Institut fiir Parallele und Verteilte Systeme

Universitat Stuttgart
UniversitatsstraBe 38
D-70569 Stuttgart

Bachelorarbeit Nr. 239

Visualisierungspipeline fir
Simulationsworkflows auf Basis
eines
Datenstromverarbeitungssystems

Johannes Bohn

Studiengang: Informatik
Prifer/in: Prof. Dr.-Ing. habil. Bernhard Mitschang
Betreuer/in: Dipl.-Inf. Pascal Hirmer,

Dipl.-Inf. Peter Reimann

Beginn am: 20. Mai 2015

Beendet am: 20. November 2015

CR-Nummer: D.3.3, J.3

Kurzfassung

Simulationen werden in vielen Feldern der Wissenschaft benétigt, um Abldufe der realen Welt zu
untersuchen, die sich nicht durch Experimente reproduzieren lassen, wie zum Beispiel Katastrophens-
zenarien. Um die durch derartige Simulationen entstandenen Daten zu visualisieren werden haufig
monolithische Programme mittels Skriptsprachen angefertigt. Diese werden von Nicht-Informatikern,
wie z.B. von Naturwissenschaftlern im Bereich der Biologie oder von Ingenieuren, angefertigt. Fehlen-
des Wissen im Bereich der Softwareentwicklung, Softwarearchitektur und Softwaretests fithrt dabei
jedoch oftmals zu Programmen, die nur sehr schwer oder gar nicht wartbar und erweiterbar sind.

Um derartige, schlecht wartbare Programme in eine sinnvoll gegliederte Struktur zu bringen, muss
deren Kontroll- und Datenfluss zuerst umfassend analysiert werden, um eine anschlieende Restruk-
turierung des Programmcodes zu ermoglichen. In dieser Arbeit wird untersucht, wie bestehende,
monolithische Skript-basierte Programme restrukturiert und in einen Datenflussgraphen umgewan-
delt werden konnen. Auf Basis des entstandenen Datenflussgraphes kann der Programmablauf leichter
verstanden werden und die Wartbarkeit somit verbessert werden.

Um die Ergebnisse dieser Arbeit zu verdeutlichen, werden die Konzepte anhand eines Beispielszenari-
os umgesetzt. Dieses beschéftigt sich mit der Analyse und Restrukturierung von Python-Skripten
zur Visualisierung der Ergebnisse von Knochensimulationen. Nach einer umfassenden Analyse wird
der Programmablauf der Skripte restrukturiert, in einem Datenflussgraphen modelliert und anschlie-
flend in einer passenden Ausfithrungsumgebung ausgefithrt. Das Ergebnis ist ein gut strukturierter,
erweiterbarer Datenfluss, der aus dem urspriinglichen, schlecht wartbaren Programm entstanden
ist. Auf Basis dieses Anwendungsfalls konnen die in dieser Ausarbeitung entstandenen Konzepte auf
weitere, skriptbasierte Programme angewendet werden.

Inhaltsverzeichnis

1. Einfiihrung

2. Grundlagen
2.1, Python
22, VTK . . o e
23. OpenCV . . . e
2.4. Flussbasierte Programmierung

3. Bestandsaufname
3.1. Die Dateien des PANPOST-Programms
3.2. Benutzeroberfliche
3.3. Zusamenfassung

4. Vorbereitung fiir die Umsetzung als Datenfluss
4.1. Das geklirzte Programm Lo
4.2. NeueFunktionen
4.3. Annotation mit YesWorkflow o oo L

5. Umsetzung als Datenfluss
5.1. Vergleich von Datenflussplattformen
5.2. Umsetzung mittels PyF L
53. Evaluation

6. Zusammenfassung und Ausblick
A. Anhang — Der Code des flussbasierten Programms

Literaturverzeichnis

15
16
19
20

21
22
24
25

29
29
30
36

37

39

45

Abbildungsverzeichnis

1.1.

2.1.
2.2.

3.1.
3.2.
3.3.

4.1.

Simulationsworkflow fiir Strukturdnderungen in Knochen [RS14] 7
Die graphische Oberflaiche von Node-RED 12
Mit YesWorkflow aus Listing 2.2 generierter Graph 14
Alle Dateien von PANPOST mit deren Abhéngigkeiten 16
Die Schritte, die zur Vorbereitung zum Rendern nétig sind 17
Die Benutzeroberfliche von PANPOST 19
Mit YesWorkflow generierter Graph des Datenflusses 28

Verzeichnis der Listings

2.1.
2.2.

4.1.
4.2.

4.3.
4.4.

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.

Al

Beispiel-Pythoncode [McP15] 9
Beispielcode fiir YesWorkflow-Kommentare [McP15] 13
Teil des gekiirzten Programmes, in dem die Tecplot-Datei eingelesen wird 22
Teil des gekiirzten Programmes, in dem das Rendern vorbereitet wird und gerendert

WIrd . . . 23
Teil des gekiirzten Programmes, in dem die Bilddatei gespeichert wird 24
Der Anfang des gekiirzten Programms mit YesWorkflow-Kommentaren 26
Die ersten zwei Codeblocke der Umsetzung 30
Der erste Codeblock der Umsetzung: read_file 32
Der zweite Codeblock: prepare_mapper L. 32
Der Codeblock fiur make video 33
Der Codeblock fiir remove_imagefile 33
Die verwendeten Hilfsfunktionen 34
Die Settings-Datei e e 35
Das in dieser Arbeit vorgestellte flussbasierte Programm 39

1. Einfuhrung

In vielen wissenschaftlichen Bereichen werden Simulationen benutzt, um Ablaufe zu untersuchen, die
sich nicht durch Experimente reproduzieren lassen, wie zum Beispiel Katastrophenszenarien [GVWO02].
Fir die Auswertung der Daten miissen die Ergebnisse der Simulationen haufig visualisiert werden.
Da dies oftmals spezielle Software erfordert, werden die benétigten Programme oft in Skriptsprachen
von Nichtinformatikern, wie z.B. Naturwissenschaftlern im Bereich der Biologie oder von Ingenieu-
ren, angefertigt [Bea00][MSK™15]. Da diese selten Wissen im Bereich der Softwareentwicklung,
Softwarearchitektur oder Softwaretests haben, sind ihre Programme oftmals schwer wartbar oder
erweiterbar.

Um solche schlecht wartbaren Programme in eine sinnvoll gegliederte Struktur zu bringen, muss
deren Kontroll- und Datenfluss umfassend analysiert werden. Da Datenfliisse fiir eine derartige
Strukturierung helfen, bietet sich eine flussbasierte Programmierung an [BH95]. Bei flussbasierter
Programmierung wird der Code in funktionale Blocke aufgeteilt, die dann auf einer hdheren Ebene
in einem Datenflussgraphen verbunden werden. Dadurch wird der Aufbau eines Programms deut-
lich sichtbarer. In dieser Arbeit wird dies anhand eines Beispiels im Bereich Knochensimulationen
umgesetzt.

Geometrical Material Boundary FEM
Bone Shape Parameters Conditions Parameters

Text I — csVv S—
— g(Mj i saL
tract AdJUSt V
X
DEfS'?% E’g N8 Material Boundary Eg'rea‘;’f] gtgpg
Parameters. Condjtions

. L» Start
Transform Visualize
) SPandals ’ ‘ Results ‘ Results 2®
Text . Text Lk

Input Data Unknown Variables Visualization Input

Abbildung 1.1.: Simulationsworkflow fir Strukturanderungen in Knochen [RS14]

1. Einflhrung

Bei dem Beispiel geht es um die Simulation von Strukturanderungen von Knochen [Kra14]. In Abb. 1.1
ist der gesamte Ablauf dieser Simulation zu sehen. Um etwas zu simulieren wird zuerst die Simulation
vorbereitet. In diesem Beispiel in Abb. 1.1 sind das die ersten vier Schritte. Zu der Vorbereitung gehoren
das erstellen oder sammeln der Daten zu Form und Material des zu simulierenden Objekts. Danach
kann simuliert werden. Die Resultate der Simulation werden dann konvertiert, um anschlieflend
visualisiert zu werden. Das in dieser Arbeit vorgestellte Programm iibernimmt die Visualisierung der
Ergebnisse — in Abb. 1.1 der letzte Schritt.

Falls bei einer Simulation etwas schief lauft, kann das bisher erst nach Ende der oftmals langen
Laufzeit festgestellt werden. Um dies zu verhindern ist das Ziel dieser Arbeit, darauf hinzuarbeiten,
Simulationsergebnisse wihrend der Simulation zu visualisieren, damit eine solche Fehlentwickelung
frithzeitig erkannt werden kann.

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

In Kapitel 2 — Grundlagen werden die in dieser Arbeit verwendeten Technologien und Bibliotheken
beschrieben. In Kapitel 3 — Bestandsaufname wird das bisher verwendete Programm beschrieben und
analysiert. In Kapitel 4 — Vorbereitung fiir die Umsetzung als Datenfluss wird beschrieben, wie das
originale Skript auf die wesentlichen Funktionen gekiirzt und weiter analysiert wird. In Kapitel 5 —
Umsetzung als Datenfluss wird die Umsetzung des Skriptes als Datenfluss beschrieben. In Kapitel 6 —
Zusammenfassung und Ausblick wird eine Zusamenfassung der Arbeit mit Auswertung gegeben.

2. Grundlagen

In diesem Kapitel werden die in dieser Arbeit verwendeten Technologien beschrieben. Diese sind
die Programmiersprache Python in Abschnitt 2.1, das Visualization Toolkit (VTK) in Abschnitt
2.2, die Bibliothek fiir Computer-Vision OpenCV in Abschnitt 2.3. In Abschnitt 2.4 werden die
Technologien, die flussbasierte Programmierung implementieren oder damit in Zusammenhang
stehen, beschrieben.

2.1. Python

Python! ist eine objektorientierte, skriptbasierte Programmiersprache, die 1990 von Guido van Rossum
entwickelt wurde. Als solche wird sie interpretiert und hat dynamische Typenzuordung. Das bedeutet,
dass der Typ einer Variable nicht explizit angegeben wird, sondern durch den darin gespeicherten Wert
definiert wird. Python hat bereits hohere Datentypen wie assoziative sowie flexible Arrays eingebaut
und kommt mit einer groffen Anzahl Standardmodule, wie zum Beispiel os fiir die Interaktion mit
dem Betriebssystem oder math fiir mathematische Funktionen. Um Beginn und Ende von Schleifen
oder bedingte Verzweigungen zu definieren, wird in Python Einriickung statt Schliisselworter oder
Klammern benutzt. In Python lasst sich Software durch die héheren Datentypen, die erforderte
Einriickung und die fehlende Variablendeklaration lesbar und kompakt schreiben [Pyt].

import netCDF4

import numpy as np

from netCDF4 import ma

import matplotlib.pyplot as plt

from matplotlib.backends.backend_pdf import PdfPages

def main(db_pth = ’.’, fmodel = ’'clm’):
g = netCDF4.Dataset(db_pth+’/land water _mask/LandWaterMask Global CRUNCEP.nc’, 'r’)
mask = g.variables[’land water_mask’]
mask = mask[:].swapaxes(0,1)

f = netCDF4.Dataset(db_pth+’'/NEE_first_year.nc’, 'r’)
data = f.variables[’'NEE’]

data datal[:]

data = data.swapaxes(0,2)

adj = 60%60%24%(365/12)*1000

data = dataxadj

"Python: https://www.python.org/

21

26

31

2. Grundlagen

native = data.mean(2)
latShape = mask.shape[0]
logShape = mask.shape[1l]
for x in range(latShape):

for y in range(logShape):

if mask[x,y] == 1 and ma.getmask(native[x,y]) == 1:
for index in range(data.shape[2]):
datal[x,y,index] = 0

plt.imshow(np.mean(data,2))
plt.xlabel("Mean 1982-2010 NEE [gC/m2/mon]")
plt.title(fmodel + ":BG1")
pp = PdfPages(’'result NEE.pdf’")
pp.savefig()
pp.close()

Listing 2.1: Beispiel-Pythoncode [McP15]

Listing 2.1 enthélt ein Beispiel fiir Python-Code in dem Daten graphisch dargestellt in eine PDF-Datei
geschrieben werden. Im Beispiel in den Zeilen 12 und 22 werden zum Beispiel Variablen zugewiesen,
ohne dass sie, beziehungsweise ihr Typ, deklariert wurden. In Zeilen 22 bis 26 sieht man, wie Python
Einriickung benutzt, um bedingte Verzweigungen oder Schleifen zu beenden.

