
Institut für Softwaretechnologie

Universität Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Bachelorarbeit Nr. 219

Zustandsverwaltung mit SKilL
State management with SKilL

Christopher Völker

Studiengang: Softwaretechnik

Prüfer/in: Prof. Dr. Erhard Plödereder

Betreuer/in: Dipl.-Inf. Timm Felden

Beginn am: 8. April 2015

Beendet am: 8. Oktober 2015

CR-Nummer: D.1.5, D.2, D.3.3, E.2, E.5

Kurzfassung
In dieser Bachelorarbeit wird die Verwaltung von Zuständen und der darin
beinhalteten Typen sowie deren Instanzen untersucht. Hierbei soll die Funk-
tionalität des Suchens, Löschens und Kopierens von Instanzen implementiert
werden. Die Arbeit untersucht dafür zunächst die nötigen Schritte, um die
gewünschten Funktionen zu implementieren und dabei den Aufwand für die
Nutzung dieser so gering wie möglich zu halten. Daher liegt der Schwerpunkt
dieser Implementierung darin, dem Nutzer eindeutige Abläufe vorzugeben,
für welche er keine tiefere Kenntnis bezüglich ihrer genauen Funktionalität
benötigt. Durch die Vorgabe dieser Abläufe soll eine unsachgemäße Nutzung
der Funktionen vermieden werden. Ein Weiterer Schwerpunkt liegt bei der
Effizienz der Suche nach Instanzen. Ziel ist es, diese Suche so effizient wie
möglich zu realisieren.

3

Inhaltsverzeichnis

1 Einführung 6
1.1 Aufbau des Dokuments . 6
1.2 Hintergründe der Arbeit . 6
1.3 Die Sprache SKilL . 7
1.4 Aufgabenstellung . 9
1.5 Ähnliche Arbeiten . 10

2 SKilL in Java 12
2.1 Der Zustand . 13
2.2 Bestandteile eines Zustandes . 14

2.2.1 StringAccess . 14
2.2.2 Access . 15
2.2.3 SkillObject . 15
2.2.4 StringPool . 16
2.2.5 Chunk . 16
2.2.6 FieldType . 16
2.2.7 FieldDeclaration . 16
2.2.8 StoragePool . 17
2.2.9 BasePool . 18
2.2.10 SubPool . 19

3 Verwaltung von Zuständen 20
3.1 Ziel der Verwaltung . 20
3.2 Kritische Stellen der Verwaltung . 21

3.2.1 Suchen einer Instanz . 21
3.2.2 Löschen einer Instanz . 22
3.2.3 Kopieren einer Instanz . 22

3.3 Umsetzung der Verwaltung . 23
3.3.1 Annahmen . 23
3.3.2 Unifikation von Zuständen . 24
3.3.3 Element-Operator für Instanzen 27
3.3.4 Löschen von Instanzen . 29
3.3.5 Kopieren von Instanzen . 32

4 Mögliche nächste Schritte der Verwaltung 36
4.1 Unifikation . 36
4.2 Unbekannte Typen . 37

5 Zusammenfassung und Ausblick 38

4

Abbildungsverzeichnis
1 Typ IDs in SKilL . 8
2 Spezifikation von Datenstrukturen . 10
3 SKilL in Java (vereinfacht) . 12
4 Instanzen von SubTypes eines BasePools 18
5 Ziel der Verwaltung . 21
6 Vergleich zweier Instanzen (vereinfachter Ablauf) 26
7 Element-Operator (vereinfachter Ablauf) 28
8 Löschen einer Instanz (vereinfachter Ablauf) 30
9 Hinzufügen einer Instanz (vereinfachter Ablauf) 33
10 Verschieben einer Instanz (vereinfachter Ablauf) 34

5

1 Einführung

In diesem Abschnitt werden neben einer kurzen Übersicht zum Aufbau des Dokuments ei-
nige Hintergrundinformationen zu dieser Arbeit beschrieben. Hierzu gehört neben SKilL
und der Aufgabenstellung dieser Arbeit auch eine Übersicht über ähnliche Arbeiten zu
diesem Thema.

1.1 Aufbau des Dokuments

In diesem Dokument werden zunächst die für das Verständnis notwendigen Informatio-
nen sowie eine kurze Einführung in die Sprache SKilL beschrieben. Das Einführungs-
kapitel beschäftigt sich mit der Aufgabenstellung dieser Bachelorarbeit und es werden
andere ähnliche wissenschaftliche Arbeiten kurz vorgestellt. Das anschließende zweite
Kapitel handelt von der Java-Implementierung von SKilL, in welcher die Implementie-
rung der gewünschten Funktionen erfolgt. Im nachfolgenden dritten Kapitel werden die
Ergebnisse dieser Arbeit im Bezug auf die Verwaltung von Zuständen sowie damit ver-
bundene Einschränkungen beschrieben. Das darauffolgende vierte Kapitel handelt von
Verbesserungsvorschlägen, welche im Zuge dieser Arbeit entstanden sind und Aufgrund
von mangelnder Zeit nicht mehr umzusetzen waren. Zuletzt wird im fünften Kapitel eine
kurze Zusammenfassung dieser Arbeit und auch ein Ausblick auf mögliche weiterführen-
de Entwicklungen gegeben.

1.2 Hintergründe der Arbeit

Im Zeitalter der Digitalisierung werden jeden Tag große Mengen an Daten generiert
und verarbeitet. Es werden jeden Tag Millionen von Nachrichten, Bildern, Videos oder
anderen Arten von Daten ausgetauscht, verschickt und gespeichert. Die Daten werden
in einer Darstellung erstellt, welche von Menschen gelesen, verstanden und bearbeitet
werden kann. Ein weitaus deutlicheres Beispiel für das Generieren von großen Mengen
an Daten sind wissenschaftliche Projekte. In solchen Projekten werden Unmengen an
Informationen generiert und müssen verarbeitet, gespeichert und zwischen verschiede-
nen Tools transferiert werden. Die Menge an Daten, welche dabei täglich entsteht, wird
mit der fortschreitenden Digitalisierung und den dabei stetig wachsenden Möglichkei-
ten immer größer und wächst schneller als die Anzahl der für die Verarbeitung nötigen
Ressourcen. Das heißt, dass die Verarbeitungsprozesse immer länger dauern, da der
technische Fortschritt und dessen Ausbau mit der zunehmenden Digitalisierung nicht
mithalten kann. Dies hängt unter Anderem auch damit zusammen, dass der Ausbau von
schnellen Anbindungen an das Internet ein langwieriger und auch kostspieliger Prozess
ist. Doch auf die lokale Verarbeitung und das dortige Speichern von Daten wird in diesem
Zusammenhang immer langwieriger. Aus diesem Grund wird es immer wichtiger, dass
Daten möglichst effizient gespeichert und verschickt werden können, wobei dies nicht in
der initialen für Menschen lesbaren Darstellung geschehen kann. Damit Daten gespei-
chert oder verschickt werden können, müssen diese in ein bestimmtes Format gebracht
werden. Dieses Format muss von digitalen Medien (wie zum Beispiel Computern), mit-

6

hilfe welcher die Daten in der Regel erstellt werden, gespeichert und ausgetauscht werden
können. Das überführen der Daten in dieses Format wird „Serialisieren“ genannt. Ein
solches Verfahren muss also in der Lage sein, Daten zwischen einer für Computer ver-
ständlichen Darstellung in eine Menschen verständliche Darstellung und wieder zurück
zu überführen.

Das Serialisieren von Daten Das Serialisieren von Daten stellt natürlich einen zusätz-
lichen aber nötigen Aufwand in der Verarbeitung von Daten dar. Das Hauptproblem
hierbei ist, dass die gängigsten Verfahren in der Regel alle Informationen Serialisieren
und De-serialisieren statt nur diejenigen Daten zu verarbeiten, welche tatsächlich be-
nötigt werden. Das populärste Beispiel für ein solches Verfahren stellt die Extensible
Markup Language (XML) dar. [XML06] Dieses Verfahren stellt Daten hierarchisch dar
und zwingt den Nutzer hierdurch dazu alle Daten dieser Hierarchie mindestens einmal
„in die Hand zu nehmen“. Bei sehr großen Mengen an Daten wäre es aber zugunsten der
Effizienz wünschenswert, dass tatsächlich nur diejenigen Daten verarbeitet werden, wel-
che wirklich benötigt werden. Dabei soll es natürlich möglich sein, bei Bedarf bestimmte
Daten möglichst effizient nachträglich zu laden, ohne dabei bereits geladene Daten er-
neut zu verarbeiten. Ein solches Verfahren, welches möglichst unabhängig von Sprachen
und Plattformen sein soll und zeitgleich diese Funktionalität bietet existiert zum jetzigen
Zeitpunkt noch nicht. An dieser Stelle setzt die Sprache „Serialization Killer Language“
(SKilL) an.

1.3 Die Sprache SKilL

Bei SKilL handelt es sich um die Entwicklung einer Serialisierungssprache an der Univer-
sität Stuttgart. Diese Sprache wird entwickelt um das Serialisieren und De-serialisieren
von großen Mengen an Daten schneller und einfacher zu machen. Ein sehr großer Auf-
wand bei der Handhabung großer Mengen an Daten fließt in die Nutzung dieser in ver-
schiedenen Programmiersprachen. In vielen Fällen müssen die Daten in verschiedenen
Tools verarbeitet werden, welche in unterschiedlichen Programmiersprachen realisiert
wurden. Um dies in den jeweiligen Tools zu ermöglichen, müssen die Datenstruktu-
ren in jeder der verschiedenen Programmiersprachen erstellt werden. SKilL verfolgt das
Ziel auch diesen Aufwand zu minimieren. Hierfür wurde zunächst eine Sprache für die
Spezifizierung von Datenstrukturen entwickelt, welche es ermöglicht zum Teil komplexe
Datenstrukturen zu definieren und diese von Tools verschiedener Programmiersprachen
nutzen zu können. Dabei wurde darauf geachtet, dass die Spezifikation Ähnlichkeiten
zu Objekt-orientierten Programmiersprachen hat um die Verwendung in diesen so leicht
wie möglich zu machen. Dies bedeutet auch, dass abgesehen von den Basistypen der Pro-
grammiersprachen (wie zum Beispiel in Java int, long, string etc.) auch Benutzertypen
definiert werden können. Dabei gilt natürlich, dass der letzte Benutzertyp in einer Typ-
Hierarchie ausschließlich aus Basistypen bestehen kann. Diesem Prinzip entsprechend
kann ein Benutzertyp auch in einem weiteren Benutzertyp verwendet werden. Den ver-
schiedenen Datentypen werden dabei in SKilL so genannte „TypeIDs “ zugewiesen, wobei
diese eindeutig spezifiziert sind. In Abbildung 1 ist die Verteilung dieser TypeIDs dar-

7

Abbildung 1: Typ IDs in SKilL
Quelle: [Fel13, Anhang E, Numerical Constants]

gestellt. Hieraus wird deutlich, dass Benutzertypen im Gegensatz zu Basistypen keine
definierte ID besitzen, sondern diese aufsteigend eine ID zugewiesen bekommen. Dabei
hat diese ID per Definition einen offset von 32 um sich nicht mit den Basistypen zu
überschneiden. Hierbei werden die IDs der Benutzertypen in der Reihenfolge, in welcher
sie eingelesen werden zugewiesen. Diese Reihenfolge hängt unter Anderem von den Ab-
hängigkeiten in den Spezifikationen ab. In der Abbildung 2 (a) ist die naive Spezifikation
eines Studenten zu sehen. Hier besitzt ein Student einen Vor- und Nachnamen und hat
natürlich auch ein Geburtsdatum. Da es sich um einen Student handelt gibt es auch ein
Feld für seinen Studiengang. In diesem Beispiel ist die Verwendung eines so genannten
„Benutzertyps“ in einem weiteren „Benutzertyp“ zu sehen, welcher in Abbildung 2 (b)
spezifiziert ist. In diesem Fall gibt es zwei Benutzertypen, welche eine entsprechende
ID zugewiesen bekommen müssen. Um jedoch den Typ „Student“ korrekt darstellen zu
können, muss zuvor der Typ „Geburtstag“ bekannt sein. Aus diesem Grund bekommt
der Typ „Student“ seine ID erst nach dem Typ „Geburtstag“ . Grund dafür ist, dass der
Student nicht ohne das bekannt sein des Geburtstags erstellt werden kann.
Ziel einer solchen Spezifikation ist nun, dass die Kern Datenstrukturen eines Tools
Plattform unabhängig sind, denn die Programmiersprachen, in welcher ein Entwickler
am besten entwickelt, ist diejenige die er am liebsten nutzt. [Fel13, Kapitel 1, Absatz 2]

