Institut fiir Softwaretechnologie

Universitat Stuttgart
UniversitatsstraBe 38
D-70569 Stuttgart

Bachelorarbeit Nr. 249

Analyse und Erweiterung des ibb

TestDesigners
David Michel
Studiengang: Informatik
Prifer/in: Prof. Dr. rer. nat. Stefan Wagner
Betreuer/in: M. Sc. Asim Abdulkhaleq

Dipl.-Ing. (FH) Peter Heidenwag

Beginn am: 20. Juli 2015

Beendet am: 3. Dezember 2015

CR-Nummer: D.2.2,J.2

Kurzfassung

Das Testen von Steuergeriten in Automobilen gewinnt zunehmend an Bedeutung. Das Ingenieurbiiro
Brinkmeyer & Partner hat sich auf den Aufbau von individuellen Testsystemen und die Erstellung
von Tests fiir Steuergerite spezialisiert. Zur Generierung von Programm Code fiir Tests wird der vom
Unternehmen entwickelte ibb TestDesigner genutzt. Diese Software erzeugt XML-Code, der auf der
Testumgebung ausgefiihrt werden kann.

Im Rahmen dieser Arbeit soll das bestehende Konzept beschrieben und die Erzeugung eines weiteren
Ausgabeformats ermoglicht werden. Dieses weitere Format fiir die Testbeschreibung ist eine Program-
miersprache namens CAPL. Mithilfe von CAPL sollen sich mehr Méglichkeiten fiir eine Testdefinition
ergeben und Funktionalitiaten erreichbar sein, die allein mit XML nicht méglich waren.

Abstract

The importance of testing electronic control units is significantly increasing. The company Inge-
nieurbiiro Brinkmeyer & Partner has specialized in building individual test systems and creating
tests for electronic control units. In order to generate program code for tests, the company deve-
loped the ibb TestDesigner. This software creates XML-code which can be run on the test environment.

Within the scope of this thesis, the existing concept is to be described and the generation of an
additional output format shall be realized. This additional format for test description is a program-
ming language named CAPL. Via CAPL, more possibilities for test definition shall result, along with
new functionalities which were not possible by solely using XML.

Inhaltsverzeichnis

1 Einleitung 9
1.1 Motivation e e e 9

1.2 Problemstellung 9

1.3 Ziele . . . e 9

1.4 Aufbauder Arbeit 10

2 Grundlagen 11
2.1 CANOE . . . o e e e 11

22 VT System e 11

2.3 CAN Access Programming Language 12

24 ibbTestDesigner 12

2.5 Prozesskette 13

3 Analyse des ibb TestDesigners 15
3.1 Allgemeines 15

3.2 Ports . .. s 16

33 Devices e e e e e 16

3.4 Methoden e 17

3.5 Testablauf e 18

3.6 TestGenerierung L 20

3.7 Weitere Funktionen des ibb TestDesigners 21

3.8 Vergleich mit dhnlichen Produkten 21

4 Entwurf & Implementierung 23
4.1 Vergleich von Extensible Markup Language und CAN Access Programming Language 23
4.1.1 Gegeniiberstellung der Funktionsweise 23

412 VergleichamCode 24

4.2 Gliederung eines CAN Access Programming Language Testmoduls 24

43 Anforderungen an die Implementierung Lo L. 26
43.1 Funktionale Anforderungen Lo L. 26

4.3.2 Nichtfunktionale Anforderungen 27

433 Weitere Anforderungen 27

44 Agile Softwareentwicklung L L L 27

45 Konzept. e 28
451 Rahmen 28

45.2 Methodenbibliothek 29

453 Beispiel eines vollstindigen Testmoduls in der CAN Access Programming
Language
4.6 Implementierung
4.6.1 Entwicklungsumgebung oL
4.62 Durchlaufe
463 Varianten
4.6.4 Generieren eines Testmoduls
4.6.5 Neue Funktionalitdten

5 Evaluation

5.1 Beschreibung des Testaufbaus
5.1.1 Steuergerdt e e e e e e
5.1.2 Originallast
513 VT System.
514 Gesamtaufbau.
52 Requirements
53 Test . . .
5.3.1 Testerstellung
532 Ausfihrung
533 Report
5.4 Rickblick auf die gestellten Anforderungen

6 Weitere Anwendungsgebiete

6.1 Planungssoftware fiir Bauingenieure
6.2 Abrechnung von Dienstleistungen
6.3 Erzeugenvon Texten

7 Zusammenfassung & Ausblick

Literaturverzeichnis

37
37
37
37
38
39
40
41
41
43
44
46

47
47
48
48

51

53

Abbildungsverzeichnis

2.1

3.1
3.2

4.1
4.2
4.3

5.1
5.2
53
5.4
55
5.6
5.7

Prozesskette von Hardware Tests mittels ibb TestDesigner und CANoe 14
Graphische Oberflache des Methoden Editors im ibb TestDesigner 17
Hauptbildschirm des ibb TestDesigners 19
Gliederung eines Testmodulsin CAPL 25
Definition verschiedener Durchlaufe 31
Definition unterschiedlicher Varianten 32
Testsystem von ibb fir einen Hardware Test 39
Ablauf der Testerstellung im ibb TestDesigner 41
Durchgénge und Varianten eines Beispieltests 42
Testgroup eines Beispieltests im ibb TestDesigner 43
Ausfithrung eines Testsin CANoe i 44
Statistiken und Ergebnisse eines Testablaufs in CANoe 45
Detaillierter Ablauf von Testcasesin CANoe 45

Tabellenverzeichnis

3.1

4.1

5.1

Beispielhafte Darstellung von tabellarisch verfassten Requirements 15
Gegenuberstellung von Testcases in XML und CAPL nach [Kra09] 23
Liste von Requirements fiir einen Steuergerdtetest 40

Verzeichnis der Listings

4.1

Beispiel eines Testcase in CAPL it 24

4.2
4.3
4.4
4.5
4.6

Beispiel eines Testcase in XML L e 24

Funktionsfihiges Beispiel eines Testmodulsin CAPL 30
Verschachtelung von Varianten, Durchldufen und Testgroups in der MainTest Funktion 33
Main Code einer Methode zum Setzen eines Signals 34

Funktion zum Setzen eines Signals in der Ausgabedatei 34

1 Einleitung

1.1 Motivation

Der ibb TestDesigner findet sowohl beim Entwickler, dem Ingenieurbiiro Brinkmeyer & Partner (ibb), als
auch bei dessen Kunden seit langerem Anwendung bei der Definition von automatischen Elektronik-
tests. Das hierbei verwendete Ausgabeformat Extensible Markup Language (XML) bietet ausreichend
Moglichkeiten zur Beschreibung der einzelnen Tests. Trotzdem kénnen weitere Ausgabeformate
wie z.B. CAN Access Programming Language (CAPL) die Testdefinition verbessern, da die Sprache
speziell fiir CANoe entwickelt wurde. Es ist daher ein Anliegen von ibb, dass mit dem bestehenden
Konzept ein weiteres Ausgabeformat realisiert wird. Dies soll im Rahmen einer Bachelorarbeit im
Hause ibb geschehen. Dipl.-Ing. (FH) Peter Heidenwag, einer der Geschéftsfithrer von ibb, entwickelte
die Konzepte hinter der Software und betreut diese Bachelorarbeit innerhalb der Firma.

1.2 Problemstellung

Jahr fir Jahr erhoht sich die Komplexitit elektronischer Verschaltung in Automobilen. Bereits 2011
waren in einem Oberklasse Wagen ungefihr 80 verschiedene Steuergerite verbaut [Reill]. Je mehr
Aufgaben durch Steuergerite iibernommen werden, desto wichtiger ist deren einwandfreie Funktion.
Um diese wahrend der Entwicklung zu erreichen und am fertigen Produkt zu tiberpriifen, werden
automatisierte Tests durchgefiihrt. Eine Testumgebung fiir solche automatischen Tests stellt die
Software CANoe dar. Lange Zeit jedoch war die einzige Moglichkeit Tests fiur CANoe zu definieren,
sie in der Sprache CAPL manuell zu verfassen. Um diesen zeitaufwandigen Prozess zu optimieren,
entwickelte ibb den ibb TestDesigner, bei dem Tests iiber eine graphische Oberflache modular aufgebaut
werden konnen. Anschlieend konnen die Tests im Dateiformat XML exportiert und in CANoe
eingelesen werden. Da ein CAPL Testmodul jedoch eine Reihe von Funktionen bietet, die mit einer XML-
Datei nicht oder nur schwer realisiert werden konnen, wire es als weiteres Ausgabeformate fiir den
ibb TestDesigner winschenswert. Dadurch wird eine noch schnellere und machtigere Testerstellung
ermoglicht.

1.3 Ziele

Das priméire Ziel dieser Arbeit ist die Erweiterung der Ausgabeformate des ibb TestDesigners um
die Sprache CAPL. Damit sollen zukiinftig Tests erstellt und mit CANoe ausgefithrt werden konnen.
Anhand eines konkreten Beispiels wird demonstriert, ob und in wie weit dies gelungen ist.

1 Einleitung

Weiterhin soll eine detaillierte Beschreibung der Software selbst und des Konzepts, das der Software
zugrunde liegt, erfolgen. Da es sich um ein umfangreiches und vielseitiges Tool handelt, wird allerdings
nur auf die wesentlichen Funktionalitaten naher eingegangen.

Auf3erdem soll gepriift und aufgezeigt werden, fiir welche weiteren Anwendungsbereiche sich das
allgemein gehaltene Konzept des ibb TestDesigners eignet. Anstelle von Programm Code kénnte
namlich auch Text jeglicher Form fiir unterschiedliche Zwecke generiert werden.

1.4 Aufbau der Arbeit

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 — Grundlagen: In diesem Kapitel werden die Grundlagen der Arbeit beschrieben. Dazu
gehoren sowohl Software als auch Hardware Komponenten und deren Zusammenhang.

Kapitel 3 — Analyse des ibb TestDesigners: Dieses Kapitel befasst sich mit dem ibb TestDesigner,
erklart dessen Funktionsweise und Konzepte und grenzt das Programm gegeniiber vergleichba-
rer Software ab.

Kapitel 4 — Entwurf & Implementierung: Hier wird zuerst niher auf die Voraussetzungen und
Anforderungen an eine Implementierung eingegangen. Anschlieflend wird dargelegt, wie die
Umsetzung erfolgt ist.

Kapitel 5 — Evaluation: In diesem Kapitel wird anhand eines konkreten Beispiels aufgezeigt, wie
die neu implementierte Funktionalitit in der Praxis angewandt werden kann. Hierzu wird ein
Test fiir ein Steuergerat erzeugt, ausgefithrt und analysiert.

Kapitel 6 — Weitere Anwendungsgebiete: Dieses Kapitel zeigt, wie das Konzept des ibb TestDesi-
gners auf weitere Anwendungsgebiete ausgeweitet und angepasst werden kann.

Kapitel 7 — Zusammenfassung & Ausblick: Das letzte Kapitel fasst die Arbeit zusammen und
liefert einen Ausblick in die Zukunft.

10

2 Grundlagen

Im Folgenden soll auf die Grundlagen eingegangen werden, die notwendig sind um diese Arbeit zu
verstehen. Diese umfassen einen Uberblick iiber CANoe, das VT System, die Programmiersprache
CAPL, den ibb TestDesigner und das Zusammenwirken dieser Komponenten.

2.1 CANoe

Die Software CANoe wurde erstmals 1996 von der Vector Informatik GmbH veréffentlicht und seitdem
stetig weiterentwickelt. Die aktuelle Version ist 8.5 [Vec15a]. Das Hauptanwendungsgebiet von CANoe
ist die Entwicklung und das Testen von Steuergeriten im Automobilbereich. Solche Steuergerite sind
eingebettete Systeme mit Sensoren, die Messwerte sammeln. Weichen diese Messwerte vom Sollwert
ab, so wird mittels Aktoren versucht, den Sollwert einzustellen. Die Basis fiir die Kommunikation der
Steuergerite sind Bussysteme wie Controller Area Network (CAN) oder Local Interconnect Network (LIN).
Derartige Steuergerite sind aus modernen Autos nicht mehr wegzudenken. Sie sind z.B. zustindig
fiir die Funktionsweise folgender Elemente:

« Motor
« Bremsen
« Fensterheber

+ Anhéangerkupplung

Um Steuergeréte zu simulieren und zu testen, kann eine Software wie CANoe eingesetzt werden.
Darin kénnen Tests importiert oder auch erstellt werden, die dann vollautomatisch durchgefiihrt
und anschlieend ausgewertet werden kénnen. Dies kann jedoch nicht nur zum Testen von virtuell
erzeugten Modellen von Steuergeraten eingesetzt werden, sondern auch um tatsachliche Hardware
Komponenten zu testen. Zu diesem Zweck hat Vector Informatik das VT System entwickelt.

2.2 VT System

Das VT System besteht aus modularen Hardware Komponenten, mithilfe derer die Eingabe- und
Ausgabeschnittstellen der Steuergeréte mit einem Computer verbunden werden kénnen, auf dem
Tests ausgefithrt werden [Vec15d]. Diese Module sind z.B. Netzteile, elektronische Widerstandslasten
oder allgemein Platinen, die analoge und digitale Signale verarbeiten. Durch das Zusammenfiigen
der einzelnen Module kann eine Hardware Testumgebung geschaffen werden, die speziell auf einen

11

2 Grundlagen

bestimmten Prifling zugeschnitten ist und dessen korrekte Funktionsweise validiert. Mittels CANoe
koénnen dann z.B. einzelne Relais geschalten oder Eingénge angesteuert werden.

Zum Erstellen von Tests liefert CANoe vorgefertigte Pakete und einen Editor. Die Programmiersprache,
die den Tests zugrunde liegt, heifst CAN Access Programming Language (CAPL).

2.3 CAN Access Programming Language

Die CAN Access Programming Language (CAPL) wurde von Vector Informatik entwickelt und wird als
native Sprache fir Tests und Knoten in CANoe genutzt [Vec09]. CAPL basiert auf C und optimiert
dieses dahingehend, dass u.a. Messungen und Stimulationen mehrerer verschiedener Kanile ermog-
licht werden. Ein grundlegender Unterschied zu C ist der ausschliellich ereignisbasierte Ablauf des
Programm Codes. Zu solchen Ereignissen zéhlen

« Ablauf eines Timers
« Anderung einer Variable

« Erhalten einer Nachricht

Einige Konzepte von C werden in CAPL nicht unterstiitzt, da sie keine Relevanz fiir das beabsichtigte
Anwendungsgebiet haben. Diese weggelassenen Elemente umfassen z.B.

« Pointer
« Header Files
« Structures

« Definieren von Makros

Die Programmierung von CAPL erfolgt idealerweise im CANoe-eigenen CAPL Editor, es kann aller-
dings auch in einem beliebigen Text Editor programmiert werden [Vec04].

Um den Prozess der Testerstellung zu optimieren, sodass nicht jeder Test von Hand in CAPL geschrie-
ben werden muss, hat das Ingenieurbiiro Brinkmeyer & Partner (ibb) eine eigene Software entwickelt,
den ibb TestDesigner.

2.4 ibb TestDesigner

Der ibb TestDesigner ist ein vielseitiges Tool, welches zum Ziel hat, die Arbeit mit CANoe mafigeblich
zu erleichtern. Das Hauptaugenmerk liegt hierbei auf der einfachen Erstellung von Tests, doch auch
weitere Funktionalitdten werden im spateren Verlauf dieser Arbeit dargestellt. Uber die Jahre ist das
Programm stetig weiterentwickelt worden, um sich neu ergebenden Anforderungen anzupassen.

Die Erstellung von Tests erfolgt in der Regel Requirement-basiert, was durch den Import von Microsoft
Excel-Dateien unterstiitzt wird. Durch das Zuriickgreifen auf eine von ibb entwickelte Methodenbi-
bliothek kénnen dann Schritt fiir Schritt Tests erstellt werden, die die Requirements iiberpriifen. Der
Aufbau eines Tests erfolgt mittels einer zweidimensionalen Tabelle, was die Ubersicht gegeniiber dem

12

2.5 Prozesskette

manuellen Programmieren in CAPL oder Schreiben einer XML-Datei wesentlich erhoht. Am Ende des
Testerstellungsprozesses steht ein XML Dokument, das einen genau spezifizierten Testablauf enthalt.
Diese Datei kann in CANoe importiert werden, um dann die Funktionsweise des Priiflings zu testen.

