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ABSTRACT

In dieser Arbeit wird eines der grundlegenden Probleme des Bildverstehens, der opti-
sche Fluss, behandelt. Der optische Fluss gibt die Verschiebung eines Pixels von einem
Bild zum néchsten Bild an, was einer Bewegung der Kamera oder von Gegenstdnden
in der Realitdt entspricht. Der optische Fluss hat eine grofie Bedeutung fiir alle Anwen-
dungsbereiche, in denen die Vorhersage oder Erkennung von Bewegungen wichtig ist,
beispielsweise bei Fahrerassistenzsystemen im Auto. Zu Beginn wird eine Einfiihrung
in die Bildverarbeitung gegeben, sowie einer der klassischen Algorithmen zur Berech-
nung des optischen Flusses eingefiihrt, der Algorithmus von Horn und Schunck. Die-
ser wird im Anschluss mittels bilateraler, nicht-lokaler Komponenten erweitert, um
dessen Schwichen zu beseitigen. Im Anschluss wird der neue Ansatz mit dem von
Horn und Schunck auf Basis einiger Bildsequenzen evaluiert.
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1. EINLEITUNG

1.1 EINLEITUNG

Die Verwendung von Kameras, nicht nur zur Aufnahme von Bildern und Videos, son-
dern auch als Sensoren, nimmt stetig an Verbreitung zu. Dieser Trend zieht sich nicht
nur durch wissenschaftliche Gebiete, sondern auch durch industrielle Anwendungen,
sowie Anwendungen aus dem Automotive Bereich. Auch im Bereich der Endverbrau-
cherprodukte nimmt die Verbreitung zu.

Um einige Beispiele zu nennen, sei die Steuerung von Spielen iiber spezielle Kameras
erwahnt [1], ebenso wie die Vermessung in der Automatisierungstechnik und die Kol-
lisionsvorraussage in modernen Automobilen [2], bis hin zum vollstdndig autonomen
Fahren.

Bei den letzteren beiden Anwendungen spielt die moglichst genaue Bestimmung des
optischen Flusses eine besondere Rolle. Mittels des optischen Flusses konnen Bewe-
gungen zwischen Bildern berechnet werden und somit zur Vorhersage der zukiinfti-
gen Position von Objekten in der Szene verwendet werden. Fiir die Berechnung des
optischen Flusses gibt es zwei grundlegende Herangehensweisen. Die erste ist die Be-
rechnung der Bewegung einzelner markanter Punkte. Bei der zweiten Herangehens-
weise wird die Bewegung jedes Punktes im Bild bestimmt, es entsteht ein dichtes
Flussfeld (,,Dense Optical Flow”). Somit liefern Methoden dieser Herangehensweise
fiir jeden Punkt im Bild einen Vektor, der angibt, wo sich dieser Punkt im nachsten
Bild befindet. Da eine moglichst genaue Bestimmung des Flusses in jedem Punkt die
grofite Flexibilitdt und Genauigkeit bietet und da somit auch fiir kleine und eventuell
nicht markante Objekte der Fluss berechnet wird, behandelt diese Arbeit die Bestim-
mung von dichten Flussfeldern.

1.2 UBERBLICK UBER DAS THEMENGEBIET

Eine wegweisende Arbeit auf dem Gebiet der Berechnung des optischen Flusses ist
die Arbeit von Horn und Schunck [3]. In dieser wird das Problem als Energiemini-
mierung, basierend auf einigen Annahmen, aufgefasst. Die Energie besteht dabei aus
einem Daten- und einem Glattheitsterm, die mittels einer Energieminimierung mit glo-
balen, kontinuierlichen Optimierungsverfahren, den sogenannten Variationsansatzen,
durchgefiihrt wird. Auf Basis dieser Herangehensweise wurden verschiedene andere
Algorithmen vorgeschlagen, die meist auf eine Verbesserung des Datenterms (z.B. [4],
[5]) oder Glattheitsterms (z.B. [6], [7]) abzielen.

Héufige Aspekte sind dabei die Berticksichtigung von Kanten im Bild, die auf Objekt-
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grenzen und somit auf eine Anderung des Flusses hindeuten kénnen. Weitere wichti-
ge Aspekte sind das Erreichen einer grofieren Robustheit gegen Storungen sowie eine
grofiere Glattung in homogenen Gebieten. Eine Moglichkeit dafiir ist die Verwendung
nicht lokaler Glattheitsterme, wobei in [8] eines der ersten Verfahren fiir nicht-lokale
Variationsrechnung zu finden ist. Durch die Nicht-Lokalitdt konnen lokale Stérungen
leichter kompensiert werden.

Eine weitere Moglichkeit zur Verbesserung ist eine Erhohung des Grades der Glatt-
heitsforderung und die Verwendung von Glattungstermen, die dhnlich einem bilate-
ralen Filter sind [9]. Diese gldtten relativ zu einer durch die Umgebung bestimmten
Ebene, wodurch lineare Ubergénge im Flussfeld im Vergleich zu einer absoluten Glat-
tung, besser erhalten werden.

Bilaterale Filter [10] wurden hierbei als Ansatz fiir einen Glattheitsterm verwendet, da
diese sowohl rdumliche Informationen, also die Entfernung zum Mittelpunkt, als auch
die farblichen Informationen in die Glattung miteinbeziehen und somit Kanten besser
erhalten.

Zur Berechnung der minimalen Energie werden oft Variationsansitze [11] verwendet,
es sind jedoch auch andere Verfahren moglich, wie in [12] oder [13] beschrieben.

1.3 ZIEL DER ARBEIT

In dieser Arbeit soll das Verfahren von Horn und Schunck [3] mittels eines Glattheits-
terms hoherer Ordnung und einer nicht-lokalen Umgebung zur Gldttung erweitert
werden, dhnlich zu [g9]. Des Weiteren soll die Robustheit der einzelnen Terme durch
geeignete Funktionen erhoht werden. Eine ausfiihrliche Evaluierung mittels Testse-
quenzen, unter anderem aus dem Middleburry [14] Benchmark, soll zeigen, ob und
wie viel der neue Term die Genauigkeit der Bestimmung des optischen Flusses in
verschiedenen Szenarien verbessert.

1.4 AUFBAU DER ARBEIT

Im zweiten Kapitel werden einige Grundlagen und Konventionen zum optischen Fluss
und zur Bildverarbeitung im Allgemeinen erldutert. Kapitel drei erldutert das Verfah-
ren von Horn und Schunck, das danach in Kapitel vier durch einen nicht-lokalen
Glattheitsterm zweiter Ordnung verbessert werden soll. Kapitel vier gibt auch einige
Hinweise zur Implementierung des neuen Verfahrens. Das fiinfte Kapitel behandelt
Experimente mit dem neuen Verfahren und vergleicht dieses mit dem Ursprungsver-
fahren von Horn und Schunck. Das letzte Kapitel fasst die Erkenntnisse und Ergebnis-
se kurz zusammen und gibt einen Ausblick auf mogliche Verbesserungen.
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Das folgende Kapitel behandelt einige Grundlagen der Bildverarbeitung im Allgemei-
nen, sowie einige Grundlagen zum Optischen Fluss. Des Weiteren werden einige Kon-
ventionen und Schreibweisen erldutert.

2.1 BILD

Ein Bild ist eine Funktion f, die iiber einer zumeist zwei-dimensionalen Doméane Q
definiert ist [15], formal

f:x—R"xcQcCR™mitm,necN.

Hierbei ist meist n = 2, das Bild also zweidimensional. Der Definitionsbereich Q) ist
typischerweise von rechteckiger Form, d.h. QO = (0, Breite) x (0, Hohe).

Ist m = 1 so handelt es sich um ein Grauwertbild, bei m = 3 um ein Farbbild. Dennoch
sind auch hohere Dimensionen moglich. R™ wird dabei als Wertebereich bezeichnet.
In dieser Arbeit wird, soweit nicht anders erwdhnt, von n = 2 und m = 1 ausgegangen,
also von einem zweidimensionalen Grauwertbild.

Das Argument x der Funktion ist hierbei von der Form x = (x;, ..., Xm) |, wobei im
Zweidimensionalen x; die horizontale Koordinate (von links nach rechts) bezeichnet
und x, die vertikale (von oben nach unten). Die Ableitung der Funktion f an der Stelle
x nach x; wird abkiirzend als fx; bezeichnet.