8

Aus diesem Grund wird eine solche Spezifikation mithilfe eines Code-Generators nun zu
Klassen einer bestimmten Sprache generiert, damit die darin definierten Datenstrukturen
dort verwendet werden können. Ein wichtiger Aspekt hierbei ist, dass das Einlesen von
Zuständen aus Dateien abhängig von der entsprechenden Spezifikation ist. Die hierfür
nötigen Funktionen werden von dem Code-Generator aus einer Spezifikation erstellt und
können dann mithilfe der generierten Klassen verwendet werden. Das heißt aber auch,
dass ein Zustand nach dem Einlesen zunächst nur diejenigen Typen kennt, welche in
der Spezifikation definiert wurden. Ein großer Vorteil der Generierung von Klassen aus
einer Spezifikation ist dabei, dass die Datenstrukturen auf diese weise bereits serialisiert
vorliegen! Dabei ist die Entwicklung eines Code-Generators für verschiedene Objekt-
orientiere Sprachen, ausgehend von einer einzigen Spezifikation, wesentlich einfacher, als
die Anpassung der Spezifikation an verschiedene Sprachen. Ein weiterer Vorteil der Ge-
nerierung dieser Klassen ist, dass die nötigen Datenstrukturen nicht vom Entwickler in
verschiedenen Sprachen realisiert werden müssen, sondern diese Arbeit vorab durch den
Generator durchgeführt wird. Dies macht das Arbeiten mit bestimmten Datenstrukturen
in Tools verschiedener Programmiersprachen wesentlich einfacher und erfordert deutlich
weniger Aufwand. Auf diese Art und Weise kann also folglich ein und die selbe Spezifi-
kation von Datenstrukturen in verschiedenen Programmiersprachen verwendet werden.
Der Entwickler muss lediglich gegen die generierte Schnittstelle entwickeln anstatt diese
zuerst erstellen zu müssen. Auch die Tatsache, dass der Aufbau dieser Schnittstelle in
jeder Programmiersprache sehr ähnlich sein wird, bringt einige Vorteile in Sachen Be-
nutzung mit sich.
Im Fall dieser Arbeit wird aus dieser Spezifikation Code für die Programmiersprache
Java generiert. Hierbei stellen die generierten Klassen alle notwendigen Informationen
und Funktionen zur Verfügung, welche benötigt werden um mit den Datenstrukturen
der Spezifikation in Java arbeiten zu können.

1.4 Aufgabenstellung
Die in SKilL verwendeten Zustandsobjekte (so genannte „States“) sind aus Sprachsicht
Mengen von Typen, die wiederum Mengen von Instanzen sind. Diese Eigenschaft ist
aktuell in keiner Implementierung direkt realisiert. Daher soll eine bereits existierende
Implementierung um eine auf Mengenoperationen basierende API erweitert werden.

Löschen und Kopieren Es muss eine Funktionalität für das Löschen und Kopieren von
Instanzen aus einem State geschaffen werden. Außerdem muss der Transfer von Instanzen
zwischen unterschiedlichen States realisiert werden.

Element-Operator Es muss eine effiziente Implementierung des Element-Operators für
Instanzen geschaffen werden.

Erstellung konsistenter States Es muss eine einfache Möglichkeit geschaffen werden
einen konsistenten State aus mehreren Instanzen zu erzeugen. Insbesondere dürfen keine
Zeiger auf Instanzen außerhalb des generierten States existieren.

9

(a) Student (b) Geburtstag

Abbildung 2: Spezifikation von Datenstrukturen

Mengen-Operationen Wünschenswerte wäre eine Realisierung von Mengensubtraktions-
und Mengenvereinigungsoperationen für States, beziehungsweise für einzelne Typen in-
nerhalb von States.

Benutzerdefinierte totale Ordnung Wünschenswert wäre die Möglichkeit States be-
züglich einer benutzerdefinierten totalen Ordnung zu normalisieren, um zwei States ver-
gleichen zu können.

Änderungsvorschläge Optional können Vorschläge gemacht werden, wie die Architek-
tur bereits existierender SKilL-Bindings zu verändern ist um Mengenoperationen leichter
oder effizienter zu realisieren.

1.5 Ähnliche Arbeiten

Im Bezug auf die sich in Entwicklung befindliche Sprache SKilL gab es noch weitere
wissenschaftliche Arbeiten, welche hier kurz vorgestellt werden.

Plattform- und sprachunabhängige Serialisierung mit SKilL Bei dieser Arbeit handelt
es sich um eine Diplomarbeit, welche von Fabian Harth verfasst wurde. Diese Arbeit
wurde im Jahr 2014 erstellt und befasst sich mit der Anbindung von SKilL an die
Programmiersprache C. Bei dieser Arbeit wird die Möglichkeit der Anbindung von SKilL
an eine nicht Objekt-orientierte Programmiersprache beschrieben. [Har14, Kurzfassung]

10

Nutzbarkeitsevaluation einer sprach- und plattformunabhängigen Serialisierungsspra-
che Diese Diplomarbeit wurde im Jahr 2014 von Wladislaw Ungur erstellt. Sie befasst
sich mit der Nutzbarkeit und praktischen Tauglichkeit einer Schnittstelle und des passen-
den Code-Generators für die Serialisierungssprache SKilL. Hierbei liegt der Schwerpunkt
auf der Entwicklung einer API und eines Code-Generators für die Programmiersprache
Java. [Ung14, Kurzfassung]

Performance-Evaluation einer sprach- und plattformunabhängigen Serialisierungs-
sprache Im Jahr 2014 befasste sich Dennis Przytarski mit der Performanz von einer
Serialisierungssprache und evaluierte diese mithilfe eines Scala- und Ada-Bindings. Das
Scala-Binding existierte hierbei als Referenzimplementierung während für die Program-
miersprache Ada ein Code-Generator entwickelt werden musste. [Prz14, Kurzfassung]

11

Abbildung 3: SKilL in Java (vereinfacht)

2 SKilL in Java
Die Umsetzung der Funktionalitäten, mit welchen sich diese Arbeit beschäftigt, erfolgt
in der Java-Implementierung von SKilL. Aus diesem Grund wird die Implementierung
von SKilL in Java in diesem Abschnitt beschrieben. Dies ist notwendig, um die Hinter-
gründe der Umsetzung verstehen und nachvollziehen zu können. Hierbei beschränkt sich
der Abschnitt auf die wichtigsten Informationen zur Implementierung. Die nachfolgende
Beschreibung hat folglich keinen Anspruch auf Vollständigkeit, da nicht alle Einzelheiten
für das Verständnis der Umsetzung nötig sind.
Zunächst erfolgt eine kurze Beschreibung eines so genannten SKilL-Zustands, welcher

im folgenden „Zustand“ genannt wird. Anschließend werden die wichtigsten und für
den weiteren Verlauf dieser Arbeit nötigen Bestandteile sowie deren Funktion etwas
detaillierter beschrieben.

12

2.1 Der Zustand

Ein Zustand in SKilL, stellt die oberste Ebene in der Verwaltung von Daten dar. Ein
Zustand wird als Java-Objekt im Sinne der objektorientierten Programmierung realisiert.
Ein solcher Zustand beinhaltet alle für das spätere Serialisieren notwendigen Daten und
dient als Repräsentation der Daten im Hauptspeicher.
Ein Zustand ist also für die Verwaltung von Typen, ihren Definitionen, Restriktionen
und Instanzen zuständig und ermöglicht es diese geordnet zu Repräsentieren und mit
ihnen zu arbeiten. Bei Instanzen handelt es sich hierbei um Objekte eines Typs, welche
bestimmte Werte für dessen Felder beinhalten und repräsentieren. Der initiale Zugriff
auf diese Daten wird somit über einen Zustand realisiert. Im Zuge der Verwaltung dieser
Daten ist ein Zustand auch dafür verantwortlich, die Daten in Dateien zu schreiben und
aus solchen auch wieder auslesen zu können. Konkret bedeutet dies, dass dieser auch
das Serialisieren und De-serialisieren von Daten realisiert beziehungsweise den Prozess
dessen anstößt.
Jeder Zustand zeichnet sich abgesehen von seinem Inhalt durch zwei bestimmte Attribute
aus. Diese Attribute sind der „Pfad“ und der „Schreibmodus“.

Schreibmodus Jeder Zustand unterscheidet bei seiner Erstellung zunächst zwischen
einem so genannten „openMode“ und einem „closeMode“.
Der „openMode“ differenziert hierbei zwischen einer Lese-Operation auf eine bereits
vorhandene Datei oder einer Erstellen-Operation für eine neue Datei. Letzteres wird
ausschließlich für das Erstellen neuer Zustände verwendet, für welche es noch keine Datei
gibt. Der openMode lässt sich nachträglich nicht mehr verändern, da dieser nur bei der
Erstellung eines Zustandes im Hauptspeicher zur Verwendung kommt.
Der „closeMode“ unterscheidet die Art der Schreib-Operation auf einen Zustand. Es gibt
zum einen den Modus „Write“, welcher für das Schreiben von Änderungen im Bezug auf
den Inhalt oder das Löschen von Inhalten verwendet wird. Zum Anderen gibt es einen
„Append-“ Modus, der für das Hinzufügen neuer Inhalte zu einem (bestehenden) Zustand
optimiert wurde. Hier gilt zu beachten, dass man den Modus zwar von Append zu Write
ändern kann, die andere Richtung jedoch nachträglich nicht zulässig ist. Generell ist
ein nachträgliches Ändern des Modus zu Append in keinem Fall zulässig. Dies dient der
Fehlervermeidung, da ein Zustand im „Append“ Modus ausschließlich auf das Hinzufügen
neuer Inhalte optimiert wurde. Hiermit soll vermieden werden, dass durch unzulässiges
Ändern des Schreibmodus Änderungen in einem Zustand nicht übernommen werden und
so unter Umständen Inkonsistenzen auftreten.
Bei den Modi eines Zustandes ist zu beachten, dass der „openMode“ zwingend angegeben
werden muss, während der „closeMode“ zunächst nicht angegeben werden muss. Dabei
ist aber zu beachten, dass das nicht angeben des „closeMode“ impliziert, dass man den
Zustand nach dem Erstellen nur noch um den Modus „Write“ ergänzen kann.

Read Dieser Schreibmodus wird verwendet, wenn eine Datei ausschließlich gelesen aber
nicht verändert wird. Im Falle der Notwendigkeit einer Änderung im Zustand kann der
Schreibmodus nachträglich noch um „Write“ ergänzt werden.

13

Create Create als initialer Schreibmodus ist für das Erstellen neuer Zustände zu ver-
wenden. Create initiiert dabei das Erstellen eines neuen (leeren) Zustandes, in welchem
dann Instanzen zu entsprechenden Typen oder gegebenenfalls auch neue Typen hinzu-
gefügt werden können.

Write Der Modus „Write“ kann nur als der zweite Parameter für den Modus beim
erstellen eines Zustandes übergeben werden. Dieser Schreibmodus wird für das Ändern
von Inhalten in einem Zustand verwendet. Die Besonderheit dieses Modus ist, dass das
Schreiben eines Zustandes in diesem Modus bei der Vergabe der SkillIDs alle IDs aktua-
lisiert. Dies betrifft in diesem Fall auch die bereits vorhandenen Instanzen des Zustandes.

Append Ein sich im Modus „Append“ befindlicher Zustand kommt beim Hinzufügen
neuer Inhalte zur Verwendung. Dieser Modus ist hierbei auf das Hinzufügen optimiert
und befasst sich bei der Vergabe von SkillIDs ausschließlich mit der Vergabe der SkillIDs
neuer Instanzen.

Pfad Der Pfad eines Zustandes entspricht bei seiner Erstellung zunächst dem Pfad der
Datei, aus welcher er entstanden ist. Im Falle einer Neuerstellung eines Zustandes kann
dieses Attribut zunächst leer sein. Spätestens unmittelbar vor dem Aufruf der Schreib-
Operation in eine (neue) Datei muss der Pfad allerdings angegeben werden. Es empfiehlt
sich jedoch im Sinne der Eindeutigkeit den Pfad in jedem Fall bei der Lese-Operation
(unabhängig ob im Create- oder Read-Modus) mit anzugeben.

2.2 Bestandteile eines Zustandes

Ein Zustand stellt ein Objekt dar, in welchem die für die Verwaltung von Typen und
deren Daten notwendigen Strukturen beinhaltet sind. Der Zustand ist unter Anderem
auch dafür zuständig Daten vom Nutzer abzuschirmen, welche der Nutzer nicht zwin-
gend benötigt oder deren falsche Nutzung gravierende Auswirkungen haben können. Aus
diesem Grund beinhaltet der Zustand neben den Objekten für die Repräsentation von
Typen und Daten auch entsprechende Zugriffsobjekte. Abbildung 3 zeigt eine vereinfach-
te Darstellung der wichtigsten Bestandteile sowie ihrer Abhängigkeiten so wie sie in Java
realisiert sind. Diese Bestandteile werden in den nachfolgenden Abschnitten beschrieben.

