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Zusammenfassung

Eine Beschriftung zu platzieren ist ein wesentlicher Teil, um Informationen graphisch darzustel-
len. Die Beschriftung von Karten ist aufwendige Arbeit, was dazu motiviert, diesen Prozess zu
automatisieren. Hierfiir werden einfache Guitekriterien angenommen: Die Beschriftung wird

als Box reprasentiert. Es wird die groite Box innerhalb eines Polygons gesucht.

In dieser Arbeit werden zwei entwickelte und implementierte Algorithmen beschrieben und
untersucht, um Gebiete zu beschriften. In einem ersten Szenario wird eine Beschriftung in einem
Gebiet gesucht, die parallel zu den Koordinatenachsen ist. Mit dem entwickelten Algorithmus
lassen sich Beschriftungen effizient fiir beliebige Gebiete erzeugen. Im zweiten Szenario wird
eine Beschriftung in einem Gebiet gesucht, die beliebig rotiert sein darf. Hierbei lassen sich
Beschriftungen mit erheblichem Aufwand erzeugen. Praktisch konnen damit nur Beschriftungen

fiir kleine Gebiete gefunden werden.

Abstract

Label placement is a significant part to represent information graphically. Labeling of maps is
an expensive task which motivates to automate the process. For this purpose simple quality
criteria are assumed: The label is represented as a box. Within a polygon, the largest box is
searched.

In this thesis two developed and implemented algorithms to label areas are described and tested.
The first setting investigates the case of labels which are parallel to the coordinate axes. Using
the algorithm labels can be generated efficiently for arbitrary areas. In the second setting an
area label is searched which can be rotated arbitrarily. Here, labeling cost is considerable. In

practice labels can be found only for small areas.
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1 Einleitung

Eine Beschriftung zu platzieren ist ein wesentlicher Teil, um Informationen graphisch darzustel-
len und tragt dazu bei, Informationen verstandlicher zu machen oder erméglicht das Versténdnis.
Gerade bei der Beschriftung von Karten (als Teilgebiet der Kartographie) ist eine Beschriftung
essentiell. Bis [Imh75] wurden Karten nicht nach formalen Kriterien beschriftet. Formalisierte
Beschriftungskriterien ermoéglichen es hingegen, Beschriftungen objektiv zu vergleichen und
legen die Grundlage, um automatisch zu beschriften. Grundsatzlich unterscheidet man zwischen
Punkt- (Point-), Linien- (Line-Feature-) und Flachenbeschriftung (Area-Label). Aus Sicht der
Informatik stellt sich die Frage, wie man algorithmisch Beschriftungen erzeugen kann, die be-
stimmte Kriterien einhalten. Dies ist interessant, weil Visualisierungen ohne weitere manuelle
Tatigkeit erzeugt werden kénnen. Das Problem ist abstrakt, alle Moglichkeiten aufzuzihlen
eine Graphik zu beschriften. Daraus wahlt man die Beschriftung, die die Kriterien am besten
erfullt.

Das Point-Label-Problem ist, dass man zu einer Menge von Punkten in einer Karte Beschriftun-
gen findet. Hierbei diirfen sich die Labels nicht iiberlappen. Das Erzeugen von Pointlabels ist
in der Regel deterministisch nicht in polynomieller Zeit méglich. Bereits fiir ein vereinfachtes
Problem konnte gezeigt werden, dass es NP-vollstdndig ist [MS91]: Gegeben sei eine Menge
von Punkten in der Ebene und fiir jeden Punkt eine Menge von Labelpositionen sowie eine
Labelgrofie. Kénnen alle Punkte beschriftet werden, ohne dass es iiberlappende Labels gibt?

Eine Linienbeschriftung wird auf lineare Erscheinungen in Karten angewendet. Die Beschriftung
muss der linearen Form angepasst sein. In diesem Fall kann eine Beschriftung auch mehrmals
auftreten [Bar01].

Beim Beschriften von Flachen sucht man dagegen ein Label, das die Flache beschriftet. Gii-
tekriterien legen fest, was als gute Beschriftung anzusehen ist. Einfache Kriterien sind, dass
das Label innerhalb eines Gebiets liegt und maximal ist. Um in einem Gebiet ein maximales,
achsenparalleles Rechteck zu finden, sind effiziente (O(n log n)) Algorithmen bekannt [DMR97;
NSB94; Kna+12]. Das Problem, ein maximales rotiertes Rechteck zu finden, ist dagegen nicht
effizient l6sbar [Mol+12].

Diese Arbeit untersucht, wie eine Flachenbeschriftung fiir Gebiete erzeugt werden kann. Ein
Gebiet kann als eine begrenzte Flache verstanden werden. Eine solche Flache kann auch Locher
enthalten; es handelt sich demnach insbesondere um ein konkaves Gebiet. Im Folgenden wird



1 Einleitung

fir den Begriff Gebiet der Begriff Polygon verwendet, der im nichsten Abschnitt eingefiihrt
wird (Abschnitt 1.1). Eine Beschriftung wird als Box reprasentiert, fiir die gelten muss, dass die
Box vollstandig innerhalb des zu beschriftenden Gebiets liegt und die Gré83e der Box maximal
ist. Fir die gesuchte Box ist das Breiten- und Héhenverhéltnis bekannt. In der vorliegenden
Arbeit werden zwei Szenarien untersucht. Das erste Szenario untersucht den Fall einer ach-
senparallelen Box und im zweiten Szenario darf die Box beliebig rotiert sein. Probleme des
ersten Szenarios werden gel6st, indem das groite leere Quadrat beziiglich der Punktemenge,
die sich aus den Segmentendpunkten ergibt, berechnet wird. Das zweite Szenario wird durch
einen randomisieren Ansatz gelost. Es werden zufillig gleichverteilt Segmente aus dem Polygon
gewihlt und damit das grofite Quadrat konstruiert. Ein maximales Quadrat ist das Maximum
iiber mehrere Proben. Durch eine Skalierung kann in beiden Szenarien das grofite Rechteck fiir
ein gegebenes Breiten- und Hoéhenverhiltnis gefunden werden.

1.1 Grundlegende Begriffe

In diesem Abschnitt sind grundlegende Begriffe definiert.

Definition: Ein Punkt p = (z,y) € R? ist ein Element der euklidischen Ebene, wobei z die
horizontale und y die vertikale Position eines Punktes ist.

Definition: Ein Segment ist ein Geradenstiick, das in einem Punkt beginnt und in einem anderen
endet s := (p,p).

Definition: Ein Polygon ist eine Reihe von Punkten P := (p1,...,Dp,), wobei (p;, pi41) fur
i€ {l,...,n— 1} und (p,, p1) die Segmente eines Polygons sind. Fiir alle Segmente eines
Polygons gilt, dass sie sich nicht schneiden.

Definition: Ein Multi-Polygon (allgemeines Polygon) ist eine Menge von Polygonen P :=
{P1,..., P}, wobei es ein ausgezeichnetes Polygon P € P gibt, sodass alle anderen Polygone
innerhalb von P liegen. Die Flache eines Polygons sei .4 (P) und die Flache eines Multi-Polygons
sei A(P) = A(P) — X prep\(py A(F'). Das ausgezeichnete Polygon P wird auch dufleres
Polygon genannt. Alle anderen Polygone P \ { P} werden Locher genannt.

1.2 Gliederung

Die Arbeit gliedert sich in folgende weitere Kapitel:

Kapitel 2 — Ahnliche Arbeiten — gibt einen kurzen Uberblick zu vergleichbaren Verfahren
sowie einen Ausblick, was hinsichtlich Laufzeit und Gilite zu erwarten ist.



1.2 Gliederung

Kapitel 3 - Achsenparallele Beschriftung — beschreibt ein Verfahren, um achsenparallele
Beschriftungen zu erzeugen und untersucht Laufzeit und Fehler.

Kapitel 4 — Rotierte Beschriftung — beschreibt ein Verfahren, um rotierte Beschriftungen zu
erzeugen und untersucht Laufzeit und Erfolgswahrscheinlichkeit.

Kapitel 5 - Implementierung und Tests — gibt einen kurzen Hinweis, wie die Algorithmen
implementiert wurden und untersucht die Algorithmen hinsichtlich Laufzeit und Giite mit
realen Gebieten.

