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Kurzfassung

Verschiedene Geoinformationen, wie beispielsweise Straßenverläufe, Höhenlinen und
Grenzverläufe, liegen häufig in großen Datenmengen vor. Zur Darstellung auf einem
Bildschirm wird jedoch selten die volle Auflösung benötigt, sondern eine geringe-
re Auflösung, die vom gewählten Zoombereich und von der Bildschirmauflösung
abhängt. Daher müssen die Rohdaten vor der Übertragung und Darstellung bis zu
einer gegebenen Fehlertoleranz vereinfacht werden.

In dieser Arbeit wird das Problem der Vereinfachung von polygonalen Ebenenun-
terteilungen untersucht. Dabei soll bei der Vereinfachung eine Fehlertoleranz einge-
halten und die Topologie der Eingabe erhalten werden. Weitere Einschränkungen
an die Vereinfachung können als Topologieeinschränkungspunkte gegeben sein, die
nach der Vereinfachung in der topologisch selben Facette liegen müssen.

Es werden bekannte theoretische Ergebnisse sowie verschiedene Heuristiken zur Ebe-
nenvereinfachung vorgestellt. Eine neue Heuristik, die mittels einer eingeschränkten
Delaunay-Triangulierung das Problem auf viele kleine und lokale Teilprobleme re-
duziert, wurde im Rahmen dieser Arbeit implementiert. Zum Testen der Heuri-
stik wurden sowohl verschiedene OpenStreetMap-Datensätze von Hamburg und von
Baden-Württemberg verwendet als auch konstruierte Datensätze um die Laufzeit
abzuschätzen. Anhand der ermittelten Laufzeiten für die Vereinfachung kann man
von einer Laufzeit ausgehen, die superlinear jedoch nicht quadratisch ist.
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1 Einleitung

Verschiedene Arten von Geoinformationen sind heutzutage unerlässlich für die Rou-
tenplanung. Für die Planung einer Radtour ist es praktisch über den genauen Stra-
ßenverlauf, Radwege, Höhenprofile, das öffentliche Verkehrsnetz und Grenzen von
Tarifgebieten informiert zu sein. Will man auf solche Daten über ein Mobilgerät zu-
greifen, dann möchte man jedoch nicht die komplette Datenmenge abrufen, sondern
maximal so viel, wie man mit der jeweiligen Bildschirmauflösung und dem gewählten
Zoombereich darstellen kann. Die abgerufenen Karten sollen also vorher bis auf eine
gegebene Ungenauigkeit bzw. Fehlertoleranz vereinfacht werden. Die Vereinfachung
der Karten hat abgesehen von einer kleineren Datenmenge den Vorteil, dass darauf
ausgeführte Methoden schneller von statten gehen, zum Beispiel das Finden einer
kürzesten Strecke oder das Zeichnen und Einfärben der Karte.

Eine weitere Anforderung an die übertragenen Kartendaten ist, dass sie gewisse To-
pologieeinschränkungen einhalten sollen. Gehen wir davon aus, dass ein Höhenprofil
in Form von Höhenlinien auf dem Mobilgerät dargestellt wird. Dann sollen sich zwei
Höhenlinien auf der vereinfachten Darstellung nicht schneiden, da es sonst zu Inkon-
sistenzen führt, beispielsweise bei der Berechnung der steilsten Downhill-Route. Eine
andere Einschränkung soll durch Punkte gegeben sein. Solch ein Punkt könnte die
Position eine Tankstelle darstellen, die auf der richtigen Seite der Autobahn liegen
muss.

Abbildung 1.1: Beispiel einer Ebenenvereinfachung, bei der ein Ein-
schränkungspunkt (rot) nach der Vereinfachung auf der anderen Seite des
Polygonzugs liegt.

Ziel und Aufbau der Arbeit

Ziel dieser Arbeit ist es, eine neue Heuristik für das Problem der Ebenenvereinfa-
chung aufzustellen, zu implementieren und an verschiedenen Datensätzen zu testen.

Die Arbeit ist daher wie folgt aufgebaut. In Kapitel 2 werden die benötigten mathe-
matischen Grundlagen eingeführt, sowie die Problembeschreibung formuliert. Außer-
dem beinhaltet Kapitel 2 die wichtigsten bereits bekannten theoretischen Ergebnisse
zum Problem der Ebenenvereinfachung. Im nächsten Kapitel folgen bekannte (Teil-)-
Algorithmen und Datenstrukturen, welche für das Verständnis der Lösungsansätze
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nötig sind. Kapitel 4 stellt anschließend sowohl bekannte Heuristiken zur Ebenenver-
einfachung, als auch eine neue, in dieser Bachelorarbeit untersuchte Heuristik vor.
Eine Vereinfachungsdatenstruktur, die bei erneuten Anfragen zur Vereinfachung ein
Ergebnis schnell zur Verfügung stellt, wird in Kapitel 5 vorgestellt. Die Verein-
fachungsdatenstruktur ist in Hinsicht auf die Vereinfachung von Karten relevant
und kann verschiedene Funktionalitäten realisieren, wie beispielsweise eine adaptive
Vereinfachung von Karten. Im vorletzen Kapitel 6 wird die Heuristik auf verschiede-
nen Datensätzen getestet. Einerseits werden OpenStreetMap-Datensätze [HW08] als
Eingabe verwendet um die praktische Tauglichkeit zu testen und andererseits werden
konstruierte Datensätze getestet um die Laufzeitkomplexität abzuschätzen. Die er-
reichten Ergebnisse und mögliche Erweiterungen werden zuletzt in einem Überblick
in Kapitel 7 zusammengefasst.
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2 Grundlagen und Problembeschreibung

2.1 Ebenenunterteilungen und Segmente

Definition 2.1 (Graph) Ein (ungerichteter) Graph G ist ein Tupel (V,E) be-
stehend aus einer endlichen Menge V , genannt Vertexmenge, und einer Menge
E ⊂ {{v1, v2} |v1, v2 ∈ V, v1 6= v2} genannt Kantenmenge. Ein Element v ∈ V heißt
Vertex oder Knoten, ein Element e = {v1, v2} ∈ E heißt Kante zwischen den Vertices
v1 und v2.

Definition 2.2 (Grad) Sei v ein Vertex des Graphen G = (V,E). Dann bezeichnet
die Anzahl aller Kanten e aus E, die den Vertex v enthalten den Grad von v

grad(v) =
∑
e∈E

|{v} ∩ e|.

Zur visuellen Darstellung eines Graphen verwendet man üblicherweise eine Einbet-
tung des Graphen in die R2-Ebene, welche die Vertices auf Punkte in R2 abbildet
und die Kanten als Verbindungskurven, speziell Verbindungsgeraden, zwischen den
Punkten darstellt.

Definition 2.3 (Straight-line Einbettung) Sei V die Vertexmenge eines unge-
richteten Graphen G = (V,E). Eine Abbildung Φ : V 7−→ R2 heißt Einbettung des
Graphen G in R2. Wenn die Einbettung zusätzlich auf den Kanten e = {v1, v2}
definiert ist als Φ(e) := {x ∈ R2|x = λΦ(v1) + (1−λ)Φ(v2), λ ∈ (0, 1)}, also als Ver-
bindungsgerade zwischen beiden eingebetteten Vertices, dann heißt die Einbettung
Φ Straight-line Einbettung.

Definition 2.4 (Straight-line planar) Ein Graph heißt straight-line planar, wenn
es eine Straight-line Einbettung Φ gibt, so dass sich alle eingebetteten Kanten Φ(e)
paarweise nicht schneiden.

Im Folgenden betrachten wir Graphen, die eine Knotenmenge V besitzen, welche eine
Teilmenge des R2 ist und straight-line planar sind mit der kanonischen Einbettung
Φ : V −→ R2, v 7−→ v.

Definition 2.5 (Ebenenunterteilung) Eine Ebenenunterteilung ist das Abbild
einer Straight-line Einbettung eines Straight-line-planaren Graphen. Die durch die
eingebetteten Kanten begrenzten Flächen heißen Facetten.

Definition 2.6 (Induzierter Teilgraph) Sei G = (V,E) ein Graph. Ein Graph
G′ = (V ′, E ′) heißt induzierter Teilgraph von G wenn folgende Eigenschaften gelten

• V ′ ⊂ V

• E ′ ⊂ E

• e = {v1, v2} ∈ E ′ ⇐⇒ v1, v2 ∈ V ′
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Die Kantenzüge in einem Graphen, welche vereinfacht werden sollen, können als
induzierte Teilgraphen der Ebenenunterteilung gesehen werden.

Definition 2.7 (Segment) Ein Segment ist ein induzierter TeilgraphGS = (VS, ES)
eines Graphen G mit den folgenden Eigenschaften.

• Das Segment besteht aus mindestens zwei Knoten, N = |VS| ≥ 2,

• es gibt ein Isomorphismus Ψ vom Segment zum Graphen GE = (VE, EE) mit

VE = {1, . . . , N},
EE = {{i, i+ 1}|1 ≤ i ≤ N − 1}

• alle nicht-Eckpunkte haben im übergeordneten Graphen G den Grad 2,

∀ 2 ≤ i ≤ N − 1 : degG(Ψ−1(i)) = 2.

Das Segment als Polygonzug im R2 wird bei gegebenen Graphen GS = (VS, ES) de-
finiert als die Menge aller Punkte, die auf der Straight-line Einbettung des Segments
liegen.

PS = {x ∈ R2|∃ e ∈ ES : x ∈ Φ(e)}. (2.1)

Besteht das Segment aus genau zwei Knoten VS = {v1, v2}, dann ist der Polygonzug
die Strecke zwischen v1 und v2 und wir schreiben

PS = v1v2.

2.2 Abstände und Fehlerschranken

Definition 2.8 (Abstand zu einer Menge) Sei ein Punkt in einem Vektorraum
x ∈ X mit Norm ‖·‖ und eine Menge M ⊆ X gegeben. Dann wird der Abstand des
Punktes x zur Menge M definiert als die größte untere Schranke vom Abstand zu
allen Punkten m ∈M

d(x,M) = inf
m∈M
‖x−m‖.

Definition 2.9 (ε-Umgebung einer Menge) Sei eine Menge M ⊆ X gegeben.
Die ε-Umgebung Uε(M) der Menge M ist die Menge aller Punkte, die einen Abstand
von maximal ε zur Menge M besitzen

Uε(M) = {x ∈ X|d(x,M) ≤ ε}.

Da wir in den folgenden Kapiteln Ebenenunterteilungen vergleichen wollen und ins-
besondere ob eine grobe Ebenenunterteilung maximal um ε von einer feinen Ebenen-
unterteilung abweicht, werden wir die Ebenenunterteilungen als Mengen auffassen
und prüfen, ob die eine Ebenenunterteilung in der ε-Umgebung der anderen liegt.
Dabei muss betont werden, dass diese Eigenschaft nicht symmetrisch ist in dem
Sinne dass für zwei beliebige Mengen M und N die Äquivalenz

M ⊆ Uε(N)⇔ N ⊆ Uε(M) (2.2)

nicht gilt. Zwei Gegenbeispiele sind in Abbildung 2.1 zu sehen.
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Abbildung 2.1: Zwei Gegenbeispiele zur Aussage (2.2). Es gilt in beiden
Fällen N ⊆ Uε(M) und M * Uε(N).

