
Institut für Parallele und Verteilte Systeme

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit Nr. 222

Schnelle parallele Mehrgitterlöser
auf kartesischen Gittern

David Hardes

Studiengang: Informatik

Prüfer/in: Prof. Dr. rer. nat. habil. Miriam Mehl

Betreuer/in: Dr. rer. nat. Stefan Zimmer

Beginn am: 27. April 2015

Beendet am: 27. Oktober 2015

CR-Nummer: G.1.8

Kurzfassung

Mehrgitterverfahren sind verbreitete Verfahren, die dazu dienen, die Lösungsapproximation

eines linearen Gleichungssystemes schnell und effizient zu berechnen. Um die Verfahren

durch Parallelisierung zu beschleunigen, muss man kommunikationsaufwändige Verfahren

zur Glättung nutzen. Eine interessante Alternative dazu stellen die additiven Mehrgitterver-

fahren dar, die nicht versuchen, die verwendeten Operationen zu parallelisieren, sondern

stattdessen alle Stufen der Gitterhierarchie parallel bearbeiten. Im Rahmen dieser Arbeit wer-

den verschiedene Verfahren, unter anderem ein additives Mehrgitterverfahren, implementiert

und im Hinblick auf Konvergenzeigenschaften, Speicher- und Laufzeitbedarf untersucht.

3

Inhaltsverzeichnis

1 Einleitung 7

2 Ausgangsproblem 9
2.1 Direkte Lösungsverfahren . 10

2.2 Iterative Lösungsverfahren . 10

3 Lösungsverfahren 11
3.1 Gauß-Seidel-Verfahren . 11

3.2 Mehrgitterverfahren . 13

3.3 Additives Mehrgitterverfahren . 18

4 Implementierung 21
4.1 Datenstruktur . 21

4.2 Glätter . 22

4.3 Mehrgitterverfahren . 25

4.4 Additives Mehrgitterverfahren . 26

4.5 Die Verfahren . 28

4.6 Das Rahmenprogramm . 31

5 Ergebnisse 33
5.1 Fehler- und Konvergenzanalyse . 33

5.2 Laufzeit- und Speicheranalyse . 36

6 Zusammenfassung und Ausblick 41

Literaturverzeichnis 43

5

1 Einleitung

Wenn man die physikalischen Prozesse unserer Welt berechnen möchte, bei denen man

die Veränderung einer Größe in Bezug auf mehrere voneinander unabhängige Variablen

betrachtet, sind partielle Differentialgleichungen eines der wichtigsten Hilfsmittel, um den

realen Prozess auf ein mathematisches Modell abzubilden. Für Natur-, Ingenieurs- und Wirt-

schaftswissenschaften stellen sie damit ein alltäglich zu lösendes Problem dar. Das Lösen

von partiellen Differentialgleichungen ist nicht trivial, sodass eine analytische Lösung des

Problems meistens nicht möglich ist. Durch Diskretisierung kann man aus einer partiel-

len Differentialgleichung ein lineares Gleichungssystem aufstellen und das Problem somit

approximativ lösen. Zur Lösung linearer Gleichungssysteme gibt es verschiedenste numeri-

sche Verfahren. Diese Arbeit beschränkt sich auf iterative Verfahren, deren Ergebnis durch

Wiederholung der Verfahren die korrekte Lösung immer weiter approximiert.

Eines der einfachsten dieser Iterationsverfahren ist das Gauß-Seidel-Verfahren, welches

jedoch sehr langsam konvergiert. Das sogenannte Mehrgitterverfahren konvergiert deutlich

schneller und soll hier als Vergleichsbasis für ein neues Verfahren, das sogenannte additive

Mehrgitterverfahren, dienen.

Im Rahmen dieser Bachelorarbeit wird eine Implementierung der Verfahren so vorgenommen,

dass alle wichtigen Größen einfach ausgelesen werden können, sodass eine genaue Analyse

sowie ein abschließender Vergleich dieser Verfahren vorgenommen werden kann.

Ziel dieser Arbeit ist ein Vergleich der genannten Verfahren im Hinblick auf Konvergenzver-

halten sowie auf Speicherbedarf und Laufzeit.

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Ausgangsproblem: definiert das Ausgangsproblem

Kapitel 3 – Lösungsverfahren: stellt die im Rahmen dieser Arbeit implementierten Ver-

fahren vor

Kapitel 4 – Implementierung: stellt die wichtigsten Funktionen der Implementierung dar.

7

1 Einleitung

Kapitel 5 – Ergebnisse: enthält die Aufbereitung und Analyse der Ergebnisse der Imple-

mentierung.

Kapitel 6 – Zusammenfassung und Ausblick: fasst die Ergebnisse der Arbeit zusammen

und stellt Anknüpfungspunkte vor.

8

2 Ausgangsproblem

Im Rahmen dieser Arbeit werden verschiedene iterative Verfahren zur numerischen Behand-

lung elliptischer partieller Differentialgleichungen verglichen. Alle im Laufe dieser Arbeit

vorgestellten Verfahren werden dabei anhand eines typischen Modellproblems vorgestellt.

Dabei wird das einfachste nichttriviale Beispiel gewählt, die Poisson-Gleichung −∆u = f .

Diskretisiert man die Differentialgleichung auf dem Einheitsquadrat Ω = (0, 1) × (0, 1) mit

der Maschenweite h = 1
n
, so ergibt sich dabei ein n × n-Gitter mit n2

Gitterpunkten. Diese

Werte dieser Punkte werden mit ui,j bezeichnet und mit u(x, y)) = u(i · h, j · h) berechnet,
wobei die Randpunkte von Ω die Werte u|Γ = uΓ haben. Die Punkte ui,j für i, j = 1, ..., n−2
bezeichnet man als innere Gitterpunkte. Daraus kann folgendes lineares Gleichungssystem

aufgestellt werden:

Au = f(2.1)

mit den Unbekannten

u =


u0,0 u0,1 · · · u0,n−1
u1,0 u1,1 · · · u1,n−1
.
.
.

.

.

.

.
.
.

.

.

.

un−1,0 un−1,1 · · · un−1,n−1



wobei die Werte der Randpunkte ui,j für i = 0, i = n − 1, j = 0 und j = n − 1 durch die

Randbedingungen vorgegeben sind, und den Konstanten

f =


f0,0 f0,1 · · · f0,n−1
f1,0 f1,1 · · · f1,n−1
.
.
.

.

.

.

.
.
.

.

.

.

fn−1,0 fn−1,1 · · · fn−1,n−1



A lässt sich zerlegen in A = D − E − F , wobei

• D der Diagonalanteil von A,

• E die strikte untere Dreiecksmatrix,

9

2 Ausgangsproblem

• F die strikte obere Dreiecksmatrix ist

Zur Lösung dieses linearen Gleichungssystems gibt es nun verschiedene Möglichkeiten

[Meh15].

2.1 Direkte Lösungsverfahren

Während iterative Verfahren immer nur eine Annäherung an die Lösung bieten, lösen direkte

Verfahren, wie die Gauß-Elimination, immer exakt. Da der Rechenaufwand gegenüber den

iterativen Verfahren jedoch deutlich größer ist, und man zudem durch die Diskretisierung

der Differentialgleichung bereits einen Fehler in dem linearen Gleichungssystem hat, eine

exakte Lösung demnach sowieso nicht möglich ist, werden die iterativen Verfahren in diesem

Fall als Löser bevorzugt.

2.2 Iterative Lösungsverfahren

Das obige lineare Gleichungssystem 2.1 des Modellproblems lässt sich mit iterativen Verfah-

ren relativ effizient näherungsweise lösen, wobei die Qualität der Lösung von der Feinheit

des Gitters abhängt; eine feinere Abtastung ermöglicht eine genauere Diskretisierung und

damit ein Ergebnis, das die Lösung besser Approximiert. Das Problem dabei ist, dass übli-

cherweise der Aufwand für einen Schritt des iterativen Verfahrens mit steigender Anzahl an

Gitterpunkten deutlich steigt, sodass ein Optimum zwischen Genauigkeit und Geschwindig-

keit gefunden werden muss. Bei manchen Verfahren hängt die Konvergenzrate zudem an

der Feinheit des Gitters. Eine Verdopplung der Gitterpunkte kann eine deutlich Abnahme

der Konvergenzgeschwindigkeit bedeuten. Iterative Verfahren starten üblicherweise mit

einem zufällig gewählten Startvektor u0, der in jedem Iterationsschritt um einen Fehleranteil

korrigiert wird, wodurch pro Iteration eine neue Lösungsannäherung entsteht:

(2.2) u0 7→ u1 7→ u2 7→ u3 7→ ... 7→ um 7→ um+1 7→ ...

Für die Lösungsverfahren wird, so nicht anders angegeben, der Finite-Elemente-Stern ver-

wendet, der folgendermaßen aussieht:−1 −1 −1
−1 8 −1
−1 −1 −1

(2.3)

Im Folgenden werden verschiedene iterative Verfahren vorgestellt, implementiert und an-

schließend analysiert.

10

3 Lösungsverfahren

3.1 Gauß-Seidel-Verfahren

Eines der einfachsten Iterationsverfahren ist das Gauß-Seidel-Verfahren. Dabei wird für

jeden Gitterpunkt in jedem Iterationsschritt über das gesamte Gitter iteriert, wobei jeder

Gitterwert um einen Fehleranteil korrigiert wird, sodass sich die Gitterwerte nach und nach

der Lösung annähern. Ausgehend vom zufällig gewählten Startgitter u0, wird dabei eine

Folge von korrigierten Gittern ui berechnet[Hac91]. Dabei wird für jeden Gitterpunkt die

Gleichung

fi,j = 8 · ui,j − ui−1,j−1 − ui−1,j − ui−1,j+1 − ui,j−1(3.1)

− ui,j+1 − ui+1,j−1 − ui+1,j − ui+1,j+1

für jede Unbekannte ui,j mit i, j := 1, ..., n−1 gelöst. Die Randwerte des Gitters werden zwar
für die Berechnung verwendet, sind als Randbedingungen jedoch auf einen Wert festgelegt.

Der Fehler, sprich die Abweichung des aktuellenWertes von der Lösung, lässt sich reduzieren,

indem man für jeden Punkt das Gauß-Seidel-Verfahren als Glätter anwendet:

ui,j = 1/8 · (fi,j − ui−1,j−1 − ui−1,j − ui−1,j+1 − ui,j−1(3.2)

− ui,j+1 − ui+1,j−1 − ui+1,j − ui+1,j+1)

Algorithmus 3.1 zeigt das Gauß-Seidel-Verfahren.