Kapitel 6 Zusammenfassung und Ausblick - fasst diese Arbeit zusammen und beschreibt

mogliche Ansatzpunkte fiir weitere Algorithmen und Untersuchungen.






2 Ahnliche Arbeiten

Ein haufig untersuchtes Problem ist das Maximum-Empty-Rectangle-Problem (MER) [NSB94;
DMR97]. Das Problem ist wie folgt definiert: Gegeben sei eine Menge von Punkten P =
{p1,...,pn}, wobei p; € R Die Punktemenge ist in einer Box eingeschlossen, die durch
minimale und maximale Koordinaten aus der Punktemenge bestimmt wird. Finde das grof3te
achsenparallele Rechteck, sodass kein Punkt im Rechteck enthalten ist und das Rechteck ist
vollstidndig in der einschlieBenden Box enthalten. Eine allgemeine Variante liegt vor, wenn statt
der Punktemenge eine Menge von Segmenten verwendet wird. Der Algorithmus in [NSB94]
verwendet einen zweistufigen Divide-and-Conquer-Ansatz. Der Algorithmus teilt die Menge
der Segmente rekursiv an einer vertikalen Trennlinie auf. Um das maximale Rechteck zu finden,
werden im Merge-Schritt die Segmente erneut (horizontal) aufgeteilt. Dadurch ergibt sich eine
orthokonvexe Kontur um den Schnittpunkt der beiden Linien. Entlang dieser Kontur kann
in linearer Zeit das gréf3te Rechteck mittels Matrixsuche gefunden werden. Insgesamt ergibt
sich eine Laufzeit von O(n log? n). Fiir einen Algorithmus, der das groite Quadrat sucht, kann
hingegen eine log-lineare Laufzeit erwartet werden, da man keinen zweiten Aufteilungsschritt
benotigt. Tatsachlich existiert bereits eine Methode fiir das Problem Largest-Empty-Square mit
log-linearer Laufzeit [Hwa79; LC80].

Ein weiteres Problem ist das Largest-Empty-Corner-Rectangle-Problem (LECR). Sei die Punkte-
menge S durch eine vertikale Linie in zwei Teilmengen S;, S, geteilt. Gesucht ist das grof3te
Rechteck, sodass der untere linke Punkt in S; und der obere rechte Punkte in .S ist. Mittels
schneller Matrixsuche kann dieses Problem in O(n log n) gelost werden, wobei n = |S| [AS87].
Ein solcher Algorithmus wird in [DMR97] verwendet, um zu zeigen, dass das grofite Rechteck
in einem allgemeinen Polygon mit Lochern in O(n log® n) gefunden werden kann. Hierfiir
muss das Polygon in zwei y-monotone Teilstiicke zerlegt werden. Diese beiden Teilstiicke
werden orthogonalisiert. Mittels LECR kann das grofite Rechteck durch ein speziell definiertes
Groflenmafl gefunden werden. Somit kann in der vorliegenden Arbeit ebenfalls ein effizienter
Algorithmus erwartet werden, um achsenparallele Beschriftungen zu generieren.

Das Problem von rotierten Rechtecken ist allgemein eine offene Frage [NSB94]. Die beste
Methode hierfiir ist ein Approximationsalgorithmus mit einer Laufzeit von O(n?), wobei n die
Anzahl der Segmente im Polygon ist [Mol+12]. Hierfiir wird das Polygon zunéchst in ein Quasi-
Lattice-Polygon transformiert, d. h. fiir jedes Segment des Polygons gibt es nur eine begrenzte
Anzahl von Orientierungen. In einem Vorverarbeitungsschritt wird fiir alle Paare von Punkten



2 Ahnliche Arbeiten

Tabelle 2.1 - Ubersicht von Laufzeiten der vorgestellten Algorithmen und
Probleme.

Objekt Orientierung  Laufzeit Referenz
Quadrat  achsenparallel O(nlogn) [Hwa79; LC80]
Rechteck achsenparallel O(nlog®n) [NSB94; DMRY7]
Rechteck achsenparallel Q(nlogn)  [DMR97]
Rechteck rotiert O(n?) [Mol+12]

des Polygons festgestellt, ob die Linie zwischen diesen Punkten durch das Polygon geschnitten
wird. Somit kann in konstanter Zeit festgestellt werden, ob ein gegebenes Punktepaar die Seite
eines Rechtecks ergeben kann. Der Algorithmus geht durch alle Punktepaare. Falls die Linie
eines Punktepaares innerhalb eines Polygons liegt, wird ein dritter Punkt gesucht, sodass sich
das grofite Rechteck ergibt. Die Laufzeit dieses Algorithmus legt somit den Rahmen fest, was in
der vorliegenden Arbeit erwartet werden kann. Es ist ein schneller oder ein exakter Algorithmus
denkbar, da in dieser Arbeit ein maximales Quadrat gesucht wird, was einfacher zu l6sen ist.
Tabelle 2.1 fasst die vorgestellen Algorithmen und Laufzeiten zusammen.



3 Achsenparallele Beschriftung

Dieses Kapitel beschreibt eine einfache und effiziente Moglichkeit, um ein Gebiet achsenparallel
zu beschriften. Abbildung 3.1 ist ein Beispiel fiir das Problem mit Losung.

Der Algorithmus arbeitet wie folgt: Fiir ein Polygon wird die Punktemenge betrachtet, die sich
aus den Segmentendpunkten ergibt. Es wird das grofite leere Quadrat dieser Punktemenge
bestimmt. Anschliefend wird gepriift, ob das Quadrat innerhalb des Polygons liegt. Falls es nicht
enthalten ist, wird der Mittelpunkt des Quadrats zu der Punktemenge hinzugefiigt und der Algo-
rithmus wiederholt. Um das gréfite Quadrat fiir ein bestimmtes Breiten- und Hohenverhéltnis
zu bestimmen, wird die gesamte Instanz in Richtung einer der Koordinatenachsen skaliert. Da
es sich um eine Approximation des grofiten Quadrats beziiglich der Segmente handelt, konnen
Ecken des Quadrats auflerhalb des Polygons liegen. Deswegen wird ein Schnitttest des Quadrats
mit allen Segmenten am Ende durchgefithrt und das Quadrat gegebenenfalls angepasst.

Dafiir wird im niachsten Abschnitt zunéchst das Problem formalisiert, maximale Quadrate zu
finden. Abschnitt 3.2 beschreibt einen Algorithmus, um das Problem zu 16sen. Der néchste
Abschnitt beschreibt, wie man diesen Algorithmus verwenden kann, um maximale Rechtecke fiir
ein gegebenes Breiten- und Héhenverhaltnis zu finden. Abschnitt 3.4 erklart, wie Beschriftungen
erzeugt werden konnen. Der letzte Abschnitt untersucht die Laufzeit und den Fehler.

3.1 Problem

Das Problem Maximum-Empty-Square (MES) ist wie folgt definiert: Gegeben sei eine Menge von
Punkten P = {po, . .., pn}, wobei p; € Z2. Finde das grofite achsenparallele Quadrat, sodass
kein Punkt im Quadrat enthalten ist. Fiir die Punktemenge wird eine minimale Box erzeugt,
sodass alle Punkte in der Box enthalten sind. Das grofite Quadrat muss ebenfalls in dieser Box

enthalten sein.

3.2 Algorithmus fur MES

Dieser Abschnitt beschreibt einen Algorithmus zum Lésen des Maximum-Empty-Square-

Problems.



3 Achsenparallele Beschriftung
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Abbildung 3.1 - Die Beispiellsungen fiir achsenparallel maximale Rechtecke
mit einem Breiten- und Hohenverhaltnis von fiinf wurden mit dem Divide-and-
Conquer-Algorithmus erzeugt.

3.2.1 Naiver Algorithmus

Eine erste obere Laufzeitschranke fiir diese Problem ist O(n*), wobei n die Anzahl der Segmente
oder Endpunkte der Segmente des Polygons ist. Dafiir werden alle Tripel von Punkten aufgezahlt,
fiir jedes Tripel wird das grofite Quadrat bestimmt und anschlieSend gepriift, dass kein anderer
Punkt der Punktemenge im Quadrat enthalten und dass das Quadrat vollstindig in der Box
enthalten ist.