Lemma 2.10 (Schachtellemma) Seien L, M und N Teilmengen eines normierten
Vektorraums. Falls L in der ε-Umgebung von M und M in der δ-Umgebung von N
liegt

L ⊆ Uε(M) ∧M ∈ Uδ(N),

dann gilt L ∈ Uε+δ(N).

Die Aussage des Lemmas ist sehr intuitiv. Ein Beweis wird dennoch kurz dargestellt.

Beweis: Aus der Dreiecksungleichung ‖l − n‖ ≤ ‖l − m‖ + ‖m − n‖ folgt die
Abschätzung

inf
n∈N
‖l − n‖ ≤ sup

l∈L
‖l −m‖+ sup

m∈M
‖m− n‖.

Diese gilt für beliebige l ∈ L, m ∈M , n ∈ N , welche noch als freie Variablen in der
Ungleichung stehen. Also folgt insbesondere

sup
l∈L

inf
n∈N
‖l − n‖ ≤ sup

l∈L
inf
m∈M
‖l −m‖+ sup

m∈M
inf
n∈N
‖m− n‖ ≤ ε+ δ,

was nach Definition bedeutet, dass L in der (ε+ δ)-Umgebung von N liegt. �

2.3 Problembeschreibung

”
Everything should be made as simple as possible, but not simpler.“

-Albert Einstein

Sei eine Ebenenunterteilung in Form des Graphen G = (V ⊂ R2, E) mit kanonischer
Straight-line Einbettung gegeben. Gesucht ist eine Vereinfachung des Graphen G, in
der möglichst viele Grad 2 Knoten ausgespart werden, d.h. es werden möglichst vie-
le und lange Knotensequenzen v1, v2, . . . , vn durch die einfache Kante v1vn ersetzt,
wobei alle Knoten vi mit 2 ≤ i ≤ n − 1 Grad-2 Knoten sind. Der bei der Vereinfa-
chung entstandene Graph soll dabei die Planarität und die Topologie erhalten. Das
Problem kann noch um folgende Nebenbedingungen erweitert werden.
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Fehlerschranke: Sei eine Fehlerschranke ε > 0 gegeben. Zulässig sind nur die
Vereinfachungen von Segmenten S bestehend aus den Vertices v1, v2, . . . , vn
zu einer Kante S ′ = v1vn, wenn das Ausgangssegment S in einer ε-Umgebung
von der Kante S ′ liegt, d.h.

S ∈ Uε(S ′)⇐⇒ max
s∈S

min
s′∈S′
‖s− s′‖ ≤ ε.∗

Topologieeinschränkungen: Zusätzlich zur geforderten Planarität und Topolo-
gieerhaltung des vereinfachten Graphen G′ wird eine Menge P ⊂ R2 an To-
polgieeinschränkungen gegeben. Die Punkte aus der Menge P sollen vor und
nach der Vereinfachung jeweils in der topologisch selben Facette liegen.

Zu einer gegebenen Ebenenunterteilung mit dem Graphen G = (V,E), einer Feh-
lerschranke ε und einer Menge P an Topologieeinschränkungen ist eine vereinfachte
Ebenenunterteilung G′ = (V ′, E ′) gesucht, welche die oberen Eigenschaften erfüllt
mit minimaler Größe der Vertexmenge V ′. Dieses Problem werden wir, angelehnt
an die Namensgebung in [II88], min-# Ebenenunterteilungsproblem oder auch kurz
min-# Problem nennen. Eine bildliche Darstellung des Problems ist in Abbildung
2.2 zu sehen.

(a) Höchste Auflösung. (b) Vereinfachte Ebenenunterteilung.

Abbildung 2.2: Unvereinfachte und vereinfachte Ebenenunterteilung.

2.4 Theoretische Untersuchungen des Problems

Das Problem der Segmentvereinfachung und aufbauend darauf das Problem der
Vereinfachung von Ebenenunterteilungen ist schon lange ein bekanntes Problem in
der Kartographie und Bildverarbeitung. Schon in den 70er Jahren wurden erste
heuristische Lösungsansätze verfolgt, z.B. [DP73], [II88], [GHMS91], [CC92]. Das
erste theoretische Ergebnis zu diesem Problem wurde in der Dissertationsschrift von

∗Die Segmente können als Polygonzüge parametrisiert werden. Setzt man die Parametrisierun-
gen in die Formel für den Abstand ein, dann wird sie somit zu einer stetigen Funktion auf einer
kompakten Menge. Mit dem Satz von Weierstraß, [Rud05] Satz 4.16, nimmt der Abstand daher
auch sein Minimum / Maximum an.
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R. Estkowski [Est00] veröffentlicht, in der bewiesen wird, dass das Problem nicht in
Polynomzeit lösbar ist, wenn P6=NP† gilt.

Satz 2.11 (NP-vollständig [Est00]) Das min-# Problem ist für P = ∅ NP-
vollständig.

Weiterhin wurde in der Veröffentlichung [EM01] das Problem als Minimierungs-
problem untersucht und ein Ergebnis zur Approximierbarkeit gefunden. Die zum
Verständnis benötigten Begriffe werden vorher kurz erläutert. Die Definitionen und
Notationen sind hauptsächlich an [Kan94] angelehnt.

Definition 2.12 (Minimierungsproblem) Ein Minimierungsproblem über einem
Alphabet Σ ist ein Tupel M = (IM , SM ,mM) wobei

• IM ⊆ Σ∗ die Menge aller Eingaben und in Polynomzeit erkennbar ist,

• SM(x) ⊆ Σ∗ die Menge aller zulässigen Lösungen für die Eingabe x ∈ IM ist,
wobei es für jedes x ∈ IM ein Polynom p und ein in Polynomzeit berechenbares
Prädikat π gibt, so dass

SM(x) = {y ∈ Σ∗ : |y| ≤ p(|x|) ∧ π(x, y)}.

Man kann also mit π in Polynomzeit bestimmen, ob y eine zulässige Lösung
ist und die Länge der Lösung y wächst höchstens polynomiell mit der Länge
der Eingabe x.

• mM : IM × Σ∗ −→ N bezeichnet die Zielfunktion, welche in Polynomzeit
berechenbar ist. Der Wert mM(x, y) ist nur für y ∈ SM(x) definiert.

Weiterhin bezeichne optM(x) = inf
y∈SM (x)

mM(x, y) den optimalen Wert der Zielfunk-

tion.

Definition 2.13 (Polynomiell beschränkt) Sei ein MinimierungsproblemM ge-
geben. Wenn die Zielfunktion eine obere Schranke besitzt, die polynomiell in der
Eingabegröße ist, also

∃Polynom p ∀x ∈ IM ∀ y ∈ SM(x) : mM(x, y) ≤ p(|x|), (2.3)

dann heißt die Zielfunktion polynomiell beschränkt.

Definition 2.14 (MIN PB-Vollständigkeit) Sei MIN PB die Klasse aller Mini-
mierungsprobleme mit polynomiell beschränkter Zielfunktion. Dann heißt das Mi-
nimierungsproblem M MIN PB-vollständig wenn

• M ∈ MIN PB und

• jedes N ∈ MIN PB ist polynomiell reduzierbar auf M .

†Für die Bedeutung der Komplexitätsklassen P und NP, siehe z.B. [AB02].
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Definition 2.15 (Approximierbarkeit) Ein Minierungsproblem M kann bis auf
q(n) (q : Z+ −→ R+) approximiert werden, wenn es einen Polynomzeitalgorithmus
A gibt, so dass für jedes n ∈ Z+ und alle Eingaben x ∈ IM mit n = |x| gilt

A(x) ∈ SM(x) und mM(x,A(x)) ≤ q(n) · optM(x).

Der Algorithmus A berechnet also in Polynomzeit eine zulässige Lösung, die in der
Zielfunktion maximal um den Faktor q(n) von dem optimalen Wert abweicht.

Satz 2.16 (MIN PB-vollständig, [EM01]) Das min-# Ebenenunterteilungspro-
blem ist für P = ∅ MIN PB-vollständig und kann nicht mit einem Polynomzeital-
gorithmus, unter der Annahme dass P6=NP, bis auf einen Faktor von q(n) = n1/5−δ

zur optimalen Lösung approximiert werden für jedes δ > 0, wobei n die Anzahl der
Vertices in der originalen Ebenenunterteilung bezeichnet.
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3 Verwendete Algorithmen und Datenstrukturen

Bevor wir uns mit den Lösungsansätzen des min-# Problems beschäftigen, werden
wir in diesem Kapitel einige Probleme mit Lösungsalgorithmen und Datenstrukturen
anschauen, die Bestandteile der Lösungen sein werden. Dies umfasst Algorithmen
zur Vereinfachung von Segmenten, Algorithmen auf Graphen und Triangulierungen.

3.1 Algorithmen zur Segmentvereinfachung

Zuerst stellen wir einige bekannte Algorithmen zur Segmentvereinfachungen vor, da
diese Algorithmen die Grundlagen der Lösungsansätze des min-# Problems bilden.
Aufgrund der Struktur von Segmenten werden wir im Folgenden Segmente statt als
Graph GS = (VS, ES) als geordnete Menge der Vertices (v1, . . . , vn) schreiben, wobei
es so zu verstehen ist, dass zwei aufeinanderfolgende Vertices im Segment über eine
Kante verbunden sind.

3.1.1 Douglas-Peucker Algorithmus

Der Douglas-Peucker Algorithmus [DP73] ist ein heuristischer Algorithmus zur Ver-
einfachung von Segmenten. Bei gegebenen Ausgangssegment und einer unteren Schran-
ke ε liefert der Algorithmus als Ergebnis ein vereinfachtes Segment, zu dem das
Ausgangssegment einen maximalen Abstand von ε hat.

Die Idee ist, das Segment zuerst durch das Geradenstück zwischen Anfangs- und
Endpunkt, v1 und vn zu approximieren. Wenn alle dazwischen liegenden Segment-
punkte einen Abstand von ε oder weniger haben, ist diese Approximation gültig.
Wenn nicht, wählt man den Punkt vk mit dem größten Abstand zur Geraden und
teilt das Problem rekursiv in die beiden Teilprobleme mit den Segmenten v1, . . . , vk
und vk, . . . , vn.

Gegeben: Segment S = (v1, . . . , vn), obere Schranke ε > 0.

Gesucht: Segment S ′ = (v1, vi1 , . . . , vim , vn) mit 2 ≤ i1 ≤ . . . ≤ im ≤ n − 1 und
S ⊆ Uε(S

′).

