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Zusammenfassung

Eine Beschriftung zu platzieren ist ein wesentlicher Teil, um Informationen graphisch darzustel-

len. Die Beschriftung von Karten ist aufwendige Arbeit, was dazu motiviert, diesen Prozess zu

automatisieren. Hierfür werden einfache Gütekriterien angenommen: Die Beschriftung wird

als Box repräsentiert. Es wird die größte Box innerhalb eines Polygons gesucht.

In dieser Arbeit werden zwei entwickelte und implementierte Algorithmen beschrieben und

untersucht, um Gebiete zu beschriften. In einem ersten Szenario wird eine Beschriftung in einem

Gebiet gesucht, die parallel zu den Koordinatenachsen ist. Mit dem entwickelten Algorithmus

lassen sich Beschriftungen e�zient für beliebige Gebiete erzeugen. Im zweiten Szenario wird

eine Beschriftung in einem Gebiet gesucht, die beliebig rotiert sein darf. Hierbei lassen sich

Beschriftungen mit erheblichem Aufwand erzeugen. Praktisch können damit nur Beschriftungen

für kleine Gebiete gefunden werden.

Abstract

Label placement is a signi�cant part to represent information graphically. Labeling of maps is

an expensive task which motivates to automate the process. For this purpose simple quality

criteria are assumed: The label is represented as a box. Within a polygon, the largest box is

searched.

In this thesis two developed and implemented algorithms to label areas are described and tested.

The �rst setting investigates the case of labels which are parallel to the coordinate axes. Using

the algorithm labels can be generated e�ciently for arbitrary areas. In the second setting an

area label is searched which can be rotated arbitrarily. Here, labeling cost is considerable. In

practice labels can be found only for small areas.
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1 Einleitung

Eine Beschriftung zu platzieren ist ein wesentlicher Teil, um Informationen graphisch darzustel-

len und trägt dazu bei, Informationen verständlicher zu machen oder ermöglicht das Verständnis.

Gerade bei der Beschriftung von Karten (als Teilgebiet der Kartographie) ist eine Beschriftung

essentiell. Bis [Imh75] wurden Karten nicht nach formalen Kriterien beschriftet. Formalisierte

Beschriftungskriterien ermöglichen es hingegen, Beschriftungen objektiv zu vergleichen und

legen die Grundlage, um automatisch zu beschriften. Grundsätzlich unterscheidet man zwischen

Punkt- (Point-), Linien- (Line-Feature-) und Flächenbeschriftung (Area-Label). Aus Sicht der

Informatik stellt sich die Frage, wie man algorithmisch Beschriftungen erzeugen kann, die be-

stimmte Kriterien einhalten. Dies ist interessant, weil Visualisierungen ohne weitere manuelle

Tätigkeit erzeugt werden können. Das Problem ist abstrakt, alle Möglichkeiten aufzuzählen

eine Graphik zu beschriften. Daraus wählt man die Beschriftung, die die Kriterien am besten

erfüllt.

Das Point-Label-Problem ist, dass man zu einer Menge von Punkten in einer Karte Beschriftun-

gen �ndet. Hierbei dürfen sich die Labels nicht überlappen. Das Erzeugen von Pointlabels ist

in der Regel deterministisch nicht in polynomieller Zeit möglich. Bereits für ein vereinfachtes

Problem konnte gezeigt werden, dass es NP-vollständig ist [MS91]: Gegeben sei eine Menge

von Punkten in der Ebene und für jeden Punkt eine Menge von Labelpositionen sowie eine

Labelgröße. Können alle Punkte beschriftet werden, ohne dass es überlappende Labels gibt?

Eine Linienbeschriftung wird auf lineare Erscheinungen in Karten angewendet. Die Beschriftung

muss der linearen Form angepasst sein. In diesem Fall kann eine Beschriftung auch mehrmals

auftreten [Bar01].

Beim Beschriften von Flächen sucht man dagegen ein Label, das die Fläche beschriftet. Gü-

tekriterien legen fest, was als gute Beschriftung anzusehen ist. Einfache Kriterien sind, dass

das Label innerhalb eines Gebiets liegt und maximal ist. Um in einem Gebiet ein maximales,

achsenparalleles Rechteck zu �nden, sind e�ziente (O(n log n)) Algorithmen bekannt [DMR97;

NSB94; Kna+12]. Das Problem, ein maximales rotiertes Rechteck zu �nden, ist dagegen nicht

e�zient lösbar [Mol+12].

Diese Arbeit untersucht, wie eine Flächenbeschriftung für Gebiete erzeugt werden kann. Ein

Gebiet kann als eine begrenzte Fläche verstanden werden. Eine solche Fläche kann auch Löcher

enthalten; es handelt sich demnach insbesondere um ein konkaves Gebiet. Im Folgenden wird
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1 Einleitung

für den Begri� Gebiet der Begri� Polygon verwendet, der im nächsten Abschnitt eingeführt

wird (Abschnitt 1.1). Eine Beschriftung wird als Box repräsentiert, für die gelten muss, dass die

Box vollständig innerhalb des zu beschriftenden Gebiets liegt und die Größe der Box maximal

ist. Für die gesuchte Box ist das Breiten- und Höhenverhältnis bekannt. In der vorliegenden

Arbeit werden zwei Szenarien untersucht. Das erste Szenario untersucht den Fall einer ach-

senparallelen Box und im zweiten Szenario darf die Box beliebig rotiert sein. Probleme des

ersten Szenarios werden gelöst, indem das größte leere Quadrat bezüglich der Punktemenge,

die sich aus den Segmentendpunkten ergibt, berechnet wird. Das zweite Szenario wird durch

einen randomisieren Ansatz gelöst. Es werden zufällig gleichverteilt Segmente aus dem Polygon

gewählt und damit das größte Quadrat konstruiert. Ein maximales Quadrat ist das Maximum

über mehrere Proben. Durch eine Skalierung kann in beiden Szenarien das größte Rechteck für

ein gegebenes Breiten- und Höhenverhältnis gefunden werden.

1.1 Grundlegende Begriffe

In diesem Abschnitt sind grundlegende Begri�e de�niert.

De�nition: Ein Punkt p = (x, y) ∈ R2
ist ein Element der euklidischen Ebene, wobei x die

horizontale und y die vertikale Position eines Punktes ist.

De�nition: Ein Segment ist ein Geradenstück, das in einem Punkt beginnt und in einem anderen

endet s := (p, p′).

De�nition: Ein Polygon ist eine Reihe von Punkten P := (p1, . . . , pn), wobei (pi, pi+1) für

i ∈ {1, . . . , n − 1} und (pn, p1) die Segmente eines Polygons sind. Für alle Segmente eines

Polygons gilt, dass sie sich nicht schneiden.

De�nition: Ein Multi-Polygon (allgemeines Polygon) ist eine Menge von Polygonen P :=
{P1, . . . , Pl}, wobei es ein ausgezeichnetes Polygon P ∈ P gibt, sodass alle anderen Polygone

innerhalb von P liegen. Die Fläche eines Polygons seiA(P ) und die Fläche eines Multi-Polygons

sei A(P) = A(P ) −
∑

P ′∈P\{P}A(P ′). Das ausgezeichnete Polygon P wird auch äußeres

Polygon genannt. Alle anderen Polygone P \ {P} werden Löcher genannt.

1.2 Gliederung

Die Arbeit gliedert sich in folgende weitere Kapitel:

Kapitel 2 – Ähnliche Arbeiten – gibt einen kurzen Überblick zu vergleichbaren Verfahren

sowie einen Ausblick, was hinsichtlich Laufzeit und Güte zu erwarten ist.
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1.2 Gliederung

Kapitel 3 – Achsenparallele Beschriftung – beschreibt ein Verfahren, um achsenparallele

Beschriftungen zu erzeugen und untersucht Laufzeit und Fehler.

Kapitel 4 – Rotierte Beschriftung – beschreibt ein Verfahren, um rotierte Beschriftungen zu

erzeugen und untersucht Laufzeit und Erfolgswahrscheinlichkeit.

