
Institut für Technische Informatik

Bachelorarbeit Nr. 182

Software-basierter Selbsttest von
Peripherie-Komponenten

Jochen Bäßler

Studiengang: Informatik

Prüfer/in: Prof. Dr. Hans-Joachim Wunderlich

Betreuer/in: Dipl.-Inf. Dominik Ull

Beginn am: 21. Oktober 2014

Beendet am: 6. Mai 2015

CR-Nummer: B.4.5





Kurzfassung

Software-basierte Selbsttest (SBST) Verfahren werden zumeist für das Testen von Mikroprozessoren
eingesetzt, lassen sich jedoch auch auf Peripheriekomponenten anwenden. Der Vorteil von SBST,
gegenüber Hardware-basierten Ansätzen besteht dabei im Verzicht auf spezielle Testhardware und
Hochgeschwindigkeitstestgeräte und der Tatsache, dass Tests in der natürlichen Betriebsumgebung
(engl. In-System) und bei normaler Betriebsfrequenz (engl. At-Speed) ablaufen. Peripheriekompo-
nenten nehmen in vielen Systemen einen erheblichen Teil der Chipfläche ein, werden teilweise für
sicherheitskritische Aufgaben eingesetzt und müssen folglich ausgiebig getestet werden.

Um strukturelle SBST-Verfahren erfolgreich auf diesen Typ von Komponenten anzuwenden, müssen
Maßnahmen getroffen werden um deren geringe Beobacht- und Kontrollierbarkeit zu erhöhen, da
andernfalls die erzielte Fehlerabdeckung der Verfahren zu niedrig ausfällt.

In dieser Arbeit werden zwei unterschiedliche Ansätze untersucht, um die strukturelle Fehlerabde-
ckung von SBST-Verfahren auf Kommunikationsperipheriekomponenten zu verbessern. Der erste
Ansatz zielt auf eine verbesserte Kontrollierbarkeit der verwendeten Komponente ab. Dazu wird ein
Loopback-basierter Mechanismus implementiert. Um darüber hinaus eine bessere Beobachtbarkeit zu
erreichen wird als zweiter Ansatz der Zustand ausgewählter internen Signale dem System sichtbar
gemacht.
Eine beispielhafte Anwendung der vorgestellten Methode auf die I2C-Komponente eines RISC-
Prozessors zeigt die Wirksamkeit der verwendeten Maßnahmen zur Verbesserung der strukturellen
Fehlerabdeckung.
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1 Einleitung

1.1 Motivation

Mit der Verdopplung der Integrationsdichte von integrierten Schaltkreisen innerhalb von zwei Jah-
ren, nach dem Moore’schen Gesetz, steigt ebenfalls der Aufwand für deren Test kontinuierlich an.
Automatische Testgeräte (engl. Automatic Test Equipement, ATE) mit hoher Betriebsfrequenz führen
aufgrund sehr hoher Anschaffungskosten und schneller Alterung zu hohen Testkosten. Selbsttests
umgehen die Notwendigkeit von teuren Testgeräte, wodurch sich Testkosten verringern lassen.
Hardware-basierte Selbsttest-Verfahren fügen in das Design der Komponente testspezifische Hardwa-
re ein um einen Selbsttest zu ermöglichen. Diese Zusatzhardware erhöht jedoch die Chipfläche der
Schaltung und kann zu Performanceverlusten führen.

Eine alternative Testmethode bieten Software-basierte Selbsttests (SBST), die programmierbare Kom-
ponenten des Systems ausnutzen um Testvektoren an die Zielkomponente anzulegen und durch
Abgleich mit Sollwerten eventuell vorhandene Fehler zu erkennen. SBST benötigt weder teure Test-
geräte, noch das Vorhandensein spezifischer Teststrukturen im Hardwaredesign und ermöglichen das
Testen unter den normalen Betriebsbedingungen der Schaltung - bei normaler Betriebsfrequenz und
innerhalb des umgebenden Systems.

Zudem bieten SBST-Methoden erhebliches Potenzial zur Wiederverwendbarkeit über Herstellungs-
tests hinaus, z. B. für Anwendungen in Feldtests, in der Rückläuferanalyse oder als periodische
Selbsttestlösung zur Erhöhung der Verlässlichkeit von Systemen in sicherheitsrelevanten Bereichen.
Es sind eine ganze Reihe von SBST-Methoden für das Testen von Mikroprozessoren [CD01] [KPGX07]
[PGSR10] [BBF+10] [PG05] [KMT+08] bekannt, allerdings beschränkt sich der Einsatz von SBST nicht
nur auf Prozessoren. Stattdessen lässt sich der SBST-Ansatz auch auf Cache-Strukturen [TKPG14]
[DCPS11] und Peripheriekomponenten [GPR+10a] [GHS+12] [APGP07a] [BSS+07] anwenden. Eine
große Zahl der Peripheriekomponenten implementieren weitverbreitete, standardisierte Kommunika-
tionsprotokolle wie Ethernet, USB (engl. Universal Serial Bus), I2C (engl. Inter Integrated Curcuit)
oder UART (engl. Universal Asynchronous Receiver Transmitter).
Peripheriekomponenten stellen eine besondere Herausforderung für die Entwicklung von effizienten
Testprogrammen dar, da diese Komponenten für gewöhnlich eine deutlich geringere Beobacht- und
Kontrollierbarkeit aufweisen als dies bereits bei Mikroprozessoren der Fall ist [GPR+10a]. Folglich
muss für die effiziente Erzeugung von Testvektoren für Peripheriekomponenten zunächst eine Mög-
lichkeit gefunden werden die Beobacht- und Kontrollierbarkeit zu erhöhen. Anschließend können
SBST-Techniken Testprogramme erzeugen, die diese Komponenten mit einer hohen Fehlerabdeckung
testen.
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1 Einleitung

1.2 Übersicht

In dieser Arbeit wird eine Methode zur Generierung von Testmustern für strukturellen SBST von
Peripheriekomponenten vorgestellt und Maßnahmen entworfen, welche die Beobachtbarkeit und
Kontrollierbarkeit der internen Signale einer solchen Komponente erhöhen können. An einer bei-
spielhaften Implementierung wird zudem gezeigt, wie sich diese Maßnahmen auf die strukturelle
Fehlerabdeckung der vorgestellten Methode auswirken.
Dazu wird der OpenSource Prozessor miniMIPS1 genutzt, eine dazu kompatible I2C-Komponente
implementiert und die Anwendung der Methodik und die verwendeten Maßnahmen besprochen. Die
Arbeit gliedert sich dabei wie folgt:

Kapitel 2 behandelt die Grundlagen zu Mikrocontrollern (Abschnitt 2.1) und dem I2C-Protokoll
(Abschnitt 2.1.2). Unterkapitel 2.2 erklärt die Grundlagen zum Test vonMikrocontrollern. Im Abschnitt
2.2.3 wird das ATPG-Verfahren (engl. Automatic Test Pattern Generation) erläutert. Anschließend
wird in Unterkapitel 2.2.5 näher auf bekannte Testverfahren wie ATE-Testing und Scan-basierte
Testverfahren eingegangen.
Im Unterkapitel 2.3 wird das Grundprinzip, die wichtigsten Schritte und einige Varianten des SBST-
Verfahrens erklärt. Die Anwendung von SBST auf Peripheriekomponenten wird im Abschnitt 2.3.3
behandelt und einige bestehende Arbeiten und deren Ergebnisse vorgestellt.

Kapitel 3 behandelt zunächst im Abschnitt 3.1 die Implementierung des Testsystems und im Folgen-
den (3.2) die Umsetzung der vorgestellten Maßnahmen zur Erhöhung der Beobacht- und Kontrol-
lierbarkeit. In Unterkapitel 3.3.1 wird die Erzeugung struktureller Testmuster für die ausgewählte
I2C-Komponente diskutiert. Zur Umwandlung dieser Testmuster in ein ausführbares Programm
werden in Abschnitt 3.3.2 zwei unterschiedliche Test-Templates vorgestellt.

Die Ergebnisse der experimentellen Anwendung auf dem Testsystem werden in Kapitel 4 besprochen.
Kapitel 5 beschließt die Arbeit mit einer Zusammenfassung und einem Kapitel 6 gibt einen Ausblick
auf mögliche weitere Arbeiten im Zusammenhang von SBST für Peripheriekomponenten.

1http://opencores.org/project,minimips

8



2 Grundlagen

Im Folgenden werden die für diese Arbeit wichtigsten Grundlagen vorgestellt. In Kapitel 2.1 wird ein
kurzer Überblick über die Architektur von Mikrocontrollern und deren abstrakten Aufbau gegeben
und anschließend in 2.1.2 das I2C-Protokoll erläutert. Abschnitt 2.2 behandelt das Testen von Mi-
krocontrollern. Dazu werden die Grundlagen von Fehlermodellierung, DFT und ATPG erklärt und
kurz verschiedene Testverfahren besprochen. Im Abschnitt 2.3 wird das Prinzip und verschiedene
Methodiken des Software-basierten Selbsttests (SBST) erläutert und im Unterkapitel 2.3.3 werden
bisherige Arbeiten zum Software-basierten Selbsttest von Peripheriekomponenten vorgestellt und
zusammengefasst.

2.1 Architektur von Mikrocontrollern

2.1.1 Aufbau

Abbildung 2.1 zeigt eine vereinfachte Übersicht über den Aufbau und die typischen Komponenten
eines Mikrocontrollers.

Systembus: Die einzelnen Komponenten eines Mikrocontroller-Systems kommunizieren über den
Systembus miteinander. Klassischerweise besteht ein Systembus aus drei Bussen: der Datenbus
ermöglicht den Austausch von Daten zwischen den Komponenten und besitzt n parallele Daten-
leitungen, wobei n der verwendeten Wortbreite entspricht. Der Adressbus spezifiziert das Ziel
der übertragenen Daten und besteht aus der Menge an Leitungen, die benötigt werden um den
adressierbaren Speicherbereich zu codieren. Der Steuerbus fasst alle benötigten Kontrollsignale
zusammen und wird von einer Steuereinheit betrieben.

Prozessor: Prozessoren stellen die zentrale Komponente eines jeden Systems dar und sind für dessen
Funktionalität entscheidend. Die Menge aller unterstützten Befehle eines Prozessors wird als
Befehlssatz (engl. Instruction Set, IS) bezeichnet.

Ablaufsteuerung: In einem System gibt es eine Reihe von Komponenten zur Steuerung des Pro-
grammablaufs. So werden beispielsweise Interrupt Controller eingesetzt um das sog. Polling
zu vermeiden. Polling bezeichnet eine Warteschleife, während jener der Prozessor auf die
Reaktion eines externen Funktionsblocks (z. B. einer Peripheriekomponente) wartet. Durch
die Verwendung von Unterbrechungen (engl. Interrupts) kann der Prozessor, während er auf
eine angeforderte Reaktion wartet, Instruktionen anderer Programme durchführen. Trifft die
Reaktion ein, so wird ein Interrupt durch den Interrupt Controller generiert und der Prozessor
kann daraufhin mit der Ausführung des ursprünglichen Programms fortfahren. Durch diese
Technik lässt sich der Befehlsdurchsatz des Prozessors erhöhen.
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2 Grundlagen

Abbildung 2.1: Abstrakte Architektur eines Mikrocontrollers

Speicher: Um Daten zu speichern und Programme zu halten benötigt ein System Speicher. Je nach
Art der zu speichernden Werte und deren Verwendungszweck werden verschiedene Speicher-
typen in einem System verwendet. Unterscheiden lassen sich Speichertypen in solche auf die
ausschließlich lesend zugegriffen werden kann (engl. Read-Only Memory, ROM) und jene auf
die lesend und schreibend zugegriffen werden kann (engl. Random Access Memory, RAM).
Zudem wird zwischen flüchtigen (engl. Volatile) und nicht-flüchtigen (engl. Non-Volatile) Spei-
chertypen unterschieden, hierbei entscheidet die Tatsache ob gespeicherte Werte verloren
gehen wenn die Stromversorgung unterbrochen wird oder nicht. Von besonderer Bedeutung
in modernen Systemen sind die Speicherarten SRAM/DRAM (engl. Static / Dynamic Random
Access Memory) für die Verwendung als Cache bzw. als Arbeitsspeicher um flüchtige Daten zu
halten und EEPROM (engl. Electrical Erasable Read Only Memory) und Flash Speicher um die
Systemfirmware, Konfigurationsdaten u.a. feststehende Werte nicht-flüchtig zu speichern.
Um Speicherzugriffe auf unterschiedliche Speicher zu verwalten werden Memory Controller
eingesetzt. Somit lassen sich unterschiedliche Speichertypen über denselben Speicherbus adres-
sieren, während die Anbindung der einzelnen Speicherelemente durch den Memory Controller
übernommen wird.

Oftmals wird der Systembus auch als sogenannte MMI/O (engl. Memory Mapped Input Output)
Schnittstelle für angeschlossenen Komponenten genutzt. Für dieses Verfahren werden bestimm-
te Speicheradressen, welche sich außerhalb des Systemspeichers befinden, auf bestimmte Ein-
oder Ausgänge von Komponenten abgebildet. Mithilfe von gewöhnlichen Speicherbefehlen
kann der Mikroprozessor des Systems somit auf die Ports der angeschlossenen Komponenten
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2.1 Architektur von Mikrocontrollern

zugreifen. Mit dieser Technik lassen sich spezielle Schnittstellen und Befehle für jede einzelne
angeschlossene Komponente einsparen.

Peripheriekomponenten: Peripherie bezeichnet abstrakt alle Hardware die es ermöglicht Daten in
ein System einzugeben oder auszulesen. Peripheriekomponenten lassen sich weiter in Systempe-
ripherie und Kommunikationsperipherie aufteilen [GHS+12]. Systemperipheriekomponenten
unterstützen oder entlasten den Prozessor des Systems, während Kommunikationskompo-
nenten ein Kommunikationsprotokoll implementieren und so die Verbindung des Systems
mit externen Systemen ermöglichen. Systemperipheriekomponenten sind dabei stärker mit
dem Mikrocontroller verzahnt und stellen eine große Herausforderung für Testverfahren dar,
insbesondere für nichtinvasive Verfahren, da deren Beobacht- und Kontrollierbarkeit noch
geringer ausfällt, als die von Kommunikationsperipheriekomponenten [GHS+12] [GPR+10b].
Ein Beispiel für Systemperipherie stellen Direct Memory Access Controller (DMA) dar, die es
ermöglichen große Datenmengen zwischen zwei Speicherquellen zu transferieren, ohne dabei
den Prozessor, nach anfänglicher Konfiguration, zu belasten. Somit lässt sich der Prozessor
entlasten und der Datentransfer unter Umständen erhöhen [GPR+10b].

Kommunikationskomponenten: Unter diese Kategorie fallen Peripheriekomponenten die stan-
dardisierte Kommunikationsprotokolle implementieren um eine Kommunikation mit externen
Geräten über eine spezifizierte Schnittstelle zu erlauben. In vielen Mikrocontrollern sind eine
ganze Reihe dieser Schnittstellen verbaut, folglich nehmen diese eine erhebliche Chipfläche ein
[GHS+12].

Kommunikationsprotokolle werden grundsätzlich nach Übertragungsrichtung (uni- bzw. bidi-
rektional), nach Übertragungsart (seriell bzw. parallel) sowie nach deren Zeitverhalten (synchron
bzw. asynchron) und nach deren Topologie unterschieden.

Unidirektionale Protokolle erlauben den Datentransfer nur in eine spezifische Richtung, wäh-
rend bidirektionale Protokolle Kommunikation in beide Richtungen zulassen. Der überwiegende
Teil der Kommunikationsprotokolle die für Peripherieschnittstellen eingesetzt werden ist bidi-
rektional.

Die Übertragungsart eines Protokolls wird in seriell und parallel unterschieden und definiert
sich über die Anzahl der übertragenen Datenbits pro Zeiteinheit. Überträgt eine Kommunikati-
onskomponente pro Zeitschritt nur ein Bit, so handelt es sich dabei um eine serielle Übertragung.
Serielle Protokolle benötigten folglich mindestens n Zeitintervalle für die Übertragung von n
Datenbits. Bekannte Beispiele serieller Kommunikationsprotokolle sind USB, Ethernet Schnitt-
stellen, CAN (engl. Controller Area Network), I2C und SPI (engl. Serial Peripheral Interface).
Parallele Kommunikationskomponenten besitzen dagegen mehrere physikalische Datenleitung
und können somit pro Zeitintervall mehrere Datenbits gleichzeitig übertragen. Aufgrund von
unterschiedlichen Signallaufzeiten und hoher Störanfälligkeit der parallelen Leitungen werden
parallele Protokolle hauptsächlich für Hochgeschwindigkeitsanwendungen eingesetzt. Zu par-
allelen Protokollen zählen PCI (engl. Peripheral Component Interconnect) und die größte Zahl
aller Systembusimplementierungen.

Die Topologie eines Kommunikationsprotokolls bezeichnet die Art und Weise wie Kommu-
nikationsteilnehmer miteinander verbunden sind. Typischerweise wird zwischen Bus-, Ring,-
Stern,- Baum- und Maschen-Topologie unterschieden. Der Vorteil von Bus-Strukturen ist, dass
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2 Grundlagen

beliebig viele Teilnehmer über nur eine Busleitung miteinander verbunden werden können.
Bekannte Vertreter der Bus-Topologie sind Ethernet, CAN und I2C . Da alle Kommunikati-
onsteilnehmer über nur eine Bus-Leitung miteinander Verbunden sind, kann zu jeder Zeit
maximal ein Teilnehmer auf den Bus schreiben, jedoch alle gleichzeitig Daten vom Bus lesen.
Folglich enthalten Protokolle von Bus-Topologien zugriffsregulierende Elemente. Diese Zu-
griffsregulierung kann explizit erfolgen, in dem eine Arbitrationslogik eingesetzt wird, oder
implizit durch die Verwendung von hierarchischen Beziehungen zwischen den angeschlossenen
Komponenten. So unterscheiden manche Protokolle (z. B. I2Coder USB) zwischen Master- und
Slave-Kommunikationsteilnehmern, die unterschiedliche Rechte, z. B. zum initiieren einer Kom-
munikation, besitzen. Bei hierarchischen Bus-Topologien kann die Verwaltung der Buszugriffe
durch den Master erfolgen, oder sogar auf diesen beschränkt werden (Kommunikation nur
zwischen Master und Slave, nicht jedoch zwischen Slaves).

