
Institut für Visualisierung und Interaktive Systeme
Universität Stuttgart
Universitätsstraße 38
D - 70569 Stuttgart

Bachelorarbeit Nr. 228

Nicht-lokale Glattheitsterme
zweiter Ordnung zur

Berechnung des optischen
Flusses mit Variationsansätzen

Simon Rühle

Studiengang: Softwaretechnik

Prüfer/in: Prof. Dr.-Ing. Andrés Bruhn

Betreuer/in: Prof. Dr.-Ing. Andrés Bruhn

Beginn am: 01. Juni 2015

Beendet am: 01. Dezember 2015

CR-Nummer: G.1.6, G.1.8, I.2.10, I.4.8





A B S T R A C T

In dieser Arbeit wird eines der grundlegenden Probleme des Bildverstehens, der opti-
sche Fluss, behandelt. Der optische Fluss gibt die Verschiebung eines Pixels von einem
Bild zum nächsten Bild an, was einer Bewegung der Kamera oder von Gegenständen
in der Realität entspricht. Der optische Fluss hat eine große Bedeutung für alle Anwen-
dungsbereiche, in denen die Vorhersage oder Erkennung von Bewegungen wichtig ist,
beispielsweise bei Fahrerassistenzsystemen im Auto. Zu Beginn wird eine Einführung
in die Bildverarbeitung gegeben, sowie einer der klassischen Algorithmen zur Berech-
nung des optischen Flusses eingeführt, der Algorithmus von Horn und Schunck. Die-
ser wird im Anschluss mittels bilateraler, nicht-lokaler Komponenten erweitert, um
dessen Schwächen zu beseitigen. Im Anschluss wird der neue Ansatz mit dem von
Horn und Schunck auf Basis einiger Bildsequenzen evaluiert.

i





I N H A LT S V E R Z E I C H N I S

1 einleitung 1

1.1 Einleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Überblick über das Themengebiet . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Ziel der Arbeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Aufbau der Arbeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 grundlagen 3

2.1 Bild . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Sampling und Quantisierung . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Optischer Fluss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4 Partielle Ableitung und Gradient . . . . . . . . . . . . . . . . . . . . . . . 4

2.5 Divergenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.6 Laplace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.7 Taylorapproximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 basisverfahren 7

3.1 Optischer Fluss nach Horn und Schunck . . . . . . . . . . . . . . . . . . 7

3.2 Variationsansätze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Diskretisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4 Löser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4.1 Jacobi-Verfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4.2 Gauß-Seidel Verfahren . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4.3 SOR-Verfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5 Bilateral Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 neuer ansatz 15

4.1 Theoretische Herangehensweise . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Quadratische Energiefunktion . . . . . . . . . . . . . . . . . . . . 15

4.1.2 Subquadratische Energiefunktion . . . . . . . . . . . . . . . . . . 16

4.1.3 Variationsrechnung . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.4 Diskretisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.5 Löser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Implementierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Ablauf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.2 Vorausberechnung der wij . . . . . . . . . . . . . . . . . . . . . . 25

4.2.3 Praktische Implementierung . . . . . . . . . . . . . . . . . . . . . 27

5 experimente 29

5.1 Fehlermaße . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.1 Winkelfehler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.2 Endpunktfehler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

iii



iv Inhaltsverzeichnis

5.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Durchführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.4 Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 schluss 39

7 erklärung 41

8 literatur 43



1. E I N L E I T U N G

1.1 einleitung

Die Verwendung von Kameras, nicht nur zur Aufnahme von Bildern und Videos, son-
dern auch als Sensoren, nimmt stetig an Verbreitung zu. Dieser Trend zieht sich nicht
nur durch wissenschaftliche Gebiete, sondern auch durch industrielle Anwendungen,
sowie Anwendungen aus dem Automotive Bereich. Auch im Bereich der Endverbrau-
cherprodukte nimmt die Verbreitung zu.
Um einige Beispiele zu nennen, sei die Steuerung von Spielen über spezielle Kameras
erwähnt [1], ebenso wie die Vermessung in der Automatisierungstechnik und die Kol-
lisionsvorraussage in modernen Automobilen [2], bis hin zum vollständig autonomen
Fahren.
Bei den letzteren beiden Anwendungen spielt die möglichst genaue Bestimmung des
optischen Flusses eine besondere Rolle. Mittels des optischen Flusses können Bewe-
gungen zwischen Bildern berechnet werden und somit zur Vorhersage der zukünfti-
gen Position von Objekten in der Szene verwendet werden. Für die Berechnung des
optischen Flusses gibt es zwei grundlegende Herangehensweisen. Die erste ist die Be-
rechnung der Bewegung einzelner markanter Punkte. Bei der zweiten Herangehens-
weise wird die Bewegung jedes Punktes im Bild bestimmt, es entsteht ein dichtes
Flussfeld („Dense Optical Flow“). Somit liefern Methoden dieser Herangehensweise
für jeden Punkt im Bild einen Vektor, der angibt, wo sich dieser Punkt im nächsten
Bild befindet. Da eine möglichst genaue Bestimmung des Flusses in jedem Punkt die
größte Flexibilität und Genauigkeit bietet und da somit auch für kleine und eventuell
nicht markante Objekte der Fluss berechnet wird, behandelt diese Arbeit die Bestim-
mung von dichten Flussfeldern.

1.2 überblick über das themengebiet

Eine wegweisende Arbeit auf dem Gebiet der Berechnung des optischen Flusses ist
die Arbeit von Horn und Schunck [3]. In dieser wird das Problem als Energiemini-
mierung, basierend auf einigen Annahmen, aufgefasst. Die Energie besteht dabei aus
einem Daten- und einem Glattheitsterm, die mittels einer Energieminimierung mit glo-
balen, kontinuierlichen Optimierungsverfahren, den sogenannten Variationsansätzen,
durchgeführt wird. Auf Basis dieser Herangehensweise wurden verschiedene andere
Algorithmen vorgeschlagen, die meist auf eine Verbesserung des Datenterms (z.B. [4],
[5]) oder Glattheitsterms (z.B. [6], [7]) abzielen.
Häufige Aspekte sind dabei die Berücksichtigung von Kanten im Bild, die auf Objekt-

1



2 einleitung

grenzen und somit auf eine Änderung des Flusses hindeuten können. Weitere wichti-
ge Aspekte sind das Erreichen einer größeren Robustheit gegen Störungen sowie eine
größere Glättung in homogenen Gebieten. Eine Möglichkeit dafür ist die Verwendung
nicht lokaler Glattheitsterme, wobei in [8] eines der ersten Verfahren für nicht-lokale
Variationsrechnung zu finden ist. Durch die Nicht-Lokalität können lokale Störungen
leichter kompensiert werden.
Eine weitere Möglichkeit zur Verbesserung ist eine Erhöhung des Grades der Glatt-
heitsforderung und die Verwendung von Glättungstermen, die ähnlich einem bilate-
ralen Filter sind [9]. Diese glätten relativ zu einer durch die Umgebung bestimmten
Ebene, wodurch lineare Übergänge im Flussfeld im Vergleich zu einer absoluten Glät-
tung, besser erhalten werden.
Bilaterale Filter [10] wurden hierbei als Ansatz für einen Glattheitsterm verwendet, da
diese sowohl räumliche Informationen, also die Entfernung zum Mittelpunkt, als auch
die farblichen Informationen in die Glättung miteinbeziehen und somit Kanten besser
erhalten.
Zur Berechnung der minimalen Energie werden oft Variationsansätze [11] verwendet,
es sind jedoch auch andere Verfahren möglich, wie in [12] oder [13] beschrieben.

1.3 ziel der arbeit

In dieser Arbeit soll das Verfahren von Horn und Schunck [3] mittels eines Glattheits-
terms höherer Ordnung und einer nicht-lokalen Umgebung zur Glättung erweitert
werden, ähnlich zu [9]. Des Weiteren soll die Robustheit der einzelnen Terme durch
geeignete Funktionen erhöht werden. Eine ausführliche Evaluierung mittels Testse-
quenzen, unter anderem aus dem Middleburry [14] Benchmark, soll zeigen, ob und
wie viel der neue Term die Genauigkeit der Bestimmung des optischen Flusses in
verschiedenen Szenarien verbessert.

1.4 aufbau der arbeit

Im zweiten Kapitel werden einige Grundlagen und Konventionen zum optischen Fluss
und zur Bildverarbeitung im Allgemeinen erläutert. Kapitel drei erläutert das Verfah-
ren von Horn und Schunck, das danach in Kapitel vier durch einen nicht-lokalen
Glattheitsterm zweiter Ordnung verbessert werden soll. Kapitel vier gibt auch einige
Hinweise zur Implementierung des neuen Verfahrens. Das fünfte Kapitel behandelt
Experimente mit dem neuen Verfahren und vergleicht dieses mit dem Ursprungsver-
fahren von Horn und Schunck. Das letzte Kapitel fasst die Erkenntnisse und Ergebnis-
se kurz zusammen und gibt einen Ausblick auf mögliche Verbesserungen.



2. G R U N D L A G E N

Das folgende Kapitel behandelt einige Grundlagen der Bildverarbeitung im Allgemei-
nen, sowie einige Grundlagen zum Optischen Fluss. Des Weiteren werden einige Kon-
ventionen und Schreibweisen erläutert.

2.1 bild

Ein Bild ist eine Funktion f, die über einer zumeist zwei-dimensionalen Domäne Ω
definiert ist [15], formal

f : x 7→ Rn, x ∈ Ω ⊂ Rm mit m,n ∈N.

Hierbei ist meist n = 2, das Bild also zweidimensional. Der Definitionsbereich Ω ist
typischerweise von rechteckiger Form, d.h. Ω = (0,Breite)× (0,Höhe).
Istm = 1 so handelt es sich um ein Grauwertbild, beim = 3 um ein Farbbild. Dennoch
sind auch höhere Dimensionen möglich. Rn wird dabei als Wertebereich bezeichnet.
In dieser Arbeit wird, soweit nicht anders erwähnt, von n = 2 undm = 1 ausgegangen,
also von einem zweidimensionalen Grauwertbild.
Das Argument x der Funktion ist hierbei von der Form x = (x1, ..., xm)>, wobei im
Zweidimensionalen x1 die horizontale Koordinate (von links nach rechts) bezeichnet
und x2 die vertikale (von oben nach unten). Die Ableitung der Funktion f an der Stelle
x nach xj wird abkürzend als fxj bezeichnet.