Kapitel 5 – Implementierung und Tests – gibt einen kurzen Hinweis, wie die Algorithmen

implementiert wurden und untersucht die Algorithmen hinsichtlich Laufzeit und Güte mit

realen Gebieten.

Kapitel 6 Zusammenfassung und Ausblick – fasst diese Arbeit zusammen und beschreibt

mögliche Ansatzpunkte für weitere Algorithmen und Untersuchungen.

3





2 Ähnliche Arbeiten

Ein häu�g untersuchtes Problem ist das Maximum-Empty-Rectangle-Problem (MER) [NSB94;

DMR97]. Das Problem ist wie folgt de�niert: Gegeben sei eine Menge von Punkten P =
{p1, . . . , pn}, wobei pi ∈ R2

. Die Punktemenge ist in einer Box eingeschlossen, die durch

minimale und maximale Koordinaten aus der Punktemenge bestimmt wird. Finde das größte

achsenparallele Rechteck, sodass kein Punkt im Rechteck enthalten ist und das Rechteck ist

vollständig in der einschließenden Box enthalten. Eine allgemeine Variante liegt vor, wenn statt

der Punktemenge eine Menge von Segmenten verwendet wird. Der Algorithmus in [NSB94]

verwendet einen zweistu�gen Divide-and-Conquer-Ansatz. Der Algorithmus teilt die Menge

der Segmente rekursiv an einer vertikalen Trennlinie auf. Um das maximale Rechteck zu �nden,

werden im Merge-Schritt die Segmente erneut (horizontal) aufgeteilt. Dadurch ergibt sich eine

orthokonvexe Kontur um den Schnittpunkt der beiden Linien. Entlang dieser Kontur kann

in linearer Zeit das größte Rechteck mittels Matrixsuche gefunden werden. Insgesamt ergibt

sich eine Laufzeit von O(n log2 n). Für einen Algorithmus, der das größte Quadrat sucht, kann

hingegen eine log-lineare Laufzeit erwartet werden, da man keinen zweiten Aufteilungsschritt

benötigt. Tatsächlich existiert bereits eine Methode für das Problem Largest-Empty-Square mit

log-linearer Laufzeit [Hwa79; LC80].

Ein weiteres Problem ist das Largest-Empty-Corner-Rectangle-Problem (LECR). Sei die Punkte-

menge S durch eine vertikale Linie in zwei Teilmengen Sl, Sr geteilt. Gesucht ist das größte

Rechteck, sodass der untere linke Punkt in Sl und der obere rechte Punkte in Sr ist. Mittels

schneller Matrixsuche kann dieses Problem in O(n log n) gelöst werden, wobei n = |S| [AS87].

Ein solcher Algorithmus wird in [DMR97] verwendet, um zu zeigen, dass das größte Rechteck

in einem allgemeinen Polygon mit Löchern in O(n log2 n) gefunden werden kann. Hierfür

muss das Polygon in zwei y-monotone Teilstücke zerlegt werden. Diese beiden Teilstücke

werden orthogonalisiert. Mittels LECR kann das größte Rechteck durch ein speziell de�niertes

Größenmaß gefunden werden. Somit kann in der vorliegenden Arbeit ebenfalls ein e�zienter

Algorithmus erwartet werden, um achsenparallele Beschriftungen zu generieren.

Das Problem von rotierten Rechtecken ist allgemein eine o�ene Frage [NSB94]. Die beste

Methode hierfür ist ein Approximationsalgorithmus mit einer Laufzeit von O(n3), wobei n die

Anzahl der Segmente im Polygon ist [Mol+12]. Hierfür wird das Polygon zunächst in ein Quasi-

Lattice-Polygon transformiert, d. h. für jedes Segment des Polygons gibt es nur eine begrenzte

Anzahl von Orientierungen. In einem Vorverarbeitungsschritt wird für alle Paare von Punkten
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2 Ähnliche Arbeiten

Tabelle 2.1 – Übersicht von Laufzeiten der vorgestellten Algorithmen und

Probleme.

Objekt Orientierung Laufzeit Referenz

Quadrat achsenparallel O(n log n) [Hwa79; LC80]

Rechteck achsenparallel O(n log2 n) [NSB94; DMR97]

Rechteck achsenparallel Ω(n log n) [DMR97]

Rechteck rotiert O(n3) [Mol+12]

des Polygons festgestellt, ob die Linie zwischen diesen Punkten durch das Polygon geschnitten

wird. Somit kann in konstanter Zeit festgestellt werden, ob ein gegebenes Punktepaar die Seite

eines Rechtecks ergeben kann. Der Algorithmus geht durch alle Punktepaare. Falls die Linie

eines Punktepaares innerhalb eines Polygons liegt, wird ein dritter Punkt gesucht, sodass sich

das größte Rechteck ergibt. Die Laufzeit dieses Algorithmus legt somit den Rahmen fest, was in

der vorliegenden Arbeit erwartet werden kann. Es ist ein schneller oder ein exakter Algorithmus

denkbar, da in dieser Arbeit ein maximales Quadrat gesucht wird, was einfacher zu lösen ist.

Tabelle 2.1 fasst die vorgestellen Algorithmen und Laufzeiten zusammen.
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3 Achsenparallele Beschriftung

Dieses Kapitel beschreibt eine einfache und e�ziente Möglichkeit, um ein Gebiet achsenparallel

zu beschriften. Abbildung 3.1 ist ein Beispiel für das Problem mit Lösung.

Der Algorithmus arbeitet wie folgt: Für ein Polygon wird die Punktemenge betrachtet, die sich

aus den Segmentendpunkten ergibt. Es wird das größte leere Quadrat dieser Punktemenge

bestimmt. Anschließend wird geprüft, ob das Quadrat innerhalb des Polygons liegt. Falls es nicht

enthalten ist, wird der Mittelpunkt des Quadrats zu der Punktemenge hinzugefügt und der Algo-

rithmus wiederholt. Um das größte Quadrat für ein bestimmtes Breiten- und Höhenverhältnis

zu bestimmen, wird die gesamte Instanz in Richtung einer der Koordinatenachsen skaliert. Da

es sich um eine Approximation des größten Quadrats bezüglich der Segmente handelt, können

Ecken des Quadrats außerhalb des Polygons liegen. Deswegen wird ein Schnitttest des Quadrats

mit allen Segmenten am Ende durchgeführt und das Quadrat gegebenenfalls angepasst.

Dafür wird im nächsten Abschnitt zunächst das Problem formalisiert, maximale Quadrate zu

�nden. Abschnitt 3.2 beschreibt einen Algorithmus, um das Problem zu lösen. Der nächste

Abschnitt beschreibt, wie man diesen Algorithmus verwenden kann, um maximale Rechtecke für

ein gegebenes Breiten- und Höhenverhältnis zu �nden. Abschnitt 3.4 erklärt, wie Beschriftungen

erzeugt werden können. Der letzte Abschnitt untersucht die Laufzeit und den Fehler.

3.1 Problem

Das Problem Maximum-Empty-Square (MES) ist wie folgt de�niert: Gegeben sei eine Menge von

Punkten P = {p0, . . . , pn}, wobei pi ∈ Z2
. Finde das größte achsenparallele Quadrat, sodass

kein Punkt im Quadrat enthalten ist. Für die Punktemenge wird eine minimale Box erzeugt,

sodass alle Punkte in der Box enthalten sind. Das größte Quadrat muss ebenfalls in dieser Box

enthalten sein.

3.2 Algorithmus für MES

Dieser Abschnitt beschreibt einen Algorithmus zum Lösen des Maximum-Empty-Square-

Problems.

7



3 Achsenparallele Beschriftung

Abbildung 3.1 – Die Beispiellösungen für achsenparallel maximale Rechtecke

mit einem Breiten- und Höhenverhältnis von fünf wurden mit dem Divide-and-

Conquer-Algorithmus erzeugt.

3.2.1 Naiver Algorithmus

Eine erste obere Laufzeitschranke für diese Problem istO(n4), wobei n die Anzahl der Segmente

oder Endpunkte der Segmente des Polygons ist. Dafür werden alle Tripel von Punkten aufgezählt,

für jedes Tripel wird das größte Quadrat bestimmt und anschließend geprüft, dass kein anderer

Punkt der Punktemenge im Quadrat enthalten und dass das Quadrat vollständig in der Box

enthalten ist.