Algorithmus 3.1 Gauß-Seidel-Verfahren

procedure GS(u,f)
while iterator < iterations do

for k = 1 to n do
for k = 1 to n do

ui,j = 1/8 · (fi,j − ui−1,j−1 − ui−1,j − ui−1,j+1 − ui,j−1
−ui,j+1 − ui+1,j−1 − ui+1,j − ui+1,j+1)

end for
end for
iterator++

end while
end procedure

11

3 Lösungsverfahren

Das Gauß-Seidel-Verfahren arbeitet, im Gegensatz zu ähnlichen Verfahren wie etwa dem

Jacobi-Verfahren, in-place. Das bedeutet, dass die entsprechenden Gitterwerte bereits in-

nerhalb eines Iterationsschrittes aktualisiert werden, wodurch der Speicherbedarf geringer

ist. Dies gilt allerdings nicht für die Normalformen des Gauß-Seidel-Verfahrens, die eine

modularisierte Variante des Gauß-Seidel-Verfahrens erlauben:

um+1 = MGSum + NGSf(3.3)

mit

• MGS = (D − E)−1F

• NGS = (D − E)−1

Das Gauß-Seidel-Verfahren aktualisiert also pro Iteration nur die direkt benachbarten Punkte

um die Information aus einem Punkt. Daher benötigt man im ungünstigsten Fall n Iterationen,

um zum Beispiel Punkt u1,1 um den Wert aus Punkt un−1,n−1 zu aktualisieren.

Abbildung 3.1: Gauß-Seidel angewendet auf ein 17 × 17-Gitter
von links: Startvektor, 1 Iteration, 10 Iterationen, 100 Iterationen

Betrachtet man Abbildung 3.1, die den Zustand des Gitters u0
, u1

, u10
und u100

des linearen

Gleichungssystems Au = 0 mit den Randwerten u|Γ = 0 nach 0,1,10 und 100 Iterationen des

Gauß-Seidel-Verfahrens darstellt, so fällt auf, dass das Verfahren in den ersten paar Iterati-

onsschritten den Fehler noch schnell korrigiert, danach jedoch stark abfällt und den Fehler

nur noch langsam reduziert. Dies liegt darin begründet, dass sich der Fehler über das ganze

Gitter gesehen in hoch- und niederfrequente Anteile relativ zur Anzahl der Gitterpunkte

zerlegen lässt. Die hochfrequenten Anteile lassen sich leicht auf dem Gitter glätten, man

sieht jedoch auch, dass der niederfrequente Anteil sich nur schlecht glätten lässt, da hier

in jedem Iterationsschritt nur ein minimaler Anteil korrigiert werden kann. Der Grund für

dieses Verhalten liegt in Formel 3.2: Es werden nur die unmittelbar benachbarten Punkte

zur Berechnung des aktualisierten Wertes herangezogen. Zur Korrektur des hochfrequenten

Fehleranteil ist dies kein Problem, da zwischen den Werten zweier benachbarter Gitter-

punkte eine große Differenz liegt. Die Korrektur des niederfrequenten Anteils hingegen ist

deutlich iterationsaufwendiger, da die Differenz zwischen den Werten zweier benachbarter

Gitterpunkte nicht groß ist.

12

3.2 Mehrgitterverfahren

Daran zeigt sich, dass das Verfahren, obwohl es letztendlich gegen die Lösung konvergiert, die-

ses zu langsam macht, als dass man es sinnvoll einsetzen könnte. Es wird sich jedoch zeigen,

dass das Gauß-Seidel-Verfahren gut als Glätter für die in den folgenden Kapiteln beschriebe-

nen Mehrgitterverfahren geeignet ist. Dabei wird zuerst das klassische Mehrgitterverfahren

nach Hackbusch [Hac91] vorgestellt, das, bewiesen und bekannt, als Kontrollverfahren für

das neue und weniger erforschte additive Mehrgitterverfahren nach [VY14] dienen soll.

3.2 Mehrgitterverfahren

Mehrgitterverfahren gehören zu den am schnellsten konvergierenden iterativen Verfahren.

Wie in Kapitel 3.1 beschrieben, gibt es verschiedene Fehleranteile mit unterschiedlichen

Frequenzen, womit das Gauß-Seidel-Verfahren nicht gut zurechtkommt. Wenn man die

Fehleranteile jedoch genauer betrachtet, fällt auf, dass die Frequenz der Fehler immer relativ

zur Anzahl der Gitterpunkte ist. Wenn man also weniger Gitterpunkte betrachtet, ist der

Fehler niederfrequenter und damit leichter zu korrigieren.

Diese Möglichkeit macht man sich bei den Mehrgitterverfahren zunutze, indem man den

Fehler auf unterschiedlich fein aufgelösten Gittern korrigiert.

Die Mehrgitterverfahren nutzen eine Hierarchie von Gleichungssystemen, bei denen auf

jeder Ebene ein lineares Gleichungssystem der Form Aℓxℓ = bℓ gelöst werden muss. Wenn

das Ausgangsgitter der Stufe ℓ, also xℓ (und dementsprechend auch das dazugehörende

Konstantengitter bℓ) n × n Gitterpunkte hat, so sollen die beiden Gitter der nächstgröberen

Hierarchiestufe ℓ − 1, also xℓ−1 und bℓ−1, noch
n
2 × n

2 Gitterpunkte haben.

Dieses gilt sinngemäß auch für die nächsten Stufen der Hierarchie von Gleichungssystemen,

bis hin zur Gitterstufe ℓ = 0, bei der nur noch 1 innerer Gitterpunkt, umgeben von 8

Randpunkten, vorhanden ist.

Um aus dem Gleichungssystem der Stufe ℓ das Gleichungssystem der Stufe ℓ − 1 abzuleiten,

benötigen wir für jede Gitterstufe

• eine Prolongation, die die Korrekturwerte von einem groben auf ein feines Gitter

überträgt,

• eine Restriktion die das Residuum von einem feinen auf ein grobes Gitter überträgt,

• und einen Glätter, der eine Lösungsapproximation für die aktuelle Stufe liefert.

Zudem benötigt man eine Möglichkeit, das Residuum zu Berechnen, das durch die Restriktion

restringiert werden soll, sowie eine Grobgitterkorrektur, die die aktuelle Lösung um die

prolongierten Werte der gröberen Stufe korrigiert. Diese Operatoren werden im folgenden

Abschnitt beschrieben.

13

3 Lösungsverfahren

3.2.1 Glätter

Der Glätter hat beim Mehrgitterverfahren die Aufgabe, für jede Gitterstufe ℓ eine Lösungs-
approximation zu liefern. Da wir das Mehrgitterverfahren nutzen wollen, um das Problem

der niederfrequenten Fehleranteile zu lösen, brauchen wir ein Lösungsverfahren, dass sich

in erster Linie um den hochfrequenten Fehleranteil kümmert. Wie wir in Kapitel 3 gesehen

haben, ist das Gauß-Seidel-Verfahren ein ebensolcher Löser. Eine Iteration des GS-Verfahrens

ist relativ günstig und korrigiert dabei bereits einen großen Anteil des Fehlers. Für eine erste

Version kann man das GS-Verfahren sowohl als Vor- und Nachglätter, als auch als Direktlöser

für die feinste Stufe verwenden.

Das in Kapitel 3.3 beschriebene additive Mehrgitterverfahren nutzt allerdings für die Glät-

tung eine zerlegt Form des Gauss-Seidel-Verfahrens. Um eine Vergleichbarkeit der Verfahren

herstellen zu können, wird das multiplikative Mehrgitterverfahren als Nachglätter den so-

genannten Rückwärts-Gauß-Seidel nutzen, bei dem die Iteration über das Gitter einfach in

umgekehrter Reihenfolge stattfindet, sprich in Gleichung 3.2 wird nicht, wie bisher, über

i, j = 1, ..., n − 1 iteriert, sondern über i, j = n − 1, ..., 1. Da für das Mehrgitterverfahren

verschiedene Glätter möglich sind, stellt dies für die Konvergenzeigenschaften der Mehrgit-

terverfahren keine Einschränkung dar.

3.2.2 Prolongation

Um die Werte des groben Gitters auf das feine Gitter zu übertragen, benötigt man einen

Operator, der eine lineare Abbildung vom groben auf das feine Gitter ermöglicht, und zwar die

sogenannte Prolongation, definiert als eine lineare Abbildung vom groben aufs feine Gitter.

Dabei bietet sich der Einfachheit halber an, als Prolongation stückweise lineare Interpolation

zwischen den Gitterpunkten des groben Gitters zu verwenden. Die Prolongation P ist

definiert als

P ℓ
ℓ−1 : uℓ−1 → uℓ(3.4)

wobei P den Stern 1/4 1/2 1/4
1/2 1 1/2
1/4 1/2 1/4

(3.5)

14

3.2 Mehrgitterverfahren

und die sogenannte Neunpunktprolongation darstellt. Daraus ergibt sich eine Reihe von

Gleichungen mit denen man über das Gitter traversiert:

uℓ+1
2i,2j = uℓ

i,j(3.6)

uℓ+1
2i+1,2j = 1/2(uℓ

i+1,j + uℓ
i,j)(3.7)

uℓ+1
2i,2j+1 = 1/2(uℓ

i,j+1 + uℓ
i,j)(3.8)

uℓ+1
2i−1,2j = 1/2(uℓ

i−1,j + uℓ
i,j)(3.9)

uℓ+1
2i,2j−1 = 1/2(uℓ

i,j−1 + ui,jℓ)(3.10)

uℓ+1
2i+1,2j+1 = 1/4(uℓ

i+1,j + uℓ
i,j+1 + uℓ

i+1,j−1 + uℓ
i,j)(3.11)

uℓ+1
2i−1,2j−1 = 1/4(ui−1,jℓ + uℓ

i,j−1 + uℓ
i−1,j+1 + uℓ

i,j)(3.12)

uℓ+1
2i+1,2j−1 = 1/4(uℓ

i+1,j + uℓ
i,j−1 + uℓ

i+1,j−1 + uℓ
i,j)(3.13)

uℓ+1
2i−1,2j+1 = 1/4(uℓ

i−1,j + uℓ
i,j+1 + uℓ

i−1,j+1 + uℓ
i,j)(3.14)

3.2.3 Residuumsberechnung

Um die Werte des Gitters der Stufe ℓ auf das nächstgröbere Gitter mit der Stufe ℓ + 1 zu

übertragen, benötigt man die Restriktion. Diese überträgt das Residuum von uℓ, und nicht uℓ

selber auf ein gröberes Gitter. Das Residuum eines Gitters uℓ berechnet man durch fℓ − Aℓuℓ,

wodurch für jedes ui,j , mit i, j = 1, ..., n − 1 gilt:

rℓ
i,j = f ℓ

i,j − (8 · uℓ
i,j − uℓ

i−1,j−1 − uℓ
i−1,j(3.15)

