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Kurzfassung

Das Separierbarkeitsproblem befasst sich mit der Frage, gegeben zwei Mengen aus einer Klasse,
ob es möglich ist, sie durch eine weitere Menge aus einer kleineren Klasse zu separieren. Für
den Fall der Separierbarkeit von regulären Sprachen durch eine piecewise testable Sprache über
unendlichen Wörtern wird in dieser Arbeit ein Entscheidungsalgorithmus mit polynomialer
Laufzeit vorgestellt. Der Beweis orientiert sich an einer Arbeit über den entsprechenden Fall
der Separierbarkeit über endlichen Wörtern von L. van Rooijen und M. Zeitoun.
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1 Einleitung

Allgemein sind zwei Mengen L und K separierbar durch eine Menge S, falls L ⊆ S und
S ∩K = ∅. Dann wird S ein Separator genannt. Das Separierbarkeitsproblem ist die folgende
Problemstellung. Betrachtet wird eine Klasse C von Mengen und eine Unterklasse C0 von C.
Zu zwei gegebenen Elementen X,Y aus C wird gefragt, ob es immer ein Element S aus der
Unterklasse C0 gibt, welches X und Y separiert. Insbesondere sind wir an der Entscheidbarkeit
dieses Problems und der auftretenden Komplexität dieses Entscheidungsproblems interessiert.
Der Fokus liegt in dieser Arbeit auf dem Separierbarkeitsproblem für die Klasse der regulären
Sprachen und der Unterklasse der piecewise testable Sprachen, in der wir nach Separatoren
suchen.

Für den Fall der Separierbarkeit von regulären Sprachen durch eine piecewise testable Sprache
über endlichen Wörtern haben Rooijen und Zeitoun in [RZ13] einen Entscheidungsalgorithmus
mit polynomialer Laufzeit angegeben. Dabei bezieht sich poynomial auf die Größe des Alphabets
und die Größe der nichtdeterministischen Automaten (NFA), wobei angenommen wird, dass
die zu separierenden regulären Sprachen durch NFAs gegeben sind. Entscheidend bei diesem
Vorgehen ist, dass die Nicht-Separierbarkeit durch einen speziellen, gemeinsamen Pfad in
beiden Automaten charakterisiert werden kann. Eine wichtige Rolle bei dem Beweis spielt die
Anwendung des Faktorisierungswaldtheorems von Simon [Sim90].

Almeida hat mit dem sogenannten profiniten Ansatz in [Alm96] eine allgemeine Beziehung
zischen der profiniten Halbgruppentheorie und dem Separierbarkeitsproblem gefunden. Darauf
aufbauend beschreibt [AZGJ97] einen Algorithmus der poloynomial bzgl. der Größe der
Automaten und exponentiell bzgl. der Größe des Alphabets ist. Das Vorgehen von Rooijen
und Zeitoun folgt den selben Mustern, aber enthält die folgenden Verbesserungen: Verbesserte
Komplexität, da der Algorithmus polynomial bzgl. der Größe der Automaten und der Größe
des Alphabets ist. Zusätzlich wird kein Gebrauch der Theorie der profiniten Halbgruppen
gemacht, da nur elementare Konzepte verwendet werden.

Diese Arbeit zeigt, wie die Methoden von Rooijen und Zeitoun auf unendliche Wörter
verallgemeinert werden können. Das Hauptresultat ist, dass in Poynomalzeit das Separierbar-
keitsproblem von regulären Sprachen durch eine pieceweise testable Sprache über unendlichen
Wörtern entschieden werden kann.

Die Gliederung dieser Ausarbeitung ist wie folgt. In Kapitel 2 werden die benötigten
Grundlagen erklärt. Der Beweis für den entsprechenden Fall über endlichen Wörtern von
Rooijen und Zeitoun wird in Kapitel 3 zur Orientierung und zum Nachschlagen nochmals
wiedergegeben. Kapitel 4 enthält die Hauptleistung dieser Arbeit. Für die Separierbarkeit
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1 Einleitung

durch eine piecewise testable Sprache über unendlichen Wörtern wird zunächst ein Polyno-
mialzeitalgorithmus angegeben. Danach wird die Charakterisierung von Separierbarkeit über
unendlichen Wörtern diskutiert. Als Abschluss im letzten Kapitel 5 fassen wir die wichtigsten
Schritte und Ergebnisse nochmal zusammen.

8



2 Grundlagen

2.1 Sprachen und Automaten

Im folgenden werden wir stets von einem endlichen Alphabet A ausgehen. Wir schreiben A∗
für die Menge aller endlichen Wörter und Aω für die Menge aller unendlichen Wörter über A.
Sei inf(α) die Menge aller Buchstaben, die unendlich oft in α vorkommen. Eine Einführung in
unendliche Wörter bietet z.B. [DK11]. Sei A∞ = A∗∪Aω. Das leere Wort wird mit ε bezeichnet.
Zu einem Wort u ∈ A∗ wird das kleinste Teilalphabet B ⊆ A, so dass u ∈ B∗, das Alphabet
von u genannt und alph(u) geschrieben; d.h. alph(u) enthält alle in u vorkommenden Zeichen.
Für ein Teilalphabet B ⊆ A, bezeichnet B~ die Menge von Wörten, deren Alphabet genau B
ist:

B~ := {w ∈ B∗|alph(w) = B}.

Wie üblich wird ein nichtdeterministischer endlicher Automat (NFA) bzw. Büchi-Automat
(BA) über A durch ein 5-Tupel A = (Q,A, I, F, δ) angegeben, wobei Q die Menge der Zustände,
I ⊆ Q die Menge der Startzustände, F ⊆ Q die Menge der Endzustände und δ ⊆ Q×A×Q
die Überführungsrelation darstellt. Ein NFA akzeptiert ein Eingabewort w ∈ A∗, wenn der
Automat nach lesen von w einen Endzustand erreicht hat. Ein BA akzeptiert ein Eingabewort
w ∈ Aω, falls der Automat beim lesen von w unendlich oft einen Endzustand durchläuft. Für
beide Automaten sei L(A) die durch A akzeptierte Sprache von Wörtern. Die deterministischen
Gegenstücke zu NFA und BA sind zum einen die endlichen deterministische Automaten (DFA)
und zum anderen die deterministischen Büchi-Automaten (DBA). Wenn nicht näher spezifiert,
meinen wir mit Automat in diesem Kapitel beide (nichtdeterministische-) Automatenarten,
also nichtdeterministische endliche Automaten bzw. Büchi-Automaten.

Für einen Automaten A und einen Zustand p ∈ Q definiert scc(p,A) die starke Zusammen-
hangskomponente (SZK) von p in A, d.h. die Menge der von p aus erreichbaren Zustände im
Automaten. Außerdem sei alph_scc(p,A) die Menge der Beschriftungen von allen Übergängen,
die in dieser starken Zusammenhangskomponente vorkommen. Die Einschränkung des Auto-
maten A auf ein Teilalphabet B ⊆ A sei definiert durch A|B := (Q,A, I, F, δ ∩ (Q×B ×Q)),
d.h. es fallen alle Übergänge weg, die nicht mit einem Zeichen aus B beschriftet sind.