Algorithmus 3.1 Douglas-Peucker Algorithmus

1: function DouglasPeucker(S = (v1, . . . , vn), ε)
2: Sapprox = v1vn
3: dmax ← max d(vi, Sapprox)
4: vmax ← arg max d(vi, Sapprox)
5: if dmax < ε then
6: return Sapprox

7: else
8: SL ← (v1, . . . , vmax)
9: SR ← (vmax, . . . , vn)

10: return (DouglasPeucker(SL, ε) ∪ DouglasPeucker(SR, ε))
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Wie bereits erwähnt, handelt es sich bei dem Douglas-Peucker Algorithmus um eine
Heuristik, das heißt das Ergebnis ist im Allgemeinen nicht die optimale Lösung.
Zudem werden keine Selbstüberschneidungen ausgeschlossen, wie in Abbildung 3.1
exemplarisch dargestellt.

v1

v2

v3

v4

v5

(a) Ausgangssegment

v1

v2

v3

v4

v5

h = hmax > ε

(b) Erster Schritt

v1

v2

v3

v4

v5

h < ε
h > ε

(c) Zweiter Schritt

v1

v2

v3

v4

v5

(d) Ergebnis vom DP Algorithmus

Abbildung 3.1: Douglas-Peucker Iterationsschritte mit selbstüber-
schneidendem Ergebnis.

Bemerkung 3.2 Zu beachten ist, dass der Abstand eines Punktes vi zu dem Ge-
radenstück Sapprox = v1vn im obigen Algorithmus im Allgemeinen nicht als Höhe
von vi auf der Geraden durch v1 und vn berechnet werden kann, da das Lot nicht
notwendigerweise auf dem Geradenstück v1vn stehen muss. Der Abstand muss daher
mit der Fallunterscheidung

d(vi, v1vn) =

{
h(vi, v1vn) 0 ≤ 〈vi − v1, vi−vn

‖vi−vn‖〉 ≤ 1

min(d(vi, v1), d(vi, vn)) sonst
(3.1)

berechnet werden, wobei h(vi, v1vn) = 〈vi − v1, (vi−vn)⊥‖vi−vn‖ 〉 die Höhe des Dreiecks v1,

vi, vn mit Grundseite vivn ist und ·⊥ eine 90◦-Drehung in der Ebene bezeichnet.

3.1.2 Imai-Iri Algorithmus

Ein weiterer Algorithmus zur Vereinfachung eines Polygonzugs ist der Imai-Iri Algo-
rithmus, welcher erstmals in [II88] vorgestellt wurde. Die Idee vom Imai-Iri Algorith-
mus ist, zuerst einen Graphen zu konstruieren, der alle zulässigen, also um maximal
ε abweichenden Abkürzungen enthält und auf diesem Graphen den kürzesten Pfad
zu finden.

Gegeben: Segment S = (v1, . . . , vn), obere Schranke ε > 0

Gesucht: Teilsegment S ′ = (v1, vi1 , . . . , vim , vn) mit 2 ≤ i1 ≤ . . . ≤ im ≤ n−1, S ⊆
Uε(S

′) und minimaler Anzahl an Punkten unter allen zulässigen Segmenten.
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Algorithmus 3.3 Imai-Iri Algorithmus

1: function Imai-Iri(S = (v1, . . . , vn), ε)
2: E = {(vi, vj)|1 ≤ i < j ≤ n, vivj ∈ Uε(S)}
3: Graph G = (S,E)
4: S ′ = shortest path(G, v1, vn)
5: return (S ′)

Die Konstruktion der Kantenmenge des Graphen G in Zeile 2 vom Algorithmus 3.3
kann mit einem naiven Algorithmus in O(n3) berechnet werden. Chan und Chin
[CC92] haben ein Algorithmus aufgestellt, der G in O(n2) berechnet, was auch die
optimale Laufzeit ist, da G im schlimmsten Fall bis zu O(n2) Kanten hat. Der
kürzeste Pfad auf G kann ebenfalls in O(n2) mit topologischer Sortierung berechnet
werden. Eine offensichtliche topologische Sorierung ist gegeben durch die Reihenfol-
ge, in der die Vertices entlang des Segments sortiert sind.

vi < vj ⇐⇒ i < j

Damit kann man beim Dijkstra-Algorithmus (siehe z.B. [Sch09], Kapitel 15) zur
Berechnung des kürzesten Pfades die Vertices vi nach dieser Ordnung durchlaufen
und nur Kanten betrachten, die zu Vertices vj > vj führen.

Bemerkung 3.4 Wie beim Douglas-Peucker Algorithmus 3.1 werden keine Selbst-
überschneidungen ausgeschlossen. Der Imai-Iri Algorithmus berechnet jedoch im
Gegensatz zum Douglas-Peucker-Algorithmus die optimale Segmentvereinfachung,
also ein Segment mit minimaler Anzahl an verbleibenden Punkten, zu einer gegebe-
nen Fehlerschranke ε. Das ist einfach nachzuvollziehen, da die (bzw. eine) optimale
Segmentvereinfachung einerseits als Pfad in G enthalten sein muss und andererseits
minimal ist, da sonst eine kürzere Segmentvereinfachung berechnet werden würde.

3.2 Algorithmen auf Graphen

Im vorangehenden Abschnitt haben wir uns mit einigen Algorithmen auf Segmen-
ten beschäftigt, also insbesondere nur auf lokalen Teilmengen eines Graphen. Für
das min-# Problem sind aber zusätzlich zu den Segmentvereinfachungen auch Al-
gorithmen auf dem ganzen Graphen von Bedeutung. Ein Problem, welches bei der
Lösungsfindung auftreten wird, ist das Unabhängige-Menge Problem.

3.2.1 Unabhängige-Menge Problem

Ein Problem gegeben auf Graphen ist das sogenannte Maximale-Unabhängige-Menge
(Englisch: Maximum Independent Set) Problem. Gesucht ist dabei die größte Menge
an Knoten in einem Graphen, welche paarweise nicht benachbart sind.

Gegeben: Graph G = (V,E).

Gesucht: Menge M ⊂ V mit ∀ v1 6= v2 ∈M : {v1, v2} /∈ E und |M | maximal.
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Es ist bekannt, dass das Maximale-Unabhängige-Menge Problem zur Klasse der
NP-vollständigen Probleme gehört, siehe z.B. [AB02], Satz 4.3.6. Ein Approximati-
onsalgorithmus für dieses Problem ist der randomisierte Algorithmus 3.5.

Algorithmus 3.5 Random Unabhängige Menge

1: function Random Unabhängige Menge(G = (V,E))
2: M ← ∅
3: Vrest ← V
4: while Vrest 6= ∅ do
5: v ← random(Vrest)
6: Vrest ← Vrest \ {v}
7: M ←M ∪ {v}
8: for all w ∈ Vrest do
9: if {v, w} ∈ E then Vrest ← Vrest \ {w}

10: return M

Falls ein Graph gegeben ist, welcher eine obere Schranke für den Grad aller Knoten
besitzt, also ∀ v ∈ V : deg(v) ≤ k, dann gibt der randomisierte Algorithmus 3.5 als

Ergebnis eine unabhängige Menge mit mindestens b |V |
k
c Elementen.

Ersetzt man im Algorithmus 3.5 die Auswahl des nächsten zu betrachtenden Knoten
v in Zeile 5 durch die Auswahl des Knotens mit dem geringsten Grad, dann erhält
man einen Greedy-Algorithmus für die Berechnung einer unabhängigen Menge.

Es ist bekannt, dass Maximale-Unabhängige-Menge Problem zu den schwer approxi-
mierbaren Problemen gehört, da es sich nicht bis auf eine Konstante approximieren
lässt. Mit anderen Worten: Es gibt unter der Annahme P6=NP keinen Polynomzeit-
algorithmus, der für eine beliebige Eingabe G = (V,E) eine unabhängige Menge
berechnet, die nur konstant weniger Vertices als die maximale unabhängige Menge
enthält.

3.3 Triangulierungen

In diesem letzten Abschnitt werden wir Triangulierungen betrachten. Triangulie-
rungen werden uns dabei helfen das min-# Problem auf einzelne lokale Probleme
zurückzuführen, indem wir zu jedem Punkt jeweils nur die benachbarten Dreiecke als
Umgebung in Betracht ziehen. Als Triangulierung einer Punktmenge P bezeichnen
wir - wie in [BCKO08] - Ebenenunterteilungen, bei denen jede beschränkte Facette
ein Dreieck ist und die Vertices der Facetten Punkte aus P sind.

3.3.1 Delaunay-Triangulierungen

Triangulierungen auf Punktmengen sind nicht eindeutig und können sehr unter-
schiedlich aussehen. Manche Triangulierungen sehen weniger natürlich aus, da sie
sehr lange Dreiecke mit spitzen Winkeln enthalten. Eine Triangulierung, welche sol-
che Dreiecke so gut es geht vermeidet, ist die sogenannte Delaunay-Triangulierung.
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Definition 3.6 (Delaunay Triangulierung) Sei eine Ebenenunterteilung G =
(V,E) gegeben, wobei es in der Vertexmenge V ⊂ R2 keine vier Punkte gibt, die auf
einem Kreis liegen. Die Ebenenunterteilung G heißt Delaunay-Triangulierung genau
dann, wenn

{v1, v2} ∈ E ⇐⇒ Es gibt einen Kreis (Zeugenkreis), der durch v1 und v2

läuft und keinen weiteren Punkt aus V im Inneren oder

auf dem Rand enthält.

(3.2)

Ein Bespiel für eine Kante mit Zeugenkreis und ein Beispiel für eine Kante ohne
Zeugenkreis sind in Abbildung 3.2a bzw. 3.2b zu sehen.

(a) Zeugenkreis einer Kan-
te.

(b) Kante ohne Zeugen-
kreis.

(c) Nicht sichtbarer Punkt
im Umkreis.

Abbildung 3.2: Zulässige (a) und nicht zulässige Kante (b) in ei-
ner Delaunuay-Triangulierung nach der Zeugenkreis-Bedingung (3.2).
Zulässiges Dreieck (c) in einer Eingeschränkten Delaunuay Triangulierung.
Die blau gekennzeichnete Kante stellt eine Einschränkungskante dar.

Dass es sich bei der Definition 3.6 nicht nur um eine Ebenenunterteilung sondern
tatsächlich um eine Triangulierung handelt, ist beispielsweise in [BCKO08], Ab-
schnitt 9.2, bewiesen. Die Einschränkung an die Vertexmenge, also dass keine vier
Punkte auf einem Kreis liegen, ist nur zur Vereinfachung der Definition und nicht
als echte Einschränkung gedacht. Liegen vier Punkte von V auf einem Kreis, dann
muss es einen Kreis geben, der nur im Inneren keine weiteren Punkte von V enthält.
Es muss aber ausgeschlossen werden, dass sich die zwei Kanten der vier Punkte
schneiden und die Delaunay Triangulierung ist in diesem Fall nicht mehr eindeutig.

Für die Konstruktion einer Delaunay-Triangulierung über einer Vertexmenge V ⊂
R2 mit n = |V | gibt es einen randomisierten Algorithmus, der eine erwartete Laufzeit
von O(n log(n)) hat (Siehe z.B. [BCKO08]: Algorithmus in Kapitel 9.3, Laufzeit in
Theorem 9.12).