2.2 SAMPLING UND QUANTISIERUNG

Da Bilder nicht kontinuierlich vorliegen, muss die Doméane Q diskretisiert werden [15].
Die Funktion f ist also nur an bestimmten Punkten gegeben, meist Pixel genannt. Wird
das Bild an diesen Punkten abgetastet spricht man von Sampling.

Der Abstand zweier Pixel wird oft normalisiert, unter Umstdnden ist dies jedoch nicht
moglich oder sinnvoll. In diesen Fallen muss der Abstand der Pixel mitbetrachtet wer-
den. Der Abstand zwischen zwei Pixeln wird hierbei mit h,, bezeichnet und kann
je nach Anwendung in jeder Dimension verschieden sein. In dieser Arbeit wird zur
Vereinfachung von hy, = hy, = 1 ausgegangen, werden andere h,, benotigt, so muss
dies bei der Diskretisierung berticksichtigt werden, das Vorgehen ist jedoch analog.
Da der Wertebereich in der Praxis ebenfalls nicht kontinuierlich ist, wird dieser eben-
falls diskretisiert, was Quantisierung genannt wird. Bei einem Grauwertbild ist dieser
Wertebereich iiblicherweise [0, 255] und kann somit in einem Byte gespeichert werden.
Alternativ werden diese Werte fiir Berechnungen oft auf den Bereich [0, 1] normalisiert.
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2.3 OPTISCHER FLUSS

Der optische Fluss zwischen zwei Bildern gibt idealerweise die Verschiebung jedes Pi-
xels im ersten Bild zu seiner Position im zweiten oder allgemein ndchsten Bild an [16].
Der Fluss, also die Verschiebung der Pixel, in x- beziehungsweise x1-Richtung wird
als u bezeichnet, die Verschiebung in y- beziehungsweise x;-Richtung als v. Das ge-
suchte Verschiebungsvektorfeld, das den optischen Fluss beschreibt, ist somit durch
(w(x1,%2),v(x1,%2)) T, oder kurz (u(x),v(x))" gegeben. Ein Beispiel hierfiir wird in
Abbildung 2.2 gezeigt, in der der Fluss zwischen den zwei Bildern in 2.1 als Pfeile
visualisiert wird.
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Abbildung 2.2: Berechneter optischer Fluss [20]. Visualisierung durch Pfeile
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2.4 PARTIELLE ABLEITUNG UND GRADIENT

Wird eine Funktion mehrerer Variablen f(x7, ..., xn) nach einem ihrer Argumente x;
abgeleitet, so entspricht dies der Ableitung der Funktion, als ob x; nur eine Variable
sei und alle anderen x; konstant seien [11]. Diese sogenannte partielle Ableitung von
f nach x; wird als aani oder als fy, bezeichnet.

Der Vektor aller moglichen partiellen Ableitungen wird als Gradient bezeichnet

of of
VE(x1, ., xn) = (=—T1, ...,

-
e ). (2.1)

dxn



2.5 DIVERGENZ

Der Betrag des Gradienten Vf ist hierbei gegeben durch

IVl = /f2, +...+ 12 . (2.2)

Um in einem realen und somit diskreten Bild eine partielle Ableitung berechnen zu

konnen, wird eine Diskretisierung benétigt. Eine mogliche Diskretisierung ist gegeben
durch

fiots—fio1s
fxi1j =~ % (2:3)
1

fispr—fii
fXZirj ~ l]+2hx - ' (24)
2

Diese Art der Diskretisierung wird als ,,zentrale Differenz” bezeichnet. Alternativ gibt
es noch die , Vorwartsdifferenz”

fir1y —fij
x11,j Iy, 5
fijr1 —fiy
fx,ij ® ———5 2.6)
x21,j hxz (
und die ,Riickwartsdifferenz”
fij —fic1,
fo i3~ 24 (2.7)
X11)) hx] 7
fij —fij—1
fois & ! 2.8
x21,j hxz ( )

Dies sind die {iiblichen Diskretisierungen, wobei theoretisch weitere moglich wiéren,
unter Einbeziehung einer grofferen Umgebung. Die hier genannten Diskretisierungen
werden zusammenfassend auch als , finite Differenzen” bezeichnet.

2.5 DIVERGENZ
Die Divergenz einer Funktion von n Variablen ist nach [11] definiert als

div(f) =1y, +...+fx,. (2.9)
2.6 LAPLACE

Der Laplace-Operator [11] ist definiert als

Af = div(VE) =y, x, + oo+ Fxpxn- (2.10)
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2.7 TAYLORAPPROXIMATION

Die Taylorapproximation, welche auf der Taylorreihe aufbaut, ndhert eine Funktion in
der Nihe eines bekannten Punktes an [11]. Die Taylorreihe reprasentiert eine Funktion
als unendliche Summe von Werten und Ableitungen an einer Stelle der Funktion und
ist definiert als

(n)
f(x) = Z " a) (x—a)", (2.11)

wobei a die Stelle, die zur Berechnung verwendet wird, auch Entwicklungspunkt ge-
nannt, istund n! =n-(n—1)-...- 2- 1 die Fakultit darstellt.

Die Taylorapproximation ndhert mittels der Taylorreihe eine Funktion in einem Punkt,
in dem diese nicht bekannt ist, an, indem dafiir eine bekannte Stelle und deren Ablei-
tungen verwendet werden. Da in der Praxis nur endlich viele Ableitungen der Funkti-
on im Punkt a zur Verfiigung stehen, kann dieses Verfahren den Wert f(x) nur anna-
hern. Somit erhilt man fiir die Taylorapproximation

()
~ D
n=0

mit m € IN. Ist die Funktion f hinreichend glatt und werden die Funktionswerte von
f nur in einer kleinen Umgebung von a benétigt, so geniigt meist eine Linearisierung
der Funktion, d.h. eine Taylorapproximation mit m = 1.

Im zweidimensionalen Fall ist die Taylorreihe definiert als [15]

(x—a)", (2.12)

i a16m+azaxz) f(x). (2.13)

Somit ist die zweidimensionale Taylorapproximation gegeben durch:

) ~ i (a1x, +a20x,)"™ f(x)

o (2.14)

3
o



3. BASISVERFAHREN

3.1 OPTISCHER FLUSS NACH HORN UND SCHUNCK

Das in dieser Arbeit entwickelte Verfahren berechnet ein dichtes optisches Flussfeld
und setzt daftir auf dem Algorithmus zur Bestimmung des optischen Flusses von
Horn und Schunck auf [3], weswegen dieser nun ausfiihrlich dargestellt wird. Der
Algorithmus basiert hierbei auf zwei Annahmen:

1. Die Konstanzannahme, im Englischen als ,constancy assumption” bezeichnet,
beschreibt die Annahme, dass sich die Helligkeit/Farbe in einem Punkt tiber die
Zeit nicht dndert. Hierbei bezeichnet die Funktion f(x,t) mit x = (x1,%2)" € Q
die Helligkeit im Punkt x. Der Bildbereich wird mit OO bezeichnet. Aus dieser
Annahme folgt

fx+ (u,v) ", t+1)—f(x,t) =0, (3.1)

wobei u die Verschiebung in x1-Richtung und v die Verschiebung in x,-Richtung
bezeichnet. Durch Linearsierung mittels einer Taylor-Reihe erhilt man:

f(x, 1) = f(x, 1) + fx, (6 thu+fx, (x, t)v + fy, (3-2)
und somit nach Subtraktion von f(x, t):
fx, (X, tJu+fy, (x, t)v+fy = 0. (3.3)

Dabei ist anzumerken, dass hierbei angenommen wird, dass f hinreichend glatt
ist und der Fluss (u,v) " hinreichend klein, so, dass die Linearisierung eine gute
Approximation an f darstellt.

2. Die Glattheitsannahme, im Englischen als , smoothness constraint” bezeichnet,
geht davon aus, dass innerhalb des Bildes rdumlich nahe Pixel einen dhnlichen
Fluss aufweisen. Dies bedeutet, dass das Feld des Flusses bis zu einem gewissen
Grad glatt ist, sich also nicht jedes Pixel eines Bildes unabhéngig von allen ande-
ren umgebenden Pixeln an einen beliebigen Punkt bewegt, sondern benachbarte
Pixel den gleichen Fluss besitzen. Dies macht Sinn, da benachbarte Pixel oft zum
selben Objekt gehoren. Dadurch gilt:

IVu/? = 0 und |Vv|Z = 0.