Eine weiteres Unterscheidungsmerkmal von Kommunikationsprotokollen ist die Abhängig-
keit von einem Taktsignal im Fall von synchronen Protokollen oder der Verzicht darauf bei
asynchroner Kommunikation. Letztere sind Ereignis-basiert, d.h. es wird über bestimmte Er-
eignisse eine zeitweilige Synchronizität der Kommunikationspartner erreicht, ohne dass diese
ein gemeinsames Taktsignal teilen. Beiden Komponenten müssen deshalb die Parameter der
Kommunikation bekannt sein. Zu diesen Parametern gehören u. a. die Übertragungsrate, die
Verwendung und Position von Paritätsbits und die Reihenfolge der Bits - niederwertigstes (engl.
Least Significant Bit - LSB) oder höchstwertiges (engl. Most Significant Bit - MSB) Bit zuerst.
Eine bekannte asynchrone Komponente ist die UART-Schnittstelle.
Bei synchronen Protokollen teilen die Kommunikationspartner dagegen ein gemeinsames Takt-
signal für Synchronisationszwecke. Je nach Topologie des Protokolls wird dieses Taktsignal
nur von einer Masterkomponente - im hierarchischen Fall - oder vom aktuellen Transmitter -
nicht-hierarchischer Fall - erzeugt.

2.1.2 Das I2C Protokoll

Im folgenden Abschnitt wird das I2C- Protokoll, als Beispiel für eine Kommunikationsschnittstel-
le eines Mikrokontrollers, vorgestellt. Bei I2C handelt es sich um ein einfaches, kostengünstiges
Zweidraht-Bussystem zur bidirektionalen, synchronen, seriellen und hierarchischen Kommunikation
zwischen einem Master- und mehreren Slavekomponenten. Übertragungen sind dabei stets byteori-
entiert und nutzen Empfangsbestätigungen durch den Empfänger. Das Konzept von I2C stammt aus
dem Jahr 1982 und wurde von Philips Semiconductors (inzwischen NXP Semiconductors) entwickelt,
um die interne Kommunikation zwischen verschiedenen Integrierten Schaltungen zu verbessern
und standardisieren. Die aktuellste I2C-Spezifikation [NXP14] (Version 6) vom April 2014 sieht vier
verschiedene (bidirektionale) Übertragungsraten vor: Standard-mode (SM) bis zu 100 kbit/s, Fast-mode
(FM) bis zu 400 kbit/s, Fast-mode Plus (FM+) bis zu 1 Mbit/s und High-Speed mode (HS-mode) mit bis
zu 3,4 Mbit/s.
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2.1 Architektur von Mikrocontrollern

Topologie

Das I2C-Protokoll unterscheidet zwei hierarchisch getrennte Typen von Kommunikationsteilneh-
mern: Master und Slave. Slaves sind passive Komponenten und somit nicht in der Lage, im Gegensatz
zum Master, eine Kommunikation zu initiieren, ihren Kommunikationspartner zu wählen oder eine
begonnene Übertragung zu beenden. Aufgrund des bidirektionalen Protokollcharakters sind sowohl
Master- als auch Slavekomponenten in der Lage als Sender oder Empfänger zu agieren. Die Wahl der
Kommunikationsrichtung wird dabei zu Beginn der Kommunikation durch den Master festgelegt.
Dabei ist jedoch zu beachten, dass dem Master in beiden Fällen die Kontrolle der Kommunikation
vorbehalten ist, auch wenn er die Rolle des Empfängers einnimmt. Ein I2C-Netzwerk besteht typi-
scherweise aus einem Master und mehreren Slavekomponenten die über einen gemeinsamen Bus
verbunden sind (vgl. Blockschaubild 2.2). Der I2C-Bus, über den alle angeschlossenen Komponenten
verbunden sind, besteht aus lediglich zwei Leitungen: die erste überträgt die Daten (engl. Serial
Data, SDA) und kann von Master- und Slavekomponenten getrieben werden, die zweite den seriellen
Takt (engl. Serial Clock, SCL), der ausschließlich vom Master gesetzt wird. Jede I2C-Komponente,
unabhängig ob Master oder Slave, besitzt eine eindeutige, 7 Bit-lange Adresse innerhalb des Busses.
Es lassen sich somit theoretisch 27 = 128 Komponenten an einen Bus anschließen. Aufgrund von
16 reservierten Adressen, reduziert sich diese Anzahl auf 112. I2C-kompatible Schaltkreise lassen
eine gewisse Anpassung ihrer Adresse zu, um die Verwendung mehrerer identischer Schaltelemente
innerhalb eines Netzwerks zu ermöglichen, ohne dass es dabei zu Adresskonflikten kommt.

I2C-Übertragungen sind byteorientiert, d. h. es wird mindestens ein Byte übertragen. Die Bits in-
nerhalb eines Bytes werden dabei nach dem MSB-first Prinzip übertragen. Nach jedem Byte fordert
das Protokoll zudem eine Empfangsbestätigung (engl. Acknowledge, ACK) durch den Empfänger,
wodurch sich kurzzeitig das Sende-Empfangs-Verhältnis der beiden Kommunikationspartner um-
dreht. Bei Empfang eines ACK setzt der Sender die aktuelle Kommunikation fort. Wenn dagegen
eine negative Empfangsbestätigung (engl. Not Acknowledge, NACK) auftritt, so wird der aktuelle
Kommunikationsvorgang durch den Sender abgebrochen.

Abbildung 2.2: Topologie eines I2CNetzwerks.
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2 Grundlagen

Wird ein ACK empfangen so beginnt die Übertragung des nächsten Datenbytes, wenn weitere
Daten übertragen werden sollen, oder die Kommunikation durch den Master beendet. Fällt diese
Empfangsbestätigung jedoch negativ aus (Empfang eines NACK) wird die Kommunikation durch den
Master abgebrochen.

Um den Beginn bzw. das Ende einer Übertragung anzuzeigen, werden zwei Bedingungen formuliert:
Start und Stopp (vgl. Abb. 2.3). Diese können lediglich durch den Master erzeugt werden. Die Start-
bedingung ist definiert durch eine fallende Flanke auf der SDA-Leitung während SCL konstant den
logischen Wert ’1’ hält (High-Phase). Die Stoppbedingung ist komplementär definiert, durch eine
steigende SDA Flanke während der High-Phase von SCL. Damit diese Bedingungen nicht fälschli-
cherweise erkannt werden, darf sich der Wert von SDA während einer validen Datenübertragung
nicht ändern, solange sich SCL in der High-Phase befindet.

Ablauf einer Kommunikation

Im folgenden Anschnitt wird der protokollgerechte Ablauf einer Kommunikation anhand der schema-
tischen Skizze 2.3 erklärt.

Eine I2C-Kommunikation beginnt stets durch das Setzen der Startbedingung durch den Master (in der
Abbildung grün markiert). Das erste Byte, welches zu Beginn einer Kommunikation durch den Master
gesendet wird, setzt sich aus der 7-Bit Adresse des Ziels und dem Operationsbit (engl. read/write, R/W)
zusammen. R/W Bit ’1’ ist definiert als Leseoperation, ’0’ als Sendeoperation. Bestätigt die adressierte
Komponente ihre Bereitschaft, durch die Übertragung eines ACK (in der Skizze orange markiert),
so beginnt die eigentliche Datenübertragung. Ein ACK ist dabei definiert als eine logische ’0’ auf
der SDA-Leitung. Empfängt der Master dagegen eine logische ’1’ auf SDA (Definition von NACK)
bedeutet dies entweder eine nicht vergebene Adresse oder einen nicht kommunikationsbereiten Slave.
Folglich wird der Kommunikationsversuch durch den Master beendet.

Anschließend werden, gemäß der gewählten Übertragungsrichtung, Datenbytes übertragen. Nach
jedem übertragenen Byte stoppt der Sender für eine SCL-Periode und wartet auf ein ACK des Emp-
fängers (vgl. Abb. 2.3, Takt 8), bevor das nächste Byte übertragen wird. Empfängt er stattdessen ein
NACK, so bricht er die Kommunikation ab.

Nach der Übertragung des letzten Bytes wird die Kommunikation durch das Setzten der Stoppbe-
dingung (in der Abbildung rot markiert) durch den Master beendet. Eine Besonderheit stellt dabei
eine lesende Masterkomponente dar. Da nur dem Master die Anzahl der zu lesen Bytes bekannt ist,
muss der übertragende Slave nach dem letzten Byte unterbrochen werden. Dies geschieht durch die
Übertragung eines NACK nach dem letzten Byte (vgl. Abb. 2.3, blaue Markierung), was zu einem
Abbruch der Übertragung durch den Slave führt.

Erweiterungen

Es gibt eine Reihe von Erweiterungen des einfachen I2C-Protokolls.
Dazu gehört die Möglichkeit des Multi-Master Betriebs, also dem Vorhandensein von mehr als einer
Masterkomponente im I2C-Netzwerk. Dazu wird Arbitrierungslogik eingesetzt, um Zugriffskonflikte
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2.2 Test von Mikrocontrollern

Abbildung 2.3: Schematischer Ablauf einer I2C-Datenübertragung.

auf den gemeinsamen I2C-Bus aufzulösen.
Um die Anzahl der möglichen Komponenten innerhalb eines I2C-Busses zu erhöhen, existiert eine
Erweiterung, welche den Adressraum von sieben auf zehn Adressbits erhöht. Diese Erweiterung ist
rückwärts-kompatibel, es können folglich weiterhin 7-Bit Komponenten verwendet werden. Laut der
NXP-Spezifikation [NXP14] wird diese Erweiterung jedoch bislang selten eingesetzt.

Sollte ein Slave nach einem übertragenen Byte ausgelastet sein, kann er die Taktleitung auf Low halten,
bis er für das nächste Byte bereit ist. Dieses Verfahren wird Taktdehnung (engl. clock stretching)
genannt, birgt jedoch die Gefahr, dass ein Fehler in einem Slave das gesamte I2C-Netzwerk blockiert,
da ein konstanter LOW-Wert auf SCL nicht aufgehoben werden kann.

Ein zusätzlicher Übertragungsmodus (Ultra-Fast Mode, UFm) sieht zudem eine Anpassung für unidi-
rektionale Übertragung mit einer Übertragungsrate von bis zu 5 Mbit/s vor.

2.2 Test von Mikrocontrollern

Als hochkomplexe, mikroelektronische Systeme sind Mikrokontroller anfällig für eine breite Spanne
an Fehlertypen. Zugleich werden sie immer häufiger in sicherheitskritischen Bereichen eingesetzt, in
denen höchste Anforderungen an die Zuverlässigkeit gelten. Folglich sind strukturierte, wirtschaftli-
che und qualitativ hochwertige Testverfahren notwendig um diese Anforderungen zu erfüllen und
gleichzeitig den Kunden niedrige Preise bei guter - oder im sicherheitskritischen Fall bei höchster -
Qualität anbieten zu können.

Dazu werden unterschiedliche Verfahren für die verschiedenen Testanwendungsfelder (Herstellungs-
test, Feldtest, Rückläuferanalyse) eingesetzt, da sich die Anforderungen je nach Fall zum Teil erheblich
unterschieden. Unter Herstellungstest (engl. Manufactoring Test) versteht man den Test eines fertigen
Chips nach Abschluss dessen Fertigung. Dabei steht die Fehlerabdeckung und insbesondere die
Testzeit im Vordergrund, da lange Testzeiten zu hohen Herstellungskosten führen. Beim Feldtest (engl.
In-Field Test) ist eine hohe Fehlerabdeckung, kurze Testzeit und eine nicht-invasive Testmethode
gefragt, um das zu testende Gerät in seiner natürlichen Betriebsumgebung zu testen. Dies ist wichtig
um nicht reproduzierbare Fehlerbilder zu vermeiden. Das Auftreten dieser NFF (eng. No Failure Found)
genannten Fehler hängt von den genauen Betriebsbedingungen ab und kann deshalb u.U. nach dem
Ausbau des fehlerhaften Systems nicht reproduziert werden [JRW14]. Rückläuferanalyse beschäftigt
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2 Grundlagen

sich mit der Fehleranalyse von funktionsunfähigen Geräten um Rückschlüsse auf die Fehlerursa-
che zu erhalten und so Fehlerquellen zu beheben. Dabei ist die Testzeit verhältnismäßig irrelevant,
ebenso können problemlos invasive Methoden eingesetzt werden, und eine hohe Testabdeckung ist
entscheidend.

2.2.1 Fehlermodellierung

Fehler lassen auf unterschiedlichen Ebenen definieren und modellieren.

Defekt (engl. Defect) bezeichnet einen physikalischen Fehler. Ein Defekt kann während des Ferti-
gungsprozesses auftreten, durch eine spätere Beschädigung des Systems erfolgen oder durch
Alterungserscheinungen hervorgerufen werden. Ein Fertigungsfehler könnte eine zu dünn
aufgebrachte Siliziumschicht an einem Transistor-Gate sein.

Ein Fehler (engl. Fault) ist die Modellierung eines Fehlers mittels eines Fehlermodells. Ein Beispiel
dafür ist das Haftfehlermodell.

Fehlerhafter Systemzustand (engl. Error) beschreibt einen fehlerhaften internen Zustand der z. B.
durch einen aktiven Fehler entstehen kann. Ein Beispiel für einen solchen Zustand wäre ein
falscher Wert in einem internen Register.

Systemausfall (engl. Failure) beschreibt die (fehlerhafte) Abweichung der Funktionalität eines
Systems von der erwarteten, korrekten Funktionalität [ALR+01].

Eines der am häufigsten genutzten Fehlermodelle ist das Haftfehlermodell (engl. Stuck-At Fault Model).
Das Haftfehlermodell bezieht sich auf die Darstellung einer Schaltung auf Gatterebene und nimmt an,
dass Fehler lediglich an den Ein- oder Ausgängen eines Gatters oder an den primären Eingängen (engl.
Primary Input, PI) bzw. den primären Ausgängen (engl. Primary Output, PO) der Schaltung auftreten
und zwar in der Form eines konstanten logischen Werts. Folglich existieren zwei unterschiedliche
Haftfehler: Stuck-at-0 und Stuck-at-1. Eine Schaltung mit n möglichen Haftfehlerpositionen besitzt
eine Fehlerliste (eine Liste aller Modellfehler der Schaltung) mit maximal 2n Einträgen. [BA01,
S. 63, 71] Die Anzahl der Haftfehler einer gegebenen Schaltung lässt sich durch Verfahren zur
Fehlerkollabierung (engl. Fault Collapsing) reduzieren. Dazu werden äquivalente Haftfehler definiert:
[BA01]

Äquivalenz: Zwei Fehler sind äquivalent, wenn sie nicht voneinander unterschieden werden können.
So kann z. B. ein Stuck-at-0 Fehler am Eingang eines Inverters nicht von einem Stuck-at-1 Fehler
an dessen Ausgang unterschieden werden und umgekehrt. Alle äquivalente Fehler lassen sich
zu disjunkten Äquivalenzklassen zusammenfassen.

Beim fault collapsing wird aus jeder Äquivalenzklasse nur ein einziger Vertreter als Repräsentant in
die Fehlerliste der untersuchten Schaltung aufgenommen. Durch die Anwendung von fault collapsing
kann die Größe der Haftfehlerliste einer Schaltung im Schnitt um 50 bis 60% [WWW06, 45] reduziert
werden.
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2.2.2 Funktionale und strukturelle Tests

Testverfahren lassen sich abstrakt in zwei Kategorien einordnen.

Funktionale Testverfahren nutzen keine Informationen über den strukturellen Aufbau einer Schal-
tung, sondern lediglich Informationen über die Funktionalität des zu testenden Systems. Es
handelt sich bei ihnen folglich um Blackbox-Tests.
Dazu wird bei funktionalen Testverfahren eine bestimmte Belegung an die PIs angelegt. Eine
solche Belegung wird Testvektor genannt. Die daraus resultierenden Werte an den POs können
mittels Simulation der fehlerfreien Schaltung, für den gegebenen Testvektor, bestimmt werden
[WWW06, S. 41]. Diese Soll-Werte werden anschließend mit den tatsächlichen Werten der POs
verglichen. Abweichende Werte bedeuten folglich die Existenz eines Fehlers in der Schaltung.
Eine Menge zusammenhängender Eingabe- und Ausgabetestvektoren wird als Testmuster
bezeichnet.

Eine rein kombinatorische Schaltung lässt sich durch testen aller 2n möglichen Testvektoren
erschöpfen Testen (engl. Exhaustive Testing), dies ist jedoch unwirtschaftlich für große n,
aufgrund der Tatsache dass die Anzahl der Belegungen exponentiell mit der Zahl der primären
Eingänge wächst. Bei sequentiellen Schaltungen ist das Problem noch größer, da selbst das
Anlegen aller 2n möglichen Testvektoren nicht das Erreichen aller internen Zustände garantiert
[WWW06]. Es müssen folglich Sequenzen von Eingangsbelegungen erzeugt werden, um schwer
zu testende Fehler abzudecken.

Ein Problem funktionaler Ansätze ergibt sich aus dem Mangel an strukturellen Informationen,
welche eine Angabe der Testabdeckung struktureller Fehler unmöglich macht. Folglich ist es
schwierig gesicherte, qualitative Angaben zu funktionalen Testmethoden anzugeben [PGSR10].

