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Kurzfassung

Simulationen werden in vielen Feldern der Wissenschaft benötigt, um Abläufe der realen Welt zu
untersuchen, die sich nicht durch Experimente reproduzieren lassen, wie zum Beispiel Katastrophens-
zenarien. Um die durch derartige Simulationen entstandenen Daten zu visualisieren werden häufig
monolithische Programme mittels Skriptsprachen angefertigt. Diese werden von Nicht-Informatikern,
wie z.B. von Naturwissenschaftlern im Bereich der Biologie oder von Ingenieuren, angefertigt. Fehlen-
des Wissen im Bereich der Softwareentwicklung, Softwarearchitektur und Softwaretests führt dabei
jedoch oftmals zu Programmen, die nur sehr schwer oder gar nicht wartbar und erweiterbar sind.

Um derartige, schlecht wartbare Programme in eine sinnvoll gegliederte Struktur zu bringen, muss
deren Kontroll- und Datenfluss zuerst umfassend analysiert werden, um eine anschließende Restruk-
turierung des Programmcodes zu ermöglichen. In dieser Arbeit wird untersucht, wie bestehende,
monolithische Skript-basierte Programme restrukturiert und in einen Datenflussgraphen umgewan-
delt werden können. Auf Basis des entstandenen Datenflussgraphes kann der Programmablauf leichter
verstanden werden und die Wartbarkeit somit verbessert werden.

Um die Ergebnisse dieser Arbeit zu verdeutlichen, werden die Konzepte anhand eines Beispielszenari-
os umgesetzt. Dieses beschäftigt sich mit der Analyse und Restrukturierung von Python-Skripten
zur Visualisierung der Ergebnisse von Knochensimulationen. Nach einer umfassenden Analyse wird
der Programmablauf der Skripte restrukturiert, in einem Datenflussgraphen modelliert und anschlie-
ßend in einer passenden Ausführungsumgebung ausgeführt. Das Ergebnis ist ein gut strukturierter,
erweiterbarer Datenfluss, der aus dem ursprünglichen, schlecht wartbaren Programm entstanden
ist. Auf Basis dieses Anwendungsfalls können die in dieser Ausarbeitung entstandenen Konzepte auf
weitere, skriptbasierte Programme angewendet werden.
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1. Einführung

In vielen wissenschaftlichen Bereichen werden Simulationen benutzt, um Abläufe zu untersuchen, die
sich nicht durch Experimente reproduzieren lassen, wie zumBeispiel Katastrophenszenarien [GVW02].
Für die Auswertung der Daten müssen die Ergebnisse der Simulationen häufig visualisiert werden.
Da dies oftmals spezielle Software erfordert, werden die benötigten Programme oft in Skriptsprachen
von Nichtinformatikern, wie z.B. Naturwissenschaftlern im Bereich der Biologie oder von Ingenieu-
ren, angefertigt [Bea00][MSK+15]. Da diese selten Wissen im Bereich der Softwareentwicklung,
Softwarearchitektur oder Softwaretests haben, sind ihre Programme oftmals schwer wartbar oder
erweiterbar.

Um solche schlecht wartbaren Programme in eine sinnvoll gegliederte Struktur zu bringen, muss
deren Kontroll- und Datenfluss umfassend analysiert werden. Da Datenflüsse für eine derartige
Strukturierung helfen, bietet sich eine flussbasierte Programmierung an [BH95]. Bei flussbasierter
Programmierung wird der Code in funktionale Blöcke aufgeteilt, die dann auf einer höheren Ebene
in einem Datenflussgraphen verbunden werden. Dadurch wird der Aufbau eines Programms deut-
lich sichtbarer. In dieser Arbeit wird dies anhand eines Beispiels im Bereich Knochensimulationen
umgesetzt.

Abbildung 1.1.: Simulationsworkflow für Strukturänderungen in Knochen [RS14]
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1. Einführung

Bei dem Beispiel geht es um die Simulation von Strukturänderungen von Knochen [Kra14]. In Abb. 1.1
ist der gesamte Ablauf dieser Simulation zu sehen. Um etwas zu simulieren wird zuerst die Simulation
vorbereitet. In diesem Beispiel in Abb. 1.1 sind das die ersten vier Schritte. Zu der Vorbereitung gehören
das erstellen oder sammeln der Daten zu Form und Material des zu simulierenden Objekts. Danach
kann simuliert werden. Die Resultate der Simulation werden dann konvertiert, um anschließend
visualisiert zu werden. Das in dieser Arbeit vorgestellte Programm übernimmt die Visualisierung der
Ergebnisse – in Abb. 1.1 der letzte Schritt.

Falls bei einer Simulation etwas schief läuft, kann das bisher erst nach Ende der oftmals langen
Laufzeit festgestellt werden. Um dies zu verhindern ist das Ziel dieser Arbeit, darauf hinzuarbeiten,
Simulationsergebnisse während der Simulation zu visualisieren, damit eine solche Fehlentwickelung
frühzeitig erkannt werden kann.

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

In Kapitel 2 – Grundlagen werden die in dieser Arbeit verwendeten Technologien und Bibliotheken
beschrieben. In Kapitel 3 – Bestandsaufname wird das bisher verwendete Programm beschrieben und
analysiert. In Kapitel 4 – Vorbereitung für die Umsetzung als Datenfluss wird beschrieben, wie das
originale Skript auf die wesentlichen Funktionen gekürzt und weiter analysiert wird. In Kapitel 5 –
Umsetzung als Datenfluss wird die Umsetzung des Skriptes als Datenfluss beschrieben. In Kapitel 6 –
Zusammenfassung und Ausblick wird eine Zusamenfassung der Arbeit mit Auswertung gegeben.
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2. Grundlagen

In diesem Kapitel werden die in dieser Arbeit verwendeten Technologien beschrieben. Diese sind
die Programmiersprache Python in Abschnitt 2.1, das Visualization Toolkit (VTK) in Abschnitt
2.2, die Bibliothek für Computer-Vision OpenCV in Abschnitt 2.3. In Abschnitt 2.4 werden die
Technologien, die flussbasierte Programmierung implementieren oder damit in Zusammenhang
stehen, beschrieben.

2.1. Python

Python1 ist eine objektorientierte, skriptbasierte Programmiersprache, die 1990 von Guido van Rossum
entwickelt wurde. Als solche wird sie interpretiert und hat dynamische Typenzuordung. Das bedeutet,
dass der Typ einer Variable nicht explizit angegeben wird, sondern durch den darin gespeichertenWert
definiert wird. Python hat bereits höhere Datentypen wie assoziative sowie flexible Arrays eingebaut
und kommt mit einer großen Anzahl Standardmodule, wie zum Beispiel os für die Interaktion mit
dem Betriebssystem oder math für mathematische Funktionen. Um Beginn und Ende von Schleifen
oder bedingte Verzweigungen zu definieren, wird in Python Einrückung statt Schlüsselwörter oder
Klammern benutzt. In Python lässt sich Software durch die höheren Datentypen, die erforderte
Einrückung und die fehlende Variablendeklaration lesbar und kompakt schreiben [Pyt].

1 import netCDF4

import numpy as np

from netCDF4 import ma

import matplotlib.pyplot as plt

from matplotlib.backends.backend_pdf import PdfPages

6

def main(db_pth = ’.’, fmodel = ’clm’):

g = netCDF4.Dataset(db_pth+’/land_water_mask/LandWaterMask_Global_CRUNCEP.nc’, ’r’)

mask = g.variables[’land_water_mask’]

mask = mask[:].swapaxes(0,1)

11

f = netCDF4.Dataset(db_pth+’/NEE_first_year.nc’, ’r’)

data = f.variables[’NEE’]

data = data[:]

data = data.swapaxes(0,2)

16 adj = 60*60*24*(365/12)*1000

data = data*adj

1Python: https://www.python.org/
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2. Grundlagen

native = data.mean(2)

latShape = mask.shape[0]

21 logShape = mask.shape[1]

for x in range(latShape):

for y in range(logShape):

if mask[x,y] == 1 and ma.getmask(native[x,y]) == 1:

for index in range(data.shape[2]):

26 data[x,y,index] = 0

plt.imshow(np.mean(data,2))

plt.xlabel("Mean 1982-2010 NEE [gC/m2/mon]")

plt.title(fmodel + ":BG1")

pp = PdfPages(’result_NEE.pdf’)

31 pp.savefig()

pp.close()

Listing 2.1: Beispiel-Pythoncode [McP15]

Listing 2.1 enthält ein Beispiel für Python-Code in dem Daten graphisch dargestellt in eine PDF-Datei
geschrieben werden. Im Beispiel in den Zeilen 12 und 22 werden zum Beispiel Variablen zugewiesen,
ohne dass sie, beziehungsweise ihr Typ, deklariert wurden. In Zeilen 22 bis 26 sieht man, wie Python
Einrückung benutzt, um bedingte Verzweigungen oder Schleifen zu beenden.

2.2. VTK

Das Visualization Toolkit (VTK)2 ist ein Open-Source Software-System von Kitware für 3D-
Computergrafik, Visualisierung und Bildverarbeitung. Es besteht aus einer C++-Bibliothek, die über
Interface-Layers auch in Java und Python eingebunden werden kann. Mit VTK lassen sich Daten wie
Punktemengen, Polygone, Bilder und Matrizen speichern und weiterverarbeiten [SAH00]. Unterstützt
werden verschiedene Visualisierungsalgorithmen sowie einige Modellierungsfilter. Anwendung fin-
det VTK zum Beispiel bei medizinischer Visualisierung oder industriellen Inspektionsprogrammen.
Für verschiedene Anwendungen, wie zum Beispiel Volumenvisualisierung, Erdölexploration und
Strömungsmechanik wird VTK außerdem durch kommerzielle Unternehmen erweitert [SAH00].

2.3. OpenCV

OpenCV (Open Source Computer Vision Library)3 ist eine Software-Bibliothek in C und C++, die
Algorithmen für maschinelles Lernen und Computer-Vision beinhaltet [Ope15]. Über Interfaces kann
sie auch in Python, Java, Ruby und MATLAB eingebunden werden.

Ein Ziel von OpenCV ist eine einfach zu benutzende Bibliothek für umfangreiche Computer-Vision-
Anwendungen bereitzustellen. Dafür beinhaltet OpenCV über 500 Funktionen aus verschiedenen
Bereichen von Computer-Vision. OpenCV beinhaltet auch eine Bibliothek fürmaschinelles Lernen. Das

2VTK: http://www.vtk.org/
3OpenCV: http://opencv.org/
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2.4. Flussbasierte Programmierung

liegt daran, dass Computer-Vision undmaschinelles Lernen oft zusammen verwendet werden. OpenCV
wurde auf rechnerische Effizienz hin optimiert und kann Multicore-Prozessoren ausnutzen [BK08].

