Institut fiir Softwaretechnologie
Universitat Stuttgart

UniversitatsstraBe 38
D-70569 Stuttgart

Bachelorarbeit Nr. 219

Zustandsverwaltung mit SKilL
State management with SKilL

Studiengang:

Priifer/in:

Betreuer/in:

Beginn am:

Beendet am:

CR-Nummer:

Christopher Volker

Softwaretechnik

Prof. Dr. Erhard Plédereder

Dipl.-Inf. Timm Felden

8. April 2015
8. Oktober 2015

D.15,D.2, D33, E2 Eb

Kurzfassung

In dieser Bachelorarbeit wird die Verwaltung von Zustdnden und der darin
beinhalteten Typen sowie deren Instanzen untersucht. Hierbei soll die Funk-
tionalitdt des Suchens, Loschens und Kopierens von Instanzen implementiert
werden. Die Arbeit untersucht dafiir zunédchst die nétigen Schritte, um die
gewiinschten Funktionen zu implementieren und dabei den Aufwand fiir die
Nutzung dieser so gering wie moglich zu halten. Daher liegt der Schwerpunkt
dieser Implementierung darin, dem Nutzer eindeutige Abldufe vorzugeben,
fiir welche er keine tiefere Kenntnis beziiglich ihrer genauen Funktionalitét
benétigt. Durch die Vorgabe dieser Abldufe soll eine unsachgeméfie Nutzung
der Funktionen vermieden werden. Ein Weiterer Schwerpunkt liegt bei der
Effizienz der Suche nach Instanzen. Ziel ist es, diese Suche so effizient wie
moglich zu realisieren.

Inhaltsverzeichnis

(1 Einfuhrung|

1.2 Hintergrunde der Arbeit|
1.3 Die Sprache SKillL| oo
[1.4 Aufgabenstellung| oo
(L5 Ahnliche Arbeiten|

[3 Verwaltung von Zustanden|
3.1 Ziel der Verwaltung|

|4 Mogliche nachste Schritte der Verwaltung]

4.1 Unifikation|
4.2 Unbekannte Typen| oo

[> Zusammenfassung und Ausblick|

12
13
14
14
15
15
16
16
16
16
17
18
19

20
20
21
21
22
22
23
23
24
27
29
32

36
36
37

38

Abbildungsverzeichnis

[TypIDsin SKillj o 8
[2 Spezifikation von Datenstrukturen| 10
[SKilL in Java (vereinfacht) 12
|4 Instanzen von SubTypes eines BasePools|. 18
5] Ziel der Verwaltungl o o 21
[6 Vergleich zweier Instanzen (vereinfachter Ablauf)[. 26
[7 Element-Operator (vereinfachter Ablauf)|. 28
8 Loschen einer Instanz (vereinfachter Ablauf)|. 30
9 Hinzufiigen einer Instanz (vereinfachter Ablauf)| 33
10 Verschieben einer Instanz (vereinfachter Ablauf) 34

1 Einfithrung

In diesem Abschnitt werden neben einer kurzen Ubersicht zum Aufbau des Dokuments ei-
nige Hintergrundinformationen zu dieser Arbeit beschrieben. Hierzu gehért neben SKill,
und der Aufgabenstellung dieser Arbeit auch eine Ubersicht iiber dhnliche Arbeiten zu
diesem Thema.

1.1 Aufbau des Dokuments

In diesem Dokument werden zunéchst die fiir das Verstdndnis notwendigen Informatio-
nen sowie eine kurze Einfithrung in die Sprache SKill. beschrieben. Das Einfithrungs-
kapitel beschéaftigt sich mit der Aufgabenstellung dieser Bachelorarbeit und es werden
andere dhnliche wissenschaftliche Arbeiten kurz vorgestellt. Das anschlielende zweite
Kapitel handelt von der Java-Implementierung von SKill,, in welcher die Implementie-
rung der gewiinschten Funktionen erfolgt. Im nachfolgenden dritten Kapitel werden die
Ergebnisse dieser Arbeit im Bezug auf die Verwaltung von Zustdnden sowie damit ver-
bundene Einschriankungen beschrieben. Das darauffolgende vierte Kapitel handelt von
Verbesserungsvorschldgen, welche im Zuge dieser Arbeit entstanden sind und Aufgrund
von mangelnder Zeit nicht mehr umzusetzen waren. Zuletzt wird im fiinften Kapitel eine
kurze Zusammenfassung dieser Arbeit und auch ein Ausblick auf mogliche weiterfiithren-
de Entwicklungen gegeben.

1.2 Hintergriinde der Arbeit

Im Zeitalter der Digitalisierung werden jeden Tag grofle Mengen an Daten generiert
und verarbeitet. Es werden jeden Tag Millionen von Nachrichten, Bildern, Videos oder
anderen Arten von Daten ausgetauscht, verschickt und gespeichert. Die Daten werden
in einer Darstellung erstellt, welche von Menschen gelesen, verstanden und bearbeitet
werden kann. Ein weitaus deutlicheres Beispiel fiir das Generieren von groflen Mengen
an Daten sind wissenschaftliche Projekte. In solchen Projekten werden Unmengen an
Informationen generiert und miissen verarbeitet, gespeichert und zwischen verschiede-
nen Tools transferiert werden. Die Menge an Daten, welche dabei téglich entsteht, wird
mit der fortschreitenden Digitalisierung und den dabei stetig wachsenden Moglichkei-
ten immer grofler und wichst schneller als die Anzahl der fiir die Verarbeitung nétigen
Ressourcen. Das heifit, dass die Verarbeitungsprozesse immer langer dauern, da der
technische Fortschritt und dessen Ausbau mit der zunehmenden Digitalisierung nicht
mithalten kann. Dies hdngt unter Anderem auch damit zusammen, dass der Ausbau von
schnellen Anbindungen an das Internet ein langwieriger und auch kostspieliger Prozess
ist. Doch auf die lokale Verarbeitung und das dortige Speichern von Daten wird in diesem
Zusammenhang immer langwieriger. Aus diesem Grund wird es immer wichtiger, dass
Daten moglichst effizient gespeichert und verschickt werden kénnen, wobei dies nicht in
der initialen fiir Menschen lesbaren Darstellung geschehen kann. Damit Daten gespei-
chert oder verschickt werden koénnen, miissen diese in ein bestimmtes Format gebracht
werden. Dieses Format muss von digitalen Medien (wie zum Beispiel Computern), mit-

hilfe welcher die Daten in der Regel erstellt werden, gespeichert und ausgetauscht werden
koénnen. Das iiberfithren der Daten in dieses Format wird ,Serialisieren” genannt. Ein
solches Verfahren muss also in der Lage sein, Daten zwischen einer fiir Computer ver-
standlichen Darstellung in eine Menschen verstindliche Darstellung und wieder zuriick
zu uberfihren.

Das Serialisieren von Daten Das Serialisieren von Daten stellt natiirlich einen zusétz-
lichen aber nétigen Aufwand in der Verarbeitung von Daten dar. Das Hauptproblem
hierbei ist, dass die géingigsten Verfahren in der Regel alle Informationen Serialisieren
und De-serialisieren statt nur diejenigen Daten zu verarbeiten, welche tatsédchlich be-
notigt werden. Das popularste Beispiel fiir ein solches Verfahren stellt die Extensible
Markup Language (XML) dar. [XMLO6| Dieses Verfahren stellt Daten hierarchisch dar
und zwingt den Nutzer hierdurch dazu alle Daten dieser Hierarchie mindestens einmal
»in die Hand zu nehmen“. Bei sehr grofien Mengen an Daten wére es aber zugunsten der
Effizienz wiinschenswert, dass tatsdchlich nur diejenigen Daten verarbeitet werden, wel-
che wirklich benétigt werden. Dabei soll es natiirlich moglich sein, bei Bedarf bestimmte
Daten moglichst effizient nachtréglich zu laden, ohne dabei bereits geladene Daten er-
neut zu verarbeiten. Ein solches Verfahren, welches moglichst unabhéngig von Sprachen
und Plattformen sein soll und zeitgleich diese Funktionalitdt bietet existiert zum jetzigen
Zeitpunkt noch nicht. An dieser Stelle setzt die Sprache ,Serialization Killer Language“
(SKilL) an.

1.3 Die Sprache SKilL

Bei SKilL handelt es sich um die Entwicklung einer Serialisierungssprache an der Univer-
sitat Stuttgart. Diese Sprache wird entwickelt um das Serialisieren und De-serialisieren
von groflen Mengen an Daten schneller und einfacher zu machen. Ein sehr grofier Auf-
wand bei der Handhabung grofler Mengen an Daten flieft in die Nutzung dieser in ver-
schiedenen Programmiersprachen. In vielen Fallen miissen die Daten in verschiedenen
Tools verarbeitet werden, welche in unterschiedlichen Programmiersprachen realisiert
wurden. Um dies in den jeweiligen Tools zu erméglichen, miissen die Datenstruktu-
ren in jeder der verschiedenen Programmiersprachen erstellt werden. SKill. verfolgt das
Ziel auch diesen Aufwand zu minimieren. Hierfiir wurde zunéchst eine Sprache fiir die
Spezifizierung von Datenstrukturen entwickelt, welche es ermdoglicht zum Teil komplexe
Datenstrukturen zu definieren und diese von Tools verschiedener Programmiersprachen
nutzen zu kénnen. Dabei wurde darauf geachtet, dass die Spezifikation Ahnlichkeiten
zu Objekt-orientierten Programmiersprachen hat um die Verwendung in diesen so leicht
wie moglich zu machen. Dies bedeutet auch, dass abgesehen von den Basistypen der Pro-
grammiersprachen (wie zum Beispiel in Java int, long, string etc.) auch Benutzertypen
definiert werden kénnen. Dabei gilt natiirlich, dass der letzte Benutzertyp in einer Typ-
Hierarchie ausschliefllich aus Basistypen bestehen kann. Diesem Prinzip entsprechend
kann ein Benutzertyp auch in einem weiteren Benutzertyp verwendet werden. Den ver-
schiedenen Datentypen werden dabei in SKilL so genannte ,, TypelDs ¢ zugewiesen, wobei
diese eindeutig spezifiziert sind. In Abbildung [1] ist die Verteilung dieser TypelDs dar-

Type Name Value
const i8 0
const ilé 1
const 132 2
const i64 3
const ve4d 4
annotation 5
bool 6
i8 7
ila 8
i3z 9
i64 10
vod 11
f32 12
fad 13
string 14
T[] 15
T[] 17
list<T= 18
set<T= 19
map=Ty, ..., Tp= | 20
i 32 + indexq

Abbildung 1: Typ IDs in SKilLL
Quelle: [Fell3| Anhang E, Numerical Constants]

gestellt. Hieraus wird deutlich, dass Benutzertypen im Gegensatz zu Basistypen keine
definierte ID besitzen, sondern diese aufsteigend eine ID zugewiesen bekommen. Dabei
hat diese ID per Definition einen offset von 32 um sich nicht mit den Basistypen zu
iiberschneiden. Hierbei werden die IDs der Benutzertypen in der Reihenfolge, in welcher
sie eingelesen werden zugewiesen. Diese Reihenfolge hingt unter Anderem von den Ab-
héngigkeiten in den Spezifikationen ab. In der Abbildung (a) ist die naive Spezifikation
eines Studenten zu sehen. Hier besitzt ein Student einen Vor- und Nachnamen und hat
natiirlich auch ein Geburtsdatum. Da es sich um einen Student handelt gibt es auch ein
Feld fiir seinen Studiengang. In diesem Beispiel ist die Verwendung eines so genannten
,Benutzertyps“ in einem weiteren ,Benutzertyp“ zu sehen, welcher in Abbildung [2| (b)
spezifiziert ist. In diesem Fall gibt es zwei Benutzertypen, welche eine entsprechende
ID zugewiesen bekommen miissen. Um jedoch den Typ ,,Student“ korrekt darstellen zu
koénnen, muss zuvor der Typ ,Geburtstag® bekannt sein. Aus diesem Grund bekommt
der Typ ,,Student” seine ID erst nach dem Typ ,,Geburtstag” . Grund dafiir ist, dass der
Student nicht ohne das bekannt sein des Geburtstags erstellt werden kann.

Ziel einer solchen Spezifikation ist nun, dass die Kern Datenstrukturen eines Tools
Plattform unabhéngig sind, denn die Programmiersprachen, in welcher ein Entwickler
am besten entwickelt, ist diejenige die er am liebsten nutzt. [Fell3, Kapitel 1, Absatz 2]

Aus diesem Grund wird eine solche Spezifikation mithilfe eines Code-Generators nun zu
Klassen einer bestimmten Sprache generiert, damit die darin definierten Datenstrukturen
dort verwendet werden kénnen. Ein wichtiger Aspekt hierbei ist, dass das Einlesen von
Zustianden aus Dateien abhéngig von der entsprechenden Spezifikation ist. Die hierfiir
notigen Funktionen werden von dem Code-Generator aus einer Spezifikation erstellt und
konnen dann mithilfe der generierten Klassen verwendet werden. Das heiflit aber auch,
dass ein Zustand nach dem Einlesen zunéchst nur diejenigen Typen kennt, welche in
der Spezifikation definiert wurden. Ein grofler Vorteil der Generierung von Klassen aus
einer Spezifikation ist dabei, dass die Datenstrukturen auf diese weise bereits serialisiert
vorliegen! Dabei ist die Entwicklung eines Code-Generators fiir verschiedene Objekt-
orientiere Sprachen, ausgehend von einer einzigen Spezifikation, wesentlich einfacher, als
die Anpassung der Spezifikation an verschiedene Sprachen. Ein weiterer Vorteil der Ge-
nerierung dieser Klassen ist, dass die notigen Datenstrukturen nicht vom Entwickler in
verschiedenen Sprachen realisiert werden miissen, sondern diese Arbeit vorab durch den
Generator durchgefiihrt wird. Dies macht das Arbeiten mit bestimmten Datenstrukturen
in Tools verschiedener Programmiersprachen wesentlich einfacher und erfordert deutlich
weniger Aufwand. Auf diese Art und Weise kann also folglich ein und die selbe Spezifi-
kation von Datenstrukturen in verschiedenen Programmiersprachen verwendet werden.
Der Entwickler muss lediglich gegen die generierte Schnittstelle entwickeln anstatt diese
zuerst erstellen zu miissen. Auch die Tatsache, dass der Aufbau dieser Schnittstelle in
jeder Programmiersprache sehr dhnlich sein wird, bringt einige Vorteile in Sachen Be-
nutzung mit sich.

