Institut fiir Softwaretechnologie

Abteilung Software Engineering

Universitét Stuttgart
Universitétsstra3e 38
D - 70569 Stuttgart

Bachelorarbeit Nr. 234

Entwicklung eines Eclipse-Plugin fiir
die erweiterte Methode von STPA

Yannic Sowoidnich

Studiengang:
Priifer:
Betreuer:
begonnen am:

beendet am:

CR-Klassifikation:

Softwaretechnik, B.Sc.

Prof. Dr. rer. Nat. Stefan Wagner
Asim Abdulkhaleq, M.Sc.
18.05.2015

17.05.2015

D.24

Zusammenfassung

Heutige Softwaresysteme werden immer grofer und komplexer. Dieser Umstand macht es
erforderlich eine zuverldssige Methode zu haben, diese Systeme auf Fehlverhalten oder auf
gefdhrdende Situationen fiir Menschen zu untersuchen. Diese Arbeit versucht ein Werkzeug zu
erstellen, welches zukiinftige Unfall- und Sicherheitsanalysen dabei unterstiitzen kann, die
untersuchten Systeme so sicher wie mdglich zu gestalten. Die Software wird ein Plugin fiir die
von der Universitit entwickelte ,XSTAMPP Plattform®, und versucht somit dessen
Funktionalitdt zu erweitern. Dafiir wird die erweiterte Methode von STPA als Funktionalitét in
das Plugin integriert (basierend auf der Arbeit von John Thomas), sowie einige Verbesserungen
welche dabei helfen sollen, den Analyseprozess zu automatisieren (basierend auf der Arbeit von
Asim Abdulhaleq). Dieses Dokument beschreibt aus welchen Griinden das neue Tool niitzlich
und erforderlich ist. AuBBerdem dokumentiert es den Entwicklungsprozess der neuen Software.

Abstract

Softwaresystems grow larger and larger. Over the years they got more complex and difficult to
understand. Thats why it is more important than ever to have a reliable method to investigate
these systems for any hazardous behaviour. There are some techniques out there to solve this
problem, but this thesis tries to implement and improve a new procedure called ,.extended
STPA*. The new Software will come as plugin for the ,,XSTAMPP Platform* developed by the
University of Stuttgart and tries to extend the functionality of this platform (the ideas for these
extended functionalities come from John Thomas and Asim Abdulkhaleq). This document
describes the new tool and all its functionalities, as well as why this tool is important to accident
analysis.

Inhaltsverzeichnis
1 EINICITUNG...uueiiinriinnirinntiinintecsinticnsnnncsssnecssssessssnessssnesssssesssssesssssessssssssssssssssssssssssssssasssses 11
L1 UBEIDICK ...ttt 11
1.2 MOLIVATION. ..ceniteiiiiiite ettt ettt sttt e st e e s abeeesaaeees 12
1.3 ZACISTEIIUNG. ...ttt et ettt eenteee s 12
1.4 Aufbau der Bachelorarbeit.............oocieiiiiiiiiiiiiiiieieeece e 13
2 GrundIQ@eN ...ccceeievveicisuriessnnicssnnicsssnissssnesssssesssssesssssesssssssssssssssssosssssssssssssssssssssssssssssssss 15
21 STAMP ...ttt ettt sttt ettt st 15
B N o SRR 16
2.3 Extended approach to STPA (XSTPA)....c.oo i 17
2.4 XSTAMPP ...ttt ettt st 19
2.5 Eclipse Plug-in Development (RCP)........cccoeeiiioiiiiiieiiiiieeiiecieceeee e 20
3 Verwandte ArDeIteN.... . eciueicnieecsseecssnnecssanesssneessneessanesssssesssssesssssscsssssssssesssssssssssssssnns 22
4 Analyse und ENtWUTccoiiiiiviiinnniinsneicnssnicnsnicsssicsssssssssnsssssssssssssssssssssssssssssssssssssns 24
i B U S g] 10) 4 1<) SRR 24
4.2 Use Case DIagramI.........cceevuirierierienieieeiienieeie sttt et ettt 26
4.3 KlasSeNdIiagrami..........c.ccoeeeuieruieeiiieniieeieenieeeteesseeeseesseesseesseessseesssseeessseeesnsees 27
4.4 Beispiel (Train DOOT)......cccuiiiiieeiieeciieeeee et te e et e et e e e e eraeeeeeas 28
4.5 Prototyp der GUIL.....o.oioiiiie ettt st 31
5 IMPIeMENtIEIUNG.....veriicrrrrnricssssarresssssssnesssssssess 36
ST GUL ettt sttt et e 36
5.2 Combinatorial TESHING........cc.eerueeiiierieeiieitie et esite et eseeeteesteeereeseeeereesseeeenseeeas 47
0 EX@eDIISSe..uuuiicieiirsrerinssnncsssnncsssnisssnnsssanssssssssssassassssssssssnsss 51
7Zusammenfassung und AuSDIiCK......ouiiiiiveiseniseeisennsensnnsseensenssnecsencsseeecssssescssneee 53

8 LIteratUrVErZEICHIIS. .. ccevereeeeereereereeeeeeeereesssesssseessssesssssssssssssssssssssssssssssssssssssosssssssssansane 55

Danksagung
Hiermit mochte ich mich bei allen herzlich bedanken, die mich beim Schreiben meiner
Bachelorarbeit unterstiitzt haben.

Danke Ann-Catrin, dafiir, dass du Sonne in mein Leben bringst.

In besonderem Mafle mochte ich mich bei Asim Abdulkhaleq bedanken, welcher fiir meine
Betreuung zustédndig war und an welchen ich mich stets mit meinen Fragen wenden konnte.

Des weiteren mochte ich mich bei Lukas Balzer bedanken, welcher mit seinem Wissen iiber
»XSTAMPP stets behilflich war. Zu guter Letzt geht mein Dank an die Korrektoren dieses
Dokuments.

Abbildungsverzeichnis

Abbildung 2.3.1: Context Table - Train Door Controller............ccovieviriinieninienienienicnieeeen 17

Abbildung 2.4.1: Hier ist die “XSTAMPP” Navigation und die "Control Actions" des aktuell

bearbeiteten SYStEMS ZU SEHEML......ccccuiiiiiiiieiiie ettt e e e aae e saae e s aaeeeennes 19
Abbildung 4.2.1: Use Case Diagramm flir "XSTPA"..........coiiiiiiiieiieiecieeeee e 26
Abbildung 4.3.1: Bezichungen der View mit der allgemeinen Informationsstruktur................... 27
Abbildung 4.4.1: Auszug einer Kontext-Tabelle fiir die "Close Door - Control Action"............ 30
Abbildung 4.4.2: Kontrollstruktur mit Prozessmodell eines "Automated door controllers"........ 30

Abbildung 4.5.1: Erster GUI Prototyp von "XSTPA" - Mit Navigation und Initialer Ansicht....31

Abbildung 4.5.2: Skizze der Control ACHONS..........cccvieriiiriieeieeiieeie ettt eve e e e es 32
Abbildung 4.5.3: Gui-Prototyp der Dependencies ANSICht...........ccccveviiieriieiiiniieiiiee e 33
Abbildung 4.5.4: Gui-Prototyp der Kontext-Tabelle...........ccovreriiieniiieniieeiieciecceeeee e 33
Abbildung 4.5.5: GUI-Prototyp der LTL-Tabelle..........ccccoeoieviieiiieiieiieieeeeeee e 34

Abbildung 5.1.1: Project Explorer von "XSTAMPP", iiber diesen wird das Plugin aufgerufen. 36
Abbildung 5.1.2: Logo vON "XSTPA" ...ttt e e e 37

Abbildung 5.1.3: Ansicht der "Control Actions" - Eine Auflistung aller definierten "Control
ACTIONS" ..ttt bbbt ettt ettt a e a e ettt et e ne e ens 38

Abbildung 5.1.4: Initiale Ansicht von "XSTPA" - Auflistung der Prozessmodelle mit
ZUZEhOTIZEN CONIOIICTN.....ccciiiiiiiiiecie et et e e e e srae e e e e earaaeeeeennnnees 39

Abbildung 5.1.5: "Dependencies" Ansicht - Ermoglicht die Verkniipfung von “Control Actions”
mit den dazugehorigen Prozessvariablen.ooveiiiiiiiiiinieneeeceeeeee e 40

Abbildung 5.1.6: Allgemeine Optionen fiir den ACTS Algorithmus..........ccccvveeviieeiiieeiiieeeenes 42

Abbildung 5.1.7: Die "Relations" Ansicht - hier konnen unterschiedliche Teststdrken fiir die
Parameter definiert WeTdeN..........c.coiuiiiiiiiiiiiieiieeie ettt sbeebeeeaae e ensbeeeenee 43

Abbildung 5.1.8: Die "Constraints" Ansicht - Es konnen Boolsche Ausdriicke {iber den Editor
S e LRSS (6 1<) T PO PRUR PSR 43

Abbildung 5.1.9: Logischer Konflikt in einer Kontext Tabelle, Filtereinstellung: Hazardous

Abbildung 5.1.10: "Context Table" Ansicht im “Provided” KonteXt..........cccceerveiiiinieinienieennns 44

Abbildung 5.1.11: Refined Safety Requirements Tabelle - bietet Funktionen zum verlinken der
"Unsafe Control Actions" aus "XSTAMPP".........ccooii e 45

Abbildung 5.1.12: "LTL”-Tabelle - zeigt die als "Hazardous" markierten Eintrdge als boolsche

Abbildung 5.2.1: Aufteilung von Wertepaaren - Es passen fiinf Wertepaare in einen Testfall,
jedoch deckt jeder Test implizit noch weitere Paare ab............cccooveeviieniiiiiieniieiiciecceeee 48

Abbildung 1: Covering Array - Ein Array, welches 180 Wertekombinationen mit nur 8 Tests
TIDETAECKL. ...ttt et e et e e et e e e tbeeeataeesssaeeesseeessseeeassaeensseesnsseesnsaeesnseeeaannes 49

Abkurzungsverzeichnis

XSTAMPP “Extended STAMP Platform”

STAMP “System-Theoretic Accident Models and Processes”
CAST “Causal Analysis using System-Theory”

STPA “Systems-Theoretic Process Analysis”

XSTPA “Extended STPA”

LTL “Lineare temporale Logik”

RCP “Rich Client Platform”

GUI “Graphical User Interface”

Begriffsverzeichnis

“Extended STAMP Platform”

“System-Theoretic Accident
Models and Processes”

“Causal Analysis using
System-Theory”

“Systems-Theoretic Process
Analysis”

“Extended STPA”

“Lineare temporale Logik”

»dSafety Constraint*

Das Programm fiir welches das Plugin geschrieben werden
soll, es kombiniert verschiedene Tools in einer Software.

Ein Ansatz aus der System-Theorie um komplexe Systeme
zu modellieren.

Ein Ansatz aus der System-Theorie um eine kausale
Abhéngigkeiten zu bestimmen.

Eine Analysemethode welche auf “STAMP” aufbaut,
ermittelt kritische Schwachpunkte innerhalb eines Systems.

Eine verbesserte Version von STPA nach John Thomas und
Asim Abdulkhaleq. Versucht mittels automatisierten
Prozessen Schwachstellen zu finden.

Lineare temporale Logik ist eine boolsche Darstellung von
Abhingigkeiten.

Sicherheitseinschrinkungen werden bendtigt, um den
Programmablauf besser kontrollieren zu kdnnen.

10

11

1 Einleitung

Dieses Kapitel bietet eine kurze Einfihrung in die Thematik der Arbeit. Es definiert die
Frage- und Zielstellung der Bachelorarbeit um dem Leser ein grundlegendes
Verstandnis fur die Herangehensweise, welche bei der Entwicklung des Plug-ins flr
XSTAMPP* verwendet wurde, zu geben.