2.2.1 StringAccess

Der StringAccess ist ein Interface, welches von einer Java-Collection von Strings ab-
leitet. Dieses Interface stellt neben den Funktionalitäten einer üblichen Java-Collection
auch eine Funktion zur Ausgabe eines Strings zur Verfügung. Hierfür wird der Funktion
(„get“) ein Parameter vom Java-Typ „java.lang.long“ übergeben, welcher dann für die
Suche eines bestimmten Strings verwendet werden kann.

14

2.2.2 Access

Das Interface Access leitet ähnlich wie das Interface StringAccess von einer Java-Collection
ab. Anders als der StringAccess ist der Typ, welcher von dieser Collection gehalten wird,
nicht vorgegeben sondern in gewissem Maße generisch. Dieser generische Typ ist in so-
weit eingeschränkt, dass er selbst von der Klasse SkillObject abgeleitet sein muss. Das
Access Interface legt also die Grundlagen für den Zugriff auf Objekte der Klasse SkillOb-
ject fest. Dies wird unter Anderem durch das Vorschreiben einer Implementierung von
mehreren Funktionen bewerkstelligt, welche beim Implementieren des Interfaces ausgear-
beitet werden muss. Hierzu gehört eine Funktion, welche den Namen des repräsentierten
Typs zurück gibt sowie eine für den Erhalt des Namens des Supertyps (falls vorhanden).
Auch ist eine Funktion für das Abrufen des Zustands, zu welchem dieses Access-Objekt
gehört, vorgeschrieben. Des Weiteren gibt es noch drei weitere Funktionen, welche imple-
mentiert werden müssen. Hierzu gehört zum einen eine Funktion, welche die Felder dieses
bestimmten Typs kennt und (in Form von „FieldDeclarations“) zurückgibt. Die letzten
zwei Funktionen beschäftigen sich hierbei mit den Instanzen des Typs. Es gibt dabei ei-
ne Funktion, welche alle Instanzen in „typeOrder“ als iterierbares Objekt zurückgibt. In
„typeOrder“ heißt, dass zunächst die Instanzen dieses Access-Objekts, gefolgt von denje-
nigen aller Untertypen als iterierbares Objekt zurückgegeben werden. Dies beinhaltet in
diesem Fall auch diejenigen Instanzen, welche neu hinzugefügt wurden und sich somit in
der Liste „newObjects“ befinden. Die andere Funktion ermöglicht die Erstellung neuer
Instanzen des Typs, welche mit Standard-Werten befüllt werden.

2.2.3 SkillObject

Die Klasse SkillObject stellt die Grundlage für den Umgang mit Typen und deren Instan-
zen dar. Jedes SkillObject besitzt eine so genannte „SkillID“. Diese wird zur Identifikation
des Objekts im entsprechenden Typ verwendet und es gibt hier drei verschiedene Bedeu-
tungen, welche sich aus der SkillID ableiten lassen. Bei neuen Objekten ist die SkillID
zunächst -1 bis diese durch den Schreibvorgang des das Objekt beinhaltenden Zustands
entsprechend auf einen Wert größer 0 gesetzt wird. Ist die SkillID größer 0, so dient sie
innerhalb dieses Typs als eindeutige Identifikation. Der Fall, dass die SkillID gleich 0
ist bedeutet, dass das Objekt gelöscht werden soll. In diesem Fall wird das Objekt beim
Schreibvorgang „ignoriert“ und die IDs nachfolgender Objekte entsprechend angepasst
und verschoben. Für die SkillID gibt es drei Funktionen in einem SkillObject, wobei
die erste eine simple Abfrage dieser ist. Die zweite Funktion ermöglicht das Ändern der
SkillID, während die dritte prüft, ob das Objekt gelöscht wurde indem sie die SkillID
auf 0 überprüft. Zum Umgang mit Typen und deren Instanzen gehört natürlich auch
das Speichern und Abrufen von Werten. Dies wird von diesen Objekten in Form von so
genannter „Reflection“ gelöst. Reflection erlaubt es, Klassen und Objekte, welche zur
Laufzeit von der „Java Virtual Machine“ (kurz JVM) gehalten werden zu untersuchen
und in begrenztem Umfang zu modifizieren. [Ull10, Kapitel 25, Absatz 1] Die Nutzung
der Reflection ist notwendig, da man ohne diese den Zugriff auf Daten ausschließlich
über Felder realisieren könnte oder diesen für jede Spezifikation implementieren müsste.

15

Bei der Nutzung von Reflection wird im Falle des Abrufens von Daten (eines bestimm-
ten Feldes) der Instanz das entsprechende Feld als Parameter übergeben. Werden Daten
verändert beziehungsweise neu gesetzt, so wird zusätzlich noch ein Objekt als Parameter
erwartet, welches dem Typ des Feldes entspricht und die „neuen“ zu speichernden Daten
beinhaltet.

2.2.4 StringPool

Ein StringPool ist für die Verwaltung von bestimmten Strings verantwortlich. Diese
Strings können zum einen die Namen der Typen sein, welche von dem Zustand, in wel-
chem sich der StringPool befindet, verwaltet werden. Zum anderen befinden sich aber
auch die zu den verwalteten Typen zugehörigen Feldnamen in einem StringPool. Für die
Verwaltung dieser Strings wird von einem StringPool das Interface „StringAccess“ sowie
die damit verbundene get-Funktion implementiert. Jeder String in einem StringPool be-
sitzt eine ID anhand derer er eindeutig identifiziert werden kann. Diese ID eines Strings
entspricht dem Index, an welchem er sich in der Java-Collection befindet. Hierbei starten
die IDs jedoch am Index 1. Da Java-Collections jedoch beim Index 0 beginnen, befindet
sich an dieser Stelle eine Art „Platzhalter-“ Eintrag um diese Verschiebung des Indexes
zu kompensieren. Im Falle des Hinzufügens von neuen Strings gibt es eine Variable im
StringPool, welche die neuen Strings zunächst zwischenspeichert. Diese ist notwendig,
da neue Strings zunächst keine ID erhalten, sondern diese beim Schreiben des Inhalts in
eine Datei zugewiesen werden.

2.2.5 Chunk

Chunks sind Klassen, welche dabei helfen sollen, Felder korrekt zu serialisieren. Chunks
sind für das Parsen von Felddaten notwendig, da diese Informationen über die Anzahl
der Instanzen, sowie den Index des ersten Bytes der ersten Instanz enthalten. Auch findet
sich der Index des letzten (nicht mehr zu lesenden) Bytes der letzten Instanz in einem
Chunk wieder. Chunks werden in der Regel nur in FieldDeclarations benötigt, jedoch
unter Anderem in BasePools gelesen und verändert.

2.2.6 FieldType

Ein FieldType ist ein generischer Typ, welcher dem Zweck dient Felder in Typen zur
Laufzeit zu Repräsentieren. Ein FieldType stellt zudem die Funktionen zur Verfügung,
welche für das Lesen und Schreiben notwendige Informationen bereitstellen. Hierzu ge-
hört auch das speichern einer so genannten TypeID, welche auch hier der Identifikation
dient.

2.2.7 FieldDeclaration

Eine FieldDeclaration dient unter Anderem als Beschreibung eines Feldes. Hierfür ermög-
licht sie es, den Typ dieses Feldes (in Form eines „FieldTypes“) sowie dessen Name festzu-
legen. Eine FieldDeclaration implementiert ähnlich wie ein Access-Objekt eine Funktion

16

namens „owner()“. Diese gibt aber keinen Zustand (wie es bei einem Access-Objekt der
Fall ist) sondern ein Access-Objekt zurück. Dabei handelt es sich um jenes Objekt, zu
welchem dieses Feld (beziehungsweise diese FieldDeclaration) gehört. Auch FieldDecla-
rations machen von Reflection Gebrauch und implementieren entsprechende „get-“ und
„set-“ Funktionen. Anders als bei Klassen vom Typ SkillObject werden hier jedoch kei-
ne "FieldDeclarations", sondern SkillObjects als Parameter erwartet. FieldDeclarations
erleichtern zusätzlich das Serialisieren von Daten. Hierfür existieren verschiedene Funk-
tionen, welche sich mit dem Lesen und Schreiben von Daten, sowie der Berechnung dafür
notwendiger Werte (wie zum Beispiel Offsets) befassen. Eine große Rolle spielen dabei
die „Chunks“, welche die für die Berechnungen nötigen Daten enthalten.

2.2.8 StoragePool

Der StoragePool implementiert das Access-Interface und stellt folglich eine Collection,
welche SkillObjects hält, dar. Hierbei entspricht der Name des StoragePools dem Na-
men des durch ihn repräsentierten Typs. Genauer gesagt ist der StoragePool ein Objekt,
welches einen Typ und seine Instanzen (in Form der Collection) im Hauptspeicher re-
präsentiert und die Verwaltung dieser ermöglicht. Ein StoragePool bildet folglich die
Grundlage für das Arbeiten mit Typen sowie deren Instanzen in einem Zustand. Aus
der Repräsentation eines Typs durch einen StoragePool geht durch selbigen auch die
Typ-Hierarchie des Typs hervor. Das heißt, dass jeder StoragePool seinen „BasePool“
kennt. Der BasePool stellt den obersten Typ der Hierarchie dar und ist im Falle, dass
der StoragePool selbst der oberste Typ ist leer. In Java wäre dies der Typ „object“. Die
Typen unterhalb können in einer Liste von so genannten „SubPools“ gefunden werden.
„SubPools“ und „BasePools“ sind Klassen, welche die Klasse StoragePool erweitern und
später noch beschrieben werden. Natürlich muss der StoragePool auch seinen direkten
oberen Nachbarn (Supertyp) in der Hierarchie kennen. Der Supertyp ist derjenige Typ,
von welchem dieser StoragePool ableitet und ist dem Pool als „SuperPool“ bekannt, wo-
bei dieser ebenfalls ein StoragePool ist. Ein StoragePool muss nicht unbedingt Instanzen
enthalten, sondern kann auch leer sein. In diesem Fall steht die Existenz des Pools dafür,
dass der entsprechende Typ dem Zustand bereits bekannt ist. In einem StoragePool wird
zwischen so genannten „statischen Daten“ und neuen Objekten unterschieden. „statische
Daten“ sind Instanzen, welche entweder aus einer Datei ausgelesen wurden oder nach
dem nachträglichen Hinzufügen bereits in eine Datei geschrieben wurden. Alle diese In-
stanzen besitzen eine eindeutige SkillID und werden von der Funktion „typeOrderItera-
tor“, welche vom Access Objekt vorgeschrieben wird, in Form eines iterierbaren Objekts
zurückgegeben. Diese Funktion ermöglicht den Zugriff auf alle Instanzen dieses Typs,
wobei hier sowohl die statischen (bereits geschriebenen) Instanzen als auch die neuen
Instanzen erfasst werden. Dabei werden nicht nur die Instanzen dieses StoragePools,
sondern auch diejenigen seiner SubPools erfasst. Es gibt auch die Möglichkeit einzelne
Instanzen eines StoragePools abzurufen. Hierfür benötigt man die SkillID der gewünsch-
ten Instanz und übergibt diese der Funktion „getByID“, welche die zu der ID gehörende
Instanz zurückgibt. Instanzen, welche neu hinzugefügt werden sollen, werden zunächst in
eine separate Liste gelegt und erhalten dort die SkillID -1. Dieser Wert identifiziert das

17

Abbildung 4: Instanzen von SubTypes eines BasePools
Quelle: [Ung14, Kapitel 1.3.3, Abbildung 1.2]

Objekt als neu und wird beim Schreiben der Datei und damit verbundenem vergeben
der IDs geändert.