Das Problem ist gegeben durch drei Punkte: Finde das grofite achsenparallele Quadrat, das
durch diese Punkte beschrinkt wird, kann wie folgt gelost werden (siehe Abbildung 3.2). Fir
alle Paare von Punkten des Tripels werden zwei Ecken erzeugt. Der dritte Punkt liegt entweder
in einem Bereich, der durch eine Ecke beschrankt wird oder aufierhalb beider Bereiche. Im
letzten Fall erzeugt dieses Tripel kein Quadrat. Ansonsten kann das gréfite Quadrat bestimmt
werden, indem der maximale Abstand des dritten Punktes zu einer Seite der Ecke als Grof3e fur
das Quadrat genommen wird. Das maximale ist das grofite Quadrat aus allen drei Moglichkeiten
Paare von Punkten zu bilden.

Dieses Verfahren wird verwendet, um in einem Divide-and-Conquer-Ansatz Teilinstanzen mit
konstanter Grofie zu losen.



3.2 Algorithmus fir MES
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Abbildung 3.2 - Konstruktion des gréften Quadrats durch drei Punkte. Die
roten Geraden bilden die Ecken durch die Punkte a und c. Der Punkt b liegt in
der nach unten geéffneten Ecke und bildet das Quadrat (blaue Linien).

3.2.2 Divide-and-Conquer-Algorithmus

Fiir den Divide-and-Conquer-Ansatz liegt die Punktemenge sortiert nach x- und y-Komponenten
vor. Mit der nach der x-Komponente sortierten Liste wird der Median bestimmt, um die Punkte-
menge aufzuteilen. Der Median legt ebenfalls fest, an welcher Stelle die einschlieBende Box in
zwei Boxen geteilt wird.

Der Merge-Schritt wird im Folgenden beschrieben. Gegeben sei eine Punktemenge, die beziiglich
der x-Koordinate in zwei Halften geteilt wird (siehe Abbldung 3.3). Das grofite leere Quadrat
liegt entweder vollstdndig in einer der beiden Seiten oder es liegt auf der Trennlinie /. Das
bisher grofite Quadrat habe die Grofle s. Um das grofite Quadrat auf der Trennlinie zu finden,
wird eine Kontur — implizit gegeben durch eine geordnete Menge von Punkten — erzeugt, auf
deren Rand eine Ecke des grofiten Quadrats liegt. Alle Punkte liegen sortiert beziiglich der
y-Koordinate in einer Listenstruktur vor, sodass Punkte in konstanter Zeit eingefiigt werden

konnen.

3.2.2.1 Randpunkte

Fiir alle aufeinanderfolgenden Paare, die eine gréf8ere vertikale Distanz als das bisherige grofite

Quadrat haben (s < |y; — yi+1|), werden zwei Punkte mit derselben Hohe am duf3eren Rand

der einschlieffenden Box erzeugt und zwischen dem Paar eingefiigt.



3 Achsenparallele Beschriftung

3.2.2.2 Orthogonalisierung

Im nichsten Schritt wird die Liste so erweitert, dass fiir jeden Punkt der nachste Punkt entweder
dieselbe x- oder y-Koordinate hat (blaue Punkte in Abbildung 3.3). Dafiir werden von zwei
aufeinanderfolgenden Punkten p; = (z;,vy;) und p;+1 = (%41, Yi+1) der Punkt (x;, y;+1) oder
(zi+1,yi) eingefugt, der von der Trennlinie horizontal weiter entfernt liegt.

L ]

L ]

L ]

L ]

|
|
|
|
|
|
i
|
|
|
|
|
|
I
|
|
!
|
|
|
|
|
|
1
|
|
|
|
|
|
1
|
|
I

Abbildung 3.3 - Erweiterung der Punktemenge um Eckpunkte (blau). Dadurch
unterscheidet sich jedes aufeinanderfolgende Paar von Punkten in hochstens
einer Koordinate; es entsteht eine orthogonale Kontur.

3.2.2.3 Fillpunkte

Der nichste Schritt besteht darin, die Punkte(-menge) so zu erweitern, dass zu jedem Punkt min-
destens ein Punkt existiert, der dieselbe x-Koordinate und ein Punkt der dieselbe y-Koordinate
hat. Ziel ist, dass jeder Punkt auf die vertikal am weitesten entfernten Punkte auf der Kontur
(oben und unten) verweist, und auf den am weitesten horizontal entfernten Punkt auf der
anderen Seite. Dadurch kann die Listenstruktur durchgegangen und fiir jeden Punkt kénnen
vertikale und horizontale Punkte gefunden werden, die ein grétes Quadrat beschrénken.

3.2.2.4 Vertikale Fiillpunkte

In néchsten Schritt wird die Punktemenge so erweitert, dass zu jedem Punkt auf einer Seite
ein Punkt mit derselben x-Koordinate existiert (sieche Abbildung 3.4). Fiir die Beschreibung

10



3.2 Algorithmus fir MES

hier wird die linke Hilfte betrachtet. Die Liste von Punkten wird vorwarts (und riickwiérts)
durchlaufen. Fir einen Punkt p; gibt es drei Moglichkeiten, wo der nachste Punkt p;, 1 liegt.
Entweder p;41 liegt auf gleicher Hohe links von p;, rechts von p; oder p;4; liegt mit gleichem
horizontalem Abstand zu [ hoher (oder tiefer). Durch die Erweiterung aus dem vorherigen
Abschnitt ist sichergestellt, dass in den ersten beiden Fillen die Punkte auf der selben Hohe
liegen und im letzten Fall ist sichergestellt, dass die Punkte dieselbe x-Koordinate haben. Liegt
der nachfolgende Punkt links, bedeutet es, dass man sich auf der Kontur von der Trennlinie
wegbewegt. Der Punkt p; wird in diesem Fall auf einen Stapel gelegt. Liegt der nachfolgende
Punkt rechts, werden Punkte ps auf dem Stapel betrachtet. Ist p,; horizontal weiter von [ entfernt
als der néchste Punkte p; 1, wird ein Punkt nach p; und vor p; 1 eingefiigt. Hierbei wird die
y-Koordinate von p; genommen und die x-Koordinate von p;. Diese Schritte werden in beiden
Richtungen und auf beiden Seiten durchgefithrt. Danach ist sichergestellt, dass fiir jeden Punkt
ein vertikaler Punkt vorhanden ist.

3.2.2.5 Horizontale Flllpunkte

Der néchste Schritt stellt sicher, dass fiir jeden Punkt auf einer Seite ein Punkt auf der anderen
Seite existiert (siehe Abbildung 3.4). Wieder kénnen mehrere Punkte moglich sein, sodass der
am weitesten entfernte Punkt gewahlt wird. Dafiir werden beide Listen gleichzeitig durchge-
gangen. Seien p; ;, p; i+1 zwei aufeinanderfolgende Punkte auf der linken und seien p;.;, pri+1
zwei aufeinanderfolgende Punkte auf der rechten Seite. Auf beiden Seiten wird bei gleicher
y-Koordinate solange in den Listen weitergegangen, bis der am weitesten entfernte Punkt zu [
gefunden wird. Falls p; ;11 < pr,i+1 wird ein Punkt auf der rechten Seite mit der y-Koordinate
von p; ;41 eingefiigt. Analog werden Punkte auf der linken Seite eingefiigt. Nach diesem Schritt
ist sichergestellt, dass zu jedem Punkt mindestens ein Punkt auf der anderen Seite auf gleicher
Hohe liegt. Dieser Schritt beeintréchtigt nicht den vorherigen, da Punkte nur zwischen einem
Punktepaar eingefiigt werden, das vertikal liegt.

3.2.2.6 Verweise

Um die vertikalen Verweise zu erzeugen, wird die Liste erneut durchgegangen (siche Abbildung
3.5). Befindet man sich bei einem horizontalen Paar und bewegt sich von der Trennlinie weg
(auf der linken Seite x; > x;41), wird der erste Punkt p; auf den Stapel gelegt. Im umgekehrten
Fall, wenn man sich zur Trennlinie bewegt (auf der linken Seite ; < x;41), wird ein Verweis
zu dem Punkt erzeugt, der auf dem Stapel liegt (und der Punkt wird vom Stapel entfernt).

