therefor we will
concentrate us in this work on the LoS. Thus on the evaluation time of the predicates PStart
and PClose.

3.2 Definition

The LoS issue is the problem, how to profile the performance and so the latency of the splitting
at PACE to finally predict it. Therefor we want to understand, which factors influence the
latency and where we can asses a reinforcement learning model to learn the function of the
latency of a specific splitting. Thus the LoS issue can be defined as the problem, to know the
latency of the splitting in a specific CEP node, before the situation is real. With this knowledge
we can stay the whole processing time better than before in the real-time latency budget.
Because we know the latency of the splitting, and even the minimal latency of the whole
splitter. Hence we could react to all upcoming situations more perfectly.
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To predict the latency at all times and so to handle situations before they even come up in real
progress, we will now first analyze the LoS issue. More in detail we will concentrate on the
influences of the predicates in means of the splitter’s latency.

3.3 Analysis

To get a better understanding of the LoS issue and its influences, we will analyze some possible
inputs. Thus we are concentrating us on the predicates PStart and PClose of the splitter.
Thereby we set as scheduling strategy the most easiest version of our knowledge for now, the
Round-Robin scheduling as introduced in subsection 2.3.3.

To structure this section, it is split in two parts. First we will describe the setup of our execution
of PACE and our measurement of the splitter’s latency. Second we will examine the results of
our execution to analyze the factors of the LoS issue.

3.3.1 Setup

The technical basis for this execution will usually be a simple PC. It is equipped with 3x2 GB
DDR3 RAM, an AMD Radeon R9 290x and a Intel(R) Core(TM) i7 930 CPU. The motherboard
is an ASUS Rampage II Extreme and the operating system is Windows 7 Ultimate x64. In this
context ’usually’ means, that the splitter will always run on this PC, but the other objects, as
the rest of the framework, will may run on a second PC. We call this mostly used PC the main
PC for the analysis. As one scenario of the analysis is too much load for the main PC in cause of
a high workload, we may use another PC for specific parts of the framework. If we do that we
always will take the second PC, which is a notebook. This notebook is a Lenovo ThinkPad Twist
N3C28GE 334728G (Edge S230u). The technical equipment is there 8 GB RAM, a Intel Core
i7-3517U and a Intel HD Graphics 4000 (IGP). The operating system is Windows 8.1 x64.

Further on we will always execute only one operator or rather node of a CEP network. Therefor
we will take the PACE setup for this node. Note that we limit PACE for concentrating on the
predicates PStart and PClose at the splitting and just use Round-Robin as scheduling. Further
on we assume just two operator instances and one source will deliver upcoming events to the
splitter. The splitter will then decide as normal the predicates PStart and PClose and schedule
by means of the Round-Robing scheduling strategy. In addition we disable any dynamic
changing of the parallelization degree.

We want to know the splitter’s latency as result. Thus we measure this latency at the specific
work of one splitter. The latency of an event at the splitter can be seen as the whole processing
part of the splitter. Thereby, as mentioned in subsection 2.3.2, the splitter first evaluate PStart.
Then he schedules the probably new selection and will finally decide the truth of PClose for
the specific event and each at this time opened selection. So we just log the timestamp in front
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and beyond each execution of these splitting decisions. Thus we know the splitters latency
of this specific event. As we just use Round-Robin, we assume to neglect the latency of the
scheduling in cause of this simple and never changing scheduling. The tests will just differ in
their predicator operators and their parameters. Note again, that PStart is just evaluated once
for each event, whereas PClose is evaluated for each pair of current opened selections and the
specific event.

In cause of analyzing the influences of different parameters, we will investigate on three
different predicate operators. Therefor we will take the tuple-based window, the time-sliding
window and the traffic scenario, which was mentioned in section 2.1.
The tuple-based window (tu) has two parameters for the exactly window or rather selection
size. The first one adjust the selection size in means of, how many events are in one selection.
The second parameter defines the sliding in means of, about the number of next events, when
the next selection starts. In the case of tu we will use only the main PC to simulate the whole
node plus the source. Moreover we can ignore any content of the event and work with just
simplest events. We can do so, because the opened selections are defined at the splitter in
the parameters and we do not care for the real result in our context. In cause of this simplest
events, we just use a dummy operator for the instances. So at the time as one operator instance
handles a new received event, the instance is finished and just send an ACK to the splitter.
Very similar to tu is the time-sliding window (ti). It is also adjusted by two parameters, where
the first one gives the size of the selections and the second one the sliding size. The difference
to tu is that it is defined by the time and not by the number of events. Hence the selection size
is given in milliseconds and the sliding size is there also a given time. As ti is similar to tu, we
again use there just the main PC and simplest events without any content. As a consequence
we also just use a dummy operator for the operator instances.
As last predicate operator we will investigate the traffic scenario with its two positions pos_1
and pos_2. As revision, when one car reaches pos_1 an selection will be started with the
related event and when it arrives at pos_2 the selection of the car will be closed with the
related event. As a next step it should be concentrated on if one car overtook another one.
That means if the selection B starts after the selection A, but B closes before A closes, the car
of selection B has overtaken the car of selection A. Thus further steps has to go on. Note, that
in our analysis this further step is not important. Since we focus on the latency of the splitter in
cause of the opening and closing of one selection. In addition it is to note, that only the traffic
operator will use the second PC in cause of high load operator instances. The measurement of
the latency will, as mentioned before, always run on the main PC, but for the traffic scenario,
all other instances of the node and the source, will be running at the second PC. We need this
outsourcing of processing at the traffic scenario, in cause of the computational work of the
instances at this scenario. At the traffic scenario the events are of type pos_1 and pos_2 and
have the content of an specific car ID. Therefor the instances has to calculate the outgoing
events of how long they stay at the road and when they arrived, so the workload is much
higher than at the tu or at the ti.
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overlaps selection size in events inter-arrival time in ms

1000 1000 1
5000 5000 1
10000 10000 1
15000 15000 1
20000 20000 5

Table 3.1: Table of the different analysis runs with tu.

Always remember that the splitter has two different parts, which affect his latency. One hand
the evaluation of the predicates will take some time and on the other one the scheduling
strategy will also affect the latency. In this work we want to concentrate on prediction of the
latency in means of the predicates, but for the predicting the whole latency of the splitter with
a small error, the scheduling influences on the latency of the splitter are also necessary to
investigate.

3.3.2 Execution Results

The execution can be split in three different parts by using the different predicate operators.
We will follow thereby to first present the results of the tu, then the ti and finally the traffic
scenario.

The tu is adjusted for how many events are in one selection and for what is the shifting number
of events. So for tu we use five different test runs. These runs are all executed with the shift
parameter of one event. The size of one selection differs by the parameters of one thousand,
five thousand, 10 thousand, 15 thousand and 20 thousand. Note that in cause of the simple
events, all events will open one selection and can close a selection. If they fill one selection
as the last event so that the size of one selection is reached, the event closes this selection
hereby. Thus when the sequence number of the event is bigger than the specified size of one
selection, every following event will open and close one selection. This holds because the
shifting parameter is equal to 1. All events are coming in an inter-arrival time of 1 ms, except
the 20 thousand measurement. This case is special because the test run needs at the overlap of
20.000 selections at a time with the sizes of 1 to 20.000 to much time in processing the events
with an inter-arrival time of 1 ms. So for to hold a most similar performance as at the other
four runs, we just rise the inter-arrival time for the overlap of 20.000 a bit to 5 ms. Finally, we
get five different numbers of overlaps and the runs as to see in table 3.1, whereby each new
event starts a new selection.

As to see in figure 3.1a, a different count of overlaps generates another distribution of the
latency. This is a bit what we expected due the fact, that PClose is evaluated for each pair of the
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(a) Cumulative probabilities of the latencies at different
overlaps.

(b) Quantiles of the latency at different overlaps.