2.2 sampling und quantisierung

Da Bilder nicht kontinuierlich vorliegen, muss die DomäneΩ diskretisiert werden [15].
Die Funktion f ist also nur an bestimmten Punkten gegeben, meist Pixel genannt. Wird
das Bild an diesen Punkten abgetastet spricht man von Sampling.
Der Abstand zweier Pixel wird oft normalisiert, unter Umständen ist dies jedoch nicht
möglich oder sinnvoll. In diesen Fällen muss der Abstand der Pixel mitbetrachtet wer-
den. Der Abstand zwischen zwei Pixeln wird hierbei mit hxi bezeichnet und kann
je nach Anwendung in jeder Dimension verschieden sein. In dieser Arbeit wird zur
Vereinfachung von hx1 = hx2 = 1 ausgegangen, werden andere hxi benötigt, so muss
dies bei der Diskretisierung berücksichtigt werden, das Vorgehen ist jedoch analog.
Da der Wertebereich in der Praxis ebenfalls nicht kontinuierlich ist, wird dieser eben-
falls diskretisiert, was Quantisierung genannt wird. Bei einem Grauwertbild ist dieser
Wertebereich üblicherweise [0, 255] und kann somit in einem Byte gespeichert werden.
Alternativ werden diese Werte für Berechnungen oft auf den Bereich [0, 1] normalisiert.

3



4 grundlagen

2.3 optischer fluss

Der optische Fluss zwischen zwei Bildern gibt idealerweise die Verschiebung jedes Pi-
xels im ersten Bild zu seiner Position im zweiten oder allgemein nächsten Bild an [16].
Der Fluss, also die Verschiebung der Pixel, in x- beziehungsweise x1-Richtung wird
als u bezeichnet, die Verschiebung in y- beziehungsweise x2-Richtung als v. Das ge-
suchte Verschiebungsvektorfeld, das den optischen Fluss beschreibt, ist somit durch
(u(x1, x2), v(x1, x2))>, oder kurz (u(x), v(x))> gegeben. Ein Beispiel hierfür wird in
Abbildung 2.2 gezeigt, in der der Fluss zwischen den zwei Bildern in 2.1 als Pfeile
visualisiert wird.

Abbildung 2.1: Zwei aufeinanderfolgende Bilder aus dem KITTI Benchmark [17][18][19]

Abbildung 2.2: Berechneter optischer Fluss [20]. Visualisierung durch Pfeile

2.4 partielle ableitung und gradient

Wird eine Funktion mehrerer Variablen f(x1, ..., xn) nach einem ihrer Argumente xi
abgeleitet, so entspricht dies der Ableitung der Funktion, als ob xi nur eine Variable
sei und alle anderen xj konstant seien [11]. Diese sogenannte partielle Ableitung von
f nach xi wird als ∂f

∂xi
oder als fxi bezeichnet.

Der Vektor aller möglichen partiellen Ableitungen wird als Gradient bezeichnet

∇f(x1, ..., xn) = (
∂f

∂x1
f, ...,

∂f

∂xn
f)>. (2.1)



2.5 divergenz 5

Der Betrag des Gradienten ∇f ist hierbei gegeben durch

|∇f| =
√
f2x1 + ... + f2xn . (2.2)

Um in einem realen und somit diskreten Bild eine partielle Ableitung berechnen zu
können, wird eine Diskretisierung benötigt. Eine mögliche Diskretisierung ist gegeben
durch

fx1i,j ≈
fi+1,j − fi−1,j

2hx1
(2.3)

fx2i,j ≈
fi,j+1 − fi,j−1

2hx2
. (2.4)

Diese Art der Diskretisierung wird als „zentrale Differenz“ bezeichnet. Alternativ gibt
es noch die „Vorwärtsdifferenz“

fx1i,j ≈
fi+1,j − fi,j

hx1
(2.5)

fx2i,j ≈
fi,j+1 − fi,j

hx2
(2.6)

und die „Rückwärtsdifferenz“

fx1i,j ≈
fi,j − fi−1,j

hx1
(2.7)

fx2i,j ≈
fi,j − fi,j−1

hx2
. (2.8)

Dies sind die üblichen Diskretisierungen, wobei theoretisch weitere möglich wären,
unter Einbeziehung einer größeren Umgebung. Die hier genannten Diskretisierungen
werden zusammenfassend auch als „finite Differenzen“ bezeichnet.

2.5 divergenz

Die Divergenz einer Funktion von n Variablen ist nach [11] definiert als

div(f) = fx1 + ... + fxn . (2.9)

2.6 laplace

Der Laplace-Operator [11] ist definiert als

∆f = div(∇f) = fx1x1 + ... + fxnxn . (2.10)



6 grundlagen

2.7 taylorapproximation

Die Taylorapproximation, welche auf der Taylorreihe aufbaut, nähert eine Funktion in
der Nähe eines bekannten Punktes an [11]. Die Taylorreihe repräsentiert eine Funktion
als unendliche Summe von Werten und Ableitungen an einer Stelle der Funktion und
ist definiert als

f(x) =

∞∑
n=0

f(n)(a)

n!
(x− a)n, (2.11)

wobei a die Stelle, die zur Berechnung verwendet wird, auch Entwicklungspunkt ge-
nannt, ist und n! = n · (n− 1) · ... · 2 · 1 die Fakultät darstellt.
Die Taylorapproximation nähert mittels der Taylorreihe eine Funktion in einem Punkt,
in dem diese nicht bekannt ist, an, indem dafür eine bekannte Stelle und deren Ablei-
tungen verwendet werden. Da in der Praxis nur endlich viele Ableitungen der Funkti-
on im Punkt a zur Verfügung stehen, kann dieses Verfahren den Wert f(x) nur annä-
hern. Somit erhält man für die Taylorapproximation

f(x) ≈
m∑
n=0

f(n)(a)

n!
(x− a)n, (2.12)

mit m ∈ N. Ist die Funktion f hinreichend glatt und werden die Funktionswerte von
f nur in einer kleinen Umgebung von a benötigt, so genügt meist eine Linearisierung
der Funktion, d.h. eine Taylorapproximation mit m = 1.
Im zweidimensionalen Fall ist die Taylorreihe definiert als [15]

f(x) =
∞∑
n=0

(a1∂x1 + a2∂x2)
n f(x)

n!
. (2.13)

Somit ist die zweidimensionale Taylorapproximation gegeben durch:

f(x) ≈
m∑
n=0

(a1∂x1 + a2∂x2)
n f(x)

n!
. (2.14)



3. B A S I S V E R FA H R E N

3.1 optischer fluss nach horn und schunck

Das in dieser Arbeit entwickelte Verfahren berechnet ein dichtes optisches Flussfeld
und setzt dafür auf dem Algorithmus zur Bestimmung des optischen Flusses von
Horn und Schunck auf [3], weswegen dieser nun ausführlich dargestellt wird. Der
Algorithmus basiert hierbei auf zwei Annahmen:

1. Die Konstanzannahme, im Englischen als „constancy assumption“ bezeichnet,
beschreibt die Annahme, dass sich die Helligkeit/Farbe in einem Punkt über die
Zeit nicht ändert. Hierbei bezeichnet die Funktion f(x, t) mit x = (x1, x2)> ∈ Ω
die Helligkeit im Punkt x. Der Bildbereich wird mit Ω bezeichnet. Aus dieser
Annahme folgt

f(x + (u, v)>, t+ 1) − f(x, t) = 0, (3.1)

wobei u die Verschiebung in x1-Richtung und v die Verschiebung in x2-Richtung
bezeichnet. Durch Linearsierung mittels einer Taylor-Reihe erhält man:

f(x, t) = f(x, t) + fx1(x, t)u+ fx2(x, t)v+ ft, (3.2)

und somit nach Subtraktion von f(x, t):

fx1(x, t)u+ fx2(x, t)v+ ft = 0. (3.3)

Dabei ist anzumerken, dass hierbei angenommen wird, dass f hinreichend glatt
ist und der Fluss (u, v)> hinreichend klein, so, dass die Linearisierung eine gute
Approximation an f darstellt.

2. Die Glattheitsannahme, im Englischen als „smoothness constraint“ bezeichnet,
geht davon aus, dass innerhalb des Bildes räumlich nahe Pixel einen ähnlichen
Fluss aufweisen. Dies bedeutet, dass das Feld des Flusses bis zu einem gewissen
Grad glatt ist, sich also nicht jedes Pixel eines Bildes unabhängig von allen ande-
ren umgebenden Pixeln an einen beliebigen Punkt bewegt, sondern benachbarte
Pixel den gleichen Fluss besitzen. Dies macht Sinn, da benachbarte Pixel oft zum
selben Objekt gehören. Dadurch gilt:

|∇u|2 = 0 und |∇v|2 = 0.

In der Praxis wird davon ausgegangen, dass |∇u|2 und |∇v|2 klein sind.

7



8 basisverfahren

Zur Berechnung des optischen Flusses benutzt der Algorithmus von Horn und Schunck
das Prinzip der Energieminimierung. Das Energiefunktional sieht hierbei aus wie folgt:

E(u, v) =
∫

x∈Ω
(fx1(x, t)u+ fx2(x, t)v+ ft)2︸ ︷︷ ︸

Datenterm

+α (|∇u|2 + |∇v|2)︸ ︷︷ ︸
Glattheitsterm

dx. (3.4)

Das Energiefunktional setzt sich somit direkt aus den zwei vorherigen Annahmen
zusammen und bestraft Abweichungen von diesen. Der vordere Term wird hierbei
„Datenterm“ und der hintere „Glattheitsterm“ genannt. Dies kommt daher, dass der
erste Term sich auf die Daten im Bild, also die Helligkeit, stützt, der hintere Term sich
hingegen nur auf die Annahme stützt, dass der Fluss möglichst konstant ist, was zu
einer Glättung führt. Die Gewichtung des Glattheitsterms wird durch den Parameter
α gesteuert. Je größer der Wert für α, desto glatter ist das berechnete Verschiebungs-
vektorfeld.