1.1 Uberblick

Komplexe Softwaresysteme sind in der heutigen Gesellschaft kaum noch wegzudenken. Sie
befinden sich inzwischen {iberall, man findet sie im handelsiiblichen Computer, in Fahrzeugen,
smarten Wohneinrichtungen und auch in vielen anderen Sicherheitskritischen Systemen. Eben
dieser Umstand, dass Software in vielen Fillen die Sicherheit von Personen (z.B. im
StraBBenverkehr) gewihrleisten muss, macht es notwendig eine zuverlissige Gefahrenanalyse zu
erstellen. Denn anders als bei Hardware, nutzt sich Software niemals ab, was zu dem Schluss
fiihrt, dass ein mogliches Fehlverhalten mit in die Software ,.eingebaut™ ist. Es ist also sehr
wichtig, alle Gefahrensituationen genau zu definieren, sodass die Software in jeder Situation die
richtige Entscheidung treffen kann. Um solche Situationen zu modellieren, wird ein Verfahren
aus der Systemtheorie namens ,,STAMP* (Systems-Theoretic Accident Modeling and Processes)
verwendet. Mithilfe von ,,STAMP* und diversen Analysemethoden (,,STPA%, ,,CAST") ist es
moglich, kritische Schwachpunkte in heutiger Software zu ermitteln. Diese Arbeit versucht die
Architektur der von der Universitit Stuttgart entwickelten ,,STAMP-Plattform* (,,XSTAMPP*)
zu analysieren und diese um die erweiterte Methode von ,,STPA* (Systems-Theoretic Process
Analysis) zu erweitern. Mit dieser Erweiterung wird es moglich sein, gefihrliche Schwachpunkte
in den zu modellierenden Systemen zu finden und entsprechende ,,Safety Constraints® zu
ermitteln, sodass gefdhrliche Situationen vermieden oder entsprechend reguliert werden konnen

[4].

12

1.2 Motivation

Da die Gefahrenanalyse in der Softwareentwicklung eine &ufBerst wichtige Rolle bei der
Entwicklung von sicherheitskritischen Systemen innehat, ist es &dullerst sinnvoll eine
automatisierte Analyseumgebung zu haben. Die sich noch in der Entwicklung befindende Rich-
Client Anwendung ,,XSTAMPP* ist ein michtiges Werkzeug, welches solche automatisierten
Abldufe und Werkzeuge zur Gefahrenanalyse bietet. ,,XSTAMPP* soll mit den Funktionen der
erweiterten Methode von ,,.STPA* ausgestattet werden, sodass kiinftig eine noch bessere Analyse
der Schwachstellen in diversen Softwaresystemen moglich ist.

1.3 Zielstellung

Es steht die Entwicklung eines Plugins fiir die erweiterbare Plattform , XSTAMPP* im
Vordergrund. Das Plugin soll ,,XSTAMPP* um folgende Eigenschaften erweitern:

Implementierung der erweiterten Methode von ,,STPA*, basierend auf der Arbeit von John
Thomas, sodass die sogenannte Kontext-Tabelle und moglicherweise kritische Szenarien
basierend auf den Prozessmodellen erzeugt werden konnen. AuBerdem soll eine Basis
geschaffen werden, die gefundenen sicherheitskritischen Kombinationen von Prozessvariablen
mit den in ,,XSTAMPP gefundenen ,,Unsafe Control Actions* zu verkniipfen.

Die davon abhingigen Datentabellen werden entwickelt und erstellt.

Implementierung einer booleschen Tabelle deren Eintrige ,,And/Or* Verkniipfungen fiir jede
Prozessvariable enthalten werden (im folgenden ,,LTL-Tabelle** genannt).

Entwickeln und implementieren einer optimalen Methode, um die Anzahl der mdglichen
Kombinationen zwischen den Prozessmodellen moglichst gering zu halten, sodass potenzielle
Redundanz vermieden wird (Pairwise-Algorithm).

Der Export der Ergebnisse soll als PDF, CSV und PNG moglich sein, angelehnt an die
unterliegende ,,XSTAMPP*“-Plattform

AuBerdem wird eine geeignete Dokumentation fiir das Plugin erstellt, sodass es kiinftigen
Nutzern einfach fillt, das Tool zu nutzen.

13

1.4 Aufbau der Bachelorarbeit

Die Arbeit unterteilt sich in die Unterpunkte ,,Grundlagen®, ,,Analyse und Entwurf und
,Implementierung®, gefolgt von den Kapiteln ,,Ergebnisse”, und ,,Zusammenfassung und
Ausblick®.

® Im Kapitel ,,Grundlagen* werden die verschiedenen Aspekte, auf welche ,, XSTAMPP
aufbaut, vorgestellt, sodass dem Leser die Funktionalitit sowie Sinn und Zweck des zu
entwickelnden Plugins klar werden.

® Das Kapitel ,,Verwandte Arbeiten* kldrt dariiber auf, wo genau diese Arbeit genau
einzuordnen ist.

® Danach richtet sich der Fokus komplett auf den Entwicklungsprozess, beginnend mit der
Analyse der Anforderungen, gefolgt vom Entwurf des Systems.

® Im Kapitel Implementierung wird eingehend die entstandene GUI beschrieben, sowie die
Funktionalitit des Plugins im einzelnen erldutert. Aulerdem wird auf verwendete Algorithmen
eingegangen, um den Nutzen mancher Funktionen besser zu erkldren.

® Das Kapitel ,Ergebnisse” beschreibt das entstandene Produkt und versucht die
Funktionalitidten des neuen Plugins zu erldutern.

® Das letzte Kapitel ,,Zusammenfassung und Ausblick” bietet einige Ansdtze inwiefern
XSTPA“ (Extended STPA) erweiterbar ist und gibt einen kurzen Uberblick iiber den Verlauf
des Projekts.

14

15

2 Grundlagen

In diesem Kapitel werden die wichtigsten elementaren Prozesse und Vorgehensweisen
vorgestellt, welche in direkter oder indirekter Abhangigkeit zu ,,XSTPA* stehen und somit alle
die Basis fiir ,, XSTAMPP* bilden.

21 STAMP

WS TAMP* steht fiir ,,Systems-Theoretic Accident Models and Processes®, es ist also ein Ansatz
aus der Systemtheorie fiir die Modellierung von Prozessen. Eine wichtige Eigenschaft ist dass
die Systemtheorie Systeme immer ganzheitlich betrachtet, nicht nur einzelne Komponenten des
Systems. Die grundlegende Idee fiir ein durch Systemtheorie modelliertes System ist, dass es
zum einen eine Hierarchie unter den Komponenten gibt und dass diese miteinander
kommunizieren konnen. AuBlerdem unterliegen diese jeweils gewissen Regeln. Durch diesen
Ansatz kann man auch komplexe Inhalte modellieren und betrachten [8].

Nun kann man sich iiberlegen wie Unfille in einem solchen System entstehen kdnnen. Dies
geschieht durch Kommunikation und Interaktion der Komponenten untereinander oder mittels
threr Umwelt. Um ein Beispiel zu nennen: Ein Auto A soll einem anderen Auto B in gleicher
Geschwindigkeit folgen. Nun bremst dass Auto B abrupt ab und die Sensoren von Auto A teilen
diese Geschwindigkeitsveranderung von Auto B nicht rechtzeitig dem Geschwindigkeitsregler
mit. Somit kann ein Unfall entstehen. Um solche Situationen vermeiden zu konnen, werden
sogenannte ,,Safety Constraints“ erstellt, welche das Verhalten der einzelnen Komponenten
regeln sollen. Dies konnte in obigem Beispiel ein Sicherheitsabstand zum anderen Auto sein.
Sobald dieser iiberschritten wird, muss dass Auto A abbremsen bis es wieder genligend Abstand
zu Auto B hat.

Man kann nun also sehen, dass die Systemtheorie (und damit ,,STAMP*) Sicherheit als ein
Kontrollproblem betrachtet. Geschieht ein Unfall, so war eine oder mehrere Komponenten nicht
gut genug ,,abgesichert”. Aus diesem Grund modelliert ,,STAMP* solche Prozesse um Unfille
und Gefahrensituationen nachzuvollziehen und vorzubeugen. Um ein System zu beschreiben
durchlauft ,,.STAMP* einige festgelegte Schritte die im folgenden erldutert werden:

® Definieren von ,,Accidents* (Unfillen)
® Definieren von ,,Hazards* (Gefahrensituationen)

® Definieren von ,,Safety Requirements® (Sicherheitsanforderungen) und ,,Control Actions*
(Regelungsaktionen)

16

® Aufzeichnen / Modellieren einer passenden Kontrollstruktur
® Definieren von kausalen Abhéngigkeiten.

Diese Schritte sind elementar in jedem durch ,,STAMP* modellierten System. Der nichste
Abschnitt behandelt ,,STPA“, welches verwendet wird diese nun modellierten Prozesse zu
analysieren und mogliche Gefahrensituationen zu erkennen und abzuwenden [8], [3].

2.2 STPA

,»Systems-Theoretic Process Analysis* (,,STPA®) ist eine gingige Methode welche auf ,,STAMP*
aufbaut, um kritische Gefahren moglichst zuverldssig zu erkennen, sodass Systeme verifiziert
werden konnen. Es analysiert alle gefundenen Hazards auf eventuelle kritische Situationen,
damit ein moglichst sicheres und zuverlédssiges System entstehen kann.

Wie oben schon genannt, benétigt dieses Verfahren die Vorarbeit welche in ,,STAMP* verrichtet
wird. Die oben beschriebenen Punkte miissen erfiillt sein sodass es mdglich ist, mit dem ,,STPA*“
Verfahren zu beginnen. ,,STPA* selbst versucht sogenannte ,,Control Actions® welche die
Kommunikationsbasis der Systemkomponenten bilden, in verschiedene Kategorien aufzuteilen.
Durch diese Kategorisierung wird deutlicher, durch welche Aktionen potentiell gefdhrliche
Szenarien entstehen kdnnen. Die folgendenen Punkte beschreiben die mdglichen Zuordnungen
der ,,Control Actions‘:

® Eine ,,Control Action® wird nicht ausgefiihrt oder ist nicht verfiigbar.

® Es wird eine unsichere (oder falsche) ,,Control Action‘ ausgefiihrt.

® Es wird eine potentiell sichere Control Action zu einem falschen Zeitpunkt ausgefiihrt.
® Es wird eine potentiell sichere Control Action ausgefiihrt, aber zu friih abgebrochen.

Diese vier Punkte bilden die Basis fiir alle mdglichen Gefahrensituationen. Nachdem alle
,Control Actions* eingeordnet wurden, muss die zuvor aufgezeichnete Kontrollstruktur um die
Prozessmodelle der einzelnen Komponenten erweitert werden. AufBerdem sollte {iberlegt
werden, wo solche potentiell gefdhrlichen bzw. unsicheren ,,Control Actions* ausgefiihrt
werden konnen und wie ebendies verhindert werden kann. Das Verhindern dieser unsicheren
Aktionen geschieht durch sogenannte ,Safety Constraints* - also Einschrdnkungen der
Komponenten in gewissen Situationen, sodass es moglichst zu keinen Unfillen bzw. zu
falschem Systemverhalten kommen kann [8] [1].

17

2.3 Extended approach to STPA (XSTPA)

Die erweiterte Methode von ,,STPA“ (,,XSTPA*) nach John Thomas und Asim Abdulkhaleq
verbessert ,,STPA“ um einige Funktionen. Aullerdem ldsst es manche Prozesse vereinfachter
ablaufen sodass es dem Sicherheitsanalysten erleichtert wird, das System zu analysieren und
Gefahren zu erkennen.

Eine deutliche Verbesserung durch den Ansatz von John Thomas stellt der
Kategorisierungsversuch der ,,Control Actions® (Regelungsaktion) dar. In ,, XSTPA“ werden
sogenannte ,,Context Tables® aus den Prozessmodellen der jeweiligen Systemkomponenten
abgeleitet, welche dazu dienen die Einstufung der Regelungsaktionen zu verbessern. Ein solcher
ist zur Veranschaulichung in Abbildung 2.3.1 grafisch dargestellt [4].

Hazardous control action?