Figure 3.1: Plots of the LoS measuring with tu.

specific event and current opened selections. So at a higher overlap PClose will of course need
more time to evaluate. Moreover the cumulative probability of the latency shows a probably
close link of the latency to the count of overlaps. Thus the overlap seems to be mostly the
building factor of the splitting latency at the tu. This thesis is underlined by the second plot
of the LoS measuring with a tu. Figure 3.1b shows an plot, with the different quantiles of
all measured latencies at a specific number of overlaps. It is to see, that mostly all quantiles
are really near together at their values. Only the lower quantiles seems to depart a bit from
the other ones at higher overlaps. It is to recognize that still all quantiles are increasing with
increasing number of overlaps.

Next the ti is adjusted by the parameters of how long one selection is opened and on how much
milliseconds the ti shifts until the next selection will be opened. We will set the parameters,
such that 1, 5, 10, 15 and 20 thousands overlaps will be generated. Since we did the same at
the test of the splitting’s latency with tu. So from 1 to 15 thousand overlaps the inter-arrival
time is 1 ms and the shift parameter is also 1 ms. The size of the selections infer to be 1 to
15 thousand ms. The overlapping of 20 thousand selections is again a special case and need
a inter-arrival time of 5 ms. Hence the selection shift parameter is also set to 5 ms and the
selection size is set to 99 995 ms to generate an overlap of 20 thousand. So finally we got
again five runs with a different number of overlaps, which are summarized in table 3.2. Note
that each event again starts a new selection as at tu.

The plots of the test runs in figure 3.2 are nearly the same as with the tu. Thus we can see in
figure 3.2a again that the overlap seems to be the most limiting factor in cause of increasing
latencies by the same cumulative probability and different counts of overlaps. Moreover the
overlaps also seems to be the mostly influencing factor of the latency of the splitting in mention
of figure 3.2b. Thereby it is to recognize as by the quantiles of the splitting’s latency with tu,
that all quantiles are rising with respect to an increasing of the number of actual overlapping
selections.
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overlaps selection size in ms inter-arrival time in ms

1000 1000 1
5000 5000 1

10000 10000 1
15000 15000 1
20000 99995 5

Table 3.2: Table of the different analysis runs with ti.

(a) Cumulative probabilities of the latencies at different
overlaps.

(b) Quantiles of the latency at different overlaps.

Figure 3.2: Plots of the LoS measuring with ti.

So we assume further on, that the number of overlaps is the most commonly factor to predict
the latency of the splitting. tu and ti are quite similar predicates and both are quite simple and
have low computational burden, where the type of the event is irrelevant for processing at
the splitter. So in fact, we need one more distinguish predicate operator to get a knowing of
the general influence of the overlaps. Therefor we have our last predicate operator, the traffic
scenario.

As the tu and ti were quite simple predicates, the traffic scenario is bit more complex in cause
of differencing the event types. Events of pos_1 will open one selection and events of pos_2
will close one. Moreover the content plays a role in this scenario, because one car, which
opened a selection at pos_1, will always close again one selection at pos_2. Therefore it is
necessary to identify the car, which triggered the event of the specific position and so the
content becomes important for the splitter. For the test runs with the traffic scenario, we need
to remember, that the second PC is involved, but the measurements were still taken on the
main PC. So we did run the scenario also 5 times with different parameters as we did before
with the other predicate operators. The difference hereby was that we could not generate a
specified and constant number of overlaps. At the tu and ti we can adjust the operators more
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number of cars inter-arrival time in ms (exponential distributed)

20000 5
20000 1
20000 0.1
50000 10
50000 5

Table 3.3: Table of the different analysis runs with the traffic scenario.

in detail at the splitter’s parameters. This time with the traffic scenario, the predicate operator
is always defined the same with pos_1 and pos_2 and do not allow any adjusting parameters.
So we generate the difference at the scenarios. We assume a lane of 1 km distance and that all
vehicles could drive 80km/h to 120km/h. Moreover the inter-arrival time of the different cars
is adjusted by a parameter of the underlying exponential distribution, so that it is possible that
the inter-arrival time is smaller, but nearly not greater. The other parameters for our generator
are the number of cars in the scenario and the supremal time of how long a car needs to pass
the monitored lane. For generating much more different overlaps and do not have to adjust
the supremal time one vehicle needs to pass the lane, we only adjusted the inter-arrival time.
Thereby the inter-arrival time is getting much higher than in real scenarios. The point is, that
it is the same for generating the overlaps, if we just need adjust the lane length and so the
time one car supremal needs for this distance or whether we adjust the inter-arrival time. So
for easily distinguish the different scenarios we adjust the inter-arrival time and of course the
number of passing vehicles. So we assume scenarios as to see in table 3.3 for the test runs.

The traffic scenario has no cumulative probabilities plot in cause of the not getting a constant
number of overlaps. Our assumption of the mostly underlying factor is still provided, because
the latency increases even at the traffic scenario with a higher number of overlaps. As to see in
figure 3.3, the quantiles of each overlap until 20 thousand are near neighbors. Thus there is no
big variance of the latencies at a specific number of overlapping selections. There are some
peeks, but we assume that they are the consequence of the scheduling of the running system.

So finally we assume at a result of the analysis that the number of overlapping selections is the
decisive factor of influence on the given latency for the splitting part at the splitter. With this
assumption we will build an approach in chapter 5, to solve the LoS issue.
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Figure 3.3: Plot of LoS quantiles with traffic scenario.
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The LoS issue is as mentioned, the issue about the predictive knowledge of the latency of the
splitting in future scenarios. As we will invent a solving approach for the LoS issue in the
following chapter 5, we need therefor to mention about some prediction techniques. We can
separate in two different types of prediction techniques, which we need further on. So on one
hand we will need some regression learning to predict the latency in means of the overlap.
Therefore regression learning can give us a predictive function with a quite low error. Further
on we need some time series prediction, to predict the overlaps in the future, whereby we do
not have any real context to make a nice prediction except the last measurements. Time series
prediction is therefor the answer, because it predicts a variable in means of their history.

This chapter is further on split in two sections. At first we will talk about regression learning
models and beyond about methods of time series prediction.

4.1 Regression Learning Models

As we want to solve the LoS issue by learning a latency function with a regression model, we
consider in this section about different regression models. Regression learning works best if
the right model is used, because each model interpolates a bit different and so extrapolates
different. So the model, which fits best to a specific situation is strongly related to the situation
itself. If the model is not chosen rightly, problems at the results of interpolation can occur due
over- and underfitting. Whereby overfitting means that the degree of a function is too high
in the range of some points, so some interpolated points have a too high error in means of
the real original function. Accordingly underfitting means that the degree of a function is too
small, whereas again some interpolated points have a too high error ins means of the real
original function. A nice example for over- and underfitting can be seen at figure 4.1. Thereby
the black points are the data points, the red line fits best for those three and the green and
blue line under- or rather overfits the data points. Outside of the range of the input data, the
regression learning model has to extrapolate if it is asked for such a point. The results of a
extrapolation are strictly related to the calculated regression function. Thus they can be good
if the raise of the data is predicted well in the range of the data points. So the goodness of the
extrapolation is related to the available data, the distance of the asked point to the available
data, the model strategy and to the specific scenario. So for getting a nice evaluation later
on, we take two different models to compare the results of them. Note that we assume both
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Figure 4.1: Examples for over- and underfitting.

models can have nice results in our evaluation scenario and will see more at the evaluation in
chapter 6. The probably most easiest versions of all regression learning methods are the so
called linear regressions. Thus it does not take high computational costs to calculate such a
linear model. In cause of this, one of the two methods we use for the comparison is a linear
regression. A really nice idea of regression learning are the so called Multivariate Adaptive
Regression Splines (MARS) by Friedman [Fri91]. It is auspicious for us because it never needs
some sort of parameters to reach mostly all function points in a model and is still strongly
fitting to the input data.