2.2. VTIK

Das Visualization Toolkit (VTK)? ist ein Open-Source Software-System von Kitware fiir 3D-
Computergrafik, Visualisierung und Bildverarbeitung. Es besteht aus einer C++-Bibliothek, die iiber
Interface-Layers auch in Java und Python eingebunden werden kann. Mit VTK lassen sich Daten wie
Punktemengen, Polygone, Bilder und Matrizen speichern und weiterverarbeiten [SAH00]. Unterstiitzt
werden verschiedene Visualisierungsalgorithmen sowie einige Modellierungsfilter. Anwendung fin-
det VTK zum Beispiel bei medizinischer Visualisierung oder industriellen Inspektionsprogrammen.
Fiir verschiedene Anwendungen, wie zum Beispiel Volumenvisualisierung, Erddlexploration und
Stromungsmechanik wird VTK auflerdem durch kommerzielle Unternehmen erweitert [SAH00].

2.3. OpenCV

OpenCV (Open Source Computer Vision Library)? ist eine Software-Bibliothek in C und C++, die
Algorithmen fiir maschinelles Lernen und Computer-Vision beinhaltet [Ope15]. Uber Interfaces kann
sie auch in Python, Java, Ruby und MATLAB eingebunden werden.

Ein Ziel von OpenCV ist eine einfach zu benutzende Bibliothek fiir umfangreiche Computer-Vision-
Anwendungen bereitzustellen. Dafiir beinhaltet OpenCV iiber 500 Funktionen aus verschiedenen
Bereichen von Computer-Vision. OpenCV beinhaltet auch eine Bibliothek fiir maschinelles Lernen. Das

*VTK: http://www.vtk.org/
*OpenCV: http://opencv.org/

10

2.4. Flussbasierte Programmierung

liegt daran, dass Computer-Vision und maschinelles Lernen oft zusammen verwendet werden. OpenCV
wurde auf rechnerische Effizienz hin optimiert und kann Multicore-Prozessoren ausnutzen [BK08].

2.4. Flussbasierte Programmierung

In diesem Abschnitt werden Technologien beschrieben, die flussbasierte Programmierung implemen-
tieren. Bei flussbasierter Programmierung wird das Software-System als eine Menge von Komponenten,
zwischen denen Nachrichten oder Daten ausgetauscht werden, angesehen [CM11].

2.4.1. PyF

PyF* ist eine Implementierung der flussbasierten Programmierung von Jonathan Schemoul® in Python.
Die Plattform ist Open-Source und wurde fiir das Verarbeiten und Transformieren grofier Daten
entwickelt. Mit PyF lassen sich Codeblocke definieren und deren Ein- und Ausgénge verbinden.
Auflerdem kann PyF iiber Plugins erweitert werden und lésst sich als Webservice betreiben. Wenn es
als Webservice lauft, lasst sich der Datenfluss iiber eine graphische Oberfliche erstellen [PyF15].

2.4.2. Node-RED

Node-RED® ist ein Implementierung der flussbasierten Programmierung von IBM Emerging Tech-
nology, die auf Node.js basiert [Nod15]. Mit Node-RED lassen sich Programme auf einer graphi-
schen Oberflache verbinden. Unterstiitzt werden Interaktionen mit Hardware, Web Services, sowie
APIs [MGR™15]. Die einzelnen Knoten des Graphen reprisentieren eigene oder vorinstallierte Code-
blocke. IBM unterhilt auch eine Bibliothek benutzergenerierter Knoten und Graphen [Nod].

In Abb. 2.1 sieht man die graphische Oberflache von Node-Red mit einem erstellten Beispiel-Datenfluss.
In dem Datenfluss wird zuerst links eine Http-Anfrage empfangen. Auf den empfangenen Daten wird
in Funktion Code ausgefiihrt. Der switch-Knoten entscheidet durch lesen der eingehenden Daten, auf
welchem Ausgang der Datenfluss fortgesetzt werden soll. Es wird also hier aus den Daten ausgewahlt,
ob sie als Http-Antwort gesendet werden sollen (http) oder ob sie in eine Datei gespeichert werden

sollen (file).

2.4.3. Kurator-Akka Framework

Bei der Verwaltung von wissenschaftlichen Daten kommt es vor, dass einige Daten Probleme wie
Tippfehler in Namen oder Probleme mit Koordinatensystemen enthalten [Lud14]. Dies wird tiblicher-
weise als Arbeitsablauf aus verschiedenen Werkzeugen und Services gelost. Das Kurator-Projekt’

*PyF: http://pyftproject.org/

*Blog of Jonathan Schemoul: http://www.jondesign.net/

*Node-RED: http://nodered.org/

"Kurator: https://opensource.ncsa.illinois.edu/confluence/display/KURATOR/Kurator+Project+Home

11

2. Grundlagen

3 Node-RED - Chromium
&%, NodeRED

€ [5127.001

=<2 Node-RED =/ Deploy ~ =

Sheet 1 + info debug

http response a0 http
hitp)
o
— N ridon O—— T

ebsocke
SSSSS |
tey Q
P file

Abbildung 2.1.: Die graphische Oberfliche von Node-RED

von der University of Illinois und der Harvard University entwickelt ein Modul aus verschiedenen
vorgefertigten Arbeitsschritten, die sich zu einem Workflow zusammenfiigen lassen [DCM™12].

Akka® ist eine Ausfithrungsumgebung fiir verteilte, mitteilungsbasierte Java-Programme. Es wurde
als Grundlage fiir das Kurator-Akka-Framework® benutzt, da es bereits die Verwaltung der Ausfiih-
rungsreihenfolge und -zeit sowie des Datenflusses teilweise unterstiitzt [MLH " 15].

Die einzelnen Codeblocke fiir Kurator-Akka konnen in Java oder Python geschrieben werden. Die
Informationen fiir die Einbindung in Workflows, sowie die Workflows selbst werden im YAML-
Datenformat definiert.

2.4.4. YesWorkflow

Wissenschaftliche Workflow-Management-Systeme haben viele Vorteile, da sie Funktionen haben,
die bei dem Erstellen komplizierter Ablaufe aus modularen Bausteinen und der Ausfithrung dieser
helfen. Trotzdem werden viele automatisierte Workflows auflerhalb wissenschaftlicher Workflow-
Management-Systeme implementiert und ausgefiihrt. Dies liegt daran, dass viele Wissenschaftler
mit Skriptsprachen wie Python, Perl, R und MATLAB Erfahrung haben und damit produktiver sind.
YesWorkflow!? ist ein Werkzeug, mit dem ein Benutzer existierende Programme mit Informationen
zu deren Workflow annotieren kann. Dadurch hat der Benutzer viele Vorteile von wissenschaftlichen
Workflow-Management-Systemen, benétigt aber keine Workflow-Engine und muss den Code nicht
anpassen. Aus der Annotation ergeben sich die Codeblocke sowie eine Beschreibung des Datenflusses
zwischen den Codeblécken [MSK'15].

® Akka: http://akka.io
’Kurator-Akka: https://github.com/kurator-org/kurator-akka
YesWorkflow: http://yesworkflow.org/wiki

12

[

£

23

28

33

38

43

48

2.4. Flussbasierte Programmierung

Da die Annotationen in Kommentaren untergebracht sind, sind sie sprachenunabhéngig. Um Wis-
senschaftlern den Einstieg in YesWorkflow zu erleichtern sind die Kommentare und das Modell von
YesWorkflow absichtlich einfach gehalten [MSK™*15].

Im Moment befindet sich das Projekt noch im Prototypstatus [McP15].

import netCDF4

import numpy as np

from netCDF4 import ma

import matplotlib.pyplot as plt

from matplotlib.backends.backend_pdf import PdfPages

@BEGIN main

@PARAM db_pth

@PARAM fmodel

@IN input_mask_file @URI file:{db_pth}/land_water_mask/LandWaterMask_Global_CRUNCEP.nc
@IN input_data_file @URI file:{db_pth}/NEE_first_year.nc

@OUT result_NEE_pdf @URI file:result_NEE.pdf

def main(db_pth = ’.’, fmodel = ’'clm’):
©@BEGIN fetch_mask
@PARAM db_pth
@IN g @AS input_mask_file @URI file:{db_pth}/land_water_mask/LandWaterMask_Global_CRUNCEP.nc
@OUT mask @AS land_water_mask
g = netCDF4.Dataset(db_pth+’/land water _mask/LandWaterMask Global CRUNCEP.nc’, 'r’)
mask = g.variables[’land water_mask’]
mask = mask[:].swapaxes(0,1)
@END fetch_mask

©BEGIN load_data

@PARAM db_pth

@IN input_data_file @URI file:{db_pth}/NEE_first_year.nc
@OUT data @AS NEE_data

f = netCDF4.Dataset(db_pth+’'/NEE_first year.nc’, 'r’)
data f.variables['NEE’]

data datal:]

data = data.swapaxes(0,2)

adj = 60x60%x24%(365/12)*1000

data = dataxadj

@END load_data

©BEGIN standardize_with_mask
@IN data ©@AS NEE_data
@IN mask @AS land_water_mask
@OUT data @AS standardized _NEE_data
native = data.mean(2)
latShape = mask.shape[0]
logShape = mask.shape[1l]
for x in range(latShape):

for y in range(logShape):

if mask([x,y] == 1 and ma.getmask(native[x,y]) ==
for index in range(data.shape[2]):
data[x,y,index] = 0

@END standardize_with_mask

13

53

58

2. Grundlagen

@BEGIN simple_diagnose

@PARAM fmodel

@IN data @AS standardized_NEE_data

@OUT pp @AS result_NEE_pdf @URI file:result_NEE.pdf
plt.imshow(np.mean(data,2))

plt.xlabel("Mean 1982-2010 NEE [gC/m2/mon]")
plt.title(fmodel + ":BG1")

pp = PdfPages(’'result NEE.pdf’")

pp.savefig()

pp.close()

@END simple_diagnose

@END main

Listing 2.2: Beispielcode fiir YesWorkflow-Kommentare [McP15]

In Listing 2.2 ist der gleiche Code wie in Listing 2.1 zu sehen, der diesmal allerdings mit YesWorkflow
annotiert ist. Die YesWorkflow-Kommentare definieren in Zeile 7 den Beginn des Programmes. In
Zeilen 8 bis 12 werden Parameter und globale Ein- und Ausgabedaten definiert. Das dazugehorige

Ende befindet sich in Zeile 61. Fiir Eingabedaten lassen sich auch Templates fiir URI-Dateipfade
angeben.

main

Ow fetchl““k land_water_mask

input_data_file 1

standardized_NEE_data

standardize with_mask result NEE_pdf 'S

simple_diagnose

Abbildung 2.2.: Mit YesWorkflow aus Listing 2.2 generierter Graph

Dazwischen werden die einzelnen Codeblocke definiert, zum Beispiel zwischen Zeilen 15 und 22.
Genauso wie fiir das ganze Programm werden hier fiir jeden einzelnen Codeblock Anfang und Ende
(Z.15,22) sowie Parameter und Ein- und Ausgabedaten (Z. 16-18) definiert. Aus diesen Namen oder
alternativen Namen (@AS) ermittelt YesWorkflow, welche Codeblocke tiber welche Datenkanéle
miteinander verbunden sind und erstellt daraus einen Datenflussgraphen (Abb.2.2).

14

3. Bestandsaufname

Um Simulationen von Strukturverdnderungen von Knochen zu visualisieren wird momentan PAN-
POST verwendet. Dieses wird in diesem Kapitel vorgestellt. PANPOST wurde am Institut fiir Mechanik
der Universitit Stuttgart geschrieben. Mit dem Programm lassen sich .dat-Dateien im Tecplot!-Format
laden, rendern und anzeigen. Wenn eine Datei gerendert ist und das Modell angezeigt wird, kann
man es drehen und so von allen Seiten betrachten. Uber Meniis lassen sich Daten tiber Einfirbungen
anzeigen und Einstellungen der Visualisierung wie zum Beispiel Belichtung dndern. Das angezeigte
Bild lasst sich auflerdem als Bilddatei abspeichern.

