Institut fUr Technische Informatik

Bachelorarbeit Nr. 182

Software-basierter Selbsttest von
Peripherie-Komponenten

Jochen BaBler

Studiengang: Informatik

Prifer/in: Prof. Dr. Hans-Joachim Wunderlich
Betreuer/in: Dipl.-Inf. Dominik Ull

Beginn am: 21. Oktober 2014

Beendet am: 6. Mai 2015

CR-Nummer: B.4.5

Kurzfassung

Software-basierte Selbsttest (SBST) Verfahren werden zumeist fiir das Testen von Mikroprozessoren
eingesetzt, lassen sich jedoch auch auf Peripheriekomponenten anwenden. Der Vorteil von SBST,
gegeniiber Hardware-basierten Ansitzen besteht dabei im Verzicht auf spezielle Testhardware und
Hochgeschwindigkeitstestgerite und der Tatsache, dass Tests in der natiirlichen Betriebsumgebung
(engl. In-System) und bei normaler Betriebsfrequenz (engl. At-Speed) ablaufen. Peripheriekompo-
nenten nehmen in vielen Systemen einen erheblichen Teil der Chipfliache ein, werden teilweise fiir
sicherheitskritische Aufgaben eingesetzt und miissen folglich ausgiebig getestet werden.

Um strukturelle SBST-Verfahren erfolgreich auf diesen Typ von Komponenten anzuwenden, miissen
Mafinahmen getroffen werden um deren geringe Beobacht- und Kontrollierbarkeit zu erh6hen, da
andernfalls die erzielte Fehlerabdeckung der Verfahren zu niedrig ausfallt.

In dieser Arbeit werden zwei unterschiedliche Ansatze untersucht, um die strukturelle Fehlerabde-
ckung von SBST-Verfahren auf Kommunikationsperipheriekomponenten zu verbessern. Der erste
Ansatz zielt auf eine verbesserte Kontrollierbarkeit der verwendeten Komponente ab. Dazu wird ein
Loopback-basierter Mechanismus implementiert. Um dariiber hinaus eine bessere Beobachtbarkeit zu
erreichen wird als zweiter Ansatz der Zustand ausgewihlter internen Signale dem System sichtbar
gemacht.

Eine beispielhafte Anwendung der vorgestellten Methode auf die 72C-Komponente eines RISC-
Prozessors zeigt die Wirksamkeit der verwendeten Mafinahmen zur Verbesserung der strukturellen

Fehlerabdeckung.

Inhaltsverzeichnis

5

6

Einleitung

1.1 Motivation
1.2 Ubersicht

Grundlagen

2.1 Architektur von Mikrocontrollern
2.2 Test von Mikrocontrollern
2.3 Software-basierter Selbsttest

Implementierung

3.1 Implementierung des Testsystems
3.2 Anpassungen zur Verbesserung der Haftfehlerabdeckung

3.3 Testprogrammzeugung

Experimente

41 Synthese

4.2 Experimentelle Untersuchung der sequentiellen Tiefe
43 Experimentelle Ergebnisse
4.4 Analyse der vorgeschlagenen Mafinahmen

4.5 Analyse der Templates
Fazit

Ausblick

Literaturverzeichnis

29
29
35
39

49
49
49
51
52
55

57

59

61

1 Einleitung

1.1 Motivation

Mit der Verdopplung der Integrationsdichte von integrierten Schaltkreisen innerhalb von zwei Jah-
ren, nach dem Moore’schen Gesetz, steigt ebenfalls der Aufwand fiir deren Test kontinuierlich an.
Automatische Testgerite (engl. Automatic Test Equipement, ATE) mit hoher Betriebsfrequenz fithren
aufgrund sehr hoher Anschaffungskosten und schneller Alterung zu hohen Testkosten. Selbsttests
umgehen die Notwendigkeit von teuren Testgerate, wodurch sich Testkosten verringern lassen.
Hardware-basierte Selbsttest-Verfahren fiigen in das Design der Komponente testspezifische Hardwa-
re ein um einen Selbsttest zu erméglichen. Diese Zusatzhardware erhoht jedoch die Chipflache der
Schaltung und kann zu Performanceverlusten fithren.

Eine alternative Testmethode bieten Software-basierte Selbsttests (SBST), die programmierbare Kom-
ponenten des Systems ausnutzen um Testvektoren an die Zielkomponente anzulegen und durch
Abgleich mit Sollwerten eventuell vorhandene Fehler zu erkennen. SBST benétigt weder teure Test-
gerite, noch das Vorhandensein spezifischer Teststrukturen im Hardwaredesign und erméglichen das
Testen unter den normalen Betriebsbedingungen der Schaltung - bei normaler Betriebsfrequenz und
innerhalb des umgebenden Systems.

Zudem bieten SBST-Methoden erhebliches Potenzial zur Wiederverwendbarkeit iiber Herstellungs-
tests hinaus, z.B. fiir Anwendungen in Feldtests, in der Riicklauferanalyse oder als periodische
Selbsttestlosung zur Erhohung der Verlasslichkeit von Systemen in sicherheitsrelevanten Bereichen.
Es sind eine ganze Reihe von SBST-Methoden fiir das Testen von Mikroprozessoren [CD01] [KPGX07]
[PGSR10] [BBFT10] [PG05] [KMT™08] bekannt, allerdings beschrinkt sich der Einsatz von SBST nicht
nur auf Prozessoren. Stattdessen lisst sich der SBST-Ansatz auch auf Cache-Strukturen [TKPG14]
[DCPS11] und Peripheriekomponenten [GPR"10a] [GHS™12] [APGP07a] [BSS*07] anwenden. Eine
grofle Zahl der Peripheriekomponenten implementieren weitverbreitete, standardisierte Kommunika-
tionsprotokolle wie Ethernet, USB (engl. Universal Serial Bus), I2C' (engl. Inter Integrated Curcuit)
oder UART (engl. Universal Asynchronous Receiver Transmitter).

Peripheriekomponenten stellen eine besondere Herausforderung fiir die Entwicklung von effizienten
Testprogrammen dar, da diese Komponenten fiir gewohnlich eine deutlich geringere Beobacht- und
Kontrollierbarkeit aufweisen als dies bereits bei Mikroprozessoren der Fall ist [GPRT 10a]. Folglich
muss fiir die effiziente Erzeugung von Testvektoren fiir Peripheriekomponenten zunachst eine Mog-
lichkeit gefunden werden die Beobacht- und Kontrollierbarkeit zu erhohen. Anschlieflend kénnen
SBST-Techniken Testprogramme erzeugen, die diese Komponenten mit einer hohen Fehlerabdeckung
testen.

1 Einleitung

1.2 Ubersicht

In dieser Arbeit wird eine Methode zur Generierung von Testmustern fiir strukturellen SBST von
Peripheriekomponenten vorgestellt und Mafinahmen entworfen, welche die Beobachtbarkeit und
Kontrollierbarkeit der internen Signale einer solchen Komponente erhéhen kénnen. An einer bei-
spielhaften Implementierung wird zudem gezeigt, wie sich diese Maf3inahmen auf die strukturelle
Fehlerabdeckung der vorgestellten Methode auswirken.

Dazu wird der OpenSource Prozessor miniMIPS! genutzt, eine dazu kompatible /2C-Komponente
implementiert und die Anwendung der Methodik und die verwendeten Mafinahmen besprochen. Die
Arbeit gliedert sich dabei wie folgt:

Kapitel 2 behandelt die Grundlagen zu Mikrocontrollern (Abschnitt 2.1) und dem I?C-Protokoll
(Abschnitt 2.1.2). Unterkapitel 2.2 erklart die Grundlagen zum Test von Mikrocontrollern. Im Abschnitt
2.2.3 wird das ATPG-Verfahren (engl. Automatic Test Pattern Generation) erldutert. Anschlieflend
wird in Unterkapitel 2.2.5 ndher auf bekannte Testverfahren wie ATE-Testing und Scan-basierte
Testverfahren eingegangen.

Im Unterkapitel 2.3 wird das Grundprinzip, die wichtigsten Schritte und einige Varianten des SBST-
Verfahrens erkliart. Die Anwendung von SBST auf Peripheriekomponenten wird im Abschnitt 2.3.3
behandelt und einige bestehende Arbeiten und deren Ergebnisse vorgestellt.

Kapitel 3 behandelt zunéchst im Abschnitt 3.1 die Implementierung des Testsystems und im Folgen-
den (3.2) die Umsetzung der vorgestellten Mafinahmen zur Erh6hung der Beobacht- und Kontrol-
lierbarkeit. In Unterkapitel 3.3.1 wird die Erzeugung struktureller Testmuster fiir die ausgewahlte
I?>C-Komponente diskutiert. Zur Umwandlung dieser Testmuster in ein ausfithrbares Programm
werden in Abschnitt 3.3.2 zwei unterschiedliche Test-Templates vorgestellt.

Die Ergebnisse der experimentellen Anwendung auf dem Testsystem werden in Kapitel 4 besprochen.
Kapitel 5 beschliefit die Arbeit mit einer Zusammenfassung und einem Kapitel 6 gibt einen Ausblick
auf mogliche weitere Arbeiten im Zusammenhang von SBST fiir Peripheriekomponenten.

1ht‘cp ://opencores.org/project, minimips

2 Grundlagen

Im Folgenden werden die fiir diese Arbeit wichtigsten Grundlagen vorgestellt. In Kapitel 2.1 wird ein
kurzer Uberblick tiber die Architektur von Mikrocontrollern und deren abstrakten Aufbau gegeben
und anschlieflend in 2.1.2 das I2C-Protokoll erlautert. Abschnitt 2.2 behandelt das Testen von Mi-
krocontrollern. Dazu werden die Grundlagen von Fehlermodellierung, DFT und ATPG erklart und
kurz verschiedene Testverfahren besprochen. Im Abschnitt 2.3 wird das Prinzip und verschiedene
Methodiken des Software-basierten Selbsttests (SBST) erldutert und im Unterkapitel 2.3.3 werden
bisherige Arbeiten zum Software-basierten Selbsttest von Peripheriekomponenten vorgestellt und
zusammengefasst.

2.1 Architektur von Mikrocontrollern

2.1.1 Aufbau

Abbildung 2.1 zeigt eine vereinfachte Ubersicht tiber den Aufbau und die typischen Komponenten
eines Mikrocontrollers.

Systembus: Die einzelnen Komponenten eines Mikrocontroller-Systems kommunizieren iiber den
Systembus miteinander. Klassischerweise besteht ein Systembus aus drei Bussen: der Datenbus
ermoglicht den Austausch von Daten zwischen den Komponenten und besitzt n parallele Daten-
leitungen, wobei n der verwendeten Wortbreite entspricht. Der Adressbus spezifiziert das Ziel
der tibertragenen Daten und besteht aus der Menge an Leitungen, die bendtigt werden um den
adressierbaren Speicherbereich zu codieren. Der Steuerbus fasst alle benétigten Kontrollsignale
zusammen und wird von einer Steuereinheit betrieben.

Prozessor: Prozessoren stellen die zentrale Komponente eines jeden Systems dar und sind fiir dessen
Funktionalitat entscheidend. Die Menge aller unterstiitzten Befehle eines Prozessors wird als
Befehlssatz (engl. Instruction Set, IS) bezeichnet.

Ablaufsteuerung: In einem System gibt es eine Reihe von Komponenten zur Steuerung des Pro-
grammablaufs. So werden beispielsweise Interrupt Controller eingesetzt um das sog. Polling
zu vermeiden. Polling bezeichnet eine Warteschleife, wihrend jener der Prozessor auf die
Reaktion eines externen Funktionsblocks (z. B. einer Peripheriekomponente) wartet. Durch
die Verwendung von Unterbrechungen (engl. Interrupts) kann der Prozessor, wahrend er auf
eine angeforderte Reaktion wartet, Instruktionen anderer Programme durchfithren. Trifft die
Reaktion ein, so wird ein Interrupt durch den Interrupt Controller generiert und der Prozessor
kann daraufhin mit der Ausfithrung des urspriinglichen Programms fortfahren. Durch diese
Technik lasst sich der Befehlsdurchsatz des Prozessors erhohen.

2 Grundlagen

Interrupt-

Prozessor e
Controller

Kormmunikationsperipherie ()

Kommunikations-
Schnittstellen

(Adress- und Datenbus)

System

Memory-Controller

Peripherie (If0, Timer, ADC, DAC, ...) |« .
interner interner weitere
Speicher Speicher Schnittstellen

(ROM) (RAM)

Abbildung 2.1: Abstrakte Architektur eines Mikrocontrollers

Speicher: Um Daten zu speichern und Programme zu halten benétigt ein System Speicher. Je nach

10

Art der zu speichernden Werte und deren Verwendungszweck werden verschiedene Speicher-
typen in einem System verwendet. Unterscheiden lassen sich Speichertypen in solche auf die
ausschlieBlich lesend zugegriffen werden kann (engl. Read-Only Memory, ROM) und jene auf
die lesend und schreibend zugegriffen werden kann (engl. Random Access Memory, RAM).
Zudem wird zwischen fliichtigen (engl. Volatile) und nicht-fliichtigen (engl. Non-Volatile) Spei-
chertypen unterschieden, hierbei entscheidet die Tatsache ob gespeicherte Werte verloren
gehen wenn die Stromversorgung unterbrochen wird oder nicht. Von besonderer Bedeutung
in modernen Systemen sind die Speicherarten SRAM/DRAM (engl. Static / Dynamic Random
Access Memory) fiir die Verwendung als Cache bzw. als Arbeitsspeicher um fliichtige Daten zu
halten und EEPROM (engl. Electrical Erasable Read Only Memory) und Flash Speicher um die
Systemfirmware, Konfigurationsdaten u.a. feststehende Werte nicht-fliichtig zu speichern.
Um Speicherzugriffe auf unterschiedliche Speicher zu verwalten werden Memory Controller
eingesetzt. Somit lassen sich unterschiedliche Speichertypen tiber denselben Speicherbus adres-
sieren, wahrend die Anbindung der einzelnen Speicherelemente durch den Memory Controller
iibernommen wird.

Oftmals wird der Systembus auch als sogenannte MMI/O (engl. Memory Mapped Input Output)
Schnittstelle fiir angeschlossenen Komponenten genutzt. Fiir dieses Verfahren werden bestimm-
te Speicheradressen, welche sich auflerhalb des Systemspeichers befinden, auf bestimmte Ein-
oder Ausginge von Komponenten abgebildet. Mithilfe von gewhnlichen Speicherbefehlen
kann der Mikroprozessor des Systems somit auf die Ports der angeschlossenen Komponenten

2.1 Architektur von Mikrocontrollern

zugreifen. Mit dieser Technik lassen sich spezielle Schnittstellen und Befehle fiir jede einzelne
angeschlossene Komponente einsparen.

Peripheriekomponenten: Peripherie bezeichnet abstrakt alle Hardware die es ermdglicht Daten in
ein System einzugeben oder auszulesen. Peripheriekomponenten lassen sich weiter in Systempe-
ripherie und Kommunikationsperipherie aufteilen [GHS'12]. Systemperipheriekomponenten
unterstiitzen oder entlasten den Prozessor des Systems, wihrend Kommunikationskompo-
nenten ein Kommunikationsprotokoll implementieren und so die Verbindung des Systems
mit externen Systemen erméglichen. Systemperipheriekomponenten sind dabei stiarker mit
dem Mikrocontroller verzahnt und stellen eine grofle Herausforderung fiir Testverfahren dar,
insbesondere fiir nichtinvasive Verfahren, da deren Beobacht- und Kontrollierbarkeit noch
geringer ausfillt, als die von Kommunikationsperipheriekomponenten [GHS'12] [GPRT 10b].
Ein Beispiel fiir Systemperipherie stellen Direct Memory Access Controller (DMA) dar, die es
ermoglichen grofle Datenmengen zwischen zwei Speicherquellen zu transferieren, ohne dabei
den Prozessor, nach anfanglicher Konfiguration, zu belasten. Somit lasst sich der Prozessor
entlasten und der Datentransfer unter Umstinden erhéhen [GPRT10b].

Kommunikationskomponenten: Unter diese Kategorie fallen Peripheriekomponenten die stan-
dardisierte Kommunikationsprotokolle implementieren um eine Kommunikation mit externen
Geréten iiber eine spezifizierte Schnittstelle zu erlauben. In vielen Mikrocontrollern sind eine
ganze Reihe dieser Schnittstellen verbaut, folglich nehmen diese eine erhebliche Chipfliche ein
[GHS™12].

Kommunikationsprotokolle werden grundsatzlich nach Ubertragungsrichtung (uni- bzw. bidi-
rektional), nach Ubertragungsart (seriell bzw. parallel) sowie nach deren Zeitverhalten (synchron
bzw. asynchron) und nach deren Topologie unterschieden.

Unidirektionale Protokolle erlauben den Datentransfer nur in eine spezifische Richtung, wih-
rend bidirektionale Protokolle Kommunikation in beide Richtungen zulassen. Der iberwiegende
Teil der Kommunikationsprotokolle die fiir Peripherieschnittstellen eingesetzt werden ist bidi-
rektional.

Die Ubertragungsart eines Protokolls wird in seriell und parallel unterschieden und definiert
sich tiber die Anzahl der iibertragenen Datenbits pro Zeiteinheit. Ubertrigt eine Kommunikati-
onskomponente pro Zeitschritt nur ein Bit, so handelt es sich dabei um eine serielle Ubertragung.
Serielle Protokolle benétigten folglich mindestens n Zeitintervalle fiir die Ubertragung von n
Datenbits. Bekannte Beispiele serieller Kommunikationsprotokolle sind USB, Ethernet Schnitt-
stellen, CAN (engl. Controller Area Network), 72C und SPI (engl. Serial Peripheral Interface).
Parallele Kommunikationskomponenten besitzen dagegen mehrere physikalische Datenleitung
und kénnen somit pro Zeitintervall mehrere Datenbits gleichzeitig tibertragen. Aufgrund von
unterschiedlichen Signallaufzeiten und hoher Storanfélligkeit der parallelen Leitungen werden
parallele Protokolle hauptséchlich fiir Hochgeschwindigkeitsanwendungen eingesetzt. Zu par-
allelen Protokollen zdhlen PCI (engl. Peripheral Component Interconnect) und die gréfite Zahl
aller Systembusimplementierungen.

Die Topologie eines Kommunikationsprotokolls bezeichnet die Art und Weise wie Kommu-
nikationsteilnehmer miteinander verbunden sind. Typischerweise wird zwischen Bus-, Ring,-
Stern,- Baum- und Maschen-Topologie unterschieden. Der Vorteil von Bus-Strukturen ist, dass

11

2 Grundlagen

beliebig viele Teilnehmer iiber nur eine Busleitung miteinander verbunden werden kénnen.
Bekannte Vertreter der Bus-Topologie sind Ethernet, CAN und /?C'. Da alle Kommunikati-
onsteilnehmer tiber nur eine Bus-Leitung miteinander Verbunden sind, kann zu jeder Zeit
maximal ein Teilnehmer auf den Bus schreiben, jedoch alle gleichzeitig Daten vom Bus lesen.
Folglich enthalten Protokolle von Bus-Topologien zugriffsregulierende Elemente. Diese Zu-
griffsregulierung kann explizit erfolgen, in dem eine Arbitrationslogik eingesetzt wird, oder
implizit durch die Verwendung von hierarchischen Beziehungen zwischen den angeschlossenen
Komponenten. So unterscheiden manche Protokolle (z. B. I2Coder USB) zwischen Master- und
Slave-Kommunikationsteilnehmern, die unterschiedliche Rechte, z. B. zum initiieren einer Kom-
munikation, besitzen. Bei hierarchischen Bus-Topologien kann die Verwaltung der Buszugriffe
durch den Master erfolgen, oder sogar auf diesen beschrankt werden (Kommunikation nur
zwischen Master und Slave, nicht jedoch zwischen Slaves).