So at first we introduce the two regression models in this section. Beyond we compare their
advantages and disadvantages to know their specified differences.

4.1.1 Linear Regression

We use an ordinary least squares (OLS) linear regression model to take in some easy and
simple model. Thereby it not only takes the part of comparison for MARS. The idea of taking
a quite simple method for building the regression model is based on the possibility, that an
easier structure may not deliver more inferior results as the complexer version. The simplest
recommend version of linear regression is the OLS method. In doing so, the OLS model works
on the ordinary least square sums of the x and y values of the entranced data. When the square
sums are least, the error term of the prediction function to the real values are minimal in each
point. In other words, the linear regression with OLS minimize the difference between all
points and the model function by minimizing the square sums of all input data. So you can see
that the linear regression is in a optimization problem by minimizing all residues of the input
data to the regression function. To get a better understanding of linear regression, we will also

32



4.1 Regression Learning Models

describe it in a more mathematical way. So for instance we have n data points (xi, yi), whereby
1 ≤ i ≤ n. Linear Regression tries to solve the regression problem by finding a polynomial
function with degree 1 of the form:

f(x) = α0 + α1x

The residue ri between the function and the data point (xi, yi) is then defined as:

ri = α0 + α1xi − yi

Linear regression now tries to find the coefficients α0 and α1 such that the sum of the squared
errors is minimal.

min
α0,α1

n∑
i=1

r2
i

We can solve this easily by assuming the sum as a function of the variables α0 and α1 and take
the input data as numerical constants. So we have to find the minimum variables for:

n · α0 + (
n∑

i=1
xi)α1 =

n∑
i=1

yi

When we then take the derivation of this function and try to find the root, we have the
equation:

(
n∑

i=1
xi)α0 + (

n∑
i=1

x2
i )α1 =

n∑
i=1

xiyi

So we can calculate the solving as:

α1 = (
∑n

i=1 xiyi)− n · x̄ȳ

(
∑n

i=1 x2
i )− n · (x̄)2 and α0 = ȳ − α1x̄

Whereby x̄ = 1
n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi are the arithmetic mean of the x-values or rather

the y-values.

As an example, the figure 4.2 shows in blue some points in a 2-dimensional room. The red
line clarifies the predicted linear function, which fittest the most as possible to all points in
the same instance. We will use the class called simple regression by apache commons for the
implementation. All relevant infos about the library of apache commons or the library itself
can be found at [apa].

4.1.2 Multivariate Adaptive Regression Splines (MARS)

As mentioned before the MARS idea was invented by J.H. Friedman in 1991 in [Fri91]. The
differences between MARS and the linear regression will be discussed in the next section
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Figure 4.2: Linear Regression using OLS.

(4.1.3). So for now we focus on the approach of MARS and refer hereby strict and directly to
[Fri91] and [HTF09].

The only user specified input is the maximum size of the basis functions set for the model. As
the name terms, the basis functions are splines and to be more precise the basis functions are
linear splines. The basis functions are defined as (x− t)+ and (t− x)+. The "+" means that
these functions depict only the positive part and are otherwise zero. So more in detail, they
are defined as:

(x− t)+ =

x− t , if x > t

0 , otherwise
and (t− x)+ =

t− x , if x < t

0 , otherwise

These basis functions are always occur in the mentioned pairs with the same knot t. One
example of such a pair of MARS’s basis functions is to see in figure 4.3.

The different knots are the distinct input variables xij for the input Xj . Note that it is possible
to learn a model with different input dimensions for predicting one ore more other value-
dimensions. For instance, we can input different measurements of the pulse and the moving of
a specific person and then predict somehow the sportiness of this person in general. So MARS
distinguish these different inputs with the term Xj . As a next step the candidates for being an
basis function are collected in the set C, where:

C = {(Xj − t)+, (t−Xj)+}t∈{x1j ,x2j ,...,xNj} and j=1,2,...,p.

Note that although each basis function depends on a single input Xj , it is defined as a function
over the entire input space Rp.
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Figure 4.3: A pair of basis functions in MARS with t = 0.5. [HTF09]

The idea of MARS is to perform a stepwise linear regression. Thereby it not uses the original
inputs, but the functions of the set C and their products. The resulting model gets the form

f(X) = β0 +
M∑

m=1
βmhm(X)

where each hm(X) is a function of the set C or an product of two or more of them.

Next MARS differences between a forward and a backward algorithm. The forward algorithm
is the algorithm, where the basis functions are chosen and the model is established. Thereby
the forward algorithm overfits the input data, in cause of two new basis functions or rather
one, before called, pair of functions in each step. Hence the backward algorithm is for cleaning
up the model and desirably deleting this overfitting.

The forward algorithm start with the constant function h0(x) = 1 in the setM, which contains
all basis functions of the resulting model. In every step the term of the form

β̂M+1hℓ(X) · (Xj − t)+ + β̂M+2hℓ(X) · (t−Xj)+ , hℓ(X) ∈M

is added toM, which fittest the most. As to see, each part of the new basis function pair is
multiplied with one of the hm inM. The factors β̂M+1 and β̂M+2 are minimized trough least
squares as in linear regression. The term, which decreases mostly the training error is selected
as the best and added to the setM. This procedure is working until the maximum size ofM is
reached.

The backward algorithm then has to delete some functions again to get a smoother final result
and not such a overfitting as the forward algorithm produces. In every step the term will be
removed, which removal causes the smallest increase in residual squared error. So finally the
estimated best model f̂λ is produced, where f̂λ has the size of λ, which is the number of terms.
Friedman proposes the general cross-validation to estimate the optimal value of λ.
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The approach of Greg Amis, which we use in later on to evaluate the final model of our
approach, differs there a bit. This approach stops deleting basis functions, when the squared
error stops decreasing and when the number of bases is less than or equal to the maximum
number of bases. The approach of Greg Amis is to find at [Ami06].

4.1.3 Comparison of Linear Regression and MARS

As you may recognized before, MARS takes in some parts of linear regression and exchanges
the model strategy by the basis functions. So there are some differences, but rather you can
say, that MARS is somehow an upgrade of linear regression. For instance, we have a cloud of
points in 2D like in figure 4.2, but know with a corner, so that one linear function can only
predict the half of the cloud with a low error. Therefor MARS will find this corner and take
it as a knot. Then it can establish two different linear functions to predict both halves with
quite a low error. So on one hand MARS could handle such a situation quite nice, but on the
other hand it is much more complex in his work and so have a higher runtime than linear
regression.

This makes clear, that we should take both, linear regression and MARS, to evaluate our
approach, because two different possibilities could eventuate. The first one is, that linear
regression predicts not quite well due the fact of a only piecewise linear slope and MARS fits
this error by its complexity or rather its stepwise basis functions. The second possibility is,
that MARS needs much more computational power and linear regression suits still well in our
approach. Both possibility have their right to exist, but hopefully one will eventuate strictly at
the evaluation.

4.2 Time Series Prediction

As mentioned before, we will need to predict a variable without any other parameters, who
influence this value, than the history of measurements of this variable. More detailed, we
want to predict the count of overlaps at the time, where the next selection closes. Thereby
we need to predict the inter-arrival time of new selections and the lifetime of selections by
only considering their own measured history. More details on this are to find in the following
chapter 5, where we will present our solving approach. Therefor time series prediction is the
answer, because we can measure in distinct timestamps the actual value of the variable. With
this measurement we are generating a history and therefor the possibility to use time series
prediction methods. For evaluating our approach we will take in two different time series
prediction methods. As in the last section we will introduce those two methods in two different
sections.

For introduction in time series prediction, it is to note, that every time series prediction is
based of measurements of the same variable. So it is not like in regression learning, where
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an inference on a certain variable is made in regard to other variables. Instead times series
prediction measures the different values of a variable and trying to make a prediction for the
next value of the variable with a small error.