2.4. Flussbasierte Programmierung

In diesem Abschnitt werden Technologien beschrieben, die flussbasierte Programmierung implemen-
tieren. Bei flussbasierter Programmierungwird das Software-System als eineMenge vonKomponenten,
zwischen denen Nachrichten oder Daten ausgetauscht werden, angesehen [CM11].

2.4.1. PyF

PyF4 ist eine Implementierung der flussbasierten Programmierung von Jonathan Schemoul5 in Python.
Die Plattform ist Open-Source und wurde für das Verarbeiten und Transformieren großer Daten
entwickelt. Mit PyF lassen sich Codeblöcke definieren und deren Ein- und Ausgänge verbinden.
Außerdem kann PyF über Plugins erweitert werden und lässt sich als Webservice betreiben. Wenn es
als Webservice läuft, lässt sich der Datenfluss über eine graphische Oberfläche erstellen [PyF15].

2.4.2. Node-RED

Node-RED6 ist ein Implementierung der flussbasierten Programmierung von IBM Emerging Tech-
nology, die auf Node.js basiert [Nod15]. Mit Node-RED lassen sich Programme auf einer graphi-
schen Oberfläche verbinden. Unterstützt werden Interaktionen mit Hardware, Web Services, sowie
APIs [MGR+15]. Die einzelnen Knoten des Graphen repräsentieren eigene oder vorinstallierte Code-
blöcke. IBM unterhält auch eine Bibliothek benutzergenerierter Knoten und Graphen [Nod].

In Abb. 2.1 sieht man die graphische Oberfläche von Node-Redmit einem erstellten Beispiel-Datenfluss.
In dem Datenfluss wird zuerst links eine Http-Anfrage empfangen. Auf den empfangenen Daten wird
in Funktion Code ausgeführt. Der switch-Knoten entscheidet durch lesen der eingehenden Daten, auf
welchem Ausgang der Datenfluss fortgesetzt werden soll. Es wird also hier aus den Daten ausgewählt,
ob sie als Http-Antwort gesendet werden sollen (http) oder ob sie in eine Datei gespeichert werden
sollen (file).

2.4.3. Kurator-Akka Framework

Bei der Verwaltung von wissenschaftlichen Daten kommt es vor, dass einige Daten Probleme wie
Tippfehler in Namen oder Probleme mit Koordinatensystemen enthalten [Lud14]. Dies wird üblicher-
weise als Arbeitsablauf aus verschiedenen Werkzeugen und Services gelöst. Das Kurator-Projekt7

4PyF: http://pyfproject.org/
5Blog of Jonathan Schemoul: http://www.jondesign.net/
6Node-RED: http://nodered.org/
7Kurator: https://opensource.ncsa.illinois.edu/confluence/display/KURATOR/Kurator+Project+Home
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2. Grundlagen

Abbildung 2.1.: Die graphische Oberfläche von Node-RED

von der University of Illinois und der Harvard University entwickelt ein Modul aus verschiedenen
vorgefertigten Arbeitsschritten, die sich zu einem Workflow zusammenfügen lassen [DCM+12].

Akka8 ist eine Ausführungsumgebung für verteilte, mitteilungsbasierte Java-Programme. Es wurde
als Grundlage für das Kurator-Akka-Framework9 benutzt, da es bereits die Verwaltung der Ausfüh-
rungsreihenfolge und -zeit sowie des Datenflusses teilweise unterstützt [MLH+15].

Die einzelnen Codeblöcke für Kurator-Akka können in Java oder Python geschrieben werden. Die
Informationen für die Einbindung in Workflows, sowie die Workflows selbst werden im YAML-
Datenformat definiert.

2.4.4. YesWorkflow

Wissenschaftliche Workflow-Management-Systeme haben viele Vorteile, da sie Funktionen haben,
die bei dem Erstellen komplizierter Abläufe aus modularen Bausteinen und der Ausführung dieser
helfen. Trotzdem werden viele automatisierte Workflows außerhalb wissenschaftlicher Workflow-
Management-Systeme implementiert und ausgeführt. Dies liegt daran, dass viele Wissenschaftler
mit Skriptsprachen wie Python, Perl, R und MATLAB Erfahrung haben und damit produktiver sind.
YesWorkflow10 ist ein Werkzeug, mit dem ein Benutzer existierende Programme mit Informationen
zu deren Workflow annotieren kann. Dadurch hat der Benutzer viele Vorteile von wissenschaftlichen
Workflow-Management-Systemen, benötigt aber keine Workflow-Engine und muss den Code nicht
anpassen. Aus der Annotation ergeben sich die Codeblöcke sowie eine Beschreibung des Datenflusses
zwischen den Codeblöcken [MSK+15].

8Akka: http://akka.io
9Kurator-Akka: https://github.com/kurator-org/kurator-akka
10YesWorkflow: http://yesworkflow.org/wiki

12



2.4. Flussbasierte Programmierung

Da die Annotationen in Kommentaren untergebracht sind, sind sie sprachenunabhängig. Um Wis-
senschaftlern den Einstieg in YesWorkflow zu erleichtern sind die Kommentare und das Modell von
YesWorkflow absichtlich einfach gehalten [MSK+15].

Im Moment befindet sich das Projekt noch im Prototypstatus [McP15].

import netCDF4

import numpy as np

3 from netCDF4 import ma

import matplotlib.pyplot as plt

from matplotlib.backends.backend_pdf import PdfPages

# @BEGIN main

8 # @PARAM db_pth

# @PARAM fmodel

# @IN input_mask_file @URI file:{db_pth}/land_water_mask/LandWaterMask_Global_CRUNCEP.nc

# @IN input_data_file @URI file:{db_pth}/NEE_first_year.nc

# @OUT result_NEE_pdf @URI file:result_NEE.pdf

13

def main(db_pth = ’.’, fmodel = ’clm’):

# @BEGIN fetch_mask

# @PARAM db_pth

# @IN g @AS input_mask_file @URI file:{db_pth}/land_water_mask/LandWaterMask_Global_CRUNCEP.nc

18 # @OUT mask @AS land_water_mask

g = netCDF4.Dataset(db_pth+’/land_water_mask/LandWaterMask_Global_CRUNCEP.nc’, ’r’)

mask = g.variables[’land_water_mask’]

mask = mask[:].swapaxes(0,1)

# @END fetch_mask

23

# @BEGIN load_data

# @PARAM db_pth

# @IN input_data_file @URI file:{db_pth}/NEE_first_year.nc

# @OUT data @AS NEE_data

28 f = netCDF4.Dataset(db_pth+’/NEE_first_year.nc’, ’r’)

data = f.variables[’NEE’]

data = data[:]

data = data.swapaxes(0,2)

adj = 60*60*24*(365/12)*1000

33 data = data*adj

# @END load_data

# @BEGIN standardize_with_mask

# @IN data @AS NEE_data

38 # @IN mask @AS land_water_mask

# @OUT data @AS standardized_NEE_data

native = data.mean(2)

latShape = mask.shape[0]

logShape = mask.shape[1]

43 for x in range(latShape):

for y in range(logShape):

if mask[x,y] == 1 and ma.getmask(native[x,y]) == 1:

for index in range(data.shape[2]):

data[x,y,index] = 0

48 # @END standardize_with_mask
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2. Grundlagen

# @BEGIN simple_diagnose

# @PARAM fmodel

# @IN data @AS standardized_NEE_data

53 # @OUT pp @AS result_NEE_pdf @URI file:result_NEE.pdf

plt.imshow(np.mean(data,2))

plt.xlabel("Mean 1982-2010 NEE [gC/m2/mon]")

plt.title(fmodel + ":BG1")

pp = PdfPages(’result_NEE.pdf’)

58 pp.savefig()

pp.close()

# @END simple_diagnose

# @END main

Listing 2.2: Beispielcode für YesWorkflow-Kommentare [McP15]

In Listing 2.2 ist der gleiche Code wie in Listing 2.1 zu sehen, der diesmal allerdings mit YesWorkflow
annotiert ist. Die YesWorkflow-Kommentare definieren in Zeile 7 den Beginn des Programmes. In
Zeilen 8 bis 12 werden Parameter und globale Ein- und Ausgabedaten definiert. Das dazugehörige
Ende befindet sich in Zeile 61. Für Eingabedaten lassen sich auch Templates für URI-Dateipfade
angeben.

main

fetch_mask

standardize_with_mask

land_water_mask

load_data
NEE_data simple_diagnosestandardized_NEE_data result_NEE_pdf

input_mask_file

input_data_file

Abbildung 2.2.:Mit YesWorkflow aus Listing 2.2 generierter Graph

Dazwischen werden die einzelnen Codeblöcke definiert, zum Beispiel zwischen Zeilen 15 und 22.
Genauso wie für das ganze Programm werden hier für jeden einzelnen Codeblock Anfang und Ende
(Z.15,22) sowie Parameter und Ein- und Ausgabedaten (Z. 16-18) definiert. Aus diesen Namen oder
alternativen Namen (@AS) ermittelt YesWorkflow, welche Codeblöcke über welche Datenkanäle
miteinander verbunden sind und erstellt daraus einen Datenflussgraphen (Abb.2.2).
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3. Bestandsaufname

Um Simulationen von Strukturveränderungen von Knochen zu visualisieren wird momentan PAN-
POST verwendet. Dieses wird in diesem Kapitel vorgestellt. PANPOST wurde am Institut für Mechanik
der Universität Stuttgart geschrieben. Mit dem Programm lassen sich .dat-Dateien im Tecplot1-Format
laden, rendern und anzeigen. Wenn eine Datei gerendert ist und das Modell angezeigt wird, kann
man es drehen und so von allen Seiten betrachten. Über Menüs lassen sich Daten über Einfärbungen
anzeigen und Einstellungen der Visualisierung wie zum Beispiel Belichtung ändern. Das angezeigte
Bild lässt sich außerdem als Bilddatei abspeichern.

Zu dem PANPOST-Programm liegen 201 Tecplot-Dateien aus einer Simulationen sowie sieben weitere
Beispieldateien vor. Die Tecplot-Dateien enthalten die relevanten 3D-Modelle. Da die Einlesemethode
aus dem PANPOST-Programm weiterverwendet werden konnte, war es nicht notwendig, sich im
Detail mit diesen Dateien, beziehungsweise der entsprechenden Datenstruktur zu beschäftigen.