3.2 variationsansätze

Am Ende des vorherigen Abschnittes wurde ein Funktional gegeben, das minimiert
werden soll. Das Gebiet der Mathematik das sich mit der Minimierung von Funktio-
nalen beschäftigt, ist die Variationsrechnung [11].
Das Problem aus dem vorherigen Abschnitt ist von der Form

E(u, v) =
∫
textbfx∈Ω

F(x,u, v,u ′, v ′)dx. (3.5)

Zur Lösung von Problemen dieser Form können die folgenden Euler-Lagrange-Glei-
chungen verwendet werden:

0 = Fu −
∂

∂x1
Fux1 −

∂

∂x2
Fux2 , (3.6)

0 = Fv −
∂

∂x1
Fvx1 −

∂

∂x2
Fvx2 . (3.7)

Diese stellen notwendige Bedingungen für jeden Minimierer des allgemeinen Funktio-
nals in (3.5) dar. Zudem gelten folgende Randbedingungen:(

Fux1
Fux2

)>
n = 0,

(
Fvx1
Fvx2

)>
n = 0, (3.8)

wobei n der Vektor ist, der über den Bildbereich am Rand hinaus zeigt.
Somit müssen zuerst die Ableitungen der Funktion F bestimmt werden. Im Fall von
Horn und Schunk ist F:

F(x,u, v,u ′, v ′) = (fx1(x, t)u+ fx2(x, t)v+ ft)2 +α(|∇u|2 + |∇v|2) (3.9)



3.3 diskretisierung 9

Somit werden für die Euler-Langrange-Gleichungen folgende Ableitungen benötigt:

Fu = 2(fx1u+ fx2v+ ft)fx1 , (3.10)

Fv = 2(fx1u+ fx2v+ ft)fx2 , (3.11)

Fux1 = 2αux1 , (3.12)

Fux2 = 2αux2 , (3.13)

Fvx1 = 2αvx1 , (3.14)

Fvx2 = 2αvx2 . (3.15)

Eingesetzt in die Euler-Lagrange-Gleichungen und nach Kürzung des Faktors 2 erhält
man das folgende gekoppelte System von partiellen Differenzialgleichungen:

0 = fx1(fx1u+ fx2v+ ft) −α∆u, (3.16)

0 = fx2(fx1u+ fx2v+ ft) −α∆v, (3.17)

mit reflektierenden Neumann-Randbedingungen ∇u>n = 0 und ∇v>n = 0.

3.3 diskretisierung

Da Bilder nicht kontinuierlich sind, sondern nur in diskreter Form vorliegen, müssen
die Euler-Lagrange Gleichungen diskretisiert werden. Hierbei gilt i ∈ [1, ...,N]:

0 = fx1i(fx1iui + fx2ivi + fti) −α
∑

j∈N2(i)

(uj − ui), (3.18)

0 = fx2i(fx1iui + fx2ivi + fti) −α
∑

j∈N2(i)

(vj − vi). (3.19)

Der Laplace-Operator ∆ für u und v wird hierbei mittels finiten Differenzen approxi-
miert und N2(i) bezeichnet die direkt an das Pixel i angrenzenden Pixel (links, rechts,
oben, unten).
Ziel ist es die ui und vi zu bestimmen. Da die Gleichungen ein großes, dünnbesetztes
und lineares Gleichungssystem ergeben, kann dieses mittels eines iterativen Verfah-
rens gelöst werden. Zudem kann gezeigt werden, dass die Systemmatrix im Allgemei-
nen positiv definit ist [21].

3.4 löser

Im Folgenden wird dafür das Gauß-Seidel-Verfahren verwendet, allerdings sind auch
andere Verfahren, wie das Jacobi-Verfahren oder SOR mit geringen Änderungen mög-
lich (alle beschrieben in [11]).
Im Folgenden werden drei Verfahren zu Lösung des Gleichungssystems verwendet,



10 basisverfahren

das Jacobi-, Gauss-Seidel- und SOR-Verfahren [11]. Das Gleichungssystem des Pro-
blems hat die allgemeine Form Ax = b oder ausführlicher (für ein Bild der Größe
3× 2)




f2x1 C

f2x1 C

f2x1 C

f2x1 C

f2x1 C

f2x1 C

C f2x2
C f2x2

C f2x2
C f2x2

C f2x2
C f2x2



−α



−2 1 1

1 −3 1 1

1 −2 1

1 −2 1

1 1 −3 1

1 1 −2

−2 1 1

1 −3 1 1

1 −2 1

1 −2 1

1 1 −3 1

1 1 −2




︸ ︷︷ ︸

A



u

u

u

u

u

u

v

v

v

v

v

v


︸ ︷︷ ︸
x

=



D

D

D

D

D

D

E

E

E

E

E

E


︸ ︷︷ ︸
b

,

(3.20)

wobei C, D und E als C = fx1fx2 , D = −fx1ft und E = −fx2ft definiert sind.
Nach [22] kann eine Näherung der Lösung dieses Systems gefunden werden durch
die Zerlegung

A = A1 +A2 ↪→ (A1 +A2)x = b⇔ A1x = b −A2x. (3.21)

Somit ist eine Fixpunktiteration der Form

xk+1 = A−1
1 (b −A2xk) (3.22)

möglich, wobei A−1
1 idealerweise einfach zu berechnen ist und A1 gleichzeitig eine

möglichst gute Approximation an A darstellen soll.

3.4.1 Jacobi-Verfahren

Beim Jacobi-Verfahren [11] wird die Matrix A in den Diagonalteil D, die obere Drei-
ecksmatrix U und die untere Dreiecksmatrix L aufgeteilt, d.h.

A = D− L−U. (3.23)

Dies führt zur allgemeinen Form für das Jacobi-Verfahren von

xk+1 = D−1(b + (L+U)xk). (3.24)



3.4 löser 11

Somit erhält man für die Methode von Horn und Schunck

uk+1i =
−fx1i(fx2iv

k
i + fti) +α

∑
j∈N(i)

ukj

f2x1i +α|N(i)|
, (3.25)

vk+1i =
−fx2i(fx1iu

k
i + fti) +α

∑
j∈N(i)

vkj

f2x2i +α|N(i)|
. (3.26)

Hierbei bezeichnet N(i) die Nachbarschaft der direkt an i angrenzenden Pixel und
|N(i)| die Anzahl der direkt angrenzenden Nachbarn von i, maximal sind dies in die-
sem Fall vier (rechts, links, oben und unten). Es ist zu beachten, dass zur Berechnung
die Werte der vorherigen Iteration uk,vk verwendet werden und somit bei einer Im-
plementierung gesondert gespeichert werden müssen.

3.4.2 Gauß-Seidel Verfahren

Die Gauß-Seidel-Methode [11] nähert mit A1 die Matrix A besser an und konvergiert
somit schneller als die Jacobi-Methode. A1 ist in diesem Fall A1 = D− L, wodurch
A2 = −U. Dies führt zur allgemeinen Form

xk+1 = (D− L)−1(b +Uxk). (3.27)

Somit erhält man für die Horn und Schunck Methode folgende Fixpunktiteration

uk+1i =
−fx1i(fx2iv

k
i + fti) +α

∑
j∈N−(i) u

k+1
j −α

∑
j∈N+(i) u

k
j

f2x1i +α|N(i)|
, (3.28)

vk+1i =
−fx2i(fx1iu

k+1
i + fti) +α

∑
j∈N−(i) v

k+1
j −α

∑
j∈N+(i) v

k
j

f2x2i +α|N(i)|
. (3.29)

N−(i) bezeichnet alle Pixel der Umgebung, die in der Iteration über das Bild vor dem
Pixel i liegen und N+(i) alle die nach i liegen. Somit werden für jedes Pixel nacheinan-
der die ui und vi berechnet und an den Stellen, an denen hier ein uj beziehungsweise
vj vorkommt wird der aktuellste Wert verwendet, also entweder der Wert aus der vor-
herigen Iteration, initial null, oder der Wert aus der aktuellen Iteration.

3.4.3 SOR-Verfahren

Das SOR-Verfahren („successive over relaxation“) [11], im Deutschen auch Relaxati-
onsverfahren genannt, kann die Konvergenzeigenschaften des Gauß-Seidel Verfahrens



12 basisverfahren

verbessern. Hierbei wird statt in jedem Schritt einen komplett neuen Wert zu bestim-
men der vorherige Wert mittels eines neu berechneten Werts korrigiert:

uk+1i = (1− w)uki (3.30)

+ w ·
−fx1i(fx2iv

k
i + fti) +α

∑
j∈N−(i) u

k+1
j −α

∑
j∈N+(i) u

k
j

f2x1i +α|N(i)|
, (3.31)

vk+1i = (1− w)vk+1i (3.32)

+ w ·
−fx2i(fx1iu

k+1
i + fti) +α

∑
j∈N−(i) v

k+1
j −α

∑
j∈N+(i) v

k
j

f2x2i +α|N(i)|
. (3.33)

Für den Relaxationsparameter w muss hierbei gelten, dass 0 < w < 2, wobei für w = 1

das Verfahren identisch mit dem Gauß-Seidel Verfahren ist. Vom SOR-Verfahren wird
erst für w > 1 gesprochen (Überrelaxation).