Eine weiteres Unterscheidungsmerkmal von Kommunikationsprotokollen ist die Abhéngig-
keit von einem Taktsignal im Fall von synchronen Protokollen oder der Verzicht darauf bei
asynchroner Kommunikation. Letztere sind Ereignis-basiert, d.h. es wird iiber bestimmte Er-
eignisse eine zeitweilige Synchronizitat der Kommunikationspartner erreicht, ohne dass diese
ein gemeinsames Taktsignal teilen. Beiden Komponenten miissen deshalb die Parameter der
Kommunikation bekannt sein. Zu diesen Parametern gehoren u. a. die Ubertragungsrate, die
Verwendung und Position von Paritatsbits und die Reihenfolge der Bits - niederwertigstes (engl.
Least Significant Bit - LSB) oder hochstwertiges (engl. Most Significant Bit - MSB) Bit zuerst.
Eine bekannte asynchrone Komponente ist die UART-Schnittstelle.

Bei synchronen Protokollen teilen die Kommunikationspartner dagegen ein gemeinsames Takt-
signal fiir Synchronisationszwecke. Je nach Topologie des Protokolls wird dieses Taktsignal
nur von einer Masterkomponente - im hierarchischen Fall - oder vom aktuellen Transmitter -
nicht-hierarchischer Fall - erzeugt.

2.1.2 Das I2C Protokoll

Im folgenden Abschnitt wird das 12C- Protokoll, als Beispiel fiir eine Kommunikationsschnittstel-
le eines Mikrokontrollers, vorgestellt. Bei /2C handelt es sich um ein einfaches, kostengiinstiges
Zweidraht-Bussystem zur bidirektionalen, synchronen, seriellen und hierarchischen Kommunikation
zwischen einem Master- und mehreren Slavekomponenten. Ubertragungen sind dabei stets byteori-
entiert und nutzen Empfangsbestitigungen durch den Empfinger. Das Konzept von I?C stammt aus
dem Jahr 1982 und wurde von Philips Semiconductors (inzwischen NXP Semiconductors) entwickelt,
um die interne Kommunikation zwischen verschiedenen Integrierten Schaltungen zu verbessern
und standardisieren. Die aktuellste I2C-Spezifikation [NXP14] (Version 6) vom April 2014 sieht vier
verschiedene (bidirektionale) Ubertragungsraten vor: Standard-mode (SM) bis zu 100 kbit/s, Fast-mode
(FM) bis zu 400 kbit/s, Fast-mode Plus (FM+) bis zu 1 Mbit/s und High-Speed mode (HS-mode) mit bis
zu 3,4 Mbit/s.

12

2.1 Architektur von Mikrocontrollern

Topologie

Das I2C-Protokoll unterscheidet zwei hierarchisch getrennte Typen von Kommunikationsteilneh-
mern: Master und Slave. Slaves sind passive Komponenten und somit nicht in der Lage, im Gegensatz
zum Master, eine Kommunikation zu initiieren, ihren Kommunikationspartner zu wihlen oder eine
begonnene Ubertragung zu beenden. Aufgrund des bidirektionalen Protokollcharakters sind sowohl
Master- als auch Slavekomponenten in der Lage als Sender oder Empfanger zu agieren. Die Wahl der
Kommunikationsrichtung wird dabei zu Beginn der Kommunikation durch den Master festgelegt.
Dabei ist jedoch zu beachten, dass dem Master in beiden Fallen die Kontrolle der Kommunikation
vorbehalten ist, auch wenn er die Rolle des Empfingers einnimmt. Ein I2C-Netzwerk besteht typi-
scherweise aus einem Master und mehreren Slavekomponenten die tiber einen gemeinsamen Bus
verbunden sind (vgl. Blockschaubild 2.2). Der I?C-Bus, iiber den alle angeschlossenen Komponenten
verbunden sind, besteht aus lediglich zwei Leitungen: die erste ibertriagt die Daten (engl. Serial
Data, SDA) und kann von Master- und Slavekomponenten getrieben werden, die zweite den seriellen
Takt (engl. Serial Clock, SCL), der ausschlieSlich vom Master gesetzt wird. Jede I?C-Komponente,
unabhdngig ob Master oder Slave, besitzt eine eindeutige, 7 Bit-lange Adresse innerhalb des Busses.
Es lassen sich somit theoretisch 27 = 128 Komponenten an einen Bus anschlieen. Aufgrund von
16 reservierten Adressen, reduziert sich diese Anzahl auf 112. I?C-kompatible Schaltkreise lassen
eine gewisse Anpassung ihrer Adresse zu, um die Verwendung mehrerer identischer Schaltelemente
innerhalb eines Netzwerks zu ermoglichen, ohne dass es dabei zu Adresskonflikten kommt.

I?2C-Ubertragungen sind byteorientiert, d. h. es wird mindestens ein Byte iibertragen. Die Bits in-
nerhalb eines Bytes werden dabei nach dem MSB-first Prinzip tibertragen. Nach jedem Byte fordert
das Protokoll zudem eine Empfangsbestitigung (engl. Acknowledge, ACK) durch den Empfanger,
wodurch sich kurzzeitig das Sende-Empfangs-Verhaltnis der beiden Kommunikationspartner um-
dreht. Bei Empfang eines ACK setzt der Sender die aktuelle Kommunikation fort. Wenn dagegen
eine negative Empfangsbestitigung (engl. Not Acknowledge, NACK) auftritt, so wird der aktuelle
Kommunikationsvorgang durch den Sender abgebrochen.

a Slave A

Master

Slave B

Slave C

Abbildung 2.2: Topologie eines I?CNetzwerks.

13

2 Grundlagen

Wird ein ACK empfangen so beginnt die Ubertragung des nichsten Datenbytes, wenn weitere
Daten iibertragen werden sollen, oder die Kommunikation durch den Master beendet. Fallt diese
Empfangsbestatigung jedoch negativ aus (Empfang eines NACK) wird die Kommunikation durch den
Master abgebrochen.

Um den Beginn bzw. das Ende einer Ubertragung anzuzeigen, werden zwei Bedingungen formuliert:
Start und Stopp (vgl. Abb. 2.3). Diese konnen lediglich durch den Master erzeugt werden. Die Start-
bedingung ist definiert durch eine fallende Flanke auf der SDA-Leitung wahrend SCL konstant den
logischen Wert ’1’ halt (High-Phase). Die Stoppbedingung ist komplementér definiert, durch eine
steigende SDA Flanke wihrend der High-Phase von SCL. Damit diese Bedingungen nicht falschli-
cherweise erkannt werden, darf sich der Wert von SDA wihrend einer validen Dateniibertragung
nicht dndern, solange sich SCL in der High-Phase befindet.

Ablauf einer Kommunikation

Im folgenden Anschnitt wird der protokollgerechte Ablauf einer Kommunikation anhand der schema-
tischen Skizze 2.3 erklart.

Eine I?C-Kommunikation beginnt stets durch das Setzen der Startbedingung durch den Master (in der
Abbildung griin markiert). Das erste Byte, welches zu Beginn einer Kommunikation durch den Master
gesendet wird, setzt sich aus der 7-Bit Adresse des Ziels und dem Operationsbit (engl. read/write, R/W)
zusammen. R/W Bit "1 ist definiert als Leseoperation, ’0’ als Sendeoperation. Bestatigt die adressierte
Komponente ihre Bereitschaft, durch die Ubertragung eines ACK (in der Skizze orange markiert),
so beginnt die eigentliche Datentibertragung. Ein ACK ist dabei definiert als eine logische '0” auf
der SDA-Leitung. Empfangt der Master dagegen eine logische ’1’ auf SDA (Definition von NACK)
bedeutet dies entweder eine nicht vergebene Adresse oder einen nicht kommunikationsbereiten Slave.
Folglich wird der Kommunikationsversuch durch den Master beendet.

AnschlieBend werden, gemaf3 der gewihlten Ubertragungsrichtung, Datenbytes {ibertragen. Nach
jedem iibertragenen Byte stoppt der Sender fiir eine SCL-Periode und wartet auf ein ACK des Emp-
fangers (vgl. Abb. 2.3, Takt 8), bevor das nichste Byte Gibertragen wird. Empféngt er stattdessen ein
NACK, so bricht er die Kommunikation ab.

Nach der Ubertragung des letzten Bytes wird die Kommunikation durch das Setzten der Stoppbe-
dingung (in der Abbildung rot markiert) durch den Master beendet. Eine Besonderheit stellt dabei
eine lesende Masterkomponente dar. Da nur dem Master die Anzahl der zu lesen Bytes bekannt ist,
muss der tibertragende Slave nach dem letzten Byte unterbrochen werden. Dies geschieht durch die
Ubertragung eines NACK nach dem letzten Byte (vgl. Abb. 2.3, blaue Markierung), was zu einem
Abbruch der Ubertragung durch den Slave fiihrt.

Erweiterungen
Es gibt eine Reihe von Erweiterungen des einfachen I?C-Protokolls.

Dazu gehort die Moglichkeit des Multi-Master Betriebs, also dem Vorhandensein von mehr als einer
Masterkomponente im 72C-Netzwerk. Dazu wird Arbitrierungslogik eingesetzt, um Zugriffskonflikte

14

2.2 Test von Mikrocontrollern

SDA NACK

OO0 e/ OO
SCL MSB 2. Bit 7.Bit R/W ACK MSB ACK

-_/;_/:_ 6 7 8 g\ /10\ /1o.. 1;_/1-5_/_
Start-Bedingung Stopp-Bedingung

Abbildung 2.3: Schematischer Ablauf einer I?C-Dateniibertragung.

auf den gemeinsamen I2C-Bus aufzulosen.

Um die Anzahl der méglichen Komponenten innerhalb eines 72C-Busses zu erhéhen, existiert eine
Erweiterung, welche den Adressraum von sieben auf zehn Adressbits erhoht. Diese Erweiterung ist
rickwirts-kompatibel, es konnen folglich weiterhin 7-Bit Komponenten verwendet werden. Laut der
NXP-Spezifikation [NXP14] wird diese Erweiterung jedoch bislang selten eingesetzt.

Sollte ein Slave nach einem tibertragenen Byte ausgelastet sein, kann er die Taktleitung auf Low halten,
bis er fiir das nichste Byte bereit ist. Dieses Verfahren wird Taktdehnung (engl. clock stretching)
genannt, birgt jedoch die Gefahr, dass ein Fehler in einem Slave das gesamte I2C-Netzwerk blockiert,
da ein konstanter LOW-Wert auf SCL nicht aufgehoben werden kann.

Ein zusitzlicher Ubertragungsmodus (Ultra-Fast Mode, UFm) sieht zudem eine Anpassung fiir unidi-
rektionale Ubertragung mit einer Ubertragungsrate von bis zu 5 Mbit/s vor.

2.2 Test von Mikrocontrollern

Als hochkomplexe, mikroelektronische Systeme sind Mikrokontroller anfallig fiir eine breite Spanne
an Fehlertypen. Zugleich werden sie immer haufiger in sicherheitskritischen Bereichen eingesetzt, in
denen hochste Anforderungen an die Zuverlassigkeit gelten. Folglich sind strukturierte, wirtschaftli-
che und qualitativ hochwertige Testverfahren notwendig um diese Anforderungen zu erfiillen und
gleichzeitig den Kunden niedrige Preise bei guter - oder im sicherheitskritischen Fall bei hochster -
Qualitat anbieten zu konnen.

Dazu werden unterschiedliche Verfahren fiir die verschiedenen Testanwendungsfelder (Herstellungs-
test, Feldtest, Riicklauferanalyse) eingesetzt, da sich die Anforderungen je nach Fall zum Teil erheblich
unterschieden. Unter Herstellungstest (engl. Manufactoring Test) versteht man den Test eines fertigen
Chips nach Abschluss dessen Fertigung. Dabei steht die Fehlerabdeckung und insbesondere die
Testzeit im Vordergrund, da lange Testzeiten zu hohen Herstellungskosten fithren. Beim Feldtest (engl.
In-Field Test) ist eine hohe Fehlerabdeckung, kurze Testzeit und eine nicht-invasive Testmethode
gefragt, um das zu testende Gerit in seiner natiirlichen Betriebsumgebung zu testen. Dies ist wichtig
um nicht reproduzierbare Fehlerbilder zu vermeiden. Das Auftreten dieser NFF (eng. No Failure Found)
genannten Fehler hiangt von den genauen Betriebsbedingungen ab und kann deshalb u.U. nach dem
Ausbau des fehlerhaften Systems nicht reproduziert werden [JRW14]. Riicklauferanalyse beschéftigt

15

2 Grundlagen

sich mit der Fehleranalyse von funktionsunfahigen Geréiten um Riickschliisse auf die Fehlerursa-
che zu erhalten und so Fehlerquellen zu beheben. Dabei ist die Testzeit verhaltnismafig irrelevant,
ebenso konnen problemlos invasive Methoden eingesetzt werden, und eine hohe Testabdeckung ist
entscheidend.

2.2.1 Fehlermodellierung

Fehler lassen auf unterschiedlichen Ebenen definieren und modellieren.

Defekt (engl. Defect) bezeichnet einen physikalischen Fehler. Ein Defekt kann wahrend des Ferti-
gungsprozesses auftreten, durch eine spatere Beschadigung des Systems erfolgen oder durch
Alterungserscheinungen hervorgerufen werden. Ein Fertigungsfehler konnte eine zu diinn
aufgebrachte Siliziumschicht an einem Transistor-Gate sein.

Ein Fehler (engl. Fault) ist die Modellierung eines Fehlers mittels eines Fehlermodells. Ein Beispiel
dafiir ist das Haftfehlermodell.

Fehlerhafter Systemzustand (engl. Error) beschreibt einen fehlerhaften internen Zustand der z. B.
durch einen aktiven Fehler entstehen kann. Ein Beispiel fiir einen solchen Zustand wire ein
falscher Wert in einem internen Register.

Systemausfall (engl. Failure) beschreibt die (fehlerhafte) Abweichung der Funktionalitit eines
Systems von der erwarteten, korrekten Funktionalitat [ALRT01].

Eines der am haufigsten genutzten Fehlermodelle ist das Haftfehlermodell (engl. Stuck-At Fault Model).
Das Haftfehlermodell bezieht sich auf die Darstellung einer Schaltung auf Gatterebene und nimmt an,
dass Fehler lediglich an den Ein- oder Ausgéngen eines Gatters oder an den priméren Eingéngen (engl.
Primary Input, PI) bzw. den primaren Ausgéngen (engl. Primary Output, PO) der Schaltung auftreten
und zwar in der Form eines konstanten logischen Werts. Folglich existieren zwei unterschiedliche
Haftfehler: Stuck-at-0 und Stuck-at-1. Eine Schaltung mit » moéglichen Haftfehlerpositionen besitzt
eine Fehlerliste (eine Liste aller Modellfehler der Schaltung) mit maximal 2n Eintragen. [BAO1,
S. 63, 71] Die Anzahl der Haftfehler einer gegebenen Schaltung léasst sich durch Verfahren zur
Fehlerkollabierung (engl. Fault Collapsing) reduzieren. Dazu werden dquivalente Haftfehler definiert:
[BAO1]

Aquivalenz: Zwei Fehler sind dquivalent, wenn sie nicht voneinander unterschieden werden kénnen.
So kann z. B. ein Stuck-at-0 Fehler am Eingang eines Inverters nicht von einem Stuck-at-1 Fehler
an dessen Ausgang unterschieden werden und umgekehrt. Alle 4quivalente Fehler lassen sich
zu disjunkten Aquivalenzklassen zusammenfassen.

Beim fault collapsing wird aus jeder Aquivalenzklasse nur ein einziger Vertreter als Reprisentant in
die Fehlerliste der untersuchten Schaltung aufgenommen. Durch die Anwendung von fault collapsing
kann die Grofle der Haftfehlerliste einer Schaltung im Schnitt um 50 bis 60% [WWWO06, 45] reduziert
werden.

16

2.2 Test von Mikrocontrollern

2.2.2 Funktionale und strukturelle Tests

Testverfahren lassen sich abstrakt in zwei Kategorien einordnen.

Funktionale Testverfahren nutzen keine Informationen tiber den strukturellen Aufbau einer Schal-

tung, sondern lediglich Informationen iiber die Funktionalitét des zu testenden Systems. Es
handelt sich bei ihnen folglich um Blackbox-Tests.
Dazu wird bei funktionalen Testverfahren eine bestimmte Belegung an die PIs angelegt. Eine
solche Belegung wird Testvektor genannt. Die daraus resultierenden Werte an den POs kénnen
mittels Simulation der fehlerfreien Schaltung, fiir den gegebenen Testvektor, bestimmt werden
[WWWO06, S. 41]. Diese Soll-Werte werden anschlieffend mit den tatsdchlichen Werten der POs
verglichen. Abweichende Werte bedeuten folglich die Existenz eines Fehlers in der Schaltung.
Eine Menge zusammenhingender Eingabe- und Ausgabetestvektoren wird als Testmuster
bezeichnet.

Eine rein kombinatorische Schaltung lasst sich durch testen aller 2" moglichen Testvektoren
erschopfen Testen (engl. Exhaustive Testing), dies ist jedoch unwirtschaftlich fiir grofle n,
aufgrund der Tatsache dass die Anzahl der Belegungen exponentiell mit der Zahl der priméren
Eingédnge wachst. Bei sequentiellen Schaltungen ist das Problem noch gréfler, da selbst das
Anlegen aller 2" moéglichen Testvektoren nicht das Erreichen aller internen Zustiande garantiert
[WWWO06]. Es miissen folglich Sequenzen von Eingangsbelegungen erzeugt werden, um schwer
zu testende Fehler abzudecken.

Ein Problem funktionaler Anséatze ergibt sich aus dem Mangel an strukturellen Informationen,
welche eine Angabe der Testabdeckung struktureller Fehler unméglich macht. Folglich ist es
schwierig gesicherte, qualitative Angaben zu funktionalen Testmethoden anzugeben [PGSR10].

Strukturelle Testverfahren beziehen zusatzlich zu den funktionalen auch strukturelle Informatio-
nen iiber die Schaltung mit ein und benutzen Fehlermodelle um die Anzahl aller betrachteten
Fehler bestimmen zu kdnnen. Strukturelle Informationen und Fehlermodelle erméglichen es
diese Testverfahren qualitativ einzuschatzen und zu vergleichen.

Die Fehlerabdeckung (engl. Fault Coverage, FC) eines Verfahrens ist definiert als die Anzahl
der abgedeckten Fehler im Bezug zur Gesamtzahl der Fehler in der betrachteten Schaltung
[WWWO6, S. 41].

abgedeckte Fehler
FC=
Gesamtfehlerzahl

Um die Effizienz eines Testverfahrens (engl. Fault Detection Effeciency, FDE) zu bewerten
kann die Gleichung um redundante Fehler erweitert werden [WWWO06, S. 41]. Redundante
Fehler (engl. Redundant Fault, RF) verandern die Eingabe-Ausgabe-Funktion der betrachteten
Schaltung nicht und kénnen folglich nicht durch Testvektoren aufgedeckt werden [BA01].

abgedeckte Fehler
FDE =
Gesamtfehlerzahl — #RF

17

2 Grundlagen

2.2.3 Automatische Testmustererzeugung

Das Aufstellen von Testvektoren und ganzen Testmustern fiir eine - nicht-triviale - gegebene Schaltung
ist eine komplexe Aufgabe. Deshalb werden fiir diese Aufgabe ATPG-Programme eingesetzt. Es
gibt sowohl fur funktionale als auch fiir strukturelle Testmethoden (vgl. Abschnitt 2.2.2) ATPG-
Programme. Im Folgenden wird strukturelles ATPG vorgestellt, da im Laufe dieser Arbeit strukturelle
Testmuster erzeugt werden sollen. Neben funktionalen und strukturellen ATPG-Programmen wird
zudem zwischen kombinatorischen und sequenziellen ATPG-Verfahren unterschieden.

