Institut fiir Architektur von
Anwendungssystemen

Universitatsstrafie 38
D-70569 Stuttgart

Bachelorarbeit Nr. 266

Einbindung von
Informations-Ressourcen
in informelle Prozesse

Benjamin Weder

Studiengang: Informatik

Priifer: Prof. Dr. Frank Leymann

Betreuer: M.Sc. C. Timurhan Sungur

Beginn am: 16.11.2015

Beendet am: 17.05.2016

CR-Nummer: H.4.1, H.5.3

Zusammenfassung

Informelle Prozesse sind Business Prozesse, bei denen der Grofiteil der Aktivitdten von
Menschen durchgefithrt wird. Deshalb sind die Aktivitdten nur schwer vorhersehbar und
iibliche Modellierungsmoglichkeiten fiir Business Prozesse konnen nicht eingesetzt werden.
Ein Ansatz ist es, die Aktivitdten implizit zu beschreiben. Dazu werden die im informellen
Prozess verwendeten Ressourcen modelliert. Weil zu den Ressourcen auch menschliche
Akteure gehoren und diese die Aktivitdten durchfiihren, ist dies eine Mo6glichkeit einen
informellen Prozess indirekt zu beschreiben.

Da informelle Prozesse einen groflen Teil der Prozesse in Unternehmen ausmachen, bringt
eine teilweise automatische Ausfithrung dieser Prozesse in vielen Fillen einen erheblichen
Gewinn. Um die teilweise automatische Ausfithrung zu ermdoglichen, miissen die Ressour-
cen von informellen Prozessen automatisch initialisierbar sein. Die vorliegende Arbeit
beschéftigt sich mit der Integration von Informations-Ressourcen in informelle Prozesse.
Dazu werden Eigenschaften von Informations-Ressourcen analysiert und daraus Anfor-
derungen an eine Software zur Integration von Informations-Ressourcen abgeleitet. An-
schliefend wird eine Integrations-Software konzeptuell ausgearbeitet, die besonders den
Aspekt der einfachen Erweiterbarkeit verfolgt. Diese Eigenschaft ist besonders wichtig, da
es sehr viele verschiedene Informations-Ressourcen gibt. So soll die Moglichkeit geschaffen
werden, die Software durch Erweiterungen an die Bediirfnisse eines informellen Prozesses
anzupassen. Das Resultat der Arbeit ist eine Integrations-Software fiir informelle Prozes-
se, die einen Teil der Informations-Ressourcen integrieren kann und zudem einfach um
weitere Ressourcen erweitert werden kann. Zur Funktionalitdt der Software gehort unter
anderem das Auflisten und Initialisieren von Ressourcen in informellen Prozessen.

Abstract

Informal processes are business processes in which the majority of activities is performed
by humans. Therefore, the activities are difficult to predict and activity centric modeling
approaches for business processes can not be used. One possible approach is to describe
the activities implicitly by modeling resources of informal processes. The resources mo-
deled in informal processes also include the human actors which carry out the activities
and, hence, this is a way to describe activities of an informal process indirectly.

Since informal processes constitute a major part of the processes in many companies, a
partial automated execution of these processes can bring a significant benefit. In order
to enable the partial automated execution, resources of informal processes must be au-
tomatically acquirable. This work deals with the integration of information resources in
informal processes. Therefore, characteristics of information resources are analyzed and
requirements on a software for the integration are derived. Then an integration software
is elaborated conceptually, which particularly heeds the aspect of easy extendability. This
property is important because of the large number of different information resources. So
the software can be adapted to different informal processes easily. The result of this work
is an integration software for informal processes that can integrate a part of the informa-
tion resources and which can easily be extended to other resources. The functionality of
the software includes listing and initializing resources of informal processes.