Zu dem PANPOST-Programm liegen 201 Tecplot-Dateien aus einer Simulationen sowie sieben weitere
Beispieldateien vor. Die Tecplot-Dateien enthalten die relevanten 3D-Modelle. Da die Einlesemethode
aus dem PANPOST-Programm weiterverwendet werden konnte, war es nicht notwendig, sich im
Detail mit diesen Dateien, beziehungsweise der entsprechenden Datenstruktur zu beschaftigen.

Das PANPOST-Programm wurde in Python geschrieben und besteht aus 23 Dateien, von denen
die Grofite knapp 5000 Zeilen hat. Es benutzt VTK fiir die Visualisierung und wxPython? fiir die
graphische Benutzeroberflache. Nach kleineren Anpassungen lauft das Programm in Python 2.7.3,
allerdings bleiben noch Probleme, wie zum Beispiel fehlende Informationen in der Leiste des Fensters
(siehe Abb. 3.3), bestehen.

Es besteht aus einem Front- und einem Backend. Das Frontend beinhaltet die Benutzeroberfliache. Das
Backend ist fiir die bei der Visualisierung durchgefiihrten Berechnungen zusténdig. Diese Einteilung
hilft aber nur bedingt, da der Code fiir beide Teile nicht sauber getrennt ist. Der gréfite Teil des
Frontends wird zum Beispiel in der gleichen Datei und Klasse definiert, wie die wichtigsten Teile
des Backends. Aufierdem sind Kommentare grofitenteils in Deutsch, teilweise aber auch in Englisch
verfasst. Es gibt viel auskommentierten Code, sowie Kommentare, die auf fehlende Funktionen
hindeuten.

Ein weiteres Problem des Programms besteht darin, dass es die verfiigbaren Tecplot-Dateien aus der
Simulation nicht fehlerfrei liest. Das Einlesen funktioniert an der betroffenen Stelle durch Abziahlen
der Werte anstatt den Namen der Werte in Betracht zu ziehen. Die Simulationsdateien haben in dieser
Zeile einen Wert mehr als die Beispieldateien. Deshalb lauft das Programm ohne es zu dndern mit
diesen nicht.

In Abschnitt 3.1 wird das Programm anhand der Python-Dateien, aus dem es besteht erklart. An-
schlieSend wird in Abschnitt 3.2 die Benutzeroberflache des Programms beschrieben. In Abschnitt 3.3
wird eine kurze Zusammenfassung der Ergebnisse aus diesem Kapitel gegeben.

"Tecplot:http://www.tecplot.com/
*wxPython: http://www.wxpython.org/

15

3. Bestandsaufname

3.1. Die Dateien des PANPOST-Programms

Abbildung 3.1 zeigt eine Ubersicht tiber die Dateien aus denen das Programm besteht. Die zu analy-
sierenden Python-Dateien lassen sich nach ihrer Funktion einteilen:

Backend * Frontend
panApp
|
panXML panWin
)
panwxVTKRenderWindowlnteractor panProgram panDialogABOUT
panProgramStress ~_| panDialogOptions
sl i
panProgramDeformation ~_| panDialogstress
weh . . .
panProgramsStream panDialogVisualize
/\ \%
panProgramReflection panDialogOUTRaster
e \
panProgramPlane panDialogOUTVector
v
panProgramOptions ~_|
/\
panProgramlsosurface
L
panProgramScalarBar
panDatlnput
>
panDatlnput_Std
panDatIinput_XFEM
panDatInput_XFEM_wo_CrackTip

Abbildung 3.1.: Alle Dateien von PANPOST mit deren Abhingigkeiten

Hauptklasse

Die Main-Methode des Programms befindet sich in panApp.py. Hier werden auflerdem noch eventuell
mit iibergebene Argumente ausgewertet. Die Standardeinstellungen fiir das Programm, wie zum
Beispiel Kameraposition, befinden sich hart kodiert in dieser Datei. Diese Einstellungen werden
verwendet, wenn sie nicht in den Dialogfenstern geédndert werden. Abgesehen von den Programmein-

stellungen und dem Aufruf des nichsten Skripts befindet sich in dieser Datei fiir diese Arbeit nichts
Wesentliches.

16

3.1. Die Dateien des PANPOST-Programms

Hauptfenster

Das Hauptfenster wird in der Datei panWin.py definiert. AuBerdem wird hier das Rendern der Tecplot-
Dateien vorbereitet und ausgefiihrt. Das ist eine zentrale Funktion fiir die Implementierung in den
nachfolgenden Kapiteln. Der Ablauf davon wird in Abbildung 3.2 dargestellt.

’Grid I—»’ MapperI ‘{ActorI IRenderer }—»’ RenderWindow

Abbildung 3.2.: Die Schritte, die zur Vorbereitung zum Rendern nétig sind

Um das vtkUnstructuredGrid, das aus der Tecplot-Datei ausgelesen wurde, zu rendern, wird zuerst
ein vtkDataSetMapper erzeugt. Dieser Mapper erhalt das Grid als Eingabedaten. Der Mapper ist eine
Schnittstelle zwischen den Daten und den graphischen Primitiven. Als nichstes wird ein vtkActor
erzeugt, der den Mapper als Eingabe erhalt. Der Actor ist dafiir zustandig Daten dariiber zu speichern,
wie das Objekt in der Renderumgebung platziert ist. Den Actor erhélt wiederum der vtkRenderer
als Eingabe, der in diesem Fall schon friither erzeugt wurde. Der Renderer ist fiir das Rendern eines
einzelnen Objektes zustdndig. Dieser wird dann einem vtkRenderWindow hinzugefiigt. Das Render-
Window ist das Fenster in dem gerendert wird. Das RenderWindow hat die Methode Render(), die
deren Renderer befiehlt, das Bild zu rendern.

Die meisten Klassen in den anderen Python-Dateien des Programms haben eine Referenz zuriick auf die
Klasse in panWin.py, von der sie aufgerufen wurden. Uber diese Referenz sind auch auflerhalb dieser
Datei Renderaufrufe zu finden. Wenn eine Datei gedffnet wird, wird diese mehrmals gerendert.

Einlesen der Tecplot-Dateien

Fir das Einlesen von Tecplot-Dateien sind in dem Programm vier Dateien vorgesehen. Drei der
Dateien, panDatInput_Std.py, panDatInput XFEM.py und panDatInput XFEM_wo_CrackTip.py, lesen
die Tecplot-Dateien ein. Dabei hat jede Datei eine andere Variante der Einlese-Methode. Die vierte
Python-Datei, panDatlInput.py, verweist auf panDatInput_Std.py. Die Idee dahinter ist vermutlich, dass
in der Datei panDatInput.py auf die Datei mit dem zu verwendenden Einleseprogramm referenziert
wird. Die referenzierte Datei wiare dann dafiir zustandig, die Daten aus den Tecplot-Dateien einzulesen
und in ein vtkUnstructuredGrid zu speichern. Tatsachlich wird allerdings in panProgram.py direkt auf
panDatInput_Std.py referenziert und nicht auf panDatInput.py. Damit wird immer panDatInput_Std.py
verwendet.

In der in den nachfolgenden Kapiteln vorgestellten Implementierung miissen genauso wie in dem
PANPOST-Programm Tecplot-Dateien eingelesen werden, daher ist die hier verwendete Datei, pan-
DatInput_Std.py, auch fiir den néchsten Abschnitt wichtig. Da im Ausgangsprogramm die anderen
Einlesedateien nicht verwendet werden, kénnen sie vernachlassigt werden.

Dialogfenster

Vier Dateien sind fiir je ein Dialogfenster zustidndig. Die Datei panDialogABOUT.py stellt ein About-
Fenster dar, panDialogOptions.py ein Optionsfenster, panDialogStress.py das Fenster fiir Stress-

17

3. Bestandsaufname

Optionen und panDialogVisualize.py fir die Schnitt-Optionen.

Das About-Fenster zeigt an, dass die Programme vom Institut fiir Mechanik an der Universitat
Stuttgart geschrieben wurden. Mit dem Optionsfenster und dem Stress-Fenster lassen sich Anzeige-
einstellungen, wie zum Beispiel Farbe, Beleuchtung, Reflexion und farbige Anzeige bestimmter Werte
aus der Visualisierung &dndern. Da es in dieser Arbeit um die Visualisierung der 3D-Objekte geht, ist
die Funktion des Schnitt-Fensters, Schnittebenen durch das Objekt zu legen, nicht relevant.

Es gibt noch zwei weitere Dateien panDialogOUTRaster.py und panDialogOUT Vector.py. Dies sind
Einstellungsfenster, die beim Exportieren in Raster- und Vektorgrafikdateien erscheinen. Wenn als
Format der zu speichernden Datei JPEG, PDF oder EPS gewéhlt wird, wird ein Dialogfenster mit
Optionen gedffnet. Das Dialogfenster fiir JPEG-Dateien ist in panDialogOUTRaster.py definiert und
bietet Optionen zu Qualitét des Bildes und progressiver JPEG-Generierung. Das Dialogfenster fiir
PDF- und EPS-Dateien ist in panDialogOUTVector.py definiert und bietet unter anderem die Wahl, ob
die Datei komprimiert werden soll und ob die Hintergrundfarbe ibernommen werden soll. Bei Wahl
von PNG-, BMP- und PS-Dateien 6ffnet sich kein Optionsfenster.

Hilfsfunktionen

In panProgram.py befinden sich Hilfsfunktionen. Eine Klasse ist dabei fiir das Abspeichern in Bildda-
teien zustandig. Eine Weitere ruft zum Beispiel die Python-Dateien zum Einlesen von Tecplot-Dateien
auf. Das Abspeichern in Bilddateien wird in der nachfolgenden Implementierung ebenfalls benétigt.
Die Funktion dieser Datei ist daher fiir diese Arbeit von Bedeutung.

Berechnung von optionalen Visualisierungen

Die Berechnungen der zusatzlichen Visualisierungen, die iiber die Optionsmentis ausgewahlt und
gestartet werden, werden in acht weiteren Dateien, panProgramStress.py, panProgramDeformation.py,
panProgramStream.py, panProgramReflection.py, panProgramPlane.py, panProgramOptions.py, pan-
ProgramlIsosurface.py, panProgramScalarBar.py, gemacht. Diese sind fiir die in den nachfolgenden
Kapiteln vorgestellte Implementierung nicht relevant.

Bibliotheken

Die letzten beiden Dateien sind Bibliotheken von anderen Autoren, die in PANPOST verwendet werden.
Die erste, panXML.py, bildet eine Schnittstelle zu XML. Die andere, panwxVTKRenderWindowInterac-
tor.py, verbindet wxPython, die Bibliothek, die zum Erstellen der graphischen Oberfliche verwendet
wurde, und VTK. Diese sind ebenfalls fiir die vorgestellte Implementierung nicht relevant.

18

3.2. Benutzeroberflache

A PANPOST 0.3.0 (727, 727) - C:\Users\Sperwing\Documents\Bachelor\Fixed\develop\sre\eamplesil.. [= || & |[z25]

I 98 98 © WVX

Qe Qa QQ .

Abbildung 3.3.: Die Benutzeroberfliche von PANPOST

3.2. Benutzeroberflache

In Abb. 3.3 sieht man die Benutzeroberfliche des bisher verwendeten Programmes. Diese besteht
aus drei Teilen: der oberen Mentileiste, der Anzeigeflache in der Mitte und der unteren Meniileiste.
Mit der oberen Leiste lassen sich mit den zwei linken Symbolen Tecplot-Dateien 6ffnen und als Bild
exportieren. Die zwei Symbole daneben sind dafiir da, VTK-Dateien zu importieren und exportieren,
die nachsten Zwei, die Optionen als XML-Dateien zu importieren und exportieren.