2.2.9 BasePool

Ein BasePool ist eine den StoragePool erweiternde Klasse. Der BasePool soll die oberste
Ebene der Typ-Hierarchie darstellen. Eine Hauptfunktionalität eines BasePools ist die so
genannte „compress-“ Funktion. Diese startet den Vorgang des Einfügens neuer Instan-
zen zu den statischen Daten und ist folglich fester Bestandteil des Schreibvorganges bei
Zuständen im Modus Write. Anschließend wird durch diese Funktion eine Aktualisierung
aller SkillIDs gestartet, um potentielle Verschiebungen nach unten zu propagieren. Eine
Weitere wichtige Funktionalität des BasePools ist die „prepareAppend“-Funktion. Diese
Funktion ist für das Hinzufügen von neuen Instanzen optimiert und betrachtet aus Ef-
fizienzgründen auch ausschließlich neue Instanzen. Diese Funktion wird beim Schreiben
einer Datei, welche im Modus Append geöffnet wurde, aufgerufen. In dieser Funktion
werden folglich nur neue SkillIDs vergeben und nicht wie bei compress alle SkillIDs ak-
tualisiert.
Die Instanzen von Untertypen (SubPools) eines BasePool werden zusätzlich auch im Ba-
sePool gehalten. Das heißt einem BasePool ist zu jeder Zeit bekannt, welche Instanzen
sich unter ihm in der Typ-Hierarchie befinden. In der Abbildung 4 ist ein Beispiel hierfür
abgebildet. In dieser Abbildung sind die Instanzen A des BasePool A zu sehen sowie die
Instanzen von drei seiner Untertypen B, C und D. Dabei fällt auf, dass der BasePool A
auch die Instanzen der SubPools besitzt.

Die „compress“-Funktion Die Funktion „compress“ wird beim Schreiben von Zustän-
den im Modus Write verwendet. Diese Funktion durchläuft mithilfe des „typeOrderIte-
rator“ alle statischen und neuen Instanzen. Dabei werden diese in ein neues Array gelegt,
welches die Größe der beiden Listen besitzt. In diesem Zuge werden auch die SkillIDs al-

18

ler Instanzen (zum Teil) neu vergeben. Im Anschluss daran wird das bisherige Array der
Daten mit dem hierbei erstellten überschrieben. Im Gegenzug zu der „prepareAppend“-
Funktion für Zustände im Modus Append ist diese Funktion etwas langsamer, macht
aber an sich aktuell noch das Gleiche, da die Funktionalität des Löschens in compress
noch nicht implementiert wurde.

Die „prepareAppend“-Funktion Die Funktion „prepareAppend“, welche beim Schrei-
ben von Zuständen im Modus Append verwendet wird ist auf das Hinzufügen neuer
Instanzen optimiert. Diese Funktion überprüft ausschließlich das Vorhandensein neuer
Instanzen und fügt diese entsprechend zu den statischen Daten hinzu. Hierbei wird zu-
nächst ein neues Array erstellt, welches der Größe der bisherigen Daten zuzüglich der
Anzahl neuer Instanzen entspricht. In dieses Array werden als erstes alle statischen Da-
ten eingefügt. Im Anschluss daran wird nur über die Liste der neuen Instanzen iteriert
und diese nacheinander in das neue Array eingefügt. Hierbei wird jeder Instanz eine
aufsteigende ID, beginnend bei der Größe der bisherigen Liste der statischen Daten, zu-
gewiesen. Anschließend wird entsprechend die Aktualisierung der zum Schreiben nötigen
Daten durchgeführt. Auch hier werden alle Änderungen auch in den SubPools angepasst.
Dieser Umstand, dass die Aktualisierung nur für neue Instanzen durchgeführt und nach
unten propagiert werden muss, bringt mehr Effizienz beim Hinzufügen von Daten.

2.2.10 SubPool

Ein SubPool ist ähnlich wie der BasePool eine den StoragePool erweiternde Klasse.
Diese Klasse ist dazu da, dass Instanzen korrekt verwaltet werden. Damit ist gemeint,
dass jede Instanz welche in einem SubPool (unabhängig von der Ebene) hinzugefügt
wird auch im BasePool hinzugefügt werden muss. Diese Funktionalität übernimmt der
SubPool, zusätzlich zu den Funktionen, welche er vom StoragePool erbt.

19

3 Verwaltung von Zuständen

Zum jetzigen Zeitpunkt wird in der SKilL-Implementierung nur das Erstellen neuer In-
stanzen unterstützt. Hierbei wird eine neue Instanz eines bestimmten Typs generiert und
diese mit Standard-Werten belegt, welche dann anschließend geändert werden können.
Die Implementierung unterstützt jedoch leider noch keine wirkliche Verwaltung von In-
stanzen. Das heißt, dass das aktuell keine Instanzen effizient und ohne großen Aufwand
kopiert oder gelöscht werden können. Auch die Suche nach einer Instanz in einem Zu-
stand ist nur sehr aufwendig möglich. Diese Funktionalitäten wurden in dieser Arbeit
untersucht und eingebaut und werden in den nachfolgenden Abschnitten beschrieben.
An dieser Stelle sei angemerkt, dass die Änderungen durch Verwaltungsaktionen in ei-
nem Zustand nicht in die ursprüngliche Datei geschrieben werden müssen. Die Funktion
„changePath“ ermöglicht das Speichern von Änderungen in andere Dateien, welche der
Nutzer selbst angeben kann.

3.1 Ziel der Verwaltung

Ziel der Verwaltung von Zuständen ist in erster Linie natürlich das Löschen und Ko-
pieren von Instanzen, um Daten einfach und unkompliziert aus Zuständen zu entfernen
oder von einem in den nächsten Zustand zu kopieren. Für das Löschen und Kopieren
ist es auch sinnvoll im voraus zu überprüfen, ob eine Instanz mit dem selben Inhalt
nicht bereits vorhanden ist beziehungsweise dieses Vorhandensein der Instanz möglichst
schnell festzustellen. Hierfür wird auch ein so genannter „Element-Operator“ benötigt
der folglich ebenfalls Teil der Verwaltung ist. Wie in der Abbildung 5 zu sehen ist, ist
eine solche Funktionalität bereits durchaus möglich, ist jedoch sehr aufwendig, da einige
Funktionen zum Schutze des Nutzers (wie zum Beispiel die HashMap „poolByName“)
diesem vorenthalten werden. Das heißt, dass das die fehlende Implementierung dieser
Funktionalität auf Zustandsebene (und zum Teil auch auf Ebene der StoragePools), an
dieser Stelle eine manuelle Implementierung dessen durch den Nutzer notwendig macht.
Dies würde dann aber bedeuten, dass der Nutzer sämtliche Listen und Inhalte durch-
suchen und vergleichen und hierfür einen sehr hohen Aufwand aufbringen muss. Dieser
Umstand soll nun verbessert werden, indem dem Nutzer hierfür Funktionen innerhalb
eines Zustandes bereitgestellt werden, welche von den Zustands-internen Funktionen Ge-
brauch machen, aber diese dem Nutzer nach wie vor nicht öffentlich zugänglich machen.

Den Nutzer vor sich selbst schützen Damit der Nutzer keinen all zu tiefen Einblick
in die Funktionsweise von SKilL benötigt, werden viele Funktionen und Eigenschaften
vor ihm verborgen. Diese laufen „im Hintergrund“ ab und der Nutzer muss sich nicht
mit ihnen befassen. Diese Herangehensweise wird in dieser Arbeit, soweit möglich, fort-
gesetzt und dient auch dem Schutz des Nutzers. Denn die unsachgemäße Verwendung
oder Veränderung dieser Elemente könnte Daten und Zustände unbrauchbar machen.
Aus diesem Grund werden aktuelle und sinnvolle Sachverhalte erörtert um dadurch ein
klares Verhalten zu ermöglichen und Fehlerquellen so gut wie möglich einzudämmen.
Ein Beispiel wäre hier die Manipulation der HashMap „poolByName“, deren Verände-

20

Abbildung 5: Ziel der Verwaltung

rung ohne Anpassung aller damit verbundener Abhängigkeiten (beispielsweise Typen
Erstellung) unnötig Fehler entstehen lassen könnte. Dieses Vorhaben impliziert, dass die
Möglichkeit, dass ein Nutzer in dieser Hinsicht eigene Entscheidungen trifft, auf einem
Minimum gehalten werden.

3.2 Kritische Stellen der Verwaltung

Die Verwaltung von Zuständen bringt einige kritische Stellen mit sich, welche beachtet
werden müssen. Besonders im Hinblick auf Effizienz ist es sehr ratsam, diese Stellen
zu betrachten und sich genau zu überlegen, wie man mit diesen umgeht. Aus diesem
Grund werden im folgenden Abschnitt die relevanten Stellen angesprochen und erklärt.
Die Lösung dieser Probleme wird in den jeweiligen Abschnitten der „Umsetzung der
Verwaltung“ erklärt und besprochen.

3.2.1 Suchen einer Instanz

Effiziente Suche Für das Suchen einer Instanz kann man naiv sämtliche Listen durch-
suchen und deren Inhalte Vergleichen. Für eine effizientere Suche nach Instanzen wäre es
jedoch wünschenswert, wenn man diesen Aufwand vermeidet. Zustände bieten hier eine
interne Funktion an, welche einen Typ (StoragePool) über seinen Namen sucht. Hier-
für wird eine HashMap verwendet, bei welcher das Wiederfinden der Werte nur über

21

Schlüssel sehr effizient möglich ist. [Ull10, Kapitel 13.8.2, Absatz 1] Hat man den zu
der Instanz zugehörigen Typ gefunden, kann man in diesem prüfen, ob eine Instanz mit
den selben Werten bereits existiert. Auch hier ist die selbe naive Suche möglich. Doch
jede Instanz besitzt eine SkillID, welche sie eindeutig identifiziert und ein StoragePool
ist in der Lage eine Instanz über ihre ID schnell zu finden. Denn die SkillID steht unter
Anderem für den Index im Array der statischen Daten. An dieser Stelle stellt man je-
doch zunächst fest, dass SkillIDs nur im jeweiligen Typ eines Zustandes eindeutig und
einzigartig sind. SkillIDs werden in einem anderen Typ des selben Zustands bekanntlich
unabhängig voneinander aufsteigend vergeben. Selbiges gilt natürlich Zustands übergrei-
fend. Die effiziente Suche nach Instanzen über deren SkillID stellt an dieser Stelle folglich
noch ein Problem dar.

3.2.2 Löschen einer Instanz

Das Löschen einer Instanz, welches ein vorheriges Überprüfen der Existenz einer Instanz
voraussetzt, hat auch ein paar kleinere Hindernisse im Bezug auf die Umsetzung. Die
wichtigsten zwei werden nachfolgend kurz beschrieben.

Verschiebung der Blöcke Auch beim Löschen von Instanzen gibt es einige Dinge zu
beachten. Das Löschen einer Instanz hat zur Folge, dass durch die gelöschte Instanz eine
Verschiebung der Blöcke innerhalb einer Datei entsteht sobald dieses Löschen abgespei-
chert wird. Diese Verschiebung führt beim schreiben aber zunächst zu einem Fehler, da
die fehlende Instanz in den Chunks der Felder zum jetzigen Zeitpunkt nicht angepasst
wird und folglich am Ende eine Instanz an einer Stelle erwartet wird, an welcher es keine
mehr geben kann.

Existenz der zu löschenden Instanz Beim Löschen einer Instanz stellt sich zunächst
die Frage, existiert diese überhaupt? Nun wurde im Abschnitt über die Suche nach In-
stanzen festgestellt, dass eine effiziente Suche nach Instanzen aktuell nicht möglich ist.
Aus Effizienzgründen möchte man aber nicht bei jedem löschen mehrere Male überprü-
fen müssen, ob ein angesteuerter Typ oder eines der Felder nicht vielleicht ins Leere
zeigt oder andere Fehlerquellen mit sich bringt. Dies führt zu dem Schluss, dass im Zuge
des Löschens zunächst über die HashMap des Zustands die Existenz des Typs und an-
schließend in diesem die Existenz der Instanz sichergestellt werden soll um den Vorgang
im Anderen Fall (fehlerfrei) abbrechen zu können. Damit verbunden unterliegt also das
Löschen von Instanzen den gleichen Voraussetzung wie die Suche nach selbigen.

3.2.3 Kopieren einer Instanz

Existenz der Typen Das Hauptproblem beim Kopieren von Instanzen ist die Existenz
der Typen. Da ein Zustand mithilfe einer bestimmten Spezifikation eingelesen wird,
kennt dieser Zustand nur diejenigen Typen, welche in der Spezifikation vorhanden sind.
Möchte man nun also Instanzen eines Typs einer anderen Spezifikation zu einem Zustand
hinzufügen, muss man in dem Zielzustand zunächst den Typ bekannt machen.