3

Inhaltsverzeichnis

1

Einleitung

1.1 Motivierendes Szenarioo
1.1.1 Liste der verwendeten Ressourcen und Relationen

1.2 Ziel der Arbeit

1.3 Aufbau der Arbeit

Grundlagen und verwandte Arbeiten

2.1 Topology and Orchestration Specification for Cloud Applications
2.1.1 Service Template
2.1.2 Definitions Document L.
2.1.3 NodeType
2.1.4 RelationshipType

2.2 Docker

2.3 Dependency Injectiono

2.4 InProXec Methode

Analyse der Eigenschaften von Informations-Ressourcen
3.1 Taxonomie fiir Datenquellen im Kontext informeller Prozesse
3.2 Einordnung von Datenquellen in die Taxonomie

3.3 Relationen zwischen Ressourcen

Entwurf der Software zur Integration von Informations-Ressourcen
4.1 Anwendungsfille der Software
4.1.1 Anwendungsfille des Administrators
4.1.2 Anwendungsfille des Benutzers
4.2 Klassendiagramm des umgebenden Systems
4.3 Klassendiagramm der Software.
4.3.1 Interfaces zur Erweiterung der Software
4.3.2 Ablauf der wichtigsten Methoden

Implementierung der Software zur Integration von
Informations-Ressourcen

5.1 Verwendete Technologien und Libraries
5.2 Konfigurationsparameter der Software
5.3 Fallstudie

Zusammenfassung und Fazit

10
11
12

13
13
13
15
15
16
17
19
20

21
21
24
26

27
27
28
29
30
34
36
38

43
43
46
49

55

7 Ausblick
8 Abbildungsverzeichnis
9 Listingverzeichnis

10 Quellenverzeichnis

Abkiirzungsverzeichnis

BPEL Business Process Execution Language
BPM Business Process Management
BPMN Business Process Model and Notation
DI Dependency Injection

DIPEA Deployable Informal Process Essentials Archive
DM Domain Manager

EEI Execution Environment Integrator
IPE Informal Process Essentials

JDBC Java Database Connectivity

QName Qualified Name

SSL Secure Sockets Layer

URI Uniform Resource Identifier

57

58

58

59

1 Einleitung

Unter einem Business Prozess versteht man einen Prozess, der in einer Firma oder einem
Unternehmen durchgefiihrt wird, um ein bestimmtes Ziel zu erreichen. Ein Business Pro-
zess besteht aus einer Menge von Aktivitédten, die nacheinander oder zum Teil parallel
ausgefithrt werden. Zum Beispiel kann in einer Bank ein Business Prozess zur Vergabe von
Krediten definiert sein. Die Aktivitdten des Prozesses, sind das Annehmen eines Kreditan-
trags, das Uberpriifen der Kreditwiirdigkeit des Kunden und abschlieBend das Informieren
des Kunden {iiber die Bewilligung oder Ablehnung des Antrags. Das Designen, Managen,
Ausfithren, Analysieren und Verbessern von Business Prozessen wird als Business Pro-
cess Management (BPM) bezeichnet [1][2]. Ein wichtiger Bestandteil des Business Process
Managements ist das Modellieren von Business Prozessen [3]. Zur Modellierung werden
iiblicherweise sogenannte Workflow Sprachen wie Business Process Model and Notation
(BPMN) [4] oder Business Process Execution Language (BPEL) [5] verwendet. Diese Spra-
chen werden genutzt, um die einzelnen Aktivitdten eines Business Prozesses und deren
Abfolge zu modellieren und damit den gesamten Prozess zu definieren. Durch die Mo-
dellierung von Business Prozessen ist es moglich, das Wissen iiber die Business Prozesse
wiederverwendbar zu machen und zu speichern. Durch das haufige Wiederverwenden der
Prozesse, kénnen diese mit neuen Erkenntnissen sténdig verbessert werden [1]. Aufler-
dem wird eine komplette oder teilweise automatische Ausfiithrung der Business Prozesse

ermoglicht.