In der Praxis wird davon ausgegangen, dass |Vul? und |Vv|? klein sind.
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Zur Berechnung des optischen Flusses benutzt der Algorithmus von Horn und Schunck
das Prinzip der Energieminimierung. Das Energiefunktional sieht hierbei aus wie folgt:

E(u,v) = J (fx, (x, thu+fy, (x, t)v+ )2 o (IVU? + [Vvf?) dx. (3-4)
xeQ

Datenterm Glattheitsterm

Das Energiefunktional setzt sich somit direkt aus den zwei vorherigen Annahmen
zusammen und bestraft Abweichungen von diesen. Der vordere Term wird hierbei
,Datenterm” und der hintere ,Glattheitsterm” genannt. Dies kommt daher, dass der
erste Term sich auf die Daten im Bild, also die Helligkeit, stiitzt, der hintere Term sich
hingegen nur auf die Annahme stiitzt, dass der Fluss moglichst konstant ist, was zu
einer Gldttung fiihrt. Die Gewichtung des Glattheitsterms wird durch den Parameter
o gesteuert. Je grofler der Wert fiir o, desto glatter ist das berechnete Verschiebungs-
vektorfeld.

3.2 VARIATIONSANSATZE

Am Ende des vorherigen Abschnittes wurde ein Funktional gegeben, das minimiert
werden soll. Das Gebiet der Mathematik das sich mit der Minimierung von Funktio-
nalen beschiftigt, ist die Variationsrechnung [11].

Das Problem aus dem vorherigen Abschnitt ist von der Form

E(u,v) :J F(x,u,v,u’,v') dx. (3.5)
textbfxeQ

Zur Losung von Problemen dieser Form koénnen die folgenden Euler-Lagrange-Glei-
chungen verwendet werden:

0 0
0=Fu—Fu, —xFu,, -6
u a)q Uxq aXZ Ux, (3 )
0 0
0=Fy — L F — - Fy . :
v ax] Vi, axz Vi, (3 7)

Diese stellen notwendige Bedingungen fiir jeden Minimierer des allgemeinen Funktio-
nals in (3.5) dar. Zudem gelten folgende Randbedingungen:

T T

F F
< Uxq ) n=0, ( Vg ) n=0, (38)
Fuxz Fsz

wobei n der Vektor ist, der iiber den Bildbereich am Rand hinaus zeigt.
Somit miissen zuerst die Ableitungen der Funktion F bestimmt werden. Im Fall von
Horn und Schunk ist F:

F(x, w,v,u/,v') = (fx, (% t)u A+ fx, (x, 1)V + )% + o[Vl + [Vv[?) (3.9)
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Somit werden fiir die Euler-Langrange-Gleichungen folgende Ableitungen benétigt:

Fu = 2(fx,u+ fx, v+ fi)fy, (3.10)
Fy =2(fx,u+fx,v+fi)fy, , (3.11)
Fu,, = 2oy, , (3.12)
Fu,, =2auy, , (3.13)
Fo, = 20wy, , (3.14)
Fyv,, =2avy, . (3.15)

Eingesetzt in die Euler-Lagrange-Gleichungen und nach Kiirzung des Faktors 2 erhalt
man das folgende gekoppelte System von partiellen Differenzialgleichungen:

0= fy, (fx,u+ fx,v+fi) — xAu, (3.16)
0= sz (fx1 u—+ fxzv + ft) - O(AV, (317)

mit reflektierenden Neumann-Randbedingungen Vu'n =0 und Vv'n = 0.
3.3 DISKRETISIERUNG

Da Bilder nicht kontinuierlich sind, sondern nur in diskreter Form vorliegen, miissen
die Euler-Lagrange Gleichungen diskretisiert werden. Hierbei gilt i € [1, ..., N]:

0= fupilfxyitti + fupivi+fe) —a Y (45 —wy), (3.18)
JEN2(1)

0= fryi(Fupilti + Fpivi + Fei) — & Y (vj —vy). (3.19)
JEN2(1)

Der Laplace-Operator A fiir u und v wird hierbei mittels finiten Differenzen approxi-
miert und N3 (i) bezeichnet die direkt an das Pixel i angrenzenden Pixel (links, rechts,
oben, unten).

Ziel ist es die u; und v; zu bestimmen. Da die Gleichungen ein grofses, diinnbesetztes
und lineares Gleichungssystem ergeben, kann dieses mittels eines iterativen Verfah-
rens gelost werden. Zudem kann gezeigt werden, dass die Systemmatrix im Allgemei-
nen positiv definit ist [21].

3.4 LOSER

Im Folgenden wird dafiir das Gauf3-Seidel-Verfahren verwendet, allerdings sind auch
andere Verfahren, wie das Jacobi-Verfahren oder SOR mit geringen Anderungen mog-
lich (alle beschrieben in [11]).

Im Folgenden werden drei Verfahren zu Losung des Gleichungssystems verwendet,
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das Jacobi-, Gauss-Seidel- und SOR-Verfahren [11]. Das Gleichungssystem des Pro-
blems hat die allgemeine Form Ax = b oder ausfiihrlicher (fiir ein Bild der Grofle
3x2)

%, c 21 1
%, c 1 -3 1 1
2, C 1 -2 1
2, C 1 -2 1
2, C 1 131
2, C 1 12

C 2, 1T =31 1

1 =31
C 2 1 1 =2

mmmmmm‘UUUUUU

(@}

—+

N

|

N
x{<<<<<<\:::s:s:‘s:‘¢

{

=3

(3-20)

wobei C, D und E als C = fy, fx,, D = —fx,ft und E = —f, fy definiert sind.
Nach [22] kann eine Ndherung der Losung dieses Systems gefunden werden durch
die Zerlegung

A=A1+A; = (A1 +A))x=b & Ajx=b—A)x. (3.21)
Somit ist eine Fixpunktiteration der Form
X = ATT (b — AyxK) (3.22)

moglich, wobei A7 idealerweise einfach zu berechnen ist und A; gleichzeitig eine
moglichst gute Approximation an A darstellen soll.

3.4.1 Jacobi-Verfahren

Beim Jacobi-Verfahren [11] wird die Matrix A in den Diagonalteil D, die obere Drei-
ecksmatrix U und die untere Dreiecksmatrix L aufgeteilt, d.h.

A=D—-L—-U. (3.23)

Dies fiihrt zur allgemeinen Form fiir das Jacobi-Verfahren von

X" T =D (b + (L+U)x"). (3.24)
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Somit erhilt man fiir die Methode von Horn und Schunck

—fX1i(fxziv1’_k + fti) -+ OCZ)'EN“) u}<

k+1
u; = - / 529
i 3+ alN()]
e —hailfgud ) ol en vy (3:26)
e . 2
i 2, +aN()| ’

Hierbei bezeichnet N(i) die Nachbarschaft der direkt an i angrenzenden Pixel und
IN(i)| die Anzahl der direkt angrenzenden Nachbarn von i, maximal sind dies in die-
sem Fall vier (rechts, links, oben und unten). Es ist zu beachten, dass zur Berechnung
die Werte der vorherigen Iteration uk vk verwendet werden und somit bei einer Im-

plementierung gesondert gespeichert werden miissen.

3.4.2  Gaufs-Seidel Verfahren

Die Gaufs-Seidel-Methode [11] ndhert mit A; die Matrix A besser an und konvergiert
somit schneller als die Jacobi-Methode. A7 ist in diesem Fall A; = D — L, wodurch
A, = —U. Dies fiihrt zur allgemeinen Form

X" =(D-1)""(b+Ux"). (3-27)
Somit erhdlt man fiir die Horn und Schunck Methode folgende Fixpunktiteration

K1
i (P iV + Fei) F &) 5en (i) T =) Gen, (@) uyf

k+1
. _ : | , (3.28)
i f2 5+ oN(i)]
k+1 k+1 k
SR —Foilfxiuy ) +xd jen 1)V — X2 jen, (1) Y] . (3-29)
i fizi + a«|N(1)]

N_ (i) bezeichnet alle Pixel der Umgebung, die in der Iteration iiber das Bild vor dem
Pixel i liegen und N_ (i) alle die nach i liegen. Somit werden fiir jedes Pixel nacheinan-
der die u; und v; berechnet und an den Stellen, an denen hier ein u; beziehungsweise
v; vorkommt wird der aktuellste Wert verwendet, also entweder der Wert aus der vor-
herigen Iteration, initial null, oder der Wert aus der aktuellen Iteration.