22

3.3 Umsetzung der Verwaltung

Die allgemeine Umsetzung der Funktionalitäten hat sich als sehr Komplex herausge-
stellt. Das Arbeiten mit Typen und Instanzen erweist sich als recht schwer, da zum
Beispiel auch eine Zustands unabhängige Erstellung und Handhabung dieser denkbar
wäre, auch wenn dies zum aktuellen Zeitpunkt noch nicht unterstützt wird. Unabhän-
gig hiervon gibt es viele Kriterien, welche beachtet und erfüllt sein wollen, wenn man
mit Typen und ihren Instanzen arbeitet. Man muss beispielsweise im Falle des nicht
Vorhandenseins eines Typs in einem Zustand diesen dort „erstellen“ oder diesen bei Be-
darf aus einer Spezifikation nachladen. Nun werden Zustände und die darin enthaltenen
Typen aber zunächst anhand ihrer Spezifikation erstellt, welche dem neuen Zustand
nicht vorliegt. Hier wäre dann Zugriff auf die Spezifikation des aufrufenden Zustands
notwendig, wodurch erneuter Aufwand und weitere Hindernisse entstehen. Man könnte
nun den Typ (als StoragePool im Ganzen) in den neuen Zustand kopieren und hier all
diejenigen Informationen (oder Instanzen) heraus nehmen, welche nicht kopiert werden
sollen. Solche Informationen können zum Beispiel Restriktionen sein, welche einen Wert
in einen bestimmten Bereich einschränken. Ein solcher Vorgang bringt abgesehen von
hohem Aufwand aber auch viele fehleranfällige Dinge mit sich wie zum Beispiel die Not-
wendigkeit, dass der Verweis auf den Besitzer eines Pools geändert werden muss. Dies
muss natürlich auf alle Super- und SubPools propagiert werden. Im Zielzustand selber
muss die Liste der vorhanden Typen aktualisiert werden ebenso wie die damit zusam-
menhängende HashMap erweitert werden muss um Pools durch ihren Namen effizient
abfragen zu können. Zusätzlich müssen neue Felder in den Zustand übertragen, sowie die
Namen dieser in den StringPool eingetragen werden. Hierbei ist es ohne die Spezifikati-
on sehr aufwendig und fehleranfällig die notwendigen Informationen zusammenzutragen
und an den korrekten Stellen einzufügen. Bei alle dem sollte man darauf achten, dass auf-
grund des Arbeitens mit Referenzen keine Fehler im ursprünglichen Zustand entstehen
und der Zustand hierdurch unbrauchbar wird. Dabei stellt sich dann die Frage, ob man
entsprechende Typen (oder gar Zustände) in Form einer „deepcopy“ kopieren soll. All
diese Überlegungen und die damit verbundenen Hindernisse und Bedingungen sprengen
den Rahmen dieser Arbeit. Aus diesem Grund wurde die Umsetzung der Verwaltung
basierend auf bestimmten Annahmen durchgeführt, um die gewünschte Funktionalität
zunächst auf „simplerer Ebene“ umzusetzen und hierauf anschließend aufzubauen. Den
einfachsten Fall bilden bei der Verwaltung von Typen die jeweiligen Namen dieser.

3.3.1 Annahmen

Gleichheit von Typen Alle Zustände, mit welchen im folgenden gearbeitet wird, sind
aus ein und der selben Spezifikation entstanden. Jeder Zustand kennt folglich jeden Typ
und alle gleichnamigen Typen sind auch gleich!

Keine unbekannten Typen Da nur mit einer einzigen Spezifikation gearbeitet wird,
gibt es in keinem der Zustände Typen, welche einem anderen Zustand unbekannt sind.

23

Keine Instanz ohne Zustand Es wird davon ausgegangen, dass zum jetzigen Zeitpunkt
keine Instanzen ohne Zustand existieren.

3.3.2 Unifikation von Zuständen

Da für die Effizienz der nachfolgenden Aktionen die Zugriffe über SkillIDs Zustands
übergreifend möglich und die IDs hierfür einzigartig sein müssen gilt es zunächst diese
Eigenschaft sicherzustellen. Aus diesem Grund wird die Durchführung einer Unifikation
zweier Zustände zuerst beschrieben. Zu Beginn sei an dieser Stelle kurz angemerkt, dass
sich die Unifikation nicht mit Restriktionen von Typen auseinandersetzt, da dies auf-
grund der Annahme, dass alle Typen bekannt sind und gleichnamige Typen äquivalent
sind, nicht nötig ist. Um nun die Zugriffe über SkillIDs Zustands übergreifend zu ermög-
lichen, werden zwei Zustände so wie ihre Inhalte unifiziert. Dies bedeutet jedoch, dass in
einem der beiden Zustände Daten verändert werden müssen, sofern es sich nicht um ein
und denselben Zustand handelt. Diese Veränderung hat zur Folge, dass in demjenigen
Zustand, in welchem etwas verändert wurde, Inkonsistenzen auftreten, welche bestimmte
Funktionalitäten fehleranfällig machen.

Zerstörung eines Zustands Bei einer Unifikation wird durch die Zerstörung des über-
gebenen Zustands in Kauf genommen, dass seine SkillIDs verändert werden, um die Ver-
gleichbarkeit mit dem anderen Zustand zu ermöglichen. Dies hat zur Folge, dass in diesem
zerstörten Zustand keine Instanzen über die „getByID“-Funktion gefunden werden kön-
nen. Dieser Umstand wirkt sich auch auf den später beschriebenen „Element-Operator“
und folglich auch die Funktionalität des Hinzufügens und Löschens von Instanzen aus.
Aufgrund der Tatsache, dass eine Unifikation von jeglicher Verwaltungsaktion erwartet
wird und vor dieser notwendig ist, wird an dieser Stelle natürlich auch die Effizienz bei
der Unifikation in den Vordergrund gestellt. Aus diesem Grund wurde beschlossen auf
einer Referenz des Zustands zu arbeiten, weil dies natürlich wesentlich schneller ist als
zuvor eine „deepcopy“ dessen zu erstellen. Hierbei wird bei der Unifikation zwangsweise
in einem der Zustände etwas geändert (in diesem Fall in Form von geänderten SkillIDs).
Sobald jedoch eine SkillID geändert wurde, läuft man Gefahr, dass ein Zugriff mit dieser
auf die vermeintliche Instanz in einen Fehler mündet, da die SkillID bei einer Unifikation
zum einen höher werden kann, als tatsächlich Instanzen in dem Zustand vorhanden sind
und zum anderen diese Instanz mit der neuen ID nicht mehr findet. Dies würde also ent-
weder zu einem „IndexOutOufBounds“ Fehler führen, da die Liste der Instanzen nicht
so lang ist oder es könnte womöglich auch zum Abrufen einer anderen (nicht gewollten)
Instanz führen. Aus diesem Grund wurde festgelegt, dass ein neuer Modus für Zustände
eingeführt wird, welcher einen Zustand als „Destroyed“ markiert. Diese Markierung hat
zur Folge, dass die „getByID“-Funktion dieses Zustands prinzipiell „null“ zurückgibt,
da sie unter der SkillID ihrer Instanzen möglicherweise nicht mehr die korrekte Instanz
finden oder damit gar auf Indizes zugreifen könnte, welche nicht existieren. Da aber das
Schreiben eines Zustandes keinen Gebrauch dieser Funktion macht, ist dies nach wie
vor zulässig. Denn die IDs aller Instanzen werden beim Schreiben ohne hin aufsteigend
und unabhängig von den bisherigen IDs (neu) vergeben, solange sich der Zustand nicht

24

im „Append“-Modus befindet. Da aber ein nachträgliches wechseln zu diesem Modus in
keinem Falle zulässig ist, kann man hier per Definition davon ausgehen, dass bei einem
zerstörten Zustand immer die Funktionalität des „Write“-Modus verwendet wird und
somit IDs unabhängig von den alten aufsteigend vergeben werden.

Zuweisung (neuer) SkillIDs Die Zuweisung neuer SkillIDs bei der Unifikation orien-
tiert sich an der Zuweisung von SkillIDs der SKilL-Implementierung selbst. Diese erfolgt
aufsteigend, ausgehend von der letzten (gültigen) SkillID. Dabei wird die höchste ver-
gebene SkillID der Instanzen eines internen Typs als letzte gültige SkillID verwendet.
Aus diesem Grund wird während der Unifikation eben jene SkillID über die Größe der
Liste der statischen Daten des internen Typs ermittelt und die SkillIDs der externen In-
stanzen werden davon ausgehend inkrementiert. Grund hierfür ist, dass der aufgerufene
Zustand nicht verändert werden darf und dieser somit nur als Vergleichsobjekt dienen
kann. Folglich ist es zwingend notwendig, dass ausschließlich die SkillIDs der externen
Instanzen verändert werden.

Das Unifikationsverfahren Zunächst wird die Funktion „UnifyStates“ eines Zustands
aufgerufen, welcher ein weiterer Zustand übergeben werden muss. Diese Funktion leitet
nun die Unifikation der Zustände ein, wobei der übergebene Zustand als zerstört mar-
kiert wird. Der übergebene Zustand wird im weiteren Verlauf dieser Beschreibung als
„externer Zustand“ bezeichnet. Als erstes wird über die Typen (StoragePools) des exter-
nen Zustands iteriert. Bei jeder Iteration wird der aktuelle Typ des externen Zustands
mit dem äquivalenten Typ des ausführenden Zustands unifiziert. Hierfür wird der ent-
sprechende Typ durch die Nutzung der „poolByName“ HashMap, in welcher nach dem
Namen des Typs des externen Zustands gesucht wird, abgefragt. Aufgrund der Annah-
me, dass es keine unbekannten Typen gibt ist eine Prüfung auf einen Zeiger ins Leere an
dieser Stelle (noch) nicht nötig. Nun wird als erstes die nächste zu vergebende SkillID
ermittelt indem die size-Funktion der Liste der statischen Daten des Typs aus dem auf-
rufendem Zustand aufgerufen wird. Sollte hierbei festgestellt werden, dass der interne
Typ keine statischen Instanzen beinhaltet, wird an dieser Stelle bereits abgebrochen, da
keine Unifikation dieses Typs notwendig sein kann. Im Anschluss wird auch der externe
Typ auf das Vorhandensein von statischen Instanzen überprüft und sollte dies hier nicht
der Fall sein, kann an dieser Stelle ebenfalls abgebrochen werden. Falls es nicht zum
Abbruch kommt, wird zunächst über alle statischen Instanzen des externen Typs und
innerhalb dieser Iteration über diejenigen des internen Typs iteriert. Diese ineinander
geschachtelte Schleife ist notwendig, da man zum einen überprüfen muss, ob es inhaltlich
identische Instanzen in den beiden Typen gibt, deren SkillIDs sich unterscheiden und
folglich auf die selbe ID gesetzt werden müssen. Zum Anderen muss man sicherstellen,
dass eine neue SkillID nur dann vergeben wird, wenn für eine Instanz des externen Typs
tatsächlich keine inhaltlich identische im internen Typ existiert. Daher ist es unvermeid-
bar, dass an dieser Stelle jede Instanz mit jeder verglichen wird. Die einzige Ausnahme
ist, dass (frühzeitig) eine identische Instanz gefunden wird, wodurch die innere Schleife
abgebrochen werden kann.

25

Abbildung 6: Vergleich zweier Instanzen (vereinfachter Ablauf)

Der inhaltliche Vergleich zweier Instanzen erfolgt über einen Aufruf einer Funktion,
welche explizit für den Vergleich von Feldern zweier Instanzen existiert und rekursiv im-
plementiert ist. In dieser Funktion werden die Werte der Instanzen für alle Felder ihres
Typs abgerufen und verglichen. Sollten die Werte hier nicht übereinstimmen, stellt sich
die Frage nach dem FieldType, mit welchem der Wert abgerufen wurde. Genauer gesagt
ist die vom FieldType instantiierte Klasse relevant. Wird vom FieldType die selbe Klasse
(zum Beispiel eine Java-Klasse wie „long“) instantiiert, dann liegen hier simple Typen
vor, welche nicht den selben Wert haben. In diesem Fall wird der Vergleich abgebrochen
und es kann zum Vergleich der nächsten Instanzen weiter gegangen werden. Andernfalls
kann es sich an dieser Stelle um Komplexe Typen handeln deren Inhalt nicht ohne Wei-
teres über die „equals“ Funktion getestet werden kann. Aus diesem Grund erfolgt nun
ein Vergleich der FieldTypes, welche hier repräsentiert werden. Kommt dieser Vergleich
zu dem Schluss, dass es sich nicht um die selben Klassen handelt, wird auch hier der Ver-
gleich abgebrochen und zum nächsten Vergleich fortgeschritten. Liegen jedoch die selben
(komplexen) Klassen vor, erfolgt an dieser Stelle die Abfrage nach dem entsprechenden
StoragePool und ein rekursiver Aufruf, welcher nun die Inhalte der gefundenen Instanzen
des gefundenen komplexen Typs mit den Werten der Felder dieses Typs abgleicht. Diese
Rekursivität wird fortgeführt, bis entweder die erhaltenen Werte der Instanzen für alle
Felder gleich sind oder es sich bei allen Feldern um Java-Klassen handelt, deren Werte
nicht alle gleich sind. Im ersten Fall wird der Vorgang beendet mit der Feststellung, dass
die SkillID der externen Instanz gleich der ID der internen Instanz gesetzt werden muss,
da es sich um inhaltlich gleiche Instanzen handelt. Im zweiten Fall hingegen wird eine
Anpassung der SkillID der externen Instanz durchgeführt, indem sie die nächste verfüg-
bare (also im internen Typ noch nicht vergebene) ID erhält. Durch diese Rekursivität
wird sichergestellt, dass alle Untertypen der zu vergleichenden Instanz ebenfalls korrekt
verglichen werden und somit in den „Gesamtvergleich“ der Instanzen einfließt. Dieser
Ablauf des Vergleichens von Instanzen wird in Abbildung 6 vereinfacht illustriert. Nach-
dem alle Instanzen eines Typs verglichen wurden sind deren SkillIDs anschließend in
den beiden unifizierten Zuständen in den jeweiligen Typen einzigartig. Eine Änderung
der SkillID im externen Typ bleibt nur genau dann aus, wenn zwei Instanzen sowohl
inhaltlich als auch im Bezug auf ihre SkillID gleich sind.

