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Kurzfassung

Verschiedene Geoinformationen, wie beispielsweise Stralenverldaufe, Hohenlinen und
Grenzverlaufe, liegen hiufig in grofen Datenmengen vor. Zur Darstellung auf einem
Bildschirm wird jedoch selten die volle Auflésung bendétigt, sondern eine geringe-
re Auflosung, die vom gewéahlten Zoombereich und von der Bildschirmauflésung
abhingt. Daher miissen die Rohdaten vor der Ubertragung und Darstellung bis zu
einer gegebenen Fehlertoleranz vereinfacht werden.

In dieser Arbeit wird das Problem der Vereinfachung von polygonalen Ebenenun-
terteilungen untersucht. Dabei soll bei der Vereinfachung eine Fehlertoleranz einge-
halten und die Topologie der Eingabe erhalten werden. Weitere Einschrinkungen
an die Vereinfachung konnen als Topologieeinschrankungspunkte gegeben sein, die
nach der Vereinfachung in der topologisch selben Facette liegen miissen.

Es werden bekannte theoretische Ergebnisse sowie verschiedene Heuristiken zur Ebe-
nenvereinfachung vorgestellt. Eine neue Heuristik, die mittels einer eingeschriankten
Delaunay-Triangulierung das Problem auf viele kleine und lokale Teilprobleme re-
duziert, wurde im Rahmen dieser Arbeit implementiert. Zum Testen der Heuri-
stik wurden sowohl verschiedene OpenStreetMap-Datenséitze von Hamburg und von
Baden-Wiirttemberg verwendet als auch konstruierte Datensétze um die Laufzeit
abzuschétzen. Anhand der ermittelten Laufzeiten fiir die Vereinfachung kann man
von einer Laufzeit ausgehen, die superlinear jedoch nicht quadratisch ist.
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1 Einleitung

Verschiedene Arten von Geoinformationen sind heutzutage unerlésslich fiir die Rou-
tenplanung. Fiir die Planung einer Radtour ist es praktisch iiber den genauen Stra-
Benverlauf, Radwege, Hohenprofile, das offentliche Verkehrsnetz und Grenzen von
Tarifgebieten informiert zu sein. Will man auf solche Daten iiber ein Mobilgerét zu-
greifen, dann moéchte man jedoch nicht die komplette Datenmenge abrufen, sondern
maximal so viel, wie man mit der jeweiligen Bildschirmauflosung und dem gewéhlten
Zoombereich darstellen kann. Die abgerufenen Karten sollen also vorher bis auf eine
gegebene Ungenauigkeit bzw. Fehlertoleranz vereinfacht werden. Die Vereinfachung
der Karten hat abgesehen von einer kleineren Datenmenge den Vorteil, dass darauf
ausgefiihrte Methoden schneller von statten gehen, zum Beispiel das Finden einer
kiirzesten Strecke oder das Zeichnen und Einfarben der Karte.

Eine weitere Anforderung an die iibertragenen Kartendaten ist, dass sie gewisse To-
pologieeinschrankungen einhalten sollen. Gehen wir davon aus, dass ein Hohenprofil
in Form von Hohenlinien auf dem Mobilgerat dargestellt wird. Dann sollen sich zwei
Hohenlinien auf der vereinfachten Darstellung nicht schneiden, da es sonst zu Inkon-
sistenzen fiihrt, beispielsweise bei der Berechnung der steilsten Downhill-Route. Eine
andere Einschrinkung soll durch Punkte gegeben sein. Solch ein Punkt kénnte die
Position eine Tankstelle darstellen, die auf der richtigen Seite der Autobahn liegen
muss.

Abbildung 1.1: Beispiel einer Ebenenvereinfachung, bei der ein Ein-
schrankungspunkt (rot) nach der Vereinfachung auf der anderen Seite des
Polygonzugs liegt.

Ziel und Aufbau der Arbeit

Ziel dieser Arbeit ist es, eine neue Heuristik fiir das Problem der Ebenenvereinfa-
chung aufzustellen, zu implementieren und an verschiedenen Datensétzen zu testen.

Die Arbeit ist daher wie folgt aufgebaut. In Kapitel 2 werden die benotigten mathe-
matischen Grundlagen eingefiihrt, sowie die Problembeschreibung formuliert. Aufler-
dem beinhaltet Kapitel 2 die wichtigsten bereits bekannten theoretischen Ergebnisse
zum Problem der Ebenenvereinfachung. Im néchsten Kapitel folgen bekannte (Teil-)-
Algorithmen und Datenstrukturen, welche fiir das Versténdnis der Losungsansétze
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notig sind. Kapitel 4 stellt anschlieBend sowohl bekannte Heuristiken zur Ebenenver-
einfachung, als auch eine neue, in dieser Bachelorarbeit untersuchte Heuristik vor.
Eine Vereinfachungsdatenstruktur, die bei erneuten Anfragen zur Vereinfachung ein
Ergebnis schnell zur Verfiigung stellt, wird in Kapitel 5 vorgestellt. Die Verein-
fachungsdatenstruktur ist in Hinsicht auf die Vereinfachung von Karten relevant
und kann verschiedene Funktionalititen realisieren, wie beispielsweise eine adaptive
Vereinfachung von Karten. Im vorletzen Kapitel 6 wird die Heuristik auf verschiede-
nen Datensétzen getestet. Einerseits werden OpenStreetMap-Datenséitze [HWO08] als
Eingabe verwendet um die praktische Tauglichkeit zu testen und andererseits werden
konstruierte Datensétze getestet um die Laufzeitkomplexitéit abzuschéatzen. Die er-
reichten Ergebnisse und mogliche Erweiterungen werden zuletzt in einem Uberblick
in Kapitel 7 zusammengefasst.



2 Grundlagen und Problembeschreibung

2.1 Ebenenunterteilungen und Segmente

Definition 2.1 (Graph) Ein (ungerichteter) Graph G ist ein Tupel (V, E) be-
stehend aus einer endlichen Menge V', genannt Vertexmenge, und einer Menge
E C {{v1,ve} |v1,v9 € V 01 # 19} genannt Kantenmenge. Ein Element v € V' heifit
Vertex oder Knoten, ein Element e = {vy,v,} € E heifit Kante zwischen den Vertices
v; und vs.

Definition 2.2 (Grad) Seiv ein Vertex des Graphen G = (V, E). Dann bezeichnet
die Anzahl aller Kanten e aus F, die den Vertex v enthalten den Grad von v

grad(v) = Z {v} Nel.

ecE

Zur visuellen Darstellung eines Graphen verwendet man iiblicherweise eine Einbet-
tung des Graphen in die R?-Ebene, welche die Vertices auf Punkte in R? abbildet
und die Kanten als Verbindungskurven, speziell Verbindungsgeraden, zwischen den
Punkten darstellt.

Definition 2.3 (Straight-line Einbettung) Sei V' die Vertexmenge eines unge-
richteten Graphen G = (V, E). Eine Abbildung ® : V —— R? heifit Einbettung des
Graphen G in R?. Wenn die Einbettung zusitzlich auf den Kanten e = {v;, vy}
definiert ist als ®(e):= {x € Rz = A®(v;) + (1 = A)®(vq), A € (0,1)}, also als Ver-
bindungsgerade zwischen beiden eingebetteten Vertices, dann heifit die Einbettung
® Straight-line Einbettung.

Definition 2.4 (Straight-line planar) Ein Graph heifit straight-line planar, wenn
es eine Straight-line Einbettung ® gibt, so dass sich alle eingebetteten Kanten ®(e)
paarweise nicht schneiden.

Im Folgenden betrachten wir Graphen, die eine Knotenmenge V' besitzen, welche eine
Teilmenge des R? ist und straight-line planar sind mit der kanonischen Einbettung
SV —R2v+— 0.

Definition 2.5 (Ebenenunterteilung) Eine Ebenenunterteilung ist das Abbild
einer Straight-line Einbettung eines Straight-line-planaren Graphen. Die durch die
eingebetteten Kanten begrenzten Fliachen heiflen Facetten.

Definition 2.6 (Induzierter Teilgraph) Sei G = (V, E) ein Graph. Ein Graph
G' = (V', E’) heifit induzierter Teilgraph von G wenn folgende Eigenschaften gelten

o V' CV
e F'CF

o c={v, 0} € F < vj,u €V’



Die Kantenziige in einem Graphen, welche vereinfacht werden sollen, kénnen als
induzierte Teilgraphen der Ebenenunterteilung gesehen werden.

Definition 2.7 (Segment) Ein Segment ist ein induzierter Teilgraph Gg = (Vs, Es)
eines Graphen G mit den folgenden Eigenschaften.

e Das Segment besteht aus mindestens zwei Knoten, N = |Vg| > 2,

e cs gibt ein Isomorphismus ¥ vom Segment zum Graphen Gg = (Vg, Eg) mit

Ve ={1,...,N},
Ep={{i,i+1})1<i<N -1}

e alle nicht-Eckpunkte haben im iibergeordneten Graphen G den Grad 2,
V2<i<N-—1: degg(V'(i)) =2

Das Segment als Polygonzug im R? wird bei gegebenen Graphen Gg = (Vs, Eg) de-
finiert als die Menge aller Punkte, die auf der Straight-line Einbettung des Segments
liegen.

Ps={x €R*Je € Es: € d(e)}. (2.1)

Besteht das Segment aus genau zwei Knoten Vg = {vy, v}, dann ist der Polygonzug
die Strecke zwischen v; und v, und wir schreiben

PS — UV1V2.

2.2 Abstiande und Fehlerschranken

Definition 2.8 (Abstand zu einer Menge) Sei ein Punkt in einem Vektorraum
z € X mit Norm ||-|| und eine Menge M C X gegeben. Dann wird der Abstand des
Punktes x zur Menge M definiert als die grofite untere Schranke vom Abstand zu
allen Punkten m € M

d(z, M) = inf |lz —m.

Definition 2.9 (e-Umgebung einer Menge) Sei eine Menge M C X gegeben.
Die e-Umgebung U.(M) der Menge M ist die Menge aller Punkte, die einen Abstand
von maximal € zur Menge M besitzen

U.(M) = {z € X|d(z, M) < £}.

Da wir in den folgenden Kapiteln Ebenenunterteilungen vergleichen wollen und ins-
besondere ob eine grobe Ebenenunterteilung maximal um € von einer feinen Ebenen-
unterteilung abweicht, werden wir die Ebenenunterteilungen als Mengen auffassen
und priifen, ob die eine Ebenenunterteilung in der e-Umgebung der anderen liegt.
Dabei muss betont werden, dass diese Eigenschaft nicht symmetrisch ist in dem
Sinne dass fiir zwei beliebige Mengen M und N die Aquivalenz

M CU.(N)< N CU(M) (2.2)
nicht gilt. Zwei Gegenbeispiele sind in Abbildung 2.1 zu sehen.
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Abbildung 2.1: Zwei Gegenbeispiele zur Aussage (2.2). Es gilt in beiden
Fillen N C U.(M) und M ¢ U.(N).