2.2 Piecewise testable Sprachen und Separierbarkeit

Zunächst definieren wir, wann ein endliches Wort ein (verteiltes) Teilwort eines endlichen
oder unendlichen Wortes ist. Für u ∈ A∗, v ∈ A∞ gelte u 6 v („u ist ein Teilwort von v“),
wenn u = a1 . . . an mit ai ∈ A und v ∈ A∗a1A

∗ . . . anA
∗ für v ∈ A∗ bzw. v ∈ A∗a1A

∗ . . . anA
ω
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2 Grundlagen

für v ∈ Aω. Die Relation 6 ist eine Halbordnung auf A∗, wenn für v nur endliche Wörter
zugelassen werden: Es ist klar, dass diese Relation reflexiv (jedes Wort ist Teilwort von sich
selbst), antisymmetrisch (wenn u 6 v und umgekehrt, dann u = v) und transitiv (wenn u 6 v
und v 6 w, dann ist u 6 w ) ist. Wir setzen

Subn(u) := {w ∈ A∗|w 6 u ∧ |w| 6 n}

als die Menge aller Teilwörter von u ∈ A∞, deren Länge maximal n ist.
Haben zwei Wörter u, v ∈ A∗ die gleichen Teilwörter bis zur Länge n, dann sagen wir, dass sie
∼n-äquivalent sind:

u ∼n v :⇐⇒ Subn(u) = Subn(v).

Zwei Wörter α, β ∈ Aω heißen ∼n-äquivalent (α ∼n β), wenn sie die gleichen Teilwörter bis
zur Länge n haben, d.h.

Subn(α) = Subn(β).

und zusätzlich in beiden Wörtern dieselben Buchstaben unendlich oft vorkommen: inf(α) =
inf(β).

Aus der Gleichheit von Mengen folgen die Eigenschaften Reflexivität, Symmetrie und Tran-
sitivität, so dass ∼n tatsächlich eine Äquivalenzrelation ist. Eine reguläre Sprache L ⊆ A∗

bzw. L ⊆ Aω heißt piecewise testable (PT), falls L eine endliche boolesche Kombination von
Sprachen der Form A∗a1A

∗ . . . anA
∗ bzw. A∗a1A

∗ . . . anA
ω ist, wobei ai ∈ A. Ob ein Wort w

zu einer PT-Sprache gehört, ist daher bestimmt durch die Menge seiner Teilwörter bis zu
einer bestimmten Länge. Das bedeutet, dass eine reguläre Sprache L genau dann piecewi-
se testable ist, wenn es ein n ∈ N gibt, so dass L eine Vereinigung von ∼n-Äquivalenzklassen ist.

Zwei reguläre Sprachen L,K ∈ A∗ bzw. L,K ∈ Aω heißen PT-separierbar, wenn es eine
piecewise testable Sprache S ∈ A∗ bzw. S ∈ Aω (Separator) gibt, die sie separiert, d.h. falls
gilt

L ⊆ S und K ∩ S = ∅.

2.3 Faktorisierungsmuster und (~u, ~B)-Pfade

Für ein Wort u ∈ A∗, ein Teilalphabet B ⊆ A und Zustände p, q ∈ Q vereinbaren wir folgende
Notation, um bestimmte Arten von Pfaden in Automaten zu charakterisieren.

• p u−→ q bezeichne einen Pfad von p nach q, der mit u beschriftet ist.

• p B∗−→ q bezeichne einen Pfad von p nach q, wobei alle Übergänge mit Zeichen aus B
beschriftet sind.

• p B~

−→ q bezeichne einen Pfad von p nach q, wobei alle Übergänge mit Zeichen aus B
beschriftet sind und zusätzlich jedes Zeichen aus B mindestens einmal auftritt.
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2.3 Faktorisierungsmuster und (~u, ~B)-Pfade

SeiA ein DFA über A. Für Wörter u0, . . . , up ∈ A∗ und nichtleeren Teilalphabeten B1, . . . , Bp ⊆
A, setzen wir ~u = (v0, . . . , vp) und ~B = (B1, . . . , Bp). Schließlich fassen wir ~u und ~B zu einem
Paar (~u, ~B) zusammen und nennen es ein Faktorisierungsmuster. Ein (~u, ~B)-Pfad ist ein
erfolgreicher Pfad (der von einem Startzustand zu einem Endzustand führt), der die folgende
Form hat:

. . .u0 B∗1 B∗1

B~
1

u1 B∗p B∗p

B~
p

up

Abbildung 2.1: Ein (~u, ~B)-Pfad

Bemerkung 2.1. Ein endlicher Automat A lässt genau dann einen (~u, ~B)-Pfad zu, wenn es
geeignete xi, yi, zi ∈ A∗ (i ∈ {1, . . . , p}, p ∈ N0) gibt, so dass L(A) eine Sprache der Form

u0(x1y
∗
1z1)u1 . . . (xpy∗pzp)up

enthält, wobei alph(xi) ∪ alph(zi) ⊆ alph(yi) = Bi, für alle i ∈ {1, . . . , p}.

Ein Faktorisierungsmuster (~u, ~B) heißt echt, wenn

i) last(ui) /∈ Bi+1 ∧ first(ui) /∈ Bi, für i = 1, . . . , p− 1

ii) last(u0) /∈ B1 ∧ first(up) /∈ Bp
iii) ui = ε ⇒ (Bi ( Bi+1 ∧ Bi+1 ( Bi), für i = 1, . . . , p− 1.

Die Eigenschaften drücken aus, dass die Teilalphabete Bi so groß wie möglich und die Wörter
ui so kurz wie möglich gewählt werden.
Für ein gegebenes Faktorisierungsmuster (~u, ~B) mit ~u = (u0, . . . , up) und ~B = (B1, . . . , Bp),
definieren wir eine Sprache

L(~u, ~B, n) := u0(B~
1 )nu1 . . . (B~

p )nup.

Eine Folge (wn)n von Wörtern heißt (~u, ~B)-adäquat, wenn

∀n > 0 : wn ∈ L(~u, ~B, n).

Eine Folge heißt adäquat, wenn sie (~u, ~B)-adäquat zu einem geeigneten Faktorisierungsmuster
(~u, ~B) ist. Aus den Beobachtungen

• u = u1 . . . uk mit uk ∈ B ⇒ u1 . . . uk(B~)n ⊆ u1 . . . uk−1(B~)n,

• u = u1 . . . uk mit u1 ∈ B ⇒ (B~)nu1 . . . uk ⊆ (B~)nu2 . . . uk,

• Bi ⊆ Bi+1 ⇒ (B~
i )n(B~

i+1)n ⊆ (B~
i+1)n und

• Bi+1 ⊆ Bi ⇒ (B~
i )n(B~

i+1)n ⊆ (B~
i )n

schließen wir, dass es zu jeder adäquaten Folge (wn)n ein echtes Faktorisierungsmuster (~u, ~B)
gibt, so dass (wn)n selbst (~u, ~B)-adäquat ist.
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2 Grundlagen

2.4 ω-Faktorisierungsmuster und ω-(~u, ~B)-Pfade

Für Separierbarkeit über unendlichen Wörtern in Kapitel 4 sind leichte Anpassungen der
Begriffe aus dem vorherigen Abschnitt notwendig, die hier erläutert werden.
Sei A ein DBA über A. Für Wörter u0, . . . , up ∈ A∗ und nichtleeren Teilalphabeten
B1, . . . , Bp, Bp+1 ⊆ A, setzen wir ~u = (v0, . . . , vp) und ~B = (B1, . . . , Bp, Bp+1). Schließlich
fassen wir ~u und ~B zu einem Paar (~u, ~B) zusammen und nennen es ein ω-Faktorisierungsmuster.
Aus Bequemlichkeitsgründen nennen wir dann (~u, ~C) mit ~C = (B1, . . . , Bp) das von (~u, ~B)
induzierte Faktorisierungsmuster. Ein ω-(~u, ~B)-Pfad ist ein erfolgreicher Pfad (der von einem
Startzustand zu einem Endzustand führt, der über eine Schleife unendlich oft durchlaufen
werden kann, um zu akzeptieren), der die folgende Form hat:

. . .u0 B∗1 B∗1

B~
1

u1 B∗p B∗p

B~
p

up B∗p+1

B~
p+1

Abbildung 2.2: Ein ω-(~u, ~B)-Pfad

Dabei bezeichnen die Kanten Folgen von Übergängen, wie im vorherigen Abschnitt definiert.