Im Fall dieser Arbeit wird aus dieser Spezifikation Code fiir die Programmiersprache
Java generiert. Hierbei stellen die generierten Klassen alle notwendigen Informationen
und Funktionen zur Verfiigung, welche benotigt werden um mit den Datenstrukturen
der Spezifikation in Java arbeiten zu kénnen.

1.4 Aufgabenstellung

Die in SKilLL verwendeten Zustandsobjekte (so genannte ,States“) sind aus Sprachsicht
Mengen von Typen, die wiederum Mengen von Instanzen sind. Diese Eigenschaft ist
aktuell in keiner Implementierung direkt realisiert. Daher soll eine bereits existierende
Implementierung um eine auf Mengenoperationen basierende API erweitert werden.

Loschen und Kopieren Es muss eine Funktionalitét fiir das Léschen und Kopieren von
Instanzen aus einem State geschaffen werden. Auflerdem muss der Transfer von Instanzen
zwischen unterschiedlichen States realisiert werden.

Element-Operator Es muss eine effiziente Implementierung des Element-Operators fiir
Instanzen geschaffen werden.

Erstellung konsistenter States Es muss eine einfache Moglichkeit geschaffen werden
einen konsistenten State aus mehreren Instanzen zu erzeugen. Insbesondere diirfen keine
Zeiger auf Instanzen auflerhalb des generierten States existieren.

with "geburtstag.skill" Geburtstag {
Student {
vbd tag;
Geburtstag geburtstag;
vibd monat,

string vorname;

ve4 jahr;
string nachname; }
string studiengang;
I3
(a) Student (b) Geburtstag

Abbildung 2: Spezifikation von Datenstrukturen

Mengen-Operationen Wiinschenswerte wére eine Realisierung von Mengensubtraktions-
und Mengenvereinigungsoperationen fiir States, beziehungsweise fiir einzelne Typen in-
nerhalb von States.

Benutzerdefinierte totale Ordnung Wiinschenswert wére die Moglichkeit States be-
ziiglich einer benutzerdefinierten totalen Ordnung zu normalisieren, um zwei States ver-
gleichen zu kénnen.

Anderungsvorschlage Optional kénnen Vorschlige gemacht werden, wie die Architek-
tur bereits existierender SKilL-Bindings zu verandern ist um Mengenoperationen leichter
oder effizienter zu realisieren.

1.5 Ahnliche Arbeiten

Im Bezug auf die sich in Entwicklung befindliche Sprache SKill. gab es noch weitere
wissenschaftliche Arbeiten, welche hier kurz vorgestellt werden.

Plattform- und sprachunabhangige Serialisierung mit SKilL Bei dieser Arbeit handelt
es sich um eine Diplomarbeit, welche von Fabian Harth verfasst wurde. Diese Arbeit
wurde im Jahr 2014 erstellt und befasst sich mit der Anbindung von SKilL. an die
Programmiersprache C. Bei dieser Arbeit wird die Méglichkeit der Anbindung von SKilLL
an eine nicht Objekt-orientierte Programmiersprache beschrieben. [Har14, Kurzfassung]

10

Nutzbarkeitsevaluation einer sprach- und plattformunabhangigen Serialisierungsspra-
che Diese Diplomarbeit wurde im Jahr 2014 von Wladislaw Ungur erstellt. Sie befasst
sich mit der Nutzbarkeit und praktischen Tauglichkeit einer Schnittstelle und des passen-
den Code-Generators fiir die Serialisierungssprache SKilL. Hierbei liegt der Schwerpunkt
auf der Entwicklung einer API und eines Code-Generators fiir die Programmiersprache
Java. [Ungl4, Kurzfassung]

Performance-Evaluation einer sprach- und plattformunabhingigen Serialisierungs-
sprache Im Jahr 2014 befasste sich Dennis Przytarski mit der Performanz von einer
Serialisierungssprache und evaluierte diese mithilfe eines Scala- und Ada-Bindings. Das
Scala-Binding existierte hierbei als Referenzimplementierung wihrend fiir die Program-
miersprache Ada ein Code-Generator entwickelt werden musste. |[Prz14, Kurzfassung]

11

SkillState
Enum
Mode i - writeMode : Mode
Create - path : java.nio.file.Path
Read - types : ArrayList<StoragePool<T,B>=>
Wiite - strings : StringPool
Append
implements
[StoragePool<T extends SkillObject,B> ——
StringPool P ~ name : String
+ idMap : ArrayList<String=
+ owner() : SkillFile - superPool : StoragePool<T,B>
+ newStrings : HashSet<String>
+ name() : String - basePool : BasePool

+ typeOrderlterator() : lterator<T> - fields : ArrayList<FieldDeclaration<? T>

implements

¥
StringAccess

+ fields() : lterable<FieldDeclaration<?,T> - newObjects : ArrayList<T>

+ get(int) : String +getBylD(long) : T

extends

extends

FieldDeclaration<T,SkillObject>

v - type : FieldType<T=
Java.util.Collection<?>
- hame : String

+ add() : Boolean
I — SkillObject
- owner : StoragePool<T, B>

+ remove() : Boolean - skilllD : long
+ contains() : Boolean - dataChunis : LinkedListeChunic + isDeleted() : Boolean
+ addAll{) : Boolean + setSkilllD(long) : void
FieldType<T= Chunk
+ removeAll() : Boolean ~typelD - int +begin : long + getSkillD() : long
+ containsAll{) : Boolean +end :long + set(FieldDeclaration, T) : void
+count : long + get(FieldDeclaration) : T

Abbildung 3: SKilL in Java (vereinfacht)

2 SKilL in Java

Die Umsetzung der Funktionalitdten, mit welchen sich diese Arbeit beschéftigt, erfolgt
in der Java-Implementierung von SKill.. Aus diesem Grund wird die Implementierung
von SKilL in Java in diesem Abschnitt beschrieben. Dies ist notwendig, um die Hinter-
griinde der Umsetzung verstehen und nachvollziehen zu konnen. Hierbei beschrénkt sich
der Abschnitt auf die wichtigsten Informationen zur Implementierung. Die nachfolgende
Beschreibung hat folglich keinen Anspruch auf Vollstdndigkeit, da nicht alle Einzelheiten
fiir das Verstdndnis der Umsetzung nétig sind.

Zunichst erfolgt eine kurze Beschreibung eines so genannten SKill.-Zustands, welcher
im folgenden ,Zustand*“ genannt wird. Anschlielend werden die wichtigsten und fiir
den weiteren Verlauf dieser Arbeit notigen Bestandteile sowie deren Funktion etwas
detaillierter beschrieben.

12

2.1 Der Zustand

Fin Zustand in SKill, stellt die oberste Ebene in der Verwaltung von Daten dar. Ein
Zustand wird als Java-Objekt im Sinne der objektorientierten Programmierung realisiert.
Ein solcher Zustand beinhaltet alle fiir das spétere Serialisieren notwendigen Daten und
dient als Repréasentation der Daten im Hauptspeicher.

Fin Zustand ist also fiir die Verwaltung von Typen, ihren Definitionen, Restriktionen
und Instanzen zustdndig und ermoglicht es diese geordnet zu Représentieren und mit
ihnen zu arbeiten. Bei Instanzen handelt es sich hierbei um Objekte eines Typs, welche
bestimmte Werte fiir dessen Felder beinhalten und représentieren. Der initiale Zugriff
auf diese Daten wird somit iiber einen Zustand realisiert. Im Zuge der Verwaltung dieser
Daten ist ein Zustand auch dafiir verantwortlich, die Daten in Dateien zu schreiben und
aus solchen auch wieder auslesen zu kénnen. Konkret bedeutet dies, dass dieser auch
das Serialisieren und De-serialisieren von Daten realisiert beziehungsweise den Prozess
dessen anstoft.

Jeder Zustand zeichnet sich abgesehen von seinem Inhalt durch zwei bestimmte Attribute
aus. Diese Attribute sind der ,,Pfad“ und der ,,Schreibmodus®.

Schreibmodus Jeder Zustand unterscheidet bei seiner Erstellung zunéchst zwischen
einem so genannten ,openMode“ und einem ,closeMode*.

Der ,openMode“ differenziert hierbei zwischen einer Lese-Operation auf eine bereits
vorhandene Datei oder einer Erstellen-Operation fiir eine neue Datei. Letzteres wird
ausschliellich fir das Erstellen neuer Zustéinde verwendet, fiir welche es noch keine Datei
gibt. Der openMode lasst sich nachtraglich nicht mehr verdndern, da dieser nur bei der
Erstellung eines Zustandes im Hauptspeicher zur Verwendung kommt.

Der ,,closeMode* unterscheidet die Art der Schreib-Operation auf einen Zustand. Es gibt
zum einen den Modus ,Write“, welcher fiir das Schreiben von Anderungen im Bezug auf
den Inhalt oder das Loschen von Inhalten verwendet wird. Zum Anderen gibt es einen
»Append-“ Modus, der fiir das Hinzufligen neuer Inhalte zu einem (bestehenden) Zustand
optimiert wurde. Hier gilt zu beachten, dass man den Modus zwar von Append zu Write
dndern kann, die andere Richtung jedoch nachtriglich nicht zuldssig ist. Generell ist
ein nachtrigliches Andern des Modus zu Append in keinem Fall zuléissig. Dies dient der
Fehlervermeidung, da ein Zustand im ,,Append“ Modus ausschliefSlich auf das Hinzufiigen
neuer Inhalte optimiert wurde. Hiermit soll vermieden werden, dass durch unzuléssiges
Andern des Schreibmodus Anderungen in einem Zustand nicht iibernommen werden und
so unter Umstdnden Inkonsistenzen auftreten.

Bei den Modi eines Zustandes ist zu beachten, dass der ,,openMode® zwingend angegeben
werden muss, wihrend der ,closeMode” zunéchst nicht angegeben werden muss. Dabei
ist aber zu beachten, dass das nicht angeben des ,,closeMode* impliziert, dass man den
Zustand nach dem Erstellen nur noch um den Modus ,Write“ ergénzen kann.

Read Dieser Schreibmodus wird verwendet, wenn eine Datei ausschlief$lich gelesen aber
nicht verindert wird. Im Falle der Notwendigkeit einer Anderung im Zustand kann der
Schreibmodus nachtraglich noch um ,,Write® ergénzt werden.

13

Create Create als initialer Schreibmodus ist fiir das Erstellen neuer Zustéinde zu ver-
wenden. Create initilert dabei das Erstellen eines neuen (leeren) Zustandes, in welchem
dann Instanzen zu entsprechenden Typen oder gegebenenfalls auch neue Typen hinzu-
gefiigt werden konnen.

Write Der Modus ,Write“ kann nur als der zweite Parameter fiir den Modus beim
erstellen eines Zustandes iibergeben werden. Dieser Schreibmodus wird fiir das Andern
von Inhalten in einem Zustand verwendet. Die Besonderheit dieses Modus ist, dass das
Schreiben eines Zustandes in diesem Modus bei der Vergabe der SkilllDs alle IDs aktua-
lisiert. Dies betrifft in diesem Fall auch die bereits vorhandenen Instanzen des Zustandes.

Append Ein sich im Modus ,,Append® befindlicher Zustand kommt beim Hinzufiigen
neuer Inhalte zur Verwendung. Dieser Modus ist hierbei auf das Hinzufiigen optimiert
und befasst sich bei der Vergabe von SkilllDs ausschliefllich mit der Vergabe der SkilllDs
neuer Instanzen.

Pfad Der Pfad eines Zustandes entspricht bei seiner Erstellung zundchst dem Pfad der
Datei, aus welcher er entstanden ist. Im Falle einer Neuerstellung eines Zustandes kann
dieses Attribut zunéchst leer sein. Spatestens unmittelbar vor dem Aufruf der Schreib-
Operation in eine (neue) Datei muss der Pfad allerdings angegeben werden. Es empfiehlt
sich jedoch im Sinne der Eindeutigkeit den Pfad in jedem Fall bei der Lese-Operation
(unabhéngig ob im Create- oder Read-Modus) mit anzugeben.