Lemma 2.10 (Schachtellemma) Seien L, M und N Teilmengen eines normierten
Vektorraums. Falls L in der e-Umgebung von M und M in der /-Umgebung von N
liegt

LC UE(M)/\ME U&(N)a

dann gilt L € U.5(N).

Die Aussage des Lemmas ist sehr intuitiv. Ein Beweis wird dennoch kurz dargestellt.

BEWEIS: Aus der Dreiecksungleichung ||l — n|| < ||l — m|| + ||m — n|| folgt die
Abschétzung

inf ||{ — n|| < sup||l —m]|| + sup [|m —n||.
neN leL meM

Diese gilt fiir beliebige [ € L, m € M, n € N, welche noch als freie Variablen in der
Ungleichung stehen. Also folgt insbesondere

inf ||l — n|| < sup inf ||l — inf [|m —n|| <&+ 6
sup inf [l —nll < sup inf [ll —m + sup inf[lm —nl| <&+,

was nach Definition bedeutet, dass L in der (& 4+ 0)-Umgebung von N liegt. 0

2.3 Problembeschreibung

wFverything should be made as simple as possible, but not simpler.“

-Albert Einstein

Sei eine Ebenenunterteilung in Form des Graphen G = (V C R? E) mit kanonischer
Straight-line Einbettung gegeben. Gesucht ist eine Vereinfachung des Graphen G, in
der moglichst viele Grad 2 Knoten ausgespart werden, d.h. es werden moglichst vie-
le und lange Knotensequenzen vy, vs, ..., v, durch die einfache Kante v7v,, ersetzt,
wobei alle Knoten v; mit 2 <4 <n — 1 Grad-2 Knoten sind. Der bei der Vereinfa-
chung entstandene Graph soll dabei die Planaritét und die Topologie erhalten. Das
Problem kann noch um folgende Nebenbedingungen erweitert werden.

11



Fehlerschranke: Sei eine Fehlerschranke ¢ > 0 gegeben. Zuléssig sind nur die
Vereinfachungen von Segmenten S bestehend aus den Vertices vy, vq,...,v,
zu einer Kante S” = 770, wenn das Ausgangssegment S in einer e-Umgebung
von der Kante S’ liegt, d.h.

S € U.(5") <= maxmin|s — || <e.*
seS s'es’

Topologieeinschrinkungen: Zusitzlich zur geforderten Planaritdt und Topolo-
gieerhaltung des vereinfachten Graphen G’ wird eine Menge P C R? an To-
polgieeinschrinkungen gegeben. Die Punkte aus der Menge P sollen vor und
nach der Vereinfachung jeweils in der topologisch selben Facette liegen.

Zu einer gegebenen Ebenenunterteilung mit dem Graphen G = (V, E), einer Feh-
lerschranke £ und einer Menge P an Topologieeinschrinkungen ist eine vereinfachte
Ebenenunterteilung G' = (V’/, E’) gesucht, welche die oberen Eigenschaften erfiillt
mit minimaler Grofle der Vertexmenge V'. Dieses Problem werden wir, angelehnt
an die Namensgebung in [II88], min-# Ebenenunterteilungsproblem oder auch kurz
min-# Problem nennen. Eine bildliche Darstellung des Problems ist in Abbildung
2.2 zu sehen.

(a) Hochste Auflosung. (b) Vereinfachte Ebenenunterteilung.

Abbildung 2.2: Unvereinfachte und vereinfachte Ebenenunterteilung.

2.4 Theoretische Untersuchungen des Problems

Das Problem der Segmentvereinfachung und aufbauend darauf das Problem der
Vereinfachung von Ebenenunterteilungen ist schon lange ein bekanntes Problem in
der Kartographie und Bildverarbeitung. Schon in den 70er Jahren wurden erste
heuristische Losungsansitze verfolgt, z.B. [DP73], [II88], [GHMS91], [CC92]. Das
erste theoretische Ergebnis zu diesem Problem wurde in der Dissertationsschrift von

*Die Segmente kénnen als Polygonziige parametrisiert werden. Setzt man die Parametrisierun-
gen in die Formel fiir den Abstand ein, dann wird sie somit zu einer stetigen Funktion auf einer
kompakten Menge. Mit dem Satz von Weierstra3, [Rud05] Satz 4.16, nimmt der Abstand daher
auch sein Minimum / Maximum an.
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R. Estkowski [Est00] veroffentlicht, in der bewiesen wird, dass das Problem nicht in
Polynomzeit 16sbar ist, wenn P#NPT gilt.

Satz 2.11 (NP-vollstindig [Est00]) Das min-# Problem ist fir P = () NP-
vollsténdig.

Weiterhin wurde in der Verdffentlichung [EMO1] das Problem als Minimierungs-
problem untersucht und ein Ergebnis zur Approximierbarkeit gefunden. Die zum
Versténdnis benotigten Begriffe werden vorher kurz erlautert. Die Definitionen und
Notationen sind hauptséchlich an [Kan94] angelehnt.

Definition 2.12 (Minimierungsproblem) Ein Minimierungsproblem iiber einem
Alphabet 3 ist ein Tupel M = (Ips, Sy, mas) wobei

o [y C X* die Menge aller Eingaben und in Polynomzeit erkennbar ist,

o Sy (z) C X* die Menge aller zuldssigen Losungen fiir die Eingabe x € I, ist,
wobei es fiir jedes € I, ein Polynom p und ein in Polynomzeit berechenbares
Préadikat 7 gibt, so dass

Su(z) ={y € X" : [yl < p(|lz|) Am(z,y)}.

Man kann also mit 7 in Polynomzeit bestimmen, ob y eine zuléssige Losung
ist und die Lange der Losung y wéchst hochstens polynomiell mit der Lange
der Eingabe x.

e my : Iy x ¥ — N bezeichnet die Zielfunktion, welche in Polynomzeit
berechenbar ist. Der Wert m;(z,y) ist nur fir y € Sy, (x) definiert.

Weiterhin bezeichne opty(x) = ignf( )mM(a:, y) den optimalen Wert der Zielfunk-
yeom(x
tion.

Definition 2.13 (Polynomiell beschrinkt) Seiein Minimierungsproblem M ge-
geben. Wenn die Zielfunktion eine obere Schranke besitzt, die polynomiell in der
Eingabegrofle ist, also

JPolynom pVx € Iy Vy € Sy () : my(z,y) < p(|z|), (2.3)
dann heifit die Zielfunktion polynomiell beschrdnkt.

Definition 2.14 (MIN PB-Vollstidndigkeit) Sei MIN PB die Klasse aller Mini-
mierungsprobleme mit polynomiell beschrinkter Zielfunktion. Dann heifit das Mi-
nimierungsproblem M MIN PB-vollstindig wenn

e M € MIN PB und

e jedes N € MIN PB ist polynomiell reduzierbar auf M.

"Fiir die Bedeutung der Komplexititsklassen P und NP, siche z.B. [AB02].
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Definition 2.15 (Approximierbarkeit) Ein Minierungsproblem A kann bis auf
q(n) (¢ : Z* — R™) approximiert werden, wenn es einen Polynomzeitalgorithmus
A gibt, so dass fiir jedes n € Z* und alle Eingaben x € Iy mit n = |z| gilt

A(z) € Sy (x) und my(x, A(x)) < q(n) - optp(x).

Der Algorithmus A berechnet also in Polynomzeit eine zuléssige Losung, die in der
Zielfunktion maximal um den Faktor ¢(n) von dem optimalen Wert abweicht.

Satz 2.16 (MIN PB-vollstindig, [EMO01]) Das min-# Ebenenunterteilungspro-
blem ist fiir P = () MIN PB-vollstindig und kann nicht mit einem Polynomzeital-
gorithmus, unter der Annahme dass P#NP, bis auf einen Faktor von q(n) = n'/>=°
zur optimalen Losung approximiert werden fiir jedes 6 > 0, wobei n die Anzahl der
Vertices in der originalen Ebenenunterteilung bezeichnet.
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3 Verwendete Algorithmen und Datenstrukturen

Bevor wir uns mit den Losungsansétzen des min-# Problems beschéftigen, werden
wir in diesem Kapitel einige Probleme mit Losungsalgorithmen und Datenstrukturen
anschauen, die Bestandteile der Losungen sein werden. Dies umfasst Algorithmen
zur Vereinfachung von Segmenten, Algorithmen auf Graphen und Triangulierungen.

3.1 Algorithmen zur Segmentvereinfachung

Zuerst stellen wir einige bekannte Algorithmen zur Segmentvereinfachungen vor, da
diese Algorithmen die Grundlagen der Losungsansétze des min-# Problems bilden.
Aufgrund der Struktur von Segmenten werden wir im Folgenden Segmente statt als
Graph Gg = (Vg, Eg) als geordnete Menge der Vertices (vy, . .., v,) schreiben, wobei
es so zu verstehen ist, dass zwei aufeinanderfolgende Vertices im Segment iiber eine
Kante verbunden sind.

3.1.1 Douglas-Peucker Algorithmus

Der Douglas-Peucker Algorithmus [DP73] ist ein heuristischer Algorithmus zur Ver-
einfachung von Segmenten. Bei gegebenen Ausgangssegment und einer unteren Schran-
ke ¢ liefert der Algorithmus als Ergebnis ein vereinfachtes Segment, zu dem das
Ausgangssegment einen maximalen Abstand von ¢ hat.

Die Idee ist, das Segment zuerst durch das Geradenstiick zwischen Anfangs- und
Endpunkt, v; und v, zu approximieren. Wenn alle dazwischen liegenden Segment-
punkte einen Abstand von e oder weniger haben, ist diese Approximation giiltig.
Wenn nicht, wiahlt man den Punkt vy mit dem gréfiten Abstand zur Geraden und
teilt das Problem rekursiv in die beiden Teilprobleme mit den Segmenten vy, ..., vy
und vg, ..., Up.

Gegeben: Segment S = (vq,...,v,), obere Schranke € > 0.

Gesucht: Segment S" = (vy,v;,,...,0;,,0,) mit 2 < i3 < ... <4y, <n—1und
S CU(Y).

Algorithmus 3.1 Douglas-Peucker Algorithmus

1: function DOUGLASPEUCKER(S = (vy,...,0,), €)
2 Sapprox = V10,

3 dmax < max d(v’ia Sapprox)

4: Vmax — arg max d(v;, Sapprox)

5: if d.« < € then

6 return S,pprox

7
8
9

else
SL — (Ula S 7Umax)
SR <~ (Urnaxv cee 7vn)
10: return (DOUGLASPEUCKER(SL,¢) U DOUGLASPEUCKER(Sg, €))
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Wie bereits erwiahnt, handelt es sich bei dem Douglas-Peucker Algorithmus um eine
Heuristik, das heiffit das Ergebnis ist im Allgemeinen nicht die optimale Losung.
Zudem werden keine Selbstiiberschneidungen ausgeschlossen, wie in Abbildung 3.1
exemplarisch dargestellt.