Control . . . o If provided | If provided | If provided

. Train Motion Emergent‘rm Train Position P L P g P ;
Action * any time in | too early in | too late in

this context | this context | this context
Door open
command | Train is moving No emergency {doesn’t matter) Yes Yes Yes
provided
Door open
command | Trainis moving | Emergency exists | (doesn’t matter) Yes'! Yes Yes
provided
Door open
command | Trainis stopped | Emergency exists | (doesn’t matter) No No Yes
provided
Door open :
P . - Not aligned

command | Train is stopped No emergency i Yes Yes Yes

7 e with platform
provided
Door open ; :

P o = y Aligned with i

command | Train 1s stopped No emergency No No No

E - platform
provided

Abbildung 2.3.1: Context Table - Train Door Controller

Wie man in Abbildung 2.3.1 erkennen kann, ist die Kontext-Tabelle eine Kombination der zu
analysierenden ,,Control Action* und des Prozessmodells einer Komponente. Der Name der
Tabelle ist darauf zuriickzufiihren, dass jede Wertekombination der unterschiedlichen Prozess-
variablen einen gewissen Kontext fiir die Regelungsaktion darstellt. Denn im Kontext der ersten
Zeile (Abbildung 2.3.1) ist der ,,Door open command* gefdhrdend, wohingegen er im Kontext
der letzten Zeile als nicht gefahrlich eingestuft wird.

18

Der Vorteil dieser Darstellung ist, dass dem Sicherheitsanalysten kein potentiell gefahrliches
Szenario entgeht und somit eine mdglichst hohe Abdeckung der Gefahrensituationen erreicht
wird.

Jedoch ist zu beachten, dass die entstehende Kontexttabelle bei einer grofen Anzahl an
Variablen auf eine enorme Grofe wachsen kann. Das Problematische an dieser Tabelle ist
eindeutig, dass sie fiir einen menschlichen Bearbeiter deutlich zu komplex wére. Fiir jede
Tabellenzeile miisste sich der Sicherheitsexperte Gedanken dariiber machen, ob das aktuell
betrachtete Szenario ein sicherheitskritisches wére oder nicht.

Aus diesem Grund wurde durch Asim Abdulkhaleq fiir ,,XSTPA* ein Ansatz entwickelt, welcher
es ermoglicht, die TabellengroBe durch Methoden der Kombinatorik deutlich zu reduzieren.
Dies ist moglich, da eine Kontexttabelle mit allen denkbaren Eintrdgen sehr redundant ist (vgl.
Abbildung 2.3.1, Diese Tabelle ist nicht mehr redundant, wiirde man aber in Zeile 1 statt
»doesnt' matter wieder die Originalwerte fiir diese Variable verwenden, so wiren alle neu
generierten Zeilen redundant zueinander). Durch diese Methoden kann eine Tabelle mit ca. 1000
moglichen Eintrdgen auf eine Grofle von ~ 40 Eintrdgen reduziert werden. Diese Funktionalitit
wird etwas ndher im Kapitel 5.2 erlautert.

Ein weiterer Vorteil, den diese Darstellung mit sich bringt, ist dass die jeweiligen Zeilen leicht
in boolesche Formeln umgewandelt werden konnen, welches das weitere Bearbeiten der
potentiell gefahrlichen Szenarien erleichtert, in Hinsicht auf zu erstellende ,,Safety Constraints*.
Ein weiterer Vorteil entsteht dadurch, dass dieser ,,Context Table* automatisiert erstellt werden
kann, sodass sich der Sicherheitsexperte nur noch Gedanken dariiber machen muss, ob ein
gewisses Szenario sicherheitskritisch ist oder nicht.

19

2.4 XSTAMPP

,Extended STAMP Platform* (,,XSTAMPP*) bildet die Schnittstelle fiir welche das Plugin
»XSTPA*“ entwickelt werden soll. Das Tool ,,XSTAMPP*“ selbst ging aus dem von der
Universitéit Stuttgart entwickelten Programm ,,4-STPA* hervor, welches viele Basisfunktionen
fiir das jetzige ,,XSTAMPP* geliefert hat. ,,XSTAMPP* vereinigt durch das dafiir sehr gut
geeignete ,,Eclipse Rich Client Platform* (RCP) Framework viele Tools in einem. Mit enthalten
sind die Basisfunktionen von ,,XSTAMPP*, sowie in Zukunft die Plugins ,,XSTPA* und ,,4-
CAST*. Mittels all dieser Funktionalitdt entsteht ein Tool welches weit in die verschiedenen
Bereiche der ,,STAMP* — Analysemethoden hineinreicht. Das umfasst im Allgemeinen die im
Kapitel 2 beschriebenen Analysemethoden sowie die ,,STAMP* Modellierung.

Das Tool ist sehr benutzerfreundlich gestaltet. Es bietet eine flexible Gestaltung des Layouts, da
sich alle gedffneten Tabs beliebig verschieben lassen, sowie, dass sie in der Grofle genau auf
den jeweiligen Benutzer angepasst werden konnen. AuBerdem bietet , XSTAMPP*“ eine
Navigation welche selbst unerfahrene Benutzer sicher durch die in Kapitel 2.1 genannten
Schritte leitet. Wie in Abbildung 2.4.1 zu sehen, ist die grafische Benutzeroberfliche sehr
schlicht gehalten, sodass unerfahrene Benutzer nicht verwirrt werden. Hélt sich der Benutzer an
die Navigation, so durchlduft er alle notwendigen Schritte zum Modellieren des Systems,
beginnend mit dem Definieren von ,,Accidents* und ,,Hazards“, gefolgt vom Definieren der
»dafety Constraints® iiber das Zeichnen der Kontrollstruktur bis hin zum Definieren der
kausalen Abhingigkeiten. Es ist leicht zu erkennen, dass ,,XSTAMPP* weit iiber die elementaren
Schritte eines ,,STAMP* Modellierungsprozesses hinausgeht.

[Project Explorer 1B =3 Control Structure ", Linking of Accidents and Hazards " Accidents System Description | Control Actions &3
v [TrainDoor [haz] ‘ .
v (¢ Establish Fundamentals CHciote Filer
System Description 7 P
: [Title Source Destination
* Accidents
Hazards 1 Open Door
", Linking of Accidents and Hazzards 2 Close Door
~ Safety Constraints 3 Stop Opening Door
&' System Goals 4 Stop Closing Daor

& Design Requirenments
Contral Structure
v 15 Unsafe Control Actions
= Control Actions
T UnsafeControlActions Table
' Comespanding Safety Constraints
v Causal Analysis
v Contral Structure With Process Model
i Hstpa
% Causal Factors Table

Abbildung 2.4.1: Hier ist die “XSTAMPP” Navigation und die "Control Actions" des aktuell
bearbeiteten Systems zu sehen.

20

2.5 Eclipse Plug-in Development (RCP)

Da die ,,XSTAMPP* Plattform auf dem ,,Eclipse Rich Client Platform Framework® aufbaut,
wird das Plugin iiber dieses in die Software integriert.

Um ,,RCP* zu verstehen, ist es notwendig bestimmte Begriffe genauer zu definieren. Wenn von
sogenannten ,,Rich Clients* gesprochen wird, dann ist damit im Allgemeinen eine Anwendung
gemeint, welche sowohl eine (interaktive) grafische Benutzeroberfliche bietet, als auch die
Anwendungslogik des Tools zur Verfiigung stellt. Die ,Rich Client Platform* wird aus
allgemeineren bzw. unspezifischeren Funktionen eines Tools gebildet. Man kann sich also
vorstellen, dass das Plugin die Basisfunktionalititen einer Plattform um eine gewisse
Spezialisierung erweitert.

Der Vorteil dieser Vorgehensweise kann leicht verstindlich in einem Realwelt-Beispiel
beschrieben werden. Man kann sich die ,,Rich Client Platform‘ als ein Auto vorstellen, welches
auBBer der Standardausstattung keinerlei Extras besitzt. Jedoch kann man unterschiedliche
Zusitze (Musikanlage, Navigationssystem etc.) in das Auto einbauen lassen, um den
individuellen Wiinschen des Kunden zu entsprechen. Genauso verhdlt es sich mit RCP-
Anwendungen, sie kdnnen je nach Bedarf um die gewiinschte Funktionalitit erweitert werden.
Die Verwaltung der Plugins geschieht immer zentralisiert iiber die Plattform selbst — im Bezug
auf die in diesem Dokument beschriebene Arbeit iibernimmt ,,.XSTAMPP* also die Aufgabe alle
Plugins zu steuern. Dies beinhaltet vor allem die Bereitstellung von ,,Views®, , Editoren* und
eines Hilfesystems. Des weiteren wird ,,XSTPA® auch auf das in ,,XSTAMPP* enthaltene
Datenmodell zuriickgreifen, um anderen Plugins und der Plattform selbst die Moglichkeit zu
geben mit diesen Daten zu arbeiten [9].

Die Integration des Plugins geschieht iiber sogenannte ,,Extension Points* in der ,,Rich Client
Platform* (wobei auch Plugins solche Erweiterungspunkte definieren konnen) - dies sind
vordefinierte Stellen in welche Plugins neue Funktionalititen einbinden und so mit der
,Hauptplattform* interagieren konnen. Die ,Eclipse IDE* bietet dem Entwickler auflerdem
eine leicht zu benutzende ,,GUI*, welche die eigentliche Einbindung von ,,XSTPA“ in die
XSTAMPP-Plattform auf einige wenige Mausklicks reduziert [10].

Wegen der genannten Punkte wird es moglich, dem Endanwender ein Produkt zu liefern,
welches immer auf dessen Bediirfnisse zugeschnitten ist.

21

22

3 Verwandte Arbeiten

In diesem Kapitel soll gekldrt werden, wie diese Arbeit einzuordnen ist. Dies geschieht indem
Ansitze verwandter Arbeiten aufgezeigt werden, um so ein Verstindnis dafiir zu schaffen,
welche Liicken mit der Entwicklung von ,, XSTPA* geschlossen werden sollen.

,Extending and automating a systems-theoretic hazard analysis for requirements generation and

analysis“ lautet der Titel der Arbeit von John Thomas [4]. Diese Arbeit legt den Grundstein fiir
die Entwicklung des Plugins fiir ,,XSTAMPP“. Er erarbeitete in seiner These eine formale,
mathematische Struktur filir das ,,STPA“ Analyseverfahren, welches bis dahin eher einer losen
Vorgehensweise unterlag (In Bezug auf festgelegte Prozesse). Diese mathematische Struktur
bringt eine gewisse Systematik in ,,STPA“. Durch diese Erweiterung ist John Thomas in der
Lage den Analyseprozess durch computergestiitzte Verfahren zu verbessern, um so grofle
komplexe Systeme besser auf Gefahren analysieren zu kdnnen. In seiner Arbeit zeigt er die Vor-
und Nachteile verschiedenster Modellierungs- und Analysemethoden auf und ermittelt weshalb
1 PA“ fiir heutige Softwaresysteme eines der bestgeeigneten Verfahren ist [4]. Dennoch stellt
er fest dass seine Arbeit erweiterbar ist. Sein Ansatz weist fiir die sicherheitskritischen
Szenarien der unterschiedlichen ,,Control Actions® oftmals eine hohe Redundanz auf, da sie
oftmals dieselben Szenarien enthalten konnen. Des weiteren stellt er fest, dass das ermittelte
Analyseverfahren schwer auf dem zuvor erstellten Modell basiert, was in dieser Hinsicht zu
Fehlern fiihren kann [4].

Diese Arbeit versucht diese theoretischen Erweiterungen von John Thomas in ein Werkzeug zu
integrieren, welches zukiinftige Unfallanalysen automatisierter und systematischer ablaufen
lasst. Des weiteren wird versucht, auf die genannten Verbesserungsvorschlége einzugehen und
so die Arbeit von John Thomas nicht nur praktisch umzusetzen, sondern diese zu erweitern,
sodass eine Software entsteht, welche zukiinftigen Sicherheitsanalysten eine gute Arbeit leisten
wird.

23

24

4 Analyse und Entwurf

Dieses Kapitel beschiftigt sich mit der Analyse von ,,XSTPA*“. Es wurden mehrere Diagramme

erstellt um alle Anforderungen so genau wie mdglich zu beschreiben.