3.4.3 SOR-Verfahren

Das SOR-Verfahren (,,successive over relaxation”) [11], im Deutschen auch Relaxati-
onsverfahren genannt, kann die Konvergenzeigenschaften des Gauf3-Seidel Verfahrens

11
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verbessern. Hierbei wird statt in jedem Schritt einen komplett neuen Wert zu bestim-
men der vorherige Wert mittels eines neu berechneten Werts korrigiert:

uk T = (1 —w)uk (3.30)
x11( x21V + fii) +“ZJGN o‘z]eN
Tw . N , (3.31)
ot ( )I
VT = (1 —w)vit! (3.32)
Lw fle(fxuuk 1 +ft1 + (XZJQN (XZ)GN ( )
2 +aN(i )| 333

Fiir den Relaxationsparameter w muss hierbei gelten, dass 0 < w < 2, wobei fiir w = 1
das Verfahren identisch mit dem Gauf3-Seidel Verfahren ist. Vom SOR-Verfahren wird
erst fiir w > 1 gesprochen (Uberrelaxation).

3.5 BILATERAL FILTER

Nach der Vorstellung des Horn und Schunck Verfahrens werden nun die Grundlagen,
die fiir den neuen Glattungsterm noétig sind, vorgestellt, die bilateralen Filter. Bila-
terale Filter [10] dienen zur Gldttung, beziehungsweise zur Entfernung von Storun-
gen aus Bildern. Lineare Glattungsfilter bilden zur Glattung einen gewichteten Durch-
schnitt der Pixel um den zu glattenden Pixel. Dabei berticksichtigen die Gewichte der
einzelnen Pixel sowohl den rdumlichen Abstand als auch den Farbunterschied zum
zentralen Pixel. Ein einfacher bilateraler Filter zur Glattung von Bildern mit f;, dem
Eingabepixel an der Stelle i und u;, dem gefilterten Signal an dieser Stelle ist durch

¥ g(Ifi — 512 w(ixi — x5 .
25 glfi = f512)wlixi — x;12) 3.34

hy =

gegeben. Hierbei stellt g(|f; — fj |2) ein farbliches Gewicht dar, das mit grofier werden-
der Differenz von f; und f; kleiner wird und w(|x; —x; |2) stellt ein raumliches Gewicht
dar, das ebenfalls mit grofer werdender Differenz kleiner wird. Die Summenvariable
j kann hierbei entweder auf eine Region um das zentrale Pixel begrenzt werden, oder
es wird die rdumliche Gewichtungsfunktion in einer Art gewahlt, so dass weiter ent-
fernte Pixel ein Gewicht nahe null haben. Der Nenner stellt dabei eine Normalisierung
der Gewichte dar, sodass die Summe aller Gewichte eins ergibt.

Eine Moglichkeit fiir die Gewichtungsfunktionen stellt die Gaussfunktion[11] dar, wo-
bei dabei die Standardabweichungen o die Stiarke des Einflusses der Differenz darstellt.
Die Gaussfunktion, auch Normalverteilung genannt, ist dabei definiert als

g(x) = 5 me 207 (3-35)
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beziehungsweise im zwei-dimensionalen Fall als

1 _@
9(X)=2 o LR (3-36)

Die Abnahme der Gewichte g(|f; — fj %) mit grofSer werdender Differenz fiihrt zu ei-
ner besseren Erhaltung von Kanten, da Pixel mit anderem Grauwert bei der Glattung
kaum Einfluss haben.

Wird als Funktion die Gaussfunktion verwendet, so gibt es zwei Parameter fiir den
bilateralen Filter, die Standardabweichung o der Funktion g(x), im Folgenden als o
bezeichnet, und die Standardabweichung o der Funktion w(x), mit o,, bezeichnet.
Die Auswirkung des Parameter o4 wird in Abbildung 3.1 dargestellt. Oben links ist
das Originalbild. Auf die anderen Bilder wurde ein bilateraler Filter mit o,, = 15 und
von oben Mitte nach unten rechts mit den o4 von 2.5, 25, 35, 100 und 1000 angewendet.
Fiir 04 — oo werden die Pixel der Nachbarschaft unabhédngig von der Grauwertdiffe-
renz gemittelt, somit entspricht dies einem Gaussfilter.

Abbildung 3.2 stellt die Auswirkung des Parameter o, dar. Oben links ist wieder das
Originalbild. Die anderen Bilder wurden mittels eines bilateralen Filters mit o4 = 35
und von oben Mitte nach unten rechts mit den o, von 1, 2.5, 4, 10 und 50 gefiltert. Bei
ow — oo erweitert sich die Nachbarschaft auf das ganze Bild, sodass global dhnliche
Pixel gemittelt werden. Eine raumliche Gewichtung findet so gut wie nicht mehr statt.

Abbildung 3.1: Wirkung des Parameters o4 aus [15]

13
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Abbildung 3.2: Wirkung des Parameters o, aus [15]

Verwendet man statt der direkten Differenz von f; und f; die abgewandelte Form
fj — (fi + B! (j; —i1) + BZ(j, —i2)), so wird eine Ebene durch die Funktionswerte f;
gelegt und somit werden zum Glétten statt der direkten Eingangswerte f;, die um die
Ebene korrigierten Werte verwendet. Dies ermoglicht auch in Bereichen mit linearen
Verldufen der Funktionswerte eine moglichst genaue und passende Glattung des Ein-
gangssignals [23] Auch hier ist eine Normalisierung notwendig. Dabei werden A! und

B2 zunichst aus dem Anfangssignal bestimmt und dann iterativ an die bearbeiteten
Signale angepasst.



4. NEUER ANSATZ

4.1 THEORETISCHE HERANGEHENSWEISE
4.1.1  Quadratische Energiefunktion

Das neue Verfahren basiert auf dem Verfahren von Horn und Schunck [3], soll jedoch
nicht einen einfachen Glattheitsterm verwenden, sondern einen Glattheitsterm hoherer
Ordnung, der Kanten im Fluss besser erhdlt und gleichzeitig eine grofiere Umgebung
in die Berechnung einbeziehen soll. Dazu wird die Annahme getroffen, dass Kanten
in Fluss mit Kanten im Bild korrelieren. In einem ersten Schritt wird hierbei das Ver-
fahren von Horn und Schunck um einen bilateralen Glattheitsterm sowie einen Term
zur Glattung der eingefiihrten Bt ergénzt:

E(u,v) :J (fxu+ fyv + ;)2 dx
xeQ

+ ocJ 6(x)J (@(x,%)(g1 (%, %)% + g2(x,%)%)) didx
x€Q XEN (x)

+vJ (IVB'1Z +IVBR212 +VB312 +VBH?) dx. (4.1)
xeQ

N(x) eine zu wihlende Nachbarschaft um x.
Die Funktionen g1 (x,%X) und g2(x,X) sind definiert als

9106 %) = u(&) — (u(x) + B () (&1 —x1) + B*(x) (%2 —x2)), (4.2)
92(%, %) = V(%) = (v(x) + B> (x) (&1 —x1) + B () (*2 — x2)). (4.3)

Die (3; sollen hierbei die Werte von u und v im Verhéltnis zu einer Ebene durch die
Umgebung anpassen, wodurch der Term w(x) + B (x) (%1 —x1) + B2(x) (%2 — x2) bezie-
hungsweise v(x) + B3(x) (%1 —x1) + B%(x) (%2 —x2) den Wert u beziehungsweise v in x
in Relation zu dieser Ebene setzt.

Die Funktion ®@(x,X) dient zur rdumlichen Gewichtung der Nachbarschaft N(x) im
Glattheitsterm, wobei diese symetrisch zu wahlen ist, also

O(x, %) = O(x,x) (4.4)

gelten muss. Des Weiteren muss ®(x,X) immer grofier oder gleich null sein und mo-
noton fallen. Fiir diese Arbeit wird
1
DO(x,X) = .
\/1 4+ B )2-}0\-2(*2—&))2 45

15
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verwendet.
Die Normalisierungsfunktion ¢ ist definiert als:

1
Jien @00 %) dX

Die Normalisierungsfunktion 6 ermoglicht es, die Grofle der Nachbarschaft N(x) an-
zupassen, ohne das Gewicht o dndern zu miissen. Hierbei normalisiert die Funktion
die rdaumlichen Gewichte der einzelnen Elemente der Nachbarschaft und macht o« un-
abhéngig von diesen und der Grofse der Nachbarschaft.