Strukturelle Testverfahren beziehen zusätzlich zu den funktionalen auch strukturelle Informatio-
nen über die Schaltung mit ein und benutzen Fehlermodelle um die Anzahl aller betrachteten
Fehler bestimmen zu können. Strukturelle Informationen und Fehlermodelle ermöglichen es
diese Testverfahren qualitativ einzuschätzen und zu vergleichen.

Die Fehlerabdeckung (engl. Fault Coverage, FC) eines Verfahrens ist definiert als die Anzahl
der abgedeckten Fehler im Bezug zur Gesamtzahl der Fehler in der betrachteten Schaltung
[WWW06, S. 41].

FC = # abgedeckte Fehler
Gesamtfehlerzahl

Um die Effizienz eines Testverfahrens (engl. Fault Detection Effeciency, FDE) zu bewerten
kann die Gleichung um redundante Fehler erweitert werden [WWW06, S. 41]. Redundante
Fehler (engl. Redundant Fault, RF) verändern die Eingabe-Ausgabe-Funktion der betrachteten
Schaltung nicht und können folglich nicht durch Testvektoren aufgedeckt werden [BA01].

FDE = # abgedeckte Fehler
Gesamtfehlerzahl − #RF
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2.2.3 Automatische Testmustererzeugung

Das Aufstellen von Testvektoren und ganzen Testmustern für eine - nicht-triviale - gegebene Schaltung
ist eine komplexe Aufgabe. Deshalb werden für diese Aufgabe ATPG-Programme eingesetzt. Es
gibt sowohl für funktionale als auch für strukturelle Testmethoden (vgl. Abschnitt 2.2.2) ATPG-
Programme. Im Folgenden wird strukturelles ATPG vorgestellt, da im Laufe dieser Arbeit strukturelle
Testmuster erzeugt werden sollen. Neben funktionalen und strukturellen ATPG-Programmen wird
zudem zwischen kombinatorischen und sequenziellen ATPG-Verfahren unterschieden.

Kombinatorisches ATPG

Kombinatorische ATPG-Verfahren behandeln ausschließlich rein kombinatorische Schaltungen. Ein
Fehler in einer kombinatorischen Schaltungen lässt sich mit einem Testmuster testen, welches genau
einen Testvektor und einen zugehörigen Ergebnisvektor enthält [BA01]. Die bevorzugte ATPG-
Methode für kombinatorische Schaltungen ist Pfadsensibilisierung (engl. path sensitization) und nutzt
eine Darstellung der Schaltung auf Gatterebene. Dabei wird ein Fehler in die Schaltung eingefügt
und durch eine passende Wahl der Eingangbelegung dafür gesorgt, dass dieser Fehler aktiviert (d.h.
der Fehler führt zu einer Wertänderung an einem Gatter) und propagiert wird (d.h. die fehlerhafte
Wertänderung führt an einem oder mehreren POs der Schaltung zu einem abweichenden Wert, ver-
glichen mit einer fehlerfreien Ausführung).
Das Problem der Pfadsensibilisierung lässt sich auf das Boolesche Erfüllbarkeitsproblem zurück-
führen und ist folglich ein NP-Vollständiges Problem. Das bedeutet, dass nicht-heuristische ATPG-
Algorithmen exponentielle Laufzeit besitzen.

Während der Berechnung von Testmustern decken ATPG-Programme zusätzlich redundante Hardwa-
re auf, d.h. Hardware deren Entfernung aus der Schaltung keinen Einfluss auf deren Funktionalität
besitzt. Durch das Entfernen von redundanter Hardware kann die Chipfläche und der Energiebedarf
der Schaltung verringert und gleichzeitig die maximale Taktfrequenz (durch verkürzte Verzögerungs-
zeiten) erhöht werden. Dabei muss beachtet werden, dass redundante Hardware auf Designebene
zusätzliche Zwecke erfüllen kann (z. B. Erhöhung der Fehlertoleranz) und folglich nicht entfernt
werden darf.

Sequenzielles ATPG

Das Erzeugen von Testmustern für sequenzielle Schaltungen ist komplexer als die Erzeugung für
kombinatorische Schaltungen [BA01]. Im Gegensatz zu Testmustern für kombinatorische Schaltungen,
bestehen Testmuster für sequentielle Schaltungen im Allgemeinen aus mehr als nur einem Paar von
Testvektoren, welche in einer fest vorgegebenen Reihenfolge angelegt werden müssen.
Zunächst muss die Schaltung jedoch in einen bekannten Zustand versetzt werden, bevor der eigent-
liche Test begonnen werden kann. Dieses sog. Initialisierungsproblem ist nicht-trivial lösbar und
erfordert erheblichen Aufwand, sowohl im Bezug auf Rechenaufwand als auch auf die Menge der
erzeugten Testmuster.
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Für den Test einer sequentiellen Schaltung ist die betrachtete sequentielle Tiefe des Tests entscheidend.
Wird eine zu niedrige sequentielle Tiefe betrachtet, können bestimmte Verhalten einer Schaltung
nicht beobachtet werden. Folglich können Fehler in diesem Schaltungsbereich nicht getestet werden,
was zu einer niedrigen Fehlerabdeckung führt. Eine höhere sequentielle Tiefe ermöglicht somit ein
ausgiebigeres Testen der gegebenen sequentiellen Schaltung, bis zu einem Punkt an dem jegliches
sequentielles Verhalten der Schaltung untersucht werden kann. Je mehr Takte jedoch betrachtet
werden, desto größer wird der Zustandsraum der Schaltung und desto aufwendiger wird folglich
die Testerzeugung und die Länge der Testmuster. Lange Testmuster führen wiederum zu großen
Testprogrammen und langer Testdauer.
Die Wahl der sequentiellen Tiefe für eine gegebene Schaltung erfordert deshalb eine genaue Untersu-
chung, um denjenigen Wert zu bestimmen, ab dem eine weitere Erhöhung der Tiefe nur noch geringe,
oder gar keine, Verbesserung der Haftfehlerabdeckung bewirkt. Je nach Testfall (vgl. Kapitel 2.2) kann
dieser Kompromiss mehr zu Gunsten der Laufzeit, Programmgröße oder Fehlerabdeckung optimiert
werden.

Eine sequenzielle Schaltung lässt sich für eine feste sequenzielle Tiefe (eine entsprechende Anzahl
an Takten) mittels des sog. TFE-Verfahrens (engl. Time Frame Expansion) [WWW06][BA01] in eine
kombinatorische Schaltung umwandeln. Durch dieses Verfahren lässt sich folglich das Problem des
sequenziellen ATPG auf ein kombinatorisches ATPG abbilden. TFE Verfaren duplizieren den kombina-
torischen Block A für jeden Takt, wobei alle Signale, Gatter und Ein- bzw. Ausgänge entsprechend der
sequentiellen Tiefe umbenannt werden (vgl. Abb. 2.4). Je nach Algorithmus werden die im aktuellen
Takt nicht benötigte Schaltungselemente nicht dupliziert. Es existieren für TFE mehrere denkbare
Varianten, die eingesetzt werden können um bestimmte Eigenschaften einer sequenziellen Schaltung
zu modellieren.

Sollen die PIs der Schaltung über alle Takte hinweg statisch sein, so kann dies durch TFE modelliert
werden, indem die PIs der duplizierten Blöcke nicht umbenannt werden (vgl. Abb. 2.5). Sollen die PIs
dagegen in jedem Takt änderbar sein (vgl. Abb. 2.6) können die PIs in jedem Takt umbenannt werden.
Auch kann die zeitliche Beobachtbarkeit der POs der zu testenden Schaltung eingeschränkt sein. In
Abb. 2.5 wird eine TFE-Variante gezeigt, bei der lediglich die POs des letzten betrachteten Taktes

Abbildung 2.4: Abstrakte Anwendung des TFE-Verfahrens.
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Abbildung 2.5: TFE-Variante mit konstanten PIs und nicht sichtbaren POs der Zwischentakte.

Abbildung 2.6: TFE-Variante mit duplizierten und umbenannten PIs und POs.

beobachtet werden können Abb. 2.6 zeigt dagegen eine Variante, bei der die POs in jedem Takt
beobachtbar sind.
Diese verschiedenen TFE-Varianten führen zu den unterschiedlichen Template-Varianten, die im
Laufe der Arbeit (in den Kapitels 3.3.2 und 3.3.2) vorgestellt werden.

Abbildung 2.4 zeigt TFE angewandt auf eine abstrakte, sequentielle Schaltung, für eine sequentielle
Tiefe von 2. Sie besteht aus dem rein kombinatorischen Block A mit zwei PIs, einem PO und dem
Flipflop FF. Der Eingang des Flipflops wird mit PPO (engl. Pseudo Primary Output) oder auch als NS
(engl. Next State) bezeichnet und der Ausgang mit PPI (engl. Pseudo Primary Input) oder PS (engl.
Present State) [BA01]. Das Zwischenergebnis von A1, welches in der sequentiellen Schaltung in FF
gespeichert ist, wird über PPO1 an A2 weitergeleitet. Die so entstehende kombinatorische Schaltung
ist funktional äquivalent zur ursprünglichen sequenziellen Schaltung, allerdings um den Faktor der
sequenziellen Tiefe vergrößert (im Beispiel verdoppelt).

Ausgangspunkt für ATPG-Programme, bei Anwendung auf eine TFE-Schaltung, ist der letzte betrach-
tete Takt. Die Bedingungen für eine Propagierung des untersuchten Fehlers an einen PO werden
aus der Schaltung und den PIs und PPIs bestimmt. Anschließend werden diese Bedingungen im
vorherigen Takt auf Erfüllbarkeit untersucht. Wird kein Konflikt entdeckt, wird dieses Verfahren bis
zu Takt 0 wiederholt und ergibt somit einen validen Testvektor. Sollte ein Konflikt entdeckt werden,
muss im vorherigen Schritt (engl. Backtracking) eine andere Sensibilisierungsvariante untersucht
werden. Dieses Verfahren wird durch eine maximale Anzahl an Versuchen beschränkt. Übersteigt
die Untersuchung eines Fehlers dieses Limit (engl. Abort Limit) wird die Untersuchung abgebrochen.
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Durch abgebrochene Fehler sinkt die Fehlerabdeckung, da diese Fehler als untestbar eingestuft werden,
obwohl sie gegebenenfalls, mit größerem Aufwand, testbar sind.

Funktionale Nebenbedingungen

Grundsätzlich erzeugen ATPG-Programme Testmuster in der Annahme, dass jeder PI der Schaltung
in jedem Takt mit einem Testmuster belegt werden kann und die Belegung der einzelnen PIs frei
wählbar ist. Ebenso wird angenommen, dass jeder PO in jedem Takt gelesen werden kann. Da dies
jedoch abhängig, von Testverfahren und der gegebenen Schaltung, nicht immer umsetzbar ist, muss
das ATPG bei der Erzeugung der Muster entsprechend eingeschränkt werden. Diese Einschränkungen
werden funktionale Nebenbedingungen (engl. Constraints) genannt.

2.2.4 Design for Testability

Bei DFT (engl. Design For Testability) handelt es sich um spezielle Anpassungen beim Entwurf digitaler
Schaltkreise, um deren Testbarkeit zu erhöhen [WWW06]. Die Idee des Prinzips stammt aus den
1970er Jahren und wurde zuerst angewandt um den Test von schwer zu testenden Schaltungsbereichen
und die Erzeugung von Testvektoren zu vereinfachen. Essentiell ist dabei das Abwägen zwischen
dem Nutzen einzelner DFT-Maßnahmen und den Hardwarekosten, die dadurch verursacht werden.
Der Nutzen von DFT-Maßnahmen ist die Erleichterung bzw. Ermöglichung spezieller Testverfahren
oder das Erschließen von, andernfalls nicht testbaren, Bereichen der Schaltung und kann oftmals durch
eine erhöhte Testabdeckung gemessen werden. Zudem verringern DFT-Maßnahmen im Allgemeinen
die Testzeit und senken somit die Testkosten, insbesondere beim Herstellungstest. Viele der im
nächsten Abschnitt vorgestellten Testmethoden sind davon abhängig, dass beim Entwurf der Schaltung
spezifische DFT-Anpassungen durchgeführt werden.

2.2.5 Testverfahren

Eine zentrale Anforderung an Testmethoden für performanceorientierte Mikrocontroller ist das Testen
bei normaler Betriebsfrequenz, da viele Fehler nur bei maximaler Betriebsfrequenz auftreten, so z. B.
deep-submicron Verzögerungsfehler (engl. Delay Faults) bei aktuellen Fertigungstechniken [PGSR10].
Testverfahren lassen sich in invasive (engl. Intrusive) und nicht-invasive (engl. Non-Intrusive) unter-
scheiden. Invasive Methoden bieten die von der Industrie geforderten sehr hohe Testabdeckung und
zeichnen sich durch gut dokumentierte und skalierbare Verfahren aus [APGP07b]. Diese Methoden
fordern zumeist das Vorhandensein spezieller DFT-Hardware. Diese kann allerdings bei High-End
Mikrocontrollers zu nicht-tragbaren Einschnitten bei der Performance oder dem Platzbedarf der
Schaltung zur Folge haben [AGP+09].
Typischerweise werden im Rahmen des Herstellungstests ATEs eingesetzt, um gefertigte Chips zu
testen. Die Betriebsfrequenz von ATEs steigt jedoch weniger rasch an, als die Frequenz von High-End
Mikrocontrollern, es entsteht somit eine sich stetig vergrößernde Lücke, welche die Testzeit einzelner
Chips, und somit die Testkosten, erhöht [KPGX07]. Hochgeschwindigkeits-ATEs sind außerordent-
lich teuer (mehrere Millionen Dollar) und bedingt durch die schnelle Entwicklung schnell veraltet
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[KLC+02]. Folglich ist at-speed Testen von High-End Mikrocontrollern mit ATEs häufig unwirtschaft-
lich [KPGX07].
Eine weit verbreitete Methode stellen scanbasierte Hardwaretests dar. Das Prinzip von Scan ermöglicht
die vollständige Beobacht- und Kontrollierbarkeit aller internen Flipflops einer Schaltung [BA01].
Durch dieses Verfahren lässt sich das Initialisierungsproblem für sequenzielles ATPG lösen und so
die Anzahl der Testmuster reduzieren. Dies führt zu verringerter Testzeit und damit zu verringerten
Testkosten.
Um ein Design scan-kompatibel zu machen werden alle Flipflops der Schaltung durch sog. Scan-
Flipflops ersetzt, die in einen spezifizierten Testmodus versetzt werden können. In diesem Modus
bilden die Scan-Flipflops ein, oder mehrere, Shiftregister (engl. Scan Register). Die Eingänge und Aus-
gänge der Scan-Register werden zu PIs bzw. POs der Schaltung. Folglich können, durch das Anlegen
geeigneter Eingabefolgen, interne Flipflops in beliebige Zustände versetzt werden (Kontrollierbarkeit)
und deren Zustand durch Shiften an dem PO sichtbar gemacht werden (Beobachtbarkeit).
Die Vorteile dieser Methoden bestehen in der sehr hohen erreichbaren Haftfehlerabdeckung (nahezu
100%), guter Skalierbarkeit des Verfahrens und der Möglichkeit ein vorhandenes Design automatisiert
in ein scan-kompatibles umzuwandeln. Das Verfahren kann zudem als Selbstest implementiert werden
und somit die Verwendung von teuren ATEs vermeiden. Bei einer solchen Implementierung werden
lediglich externe Geräte zum initiieren des Testmodus benötigt.
Scan-Verfahren besitzen zwei hauptsächliche Nachteile: Erhöhung der benötigten Chipfläche (engl.
Area Overhead) und Verringerung der maximalen Taktfrequenz (engl. Performance Overhead). Der
Overhead liegt bei beiden Fällen für gewöhnlich zwischen 5 und 10% [BA01, S. 477]. Ein weiterer
Nachteil liegt in der deutlich erhöhten Energieaufnahme während des Testmodus, bedingt durch
die hohe Schaltaktivität der Scan-Flipflops. Diese signifikant erhöhte Energieaufnahme führt zu
erhöhter Wärmeerzeugung, welche im schlimmsten Fall die Schaltung beschädigen kann. Mit den
von Wunderlich und Gerstendörfer [GW00] vorgeschlagenen Anpassungen lässt sich dieser Nachteil
jedoch erheblich reduzieren.

2.3 Software-basierter Selbsttest

SBST ist ein Testverfahren, welches weder High-Speed ATEs noch spezielle DFT-Maßnahmen benötigt.
Dazu werden programmierbare Komponenten einer Schaltung ausgenutzt, um Testmuster mithilfe
von Testprogrammen an die zu testende Komponente (engl. Device Under Test, DUT) anzulegen.
Die Ausgabewerte des DUT können anschließend mit den Soll-Werten der Testmuster abgeglichen
werden. Da die Ausführung dieser Testprogramme zu den normalen Betriebsumgebung der Schaltung
stattfindet, läuft SBST stets unter normaler Betriebsfrequenz und innerhalb des Gesamtsystems ab.
Da bei SBST auf DFT-Maßnahmen verzichtet werden kann, wird weder die Chipfläche des Systems
erhöht, noch dessen Performance beeinflusst, noch die Energieaufnahme während des Tests gesteigert.
Zusätzlich bietet SBST die interessante Möglichkeit das DUT während des Betriebs (engl. Online-
Test) zu testen und so die Verlässlichkeit des Gesamtsystems zu erhöhen. Da es sich um eine nicht-
invasive Testmethode handelt lassen sich SBST Methoden in allen Testfällen einsetzten und fertige
Testprogramme sind jederzeit veränderlich, was den SBST Ansatz-stark wiederverwendbar macht
[PGSR10].
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2.3.1 Allgemeine Durchführung

SBST-Verfahren beschäftigen sich mit der Erzeugung und Durchführung von Test-Programmen, die
sich den Instruktionen des Mikroprozessors bedienen, um Fehler zu aktivieren und sichtbar zu machen.
Die Ausführung von SBST-Programmen ist rein funktional. Allgemein gliedern sich die Durchführung
von SBST-Verfahren in die folgenden drei Schritte:

1. Laden des Testprogramms in den Systemspeicher des DUT. Dazu können existierende
Programmier- und Debug-Schnittstellen genutzt werden. Da dieser Schritt dabei nicht unter
Betriebsfrequenz ablaufen muss, kann der Gebrauch von schnellen und teuren ATEs vermieden
werden. Für periodische Selbsttests kann das compilierte Testprogramm alternativ bereits im
Systemspeicher des Mikrocontrollers vorliegen.