Das Problem ist gegeben durch drei Punkte: Finde das größte achsenparallele Quadrat, das

durch diese Punkte beschränkt wird, kann wie folgt gelöst werden (siehe Abbildung 3.2). Für

alle Paare von Punkten des Tripels werden zwei Ecken erzeugt. Der dritte Punkt liegt entweder

in einem Bereich, der durch eine Ecke beschränkt wird oder außerhalb beider Bereiche. Im

letzten Fall erzeugt dieses Tripel kein Quadrat. Ansonsten kann das größte Quadrat bestimmt

werden, indem der maximale Abstand des dritten Punktes zu einer Seite der Ecke als Größe für

das Quadrat genommen wird. Das maximale ist das größte Quadrat aus allen drei Möglichkeiten

Paare von Punkten zu bilden.

Dieses Verfahren wird verwendet, um in einem Divide-and-Conquer-Ansatz Teilinstanzen mit

konstanter Größe zu lösen.
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3.2 Algorithmus für MES

a

b

c

Abbildung 3.2 – Konstruktion des größten Quadrats durch drei Punkte. Die

roten Geraden bilden die Ecken durch die Punkte a und c. Der Punkt b liegt in

der nach unten geö�neten Ecke und bildet das Quadrat (blaue Linien).

3.2.2 Divide-and-Conquer-Algorithmus

Für den Divide-and-Conquer-Ansatz liegt die Punktemenge sortiert nach x- und y-Komponenten

vor. Mit der nach der x-Komponente sortierten Liste wird der Median bestimmt, um die Punkte-

menge aufzuteilen. Der Median legt ebenfalls fest, an welcher Stelle die einschließende Box in

zwei Boxen geteilt wird.

Der Merge-Schritt wird im Folgenden beschrieben. Gegeben sei eine Punktemenge, die bezüglich

der x-Koordinate in zwei Hälften geteilt wird (siehe Abbldung 3.3). Das größte leere Quadrat

liegt entweder vollständig in einer der beiden Seiten oder es liegt auf der Trennlinie l. Das

bisher größte Quadrat habe die Größe s. Um das größte Quadrat auf der Trennlinie zu �nden,

wird eine Kontur – implizit gegeben durch eine geordnete Menge von Punkten – erzeugt, auf

deren Rand eine Ecke des größten Quadrats liegt. Alle Punkte liegen sortiert bezüglich der

y-Koordinate in einer Listenstruktur vor, sodass Punkte in konstanter Zeit eingefügt werden

können.

3.2.2.1 Randpunkte

Für alle aufeinanderfolgenden Paare, die eine größere vertikale Distanz als das bisherige größte

Quadrat haben (s < |yi − yi+1|), werden zwei Punkte mit derselben Höhe am äußeren Rand

der einschließenden Box erzeugt und zwischen dem Paar eingefügt.
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3 Achsenparallele Beschriftung

3.2.2.2 Orthogonalisierung

Im nächsten Schritt wird die Liste so erweitert, dass für jeden Punkt der nächste Punkt entweder

dieselbe x- oder y-Koordinate hat (blaue Punkte in Abbildung 3.3). Dafür werden von zwei

aufeinanderfolgenden Punkten pi = (xi, yi) und pi+1 = (xi+1, yi+1) der Punkt (xi, yi+1) oder

(xi+1, yi) eingefügt, der von der Trennlinie horizontal weiter entfernt liegt.

l

Abbildung 3.3 – Erweiterung der Punktemenge um Eckpunkte (blau). Dadurch

unterscheidet sich jedes aufeinanderfolgende Paar von Punkten in höchstens

einer Koordinate; es entsteht eine orthogonale Kontur.

3.2.2.3 Füllpunkte

Der nächste Schritt besteht darin, die Punkte(-menge) so zu erweitern, dass zu jedem Punkt min-

destens ein Punkt existiert, der dieselbe x-Koordinate und ein Punkt der dieselbe y-Koordinate

hat. Ziel ist, dass jeder Punkt auf die vertikal am weitesten entfernten Punkte auf der Kontur

(oben und unten) verweist, und auf den am weitesten horizontal entfernten Punkt auf der

anderen Seite. Dadurch kann die Listenstruktur durchgegangen und für jeden Punkt können

vertikale und horizontale Punkte gefunden werden, die ein größtes Quadrat beschränken.

3.2.2.4 Vertikale Füllpunkte

In nächsten Schritt wird die Punktemenge so erweitert, dass zu jedem Punkt auf einer Seite

ein Punkt mit derselben x-Koordinate existiert (siehe Abbildung 3.4). Für die Beschreibung
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3.2 Algorithmus für MES

hier wird die linke Hälfte betrachtet. Die Liste von Punkten wird vorwärts (und rückwärts)

durchlaufen. Für einen Punkt pi gibt es drei Möglichkeiten, wo der nächste Punkt pi+1 liegt.

Entweder pi+1 liegt auf gleicher Höhe links von pi, rechts von pi oder pi+1 liegt mit gleichem

horizontalem Abstand zu l höher (oder tiefer). Durch die Erweiterung aus dem vorherigen

Abschnitt ist sichergestellt, dass in den ersten beiden Fällen die Punkte auf der selben Höhe

liegen und im letzten Fall ist sichergestellt, dass die Punkte dieselbe x-Koordinate haben. Liegt

der nachfolgende Punkt links, bedeutet es, dass man sich auf der Kontur von der Trennlinie

wegbewegt. Der Punkt pi wird in diesem Fall auf einen Stapel gelegt. Liegt der nachfolgende

Punkt rechts, werden Punkte ps auf dem Stapel betrachtet. Ist ps horizontal weiter von l entfernt

als der nächste Punkte pi+1, wird ein Punkt nach pi und vor pi+1 eingefügt. Hierbei wird die

y-Koordinate von pi genommen und die x-Koordinate von ps. Diese Schritte werden in beiden

Richtungen und auf beiden Seiten durchgeführt. Danach ist sichergestellt, dass für jeden Punkt

ein vertikaler Punkt vorhanden ist.

3.2.2.5 Horizontale Füllpunkte

Der nächste Schritt stellt sicher, dass für jeden Punkt auf einer Seite ein Punkt auf der anderen

Seite existiert (siehe Abbildung 3.4). Wieder können mehrere Punkte möglich sein, sodass der

am weitesten entfernte Punkt gewählt wird. Dafür werden beide Listen gleichzeitig durchge-

gangen. Seien pl,i, pl,i+1 zwei aufeinanderfolgende Punkte auf der linken und seien pr,i, pr,i+1
zwei aufeinanderfolgende Punkte auf der rechten Seite. Auf beiden Seiten wird bei gleicher

y-Koordinate solange in den Listen weitergegangen, bis der am weitesten entfernte Punkt zu l

gefunden wird. Falls pl,i+1 < pr,i+1 wird ein Punkt auf der rechten Seite mit der y-Koordinate

von pl,i+1 eingefügt. Analog werden Punkte auf der linken Seite eingefügt. Nach diesem Schritt

ist sichergestellt, dass zu jedem Punkt mindestens ein Punkt auf der anderen Seite auf gleicher

Höhe liegt. Dieser Schritt beeinträchtigt nicht den vorherigen, da Punkte nur zwischen einem

Punktepaar eingefügt werden, das vertikal liegt.

3.2.2.6 Verweise

Um die vertikalen Verweise zu erzeugen, wird die Liste erneut durchgegangen (siehe Abbildung

3.5). Be�ndet man sich bei einem horizontalen Paar und bewegt sich von der Trennlinie weg

(auf der linken Seite xi > xi+1), wird der erste Punkt pi auf den Stapel gelegt. Im umgekehrten

Fall, wenn man sich zur Trennlinie bewegt (auf der linken Seite xi < xi+1), wird ein Verweis

zu dem Punkt erzeugt, der auf dem Stapel liegt (und der Punkt wird vom Stapel entfernt).