26

3.3.3 Element-Operator für Instanzen

Die Funktionalität des Suchens nach Instanzen wird über eine Funktion realisiert, wel-
che ein SkillObject (Instanz) entgegen nimmt und nach dieser in demjenigen Zustand
sucht, in welchem sie aufgerufen wurde. Das Ergebnis dieser Funktion ist ein Wert des
Typs java.lang.long. Dies hat den Hintergrund, dass mit der Rückgabe eines Wertes,
welcher nicht „null“ ist, auch gleich die SkillID der Instanz in dem entsprechenden Typ
zurückgegeben wird. Dabei entspricht eine SkillID gleich -1 einer neuen (noch nicht ge-
schriebenen) Instanz und eine ID gleich 0 einer beim nächsten schreiben zu löschenden
Instanz. Alle Werte echt größer 0 stellen diejenige ID dar, unter welcher die Instanz
in dem Zustand zu finden ist. Im Falle, dass die Instanz nicht gefunden werden kann
wird wie bereits erwähnt „null“ zurückgegeben. Für den Element-Operator ist im voraus
eine Unifikation der zwei betroffenen Zustände durchzuführen. Dabei wird in dem zu
durchsuchenden Zustand die entsprechende Funktion aufgerufen, welche den Zustand,
aus welchem die zu suchenden Instanzen kommen, übergeben bekommt. An dieser Stel-
le sei angemerkt, dass der Element-Operator in als „Destroyed“ markierten Zuständen
nicht korrekt funktionieren kann, da hier die Zugriffe über SkillIDs nicht fehlerfrei mög-
lich sind. Aus diesem Grund ist das Ergebnis einer Abfrage in einem zerstörten Zustand
per Definition „null“.
Bei der zu findenden Instanz muss es sich um eine Klasse handeln, welche die SKilL-
Klasse SkillObject erweitert. Zunächst wird nach einem der Instanz entsprechenden Typ
in Form eines StoragePools gesucht. Um diesen zu finden, wird die HashMap „poolByNa-
me“ verwendet, welche nun den Namen der Klasse der Instanz entgegen nimmt. Um den
genauen Namen zu erhalten, wird zunächst die „getClass“-Methode der Instanz aufge-
rufen. Das hierdurch erhaltene Java-Class-Object stellt nun verschiedene Funktionen zur
Verfügung, welche genauere Details der hier genutzten Klasse preis geben. Für die Suche
nach dem entsprechenden Typ ist die Funktion „getSimpleName“ interessant, welche wie
der Name schon andeutet, schlicht den Namen der Klasse zurückgibt. Da Namen von
Typen in SKilL prinzipiell in Kleinbuchstaben vorliegen, muss nun auf den erhaltenen
String noch eine Konvertierung in Kleinbuchstaben erfolgen. Nun hat man den Namen
des Typs wie er in dem Zustand (sofern er dort vorhanden ist) zu finden ist. An dieser
Stelle wurde bewusst auf das explizite Übergeben des Namen des Typs verzichtet, da
für SKilL auch geplant ist, dass Instanzen unabhängig von Zuständen existieren können
wodurch diese ihren Typ nur auf die oben beschriebene Weise preisgeben können. Im
Anschluss daran wird überprüft, ob ein dem Typ der Instanz entsprechender Storage-
Pool im Zustand gefunden wurde. Ist dies nicht der Fall, so gibt die Funktion „null“
zurück. Andernfalls wird die Suche nach der Instanz in dem gefundenen StoragePool
fortgesetzt. Für die Suche im StoragePool wurde die von der Java-Collection geerbte
„contains“-Funktion implementiert und wird ihrem Zweck entsprechend genutzt. Diese
überprüft zunächst, ob es sich bei dem übergebenen Objekt um ein SkillObject handelt.
Diese Überprüfung ist an dieser Stelle notwendig, da die contains-Funktion zunächst
einen Parameter vom Typ „Object“ entgegen nimmt. Dies ist bei der Vererbung so vor-
gegeben. Da diese Funktion aber überall dort verwendet werden kann, wo StoragePools
verwendet werden, muss vor einer Konvertierung (in Form eines Casts) sichergestellt

27

Abbildung 7: Element-Operator (vereinfachter Ablauf)

werden, dass der erwartete Typ übergeben wurde. Ist dies nicht der Fall, so wird an die-
ser Stelle „false“ zurückgegeben, ansonsten erfolgt eine entsprechende Konvertierung. Im
Anschluss daran wird entschieden, ob nach der Instanz in den statischen Daten oder den
neuen Daten gesucht werden muss, wofür die SkillID zur Hand genommen wird. Sollte
sich die Instanz innerhalb der statischen Daten befinden, so darf die SkillID zum einen
nicht gleich -1 sein und zum anderen nicht größer als die Größe der Liste der statischen
Daten. Denn die SkillID dient bekanntlich zugleich als Index in der Liste. Befindet sich
die ID also im Bereich zwischen 0 und der Größe der Liste, so kann die Existenz (oder
nicht Existenz) der Instanz durch die Funktion „getByID“ nachgewiesen werden. Hierbei
gilt zu beachten, dass diese Funktion nach einer Unifikation in dem Zustand, welcher
zerstört wurde, per Definition „null“ zurückgibt. Sind die aufgeführten Kriterien nicht
erfüllt, so muss die Instanz in den neuen Daten gesucht werden. Für die Effizienz der
suche nach Instanzen in den statischen Daten wird sich hier zu nutze gemacht, dass das
SKilL-Binding Arrays und HashMaps nutzt. Diese bieten schnelle get-Operationen und
werden in der „getByID-“ und der „poolByName-“ Funktion genutzt. [Prz14, Kapitel 9,
Absatz 1]

Suche in neuen Daten Die Suche nach einer Instanz in neuen Daten ist etwas auf-
wendiger, da hier nicht einfach die SkillID verwendet werden kann, denn hier sind alle
SkillIDs gleich -1. Aus diesem Grund müssen an dieser Stelle die Werte der einzelnen
Felder der Instanzen verglichen werden. Dies wird über eine Iteration über die Felder
des Typs und des entsprechenden Vergleichs der Werte der Instanzen in diesen realisiert.
Dabei wird das Feld für die SkillID bewusst übersprungen, da dieses ohne hin gleich
-1 ist. Für alle anderen Felder wird als erstes der Wert verglichen und im Falle, dass
dieser nicht gleich ist, erfolgt eine Überprüfung, ob es sich hierbei bereits um simple Ty-
pen handelt. Sofern es sich um simple Typen (also im Prinzip um Java-Typen wie zum
Beispiel „long“ handelt, kann an dieser Stelle abgebrochen werden mit dem Ergebnis,
dass es sich nicht um die selben Instanzen handelt. Handelt es sich jedoch um komplexe
Typen, so müssen diese Rekursiv ebenfalls verglichen werden, denn der Vergleich über
„equals“ schlägt an dieser Stelle fehl. Grund dafür ist, dass die native „equals“-Funktion

28

die Repräsentation des Objekts vergleicht, welche im Fall von Komplexen Typen aus
dem Namen und Hashcode besteht. Diese Rekursion wird durch eine Suche nach einem
zugehörigen Typ (StoragePool), ähnlich wie die Suche nach der Instanz begonnen hat,
durchgeführt. Hierbei wird ausgenutzt, dass jeder StoragePool seinen Zustand, in wel-
chem er sich befindet, kennt. Denn auf diese Weise kann auch hier auf die HashMap
des Zustands zurückgegriffen und in dieser nach dem hier gefundenen komplexen Typ
gesucht werden. Kann dieser nicht gefunden werden, wird die Suche nach der Instanz
für gescheitert erklärt. Sofern der komplexe Typ gefunden werden konnte, wird schlicht
die contains-Funktion dessen für den Vergleich des Inhalts der Instanzen verwendet, wel-
che zu diesem komplexen Typ gehören. Diese Rekursion wird solange fortgeführt, wie
komplexe Typen in den Instanzen gefunden werden. Da die Blätter jeder Typ-Hierarchie
in dieser Java-Implementierung ihre Werte über das Java Typ System repräsentieren,
kommt diese Rekursion immer zum Ende.

3.3.4 Löschen von Instanzen

Ein wesentlicher Bestandteil der Verwaltung von Zuständen ist das Löschen von Instan-
zen in diesen. Die Grundidee für das Löschen von Instanzen war schon immer, dass
die SkillID dieser auf 0 gesetzt und hierdurch beim Schreiben in eine Datei nicht mehr
berücksichtigt wird. Im wesentlichen fehlte die Realisierung des Ignorieren der Instanz
beim Schreiben der Datei. Aus diesem Grund wird nun zunächst beschrieben, wie die zu
löschende Instanz gefunden und als solche markiert werden kann. Im Anschluss daran
wird die nötige Anpassung beim Schreiben der Datei erklärt.
Die Änderungen durch das Löschen von Instanzen in einem Zustand müssen nicht zwin-
gend in die ursprüngliche Datei, aus welcher der Zustand entstanden ist, geschrieben
werden. Über die „changePath“-Funktion kann eine andere (gegebenenfalls neue) Ziel-
datei angegeben werden, in welche die Änderungen geschrieben werden sollen.

Markieren einer Instanz Das Löschen einer Instanz durch Aufruf der entsprechenden
Funktion in einem Zustand funktioniert zunächst ähnlich wie der Element-Operator.
Das heißt, dass auch hier eine vorherige Unifikation der betroffenen Zustände nach dem
bekannten Prinzip erforderlich ist. Abbildung 8 stellt den Ablauf des Löschens einer
Instanz, wie er im folgenden beschrieben wird, vereinfacht dar. Es wird anhand der von
SkillObject abgeleiteten Klasse nach dem Typ in Form eines StoragePools gesucht. Sollte
ein solcher nicht gefunden werden können, schlägt das Löschen an dieser Stelle fehl und
gibt „false“ zurück. Da jedoch laut der aktuellen Annahme alle Typen bekannt sind,
wird dieser Aufruf nie mit leeren Händen enden, weshalb in Abbildung 8 dies auch nicht
weiter ausgeführt wurde. Im anderen Fall wird die von der Java-Collection geerbte und
aus diesem Grund selbst implementierte Funktion „remove“ des StoragePools aufgerufen.
Auch hier muss aufgrund der Tatsache, dass die vererbte Funktion ein Objekt des Typs
„java.lang.object“ erwartet zunächst eine Überprüfung der instantiierten Klasse erfolgen.
Sollte diese fehlschlagen, wird der Vorgang mit der Rückgabe von „false“ abgebrochen.
Andernfalls erfolgt auch hier ein Cast zu SkillObject um mit dessen SkillID nun über
die „getByID“-Funktion an diejenige Instanz zu kommen, welche gelöscht werden soll.

29

Abbildung 8: Löschen einer Instanz (vereinfachter Ablauf)

Sollte diese nicht existieren, erfolgt die Rückgabe „false“ und andernfalls wird die ID der
erhaltenen Instanz auf 0 gesetzt und „true“ zurückgegeben. Auch hier gilt zu beachten,
dass diese Funktion in zerstörten Zuständen nie eine Instanz finden kann.