Fir die horizontalen Verweise werden beide Listen durchgegangen. Fiir eine Seite wird der
auflerste Punkt einer Hohe ermittelt. Alle Punkte dieser Hohe auf der anderen Seite verweisen
auf diesen Punkt.
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3 Achsenparallele Beschriftung
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Abbildung 3.4 - Visualisierung der Listen nachdem horizontale (rot) und
vertikale (blau) Fillpunkte eingefiigt wurden.

Nach diesen Schritten ist sichergestellt, dass beide Listen eine orthogonale Kontur bilden (zwei
aufeinanderfolgende Punkte liegen entweder horizontal oder vertikal). Fiir jeden Punkt in der
Kontur kénnen mittels Verweis bis zu zwei Punkte gefunden werden, die denselben horizontalen
Abstand zur Trennlinie [ haben und die Kontur verlauft an dieser Position néher zu [. Auflerdem
existiert fiir jeden Punkt ein Punkt auf der anderen Seite, ist mit einem Verweis verbunden und
hat maximalen Abstand.

3.2.2.7 GroBtes Quadrat

Das grofite Quadrat kann gefunden werden, indem beide Listen durchlaufen werden. Sei p;
ein Punkt auf der linken Seite und p, einer auf der rechten Seite. Diese Erklarung behandelt
den Fall, dass p; die untere linke Ecke eines grofiten Quadrats ist. Insgesamt werden die Listen
viermal durchlaufen - fiir jede Ecke des Quadrats einmal. Fiir jeden Punkt p; werden folgende
Schritte durchgefiithrt: Zunéchst wird die rechte Seite durchlaufen bis p, auf derselben Hohe ist
wie p; und maximalen horizontalen Abstand hat. Im Beispiel in Abbildung 3.6 ist p; = (2,0)
(rot) und demnach p, = (10,0) (rot). Von p; wird mittels Verweis der Punkt gefunden, der
maximalen Abstand nach oben hat. Dadurch wird ein horizontaler Bereich festgelegt, in dem
ein Quadrat liegen kann. Im Abbildungsbeispiel ist es der Bereich y € [0,4]. Auf der linken
Seite konnen durch die Datenstruktur keine Punkte in der Seite liegen.

Schaut man vom Punkt p, = (10, 0) mittels Verweis nach oben, wird ein Punkt gefunden, der
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3.3 Skalierung
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Abbildung 3.5 - Visualisierung der Listen mit vertikalen Verweisen.

einen kleinen horizontalen Bereich definiert. Die Kontur liuft demnach in das Quadrat hinein. In
diesem Fall wird die rechte Seite durchlaufen, bis ein Bereich gefunden wird, der mindestens so
grof ist wie der linke Bereich. Im Beispiel ist das bei p,, = (6, 2) (blau) der Fall. Somit sind beide
Seiten fiir das Quadrat bestimmt. Die Hohe ergibt sich aus dem Punkt p; und dem Minimum
der horizontalen Bereiche auf beiden Seiten.

3.3 Skalierung

Um ein maximales Rechteck mit gegebenem Breiten- und Hohenverhiltnis zu bestimmen, wer-
den alle Punkte in einem Vorverarbeitungsschritt durch die Skalierungsmatrix S := diag(sz, sy)
transformiert, wobei s, # 0, s, # 0 das Breiten- und Héhenverhaltnis ist. Das grofite Rechteck
mit gegebenem Breiten- und Héhenverhiltnis ist dann das mit S~ transformierte grofite
Quadrat.

3.4 Beschriftung mittels MES

Ein maximales Quadrat innerhalb des Polygons kann mittels MES folgendermaf3en approximiert
werden: Zunéchst wird das maximale Quadrat beziiglich der Punktemenge gesucht. Fiir ein
gefundenes maximales Quadrat wird gepriift, ob dieses im Polygon enthalten ist. Hierfiir wird
das Even-Odd-Verfahren verwendet [HA01]. Falls es nicht enthalten ist, wird der Mittelpunkt des

13
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Abbildung 3.6 — Finden des groiten Quadrats. Das griine Quadrat ist das
maximale Quadrat fiir p; = (2, 0). Ein maximales Quadrat ist das blaue Quadrat.

Quadrats zu der Punktemenge hinzugefiigt und der Algorithmus wiederholt, bis das gefundene
Quadrat im Polygon liegt. Dies ist in Algorithmus 1 angegeben. Hierbei ist P das Polygon und
P die Punktemenge der Segmentendpunkte. Nach der Skalierung in Zeile 3 wird das grofite
Quadrat mit dem oben beschriebenen Vefahren bestimmt (Funktion LARGESTSQUARE). Die
Funktion ADAPT stellt sicher, dass das Quadrat vollstindig im Polygon P liegt und MipPoINT
bestimmt den Mittelpunkt des Quadrats. Diese Schritte werden wiederholt, bis ein Quadrat
gefunden wurde, dessen Mittelpunkt im Polygon liegt. Damit liegt insbesondere auch das
Quadrat im Polygon. Der Algorithmus gibt das zuriickskalierte Quadrat zuriick, welches ein
Rechteck mit dem festgelegten Breiten- und Hohenverhéltnis ist.

Damit das Quadrat tatsdchlich vollstindig innerhalb des Polygons liegt, wird es mit allen
Segmenten geschnitten und gegebenenfalls angepasst. Fiir jedes Segment werden folgende
Schritte ausgefiihrt (siehe Abbildung 3.7): Es werden die Diagonalen des Quadrats mit dem
Segment geschnitten. Der Schnittpunkt aus Diagonale und Segment ergibt bis zu vier kleinere
Quadrate, die im gefundenen Quadrat liegen. Das grofite Quadrat davon wird als Angepasstes
verwendet.

Die Laufzeit, um ein Label zu erzeugen, ist demnach O (k- ((n+k) log(n+k)) (fiir die log-lineare
Laufzeit von MES siehe Abschnitt 3.5), wobei k die Anzahl der maximalen duf3eren Quadrate
ist und n die Anzahl der Segmente des Polygons. Die Laufzeit der Schleife (Zeile 4 bis 9) in
Algorithmus 1 wird von LARGESTSQUARE dominiert.
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3.5 Laufzeit und Fehler

Algorithmus 1 Algorithmus fiir achsenparallele Beschriftung

1: function LARGESTSQUARE(P, S)
P := PoINTSET(P)
P :=ScaLg(P, S)
repeat

s := ApaprT(P, s)
p := MIDPOINT(s)
P:=PU{p}
until ISINSIDE(p, OUTERPOLYGON(P))
10: return Scarg(s, S~!)

2
3
4
5: s := LARGESTSQUARE(P)
6
7
8
9

11: end function

>m

Abbildung 3.7 - Das Quadrat wird angepasst, wenn es von einem Segment
geschnitten wird. Die Grofle des angepassten Quadrats ist dabei abhéngig vom
maximalen Abstand m’ zweier aufeinanderfolgender Punkte im Polygon.

3.5 Laufzeit und Fehler

Der Algorithmus hat eine Laufzeit von O(nlogn), wobei n die Anzahl der Punkte ist. Dies
ergibt sich aus dem Mastertheorem [Cor+09]. Das Sortieren der Punkte beziiglich x- und
y-Komponenten benétigt O(n logn) Schritte und wird zuerst ausgefithrt. Sei T'(n) die Zeit,
um das grofte Quadrat zu finden. In jedem Rekursionsschritt wird die Punktemenge in zwei
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3 Achsenparallele Beschriftung

Teilprobleme halbiert. Das Finden des Medians und Aufteilen der Punktemenge erfolgt in
Linearzeit.

Das Zusammenfithren von zwei Teillosungen benétigt O(n) Schritte. Der Merge-Schritt besteht
aus mehreren Teilschritten: Im ersten Schritt werden zwei Punkte am Rand der Box eingefiigt.
Hierbei konnen zwischen jedem Paar hochstens zwei Punkte hinzugefiigt werden. Somit kann
sich die Anzahl der Punkte verdreifachen. Beim Durchlaufen der Liste, um die Eckpunkte
einzufiigen, kann hochstens zwischen jedem Paar ein Punkt eingefiigt werden. Insgesamt
kann sich die Menge der Punkte demnach hochstens verdoppeln. Genauso verdoppelt das
Einfiigen der vertikalen Punkte fiir die Verweise hochstens die Punktemenge, da hochstens
alle Punkte der Liste auf den Stapel gelegt werden konnen und somit auch héchstens so viele
Punkte hinzugefiigt werden. Beim Einfiigen der horizontalen Punkte kann sich die Punktemenge
ebenfalls maximal verdoppeln, wenn fiir jeden Punkt auf der einen Seite ein Punkt auf der
anderen Seite dazukommt. Die Gréfe der aufgebauten Datenstruktur ist somit O(n).