Die vier Tasten oben rechts 6ffnen Dialogfenster. Die ersten zwei 6ffnen Fenster fiir Funktionen, die
fiir die Weiterverwendung nicht relevant sind und teilweise auch nicht funktionieren. Die nachste
Taste offnet ein Fenster, in dem sich Schnitte durch das dargestellte Objekt machen lassen. Die dritte
Taste offnet das Optionen-Fenster. Hier lassen sich Einstellungen der Darstellung dndern, wie zum

19

3. Bestandsaufname

Beispiel Hintergrundfarbe und Beleuchtung. Die letzte Taste zeigt ein Fenster mit Informationen iiber
die Software an.

In der Mitte wird das Modell angezeigt. Es lasst sich mit der Maus drehen und zoomen. In der unteren
Leiste befinden sich links sechs Tasten, um die Kameraposition des Modells zu dndern und rechts
eine Taste, um das Programm zu beenden.

3.3. Zusamenfassung

Folgende Dateien sind fiir die Umsetzung als Visualisierungspipeline relevant:

panDatlnput_Std.py In dieser Datei befindet sich die Funktion fiir das Einlesen der Tecplot-Dateien.
Da das in einer eigenen Datei passiert und die Funktion keine Abhéngigkeiten in anderen
Dateien hat lasst sich der Originalcode direkt iibernehmen.

panWin.py Hier befindet sich der in Abb. 3.2 dargestellte Ablauf fiir das Rendern der Tecplot-Dateien.
Dieser kann nicht im alten Code aufgerufen werden, sondern muss neu umgesetzt werden.

panProgram.py In dieser Datei befinden sich die Funktionen fiir die Ausgabe als Bilddateien. Die Da-
tei kann ebenfalls nicht eingebunden werden. Allerdings kann eine Funktion zum Abspeichern
als PNG-Datei weitestgehend direkt itbernommen werden.

20

4. Vorbereitung fur die Umsetzung als
Datenfluss

Das in Kapitel 3 beschriebene Programm soll flussbasiert umgesetzt werden. Um eine bessere Ubersicht
zu haben, wie das flussbasierte Programm aussehen muss, wurde das PANPOST-Programm zuerst
auf die wesentlichen Funktionen gekiirzt. Die notwendigen Funktionen, die auch im flussbasierten
Programm erhalten bleiben sollen sind:

1. Einlesen einer Tecplot-Datei

2. Rendern der eingelesenen Datei mittels des in Abb. 3.2 gezeigten Ablaufs. Angezeigt werden
muss das gerenderte Bild dabei nicht.

3. Speichern der gerenderten Grafik in eine Bilddatei

Fiir das Einlesen gibt es im PANPOST-Programm drei Funktionen, die in drei verschiedenen Dateien
untergebracht sind. Da nur eine der Dateien, panDatInput_Std.py in PANPOST zum Einlesen tatsich-
lich benutzt wird, wird diese auch in der flussbasierten Implementierung verwendet. Anstatt den
Code aus der Datei zu kiirzen und als Teil des gekiirzten Programms zu schreiben, wird hier nur die
Datei eingebunden und die Funktion darin aufgerufen. Der Grund dafiir ist, dass die Alternative — die
Funktion neu zu schreiben und dabei auf das Wesentliche zu kiirzen — sehr aufwendig wire. Die von
auflen aufgerufene Funktion, die der Konstruktor derselben Klasse Dat2Grid in panDatInput_Std.py
ist, ruft dabei viele andere Methoden der Klasse auf. Auflerdem hat die Klasse keine Abhéngigkeiten
zu anderen Dateien, sodass sie isoliert verwendet werden kann.

Der Ablauf des Renderns in VTK wurde bereits in Kapitel 3 erlautert. Hierfiir wurden bei der Erstellung
des gekiirzten Programms vorhandene Einstellungsmoglichkeiten untersucht und ausgewéhlt, welche
sich im flussbasierten Programm 4ndern lassen sollen. Fiir die Ausrichtung der Kamera wurden die
Methoden Azimuth und Elevation statt Yaw und Pitch ausgewahlt. Die Funktion von Azimuth und
Elevation erschien nach Test intuitiver zu verwenden. ResetCamera, eine Funktion, die die Kamera
auf das visualisierte Objekt zentriert und den Zoom anpasst, sodass das ganze Objekt im Bild ist, soll
sich an- und ausschalten lassen. Ausschalten soll méglich sein, damit der Benutzer mehr Freiheit beim
Positionieren der Kamera hat. Genauso soll der Benutzer die Funktion anschalten konnen, weil sie es
sehr einfach macht ein Bild einzustellen, auf dem man das vollstindige gerenderte Modell erkennen
kann. Sehr wichtige Einstellungen sind die Hohe und Breite des resultierenden Bildes und damit auch
— letztendlich — des Videos. Andere Einstellungen, die der Benutzer dndern kénnen soll, sind Zoom
und ParallelProjection. Wenn ParallelProjection angeschaltet ist, wird das Bild mit paralleler anstatt
perspektivischer Projektion gerendert.

Als Funktionen zum Abspeichern als Bilddatei gibt es im PANPOST-Programm Methoden fiir die
Rastergrafikformate JPG, PNG und BMP sowie fiir die Vektorgrafikformate PDF, PS und EPS. Zum

21

4. Vorbereitung fir die Umsetzung als Datenfluss

Anzeigen sowie zur Erstellung eines Videos eignen sich Vektorgrafiken weniger, da sowohl Videos als
auch Bildschirme auf Rastergrafik basieren. Von den drei Rastergrafikformaten wurde PNG gewahlt,
da PNG-Dateien komprimiert sind, ohne auf den Bildern Artefakte zu erzeugen.

In Abschnitt 4.1 wird das gekiirzte Programm vorgestellt. Anschlieflend, in Abschnitt 4.2 werden
die Funktionen, die das flussbasierte Programm haben soll, die aber in PANPOST nicht vorhanden
waren beschrieben. In Abschnitt 4.3 wird die Annotation des gekiirzten Programms mit Yesworkflow
beschrieben.

4.1. Das gekirzte Programm

Das in diesem Abschnitt vorgestellte gekiirzte Programm dient der Vereinfachung der Erstellung
des flussbasierten Programms. Das flussbasierte Programm wird erst im nachfolgenden Kapitel 5
vorgestellt.

In diesem Programm sind manche der Einstellungen, wie zum Beispiel die Hintergrundfarbe, sowie
Kameraposition und Bildgrofle voriibergehend hart kodiert. Das liegt daran, dass die Moglichkeit zum
Andern der Einstellungen des PANPOST-Programms im gekiirzten Programm nicht existiert und eine
Alternative noch nicht benoétigt wurde. Mit hart kodierten Einstellungen war es auch moglich deren
Funktionen zu testen, da der Code des Programms schnell dnderbar war. Die Ein- und Ausgabepfade
sind ebenfalls hart kodiert, werden aber, wie auch die Einstellungen, im flussbasierten Programm
wieder fiir den Benutzer dnderbar sein.

Da das flussbasierte Programm automatisch mehrere Dateien verarbeiten soll, ist eine Benutzerober-
flache, mit der auf manuelle Fingaben gewartet werden miisste, nicht von Nutzen. Daher kann die
gesamte Benutzeroberfliche und damit auch wxPython im gekiirzten Programm eingespart werden.

Das gekiirzte Programm wird in den folgenden Abschnitten vorgestellt.

4.1.1. Einlesen der Tecplot-Dateien

print ’'reading file’
self.grid = panDatInput_Std.Dat2Grid(
"C:\Users\Sperwing\Documents\Bachelor\Fixed -
Kopie\develop\src\examples\IN_bandscheibe.dat’);
print 'file sucessfully read’

Listing 4.1: Teil des gekiirzten Programmes, in dem die Tecplot-Datei eingelesen wird

Zum Einlesen wird die Datei panDatInput_Std.py aus dem PANPOST-Programm verwendet. Der Code,
der in dieser Version zum Einlesen benutzt wird und die entsprechende Funktion in panDatInput_Std.py
nutzt, ist in Listing 4.1 zu sehen.

22

20

25

4.1. Das gekirzte Programm

4.1.2. Rendern

self.mapper = vtk.vtkDataSetMapper()
self.mapper.SetInputData(self.grid())

self.actor = vtk.vtkActor()
self.actor.SetMapper(self.mapper)
self.actor.GetProperty().SetColor(0, 0, 1) #>settings

self.ren = vtk.vtkRenderer()
self.ren.SetBackground(1, 1, 1)
self.ren.AddActor(self.actor)
self.ren.SetLayer(0)

self.camera = self.ren.GetActiveCamera()
self.camera.SetFocalPoint(0.0, 0.0, 0.0)
self.camera.SetPosition(0, 0, 100)
self.camera.SetViewUp(0, 1, 0)
self.camera.Roll(0) #>settings
self.camera.Azimuth(30) #>settings
self.camera.Elevation(0) #>settings
self.camera.Zoom(1l) #>settings
self.camera.ParallelProjectionOn() #>settings
self.ren.ResetCamera() #>settings

self.renWin = vtk.vtkRenderWindow()
self.renWin.AddRenderer(self.ren)
self.renWin.SetSize (1000, 1000) #>settings
self.renWin.O0ffScreenRenderingOn()
self.renWin.Render()

Listing 4.2: Teil des gekiirzten Programmes, in dem das Rendern vorbereitet wird und gerendert wird

Wie bereits in Kapitel 3 beschrieben, ist der erste Schritt der Vorbereitung fiir das Rendern die
Erstellung eines vtkDataSetMapper und die Eingabe des Grid in diesen (siche Abb. 3.2). Das passiert
auch in diesem Programm in Listing 4.2 in den ersten zwei Zeilen. Der Aufruf von grid() ist dabei
notig, da die zum Einlesen benoétigte Klasse eine Instanz von sich selbst zuriickgibt. Um das benétigte
vtkUnstructuredGrid zu erhalten, wird hier mit grid() die __call _()-Methode der Klasse aufgerufen.

Als nichstes werden in Listing 4.2 in Zeilen 4 und 5 ein vtkActor erstellt und der Mapper iibergeben.
In der nichsten Zeile wird die Farbe des zu rendernden Objektes festgelegt. Der Kommentar dahinter,
sowie ggf. analog bei weiteren Code-Zeilen gibt an, dass die Farbe des Objektes in der flussbasierten
Implementierung zu den &nderbaren Einstellungen gehéren soll.

In Zeile 8 wird der vtkRenderer erstellt und in Zeile 10 diesem der vtkActor tibergeben. In Zeile 9 wird
der Hintergrund als weif3 festgelegt und in Zeile 11 die Ebene des Renderers gesetzt.

Von Zeile 14 bis 21 wird die Kamera bearbeitet. Die Kamera ist der virtuelle Ort, von dem aus das
Objekt im Bild visualisiert wird. Die Kamera ist hier als Teil des Bearbeiten des Renderers und nicht
als zusitzlicher Schritt angesehen, da die Kamera nicht extra erstellt, sondern mit dem Renderer
erstellt und daraus extrahiert wird. Die Zeilen sind teilweise redundant, um zu testen, wie genau
die Einstellungen funktionieren. Die Kamera ist bereits im Renderer definiert und wird in Zeile 13
geladen. In Zeile 14 wird der Punkt definiert, auf den die Kamera zeigen soll. In Zeile 15 wird die

23

4. Vorbereitung fir die Umsetzung als Datenfluss

Position der Kamera definiert. Zeilen 16 bis 20 definieren Ausrichtung und Zoom der Kamera. Zeile
22 richtet die Kamera so aus, dass das Objekt in einer sinnvollen Gréfie im Mittelpunkt des Bildes ist.
Zeile 21 dndert die Projektion von perspektivisch zu parallel.

Der Renderer wird nun in Zeile 25 einem neuen vtkRenderWindow hinzugefiigt. Zeile 26 legt die
Grofle des RenderWindow und damit die Grofle des gerenderten Bildes fest. Ohne Zeile 27 wiirde
sich beim Rendern ein Fenster 6ffnen und das gerenderte Bild anzeigen. Im flussbasierten Programm
niitzt diese Funktion nicht, da sich beim Rendern mehrerer Bilder fir jedes Bild ein neues Fenster
6ffnen und schlieflen wiirde. Daher wird das Bild nicht angezeigt, sondern nur abgespeichert (siehe
Abschnitt 4.1.3). In Zeile 28 steht schlieBlich der Befehl zum Rendern.