Bemerkung 2.2. Ein Büchi-Automat A lässt genau dann einen ω-(~u, ~B)-Pfad zu, wenn es
geeignete s, xi, yi, zi ∈ A∗, α ∈ Aω (i ∈ {1, . . . , p}, p ∈ N0) gibt, so dass L(A) eine Sprache der
Form

u0(x1y
∗
1z1)u1 . . . (xpy∗pzp)upsα

enthält, wobei alph(xi) ∪ alph(zi) ⊆ alph(yi) = Bi, für alle i ∈ {1, . . . , p}, alph(s) ⊆ alph(α)
und α ∈ (B~

p+1)ω.

Ein ω-Faktorisierungsmuster (~u, ~B) heißt echt, falls das dazugehörige induzierte Faktorisie-
rungsmuster von (~u, ~B) echt ist. D.h. die selbe Definition wie im vorherigen Abschnitt wird
hier verwendet und die Präsenz von Bp+1 spielt dabei keine Rolle.

Für ein gegebenes ω-Faktorisierungsmuster (~u, ~B) mit ~u = (u0, . . . , up) und ~B =
(B1, . . . , Bp, Bp+1), definieren wir eine Sprache

L(~u, ~B, n) := u0(B~
1 )nu1 . . . (B~

p )nup(B~
p+1)ω.

Eine Folge (wn)n von unendlichen Wörtern heißt ω-(~u, ~B)-adäquat, wenn

∀n > 0 : wn ∈ L(~u, ~B, n).

Eine Folge heißt kurz ω-adäquat, wenn sie ω-(~u, ~B)-adäquat zu einem geeigneten ω-
Faktorisierungsmuster (~u, ~B) ist. Analog zum vorherigen Abschnitt gilt: Zu jeder ω-adäquaten
Folge (wn)n gibt es ein echtes ω-Faktorisierungsmuster (~u, ~B), so dass (wn)n selbst ω-(~u, ~B)-
adäquat ist.
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2.5 Faktorisierungswälder

2.5 Faktorisierungswälder

Ein Faktorisierungsbaum von einem nichtleeren Wort x ist ein endlicher, geordneter, unbe-
schränkt verzweigter Baum T (x), so dass gilt:

i) alle Blätter von T (x) sind jeweils mit einzelnen Buchstaben beschriftet,

ii) alle inneren Knoten von T (x) besitzen mindestens zwei Kinder,

iii) hat ein Knoten, der mit y beschriftet ist, k Kinder, die mit y1, . . . , yk von links nach
rechts beschriftet sind, dann ist y = y1 . . . yk.

Sei S eine endliche Halbgruppe und ϕ : A+ → S ein Morphismus. Ein Faktorisierungsbaum
heißt ϕ-Ramsey-artig, falls jeder innere Knoten entweder zwei Kinder hat oder k > 3 Kinder
y1, . . . , yk, wobei dann ϕ(y1) = · · · = ϕ(yk) = e, für ein idempotentes Element e aus S.
Das Faktorisierungswaldtheorem (siehe [Sim90] und [Kuf08] für Beweise) besagt, dass es für
jedes Wort w einen ϕ-Ramsey-artigen Faktorisierungsbaum T (w) gibt, dessen Höhe h(T (w))
nach oben durch eine Konstante 3|S| beschränkt ist.
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3 Separierbarkeit durch eine piecewise
testable Sprache über endlichen Wörtern

Theorem 3.1. Gegeben seien zwei NFAs. Dann ist in Polynomialzeit entscheidbar, bzgl. der
Anzahl der Zustände und der Größe des Alphabets, ob die Sprachen, die durch die NFAs
akzeptiert werden, PT-separierbar sind.

Aus den folgenden zwei Propositionen folgt direkt Theorem 3.1.

Proposition 3.2. Seien A1 und A2 zwei NFAs. Dann sind L(A1) und L(A2) genau dann
nicht PT-separierbar, wenn ein Faktorisierungsmuster (~u, ~B) existiert, so dass A1 und A2
einen gemeinsamen (~u, ~B)-Pfad zulassen.

Proposition 3.3. Gegeben seien zwei NFAs A1 und A2, dann kann in Polynomialzeit ent-
schieden werden, bzgl. der Anzahl der Zustände und der Größe des Alphabets, ob ein Faktori-
sierungsmuster (~u, ~B) existiert, so dass beide NFAs einen gemeinsamen (~u, ~B)-Pfad zulassen.

3.1 Ein Algorithmus in Polynomialzeit

Beweis. (Proposition 3.3) Zunächst zeigen wir, dass das folgende Problem in PTIME (bzgl.
|A|, |A1|, |A2|) entscheidbar ist.
Gegeben: Zustände p1, q1, r1 ∈ Q1 und p2, q2, r2 ∈ Q2.
Frage: Existiert ein nichtleeres Teilalphabet B ⊆ A, so dass beide Automaten ein gemeinsames
Muster der folgenden Form enthalten?

p1 q1 r1 p2 q2 r2
B∗ B∗

B~

B∗ B∗

B~

Abbildung 3.1: Ein gemeinsames Muster in A1 und A2

Dazu wird eine Folge von Alphabeten Ci abnehmender Größe berechnet, die B von oben
her approximieren sollen. Angenommen, es existiert ein solch gefordertes Teilalphabet B,
dann muss B in C1 := alph_scc(q1,A1) ∩ alph_scc(q2,A2) enthalten sein. Indem z.B. der
Algorithmus von Tarjan, der starke Zusammenhangskomponenten in Linearzeit berechnet,
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3 Separierbarkeit durch eine piecewise testable Sprache über endlichen Wörtern

verwendet wird, kann C1 ebenfalls in Linearzeit berechnet werden. Anschließend schränken
wir beide Automaten auf das Alphabet C1 ein und iterieren den Prozess, und erhalten so eine
Folge (Ci)i nach der Vorschrift:

Ci+1 := alph_scc(q1,A1|Ci) ∩ alph_scc(q2,A2|Ci).