Eine zu Definition 3.6 alternative Definition einer Delaunay-Triangulierung lautet
wie folgt: Eine Triangulierung ist eine Delaunay-Triangulierung, genau dann, wenn
im Umkreis von jedem Dreieck kein weiterer Vertex der Triangulierung liegt. Mit
dieser Bedingung ist es möglich die Definition 3.6 von Delaunay-Triangulierungen
auf Eingeschränkte Delaunay-Triangulierungen zu erweitern.
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3.3.2 Eingeschränkte Delaunay Triangulierungen

Will man nicht nur eine Delaunay-Triangulierung über einer Vertexmenge berech-
nen, sondern über einer Vertex-Menge zusammen mit einer Menge MP von fest ge-
gebenen Polygonzügen, dann kann man Eingeschränkte Delaunay Triangulierungen
(CDT) verwenden. Eine Eingeschränkte Delaunay Triangulierung kann im Allgemei-
nen die Zeugenkreis-Bedingung (3.2) nicht für alle Kanten erfüllen, da sie für die fest
gegebenen Kanten der Polygonzüge nicht erzwungen werden kann. Die Bedingung an
die Dreiecke der Eingeschränkten Delaunay Triangulierung muss also aufgelockert
werden. Die folgenden Definitionen der Eingeschränkten Delaunuay Triangulierung
richten sich nach [CGAb].

Definition 3.7 (Sichtbarkeit in CDTs) Ein Vertex v ∈ R2 ist von einem Punkt
p ∈ R2 aus sichtbar, genau dann wenn die Verbindungsgerade vp kein Polygonzug
aus MP schneidet.

Definition 3.8 (Eingeschränkte Delaunay Triangulierung (CDT)) Eine Tri-
angulierung über einer Vertexmenge V ⊂ R2 zusammen mit einer Menge MP von
fest gegebenen Polygonzügen heißt Eingeschränkte Delaunuay Triangulierung genau
dann, wenn im Umkreis von jedem Dreieck der Triangulierung kein Vertex (außer
den Eckpunkten) vom Mittelpunkt des Umkreises sichtbar ist. Eine Kante eines
Polygonszugs aus MP heißt Einschränkungskante.

Abbildung 3.2c verdeutlicht Definition 3.8. In dem eingezeichneten Umkreis des
Dreiecks liegt ein Vertex, der jedoch vom Mittelpunkt des Umkreises nicht sichtbar
ist, da eine Einschränkungskante die Verbindungsgerade schneidet.
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4 Lösungsansätze

”
It is a mistake to think you can solve any major problems just with potatoes.“

-Douglas Adams

Nachdem wir die grundlegenden Begriffe und Probleme in Kapitel 2 sowie be-
kannte Algorithmen in Kapitel 3 eingeführt haben, welche die Grundbausteine der
Lösungsansätze für das min-# Problem sind, werden in diesem Kapitel verschiedene
Lösungsansätze vorgestellt und diskutiert. Im Abschnitt 4.1 wird eine Auswahl von
Algorithmen aus verschiedenen Artikeln vorgestellt. Abschnitt 4.2 behandelt im Ge-
gensatz dazu den Algorithmus, welcher im Laufe dieser Arbeit implementiert und
untersucht wurde.

4.1 Bekannte Ansätze

4.1.1 Einfacher-Umweg Heuristik

Eine in [EM01] vorgestellte Heuristik ist die Einfacher-Umweg Heuristik, welche
in der gleichen Veröffentlichung für mehrere Datensätze bestehen aus Höhenlinien
getestet wurde. Die Heuristik läuft in 4 Schritten ab.

(1) Zuerst wird die einfachste Ebenenunterteilung berechnet, welche eine gegebene
Fehlertoleranz erfüllt. Dafür verwendet man auf jedem Segment separat ein
Segmentvereinfachungsalgorithmus, wie beispielsweise den Douglas-Peucker-
Algorithmus 3.1. Da die Segmentvereinfachungen separat berechnet wurden,
ist es nicht ausgeschlossen (bzw. je nach Datensatz sehr wahrscheinlich), dass
Überschneidungen paarweise zwischen den Segmenten und im Segment selbst
auftreten.

(2) Im zweiten Schritt werden alle Paare von sich schneidenden Segmenten be-
stimmt, beispielsweise mit einem Sweep-Line-Algorithmus.

(3) Im nächsten Schritt werden nacheinander alle sich schneidenden Segmentpaare s
und s′ betrachtet und davon jeweils ein Segment ausgewählt, welches verfeinert
wird um einen Umweg zu finden. (Für eine gute Strategie zur Auswahl dieses
Segments, siehe [EM01].) Zu diesem Segment s wird zuerst der Umweg-Graph
berechnet, der alle Kanten enthält, die das andere Segment s′ nicht schneiden
und die die Fehlertoleranz erfüllen. Sobald dieser Umweg-Graph konstruiert
ist, wird der kürzeste Pfad vom Anfangs- zum Endpunkt bestimmt und als
Verfeinerung des Segments s genommen. Existiert solch ein Pfad nicht, so
werden s und s′ beide jeweils um einen Punkt verfeinert.

(4) Gehe wieder zu Schritt (2) und bestimme die neu entstandenen Segmentüber-
schneidungen. Der Algorithmus terminiert sobald keine Überschneidungen von
Segmenten mehr auftreten.
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4.1.2 Konkatenierte Imai-Iri Heuristik

Ein weiterer Ansatz für das Lösen des min-# Problems wurde in [BKS95] vorge-
stellt. Bei diesem Ansatz wird eine Approximationslösung innerhalb von O(n(n +
m) log(n)) berechnet, wobei n die Anzahl der Vertices der Ebenenenunterteilung und
m die Anzahl der Einschränkungspunkte in P ist. Leider wurden zu dieser Heuristik
keine experimentellen Untersuchungen gemacht.

Die Konkatenierte Imai-Iri Heuristik baut auf dem Algorithmus von Imai und Iri
aus Abschnitt 3.1.2 auf. Anders als die Einfacher-Umweg Heuristik werden in diesem
Ansatz keine Vereinfachungen berechnet, aus der anschließend die Überschneidungen
beseitigt werden. Stattdessen wird in [BKS95] der Imai-Iri-Algorithmus so erweitert,
dass das dabei entstehende Segment die Topologieeinschränkungen aus P einhält
und weder sich selbst schneidet noch andere Segmente.

Erweiterung um Topologieeinschränkungen: Die Erweiterung des Imai-Iri Al-
gorithmus erfolgt zuerst für x-monotone Segmente. Dabei wird zusätzlich zum
Graph G, der in Algorithmus 3.3 die bezüglich Fehlertoleranz zulässigen Ab-
kürzungen beschreibt, ein weiterer Graph H eingeführt, der alle bezüglich
Topologieeinschränkungen zulässigen Kanten enthält. Sei ein Segment S =
(v1, . . . , vn) gegeben. Dann werden Vertexmenge VH und Kantenmenge EH
der Graphen H definiert als

VH ={v1, . . . , vn}
EH ={{vi, vj}|1 ≤ i < j ≤ n, in der zwischen Sij = (vi, . . . , vj) und vivj

eingeschlossenen Fläche liegen keine Punkte aus P}

Der Schnitt der Kantenmengen von den Graphen G und H gibt dann alle
Abkürzungskanten, die beide Eigenschaften erfüllen. Der kürzeste Pfad von
v1 nach vn auf dem Schnittgraphen ist demzufolge die Vereinfachung des Seg-
ments S mit kürzester Länge, welche die Topologieeinschränkungen P einhält.
Die Erweiterung auf nicht x-monotone Segmente erfolgt durch eine Zerlegung
des Segments in möglichst lange (ggf. mit rotiertem Koordinatensystem) x-
monotone Teilsegmente. Für nicht x-monotone Segmente liefert die Erweite-
rung des Imai-Iri-Algorithmus daher nicht mehr die minimale Vereinfachung.

Keine Überschneidungen: Jedes x-monotone Teilsegment besitzt nur Vereinfa-
chungen, die keine Selbstüberschneidungen aufweisen. Sei also ein x-monotones
Teilsegment (vi, . . . , vj) eines Segments (v1, . . . , vi, . . . , vj, . . . , vn) gegeben. Füge
dann, um Selbstüberschneidungen zu vermeiden, zu der Menge aller Topolo-
gieeinschränkungen P die Vertices v1, . . . , vi−1 und vj+1, . . . , vn hinzu.

Soweit werden Segmente vereinfacht, sodass keine Selbstüberschneidungen auftre-
ten. Um Überschneidungen mit anderen Segmenten zu vermeiden, muss man zu
der Menge P noch die Vertices aller anderen Segmente der Ebenenunterteilung hin-
zufügen. Die Anzahl der Punkte, die zu P hinzugefügt werden, kann man reduzieren,
indem man nur Punkte hinzufügt, die in der konvexen Hülle des Segments liegen.
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4.2 Ansatz über Delaunay-Triangulierungen

Ein neuer Ansatz, der auch den Schwerpunkt dieser Bachelorarbeit bildet, ist die
gegebene Ebenenunterteilung zu triangulieren und mit der erhaltenen Triangulie-
rung das Problem auf viele lokale Probleme zu reduzieren. Natürlich wird durch die
Reduktion auf lokale Probleme die Ebenenunterteilung nicht optimal vereinfacht,
daher handelt es sich um eine heuristische Methode.

4.2.1 Erzeugen der entsprechenden Delaunay Triangulierung

Sei eine Ebenenunterteilung G = (V,E) und eine Menge von Punkten P als Topo-
logieeinschränkungen gegeben. Dann erzeugen wir aus der Punktmenge VD = V ∪P
eine Eingeschränkte Delaunay Triangulierung GD, wobei alle Kanten aus der Menge
E in GD enthalten sein müssen, wie in Abbildung 4.1 dargestellt. Die Kanten aus
E werden als Einschränkungskanten der Delaunay-Triangulierung bezeichnet.

Abbildung 4.1: Ebenenunterteilung als eingeschränkte Delaunay Triangu-
lierung. Einschränkungskanten sind blau, alle weiteren Kanten der Trian-
gulierung sind grau gezeichnet. Die Topologieeinschränkungen sind als rote
Punkte gezeichnet und Teil der Triangulierung.

Solch eine Triangulierung existiert unter der Voraussetzung, dass keiner der Punkte
aus P auf einer Kante e ∈ E liegt. Jede Kante der Ebenenunterteilung entspricht
also einer Einschränkungskante in der Eingeschränkten Delaunay Triangulierung.
Alle weiteren Kanten in der Delaunay Triangulierung haben keine Entsprechung in
der Ebenenunterteilung, werden aber im folgenden Algorithmus verwendet um heu-
ristisch zu bestimmen ob ein Punkt aus der Ebenenenunterteilung entfernt werden
kann.

