Institut fiir Parallele und Verteilte Systeme

Universitat Stuttgart
UniversitatsstraBBe 38
D-70569 Stuttgart

Bachelorarbeit Nr. 222

Schnelle parallele Mehrgitterloser
auf kartesischen Gittern

David Hardes

Studiengang: Informatik

Priifer/in: Prof. Dr. rer. nat. habil. Miriam Mehl
Betreuer/in: Dr. rer. nat. Stefan Zimmer

Beginn am: 27. April 2015

Beendet am: 27. Oktober 2015

CR-Nummer: G.1.8

Kurzfassung

Mehrgitterverfahren sind verbreitete Verfahren, die dazu dienen, die Losungsapproximation
eines linearen Gleichungssystemes schnell und effizient zu berechnen. Um die Verfahren
durch Parallelisierung zu beschleunigen, muss man kommunikationsaufwéndige Verfahren
zur Glattung nutzen. Eine interessante Alternative dazu stellen die additiven Mehrgitterver-
fahren dar, die nicht versuchen, die verwendeten Operationen zu parallelisieren, sondern
stattdessen alle Stufen der Gitterhierarchie parallel bearbeiten. Im Rahmen dieser Arbeit wer-
den verschiedene Verfahren, unter anderem ein additives Mehrgitterverfahren, implementiert
und im Hinblick auf Konvergenzeigenschaften, Speicher- und Laufzeitbedarf untersucht.

Inhaltsverzeichnis

1 Einleitung
2 Ausgangsproblem
2.1 Direkte Losungsverfahren . . .
2.2 Tterative Losungsverfahren . . .
3 Loésungsverfahren
3.1 Gauf3-Seidel-Verfahren
3.2 Mehrgitterverfahren.
3.3 Additives Mehrgitterverfahren .
4 Implementierung
41 Datenstruktur
42 Glatter
43 Mehrgitterverfahren.
44 Additives Mehrgitterverfahren .
45 Die Verfahren
4.6 Das Rahmenprogramm
5 Ergebnisse
5.1 Fehler- und Konvergenzanalyse
5.2 Laufzeit- und Speicheranalyse .
6 Zusammenfassung und Ausblick
Literaturverzeichnis

1
11
13
18

21
21
22
25
26
28
31

33
33
36

41

43

1 Einleitung

Wenn man die physikalischen Prozesse unserer Welt berechnen moéchte, bei denen man
die Verdnderung einer Grofie in Bezug auf mehrere voneinander unabhingige Variablen
betrachtet, sind partielle Differentialgleichungen eines der wichtigsten Hilfsmittel, um den
realen Prozess auf ein mathematisches Modell abzubilden. Fiir Natur-, Ingenieurs- und Wirt-
schaftswissenschaften stellen sie damit ein alltdglich zu l16sendes Problem dar. Das Losen
von partiellen Differentialgleichungen ist nicht trivial, sodass eine analytische Losung des
Problems meistens nicht méglich ist. Durch Diskretisierung kann man aus einer partiel-
len Differentialgleichung ein lineares Gleichungssystem aufstellen und das Problem somit
approximativ 16sen. Zur Losung linearer Gleichungssysteme gibt es verschiedenste numeri-
sche Verfahren. Diese Arbeit beschrankt sich auf iterative Verfahren, deren Ergebnis durch
Wiederholung der Verfahren die korrekte Losung immer weiter approximiert.

Eines der einfachsten dieser Iterationsverfahren ist das Gauf3-Seidel-Verfahren, welches
jedoch sehr langsam konvergiert. Das sogenannte Mehrgitterverfahren konvergiert deutlich
schneller und soll hier als Vergleichsbasis fiir ein neues Verfahren, das sogenannte additive
Mehrgitterverfahren, dienen.

Im Rahmen dieser Bachelorarbeit wird eine Implementierung der Verfahren so vorgenommen,
dass alle wichtigen Groflen einfach ausgelesen werden konnen, sodass eine genaue Analyse
sowie ein abschlieBender Vergleich dieser Verfahren vorgenommen werden kann.

Ziel dieser Arbeit ist ein Vergleich der genannten Verfahren im Hinblick auf Konvergenzver-
halten sowie auf Speicherbedarf und Laufzeit.

Gliederung

Die Arbeit ist in folgender Weise gegliedert:
Kapitel 2 — Ausgangsproblem: definiert das Ausgangsproblem

Kapitel 3 — Losungsverfahren: stellt die im Rahmen dieser Arbeit implementierten Ver-
fahren vor

Kapitel 4 — Implementierung: stellt die wichtigsten Funktionen der Implementierung dar.

1 Einleitung

Kapitel 5 — Ergebnisse: enthilt die Aufbereitung und Analyse der Ergebnisse der Imple-
mentierung.

Kapitel 6 — Zusammenfassung und Ausblick: fasst die Ergebnisse der Arbeit zusammen
und stellt Ankniipfungspunkte vor.

2 Ausgangsproblem

Im Rahmen dieser Arbeit werden verschiedene iterative Verfahren zur numerischen Behand-
lung elliptischer partieller Differentialgleichungen verglichen. Alle im Laufe dieser Arbeit
vorgestellten Verfahren werden dabei anhand eines typischen Modellproblems vorgestellt.
Dabei wird das einfachste nichttriviale Beispiel gewahlt, die Poisson-Gleichung —Au = f.

Diskretisiert man die Differentialgleichung auf dem Einheitsquadrat 2 = (0,1) x (0, 1) mit
der Maschenweite h = %, so ergibt sich dabei ein n x n-Gitter mit n? Gitterpunkten. Diese
Werte dieser Punkte werden mit u; ; bezeichnet und mit u(x,y)) = u(i - h, j - h) berechnet,
wobei die Randpunkte von €2 die Werte u|r = ur haben. Die Punkte u; ; fur¢,j = 1,...,n—2
bezeichnet man als innere Gitterpunkte. Daraus kann folgendes lineares Gleichungssystem
aufgestellt werden:

(2.1) Au=f

mit den Unbekannten

Uo,0 Uo,1 o Upn—1
U1,0 Ui o Ulp—1
u =
Up—-1,0 Un-1,1 °°° Up—1n-1

wobei die Werte der Randpunkte u; ; firi = 0,7 =n — 1, j = Ound j = n — 1 durch die
Randbedingungen vorgegeben sind, und den Konstanten

Joo Jfoi 0 fon-1
fe fi0 Jir o finr

fn—l,O fn—l,l T fn—l,n—l
A lasst sich zerlegenin A = D — E — F', wobei

« D der Diagonalanteil von A,

« F die strikte untere Dreiecksmatrix,

2 Ausgangsproblem

« F'die strikte obere Dreiecksmatrix ist

Zur Losung dieses linearen Gleichungssystems gibt es nun verschiedene Méglichkeiten
[Meh15].

2.1 Direkte Losungsverfahren

Wiéhrend iterative Verfahren immer nur eine Annaherung an die Losung bieten, 16sen direkte
Verfahren, wie die Gau3-Elimination, immer exakt. Da der Rechenaufwand gegeniiber den
iterativen Verfahren jedoch deutlich grofler ist, und man zudem durch die Diskretisierung
der Differentialgleichung bereits einen Fehler in dem linearen Gleichungssystem hat, eine
exakte Losung demnach sowieso nicht moglich ist, werden die iterativen Verfahren in diesem
Fall als Loser bevorzugt.

2.2 Iterative Losungsverfahren

Das obige lineare Gleichungssystem 2.1 des Modellproblems lasst sich mit iterativen Verfah-
ren relativ effizient ndherungsweise 16sen, wobei die Qualitat der Losung von der Feinheit
des Gitters abhingt; eine feinere Abtastung ermoglicht eine genauere Diskretisierung und
damit ein Ergebnis, das die Losung besser Approximiert. Das Problem dabei ist, dass iibli-
cherweise der Aufwand fiir einen Schritt des iterativen Verfahrens mit steigender Anzahl an
Gitterpunkten deutlich steigt, sodass ein Optimum zwischen Genauigkeit und Geschwindig-
keit gefunden werden muss. Bei manchen Verfahren hiangt die Konvergenzrate zudem an
der Feinheit des Gitters. Eine Verdopplung der Gitterpunkte kann eine deutlich Abnahme
der Konvergenzgeschwindigkeit bedeuten. Iterative Verfahren starten tiblicherweise mit
einem zufillig gewahlten Startvektor g, der in jedem Iterationsschritt um einen Fehleranteil
korrigiert wird, wodurch pro Iteration eine neue Losungsanndherung entsteht:

m+1

22 W—u st s um e o

Fir die Losungsverfahren wird, so nicht anders angegeben, der Finite-Elemente-Stern ver-
wendet, der folgendermafien aussieht:

1 -1 -1
(2.3) 108 -1
1 -1 -1

Im Folgenden werden verschiedene iterative Verfahren vorgestellt, implementiert und an-
schlielend analysiert.

10

3 Losungsverfahren

3.1 GauB-Seidel-Verfahren

Eines der einfachsten Iterationsverfahren ist das Gaufl-Seidel-Verfahren. Dabei wird fiir
jeden Gitterpunkt in jedem Iterationsschritt iiber das gesamte Gitter iteriert, wobei jeder
Gitterwert um einen Fehleranteil korrigiert wird, sodass sich die Gitterwerte nach und nach
der Losung anniahern. Ausgehend vom zufillig gewahlten Startgitter u,, wird dabei eine
Folge von korrigierten Gittern u; berechnet[Hac91]. Dabei wird fiir jeden Gitterpunkt die
Gleichung

(3.1) fig =8 wij — Wii1j-1 —Ui—1j — Uim1j41 — Uij—1
Wi jp1 = Witl,5-1 — WUitl,j — Uil j+1

fiir jede Unbekannte u; ; mit ¢, j := 1, ..., n—1 geldst. Die Randwerte des Gitters werden zwar
fiir die Berechnung verwendet, sind als Randbedingungen jedoch auf einen Wert festgelegt.
Der Fehler, sprich die Abweichung des aktuellen Wertes von der Losung, lasst sich reduzieren,
indem man fiir jeden Punkt das Gauf3-Seidel-Verfahren als Gléatter anwendet:

(3.2) wig =18 (fij — Uimijo1 = Uim1j = Uis1j41 — Uij-
Ui j41 — Wid j—1 — Wit1j — Uit j+1)

Algorithmus 3.1 zeigt das Gauf3-Seidel-Verfahren.