The table II in [HHKA14] brings us to the two methods Moving Average (MA) and Simple
Exponential Smoothing (SES). The SES is again some sort of upgrading the MA, like MARS
upgraded linear regression. To implement the time series prediction models, we will use the
OpenForecast library from Steven Gould. Any further information on the Code or OpenForecast
can be found at [Gou].

4.2.1 Moving Average (MA)

Moving Average calculates at each new incoming value measurement of the monitored and
to be predicted variable the arithmetical mean of the last k measured values. It is possible to
specify k and so to fit the predicated result for the next value as fitted as the user wants. A
disadvantage is that much saved measurements for calculating the prediction infer a higher
workload and more memory space, but a too small count of measurements is not fault tolerant
to false measurements or outliers.

To give a small example, we could think about an array A = {1; 3; 6; 4; 9; 2; 7; 3; 5; 8} of
measurements of the variable t with its ten inputs, whereby the maximum size of last known
measurements shall be 10. If we see this array as a stream of the incoming measurements by
time, where the first index is the oldest measurement and the biggest index is the newest one,
we can establish a MA. So as we have ten measurements and each measurement gets the same
average weight, we just use as weight w = 1

sizeOf(A) = 1
10 . Further on if we call a prediction at

this time, our time series prediction model MA will answer us with the result r:

r =
sizeOf(A)∑

i=1
A[i] · w = w ·

sizeOf(A)∑
i=1

A[i] = 48
10 = 4.8

So we expect as the next measurement a value of 4 by just cutting at the dot. If a new
measurement is taken, the array A will delete the oldest measurement at index zero, shifts all
indexes by −1 and will then insert the new measurement at the biggest possible index. There
by the average of the measurements moves by time and so it is called MA.

4.2.2 Simple Exponential Smoothing (SES)

Simple Exponential Smoothing also calculates the arithmetic mean of the last k measured
values, but is distinguished from MA by giving the measurements different weights. Thereby
the different weights are exponential distributed and the distribution is smoothed by an user
given factor. Thus the older measurements can be fewer weighted than the newer ones, so that
the newer ones are more important for the next value than the older ones.
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As an example we again think about the array A = {1; 3; 6; 4; 9; 2; 7; 3; 5; 8} and the maximum
size of last known measurements is again 10. So if we then take a smoothing factor of
0.75, we equip the newer measurements with a bit higher weight than the older ones. If we
choose it 0.5 it would be nearly the same as MA, if we would use 0.0 as smoothing factor
the newer ones would not even influence the prediction and if we would use 1.0 we older
ones would not even influence the prediction. However, if in our example here, the array
w = 1

18 ; 1
18 ; 1

17 ; 1
15 ; 1

10 ; 1
10 ; 1

5 ; 1
3 ; 1

2 ; 1
2 for instance represents the weights, whereby the weight A[i]

is at w[i]. So the prediction’s result r is here:

r =
sizeOf(A)∑

i=1
A[i] · w[i] = 1

18 + 3
18 + 6

17 + 4
15 + 9

10 + 2
10 + 7

5 + 3
3 + 5

2 + 8
2 = 10.842

So if we cut again at the dot, the predicted value will be 10. The next measurement will
inserted like in MA to hold the maximum size of last known measurements.

4.2.3 Comparison of MA and SES

So you can see, that the last trend of how the measurements are changing influencing the
prediction of SES, whereas at MA the trend is only influencing the prediction if it is also
influencing the average mean. Distinct more differences are not really to see between those
two different models. As a conclusion of this section, it is to say that the advantage of MA is
the simplicity, but SES in turn can better recognize current trends of the predicted value. So
we assume, in our context is only a advantage to take SES if and only if, the inter-arrival time
of new selections or the lifetime of selections is changing during the scenario. Because if so,
SES can provide ot predict on regard to this trends. Else MA should be the better choice in
cause of its simplicity and its stable prediction if the values just differ in cause of some faults at
the measurement, thus swing around a constant value.
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In this chapter we will describe our solving approach of the LoS issue, which we will evaluate
in the next chapter. Therefore we will section this chapter in three parts. At first we will invent
the main-algorithm to predict the latency of the splitting, thus solving the LoS issue. As we will
see in the main-algorithm, we will need some environment to calculate our predictions. We
will use the mentioned prediction models and will describe, how we use them in the second
section. The last part of the chapter will be built by a description of the workflow of the whole
approach at runtime.

5.1 Main-Algorithm

In the analysis of the LoS issue in section 3.3 we concluded a final assumption on the latency
of the splitting. The overlaps of opened selections are the mainly influencing parameter of
this latency. As a consequence of this assumption, we can introduce our main-algorithm of
predicting the latency of the splitting as figured out in algorithm 5.1.

As we wanted to know, where exactly the latency is rising more, we concluded about the
two different predicates PStart and PClose. So if we start a new selection in cause of a new
event is opening, it is a quite low burden to calculate. Because we only have to allocate a
new selection on our memory and moreover schedule it to one of the available instances. But
the scheduling is not a part of the splitting. So for PStart there is mostly only the allocation
of a new object of the selection class and the adding to our selection set. On the other side,
the second predicate PClose is more expensive in computation. Because if we will go ahead
with, we need to find the selections, which are closed by this event. Due this, we have to go
through the whole set of selections and must find out, if the new arrived event at the splitter,
will close this specific selection. So the closing of a selection needs distinctly more computation
power than starting a new one. This fact and our assumption of the analysis leads us to our
main-algorithm getPredictionOfLoS(), which can be found in algorithm 5.1.

So at first we want know the oldest still "living" selection. In our context a living selection is
one, which is opened but not closed yet. We take the oldest selection in cause of the highest
probability of closing as the next one. Of course, in a more complex scenario than the simple
tuple-based or time-sliding window, like the traffic scenario or even more complex, this has
not to be the truth. But still in a more complex scenario, the oldest selection should have the
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Algorithmus 5.1 Algorithm for predicting the LoS.
1: procedure GETPREDICTIONOFLOS()
2: slt← getOldestSelection()
3: rolslt← getRestOfLifetime(slt)
4: iat← getSelectionsIATPrediction() // iat is intended to mean inter-arrival time
5: #slt← getCurrentCountOfSelections()
6: if rolslt < 0 then
7: rolslt← 0
8: end if
9: if iat < rolslt then

10: #slt← #slt + rolslt
iat

11: end if
12: result← askForLatencyWithOverlaps(#slt)
13: return Latency at "currentT ime + rolslt" will be around "result" milliseconds
14: end procedure

highest probability of closing before all other selections will close. And if we just think about
the simpler cases like tuple-based or time-sliding windows, we can see, that the oldest selection
will close as first with even a probability of 100 percent. So at all, it is to say, that with the
point of needing more computational power at closing and picking up the selection with the
highest probability closing next, we should be on the right way. Because it is more necessary to
know the peeks of the latency, than other situations. Thus if we know the peeks, we also know
when we have to order more instances or rather increasing our parallelization degree to stay
in the given latency budget.

As a next step, we need to know the selection’s rest of lifetime. This timespan is really important
to know, because then we can define a specific timestamp, when the selection should close and
when the latency should be as high as predicted. Moreover we need to know the timespan
between the predicted end and just right now Because then we can evaluate the count of
new selections, which will be open at the time of closing the oldest selection. We need to
contemplate about this fact, because at the time of our prediction not all selections, which
will be there at the closing of the next one, have to live at the moment of the prediction. So
for predicting these new incoming selections, we need moreover the inter-arrival time of new
selections. Because if we know the inter-arrival time, we can easily estimate the count of
new selections, which will get opened until the oldest selection should close. Further on we
can simply update our number of currently living selections by calling the size of the set of
opened selections. Then we can add to the number of current living selections the predicted
number of selections, which will be get opened in the rest of the lifetime of the oldest selection.
This adding is exactly need to be done, when the inter-arrival time is smaller than the rest of
the lifetime of the oldest selection. Finally we can ask with the number of the overlapping
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Figure 5.1: The LoS predictor and its environment.

selections for the inferential latency and give out a nicely prediction, when this latency should
be the case.