(c) Zweiter Schritt (d) Ergebnis vom DP Algorithmus

Abbildung 3.1: Douglas-Peucker Iterationsschritte mit selbstiiber-
schneidendem Ergebnis.

Bemerkung 3.2 Zu beachten ist, dass der Abstand eines Punktes v; zu dem Ge-
radenstiick Sapprox = U10;, im obigen Algorithmus im Allgemeinen nicht als Hohe
von v; auf der Geraden durch v; und v, berechnet werden kann, da das Lot nicht
notwendigerweise auf dem Geradenstiick 777, stehen muss. Der Abstand muss daher
mit der Fallunterscheidung

h(viavlvn) 0< <Ui — V1, ||ZZ:ZZ||> <1

(3.1)

min(d(v;,vy1),d(v;,v,)) sonst

d(Ui,m) = {

berechnet werden, wobei h(v;, U10,) = (v; — vy, (v"_””)l> die Hohe des Dreiecks vy,

l[vi—vnll

v;, v, mit Grundseite T;0,, ist und -+ eine 90°-Drehung in der Ebene bezeichnet.

3.1.2 TImai-Iri Algorithmus

Ein weiterer Algorithmus zur Vereinfachung eines Polygonzugs ist der Imai-Iri Algo-
rithmus, welcher erstmals in [II88] vorgestellt wurde. Die Idee vom Imai-Iri Algorith-
mus ist, zuerst einen Graphen zu konstruieren, der alle zuléssigen, also um maximal
e abweichenden Abkiirzungen enthélt und auf diesem Graphen den kiirzesten Pfad
zu finden.

Gegeben: Segment S = (vy,...,v,), obere Schranke € > 0

Gesucht: Teilsegment S’ = (v, vy, .., 0, V) Mit 2 <y < ... <4, <n—1,5 C
U.(S’) und minimaler Anzahl an Punkten unter allen zuldssigen Segmenten.
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Algorithmus 3.3 Imai-Iri Algorithmus

: function IMAI-IRI(S = (vq,...,v,),€)

E= {(’UZ‘,Ule <1< ] < TL,W S UE(S)}
Graph G = (S, E)

S" = shortest_path(G, vy, vy,)

return (S5')

Die Konstruktion der Kantenmenge des Graphen G in Zeile 2 vom Algorithmus 3.3
kann mit einem naiven Algorithmus in O(n?) berechnet werden. Chan und Chin
[CC92] haben ein Algorithmus aufgestellt, der G in O(n?) berechnet, was auch die
optimale Laufzeit ist, da G im schlimmsten Fall bis zu O(n?) Kanten hat. Der
kiirzeste Pfad auf G kann ebenfalls in O(n?) mit topologischer Sortierung berechnet
werden. Eine offensichtliche topologische Sorierung ist gegeben durch die Reihenfol-
ge, in der die Vertices entlang des Segments sortiert sind.

v <V = 1<

Damit kann man beim Dijkstra-Algorithmus (siche z.B. [Sch09], Kapitel 15) zur
Berechnung des kiirzesten Pfades die Vertices v; nach dieser Ordnung durchlaufen
und nur Kanten betrachten, die zu Vertices v; > v; fiithren.

Bemerkung 3.4 Wie beim Douglas-Peucker Algorithmus 3.1 werden keine Selbst-
iiberschneidungen ausgeschlossen. Der Imai-Iri Algorithmus berechnet jedoch im
Gegensatz zum Douglas-Peucker-Algorithmus die optimale Segmentvereinfachung,
also ein Segment mit minimaler Anzahl an verbleibenden Punkten, zu einer gegebe-
nen Fehlerschranke €. Das ist einfach nachzuvollziehen, da die (bzw. eine) optimale
Segmentvereinfachung einerseits als Pfad in G enthalten sein muss und andererseits
minimal ist, da sonst eine kiirzere Segmentvereinfachung berechnet werden wiirde.

3.2 Algorithmen auf Graphen

Im vorangehenden Abschnitt haben wir uns mit einigen Algorithmen auf Segmen-
ten beschéftigt, also insbesondere nur auf lokalen Teilmengen eines Graphen. Fiir
das min-# Problem sind aber zusétzlich zu den Segmentvereinfachungen auch Al-
gorithmen auf dem ganzen Graphen von Bedeutung. Ein Problem, welches bei der
Losungsfindung auftreten wird, ist das Unabhéngige-Menge Problem.

3.2.1 Unabhingige-Menge Problem
Ein Problem gegeben auf Graphen ist das sogenannte Mazimale- Unabhingige-Menge

(Englisch: Mazimum Independent Set) Problem. Gesucht ist dabei die grofite Menge
an Knoten in einem Graphen, welche paarweise nicht benachbart sind.

Gegeben: Graph G = (V, F).
Gesucht: Menge M C V mit Vv, # vy € M : {v1,v2} ¢ E und |M| maximal.
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Es ist bekannt, dass das Maximale-Unabhingige-Menge Problem zur Klasse der
NP-vollsténdigen Probleme gehort, siehe z.B. [AB02], Satz 4.3.6. Ein Approximati-
onsalgorithmus fiir dieses Problem ist der randomisierte Algorithmus 3.5.

Algorithmus 3.5 Random Unabhéngige Menge

1: function RANDOM_UNABHANGIGE_MENGE(G = (V, E))
2 M 0

3 V;est — V

4: while V. # () do

5: v 4— random (Vest)

6 ‘/rest — V;est \ {U}

7 M +— M U {v}

8 for all w € V.. do

9 if {v,w} € E then Ve < Viest \ {w}

10: return M

Falls ein Graph gegeben ist, welcher eine obere Schranke fiir den Grad aller Knoten
besitzt, also Vv € V : deg(v) < k, dann gibt der randomisierte Algorithmus 3.5 als
Ergebnis eine unabhéngige Menge mit mindestens L‘—Z‘j Elementen.

Ersetzt man im Algorithmus 3.5 die Auswahl des néchsten zu betrachtenden Knoten
v in Zeile 5 durch die Auswahl des Knotens mit dem geringsten Grad, dann erhélt
man einen Greedy-Algorithmus fiir die Berechnung einer unabhéngigen Menge.

Es ist bekannt, dass Maximale-Unabhéngige-Menge Problem zu den schwer approxi-
mierbaren Problemen gehort, da es sich nicht bis auf eine Konstante approximieren
lasst. Mit anderen Worten: Es gibt unter der Annahme P#£NP keinen Polynomzeit-
algorithmus, der fiir eine beliebige Eingabe G = (V| E) eine unabhéngige Menge
berechnet, die nur konstant weniger Vertices als die maximale unabhéngige Menge
enthélt.

3.3 Triangulierungen

In diesem letzten Abschnitt werden wir Triangulierungen betrachten. Triangulie-
rungen werden uns dabei helfen das min-# Problem auf einzelne lokale Probleme
zuriickzufiihren, indem wir zu jedem Punkt jeweils nur die benachbarten Dreiecke als
Umgebung in Betracht ziehen. Als Triangulierung einer Punktmenge P bezeichnen
wir - wie in [BCKOO08] - Ebenenunterteilungen, bei denen jede beschriankte Facette
ein Dreieck ist und die Vertices der Facetten Punkte aus P sind.

3.3.1 Delaunay-Triangulierungen

Triangulierungen auf Punktmengen sind nicht eindeutig und kénnen sehr unter-
schiedlich aussehen. Manche Triangulierungen sehen weniger natiirlich aus, da sie
sehr lange Dreiecke mit spitzen Winkeln enthalten. Eine Triangulierung, welche sol-
che Dreiecke so gut es geht vermeidet, ist die sogenannte Delaunay-Triangulierung.
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Definition 3.6 (Delaunay Triangulierung) Sei eine Ebenenunterteilung G =
(V, E) gegeben, wobei es in der Vertexmenge V' C R? keine vier Punkte gibt, die auf
einem Kreis liegen. Die Ebenenunterteilung G heifit Delaunay- Triangulierung genau
dann, wenn

{v1,v9} € E <= Es gibt einen Kreis (Zeugenkreis), der durch v; und vy
lauft und keinen weiteren Punkt aus V' im Inneren oder (3.2)
auf dem Rand enthélt.

Ein Bespiel fiir eine Kante mit Zeugenkreis und ein Beispiel fiir eine Kante ohne
Zeugenkreis sind in Abbildung 3.2a bzw. 3.2b zu sehen.

(a) Zeugenkreis einer Kan- (b) Kante ohne Zeugen- (c) Nicht sichtbarer Punkt
te. kreis. im Umbkreis.

Abbildung 3.2: Zuldssige (a) und nicht zuldssige Kante (b) in ei-
ner Delaunuay-Triangulierung nach der Zeugenkreis-Bedingung (3.2).
Zuliéssiges Dreieck (c¢) in einer Eingeschriankten Delaunuay Triangulierung.
Die blau gekennzeichnete Kante stellt eine Einschrankungskante dar.

Dass es sich bei der Definition 3.6 nicht nur um eine Ebenenunterteilung sondern
tatsdchlich um eine Triangulierung handelt, ist beispielsweise in [BCKOO08], Ab-
schnitt 9.2, bewiesen. Die Einschrinkung an die Vertexmenge, also dass keine vier
Punkte auf einem Kreis liegen, ist nur zur Vereinfachung der Definition und nicht
als echte Einschrankung gedacht. Liegen vier Punkte von V' auf einem Kreis, dann
muss es einen Kreis geben, der nur im Inneren keine weiteren Punkte von V' enthélt.
Es muss aber ausgeschlossen werden, dass sich die zwei Kanten der vier Punkte
schneiden und die Delaunay Triangulierung ist in diesem Fall nicht mehr eindeutig.

Fiir die Konstruktion einer Delaunay-Triangulierung iiber einer Vertexmenge V C
R? mit n = |V| gibt es einen randomisierten Algorithmus, der eine erwartete Laufzeit
von O(nlog(n)) hat (Siehe z.B. [BCKOO08|: Algorithmus in Kapitel 9.3, Laufzeit in
Theorem 9.12).

