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Kurzfassung

Das Separierbarkeitsproblem befasst sich mit der Frage, gegeben zwei Mengen aus einer Klasse,
ob es moglich ist, sie durch eine weitere Menge aus einer kleineren Klasse zu separieren. Fiir
den Fall der Separierbarkeit von reguldren Sprachen durch eine piecewise testable Sprache tiber
unendlichen Wortern wird in dieser Arbeit ein Entscheidungsalgorithmus mit polynomialer
Laufzeit vorgestellt. Der Beweis orientiert sich an einer Arbeit iiber den entsprechenden Fall
der Separierbarkeit iiber endlichen Wértern von L. van Rooijen und M. Zeitoun.
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1 Einleitung

Allgemein sind zwei Mengen L und K separierbar durch eine Menge S, falls L C S und
SN K = (. Dann wird S ein Separator genannt. Das Separierbarkeitsproblem ist die folgende
Problemstellung. Betrachtet wird eine Klasse C' von Mengen und eine Unterklasse Cy von C.
Zu zwei gegebenen Elementen XY aus C wird gefragt, ob es immer ein Element S aus der
Unterklasse C gibt, welches X und Y separiert. Insbesondere sind wir an der Entscheidbarkeit
dieses Problems und der auftretenden Komplexitéit dieses Entscheidungsproblems interessiert.
Der Fokus liegt in dieser Arbeit auf dem Separierbarkeitsproblem fiir die Klasse der reguldren
Sprachen und der Unterklasse der piecewise testable Sprachen, in der wir nach Separatoren
suchen.

Fir den Fall der Separierbarkeit von reguldren Sprachen durch eine piecewise testable Sprache
iber endlichen Wortern haben Rooijen und Zeitoun in [RZ13] einen Entscheidungsalgorithmus
mit polynomialer Laufzeit angegeben. Dabei bezieht sich poynomial auf die Grée des Alphabets
und die GroBe der nichtdeterministischen Automaten (NFA), wobei angenommen wird, dass
die zu separierenden reguldren Sprachen durch NFAs gegeben sind. Entscheidend bei diesem
Vorgehen ist, dass die Nicht-Separierbarkeit durch einen speziellen, gemeinsamen Pfad in
beiden Automaten charakterisiert werden kann. Eine wichtige Rolle bei dem Beweis spielt die
Anwendung des Faktorisierungswaldtheorems von Simon [Sim90].

Almeida hat mit dem sogenannten profiniten Ansatz in [Alm96] eine allgemeine Beziehung
zischen der profiniten Halbgruppentheorie und dem Separierbarkeitsproblem gefunden. Darauf
aufbauend beschreibt [AZGJ97] einen Algorithmus der poloynomial bzgl. der Gréfie der
Automaten und exponentiell bzgl. der Grofle des Alphabets ist. Das Vorgehen von Rooijen
und Zeitoun folgt den selben Mustern, aber enthélt die folgenden Verbesserungen: Verbesserte
Komplexitét, da der Algorithmus polynomial bzgl. der Gréfle der Automaten und der Grofie
des Alphabets ist. Zusétzlich wird kein Gebrauch der Theorie der profiniten Halbgruppen
gemacht, da nur elementare Konzepte verwendet werden.

Diese Arbeit zeigt, wie die Methoden von Rooijen und Zeitoun auf unendliche Worter
verallgemeinert werden kénnen. Das Hauptresultat ist, dass in Poynomalzeit das Separierbar-
keitsproblem von reguldren Sprachen durch eine pieceweise testable Sprache iiber unendlichen
Wortern entschieden werden kann.

Die Gliederung dieser Ausarbeitung ist wie folgt. In Kapitel 2 werden die benotigten
Grundlagen erkléart. Der Beweis fiir den entsprechenden Fall iiber endlichen Wortern von
Rooijen und Zeitoun wird in Kapitel 3 zur Orientierung und zum Nachschlagen nochmals
wiedergegeben. Kapitel 4 enthélt die Hauptleistung dieser Arbeit. Fiir die Separierbarkeit



1 Einleitung

durch eine piecewise testable Sprache iiber unendlichen Wortern wird zunéchst ein Polyno-
mialzeitalgorithmus angegeben. Danach wird die Charakterisierung von Separierbarkeit iiber
unendlichen Wortern diskutiert. Als Abschluss im letzten Kapitel 5 fassen wir die wichtigsten
Schritte und Ergebnisse nochmal zusammen.



2 Grundlagen

2.1 Sprachen und Automaten

Im folgenden werden wir stets von einem endlichen Alphabet A ausgehen. Wir schreiben A*
fiir die Menge aller endlichen Worter und A% fiir die Menge aller unendlichen Worter iiber A.
Sei inf(«) die Menge aller Buchstaben, die unendlich oft in a vorkommen. Eine Einfiihrung in
unendliche Worter bietet z.B. [DK11]. Sei A* = A*UA“. Das leere Wort wird mit € bezeichnet.
Zu einem Wort u € A* wird das kleinste Teilalphabet B C A, so dass u € B*, das Alphabet
von u genannt und alph(u) geschrieben; d.h. alph(u) enthélt alle in u vorkommenden Zeichen.
Fiir ein Teilalphabet B C A, bezeichnet B® die Menge von Worten, deren Alphabet genau B
ist:
B® := {w € B*|alph(w) = B}.

Wie iiblich wird ein nichtdeterministischer endlicher Automat (NFA) bzw. Biichi-Automat
(BA) tiber A durch ein 5-Tupel A = (Q, A, I, F, §) angegeben, wobei @) die Menge der Zusténde,
I C @ die Menge der Startzustinde, F' C @) die Menge der Endzustdnde und § C @ x A x @
die Uberfiihrungsrelation darstellt. Ein NFA akzeptiert ein Eingabewort w € A*, wenn der
Automat nach lesen von w einen Endzustand erreicht hat. Ein BA akzeptiert ein Eingabewort
w € A%, falls der Automat beim lesen von w unendlich oft einen Endzustand durchlauft. Fiir
beide Automaten sei L(.A) die durch A akzeptierte Sprache von Wértern. Die deterministischen
Gegenstiicke zu NFA und BA sind zum einen die endlichen deterministische Automaten (DFA)
und zum anderen die deterministischen Biichi-Automaten (DBA). Wenn nicht ndher spezifiert,
meinen wir mit Automat in diesem Kapitel beide (nichtdeterministische-) Automatenarten,
also nichtdeterministische endliche Automaten bzw. Biichi-Automaten.

Fiir einen Automaten A und einen Zustand p € @ definiert scc(p, A) die starke Zusammen-
hangskomponente (SZK) von p in A, d.h. die Menge der von p aus erreichbaren Zusténde im
Automaten. Auflerdem sei alph_ scc(p, .A) die Menge der Beschriftungen von allen Ubergiingen,
die in dieser starken Zusammenhangskomponente vorkommen. Die Einschrdnkung des Auto-
maten A auf ein Teilalphabet B C A sei definiert durch A|p := (Q, A, I, F,6 N (Q x B x Q)),
d.h. es fallen alle Ubergiinge weg, die nicht mit einem Zeichen aus B beschriftet sind.