Algorithmus 3.1 Gau3-Seidel-Verfahren

procedure GS(u, f)
while iterator < iterations do
for k =1tondo
for k =1tondo
Ui 5 = 1/8 : (fzy — Uj—1,5—1 — Ui—1,5 — Ui—1 541 — Ujj—1
—Uj g1 — Uig1, -1 — Wit1,j — Uit1 1)

end for
end for
iterator++
end while
end procedure

11

3 Ldésungsverfahren

Das Gauf3-Seidel-Verfahren arbeitet, im Gegensatz zu dhnlichen Verfahren wie etwa dem
Jacobi-Verfahren, in-place. Das bedeutet, dass die entsprechenden Gitterwerte bereits in-
nerhalb eines Iterationsschrittes aktualisiert werden, wodurch der Speicherbedarf geringer
ist. Dies gilt allerdings nicht fiir die Normalformen des Gauf3-Seidel-Verfahrens, die eine
modularisierte Variante des Gauf3-Seidel-Verfahrens erlauben:

(3.3) um™tt = M@y 4 NCS f
mit

« MY =(D—-E)"'F

« N6 =(D-E)!

Das Gauf3-Seidel-Verfahren aktualisiert also pro Iteration nur die direkt benachbarten Punkte
um die Information aus einem Punkt. Daher ben6tigt man im ungiinstigsten Fall n Iterationen,
um zum Beispiel Punkt u; ; um den Wert aus Punkt w,,_; ,,_; zu aktualisieren.

Abbildung 3.1: Gau3-Seidel angewendet auf ein 17 x 17-Gitter
von links: Startvektor, 1 Iteration, 10 Iterationen, 100 Iterationen

Betrachtet man Abbildung 3.1, die den Zustand des Gitters u°, u!, u'° und u'% des linearen
Gleichungssystems Au = 0 mit den Randwerten u|r = 0 nach 0,1,10 und 100 Iterationen des
Gauf3-Seidel-Verfahrens darstellt, so fallt auf, dass das Verfahren in den ersten paar Iterati-
onsschritten den Fehler noch schnell korrigiert, danach jedoch stark abfillt und den Fehler
nur noch langsam reduziert. Dies liegt darin begriindet, dass sich der Fehler tiber das ganze
Gitter gesehen in hoch- und niederfrequente Anteile relativ zur Anzahl der Gitterpunkte
zerlegen lasst. Die hochfrequenten Anteile lassen sich leicht auf dem Gitter glatten, man
sieht jedoch auch, dass der niederfrequente Anteil sich nur schlecht glatten lasst, da hier
in jedem Iterationsschritt nur ein minimaler Anteil korrigiert werden kann. Der Grund fiir
dieses Verhalten liegt in Formel 3.2: Es werden nur die unmittelbar benachbarten Punkte
zur Berechnung des aktualisierten Wertes herangezogen. Zur Korrektur des hochfrequenten
Fehleranteil ist dies kein Problem, da zwischen den Werten zweier benachbarter Gitter-
punkte eine grofie Differenz liegt. Die Korrektur des niederfrequenten Anteils hingegen ist
deutlich iterationsaufwendiger, da die Differenz zwischen den Werten zweier benachbarter
Gitterpunkte nicht grof3 ist.

12

3.2 Mehrgitterverfahren

Daran zeigt sich, dass das Verfahren, obwohl es letztendlich gegen die Losung konvergiert, die-
ses zu langsam macht, als dass man es sinnvoll einsetzen konnte. Es wird sich jedoch zeigen,
dass das Gauf3-Seidel-Verfahren gut als Glatter fiir die in den folgenden Kapiteln beschriebe-
nen Mehrgitterverfahren geeignet ist. Dabei wird zuerst das klassische Mehrgitterverfahren
nach Hackbusch [Hac91] vorgestellt, das, bewiesen und bekannt, als Kontrollverfahren fiir
das neue und weniger erforschte additive Mehrgitterverfahren nach [VY14] dienen soll.

3.2 Mehrgitterverfahren

Mehrgitterverfahren gehoren zu den am schnellsten konvergierenden iterativen Verfahren.
Wie in Kapitel 3.1 beschrieben, gibt es verschiedene Fehleranteile mit unterschiedlichen
Frequenzen, womit das Gauf3-Seidel-Verfahren nicht gut zurechtkommt. Wenn man die
Fehleranteile jedoch genauer betrachtet, fallt auf, dass die Frequenz der Fehler immer relativ
zur Anzahl der Gitterpunkte ist. Wenn man also weniger Gitterpunkte betrachtet, ist der
Fehler niederfrequenter und damit leichter zu korrigieren.

Diese Moglichkeit macht man sich bei den Mehrgitterverfahren zunutze, indem man den
Fehler auf unterschiedlich fein aufgeldsten Gittern korrigiert.

Die Mehrgitterverfahren nutzen eine Hierarchie von Gleichungssystemen, bei denen auf
jeder Ebene ein lineares Gleichungssystem der Form A,x, = b, gelost werden muss. Wenn
das Ausgangsgitter der Stufe /, also x; (und dementsprechend auch das dazugehoérende
Konstantengitter by) n x n Gitterpunkte hat, so sollen die beiden Gitter der nachstgroberen
Hierarchiestufe ¢ — 1, also z;_; und b,_;, noch % X % Gitterpunkte haben.

Dieses gilt sinngemaf} auch fiir die nachsten Stufen der Hierarchie von Gleichungssystemen,
bis hin zur Gitterstufe ¢/ = 0, bei der nur noch 1 innerer Gitterpunkt, umgeben von 8
Randpunkten, vorhanden ist.

Um aus dem Gleichungssystem der Stufe ¢ das Gleichungssystem der Stufe ¢ — 1 abzuleiten,
benotigen wir fiir jede Gitterstufe

« eine Prolongation, die die Korrekturwerte von einem groben auf ein feines Gitter
ibertragt,

« eine Restriktion die das Residuum von einem feinen auf ein grobes Gitter tibertragt,
« und einen Glitter, der eine Losungsapproximation fiir die aktuelle Stufe liefert.

Zudem benétigt man eine Moglichkeit, das Residuum zu Berechnen, das durch die Restriktion
restringiert werden soll, sowie eine Grobgitterkorrektur, die die aktuelle Losung um die
prolongierten Werte der groberen Stufe korrigiert. Diese Operatoren werden im folgenden
Abschnitt beschrieben.

13

3 Ldésungsverfahren

3.2.1 Glatter

Der Glatter hat beim Mehrgitterverfahren die Aufgabe, fiir jede Gitterstufe ¢ eine Losungs-
approximation zu liefern. Da wir das Mehrgitterverfahren nutzen wollen, um das Problem
der niederfrequenten Fehleranteile zu losen, brauchen wir ein Losungsverfahren, dass sich
in erster Linie um den hochfrequenten Fehleranteil kimmert. Wie wir in Kapitel 3 gesehen
haben, ist das Gauf3-Seidel-Verfahren ein ebensolcher Loser. Eine Iteration des GS-Verfahrens
ist relativ glinstig und korrigiert dabei bereits einen grofien Anteil des Fehlers. Fiir eine erste
Version kann man das GS-Verfahren sowohl als Vor- und Nachglétter, als auch als Direktloser
fir die feinste Stufe verwenden.

Das in Kapitel 3.3 beschriebene additive Mehrgitterverfahren nutzt allerdings fiir die Glat-
tung eine zerlegt Form des Gauss-Seidel-Verfahrens. Um eine Vergleichbarkeit der Verfahren
herstellen zu kénnen, wird das multiplikative Mehrgitterverfahren als Nachglatter den so-
genannten Rickwirts-Gauf3-Seidel nutzen, bei dem die Iteration tiber das Gitter einfach in
umgekehrter Reihenfolge stattfindet, sprich in Gleichung 3.2 wird nicht, wie bisher, tiber
1,7 =1,...,n — 1 iteriert, sondern Giber 7, j = n — 1, ..., 1. Da fiir das Mehrgitterverfahren
verschiedene Glatter moglich sind, stellt dies fiir die Konvergenzeigenschaften der Mehrgit-
terverfahren keine Einschrankung dar.

3.2.2 Prolongation

Um die Werte des groben Gitters auf das feine Gitter zu iibertragen, benotigt man einen
Operator, der eine lineare Abbildung vom groben auf das feine Gitter erméglicht, und zwar die
sogenannte Prolongation, definiert als eine lineare Abbildung vom groben aufs feine Gitter.
Dabei bietet sich der Einfachheit halber an, als Prolongation stiickweise lineare Interpolation
zwischen den Gitterpunkten des groben Gitters zu verwenden. Die Prolongation P ist
definiert als

(3.4) Pffl S Up_q —> Uy

wobei P den Stern

VARVARYA
(3.5) 2 1 1
Yy 1y 1y

14

3.2 Mehrgitterverfahren

und die sogenannte Neunpunktprolongation darstellt. Daraus ergibt sich eine Reihe von
Gleichungen mit denen man tiber das Gitter traversiert:

(36) Upfy = Uiy

(3.7) us 2 = 2 2t 41 ug)

(3.8) Ugj%ﬁl = 1/2<Uf,j+1 + Ufg)

(3.9) U§j11 25 = 1/2<uffl,j + Ufg)

(3.10) Upfaj = Y2(ui oy)

(3.11) Ugﬁl 2i+1 T 1/4<Uf+1 ;t uf,jJrl T Uiy 1t uf])
(3.12) Ut gjn = Yy ge +up o Uiy tug)
(3.13) ustl o = Valug 4 g+ uf o +up)
(3.14) us ! 2j41 = 1/“(“571,]' + “f,jﬂ + uf—l,jﬂ + “fj)

3.2.3 Residuumsberechnung

Um die Werte des Gitters der Stufe ¢ auf das nichstgrobere Gitter mit der Stufe ¢ + 1 zu
tibertragen, bendtigt man die Restriktion. Diese tibertragt das Residuum von u,, und nicht u,
selber auf ein groberes Gitter. Das Residuum eines Gitters u, berechnet man durch f;, — Ayuy,
wodurch fir jedes u; ;, miti,j = 1,...,n — 1 gilt:

VY ¢ ¢ ¢
(3.15) Tig = fu - (8- Uij — Upq -1~ U1
¢ ¢
U141 — Uij-1
¢ ¢
U1 — Wip15-1
¢ ¢
Uip1,5 — uz’—l—l,j—‘rl)

3.2.4 Restriktion

Die Restriktion ist definiert als eine lineare Abbildung vom feinen Gitter auf das grobe
Gitter. Dabei wird als Restriktion R einfach die transponierte Prolongation verwendet. R ist
definiert als

(3.16) Re = (Pf_l)T D Up = Up_q

wobei R den Stern

1/4 1/2 1/4
(3.17) 2 1 1/

1/4 1/2 1/4

15

3 Ldésungsverfahren

und damit die Neunpunktrestriktion darstellt. Daraus ergibt sich eine Gleichung, mit der
man iiber die Gitterpunkte traversiert:

(3.18) Uij = Toigj + Y2 (Toic12j + Toir125 + Toigjen + T2i2j-1)

+ Vi (roim12j-1 + To1,2j41 + T2i41,2j—1 + T2i-1,2j41)

3.2.5 Grobgitterkorrektur

Um das Eingabegitter u,, mit den Werten des Fehlergitters e, zu korrigieren, werden die
Werte der beiden Gitter komponentenweise addiert. Voraussetzung dafiir ist, dass die Werte
der groberen Gitterstufen durch die Prolongation auf die feinste Gitterstufe iibertragen
wurden, da eine Addition ansonsten nicht moglich ist.