Das PANPOST-Programm wurde in Python geschrieben und besteht aus 23 Dateien, von denen
die Größte knapp 5000 Zeilen hat. Es benutzt VTK für die Visualisierung und wxPython2 für die
graphische Benutzeroberfläche. Nach kleineren Anpassungen läuft das Programm in Python 2.7.3,
allerdings bleiben noch Probleme, wie zum Beispiel fehlende Informationen in der Leiste des Fensters
(siehe Abb. 3.3), bestehen.

Es besteht aus einem Front- und einem Backend. Das Frontend beinhaltet die Benutzeroberfläche. Das
Backend ist für die bei der Visualisierung durchgeführten Berechnungen zuständig. Diese Einteilung
hilft aber nur bedingt, da der Code für beide Teile nicht sauber getrennt ist. Der größte Teil des
Frontends wird zum Beispiel in der gleichen Datei und Klasse definiert, wie die wichtigsten Teile
des Backends. Außerdem sind Kommentare größtenteils in Deutsch, teilweise aber auch in Englisch
verfasst. Es gibt viel auskommentierten Code, sowie Kommentare, die auf fehlende Funktionen
hindeuten.

Ein weiteres Problem des Programms besteht darin, dass es die verfügbaren Tecplot-Dateien aus der
Simulation nicht fehlerfrei liest. Das Einlesen funktioniert an der betroffenen Stelle durch Abzählen
der Werte anstatt den Namen der Werte in Betracht zu ziehen. Die Simulationsdateien haben in dieser
Zeile einen Wert mehr als die Beispieldateien. Deshalb läuft das Programm ohne es zu ändern mit
diesen nicht.

In Abschnitt 3.1 wird das Programm anhand der Python-Dateien, aus dem es besteht erklärt. An-
schließend wird in Abschnitt 3.2 die Benutzeroberfläche des Programms beschrieben. In Abschnitt 3.3
wird eine kurze Zusammenfassung der Ergebnisse aus diesem Kapitel gegeben.

1Tecplot:http://www.tecplot.com/
2wxPython: http://www.wxpython.org/
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3.1. Die Dateien des PANPOST-Programms

Abbildung 3.1 zeigt eine Übersicht über die Dateien aus denen das Programm besteht. Die zu analy-
sierenden Python-Dateien lassen sich nach ihrer Funktion einteilen:

panApp

panWin

panwxVTKRenderWindowInteractor

panDatInput_XFEM

panDialogABOUT

panDatInput_Std

panDatInput_XFEM_wo_CrackTip

panDatInput

panProgramOptions

panProgramReflection

panProgramPlane

panProgramScalarBar

panXML

panDialogVisualize
panProgramStream

panProgramStress
panDialogOptions

panDialogOUTVector

panDialogOUTRaster

panDialogStress
panProgramDeformation

panProgramIsosurface

panProgram

Backend Frontend

Abbildung 3.1.: Alle Dateien von PANPOST mit deren Abhängigkeiten

Hauptklasse

Die Main-Methode des Programms befindet sich in panApp.py. Hier werden außerdem noch eventuell
mit übergebene Argumente ausgewertet. Die Standardeinstellungen für das Programm, wie zum
Beispiel Kameraposition, befinden sich hart kodiert in dieser Datei. Diese Einstellungen werden
verwendet, wenn sie nicht in den Dialogfenstern geändert werden. Abgesehen von den Programmein-
stellungen und dem Aufruf des nächsten Skripts befindet sich in dieser Datei für diese Arbeit nichts
Wesentliches.
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3.1. Die Dateien des PANPOST-Programms

Hauptfenster

Das Hauptfenster wird in der Datei panWin.py definiert. Außerdem wird hier das Rendern der Tecplot-
Dateien vorbereitet und ausgeführt. Das ist eine zentrale Funktion für die Implementierung in den
nachfolgenden Kapiteln. Der Ablauf davon wird in Abbildung 3.2 dargestellt.

Abbildung 3.2.: Die Schritte, die zur Vorbereitung zum Rendern nötig sind

Um das vtkUnstructuredGrid, das aus der Tecplot-Datei ausgelesen wurde, zu rendern, wird zuerst
ein vtkDataSetMapper erzeugt. Dieser Mapper erhält das Grid als Eingabedaten. Der Mapper ist eine
Schnittstelle zwischen den Daten und den graphischen Primitiven. Als nächstes wird ein vtkActor
erzeugt, der den Mapper als Eingabe erhält. Der Actor ist dafür zuständig Daten darüber zu speichern,
wie das Objekt in der Renderumgebung platziert ist. Den Actor erhält wiederum der vtkRenderer
als Eingabe, der in diesem Fall schon früher erzeugt wurde. Der Renderer ist für das Rendern eines
einzelnen Objektes zuständig. Dieser wird dann einem vtkRenderWindow hinzugefügt. Das Render-
Window ist das Fenster in dem gerendert wird. Das RenderWindow hat die Methode Render(), die
deren Renderer befiehlt, das Bild zu rendern.

Diemeisten Klassen in den anderen Python-Dateien des Programms haben eine Referenz zurück auf die
Klasse in panWin.py, von der sie aufgerufen wurden. Über diese Referenz sind auch außerhalb dieser
Datei Renderaufrufe zu finden. Wenn eine Datei geöffnet wird, wird diese mehrmals gerendert.

Einlesen der Tecplot-Dateien

Für das Einlesen von Tecplot-Dateien sind in dem Programm vier Dateien vorgesehen. Drei der
Dateien, panDatInput_Std.py, panDatInput_XFEM.py und panDatInput_XFEM_wo_CrackTip.py, lesen
die Tecplot-Dateien ein. Dabei hat jede Datei eine andere Variante der Einlese-Methode. Die vierte
Python-Datei, panDatInput.py, verweist auf panDatInput_Std.py. Die Idee dahinter ist vermutlich, dass
in der Datei panDatInput.py auf die Datei mit dem zu verwendenden Einleseprogramm referenziert
wird. Die referenzierte Datei wäre dann dafür zuständig, die Daten aus den Tecplot-Dateien einzulesen
und in ein vtkUnstructuredGrid zu speichern. Tatsächlich wird allerdings in panProgram.py direkt auf
panDatInput_Std.py referenziert und nicht auf panDatInput.py. Damit wird immer panDatInput_Std.py
verwendet.

In der in den nachfolgenden Kapiteln vorgestellten Implementierung müssen genauso wie in dem
PANPOST-Programm Tecplot-Dateien eingelesen werden, daher ist die hier verwendete Datei, pan-
DatInput_Std.py, auch für den nächsten Abschnitt wichtig. Da im Ausgangsprogramm die anderen
Einlesedateien nicht verwendet werden, können sie vernachlässigt werden.

Dialogfenster

Vier Dateien sind für je ein Dialogfenster zuständig. Die Datei panDialogABOUT.py stellt ein About-
Fenster dar, panDialogOptions.py ein Optionsfenster, panDialogStress.py das Fenster für Stress-
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3. Bestandsaufname

Optionen und panDialogVisualize.py für die Schnitt-Optionen.
Das About-Fenster zeigt an, dass die Programme vom Institut für Mechanik an der Universität
Stuttgart geschrieben wurden. Mit dem Optionsfenster und dem Stress-Fenster lassen sich Anzeige-
einstellungen, wie zum Beispiel Farbe, Beleuchtung, Reflexion und farbige Anzeige bestimmter Werte
aus der Visualisierung ändern. Da es in dieser Arbeit um die Visualisierung der 3D-Objekte geht, ist
die Funktion des Schnitt-Fensters, Schnittebenen durch das Objekt zu legen, nicht relevant.

Es gibt noch zwei weitere Dateien panDialogOUTRaster.py und panDialogOUTVector.py. Dies sind
Einstellungsfenster, die beim Exportieren in Raster- und Vektorgrafikdateien erscheinen. Wenn als
Format der zu speichernden Datei JPEG, PDF oder EPS gewählt wird, wird ein Dialogfenster mit
Optionen geöffnet. Das Dialogfenster für JPEG-Dateien ist in panDialogOUTRaster.py definiert und
bietet Optionen zu Qualität des Bildes und progressiver JPEG-Generierung. Das Dialogfenster für
PDF- und EPS-Dateien ist in panDialogOUTVector.py definiert und bietet unter anderem die Wahl, ob
die Datei komprimiert werden soll und ob die Hintergrundfarbe übernommen werden soll. Bei Wahl
von PNG-, BMP- und PS-Dateien öffnet sich kein Optionsfenster.

Hilfsfunktionen

In panProgram.py befinden sich Hilfsfunktionen. Eine Klasse ist dabei für das Abspeichern in Bildda-
teien zuständig. Eine Weitere ruft zum Beispiel die Python-Dateien zum Einlesen von Tecplot-Dateien
auf. Das Abspeichern in Bilddateien wird in der nachfolgenden Implementierung ebenfalls benötigt.
Die Funktion dieser Datei ist daher für diese Arbeit von Bedeutung.

Berechnung von optionalen Visualisierungen

Die Berechnungen der zusätzlichen Visualisierungen, die über die Optionsmenüs ausgewählt und
gestartet werden, werden in acht weiteren Dateien, panProgramStress.py, panProgramDeformation.py,
panProgramStream.py, panProgramReflection.py, panProgramPlane.py, panProgramOptions.py, pan-
ProgramIsosurface.py, panProgramScalarBar.py, gemacht. Diese sind für die in den nachfolgenden
Kapiteln vorgestellte Implementierung nicht relevant.

Bibliotheken

Die letzten beidenDateien sind Bibliotheken von anderen Autoren, die in PANPOST verwendet werden.
Die erste, panXML.py, bildet eine Schnittstelle zu XML. Die andere, panwxVTKRenderWindowInterac-
tor.py, verbindet wxPython, die Bibliothek, die zum Erstellen der graphischen Oberfläche verwendet
wurde, und VTK. Diese sind ebenfalls für die vorgestellte Implementierung nicht relevant.
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3.2. Benutzeroberfläche

Abbildung 3.3.: Die Benutzeroberfläche von PANPOST

3.2. Benutzeroberfläche

In Abb. 3.3 sieht man die Benutzeroberfläche des bisher verwendeten Programmes. Diese besteht
aus drei Teilen: der oberen Menüleiste, der Anzeigefläche in der Mitte und der unteren Menüleiste.
Mit der oberen Leiste lassen sich mit den zwei linken Symbolen Tecplot-Dateien öffnen und als Bild
exportieren. Die zwei Symbole daneben sind dafür da, VTK-Dateien zu importieren und exportieren,
die nächsten Zwei, die Optionen als XML-Dateien zu importieren und exportieren.