2.5 Prozesskette

Eine grobe Prozesskette fiir das Testen von Steuergeriten unter Einsatz von CANoe als Testumgebung
und dem ibb TestDesigner zur Definition von Tests ist in Abb. 2.1 skizziert.

Der ibb TestDesigner wird genutzt, um Schritt fiir Schritt Tests zu definieren. Hierbei orientiert er sich
an den Requirements, die fiir den Test vorgegeben werden. Das Resultat der Testerstellung ist eine
Datei, die von CANoe eingelesen werden kann. Uber das VT System steuert CANoe den Priifling an
und fithrt die Tests durch. Das VT System befindet sich in stindiger Kommunikation mit CANoe und
liefert Daten. Wenn der Test beendet ist, generiert CANoe eine detaillierte Auswertung des Testablaufs
in Form eines Reports. Diese Report Datei kann dann sowohl in CANoe angesehen werden, als auch
in den ibb TestDesigner geladen werden, um wiederum systematische Analysen zu erméglichen.

13

2 Grundlagen

' Ibb
m [== "
Rl TestDesigner
F Y
bilden il
Grund|age fiir definiert
{KM-[EE-\PL] wird analysiert
I
wird geladen
¥
liefert !
Daten stezert
L VT System
I
testet
¥
Prufling

Abbildung 2.1: Prozesskette von Hardware Tests mittels ibb TestDesigner und CANoe

14

3 Analyse des ibb TestDesigners

3.1 Allgemeines

Der ibb TestDesigner ist in der Programmiersprache Microsoft Visual Basic 8.0 geschrieben und die
Weiterentwicklung im Rahmen dieser Arbeit erfolgt mit der Entwicklungsumgebung Microsoft Visual
Studio 2010. Das programmeigene Arbeitsformat ist Test Feature Editor (.tfe). Jedes Test-Projekt wird
in einer .tfe-Datei gespeichert.

Der ibb TestDesigner ist ein Programm, das in erster Linie Dateien mit Testablaufen fiir CANoe
generiert. Die von CANoe akzeptierten Formate sind hierbei XML-Dateien (.xml) und CAPL-Dateien
(.can). Aufgrund der Vielseitigkeit und Strukturiertheit von XML spielt dieses Format auch eine
zentrale Rolle im ibb TestDesigner. Das Test Setup selbst, die Methodenbibliotheken und Reports
basieren auf XML.

Ein weiterer Dateityp, der im ibb TestDesigner zum Einsatz kommt, sind Microsoft Excel-Dateien (.xlsx).
Der Grund dafiir liegt in der Requirement-basierten Arbeitsweise mit dem ibb TestDesigner. Wenn
ein System getestet werden soll, werden gewisse Anforderungen formuliert, die durch einen Test
tberprift werden sollen. Diese Requirements konnen sowohl in Textform als auch in einer Tabelle
formuliert sein. Wenn die Beschreibung der Requirements in einer Excel-Datei vorliegt, so kann
diese in den ibb TestDesigner importiert werden. Jedes Requirement verfiigt in der Regel iiber eine
kurze, aussagekréaftige Beschreibung sowie eine einmalige ID. Der ibb TestDesigner unterstiitzt den
Testersteller bei der Arbeit, indem er anzeigt, welche Requirements durch den Test bereits abgedeckt
sind und welche noch fehlen. Ein Beispiel fiir die Darstellung von Requirements kann wie in Tabelle
3.1 dargestellt, aussehen.

Tabelle 3.1: Beispielhafte Darstellung von tabellarisch verfassten Requirements

Requirement ID Anforderung
1 sup Spannungsversorgung
2 sup_01 Nach Einschalten soll das System funktionsfihig sein
3 sup_02 Bei Spannungsinderungen um 2V soll das System stabil laufen
4 sup_03 Das System soll nach Spannungseinbruch wieder normal laufen
5 led Funktion der LED
6 led_01 Der Takt der LED soll konstant sein
7 led_02 Bei Spannung unter 5V soll die LED ausgehen

Die Gliederung eines Tests erfolgt im ibb TestDesigner in Testgroups und Testcases, zusétzlich noch
optional in Varianten. Eine Testgroup besteht iiblicherweise aus mehreren Testcases, wobei diese
nicht weiter aufgeteilt werden konnen. Zum Uberpriifen eines Requirements wird eine Testgroup

15

3 Analyse des ibb TestDesigners

mit mehreren einzelnen Testcases erzeugt. Auflerdem konnen verschiedene Varianten in mehreren
Durchgingen ausgefithrt werden, in denen Parameter variieren.

Der ibb TestDesigner wurde im Laufe der Jahre stindig weiterentwickelt, um sich neuen Aufga-
benbereichen anzupassen. Den Kern der Anwendung bilden Ports, Devices und Methoden.

3.2 Ports

Die Ports im ibb TestDesigner sind Kanéle, die gemessen oder manipuliert werden kénnen. Bei einem
Testablauf in CANoe sind das:

« Signale (CAN, LIN,...)
« Umgebungsvariablen

+ Systemvariablen

Nachrichten

« Kanile von Hardware Modulen wie VT System

Mehrere gleichartige Ports werden in einem Device zusammengefasst. Eine Methode, die z.B. einen
Wert setzt oder ausliest, ist immer einem bestimmten Port zugeordnet. Fiir jeden Port gibt es in der
Tabelle mit dem Testablauf eine eigene Spalte. Die Definition der einzelnen Ports erfolgt entweder
manuell im ibb TestDesigner, oder automatisch in CANoe. Oftmals geniigt es jedoch, die von CANoe
erzeugte Beschreibung zu importieren. Es sollten allerdings keine Ports erzeugt werden, die in CANoe
nicht existieren, da CANoe die Hardware testet und ihr angepasst werden muss. Wenn CANoe also
z.B. ein Signal auswerten soll, das es gar nicht gibt, so kann dies zu Fehlern im Test fithren.

Jedes Steuergerit hat individuelle Schnittstellen und kein Testaufbau gleicht dem anderen. Das
Dateiformat, in dem der CANoe zugehorige Datenbankeditor CANdb++ die Ports beschreibt, ist .dbc.
Solche Dateien konnen vom ibb TestDesigner eingelesen und die Ports dementsprechend erzeugt
werden. Einige Ports fiir VT Module und eigens von ibb erzeugte Variablen sind bereits in den
Template Files fiir den ibb TestDesigner enthalten. Somit konnen in nur wenigen Schritten samtliche
fiir einen Test benétigten Ports definiert werden.

3.3 Devices

Ein Device besteht aus mehreren Ports, die strukturell gleichartig sind. Jedem Device werden meist
eine, manchmal auch mehrere Klassen von Methoden zugewiesen. Auf dem Port eines Device sollten
nur Methoden ausgefiihrt werden, deren Klasse dem Device zugehorig ist. Oft ist dies eine eins-zu-eins
Zuweisung, es gibt z.B. ein Device ,Systemvariablen® und die zugehorige Klasse der ausfithrbaren Me-
thoden ist ebenfalls ,,Systemvariablen®. Die Gliederung der Devices in die oben genannten Kategorien
ist deshalb sinnvoll, weil eine Methode auf verschiedenen Ports eines Device gleich ausgefiihrt werden
kann. Fiir die Methode ist es irrelevant, ob sie auf dem Port Systemvariable A oder Systemvariable B

16

3.4 Methoden

angewendet wird. Wichtig ist nur, dass eine Methode fiir das Device der Systemvariablen nicht ohne
weiteres z.B. auf einem Device fiir CAN Signale ausgefithrt werden kann.

3.4 Methoden

Im Mittelpunkt der Anwendung stehen die Methoden, aus denen ein Test modular aufgebaut wird.

Abb. 3.1 zeigt den Methoden Editor, mit dem die Methoden des ibb TestDesigners verwaltet werden.

File Method Help
Curmert Methods:

Class: |CAN

- cSignalCAN

- cSignalFalse

- cSignalTrue

- mSignalCAN

- m3ignalCANcond
- m3ignalCANFalse
- mSignalCANTol

- ST, 1 ¥ S

Method Values
Method name: mSignalCAN

Aizs(es): |mSignal

Files (When adding, select the file where the method will be added):

1 m

mSig
mS =
Paremeters
Name T‘fpe Mln Max_ IZ!efault I Um_ Va_lue_s s
:va\ue_m\n.:ﬂnat '.;.ﬂ ..D |F
|value_max |float 'ED |0
Add Parameter
Ficture 1 | Picture 2
—— == Ingenieurbiiro
| = Brinkmeyer & Partner
e | mme Elektronik testen mit System
Picture Path: -
Link to file: C]
[oK

Add New File
Method Values

Description (English) | Description (German) |

Check if the value of a signal is within a given range {value_min - value_max). .

Comment of Method (30, 1, 82 ... will be replace by the paremeters):
Check f €0 is between §1-52

I_F‘recode Main Code

<statecheck wait="0" ttle="Measure: %signal® = %value_min% - *value_max% {%methodnamei)">
cexpected>
<cansignal name="¥signal%">
<range>
rom:%value_min% <from>=
Ao=Yvalue_max¥ <Aox
</range>
</cansignal>
</expected >
</statecheck>

[] Call to cther method

\ Accept] [Add | [Discard

| [Cancel |

Abbildung 3.1: Graphische Oberfliche des Methoden Editors im ibb TestDesigner

Die Methoden werden in einer Bibliothek gespeichert und verwaltet, die auf XML basiert. Sdmtliche
Methoden konnen im ibb TestDesigner angesehen und modifiziert werden. Zusitzlich kénnen auch

neue Methoden erstellt werden. Sie bestehen aus:

« Name und

Alias

Eine Methode muss einen Namen haben, der sie klar identifiziert. Idealerweise sollte ein
aussagekriftiger Name gew#hlt werden. Optional kénnen auch Aliasse vergeben werden, die

die Lesbarkeit bei groflen Tests erleichtern.

« Parameter

Fiir jede Methode konnen beliebig viele Parameter bestimmt werden. Als mogliche Typen stehen

17

3 Analyse des ibb TestDesigners

Port, Boolean, Integer, Float und String zur Verfugung. Zusatzlich kénnen auch Beschriankungen,
Default-Werte und Einheiten festgelegt werden.

Main Code

Der Main Code ist das, was beim Generieren eines Tests in die Ausgabedatei geschrieben wird.
Da das aktuelle Ausgabeformat XML ist, ist der Main Code ebenfalls in XML verfasst. Beim
Erstellen der Ausgabedatei werden die Methoden und ihre Parameter durch den Main Code
ersetzt, der fiir die jeweilige Methode hinterlegt ist.

Klasse
Jede Methode benoétigt eine Klasse, der sie zugehdrig ist. Somit kann die Methode von allen Ports
eines Device aufgerufen werden, wenn dem entsprechenden Device diese Klasse zugewiesen
wurde.

Bilder
Um das Verstandnis des Anwenders fur die Methoden zu verbessern, konnen einer Methode
Bilder hinzugefiigt werden.

Bibliothek

Jede Methode ist in einer Bibliothek gespeichert. Die von ibb angelegte IbbMethodLib beinhaltet
alle wichtigen XML Methoden, die zum Testen von Hardware mittels CANoe notwendig sind.
Bei Bedarf konnen diese Methoden jedoch auch modifiziert werden, oder es kann eine neue
Bibliothek mit eigenen Methoden erstellt und eingebunden werden. In jedes Test Setup kénnen
beliebig viele Bibliotheken geladen und deren Methoden benutzt werden.

Beschreibung

Obwohl die Namen der Methoden moglichst vielsagend gewahlt werden sollen, ist es manchmal
unvermeidbar, die Funktionsweise einer Methode mittels einer Beschreibung néher zu erlautern.
Auch die einzelnen Parameter, die beim Methodenaufruf eingesetzt werden miissen, konnen
néiher beschrieben werden.

Kommentar

Eine Methode hat auflerdem einen Kommentar, der standardméflig als Titel fiir den Testcase
gesetzt wird, um beim schrittweisen Erstellen eines Tests den Uberblick zu behalten. Dieser
Kommentar kann auch Platzhalter beinhalten, die beim Festlegen der Parameter durch ihren
tatsachlichen Wert ersetzt werden.

3.5 Testablauf

In Abbildung 3.2 ist der Hauptbildschirm der Anwendung zu sehen.

18

3.5 Testablauf

File Edit View Start TestGroup

Configuration

Il | Requirement ID | TestCase Type | TestCase Title || i+ 13- [= |)

Requirements Tools Help
X | Move to:

Abbildung 3.2: Hauptbildschirm des ibb TestDesigners

Main [Seftings | Sequencer
TestSetup Ttie: Kanal 1-4prifen Req.ID: 01 g Methods
Funclion: (Al | Comment/ToDo: Widertande sn ECU und sn Lastausgang arlegen Status \j‘/ 7 Class:
[¥] Expand/Colapse Al =
E || an [Main [Used |
@ IbbTest - £ Bt
1-SYSTEM z aVoltageavg -
DELTAT = cBusBarl
- wait Ez cBusBarla 3
1 SYSTEMVARIABLE = <BusBarlb
VTS_IBB:VT7001_1:§) = e 3 - cBusBar2
= S 2 = 5] (2] BusBar2a
1 VT1004_1 z | |5 z 15 5 = L2 | o
VT1004_Cho1 £l |g [2 g 5 g i <BusBar2b
VT1004_Cho2 s G 3] = = = & 2 ; - cDefault
VT1004_Ch03 58 2 H = = s S ! eDefaultModul
- VT1004_Chod d clntLoad!
GvTi004.2 7 - clniLoadR
L - 5| |0 Adion - |Kandl 1 Vorbercien sTesterConfimation(500:10R an iber Out1 Engang Kanal 01) SRR
VT1004_Chos = <OriginalLoa
Rt ctoe Bl 0 Acon - |Kensl 1 Vorberten sTesterCorfmation(600;22R an Orginalastausgang) - —
VT1004_Cho7 Bl 7 |0 Precondton - |Spannung simegein <Sysvarfs) - cSwapBusBarl
VT1004_Cho8 8| |1| Rest - |Spanungan VT Kanal prifen mVotageAvg(4.85.2) cSwapBusBar1a
; 4 | SwapBusBar1b
-VT1004_3 3 0| Adion v |Kuzschiuss anlegen Shortcircut i |
VT1004_Choo = cSwapBusBar2 _
= 10| |1 Resk ~|Spannungan VT Kanal prifen mVokagetvg-0.1:0.1) « i
VT1004_Ch10 —
VT1004_Ch11 B 0 Reit -|swmpen mCurent1(0.4:0.5) T
VT1004_Chi2 12| |0 Adion - |Kuzschiussirennen dShortcireut
1-VT1004_4 13| |0 | Precondiion + |Spannung einregeln cSysvar(10) .
VT1004_Ch13 = Alias:
- 14| |1 Resit ~|Spannungan VT Kanal prifen mVokageAvg(9.8:10.1)
T-chg B o e Strom prf Curent 1(0:0.1
VT1004_Ch15 2 e Ao mlier mCument1(0:0.1)
\VT1004_Ch16 s 0 Acon - |Omgralest sniegen cOnginalLoad
- VT2004_1 17| |1 Rest - |Sromprfen mCurmert1(0.250.35)
VI2004_ChO1 18| |0 Acion - |Orgnalast trennen dOriginalLoad
VT2004_Cho2 1 5
- VT2004_Cho3 —
\T2004_Chod 2 0 Adin - |Kanol2Vorbereten sTesterConfimation(500:10R an iber Out1 Engang Kanal 02)
£1-VT2004_2 21| |0 Acion - |Kanal 2 Vorbersten sTesterCorfmation{600,22R an Orginalastausgang) Description
~\T2004_Ch05 2 0 | Precondtion ~ | Spannung einrsgeln cSysvar(5)
VT2004_Cho& 220 1 Rest - |Spannungan VT Kanal prifen mVokageAvg(4.8:5.2)
VT2004_Cho7 IR s .
VT2004_Ch08. - 1Lt PR NS cShortcircui
1 VT2004_3 25| |1 Resst ~|Spannung an VT Kanalprifen mVoagevgl-0.1:0.1)
VT2004_Cho9 2| |0 Resit - |Sromprifen mCurent1(0.4:0.5)
VI2004_Ch10 27 |0 Adion - |Kuzschusstrennen dShortcirouit
-NT2004.Chll 28| |0 | Precondiion + |Spannung einegeln cSysvar(10)
VT2004_Ch12 — - Parameers:
| VT2004_4 B2 1 Rest - |Spanung an VT Kanalprifen mVoltage/Ava(9.8:10.1)
-VT2004_Ch13 0| |0 Resit - |Sromprifen mCurent1(0:0.1)
VT2004_Chi4 31| |0 Acion - |Orginalest anlegen cOrginalLoad
VI2004.0hl S R - [svompren mCurrert1(0.25:0.35)
-VT2004_Ch16 e E— - -
1-VT2516_1 i il 7
4 il v
— TestGroup as Conditions = = Port Name: VT1004_Ch01
it sty Exiw] 2 o 6 [e)
S5 == Ingenieurbiiro
Gereeie | == == Brinkmeyer & Pariner

Bl eston it Sy

Links im Bild ist die Liste mit den verschiedenen Devices des jeweiligen Projekts zu sehen. Zuséatzlich
enthilt diese Liste die einzelnen Ports der Devices. Auf der rechten Seite stehen die Methoden einer
jeweiligen Klasse. In der Mitte ist die Tabelle zu sehen, in der ein Anwender des ibb TestDesigners
einen Test aufbaut. Jede Zeile entspricht einem Testcase und jede Tabelle einer Testgroup. Die Spalten
der Tabelle setzen sich von links nach rechts wie folgt zusammen:

+ Variante
In dieser Spalte kann eine Zugehorigkeit zu einer oder mehrerer Varianten angegeben werden.
Je nach dem wird diese Zeile dann nur in bestimmten Varianten berticksichtigt, ansonsten wird
sie ignoriert. Durch eintragen eines Rautensymbols (#) konnen einzelne Testcases oder ganze
Testgroups auskommentiert werden.