(3.19) u™ =y ™

3.2.6 Zweigitterverfahren

Das einfachste Verfahren, das mit mehreren Gitterstufen arbeitet, ist das Zweigitterverfahren.
Dabei wird die Restriktion nur einmal durchgefiihrt, es arbeitet also nur auf zwei Gitterstufen.
Der Algorithmus 3.2 zeigt den Ablauf dieses Verfahrens:

Algorithmus 3.2 Zweigitterverfahren

procedure ZG(uy, f)

GS(uy, fr)
ry= bf — AUf
re = Riyr;

€. = A;IITC

er = Phe,

ur =uy+ ey
GS(Uf,ff)

end procedure

In einem Iterationsschritt des Verfahrens werden die Werte des Startgitters durch eine Iterati-
on des Gauf3-Seidel-Verfahres vorgeglattet, das Residuum des geglatteten Gitters wird auf das
nédchstgrébere Gitter restringiert. Auf dieser Gitterstufe wird das Korrekturgitter der Grobgit-
terstufe e. durch Al}l r. berechnet, was man durch eine grofle Anzahl an Glatteriterationen
erreichen kann. Das Startgitter wird anschlieend um die prolongierte Losungsapproximation
korrigiert sowie nachgeglattet.

16

3.2 Mehrgitterverfahren

Sollte die Qualitat der Approximation noch nicht ausreichend sein, so wiederholt man das
ganze Verfahren entsprechend oft.

Dieses Verfahren konvergiert deutlich schneller als das Gauf3-Seidel-Verfahren, die Laufzeit
einer Iteration ist allerdings aufgrund der Vor- und Nachglattung sowie der grofien Anzahl
an Grobgitter-Gauf3-Seidel-Iterationen deutlich schlechter.

3.2.7 Mehrgitterverfahren

Wihrend das Zweigitterverfahren nur einmal auf ein groberes Gitter wechselt, arbeitet das
Mehrgitterverfahren auf allen moglichen Gitterstufen, d.h. die Restriktion wird durchgefiihrt
bis nur noch ein innerer Gitterpunkt verfiigbar ist. Fiir diesen wird das entsprechende
Gleichungssystem durch Anwendung des Gauf3-Seidel-Verfahrens korrekt geldst. Statt also
auf der groberen Gitterstufe das Gauf3-Seidel-Verfahren anzuwenden, fithrt man erneut einen
Mehrgitterschritt durch. Dadurch erhalt man ein rekursives Verfahren, dessen Ablauf in
Algorithmus 3.3 zu sehen ist:

Algorithmus 3.3 Mehrgitterverfahren

procedure MMG(uy, f7)

if { = 0 then
GS(uy, fr)

else
GS(u, fo)
Ty = bf — AU[
re-1 = Riyry
er—1 = MMG(ep—1,7¢-1)
er = Ples
Up = Uy + €y
GS(W, fe)

end if

end procedure

Dieses rekursive Verfahren wird auch V-Zyklus genannt, da die Gitterstufen V-férmig von
feinsten tiber bis zum grobsten Gitter restringiert und anschliefend vom grobsten zum
feinsten prolongiert werden. Auch bei diesem Verfahren kann man die Qualitat der Losungs-
approxmiation durch iterative Anwendung verbessern.

Dieses Verfahren konvergiert ebenfalls schneller als das Gauf3-Seidel-Verfahren und ist dabei
in der Ausfithrung deutlich schneller als das Zweigitterverfahren, da beim Zweigitterver-
fahren eine grofie Anzahl an Gauf}-Seidel-Iterationen auf der Grobgitterstufe stattfindet,

17

3 Ldésungsverfahren

wohingegen sich beim Mehrgitterverfahren auf jeder Gitterstufe die Anzahl der zu berech-
nenden Werte um ¥4 reduziert. Der Rechenaufwand des Mehrgitterverfahrens verhalt sich
dabei linear zur Anzahl der Gitterpunkte.

Dementsprechend ist die zu erwartende Laufzeit des Zweigitterverfahrens deutlich schlechter
als die des Mehrgitterverfahrens.

Um eine Vergleichbarkeit mit dem im folgenden Kapitel 3.3 vorgestellten additiven Mehrgit-
terverfahren zu ermoglichen, wird die Nachglattung bei Vergleichen dieser beiden Verfahren
durch das vorher beschriebene Riickwirts-Gauf3-Seidel-Verfahren geglittet, bei dem statt
von Gitterpunkt 1, 1 nach n — 2, n — 2 zu iterieren von n — 2, n — 2 nach 1, 1 iteriert wird.

3.3 Additives Mehrgitterverfahren

Das in Kapitel 3.2 beschriebene multiplikative Mehrgitterverfahren besitzt bereits eine hohe
Konvergenzgeschwindigkeit. Die Laufzeit der Berechnungen ist jedoch dadurch beschrankt,
dass die Operationen sequentiell durchgefithrt werden miissen. Mochte man deutlich schnel-
ler werden, so kann man an dem Verfahren nicht mehr viel optimieren; einen messbaren
Geschwindigkeitszuwachs erhélt man nur noch durch Parallelisierung der Berechnungen.
Leider haben die meisten Loser das Problem, dass sie sich nicht oder nur schlecht parallelisie-
ren lassen - es gibt Verfahren, um das Mehrgitterverfahren, wie in Kapitel 3.2 vorgestellt, zu
parallelisieren, indem man das zu l6sende Gitter nach mehr oder minder komplexen Verfah-
ren aufteilt, dabei entsteht allerdings ein gewaltiger Kommunikationsaufwand, was fiir eine
parallele Implementierung nicht erwiinscht ist. Statt nun horizontal zu parallelisieren, also im
V-Zyklus auf einer Gitterstufe die Operationen zu parallelisieren, parallelisiert man vertikal:
Man berechnet samtliche Gitterstufen parallel [VY14]. Das additive Mehrgitterverfahren,
auch BPX genannt, setzt genau dieses um. Gegeniiber dem multiplikativen Mehrgitterver-
fahren kann es beim BPX unter Umstédnden zu Problemen mit der Stabilitit kommen. Daher
haben die Mathematiker P.S. Vassilevski und U.M. Yang ein Verfahren entwickelt, dass die
Stabilitat der multiplikativen Mehrgitterverfahren mit den Laufzeiteigenschaften der additi-
ven Verfahren kombiniert. Dabei lassen sich die Operationen des bisherigen multiplikativen
Mehrgitterverfahrens teilweise wiederverwenden.

3.3.1 Operatoren

Das additive Mehrgitterverfahren funktioniert grundsatzlich nach den gleichen Prinzipien
wie das multiplikative Mehrgitterverfahren aus Kapitel 3.2. Dazu miissen die bekannten
Operatoren leicht erweitert bzw. verandert werden.

Statt des bisher verwendeten Verfahrens wird eine Zerlegung des modularisierten Gauf3-
Seidel-Verfahrens verwendet, wie sie in Gleichung 3.3 beschrieben ist. Dabei wurde gezeigt,

18

3.3 Additives Mehrgitterverfahren

dass das multiplikative Mehrgitterverfahren mit Rickwérts-Gauss-Seidel als Nachglétter den
in Gleichung 3.20 beschriebenen Mehrgitteroperator hat, der dhnliche Eigenschaften wie der
des additiven Mehrgitterverfahrens aus Gleichung 3.21 hat [VY14].

Demnach ist es moglich, statt jeweils einer Iteration des Gaufi-Seidel-Verfahrens als Vor-
und Nachglatter sowie auf der grobsten Gitterstufe als Direktloser zu verwenden, auf jeder
Gitterstufe die Operation N (symmetrisierter Glatter, Formel 3.22) in Kombination mit den
geglatteten Varianten der Prolongation und Restriktion zu verwenden, um das selbe Ergebnis
zu erhalten.

Dementsprechend sollten beide Verfahren exakt die gleiche Losung liefern.

(3.20) NJMG — Ny 4 (I — NFA)Pf NJUMERE (T — AyNy)
Z — —_ —
(3.21) NedME =N "(P;NR;)
j=0
(3.22) Ny = N/ D,N,

Prolongation

Die bisher bekannte Prolongationsoperation wird nur um eine Glattungsoperation erweitert
und ergibt damit die sogenannte geglattete Prolongation.

(3.23) Pl =(I— N/ A)P,,

Restriktion

Fir die Restriktion gilt prinzipiell das gleiche wie fiir die Prolongation, hier muss man
allerdings auch die Glattungsoperation transponieren.

(3.24) (P)" = (I - N/A)P_)" =R, = - AN)R;_,

19

3 Ldésungsverfahren

3.3.2 Mehrgitteraufruf

Der Algorithmus 3.4 zeigt den Algorithmus der beschriebenen Variante des additive Mehr-
gitterverfahrens.

Algorithmus 3.4 additives Mehrgitterverfahren

procedure AMG(uy, f7)
fork=1/,...,0do
Ty = bg — AU,g
Te—1 = R’}{W
end for
fork=1/,....0do
€y —]\77’[
end for
fork=1/,..0do
Uy = Up + (Pﬁ)geg_l
end for
end procedure

Die zweite for-Schleife ist parallelisierbar, da alle notwendigen Daten durch die Restriktions-
schleife, die erste for-Schleife, berechnet wurden. Dieser Schritt muss zwangslaufig parallel
erfolgen, die Restriktion von u,_; nach u,_, kann erst passieren, wenn die Restriktion von
ug nach u,_, abgeschlossen ist.