So in more details the main-algorithm starts at line 2 with saving the oldest selection in slt. The
next steps are the saving of the current predicted rest of lifetime of the oldest selection in line 3,
getting the current predicted inter-arrival time in line 4 and saving in line 5 the current number
of living selection. Note that the if-statement in line 6 catches all errors, if the actual rest of
life time of the oldest selection is lower than zero. Because if the rest of the lifetime is lower
than zero, we have to assume that the selection should have closed in the past. Thereby the
percentage that it closes just right now is a better assumption for our algorithm, than predicting
situations in the past. To make this assumption we just set the predicted rest of lifetime to zero
in line 7. However, after this catching, we need to add the predicted new selections, which will
be there at the time of closing the oldest one. As mentioned before we evaluate if we have to
do so in line 9 and if we have to, we add the number of incoming selections in line 10. A nice
fact is, that the division of the rest of the lifetime and the inter-arrival time is by cutting it to
a integer number exactly the number of selections, which will start until the next ends. The
number of selections is predictively then the number of opened selections, when the oldest one
closes. So we can get the prediction of the latency with a number of overlapping selections in
line 12 and finally give a result in line 13. It is to see that the main-algorithm is quite simple
and should not take a several time to get to a new result, if asked for one. So updating and
releasing of any predictions should not influence the latency to much.
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5.2 Environment

As we presented the main-algorithm, we need some more environment to implement the
algorithm as simple as it is by itself. Because the different predictions and assumptions had to
made or rather experienced continuously during runtime of the splitting. So finally we will
take four more instances, which will work together with the LoS predictor. These different
instances are mostly basing on the different prediction techniques we introduced in chapter 4.
Moreover the overview of referencing the environment of the LoSPredictor to predict finally
the latency of the splitting and so solving the LoS issue can be seen at figure 5.1.

The OldestSelection predictor is as the main-algorithm quite simple and does not need any of the
mentioned prediction techniques to find the oldest selection. So may you can say it is not really
a predictor, thus it is more a searcher. It is just linked with the set of living selections known by
the splitter and always saves the oldest living selection to deliver it to the LoS predictor. The
Splitter calls an update of this "predictor", whenever he closes a living selection.

The Lifetime of the Selections predictor and the IAT of Selections predictor are both based on
a time series prediction model. So all predictions are based on the last k observations, and
are either made with an moving average model or an simple exponential smoothing model.
Whereby the factor k can be defined at the startup of the splitter and is so definable for the
query of the whole system. This factor should be defined to establish a well-suitable model on
each specific scenario. If the simple exponential smoothing is taken, we assume a smoothing
factor of 2

3 , to make the latest observations a bit more weighted in the model than the older
ones. But the older ones should not be nearly unimportant for the model, because if they are,
the model size defined by k is just a bit too big.
So to predict the rest of the lifetime of the oldest selection, we just need to substitute the actual
lived timespan of the oldest living selection from the predicted selections’ lifetime. And there
plays the prediction of the lifetime its role. Whenever a selection is closed, we can calculate its
lifetime, thus have a new observation for our Lifetime of the Selections predictor. To predict
the actual inter-arrival time of selections we do not have to do anything with the prediction
of the IAT of Selections predictor. We refresh this model by simply determine a measurement
of an inter-arrival time, when a new selection is opened by the splitter, and take it as a new
observation for the predictor. Note again that both, the Lifetime of the Selections predictor and
the IAT of Selections predictor, will use always use the last k observations to answer a prediction
request.

The last to be named instance is the Overlaps to Latency Model. To evaluate the final prediction
of the latency we take a regression learning model. Thereby it can be chosen between the
linear regression and MARS. While the linear regression is easy to build and so easy to update,
MARS needs there obviously more time. So while we build MARS just one time during runtime
and then predict with this model, we proceed in the case of linear regression a bit different.
We are building the model with the first few observations and will then moreover update it
continuously. The update process of linear regression is really simple, thus we can update
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it with new observations during runtime and be therefore more precise and dynamic than
without updating it. All observations are just the same we took as measurements for the
analysis with the linked number of overlapping selections. So every single observation is a
point in a two-dimensional field, where one dimension is the number of overlapping selections
and the other one is the measured latency of the splitting. In the case of MARS we need to
define a point from when we going to use the observations for the model and a point where
we will build the model and future observations will not influence the model. With these two
defined points we can also conjointly define the number of observations we take in to build
the regression learning model. For setting up we do not define these points by time, since we
can just define the number of first observations, we do not want to take, and as next the size
of the MARS model, which means how much observations should influence the model. Note
that, also in the case of linear regression the parameter of the number of first observations we
do not want to take plays a role. Because in case of setting up the whole framework PACE,
we can not be sure that all measurements, are exactly true, because may some of them will
need more time than they would need it later on. This fact can appear due a too small space of
computing power at the beginning of the process. We can be sure that the operating system
will force enough computing power after a several steps. Therefore we also provide to ignore
some first measurements at linear regression. Bad measurements at the beginning of the
model, can influence the model really badly, in cause of giving the function a negative slope
due highly differences between the measurements. When the future observations are quite
near to themselves, the modeled function may stay with a negative slope. A negative slope is
quite bad, because on one hand the analysis shows us, that this is not the truth and on the
other hand predictions of high values may fail and give out negative predicted values. That
a negative predicted value can not exist in our case should be clear, in cause of the fact that
negative latencies do not make any sense.

5.3 Workflow

To get a better understanding, how our solving approach works during runtime, we focus
us in this section on the workflow. This contemplation is quite important, because then it is
hopefully easier to understand, how the results in the evaluation emerge.

So at first there is to say, that we gain some more concurrent threads at the splitter for our
workflow. Because we do not want make the splitter busy with our prediction calculation. So
we will start four new threads for each of our environment instances, two for some connectors
of the time series models, which we will explain later on more in detail, and one for calculating
the algorithm 5.1, thus being the LoS predictor. These seven threads are working together with
the splitter and will finally result predictions of the LoS. Let us start at the splitter and go step
by step deeper in hierarchy of our approach.
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The splitter computes as usual the events and decides the two predicates PStart and PClose and
schedules new selections with the underlying scheduling strategy. If the prediction of LoS is
activated at startup, which can be done by a boolean parameter of the splitter, the splitter has
to activate the update procedures of all 4 environment predictors at the right step of its process.
So if a new event arrives and starts a new selection, the splitter has to some more work. The
last inter-arrival time of new selections can be calculated by simply saving the last timestamp
of opening a new selection and then calculating the span of time, how long it took since the
last one was opened. This new measurement of the inter-arrival time is then delivered to the
IAT of Selections predictor by calling an update with the new measurement as parameter. The
timestamp of the new selection’s opening has also then to be saved at the specific selection, to
provide a calculation of the lifetime later on.
The splitter goes on again as without LoS prediction until it evaluates PClose. If one selection
is closed by an event, the splitter has again to do some short and simple extra work. Therefore
it forces an update of the Oldest Selection predictor, whereby no parameter is needed. Next the
lifetime of the to be closed selection is calculated by the saved startpoint and the current time.
This calculated lifetime will be delivered as a parameter of the update call at the Lifetime of
Selections predictor.
At last it is to mention, when the update of the Overlaps to Latency predictor is updated. We
therefore just observe the latency of the splitting as in the analysis in section 3.3 by simply
measure the time before we handle an event and after we did it. We can calculate then again
with these two timestamps the latency of the splitting. Thus after the splitter done is work of
one event it calculates the latency of splitting and deliver it as a pair with the current count
of overlaps to the Overlaps to Latency predictor. This delivering is the call of an update at the
Overlaps to Latency predictor.