Kombinatorisches ATPG

Kombinatorische ATPG-Verfahren behandeln ausschlief3lich rein kombinatorische Schaltungen. Ein
Fehler in einer kombinatorischen Schaltungen lasst sich mit einem Testmuster testen, welches genau
einen Testvektor und einen zugehédrigen Ergebnisvektor enthalt [BA01]. Die bevorzugte ATPG-
Methode fiir kombinatorische Schaltungen ist Pfadsensibilisierung (engl. path sensitization) und nutzt
eine Darstellung der Schaltung auf Gatterebene. Dabei wird ein Fehler in die Schaltung eingefiigt
und durch eine passende Wahl der Eingangbelegung dafiir gesorgt, dass dieser Fehler aktiviert (d.h.
der Fehler fithrt zu einer Wertdnderung an einem Gatter) und propagiert wird (d.h. die fehlerhafte
Wertinderung fithrt an einem oder mehreren POs der Schaltung zu einem abweichenden Wert, ver-
glichen mit einer fehlerfreien Ausfithrung).

Das Problem der Pfadsensibilisierung ldsst sich auf das Boolesche Erfiillbarkeitsproblem zuriick-
fithren und ist folglich ein NP-Vollstdndiges Problem. Das bedeutet, dass nicht-heuristische ATPG-
Algorithmen exponentielle Laufzeit besitzen.

Wihrend der Berechnung von Testmustern decken ATPG-Programme zusétzlich redundante Hardwa-
re auf, d.h. Hardware deren Entfernung aus der Schaltung keinen Einfluss auf deren Funktionalitat
besitzt. Durch das Entfernen von redundanter Hardware kann die Chipflache und der Energiebedarf
der Schaltung verringert und gleichzeitig die maximale Taktfrequenz (durch verkiirzte Verzégerungs-
zeiten) erhoht werden. Dabei muss beachtet werden, dass redundante Hardware auf Designebene
zusatzliche Zwecke erfiillen kann (z. B. Erh6hung der Fehlertoleranz) und folglich nicht entfernt
werden darf.

Sequenzielles ATPG

Das Erzeugen von Testmustern fiir sequenzielle Schaltungen ist komplexer als die Erzeugung fiir
kombinatorische Schaltungen [BA01]. Im Gegensatz zu Testmustern fiir kombinatorische Schaltungen,
bestehen Testmuster fiir sequentielle Schaltungen im Allgemeinen aus mehr als nur einem Paar von
Testvektoren, welche in einer fest vorgegebenen Reihenfolge angelegt werden miissen.

Zunichst muss die Schaltung jedoch in einen bekannten Zustand versetzt werden, bevor der eigent-
liche Test begonnen werden kann. Dieses sog. Initialisierungsproblem ist nicht-trivial 16sbar und
erfordert erheblichen Aufwand, sowohl im Bezug auf Rechenaufwand als auch auf die Menge der
erzeugten Testmuster.

18

2.2 Test von Mikrocontrollern

Fiir den Test einer sequentiellen Schaltung ist die betrachtete sequentielle Tiefe des Tests entscheidend.
Wird eine zu niedrige sequentielle Tiefe betrachtet, konnen bestimmte Verhalten einer Schaltung
nicht beobachtet werden. Folglich kdnnen Fehler in diesem Schaltungsbereich nicht getestet werden,
was zu einer niedrigen Fehlerabdeckung fiihrt. Eine hohere sequentielle Tiefe ermoglicht somit ein
ausgiebigeres Testen der gegebenen sequentiellen Schaltung, bis zu einem Punkt an dem jegliches
sequentielles Verhalten der Schaltung untersucht werden kann. Je mehr Takte jedoch betrachtet
werden, desto grofier wird der Zustandsraum der Schaltung und desto aufwendiger wird folglich
die Testerzeugung und die Lange der Testmuster. Lange Testmuster fithren wiederum zu grofien
Testprogrammen und langer Testdauer.

Die Wahl der sequentiellen Tiefe fiir eine gegebene Schaltung erfordert deshalb eine genaue Untersu-
chung, um denjenigen Wert zu bestimmen, ab dem eine weitere Erhohung der Tiefe nur noch geringe,
oder gar keine, Verbesserung der Haftfehlerabdeckung bewirkt. Je nach Testfall (vgl. Kapitel 2.2) kann
dieser Kompromiss mehr zu Gunsten der Laufzeit, Programmgréfie oder Fehlerabdeckung optimiert
werden.

Eine sequenzielle Schaltung lasst sich fiir eine feste sequenzielle Tiefe (eine entsprechende Anzahl
an Takten) mittels des sog. TFE-Verfahrens (engl. Time Frame Expansion) [WWWO06][BA01] in eine
kombinatorische Schaltung umwandeln. Durch dieses Verfahren lasst sich folglich das Problem des
sequenziellen ATPG auf ein kombinatorisches ATPG abbilden. TFE Verfaren duplizieren den kombina-
torischen Block A fiir jeden Takt, wobei alle Signale, Gatter und Ein- bzw. Ausgénge entsprechend der
sequentiellen Tiefe umbenannt werden (vgl. Abb. 2.4). Je nach Algorithmus werden die im aktuellen
Takt nicht benétigte Schaltungselemente nicht dupliziert. Es existieren fiir TFE mehrere denkbare
Varianten, die eingesetzt werden kénnen um bestimmte Eigenschaften einer sequenziellen Schaltung
zu modellieren.

Sollen die PIs der Schaltung tiber alle Takte hinweg statisch sein, so kann dies durch TFE modelliert
werden, indem die PIs der duplizierten Blocke nicht umbenannt werden (vgl. Abb. 2.5). Sollen die PIs
dagegen in jedem Takt dnderbar sein (vgl. Abb. 2.6) kénnen die PIs in jedem Takt umbenannt werden.
Auch kann die zeitliche Beobachtbarkeit der POs der zu testenden Schaltung eingeschrankt sein. In
Abb. 2.5 wird eine TFE-Variante gezeigt, bei der lediglich die POs des letzten betrachteten Taktes

—Pli—> -PO» —Pl11—| PO1 >
—Pl>—» A Entrollen fir —Pl2,1—» A1
=2
-; - 22 —PPl1—>] PPO:
op) _I—b PPl2 FPO2»
PPO Pl, ’ AL
Pl2,2 > PPO2»
FF e

—cIk—L

Abbildung 2.4: Abstrakte Anwendung des TFE-Verfahrens.

19

2 Grundlagen

—PPI1—>
Pli—e» A1
—PI2 » PPO1
—|—> PPz FPO2»
Plio——» A2
Pla, > PPQ2»

Abbildung 2.5: TFE-Variante mit konstanten PIs und nicht sichtbaren POs der Zwischentakte.

—Pl1,1—» PO1 >
—Pl2,1—»] A1
—PPl1—» PPO1
_I—P PPz -PO2»
Ply, > Az
Pl2, > PPO2»

Abbildung 2.6: TFE-Variante mit duplizierten und umbenannten PIs und POs.

beobachtet werden konnen Abb. 2.6 zeigt dagegen eine Variante, bei der die POs in jedem Takt
beobachtbar sind.

Diese verschiedenen TFE-Varianten fithren zu den unterschiedlichen Template-Varianten, die im
Laufe der Arbeit (in den Kapitels 3.3.2 und 3.3.2) vorgestellt werden.

Abbildung 2.4 zeigt TFE angewandt auf eine abstrakte, sequentielle Schaltung, fiir eine sequentielle
Tiefe von 2. Sie besteht aus dem rein kombinatorischen Block A mit zwei Pls, einem PO und dem
Flipflop FF. Der Eingang des Flipflops wird mit PPO (engl. Pseudo Primary Output) oder auch als NS
(engl. Next State) bezeichnet und der Ausgang mit PPI (engl. Pseudo Primary Input) oder PS (engl.
Present State) [BA01]. Das Zwischenergebnis von Aj, welches in der sequentiellen Schaltung in FF
gespeichert ist, wird iiber PPO; an Ay weitergeleitet. Die so entstehende kombinatorische Schaltung
ist funktional dquivalent zur urspriinglichen sequenziellen Schaltung, allerdings um den Faktor der
sequenziellen Tiefe vergrofiert (im Beispiel verdoppelt).

Ausgangspunkt fir ATPG-Programme, bei Anwendung auf eine TFE-Schaltung, ist der letzte betrach-
tete Takt. Die Bedingungen fiir eine Propagierung des untersuchten Fehlers an einen PO werden
aus der Schaltung und den PIs und PPIs bestimmt. Anschlieend werden diese Bedingungen im
vorherigen Takt auf Erfiillbarkeit untersucht. Wird kein Konflikt entdeckt, wird dieses Verfahren bis
zu Takt 0 wiederholt und ergibt somit einen validen Testvektor. Sollte ein Konflikt entdeckt werden,
muss im vorherigen Schritt (engl. Backtracking) eine andere Sensibilisierungsvariante untersucht
werden. Dieses Verfahren wird durch eine maximale Anzahl an Versuchen beschrinkt. Ubersteigt
die Untersuchung eines Fehlers dieses Limit (engl. Abort Limit) wird die Untersuchung abgebrochen.

20

2.2 Test von Mikrocontrollern

Durch abgebrochene Fehler sinkt die Fehlerabdeckung, da diese Fehler als untestbar eingestuft werden,
obwohl sie gegebenenfalls, mit groflerem Aufwand, testbar sind.

Funktionale Nebenbedingungen

Grundsitzlich erzeugen ATPG-Programme Testmuster in der Annahme, dass jeder PI der Schaltung
in jedem Takt mit einem Testmuster belegt werden kann und die Belegung der einzelnen PIs frei
wahlbar ist. Ebenso wird angenommen, dass jeder PO in jedem Takt gelesen werden kann. Da dies
jedoch abhéngig, von Testverfahren und der gegebenen Schaltung, nicht immer umsetzbar ist, muss
das ATPG bei der Erzeugung der Muster entsprechend eingeschrankt werden. Diese Einschrankungen
werden funktionale Nebenbedingungen (engl. Constraints) genannt.

2.2.4 Design for Testability

Bei DFT (engl. Design For Testability) handelt es sich um spezielle Anpassungen beim Entwurf digitaler
Schaltkreise, um deren Testbarkeit zu erh6hen [WWWO06]. Die Idee des Prinzips stammt aus den
1970er Jahren und wurde zuerst angewandt um den Test von schwer zu testenden Schaltungsbereichen
und die Erzeugung von Testvektoren zu vereinfachen. Essentiell ist dabei das Abwéagen zwischen
dem Nutzen einzelner DFT-Mafinahmen und den Hardwarekosten, die dadurch verursacht werden.
Der Nutzen von DFT-Mafinahmen ist die Erleichterung bzw. Erméglichung spezieller Testverfahren
oder das Erschlieffen von, andernfalls nicht testbaren, Bereichen der Schaltung und kann oftmals durch
eine erhohte Testabdeckung gemessen werden. Zudem verringern DFT-Mafinahmen im Allgemeinen
die Testzeit und senken somit die Testkosten, insbesondere beim Herstellungstest. Viele der im
néichsten Abschnitt vorgestellten Testmethoden sind davon abhangig, dass beim Entwurf der Schaltung
spezifische DFT-Anpassungen durchgefithrt werden.

2.2.5 Testverfahren

Eine zentrale Anforderung an Testmethoden fiir performanceorientierte Mikrocontroller ist das Testen
bei normaler Betriebsfrequenz, da viele Fehler nur bei maximaler Betriebsfrequenz auftreten, so z. B.
deep-submicron Verzégerungsfehler (engl. Delay Faults) bei aktuellen Fertigungstechniken [PGSR10].
Testverfahren lassen sich in invasive (engl. Intrusive) und nicht-invasive (engl. Non-Intrusive) unter-
scheiden. Invasive Methoden bieten die von der Industrie geforderten sehr hohe Testabdeckung und
zeichnen sich durch gut dokumentierte und skalierbare Verfahren aus [APGP07b]. Diese Methoden
fordern zumeist das Vorhandensein spezieller DFT-Hardware. Diese kann allerdings bei High-End
Mikrocontrollers zu nicht-tragbaren Einschnitten bei der Performance oder dem Platzbedarf der
Schaltung zur Folge haben [AGP'09].

Typischerweise werden im Rahmen des Herstellungstests ATEs eingesetzt, um gefertigte Chips zu
testen. Die Betriebsfrequenz von ATEs steigt jedoch weniger rasch an, als die Frequenz von High-End
Mikrocontrollern, es entsteht somit eine sich stetig vergréfiernde Liicke, welche die Testzeit einzelner
Chips, und somit die Testkosten, erh6ht [KPGX07]. Hochgeschwindigkeits-ATEs sind aulerordent-
lich teuer (mehrere Millionen Dollar) und bedingt durch die schnelle Entwicklung schnell veraltet

21

2 Grundlagen

[KLCT02]. Folglich ist at-speed Testen von High-End Mikrocontrollern mit ATEs hiufig unwirtschaft-
lich [KPGX07].

Eine weit verbreitete Methode stellen scanbasierte Hardwaretests dar. Das Prinzip von Scan ermdglicht
die vollstindige Beobacht- und Kontrollierbarkeit aller internen Flipflops einer Schaltung [BA01].
Durch dieses Verfahren lésst sich das Initialisierungsproblem fiir sequenzielles ATPG l6sen und so
die Anzahl der Testmuster reduzieren. Dies fiihrt zu verringerter Testzeit und damit zu verringerten
Testkosten.

Um ein Design scan-kompatibel zu machen werden alle Flipflops der Schaltung durch sog. Scan-
Flipflops ersetzt, die in einen spezifizierten Testmodus versetzt werden kénnen. In diesem Modus
bilden die Scan-Flipflops ein, oder mehrere, Shiftregister (engl. Scan Register). Die Eingénge und Aus-
gange der Scan-Register werden zu PIs bzw. POs der Schaltung. Folglich kénnen, durch das Anlegen
geeigneter Eingabefolgen, interne Flipflops in beliebige Zusténde versetzt werden (Kontrollierbarkeit)
und deren Zustand durch Shiften an dem PO sichtbar gemacht werden (Beobachtbarkeit).

Die Vorteile dieser Methoden bestehen in der sehr hohen erreichbaren Haftfehlerabdeckung (nahezu
100%), guter Skalierbarkeit des Verfahrens und der Moglichkeit ein vorhandenes Design automatisiert
in ein scan-kompatibles umzuwandeln. Das Verfahren kann zudem als Selbstest implementiert werden
und somit die Verwendung von teuren ATEs vermeiden. Bei einer solchen Implementierung werden
lediglich externe Gerate zum initiieren des Testmodus benoétigt.

Scan-Verfahren besitzen zwei hauptséichliche Nachteile: Erth6hung der benétigten Chipfliache (engl.
Area Overhead) und Verringerung der maximalen Taktfrequenz (engl. Performance Overhead). Der
Overhead liegt bei beiden Fallen fiir gewohnlich zwischen 5 und 10% [BAO1, S. 477]. Ein weiterer
Nachteil liegt in der deutlich erhéhten Energieaufnahme wiahrend des Testmodus, bedingt durch
die hohe Schaltaktivitiat der Scan-Flipflops. Diese signifikant erhchte Energieaufnahme fithrt zu
erhohter Warmeerzeugung, welche im schlimmsten Fall die Schaltung beschédigen kann. Mit den
von Wunderlich und Gerstendérfer [GW00] vorgeschlagenen Anpassungen lasst sich dieser Nachteil
jedoch erheblich reduzieren.

2.3 Software-basierter Selbsttest

SBST ist ein Testverfahren, welches weder High-Speed ATEs noch spezielle DFT-Mafinahmen benétigt.
Dazu werden programmierbare Komponenten einer Schaltung ausgenutzt, um Testmuster mithilfe
von Testprogrammen an die zu testende Komponente (engl. Device Under Test, DUT) anzulegen.
Die Ausgabewerte des DUT konnen anschlieffend mit den Soll-Werten der Testmuster abgeglichen
werden. Da die Ausfithrung dieser Testprogramme zu den normalen Betriebsumgebung der Schaltung
stattfindet, lauft SBST stets unter normaler Betriebsfrequenz und innerhalb des Gesamtsystems ab.
Da bei SBST auf DFT-Mafinahmen verzichtet werden kann, wird weder die Chipflache des Systems
erhoht, noch dessen Performance beeinflusst, noch die Energieaufnahme wahrend des Tests gesteigert.
Zusatzlich bietet SBST die interessante Moglichkeit das DUT wihrend des Betriebs (engl. Online-
Test) zu testen und so die Verldsslichkeit des Gesamtsystems zu erhéhen. Da es sich um eine nicht-
invasive Testmethode handelt lassen sich SBST Methoden in allen Testfillen einsetzten und fertige
Testprogramme sind jederzeit veranderlich, was den SBST Ansatz-stark wiederverwendbar macht
[PGSR10].

22

2.3 Software-basierter Selbsttest

2.3.1 Allgemeine Durchfiihrung

SBST-Verfahren beschiftigen sich mit der Erzeugung und Durchfithrung von Test-Programmen, die
sich den Instruktionen des Mikroprozessors bedienen, um Fehler zu aktivieren und sichtbar zu machen.
Die Ausfithrung von SBST-Programmen ist rein funktional. Allgemein gliedern sich die Durchfithrung
von SBST-Verfahren in die folgenden drei Schritte:

1. Laden des Testprogramms in den Systemspeicher des DUT. Dazu konnen existierende
Programmier- und Debug-Schnittstellen genutzt werden. Da dieser Schritt dabei nicht unter
Betriebsfrequenz ablaufen muss, kann der Gebrauch von schnellen und teuren ATEs vermieden
werden. Fiir periodische Selbsttests kann das compilierte Testprogramm alternativ bereits im
Systemspeicher des Mikrocontrollers vorliegen.

2. Ausfiithren des Testprogramms durch den Mikroprozessor des Systems. Ein Testprogramm setzt
sich dabei aus mehreren Testmustern zusammen. Jedes Testmuster besteht dabei aus einem
Konfigurationsblock, der die Komponenten in einen definierten Zustand versetzt, und einem
Funktionsblock der eine bestimmte Funktionalitit der Komponente aktiviert. Beobachtbare
Ausgabewerte werden wihrend der Ausfithrung, fiir den spateren Abgleich, in den Speicher
geladen. Dieser Schritt lauft unter normaler Betriebsfrequenz der Komponente ab.

3. Auslesen der Testresultate. Die im vorherigen Schritt gespeicherten Daten kénnen nun durch
ein Testgerat ausgelesen und mit den Sollwerten der Testmuster abgeglichen werden um
mogliche Fehler aufzudecken. Alternativ kann auch der Mikroprozessor des Systems diesen
Schritt iibernehmen. Fiir periodische Selbsttest konnen Sollwerte im Systemspeicher abgelegt
werden und mit den gespeicherten Ausgabewerten des vorherigen Schritts abgeglichen werden.

2.3.2 Erzeugen von Testprogrammen

Das Erzeugen von Testprogrammen ist eine komplexe Aufgabe, die stark von dem Testfall und den
vorhandenen Informationen tiber die zu testende Schaltung abhangt. Wéhrend die Testdurchfithrung
rein funktional ablauft, kann fiir die Erzeugung der Programme durchaus auf strukturelle Informatio-
nen zuriickgegriffen werden. Dementsprechend unterschieden sich funktionale SBST-Methoden von
strukturellen lediglich durch die Art der genutzten Informationen, die wahrend der Erzeugung der
Testprogramme zum Einsatz kommen, nicht jedoch bei der Ausfithrung - diese lauft immer funktional
ab.

Funktionaler SBST

Funktionale Methoden nutzen zur Testprogrammerzeugung lediglich Informationen iiber den In-
struktionssatz (engl. Instruction Set Architecture, ISA) des Prozessors und sind folglich selbst bei
Komponenten nutzbar, bei denen keine strukturellen Informationen vorhanden sind. Zentrales Pro-
blem der rein funktionalen Ansétze ist, wie bereits in Abschnitt 2.2.2 besprochen, der Mangel an
strukturellen Informationen, die eine Angabe der Testabdeckung struktureller Fehler unmoéglich
macht [PGSR10].

23

2 Grundlagen

Funktionale Methoden nutzen entweder funktionale ATPG-Programme, randomisierte oder Feedback-
basierte Verfahren zur Erzeugung von Testmustern [PGSR10].