Nach einer endlichen Anzahl von n 6 |A| Schritten ist die Folge stabil, d.h. es gilt Cn = Cn+1.
Falls Cn = ∅, dann gibt es kein nichtleeres Teilalphabet B ⊆ A, so dass es eine B~-Schleife
um q1 und q2 gibt.
Falls Cn 6= ∅, dann ist B = Cn das maximale nichtleere Alphabet B, so dass es B~-Schleifen
um q1 in A1 und q2 in A2 gibt. Es verbleibt zu zeigen, dass es Pfade p1

B∗−→ q1
B∗−→ r1 und

p2
B∗−→ q2

B∗−→ r2 gibt. Dies kann jedoch z.B. mittels Tiefensuche in durchgeführt werden.
Zusammengefasst erhalten wir für die Laufzeit: Die Anzahl der Iterationen n bis Cn = Cn+1
erreicht wird, ist beschränkt durch |A| und jede einzelne Berechnung von Ci kann in Linearzeit
bzgl. der Größe von A1 und A2 durchgeführt werden. Das impliziert, dass in Polynomialzeit
(bzgl. |A| und der Größe der NFAs) entschieden werden kann, ob man ein gemeinsames Muster
wie in Abbildung 3.1 in A1 und in A2 vorfinden kann.
Nun bauen wir aus A1 und A2 zwei modifizierte NFAs Ã1 und Ã2 wie folgt. Zuerst initialisieren
wir Ãi als eine Kopie von Ai. Für jedes 4-Tupel τ = (p1, r1, p2, r2) ∈ Q2

1 ×Q2
2 für das es ein

Alphabet B ⊆ A, Zustände q1 ∈ Q1, q2 ∈ Q2 und Pfade pi
B∗−→ qi

B~

−→ qi
B∗−→ ri (wie in

Abbildung 3.1) gibt, fügen wir in beide Automaten einen neuen Buchstaben aτ zum Alphabet
hinzu. Ferner fügen wir Abkürzungen in Form von Übergängen p1

aτ−→ r1 und p2
aτ−→ r2 in

beide Automaten hinzu. Die Zahl von solchen Tupeln (p1, q1, r1, p2, q2, r2) beträgt höchstens
|Q1|3 · |Q2|3 und mit dem oben gezeigten Teil erhalten wir, dass die Berechnung dieser neuen
Übergänge in Polynomialzeit durchgeführt werden kann. Weiter folgt, dass die Berechnung der
modifizierten Automaten Ã1 und Ã2 in PTIME möglich ist.
Nach Konstruktion dieser Automaten gibt es ein Faktorisierungsmuster (~u, ~B), so dass A1, A2
genau dann einen gemeinsamen (~u, ~B)-Pfad zulassen, wenn L(Ã1) ∩ L(Ã2) 6= ∅. Dies kann
tatsächlich in Polynomialzeit entschieden werden, weil Ã1 und Ã2 in PTIME gebaut wurden
und dasselbe für das Bilden des Kreuzpoduktautomaten nach der üblichen Konstruktion gilt,
der den Schnitt zweier regulärer Sprachen erkennt.

3.2 Charakterisierung der PT-Separierbarkeit

Als nächstes soll Proposition 3.2 bewiesen werden. Wir beginnen mit der Rückrichtung. Die
Hinrichtung wird in Lemma 3.9 bewiesen.

Behauptung 3.4. Seien x, x′, y, y′, z, z′ ∈ A∗ endliche Wörter, so dass

i) alph(x) ∪ alph(z) ⊆ alph(y),

ii) alph(x′) ∪ alph(z′) ⊆ alph(y′) = alph(y).

Dann ist xynz ∼n x′y′nz′, für alle n ∈ N.
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3.2 Charakterisierung der PT-Separierbarkeit

Beweis. Die Inklusionen alph(y)6n = Subn(yn) ⊆ Subn(xynz) ⊆ alph(y)6n implizieren
Subn(xynz) = alph(y)6n, analog Subn(x′y′nz′) = alph(y′)6n = alph(y)6n
und man erhält die Behauptung xynz ∼n x′y′nz′.

Lemma 3.5. Seien A1,A2 NFAs, die einen gemeinsamen (~u, ~B)-Pfad zulassen. Dann sind
die Sprachen L = L(A1) und K = L(A2) nicht PT-separierbar.

Beweis. Wir nehmen an, S ist eine piecewise testable Sprache mit L ⊆ S. Nach Bemerkung
2.1 gibt es passende xi, yi, zi ∈ A∗, so dass L eine Sprache der Form

L̃ := u0(x1y
∗
1z1)u1...(xpy∗pzp)up

enthält, wobei alph(xi) ∪ alph(zi) ⊆ alph(yi) = Bi für alle i. Entsprechend enthält K eine
Sprache der Form

K̃ := u0(x′1y′∗1 z′1)u1...(x′py′∗p z′p)up,

mit alph(x′i)∪alph(z′i) ⊆ alph(y′i) = Bi für alle i. Das Ziel ist zu zeigen, dass es zu jedem n ∈ N
ein w1 ∈ L̃ sowie ein w2 ∈ K̃ gibt, so dass die Wörter w1 und w2 zueinander ∼n-äquivalent
sind. Durch Anwendung von Behauptung 3.4 erhält man, dass für alle 1 6 i 6 p und n ∈ N gilt

xiy
n
i zi ∼n x′iy

′n
i z
′
i.

Da die Äquivalenz ∼n zudem eine Kongruenz ist, erhalten wir für alle n ∈ N

u0(x1y
n
1 z1)u1...(xpynp zp)up ∼n u0(x′1y′n1 z′1)u1...(x′py′np z′p)up.

Die linke Seite dieser Äquivalenz stellt unser gewünschtes Wort w1 ∈ L̃ und die rechte Seite
unser gewünschtes Wort w2 ∈ K̃ dar, die beide zueinander ∼n-äquivalent sind. Folglich
liegen w1 und w2 in derselben Äquivalenzklasse. Die piecewise testable Sprache S bildet eine
Vereinigung aus ∼n-Äquivalenzklassen und daher sind S und K nicht disjunkt. Das wiederum
bedeutet, dass L und K nicht separierbar sind.

Wir fahren mit der Hinrichtung von Proposition 3.2 fort.

Lemma 3.6. Jede Folge (wn)n von endlichen Wörtern wn ∈ A∗ besitzt eine adäquate Teilfolge.

Beweis. Die zentrale Idee hierbei ist das Faktorisierungswaldtheorem mit dem Morphismus
alph : A+ → 2A anzuwenden. Ausgehend von einer beliebigen Wortfolge (wn)n betrachten
wir die Folge (T (wn))n von alph-Ramsey-artigen Faktorisierungsbäumen, gegeben durch das
Faktorisierungswaldtheorem. D.h. die Höhe jedes Faktorisierungsbaums T (wn) ist nach oben
durch eine endliche Konstante beschränkt. An dieser Stelle dürfen wir annehmen, dass die
Folge der Höhen der Bäume T (wn) eine Konstante H > 0 ist. Gegebenenfalls nehmen wir aus
der Folge eine passende Teilfolge heraus, um diese Bedingung sicherzustellen. Die Aussage des
Lemmas wird nun mit Induktion nach H gezeigt.
Wenn H = 0, dann muss jedes Wort wn aus einem einzigen Buchstaben bestehen. Folglich
kann aus (wn)n eine konstante Teilfolge herausgezogen werden, die selbst adäquat ist.
Für die Stelligkeit der Wurzel von T (wn) schreiben wir arity(wn) und nennen es die Stelligkeit
von wn. Wenn H > 0, können im Induktionsschritt zwei Fälle unterschieden werden.
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3 Separierbarkeit durch eine piecewise testable Sprache über endlichen Wörtern

1. (wn)n enthält eine Teilfolge mit beschränkter Stelligkeit. Aus diesem Grund können wir
aus wn eine Teilfolge mit konstanter Stelligkeit K̂ > 0 gewinnen. Jedes wn kann daher
in K̂ Faktoren zerlegt werden

wn = wn,1 . . . wn,K̂ ,

wobei das i-te Kind der Wurzel im Baum T (wn) mit wn,i beschriftet ist. Der Unterbaum
von jedem wn,i, der selbst auch alph-Ramsey-artig ist, kann höchstens die Höhe H − 1
haben. Nach Induktionsvoraussetzung können wir aus (wn,i)n eine adäquate Teilfolge
gewinnen. Das machen wir iterativ für i = 1, . . . , K̂ und gewinnen so aus (wn)n eine
Teilfolge (wσ(n))n, so dass alle (wσ(n),i)n adäquat sind. Das impliziert, dass die Teilfolge
(wσ(n))n von (wn)n selbst adäquat ist. Dabei wurde ausgenutzt, dass endliche Produkte
von adäquaten Folgen selbst adäquat sind.