2.2 Piecewise testable Sprachen und Separierbarkeit

Zunéchst definieren wir, wann ein endliches Wort ein (verteiltes) Teilwort eines endlichen
oder unendlichen Wortes ist. Fiir u € A*,v € A gelte u < v (,u ist ein Teilwort von v¥),
wenn u =daj...a, mit a¢; € A und v € A*a1A*...a, A" fiir v € A* bzw. v € A*a1 A* ... a, A¥
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fir v € A¥. Die Relation < ist eine Halbordnung auf A*, wenn fiir v nur endliche Worter
zugelassen werden: Es ist klar, dass diese Relation reflexiv (jedes Wort ist Teilwort von sich
selbst), antisymmetrisch (wenn u < v und umgekehrt, dann v = v) und transitiv (wenn u < v
und v < w, dann ist v < w ) ist. Wir setzen

Subp(u) = {w € A |w < uA |w| < n}

als die Menge aller Teilworter von u € A%, deren Linge maximal n ist.
Haben zwei Worter u,v € A* die gleichen Teilworter bis zur Lange n, dann sagen wir, dass sie
~p-Gquivalent sind:

U~y v <= Suby(u) = Suby(v).

Zwei Worter a, 8 € A“ heiflen ~,-dquivalent (o ~,, ), wenn sie die gleichen Teilworter bis
zur Lénge n haben, d.h.

Suby, () = Suby(B).

und zusétzlich in beiden Wértern dieselben Buchstaben unendlich oft vorkommen: inf(«) =
inf(3).

Aus der Gleichheit von Mengen folgen die Eigenschaften Reflexivitdt, Symmetrie und Tran-
sitivitit, so dass ~,, tatsichlich eine Aquivalenzrelation ist. Eine regulire Sprache L C A*
bzw. L C A“ heifit piecewise testable (PT), falls L eine endliche boolesche Kombination von
Sprachen der Form A*a1A*...a,A* bzw. A*a1 A* ... a, A% ist, wobei a; € A. Ob ein Wort w
zu einer PT-Sprache gehort, ist daher bestimmt durch die Menge seiner Teilworter bis zu
einer bestimmten Lénge. Das bedeutet, dass eine reguldre Sprache L genau dann piecewi-
se testable ist, wenn es ein n € N gibt, so dass L eine Vereinigung von ~,-Aquivalenzklassen ist.

Zwei reguldre Sprachen L, K € A* bzw. L, K € A¥ heiflen PT-separierbar, wenn es eine
piecewise testable Sprache S € A* bzw. S € A“ (Separator) gibt, die sie separiert, d.h. falls
gilt

LCSund KNS =10.

2.3 Faktorisierungsmuster und (u, B)-Pfade
Fiir ein Wort u € A*, ein Teilalphabet B C A und Zustdnde p, ¢ € Q) vereinbaren wir folgende
Notation, um bestimmte Arten von Pfaden in Automaten zu charakterisieren.

e p — ¢ bezeichne einen Pfad von p nach ¢, der mit u beschriftet ist.

*D £, q bezeichne einen Pfad von p nach ¢, wobei alle Ubergéinge mit Zeichen aus B
beschriftet sind.

® ..
() B q bezeichne einen Pfad von p nach ¢, wobei alle Ubergéinge mit Zeichen aus B
beschriftet sind und zusétzlich jedes Zeichen aus B mindestens einmal auftritt.
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2.3 Faktorisierungsmuster und (i, B)-Pfade

Sei A ein DFA {iber A. Fiir Worter v, . .., u, € A* und nichtleeren Teilalphabeten By, ..., B, C
A, setzen wir @ = (vo, ..., vp) und B= (Bi1,...,Bp). SchlieBlich fassen wir @ und B zu einem
Paar (i, B) zusammen und nennen es ecin Faktorisierungsmuster. Ein (@, B)-Pfad ist ein
erfolgreicher Pfad (der von einem Startzustand zu einem Endzustand fiithrt), der die folgende
Form hat:

2 ®
By By

OENCE A OL N WL IS L ROE e

Abbildung 2.1: Ein (@, B)-Pfad

Bemerkung 2.1. Fin endlicher Automat A ldsst genau dann einen (i, E)—Pfad 2u, wenn es
geeignete x;,y;, z; € A* (i € {1,...,p},p € Ny) gibt, so dass L(A) eine Sprache der Form

uo(@1y121)un - .- (TpYp2p)up

enthdlt, wobei alph(x;) Ualph(z;) C alph(y;) = B;, fir alle i € {1,...,p}.

Ein Faktorisierungsmuster (&, B) heiBt echt, wenn
i) last(u;) ¢ Big1 A first(u;) ¢ B, firi=1,...,p—1
ii) last(ug) ¢ B1 A first(uy) ¢ By
iii) uj=€¢ = (BiC Bit1 AN Biy1 € By), firi=1,...,p—1.

Die Eigenschaften driicken aus, dass die Teilalphabete B; so groff wie moéglich und die Worter
u; so kurz wie moglich gewahlt werden.

Fiir ein gegebenes Faktorisierungsmuster (4, é) mit @ = (uo,...,up) und B = (B, ..., By),
definieren wir eine Sprache

L(@, B, n) = uo(BY)"uy ... (BY) up.

Eine Folge (wy,), von Wortern heift (i, B)-addiquat, wenn
VYn>0: w, € L(@ B,n).
(

Eine Folge heifit addquat, wenn sie (, E)—addquat zu einem geeigneten Faktorisierungsmuster
(i, B) ist. Aus den Beobachtungen

e u=wuy...uy mit uy € B = uy...ux(B®)" C uy...up_1(B®)",
e u=1uj...uy mit uy € B = (B®)"uy...up C (B®)"ug...uy,
Bi C Biy1 = (B?)"(Bj)" € (B})" und

Biy1 € B = (Bfa)n(Bz@h)n C (B

schliefen wir, dass es zu jeder adéiquaten Folge (wy), ein echtes Faktorisierungsmuster (i, B)
gibt, so dass (wy,), selbst (@, B)-addquat ist.

11
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2.4 w-Faktorisierungsmuster und w-(i, B)-Pfade

Fiir Separierbarkeit tiber unendlichen Wortern in Kapitel 4 sind leichte Anpassungen der
Begriffe aus dem vorherigen Abschnitt notwendig, die hier erldutert werden.