Ebenenunterteilung Eingeschränkte Delaunay Triangulierung
G = (V,E) GD = (VD, ED)
Vertex v ∈ V ↔ Vertex v ∈ VD
Topologieeinschränkung p ∈ P ↔ Vertex p ∈ VD
Kante e ∈ E ↔ Einschränkungskante e ∈ ED
- ↔ Nicht einschränkende Kante e ∈ ED
degG(v ∈ V ) ≤ degGD

(v ∈ VD)
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4.2.2 Finden von entfernbaren Punkten

Die Delaunay Triangulierung wird genutzt um zu bestimmen, ob ein Grad-2 Punkt
v aus der Ebenenunterteilung entfernt werden kann, ohne dass es zu Überschneid-
ungen oder zur Verletzung von Topologieeinschränkungen kommt: Sei ein Punkt
v ∈ V mit degG(v) = 2 gegeben. Die in der Ebenenunterteilung angrenzenden
Punkte an v werden im Folgenden v1 und v2 genannt. Wir wollen nun prüfen, ob der
Punkt v entfernt werden kann. Dies kann in 2 Fällen sofort ausgeschlossen werden.

Fall 1. Die Kante {v1, v2} ist ebenfalls eine Kante der Ebenenunterteilung, also
{v1, v2} ∈ E, siehe Abbildung 4.2a.

Fall 2. Der Abstand von Punkt v zur Strecke v1v2, welcher wie bei der Abstands-
berechnung (3.1) im Douglas-Peucker-Algorithmus berechnet wird, ist größer
als die gegebene Fehlerschranke ε, siehe Abbildung 4.2b.

v2 v1

v

(a) Dreieck in Ebenenun-
terteilung

h > ε

v2

v

v1

(b) Zu großer Abstand zur
Kante v1v2

v2

v

v1

vopp

(c) Viereck in Ebenenun-
terteilung

Abbildung 4.2: Ausschlussfälle für das Entfernen des Punktes v.

Trifft keiner dieser beiden Fälle zu, kann man weiterhin prüfen, ob die Vereinfa-
chung der Knotensequenz v1, v, v2 zum einfachen Segment v1, v2 zulässig bezüglich
Topologieeinschränkungen ist. Wir prüfen für jeden Punkt vn 6= v1, v2, welcher ad-
jazent zum Punkt v in der eingeschränkten Delaunay Triangulierung ist, ob er sich
innerhalb des Dreiecks 4(v, v1, v2) befindet. Befindet sich mindestens ein Punkt vn
innerhalb des Dreiecks, dann führt die Vereinfachung zu einer Verletzung der To-
pologiebedingungen: Im Fall dass der Punkt vn ein Topologiepunkt vn = p ∈ P in
der Ebenenunterteilung ist, wandert durch die Vereinfachung der Punkt p auf die
andere Seite des vereinfachten Segments, siehe Abbildung 4.3a. Im Fall dass der
Punkt vn ein Punkt der Ebenenunterteilung vn ∈ V ist, gibt es ein Segmentstück,
welches durch vn läuft. Die Vereinfachung der Sequenz v1, v, v2 zu v1, v2 führt also
entweder zu einer (Selbst-)Überscheidung oder zu einer Änderung der Orientierung
einer Facette, wie jeweils in den Abbildungen 4.3b und 4.3c dargestellt.

24



vn

v1

v

v2

(a) Topologieein-
schränkung

vn

v1

v

v2

(b) Überschneidung
des Segments

vn

v1

v

v2

(c) Änderung der
Orientierung

v1

v

v2

(d) Kein Konflikt,
∀ vn /∈ 4(v, v1, v2)

Abbildung 4.3: Konflikte bei der Vereinfachung der Punktsequenz v1, v, v2
zu v1, v2.

Befindet sich kein zu v adjazenter Punkt 6= v1, v2 im Dreieck 4(v, v1, v2), dann führt
die Vereinfachung zu keinem Konflikt.

4.2.3 Gleichzeitiges Entfernen von Punkten

Im vorangehenden Abschnitt 4.2.2 wurde beschrieben, wie man für einen einzelnen
Punkt mithilfe der Delaunay Triangulierung in O(degGD

(v)) herausfinden kann, ob
er aus der Ebenenunterteilung entfernt werden kann. Wir wollen aber für die Ver-
einfachung der Ebenenunterteilung eine möglichst große Menge an Punkten finden,
die wir gleichzeitig entfernen können. Dafür ist eine unabhängige Menge notwendig.
Beim Entfernen einer unabhängigen Punktmenge aus der Triangulierung, wobei für
jeden Punkt dieser Menge die Topologieeinschränkungen und die Fehlerschranke ε
eingehalten werden, wird auch auf der gesamten Ebenenenunterteilung die Topolo-
gieeinschränkungen und die Fehlerschranke nicht verletzt.

Es kann beim gleichzeitigen Entfernen von zwei Punkten va, vb nur dann zu einem
Konflikt kommen, wenn va und vb inzident sind. Wenn es zwei Punkte v1 und v2
gibt, die beide in der Ebenenunterteilung zu va oder vb inzident sind, dann kann
es zu einer Degenerierung einer Facette kommen (d.h. die Facette würde nur noch
zwei Eckpunkte besitzen). Die Punkte va, vb, v1 und v2 bilden also ein Viereck wie
in Abbildung 4.2c.

Wir suchen also eine unabhängige Menge von entfernbaren Punkten und schlie-
ßen ebenfalls aus, dass je zwei Punkte in dieser Menge vorhanden sind, die auf ei-
nem Viereck der Ebenenenunterteilung liegen. Dazu bestimmen wir die unabhängige
Menge mit einem Greedy-Algorithmus. Dieser Algorithmus hat auch den Vorteil,
dass das Entfernen von Punkten mit geringem Grad weniger Laufzeit benötigt.

4.2.4 Zusammenfassung des Algorithmus

Der Algorithmus wird so formuliert, dass in jedem Iterationsschritt eine unabhängige
Menge von Punkten entfernt wird. Zuerst werden alle Grad-2 Knoten in eine Punkt-
liste eingefügt und nach aufsteigendem Grad in der Triangulierung sortiert. Für
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jeden dieser Punkte wird bestimmt, ob beim Herauslöschen Konflikte erzeugt wer-
den. Wenn nicht, werden alle angrenzenden Punkte aus der Punktliste entfernt, der
untersuchte Punkt aus der Triangulierung gelöscht und die erhaltene Ebenenenun-
terteilung wird wieder zu einer Triangulierung ergänzt. Dieses Vorgehen wird solange
wiederholt, bis aus der Liste der Grad-2 Punkte keine Punkte mehr gelöscht werden
können.

Algorithmus 4.1 Vereinfachungs-Algorithmus

1: function Simplify(G, εmin, εmax)
2: ε = εmin
3: num removed points = 0
4: while (ε < εmax) do
5: δ = ε/2
6: do
7: num removed points = 0
8: δ = δ/2
9: Set S = deg 2 vertices(G)

10: for all v ∈ S do
11: if no conflicts(δ, v) then
12: remove point(G,v) . Mit Triangulierung der Lücken
13: remove incident points(S,v)
14: num removed points = num removed points + 1

15: while ( num removed points > 0 )
16: ε = 2 ∗ ε
17: return (G)

Der Algorithmus garantiert für jedes durchlaufene ε, welches im Bereich [εmin, εmax]
liegt, dass die erhaltene EbenenunterteilungGε maximal um ε von der ursprünglichen
Ebenenunterteilung G abweicht.

Um das nachzuvollziehen, betrachten wir zuerst die innere do-while-Schleife in Zeile
6-15 vom Algorithmus 4.1. In jedem Schleifendurchlauf entsteht dabei eine verein-
fachte Ebenenunterteilung Gε

i , so dass wir eine Sequenz von Ebenenunterteilungen
erhalten

Gε
0, G

ε
1, . . . , G

ε
k = Gε.

Die Variable ε hat während dem Durchlauf der inneren do-while-Schleife einen un-
veränderten Wert und für diesen Parameter ε liegt die resultierende Ebenenunter-
teilung Gε in einer ε

2
-Umgebung der ersten Ebenenenunterteilung Gε

0, denn es gilt

Gε
1 ⊆ Uε/4(G

ε
0) ∧Gε

2 ⊆ Uε/8(G
ε
1) ∧ . . . ∧Gε = Gε

k ⊆ Uε/2k+1(Gε
k−1)

und somit mit dem Schachtellemma 2.10

Gε ⊆ Uε/4+ε/8+...+ε/2k+1(Gε
0) ⊂ Uε/2(G

ε
0). (4.1)

Betrachten wir nun die äußere while-Schleife in Zeile 4-16. Innerhalb dieser Schlei-
fe durchläuft ε die Werte {ε1, ε2, . . . , εl} mit εi = 2i−1 · εmin < εmax. Wir wollen
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nun zeigen, dass jede, nach einem Durchlauf der äußeren Schleife erhaltene Ebe-
nenunterteilung Gεi um nicht mehr als εi von der Ausgangsebenenunterteilung G
abweicht, das heißt in einer εi-Umgebung von G liegt. Wir wissen, analog zur oberen
Überlegung, dass mit (4.1) die Beziehungen

Gεi ⊆ Uεi/2(G
εi−1) ∧Gεi−1 ⊆ Uεi−1/2(G

εi−2) ∧ . . . ∧Gε1 ⊆ Uε1/2(G)

gelten. Es folgt wieder mit dem Schachtellemma

Gεi ⊆ Uεi/2+εi−1/2+...+ε1/2(G).

Mit der Wahl εi = 2i−1εmin folgt für die Summe der Abstände

εi
2

+
εi−1

2
+ . . .+

ε1
2

= 2i−1
εmin

2
+ 2i−2

εmin
2

+ . . .+
εmin

2

= 2i−1εmin ·
(

1

2
+

1

4
+ . . .+

1

2i−2

)
< 2i−1εmin = εi.

Damit ist Gεi ⊆ Uεi(G).

4.2.5 Eigenschaften des Verfahrens

1. Das Verfahren ist ein top-down Verfahren. Man beginnt mit der feinsten Ebe-
nenunterteilung und entfernt sukzessive Grad-2 Punkte so, dass das Zwischen-
ergebnis weiterhin eine gültige Ebenenunterteilung ist. Die Einfacher-Umweg
Heuristik aus Abschnitt 4.1 ist im Gegensatz dazu ein bottom-up Verfahren, da
man mit der gröbsten Ebenenunterteilung anfängt und nach und nach Punkte
hinzufügt bis eine zulässige Ebenenunterteilung entstanden ist.

2. Das Verfahren ist ein heuristisches Verfahren. Im Allgemeinen wird die optima-
le Lösung nicht gefunden, da nur das Löschen von Grad-2 Punkten erlaubt ist,
wenn die erhaltene Ebenenunterteilung zulässig ist. Es kann aber eine optimale
Ebenenunterteilung geben, die nicht durch eine Sequenz von zulässigen Ebe-
nenenunterteilungen erreichbar ist, wenn nur das Entfernen einzelnen Punkten
bzw. unabhängigen Mengen erlaubt ist. Ein Beispiel ist in Abbildung 4.4 dar-
gestellt.