2.2 Bestandteile eines Zustandes

Ein Zustand stellt ein Objekt dar, in welchem die fir die Verwaltung von Typen und
deren Daten notwendigen Strukturen beinhaltet sind. Der Zustand ist unter Anderem
auch dafiir zustédndig Daten vom Nutzer abzuschirmen, welche der Nutzer nicht zwin-
gend bendtigt oder deren falsche Nutzung gravierende Auswirkungen haben kénnen. Aus
diesem Grund beinhaltet der Zustand neben den Objekten fiir die Repréasentation von
Typen und Daten auch entsprechende Zugriffsobjekte. Abbildung[3]zeigt eine vereinfach-
te Darstellung der wichtigsten Bestandteile sowie ihrer Abhéngigkeiten so wie sie in Java
realisiert sind. Diese Bestandteile werden in den nachfolgenden Abschnitten beschrieben.

2.2.1 StringAccess

Der StringAccess ist ein Interface, welches von einer Java-Collection von Strings ab-
leitet. Dieses Interface stellt neben den Funktionalitdten einer iiblichen Java-Collection
auch eine Funktion zur Ausgabe eines Strings zur Verfiigung. Hierfiir wird der Funktion
(,get“) ein Parameter vom Java-Typ ,java.lang.long® tibergeben, welcher dann fiir die
Suche eines bestimmten Strings verwendet werden kann.

14

2.2.2 Access

Das Interface Access leitet dhnlich wie das Interface StringAccess von einer Java-Collection
ab. Anders als der StringAccess ist der Typ, welcher von dieser Collection gehalten wird,
nicht vorgegeben sondern in gewissem Mafle generisch. Dieser generische Typ ist in so-
weit eingeschrénkt, dass er selbst von der Klasse SkillObject abgeleitet sein muss. Das
Access Interface legt also die Grundlagen fiir den Zugriff auf Objekte der Klasse SkillOb-
ject fest. Dies wird unter Anderem durch das Vorschreiben einer Implementierung von
mehreren Funktionen bewerkstelligt, welche beim Implementieren des Interfaces ausgear-
beitet werden muss. Hierzu gehort eine Funktion, welche den Namen des repréisentierten
Typs zuriick gibt sowie eine fiir den Erhalt des Namens des Supertyps (falls vorhanden).
Auch ist eine Funktion fiir das Abrufen des Zustands, zu welchem dieses Access-Objekt
gehort, vorgeschrieben. Des Weiteren gibt es noch drei weitere Funktionen, welche imple-
mentiert werden miissen. Hierzu gehort zum einen eine Funktion, welche die Felder dieses
bestimmten Typs kennt und (in Form von ,FieldDeclarations*) zuriickgibt. Die letzten
zwei Funktionen beschéftigen sich hierbei mit den Instanzen des Typs. Es gibt dabei ei-
ne Funktion, welche alle Instanzen in ,typeOrder* als iterierbares Objekt zuriickgibt. In
»typeOrder” heifit, dass zunédchst die Instanzen dieses Access-Objekts, gefolgt von denje-
nigen aller Untertypen als iterierbares Objekt zuriickgegeben werden. Dies beinhaltet in
diesem Fall auch diejenigen Instanzen, welche neu hinzugefiigt wurden und sich somit in
der Liste ,newObjects befinden. Die andere Funktion erméglicht die Erstellung neuer
Instanzen des Typs, welche mit Standard-Werten befiillt werden.

2.2.3 SkillObject

Die Klasse SkillObject stellt die Grundlage fiir den Umgang mit Typen und deren Instan-
zen dar. Jedes SkillObject besitzt eine so genannte ,,SkilllD*“. Diese wird zur Identifikation
des Objekts im entsprechenden Typ verwendet und es gibt hier drei verschiedene Bedeu-
tungen, welche sich aus der SkilllD ableiten lassen. Bei neuen Objekten ist die SkilllD
zunéchst -1 bis diese durch den Schreibvorgang des das Objekt beinhaltenden Zustands
entsprechend auf einen Wert grofier 0 gesetzt wird. Ist die SkillID gréfer 0, so dient sie
innerhalb dieses Typs als eindeutige Identifikation. Der Fall, dass die SkilllD gleich 0
ist bedeutet, dass das Objekt geloscht werden soll. In diesem Fall wird das Objekt beim
Schreibvorgang ,ignoriert* und die IDs nachfolgender Objekte entsprechend angepasst
und verschoben. Fiir die SkillID gibt es drei Funktionen in einem SkillObject, wobei
die erste eine simple Abfrage dieser ist. Die zweite Funktion ermdglicht das Andern der
SkilllD, wéhrend die dritte priift, ob das Objekt geloscht wurde indem sie die SkilllD
auf 0 {iberpriift. Zum Umgang mit Typen und deren Instanzen gehort natiirlich auch
das Speichern und Abrufen von Werten. Dies wird von diesen Objekten in Form von so
genannter ,Reflection” gelst. Reflection erlaubt es, Klassen und Objekte, welche zur
Laufzeit von der ,Java Virtual Machine* (kurz JVM) gehalten werden zu untersuchen
und in begrenztem Umfang zu modifizieren. [Ull10, Kapitel 25, Absatz 1] Die Nutzung
der Reflection ist notwendig, da man ohne diese den Zugriff auf Daten ausschliefilich
iiber Felder realisieren kénnte oder diesen fiir jede Spezifikation implementieren miisste.

15

Bei der Nutzung von Reflection wird im Falle des Abrufens von Daten (eines bestimm-
ten Feldes) der Instanz das entsprechende Feld als Parameter iibergeben. Werden Daten
verdndert beziehungsweise neu gesetzt, so wird zusétzlich noch ein Objekt als Parameter
erwartet, welches dem Typ des Feldes entspricht und die ,neuen* zu speichernden Daten
beinhaltet.

2.2.4 StringPool

Ein StringPool ist fiir die Verwaltung von bestimmten Strings verantwortlich. Diese
Strings kénnen zum einen die Namen der Typen sein, welche von dem Zustand, in wel-
chem sich der StringPool befindet, verwaltet werden. Zum anderen befinden sich aber
auch die zu den verwalteten Typen zugehorigen Feldnamen in einem StringPool. Fiir die
Verwaltung dieser Strings wird von einem StringPool das Interface ,,StringAccess® sowie
die damit verbundene get-Funktion implementiert. Jeder String in einem StringPool be-
sitzt eine ID anhand derer er eindeutig identifiziert werden kann. Diese ID eines Strings
entspricht dem Index, an welchem er sich in der Java-Collection befindet. Hierbei starten
die IDs jedoch am Index 1. Da Java-Collections jedoch beim Index 0 beginnen, befindet
sich an dieser Stelle eine Art , Platzhalter-“ Eintrag um diese Verschiebung des Indexes
zu kompensieren. Im Falle des Hinzufiigens von neuen Strings gibt es eine Variable im
StringPool, welche die neuen Strings zunéchst zwischenspeichert. Diese ist notwendig,
da neue Strings zunédchst keine ID erhalten, sondern diese beim Schreiben des Inhalts in
eine Datei zugewiesen werden.

2.2.5 Chunk

Chunks sind Klassen, welche dabei helfen sollen, Felder korrekt zu serialisieren. Chunks
sind fiir das Parsen von Felddaten notwendig, da diese Informationen tiber die Anzahl
der Instanzen, sowie den Index des ersten Bytes der ersten Instanz enthalten. Auch findet
sich der Index des letzten (nicht mehr zu lesenden) Bytes der letzten Instanz in einem
Chunk wieder. Chunks werden in der Regel nur in FieldDeclarations benétigt, jedoch
unter Anderem in BasePools gelesen und verdndert.

2.2.6 FieldType

Ein FieldType ist ein generischer Typ, welcher dem Zweck dient Felder in Typen zur
Laufzeit zu Repréasentieren. Ein FieldType stellt zudem die Funktionen zur Verfiigung,
welche fiir das Lesen und Schreiben notwendige Informationen bereitstellen. Hierzu ge-
hort auch das speichern einer so genannten TypelD, welche auch hier der Identifikation
dient.

2.2.7 FieldDeclaration

Eine FieldDeclaration dient unter Anderem als Beschreibung eines Feldes. Hierfiir ermog-
licht sie es, den Typ dieses Feldes (in Form eines ,,FieldTypes“) sowie dessen Name festzu-
legen. Eine FieldDeclaration implementiert dhnlich wie ein Access-Objekt eine Funktion

16

namens ,owner()“ Diese gibt aber keinen Zustand (wie es bei einem Access-Objekt der
Fall ist) sondern ein Access-Objekt zuriick. Dabei handelt es sich um jenes Objekt, zu
welchem dieses Feld (beziehungsweise diese FieldDeclaration) gehort. Auch FieldDecla-
rations machen von Reflection Gebrauch und implementieren entsprechende ,, get-“ und
»set-“ Funktionen. Anders als bei Klassen vom Typ SkillObject werden hier jedoch kei-
ne "FieldDeclarations", sondern SkillObjects als Parameter erwartet. FieldDeclarations
erleichtern zusétzlich das Serialisieren von Daten. Hierfir existieren verschiedene Funk-
tionen, welche sich mit dem Lesen und Schreiben von Daten, sowie der Berechnung dafiir
notwendiger Werte (wie zum Beispiel Offsets) befassen. Eine grofie Rolle spielen dabei
die ,,Chunks“, welche die fiir die Berechnungen nétigen Daten enthalten.

2.2.8 StoragePool

Der StoragePool implementiert das Access-Interface und stellt folglich eine Collection,
welche SkillObjects hélt, dar. Hierbei entspricht der Name des StoragePools dem Na-
men des durch ihn représentierten Typs. Genauer gesagt ist der StoragePool ein Objekt,
welches einen Typ und seine Instanzen (in Form der Collection) im Hauptspeicher re-
préasentiert und die Verwaltung dieser ermoglicht. Ein StoragePool bildet folglich die
Grundlage fiir das Arbeiten mit Typen sowie deren Instanzen in einem Zustand. Aus
der Reprisentation eines Typs durch einen StoragePool geht durch selbigen auch die
Typ-Hierarchie des Typs hervor. Das heifit, dass jeder StoragePool seinen ,BasePool“
kennt. Der BasePool stellt den obersten Typ der Hierarchie dar und ist im Falle, dass
der StoragePool selbst der oberste Typ ist leer. In Java wére dies der Typ ,,object®. Die
Typen unterhalb kénnen in einer Liste von so genannten ,,.SubPools“ gefunden werden.
»SubPools“ und ,,BasePools“ sind Klassen, welche die Klasse StoragePool erweitern und
spater noch beschrieben werden. Natiirlich muss der StoragePool auch seinen direkten
oberen Nachbarn (Supertyp) in der Hierarchie kennen. Der Supertyp ist derjenige Typ,
von welchem dieser StoragePool ableitet und ist dem Pool als ,SuperPool“ bekannt, wo-
bei dieser ebenfalls ein StoragePool ist. Ein StoragePool muss nicht unbedingt Instanzen
enthalten, sondern kann auch leer sein. In diesem Fall steht die Existenz des Pools dafiir,
dass der entsprechende Typ dem Zustand bereits bekannt ist. In einem StoragePool wird
zwischen so genannten ,statischen Daten“ und neuen Objekten unterschieden. ,statische
Daten® sind Instanzen, welche entweder aus einer Datei ausgelesen wurden oder nach
dem nachtriglichen Hinzufiigen bereits in eine Datei geschrieben wurden. Alle diese In-
stanzen besitzen eine eindeutige SkilllD und werden von der Funktion ,typeOrderltera-
tor, welche vom Access Objekt vorgeschrieben wird, in Form eines iterierbaren Objekts
zuriickgegeben. Diese Funktion erméglicht den Zugriff auf alle Instanzen dieses Typs,
wobei hier sowohl die statischen (bereits geschriebenen) Instanzen als auch die neuen
Instanzen erfasst werden. Dabei werden nicht nur die Instanzen dieses StoragePools,
sondern auch diejenigen seiner SubPools erfasst. Es gibt auch die Moglichkeit einzelne
Instanzen eines StoragePools abzurufen. Hierfiir benotigt man die SkilllD der gewiinsch-
ten Instanz und tbergibt diese der Funktion ,,getByID“, welche die zu der ID gehorende
Instanz zuriickgibt. Instanzen, welche neu hinzugefiigt werden sollen, werden zunéchst in
eine separate Liste gelegt und erhalten dort die SkillID -1. Dieser Wert identifiziert das

17

Pool von A a a b d d [c [+ [c

Instanzen 1 219|485 |6]|7]|8] 9|10
von A

Instanzen 3 4 5
von B

Instanzen a4 5
von D

Instanzen 6 7 8 9 10
von C

Abbildung 4: Instanzen von SubTypes eines BasePools
Quelle: [Ungl4, Kapitel 1.3.3, Abbildung 1.2]

Objekt als neu und wird beim Schreiben der Datei und damit verbundenem vergeben
der IDs geéndert.

2.2.9 BasePool

Ein BasePool ist eine den StoragePool erweiternde Klasse. Der BasePool soll die oberste
Ebene der Typ-Hierarchie darstellen. Eine Hauptfunktionalitat eines BasePools ist die so
genannte ,,compress-“ Funktion. Diese startet den Vorgang des Einfiigens neuer Instan-
zen zu den statischen Daten und ist folglich fester Bestandteil des Schreibvorganges bei
Zustdnden im Modus Write. Anschlielend wird durch diese Funktion eine Aktualisierung
aller SkilllDs gestartet, um potentielle Verschiebungen nach unten zu propagieren. Eine
Weitere wichtige Funktionalitdt des BasePools ist die ,prepareAppend“-Funktion. Diese
Funktion ist fiir das Hinzufiigen von neuen Instanzen optimiert und betrachtet aus Ef-
fizienzgriinden auch ausschlieflich neue Instanzen. Diese Funktion wird beim Schreiben
einer Datei, welche im Modus Append gedffnet wurde, aufgerufen. In dieser Funktion
werden folglich nur neue SkilllDs vergeben und nicht wie bei compress alle SkilllDs ak-
tualisiert.