Sei A ein DBA {iber A. Fir Worter ug,...,u, € A* und nichtleeren Teilalphabeten
Bi,...,Bp,Bpt1 C A, setzen wir @ = (vp,...,vp) und B = (Bi1,...,Bp, Bpy1). Schlielich
fassen wir @ und B zu einem Paar (1, B ) zusammen und nennen es ein w-Faktorisierungsmuster.
Aus Bequemlichkeitsgriinden nennen wir dann (@, C) mit C = (B, ... , Bp) das von (, B)
induzierte Faktorisierungsmuster. Ein w-(@, B)-Pfad ist ein erfolgreicher Pfad (der von einem
Startzustand zu einem Endzustand fiihrt, der iiber eine Schleife unendlich oft durchlaufen
werden kann, um zu akzeptieren), der die folgende Form hat:

®
By

By By
Howomgmomomo%g%o%o%b

Abbildung 2.2: Ein w-(@, B)-Pfad

Dabei bezeichnen die Kanten Folgen von Ubergéngen, wie im vorherigen Abschnitt definiert.

Bemerkung 2.2. Fin Biichi-Automat A lasst genau dann einen w-(i, é)—Pfad 2u, wenn es
geeignete s, x;,y;, z; € A*,a € AY (i € {1,...,p},p € Ny) gibt, so dass L(A) eine Sprache der
Form

uo(T1y721)u1 - - - (Tpyp 2p)upsa

enthdlt, wobei alph(z;) U alph(z;) C alph(y;) = B;, fir alle i € {1,...,p}, alph(s) C alph(«)
und o € (B, q)*.

Ein w-Faktorisierungsmuster (, é) heiflt echt, falls das dazugehodrige induzierte Faktorisie-
rungsmuster von (i, B) echt ist. D.h. die selbe Definition wie im vorherigen Abschnitt wird
hier verwendet und die Prasenz von B, spielt dabei keine Rolle.

Fir ein gegebenes w-Faktorisierungsmuster (i, E) mit @« = (up,...,up) und B =
(Bi,...,Bp, Bp+1), definieren wir eine Sprache

L(d, é, n) == uo(By) uy . .. (Bg‘))"up(Bﬁrl)w.

Eine Folge (w,), von unendlichen Wértern heift w-(, B)-adiquat, wenn
VYn=0: w, € L(#@,B,n).

Eine Folge heifit kurz w-addquat, wenn sie w-(, E)—addquat zu einem geeigneten w-
Faktorisierungsmuster (, E) ist. Analog zum vorherigen Abschnitt gilt: Zu jeder w-addquaten
Folge (wy)n gibt es ein echtes w-Faktorisierungsmuster (i, B), so dass (wp)n selbst w-(i, B)-
adédquat ist.

12



2.5 Faktorisierungswalder

2.5 Faktorisierungswalder

Ein Faktorisierungsbaum von einem nichtleeren Wort «x ist ein endlicher, geordneter, unbe-
schriankt verzweigter Baum 7T'(z), so dass gilt:

i) alle Blatter von T'(x) sind jeweils mit einzelnen Buchstaben beschriftet,
ii) alle inneren Knoten von 7T'(z) besitzen mindestens zwei Kinder,

iii) hat ein Knoten, der mit y beschriftet ist, k£ Kinder, die mit y1,...,yx von links nach
rechts beschriftet sind, dann ist y = y1 ... ys.

Sei S eine endliche Halbgruppe und ¢ : AT — S ein Morphismus. Ein Faktorisierungsbaum
heifit p-Ramsey-artig, falls jeder innere Knoten entweder zwei Kinder hat oder k > 3 Kinder
Y1,y .-, Yk, wobei dann @(y1) = -+ = p(yx) = e, fiir ein idempotentes Element e aus S.

Das Faktorisierungswaldtheorem (siehe [Sim90] und [KufO8] fiir Beweise) besagt, dass es fiir
jedes Wort w einen p-Ramsey-artigen Faktorisierungsbaum 7'(w) gibt, dessen Hohe h(T'(w))
nach oben durch eine Konstante 3|.S| beschrénkt ist.

13






3 Separierbarkeit durch eine piecewise
testable Sprache iiber endlichen Wortern

Theorem 3.1. Gegeben seien zwei NFAs. Dann ist in Polynomialzeit entscheidbar, bzgl. der
Anzahl der Zustinde und der Grifle des Alphabets, ob die Sprachen, die durch die NFAs
akzeptiert werden, PT-separierbar sind.

Aus den folgenden zwei Propositionen folgt direkt Theorem 3.1.

Proposition 3.2. Seien A; und A zwei NFAs. Dann sind L(A;) und L(Az2) genau dann
nicht PT-separierbar, wenn ein Faktorisierungsmuster (i, B) existiert, so dass Ay und As
einen gemeinsamen (4, B)-Pfad zulassen.

Proposition 3.3. Gegeben seien zwei NFAs Ay und Az, dann kann in Polynomialzeit ent-
schieden werden, bzgl. der Anzahl der Zustinde und der Grofie des Alphabets, ob ein Faktori-
sierungsmuster (i, B) existiert, so dass beide NFAs einen gemeinsamen (i, B)-Pfad zulassen.

3.1 Ein Algorithmus in Polynomialzeit

Beweis. (Proposition 3.3) Zunéchst zeigen wir, dass das folgende Problem in PTIME (bzgl.
|A[, |A1], | Az]) entscheidbar ist.

Gegeben: Zustédnde p1,q1,71 € Q1 und pa, 2,72 € Q2.

Frage: Existiert ein nichtleeres Teilalphabet B C A, so dass beide Automaten ein gemeinsames
Muster der folgenden Form enthalten?

B@

@ OROnO

Abbildung 3.1: Ein gemeinsames Muster in A; und A,

Dazu wird eine Folge von Alphabeten C; abnehmender Gréfie berechnet, die B von oben
her approximieren sollen. Angenommen, es existiert ein solch gefordertes Teilalphabet B,
dann muss B in Cy := alph_scc(q1,.A1) Nalph_scc(ga, A2) enthalten sein. Indem z.B. der
Algorithmus von Tarjan, der starke Zusammenhangskomponenten in Linearzeit berechnet,

15
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verwendet wird, kann C7 ebenfalls in Linearzeit berechnet werden. Anschlieflend schrianken
wir beide Automaten auf das Alphabet (' ein und iterieren den Prozess, und erhalten so eine
Folge (C;); nach der Vorschrift:

Ciy1 :==alph scc(qi, Ail|c,) Nalph_sce(ge, A2|c;)-

Nach einer endlichen Anzahl von n < |A| Schritten ist die Folge stabil, d.h. es gilt C,, = Cp41.
Falls C,, = ), dann gibt es kein nichtleeres Teilalphabet B C A, so dass es eine B®-Schleife
um ¢; und g9 gibt.

Falls C,, # (), dann ist B = C,, das maximale nichtleere Alphabet B, so dass es B®-Schleifen
um ¢ in A; und ¢o in As gibt. Es verbleibt zu zeigen, dass es Pfade p; B, q 5, r1 und
D2 -z, Q2 L, ro gibt. Dies kann jedoch z.B. mittels Tiefensuche in durchgefiihrt werden.
Zusammengefasst erhalten wir fiir die Laufzeit: Die Anzahl der Iterationen n bis C,, = Cp 41
erreicht wird, ist beschriankt durch |A| und jede einzelne Berechnung von C; kann in Linearzeit
bzgl. der Grofie von A; und Ao durchgefiihrt werden. Das impliziert, dass in Polynomialzeit
(bzgl. |A| und der Grofie der NFAs) entschieden werden kann, ob man ein gemeinsames Muster
wie in Abbildung 3.1 in Ay und in A5 vorfinden kann.