2. Die Stelligkeit von wn strebt gegen unendlich für n→∞. Wir dürfen annehmen, dass
für jedes n ∈ N, arity(wn) > max{n, 3} (ggf. ziehen wir eine passende Teilfolge heraus).
Da die Stelligkeit von allen Wörtern in dieser Folge mindestens drei ist, werden alle
Kinder der Wurzel auf das gleiche idempotente Element in 2A abgebildet. Das wiederum
bedeutet, dass jedes Wort der Teilfolge von der Form

wσ(n) = wn,1 . . . wn,Kn

ist, mit Kn > n und es gibt ein Teilalphabet B ⊆ A mit wn,i ∈ B~ für alle i. Daraus
schließen wir, wσ(n) ∈ (B~)Kn ⊆ (B~)n. Daher ist (wσ(n))n adäquat.

An dieser Stelle wird für Lemma 3.8 das technisches Lemma 8.2.5 aus [Alm94] benötigt.

Lemma 3.7. Seien X,Y endliche Mengen und (P,6) eine Halbordnung.
Seien f : X → Y, g : Y → X, p : X → P, q : Y → P Abbildungen, die die folgenden
Eigenschaften erfüllen:

i) ∀x ∈ X : p(x) 6 q(f(x)),

ii) ∀y ∈ Y : q(y) 6 p(g(y)),

iii) ∀x1, x2 ∈ X : f(x1) = f(x2) ∧ p(x1) = q(f(x1)) ⇒ x1 = x2,

iv) ∀y1, y2 ∈ Y : g(y1) = g(y2) ∧ q(y1) = p(g(y1)) ⇒ y1 = y2.

Dann sind f und g zueinander invers und p = q ◦ f und q = p ◦ g.

Beweis. Es genügt zu zeigen, dass g(f(x)) = x für alle x ∈ X, d.h. g ◦ f = idX .
Denn daraus würde folgen

p(x)
i)
6 q(f(x))

ii)
6 p(g(f(x))) = p(x),

d.h. p = q ◦ f . Völlig analog dazu kann f ◦ g = idY sowie q = p ◦ g gezeigt werden.
Angenommen, es gäbe ein x0 ∈ X derart, so dass für y0 = f(x0) und x1 = g(y0) gilt x1 6= x0.
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3.2 Charakterisierung der PT-Separierbarkeit

Sei außerdem y1 = f(x1). Zwei Fälle können dabei unterschieden werden:
Falls y1 = y0, dann ist f(x1) = f(x0) und die Ungleichungskette

p(x1)
i)
6 q(f(x1)) = q(y1) = q(y0)

ii)
6 p(g(y0)) = p(x1)

führt nach Anwendung von Eigenschaft iii) auf den Widerspruch x0 = x1.
Daher betrachten wir den Fall y1 6= y0: Definiere induktiv zwei injektive (unendliche) Folgen
(xi)i>1 und (yi)i>0 durch yi = f(xi) und xi+1 = g(yi). Das widerspricht jedoch der Annahme,
dass X und Y endliche Mengen sind.

Lemma 3.8. Seien (~u, ~B) und (~t, ~C) echte Faktorisierungsmuster. Seien (vn)n und (wn)n
zwei Folgen von endlichen Wörtern mit

• (vn)n ist (~u, ~B)-adäquat,

• (wn)n ist (~t, ~C)-adäquat,

• ∀n ∈ N : vn ∼n wn.

Dann stimmen beide Faktorisierungsmuster überein: (~u, ~B) = (~t, ~C).

Beweis. Wir definieren allgemein für ein Faktorisierungsmuster (~u, ~B) die Zahl

‖(~u, ~B)‖ := (
p∑
i=0
|ui|) + p.

Diese Zahl ist eine untere Schranke für die Länge jedes Wortes einer Folge, die (~u, ~B)-adäquat
ist. Benutzt wurde dabei, dass alle Bi nichtleer sind, was den Summanden p erklärt. Setze nun

k := max{‖(~u, ~B)‖, ‖(~t, ~C)‖}.

Von der Folge (vn)n betrachten wir jetzt das Wort v1 = u0b1u1 . . . bpup, wobei bi ∈ B~
i , für alle

i. In diesem Wort wollen wir alle Faktoren bi mit k pumpen und definieren

v
(k)
1 := u0b

k
1u1 . . . b

k
pup.

Laut Definition ist (vn)n eine (~u, ~B)-adäquate Folge, wenn

∀n ∈ N : vn ∈ u0(B~
1 )nu1 . . . (B~

p )nup.

Ein Faktor bki von v
(k)
1 hat die Länge k · |bi| und daher gilt die Teilwortbeziehung bki 6 x

für beliebige Wörter x ∈ (B~
i )` mit ` > k · |bi|. Daraus erhalten wir für jedes ` > k ·

max{|b1|, . . . , |bp|}, dass v(k)
1 6 v`. Zusätzlich gilt für jedes `′ > max{`, |v(k)

1 |}, dass v
(k)
1 ∈

Sub`′(v`′). Das sieht man so: Aus `′ > ` folgt, dass v(k)
1 ein Teilwort von v`′ ist und wegen

`′ > |v(k)
1 | hat v

(k)
1 höchstens die Länge `′. Anwendung der Voraussetzung vn ∼n wn (∀n ∈ N)

ergibt, dass auch v(k)
1 6 w`′ gilt.

Auf die gleiche Weise verfährt man mit der Folge (wn)n. Für das Wort w1 = t0c1t1 . . . cqtq
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3 Separierbarkeit durch eine piecewise testable Sprache über endlichen Wörtern

gibt es ein m > k ·max{|c1|, . . . , |cq|}, so dass für alle m′ > max{m, |w(k)
1 |}, w

(k)
1 6 wm′ und

w
(k)
1 6 vm′ gilt.

Wenn wir nun M := max{`′,m′} setzen, erhalten wir die Teilwortbeziehungen

v
(k)
1 6 vM , wM und w

(k)
1 6 vM , wM .