Struktureller SBST

Strukturelle SBST-Methoden nutzen Beschreibungen der zu testenden Schaltung auf Register-Transfer-
Ebene (engl. Register Transfer Level, RTL), in Form von Hardwarebeschreibungssprachen (engl.
hardware description language, HDL), oder synthetisierte Gatternetzlisten. Die Nutzung von Beschrei-
bungen auf Gatterebene erlaubt das Aufstellen der Haftfehlerliste (vgl. Abschnitt 2.2.1) und wird
deshalb von dem Grof3teil der nachfolgend vorgestellten Methoden verwendet.

Grundsatzlich lauft die Erzeugung von strukturellen Testprogrammen dabei in zwei Schritten ab:

1. Erzeugen von Testmustern. Damit ein SBST-Programm einen Fehler an einem logischen Block
aufdecken kann, muss mithilfe von Instruktionen ein geeigneter Testvektor an das DUT angelegt
werden, sodass an dem fehlerhaften Block ein abweichender Wert erzeugt wird (Fehleraktivie-
rung). Dieser muss anschlieBend an eine beobachtbaren Bereich der Schaltung propagiert wird.
Da nahezu jede grofiere Schaltung sequentielle Komponenten enthélt [BA01], ist das Problem
der Testmustererzeugung fiir SBST-Programme ein Spezialfall des sequentiellen, strukturellen
ATPG-Problems (vgl. Kapitel 2.2.3), erweitert um die funktionalen Nebenbedingungen von SBST.
Die wichtigste funktionale Nebenbedingung von SBST ist die Einschrankung, dass Testvektoren
sich durch eine oder mehrere Instruktionen, die Teil der ISA des betrachteten Systems sind, an
das DUT anlegen lassen miissen.

2. Erzeugen des Testprogramms. Die im vorherigen Schritt erzeugten Testmuster werden an-
schlieend zu einem Testprogramm zusammengefasst. Fiir diesen Zweck werden gewohnlich
parametrisierte Vorlagen (engl. Templates) verwendet, in die sich die erzeugten Testmuster
einsetzen lassen. Der Einsatz von parametrisierten Templates erleichtert die Umwandlung
struktureller Testvektoren in ein ausfithrbares, binéres Testprogramm. Sollten die Templates
weitere funktionale Nebenbedingungen fiir die Erzeugung der Testmuster aufstellen, so miissen
diese von dem ATPG-Programm wéhrend der Testmustererzeugung bekannt sein. Sieht ein
Template z. B. nur in jedem zweiten Takt ein schreibenden Zugriff auf die PIs vor (da im nachsten
Takt die korrelierenden Werte der POs ausgelesen werden), muss diese Einschrankung dem
ATPG-Programm als Constraint iibergeben werden.

Im Folgenden werden einige strukturelle SBST-Methoden zur Erzeugung von Testmustern besprochen.
Nach Gizopoules et. al. [PGSR10] lassen diese sich in Hierarchische und RTL-Methoden einteilen.

Hierarchische SBST-Methoden nutzen die hierarchischer Struktur des DUT aus, um Test-
programme nach einem Teile-und-Herrsche Prinzip (engl. divide and conquer) zu erzeugen
[GVA06][LJ07][CRRDO03][WWCT06][CWLGO07]. Im Divide-Schritt wird dazu das DUT in dessen
einzelne Module aufgeteilt. AnschlieSend werden Testvektoren fiir jedes Teilmodul mithilfe eines
strukturellen ATPG-Programms erzeugt. Die das Modul umgebende Schaltung wird auf einem héhe-
ren Abstraktionslevel miteinbezogen, oder mithilfe einer Reihe von ATPG-Constraints abgebildet.
Durch diese Abbildung wird die Wahrscheinlichkeit erhoht Testvektoren (je Teilmodul) zu erhalten,
die sich mittels Instruktionen an das Gesamtsystem anlegen lassen. Diejenigen Testvektoren die sich

24

2.3 Software-basierter Selbsttest

mittels von Befehlen der ISA an die Gesamtschaltung anlegen lassen, werden im Conquer-Schritt
zum SBST-Testprogramm zusammengefasst .

Eine ganze Reihe von Verfahren [CCRS00][KMT " 08][BSS™07] beschaftigt sich mit der Entwicklung
und Anwendung von Metriken auf RTL-Ebene, da komplexe Schaltungen auf Gatternebene einen
erheblichen Rechenaufwand fiir die Erzeugung von Testmustern per ATPG bedeuten. Die untersuchten
Metriken sollen einen Kompromiss zwischen moglichst hoher Abstraktion einerseits und hoher
Aussagekraft, beziiglich bestehender Fehlermodellen anderseits, bieten. Vorgeschlagene Metriken
messen z. B. den abgedeckten Prozentsatz der Verzweigungen (engl. Branch Coverage), Ausdriicke
(engl. Statement Coverage), Bedingungen (engl. Condition Coverage) oder die Anzahl an Signal-
oder Registeranderungen (engl. Toggle Coverage) einer gegebenen HDL-Beschreibung durch ein
gegebenes Testprogramm [KMT"08][BSST07]. Grof3e kombinatorische Komponenten korrelieren
jedoch schlecht mit RTL Metriken, was ihren Nutzen fir viele Komponenten, oder Teilmodule,
einschrinkt [BSST07].

Einschrankungen von SBST

Neben den funktionalen Nebenbedingungen des SBST-Paradigmas kénnen je nach Anwendungsfall
und Testsystem weitere Einschrankungen hinzukommen, die ein Abwégen zwischen der erzielbaren
Fehlerabdeckung und den zuséatzlichen Anforderungen notwendig machen. Soll das Testprogramm
z.B. wahrend des Herstellungstest Anwendung finden, so ist die Laufzeit des Testprogramms von
vorrangiger Bedeutung, dagegen im Fall der Riicklauferanalyse nicht entscheidend. Die Grofle des
verbauten Systemspeichers kann ebenfalls ein einschrinkendes Kriterium fiir die maximale Lénge der
Testprogramme darstellen. Ebenfalls konnen SBST-Verfahren auf den Energieverbrauch der entwickel-
ten Testprogramme hin optimiert werden [Zho09]. Sind dagegen keine strukturellen Informationen
iiber das DUT verfiigbar, so konnen strukturelle SBST-Methoden nicht eingesetzt werden und es muss
auf funktionale Methoden zuriickgegriffen werden.

2.3.3 Anwendung auf Peripheriekomponenten

Tests fiir Peripheriekomponenten zu entwickeln stellt eine anspruchsvolle Aufgabe dar, da die
Kontrollier- und Beobachtbarkeit interner Signale gegeniiber Mikroprozessoren im Allgemeinen
deutlich niedriger ist [BSST07][GHS™ 12]. Hinzu kommt dass die Kommunikationsgeschwindigkeit
meist erheblich langsamer ist als die Taktrate des Mikroprozessors, was zu langen Wartezeiten und
somit zu langer Gesamttestzeit fithrt [AGPT09].

Generell gehen SBST-Methoden fiir Peripheriekomponenten davon aus, dass alle anderen Komponen-
ten des Systems, insbesondere betrifft dies die fiir SBST benétigten Komponenten Mikroprozessor
und Systemspeicher, fehlerfrei sind. Dies kann entweder durch Hardware-basierte Testmethoden
oder durch die vorherige Anwendung von SBST-Methoden auf den Mikroprozessor und den Speicher
erreicht werden.

Um Kommunikationskomponenten erfolgreich zu testen muss eine protokollgerechte Kommunikation
stattfinden [AGP'09]. Es gibt im wesentlichen zwei Ansitze diese Kommunikation zu ermédglichen:
externe Testgerate oder die Nutzung einer Loopback-Struktur. Die erste Variante sieht die Nutzung
eines ATEs vor, welches als Kommunikationspartner fiir das DUT fungiert. Dabei ist zu beachten,

25

2 Grundlagen

dass das ATE zumindest dieselbe Betriebsfrequenz wie eine entsprechende Kommunikationskompo-
nente besitzen muss. Wahrend dieser Ansatz fiir Herstellungstest oder Riicklauferanalyse durchaus
geeignet ist, kann er keinesfalls fiir Feldtests genutzt werden. Als zweite Moglichkeit kann deshalb
ein Loopback-Mechanismus implementiert werden, der es erméglicht gesendete Werte anschlieBend
auszulesen und mit den urspriinglichen Daten auf Ubertragungsfehler abzugleichen. Abstrakt gesehen
wird bei einem Loopback die Sendeeinheit der Komponente mit der Empfangseinheit verbunden,
sodass gesendete Werte von der Schaltung empfangen werden kénnen. Diese Variante bietet die
Moglichkeit von Feldtests oder periodischen Selbsttests, allerdings macht sie, abhingig vom Kom-
munikationsprotokoll, gewisse DFT-Mafinahmen erforderlich. Durch einen solchen Loopback kann
folglich die Beobachtbarkeit und die Kontrollierbarkeit von Kommunikationskomponenten stark
erhoht werden. In vielen Komponenten sind bereits Loopback-Mechanismen vorgesehen um Pro-
grammierer zu unterstiitzten [AGP™09], was die Notwendigkeit von zusitzlichen Designanpassungen
beseitigt. Je nach Kommunikationsprotokoll kann ein Loopback einfach implementiert werden, z. B.
bei UART oder benétigt bestimmte Hardwarezusammensetzungen, z. B. hierarchische Protokolle
benotigen sowohl Master,- als auch Slavekomponenten um ein Loopback zu erreichen.

Ein friher, rein funktionaler Ansatz von Jayaraman et. al. [SA98] erreichte eine relativ geringe
Haftfehlerabdeckung von 67,89% [SA98] auf einer einfachen UART-Komponente und zeigte einige
der zentralen Problemstellungen fiir SBST auf Kommunikationsperipheriekomponenten auf.

Gizopoulos et. al [APGP07b] présentierten eine systematische, deterministische Methodik welche
eine sehr gute Fehlerabdeckung, bei kleiner Testprogrammgrofle, erreicht. Die Methode erfordert
jedoch manuellen Aufwand zur Testmustererzeugung und ausfiihrliche Kenntnisse tiber interne
Funktionen der Komponenten. Die Methode erfordert die Identifikation der zentralen Teilmodule der
Kommunikationskomponente und pro Modul das Aufstellen von Test-Templates. Je ein Template wird
fiir die verschiedenen Betriebsmodi der Komponente, fiir die Anbindung des DUT an den Systembus,
fiir jede FIFO-Struktur (engl. First In First Out) und fir Fehlerbehandlungslogik erzeugt. Dabei finden
sich FIFO Elemente zumeist bei seriellen Kommunikationskomponenten im Sende- bzw. Empfangsteil.
Diese Templates konnen abschlieffend zu einem Gesamttestprogramm zusammengefasst werden.
Experimentelle Anwendung dieser Methode auf einer UART und einer Ethernet Kommunikations-
komponente erreichen eine Haftfehlerabdeckung von 93,74% und 91,7% [APGP07a].

Ein weiterer Ansatz von Reorda et. al. [BSST07] nutzt einen evolutioniren Algorithmus um mithilfe
von Metriken auf HDL-Ebene sog. Testblocke zu erzeugen und iterativ zu verbessern, die in der Lage
sind das DUT zu konfigurieren und zu testen. Die erzielten Ergebnisse sind durch die Verwendung
des evolutiondren Algorithmus heuristisch, allerdings konnen durch dieses Verfahren sehr schnell
Testprogramme erzeugt werden. Die zur Optimierung der Testblocke vorgeschlagenen Metriken -
Statement, Branch, Condition, Expression und Toggle Coverage - bestimmen die prozentuale Abde-
ckung gegebener Blocke anhand der HDL-Beschreibung der Komponente.

Eine experimentelle Anwendung auf eine UART und Ethernet Komponenten erreichte eine Haftfeh-
lerabdeckung von 86,35% und 86,57% [AGP109]. Die verwendeten Komponenten waren identisch
zu jenen die bei der experimentellen Auswertung der Methode von Gizopoulos et. al. Anwendung
fanden.

Diese beiden Methoden wurden in [AGP109] zu einer zusammengefasst. Dazu werden die funktio-
nalen Informationen, die in [APGP07b] eingeholt werden, genutzt um den Erzeugungsprozess des
evolutiondren Algorithmus zu verbessern. Der evolutionire Algorithmus von [BSS*07] wird einzeln

26

2.3 Software-basierter Selbsttest

fiir die in [APGP07b] beschriebenen Teilmodule der jeweiligen Kommunikationskomponente ange-
wandt. Dies verringert den Suchraum fiir den Algorithmus erheblich, was zu effizienteren Testblocken
innerhalb weniger Iterationen fithrt [AGP™09].

Testergebnisse dieser hybriden Methode zeigen fiir UART und Ethernet eine Haftfehlerabdeckung
von 93,13% und 91,70% [AGP'09]. Insbesondere zeigen die Ergebnisse eine Verbesserung bei der Er-
zeugung der Testblocke fiir FIFO-Strukturen und eine erheblich verringerten Aufwand zur Erzeugung
der Testprogramme (verglichen mit dem Aufwand der deterministischen Methode von [APGP07b]).

Systemperipheriekomponenten sind im Allgemeinen noch komplexer zu testen als Kommunikations-
komponenten, da deren Beobacht- und Kontrollierbarkeit dulerst gering ist [GHS™12] und Fehler in
diesen Komponenten die Ausfithrung des Testprogramms beeinflussen kann. Zudem erfordern sie
sorgfiltige Konfiguration weiterer Systemkomponenten.

Die Methode [DBGO03] zielt auf das Testen von Randfillen (engl. Corner Cases) von Systemperiphe-
riekomponenten ab. Dazu wird das DUT in eine abstrakte Zustandsmaschine tibersetzt und mithilfe
eines abdeckungsorientierten Algorithmus durchlaufen. Anschlielend kdnnen aus der abstrakten
Zustandsfolge die Testvektoren erzeugt werden. Dabei dient die Zahl der durchlaufenen Zustande als
high-level Metrik.

Ein weiterer Ansatz [GHS™12] fiir Systemperipheriekomponente stellt aus Informationen iiber die
Zielkomponente einen formalen Konfigurationsgraphen (engl. Configuration Graph) auf. Aus diesem
lassen sich, mithilfe eines Rundlauf-Algorithmus (engl. Visiting Algorithm), Konfigurationspfade
berechnen, welche die Konfigurationen der einzelnen Komponenten bestimmen. Fiir jeden solchen
Pfad kann ein Test-Template erzeugt werden. Diese garantieren eine Konfiguration, die sich mithilfe
von Prozessorinstruktionen anlegen lésst, fiir alle Systemkomponente die benotigt werden um ein
bestimmtes Verhalten der Systemperipheriekomponente zu beobachten.

Im Gegensatz zu den heuristischen Methoden von [AGP109] und [BSS*07] wird in dieser Arbeit
eine deterministische, strukturelle SBST-Methode vorgestellt und die Wirksamkeit von einfachen
Mafinahmen zur Verbesserung der Kontrollier- und Beobachtbarkeit auf die erreichbare Haftfehlerab-
deckung betrachtet. Ebenfalls wird der Einfluss von funktionalen Nebenbedingungen einer Schaltung
und von zwei unterschiedlichen Template-Varianten auf die Haftfehlerabdeckung, Testdauer und
Programmgrofle untersucht.

27

3 Implementierung

Im folgenden Kapitel wird zunichst in Unterkapitel 3.1 das genutzte Testsystem besprochen und auf
die Implementierung der zu testenden Kommunikationskomponente eingegangen. Die Abschnitte
3.1.1 und 3.1.2 stellt die beiden Teilkomponenten (Master und Slave) der I2C-Peripheriekomponente
vor. Zudem wird in Unterkapitel 3.1.4 das Mapping der I2C-Ports auf MMI/O Adressen besprochen.
Im zweiten Abschnitt (3.2) werden die vorgenommenen Mafinahmen vorgestellt, welche die Beobacht-
und Kontrollierbarkeit der Kommunikationskomponente erh6hen und somit die strukturelle Feh-
lerabdeckung verbessern. Dieser ist in zwei Teile gegliedert: der erste Abschnitt (3.2.1) bespricht
die Implementierung des Loopback-Mechanismus wihrend im Unterkapitel 3.2.2 diejenigen interne
Signale vorstellt werden, die zur Verbesserung der Beobachtbarkeit dem System sichtbar gemacht
werden. Zuletzt werden im Abschnitt 3.2.3 die untersuchten Kombinationen der vorgestellten Maf3-
nahmen vorgestellt, deren Ergebnisse im Kapitel 4 besprochen werden.

In Unterkapitel 3.3 wird schlieflich die Anwendung der strukturellen SBST Methode auf die vorge-
stellte Kommunikationsperipheriekomponenten gezeigt. Abschnitt 3.3.1 beschreibt die Erzeugung
der Testmuster mittels eines sequenziellen ATPG-Programms. Zuletzt wird im Unterkapitel 3.3.2
kurz erklart, welche Schritte unternommen werden miissen, um ein fertiges Testprogramm aus den
erzeugten Testmustern zu erzeugen. Dazu werden zwei unterschiedliche Test-Template Varianten
besprochen.

3.1 Implementierung des Testsystems

Als Testumgebung fiir diese Arbeit wird der Open-Source Mikroprozessor miniMIPS! mit einem
kompatiblen RAM-Modul benutzt. Bei miniMIPS handelt es sich um einen 32-Bit RISC Mikroprozessor
mit fiinfstufiger Pipeline, Bypassing-Komponente und Sprungvorhersage. Die Synthese der miniMIPS-
Referenz erreicht eine Taktrate von 50MHz. Als zu testende Kommunikationsperipheriekomponente
wird ein einfacher 7?C-Master und ein dazu kompatibler Slave verwendet, die jeweils per MMI/O
Controller an den Prozessor angeschlossen sind.

Abbildung 3.1 zeigt ein Blockschaubild des Testsystems mit besonderem Augenmerk auf der Schnitt-
stelle der /?C-Komponente. Prozessor, Speichermodule und MMI/O Controller sind dabei iiber einen
Systembus verbunden, welcher dem Speicherprotokoll des miniMIPS entspricht. Zusétzlich zeigt
die Abbildung den Clock Divider, welcher durch Teilung der Systemtaktfrequenz den langsameren
Peripherietakt erzeugt. Durch diese Teilung lasst sich die Ubertragungsrate der Komponente einstellen.
Der aktuelle Pegel des Peripherietaktes kann mittels MMI/O Zugrift auf des sync-Signal abgefragt
werden und dient der Synchronisierung von Software und Peripheriekomponente.

1h‘c‘cp://opencores .org/project,minimips

29

3 Implementierung

Mikroprozessor
i F—=ss_clk—
R ROM [rinakIPs)
i System Bus I I
[]
F Y
v
MBO
L S R A
data_inout addr idle sync
data_inout addr byte_cnt idle
en_send/recv P P20 lieemeeeees Clock !
H - Davider
reset
Master | N Slave
e a00ena i i ARBRORES <
A Y x
Deisinssessssssssssnssassnsssssssstfusnmm e oo sssssssnssest
Peripherie .
< m_SDA s_SDA »
* m_SCL 5 SCL >

Abbildung 3.1: Blockschaubild des Testsystems.

3.1.1 ’CMaster

Die Masterkomponente ist entsprechend der NXP Spezifikation [NXP14] implementiert. Die in
Unterkapitel 2.1.2 genannten Erweiterungen des I2C-Protokolls sind nicht implementiert.

Schnittstelle

Das Schaubild 3.1 zeigt die Schnittstelle der Masterkomponente. Das Taktsignal (i2c_clk) der Kompo-
nente wird durch den Clock Divider erzeugt, wihrend das Reset-Signal (reset) softwareseitig gesetzt
werden kann. Die Kontrolleingénge en_send und en_recv spezifizieren (exklusiv) die gewiinschte Ope-
ration (Senden bzw. Empfangen), zudem fiihrt das Setzen eines der Signale zum Start der gew&hlten
Ubertragung. Die Anbindung der Komponente an den 1?C-Bus geschieht iiber die Signale m_SDA
und m_SCL die den I2C-Busleitungen SDA und SCL entsprechen. Mit data_inout kann auf das interne
Datenregister zugegriffen werden, wihrend der addr Eingang die 7-Bit I?C-Adresse des Ziels der
Ubertragung und byte_cnt die Menge der zu tibertragenden Bytes spezifiziert. Die Implementierung
kann bis zu 8 Bytes infolge iibertragen, anschlieffend muss eine neue Kommunikation gestartet wer-
den. Das idle-Signal dient als Bereitschaftssignal fiir den Systembus. Ein logischer Wert 1 auf dieser

30

3.1 Implementierung des Testsystems

Leitung signalisiert das Erreichen des Startzustands, nicht jedoch eine erfolgreich abgeschlossene
Kommunikation.