Die vier Tasten oben rechts öffnen Dialogfenster. Die ersten zwei öffnen Fenster für Funktionen, die
für die Weiterverwendung nicht relevant sind und teilweise auch nicht funktionieren. Die nächste
Taste öffnet ein Fenster, in dem sich Schnitte durch das dargestellte Objekt machen lassen. Die dritte
Taste öffnet das Optionen-Fenster. Hier lassen sich Einstellungen der Darstellung ändern, wie zum
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Beispiel Hintergrundfarbe und Beleuchtung. Die letzte Taste zeigt ein Fenster mit Informationen über
die Software an.

In der Mitte wird das Modell angezeigt. Es lässt sich mit der Maus drehen und zoomen. In der unteren
Leiste befinden sich links sechs Tasten, um die Kameraposition des Modells zu ändern und rechts
eine Taste, um das Programm zu beenden.

3.3. Zusamenfassung

Folgende Dateien sind für die Umsetzung als Visualisierungspipeline relevant:

panDatInput_Std.py In dieser Datei befindet sich die Funktion für das Einlesen der Tecplot-Dateien.
Da das in einer eigenen Datei passiert und die Funktion keine Abhängigkeiten in anderen
Dateien hat lässt sich der Originalcode direkt übernehmen.

panWin.py Hier befindet sich der in Abb. 3.2 dargestellte Ablauf für das Rendern der Tecplot-Dateien.
Dieser kann nicht im alten Code aufgerufen werden, sondern muss neu umgesetzt werden.

panProgram.py In dieser Datei befinden sich die Funktionen für die Ausgabe als Bilddateien. Die Da-
tei kann ebenfalls nicht eingebunden werden. Allerdings kann eine Funktion zum Abspeichern
als PNG-Datei weitestgehend direkt übernommen werden.
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4. Vorbereitung für die Umsetzung als
Datenfluss

Das in Kapitel 3 beschriebene Programm soll flussbasiert umgesetzt werden. Um eine bessere Übersicht
zu haben, wie das flussbasierte Programm aussehen muss, wurde das PANPOST-Programm zuerst
auf die wesentlichen Funktionen gekürzt. Die notwendigen Funktionen, die auch im flussbasierten
Programm erhalten bleiben sollen sind:

1. Einlesen einer Tecplot-Datei

2. Rendern der eingelesenen Datei mittels des in Abb. 3.2 gezeigten Ablaufs. Angezeigt werden
muss das gerenderte Bild dabei nicht.

3. Speichern der gerenderten Grafik in eine Bilddatei

Für das Einlesen gibt es im PANPOST-Programm drei Funktionen, die in drei verschiedenen Dateien
untergebracht sind. Da nur eine der Dateien, panDatInput_Std.py in PANPOST zum Einlesen tatsäch-
lich benutzt wird, wird diese auch in der flussbasierten Implementierung verwendet. Anstatt den
Code aus der Datei zu kürzen und als Teil des gekürzten Programms zu schreiben, wird hier nur die
Datei eingebunden und die Funktion darin aufgerufen. Der Grund dafür ist, dass die Alternative – die
Funktion neu zu schreiben und dabei auf das Wesentliche zu kürzen – sehr aufwendig wäre. Die von
außen aufgerufene Funktion, die der Konstruktor derselben Klasse Dat2Grid in panDatInput_Std.py
ist, ruft dabei viele andere Methoden der Klasse auf. Außerdem hat die Klasse keine Abhängigkeiten
zu anderen Dateien, sodass sie isoliert verwendet werden kann.

Der Ablauf des Renderns in VTKwurde bereits in Kapitel 3 erläutert. Hierfür wurden bei der Erstellung
des gekürzten Programms vorhandene Einstellungsmöglichkeiten untersucht und ausgewählt, welche
sich im flussbasierten Programm ändern lassen sollen. Für die Ausrichtung der Kamera wurden die
Methoden Azimuth und Elevation statt Yaw und Pitch ausgewählt. Die Funktion von Azimuth und
Elevation erschien nach Test intuitiver zu verwenden. ResetCamera, eine Funktion, die die Kamera
auf das visualisierte Objekt zentriert und den Zoom anpasst, sodass das ganze Objekt im Bild ist, soll
sich an- und ausschalten lassen. Ausschalten soll möglich sein, damit der Benutzer mehr Freiheit beim
Positionieren der Kamera hat. Genauso soll der Benutzer die Funktion anschalten können, weil sie es
sehr einfach macht ein Bild einzustellen, auf dem man das vollständige gerenderte Modell erkennen
kann. Sehr wichtige Einstellungen sind die Höhe und Breite des resultierenden Bildes und damit auch
– letztendlich – des Videos. Andere Einstellungen, die der Benutzer ändern können soll, sind Zoom
und ParallelProjection. Wenn ParallelProjection angeschaltet ist, wird das Bild mit paralleler anstatt
perspektivischer Projektion gerendert.

Als Funktionen zum Abspeichern als Bilddatei gibt es im PANPOST-Programm Methoden für die
Rastergrafikformate JPG, PNG und BMP sowie für die Vektorgrafikformate PDF, PS und EPS. Zum
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Anzeigen sowie zur Erstellung eines Videos eignen sich Vektorgrafiken weniger, da sowohl Videos als
auch Bildschirme auf Rastergrafik basieren. Von den drei Rastergrafikformaten wurde PNG gewählt,
da PNG-Dateien komprimiert sind, ohne auf den Bildern Artefakte zu erzeugen.

In Abschnitt 4.1 wird das gekürzte Programm vorgestellt. Anschließend, in Abschnitt 4.2 werden
die Funktionen, die das flussbasierte Programm haben soll, die aber in PANPOST nicht vorhanden
waren beschrieben. In Abschnitt 4.3 wird die Annotation des gekürzten Programms mit Yesworkflow
beschrieben.

4.1. Das gekürzte Programm

Das in diesem Abschnitt vorgestellte gekürzte Programm dient der Vereinfachung der Erstellung
des flussbasierten Programms. Das flussbasierte Programm wird erst im nachfolgenden Kapitel 5
vorgestellt.

In diesem Programm sind manche der Einstellungen, wie zum Beispiel die Hintergrundfarbe, sowie
Kameraposition und Bildgröße vorübergehend hart kodiert. Das liegt daran, dass die Möglichkeit zum
Ändern der Einstellungen des PANPOST-Programms im gekürzten Programm nicht existiert und eine
Alternative noch nicht benötigt wurde. Mit hart kodierten Einstellungen war es auch möglich deren
Funktionen zu testen, da der Code des Programms schnell änderbar war. Die Ein- und Ausgabepfade
sind ebenfalls hart kodiert, werden aber, wie auch die Einstellungen, im flussbasierten Programm
wieder für den Benutzer änderbar sein.

Da das flussbasierte Programm automatisch mehrere Dateien verarbeiten soll, ist eine Benutzerober-
fläche, mit der auf manuelle Eingaben gewartet werden müsste, nicht von Nutzen. Daher kann die
gesamte Benutzeroberfläche und damit auch wxPython im gekürzten Programm eingespart werden.

Das gekürzte Programm wird in den folgenden Abschnitten vorgestellt.

4.1.1. Einlesen der Tecplot-Dateien

print ’reading file’

self.grid = panDatInput_Std.Dat2Grid(

’C:\Users\Sperwing\Documents\Bachelor\Fixed -

Kopie\develop\src\examples\IN_bandscheibe.dat’);

4 print ’file sucessfully read’

Listing 4.1: Teil des gekürzten Programmes, in dem die Tecplot-Datei eingelesen wird

Zum Einlesen wird die Datei panDatInput_Std.py aus dem PANPOST-Programm verwendet. Der Code,
der in dieser Version zumEinlesen benutzt wird und die entsprechende Funktion in panDatInput_Std.py
nutzt, ist in Listing 4.1 zu sehen.
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4.1.2. Rendern

self.mapper = vtk.vtkDataSetMapper()

self.mapper.SetInputData(self.grid())

self.actor = vtk.vtkActor()

5 self.actor.SetMapper(self.mapper)

self.actor.GetProperty().SetColor(0, 0, 1) #>settings

self.ren = vtk.vtkRenderer()

self.ren.SetBackground(1, 1, 1)

10 self.ren.AddActor(self.actor)

self.ren.SetLayer(0)

self.camera = self.ren.GetActiveCamera()

self.camera.SetFocalPoint(0.0, 0.0, 0.0)

15 self.camera.SetPosition(0, 0, 100)

self.camera.SetViewUp(0, 1, 0)

self.camera.Roll(0) #>settings

self.camera.Azimuth(30) #>settings

self.camera.Elevation(0) #>settings

20 self.camera.Zoom(1) #>settings

self.camera.ParallelProjectionOn() #>settings

self.ren.ResetCamera() #>settings

self.renWin = vtk.vtkRenderWindow()

25 self.renWin.AddRenderer(self.ren)

self.renWin.SetSize(1000, 1000) #>settings

self.renWin.OffScreenRenderingOn()

self.renWin.Render()

Listing 4.2: Teil des gekürzten Programmes, in dem das Rendern vorbereitet wird und gerendert wird

Wie bereits in Kapitel 3 beschrieben, ist der erste Schritt der Vorbereitung für das Rendern die
Erstellung eines vtkDataSetMapper und die Eingabe des Grid in diesen (siehe Abb. 3.2). Das passiert
auch in diesem Programm in Listing 4.2 in den ersten zwei Zeilen. Der Aufruf von grid() ist dabei
nötig, da die zum Einlesen benötigte Klasse eine Instanz von sich selbst zurückgibt. Um das benötigte
vtkUnstructuredGrid zu erhalten, wird hier mit grid() die __call__()-Methode der Klasse aufgerufen.

Als nächstes werden in Listing 4.2 in Zeilen 4 und 5 ein vtkActor erstellt und der Mapper übergeben.
In der nächsten Zeile wird die Farbe des zu rendernden Objektes festgelegt. Der Kommentar dahinter,
sowie ggf. analog bei weiteren Code-Zeilen gibt an, dass die Farbe des Objektes in der flussbasierten
Implementierung zu den änderbaren Einstellungen gehören soll.

In Zeile 8 wird der vtkRenderer erstellt und in Zeile 10 diesem der vtkActor übergeben. In Zeile 9 wird
der Hintergrund als weiß festgelegt und in Zeile 11 die Ebene des Renderers gesetzt.