Nun bauen wir aus A; und Ay zwei modifizierte NFAs A; und As wie folgt. Zuerst initialisieren
wir A; als eine Kopie von A;. Fiir jedes 4-Tupel 7 = (p1,71,p2,72) € Q7 x Q3 fiir das es ein

Alphabet B C A, Zustidnde ¢; € Q1,92 € Q2 und Pfade p; L, Qi B—®> Q L, r; (wie in
Abbildung 3.1) gibt, fiigen wir in beide Automaten einen neuen Buchstaben a, zum Alphabet
hinzu. Ferner fiigen wir Abkiirzungen in Form von Ubergingen p1 — ri und ps — 75 in
beide Automaten hinzu. Die Zahl von solchen Tupeln (p1, q1, 71, p2, g2, 72) betriagt hochstens
|Q1? - |Q2]® und mit dem oben gezeigten Teil erhalten wir, dass die Berechnung dieser neuen
Uberginge in Polynomialzeit durchgefiihrt werden kann. Weiter folgt, dass die Berechnung der
modifizierten Automaten A; und Ay in PTIME mdéglich ist.

Nach Konstruktion dieser Automaten gibt es ein Faktorisierungsmuster (, 5) so dass A1, As
genau dann einen gemeinsamen (i, B)-Pfad zulassen, wenn L(Al) N L(As) # (. Dies kann
tatsichlich in Polynomialzeit entschieden werden, weil A; und Ay in PTIME gebaut wurden
und dasselbe fiir das Bilden des Kreuzpoduktautomaten nach der iiblichen Konstruktion gilt,
der den Schnitt zweier reguldrer Sprachen erkennt. O

3.2 Charakterisierung der PT-Separierbarkeit
Als néchstes soll Proposition 3.2 bewiesen werden. Wir beginnen mit der Riickrichtung. Die
Hinrichtung wird in Lemma 3.9 bewiesen.

Behauptung 3.4. Seien x,2',y,y', 2,2’ € A* endliche Worter, so dass
i) alph(z) U alph(z) C alph(y),
ii) alph(z") U alph(z') C alph(y') = alph(y).

Dann ist xy"z ~p 'y™2', fiir alle n € N,

16



3.2 Charakterisierung der PT-Separierbarkeit

Beweis. Die Inklusionen alph(y)S" = Sub,(y") C Sub,(zy"2) C alph(y)S" implizieren

Suby, (zy™2) = alph(y)S", analog Suby, (z'y"™2") = alph(y')S"™ = alph(y)s"

und man erhilt die Behauptung xy"z ~,, x'y™7’. O
Lemma 3.5. Seien A;i, Ay NFAs, die einen gemeinsamen (U, B)—Pfad zulassen. Dann sind
die Sprachen L = L(A;) und K = L(Az) nicht PT-separierbar.

Beweis. Wir nehmen an, S ist eine piecewise testable Sprache mit L C S. Nach Bemerkung
2.1 gibt es passende z;, y;, 2; € A*, so dass L eine Sprache der Form

E = uo(mlyik21)ul---(xpy;Zp)up

enthalt, wobei alph(z;) U alph(z;) C alph(y;) = B; fiir alle i. Entsprechend enthélt K eine
Sprache der Form

K = ug(xyyy 2y )ur .. (2, 2, ) up,
mit alph(x})Ualph(z]) C alph(y.) = B; fur alle i. Das Ziel ist zu zeigen, dass es zu jedem n € N
ein wy € L sowie ein wy € K gibt, so dass die Worter w; und ws zueinander ~p,-dquivalent
sind. Durch Anwendung von Behauptung 3.4 erhélt man, dass fiir alle 1 < i < p und n € N gilt

n ! /!
TilY; Zi ~n T;Y; %4

Da die Aquivalenz ~,, zudem eine Kongruenz ist, erhalten wir fiir alle n € N

uo (1Yt 21 )ur.. (Tpyy 2p)up ~n o (LYY 2] Ut (T 2y Up.
Die linke Seite dieser Aquivalenz stellt unser gewiinschtes Wort wy € L und die rechte Seite
unser gewiinschtes Wort we € K dar, die beide zueinander ~,-dquivalent sind. Folglich
liegen w; und ws in derselben Aquivalenzklasse. Die piecewise testable Sprache S bildet eine
Vereinigung aus ~,-Aquivalenzklassen und daher sind S und K nicht disjunkt. Das wiederum
bedeutet, dass L und K nicht separierbar sind. O

Wir fahren mit der Hinrichtung von Proposition 3.2 fort.

Lemma 3.6. Jede Folge (wy,), von endlichen Wértern w,, € A* besitzt eine adiquate Teilfolge.

Beweis. Die zentrale Idee hierbei ist das Faktorisierungswaldtheorem mit dem Morphismus
alph : AT — 24 anzuwenden. Ausgehend von einer beliebigen Wortfolge (w,), betrachten
wir die Folge (T'(wy,)), von alph-Ramsey-artigen Faktorisierungsbiumen, gegeben durch das
Faktorisierungswaldtheorem. D.h. die Hohe jedes Faktorisierungsbaums 7'(wy,) ist nach oben
durch eine endliche Konstante beschriankt. An dieser Stelle diirfen wir annehmen, dass die
Folge der Hohen der Baume T'(w;,) eine Konstante H > 0 ist. Gegebenenfalls nehmen wir aus
der Folge eine passende Teilfolge heraus, um diese Bedingung sicherzustellen. Die Aussage des
Lemmas wird nun mit Induktion nach H gezeigt.

Wenn H = 0, dann muss jedes Wort w,, aus einem einzigen Buchstaben bestehen. Folglich
kann aus (wy, ), eine konstante Teilfolge herausgezogen werden, die selbst adédquat ist.

Fir die Stelligkeit der Wurzel von T'(wy,) schreiben wir arity(wy,) und nennen es die Stelligkeit
von wy,. Wenn H > 0, konnen im Induktionsschritt zwei Félle unterschieden werden.
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3 Separierbarkeit durch eine piecewise testable Sprache lber endlichen Wértern

1. (wy)n enthélt eine Teilfolge mit beschrénkter Stelligkeit. Aus diesem Grund kénnen wir
aus wy, eine Teilfolge mit konstanter Stelligkeit K > 0 gewinnen. Jedes w,, kann daher
in K Faktoren zerlegt werden

Wn = Wn1 ... Wy,

wobei das i-te Kind der Wurzel im Baum T'(w,,) mit wy, ; beschriftet ist. Der Unterbaum
von jedem wy, ;, der selbst auch alph-Ramsey-artig ist, kann hochstens die Hohe H — 1
haben. Nach Induktionsvoraussetzung konnen wir aus (wy ;), eine addquate Teilfolge
gewinnen. Das machen wir iterativ fiir ¢ = 1,..., K und gewinnen so aus (wy), eine
Teilfolge (Wg(n))n, so dass alle (wy(n) ;)n adiquat sind. Das impliziert, dass die Teilfolge
(We(n))n von (wy)n selbst adiquat ist. Dabei wurde ausgenutzt, dass endliche Produkte
von adaquaten Folgen selbst adidquat sind.