Die Instanzen von Untertypen (SubPools) eines BasePool werden zusétzlich auch im Ba-
sePool gehalten. Das heifit einem BasePool ist zu jeder Zeit bekannt, welche Instanzen
sich unter ihm in der Typ-Hierarchie befinden. In der Abbildung[d]ist ein Beispiel hierfir
abgebildet. In dieser Abbildung sind die Instanzen A des BasePool A zu sehen sowie die
Instanzen von drei seiner Untertypen B, C und D. Dabei fallt auf, dass der BasePool A
auch die Instanzen der SubPools besitzt.

Die ,,compress“-Funktion Die Funktion ,compress® wird beim Schreiben von Zustén-
den im Modus Write verwendet. Diese Funktion durchlduft mithilfe des ,,typeOrderlte-
rator® alle statischen und neuen Instanzen. Dabei werden diese in ein neues Array gelegt,
welches die Grofle der beiden Listen besitzt. In diesem Zuge werden auch die SkilllDs al-

18

ler Instanzen (zum Teil) neu vergeben. Im Anschluss daran wird das bisherige Array der
Daten mit dem hierbei erstellten iiberschrieben. Im Gegenzug zu der ,prepareAppend*-
Funktion fiir Zustdnde im Modus Append ist diese Funktion etwas langsamer, macht
aber an sich aktuell noch das Gleiche, da die Funktionalitdt des Loschens in compress
noch nicht implementiert wurde.

Die ,,prepareAppend“-Funktion Die Funktion ,,prepareAppend*, welche beim Schrei-
ben von Zustdnden im Modus Append verwendet wird ist auf das Hinzufiigen neuer
Instanzen optimiert. Diese Funktion tberpriift ausschliellich das Vorhandensein neuer
Instanzen und figt diese entsprechend zu den statischen Daten hinzu. Hierbei wird zu-
néchst ein neues Array erstellt, welches der Gréfle der bisherigen Daten zuziiglich der
Anzahl neuer Instanzen entspricht. In dieses Array werden als erstes alle statischen Da-
ten eingefiigt. Im Anschluss daran wird nur iiber die Liste der neuen Instanzen iteriert
und diese nacheinander in das neue Array eingefiigt. Hierbei wird jeder Instanz eine
aufsteigende ID, beginnend bei der Grofie der bisherigen Liste der statischen Daten, zu-
gewiesen. Anschlieflend wird entsprechend die Aktualisierung der zum Schreiben nétigen
Daten durchgefiihrt. Auch hier werden alle Anderungen auch in den SubPools angepasst.
Dieser Umstand, dass die Aktualisierung nur fiir neue Instanzen durchgefithrt und nach
unten propagiert werden muss, bringt mehr Effizienz beim Hinzufiigen von Daten.

2.2.10 SubPool

Ein SubPool ist dhnlich wie der BasePool eine den StoragePool erweiternde Klasse.
Diese Klasse ist dazu da, dass Instanzen korrekt verwaltet werden. Damit ist gemeint,
dass jede Instanz welche in einem SubPool (unabhéngig von der Ebene) hinzugefiigt
wird auch im BasePool hinzugefiigt werden muss. Diese Funktionalitit iibernimmt der
SubPool, zusétzlich zu den Funktionen, welche er vom StoragePool erbt.

19

3 Verwaltung von Zustdanden

Zum jetzigen Zeitpunkt wird in der SKill.-Implementierung nur das Erstellen neuer In-
stanzen unterstiitzt. Hierbei wird eine neue Instanz eines bestimmten Typs generiert und
diese mit Standard-Werten belegt, welche dann anschlielend gedndert werden kénnen.
Die Implementierung unterstiitzt jedoch leider noch keine wirkliche Verwaltung von In-
stanzen. Das heifit, dass das aktuell keine Instanzen effizient und ohne grofien Aufwand
kopiert oder geloscht werden konnen. Auch die Suche nach einer Instanz in einem Zu-
stand ist nur sehr aufwendig moglich. Diese Funktionalitdten wurden in dieser Arbeit
untersucht und eingebaut und werden in den nachfolgenden Abschnitten beschrieben.
An dieser Stelle sei angemerkt, dass die Anderungen durch Verwaltungsaktionen in ei-
nem Zustand nicht in die urspriingliche Datei geschrieben werden miissen. Die Funktion
,changePath“ erméglicht das Speichern von Anderungen in andere Dateien, welche der
Nutzer selbst angeben kann.

3.1 Ziel der Verwaltung

Ziel der Verwaltung von Zusténden ist in erster Linie natiirlich das Léschen und Ko-
pieren von Instanzen, um Daten einfach und unkompliziert aus Zustédnden zu entfernen
oder von einem in den néachsten Zustand zu kopieren. Fiir das Loschen und Kopieren
ist es auch sinnvoll im voraus zu tberpriifen, ob eine Instanz mit dem selben Inhalt
nicht bereits vorhanden ist beziehungsweise dieses Vorhandensein der Instanz moglichst
schnell festzustellen. Hierfiir wird auch ein so genannter ,FElement-Operator” benotigt
der folglich ebenfalls Teil der Verwaltung ist. Wie in der Abbildung [5| zu sehen ist, ist
eine solche Funktionalitat bereits durchaus moglich, ist jedoch sehr aufwendig, da einige
Funktionen zum Schutze des Nutzers (wie zum Beispiel die HashMap ,,poolByName*)
diesem vorenthalten werden. Das heifit, dass das die fehlende Implementierung dieser
Funktionalitit auf Zustandsebene (und zum Teil auch auf Ebene der StoragePools), an
dieser Stelle eine manuelle Implementierung dessen durch den Nutzer notwendig macht.
Dies wiirde dann aber bedeuten, dass der Nutzer samtliche Listen und Inhalte durch-
suchen und vergleichen und hierfiir einen sehr hohen Aufwand aufbringen muss. Dieser
Umstand soll nun verbessert werden, indem dem Nutzer hierfiir Funktionen innerhalb
eines Zustandes bereitgestellt werden, welche von den Zustands-internen Funktionen Ge-
brauch machen, aber diese dem Nutzer nach wie vor nicht 6ffentlich zugénglich machen.

Den Nutzer vor sich selbst schiitzen Damit der Nutzer keinen all zu tiefen Einblick
in die Funktionsweise von SKill. bené6tigt, werden viele Funktionen und Eigenschaften
vor ihm verborgen. Diese laufen ,im Hintergrund“ ab und der Nutzer muss sich nicht
mit ihnen befassen. Diese Herangehensweise wird in dieser Arbeit, soweit moglich, fort-
gesetzt und dient auch dem Schutz des Nutzers. Denn die unsachgeméfie Verwendung
oder Verdnderung dieser Elemente konnte Daten und Zustédnde unbrauchbar machen.
Aus diesem Grund werden aktuelle und sinnvolle Sachverhalte erértert um dadurch ein
klares Verhalten zu ermoglichen und Fehlerquellen so gut wie moglich einzuddmmen.
Ein Beispiel wére hier die Manipulation der HashMap ,,poolByName*, deren Verdnde-

20

Persistenter

Read Instanz € Zustand? Read
Dateit.sf Zustand 1 [«———— Losche Instanz ————»|Zustand 2 Datei2.sf
Flige Instanz hinzu

h J h J

Collection<Access<T>> | Selber Typ? ,| Collection<Access<T>>
Access 1 (Collection<T> Access 1 (Collection<T>
Access 2 (Collection<T=) Access 2 (Collection<T=)
Access 3 (Collection<T>)

¥

Collection<SkillObject> | InStanzvorhanden? | collection<SkillObject>
Instanz 1 Instanz 1
Instanz 2 Instanz 2
Instanz 3 Instanz 3
Instanz 4

Abbildung 5: Ziel der Verwaltung

rung ohne Anpassung aller damit verbundener Abhéngigkeiten (beispielsweise Typen
Erstellung) unnéotig Fehler entstehen lassen konnte. Dieses Vorhaben impliziert, dass die
Moglichkeit, dass ein Nutzer in dieser Hinsicht eigene Entscheidungen trifft, auf einem
Minimum gehalten werden.

3.2 Kritische Stellen der Verwaltung

Die Verwaltung von Zusténden bringt einige kritische Stellen mit sich, welche beachtet
werden miissen. Besonders im Hinblick auf Effizienz ist es sehr ratsam, diese Stellen
zu betrachten und sich genau zu iberlegen, wie man mit diesen umgeht. Aus diesem
Grund werden im folgenden Abschnitt die relevanten Stellen angesprochen und erklart.
Die Losung dieser Probleme wird in den jeweiligen Abschnitten der ,,Umsetzung der
Verwaltung erklart und besprochen.

3.2.1 Suchen einer Instanz

Effiziente Suche Fiir das Suchen einer Instanz kann man naiv sémtliche Listen durch-
suchen und deren Inhalte Vergleichen. Fiir eine effizientere Suche nach Instanzen wére es
jedoch wiinschenswert, wenn man diesen Aufwand vermeidet. Zusténde bieten hier eine
interne Funktion an, welche einen Typ (StoragePool) iiber seinen Namen sucht. Hier-
fir wird eine HashMap verwendet, bei welcher das Wiederfinden der Werte nur iiber

21

Schliissel sehr effizient moglich ist. [Ull10, Kapitel 13.8.2, Absatz 1] Hat man den zu
der Instanz zugehorigen Typ gefunden, kann man in diesem priifen, ob eine Instanz mit
den selben Werten bereits existiert. Auch hier ist die selbe naive Suche moglich. Doch
jede Instanz besitzt eine SkilllD, welche sie eindeutig identifiziert und ein StoragePool
ist in der Lage eine Instanz iiber ihre ID schnell zu finden. Denn die SkillID steht unter
Anderem fiir den Index im Array der statischen Daten. An dieser Stelle stellt man je-
doch zunéchst fest, dass SkilllDs nur im jeweiligen Typ eines Zustandes eindeutig und
einzigartig sind. SkilllDs werden in einem anderen Typ des selben Zustands bekanntlich
unabhéingig voneinander aufsteigend vergeben. Selbiges gilt natiirlich Zustands tibergrei-
fend. Die effiziente Suche nach Instanzen tiber deren SkillID stellt an dieser Stelle folglich
noch ein Problem dar.

3.2.2 Loschen einer Instanz

Das Loschen einer Instanz, welches ein vorheriges Uberpriifen der Existenz einer Instanz
voraussetzt, hat auch ein paar kleinere Hindernisse im Bezug auf die Umsetzung. Die
wichtigsten zwei werden nachfolgend kurz beschrieben.

Verschiebung der Blocke Auch beim Loéschen von Instanzen gibt es einige Dinge zu
beachten. Das Loschen einer Instanz hat zur Folge, dass durch die geléschte Instanz eine
Verschiebung der Blocke innerhalb einer Datei entsteht sobald dieses Loschen abgespei-
chert wird. Diese Verschiebung fiihrt beim schreiben aber zunéchst zu einem Fehler, da
die fehlende Instanz in den Chunks der Felder zum jetzigen Zeitpunkt nicht angepasst
wird und folglich am Ende eine Instanz an einer Stelle erwartet wird, an welcher es keine
mehr geben kann.

Existenz der zu loschenden Instanz Beim Loschen einer Instanz stellt sich zunéchst
die Frage, existiert diese iiberhaupt? Nun wurde im Abschnitt {iber die Suche nach In-
stanzen festgestellt, dass eine effiziente Suche nach Instanzen aktuell nicht moglich ist.
Aus Effizienzgriinden méchte man aber nicht bei jedem loschen mehrere Male tiberprii-
fen miissen, ob ein angesteuerter Typ oder eines der Felder nicht vielleicht ins Leere
zeigt oder andere Fehlerquellen mit sich bringt. Dies fiihrt zu dem Schluss, dass im Zuge
des Loschens zunéchst iiber die HashMap des Zustands die Existenz des Typs und an-
schlieflend in diesem die Existenz der Instanz sichergestellt werden soll um den Vorgang
im Anderen Fall (fehlerfrei) abbrechen zu kénnen. Damit verbunden unterliegt also das
Loschen von Instanzen den gleichen Voraussetzung wie die Suche nach selbigen.

3.2.3 Kopieren einer Instanz

Existenz der Typen Das Hauptproblem beim Kopieren von Instanzen ist die Existenz
der Typen. Da ein Zustand mithilfe einer bestimmten Spezifikation eingelesen wird,
kennt dieser Zustand nur diejenigen Typen, welche in der Spezifikation vorhanden sind.
Mochte man nun also Instanzen eines Typs einer anderen Spezifikation zu einem Zustand
hinzufiigen, muss man in dem Zielzustand zunéchst den Typ bekannt machen.