Von Zeile 14 bis 21 wird die Kamera bearbeitet. Die Kamera ist der virtuelle Ort, von dem aus das
Objekt im Bild visualisiert wird. Die Kamera ist hier als Teil des Bearbeiten des Renderers und nicht
als zusätzlicher Schritt angesehen, da die Kamera nicht extra erstellt, sondern mit dem Renderer
erstellt und daraus extrahiert wird. Die Zeilen sind teilweise redundant, um zu testen, wie genau
die Einstellungen funktionieren. Die Kamera ist bereits im Renderer definiert und wird in Zeile 13
geladen. In Zeile 14 wird der Punkt definiert, auf den die Kamera zeigen soll. In Zeile 15 wird die
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Position der Kamera definiert. Zeilen 16 bis 20 definieren Ausrichtung und Zoom der Kamera. Zeile
22 richtet die Kamera so aus, dass das Objekt in einer sinnvollen Größe im Mittelpunkt des Bildes ist.
Zeile 21 ändert die Projektion von perspektivisch zu parallel.

Der Renderer wird nun in Zeile 25 einem neuen vtkRenderWindow hinzugefügt. Zeile 26 legt die
Größe des RenderWindow und damit die Größe des gerenderten Bildes fest. Ohne Zeile 27 würde
sich beim Rendern ein Fenster öffnen und das gerenderte Bild anzeigen. Im flussbasierten Programm
nützt diese Funktion nicht, da sich beim Rendern mehrerer Bilder für jedes Bild ein neues Fenster
öffnen und schließen würde. Daher wird das Bild nicht angezeigt, sondern nur abgespeichert (siehe
Abschnitt 4.1.3). In Zeile 28 steht schließlich der Befehl zum Rendern.

4.1.3. Ausgabe

try:

w2if = vtk.vtkWindowToImageFilter()

3 w2if.SetInput(self.renWin)

writer = vtk.vtkPNGWriter()

writer.SetInputConnection(w2if.GetOutputPort())

writer.SetFileName(’output.png’)

8 writer.Write()

except:

print ’Error writing png file’

Listing 4.3: Teil des gekürzten Programmes, in dem die Bilddatei gespeichert wird

Der Code in Listing 4.3 entspricht dem der Methode SavePNG in der Datei panProgram.py des
PANPOST-Programms. Um aus dem vtkRenderWindow eine Bilddatei zu generieren, muss zuerst, in
Zeile 2, ein vtkWindowToImageFilter erstellt werden, der das RenderWindow übergeben bekommt
(Zeile 3). Dieser wird in Zeile 6 mit einem vtkPNGWriter verbunden. In Zeile 7 wird der Pfad der zu
erstellenden Datei festgelegt. Mit dem Aufruf Write() schreibt der PNGWriter die Bilddatei. Falls das
Schreiben Fehler ergibt wird in Zeile 10 eine Fehlermeldung in der Konsole ausgegeben.

4.2. Neue Funktionen

Gegenüber dem gekürzten Programm gibt es im flussbasierten Programm neben der Umsetzung als
Datenfluss noch weitere Änderungen.

Die Einstellungen, die im gekürzten Programm hart kodiert waren, werden im flussbasierten Pro-
gramm in eine Settings-Datei ausgelagert. Für das Einlesen der Settings-Datei wird das bereits
mitgelieferte Paket ConfigParser verwendet.

Ebenfalls im gekürzten Programm hart kodiert war die Eingabedatei. Im flussbasierten Programm
werden alle Dateien in einemOrdner verarbeitet. Der Pfad des Ordners, in dem sich die Eingabedateien
befinden, sowie ein Pfad zum Zwischenspeichern der erzeugten Bilder und der Pfad und Name der
Ausgabedatei werden dabei in der Settings-Datei festgelegt.
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Das gekürzte Programm gibt am Ende der Ausführung eine PNG-Datei zurück. Im flussbasierten
Programm soll nicht ein Bild, sondern ein Video aus den Bildern vieler Dateien entstehen. Um das
zu bewerkstelligen wird die Bilddatei zuerst wie im gekürzten Programm abgespeichert. Anschlie-
ßend wird sie wieder eingelesen und mittels OpenCV zu dem Video als Frame hinzugefügt. Bei der
Umsetzung stellte sich heraus, dass das Hinzufügen im Datenfluss möglich ist und nicht nach der
Visualisierung aller Bilder passieren muss. In der Umsetzung als Datenfluss wird also ein Bild visuali-
siert und an das Video angefügt, bevor das nächste Bild visualisiert wird. Das erlaubt es außerdem, das
visualisierte Bild nach dem Anfügen an das Video zu löschen. Damit wird immer nur eine Bilddatei
zwischengespeichert, was ressourcenschonender ist.

4.3. Annotation mit YesWorkflow

Um das gekürzte Programm in ein flussbasiertes Programm zu konvertieren, müssen sinnvolle Code-
blöcke und der Datenfluss zwischen diesen ermittelt werden. Dafür wurde YesWorkflow1 benutzt.

Da YesWorkflow noch ein Prototyp ist, lassen sich damit nur die Kommentare aus einer einzelnen Datei
auslesen. Deshalb war es nicht praktikabel YesWorkflow bereits im ursprünglichen PANPOST-Code
zu verwenden, sondern das in Abschnitt 4.1 gekürzte Skript zu annotieren.

Bisher wurde in dieser Arbeit das Programm in drei Arbeitsschritte eingeteilt:

1. Einlesen einer Tecplot-Datei

2. Vorbereiten zum Rendern und Rendern der eingelesenen Datei

3. Speichern der gerenderten Grafik in eine Bilddatei

Diese sind als Grundlage für die Aufteilung in Codeblöcke hilfreich. Der Code zum Einlesen und
Speichern ist hierbei kurz genug, um daraus jeweils einen Codeblock zu formen (siehe Listing 4.1 und
4.3). Der Code für das Rendern (siehe Listing 4.2) hat allerdings viele Funktionen und ist damit für
einen Codeblock zu unübersichtlich. Deswegen soll dieser in mehrere Codeblöcke unterteilt werden.
Entsprechend der Beschreibung in Abschnitt 3 wird im ersten Schritt der Mapper erstellt und diesem
das Grid übergeben. Im zweiten Schritt wird der Actor erstellt, diesem der Mapper übergeben und
die Farbe des Objektes eingestellt. Der dritte Schritt besteht aus der Erstellung des Renderers und
dem Übergeben des Actors an diesen. Außerdem werden in diesem Abschnitt die Einstellungen für
Hintergrundfarbe, Zentrierungspunkt und der Kameraeinstellungen festgelegt. Der vierte und letzte
Schritt besteht aus der Erstellung des RenderWindow, dem Hinzufügen des Renderers, dem Einstellen
der Fenstergröße und schließlich dem Rendern. Wenn man nun das Einlesen der Tecplot-Datei und
Abspeichern der Bilddatei hinzunimmt ergibt sich folgende Einteilung für den Ablauf:

1. Einlesen einer Tecplot-Datei (Listing 4.1)

2. Erstellung des Mappers (Listing 4.2, Zeilen 1 und 2)

3. Erstellung des Actors und Setzen von Einstellungen (Listing 4.2, Zeilen 4 bis 6)

1YesWorkflow: http://yesworkflow.org/wiki
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4. Vorbereitung für die Umsetzung als Datenfluss

4. Erstellung des Renderers und Setzen weiterer Einstellungen (Listing 4.2, Zeilen 8 bis 23)

5. Erstellung des RenderWindows und Rendern (Listing 4.2, Zeilen 25 bis 29)

6. Speichern der gerenderten Grafik in eine Bilddatei (Listing 4.3)

Zusätzlich zu den Codeblöcken aus dem gekürzten Programm werden noch weitere, leere Codeblöcke
eingefügt, die im flussbasierten Programm mit Code gefüllt werden sollen. Diese sind:

1. prepare_settings, ein Codeblock für das Einlesen der Einstellungen aus einer Datei (siehe Listing
4.4, Zeilen 12 bis 17)

2. get_filename, als Platzhalter für eine Funktion, die aus dem Eingabeordner die Dateinamen aller
Tecplot-Dateien zurückgibt (siehe Listing 4.4, Zeilen 6 bis 10)

3. make_video, ein Codeblock für das Erstellen des Videos aus der Bilddatei

4. remove_imagefile, für das Löschen der nun nicht mehr verwendeten Bilddatei

# @BEGIN main

# @IN dat-file @URI file:{dat-file-name}

# @IN settings-file @URI file:{op_pth}/settings.ini

4 # @OUT video-file @URI file:{video-file-name}

# @BEGIN prepare_settings

# @IN settings-file @URI file:{op_pth}/settings.ini

# @OUT settings

9 # @OUT path-settings

### INSERT CODE HERE ###

# @END prepare_settings

# @BEGIN get_filename

14 # @PARAM path-settings

# @OUT filename

### INSERT CODE HERE ###

# @END prepare_setting

19 def __init__(self, params):

# @BEGIN read_file

# @IN dat-file @URI file:{dat-file-name}

# @PARAM filename

# @PARAM path-settings

24 # @OUT grid

print ’reading file’

self.grid = panDatInput_Std.Dat2Grid(

’C:\Users\Sperwing\Documents\Bachelor\Fixed -

Kopie\develop\src\examples\IN_bandscheibe.dat’);

print ’file sucessfully read’

29 # @END read_file

Listing 4.4: Der Anfang des gekürzten Programms mit YesWorkflow-Kommentaren
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4.3. Annotation mit YesWorkflow

In Listing 4.4 sieht man den Anfang des gekürzten Programms mit eingefügten YesWorkflow-
Kommentaren. Die ersten vier Zeilen definieren den Anfang des Programms und die Ein- und
Ausgabedaten. Als Eingabe bekommt das Programm die Tecplot-Datei (Zeile 2), und die Einstel-
lungsdatei (Zeile 3). Als Ausgabe gibt das Programm die Videodatei zurück (Zeile 4). Über @URI sind
für die Dateien die Pfade angegeben, wobei der Teil in geschweiften Klammern variabel ist.

In Zeilen 6 bis 11 wird der erste Codeblock definiert. In diesem Fall handelt es sich um den leeren
Codeblock, der später für die Verarbeitung der Einstellungsdatei zuständig sein soll. Er bekommt die
Einstellungsdatei übergeben und liest daraus die verschiedenen Einstellungen ein, die in path-settings,
die Dateipfade, und settings, die sonstigen Einstellungen, aufgeteilt sind.

Der nächste Codeblock, Zeilen 13 bis 17, ist ebenfalls noch nur ein Platzhalter. Hier soll die Funktion,
die aus dem Eingabeordner die Dateinamen aller Tecplot-Dateien ausliest eingefügt werden.@PARAM
in Zeile 14 sagt aus, dass der Wert ein Eingabeparameter ist.