Eine zu Definition 3.6 alternative Definition einer Delaunay-Triangulierung lautet
wie folgt: Eine Triangulierung ist eine Delaunay-Triangulierung, genau dann, wenn
im Umkreis von jedem Dreieck kein weiterer Vertex der Triangulierung liegt. Mit
dieser Bedingung ist es moglich die Definition 3.6 von Delaunay-Triangulierungen
auf Eingeschrinkte Delaunay-Triangulierungen zu erweitern.
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3.3.2 Eingeschrinkte Delaunay Triangulierungen

Will man nicht nur eine Delaunay-Triangulierung iiber einer Vertexmenge berech-
nen, sondern iiber einer Vertex-Menge zusammen mit einer Menge Mp von fest ge-
gebenen Polygonziigen, dann kann man Eingeschréankte Delaunay Triangulierungen
(CDT) verwenden. Eine Eingeschréinkte Delaunay Triangulierung kann im Allgemei-
nen die Zeugenkreis-Bedingung (3.2) nicht fiir alle Kanten erfiillen, da sie fiir die fest
gegebenen Kanten der Polygonziige nicht erzwungen werden kann. Die Bedingung an
die Dreiecke der Eingeschrankten Delaunay Triangulierung muss also aufgelockert
werden. Die folgenden Definitionen der Eingeschrinkten Delaunuay Triangulierung

richten sich nach [CGAD].

Definition 3.7 (Sichtbarkeit in CDTs) Ein Vertex v € R? ist von einem Punkt
p € R? aus sichtbar, genau dann wenn die Verbindungsgerade vp kein Polygonzug
aus Mp schneidet.

Definition 3.8 (Eingeschrinkte Delaunay Triangulierung (CDT)) Eine Tri-
angulierung iiber einer Vertexmenge V' C R? zusammen mit einer Menge Mp von
fest gegebenen Polygonziigen heift Eingeschrinkte Delaunuay Triangulierung genau
dann, wenn im Umbkreis von jedem Dreieck der Triangulierung kein Vertex (aufler
den Eckpunkten) vom Mittelpunkt des Umbkreises sichtbar ist. Eine Kante eines
Polygonszugs aus Mp heilit Einschrdinkungskante.

Abbildung 3.2¢ verdeutlicht Definition 3.8. In dem eingezeichneten Umkreis des
Dreiecks liegt ein Vertex, der jedoch vom Mittelpunkt des Umkreises nicht sichtbar
ist, da eine Einschrénkungskante die Verbindungsgerade schneidet.
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4 Losungsansitze

St is a mistake to think you can solve any major problems just with potatoes.

-Douglas Adams

Nachdem wir die grundlegenden Begriffe und Probleme in Kapitel 2 sowie be-
kannte Algorithmen in Kapitel 3 eingefiithrt haben, welche die Grundbausteine der
Losungsansitze fiir das min-# Problem sind, werden in diesem Kapitel verschiedene
Losungsansétze vorgestellt und diskutiert. Im Abschnitt 4.1 wird eine Auswahl von
Algorithmen aus verschiedenen Artikeln vorgestellt. Abschnitt 4.2 behandelt im Ge-
gensatz dazu den Algorithmus, welcher im Laufe dieser Arbeit implementiert und
untersucht wurde.

4.1 Bekannte Ansitze
4.1.1 Einfacher-Umweg Heuristik

Eine in [EMO1] vorgestellte Heuristik ist die Einfacher-Umweg Heuristik, welche
in der gleichen Verdffentlichung fiir mehrere Datensétze bestehen aus Hohenlinien
getestet wurde. Die Heuristik 1duft in 4 Schritten ab.

(1) Zuerst wird die einfachste Ebenenunterteilung berechnet, welche eine gegebene
Fehlertoleranz erfiillt. Dafiir verwendet man auf jedem Segment separat ein
Segmentvereinfachungsalgorithmus, wie beispielsweise den Douglas-Peucker-
Algorithmus 3.1. Da die Segmentvereinfachungen separat berechnet wurden,
ist es nicht ausgeschlossen (bzw. je nach Datensatz sehr wahrscheinlich), dass
Uberschneidungen paarweise zwischen den Segmenten und im Segment selbst
auftreten.

(2) Im zweiten Schritt werden alle Paare von sich schneidenden Segmenten be-
stimmt, beispielsweise mit einem Sweep-Line-Algorithmus.

(3) Im néchsten Schritt werden nacheinander alle sich schneidenden Segmentpaare s
und ¢’ betrachtet und davon jeweils ein Segment ausgewéhlt, welches verfeinert
wird um einen Umweg zu finden. (Fiir eine gute Strategie zur Auswahl dieses
Segments, siche [EMO01].) Zu diesem Segment s wird zuerst der Umweg-Graph
berechnet, der alle Kanten enthélt, die das andere Segment s’ nicht schneiden
und die die Fehlertoleranz erfiillen. Sobald dieser Umweg-Graph konstruiert
ist, wird der kiirzeste Pfad vom Anfangs- zum Endpunkt bestimmt und als
Verfeinerung des Segments s genommen. Existiert solch ein Pfad nicht, so
werden s und s" beide jeweils um einen Punkt verfeinert.

(4) Gehe wieder zu Schritt (2) und bestimme die neu entstandenen Segmentiiber-

schneidungen. Der Algorithmus terminiert sobald keine Uberschneidungen von
Segmenten mehr auftreten.
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4.1.2 Konkatenierte Imai-Iri Heuristik

Ein weiterer Ansatz fiir das Losen des min-# Problems wurde in [BKS95] vorge-
stellt. Bei diesem Ansatz wird eine Approximationslosung innerhalb von O(n(n +
m) log(n)) berechnet, wobei n die Anzahl der Vertices der Ebenenenunterteilung und
m die Anzahl der Einschrankungspunkte in P ist. Leider wurden zu dieser Heuristik
keine experimentellen Untersuchungen gemacht.

Die Konkatenierte Imai-Iri Heuristik baut auf dem Algorithmus von Imai und Iri
aus Abschnitt 3.1.2 auf. Anders als die Einfacher-Umweg Heuristik werden in diesem
Ansatz keine Vereinfachungen berechnet, aus der anschlieBend die Uberschneidungen
beseitigt werden. Stattdessen wird in [BKS95] der Imai-Iri-Algorithmus so erweitert,
dass das dabei entstehende Segment die Topologieeinschrankungen aus P einhélt
und weder sich selbst schneidet noch andere Segmente.

Erweiterung um Topologieeinschrinkungen: Die Erweiterung des Imai-Iri Al-
gorithmus erfolgt zuerst fiir z-monotone Segmente. Dabei wird zusétzlich zum
Graph G, der in Algorithmus 3.3 die beziiglich Fehlertoleranz zuldssigen Ab-
kiirzungen beschreibt, ein weiterer Graph H eingefiihrt, der alle beziiglich
Topologieeinschrankungen zulédssigen Kanten enthélt. Sei ein Segment S =
(v1,...,v,) gegeben. Dann werden Vertexmenge Vg und Kantenmenge Ep
der Graphen H definiert als

Vi ={v1,..., v}
Eyg ={{vi,v;}|1 <i < j <n, in der zwischen S;; = (v;,...,v;) und 7;0;

eingeschlossenen Fliche liegen keine Punkte aus P}

Der Schnitt der Kantenmengen von den Graphen G und H gibt dann alle
Abkiirzungskanten, die beide Eigenschaften erfiillen. Der kiirzeste Pfad von
vy nach v, auf dem Schnittgraphen ist demzufolge die Vereinfachung des Seg-
ments S mit kiirzester Lange, welche die Topologieeinschrankungen P einhélt.
Die Erweiterung auf nicht xz-monotone Segmente erfolgt durch eine Zerlegung
des Segments in moglichst lange (ggf. mit rotiertem Koordinatensystem) a-
monotone Teilsegmente. Fiir nicht z-monotone Segmente liefert die Erweite-
rung des Imai-Iri-Algorithmus daher nicht mehr die minimale Vereinfachung.

Keine Uberschneidungen: Jedes z-monotone Teilsegment besitzt nur Vereinfa-
chungen, die keine Selbstiiberschneidungen aufweisen. Sei also ein z-monotones

Teilsegment (v;, . .., v;) eines Segments (vy, ..., v;,...,0;,...,U,) gegeben. Fiige
dann, um Selbstiiberschneidungen zu vermeiden, zu der Menge aller Topolo-
gieeinschrankungen P die Vertices vy, ..., v;—1 und v;yq,..., v, hinzu.

Soweit werden Segmente vereinfacht, sodass keine Selbstiiberschneidungen auftre-
ten. Um Uberschneidungen mit anderen Segmenten zu vermeiden, muss man zu
der Menge P noch die Vertices aller anderen Segmente der Ebenenunterteilung hin-
zufiigen. Die Anzahl der Punkte, die zu P hinzugefiigt werden, kann man reduzieren,
indem man nur Punkte hinzufiigt, die in der konvexen Hiille des Segments liegen.
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4.2 Ansatz iiber Delaunay-Triangulierungen

Ein neuer Ansatz, der auch den Schwerpunkt dieser Bachelorarbeit bildet, ist die
gegebene Ebenenunterteilung zu triangulieren und mit der erhaltenen Triangulie-
rung das Problem auf viele lokale Probleme zu reduzieren. Natiirlich wird durch die
Reduktion auf lokale Probleme die Ebenenunterteilung nicht optimal vereinfacht,
daher handelt es sich um eine heuristische Methode.

4.2.1 FErzeugen der entsprechenden Delaunay Triangulierung

Sei eine Ebenenunterteilung G = (V, E) und eine Menge von Punkten P als Topo-
logieeinschrankungen gegeben. Dann erzeugen wir aus der Punktmenge Vp = VU P
eine Eingeschréinkte Delaunay Triangulierung G p, wobei alle Kanten aus der Menge
E in Gp enthalten sein miissen, wie in Abbildung 4.1 dargestellt. Die Kanten aus
E werden als Einschrdinkungskanten der Delaunay-Triangulierung bezeichnet.

Abbildung 4.1: Ebenenunterteilung als eingeschréinkte Delaunay Triangu-
lierung. Einschrankungskanten sind blau, alle weiteren Kanten der Trian-
gulierung sind grau gezeichnet. Die Topologieeinschrinkungen sind als rote
Punkte gezeichnet und Teil der Triangulierung.

Solch eine Triangulierung existiert unter der Voraussetzung, dass keiner der Punkte
aus P auf einer Kante e € F liegt. Jede Kante der Ebenenunterteilung entspricht
also einer Einschrinkungskante in der Eingeschrénkten Delaunay Triangulierung.
Alle weiteren Kanten in der Delaunay Triangulierung haben keine Entsprechung in
der Ebenenunterteilung, werden aber im folgenden Algorithmus verwendet um heu-
ristisch zu bestimmen ob ein Punkt aus der Ebenenenunterteilung entfernt werden
kann.

Ebenenunterteilung Eingeschrankte Delaunay Triangulierung
G=(V,E) Gp = (Vp, Ep)

Vertex v e V < Vertex v e Vp

Topologieeinschrinkung p € P <> Vertex p € Vp

Kante e € <> Einschrédnkungskante e € Ep

- < Nicht einschriankende Kante e € Ep
degs(v € V) < degg, (v E VD)
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4.2.2 Finden von entfernbaren Punkten

Die Delaunay Triangulierung wird genutzt um zu bestimmen, ob ein Grad-2 Punkt
v aus der Ebenenunterteilung entfernt werden kann, ohne dass es zu Uberschneid-
ungen oder zur Verletzung von Topologieeinschriankungen kommt: Sei ein Punkt
v € V mit degy(v) = 2 gegeben. Die in der Ebenenunterteilung angrenzenden
Punkte an v werden im Folgenden v; und v, genannt. Wir wollen nun priifen, ob der
Punkt v entfernt werden kann. Dies kann in 2 Féllen sofort ausgeschlossen werden.