Das Durchlaufen der Datenstruktur, um das grofite Quadrat zu finden, benétigt hochstens linear
viele Schritte. Hierbei sind auf jeder Seite eine Position in der jeweiligen Liste gespeichert. Eine
Position bestimmt eine Ecke des Quadrats, wiahrend die andere verwendet wird, um nach einer
Position in der anderen Kontur zu suchen, sodass kein Punkt im Quadrat liegt. Fiir eine feste
Position kann somit mehrere Schritte auf der anderen Seite weitergegangen werden. Insgesamt
wird die Datenstruktur aber einmal durchlaufen. Somit benétigt der Merge-Schritt linear viele
Schritte. Damit ist 7'(n) = 2 - T'(n/2) 4+ f(n), wobei die Funktion f die Schritte zum Aufteilen
der Punktemenge, zum Erzeugen der Datenstruktur und zur Suche des Quadrats beschreibt.

Im Allgemeinen kann der Fehler beliebig grof sein, der sich durch das Anpassen mit den
Segmenten ergibt. Eine solche Instanz kann einfach gefunden werden, indem man Segmente
horizontal platziert, wobei die Endpunkte auf den Réndern der Box liegen. Das grofite leere Qua-
drat der Punktemenge hat die Grée der Box und das grof3te leere Quadrat der Segmentmenge
den vertikalen Abstand zweier Segmente.

Fiir das Labeling wird angenommen, dass die Distanz von zwei aufeinanderfolgenden Punkten
im Polygon kleiner als die Seitenldnge des grofiten Quadrats ist. Dadurch schneiden Segmente
das Quadrat nur an den Ecken. Die folgenden Uberlegungen sind in Abbildung 3.7 illustriert.
Das Quadrat wird von einem Segment geschnitten. Der maximale Abstand von einer Ecke des
Quadrats zu einem Schnittpunkt ist m < m/, wobei m’ := maxp,cp{||pipi+1/|2} der maximale
euklidische Abstand von zwei aufeinanderfolgenden Punkten ist. Die Seitenldnge des an beiden
Seiten angepassten Quadrats ist mindestens s’ > s — 2 - 0.5 - m, wobei s die Seitenlinge des
urspriinglichen Quadrats ist. Somit ist das Verhiltnis von angepasstem Quadrat zu maximalem
Quadrat:

512 (5—m)2
A
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3.5 Laufzeit und Fehler

Ein maximales Quadrat in einem Polygon ist kleiner als das MES der Punktemenge s, < s.
Somit ist 52 > 7’32. Fiir kleine maximale Segmentlidngen (oder grof3e s’) wird der Abstand
m < m/ ebenfalls klein und somit weicht die Gréle des gefundenen Quadrats s’ wenig von s

ab.

17






4 Rotierte Beschriftung

Dieses Kapitel beschreibt einen randomisierten Algorithmus, um das grof3te rotierte Rechteck mit
gegebenem Breiten- und Hohenverhéltnis in einem allgemeinen Polygon zu finden. Abbildung
4.1 ist ein Beispiel fiir ein Problem mit Losung.

In Kapitel 3 konnte das Problem so reduziert werden, dass das gro3te Quadrat gesucht wird,
indem die Instanz skaliert wird. Diese Idee wird — mit geringfligig mehr Aufwand - auch in
diesem Fall angewendet. Also wird im Folgenden beschrieben, wie das gréf3te rotierte Quadrat
gefunden wird.

Der Algorithmus arbeitet wie folgt: Es werden zufillig gleichverteilt drei Segmente des Polygons
gewihlt. Mit diesen Segmenten wird das grofite Quadrat konstruiert, das durch die Segmente
begrenzt wird. Im nichsten Schritt wird fiir alle Segmente des Polygons geprift, ob sie im
Quadrat liegen oder es schneiden. In einem solchen Fall wird das Quadrat angepasst. Der
Hauptschritt ist demnach aus drei beliebigen Segmenten das gréfte Quadrat zu konstruieren.

Dafiir werden im néchsten Abschnitt Grundlagen beschrieben. Abschnitt 4.2 erklart, wie ein
maximales Quadrat aus drei Segmenten konstruiert wird. Der nachste Abschnitt erlautert,
wie die Skalierung eingesetzt werden kann, um das gréf3te Rechtecke zu erhalten. Abschnitt
4.4 beschreibt den gesamten Algorithmus und im letzten Abschnitt wird die Laufzeit und
Erfolgswahrscheinlichkeit analysiert.

4.1 Grundlagen
Dieser Abschnitt beschreibt grundlegende Konzepte, die die Konstruktion maximaler Quadrate
im nachsten Abschnitt vereinfachen.

Definition: Ein Segment ist definiert wie in Abschnitt 1.1. Die Gerade eines Segments (s, t) ist
die Gerade, die durch die Punkte s und ¢ geht.

Definition: Der Abstand zweier Segmente s1, s2 sei d := minyes, qes, (|[Pg]|2), wobei || - |2 die
euklidische Norm bezeichnet.
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4 Rotierte Beschriftung

Abbildung 4.1 - Die Beispiellésungen fiir rotierte maximale Rechtecke mit
einem Breiten- und Héhenverhaltnis von fiinf wurden durch k = n? viele
Proben mit dem randomisierten Algorithmus erzeugt.

Definition: Ein Segment (s, tp) liegt auf beiden Seiten eines anderen Segmentes, wenn der
Orientierungstest fiir s, und ¢; unterschiedliche Seiten feststellt. Ein Segment liegt auf einer
Seite, wenn der Orientierungstest fiir beide Punkte dieselbe Seite feststellt.

Ein Quadrat kann auf zwei Arten durch ein Segment beschrinkt werden:

1. Eine flexible Begrenzung liegt vor, wenn eine Ecke des Quadrats auf einem Segment liegt
und das Segment nicht parallel zu einer Seite des Quadrats ist.

2. Eine fixe Begrenzung liegt vor, wenn ein Endpunkt eines Segments auf einer Seite des
Quadrats liegt oder wenn ein Segment parallel zu einer Seite des Quadrats ist und es
mindestens zwei gemeinsame Punkte von einer Seite des Quadrats und dem Segment

gibt.

Ein maximales rotiertes Quadrat wird durch hochstens zwei flexible Restriktionen begrenzt.
Sei ein maximales Quadrat gegeben, das durch drei flexible Kontakte begrenzt wird. Es gibt
zwei diagonal gegeniiberliegende Kontakte. Aufgrund der flexiblen Begrenzung kénnen die
Kontakte verschoben werden. Dabei kann ein Quadrat gebildet werden, weil die Winkel an den
Kontaktstellen zwischen Segmenten und Quadratseiten echt gréf3er Null sind (siehe Abbildung
42).
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4.2 Konstruktion maximaler Quadrate

Abbildung 4.2 - Ein Quadrat, das durch drei flexible Kontakte begrenzt wird. Ein grofieres
Quadrat ergibt sich, indem Kontakt a nach links, gleichzeitig b nach oben und ¢ nach rechts
verschoben wird.

Ein maximales rotiertes Quadrat, das durch drei Segmente begrenzt wird, kann demnach durch
drei fixe, zwei fixe und eine flexible oder eine fixe und zwei flexible Kontakte begrenzt sein.
Abbildung 4.3 illustriert diese Falle (fiir nicht notwendigerweise maximale Quadrate). Fiir fixe
Kontakte wird nur ein begrenzender Punkt gezeichnet. Ein Algorithmus, der das maximale
Quadrat bestimmt, ist korrekt, wenn er alle Fille abdeckt und fiir jeden Fall das maximale
Quadrat bestimmt.