Zustandsautomat

Abbildung 3.2 zeigt den Zustandsautomaten der Masterkomponente. Die Masterkomponente erzeugt
gemafl [NXP14] das I?C-Taktsignal auf der SCL-Leitung.

Der Startzustands des Systems erwartet das Setzen von en_send bzw. en_recv um mit einer Ubertra-
gung zu beginnen. Wahrend sich die Komponente im IDLE-Zustand befindet, hat das idle-Signal den
Wert 1. Nachdem en_send oder en_recv gesetzt sind, durchlauft die Komponente die START-Zusténde
und generiert dabei die in Abschnitt 2.2 beschriebene Startbedingung. Anschlieflend wird mit der
Ubertragung des ersten Bytes begonnen, welches sich aus der an addr angelegten Zieladresse (7 Bit)
und dem R/W-Bit zusammensetzt. Das R/W Bit geht aus der gewéhlten Operation hervor - en_recv
steht fiir eine Leseoperation und ist als R/W = 1 definiert, en_send fiir eine Schreiboperation und
erzeugt R/W = 0. Die Ubertragung des (Adress-)Bytes lauft dabei nahezu identisch zur Ubertragung
eines Datenbytes ab, nutzt folglich auch dieselben Zustdnde und unterscheidet sich lediglich durch
das Setzen eines internen Statussignals.

Die Abfolge der Zustinde zur Ubertragung eines Bytes besteht aus den beiden SEND- und den
GET_D_ACK-Zustéinden (im Folgenden mit Sendeschleife bezeichnet und analog Empfangsschleife
fir den Empfang). Die SEND-Zustédnde werden dabei achtmal durchlaufen und das interne Daten-
register vom hochstwertigen zum niederwertigsten Bit ausgelesen. Das aktuell gelesene Bit wird
tber die SDA-Leitung iibertragen. AnschlieBend empfingt der Master das ACK-Bit in den beiden
Zustanden GET_D_ACK. Wird ein NACK empfangen, geht der Master in den Fehlerzustand FAIL
und bricht die Ubertragung durch die in Kapitel 2.2 beschriebene Stoppbedingung ab. Ist das interne
Adressierung-Statussignal (addr_flag) gesetzt und wird ein ACK empfangen, beginnt die Komponente
die eigentliche Datentibertragung. Entsprechend dem R/W-Bit wird in die Sende- oder Empfangs-
schleife gesprungen.

Dabei lauft der Transmittermodus dhnlich zur Ubertragung der Adresse und des R/W-Bits ab. Nach
jeder - mit einem ACK quittierten - Sendeschleife wird zusétzlich der Byte-Zahler dekrementiert
und entweder die Kommunikation beendet, durch einen Ubergang in den STOPP-Zustand, oder das
nichste Byte gesendet - durch Riicksprung zu SEND_1.

Die Empfangsschleife besteht aus den READ-Zustédnden die, vergleichbar mit den SEND Zustanden,
byteweise durchlaufen werden. Das aktuelle Bit wird dabei von der SDA-Leitung in das interne
Datenregister geschrieben. Nach jedem Durchlauf wird der Byte-Zahler dekrementiert. Anschlielend
sendet der Master in den Zustdnden SEND_D_ACK iiber SDA eine logische 0 - das Daten ACK gemaf3
Kapitel 2.1.2 - wenn weitere Bytes gelesen werden sollen, oder eine logische 1 - ein NACK - um
die Ubertragung des Slaves nach dem letzten Byte abzubrechen. Nach dem tibertragenen NACK
wird die Kommunikation ordnungsgemafl durch den Ubergang in den STOP-Zustand - welcher die
I?C-Stoppbedingung erzeugt - beendet.

31

3 Implementierung

MACK
Received

v

Bit-Loop

Write OP /
Byte-Loop

Send Start Condition

Transmit
Bit

Receive

Bit

Bit-Loop

Byte-Loop
Prepare MACK for
Communication
End
Send Stop
Condition

Abbildung 3.2: Kommentierter Zustandsautomat der /?C-Master Komponente.

32

3.1 Implementierung des Testsystems

3.1.2 2CSlave

Die Slavekomponente ist ebenfalls entsprechend der NXP-Spezifikation [NXP14] implementiert.

Schnittstelle

Das Taktsignal (i2c_clk) der Komponente wird durch den Clock Divider erzeugt, wahrend das Reset-
Signal (reset) softwareseitig gesetzt werden kann. Die Anbindung der Komponente an den ?C-Bus
geschieht iiber die Signale s SDA und s_SCL die den I>C-Busleitungen SDA und SCL entsprechen.
data_inout erlaubt den Zugriff auf das interne Datenregister, wihrend mithilfe der addr Eingangs
die 7-Bit I?C-Adresse der Komponente - softwareseitig - festlegt werden kann. Das idle-Signal dient
als Bereitschaftssignal fiir den Systembus. Ein logischer Wert 1 auf dieser Leitung signalisiert den
Startzustands, nicht jedoch eine erfolgreich abgeschlossene Kommunikation.

Zustandsautomat

Abbildung 3.3 zeigt den Zustandsautomaten der Slavekomponente. Der Startzustand der Komponente
wartet auf den Empfang der I2C-Startbedingung und 16st anschliefend den Zustandsiibergang nach
READ_1 aus um die adressierte I2C-Adresse zu empfangen. Dabei lauft der Empfang der Zieladresse
identisch zum Empfang von Daten ab. Folglich kénnen dieselben Zustande genutzt werden, wobei
ein internes Statussignal (addr_flag) die beiden Falle unterscheidet.

Die Empfangsschleife besteht aus den zwei SEND-Zustanden die achtmal durchlaufen werden und
dabei das interne Datenregister vom h6chstwertigen zum niederwertigsten Bit beschreibt. Das aktuelle
Bit wird von der SDA-Leitung gelesen und in das Register an die Position eingetragen. Nach dem
Durchlaufen der Sendeschleife befindet sich die Slavekomponente im Zustand SEND_D_ACK. Ist
addr_flag gesetzt wird die empfangene Adresse (die sieben hochstwertigen Bits) mit der durch addr
zugewiesenen I2(C-Slaveadresse abgeglichen. Sind beide Adressen identisch, wird ein ACK iiber SDA
gesendet und entsprechend dem R/W-Bit (dem niederwertigsten empfangenen Bit) in die Sende - oder
Empfangsschleife gesprungen. Stimmen die Adressen nicht {iberein wird ein Zustandsiibergang in
den Startzustand ausgeldst. Ist addr_flag dagegen nicht gesetzt befindet sich die Komponente in der
Daten-Empfangsschleife. Bei Erreichen des SEND_D_ACK Zustands generiert die Komponente ein
ACK, um den Empfang der Daten zu bestitigen. Danach verbleibt die Komponente in diesem Zustand
bis zum Beginn der nichsten Ubertragung - es folgt ein Zustandsiibergang nach READ_1 - oder bis
zum Empfang der I?C-Stoppbedingung. Diese 16st einen Zustandsiibergang nach IDLE aus.

Die Sendeschleife besteht aus den SEND-Zusténden die, 4quivalent zur Empfangsschleife, achtmal
durchlaufen werden und somit ein Byte senden. Das aktuelle Bit wird dabei auf die SDA-Leitung
gelegt. Nach jedem Durchlauf wird der Byte-Zahler dekrementiert. AnschlieSend erwartet der Slave
im Zustand GET_D_ACK das Daten-ACK des Master, iibertragen via SDA. Wird ein ACK empfangen,
folgt das nichste Byte, andernfalls (NACK-Empfang) wird die Kommunikation abgebrochen und ein
Zustandsiibergang nach IDLE vorgenommen.

33

3 Implementierung

Start Condition

.| READ_1 o SEND 1
. 0001 =i 0100
Receive Transmit
Bit-Loop Bit Bit Bit-Loop

Byte L
vie Loop -Loop

Send OP

SEND_D'_ACK
0011

|_Wrong Slave Address

M ACK ived—
or Stop Condition receive

Abbildung 3.3: Kommentierter Zustandsautomat der /?C-Slave Komponente.

3.1.3 Taktteilung

Kommunikationskomponenten werden gewdhnlich mit einem deutlich langsameren Takt (Peripherie-
takt) betrieben, als z. B. der Mikroprozessor des Systems (Systemtakt). Damit Kommunikationskom-
ponenten dennoch synchron zum System arbeiten, konnen Taktteiler (engl. Clock Divider) eingesetzt
werden. Dies vermeidet zudem zusétzlich benétigte Logik um ein neues Taksignal zu generieren.
Taktteiler zdhlen den Systemtakt mit und erzeugen, entsprechend einem gegebenen Teiler, den Peri-
pherietakt.

Im Fall von Kommunikationskomponenten kann durch die Anpassung dieses Multiplikators die
Ubertragungsrate gewiahlt werden.

3.1.4 Memory Mapped Input Output

Das Mapping der Ports des DUT auf Speicheradressen beeinflusst die Anzahl der nétigen Speicher-
zugriffe die fiir das Anlegen bzw. Auslesen von Testvektoren benotigt werden. Werden die n Ports

34

3.2 Anpassungen zur Verbesserung der Haftfehlerabdeckung

einer betrachteten Komponente jeweils auf eine MMI/O Adresse abgebildet, so werden n Speiche-
roperationen benétigt, um alle Eingangssignale der Schaltung zu setzen. Werden jedoch mehrere
Ports auf dieselbe Adresse abgebildet kann die Zahl der benétigten Speicherzugriffe erheblich gesenkt
werden. Deshalb werden méoglichst viele Interface-Signale auf eine einzige MMI/O Adresse gemappt,
wobei die Anzahl der pro Speicheradresse zusammengefassten Ports durch die Wortbreite des Systems
beschrankt ist.

Fir die Anbindung der Master- und Slavekomponente werden zwei MMI/O Adressen fiir Eingabe
und eine weitere fiir Ausgabewerte benoétigt.

MMI/O Mapping

Die Abbildung 3.4, 3.5 und 3.6 zeigt die Bit-Verteilung von den MMI/O Adressen auf das I2C-Interface
(vgl. Kapitel 3.1).

Fiir die Anbindung der in im néachsten Kapitel vorgestellten Mafinahmen zur verbesserten Beobacht-
barkeit wird eine weitere MMI/O Adresse benétigt. Abbildung 3.7 zeigt das Bit-Mapping der einzelnen
Mafinahmen innerhalb dieser MMI/O Adresse. Zur Verringerung der bendtigten MMI/O Zugriffe wird
das Ibepqpie-Signal, welches die Loopback-Komponente aktiviert, gemeinsam mit dem Interface der
Slavekomponente, auf ein Datenwort abgebildet.

3.2 Anpassungen zur Verbesserung der Haftfehlerabdeckung

Abbildung 3.8 zeigt die vorgenommen Anpassungen des Systems im Uberblick. Um die Durchfithrung
der Experimente zu vereinfachen, wurde eine Schaltung implementiert in der alle vorgeschlagenen
Mafinahmen zur Verbesserung der Kontrollier- und Beobachtbarkeit (blau markiert) eingefiigt sind
(vgl. Abbildung 3.8).

Die rot eingezeichneten Steuersignale und Gatter erméglichen eine Auswahl der verwendeten Mafi-
nahmen fiir Testzwecke mithilfe von ATPG Nebenbedingungen (vgl. Kapitel 3.2.3) und sind nicht
Teil der untersuchten Implementierungen. Diese Signale werde im folgenden als ATPG-Steuersignale

31.21 [20[19..12][11.9][8.2 [1] 0]

Bit - Master In- Ports
0 en_send

1 - en_recv

2.8 - addr

9.11 - byte cnt
12..19 - data_in

20 - reset

21..31 - open

Abbildung 3.4: Bit-Mapping der MMI/O Adresse auf die Eingénge der I2CMasterkomponente.

35

3 Implementierung

31..17 16 15..8 7.1 0

Bit - Slave In- Ports
0 - reserved (lb_en)
1.7 - addr

8..15 - data_in

16 - reset

17..31 - open

Abbildung 3.5: Bit-Mapping der MMI/O Adresse auf die Eingénge der I2CSlavekomponente.

31..18 17..10(9.2 | 1| 0
Bit - System Out- Ports
0 - m_idle
1 - s_idle
2.9 - m_daota_out
10..17 - s_data_out
18..31 - open

Abbildung 3.6: Bit-Mapping der MMI/O Adresse auf die Ausginge der 12CKomponenten.

[31..17{16..14[13 . 11]10..8 [7..4[3 .. 1] 0]

Bit - Modification Out- Ports
a err

1..3 m_cnt

4.7 - m_state

8.10 - i2c_bus

11..13 - s _cnt

14 .16 - 5_state

17 .31 - open

Abbildung 3.7: Bit-Mapping der MMI/O Adresse auf die Mafinahmen zur verbesserten Beobachtbar-
keit.

36

3.2 Anpassungen zur Verbesserung der Haftfehlerabdeckung

bezeichnet. Dazu wurde jedes Signal der Verbesserungen mit einem zusitzlichen Steuersignal an ein
UND-Gatter angeschlossen, dessen Ausgabewert als finales Steuersignal genutzt wird. Wird folglich
ein ATPG-Steuersignal als Nebenbedingung in der Form a = 0 auf den logischen Wert 0 gezwungen,
so steht die entsprechende Mafinahme fiir den folgenden Test nicht zur Verfiigung. So kann z. B. durch
das Einfiigen einer Nebenbedingung fiir die Steuerleitung lb,,qp1e auf den Wert 0 die Benutzung der
Loopback-Komponente deaktiviert werden.

3.2.1 Loopback

Eine hiufig genutzte Methode um die Beobacht- und Kontrollierbarkeit von Kommunikationsperi-
pheriekomponenten zu erhdhen ist das Einfiigen eines Loopbacks, eine Mdglichkeit tibertragene
Daten vor und nach der Ubertragung einsehen zu kénnen. Durch das Einfiigen einer sehr einfachen
Loopback-Komponente in das in Kapitel 3.1 vorgestellte Testsystem werden die beiden - bislang nicht
verbundenen - I2C-Module an einen gemeinsamen I?C-Bus angeschlossen. Uber das be,,qpe-Signal
kann zwischen diesem Testmodus (die Komponenten sind iiber einen internen I>C-Bus verbunden)
und dem Normalbetrieb (die Komponenten sind an ihre jeweiligen externen Busse angeschlossen)
gewechselt werden.

Die Beobachtbarkeit wird erhéht, da durch diese Erweiterung alle Ubertragungen zwischen Master-
und Slavekomponente beobachtet werden kénnen. So wird es moglich die urspriinglichen mit den
empfangenen Daten abzugleichen und dadurch Fehler aufzudecken. Stimmen die so erzeugten Daten
iiberein, ist zudem eine protokollgerechte Ubertragung abgelaufen. Folglich kénnen bestimmte Fehler
in der Protokoll-Logik mittels der Loopback-Komponenten entdeckt werden, wenn sich diese Fehler
auf die empfangenen Daten der Gegenseite auswirken.

Die Kontrollierbarkeit interner Signale wird durch ein Loopback erhéht, da dies den vollstandi-
gen Ablauf einer Kommunikation erméglicht. Durch die Méglichkeit den Loopback wihrend einer
Ubertragung abzubrechen, wird die Fehlerbehandlungslogik testbar. So lisst sich beispielsweise der
Verbindungsabbruch wahrend der Kommunikation, resultierend in einem empfangenen NACK bei
der Datenbestitigung, oder ein nicht antwortender Slave bei der Adressierung, simulieren und so die
zustandige Logik aktivieren und testen. Ob diese Moglichkeit beim ATPG-Prozess zum Einsatz kommt,

héngt jedoch von dem verwendeten Template, und den daraus resultierenden Nebenbedingungen
ab.

Diese Mafinahme fiihrt zu einem nur sehr geringen Hardware Overhead. Fiir jede der insgesamt acht
I2C-Busleitungen wird ein 2 x 1 Multiplexer benétigt, jeweils mit 1bey,qpie als Steuersignal, um die
Anbindung der beiden I2C-Komponenten zwischen Testmodus und Normalbetrieb zu wechseln.

3.2.2 Sichtbarmachung interner Signale

Um die Beobachtbarkeit des internen Zustands der Komponente zu erhéhen, kénnen interne Signale
dem System sichtbar gemacht werden. Diese Signale werden oft auch zu Debugzwecke in die MMI/O
Schnittstelle integriert. Im Folgenden werden diese Signale einzeln erklart und kurz die Motivation
hinter der Wahl der gewahlten Signale vorgestellt.

37

3 Implementierung

MM D

Master Slave
Interface I Interface
m_state_ctr i ¢ ~lb_ctr ¢
— VORI, Y | 5_5tate_ctr

2 .
err_ctr |1_ I?‘I

........................ Master [&] ﬂ Slave
[y

bus_ctr

Loopback
FCBus— | » le— cBus

——————————————————————————— x———F—————————————————————Per]pherie-—
M_FCBus -

5_I°C Bus

Abbildung 3.8: Modifiziertes Testsystem.

State Diese Erweiterung wird sowohl auf die Master- als auch auf die Slavekomponente angewandt
und gibt den - binir codierten - Zustand aus. Die vorgestellten Zustandsautomaten der Master-
bzw. Slavekomponente zeigen die Codierung der Zustande. Durch diese Ma3inahme lassen
sich z.B. Fehler in der internen Umsetzung der Zustandsautomaten erkennen bzw. von an-
deren Haftfehlern des Systems unterscheiden. Fiir die Ausgabe des aktuellen Zustands der
Masterkomponente werden 4-Bit benétigt, beim Zustand des Slaves lediglich 3-Bit.

I2C-Bus Um die protokollgerechte Kommunikation der Komponenten nachvollziehen zu kénnen,
werden die Bussignale des I2C-Busses an der MMI/O Schnittstelle sichtbar gemacht. Dazu
werden die /2C-Signale (SDA und SCL) der Masterkomponente abgegriffen und dem System
sichtbar gemacht.

Bit-Zahler Beide I°C-Komponenten enthalten jeweils eine Sende- und Empfangsschleife mit einem
8-Bit Zahler um die Zahl der empfangenen bzw. gesendeten Bits zu zéhlen. Durch Ausgabe
dieses Zahlersignals, iiber ein 3-Bit Signal, konnen Haftfehler in der Zahlerlogik entdeckt
werden, welche u.a. zu Endlos-Ubertragungen fithren kénnen.

Error Als Alternative zur codierten Ausgabe aller Zustdnde, konnen einzelne Zustinde ausgege-
ben werden. Als Beispiel wird ein Signal gewahlt, dass das Erreichen des Fehlerzustands der
Masterkomponente anzeigt.

3.2.3 Untersuchte Konfigurationen

Um die Wirksamkeit der einzelnen Mafinahmen zu untersuchen, werden verschiedene Kombina-
tionen der vorgestellten Eingriffe unter bestimmten Bedingungen untersucht. Tabelle 3.1 zeigt alle

38

3.3 Testprogrammzeugung

untersuchten Varianten und die ATPG-Steuersignale, die fiir diese jeweils gesetzt werden miissen.
Grundsitzlich werden zwei verschiedene Konfigurationen betrachtet:

N Bei Versuchsbezeichnungen die mit diesem Kiirzel beginnen wird davon ausgegangen, dass

kein Kommunikationspartner im I2C-Netzwerk vorhanden ist. Folglich kann keine Daten-

ibertragung erfolgen. Im Testsystem werden diese Versuche umgesetzt indem die Loopback-

Komponente deaktiviert wird.