22

3.3 Umsetzung der Verwaltung

Die allgemeine Umsetzung der Funktionalititen hat sich als sehr Komplex herausge-
stellt. Das Arbeiten mit Typen und Instanzen erweist sich als recht schwer, da zum
Beispiel auch eine Zustands unabhéngige Erstellung und Handhabung dieser denkbar
ware, auch wenn dies zum aktuellen Zeitpunkt noch nicht unterstiitzt wird. Unabhén-
gig hiervon gibt es viele Kriterien, welche beachtet und erfiillt sein wollen, wenn man
mit Typen und ihren Instanzen arbeitet. Man muss beispielsweise im Falle des nicht
Vorhandenseins eines Typs in einem Zustand diesen dort ,erstellen” oder diesen bei Be-
darf aus einer Spezifikation nachladen. Nun werden Zustdnde und die darin enthaltenen
Typen aber zundchst anhand ihrer Spezifikation erstellt, welche dem neuen Zustand
nicht vorliegt. Hier wire dann Zugriff auf die Spezifikation des aufrufenden Zustands
notwendig, wodurch erneuter Aufwand und weitere Hindernisse entstehen. Man koénnte
nun den Typ (als StoragePool im Ganzen) in den neuen Zustand kopieren und hier all
diejenigen Informationen (oder Instanzen) heraus nehmen, welche nicht kopiert werden
sollen. Solche Informationen kénnen zum Beispiel Restriktionen sein, welche einen Wert
in einen bestimmten Bereich einschrénken. Ein solcher Vorgang bringt abgesehen von
hohem Aufwand aber auch viele fehleranféllige Dinge mit sich wie zum Beispiel die Not-
wendigkeit, dass der Verweis auf den Besitzer eines Pools gedndert werden muss. Dies
muss natiirlich auf alle Super- und SubPools propagiert werden. Im Zielzustand selber
muss die Liste der vorhanden Typen aktualisiert werden ebenso wie die damit zusam-
menhéngende HashMap erweitert werden muss um Pools durch ihren Namen effizient
abfragen zu kénnen. Zusétzlich miissen neue Felder in den Zustand {ibertragen, sowie die
Namen dieser in den StringPool eingetragen werden. Hierbei ist es ohne die Spezifikati-
on sehr aufwendig und fehleranfillig die notwendigen Informationen zusammenzutragen
und an den korrekten Stellen einzufiigen. Bei alle dem sollte man darauf achten, dass auf-
grund des Arbeitens mit Referenzen keine Fehler im urspriinglichen Zustand entstehen
und der Zustand hierdurch unbrauchbar wird. Dabei stellt sich dann die Frage, ob man
entsprechende Typen (oder gar Zustdnde) in Form einer ,deepcopy“ kopieren soll. All
diese Uberlegungen und die damit verbundenen Hindernisse und Bedingungen sprengen
den Rahmen dieser Arbeit. Aus diesem Grund wurde die Umsetzung der Verwaltung
basierend auf bestimmten Annahmen durchgefiihrt, um die gewtlinschte Funktionalitét
zunédchst auf ,simplerer Ebene“ umzusetzen und hierauf anschliefend aufzubauen. Den
einfachsten Fall bilden bei der Verwaltung von Typen die jeweiligen Namen dieser.

3.3.1 Annahmen

Gleichheit von Typen Alle Zustidnde, mit welchen im folgenden gearbeitet wird, sind
aus ein und der selben Spezifikation entstanden. Jeder Zustand kennt folglich jeden Typ
und alle gleichnamigen Typen sind auch gleich!

Keine unbekannten Typen Da nur mit einer einzigen Spezifikation gearbeitet wird,
gibt es in keinem der Zusténde Typen, welche einem anderen Zustand unbekannt sind.

23

Keine Instanz ohne Zustand Es wird davon ausgegangen, dass zum jetzigen Zeitpunkt
keine Instanzen ohne Zustand existieren.

3.3.2 Unifikation von Zustianden

Da fiir die Effizienz der nachfolgenden Aktionen die Zugriffe iiber SkilllDs Zustands
iibergreifend moglich und die IDs hierfiir einzigartig sein miissen gilt es zunéchst diese
Eigenschaft sicherzustellen. Aus diesem Grund wird die Durchfiihrung einer Unifikation
zweler Zustinde zuerst beschrieben. Zu Beginn sei an dieser Stelle kurz angemerkt, dass
sich die Unifikation nicht mit Restriktionen von Typen auseinandersetzt, da dies auf-
grund der Annahme, dass alle Typen bekannt sind und gleichnamige Typen dquivalent
sind, nicht n6tig ist. Um nun die Zugriffe iiber SkilllDs Zustands iibergreifend zu ermog-
lichen, werden zwei Zusténde so wie ihre Inhalte unifiziert. Dies bedeutet jedoch, dass in
einem der beiden Zustidnde Daten verdndert werden miissen, sofern es sich nicht um ein
und denselben Zustand handelt. Diese Verdnderung hat zur Folge, dass in demjenigen
Zustand, in welchem etwas verandert wurde, Inkonsistenzen auftreten, welche bestimmte
Funktionalitdten fehleranfillig machen.

Zerstorung eines Zustands Bei einer Unifikation wird durch die Zerstérung des iiber-
gebenen Zustands in Kauf genommen, dass seine SkilllDs verdndert werden, um die Ver-
gleichbarkeit mit dem anderen Zustand zu erméglichen. Dies hat zur Folge, dass in diesem
zerstorten Zustand keine Instanzen iiber die ,,getByID“-Funktion gefunden werden kon-
nen. Dieser Umstand wirkt sich auch auf den spéater beschriebenen , Element-Operator®
und folglich auch die Funktionalitdt des Hinzufiigens und Loschens von Instanzen aus.

Aufgrund der Tatsache, dass eine Unifikation von jeglicher Verwaltungsaktion erwartet
wird und vor dieser notwendig ist, wird an dieser Stelle natiirlich auch die Effizienz bei
der Unifikation in den Vordergrund gestellt. Aus diesem Grund wurde beschlossen auf
einer Referenz des Zustands zu arbeiten, weil dies natiirlich wesentlich schneller ist als
zuvor eine ,,deepcopy* dessen zu erstellen. Hierbei wird bei der Unifikation zwangsweise
in einem der Zustidnde etwas geéndert (in diesem Fall in Form von geénderten SkilllDs).
Sobald jedoch eine SkilllD geéndert wurde, lauft man Gefahr, dass ein Zugriff mit dieser
auf die vermeintliche Instanz in einen Fehler miindet, da die SkillID bei einer Unifikation
zum einen hoher werden kann, als tatsdchlich Instanzen in dem Zustand vorhanden sind
und zum anderen diese Instanz mit der neuen ID nicht mehr findet. Dies wiirde also ent-
weder zu einem ,IndexOutOufBounds®“ Fehler fithren, da die Liste der Instanzen nicht
so lang ist oder es konnte woméglich auch zum Abrufen einer anderen (nicht gewollten)
Instanz fithren. Aus diesem Grund wurde festgelegt, dass ein neuer Modus fiir Zusténde
eingefiihrt wird, welcher einen Zustand als ,,Destroyed* markiert. Diese Markierung hat
zur Folge, dass die ,,getByID“-Funktion dieses Zustands prinzipiell ,null“ zurtickgibt,
da sie unter der SkillID ihrer Instanzen mdoglicherweise nicht mehr die korrekte Instanz
finden oder damit gar auf Indizes zugreifen kénnte, welche nicht existieren. Da aber das
Schreiben eines Zustandes keinen Gebrauch dieser Funktion macht, ist dies nach wie
vor zuldssig. Denn die IDs aller Instanzen werden beim Schreiben ohne hin aufsteigend
und unabhéngig von den bisherigen IDs (neu) vergeben, solange sich der Zustand nicht

24

im ,,Append“-Modus befindet. Da aber ein nachtrigliches wechseln zu diesem Modus in
keinem Falle zuléssig ist, kann man hier per Definition davon ausgehen, dass bei einem
zerstorten Zustand immer die Funktionalitdt des ,,Write“-Modus verwendet wird und
somit IDs unabhéngig von den alten aufsteigend vergeben werden.

Zuweisung (neuer) SkilllDs Die Zuweisung neuer SkilllDs bei der Unifikation orien-
tiert sich an der Zuweisung von SkilllDs der SKilL-Implementierung selbst. Diese erfolgt
aufsteigend, ausgehend von der letzten (giltigen) SkillID. Dabei wird die hochste ver-
gebene SkillID der Instanzen eines internen Typs als letzte giiltige SkilllD verwendet.
Aus diesem Grund wird wiahrend der Unifikation eben jene SkilllD iiber die Grofie der
Liste der statischen Daten des internen Typs ermittelt und die SkilllDs der externen In-
stanzen werden davon ausgehend inkrementiert. Grund hierfiir ist, dass der aufgerufene
Zustand nicht verdndert werden darf und dieser somit nur als Vergleichsobjekt dienen
kann. Folglich ist es zwingend notwendig, dass ausschliellich die SkilllDs der externen
Instanzen veréndert werden.

Das Unifikationsverfahren Zunéchst wird die Funktion , UnifyStates® eines Zustands
aufgerufen, welcher ein weiterer Zustand iibergeben werden muss. Diese Funktion leitet
nun die Unifikation der Zustinde ein, wobei der iibergebene Zustand als zerstért mar-
kiert wird. Der iibergebene Zustand wird im weiteren Verlauf dieser Beschreibung als
sexterner Zustand“ bezeichnet. Als erstes wird tiber die Typen (StoragePools) des exter-
nen Zustands iteriert. Bei jeder Iteration wird der aktuelle Typ des externen Zustands
mit dem aquivalenten Typ des ausfithrenden Zustands unifiziert. Hierfir wird der ent-
sprechende Typ durch die Nutzung der ,,poolByName“ HashMap, in welcher nach dem
Namen des Typs des externen Zustands gesucht wird, abgefragt. Aufgrund der Annah-
me, dass es keine unbekannten Typen gibt ist eine Priifung auf einen Zeiger ins Leere an
dieser Stelle (noch) nicht notig. Nun wird als erstes die néchste zu vergebende SkillID
ermittelt indem die size-Funktion der Liste der statischen Daten des Typs aus dem auf-
rufendem Zustand aufgerufen wird. Sollte hierbei festgestellt werden, dass der interne
Typ keine statischen Instanzen beinhaltet, wird an dieser Stelle bereits abgebrochen, da
keine Unifikation dieses Typs notwendig sein kann. Im Anschluss wird auch der externe
Typ auf das Vorhandensein von statischen Instanzen iiberpriift und sollte dies hier nicht
der Fall sein, kann an dieser Stelle ebenfalls abgebrochen werden. Falls es nicht zum
Abbruch kommt, wird zunéchst Uber alle statischen Instanzen des externen Typs und
innerhalb dieser Iteration iiber diejenigen des internen Typs iteriert. Diese ineinander
geschachtelte Schleife ist notwendig, da man zum einen iiberpriifen muss, ob es inhaltlich
identische Instanzen in den beiden Typen gibt, deren SkilllDs sich unterscheiden und
folglich auf die selbe ID gesetzt werden miissen. Zum Anderen muss man sicherstellen,
dass eine neue SkilllD nur dann vergeben wird, wenn fiir eine Instanz des externen Typs
tatséchlich keine inhaltlich identische im internen Typ existiert. Daher ist es unvermeid-
bar, dass an dieser Stelle jede Instanz mit jeder verglichen wird. Die einzige Ausnahme
ist, dass (frithzeitig) eine identische Instanz gefunden wird, wodurch die innere Schleife
abgebrochen werden kann.

25

nstanzwerte |

Felder des Typs / / Gibtes noch ja
abfragen weitere Felder_y%ése néchstes Feld
nein

Feld gleich?
T =1

Suche nach
Typ
Ende

Inhalt identisch

Inhalt nicht identisch

Abbildung 6: Vergleich zweier Instanzen (vereinfachter Ablauf)

Der inhaltliche Vergleich zweier Instanzen erfolgt iiber einen Aufruf einer Funktion,
welche explizit fiir den Vergleich von Feldern zweier Instanzen existiert und rekursiv im-
plementiert ist. In dieser Funktion werden die Werte der Instanzen fiir alle Felder ihres
Typs abgerufen und verglichen. Sollten die Werte hier nicht iibereinstimmen, stellt sich
die Frage nach dem FieldType, mit welchem der Wert abgerufen wurde. Genauer gesagt
ist die vom FieldType instantiierte Klasse relevant. Wird vom Field Type die selbe Klasse
(zum Beispiel eine Java-Klasse wie ,long®) instantiiert, dann liegen hier simple Typen
vor, welche nicht den selben Wert haben. In diesem Fall wird der Vergleich abgebrochen
und es kann zum Vergleich der nédchsten Instanzen weiter gegangen werden. Andernfalls
kann es sich an dieser Stelle um Komplexe Typen handeln deren Inhalt nicht ohne Wei-
teres liber die ,equals® Funktion getestet werden kann. Aus diesem Grund erfolgt nun
ein Vergleich der FieldTypes, welche hier représentiert werden. Kommt dieser Vergleich
zu dem Schluss, dass es sich nicht um die selben Klassen handelt, wird auch hier der Ver-
gleich abgebrochen und zum néchsten Vergleich fortgeschritten. Liegen jedoch die selben
(komplexen) Klassen vor, erfolgt an dieser Stelle die Abfrage nach dem entsprechenden
StoragePool und ein rekursiver Aufruf, welcher nun die Inhalte der gefundenen Instanzen
des gefundenen komplexen Typs mit den Werten der Felder dieses Typs abgleicht. Diese
Rekursivitdt wird fortgefithrt, bis entweder die erhaltenen Werte der Instanzen fiir alle
Felder gleich sind oder es sich bei allen Feldern um Java-Klassen handelt, deren Werte
nicht alle gleich sind. Im ersten Fall wird der Vorgang beendet mit der Feststellung, dass
die SkillID der externen Instanz gleich der ID der internen Instanz gesetzt werden muss,
da es sich um inhaltlich gleiche Instanzen handelt. Im zweiten Fall hingegen wird eine
Anpassung der SkillID der externen Instanz durchgefiihrt, indem sie die néchste verfiig-
bare (also im internen Typ noch nicht vergebene) ID erhélt. Durch diese Rekursivitat
wird sichergestellt, dass alle Untertypen der zu vergleichenden Instanz ebenfalls korrekt
verglichen werden und somit in den ,Gesamtvergleich“ der Instanzen einfliefit. Dieser
Ablauf des Vergleichens von Instanzen wird in Abbildung [6] vereinfacht illustriert. Nach-
dem alle Instanzen eines Typs verglichen wurden sind deren SkilllDs anschliefend in
den beiden unifizierten Zustinden in den jeweiligen Typen einzigartig. Eine Anderung
der SkillID im externen Typ bleibt nur genau dann aus, wenn zwei Instanzen sowohl
inhaltlich als auch im Bezug auf ihre SkillID gleich sind.