Theoretisch kann man damit so viele Rechenwerke, wie man Gitterstufen hat, auslasten.
Um optimale Geschwindigkeit zu erreichen, reicht jedoch auch eine Verteilung auf mehrere
Rechenwerke, da der Rechenaufwand fir das feinste Gitter am hochsten ist. Fir alle feineren
Gitter viertelt sich die Anzahl der benétigten Operationen, sodass man diese auf weniger
Rechenwerke verteilen kann und trotzdem noch eine theoretische Maximallaufzeit von ¢, hat.
Auch die Prolongation kann parallel erfolgen, am Ende eines Mehrgitterzyklus werden jedoch
alle Korrekturgitter in der Grofle der feinsten Gitterstufe vorliegen, aufeinander aufaddiert
und anschlieflend zur Fehlerkorrektur verwendet. Daran zeigt sich schon ein potentielles
Problem: Um die Losungsapproximation von ¢ Gitterstufen abzuspeichern, benétigt man
¢ - M0, wenn man die Operationen und die Speicherverwaltung méglichst einfach halten
will. Demgegeniiber benétigt das multiplikative Mehrgitterverfahren nur 1,5 - M0, da hier
rekursiv auf einer Datenstruktur gearbeitet wird.

Eine genaue Analyse der Speicher- und Laufzeitproblematik der Implementierung aus dem
folgenden Kapitel folgt in Kapitel 5

20

4 Implementierung

In diesem Kapitel wird die programmiertechnische Seite der Implementierung vorgestellt.
Die gesamte Arbeit wurde in C nach Standard C99 geschrieben und mit GCC unter Linux
kompiliert. Die Steuerung des Programms findet durch ein Shell-Skript statt, das einen
vereinfachten Aufruf sowie eine Aufbereitung der Ergebnisse iibernimmt und sich dabei
auch noch um das Aufrdumen der temporaren Dateien kiimmert.

Im Allgemeinen wurde bei der Implementierung mehr auf Speichereffizienz als auf Schnel-
ligkeit Wert gelegt. Dies ist unter anderem an der haufigen Allokation von Hilfsgittern
erkennbar; das Programm wiirde moglicherweise deutlich schneller durchlaufen, wenn ge-
rade die Hilfsgitter, die haufig verwendet werden, am Anfang alloziert wiirden. Einerseits
miissten dann deutlich mehr Pointer iibergeben werden, was die Signaturen verlangern und
damit die Lesbarkeit reduzieren und die Komplexitat erh6hen wiirde. Andererseits wire es
nicht unbedingt ein Nachteil, dass das Programm fiir die gesamte Laufzeit einen grofen
Bereich des Arbeitsspeichers alloziert - so steht von Anfang an fest, dass das Programm die-
sen Bereich nutzen kann. Bei der dynamischen Allokation und Freigabe kann es theoretisch
vorkommen, dass ein anderes Programm von einer auf die nichste Iteration den Speicher
belegt - das Programm wiirde abstiirzen. Da das Ziel der Arbeit jedoch die Implementierung
eines iibersichtliches Programms war, bei dem man Zugrift auf verschiedenste Parameter
und Eigenschaften hat, wurden Laufzeitnachteile gegeniiber Speicheroptimierung in Kauf
genommen.

Der Code wurde zur einfacheren Nutzung auf mehrere Bibliotheken aufgeteilt, wobei die
Trennung in Abhéngigkeit der Funktionalitét erfolgt. Die Bibliothek memory . c enthélt die
Speicheroperationen, grid. c die grundlegenden Gitteroperationen wie Addition und Skalie-
rung. Die Mehrgitter- (nultigrid.c) sowie die Glatterbibliothek (smoother. c) enthalten
die eigentlichen Loser, wiahrend das Rahmenprogramm in main. c zu finden ist. Funktionen
zur Ein- und Ausgabe sind in io. ¢ eingeordnet.

4.1 Datenstruktur

Die Daten, auf denen gerechnet wird, miissen im Arbeitsspeicher abgelegt werden. Fiir das
Poisson-Problem wird das lineare Gleichungssystem Au = f gelost. Dafiir muss man zwei

21

Gl W DN =

4 Implementierung

Gitter vorhalten: Zum einen das Gitter u, dass die Arbeitsdaten enthalt, zum anderen das
Gitter f, dass die Konstanten enthilt.

Da man sowohl die Randpunkte, als auch die Gitterpunkte fiir die Berechnung benétigt, auch
wenn die Randpunkte nicht zur Losung gehoren, werden diese in einem gemeinsamen Gitter
gespeichert. Fiir die MG-Verfahren, die auf den groberen Gittern keine Randbedingungen
mehr haben, sind diese Randwerte einfach Null.

Wihrend man fiir kleine Probleminstanzen mit Gittergrofien im Bereich von 1000 x 1000
noch statische Arrays verwenden kann, ist dies fiir grolere Gitterdimensionen nicht mehr
moglich. Deswegen wurde eine Datenstruktur implementiert, die Gittergrofien theoretisch
nur von der Grofle des Arbeitsspeichers abhangig macht.

Daher werden hier Speicherbereiche statisch alloziert. Die im Quellcode abgebildete Daten-
struktur stellt die notwendige Pointerstruktur bereit, mit der man einen Gitterpointer fiir ein
Gitter der Grofle |size| mit einem Pointer auf den Speicherbereich erzeugen kann. Dieser
erleichtert den Datenzugriff, da die Werte eines Gitters einfach iiber den Pointer erreicht
werden kénnen.
struct _grid{

int size;

doublexx grid;
i)'/pedef struct _grid _grid_t;
typedef _grid_t * _grid_p;

_grid_p ist also ein Pointer auf den Speicherbereich, an dem ein c-struct abgelegt ist,
dass aus einer Integerzahl fiir die Grofle des Gitters und einem weiteren Pointer auf den
Speicherbereich, an dem die Gitterpunkte abgelegt sind, besteht.

Zwei Funktionen stellen einfache Schnittstellen bereit, mit denen man einfach Gitter un-
ter Angabe eines Namens und einer Grofle anlegen (allocateGrid), und wieder freigeben
(freeGrid) kann. Dabei initialisieren die implementierten Allokationsfunktionen grundsatz-
lich alle Speicherbereiche mit 0, da dies nicht automatisch durch den Compiler geschieht.

4.2 Glatter

Im Rahmen dieser Arbeit werden mehrere Glitter verwendet. Neben dem einfachen
(Vorwirts- und Rriickwarts-) Gauf3-Seidel-Verfahren wird auch das in seine Normalformen
zerlegte Gauf3-Seidel-Verfahren benétigt.

22

0 N N U WD

—_
N = O O

4.2 Glatter

4.2.1 Gauss-Seidel-Verfahren

Im Folgenden ist die Implementierung des Vorwarts-Gauss-Seidel-Verfahrens nach Formel
3.2 abgebildet, dabei wird iiber alle inneren Gitterpunkte iteriert.

void simpleGaussSeidel(_grid_p u, _grid_p f){
int i,j;
for (i = 1; i < u->size-1; i++){
for (j = 1; j < u->size-1; j++){

u->grid[i][j] = 0.125%(u->grid[i-1][j-1] + u->grid[i-1][j]
+ u->grid[i-1][j+1] + u->grid[i][]j-1]
+ u->grid[i][j+1] + u->grid[i+1][j-1]
+ u->grid[i+1]1[j] + u->grid[i+1]1[j+1]
+ f-

>grid[il[j]);

}

Die fiir den Vergleich des multiplikativen und additiven Mehrgitterverfahrens bendtigte
Riickwarts-Gauf3-Seidel-Variante unterscheidet sich vom Vorwérts-Gauf3-Seidel nur durch
die Iterationsreihenfolge; man iteriert nicht zeilenweise von u,;; nach u,,_; ,_1, sondern
zeilenweise von u,,_1 ,,—1 nach u ;.
void simpleGaussSeidelB(_grid_p u, —grid_p f){

int i,j;

for (i = 1; i < u->size-1; i++){

for (j = 1; j < u->size-1; j++){

u->grid[il[j] = 0.125%(u->grid[i-1]1[j-1] + u->grid[i-1][j]
+ u->grid[i-1]1[j+1] + u->grid[i][j-1]
+ u->grid[i][j+1] + u->grid[i+1]1[j-1]
+ u->grid[i+1][j] + u->grid[i+1][j+1]
+ f-

>grid[1i][j]);

4.2.2 Modulares Gauss-Seidel-Verfahren

Fiir das additive Mehrgitterverfahren benétigt man Bestandteile des modularen Gauf3-Seidel-
Verfahrens. Die Zerlegung in zwei Funktionen erfolgt nach Formel 3.3. Dabei werden zwei
Gitter angelegt, in die die Ergebnisse der Berechnungen | = M%u sowie r = N f
gespeichert werden. Diese Gitter werden in Zeile 8 einfach addiert, anschlieend wird der
Speicher wieder freigegeben

23

O NN U W=

—_
[«>JNe)

11

O~ ON Ul v W DN =

O

10

4 Implementierung

void modularGaussSeidel(_grid_p u, _grid_p f){
int i,j;
—grid_p 1, r;
1 = allocateGrid(l, u->size);
r = allocateGrid(r, f->size);
mdotu(u, 1);
ndotb(f, r);
addGrid(l, r, u);
freeGrid(1);
freeGrid(r);

}

Die Hilfsfunktion mdotu implementiert die Formel [= M%“u:

void mdotu(_grid_p u, —grid_p 1){
int i,j;
for (i = 1; i < u->size-1; i++){
for (j = 1; j < u->size-1; j++){
1->grid[i][j] = 0.125%(l->grid[i-1]1[j-1]

+ l->grid[i-1]1[j+1]
+ u->grid[i+1]1[]]
+ u->grid[i+1]1[j-1]

1->grid[i][j-1]
1->grid[i-11[j]
u->grid[i] [j+1]
Uu->grid[i+1][j+11);

}

Die Hilfsfunktion ndotb implementiert die Formel r = N5 f:

void ndotb(_grid_p f, _grid_p r){
int i,j;
for (i =1; i < b->size-1; i++){
for (j = 1; j < b->size-1; j++){
r->grid[i][j] = 0.125%(r->grid[i-1]1[j-1] + r->grid[i][j-1]
+ r->grid[i-1][j+1] + r->grid[i-1][j]
+ f->grid[i]l[j]);

}

Fiir das additive Mehrgitterverfahren benétigt man zudem die Hilfsfunktion (N%)T:

void ndotbT(_grid_p f, _grid_p r){
int i,j;
for (i = b->size-2; i >0 ; i--){
for (j = b->size-2; j > 0; j--){
r->grid[il[j] = 0.125%(r->grid[i+1][j-1] + r->grid[i][j+1]
+ r->grid[i+11[j+1] + r->grid[i+1][j]
+ f->grid[i][j]);

24

0 0 N Uk W=

el el el el
O~ N Ul v DN = O N

19
20
21
22

R W N =

4.3 Mehrgitterverfahren

4.3 Mehrgitterverfahren

Fiir das Mehrgitterverfahren benétigt man Funktionen zur Berechnung von Residuum sowie
fir die Prolongation und Restriktion.