2. Die Stelligkeit von w, strebt gegen unendlich fiir n — co. Wir diirfen annehmen, dass
fir jedes n € N, arity(w,,) > max{n, 3} (ggf. ziehen wir eine passende Teilfolge heraus).
Da die Stelligkeit von allen Wortern in dieser Folge mindestens drei ist, werden alle
Kinder der Wurzel auf das gleiche idempotente Element in 24 abgebildet. Das wiederum
bedeutet, dass jedes Wort der Teilfolge von der Form

Wo(n) = Wn,1-- - Wn K,

ist, mit K, > n und es gibt ein Teilalphabet B C A mit w,; € B® fiir alle i. Daraus
schlieBen wir, w,(,) € (B¥)%n C (B®)". Daher ist (wy(,))n adiquat.

O]

An dieser Stelle wird fiir Lemma 3.8 das technisches Lemma 8.2.5 aus [Alm94] benotigt.

Lemma 3.7. Seien X,Y endliche Mengen und (P, <) eine Halbordnung.
Seien f: X ->Y, g:Y > X, p: X = P, q:Y — P Abbildungen, die die folgenden
Eigenschaften erfillen:

i) Vo € X ¢ p(x) < q(f(2)),

i) Yy €Y+ q(y) < plg(y)),
i) Vry,wp € X o f(21) = f(w2) Ap(r) = q(f(21)) = 21 = 22,
w) Vyi,y2 €Y 1 g(y1) = g(y2) ANa(yr) =pl9(y1)) = v1 = yo.

Dann sind f und g zueinander invers und p=qo f und g =pog.

Beweis. Es geniigt zu zeigen, dass g(f(x)) = z fir alle x € X, d.h. go f = idx.
Denn daraus wiirde folgen

d.h. p = g o f. Vollig analog dazu kann f o g = idy sowie g = p o g gezeigt werden.
Angenommen, es gibe ein xg € X derart, so dass fir yog = f(zo) und 1 = g(yo) gilt 1 # xo.
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3.2 Charakterisierung der PT-Separierbarkeit

Sei auflerdem y; = f(x1). Zwei Félle konnen dabei unterschieden werden:
Falls y1 = yo, dann ist f(z1) = f(z¢) und die Ungleichungskette

pla1) € g(F()) = aun) = alvo) < plgw0)) = pla)

fithrt nach Anwendung von Eigenschaft iii) auf den Widerspruch zy = x;.

Daher betrachten wir den Fall y; # yo: Definiere induktiv zwei injektive (unendliche) Folgen
(2)i>1 und (y;)i>0 durch y; = f(x;) und ;11 = g(y;). Das widerspricht jedoch der Annahme,
dass X und Y endliche Mengen sind. O

Lemma 3.8. Seien (i, B) und (£,C) echte Faktorisierungsmuster. Seien (vy)n und (wy)n
zwet Folgen von endlichen Wértern mit

o (vn)n ist (@, B)-adiquat,
o (wp)y ist (t,C)-adiquat,

e VneN: v, ~y, wy,.

Q

).

Dann stimmen beide Faktorisierungsmuster iberein: (@, B) = (£,

Beweis. Wir definieren allgemein fiir ein Faktorisierungsmuster (, B ) die Zahl
. P
1@ B)| = O lwl) +p.
=0

Diese Zahl ist eine untere Schranke fiir die Lange jedes Wortes einer Folge, die (, B)—adéquat
ist. Benutzt wurde dabei, dass alle B; nichtleer sind, was den Summanden p erklért. Setze nun

ko= maz{||(@ B, I&, O}

Von der Folge (vy,)n betrachten wir jetzt das Wort v1 = ugbiu; .. . byu,, wobei b; € BZ®, fiir alle
1. In diesem Wort wollen wir alle Faktoren b; mit k£ pumpen und definieren
(k)

vy = uoblful...bk

pup.

Laut Definition ist (vy), eine (&, B)-adiquate Folge, wenn
Vn € N: v, € ug(BY)"uy ... (BY) up.

Ein Faktor bf von v%k) hat die Lange k - |b;| und daher gilt die Teilwortbeziehung bf <z
fiir beliebige Worter x € (B)* mit £ > k - |b;|. Daraus erhalten wir fiir jedes £ > k -
max{|bi],...,[bp|}, dass ng) < vp. Zusétzlich gilt fir jedes ¢/ > max{¥, ]v%k)]}, dass v%k) €
Suby (ver). Das sieht man so: Aus ¢/ > ¢ folgt, dass v’ ein Teilwort von vy ist und wegen

(k)

0> |v§k)\ hat vgk) hochstens die Lange ¢. Anwendung der Voraussetzung v, ~y, wy, (Vn € N)
ergibt, dass auch v%k) < wypr gilt.

Auf die gleiche Weise verfahrt man mit der Folge (wy,),. Fiir das Wort w; = tgcity ... Cqtq
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3 Separierbarkeit durch eine piecewise testable Sprache lber endlichen Wértern

gibt es ein m > k- max{|ci|,...,|cq|}, so dass fiir alle m’' > maz{m, ]wgk)]}, wgk)
(k)

wy < vy gilt.
Wenn wir nun M := maz{¢',m’} setzen, erhalten wir die Teilwortbeziehungen

vgk) < vpr, wps und wgk) L vpr, Wy

Betrachte einen Faktor b¥ von v%k), der auch ein Teilwort von wjs ist. Aus den Aussagen
k > ||(£.C)|| und |bj] > 0 folgt mit dem Schubfachprinzip, dass es ein C; C A gibt mit
alph(b;) € Cj.

Die Idee ist es nun zwischen der Menge von indizierten Alphabeten in B und der Menge von
jenen in C eine Bijektion herzustellen, die uns dabei hilft die Gleichheit der Faktorisierungs-
muster zu zeigen.

Setze B := {(B,1),...,(Bp,p)} und C := {(C1,1),...,(Cq,q)}. Definiere eine Abbildung
f B — C, wobei (B;,i) auf dasjenige (Cj, j) abgebildet wird, so dass ein ¢} € (CJ@)M der

erste Faktor von wjy ist, um b; vollstindig zu lesen, wihrend vgk) als Teilwort von wjs gelesen

wird. Die Abbildung ¢g : C — B ist analog zu f definiert. f und g erhalten die Ordnung der
Indizes und erhalten punktweise das Alphabet. Als néchstes soll gezeigt werden, dass B und C
mit Hilfe von f und g bijektiv aufeinander abgebildet werden kénnen. Dazu zeigen wir, dass
f =g¢7', indem Lemma 3.7 angewandt wird.