Fall 1. Die Kante {v;,v2} ist ebenfalls eine Kante der Ebenenunterteilung, also
{v1,v9} € E, siche Abbildung 4.2a.

Fall 2. Der Abstand von Punkt v zur Strecke 0105, welcher wie bei der Abstands-
berechnung (3.1) im Douglas-Peucker-Algorithmus berechnet wird, ist grofer
als die gegebene Fehlerschranke ¢, siehe Abbildung 4.2b.

v
v v
V2 V1
V2 U1 V2 U1
Vopp
(a) Dreieck in Ebenenun- (b) Zu grofler Abstand zur . _
terteilung Kante v705 (¢) Viereck in Ebenenun-
terteilung

Abbildung 4.2: Ausschlussfille fiir das Entfernen des Punktes v.

Trifft keiner dieser beiden Félle zu, kann man weiterhin priifen, ob die Vereinfa-
chung der Knotensequenz vy, v, v zum einfachen Segment vy, vy zuléssig beziiglich
Topologieeinschriankungen ist. Wir priifen fiir jeden Punkt v, # vy, v9, welcher ad-
jazent zum Punkt v in der eingeschréankten Delaunay Triangulierung ist, ob er sich
innerhalb des Dreiecks A(v, vy, v2) befindet. Befindet sich mindestens ein Punkt v,
innerhalb des Dreiecks, dann fiihrt die Vereinfachung zu einer Verletzung der To-
pologiebedingungen: Im Fall dass der Punkt v, ein Topologiepunkt v,, = p € P in
der Ebenenunterteilung ist, wandert durch die Vereinfachung der Punkt p auf die
andere Seite des vereinfachten Segments, siche Abbildung 4.3a. Im Fall dass der
Punkt v,, ein Punkt der Ebenenunterteilung v, € V ist, gibt es ein Segmentstiick,
welches durch v,, 1duft. Die Vereinfachung der Sequenz vy, v, vy zu vy, vy fithrt also
entweder zu einer (Selbst-)Uberscheidung oder zu einer Anderung der Orientierung
einer Facette, wie jeweils in den Abbildungen 4.3b und 4.3c dargestellt.
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V1 Vg V1 V2 V1 V2

(a)  Topologieein- (b) Uberschneidung (c¢) Anderung der (d) Kein Konflikt,
schrankung des Segments Orientierung Yo, ¢ Av,v1,v2)

Abbildung 4.3: Konflikte bei der Vereinfachung der Punktsequenz vy, v, v9
zu V1, V2.

Befindet sich kein zu v adjazenter Punkt # vy, v9 im Dreieck A (v, vy, v5), dann fiihrt
die Vereinfachung zu keinem Konflikt.

4.2.3 Gleichzeitiges Entfernen von Punkten

Im vorangehenden Abschnitt 4.2.2 wurde beschrieben, wie man fiir einen einzelnen
Punkt mithilfe der Delaunay Triangulierung in O(degg, (v)) herausfinden kann, ob
er aus der Ebenenunterteilung entfernt werden kann. Wir wollen aber fiir die Ver-
einfachung der Ebenenunterteilung eine moglichst grole Menge an Punkten finden,
die wir gleichzeitig entfernen kénnen. Dafiir ist eine unabhéngige Menge notwendig.
Beim Entfernen einer unabhéngigen Punktmenge aus der Triangulierung, wobei fiir
jeden Punkt dieser Menge die Topologieeinschriankungen und die Fehlerschranke ¢
eingehalten werden, wird auch auf der gesamten Ebenenenunterteilung die Topolo-
gieeinschriankungen und die Fehlerschranke nicht verletzt.

Es kann beim gleichzeitigen Entfernen von zwei Punkten v¢, v* nur dann zu einem

Konflikt kommen, wenn v® und v® inzident sind. Wenn es zwei Punkte v; und v,
gibt, die beide in der Ebenenunterteilung zu v* oder v’ inzident sind, dann kann
es zu einer Degenerierung einer Facette kommen (d.h. die Facette wiirde nur noch
zwei Eckpunkte besitzen). Die Punkte v?, v®, v; und vy bilden also ein Viereck wie
in Abbildung 4.2c.

Wir suchen also eine unabhéngige Menge von entfernbaren Punkten und schlie-
Ben ebenfalls aus, dass je zwei Punkte in dieser Menge vorhanden sind, die auf ei-
nem Viereck der Ebenenenunterteilung liegen. Dazu bestimmen wir die unabhéingige
Menge mit einem Greedy-Algorithmus. Dieser Algorithmus hat auch den Vorteil,
dass das Entfernen von Punkten mit geringem Grad weniger Laufzeit benotigt.

4.2.4 Zusammenfassung des Algorithmus

Der Algorithmus wird so formuliert, dass in jedem Iterationsschritt eine unabhéngige
Menge von Punkten entfernt wird. Zuerst werden alle Grad-2 Knoten in eine Punkt-
liste eingefiigt und nach aufsteigendem Grad in der Triangulierung sortiert. Fiir
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jeden dieser Punkte wird bestimmt, ob beim Herausloschen Konflikte erzeugt wer-
den. Wenn nicht, werden alle angrenzenden Punkte aus der Punktliste entfernt, der
untersuchte Punkt aus der Triangulierung geloscht und die erhaltene Ebenenenun-
terteilung wird wieder zu einer Triangulierung ergénzt. Dieses Vorgehen wird solange
wiederholt, bis aus der Liste der Grad-2 Punkte keine Punkte mehr gelscht werden
konnen.

Algorithmus 4.1 Vereinfachungs-Algorithmus

1: function SIMPLIFY (G, €min, Emaz)

2 € = Emin

3 num_removed_points = 0

4: while (£ < &,,4,) do

5: 0=c¢ / 2

6 do

7 num_removed_points = 0

8 d=19/2

9: Set S = deg-2_vertices(G)

10: for all v € S do

11: if no_conflicts(d, v) then

12: remove_point(G,v) > Mit Triangulierung der Liicken
13: remove_incident_points(S,v)

14: num_removed_points = num_removed_points + 1
15: while ( num_removed_points > 0 )

16: eE=2x¢

17: return (G)

Der Algorithmus garantiert fiir jedes durchlaufene e, welches im Bereich [, Emaz]
liegt, dass die erhaltene Ebenenunterteilung G°* maximal um € von der urspriinglichen
Ebenenunterteilung G abweicht.

Um das nachzuvollziehen, betrachten wir zuerst die innere do-while-Schleife in Zeile
6-15 vom Algorithmus 4.1. In jedem Schleifendurchlauf entsteht dabei eine verein-
fachte Ebenenunterteilung G, so dass wir eine Sequenz von Ebenenunterteilungen
erhalten

€ € £ __ €
GE.GE, ... GE =G .

Die Variable € hat wiahrend dem Durchlauf der inneren do-while-Schleife einen un-
verdnderten Wert und fiir diesen Parameter ¢ liegt die resultierende Ebenenunter-
teilung G° in einer 5-Umgebung der ersten Ebenenenunterteilung G, denn es gilt

Gi - Ug/4(G8) A G; - Ua/g(Gi) A NG = Gi - U5/2k+1(G2_1)
und somit mit dem Schachtellemma 2.10
G€ g U&/4+6/8+...+€/2k+1 (G‘S) C Ug/Q(GS) (41)

Betrachten wir nun die auflere while-Schleife in Zeile 4-16. Innerhalb dieser Schlei-
fe durchliuft ¢ die Werte {e1,¢e9,...,&} mit & = 271 - £, < €mae. Wir wollen
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nun zeigen, dass jede, nach einem Durchlauf der dufleren Schleife erhaltene Ebe-
nenunterteilung G um nicht mehr als ; von der Ausgangsebenenunterteilung GG
abweicht, das heifit in einer £;-Umgebung von G liegt. Wir wissen, analog zur oberen
Uberlegung, dass mit (4.1) die Bezichungen

G C U, pp(GFY)YNGT CU,,  2(GF2) N NG C UL p2(G)
gelten. Es folgt wieder mit dem Schachtellemma
GE'L g U81/2+€,_1/2++61/2(G)

Mit der Wahl g; = 2¢~1¢,,;,, folgt fiir die Summe der Abstinde

€i—1 €1 i—1 Emin i—2 Emin Emin
+ .o ==2" 42— 4.
2 2 2

2
, 1 1 1
=2 e i [+ + =
€ (2+4+ —1—21_2)

< 21—1€min = &;.

6i+
2

Damit ist G** C U,,(G).

4.2.5 Eigenschaften des Verfahrens

1. Das Verfahren ist ein top-down Verfahren. Man beginnt mit der feinsten Ebe-
nenunterteilung und entfernt sukzessive Grad-2 Punkte so, dass das Zwischen-
ergebnis weiterhin eine giiltige Ebenenunterteilung ist. Die Einfacher-Umweg
Heuristik aus Abschnitt 4.1 ist im Gegensatz dazu ein bottom-up Verfahren, da
man mit der grobsten Ebenenunterteilung anfangt und nach und nach Punkte
hinzufiigt bis eine zuldssige Ebenenunterteilung entstanden ist.

2. Das Verfahren ist ein heuristisches Verfahren. Im Allgemeinen wird die optima-
le Losung nicht gefunden, da nur das Loschen von Grad-2 Punkten erlaubt ist,
wenn die erhaltene Ebenenunterteilung zuléssig ist. Es kann aber eine optimale
Ebenenunterteilung geben, die nicht durch eine Sequenz von zuléssigen Ebe-
nenenunterteilungen erreichbar ist, wenn nur das Entfernen einzelnen Punkten
bzw. unabhéngigen Mengen erlaubt ist. Ein Beispiel ist in Abbildung 4.4 dar-
gestellt.

Abbildung 4.4: Sequenz von Segmentvereinfachungen die iiber ein nicht-
zuléssiges Segment zum Optimum fithren.
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5 Erweiterung um eine Vereinfachungs-
Datenstruktur

Bisher haben wir mit Algorithmus 4.1 ein Verfahren vorgestellt, dass bei Eingabe
eines Wertes £,,,, eine zuldssige Ebenenunterteilung G+ als Ergebnis liefert. Es
ist in der Anwendung aber auch sinnvoll die Zwischenergebnisse G der Berech-
nung ebenfalls zu speichern. Betrachtet man als Beispiel eine Landkarte, dann wird
iiblicherweise zuerst die grofite Zoom-Ebene dargestellt, also mit € = ¢,,,4,. Nachdem
der Nutzer einen bestimmten Ort gefunden hat, zoomt er ndher ran um den inter-
essanten Bereich detaillierter darzustellen. Mit dem bisherigen Verfahren miissten
wir nun erneut eine Ebenenunterteilung berechnen fiir ein neues € < &,,,4,, was aber
schon ein Zwischenergebnis der ersten Berechnung gewesen sein kann.