4.3.1 Prolongationsoperator

Die Prolongation als lineare Abbildung von einem groben auf ein feines Gitter wurde anhand
der Formeln 3.5 bis 3.14 implementiert:

void prolongation(_grid_p e_c, _grid_p e_f){
int 1,j, ii, jj;

for (i =

1; i < e_c->size-1; i++){

for (j =1; j < e_c->size-1; j++){
1i=(2%1i);
Ji=(2%3);

->grid[ii][jj]

_f->grid[ii-1][jj-1]

_f->grid[ii+1][jj-1]

->grid[ii+11[jj]
->grid[ii][jj+1]
->grid[ii-11[jj]
->grid[ii][jj-1]
->grid[ii+1][jj+1]

->grid[ii-1]1[jj+1]

e_c-
0.5x(e_c-
0.5x(e_c-
0.5%(e_c-
0.5x(e_c-

0.25%(e_c-

+ e_c-
0.25%(e_c-
+ e.c-
0.25%(e_c-
+ e_c-
0.25%(e_c-
+ e_c-

4.3.2 Restriktionsoperator

>grid[i][j];
>grid[i+1]1]]
>grid[i][j+1]
>grid[i-1]1[]]
>grid[i][j-1]
>grid[i][j]
>grid[i][j+1]
>grid[i][j]
>grid[i][j-1]
>grid[i][j]
>grid[i] [j-1]
>grid[i][j]
>grid[i][j+1]

+ 4+ 4+ + + o+ o+ + o+ +

c->grid[il[j]);
c->grid[il[j1);
c->grid[il[j1);
c->grid[il[j1);
c->grid[i+1]1[j1]
c->grid[i+1]1[j+1]);
c->grid[i-1][j]
c->grid[i-1]1[j-11);
c->grid[i+1][j1]
c->grid[i+1][j-11);
c->grid[i-11[j]
c->grid[i-11[j+11);

Die Restriktion als lineare Abbildung von einem feinen auf ein grobes Gitter wurde nach
Formel 3.19 implementiert:

void restriction(_grid_p u_c, _grid_p r){
int i, j, ii, jj;

for (i = 1;
for (j
ii=

(
(

1 < u_c->size -
1; j < u_c->size -

2xi);

jj: 2*j);
u_c->grid[il[j]1 = (r->grid[(ii)1[(jj)]

1; i++){
1; j++){

25

8

10
11
12
13
14

0N N U WN

4 Implementierung

+ 0.5 (r->grid[
+ r->grid[
+ 0.25%(r->grid[
+ r->grid[

ii-1)10(33)]
i) 10(j3-1)1]
1i-1)10(3j+1)]
1i+1)10(33-1)]

->grid[(ii+1)1[(jj)]
->grid[(i1)1[(jj+1)1)
->grid[(1i+1)1[(jj+1)]
->grid[(ii-1)1[0(jj-1)1));

+ + + o+
T T A |

—_~ o~~~

}

Das Residuum wird mithilfe der Formel » = (f — Au) berechnet:

void calculateRes(_grid_p u, —_grid_p f, _grid_p r){
int i, j;
for (i = 1; i < u->size-1; i++){
for (j = 1; j < u->size-1; j++){
r->grid[i]1[j] = f->grid[i][j] - ((8xu->grid[i][j])
- u->grid[i-11[j-1] - u->grid[i+1]1[j-1]
u->grid[i-1][j+1] - u->grid[i+1][j+1]
- u->grid[i][j-1] - u->grid[i-11[j]
u->grid[i][j+1] u->grid[i+1][j]);

4.4 Additives Mehrgitterverfahren

Dass additive Mehrgitterverfahren nutzt im Grunde genommen die Operatoren des mul-
tiplikativen Mehrgitterverfahrens. Allerdings kommen hier die geglittete Restriktion und
Prolongation (R, P) sowie der symmetrisierte Glatter (V) zum Einsatz.

4.4.1 Symmetrisierter Glatter

Die Funktione nBar berechnet N nach Formel 3.22

void nBar(_grid_p u, _grid_p f){
—grid_p help;
help = allocateGrid(help, f->size);
ndotb(f, help);
gridD(help);
ndotbT (help, u);
freeGrid(help);

26

—

2
3

4.4 Additives Mehrgitterverfahren

4.4.2 Geglattete Prolongation

Die geglattete Prolongation nutzt die in Kapitel 4.3.1 vorgestellte Prolongationsoperation,
dabei werden die prolongierten Werte werden anschlieBend mit (I — N7 A) geglittet. Dafiir
bendtigt man zwei Hilfsgitter grid und help, in denen die Zwischenergebnisse gespeichert
werden.

void prolongationBar(_grid_p e_c, _grid_p e_f){
_grid_p grid, help;
grid = allocateGrid(grid, e_f->size);
help = allocateGrid(help, e_f->size);
prolongation(e_c, grid);
gridA(grid, help);
ndotbT(help, e_f);
subGrid(grid, e_f, e_f);
freeGrid(grid);
freeGrid(help);

4.4.3 Geglattete Restriktion

Die geglattete Restriktion glattet die Werte des Gitters erst vor und nutzt anschlieflend die in
Kapitel 4.3.2 vorgestellte Restriktionsoperation. Analog zur Prolongationsoperation benétigt
man hierbei zwei Hilfsgitter, die anschlieSend nicht mehr benétigt und dementsprechend
freigegeben werden.

void restrictionBar(_grid_p u_c, _grid_p r){
_grid_p grid, help;
grid = allocateGrid(grid, r->size);
help = allocateGrid(help, r->size);
ndotb(r, help);
gridA(help, grid);
subGrid(r, grid, help);
restriction(u_c, help);
freeGrid(grid);
freeGrid(help);

4.4.4 Hilfsfunktionen

Fir die gegléttete Prolongation und Restriktion benétigt man A
void gridA(_grid_p u, —grid_p a){
int i,j;

for (i = 1; i < u->size-1; i++){

27

8

4 Implementierung

for (j = 1; j < u->size-1; j++){
a->grid[il[j] = ((8*u->grid[i][j])
- u->grid[i-11[j-11 - u->grid[i-11[j]
u->grid[i-11[j+1] - u->grid[i][j-1]
- u->grid[i][j+1] u->grid[i+1][j-1]
u->grid[i+1][j] u->grid[i+1][j+11);
}
}
}

Die Hilfsfunktion gridD berechnet den Diagonalanteil von A:

void gridD(_grid_p grid){
int i,j;
for (i = 1; i < grid->size-1; i++){
for (j = 1; j < grid->size-1; j++){
grid->grid[i][j] = 8xgrid->grid[i][j];
}
}
}

4.5 Die Verfahren

4.5.1 GS-Aufruf

Das iterative Gauf3-Seidel-Verfahren ist einfach - man fithrt hintereinander mehrmals die
Funktion simpleGaussSeidel() auf dem Arbeitsgitter u aus. Der genaue Aufruf ist in
Abschnitt 4.6 beschrieben

4.5.2 MG-Aufruf/ZG-Aufruf

Der folgende Quellcode zeigt die Implementierung der Algorithmen des Zwei- (Algorithmus
3.2) und Mehrgitterverfahren (Algorithmus 3.3). Hier sieht man nochmal die enge Verwandt-
schaft zwischen den beiden Verfahren. In den Zeilen 5-7 wird das iibergebene Gitter um
preSmooth Iterationen mit dem Gauf3-Seidel-Verfahren vorgeglattet, dementsprechend in
Zeilen 21-23 um postSmooth Iterationen mit dem Gauf3-Seidel-Verfahren nachgeglattet. Die
fir die nachste Gitterstufe benétigten Hilfsgitter mit halber Gitterweite werden angelegt,
das Residuum wird berechnet und auf die nachstgrobere Gitterstufe restringiert. Im Falle
des Zweigitterverfahrens werden 100000 Iterationen des Gauf3-Seidel-Verfahrens ausgefiihrt.
Das Mehrgitterverfahren ruft diese Funktion rekursiv auf, bis die grobste Gitterstufe mit
einem inneren Gitterpunkt erreicht wird. In dem Fall wird das Gitter durch eine Iteration des
Gauf3-Seidel-Verfahrens direkt gelost. Anschliefend werden die Rekursionsstufen riickwart

28

4.5 Die Verfahren

durchlaufen, dabei wird das Ergebnis jeweils auf die nachstfeinere Gitterstufe prolongiert
und als Korrektur verwendet. Nach Beendigung der Rekursion wurde das initiale Gitter
uy um das Ergebnis einer Iteration des Zwei- oder Mehrgitterverfahrens korrigiert. Durch
wiederholten Aufruf, etwa durch das Rahmenprogramm aus Kapitel 4.6, konnen mehrere
Iterationen des Mehrgitterverfahrens durchgefithrt werden.

void multigridSolver(_grid_p u_f, _grid_p f, int mode, int preSmooth, int postSmooth){

—grid_p e_c, e_f, r_f, r_c;
int 1i;

if((u_f->size/2) > 1){

for(i = 0; i < preSmooth; i++){
simpleGaussSeidel(u_f, f);

}

r_f = allocateGrid(r_f, u_f->size);

calculateRes(u_f, f, r_f);

e_c = allocateGrid(e_c, (u_f->size+l)/2);

r_c = allocateGrid(r_c, (u_f->size+l1l)/2);

e_f = allocateGrid(e_f, u_f->size);

restriction(r_c, r_f);

if(mode == 2){
gridAInv(e_c, r_c, 100000);
} else {

multigridSolver(e_c, r_c, mode, preSmooth, postSmooth);