4.1

User Stories

Im diesem Abschnitt finden sich die Anforderungen in der folgenden Liste in Form von User

Stories wieder. Wenn im folgenden von Anwendung gesprochen wird, dann ist dass in
»XSTAMPP* integrierte Plugin gemeint, nicht ,,XSTAMPP* selbst.

Anwendung starten:

Als Anwender mochte ich, dass das Plugin sich in einem separaten Tab an der
Unterseite des Haupltfensters offnet.

Als Anwender mochte ich, dass alle abgespeicherten Daten sofort geladen werden, um
direkt weiterarbeiten zu kénnen .

Als Anwender mochte ich alle verfiigharen Daten sofort in das Plugin laden, sodass ich

Jjederzeit mit ihnen arbeiten kann.

Navigation:

Als Anwender mochte ich eine Navigation innerhalb des Plugins, welche platzsparend
und leicht verstdndlich ist.

Prozessmodell:

Als Anwender mochte ich die Prozessmodelle, welche in der Kontrollstruktur vorhanden
sind, im Plugin in tabellarischer Form dargestellt haben.

Als Anwender mdchte ich jedem Wert einer Prozessvariable einen Beschreibung
hinzufiigen konnen.

Control Actions:

Als Anwender mochte ich alle , Control Actions‘, welche in der Kontrollstruktur
vorhanden sind, im Plugin in tabellarischer Form dargestellt haben.

Als Anwender mdchte ich jede , Control Action* als sicherheitskritisch einstufen
konnen, sodass ich die ,, unkritischen “ nicht betrachten muss.

25

Als Anwender mochte ich jeder ,, Control Action* eine Beschreibung hinzufiigen kénnen

Abhingigkeiten:

Als Anwender méchte ich jeder ,,Control Action* beliebige Prozessvariablen zuordnen
kénnen.

Als Anwender mochte ich jeder Control Action* einen Kontext zuordnen kénnen
(Verfiigbar und nicht Verfiigbhar).

Kontext-Tabelle:

Als Anwender mochte ich verschiedene Optionen haben, die Eintrdge generieren zu
lassen (Combinatorial Testing, Constraints).

Als Anwender mochte ich automatisch die grofitmégliche Tabelle generiert bekommen,
sodass ich entscheiden kann, welche der Eintrdge iiberfliissig sind.

Als Anwender mochte ich die Kontext-Tabelle mit verschiedenen Filtern anzeigen lassen
(Alle Eintrdge, ,,Only Hazardous *“ und ,, Not Hazardous “).

Als Anwender mochte ich den Kontext der Tabelle einstellen kénnen (Verfiighar und
nicht Verfiigbar).

Als Anwender mochte ich jede einzelne Kombination der Kontext-Tabelle als gefdhrlich
(,, Hazardous “) einstufen konnen.

Als Anwender méchte ich die Tabelle auf , Fehler verifizieren lassen (Wenn derselbe
Eintrag in ,, Verfiighar *“ und in ,,nicht Verfiigbar‘* vorhanden ist).

Als Anwender méchte ich einzelne Eintrdge manuell loschen kénnen.

Als Anwender mochte ich einzelne Eintrdge manuell erstellen kénnen.

Verbesserte Sicherheitsanforderungen (Refined Safety Requirements)

Ich mochte alle als ,,Hazardous“ eingestuften Eintrdge (Kontextunabhdngig) in dieser
Ansicht aufgelistet haben.

Ich mochte allen Eintrdgen einen Kommentar hinzufiigen konnen.
Ich mochte alle Eintrdge mit den in ,, XSTAMPP “ erstellten Hazards verkniipfen konnen.

Ich mochte alle Eintrdge mit den in ,, XSTAMPP*“ erstellten ,,Unsafe control actions
verkniipfen kénnen.

Ich méchte alle Eintrdge in eine alternative Darstellung umwandeln kénnen (Lineare
Temporale Logik).

26

Allgemein:
» Ich mochte ein Menii fiir mogliche Einstellungen des Plugins.

» Ich mochte alle Informationen in ,, XSTPA “ exportieren konnen (PDF, PNG, CSV).

4.2 Use Case Diagramm

Prozessvariable eine
Bschreibung hinzuflge Control Action als

sicherheitskritisch einstufe

\ginclude»

Control Action eine
egchreibung hinzuflige

(Fabelle verifizieren
A —
Emtrage Ioschen ! .,e,ﬂem

erste f«mclude» ——

q xlehds» Mte"ds»‘ «extegdsr
-~ sextendsn_ s o el
Actor
<Tugxtends»
o= Hazards/UCA
'\\ verinken
Einstellungen flr seaxtendss
die Kontext Tabelle N

Ander N

LTL Tabelle

arstellan

Kontext fir die
fontext Tabelle einstellg

Abbildung 4.2.1: Use Case Diagramm von " XSTPA"

Abbildung 4.2.1 beschreibt einen Teil der in Kapitel 4.1 aufgezdhlten Punkte in grafischer
Darstellung. Aus Griinden der Ubersichtlichkeit wurden sehr triviale Punkte (z.B. in die
entsprechende Ansicht navigieren) ausgespart.

27

4.3 Klassendiagramm

Abbildung 4.3.1 soll kein vollstandiges Klassendiagramm in Hinsicht auf die verwendeten
Methoden und Variablen darstellen. Es stellt vielmehr die wichtigsten Beziehungen und die
allgemeine Struktur der vier wichtigsten Klassen dar. Der Aufbau ist an das ,,MVC Pattern*
angelehnt, jedoch besitzt das Plugin ,,XSTPA* selbst kein eigenstindiges Model. Es bekommt
die Daten von der unterliegenden Plattform ,XSTAMPP*“ gestellt. Die Klasse ,,View*
iibernimmt auch zu groflen Teilen die Funktionalitit eines ,,Controllers®. Diese Entscheidung
wurde aus dem Grund getroffen, das dass Plugin kein eigenes Model besitzt und da es durch
seine ,,geringe” Grofe iiberdimensioniert gewesen wére, einen eigenen ,,Controller zu
implementieren.

Da es in ,,XSTPA“ hauptsdchlich um das Weiterverarbeiten von Informationen, welche aus dem
Prozessmodell stammen, geht, wurden die Beziehungen der ,,View* und der zustindigen
Klassen fiir ebendiese Informationen dargestellt. Die ,,View* bezieht alle wichtigen Daten aus
dem DataModel von , XSTAMPP*“, diese werden in eine eigene Struktur iiberfiihrt. Diese
Struktur ist hierarchisch geprédgt, die Klasse ,,Controller enthdlt alle im untergeordneten
,ControlActions®, welche wiederum alle die jeweils verkniipften ,,Prozessvariablen* enthalten.
AuBerdem enthidlt die Klasse ,,ControlActions® auch die Eintrdge der zugehdrigen Kontext-
Tabelle.

Contreller Controlaction

control&ction : List<Controldction= linkedProcessModelariables | List=ProcessModelariable=

contreller : String e .f' controlAction : Stri!1g . . .
contextTableCombinations : List=ProcessModelariables>

getter()...

setter()... getter()...

setter()...

iew

contrellers : List<Controllers

controlactions : List«Control&ction= Processiodel/ariable
PWMWS : List=ProcessModelariable=

processhodelariable | String
values : List<String=

getter()...
setter()...

Constructor()

getControllers(}
setControllers(}
createPartControl{Component)
createContexiTableEntries()
exportlatal)

setSettings()

openACTS()

weritelnput()

Abbildung 4.3.1: Beziehungen der View mit der allgemeinen Informationsstruktur

28

4.4 Beispiel (Train Door)

In diesem Abschnitt sollen die Punkte der verschiedenen Unterkapitel des Kapitels 4 in einem
kleinen Resiimee als Beispiel zusammengefasst werden, sodass der allgemeine ,,Workflow* des
Programms zum Ausdruck gebracht wird.

Es wird davon ausgegangen, dass die in Kapitel 2.1 genannten Schritte mittels der ,,XSTAMPP*
Plattform bereits durchgefiihrt wurden und man den in Abbildung 4.4.1 dargestellten ,,Train
Door Controller mit dem ,,XSTPA* Plugin auf gefdhrliche ,,Control Actions* analysieren
mochte. Beispielhaft werden die folgenden ,,Control Actions* untersucht:

* ,,Open Door*

e ,,Close Door*

* Stop opening Door*
* Stop closing Door*

Der Sicherheitsanalyst wird nun eine Kontext-Tabelle erstellen, mit allen mdglichen
Wertekombinationen der abgebildeten Prozessvariablen (,,Emergency®, ,Door State®,
,Door Position®, ,,Train_Motion* und ,,Train Position*), sowie der zu untersuchenden ,,Control
Action®. Ein Auszug einer moglichen Kontext-Tabelle fiir die ,,Close Door - Control Action* ist
in Abbildung 4.4.2 zu sehen. Nun muss der Anwender sich iiberlegen, welche der dargestellten
Kombinationen als sicherheitskritisch einzustufen sind und welche nicht.

Im dargestellten Schaubild 4.4.2 wire dass nur die Zeile mit der ID 7, da grundsétzlich alle
Zeilen wegfallen, in dem ,,Train_Motion* = ,,Moving* ist, da die Tiir immer sofort geschlossen
werden sollte, wenn der Zug sich bewegt. Zeile 13 und 14 fallen weg da keinerlei Gefahr besteht
wenn der Zug im Bahnhof steht, sich nicht bewegt und sich keine Person in der Tiir befindet.
Somit bleiben nur noch die Zeilen 5,6,7 und 8. Die Fahrgdste sollen den Zug nicht verlassen,
wenn der Zug nicht im Bahnhof héilt und kein Notfall existiert. Aus diesem Grund sollte die Tiir
also immer schlieBen, wenn sich keine Fahrgiste in der Tiir befinden und kein Notfall vorliegt.
Es kann nur dann zu einer Gefahrensituation kommen, wenn sich eine Person in der Tir
befindet wihrend diese schlief3t.

Nachdem die Tabelle erstellt wurde, kann der Sicherheitsanalyst sich daran machen, alle als
»gefahrlich® eingestuften =~ Kombinationen zu bearbeiten und entsprechende
Sicherheitseinschrinkungen fiir diese Félle zu definieren. Man erkennt schnell, wie hilfreich die
»TPA“ Methode ist um mogliche Gefahrensituationen zu erkennen.

29

Die Tabelle kann zwar sehr schnell sehr groBB werden (Fiir die Summe aller moglichen
Wertekombinationen wird das Produkt der Anzahl der jeweiligen Werte gebildet, in diesem
Beispiel also

2%2%2%2%3=48

), jedoch fillt es so deutlich leichter, alle kritischen Szenarien zu erkennen. Durch ,, XSTPA“
kann mittels kombinatorischem Testen die Tabellengrofe stark reduziert und gesteuert werden.

Dieser komplette Vorgang muss natiirlich fiir alle ,,Control Actions* durchgefiihrt werden, um
eine volle Abdeckung des zu {iiberpriifenden Systems zu erreichen. AuBerdem muss auch
tiberpriift werden, ob es zu einer kritischen Situation fithren kann, wenn eine dieser
Kontrollanweisungen nicht bereit gestellt wird (,,Control Action Not Provided®). Aus der
Kontext-Tabelle konnen nun die Sicherheitsanforderungen an die jeweilige Komponente des
Systems abgeleitet und mit den durch den ,,.STAMP* Prozess definierten ,,Hazards* verkniipft
werden. In ,, XSTPA* geschieht dies durch die ,,Refined Safety Requirements — Tabelle®. Aus
dieser kann aullerdem die alternative Darstellungsform der sicherheitskritischen Kombinationen
abgeleitet werden (,,L7L*“) um eine bessere Weiterverarbeitung zu gewéhrleisten. Damit die
gefundenen Szenarien auch aullerhalb von ,,XSTPA*“ zur Verfiigung stehen, konnen diese als
»PDF*, | CSV* oder ,,PNG* exportiert werden.