O Bei dieser Konfiguration kann der Kommunikationspartner (der 12C-Slave) beobachtet und
kontrolliert werden. Es entsteht folglich ein Loopback, da gesendete bzw. empfangene Daten
des DUT mit den korrespondierenden Daten des Slave abgeglichen werden kénnen. Dazu wird

das lbepapie-Signal auf eine logische 1 gesetzt.

3.3 Testprogrammzeugung

Entsprechend der in Abschnitt 2.3.2 vorgestellten, allgemeinen Methode zur Erzeugung struktureller
SBST-Programme gliedert sich die im Folgenden beschriebene Methode in zwei Abschnitte: Zuerst
wird in Unterkapitel 3.3.1 die Erzeugung von Testmustern besprochen und anschlieffend im Abschnitt

3.3.2 die Umwandlung der Testmuster in ein Testprogramm diskutiert.

3.3.1 Testmuster

Das SAT-basierte ATPG wandelt die urspriinglich sequentielle Zielschaltung durch Anwendung von
TFE in eine rein kombinatorischen Darstellung um, welche die Originalschaltung fiir eine bestimmte

Versuchskiirzel

Ib en m

_cnt_en

err_en m_state_en

i2c_Bus_en

S_state_en

s _cnt_en

NONE
N _ent,,
N _erry,
N _state,,
N _bus

0

0

0

0

0

O_lb
O_lblent,,
O_lblerr
O_lblstate,
O_lblbus
O_lblstates
O_lblent
FULL

[T G TN e e i = == =1

_ O O O O O M= OO0 © O M

_ O O O O B O OO0 O VO O

_ 0 O O = O O OO0 = O O

_ O O Rk O O O OlRm o O O

_ O Rk O O O O Ol O o o

_m O O O O O Ol O o o

Tabelle 3.1: Untersuchte Varianten und korrespondierende ATPG-Steuersignale.

39

3 Implementierung

Anzahl von Taktschldgen reprasentiert. Die funktionalen Nebenbedingungen fiir die Testmusterer-
zeugung setzten sich aus einer Vielzahl von Faktoren zusammen und miissen als Nebenbedingung an
das ATPG-Programm tibergeben werden.

Funktionale Nebenbedingungen

Grundsitzlich muss die zentrale funktionale Nebenbedingung von SBST beachtet werden, d.h. Test-
muster miissen sich mithilfe von ISA-Instruktionen an das DUT anlegen lassen.

Ein wichtiger Aspekt spielt das Timing-Verhalten der betrachteten Komponenten. Ohne zusétzliche
Einschrankungen erzeugt ein ATPG-Programm Testmuster unter der Annahme, dass alle gegebenen
PIs in jedem Takt geschrieben und alle POs in jedem Takt beobachtet werden kénnen. Daraus folgt,
dass ein Testprogramm innerhalb eines Taktschlags des DUT an alle PIs Testvektoren anlegen muss
und zusatzlich aktuelle Ausgabewerte der POs, fiir den spateren Abgleich, abspeichern oder mit den
Sollwerten der Testmuster abgleichen muss. Diese Aufgabe kann nur durchgefithrt werden, wenn
die untersuchte Komponente eine erheblich geringere Taktfrequenz als der Mikrocontroller besitzt.
Diese Bedingung lasst sich allgemein durch folgende Formel darstellen:

fsys
(tp[+tpo + t[)

(3.1) fpur <

fpur Taktfrequenz der zu testenden Komponente
fsys Taktfrequenz des Prozessors

tp; Anzahl der Takte die benétigt werden um alle PIs der Komponente mit gegebenen Testvektoren
zu belegen.

tpo Anzahl der Takte die benétigt werden um alle POs der Komponente auszulesen und abzuspei-
chern bzw. mit den zugehorigen Sollwerten des Testmusters abzugleichen.

t; Anzahl der Takte die fiir zusétzliche Instruktionen benétigt werden (z. B. das Laden von Kon-
stanten, Sprungbefehle oder Vergleichsoperationen).

Bei dieser Abschitzung muss je nach Template auch die Ausfithrungszeit von Speicherbefehlen
abgeschitzt werden. Dazu wird Formel 3.1 um die maximale Dauer fiir die Ausfithrung eines Speicher-
befehls (t,,) erweitert. Der Wert m beschreibt dabei die Anzahl der Speicherbefehle im Template.
Werden in einem Test-Template Speicherbefehle genutzt, kann folglich dessen Laufzeit nicht determi-
nistische angegeben werden.

fsys
3.2 < ——F
Formel 3.2 stellt somit die obere Schranke fiir die Verwendung von Testmustern dar, welche von der
Voraussetzung ausgehen, dass in jedem Peripherietakt Testvektoren an die PIs des DUT angelegt
und Ergebniswerte der POs ausgelesen werden konnen. Erfiillt das gegebene System diese Formel
nicht, so muss das ATPG eingeschrankt werden, oder m verkleinert werden. Diese Einschrankung

40

3.3 Testprogrammzeugung

kann offensichtlich die Kontrollier- und Beobachtbarkeit der Komponente verringern und hat somit
direkten Einfluss auf die Fehlerabdeckung der so erzeugten Testmuster.

Ein weiterer kritischer Aspekt ist die Synchronisierung zwischen Testprogramm und dem DUT. Da
Kommunikationskomponenten im Allgemeinen eine langsamere Taktfrequenz als der Mikropro-
zessor des Systems besitzen, muss der Ablauf eines SBST-Programms an die Geschwindigkeit der
Kommunikationskomponente angepasst sein. Andernfalls kénnten Testvektoren zu schnell oder
zu langsam angelegt werden. Die Taktdifferenz zwischen System- und Peripherietakt kann als An-
haltspunkt dienen um synchrone SBST-Programme zu entwickeln. Eine besondere Herausforderung
stellen in diesem Zusammenhang die Verwendung von Speicherzugriffen dar, da deren Dauer nicht
konstant ist. Das Testsystem enthélt fiir Synchronisierungszwecke ein sync-Signal, welches durch
den Clock Divider erzeugt wird (vgl. Abschnitt 3.1.3). Mithilfe dieses Signals konnen Templates
entworfen werden, die eine bestimmte sequentielle Tiefe abwarten, bevor sie die Ausgabewerte der
Peripheriekomponente auslesen, oder die auf Taktflanken des Peripherietakts reagieren.

Soll ein Testvektor je Peripherietakt angelegt und die aktuellen Ausgabewerte tiberpriift werden,
so muss die Kommunikationskomponente nicht nur Formel 3.2 geniigen, sondern zusitzlich eine
Synchronisierungsmoglichkeit besitzen. Ist dies nicht der Fall, kann nur ein Testmuster verwendet
werden, das zu Beginn des Programms Werte anlegt und nach Ablauf einer vorgegeben Taktzahl
die Ausgabewerte der Schaltung ausliest. Eine Beobachtung bzw. Kontrolle der Schaltung zwischen
Beginn und Ende des Testmusters ist in einem solchen Fall nicht méglich. Diese beiden Fille fithren zu
den zwei unterschiedlichen, im folgenden Abschnitt vorgestellten, Templates simple und extended.

3.3.2 Testprogramm

Im Folgenden werden zwei parametrisierte Templates vorgestellt mit denen sich die, im vorheri-
gen Schritt entwickelten, Testmuster an die /2C-Komponente anlegen lassen. Die Verwendung von
parametrisierten Templates reduziert den manuellen Aufwand fiir den Entwurf von finalen Testpro-
grammen. Mithilfe eines Pre-Compilers lassen sich die parametrisierten Werte der Templates durch
die entsprechenden Werte der Testmuster ersetzen. Die vorgestellten Templates nutzen die Syntax
des x86 NASM Pre-Prozessors [NAS15] um die Verwendung von Parametern und lokale bzw. globale
Sprungmarken zu definieren.

Das simple-Template (siehe Abschnitt 3.3.2) kann angewendet werden, sollte das untersuchte System
Formel 3.2 nicht erfiillen, oder keine Synchronisierungsmoéglichkeit bestehen. Das extended-Template
(siehe Abschnitt 3.3.2) geht davon aus, dass beide Bedingung erfiillt sind und ist in der Lage ein
Testvektor pro Peripherietakt anzulegen und die Ausgabewerte dieses Taktes zu priifen.

Globale Testprogrammbedingungen

Sowohl das simple als auch extended Template nutzen einige globale Bedingungen, die das Testpro-
gramm sicherstellen muss. Im Wesentlichen sind dies Anforderungen von bestimmten Registerinhal-
ten oder globale Sprungadressen, die von allen Templates genutzt und nicht verdndert werden. Die
Register werden dabei wie folgt verwendet:

41

3 Implementierung

$0: Hailt den Wert 0.

$2: Halt die master_in MMI/O Adresse.

$3: Halt die slave_in MMI/O Adresse.

$4: Halt die system_out MMI/O Adresse.

$5: Halt die modification_out MMI/O Adresse.

fail: Bezeichnet eine - tiber alle Templateausfithrungen hinweg - globale Sprungmarke die einen
Fehler-Handler enthélt. Wird wihrend der Ausfithrung des Templates ein Fehler i, DUT entdeckt,
so wird zu dieser Sprungmarke gesprungen. Ein méglicher Fehler-Handler wird in Listing 3.1
gezeigt. Im Fehlerfall wird eine —1 in das Riickgaberegister $30 gelegt und zu einer in $31
gespeicherten Riicksprungadresse gesprungen.

ok: Bezeichnet eine - iiber alle Templateausfithrungen hinweg - globale Sprungmarke die den Handler
fur einen fehlerfreien Fall enthalt. Wird wahrend der Ausfithrung des Templates kein Fehler
entdeckt, so wird zu dieser Sprungmarke gesprungen.

#Failure Handler, write -1 into $30 and exit
fail: xori $30, $0, -1
jr $31

Listing 3.1: Beispiel eines Fehler-Handlers

Einfaches Template

Das simple Testmakro ist in der Lage ein Testmuster an die /2C-Komponente anzulegen, eine als
Ubergabeparameter gegebene Zahl an I2C-Takten zu warten und die Werte der POs auszulesen
und mit den durch das Testmuster gegebenen Soll-Werten abzugleichen. Abbildung 3.9 zeigt die
Anwendung des simple-Templates im Bezug zum Peripherietakt 12C,;;, und dem Taktzihler der
sequentiellen Tiefe. Sollte eine Abweichung auftreten wird in den globalen Fehler-Handler gesprungen.
Die Einschrankungen (Inputs und Outputs kénnen nur zu Beginn gesetzt bzw. im letzten Takt gelesen
werden) des Templates miissen bei der Testmustererzeugung beriicksichtigt werden. Dazu werden
beim TFE-Verfahren statische PIs verwendet und die Beobachtbarkeit der POs zeitlich auf den letzten
Takt der betrachteten Schaltung beschrankt. (vgl. Unterabschnitt: Sequenzielles ATPG).

Als Ubergabeparameter erhilt das Template ein Testmuster, wobei die vier Testvektoren als Halbworte
tibergeben werden. Dies ist notwendig um die Testvektoren als Immediate-Werte laden zu kénnen.
Zusatzlich erhalt das Template die sequentielle Tiefe, ebenfalls in Form von zwei Halbworten, als
Ubergabeparameter.

Das simple Template besteht aus vier Schritten: Preparation, Pattern, Wait und Compare.

Im Preparation-Schritt werden die iibergebenen Eingabevektoren und die sequentielle Tiefe in die
Register $10 bis $12 geladen.

Im Pattern-Schritt werden Testvektoren an die PIs der Schaltung angelegt. Zunéchst wird der Testvek-
tor fiir die slave_in MMI/O Adresse angelegt, anschlielend der Testvektor der master_in Schnittstelle.

42

3.3 Testprogrammzeugung

I*Ce \ """"" \
i — h‘
Start I’C-Ubertragung
Ende
Sequentielle] o n-1 1 0
Tiefe

Abbildung 3.9: Ausfithrungen des simple Templates in Abhangigkeit zum Peripherietakt.

Diese Reihenfolge ist entscheidend, da master_in die Signale en_recv und en_send belegt, die fiir den
Start einer 12C-Ubertragung verantwortlich sind. Die Schritte Preparation und Pattern entsprechen
Start in Abb. 3.9.

Im anschlieBenden Wait-Schritt wird die sequentielle Tiefe des Testmusters abgezahlt. Dies kann
mit verschiedenen Mafinahmen erreicht werden. Ist die genaue Zahl der Takte bekannt, die der
Peripherietakt gegeniiber dem Systemtakt langsamer ist, so kann dies durch einfaches Einfiigen einer
nop-Schleife erreicht werden. Ist der Peripherietakt zumindest um den Faktor zehn langsamer (Anzahl
der Instruktionen des Wait-Schritts) und ist das sync-Signal vorhanden, so kann die implementierte
Wait-Schleife genutzt werden. Diese dekrementiert den {ibergebenen Zahler der sequentiellen Tiefe
stets auf die fallende Taktflanke des Peripherietakts, wie in Abb. 3.9 zu erkennen ist. Zu Beginn der
Schleife werden die POs der Schaltung in die temporéren Register $11 und $12 gelesen, es sind als
immer die Ausgabewerte der aktuell betrachteten Periode gespeichert.

Im abschlieSenden Compare-Schritt werden die ausgelesenen Werte der POs mit den Soll-Werten
des Testmusters verglichen. Wird eine Abweichung festgestellt, wird in den globalen Fehler-Handler
gesprungen. Dieser Schritt entspricht Ende in Abb. 3.9.

#Paramters: (M_high,M_low,S_high,S_low,sys_high,sys_low,mod_high,

mod_low, seq_high, seq_low)

%smacro simple 10

Preparation - Step:

lui $10, %9

xori $10, $10, %10 #Load Sequential Depth Value in $10
lui $11, %3

xori $11, $11, %4 #Load Slave Input Values in $11

lui $12, %1

xori $12, $12, %2 #Load Master Input Values in $12

43

3 Implementierung

#H### Pattern - Step: #####
sw $11, 0($3) #Write Slave Pattern to slave_input MMI/O Address
sw $12, 0($2) #Write Master Pattern to master_input MMI/O Address

#H#### Wait - Step: #####

%%swait2: #Wait for sync='1’ then cnt-- until cnt = 0
lw $11, 0(%$4) #load System_out Values to $11
w $12, 0(%$4) #load modification_out Values to $12

andi $13, $11, 1
bgtz $13, sync_high #1if sync=1 goto sync_high

bgtz $15, wait2 #if sync=0 and stat=1 gogo wait2
addi $10, $10, -1 #decrement seq_depth counter
addi $15, $15, 1 #stat = 1

bgez $10, %%compare #1f seq_depth >= 0 goto compare
%%sync_high

and $15, $15, $0 #stat = 0

bgez $15, wait2 #Goto wait2

Compare - Step:

%%scompare:

lui $13, %5

xori $13, $13, %6 #Compare system_output to set values

bne $13, $11, fail #if not equal, jump to the failure handler
lui $13, %7

xori $13, $13, %8 #Compare modification_output to set values
bne $11, $12, fail #if not equal, jump to the failure handler
I

blez $0, ok #Fail Free: jump to ok-Handler

%sendmacro

Listing 3.2: Testmakro: simple

Erweitertes Template

Das extended Testmakro ist in der Lage ein Testmuster fiir einen Takt an die /°C-Komponente an-
zulegen, die Werte der POs auszulesen und mit den durch das Testmuster gegebenen Soll-Werten
abzugleichen. Eine Abfolge dieser Templates ermoglicht es, in jedem betrachteten Takt Werte anzu-
legen, auszulesen und zu vergleichen. Folglich kann fiir TFE eine Variante mit nicht-statischen PIs
und in jedem Takt beobachtbaren POs gewahlt werden (vgl. Abschnitt 2.2.3). Abbildung 3.10 zeigt
eine aufeinanderfolgende Ausfithrungen von extended-Templates im Bezug zum I2C-Peripherietakt.
Wie die Abbildung zeigt, beginnt die Templateausfithrung sobald eine vorherige Templateausfithrung
abgeschlossen ist und das sync-Signal den Wert 0 annimmt. So kann sichergestellt werden, dass
alle POs der Komponenten konstant anliegen und das Anderungen der PIs zu keiner Stérung der
Komponente fithren.

44

3.3 Testprogrammzeugung

Folglich muss der, mithilfe von Formel 3.2, berechnete Wert fiir die Taktdifferenz verdoppelt werden
(WKS-Abtasttheorem), da die Ausfithrung des Templates innerhalb eines halben Peripherietaktes
durchgefiihrt wird. Somit ergibt sich durch Einsetzen der Anzahl von Instruktionen des extended-
Templates eine Taktdifferenz von:

fsys
(17 % 2)

(3.3) four <

Folglich kann das extended-Template angewendet werden, wenn der Clock Divider mindestens
eine Taktdifferenz von 34 vorsieht. Fiir die Ubertragung eines Bytes benotigt die vorgestellte I2C-
Komponente 20 Takte. Somit ergibt sich fiir das gegebene Testsystem und einer I2C-Ubertragungsrate
von 100kbit/s ~ 12kbyte/s (NM) eine Mindestaktrate von:

(3.4) fpur > 12kbyte/s * 20byte = 240kHz

Durch Einsetzten der Taktfrequenz des miniMIPS-Prozessors ergibt sich die - erfillte - Ungleichung
3.5:

50000kHz

34
Folglich lasst sich das extended-Template fiir die vorgestellte Testumgebung nutzen. Auch fiir den
FM Ubertragungsmodus (400 kbit/s) ist die Ungleichung erfullt (1000kH z < 1470, 59k H z). Soll eine

Komponente mit einem schnelleren Ubertragungsmodus (FM+ oder HS-mode) getestet werden, muss
auf das simple-Template zuriickgegriffen werden.

(3.5) 240kHz <

Als Ubergabeparameter erhilt das Template ein Testvektor je MMI/O Adresse, diese werden als
Halbworte iibergeben, um als Immediate-Werte geladen werden zu konnen. Das extended Template
gliedert sich in drei Schritte: (Wait, Pattern und Compare).

Im Wait-Schritt wird die Synchronisierung mit der 72C-Komponente abgewartet. Dazu wird das
sync-Signal via Polling ausgelesen. Hat dieses Signal den logischen Wert ’0’ - befindet sich der
Peripherietakt folglich in der LOW-Phase - wird die Templateausfithrung begonnen. Hat das sync
den Wert ’1’ so wird in eine Polling-Schleife gesprungen, bis sync den Wert ’0” annimmt und erst
anschlieflend gestartet.

Im Pattern-Schritt werden die iibergebenen Testvektoren an die PIs der Schaltung angelegt. Zunachst
wird der Testvektor fiir die slave_in MMI/O Adresse angelegt, anschlieflend der Testvektor der
master_in Schnittstelle. Diese Reihenfolge ist lediglich fiir die Ausfithrung des ersten Templates von
Bedeutung, da master_in die Signale en_recv und en_send belegt, die eine I2C-Ubertragung starten.
Im anschlieBenden Compare-Schritt werden die aktuell anliegenden Werte der POs ausgelesen und
mit den Soll-Werten des Testmusters verglichen. Sollte ein ausgelesener Wert von den Sollwerten
abweichen, wird in den globalen Fehler-Handler fail: gesprungen, andernfalls nach ok:.