− uℓ
i−1,j+1 − uℓ

i,j−1

− uℓ
i,j+1 − uℓ

i+1,j−1

− uℓ
i+1,j − uℓ

i+1,j+1)

3.2.4 Restriktion

Die Restriktion ist definiert als eine lineare Abbildung vom feinen Gitter auf das grobe

Gitter. Dabei wird als Restriktion R einfach die transponierte Prolongation verwendet. R ist

definiert als

Rℓ
ℓ−1 = (P ℓ

ℓ−1)T : uℓ → uℓ−1(3.16)

wobei R den Stern 1/4 1/2 1/4
1/2 1 1/2
1/4 1/2 1/4

(3.17)

15

3 Lösungsverfahren

und damit die Neunpunktrestriktion darstellt. Daraus ergibt sich eine Gleichung, mit der

man über die Gitterpunkte traversiert:

ui,j = r2i,2j + 1/2 · (r2i−1,2j + r2i+1,2j + r2i,2j+1 + r2i,2j−1)(3.18)

+ 1/4 · (r2i−1,2j−1 + r2i+1,2j+1 + r2i+1,2j−1 + r2i−1,2j+1)

3.2.5 Grobgitterkorrektur

Um das Eingabegitter um mit den Werten des Fehlergitters em zu korrigieren, werden die

Werte der beiden Gitter komponentenweise addiert. Voraussetzung dafür ist, dass die Werte

der gröberen Gitterstufen durch die Prolongation auf die feinste Gitterstufe übertragen

wurden, da eine Addition ansonsten nicht möglich ist.

um+1 = um + em
(3.19)

3.2.6 Zweigitterverfahren

Das einfachste Verfahren, das mit mehreren Gitterstufen arbeitet, ist das Zweigitterverfahren.

Dabei wird die Restriktion nur einmal durchgeführt, es arbeitet also nur auf zwei Gitterstufen.

Der Algorithmus 3.2 zeigt den Ablauf dieses Verfahrens:

Algorithmus 3.2 Zweigitterverfahren

procedure ZG(uf ,ff)

GS(uf , ff)
rf = bf − Auf

rc = Rh
Hrf

ec = A−1
H rc

ef = P h
Hec

uf = uf + ef

GS(uf , ff)
end procedure

In einem Iterationsschritt des Verfahrens werden die Werte des Startgitters durch eine Iterati-

on des Gauß-Seidel-Verfahres vorgeglättet, das Residuum des geglätteten Gitters wird auf das

nächstgröbere Gitter restringiert. Auf dieser Gitterstufe wird das Korrekturgitter der Grobgit-

terstufe ec durch A−1
H rc berechnet, was man durch eine große Anzahl an Glätteriterationen

erreichen kann. Das Startgitter wird anschließend um die prolongierte Lösungsapproximation

korrigiert sowie nachgeglättet.

16

3.2 Mehrgitterverfahren

Sollte die Qualität der Approximation noch nicht ausreichend sein, so wiederholt man das

ganze Verfahren entsprechend oft.

Dieses Verfahren konvergiert deutlich schneller als das Gauß-Seidel-Verfahren, die Laufzeit

einer Iteration ist allerdings aufgrund der Vor- und Nachglättung sowie der großen Anzahl

an Grobgitter-Gauß-Seidel-Iterationen deutlich schlechter.

3.2.7 Mehrgitterverfahren

Während das Zweigitterverfahren nur einmal auf ein gröberes Gitter wechselt, arbeitet das

Mehrgitterverfahren auf allen möglichen Gitterstufen, d.h. die Restriktion wird durchgeführt

bis nur noch ein innerer Gitterpunkt verfügbar ist. Für diesen wird das entsprechende

Gleichungssystem durch Anwendung des Gauß-Seidel-Verfahrens korrekt gelöst. Statt also

auf der gröberen Gitterstufe das Gauß-Seidel-Verfahren anzuwenden, führt man erneut einen

Mehrgitterschritt durch. Dadurch erhält man ein rekursives Verfahren, dessen Ablauf in

Algorithmus 3.3 zu sehen ist:

Algorithmus 3.3Mehrgitterverfahren

procedure mMG(uℓ,fℓ)

if ℓ = 0 then
GS(uℓ, fℓ)

else
GS(uℓ, fℓ)
rℓ = bf − Auℓ

rℓ−1 = Rh
Hrℓ

eℓ−1 = mMG(eℓ−1, rℓ−1)
eℓ = P h

Heℓ−1
uℓ = uℓ + eℓ

GS(uℓ, fℓ)
end if

end procedure

Dieses rekursive Verfahren wird auch V-Zyklus genannt, da die Gitterstufen V-förmig von

feinsten über bis zum gröbsten Gitter restringiert und anschließend vom gröbsten zum

feinsten prolongiert werden. Auch bei diesem Verfahren kann man die Qualität der Lösungs-

approxmiation durch iterative Anwendung verbessern.

Dieses Verfahren konvergiert ebenfalls schneller als das Gauß-Seidel-Verfahren und ist dabei

in der Ausführung deutlich schneller als das Zweigitterverfahren, da beim Zweigitterver-

fahren eine große Anzahl an Gauß-Seidel-Iterationen auf der Grobgitterstufe stattfindet,

17

3 Lösungsverfahren

wohingegen sich beim Mehrgitterverfahren auf jeder Gitterstufe die Anzahl der zu berech-

nenden Werte um 3/4 reduziert. Der Rechenaufwand des Mehrgitterverfahrens verhält sich

dabei linear zur Anzahl der Gitterpunkte.

Dementsprechend ist die zu erwartende Laufzeit des Zweigitterverfahrens deutlich schlechter

als die des Mehrgitterverfahrens.

Um eine Vergleichbarkeit mit dem im folgenden Kapitel 3.3 vorgestellten additiven Mehrgit-

terverfahren zu ermöglichen, wird die Nachglättung bei Vergleichen dieser beiden Verfahren

durch das vorher beschriebene Rückwärts-Gauß-Seidel-Verfahren geglättet, bei dem statt

von Gitterpunkt 1, 1 nach n − 2, n − 2 zu iterieren von n − 2, n − 2 nach 1, 1 iteriert wird.

3.3 Additives Mehrgitterverfahren

Das in Kapitel 3.2 beschriebene multiplikative Mehrgitterverfahren besitzt bereits eine hohe

Konvergenzgeschwindigkeit. Die Laufzeit der Berechnungen ist jedoch dadurch beschränkt,

dass die Operationen sequentiell durchgeführt werden müssen. Möchte man deutlich schnel-

ler werden, so kann man an dem Verfahren nicht mehr viel optimieren; einen messbaren

Geschwindigkeitszuwachs erhält man nur noch durch Parallelisierung der Berechnungen.

Leider haben die meisten Löser das Problem, dass sie sich nicht oder nur schlecht parallelisie-

ren lassen - es gibt Verfahren, um das Mehrgitterverfahren, wie in Kapitel 3.2 vorgestellt, zu

parallelisieren, indem man das zu lösende Gitter nach mehr oder minder komplexen Verfah-

ren aufteilt, dabei entsteht allerdings ein gewaltiger Kommunikationsaufwand, was für eine

parallele Implementierung nicht erwünscht ist. Statt nun horizontal zu parallelisieren, also im

V-Zyklus auf einer Gitterstufe die Operationen zu parallelisieren, parallelisiert man vertikal:

Man berechnet sämtliche Gitterstufen parallel [VY14]. Das additive Mehrgitterverfahren,

auch BPX genannt, setzt genau dieses um. Gegenüber dem multiplikativen Mehrgitterver-

fahren kann es beim BPX unter Umständen zu Problemen mit der Stabilität kommen. Daher

haben die Mathematiker P.S. Vassilevski und U.M. Yang ein Verfahren entwickelt, dass die

Stabilität der multiplikativen Mehrgitterverfahren mit den Laufzeiteigenschaften der additi-

ven Verfahren kombiniert. Dabei lassen sich die Operationen des bisherigen multiplikativen

Mehrgitterverfahrens teilweise wiederverwenden.

3.3.1 Operatoren

Das additive Mehrgitterverfahren funktioniert grundsätzlich nach den gleichen Prinzipien

wie das multiplikative Mehrgitterverfahren aus Kapitel 3.2. Dazu müssen die bekannten

Operatoren leicht erweitert bzw. verändert werden.

Statt des bisher verwendeten Verfahrens wird eine Zerlegung des modularisierten Gauß-

Seidel-Verfahrens verwendet, wie sie in Gleichung 3.3 beschrieben ist. Dabei wurde gezeigt,

18

3.3 Additives Mehrgitterverfahren

dass das multiplikative Mehrgitterverfahren mit Rückwärts-Gauss-Seidel als Nachglätter den

in Gleichung 3.20 beschriebenen Mehrgitteroperator hat, der ähnliche Eigenschaften wie der

des additiven Mehrgitterverfahrens aus Gleichung 3.21 hat [VY14].

Demnach ist es möglich, statt jeweils einer Iteration des Gauß-Seidel-Verfahrens als Vor-

und Nachglätter sowie auf der gröbsten Gitterstufe als Direktlöser zu verwenden, auf jeder

Gitterstufe die Operation N̄ (symmetrisierter Glätter, Formel 3.22) in Kombination mit den

geglätteten Varianten der Prolongation und Restriktion zu verwenden, um das selbe Ergebnis

zu erhalten.

Dementsprechend sollten beide Verfahren exakt die gleiche Lösung liefern.

NmultMG
ℓ = N̄ℓ + (I − NT

ℓ Aℓ)P ℓ
ℓ−1N

multMG
ℓ−1 Rℓ

ℓ−1(I − AℓNℓ)(3.20)

NaddMG =
ℓ∑

j=0
(P̄jN̄R̄j)(3.21)

N̄ℓ = NT
ℓ DℓNℓ(3.22)

Prolongation

Die bisher bekannte Prolongationsoperation wird nur um eine Glättungsoperation erweitert

und ergibt damit die sogenannte geglättete Prolongation.

P̄ ℓ
ℓ−1 = (I − NT

ℓ Aℓ)P ℓ
ℓ−1(3.23)

Restriktion

Für die Restriktion gilt prinzipiell das gleiche wie für die Prolongation, hier muss man

allerdings auch die Glättungsoperation transponieren.