4.2 Konstruktion maximaler Quadrate

Dieser Abschnitt beschreibt, wie ein maximal grofles Quadrat konstruiert wird, wenn drei
nicht-iiberschneidende Segmente gegeben sind. Ein Quadrat ist nur dann maximal, wenn es alle
drei Segmente beriihrt. Basierend auf den obigen Uberlegungen konnen drei Hauptfille unter-
schieden werden: Das grofite Quadrat wird durch die Endpunkte von zwei gegeniiberliegenden
Segmenten begrenzt (siehe Abbildung 4.4); die Geraden der Segmente bilden ein Dreieck und
das grofite Quadrat innerhalb des Dreiecks beriihrt alle Segmente (sieche Abbildung 4.5); eine
Seite des groften Quadrats ist parallel zu einem Segment (sieche Abbildungen 4.6, 4.7, 4.8).

Tabelle 4.1 zeigt, welche Falle durch die unterschiedlichen Konstruktionen abgedeckt werden.
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4 Rotierte Beschriftung

Abbildung 4.3 - Falle von Begrenzungen von Quadraten: a, b ¢ und d sind Flle, die durch eine
fixe und zwei flexible Begrenzungen gebildet werden, e bis einschliefllich g sind Falle, die durch
zwei fixe und eine flexible Begrenzung gebildet werden. h ist das Quadrat, das durch drei fixe
Begrenzungen gebildet wird. Diese Abbildung zeigt nicht alle Kombinationen; symmetrische
Falle sind nicht dargestellt.

Tabelle 4.1 - Fille, durch die Konstruktionen abgedeckt werden.
Fall Abgedeckte Fille

421 hf

422 d
4231 b
4232 a-eg
4233 a-eg

4.2.1 Zwei fixe Begrenzungen

Der erste Fall in Abbildung 4.4 wird geldst, indem fiir alle Paare von Segmenten das Paar mit
minimalem Abstand gewahlt wird. Die Strecke d zwischen den minimalen Endpunkten legt
Grof8e und Rotation des Quadrats fest. An den zwei Endpunkten der Hilfsstrecke d werden zwei
Hilfsgeraden cj und ¢y rechtwinklig zu d erzeugt. Mit diesen werden vier Falle unterschieden.
Das Segment m liegt zwischen ¢ und ¢y, dann begrenzt einer der Endpunkte von m das Quadrat.
Es werden beide Hilfsgeraden geschnitten, dann liegt eine flexible Begrenzung vor. Es wird nur
eine Hilfsgerade geschnitten, dann kann eine flexible oder fixe Begrenzung vorliegen. Oder
Segment m liegt auflerhalb von beiden Hilfsgeraden. Dann wird kein Quadrat erzeugt. Am
Ende wird gepriift, ob das Quadrat durch [ oder n geschnitten wird. Im positiven Fall wird kein
Quadrat zuriickgegeben. Diese Konstruktion deckt die Félle f und h ab.
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4.2 Konstruktion maximaler Quadrate

Abbildung 4.4 — Das grof3te Quadrat, das durch die Endpunkte von drei unter-
schiedlichen Segmenten begrenzt wird. Die Rotation und Gréfle ergibt sich aus
dem Paar von Segmenten, dessen minimaler Abstand von zwei Endpunkten
aus unterschiedlichen Segmenten maximal ist.

4.2.2 Die Segmentlinien ergeben ein Dreieck

Bilden die Linien der Segmente ein Dreieck, wird das grofite Quadrat innerhalb dieses Dreiecks
konstruiert (sieche Abbildung 4.5). Falls das grofite Quadrat auch alle Segmente beriihrt, kann es
iibernommen werden. Das grofite Quadrat wird mit dem Verfahren aus [LW] konstruiert und

deckt Fall d ab.

4.2.3 Eine Quadratseite liegt auf einem Segment

Der letzte Fall lasst sich weiter durch die Lage der Segmente unterteilen. Allen Segmenten
werden feste Bezeichnungen zugewiesen. Das Segment [ ist das Segment, auf dem eine Seite des
Quadrats liegt. Die Lage der tibrigen Segmente m und n wird in Bezug zu [ bestimmt. Durch die
Konstruktionen in den Abschnitten 4.2.3.2 und 4.2.3.3 werden einige Falle mehrfach abgedeckt.
Dies ist notwendig, da die Falle in Abbildung 4.3 durch die Kontaktstellen unterschieden werden
und sich die Konstruktionen in diesem Abschnitt durch die Lage der Segmente unterscheiden.

4.2.3.1 Zwei Segmente liegen auf beiden Seiten

Fir ein festes Segment [ konnen die anderen Segmente auf beiden Seiten von [ liegen (siehe
Abbildung 4.6). Das grofite Quadrat wird konstruiert, indem die Schnittpunkte 7,, von [ und m
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4 Rotierte Beschriftung

Abbildung 4.5 - Die Linien der Segmente [, m und n bilden ein Dreieck. Das
grofte Quadrat ist jenes, das in das Dreieck eingezeichnet werden kann und
welches alle Segmente beriihrt.

sowie i, von [ und n als vorlaufige Ecken des Quadrats genommen werden. Je nach Orientierung
von m und n kénnen Endpunkte innerhalb des bisherigen Quadrats liegen. Liegen Endpunkte
eines Segments innerhalb des Quadrats, wird das Quadrat an dieser Seite verkleinert. Das
maximale Quadrat aus diesem Fall ist das, welches auf beiden Seiten von [ so konstruiert wird.
Diese Konstruktion deckt Fall b ab.

4.2.3.2 Ein Segment liegt auf beiden Seiten

Im néchsten Fall liegt Segment m auf beiden Seiten von [. Segment n liegt auf einer Seite (siehe
Abbildung 4.7). Es wird der Schnittpunkt von / und m berechnet. Dieser bildet eine vorlaufige
Ecke des Quadrats. Analog zu oben wird sichergestellt, dass das Segment m die obere Seite des
Quadrats nicht schneidet. Ansonsten wird die Seite parallel so verschoben, dass sie durch den

Endpunkt von m geht.

Das grofite Quadrat wird entweder durch einen Endpunkt des Segments auf zwei verbleibenden
Seiten begrenzt oder durch einen flexiblen Kontakt an einer der drei unbestimmten Ecken
(rechte Seite in Abbildung 4.7). Diese Konstruktion deckt die Félle a bis e und g ab.
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4.3 Skalierung

Abbildung 4.6 — Die Segmente m und n werden von der Geraden durch !
geschnitten. Das maximale Quadrat wird gefunden, indem auf beiden Seiten
von [ das grofite Quadrat konstruiert wird. Dafiir wird der Schnittpunkt der Linie
| mit den Segmenten m und n berechnet. Diese bilden potentielle Eckpunkte
des Quadrats.

4.2.3.3 Beide Segmente liegen auf einer Seite

Liegen beide Segmente m und n auf derselben Seite beziiglich [, wird eine Ecke des Quadrats
aus [ und m erzeugt (siehe Abbildung 4.8). Hierbei werden mit beiden Endpunkten von m
die Hilfslinien hg, hy konstruiert. Liegt das Segment n zwischen h; und h; kann kein Quadrat
erzeugt werden. Ansonsten wird mittels Orientierungstest festgestellt, auf welchen Seiten der
Hilfslinien ein Quadrat erzeugt werden kann.

Das maximale rotierte Quadrat fiir drei gegebene Segmente ist das maximale Quadrat tiber
alle Falle 4.2.1 bis 4.2.3.3. Da in den Fallen 4.2.2, 4.2.3.2 und 4.2.3.3 unterschiedliche Faille mit
unterschiedlich benannten Segmenten gleichzeitig vorliegen konnen, werden Quadrate mit allen

Permutationen von Segmentbezeichnungen konstruiert und das Maximum tibernommen.