« Signal
Jeder Testcase hat eine Nummer, die ihn eindeutig identifiziert. Diese Nummern werden aufstei-
gend vom ersten Testcase der ersten Testgroup bis zum letzten Testcase der letzten Testgroup
vergeben. Wenn der erzeugte Test in CANoe ausgefithrt wird, erméglichen die Nummern eine
fehlerfreie Zuordnung.

19

3 Analyse des ibb TestDesigners

« Requirement ID
Wenn eine Excel-Datei mit Requirements in den ibb TestDesigner geladen wurde, wird automa-
tisch fiir jedes Requirement eine Testgroup erstellt und mit der entsprechenden Requirement
ID versehen. Ansonsten kann die Requirement ID manuell eingetragen werden.

. At
In dieser Spalte wird angegeben, wie lange gewartet werden soll, bevor ein Testcase ausge-
fithrt werden soll. Wird die Spalte leer gelassen, fahrt CANoe nach Beendigung eines Testcase
umgehend mit dem néachsten fort. Um in diesen Vorgang einzugreifen, kann eine Wartezeit
eingetragen werden. Wenn z.B. gepriift werden soll, ob nach spitestens 5 Sekunden ein Relais
geschaltet hat, muss ein Mechanismus zum expliziten Warten vorhanden sein. Dieser ist mit

At gegeben.

TestCase Type

Jedem Testcase kann ein Typ zugewiesen werden. Mogliche Typen sind: Precondition, Action,
Result, Condition, Postcondition und Remark. Durch diese optionale Festlegung kann die Struktur
eines Tests feiner beschrieben und die Ubersichtlichkeit gesteigert werden.

. TestCase Title
Diese Spalte weist einem Testcase einen Titel zu, entweder automatisch tiber die Beschreibung
der Methode oder durch manuelle Eingabe eines Titels.

» Ports

Fiir jeden Port, der in einer Testgroup bendtigt wird, wird der Tabelle eine Spalte hinzugefiigt.
Dies erfolgt per Drag & Drop aus der linken Liste der Ports, die nach ihren jeweiligen Devices
sortiert sind. In jedem Testcase kann ein Methodenaufruf pro Port getétigt werden. Wenn eine
Zelle eines Ports angew#hlt wird, stehen in der rechten Liste die geeigneten Methoden, also
die Methoden aller Klassen die dem Device zugeordnet wurden. Durch Doppelklicken auf eine
Methode erscheint ein Dialogfeld, in dem die nétigen Parameter eingetragen werden miissen.
Anschlieflend befindet sich die Methode in der ausgewahlten Zelle.

+ Bemerkungen
Ganz rechts in der Tabelle befindet sich eine letzte Spalte, in die Bemerkungen zu einem Testcase
geschrieben werden kénnen.

Durch die einfache und iibersichtliche Bedienung kann nach und nach ein beliebig komplexer Test
mit einer Vielzahl von Testgroups erstellt werden. Der Anwender muss keine Kenntnis iiber den
tatsachlichen Code haben, da er auf der Abstraktionsebene der graphischen Oberfliche arbeitet.

3.6 Test Generierung

Wenn der Test vollstandig aufgebaut wurde, kann mit einem Klick auf den ,,Generate File® Knopf
eine Ausgabedatei erzeugt werden. Dies ist die XML-Datei, die von CANoe eingelesen und ausgefiihrt
werden kann. Sie beinhaltet einen vom ibb TestDesigner automatisch generierten Rahmen mit not-
wendigen Voreinstellungen und der Strukturierung in die einzelnen Testgroups. Diese Testgroups
werden dann mittels Iteration durch die einzelnen Zellen der tabellarischen Testcases mit den nétigen

20

3.7 Weitere Funktionen des ibb TestDesigners

Informationen und dem Main Code befiillt. Alle im Main Code auftretenden formalen Parameter wer-
den an dieser Stelle durch den angegeben Wert der tatsachlichen Parameter ersetzt. Am Ende entsteht
eine Datei, die alle von CANoe gestellten Anforderungen an einen in XML verfassten Test erfiillt. Der
Test kann ohne weitere Modifizierung auf einer simulierten Umgebung oder einem tatsichlichen
Hardware Aufbau durchgefithrt und ausgewertet werden.

3.7 Weitere Funktionen des ibb TestDesigners

Der ibb TestDesigner verfuigt tiber eine Vielzahl weiterer Funktionen, die fiir diese Arbeit jedoch ne-
benséchlich sind und nur kurz erldutert werden. Die in der Praxis wichtigsten dieser Funktionalitaten
sind:

« Sequencer
Diese Funktion erlaubt eine Generierung von mehreren Testdateien, die im .tfe Format spezi-
fiziert sind, gleichzeitig. Dazu muss ein Ordner angegeben werden, in dem sich die Dateien
befinden. Durch das Setzen von Haken kdnnen mehrere ausgewihlte Tests aus verschiedenen
Dateien generiert werden.

+ Report Analyzer
CANoe erzeugt nach dem Durchlauf eines jeden Tests einen Report. Darin enthalten ist eine
Aufschliisselung samtlicher Testcases mit Zeitstempel und Ergebnis. Der Report Analyzer er-
moglicht eine Uberpriifung der Ergebnisse in Bezug auf die Requirements, die zu Beginn einer
Testerstellung aus einer Excel-Datei eingelesen werden konnen.

+ Report Comparator
Nach der Analyse durch den Report Analyzer kann ein detaillierter Vergleich der Reports
vorgenommen werden. Sowohl ein Vergleich der Reports selbst, als auch ein Vergleich einzelner
Ports zu bestimmten Zeitpunkten ist moglich. Unterstiitzt wird dies durch eine dynamische
Darstellung der ausgewahlten Ports in einem Graphen.

3.8 Vergleich mit ahnlichen Produkten

Ein Vergleich zu anderen Produkten, die eine dhnliche Aufgabe erfiillen, gestaltet sich als schwierig.
Das liegt daran, dass CANoe als Testumgebung eine zentrale Rolle bei ibb selbst aber auch bei
dessen Kunden spielt. Es gibt zwar andere Software fiir Testsysteme, aber durch die Nutzung von VT
Modulen, die wie CANoe selbst von Vector Informatik stammen, bietet sich CANoe als Testumgebung
an. Auflerdem entwickelt ibb selbst ebenfalls Module, die mit dem VT System kompatibel sind. Aus
diesen Griinden ist jede andere Testumgebung hinfallig.

Ein vergleichbares Produkt miisste also fiir CANoe ausfithrbaren Code erzeugen konnen. Als ibb mit
der Entwicklung des ibb TestDesigners begann, war lange Zeit kein anderes Programm verfiigbar, das
diese Aufgabe erfiillte. Mittlerweile hat auch Vector Informatik die Notwendigkeit einer komfortablen
Testerstellung erkannt und eine eigene Software entwickelt, das vIESTstudio.

21

3 Analyse des ibb TestDesigners

VTESTstudio

Die Software vIESTstudio wurde von Vector Informatik im Jahre 2013 veroffentlicht [Vec15c]. Da
es vom selben Unternehmen entwickelt wurde wie CANoe, ist die Verkntipfung dieser beiden Pro-
gramme miteinander sehr eng. Mit vIESTstudio konnen Tests in den Sprachen CAPL und C# erstellt
werden. Aulerdem gibt es einen ,Test Table Editor®, in dem in einer Baumstruktur die Testcases auf
der Abstraktionsebene einer graphischen Oberflache erstellt werden kénnen. Zusétzlich kann der
Testablauf als Flussdiagramm angezeigt oder selbst definiert werden [Vec15b].

Auf den ersten Blick bietet vIESTstudio eine Reihe von Vorziigen gegeniiber dem ibb TestDesigner. In
einigen wesentlichen Punkten zeigt sich jedoch, warum ibb am ibb TestDesigner festhalt:

« Ubersichtlichkeit

Obwohl es sich dem Namen nach beim ,Test Table Editor® im vIESTstudio um eine Tabelle
handelt, ist es tatsdchlich eine als Liste dargestellte Baumstruktur. Einzelne Testgroups sowie
Testcases sind Knoten in einer Liste, die auf- und zugeklappt werden kénnen. Die Blétter der
Knoten sind die einzelnen Teststeps. Bei grofieren Tests wichst diese Liste sehr weit nach unten
und wird dadurch schnell uniibersichtlich.

Beim ibb TestDesigner erfolgt die Darstellung in einer zweidimensionalen Tabelle mit einer Seite
pro Testgroup. Bei zunehmender Anzahl an Testcases wachst die Tabelle vertikal, bei einer Zu-
nahme von Teststeps, also Ports, horizontal. Durch die einfach verstandliche Ansicht sind nicht
nur mehr Testcases auf einmal zu sehen, sondern fiir alle Testcases simtliche Einzeloperationen,
die durchgefithrt werden.

Einfachheit

Innerhalb weniger Minuten kann ein Anwender im ibb TestDesigner fiir ein neues Projekt mit
der Testerstellung beginnen. Hierzu miissen nur bereits fertige Dateien importiert werden. Die
Namen der zu benutzenden Methoden sind aussagekriftig und die Ausfithrung auf einem Port
ermoglicht ein leichtes Verstandnis dartiber, was genau in einem Testschritt gemacht wird.
VvIESTstudio ist komplexer und erméglicht durch seine Ndhe zu CANoe viele verschiedene
Funktionen, was aber zu Lasten von Ubersichtlichkeit und Verstandlichkeit geht. Viele der
Funktionalitaten werden fiir normale Tests gar nicht gebraucht. Der Funktionsumfang ist grofier,
aber es ist daher auch komplizierter fir den Anwender einen Test zu erstellen.

Modifizierbarkeit

Bei ibb wird viel Wert auf Flexibilitat und Anpassbarkeit an unvorhergesehene Szenarien gelegt.
Deshalb ist ein eigenes Tool, das bei Bedarf abgeéndert werden kann, sehr wichtig fiir das
Unternehmen. Falls notig, konnen dem ibb TestDesigner einfach neue Methoden hinzugefiigt
werden.

Wenn ein externes Programm wie vIESTstudio genutzt wird, so geht dies auf Kosten der
Flexibilitat. Das Unternehmen muss sich an die vorgegebenen Muster halten und kann das
Programm selbst nicht modifizieren. Da der ibb TestDesigner iiber viele Jahre hinweg zielfithrend
weiterentwickelt wurde und sich bei ibb und dessen Kunden bewihrt hat, wird weiterhin an
diesem Konzept und der klaren Struktur festgehalten werden.

Alles in allem ist vTESTstudio ein méchtiges und vielseitiges Programm, doch aufgrund der oben
genannten Griinde bringt der ibb TestDesigner trotzdem einen Mehrwert fiir ibb.

22

4 Entwurf & Implementierung

4.1 Vergleich von Extensible Markup Language und CAN Access
Programming Language

4.1.1 Gegenuberstellung der Funktionsweise

Die zwei Formate fir vordefinierte Tests, die von CANoe akzeptiert werden, sind XML-Dateien
und CAPL Code. Diese beiden Formate unterscheiden sich jedoch in einigen wesentlichen Punkten
voneinander. Tabelle 4.1 stellt die wichtigsten Unterschiede gegentiiber [Kra09].

Tabelle 4.1: Gegeniiberstellung von Testcases in XML und CAPL nach [Kra09]

Test in XML

Test in CAPL

Ausfiithrung eines Testcase

Jeder Testcase kann maximal
einmal ausgefithrt werden

Jeder Testcase kann beliebig
oft ausgefiithrt werden

Reihenfolge der Ausfithrung

Statisch durch die Struktur
der XML-Datei vorgegeben

In der MainTest Funktion dy-
namisch festlegbar

Kontrolle iiber die Ausfithrung

In der graphischen Oberfla-
che von CANoe kann fiir je-
den Testcase ein Haken ge-
setzt werden, ob er ausge-
fuhrt werden soll, oder nicht

In der MainTest Funktion pro-
grammiert

Testgroups

Statisch in der XML-Datei
festgelegt, eins-zu-eins Zu-
weisung von Testcases zu
Testgroups

Dynamisch in der MainTest
Funktion definiert, eine Zu-
weisung eines Testcase zu
einer oder mehrerer Test-
groups erfolgt wihrend der
Laufzeit

Testcase Definition

Durch XML Struktur Muster
vorgegeben

Frei programmiert in CAPL

Test Report

Enthilt Informationen iiber
alle Testcases, die in der XML-
Datei definiert wurden, aber
nicht zwingend ausgefiihrt
wurden

Enthalt nur Informationen
tiber tatsachlich ausgefiihrte
Testcases

23

R NS, I U CR R

I e I T R

4 Entwurf & Implementierung

Man sieht anhand von Tabelle 4.1, dass CAPL eine flexiblere Art der Testdefinition ermdglicht. XML
hat eine feste Struktur und beschreibt einen statischen Ablauf. Erweiterungen an einem Test in XML
sind nachtréglich nur schwer durchzufithren. Im Gegenzug dazu ist es einfacher zu verstehen und es
sind keine Kenntnisse iiber Programmiersprachen noétig.

4.1.2 Vergleich am Code
Um den Unterschied zwischen den beiden Arten der Testdefinition besser zu verstehen, hilft die

Gegentiberstellung eines einfachen Testcase, der einmal in XML und einmal in CAPL verfasst ist.
Listing 4.1 zeigt einen Testcase in der Sprache CAPL.

Listing 4.1: Beispiel eines Testcase in CAPL

testcase testcase_1()

{
testCaseTitle("1", "Measure ibb::Voltage = 12 - 13");
testresult = checkSignalInRange(sysvar::ibb::Voltage, 12, 13);
if (testresult == 1) TestStepPass("System Variable ibb::Voltage is between 12 and 13");
else TestStepFail("Value of System Variable ibb::Voltage is not in the allowed range");
}

Listing 4.2 zeigt einen funktional identischen Testcase in XML.

Listing 4.2: Beispiel eines Testcase in XML

<testcase title="testcase 1">
<statecheck wait="0" title="Measure: ibb::Voltage = 12 - 13 (mSysvar)">
<expected>
<sysvar name="Voltage" namespace="ibb">
<range>
<from>12</from>
<to>13</to>
</range>
</sysvar>
</expected>
</statecheck>
</testcase>

Der XML Code wird genau einmal so ausgefiihrt, wie er definiert ist. Der CAPL Code kann in der
MainTest Funktion beliebig oft aufgerufen werden.