Informelle Prozesse unterscheiden sich von anderen Business Prozessen darin, dass die
Aktivitéiten innerhalb eines informellen Prozesses iiblicherweise von Menschen ausgefiihrt
werden und damit schwer vorhersagbar sind [6]. Die Aktivitidten sind deshalb nicht vorde-
finiert, sondern beruhen auf Entscheidungen der involvierten Menschen [7]. Ein Beispiel
fiir einen informellen Prozess ist die Bearbeitung von Kundenpost in einer Bank. Die Post
muss zunéchst gelesen werden und anschliefend kann anhand des Inhalts entschieden
werden, welche Aktivitdten zur Bearbeitung durchgefiihrt werden miissen. Im Gegen-
satz zum Beispiel der Kreditvergabe ist es hier schwierig, alle moglichen Aktivitdten im
Voraus zu definieren, da der Kunde jede beliebige Anfrage stellen kann und sich die Bear-
beitung damit immer unterscheiden kann. Anstelle eines vordefinierten Workflows, hiangt
die Ausfithrung bei diesem Beispiel deshalb von den Entscheidungen des Bearbeiters ab,

die sich nach seiner Erfahrung und seinem Wissen richten.

Aufgrund der Unvorhersehbarkeit und der hiufigen Anderungen der Aktivititen, sind
Aktivitédtsorientierte Prozessmodellierungsverfahren wie BPMN oder BPEL zur Model-
lierung von informellen Prozessen meistens nicht geeignet. Flexiblere Ansétze, wie da-
tengetriebene [8] oder adaptive [9] Workflows, kénnen zur Modellierung ebenfalls nicht
verwendet werden, da diese eine vordefinierte Business Logik bendtigen, welche fiir infor-

melle Prozesse meistens nicht existiert [6].
7

Ohne die Moglichkeit informelle Prozesse modellieren zu kénnen, kann erworbenes Wissen
nicht weitergegeben werden. Eine Wiederverwendung des Wissens ist damit nur von der
Person, die den Prozess durchgefiihrt hat, moglich und dies auch nur insoweit sie sich
das erhaltene Wissen merken kann. Da in vielen Organisationen informelle Prozesse einen
Grof3teil der Arbeit ausmachen, ist es jedoch wichtig, Wissen wiederverwendbar und ins-
besondere weiter verteilbar zu machen. Damit sollen Prozesse moglichst unabhéngig von

der Verfiigharkeit bestimmter Personen mit dem benétigten Wissen gemacht werden.

Der ,, Informal Process Essentials“-Ansatz [6] versucht das Problem der fehlenden Mo-
dellierungsmoglichkeiten zu losen und bietet ein Metamodell zur Beschreibung von infor-
mellen Prozessen. Da die Business Logik von informellen Prozessen wegen der Unvorher-
sehbarkeit nicht explizit definierbar ist, nutzt der Ansatz eine implizite Beschreibung der
Business Logik. Das heifit, es werden die menschlichen Akteure beschrieben, die durch ih-
re Entscheidungen die Business Logik definieren. Fiir informelle Prozesse sind Ressourcen
(zu denen auch die Akteure gehoren) haufig von grofier Bedeutung und deshalb wurde
ein Ressourcen-zentrierter Ansatz vorgeschlagen [6]. Der Fokus eines Modells liegt damit
auf den Ressourcen, die im jeweiligen informellen Prozess verwendet werden. Neben den
unterschiedlichen Ressourcen, sind der Kontext und die Intention wichtige Bestandteile
eines Informal Process Essentials Modells. In der Intention wird das Ziel des informellen
Prozesses definiert. Der Kontext wird einmal vor Beginn des informellen Prozesses und
einmal nach dem Ende beschrieben, um die Auswirkung des informellen Prozesses deut-
lich zu machen. Auflerdem kénnen unterschiedliche informelle Prozesse durch die Angabe
der Kontexte verbunden werden. Das heift, der eine Prozess kann den Endkontext des

anderen Prozesses als Startkontext nutzen.