4.3 Skalierung

Im Gegensatz zum achsenparallelen Fall muss die Rotation des Quadrats bekannt sein, um
die Instanz zu skalieren. Abbildung 4.9 zeigt wichtige Transformationsschritte. Im ersten Bild
sind die Segmente im urspriinglichen Koordinatensystem abgebildet. Um das grofite skalierte
Quadrat (Rechteck) zu finden, wird der Winkel zwischen einer Seite des Quadrats und der
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4 Rotierte Beschriftung

Abbildung 4.7 — Das Segment m wird von der Geraden durch [ geschnitten.
Das maximale Quadrat wird gefunden, indem der Schnittpunkt der Linie durch
[ und dem Segment m als Ecke verwendet wird. In dieser Konstellation sind
zwei Félle zu untersuchen: Entweder das grofite Quadrat wird durch einen
Endpunkt des Segments n begrenzt oder eine Ecke des Quadrats liegt auf dem
Segment n.

x-Achse bestimmt. Der Winkel ergibt sich je nach Fall entweder aus dem Segment [ oder aus
der Hilfslinie d. Damit wird die Rotationsmatrix R bestimmt. Die Translationsmatrix 1" wird
erzeugt, indem ein beliebiger invertierter Endpunkt aus d oder [ gewahlt wird. Die Skalierungs-
matrix S ist analog zum achsenparallelen Fall. Alle drei Segmente werden mittels 7~ 'R~'SRT
transformiert (2. Bild in Abbildung 4.9), was einer Skalierung parallel zu einer Seite des Quadrats
entspricht. In diesem Koordinatensystem wird das grofite Quadrat konstruiert. Das grofite ska-
lierte Quadrat (Rechteck mit festen Breiten- und Hohenverhaltnis) ist das mit (7' R~ SRT)~!
transformierte grofite Quadrat (3. Bild in Abbildung 4.9). Diese Transformationsdaten werden
zu jedem gefundenen Quadrat gespeichert.

4.4 Algorithmus

Der randomisierte Algorithmus verwendet das oben beschriebene Verfahren und findet ma-
ximale Rechtecke in einem Polygon (siehe Algorithmus 2). Hierbei ist P das Multi-Polygon,
k die Anzahl der Wiederholungen und a das Breiten- und Héhenverhéltnis. Die Funktion
Uar wihlt zufillig gleichverteilt ein Segment aus dem Polygon, LARGESTSQUARE berechnet
das maximale Quadrat und ApapT schneidet alle Segmente mit dem gefundenen Quadrat. Die
Transformationswerte sind mit dem Quadrat gespeichert, sodass in ADAPT zu priifende Seg-
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4.4 Algorithmus

Abbildung 4.8 - Beide Segmente m und n liegen auf derselben Seite beziiglich
l.

mente ebenfalls transformiert werden konnen. Diese Funktion behandelt zusitzlich den Fall,
dass Segmentendpunkte innerhalb des Quadrats liegen. Die Funktion UNscALE gibt schlie8lich
das grofite Rechteck zuriick.

Algorithmus 2 Algorithmus fiir rotierte Beschriftung

1: function LARGESTSQUARE(P, k, a)

2: Sm = 0

3: fori:=1,...,kdo

4: [ := Uar(P)

5: m := UAR(P)

6: n = UAR(P)

7: s := LARGESTSQUARE(l, m, n, a)
8: if s > s, then

9: s := ApAPT(P, )

10: if s > sy, A INSIDE(s, P) then
11: Sm = S

12: end if

13: end if

14: end for

15: return UNSCALE(S,,)

16: end function
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4 Rotierte Beschriftung

4.5 Laufzeit und Erfolgswahrscheinlichkeit

Eine Probe des Algorithmus hat eine Laufzeitkomplexitit von O(n), wobei n die Anzahl der
Segmente des Polygons ist. Wahlt man drei Segmente zufillig gleichverteilt und konstruiert
daraus das grofite Quadrat, bené6tigt man hochstens eine konstante Anzahl von Schritten. Im
néichsten Schritt wird fiir alle Segmente der Instanz geprift, dass sie nicht im Quadrat liegen oder
es schneiden. Hierfiir wird jedes Segment des Polygons mit allen vier Segmenten des Quadrats
geschnitten und fiir alle Endpunkte von Polygonsegmenten geprift, ob sie im Quadrat liegen.
Die Laufzeit des Punkt-im-Polygon-Test ist ebenfalls linear. Damit ergibt sich die Gesamtlaufzeit
fiir eine Probe.

Die Erfolgswahrscheinlichkeit, fiir eine Probe das grofite Quadrat zu finden, ist mindestens
p > 1/(3). Ein maximales Quadrat wird durch mindestens ein Tripel von Segmenten definiert.
Da man zufillig gleichverteilt drei Segmente wahlt, ergibt sich die Erfolgswahrscheinlichkeit.

Mithilfe der Binomialverteilung kann die Anzahl der Versuche bestimmt werden, sodass erwartet
das grofite Quadrat einmal gefunden wird. Sei X ~ B(k,p) binomialverteilt, dann ist fiir
E(X) = 1 die Anzahl der benétigten Versuche k = (7). Mit der Laufzeit fiir eine Probe ist die
Laufzeit, um erwartet das gréfite Quadrat zu finden, demnach O(n4).
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4.5 Laufzeit und Erfolgswahrscheinlichkeit
/
Abbildung 4.9 - Um das grofite Rechteck mit einem Breiten- und Hoéhenver-
haltnis von 2 : 1 zu erhalten, werden die Segmente parallel zu den Seiten des
Quadrats skaliert (in diesem Fall ist das die Linie d). Im transformierten Koordi-

natensystem wird das grofite Quadrat konstruiert (2. Bild). Das grofite Rechteck

ist das zurticktransformierte Quadrat im urspriinglichen Koordinatensystem (3.
Bild).
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5 Implementierung und Tests

Beide Algorithmen wurden in der Programmiersprache C++ implementiert, ohne Multi-
Threading einzusetzen. Der Algorithmus zum Losen der achsenparallelen Rechtecke wurde
hauptsichlich in einem prozeduralen Stil programmiert. Fiir die Datenstruktur wurde auf
Elemente der Standard-Template-Library (STL) zuriickgegriffen, um die Listenstruktur mit
Verweisen zu implementieren (Liste, Vektor und Stapel). Fiir den Algorithmus zum Losen der
rotierten Rechtecke wurde eine Vektorklasse implementiert. Durch das Operator-Uberladen
sind typische vektorielle Operationen leicht umsetzbar. Ebenso wurde eine Segmentklasse
implementiert, wobei auch Operationen, die zur Linie eines Segments gehoren, dieser Klasse
zugeordnet sind. Bei grundlegenden geometrischen Operationen (Orientierung von Punkt und
Gerade, Punkt auf Linie, Schnitt von zwei Linien) wurden die mathematischen Ausdriicke direkt
verwendet, ohne besonderen Wert auf numerische Stabilitat zu legen.

Die folgenden Tests wurden auf einem Rechner mit Intel i5-3320M Prozessor mit 2,2 GHz
Taktfrequenz und 4 GB RAM ausgefiihrt. Der C++-Code wurde mit Clang 3.7.0 und der dritten
Optimierungsstufe auf einem Linux-System kompiliert und ausgefiihrt. Die Testdaten waren eine
Menge von 669 Gebieten des Landes Baden-Wiirttemberg. In der Menge sind sowohl Gebiete
mit mehreren getrennten Polygonziigen, als auch Multi-Polygone (mit Lochern) enthalten. Fiir
den randomisierten Algorithmus wurde eine Teilmenge der kleinsten 159 Gebiete verwendet.

Fiir den Algorithmus fiir achsenparallele Rechtecke ist es interessant, wie viele Wiederholungen
benotigt werden, bis das grote Rechteck innerhalb des Polygons gefunden wurde. Die Verteilung
der Wiederholungen ist in Abbildung 5.1 dargestellt. Es zeigt sich, dass in 84% aller Falle das
grofite Rechteck im ersten Durchlauf gefunden wird. Acht Wiederholungen sind demgegeniiber
in nur zwei Féllen nétig. Da die Laufzeit nicht nur von der Eingabeldnge abhéngt ist, es zusétzlich
interessant, wie schnell der Algorithmus bei verschiedenen realen Daten ist. Abbildung 5.2 zeigt
die Laufzeit des Algorithmus fir achsenparallele Rechtecke und fiir verschiedene Instanzgréfen.
Hierbei werden 96% der Instanzen in weniger als einer Sekunde geldst und 93% in weniger als
einer halben Sekunde. Insgesamt handelt es sich demnach um einen praktikablen ersten Ansatz,
um achsenparallele Labels zu erzeugen.