Betrachte einen Faktor bki von v
(k)
1 , der auch ein Teilwort von wM ist. Aus den Aussagen

k > ‖(~t, ~C)‖ und |bi| > 0 folgt mit dem Schubfachprinzip, dass es ein Cj ⊆ A gibt mit
alph(bi) ⊆ Cj .
Die Idee ist es nun zwischen der Menge von indizierten Alphabeten in ~B und der Menge von
jenen in ~C eine Bijektion herzustellen, die uns dabei hilft die Gleichheit der Faktorisierungs-
muster zu zeigen.
Setze B := {(B1, 1), . . . , (Bp, p)} und C := {(C1, 1), . . . , (Cq, q)}. Definiere eine Abbildung
f : B → C, wobei (Bi, i) auf dasjenige (Cj , j) abgebildet wird, so dass ein c′j ∈ (C~

j )M der
erste Faktor von wM ist, um bi vollständig zu lesen, während v(k)

1 als Teilwort von wM gelesen
wird. Die Abbildung g : C→ B ist analog zu f definiert. f und g erhalten die Ordnung der
Indizes und erhalten punktweise das Alphabet. Als nächstes soll gezeigt werden, dass B und C
mit Hilfe von f und g bijektiv aufeinander abgebildet werden können. Dazu zeigen wir, dass
f = g−1, indem Lemma 3.7 angewandt wird.
Die Abbildungen f und g erfüllen die Bedingungen des Lemmas, indem wir setzen X = B, Y =
C und P als die Menge von Alphabeten mit der Mengeninklusion als Halbordnung. Ferner
seien p und q die Projektionen auf die erste Komponente.
Die Voraussetzungen i) und ii) des Lemmas sind erfüllt, weil f und g punktweise das Alphabet
erhalten. Angenommen, dass (Cj , j) = f(Bi1 , i1) = f(Bi2 , i2) und Bi1 = Cj . Das bedeutet,
dass ein Faktor bi1 und ein Faktor bi2 von v(k)

1 gelesen werden innerhalb des gleichen Faktors
c′j von wM . Deshalb ist alph(biui1 . . . bi2) ⊆ alph(c′j) = q(f(Bi1 , i1)) = Bi1 = alph(bi1). Aber
die Annahme war, dass (~u, ~B) ein echtes Faktorisierungsmuster ist, also muss i1 gleich i2
sein. Dies zeigt, dass Bedingung iii) des Lemmas gilt. Bedingung iv) kann ähnlich gezeigt werden.

Wir erhalten als Implikation, dass f und g bijektive Abbildungen zwischen B und C definieren,
und daher ist p = q und Bi = Ci für jedes i. Da wir es mit echten Faktorisierungsmustern zu
tun haben, impliziert v(k)

1 6 wM jetzt, dass ti 6 ui für jedes i. Genauso impliziert w(k)
1 6 vM ,

dass ui 6 ti für jedes i. Folglich haben wir dank der Antisymmetrie von 6 (für endliche
Wörter) die Gleichheit ui = ti für jedes i und das ergibt die gewünschte Gleichheit der
Faktorisierungsmuster.

Die Hinrichtung von Proposition 3.2 wird jetzt bewiesen.

Lemma 3.9. Gegeben seien zwei DFAs A1 und A2. Wenn die von den Automaten erkannten
Sprachen L = L(A1) und K = L(A2) nicht PT-separierbar sind, dann lassen beide DFAs einen
gemeinsamen (~u, ~B)-Pfad zu.

Beweis. Nach Annahme, gibt es für jedes n ∈ N ein vn ∈ L und ein wn ∈ K mit der Eigenschaft

vn ∼n wn.
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3.2 Charakterisierung der PT-Separierbarkeit

Dies definiert eine unendliche Folge von Wortpaaren (vn, wn)n. Wir wollen nun in beiden
Folgen vn und wn adäquate Teilfolgen finden.

Nach Lemma 3.6, kann man aus (vn, wn)n eine Teilfolge extrahieren, deren erste Komponente
eine adäquate Folge bildet. Aus dieser Teilfolge von Paaren, erneut unter Verwendung von
Lemma 3.6, extrahieren wir eine Teilfolge, deren zweite Komponente auch adäquat ist. Die
erste Komponente bleibt dabei adäquat (ausgenutzt wird dabei, dass die Eigenschaft einer
Folge adäquat zu sein, erhalten bleibt, wenn eine beliebige Teilfolge daraus ausgewählt wird,
weil (B~)n ⊆ (B~)m für n > m). Daher kann man annehmen, dass (vn)n adäquat zu (wn)n
ist.
Lemma 3.8 zeigt, dass man das gleiche Faktorisierungsmuster (~u, ~B) wählen kann, so dass
(vn)n und (wn)n (~u, ~B)-adäquat ist. Schließlich erhalten wir mit der nächsten Behauptung 3.10,
dass A1 und A2 einen (~u, ~B)-Pfad zulassen.

Behauptung 3.10. Wenn L(A) eine (~u, ~B)-adäquate Folge enthält, dann lässt A einen
(~u, ~B)-Pfad zu.

Beweis. L(A) enthält eine (~u, ~B)-adäquate Folge (vn)n, d.h.

∀n > 0 : vn ∈ u0(B~
1 )nu1 . . . (B~

p )nup ∩ L(A).

Sei vn ein ausreichend großer Term in dieser Folge, z.B. mit n > |Q(A)|. Jetzt muss der Pfad,
der benutzt wird, um vn zu lesen, alle B~

i -Schleifen traversieren und nach der Form von vn ist
dies ein (~u, ~B)-Pfad.
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4 Separierbarkeit durch eine piecewise
testable Sprache über unendlichen Wörtern

Theorem 4.1. Gegeben seien zwei Büchi-Automaten. Dann ist in Polynomialzeit entscheidbar,
bzgl. der Anzahl der Zustände und der Größe des Alphabets, ob die Sprachen, die durch die
Büchi-Automaten akzeptiert werden, PT-separierbar sind.

Aus den folgenden zwei Propositionen folgt Theorem 4.1.

Proposition 4.2. Seien A1 und A2 zwei Büchi-Automaten. Dann sind L(A1) und L(A2)
genau dann nicht PT-separierbar, wenn ein ω-Faktorisierungsmuster (~u, ~B) existiert, so dass
A1 und A2 einen gemeinsamen ω-(~u, ~B)-Pfad zulassen.

Proposition 4.3. Gegeben seien zwei Büchi-Automaten A1 und A2. Dann kann in Polynomi-
alzeit entschieden werden, bzgl. der Anzahl der Zustände und der Größe des Alphabets, ob ein
ω-Faktorisierungsmuster (~u, ~B) existiert, so dass beide Büchi-Automaten einen gemeinsamen
ω-(~u, ~B)-Pfad zulassen.

4.1 Ein Algorithmus in Polynomialzeit

Beweis. (Proposition 4.3) Zunächst zeigen wir, dass das folgende Problem in PTIME (bzgl.
|A|, |A1|, |A2|) entscheidbar ist.
Gegeben: Zustände p1, q1, r1 ∈ Q1 in A1 und p2, q2, r2 ∈ Q2 in A2.
Frage: Existiert ein nichtleeres Teilalphabet B ⊆ A, so dass beide Automaten ein gemeinsames
Muster der folgenden Form enthalten?

p1 q1 r1 p2 q2 r2
B∗ B∗

B~

B∗ B∗

B~

Abbildung 4.1: Ein gemeinsames Muster in A1 und A2

Dazu wird eine Folge von Alphabeten Ci abnehmender Größe berechnet, die das maximale Teilal-
phabet B, mit dem die Schleifen beschriftet sind, von oben approximieren sollen. Angenommen,
es existiert ein solch gefordertes B, dann muss B in C1 := alph_scc(q1,A1)∩ alph_scc(q2,A2)
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4 Separierbarkeit durch eine piecewise testable Sprache über unendlichen Wörtern

enthalten sein. Indem z.B. der Algorithmus von Tarjan, der starke Zusammenhangskompo-
nenten in Linearzeit berechnet, verwendet wird, kann C1 ebenfalls in Linearzeit berechnet
werden. Anschließend schränken wir beide Automaten auf das Alphabet C1 ein und iterieren
den Prozess, und erhalten so eine Folge (Ci)i nach der Vorschrift:

Ci+1 := alph_scc(q1,A1|Ci) ∩ alph_scc(q2,A2|Ci).