Die Abbildungen f und g erfiillen die Bedingungen des Lemmas, indem wir setzen X = B,Y =
C und P als die Menge von Alphabeten mit der Mengeninklusion als Halbordnung. Ferner
seien p und ¢ die Projektionen auf die erste Komponente.

Die Voraussetzungen i) und ii) des Lemmas sind erfiillt, weil f und g punktweise das Alphabet
erhalten. Angenommen, dass (Cj,j) = f(Bi;,i1) = f(Bi,,i2) und B;; = C;. Das bedeutet,
dass ein Faktor b;, und ein Faktor b;, von vgk) gelesen werden innerhalb des gleichen Faktors
cj von wyy. Deshalb ist alph(bju;, ...b;,) C alph(c}) = q(f(Bi,,i1)) = B;; = alph(b;, ). Aber
die Annahme war, dass (4, é) ein echtes Faktorisierungsmuster ist, also muss 7; gleich 9
sein. Dies zeigt, dass Bedingung iii) des Lemmas gilt. Bedingung iv) kann dhnlich gezeigt werden.

< wyy und

Wir erhalten als Implikation, dass f und g bijektive Abbildungen zwischen B und C definieren,
und daher ist p = g und B; = C; fiir jedes i. Da wir es mit echten Faktorisierungsmustern zu
tun haben, impliziert vgk) < wyy jetzt, dass t; < u; fir jedes i. Genauso impliziert wgk) < v,
dass u; < t; fiir jedes i. Folglich haben wir dank der Antisymmetrie von < (fiir endliche
Worter) die Gleichheit u; = t; fiir jedes ¢ und das ergibt die gewiinschte Gleichheit der
Faktorisierungsmuster. O

Die Hinrichtung von Proposition 3.2 wird jetzt bewiesen.

Lemma 3.9. Gegeben seien zwei DFAs Ay und Ay. Wenn die von den Automaten erkannten
Sprachen L = L(A;) und K = L(Az) nicht PT-separierbar sind, dann lassen beide DFAs einen
gemeinsamen (i, B)-Pfad zu.

Beweis. Nach Annahme, gibt es fiir jedes n € N ein v, € L und ein w,, € K mit der Eigenschaft

Un ~n Wnp-
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3.2 Charakterisierung der PT-Separierbarkeit

Dies definiert eine unendliche Folge von Wortpaaren (vy,, wy),. Wir wollen nun in beiden
Folgen v,, und w,, adaquate Teilfolgen finden.

Nach Lemma 3.6, kann man aus (v,, wy, ), eine Teilfolge extrahieren, deren erste Komponente
eine addquate Folge bildet. Aus dieser Teilfolge von Paaren, erneut unter Verwendung von
Lemma 3.6, extrahieren wir eine Teilfolge, deren zweite Komponente auch adéquat ist. Die
erste Komponente bleibt dabei addquat (ausgenutzt wird dabei, dass die Eigenschaft einer
Folge adédquat zu sein, erhalten bleibt, wenn eine beliebige Teilfolge daraus ausgewahlt wird,
weil (B®)™ C (B®)™ fir n > m). Daher kann man annehmen, dass (v,,), addquat zu (wy ),
ist.

Lemma 3.8 zeigt, dass man das gleiche Faktorisierungsmuster (, é) wéahlen kann, so dass
(vn)n und (wp)n (@, B)-adéquat ist. SchlieBlich erhalten wir mit der néichsten Behauptung 3.10,
dass A; und Aj einen (@, B)-Pfad zulassen. O

Behauptung 3.10. Wenn L(A) eine (@, B)-adiquate Folge enthilt, dann lisst A einen
(i, B)-Pfad zu.

Beweis. L(A) enthilt eine (i, B)-adiquate Folge (vy,)n, d.h.

Vn>0: vy € ug(BY)"us ... (B)) up N L(A).

Sei vy, ein ausreichend grofier Term in dieser Folge, z.B. mit n > |Q(.A)|. Jetzt muss der Pfad,
der benutzt wird, um v,, zu lesen, alle BZ@—Schleifen traversieren und nach der Form von v, ist
dies ein (@, B)-Pfad. O
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4 Separierbarkeit durch eine piecewise
testable Sprache iiber unendlichen Wortern

Theorem 4.1. Gegeben seien zwei Biichi- Automaten. Dann ist in Polynomialzeit entscheidbar,
bzgl. der Anzahl der Zustinde und der Grifie des Alphabets, ob die Sprachen, die durch die
Biichi-Automaten akzeptiert werden, PT-separierbar sind.

Aus den folgenden zwei Propositionen folgt Theorem 4.1.

Proposition 4.2. Seien A; und Ay zwei Biichi-Automaten. Dann sind L(A;) und L(Asz)
genau dann nicht PT-separierbar, wenn ein w-Faktorisierungsmuster (@, B) existiert, so dass
Aj und Ay einen gemeinsamen w-(u, B)-Pfad zulassen.

Proposition 4.3. Gegeben seien zwei Biichi-Automaten Ay und As. Dann kann in Polynomi-
alzeit entschieden werden, bzgl. der Anzahl der Zustande und der Gréfie des Alphabets, ob ein
w-Faktorisierungsmuster (u, E) existiert, so dass beide Bichi-Automaten einen gemeinsamen
w-(1, B)-Pfad zulassen.

4.1 Ein Algorithmus in Polynomialzeit

Beweis. (Proposition 4.3) Zunéchst zeigen wir, dass das folgende Problem in PTIME (bzgl.
|A|, |A1],]Az2|) entscheidbar ist.

Gegeben: Zustande p1,q1,71 € @1 in A; und po, g2, 72 € Q2 in As.

Frage: Existiert ein nichtleeres Teilalphabet B C A, so dass beide Automaten ein gemeinsames
Muster der folgenden Form enthalten?

B@

B®
@ OnO=0
Abbildung 4.1: Ein gemeinsames Muster in A; und A,

Dazu wird eine Folge von Alphabeten C; abnehmender Gréfle berechnet, die das maximale Teilal-
phabet B, mit dem die Schleifen beschriftet sind, von oben approximieren sollen. Angenommen,
es existiert ein solch gefordertes B, dann muss B in C; := alph_ scc(q1, A1) Nalph__sce(ge, A2)
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4 Separierbarkeit durch eine piecewise testable Sprache (iber unendlichen Wértern

enthalten sein. Indem z.B. der Algorithmus von Tarjan, der starke Zusammenhangskompo-
nenten in Linearzeit berechnet, verwendet wird, kann C; ebenfalls in Linearzeit berechnet
werden. Anschlieend schrianken wir beide Automaten auf das Alphabet C; ein und iterieren
den Prozess, und erhalten so eine Folge (C;); nach der Vorschrift:

Ci41 = alph_scc(qi, Ai|c;) Nalph  scc(qe, Az2lc,)-

Nach einer endlichen Anzahl von n < |A| Schritten ist die Folge stabil, d.h. es gilt C,, = Cj41.
Falls C,, = ), dann gibt es kein nichtleeres Teilalphabet B C A, so dass es eine B®-Schleife
um ¢; und g9 gibt.