26

3.3.3 Element-Operator fiir Instanzen

Die Funktionalitdt des Suchens nach Instanzen wird {iber eine Funktion realisiert, wel-
che ein SkillObject (Instanz) entgegen nimmt und nach dieser in demjenigen Zustand
sucht, in welchem sie aufgerufen wurde. Das Ergebnis dieser Funktion ist ein Wert des
Typs java.lang.long. Dies hat den Hintergrund, dass mit der Riickgabe eines Wertes,
welcher nicht ,null“ ist, auch gleich die SkilllD der Instanz in dem entsprechenden Typ
zuriickgegeben wird. Dabei entspricht eine SkillID gleich -1 einer neuen (noch nicht ge-
schriebenen) Instanz und eine ID gleich 0 einer beim néchsten schreiben zu léschenden
Instanz. Alle Werte echt gréBer O stellen diejenige ID dar, unter welcher die Instanz
in dem Zustand zu finden ist. Im Falle, dass die Instanz nicht gefunden werden kann
wird wie bereits erwahnt ,null“ zuriickgegeben. Fiir den Element-Operator ist im voraus
eine Unifikation der zwei betroffenen Zustinde durchzufiithren. Dabei wird in dem zu
durchsuchenden Zustand die entsprechende Funktion aufgerufen, welche den Zustand,
aus welchem die zu suchenden Instanzen kommen, iibergeben bekommt. An dieser Stel-
le sei angemerkt, dass der Element-Operator in als ,,Destroyed“ markierten Zusténden
nicht korrekt funktionieren kann, da hier die Zugriffe iiber SkilllDs nicht fehlerfrei mog-
lich sind. Aus diesem Grund ist das Ergebnis einer Abfrage in einem zerstérten Zustand
per Definition ,null®

Bei der zu findenden Instanz muss es sich um eine Klasse handeln, welche die SKill.-
Klasse SkillObject erweitert. Zundchst wird nach einem der Instanz entsprechenden Typ
in Form eines StoragePools gesucht. Um diesen zu finden, wird die HashMap ,,poolByNa-
me* verwendet, welche nun den Namen der Klasse der Instanz entgegen nimmt. Um den
genauen Namen zu erhalten, wird zunéchst die ,,getClass“-Methode der Instanz aufge-
rufen. Das hierdurch erhaltene Java-Class-Object stellt nun verschiedene Funktionen zur
Verfiigung, welche genauere Details der hier genutzten Klasse preis geben. Fiir die Suche
nach dem entsprechenden Typ ist die Funktion ,, getSimpleName* interessant, welche wie
der Name schon andeutet, schlicht den Namen der Klasse zuriickgibt. Da Namen von
Typen in SKilL prinzipiell in Kleinbuchstaben vorliegen, muss nun auf den erhaltenen
String noch eine Konvertierung in Kleinbuchstaben erfolgen. Nun hat man den Namen
des Typs wie er in dem Zustand (sofern er dort vorhanden ist) zu finden ist. An dieser
Stelle wurde bewusst auf das explizite Ubergeben des Namen des Typs verzichtet, da
fiir SKiIL auch geplant ist, dass Instanzen unabhéngig von Zustdnden existieren kénnen
wodurch diese ihren Typ nur auf die oben beschriebene Weise preisgeben kénnen. Im
Anschluss daran wird iiberpriift, ob ein dem Typ der Instanz entsprechender Storage-
Pool im Zustand gefunden wurde. Ist dies nicht der Fall, so gibt die Funktion ,null“
zuriick. Andernfalls wird die Suche nach der Instanz in dem gefundenen StoragePool
fortgesetzt. Fiir die Suche im StoragePool wurde die von der Java-Collection geerbte
ycontains“~-Funktion implementiert und wird ihrem Zweck entsprechend genutzt. Diese
iiberpriift zunéchst, ob es sich bei dem iibergebenen Objekt um ein SkillObject handelt.
Diese Uberpriifung ist an dieser Stelle notwendig, da die contains-Funktion zunichst
einen Parameter vom Typ ,,Object“ entgegen nimmt. Dies ist bei der Vererbung so vor-
gegeben. Da diese Funktion aber {iberall dort verwendet werden kann, wo StoragePools
verwendet werden, muss vor einer Konvertierung (in Form eines Casts) sichergestellt

27

nein Vergleiche
poolByName getBylD Typ gefunden? Instanzenhalt mit
neuen Instanzen

Instanz vorhanden ja In neuen
Ende < + Instanzen

gefunden?

Instanz nicht vorhanden

Abbildung 7: Element-Operator (vereinfachter Ablauf)

werden, dass der erwartete Typ libergeben wurde. Ist dies nicht der Fall, so wird an die-
ser Stelle ,false” zuriickgegeben, ansonsten erfolgt eine entsprechende Konvertierung. Im
Anschluss daran wird entschieden, ob nach der Instanz in den statischen Daten oder den
neuen Daten gesucht werden muss, wofiir die SkilllD zur Hand genommen wird. Sollte
sich die Instanz innerhalb der statischen Daten befinden, so darf die SkilllD zum einen
nicht gleich -1 sein und zum anderen nicht grofler als die Grofle der Liste der statischen
Daten. Denn die SkilllD dient bekanntlich zugleich als Index in der Liste. Befindet sich
die ID also im Bereich zwischen 0 und der GroBe der Liste, so kann die Existenz (oder
nicht Existenz) der Instanz durch die Funktion , getByID* nachgewiesen werden. Hierbei
gilt zu beachten, dass diese Funktion nach einer Unifikation in dem Zustand, welcher
zerstort wurde, per Definition ,null zuriickgibt. Sind die aufgefiihrten Kriterien nicht
erfiillt, so muss die Instanz in den neuen Daten gesucht werden. Fiir die Effizienz der
suche nach Instanzen in den statischen Daten wird sich hier zu nutze gemacht, dass das
SKilL-Binding Arrays und HashMaps nutzt. Diese bieten schnelle get-Operationen und
werden in der ,, getByID-“ und der ,,poolByName-“ Funktion genutzt. [Prz14, Kapitel 9,
Absatz 1]

Suche in neuen Daten Die Suche nach einer Instanz in neuen Daten ist etwas auf-
wendiger, da hier nicht einfach die SkilllD verwendet werden kann, denn hier sind alle
SkilllDs gleich -1. Aus diesem Grund miissen an dieser Stelle die Werte der einzelnen
Felder der Instanzen verglichen werden. Dies wird tiber eine Iteration iiber die Felder
des Typs und des entsprechenden Vergleichs der Werte der Instanzen in diesen realisiert.
Dabei wird das Feld fiir die SkilllD bewusst iibersprungen, da dieses ohne hin gleich
-1 ist. Fiir alle anderen Felder wird als erstes der Wert verglichen und im Falle, dass
dieser nicht gleich ist, erfolgt eine Uberpriifung, ob es sich hierbei bereits um simple Ty-
pen handelt. Sofern es sich um simple Typen (also im Prinzip um Java-Typen wie zum
Beispiel ,long“ handelt, kann an dieser Stelle abgebrochen werden mit dem Ergebnis,
dass es sich nicht um die selben Instanzen handelt. Handelt es sich jedoch um komplexe
Typen, so miissen diese Rekursiv ebenfalls verglichen werden, denn der Vergleich iiber
equals® schlagt an dieser Stelle fehl. Grund dafir ist, dass die native ,,equals“-Funktion

28

die Représentation des Objekts vergleicht, welche im Fall von Komplexen Typen aus
dem Namen und Hashcode besteht. Diese Rekursion wird durch eine Suche nach einem
zugehorigen Typ (StoragePool), dhnlich wie die Suche nach der Instanz begonnen hat,
durchgefiihrt. Hierbei wird ausgenutzt, dass jeder StoragePool seinen Zustand, in wel-
chem er sich befindet, kennt. Denn auf diese Weise kann auch hier auf die HashMap
des Zustands zuriickgegriffen und in dieser nach dem hier gefundenen komplexen Typ
gesucht werden. Kann dieser nicht gefunden werden, wird die Suche nach der Instanz
flir gescheitert erklart. Sofern der komplexe Typ gefunden werden konnte, wird schlicht
die contains-Funktion dessen fiir den Vergleich des Inhalts der Instanzen verwendet, wel-
che zu diesem komplexen Typ gehoren. Diese Rekursion wird solange fortgefiihrt, wie
komplexe Typen in den Instanzen gefunden werden. Da die Blatter jeder Typ-Hierarchie
in dieser Java-Implementierung ihre Werte tiber das Java Typ System représentieren,
kommt diese Rekursion immer zum Ende.

3.3.4 Loschen von Instanzen

Ein wesentlicher Bestandteil der Verwaltung von Zusténden ist das Loschen von Instan-
zen in diesen. Die Grundidee fiir das Loschen von Instanzen war schon immer, dass
die SkillID dieser auf 0 gesetzt und hierdurch beim Schreiben in eine Datei nicht mehr
beriicksichtigt wird. Im wesentlichen fehlte die Realisierung des Ignorieren der Instanz
beim Schreiben der Datei. Aus diesem Grund wird nun zunéchst beschrieben, wie die zu
l6schende Instanz gefunden und als solche markiert werden kann. Im Anschluss daran
wird die ndtige Anpassung beim Schreiben der Datei erklart.

Die Anderungen durch das Loschen von Instanzen in einem Zustand miissen nicht zwin-
gend in die urspriingliche Datei, aus welcher der Zustand entstanden ist, geschrieben
werden. Uber die ,changePath“-Funktion kann eine andere (gegebenenfalls neue) Ziel-
datei angegeben werden, in welche die Anderungen geschrieben werden sollen.

Markieren einer Instanz Das Loschen einer Instanz durch Aufruf der entsprechenden
Funktion in einem Zustand funktioniert zunéchst dhnlich wie der Element-Operator.
Das heif3t, dass auch hier eine vorherige Unifikation der betroffenen Zusténde nach dem
bekannten Prinzip erforderlich ist. Abbildung [§ stellt den Ablauf des Loschens einer
Instanz, wie er im folgenden beschrieben wird, vereinfacht dar. Es wird anhand der von
SkillObject abgeleiteten Klasse nach dem Typ in Form eines StoragePools gesucht. Sollte
ein solcher nicht gefunden werden konnen, schlagt das Loschen an dieser Stelle fehl und
gibt ,false* zuriick. Da jedoch laut der aktuellen Annahme alle Typen bekannt sind,
wird dieser Aufruf nie mit leeren Hénden enden, weshalb in Abbildung [§| dies auch nicht
weiter ausgefithrt wurde. Im anderen Fall wird die von der Java-Collection geerbte und
aus diesem Grund selbst implementierte Funktion ,,remove” des StoragePools aufgerufen.
Auch hier muss aufgrund der Tatsache, dass die vererbte Funktion ein Objekt des Typs
»java.lang.object® erwartet zunichst eine Uberpriifung der instantiierten Klasse erfolgen.
Sollte diese fehlschlagen, wird der Vorgang mit der Riickgabe von ,false“ abgebrochen.
Andernfalls erfolgt auch hier ein Cast zu SkillObject um mit dessen SkilllD nun iiber
die ,,getByID*“-Funktion an diejenige Instanz zu kommen, welche gel6scht werden soll.

29

poolByName getBylD

Instanz

Endo « gefunden?

nein

setze SkillD
auf 0

Abbildung 8: Loschen einer Instanz (vereinfachter Ablauf)

Sollte diese nicht existieren, erfolgt die Riickgabe ,false“ und andernfalls wird die ID der
erhaltenen Instanz auf 0 gesetzt und ,true* zuriickgegeben. Auch hier gilt zu beachten,
dass diese Funktion in zerstorten Zustdnden nie eine Instanz finden kann.

Loschen der markierten Instanzen Beim Schreiben einer Datei wird fiir jeden BasePool
des Zustands dessen ,,compress“-Funktion aufgerufen. Diese ist bisher dafiir zustdndig
gewesen, neue Instanzen in die Liste der statischen Daten einzufiigen und hierbei die
entsprechenden SkilllDs zu aktualisieren. Da diese Funktion beim Schreiben eines Typs
immer aufgerufen wird, ist sie der optimale Ort um hier die zu 16schenden Instanzen zu
entfernen beziehungsweise zu ignorieren.