Der nächste Block, von Zeile 20 bis 29, liest die Tecplot-Datei ein. Zeile 25 bis 28 davon sind der Code
aus Listing 4.1. Dieser bekommt die Tecplot-Datei und im flussbasierten Programm auch den Pfad der
Tecplot-Datei sowie die Pfad-Einstellungen und gibt das Grid an den nächsten Codeblock weiter, der
hier nicht mehr dargestellt ist.

In Abbildung 4.1 sieht man nun den aus der gesamten Datei generierten Graphen.
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get_filename

filename

prepare_settings

path-settings

settings

read_file

grid

prepare_mapper

mapper

prepare_actor

actor

prepare_render

renderer

render

renderWindow

save_file

png-file

file:{image-file-name}

make_video

video-file

file:{video-file-name}

remove_imagefile

settings-file

file:{op_pth}/settings.ini

dat-file

file:{dat-file-name}

Abbildung 4.1.:Mit YesWorkflow generierter Graph des Datenflusses
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5. Umsetzung als Datenfluss

In diesem Kapitel wird die Umsetzung als flussbasiertes Programm beschrieben. In Abschnitt 5.1
werden Ausführungsumgebungen für die flussbasierte Ausführung untersucht und verglichen. In
Abschnitt 5.2 wird die Umsetzung als flussbasiertes Programm beschrieben. In Abschnitt 4.3 werden
dann Probleme mit der Umsetzung aufgezeigt.

5.1. Vergleich von Datenflussplattformen

Um ein flussbasiertes Programm zu schreiben benötigt man eine Ausführungsumgebung, in der das
Programm läuft. Für diese Arbeit wurden dafür drei Möglichkeiten betrachtet: Node-RED1, Kurator-
Akka2 und PyF3.

5.1.1. Node-RED

In der Aufgabenstellung wurde bereits Node-RED als Ausführungsumgebung vorgeschlagen. Node-
RED erlaubt es dem Benutzer zusätzlich zu voreingestellten Knotentypen selbst Knoten mit Code zu
definieren. Allerdings basiert Node-RED auf JavaScript und unterstützt Python nicht. Das Problem
hierbei ist nicht, dass es unmöglich wäre Python-Code von Node-RED aus zu starten, denn dies kann
mittels Knoten für externen Programmaufruf oder Web-Service-Aufruf erreicht werden. Schwieriger
ist es die Python-Objekte von einem Codeblock an den nächsten weiterzugeben. Zwar hat Python
Funktionen um Python-Objekte in Text zu serialisieren, allerdings muss das in dem zu serialisierenden
Objekt auch implementiert sein. In den verwendeten VTK-Objekten ist das nicht der Fall. Als letzte
Möglichkeit wäre es möglich die Serialisierung selbst zu implementieren. Da dafür nicht nur die
Objekte die weitergegeben werden, sondern auch alle darin enthaltenen Objekte serialisiert werden
müssten, wäre der Aufwand dafür gegenüber dem Aufwand die Implementierung mit einer Python-
basierten Plattform umzusetzen nicht angemessen. Aus den genannten Gründen wurde Node-RED
als Datenflussplattform verworfen.

1Node-RED: http://nodered.org/
2Kurator-Akka: https://github.com/kurator-org/kurator-akka
3PyF: http://pyfproject.org/
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5. Umsetzung als Datenfluss

5.1.2. Kurator-Akka

Im Gegensatz zu Node-RED unterstützt Kurator-Akka Java und über Jython, einer Java-
Implementierung von Python, auch Python. Mit Kurator-Akka werden die Datenflüsse in YAML
definiert. Da Kurator-Akka nicht auf Python basiert und dessen Datenfluss in einer anderen Sprache
separat von dem sonstigen Code definiert werden muss, wurde Kurator-Akka hier nicht verwendet.
Eine Umsetzung mit Kurator-Akka wäre allerdings auch möglich gewesen.

5.1.3. PyF

PyF unterstützt nur Python. Es lässt sich auf verschiedene Arten ausführen; am einfachsten und für
diese Anwendung ausreichend, lassen sich die Codeblöcke im Code anstatt in einer graphischen
Oberfläche definieren und verbinden. Hauptnachteil ist allerdings, dass PyF seit längerer Zeit nicht
gewartet wurde, was die Installation erschwert. Vermutlich wurde der Support von PyF eingestellt.

Da es Python besser unterstützt und der Datenfluss direkt im Code implementiert werden kann wurde
PyF ausgewählt.

5.2. Umsetzung mittels PyF

In Listing 5.1 sieht man die Main-Methode des flussbasierten Programms. Im ersten Abschnitt (Zeilen
2 bis 8) wird das Programm vorbereitet, im zweiten und dritten (Zeilen 9 bis 26) werden die Codeblöcke
definiert und verbunden und im letzten wird das Programm gestartet (Zeilen 28 bis 30). Zum Schluss
wird das Schreiben des Videos beendet (Zeile 31).

def main():

global pathsettings, rendersettings, videosettings

print "start"

4 # read settings from "settings.ini" file in operating path

dir = dirname(__file__)

path = join(dir,"settings.ini")

pathsettings, rendersettings, videosettings = prepare_settings(path)

source = get_filenames(pathsettings[’inputfolder’])

9

read_runner = runner (read_file)

mapper_runner = runner (prepare_mapper)

actor_runner = runner (prepare_actor)

prepare_runner = runner (prepare_render)

14 render_runner = runner (render)

save_runner = runner (save_file)

video_runner = runner (make_video)

remove_runner = runner (remove_imagefile)

19 read_runner.connect_in(’values’, iter(source))

mapper_runner.connect_in(’values’,read_runner(’out’))

actor_runner.connect_in(’values’,mapper_runner(’out’))

prepare_runner.connect_in(’values’,actor_runner(’out’))

30



5.2. Umsetzung mittels PyF

render_runner.connect_in(’values’,prepare_runner(’out’))

24 save_runner.connect_in(’values’,render_runner(’out’))

video_runner.connect_in(’values’, save_runner(’out’))

remove_runner.connect_in(’values’, video_runner(’out’))

for item in remove_runner(’out’):

29 #outfile.write( item )

print item + " done!"

writer.release

Listing 5.1: Die ersten zwei Codeblöcke der Umsetzung

In diesem Abschnitt wird das flussbasierte Programm beschrieben. Dazu wird zuerst in 5.2.1 die
Vorbereitung des flussbasierten Programms erklärt. Dann wird in 5.2.2 die flussbasierte Ausführung
beschrieben. In 5.2.3 werden die verwendeten Hilfsfunktionen beschrieben. In Abschnitt 5.2.4 wird
schließlich noch die Einstellungsdatei erklärt.

5.2.1. Vorbereitung für die flussbasierte Ausführung

Bevor die Daten flussbasiert verarbeitet werden können, sind zwei Aktionen notwendig: Die Ein-
stellungen müssen ausgelesen werden und die Pfadnamen der zu verarbeitenden Dateien müssen
gesammelt werden. In Listing 5.1 werden zuerst die Einstellungen ausgelesen. Dazu wird in Zeile 5 der
Ausführungspfad ausgelesen und in Zeile 6 an diesen „settings.ini“ angehängt. Der Grund dafür ist,
dass das Programm erwartet, dass sich im Ausführungsordner des Programms die Einstellungsdatei
mit dem Namen settings.ini befindet. In Zeile 7 wird mit dem Dateipfad eine Hilfsfunktion aufgerufen,
die die Einstellungsdatei ausliest und die Einstellungen in drei assoziativen Arrays nach Kategorie
sortiert ausgibt. Die drei Arrays werden in den Variablen pathsettings, rendersettings und videosettings
gespeichert. Diese sind globale Variablen, sodass in den Codeblöcken direkt darauf zugegriffen werden
kann. In Zeile 8 wird eine Hilfsfunktion aufgerufen. Diese hat die Aufgabe die Namen der Dateien in
dem Eingabeordner, der in den Einstellungen angegeben ist, zurückzugeben.

Von Zeile 10 bis Zeile 17 wird angegeben, dass die Funktionen read_file, prepare_mapper, usw. (vgl. Lis-
ting 5.2) Codeblöcke für die flussbasierte Ausführung sind. Von Zeile 19 bis 26 werden die Codeblöcke
zu einem Datenfluss verbunden, indem jedem Codeblock die Ausgabedaten des zuvor auszuführenden
Codeblock als Eingabedaten definiert werden.

In Zeile 19 wird dabei angegeben, dass als Quelle für den ersten Block, read_file, über source, die Liste
mit den Dateinamen, iteriert wird.

Nachdem die Dateinamen und Einstellungen für den flussbasierten Teil zugänglich gemacht wurden
und der Ablauf des Datenflusses definiert wurde, wird der flussbasierte Programmteil in Listing 5.1
in Zeilen 28 bis 30 gestartet. Das wird dadurch implementiert, dass über den Ausgang des letzten
Codeblocks iteriert wird. In Zeile 30 wird der Dateipfad des dann nicht mehr vorhandenen zwischen-
gespeicherten Bildes in die Konsole ausgegeben, um beim Debuggen anzuzeigen, dass der Ablauf für
eine Datei fertig ist.

Am Ende der Ausführung wird in Zeile 31 noch der VideoWriter, der die Videodatei erstellt, beendet.
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5. Umsetzung als Datenfluss

5.2.2. Flussbasierte Ausführung

Da viel von dem Code identisch mit dem in Listing 4.1, 4.2 und 4.3 vorgestellten Code ist, werden hier
nur beispielhaft zwei Codeblöcke vorgestellt, um die Änderungen durch die änderbaren Einstellungen
und die Codeblöcke, die vorher noch nicht implementiert wurden, sowie die Änderungen, die durch
die flussbasierte Umsetzung nötig sind, zu zeigen. Der vollständige Code ist im Anhang in Listing A.1
zu sehen.

@component(’IN’, ’OUT’)

def read_file(values, out):

3 for item in values:

print "read: " + item

grid = panDatInput_Std.Dat2Grid(pathsettings[’inputfolder’] + ’\\’+ item)

yield (out, grid(), item)

Listing 5.2: Der erste Codeblock der Umsetzung: read_file

Listing 5.2 zeigt die Implementierung des Codeblocks read_file. Der Codeblock besteht einerseits
aus Code, der für die Definition als Codeblock und das Verbinden der Daten notwendig ist, und
andererseits aus Code, der die Funktion des Codeblocks implementiert.