Für die horizontalen Verweise werden beide Listen durchgegangen. Für eine Seite wird der

äußerste Punkt einer Höhe ermittelt. Alle Punkte dieser Höhe auf der anderen Seite verweisen

auf diesen Punkt.
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3 Achsenparallele Beschriftung

l

Abbildung 3.4 – Visualisierung der Listen nachdem horizontale (rot) und

vertikale (blau) Füllpunkte eingefügt wurden.

Nach diesen Schritten ist sichergestellt, dass beide Listen eine orthogonale Kontur bilden (zwei

aufeinanderfolgende Punkte liegen entweder horizontal oder vertikal). Für jeden Punkt in der

Kontur können mittels Verweis bis zu zwei Punkte gefunden werden, die denselben horizontalen

Abstand zur Trennlinie l haben und die Kontur verläuft an dieser Position näher zu l. Außerdem

existiert für jeden Punkt ein Punkt auf der anderen Seite, ist mit einem Verweis verbunden und

hat maximalen Abstand.

3.2.2.7 Größtes Quadrat

Das größte Quadrat kann gefunden werden, indem beide Listen durchlaufen werden. Sei pl

ein Punkt auf der linken Seite und pr einer auf der rechten Seite. Diese Erklärung behandelt

den Fall, dass pl die untere linke Ecke eines größten Quadrats ist. Insgesamt werden die Listen

viermal durchlaufen – für jede Ecke des Quadrats einmal. Für jeden Punkt pl werden folgende

Schritte durchgeführt: Zunächst wird die rechte Seite durchlaufen bis pr auf derselben Höhe ist

wie pl und maximalen horizontalen Abstand hat. Im Beispiel in Abbildung 3.6 ist pl = (2, 0)
(rot) und demnach pr = (10, 0) (rot). Von pl wird mittels Verweis der Punkt gefunden, der

maximalen Abstand nach oben hat. Dadurch wird ein horizontaler Bereich festgelegt, in dem

ein Quadrat liegen kann. Im Abbildungsbeispiel ist es der Bereich y ∈ [0, 4]. Auf der linken

Seite können durch die Datenstruktur keine Punkte in der Seite liegen.

Schaut man vom Punkt pr = (10, 0) mittels Verweis nach oben, wird ein Punkt gefunden, der

12



3.3 Skalierung

l

Abbildung 3.5 – Visualisierung der Listen mit vertikalen Verweisen.

einen kleinen horizontalen Bereich de�niert. Die Kontur läuft demnach in das Quadrat hinein. In

diesem Fall wird die rechte Seite durchlaufen, bis ein Bereich gefunden wird, der mindestens so

groß ist wie der linke Bereich. Im Beispiel ist das bei pr = (6, 2) (blau) der Fall. Somit sind beide

Seiten für das Quadrat bestimmt. Die Höhe ergibt sich aus dem Punkt pl und dem Minimum

der horizontalen Bereiche auf beiden Seiten.

3.3 Skalierung

Um ein maximales Rechteck mit gegebenem Breiten- und Höhenverhältnis zu bestimmen, wer-

den alle Punkte in einem Vorverarbeitungsschritt durch die Skalierungsmatrix S := diag(sx, sy)
transformiert, wobei sx 6= 0, sy 6= 0 das Breiten- und Höhenverhältnis ist. Das größte Rechteck

mit gegebenem Breiten- und Höhenverhältnis ist dann das mit S−1
transformierte größte

Quadrat.

3.4 Beschriftung mittels MES

Ein maximales Quadrat innerhalb des Polygons kann mittels MES folgendermaßen approximiert

werden: Zunächst wird das maximale Quadrat bezüglich der Punktemenge gesucht. Für ein

gefundenes maximales Quadrat wird geprüft, ob dieses im Polygon enthalten ist. Hierfür wird

das Even-Odd-Verfahren verwendet [HA01]. Falls es nicht enthalten ist, wird der Mittelpunkt des

13



3 Achsenparallele Beschriftung

l

pl = (2, 0) pr = (10, 0)

y ∈ [0, 4]

y ∈ [0, 2]

Abbildung 3.6 – Finden des größten Quadrats. Das grüne Quadrat ist das

maximale Quadrat für pl = (2, 0). Ein maximales Quadrat ist das blaue Quadrat.

Quadrats zu der Punktemenge hinzugefügt und der Algorithmus wiederholt, bis das gefundene

Quadrat im Polygon liegt. Dies ist in Algorithmus 1 angegeben. Hierbei ist P das Polygon und

P die Punktemenge der Segmentendpunkte. Nach der Skalierung in Zeile 3 wird das größte

Quadrat mit dem oben beschriebenen Vefahren bestimmt (Funktion LargestSqare). Die

Funktion Adapt stellt sicher, dass das Quadrat vollständig im Polygon P liegt und MidPoint

bestimmt den Mittelpunkt des Quadrats. Diese Schritte werden wiederholt, bis ein Quadrat

gefunden wurde, dessen Mittelpunkt im Polygon liegt. Damit liegt insbesondere auch das

Quadrat im Polygon. Der Algorithmus gibt das zurückskalierte Quadrat zurück, welches ein

Rechteck mit dem festgelegten Breiten- und Höhenverhältnis ist.

Damit das Quadrat tatsächlich vollständig innerhalb des Polygons liegt, wird es mit allen

Segmenten geschnitten und gegebenenfalls angepasst. Für jedes Segment werden folgende

Schritte ausgeführt (siehe Abbildung 3.7): Es werden die Diagonalen des Quadrats mit dem

Segment geschnitten. Der Schnittpunkt aus Diagonale und Segment ergibt bis zu vier kleinere

Quadrate, die im gefundenen Quadrat liegen. Das größte Quadrat davon wird als Angepasstes

verwendet.

Die Laufzeit, um ein Label zu erzeugen, ist demnachO(k ·((n+k) log(n+k)) (für die log-lineare

Laufzeit von MES siehe Abschnitt 3.5), wobei k die Anzahl der maximalen äußeren Quadrate

ist und n die Anzahl der Segmente des Polygons. Die Laufzeit der Schleife (Zeile 4 bis 9) in

Algorithmus 1 wird von LargestSqare dominiert.
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3.5 Laufzeit und Fehler

Algorithmus 1 Algorithmus für achsenparallele Beschriftung

1: function LargestSqare(P, S)

2: P := PointSet(P)
3: P := Scale(P, S)
4: repeat
5: s := LargestSqare(P )
6: s := Adapt(P, s)
7: p := MidPoint(s)
8: P := P ∪ {p}
9: until IsInside(p, OuterPolygon(P))

10: return Scale(s, S−1)
11: end function

mm′

≤ 1
2m

Abbildung 3.7 – Das Quadrat wird angepasst, wenn es von einem Segment

geschnitten wird. Die Größe des angepassten Quadrats ist dabei abhängig vom

maximalen Abstand m′
zweier aufeinanderfolgender Punkte im Polygon.

3.5 Laufzeit und Fehler

Der Algorithmus hat eine Laufzeit von O(n log n), wobei n die Anzahl der Punkte ist. Dies

ergibt sich aus dem Mastertheorem [Cor+09]. Das Sortieren der Punkte bezüglich x- und

y-Komponenten benötigt O(n log n) Schritte und wird zuerst ausgeführt. Sei T (n) die Zeit,

um das größte Quadrat zu �nden. In jedem Rekursionsschritt wird die Punktemenge in zwei
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3 Achsenparallele Beschriftung

Teilprobleme halbiert. Das Finden des Medians und Aufteilen der Punktemenge erfolgt in

Linearzeit.

Das Zusammenführen von zwei Teillösungen benötigtO(n) Schritte. Der Merge-Schritt besteht

aus mehreren Teilschritten: Im ersten Schritt werden zwei Punkte am Rand der Box eingefügt.