(P̄ ℓ
ℓ−1)T = ((I − NT

ℓ Aℓ)P ℓ
ℓ−1)T = R̄ℓ

ℓ−1 = (I − AℓNℓ)Rℓ
ℓ−1(3.24)

19

3 Lösungsverfahren

3.3.2 Mehrgitteraufruf

Der Algorithmus 3.4 zeigt den Algorithmus der beschriebenen Variante des additive Mehr-

gitterverfahrens.

Algorithmus 3.4 additives Mehrgitterverfahren

procedure aMG(uℓ,fℓ)

for k = ℓ, ..., 0 do
rℓ = bℓ − Auℓ

rℓ−1 = R̄h
Hrℓ

end for
for k = ℓ, ..., 0 do

eℓ = N̄rℓ

end for
for k = ℓ, ..., 0 do

uℓ = uℓ + (P̄ h
H)ℓeℓ−1

end for
end procedure

Die zweite for-Schleife ist parallelisierbar, da alle notwendigen Daten durch die Restriktions-

schleife, die erste for-Schleife, berechnet wurden. Dieser Schritt muss zwangsläufig parallel

erfolgen, die Restriktion von uℓ−1 nach uℓ−2 kann erst passieren, wenn die Restriktion von

uℓ nach uℓ−1 abgeschlossen ist.

Theoretisch kann man damit so viele Rechenwerke, wie man Gitterstufen hat, auslasten.

Um optimale Geschwindigkeit zu erreichen, reicht jedoch auch eine Verteilung auf mehrere

Rechenwerke, da der Rechenaufwand für das feinste Gitter am höchsten ist. Für alle feineren

Gitter viertelt sich die Anzahl der benötigten Operationen, sodass man diese auf weniger

Rechenwerke verteilen kann und trotzdem noch eine theoretischeMaximallaufzeit von tu0 hat.

Auch die Prolongation kann parallel erfolgen, am Ende eines Mehrgitterzyklus werden jedoch

alle Korrekturgitter in der Größe der feinsten Gitterstufe vorliegen, aufeinander aufaddiert

und anschließend zur Fehlerkorrektur verwendet. Daran zeigt sich schon ein potentielles

Problem: Um die Lösungsapproximation von ℓ Gitterstufen abzuspeichern, benötigt man

ℓ · Mu0 , wenn man die Operationen und die Speicherverwaltung möglichst einfach halten

will. Demgegenüber benötigt das multiplikative Mehrgitterverfahren nur 1, 5 · Mu0 , da hier

rekursiv auf einer Datenstruktur gearbeitet wird.

Eine genaue Analyse der Speicher- und Laufzeitproblematik der Implementierung aus dem

folgenden Kapitel folgt in Kapitel 5

20

4 Implementierung

In diesem Kapitel wird die programmiertechnische Seite der Implementierung vorgestellt.

Die gesamte Arbeit wurde in C nach Standard C99 geschrieben und mit GCC unter Linux

kompiliert. Die Steuerung des Programms findet durch ein Shell-Skript statt, das einen

vereinfachten Aufruf sowie eine Aufbereitung der Ergebnisse übernimmt und sich dabei

auch noch um das Aufräumen der temporären Dateien kümmert.

Im Allgemeinen wurde bei der Implementierung mehr auf Speichereffizienz als auf Schnel-

ligkeit Wert gelegt. Dies ist unter anderem an der häufigen Allokation von Hilfsgittern

erkennbar; das Programm würde möglicherweise deutlich schneller durchlaufen, wenn ge-

rade die Hilfsgitter, die häufig verwendet werden, am Anfang alloziert würden. Einerseits

müssten dann deutlich mehr Pointer übergeben werden, was die Signaturen verlängern und

damit die Lesbarkeit reduzieren und die Komplexität erhöhen würde. Andererseits wäre es

nicht unbedingt ein Nachteil, dass das Programm für die gesamte Laufzeit einen großen

Bereich des Arbeitsspeichers alloziert - so steht von Anfang an fest, dass das Programm die-

sen Bereich nutzen kann. Bei der dynamischen Allokation und Freigabe kann es theoretisch

vorkommen, dass ein anderes Programm von einer auf die nächste Iteration den Speicher

belegt - das Programm würde abstürzen. Da das Ziel der Arbeit jedoch die Implementierung

eines übersichtliches Programms war, bei dem man Zugriff auf verschiedenste Parameter

und Eigenschaften hat, wurden Laufzeitnachteile gegenüber Speicheroptimierung in Kauf

genommen.

Der Code wurde zur einfacheren Nutzung auf mehrere Bibliotheken aufgeteilt, wobei die

Trennung in Abhängigkeit der Funktionalität erfolgt. Die Bibliothek memory.c enthält die

Speicheroperationen, grid.c die grundlegenden Gitteroperationen wie Addition und Skalie-

rung. Die Mehrgitter- (multigrid.c) sowie die Glätterbibliothek (smoother.c) enthalten

die eigentlichen Löser, während das Rahmenprogramm in main.c zu finden ist. Funktionen

zur Ein- und Ausgabe sind in io.c eingeordnet.

4.1 Datenstruktur

Die Daten, auf denen gerechnet wird, müssen im Arbeitsspeicher abgelegt werden. Für das

Poisson-Problem wird das lineare Gleichungssystem Au = f gelöst. Dafür muss man zwei

21

4 Implementierung

Gitter vorhalten: Zum einen das Gitter u, dass die Arbeitsdaten enthält, zum anderen das

Gitter f , dass die Konstanten enthält.

Da man sowohl die Randpunkte, als auch die Gitterpunkte für die Berechnung benötigt, auch

wenn die Randpunkte nicht zur Lösung gehören, werden diese in einem gemeinsamen Gitter

gespeichert. Für die MG-Verfahren, die auf den gröberen Gittern keine Randbedingungen

mehr haben, sind diese Randwerte einfach Null.

Während man für kleine Probleminstanzen mit Gittergrößen im Bereich von 1000 × 1000
noch statische Arrays verwenden kann, ist dies für größere Gitterdimensionen nicht mehr

möglich. Deswegen wurde eine Datenstruktur implementiert, die Gittergrößen theoretisch

nur von der Größe des Arbeitsspeichers abhängig macht.

Daher werden hier Speicherbereiche statisch alloziert. Die im Quellcode abgebildete Daten-

struktur stellt die notwendige Pointerstruktur bereit, mit der man einen Gitterpointer für ein

Gitter der Größe |size| mit einem Pointer auf den Speicherbereich erzeugen kann. Dieser

erleichtert den Datenzugriff, da die Werte eines Gitters einfach über den Pointer erreicht

werden können.

1 struct _grid{
2 int size;
3 double** grid;
4 };
5 typedef struct _grid _grid_t;
6 typedef _grid_t * _grid_p;

_grid_p ist also ein Pointer auf den Speicherbereich, an dem ein c-struct abgelegt ist,

dass aus einer Integerzahl für die Größe des Gitters und einem weiteren Pointer auf den

Speicherbereich, an dem die Gitterpunkte abgelegt sind, besteht.

Zwei Funktionen stellen einfache Schnittstellen bereit, mit denen man einfach Gitter un-

ter Angabe eines Namens und einer Größe anlegen (allocateGrid), und wieder freigeben

(freeGrid) kann. Dabei initialisieren die implementierten Allokationsfunktionen grundsätz-

lich alle Speicherbereiche mit 0, da dies nicht automatisch durch den Compiler geschieht.

4.2 Glätter

Im Rahmen dieser Arbeit werden mehrere Glätter verwendet. Neben dem einfachen

(Vorwärts- und Rrückwärts-) Gauß-Seidel-Verfahren wird auch das in seine Normalformen

zerlegte Gauß-Seidel-Verfahren benötigt.

22

4.2 Glätter

4.2.1 Gauss-Seidel-Verfahren

Im Folgenden ist die Implementierung des Vorwärts-Gauss-Seidel-Verfahrens nach Formel

3.2 abgebildet, dabei wird über alle inneren Gitterpunkte iteriert.

1 void simpleGaussSeidel(_grid_p u, _grid_p f){
2 int i,j;
3 for (i = 1; i < u->size-1; i++){
4 for (j = 1; j < u->size-1; j++){
5 u->grid[i][j] = 0.125*(u->grid[i-1][j-1] + u->grid[i-1][j]
6 + u->grid[i-1][j+1] + u->grid[i][j-1]
7 + u->grid[i][j+1] + u->grid[i+1][j-1]
8 + u->grid[i+1][j] + u->grid[i+1][j+1]
9 + f->grid[i][j]);
10 }
11 }
12 }

Die für den Vergleich des multiplikativen und additiven Mehrgitterverfahrens benötigte

Rückwärts-Gauß-Seidel-Variante unterscheidet sich vom Vorwärts-Gauß-Seidel nur durch

die Iterationsreihenfolge; man iteriert nicht zeilenweise von u1,1 nach un−1,n−1, sondern

zeilenweise von un−1,n−1 nach u1,1.

1 void simpleGaussSeidelB(_grid_p u, _grid_p f){
2 int i,j;
3 for (i = 1; i < u->size-1; i++){
4 for (j = 1; j < u->size-1; j++){
5 u->grid[i][j] = 0.125*(u->grid[i-1][j-1] + u->grid[i-1][j]
6 + u->grid[i-1][j+1] + u->grid[i][j-1]
7 + u->grid[i][j+1] + u->grid[i+1][j-1]
8 + u->grid[i+1][j] + u->grid[i+1][j+1]
9 + f->grid[i][j]);
10 }
11 }
12 }

4.2.2 Modulares Gauss-Seidel-Verfahren

Für das additive Mehrgitterverfahren benötigt man Bestandteile des modularen Gauß-Seidel-

Verfahrens. Die Zerlegung in zwei Funktionen erfolgt nach Formel 3.3. Dabei werden zwei

Gitter angelegt, in die die Ergebnisse der Berechnungen l = MGSu sowie r = NGSf
gespeichert werden. Diese Gitter werden in Zeile 8 einfach addiert, anschließend wird der

Speicher wieder freigegeben

23

4 Implementierung

1 void modularGaussSeidel(_grid_p u, _grid_p f){
2 int i,j;
3 _grid_p l, r;
4 l = allocateGrid(l, u->size);
5 r = allocateGrid(r, f->size);
6 mdotu(u, l);
7 ndotb(f, r);
8 addGrid(l, r, u);
9 freeGrid(l);
10 freeGrid(r);
11 }

Die Hilfsfunktion mdotu implementiert die Formel l = MGSu:

1 void mdotu(_grid_p u, _grid_p l){
2 int i,j;
3 for (i = 1; i < u->size-1; i++){
4 for (j = 1; j < u->size-1; j++){
5 l->grid[i][j] = 0.125*(l->grid[i-1][j-1] + l->grid[i][j-1]
6 + l->grid[i-1][j+1] + l->grid[i-1][j]
7 + u->grid[i+1][j] + u->grid[i][j+1]
8 + u->grid[i+1][j-1] + u->grid[i+1][j+1]);
9 }
10 }
11 }

Die Hilfsfunktion ndotb implementiert die Formel r = NGSf :

1 void ndotb(_grid_p f, _grid_p r){
2 int i,j;
3 for (i = 1; i < b->size-1; i++){
4 for (j = 1; j < b->size-1; j++){
5 r->grid[i][j] = 0.125*(r->grid[i-1][j-1] + r->grid[i][j-1]
6 + r->grid[i-1][j+1] + r->grid[i-1][j]
7 + f->grid[i][j]);
8 }
9 }
10 }

Für das additive Mehrgitterverfahren benötigt man zudem die Hilfsfunktion (NGS)T
:

1 void ndotbT(_grid_p f, _grid_p r){
2 int i,j;
3 for (i = b->size-2; i > 0 ; i--){
4 for (j = b->size-2; j > 0; j--){
5 r->grid[i][j] = 0.125*(r->grid[i+1][j-1] + r->grid[i][j+1]
6 + r->grid[i+1][j+1] + r->grid[i+1][j]
7 + f->grid[i][j]);
8 }
9 }
10 }

24

4.3 Mehrgitterverfahren

4.3 Mehrgitterverfahren

Für das Mehrgitterverfahren benötigt man Funktionen zur Berechnung von Residuum sowie

für die Prolongation und Restriktion.