Der letzte Term der Funktion sorgt fiir eine Gldttung der (3-Werte, da sonst die 3-Werte
in jedem Punkt eine beliebige Ebene darstellen konnten und somit keine Glattung von
u und v mehr stattfindet. Der Term zwingt Ebenen in einem Umkreis dhnlich zu sein,
die Ableitung der B' soll also in jedem Punkt klein sein.

d(x) =

4.1.2  Subquadratische Energiefunktion

Zur Erhohung der Robustheit werden fiir alle Terme zusétzliche W-Funktionen einge-
fithrt wodurch, man folgende Energiefunktion erhalt:

E(u,v) :J Wy ((fxu+ fyv+£,)%) dx
xeQ

+aj 6(x)J (@(x R)¥a2(g1 (x %)% + g2(x, %)%)) dkdx

xc€Q) XEN (x)

+vJ wy (VB2 + [VE2P + VB3 + [VB*P) dx. 4.6)
xEQ

Die Funktionen W1 (s?), ¥, (s?) und ¥3(s?) sind subquadratische Funktionen, um die
Robustheit des jeweiligen Terms zu erh6éhen, und miissen immer echt grofier null sein
und dabei monoton steigende, konvexe Funktionen sein, um eine eindeutige Minimie-
rung zu gewdhrleisten.

In der Implementierung zu dieser Arbeit wird fiir die drei W-Funktionen die Funktion

2
W(s2) = 2224/1+ ;—2 _ N2 (4.7)

mit der zugehorigen Ableitung

yis?) = (4.8)

verwendet.
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Aus Griinden der Darstellung werden folgende abkiirzenden Schreibweisen fiir die
Ableitungen der ¥ Funktionen verwendet:

W1 (x) = Wi ((fou+fyv+£2)2), (4.9)
W) (x, %) = ¥5(g1(x, %)% + g2(x,%)?), (4.10)
W5 (%,x) = W5 (g1 (%,%)% + g2(%,x)?)., (4.11)

Wi(x) = Wi(IVB'[Z + VB2 + [VB312 +|VB*2). (4.12)

Im weiteren Verlauf wird auch folgende verkiirzende Schreibweise verwendet:

w(x, %) = O(x, X)¥5(x,X). (4.13)

4.1.3 Variationsrechnung

Das Energiefunktional E(u,v) wird im Folgenden mittels Variationsrechnung mini-
miert. Hier werden die Euler-Lagrange-Gleichungen zu Hilfe genommen. Dafiir wer-
den die partiellen Ableitungen der zu integrierenden Funktion nach w,v, den B! und

sowie B;Z benotigt. Da die Energie minimiert werden soll, konnen gemeinsame

konstante Faktoren aller Terme vernachlassigt werden.

Fu =2 W (x) (fx, u+ fx, v+ f2)fx,
+ ocf)J O (x, X)¥5(x,%X)2g1 (x,X)g1,, (x, X) dX
XEN (x)
+ ocSJ O (%, x)¥5(%,%)2g1 (X, x) g1, (X, x) dX
XEN (x)
=2 W] (x)(fx, u+ fx,v+ f2)fx,
+ 20 (w(x, X) +w(x, x))(u(x) —u(x))dx
+ 208 ((w(x %R (x) + w(x,x)B' (%)) (%1 —x1)

+ (W(x, %) B2(x) + Wk, x)B% (X)) (k2 — x2)) dX (4.14)
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Fu =2 W] () (Fx; w4 Fx, v+ F2) fx,

= 2 W (%) (Fyy Ut Fryv + F2) fx,

+ 20(6J (w(x, X) + w(X,x))(v(x) —v(X)) dx
XEN (x)
+2a8 [(w(x,%)B>(x) + W(%, x)B> (X)) (R —x1)
XEN (x)
+ (wix, %P (x) + Wk, x)B* (X)) (k2 —x2)] d& (4.15)
Hierbei sind g, und g, die Ableitungen von g nach u und v, mit g, (x,X) = —1,

gu(X,x) =1, gy(x,X) = —1 und g, (X,x) = 1.

Das letzte Integral in F,, und F,, bezieht mit ein, dass ein Pixel nicht nur als Zentrum
seiner eigenen Umgebung berticksichtigt werden muss, sondern auch alle Umgebun-
gen, in denen es liegt, einen Einfluss haben. Dies sind genau die Umgebungen der
Pixel, die in der Umgebung des zentralen Pixels liegen.

Dartiber hinaus sind die Ableitungen nach ' und B? gegeben durch

Fg1 = ad JAEN( | O (x, X)¥5(x,%)291 (x,f()g”51 (x,X) dXx

= 2oc6J w(x, %)B"(x) (&1 —x1)? dxk
XEN (x)

- 20€5J wix, %) (%1 —x1) (w(X) —u(x) — BZ(x) (X2 — x2)) d&, (4.16)
x€N (x)

X

Fp2 = océJ CD(x,f()\l’é(x,f()Zm(x,f()g”sz (x,X) dX
XEN (x)

= z(xsz w(x, %)B%(x)(R2 —x2)? dx
XEN (x)

—20¢6J wix, %) (%1 —x1) (w(&) —u(x) = B (x) (&1 —x1)) dX. (4.17)
XEN (x)
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Die Ableitungen nach B3 und B* lauten dementsprechend:

Fgs = ocf)J O (x, X)¥5(x,%)2g2(x, 2)9253 (x,X) dXx
£EN (x)

= zoasJ w(x, X)B3(x) (%1 —x1)? dX
XEN (x)

—2“5J Ww(x, %) (&1 —x1)(v(X) —v(x) — BT (x) (k2 —x2)) dX, (4.18)
XEN (x)
Fpa = aéJ O (x, X)¥5(x,%X)2g2(x,X)g2 , (x,X) dX

%EN (x) B

= 2a6J wix, X)B*(x)(R2 — x2)?* dX
XEN (x)
- ZocSJ w(x, %) (%1 —x1) (v(X) —v(x) — B> (x) (%1 —x1)) dk. (4.19)
XEN (x)

Und schliefslich sind die Ableitungen nach Bl und [5}(2 durch

X1

Fpi =2Y¥3(x)By,
Fpi, = 2v¥3(x)B;

X2 7

(4.20)

gegeben furi e {1,..., 4}
Die zuvor berechneten partiellen Ableitungen konnen nun in die allgemeinen Euler-
Lagrange-Gleichungen eingesetzt werden,

Fu - ax1 Fuxl - aszuXZ - O/ (4.21)
Fv - a)q va1 - aXzFsz = O/ (4.22)
(4-23)

fiir u,v, sowie
Fgi —0x, FBix] — aXZFB;Z =0, (4.24)
(4.25)

fiir B%,1 € 1,...,4 mit den Randbedingungen n" V3 = 0.
Dies liefert:

19
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0 =Y7i(x)(fx,u+ fx,v+ )y,

A

+od J (w(x, %) +w(k,x)) (u(x) —u(x)) dx
XEN (x)

+ocsj (wx, %)B" () + Wik x)B (§)) (&1 —x1)
XEN (x)
T (wix 0)B2(x) + Wk x)B(X)) (R2 — x2) dX,
und
0 =W (x)(fx,u+ fx,v+ f2)fx,

+066J (w(x, X) + w(X,x))(v(x) —v(X)) dx
XEN (x)

+oczsj (wix, %)% (x) + Wik, x)B3(R)) (%1 —x1)
XEN (x)
+ (W6 R)BY () + Wik x)BH (X)) (k2 —x2) d,
sowie fiir die B':
0 =—div(¥3(x)VB' (x))

—|—20c6J w(x, %)B (x) (%1 —x1)? dXk
X€N (x)

208 | wleR)(E ) (W) - ulx) - B X%z~ x2)) i,
XEN (x)

0 =— div(¥5(x) VB*(x))

—|—20c6J w(x, %) B2 (x) (%2 — x2)? dX
XEN (x)