Hierbei können zwischen jedem Paar höchstens zwei Punkte hinzugefügt werden. Somit kann

sich die Anzahl der Punkte verdreifachen. Beim Durchlaufen der Liste, um die Eckpunkte

einzufügen, kann höchstens zwischen jedem Paar ein Punkt eingefügt werden. Insgesamt

kann sich die Menge der Punkte demnach höchstens verdoppeln. Genauso verdoppelt das

Einfügen der vertikalen Punkte für die Verweise höchstens die Punktemenge, da höchstens

alle Punkte der Liste auf den Stapel gelegt werden können und somit auch höchstens so viele

Punkte hinzugefügt werden. Beim Einfügen der horizontalen Punkte kann sich die Punktemenge

ebenfalls maximal verdoppeln, wenn für jeden Punkt auf der einen Seite ein Punkt auf der

anderen Seite dazukommt. Die Größe der aufgebauten Datenstruktur ist somit O(n).

Das Durchlaufen der Datenstruktur, um das größte Quadrat zu �nden, benötigt höchstens linear

viele Schritte. Hierbei sind auf jeder Seite eine Position in der jeweiligen Liste gespeichert. Eine

Position bestimmt eine Ecke des Quadrats, während die andere verwendet wird, um nach einer

Position in der anderen Kontur zu suchen, sodass kein Punkt im Quadrat liegt. Für eine feste

Position kann somit mehrere Schritte auf der anderen Seite weitergegangen werden. Insgesamt

wird die Datenstruktur aber einmal durchlaufen. Somit benötigt der Merge-Schritt linear viele

Schritte. Damit ist T (n) = 2 · T (n/2) + f(n), wobei die Funktion f die Schritte zum Aufteilen

der Punktemenge, zum Erzeugen der Datenstruktur und zur Suche des Quadrats beschreibt.

Im Allgemeinen kann der Fehler beliebig groß sein, der sich durch das Anpassen mit den

Segmenten ergibt. Eine solche Instanz kann einfach gefunden werden, indem man Segmente

horizontal platziert, wobei die Endpunkte auf den Rändern der Box liegen. Das größte leere Qua-

drat der Punktemenge hat die Größe der Box und das größte leere Quadrat der Segmentmenge

den vertikalen Abstand zweier Segmente.

Für das Labeling wird angenommen, dass die Distanz von zwei aufeinanderfolgenden Punkten

im Polygon kleiner als die Seitenlänge des größten Quadrats ist. Dadurch schneiden Segmente

das Quadrat nur an den Ecken. Die folgenden Überlegungen sind in Abbildung 3.7 illustriert.

Das Quadrat wird von einem Segment geschnitten. Der maximale Abstand von einer Ecke des

Quadrats zu einem Schnittpunkt ist m ≤ m′, wobei m′ := maxpi∈P {‖ #          »pipi+1‖2} der maximale

euklidische Abstand von zwei aufeinanderfolgenden Punkten ist. Die Seitenlänge des an beiden

Seiten angepassten Quadrats ist mindestens s′ ≥ s− 2 · 0.5 ·m, wobei s die Seitenlänge des

ursprünglichen Quadrats ist. Somit ist das Verhältnis von angepasstem Quadrat zu maximalem

Quadrat:

s′2

s2 ≥
(s−m)2

s2 =: r
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3.5 Laufzeit und Fehler

Ein maximales Quadrat in einem Polygon ist kleiner als das MES der Punktemenge sp ≤ s.

Somit ist s′2 ≥ rs2
p. Für kleine maximale Segmentlängen (oder große s′) wird der Abstand

m ≤ m′ ebenfalls klein und somit weicht die Größe des gefundenen Quadrats s′ wenig von s

ab.
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4 Rotierte Beschriftung

Dieses Kapitel beschreibt einen randomisierten Algorithmus, um das größte rotierte Rechteck mit

gegebenem Breiten- und Höhenverhältnis in einem allgemeinen Polygon zu �nden. Abbildung

4.1 ist ein Beispiel für ein Problem mit Lösung.

In Kapitel 3 konnte das Problem so reduziert werden, dass das größte Quadrat gesucht wird,

indem die Instanz skaliert wird. Diese Idee wird – mit geringfügig mehr Aufwand – auch in

diesem Fall angewendet. Also wird im Folgenden beschrieben, wie das größte rotierte Quadrat

gefunden wird.

Der Algorithmus arbeitet wie folgt: Es werden zufällig gleichverteilt drei Segmente des Polygons

gewählt. Mit diesen Segmenten wird das größte Quadrat konstruiert, das durch die Segmente

begrenzt wird. Im nächsten Schritt wird für alle Segmente des Polygons geprüft, ob sie im

Quadrat liegen oder es schneiden. In einem solchen Fall wird das Quadrat angepasst. Der

Hauptschritt ist demnach aus drei beliebigen Segmenten das größte Quadrat zu konstruieren.

Dafür werden im nächsten Abschnitt Grundlagen beschrieben. Abschnitt 4.2 erklärt, wie ein

maximales Quadrat aus drei Segmenten konstruiert wird. Der nächste Abschnitt erläutert,

wie die Skalierung eingesetzt werden kann, um das größte Rechtecke zu erhalten. Abschnitt

4.4 beschreibt den gesamten Algorithmus und im letzten Abschnitt wird die Laufzeit und

Erfolgswahrscheinlichkeit analysiert.

4.1 Grundlagen

Dieser Abschnitt beschreibt grundlegende Konzepte, die die Konstruktion maximaler Quadrate

im nächsten Abschnitt vereinfachen.

De�nition: Ein Segment ist de�niert wie in Abschnitt 1.1. Die Gerade eines Segments (s, t) ist

die Gerade, die durch die Punkte s und t geht.

De�nition: Der Abstand zweier Segmente s1, s2 sei d := minp∈s1,q∈s2(‖ #»pq‖2), wobei ‖ · ‖2 die

euklidische Norm bezeichnet.
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4 Rotierte Beschriftung

Abbildung 4.1 – Die Beispiellösungen für rotierte maximale Rechtecke mit

einem Breiten- und Höhenverhältnis von fünf wurden durch k = n2
viele

Proben mit dem randomisierten Algorithmus erzeugt.

De�nition: Ein Segment (sb, tb) liegt auf beiden Seiten eines anderen Segmentes, wenn der

Orientierungstest für sb und tb unterschiedliche Seiten feststellt. Ein Segment liegt auf einer

Seite, wenn der Orientierungstest für beide Punkte dieselbe Seite feststellt.

Ein Quadrat kann auf zwei Arten durch ein Segment beschränkt werden:

1. Eine �exible Begrenzung liegt vor, wenn eine Ecke des Quadrats auf einem Segment liegt

und das Segment nicht parallel zu einer Seite des Quadrats ist.

2. Eine �xe Begrenzung liegt vor, wenn ein Endpunkt eines Segments auf einer Seite des

Quadrats liegt oder wenn ein Segment parallel zu einer Seite des Quadrats ist und es

mindestens zwei gemeinsame Punkte von einer Seite des Quadrats und dem Segment

gibt.

Ein maximales rotiertes Quadrat wird durch höchstens zwei �exible Restriktionen begrenzt.

Sei ein maximales Quadrat gegeben, das durch drei �exible Kontakte begrenzt wird. Es gibt

zwei diagonal gegenüberliegende Kontakte. Aufgrund der �exiblen Begrenzung können die

Kontakte verschoben werden. Dabei kann ein Quadrat gebildet werden, weil die Winkel an den

Kontaktstellen zwischen Segmenten und Quadratseiten echt größer Null sind (siehe Abbildung

4.2).
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4.2 Konstruktion maximaler Quadrate

a b

c

Abbildung 4.2 – Ein Quadrat, das durch drei �exible Kontakte begrenzt wird. Ein größeres

Quadrat ergibt sich, indem Kontakt a nach links, gleichzeitig b nach oben und c nach rechts

verschoben wird.

Ein maximales rotiertes Quadrat, das durch drei Segmente begrenzt wird, kann demnach durch

drei �xe, zwei �xe und eine �exible oder eine �xe und zwei �exible Kontakte begrenzt sein.

Abbildung 4.3 illustriert diese Fälle (für nicht notwendigerweise maximale Quadrate). Für �xe

Kontakte wird nur ein begrenzender Punkt gezeichnet. Ein Algorithmus, der das maximale

Quadrat bestimmt, ist korrekt, wenn er alle Fälle abdeckt und für jeden Fall das maximale

Quadrat bestimmt.