Löschen der markierten Instanzen Beim Schreiben einer Datei wird für jeden BasePool
des Zustands dessen „compress“-Funktion aufgerufen. Diese ist bisher dafür zuständig
gewesen, neue Instanzen in die Liste der statischen Daten einzufügen und hierbei die
entsprechenden SkillIDs zu aktualisieren. Da diese Funktion beim Schreiben eines Typs
immer aufgerufen wird, ist sie der optimale Ort um hier die zu löschenden Instanzen zu
entfernen beziehungsweise zu ignorieren.
Zunächst wird also zu Beginn des „compress“ Vorganges über die Liste der statischen
Daten (von vorne nach hinten) iteriert und alle Instanzen mit einer SkillID gleich 0
entfernt werden. Dies wird dadurch bewerkstelligt, dass die Liste durchlaufen wird und
parallel dazu eine Variable für den Index, unabhängig von dem Durchlauf, erstellt wird,
welche bei 0 startet. Bei denjenigen Elementen, deren SkillID nicht gleich 0 ist, wird nun
besagtes Element an der Stelle des Indexes in die Liste der statischen Daten eingefügt
und das dort befindliche Element überschrieben. Nach diesem Überschreiben eines Ele-
ments wird der Index um 1 erhöht. Folglich wird im Falle, dass kein Element gelöscht
wird, jedes Element mit sich selbst überschrieben. Andernfalls verschieben sich nach je-
dem gefundenen zu löschenden Element alle nachfolgenden Elemente um eine Weitere
Stelle nach vorne. Im Anschluss an eine potentielle Verschiebung müssen nun natürlich
noch die überflüssigen (beziehungsweise nun unter Umständen doppelt vorkommenden)
Instanzen entfernt werden. Auch hierfür dient der Index, welcher zuvor mitgeführt wur-
de. Ist dieser nämlich echt kleiner als die Größe der Liste der statischen Daten, so müssen
alle Elemente ab diesem Index gelöscht werden. Es wird also folglich solange das Element
an der Stelle des Indexes gelöscht, bis die Größe der Liste nicht mehr echt Größer als
der Index ist.

30

Im Falle, dass Elemente gelöscht wurden, müssen nun noch die Chunks der Felder dieses
Typs angepasst werden, denn diese besitzen noch die Information, dass keine Instanzen
gelöscht wurden und erwarten entsprechend mehr zu schreibende Instanzen als davon
existieren. Hierfür wird über die Liste der Felder des Typs iteriert und für jedes Feld
ein neuer Chunk erstellt, welcher die aktuelle Anzahl an Instanzen kennt. Alle ande-
ren Informationen eines Chunks können an dieser Stelle von dem letzten vorhandenen
Chunk übernommen werden, da diese später abhängig von der Anzahl der Instanzen neu
berechnet werden. Aus diesem Grund muss an dieser Stelle nur die Anzahl der Instanzen
aktualisiert werden.

Aktualisierung der SkillIDs Nachdem nun die zu löschenden Instanzen entfernt und
entsprechende Daten aktualisiert wurden müssen nun noch die SkillIDs der verbleiben-
den Instanzen aktualisiert werden. Grund dafür ist, dass sich durch das Löschen unter
Umständen Lücken bei den IDs gebildet haben, welche nun entsprechend angepasst wer-
den müssen. Dies wird über die restliche (unveränderte) Funktionalität der „compress“-
Funktion erledigt, da diese nun Mithilfe des „typeOrderIterator“ alle statischen und
neuen Instanzen durchläuft und ihnen neue (aufsteigende) IDs zuweist. Der Umstand,
dass nur die „compress“-Funktion zum jetzigen Zeitpunkt beim aktualisieren der IDs alle
Instanzen aktualisiert setzt den Modus Write bei jeder Löschung von Instanzen voraus!
Das Löschen von Instanzen auch für den Modus Append zu ermöglichen ist nicht sehr
ratsam. Grund dafür ist, dass man die Optimierung des Hinzufügens neuer Instanzen
dabei kaputt machen müsste, da man durch das Löschen gezwungener Maßen alle In-
stanzen anschauen muss. Würde man beim Löschen nicht alle Instanzen anschauen und
entsprechend aktualisieren könnten Lücken in den SkillIDs und somit Inkonsistenzen und
Fehler entstehen. Sollte man jedoch beim Öffnen eines Zustandes bereits entschieden ha-
ben nur neue Instanzen hinzuzufügen, stellt Append eine deutlich effizientere Variante
dar.

„Dangling references“ Unter einer dangling reference (oder auch dangling pointer)
versteht man eine Referenz (Zeiger) auf ein Objekt, welches nicht mehr verwendet wird
und somit gelöscht werden kann. [Ull10, Kapitel 5.5.6] Dieses wird durch die bestehende
Referenz allerdings nicht vom Garbage-Collector erkannt und folglich auch nicht ein-
gesammelt. Eine solche Referenz wird in SKilL dadurch vermieden, dass alle Instanzen
einer Typ Hierarchie im BasePool liegen und von den Subtypen lediglich referenziert
werden. Da der BasePool nach jedem compress alle SubPools aktualisiert, werden die
Referenzen an dieser Stelle auch entfernt. Auf diese Weise wird sichergestellt, dass keine
so genannten „dangling references“ entstehen.

Löschen von Typen Sollte durch die Funktionalität des Löschens von Instanzen die
letzte Instanz eines Typs gelöscht werden, war eine Überlegung, ob man an dieser Stelle
nicht auch den Typ aus dem Zustand entfernt. Das Löschen eines Typs hätte aber zur
Folge, dass man diesen unter Umständen in einem weiteren Schritt (zum Beispiel beim

31

Kopieren von Instanzen) wiederherstellen müsste. Der Aufwand für das Wiederherstellen
eines Typs ist deutlich höher, als dieser in dem entsprechenden Zustand Platz verbraucht.
Aus diesem Grund wird das Löschen von Typen an dieser Stelle nicht ermöglicht.

Mengensubtraktionsoperation für Typen Um alle Instanzen eines Typs eines Zustan-
des aus einem anderen Zustand zu subtrahieren wurde die Funktion „deleteInstancesOf-
Type“ implementiert, welche einen Typ in Form eines StoragePools als Parameter ent-
gegen nimmt. Diese Funktion iteriert nun über alle in diesem Typ vorhanden Instanzen
und entfernt diese aus dem aufgerufenen Zustand indem die Funktion „deleteInstance“
für alle Instanzen aufgerufen wird. Aus diesem Grund ist auch bei dieser Operation eine
Unifikation im voraus strikte Voraussetzung. In diesem Zuge wurde auch eine Funktion
eingebaut, welche eine Liste von Typen entgegen nimmt und das entfernen von Instanzen
verschiedener Typen in einem Aufruf ermöglicht. In dieser Funktion wird nun jeder Typ
an die bereits beschriebene Funktion „deleteInstancesOfType“ übergeben. Der Nutzer
muss an dieser Stelle selbst sicherstellen, dass in den übergebenen Typen nur diejeni-
gen Instanzen vorhanden sind, welche im Zielzustand auch tatsächlich gelöscht werden
sollen.

3.3.5 Kopieren von Instanzen

Ein weiterer Aspekt dieser Arbeit ist die Möglichkeit des Kopierens von Instanzen. Auch
hierfür wurde eine Funktion in die Implementierung des Zustands integriert, welche den
Prozess des Kopierens der übergebenen Instanz einleitet. Für das Hinzufügen von meh-
reren Instanzen in einem Aufruf wurde eine Funktion hinzugefügt, welche eine Liste von
Instanzen entgegen nimmt. Diese Funktion iteriert dann durch diese Liste und übergibt
jede Instanz an die entsprechende „add“-Funktion im Zustand. Die Rückgabe der Funk-
tion ist nur dann true, wenn alle Instanzen hinzugefügt werden konnten.
Die „add“-Funktion eines Zustandes macht sich zunächst den Element-Operator zu Nut-
ze, aus welchem Grund auch hier die korrekte Funktionsweise von der vorherigen Unifi-
kation abhängt. Dies bedeutet aber auch, dass das Hinzufügen neuer Instanzen in einem
Zustand, welcher sich im Modus „Destroyed“ befindet nicht erlaubt ist, da hier nicht
gewährleistet werden kann, dass keine Instanz doppelt in einen Zustand eingefügt wird.
Grund dafür ist, dass der Element-Operator in zerstörten Zuständen nicht korrekt funk-
tionieren kann.
Beim Hinzufügen von Instanzen zu einem Zustand wird auch mithilfe der von SkillOb-
ject abgeleiteten Klasse über die HashMap poolByName nach dem Typ gesucht. Diese
abgeleitete Klasse wird für die Bestimmung des Namens des Typs benötigt. Sollte der
benötigte Typ nicht gefunden werden können, wird der Vorgang hier mit der Rückgabe
„false“ abgebrochen. Ansonsten wird der Aufruf an den gefundenen StoragePool wei-
tergeleitet, indem eine speziell hierfür implementierte Funktion namens „addInstance“
aufgerufen wird, welche letztendlich die Instanz an die von der Collection geerbte Funk-
tion „add“ weiterleitet. Hierbei überprüft die geerbte Funktion „add“ lediglich, ob der
StoragePool den Status „fixed“ besitzt. Im Falle, dass dies zutrifft, wird ein Fehler ge-
worfen, da keine Instanzen zu fixierten Pools hinzugefügt werden dürfen. Andernfalls

32

Abbildung 9: Hinzufügen einer Instanz (vereinfachter Ablauf)

fügt sie die Instanz einfach der Liste der neuen Objekte zu.
Der Grund für die Notwendigkeit der Funktion „addInstance“ ergibt sich aus der Tat-
sache, dass ein StoragePool generische Typen besitzt, wobei einer davon von der „add“-
Funktion als Parameter erwartet wird. Das heißt, dass bei Klassen, welche von generi-
schen Klassen erben, die geerbten Funktion mit den eindeutigen Typen implementiert
werden müssen und an dieser Stelle keine Wildcard mehr verwendet werden kann. Statt-
dessen muss der genaue Typ an dieser Stelle verwendet werden. Eine Wildcard, welche
in Java als „?“-Operator realisiert ist, repräsentiert eine Familie von Typen. Dabei ist
wichtig zu verstehen, dass ? nicht für Object steht, sondern für einen (bisher) unbe-
kannten Typ! [Ull10, Kapitel 9.5.3, Absatz 5] Da ein Zustand diesen Typ nicht kennt,
ist ein Cast an dieser Stelle nicht möglich. Ein Weiterer Grund für die Nutzung einer
Zwischenfunktion ist, dass auch hier eine Notwendigkeit für eine Rekursion besteht, wel-
che in der „addInstance“-Funktion realisiert ist. Aus diesem Grund wird diese Funktion
separat beschrieben. In Abbildung 9 ist die Nutzung der „addInstance“-Funktion beim
Hinzufügen neuer Instanzen vereinfacht dargestellt.
Im Bezug auf jegliche Nutzung der Funktionalität des Hinzufügens von Instanzen ist es
nicht zwingend notwendig, dass das Ergebnis in die Datei geschrieben wird, aus welcher
der Zustand entstanden ist. Es gibt in Zuständen die Möglichkeit über die „changePath“-
Funktion die Zieldatei zu ändern und sämtliche Änderungen in eine andere (gegebenen-
falls neue) Datei zu schreiben.

Die „addInstance“-Funktion Diese Funktion überprüft zunächst, ob sich die überge-
bene Instanz nicht bereits in dem StoragePool befindet und würde falls dies zutrifft mit
der Rückgabe „false“ abbrechen. Ansonsten wird durch diese Funktion die übergebene
Instanz nach komplexen Typen durchsucht, welche separat hinzugefügt werden müssen.
Hierfür werden alle Felder der Instanz betrachtet und sofern es sich um einen komplexen
Typ handelt, wird der zugehörige Typ gesucht. Hierfür wird sich erneut die „owner“-
Funktion zu Nutze gemacht, über welche man an den besitzenden Zustand herankommt

33

Abbildung 10: Verschieben einer Instanz (vereinfachter Ablauf)
Der ursprüngliche Zustand muss gespeichert werden, bevor der Zielzustand gespeichert wird.

um die HashMap dessen für die Suche zu verwenden. Sollte die Suche fehlschlagen, so
wird zum jetzigen Zeitpunkt der Vorgang mit dem Werfen einer Ausnahme abgebrochen,
um das Erstellen von inkonsistenten und fehlerhaften Zuständen zu vermeiden. Nach der
aktuellen Annahme wird diese Ausnahme nie geworfen, denn der Fall, dass Typen unbe-
kannt sind, wurde im voraus für diese Arbeit ausgeschlossen, da die Erstellung eines Typs
etwas komplexer ist. Grund für die Ausnahme ist, dass im Falle, dass eine Instanz zwei
komplexe Typen enthält, der rekursive Aufruf des ersten bereits abgeschlossen sein kann
während der des Zweiten eventuell einen Fehler feststellt. In diesem Fall wären Instanzen
bereits hinzugefügt worden, welche nicht hätten hinzugefügt werden dürfen. Nachdem
der Pool gefunden wurde, wird nun mit dem betroffenen Komplexen Typ (welcher an
sich eine Instanz darstellt) die Funktion „addInstance“ rekursiv aufgerufen.