Die in informellen Prozessen verwendeten Ressourcen kénnen in vier verschiedene Gruppen
unterteilt werden: I'T-Ressourcen, Material- Ressourcen, Wissens-Ressourcen und mensch-
liche Ressourcen [7]. Zu den IT-Ressourcen zidhlen zum Beispiel verschiedene Programme
oder Dateien. Den Material-Ressourcen werden alle physischen Materialien eines Prozes-
ses, wie Bauteile oder Rohmaterial, zugeordnet. Wissens-Ressourcen umfassen das gesam-
te Wissen, welches innerhalb eines Prozesses verwendet wird. Die menschlichen Ressourcen
beinhalten alle am informellen Prozess beteiligten Personen, wie zum Beispiel Entwickler
oder Systemadministratoren. Fiir die teilweise automatische Ausfithrung von informel-
len Prozessen, miissen die Ressourcen automatisch initialisiert werden kénnen [7]. Die

Ressourcen werden dann genutzt, um die Ziele des Prozesses zu erreichen

Die vorliegende Arbeit beschéftigt sich mit der automatischen Initialisierung von unter-
schiedlichen Informations-Ressourcen. Zu den Informations- Ressourcen zihlen zum einen
die Wissens-Ressourcen und zum anderen die Daten-Ressourcen, die eine Untermenge der

IT-Ressourcen bilden.

1.1 Motivierendes Szenario

Im Folgenden wird ein motivierendes Szenario beschrieben, fiir das im Verlauf der Ar-
beit eine Software zur Integration von Informations-Ressourcen entworfen wird. Diese
soll das automatische Integrieren der im Szenario beinhalteten Informations-Ressourcen
ermoglichen. Abb. 1 listet die Schritte des Szenarios grafisch auf, in denen Ressourcen
oder Relationen erzeugt, gespeichert, geloscht oder transferiert werden. Die Zahlenver-
weise in Klammern innerhalb des Szenarios beziehen sich auf diese Grafik. Die Grafik
beinhaltet aus Ubersichtlichkeitsgriinden nur zwei Beteiligte, ist aber fiir eine beliebige

Anzahl erweiterbar.

Als motivierendes Szenario wurde der Prozess der Wartung einer Software ausgewahlt.
Die Wartung einer Software entspricht einem informellen Prozess, da die meisten Akti-
vitdten von Menschen ausgefithrt werden miissen und die einzelnen Schritte nicht genau
vorhersagbar sind. Je nach Art des Wartungsauftrags werden unterschiedliche Fachleute,

wie zum Beispiel Datenbank- oder Netzwerkspezialisten, in den Prozess involviert.

Um das gewonnene Wissen wéahrend einer Durchfiihrung des Prozesses teilbar zu machen
und fiir zukiinftige Prozesse zu erhalten, werden die Erkenntnisse der Mitarbeiter wéhrend
des Prozesses in einem fiir alle Beteiligten zugiinglichen MediaWiki! gespeichert. Dazu
wird im ersten Schritt vom Administrator eine MediaWiki Instanz fiir den neu gestarteten
Prozess erstellt (1). Hierbei kann entweder eine leere Instanz erzeugt werden, falls ein
Prozess dieser Art zum ersten Mal ausgefiihrt wird, oder eine in einem anderen Prozess
gespeicherte Instanz neu erzeugt werden. Im zweiten Schritt erhalten alle Beteiligten des
Prozesses einen Account mit Administrator Rechten auf der erstellten MediaWiki Instanz,

um dariiber ihre Erkenntnisse austauschen zu konnen (2).