4.2 Konstruktion maximaler Quadrate

Dieser Abschnitt beschreibt, wie ein maximal großes Quadrat konstruiert wird, wenn drei

nicht-überschneidende Segmente gegeben sind. Ein Quadrat ist nur dann maximal, wenn es alle

drei Segmente berührt. Basierend auf den obigen Überlegungen können drei Hauptfälle unter-

schieden werden: Das größte Quadrat wird durch die Endpunkte von zwei gegenüberliegenden

Segmenten begrenzt (siehe Abbildung 4.4); die Geraden der Segmente bilden ein Dreieck und

das größte Quadrat innerhalb des Dreiecks berührt alle Segmente (siehe Abbildung 4.5); eine

Seite des größten Quadrats ist parallel zu einem Segment (siehe Abbildungen 4.6, 4.7, 4.8).

Tabelle 4.1 zeigt, welche Fälle durch die unterschiedlichen Konstruktionen abgedeckt werden.
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4 Rotierte Beschriftung

a b c d

e f
g

h

Abbildung 4.3 – Fälle von Begrenzungen von Quadraten: a, b c und d sind Fälle, die durch eine

�xe und zwei �exible Begrenzungen gebildet werden, e bis einschließlich g sind Fälle, die durch

zwei �xe und eine �exible Begrenzung gebildet werden. h ist das Quadrat, das durch drei �xe

Begrenzungen gebildet wird. Diese Abbildung zeigt nicht alle Kombinationen; symmetrische

Fälle sind nicht dargestellt.

Tabelle 4.1 – Fälle, durch die Konstruktionen abgedeckt werden.

Fall Abgedeckte Fälle

4.2.1 h, f

4.2.2 d

4.2.3.1 b

4.2.3.2 a-e,g

4.2.3.3 a-e,g

4.2.1 Zwei fixe Begrenzungen

Der erste Fall in Abbildung 4.4 wird gelöst, indem für alle Paare von Segmenten das Paar mit

minimalem Abstand gewählt wird. Die Strecke d zwischen den minimalen Endpunkten legt

Größe und Rotation des Quadrats fest. An den zwei Endpunkten der Hilfsstrecke d werden zwei

Hilfsgeraden c1 und c2 rechtwinklig zu d erzeugt. Mit diesen werden vier Fälle unterschieden.

Das Segment m liegt zwischen c1 und c2, dann begrenzt einer der Endpunkte von m das Quadrat.

Es werden beide Hilfsgeraden geschnitten, dann liegt eine �exible Begrenzung vor. Es wird nur

eine Hilfsgerade geschnitten, dann kann eine �exible oder �xe Begrenzung vorliegen. Oder

Segment m liegt außerhalb von beiden Hilfsgeraden. Dann wird kein Quadrat erzeugt. Am

Ende wird geprüft, ob das Quadrat durch l oder n geschnitten wird. Im positiven Fall wird kein

Quadrat zurückgegeben. Diese Konstruktion deckt die Fälle f und h ab.
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4.2 Konstruktion maximaler Quadrate

l

n

m

d

Abbildung 4.4 – Das größte Quadrat, das durch die Endpunkte von drei unter-

schiedlichen Segmenten begrenzt wird. Die Rotation und Größe ergibt sich aus

dem Paar von Segmenten, dessen minimaler Abstand von zwei Endpunkten

aus unterschiedlichen Segmenten maximal ist.

4.2.2 Die Segmentlinien ergeben ein Dreieck

Bilden die Linien der Segmente ein Dreieck, wird das größte Quadrat innerhalb dieses Dreiecks

konstruiert (siehe Abbildung 4.5). Falls das größte Quadrat auch alle Segmente berührt, kann es

übernommen werden. Das größte Quadrat wird mit dem Verfahren aus [LW] konstruiert und

deckt Fall d ab.

4.2.3 Eine Quadratseite liegt auf einem Segment

Der letzte Fall lässt sich weiter durch die Lage der Segmente unterteilen. Allen Segmenten

werden feste Bezeichnungen zugewiesen. Das Segment l ist das Segment, auf dem eine Seite des

Quadrats liegt. Die Lage der übrigen Segmente m und n wird in Bezug zu l bestimmt. Durch die

Konstruktionen in den Abschnitten 4.2.3.2 und 4.2.3.3 werden einige Fälle mehrfach abgedeckt.

Dies ist notwendig, da die Fälle in Abbildung 4.3 durch die Kontaktstellen unterschieden werden

und sich die Konstruktionen in diesem Abschnitt durch die Lage der Segmente unterscheiden.

4.2.3.1 Zwei Segmente liegen auf beiden Seiten

Für ein festes Segment l können die anderen Segmente auf beiden Seiten von l liegen (siehe

Abbildung 4.6). Das größte Quadrat wird konstruiert, indem die Schnittpunkte im von l und m
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4 Rotierte Beschriftung

l

m

n

Abbildung 4.5 – Die Linien der Segmente l, m und n bilden ein Dreieck. Das

größte Quadrat ist jenes, das in das Dreieck eingezeichnet werden kann und

welches alle Segmente berührt.

sowie in von l und n als vorläu�ge Ecken des Quadrats genommen werden. Je nach Orientierung

von m und n können Endpunkte innerhalb des bisherigen Quadrats liegen. Liegen Endpunkte

eines Segments innerhalb des Quadrats, wird das Quadrat an dieser Seite verkleinert. Das

maximale Quadrat aus diesem Fall ist das, welches auf beiden Seiten von l so konstruiert wird.

Diese Konstruktion deckt Fall b ab.

4.2.3.2 Ein Segment liegt auf beiden Seiten

Im nächsten Fall liegt Segment m auf beiden Seiten von l. Segment n liegt auf einer Seite (siehe

Abbildung 4.7). Es wird der Schnittpunkt von l und m berechnet. Dieser bildet eine vorläu�ge

Ecke des Quadrats. Analog zu oben wird sichergestellt, dass das Segment m die obere Seite des

Quadrats nicht schneidet. Ansonsten wird die Seite parallel so verschoben, dass sie durch den

Endpunkt von m geht.

Das größte Quadrat wird entweder durch einen Endpunkt des Segments auf zwei verbleibenden

Seiten begrenzt oder durch einen �exiblen Kontakt an einer der drei unbestimmten Ecken

(rechte Seite in Abbildung 4.7). Diese Konstruktion deckt die Fälle a bis e und g ab.
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4.3 Skalierung

l
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Abbildung 4.6 – Die Segmente m und n werden von der Geraden durch l

geschnitten. Das maximale Quadrat wird gefunden, indem auf beiden Seiten

von l das größte Quadrat konstruiert wird. Dafür wird der Schnittpunkt der Linie

l mit den Segmenten m und n berechnet. Diese bilden potentielle Eckpunkte

des Quadrats.

4.2.3.3 Beide Segmente liegen auf einer Seite

Liegen beide Segmente m und n auf derselben Seite bezüglich l, wird eine Ecke des Quadrats

aus l und m erzeugt (siehe Abbildung 4.8). Hierbei werden mit beiden Endpunkten von m

die Hilfslinien hs, ht konstruiert. Liegt das Segment n zwischen hs und ht kann kein Quadrat

erzeugt werden. Ansonsten wird mittels Orientierungstest festgestellt, auf welchen Seiten der

Hilfslinien ein Quadrat erzeugt werden kann.

Das maximale rotierte Quadrat für drei gegebene Segmente ist das maximale Quadrat über

alle Fälle 4.2.1 bis 4.2.3.3. Da in den Fällen 4.2.2, 4.2.3.2 und 4.2.3.3 unterschiedliche Fälle mit

unterschiedlich benannten Segmenten gleichzeitig vorliegen können, werden Quadrate mit allen

Permutationen von Segmentbezeichnungen konstruiert und das Maximum übernommen.

4.3 Skalierung

Im Gegensatz zum achsenparallelen Fall muss die Rotation des Quadrats bekannt sein, um

die Instanz zu skalieren. Abbildung 4.9 zeigt wichtige Transformationsschritte. Im ersten Bild

sind die Segmente im ursprünglichen Koordinatensystem abgebildet. Um das größte skalierte

Quadrat (Rechteck) zu �nden, wird der Winkel zwischen einer Seite des Quadrats und der
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4 Rotierte Beschriftung

m

l

n

Abbildung 4.7 – Das Segment m wird von der Geraden durch l geschnitten.