If the Oldest Selection predictor receives an update call, it simply updates concurrently the
reference of the oldest selection. If the determined reference is not a null-pointer it sets it setup
status on false to provide a request of the LoS predictor. As the LoS predictor requests the
actual oldest selection, the Oldest Selection predictor simply gives the saved reference back.

The Overlaps to Latency predictor will not always really make an update if one is called. The
decision is related to the underlying model and to the configuration parameters of the Overlaps
to Latency predictor. If the underlying model is linear regression the activation of the refresh
will always call an update procedure with the new observation as input. The only exception of
this updating are the first observations, which shall not influence the model due false setup
measuring. If the underlying model is MARS, the activation will not really activate a progress.
Instead the model will collect the observations, which shall influence the model, until all of
them were made. Beyond it will build its model and will moreover ignore following new
observations.

The Lifetime of Selections predictor and the IAT of Selections predictor are working both on a
time series prediction model. Thereby they are really similar in the workflow and we always
starting them with the same time series prediction model by one parameter of the splitter. At
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the calling of an update of one of them, the linked connector of those predictors has its role.
As we mentioned before each predictor with an time series prediction model has its connector.
This means, that the splitter not really calls an update at the predictors itself, but at the related
connector. The connector is there to provide an always full and stable set of input data for the
linked predictor. So at starting the framework, the connector will start to collect the defined k

observations and will only start an "update" of the real model, if it has collected k observations
for the first time or a new observations has arrived. Note that if a new observation arrives at a
connector and the set of observations has already k elements, the oldest one will be deleted
and the new one will be inserted to provide a moving window on the last k observations. So if
related connector of one time series predictor starts an "update" of the model, the predictor
not really updates the model in cause of no available update function in OpenForecast [Gou].
Rather it builds a new model with the actual set of data. If there is a stable model available
the setup the specific time series predictor is set to false. Note that the LoS predictor can only
access a prediction, if there is no new model building in process. Otherwise the LoS predictor
has to wait until the model building comes to its end.

If one of the time series prediction models where updated or rather new built, they will always
activate a new refresh of the LoS predictor. Of course if there is a refresh in progress and a
new refresh has been ordered before, they do not have to set the refresh value again on true.
Because if the actual refresh of the prediction is done, the LoS predictor will take all actual
models or values to make a new prediction. Note also that the LoS predictor will only make
a prediction if no instance of the environment is in its setup. If the setup of all instances is
fulfilled, we can be sure, that all predictors will give an actual result to the main-algorithm.
If this is not the case, the LoS predictor could give results, with no common sense and that
would cross all work behind the prediction. Because regardless of what the splitter will then
display as an output, as soon as it gives one, the handling of such an output will have errors
and mistakes as a consequence. Finally we also provide a petri-net in figure 5.2 to give also a
viewable part on the workflow.
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Figure 5.2: The workflow of the LoS solving approach as petri-net.
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So in this chapter we will evaluate our solving approach for the LoS issue. To structure the
evaluation, we section this chapter again in three parts. At first we will introduce a moreover
naive approach to deal with the LoS issue. This naive approach is there to give a comparison
to our solving approach. For the rest of this chapter, we will went on like in section 3.3 the
analysis of the LoS issue. So as the second part of this chapter we will describe the setup of
our evaluation and the last section of this chapter will be the overview of the evaluation’s
examination results . In last section we will moreover conclude with further assumptions,
which result on the evaluation results.

6.1 Naive Approach

As mentioned before, our approach needs a comparison with some more simpler approach.
With this suggestion, we build a quite simple one, which is very naive in its assumptions at
the latency function. We contemplate about this approach to see moreover, that our approach
certainly tends in the right direction. So the naive approach should be one, which someone
would think about, when he did not read this work nor did the research we did before. So at a
first glance such a guy would think to solve the problem with the naive approach. Finally it
should be clear that this naive approach does not work well and that indeed our approach is
needed.

The most simplest way to handle the LoS issue should be to just predict the next upcoming
latency with the knowledge of a few last measurements. So our naive approach takes in
the last one hundred measurements of the latency to build up a moving average time series
prediction model. With these measurements it will predict a forecast value. One prediction
will be predicted as the truth for 500 ms in the future from the time stamp at the prediction.
This naive algorithm to predict the latency of the splitting can be seen at algorithm 6.1. The

Algorithmus 6.1 Naive algorithm for predicting the LoS.
procedure GETNAIVEPREDICTIONOFLOS()

prediction← getCurrentForecastOfTSP() // tsp is here a moving average model
return Latency at "currentT ime + 500" will be around "prediction" milliseconds

end procedure
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workflow of the naive approach is just a simpler way of our one. The splitter will trigger a new
observation of the latency to one connector of the time series model. This connector will force
a model building of the time series prediction and at each new built model the predictor of the
latency will activate the naive-algorithm to make a new prediction.

6.2 Setup

The hardware setup of the evaluation is exactly the same as the hardware setup of the analysis
in chapter 3. We have again our two computers. On the one hand there is the main PC and on
the other hand there is the second PC, whereby both are the ones of the analysis. So the main
PC is equipped with 3x2 GB DDR3 RAM, an AMD Radeon R9 290x and a Intel(R) Core(TM)
i7 930 CPU. The motherboard is an ASUS Rampage II Extreme and the operating system is
Windows 7 Ultimate x64. Moreover the second PC is again the notebook and more detailed a
Lenovo ThinkPad Twist N3C28GE 334728G (Edge S230u). The technical equipment of the
second PC can be classified with 8 GB RAM, a Intel Core i7-3517U and a Intel HD Graphics
4000 (IGP). The operating system is Windows 8.1 x64.

As we now know again the PCs, which we use to evaluate, we can further describe the scenario
we choose. Of course we examine again as before one whole PACE framework with two
operator instances. The splitter will run thereby on the main PC and the rest of the framework
will run on the second PC to not overwhelm the main PC with one whole framework. This
outsourcing is necessary due the type of our evaluation scenario. Note that we will again use
Round-Robin as scheduling method and no adaptive mode for the parallelization degree is
enabled. In the analysis the scenarios were quite static in themselves. The tuple-based and
time-sliding windows are of course static, because we define a size and a moving rate of them
and then they will work with this assumption. A correct end of these scenarios is not really
designated for the usage in practice. In cause of their simpleness a real end of such scenarios
are only postulated, when the interest of the linked query wanes and is finally gone at the
time of the end. So for our evaluation we just assume to run such a scenario several minutes
long and assume at the end a end with no cars left at the lane. The traffic scenario of the
monitored road to punish transgressors of the actual valid road regulations on this line, is on
that account a better base for delivering a not so exactly formed scenario. The scenario has
of course also only a real end, when the monitoring should stop, but we can define one by
assuming a specific point of time where no more cars will arrive. So finally no cars will be
between our two sensors at the locations pos_1 and pos_2.

Moreover the traffic scenario of the analysis can be formed more realistic. Because analysis’
traffic scenario was just a scenario, where the inter-arrival time of the cars was defined by an
exponential distribution with a specific form-factor. For the evaluation of our approach we take
a traffic scenario of around 90 minutes length. Thereby the exponential distribution of the
inter-arrival time of new cars will be increased and then decreased again. More detailed the
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scenario starts with a exponential distribution around 2 seconds and will concurrent increase
by time to a exponential distribution around 200 milliseconds. After a short time on the peak
of the inter-arrival time, the inter-arrival time will again decreasing concurrently by time to
the start distribution around 2 seconds. The cars will need between 600 seconds and 900
seconds, whereby the 900 seconds are the normal case and only 10 percent of the cars will be
faster than 900 seconds. Of these 10 percent speed violating cars the exact speed is uniformly
distributed. So by these facts, it can be ascertained that all of our models has to perform a
relevant work. The overlaps will increase and decrease, so the regression learning model has
to perform well for all different predictions. And the both time series predictors are tested due
non-static observations. Because the lifetime of the selections fluctuates due the differences of
the specific car speed. And the inter-arrival time of the selection fluctuates, since it is calculated
by a exponential distribution and this distribution furthermore changes during the scenario.
With these evaluation scenario we assume a most realistic one as actual possible for us.