Zunichst wird also zu Beginn des ,,compress® Vorganges iiber die Liste der statischen
Daten (von vorne nach hinten) iteriert und alle Instanzen mit einer SkillID gleich 0
entfernt werden. Dies wird dadurch bewerkstelligt, dass die Liste durchlaufen wird und
parallel dazu eine Variable fiir den Index, unabhéngig von dem Durchlauf, erstellt wird,
welche bei 0 startet. Bei denjenigen Elementen, deren SkillID nicht gleich 0 ist, wird nun
besagtes Element an der Stelle des Indexes in die Liste der statischen Daten eingefiigt
und das dort befindliche Element iiberschrieben. Nach diesem Uberschreiben eines Ele-
ments wird der Index um 1 erhoht. Folglich wird im Falle, dass kein Element gel6scht
wird, jedes Element mit sich selbst iiberschrieben. Andernfalls verschieben sich nach je-
dem gefundenen zu l6schenden Element alle nachfolgenden Elemente um eine Weitere
Stelle nach vorne. Im Anschluss an eine potentielle Verschiebung miissen nun natiirlich
noch die tiberfliissigen (beziehungsweise nun unter Umsténden doppelt vorkommenden)
Instanzen entfernt werden. Auch hierfiir dient der Index, welcher zuvor mitgefiithrt wur-
de. Ist dieser namlich echt kleiner als die Gréfle der Liste der statischen Daten, so miissen
alle Elemente ab diesem Index geloscht werden. Es wird also folglich solange das Element
an der Stelle des Indexes geloscht, bis die Gréfle der Liste nicht mehr echt Grofler als
der Index ist.

30

Im Falle, dass Elemente geloscht wurden, miissen nun noch die Chunks der Felder dieses
Typs angepasst werden, denn diese besitzen noch die Information, dass keine Instanzen
geloscht wurden und erwarten entsprechend mehr zu schreibende Instanzen als davon
existieren. Hierfiir wird tuber die Liste der Felder des Typs iteriert und fiir jedes Feld
ein neuer Chunk erstellt, welcher die aktuelle Anzahl an Instanzen kennt. Alle ande-
ren Informationen eines Chunks kénnen an dieser Stelle von dem letzten vorhandenen
Chunk {ibernommen werden, da diese spéter abhiingig von der Anzahl der Instanzen neu
berechnet werden. Aus diesem Grund muss an dieser Stelle nur die Anzahl der Instanzen
aktualisiert werden.

Aktualisierung der SkilllDs Nachdem nun die zu l6schenden Instanzen entfernt und
entsprechende Daten aktualisiert wurden miissen nun noch die SkilllDs der verbleiben-
den Instanzen aktualisiert werden. Grund dafiir ist, dass sich durch das Loschen unter
Umstédnden Liicken bei den IDs gebildet haben, welche nun entsprechend angepasst wer-
den miissen. Dies wird {iber die restliche (unverdnderte) Funktionalitit der ,compress“-
Funktion erledigt, da diese nun Mithilfe des ,typeOrderlterator” alle statischen und
neuen Instanzen durchlauft und ihnen neue (aufsteigende) IDs zuweist. Der Umstand,
dass nur die ,,compress“-Funktion zum jetzigen Zeitpunkt beim aktualisieren der IDs alle
Instanzen aktualisiert setzt den Modus Write bei jeder Loschung von Instanzen voraus!
Das Loéschen von Instanzen auch fiir den Modus Append zu ermoglichen ist nicht sehr
ratsam. Grund dafiir ist, dass man die Optimierung des Hinzufiigens neuer Instanzen
dabei kaputt machen miisste, da man durch das Loschen gezwungener Maflen alle In-
stanzen anschauen muss. Wiirde man beim Loschen nicht alle Instanzen anschauen und
entsprechend aktualisieren konnten Liicken in den SkillIDs und somit Inkonsistenzen und
Fehler entstehen. Sollte man jedoch beim Offnen eines Zustandes bereits entschieden ha-
ben nur neue Instanzen hinzuzufiigen, stellt Append eine deutlich effizientere Variante
dar.

»Dangling references” Unter einer dangling reference (oder auch dangling pointer)
versteht man eine Referenz (Zeiger) auf ein Objekt, welches nicht mehr verwendet wird
und somit geloscht werden kann. |[UIl10, Kapitel 5.5.6] Dieses wird durch die bestehende
Referenz allerdings nicht vom Garbage-Collector erkannt und folglich auch nicht ein-
gesammelt. Eine solche Referenz wird in SKill. dadurch vermieden, dass alle Instanzen
einer Typ Hierarchie im BasePool liegen und von den Subtypen lediglich referenziert
werden. Da der BasePool nach jedem compress alle SubPools aktualisiert, werden die
Referenzen an dieser Stelle auch entfernt. Auf diese Weise wird sichergestellt, dass keine
so genannten ,,dangling references“ entstehen.

Loschen von Typen Sollte durch die Funktionalitidt des Loschens von Instanzen die
letzte Instanz eines Typs geloscht werden, war eine Uberlegung, ob man an dieser Stelle
nicht auch den Typ aus dem Zustand entfernt. Das Loéschen eines Typs hétte aber zur
Folge, dass man diesen unter Umsténden in einem weiteren Schritt (zum Beispiel beim

31

Kopieren von Instanzen) wiederherstellen miisste. Der Aufwand fiir das Wiederherstellen
eines Typs ist deutlich hoher, als dieser in dem entsprechenden Zustand Platz verbraucht.
Aus diesem Grund wird das Léschen von Typen an dieser Stelle nicht ermdglicht.

Mengensubtraktionsoperation fiir Typen Um alle Instanzen eines Typs eines Zustan-
des aus einem anderen Zustand zu subtrahieren wurde die Funktion ,deletelnstancesOf-
Type“ implementiert, welche einen Typ in Form eines StoragePools als Parameter ent-
gegen nimmt. Diese Funktion iteriert nun iiber alle in diesem Typ vorhanden Instanzen
und entfernt diese aus dem aufgerufenen Zustand indem die Funktion ,,deletelnstance®
fiir alle Instanzen aufgerufen wird. Aus diesem Grund ist auch bei dieser Operation eine
Unifikation im voraus strikte Voraussetzung. In diesem Zuge wurde auch eine Funktion
eingebaut, welche eine Liste von Typen entgegen nimmt und das entfernen von Instanzen
verschiedener Typen in einem Aufruf ermdglicht. In dieser Funktion wird nun jeder Typ
an die bereits beschriebene Funktion ,,deletelnstancesOfType“ iibergeben. Der Nutzer
muss an dieser Stelle selbst sicherstellen, dass in den iibergebenen Typen nur diejeni-
gen Instanzen vorhanden sind, welche im Zielzustand auch tatsédchlich geléscht werden
sollen.

3.3.5 Kopieren von Instanzen

Ein weiterer Aspekt dieser Arbeit ist die Moglichkeit des Kopierens von Instanzen. Auch
hierfiir wurde eine Funktion in die Implementierung des Zustands integriert, welche den
Prozess des Kopierens der iibergebenen Instanz einleitet. Fiir das Hinzufiigen von meh-
reren Instanzen in einem Aufruf wurde eine Funktion hinzugefiigt, welche eine Liste von
Instanzen entgegen nimmt. Diese Funktion iteriert dann durch diese Liste und tibergibt
jede Instanz an die entsprechende ,,add“-Funktion im Zustand. Die Riickgabe der Funk-
tion ist nur dann true, wenn alle Instanzen hinzugefiigt werden konnten.

Die ,,add“-Funktion eines Zustandes macht sich zunachst den Element-Operator zu Nut-
ze, aus welchem Grund auch hier die korrekte Funktionsweise von der vorherigen Unifi-
kation abhéngt. Dies bedeutet aber auch, dass das Hinzufiigen neuer Instanzen in einem
Zustand, welcher sich im Modus ,,Destroyed“ befindet nicht erlaubt ist, da hier nicht
gewahrleistet werden kann, dass keine Instanz doppelt in einen Zustand eingefiigt wird.
Grund dafiir ist, dass der Element-Operator in zerstorten Zustdnden nicht korrekt funk-
tionieren kann.

Beim Hinzufiigen von Instanzen zu einem Zustand wird auch mithilfe der von SkillOb-
ject abgeleiteten Klasse iiber die HashMap poolByName nach dem Typ gesucht. Diese
abgeleitete Klasse wird fiir die Bestimmung des Namens des Typs benétigt. Sollte der
bendtigte Typ nicht gefunden werden kénnen, wird der Vorgang hier mit der Riickgabe
Hfalse“ abgebrochen. Ansonsten wird der Aufruf an den gefundenen StoragePool wei-
tergeleitet, indem eine speziell hierfiir implementierte Funktion namens ,addInstance*
aufgerufen wird, welche letztendlich die Instanz an die von der Collection geerbte Funk-
tion ,add“ weiterleitet. Hierbei iiberpriift die geerbte Funktion ,add“ lediglich, ob der
StoragePool den Status ,fixed“ besitzt. Im Falle, dass dies zutrifft, wird ein Fehler ge-
worfen, da keine Instanzen zu fixierten Pools hinzugefiigt werden diirfen. Andernfalls

32

pool.addinstance() pool.contains()

Instanz hinzufligen

enutzertyp(en) Suche nach
gefunden? Benutzertypen

Abbildung 9: Hinzufiigen einer Instanz (vereinfachter Ablauf)

fiigt sie die Instanz einfach der Liste der neuen Objekte zu.

Der Grund fiir die Notwendigkeit der Funktion ,addInstance® ergibt sich aus der Tat-
sache, dass ein StoragePool generische Typen besitzt, wobei einer davon von der ,,add“-
Funktion als Parameter erwartet wird. Das heif3t, dass bei Klassen, welche von generi-
schen Klassen erben, die geerbten Funktion mit den eindeutigen Typen implementiert
werden miissen und an dieser Stelle keine Wildcard mehr verwendet werden kann. Statt-
dessen muss der genaue Typ an dieser Stelle verwendet werden. Eine Wildcard, welche
in Java als ,7“-Operator realisiert ist, représentiert eine Familie von Typen. Dabei ist
wichtig zu verstehen, dass 7 nicht fiir Object steht, sondern fiir einen (bisher) unbe-
kannten Typ! [Ull10, Kapitel 9.5.3, Absatz 5] Da ein Zustand diesen Typ nicht kennt,
ist ein Cast an dieser Stelle nicht moglich. Ein Weiterer Grund fiir die Nutzung einer
Zwischenfunktion ist, dass auch hier eine Notwendigkeit fiir eine Rekursion besteht, wel-
che in der ,addInstance“-Funktion realisiert ist. Aus diesem Grund wird diese Funktion
separat beschrieben. In Abbildung [J]ist die Nutzung der ,addInstance“-Funktion beim
Hinzufiigen neuer Instanzen vereinfacht dargestellt.

Im Bezug auf jegliche Nutzung der Funktionalitdt des Hinzufiigens von Instanzen ist es
nicht zwingend notwendig, dass das Ergebnis in die Datei geschrieben wird, aus welcher
der Zustand entstanden ist. Es gibt in Zustanden die Moglichkeit iber die ,,changePath“-
Funktion die Zieldatei zu dndern und simtliche Anderungen in eine andere (gegebenen-
falls neue) Datei zu schreiben.

Die ,,addInstance“-Funktion Diese Funktion iiberprift zunéchst, ob sich die {iberge-
bene Instanz nicht bereits in dem StoragePool befindet und wiirde falls dies zutrifft mit
der Riickgabe ,false* abbrechen. Ansonsten wird durch diese Funktion die iibergebene
Instanz nach komplexen Typen durchsucht, welche separat hinzugefiigt werden miissen.
Hierfiir werden alle Felder der Instanz betrachtet und sofern es sich um einen komplexen
Typ handelt, wird der zugehorige Typ gesucht. Hierfiir wird sich erneut die ,,owner“-
Funktion zu Nutze gemacht, iiber welche man an den besitzenden Zustand herankommt

33

pool.addinstancef) @
nein

‘Suche nach
gefunden? Benutzertypen
nein Instanz zu Instanz im
zustand L
hinzufigen 16schen

speichern | Zustand Speichemn

pool.contains()

Abbildung 10: Verschieben einer Instanz (vereinfachter Ablauf)
Der urspriingliche Zustand muss gespeichert werden, bevor der Zielzustand gespeichert wird.

um die HashMap dessen fir die Suche zu verwenden. Sollte die Suche fehlschlagen, so
wird zum jetzigen Zeitpunkt der Vorgang mit dem Werfen einer Ausnahme abgebrochen,
um das Erstellen von inkonsistenten und fehlerhaften Zustinden zu vermeiden. Nach der
aktuellen Annahme wird diese Ausnahme nie geworfen, denn der Fall, dass Typen unbe-
kannt sind, wurde im voraus fiir diese Arbeit ausgeschlossen, da die Erstellung eines Typs
etwas komplexer ist. Grund fiir die Ausnahme ist, dass im Falle, dass eine Instanz zwei
komplexe Typen enthélt, der rekursive Aufruf des ersten bereits abgeschlossen sein kann
wahrend der des Zweiten eventuell einen Fehler feststellt. In diesem Fall wiren Instanzen
bereits hinzugefiigt worden, welche nicht hatten hinzugefiigt werden diirfen. Nachdem
der Pool gefunden wurde, wird nun mit dem betroffenen Komplexen Typ (welcher an
sich eine Instanz darstellt) die Funktion ,addInstance* rekursiv aufgerufen.