Das maximale Quadrat wird gefunden, indem der Schnittpunkt der Linie durch

l und dem Segment m als Ecke verwendet wird. In dieser Konstellation sind

zwei Fälle zu untersuchen: Entweder das größte Quadrat wird durch einen

Endpunkt des Segments n begrenzt oder eine Ecke des Quadrats liegt auf dem

Segment n.

x-Achse bestimmt. Der Winkel ergibt sich je nach Fall entweder aus dem Segment l oder aus

der Hilfslinie d. Damit wird die Rotationsmatrix R bestimmt. Die Translationsmatrix T wird

erzeugt, indem ein beliebiger invertierter Endpunkt aus d oder l gewählt wird. Die Skalierungs-

matrix S ist analog zum achsenparallelen Fall. Alle drei Segmente werden mittels T−1R−1SRT

transformiert (2. Bild in Abbildung 4.9), was einer Skalierung parallel zu einer Seite des Quadrats

entspricht. In diesem Koordinatensystem wird das größte Quadrat konstruiert. Das größte ska-

lierte Quadrat (Rechteck mit festen Breiten- und Höhenverhältnis) ist das mit (T−1R−1SRT )−1

transformierte größte Quadrat (3. Bild in Abbildung 4.9). Diese Transformationsdaten werden

zu jedem gefundenen Quadrat gespeichert.

4.4 Algorithmus

Der randomisierte Algorithmus verwendet das oben beschriebene Verfahren und �ndet ma-

ximale Rechtecke in einem Polygon (siehe Algorithmus 2). Hierbei ist P das Multi-Polygon,

k die Anzahl der Wiederholungen und a das Breiten- und Höhenverhältnis. Die Funktion

Uar wählt zufällig gleichverteilt ein Segment aus dem Polygon, LargestSqare berechnet

das maximale Quadrat und Adapt schneidet alle Segmente mit dem gefundenen Quadrat. Die

Transformationswerte sind mit dem Quadrat gespeichert, sodass in Adapt zu prüfende Seg-

26



4.4 Algorithmus

m
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n

hs

ht

Abbildung 4.8 – Beide Segmente m und n liegen auf derselben Seite bezüglich

l.

mente ebenfalls transformiert werden können. Diese Funktion behandelt zusätzlich den Fall,

dass Segmentendpunkte innerhalb des Quadrats liegen. Die Funktion Unscale gibt schließlich

das größte Rechteck zurück.

Algorithmus 2 Algorithmus für rotierte Beschriftung

1: function LargestSqare(P, k, a)

2: sm := 0
3: for i := 1, . . . , k do
4: l := Uar(P)
5: m := Uar(P)
6: n := Uar(P)
7: s := LargestSqare(l, m, n, a)
8: if s > sm then
9: s := adapt(P, s)

10: if s > sm ∧ Inside(s,P) then
11: sm := s

12: end if
13: end if
14: end for
15: return Unscale(sm)
16: end function
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4 Rotierte Beschriftung

4.5 Laufzeit und Erfolgswahrscheinlichkeit

Eine Probe des Algorithmus hat eine Laufzeitkomplexität von O(n), wobei n die Anzahl der

Segmente des Polygons ist. Wählt man drei Segmente zufällig gleichverteilt und konstruiert

daraus das größte Quadrat, benötigt man höchstens eine konstante Anzahl von Schritten. Im

nächsten Schritt wird für alle Segmente der Instanz geprüft, dass sie nicht im Quadrat liegen oder

es schneiden. Hierfür wird jedes Segment des Polygons mit allen vier Segmenten des Quadrats

geschnitten und für alle Endpunkte von Polygonsegmenten geprüft, ob sie im Quadrat liegen.

Die Laufzeit des Punkt-im-Polygon-Test ist ebenfalls linear. Damit ergibt sich die Gesamtlaufzeit

für eine Probe.

Die Erfolgswahrscheinlichkeit, für eine Probe das größte Quadrat zu �nden, ist mindestens

p ≥ 1/
(n

3
)
. Ein maximales Quadrat wird durch mindestens ein Tripel von Segmenten de�niert.

Da man zufällig gleichverteilt drei Segmente wählt, ergibt sich die Erfolgswahrscheinlichkeit.

Mithilfe der Binomialverteilung kann die Anzahl der Versuche bestimmt werden, sodass erwartet

das größte Quadrat einmal gefunden wird. Sei X ∼ B(k, p) binomialverteilt, dann ist für

E(X) = 1 die Anzahl der benötigten Versuche k =
(n

3
)
. Mit der Laufzeit für eine Probe ist die

Laufzeit, um erwartet das größte Quadrat zu �nden, demnach O(n4).
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4.5 Laufzeit und Erfolgswahrscheinlichkeit

d

d

d

Abbildung 4.9 – Um das größte Rechteck mit einem Breiten- und Höhenver-

hältnis von 2 : 1 zu erhalten, werden die Segmente parallel zu den Seiten des

Quadrats skaliert (in diesem Fall ist das die Linie d). Im transformierten Koordi-

natensystem wird das größte Quadrat konstruiert (2. Bild). Das größte Rechteck

ist das zurücktransformierte Quadrat im ursprünglichen Koordinatensystem (3.

Bild).

29





5 Implementierung und Tests

Beide Algorithmen wurden in der Programmiersprache C++ implementiert, ohne Multi-

Threading einzusetzen. Der Algorithmus zum Lösen der achsenparallelen Rechtecke wurde

hauptsächlich in einem prozeduralen Stil programmiert. Für die Datenstruktur wurde auf

Elemente der Standard-Template-Library (STL) zurückgegri�en, um die Listenstruktur mit

Verweisen zu implementieren (Liste, Vektor und Stapel). Für den Algorithmus zum Lösen der

rotierten Rechtecke wurde eine Vektorklasse implementiert. Durch das Operator-Überladen

sind typische vektorielle Operationen leicht umsetzbar. Ebenso wurde eine Segmentklasse

implementiert, wobei auch Operationen, die zur Linie eines Segments gehören, dieser Klasse

zugeordnet sind. Bei grundlegenden geometrischen Operationen (Orientierung von Punkt und

Gerade, Punkt auf Linie, Schnitt von zwei Linien) wurden die mathematischen Ausdrücke direkt

verwendet, ohne besonderen Wert auf numerische Stabilität zu legen.

Die folgenden Tests wurden auf einem Rechner mit Intel i5-3320M Prozessor mit 2,2 GHz
Taktfrequenz und 4 GB RAM ausgeführt. Der C++-Code wurde mit Clang 3.7.0 und der dritten

Optimierungsstufe auf einem Linux-System kompiliert und ausgeführt. Die Testdaten waren eine

Menge von 669 Gebieten des Landes Baden-Württemberg. In der Menge sind sowohl Gebiete

mit mehreren getrennten Polygonzügen, als auch Multi-Polygone (mit Löchern) enthalten. Für

den randomisierten Algorithmus wurde eine Teilmenge der kleinsten 159 Gebiete verwendet.

Für den Algorithmus für achsenparallele Rechtecke ist es interessant, wie viele Wiederholungen

benötigt werden, bis das größte Rechteck innerhalb des Polygons gefunden wurde. Die Verteilung

der Wiederholungen ist in Abbildung 5.1 dargestellt. Es zeigt sich, dass in 84% aller Fälle das

größte Rechteck im ersten Durchlauf gefunden wird. Acht Wiederholungen sind demgegenüber

in nur zwei Fällen nötig. Da die Laufzeit nicht nur von der Eingabelänge abhängt ist, es zusätzlich

interessant, wie schnell der Algorithmus bei verschiedenen realen Daten ist. Abbildung 5.2 zeigt

die Laufzeit des Algorithmus für achsenparallele Rechtecke und für verschiedene Instanzgrößen.

Hierbei werden 96% der Instanzen in weniger als einer Sekunde gelöst und 93% in weniger als

einer halben Sekunde. Insgesamt handelt es sich demnach um einen praktikablen ersten Ansatz,

um achsenparallele Labels zu erzeugen.