2. Ausführen des Testprogramms durch den Mikroprozessor des Systems. Ein Testprogramm setzt
sich dabei aus mehreren Testmustern zusammen. Jedes Testmuster besteht dabei aus einem
Konfigurationsblock, der die Komponenten in einen definierten Zustand versetzt, und einem
Funktionsblock der eine bestimmte Funktionalität der Komponente aktiviert. Beobachtbare
Ausgabewerte werden während der Ausführung, für den späteren Abgleich, in den Speicher
geladen. Dieser Schritt läuft unter normaler Betriebsfrequenz der Komponente ab.

3. Auslesen der Testresultate. Die im vorherigen Schritt gespeicherten Daten können nun durch
ein Testgerät ausgelesen und mit den Sollwerten der Testmuster abgeglichen werden um
mögliche Fehler aufzudecken. Alternativ kann auch der Mikroprozessor des Systems diesen
Schritt übernehmen. Für periodische Selbsttest können Sollwerte im Systemspeicher abgelegt
werden und mit den gespeicherten Ausgabewerten des vorherigen Schritts abgeglichen werden.

2.3.2 Erzeugen von Testprogrammen

Das Erzeugen von Testprogrammen ist eine komplexe Aufgabe, die stark von dem Testfall und den
vorhandenen Informationen über die zu testende Schaltung abhängt. Während die Testdurchführung
rein funktional abläuft, kann für die Erzeugung der Programme durchaus auf strukturelle Informatio-
nen zurückgegriffen werden. Dementsprechend unterschieden sich funktionale SBST-Methoden von
strukturellen lediglich durch die Art der genutzten Informationen, die während der Erzeugung der
Testprogramme zum Einsatz kommen, nicht jedoch bei der Ausführung - diese läuft immer funktional
ab.

Funktionaler SBST

Funktionale Methoden nutzen zur Testprogrammerzeugung lediglich Informationen über den In-
struktionssatz (engl. Instruction Set Architecture, ISA) des Prozessors und sind folglich selbst bei
Komponenten nutzbar, bei denen keine strukturellen Informationen vorhanden sind. Zentrales Pro-
blem der rein funktionalen Ansätze ist, wie bereits in Abschnitt 2.2.2 besprochen, der Mangel an
strukturellen Informationen, die eine Angabe der Testabdeckung struktureller Fehler unmöglich
macht [PGSR10].
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Funktionale Methoden nutzen entweder funktionale ATPG-Programme, randomisierte oder Feedback-
basierte Verfahren zur Erzeugung von Testmustern [PGSR10].

Struktureller SBST

Strukturelle SBST-Methoden nutzen Beschreibungen der zu testenden Schaltung auf Register-Transfer-
Ebene (engl. Register Transfer Level, RTL), in Form von Hardwarebeschreibungssprachen (engl.
hardware description language, HDL), oder synthetisierte Gatternetzlisten. Die Nutzung von Beschrei-
bungen auf Gatterebene erlaubt das Aufstellen der Haftfehlerliste (vgl. Abschnitt 2.2.1) und wird
deshalb von dem Großteil der nachfolgend vorgestellten Methoden verwendet.

Grundsätzlich läuft die Erzeugung von strukturellen Testprogrammen dabei in zwei Schritten ab:

1. Erzeugen von Testmustern. Damit ein SBST-Programm einen Fehler an einem logischen Block
aufdecken kann, muss mithilfe von Instruktionen ein geeigneter Testvektor an das DUT angelegt
werden, sodass an dem fehlerhaften Block ein abweichender Wert erzeugt wird (Fehleraktivie-
rung). Dieser muss anschließend an eine beobachtbaren Bereich der Schaltung propagiert wird.
Da nahezu jede größere Schaltung sequentielle Komponenten enthält [BA01], ist das Problem
der Testmustererzeugung für SBST-Programme ein Spezialfall des sequentiellen, strukturellen
ATPG-Problems (vgl. Kapitel 2.2.3), erweitert um die funktionalen Nebenbedingungen von SBST.
Die wichtigste funktionale Nebenbedingung von SBST ist die Einschränkung, dass Testvektoren
sich durch eine oder mehrere Instruktionen, die Teil der ISA des betrachteten Systems sind, an
das DUT anlegen lassen müssen.

2. Erzeugen des Testprogramms. Die im vorherigen Schritt erzeugten Testmuster werden an-
schließend zu einem Testprogramm zusammengefasst. Für diesen Zweck werden gewöhnlich
parametrisierte Vorlagen (engl. Templates) verwendet, in die sich die erzeugten Testmuster
einsetzen lassen. Der Einsatz von parametrisierten Templates erleichtert die Umwandlung
struktureller Testvektoren in ein ausführbares, binäres Testprogramm. Sollten die Templates
weitere funktionale Nebenbedingungen für die Erzeugung der Testmuster aufstellen, so müssen
diese von dem ATPG-Programm während der Testmustererzeugung bekannt sein. Sieht ein
Template z. B. nur in jedem zweiten Takt ein schreibenden Zugriff auf die PIs vor (da im nächsten
Takt die korrelierenden Werte der POs ausgelesen werden), muss diese Einschränkung dem
ATPG-Programm als Constraint übergeben werden.

Im Folgenden werden einige strukturelle SBST-Methoden zur Erzeugung von Testmustern besprochen.
Nach Gizopoules et. al. [PGSR10] lassen diese sich in Hierarchische und RTL-Methoden einteilen.
Hierarchische SBST-Methoden nutzen die hierarchischer Struktur des DUT aus, um Test-
programme nach einem Teile-und-Herrsche Prinzip (engl. divide and conquer) zu erzeugen
[GVA06][LJ07][CRRD03][WWC+06][CWLG07]. Im Divide-Schritt wird dazu das DUT in dessen
einzelne Module aufgeteilt. Anschließend werden Testvektoren für jedes Teilmodul mithilfe eines
strukturellen ATPG-Programms erzeugt. Die das Modul umgebende Schaltung wird auf einem höhe-
ren Abstraktionslevel miteinbezogen, oder mithilfe einer Reihe von ATPG-Constraints abgebildet.
Durch diese Abbildung wird die Wahrscheinlichkeit erhöht Testvektoren (je Teilmodul) zu erhalten,
die sich mittels Instruktionen an das Gesamtsystem anlegen lassen. Diejenigen Testvektoren die sich
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mittels von Befehlen der ISA an die Gesamtschaltung anlegen lassen, werden im Conquer-Schritt
zum SBST-Testprogramm zusammengefasst .

Eine ganze Reihe von Verfahren [CCRS00][KMT+08][BSS+07] beschäftigt sich mit der Entwicklung
und Anwendung von Metriken auf RTL-Ebene, da komplexe Schaltungen auf Gatternebene einen
erheblichen Rechenaufwand für die Erzeugung von Testmustern per ATPG bedeuten. Die untersuchten
Metriken sollen einen Kompromiss zwischen möglichst hoher Abstraktion einerseits und hoher
Aussagekraft, bezüglich bestehender Fehlermodellen anderseits, bieten. Vorgeschlagene Metriken
messen z. B. den abgedeckten Prozentsatz der Verzweigungen (engl. Branch Coverage), Ausdrücke
(engl. Statement Coverage), Bedingungen (engl. Condition Coverage) oder die Anzahl an Signal-
oder Registeränderungen (engl. Toggle Coverage) einer gegebenen HDL-Beschreibung durch ein
gegebenes Testprogramm [KMT+08][BSS+07]. Große kombinatorische Komponenten korrelieren
jedoch schlecht mit RTL Metriken, was ihren Nutzen für viele Komponenten, oder Teilmodule,
einschränkt [BSS+07].

Einschränkungen von SBST

Neben den funktionalen Nebenbedingungen des SBST-Paradigmas können je nach Anwendungsfall
und Testsystem weitere Einschränkungen hinzukommen, die ein Abwägen zwischen der erzielbaren
Fehlerabdeckung und den zusätzlichen Anforderungen notwendig machen. Soll das Testprogramm
z. B. während des Herstellungstest Anwendung finden, so ist die Laufzeit des Testprogramms von
vorrangiger Bedeutung, dagegen im Fall der Rückläuferanalyse nicht entscheidend. Die Größe des
verbauten Systemspeichers kann ebenfalls ein einschränkendes Kriterium für die maximale Länge der
Testprogramme darstellen. Ebenfalls können SBST-Verfahren auf den Energieverbrauch der entwickel-
ten Testprogramme hin optimiert werden [Zho09]. Sind dagegen keine strukturellen Informationen
über das DUT verfügbar, so können strukturelle SBST-Methoden nicht eingesetzt werden und es muss
auf funktionale Methoden zurückgegriffen werden.

2.3.3 Anwendung auf Peripheriekomponenten

Tests für Peripheriekomponenten zu entwickeln stellt eine anspruchsvolle Aufgabe dar, da die
Kontrollier- und Beobachtbarkeit interner Signale gegenüber Mikroprozessoren im Allgemeinen
deutlich niedriger ist [BSS+07][GHS+12]. Hinzu kommt dass die Kommunikationsgeschwindigkeit
meist erheblich langsamer ist als die Taktrate des Mikroprozessors, was zu langen Wartezeiten und
somit zu langer Gesamttestzeit führt [AGP+09].
Generell gehen SBST-Methoden für Peripheriekomponenten davon aus, dass alle anderen Komponen-
ten des Systems, insbesondere betrifft dies die für SBST benötigten Komponenten Mikroprozessor
und Systemspeicher, fehlerfrei sind. Dies kann entweder durch Hardware-basierte Testmethoden
oder durch die vorherige Anwendung von SBST-Methoden auf den Mikroprozessor und den Speicher
erreicht werden.
Um Kommunikationskomponenten erfolgreich zu testen muss eine protokollgerechte Kommunikation
stattfinden [AGP+09]. Es gibt im wesentlichen zwei Ansätze diese Kommunikation zu ermöglichen:
externe Testgeräte oder die Nutzung einer Loopback-Struktur. Die erste Variante sieht die Nutzung
eines ATEs vor, welches als Kommunikationspartner für das DUT fungiert. Dabei ist zu beachten,
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dass das ATE zumindest dieselbe Betriebsfrequenz wie eine entsprechende Kommunikationskompo-
nente besitzen muss. Während dieser Ansatz für Herstellungstest oder Rückläuferanalyse durchaus
geeignet ist, kann er keinesfalls für Feldtests genutzt werden. Als zweite Möglichkeit kann deshalb
ein Loopback-Mechanismus implementiert werden, der es ermöglicht gesendete Werte anschließend
auszulesen und mit den ursprünglichen Daten auf Übertragungsfehler abzugleichen. Abstrakt gesehen
wird bei einem Loopback die Sendeeinheit der Komponente mit der Empfangseinheit verbunden,
sodass gesendete Werte von der Schaltung empfangen werden können. Diese Variante bietet die
Möglichkeit von Feldtests oder periodischen Selbsttests, allerdings macht sie, abhängig vom Kom-
munikationsprotokoll, gewisse DFT-Maßnahmen erforderlich. Durch einen solchen Loopback kann
folglich die Beobachtbarkeit und die Kontrollierbarkeit von Kommunikationskomponenten stark
erhöht werden. In vielen Komponenten sind bereits Loopback-Mechanismen vorgesehen um Pro-
grammierer zu unterstützten [AGP+09], was die Notwendigkeit von zusätzlichen Designanpassungen
beseitigt. Je nach Kommunikationsprotokoll kann ein Loopback einfach implementiert werden, z. B.
bei UART oder benötigt bestimmte Hardwarezusammensetzungen, z. B. hierarchische Protokolle
benötigen sowohl Master,- als auch Slavekomponenten um ein Loopback zu erreichen.

Ein früher, rein funktionaler Ansatz von Jayaraman et. al. [SA98] erreichte eine relativ geringe
Haftfehlerabdeckung von 67,89% [SA98] auf einer einfachen UART-Komponente und zeigte einige
der zentralen Problemstellungen für SBST auf Kommunikationsperipheriekomponenten auf.

Gizopoulos et. al [APGP07b] präsentierten eine systematische, deterministische Methodik welche
eine sehr gute Fehlerabdeckung, bei kleiner Testprogrammgröße, erreicht. Die Methode erfordert
jedoch manuellen Aufwand zur Testmustererzeugung und ausführliche Kenntnisse über interne
Funktionen der Komponenten. Die Methode erfordert die Identifikation der zentralen Teilmodule der
Kommunikationskomponente und pro Modul das Aufstellen von Test-Templates. Je ein Template wird
für die verschiedenen Betriebsmodi der Komponente, für die Anbindung des DUT an den Systembus,
für jede FIFO-Struktur (engl. First In First Out) und für Fehlerbehandlungslogik erzeugt. Dabei finden
sich FIFO Elemente zumeist bei seriellen Kommunikationskomponenten im Sende- bzw. Empfangsteil.
Diese Templates können abschließend zu einem Gesamttestprogramm zusammengefasst werden.
Experimentelle Anwendung dieser Methode auf einer UART und einer Ethernet Kommunikations-
komponente erreichen eine Haftfehlerabdeckung von 93,74% und 91,7% [APGP07a].

Ein weiterer Ansatz von Reorda et. al. [BSS+07] nutzt einen evolutionären Algorithmus um mithilfe
von Metriken auf HDL-Ebene sog. Testblöcke zu erzeugen und iterativ zu verbessern, die in der Lage
sind das DUT zu konfigurieren und zu testen. Die erzielten Ergebnisse sind durch die Verwendung
des evolutionären Algorithmus heuristisch, allerdings können durch dieses Verfahren sehr schnell
Testprogramme erzeugt werden. Die zur Optimierung der Testblöcke vorgeschlagenen Metriken -
Statement, Branch, Condition, Expression und Toggle Coverage - bestimmen die prozentuale Abde-
ckung gegebener Blöcke anhand der HDL-Beschreibung der Komponente.
Eine experimentelle Anwendung auf eine UART und Ethernet Komponenten erreichte eine Haftfeh-
lerabdeckung von 86,35% und 86,57% [AGP+09]. Die verwendeten Komponenten waren identisch
zu jenen die bei der experimentellen Auswertung der Methode von Gizopoulos et. al. Anwendung
fanden.

Diese beiden Methoden wurden in [AGP+09] zu einer zusammengefasst. Dazu werden die funktio-
nalen Informationen, die in [APGP07b] eingeholt werden, genutzt um den Erzeugungsprozess des
evolutionären Algorithmus zu verbessern. Der evolutionäre Algorithmus von [BSS+07] wird einzeln
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für die in [APGP07b] beschriebenen Teilmodule der jeweiligen Kommunikationskomponente ange-
wandt. Dies verringert den Suchraum für den Algorithmus erheblich, was zu effizienteren Testblöcken
innerhalb weniger Iterationen führt [AGP+09].
Testergebnisse dieser hybriden Methode zeigen für UART und Ethernet eine Haftfehlerabdeckung
von 93,13% und 91,70% [AGP+09]. Insbesondere zeigen die Ergebnisse eine Verbesserung bei der Er-
zeugung der Testblöcke für FIFO-Strukturen und eine erheblich verringerten Aufwand zur Erzeugung
der Testprogramme (verglichen mit dem Aufwand der deterministischen Methode von [APGP07b]).

Systemperipheriekomponenten sind im Allgemeinen noch komplexer zu testen als Kommunikations-
komponenten, da deren Beobacht- und Kontrollierbarkeit äußerst gering ist [GHS+12] und Fehler in
diesen Komponenten die Ausführung des Testprogramms beeinflussen kann. Zudem erfordern sie
sorgfältige Konfiguration weiterer Systemkomponenten.
Die Methode [DBG03] zielt auf das Testen von Randfällen (engl. Corner Cases) von Systemperiphe-
riekomponenten ab. Dazu wird das DUT in eine abstrakte Zustandsmaschine übersetzt und mithilfe
eines abdeckungsorientierten Algorithmus durchlaufen. Anschließend können aus der abstrakten
Zustandsfolge die Testvektoren erzeugt werden. Dabei dient die Zahl der durchlaufenen Zustände als
high-level Metrik.
Ein weiterer Ansatz [GHS+12] für Systemperipheriekomponente stellt aus Informationen über die
Zielkomponente einen formalen Konfigurationsgraphen (engl. Configuration Graph) auf. Aus diesem
lassen sich, mithilfe eines Rundlauf-Algorithmus (engl. Visiting Algorithm), Konfigurationspfade
berechnen, welche die Konfigurationen der einzelnen Komponenten bestimmen. Für jeden solchen
Pfad kann ein Test-Template erzeugt werden. Diese garantieren eine Konfiguration, die sich mithilfe
von Prozessorinstruktionen anlegen lässt, für alle Systemkomponente die benötigt werden um ein
bestimmtes Verhalten der Systemperipheriekomponente zu beobachten.