Es stehen dem Sicherheitsanalysten bei der Erstellung der Kontext-Tabelle einige Hilfsmittel zur
Verfiigung. Das Plugin bietet einige Tools und Funktionen, welche das Ermitteln von
gefahrlichen Wertekombinationen erleichtert. Es kdnnen zum einen einzelne Szenarien manuell
hinzugefligt werden und zum anderen konnen ,iiberfliissige” bzw. unkritische Kombinationen
geloscht werden. Wenn der Anwender eine Zeile findet, welche er unter Umstinden als
sicherheitskritisch einstufen wiirde, so steht im die Option offen, einzelne Eintrdge in dieser
Zeile als ,,unwichtig® zu markieren (In das entsprechende Feld wird der Wert ,,.Don't Care*
gesetzt), sodass nur die Parameter welche schlussendlich zu einer Gefahr fithren im Fokus
liegen. AuBBerdem besteht fiir den Analysten die Moglichkeit, alle Eintrdge auf ihre Logik zu
priifen, sodass keine redundanten oder sich logisch widersprechende Szenarien auftreten. Der
komplette Arbeitsablauf wird vereinfacht in Abbildung 4.4.3 dargestellt.

Dieses Vorgehen stellt den allgemeinen Arbeitsablauf einer solchen Analyse dar. Die genaue
Funktionalitdt der implementierten Funktionen wird nochmals ndher in Kapitel 5.1 beschrieben.
Das néchste Kapitel zeigt den ersten GUI-Entwurf, der zu Beginn der Entwicklung entstanden
ist.

30

Control Action Provided Contrel Action Mot Provided

1D Train_Position Train_Motion
1 Mot_Aligned_With_Platform Moving
2 Mot _Aligned_With_Platform Maving
3 Mot_Aligned_With_Platform Moving
4 Mot_Aligned_With_Platform Moving
5 Mot_Aligned_With_Platform Stopped
& Mot_Aligned_With_Platform Stopped
7 MNot_Aligned_With_Platform Stopped
8 Mot_Aligned_With_Platform Stopped
9 Aligned_With_Platform Maving
10 Aligned_With_Platform Meving
11 Aligned_With_Platform Moving
12 Aligned_With_Platform Moving
3 Aligned_With_Platform Stopped
14 Aligned_With_Platferm Stopped

Door_Position

Fully_Open
Fully_Open
Fully_Open
Fully_Open
Fully_Open
Fully_Open
Fully_Open
Fully_Open
Fully_Open
Fully_Open
Fully_Open
Fully_Open
Fully_Open
Fully_Open

Door_State

Person_not_in_Door
Person_not_in_Door
Person_in_Door
Person_in_Door
Person_not_in_Door
Person_not_in_Door
Person_in_Door
Person_in_Door
Person_not_in_Door
Person_not_in_Door
Person_in_Door
Person_in_Door
Person_not_in_Door

Person_not_in_Door

Emergency
Evacuate!
MNoEmergency
Evacuate!
NeEmergency
Evacuate!
MNoEmergency
Evacuate!
MNeEmergency
Evacuate!
MNoEmergency
Evacuate!
MNeEmergency
Evacuate!

MNeoEmergency

R (e o

to Early

R (e o

Hazardous if provided
Anytime

to late

I o

Abbildung 4.4.1: Auszug einer Kontext-Tabelle fiir die "Close Door - Control Action"

—

,}’ Door Actuator

m!\utomated Door Contraller

Process Model

Emergency

Evacuate!
NoEmergency

Tain_Motion

Maving
Stopped

Door_Position
v Fully_Open
Person_not_in_Door Full_Closed
- Partially_Open
Person_in_Door
fTrain_Position

Not_Aligned_With_Plalform

AMigned_With_Platiorm

-
C-\ Door Sensor

-~

il Physical Door

Abbildung 4.4.2: Kontrollstruktur mit Prozessmodell eines "Automated door controllers"

31

XSTAMPP Analyse

I

Input fir den
Combinatorial Testing
Algorithmus erstellen

Algorithmus wird
ausgefihrt

Ausgabe des Algorithmus wird
durch XSTAMPP
weiterverarbeitet

Es wird aus den Refined
Safety Reqguirements die
LTL Tabelle abeeleitet

Abbildung 4.4.3: Allgemeine Struktur von XSTPA

32

4.5 Prototyp der GUI

Dieses Kapitel beschreibt, wie die grafische Benutzeroberfliche entstanden ist und welche
Entscheidungen mafgeblich fiir die Entwicklung ebendieser waren.

Die erste Einschrinkung fiir das Plugin war, dass es nur sehr wenig Platz zur Verfiigung haben
sollte, es sollte iiber der ,,Kontrollstruktur mit Prozessmodell* von ,,XSTAMPP* liegen, sodass
diese wihrend dem gesamten Analyseprozess noch erkennbar war. Dies machte es zwingend
eine sehr platzsparende Navigation zu haben, sowie relativ kleine Fenster fiir die restliche
Funktionalitdt von ,, XSTPA*“. Diese Einschriankung, sowie der oben beschriebene ,,Workflow*
fithrte zu einem Prototyp wie er in Abbildung 4.5.1 dargestellt ist.

In der Grafik ist die Startansicht des Plugins skizziert. Die Navigation wurde vertikal entworfen,
da dies die beiden Vorteile mit sich brachte, dass es zum einen wenig Platz beanspruchte und
zum anderen war klar, dass es innerhalb des Programms in den einzelnen Ansichten weitere
Navigationselemente geben wiirde, so war sichergestellt dass diese sich nicht im Weg sein
wiirden.

Nawigation Initiale Ansicht, Tabellarische Auflistung der aufgezeichneten Kontrollstruktur

Process Models | Controllers Process Models s M s | R iy

Values
Conirol Actions
c1 PM1 Wart waluel
Dependencies
Context Tables C F2 Var1

Refined Safety
Requirements.

Abbildung 4.5.1: Erster GUI Prototyp von "XSTPA" - Mit Navigation und Initialer Ansicht

Nach dem der generelle Aufbau des Plugins festgelegt war, musste jeder Arbeitsschritt des in
Kapitel 4.4 genannten Ablaufs in eine Ansicht transferiert werden. Da ,,XSTAMPP* viele
Controller und Prozessmodelle haben kann und um die intuitive Bedienbarkeit des Plugins zu
erhohen, war es ein naheliegender Schritt nochmals alle Controller mit ihren zugehorigen
Prozessmodellen in tabellarischer Form darzustellen und ihnen einen Kommentar, bzw. eine
Beschreibung mitzugeben.

33

Die nédchste Ansicht sollte den ,,Control Actions* gewidmet sein, da man aus diesen mit den
zugehorigen Prozessvariablen den ,,Context Table erstellen muss. Dies ist in der Grafik 4.5.2
zu erkennen. Die dargestellte Tabelle zeigt die Beziehung von den ,,Control Actions* mit den
zugehorigen Controllern. Man sieht dass in der skizzierten Tabelle manche der
Kontrollanweisungen als ,,Safety Critical“ markiert sind. Dies ist die erste Entscheidung, die der
Sicherheitsexperte in ,,XSTPA*“ treffen muss. Markiert er eine dieser ,,Control Actions* als
sicherheitskritisch, so wird sie in den weiteren Ansichten aufgefiihrt. Ist sie als ,,nicht kritisch*
eingestuft, so kann mit ihr nicht weitergearbeitet werden. Zusétzlich kann jede ,,Control Action*
nochmals eine Beschreibung erhalten.

Havigation Ansicht fir die Control Actions

Procezs Models Controllers Caontrol Actions Safety Critical? Description

Control Actions 1 CA1 True

Dependencies

Context Tables i CAZ Falze

LTL Table

AndiOr Table

Abbildung 4.5.2: Skizze der Control Actions

Im néchsten Arbeitsschritt wird festgelegt, welche Prozessvariablen welche Kontrollanweisung
beeinflussen und ob diese voneinander abhingig sind oder nicht. Das geschieht im Unterpunkt
,Dependencies®. Da es in ,,XSTAMPP* schon einen Punkt ,,Linking of Accidents and Hazards*
gibt, wurde das Design stark an dieses angepasst, da dieses zum einen sehr intuitiv ist und zum
anderen um dem Endanwender einen hohen Wiedererkennungswert zu bieten. Die
Kontrollanweisungen koénnen angewidhlt werden und es ist moglich ihnen {iber die Buttons die
entsprechenden Prozessvariablen zuzuweisen (siche Abbildung 4.5.3). Die obere Tabelle soll
dabei alle verfiigbaren Prozessvariablen aufzeigen, wohingegen die untere der beiden Tabellen
jene auflistet, welche tatsdchlich mit der ausgewéhlten ,,Control Action* verkniipft sind.

34

Navigation Ansicht der Dependencies, hier kdnnen Control Actions mit Prozessvariablen verknupft werden
Procezs Models List Of Control Actions List of Process Model Variables
D Control Action D Process Variable

Caontrol Actions

CA1 Open
CAZ

Close
Context Tables
LTL Table
Add Add Al Remove Remove Al
AndiOr Table
Dependencies
D Process Variable

Abbildung 4.5.3: Gui-Prototyp der Dependencies Ansicht

Die folgende Grafik 4.5.4 bietet eine Skizze der Kontext-Tabelle.

Mavigation

Ansicht der Context Tables

Fropesiiedcts List of Control Actions Context Tables Seftings
Control Actions
cat Context Pl P2 Hazardous?
Dependencies
= =
Context Tables
1
LTL Table |

AndiOr Table

Abbildung 4.5.4: Gui-Prototyp der Kontext-Tabelle

13

In dieser Tabelle geschieht die meiste Arbeit des Analyseprozesses welcher mit ,, XSTP.
durchgefiihrt werden kann. Die Tabelle wird in Abhidngigkeit zu den verkniipften
Prozessvariablen der angewihlten ,,Control Action® generiert. Dies kann darin resultieren, dass
die Tabelle sehr viele Spalten bekommen kann. Die einzigen ,,festen* Spalten sind die Erste und

die Letzte.

35

In der ersten Spalte soll der Kontext der Zeile angegeben sein (z.B. Die Kontrollanweisung
wurde rechtzeitig ausgefiihrt), die letzte Spalte muss vom Sicherheitsexperten mit ,,gefdhrlich
oder ,nicht gefdhrlich markiert werden. So kann jedes mogliche Szenario gefunden und
eingestuft werden. Aus den mit ,,hazardous™ markierten Zeilen werden die Eintrage fiir die
,LTL Tabelle* sowie die ,,Refined Safety” Tabelle abgeleitet. Der Grund warum diese in keiner
der GUI-Skizzen zu sehen ist, ist dass sich diese Ansicht erst wihrend der Entwicklung von
»XSTPA* ergeben hat und zum Zeitpunkt der Planung noch nicht vorgesehen war. Dasselbe gilt
fiir den Unterpunkt ,,And/Or Table“. Dieser wurde wahrend der Entwicklung verworfen, da er
zu starke Ahnlichkeiten mit der ,,L7L“ Tabelle aufwies, da beide Tabellen (,,And/Or*, ,, LTL*)
vor allem alternative Darstellungsformen der als gefdhrlich eingestuften Szenarien sind. Die
Ansicht der ,,LTL* Tabelle bietet dem Nutzer keinerlei gro3e Interaktionsmdglichkeiten, da sie
vor allem eine Grundlage zur Weiterarbeit fiir zukiinftige Plugins bieten soll. Die einzig
geplante Interaktionsmdglichkeit fiir den Benutzer in dieser Ansicht ist eine Exportfunktion. Es
ist noch nicht klar in welchen Formaten die Tabelle genau exportiert werden soll. Geplant ist
aber eine direkte Anlehnung an die unterliegende ,, XSTAMPP-Plattform®, welche die
Dateiformate ,,JPG*, ,,PDF*“ und ,,CSV* als Exportmdglichkeit anbietet. Die Abbildung 4.5.5
zeigt das Schema welches die ,,LTL Tabelle* verwenden wird. Im nichsten Kapitel werden
genauere Erlauterungen der Funktionalitit sowie die tatsdchliche Umsetzung der ,,GUI* folgen.

Navigation

Process Models
Control Actions I Critical Combinations

Dependencies

Context Tables

Export

Abbildung 4.5.5: GUI-Prototyp der LTL-Tabelle

36

37

5 Implementierung

Dieses Kapitel beschiftigt sich mit dem Implementierungsvorgang von ,,XSTPA*. Es bietet eine
Einsicht in das endgiiltige Design des Plugins, sowie iiber verwendete Algorithmen.