Speichert man die Sequenz von Vereinfachungen in einer Vereinfachungsdatenstruk-
tur, dann féllt die erneute Berechnung der vereinfachten Ebenenunterteilung weg.
Ein weiterer Vorteil einer Vereinfachungs-Datenstruktur liegt darin, dass man die
Delaunay-Triangulierung nach der Berechnung nicht mehr benétigt. Dadurch spart
man sich den Overhead der Datenstruktur der Delaunay-Triangulierung.

Die Vereinfachungs-Datenstruktur wird als Wald von Bindrbaumen dargestellt mit
der folgenden Struktur eines Knotens.

struct Simple_edge

{

Point_2 xp_begin, *xp_end;
bool is_leaf;

Simple_edge *xparent ,
xchildl ,
xchild2 ;

R eps; // Distance: this edge <—> original arrangement
b

Ein Knoten bezeichnet dabei eine Kante, die durch die zwei Eckpunkte p_begin und
p-end eindeutig gegeben ist. Die Kante kann dabei entweder eine urspriingliche Kan-
te der Ebenenunterteilung sein oder eine Kante, welche durch das Zusammenfassen
von zwei benachbarten Kanten entstanden ist. Die Blattkanten werden durch die
Variable is_leaf gekennzeichnet und bilden zusammen die Ausgangsebenenunter-
teilung. Alle Wurzelknoten des Waldes bilden hingegen die grobste (bzw. aktuelle)
Ebenenunterteilung. Weiterhin hat jeder Knoten se € Simple_edge einen Wert eps,
welcher eine Néherung ist an den Abstand der gegeben Kante zu der Ebenenunter-
teilung.

5.1 Aufbau der Vereinfachungs-Datenstruktur

Der Aufbau der Vereinfachungs-Datenstruktur ist sehr eingingig. Fiige zuerst alle
Kanten der Ebenenunterteilung als Blattknoten in den Wald ein. Bei jedem L&schen
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von Punkten in Algorithmus 4.1 in Zeile 12, finde zu jedem gelschten (Grad-2)
Punkt v die beiden angrenzenden Kanten e; = (vq,v) und egr = (v,v2) und fiige
eine neue Kante ey, = (v1,v9) als Vaterkante zu diesen beiden Kanten ein. Die zu
l6schenden Kanten haben alle keine gemeinsamen Eckpunkte, da eine unabhéngige
Punktmenge aus der Ebenenunterteilung geldscht wird. Daher spielt die Reihenfolge,
in der die Punkte v durchlaufen werden keine Rolle und der Wald wird um genau
eine Ebene tiefer. Die Konstruktion der Vereinfachungs-Datenstruktur ist an einem
einfachen Beispiel in Abbildung 5.1 vorgefiihrt.

el €y €3
er €4
‘ _ OEOEO®OOO®O
| Schritt 1
€23
€1
°
67 64
o @OOOO®O®E
| Schritt 2

€123 @ @
‘4 () (¢
ODOOOOOE

Abbildung 5.1: Aufbau der Vereinfachungs-Datenstruktur.

5.2 Berechnung des Abstands einer Kante zum Originalseg-
ment

Wie bereits erwéhnt, soll in der Variable eps eine Néherung an den Abstand der
gegebenen Kante zur unvereinfachten Ebenenenunterteilung gespeichert werden. Im
Folgenden werden wir als Ndherung den Abstand zu dem zugrunde liegenden Seg-
ment, also zu allen Kanten, die Blattknoten des Teilbaumes von se sind, betrach-
ten. Da das unvereinfachte Segment Teil der unvereinfachten Ebenenunterteilung
ist, ist diese Naherung grofler oder gleich dem geschéatzten Wert. Die Grofle der
Vergroberung wird also nicht unterschétzt. Wir untersuchen zwei Ansétze an die
Néherung des Wertes eps
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Ansatz 1. Sei die Kante se mit Eckpunkten vy, vg gegeben. Falls se kein Blatt-
knoten ist, bezeichnen chl und ch2 die beiden Kindknoten mit Eckpunkten
v, vy bzw. vy, vg. Fiir den Wert eps wird folgende Schatzung gewéhlt

epsl _ {0 : falls se Blattknoten (5.1)

d(var, UvR) + max(epsly,, epsl,,) : sonst

Ansatz 2. Wir betrachten wieder die Kante se mit Eckpunkten vy, vg. Weiterhin
bezeichne Gge = (Vze, Ese) das Segment, aus dem se durch Vereinfachung
hervorgegangen ist. Dann setzen wir den Wert fiir eps als

eps? = max{d(v, v vg)} (5.2)

UEVse

Mit dieser Wahl ist e also der (bis auf Maschinenrundung) genaue Abstand
der Kante se zum urspriinglichen Segment.

Wenn man beide Ansétze vergleicht, dann sieht man, dass Ansatz 1 einerseits nur
eine Ndherung an den Abstand zum Segment liefert, aber andererseits lediglich zwei
Zugriffe auf die beiden Kinderknoten chl und ch2 benétigt und damit sehr schnell
berechnet werden kann. Ansatz 2 berechnet den genauen Abstand zum Original-
segment und liefert daher eine bessere Schiatzung an den Abstand zur Ebenenun-
terteilung. Damit bekommt in der Regel eine vereinfachte Ebenenunterteilung mit
weniger Kanten als mit dem ersten Ansatz bei gleicher Wahl der Schranke ¢;,,. Um
den Wert eps? zu berechnen muss man jedoch fiir jedes Segment se alle Bliitter des
an se hiangenden Teilbaumes durchlaufen. Man muss also zwischen Performanz und
Approximationsgiite abwigen. Einige Beispiele mit Laufzeiten werden in Kapitel 6
fiir die Berechnung von eps mit Ansatz 2 vorgestellt.

Ein weiterer Unterschied zwischen beiden Ansétzen ist der Aufbau der Vereinfa-
chungsstruktur. Beim Ansatz 1 bekommt jeder in die Vereinfachungsstruktur ein-
gefiigte Knoten einen Wert eps zugeordnet, der grofer oder gleich zu den eps’-
Werten der Kinderknoten ist, da

epsl = d(vnr, (v, vR)) + maX(epsfl:hu eps};hz) > max(epsclzh17 epsih?)‘

Die eps’-Werte sinken daher mit wachsender Tiefe der Vereinfachungsstruktur mit
einer unteren Schranke von 0 (Blattknoten). Bei Ansatz 2 gilt diese Eigenschaft fiir
eps? jedoch nicht.

Mit der Einfiihrung der Vereinfachungsstruktur und den eps-Werten ist es nicht
mehr notig in Algorithmus 4.1 in der inneren Schleife die maximale Fehlerschranke
0 in jedem Zeitschritt zu halbieren. Statt dessen wird im Laufe der Vereinfachung die
Vereinfachungsstruktur aufgebaut und diese zum Schétzen des maximalen Fehlers
verwendet. Das angepasste Verfahren ist der Algorithmus 5.1.
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Algorithmus 5.1 Vereinfachungs-Algorithmus mit Vereinfachungsstruktur

1: function SIMPLIFY(G = (V, E), €min, Emaz)

2 Simplification_structure simpli(E) > Blattknoten einfiigen
3 € = Emin

4: num_removed_points = 0
5: while (e < g,,4,) doO
6 do

7 num_removed_points = 0
8 Set S = deg-2_vertices(G)
9 for all v € S do

10: if no_conflicts(e, v) then

11: remove_point(G,v) > Mit Triangulierung der Liicken
12: remove_incident_points(S,v)

13: num_removed_points = num_removed_points + 1

14: simpli.merge_edges(v)

15: while ( num_removed_points > 0 )

16: eE=2x%¢

17: return (G)

5.3 Anwendungen
5.3.1 Konsistente und nicht-konsistente Level-views

Nach Durchlauf des Vereinfachungsalgorithmus 5.1 erhalten wir die Vereinfachungs-
struktur, welche eine hierarchische Vereinfachung der Ebenenunterteilung darstellt.
Uns interessiert bei gegebener Vereinfachungsstruktur und Fehlertoleranz e, aber
nur ein Schnitt durch diesen Wald. Ein Schnitt durch einen Wald ist eine Menge an
Knoten C' C V, so dass jeder Blattknoten von genau einem Knoten aus C' durch
herabsteigen im Wald erreicht werden kann. Einen Schnitt durch die Vereinfachuns-
struktur bezeichnen wir als Level-view, siche Abbildung 5.2.

Ein Level-view bezeichnen wir als konsistent, wenn es keine (Selbst-)iiberschneid-
ungen und keine Verletzungen von Topologieeinschrankungen aufweist, also die Pro-
blemstellung erfiillt, und nicht-konsistent, wenn mindestens eine dieser Eigenschaf-
ten verletzt ist.

Level-view 1

Level-view 2

Abbildung 5.2: Zwei Level-views in einer Vereinfachungsstruktur.
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Falls nicht anders erwéhnt, ist ab jetzt die Fehlerschranke eps mit Formel (5.2) be-
rechnet. Wie im vorangehenden Kapitel erwihnt, ist der eps-Wert nicht wachsend
mit zunehmender Tiefe der Vereinfachungsstruktur. Es kann also ein Fall auftreten,
in der fiir 3 gegebene Toleranzen €; < €5 < €3 mit resultierenden Ebenenverfeinerun-
gen Ay, Ay und Az die grobste Ebenenunterteilung Az die Fehlertoleranz e, erfiillt.
Abbildung 5.3 zeigt solch ein Fall.

(a) Schritt 0 (b) Schritt 1
Y Yy
14+ ™ o 1+ . °
ey = 5 ~ 146 jes =1
s it T+ e+ e
. 4 2 4 6
-1+ ° -1+ ° °
(c) Schritt 2 (d) Schritt 3

Abbildung 5.3: Vereinfachung eines Segments mit nicht monoton wachsen-
dem Abstand € zum Ausgangssegment.

Viel wahrscheinlicher ist es aber, dass nur ein Segment von Aj die Fehlertoleranz e,
erfiillt. Hieran sieht man die Bedeutung der nicht-konsistenten Level-views. Wéahrend
zu jeder Ebenenenunterteilung A;/o/3 ein konsistentes Level-view erzeugt wurde,
kann man einen weiteren Level-view definieren, welcher Kanten von sowohl A; als
auch As enthéalt und die Fehlertoleranz e, erfiillt. Vorteil von solch einem Level-view
ist, dass es gleich viele oder weniger Kanten beinhaltet als das zu A; zugeordnete
Level-view. Es ist jedoch nicht garantiert, dass es konsistent ist.