3.5 bilateral filter

Nach der Vorstellung des Horn und Schunck Verfahrens werden nun die Grundlagen,
die für den neuen Glättungsterm nötig sind, vorgestellt, die bilateralen Filter. Bila-
terale Filter [10] dienen zur Glättung, beziehungsweise zur Entfernung von Störun-
gen aus Bildern. Lineare Glättungsfilter bilden zur Glättung einen gewichteten Durch-
schnitt der Pixel um den zu glättenden Pixel. Dabei berücksichtigen die Gewichte der
einzelnen Pixel sowohl den räumlichen Abstand als auch den Farbunterschied zum
zentralen Pixel. Ein einfacher bilateraler Filter zur Glättung von Bildern mit fi, dem
Eingabepixel an der Stelle i und ui, dem gefilterten Signal an dieser Stelle ist durch

hi =

∑
j g(|fi − fj|

2)w(|xi − xj|2)fj∑
j g(|fi − fj|

2)w(|xi − xj|2)
(3.34)

gegeben. Hierbei stellt g(|fi − fj|2) ein farbliches Gewicht dar, das mit größer werden-
der Differenz von fi und fj kleiner wird undw(|xi− xj|2) stellt ein räumliches Gewicht
dar, das ebenfalls mit größer werdender Differenz kleiner wird. Die Summenvariable
j kann hierbei entweder auf eine Region um das zentrale Pixel begrenzt werden, oder
es wird die räumliche Gewichtungsfunktion in einer Art gewählt, so dass weiter ent-
fernte Pixel ein Gewicht nahe null haben. Der Nenner stellt dabei eine Normalisierung
der Gewichte dar, sodass die Summe aller Gewichte eins ergibt.
Eine Möglichkeit für die Gewichtungsfunktionen stellt die Gaussfunktion[11] dar, wo-
bei dabei die Standardabweichungen σ die Stärke des Einflusses der Differenz darstellt.
Die Gaussfunktion, auch Normalverteilung genannt, ist dabei definiert als

g(x) =
1

σ
√
2π
e
− x2

2σ2 (3.35)



3.5 bilateral filter 13

beziehungsweise im zwei-dimensionalen Fall als

g(x) =
1

2πσ2
e
−
x1
2+x2

2

2σ2 . (3.36)

Die Abnahme der Gewichte g(|fi − fj|2) mit größer werdender Differenz führt zu ei-
ner besseren Erhaltung von Kanten, da Pixel mit anderem Grauwert bei der Glättung
kaum Einfluss haben.
Wird als Funktion die Gaussfunktion verwendet, so gibt es zwei Parameter für den
bilateralen Filter, die Standardabweichung σ der Funktion g(x), im Folgenden als σg
bezeichnet, und die Standardabweichung σ der Funktion w(x), mit σw bezeichnet.
Die Auswirkung des Parameter σg wird in Abbildung 3.1 dargestellt. Oben links ist
das Originalbild. Auf die anderen Bilder wurde ein bilateraler Filter mit σw = 15 und
von oben Mitte nach unten rechts mit den σg von 2.5, 25, 35, 100 und 1000 angewendet.
Für σg → ∞ werden die Pixel der Nachbarschaft unabhängig von der Grauwertdiffe-
renz gemittelt, somit entspricht dies einem Gaussfilter.
Abbildung 3.2 stellt die Auswirkung des Parameter σw dar. Oben links ist wieder das
Originalbild. Die anderen Bilder wurden mittels eines bilateralen Filters mit σg = 35

und von oben Mitte nach unten rechts mit den σw von 1, 2.5, 4, 10 und 50 gefiltert. Bei
σw → ∞ erweitert sich die Nachbarschaft auf das ganze Bild, sodass global ähnliche
Pixel gemittelt werden. Eine räumliche Gewichtung findet so gut wie nicht mehr statt.

Abbildung 3.1: Wirkung des Parameters σg aus [15]



14 basisverfahren

Abbildung 3.2: Wirkung des Parameters σw aus [15]

Verwendet man statt der direkten Differenz von fi und fj die abgewandelte Form
fj − (fi + β

1
i (j1 − i1) + β2i (j2 − i2)), so wird eine Ebene durch die Funktionswerte fi

gelegt und somit werden zum Glätten statt der direkten Eingangswerte fj, die um die
Ebene korrigierten Werte verwendet. Dies ermöglicht auch in Bereichen mit linearen
Verläufen der Funktionswerte eine möglichst genaue und passende Glättung des Ein-
gangssignals [23] Auch hier ist eine Normalisierung notwendig. Dabei werden β1 und
β2 zunächst aus dem Anfangssignal bestimmt und dann iterativ an die bearbeiteten
Signale angepasst.



4. N E U E R A N S AT Z

4.1 theoretische herangehensweise

4.1.1 Quadratische Energiefunktion

Das neue Verfahren basiert auf dem Verfahren von Horn und Schunck [3], soll jedoch
nicht einen einfachen Glattheitsterm verwenden, sondern einen Glattheitsterm höherer
Ordnung, der Kanten im Fluss besser erhält und gleichzeitig eine größere Umgebung
in die Berechnung einbeziehen soll. Dazu wird die Annahme getroffen, dass Kanten
in Fluss mit Kanten im Bild korrelieren. In einem ersten Schritt wird hierbei das Ver-
fahren von Horn und Schunck um einen bilateralen Glattheitsterm sowie einen Term
zur Glättung der eingeführten βi ergänzt:

E(u, v) =
∫

x∈Ω
(fxu+ fyv+ fz)

2 dx

+α

∫
x∈Ω

δ(x)
∫

x̂∈N(x)

(
Φ(x, x̂)(g1(x, x̂)2 + g2(x, x̂)2)

)
dx̂ dx

+ γ

∫
x∈Ω

(
|∇β1|2 + |∇β2|2 + |∇β3|2 + |∇β4|2

)
dx. (4.1)

N(x) eine zu wählende Nachbarschaft um x.
Die Funktionen g1(x, x̂) und g2(x, x̂) sind definiert als

g1(x, x̂) = u(x̂) − (u(x) +β1(x)(x̂1 − x1) +β2(x)(x̂2 − x2)), (4.2)

g2(x, x̂) = v(x̂) − (v(x) +β3(x)(x̂1 − x1) +β4(x)(x̂2 − x2)). (4.3)

Die βi sollen hierbei die Werte von u und v im Verhältnis zu einer Ebene durch die
Umgebung anpassen, wodurch der Term u(x) +β1(x)(x̂1 − x1) +β2(x)(x̂2 − x2) bezie-
hungsweise v(x) +β3(x)(x̂1 − x1) +β4(x)(x̂2 − x2) den Wert u beziehungsweise v in x
in Relation zu dieser Ebene setzt.

Die Funktion Φ(x, x̂) dient zur räumlichen Gewichtung der Nachbarschaft N(x) im
Glattheitsterm, wobei diese symetrisch zu wählen ist, also

Φ(x, x̂) = Φ(x̂, x) (4.4)

gelten muss. Des Weiteren muss Φ(x, x̂) immer größer oder gleich null sein und mo-
noton fallen. Für diese Arbeit wird

Φ(x, x̂) =
1√

1+
(x̂1−x1)2+(x̂2−x2))2

λ2

(4.5)

15



16 neuer ansatz

verwendet.
Die Normalisierungsfunktion δ ist definiert als:

δ(x) =
1∫

x̂∈N(x)Φ(x, x̂)dx̂
.

Die Normalisierungsfunktion δ ermöglicht es, die Größe der Nachbarschaft N(x) an-
zupassen, ohne das Gewicht α ändern zu müssen. Hierbei normalisiert die Funktion
die räumlichen Gewichte der einzelnen Elemente der Nachbarschaft und macht α un-
abhängig von diesen und der Größe der Nachbarschaft.
Der letzte Term der Funktion sorgt für eine Glättung der β-Werte, da sonst die β-Werte
in jedem Punkt eine beliebige Ebene darstellen könnten und somit keine Glättung von
u und v mehr stattfindet. Der Term zwingt Ebenen in einem Umkreis ähnlich zu sein,
die Ableitung der βi soll also in jedem Punkt klein sein.

4.1.2 Subquadratische Energiefunktion

Zur Erhöhung der Robustheit werden für alle Terme zusätzliche Ψ-Funktionen einge-
führt wodurch, man folgende Energiefunktion erhält:

E(u, v) =
∫

x∈Ω
Ψ1((fxu+ fyv+ fz)

2)dx

+α

∫
x∈Ω

δ(x)
∫

x̂∈N(x)

(
Φ(x, x̂)Ψ2(g1(x, x̂)2 + g2(x, x̂)2)

)
dx̂ dx

+ γ

∫
x∈Ω

Ψ3
(
|∇β1|2 + |∇β2|2 + |∇β3|2 + |∇β4|2

)
dx. (4.6)

Die Funktionen Ψ1(s2), Ψ2(s2) und Ψ3(s2) sind subquadratische Funktionen, um die
Robustheit des jeweiligen Terms zu erhöhen, und müssen immer echt größer null sein
und dabei monoton steigende, konvexe Funktionen sein, um eine eindeutige Minimie-
rung zu gewährleisten.
In der Implementierung zu dieser Arbeit wird für die drei Ψ-Funktionen die Funktion

Ψ(s2) = 2λ2
√
1+

s2

λ2
− 2λ2 (4.7)

mit der zugehörigen Ableitung

Ψ ′(s2) =
1√
1+ s2

λ2

(4.8)

verwendet.



4.1 theoretische herangehensweise 17

Aus Gründen der Darstellung werden folgende abkürzenden Schreibweisen für die
Ableitungen der Ψ Funktionen verwendet:

Ψ ′1(x) = Ψ
′
1((fxu+ fyv+ fz)

2), (4.9)

Ψ ′2(x, x̂) = Ψ ′2(g1(x, x̂)2 + g2(x, x̂)2), (4.10)

Ψ ′2(x̂, x) = Ψ ′2(g1(x̂, x)2 + g2(x̂, x)2)., (4.11)

Ψ ′3(x) = Ψ
′
3(|∇β1|2 + |∇β2|2 + |∇β3|2 + |∇β4|2). (4.12)

Im weiteren Verlauf wird auch folgende verkürzende Schreibweise verwendet:

w(x, x̂) = Φ(x, x̂)Ψ ′2(x, x̂). (4.13)

4.1.3 Variationsrechnung

Das Energiefunktional E(u, v) wird im Folgenden mittels Variationsrechnung mini-
miert. Hier werden die Euler-Lagrange-Gleichungen zu Hilfe genommen. Dafür wer-
den die partiellen Ableitungen der zu integrierenden Funktion nach u,v, den βi und
βix1 sowie βix2 benötigt. Da die Energie minimiert werden soll, können gemeinsame
konstante Faktoren aller Terme vernachlässigt werden.