5.1 GUI

In diesem Kapitel werden die im vorigen Kapitel ,,Prototyp der GUI* gezeigten Skizzen in ihrer
umgesetzten Form gezeigt. Des Weiteren werden alle endgiiltigen Funktionalititen genauer
erkliart. AuBerdem werden getroffene Entscheidungen, welche das Design vom geplanten
Prototyp abweichen lassen, erldutert, sodass der Leser einen vertieften Einblick in den
Implementierungsprozess erhlt.

Um ,,XSTPA“ zu 6ffnen muss man im ,,Project Explorer” von ,, XSTAMPP*“ zum Unterpunkt
,Control Structure with Process Model* im derzeitigen Projekt navigieren, welcher den Link
zum Plugin enthélt. Dies ist in der Grafik 5.1.1 zu sehen.

[Project Explorer 2] [# Preferences = B
3 ACCSTPAhazy
~ [Adaptive-Cruise-Control-System-ACC2 [haz
C Establish Fundamentals
1= Unsafe Control Actions
w 25, Causal Analysis
v Control Structure With Process Model
& Xstpa
£% (Causal Factors Table
3 Train [haz]

Abbildung 5.1.1: Project Explorer von "XSTAMPP", iiber
diesen wird das Plugin aufgerufen

Das Logo von ,,XSTPA“ wurde ausgehend vom Logo von , XSTAMPP*“ ausgearbeitet. Die
allgemeine Form wurde fiir den Wiedererkennungswert iibernommen, die Farben, sowie der
Schriftzug im Inneren wurden angepasst (Abbildung 5.1.2).

38

Abbildung 5.1.2: Logo von "XSTPA"

Offnet man nun das Plugin, so bekommt man die initiale Ansicht von ,,XSTPA“. Diese wurde
wie geplant umgesetzt, falls die unterliegende Ansicht der Kontrollstruktur nicht gedffnet ist,
wird diese gedffnet, danach legt sich die Ansicht der Prozessmodelle von ,,XSTPA* dariiber.

Wie in Abbildung 5.1.4 demonstriert, ist es moglich einen Kommentar fiir jede der in der
Kontrollstruktur definierten Prozesswerte einen Kommentar zu hinterlassen. Um die
Ubersichtlichkeit wihrend der Arbeit mit allen Tabellen in ,, XSTPA* zu verbessern, wurden im
Allgemeinen drei unterschiedliche Farben verwendet - Zwei alternierende, um den Wechsel
einer Zeile zu kennzeichnen und eine dritte um die aktuell selektierte Zeile hervorzuheben.

Wechselt man nun in die Ansicht ,,Control Actions®, so sieht man, dass diese Ansicht nicht ganz
planméBig umgesetzt wurde (Abbildung 5.1.3). Es war geplant dass der zugehorige Controller
fiir jede ,,Control Action® mit angezeigt werden wiirde, jedoch unterstiitzte die unterliegende
Datenstruktur von ,XSTAMPP*“ dieses Vorhaben nicht. Die in der Kontrollstruktur
vorhandenen Pfeile (Abbildung 5.1.4) verkniipfen die bestehenden Komponenten nur auf eine
optische Art und Weise. Dieses Problem hatte einige Anderungen zur Folge, da zu groBen
Teilen eine eigene Struktur aufgebaut werden musste, welche nicht auf Schnittstellen von
»XSTAMPP* zuriickgreifen konnte. Abgesehen von der fehlenden ,,Controller-Spalte* wurde in
dieser Ansicht alles so umgesetzt wie geplant. Es gibt eine ,,Checkbox“ welche es dem
Sicherheitsexperten ermoglicht die ausgewéhlte ,,Control Action® als sicherheitskritisch
einzustufen. Falls sie nicht sicherheitskritisch ist, wird sie in den folgenden Ansichten nicht
weiter aufgefiihrt. AuBerdem kann man die durch ,XSTAMPP*“ festgelegte Beschreibung
nochmals einsehen oder gegebenenfalls dndern.

39

o XSTPA I3
Process Model Control Actions Safety Critical Description
Provides Brake Light Command v The long description of this Control Action
Centrol Actions Provides Brake Cornmand v The leng description of this Control Acticn
: Accelerator Pedal Command v The long description of this Control Action
e Radar Data v The long description of this Control Action
Context Table
Refined 5R

Abbildung 5.1.3: Ansicht der "Control Actions" - Eine Auflistung aller definierten "Control
Actions"

40

Control Structure with Process Madel 1]

Radar Unit
Information

Distance Target Vehicle Speed

Controller (i Controlier

[l ACC Moduls

Process Model

Process Model

\ehicle Speed
Process radar data

Accelerate or decelerate

F

Send Warning messages

ACC State Braking Signal
Brake Request Slow down

w

== Fully stopped
» Brake Control Module

{ Vehicle Speed Sensors&Erake
O Sensor

Brake Command

' Vehicle

Preferenes | 264%3

o XSTPA E3

Process Maodel Controllers Process Models Process Model Variables Values Description
ACC Module Process Model Vehicle Speed Process radar data

Control Actions ACC Module Process Model Vehicle Speed Accelerate or decelerate

- ACC Module Process Model Vehicle Speed Send Warning messages Sends Warnings when the Speed is to high

Upantais ACC Module Process Model Braking Signal Slow down
ACC Module Process Model Braking Signal Fully stopped

Context Table

Refined SR

Abbildung 5.1.4: Initiale Ansicht von "XSTPA" - Auflistung der Prozessmodelle mit zugehorigen Controllern

41

Mochte man nun die sicherheitskritischen ,,Control Actions* weiter auf die genauen Szenarien
untersuchen, so kann man den nichsten Schritt in der ,,Dependencies” Ansicht vornehmen
(Abbildung 5.1.5). In diesem Fenster werden die ,,Control Actions* mit den Prozessvariablen
verkniipft. Dies geschieht durch das Selektieren der zu bearbeitenden ,,Control Action®, dadurch
werden alle verfiigbaren Prozessvariablen in der Tabelle rechts oben angezeigt (insofern diese
,Control Action” noch nicht bearbeitet wurde). Nun konnen die Variablen durch die unten
stehenden Buttons mit der ,,Control Action* verkniipft werden. Hierbei ist darauf zu achten,
dass die ,,Control Actions* jeweils mit den ,,richtigen* Prozessvariablen in Verbindung gebracht
werden. Damit ist der bereits oben angesprochene Punkt gemeint, dass ,,XSTPA* alle moglichen
Prozessvariablen aus allen Prozessmodellen und Controllern anzeigt und nicht nur jene, welche
laut der Kontrollstruktur —zusammengehdren (da die in der Kontrollstruktur gemachten
Verbindungen nur von einer rein optischen Natur sind). Diese Ansicht wurde gegeniiber dem
Prototyp leicht abgeédndert. Es existieren nun zwei Reiter: ,,Control Action Provided* und
,,Control Action Not Provided, welche den Kontext der ,,Control Action* bestimmen. Dies hat
den Grund, dass der Kontext der jeweiligen ,,Control Action® eine sehr grofle Auswirkung fiir
die Nachfolgenden Arbeitschritte hat und deshalb so friih wie moglich festgelegt werden sollte.

AT 1

Process Model | || Control Action Provided Control Action Not Provided

D Control Actions D Process Mode Varizbles
Provides Brake Light Command

Control Actions

Dependencies Provides Brake Command

Accelerator Pedal Command
Radar Data

o EEE o

Context Table Add Add Al Remove Remove Al

Refined SR
D Process Model Variables

1 Vehicle Speed
2 Braking Signal

Abbildung 5.1.5: "Dependencies" Ansicht - Ermdglicht die Verkniipfung von “Control Actions” mit den
dazugehorigen Prozessvariablen

Mochte man nun eine Kontext-Tabelle fiir eine (oder mehrere) ,,Control Actions* generieren,
dann wechselt man in die ,,Context Table* Ansicht (Abbildung 5.1.10). Diese ermdoglicht es dem
Benutzer mittels eines ,,Combinatorial Testing“-Algorithmus eine sehr auf den Benutzer
angepasste Tabelle mit potentiell gefdhrlichen Szenarien zu erstellen. Mochte man eine Tabelle
generieren, so ist es erforderlich eine ,,Control Action auszuwidhlen und im Anschluss auf den
,Generate“-Button zu klicken. Bei der Erstbenutzung des Programms wird nachgefragt, ob der

42

Pfad fiir die ,,JAR* Datei gesetzt ist welche den Algorithmus enthédlt, da beim Erstellen der
Tabelle einige Textdateien entstehen und der Algorithmus mit diesen als Parameter aufgerufen
wird. Sobald der Pfad gesetzt ist, konnen die Eintrége fiir die Tabelle generiert werden. Wird der
Algorithmus mit den Standardeinstellungen aufgerufen, so wird immer die groftmogliche
Tabelle generiert, sodass alle potentiell gefdhrlichen Szenarien abgebildet sind. Der Benutzer
muss diese Einstellungen iiber den ,,Settings Button™ anpassen, falls er eine kleinere Tabelle
generieren mochte.

Um die Einstellungen anpassen zu konnen, 6ffnet sich ein neues Fenster, wie in Abbildung 5.1.6
dargestellt. Dieses Fenster ist in drei Reiter aufgeteilt: der erste nennt sich ,,General Options*
und enthdlt, wie der Name schon sagt, allgemeine Einstellungen. Man kann zwischen fiinf
verschiedenen Algorithmen wéhlen. Die ersten drei (,,IPOG*, ,,JIPOG-F* und ,,IPOG-F2*) sind
fiir mittelgroBe Systeme gedacht (bis zu 20 Eingabeparameter). ,,JPOG-D* ist fiir sehr grofie
Systeme gedacht (mehr als 20 Parameter) und der ,,Base Choice* Algorithmus stellt die
Teststirke automatisch auf 1, was bedeutet, dass jeder Parameter hochstens einmal verglichen
werden muss (sehr schnell, aber nicht sehr genau in der Abdeckung der Testfille). Die nichste
Auswahlmoglichkeit ist eine ,,Combobox®, welche die Teststirke des Algorithmus beeinflusst.
Es kann eine Zahl 1<=t <=6 gewaihlt werden, sowie die Option ,,Mixed Strength“. Diese Zahl
gibt an, wie oft jeder Parameter mindestens mit einem anderen verglichen werden muss, je
hoher die Teststirke desto umfangreicher wird das Ergebnis. Die Standardeinstellung ist, falls
die Anzahl der Eingabeparameter zwischen 1<=t <=6 liegt, diese Anzahl t als Teststérke fiir den
Algorithmus gewéhlt wird. Ansonsten wird t=6 als Teststirke verwendet. Die Option ,,Mixed
Strength® sollte immer dann gewé&hlt werden, wenn unterschiedliche Teststirken im Reiter
»Relations* fiir die Parameter festgelegt worden sind. Die folgende Combobox unterstiitzt
momentan nur den Modus ,,Scratch®. Urspriinglich sollte sie einen weiteren Modus (,,Extend*)
unterstiitzen, jedoch war dieser bis zum Release zu fehlerhaft. Die Einstellung ,,Scratch 14sst
den Algorithmus auf den kompletten Datensatz laufen, sodass er komplett neu erstellt wird. Die
Option ,,Extend* hitte einen bestehenden Datensatz erweitern sollen (z.B. wenn ein Parameter
hinzukommt, oder entfernt wird), um die Generierung der Testfdlle zu beschleunigen. Die
letzten beiden Interaktionselemente sind eine ,,Combobox®, sowie eine ,,Checkbox* welche die
im Reiter ,,Constraints® gemachten Einschrinkungen betreffen. Falls die Checkbox ,,Ignore
Constraints* selektiert ist, so werden alle getroffenen Einschrinkungen ignoriert. Die Optionen
fiir ,,Constraint Handling* sind zum einen ,,Forbidden Tuples* welche fiir mittlere bis grof3e
Systeme optimal ist und ,,CSP Solver*, welche fiir sehr kleine Systeme Anwendung findet [2].