Für einen Codeblock in PyF benötigt man eine Funktion, die zwei Eingabewerte bekommt. Einer davon,
in Zeile 2 values, enthält die Eingabewerte als Liste, der andere, out, wird nur von PyF verwendet und
wird im yield (siehe Zeile 6) weitergegeben. Über den Eingabewerten läuft eine Schleife. Da allerdings
in PyF die Werte mit yield anstatt return zurückgegeben werden wird die Schleife für einen Wert in
values erst ausgeführt, wenn er gebraucht wird. So läuft der Datenfluss für einen Eingabewert erst
ganz durch, bevor der nächste verarbeitet wird. Ebenfalls nötig für einen Codeblock in PyF ist die
Definition als Komponente, die eine Liste von Werten, anstatt eines Arrays von Listen von Werten,
bekommt und weitergibt in Zeile 1.

Die Funktion dieses Codeblocks ist in Zeile 5 zu sehen. Dort wird, wie in 4.1, panDatInput_Std.Dat2Grid
aufgerufen. Hier werden allerdings die Dateipfade aus dem Pfad des Eingabeordners sowie den Namen
der Eingabedateien zusammengesetzt. In Zeile 6 wird außerdem die __call__()-Methode aufgerufen,
um das vtkUnstructuredGrid zu erhalten. Weitergegeben werden die vtkUnstructuredGrid sowie die
Dateinamen.

@component(’IN’, ’OUT’)

def prepare_mapper(values, out):

3 for item in values:

num, grid, filename = item

print "prepare mapper: "+filename

mapper = vtk.vtkDataSetMapper()

mapper.SetInputData(grid)

8 yield (out, mapper,filename)

Listing 5.3: Der zweite Codeblock: prepare_mapper

In Listing 5.3 ist der Codeblock prepare_mapper zu sehen, in dem der Mapper erstellt wird und diesem
das Grid aus Listing 5.2 übergeben wird.
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Da zum Zwischenspeichern der Datei und zum Nachverfolgen in der Konsole auch ein Dateiname
benötigt wird, wird der Name der Datei zwischen den Codeblöcken weitergereicht. Dazu enthält die
Liste values in Listing 5.3 Tupel. Diese bestehen, wie in Zeile 4 sichtbar aus num, grid und filename.
Die letzten beiden sind die letzten beiden Werte im yield in Zeile 6 in Listing 5.2. Der erste Wert
enthält die verwendete Port-Nummer und wird nicht benötigt.

@component(’IN’, ’OUT’)

def make_video(values, out):

global writer

4 for filepath in values:

print "make video: "+filepath

image= cv2.imread(filepath)

if not writer:

try:

9 codec = cv2.VideoWriter_fourcc(*videosettings[’codec’])

except:

print "no valid codec specified"

codec = -1

writer =

cv2.VideoWriter(pathsettings[’outputfile’],codec,float(videosettings[’framerate’]),

14 (int(videosettings[’width’]),int(videosettings[’height’])))

writer.write(image)

yield (out,filepath)

Listing 5.4: Der Codeblock für make_video

In Listing 5.4 sieht man den Codeblock, in dem das Video mit OpenCV erstellt wird. Dazu wird
in Zeile 6 für jede Tecplot-Datei das zuvor generierte Bild mit dem Bildleser von OpenCV wieder
eingelesen. Falls es noch keinen VideoWriter gibt, also im ersten Durchlauf, wird in Zeile 9 der Codec
aus den Einstellungen ausgelesen. Falls dort kein FourCC-Code angegeben wurde, wird in Zeile 12
"-1“, der Wert für keinen angegebenen Codec, als Codewert festgelegt. Wenn das passiert öffnet sich
ein Fenster, in dem aus vorhandenen Codecs einer ausgewählt werden kann. In Zeile 13 wird dann
ein VideoWriter definiert, wenn noch keiner existiert. Die nötigen Einstellungen werden dabei aus
den assoziativen Arrays, in denen sie aus der Datei eingelesen wurden, entnommen. In Zeile 15 wird
das Bild schließlich an das Video angefügt.

@component(’IN’, ’OUT’)

2 def remove_imagefile(values, out):

for filepath in values:

print "remove "+ filepath

remove(filepath)

yield filepath

Listing 5.5: Der Codeblock für remove_imagefile

Der letzte Codeblock der flussbasierten Ausführung löscht die Bilddatei, da sie nachdem sie an das
Video angefügt wurde nicht mehr benötigt wird. Dies passiert, wie in Listing 5.5 in Zeile 5 sichtbar,
über einen Aufruf.
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5.2.3. Hilfsfunktionen

def prepare_settings(filename):

# reads settings from file at filename and returns ordered by section

configpars = ConfigParser.ConfigParser()

4 configpars.read(filename)

pathsettings = config_get("path",configpars)

rendersettings = config_get("render",configpars)

videosettings = config_get("video",configpars)

return pathsettings, rendersettings, videosettings

9

def config_get(section,configpars):

# returns one section of the file as a list

dict = {}

options = configpars.options(section)

14 for option in options:

try:

dict[option] = configpars.get(section,option)

except:

print("exception on %s!" % option)

19 dict[option] = None

return dict

def try_int(string):

try:

24 return int(string)

except:

return string

def sort_key(string):

29 return [try_int(char) for char in split(’([0-9]+)’, string) ]

def get_filenames(folder):

#returns the names of all .dat-files in the specified folder

filenames = [ f for f in listdir(folder) if isfile(join(folder,f)) and (f.endswith(’.dat’))]

34 filenames.sort(key=sort_key)

return filenames

Listing 5.6: Die verwendeten Hilfsfunktionen

In der Umsetzung wurden fünf Hilfsfunktionen verwendet. Zwei davon sind dafür zuständig die
Settings-Datei einzulesen, die anderen drei die Dateinamen der zu verarbeitenden Tecplot-Dateien
herauszufinden. Für das Einlesen der Einstellungen wird zuerst prepare_settings in Listing 5.6 in Zeile
1 aufgerufen. Diese Funktion bekommt den Dateipfad der Settings-Datei übergeben und gibt die
Einstellungen als drei assoziative Arrays zurück. Dazu wird in Zeile 3 ein ConfigParser definiert, der
in Zeile 4 die Settings-Datei ausliest. Danach wird drei mal die Hilfsfunktion config_get aufgerufen,
die für einen Abschnitt in der Settings-Datei alle Optionswerte als assoziatives Array zurückgibt.

Die andere Funktion der Hilfsfunktionen ist es, eine Liste der Dateinamen in dem in den Einstellungen
angegebenen Eingabeordner zu erstellen. Dafür wird die Methode get_filenames benutzt. In Zeile 33
wird eine Liste aller Dateien in dem Ordner erstellt, die mit ".dat“ enden. Da die Dateien im Video
in der richtigen Reihenfolge sein müssen werden in Zeile 34 die Dateien sortiert. Dazu wird die
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Hilfsfunktion sort_key benutzt, die mithilfe der Methode try_int die Dateien nicht alphanumerisch,
sondern auch nach Zahlen sortiert, sodass zum Beispiel "2.dat“ vor "10.dat“ kommt.

5.2.4. Die Settings-Datei

[path]

2 Inputfolder: F:\bone_results\bc_standing

Workingfolder: C:\Users\Sperwing\Documents\Bachelor\OutputTecstat

Outputfile: C:\Users\Sperwing\Documents\Bachelor\OutputTecstat\outputStanding.avi

[render]

7 #in deg (float)

Roll: 100

Azimuth: 30

Elevation: 0

12 Zoom: 1

ParallelProjection: true

# The camera will reposition itself to view the center point of the actors,

# and move along its initial view plane normal (i.e., vector defined from

17 # camera position to focal point) so that all of the actors can be seen.

ResetCamera: true

Color: 0 0 1

22 [video]

# Height and width of video and images

# Can not be bigger than possible window size

Height: 850

Width: 1000

27

Framerate: 5

# FourCC (or -1 for choose from existing)

Codec: -1

Listing 5.7: Die Settings-Datei

Die Settings-Datei ist im INI-Format geschrieben. Sie besteht aus drei Abschnitten, path, render und
video, die in Listing 5.7 in Zeilen 1, 6 und 22 beginnen. Diese dienen hauptsächlich der Übersichtlichkeit
der Datei, werden allerdings auch im Programm in drei verschiedene Arrays gespeichert. Im ersten
Abschnitt werden die Pfade von dem Eingabeordner (Zeile 2), dem Ordner zum Zwischenspeichern
der Bilder (Zeile 3), sowie der Ausgabedatei (Zeile 4) definiert.

Der zweite Abschnitt enthält Einstellungen, die bei der Vorbereitung für das Rendern verwendet
werden. In Zeilen 8 bis 10 wird die Richtung der Kamera in Grad festgelegt. In Zeile 12 wird der Zoom
eingestellt und in Zeile 13 ob die Projektion parallel oder perspektivisch sein soll. In Zeile 18 wird
eingestellt, ob die Funktion ResetCamera, die automatisch die Richtung und den Zoom der Kamera
anpasst, aufgerufen werden soll. In Zeile 20 wird die Farbe des Objektes eingestellt. Die drei Zahlen
stehen dabei für die Farben rot, grün und blau mit jeweils einem Wert zwischen 0 und 1.

35



5. Umsetzung als Datenfluss

Im letzten Abschnitt werden die Optionen für das Video eingestellt. Die Einstellungen für Höhe und
Breite des Bildes in Pixeln in Zeilen 25 und 26 werden allerdings auch beim Rendern benötigt und sind
nur für die Übersichtlichkeit unter video kategorisiert. Weitere Einstellungen sind die Bildfrequenz in
Bilder pro Sekunde in Zeile 28 und der Codec in Zeile 31, der im FourCC-Format angegeben wird.

5.3. Evaluation

Das vorgestellte Programm liest alle Tecplot-Dateien in einem Ordner ein und macht daraus ein Video.
Damit ist die Vorgabe teilweise erfüllt. In der Aufgabenstellung ist allerdings auch davon die Rede,
dass die Ergebnisdaten der Simulation kontinuierlich verarbeitet werden sollen, also dass Dateien
sobald sie vom Simulationsprogramm erstellt wurden zur Ausführung hinzugefügt werden können.
Das ist mit dieser Implementierung nicht gegeben, da in der Implementierung die Dateien im Ordner
zu Beginn aufgelistet und später zu dem Ordner hinzugefügte Dateien ignoriert werden. Um das
umzusetzen müsste das Programm den Eingabeordner überwachen und sobald dort eine neue Datei
erstellt wird den Datenfluss durchlaufen, um diese zu visualisieren. Für das Überwachen von Ordnern
in Python gibt es Möglichkeiten, wie zum Beispiel Watchdog4 oder pyinotify5.