Nach einer endlichen Anzahl von n 6 |A| Schritten ist die Folge stabil, d.h. es gilt Cn = Cn+1.
Falls Cn = ∅, dann gibt es kein nichtleeres Teilalphabet B ⊆ A, so dass es eine B~-Schleife
um q1 und q2 gibt.
Falls Cn 6= ∅, dann ist B = Cn das maximale nichtleere Alphabet B, so dass es B~-Schleifen
um q1 in A1 und q2 in A2 gibt. Es verbleibt zu zeigen, dass es Pfade p1

B∗−→ q1
B∗−→ r1 und

p2
B∗−→ q2

B∗−→ r2 gibt. Dies kann jedoch z.B. mittels Tiefensuche in linearer Zeit durchgeführt
werden.
Zusammengefasst erhalten wir für die Laufzeit: Die Anzahl der Iterationen n bis Cn =
Cn+1 erreicht wird, ist beschränkt durch |A| und jede einzelne Berechnung von Ci kann
in Linearzeit bzgl. der Größe von A1 und A2 durchgeführt werden. Das impliziert, dass in
Polynomialzeit (bzgl. |A| und der Größe der Büchi-Automaten) entschieden werden kann, ob
man ein gemeinsames Muster wie in Abbildung 4.1 in A1 und in A2 vorfinden kann.
Nun bauen wir aus A1 und A2 zwei modifizierte Büchi-Automaten Ã1 und Ã2 wie folgt. Zuerst
initialisieren wir Ãi als eine Kopie von Ai. Für jedes 4-Tupel τ = (p1, r1, p2, r2) ∈ Q2

1 ×Q2
2 für

das es ein Alphabet B ⊆ A, Zustände q1 ∈ Q1, q2 ∈ Q2 und Pfade pi
B∗−→ qi

B~

−→ qi
B∗−→ ri (wie

in Abbildung 3.1) gibt, fügen wir in beide Automaten einen neuen Buchstaben aτ zum Alphabet
hinzu. Ferner fügen wir Abkürzungen in Form von Übergängen p1

aτ−→ r1 und p2
aτ−→ r2 in

beide Automaten hinzu. Die Zahl von solchen Tupeln (p1, q1, r1, p2, q2, r2) beträgt höchstens
|Q1|3 · |Q2|3 und mit dem oben gezeigten Teil erhalten wir, dass die Berechnung dieser neuen
Übergänge in Polynomialzeit durchgeführt werden kann. Weiter folgt, dass die Berechnung der
modifizierten Automaten Ã1 und Ã2 in PTIME möglich ist.
Nach Konstruktion dieser Automaten gibt es ein ω-Faktorisierungsmuster (~u, ~B), so dass A1,
A2 genau dann einen gemeinsamen ω-(~u, ~B)-Pfad zulassen, wenn L(Ã1) ∩ L(Ã2) 6= ∅. Dies
kann tatsächlich in Polynomialzeit entschieden werden, weil Ã1 und Ã2 in PTIME gebaut
wurden.

4.2 Charakterisierung der PT-Separierbarkeit

Als nächstes soll Proposition 4.2 bewiesen werden. Wir beginnen mit der Rückrichtung. Die
Hinrichtung wird in Lemma 4.7 bewiesen.

Lemma 4.4. Seien A1,A2 Büchi-Automaten, die einen gemeinsamen ω-(~u, ~B)-Pfad zulassen.
Dann sind die Sprachen L = L(A1) und K = L(A2) nicht PT-separierbar.

Beweis. Wir nehmen an, S ⊆ Aω ist eine piecewise testable Sprache mit L ⊆ S. Nach
Bemerkung 2.2 gibt es passende s, xi, yi, zi ∈ A∗, α ∈ Aω, so dass L eine Sprache der Form

L̃ := u0(x1y
∗
1z1)u1 . . . (xpy∗pzp)upsα
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4.2 Charakterisierung der PT-Separierbarkeit

enthält, wobei alph(xi) ∪ alph(zi) ⊆ alph(yi) = Bi, für alle i ∈ {1, . . . , p}, alph(s) ⊆ alph(α)
und α ∈ (B~

p+1)ω. Entsprechend enthält K mit geeigneten s′, x′i, y
′
i, z
′
i ∈ A∗, β ∈ Aω eine

Sprache der Form
K̃ := u0(x′1y′∗1 z′1)u1...(x′py′∗p z′p)ups′β,

mit alph(x′i) ∪ alph(z′i) ⊆ alph(y′i) = Bi für alle i, alph(s′) ⊆ alph(β) und β ∈ (B~
p+1)ω. Das

Ziel ist zu zeigen, dass es zu jedem n ∈ N ein w1 ∈ L̃ sowie ein w2 ∈ K̃ gibt, so dass die Wörter
w1 und w2 zueinander ∼n-äquivalent sind. Durch Anwendung von Behauptung 3.4 erhält man,
dass für alle 1 6 i 6 p und n ∈ N gilt

xiy
n
i zi ∼n x′iy

′n
i z
′
i.

Da die Äquivalenz ∼n zudem eine Kongruenz (α1 ∼n β1 ∧ α2 ∼n β2 ⇒ α1α2 ∼n β1β2) ist,
erhalten wir für alle n ∈ N

u0(x1y
n
1 z1)u1...(xpynp zp)upsα ∼n u0(x′1y′n1 z′1)u1...(x′py′np z′p)ups′β.

Die linke Seite dieser Äquivalenz stellt unser gewünschtes Wort w1 ∈ L̃ und die rechte Seite
unser gewünschtes Wort w2 ∈ K̃ dar, die beide zueinander ∼n-äquivalent sind. Folglich
liegen w1 und w2 in derselben Äquivalenzklasse. Die piecewise testable Sprache S bildet eine
Vereinigung aus ∼n-Äquivalenzklassen und daher sind S und K nicht disjunkt. Das wiederum
bedeutet, dass L und K nicht separierbar sind.

Wir fahren mit der Hinrichtung von Proposition 4.2 fort.
Lemma 4.5. Jede Folge (βn)n von unendlichen Wörtern βn ∈ Aω besitzt eine ω-adäquate
Teilfolge.

Beweis. Die Folge (βn)n zerlegen wir in zwei Folgen (un)n und (αn)n mit

βn = unαn,

so dass für alle n ∈ N jeweils gilt, un ∈ A∗, αn ∈ Aω und zusätzlich inf(αn) = alph(αn), d.h.
jedes in αn vorkommende Zeichen muss unendlich oft darin vorkommen. Indem Lemma 3.6
angewandt wird, kann aus unαn eine Teilfolge uσ(n)ασ(n) gewonnen werden, so dass (uσ(n))n
adäquat ist. Dank diesem Argument dürfen wir ohne Einschränkung bereits annehmen, dass
(un)n adäquat ist.
Als nächstes soll gezeigt werden, dass es eine Teilfolge (ασ(n))n und ein nichtleeres Teilalphabet
Bp+1 ⊆ A gibt, so dass ασ(n) ∈ (B~

p+1)ω für alle n ∈ N.
Wir betrachten die Alphabete alph(αn) als Teilmengen von A. Die Anzahl aller Teilmengen
von A beträgt 2|A| und ist daher endlich. Da es sich bei der Folge αn insbesondere um eine
unendliche Folge handelt, muss es ein nichtleeres Teilalphabet Bp+1 ⊆ A geben, so dass Bp+1
das Alphabet von unendlich vielen αn ist. Daraus schließt man, dass es eine Teilfolge (ασ(n))n
gibt, so dass alph(ασ(n)) = Bp+1 für alle n ∈ N ist. Jedes Zeichen aus Bp+1 kommt aber
unendlich oft in ασ(n) vor. Das erlaubt es uns, ασ(n) in der Form b1b2b3 . . . mit bi ∈ Bp+1 zu
schreiben. Z.B. können wir annehmen, dass b1 der kleinste Präfix von ασ(n) ist mit b1 ∈ Bp+1.
Sei ασ(n) = b1γ für ein passendes γ ∈ Aω. Analog ist b2 der kleinste Präfix von γ, mit b2 ∈ Bp+1
usw. Das impliziert, dass ασ(n) ∈ (B~

p+1)ω für alle n ∈ N. Zusammengefasst folgt daraus die
Aussage des Lemmas:
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4 Separierbarkeit durch eine piecewise testable Sprache über unendlichen Wörtern