43

& Context Table Settings = it
General Options Relations Constraints

Algorithm:
(® IPOG(Recommended) (JIPOG-F (OIPOG-F2 (OIPOG-D () Base Choice

Strength: 2 y
Mode: Scratch e |:||gr10re P —
Constraint :
Handling: Forbidden Tuples (default)
Set ACTS Path
Apply Cancel

Abbildung 5.1.6: Allgemeine Optionen fiir den ACTS Algorithmus

Der Reiter ,Relations* (Abbildung 5.1.7) beinhaltet alle Prozessvariablen, welche der
momentan ausgewihlten ,,Control Action zugewiesen wurden. Diese konnen nun untereinander
mit verschiedenen Stirken verglichen werden. Dazu wihlt man alle Parameter welche
untereinander in Relation stehen aus und gibt ihnen die gewiinschte Stirke (zwischen 1 und 6) .
Auflerdem muss in den Allgemeinen Optionen ,,Mixed Strength* angewahlt sein.

In der ,,Constraints* Ansicht (Abbildung 5.1.8) findet der Benutzer einen Editor, mit welchem er
boolsche Ausdriicke formulieren kann. So kdnnen die Parameter weiter verfeinert werden. Es
konnen alle aufgelisteten Zeichen fiir den Ausdruck benutzt werden, sowie die Parameter mit
den zugehdrigen Werten. Die ,,Constraints miissen {iber den Editor jeweils einzeln hinzugefiigt
werden. Hat der Benutzer alle Einstellungen getroffen, so kann er den Algorithmus iiber den
,»Apply Button®, welcher in jedem der Reiter zu finden ist, starten.

44

#. Contexdt Table Settings — >

General Options Relations Constraints

Symbals Constraint Editor
[LY== < a=>=[&[I']|*F-% + |
Parameters

Parameter Mame Parameter Vi

Wehicle_Speed Process radar data, Accelerate or deceh

Braking_Signal_ Slow down, Fully

l Clear| | Add Constraint.

Added Constraints

| Remove | Apply

Abbildung 5.1.7: Die "Constraints" Ansicht - Es konnen Boolsche Ausdriicke liber den Editor
erstellt werden

& Context Table Settings i *
General Options Relations Constraints

Parameters Strength

Wehicle Speed Strength Parameter Mames

Braking Signal
Add

Remowve

Apply

Abbildung 5.1.8: Die "Relations" Ansicht - hier kdnnen unterschiedliche Teststérken fiir die
Parameter definiert werden

45

Hat man nun eine Tabelle generiert, so kann man alle Szenarien durchgehen und entscheiden, ob
diese im jeweiligen Kontext gefdhrlich sind oder nicht. Befindet man sich im Reiter ,,Control
Action Not Provided” so gibt es nur eine ,,Checkbox“ pro Zeile, da man dort keine zeitliche
Unterscheidung machen kann. Mochte der Anwender nun ein Szenario hinzufiigen, so kann er
auf den ,,Add Button“ klicken. Dies generiert eine leere Zeile, welche er mit den entsprechenden
Informationen befiillen kann. Mochte der Nutzer einen Eintrag 16schen, so muss er nur die Zeile
selektieren und auf den ,,Remove Button* klicken.

Eine weitere Funktion der Tabelle ist die Verifizierung von Eintrdgen (Abbildung 5.1.9). Falls
ein Eintrag in ,,Provided” einem FEintrag in ,,Not Provided“ identisch ist (inklusive der
Hazardous-Spalte), so werden beide Eintrdge rot hinterlegt und der Schriftzug am unteren Ende
der Tabelle zeigt an, wieviele Konflikte in der Tabelle vorhanden sind. Dies ist besonders bei
groflen Tabellen mit sehr vielen Eintrdgen hilfreich, da sonst sehr schnell logische Fehler
entstechen konnen. Auf diese Weise konnen solche Fehler leicht vermieden werden. Diese
Funktion wird nicht automatisch aufgerufen, sie muss iiber den ,,Verify Button® ausgelost
werden.

Wenn die Anzahl der Eintrdge sehr groB} ist, dann kann es helfen sie {liber den eingebauten Filter
in der Tabelle darstellen zu lassen, welcher in der Grafik 5.1.9 zu sehen ist. Momentan
unterstiitzt der Filter folgende Funktionen: ,,Alle Eintrdge anzeigen®, ,,Nur Eintrige anzeigen,
welche als Hazardous markiert sind“ und ,,Nur Eintrdge anzeigen, welche nicht als Hazardous
markiert sind*.

Control Action Provided Control Action Mot Provided

Show Hazardous

ID DoorPosition Door State Train Position Train motion Emergency Hazardous? (5]
Unknown Unknown Aligned with platform Stopped Evacuaticn required 0

There are 1 Conflicts!

Abbildung 5.1.9: Logischer Konflikt in einer Kontext Tabelle, Filtereinstellung: Hazardous Only

XSTPA &

Process Model

46

List of Control Actions

Control Action Provided Contral Action Not Provided

Open door Show Al
Control Actions | || Stop apening door ID DoorPosition Door State Train Position Train motion Emergency Ans‘granzardc:uusEiafrEruvidieUdlate i (5}
i 1 Unknown Unknown Aligned with platform Stopped No emergency VI |
e e i 2 Unknown Unknown Aligned with platform Stopped Evacuation required 0O 0 0O 0
3 Unknown Unknown Alignedwith platform Trainismoving Mo emergency T Q
4 Unknown Unknown Aligned with platform Trainis moving Evacuation required .
3 Unknown Unknown Notaligned with platform Stopped No emergency H 5 N
& Unknown Unknown Notalignedwith platform Stopped Evacuation required O 0 O =
7 Unknown Unknown Not aligned with platform Trainismoving Mo emergency N 1 N v
8 Unknown Unknown Mot aligned with platform Trainis moving Evacuation required O 0O 0O

There are (Conflicts!

Abbildung 5.1.10: "Context Table" Ansicht im “Provided” Kontext
Wie man erkennen kann, weicht diese Ansicht am stirksten von der geplanten Ansicht des
Prototyps ab. Dies hatte hauptsidchlich den Ursprung, dass bei der Planung des Prototyps noch
zu wenig liber den Arbeitsablauf bekannt war. Hauptsdchlich wurden die Tabellenspalten
gedndert, sowie einiges an Funktionalitdt hinzugefiigt.

Der letzte Punkt in der Navigationsleiste nennt sich ,,Refined SR* was fiir ,,Refined Safety
Requirements* steht. In dieser Ansicht werden alle Eintrdge aller erstellten Kontext-Tabellen
aufgelistet, welche als ,,Hazardous* gekennzeichnet sind (Abbildung 5.1.11). Diese Ansicht ist
wihrend der Entwicklung des Plugins entstanden, als Ersatz fiir den Wegfall der ,,And/Or
Table*.

Die gezeigte Tabelle enthélt die verlinkte ,,Control Action und den Kontext des jeweiligen
Eintrags. Auflerdem ist der Eintrag in einer verkiirzten Form nochmals in der Spalte ,,Critical
Combinations* zu finden. Die Spalten ,,Related Unsafe CA* und ,,Linked Hazards* greifen auf
Informationen aus dem ,,Unsafe Control Action Table von , XSTAMPP* zuriick. Es konnen mit
jedem Eintrag die unsicheren ,,Control Actions® verkniipft werden, welche in der ,,Unsafe
Control Action Table* erstellt wurden. In die letzte Spalte konnen weitere Constraints
eingetragen werden, sodass das gefundene kritische Szenario bestmdglich reguliert ist.

Des weiteren befinden sich zwei Buttons in der ,Refined SR*“ Ansicht, einer ruft die
Exportfunktion von ,, XSTPA“ auf (welche auch iiber den , XSTAMPP* Export aufgerufen
werden kann), der zweite generiert eine ,,L7L“-Tabelle aus den Eintrdgen in der ,,Refined SR
Tabelle. Die ,,LTL“-Tabelle kann in Abbildung 5.1.12 betrachtet werden, diese bietet dem
Nutzer zum jetzigen Zeitpunkt jedoch noch keinerlei Funktionalitét, abgesehen davon, dass sie
exportiert werden kann, um eine Weiterverarbeitung zu gewéhrleisten.

A JSTPA 1

Process Model
Control Actions
Dependencies

Context Table

Refined SR

47

D

RSR1
RSR2
RSR3
RSR4
RSR3
RSRE

Contral A.

Open door
Open door
Open door
Open door
Open door
Open daor

Context

Provided
Provided
Provided
Mot Provided
Mot Provided
Mot Provided

Critical Cambinatians

Doar Position=Unknown, Door State=Unknown, Train Posttion=Aligned with platform, Train motion=5t..,
Doar Position=Unknown, Door State=Unknown, Train Posttion=Aligned with platform, Train motion=Tr..,
Doar Position=Unknown, Door State=Unknown, Train Posttion=Aligned with platform, Train motion=T..
Door Position=Unknown, Door State=Person in Doorway, Emergency=No emergency

Door Position=Unknown, Door State=Person in Doorway, Emergency=Evacuation required

Door Position=Unknawn, Door State=Person not in Doorway, Emergency=No emergency

Related Unsafe CA

Click to see UCA's
Click to see UCA's
Click to see UCA's
Click to see UCA's
Click to see UCA's
Click to see UCA's

Linked Hazards Refined Safety..
H-3 H-2 H-5

H-3,H-2, H-5 qf
H-3 H-2 B-5

H-3, H-2 H-3

H-3 H-2, H-3

H-3,H-2, H-3

Abbildung 5.1.11: Refined Safety Requirements Tabelle - bietet Funktionen zum verlinken der "Unsafe Control

b KSTPA 13

Process Model

Control Actions
Dependencies
Context Table

Refined SR

RSR1
RSR2
RSR3
RSR4
RSR3
RSR6

LTL Formula

Actions" aus "XSTAMPP"

G ((Door Position==Unknown) && (Door State==Unknown) && (Train Position==Aligned with platform) &8 (Train motion==5topped) && [Emergency==No emergency) -»! (controlaction == Openc

G {{Door Position==Unknown) 8& (Door State==Unknown) &8 (Train Position==Aligned with platform) &8& (Train motion==Train is moving) &8 (Emergency==No emergency) -»! (controlaction ==

G ((Door Pasition==Unknown) 8& (Door State==Unknown) 88 (Train Position==Aligned with platform) && (Train motion==Train is moving) && (Emergency==Evacuation required) ->! (controlaction

G ((Door Position==Unknown) 8& (Door State==Person in Doorway) 8& (Emergency==Evacuation required) -> (controlaction == Open doar])

)
)
)
G ({Door Position==Unknown) && (Door State==Person in Doorway) && (Emergency==No emergency) -» (controlaction == Open door))
)
)

G ((Door Position==Unknown) 8& (Door State==Person not in Doorway) &8 (Emergency==No emergency) -* (controlaction == Open door))

Abbildung 5.1.12: "LTL”-Tabelle - zeigt die als "Hazardous" markierten Eintrdge als boolsche Formel

48

5.2 Combinatorial Testing

In diesem Kapitel wird erldutert aus welchem Grund die Kontext-Tabellen auf ihre Gréfe hin
modifizierbar gemacht wurden.Wie bereits erwéhnt, konnen Kontext-Tabellen sehr schnell sehr
grofl werden. Fiir jede Prozessvariable die einer ,,Control Action hinzugefiigt wird, erhoht sich
die Anzahl der Gesamtkombinationen exponentiell.