4.3.1 Prolongationsoperator

Die Prolongation als lineare Abbildung von einem groben auf ein feines Gitter wurde anhand

der Formeln 3.5 bis 3.14 implementiert:

1 void prolongation(_grid_p e_c, _grid_p e_f){
2 int i,j, ii, jj;
3 for (i = 1; i < e_c->size-1; i++){
4 for (j =1; j < e_c->size-1; j++){
5 ii=(2*i);
6 jj=(2*j);
7 e_f->grid[ii][jj] = e_c->grid[i][j];
8 e_f->grid[ii+1][jj] = 0.5*(e_c->grid[i+1][j] + e_c->grid[i][j]);
9 e_f->grid[ii][jj+1] = 0.5*(e_c->grid[i][j+1] + e_c->grid[i][j]);
10 e_f->grid[ii-1][jj] = 0.5*(e_c->grid[i-1][j] + e_c->grid[i][j]);
11 e_f->grid[ii][jj-1] = 0.5*(e_c->grid[i][j-1] + e_c->grid[i][j]);
12 e_f->grid[ii+1][jj+1] = 0.25*(e_c->grid[i][j] + e_c->grid[i+1][j]
13 + e_c->grid[i][j+1] + e_c->grid[i+1][j+1]);
14 e_f->grid[ii-1][jj-1] = 0.25*(e_c->grid[i][j] + e_c->grid[i-1][j]
15 + e_c->grid[i][j-1] + e_c->grid[i-1][j-1]);
16 e_f->grid[ii+1][jj-1] = 0.25*(e_c->grid[i][j] + e_c->grid[i+1][j]
17 + e_c->grid[i][j-1] + e_c->grid[i+1][j-1]);
18 e_f->grid[ii-1][jj+1] = 0.25*(e_c->grid[i][j] + e_c->grid[i-1][j]
19 + e_c->grid[i][j+1] + e_c->grid[i-1][j+1]);
20 }
21 }
22 }

4.3.2 Restriktionsoperator

Die Restriktion als lineare Abbildung von einem feinen auf ein grobes Gitter wurde nach

Formel 3.19 implementiert:

1 void restriction(_grid_p u_c, _grid_p r){
2 int i, j, ii, jj;
3 for (i = 1; i < u_c->size - 1; i++){
4 for (j = 1; j < u_c->size - 1; j++){
5 ii=(2*i);
6 jj=(2*j);
7 u_c->grid[i][j] = (r->grid[(ii)][(jj)]

25

4 Implementierung

8 + 0.5* (r->grid[(ii-1)][(jj)] + r->grid[(ii+1)][(jj)]
9 + r->grid[(ii)][(jj-1)] + r->grid[(ii)][(jj+1)])
10 + 0.25*(r->grid[(ii-1)][(jj+1)] + r->grid[(ii+1)][(jj+1)]
11 + r->grid[(ii+1)][(jj-1)] + r->grid[(ii-1)][(jj-1)]));
12 }
13 }
14 }

Das Residuum wird mithilfe der Formel r = (f − Au) berechnet:
1 void calculateRes(_grid_p u, _grid_p f, _grid_p r){
2 int i, j;
3 for (i = 1; i < u->size-1; i++){
4 for (j = 1; j < u->size-1; j++){
5 r->grid[i][j] = f->grid[i][j] - ((8*u->grid[i][j])
6 - u->grid[i-1][j-1] - u->grid[i+1][j-1]
7 - u->grid[i-1][j+1] - u->grid[i+1][j+1]
8 - u->grid[i][j-1] - u->grid[i-1][j]
9 - u->grid[i][j+1] - u->grid[i+1][j]);
10 }
11 }
12 }

4.4 Additives Mehrgitterverfahren

Dass additive Mehrgitterverfahren nutzt im Grunde genommen die Operatoren des mul-

tiplikativen Mehrgitterverfahrens. Allerdings kommen hier die geglättete Restriktion und

Prolongation (R̄, P̄) sowie der symmetrisierte Glätter (N̄) zum Einsatz.

4.4.1 Symmetrisierter Glätter

Die Funktione nBar berechnet N̄ nach Formel 3.22

1 void nBar(_grid_p u, _grid_p f){
2 _grid_p help;
3 help = allocateGrid(help, f->size);
4 ndotb(f, help);
5 gridD(help);
6 ndotbT(help, u);
7 freeGrid(help);
8 }

26

4.4 Additives Mehrgitterverfahren

4.4.2 Geglättete Prolongation

Die geglättete Prolongation nutzt die in Kapitel 4.3.1 vorgestellte Prolongationsoperation,

dabei werden die prolongierten Werte werden anschließend mit (I − NT A) geglättet. Dafür
benötigt man zwei Hilfsgitter grid und help, in denen die Zwischenergebnisse gespeichert

werden.

1 void prolongationBar(_grid_p e_c, _grid_p e_f){
2 _grid_p grid, help;
3 grid = allocateGrid(grid, e_f->size);
4 help = allocateGrid(help, e_f->size);
5 prolongation(e_c, grid);
6 gridA(grid, help);
7 ndotbT(help, e_f);
8 subGrid(grid, e_f, e_f);
9 freeGrid(grid);
10 freeGrid(help);
11 }

4.4.3 Geglättete Restriktion

Die geglättete Restriktion glättet die Werte des Gitters erst vor und nutzt anschließend die in

Kapitel 4.3.2 vorgestellte Restriktionsoperation. Analog zur Prolongationsoperation benötigt

man hierbei zwei Hilfsgitter, die anschließend nicht mehr benötigt und dementsprechend

freigegeben werden.

1 void restrictionBar(_grid_p u_c, _grid_p r){
2 _grid_p grid, help;
3 grid = allocateGrid(grid, r->size);
4 help = allocateGrid(help, r->size);
5 ndotb(r, help);
6 gridA(help, grid);
7 subGrid(r, grid, help);
8 restriction(u_c, help);
9 freeGrid(grid);
10 freeGrid(help);
11 }

4.4.4 Hilfsfunktionen

Für die geglättete Prolongation und Restriktion benötigt man A

1 void gridA(_grid_p u, _grid_p a){
2 int i,j;
3 for (i = 1; i < u->size-1; i++){

27

4 Implementierung

4 for (j = 1; j < u->size-1; j++){
5 a->grid[i][j] = ((8*u->grid[i][j])
6 - u->grid[i-1][j-1] - u->grid[i-1][j]
7 - u->grid[i-1][j+1] - u->grid[i][j-1]
8 - u->grid[i][j+1] - u->grid[i+1][j-1]
9 - u->grid[i+1][j] - u->grid[i+1][j+1]);
10 }
11 }
12 }

Die Hilfsfunktion gridD berechnet den Diagonalanteil von A:

1 void gridD(_grid_p grid){
2 int i,j;
3 for (i = 1; i < grid->size-1; i++){
4 for (j = 1; j < grid->size-1; j++){
5 grid->grid[i][j] = 8*grid->grid[i][j];
6 }
7 }
8 }

4.5 Die Verfahren

4.5.1 GS-Aufruf

Das iterative Gauß-Seidel-Verfahren ist einfach - man führt hintereinander mehrmals die

Funktion simpleGaussSeidel() auf dem Arbeitsgitter u aus. Der genaue Aufruf ist in

Abschnitt 4.6 beschrieben

4.5.2 MG-Aufruf/ZG-Aufruf

Der folgende Quellcode zeigt die Implementierung der Algorithmen des Zwei- (Algorithmus

3.2) und Mehrgitterverfahren (Algorithmus 3.3). Hier sieht man nochmal die enge Verwandt-

schaft zwischen den beiden Verfahren. In den Zeilen 5-7 wird das übergebene Gitter um

preSmooth Iterationen mit dem Gauß-Seidel-Verfahren vorgeglättet, dementsprechend in

Zeilen 21-23 um postSmooth Iterationen mit dem Gauß-Seidel-Verfahren nachgeglättet. Die

für die nächste Gitterstufe benötigten Hilfsgitter mit halber Gitterweite werden angelegt,

das Residuum wird berechnet und auf die nächstgröbere Gitterstufe restringiert. Im Falle

des Zweigitterverfahrens werden 100000 Iterationen des Gauß-Seidel-Verfahrens ausgeführt.

Das Mehrgitterverfahren ruft diese Funktion rekursiv auf, bis die gröbste Gitterstufe mit

einem inneren Gitterpunkt erreicht wird. In dem Fall wird das Gitter durch eine Iteration des

Gauß-Seidel-Verfahrens direkt gelöst. Anschließend werden die Rekursionsstufen rückwärt

28

4.5 Die Verfahren

durchlaufen, dabei wird das Ergebnis jeweils auf die nächstfeinere Gitterstufe prolongiert

und als Korrektur verwendet. Nach Beendigung der Rekursion wurde das initiale Gitter

uf um das Ergebnis einer Iteration des Zwei- oder Mehrgitterverfahrens korrigiert. Durch

wiederholten Aufruf, etwa durch das Rahmenprogramm aus Kapitel 4.6, können mehrere

Iterationen des Mehrgitterverfahrens durchgeführt werden.