4.2 Gliederung eines CAN Access Programming Language
Testmoduls

Abb. 4.1 zeigt die Gliederung eines Tests, der in CAPL verfasst ist.

24

4.2 Gliederung eines CAN Access Programming Language Testmoduls

Test Module

Testgroup 1

Testgroup 1.1
Testgroup 1.2

Testgroup 1.1.1

Testcase 1

Teststep 1
Teststep 2

Testcase 2

Abbildung 4.1: Gliederung eines Testmoduls in CAPL

Ein Test bzw. Test Module besteht aus einer oder mehreren Testgroups. Diese konnen auch ineinander
verschachtelt sein, so dass eine Testgroup selbst aus mehreren Testgroups besteht. Innerhalb einer
Testgroup gibt es einen oder mehrere Testcases. In diesen Testcases finden die eigentlichen Tests statt.
Ein Testcase kann wiederum aus mehreren Teststeps bestehen, die das kleinste Element innerhalb
eines Tests darstellen. Ein Teststep kann nicht noch feingranularer aufgeteilt werden.

Ein Test gilt nur als bestanden, wenn alle seine Untereinheiten, also seine Testgroups, als bestanden
gelten. Fiir diese gilt dasselbe: eine Testgroup ist fehlerfrei durchlaufen, wenn alle ihr zugeordneten
Testcases korrekt waren. Ebenso verhilt es sich fiir die Teststeps.

25

4 Entwurf & Implementierung

4.3 Anforderungen an die Implementierung

An die Erweiterung des ibb TestDesigners werden gewisse Anforderungen gestellt, die einzuhalten
sind. Diese lassen sich aufteilen in funktionale und nichtfunktionale Anforderungen.

Funktionale Anforderungen beschreiben Eigenschaften bzw. ein Verhalten, das ein Produkt unbedingt
zu erfiillen hat. Dies beinhaltet die fehlerfreie Funktion des erwarteten und erwiinschten Verhaltens
[RRO6].

Nichtfunktionale Anforderungen werden formuliert, um ein Produkt méglichst befriedigend zu
gestalten. Sie sind nicht zwingend fiir die korrekte Funktion eines Produkts nétig, doch je mehr nicht-
funktionale Anforderungen erfiillt werden, desto besser ist es. Unter nichtfunktionale Anforderungen
an eine Software fallen Aspekte wie Bedienbarkeit, Geschwindigkeit oder Skalierbarkeit [RR06].

In Ricksprache mit dem Betreuer in der Firma, Herrn Dipl.-Ing. (FH) Peter Heidenwag, wurden einige
Anforderungen an das Ergebnis dieser Arbeit formuliert.

4.3.1 Funktionale Anforderungen

Die Anforderungen, die unbedingt von einer Erweiterung des ibb TestDesigners zur Generierung von
CAPL Code erfiillt werden miissen, lauten wie folgt:

« Das bisherige Programm muss weiterhin wie bereits zuvor funktionstiichtig sein. Eine Ein-
schrankung, Behinderung oder Beschadigung der Generierung von Tests in XML darf nicht
auftreten.

« Das schon bestehende Konzept mit Devices, Ports und Methoden soll genutzt werden.
+ Eine Erweiterung des grundlegenden Konzepts darf nicht vorgenommen werden.

« Die Ausgabedatei muss im Format .can vorliegen und darf ausschliefilich Funktionen beinhalten,
die von CAPL unterstiitzt werden.

« Nach der Generierung muss eine Datei vorliegen, die ohne weitere Modifikation als Testmodul
in CANoe ausgefiihrt werden kann.

« Es muss eine Methodenbibliothek erzeugt werden, die losgelost von der schon existierenden
Bibliothek fiir XML Methoden ist.

« Es missen mehrere Durchliufe und mehrere Varianten ein und des selben Tests automatisch
erzeugt werden konnen.

+ Es sollen Funktionalitaten im Testablauf moglich sein, die zuvor mit XML allein nicht zu
erreichen waren.

26

4.4 Agile Softwareentwicklung

4.3.2 Nichtfunktionale Anforderungen

Anforderungen, die nicht zwingend erfiillt werden miissen, deren Einhaltung aber wiinschenswert
ist, sind:

« Anderbarkeit
Der Code soll moglichst allgemein gehalten sein, um etwaige Anderungen vornehmen zu
koénnen.

o Performanz

Die Performanz darf nicht wesentlich schlechter sein als bei der bisherigen Generierung von
XML.

« Handhabung
Die Erstellung eines Tests soll weiterhin genau so einfach sein wie bisher. Ein Anstieg der
Komplexitat fiir den Anwender muss vermieden werden.

« Verstandlichkeit
Einem Anwender, der die bisherige Testerstellung mit ibb TestDesigner beherrscht, soll auch die
CAPL Test Generierung ohne Weiteres verstandlich sein.

+ Logfile
Eine bereits existierende Logfile, die wichtige Aktivitdten des Programms protokolliert, soll
weiterhin gepflegt werden.

4.3.3 Weitere Anforderungen

Als Anforderungen, die sich weniger dem Produkt selbst sondern vielmehr dem Arbeitsprozess
zuordnen lassen, wurden die folgenden Aspekte identifiziert:

« Wiahrend der Entwicklung der Erweiterung soll regelmaf3ig Riicksprache mit dem Betreuer in
der Firma gehalten werden, um die angestrebten Ziele nicht aus dem Blick zu verlieren.

« Es soll so frith wie moglich eine ausfithrbare Erweiterung erstellt werden, die dann Schritt fiir
Schritt mit mehr Funktionalitit ausgestattet werden kann.

« Es muss eine Evaluation der fertiggestellten Erweiterung an einem Testsystem durchgefithrt
werden, um die fehlerfreie Funktionsweise zu demonstrieren. Dazu soll ein umfangreicher Test
in CAPL erzeugt und ausgefithrt werden.

4.4 Agile Softwareentwicklung

Die im letzten Abschnitt formulierten Anforderungen decken sich stark mit dem Vorgehen der Agilen
Softwareentwicklung, genauer gesagt dem Agilen Manifest [BBBT01]. Das Agile Manifest wurde im
Jahre 2001 von fithrenden Personen im Bereich der Softwareentwicklung formuliert. Die zentralen
Punkte lauten im Original wie folgt:

27

4 Entwurf & Implementierung

Individuals and interactions over processes and tools
+ Working software over comprehensive documentation

« Customer collaboration over contract negotiation

Responding to change over following a plan

Die Entwicklung der Software Erweiterung im Rahmen dieser Arbeit orientiert sich sehr stark an
diesen vier Prinzipien. Da die Softwareentwicklung von einer Einzelperson vorgenommen wird, ist es
wichtig, regelméaflig Riicksprache mit dem Auftraggeber zu halten, was in diesem Fall das Unternehmen
ist. Auf einzelne Menschen und Interaktionen in Form von immer wieder stattfindenden Treffen und
Rucksprachen wird in dieser Arbeit viel Wert gelegt. Dadurch entstehen auch 6fter neue Sichtweisen
und neue Ideen bzw. Modifikationen, die umgesetzt werden kénnen. Natiirlich gibt es zu Beginn einen
groben Plan, wie vorgegangen werden soll, doch durch die Flexibilitat bei der Entwicklung wurden
immer wieder Verinderungen und Erginzungen vorgenommen.

Das Resultat der Arbeit soll in erste Linie eine funktionierende Software sein, die Dokumentation der
selbigen ist dabei zunéchst einmal eher nachrangig.

4.5 Konzept

Das Ziel der Testerstellung mittels des ibb TestDesigners ist, dass ein Anwender ohne detaillierte
Kenntnis der nétigen Sprache einen Test erstellen kann. Dies wird dadurch erméglicht, dass der
Nutzer den Test auf einer graphischen Oberflache zusammenbaut. Diese graphische Oberfldche
muss sich nicht unterscheiden, wenn verschiedene Ausgabeformate generiert werden sollen. Auch
die Datenhaltung innerhalb der Anwendung muss nicht fiir die Erweiterung um das CAPL Format
angepasst werden.

Die Generierung kann gedanklich in zwei Bereiche unterteilt werden, einen Rahmen und einen
dynamischen Teil. Der Rahmen enthilt den Testablauf und die Gliederung, er bildet somit die statische
Grundstruktur. Der dynamische Teil besteht aus den einzelnen Testcases bzw. Methoden, die bei der
Generierung durch den eigentlichen Code ersetzt werden. Dieser Code ist in der Methodenbibliothek
als Main Code abgelegt.

Die zentralen Anderungen fiir die CAPL Generierung miissen also im Rahmen der erzeugten Datei
und in der Methodenbibliothek liegen, da eine XML-Datei eine grundsatzlich andere Struktur als eine
CAPL-Datei im .can Format hat.

4.5.1 Rahmen

Der Aufbau eines CAPL Testmoduls folgt einem gewissen Muster. Jeder funktionierende Testablauf
lasst sich gliedern in:

+ Globale Variablen
Der erste Abschnitt besteht aus Definitionen von Variablen, Timern, Nachrichten und dhnli-
chem. Fiir einen normalen Testablauf sind diese aber nicht zwingend notwendig. Die einzigen
Variablen, die global definiert werden sollten, sind ein Long mit dem Namen testresult und ein

28

4.5 Konzept

Float namens delay. In der Variable testresult kann immer das aktuelle Ergebnis eines Vergleichs
oder einer Zuweisung gespeichert werden. In delay konnen die Ergebnisse von Zeitmessungen
zwischengespeichert werden.

Die globalen Variablen miissen einmal vom ibb TestDesigner generiert werden, weshalb dieser
Teil dem Rahmen zugeordnet werden kann.

+ MainTest

Die Funktion void MainTest() entspricht der main() Funktion eines C Programms. Sie wird beim
Start des Tests automatisch aufgerufen. Der gesamte Ablauf des Tests sowie die Gliederung in
diverse Testgroups und der Aufruf der einzelnen Testcases erfolgen hier. Jeder Testcase, der
spater im Code definiert wird, muss hier aufgerufen werden, insofern er Teil des Testablaufs
sein soll. Wenn die MainTest Funktion ihr Ende erreicht hat, endet auch die Ausfithrung des
Tests.

Die MainTest Funktion an sich muss vom ibb TestDesigner einmal erzeugt werden. Sie gehort
also ebenfalls zum Rahmen. Die Befiillung der MainTest Funktion, also die Gliederung in
verschiedene Testgroups und der Aufruf der Testcases, ist allerdings etwas dynamisches, das von
der Testdefinition auf der graphischen Oberfliche abhéngt. Jeder Testcase im ibb TestDesigner,
also jede Zeile im Hauptfenster mit dem Testablauf, muss in der CAPL-Datei aufgerufen werden.

» Testcases

Jeder Testcase wird wie eine Funktion in C definiert. Der Identifier hierfiir ist testcase. Innerhalb
eines Testcase sollte ein Titel vergeben werden und der eigentliche Ablauf des jeweiligen
Testcase stattfinden. Am Ende muss das Resultat ein ,,pass“ oder ein ,fail“ sein. Ein Testcase
kann beliebig komplex sein, es bietet sich jedoch an so wenig Schritte auf einmal wie méglich
zu machen.

Die Testcases konnen nicht statisch und jedes Mal gleich erzeugt werden. Sie bilden den Kern des
Tests und sind im ibb TestDesigner in der Methodenbibliothek gespeichert. Jeder Testcase, der
dann auf der graphischen Oberfliche des ibb TestDesigners aufgerufen wird, muss in der CAPL
Testdatei definiert sein. Hierbei miissen fiir die Parameter und Platzhalter die tatsichlichen
Werte eingesetzt werden.

4.5.2 Methodenbibliothek

Jede Methode im ibb TestDesigner wird in einer Methodenbibliothek gespeichert bzw. aus dieser
geladen. Da in der bisherigen Version der Software jedoch die Erzeugung von Tests in XML im
Mittelpunkt stand, kénnen die existierenden Methoden nicht fir die Erzeugung von CAPL Code
benutzt werden. Jede Methode, die in einem CAPL Testmodul verwendet werden soll, muss also
geschrieben und in einer entsprechenden Bibliothek gespeichert werden. Hierzu wird eine neue
Bibliothek angelegt, die ,,ibbMethodenLibCapl.xml®. Dafiir kann der bereits existierende Mechanismus
zur dauerhaften Speicherung von Methoden genutzt werden. Alle Informationen iiber eine Methode
werden im XML-Format gespeichert und kénnen vom ibb TestDesigner eingelesen werden. Zu diesen
Informationen gehoren Name, Klasse, zweisprachige Beschreibung, Kommentar, Parameter und Main
Code. Nach dem Einlesen konnen die Methoden in einem Testprojekt verwendet oder modifiziert
werden.

29

4 Entwurf & Implementierung

Das Anlegen der Methodenbibliothek ist ein aufwindiger Vorgang, aber eine einmal angelegte
Methode kann anschliefSend beliebig oft in einer Vielzahl von Tests angewandt werden.

4.5.3 Beispiel eines vollstandigen Testmoduls in der CAN Access Programming
Language

Zum besseren Verstindnis vom Aufbau eines CAPL Testmoduls zeigt Listing 4.3 einen kurzen aber

vollstandigen Test. Weitere Testcases miissen in der MainTest Funktion aufgerufen und innerhalb
eines Blocks weiter unten in gleicher Weise definiert werden.

Listing 4.3: Funktionsfihiges Beispiel eines Testmoduls in CAPL

/*@!Encoding:1252%/

Variables
{
long testresult = -1;
}
void MainTest()
{
TestModuleTitle("Einfaches Testmodul");
TestGroupBegin("Einfache Testgroup", "Dies ist eine einfache Testgroup");
testcase_1();
TestGroupEnd();
}
testcase testcase_1()
{
testCaseTitle("1", "Dies ist ein einfacher Testcase");
TestWaitForTimeout (1000);
TestStepPass("Erfolgreich 1s gewartet!")
}

4.6 Implementierung

4.6.1 Entwicklungsumgebung

Die Entwicklungsumgebung mit der der ibb TestDesigner im Rahmen dieser Arbeit erweitert wurde,
ist Microsoft Visual Studio 2010.

Visual Studio ist eine integrierte Entwicklungsumgebung (IDE), die von der Firma Microsoft erstmals
im Jahre 1997 veroffentlicht wurde [Kir97]. Es werden eine Vielzahl an Sprachen unterstiitzt, v.a. C,
HTML oder auch Visual Basic, die Sprache die dem ibb TestDesigner zugrunde liegt. Seit der Erstverof-
fentlichung erschienen regelmaf}ig neue Versionen, die den Funktionsumfang stetig erweiterten.
Visual Studio 2010 wurde am 12. April 2010 veréffentlicht [MSD15].

30

4.6 Implementierung

Es wurde diese Version gewahlt, da sie stabil und zuverlassig lduft und alle Bediirfnisse abdeckt, die
beim Entwickeln mit der Sprache Visual Basic 8.0 auftreten.

4.6.2 Durchlaufe

Beim Generieren eines CAPL Tests ist es moglich, mehrere Durchlaufe auszufithren. Dafiir gibt es
eine eigene Tabelle in den Testeinstellungen, die in Abb. 4.2 dargestellt ist.

Randbedingungen (boundary conditions)
Varante Varable nomalspannung reduzienespannung erhoehtespannung Add Row |

» v O R —
- Usup 12 10 _ 14 | M|

Load.. |

Abbildung 4.2: Definition verschiedener Durchliufe

Der Gedanke dahinter ist, dass verschiedene Werte fiir Parameter eingesetzt werden sollen. Wenn z.B.
gepriift werden soll, wie sich ein Steuergerat bei verschiedenen Spannungen verhilt, definiert man
verschiedene Durchldufe. Vorstellbar wiren drei Durchliufe: einer mit normaler Spannung, einer
mit reduzierter Spannung und einer mit erhéhter Spannung. An der Stelle im Test, wo die Spannung
gesetzt wird, tragt der Nutzer statt einem konkreten Wert eine Variable ein, die er durch Umschlieen
mit %-Symbolen kennzeichnet. In diesem Fall wére diese Variable %Usup%. Im Drop-Down-Menu
beim Einstellen eines Parameters fiir eine Methode werden alle Variablen vorgeschlagen.