Um ein Beispiel zu nennen: Zehn Variablen mit jeweils zwei moglichen Werten ergibt
2'°=1024

Kombinationen. Und obwohl das noch ein relativ klein gewéhltes Szenario ist, ist es fiir den
Sicherheitsexperten sicherlich nicht angenehm 1024 Testfélle darauthin zu iiberpriifen, ob diese
gefahrlich sind oder nicht. Aus diesem Grund wurde der Ansatz entwickelt, die Tabelleneintriage
der Kontext-Tabelle mittels kombinatorischem Testen zu erstellen. Dieses Verfahren vergleicht
nicht jeden einzelnen Wert mit einem anderen, sondern es vergleicht immer Wertepaare. Das
fiihrt zu einer deutlichen Reduktion der Testfille. Um das Beispiel mit 2" fortzufiihren:

Wenn man bei zehn Variablen mit jeweils zwei Werten Paare bildet, so kommt man auf 45
mogliche Kombinationsmoglichkeiten, dies wird mit dem Binomialkoeffizient

g

berechnet. Da jetzt aber mit Wertepaaren und nicht mehr mit einzelnen Werten gerechnet wird,
muss die Anzahl aller moglichen Testfdlle neu berechnet werden. Um diese zu erhalten miissen
die Wertepaare mit den Kombinationsmoglichkeiten multipliziert werden:

22*(10)=180
2
Da man fiinf Wertekombinationen in einen einzigen Testfall packen kann (vgl. Abbildung
5.2.1), bendtigt man maximal
180/5=36

Testfdlle um eine volle Abdeckung zu erreichen. Jedoch sind bei diesen 36 herausgearbeiteten
Testféllen einige redundante Félle dabei (vgl. Abbildung 5.2.1). Aus diesem Grund konnen
diese 36 Testfille auf acht Félle reduziert werden (vgl. Abbildung 5.2.2), was eine Abdeckung
von

22*(10)=180
2

Testfédllen zur Folge hat.

49

Da es aber wie oben berechnet insgesamt 1024 mogliche Kombinationen gibt, ist dies
unzureichend, da nur 180 von 1024 Féllen abgedeckt sind. Allerdings kann die Grofe der
Wertepaare erhoht werden, man kann statt einem Paar einfach eine Gruppe von drei Variablen
zusammennehmen. Es ergeben sich fiir eine Dreiergruppe von Variablen die folgenden Werte:

* Anzahl aller moglichen Testfalle: 960 = 120 * 2°
* Anzahl Testfalle fiir volle Abdeckung (mit redundanten Féllen): 960/3=320
* Anzahl Testfille fiir volle Abdeckung (ohne redundante Fille): 13

Man erkennt schnell, dass es ein sehr gutes Ergebnis ist, wenn man mit 13 Testfédllen ganze 960
Wertekombinationen abdecken kann. Es fehlen nun nur noch

64 =1024 - 960

Testfille um die volle Abdeckung aller Wertekombinationen zu erreichen. Es hat sich gezeigt,

dass eine Gruppe von sechs Wertepaaren geniigt, um mit einer sehr hohen Erfolgsquote alle
sicherheitskritischen Szenarien zu ermitteln. Die Wahrscheinlichkeit, dass ein sehr wichtiges
sicherheitsrelevantes Szenario bei den wenigen Testfdllen, welche nicht abgedeckt werden,
dabei ist, ist verschwindend gering.[6] [7]

Aus diesem Grund verwendet der in ,,XSTPA* verwendete Algorithmus welcher vom ,,National
Institute of Standards and Technology* (NIST) entwickelt wurde, eine Teststidrke zwischen 1
und 6. So ist sichergestellt, dass der Anwender eine iiberschaubare Anzahl an Szenarien
einstufen muss und trotzdem die bestmogliche Sicherheit gewéhrleistet wird.

Der Algorithmus selbst wird iiber die Kommandozeile aufgerufen, mit den in ,,XSTPA*
gemachten Einstellungen, als Parameter. Der Algorithmus liest eine durch ,, XSTPA* erstellte
Textdatei aus, welche alle vom Algorithmus bendtigten Informationen enthélt. Der Algorithmus
schreibt selbst eine Textdatei, welche die Ausgabe enthilt. Diese wird in optisch aufbereiteter
Form von ,,XSTPA* in der dafiir vorgesehenen Kontext-Tabelle wiedergegeben.

50

Vi V2 V3 Vv4 V5 Ve V7 V8 V9 V10

T
L4 L

Abbildung 5.2.1: Aufteilung von Wertepaaren - Es passen flinf Wertepaare in
einen Testfall, jedoch deckt jeder Test implizit noch weitere Paare ab.

51

M N2 Y e G YR W Wl N8 Ve

QDo 0@ D@ D@ o
D1 1 L DDA
oo T 1 0 0 0 1
estrall dar .c : 1 : D
Lot & 8§ 1 0 0O
1 o 0 1 o o 0

Abbildung 1: Covering Array - Ein Array, welches 180 Wertekombinationen mit nur 8 Tests
iiberdeckt

52

53

6 Ergebnisse

Wihrend des Projekts wurde ein Tool geschaffen, welches den ,,STPA*“ Analyseprozess durch
automatisierte Abldufe und simple Kontrollmoglichkeiten deutlich erleichtert. Das komplette
Softwareprojekt wurde in enger Zusammenarbeit mit Asim Abdulkhaleq durchgefiihrt um ein
Werkzeug zu erstellen, welches moglichst nah an der Praxis liegt.

»XSTPA* ist ein Plugin welches fiir die von der Universitét Stuttgart entwickelte ,,XSTAMPP*
Plattform entwickelt wurde. Es implementiert die Ansitze welche von John Thomas und Asim
Abdulkhaleq theoretisch erarbeitet worden sind. Somit ist es mdglich eine noch bessere
Gefahrenanalyse mittels ,,XSTAMPP* durchzufiihren. AuBlerdem legt es den Grundstein fiir
viele weitere Plugins durch die Aufbereitung der als gefahrlich eingestuften Szenarien als ,,LTL*
Formel. Das Plugin bietet einen umfangreichen Export aller Daten als ,,CSV*, ,PNG* und
,.,PDF*“. Es wurde mit dieser Arbeit eine ausfiihrliche Dokumentation aller Arbeitsschritte
erstellt, sowie eine Erklarung fiir alle Funktionen innerhalb des Programms.

54

55

7 Zusammenfassung und Ausblick

Anlass zu dieser Arbeit war die Arbeit von John Thomas [4]. Er entwickelte eine mathematische
Grundlage fiir ,,STPA*“ und entwickelte eine Methode unsichere ,,Control Actions* aus dem
gegebenen Prozessmodell abzuleiten. Des weiteren bot die erweiterbare und sich immer noch in
der Entwicklung befindliche ,,XSTAMPP* Plattform eine gute Grundlage, diese Ansétze, sowie
die Idee von Asim Abdulkhaleq die Kontext-Tabelle mittels kombinatorischem Testen zu
verkleinern, in einem Werkzeug zu vereinen. Aus diesem Grund wurde das Plugin ,,Extended
STPA* entwickelt, sodass die ,,XSTAMPP* Plattform zu einem méachtigen Werkzeug fiir jeden
Sicherheitsanalysten werden kann.

In “XSTPA” wurden viele der geplanten Features umgesetzt, dennoch gibt es noch sehr viele
Moglichkeiten das Plugin zu verbessern.

Einer der groBten und wichtigsten Punkte ist die Speicherfunktion fiir die Tabellendaten von
“XSTPA”. Momentan werden die Daten liber ein XML-File abgelegt, welches zum Start von
“XSTAMPP” ausgelesen wird. Problematisch ist dabei, dass es kein Versionierungssystem gibt.
So kann fiir jede “Control Action” nur eine einzige Kontext-Tabelle abgespeichert werden. Es
wire deutlich besser, wenn fiir jede “Control Action” beliebig viele Tabellen abgespeichert
werden konnten. AuBBerdem gibt es durch das Plugin ein neues Dateiformat. Die alte
Projektdatei in welcher dass Plugin noch nicht enthalten war, wurde als ,,.Haz* abgespeichert.
Projekte in denen ,, XSTPA* aktiv ist, werden unter der Dateiendung ,,.Hazx* abgelegt. Dies
fiihrt dazu, dass alte Projekte unter Umstidnden nur schwer das neue Plugin nutzen konnen.

Ein weiterer wichtiger Punkt wire die logische Verkniipfung des “Controllers” mit den
jeweiligen “Control Actions”. Wenn diese Verbindung bestehen wiirde, konnte die “Usability”
fiir den Nutzer deutlich erhéht werden, da so eine gro3e Fehlerquelle deutlich eingeddmmt
werden wiirde.

Die Einbindung von ,,4ACTS*, der Jar-Datei, welche den Algorithmus zum kombinatorischem
Testen enthilt, ist leider auch nicht optimal. Es wire besser diese als Bibliothek in ,,XSTPA “
einzubinden. Denn momentan wird sie als externe Datei aufgerufen. Dafiir muss zwingend ein
Pfad gesetzt werden, was fiir den Benutzer sehr verwirrend und umsténdlich sein kann.

Da die Zeit leider nicht mehr reichte, steht die ,,L7L*“-Tabelle auch nur zum Export zur
Verfiigung. Es bestehen sehr viele Moglichkeiten diese booleschen Formeln auszuwerten,
sodass auf eine einfache Art und Weise ,,constraints® fiir die sicherheitskritischen Szenarien
erstellt werden konnen. Diese konnten dann maschinell ausgelesen und weiterverarbeitet
werden, was den Analyseprozess automatisierter ablaufen lassen wiirde.

Es gibt sicher noch einige Funktionen die in ,,XSTPA* mit integriert werden konnten, jedoch
sind die oben genannten jene, welche die grofite Relevanz besitzen.

56

57

8 Literaturverzeichnis

[11 A. Abdulkhaleq, S. Wagner. Open Tool Support for System-Theoretic Process
Analysis. In Proc. 2014 STAMP Conference, at Massachusetts Institute of Technology
(MIT), USA, 2014.

[2] Asim Abdulkhaleq, Stefan Wagner: XSTAMPP: An Extensible STAMP Platform As
Tool Support for Safety Engineering, In Proc. 2015 STAMP Conference at
Massachusetts Institute of Technology (MIT).

[3] Nancy G. Leveson, Engineering a Safer World, Systems Thinking Applied to Safety,
MIT press, 2012.

[4] J. Thomas, Extending and automating a systems-theoretic hazard analysis for
requirements generation and analysis. Technical Report SAND2012-4080, Sandia
National Laboratories, 2012.

[5] R. Kuhn, ACTS Users Guide, 2009.
[6] R. Kuhn, Combinatorial Coverage Measurement, 2010.
[7] R. Kuhn, Introduction Combinatorial Testing, 2011.

[8] S. Wagner, Vorlesungsfolien "Sichere und zuverlassige Softwaresysteme",
Wintersemester 2014/15

[9] B. Daum, Rich-Client-Entwicklung mit Eclipse 3.3, Anwendungen entwickeln mit
Eclipse RCP, SWT, Forms, GEF, BIRT, JPA u.a.m.
, 2007

[10] R, Ebert, Eclipse RCP, Entwicklung von Desktop-Anwendungen mit der Eclipse
Rich Client Plattform 3.7, 2011

[11] A, Abdulkhaleq, S. Wagner, Integrated STPA and Software Modeling, Software
Engineering Group, Institute of Software Technology University of Stuttgart, Germany
March, 2015

58

Erkldrung

Ich versichere, diese Arbeit selbststindig verfasst zu haben. Ich habe keine anderen als
die angegebenen Quellen benutzt und alle wortlich oder sinngemil3 aus anderen Werken
iibernommene Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen Priifungsverfahrens.
Ich habe diese Arbeit bisher weder teilweise noch vollstindig verdffentlicht. Das
elektronische Exemplar stimmt mit allen eingereichten Exemplaren iiberein.

(Ort, Datum, Unterschrift)

	1 Einleitung
	1.1 Überblick
	1.2 Motivation
	1.3 Zielstellung
	1.4 Aufbau der Bachelorarbeit

	2 Grundlagen
	2.1 STAMP
	2.2 STPA
	2.3 Extended approach to STPA (XSTPA)
	2.4 XSTAMPP
	2.5 Eclipse Plug-in Development (RCP)

	3 Verwandte Arbeiten
	4 Analyse und Entwurf
	4.1 User Stories
	4.2 Use Case Diagramm
	4.3 Klassendiagramm
	4.4 Beispiel (Train Door)
	4.5 Prototyp der GUI

	5 Implementierung
	5.1 GUI
	5.2 Combinatorial Testing

	6 Ergebnisse
	7 Zusammenfassung und Ausblick
	8 Literaturverzeichnis