5.3.2 Adaptive Ebenenverfeinerungen

Bisher wurden die Level-views immer so gewéhlt, dass die Ebenenunterteilung iiberall
die gleiche Auflosung / Verfeinerungsstufe ausweist. Mochte man aber auf einer
Landkarte eine Route planen, so interessiert man sich in der Regel fiir den ge-
nauen Streckenverlauf entlang der Strecke. Die Details, welche weit weg von der
Strecke liegen, sind jedoch fiir den Fahrtverlauf wenig relevant. Man benétigt also
einen Level-view, der an ausgewéhlten Bereichen eine niedrige Fehlertoleranz hat
als bei den {iibrigen Bereichen. Wir geben die Fehlertoleranz daher als Funktion in
Abhéngigkeit von der Position an

Etol - R2 — Rap — 5t0l(p)-
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Die Erzeugung der Level-views mit solch einer Fehlertoleranz lauft analog zu einer
konstanten Fehlertoleranz ab, mit dem einzigen Unterschied, dass zu jeder Kante der
jeweilige Toleranzwert ermittelt werden muss. Den Toleranzwert einer Kante haben
wir als Minimum der beiden Toleranzwerte an den Eckpunkten der Kante gewéhlt.

etol(€ = (p1,p2)) := min(eo(p1), €101 (p2)) (5:3)

Eine mit einer ortsabhéngigen Fehlertoleranz erhaltene Ebenenunterteilung nennen
wir adaptiv.

(a) & = 200000. (b) e(x) € [0,200000].

Abbildung 5.4: Beispiel einer nicht-adaptiven und adaptiven Ebenenunter-
teilung von Baden-Wiirttemberg im Umkreis von Stuttgart.

34



6 Testrechnungen und Anwendungen

Irren ist menschlich. Aber wer richtigen Mist bauen will, braucht einen Computer!“

-Dan Rather

In diesem Abschnitt zeigen wir Testrechnungen fiir einige OpenStreetMaps Da-
tensitze [HWO08], [osm]. Die im Abschnitt 4.2 vorgestellten Datenstrukturen und
Algorithmen wurden in C++ mithilfe von CGAL [cgaal, einer Bibliothek fiir zu-
verldssige und effiziente geometrische Algorithmen, implementiert.

6.1 Implementierungsdetails

Alle in Kapitel 3, 4 und 5 beschriebenen Algorithmen und Berechnungen bauen auf
der Annahme, dass Berechnungen auf den reellen Zahlen exakt sind. Diese Berech-
nungen liefern jedoch nicht die gleichen Ergebnisse auf den reellen Zahlen wie auf
der endlichen Menge der Gleitkommazahlen. Bei Rechnungen auf Gleitkommazah-
len treten aufgrund ihrer Darstellung mit einem Exponenten und einer Mantisse
endlicher Liange Rundungsfehler auf. Bei geometrischen Algorithmen kann das zu
unerwartetem Verhalten fithren, beispielsweise erzeugen sie inkonsistente Ergebnisse,
konnen abstiirzen oder in Endlosschleifen hangen bleiben.

Fiir die Losung des min-# Problems mithilfe von Triangulierungen kann es zum fol-
genden Fall kommen. Beim Priifen, ob sich ein Punkt innerhalb eines Dreiecks befin-
det (siehe Abschnitt 4.2.2 und Abbildung 4.3) kann das Pradikat p € A(py, pa, p3)
als falsch berechnet werden, obwohl sich der Punkt p im Dreieck berfindet. Das
fithrt dazu, dass ein Segment vereinfacht wird und es zu einer Verletzung der Topo-
logiebedingungen kommt, wenn p eine Topologieeinschrankung ist, oder es kommt
zu einer Uberschneidung, wenn p zu einem Segment der Ebenenunterteilung gehort.
Der Losungsansatz wiirde also ein inkonsistentes Ergebnis liefern und somit die Auf-
gabenstellung nicht erfiillen.

Um solche Priadikate exakt auszuwerten stellt CGAL Kernels bereit, die die exakte
Berechnung von Pridikaten (z.B. p € A(p1, p2, p3)) und exakte Konstruktionen (z.B.
die Konstruktion eines Schwerpunkts, eines Dreiecks) ermoglichen.

typedef CGAL:: Exact_predicates_exact_constructions_kernel K;

typedef CGAL:: Triangle 2<K> Triangle_2;

Alle Operationen auf Eingeschrinkten Delaunay Triangulierungen, also das Einfiigen
von Punkten, das Entfernen von Punkten und die anschlieBende Triangulierung des
entstandenden Loches in der Triangulierung wurden mit built-in Methoden der Klas-
se Constrained Delaunay_triangulation 2 mit Hierarchie-Datenstruktur umge-
setzt.

typedef CGAL:: Constrained_Delaunay_triangulation_2 <K, TDS,
Itag> CDT;
typedef CGAL:: Triangulation_hierarchy_2<CDT> CDTh_2;
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Alle weiteren Methoden zur Ebenenvereinfachung wurden mit der C++ - STL-
Bibliothek implementiert. Der komplette Quellcode zur Segmentvereinfachung mit-

tels Eingeschrankten Delaunuay Triangulierungen befindet sich auf der beigefiigten
CD.

6.2 Testrechnungen

Zum Testen vom Algorithmus 5.1 verwenden wir zwei verschiedene Arten von Da-
tensétzen. Zuerst werden OpenStreetMaps (OSM) Datensétze von Hamburger Stadt-
bezirken (kleiner Datensatz, Abschnitt 6.2.1) und von Bundeslandgrenzen, Regie-
rungsbezirken und Landkreisen von Baden-Wiirttemberg (groBerer Datensatz, Ab-
schnitt 6.2.2) verwendet. Als Topologieeinschrankungen werden die Positionen von
Stadten verschiedener Groflen verwendet. Ein weiter Datensatz fiir Testrechnun-
gen ist ein kiinstlicher Testdatensatz, der aus einem Segment besteht, welches spi-
ralformig verlduft und bei maximaler Vereinfachung auf ein Segment bestehend aus
2 Punkten vereinfacht werden kann. Dieser Datensatz kann mit beliebiger Anzahl
an Vertices erzeugt werden und wird in Abschnitt 6.2.3 verwendet, um die Laufzeit-
komplexitit des vorgestellten Algorithmus abzuschétzen.

Alle folgenden Testrechnungen wurden auf einem Laptop ausgefithrt mit 4 Intel i7-
4600U Kernen (2.10 GHz) und dem Betriebssystem Ubuntu LTS 14.04, wobei fiir die
Berechnungen jeweils nur ein Kern verwendet wurde. Der auf dem Betriebssystem
installierte Compiler ist der gcc 4.8.4 Compiler. Als Flags fiir die Kompilierung
wurde -frounding-math zur Unterstiitzung von CGAL und -02 zur Optimierung
verwendet.

6.2.1 Testrechnungen auf einem kleinen Datensatz - Hamburg

Als erstes Testbeispiel wihlen wir einen moglichst kleinen OSM-Datensatz um eine
grobe Einschétzung fiir die benotigten Laufzeiten zu erhalten. Die bereitgestell-
ten OSM-Datensétze enthalten fiir die Punkte der Ebenenunterteilung Léngen- und
Breitengrade, daher miisste man streng genommen die Daten in 3-dimensionale Ko-
ordinaten (auf einer Kugel) abbilden und anschlieend auf eine Ebene projizieren.
Die betrachteten Daten befinden sich jedoch nur auf einem sehr kleinen Teil der
Kugel und werden dann als annidhernd linear betrachtet. Fiir die x-Koordinate wird
% des Breitengrades und fiir die y-Koordinate wird der Langengrad gewéahlt und mit
107 skaliert.

Fiir die ersten Testrechnungen haben wir 3 verschiedene Unterteilungen von Ham-
burg als Eingabe gewihlt (Bundeslandgrenzen, Stadtbezirke und Stadtviertel). Die
Groflen der Vertexmenge, Kantenmenge und die Anzahl der Topologieeinschrank-
ungen sind in Tabelle 6.1 aufgelistet.
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Datensatz | |V |E| |P| | Kommentar
HH-4.graph | 3566 3679 145 | Bundesland
HH-9.graph | 5956 6234 145 | Stadtbezirke
HH-11.graph | 9839 10557 145 | Stadtviertel

Tabelle 6.1: Eckdaten der Hamburger OSM-Datenséitze.

Bei der Zeitmessung unterscheiden wir die Zeit fiir das Einlesen des Datensatzes und
der Generierung der eingeschriankten Delaunay Triangulierung t;,;;, sowie die Zeit fiir
die eigentliche Vereinfachung tgmp. In Tabelle 6.2 sind die wesentlichen Laufzeiten
und Ergebnisse der Vereinfachung aufgelistet, unter anderem der Anteil der nach der
Vereinfachung verbleibenden Vertices |V'|/|V|. Weiterhin wurde in Tabelle 6.2 die
Laufzeit fiir die Vereinfachung tgmp,1 aufgeschliisselt in Laufzeiten fiir Teilroutinen:

® l4eg2, die Zeit zum Finden und Sortieren der Grad-2 Vertices,

o teheak, die Zeit zum Uberpriifen, ob ein Grad-2 Punkt entfernt werden kann,

® lemove, die Zeit zum Entfernen von Vertices,

® fhuids, die Zeit zum Aufbauen der Vereinfachungsdatenstruktur.

Das Ergebnis zur Vereinfachung der Stadtviertel ist in Abbildung 6.1 dargestellt.

(b) € = 200000.

Abbildung 6.1: Hamburger Stadtviertel.

Man sieht in Tabelle 6.2, dass selbst fiir die Unterteilung in Stadtviertel die Gesamt-
laufzeit ¢ = tinis + tsimpr unter 0.3 Sekunden liegt.

Datensatz ‘ % tinit[mS]  tsimpi [ms] ‘ j‘e—j;l i“ﬁ ’S;e‘T"pvle ttb“%pl
HH-4.graph | 3.4% 17 88 | 20.5% 38.6% 8.0% 30.7%
HH-9.graph | 4.4% 24 146 | 21.9% 38.4% 82% 30.1%
HH-11.graph | 5.5% 39 245 |1 24.1% 38.4% 82% 28.2%

Tabelle 6.2: Vereinfachung von Hamburger OSM-Datensétzen. € = 200000.
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6.2.2 Testrechnungen auf einem gréfleren Datensatz
- Baden-Wiirttemberg

Da die Vereinfachungen der OSM-Daten von Hamburg im vorangehenden Abschnitt
sehr schnell berechnet werden konnten, soll jetzt ein etwas groflerer Datensatz gete-
stet werden. Wir wéhlen diesmal 5 verschiedene Unterteilungen von Baden-Wiirttem-
berg, diesmal die Bundeslandgrenzen, Regierungsbezirke, Landkreise, Verwaltungs-
gemeinschaften und Stadtgrenzen, siehe Tabelle 6.3.