• (un)n ist adäquat, d.h. ∀n ∈ N : un ∈ u0(B~
1 )nu1 . . . (B~

p )nup und

• ∀n ∈ N : αn ∈ (B~
p+1)ω

impliziert
∀n ∈ N : βn = unαn ∈ u0(B~

1 )nu1 . . . (B~
p )nup(B~

p+1)ω,

d.h. (βn)n bzw. eine Teilfolge ist ω-adäquat.

Lemma 4.6. Seien (~u, ~B) und (~t, ~C) echte ω-Faktorisierungsmuster. Seien (vn)n und (wn)n
zwei Folgen von unendlichen Wörtern mit

• (vn)n ist ω-(~u, ~B)-adäquat,

• (wn)n ist ω-(~t, ~C)-adäquat,

• ∀n ∈ N : vn ∼n wn.

Dann stimmen beide ω-Faktorisierungsmuster überein: (~u, ~B) = (~t, ~C).

Beweis. Indem Lemma 3.8 für die entsprechenden induzierten Faktorisierungsmuster von (~u, ~B)
und (~t, ~C) angewandt wird, folgt sofort: ui = ti für i = 0, . . . , p und Bi = Ci für i = 1, . . . , p.
Bleibt zu zeigen, dass Bp+1 = Cp+1.
Beide Folgen enthalten nur unendliche Wörter aus Aω und aus der Bedingung vn ∼n wn, für
alle n folgt, dass inf(vn) = inf(wn), d.h. in vn und in wn kommen die selben Buchstaben
unendlich oft vor. Das kann daher nur sein, wenn Bp+1 = Cp+1.

Jetzt kann die Hinrichtung von Proposition 4.2 bewiesen werden.

Lemma 4.7. Gegeben seien zwei Büchi-Automaten A1 und A2. Wenn die von den Automaten
erkannten Sprachen L = L(A1) und K = L(A2) nicht PT-separierbar sind, dann lassen beide
Büchi-Automaten einen gemeinsamen ω-(~u, ~B)-Pfad zu.

Beweis. Nach Annahme, gibt es für jedes n ∈ N ein vn ∈ L und ein wn ∈ K mit der Eigenschaft

vn ∼n wn.

Dies definiert eine unendliche Folge von Wortpaaren (vn, wn)n. Wir wollen nun in beiden
Folgen (vn)n und (wn)n ω-adäquate Teilfolgen finden.

Nach Lemma 4.5, kann man aus (vn, wn)n eine Teilfolge extrahieren, deren erste Komponente
eine ω-adäquate Folge bildet. Aus dieser Teilfolge von Paaren (mit Lemma 4.5) extrahieren
wir eine Teilfolge, deren zweite Komponente auch ω-adäquat ist. Die erste Komponente bleibt
dabei ω-adäquat (ausgenutzt wird dabei, dass die Eigenschaft einer Folge ω-adäquat zu sein,
erhalten bleibt, wenn eine beliebige Teilfolge daraus ausgewählt wird, weil (B~)n ⊆ (B~)m für
n > m). Daher kann man annehmen, dass (vn)n und (wn)n ω-adäquat ist.
Lemma 4.6 zeigt, dass man das gleiche ω-Faktorisierungsmuster (~u, ~B) wählen kann, so dass
(vn)n und (wn)n ω-(~u, ~B)-adäquat ist. Schließlich erhalten wir mit der nächsten Behauptung
4.8, dass A1 und A2 einen ω-(~u, ~B)-Pfad zulassen.
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4.2 Charakterisierung der PT-Separierbarkeit

Behauptung 4.8. Wenn L(A) eine ω-(~u, ~B)-adäquate Folge enthält, dann lässt A einen
ω-(~u, ~B)-Pfad zu.

Beweis. L(A) enthalte eine ω-(~u, ~B)-adäquate Folge (vn)n, d.h.

∀n ∈ N : vn ∈ u0(B~
1 )nu1 . . . (B~

p )nup(B~
p+1)ω ∩ L(A).

Sei vn ein ausreichend großer Term in dieser Folge, z.B. mit n > |Q|. Jetzt muss der Pfad, der
verwendet wird, um vn zu lesen, alle B~

i -Schleifen traversieren und nach der Form von vn ist
dies ein ω-(~u, ~B)-Pfad.
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5 Zusammenfassung

Gezeigt wurde in Kapitel 4, dass das Separierbarkeitsproblem für reguläre Sprachen durch eine
piecewise testable Sprache über unendlichen Wörtern in PTIME liegt. Meines Wissens stellt dies
ein neues Resultat dar, das in dieser Form noch nicht veröffentlicht wurde. Insgesamt konnten
dieselben Techniken wie im ursprünglichen Beweis von Rooijen und Zeitoun angewandt werden.
Lediglich kleine Änderungen in den verwendeten Begriffen und Anpassungen in den Beweisen
waren notwendig, um die neue Situation anzugehen. Die Laufzeit vom Entscheidungsalgorithmus
ist beim Übergang von NFAs zu Büchi-Automaten polynomiell geblieben, d.h. es gab keine
Verschlechterungen bzgl. der Komplexität.

Für die Charakterisierbarkeit floss das Faktorisierungswaldtheorem für endliche Wörter im
Zusammenhang mit ω-adäquaten Teilfolgen bei Lemma 4.5 an entscheidender Stelle ein, indem
Lemma 3.6 für Folgen von endlichen Wörtern angewandt wurde. Ich habe dazu für Lemma
4.5 gezeigt, dass man für den ω-Teil für alle Worte einer Folge von unendlichen Wörtern ein
Teilaphabet findet, so dass der ω-Teil aus unendlich vielen Faktoren besteht, deren Alphabete
alle gleich diesem Teilalphabet sind.

Die Bedingung aus Lemma 3.8, wann zwei endliche Folgen ein gemeinsames Faktorisierungs-
muster teilen, konnte auf den unendlichen Fall in Lemma 4.6 übertragen werden. Dabei hat das
technische Lemma 3.7 von Almeida geholfen, die Gleichheit der Faktorisierungsmuster über
eine bijektive Abbildung herzuleiten. Außerdem habe ich in Lemma 4.6 gezeigt, dass aus der
∼n-äquivalenz-Bedingung die Gleichheit der Teilaphabete in den ω-Faktorisierungsmustern,
die für den ω-Teil zuständig sind, gefolgert werden kann.

In zukünftigen Arbeiten könnte untersucht werden, ob es möglich ist, das Separierbarkeitspro-
blem simultan über endliche und unendliche Wörter entscheiden zu können.
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