1 void multigridSolver(_grid_p u_f, _grid_p f, int mode, int preSmooth, int postSmooth){
2 _grid_p e_c, e_f, r_f, r_c;
3 int i;
4 if((u_f->size/2) > 1){
5 for(i = 0; i < preSmooth; i++){
6 simpleGaussSeidel(u_f, f);
7 }
8 r_f = allocateGrid(r_f, u_f->size);
9 calculateRes(u_f, f, r_f);
10 e_c = allocateGrid(e_c, (u_f->size+1)/2);
11 r_c = allocateGrid(r_c, (u_f->size+1)/2);
12 e_f = allocateGrid(e_f, u_f->size);
13 restriction(r_c, r_f);
14 if(mode == 2){
15 gridAInv(e_c, r_c, 100000);
16 } else {
17 multigridSolver(e_c, r_c, mode, preSmooth, postSmooth);
18 }
19 prolongation(e_c, e_f);
20 coarseGridCorrect(u_f, e_f);
21 for(i = 0; i < postSmooth; i++){
22 simpleGaussSeidelB(u_f, f);
23 }
24 freeGrid(e_f);
25 freeGrid(e_c);
26 freeGrid(r_c);
27 freeGrid(r_f);
28 } else {
29 simpleGaussSeidel(u_f, f);
30 }
31 }

4.5.3 Aufruf des additiven Mehrgitterverfahren

Das additive Mehrgitterverfahren aus Algorithmus 3.4 ist der Einfachheit halber als eine

Funktion mit zwei Unterfunktionen implementiert. In Zeile 3 wird durch Aufruf der Funktion

calculateNumberofMGLevel(u) bestimmt, wie viele Stufen die Gitterhierarchie des Gitters

u besitzt. Damit wird in Zeile 5 das Array error angelegt, das zu jeder Gitterstufe einen

Pointer auf das jeweilige Korrekturgitter enthält. Für die feinste Stufe wird in den Zeilen 8 und

9 der Korrekturwert für die feinste Gitterstufe berechnet. In Zeile 11 wird die Hilfsfunktion

29

4 Implementierung

für die Restriktion, in Zeile 12 die für die Prolongation aufgerufen. Anschließend wird das

Gitter um die Summe der Korrekturgitter jeder Gitterstufe korrigiert.

1 void additiveMGSolver(_grid_p u, _grid_p f){
2 int i, j, k;
3 int levelCount = calculateNumberOfMGLevel(u);
4 _grid_p correction, firstLevel;
5 _grid_p * error = malloc(levelCount * sizeof(_grid_p *));
6 correction = allocateGrid(correction, u->size);
7 firstLevel = allocateGrid(firstLevel, u->size);
8 calculateRes(u, f, firstLevel);
9 nBar(correction, firstLevel);
10 freeGrid(firstLevel);
11 restrictionHelper(u, f, error, levelCount);
12 prolongationHelper(error, levelCount);
13 for(k=0; k<levelCount; k++){
14 addGrid(correction, error[k], correction);
15 }
16 coarseGridCorrect(u, correction);
17 freeGrid(correction);
18 for(i = 0; i < levelCount; i++){
19 freeGrid(error[i]);
20 }
21 free(error);
22 }

Die Hilfsfunktion restrictionHelper() stellt dabei eine rekursive Funktion dar, die, analog

zum multiplikativen Mehrgitteraufruf, für jede Stufe der Gitterhierarchie das Residuum

berechnet, dabei allerdings für jede Gitterstufe das mit nbar berechnete Korrekturgitter im

Array error[ℓ] ablegt.
1 void restrictionHelper(_grid_p u, _grid_p f, _grid_p * error, int level){
2 if(level > 0){
3 int i, j, k;
4 _grid_p residuum, uCoarse, bCoarse, helper;
5 residuum = allocateGrid(residuum, u->size);
6 uCoarse = allocateGrid(uCoarse, ((u->size+1)/2));
7 fCoarse = allocateGrid(fCoarse, ((u->size+1)/2));
8 helper = allocateGrid(helper, ((u->size+1)/2));
9 calculateRes(u, f, residuum);
10 restrictionBar(fCoarse, residuum);
11 nBar(helper, fCoarse);
12 error[level-1] = helper;
13 restrictionHelper(uCoarse, fCoarse, error, level-1);
14 freeGrid(uCoarse);
15 freeGrid(fCoarse);
16 freeGrid(residuum);
17 }
18 }

30

4.6 Das Rahmenprogramm

Die erhaltenen Korrekturgitter liegen anschließend in der Größe der jeweiligen Gitterstufe

vor. Die Hilfsfunktion prolongationHelper() führt die notwendigen Prolongationsschritte

durch, die, entsprechend demAlgorithmus, für jede Gitterstufe einzeln vorgenommenwerden

müssen. Dabei werden die Pointer auf das Korrekturgitter einfach durch einen neuen Pointer

ersetzt, der auf das prolongierte Korrekturgitter zeigt.

1 void prolongationHelper(_grid_p * error, int level){
2 int i,j,k,l;
3 _grid_p helper;
4 for(k = 0; k < level; k++){
5 for(l = 0; l <= k; l++){
6 helper = allocateGrid(helper, ((error[l]->size*2)-1));
7 prolongationBar(error[l], helper);
8 freeGrid(error[l]);
9 error[l] = helper;
10 }
11 }
12 }

Diese Variante hat den Vorteil, dass sie sehr einfach ist. Da aber jede Stufe ein eigenes

Korrekturgitter hat, benötigt diese Hilfsfunktion sehr viel Speicherplatz (siehe Kapitel 5.2).

4.6 Das Rahmenprogramm

Damit die beschriebenen Verfahren als iterative Verfahren verwendet werden können, ist

ein wiederholter Aufruf derselben notwendig. Dieser wird durch eine Schleife innerhalb des

Hauptprogramms realisiert. Der folgende Abschnitt zeigt den Ausschnitt aus der Hauptfunk-

tion, die die iterativen Aufrufe ermöglicht. Der Code zum Initialisieren der Speicherstruktur,

der Parameter und der Messungen wurde entfernt, um den Codeausschnitt übersichtlicher

zu machen.

1

2 int main(int argc, char* argv[]) {
3 ...
4 for(counter = 0; counter < iterations; counter++){
5 switch(mode) {
6 case 1: simpleGaussSeidel(u,f);
7 break;
8 case 2: multigridSolver(u, f, true, mode, preSmooth, postSmooth);
9 break;
10 case 3: multigridSolver(u, f, true, mode, preSmooth, postSmooth);
11 break;
12 case 4: additiveMGSolver(u,f);
13 break;
14 default: printf("-- Diesen Modus gibt es nicht --\n");
15 break;

31

4 Implementierung

16 }
17 }
18 ...
19 printf("Programm beendet.\n");
20 return 0;
21 }

Alle im Rahmen dieser Arbeit implementierten Funktionen stehen über das Rahmenpro-

gramm zur Verfügung, die Steuerung erfolgt dabei über folgende Parameter:

./main gridWidth iterations sides mode preSmooth postSmooth path

• gridWidth: Weite des (feinsten) Gitters

• iterations: Anzahl der Iterationen

• sides: Schalter für die Randwerte

• mode: Schalter für den zu verwendenden Löser

• pre-/postSmooth: Anzahl der Vor- und Nachglättungsschritte

• path: Pfad zum Ablageverzeichnis für Ergebnisdateien

Da für alle Verfahren ein und dasselbe Programm verwendet werden soll, wird der Parameter

mode als Schalter für das jeweilige Verfahren verwendet. 1 bedeutet dabei, dass das Gauss-

Seidel-Verfahren zum Einsatz kommt, 2 ist das Zweigitterverfahren, 3 das multiplikative und

4 das additive Mehrgitterverfahren. Der Schalter sides bietet die Optionen 1 für u|Γ = 0
und 1 für u|Γ = (sin(j·Π

udim
) · exp(i·Π

udim
)).

Zur einfacheren Verwendung lässt sich das Programm alternativ über den Aufruf

./main manual

interaktiv ausführen, wobei alle Parameter abgefragt werden.

32

5 Ergebnisse

5.1 Fehler- und Konvergenzanalyse

Die gesamten Ergebnissewurden auf einem Intel Core i5 2520Mmit 16GB 1333MHz DDR3

RAM unter Linux Mint mit Kernelversion 3.16.0-38 generiert. Dabei wurden der Quellcode

mit dem Compiler GGC 4.8.4 und den Flags -lm -Wall (siehe auch Makefile) kompiliert.

5.1.1 Diskretisierungsfehler

Der Diskretisierungsfehler d der mten Iteration wird durch die Formel

dm =

√√√√√ 1
u2

dim

·
udim−1∑

i,j=1
(um

i,j − ci,j)2
(5.1)

mit

• udim, die Gitterweite n = 1/h und

• c, dem Gitter, das die erwartete Lösung enthält

definiert. Die Berechnung dieser Werte ist besonders für die Überprüfung der Korrektheit der

Verfahren von Interesse. Unabhängig von Konvergenz- und Ausführungsgeschwindigkeit

sollten alle approximativen Löser letztendlich gegen den gleichen Lösungswert konvergieren.

Um nicht jeden Gitterpunkt einzeln vergleichen zu müssen, nutzt man die Norm über das

gesamte Gitter, wie in Formel 5.1 dargestellt. Ein Messwert, der schneller zu berechnen ist und

damit weniger Einfluss auf die Laufzeit hat, ist der Diskretisierungsfehler des Gitterpunktes

(1/2, 1/2):

dm
1/2,1/2 = um

1/2,1/2 − c1/2,1/2(5.2)

Die folgenden Tabellen wurden mit folgendem Aufruf des Programms erzeugt:

./main udim 1000 2 mode 1 1 ../data/

33

5 Ergebnisse

Die Verfahren werden damit 1000 Iterationen ausführen, wobei im Falle des Zwei- und Mehr-

gitterverfahrens jeweils ein Vor- und Nachglättungsschritt stattfindet. Die Ergebnisse werden

nach ../data/ geschrieben. Das Programm approximiert dabei das lineare Gleichungssys-

tem Au = f mit f = 0 und u|Γ = (sin(j·Π
udim

) · exp(i·Π
udim

)). Die Werte der erwarteten Lösung

c berechnen sich dementsprechend wie die Randwerte von u.