4.1.3. Ausgabe

try:
w2if = vtk.vtkWindowToImageFilter()
w2if.SetInput(self.renWin)

writer = vtk.vtkPNGWriter()
writer.SetInputConnection(w2if.GetOutputPort())
writer.SetFileName('output.png”)
writer.Write()

except:
print 'Error writing png file’

Listing 4.3: Teil des gekiirzten Programmes, in dem die Bilddatei gespeichert wird

Der Code in Listing 4.3 entspricht dem der Methode SavePNG in der Datei panProgram.py des
PANPOST-Programms. Um aus dem vtkRenderWindow eine Bilddatei zu generieren, muss zuerst, in
Zeile 2, ein vtkWindowTolmageFilter erstellt werden, der das RenderWindow iibergeben bekommt
(Zeile 3). Dieser wird in Zeile 6 mit einem vtkPNGWriter verbunden. In Zeile 7 wird der Pfad der zu
erstellenden Datei festgelegt. Mit dem Aufruf Write() schreibt der PNGWriter die Bilddatei. Falls das
Schreiben Fehler ergibt wird in Zeile 10 eine Fehlermeldung in der Konsole ausgegeben.

4.2. Neue Funktionen

Gegeniiber dem gekiirzten Programm gibt es im flussbasierten Programm neben der Umsetzung als
Datenfluss noch weitere Anderungen.

Die Einstellungen, die im gekiirzten Programm hart kodiert waren, werden im flussbasierten Pro-
gramm in eine Settings-Datei ausgelagert. Fiir das Einlesen der Settings-Datei wird das bereits
mitgelieferte Paket ConfigParser verwendet.

Ebenfalls im gekiirzten Programm hart kodiert war die Eingabedatei. Im flussbasierten Programm
werden alle Dateien in einem Ordner verarbeitet. Der Pfad des Ordners, in dem sich die Eingabedateien
befinden, sowie ein Pfad zum Zwischenspeichern der erzeugten Bilder und der Pfad und Name der
Ausgabedatei werden dabei in der Settings-Datei festgelegt.

24

4.3. Annotation mit YesWorkflow

Das gekiirzte Programm gibt am Ende der Ausfithrung eine PNG-Datei zuriick. Im flussbasierten
Programm soll nicht ein Bild, sondern ein Video aus den Bildern vieler Dateien entstehen. Um das
zu bewerkstelligen wird die Bilddatei zuerst wie im gekiirzten Programm abgespeichert. Anschlie-
Bend wird sie wieder eingelesen und mittels OpenCV zu dem Video als Frame hinzugefiigt. Bei der
Umsetzung stellte sich heraus, dass das Hinzufiigen im Datenfluss moglich ist und nicht nach der
Visualisierung aller Bilder passieren muss. In der Umsetzung als Datenfluss wird also ein Bild visuali-
siert und an das Video angefiigt, bevor das nichste Bild visualisiert wird. Das erlaubt es auflerdem, das
visualisierte Bild nach dem Anfiigen an das Video zu l6schen. Damit wird immer nur eine Bilddatei
zwischengespeichert, was ressourcenschonender ist.

4.3. Annotation mit YesWorkflow

Um das gekiirzte Programm in ein flussbasiertes Programm zu konvertieren, miissen sinnvolle Code-
blécke und der Datenfluss zwischen diesen ermittelt werden. Dafiir wurde YesWorkflow! benutzt.

Da YesWorkflow noch ein Prototyp ist, lassen sich damit nur die Kommentare aus einer einzelnen Datei
auslesen. Deshalb war es nicht praktikabel YesWorkflow bereits im urspriinglichen PANPOST-Code
zu verwenden, sondern das in Abschnitt 4.1 gekiirzte Skript zu annotieren.

Bisher wurde in dieser Arbeit das Programm in drei Arbeitsschritte eingeteilt:
1. Einlesen einer Tecplot-Datei
2. Vorbereiten zum Rendern und Rendern der eingelesenen Datei
3. Speichern der gerenderten Grafik in eine Bilddatei

Diese sind als Grundlage fiir die Aufteilung in Codeblécke hilfreich. Der Code zum Einlesen und
Speichern ist hierbei kurz genug, um daraus jeweils einen Codeblock zu formen (siehe Listing 4.1 und
4.3). Der Code fiir das Rendern (siehe Listing 4.2) hat allerdings viele Funktionen und ist damit fiir
einen Codeblock zu uniibersichtlich. Deswegen soll dieser in mehrere Codeblocke unterteilt werden.
Entsprechend der Beschreibung in Abschnitt 3 wird im ersten Schritt der Mapper erstellt und diesem
das Grid Gibergeben. Im zweiten Schritt wird der Actor erstellt, diesem der Mapper iibergeben und
die Farbe des Objektes eingestellt. Der dritte Schritt besteht aus der Erstellung des Renderers und
dem Ubergeben des Actors an diesen. Auflerdem werden in diesem Abschnitt die Einstellungen fiir
Hintergrundfarbe, Zentrierungspunkt und der Kameraeinstellungen festgelegt. Der vierte und letzte
Schritt besteht aus der Erstellung des RenderWindow, dem Hinzufiigen des Renderers, dem Einstellen
der Fenstergrofie und schlieBlich dem Rendern. Wenn man nun das Einlesen der Tecplot-Datei und
Abspeichern der Bilddatei hinzunimmt ergibt sich folgende Einteilung fiir den Ablauf:

1. Einlesen einer Tecplot-Datei (Listing 4.1)
2. Erstellung des Mappers (Listing 4.2, Zeilen 1 und 2)

3. Erstellung des Actors und Setzen von Einstellungen (Listing 4.2, Zeilen 4 bis 6)

"YesWorkflow: http://yesworkflow.org/wiki

25

14

19

24

29

4.

Vorbereitung fir die Umsetzung als Datenfluss

4. Erstellung des Renderers und Setzen weiterer Einstellungen (Listing 4.2, Zeilen 8 bis 23)
5. Erstellung des RenderWindows und Rendern (Listing 4.2, Zeilen 25 bis 29)

6. Speichern der gerenderten Grafik in eine Bilddatei (Listing 4.3)

Zusatzlich zu den Codebldcken aus dem gekiirzten Programm werden noch weitere, leere Codeblocke
eingefiigt, die im flussbasierten Programm mit Code gefiillt werden sollen. Diese sind:

1. prepare_settings, ein Codeblock fiir das Einlesen der Einstellungen aus einer Datei (siehe Listing
4.4, Zeilen 12 bis 17)

2. get_filename, als Platzhalter fiir eine Funktion, die aus dem Eingabeordner die Dateinamen aller
Tecplot-Dateien zuriickgibt (siehe Listing 4.4, Zeilen 6 bis 10)

3. make_video, ein Codeblock fiir das Erstellen des Videos aus der Bilddatei

4. remove_imagefile, fiir das Loschen der nun nicht mehr verwendeten Bilddatei

©@BEGIN main

@IN dat-file @URI file:{dat-file-name}

@IN settings-file @URI file:{op_pth}/settings.ini
@OUT video-file @URI file:{video-file-name}

@BEGIN prepare_settings

@IN settings-file @URI file:{op_pth}/settings.ini
@OUT settings

@OUT path-settings

INSERT CODE HERE

@END prepare_settings

@BEGIN get_filename

@PARAM path-settings

@OUT filename

INSERT CODE HERE
@END prepare_setting

def __init (self, params):
©BEGIN read_file
@IN dat-file @URI file:{dat-file-name}
@PARAM filename
@PARAM path-settings
@OUT grid
print 'reading file’
self.grid = panDatInput_Std.Dat2Grid(
"C:\Users\Sperwing\Documents\Bachelor\Fixed -
Kopie\develop\src\examples\IN_bandscheibe.dat’);
print 'file sucessfully read’
@END read_file

Listing 4.4: Der Anfang des gekiirzten Programms mit YesWorkflow-Kommentaren

26

4.3. Annotation mit YesWorkflow

In Listing 4.4 sieht man den Anfang des gekiirzten Programms mit eingefiigten YesWorkflow-
Kommentaren. Die ersten vier Zeilen definieren den Anfang des Programms und die Ein- und
Ausgabedaten. Als Eingabe bekommt das Programm die Tecplot-Datei (Zeile 2), und die Einstel-
lungsdatei (Zeile 3). Als Ausgabe gibt das Programm die Videodatei zuriick (Zeile 4). Uber @URI sind
fiir die Dateien die Pfade angegeben, wobei der Teil in geschweiften Klammern variabel ist.

In Zeilen 6 bis 11 wird der erste Codeblock definiert. In diesem Fall handelt es sich um den leeren
Codeblock, der spater fir die Verarbeitung der Einstellungsdatei zusténdig sein soll. Er bekommt die
Einstellungsdatei iibergeben und liest daraus die verschiedenen Einstellungen ein, die in path-settings,
die Dateipfade, und settings, die sonstigen Einstellungen, aufgeteilt sind.

Der nichste Codeblock, Zeilen 13 bis 17, ist ebenfalls noch nur ein Platzhalter. Hier soll die Funktion,
die aus dem Eingabeordner die Dateinamen aller Tecplot-Dateien ausliest eingefiigt werden. @PARAM
in Zeile 14 sagt aus, dass der Wert ein Eingabeparameter ist.

Der nichste Block, von Zeile 20 bis 29, liest die Tecplot-Datei ein. Zeile 25 bis 28 davon sind der Code
aus Listing 4.1. Dieser bekommt die Tecplot-Datei und im flussbasierten Programm auch den Pfad der
Tecplot-Datei sowie die Pfad-Einstellungen und gibt das Grid an den nachsten Codeblock weiter, der
hier nicht mehr dargestellt ist.

In Abbildung 4.1 sieht man nun den aus der gesamten Datei generierten Graphen.

27

4. Vorbereitung fir die Umsetzung als Datenfluss

file:{op_pth}/settings.ini

prepare_settings

path-settings

get_filename

dat-file
file:{dat-file-name}

filename

prepare_mapper

prepare_actor

prepare_render

renderer

render

save_file

png-file
file:{image-file-name}

make_video

remove_imagefile IJ

file:{video-file-name}

Abbildung 4.1.: Mit YesWorkflow generierter Graph des Datenflusses

28

5. Umsetzung als Datenfluss

In diesem Kapitel wird die Umsetzung als flussbasiertes Programm beschrieben. In Abschnitt 5.1
werden Ausfithrungsumgebungen fiir die flussbasierte Ausfithrung untersucht und verglichen. In
Abschnitt 5.2 wird die Umsetzung als flussbasiertes Programm beschrieben. In Abschnitt 4.3 werden
dann Probleme mit der Umsetzung aufgezeigt.

5.1. Vergleich von Datenflussplattformen

Um ein flussbasiertes Programm zu schreiben benétigt man eine Ausfithrungsumgebung, in der das
Programm lAuft. Fiir diese Arbeit wurden dafiir drei Moglichkeiten betrachtet: Node-RED?, Kurator-
Akka? und PyF®.

5.1.1. Node-RED

In der Aufgabenstellung wurde bereits Node-RED als Ausfithrungsumgebung vorgeschlagen. Node-
RED erlaubt es dem Benutzer zusétzlich zu voreingestellten Knotentypen selbst Knoten mit Code zu
definieren. Allerdings basiert Node-RED auf JavaScript und unterstiitzt Python nicht. Das Problem
hierbei ist nicht, dass es unméglich wire Python-Code von Node-RED aus zu starten, denn dies kann
mittels Knoten fiir externen Programmaufruf oder Web-Service-Aufruf erreicht werden. Schwieriger
ist es die Python-Objekte von einem Codeblock an den néchsten weiterzugeben. Zwar hat Python
Funktionen um Python-Objekte in Text zu serialisieren, allerdings muss das in dem zu serialisierenden
Objekt auch implementiert sein. In den verwendeten VTK-Objekten ist das nicht der Fall. Als letzte
Moglichkeit wire es moglich die Serialisierung selbst zu implementieren. Da dafiir nicht nur die
Objekte die weitergegeben werden, sondern auch alle darin enthaltenen Objekte serialisiert werden
miissten, ware der Aufwand dafiir gegeniiber dem Aufwand die Implementierung mit einer Python-
basierten Plattform umzusetzen nicht angemessen. Aus den genannten Griinden wurde Node-RED
als Datenflussplattform verworfen.