—2a6j W %) (%2 —x2) (WE) —wlx) — B (x) (%1 —x1)) dk,
XEN (x)

0 =— div(¥3(x) VB> (x))

—|—20c6J w(x, X)B3(x) (%1 —x1)? dX
XEN (x)

—20¢5J w(x, %) (%1 —x1) (V(&) —v(x) = B*(x) (%2 —x2)) dX%,
XEN (x)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)
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0 = div(W} (x) VB (x))

+ 20(6J w(x, X)R4(x) (k1 — x1)% dk
XEN (x)

—Zocéj w(x, %) (%2 —x2) (v(X) —v(x) — B> (x) (k2 — x2)) dk. (4.31)
XEN (x)

4.1.4 Diskretisierung

Im Folgenden werden die Funktionen fiir die Berechnung diskretisiert. Zur besseren
Lesbarkeit sind i und j Vektoren welche die Position eines Pixels angeben (i = (i1, i)'
und j = (j1,j2) 7). Fiir u und v erhalten wir somit:

0 =1, (Fry i + Fay Vi + 2 ) Fxy,

+ o Z (Wi,)' +eri)(ui — LL]')
JEN(1)

+ « dq Z [(wiiB +wj,iBi)G1 —i1) + (wiBT +w;,iB7) (G2 —12)]  (432)
JEN(1)

0 :\y{i (fxnui + fXZiVi + fli)fXZi

toady Y (Wi +wii)vi—vy)
JEN(1)

+ 04 Z [(wi;B? +Wj,i[3]$))(j1 —11) + (wi; B} +Wj,if’?)(j2 —i2)]  (4-33)
JEN(1)

Bei den Funktionen p* muss der Term div(V} (x)VB*(x)) diskretisiert werden:

div(W5(x)VB*(x)) = (Y3(x)BY, ), + (Y(0BY,),,
Lo+
= > (323’> (BY —BY), (4-34)
JEN2(1)

wobei N;(i) die direkt an das Pixel i angrenzenden Pixel bezeichnet (links, rechts,
oben, unten). Hierbei wurden die B])jj ebenso wie die Ableitungen (¥} (x) [31; )x; mittels
finiter Differenzen approximiert.

21
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Bei W3(s?) =s? — ‘-l’g(sz) = 1 entspricht dies dem Laplace-Operator.
Somit erhalten wir folgende Gleichungen fiir R, .. p*

0== > )(lyﬁzw> (B] —B1)

jEN, (i

+ o by Z wiiBi (1 —11)?

JEN(1)
—adi Y Wl] — i)y —wi — BT (2 — 12)), (4-35)
JEN(1
(AR
_ 2
oo ¥ (] )(s —)
JEN2 (1)
tosy ) owiBiz —i2)?
JEN(1)
—adi Y wll — 1)y —wi—B{ (i —1)), (4-36)
JEN (1
VAR
_ 3
0= _Z_( 5 )(B —B?)
JEN2 (1)
+adi Y wiiBi(h—in)?
JEN(1)
— o by Z wii(G1 — i) —ug — B (G2 —12)), (4-37)
JEN(1)
(AR
_ P33 aa
0= ' Z ( 2 )(B — B3 )
JEN2 (1)
+ody Y wiiBia—1i2)?
JEN(i)
— o Oy Z wij(i2 —i2)(wy —ug — B3 (1 — 1)) (4-38)
JEN(1)

4.1.5 Loser

Um die ui, viund die By, k € {1,2,3,4} zu berechnen, werden die Gleichungen wie
in 3.4 auf Seite 9 nach den zu berechnenden Werten umgeformt. Dabei definiert N (i)
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die Umgebung eines Pixels zur Berechnung des diskreten Laplace-Operators analog zu
3.4. Dies sind also die direkt an ein Pixel angrenzenden Pixel (im zwei-dimensionalen
maximal 4). Aus Griinden der Darstellung wird im Gegensatz zu 3.4 hier die Jacobi-
Methode verwendet. Die anderen Methoden konnen analog zu 3.4 berechnet werden.
Zur weiteren Vereinfachung der Darstellung wird von h,, = h,, = 1 ausgegangen.

(k+1) _ 1
W’ fz +0(5 Z]EN Wi,j +Wj,i)

X]‘L

( - wh (fxzi\)g ) + fzi)fm i

Uy

+ « 03 Z (Wi,j -l—Wj,i)u]' (k)

JEN(i)
—« & Z [(wi;B] +Wj,if3]] )(G1 —11) + (wi ;BT +Wj,isz)(j2 —12)] )
JEN (i)
(4-39)
Vi (kD) = 1
W F2 o8 Y jeni) (Wi +wii)
<_‘~1/1i( xﬂug ) + fzi)fxzi
+ 51 Z (Wi,j + Wj,i)Vj (k)
JEN(1)
— o O Z [(wi;B3 +Wj,if3j3)(il —11) + (wi; B} +Wj,i[3?)(]'2 —1i)] )
JEN(1)
(4.40)

. . (k) /. (k)
e @8 seny Wi — i) —wi = BE T (2 —12)) + 7Y Xien, (i) (W5, + ¥5,)B1

i 081 ) sen(iy Wi —11)? + 3V Yo (Y5 Y3

(4.41)

k)
S 0 8i 2 ey Wijl2 —i2)(w —ui— BI™M G =)+ 3v Y iensi J(Wh Vs )p2!

3 =
' o Oy ZjeN(i)Wi,j(]z—lz) 2YZleNz (W’ +W§i)

(4-42)

() .
g3 _ o8 Y seny Wi (1 — i) (v —vi =BT (G2 —12)) + 3¥ Zien, 1) (W5, + V3, 3"
' 06512561\1(1)‘/\%,5()1 —11)2 + ZYZLGNZ (W3 +‘P§i)
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(4-43)

. G )
ooy 08 Y sen Wijliz —12)(vy —vi — B3 G =)+ 3 Zieny ) (Y5, + 35,8

' o 8i Y jen(y Wijli2 —12)2 + 3y Zien, i) (W5, +¥5,)

(4-44)

Somit werden die u, v und die (3; iterativ berechnet. Hierbei bezeichnet (k) das Ergeb-
nis des vorherigen Rechenschritts und (k + 1) das neue Ergebnis. Dabei werden zuerst
einige Iterationen die u und v mit konstanten (3; Werten berechnet und anschlieflend
werden die u und v Werte konstant gehalten und die 3; berechnet. Dieses Vorgehen
wird hierbei wiederholt ausgefiihrt. Naheres dazu in 4.2 auf Seite 25.
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4.2 IMPLEMENTIERUNG

Im Folgenden werden einige wichtige Aspekte zur effizienten Implementierung be-
handelt und ein kurzer Einblick in das Vorgehen gegeben. Auch soll dieses Kapitel
helfen eine Vorstellung vom Ablauf des Algorithmus und der Berechnung der Werte
zu bekommen.

4.2.1  Ablauf

Es gibt insgesamt sechs verschiedenen Variablen pro Pixel die bestimmt werden sol-
len, u, v, B1, B2, B3 und B4, wobei die 3; letztlich nur zur Berechnung von u und v
benotigt werden und somit nicht zum Ergebnis direkt gehoren. Alle Variablen hiangen
dabei von den wy; beziehungsweise wj; ab, welche wieder von allen Variablen abhéin-
gen. Um nichtlineare Abhingigkeiten aufzulosen werden die wy; eine gewisse Anzahl
von Iterationen konstant gehalten und erst dann wieder aktualisiert [24][25][26]. Siehe
dazu Abbildung 4.1 auf Seite 26.

Die Berechnung besteht somit aus mehreren Iterationen, wobei jede Iteration aus zwei
Teilen besteht. Zuerst wird die Berechnung von u und v ausgefiihrt und danach die
Berechnung der B'. Jede der Berechnungen von u, v und den B besteht dabei wie-
derrum aus mehreren Sub-Iterationen, wobei in diesen jeweils eine gewisse Anzahl
von Sub-Iterationen lang die w;; konstant gehalten werden. Dies kommt daher, dass
in jeder Sub-Iteration ein lineares Gleichunssystem geldst wird. Dies geschieht entwe-
der zur Berechnung der u, v oder der B'. Somit wird das urspriinglich nichtlineare
Problem durch eine Serie von Berechnungen linearer Gleichungssysteme gelost.