Transfer von Instanzen Unter dem Transfer von Instanzen wird eine Verschiebung
dieser von einem in einen anderen Zustand verstanden. Das heißt, dass die Instanz aus
demjenigen Zustand, aus welchem sie ursprünglich kommt nach dem Kopieren in dem
ursprünglichen Zustand nicht mehr vorhanden ist. Dieser Transfer ist aufgrund der not-
wendigen Unifikation der Zustände ein wenig komplizierter. Grund dafür ist, dass die
Instanz, welche als Referenz übergeben wird, in zwei Zuständen verändert werden muss.
Das Verschieben einer Instanz ist zwar prinzipiell möglich, aber die Funktion, welche
die Verschiebung anordnet, muss sicherstellen, dass die Instanz aus dem Zustand, aus
welchem sie verschoben werden soll, als erstes gespeichert wird. Wird der Zielzustand
zuerst gespeichert, so wird die SkillID der Instanz auf einen Wert ungleich 0 gesetzt,
wodurch sie nicht mehr als „zu Löschen“ markiert ist. In Abbildung 10 ist der Ablauf
für das Verschieben von Instanzen dargestellt. In dieser Abbildung wird der Ablauf des
Speicherns der beiden Zustände verdeutlicht. Diese Besonderheit beim Verschieben von
Instanzen schränkt die Möglichkeit des Transfers von diesen auch auf nur eine Richtung
ein. Das heißt, dass es nicht möglich ist eine Instanz C von Zustand A in Zustand B und
vor dem nächsten Schreiben der Zustände eine Instanz D von Zustand B in Zustand A
zu verschieben.

34

Erstellen eines konsistenten Zustands Um aus bestehenden Instanzen einen konsis-
tenten Zustand zu erstellen, muss mit der für die Instanzen notwendigen Spezifikation
zunächst ein Zustand im Modus „Create“ erstellt werden. In diesen Zustand können nun
alle Instanzen kopiert werden, indem die Funktion für das Hinzufügen von Instanzen auf-
gerufen wird. Um dies zu bewerkstelligen, kann man entweder alle Instanzen einzeln an
die Funktion „addInstance“ oder alle Instanzen als Liste an die Funktion „addInstances“
übergeben.

Mengenvereinigungsoperation für Typen Um alle Instanzen eines Typs zweier Zustän-
de zu vereinigen existiert die Funktion „addInstancesOfType“, welche einen StoragePool
als Parameter entgegen nimmt. Diese Funktion iteriert nun über alle in diesem Typ
vorhanden Instanzen und fügt sie dem Typ des aufgerufenen Zustandes hinzu. Hierfür
wird die Funktionalität des Hinzufügens von Instanzen, welche im Laufe dieser Arbeit
entstanden ist, genutzt. Dabei gilt natürlich, dass vor dem Ausführen dieser Operation
eine Unifikation der Zustände stattgefunden haben muss. An dieser Stelle greift auch
die für diese Arbeit getroffene Annahme, dass alle Typen bereits bekannt sind. Des
Weiteren existiert auch eine Funktion um die Instanzen mehrerer Typen einem Zustand
hinzuzufügen. Diese nimmt entsprechend eine Liste von StoragePools entgegen, aus wel-
cher sie alle StoragePools einzeln heraus nimmt und an die oben beschriebene Funktion
„addInstancesOfType“ übergibt. Es gilt dabei zu beachten, dass der Nutzer bevor er die
entsprechende Funktion aufruft sicherstellen muss, dass nur die Instanzen in den Typen
vorhanden sind, welche auch in der Vereinigungsmenge vorhanden sein sollen. Damit
verbunden muss der Nutzer sich darum kümmern, dass sowohl im Typ des Zielzustands
als auch in dem des Ursprungszustandes nur diejenigen Instanzen befinden, welche Teil
der Vereinigungsmenge werden sollen.

35

4 Mögliche nächste Schritte der Verwaltung

In diesem Abschnitt werden einige Ideen vorgestellt, welche im Rahmen dieser Arbeit
nicht mehr näher untersucht und umgesetzt werden konnten. Bei diesen Ideen handelt
es sich zum einen um Optimierungen in Sachen Zustandsverwaltung und zum Anderen
um notwendige nächste Schritte um die Nutzbarkeit dieser zu Verbessern.

4.1 Unifikation

Einmalige Unifikation In der aktuellen Implementierung der Unifikation ist es durch-
aus möglich, dass zwei Zustände mehrfach miteinander unifiziert werden. Dies könnte
man zum Beispiel dadurch verbessern, dass sich jeder Zustand merkt, mit welchem an-
deren Zustand er bereits unifiziert wurde. Als Kriterium zur Identifikation wäre hier
zum Beispiel der Pfad der Datei, aus welcher der Zustand entstanden ist, denkbar. Denn
der Modus „Destroyed“ sagt an dieser Stelle nichts darüber aus, mit welchem Zustand
unifiziert wurde.

Verhindern einer Unifikation Im Laufe dieser Arbeit wurde festgestellt, dass es unter
Umständen durchaus Anwendungsfälle gibt, bei welchen eine Unifikation (und die damit
verbunden Zerstörung) nicht sinnvoll ist. Ein Beispiel hierfür wäre, dass Änderungen in
drei verschiedenen Zuständen (A, B und C) gemacht werden sollen. Im Falle, dass sich
Abhängigkeiten wie das verschieben von Instanzen von A nach B, C nach A und der Ver-
einigung eines Typs von B in C ergeben, muss hier sichergestellt werden, dass dies ohne
auftretende Inkonsistenzen abläuft. Bei diesem Szenario müssten beim Ausführen aller
Aktionen alle Zustände zerstört werden. Man sieht also, dass diese Aktionen zunächst
in einer bestimmten Reihenfolge ablaufen müssen, um die Konsistenz von Zuständen
zu bewahren und dennoch das gewünschte Resultat zu erhalten. Es wäre hierfür wün-
schenswert, dass ein Zustand eine Unifikation zunächst ablehnen kann, bis er alle hierfür
kritischen Abschnitte überwunden hat und wieder bereit für eine neue Unifikation ist.
Aktuell muss die Konsistenz der Zustände bei einem solchen Szenario durch den Nutzer
sichergestellt werden.

Vermeiden der Zustandszerstörung Eine Unifikation zerstört aktuell den übergebenen
Zustand, da nach dem Ändern der SkillIDs in diesem der korrekte Zugriff auf Instanzen
über die IDs nicht mehr sichergestellt werden kann. Diesen Umstand könnte man vermei-
den, indem ein Mechanismus entwickelt wird, welcher bei der Unifikation zum Beispiel
den Offset zwischen der ursprünglichen ID und der neuen ID speichert und mithilfe des-
sen im zerstörten Zustand trotzdem die entsprechende Instanz finden kann. Kritisch ist
hierbei, dass sichergestellt werden muss, dass dieser Offset nur im zerstörten Zustand
eingerechnet wird, nicht jedoch in demjenigen Zustand mit welchem er unifiziert wurde,
da die Einrechnung dessen hier natürlich zu einem falschen Zugriff führen würde.

36

4.2 Unbekannte Typen
Unifikation Ohne die Annahme, dass es keine unbekannten Typen gibt, gilt es natür-
lich auch zu bedenken, dass Instanzen von solchen unbekannten Typen in einem Zustand
hinzugefügt werden sollen. In einem solchen Fall muss bei der Unifikation unter Ande-
rem zusätzlich noch beachtet werden, dass diese beim Vergleich von Typen auch deren
Anzahl an Feldern vergleicht. Denn im Falle von unbekannten Typen besteht auch die
Gefahr, dass zwei gleichnamige Typen auftreten, welche aber nicht die selbe Datenstruk-
tur darstellen. Neben dem Vergleich des Inhalts von Typen muss also auch die Definition
des Typs selbst verglichen werden. An dieser Stelle kommen auch die TypeIDs und eine
potentielle Unifikation dieser für die Unifikation in Frage, welche nach einem ähnlichen
Schema wie die SkillIDs unifiziert werden könnten.

37

5 Zusammenfassung und Ausblick
Im Laufe dieser Arbeit ist die Grundlage für die Funktionalität des Kopierens, Löschens
und Suchens von Instanzen entstanden. Die Arbeit beschränkt sich auf den einfachsten
Fall dieser genannten Funktionalitäten, da die Abdeckung aller Fälle den vorgegebenen
Rahmen dieser Arbeit überschreiten würde.

Unter der Annahme, dass es nur eine Spezifikation gibt, in welcher keine unbekannten
Typen existieren und das es keine Instanzen ohne Zustand geben kann, wurden die in der
Aufgabenstellung genannten Funktionen umgesetzt. Es wurde eine Möglichkeit geschaf-
fen nach Instanzen in Zuständen zu suchen, sowie solche Instanzen zu entfernen. Auch
das Kopieren von Instanzen aus einem Zustand in einen anderen Zustand wurde reali-
siert. Zudem wurde in Zusammenhang mit dem Kopieren von Zuständen das Verschieben
dieser implementiert. Im Rahmen dieser Arbeit wurde hierfür die Notwendigkeit einer
Unifikation von Zuständen festgestellt um diese Funktionen effizient zu ermöglichen. Die
Durchführung einer solchen Unifikation wird folglich von allen hier entwickelten Funk-
tionen, beziehungsweise für deren korrekte Funktionsweise, vorausgesetzt. Ein Nachteil,
welcher für die Effizienz der implementierten Funktionen in Kauf genommen wurde, ist
das zerstören des übergebenen Zustands bei der Unifikation. Der übergebene Zustand
wird hiernach zwar unbrauchbar im Bezug auf die Suche von Instanzen, alle weiteren
implementierten Aktionen in dem nicht zerstörten Zustand sind jedoch aufgrund von Zu-
griffen über Indizes und HashMaps wesentlich effizienter möglich. Die Instanzen in dem
dabei zerstörten Zustand können dennoch für das Kopieren dieser verwendet werden.
Die Tatsache, dass der Zustand zerstört wurde soll lediglich vermeiden, dass fehlerhafte
Zugriffe über die SkillIDs durchgeführt werden können.

Der nächste Schritt ist nun nach und nach die komplizierteren Fälle zu untersuchen
und die hier implementierte Funktionalität in soweit zu erweitern, dass auch diese Fälle
abgedeckt werden. Hierzu gehört unter Anderem das Nachladen und Hinzufügen von
fehlenden Typen in einen Zustand. Der Hauptbestandteil hierbei ist das Ermitteln der
hierfür nötigen Spezifikationen und eine entsprechende Auswertung dieser im Hinblick
darauf, was tatsächlich benötigt wird.

38

Literatur
[Fel13] Timm Felden. The skill language. Technical report, 2013.

[Har14] Fabian Harth. Plattform- und sprachunabhaengige serialisierung mit skill.
Diplomarbeit, Universitaet Stuttgart, 2014.

[Prz14] Dennis Przytarski. Performance-evaluation einer sprach- und plattformun-
abhaengigen serialisierungssprache. Bachelorarbeit, Universitaet Stuttgart,
2014.

[Ull10] Christian Ullenboom. Java ist auch eine insel, 2010.

[Ung14] Wladislaw Ungur. Nutzbarkeitsevaluation einer sprach- und plattformu-
nabhaengigen serialisierungssprache. Diplomarbeit, Universitaet Stuttgart,
2014.

[XML06] Extensible markup language, 2006.

39

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben.
Ich habe keine anderen als die angegebenen Quellen benutzt
und alle wörtlich oder sinngemäß aus anderen Werken über-
nommene Aussagen als solche gekennzeichnet. Weder diese
Arbeit noch wesentliche Teile daraus waren bisher Gegen-
stand eines anderen Prüfungsverfahrens. Ich habe diese Ar-
beit bisher weder teilweise noch vollständig veröffentlicht.
Das elektronische Exemplar stimmt mit allen eingereichten
Exemplaren überein.

Ort, Datum, Unterschrift

41

	Einführung
	Aufbau des Dokuments
	Hintergründe der Arbeit
	Die Sprache SKilL
	Aufgabenstellung
	Ähnliche Arbeiten

	SKilL in Java
	Der Zustand
	Bestandteile eines Zustandes
	StringAccess
	Access
	SkillObject
	StringPool
	Chunk
	FieldType
	FieldDeclaration
	StoragePool
	BasePool
	SubPool

	Verwaltung von Zuständen
	Ziel der Verwaltung
	Kritische Stellen der Verwaltung
	Suchen einer Instanz
	Löschen einer Instanz
	Kopieren einer Instanz

	Umsetzung der Verwaltung
	Annahmen
	Unifikation von Zuständen
	Element-Operator für Instanzen
	Löschen von Instanzen
	Kopieren von Instanzen

	Mögliche nächste Schritte der Verwaltung
	Unifikation
	Unbekannte Typen

	Zusammenfassung und Ausblick