Im Gegensatz zu den heuristischen Methoden von [AGP+09] und [BSS+07] wird in dieser Arbeit
eine deterministische, strukturelle SBST-Methode vorgestellt und die Wirksamkeit von einfachen
Maßnahmen zur Verbesserung der Kontrollier- und Beobachtbarkeit auf die erreichbare Haftfehlerab-
deckung betrachtet. Ebenfalls wird der Einfluss von funktionalen Nebenbedingungen einer Schaltung
und von zwei unterschiedlichen Template-Varianten auf die Haftfehlerabdeckung, Testdauer und
Programmgröße untersucht.
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Im folgenden Kapitel wird zunächst in Unterkapitel 3.1 das genutzte Testsystem besprochen und auf
die Implementierung der zu testenden Kommunikationskomponente eingegangen. Die Abschnitte
3.1.1 und 3.1.2 stellt die beiden Teilkomponenten (Master und Slave) der I2C-Peripheriekomponente
vor. Zudem wird in Unterkapitel 3.1.4 das Mapping der I2C-Ports auf MMI/O Adressen besprochen.
Im zweiten Abschnitt (3.2) werden die vorgenommenen Maßnahmen vorgestellt, welche die Beobacht-
und Kontrollierbarkeit der Kommunikationskomponente erhöhen und somit die strukturelle Feh-
lerabdeckung verbessern. Dieser ist in zwei Teile gegliedert: der erste Abschnitt (3.2.1) bespricht
die Implementierung des Loopback-Mechanismus während im Unterkapitel 3.2.2 diejenigen interne
Signale vorstellt werden, die zur Verbesserung der Beobachtbarkeit dem System sichtbar gemacht
werden. Zuletzt werden im Abschnitt 3.2.3 die untersuchten Kombinationen der vorgestellten Maß-
nahmen vorgestellt, deren Ergebnisse im Kapitel 4 besprochen werden.
In Unterkapitel 3.3 wird schließlich die Anwendung der strukturellen SBST Methode auf die vorge-
stellte Kommunikationsperipheriekomponenten gezeigt. Abschnitt 3.3.1 beschreibt die Erzeugung
der Testmuster mittels eines sequenziellen ATPG-Programms. Zuletzt wird im Unterkapitel 3.3.2
kurz erklärt, welche Schritte unternommen werden müssen, um ein fertiges Testprogramm aus den
erzeugten Testmustern zu erzeugen. Dazu werden zwei unterschiedliche Test-Template Varianten
besprochen.

3.1 Implementierung des Testsystems

Als Testumgebung für diese Arbeit wird der Open-Source Mikroprozessor miniMIPS1 mit einem
kompatiblen RAM-Modul benutzt. Bei miniMIPS handelt es sich um einen 32-Bit RISC Mikroprozessor
mit fünfstufiger Pipeline, Bypassing-Komponente und Sprungvorhersage. Die Synthese der miniMIPS-
Referenz erreicht eine Taktrate von 50MHz. Als zu testende Kommunikationsperipheriekomponente
wird ein einfacher I2C-Master und ein dazu kompatibler Slave verwendet, die jeweils per MMI/O
Controller an den Prozessor angeschlossen sind.

Abbildung 3.1 zeigt ein Blockschaubild des Testsystems mit besonderem Augenmerk auf der Schnitt-
stelle der I2C-Komponente. Prozessor, Speichermodule und MMI/O Controller sind dabei über einen
Systembus verbunden, welcher dem Speicherprotokoll des miniMIPS entspricht. Zusätzlich zeigt
die Abbildung den Clock Divider, welcher durch Teilung der Systemtaktfrequenz den langsameren
Peripherietakt erzeugt. Durch diese Teilung lässt sich die Übertragungsrate der Komponente einstellen.
Der aktuelle Pegel des Peripherietaktes kann mittels MMI/O Zugriff auf des sync-Signal abgefragt
werden und dient der Synchronisierung von Software und Peripheriekomponente.

1http://opencores.org/project,minimips
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Abbildung 3.1: Blockschaubild des Testsystems.

3.1.1 I2CMaster

Die Masterkomponente ist entsprechend der NXP Spezifikation [NXP14] implementiert. Die in
Unterkapitel 2.1.2 genannten Erweiterungen des I2C-Protokolls sind nicht implementiert.

Schnittstelle

Das Schaubild 3.1 zeigt die Schnittstelle der Masterkomponente. Das Taktsignal (i2c_clk) der Kompo-
nente wird durch den Clock Divider erzeugt, während das Reset-Signal (reset) softwareseitig gesetzt
werden kann. Die Kontrolleingänge en_send und en_recv spezifizieren (exklusiv) die gewünschte Ope-
ration (Senden bzw. Empfangen), zudem führt das Setzen eines der Signale zum Start der gewählten
Übertragung. Die Anbindung der Komponente an den I2C-Bus geschieht über die Signale m_SDA
undm_SCL die den I2C-Busleitungen SDA und SCL entsprechen. Mit data_inout kann auf das interne
Datenregister zugegriffen werden, während der addr Eingang die 7-Bit I2C-Adresse des Ziels der
Übertragung und byte_cnt die Menge der zu übertragenden Bytes spezifiziert. Die Implementierung
kann bis zu 8 Bytes infolge übertragen, anschließend muss eine neue Kommunikation gestartet wer-
den. Das idle-Signal dient als Bereitschaftssignal für den Systembus. Ein logischer Wert 1 auf dieser
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Leitung signalisiert das Erreichen des Startzustands, nicht jedoch eine erfolgreich abgeschlossene
Kommunikation.

Zustandsautomat

Abbildung 3.2 zeigt den Zustandsautomaten der Masterkomponente. Die Masterkomponente erzeugt
gemäß [NXP14] das I2C-Taktsignal auf der SCL-Leitung.
Der Startzustands des Systems erwartet das Setzen von en_send bzw. en_recv um mit einer Übertra-
gung zu beginnen. Während sich die Komponente im IDLE-Zustand befindet, hat das idle-Signal den
Wert 1. Nachdem en_send oder en_recv gesetzt sind, durchläuft die Komponente die START -Zustände
und generiert dabei die in Abschnitt 2.2 beschriebene Startbedingung. Anschließend wird mit der
Übertragung des ersten Bytes begonnen, welches sich aus der an addr angelegten Zieladresse (7 Bit)
und dem R/W-Bit zusammensetzt. Das R/W Bit geht aus der gewählten Operation hervor - en_recv
steht für eine Leseoperation und ist als R/W = 1 definiert, en_send für eine Schreiboperation und
erzeugt R/W = 0. Die Übertragung des (Adress-)Bytes läuft dabei nahezu identisch zur Übertragung
eines Datenbytes ab, nutzt folglich auch dieselben Zustände und unterscheidet sich lediglich durch
das Setzen eines internen Statussignals.
Die Abfolge der Zustände zur Übertragung eines Bytes besteht aus den beiden SEND- und den
GET_D_ACK-Zuständen (im Folgenden mit Sendeschleife bezeichnet und analog Empfangsschleife
für den Empfang). Die SEND-Zustände werden dabei achtmal durchlaufen und das interne Daten-
register vom höchstwertigen zum niederwertigsten Bit ausgelesen. Das aktuell gelesene Bit wird
über die SDA-Leitung übertragen. Anschließend empfängt der Master das ACK-Bit in den beiden
Zuständen GET_D_ACK. Wird ein NACK empfangen, geht der Master in den Fehlerzustand FAIL
und bricht die Übertragung durch die in Kapitel 2.2 beschriebene Stoppbedingung ab. Ist das interne
Adressierung-Statussignal (addr_flag) gesetzt und wird ein ACK empfangen, beginnt die Komponente
die eigentliche Datenübertragung. Entsprechend dem R/W-Bit wird in die Sende- oder Empfangs-
schleife gesprungen.

Dabei läuft der Transmittermodus ähnlich zur Übertragung der Adresse und des R/W-Bits ab. Nach
jeder - mit einem ACK quittierten - Sendeschleife wird zusätzlich der Byte-Zähler dekrementiert
und entweder die Kommunikation beendet, durch einen Übergang in den STOPP-Zustand, oder das
nächste Byte gesendet - durch Rücksprung zu SEND_1.

Die Empfangsschleife besteht aus den READ-Zuständen die, vergleichbar mit den SEND Zuständen,
byteweise durchlaufen werden. Das aktuelle Bit wird dabei von der SDA-Leitung in das interne
Datenregister geschrieben. Nach jedem Durchlauf wird der Byte-Zähler dekrementiert. Anschließend
sendet der Master in den Zuständen SEND_D_ACK über SDA eine logische 0 - das Daten ACK gemäß
Kapitel 2.1.2 - wenn weitere Bytes gelesen werden sollen, oder eine logische 1 - ein NACK - um
die Übertragung des Slaves nach dem letzten Byte abzubrechen. Nach dem übertragenen NACK
wird die Kommunikation ordnungsgemäß durch den Übergang in den STOP-Zustand - welcher die
I2C-Stoppbedingung erzeugt - beendet.
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Abbildung 3.2: Kommentierter Zustandsautomat der I2C-Master Komponente.
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3.1.2 I2CSlave

Die Slavekomponente ist ebenfalls entsprechend der NXP-Spezifikation [NXP14] implementiert.

Schnittstelle

Das Taktsignal (i2c_clk) der Komponente wird durch den Clock Divider erzeugt, während das Reset-
Signal (reset) softwareseitig gesetzt werden kann. Die Anbindung der Komponente an den I2C-Bus
geschieht über die Signale s_SDA und s_SCL die den I2C-Busleitungen SDA und SCL entsprechen.
data_inout erlaubt den Zugriff auf das interne Datenregister, während mithilfe der addr Eingangs
die 7-Bit I2C-Adresse der Komponente - softwareseitig - festlegt werden kann. Das idle-Signal dient
als Bereitschaftssignal für den Systembus. Ein logischer Wert 1 auf dieser Leitung signalisiert den
Startzustands, nicht jedoch eine erfolgreich abgeschlossene Kommunikation.

Zustandsautomat

Abbildung 3.3 zeigt den Zustandsautomaten der Slavekomponente. Der Startzustand der Komponente
wartet auf den Empfang der I2C-Startbedingung und löst anschließend den Zustandsübergang nach
READ_1 aus um die adressierte I2C-Adresse zu empfangen. Dabei lauft der Empfang der Zieladresse
identisch zum Empfang von Daten ab. Folglich können dieselben Zustände genutzt werden, wobei
ein internes Statussignal (addr_flag) die beiden Fälle unterscheidet.
Die Empfangsschleife besteht aus den zwei SEND-Zuständen die achtmal durchlaufen werden und
dabei das interne Datenregister vom höchstwertigen zum niederwertigsten Bit beschreibt. Das aktuelle
Bit wird von der SDA-Leitung gelesen und in das Register an die Position eingetragen. Nach dem
Durchlaufen der Sendeschleife befindet sich die Slavekomponente im Zustand SEND_D_ACK. Ist
addr_flag gesetzt wird die empfangene Adresse (die sieben höchstwertigen Bits) mit der durch addr
zugewiesenen I2C-Slaveadresse abgeglichen. Sind beide Adressen identisch, wird ein ACK über SDA
gesendet und entsprechend dem R/W-Bit (dem niederwertigsten empfangenen Bit) in die Sende - oder
Empfangsschleife gesprungen. Stimmen die Adressen nicht überein wird ein Zustandsübergang in
den Startzustand ausgelöst. Ist addr_flag dagegen nicht gesetzt befindet sich die Komponente in der
Daten-Empfangsschleife. Bei Erreichen des SEND_D_ACK Zustands generiert die Komponente ein
ACK, um den Empfang der Daten zu bestätigen. Danach verbleibt die Komponente in diesem Zustand
bis zum Beginn der nächsten Übertragung - es folgt ein Zustandsübergang nach READ_1 - oder bis
zum Empfang der I2C-Stoppbedingung. Diese löst einen Zustandsübergang nach IDLE aus.
Die Sendeschleife besteht aus den SEND-Zuständen die, äquivalent zur Empfangsschleife, achtmal
durchlaufen werden und somit ein Byte senden. Das aktuelle Bit wird dabei auf die SDA-Leitung
gelegt. Nach jedem Durchlauf wird der Byte-Zähler dekrementiert. Anschließend erwartet der Slave
im Zustand GET_D_ACK das Daten-ACK des Master, übertragen via SDA. Wird ein ACK empfangen,
folgt das nächste Byte, andernfalls (NACK-Empfang) wird die Kommunikation abgebrochen und ein
Zustandsübergang nach IDLE vorgenommen.
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Abbildung 3.3: Kommentierter Zustandsautomat der I2C-Slave Komponente.

3.1.3 Taktteilung

Kommunikationskomponenten werden gewöhnlich mit einem deutlich langsameren Takt (Peripherie-
takt) betrieben, als z. B. der Mikroprozessor des Systems (Systemtakt). Damit Kommunikationskom-
ponenten dennoch synchron zum System arbeiten, können Taktteiler (engl. Clock Divider) eingesetzt
werden. Dies vermeidet zudem zusätzlich benötigte Logik um ein neues Taksignal zu generieren.
Taktteiler zählen den Systemtakt mit und erzeugen, entsprechend einem gegebenen Teiler, den Peri-
pherietakt.
Im Fall von Kommunikationskomponenten kann durch die Anpassung dieses Multiplikators die
Übertragungsrate gewählt werden.

3.1.4 Memory Mapped Input Output

Das Mapping der Ports des DUT auf Speicheradressen beeinflusst die Anzahl der nötigen Speicher-
zugriffe die für das Anlegen bzw. Auslesen von Testvektoren benötigt werden. Werden die n Ports
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einer betrachteten Komponente jeweils auf eine MMI/O Adresse abgebildet, so werden n Speiche-
roperationen benötigt, um alle Eingangssignale der Schaltung zu setzen. Werden jedoch mehrere
Ports auf dieselbe Adresse abgebildet kann die Zahl der benötigten Speicherzugriffe erheblich gesenkt
werden. Deshalb werden möglichst viele Interface-Signale auf eine einzige MMI/O Adresse gemappt,
wobei die Anzahl der pro Speicheradresse zusammengefassten Ports durch die Wortbreite des Systems
beschränkt ist.

Für die Anbindung der Master- und Slavekomponente werden zwei MMI/O Adressen für Eingabe
und eine weitere für Ausgabewerte benötigt.

MMI/O Mapping

Die Abbildung 3.4, 3.5 und 3.6 zeigt die Bit-Verteilung von den MMI/O Adressen auf das I2C-Interface
(vgl. Kapitel 3.1).
Für die Anbindung der in im nächsten Kapitel vorgestellten Maßnahmen zur verbesserten Beobacht-
barkeit wird eine weitere MMI/O Adresse benötigt. Abbildung 3.7 zeigt das Bit-Mapping der einzelnen
Maßnahmen innerhalb dieser MMI/O Adresse. Zur Verringerung der benötigten MMI/O Zugriffe wird
das lbenable-Signal, welches die Loopback-Komponente aktiviert, gemeinsam mit dem Interface der
Slavekomponente, auf ein Datenwort abgebildet.

3.2 Anpassungen zur Verbesserung der Haftfehlerabdeckung

Abbildung 3.8 zeigt die vorgenommen Anpassungen des Systems im Überblick. Um die Durchführung
der Experimente zu vereinfachen, wurde eine Schaltung implementiert in der alle vorgeschlagenen
Maßnahmen zur Verbesserung der Kontrollier- und Beobachtbarkeit (blau markiert) eingefügt sind
(vgl. Abbildung 3.8).
Die rot eingezeichneten Steuersignale und Gatter ermöglichen eine Auswahl der verwendeten Maß-
nahmen für Testzwecke mithilfe von ATPG Nebenbedingungen (vgl. Kapitel 3.2.3) und sind nicht
Teil der untersuchten Implementierungen. Diese Signale werde im folgenden als ATPG-Steuersignale

Abbildung 3.4: Bit-Mapping der MMI/O Adresse auf die Eingänge der I2CMasterkomponente.
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Abbildung 3.5: Bit-Mapping der MMI/O Adresse auf die Eingänge der I2CSlavekomponente.

Abbildung 3.6: Bit-Mapping der MMI/O Adresse auf die Ausgänge der I2CKomponenten.

Abbildung 3.7: Bit-Mapping der MMI/O Adresse auf die Maßnahmen zur verbesserten Beobachtbar-
keit.
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bezeichnet. Dazu wurde jedes Signal der Verbesserungen mit einem zusätzlichen Steuersignal an ein
UND-Gatter angeschlossen, dessen Ausgabewert als finales Steuersignal genutzt wird. Wird folglich
ein ATPG-Steuersignal als Nebenbedingung in der Form a = 0 auf den logischen Wert 0 gezwungen,
so steht die entsprechende Maßnahme für den folgenden Test nicht zur Verfügung. So kann z. B. durch
das Einfügen einer Nebenbedingung für die Steuerleitung lbenable auf den Wert 0 die Benutzung der
Loopback-Komponente deaktiviert werden.

3.2.1 Loopback

Eine häufig genutzte Methode um die Beobacht- und Kontrollierbarkeit von Kommunikationsperi-
pheriekomponenten zu erhöhen ist das Einfügen eines Loopbacks, eine Möglichkeit übertragene
Daten vor und nach der Übertragung einsehen zu können. Durch das Einfügen einer sehr einfachen
Loopback-Komponente in das in Kapitel 3.1 vorgestellte Testsystem werden die beiden - bislang nicht
verbundenen - I2C-Module an einen gemeinsamen I2C-Bus angeschlossen. Über das lbenable-Signal
kann zwischen diesem Testmodus (die Komponenten sind über einen internen I2C-Bus verbunden)
und dem Normalbetrieb (die Komponenten sind an ihre jeweiligen externen Busse angeschlossen)
gewechselt werden.