4.2.2  Vorausberechnung der wi;

Fiir die Berechnung von u, v und den B! werden die wi;j benotigt und diese sind dabei
einige Sub-Iterationen konstant. Somit empfiehlt es sich die wy; fiir alle i zu berech-
nen und in einem Array zu speichern. Beim Abruf von w;i; muss somit im Array an
Position i der j-te Wert abgerufen werden. Mit den wj; wird analog verfahren. Der
Speicher zur Speicherung der wi; und wj; sollte dabei nicht fiir jede Iteration neu al-
lokiert werden, sondern einmal zentral allokiert werden und dann fiir alle Iterationen
genutzt werden. Dies vermeidet die Fragmentierung des Heaps und erhoht, durch das
Wegfallen unnotiger Allokierungen und Deallokierungen, die Geschwindigkeit.
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Abbildung 4.1: Ablaufdiagram des Algorithmus




4.2 IMPLEMENTIERUNG

4.2.3  Praktische Implementierung

Im Rahmen dieser Arbeit wurde das neue Verfahren implementiert. Als Programmier-
sprache kam dabei C++ zum Einsatz. Die Vorteile von C++ gegentiber C liegen dabei
in der Moglichkeit der modularen Struktur und Objekorientierten Programmierung
sowie in der Moglichkeit, mittels Templates einige Operationen zur Compilezeit zu
berechnen und dennoch einfach Anderungen vornehmen zu kénnen (z.B. wurde die
Grofle der Umgebung, N (i), auf diese Weise implementiert).

Fiir die Berechnung der wy; und wj; wurden Buffer aus einem einmalig allokierten
Memory-Pool verwendet, um die Geschwindigkeit und Effizienz zu erhohen. Alle
Teile des Algorithmus wurden nah an der theoretischen Arbeit implementiert. Zur
schnelleren Konvergenz der Berechnung wurde das Verfahren mittels SOR implemen-
tiert mit einem Relaxationsparameter w = 1,99. Dieser Wert wurde experimentell als
bester Wert festgestellt. Die implementierte Klasse wurde moglichst frei von Abhan-
gigkeiten gehalten und benutzt nur Standard Libraries.
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5. EXPERIMENTE

5.1 FEHLERMASSE

Fiir die Experimente werden im Folgenden einige Begrifflichkeiten und Mafie zur Be-
urteilung der Genauigkeit der Algorithmen eingefiihrt. Hierbei bezeichnet ,Ground-
Truth” den (anndhernd) exakten optischen Fluss, der bei Benchmarks fiir Trainings-
und Evaluierungszwecke gegeben ist. Der berechnete Fluss in x1- bzw. x;-Richtung
wird im Folgenden als u bzw. v und im der Ground Truth Fluss als ugt bzw. v be-
zeichnet. Die im Folgenden vorgestellten und spater fiir die Experimente verwendeten
Fehlermafie sind:

e Winkelfehler [14]

e Absoluter Fehler [14]

5.1.1  Winkelfehler

Das erste Kriterium stellte der Winkelfehler dar [14]. Im Englischen wird dieses Fehler-
maf als ,Angular Error” bezeichnet und im Folgenden damit als ,AE” abgekiirzt. Die-
ses Fehlermaf3 berechnet den Winkel im 3D Raum zwischen (u,v,1) " und (ugT,vgT,1) .

T+u-ugt+v-vgr

(5.1)
VI+uZ v 1+ ul v

Zur Beschreibung der Abweichung eines Bildes wird das Mafs RX verwendet. RX be-
zeichnet den Prozentsatz an Pixeln die einen Fehler von mehr als von x besitzen. So
bedeutet R2° = 5,00 beispielsweise, dass 5 Prozent aller Pixel mehr als 2° vom Winkel
der Flussvektoren der Ground Truth abweichen.

Des Weiteren wird der durchschnittliche Winkelfehler bestimmt.

Zu beachten ist, dass dieses Fehlermafs durch die 1 in der Zeitkomponente relativ
zur Grofse der Verschiebung ist. Bei kleineren u und v fallen Fehler weniger stark ins
Gewicht als bei grofien Werten von u und v.

AE = cos™!
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5.1.2 Endpunktfehler

Der absolute Fehler, im Englischen , Absolut Error” oder ,Endpoint Error” , abgekiirzt
mit “EE”, gibt die absolute Abweichung von (u,v)" zu (ugT,veT) ' an [14].

EE = \/(u—uGT)2+(V—VGT)2 (5-2)

Analog wie beim Winkelfehler bezeichnet RX die prozentuale Anzahl an Pixeln, deren
Fluss um mehr als X vom Ground-Truth-Fluss abweicht.

Der absolute Fehler ist stiarker praxisrelevant, da er nicht nur die Winkelungenauigkeit
angibt, sondern die tatsdchliche Differenz, was z.B. bei der Kollisionsschdtzung in der
Automobilindustrie extrem wichtig ist.

Als weiteres Maf$ wird der durchschnittliche absolute Fehler bestimmt.

5.2 BENCHMARKS

Zur Evaluierung des Algorithmus werden Sequenzen aus dem ,Middelburry Optical
Flow Evaluation” Benchmark [14], die Sequenzen , Translating Trees” (TT) und , Diver-
ging Trees” (TD) aus [27] und ,,Office” aus [28] verwendet. Die ,Middelburry Optical
Flow Evaluation”, im Folgenden abkiirzend als ,Middelburry Benchmark” bezeichnet,
ist ein Benchmark zum Vergleich verschiedener Algorithmen zur Bestimmung des op-
tischen Flusses. Hierbei kommen sowohl synthetische als auch unter kontrollierten Be-
dingungen aufgenommene echte Bilder zum Einsatz. Es gehort zu den bekanntesten
Benchmarks fiir Algorithmen zur Bestimmung des optischen Flusses, beschriankt sich
allerdings nicht nur auf Sequenzen mit kleinen Bewegungen. Im Folgenden werden
die verwendeten Sequenzen abgebildet und die Griinde fiir die Auswahl der einzel-
nen Sequenzen ausgefiihrt.
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Tabelle 5.1: Middleburry Sequenz , RubberWhale”

Ground Truth

Tabelle 5.2: Middleburry Sequenz , Urban3z”

Ground Truth

Tabelle 5.3: Sequenz , TT*
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Ground Truth

Tabelle 5.4: Sequenz , TD”

Ground Truth

Tabelle 5.5: Sequenz ,,Office”



5.3 DURCHFUHRUNG

Die Sequenzen ,RubberWhale” (Tabelle 5.1) und , Urban3” (Tabelle 5.2) aus dem Midd-
leburry Benchmark sollen den Vergleich der Verfahren im Umgang mit realistischeren
Begebenheiten moglich machen. Bei der Sequenz , RubberWhale” bewegen sich die
Gegenstande im Vordergrund hauptsédchlich nach links, wobei sich der kreisformige
Gegenstand dabei leicht dreht, was an den verschiedenen Farben in der GroundTruth
sichtbar wird. Der orangene Teil des Hintergrunds und der holzerne, gitterformige
Teil bewegen sich aufeinander zu. In der Sequenz ,Urban3” bewegen sich die Geb&du-
de nach unten und werden dabei ein wenig nach links gedreht. Die Grundbewegungs-
richtung aller Gebdude ist dabei dhnlich, es handelt sich somit im Gegensatz zu , Rub-
berWhale” um eine statische Szene, bei der die Kamera bewegt wird. Beide Sequenzen
enthalten Diskontinuitdten im Flussfeld, deutlich erkennbar beispielsweise bei , Rub-
berWhale” bei den Gegenstinden im Vordergrund, oder bei ,Urban3” der Ubergang
zwischen Gebauden und Himmel. Des Weiteren treten bei beiden Sequenzen Uberde-
ckungen auf und , Urban3” besitzt, im Gegensatz zu den anderen Sequenzen, grofiere
Fliisse. Wichtig sind von diesen Eigenschaften vor allem die Diskontinuitdten im Fluss-
feld, da der neue Ansatz entwickelt wurde, um diese besser zu erhalten als dies beim
Algorithmus von Horn und Schunck der Fall ist. Darum handelt es sich bei diesen
Sequenzen um die zur Beurteilung essentiellen Sequenzen.