Abbildung 4.4: Sequenz von Segmentvereinfachungen die über ein nicht-
zulässiges Segment zum Optimum führen.
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5 Erweiterung um eine Vereinfachungs-

Datenstruktur

Bisher haben wir mit Algorithmus 4.1 ein Verfahren vorgestellt, dass bei Eingabe
eines Wertes εmax eine zulässige Ebenenunterteilung Gεmax als Ergebnis liefert. Es
ist in der Anwendung aber auch sinnvoll die Zwischenergebnisse Gεi der Berech-
nung ebenfalls zu speichern. Betrachtet man als Beispiel eine Landkarte, dann wird
üblicherweise zuerst die größte Zoom-Ebene dargestellt, also mit ε = εmax. Nachdem
der Nutzer einen bestimmten Ort gefunden hat, zoomt er näher ran um den inter-
essanten Bereich detaillierter darzustellen. Mit dem bisherigen Verfahren müssten
wir nun erneut eine Ebenenunterteilung berechnen für ein neues ε < εmax, was aber
schon ein Zwischenergebnis der ersten Berechnung gewesen sein kann.

Speichert man die Sequenz von Vereinfachungen in einer Vereinfachungsdatenstruk-
tur, dann fällt die erneute Berechnung der vereinfachten Ebenenunterteilung weg.
Ein weiterer Vorteil einer Vereinfachungs-Datenstruktur liegt darin, dass man die
Delaunay-Triangulierung nach der Berechnung nicht mehr benötigt. Dadurch spart
man sich den Overhead der Datenstruktur der Delaunay-Triangulierung.

Die Vereinfachungs-Datenstruktur wird als Wald von Binärbaumen dargestellt mit
der folgenden Struktur eines Knotens.

struct Simple edge
{

Point 2 ∗p begin , ∗p end ;

bool i s l e a f ;

S imple edge ∗parent ,
∗ ch i ld1 ,
∗ c h i l d 2 ;

R eps ; // Distance : t h i s edge <−> o r i g i n a l arrangement
} ;

Ein Knoten bezeichnet dabei eine Kante, die durch die zwei Eckpunkte p begin und
p end eindeutig gegeben ist. Die Kante kann dabei entweder eine ursprüngliche Kan-
te der Ebenenunterteilung sein oder eine Kante, welche durch das Zusammenfassen
von zwei benachbarten Kanten entstanden ist. Die Blattkanten werden durch die
Variable is leaf gekennzeichnet und bilden zusammen die Ausgangsebenenunter-
teilung. Alle Wurzelknoten des Waldes bilden hingegen die gröbste (bzw. aktuelle)
Ebenenunterteilung. Weiterhin hat jeder Knoten se ∈ Simple edge einen Wert eps,
welcher eine Näherung ist an den Abstand der gegeben Kante zu der Ebenenunter-
teilung.

5.1 Aufbau der Vereinfachungs-Datenstruktur

Der Aufbau der Vereinfachungs-Datenstruktur ist sehr eingängig. Füge zuerst alle
Kanten der Ebenenunterteilung als Blattknoten in den Wald ein. Bei jedem Löschen
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von Punkten in Algorithmus 4.1 in Zeile 12, finde zu jedem gelöschten (Grad-2)
Punkt v die beiden angrenzenden Kanten eL = (v1, v) und eR = (v, v2) und füge
eine neue Kante eM = (v1, v2) als Vaterkante zu diesen beiden Kanten ein. Die zu
löschenden Kanten haben alle keine gemeinsamen Eckpunkte, da eine unabhängige
Punktmenge aus der Ebenenunterteilung gelöscht wird. Daher spielt die Reihenfolge,
in der die Punkte v durchlaufen werden keine Rolle und der Wald wird um genau
eine Ebene tiefer. Die Konstruktion der Vereinfachungs-Datenstruktur ist an einem
einfachen Beispiel in Abbildung 5.1 vorgeführt.

e1 e2 e3 e4 e5 e6 e7e6
e5

e4

e3e2e1

e7

⇓ Schritt 1

e1 e2 e3 e4 e5 e6 e7

e23 e56

e56

e4

e23
e1

e7

⇓ Schritt 2

e1 e2 e3 e4 e5 e6 e7

e23 e56

e123 e567

e4

e123

e567

Abbildung 5.1: Aufbau der Vereinfachungs-Datenstruktur.

5.2 Berechnung des Abstands einer Kante zum Originalseg-
ment

Wie bereits erwähnt, soll in der Variable eps eine Näherung an den Abstand der
gegebenen Kante zur unvereinfachten Ebenenenunterteilung gespeichert werden. Im
Folgenden werden wir als Näherung den Abstand zu dem zugrunde liegenden Seg-
ment, also zu allen Kanten, die Blattknoten des Teilbaumes von se sind, betrach-
ten. Da das unvereinfachte Segment Teil der unvereinfachten Ebenenunterteilung
ist, ist diese Näherung größer oder gleich dem geschätzten Wert. Die Größe der
Vergröberung wird also nicht unterschätzt. Wir untersuchen zwei Ansätze an die
Näherung des Wertes eps
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Ansatz 1. Sei die Kante se mit Eckpunkten vL, vR gegeben. Falls se kein Blatt-
knoten ist, bezeichnen ch1 und ch2 die beiden Kindknoten mit Eckpunkten
vL, vM bzw. vM , vR. Für den Wert eps wird folgende Schätzung gewählt

eps1 =

{
0 : falls se Blattknoten

d(vM , vLvR) + max(eps1ch1, eps
1
ch2) : sonst

(5.1)

Ansatz 2. Wir betrachten wieder die Kante se mit Eckpunkten vL, vR. Weiterhin
bezeichne Gse = (Vse, Ese) das Segment, aus dem se durch Vereinfachung
hervorgegangen ist. Dann setzen wir den Wert für eps als

eps2 = max
v∈Vse
{d(v, vLvR)} (5.2)

Mit dieser Wahl ist ε also der (bis auf Maschinenrundung) genaue Abstand
der Kante se zum ursprünglichen Segment.

Wenn man beide Ansätze vergleicht, dann sieht man, dass Ansatz 1 einerseits nur
eine Näherung an den Abstand zum Segment liefert, aber andererseits lediglich zwei
Zugriffe auf die beiden Kinderknoten ch1 und ch2 benötigt und damit sehr schnell
berechnet werden kann. Ansatz 2 berechnet den genauen Abstand zum Original-
segment und liefert daher eine bessere Schätzung an den Abstand zur Ebenenun-
terteilung. Damit bekommt in der Regel eine vereinfachte Ebenenunterteilung mit
weniger Kanten als mit dem ersten Ansatz bei gleicher Wahl der Schranke εtol. Um
den Wert eps2 zu berechnen muss man jedoch für jedes Segment se alle Blätter des
an se hängenden Teilbaumes durchlaufen. Man muss also zwischen Performanz und
Approximationsgüte abwägen. Einige Beispiele mit Laufzeiten werden in Kapitel 6
für die Berechnung von eps mit Ansatz 2 vorgestellt.

Ein weiterer Unterschied zwischen beiden Ansätzen ist der Aufbau der Vereinfa-
chungsstruktur. Beim Ansatz 1 bekommt jeder in die Vereinfachungsstruktur ein-
gefügte Knoten einen Wert eps zugeordnet, der größer oder gleich zu den eps1-
Werten der Kinderknoten ist, da

eps1 = d(vM , (vL, vR)) + max(eps1ch1, eps
1
ch2) ≥ max(eps1ch1, eps

1
ch2).

Die eps1-Werte sinken daher mit wachsender Tiefe der Vereinfachungsstruktur mit
einer unteren Schranke von 0 (Blattknoten). Bei Ansatz 2 gilt diese Eigenschaft für
eps2 jedoch nicht.

Mit der Einführung der Vereinfachungsstruktur und den eps-Werten ist es nicht
mehr nötig in Algorithmus 4.1 in der inneren Schleife die maximale Fehlerschranke
δ in jedem Zeitschritt zu halbieren. Statt dessen wird im Laufe der Vereinfachung die
Vereinfachungsstruktur aufgebaut und diese zum Schätzen des maximalen Fehlers
verwendet. Das angepasste Verfahren ist der Algorithmus 5.1.
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Algorithmus 5.1 Vereinfachungs-Algorithmus mit Vereinfachungsstruktur

1: function Simplify(G = (V,E), εmin, εmax)
2: Simplification structure simpli(E) . Blattknoten einfügen
3: ε = εmin
4: num removed points = 0
5: while (ε < εmax) do
6: do
7: num removed points = 0
8: Set S = deg 2 vertices(G)
9: for all v ∈ S do

10: if no conflicts(ε, v) then
11: remove point(G,v) . Mit Triangulierung der Lücken
12: remove incident points(S,v)
13: num removed points = num removed points + 1
14: simpli.merge edges(v)

15: while ( num removed points > 0 )
16: ε = 2 ∗ ε
17: return (G)

5.3 Anwendungen

5.3.1 Konsistente und nicht-konsistente Level-views

Nach Durchlauf des Vereinfachungsalgorithmus 5.1 erhalten wir die Vereinfachungs-
struktur, welche eine hierarchische Vereinfachung der Ebenenunterteilung darstellt.
Uns interessiert bei gegebener Vereinfachungsstruktur und Fehlertoleranz εtol aber
nur ein Schnitt durch diesen Wald. Ein Schnitt durch einen Wald ist eine Menge an
Knoten C ⊆ V , so dass jeder Blattknoten von genau einem Knoten aus C durch
herabsteigen im Wald erreicht werden kann. Einen Schnitt durch die Vereinfachuns-
struktur bezeichnen wir als Level-view, siehe Abbildung 5.2.

Ein Level-view bezeichnen wir als konsistent, wenn es keine (Selbst-)überschneid-
ungen und keine Verletzungen von Topologieeinschränkungen aufweist, also die Pro-
blemstellung erfüllt, und nicht-konsistent, wenn mindestens eine dieser Eigenschaf-
ten verletzt ist.

Level-view 1

Level-view 2

Abbildung 5.2: Zwei Level-views in einer Vereinfachungsstruktur.
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Falls nicht anders erwähnt, ist ab jetzt die Fehlerschranke eps mit Formel (5.2) be-
rechnet. Wie im vorangehenden Kapitel erwähnt, ist der eps-Wert nicht wachsend
mit zunehmender Tiefe der Vereinfachungsstruktur. Es kann also ein Fall auftreten,
in der für 3 gegebene Toleranzen ε1 < ε2 < ε3 mit resultierenden Ebenenverfeinerun-
gen A1, A2 und A3 die gröbste Ebenenunterteilung A3 die Fehlertoleranz ε1 erfüllt.
Abbildung 5.3 zeigt solch ein Fall.

2 4 6
x

-1

1

y

(a) Schritt 0

2 4 6
x

-1

1

y
ε1 = 1√

5
≈ 0.44

(b) Schritt 1

2 4 6
x

-1

1

y

ε2 = 6√
17
≈ 1.46

(c) Schritt 2

2 4 6
x

-1

1

y

ε3 = 1

(d) Schritt 3

Abbildung 5.3: Vereinfachung eines Segments mit nicht monoton wachsen-
dem Abstand ε zum Ausgangssegment.