Nach der erfolgreichen Erstellung der MediaWiki Instanz kénnen alle Beteiligten mit der
Arbeit am Wartungsprozess beginnen. Dafiir {ibertragt zunéchst jeder Beteiligte das Code
Projekt aus einem globalen Git Repository in sein Dateisystem (3). AnschlieSend nimmt
jeder Beteiligte Anderungen an Komponenten vor, fiir die er zusténdig ist und speichert
diese Anderungen in seinem Dateisystem. Nach der Fertigstellung der Anderungen testet
der Beteiligte, ob die gewiinschte Funktionalitit erreicht wurde. Dazu erzeugt er eine
MySql? Datenbank (4) und fiigt dort die fiir die Tests bendtigten Tabellen ein (5). Wenn
die Tests fehlschlagen, iiberarbeitet der Beteiligte die Anderungen, bis die Tests erfolgreich
abgeschlossen wurden. Nach dem erfolgreichen Abschluss der Tests, ladt der Beteiligte die
von ihm bearbeiteten Komponenten in einen Ordner eines Repositories, in welchem alle
Anderungen gesammelt werden (6). AuBerdem wird die erzeugte Datenbank mitsamt der

Tabellen geloscht, um keine Ressourcen zu verschwenden (7).

"https://www.mediawiki.org/wiki/MediaWiki/de
Zhttps://www.mysql.de/

https://www.mediawiki.org/wiki/MediaWiki/de
https://www.mysql.de/

Nachdem alle Mitarbeiter ihre Anderungen gespeichert haben, ist der informelle Prozess
beendet und die MediaWiki Instanz wird passiv gespeichert und geloscht (8). Das bedeu-
tet, auf die Instanz kann nicht mehr zugegriffen werden, aber sie kann jederzeit im selben
Zustand neu erzeugt werden. Durch die passive Verwaltung werden Ressourcen gespart.
Neben dem Austausch von Wissen zwischen Beteiligten iiber die MediaWiki Instanz,
konnen andere Dokumente wahrend des Prozesses iiber Dropbox ausgetauscht werden

(9). Dies ist jedoch optional und nur nétig, falls zusitzliche Dokumente vorhanden sind.

T
_9, Mysq Q MediaWiki

Beteiligter 1 Beteiligter 2

Abbildung 1: Motivierendes Szenario

1.1.1 Liste der verwendeten Ressourcen und Relationen
Nachfolgend werden alle Ressourcen und Relationen, die im motivierenden Szenario be-
notigt werden und damit in der Software zur Integration von Informations-Ressourcen

initialisierbar sein sollen, aufgelistet:

- Ordner im lokalen Dateisystem
- Ordner in Git Repositories

- Ordner in Dropbox Accounts

- Git Repositories

- MySql Datenbanken

- Tabellen in MySql Datenbanken
- MediaWiki Instanzen

- Administrator Relation zwischen Nutzern und MediaWiki Instanzen

10

1.2 Ziel der Arbeit

Das Ziel dieser Arbeit ist es, unterschiedliche Informationsquellen, Operationen und Rela-
tionen im Kontext der informellen Prozesse zu untersuchen. Aufbauend auf dieser Analyse,
soll eine Software zur Integration von Informations-Ressourcen entworfen werden, die es
ermoglicht, Datenquellen automatisiert in informelle Prozesse zu integrieren. Diese Soft-
ware soll anschliefend fiir die Datenquellen des motivierenden Szenarios implementiert
werden (sieche Abschnitt 1.1.1). Da die Integration von Informations-Ressourcen im Kon-
text der informellen Prozesse bisher nicht untersucht wurde, soll die Arbeit diese Liicke

schlief3en.