Falls C,, # (), dann ist B = C,, das maximale nichtleere Alphabet B, so dass es B®-Schleifen
um ¢; in A; und ¢o in A gibt. Es verbleibt zu zeigen, dass es Pfade p; B, Q1 B, r1 und
D2 £, q2 £, ro gibt. Dies kann jedoch z.B. mittels Tiefensuche in linearer Zeit durchgefiihrt
werden.

Zusammengefasst erhalten wir fiir die Laufzeit: Die Anzahl der Iterationen n bis C, =
Ch41 erreicht wird, ist beschriankt durch |A| und jede einzelne Berechnung von C; kann
in Linearzeit bzgl. der Grofie von A; und As durchgefithrt werden. Das impliziert, dass in
Polynomialzeit (bzgl. |A| und der Groe der Biichi-Automaten) entschieden werden kann, ob
man ein gemeinsames Muster wie in Abbildung 4.1 in A; und in As vorfinden kann.

Nun bauen wir aus A; und As zwei modifizierte Biichi-Automaten A; und As wie folgt. Zuerst
initialisieren wir A; als eine Kopie von A;. Fiir jedes 4-Tupel 7 = (py,71, pa,72) € Q7 x Q3 fiir

*

das es ein Alphabet B C A, Zustdnde ¢; € Q1, g2 € Q2 und Pfade p; 5, Qi B—®> Qi AN r; (wie
in Abbildung 3.1) gibt, fiigen wir in beide Automaten einen neuen Buchstaben a, zum Alphabet
hinzu. Ferner fiigen wir Abkiirzungen in Form von Ubergingen p; —= r; und ps —= ro in
beide Automaten hinzu. Die Zahl von solchen Tupeln (p1, q1, 71, p2, g2, 72) betriagt hochstens
|Q1? - |Q2]® und mit dem oben gezeigten Teil erhalten wir, dass die Berechnung dieser neuen
Uberginge in Polynomialzeit durchgefiihrt werden kann. Weiter folgt, dass die Berechnung der
modifizierten Automaten A; und A; in PTIME mdéglich ist.

Nach Konstruktion dieser Automaten gibt es ein w-Faktorisierungsmuster (, é), so dass A,
Ajp genau dann einen gemeinsamen w-(#, B)-Pfad zulassen, wenn L(A;) N L(As) # 0. Dies
kann tatsichlich in Polynomialzeit entschieden werden, weil A; und Ay in PTIME gebaut
wurden. O

4.2 Charakterisierung der PT-Separierbarkeit

Als néchstes soll Proposition 4.2 bewiesen werden. Wir beginnen mit der Riickrichtung. Die
Hinrichtung wird in Lemma 4.7 bewiesen.

Lemma 4.4. Seien Aj, A2 Biichi-Automaten, die einen gemeinsamen w-(, E)—Pfad zulassen.
Dann sind die Sprachen L = L(A;) und K = L(Asg) nicht PT-separierbar.

Beweis. Wir nehmen an, S C A“ ist eine piecewise testable Sprache mit L C S. Nach
Bemerkung 2.2 gibt es passende s, x;,y;, z; € A*, a € A¥, so dass L eine Sprache der Form

L= ug(z1yiz)uy . .. (Tpyp2p)upsa
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4.2 Charakterisierung der PT-Separierbarkeit

enthalt, wobei alph(z;) U alph(z;) C alph(y;) = B;, fiir alle i € {1,...,p}, alph(s) C alph(«)
und o € (B;BH)W. Entsprechend enthilt K mit geeigneten s, 2}, y., 2, € A*,8 € A¥ eine
Sprache der Form
K = uo(xllyi*z’l)ul...(x;y;,*z;)ups’ﬁ,

mit alph(x}) U alph(z}) € alph(y;) = B; fiir alle 4, alph(s’) C alph(8) und § € (By,,)“. Das
Ziel ist zu zeigen, dass es zu jedem n € N ein w; € L sowie ein wy € K gibt, so dass die Worter
w1 und woy zueinander ~,-dquivalent sind. Durch Anwendung von Behauptung 3.4 erhéilt man,
dass fiir alle 1 <7 < p und n € N gilt

Tyl z ~n Tyl
Da die Aquivalenz ~,, zudem eine Kongruenz (o ~y B1 A ag ~p B2 = aiag ~y, B1fs) ist,
erhalten wir fiir alle n € N

uo (211 21)ur .. (Tpy) zp)upsa ~p uo(@1y)" 2y )ur...(x,y," 2, ups' B.

Die linke Seite dieser Aquivalenz stellt unser gewiinschtes Wort w; € L und die rechte Seite
unser gewiinschtes Wort ws € K dar, die beide zueinander ~,-dquivalent sind. Folglich
liegen wy und ws in derselben Aquivalenzklasse. Die piecewise testable Sprache S bildet eine
Vereinigung aus ~,-Aquivalenzklassen und daher sind S und K nicht disjunkt. Das wiederum
bedeutet, dass L und K nicht separierbar sind. O

Wir fahren mit der Hinrichtung von Proposition 4.2 fort.

Lemma 4.5. Jede Folge (B,)n von unendlichen Wortern B, € A“ besitzt eine w-addquate
Teilfolge.

Beweis. Die Folge (), zerlegen wir in zwei Folgen (uy), und (o), mit

/Bn = UnpQin,

so dass fiir alle n € N jeweils gilt, u, € A*, a;, € AY und zusétzlich inf(«,,) = alph(ay,), d.h.
jedes in «;,, vorkommende Zeichen muss unendlich oft darin vorkommen. Indem Lemma 3.6
angewandt wird, kann aus u,a;, eine Teilfolge u,(,)aq(,) gewonnen werden, so dass (Uqy(n))n
addquat ist. Dank diesem Argument dirfen wir ohne Einschriankung bereits annehmen, dass
(un)n adaquat ist.

Als néchstes soll gezeigt werden, dass es eine Teilfolge (ag(n))n und ein nichtleeres Teilalphabet
Bpi1 C A gibt, so dass ag(,) € (B;?H)“ fiir alle n € N.