Fiir den randomisieren Algorithmus wurde die Laufzeit einer Teilmenge der Gebiete gemessen.
Abbildung 5.3 zeigt die Laufzeit des randomisierten Algorithmus. Hierbei wurden k = n?
viele Proben erzeugt. Bereits fiir Instanzen mit einer Gréf3e von 133 Segmenten benétigt der

Algorithmus 4,5 min. Die Grofle der achsenparallelen Rechtecke ist eine untere Schranke
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5 Implementierung und Tests
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Abbildung 5.1 — Absolute Haufigkeit der notwendigen Wiederholungen des
Algorithmus fiir achsenparallele Rechtecke bis ein Rechteck innerhalb des
Polygons gefunden wird.
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Abbildung 5.2 — Laufzeit des Algorithmus fiir achsenparallele Rechtecke mit
unterschiedlichen Instanzgrofien.

fur die Grofle im rotierten Fall. Da es sich um einen randomisierten Algorithmus handelt,
wurde untersucht, um viel die rotierten Rechtecke grofler sind als die parallelen Rechtecke.
Die Verteilung der Verhiltnisse von rotiertem Rechteck zu Parallelem sind in Abbildung 5.4
illustriert. In 14% der Falle waren die Rechtecke kleiner als das achsenparallele Rechteck. Der
tiberwiegende Teil ergibt somit groflere Rechtecke. In den meisten Fallen sind rotierte Rechtecke
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um einen Faktor bis zwei grofier. Aufgrund der schnell steigenden Laufzeit l4sst sich dieser
Ansatz nicht ohne Modifikationen praktisch einsetzen.
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Abbildung 5.3 - Laufzeit des randomisierten Algorithmus fiir unterschiedliche
Instanzgroflen.

Eine weitere Moglichkeit die Grofle der Labels zu untersuchen ist in [Bar01] beschrieben. Dort
werden gebogene Beschriftungen erzeugt. Die in der vorliegenden Arbeiten durchgefithrten
Tests verwenden stattdessen die Flache des Rechtecks. Als Bewertungsmafl wurde die Wurzel
aus dem Verhéltnis von Rechtecks- zu Polygonfldche \/.A(r)/A(P) gewihlt. Durch die Wurzel
erhdhen sich die Variationen zwischen kleinen Werten, sodass Beschriftungen, die wenig Flache
abdecken, besser untersucht werden konnen. Fiir die Beschriftungen wurde ein horizontaler
Skalierungsfaktor von vier gewihlt. Abbildung 5.5 zeigt die Ergebnisse fiir achsenparallele
Boxen. Der hiufigste Wert liegt hierbei im Intervall [0, 2; 0, 3). Somit sind in den meisten Fallen
4% bis 9% der Flache durch eine Box bedeckt.

Abbildung 5.6 zeigt die Ergebnisse fiir rotierte Boxen. In diesem Fall liegt der haufigste Wert
im Intervall [0, 5; 0, 6). Diese deutlich bessere Abdeckung der Polygonflachen lasst sich auch
durch die wesentlich kleineren Instanzen erklaren.
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5 Implementierung und Tests
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Abbildung 5.4 - Absolute Hiufigkeit der Groflenverhiltnisse r = s, /sp (sr
ist die Grofle des rotierten Rechtecks und s,, ist die Grofle des achsenparallelen

Rechtecks). Fiir den randomisierten Algorithmus wurden & = n® Proben
genommen.
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Abbildung 5.5 - Gréflenmafl /. A(r) / A(P) von achsenparallelen Rechtecken,
wobei r die Flache des Rechtecks ist und P die Fliche des Polygons. Beim Test
wurden Rechtecke mit einem Breiten- und Hohenverhaltnis von 4 : 1 erzeugt.
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Abbildung 5.6 - Groenmafl /. A(r)/A(P) von rotierten Rechtecken, wobei
r die Flache des Rechtecks ist und P die Flidche des Polygons. Beim Test wurden
Rechtecke mit einem Breiten- und Hohenverhiltnis von 4 : 1 erzeugt.

35






6 Zusammenfassung und Ausblick

Dieses Kapitel fasst die vorgestellten Verfahren sowie deren Ergebnisse zusammen (Abschnitt
6.1) und gibt einen Ausblick, wie die vorgestellten Ansitze weiterentwickelt werden kénnen
(Abschnitt 6.2).

6.1 Zusammenfassung

In dieser Arbeit wurden zwei Algorithmen entwickelt, um in einem allgemeinen Polygon mit
Lochern das grofite Rechteck zu finden, wenn das Breiten- und Hohenverhaltnis bekannt ist. Der
erste Algorithmus sucht das grofite achsenparallele Rechteck; beim zweiten Ansatz kann das
Rechteck beliebig rotiert sein. Durch das feste Breiten- und Hohenverhéltnis muss die Position
und Grof3e (und die Rotation) bestimmt werden. Durch eine Skalierung der Eingabe konnten

die Instanzen so skaliert werden, dass nur das grofite Quadrat gesucht werden muss.

Im ersten Szenario wurde das grofite Rechteck bestimmt, indem das grofite leere Quadrat in der
skalierten Punktemenge bestimmt wurde, die sich aus den Segmentendpunkten des Polygons
ergab. Vergleichbare Arbeiten zeigen, dass dieses Problem effizient gelost werden kann. Hierfiir
wurde ein effizienter Divide-and-Conquer-Algorithmus entwickelt. Lag das gefundene Quadrat
nicht im Polygon, wurde der Mittelpunkt zur Punktemenge hinzugefiigt und der Algorithmus
wiederholt. Fiir ein gefundenes Quadrat wurde gepriift, das es nicht von Segmenten geschnitten
wird. Tests mit realen Gebieten zeigten, dass in den meisten Fillen keine Wiederholung des

Algorithmus nétig war.

Im Szenario fiir rotierte Rechtecke wurde ein randomisierte Ansatz entwickelt. Dabei wurden
zufillig gleichverteilt drei Segmente des Rechtecks gewahlt und daraus das grofite Quadrat
konstruiert. Das grofite Rechteck mit gegebenem Breiten- und Héhenverhaltnis konnte ebenfalls
durch Skalierung der Segmente ermittelt werden. Tests mit realen Gebieten zeigten, dass deutlich
grofere rotierte Rechtecke gefunden wurden, wobei eine deutlich héhere Laufzeit benétigt

wurde.
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6 Zusammenfassung und Ausblick

6.2 Ausblick

Als Ausblick werden eine Reihe von Ansétzen beschrieben, wie sich die bisherigen Ergebnisse
weiterentwickeln lassen. Ein wichtiger Punkt ist, den Divide-and-Conquer-Algorithmus so
weiterzuentwickeln, dass das grofte Quadrat beziiglich einer Menge von Segmenten gefunden
wird. Dabei ist an zwei Stellen deutlich mehr Aufwand zu erwarten:

1. Im Fall von drei Segmenten muss das grofite achsenparallele beschrinkte Quadrat kon-
struiert werden.

2. Im Merge-Schritt besteht die Kontur nicht nur aus orthogonalen Segmenten. Die Daten-
struktur, um das gréBte Quadrat zu finden, enthilt Verweise auf Segmente.

Ein Vorteil dieses Algorithmus ist, dass ein Polygon so erweitert werden kann, dass immer das
grofte Quadrat innerhalb des Polygons gefunden wird. Die Instanz kann durch Segmente so
aufgefiillt werden, dass kein Quadrat aulerhalb gefunden wird (durch Segmente, die vom Poly-
gon zur einschlieBenden Box gehen). Dadurch kénnen Wiederholungen problemlos vermieden
werden.

Es bedarf weiterer Entwicklungen fiir rotierte Beschriftungen. Interessant sind hierbei weitere
eigenstandige Ansitze mit moglicherweise geringerer Laufzeit. Es ergeben sich allerdings
auch Moglichkeiten, bestehende Algorithmen zu verwenden. So kann die Instanz zunéchst
ausgediinnt oder Platzierungen ausgeschlossen werden. Dadurch kdnnen existierende Verfahren
auch bei grofleren Instanzen eingesetzt werden. Alternativ kann ein effizienter Algorithmus fir
achsenparallele Rechtecke eingesetzt werden, um in rotierten Instanzen ein grofites Rechteck
zu finden.
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