Tabelle 5.1: Diskretisierungsfehler der Verfahren
udim dGS dZG dMG dBPX

5 0.173228 0.173228 0.173228 0.173228

9 0.046718 0.046718 0.046718 0.046718

17 0.012251 0.012251 0.012251 0.012251

33 0.003148 0.003148 0.003148 0.003148

65 0.000798 0.000798 0.000798 0.000798

129 0.000201 0.000201 0.000201 0.000201

257 0.000050 0.000050 0.000050 0.000050

513 0.000013 0.000013 0.000013 0.000013

1025 0.000003 0.000003 0.000003 0.000003

DieWerte in Tabelle 5.1 zeigen, dass alle Verfahren erwartungsgemäß gegen gleichenWert, in

etwa O(h2) konvergieren. Damit liefern die implementierten Funktionen korrekte Ergebnisse

und sind demnach korrekt implementiert.

5.1.2 Konvergenzraten

Um festzustellen, wie schnell ein Verfahren konvergiert, bestimmt man λ zu

λm =

√√√√√ 1
u2

dim

·
udim−1∑

i,j=1
(um

i,j)2
(5.3)

und daraus die Konvergenzrate

λ = lim
m→∞

λm+1

λm
(5.4)

Da λ → 1 für h → 0, betrachtet man zusätzlich ρ:

ρm = 1 − λm+1

λm
(5.5)

34

5.1 Fehler- und Konvergenzanalyse

Um zu verhindern, dass man ungenaue Ergebnisse aufgrund der eingeschränkten Maschi-

nengenauigkeit erhält, kann man nach jedem Iterationsschritt das Arbeitsgitter um mit 1/λ

skalieren, sodass

ρm = 1 − λm
(5.6)

Die folgenden Tabellen wurden mit folgendem Aufruf des Programms erzeugt:

./main udim 1000 1 mode 1 1 ../data/

Dadurch werden alle Verfahren 1000 mal wiederholt, wobei im Falle des Zwei- und Mehrgit-

terverfahrens jeweils ein Vor- und Nachglättungsschritt stattfindet. Die Ergebnisse werden

nach ../data/ geschrieben. Dabei approximiert das Programm das lineare Gleichungssys-

tem Au = f mit f = 0 und u|Γ = 0. Die erwartete Lösung c ist dementsprechend ein

Nullgitter mit ui,j = 0. In jedem Iterationsschritt berechnet man mit den Formeln 5.3 und

5.6 die Werte der Konvergenzrate λ.

Für das Gauß-Seidel-Verfahren sind keine besonders guten Konvergenzraten zu erwarten.

Diese sollten bei den Mehrgitterverfahren allerdings deutlich besser sein.

Tabelle 5.2: Konvergenzraten der Verfahren

udim ρGS ρZG ρMG ρBPX

5 0.620803 0.900755 0.900755 0.900755

9 0.208364 0.855857 0.847202 0.847202

17 0.056322 0.838892 0.832469 0.832469

33 0.014362 0.834304 0.828810 0.828810

65 0.003608 0.839576 0.828725 0.828725

129 0.000903 0.836463 0.828463 0.828463

257 0.000226 0.835878 0.828333 0.828333

513 0.000057 0.836320 0.828339 0.828339

1025 0.000018 0.836399 0.828279 0.828279

Es zeigt sich dass, wie erwartet, das Gauß-Seidel-Verfahren am langsamsten konvergiert,

während die Konvergenzrate des additiven und des multiplikativen Mehrgitterverfahrens

identisch und dabei von der Feinheit der Gitter, also h, unabhängig ist. Daher funktioniert
das additive Mehrgitterverfahren genauso zuverlässig wie das multiplikative Mehrgitterver-

fahren, bietet dabei aber aufgrund seiner einfachen Parallelisierbarkeit einen potentiellen

Vorteil. Die Konvergenzraten des Zweigitterverfahrens sind sehr gut, dabei benötigt das

Verfahren aufgrund der hohen Anzahl der Gauß-Seidel-Iterationen auf der Grobgitterstufe

jedoch sehr viel Rechenzeit.

35

5 Ergebnisse

Auf den ersten Blick scheint das additive Mehrgitterverfahren also ein ideales Verfahren zu

sein: Es hat gute besten Konvergenzeigenschaften und ist dabei einfach parallelisierbar. Bei

der genaueren Betrachtung fallen jedoch Nachteile dieser Implementierung ins Auge. Diese

werden im Folgenden vorgestellt.

5.2 Laufzeit- und Speicheranalyse

Die vorgestellten Verfahren unterscheiden sich teilweise deutlich in Speicher- und Rechen-

zeitbedarf. Die folgenden Abschätzungen geben dabei den maximal zu erwartenden Spei-

cherverbrauch beziehungsweise die erwartete Laufzeit wieder.

5.2.1 Speicherbedarf

Der Speicherbedarf eines n × n-Gitters lässt sich durch

Mun = n2 · sizeof double(5.7)

berechnen. Damit ergibt sich für ein Gitter mit 1025 × 1025 Gitterpunkte ein theoretischer

Speicherbedarf von etwa 8 Megabyte.

Das Gauß-Seidel-Verfahren arbeitet in-place, dementsprechend erwartet man einen sehr

niedrigen Speicherbedarf, der sich eigentlich nur aus den beiden notwendigen Gittern u und

f zusammen. Daraus ergibt sich für das Gauß-Seidel-Verfahren ein Speicherbedarf von

MGS = 2 · Mℓ,(5.8)

Dabei steht Mℓ für den Speicherbedarf eines n × n-Gitters, dementsprechend steht Mℓ−1 für

den Speicherbedarf eines
n
2 × n

2 -Gitters, wobei dieses aufgrund der halbierten Gitterweite

nur ein Viertel des Speicherbedarfs besitzt. Der Speicherbedarf des kleinstmöglichen Gitters,

eines 3 × 3-Gitters, wird mit M0 bezeichnet.

Das Zwei- und Mehrgitterverfahren benötigt schon mehr Speicher, beim Zweigitterverfahren

benötigt man die beiden Gitter der nächstgröberen Stufe, beim Mehrgitterverfahren die der

gesamten Hierarchie von Gleichungssystemen. Zudem benötigt man pro Stufe jeweils ein

Gitter für das Residuum und die Korrekturwerte. Dies bedeutet für das Zweigitterverfahren

einen Speicherbedarf von

MZG = 4 · Mℓ + 2 · Mℓ−1 = 4.5 · Mℓ(5.9)

Bei einem u0
gleicher Gitterweite benötigt das Zweigitterverfahren also 2.25 mal mehr

Speicher als das Gauß-Seidel-Verfahren.

36

5.2 Laufzeit- und Speicheranalyse

Für das multiplikative Mehrgitterverfahren berechnet sich der Speicherbedarf aufgrund der

Abschätzungen aus Kapitel 3.2 und der pro Gitterstufe benötigten Hilfsgitter zu

MmMG = 4 · Mℓ + 4 · Mℓ−1 + 4 · Mℓ−2 + · · · + 2 · M0 ≈ 5.5 · Mℓ(5.10)

Für das additive Mehrgitterverfahren teilt sich der Speicherbedarf in den Speicherbedarf der

im Rahmen der Implementierung (Kapitel 4.5.3) gezeigten Hilfsfunktionen auf.

Für die Hilfsfunktion, die die Restriktion über alle Gitterstufen übernimmt, liegt der Speicher-

bedarf bei

MRHelper = 1 · Mℓ + 4 · Mℓ−1 + 4 · Mℓ−2 + · · · + 3 · M0 ≈ 2.5 · Mℓ(5.11)

Dabei wird auf jeder Gitterstufe ℓ ein Gitter der Größe Mℓ an das Korrekturarray übergeben.

Damit hat das Korrekturarray zu diesem Zeitpunkt die Größe

MCArray = Mℓ−1 + Mℓ−2 + · · · + M0 ≈ 1.5 · Mℓ(5.12)

Für die Hilfsfunktion, die die Prolongation über alle Gitterstufen übernimmt, wird im Grunde

genommen kein Speicher benötigt, da diese nur den Inhalt des Korrekturarrays schrittweise

prolongiert, bis alle Gitter die gleiche Größe wie u0 haben. Allerdings erhöht sich durch die

Ausführung der Speicherbedarf des Korrekturarrays, dadurch ergibt sich ein Speicherbedarf

von

MCArray = ℓ − 1 · Mℓ(5.13)

Der Speicherbedarf von ℓ − 1 · Mℓ ergibt sich daraus, dass das Korrekturgitter der feinsten

Gitterebene bereits vorher in der Hauptfunktion berechnet wird. Daher ergibt sich für die

Hauptfunktion einen Speicherbedarf von

MaMG ≈ 3 · Mℓ + Mmax,Hilfsfunktion(5.14)

Da die Hilfsfunktionen sequentiell ablaufen, wird der Speicher nicht zur gleichen Zeit belegt.

Daher ist nur die Hilfsfunktion, die den größten Speicherbedarf hat, für die Berechnung des

maximalen Speicherbedarfs interessant. Am meisten Speicher wird durch die Hilfsfunktion

benötigt, die die Werte des Korrekturarrays prolongiert.

Damit ergibt sich ein Speicherbedarf von

MaMG ≈ 3 · Mℓ + MCArray = ((ℓ − 1) + 3) · Mℓ(5.15)

Dadurch fällt der Speicherbedarf dieser Implementierung des additiven Mehrgitterverfahrens

deutlich größer aus als der der anderen Verfahren. Es zeigt sich also, dass das Gauß-Seidel-, das

Zweigitter- sowie das multiplikative Mehrgitterverfahren bezüglich des Speicherbedarfs alle

37

5 Ergebnisse

in einer Größenordnung liegen, diese Implementierung des additiven Mehrgitterverfahrens

jedoch aufgrund des Korrekturarrays deutlich mehr Speicher benötigt.

Wenn man also das Verfahren effizienter gestalten möchte, so muss man ein intelligenteres

Korrekturgitter-Management finden. Eine Möglichkeit wäre, die Korrekturgitter, sobald

sie zur Verfügung stehen, zu prolongieren und auf das Ausgangsgitter zu addieren. Das

könnte, je nach Implementierungsqualität, den Speicherbedarf etwas senken. Nichtsdestotrotz

braucht man die Korrekturgitter weiterhin getrennt für jede Stufe der Gleichungssystem-

Hierarchie.

Speicherbedarfsmessungen haben das Problem, dass sie sehr ungenau sind. Während man

bei Laufzeitmessungen die Anzahl an CPU-Zyklen zählen kann, lässt sich der Speicherbedarf

nur grob anhand der Speicherauslastung abschätzen. Die Werte in Tabelle 5.3 wurden bei

deaktivierter swap-Datei mit top gemessen.