Die Beobachtbarkeit wird erhöht, da durch diese Erweiterung alle Übertragungen zwischen Master-
und Slavekomponente beobachtet werden können. So wird es möglich die ursprünglichen mit den
empfangenen Daten abzugleichen und dadurch Fehler aufzudecken. Stimmen die so erzeugten Daten
überein, ist zudem eine protokollgerechte Übertragung abgelaufen. Folglich können bestimmte Fehler
in der Protokoll-Logik mittels der Loopback-Komponenten entdeckt werden, wenn sich diese Fehler
auf die empfangenen Daten der Gegenseite auswirken.
Die Kontrollierbarkeit interner Signale wird durch ein Loopback erhöht, da dies den vollständi-
gen Ablauf einer Kommunikation ermöglicht. Durch die Möglichkeit den Loopback während einer
Übertragung abzubrechen, wird die Fehlerbehandlungslogik testbar. So lässt sich beispielsweise der
Verbindungsabbruch während der Kommunikation, resultierend in einem empfangenen NACK bei
der Datenbestätigung, oder ein nicht antwortender Slave bei der Adressierung, simulieren und so die
zuständige Logik aktivieren und testen. Ob diese Möglichkeit beim ATPG-Prozess zum Einsatz kommt,
hängt jedoch von dem verwendeten Template, und den daraus resultierenden Nebenbedingungen
ab.

Diese Maßnahme führt zu einem nur sehr geringen Hardware Overhead. Für jede der insgesamt acht
I2C-Busleitungen wird ein 2 × 1 Multiplexer benötigt, jeweils mit lbenable als Steuersignal, um die
Anbindung der beiden I2C-Komponenten zwischen Testmodus und Normalbetrieb zu wechseln.

3.2.2 Sichtbarmachung interner Signale

Um die Beobachtbarkeit des internen Zustands der Komponente zu erhöhen, können interne Signale
dem System sichtbar gemacht werden. Diese Signale werden oft auch zu Debugzwecke in die MMI/O
Schnittstelle integriert. Im Folgenden werden diese Signale einzeln erklärt und kurz die Motivation
hinter der Wahl der gewählten Signale vorgestellt.
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Abbildung 3.8:Modifiziertes Testsystem.

State Diese Erweiterung wird sowohl auf die Master- als auch auf die Slavekomponente angewandt
und gibt den - binär codierten - Zustand aus. Die vorgestellten Zustandsautomaten der Master-
bzw. Slavekomponente zeigen die Codierung der Zustände. Durch diese Maßnahme lassen
sich z. B. Fehler in der internen Umsetzung der Zustandsautomaten erkennen bzw. von an-
deren Haftfehlern des Systems unterscheiden. Für die Ausgabe des aktuellen Zustands der
Masterkomponente werden 4-Bit benötigt, beim Zustand des Slaves lediglich 3-Bit.

I2C-Bus Um die protokollgerechte Kommunikation der Komponenten nachvollziehen zu können,
werden die Bussignale des I2C-Busses an der MMI/O Schnittstelle sichtbar gemacht. Dazu
werden die I2C-Signale (SDA und SCL) der Masterkomponente abgegriffen und dem System
sichtbar gemacht.

Bit-Zähler Beide I2C-Komponenten enthalten jeweils eine Sende- und Empfangsschleife mit einem
8-Bit Zähler um die Zahl der empfangenen bzw. gesendeten Bits zu zählen. Durch Ausgabe
dieses Zählersignals, über ein 3-Bit Signal, können Haftfehler in der Zählerlogik entdeckt
werden, welche u.a. zu Endlos-Übertragungen führen können.

Error Als Alternative zur codierten Ausgabe aller Zustände, können einzelne Zustände ausgege-
ben werden. Als Beispiel wird ein Signal gewählt, dass das Erreichen des Fehlerzustands der
Masterkomponente anzeigt.

3.2.3 Untersuchte Konfigurationen

Um die Wirksamkeit der einzelnen Maßnahmen zu untersuchen, werden verschiedene Kombina-
tionen der vorgestellten Eingriffe unter bestimmten Bedingungen untersucht. Tabelle 3.1 zeigt alle

38



3.3 Testprogrammzeugung

untersuchten Varianten und die ATPG-Steuersignale, die für diese jeweils gesetzt werden müssen.
Grundsätzlich werden zwei verschiedene Konfigurationen betrachtet:

N Bei Versuchsbezeichnungen die mit diesem Kürzel beginnen wird davon ausgegangen, dass
kein Kommunikationspartner im I2C-Netzwerk vorhanden ist. Folglich kann keine Daten-
übertragung erfolgen. Im Testsystem werden diese Versuche umgesetzt indem die Loopback-
Komponente deaktiviert wird.

O Bei dieser Konfiguration kann der Kommunikationspartner (der I2C-Slave) beobachtet und
kontrolliert werden. Es entsteht folglich ein Loopback, da gesendete bzw. empfangene Daten
des DUT mit den korrespondierenden Daten des Slave abgeglichen werden können. Dazu wird
das lbenable-Signal auf eine logische 1 gesetzt.

3.3 Testprogrammzeugung

Entsprechend der in Abschnitt 2.3.2 vorgestellten, allgemeinen Methode zur Erzeugung struktureller
SBST-Programme gliedert sich die im Folgenden beschriebene Methode in zwei Abschnitte: Zuerst
wird in Unterkapitel 3.3.1 die Erzeugung von Testmustern besprochen und anschließend im Abschnitt
3.3.2 die Umwandlung der Testmuster in ein Testprogramm diskutiert.

3.3.1 Testmuster

Das SAT-basierte ATPG wandelt die ursprünglich sequentielle Zielschaltung durch Anwendung von
TFE in eine rein kombinatorischen Darstellung um, welche die Originalschaltung für eine bestimmte

Versuchskürzel lb_en m_cnt_en err_en m_state_en i2c_Bus_en s_state_en s_cnt_en
NONE 0 0 0 0 0 0 0
N_cntm 0 1 0 0 0 0 0
N_errm 0 0 1 0 0 0 0
N_statem 0 0 0 1 0 0 0
N_bus 0 0 0 0 1 0 0
O_lb 1 0 0 0 0 0 0
O_lb|cntm 1 1 0 0 0 0 0
O_lb|err 1 0 1 0 0 0 0
O_lb|statem 1 0 0 1 0 0 0
O_lb|bus 1 0 0 0 1 0 0
O_lb|states 1 0 0 0 0 1 0
O_lb|cnts 1 0 0 0 0 0 1
FULL 1 1 1 1 1 1 1

Tabelle 3.1: Untersuchte Varianten und korrespondierende ATPG-Steuersignale.
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Anzahl von Taktschlägen repräsentiert. Die funktionalen Nebenbedingungen für die Testmusterer-
zeugung setzten sich aus einer Vielzahl von Faktoren zusammen und müssen als Nebenbedingung an
das ATPG-Programm übergeben werden.

Funktionale Nebenbedingungen

Grundsätzlich muss die zentrale funktionale Nebenbedingung von SBST beachtet werden, d.h. Test-
muster müssen sich mithilfe von ISA-Instruktionen an das DUT anlegen lassen.

Ein wichtiger Aspekt spielt das Timing-Verhalten der betrachteten Komponenten. Ohne zusätzliche
Einschränkungen erzeugt ein ATPG-Programm Testmuster unter der Annahme, dass alle gegebenen
PIs in jedem Takt geschrieben und alle POs in jedem Takt beobachtet werden können. Daraus folgt,
dass ein Testprogramm innerhalb eines Taktschlags des DUT an alle PIs Testvektoren anlegen muss
und zusätzlich aktuelle Ausgabewerte der POs, für den späteren Abgleich, abspeichern oder mit den
Sollwerten der Testmuster abgleichen muss. Diese Aufgabe kann nur durchgeführt werden, wenn
die untersuchte Komponente eine erheblich geringere Taktfrequenz als der Mikrocontroller besitzt.
Diese Bedingung lässt sich allgemein durch folgende Formel darstellen:

(3.1) fDUT <
fsys

(tP I + tP O + tI)

fDUT Taktfrequenz der zu testenden Komponente

fsys Taktfrequenz des Prozessors

tP I Anzahl der Takte die benötigt werden um alle PIs der Komponente mit gegebenen Testvektoren
zu belegen.

tP O Anzahl der Takte die benötigt werden um alle POs der Komponente auszulesen und abzuspei-
chern bzw. mit den zugehörigen Sollwerten des Testmusters abzugleichen.

tI Anzahl der Takte die für zusätzliche Instruktionen benötigt werden (z. B. das Laden von Kon-
stanten, Sprungbefehle oder Vergleichsoperationen).

Bei dieser Abschätzung muss je nach Template auch die Ausführungszeit von Speicherbefehlen
abgeschätzt werden. Dazu wird Formel 3.1 um die maximale Dauer für die Ausführung eines Speicher-
befehls (tsp) erweitert. Der Wert m beschreibt dabei die Anzahl der Speicherbefehle im Template.
Werden in einem Test-Template Speicherbefehle genutzt, kann folglich dessen Laufzeit nicht determi-
nistische angegeben werden.

(3.2) fDUT <
fsys

(tI + (x ∗ m))

Formel 3.2 stellt somit die obere Schranke für die Verwendung von Testmustern dar, welche von der
Voraussetzung ausgehen, dass in jedem Peripherietakt Testvektoren an die PIs des DUT angelegt
und Ergebniswerte der POs ausgelesen werden können. Erfüllt das gegebene System diese Formel
nicht, so muss das ATPG eingeschränkt werden, oder m verkleinert werden. Diese Einschränkung
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kann offensichtlich die Kontrollier- und Beobachtbarkeit der Komponente verringern und hat somit
direkten Einfluss auf die Fehlerabdeckung der so erzeugten Testmuster.

Ein weiterer kritischer Aspekt ist die Synchronisierung zwischen Testprogramm und dem DUT. Da
Kommunikationskomponenten im Allgemeinen eine langsamere Taktfrequenz als der Mikropro-
zessor des Systems besitzen, muss der Ablauf eines SBST-Programms an die Geschwindigkeit der
Kommunikationskomponente angepasst sein. Andernfalls könnten Testvektoren zu schnell oder
zu langsam angelegt werden. Die Taktdifferenz zwischen System- und Peripherietakt kann als An-
haltspunkt dienen um synchrone SBST-Programme zu entwickeln. Eine besondere Herausforderung
stellen in diesem Zusammenhang die Verwendung von Speicherzugriffen dar, da deren Dauer nicht
konstant ist. Das Testsystem enthält für Synchronisierungszwecke ein sync-Signal, welches durch
den Clock Divider erzeugt wird (vgl. Abschnitt 3.1.3). Mithilfe dieses Signals können Templates
entworfen werden, die eine bestimmte sequentielle Tiefe abwarten, bevor sie die Ausgabewerte der
Peripheriekomponente auslesen, oder die auf Taktflanken des Peripherietakts reagieren.

Soll ein Testvektor je Peripherietakt angelegt und die aktuellen Ausgabewerte überprüft werden,
so muss die Kommunikationskomponente nicht nur Formel 3.2 genügen, sondern zusätzlich eine
Synchronisierungsmöglichkeit besitzen. Ist dies nicht der Fall, kann nur ein Testmuster verwendet
werden, das zu Beginn des Programms Werte anlegt und nach Ablauf einer vorgegeben Taktzahl
die Ausgabewerte der Schaltung ausliest. Eine Beobachtung bzw. Kontrolle der Schaltung zwischen
Beginn und Ende des Testmusters ist in einem solchen Fall nicht möglich. Diese beiden Fälle führen zu
den zwei unterschiedlichen, im folgenden Abschnitt vorgestellten, Templates simple und extended.

3.3.2 Testprogramm

Im Folgenden werden zwei parametrisierte Templates vorgestellt mit denen sich die, im vorheri-
gen Schritt entwickelten, Testmuster an die I2C-Komponente anlegen lassen. Die Verwendung von
parametrisierten Templates reduziert den manuellen Aufwand für den Entwurf von finalen Testpro-
grammen. Mithilfe eines Pre-Compilers lassen sich die parametrisierten Werte der Templates durch
die entsprechenden Werte der Testmuster ersetzen. Die vorgestellten Templates nutzen die Syntax
des x86 NASM Pre-Prozessors [NAS15] um die Verwendung von Parametern und lokale bzw. globale
Sprungmarken zu definieren.

Das simple-Template (siehe Abschnitt 3.3.2) kann angewendet werden, sollte das untersuchte System
Formel 3.2 nicht erfüllen, oder keine Synchronisierungsmöglichkeit bestehen. Das extended-Template
(siehe Abschnitt 3.3.2) geht davon aus, dass beide Bedingung erfüllt sind und ist in der Lage ein
Testvektor pro Peripherietakt anzulegen und die Ausgabewerte dieses Taktes zu prüfen.

Globale Testprogrammbedingungen

Sowohl das simple als auch extended Template nutzen einige globale Bedingungen, die das Testpro-
gramm sicherstellen muss. Im Wesentlichen sind dies Anforderungen von bestimmten Registerinhal-
ten oder globale Sprungadressen, die von allen Templates genutzt und nicht verändert werden. Die
Register werden dabei wie folgt verwendet:
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$0: Hält den Wert 0.

$2: Hält die master_in MMI/O Adresse.

$3: Hält die slave_in MMI/O Adresse.

$4: Hält die system_out MMI/O Adresse.

$5: Hält die modification_out MMI/O Adresse.

fail: Bezeichnet eine - über alle Templateausführungen hinweg - globale Sprungmarke die einen
Fehler-Handler enthält.Wirdwährend der Ausführung des Templates ein Fehler i, DUT entdeckt,
so wird zu dieser Sprungmarke gesprungen. Ein möglicher Fehler-Handler wird in Listing 3.1
gezeigt. Im Fehlerfall wird eine −1 in das Rückgaberegister $30 gelegt und zu einer in $31
gespeicherten Rücksprungadresse gesprungen.

ok: Bezeichnet eine - über alle Templateausführungen hinweg - globale Sprungmarke die den Handler
für einen fehlerfreien Fall enthält. Wird während der Ausführung des Templates kein Fehler
entdeckt, so wird zu dieser Sprungmarke gesprungen.

#Failure Handler, write -1 into $30 and exit

fail: xori $30, $0, -1

jr $31

Listing 3.1: Beispiel eines Fehler-Handlers

Einfaches Template

Das simple Testmakro ist in der Lage ein Testmuster an die I2C-Komponente anzulegen, eine als
Übergabeparameter gegebene Zahl an I2C-Takten zu warten und die Werte der POs auszulesen
und mit den durch das Testmuster gegebenen Soll-Werten abzugleichen. Abbildung 3.9 zeigt die
Anwendung des simple-Templates im Bezug zum Peripherietakt I2Cclk und dem Taktzähler der
sequentiellen Tiefe. Sollte eineAbweichung auftretenwird in den globalen Fehler-Handler gesprungen.
Die Einschränkungen (Inputs und Outputs können nur zu Beginn gesetzt bzw. im letzten Takt gelesen
werden) des Templates müssen bei der Testmustererzeugung berücksichtigt werden. Dazu werden
beim TFE-Verfahren statische PIs verwendet und die Beobachtbarkeit der POs zeitlich auf den letzten
Takt der betrachteten Schaltung beschränkt. (vgl. Unterabschnitt: Sequenzielles ATPG).

Als Übergabeparameter erhält das Template ein Testmuster, wobei die vier Testvektoren als Halbworte
übergeben werden. Dies ist notwendig um die Testvektoren als Immediate-Werte laden zu können.
Zusätzlich erhält das Template die sequentielle Tiefe, ebenfalls in Form von zwei Halbworten, als
Übergabeparameter.

Das simple Template besteht aus vier Schritten: Preparation, Pattern, Wait und Compare.
Im Preparation-Schritt werden die übergebenen Eingabevektoren und die sequentielle Tiefe in die
Register $10 bis $12 geladen.
Im Pattern-Schritt werden Testvektoren an die PIs der Schaltung angelegt. Zunächst wird der Testvek-
tor für die slave_in MMI/O Adresse angelegt, anschließend der Testvektor der master_in Schnittstelle.
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Abbildung 3.9: Ausführungen des simple Templates in Abhängigkeit zum Peripherietakt.