Der ibb TestDesigner erzeugt nun mehrere Durchldufe des selben Tests und in jedem Durchlauf werden
ein oder mehrere Variablen durch zuvor festgelegte Werte ersetzt. Es konnen beliebig viele Durchlaufe
definiert werden, in denen wiederum mehrere Variablen durch ihren jeweils festgeschriebenen Wert
ersetzt werden.

4.6.3 Varianten

Zuséatzlich zu mehreren Durchldufen kénnen auch noch verschiedene Varianten definiert werden.
Die dafiir vorgesehene Tabelle in den Einstellungen ist in Abb. 4.3 zu sehen.

31

4 Entwurf & Implementierung

Wariants
Wariants Variants definition Sel Comment |7Add R |
I : o
Europe Eu 28 Encoding for Europe _—
b United States USA ﬂ Encoding for United States | Load... |
[Select Al

Abbildung 4.3: Definition unterschiedlicher Varianten

Der Sinn fiir verschiedene Varianten liegt darin, dass manche Testcases vielleicht nur in bestimmten
Varianten ausgefithrt werden sollen. Nimmt man das Beispiel mit verschiedenen Gebietscodierungen
wie in Abb. 4.3, so kann es vorkommen, dass sich ein und das selbe Steuergerit in verschiedenen
Regionen leicht unterschiedlich verhalt. Um dem Rechnung zu tragen, konnen in die erste Spalte
eines jeden Testcase in der Tabelle mit dem Testablauf Varianten eingetragen werden. Diese Testcases
werden dann nur ausgefithrt, wenn sie der aktuell durchlaufenden Variante zugeschrieben wurden.
Eine Variante in der obersten Zeile zahlt fiir die gesamte Testgroup. Wenn die Varianten Spalte eines
Testcase leer gelassen wird, wird er bei jeder Variante ausgefithrt. Ein Ausrufezeichen (!) wird als
Negation betrachtet, d.h. wenn in der Varianten Spalte z.B. ,/lUSA® steht, dann wird der Testcase in
allen Varianten aufler der USA Variante ausgefithrt. Durch Kommata getrennt kénnen auch mehrere
Varianten in eine Zelle eingetragen werden.

Weil auch die unterschiedlichen Durchlaufe in jeder Variante stattfinden sollten, sind die Varianten
den Durchldufen tibergeordnet. Wenn zwei Varianten und zwei Durchldufe definiert wurden, wird
der eigentliche Test also vier mal ausgefiihrt. Zuerst die beiden Durchlaufe mit Variante 1, dann die
selben zwei Durchldufe, allerdings mit Variante 2.

4.6.4 Generieren eines Testmoduls

Das Erzeugen der Datei im .can Format beginnt, wenn der Anwender auf den ,,Generate File“ Knopf
im Hauptfenster der Anwendung driickt. Zuvor muss in den Optionen das CAPL-Format fiir die
Ausgabedatei angew#hlt werden. Zu diesem Zeitpunkt hat der Nutzer den gewiinschten Test modular
in der Tabelle des ibb TestDesigners aufgebaut. Weiterhin hat er eventuell Durchldufe und Varianten
definiert. Jede Zeile in der Tabelle entspricht spiter einem Testcase und jede Seite einer Testgroup.
Sowohl einzelne Testcases wie auch ganze Testgroups kénnen auskommentiert werden, indem man
in die erste Spalte ein Rauten-Symbol (#) einfiigt.

Zum Schreiben der Ausgabedatei wird ein StreamWriter Objekt genutzt. Dieser StreamWriter schreibt
zunachst den statischen Teil des Rahmens, also den Block mit der Variablendeklaration und den
Beginn der MainTest Funktion. Die MainTest Funktion besteht aus drei Ebenen von Testgroups. Diese
Schachtelung von Testgroups ist notwendig, um Durchlaufe und Varianten sinnvoll realisieren zu
konnen.

« Unterste Ebene
Auf der untersten Ebene stehen die jeweiligen Testgroups aus der Tabelle. In der Struktur des
Testmoduls in CAPL stehen alle Testgroups auf der selben Ebene.

32

4.6 Implementierung

» Mittlere Ebene
Die mittlere Ebene bilden die Durchlédufe. Fiir jeden Durchlauf miissen alle Testgroups aufgeru-
fen werden und die Variablen entsprechend ersetzt werden.

« Oberste Ebene
Auf der obersten Ebene stehen die Varianten. Fiir jede Variante wird eine eigene iibergeordnete
Testgroup erstellt, die wiederum jeweils alle Durchlaufe enthalt.

Zur Veranschaulichung dieser Verschachtelung in der MainTest Funktion ist in Listing 4.4 ein Beispiel
mit zwei Varianten und zwei Durchldufen gegeben.

Listing 4.4: Verschachtelung von Varianten, Durchldufen und Testgroups in der MainTest Funktion

void MainTest()

{
TestModuleTitle("Verschateltes Testmodul");
TestGroupBegin("Variante 1", "Region USA");
TestGroupBegin("Durchlauf Normalspannung", "12V");
TestGroupBegin("Eigentlicher Test", "");
testcase_1();
TestGroupEnd();
TestGroupEnd();
TestGroupBegin("Durchlauf Ueberspannung", "20V");
TestGroupBegin("Eigentlicher Test", "");
testcase_2();
TestGroupEnd();
TestGroupEnd() ;
TestGroupEnd();
TestGroupBegin("Variante 2", "Region Europa");
TestGroupBegin("Durchlauf Normalspannung", "12V");
TestGroupBegin("Eigentlicher Test", "");
testcase_1();
TestGroupEnd();
TestGroupEnd() ;
TestGroupBegin("Durchlauf Ueberspannung", "20V");
TestGroupBegin("Eigentlicher Test", "");
testcase_2();
TestGroupEnd();
TestGroupEnd();
TestGroupEnd();
}

Die ineinander verschachtelten Testgroups werden in die Ausgabedatei geschrieben. In der innersten
Testgroup wir dann durch die Zeilen in der Tabelle mit dem Test iteriert. Jeder nicht auskommentierte
Testcase wird als CAPL Funktionsaufruf in die Ausgabedatei geschrieben. An dieser Stelle ist es noch

vollig egal, ob ein Testcase mehrere oder gar keine Methoden beinhaltet.

Durch mehrere Schleifen wird so die gesamte MainTest Funktion in die Ausgabedatei geschrieben.
Fiir ein vollstandiges Testmodul fehlt jetzt nur noch die Definition der einzelnen Funktionen bzw.

Testcases, die aufgerufen werden.
Hierfiir wird ein zweites mal iiber die Spalten der einzelnen Zeilen in der Tabelle iteriert, um fiir jede

33

Jo N B N P R

4 Entwurf & Implementierung

Zeile einen eigenen Testcase in CAPL zu formulieren. Zu jeder Methode in einer Tabellenzeile wird der
Main Code aus der Methodenbibliothek genommen, die Parameter eingesetzt, gegebenenfalls fiir den
jeweiligen Durchlauf Variablenwerte gesetzt und das Ergebnis in die Ausgabedatei geschrieben. Wenn
mehr als eine Methode in einer Zeile der Tabelle steht, dann werden die Main Codes der Methoden
untereinander in den selben CAPL Testcase geschrieben.

Fir die jeweiligen Durchlaufe ist es am sinnvollsten, unterschiedliche Testcases in CAPL zu formu-
lieren. Zum einen erfolgt die Ersetzung der Variablen fiir die jeweiligen Durchlaufe bereits im ibb
TestDesigner und nicht erst zur Laufzeit des Test Codes. Zum anderen ist nur so eine aufsteigende
Nummerierung der Testcases moglich. Da in den verschiedenen Durchlaufen auch tatséchlich ver-
schiedene Methoden aufgerufen werden, soll z.B. eine Methode ,Setze Spannung auf 5V* nicht die
selbe Nummer haben wie ,Setze Spannung auf 10V*. Fiir verschiedene Durchlaufe durch ein und den
selben Test sollen die Testcases aufsteigend nummeriert werden.

Fiir die Varianten ist jedoch keine fortlaufende Nummerierung nétig. Die Testcases in den einzelnen
Varianten sind genau gleich, sie unterscheiden sich nur darin, ob sie ausgefithrt werden oder nicht.
Jede Variante hat also eine Nummerierung der Testcases von 1 bis zum letzten Testcase.

Die Methoden des ibb TestDesigners, mit denen der Main Code generiert wird, mussten fiir die Erweite-
rung um CAPL als Ausgabeformat neu erstellt werden. Insgesamt wurden im Verlauf der Arbeit tiber
70 unterschiedliche Methoden erzeugt, deren Komplexitat stark variiert. So gibt es vergleichsweise
einfache Methoden, wie z.B. ,setC(value)®. Diese Methode setzt ein CAN-Signal auf einen bestimmten
Wert, der als Parameter ibergeben wird. Der Main Code dieser Methode ist in Listing 4.5 zu sehen.

Listing 4.5: Main Code einer Methode zum Setzen eines Signals

setSignal(%signal%, %value%);

Die Variablen sind im Main Code durch umschlieBende Prozent-Zeichen (%) gekennzeichnet. Hierbei
bezeichnet %signal% den Port, auf dem die Methode aufgerufen wird. Bei diesem Beispiel wird ein
CAN-Signal auf einen bestimmten Wert gesetzt. Der Port ist also das Signal, das gesetzt werden soll.
Die zweite auftretende Variable, hier %value%, wird durch den iibergebenen Parameterwert beim
Methodenaufruf ersetzt. Wird bei der Testerstellung in einem Testcase die Methode ,,setC(1)“ mit
einer Wartezeit von einer Sekunde auf dem Port ,Umdrehungen® aufgerufen, so sieht die Funktion in
der Ausgabedatei wie in Listing 4.6 dargestellt aus.

Listing 4.6: Funktion zum Setzen eines Signals in der Ausgabedatei

testcase testcase_1()

{
testCaseTitle("1", "1 ’"Action’ Set CAN Signal Umdrehungen to 1");
TestWaitForTimeout (1000);
setSignal (Umdrehungen, 1);

}

Komplexere Methoden wie das Einstellen eines VT Moduls zur Spannungsversorgung umfassen leicht
fiinfzehn Zeilen Code und mehr.

Der Vorteil der Methodenbibliothek ist, dass nach und nach die benétigten Methoden angelegt und
bei Bedarf abgedndert werden konnen. Durch das Nutzen der Variablen in den %-Zeichen und das
anschlieBende Suchen und Ersetzen dieser Variablen werden die Methoden allgemein gehalten. Die

34

4.6 Implementierung

Methoden miissen einmal richtig angelegt werden und kénnen dann beliebig oft in verschiedensten
Tests genutzt werden.

Natiirlich sind auch Tests denkbar, die tausende verschiedene Testcases beinhalten, welche wiederum
alle mehrfach in unterschiedlichen Varianten und Durchldufen aufgerufen werden. In einem solchen
Fall zeigt sich deutlich der Vorteil eines Generator-Konzepts, wie es der ibb TestDesigner anstrebt. Der
Aufwand wird durch den tabellarischen Testaufbau so gering wie moglich gehalten, gleichzeitig wird
die Ubersichtlichkeit maximiert.

4.6.5 Neue Funktionalitaten

Eines der Hauptprobleme bei einem in XML verfassten Testmodul ist das Fehlen von Variablen,
z.B. zum Zwischenspeichern von Ergebnissen bei Berechnungen. Um dies trotzdem zu ermdglichen,
musste bisher eine Methodenbibliothek in CANoe importiert werden. Diese Datei im .can-Format
beinhaltet CAPL Funktionen, die mit XML nicht realisierbar sind. Die Funktionen werden dann im
XML Test mit den entsprechenden Werten aufgerufen. Diese zusatzliche Methodenbibliothek muss
extra in jede CANoe Testumgebung importiert werden, da sonst der XML-Code zur Laufzeit auf nicht
definierte Funktionen zugreifen wiirde. Dieser Weg widerspricht dem Generator-Konzept und wird
durch das direkte Erzeugen von CAPL hinfillig.

Einige der Funktionalititen, die bisher nicht oder nur durch Umwege erreichbar waren, werden im
Folgenden erlautert:

+ Syscall

CAPL bietet die Moglichkeit von Systemaufrufen. Mit diesen Systemaufrufen kénnen iiber
die Kommandozeile des Betriebssystems Dateien ausgefithrt werden. Hierfiir werden der Pfad
einer Datei und eine Wartedauer als Parameter beim Methodenaufruf tibergeben. Wenn der
Systemaufruf innerhalb dieser Zeit erfolgreich durchgefiithrt wurde, so gilt der Testcase als
bestanden.

Eine Mogliche Anwendung fiir eine solche Methode wire das Ausfiithren von Batch-Dateien,
die zur Laufzeit eines Tests den Priifling beeinflussen miissen. In so einem Fall kann der ibb
TestDesigner selbst die Datei aufrufen, auf deren Ausfithrung warten und anschliefend mit dem
veranderten Priifling fortfahren.

« Time to Signal/Sysvar/Envvar

Eine sehr wichtige Funktionalitat, die bisher immer nur iiber den Umweg der zusatzlichen
CAPL Bibliothek moglich war, ist die Zeitmessung. Oft ist es in einem Test von Relevanz,
wie lange die Reaktion auf eine bestimmte Aktion gedauert hat. Es wurden CAPL Methoden
entwickelt, die fiir Signale, Systemvariablen oder auch Umgebungsvariablen messen, ob sie in
einem bestimmten Zeitrahmen einen gewissen Wertebereich betreten oder verlassen. Wird der
Wertebereich wahrend der Wartezeit betreten oder verlassen, wird mit dem nachsten Testcase
fortgefahren und im Report protokolliert, wie lange das Warten auf das Signal oder die Variable
gedauert hat. Falls das gewiinschte Ergebnis der Messung im gegebenen Zeitrahmen nicht
erreicht wurde, so wird der Testcase als nicht bestanden vermerkt und der Wert am Ende der
Wartezeit protokolliert.

Da CAPL nun direkt erzeugt werden kann, konnen Testcases zur Zeitmessung in wenigen
Zeilen direkt im Testmodul realisiert werden.

35

4 Entwurf & Implementierung

36

« Wait Random

Um den Testablauf zumindest teilweise zu randomisieren, wurde eine Methode zum zufillig
lange Warten entwickelt. Als Parameter werden minimale und maximale Wartezeit angegeben
und der Test wartet diese Zeitdauer in Sekunden. Auch dieser Fall war in XML nicht moglich,
da man damit keine Zufallszahlen generieren oder zwischenspeichern kann.

Rechnungen

Eine weitere neu hinzugekommene Funktionalitat ist das Ausfithren von einfachen Rechnungen,
z.B. der Form y = ax + b. Auf dem Port einer beliebigen Variablen kann eine Rechnung ausgefiihrt
werden, wobei a, x und b als Parameter angegeben werden. Sie konnen entweder konkrete
Werte sein, oder wiederum selbst aus Variablen bestehen. Der Variablen des aufrufenden Ports
wird dann das Ergebnis der Berechnung zugewiesen.

Auch diese Funktion lasst sich aufgrund des Fehlens der Variablendeklaration in XML nicht
realisieren.

Verzweigungen

Der Kontrollfluss bei einem XML Test ist absolut statisch und nicht verdnderbar. CAPL jedoch
verfiigt als Programmiersprache tiber gingige Kontrollstrukturen wie if/else oder while.

Um die Nutzung dieser Kontrollstrukturen in einem CAPL Testmodul aufzuzeigen, wurden
mehrere Methoden implementiert. Bei diesen Methoden wurde die Wertzuweisung an eine
Bedingung gekniipft, ein Signal soll also z.B. nur auf einen Wert gesetzt werden, wenn es zuvor
einen bestimmten anderen Wert hatte. Falls der erwartete Wert bei der Uberpriifung nicht
vorliegt, so soll die Wertzuweisung nicht stattfinden oder ein anderer Wert zugewiesen werden.