Fu = 2 Ψ ′1(x)(fx1u+ fx2v+ fz)fx1

+αδ

∫
x̂∈N(x)

Φ(x, x̂)Ψ ′2(x, x̂)2g1(x, x̂)g1u(x, x̂)dx̂

+αδ

∫
x̂∈N(x)

Φ(x̂, x)Ψ ′2(x̂, x)2g1(x̂, x)g1u(x̂, x)dx̂

= 2 Ψ ′1(x)(fx1u+ fx2v+ fz)fx1

+ 2αδ

∫
x̂∈N(x)

(w(x, x̂) +w(x̂, x))(u(x) − u(x̂))dx̂

+ 2αδ

∫
x̂∈N(x)

(
(w(x, x̂)β1(x) +w(x̂, x)β1(x̂))(x̂1 − x1)

+ (w(x, x̂)β2(x) +w(x̂, x)β2(x̂))(x̂2 − x2)
)

dx̂ (4.14)



18 neuer ansatz

Fv = 2 Ψ
′
1(x)(fx1u+ fx2v+ fz)fx2

+αδ

∫
x̂∈N(x)

Φ(x, x̂)Ψ ′2(x, x̂)2g2(x, x̂)g2v(x, x̂)dx̂

+αδ

∫
x̂∈N(x)

Φ(x̂, x)Ψ ′2(x̂, x)2g2(x̂, x)g2v(x̂, x)dx̂

= 2 Ψ ′1(x)(fx1u+ fx2v+ fz)fx2

+ 2αδ

∫
x̂∈N(x)

(w(x, x̂) +w(x̂, x))(v(x) − v(x̂))dx̂

+ 2αδ

∫
x̂∈N(x)

[(w(x, x̂)β3(x) +w(x̂, x)β3(x̂))(x̂1 − x1)

+ (w(x, x̂)β4(x) +w(x̂, x)β4(x̂))(x̂2 − x2)]dx̂ (4.15)

Hierbei sind gu und gv die Ableitungen von g nach u und v, mit gu(x, x̂) = −1,
gu(x̂, x) = 1, gv(x, x̂) = −1 und gv(x̂, x) = 1.
Das letzte Integral in Fu und Fv bezieht mit ein, dass ein Pixel nicht nur als Zentrum
seiner eigenen Umgebung berücksichtigt werden muss, sondern auch alle Umgebun-
gen, in denen es liegt, einen Einfluss haben. Dies sind genau die Umgebungen der
Pixel, die in der Umgebung des zentralen Pixels liegen.
Darüber hinaus sind die Ableitungen nach β1 und β2 gegeben durch

Fβ1 = αδ

∫
x̂∈N(x)

Φ(x, x̂)Ψ ′2(x, x̂)2g1(x, x̂)g1
β1
(x, x̂)dx̂

= 2αδ

∫
x̂∈N(x)

w(x, x̂)β1(x)(x̂1 − x1)2 dx̂

− 2αδ

∫
x̂∈N(x)

w(x, x̂)(x̂1 − x1)(u(x̂) − u(x) −β2(x)(x̂2 − x2))dx̂, (4.16)

Fβ2 = αδ

∫
x̂∈N(x)

Φ(x, x̂)Ψ ′2(x, x̂)2g1(x, x̂)g1
β2
(x, x̂)dx̂

= 2αδ

∫
x̂∈N(x)

w(x, x̂)β2(x)(x̂2 − x2)2 dx̂

− 2αδ

∫
x̂∈N(x)

w(x, x̂)(x̂1 − x1)(u(x̂) − u(x) −β1(x)(x̂1 − x1))dx̂. (4.17)



4.1 theoretische herangehensweise 19

Die Ableitungen nach β3 und β4 lauten dementsprechend:

Fβ3 = αδ

∫
x̂∈N(x)

Φ(x, x̂)Ψ ′2(x, x̂)2g2(x, x̂)g2
β3
(x, x̂)dx̂

= 2αδ

∫
x̂∈N(x)

w(x, x̂)β3(x)(x̂1 − x1)2 dx̂

− 2αδ

∫
x̂∈N(x)

w(x, x̂)(x̂1 − x1)(v(x̂) − v(x) −β4(x)(x̂2 − x2))dx̂, (4.18)

Fβ4 = αδ

∫
x̂∈N(x)

Φ(x, x̂)Ψ ′2(x, x̂)2g2(x, x̂)g2
β4
(x, x̂)dx̂

= 2αδ

∫
x̂∈N(x)

w(x, x̂)β4(x)(x̂2 − x2)2 dx̂

− 2αδ

∫
x̂∈N(x)

w(x, x̂)(x̂1 − x1)(v(x̂) − v(x) −β3(x)(x̂1 − x1))dx̂. (4.19)

Und schließlich sind die Ableitungen nach βix1 und βix2 durch

Fβix1
= 2γΨ ′3(x)β

i
x1

,

Fβix2
= 2γΨ ′3(x)β

i
x2

,
(4.20)

gegeben für i ∈ {1, ..., 4}.
Die zuvor berechneten partiellen Ableitungen können nun in die allgemeinen Euler-
Lagrange-Gleichungen eingesetzt werden,

Fu − ∂x1Fux1 − ∂x2Fux2 = 0, (4.21)

Fv − ∂x1Fvx1 − ∂x2Fvx2 = 0, (4.22)

(4.23)

für u,v, sowie

Fβi − ∂x1Fβix1
− ∂x2Fβix2

= 0, (4.24)

(4.25)

für βi, i ∈ 1, ..., 4 mit den Randbedingungen n>∇βi = 0.
Dies liefert:



20 neuer ansatz

0 = Ψ ′1(x)(fx1u+ fx2v+ fz)fx1

+αδ

∫
x̂∈N(x)

(w(x, x̂) +w(x̂, x)) (u(x) − u(x̂))dx̂

+αδ

∫
x̂∈N(x)

(
w(x, x̂)β1(x) +w(x̂, x)β1(x̂)

)
(x̂1 − x1)

+
(
w(x, x̂)β2(x) +w(x̂, x)β2(x̂)

)
(x̂2 − x2)dx̂, (4.26)

und

0 = Ψ ′1(x)(fx1u+ fx2v+ fz)fx2

+αδ

∫
x̂∈N(x)

(w(x, x̂) +w(x̂, x))(v(x) − v(x̂))dx̂

+αδ

∫
x̂∈N(x)

(
w(x, x̂)β3(x) +w(x̂, x)β3(x̂)

)
(x̂1 − x1)

+
(
w(x, x̂)β4(x) +w(x̂, x)β4(x̂)

)
(x̂2 − x2)dx̂, (4.27)

sowie für die βi:

0 =− div(Ψ ′3(x)∇β1(x))

+ 2αδ

∫
x̂∈N(x)

w(x, x̂)β1(x)(x̂1 − x1)2 dx̂

− 2αδ

∫
x̂∈N(x)

w(x, x̂)(x̂1 − x1)
(
u(x̂) − u(x) −β2(x)(x̂2 − x2)

)
dx̂, (4.28)

0 =− div(Ψ ′3(x)∇β2(x))

+ 2αδ

∫
x̂∈N(x)

w(x, x̂)β2(x)(x̂2 − x2)2 dx̂

− 2αδ

∫
x̂∈N(x)

w(x, x̂)(x̂2 − x2)
(
u(x̂) − u(x) −β1(x)(x̂1 − x1)

)
dx̂, (4.29)

0 =− div(Ψ ′3(x)∇β3(x))

+ 2αδ

∫
x̂∈N(x)

w(x, x̂)β3(x)(x̂1 − x1)2 dx̂

− 2αδ

∫
x̂∈N(x)

w(x, x̂)(x̂1 − x1)
(
v(x̂) − v(x) −β4(x)(x̂2 − x2)

)
dx̂, (4.30)



4.1 theoretische herangehensweise 21

0 =− div(Ψ ′3(x)∇β4(x))

+ 2αδ

∫
x̂∈N(x)

w(x, x̂)β4(x)(x̂1 − x1)2 dx̂

− 2αδ

∫
x̂∈N(x)

w(x, x̂)(x̂2 − x2)
(
v(x̂) − v(x) −β3(x)(x̂2 − x2)

)
dx̂. (4.31)

4.1.4 Diskretisierung

Im Folgenden werden die Funktionen für die Berechnung diskretisiert. Zur besseren
Lesbarkeit sind i und j Vektoren welche die Position eines Pixels angeben (i = (i1, i2)>

und j = (j1, j2)>). Für u und v erhalten wir somit:

0 =Ψ ′1i(fx1iui + fx2ivi + fzi)fx1i

+α δi
∑
j∈N(i)

(wi,j +wj,i)(ui − uj)

+α δi
∑
j∈N(i)

[
(wi,jβ

1
i +wj,iβ

1
j )(j1 − i1) + (wi,jβ

2
i +wj,iβ

2
j )(j2 − i2)

]
(4.32)

0 =Ψ ′1i(fx1iui + fx2ivi + fzi)fx2i

+α δi
∑
j∈N(i)

(wi,j +wj,i)(vi − vj)

+α δi
∑
j∈N(i)

[
(wi,jβ

3
i +wj,iβ

3
j )(j1 − i1) + (wi,jβ

4
i +wj,iβ

4
j )(j2 − i2)

]
(4.33)

Bei den Funktionen βk muss der Term div(Ψ ′3(x)∇βk(x)) diskretisiert werden:

div(Ψ ′3(x)∇βk(x)) =
(
Ψ ′3(x)β

k
x1

)
x1

+
(
Ψ ′3(x)β

k
x2

)
x2

=
∑

j∈N2(i)

(
Ψ ′3i +Ψ

′
3j

2

)(
βkj −β

k
i

)
, (4.34)

wobei N2(i) die direkt an das Pixel i angrenzenden Pixel bezeichnet (links, rechts,
oben, unten). Hierbei wurden die βkxj ebenso wie die Ableitungen (Ψ ′3(x)β

k
xj
)xj mittels

finiter Differenzen approximiert.



22 neuer ansatz

Bei Ψ3(s2) = s2 → Ψ ′3(s
2) = 1 entspricht dies dem Laplace-Operator.