Viel wahrscheinlicher ist es aber, dass nur ein Segment von A3 die Fehlertoleranz ε1
erfüllt. Hieran sieht man die Bedeutung der nicht-konsistenten Level-views. Während
zu jeder Ebenenenunterteilung A1/2/3 ein konsistentes Level-view erzeugt wurde,
kann man einen weiteren Level-view definieren, welcher Kanten von sowohl A1 als
auch A3 enthält und die Fehlertoleranz ε1 erfüllt. Vorteil von solch einem Level-view
ist, dass es gleich viele oder weniger Kanten beinhaltet als das zu A1 zugeordnete
Level-view. Es ist jedoch nicht garantiert, dass es konsistent ist.

5.3.2 Adaptive Ebenenverfeinerungen

Bisher wurden die Level-views immer so gewählt, dass die Ebenenunterteilung überall
die gleiche Auflösung / Verfeinerungsstufe ausweist. Möchte man aber auf einer
Landkarte eine Route planen, so interessiert man sich in der Regel für den ge-
nauen Streckenverlauf entlang der Strecke. Die Details, welche weit weg von der
Strecke liegen, sind jedoch für den Fahrtverlauf wenig relevant. Man benötigt also
einen Level-view, der an ausgewählten Bereichen eine niedrige Fehlertoleranz hat
als bei den übrigen Bereichen. Wir geben die Fehlertoleranz daher als Funktion in
Abhängigkeit von der Position an

εtol : R2 −→ R, p 7−→ εtol(p).
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Die Erzeugung der Level-views mit solch einer Fehlertoleranz läuft analog zu einer
konstanten Fehlertoleranz ab, mit dem einzigen Unterschied, dass zu jeder Kante der
jeweilige Toleranzwert ermittelt werden muss. Den Toleranzwert einer Kante haben
wir als Minimum der beiden Toleranzwerte an den Eckpunkten der Kante gewählt.

εtol(e = (p1, p2)) := min(εtol(p1), εtol(p2)) (5.3)

Eine mit einer ortsabhängigen Fehlertoleranz erhaltene Ebenenunterteilung nennen
wir adaptiv.

(a) ε = 200000. (b) ε(x) ∈ [0, 200000].

Abbildung 5.4: Beispiel einer nicht-adaptiven und adaptiven Ebenenunter-
teilung von Baden-Württemberg im Umkreis von Stuttgart.
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6 Testrechnungen und Anwendungen

”
Irren ist menschlich. Aber wer richtigen Mist bauen will, braucht einen Computer!“

-Dan Rather

In diesem Abschnitt zeigen wir Testrechnungen für einige OpenStreetMaps Da-
tensätze [HW08], [osm]. Die im Abschnitt 4.2 vorgestellten Datenstrukturen und
Algorithmen wurden in C++ mithilfe von CGAL [cgaa], einer Bibliothek für zu-
verlässige und effiziente geometrische Algorithmen, implementiert.

6.1 Implementierungsdetails

Alle in Kapitel 3, 4 und 5 beschriebenen Algorithmen und Berechnungen bauen auf
der Annahme, dass Berechnungen auf den reellen Zahlen exakt sind. Diese Berech-
nungen liefern jedoch nicht die gleichen Ergebnisse auf den reellen Zahlen wie auf
der endlichen Menge der Gleitkommazahlen. Bei Rechnungen auf Gleitkommazah-
len treten aufgrund ihrer Darstellung mit einem Exponenten und einer Mantisse
endlicher Länge Rundungsfehler auf. Bei geometrischen Algorithmen kann das zu
unerwartetem Verhalten führen, beispielsweise erzeugen sie inkonsistente Ergebnisse,
können abstürzen oder in Endlosschleifen hängen bleiben.

Für die Lösung des min-# Problems mithilfe von Triangulierungen kann es zum fol-
genden Fall kommen. Beim Prüfen, ob sich ein Punkt innerhalb eines Dreiecks befin-
det (siehe Abschnitt 4.2.2 und Abbildung 4.3) kann das Prädikat p ∈ 4(p1, p2, p3)
als falsch berechnet werden, obwohl sich der Punkt p im Dreieck berfindet. Das
führt dazu, dass ein Segment vereinfacht wird und es zu einer Verletzung der Topo-
logiebedingungen kommt, wenn p eine Topologieeinschränkung ist, oder es kommt
zu einer Überschneidung, wenn p zu einem Segment der Ebenenunterteilung gehört.
Der Lösungsansatz würde also ein inkonsistentes Ergebnis liefern und somit die Auf-
gabenstellung nicht erfüllen.

Um solche Prädikate exakt auszuwerten stellt CGAL Kernels bereit, die die exakte
Berechnung von Prädikaten (z.B. p ∈ 4(p1, p2, p3)) und exakte Konstruktionen (z.B.
die Konstruktion eines Schwerpunkts, eines Dreiecks) ermöglichen.

typedef CGAL: : E x a c t p r e d i c a t e s e x a c t c o n s t r u c t i o n s k e r n e l K;
// . . .
typedef CGAL: : Tr iang le 2<K> Tr iang l e 2 ;

Alle Operationen auf Eingeschränkten Delaunay Triangulierungen, also das Einfügen
von Punkten, das Entfernen von Punkten und die anschließende Triangulierung des
entstandenden Loches in der Triangulierung wurden mit built-in Methoden der Klas-
se Constrained Delaunay triangulation 2 mit Hierarchie-Datenstruktur umge-
setzt.

typedef CGAL: : Cons t ra ined De launay t r i angu la t i on 2<K, TDS,
Itag> CDT;

typedef CGAL: : Tr i angu l a t i on h i e r a r chy 2<CDT> CDTh 2 ;
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Alle weiteren Methoden zur Ebenenvereinfachung wurden mit der C++ - STL-
Bibliothek implementiert. Der komplette Quellcode zur Segmentvereinfachung mit-
tels Eingeschränkten Delaunuay Triangulierungen befindet sich auf der beigefügten
CD.

6.2 Testrechnungen

Zum Testen vom Algorithmus 5.1 verwenden wir zwei verschiedene Arten von Da-
tensätzen. Zuerst werden OpenStreetMaps (OSM) Datensätze von Hamburger Stadt-
bezirken (kleiner Datensatz, Abschnitt 6.2.1) und von Bundeslandgrenzen, Regie-
rungsbezirken und Landkreisen von Baden-Württemberg (größerer Datensatz, Ab-
schnitt 6.2.2) verwendet. Als Topologieeinschränkungen werden die Positionen von
Städten verschiedener Größen verwendet. Ein weiter Datensatz für Testrechnun-
gen ist ein künstlicher Testdatensatz, der aus einem Segment besteht, welches spi-
ralförmig verläuft und bei maximaler Vereinfachung auf ein Segment bestehend aus
2 Punkten vereinfacht werden kann. Dieser Datensatz kann mit beliebiger Anzahl
an Vertices erzeugt werden und wird in Abschnitt 6.2.3 verwendet, um die Laufzeit-
komplexität des vorgestellten Algorithmus abzuschätzen.

Alle folgenden Testrechnungen wurden auf einem Laptop ausgeführt mit 4 Intel i7-
4600U Kernen (2.10 GHz) und dem Betriebssystem Ubuntu LTS 14.04, wobei für die
Berechnungen jeweils nur ein Kern verwendet wurde. Der auf dem Betriebssystem
installierte Compiler ist der gcc 4.8.4 Compiler. Als Flags für die Kompilierung
wurde -frounding-math zur Unterstützung von CGAL und -02 zur Optimierung
verwendet.

6.2.1 Testrechnungen auf einem kleinen Datensatz - Hamburg

Als erstes Testbeispiel wählen wir einen möglichst kleinen OSM-Datensatz um eine
grobe Einschätzung für die benötigten Laufzeiten zu erhalten. Die bereitgestell-
ten OSM-Datensätze enthalten für die Punkte der Ebenenunterteilung Längen- und
Breitengrade, daher müsste man streng genommen die Daten in 3-dimensionale Ko-
ordinaten (auf einer Kugel) abbilden und anschließend auf eine Ebene projizieren.
Die betrachteten Daten befinden sich jedoch nur auf einem sehr kleinen Teil der
Kugel und werden dann als annähernd linear betrachtet. Für die x-Koordinate wird
2
3

des Breitengrades und für die y-Koordinate wird der Längengrad gewählt und mit
107 skaliert.

Für die ersten Testrechnungen haben wir 3 verschiedene Unterteilungen von Ham-
burg als Eingabe gewählt (Bundeslandgrenzen, Stadtbezirke und Stadtviertel). Die
Größen der Vertexmenge, Kantenmenge und die Anzahl der Topologieeinschränk-
ungen sind in Tabelle 6.1 aufgelistet.
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Datensatz |V | |E| |P | Kommentar
HH-4.graph 3566 3679 145 Bundesland
HH-9.graph 5956 6234 145 Stadtbezirke
HH-11.graph 9839 10557 145 Stadtviertel

Tabelle 6.1: Eckdaten der Hamburger OSM-Datensätze.

Bei der Zeitmessung unterscheiden wir die Zeit für das Einlesen des Datensatzes und
der Generierung der eingeschränkten Delaunay Triangulierung tinit, sowie die Zeit für
die eigentliche Vereinfachung tsimpl. In Tabelle 6.2 sind die wesentlichen Laufzeiten
und Ergebnisse der Vereinfachung aufgelistet, unter anderem der Anteil der nach der
Vereinfachung verbleibenden Vertices |V ′|/|V |. Weiterhin wurde in Tabelle 6.2 die
Laufzeit für die Vereinfachung tsimpl aufgeschlüsselt in Laufzeiten für Teilroutinen:

• tdeg-2, die Zeit zum Finden und Sortieren der Grad-2 Vertices,

• tcheck, die Zeit zum Überprüfen, ob ein Grad-2 Punkt entfernt werden kann,

• tremove, die Zeit zum Entfernen von Vertices,

• tbuild s, die Zeit zum Aufbauen der Vereinfachungsdatenstruktur.

Das Ergebnis zur Vereinfachung der Stadtviertel ist in Abbildung 6.1 dargestellt.

(a) ε = 0. (b) ε = 200000.

Abbildung 6.1: Hamburger Stadtviertel.

Man sieht in Tabelle 6.2, dass selbst für die Unterteilung in Stadtviertel die Gesamt-
laufzeit t = tinit + tsimpl unter 0.3 Sekunden liegt.