Datensatz \4 |E| |P| | Kommentar
bw_lvld.graph | 35428 35427 332 | Bundesland
bw_lvl5.graph | 57055 57060 332 | Regierungsbezirke
bw_lvl6.graph | 133905 133953 332 | Landkreise

bw_lvl7.graph | 291307 291693 332 | Verwaltungsgemeinschaft
bw_lvl8.graph | 450940 452222 332 | Stidte

Tabelle 6.3: Eckdaten der Baden-Wiirttemberg OSM-Datensiétze.

Die Landkreise sind in Abbildung 6.2 dargestellt.

(b) & = 200000.

Abbildung 6.2: Baden-Wiirttembergische Landkreise.

Fiir diese Datensétze sind die Laufzeiten diesmal signifikant gréfer. Fiir die Verein-
fachung der feinsten Unterteilung in Stddte und Verwaltungsgemeinschaften wurden
etwa 22 Sekunden benétigt, siehe Tabelle 6.4. Bedenkt man jedoch, dass das min-#
Problem ein NP-vollstdndiges Problem ist, dann liefert die Heuristik sehr zufrieden-
stellende Laufzeiten.
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Datensatz % tinit [MS]  taimpl [ms] Z‘e—jlj isthkl ttsﬁ ’ET”I‘)]
bw_lvl4.graph | 0.49% 150 1510 | 20.9% 46.1% 5.1% 27.4%
bw_lvl5.graph | 0.52% 248 2475 | 22.8% 45.3%  5.1% 26.4%
bw_lvl6.graph | 0.47% 667 6242 | 28.9% 41.0% 4.8% 24.9%

bw_lvl7.graph | 0.51% 1407 13179 | 33.0% 36.9% 5.1% 24.5%
bw_lvi8.graph | 0.76% 2241 19688 | 36.0% 34.3% 5.3% 23.7%

Tabelle 6.4: Vereinfachung von Baden-Wiirttemberg OSM-Datensétzen.
e = 200000.

6.2.3 Testrechnungen fiir einen konstruierten Datensatz

In diesem Abschnitt werden Testrechnungen auf einem Datensatz durchgefiihrt, wel-
cher kiinstlich erstellt wird, so dass man die Laufzeit des Algorithmus in Abhéngig-
keit von der Eingabegrofie n = |V/| untersuchen kann. Der Datensatz besteht aus
einem einzigen Segment, das sich spiralférmig aufwindet, siehe Abbildung 6.3.

(a) e = 0. (b) & = 250000. (¢) & = 500000.

Abbildung 6.3: Testdatensatz bestehend aus einer Linie.

Im Datensatz sind weiterhin keine Topologieeinschrinkungen gegeben, also P = ),
daher ist fiir e — oo die optimale Losung des min-# Problems gegeben als Segment
welches aus einer einzigen Kante besteht.

Die ermittelten Laufzeiten fiir verschiedene Eingabegrofien sind in Tabelle 6.5 auf-
gelistet.
n tinit tsimpl EOC

1000 6 95 | 0.95

2000 15 180 | 1.24

4000 56 406 | 1.19 41 :
8000 | 223 831 132 =

16000 | 809 1819 | 117 & ol |
32000 | 2494 3420 | 1.28 I
64000 | 7073 7268 | 1.26 P
128000 | 18945 15517 | 1.21 0L w w w ‘
256000 | 43501 36359 335 4 45 555

log(n)
Tabelle 6.5: Laufzeiten
[ms] und EOCs. Abbildung 6.4: Zunahme der Laufzeiten.
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Wenn man davon ausgeht, dass die Laufzeit polynomiell mit der Eingabegrofie
wiéchst, dann kann man die Laufzeit fiir grofe Eingabegrofien n approximieren durch

1) — t(")

init

+t ~ O nP.

Um den Grad p der polynomiellen Laufzeit zu bestimmen, kann man Laufzeiten von
zwei nacheinanderfolgenden Vereinfachungen vergleichen und erhilt die Formel fiir
den EOC (expected order of complexity)

~ log(t(m) /1(n2))

EOC =
log(n1/n2)

In Tabelle 6.5 wurden die EOCs fiir das konstruierte Problem berechnet, die sich fiir
grofle Werte von n auf etwa 1.2 einpendeln. Fiir dieses Problem lauft der Algorithmus
daher in etwas mehr als linearer Laufzeit.

Die Teillaufzeiten tgeg-2, teheck; tremove UNd thyila s der Vereinfachung stehen in Tabelle
6.6. Anhand von Abbildung 6.5 sieht man, dass der prozentuale Anteil der Zeit
tdeg-2 zum Finden und Sortieren der Grad-2 Vertices mit wachsender Eingabegrofie
zunimmt und somit asymptotisch die Laufzeit dominiert.

n Zfdeg—Q tcheck tremove tbuildj

1000 2 49 3 40 Al |

2000 bt 91 5 7

4000 10 207 9 179 =

8000 | 24 427 17 360 & 2[ —o ooz ||
16000 58 943 33 781 o —8— teheck
32000 | 149 1758 71 1437 0 7'/’ ltfreﬂ_love |
64000 | 384 3668 139 3069 | | | | Thuids
128000 | 1390 7549 321 6239 3 3.5 4 4.5 5 5.5
256000 | 3851 17617 646 14195 log(n)

Tabelle 6.6: Aufgeschliisselte Abbildung 6.5: Zunahme der

Laufzeiten [ms] fiir die Verein- Laufzeiten fiir die Vereinfa-

fachung. chung.

6.3 Diskussion

Die Testrechnungen fiir die spiralférmigen Daten aus Abschnitt 6.2.3, legen die Ver-
mutung nahe, dass die implementierte Heuristik eine Laufzeit hat, die etwas mehr
als linear ist, wahrscheinlich also O(nlog(n)). Allerdings wurde die Komplexitit nur
mittels eines konstruierten Beispiels und ohne Topologieeinschriankungen geschétzt,
daher muss man fiir genauere Aussagen den Algorithmus theoretisch auf seine Lauf-
zeit untersuchen.

Anhand von Tabelle 6.5 und Abbildung 6.4 kann man weiterhin vermuten, dass die
Laufzeit ¢ = tinit +tsimp1 durch das Einlesen und das Konstrieren der Eingeschrénkten
Delaunay Triangulierung dominiert wird, da ab n = 128000 die Laufzeit fiir die In-
itialisierung ¢;,;; die Laufzeit fiir die Vereinfachung g, iiberholt. Fiir die Hamburg-
und Baden-Wiirttemberg-Datenséitze ist der grofle Anstieg von t,;; aber nicht zu
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sehen. Eine mogliche Ursache kénnte sein, dass die Punkte der Spirale in der Rei-
henfolge, in der sie entlang der Spirale auftauchen, eingefiigt werden. Es ist jedoch
bekannt, dass eine Delaunay-Triangulierung fiir eine randomisierte Eingaberei-
henfolge in erwartet O(nlog(n)) konstruiert wird, siehe beispielsweise [BCKOOS§]
Theorem 9.12. Die Einfiigereihenfolge der Punkte der Spirale ist also wahrscheinlich
ungiinstig gewahlt und sollte mit zufélligen Einfiigereihenfolgen verglichen werden.

Geht man also davon aus, dass die Laufzeit durch die Zeit fiir die Vereinfachung
dominiert wird, so wie in den Testrechnungen fiir die OSM-Datensétze in Abschnitt
6.2.1 und 6.2.2, dann dominiert asymptotisch die Zeit fiir das Finden und Sortieren
der Grad-2 Vertices tgego (Abbildung 6.5, Tabellen 6.2 und 6.4). Um die Gesamt-
laufzeit zu verbessern, muss man daher zuerst diese Teilroutine verbessern.
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7 Fazit

7.1 Zusammenfassung

In dieser Arbeit wurde das Problem der Ebenenvereinfachung eingefiihrt zusammen
mit drei Bedingungen: (1) die Einhaltung einer gegebenen Fehlerschranke, (2) der
Ausschluss von Uberschneidungen von Segmenten sowie (3) zusitzliche Topologie-
einschrankungen. Zu diesem Problem wurden bekannte theoretische Ergebnisse zur
Komplexitiat und zur Approximierbarkeit vorgestellt: Es handelte sich dabei um ein
NP-vollstéindiges Problem, welches nicht bis auf einen Faktor n'/>=? fiir jedes § > 0
an die Optimallésung in Polynomzeit approximiert werden kann. (Natiirlich unter
der Annahme P # NP.) In Kapitel 4 wurden bekannte Algorithmen zur Segment-
vereinfachung sowie Heuristiken fiir Ebenenvereinfachung vorgestellt und eine neue
Heuristik, welche zuléssige Vereinfachungsschritte iiber Eingeschrinkte Delaunay-
Triangulierungen bestimmen kann. Diese Heuristik wurde im Laufe der Arbeit mit-
hilfe von CGAL [cgaa] implementiert und getestet. Die Laufzeiten fiir die Vereinfa-
chung von OSM-Datensétzen blieben fiir Eingaben mit bis zu 500000 Vertices unter
einer halben Minute, wobei wiahrend der Vereinfachung 94.5-99.5% der Vertices ent-
fernt wurden. Dabei war jedoch nicht bekannt, wie viele Vertices bei einer optimalen
Ebenenvereinfachung iibrig bleiben wiirden. Mit einem konstruierten Datensatz wur-
den zudem Laufzeiten abgeschétzt, die etwas mehr als linear in der Eingabegrofie
waren.

7.2 Ausblick

Als mogliche Fortsetzung dieser Arbeit konnte man die genaue Laufzeit der hier
vorgestellten Heuristik theoretisch untersuchen. Ebenfalls kann man versuchen die
Approximationsgiite abzuschétzen, entweder im Vergleich zu anderen Heuristiken
oder zu einer unteren Schranke an die optimale Vereinfachung einer Instanz.

Interessant wéren auch Testrechnungen auf weiteren Datensétzen, wie beispielsweise
die Vereinfachung von Hohenlinien, da diese anfiilliger fiir Uberschneidungen sind.
Moglicherweise treten bei solchen Datensitzen andere Laufzeiten auf, da héufiger
iteriert werden muss.

Um die Ebenenvereinfachung zu beschleunigen, wére auch eine Parallelisierung des
Codes denkbar. Eine Moglichkeit wére erst eine unabhéngige Menge auf der Menge
aller Grad-2 Knoten zu berechnen und anschliefend auf dieser Menge das Priifen der
Entfernbarkeit, das Entfernen der Punkte und die Konstruktion der Vereinfachungs-
datenstruktur parallel auszufiihren. Bei sehr grofien Datensétzen (z.B. Lander, Kon-
tinente, Weltkarten) konnte dies signifikant schnellere Laufzeiten ergeben.
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