%smacro advanced 8

#Paramters: (M_high,M_low,S_high,S_low,sys_high, sys_low,mod_high, mod_low)

#####Wait - Step: (I=3)

%%ewait: #wait for sync=0

lw $10, 0(%$4) #load system_out values to $10
andi $11, $10, 1

45

3 Implementierung

I2C
Startm I:|
T] 1?C-Ubertragung g
Ausfihrungy, ._

Endeqy I]

Starty, [|
Ausfihrungy, :._

Endey; I:I

Starty, [

Ausfanrungr -

Ender, [I

Abbildung 3.10: Abfolge von Ausfithrungen des extended Templates im Bezug zum Peripherietakt
IPC.

bgtz $11, %%wait #syn>0 wait

#####Pattern - Step: (I=6)

lui $11, %3

xori $11, $11, %4 #Load Slave Input Values to $11

sw $11, 0($3) #Write Slave Input Patterns to slave_input MMI/O0 Address
lui $11, %1

xori $11, $11, %2 #Load Master Input Values to $11

sw $11, 0($2) #Write Slave Input Patterns to slave_input MMI/0 Address

#it###Compare - Step: (I max = 8)

lui $11, %5

xori $11, $11, %6 #load set values of system_out to $11

bne $10, $11, fail #if not equal jump to the failure handler

46

3.3 Testprogrammzeugung

lw $11, 0($5) #Load current modification_out values
lui $12, %7

xori $12, $12, %8 #load set values of mod_out to $12

bne $11, $12, fail #if not equal jump to the failure handler

#Fail Free
blez $0, ok
%endmacro

Listing 3.3: Testmakro: extended

Finales Testprogramm

Im Folgenden wird besprochen wie aus den beiden vorgestellten, parametrisierten Templates und
den erzeugten Testmustern ein finales Testprogramm generiert werden kann.

Zunichst missen die globalen Testprogrammbedingungen in ein Programmskelett iibertragen wer-
den. Anschlieflend werden die Parameter fiir die einzelnen Templateinstanzen aus den erzeugten
Testmustern gewonnen. Die Instanzen der Templates werden im Testprogramm nacheinander mit
den verschiedenen Parametern aufgerufen.

Die beiden vorgestellten Tempaltes unterscheiden sich, aus Sicht der finalen Testprogrammerzeugung,
lediglich in der Zahl der Template-Instanzen, die pro Testmuster benotigt werden. Wahrend bei
der Nutzung des simple-Templates nur eine Instanz pro Testmuster erzeugt werden muss, werden
bei der Nutzung des extended-Templates eine, von der sequentiellen Tiefe linear abhéngige, Anzahl
an Instanzen erzeugt. Folglich unterscheidet sich die Testprogrammgréf3e bei Verwendung der bei-
den Templates erheblich voneinander. Formel 3.6 zeigt die Abschatzung der Testprogrammgrof3e
(Nsimple| Speicherbedar f) Del Verwendung des simple-Template. Die Programmgréfie hingt dabei im
Wesentlichen von der Anzahl der erzeugten Testmuster (njryster), der Anzahl der Instruktionen
des simple-Templates (nrempiate) und der Anzahl der Instruktionen die im Programmskelett zur
Initialisierung (7 ryitialisierung) Und zum Beenden des Programms (n g,,4.) bendtigt werden, ab.

(3.6) Nsimple|Speicherbedarf — Ninitialisierung + NMuster * NTemplate + MEnde

Durch Einsetzen der Anzahl der simple-Instruktionen (25), der benédtigten Zahl an Instruktionen
fur die Initialisierung (9) und das Beenden des Testprogramms (1), in die Formel 3.6 ergibt sich die
Abschitzung 3.7, in Abhéngigkeit der Testmusteranzahl. Durch Multiplikation mit 4 ergibt sich aus
den Instruktionen der benétigte Speicherbedarf des Testprogramms in Bytes.

(3'7) nsimple\Speicherbedarf > (25 * NMuster 10) * 4
Die Programmgrofle bei Verwendung des extended-Tempalte lasst sich dhnlich berechnen, wobei als

zusatzlicher Faktor die sequenzielle Tiefe (n4¢,) hinzukommt, da fiir jeden betrachteten Takt eines
Testmusters ein Template benotigt wird. Damit ergibt sich Formel 3.8

(3.8) Negtended|Speicherbedar f — Tnitialisierung + NMfuster * MTemplate * Mseq + NEnde

47

3 Implementierung

Durch Einsetzen (Instruktionszahl des extended-Template ist 17, alle anderen Werte identisch zu 3.7)
ergibt sich die Abschétzung 3.9 der Programmgroéfle in Abhangigkeit von der Anzahl der Testmuster
und der betrachteten sequentiellen Tiefe.

(3'9) nextended|5peicherbedarf > (17 * N Muster * Tseq + 10) * 4

Die Laufzeit des Testprogramms (£ 1,44, f¢i¢) je nach Verwendung des Template-Typs variiert weniger
stark als die Programmgrofie, da die bestimmenden Faktoren der Gleichung fir beide Template-
Varianten identisch sind. Diese Faktoren sind die betrachtete sequentielle Tiefe (15¢4) und die Anzahl
der erzeugten Testmuster (npryster). Da die Testlaufzeit in Systemtakten gemessen wird, ist zudem
der Teilungsfaktor zwischen Systemtakt und Peripherietakt (k7qgtteiler) von Bedeutung. Dieser ist de-

_fsystem

finiert als kTqpttciler = 7 . Zusatzlich muss die Laufzeit des Programmskeletts beriicksichtigt

Peripherie

werden (tlnitialisierung und tEnde)-

Im Fall des simple-Template werden alle bis auf zwei Instruktionen (vgl. syn_high-Sprungmarke
des Listings 3.2) insgesamt einmal vor bzw. nach dem Ablauf der betrachteten sequentiellen Tiefe
ausgefiihrt. Dieser konstante Wert muss bei der Abschéitzung beachtet werden (t; = 23). Damit ergibt
sich Formel 3.10:

(3'10) tsimple|Laufzeit = tlnitialisierung + Npfuster * (nseq * kTak:tteiler + tI) + tEnde

Unter der Annahme, dass die Instruktionen des Programmskeletts in einem Takt ablaufen, ergibt sich
durch Einsetzen als Abschétzung der Laufzeit des simple-Template die Formel 3.11:

(3.11) tsimple|Laufzeit = NMuster * (nseq * kTaktteiler + 23) +10

Da alle Instruktionen des extended-Template parallel zum Peripherietakt ablaufen, muss lediglich die
erste Templateausfithrung (¢, = 17) je Testmuster eingerechnet werden (da diese vor Beginn der
Peripherieoperation ausgefiihrt wird). Alle weiteren Ausfithrungen sind bereits durch das Einbeziehen
der sequentiellen Tiefe eingerechnet. Somit ergibt sich Formel 3.12:

(3'12) te:ptended\Laufzeit = tlnitialisierung + Nafuster * (nseq * kTaktteiler + tex) + tEnde

Durch Einsetzen, analog zu 3.11, ergibt sich die Abschatzung fiir die Laufzeit des extended-Template
3.13:

(3.13) textended\Laufzeit = NMuster * (nseq * traktteiter +17) + 10

Aus dem Vergleich der Abschiatzungen 3.7, 3.9, 3.11 und 3.13 geht hervor, dass das extended-Template
bei gleicher Anzahl an erzeugter Testmuster und derselben betrachteten sequentiellen Tiefe, eine
etwas kiirze Laufzeit, bei deutlich vergrofiertem Speicherbedarf aufweist, verglichen mit dem simple-
Template. In spateren Experimenten (vgl. Kapitel 4) zeigt sich jedoch, dass mit dem extended-Template
eine hohere Fehlerabdeckung als mit dem simple-Template erreicht werden kann.

48

4 Experimente

Im Folgenden wird experimentell die Wirksamkeit der in Kapitel 3.2 vorgestellten Mainahmen zur
Verbesserung der Beobacht- und Kontrollierbarkeit anhand des in Kapitel 3.1 beschriebenen Testsys-
tems untersucht. Zunédchst werden dazu in Abschnitt 4.1 die Ergebnisse der Synthese des Testsystems
vorgestellt. Anschlieffend wird in Unterkapitel 4.2 experimentell die sequentielle Tiefe untersucht, wel-
che zum erreichen einer bestimmten Fehlerabdeckung notwendig ist. Im Unterkapitel 4.3 werden die
experimentellen Ergebnisse der in Kapitel 3.2.3 beschriebenen Versuchsreihe vorgestellt. Als Kriterien
dienen u.a. die in Kapitel 2.3 vorgestellten Qualitatsmerkmale: prozentuale Fehlerabdeckung, Anzahl
der erzeugten Testmuster, Testprogrammgrofle und Testdauer. Im Anschluss werden in Unterkapitel
4.4 die vorgeschlagenen Mafinahmen anhand der experimentellen Ergebnisse analysiert und deren
Einfluss auf die erreichbare Haftfehlerabdeckung diskutiert. Zuletzt werden in Kapitel 4.5 die beiden
Template-Varianten bewertet.

4.1 Synthese

Die in den Unterkapiteln 3.1.1 und 3.1.2 vorgestellte /?C-Komponente wurde, zusammen mit der
in Abschnitt 3.2.1 besprochenen Loopback-Einheit, mithilfe des Synthesetools Design Compiler
von Synopsys hierarchisch synthetisiert. Das synthetisierte Gatternetz (vor Anwendung von TFE)
besitzt 634 Gatter und 51 Flip-Flops. Die Haftfehlerliste der Schaltung hat, vor fault collapsing, 4324
Eintrage. In der kollabierten Fehlerliste sind noch 1836 Haftfehler enthalten. Diese Fehler verteilen
sich auf die I?C-Masterkomponente (904), den I2C-Slave (713) und die Loopback-Komponente
(11). Die verbleibenden Haftfehler (208) sind Teil des Testsystems (vorwiegend aufgrund der ATPG-
Steuersignale und der zusitzlichen UND-Gatter, vgl. Kapitel 3.2) und werden im Folgenden nicht
weiter untersucht.

Damit liegt die Komplexitat der betrachteten Schaltung unter der UART-Komponente die in [APGP07b]
und [BSST07] genutzt wird.

4.2 Experimentelle Untersuchung der sequentiellen Tiefe

Die Gesamthaftfehlerabdeckung des FULL-Versuchs wird, fiir beide Template-Varianten, jeweils fiir
die sequentiellen Tiefen 0 bis 120 untersucht. Abbildung 4.1 stellt die prozentuale Abdeckung aller
Haftfehler (y-Achse) der getesteten Schaltung in Abhingigkeit der sequentiellen Tiefe (x-Achse)
dar. Der FULL-Versuch wurde gewihlt, da bei diesem die maximale Haftfehlerabdeckung erreicht
werden kann. Da die Abhangigkeit zwischen Haftfehlerabdeckung und sequentieller Tiefe der beiden

49

4 Experimente

108 T T T

48 |- .

Fehlerabdeckung in Prozent

28 — -

Sinple
Extended
1 | 1 96X

a 28 40 60 Fil:] 188 128
seq, Tiefe

Abbildung 4.1: Prozentuale Fehlerabdeckung des FULL-Versuchs.

verwendeten Templates sich erheblich voneinander unterscheiden, werden sie getrennt besprochen.

simple-Template

Die Haftfehlerabdeckung bei Verwendung des simple-Template verhalt sich uncharakteristisch. Typi-
scherweise sinkt bei der Erh6hung der sequentiellen Tiefe die erzielte Fehlerabdeckung nicht ab, es
sei denn, es treten abgebrochene Fehler auf (vgl. Abschnitt 2.2.3), dies ist jedoch im vorliegenden Fall
nicht der Grund. Das Verhalten lasst sich dagegen anhand der Einschrankung des simple-Templates
erklaren.

Im Gegensatz zur Verwendung des extended-Template, kann das simple-Template nicht den Ablauf
der Kommunikation verfolgen, sondern lediglich eine Momentaufnahme der Kommunikation nach
Ablauf der sequentiellen Tiefe betrachten. Folglich ist es moglich, dass ein Fehler, der z. B. in Takt 25
beobachtbar ist, im nichsten Takt bereits nicht mehr sichtbar und damit nicht testbar ist.

50

4.3 Experimentelle Ergebnisse

Bei einer sequentiellen Tiefe von 120 erreicht das simple-Template eine Gesamthaftfehlerabdeckung
von 88,7%. Ein vergleichbarer Wert wird bei Verwendung des extended-Template bereits bei einer
sequentiellen Tiefe von 27 erreicht.

Da die Fehlerabdeckung des simple-Template bis zur Grenze von 120 weiterhin steigt, wird im
folgenden diese Tiefe fiir die simple-Templates genutzt.

Extended-Template

Die Haftfehlerabdeckung bei Verwendung des extended-Template verhalt sich wie erwartet, in Form
eines sprunghaften, beschrankten Wachstums.

Anhand des Zustandsautomaten der Masterkomponente (vgl. Abb. 3.2) lassen sich die Spriinge, ebenso
wie die Bereiche ohne temporire Anstiege (im Folgenden als Ebene bezeichnet) erkléaren.

Wihrend der ersten 21 Takte wird die Sendeschleife (zur Adressierung der Slavekomponente) einmal
traversiert. Die Sendeschleife (vgl. Abschnitt 3.1.1) nimmt einen groflen Teil der Masterkomponente
ein, folglich erméglicht der Durchlauf dieser Schleife bereits das Testen eines grof3en Teils der Schal-
tung (77.8356%).

Der anschlieflende Anstieg bis zum Erreichen der ersten Ebene erklért sich durch die Moglichkeit die
verschiedenen Verzweigungen des Zustands GET_D_ACK_2, in die Empfangsschleife, zuriick zum
Beginn der Sendeschleife oder zum Abbruch der Kommunikation im Fehlerfall, zu aktivieren. In der
folgenden Ebene (zwischen sequentieller Tiefe 24 und 38) bleibt die Gesamtfehlerabdeckung bei 89%
konstant. Dieser Stillstand erklért sich durch wiederholtes Erreichen der SEND bzw. READ Zusténde
in der Sende- bzw. Empfangsschleife, wiahrend dessen konnen keine neuen Fehler aktiviert werden.
Ab Tiefe 39 steigt die Abdeckung weiter bis auf einen Wert von 95,4% bei Tiefe 45. Dieser Anstieg
erklart sich durch die mogliche Aktivierung der Byte-Schleife der Sendeschleife und eines proto-
kollgerechten Beendens der Kommunikation (Erreichen des STOP-Zustand). Der Wert stellt einen
guten Kompromiss zwischen Fehlerabdeckung und Laufzeit dar. Eine Verdopplung der Tiefe auf (90)
erreicht lediglich einen Wert von 96.0648%, eine Steigerung von unter 0,64%, bei doppelter Testzeit, je
Testmuster.

Fiir bessere Fehlerabdeckung kann eine sequentielle Tiefe von 60 gew&hlt werden. Mit diesem Wert
kann eine Gesamtfehlerabdeckung von 95,95% erreicht werden. Diese Steigerung um 0,55% erklart
sich durch die Aktivierung héherer Bits des Byte-Zahlers.

Die scheinbare Verringerung bei sehr hoher sequentiellen Tiefe erklart sich durch das Auftreten
von abgebrochenen Fehler (vgl. Abschnitt 2.2.3). Fir die finale Testreihe wurde aufgrund dieser
Beobachtung ein hoheres Limit fiir den Abbruch der Fehleruntersuchung des ATPG-Programms
gewihlt.

4.3 Experimentelle Ergebnisse

Die in Kapitel 3.2.3 vorgestellten Versuche wurden auf dem Testsystem mit beiden Template-Varianten,
fir eine sequentielle Tiefe von 60 (extended-Template) und 120 (simple-Template), untersucht. Die
experimentellen Ergebnisse sind in der Tabellen 1?C-Master (4.1), 12C-Slave (4.2) und Loopback (4.3)
aufgelistet. Dabei enthilt die erste Spalte der Tabelle stets die Grofie der kollabierten Haftfehlerliste

51

4 Experimente

Versuchskiirzel | #Haftfehlery; F'Cs20 #Testmustery; F'Cuwo #Testmustere,
NONE 904 51.6593% 14 59.9558% 17
N _enty, 904 56.4159% 16 60.9513% 15
N _errmy, 904 52.3230% 13 62.2788% 15
N _state,, 904 59.4027% 14 70.0221% 17
N bus 904 61.0619% 17 74.1150% 17
Ol 904 79.9779% 19 84.5133% 32
O_lb|cntm 904 80.1991% 16 84.9558% 27
O_lb|€7‘1“ 904 80.6416% 22 86.5044% 32
O_lb|statem 904 85.9513% 21 92.5885% 31
O_Ib|bus 904 81.3053% 21 85.7301% 31
O_lb|stat€s 904 80.0885% 20 84.5133% 37
O_lb|cnt5 904 80.0885% 20 84.5133% 38
FULL 904 87.721% 17 95.2434% 32

Tabelle 4.1: Ergebnisse der Masterkomponente.

der jeweiligen Komponente.

Bei Anwendung aller Mafinahmen lésst sich die Haftfehlerabdeckung der betrachteten Schaltung,
abhéngig von der untersuchten Komponente und des verwendeten Template, um 40% (Masterkompo-
nente, extended-Template) bis zu 76% (Slavekomponente, simple-Template) verbessern.

Bei der Testerzeugung wurden keine Fehler abgebrochen, nachdem das Limit, nach der experimentel-
len Bestimmung der sequentiellen Tiefe, erh6ht wurde.

Die Testerzeugung wurde parallelisiert (ein Task je Versuchsversion und Template, 24 insgesamt) auf
mehreren Computern (ausgestattet mit je einem Core i7 2600@3,4 GHz und 32GB RAM) ausgefiihrt.
Dabei unterschied sich die Testerzeugungsdauer der beiden in Kapitel 3.3.2 vorgestellten Templates
erheblich voneinander. Die parallele Ausfithrung aller Versuch war bei Anwendung des simple-
Template, innerhalb von maximal elf Minuten abgeschlossen.

Je nach Testbedingungen dauerte die Testerzeugung bei Verwendung des extended-Template bis zu
3,5 Stunden. Dies lasst sich durch die erheblich gréf3ere Zahl an zu betrachtenden PIs und POs der
Schaltung erkléren.

4.4 Analyse der vorgeschlagenen MaBnahmen

Im Folgenden werden die einzelnen Maf3nahmen auf deren Wirksamkeit untersucht. Dazu werden
die Versuche, welche die Verwendung einer oder mehrerer Mafinahmen vorsehen, mit den beiden
Vergleichsreihen (NON E und O_[b) abgeglichen. Diese stellen die unangepasste Schaltung mit
(O_lb) bzw. ohne (NON E) aktivierter Loopback-Komponente dar.

52

4.4 Analyse der vorgeschlagenen MafBBnahmen

Versuchskirzel | #Haftfehlers F'Cyp #Testmustery; FCugo — #Testmustery,
NONE 713 14.4460% 2 20.8976% 2
N _ent,, 713 14.4460% 2 20.8976% 2
N _erry, 713 14.4460% 2 20.8976% 3
N _state,, 713 14.4460% 2 20.8976% 2
N _bus 713 14.4460% 2 20.8976% 2
O b 713 85.4137% 27 89.0603% 36
O_lb|Cntm 713 85.4137% 27 89.0603% 39
O_lb|e7“7“ 713 85.4137% 25 89.0603% 34
O_lb|stat€m 713 85.4137% 28 89.0603% 41
O_lb|bus 713 86.1150% 28 89.9018% 35
O_lb|8tat€5 713 89.9018% 27 96.3534% 38
O_lb|cnt3 713 85.8345% 24 89.7616% 39
FULL 713 90.6031% 27 97.8962% 33

Tabelle 4.2: Ergebnisse der Slavekomponente.

Versuchskiirzel | #Haftfehlery,p F'Cy20 #Testmustery; FCuo — #Testmustere,
NONE 11 27.2727% 1 27.2727% 2
N_ent,, 11 27.2727% 1 27.2727% 1
N _erry, 11 27.2727% 1 27.2727% 2
N _state,, 11 27.2727% 1 27.2727% 1
N bus 11 36.3636% 2 36.3636% 2
Ol 11 90.9091% 3 100% 3
O_lblent,, 11 90.9091% 3 100% 4
O_lb‘err 11 90.9091% 3 100% 4
O_lb‘statem 11 90.9091% 3 100% 3
O_lblbus 11 100% 4 100% 2
O_lb|state, 11 90.9091% 3 100% 3
O_lblent, 11 90.9091% 3 100% 3
FULL 11 100% 4 100% 2

Tabelle 4.3: Ergebnisse der Loopback-Komponente.