}

prolongation(e_c, e_f);

coarseGridCorrect(u_f, e_f);

for(i = 0; i < postSmooth; i++){
simpleGaussSeidelB(u_f, f);

}

freeGrid(e_f)

freeGrid(e_c);

freeGrid(r_c);

freeGrid(r_f)

’

} else {

}

simpleGaussSeidel(u_f, f);

4.5.3 Aufruf des additiven Mehrgitterverfahren

Das additive Mehrgitterverfahren aus Algorithmus 3.4 ist der Einfachheit halber als eine
Funktion mit zwei Unterfunktionen implementiert. In Zeile 3 wird durch Aufruf der Funktion
calculateNumberofMGLevel(u) bestimmt, wie viele Stufen die Gitterhierarchie des Gitters
u besitzt. Damit wird in Zeile 5 das Array error angelegt, das zu jeder Gitterstufe einen
Pointer auf das jeweilige Korrekturgitter enthalt. Fiir die feinste Stufe wird in den Zeilen 8 und
9 der Korrekturwert fiir die feinste Gitterstufe berechnet. In Zeile 11 wird die Hilfsfunktion

29

19
20
21
22

13

15
16
17
18

4 Implementierung

fiir die Restriktion, in Zeile 12 die fiir die Prolongation aufgerufen. Anschlieffend wird das
Gitter um die Summe der Korrekturgitter jeder Gitterstufe korrigiert.

void additiveMGSolver(_grid_p u, _grid_p f){

int i, j, k;

int levelCount = calculateNumberOfMGLevel(u);
—grid_p correction, firstLevel;

—grid_p * error = malloc(levelCount * sizeof(_grid_p *));
correction = allocateGrid(correction, u->size);
firstLevel = allocateGrid(firstLevel, u->size);
calculateRes(u, f, firstLevel);
nBar(correction, firstLevel);
freeGrid(firstLevel);

restrictionHelper(u, f, error, levelCount);
prolongationHelper(error, levelCount);

for(k=0; k<levelCount; k++){

}

addGrid(correction, error[k], correction);

coarseGridCorrect(u, correction);
freeGrid(correction);
for(i = 0; i < levelCount; i++){

}

freeGrid(error[il]);

free(error);

Die Hilfsfunktion restrictionHelper () stellt dabei eine rekursive Funktion dar, die, analog
zum multiplikativen Mehrgitteraufruf, fiir jede Stufe der Gitterhierarchie das Residuum
berechnet, dabei allerdings fiir jede Gitterstufe das mit nbar berechnete Korrekturgitter im
Array error[(] ablegt.

void restrictionHelper(_grid_p u, _grid_p f, _grid_p * error, int level){
if(level > 0){

30

int i, j, k;

—grid_p residuum, uCoarse, bCoarse, helper;
residuum = allocateGrid(residuum, u->size);
uCoarse = allocateGrid(uCoarse, ((u->size+1)/2));
fCoarse = allocateGrid(fCoarse, ((u->size+1)/2));
helper = allocateGrid(helper, ((u->size+l)/2));
calculateRes(u, f, residuum);
restrictionBar(fCoarse, residuum);

nBar(helper, fCoarse);

error[level-1] = helper;
restrictionHelper(uCoarse, fCoarse, error, level-1);
freeGrid(uCoarse);

freeGrid(fCoarse);

freeGrid(residuum);

=R R e
G W DN =R OO

4.6 Das Rahmenprogramm

Die erhaltenen Korrekturgitter liegen anschlielend in der Grofle der jeweiligen Gitterstufe
vor. Die Hilfsfunktion prolongationHelper () fithrt die notwendigen Prolongationsschritte
durch, die, entsprechend dem Algorithmus, fiir jede Gitterstufe einzeln vorgenommen werden
miissen. Dabei werden die Pointer auf das Korrekturgitter einfach durch einen neuen Pointer
ersetzt, der auf das prolongierte Korrekturgitter zeigt.

void prolongationHelper(_grid_p * error, int level){

int i,j,k,1;

—grid_p helper;

for(k = 0; k < level; k++){

for(l = 0; 1 <= k; 1++){

helper = allocateGrid(helper, ((error[l]->sizex2)-1));
prolongationBar(error[l], helper);
freeGrid(error[l]);
error[l] = helper;

Diese Variante hat den Vorteil, dass sie sehr einfach ist. Da aber jede Stufe ein eigenes
Korrekturgitter hat, benétigt diese Hilfsfunktion sehr viel Speicherplatz (siehe Kapitel 5.2).

4.6 Das Rahmenprogramm

Damit die beschriebenen Verfahren als iterative Verfahren verwendet werden konnen, ist
ein wiederholter Aufruf derselben notwendig. Dieser wird durch eine Schleife innerhalb des
Hauptprogramms realisiert. Der folgende Abschnitt zeigt den Ausschnitt aus der Hauptfunk-
tion, die die iterativen Aufrufe ermdglicht. Der Code zum Initialisieren der Speicherstruktur,
der Parameter und der Messungen wurde entfernt, um den Codeausschnitt tibersichtlicher
zu machen.

int main(int argc, charx argv[]) {

for(counter = 0; counter < iterations; counter++){
switch(mode) {

case 1: simpleGaussSeidel(u,f);
break;

case 2: multigridSolver(u, f, true, mode, preSmooth, postSmooth);
break;

case 3: multigridSolver(u, f, true, mode, preSmooth, postSmooth);
break;

case 4: additiveMGSolver(u,f);
break;

default: printf();
break;

31

16
17
18
19
20
21

4 Implementierung

}

printf();
return 0;

}

Alle im Rahmen dieser Arbeit implementierten Funktionen stehen {iber das Rahmenpro-
gramm zur Verfigung, die Steuerung erfolgt dabei iiber folgende Parameter:

./main gridwWidth iterations sides mode preSmooth postSmooth path
» gridwidth: Weite des (feinsten) Gitters
« iterations: Anzahl der Iterationen
« sides: Schalter fir die Randwerte
« mode: Schalter fiir den zu verwendenden Loser
« pre-/postSmooth: Anzahl der Vor- und Nachglattungsschritte
« path: Pfad zum Ablageverzeichnis fiir Ergebnisdateien

Da fiir alle Verfahren ein und dasselbe Programm verwendet werden soll, wird der Parameter
mode als Schalter fiir das jeweilige Verfahren verwendet. 1 bedeutet dabei, dass das Gauss-
Seidel-Verfahren zum Einsatz kommt, 2 ist das Zweigitterverfahren, 3 das multiplikative und
4 das additive Mehrgitterverfahren. Der Schalter sides bietet die Optionen 1 fiir u|r = 0
und 1 fiir u|p = (sin(Z2%) -exp(%)).

Udim

Zur einfacheren Verwendung lasst sich das Programm alternativ iiber den Aufruf
./main manual

interaktiv ausfithren, wobei alle Parameter abgefragt werden.

32

5 Ergebnisse

5.1 Fehler- und Konvergenzanalyse

Die gesamten Ergebnisse wurden auf einem Intel Core i5 2520Mmit 16GB 1333MHz DDR3
RAM unter Linux Mint mit Kernelversion 3.16.0-38 generiert. Dabei wurden der Quellcode
mit dem Compiler GGC 4.8.4 und den Flags -1m -Wall (siehe auch Makefile) kompiliert.

5.1.1 Diskretisierungsfehler

Der Diskretisierungsfehler d der mten Iteration wird durch die Formel

1 Udim—1
(5.1) d" = | —5— > (ufy—ciy)
Udim =1
mit

* Ugim, die Gitterweite n = 1/» und
« ¢, dem Gitter, das die erwartete Losung enthalt

definiert. Die Berechnung dieser Werte ist besonders fiir die Uberpriifung der Korrektheit der
Verfahren von Interesse. Unabhangig von Konvergenz- und Ausfithrungsgeschwindigkeit
sollten alle approximativen Loser letztendlich gegen den gleichen Losungswert konvergieren.
Um nicht jeden Gitterpunkt einzeln vergleichen zu miissen, nutzt man die Norm iiber das
gesamte Gitter, wie in Formel 5.1 dargestellt. Ein Messwert, der schneller zu berechnen ist und
damit weniger Einfluss auf die Laufzeit hat, ist der Diskretisierungsfehler des Gitterpunktes

(/2,1/2):

(5.2) iy = Uija 1 = Copayiya

Die folgenden Tabellen wurden mit folgendem Aufruf des Programms erzeugt:

./main ug,, 1000 2 mode 1 1 ../data/

33

5 Ergebnisse

Die Verfahren werden damit 1000 Iterationen ausfuhren, wobei im Falle des Zwei- und Mehr-
gitterverfahrens jeweils ein Vor- und Nachglattungsschritt stattfindet. Die Ergebnisse werden
nach . ./data/ geschrieben. Das Programm approximiert dabei das lineare Gleichungssys-
tem Au = f mit f = 0 und ujpr = (sin(%) : exp(%)). Die Werte der erwarteten Losung

c berechnen sich dementsprechend wie die Randwerte von w.

Tabelle 5.1: Diskretisierungsfehler der Verfahren

Udim dgs dzc dnic dppx
5 0.173228 | 0.173228 | 0.173228 | 0.173228
9 0.046718 | 0.046718 | 0.046718 | 0.046718
17 | 0.012251 | 0.012251 | 0.012251 | 0.012251
33 | 0.003148 | 0.003148 | 0.003148 | 0.003148
65 | 0.000798 | 0.000798 | 0.000798 | 0.000798
129 | 0.000201 | 0.000201 | 0.000201 | 0.000201
257 | 0.000050 | 0.000050 | 0.000050 | 0.000050
513 | 0.000013 | 0.000013 | 0.000013 | 0.000013
1025 | 0.000003 | 0.000003 | 0.000003 | 0.000003

Die Werte in Tabelle 5.1 zeigen, dass alle Verfahren erwartungsgemaf gegen gleichen Wert, in
etwa O(h?) konvergieren. Damit liefern die implementierten Funktionen korrekte Ergebnisse
und sind demnach korrekt implementiert.