Die Sequenzen ,TT”, ,TD” und ,Office” wurden gewdhlt, da diese einen gleichma-
Bigen und kleinen Fluss besitzen. Dabei stellen , TD” und ,Office” einen Fluss durch
eine Vergrofierung dar, und , TT” einen Fluss durch eine einfache Verschiebung des
Bildes nach rechts. Es gibt somit keine Verdeckungen, Diskontinuitdten oder sonstige
Storungen im Fluss, die das Verfahren negativ beeinflussen konnten. Diese Sequen-
zen sollen eine Betrachtung der Algorithmen in optimalen Féllen, zumindest fiir den
Algorithmus von Horn und Schunck, darstellen.

5.3 DURCHFUHRUNG

Zur Bestimmung der Fehlerwerte werden die zu vergleichenden Algorithmen nach-
einander auf die Bildsequenzen angewendet und im Anschluss die Ubereinstimmung
der Ergebnisse mit der Ground Truth ermittelt. Es werden nur Bereiche berticksichtigt,
in denen der optische Fluss berechnet werden kann, sofern diese in der Ground Truth
oder auf anderem Wege als solche Bereiche gekennzeichnet sind.

Es werden die Fehlermafie und Kriterien aus den vorhergehenden Abschnitten (Win-
kelfehler und Endpunktfehler) verwendet. Es wurden beide Algorithmen selbst mit
dem SOR-Verfahren implementiert und diese Implementierungen fiir die Evaluation
benutzt. Bei beiden Algorithmen wurden zusétzlich die Eingabebilder mittels eines
Gauss-Filters vorgeglattet.
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Die Parameter beim Horn und Schunck Verfahren sind:

Standardabweichung o fiir Vorglattung: 1,2

Gewichtung Glattungsterm o: 2000

Anzahl Iterationen: 2000
¢ Relaxationsparameter w: 1,95
Die Parameter beim neuen Verfahren sind:
¢ Standardabweichung o fiir Vorgldttung: 1,2
* Gewichtung Glattungsterm o: 35
* Gewichtung Glattungsterm der B* (y): 2000
e Anzahl Iterationen: 6
¢ Anzahl Sub-Iterationen: 15
e Anzahl Iterationen mit konstanten wy ;: 8
* Relaxationsparameter w: 1,99

Es wurden fiir alle Sequenzen die gleichen Parameter verwendet, wobei die optimalen
Parameter experimentell bestimmt wurden. Die Berechnungszeit fiir die Sequenz ,, Ur-
ban3” (640 x 480 Pixel) betrug beim Verfahren von Horn und Schunck ungefdhr 12,7
Sekunden, beim neuen Ansatz ungefdhr 40,4 Sekunden. Die Zeiten wurden in einer
virtuellen Maschine mit einem Einkernprozessor mit 1,8 GHz Grundtakt gemessen.

5.4 ERGEBNISSE

Im Folgenden werden die Ergebnisse der Evaluation dargestellt und diskutiert. Da-
bei werden anhand der Testsequenzen einige Vor- und Nachteile des neuen Ansatzes
aufgezeigt.

Anhand der Testsequenz , RubberWhale” (Tabelle 5.8) lassen sich die Vorteile des neu-
en Ansatzes klar erkennen. Die Kanten im Fluss sind klarer und weniger verschwom-
men und die kleinen Strukturen im Hintergrund (oben links) sind besser erhalten.
Dies ist auch am runden Gegenstand in der Bildmitte erkennbar. Hier ist die Form im
Fluss im Gegensatz zu Horn und Schunck deutlich zu erkennen inklusive des Lochs
im Gegenstand.

An der Testsequenz ,,Urban3” (Tabelle 5.9) ldsst sich die bessere Erhaltung von Kanten
im Fluss ebenfalls gut erkennen. Vor allem sichtbar wird dies im oberen mittleren Be-
reich des Bildes, in dem man eine deutliche Kante im Fluss erkennen kann. Generell



5.4 ERGEBNISSE

Horn und Schunck Neuer Ansatz

Fehlermaf3 R2,5 ‘ Rs5,0 ‘ R10,0 ‘ R2,5 ‘ Rs5,0 ‘ R10,0

RubberWhale ||| 80,97 | 54,76 | 34,74 || 81,72 | 46,13 | 17,58

Urban3 94,64 | 83,88 | 69,26 || 91,06 | 82,55 | 67,60

Office 66,16 | 29,08 | 10,33 || 85,15 | 54,82 | 18,64

TT 70,52 | 12,02 | 5,96 || 68,74 | 21,92 6,46

TD 46,23 | 27,68 | 15,50 || 70,36 | 29,38 7,06

Tabelle 5.6: Winkelfehler des Horn und Schunck Algorithmus und des neuen Ansatzes im
Vergleich.
Horn und Schunck Neuer Ansatz

Fehlermaf3 Ro,5 ‘ R1,0 ‘ R2,0 ‘ Average ‘ Ro,5 ‘ R1,0 ‘ R2,0 ‘ Average
RubberWhale || 26,73 | 13,04 | 4,30 0,46 || 13,84 | 7,03 | 3,07 0,35
Urban3s 87,50 | 75,65 | 66,63 5,22 || 84,68 | 76,11 | 59,96 5,38
Office 0,86 | 0,02 | 0,00 0,11 1,76 | 0,08 | 0,00 0,15
TT 8,23 | 3,55| 0,26 0,31 || 10,68 | 2,28 | 1,84 0,31
TD 9,00 1,44 0,00 0,16 4,99 3,54 0,05 0,17

Tabelle 5.7: Endpunktfehler des Horn und Schunck Algorithmus und des neuen Ansatzes im
Vergleich.

sind die Strukturen besser und klarer als mit dem Verfahren von Horn und Schunck
zu erkennen. Zugleich wird hier eine Schwiéche beider Verfahren sichtbar, der Um-
gang mit grofien Verschiebungen. Diese konnen von beiden Verfahren nicht korrekt
ermittelt werden, hier wire eine Berechnung des Flusses innerhalb eines Pyramiden-
schemas notwendig [29].

Nachteile des neuen Verfahrens lassen sich deutlich an den Sequenzen , TT” (Tabel-
le 5.11), ,TD” (Tabelle 5.12) und ,Office” (Tabelle 5.10) erkennen. In diesen Sequen-
zen wurde der Fluss , kiinstlich” erzeugt, im Falle von , TD” und , Office” durch eine
Vergrofierung eines Ausschnitts des Bildes und in , TT” durch Verschiebung. Somit
entsprechen in diesen Bildern Kanten im Bild nicht unbedingt Kanten im Fluss wie
es in vielen realen Sequenzen der Fall ist. Da dies Korrelation zwischen Kanten im
Fluss und Kanten im Bild eine zentrale Annahme des neuen Ansatzes ist, kann man
hier deutlich die Kanten des Bildes auch im Fluss erkennen. In diesem Fall ist dies
jedoch ein ungewollter Effekt, da eine moglichst grofie Glattheit des Flusses die besten
Ergebnisse erzielt.
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Horn & Schunck
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Ground Truth Horn & Schunck Neuer Ansatz

Tabelle 5.11: Ergebnisse der Sequenz , TT”

Ground Truth Horn & Schunck Neuer Ansatz

Tabelle 5.12: Ergebnisse der Sequenz , TD”







6. SCHLUSS

In dieser Arbeit wurde der klassische Variationsansatz von Horn und Schunck mittels
eines nicht-lokalen bilateralen Glattungsterm zweiter Ordnung und einer robusteren
Konstanzannahme erweitert, implementiert und getestet. Dabei hat sich gezeigt, dass
diese Erweiterungen Vor- und Nachteile haben. So werden Kanten im Fluss, sofern
diese eine Korrelation zu Kanten im Bild haben, besser erhalten als beim Verfahren
von Horn und Schunck. Das Hauptproblem des alten wie des neuen Ansatzes stellen
grofie Verschiebungen dar, die durch die Konstanzannahme nicht abgedeckt werden.
Hier wére die Einbettung in ein Pyramidenschema notwendig, wie zum Beispiel in
[21] beschrieben. Eine weitere Verbesserung konnte die Verwendung von Glattheits-
termen hoherer Ordnung, als die verwendeten, darstellen. Auch konnte man den Al-
gorithmus um einen Datenterm mit einer hoheren Robustheit unter Beleuchtungsan-
derungen erweitern. Verbesserungen der Laufzeit lielen sich durch eine effizientere
Implementierung erzielen.
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