"Node-RED: http://nodered.org/
?Kurator-Akka: https://github.com/kurator-org/kurator-akka
3PyF: http://pyfproject.org/

29

19

5. Umsetzung als Datenfluss

5.1.2. Kurator-Akka

Im Gegensatz zu Node-RED unterstiitzt Kurator-Akka Java und tber Jython, einer Java-
Implementierung von Python, auch Python. Mit Kurator-Akka werden die Datenfliisse in YAML
definiert. Da Kurator-Akka nicht auf Python basiert und dessen Datenfluss in einer anderen Sprache
separat von dem sonstigen Code definiert werden muss, wurde Kurator-Akka hier nicht verwendet.
Eine Umsetzung mit Kurator-Akka ware allerdings auch méglich gewesen.

5.1.3. PyF

PyF unterstiitzt nur Python. Es lasst sich auf verschiedene Arten ausfithren; am einfachsten und fiir
diese Anwendung ausreichend, lassen sich die Codeblocke im Code anstatt in einer graphischen
Oberflache definieren und verbinden. Hauptnachteil ist allerdings, dass PyF seit langerer Zeit nicht
gewartet wurde, was die Installation erschwert. Vermutlich wurde der Support von PyF eingestellt.

Da es Python besser unterstiitzt und der Datenfluss direkt im Code implementiert werden kann wurde
PyF ausgewdhlt.

5.2. Umsetzung mittels PyF

In Listing 5.1 sieht man die Main-Methode des flussbasierten Programms. Im ersten Abschnitt (Zeilen
2 bis 8) wird das Programm vorbereitet, im zweiten und dritten (Zeilen 9 bis 26) werden die Codeblocke
definiert und verbunden und im letzten wird das Programm gestartet (Zeilen 28 bis 30). Zum Schluss
wird das Schreiben des Videos beendet (Zeile 31).

def main():
global pathsettings, rendersettings, videosettings
print "start"
read settings from "settings.ini" file in operating path
dir = dirname(__file__)
path = join(dir,"settings.ini")
pathsettings, rendersettings, videosettings = prepare_settings(path)
source = get_filenames(pathsettings[’'inputfolder’])

read_runner = runner (read_file)
mapper_runner = runner (prepare_mapper)
actor_runner = runner (prepare_actor)
prepare_runner = runner (prepare_render)
render_runner = runner (render)
save_runner = runner (save_file)
video_runner = runner (make_video)
remove_runner = runner (remove_imagefile)

read_runner.connect_in(’values’, iter(source))
mapper_runner.connect_in(’values’,read_runner(’out’))
actor_runner.connect_in(’values’,mapper_runner(’out’))
prepare_runner.connect_in(’values’,actor_runner(’out’))

30

24

29

5.2. Umsetzung mittels PyF

render_runner.connect_in(’values’,prepare_runner(’out’))
save_runner.connect_in(’'values’, render_runner(’'out’))
video_runner.connect_in(’values’, save_runner(’'out’))
remove_runner.connect_in('values’, video_runner(’'out’))

for item in remove_runner(’out’):
#outfile.write(item)
print item + " done!"
writer.release

Listing 5.1: Die ersten zwei Codeblocke der Umsetzung

In diesem Abschnitt wird das flussbasierte Programm beschrieben. Dazu wird zuerst in 5.2.1 die
Vorbereitung des flussbasierten Programms erkldrt. Dann wird in 5.2.2 die flussbasierte Ausfithrung
beschrieben. In 5.2.3 werden die verwendeten Hilfsfunktionen beschrieben. In Abschnitt 5.2.4 wird
schliellich noch die Einstellungsdatei erklart.

5.2.1. Vorbereitung fiir die flussbasierte Ausfiihrung

Bevor die Daten flussbasiert verarbeitet werden kénnen, sind zwei Aktionen notwendig: Die Ein-
stellungen missen ausgelesen werden und die Pfadnamen der zu verarbeitenden Dateien miissen
gesammelt werden. In Listing 5.1 werden zuerst die Einstellungen ausgelesen. Dazu wird in Zeile 5 der
Ausfiuhrungspfad ausgelesen und in Zeile 6 an diesen ,settings.ini“ angehangt. Der Grund dafir ist,
dass das Programm erwartet, dass sich im Ausfithrungsordner des Programms die Einstellungsdatei
mit dem Namen settings.ini befindet. In Zeile 7 wird mit dem Dateipfad eine Hilfsfunktion aufgerufen,
die die Einstellungsdatei ausliest und die Einstellungen in drei assoziativen Arrays nach Kategorie
sortiert ausgibt. Die drei Arrays werden in den Variablen pathsettings, rendersettings und videosettings
gespeichert. Diese sind globale Variablen, sodass in den Codeblocken direkt darauf zugegriffen werden
kann. In Zeile 8 wird eine Hilfsfunktion aufgerufen. Diese hat die Aufgabe die Namen der Dateien in
dem Eingabeordner, der in den Einstellungen angegeben ist, zuriickzugeben.

Von Zeile 10 bis Zeile 17 wird angegeben, dass die Funktionen read_file, prepare_mapper, usw. (vgl. Lis-
ting 5.2) Codebldcke fiir die flussbasierte Ausfithrung sind. Von Zeile 19 bis 26 werden die Codeblocke
zu einem Datenfluss verbunden, indem jedem Codeblock die Ausgabedaten des zuvor auszufithrenden
Codeblock als Eingabedaten definiert werden.

In Zeile 19 wird dabei angegeben, dass als Quelle fiir den ersten Block, read_file, iiber source, die Liste
mit den Dateinamen, iteriert wird.

Nachdem die Dateinamen und Einstellungen fiir den flussbasierten Teil zuginglich gemacht wurden
und der Ablauf des Datenflusses definiert wurde, wird der flussbasierte Programmteil in Listing 5.1
in Zeilen 28 bis 30 gestartet. Das wird dadurch implementiert, dass tiber den Ausgang des letzten
Codeblocks iteriert wird. In Zeile 30 wird der Dateipfad des dann nicht mehr vorhandenen zwischen-
gespeicherten Bildes in die Konsole ausgegeben, um beim Debuggen anzuzeigen, dass der Ablauf fir
eine Datei fertig ist.

Am Ende der Ausfithrung wird in Zeile 31 noch der VideoWriter, der die Videodatei erstellt, beendet.

31

w

5. Umsetzung als Datenfluss

5.2.2. Flussbasierte Ausfiihrung

Da viel von dem Code identisch mit dem in Listing 4.1, 4.2 und 4.3 vorgestellten Code ist, werden hier
nur beispielhaft zwei Codeblocke vorgestellt, um die Anderungen durch die &nderbaren Einstellungen
und die Codebldcke, die vorher noch nicht implementiert wurden, sowie die Anderungen, die durch
die flussbasierte Umsetzung nétig sind, zu zeigen. Der vollstandige Code ist im Anhang in Listing A.1
zu sehen.

@component('IN’, 'OUT")
def read_file(values, out):
for item in values:
print "read: " + item
grid = panDatInput_Std.Dat2Grid(pathsettings['inputfolder’] + "\\’'+ item)
yield (out, grid(), item)

Listing 5.2: Der erste Codeblock der Umsetzung: read_file

Listing 5.2 zeigt die Implementierung des Codeblocks read_file. Der Codeblock besteht einerseits
aus Code, der fiir die Definition als Codeblock und das Verbinden der Daten notwendig ist, und
andererseits aus Code, der die Funktion des Codeblocks implementiert.

Fiir einen Codeblock in PyF bené6tigt man eine Funktion, die zwei Eingabewerte bekommt. Einer davon,
in Zeile 2 values, enthilt die Eingabewerte als Liste, der andere, out, wird nur von PyF verwendet und
wird im yield (siehe Zeile 6) weitergegeben. Uber den Eingabewerten lauft eine Schleife. Da allerdings
in PyF die Werte mit yield anstatt return zuriickgegeben werden wird die Schleife fiir einen Wert in
values erst ausgefithrt, wenn er gebraucht wird. So lauft der Datenfluss fiir einen Eingabewert erst
ganz durch, bevor der nichste verarbeitet wird. Ebenfalls nétig fiir einen Codeblock in PyF ist die
Definition als Komponente, die eine Liste von Werten, anstatt eines Arrays von Listen von Werten,
bekommt und weitergibt in Zeile 1.

Die Funktion dieses Codeblocks ist in Zeile 5 zu sehen. Dort wird, wie in 4.1, panDatInput_Std.Dat2Grid
aufgerufen. Hier werden allerdings die Dateipfade aus dem Pfad des Eingabeordners sowie den Namen
der Eingabedateien zusammengesetzt. In Zeile 6 wird auflerdem die __call _()-Methode aufgerufen,
um das vtkUnstructuredGrid zu erhalten. Weitergegeben werden die vtkUnstructuredGrid sowie die
Dateinamen.

@component (’IN’, 'OUT")
def prepare_mapper(values, out):
for item in values:
num, grid, filename = item
print "prepare mapper: "+filename
mapper = vtk.vtkDataSetMapper()
mapper.SetInputData(grid)
yield (out, mapper,filename)

Listing 5.3: Der zweite Codeblock: prepare_mapper

In Listing 5.3 ist der Codeblock prepare_mapper zu sehen, in dem der Mapper erstellt wird und diesem
das Grid aus Listing 5.2 iibergeben wird.

32

5.2. Umsetzung mittels PyF

Da zum Zwischenspeichern der Datei und zum Nachverfolgen in der Konsole auch ein Dateiname
benoétigt wird, wird der Name der Datei zwischen den Codeblocken weitergereicht. Dazu enthélt die
Liste values in Listing 5.3 Tupel. Diese bestehen, wie in Zeile 4 sichtbar aus num, grid und filename.
Die letzten beiden sind die letzten beiden Werte im yield in Zeile 6 in Listing 5.2. Der erste Wert
enthalt die verwendete Port-Nummer und wird nicht benétigt.

@component ('IN’, 'OUT")
def make_video(values, out):
global writer
for filepath in values:
print "make video: "+filepath
image= cv2.imread(filepath)
if not writer:

try:

codec = cv2.VideoWriter_fourcc(xvideosettings[’codec’])
except:

print "no valid codec specified"

codec = -1
writer =

cv2.VideoWriter(pathsettings[’outputfile’], codec, float(videosettings[’'framerate’]),
(int(videosettings[’width’]),int(videosettings[height’])))
writer.write(image)
yield (out,filepath)

Listing 5.4: Der Codeblock fiir make_video

In Listing 5.4 sieht man den Codeblock, in dem das Video mit OpenCV erstellt wird. Dazu wird
in Zeile 6 fiir jede Tecplot-Datei das zuvor generierte Bild mit dem Bildleser von OpenCV wieder
eingelesen. Falls es noch keinen VideoWriter gibt, also im ersten Durchlauf, wird in Zeile 9 der Codec
aus den Einstellungen ausgelesen. Falls dort kein FourCC-Code angegeben wurde, wird in Zeile 12
"-1% der Wert fur keinen angegebenen Codec, als Codewert festgelegt. Wenn das passiert 6ffnet sich
ein Fenster, in dem aus vorhandenen Codecs einer ausgewahlt werden kann. In Zeile 13 wird dann
ein VideoWriter definiert, wenn noch keiner existiert. Die nétigen Einstellungen werden dabei aus
den assoziativen Arrays, in denen sie aus der Datei eingelesen wurden, entnommen. In Zeile 15 wird
das Bild schliefilich an das Video angefiigt.

@component ("IN’, 'OUT")
def remove imagefile(values, out):
for filepath in values:
print "remove "+ filepath
remove(filepath)
yield filepath

Listing 5.5: Der Codeblock fiir remove_imagefile

Der letzte Codeblock der flussbasierten Ausfithrung 16scht die Bilddatei, da sie nachdem sie an das
Video angefiigt wurde nicht mehr benétigt wird. Dies passiert, wie in Listing 5.5 in Zeile 5 sichtbar,
iiber einen Aufruf.