Ein Problem bereitet allerdings die Wahl von PyF als Datenflussengine. Da PyF die im Datenfluss
zu verarbeitenden Objekte auf Basis von Iteration über Listen behandelt, wäre eine Umsetzung der
kontinuierlichen Verarbeitung nur möglich, wenn der Datenfluss für jedes zu verarbeitende Objekt
ganz neu gestartet wird. Das ist mit PyF möglich, würde PyF allerdings nicht optimal nutzen und den
Code außerhalb des Datenflusses komplizierter machen. Für ein solches Programm wäre daher eine
erneute Überprüfung der möglichen Datenflussplattformen sinnvoll.

Für die Umsetzung der kontinuierlichen Verarbeitung wäre es außerdem vorteilhaft, die Bilddateien
anzuzeigen anstatt sie in ein Video zu speichern. Dies könnte mittels OpenCV oder auch direkt mit
VTK implementiert werden.

Ein Problem mit der aktuellen Umsetzung ist, dass die Einlesefunktion aus PANPOST, die auch in der
Umsetzung verwendet wurde, ohne Anpassung nicht alle Tecplot-Dateien einliest. Wie in Kapitel 3
bereits beschrieben, ist der Hintergrund, dass beim Einlesen der Dateien in einer bestimmten Zeile
nicht die in der Datei angegebenen Werte angeschaut werden, sondern die Werte nur abgezählt.
Wenn eine Datei in jener Zeile eine andere Anzahl an Werten hat, misslingt das Einlesen. An dieser
Stelle wurde das Problem bemerkt, da Tecplot-Dateien mit verschieden vielen Werten vorlagen. Es ist
allerdings auch möglich, dass die Einlesefunktion weitere Probleme dieser Art hat.

Da YesWorkflow mit Absicht einfach gehalten ist, hat es nur wenige Befehle. Im flussbasierten
Programm gibt es sowohl Knoten, wie zum Beispiel prepare_settings, die nur einmal ausgeführt
werden als auch Knoten die für jede zu visualisierende Datei einmal ausgeführt werden. Dafür
gibt es in YesWorkflow allerdings keine Unterscheidung, was dessen Verwendung für flussbasierte
Programme erschwert.

4Watchdog:https://pythonhosted.org/watchdog/
5https://github.com/seb-m/pyinotify
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6. Zusammenfassung und Ausblick

In dieser Arbeit wurde ein Programm, das Simulationsergebnisse visualisiert, analysiert und beispiel-
haft als Datenfluss umgesetzt. Das Programm wird für die Visualisierung von Strukturänderungen
in Knochen eingesetzt [Kra14]. Dazu liest es Tecplot-Dateien ein und zeigt die darin enthaltenen
3D-Modelle an. Dabei wurde das zuvor sehr umfangreiche Programm um unnötige Funktionen ge-
kürzt, was es erlaubt, die notwendige Interaktion mit dem Programm zu reduzieren. Dazu wurde das
analysierte Programm zuerst um die überflüssigen Funktionen, wie zum Beispiel die Möglichkeit sich
das visualisierte Objekt von allen Seiten anzusehen oder die Möglichkeit Daten durch Einfärbungen
anzuzeigen, gekürzt. Dieses gekürzte Programm wurde mit YesWorkflow annotiert, was den Daten-
fluss des Programms aufzeigte. Anschließend wurde das Programm als Datenfluss mit PyF umgesetzt.
Dabei wurde es um die Funktionen, mehrere Bilder automatisch zu verarbeiten und die Bilder in ein
Video zu konvertieren, erweitert.

Ausblick

In Abschnitt 5.3 wurde bereits beschrieben, dass das flussbasierte Programm die Simulationsergebnisse
noch nicht kontinuierlich verarbeitet. Hier wäre eine Erweiterung sinnvoll, die die Tecplot-Dateien
nach deren Erstellung sofort verarbeitet und das resultierende Bild anzeigt. Ebenso wäre es sinnvoll die
Einlesefunktion zu korrigieren oder neu und kürzer umzusetzen, damit auch dieser Teil übersichtlicher
und korrekter wird. Außerdem ist nicht klar ob PyF weiterentwickelt wird. Wenn das nicht der Fall ist
wird es wahrscheinlich nötig sein, auf eine andere Datenflussplattform zu wechseln. Die Verwendung
von Kurator-Akka wurde als Alternative noch nicht getestet.
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A. Anhang – Der Code des flussbasierten
Programms

’’’

Created on 30.07.2015

4 @author: bohnjs

’’’

# -----------------------------------------------------------------------------

# Global config-variables

# =======================

9 import panDatInput_Std

DEBUG = True # type debug info

# -----------------------------------------------------------------------------

14 # Import libraries

# ================

import vtk

from pyf.dataflow import runner, component

import ConfigParser

19 from os import listdir, remove

from os.path import isfile, join, dirname, splitext

from re import split

import cv2

24

# -----------------------------------------------------------------------------

# Import modules

# ==============

# import panWin

29 import panXML

@component(’IN’, ’OUT’)

def read_file(values, out):

34 for item in values:

print "read: " + item

grid = panDatInput_Std.Dat2Grid(pathsettings[’inputfolder’] + ’\\’+ item)

yield (out, grid(), item)

39 @component(’IN’, ’OUT’)

def prepare_mapper(values, out):

for item in values:

num, grid, filename = item

print "prepare mapper: "+filename

44 mapper = vtk.vtkDataSetMapper()
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mapper.SetInputData(grid)

yield (out, mapper,filename)

@component(’IN’, ’OUT’)

49 def prepare_actor(values, out):

for item in values:

num, mapper, filename = item

print "prepare actor: " + filename

actor = vtk.vtkActor()

54 actor.SetMapper(mapper)

color = [float(x) for x in rendersettings[’color’].split()]

actor.GetProperty().SetColor(color)

yield (out, actor, filename)

59 @component(’IN’, ’OUT’)

def prepare_render(values, out):

for item in values:

num, actor, filename = item

print "prepare render: " + filename

64 ren = vtk.vtkRenderer()

ren.SetBackground(1, 1, 1)

ren.AddActor(actor)

ren.SetLayer(0) #?

camera = ren.GetActiveCamera()

69 camera.SetFocalPoint(0,0,0) #>settings

camera.SetPosition(0, 0, 100) #>settings

camera.SetViewUp(0, 1, 0)

camera.Roll(float(rendersettings[’roll’]))

camera.Azimuth(float(rendersettings[’azimuth’]))

74 camera.Elevation(float(rendersettings[’elevation’]))

camera.Zoom(float(rendersettings[’zoom’]))

if rendersettings[’parallelprojection’] :

camera.ParallelProjectionOn()

if rendersettings[’resetcamera’] :

79 ren.ResetCamera()

yield (out, ren, filename)

@component(’IN’, ’OUT’)

def render(values, out):

84 for item in values:

num, ren, filename = item

print "render: "+filename

renwin = vtk.vtkRenderWindow()

renwin.AddRenderer(ren)

89 renwin.SetSize(int(videosettings[’width’]),int(videosettings[’height’]))

#print "SetSize: "+ videosettings[’width’] + " x " + videosettings[’height’]

renwin.OffScreenRenderingOn()

renwin.Render()

yield (out, renwin, filename)

94

@component(’IN’, ’OUT’)

def save_file(values, out):

for item in values:

num, renwin, filename = item

99 print "save: "+filename
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try:

w2if = vtk.vtkWindowToImageFilter()

w2if.SetInput(renwin)

writer = vtk.vtkPNGWriter()

104 writer.SetInputConnection(w2if.GetOutputPort())

filename = pathsettings[’workingfolder’]+’\\’+filename+’.png’

writer.SetFileName(filename)

writer.Write()

except:

109 print ’ PanpostSave.SavePNG() - error writing png file:’

yield (out,filename)

@component(’IN’, ’OUT’)

114 def make_video(values, out):

global writer

for filepath in values:

print "make video: "+filepath

image= cv2.imread(filepath)

119 if not writer:

try:

codec = cv2.VideoWriter_fourcc(*videosettings[’codec’])

except:

print "no valid codec specified"

124 codec = -1

writer =

cv2.VideoWriter(pathsettings[’outputfile’],codec,float(videosettings[’framerate’]),

(int(videosettings[’width’]),int(videosettings[’height’])))

writer.write(image)

yield (out,filepath)

129

@component(’IN’, ’OUT’)

def remove_imagefile(values, out):

for filepath in values:

print "remove "+ filepath

134 remove(filepath)

yield filepath

139 def prepare_settings(filename):

# reads settings from file at filename and returns ordered by section

configpars = ConfigParser.ConfigParser()

configpars.read(filename)

pathsettings = config_get("path",configpars)

144 rendersettings = config_get("render",configpars)

videosettings = config_get("video",configpars)

return pathsettings, rendersettings, videosettings

def config_get(section,configpars):

149 # returns one section of the file as a list

dict = {}

options = configpars.options(section)

for option in options:

try:
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154 dict[option] = configpars.get(section,option)

except:

print("exception on %s!" % option)

dict[option] = None

return dict

159

def try_int(string):

try:

return int(string)

except:

164 return string

def sort_key(string):

return [try_int(char) for char in split(’([0-9]+)’, string) ]

169 def get_filenames(folder):

#returns the names of all .dat-files in the specified folder

filenames = [ f for f in listdir(folder) if isfile(join(folder,f)) and (f.endswith(’.dat’))]

filenames.sort(key=sort_key)

return filenames

174

pathsettings = None

rendersettings = None

videosettings = None

179

writer = None

# -----------------------------------------------------------------------------

184 # Starting mainloop

# =================

def main():

global pathsettings, rendersettings, videosettings

print "start"

189 # read settings from "settings.ini" file in operating path

dir = dirname(__file__)

path = join(dir,"settings.ini")

pathsettings, rendersettings, videosettings = prepare_settings(path)

source = get_filenames(pathsettings[’inputfolder’])

194

read_runner = runner (read_file)

mapper_runner = runner (prepare_mapper)

actor_runner = runner (prepare_actor)

prepare_runner = runner (prepare_render)

199 render_runner = runner (render)

save_runner = runner (save_file)

video_runner = runner (make_video)

remove_runner = runner (remove_imagefile)

204 read_runner.connect_in(’values’, iter(source))

mapper_runner.connect_in(’values’,read_runner(’out’))

actor_runner.connect_in(’values’,mapper_runner(’out’))

prepare_runner.connect_in(’values’,actor_runner(’out’))

render_runner.connect_in(’values’,prepare_runner(’out’))
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209 save_runner.connect_in(’values’,render_runner(’out’))

video_runner.connect_in(’values’, save_runner(’out’))

remove_runner.connect_in(’values’, video_runner(’out’))

for item in remove_runner(’out’):

214 #outfile.write( item )

print item + " done!"

writer.release

if __name__ == ’__main__’:

219 main()

Listing A.1: Das in dieser Arbeit vorgestellte flussbasierte Programm
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