Globale Variablen

Falls fiir einen Test globale Variablen notwendig sind, kénnen diese entweder wie der restliche
Code erzeugt werden oder nachtriglich einfach in die Ausgabedatei hinzugefiigt werden. Ist es
etwa innerhalb eines Tests notig, mehrere Zeitpunkte zu speichern und am Schluss auszugeben
oder Berechnungen iiber die Dauer eines einzelnen Testcases hinaus zu speichern, so kann dies
durch globale Variablen getan werden. Die entsprechenden Variablen kénnen im ibb TestDesigner
selbst als Ports angelegt werden oder als Parameter bei Methodenaufrufen eingesetzt werden.
Da XML keine Erzeugung von Variablen erméglicht, mussten diese bisher in der fiir jeden Test
mitgefithrten CAPL Bibliothek definiert und verwaltet werden.

5 Evaluation

Die Evaluation der Erweiterung des ibb TestDesigners erfolgt an einem voll funktionsfahigen Testsys-
tem fiir ein Steuergerit. Dieses Steuergerit ist fiir die Ansteuerung der verschiedenen Lichter eines
Autoanhéngers zustandig.

5.1 Beschreibung des Testaufbaus

Der Testaufbau kann in die drei wesentlichen Bestandteile Steuergerdt, Originallast und VT System
gegliedert werden. Diese werden im Folgenden niaher beschrieben.

5.1.1 Steuergerat

Das hier verwendete Steuergerat hat mehrere Ein- und Ausgiange. An den Ausgéngen sind die Aktoren,
in diesem Fall also Lampen, angeschlossen. Die Einginge sind die Spannungsversorgung und diverse
Sensoren, die z.B. angeben, ob ein Anhianger mit dem Auto verbunden ist oder nicht. Die Verarbeitung
der Signale erfolgt durch einen oder mehrere Prozessoren und Speichereinheiten. Zusétzlich ist
das Steuergerat an einen CAN Bus angeschlossen, der verschiedene elektronische Komponenten
im Bordnetz eines Autos verbindet. Uber diesen CAN Bus konnen CAN Signale vom Steuergerit
empfangen und versendet werden.

5.1.2 Originallast

Die Lasten, die an den Ausgingen des Steuergerits hingen, sind Lampen. Diese Lasten konnten
mithilfe des VT Systems simuliert werden. Im vorliegenden Testsystem sind diese Lampen jedoch
alle tatsdchlich innerhalb einer Box vorhanden. Diese Box wird an das VT System angeschlossen, das
alle wichtigen Schnittstellen des Testaufbaus tiberwacht. Dadurch, dass die Lampen angeschlossen
sind, kann deren Ansteuerung durch das Steuergerat auch sichtbar gemacht werden. Die einzelnen
Lampen des Anhéngers sind:

 Bremslicht

« Riickfahrlicht

+ Nebelschlussleuchte
o Schlusslicht links

37

5 Evaluation

« Schlusslicht rechts
« Blinker links

« Blinker rechts

Jedes dieser Lichter kann vom Steuergerit einzeln angesteuert werden.

5.1.3 VT System

Das VT System bildet die Schnittstelle zwischen der Software CANoe und dem Priifling, der getestet
werden soll. Fiir jedes Testsystem miissen die richtigen Module ausgew#hlt und entsprechend verkabelt
werden [Vec15e]. In dem zur Evaluation genutzten Testsystem sind folgende Module enthalten:

38

« 2x VT1004

Das Modul VT1004 kann an maximal vier Ausgiange eines Steuergerits angeschlossen werden.
Entweder simuliert es durch interne Widerstiande selbst die Last, oder es wird zwischen ein
Steuergerit und dessen Aktoren angeschlossen. An dem Modul kénnen dann u.a. Spannungen
und Strome gemessen oder verschiedene Relais geschalten werden.

In diesem Aufbau werden zwei VT1004 zwischen das Steuergerit und die insgesamt sieben
verschiedenen Lampen angeschlossen. Durch das Schalten unterschiedlicher Relais kénnen
Szenarien wie Kurzschliisse oder Kabelbriiche am Ausgang des Steuergerits simuliert werden.

1x VT2004

Das Modul VT2004 kann an maximal vier Eingange eines Steuergerits angeschlossen werden.
Das Modul VT2004 kann entweder selbst Sensoren simulieren, oder wird zwischen ein Steuer-
gerat und dessen tatsachliche Sensoren angeschlossen. Auch dieses Modul kann durch Schalten
verschiedener Relais Fehlerfille simulieren. Aulerdem kann es verschiedene Spannungen und
Impulse erzeugen.

Bei diesem Testaufbau wird eine VT2004 zwischen die Spannungsversorgung und das Steuer-
gerit angeschlossen. Durch Ansteuern dieses Moduls kann das Steuergerat mit verschiedenen
Spannungen versorgt werden.

1x VT7001

Das Modul VT7001 hat zwei separate Ausgénge fiir die Stromversorgung von Steuergeriten.
Bei diesem Testsystem wird die VT7001 zur Messung und Regelung von Spannungen und
Stromen genutzt.

1x VT6050

Das Modul VT6050 ist ein Realtime-Modul, das tiber Ethernet an den Rechner angeschlossen
werden kann, auf dem CANoe ausgefithrt wird. Echtzeitkritische Teile des Tests werden von
dem Prozessor dieses Moduls ausgefiihrt.

1x VT8012

Das Modul VT8012, auch als Backplane bezeichnet, versorgt alle anderen Module mit der
Betriebsspannung von 12 Volt. Aulerdem erméglicht es eine Kommunikation der einzelnen
Module mit CANoe.

5.1 Beschreibung des Testaufbaus

5.1.4 Gesamtaufbau

In Abb. 5.1 ist ein Foto des beschriebenen Testsystems zu sehen. Die VT Module werden vorne in
den Schaltschrank eingeschoben und im Inneren verkabelt. Auf dem Schrank befindet sich die Box
mit der Originallast, also den verschiedenen Lichtern. Das Steuergerit ist ebenfalls innerhalb des
Schranks verkabelt.

Einige der im Bild sichtbaren VT Module sind nicht fiir diesen konkreten Steuergeritetest notwendig.

Abbildung 5.1: Testsystem von ibb fiir einen Hardware Test

39

5 Evaluation

Dieser Aufbau erlaubt das Ansteuern aller Ein- und Ausgénge des Steuergeréts, sowie eine Spannungs-
und Strommessung an allen notwendigen Stellen. Somit erméglicht das vorliegende Testsystem eine
umfangreiche Priffung des angeschlossenen Steuergerits gemif einer Liste von Requirements.

5.2 Requirements

Um zu zeigen, dass mit der entstandenen Erweiterung ein CAPL Testmodul generiert werden kann,
werden eine Reihe von Requirements fiir einen Test benétigt. Die in Tabelle 5.1 aufgefithrten Require-
ments sollen mithilfe eines so generierten Testmoduls Giberpriift werden.

Tabelle 5.1: Liste von Requirements fiir einen Steuergeritetest

Requirement ID | Anforderung

0 Samtliche Testcases sollen bei 12, 14 und 16 Volt erfullt werden

1 BrL Bremslicht

2 BrL_01 Nach Setzen von Signal BrkLgt_On_Rq soll das Bremslicht leuchten

3 BrL_02 Bei Kabelbruch soll Signal TrlrBrkLmp_FIt nach 40 Sekunden gesetzt
sein

4 SIR Schlusslicht Rechts

5 SIR_01 Nach Setzen von Signal PkLmp_Rt_On_Rq soll das rechte Schlusslicht
leuchten

6 SIR_02 Bei Kabelbruch soll Signal TrlrTILmp_Rt_Flt nach 40 Sekunden gesetzt
sein

7 SIR_03 Bei Kurzschluss nach Plus soll Signal TrlrTILmp_Rt_FIt nach 40 Sekun-
den nicht gesetzt sein

8 BIL Blinker Links

BIL_01 Nach Setzen der Signale TurnIlnd_Lt_On = 1 und TurnLmpOnDur =

Blinkdauer in ms soll der Blinker aufleuchten

10 BIL_02 Bei Kabelbruch soll Signal TrlrTurnLmp_Lt_FIt nach 2 Sekunden gesetzt
sein

11 BIL_03 Bei Kurzschluss nach Plus soll Signal TrlrTurnLmp_Lt_FIt nach 2 Se-
kunden nicht gesetzt sein

Fiir jedes einzelne Licht gibt es ein ,On Request (On_Rq)“ Signal, das dem Steuergerat geschickt wird.
Im Auto wiirde ein solches Signal z.B. nach dem Driicken eines Knopfes gesendet werden. Wenn das
Steuergerit ein solches Signal empfangt, wird es verarbeitet und die notwendigen Schritte werden
ausgefiithrt, das entsprechende Licht wird also mit Spannung versorgt und leuchtet. Falls ein Fehler
auftritt, sendet das Steuergerit ein ,Fault (FIt)“ Signal, damit an der entsprechenden Anzeigeeinheit
ein Fehler gemeldet werden kann.

Das hier getestete Steuergerit ist so konzipiert, dass bei einem Kabelbruch, das heif3t einer Unter-
brechung am Ausgang des Steuergerits hin zum entsprechenden Licht, nach ca. 30 Sekunden ein
Fehlersignal gesendet wird. Fiir die Simulation der Unterbrechung wird ein Relais des VT1004 Moduls

40

5.3 Test

geofinet, sodass kein Strom mehr durch die Lampe fliefen kann.

Wenn ein Kurzschluss nach Plus an einer Lampe auftritt, d.h. eine Lampe wird mit Spannung versorgt,
obwohl kein ,,On Request” Signal vorliegt, dann soll kein Fehler Signal gesendet, sondern anders
verfahren werden.

Diese Liste von Requirements stellt aus Platz- und Zeitgriinden nur einen Teil der notwendigen Test-
cases dar, die zur vollstindigen Validierung eines Steuergerits notwendig waren. Weitere Testcases
konnen jedoch ebenfalls mit der CAPL Erweiterung erstellt werden.

5.3 Test

Die zuvor beschriebene Verhaltensweise soll mittels eines Tests an einer Auswahl von Lichtern
validiert werden. Hierzu muss zunéchst der Test mit dem ibb TestDesigner erstellt werden.

5.3.1 Testerstellung

Abb. 5.2 zeigt das schrittweise Vorgehen, dem ein Anwender bei jeder Testerstellung mit dem ibb
TestDeisgner folgt.

z
(start)
Ny
) 4
vtcfg importieren .dbc importieren :
gimp P Durchlaufe und

liefert Signal d > . - —————
e e Varianten festlegen

Y

liefert Ports des
aktuellen VT Systems Nachrichten

-
|
|
|
|

v 4

Testcases (Zeilen)
und Ports (Spalten) - —

Neue Testgroup Abgleichen mit

A 4

erstellen R i Requirements
hinzufligen
Y A
Nein :
l v |
Test Modul P Methoden in Zellen |
: €—la—_ Fertig? o "~ e —————— -
generieren a \\er |g// der Tabelle aufrufen
o

A 4

‘(/ Ende |
Abbildung 5.2: Ablauf der Testerstellung im ibb TestDesigner

Die Beschreibung des Testsystems in CANoe wird erstellt und abgespeichert. Diese Konfigurationsda-
tei (.vtcfg) wird vom ibb TestDesigner eingelesen und die Ports und Devices automatisch definiert.

41

5 Evaluation

Weiterhin werden die Signale und Nachrichten des Steuergerits benétigt, diese speichert CANoe in
einer .dbc Datei. Wurden die notwendigen Dateien importiert, so kann mit der Erstellung des Tests
begonnen werden.

Zu Beginn empfiehlt es sich, einmal die ndtigen Varianten und Durchlaufe festzulegen. Dies kann
auch spéter geschehen, aber dann miissen unter Umsténden die Testcases angepasst werden, um statt
konkreten Parameterwerten Variablen zu benutzen.

Da beim Programmstart bereits eine leere Testgroup erzeugt wird, kann mit dem Hinzufiigen von
Testcases und den dafiir ntigen Ports begonnen werden. Dabei muss ein stindiger Abgleich mit dem
Requirements erfolgen, um das Ziel nicht aus den Augen zu verlieren.

Nachdem Schritt fiir Schritt eine Testgroup vervollstindigt wurde, kann entweder eine weitere
Testgroup erstellt werden und analog fortgefahren werden, oder der Nutzer entscheidet sich, dass
sein Test vorerst fertig ist. Wenn dies der Fall ist, so kann per Knopfdruck das Testmodul fiir CANoe
generiert werden. Die damit erzeugte .can Datei enthélt einen syntaktisch korrekten Testablauf in
CAPL, der ohne weitere Modifikation ausgefiithrt werden kann.

Bei dem Beispiel des Steuergeritetests bietet es sich anfanglich an, Durchlaufe und Varianten zu
definieren. In den Durchldufen kann die Spannung verandert werden, also werden drei Durchlaufe
mit je 12, 14 und 16 Volt Versorgungsspannung festgelegt. Als Varianten kénnen in diesem Fall einmal
Kurzschliisse und einmal Kabelbriiche definiert werden. Die entsprechenden Tabellen sehen dafiir
dann wie in Abb. 5.3 gezeigt aus.

Randbedingungen {poundary conditions)

Varante Varable nomalspannung leicht_erhoehte_spannung stardc_erhoehte_spannung

» o N
B - 12 14 16

Variants

Variants Variants definition Sel Comment
Kurzschluss ks [¥] | Varante fiir Kurzschiisse

Kabelbruch kb [#] | Variante fir Kabelbriche

Abbildung 5.3: Durchginge und Varianten eines Beispieltests

Im Hauptfenster des ibb TestDesigners kann anschlieBend mit den einzelnen Testgroups begonnen
werden. In so einem Fall ist es sinnvoll, eine Testgroup fiir Preconditions (Relais fiir Originallasten
verbinden, Versorgungsspannung Usup einstellen, priifen ob das Steuergerit betriebsbereit ist) und
eine fiir Postconditions (Herunterfahren der Versorgungsspannung, Originallasten abtrennen) zu
erstellen.

Die mittleren drei Testgroups bilden Bremslicht, Schlusslicht rechts und Blinker links. Eine dieser
Testgroups ist in Abb. 5.4 dargestellt.

42

5.3 Test

= = o= =z
o g o z - S g E 2
i = = : |2 e 3 z
e o Q n i E E = = 2
=g 5|1 L 2 L F 2 2 &2
» o D | E—
= 14 3SR Precondition = | Set Voltage KL15t0 12,1416 cVoltageCAPL{%Usup®) | kI 15CAPL
-8 15 SIR_01) 1 Action ~ | Set CAN Signal PkLmp_Rt_On_Rqto 1 cSignalCANCAPL(1)
[5=8 16 SIR_01| 1 Result ~ |Check if value Schiusslicht_rechts is 12,14,16 + 0.5; mVokage TolCAPL{%Usup%:0.5)
-8 17 SR_02 | 1 Action ~ |disconnect OriginalLoad Schiusslicht_rechts dOriginalLoadCAPL
E 18 | SR_02 Resuft = |Check if desired Value TdrTILmp_Rt_Fit is reached in Oto 40's; mTimeToSignalCANCAPL(1;1:0:40;1}
P 13 sRo2 | Adion - | Set CAN Signal PkLmp_Rt_On_Rqto D, connect original load cSignalCANCAPL(D)
(58 20 SIR_02 1 | Action = | Switch Qriginal Load to Schiusslicht_rechts | | | cOriginalLoadCAPL
« BIEEE - | Set CAN Signal Pkimp_Rt_On_Rqto 0 cSignalCANCAPL@)| | |
r 22 |SIR_03 | 1 | Action o .Cur\r\ect Schlusslicht_rechts to Busbarl | | | | cBusBar1CAPL
23 |SR_03 | 1 Result ~ |Check if value Schlusslicht_rechts is 12,14,16 + 0.5; mVokage TolCAPL{%Usup%:0.5)
24 |SR_D3 Action ~ | Wait for 40s; waitCAPL{40)
25 |SR_D3 Result ~ |Check if a TdrTILmp_Rt_Pt value is D; mSignalCANFalseCAPL
26 |SR_D3 Action ~ | Disconnect Schlusslicht_rechts from Busbarl dBusBar1CAPL

Abbildung 5.4: Testgroup eines Beispieltests im ibb TestDesigner

Im ibb TestDesigner hat sich die Konvention durchgesetzt, dass Methoden die etwas verbinden oder
setzen mit ,¢“ (fir ,connect®) beginnen, Methoden die etwas messen mit ,m“ (fir ,measure®) und
solche, die etwas trennen, mit ,,d“ (fiir disconnect).