33

14

19

24

34

5. Umsetzung als Datenfluss

5.2.3. Hilfsfunktionen

def prepare_settings(filename):
reads settings from file at filename and returns ordered by section
configpars = ConfigParser.ConfigParser()
configpars.read(filename)
pathsettings = config_get("path",configpars)
rendersettings = config_get("render",configpars)
videosettings = config_get("video",configpars)
return pathsettings, rendersettings, videosettings

def config_get(section,configpars):
returns one section of the file as a list
dict = {}
options = configpars.options(section)
for option in options:

try:
dict[option] = configpars.get(section,option)
except:
print("exception on %s!" % option)
dict[option] = None

return dict

def try_int(string):
try:
return int(string)
except:
return string

def sort_key(string):
return [try_int(char) for char in split(’([0-9]1+)’, string)]

def get_filenames(folder):
#returns the names of all .dat-files in the specified folder
filenames = [f for f in listdir(folder) if isfile(join(folder,f)) and (f.endswith(’.dat’))]
filenames.sort(key=sort_key)
return filenames

Listing 5.6: Die verwendeten Hilfsfunktionen

In der Umsetzung wurden fiinf Hilfsfunktionen verwendet. Zwei davon sind dafiir zustandig die
Settings-Datei einzulesen, die anderen drei die Dateinamen der zu verarbeitenden Tecplot-Dateien
herauszufinden. Fiir das Einlesen der Einstellungen wird zuerst prepare_settings in Listing 5.6 in Zeile
1 aufgerufen. Diese Funktion bekommt den Dateipfad der Settings-Datei ibergeben und gibt die
Einstellungen als drei assoziative Arrays zuriick. Dazu wird in Zeile 3 ein ConfigParser definiert, der
in Zeile 4 die Settings-Datei ausliest. Danach wird drei mal die Hilfsfunktion config_get aufgerufen,
die fiir einen Abschnitt in der Settings-Datei alle Optionswerte als assoziatives Array zuriickgibt.

Die andere Funktion der Hilfsfunktionen ist es, eine Liste der Dateinamen in dem in den Einstellungen
angegebenen Eingabeordner zu erstellen. Dafiir wird die Methode get_filenames benutzt. In Zeile 33
wird eine Liste aller Dateien in dem Ordner erstellt, die mit ".dat“ enden. Da die Dateien im Video
in der richtigen Reihenfolge sein miissen werden in Zeile 34 die Dateien sortiert. Dazu wird die

34

N

<

22

27

5.2. Umsetzung mittels PyF

Hilfsfunktion sort_key benutzt, die mithilfe der Methode try_int die Dateien nicht alphanumerisch,
sondern auch nach Zahlen sortiert, sodass zum Beispiel "2.dat“ vor "10.dat” kommt.

5.2.4. Die Settings-Datei

[path]

Inputfolder: F:\bone_results\bc_standing

Workingfolder: C:\Users\Sperwing\Documents\Bachelor\QutputTecstat

Outputfile: C:\Users\Sperwing\Documents\Bachelor\OutputTecstat\outputStanding.avi

[render]

#in deg (float)
Roll: 100
Azimuth: 30
Elevation: 0

Zoom: 1
ParallelProjection: true

The camera will reposition itself to view the center point of the actors,
and move along its initial view plane normal (i.e., vector defined from
camera position to focal point) so that all of the actors can be seen.
ResetCamera: true

Color: 0 01

[video]

Height and width of video and images

Can not be bigger than possible window size
Height: 850

Width: 1000

Framerate: 5

FourCC (or -1 for choose from existing)
Codec: -1

Listing 5.7: Die Settings-Datei

Die Settings-Datei ist im INI-Format geschrieben. Sie besteht aus drei Abschnitten, path, render und
video, die in Listing 5.7 in Zeilen 1, 6 und 22 beginnen. Diese dienen hauptsachlich der Ubersichtlichkeit
der Datei, werden allerdings auch im Programm in drei verschiedene Arrays gespeichert. Im ersten
Abschnitt werden die Pfade von dem Eingabeordner (Zeile 2), dem Ordner zum Zwischenspeichern
der Bilder (Zeile 3), sowie der Ausgabedatei (Zeile 4) definiert.

Der zweite Abschnitt enthalt Einstellungen, die bei der Vorbereitung fiir das Rendern verwendet
werden. In Zeilen 8 bis 10 wird die Richtung der Kamera in Grad festgelegt. In Zeile 12 wird der Zoom
eingestellt und in Zeile 13 ob die Projektion parallel oder perspektivisch sein soll. In Zeile 18 wird
eingestellt, ob die Funktion ResetCamera, die automatisch die Richtung und den Zoom der Kamera
anpasst, aufgerufen werden soll. In Zeile 20 wird die Farbe des Objektes eingestellt. Die drei Zahlen
stehen dabei fiir die Farben rot, griin und blau mit jeweils einem Wert zwischen 0 und 1.

35

5. Umsetzung als Datenfluss

Im letzten Abschnitt werden die Optionen fiir das Video eingestellt. Die Einstellungen fiir Héhe und
Breite des Bildes in Pixeln in Zeilen 25 und 26 werden allerdings auch beim Rendern benétigt und sind
nur fur die Ubersichtlichkeit unter video kategorisiert. Weitere Einstellungen sind die Bildfrequenz in
Bilder pro Sekunde in Zeile 28 und der Codec in Zeile 31, der im FourCC-Format angegeben wird.

5.3. Evaluation

Das vorgestellte Programm liest alle Tecplot-Dateien in einem Ordner ein und macht daraus ein Video.
Damit ist die Vorgabe teilweise erfiillt. In der Aufgabenstellung ist allerdings auch davon die Rede,
dass die Ergebnisdaten der Simulation kontinuierlich verarbeitet werden sollen, also dass Dateien
sobald sie vom Simulationsprogramm erstellt wurden zur Ausfithrung hinzugefiigt werden kénnen.
Das ist mit dieser Implementierung nicht gegeben, da in der Implementierung die Dateien im Ordner
zu Beginn aufgelistet und spater zu dem Ordner hinzugefiigte Dateien ignoriert werden. Um das
umzusetzen miisste das Programm den Eingabeordner iberwachen und sobald dort eine neue Datei
erstellt wird den Datenfluss durchlaufen, um diese zu visualisieren. Fiir das Uberwachen von Ordnern
in Python gibt es Mdglichkeiten, wie zum Beispiel Watchdog* oder pyinotify®.

Ein Problem bereitet allerdings die Wahl von PyF als Datenflussengine. Da PyF die im Datenfluss
zu verarbeitenden Objekte auf Basis von Iteration tiber Listen behandelt, wire eine Umsetzung der
kontinuierlichen Verarbeitung nur moglich, wenn der Datenfluss fiir jedes zu verarbeitende Objekt
ganz neu gestartet wird. Das ist mit PyF moglich, wiirde PyF allerdings nicht optimal nutzen und den
Code aufBerhalb des Datenflusses komplizierter machen. Fiir ein solches Programm wére daher eine
erneute Uberpriifung der moglichen Datenflussplattformen sinnvoll.

Fiir die Umsetzung der kontinuierlichen Verarbeitung wére es aulerdem vorteilhaft, die Bilddateien
anzuzeigen anstatt sie in ein Video zu speichern. Dies kénnte mittels OpenCV oder auch direkt mit
VTK implementiert werden.

Ein Problem mit der aktuellen Umsetzung ist, dass die Einlesefunktion aus PANPOST, die auch in der
Umsetzung verwendet wurde, ohne Anpassung nicht alle Tecplot-Dateien einliest. Wie in Kapitel 3
bereits beschrieben, ist der Hintergrund, dass beim Einlesen der Dateien in einer bestimmten Zeile
nicht die in der Datei angegebenen Werte angeschaut werden, sondern die Werte nur abgezahlt.
Wenn eine Datei in jener Zeile eine andere Anzahl an Werten hat, misslingt das Einlesen. An dieser
Stelle wurde das Problem bemerkt, da Tecplot-Dateien mit verschieden vielen Werten vorlagen. Es ist
allerdings auch moglich, dass die Einlesefunktion weitere Probleme dieser Art hat.

Da YesWorkflow mit Absicht einfach gehalten ist, hat es nur wenige Befehle. Im flussbasierten
Programm gibt es sowohl Knoten, wie zum Beispiel prepare_settings, die nur einmal ausgefiithrt
werden als auch Knoten die fiir jede zu visualisierende Datei einmal ausgefithrt werden. Dafiir
gibt es in YesWorkflow allerdings keine Unterscheidung, was dessen Verwendung fiir flussbasierte
Programme erschwert.

*Watchdog:https://pythonhosted.org/watchdog/
>https://github.com/seb-m/pyinotify

36

6. Zusammenfassung und Ausblick

In dieser Arbeit wurde ein Programm, das Simulationsergebnisse visualisiert, analysiert und beispiel-
haft als Datenfluss umgesetzt. Das Programm wird fiir die Visualisierung von Strukturdnderungen
in Knochen eingesetzt [Kra14]. Dazu liest es Tecplot-Dateien ein und zeigt die darin enthaltenen
3D-Modelle an. Dabei wurde das zuvor sehr umfangreiche Programm um unnétige Funktionen ge-
kiirzt, was es erlaubt, die notwendige Interaktion mit dem Programm zu reduzieren. Dazu wurde das
analysierte Programm zuerst um die iiberfliissigen Funktionen, wie zum Beispiel die Moglichkeit sich
das visualisierte Objekt von allen Seiten anzusehen oder die Moglichkeit Daten durch Einfarbungen
anzuzeigen, gekiirzt. Dieses gekiirzte Programm wurde mit YesWorkflow annotiert, was den Daten-
fluss des Programms aufzeigte. Anschlieend wurde das Programm als Datenfluss mit PyF umgesetzt.
Dabei wurde es um die Funktionen, mehrere Bilder automatisch zu verarbeiten und die Bilder in ein
Video zu konvertieren, erweitert.

Ausblick

In Abschnitt 5.3 wurde bereits beschrieben, dass das flussbasierte Programm die Simulationsergebnisse
noch nicht kontinuierlich verarbeitet. Hier wire eine Erweiterung sinnvoll, die die Tecplot-Dateien
nach deren Erstellung sofort verarbeitet und das resultierende Bild anzeigt. Ebenso wire es sinnvoll die
Einlesefunktion zu korrigieren oder neu und kiirzer umzusetzen, damit auch dieser Teil iibersichtlicher
und korrekter wird. Auflerdem ist nicht klar ob PyF weiterentwickelt wird. Wenn das nicht der Fall ist
wird es wahrscheinlich nétig sein, auf eine andere Datenflussplattform zu wechseln. Die Verwendung
von Kurator-Akka wurde als Alternative noch nicht getestet.