Diese Reihenfolge ist entscheidend, da master_in die Signale en_recv und en_send belegt, die für den
Start einer I2C-Übertragung verantwortlich sind. Die Schritte Preparation und Pattern entsprechen
Start in Abb. 3.9.
Im anschließenden Wait-Schritt wird die sequentielle Tiefe des Testmusters abgezählt. Dies kann
mit verschiedenen Maßnahmen erreicht werden. Ist die genaue Zahl der Takte bekannt, die der
Peripherietakt gegenüber dem Systemtakt langsamer ist, so kann dies durch einfaches Einfügen einer
nop-Schleife erreicht werden. Ist der Peripherietakt zumindest um den Faktor zehn langsamer (Anzahl
der Instruktionen desWait-Schritts) und ist das sync-Signal vorhanden, so kann die implementierte
Wait-Schleife genutzt werden. Diese dekrementiert den übergebenen Zähler der sequentiellen Tiefe
stets auf die fallende Taktflanke des Peripherietakts, wie in Abb. 3.9 zu erkennen ist. Zu Beginn der
Schleife werden die POs der Schaltung in die temporären Register $11 und $12 gelesen, es sind als
immer die Ausgabewerte der aktuell betrachteten Periode gespeichert.
Im abschließenden Compare-Schritt werden die ausgelesenen Werte der POs mit den Soll-Werten
des Testmusters verglichen. Wird eine Abweichung festgestellt, wird in den globalen Fehler-Handler
gesprungen. Dieser Schritt entspricht Ende in Abb. 3.9.
#Paramters: (M_high,M_low,S_high,S_low,sys_high,sys_low,mod_high,

# mod_low,seq_high,seq_low)

%macro simple 10

##### Preparation - Step:

lui $10, %9

xori $10, $10, %10 #Load Sequential Depth Value in $10

lui $11, %3

xori $11, $11, %4 #Load Slave Input Values in $11

lui $12, %1

xori $12, $12, %2 #Load Master Input Values in $12
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##### Pattern - Step: #####

sw $11, 0($3) #Write Slave Pattern to slave_input MMI/O Address

sw $12, 0($2) #Write Master Pattern to master_input MMI/O Address

##### Wait - Step: #####

%%wait2: #Wait for sync=’1’ then cnt-- until cnt = 0

lw $11, 0($4) #load System_out Values to $11

lw $12, 0($4) #load modification_out Values to $12

andi $13, $11, 1

bgtz $13, sync_high #if sync=1 goto sync_high

bgtz $15, wait2 #if sync=0 and stat=1 gogo wait2

addi $10, $10, -1 #decrement seq_depth counter

addi $15, $15, 1 #stat = 1

bgez $10, %%compare #if seq_depth >= 0 goto compare

%%sync_high

and $15, $15, $0 #stat = 0

bgez $15, wait2 #Goto wait2

##### Compare - Step: #####

%%compare:

lui $13, %5

xori $13, $13, %6 #Compare system_output to set values

bne $13, $11, fail #if not equal, jump to the failure handler

lui $13, %7

xori $13, $13, %8 #Compare modification_output to set values

bne $11, $12, fail #if not equal, jump to the failure handler

#####

blez $0, ok #Fail Free: jump to ok-Handler

%endmacro

Listing 3.2: Testmakro: simple

Erweitertes Template

Das extended Testmakro ist in der Lage ein Testmuster für einen Takt an die I2C-Komponente an-
zulegen, die Werte der POs auszulesen und mit den durch das Testmuster gegebenen Soll-Werten
abzugleichen. Eine Abfolge dieser Templates ermöglicht es, in jedem betrachteten Takt Werte anzu-
legen, auszulesen und zu vergleichen. Folglich kann für TFE eine Variante mit nicht-statischen PIs
und in jedem Takt beobachtbaren POs gewählt werden (vgl. Abschnitt 2.2.3). Abbildung 3.10 zeigt
eine aufeinanderfolgende Ausführungen von extended-Templates im Bezug zum I2C-Peripherietakt.
Wie die Abbildung zeigt, beginnt die Templateausführung sobald eine vorherige Templateausführung
abgeschlossen ist und das sync-Signal den Wert 0 annimmt. So kann sichergestellt werden, dass
alle POs der Komponenten konstant anliegen und das Änderungen der PIs zu keiner Störung der
Komponente führen.
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Folglich muss der, mithilfe von Formel 3.2, berechnete Wert für die Taktdifferenz verdoppelt werden
(WKS-Abtasttheorem), da die Ausführung des Templates innerhalb eines halben Peripherietaktes
durchgeführt wird. Somit ergibt sich durch Einsetzen der Anzahl von Instruktionen des extended-
Templates eine Taktdifferenz von:

(3.3) fDUT <
fsys

(17 ∗ 2)

Folglich kann das extended-Template angewendet werden, wenn der Clock Divider mindestens
eine Taktdifferenz von 34 vorsieht. Für die Übertragung eines Bytes benötigt die vorgestellte I2C-
Komponente 20 Takte. Somit ergibt sich für das gegebene Testsystem und einer I2C-Übertragungsrate
von 100kbit/s ≈ 12kbyte/s (NM) eine Mindestaktrate von:

(3.4) fDUT ≥ 12kbyte/s ∗ 20byte = 240kHz

Durch Einsetzten der Taktfrequenz des miniMIPS-Prozessors ergibt sich die - erfüllte - Ungleichung
3.5:

(3.5) 240kHz <
50000kHz

34 �

Folglich lässt sich das extended-Template für die vorgestellte Testumgebung nutzen. Auch für den
FM Übertragungsmodus (400 kbit/s) ist die Ungleichung erfüllt (1000kHz < 1470, 59kHz). Soll eine
Komponente mit einem schnelleren Übertragungsmodus (FM+ oder HS-mode) getestet werden, muss
auf das simple-Template zurückgegriffen werden.

Als Übergabeparameter erhält das Template ein Testvektor je MMI/O Adresse, diese werden als
Halbworte übergeben, um als Immediate-Werte geladen werden zu können. Das extended Template
gliedert sich in drei Schritte: (Wait, Pattern und Compare).
Im Wait-Schritt wird die Synchronisierung mit der I2C-Komponente abgewartet. Dazu wird das
sync-Signal via Polling ausgelesen. Hat dieses Signal den logischen Wert ’0’ - befindet sich der
Peripherietakt folglich in der LOW -Phase - wird die Templateausführung begonnen. Hat das sync
den Wert ’1’ so wird in eine Polling-Schleife gesprungen, bis sync den Wert ’0’ annimmt und erst
anschließend gestartet.
Im Pattern-Schritt werden die übergebenen Testvektoren an die PIs der Schaltung angelegt. Zunächst
wird der Testvektor für die slave_in MMI/O Adresse angelegt, anschließend der Testvektor der
master_in Schnittstelle. Diese Reihenfolge ist lediglich für die Ausführung des ersten Templates von
Bedeutung, da master_in die Signale en_recv und en_send belegt, die eine I2C-Übertragung starten.
Im anschließenden Compare-Schritt werden die aktuell anliegenden Werte der POs ausgelesen und
mit den Soll-Werten des Testmusters verglichen. Sollte ein ausgelesener Wert von den Sollwerten
abweichen, wird in den globalen Fehler-Handler fail: gesprungen, andernfalls nach ok:.
%macro advanced 8

#Paramters: (M_high,M_low,S_high,S_low,sys_high,sys_low,mod_high,mod_low)

#####Wait - Step: (I=3)

%%wait: #wait for sync=0

lw $10, 0($4) #load system_out values to $10

andi $11, $10, 1
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Abbildung 3.10: Abfolge von Ausführungen des extended Templates im Bezug zum Peripherietakt
I2Cclk.

bgtz $11, %%wait #syn>0 wait

#####Pattern - Step: (I=6)

lui $11, %3

xori $11, $11, %4 #Load Slave Input Values to $11

sw $11, 0($3) #Write Slave Input Patterns to slave_input MMI/O Address

lui $11, %1

xori $11, $11, %2 #Load Master Input Values to $11

sw $11, 0($2) #Write Slave Input Patterns to slave_input MMI/O Address

#####Compare - Step: (I max = 8)

lui $11, %5

xori $11, $11, %6 #load set values of system_out to $11

bne $10, $11, fail #if not equal jump to the failure handler
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lw $11, 0($5) #Load current modification_out values

lui $12, %7

xori $12, $12, %8 #load set values of mod_out to $12

bne $11, $12, fail #if not equal jump to the failure handler

#Fail Free

blez $0, ok

%endmacro

Listing 3.3: Testmakro: extended

Finales Testprogramm

Im Folgenden wird besprochen wie aus den beiden vorgestellten, parametrisierten Templates und
den erzeugten Testmustern ein finales Testprogramm generiert werden kann.
Zunächst müssen die globalen Testprogrammbedingungen in ein Programmskelett übertragen wer-
den. Anschließend werden die Parameter für die einzelnen Templateinstanzen aus den erzeugten
Testmustern gewonnen. Die Instanzen der Templates werden im Testprogramm nacheinander mit
den verschiedenen Parametern aufgerufen.
Die beiden vorgestellten Tempaltes unterscheiden sich, aus Sicht der finalen Testprogrammerzeugung,
lediglich in der Zahl der Template-Instanzen, die pro Testmuster benötigt werden. Während bei
der Nutzung des simple-Templates nur eine Instanz pro Testmuster erzeugt werden muss, werden
bei der Nutzung des extended-Templates eine, von der sequentiellen Tiefe linear abhängige, Anzahl
an Instanzen erzeugt. Folglich unterscheidet sich die Testprogrammgröße bei Verwendung der bei-
den Templates erheblich voneinander. Formel 3.6 zeigt die Abschätzung der Testprogrammgröße
(nsimple|Speicherbedarf ) bei Verwendung des simple-Template. Die Programmgröße hängt dabei im
Wesentlichen von der Anzahl der erzeugten Testmuster (nMuster), der Anzahl der Instruktionen
des simple-Templates (nT emplate) und der Anzahl der Instruktionen die im Programmskelett zur
Initialisierung (nInitialisierung) und zum Beenden des Programms (nEnde) benötigt werden, ab.

(3.6) nsimple|Speicherbedarf = nInitialisierung + nMuster ∗ nT emplate + nEnde

Durch Einsetzen der Anzahl der simple-Instruktionen (25), der benötigten Zahl an Instruktionen
für die Initialisierung (9) und das Beenden des Testprogramms (1), in die Formel 3.6 ergibt sich die
Abschätzung 3.7, in Abhängigkeit der Testmusteranzahl. Durch Multiplikation mit 4 ergibt sich aus
den Instruktionen der benötigte Speicherbedarf des Testprogramms in Bytes.

(3.7) nsimple|Speicherbedarf ≥ (25 ∗ nMuster + 10) ∗ 4

Die Programmgröße bei Verwendung des extended-Tempalte lässt sich ähnlich berechnen, wobei als
zusätzlicher Faktor die sequenzielle Tiefe (nseq) hinzukommt, da für jeden betrachteten Takt eines
Testmusters ein Template benötigt wird. Damit ergibt sich Formel 3.8

(3.8) nextended|Speicherbedarf = nInitialisierung + nMuster ∗ nT emplate ∗ nseq + nEnde
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Durch Einsetzen (Instruktionszahl des extended-Template ist 17, alle anderen Werte identisch zu 3.7)
ergibt sich die Abschätzung 3.9 der Programmgröße in Abhängigkeit von der Anzahl der Testmuster
und der betrachteten sequentiellen Tiefe.

(3.9) nextended|Speicherbedarf ≥ (17 ∗ nMuster ∗ nseq + 10) ∗ 4

Die Laufzeit des Testprogramms (tLaufzeit) je nach Verwendung des Template-Typs variiert weniger
stark als die Programmgröße, da die bestimmenden Faktoren der Gleichung für beide Template-
Varianten identisch sind. Diese Faktoren sind die betrachtete sequentielle Tiefe (nseq) und die Anzahl
der erzeugten Testmuster (nMuster). Da die Testlaufzeit in Systemtakten gemessen wird, ist zudem
der Teilungsfaktor zwischen Systemtakt und Peripherietakt (kT aktteiler) von Bedeutung. Dieser ist de-
finiert als kT aktteiler = fSystem

fP eripherie
. Zusätzlich muss die Laufzeit des Programmskeletts berücksichtigt

werden (tInitialisierung und tEnde).

Im Fall des simple-Template werden alle bis auf zwei Instruktionen (vgl. syn_high-Sprungmarke
des Listings 3.2) insgesamt einmal vor bzw. nach dem Ablauf der betrachteten sequentiellen Tiefe
ausgeführt. Dieser konstante Wert muss bei der Abschätzung beachtet werden (tI = 23). Damit ergibt
sich Formel 3.10:

(3.10) tsimple|Laufzeit = tInitialisierung + nMuster ∗ (nseq ∗ kT aktteiler + tI) + tEnde

Unter der Annahme, dass die Instruktionen des Programmskeletts in einem Takt ablaufen, ergibt sich
durch Einsetzen als Abschätzung der Laufzeit des simple-Template die Formel 3.11:

(3.11) tsimple|Laufzeit = nMuster ∗ (nseq ∗ kT aktteiler + 23) + 10

Da alle Instruktionen des extended-Template parallel zum Peripherietakt ablaufen, muss lediglich die
erste Templateausführung (tex = 17) je Testmuster eingerechnet werden (da diese vor Beginn der
Peripherieoperation ausgeführt wird). Alle weiteren Ausführungen sind bereits durch das Einbeziehen
der sequentiellen Tiefe eingerechnet. Somit ergibt sich Formel 3.12:

(3.12) textended|Laufzeit = tInitialisierung + nMuster ∗ (nseq ∗ kT aktteiler + tex) + tEnde

Durch Einsetzen, analog zu 3.11, ergibt sich die Abschätzung für die Laufzeit des extended-Template
3.13:

(3.13) textended|Laufzeit = nMuster ∗ (nseq ∗ tT aktteiler + 17) + 10

Aus dem Vergleich der Abschätzungen 3.7, 3.9, 3.11 und 3.13 geht hervor, dass das extended-Template
bei gleicher Anzahl an erzeugter Testmuster und derselben betrachteten sequentiellen Tiefe, eine
etwas kürze Laufzeit, bei deutlich vergrößertem Speicherbedarf aufweist, verglichen mit dem simple-
Template. In späteren Experimenten (vgl. Kapitel 4) zeigt sich jedoch, dass mit dem extended-Template
eine höhere Fehlerabdeckung als mit dem simple-Template erreicht werden kann.
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Im Folgenden wird experimentell die Wirksamkeit der in Kapitel 3.2 vorgestellten Maßnahmen zur
Verbesserung der Beobacht- und Kontrollierbarkeit anhand des in Kapitel 3.1 beschriebenen Testsys-
tems untersucht. Zunächst werden dazu in Abschnitt 4.1 die Ergebnisse der Synthese des Testsystems
vorgestellt. Anschließend wird in Unterkapitel 4.2 experimentell die sequentielle Tiefe untersucht, wel-
che zum erreichen einer bestimmten Fehlerabdeckung notwendig ist. Im Unterkapitel 4.3 werden die
experimentellen Ergebnisse der in Kapitel 3.2.3 beschriebenen Versuchsreihe vorgestellt. Als Kriterien
dienen u.a. die in Kapitel 2.3 vorgestellten Qualitätsmerkmale: prozentuale Fehlerabdeckung, Anzahl
der erzeugten Testmuster, Testprogrammgröße und Testdauer. Im Anschluss werden in Unterkapitel
4.4 die vorgeschlagenen Maßnahmen anhand der experimentellen Ergebnisse analysiert und deren
Einfluss auf die erreichbare Haftfehlerabdeckung diskutiert. Zuletzt werden in Kapitel 4.5 die beiden
Template-Varianten bewertet.

4.1 Synthese

Die in den Unterkapiteln 3.1.1 und 3.1.2 vorgestellte I2C-Komponente wurde, zusammen mit der
in Abschnitt 3.2.1 besprochenen Loopback-Einheit, mithilfe des Synthesetools Design Compiler
von Synopsys hierarchisch synthetisiert. Das synthetisierte Gatternetz (vor Anwendung von TFE)
besitzt 634 Gatter und 51 Flip-Flops. Die Haftfehlerliste der Schaltung hat, vor fault collapsing, 4324
Einträge. In der kollabierten Fehlerliste sind noch 1836 Haftfehler enthalten. Diese Fehler verteilen
sich auf die I2C-Masterkomponente (904), den I2C-Slave (713) und die Loopback-Komponente
(11). Die verbleibenden Haftfehler (208) sind Teil des Testsystems (vorwiegend aufgrund der ATPG-
Steuersignale und der zusätzlichen UND-Gatter, vgl. Kapitel 3.2) und werden im Folgenden nicht
weiter untersucht.

Damit liegt die Komplexität der betrachteten Schaltung unter der UART-Komponente die in [APGP07b]
und [BSS+07] genutzt wird.

4.2 Experimentelle Untersuchung der sequentiellen Tiefe

Die Gesamthaftfehlerabdeckung des FULL-Versuchs wird, für beide Template-Varianten, jeweils für
die sequentiellen Tiefen 0 bis 120 untersucht. Abbildung 4.1 stellt die prozentuale Abdeckung aller
Haftfehler (y-Achse) der getesteten Schaltung in Abhängigkeit der sequentiellen Tiefe (x-Achse)
dar. Der FULL-Versuch wurde gewählt, da bei diesem die maximale Haftfehlerabdeckung erreicht
werden kann. Da die Abhängigkeit zwischen Haftfehlerabdeckung und sequentieller Tiefe der beiden

49



4 Experimente

Abbildung 4.1: Prozentuale Fehlerabdeckung des FULL-Versuchs.

verwendeten Templates sich erheblich voneinander unterscheiden, werden sie getrennt besprochen.

simple-Template

Die Haftfehlerabdeckung bei Verwendung des simple-Template verhält sich uncharakteristisch. Typi-
scherweise sinkt bei der Erhöhung der sequentiellen Tiefe die erzielte Fehlerabdeckung nicht ab, es
sei denn, es treten abgebrochene Fehler auf (vgl. Abschnitt 2.2.3), dies ist jedoch im vorliegenden Fall
nicht der Grund. Das Verhalten lässt sich dagegen anhand der Einschränkung des simple-Templates
erklären.
Im Gegensatz zur Verwendung des extended-Template, kann das simple-Template nicht den Ablauf
der Kommunikation verfolgen, sondern lediglich eine Momentaufnahme der Kommunikation nach
Ablauf der sequentiellen Tiefe betrachten. Folglich ist es möglich, dass ein Fehler, der z. B. in Takt 25
beobachtbar ist, im nächsten Takt bereits nicht mehr sichtbar und damit nicht testbar ist.
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Bei einer sequentiellen Tiefe von 120 erreicht das simple-Template eine Gesamthaftfehlerabdeckung
von 88,7%. Ein vergleichbarer Wert wird bei Verwendung des extended-Template bereits bei einer
sequentiellen Tiefe von 27 erreicht.
Da die Fehlerabdeckung des simple-Template bis zur Grenze von 120 weiterhin steigt, wird im
folgenden diese Tiefe für die simple-Templates genutzt.

Extended-Template

Die Haftfehlerabdeckung bei Verwendung des extended-Template verhält sich wie erwartet, in Form
eines sprunghaften, beschränkten Wachstums.