Note that we will take some alteration on the scenario for the run with the naive approach.
At this special run, we just could run it with predictions running all time during the run at a
smaller scenario. So all parameters of the scenario are the same instead of the length of the
scenario. The shorter scenario is just around half of time of the original evaluation scenario
and so the number of arriving cars during this scenario are about the half of the longer one.
The speed of the cars is the same as before, but on the dynamical change of the inter-arrival
time is also some alteration to be made due the shorter scenario length. The increasing and
decreasing of the inter-arrival time of cars is the same by the exact exponential distribution,
but the specific distributions will used the half of the time as used in the original scenario.
We use this special scenario for the evaluation of the naive approach in cause of a unknown
issue at the runtime. The point is that the prediction just freezes after around one quarter
of the evaluation scenario, but with the shorter or rather tighter scenario it works fine. We
can exclude a memory leak, due the fact, that our approach works fine with the evaluation
scenario and the naive approach needs significant less memory space. Finally you will see, that
we can nevertheless see obvious results on the naive run with the tighter scenario.

6.3 Results

As mentioned in chapter 5, we have a few parameters to define, when we want to activate our
solving approach. We appoint that our time series prediction models on a size of one thousand
observations. So at each point, the lifetime prediction and the inter-arrival time prediction will
give out a forecast, which is calculated on the last one thousand observations. As we have the
possibility to choose between two different time series prediction models and two different
regression learning models, we started five different runs. Four runs for all possibilities of our
approach and one run for the naive approach. To structure the assessments of the evaluation,
we go on with four different subsections. At first we will detail the assessments on the runs
with linear regressions. Afterwards we take a look on the two runs with MARS and then on the
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Figure 6.1: Plot of the evaluation run with moving average and linear regression.

run of the naive approach. Finally we will close this section and thereby the chapter with a
concluding assessment of the whole evaluation.

6.3.1 Linear Regression Runs

We decided for the linear regression to let the first one hundred observations of the latency pass
and not deliver them to the regression model. Thus all needed parameters for the two runs
with linear regression are defined. In figure 6.1 it is to see that at the beginning we first need to
setup all models. After around 18 minutes, the first predictions are made. We can observe that
the observations are mostly smaller than one millisecond except some outliers. These outliers
were also to observe in the analysis. In our assumption, these outliers are a consequence of
the scheduling of Windows. At around the half of the time the most overlaps occur, thus the
measured latency is there higher than at the rest of the scenario. The predictions are jumping
some times at the beginning and one more time to the end of the scenario. We assume there
two factors, which play a role for these jumps. On the one hand at the first predictions, the
linear regression is may not stable enough due the measured outliers. And on the other hand,
may also the time series predictions of the lifetime and the inter-arrival time play a role due a
little false prediction. The main influence on these jumps should be settled at the fact of the
not stable linear model, because when we take a look at the predicted overlaps we can not find
a obvious high miscalculation. Remind that the predicted count of overlaps is the result of both
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Figure 6.2: Plot of the evaluation run with simple exponential smoothing and linear regression.

used time series prediction models. On a final note, we can observe a quite good prediction
field at the end of the scenario.

The second run with linear regression as our overlaps to latency linking model is to see in
figure 6.2. At this run we take in the simple exponential smoothing to build our time series
prediction models. The measurements are nearly equally distributed as before at the first run
with moving average. The biggest difference is to see at the predictions. The predictions start
as before around 18 minutes after the start, and at first they are quite similar to the first run.
But at the first jump of the predictions we observe two really high jumps. The predicted count
of overlaps is again quite fine in the logs. Thus we assume a difference at the linear regression
model due other measurements or rather not in the same sequence as in the first run. So we
determine that the jumps at the beginning of the predictions or rather at the time of a quite
less influenced regression learning model could be quite high. The good thing on this run is the
part of the predictions from around 40 minutes. There we can see a quite stable sequence of
predictions. As we have no influences in the model from the first one hundred measurements,
we see also that to the end the predictions get even higher than the real values.

6.3.2 MARS Runs

So in the two runs with MARS we have one more parameter than at the first two runs with
linear regression. Initially we have to remember that we will not update MARS at any time.
This is the case due the long building time of a stable MARS model and no presence of a
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Figure 6.3: Plot of the evaluation run with moving average and MARS.

Figure 6.4: Plot of the evaluation run with simple exponential smoothing and MARS.
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real update function. So to have a powerful model after building it we need a big count of
observations, which function as the training set. Finally we decided due the knowledge of
reading the logs of the first two runs and a testing of the MARS model 7000 observations
should be enough for this scenario. Moreover, we have the chance to calculate for every
upcoming count of overlaps a meaningful prediction, if we start thereby to collect these 7000
observations after letting the first 500 pass. So with a quite big expert knowledge we can
define the two remaining parameters for the runs with MARS with 500 for the first passing
observations and 7000 for the number of influencing ones. Thereby we should start building
the MARS model at around 23 minutes after our starting point.

In figure 6.3 we can see the run with moving average and MARS. We obvious see there more
outliers of the measurements than at the runs with linear regression. The predictions are really
different to the runs with linear regression. In the plot of the run with moving average the
predictions are firstly made really late in our scenario. So the building of the model took there
a several sequence of time. The most predictions made are quite good integrated in the cloud
of the most observations. But in addition we can also observe negative predictions. These
predictions do not make any sense for usage afterwards, but they are calculated at positions
where we do not have any observations in our training set.

The second run with simple exponential smoothing and MARS is quite different and to see in
figure 6.4. The measurements have as in the first run with MARS more outliers than in the
runs with linear regression. But the predictions are really different to the first run with MARS.
This difference is again not really influenced by the changing of the time series prediction
model, because the count of overlaps is again quite well predicted. The really difference is
thereby at the MARS model. One the one side the building time was distinctly faster. On the
other side the predictions for a count of overlaps, which is higher than the biggest count in our
training set is not negative. At least for the counts, which we did not observe for the building
and which are smaller than the smallest observed one, have really high negative values in the
prediction. So we see that MARS is not really stable at extrapolation but stable at interpolation.
In other words, MARS is really good at the range where observations are in the training set.
But for values of the independent value, which are not in this range, MARS could be ok, but
also really awful.

6.3.3 Naive Run

As mentioned before, the naive approach has a not solved issue with the evaluation scenario
on the two PCs. This issue may not appear on other machines and so we use the tighter version
of our evaluation scenario for this run. So we have now about a total time of 45 minutes.
Figure 6.5 and figure 6.6 plotting both the same logs. To see more details on the run we just
plotted it two times with different scales at the dimension of the latency. Of course the setup
time of the approach is really small. It is so small that it is may not even to mention as a setup
time. We only need 5 observations and afterwards we can predict 500 milliseconds in the
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Figure 6.5: Logarithm scale plot of the naive approach run.

Figure 6.6: Plot of the naive approach run.
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future. Remind that there will be not more than 100 last observations to forecast the next
latency. With this fact we can see in the both figures that the prediction is never so stable such
our solving approach. Especially the outliers in the measurements are a plague for the naive
prediction, because the influence of those is to high. So if there are any outliers observed,
the naive model is easily teared. And with the high scaled figure 6.6 we can also observe big
outliers in the prediction. Such outliers in the predictions are not desirable, because they could
have miserable consequences. For instance, if we have a distinct high prediction, we assume
as a consequence that we need more operator instances to deal the upcoming event rate. We
assume this in cause of better be prepared for the worst case than not fitting in the given
latency budget. If it then demonstrates that we not need this more computation power, we are
not achieve the goal of never have more operator instances at work as needed to handle the
scenario in the given latency budget.