Zu Beginn wird die vom jeweiligen Durchgang abhiangige Versorgungsspannung an den Eingang des
Steuergerits gelegt, was das Modul VT2004 iibernimmt. Dafiir wird beim Methodenaufruf kein fester
Wert als Parameter ibergeben, sondern die Variable aus der oben gezeigten Tabelle fiir Durchgénge,
%Usup%. Zusatzlich wird eine Systemvariable gesetzt, die dem Steuergerit den Status eines laufenden
Motors mitteilt. Da diese Aktionen sowohl beim Kurzschluss als auch beim Kabelbruch ausgefiihrt
werden sollen, wird die Varianten Spalte leer gelassen. Die folgenden Schritte simulieren einen
Kabelbruch, weshalb sie nur in der Variante ,.kb“ berticksichtigt werden.

Das CAN Signal ,On Request” wird gesendet und anschlieffend iiberpriift, ob die Spannung am
Ausgang des Steuergerits Richtung Schlusslicht anliegt. Danach wird die Verbindung zur Originallast
getrennt, der Kurzschluss wird simuliert. Als nachstes wird 40 Sekunden lang gewartet, ob das Fehler-
signal gesendet wird. Zum Schluss der Kabelbruch Variante wird die Originallast wieder verbunden
und das ,On Request” Signal auf null gesetzt.

Der hier beschriebene Test deckt die Requirements SIR_01 und SIR_02 ab. Fiir das Requirement SIR_03
wird dhnlich vorgegangen: statt die Originallast abzukoppeln wird allerdings ein Relais geschlossen,
das die Lampe mit Spannung versorgt, ohne dass ein entsprechendes ,On Request” Signal gesendet
wurde. Das Licht leuchtet also dauerhaft, obwohl es gar nicht leuchten sollte. Dann wird nach 40
Sekunden tiberpriift, ob das Fehler Signal auf null steht, also nicht gesendet wurde. Am Ende wird der
Kurzschluss wieder entfernt.

Der gesamte Test besteht aus fiinf Testgroups und zweimal drei Durchldufen, wobei je nach Variante

nur ein Teil der Testcases ausgefithrt wird. Der generierte CAPL Code fiir dieses Beispiel umfasst tiber
1600 Zeilen Code.

5.3.2 Ausfiihrung

Wenn der Test im ibb TestDesigner fertig definiert wurde, kann er mit einem Klick auf den ,,Generate
File” Knopf erstellt werden. AnschlieBend wird der Test in CANoe geladen und ohne weitere Ande-

43

5 Evaluation

rungen am Code des Tests ausgefithrt. CANoe kommuniziert mit dem VT System und fithrt den Test
durch. Wihrend der Durchfithrung zeigt CANoe den Fortschritt wie in Abb. 5.5 dargestellt an.

[+ 000_TestLicht CAPL [=][= =]
Testidlle Testheohachtung |
Testfallname Verdict Laufzeit =
+ | &1 Precondtion’ Set Voltage KL15t0 12,1416 - Req ID: SIR ‘/ 0008 s
+ | B8 Action’ Set CAN Signal PkLmp_Rt_On_Rgto 0 - Req ID: SIR_0 J 0.000 s
| B9 'Action’ Connect Schlusslicht_rechts to Busbar! -Reg ID: 5 v 0.5967s
=l | 70 'Result’ Check if value Schlusslicht_rechts is 12,1416 + v 1.000 s
| 71 Action’ Wait for 40s; - Req 1D: SIR_03 \/ 40001 s
| 72'Result’ Check if a TrrTiLmp_Rt_Flit value is 0; - Req ID: + 0.000s
-l | 73 Action’ Disconnect Schlusslicht_rechts from Busbar - Reg \/ 0.000s
=, 74 Blinker Links, - Req ID: BIL o 3.188s
v | 75 Precondition’ Set Voltage KL15ta 12,1416 - Req |D: BIL ‘/ 0.004 5
+ | 84 Action’ Set CAN Signal Tumind_lt_Onto 0 - Reg ID: BIL_03 ‘/ 00015
| 85 'Action’ Set CAN Signal TumLmpOnDurte 1500 - Reg ID: BIL_ v D486=
-l BB 'Action’ Connect Blinklicht_links to Busbar1 - Req ID: BIL_ v 05245
| B7 "Result’ Check if value Blinklicht_links is 12,1416 - 0.5 \/ 0074s
| B8 Action’ Wait for 2s; - Req ID: BIL_03 \/ 2092s
+| 89 'Result’ Check f a TarTumbLmp_Lt_Ft valueis 0; - Req ID < 0.000 s
| 50 Action’ Set CAN Signal TumLmpOnDurta 0 - Req ID: BIL_03 \/ 0000
v | 91 Action’ Disconnect Blinklicht_links from Busbar1 - Req ID: ‘/ 00015
=) 92 Postcondition, - Reqg ID: o 14075
lv7| 93 "Postcondtion’ disconnect Loads - Req |D: Not Defined \/ 0013s
-lv| 84 "Posteondition’ Disconnect Power Supply - Reg ID: Not Defin v 1.393=
=", Durchgang stark_erhoehte_spannung @ 24454 5
=7 95 Precondttion, - Req ID: \/ 2456 s
| 96 "Precondition’ Connect Criginal Loads - Req 1D: Mot Defined < 03986s |_
| 57 "Precondition’ Set Out1to Supply Supply1 Voltage: 12,14, 16V \/ 14955 |
1w | 98 'Result’ Check if desired Value Trr_Stat is reached in 0 to + 0.000 s
=" 107 Schiusslicht Rechts, - Req 1D: SIR @ 21960s
-lv| 108 Precondition’ Set Voltage KL15to 12,14,16 - Reg ID: SIR ./ 0.003=
| 115 "Action” Set CAN Signal PkLmp_Rt_On_Rgto O - Reg ID: SIR_ v 0.000 =
| 116 "Action” Connect Schlusslicht_rechts to Busbar1 - Reg ID: < 1.001 s
| 117 "Result’ Check if value Schiusslicht_rechts is 12,1416 = \/ 099 s
| 118 'Action’ Wait for 40s; - Req ID: SIR_03 @ 1996
928 |63 B- » @
I ausagefihr: 49 | ooozoz Running

Abbildung 5.5: Ausfithrung eines Tests in CANoe

Nach Beendigung der Ausfithrung liegt ein umfassender Report vor. Die Ausfithrungszeit des hier
erstellten Beispieltest betragt 06:34 Minuten bei 147 ausgefiihrten Testcases.

5.3.3 Report
Der Report tiber den Ablauf eines Tests wird von CANoe wahlweise in XML oder HTML erstellt. Darin

enthalten ist eine Ubersicht iiber die einzelnen Testcases und deren Ergebnis wie es in Abb. 5.6 zu
sehen ist.

44

5.3 Test

Statistics

147
147 100% of all test cases
0 0% of all test cases

0 0% of executed test cases

Test Case Results

_=—
144 1Precondition.-RegD:
2 2 'Precondition’ Connect Original Loads - Req ID: Not Defined
{1123 3 'Precondition’ Set Out1 to Supply Supply1 Voltage: 12.14,16V, MaxCurrent: 5A - Req ID: Not Defined
{1134 4 'Result Check if desired Value Trir Stat is reached in 0 to 10 s; - Req ID: Not Defined

14 'Precondition’ Set Voltage KL15 to 12,1416 - Req ID: SIR

21 'Action’ Set CAN Signal Pklmp Rt On Rqto 0-Req|D: SIR 03

22 'Action’ Connect Schlusslicht rechts to Busbari - Req ID: SIR_03

{12423 23 Result' Check if value Schlusslicht rechts is 12,14,16 +- 0.5; - Req ID- SIR 03
{125524 24 ‘Action’ Wait for 40s: - Req ID- SIR 03

{12625 25 'Result' Checkifa TrirTILmp Rt Fit value is 0; - Req ID: SIR 03

{42726 26 ‘Action' Disconnect Schiusslicht rechts from Busbari - Req ID SIR 03

Abbildung 5.6: Statistiken und Ergebnisse eines Testablaufs in CANoe

Jeder einzelne Testcase kann noch niher betrachtet werden, wie in Abb. 5.7 dargestellt. In dieser
detaillierten Aufschliisselung enthalten sind genaue Zeitstempel, Beschreibungen der einzelnen
Teststeps und Zwischenresultate. Falls ein Testcase nicht das gewtinschte Ergebnis hat, kann hier
genau nachgeschaut werden, was zum Scheitern des Testcase gefiihrt hat.

- 22.3.4 Test Case 64: 64 'Action’ disconnect OriginalLoad Schiusslicht_rechts - Req ID: SIR_02: Passed
Test case begin: 2015-11-06 10:56:55 (logging timestamp 271.606598)
Testcase end: 2015-11-06 10:56:56 (logging timestamp 272.606598)

Resume Elapsed time=1000ms (max=1000ms)
reason

Original Load Schlusslicht_rechts sucessfully disconnected.

- 2.2.3.5 Test Case 65: 65 'Result’ Check if desired Value TrirTILmp_Rt_Fit is reached in 0 to 40 s; - Req ID: SIR_02: Passed
Test case begin: 2015-11-06 10:56:56 (logging timestamp 272.606598)
Testcase end: 2015-11-06 10:57:27 (logging timestamp 303.596566)

Resume Resumed on signal 'Signal CAN1/BODY/Trailer_Stat_AR/TrIrTILmp_Ri_FIt' Elapsed time=30890 3ms (max=40000ms) =
reason

Time to signal: 30.990268, condition: 0 < delay time < 40, dataMin = 1, dataMax = 1, Signal = TrirTILmp_Rt_FIt, Value = -
1.000000

Abbildung 5.7: Detaillierter Ablauf von Testcases in CANoe

45

5 Evaluation

5.4 Ruckblick auf die gestellten Anforderungen

Zum Schluss der Evaluation erfolgt eine Uberpriifung der in Abschnitt 4.3 formulierten Anforderungen,
die im Laufe dieser Arbeit erfiillt werden sollten.

« Die Generierung von XML-Code ist weiterhin méoglich, da keine Verdnderung an den Stellen
des Programms vorgenommen wurde, die eine XML Ausgabedatei erzeugen

« Es wurde ein Weg gefunden, das bestehende Konzept mit Devices, Ports und Methoden zu
nutzen. Dieses Konzept wurde nicht mafigeblich verandert

« Die Ausgabedatei liegt im .can Format vor und beinhaltet nur Funktionen, die von CAPL
unterstiitzt werden. Diese Datei kann ohne Abénderung in CANoe geladen und erfolgreich
ausgefihrt werden

» Es wurde eine eigene Methodenbibliothek fiir die CAPL Methoden des ibb TestDesigners angelegt.
Diese Methodenbibliothek ist die ibbMethodenLibCapl.xml

 Es konnen mehrere Varianten und Durchldufe automatisch erzeugt werden

+ Es wurden eine Reihe von Funktionalitaten hinzugefiigt, die mit einem XML Test nicht oder
nur tiber Umwege erreichbar waren. Bei einem Test in CAPL muss keine weitere Bibliothek in
CANoe importiert werden, da CAPL bei der Testdefinition méchtiger ist als XML

« Der Code ist so allgemein gehalten wie moglich, Kommentare an vielen Stellen steigern die
Lesbarkeit

« Die Performanz ist gleich gut wie bei der Erstellung von XML-Code. Selbst bei grofien Tests ist
wihrend der Generierung keine merkbare Wartezeit festzustellen.

+ Dadurch, dass der Anwender wie zuvor bei der XML Generierung auf der graphischen Oberflache
einen Test mit den Methoden des ibb TestDesigners erstellt, ist es genauso gut verstiandlich und
handhabbar wie bisher

« Die bestehende Logfile tiber die einzelnen Schritte wahrend der Generierung der Ausgabedatei
wird aktualisiert

« Es erfolgte eine regelmaflige Riicksprache mit Herrn Dipl.-Ing. (FH) Peter Heidenwag tiber
den aktuellen Stand und das weitere Vorgehen. Dies machte den Entwicklungsprozess fiir den
Kunden ibb transparent und fiir den Entwickler zielfithrend

+ Bereits frith gelang die Generierung einer einzelnen Testgroup mit wenigen Testcases. Schritt
fiir Schritt folgte eine Erweiterung um eine beliebige Anzahl von Testgroups, spater dann auch
Durchldufen und Varianten. Parallel dazu wurde die Methodenbibliothek laufend erweitert

« Inder Evaluation wurde gezeigt, dass durch die Erweiterung ein umfangreiches CAPL Testmodul
generiert und auch fehlerfrei ausgefiithrt werden kann

46

6 Weitere Anwendungsgebiete

Die Ausgabe des ibb TestDesigners hangt mafigeblich vom Main Code ab, der fiir die einzelnen
Methoden hinterlegt ist. Wenn dieser entsprechend formuliert ist und statt einem XML- oder CAPL-
Geriist ein anderer Rahmen in die Ausgabedatei geschrieben wird, dann kénnen beliebige Ausgaben
erzeugt werden, die auf Text basieren und in irgendeiner Weise strukturiert sind. Mafigeblich dafiir
verantwortlich ist das allgemein gehaltene Konzept von Devices, deren einzelnen Ports und Methoden,
die auf den Ports eines Device aufgerufen werden konnen. Im Folgenden soll die Mdglichkeit fiir drei
weitere Anwendungsszenarien aufgezeigt und niher erldutert werden.

6.1 Planungssoftware fur Bauingenieure

Ein denkbares Gebiet fiir das eine Anpassung des ibb TestDesigners moglich wire, ist eine Software fiir
Bauingenieure zur Planung von Gebauden. Mit einer solchen Software kénnte eine Kalkulation fiir
die Kosten eines Hausbaus oder einer Sanierung erzeugt werden. Die generierte Ausgabe konnte als
Eingabe in eine Microsoft Excel-Datei dienen. Mit den bereits vorhandenen Mechanismen zum Import
und Export von Excel-Dateien konnte statt einer Textdatei auch gleich die gewiinschte Excel-Datei
erzeugt werden.

Jede Testgroup wiirde einem Raum des Gebaudes entsprechen und in jedem Raum miissen mehrere
Arbeitsschritte durchgefiithrt werden, was den einzelnen Testcases entspricht.

Unterschiedliche Devices konnten z.B. sein:

+ Bauen
In einem Device wiirden sich alle Ports befinden, die etwas mit dem Rohbau von Gebiuden zu
tun haben. Die Methoden dieses Device kénnten dann u.a. Wande einziehen, Boden legen oder
auch Fenster einsetzen sein. Als Parameter kann der Baustoff und ein Preis pro Quadrat- oder
Kubikmeter iibergeben werden.

+ Oberfliche bearbeiten
Dieses Device wiirde die Bearbeitung unterschiedlicher Oberflaichen beinhalten. Es wéren
Ports denkbar fiir das Verlegen von Bodenbeldgen, Tapezieren von Wénden oder Streichen von
Decken. Als Parameter konnten auch hier die Baustoffe und die Grofie der zu bearbeitenden
Flache tibergeben werden.

+ Elektrik
Eine weiteres Device fiir die Elektrik eines jeden Raumes wire moglich. In diesem Device
konnte es Ports fiir das Verlegen von Leitungen oder Anbringen von Lampen geben. Parameter
hierfiir waren Lange und Art der Leitung oder Anzahl und Kategorie der Lampen.

47

6 Weitere Anwendungsgebiete

Fir jeden Methodenaufruf kénnen die verschiedenen Durchldufe und Varianten genutzt werden.
In den Durchlidufen konnen die Baustoffe oder die Preise variieren, um minimale und maximale
Versionen eines Gebdudes durchzurechnen. Bei verschiedenen Varianten kénnte ein Haus einmal mit
und einmal ohne Keller entworfen werden.