5.1.2 Konvergenzraten

Um festzustellen, wie schnell ein Verfahren konvergiert, bestimmt man A zu

1 Ugim—1

(5.3) P — — - Z (UZZJ>2

Udim =1

und daraus die Konvergenzrate

)\m—i—l

(5.4) A= lim

m—oo \™M

Da A — 1 fir h — 0, betrachtet man zusétzlich p:

/\m+1
)\m

(5.5) pr=1-—

34

5.1 Fehler- und Konvergenzanalyse

Um zu verhindern, dass man ungenaue Ergebnisse aufgrund der eingeschrankten Maschi-
nengenauigkeit erhélt, kann man nach jedem Iterationsschritt das Arbeitsgitter w,, mit 1/x
skalieren, sodass

(5.6) pr =1 ™

Die folgenden Tabellen wurden mit folgendem Aufruf des Programms erzeugt:
./main ug,, 1000 1 mode 1 1 ../data/

Dadurch werden alle Verfahren 1000 mal wiederholt, wobei im Falle des Zwei- und Mehrgit-
terverfahrens jeweils ein Vor- und Nachglattungsschritt stattfindet. Die Ergebnisse werden
nach . ./data/ geschrieben. Dabei approximiert das Programm das lineare Gleichungssys-
tem Au = f mit f = 0 und ur = 0. Die erwartete Lésung c ist dementsprechend ein
Nullgitter mit u; ; = 0. In jedem Iterationsschritt berechnet man mit den Formeln 5.3 und
5.6 die Werte der Konvergenzrate \.

Fir das Gauf3-Seidel-Verfahren sind keine besonders guten Konvergenzraten zu erwarten.
Diese sollten bei den Mehrgitterverfahren allerdings deutlich besser sein.

Tabelle 5.2: Konvergenzraten der Verfahren

Udim PGs PzG PMG PBPX
5 0.620803 | 0.900755 | 0.900755 | 0.900755

9 0.208364 | 0.855857 | 0.847202 | 0.847202
17 | 0.056322 | 0.838892 | 0.832469 | 0.832469
33 | 0.014362 | 0.834304 | 0.828810 | 0.828810
65 | 0.003608 | 0.839576 | 0.828725 | 0.828725
129 | 0.000903 | 0.836463 | 0.828463 | 0.828463
257 | 0.000226 | 0.835878 | 0.828333 | 0.828333
513 | 0.000057 | 0.836320 | 0.828339 | 0.828339
1025 | 0.000018 | 0.836399 | 0.828279 | 0.828279

Es zeigt sich dass, wie erwartet, das Gauf3-Seidel-Verfahren am langsamsten konvergiert,
wiahrend die Konvergenzrate des additiven und des multiplikativen Mehrgitterverfahrens
identisch und dabei von der Feinheit der Gitter, also h, unabhéngig ist. Daher funktioniert
das additive Mehrgitterverfahren genauso zuverlassig wie das multiplikative Mehrgitterver-
fahren, bietet dabei aber aufgrund seiner einfachen Parallelisierbarkeit einen potentiellen
Vorteil. Die Konvergenzraten des Zweigitterverfahrens sind sehr gut, dabei benétigt das
Verfahren aufgrund der hohen Anzahl der Gauf3-Seidel-Iterationen auf der Grobgitterstufe
jedoch sehr viel Rechenzeit.

35

5 Ergebnisse

Auf den ersten Blick scheint das additive Mehrgitterverfahren also ein ideales Verfahren zu
sein: Es hat gute besten Konvergenzeigenschaften und ist dabei einfach parallelisierbar. Bei
der genaueren Betrachtung fallen jedoch Nachteile dieser Implementierung ins Auge. Diese
werden im Folgenden vorgestellt.

5.2 Laufzeit- und Speicheranalyse

Die vorgestellten Verfahren unterscheiden sich teilweise deutlich in Speicher- und Rechen-
zeitbedarf. Die folgenden Abschéitzungen geben dabei den maximal zu erwartenden Spei-
cherverbrauch beziehungsweise die erwartete Laufzeit wieder.

5.2.1 Speicherbedarf

Der Speicherbedarf eines n x n-Gitters lasst sich durch
(5.7) M,» = n? - sizeof double

berechnen. Damit ergibt sich fiir ein Gitter mit 1025 x 1025 Gitterpunkte ein theoretischer
Speicherbedarf von etwa 8 Megabyte.

Das Gauf3-Seidel-Verfahren arbeitet in-place, dementsprechend erwartet man einen sehr
niedrigen Speicherbedarf, der sich eigentlich nur aus den beiden notwendigen Gittern « und
f zusammen. Daraus ergibt sich fiir das Gauf3-Seidel-Verfahren ein Speicherbedarf von

(5.8) Mgs = 2 - My,

Dabei steht M, fiir den Speicherbedarf eines n x n-Gitters, dementsprechend steht M,_; fiir
den Speicherbedarf eines § x 7-Gitters, wobei dieses aufgrund der halbierten Gitterweite
nur ein Viertel des Speicherbedarfs besitzt. Der Speicherbedarf des kleinstmoglichen Gitters,
eines 3 x 3-Gitters, wird mit My bezeichnet.

Das Zwei- und Mehrgitterverfahren bendtigt schon mehr Speicher, beim Zweigitterverfahren
benotigt man die beiden Gitter der nachstgroberen Stufe, beim Mehrgitterverfahren die der
gesamten Hierarchie von Gleichungssystemen. Zudem bendtigt man pro Stufe jeweils ein
Gitter fiir das Residuum und die Korrekturwerte. Dies bedeutet fiir das Zweigitterverfahren
einen Speicherbedarf von

(59) MZG - 4 : Mg + 2 . Mg,l == 45 : Mg

Bei einem u° gleicher Gitterweite benétigt das Zweigitterverfahren also 2.25 mal mehr
Speicher als das Gauf3-Seidel-Verfahren.

36

5.2 Laufzeit- und Speicheranalyse

Fiir das multiplikative Mehrgitterverfahren berechnet sich der Speicherbedarf aufgrund der
Abschiatzungen aus Kapitel 3.2 und der pro Gitterstufe benétigten Hilfsgitter zu

(5.10) Manic = 4 Mg+ 4 - Mp_y +4- Mg+ -+ 2-My = 5.5 M,

Fiir das additive Mehrgitterverfahren teilt sich der Speicherbedarf in den Speicherbedarf der
im Rahmen der Implementierung (Kapitel 4.5.3) gezeigten Hilfsfunktionen auf.

Fiir die Hilfsfunktion, die die Restriktion iiber alle Gitterstufen tibernimmt, liegt der Speicher-
bedarf bei

(5.11) Mrielper = 1 Mg +4 Moy +4-Mpo+---+3-My~25-M

Dabei wird auf jeder Gitterstufe ¢ ein Gitter der Grof3e M, an das Korrekturarray iibergeben.
Damit hat das Korrekturarray zu diesem Zeitpunkt die Grofle

(5.12) Mcarray = Me—1 +Mp o+ - +My = 1.5-M,

Fiir die Hilfsfunktion, die die Prolongation iiber alle Gitterstufen tibernimmt, wird im Grunde
genommen kein Speicher benétigt, da diese nur den Inhalt des Korrekturarrays schrittweise
prolongiert, bis alle Gitter die gleiche Grofie wie 1 haben. Allerdings erhoht sich durch die
Ausfihrung der Speicherbedarf des Korrekturarrays, dadurch ergibt sich ein Speicherbedarf
von

(5.13) Mearray = £ — 1 - My

Der Speicherbedarf von ¢ — 1 - M, ergibt sich daraus, dass das Korrekturgitter der feinsten
Gitterebene bereits vorher in der Hauptfunktion berechnet wird. Daher ergibt sich fiir die
Hauptfunktion einen Speicherbedarf von

(5-14) MaMG ~3- MZ + Mmax,Hilfsfunktion

Da die Hilfsfunktionen sequentiell ablaufen, wird der Speicher nicht zur gleichen Zeit belegt.
Dabher ist nur die Hilfsfunktion, die den groften Speicherbedarf hat, fiir die Berechnung des
maximalen Speicherbedarfs interessant. Am meisten Speicher wird durch die Hilfsfunktion
bendtigt, die die Werte des Korrekturarrays prolongiert.

Damit ergibt sich ein Speicherbedarf von

(5~15) Mamc ~ 3 M, + MCArray = ((6 - 1) + 3) - Mg

Dadurch féllt der Speicherbedarf dieser Implementierung des additiven Mehrgitterverfahrens
deutlich grofler aus als der der anderen Verfahren. Es zeigt sich also, dass das Gau3-Seidel-, das
Zweigitter- sowie das multiplikative Mehrgitterverfahren beziiglich des Speicherbedarfs alle

37

5 Ergebnisse

in einer Groélenordnung liegen, diese Implementierung des additiven Mehrgitterverfahrens
jedoch aufgrund des Korrekturarrays deutlich mehr Speicher benétigt.

Wenn man also das Verfahren effizienter gestalten mochte, so muss man ein intelligenteres
Korrekturgitter-Management finden. Eine Moglichkeit wiare, die Korrekturgitter, sobald
sie zur Verfiigung stehen, zu prolongieren und auf das Ausgangsgitter zu addieren. Das
konnte, je nach Implementierungsqualitét, den Speicherbedarf etwas senken. Nichtsdestotrotz
braucht man die Korrekturgitter weiterhin getrennt fiir jede Stufe der Gleichungssystem-
Hierarchie.

Speicherbedarfsmessungen haben das Problem, dass sie sehr ungenau sind. Wahrend man
bei Laufzeitmessungen die Anzahl an CPU-Zyklen zahlen kann, lasst sich der Speicherbedarf
nur grob anhand der Speicherauslastung abschétzen. Die Werte in Tabelle 5.3 wurden bei
deaktivierter swap-Datei mit top gemessen.

Tabelle 5.3: Speicherbedarf der Verfahren
Udim My, Mss Mzg Mmc Mang
Berechnet 1025 8 MB 16 MB 36 MB 44 MB 96 MB
Gemessen 1025 | ~9 MB ~20 MB ~40 MB ~50 MB ~110 MB
Theoretisch 8193 | 512 MB 1024 MB 2304 MB 2816 MB 7168 MB
Berechnet 8193 | ~550 MB | ~1200 MB | ~2500 MB | ~3000 MB | ~7600 MB

Der Grund fir die teilweise deutliche Abweichung von der Schiatzung diirfte neben der
ungenauen Messung auch die Allokation von Arrays fiir die Historie der Analysevariablen
sein, da pro Programmaufruf mehrere Felder dafiir alloziert werden. Trotzdem stellen die
Schétzungen einen guten Naherungswert fiir den maximalen Speicherbedarf der Verfahren
dar.