37

IS

)

24

29

34

39

44

A. Anhang — Der Code des flussbasierten
Programms

rr

Created on 30.07.2015

@author: bohnjs

11

Global config-variables
#
import panDatInput_Std

DEBUG = True # type debug info

import vtk

from pyf.dataflow import runner, component

import ConfigParser

from os import listdir, remove

from os.path import isfile, join, dirname, splitext
from re import split

import cv2

import panWin
import panXML

@component(’IN’, 'OUT")
def read_file(values, out):
for item in values:
print "read: " + item
grid = panDatInput_Std.Dat2Grid(pathsettings[’inputfolder’] + "\\’'+ item)
yield (out, grid(), item)

@component ("IN’, 'OUT")
def prepare_mapper(values, out):
for item in values:
num, grid, filename = item
print "prepare mapper: "+filename
mapper = vtk.vtkDataSetMapper()

39

54

64

69

74

79

84

89

94

99

A. Anhang — Der Code des flussbasierten Programms

mapper.SetInputData(grid)
yield (out, mapper,filename)

@component("IN’, 'OUT")
def prepare_actor(values, out):
for item in values:
num, mapper, filename = item
print "prepare actor: " + filename
actor = vtk.vtkActor()
actor.SetMapper (mapper)
color = [float(x) for x in rendersettings[’color’].split()]
actor.GetProperty().SetColor(color)
yield (out, actor, filename)

@component ("IN’, 'OUT")
def prepare_render(values, out):
for item in values:
num, actor, filename = item
print "prepare render: " + filename
ren = vtk.vtkRenderer()
ren.SetBackground(1l, 1, 1)
ren.AddActor(actor)
ren.SetlLayer(0) #?
camera = ren.GetActiveCamera()
camera.SetFocalPoint(0,0,0) #>settings
camera.SetPosition(0, 0, 100) #>settings
camera.SetViewUp(0, 1, 0)
camera.Roll(float(rendersettings[’roll’]))
camera.Azimuth(float(rendersettings[’azimuth’]))
camera.Elevation(float(rendersettings[’elevation’]))
camera.Zoom(float(rendersettings[’zoom’]))
if rendersettings[’parallelprojection’]
camera.ParallelProjectionOn()
if rendersettings[’resetcamera’]
ren.ResetCamera()

yield (out, ren, filename)

@component ('IN’, 'OUT")
def render(values, out):
for item in values:

num, ren, filename = item
print "render: "+filename
renwin = vtk.vtkRenderWindow()
renwin.AddRenderer(ren)
renwin.SetSize(int(videosettings[’width’]),int(videosettings[’height’]1))

#print "SetSize: "+ videosettings[’width’] + " x " + videosettings[’height’]

renwin.0ffScreenRenderingOn()
renwin.Render ()
yield (out, renwin, filename)

@component("IN’, 'OUT")
def save_file(values, out):
for item in values:
num, renwin, filename = item
print "save: "+filename

40

104

109

1

sy
'

119

124

129

134

139

144

149

try:
w2if = vtk.vtkWindowToImageFilter()
w2if.SetInput(renwin)
writer = vtk.vtkPNGWriter()
writer.SetInputConnection(w2if.GetOutputPort())
filename = pathsettings[’workingfolder’]J+'\\'+filename+’.png’
writer.SetFileName(filename)
writer.Write()
except:
print ' PanpostSave.SavePNG() - error writing png file:'’
yield (out,filename)

@component ('IN’, 'OUT")
def make_video(values, out):
global writer
for filepath in values:
print "make video: "+filepath
image= cv2.imread(filepath)
if not writer:

try:

codec = cv2.VideoWriter_fourcc(xvideosettings[’codec’])
except:

print "no valid codec specified"

codec = -1
writer =

cv2.VideoWriter(pathsettings['outputfile’], codec,float(videosettings[’framerate’]),
(int(videosettings[’width’]),int(videosettings[height’])))
writer.write(image)
yield (out,filepath)

@component ('IN’, 'OUT")
def remove_imagefile(values, out):
for filepath in values:
print "remove "+ filepath
remove(filepath)
yield filepath

def prepare_settings(filename):
reads settings from file at filename and returns ordered by section
configpars = ConfigParser.ConfigParser()
configpars.read(filename)
pathsettings = config_get("path",configpars)
rendersettings = config _get("render",configpars)
videosettings = config_get("video",configpars)
return pathsettings, rendersettings, videosettings

def config _get(section,configpars):
returns one section of the file as a list
dict = {}
options = configpars.options(section)
for option in options:
try:

41

154

159

164

169

174

179

184

189

194

199

204

A. Anhang — Der Code des flussbasierten Programms

dict[option] = configpars.get(section,option)
except:
print("exception on %s!" % option)
dict[option] = None
return dict

def try_int(string):
try:
return int(string)
except:
return string

def sort_key(string):
return [try_int(char) for char in split(’'([0-9]+)’, string) 1]

def get filenames(folder):
#returns the names of all .dat-files in the specified folder
filenames = [f for f in listdir(folder) if isfile(join(folder,f)) and (f.endswith(’.dat’))]
filenames.sort(key=sort_key)
return filenames

pathsettings = None
rendersettings = None
videosettings = None

writer = None

Starting mainloop
#
def main():

global pathsettings, rendersettings, videosettings

print "start"

read settings from "settings.ini" file in operating path

dir = dirname(__file__)

path = join(dir,"settings.ini")

pathsettings, rendersettings, videosettings = prepare_settings(path)

source = get_filenames(pathsettings[’'inputfolder’])

read_runner = runner (read_file)
mapper_runner = runner (prepare_mapper)
actor_runner = runner (prepare_actor)
prepare_runner = runner (prepare_render)
render_runner = runner (render)
save_runner = runner (save_file)
video_runner = runner (make_video)
remove_runner = runner (remove_imagefile)

read_runner.connect_in(’values’, iter(source))
mapper_runner.connect_in(’values’,read_runner(’'out’))
actor_runner.connect_in(’values’,mapper_runner(’'out’))
prepare_runner.connect_in(’values’,actor_runner(’out’))
render_runner.connect_in(’values’,prepare_runner(’'out’))

42

209

214

219

save_runner.connect_in(’'values’, render_runner(’'out’))
video_runner.connect_in(’values’, save_runner(’'out’))
remove_runner.connect_in(’values’, video_runner(’out’))

for item in remove_runner(’out’):
#outfile.write(item)
print item + " done!"
writer.release

if __name__ == '__main__":
main()

Listing A.1: Das in dieser Arbeit vorgestellte flussbasierte Programm

43

Literaturverzeichnis

[Bea00]

[BHY5]

[BKO08]

[CM11]

[DCM*12]

[GVW02]

[Kra14]

[Lud14]

[McP15]

D. Beazly. Scientific Computing with Python. Astronomical Data Analysis Software and
Systems, 216:49, 2000. URL http://adsabs.harvard.edu/abs/2000ASPC. .216. . .49B.
(Zitiert auf Seite 7)

E. Baroth, C. Hartsough. Experience Report: Visual Programming in the Real World.
Visual Object Oriented Programming, S. 21-42, 1995. (Zitiert auf Seite 7)

G. Bradski, A. Kaehler. Learning OpenCV: Computer vision with the OpenCV library.
O’Reilly Media, Inc., 1 Auflage, 2008. (Zitiert auf Seite 11)

M. Cieslik, C. Mura. A lightweight, flow-based toolkit for parallel and distributed bioinfor-
matics pipelines. BMC Bioinformatics, 12(1), 2011. doi:10.1186/1471-2105-12-61. (Zitiert
auf Seite 11)

L. Dou, G. Cao, P. Morris, R. Morris, B. Ludéscher, J. Macklin, J. Hanken. Kurator: A
Kepler Package for Data Curation Workflows. Procedia Computer Science, 9:1614 — 1619,
2012. doi:10.1016/j.procs.2012.04.177. (Zitiert auf Seite 12)

S. T. Grilli, S. Vogelmann, P. Watts. Development of a 3D numerical wave tank for mode-
ling tsunami generation by underwater landslides. Engineering Analysis with Boundary
Elements, 26(4):301-313, 2002. d0i:10.1016/S0955-7997(01)00113-8. (Zitiert auf Seite 7)

R. F. Krause. Growth, modelling and remodelling of biological tissue. Dissertation, Universi-
tat Stuttgart, Holzgartenstr. 16, 70174 Stuttgart, 2014. URL http://elib.uni-stuttgart.
de/opus/volltexte/2015/9904. (Zitiert auf den Seiten 8 und 37)

B. Ludascher. KURATOR: A Provenance-enabled Workflow Platform and Tool
to Curate Biodiversity Data, 2014. URL http://de.slideshare.net/ludaesch/
eresearch-round-kurator-project. Priasentation. (Zitiert auf Seite 11)

T. McPhillips. YesWorkflow, 2015. URL http://yesworkflow.org/wiki. (Zitiert auf
den Seiten 6, 10, 13 und 14)

[MGR™"15] J. Maccallum, R. Gottfried, . Rostovtsev, J. Bresson, A. Freed. Dynamic Message-Oriented

[MLHT15]

Middleware with Open Sound Control and Odot. In International Computer Music Confe-
rence. 2015. (Zitiert auf Seite 11)

T. McPhillips, D. Lowery, J. Hanken, B. Ludéascher, J. A. Macklin, P. J. Morris, R. A.
Morris, T. Song, J. Wieczorek. Data cleaning with the Kurator toolkit, Bridging the
gap between conventional scripting and high-performance workflow automation, 2015.
URL http://www.slideshare.net/TimothyMcPhillips. Priasentation fiir TDGW 2015.
(Zitiert auf Seite 12)

45

http://adsabs.harvard.edu/abs/2000ASPC..216...49B
http://elib.uni-stuttgart.de/opus/volltexte/2015/9904
http://elib.uni-stuttgart.de/opus/volltexte/2015/9904
http://de.slideshare.net/ludaesch/eresearch-round-kurator-project
http://de.slideshare.net/ludaesch/eresearch-round-kurator-project
http://yesworkflow.org/wiki
http://www.slideshare.net/TimothyMcPhillips

Literaturverzeichnis

[MSK*15] T. McPhillips, T. Song, T. Kolisnik, S. Aulenbach, K. Belhajjame, R. K. Bocinsky, Y. Cao,

[Nod]

[Nod15]
[Opel15]
[PyF15]

J. Cheney, F. Chirigati, S. Dey, J. Freire, C. Jones, J. Hanken, K. W. Kintigh, T. A. Koh-
ler, D. Koop, J. A. Macklin, P. Missier, M. Schildhauer, C. Schwalm, Y. Wei, M. Bieda,
B. Ludéscher. YesWorkflow: A User-Oriented, Language-Independent Tool for Reco-
vering Workflow Information from Scripts. International Journal of Digital Curation,
10(1):298-313, 2015. doi:10.2218/ijdc.v10i1.370. (Zitiert auf den Seiten 7, 12 und 13)

Library - Node-RED. URL http://flows.nodered.org/. (Zitiert auf Seite 11)
Node-RED, 2015. URL http://nodered.org/. (Zitiert auf Seite 11)
OpenCV, 2015. URL http://opencv.org/. (Zitiert auf Seite 10)

PyF, flow-based python programming, 2015. URL http://pyfproject.org/. (Zitiert
auf Seite 11)

The Python Tutorial. URL https://docs.python.org/3/tutorial/index.html. (Zi-
tiert auf Seite 9)

P. Reimann, H. Schwarz. Simulation Workflow Design Tailor-Made for Scientists. In
Proceedings of the 26th International Conference on Scientific and Statistical Database
Management, S. 49. ACM, 2014. (Zitiert auf den Seiten 6 und 7)

W. J. Schroeder, L. S. Avila, W. Hoffman. Visualizing with VTK: A Tutorial. IEEE Com-
puter Graphics and Applications, S. 20-27, 2000. URL http://www.doc.ic.ac.uk/~dr/
teaching/Visualization/VTK Tutorial.pdf. (Zitiert auf Seite 10)

Alle URLs wurden zuletzt am 18.11. 2015 gepriift.

46

http://flows.nodered.org/
http://nodered.org/
http://opencv.org/
http://pyfproject.org/
https://docs.python.org/3/tutorial/index.html
http://www.doc.ic.ac.uk/~dr/teaching/Visualization/VTK_Tutorial.pdf
http://www.doc.ic.ac.uk/~dr/teaching/Visualization/VTK_Tutorial.pdf

Erkliarung

Ich versichere, diese Arbeit selbststiandig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wortlich oder sinngemifd aus anderen Werken tibernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Pritifungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-
se noch vollstindig veroffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einführung
	2 Grundlagen
	2.1 Python
	2.2 VTK
	2.3 OpenCV
	2.4 Flussbasierte Programmierung

	3 Bestandsaufname
	3.1 Die Dateien des PANPOST-Programms
	3.2 Benutzeroberfläche
	3.3 Zusamenfassung

	4 Vorbereitung für die Umsetzung als Datenfluss
	4.1 Das gekürzte Programm
	4.2 Neue Funktionen
	4.3 Annotation mit YesWorkflow

	5 Umsetzung als Datenfluss
	5.1 Vergleich von Datenflussplattformen
	5.2 Umsetzung mittels PyF
	5.3 Evaluation

	6 Zusammenfassung und Ausblick
	A Anhang – Der Code des flussbasierten Programms
	Literaturverzeichnis