Für den randomisieren Algorithmus wurde die Laufzeit einer Teilmenge der Gebiete gemessen.

Abbildung 5.3 zeigt die Laufzeit des randomisierten Algorithmus. Hierbei wurden k = n3

viele Proben erzeugt. Bereits für Instanzen mit einer Größe von 133 Segmenten benötigt der

Algorithmus 4,5 min. Die Größe der achsenparallelen Rechtecke ist eine untere Schranke
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Abbildung 5.1 – Absolute Häu�gkeit der notwendigen Wiederholungen des

Algorithmus für achsenparallele Rechtecke bis ein Rechteck innerhalb des

Polygons gefunden wird.
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Abbildung 5.2 – Laufzeit des Algorithmus für achsenparallele Rechtecke mit

unterschiedlichen Instanzgrößen.

für die Größe im rotierten Fall. Da es sich um einen randomisierten Algorithmus handelt,

wurde untersucht, um viel die rotierten Rechtecke größer sind als die parallelen Rechtecke.

Die Verteilung der Verhältnisse von rotiertem Rechteck zu Parallelem sind in Abbildung 5.4

illustriert. In 14% der Fälle waren die Rechtecke kleiner als das achsenparallele Rechteck. Der

überwiegende Teil ergibt somit größere Rechtecke. In den meisten Fällen sind rotierte Rechtecke

32



um einen Faktor bis zwei größer. Aufgrund der schnell steigenden Laufzeit lässt sich dieser

Ansatz nicht ohne Modi�kationen praktisch einsetzen.
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Abbildung 5.3 – Laufzeit des randomisierten Algorithmus für unterschiedliche

Instanzgrößen.

Eine weitere Möglichkeit die Größe der Labels zu untersuchen ist in [Bar01] beschrieben. Dort

werden gebogene Beschriftungen erzeugt. Die in der vorliegenden Arbeiten durchgeführten

Tests verwenden stattdessen die Fläche des Rechtecks. Als Bewertungsmaß wurde die Wurzel

aus dem Verhältnis von Rechtecks- zu Polygon�äche

√
A(r)/A(P) gewählt. Durch die Wurzel

erhöhen sich die Variationen zwischen kleinen Werten, sodass Beschriftungen, die wenig Fläche

abdecken, besser untersucht werden können. Für die Beschriftungen wurde ein horizontaler

Skalierungsfaktor von vier gewählt. Abbildung 5.5 zeigt die Ergebnisse für achsenparallele

Boxen. Der häu�gste Wert liegt hierbei im Intervall [0, 2; 0, 3). Somit sind in den meisten Fällen

4% bis 9% der Fläche durch eine Box bedeckt.

Abbildung 5.6 zeigt die Ergebnisse für rotierte Boxen. In diesem Fall liegt der häu�gste Wert

im Intervall [0, 5; 0, 6). Diese deutlich bessere Abdeckung der Polygon�ächen lässt sich auch

durch die wesentlich kleineren Instanzen erklären.
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Abbildung 5.4 – Absolute Häu�gkeit der Größenverhältnisse r = sr/sp (sr

ist die Größe des rotierten Rechtecks und sp ist die Größe des achsenparallelen

Rechtecks). Für den randomisierten Algorithmus wurden k = n3
Proben

genommen.
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Abbildung 5.5 – Größenmaß

√
A(r)/A(P) von achsenparallelen Rechtecken,

wobei r die Fläche des Rechtecks ist und P die Fläche des Polygons. Beim Test

wurden Rechtecke mit einem Breiten- und Höhenverhältnis von 4 : 1 erzeugt.
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Abbildung 5.6 – Größenmaß

√
A(r)/A(P) von rotierten Rechtecken, wobei

r die Fläche des Rechtecks ist und P die Fläche des Polygons. Beim Test wurden

Rechtecke mit einem Breiten- und Höhenverhältnis von 4 : 1 erzeugt.
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6 Zusammenfassung und Ausblick

Dieses Kapitel fasst die vorgestellten Verfahren sowie deren Ergebnisse zusammen (Abschnitt

6.1) und gibt einen Ausblick, wie die vorgestellten Ansätze weiterentwickelt werden können

(Abschnitt 6.2).

6.1 Zusammenfassung

In dieser Arbeit wurden zwei Algorithmen entwickelt, um in einem allgemeinen Polygon mit

Löchern das größte Rechteck zu �nden, wenn das Breiten- und Höhenverhältnis bekannt ist. Der

erste Algorithmus sucht das größte achsenparallele Rechteck; beim zweiten Ansatz kann das

Rechteck beliebig rotiert sein. Durch das feste Breiten- und Höhenverhältnis muss die Position

und Größe (und die Rotation) bestimmt werden. Durch eine Skalierung der Eingabe konnten

die Instanzen so skaliert werden, dass nur das größte Quadrat gesucht werden muss.

Im ersten Szenario wurde das größte Rechteck bestimmt, indem das größte leere Quadrat in der

skalierten Punktemenge bestimmt wurde, die sich aus den Segmentendpunkten des Polygons

ergab. Vergleichbare Arbeiten zeigen, dass dieses Problem e�zient gelöst werden kann. Hierfür

wurde ein e�zienter Divide-and-Conquer-Algorithmus entwickelt. Lag das gefundene Quadrat

nicht im Polygon, wurde der Mittelpunkt zur Punktemenge hinzugefügt und der Algorithmus

wiederholt. Für ein gefundenes Quadrat wurde geprüft, das es nicht von Segmenten geschnitten

wird. Tests mit realen Gebieten zeigten, dass in den meisten Fällen keine Wiederholung des

Algorithmus nötig war.

Im Szenario für rotierte Rechtecke wurde ein randomisierte Ansatz entwickelt. Dabei wurden

zufällig gleichverteilt drei Segmente des Rechtecks gewählt und daraus das größte Quadrat

konstruiert. Das größte Rechteck mit gegebenem Breiten- und Höhenverhältnis konnte ebenfalls

durch Skalierung der Segmente ermittelt werden. Tests mit realen Gebieten zeigten, dass deutlich

größere rotierte Rechtecke gefunden wurden, wobei eine deutlich höhere Laufzeit benötigt

wurde.
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6 Zusammenfassung und Ausblick

6.2 Ausblick

Als Ausblick werden eine Reihe von Ansätzen beschrieben, wie sich die bisherigen Ergebnisse

weiterentwickeln lassen. Ein wichtiger Punkt ist, den Divide-and-Conquer-Algorithmus so

weiterzuentwickeln, dass das größte Quadrat bezüglich einer Menge von Segmenten gefunden

wird. Dabei ist an zwei Stellen deutlich mehr Aufwand zu erwarten:

1. Im Fall von drei Segmenten muss das größte achsenparallele beschränkte Quadrat kon-

struiert werden.

2. Im Merge-Schritt besteht die Kontur nicht nur aus orthogonalen Segmenten. Die Daten-

struktur, um das größte Quadrat zu �nden, enthält Verweise auf Segmente.

Ein Vorteil dieses Algorithmus ist, dass ein Polygon so erweitert werden kann, dass immer das

größte Quadrat innerhalb des Polygons gefunden wird. Die Instanz kann durch Segmente so

aufgefüllt werden, dass kein Quadrat außerhalb gefunden wird (durch Segmente, die vom Poly-

gon zur einschließenden Box gehen). Dadurch können Wiederholungen problemlos vermieden

werden.

Es bedarf weiterer Entwicklungen für rotierte Beschriftungen. Interessant sind hierbei weitere

eigenständige Ansätze mit möglicherweise geringerer Laufzeit. Es ergeben sich allerdings

auch Möglichkeiten, bestehende Algorithmen zu verwenden. So kann die Instanz zunächst

ausgedünnt oder Platzierungen ausgeschlossen werden. Dadurch können existierende Verfahren

auch bei größeren Instanzen eingesetzt werden. Alternativ kann ein e�zienter Algorithmus für

achsenparallele Rechtecke eingesetzt werden, um in rotierten Instanzen ein größtes Rechteck

zu �nden.
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