Tabelle 5.3: Speicherbedarf der Verfahren
udim Mu MGS MZG MmMG MaMG

Berechnet 1025 8 MB 16 MB 36 MB 44 MB 96 MB

Gemessen 1025 ≈9 MB ≈20 MB ≈40 MB ≈50 MB ≈110 MB

Theoretisch 8193 512 MB 1024 MB 2304 MB 2816 MB 7168 MB

Berechnet 8193 ≈550 MB ≈1200 MB ≈2500 MB ≈3000 MB ≈7600 MB

Der Grund für die teilweise deutliche Abweichung von der Schätzung dürfte neben der

ungenauen Messung auch die Allokation von Arrays für die Historie der Analysevariablen

sein, da pro Programmaufruf mehrere Felder dafür alloziert werden. Trotzdem stellen die

Schätzungen einen guten Näherungswert für den maximalen Speicherbedarf der Verfahren

dar.

Für eine parallele Implementierung könnte die Speicherproblematik, je nach System, mehr

oder weniger wichtig werden. Jede Stufe der Gitterhierarchie kann, abgesehen von der

Restriktion, unabhängig von den anderen Stufen berechnet werden und erzeugt dabei ein

eigenes Korrekturgitter. Für einen Rechencluster, bei dem jeder Knoten eigenen Speicher

besitzt, stellt dies möglicherweise kein Problem dar. Bei einem Rechner mit gemeinsam

genutztem Speicher könnte jedoch die gleiche Problematik wie bei der vorliegenden sequen-

tiellen Implementierung auftreten: Die Korrekturgitter liegen parallel im Speicher.

5.2.2 Laufzeit

Die im Rahmen dieser Arbeit vorgenommene Implementierung wurde in erster Linie auf

geringen Speicherbedarf hin optimiert. Dabei wurde in Kauf genommen, dass Speicher häufig

38

5.2 Laufzeit- und Speicheranalyse

alloziert und freigegeben wird. Dies kann einen großen Einfluss auf die Laufzeit des Lösers

haben.

Um die Laufzeiteigenschaften abschätzen zu können, wurden die Laufzeiten von drei wichti-

gen Operationen, der Allokation, einer Gauß-Seidel-Iteration sowie der Füllung mit einem

Wert, für verschieden große Gitter gemessen.

Tabelle 5.4: Dauer der Operationen in Sekunden

udim talloc[s] tGS[s] tfill[s]
17 0.000009 0.000010 0.000004

33 0.000040 0.000040 0.000008

65 0.000081 0.000100 0.000029

129 0.000286 0.000700 0.000116

257 0.001522 0.002900 0.000585

513 0.006675 0.011790 0.002597

1025 0.021705 0.040000 0.007739

2049 0.062311 0.180000 0.023989

4097 0.152018 0.750000 0.072330

8193 0.444205 1.101950 0.288820

16385 1.779012 4.284990 1.161819

In Tabelle 5.4 sieht man die gemessene Zeit in Sekunden für diese Operationen. Auffällig

dabei ist, dass die Allokation eines Speicherbereichs in der gleichen Größenordnung wie

eine Operation über das gesamte Gitter abgeschlossen wird - für ein Gitter mit 513 × 513
Gitterpunkten benötigt die Allokationsoperation Talloc,513 = 6.675ms, eine Iteration des

einfachen Gauß-Seidel-Verfahrens benötigt demgegenüber TGS,513 = 11.79ms. Dabei zeigt

sich, dass für kleine Gitter die Allokation länger dauert als eine Iteration des einfachen Gauß-

Seidel-Verfahrens, für größere Gitter dreht sich dieses jedoch ins Gegenteil. Mit steigender

Gittergröße fällt die Allokationszeit eines Gitters deutlich unter 1/2 ·TGS. Daher macht sich das

häufige Allozieren und Freigeben des Speichers zwar bemerkbar, mit steigender Gittergröße

wird der Einfluss davon jedoch schwächer. Da die Implementierung zu dieser Arbeit auf

geringen Speicherbedarf hin optimiert wurde, wurde der größere Zeitbedarf als notwendiges

Übel akzeptiert.

Da alle in dieser Arbeit vorgestellten Löser iterativ arbeiten, für ein gutes Ergebnis also

mehrfach angewendet werden müssen, ist zur Laufzeitabschätzung interessant, wie lange

eine Iteration des Lösers braucht.

39

5 Ergebnisse

udim GS • ZG � mMG • aMG ∗
17 0.00001 0.07000 0.00003 0.00012

33 0.00004 0.33000 0.00014 0.00051

65 0.00010 1.00000 0.00050 0.00200

129 0.00070 5.0000 0.00230 0.01100

257 0.00290 24.0000 0.00790 0.05200

513 0.01179 96.0000 0.04170 0.24100

1025 0.04000 400.000 0.15000 1.00000

2049 0.18000 1613.00 0.62000 4.50000

4097 0.75000 7500.00 2.58000 19.80000

1
0
1

10
2

10
3

10−5

10−3

10−1

101

103

Gitterweite

B
er
ec
h
n
u
n
g
sd
a
u
er

[s
]

Abbildung 5.1: Berechnungsdauer für eine Iteration der Verfahren in Sekunden:

Gauß-Seidel-Verfahren•, Zweigitterverfahren �,

multiplikatives Mehrgitterverfahren • und additives Mehrgitterverfahren∗

Die Tabelle in Abbildung 5.1 listet die Zeit auf, die die Berechnung von jeweils einer Iteration

der verschiedenen Verfahren für unterschiedliche Gitterdimensionen benötigt. Dabei ist die

Berechnung von einer Iteration des Gauss-Seidel-Verfahrens grundsätzlich am schnellsten,

sie korrigiert jedoch auch am wenigsten. Etwa die vierfache Zeit einer Gauß-Seidel-Iteration

benötigt eine Iteration des multiplikativen Mehrgitterverfahrens. Eine Iteration des additiven

Mehrgitterverfahrens benötigt wiederum davon die vierfache Zeit, also in etwa die 16-fache

Zeit einer Iteration des Gauß-Seidel-Verfahrens. Das Zweigitterverfahren fällt aufgrund der

großen Zahl an Gauß-Seidel-Iterationen auf der Grobgitterstufe weit zurück. Damit kann

man folgende Abschätzung aufstellen:

TGS ≈ 1/4 · TmMG ≈ 1/16 · TaMG(5.16)

TaMG,seq = Tℓ + Tℓ−1 + · · · + T1 + T0(5.17)

TaMG,par = Tℓ + TGrobgitterkorrektur + TRestriktion(5.18)

Die Laufzeit des additiven Mehrgitterverfahrens könnte möglicherweise durch parallele

Implementierung stark reduziert werden. Bei idealer Implementierung mit ℓ parallel nutz-
baren Rechenkernen könnte man die durch die sequentielle Berechnung jeder Gitterstufe

notwendige Rechenzeit TaMG,seq auf TaMG,par reduzieren. Dabei kann man wie in Kapitel 3.3

beschrieben die Restriktion nicht parallel ausführen, trotzdem sollte man die Rechenzeit des

multiplikativen Verfahrens unterbieten können.

40

6 Zusammenfassung und Ausblick

Die Lösungsapproximation ist durch die implementierten Verfahren, das Gauß-Seidel-

Verfahren, das multiplikativen und das additiven Mehrgitterverfahren möglich. Dass das

einfache Gauß-Seidel-Verfahren in Bezug auf Konvergenzgeschwindigkeit nicht mit den

Mehrgitterverfahren mithalten kann, stand von vornherein fest.

Die Annahme, dass das additive Mehrgitterverfahren in der vorgestellten Form exakt die

gleichen Ergebnisse liefert wie dasmultiplikativeMehrgitterverfahren, wurde bestätigt. Dabei

wurde festgestellt, dass, abgesehen von der Speicherproblematik dieser Implementierung,

das additive Mehrgitterverfahren das Potential besitzt, die Lösungsapproximation deutlich

zu beschleunigen, ohne die Stabilität der Lösung zu gefährden.

Die vorliegende Implementierung bietet mit ihrem einfachen Speichermanagement und den

vorhandenen Funktionen eine gute Basis, die man durch eine Parallelisierung des additiven

Mehrgitterverfahrens weiter optimieren kann. Die erwartete Beschleunigung der Lösungsap-

proximation ist somit durch eine parallele Implementierung der additive Mehrgitterverfahren

realisierbar.

Ausblick

Das additive Mehrgitterverfahren ermöglicht eine neue Geschwindigkeitsstufe für approxi-

mative Löser. Da man jedoch anhand der Implementierung und der daraus resultierenden

Ergebnisse davon ausgehen muss, dass eine Lösung der beschriebenen Probleme einen er-

heblichen Mehraufwand in der Speicherverwaltung bedeuten würde, der sich wiederum in

der Laufzeit niederschlagen würde, ist eine Optimierung der Speicherzugriffe notwendig,

bevor diese Implementierung des additiven Mehrgitterverfahrens ihre Stärken gegenüber

dem multiplikativen Mehrgitterverfahren ausspielen kann.

41

Literaturverzeichnis

[Hac91] W.Hackbusch. Iterative Lösung großer schwachbesetzter Gleichungssysteme. Teubner,
1991. (Zitiert auf den Seiten 11 und 13)

[Meh15] M. Mehl. Vorlesungsskript Grundlagen des Wissenschaftlichen Rechnens. 2015.

(Zitiert auf Seite 10)

[VY14] P. S. Vassilevski, U. M. Yang. Reducing communication in algebraic multigrid using

additive variants. Numer. Linear Algebra Appl, 21: 275–296. doi: 10.1002/nla.1928,
2014. (Zitiert auf den Seiten 13, 18 und 19)

43

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu ha-

ben. Ich habe keine anderen als die angegebenen Quellen

benutzt und alle wörtlich oder sinngemäß aus anderen Wer-

ken übernommene Aussagen als solche gekennzeichnet.

Weder diese Arbeit noch wesentliche Teile daraus waren

bisher Gegenstand eines anderen Prüfungsverfahrens. Ich

habe diese Arbeit bisher weder teilweise noch vollständig

veröffentlicht. Das elektronische Exemplar stimmt mit allen

eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

	1 Einleitung
	2 Ausgangsproblem
	2.1 Direkte Lösungsverfahren
	2.2 Iterative Lösungsverfahren

	3 Lösungsverfahren
	3.1 Gauß-Seidel-Verfahren
	3.2 Mehrgitterverfahren
	3.3 Additives Mehrgitterverfahren

	4 Implementierung
	4.1 Datenstruktur
	4.2 Glätter
	4.3 Mehrgitterverfahren
	4.4 Additives Mehrgitterverfahren
	4.5 Die Verfahren
	4.6 Das Rahmenprogramm

	5 Ergebnisse
	5.1 Fehler- und Konvergenzanalyse
	5.2 Laufzeit- und Speicheranalyse

	6 Zusammenfassung und Ausblick
	Literaturverzeichnis