Anhand des Zustandsautomaten der Masterkomponente (vgl. Abb. 3.2) lassen sich die Sprünge, ebenso
wie die Bereiche ohne temporäre Anstiege (im Folgenden als Ebene bezeichnet) erklären.
Während der ersten 21 Takte wird die Sendeschleife (zur Adressierung der Slavekomponente) einmal
traversiert. Die Sendeschleife (vgl. Abschnitt 3.1.1) nimmt einen großen Teil der Masterkomponente
ein, folglich ermöglicht der Durchlauf dieser Schleife bereits das Testen eines großen Teils der Schal-
tung (77.8356%).
Der anschließende Anstieg bis zum Erreichen der ersten Ebene erklärt sich durch die Möglichkeit die
verschiedenen Verzweigungen des Zustands GET_D_ACK_2, in die Empfangsschleife, zurück zum
Beginn der Sendeschleife oder zum Abbruch der Kommunikation im Fehlerfall, zu aktivieren. In der
folgenden Ebene (zwischen sequentieller Tiefe 24 und 38) bleibt die Gesamtfehlerabdeckung bei 89%
konstant. Dieser Stillstand erklärt sich durch wiederholtes Erreichen der SEND bzw. READ Zustände
in der Sende- bzw. Empfangsschleife, während dessen können keine neuen Fehler aktiviert werden.
Ab Tiefe 39 steigt die Abdeckung weiter bis auf einen Wert von 95,4% bei Tiefe 45. Dieser Anstieg
erklärt sich durch die mögliche Aktivierung der Byte-Schleife der Sendeschleife und eines proto-
kollgerechten Beendens der Kommunikation (Erreichen des STOP-Zustand). Der Wert stellt einen
guten Kompromiss zwischen Fehlerabdeckung und Laufzeit dar. Eine Verdopplung der Tiefe auf (90)
erreicht lediglich einen Wert von 96.0648%, eine Steigerung von unter 0,64%, bei doppelter Testzeit, je
Testmuster.
Für bessere Fehlerabdeckung kann eine sequentielle Tiefe von 60 gewählt werden. Mit diesem Wert
kann eine Gesamtfehlerabdeckung von 95,95% erreicht werden. Diese Steigerung um 0,55% erklärt
sich durch die Aktivierung höherer Bits des Byte-Zählers.

Die scheinbare Verringerung bei sehr hoher sequentiellen Tiefe erklärt sich durch das Auftreten
von abgebrochenen Fehler (vgl. Abschnitt 2.2.3). Für die finale Testreihe wurde aufgrund dieser
Beobachtung ein höheres Limit für den Abbruch der Fehleruntersuchung des ATPG-Programms
gewählt.

4.3 Experimentelle Ergebnisse

Die in Kapitel 3.2.3 vorgestellten Versuche wurden auf dem Testsystemmit beiden Template-Varianten,
für eine sequentielle Tiefe von 60 (extended-Template) und 120 (simple-Template), untersucht. Die
experimentellen Ergebnisse sind in der Tabellen I2C-Master (4.1), I2C-Slave (4.2) und Loopback (4.3)
aufgelistet. Dabei enthält die erste Spalte der Tabelle stets die Größe der kollabierten Haftfehlerliste
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Versuchskürzel #HaftfehlerM FCsi120 #Testmustersi FCex60 #Testmusterex

NONE 904 51.6593% 14 59.9558% 17
N_cntm 904 56.4159% 16 60.9513% 15
N_errm 904 52.3230% 13 62.2788% 15
N_statem 904 59.4027% 14 70.0221% 17
N_bus 904 61.0619% 17 74.1150% 17
O_lb 904 79.9779% 19 84.5133% 32
O_lb|cntm 904 80.1991% 16 84.9558% 27
O_lb|err 904 80.6416% 22 86.5044% 32
O_lb|statem 904 85.9513% 21 92.5885% 31
O_lb|bus 904 81.3053% 21 85.7301% 31
O_lb|states 904 80.0885% 20 84.5133% 37
O_lb|cnts 904 80.0885% 20 84.5133% 38
FULL 904 87.721% 17 95.2434% 32

Tabelle 4.1: Ergebnisse der Masterkomponente.

der jeweiligen Komponente.
Bei Anwendung aller Maßnahmen lässt sich die Haftfehlerabdeckung der betrachteten Schaltung,
abhängig von der untersuchten Komponente und des verwendeten Template, um 40% (Masterkompo-
nente, extended-Template) bis zu 76% (Slavekomponente, simple-Template) verbessern.
Bei der Testerzeugung wurden keine Fehler abgebrochen, nachdem das Limit, nach der experimentel-
len Bestimmung der sequentiellen Tiefe, erhöht wurde.

Die Testerzeugung wurde parallelisiert (ein Task je Versuchsversion und Template, 24 insgesamt) auf
mehreren Computern (ausgestattet mit je einem Core i7 2600@3,4 GHz und 32GB RAM) ausgeführt.
Dabei unterschied sich die Testerzeugungsdauer der beiden in Kapitel 3.3.2 vorgestellten Templates
erheblich voneinander. Die parallele Ausführung aller Versuch war bei Anwendung des simple-
Template, innerhalb von maximal elf Minuten abgeschlossen.
Je nach Testbedingungen dauerte die Testerzeugung bei Verwendung des extended-Template bis zu
3,5 Stunden. Dies lässt sich durch die erheblich größere Zahl an zu betrachtenden PIs und POs der
Schaltung erklären.

4.4 Analyse der vorgeschlagenen Maßnahmen

Im Folgenden werden die einzelnen Maßnahmen auf deren Wirksamkeit untersucht. Dazu werden
die Versuche, welche die Verwendung einer oder mehrerer Maßnahmen vorsehen, mit den beiden
Vergleichsreihen (NONE und O_lb) abgeglichen. Diese stellen die unangepasste Schaltung mit
(O_lb) bzw. ohne (NONE) aktivierter Loopback-Komponente dar.
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4.4 Analyse der vorgeschlagenen Maßnahmen

Versuchskürzel #HaftfehlerS FCsi120 #Testmustersi FCex60 #Testmusterex

NONE 713 14.4460% 2 20.8976% 2
N_cntm 713 14.4460% 2 20.8976% 2
N_errm 713 14.4460% 2 20.8976% 3
N_statem 713 14.4460% 2 20.8976% 2
N_bus 713 14.4460% 2 20.8976% 2
O_lb 713 85.4137% 27 89.0603% 36
O_lb|cntm 713 85.4137% 27 89.0603% 39
O_lb|err 713 85.4137% 25 89.0603% 34
O_lb|statem 713 85.4137% 28 89.0603% 41
O_lb|bus 713 86.1150% 28 89.9018% 35
O_lb|states 713 89.9018% 27 96.3534% 38
O_lb|cnts 713 85.8345% 24 89.7616% 39
FULL 713 90.6031% 27 97.8962% 33

Tabelle 4.2: Ergebnisse der Slavekomponente.

Versuchskürzel #HaftfehlerLB FCsi120 #Testmustersi FCex60 #Testmusterex

NONE 11 27.2727% 1 27.2727% 2
N_cntm 11 27.2727% 1 27.2727% 1
N_errm 11 27.2727% 1 27.2727% 2
N_statem 11 27.2727% 1 27.2727% 1
N_bus 11 36.3636% 2 36.3636% 2
O_lb 11 90.9091% 3 100% 3
O_lb|cntm 11 90.9091% 3 100% 4
O_lb|err 11 90.9091% 3 100% 4
O_lb|statem 11 90.9091% 3 100% 3
O_lb|bus 11 100% 4 100% 2
O_lb|states 11 90.9091% 3 100% 3
O_lb|cnts 11 90.9091% 3 100% 3
FULL 11 100% 4 100% 2

Tabelle 4.3: Ergebnisse der Loopback-Komponente.
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4.4.1 Loopback

Die Ergebnisse zeigen deutlich, wie entscheidend die Verwendung einer Loopback-Komponente (vgl.
Abschnitt 3.2.1) für die Fehlerabdeckung beim Test einer Peripheriekomponente ist. Wird diese An-
passung nicht verwendet so wird nur eine maximale Fehlerabdeckung von 74,1% (Master) bzw. 20,9%
(Slave) erreicht. Dagegen liegt die geringste, erreichte Fehlerabdeckung, bei Nutzung der Loopback-
Komponente, bereits bei 84,5% (Master) bzw.. 89,1% (Slave).
Ohne zusätzliche Maßnahmen (im Fall Olb) erhöht die Loopback-Komponente die Haftfehlerabde-
ckung um mindestens 24% (Master) bzw. 69% (Slave), verglichen mit NONE.

4.4.2 Maßnahmen zur Verbesserung der Beobachtbarkeit

Die Wirksamkeit der Maßnahmen zur verbesserten Beobachtbarkeit des internen Zustands (vgl.
Kapitel 3.2) variiert je nach Versuchskontext, nach der verwendeten Template-Variante und nach
deren Abhängigkeit von der Loopback-Komponente.
Die beiden wirksamsten der vorgestellten Maßnahmen sind die codierte Ausgabe des internen Zu-
standsautomaten einerseits und die Sichtbarmachung des I2C-Bus anderseits. Dabei bewirkt die
Ausgabe des Zustands eine deutliche Steigerung der Fehlerabdeckung mit (etwa 8%) und ohne (bis zu
10%) aktivierter Loopback-Komponente. Die Wirksamkeit der Zustandsausgabe unterscheidet sich
bei Master- und Slavekomponente. Die Ausgabe des Slavezustands erhöht die Fehlerabdeckung der
Slavekomponente lediglich um bis zu 7%. Dies ist auf einen trivialen Zusammenhang zwischen der
Größe des Zustandsautomaten und der betrachteten Schaltung zurückzuführen.
Interessant ist, dass bereits die Ausgabe eines Zustands-Bit (in den Versuchen der Error-Zustand des
Masters) eine deutliche Verbesserung (bis zu 2,3%) der Fehlerabdeckung ermöglicht.

Die Beobachtbarkeit des I2C-Bus verliert bei aktivierter Loopback-Komponente stark anWirksamkeit
(unter 1%), verglichen mit einer hohen Steigerung der Fehlerabdeckung bei deaktiviertem Loopback
(bis 14%). Interessant ist, dass die Beobachtung des Busses die vollständige Prüfung der Loopback-
Komponente bei Verwendung des simple-Templates erlaubt.

Die Ausgabe der internen Schleifenzähler bewirkt bei Verwendung des extended-Templates nur eine
geringe Verbesserung der Fehlerabdeckung (etwa 1%), während im Fall der Verwendung des simple-
Templates und deaktivierter Loopback-Komponente eine Steigerung der Fehlerabdeckung von etwa
5% erreicht wird.
Dies lässt sich durch die Tatsache erklären, dass Fehler im Schleifenzähler einfach zu beobachtende
Auswirkungen auf die Funktionalität der Komponente besitzen (führt z. B. dazu dass stets dasselbe
Bit übertragen bzw. gelesen wird und die Sende- bzw. Empfangsschleife nicht verlassen wird). Diese
Auswirkungen lassen sich leicht feststellen, wenn der Zustand ausgegeben wird, der Bus beobachtbar
ist oder ein Loopback zwischen I2C-Master und Slavebesteht. Da die Ausgabe des codierten Zustands
im vorliegenden Fall nahezu dieselbe Anzahl an Pins benötigt, wie die Ausgabe des Schleifenzählers,
ist diese Ausgabe des Zustands klar vorzuziehen.
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4.5 Analyse der Templates

Der Einfluss der in Kapitel 3.3.2 vorgestellten Templates auf die erreichbare Fehlerabdeckung, die
betrachtete sequentielle Tiefe und die Anzahl der erzeugter Testmuster wird aus der experimentellen
Bestimmung der sequentiellen Tiefe (in Abschnitt 4.2) und den experimentellen Ergebnissen (in den
Tabellen 4.1, 4.2 und 4.3) deutlich.

Bei Nutzung des extended-Templates kann, in nahezu allen betrachteten Fällen, eine deutlich höhere
Fehlerabdeckung erreicht werden, als bei Verwendung des simple-Templates. Die Ausnahme stellt
dabei lediglich das Testen der Loopback-Komponente dar. Ist diese deaktiviert, können mit beiden
Templates dieselben Fehler getestet werden.
Bemerkenswert ist die Tatsache, dass das extended-Template auf einer sequentiellen Tiefe von 60 eine
bessere Haftfehlerabdeckung erreicht, als das simple-Template bei der doppelten sequentiellen Tiefe
120. Allerdings werden in den meisten Fällen, bei Verwendung des extended-Templates, deutlich mehr
Testmuster erzeugt, als bei Verwendung des simple-Template.

4.5.1 Programmgröße

Die Programmgröße bei Verwendung des simple-Templates ist erheblich geringer, als die des extended-
Templates. Dies geht eindeutig aus den Formeln 3.7 und 3.9 hervor. Zusätzlich werden bei Anwendung
des extended-Templates auch mehr Testmuster erzeugt.

Wie groß dieser Unterschied tatsächlich ausfällt, wird im Folgenden am Beispiel des FULL-Versuchs
berechnet. Dazu werden die erzeugten Testmuster für den Test der Masterkomponente (vgl. Tabelle
4.1) in die Formeln 3.7 und 3.9 eingesetzt.

(4.1) nsimple|Speicherbedarf ≥ (25 ∗ 17 + 10) ∗ 4 = 1740Bytes = 1, 7kBytes

(4.2) nextended|Speicherbedarf ≥ (17 ∗ 32 ∗ 60 + 10) ∗ 4 = 130600Bytes = 127, 6kBytes

4.5.2 Laufzeit

Für die untersuchten Fälle (simple120 und extended60) zeigt sich bei Vergleich der Formeln 3.11 und
3.13, dass extended-basierte Testprogramme interessanterweise eine kürze Laufzeit besitzen. Dies
lässt sich mit der Beobachtung erklären, dass nie mehr als die doppelte Zahl von Testmustern für
das extended-Template erzeugt werden, die sequentielle Tiefe jedoch nur halb so groß ist wie bei
Verwendung des simple-Templates.

Beispielhaft für diese Beobachtung wird die Laufzeit der beiden Templates für den Testfall FULL,
angewandt auf die Masterkomponente, mithilfe der Formeln 3.11 bzw. 3.13 berechnet. Für kT aktteiler

wird der in Abschnitt 3.3.2 berechnete Mindestwert für das extended-Template (kT aktteiler = 34)
verwendet.

(4.3) tsimple|120 = 17 ∗ (120 ∗ 34 + 23) + 10 = 69761 Systemtakte
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(4.4) textended|60 = 32 ∗ (60 ∗ 34 + 17) + 10 = 65834 Systemtakte

Bei einer Taktrate von 50 MHz des miniMIPS Prozessors ergibt sich damit:

(4.5) tsimple|120 = 69761
50000000 = 1, 4ms

(4.6) textended|60 = 65834
50000000 = 1, 3ms
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5 Fazit

Bei der Anwendung von SBST-Techniken auf Peripheriekomponenten kann die erreichbare Haft-
fehlerabdeckung durch Maßnahmen zur Verbesserung der Kontrollierbarkeit und Beobachbarkeit
interner Signale erheblich verbessert werden.
Experimentelle Ergebnisse für die Anwendung der strukturellen SBST Methode auf der implemen-
tierten I2C-Komponente zeigen eine erreichbare Gesamtfehlerabdeckung von 96%, bei Verwendung
aller vorgeschlagenen Maßnahmen gegenüber einer Abdeckung von 37% ohne diese Anpassungen.
Die erfolgversprechendste Maßnahme ist dabei das Einfügen eines Loopbacks. Diese erlaubt ein
intensives Testen der Komponente, da Schaltungsbereiche getestet werden, die bei einer einzelnen
Komponente nicht aktiviert werden können. Durch die Sichtbarmachung diverser internen Signale
lässt sich die Haftfehlerabdeckung, je nach Testfall, um weitere drei bis neun Prozent erhöhen. Von
den untersuchten Maßnahmen zur Erhöhung der Beobachtbarkeit der internen Signale erweist sich
die codierte Ausgabe des aktuellen Zustandsautomaten der Komponenten als besonders wirksam.

Als Resultat wurden zwei unterschiedliche Test-Templates entworfen, die in Abhängigkeit von den
funktionalen Nebenbedingungen, eingesetzt werden können um Testprogramme zu erzeugen. Die
Laufzeit, Programmgröße und erreichbare Fehlerabdeckung der Templates unterscheidet sich erheblich
voneinander und zeigt den Einfluss funktionaler Nebenbedingungen auf die Testerzeugung.
Erlauben die Nebenbedingungen die Durchführung eines Testprogramms, welches in jedem Takt die
PIs beschreiben und POs auslesen kann, so lässt sich eine höhere Testabdeckung erzielen, bei einer
niedrigeren betrachteten sequentiellen Tiefe und höherer Wirksamkeit der vorgestellten Maßnahmen.
Allerdings steigt dabei der benötigte Speicherplatz des Testprogramms erheblich an.
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6 Ausblick

Um die Vergleichbarkeit der vorgestellten strukturellen SBST-Methode für Kommunikationsperiphe-
riekomponenten mit bestehenden Arbeiten zu erhöhen, könnte eine zukünftige Arbeit die vorgestellte
Methode auf eine der in [APGP07b] und [BSS+07] genutzten Peripheriekomponenten angewandt
werden.
Von Interesse ist dabei, neben der erreichbaren Haftfehlerabdeckung, vor allem wie sich die vor-
geschlagenen Verbesserungen auf komplexere Schaltungen auswirken und der Unterschied in der
Fehlerabdeckung der unterschiedlichen Template-Varianten.

Aufgrund der herausragenden Bedeutung einer Loopback-Komponente auf die erreichbare Haftfeh-
lerabdeckung, könnte zudem die Implementierung solcher Komponenten für verschiedene Kommuni-
kationsprotokolle stattfinden.

Des Weiteren kann untersucht werden, wie sich ein nicht-beobachtbarer und nicht-kontrollierbarer
Slave, der über den I2C-Bus an den Master angeschlossen ist, als Kommunikationspartner auf die
erreichbare Haftfehlerabdeckung auswirken würde.

Außerdem kann eine weitere Optimierung der vorgeschlagenen Templates untersucht werden, z. B.
wie sich der Speicherplatzbedarf des extended-Templates verringern lässt, ohne die erreichbare
Fehlerabdeckung signifikant zu reduzieren.
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