Somit erhalten wir folgende Gleichungen für β1, ...,β4:

0 =−
∑

j∈N2(i)

(
Ψ ′3i +Ψ

′
3j

2

)(
β1j −β

1
i

)
+α δi

∑
j∈N(i)

wi,jβ
1
i (j1 − i1)

2

−α δi
∑
j∈N(i)

wi,j(j1 − i1)(uj − ui −β
2
i (j2 − i2)), (4.35)

0 =−
∑

j∈N2(i)

(
Ψ ′3i +Ψ

′
3j

2

)(
β2j −β

2
i

)
+α δi

∑
j∈N(i)

wi,jβ
2
i (j2 − i2)

2

−α δi
∑
j∈N(i)

wi,j(j2 − i2)(uj − ui −β
1
i (j1 − i1)), (4.36)

0 =−
∑

j∈N2(i)

(
Ψ ′3i +Ψ

′
3j

2

)(
β3j −β

3
i

)
+α δi

∑
j∈N(i)

wi,jβ
3
i (j1 − i1)

2

−α δi
∑
j∈N(i)

wi,j(j1 − i1)(uj − ui −β
4
i (j2 − i2)), (4.37)

0 =−
∑

j∈N2(i)

(
Ψ ′3i +Ψ

′
3j

2

)(
β4j −β

4
i

)
+α δi

∑
j∈N(i)

wi,jβ
4
i (j2 − i2)

2

−α δi
∑
j∈N(i)

wi,j(j2 − i2)(uj − ui −β
3
i (j1 − i1)). (4.38)

4.1.5 Löser

Um die ui, viund die βki ,k ∈ {1, 2, 3, 4} zu berechnen, werden die Gleichungen wie
in 3.4 auf Seite 9 nach den zu berechnenden Werten umgeformt. Dabei definiert N2(i)



4.1 theoretische herangehensweise 23

die Umgebung eines Pixels zur Berechnung des diskreten Laplace-Operators analog zu
3.4. Dies sind also die direkt an ein Pixel angrenzenden Pixel (im zwei-dimensionalen
maximal 4). Aus Gründen der Darstellung wird im Gegensatz zu 3.4 hier die Jacobi-
Methode verwendet. Die anderen Methoden können analog zu 3.4 berechnet werden.
Zur weiteren Vereinfachung der Darstellung wird von hx1 = hx2 = 1 ausgegangen.

ui
(k+1) =

1

Ψ ′1if
2
x1i

+α δi
∑
j∈N(i)(wi,j +wj,i)(

−Ψ ′1i(fx2iv
(k)
i + fzi)fx1i

+α δi
∑
j∈N(i)

(wi,j +wj,i)uj
(k)

−α δi
∑
j∈N(i)

[
(wi,jβ

1
i +wj,iβ

1
j )(j1 − i1) + (wi,jβ

2
i +wj,iβ

2
j )(j2 − i2)

] )
(4.39)

vi
(k+1) =

1

Ψ ′1if
2
x2i

+α δi
∑
j∈N(i)(wi,j +wj,i)(

−Ψ ′1i(fx1iu
(k)
i + fzi)fx2i

+α δi
∑
j∈N(i)

(wi,j +wj,i)vj
(k)

−α δi
∑
j∈N(i)

[
(wi,jβ

3
i +wj,iβ

3
j )(j1 − i1) + (wi,jβ

4
i +wj,iβ

4
j )(j2 − i2)

] )
(4.40)

β1
(k+1)

i =
α δi

∑
j∈N(i)wi,j(j1 − i1)(uj − ui −β

2(k)

i (j2 − i2)) +
1
2γ

∑
l∈N2(i)(Ψ

′
3l

+Ψ ′3i)β
1(k)

l

α δi
∑
j∈N(i)wi,j(j1 − i1)

2 + 1
2γ

∑
l∈N2(i)(Ψ

′
3l

+Ψ ′3i)

(4.41)

β2
(k+1)

i =
α δi

∑
j∈N(i)wi,j(j2 − i2)(uj − ui −β

1(k)

i (j1 − i1)) +
1
2γ

∑
l∈N2(i)(Ψ

′
3l

+Ψ ′3i)β
2(k)

l

α δi
∑
j∈N(i)wi,j(j2 − i2)

2 + 1
2γ

∑
l∈N2(i)(Ψ

′
3l

+Ψ ′3i)

(4.42)

β3
(k+1)

i =
α δi

∑
j∈N(i)wi,j(j1 − i1)(vj − vi −β

4(k)

i (j2 − i2)) +
1
2γ

∑
l∈N2(i)(Ψ

′
3l

+Ψ ′3i)β
3(k)

l

α δi
∑
j∈N(i)wi,j(j1 − i1)

2 + 1
2γ

∑
l∈N2(i)(Ψ

′
3l

+Ψ ′3i)



24 neuer ansatz

(4.43)

β4
(k+1)

i =
α δi

∑
j∈N(i)wi,j(j2 − i2)(vj − vi −β

3(k)

i (j1 − i1)) +
1
2γ

∑
l∈N2(i)(Ψ

′
3l

+Ψ ′3i)β
4(k)

l

α δi
∑
j∈N(i)wi,j(j2 − i2)

2 + 1
2γ

∑
l∈N2(i)(Ψ

′
3l

+Ψ ′3i)

(4.44)

Somit werden die u, v und die βi iterativ berechnet. Hierbei bezeichnet (k) das Ergeb-
nis des vorherigen Rechenschritts und (k+ 1) das neue Ergebnis. Dabei werden zuerst
einige Iterationen die u und v mit konstanten βi Werten berechnet und anschließend
werden die u und v Werte konstant gehalten und die βi berechnet. Dieses Vorgehen
wird hierbei wiederholt ausgeführt. Näheres dazu in 4.2 auf Seite 25.



4.2 implementierung 25

4.2 implementierung

Im Folgenden werden einige wichtige Aspekte zur effizienten Implementierung be-
handelt und ein kurzer Einblick in das Vorgehen gegeben. Auch soll dieses Kapitel
helfen eine Vorstellung vom Ablauf des Algorithmus und der Berechnung der Werte
zu bekommen.

4.2.1 Ablauf

Es gibt insgesamt sechs verschiedenen Variablen pro Pixel die bestimmt werden sol-
len, u, v, β1, β2, β3 und β4, wobei die βi letztlich nur zur Berechnung von u und v
benötigt werden und somit nicht zum Ergebnis direkt gehören. Alle Variablen hängen
dabei von den wij beziehungsweise wji ab, welche wieder von allen Variablen abhän-
gen. Um nichtlineare Abhängigkeiten aufzulösen werden die wij eine gewisse Anzahl
von Iterationen konstant gehalten und erst dann wieder aktualisiert [24][25][26]. Siehe
dazu Abbildung 4.1 auf Seite 26.

Die Berechnung besteht somit aus mehreren Iterationen, wobei jede Iteration aus zwei
Teilen besteht. Zuerst wird die Berechnung von u und v ausgeführt und danach die
Berechnung der βi. Jede der Berechnungen von u, v und den βi besteht dabei wie-
derrum aus mehreren Sub-Iterationen, wobei in diesen jeweils eine gewisse Anzahl
von Sub-Iterationen lang die wij konstant gehalten werden. Dies kommt daher, dass
in jeder Sub-Iteration ein lineares Gleichunssystem gelöst wird. Dies geschieht entwe-
der zur Berechnung der u, v oder der βi. Somit wird das ursprünglich nichtlineare
Problem durch eine Serie von Berechnungen linearer Gleichungssysteme gelöst.

4.2.2 Vorausberechnung der wij

Für die Berechnung von u, v und den βi werden die wij benötigt und diese sind dabei
einige Sub-Iterationen konstant. Somit empfiehlt es sich die wij für alle i zu berech-
nen und in einem Array zu speichern. Beim Abruf von wij muss somit im Array an
Position i der j-te Wert abgerufen werden. Mit den wji wird analog verfahren. Der
Speicher zur Speicherung der wij und wji sollte dabei nicht für jede Iteration neu al-
lokiert werden, sondern einmal zentral allokiert werden und dann für alle Iterationen
genutzt werden. Dies vermeidet die Fragmentierung des Heaps und erhöht, durch das
Wegfallen unnötiger Allokierungen und Deallokierungen, die Geschwindigkeit.



26 neuer ansatz

Abbildung 4.1: Ablaufdiagram des Algorithmus



4.2 implementierung 27

4.2.3 Praktische Implementierung

Im Rahmen dieser Arbeit wurde das neue Verfahren implementiert. Als Programmier-
sprache kam dabei C++ zum Einsatz. Die Vorteile von C++ gegenüber C liegen dabei
in der Möglichkeit der modularen Struktur und Objekorientierten Programmierung
sowie in der Möglichkeit, mittels Templates einige Operationen zur Compilezeit zu
berechnen und dennoch einfach Änderungen vornehmen zu können (z.B. wurde die
Größe der Umgebung, N(i), auf diese Weise implementiert).
Für die Berechnung der wij und wji wurden Buffer aus einem einmalig allokierten
Memory-Pool verwendet, um die Geschwindigkeit und Effizienz zu erhöhen. Alle
Teile des Algorithmus wurden nah an der theoretischen Arbeit implementiert. Zur
schnelleren Konvergenz der Berechnung wurde das Verfahren mittels SOR implemen-
tiert mit einem Relaxationsparameter w = 1, 99. Dieser Wert wurde experimentell als
bester Wert festgestellt. Die implementierte Klasse wurde möglichst frei von Abhän-
gigkeiten gehalten und benutzt nur Standard Libraries.





5. E X P E R I M E N T E

5.1 fehlermaße

Für die Experimente werden im Folgenden einige Begrifflichkeiten und Maße zur Be-
urteilung der Genauigkeit der Algorithmen eingeführt. Hierbei bezeichnet „Ground-
Truth“ den (annähernd) exakten optischen Fluss, der bei Benchmarks für Trainings-
und Evaluierungszwecke gegeben ist. Der berechnete Fluss in x1- bzw. x2-Richtung
wird im Folgenden als u bzw. v und im der Ground Truth Fluss als uGT bzw. vGT be-
zeichnet. Die im Folgenden vorgestellten und später für die Experimente verwendeten
Fehlermaße sind:

• Winkelfehler [14]

• Absoluter Fehler [14]

5.1.1 Winkelfehler

Das erste Kriterium stellte der Winkelfehler dar [14]. Im Englischen wird dieses Fehler-
maß als „Angular Error“ bezeichnet und im Folgenden damit als „AE“ abgekürzt. Die-
ses Fehlermaß berechnet den Winkel im 3D Raum zwischen (u, v, 1)> und (uGT , vGT , 1)>.