Fiir eine parallele Implementierung konnte die Speicherproblematik, je nach System, mehr
oder weniger wichtig werden. Jede Stufe der Gitterhierarchie kann, abgesehen von der
Restriktion, unabhangig von den anderen Stufen berechnet werden und erzeugt dabei ein
eigenes Korrekturgitter. Fiir einen Rechencluster, bei dem jeder Knoten eigenen Speicher
besitzt, stellt dies moglicherweise kein Problem dar. Bei einem Rechner mit gemeinsam
genutztem Speicher konnte jedoch die gleiche Problematik wie bei der vorliegenden sequen-
tiellen Implementierung auftreten: Die Korrekturgitter liegen parallel im Speicher.

5.2.2 Laufzeit

Die im Rahmen dieser Arbeit vorgenommene Implementierung wurde in erster Linie auf
geringen Speicherbedarf hin optimiert. Dabei wurde in Kauf genommen, dass Speicher haufig

38

5.2 Laufzeit- und Speicheranalyse

alloziert und freigegeben wird. Dies kann einen grofien Einfluss auf die Laufzeit des Losers

haben.

Um die Laufzeiteigenschaften abschéatzen zu kénnen, wurden die Laufzeiten von drei wichti-
gen Operationen, der Allokation, einer Gaufl-Seidel-Iteration sowie der Fiillung mit einem
Wert, fiir verschieden grofie Gitter gemessen.

Tabelle 5.4: Dauer der Operationen in Sekunden
Udim | Talloc|S] tess] tan[s]
17 0.000009 | 0.000010 | 0.000004
33 0.000040 | 0.000040 | 0.000008
65 0.000081 | 0.000100 | 0.000029
129 | 0.000286 | 0.000700 | 0.000116
257 | 0.001522 | 0.002900 | 0.000585
513 | 0.006675 | 0.011790 | 0.002597
1025 | 0.021705 | 0.040000 | 0.007739
2049 | 0.062311 | 0.180000 | 0.023989
4097 | 0.152018 | 0.750000 | 0.072330
8193 | 0.444205 | 1.101950 | 0.288820
16385 | 1.779012 | 4.284990 | 1.161819

In Tabelle 5.4 sieht man die gemessene Zeit in Sekunden fiir diese Operationen. Auffallig
dabei ist, dass die Allokation eines Speicherbereichs in der gleichen Grélenordnung wie
eine Operation iiber das gesamte Gitter abgeschlossen wird - fiir ein Gitter mit 513 x 513
Gitterpunkten benotigt die Allokationsoperation Tyo.513 = 6.675ms, eine Iteration des
einfachen Gauf}-Seidel-Verfahrens benétigt demgegeniiber Tgs 513 = 11.79ms. Dabei zeigt
sich, dass fiir kleine Gitter die Allokation ldnger dauert als eine Iteration des einfachen Gauf3-
Seidel-Verfahrens, fiir groflere Gitter dreht sich dieses jedoch ins Gegenteil. Mit steigender
GittergroBe fallt die Allokationszeit eines Gitters deutlich unter 1/2- Tgs. Daher macht sich das
haufige Allozieren und Freigeben des Speichers zwar bemerkbar, mit steigender Gittergrofie
wird der Einfluss davon jedoch schwécher. Da die Implementierung zu dieser Arbeit auf
geringen Speicherbedarf hin optimiert wurde, wurde der grofiere Zeitbedarf als notwendiges
Ubel akzeptiert.

Da alle in dieser Arbeit vorgestellten Loser iterativ arbeiten, fiir ein gutes Ergebnis also
mehrfach angewendet werden miissen, ist zur Laufzeitabschiatzung interessant, wie lange
eine Iteration des Losers braucht.

39

5 Ergebnisse

Udim GS e ZGHE | mMGe | aMG %
17 | 0.00001 | 0.07000 | 0.00003 | 0.00012 10% - *

33 | 0.00004 | 0.33000 | 0.00014 | 0.00051 g ot |

65 | 0.00010 | 1.00000 | 0.00050 | 0.00200 "2

129 | 0.00070 | 5.0000 | 0.00230 | 0.01100 ; 1071 .

257 | 0.00290 | 24.0000 | 0.00790 | 0.05200 ?ﬁ) o3| |
m

513 | 0.01179 | 96.0000 | 0.04170 | 0.24100
1025 | 0.04000 | 400.000 | 0.15000 | 1.00000 10-5 F .
2049 | 0.18000 | 1613.00 | 0.62000 | 4.50000 - -
4097 | 0.75000 | 7500.00 | 2.58000 | 19.80000
Abbildung 5.1: Berechnungsdauer fiir eine Iteration der Verfahren in Sekunden:

Gauf3-Seidel-Verfahrene, Zweigitterverfahren M,
multiplikatives Mehrgitterverfahren e und additives Mehrgitterverfahrenx

| Liil
[3)] L)
o] o]
— —

10!

Gitterweite

Die Tabelle in Abbildung 5.1 listet die Zeit auf, die die Berechnung von jeweils einer Iteration
der verschiedenen Verfahren fiir unterschiedliche Gitterdimensionen benétigt. Dabei ist die
Berechnung von einer Iteration des Gauss-Seidel-Verfahrens grundséatzlich am schnellsten,
sie korrigiert jedoch auch am wenigsten. Etwa die vierfache Zeit einer Gau3-Seidel-Iteration
benotigt eine Iteration des multiplikativen Mehrgitterverfahrens. Eine Iteration des additiven
Mehrgitterverfahrens benétigt wiederum davon die vierfache Zeit, also in etwa die 16-fache
Zeit einer Iteration des Gauf3-Seidel-Verfahrens. Das Zweigitterverfahren fallt aufgrund der
groflen Zahl an Gauf3-Seidel-Iterationen auf der Grobgitterstufe weit zuriick. Damit kann
man folgende Abschatzung aufstellen:

(5.16) Tes ~ /4 Tume =~ 1/16 - Tang
(517) TaMG,seq = TZ + Tﬁ—l + -+ Tl + TO
(5 18) TaMG,par =Ty + TGrobgitterkorrektur + TRestriktion

Die Laufzeit des additiven Mehrgitterverfahrens konnte moglicherweise durch parallele
Implementierung stark reduziert werden. Bei idealer Implementierung mit ¢ parallel nutz-
baren Rechenkernen konnte man die durch die sequentielle Berechnung jeder Gitterstufe
notwendige Rechenzeit Tayigseq auf Tanrc par reduzieren. Dabei kann man wie in Kapitel 3.3
beschrieben die Restriktion nicht parallel ausfiihren, trotzdem sollte man die Rechenzeit des
multiplikativen Verfahrens unterbieten konnen.

40

6 Zusammenfassung und Ausblick

Die Losungsapproximation ist durch die implementierten Verfahren, das Gauf3-Seidel-
Verfahren, das multiplikativen und das additiven Mehrgitterverfahren moglich. Dass das
einfache Gauf3-Seidel-Verfahren in Bezug auf Konvergenzgeschwindigkeit nicht mit den
Mehrgitterverfahren mithalten kann, stand von vornherein fest.

Die Annahme, dass das additive Mehrgitterverfahren in der vorgestellten Form exakt die
gleichen Ergebnisse liefert wie das multiplikative Mehrgitterverfahren, wurde bestétigt. Dabei
wurde festgestellt, dass, abgesehen von der Speicherproblematik dieser Implementierung,
das additive Mehrgitterverfahren das Potential besitzt, die Losungsapproximation deutlich
zu beschleunigen, ohne die Stabilitat der Losung zu gefahrden.

Die vorliegende Implementierung bietet mit ihrem einfachen Speichermanagement und den
vorhandenen Funktionen eine gute Basis, die man durch eine Parallelisierung des additiven
Mehrgitterverfahrens weiter optimieren kann. Die erwartete Beschleunigung der Losungsap-
proximation ist somit durch eine parallele Implementierung der additive Mehrgitterverfahren
realisierbar.

Ausblick

Das additive Mehrgitterverfahren ermoglicht eine neue Geschwindigkeitsstufe fiir approxi-
mative Loser. Da man jedoch anhand der Implementierung und der daraus resultierenden
Ergebnisse davon ausgehen muss, dass eine Losung der beschriebenen Probleme einen er-
heblichen Mehraufwand in der Speicherverwaltung bedeuten wiirde, der sich wiederum in
der Laufzeit niederschlagen wiirde, ist eine Optimierung der Speicherzugriffe notwendig,
bevor diese Implementierung des additiven Mehrgitterverfahrens ihre Starken gegeniiber
dem multiplikativen Mehrgitterverfahren ausspielen kann.

41

Literaturverzeichnis

[Hac91] W.Hackbusch. Iterative Losung grofSer schwachbesetzter Gleichungssysteme. Teubner,
1991. (Zitiert auf den Seiten 11 und 13)

[Meh15] M. Mehl. Vorlesungsskript Grundlagen des Wissenschaftlichen Rechnens. 2015.
(Zitiert auf Seite 10)

[VY14] P.S. Vassilevski, U. M. Yang. Reducing communication in algebraic multigrid using
additive variants. Numer. Linear Algebra Appl, 21: 275-296. doi: 10.1002/nla.1928,
2014. (Zitiert auf den Seiten 13, 18 und 19)

43

Erklarung

Ich versichere, diese Arbeit selbststindig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wortlich oder sinngeméf} aus anderen Wer-
ken tibernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Priifungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollstandig
verdffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einleitung
	2 Ausgangsproblem
	2.1 Direkte Lösungsverfahren
	2.2 Iterative Lösungsverfahren

	3 Lösungsverfahren
	3.1 Gauß-Seidel-Verfahren
	3.2 Mehrgitterverfahren
	3.3 Additives Mehrgitterverfahren

	4 Implementierung
	4.1 Datenstruktur
	4.2 Glätter
	4.3 Mehrgitterverfahren
	4.4 Additives Mehrgitterverfahren
	4.5 Die Verfahren
	4.6 Das Rahmenprogramm

	5 Ergebnisse
	5.1 Fehler- und Konvergenzanalyse
	5.2 Laufzeit- und Speicheranalyse

	6 Zusammenfassung und Ausblick
	Literaturverzeichnis