May it seems to be so that the naive approach performs better than our solving approach.
It is the truth, that the naive approach performs really well in this scenario, if we filter the
outliers. We want to be as near in practice as possible, but if we assume a scenario with a
high fluctuating count of overlaps, the naive approach will really fail. Because if for instance
some events closes more than 100 selections at once, the naive approach will result in many
outliers. If there are many outliers, which we then want to filter, the results will be only
sparsely distributed over the whole scenario. Our solving approach will there be more stable,
because it just performs on the knowledge over the overlaps and not only on current trends.

6.3.4 Final Assessments

So we observed with the evaluation that our solving approach does not influence the latency
to much. Because we can compare the measured latencies with the latencies of the analysis in
section 3.3 and all over the latencies are always in the same magnitude. As we contemplate on
the plots, we can conclude a equality in the usage of moving average or simple exponential
smoothing for the time series predictions. So our recommendation is the usage of the moving
average due a bit smaller workload in cause of the same weights for each influencing observa-
tion. An other assessment on the evaluation is the fact, that all runs of our approach are quite
better than the naive one, in cause of being more stable in the predictions.

Our approach does not predict really perfectly due setup or rather neither doing any prediction
at the setup time. Thereby we see some differences, where the two different regression
learning models could be the better one to deal with the solving of the LoS issue. Which
model is auspicious to take for a specific scenario can be different concerning the superior
interest, which defines the needed information and so the query for the whole CEP system.
The linear regression model could be better for a scenario, where it is needed to make updates
on the regression learning model. Moreover the linear regression will probably achieve better
predictions for values, which were not in the range of the observed ones. This holds on the one
hand in cause of the single basis function used in linear regression and the observed probably
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linear increasing of the latency at a higher overlap. MARS can achieve good predictions outside
of the observed range but the probability is linked to the used splines in the model and they
may do anything outside the range of observed values. We also observed this in the plots
above. On the other hand the linear regression will probably make better predictions outside
the observed range in cause of the possibility to update the model. Thus in practice it is a small
probability to need a prediction far outside of the observed range. And even if, after the next
update the distance between the needed prediction and the model is perhaps smaller than
before.

MARS in contrast will probably deliver better results for values inside the range of observations,
because the different basis functions shrink the standard error to all observations compared
with the linear regression. Linear regression tries to keep the error low to all observations with
the limitation of just one linear basis function. We can observe in the analysis of the LoS issue
that the latency increasing respectively to the count of overlaps nearly linear, but at a higher
workload with much more overlaps this does not have to be the truth. And there has MARS
with its different basis functions a advantage to deal with. Moreover we observed better results
in the range of observation, when we used MARS. So we can assume that MARS will always
give better results, when the to be predicted value is inside the observed range. MARS could
thereby be also the better solution for specific scenarios. If we could include for instance in a
MARS model all upcoming traffic of a road over two weeks, the built model should be large
enough to deal all upcoming traffic. Note that this assumption can also be broken by the fact
of more traffic at holidays.

So you see that there are use-cases, where MARS is the better choice, and there are cases, where
linear regression is the better choice. In any case, we need obvious more expert knowledge to
perform a prediction with MARS. So if you do not have any expert knowledge, which you can
use, our recommendation is to use linear regression. But if we can observe nearly the whole
range of possible overlaps and have a profound expert knowledge and have time to built with
the observations a model, MARS is definitely the better choice.
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This work did a first step in the direction to stay with a parallelized CEP System always in
real-time computing. More in detail, we can now easier stay in real-time computing with a
CEP system, which implements the PACE framework. At first we showed the essential need
of knowing the latency of the splitter and the merger at a specific CEP or rather PACE node.
With this knowledge we can easily adjust and prepare the node for upcoming scenarios, thus
the correlation calculation will stay in the specific latency budget for this node. Thereby we
will not have to care, whether much events arrive at nearly the same time or not. Because
the prediction shall be automatically and concurrently calculated. Further on we detailed
the problem, of how to predict the latencies of the splitter and merger in less complex issues.
Of course we can first split at the point of the different instances. So we need a different
prediction algorithm for the splitter than for the merger. By contemplating more in detail about
the splitter we marked again to subparts. The splitter’s latency can moreover be split in two
influencing parts, which it has to calculate. On the hand there is the scheduling of the actual
opened selections, which will especially influence the latency as more complex the scheduling
method is. A complexer scheduling can have many more advantages to use than the probably
simplest version. Because instances can be distributed over the available instances such that
nearby no communication overhead exists. Thereby it has to be regarded that also no operator
instance should be overwhelmed by to much workload, because that was the fact we want to
circumvent by parallelizing the CEP nodes. On the other the splitting is also influencing the
latency of the splitter due on every event has to be decided if it starts a selection and or or
closes one selection. In this work we investigated more in detail on the Latency-of-Splitting
(LoS) issue. Therefore we first defined this issue and further analyzed influencing parameters
of the LoS. The definition is to find at section 3.2 and concluding we can say, that the LoS issue
is the problem of have a knowledge how to predict the latency of the splitting.

At the analysis of the LoS issue we make different runs of a PACE node with a mostly simple
scheduling approach to get moreover the best fitting how the prediction could be established.
By running different scenario of different complexity we finally assume after the analysis that
the most influencing part of the splitting is the count of overlapping selections. This is the size
of the set of all currently opened selections and is saved by the splitter for a easier scheduling
and the communication with the merger by closing one selection. The assumption seems for
us very legit due the calculation of the predicates PStart and PClose. These predicates state the
decision upon a specific event starts and or or closes one selection. The calculation of these
are quite simple. But to decide whether a selection should be closed by this event or not, the
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splitter has to go trough the hole set of opened selections. Thereby it has to determine PClose
for every pair of opened selections and the specific event. Based on this final assumption we
invented a solving approach which is introduced in chapter 5. At the evaluation with a scenario
of a traffic monitored lane, our approach did quite well. It was shown that our approach needs
some setup time to predict stable latencies but the error seems to be all right. Also the new
workload for the splitter by our extensional approach is not important to mention due the fact,
that the latency was not noticeable increased. We also showed in the evaluation, that a naive
approach would definitely predict more worse than our approach. We also mention that it is
equal, which time series prediction model we use for our approach. By contrast the use of a
specific regression learning model is direct linked to the superior interest or rather query of the
user or application.

Future work can focus in many different things. On the one hand there are still many parts
left up till the point of knowing the hole latency of the splitter and the merger is reached
and getting a really chance to handle all upcoming situations within the latency budget. On
the other hand the prediction of the LoS issue could maybe optimized a bit. The big expert
knowledge to start our approach should be getting smaller by time. Because we have many
parameters, thus expert knowledge is always needed and not only at the usage of MARS, but
of course by using MARS we need distinct more expert knowledge. May we can also optimize
our approach due other underlying models than our suggested ones. If MARS will anytime be
the state-of-the-art to use, when a regression learning model is needed, or is the best for the
scenarios, which could happen in the future processing of the CEP system, FastMARS [CSF93]
by Friedman could also be the answer. We assumed at first to just provide easy models, because
FastMARS goes a head with some heuristics to build the model faster and FastMARS will also
may not be needed anyway due no query where we need a MARS model and a new built model
after some time. Because we saw that if we can have a learn period for MARS quite everything
should be fine for any event-load upon this specific node. Moreover we do not have a good
exampling scenario, where we need FastMARS instead of MARS. But maybe it could be a idea
to handle the hole prediction more perfectly.
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