Es zeigt sich, dass das Konzept, das vom ibb TestDesigner verfolgt wird, nicht alleine an das Anwen-
dungsgebiet der Testerstellung gebunden ist. Je nach Interpretation der Tabelle und der Methoden
konnen vollig andere Aufgaben erfiillt werden.

6.2 Abrechnung von Dienstleistungen

Ein weiteres Aufgabenfeld, fiir das der ibb TestDesigner abgewandelt werden kann, wire das Abrechnen
von Dienstleistungen einer Firma. Es kann geplant werden, welche Mitarbeiter innerhalb eines Projekts
wie viel Zeit in bestimmte Aufgaben investieren miissen und wie dies abzurechnen ist. Auch hier
konnte die Datei fiir die Ausgabe wieder eine Microsoft Excel-Tabelle sein. Dieses Format bietet sich
besonders an, da die Ausgabe des ibb TestDesigners immer eine strukturierte Textdatei ist.

Als Devices konnten in diesem Fall verschiedene Kategorien von Mitarbeitern identifiziert werden,
die bestimmte Aufgabenbereiche in der Firma tibernehmen. Die Ports kénnten in einem kleineren
Unternehmen die Mitarbeiter selbst beschreiben. In einer grofleren Firma wiirden die Ports eine
feinere Untergliederung der Devices darstellen.

Die einzelnen Methoden wiren bestimmte Dienstleistungen, die ein Mitarbeiter bzw. eine Gruppe von
Mitarbeitern erbringt. Parameter hierfiir konnten Dauer der Arbeit und Stundensatz fiir die jeweilige
Tétigkeit sein.

Ein Projektplaner kann sich dann tiberlegen, welche Tatigkeiten im Rahmen eines Projekts nétig sind
und welche Mitarbeiter dafiir wie viel Zeit zu investieren haben. Auch die Durchlaufe und Varianten
konnen hier genutzt werden, um unterschiedliche Planungen ein und des selben Projekts anzustellen.
Das Ergebnis ist wieder ein klar strukturierter Plan, der auf einer graphischen Oberflache erstellt
wurde.

6.3 Erzeugen von Texten

Ein letztes mogliches Anwendungsgebiet, das kurz beleuchtet werden soll, ist die Erzeugung von
strukturiertem Flief3text.

Im Rahmen der Testerstellung wire es z.B. moglich, zusatzlich zu der Ausgabedatei mit der Testdefini-
tion eine weitere Datei zu erzeugen, die den Test und dessen einzelne Schritten textuell beschreibt. So
wie die Requirements als Tabelle oder Text eine Eingabe fiir den Prozess der Testerstellung darstellen,
konnte eine genaue Beschreibung der Ablaufe und einzelnen Schritte der Durchfithrung als Ausgabe
generiert werden. Zum Schluss kann ein Vergleich der vorab formulierten Schritte mit den tatsachlich
durchgefiihrten gezogen werden.

Strukturierter Text findet sich auch bei der Erstellung verschiedener Zeugnisse, seien es Schul-

zeugnisse oder Arbeitszeugnisse. Mit einer Abwandlung des ibb TestDesigners konnte auch hier die
Arbeit erleichtert werden, indem Zeugnistexte nicht jedes Mal neu geschrieben werden miissen,

48

6.3 Erzeugen von Texten

sondern auf einen Textbaukasten zuriickgegriffen werden kann. Im Main Code konnte statt Pro-
grammcode einfach Text hinterlegt sein. Beim Aufruf einer Methode koénnte ein Parameter ibergeben
werden, der aussagt, wie gut die zu beurteilende Person in dem bewerteten Teilgebiet ist. Dement-
sprechend werden dann die notwendigen Parameter der Schliisselworter im Text ersetzt.

So konnte ein Lehrer mit einer einmal angelegten Methodenbibliothek schnell und tibersichtlich
Zeugnisse fiir eine ganze Schulklasse generieren, in denen die Schiiler in Bezug auf verschiedene
Aspekte bewertet werden.

Fazit

Die Moglichkeiten fiir eine Anwendung des ibb TestDesigner-Konzepts sind vielseitig. Viele struktu-
rierte Prozesse lassen sich so beschreiben, dass sie in den Aufbau des Tools iiberfithrt werden konnen.
Hierfiir miissen lediglich Devices, Ports und Methoden identifiziert werden, sowie eine Unterteilung
der Aufgabe in Teilaufgaben (Testgroups, Testcases) moglich sein. Dann muss das Grundgeriist im
Programm Code selbst angepasst und notwendige Methoden erstellt werden. Bei der Erstellung der
Methoden hilfreich ist dabei der Methoden Editor.

Die graphische Oberflache des ibb TestDesigners muss iberhaupt nicht angepasst werden, da sich deren
Interpretation immer aus den Ports und Methoden ergibt. Das Ziel einer jeden Anwendung ist hierbei
das einfache Erzeugen einer strukturierten Ausgabe mittels einer tibersichtlichen zweidimensionalen
Tabelle.

49

7 Zusammenfassung & Ausblick

Diese Bachelorarbeit entstand in enger Zusammenarbeit mit dem Ingenieurbiiro Brinkmeyer & Partner.
Das Ziel war eine Beschreibung und darauf aufbauend die Erweiterung der firmeneigenen Software
ibb TestDesigner.

Zunichst wurden die Grundlagen des Prozesses erldutert, in den der ibb TestDesigner eingebettet ist.
Dazu gehort die Testumgebungssoftware CANoe, die Hardware Komponenten des VT Systems und
die Programmiersprache CAPL.

Anschlieflend wurde beschrieben, was der ibb TestDesigner genau ist, wie das Konzept hinter dem
Programm aussieht und wie es eingesetzt wird. Dazu wurden Stiick fiir Stiick Teile des Programms
benannt und néher erlautert. AnschlieSend wurde erklart, wie die Testerstellung mit diesem Tool
funktioniert und welche weiteren Funktionen es erfiillt. Auerdem wurde dhnliche Software beschrie-
ben und verglichen.

Im Entwurf der Erweiterung wurde das bereits existierende Ausgabeformat mit dem zu erzeugenden
verglichen. Weiterhin wurden Aufbau und Besonderheiten eines CAPL Testmoduls aufgezeigt. Es
folgte eine Beschreibung der Anforderungen an die Softwareerweiterung selbst und den Arbeitspro-
zess. Anschliefend wurde das Konzept fiur die Erweiterung vorgestellt und diese auch umgesetzt. Der
Softwareentwicklungsprozess orientierte sich hierbei stark an den Prinzipien der Agilen Softwareent-
wicklung. In regelmafigen Treffen mit dem Betreuer der Arbeit im Unternehmen, Herrn Dipl.-Ing.
(FH) Peter Heidenwag, wurden bisheriger Stand und weiteres Vorgehen abgestimmt. Dadurch konnten
unvorhergesehene Schwierigkeiten gelost werden und es wurde sichergestellt, dass die Software den
Anspriichen von ibb gerecht wird.

Die beabsichtigte und korrekte Funktionsweise der Erweiterung wurde anhand eines realistischen
Szenarios demonstriert. Dazu wurde eine Hardware- und Software-Testumgebung beschrieben, Re-
quirements fiir einen Test formuliert und ein Test erstellt, ausgefithrt und ausgewertet, der diese
Requirements tiberpriift. Anschliefend wurden die anfinglichen Anforderungen an die Erweiterung
mit dem Ergebnis der Arbeit abgeglichen.

Zuletzt erfolgte eine Untersuchung und Erklarung, welche weiteren Aufgabengebiete mit dem Kon-
zept des ibb TestDesigners erfiillt werden konnten. Hierbei zeigte sich die Vielseitigkeit des allgemein
gehaltenen Konzepts mit Devices, einzelnen Ports und deren Methoden.

51

7 Zusammenfassung & Ausblick

Ausblick

Zukinftig wird die neue Version des ibb TestDesigners auch in der Praxis eingesetzt werden. Neben
dem XML-Format ist nun ebenfalls die Generierung von CAPL Testmodulen moglich, die bei Bedarf
mehr Flexibilitat und Komplexitat fiir die Testdefinition bieten. Die im Laufe der Arbeit entstandene
Methodenbibliothek kann iiber den Methoden Editor falls nétig einfach um zusitzliche Methoden
erweitert werden. Fiir den Anwender selbst ergeben sich keine nennenswerten Anderungen in Bezug
auf den Anspruch bei der Testerstellung. Deshalb wird die Erweiterung des ibb TestDesigners in die
tagliche Arbeit der Firma Einzug finden und auch den Kunden néher gebracht werden.

52

Literaturverzeichnis

[BBBT01] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J. Gren-

[Kir97]

[Kra09]

[MSD15]

[Reil1]

[RRO6]

[Vec04]

[Vec09]

[Vec15a]

[Vec15b]

[Vec15c]

ning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin, S. Mellor, K. Schwa-
ber, J. Sutherland, D. Thomas. Manifesto for Agile Software Development, 2001. URL
http://www.agilemanifesto.org/. (Zitiert auf Seite 27)

M. Kirtland. Introducing Visual Studio 97: A Well-stocked Toolbox for Building Distri-
buted Apps, 1997. URL https://www.microsoft.com/msj/0597/visualstudio97.aspx.
(Zitiert auf Seite 30)

S. Krauf3. Testing with CANoe, 2009. URL http://vector.com/portal/medien/cmc/
application_notes/AN-IND-1-002_Testing_with_CANoe.pdf. Seite 19. (Zitiert auf
den Seiten 7 und 23)

MSDN. Downloads Visual Studio 2010, 2015. URL https://msdn.microsoft.
com/en-us/subscriptions/downloads/default.aspx?pv=18:370#searchTerm=
&ProductFamilyId=370&Languages=en&PageSize=10&PageIndex=4&Fileld=0. (Zitiert
auf Seite 30)

K. Reif. Bosch Autoelektrik und Autoelektronik. Vieweg + Teubner Verlag, 6. Auflage, 2011.
ISBN: 978-3-8348-1274-2. Seite 12. (Zitiert auf Seite 9)

S. Robertson, J. Robertson. Mastering the Requirements Process. Addison-Wesley, 2. Auflage,
2006. ISBN: 978-0321419491, Seiten 9-10. (Zitiert auf Seite 26)

Vector CANtech Inc. Programming With CAPL, 2004. URL http://vector.com/portal/
medien/vector_cantech/faq/ProgrammingWithCAPL.pdf. (Zitiert auf Seite 12)

Vector CANtech Inc. CANoe Test Feature Set Tutorial, 2009. URL http://vector.com/
portal/medien/cmc/application_notes/AN-AND-1-118_CANoe_TFS_Tutorial.pdf.
(Zitiert auf Seite 12)

Vector Informatik GmbH. Company History, 2015. URL http://vector.com/vi_company_
history_en.html. (Zitiert auf Seite 11)

Vector Informatik GmbH. Concept Manual vIESTstudio, 2015. URL http://vector.com/
portal/medien/cmc/info/vTESTstudio_ConceptManual_EN.pdf. (Zitiert auf Seite 22)

Vector Informatik GmbH. News & Events for ECU Testing, 2015. URL http://vector.
com/vi_news_ecutest_en.html. (Zitiert auf Seite 22)

53

http://www.agilemanifesto.org/
https://www.microsoft.com/msj/0597/visualstudio97.aspx
http://vector.com/portal/medien/cmc/application_notes/AN-IND-1-002_Testing_with_CANoe.pdf
http://vector.com/portal/medien/cmc/application_notes/AN-IND-1-002_Testing_with_CANoe.pdf
https://msdn.microsoft.com/en-us/subscriptions/downloads/default.aspx?pv=18:370#searchTerm=&ProductFamilyId=370&Languages=en&PageSize=10&PageIndex=4&FileId=0
https://msdn.microsoft.com/en-us/subscriptions/downloads/default.aspx?pv=18:370#searchTerm=&ProductFamilyId=370&Languages=en&PageSize=10&PageIndex=4&FileId=0
https://msdn.microsoft.com/en-us/subscriptions/downloads/default.aspx?pv=18:370#searchTerm=&ProductFamilyId=370&Languages=en&PageSize=10&PageIndex=4&FileId=0
http://vector.com/portal/medien/vector_cantech/faq/ProgrammingWithCAPL.pdf
http://vector.com/portal/medien/vector_cantech/faq/ProgrammingWithCAPL.pdf
http://vector.com/portal/medien/cmc/application_notes/AN-AND-1-118_CANoe_TFS_Tutorial.pdf
http://vector.com/portal/medien/cmc/application_notes/AN-AND-1-118_CANoe_TFS_Tutorial.pdf
http://vector.com/vi_company_history_en.html
http://vector.com/vi_company_history_en.html
http://vector.com/portal/medien/cmc/info/vTESTstudio_ConceptManual_EN.pdf
http://vector.com/portal/medien/cmc/info/vTESTstudio_ConceptManual_EN.pdf
http://vector.com/vi_news_ecutest_en.html
http://vector.com/vi_news_ecutest_en.html

Literaturverzeichnis

[Vec15d] Vector Informatik GmbH. Produktinformation VT System, 2015. URL https://vector.
com/portal/medien/cmc/info/VTSystem_ProductInformation_DE.pdf. (Zitiert auf
Seite 11)

[Vec15e] Vector Informatik GmbH. VT System - I/O Interface Modules for the ECU
Test, 2015. URL http://vector.com/portal/medien/cmc/datasheets/VT_System_
DataSheet_DE.pdf. (Zitiert auf Seite 38)

Alle URLs wurden zuletzt am 2. 12. 2015 gepriift.

54

https://vector.com/portal/medien/cmc/info/VTSystem_ProductInformation_DE.pdf
https://vector.com/portal/medien/cmc/info/VTSystem_ProductInformation_DE.pdf
http://vector.com/portal/medien/cmc/datasheets/VT_System_DataSheet_DE.pdf
http://vector.com/portal/medien/cmc/datasheets/VT_System_DataSheet_DE.pdf

Erkliarung

Ich versichere, diese Arbeit selbststiandig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wortlich oder sinngemifd aus anderen Werken tibernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Pritifungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-
se noch vollstindig veroffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Motivation
	1.2 Problemstellung
	1.3 Ziele
	1.4 Aufbau der Arbeit

	2 Grundlagen
	2.1 CANoe
	2.2 VT System
	2.3 CAN Access Programming Language
	2.4 ibb TestDesigner
	2.5 Prozesskette

	3 Analyse des ibb TestDesigners
	3.1 Allgemeines
	3.2 Ports
	3.3 Devices
	3.4 Methoden
	3.5 Testablauf
	3.6 Test Generierung
	3.7 Weitere Funktionen des ibb TestDesigners
	3.8 Vergleich mit ähnlichen Produkten

	4 Entwurf & Implementierung
	4.1 Vergleich von Extensible Markup Language und CAN Access Programming Language
	4.1.1 Gegenüberstellung der Funktionsweise
	4.1.2 Vergleich am Code

	4.2 Gliederung eines CAN Access Programming Language Testmoduls
	4.3 Anforderungen an die Implementierung
	4.3.1 Funktionale Anforderungen
	4.3.2 Nichtfunktionale Anforderungen
	4.3.3 Weitere Anforderungen

	4.4 Agile Softwareentwicklung
	4.5 Konzept
	4.5.1 Rahmen
	4.5.2 Methodenbibliothek
	4.5.3 Beispiel eines vollständigen Testmoduls in der CAN Access Programming Language

	4.6 Implementierung
	4.6.1 Entwicklungsumgebung
	4.6.2 Durchläufe
	4.6.3 Varianten
	4.6.4 Generieren eines Testmoduls
	4.6.5 Neue Funktionalitäten

	5 Evaluation
	5.1 Beschreibung des Testaufbaus
	5.1.1 Steuergerät
	5.1.2 Originallast
	5.1.3 VT System
	5.1.4 Gesamtaufbau

	5.2 Requirements
	5.3 Test
	5.3.1 Testerstellung
	5.3.2 Ausführung
	5.3.3 Report

	5.4 Rückblick auf die gestellten Anforderungen

	6 Weitere Anwendungsgebiete
	6.1 Planungssoftware für Bauingenieure
	6.2 Abrechnung von Dienstleistungen
	6.3 Erzeugen von Texten

	7 Zusammenfassung & Ausblick
	Literaturverzeichnis