53

4 Experimente

4.4.1 Loopback

Die Ergebnisse zeigen deutlich, wie entscheidend die Verwendung einer Loopback-Komponente (vgl.
Abschnitt 3.2.1) fiir die Fehlerabdeckung beim Test einer Peripheriekomponente ist. Wird diese An-
passung nicht verwendet so wird nur eine maximale Fehlerabdeckung von 74,1% (Master) bzw. 20,9%
(Slave) erreicht. Dagegen liegt die geringste, erreichte Fehlerabdeckung, bei Nutzung der Loopback-
Komponente, bereits bei 84,5% (Master) bzw.. 89,1% (Slave).

Ohne zusatzliche Mafinahmen (im Fall Oy;) erhoht die Loopback-Komponente die Haftfehlerabde-
ckung um mindestens 24% (Master) bzw. 69% (Slave), verglichen mit NON E.

4.4.2 MaBnahmen zur Verbesserung der Beobachtbarkeit

Die Wirksamkeit der Mafinahmen zur verbesserten Beobachtbarkeit des internen Zustands (vgl.
Kapitel 3.2) variiert je nach Versuchskontext, nach der verwendeten Template-Variante und nach
deren Abhingigkeit von der Loopback-Komponente.

Die beiden wirksamsten der vorgestellten Mafinahmen sind die codierte Ausgabe des internen Zu-
standsautomaten einerseits und die Sichtbarmachung des I?C-Bus anderseits. Dabei bewirkt die
Ausgabe des Zustands eine deutliche Steigerung der Fehlerabdeckung mit (etwa 8%) und ohne (bis zu
10%) aktivierter Loopback-Komponente. Die Wirksamkeit der Zustandsausgabe unterscheidet sich
bei Master- und Slavekomponente. Die Ausgabe des Slavezustands erh6ht die Fehlerabdeckung der
Slavekomponente lediglich um bis zu 7%. Dies ist auf einen trivialen Zusammenhang zwischen der
Grofle des Zustandsautomaten und der betrachteten Schaltung zuriickzufiihren.

Interessant ist, dass bereits die Ausgabe eines Zustands-Bit (in den Versuchen der Error-Zustand des
Masters) eine deutliche Verbesserung (bis zu 2,3%) der Fehlerabdeckung erméglicht.

Die Beobachtbarkeit des I2C-Bus verliert bei aktivierter Loopback-Komponente stark an Wirksamkeit
(unter 1%), verglichen mit einer hohen Steigerung der Fehlerabdeckung bei deaktiviertem Loopback
(bis 14%). Interessant ist, dass die Beobachtung des Busses die vollstindige Priifung der Loopback-
Komponente bei Verwendung des simple-Templates erlaubt.

Die Ausgabe der internen Schleifenzdhler bewirkt bei Verwendung des extended-Templates nur eine
geringe Verbesserung der Fehlerabdeckung (etwa 1%), wihrend im Fall der Verwendung des simple-
Templates und deaktivierter Loopback-Komponente eine Steigerung der Fehlerabdeckung von etwa
5% erreicht wird.

Dies lasst sich durch die Tatsache erklidren, dass Fehler im Schleifenzahler einfach zu beobachtende
Auswirkungen auf die Funktionalitidt der Komponente besitzen (fithrt z. B. dazu dass stets dasselbe
Bit Gibertragen bzw. gelesen wird und die Sende- bzw. Empfangsschleife nicht verlassen wird). Diese
Auswirkungen lassen sich leicht feststellen, wenn der Zustand ausgegeben wird, der Bus beobachtbar
ist oder ein Loopback zwischen I2C-Master und Slavebesteht. Da die Ausgabe des codierten Zustands
im vorliegenden Fall nahezu dieselbe Anzahl an Pins bendtigt, wie die Ausgabe des Schleifenzéhlers,
ist diese Ausgabe des Zustands klar vorzuziehen.

54

4.5 Analyse der Templates

4.5 Analyse der Templates

Der Einfluss der in Kapitel 3.3.2 vorgestellten Templates auf die erreichbare Fehlerabdeckung, die
betrachtete sequentielle Tiefe und die Anzahl der erzeugter Testmuster wird aus der experimentellen
Bestimmung der sequentiellen Tiefe (in Abschnitt 4.2) und den experimentellen Ergebnissen (in den
Tabellen 4.1, 4.2 und 4.3) deutlich.

Bei Nutzung des extended-Templates kann, in nahezu allen betrachteten Fillen, eine deutlich hohere
Fehlerabdeckung erreicht werden, als bei Verwendung des simple-Templates. Die Ausnahme stellt
dabei lediglich das Testen der Loopback-Komponente dar. Ist diese deaktiviert, konnen mit beiden
Templates dieselben Fehler getestet werden.

Bemerkenswert ist die Tatsache, dass das extended-Template auf einer sequentiellen Tiefe von 60 eine
bessere Haftfehlerabdeckung erreicht, als das simple-Template bei der doppelten sequentiellen Tiefe
120. Allerdings werden in den meisten Fillen, bei Verwendung des extended-Templates, deutlich mehr
Testmuster erzeugt, als bei Verwendung des simple-Template.

4.5.1 ProgrammgroBe

Die Programmgrofie bei Verwendung des simple-Templates ist erheblich geringer, als die des extended-
Templates. Dies geht eindeutig aus den Formeln 3.7 und 3.9 hervor. Zusétzlich werden bei Anwendung
des extended-Templates auch mehr Testmuster erzeugt.

Wie grofi dieser Unterschied tatsdchlich ausfillt, wird im Folgenden am Beispiel des FULL-Versuchs
berechnet. Dazu werden die erzeugten Testmuster fiir den Test der Masterkomponente (vgl. Tabelle
4.1) in die Formeln 3.7 und 3.9 eingesetzt.

(4.1) Ngimple|Speicherbedarf = (25 % 17+ 10) * 4 = 1740Bytes = 1, TkBytes

(4.2) Negtended|Speichervedarf = (17 % 32 % 60 + 10) * 4 = 130600Bytes = 127, 6k Bytes

4.5.2 Laufzeit

Fur die untersuchten Falle (simple;oo und extendeds) zeigt sich bei Vergleich der Formeln 3.11 und
3.13, dass extended-basierte Testprogramme interessanterweise eine kiirze Laufzeit besitzen. Dies
lasst sich mit der Beobachtung erklédren, dass nie mehr als die doppelte Zahl von Testmustern fiir
das extended-Template erzeugt werden, die sequentielle Tiefe jedoch nur halb so grof} ist wie bei
Verwendung des simple-Templates.

Beispielhaft fiir diese Beobachtung wird die Laufzeit der beiden Templates fiir den Testfall FULL,
angewandt auf die Masterkomponente, mithilfe der Formeln 3.11 bzw. 3.13 berechnet. Fir krqiteiter
wird der in Abschnitt 3.3.2 berechnete Mindestwert fiir das extended-Template (krgktteiter = 34)
verwendet.

(4.3) toimplepzo = 17 % (120 % 34 + 23) + 10 = 69761 Systemtakte

55

4 Experimente

(4.4) teatendedigo = 32 * (60 % 34 +17) + 10 = 65834 Systemtakte

Bei einer Taktrate von 50 MHz des miniMIPS Prozessors ergibt sich damit:

69761

4.5) tg =—=1/4
() simple|120 50000000 , AMNS

65834
(4.6) te:vtended\GO = m =1,3ms

56

5 Fazit

Bei der Anwendung von SBST-Techniken auf Peripheriekomponenten kann die erreichbare Haft-
fehlerabdeckung durch Mafinahmen zur Verbesserung der Kontrollierbarkeit und Beobachbarkeit
interner Signale erheblich verbessert werden.

Experimentelle Ergebnisse fiir die Anwendung der strukturellen SBST Methode auf der implemen-
tierten 72C-Komponente zeigen eine erreichbare Gesamtfehlerabdeckung von 96%, bei Verwendung
aller vorgeschlagenen Mafinahmen gegeniiber einer Abdeckung von 37% ohne diese Anpassungen.
Die erfolgversprechendste Mafinahme ist dabei das Einfiigen eines Loopbacks. Diese erlaubt ein
intensives Testen der Komponente, da Schaltungsbereiche getestet werden, die bei einer einzelnen
Komponente nicht aktiviert werden kénnen. Durch die Sichtbarmachung diverser internen Signale
lasst sich die Haftfehlerabdeckung, je nach Testfall, um weitere drei bis neun Prozent erhéhen. Von
den untersuchten Mafinahmen zur Erh6hung der Beobachtbarkeit der internen Signale erweist sich
die codierte Ausgabe des aktuellen Zustandsautomaten der Komponenten als besonders wirksam.

Als Resultat wurden zwei unterschiedliche Test-Templates entworfen, die in Abhéngigkeit von den
funktionalen Nebenbedingungen, eingesetzt werden kénnen um Testprogramme zu erzeugen. Die
Laufzeit, Programmgrofle und erreichbare Fehlerabdeckung der Templates unterscheidet sich erheblich
voneinander und zeigt den Einfluss funktionaler Nebenbedingungen auf die Testerzeugung.
Erlauben die Nebenbedingungen die Durchfithrung eines Testprogramms, welches in jedem Takt die
PIs beschreiben und POs auslesen kann, so lasst sich eine héhere Testabdeckung erzielen, bei einer
niedrigeren betrachteten sequentiellen Tiefe und hoherer Wirksamkeit der vorgestellten Maflinahmen.
Allerdings steigt dabei der benétigte Speicherplatz des Testprogramms erheblich an.

57

6 Ausblick

Um die Vergleichbarkeit der vorgestellten strukturellen SBST-Methode fiir Kommunikationsperiphe-
riekomponenten mit bestehenden Arbeiten zu erhéhen, konnte eine zukiinftige Arbeit die vorgestellte
Methode auf eine der in [APGP07b] und [BSST07] genutzten Peripheriekomponenten angewandt
werden.

Von Interesse ist dabei, neben der erreichbaren Haftfehlerabdeckung, vor allem wie sich die vor-
geschlagenen Verbesserungen auf komplexere Schaltungen auswirken und der Unterschied in der
Fehlerabdeckung der unterschiedlichen Template-Varianten.

Aufgrund der herausragenden Bedeutung einer Loopback-Komponente auf die erreichbare Haftfeh-
lerabdeckung, konnte zudem die Implementierung solcher Komponenten fiir verschiedene Kommuni-
kationsprotokolle stattfinden.

Des Weiteren kann untersucht werden, wie sich ein nicht-beobachtbarer und nicht-kontrollierbarer
Slave, der tiber den 72C-Bus an den Master angeschlossen ist, als Kommunikationspartner auf die
erreichbare Haftfehlerabdeckung auswirken wiirde.

Auflerdem kann eine weitere Optimierung der vorgeschlagenen Templates untersucht werden, z. B.
wie sich der Speicherplatzbedarf des extended-Templates verringern lédsst, ohne die erreichbare
Fehlerabdeckung signifikant zu reduzieren.

59

Literaturverzeichnis

[AGPT09]

[ALR"01]

[APGP07a]

[APGP07b]

[BAO1]

[BBF10]

[BSST07]

[CCRS00]

[CDo1]

A. Apostolakis, D. Gizopoulos, M. Psarakis, D. Ravotto, M. S. Reorda. "Test program
generation for communication peripherals in processor-based SoC devices". IEEE Tran-
sactions on Design & Test of Computers, 26(2):52-63, 2009. (Zitiert auf den Seiten 21, 25,
26 und 27)

A. Avizienis, J.-C. Laprie, B. Randell, et al. Fundamental concepts of dependability. Uni-
versity of Newcastle upon Tyne, Computing Science, 2001. (Zitiert auf Seite 16)

A. Apostolakis, M. Psarakis, D. Gizopoulos, A. Paschalis. "A functional self-test approach
for peripheral cores in processor-based SoCs". In Proceeding of International On-Line
Testing Symposium, S. 271-276. IEEE, 2007. (Zitiert auf den Seiten 7 und 26)

A. Apostolakis, M. Psarakis, D. Gizopoulos, A. Paschalis. "Functional processor-based
testing of communication peripherals in systems-on-chip". IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 15(8):971-975, 2007. (Zitiert auf den Seiten 21, 26,
27, 49 und 59)

M. L. Bushnell, V. D. Agrawal. Essentials of Electronic Testing for Digital, Memory, and
Mixed-Signal VLSI Circuits. Kluwer, 2001. (Zitiert auf den Seiten 16, 17, 18, 19, 20, 22
und 24)

O. Ballan, P. Bernardi, G. Fontana, M. Grosso, E. Sanchez. "A Fault Grading Methodology
for Software-Based Self-Test Programs in Systems-on-Chip". In Proceedings of Internatio-
nal Workshop on Microprocessor Test and Verification, S. 43—46. IEEE, 2010. (Zitiert auf
Seite 7)

L. Bolzani, E. Sanchez, M. Schillaci, M. S. Reorda, G. Squillero. "An automated methodo-
logy for cogeneration of test blocks for peripheral cores". In Proceedings of International
On-Line Testing Symposium, S. 265-270. IEEE, 2007. (Zitiert auf den Seiten 7, 25, 26, 27,
49 und 59)

F. Corno, G. Cumani, M. S. Reorda, G. Squillero. "An RT-level fault model with high gate
level correlation”. In Proceedings of High-Level Design Validation and Test Workshop, S.
3-8. IEEE, 2000. (Zitiert auf Seite 25)

L. Chen, S. Dey. "Software-based self-testing methodology for processor cores". IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 20(3):369-380,
2001. (Zitiert auf Seite 7)

61

Literaturverzeichnis

[CRRD03]

[CWLG07]

[DBGO03]

[DCPS11]

[GHS'12]

[GPRT10a]

[GPRT10b]

[GVA06]

[GW00]

[JRW14]

[KLCT02]

[KMT"08]

[KPGX07]

62

L. Chen, S. Ravi, A. Raghunathan, S. Dey. "A scalable software-based self-test metho-
dology for programmable processors". In Proceedings of Annual Design Automation
Conference, S. 548-553. ACM, 2003. (Zitiert auf Seite 24)

C.-H. Chen, C.-K. Wei, T.-H. Lu, H.-W. Gao. "Software-based self-testing with multiple-
level abstractions for soft processor cores". IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 15(5):505-517, 2007. (Zitiert auf Seite 24)

J. Dushina, M. Benjamin, D. Geist. "Semi-formal test generation and resolving a temporal
abstraction problem in practice: industrial application". In Proceedings of Asia and South
Pacific Design Automation Conference, S. 699-704. ACM, 2003. (Zitiert auf Seite 27)

S. Di Carlo, P. E. Prinetto, A. Savino. "Software-based self-test of set-associative cache
memories". IEEE Transactions on Computers, 60(7):1030-1044, 2011. (Zitiert auf Seite 7)

M. Grosso, W. P. Holguin, E. Sinchez, M. S. Reorda, A. Tonda, J. V. Medina. "Software-
Based Testing for System Peripherals". Journal of Electronic Testing, 28(2):189-200, 2012.
(Zitiert auf den Seiten 7, 11, 25 und 27)

M. Grosso, H. Perez, D. Ravotto, E. Sanchez, M. S. Reorda, J. V. Medina, et al. "A software-
based self-test methodology for system peripherals". In Proceedings of European Test
Symposium, S. 195-200. IEEE, 2010. (Zitiert auf Seite 7)

M. Grosso, W. Perez, D. Ravotto, E. Sanchez, M. Reorda, J. Medina. "Functional test
generation for DMA controllers". In Proceedings of Latin American Test Workshop, S. 1-6.
IEEE, 2010. (Zitiert auf Seite 11)

S. Gurumurthy, S. Vasudevan, J. A. Abraham. "Automatic generation of instruction
sequences targeting hard-to-detect structural faults in a processor". In Proceedings of
International Test Conference, S. 1-9. IEEE, 2006. (Zitiert auf Seite 24)

S. Gerstendorfer, H.-J. Wunderlich. "Minimized power consumption for scan-based
BIST". Journal of Electronic Testing, 16(3):203-212, 2000. (Zitiert auf Seite 22)

A. Jutman, M. S. Reorda, H.-J. Wunderlich. "High Quality System Level Test and Dia-
gnosis". In Proceedings of Asian Test Symposium, S. 298-305. IEEE, 2014. (Zitiert auf
Seite 15)

A. Krstic, W.-C. Lai, K.-T. Cheng, L. Chen, S. Dey. "Embedded software-based self-test
for programmable core-based designs". IEEE Transactions on Design & Test of Computers,
19(4):18-27, 2002. (Zitiert auf Seite 22)

N. Kranitis, A. Merentitis, G. Theodorou, A. Paschalis, D. Gizopoulos. "Hybrid-SBST
methodology for efficient testing of processor cores". IEEE Transactions on Design & Test
of Computers, 25(1):64-75, 2008. (Zitiert auf den Seiten 7 und 25)

N. Kranitis, A. Paschalis, D. Gizopoulos, G. Xenoulis. "Software-based self-testing of
embedded processors". In Processor Design, S. 447-481. Springer, 2007. (Zitiert auf den
Seiten 7, 21 und 22)

Literaturverzeichnis

[Ljo7] L. Lingappan, N. K. Jha. "Satisfiability-based automatic test program generation and de-
sign for testability for microprocessors". IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 15(5):518-530, 2007. (Zitiert auf Seite 24)

[NAS15] The NASM Development Team. "NASM — The Netwide Assembler”, 2015. Rev. 6. (Zitiert
auf Seite 41)

[NXP14] NXP Semiconductors. "I2C-bus specification and user manual”, 2014. Rev. 6. (Zitiert auf
den Seiten 12, 15, 30, 31 und 33)

[PGO5] A. Paschalis, D. Gizopoulos. "Effective software-based self-test strategies for on-line
periodic testing of embedded processors". IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 24(1):88-99, 2005. (Zitiert auf Seite 7)

[PGSR10] M. Psarakis, D. Gizopoulos, E. Sanchez, M. S. Reorda. "Microprocessor software-based
self-testing". IEEE Transactions on Design & Test of Computers, 27(3):4-19, 2010. (Zitiert
auf den Seiten 7, 17, 21, 22, 23 und 24)

[SA98] J. Shen, J. A. Abraham. "Native mode functional test generation for processors with
applications to self test and design validation". In Proceedings of International Test
Conference, S. 990-999. IEEE, 1998. (Zitiert auf Seite 26)

[TKPG14] G. Theodorou, N. Kranitis, A. Paschalis, D. Gizopoulos. "Software-Based Self-Test for
Small Caches in Microprocessors". IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 33(12):1991-2004, 2014. (Zitiert auf Seite 7)

[WWCT06] C.-P. Wen, L. Wang, K.-T. Cheng, et al. "Simulation-based functional test generation for
g g g
embedded processors". IEEE Transactions on Computers, 55(11):1335-1343, 2006. (Zitiert
auf Seite 24)

[WWWO06] L.-T. Wang, C.-W. Wu, X. Wen. VLSI Test Principles and Architectures: Design for Testability.
Academic Press, 2006. (Zitiert auf den Seiten 16, 17, 19 und 21)

[Zho09] J. Zhou. Software-Based Self-Test under Memory, Time and Power Constraints. University
of Stuttgart, 2009. (Zitiert auf Seite 25)

Alle URLs wurden zuletzt am 05. 05. 2015 gepriift.

63

Erkliarung

Ich versichere, diese Arbeit selbststiandig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wortlich oder sinngemifd aus anderen Werken tibernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Pritifungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-
se noch vollstindig veroffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren tiberein.

Remseck, den 05.05.2015

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Motivation
	1.2 Übersicht

	2 Grundlagen
	2.1 Architektur von Mikrocontrollern
	2.2 Test von Mikrocontrollern
	2.3 Software-basierter Selbsttest

	3 Implementierung
	3.1 Implementierung des Testsystems
	3.2 Anpassungen zur Verbesserung der Haftfehlerabdeckung
	3.3 Testprogrammzeugung

	4 Experimente
	4.1 Synthese
	4.2 Experimentelle Untersuchung der sequentiellen Tiefe
	4.3 Experimentelle Ergebnisse
	4.4 Analyse der vorgeschlagenen Maßnahmen
	4.5 Analyse der Templates

	5 Fazit
	6 Ausblick
	Literaturverzeichnis