Transfer von Instanzen Unter dem Transfer von Instanzen wird eine Verschiebung
dieser von einem in einen anderen Zustand verstanden. Das heifit, dass die Instanz aus
demjenigen Zustand, aus welchem sie urspriinglich kommt nach dem Kopieren in dem
urspriinglichen Zustand nicht mehr vorhanden ist. Dieser Transfer ist aufgrund der not-
wendigen Unifikation der Zustdnde ein wenig komplizierter. Grund dafiir ist, dass die
Instanz, welche als Referenz iibergeben wird, in zwei Zustdnden verédndert werden muss.
Das Verschieben einer Instanz ist zwar prinzipiell moglich, aber die Funktion, welche
die Verschiebung anordnet, muss sicherstellen, dass die Instanz aus dem Zustand, aus
welchem sie verschoben werden soll, als erstes gespeichert wird. Wird der Zielzustand
zuerst gespeichert, so wird die SkilllD der Instanz auf einen Wert ungleich 0 gesetzt,
wodurch sie nicht mehr als ,zu Loschen® markiert ist. In Abbildung ist der Ablauf
fiir das Verschieben von Instanzen dargestellt. In dieser Abbildung wird der Ablauf des
Speicherns der beiden Zustdnde verdeutlicht. Diese Besonderheit beim Verschieben von
Instanzen schrankt die Moglichkeit des Transfers von diesen auch auf nur eine Richtung
ein. Das heifit, dass es nicht moglich ist eine Instanz C von Zustand A in Zustand B und
vor dem néchsten Schreiben der Zustédnde eine Instanz D von Zustand B in Zustand A
zu verschieben.

34

Erstellen eines konsistenten Zustands Um aus bestehenden Instanzen einen konsis-
tenten Zustand zu erstellen, muss mit der fir die Instanzen notwendigen Spezifikation
zunéchst ein Zustand im Modus ,,Create® erstellt werden. In diesen Zustand kénnen nun
alle Instanzen kopiert werden, indem die Funktion fiir das Hinzufiigen von Instanzen auf-
gerufen wird. Um dies zu bewerkstelligen, kann man entweder alle Instanzen einzeln an
die Funktion ,addInstance* oder alle Instanzen als Liste an die Funktion ,,addInstances®
iibergeben.

Mengenvereinigungsoperation fiir Typen Um alle Instanzen eines Typs zweier Zustéan-
de zu vereinigen existiert die Funktion ,,addInstancesOfType*, welche einen StoragePool
als Parameter entgegen nimmt. Diese Funktion iteriert nun iiber alle in diesem Typ
vorhanden Instanzen und fiigt sie dem Typ des aufgerufenen Zustandes hinzu. Hierfir
wird die Funktionalitdt des Hinzufiigens von Instanzen, welche im Laufe dieser Arbeit
entstanden ist, genutzt. Dabei gilt natiirlich, dass vor dem Ausfiihren dieser Operation
eine Unifikation der Zustdnde stattgefunden haben muss. An dieser Stelle greift auch
die fiir diese Arbeit getroffene Annahme, dass alle Typen bereits bekannt sind. Des
Weiteren existiert auch eine Funktion um die Instanzen mehrerer Typen einem Zustand
hinzuzufiigen. Diese nimmt entsprechend eine Liste von StoragePools entgegen, aus wel-
cher sie alle StoragePools einzeln heraus nimmt und an die oben beschriebene Funktion
yaddInstancesOfType“ iibergibt. Es gilt dabei zu beachten, dass der Nutzer bevor er die
entsprechende Funktion aufruft sicherstellen muss, dass nur die Instanzen in den Typen
vorhanden sind, welche auch in der Vereinigungsmenge vorhanden sein sollen. Damit
verbunden muss der Nutzer sich darum kiimmern, dass sowohl im Typ des Zielzustands
als auch in dem des Ursprungszustandes nur diejenigen Instanzen befinden, welche Teil
der Vereinigungsmenge werden sollen.

35

4 Mogliche ndchste Schritte der Verwaltung

In diesem Abschnitt werden einige Ideen vorgestellt, welche im Rahmen dieser Arbeit
nicht mehr naher untersucht und umgesetzt werden konnten. Bei diesen Ideen handelt
es sich zum einen um Optimierungen in Sachen Zustandsverwaltung und zum Anderen
um notwendige nédchste Schritte um die Nutzbarkeit dieser zu Verbessern.

4.1 Unifikation

Einmalige Unifikation In der aktuellen Implementierung der Unifikation ist es durch-
aus moglich, dass zwei Zustdnde mehrfach miteinander unifiziert werden. Dies konnte
man zum Beispiel dadurch verbessern, dass sich jeder Zustand merkt, mit welchem an-
deren Zustand er bereits unifiziert wurde. Als Kriterium zur Identifikation wére hier
zum Beispiel der Pfad der Datei, aus welcher der Zustand entstanden ist, denkbar. Denn
der Modus ,Destroyed“ sagt an dieser Stelle nichts dariiber aus, mit welchem Zustand
unifiziert wurde.

Verhindern einer Unifikation Im Laufe dieser Arbeit wurde festgestellt, dass es unter
Umsténden durchaus Anwendungsfille gibt, bei welchen eine Unifikation (und die damit
verbunden Zerstérung) nicht sinnvoll ist. Ein Beispiel hierfiir wiire, dass Anderungen in
drei verschiedenen Zusténden (A, B und C) gemacht werden sollen. Im Falle, dass sich
Abhéngigkeiten wie das verschieben von Instanzen von A nach B, C nach A und der Ver-
einigung eines Typs von B in C ergeben, muss hier sichergestellt werden, dass dies ohne
auftretende Inkonsistenzen ablauft. Bei diesem Szenario miissten beim Ausfithren aller
Aktionen alle Zustdnde zerstort werden. Man sieht also, dass diese Aktionen zunéchst
in einer bestimmten Reihenfolge ablaufen miissen, um die Konsistenz von Zusténden
zu bewahren und dennoch das gewiinschte Resultat zu erhalten. Es wére hierfiir wiin-
schenswert, dass ein Zustand eine Unifikation zunéchst ablehnen kann, bis er alle hierfir
kritischen Abschnitte iiberwunden hat und wieder bereit fiir eine neue Unifikation ist.
Aktuell muss die Konsistenz der Zusténde bei einem solchen Szenario durch den Nutzer
sichergestellt werden.

Vermeiden der Zustandszerstorung Eine Unifikation zerstort aktuell den iibergebenen
Zustand, da nach dem Andern der SkilllDs in diesem der korrekte Zugriff auf Instanzen
iiber die IDs nicht mehr sichergestellt werden kann. Diesen Umstand konnte man vermei-
den, indem ein Mechanismus entwickelt wird, welcher bei der Unifikation zum Beispiel
den Offset zwischen der urspriinglichen ID und der neuen ID speichert und mithilfe des-
sen im zerstorten Zustand trotzdem die entsprechende Instanz finden kann. Kritisch ist
hierbei, dass sichergestellt werden muss, dass dieser Offset nur im zerstérten Zustand
eingerechnet wird, nicht jedoch in demjenigen Zustand mit welchem er unifiziert wurde,
da die Einrechnung dessen hier natiirlich zu einem falschen Zugriff fithren wiirde.

36

4.2 Unbekannte Typen

Unifikation Ohne die Annahme, dass es keine unbekannten Typen gibt, gilt es natiir-
lich auch zu bedenken, dass Instanzen von solchen unbekannten Typen in einem Zustand
hinzugefiigt werden sollen. In einem solchen Fall muss bei der Unifikation unter Ande-
rem zusétzlich noch beachtet werden, dass diese beim Vergleich von Typen auch deren
Anzahl an Feldern vergleicht. Denn im Falle von unbekannten Typen besteht auch die
Gefahr, dass zwei gleichnamige Typen auftreten, welche aber nicht die selbe Datenstruk-
tur darstellen. Neben dem Vergleich des Inhalts von Typen muss also auch die Definition
des Typs selbst verglichen werden. An dieser Stelle kommen auch die TypelDs und eine
potentielle Unifikation dieser fiir die Unifikation in Frage, welche nach einem adhnlichen
Schema wie die SkilllDs unifiziert werden kénnten.

37

5 Zusammenfassung und Ausblick

Im Laufe dieser Arbeit ist die Grundlage fiir die Funktionalitéit des Kopierens, Loschens
und Suchens von Instanzen entstanden. Die Arbeit beschriankt sich auf den einfachsten
Fall dieser genannten Funktionalitdten, da die Abdeckung aller Falle den vorgegebenen
Rahmen dieser Arbeit tiberschreiten wiirde.

Unter der Annahme, dass es nur eine Spezifikation gibt, in welcher keine unbekannten
Typen existieren und das es keine Instanzen ohne Zustand geben kann, wurden die in der
Aufgabenstellung genannten Funktionen umgesetzt. Es wurde eine Moglichkeit geschaf-
fen nach Instanzen in Zustdnden zu suchen, sowie solche Instanzen zu entfernen. Auch
das Kopieren von Instanzen aus einem Zustand in einen anderen Zustand wurde reali-
siert. Zudem wurde in Zusammenhang mit dem Kopieren von Zustédnden das Verschieben
dieser implementiert. Im Rahmen dieser Arbeit wurde hierfiir die Notwendigkeit einer
Unifikation von Zustdnden festgestellt um diese Funktionen effizient zu erméglichen. Die
Durchfiihrung einer solchen Unifikation wird folglich von allen hier entwickelten Funk-
tionen, beziehungsweise fiir deren korrekte Funktionsweise, vorausgesetzt. Ein Nachteil,
welcher fiir die Effizienz der implementierten Funktionen in Kauf genommen wurde, ist
das zerstoren des iibergebenen Zustands bei der Unifikation. Der iibergebene Zustand
wird hiernach zwar unbrauchbar im Bezug auf die Suche von Instanzen, alle weiteren
implementierten Aktionen in dem nicht zerstoérten Zustand sind jedoch aufgrund von Zu-
griffen tiber Indizes und HashMaps wesentlich effizienter moglich. Die Instanzen in dem
dabei zerstorten Zustand kénnen dennoch fiir das Kopieren dieser verwendet werden.
Die Tatsache, dass der Zustand zerstort wurde soll lediglich vermeiden, dass fehlerhafte
Zugriffe iiber die SkilllDs durchgefiihrt werden kénnen.

Der néchste Schritt ist nun nach und nach die komplizierteren Félle zu untersuchen
und die hier implementierte Funktionalitdt in soweit zu erweitern, dass auch diese Falle
abgedeckt werden. Hierzu gehort unter Anderem das Nachladen und Hinzufiigen von
fehlenden Typen in einen Zustand. Der Hauptbestandteil hierbei ist das Ermitteln der
hierfiir nétigen Spezifikationen und eine entsprechende Auswertung dieser im Hinblick
darauf, was tatséchlich ben6tigt wird.

38

Literatur

[Fell3]

[Har14]

[Prz14]

[U1110]
[Ungl4]

Timm Felden. The skill language. Technical report, 2013.

Fabian Harth. Plattform- und sprachunabhaengige serialisierung mit skill.
Diplomarbeit, Universitaet Stuttgart, 2014.

Dennis Przytarski. Performance-evaluation einer sprach- und plattformun-
abhaengigen serialisierungssprache. Bachelorarbeit, Universitaet Stuttgart,
2014.

Christian Ullenboom. Java ist auch eine insel, 2010.

Wladislaw Ungur. Nutzbarkeitsevaluation einer sprach- und plattformu-
nabhaengigen serialisierungssprache. Diplomarbeit, Universitaet Stuttgart,
2014.

[XMLO06] Extensible markup language, 2006.

39

Erklarung

Ich versichere, diese Arbeit selbststandig verfasst zu haben.
Ich habe keine anderen als die angegebenen Quellen benutzt
und alle wortlich oder sinngeméf3 aus anderen Werken iiber-
nommene Aussagen als solche gekennzeichnet. Weder diese
Arbeit noch wesentliche Teile daraus waren bisher Gegen-
stand eines anderen Priifungsverfahrens. Ich habe diese Ar-
beit bisher weder teilweise noch vollstdndig veroffentlicht.
Das elektronische Exemplar stimmt mit allen eingereichten
Exemplaren iiberein.

Ort, Datum, Unterschrift

41

	Einführung
	Aufbau des Dokuments
	Hintergründe der Arbeit
	Die Sprache SKilL
	Aufgabenstellung
	Ähnliche Arbeiten

	SKilL in Java
	Der Zustand
	Bestandteile eines Zustandes
	StringAccess
	Access
	SkillObject
	StringPool
	Chunk
	FieldType
	FieldDeclaration
	StoragePool
	BasePool
	SubPool

	Verwaltung von Zuständen
	Ziel der Verwaltung
	Kritische Stellen der Verwaltung
	Suchen einer Instanz
	Löschen einer Instanz
	Kopieren einer Instanz

	Umsetzung der Verwaltung
	Annahmen
	Unifikation von Zuständen
	Element-Operator für Instanzen
	Löschen von Instanzen
	Kopieren von Instanzen

	Mögliche nächste Schritte der Verwaltung
	Unifikation
	Unbekannte Typen

	Zusammenfassung und Ausblick