AE = cos−1

 1+ u · uGT + v · vGT
√
1+ u2 + v2

√
1+ u2GT + v

2
GT

 (5.1)

Zur Beschreibung der Abweichung eines Bildes wird das Maß RX verwendet. RX be-
zeichnet den Prozentsatz an Pixeln die einen Fehler von mehr als von x besitzen. So
bedeutet R2◦ = 5, 00 beispielsweise, dass 5 Prozent aller Pixel mehr als 2◦ vom Winkel
der Flussvektoren der Ground Truth abweichen.
Des Weiteren wird der durchschnittliche Winkelfehler bestimmt.
Zu beachten ist, dass dieses Fehlermaß durch die 1 in der Zeitkomponente relativ
zur Größe der Verschiebung ist. Bei kleineren u und v fallen Fehler weniger stark ins
Gewicht als bei großen Werten von u und v.

29



30 experimente

5.1.2 Endpunktfehler

Der absolute Fehler, im Englischen „Absolut Error“ oder „Endpoint Error“ , abgekürzt
mit “EE“, gibt die absolute Abweichung von (u, v)> zu (uGT , vGT )> an [14].

EE =
√

(u− uGT )2 + (v− vGT )2 (5.2)

Analog wie beim Winkelfehler bezeichnet RX die prozentuale Anzahl an Pixeln, deren
Fluss um mehr als X vom Ground-Truth-Fluss abweicht.
Der absolute Fehler ist stärker praxisrelevant, da er nicht nur die Winkelungenauigkeit
angibt, sondern die tatsächliche Differenz, was z.B. bei der Kollisionsschätzung in der
Automobilindustrie extrem wichtig ist.
Als weiteres Maß wird der durchschnittliche absolute Fehler bestimmt.

5.2 benchmarks

Zur Evaluierung des Algorithmus werden Sequenzen aus dem „Middelburry Optical
Flow Evaluation“ Benchmark [14], die Sequenzen „Translating Trees“ (TT) und „Diver-
ging Trees“ (TD) aus [27] und „Office“ aus [28] verwendet. Die „Middelburry Optical
Flow Evaluation“, im Folgenden abkürzend als „Middelburry Benchmark“ bezeichnet,
ist ein Benchmark zum Vergleich verschiedener Algorithmen zur Bestimmung des op-
tischen Flusses. Hierbei kommen sowohl synthetische als auch unter kontrollierten Be-
dingungen aufgenommene echte Bilder zum Einsatz. Es gehört zu den bekanntesten
Benchmarks für Algorithmen zur Bestimmung des optischen Flusses, beschränkt sich
allerdings nicht nur auf Sequenzen mit kleinen Bewegungen. Im Folgenden werden
die verwendeten Sequenzen abgebildet und die Gründe für die Auswahl der einzel-
nen Sequenzen ausgeführt.



5.2 benchmarks 31

Bild 1 Bild 2 Ground Truth

Tabelle 5.1: Middleburry Sequenz „RubberWhale“

Bild 1 Bild 2 Ground Truth

Tabelle 5.2: Middleburry Sequenz „Urban3“

Bild 1 Bild 2 Ground Truth

Tabelle 5.3: Sequenz „TT“



32 experimente

Bild 1 Bild 2 Ground Truth

Tabelle 5.4: Sequenz „TD“

Bild 1 Bild 2 Ground Truth

Tabelle 5.5: Sequenz „Office“



5.3 durchführung 33

Die Sequenzen „RubberWhale“ (Tabelle 5.1) und „Urban3“ (Tabelle 5.2) aus dem Midd-
leburry Benchmark sollen den Vergleich der Verfahren im Umgang mit realistischeren
Begebenheiten möglich machen. Bei der Sequenz „RubberWhale“ bewegen sich die
Gegenstände im Vordergrund hauptsächlich nach links, wobei sich der kreisförmige
Gegenstand dabei leicht dreht, was an den verschiedenen Farben in der GroundTruth
sichtbar wird. Der orangene Teil des Hintergrunds und der hölzerne, gitterförmige
Teil bewegen sich aufeinander zu. In der Sequenz „Urban3“ bewegen sich die Gebäu-
de nach unten und werden dabei ein wenig nach links gedreht. Die Grundbewegungs-
richtung aller Gebäude ist dabei ähnlich, es handelt sich somit im Gegensatz zu „Rub-
berWhale“ um eine statische Szene, bei der die Kamera bewegt wird. Beide Sequenzen
enthalten Diskontinuitäten im Flussfeld, deutlich erkennbar beispielsweise bei „Rub-
berWhale“ bei den Gegenständen im Vordergrund, oder bei „Urban3“ der Übergang
zwischen Gebäuden und Himmel. Des Weiteren treten bei beiden Sequenzen Überde-
ckungen auf und „Urban3“ besitzt, im Gegensatz zu den anderen Sequenzen, größere
Flüsse. Wichtig sind von diesen Eigenschaften vor allem die Diskontinuitäten im Fluss-
feld, da der neue Ansatz entwickelt wurde, um diese besser zu erhalten als dies beim
Algorithmus von Horn und Schunck der Fall ist. Darum handelt es sich bei diesen
Sequenzen um die zur Beurteilung essentiellen Sequenzen.
Die Sequenzen „TT“, „TD“ und „Office“ wurden gewählt, da diese einen gleichmä-
ßigen und kleinen Fluss besitzen. Dabei stellen „TD“ und „Office“ einen Fluss durch
eine Vergrößerung dar, und „TT“ einen Fluss durch eine einfache Verschiebung des
Bildes nach rechts. Es gibt somit keine Verdeckungen, Diskontinuitäten oder sonstige
Störungen im Fluss, die das Verfahren negativ beeinflussen könnten. Diese Sequen-
zen sollen eine Betrachtung der Algorithmen in optimalen Fällen, zumindest für den
Algorithmus von Horn und Schunck, darstellen.

5.3 durchführung

Zur Bestimmung der Fehlerwerte werden die zu vergleichenden Algorithmen nach-
einander auf die Bildsequenzen angewendet und im Anschluss die Übereinstimmung
der Ergebnisse mit der Ground Truth ermittelt. Es werden nur Bereiche berücksichtigt,
in denen der optische Fluss berechnet werden kann, sofern diese in der Ground Truth
oder auf anderem Wege als solche Bereiche gekennzeichnet sind.
Es werden die Fehlermaße und Kriterien aus den vorhergehenden Abschnitten (Win-
kelfehler und Endpunktfehler) verwendet. Es wurden beide Algorithmen selbst mit
dem SOR-Verfahren implementiert und diese Implementierungen für die Evaluation
benutzt. Bei beiden Algorithmen wurden zusätzlich die Eingabebilder mittels eines
Gauss-Filters vorgeglättet.



34 experimente

Die Parameter beim Horn und Schunck Verfahren sind:

• Standardabweichung σ für Vorglättung: 1,2

• Gewichtung Glättungsterm α: 2000

• Anzahl Iterationen: 2000

• Relaxationsparameter w: 1,95

Die Parameter beim neuen Verfahren sind:

• Standardabweichung σ für Vorglättung: 1,2

• Gewichtung Glättungsterm α: 35

• Gewichtung Glättungsterm der βi (γ): 2000

• Anzahl Iterationen: 6

• Anzahl Sub-Iterationen: 15

• Anzahl Iterationen mit konstanten wi,j: 8

• Relaxationsparameter w: 1,99

Es wurden für alle Sequenzen die gleichen Parameter verwendet, wobei die optimalen
Parameter experimentell bestimmt wurden. Die Berechnungszeit für die Sequenz „Ur-
ban3“ (640× 480 Pixel) betrug beim Verfahren von Horn und Schunck ungefähr 12, 7
Sekunden, beim neuen Ansatz ungefähr 40, 4 Sekunden. Die Zeiten wurden in einer
virtuellen Maschine mit einem Einkernprozessor mit 1,8 GHz Grundtakt gemessen.

5.4 ergebnisse

Im Folgenden werden die Ergebnisse der Evaluation dargestellt und diskutiert. Da-
bei werden anhand der Testsequenzen einige Vor- und Nachteile des neuen Ansatzes
aufgezeigt.
Anhand der Testsequenz „RubberWhale“ (Tabelle 5.8) lassen sich die Vorteile des neu-
en Ansatzes klar erkennen. Die Kanten im Fluss sind klarer und weniger verschwom-
men und die kleinen Strukturen im Hintergrund (oben links) sind besser erhalten.
Dies ist auch am runden Gegenstand in der Bildmitte erkennbar. Hier ist die Form im
Fluss im Gegensatz zu Horn und Schunck deutlich zu erkennen inklusive des Lochs
im Gegenstand.
An der Testsequenz „Urban3“ (Tabelle 5.9) lässt sich die bessere Erhaltung von Kanten
im Fluss ebenfalls gut erkennen. Vor allem sichtbar wird dies im oberen mittleren Be-
reich des Bildes, in dem man eine deutliche Kante im Fluss erkennen kann. Generell



5.4 ergebnisse 35

Horn und Schunck Neuer Ansatz

Fehlermaß R2,5 R5,0 R10,0 R2,5 R5,0 R10,0

RubberWhale 80,97 54,76 34,74 81,72 46,13 17,58

Urban3 94,64 83,88 69,26 91,06 82,55 67,60

Office 66,16 29,08 10,33 85,15 54,82 18,64

TT 70,52 12,02 5,96 68,74 21,92 6,46

TD 46,23 27,68 15,50 70,36 29,38 7,06

Tabelle 5.6: Winkelfehler des Horn und Schunck Algorithmus und des neuen Ansatzes im
Vergleich.