Wir betrachten die Alphabete alph(ay,) als Teilmengen von A. Die Anzahl aller Teilmengen
von A betriagt 24! und ist daher endlich. Da es sich bei der Folge o, insbesondere um eine
unendliche Folge handelt, muss es ein nichtleeres Teilalphabet B, 1 C A geben, so dass Bj11
das Alphabet von unendlich vielen a, ist. Daraus schlieit man, dass es eine Teilfolge (s (n))n
gibt, so dass alph(a,(n)) = Bpy1 fiir alle n € N ist. Jedes Zeichen aus B),y1 kommt aber
unendlich oft in ay,(,) vor. Das erlaubt es uns, a, () in der Form bybgbs ... mit b; € Byy1 zu
schreiben. Z.B. kénnen wir annehmen, dass by der kleinste Préfix von Qg () 18t mit b1 € Bpt1.
Sei () = b1 fiir ein passendes v € A”. Analog ist by der kleinste Prifix von v, mit by € Bj11
usw. Das impliziert, dass a,(,) € (B;@_H)w fiir alle n € N. Zusammengefasst folgt daraus die
Aussage des Lemmas:
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4 Separierbarkeit durch eine piecewise testable Sprache (iber unendlichen Wértern

o (up)y ist addquat, d.h. Vn e N: wu, € uo(Bf‘))"ul . (B¥)"up und

P
e VneN: o € (B;;B_H)w

impliziert

VneN: B, =upan € ug(BY) u1 ... (By)"up(Byi )",

d.h. (8y)n bzw. eine Teilfolge ist w-addquat. O

Lemma 4.6. Seien (i, B) und (,C) echte w-Faktorisierungsmuster. Seien (vn)n und (wy)n
zwei Folgen von unendlichen Wértern mit

L4 (Un)n 1st w-(ﬁ, E)—addquat,
b (wn)n 18t W'(t_; C_")—addquat,

e VneN: v, ~, wy.

Dann stimmen beide w-Faktorisierungsmuster tberein: (@, B) = (£,C).

—

Beweis. Indem Lemma 3.8 fiir die entsprechenden induzierten Faktorisierungsmuster von (, B)
und (1, é) angewandt wird, folgt sofort: u; =t¢; fir i =0,...,pund B; =C; fuiri=1,...,p.
Bleibt zu zeigen, dass Bpy1 = Cpt1.

Beide Folgen enthalten nur unendliche Wérter aus A“ und aus der Bedingung v, ~,, wy, fir
alle n folgt, dass inf(v,) = inf(w,), d.h. in v, und in w, kommen die selben Buchstaben
unendlich oft vor. Das kann daher nur sein, wenn By, 1 = Cpy1. O

Jetzt kann die Hinrichtung von Proposition 4.2 bewiesen werden.

Lemma 4.7. Gegeben seien zwei Biichi-Automaten Ay und As. Wenn die von den Automaten
erkannten Sprachen L = L(A,) und K = L(Az) nicht PT-separierbar sind, dann lassen beide
Biichi-Automaten einen gemeinsamen w-(u, B)-Pfad zu.

Beweis. Nach Annahme, gibt es fiir jedes n € N ein v,, € L und ein w,, € K mit der Eigenschaft
Up ~p Wnp-

Dies definiert eine unendliche Folge von Wortpaaren (v, wy,),. Wir wollen nun in beiden
Folgen (vy,), und (wy,), w-addquate Teilfolgen finden.

Nach Lemma 4.5, kann man aus (v, wy,), eine Teilfolge extrahieren, deren erste Komponente
eine w-addquate Folge bildet. Aus dieser Teilfolge von Paaren (mit Lemma 4.5) extrahieren
wir eine Teilfolge, deren zweite Komponente auch w-adaquat ist. Die erste Komponente bleibt
dabei w-addquat (ausgenutzt wird dabei, dass die Eigenschaft einer Folge w-addquat zu sein,
erhalten bleibt, wenn eine beliebige Teilfolge daraus ausgewihlt wird, weil (B®)" C (B®)™ fiir
n > m). Daher kann man annehmen, dass (v,), und (wy,), w-adaquat ist.

Lemma 4.6 zeigt, dass man das gleiche w-Faktorisierungsmuster (1, é) wahlen kann, so dass
(Un)n und (wy,), w-(@, B)-adéquat ist. SchlieBlich erhalten wir mit der niichsten Behauptung
4.8, dass A; und A; einen w-(#, B)-Pfad zulassen. O
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4.2 Charakterisierung der PT-Separierbarkeit

Behauptung 4.8. Wenn L(A) eine w-(it, B)-addquate Folge enthlt, dann lisst A einen
w-(u, B)-Pfad zu.

Beweis. L(A) enthalte eine w-(iZ, B)-adéiquate Folge (vy)n, d.h.

Vn e N: v, € ug(BY)"ur ... (By) "up(By1)” N L(A).

Sei vy, ein ausreichend grofiler Term in dieser Folge, z.B. mit n > |Q|. Jetzt muss der Pfad, der
verwendet wird, um v,, zu lesen, alle B?—Schleifen traversieren und nach der Form von v, ist

dies ein w-(#, B)-Pfad. O
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5 Zusammenfassung

Gezeigt wurde in Kapitel 4, dass das Separierbarkeitsproblem fiir regulére Sprachen durch eine
piecewise testable Sprache iiber unendlichen Wértern in PTIME liegt. Meines Wissens stellt dies
ein neues Resultat dar, das in dieser Form noch nicht veréffentlicht wurde. Insgesamt konnten
dieselben Techniken wie im urspriinglichen Beweis von Rooijen und Zeitoun angewandt werden.
Lediglich kleine Anderungen in den verwendeten Begriffen und Anpassungen in den Beweisen
waren notwendig, um die neue Situation anzugehen. Die Laufzeit vom Entscheidungsalgorithmus
ist beim Ubergang von NFAs zu Biichi-Automaten polynomiell geblieben, d.h. es gab keine
Verschlechterungen bzgl. der Komplexitat.

Fiir die Charakterisierbarkeit floss das Faktorisierungswaldtheorem fiir endliche Wérter im
Zusammenhang mit w-addquaten Teilfolgen bei Lemma 4.5 an entscheidender Stelle ein, indem
Lemma 3.6 fiir Folgen von endlichen Wértern angewandt wurde. Ich habe dazu fiir Lemma
4.5 gezeigt, dass man fiir den w-Teil fiir alle Worte einer Folge von unendlichen Wortern ein
Teilaphabet findet, so dass der w-Teil aus unendlich vielen Faktoren besteht, deren Alphabete
alle gleich diesem Teilalphabet sind.

Die Bedingung aus Lemma 3.8, wann zwei endliche Folgen ein gemeinsames Faktorisierungs-
muster teilen, konnte auf den unendlichen Fall in Lemma 4.6 {ibertragen werden. Dabei hat das
technische Lemma 3.7 von Almeida geholfen, die Gleichheit der Faktorisierungsmuster tiber
eine bijektive Abbildung herzuleiten. Aulerdem habe ich in Lemma 4.6 gezeigt, dass aus der
~p-dquivalenz-Bedingung die Gleichheit der Teilaphabete in den w-Faktorisierungsmustern,
die fiir den w-Teil zusténdig sind, gefolgert werden kann.

In zukiinftigen Arbeiten kénnte untersucht werden, ob es méglich ist, das Separierbarkeitspro-
blem simultan iiber endliche und unendliche Worter entscheiden zu konnen.
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