Datensatz |V ′|
|V | tinit[ms] tsimpl[ms]

tdeg-2
tsimpl

tcheck
tsimpl

tremove

tsimpl

tbuild s

tsimpl

HH-4.graph 3.4% 17 88 20.5% 38.6% 8.0% 30.7%
HH-9.graph 4.4% 24 146 21.9% 38.4% 8.2% 30.1%
HH-11.graph 5.5% 39 245 24.1% 38.4% 8.2% 28.2%

Tabelle 6.2: Vereinfachung von Hamburger OSM-Datensätzen. ε = 200000.
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6.2.2 Testrechnungen auf einem größeren Datensatz
- Baden-Württemberg

Da die Vereinfachungen der OSM-Daten von Hamburg im vorangehenden Abschnitt
sehr schnell berechnet werden konnten, soll jetzt ein etwas größerer Datensatz gete-
stet werden. Wir wählen diesmal 5 verschiedene Unterteilungen von Baden-Württem-
berg, diesmal die Bundeslandgrenzen, Regierungsbezirke, Landkreise, Verwaltungs-
gemeinschaften und Stadtgrenzen, siehe Tabelle 6.3.

Datensatz |V | |E| |P | Kommentar
bw lvl4.graph 35428 35427 332 Bundesland
bw lvl5.graph 57055 57060 332 Regierungsbezirke
bw lvl6.graph 133905 133953 332 Landkreise
bw lvl7.graph 291307 291693 332 Verwaltungsgemeinschaft
bw lvl8.graph 450940 452222 332 Städte

Tabelle 6.3: Eckdaten der Baden-Württemberg OSM-Datensätze.

Die Landkreise sind in Abbildung 6.2 dargestellt.

(a) ε = 0. (b) ε = 200000.

Abbildung 6.2: Baden-Württembergische Landkreise.

Für diese Datensätze sind die Laufzeiten diesmal signifikant größer. Für die Verein-
fachung der feinsten Unterteilung in Städte und Verwaltungsgemeinschaften wurden
etwa 22 Sekunden benötigt, siehe Tabelle 6.4. Bedenkt man jedoch, dass das min-#
Problem ein NP-vollständiges Problem ist, dann liefert die Heuristik sehr zufrieden-
stellende Laufzeiten.
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Datensatz |V ′|
|V | tinit[ms] tsimpl[ms]

tdeg-2
tsimpl

tcheck
tsimpl

tremove

tsimpl

tbuild s

tsimpl

bw lvl4.graph 0.49% 150 1510 20.9% 46.1% 5.1% 27.4%
bw lvl5.graph 0.52% 248 2475 22.8% 45.3% 5.1% 26.4%
bw lvl6.graph 0.47% 667 6242 28.9% 41.0% 4.8% 24.9%
bw lvl7.graph 0.51% 1407 13179 33.0% 36.9% 5.1% 24.5%
bw lvl8.graph 0.76% 2241 19688 36.0% 34.3% 5.3% 23.7%

Tabelle 6.4: Vereinfachung von Baden-Württemberg OSM-Datensätzen.
ε = 200000.

6.2.3 Testrechnungen für einen konstruierten Datensatz

In diesem Abschnitt werden Testrechnungen auf einem Datensatz durchgeführt, wel-
cher künstlich erstellt wird, so dass man die Laufzeit des Algorithmus in Abhängig-
keit von der Eingabegröße n = |V | untersuchen kann. Der Datensatz besteht aus
einem einzigen Segment, das sich spiralförmig aufwindet, siehe Abbildung 6.3.

(a) ε = 0. (b) ε = 250000. (c) ε = 500000.

Abbildung 6.3: Testdatensatz bestehend aus einer Linie.

Im Datensatz sind weiterhin keine Topologieeinschränkungen gegeben, also P = ∅,
daher ist für ε −→∞ die optimale Lösung des min-# Problems gegeben als Segment
welches aus einer einzigen Kante besteht.

Die ermittelten Laufzeiten für verschiedene Eingabegrößen sind in Tabelle 6.5 auf-
gelistet.

n tinit tsimpl EOC
1000 6 95 0.95
2000 15 180 1.24
4000 56 406 1.19
8000 223 831 1.32

16000 809 1819 1.17
32000 2494 3420 1.28
64000 7073 7268 1.26

128000 18945 15517 1.21
256000 43501 36359

Tabelle 6.5: Laufzeiten
[ms] und EOCs.

3 3.5 4 4.5 5 5.5
0

2

4

log(n)

lo
g
(t

)

tinit
tsimpl

Abbildung 6.4: Zunahme der Laufzeiten.
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Wenn man davon ausgeht, dass die Laufzeit polynomiell mit der Eingabegröße
wächst, dann kann man die Laufzeit für große Eingabegrößen n approximieren durch

t(n) = t
(n)
init + t

(n)
init ≈ C · np.

Um den Grad p der polynomiellen Laufzeit zu bestimmen, kann man Laufzeiten von
zwei nacheinanderfolgenden Vereinfachungen vergleichen und erhält die Formel für
den EOC (expected order of complexity)

EOC = p =
log(t(n1)/t(n2))

log(n1/n2)
.

In Tabelle 6.5 wurden die EOCs für das konstruierte Problem berechnet, die sich für
große Werte von n auf etwa 1.2 einpendeln. Für dieses Problem läuft der Algorithmus
daher in etwas mehr als linearer Laufzeit.

Die Teillaufzeiten tdeg-2, tcheck, tremove und tbuild s der Vereinfachung stehen in Tabelle
6.6. Anhand von Abbildung 6.5 sieht man, dass der prozentuale Anteil der Zeit
tdeg-2 zum Finden und Sortieren der Grad-2 Vertices mit wachsender Eingabegröße
zunimmt und somit asymptotisch die Laufzeit dominiert.

n tdeg-2 tcheck tremove tbuild s

1000 2 49 3 40
2000 5 91 5 77
4000 10 207 9 179
8000 24 427 17 360

16000 58 943 33 781
32000 149 1758 71 1437
64000 384 3668 139 3069

128000 1390 7549 321 6239
256000 3851 17617 646 14195

Tabelle 6.6: Aufgeschlüsselte
Laufzeiten [ms] für die Verein-
fachung.
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log(n)
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tdeg-2
tcheck
tremove

tbuild s

Abbildung 6.5: Zunahme der
Laufzeiten für die Vereinfa-
chung.

6.3 Diskussion

Die Testrechnungen für die spiralförmigen Daten aus Abschnitt 6.2.3, legen die Ver-
mutung nahe, dass die implementierte Heuristik eine Laufzeit hat, die etwas mehr
als linear ist, wahrscheinlich also O(n log(n)). Allerdings wurde die Komplexität nur
mittels eines konstruierten Beispiels und ohne Topologieeinschränkungen geschätzt,
daher muss man für genauere Aussagen den Algorithmus theoretisch auf seine Lauf-
zeit untersuchen.

Anhand von Tabelle 6.5 und Abbildung 6.4 kann man weiterhin vermuten, dass die
Laufzeit t = tinit+tsimpl durch das Einlesen und das Konstrieren der Eingeschränkten
Delaunay Triangulierung dominiert wird, da ab n = 128000 die Laufzeit für die In-
itialisierung tinit die Laufzeit für die Vereinfachung tsimpl überholt. Für die Hamburg-
und Baden-Württemberg-Datensätze ist der große Anstieg von tinit aber nicht zu
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sehen. Eine mögliche Ursache könnte sein, dass die Punkte der Spirale in der Rei-
henfolge, in der sie entlang der Spirale auftauchen, eingefügt werden. Es ist jedoch
bekannt, dass eine Delaunay-Triangulierung für eine randomisierte Eingaberei-
henfolge in erwartet O(n log(n)) konstruiert wird, siehe beispielsweise [BCKO08]
Theorem 9.12. Die Einfügereihenfolge der Punkte der Spirale ist also wahrscheinlich
ungünstig gewählt und sollte mit zufälligen Einfügereihenfolgen verglichen werden.

Geht man also davon aus, dass die Laufzeit durch die Zeit für die Vereinfachung
dominiert wird, so wie in den Testrechnungen für die OSM-Datensätze in Abschnitt
6.2.1 und 6.2.2, dann dominiert asymptotisch die Zeit für das Finden und Sortieren
der Grad-2 Vertices tdeg-2 (Abbildung 6.5, Tabellen 6.2 und 6.4). Um die Gesamt-
laufzeit zu verbessern, muss man daher zuerst diese Teilroutine verbessern.
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7 Fazit

7.1 Zusammenfassung

In dieser Arbeit wurde das Problem der Ebenenvereinfachung eingeführt zusammen
mit drei Bedingungen: (1) die Einhaltung einer gegebenen Fehlerschranke, (2) der
Ausschluss von Überschneidungen von Segmenten sowie (3) zusätzliche Topologie-
einschränkungen. Zu diesem Problem wurden bekannte theoretische Ergebnisse zur
Komplexität und zur Approximierbarkeit vorgestellt: Es handelte sich dabei um ein
NP-vollständiges Problem, welches nicht bis auf einen Faktor n1/5−δ für jedes δ > 0
an die Optimallösung in Polynomzeit approximiert werden kann. (Natürlich unter
der Annahme P 6= NP.) In Kapitel 4 wurden bekannte Algorithmen zur Segment-
vereinfachung sowie Heuristiken für Ebenenvereinfachung vorgestellt und eine neue
Heuristik, welche zulässige Vereinfachungsschritte über Eingeschränkte Delaunay-
Triangulierungen bestimmen kann. Diese Heuristik wurde im Laufe der Arbeit mit-
hilfe von CGAL [cgaa] implementiert und getestet. Die Laufzeiten für die Vereinfa-
chung von OSM-Datensätzen blieben für Eingaben mit bis zu 500000 Vertices unter
einer halben Minute, wobei während der Vereinfachung 94.5-99.5% der Vertices ent-
fernt wurden. Dabei war jedoch nicht bekannt, wie viele Vertices bei einer optimalen
Ebenenvereinfachung übrig bleiben würden. Mit einem konstruierten Datensatz wur-
den zudem Laufzeiten abgeschätzt, die etwas mehr als linear in der Eingabegröße
waren.

7.2 Ausblick

Als mögliche Fortsetzung dieser Arbeit könnte man die genaue Laufzeit der hier
vorgestellten Heuristik theoretisch untersuchen. Ebenfalls kann man versuchen die
Approximationsgüte abzuschätzen, entweder im Vergleich zu anderen Heuristiken
oder zu einer unteren Schranke an die optimale Vereinfachung einer Instanz.

Interessant wären auch Testrechnungen auf weiteren Datensätzen, wie beispielsweise
die Vereinfachung von Höhenlinien, da diese anfälliger für Überschneidungen sind.
Möglicherweise treten bei solchen Datensätzen andere Laufzeiten auf, da häufiger
iteriert werden muss.

Um die Ebenenvereinfachung zu beschleunigen, wäre auch eine Parallelisierung des
Codes denkbar. Eine Möglichkeit wäre erst eine unabhängige Menge auf der Menge
aller Grad-2 Knoten zu berechnen und anschließend auf dieser Menge das Prüfen der
Entfernbarkeit, das Entfernen der Punkte und die Konstruktion der Vereinfachungs-
datenstruktur parallel auszuführen. Bei sehr großen Datensätzen (z.B. Länder, Kon-
tinente, Weltkarten) könnte dies signifikant schnellere Laufzeiten ergeben.
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