Horn und Schunck Neuer Ansatz

Fehlermaß R0,5 R1,0 R2,0 Average R0,5 R1,0 R2,0 Average

RubberWhale 26,73 13,04 4,30 0,46 13,84 7,03 3,07 0,35

Urban3 87,50 75,65 66,63 5,22 84,68 76,11 59,96 5,38

Office 0,86 0,02 0,00 0,11 1,76 0,08 0,00 0,15

TT 8,23 3,55 0,26 0,31 10,68 2,28 1,84 0,31

TD 9,00 1,44 0,00 0,16 4,99 3,54 0,05 0,17

Tabelle 5.7: Endpunktfehler des Horn und Schunck Algorithmus und des neuen Ansatzes im
Vergleich.

sind die Strukturen besser und klarer als mit dem Verfahren von Horn und Schunck
zu erkennen. Zugleich wird hier eine Schwäche beider Verfahren sichtbar, der Um-
gang mit großen Verschiebungen. Diese können von beiden Verfahren nicht korrekt
ermittelt werden, hier wäre eine Berechnung des Flusses innerhalb eines Pyramiden-
schemas notwendig [29].
Nachteile des neuen Verfahrens lassen sich deutlich an den Sequenzen „TT“ (Tabel-
le 5.11), „TD“ (Tabelle 5.12) und „Office“ (Tabelle 5.10) erkennen. In diesen Sequen-
zen wurde der Fluss „künstlich“ erzeugt, im Falle von „TD“ und „Office“ durch eine
Vergrößerung eines Ausschnitts des Bildes und in „TT“ durch Verschiebung. Somit
entsprechen in diesen Bildern Kanten im Bild nicht unbedingt Kanten im Fluss wie
es in vielen realen Sequenzen der Fall ist. Da dies Korrelation zwischen Kanten im
Fluss und Kanten im Bild eine zentrale Annahme des neuen Ansatzes ist, kann man
hier deutlich die Kanten des Bildes auch im Fluss erkennen. In diesem Fall ist dies
jedoch ein ungewollter Effekt, da eine möglichst große Glattheit des Flusses die besten
Ergebnisse erzielt.



36 experimente

Ground Truth Horn & Schunck Neuer Ansatz

Tabelle 5.8: Ergebnisse der Sequenz „RubberWhale“

Ground Truth Horn & Schunck Neuer Ansatz

Tabelle 5.9: Ergebnisse der Sequenz „Urban3“

Ground Truth Horn & Schunck Neuer Ansatz

Tabelle 5.10: Ergebnisse der Sequenz „Office“



5.4 ergebnisse 37

Ground Truth Horn & Schunck Neuer Ansatz

Tabelle 5.11: Ergebnisse der Sequenz „TT“

Ground Truth Horn & Schunck Neuer Ansatz

Tabelle 5.12: Ergebnisse der Sequenz „TD“





6. S C H L U S S

In dieser Arbeit wurde der klassische Variationsansatz von Horn und Schunck mittels
eines nicht-lokalen bilateralen Glättungsterm zweiter Ordnung und einer robusteren
Konstanzannahme erweitert, implementiert und getestet. Dabei hat sich gezeigt, dass
diese Erweiterungen Vor- und Nachteile haben. So werden Kanten im Fluss, sofern
diese eine Korrelation zu Kanten im Bild haben, besser erhalten als beim Verfahren
von Horn und Schunck. Das Hauptproblem des alten wie des neuen Ansatzes stellen
große Verschiebungen dar, die durch die Konstanzannahme nicht abgedeckt werden.
Hier wäre die Einbettung in ein Pyramidenschema notwendig, wie zum Beispiel in
[21] beschrieben. Eine weitere Verbesserung könnte die Verwendung von Glattheits-
termen höherer Ordnung, als die verwendeten, darstellen. Auch könnte man den Al-
gorithmus um einen Datenterm mit einer höheren Robustheit unter Beleuchtungsän-
derungen erweitern. Verbesserungen der Laufzeit ließen sich durch eine effizientere
Implementierung erzielen.

39





7. E R K L Ä R U N G

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich habe keine anderen
als die angegebenen Quellen benutzt und alle wörtlich oder sinngemäß aus anderen
Werken übernommene Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen Prüfungsverfahrens.
Ich habe diese Arbeit bisher weder teilweise noch vollständig veröffentlicht. Das elek-
tronische Exemplar stimmt mit allen eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

41





8. L I T E R AT U R

[1] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman
und A. Blake, “Real-time human pose recognition in parts from a single depth
image”, in Proceedings IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2011, S. 1297–1304.

[2] U. Franke, C. Rabe und S. K. Gehrig, “Kollisionsvermeidung durch raum-zeitliche
Bildanalyse (Collision Avoidance based on Space-Time Image Analysis)”, It - In-
formation Technology, Bd. 49, Nr. 1, S. 25–32, 2007.

[3] B. K. P. Horn und B. G. Schunck, “Determining optical flow”, Artificial Intelli-
gence, Bd. 17, S. 185–203, 1981.

[4] C. Zach, T. Pock und H. Bischof, “A duality based approach for realtime TV-L1

optical flow”, in Proceedings German Conference on Pattern Recognition (DAGM),
2007, S. 214–223.

[5] B. Glocker, N. Paragios, N. Komodakis, G. Tziritas und N. Navab, “Optical flow
estimation with uncertainties through dynamic MRFs”, in Proceedings IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2008.

[6] M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers und H. Bischof, “Ani-
sotropic Huber-L1 optical flow”, in Proceedings British Machine Vision Conference
(BMVC), 2009.

[7] J. Weickert und C. Schnörr, “Variational optic flow computation with a spatio-
temporal smoothness constraint”, Journal of Mathematical Imaging and Vision, Bd.
14, Nr. 3, S. 245–255, 2001.

[8] G. Gilboa und S. Osher, “Nonlocal operators with applications to image proces-
sing”, SIAM Multiscale Modeling & Simulation, Bd. 7, Nr. 3, S. 1005–1028, 2009.

[9] R. Ranftl, K. Bredies und T. Pock, “Non-local total generalized variation for op-
tical flow estimation”, in Proceedings European Conference on Computer Vision (EC-
CV), 2014, S. 439–454.

[10] C. Tomasi und R. Manduchi, “Bilateral filtering for gray and color images”, in
Proceedings IEEE International Conference on Computer Vision (ICCV), 1998, S. 839–
846.

[11] M. M. Bronstein Semendjajew, Taschenbuch der Mathematik - 5.Auflage. Verlag Har-
ri Deutsch, 2001.

[12] N. Setiawan, D. Aurrahman und C. W. Lee, “Optical flow in dynamic graph
cuts”, in Proceedings IEEE Pacific Rim Conference on Communications, Computers
and Signal Processing, 2007, S. 288–291.

43



44 Literatur

[13] S. Hermann und R. Klette, “Hierarchical scan-line dynamic programming for
optical flow using semi-global matching”, in Proceedings Asia Conference Computer
Vision (ACCV), Workshops, 2013, S. 556–567.

[14] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. Black und R. Szeliski, “A database
and evaluation methodology for optical flow”, International Journal of Computer
Vision, Bd. 92, Nr. 1, S. 1–31, 2011.

[15] A. Bruhn, “Vorlesungsskript Imaging Science, Sommersemester 2015”,

[16] ——, “Vorlesungsskript Computer Vision, Wintersemester 2014/2015”,

[17] A. Geiger, P. Lenz und R. Urtasun, “Are we ready for autonomous driving? the
kitti vision benchmark suite”, in Proceedings IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2012, S. 3354–3361.

[18] A. Geiger, P. Lenz, C. Stiller und R. Urtasun, “Vision meets robotics: The KITTI
dataset”, International Journal of Robotics Research (IJRR), 2013.

[19] J. Fritsch, T. Kuehnl und A. Geiger, “A new performance measure and evaluation
benchmark for road detection algorithms”, in International IEEE Conference on
Intelligent Transportation Systems (ITSC), 2013, S. 1693–1700.

[20] M. Werlberger, “Convex approaches for high performance video processing”,
Dissertation, Graz University of Technology, 2012.

[21] A. Bruhn, “Variational optic flow computation-accurate modelling and efficient
numerics”, Dissertation, Saarland University, 2006.

[22] Y. Saad, “Iterative Methods for Sparse Linear Systems”,

[23] H. Takeda, S. Farsiu und P. Milanfar, “Higher order bilateral filters and their
properties”, in Proceedings IS&T/SPIE Conference on Electronic Imaging.

[24] T. F. Chan und P. Mulet, “On the convergence of the lagged diffusivity fixed
point method in total variation image restoration”, SIAM Journal on Numerical
Analysis, Bd. 36, Nr. 2, S. 354–367, 1999.

[25] C. Vogel, Computational Methods for Inverse Problems. Society for Industrial und
Applied Mathematics (SIAM), 2002.

[26] C. Frohn-Schauf, S. Henn und K. Witsch, “Nonlinear multigrid methods for total
variation image denoising”, Computing and Visualization in Science, Bd. 7, Nr. 3-4,
S. 199–206, 2004.

[27] J. L. Barron, D. J. Fleet und S. S. Beauchemin, “Performance of optical flow tech-
niques”, International Journal of Computer Vision, Bd. 12, S. 43–77, 1994.

[28] B. Galvin, B. McCane, K. Novins, D. Mason and S. Mills, “Recovering motion
fields: An evaluation of eight optical flow algorithms”, in Proceedings British Ma-
chine Vision Conference (BMVC), Bd. 98, 1998, S. 195–204.



Literatur 45

[29] T. Brox, A. Bruhn, N. Papenberg und J. Weickert, “High accuracy optical flow
estimation based on a theory for warping”, in Proceedings European Conference on
Computer Vision (ECCV), 2004, S. 25–36.


	Titelblatt
	1 Einleitung
	1.1 Einleitung
	1.2 Überblick über das Themengebiet
	1.3 Ziel der Arbeit
	1.4 Aufbau der Arbeit

	2 Grundlagen
	2.1 Bild
	2.2 Sampling und Quantisierung
	2.3 Optischer Fluss
	2.4 Partielle Ableitung und Gradient
	2.5 Divergenz
	2.6 Laplace
	2.7 Taylorapproximation

	3 Basisverfahren
	3.1 Optischer Fluss nach Horn und Schunck
	3.2 Variationsansätze
	3.3 Diskretisierung
	3.4 Löser
	3.4.1 Jacobi-Verfahren
	3.4.2 Gauß-Seidel Verfahren
	3.4.3 SOR-Verfahren

	3.5 Bilateral Filter

	4 Neuer Ansatz
	4.1 Theoretische Herangehensweise
	4.1.1 Quadratische Energiefunktion
	4.1.2 Subquadratische Energiefunktion
	4.1.3 Variationsrechnung
	4.1.4 Diskretisierung
	4.1.5 Löser

	4.2 Implementierung
	4.2.1 Ablauf
	4.2.2 Vorausberechnung der wij
	4.2.3 Praktische Implementierung


	5 Experimente
	5.1 Fehlermaße
	5.1.1 Winkelfehler
	5.1.2 Endpunktfehler

	5.2 Benchmarks
	5.3 Durchführung
	5.4 Ergebnisse

	6 Schluss
	7 Erklärung
	8 Literatur