Abb. 2 zeigt das Vorgehen beim Integrieren von Ressourcen in informelle Prozesse [7].
Die fur die Integration interessanten Ressourcen (I1) entsprechen den im motivierenden
Szenario aufgelisteten Ressourcen. Die verschiedenen Operationen, welche auf den Res-
sourcen ausfiithrbar sein sollen (I3), wurden bereits im System, das die Software spéater als
Komponente verwenden soll, definiert. Eine Beschreibung dieser Operationen findet sich
in Abschnitt 4.2. Die Implementierung der Software zur Integration von Informations-
Ressourcen unterteilt sich in zwei Bereiche. Zum einen die Erstellung von Domain Mana-
gers (14) fiir die verschiedenen Ressourcen, die dafiir verwendet werden, alle verfiigharen
Ressourcen einer Doméne aufzulisten und alle Informationen zu liefern, welche fiir den
Zugriff auf die Ressourcen benotigt werden. Zum anderen die Realisierung von FEzxecuti-
on Environment Inegrators (15). Die Execution Environment Integrators nutzen die von
den Domain Managers gelieferten Informationen, um die definierten Operationen auf den
Ressourcen auszufithren. Am Ende der Arbeit konnen die erstellen Domain Manager und

Execution Environment Integrator beim System registriert (I6) und verwendet werden.

(1) Analyze (12) A.nalyze (13) Design (14) Realize (15) Realize (16) Register
Available Execution Managers and
Resources of . Resource Domain
Retrieval and Environment Execution
Interest Operations Managers
Control Services Integrators Integrators

Abbildung 2: Integration von Ressourcen in informelle Prozesse®

3Ubernommen aus Sungur et al. [7]

11

1.3 Aufbau der Arbeit

Diese Arbeit ist folgendermafien strukturiert:

Kapitel 2 - Grundlagen und verwandte Arbeiten: In diesem Kapitel werden zunéchst

Grundlagen eingefiihrt, die fiir das Verstéandnis der weiteren Kapitel nétig sind.

Kapitel 3 - Analyse der Eigenschaften von Informations-Ressourcen: Hier wer-
den Datenquellen untersucht, die im Kontext der informellen Prozesse verwendbar sein
konnen. Es wird eine Taxonomie entworfen, durch welche sich die unterschiedlichen Daten-
quellen anhand interessanter Eigenschaften kategorisieren lassen. Auflerdem werden Re-

lationen untersucht, die zwischen Ressourcen in informellen Prozessen existieren kénnen.

Kapitel 4 - Entwurf der Software zur Integration von Informations-Ressourcen:
Die Software zur Integration von Informations-Ressourcen wird in diesem Kapitel kon-
zeptionell ausgearbeitet. Dazu werden zunéchst die Anforderungen anhand eines Use-
Case-Diagramms analysiert. Anschliefend werden die Schnittstellen des Systems, in das
die Software integriert werden soll, beschrieben. Am Ende des Kapitels werden die ver-
schiedenen Klassendiagramme der Software entworfen und die Abldufe der wichtigsten
Methoden erklért.

Kapitel 5 - Implementierung der Software zur Integration von

Informations-Ressourcen: Dieses Kapitel beschéftigt sich mit der Implementierung der
Software zur Integration von Informations-Ressourcen. Hierfiir werden zunéchst die Tech-
nologien und Libraries beschrieben, die fiir die Implementierung der Software verwendet
wurden. Im darauffolgenden Abschnitt wird erkléart, mit Hilfe welcher Konfigurationsda-
ten die Software auf bestimmte Anwendungen und Datenquellen eingestellt werden kann.
Als Abschluss des Kapitels wird eine Fallstudie eingefiihrt, welche die Verwendung der

Software und die gelieferten Riickgaben verstindlich darstellten soll.

Kapitel 6 - Zusammenfassung und Fazit: In diesem Kapitel werden die Kernthemen
der Arbeit kurz zusammengefasst und es wird ein Fazit gezogen, ob das Ziel der Arbeit
mit der implementierten Software zur Integration von Informations-Ressourcen erreicht

wurde.

Kapitel 7 - Ausblick: Im letzten Kapitel wird ein Ausblick gegeben, welche Erweiterun-
gen an der Software vorgenommen werden kénnten und welche Schritte zur automatischen

Integration von Ressourcen in informelle Prozesse noch nétig sind.

12

2 Grundlagen und verwandte Arbeiten

In diesem Kapitel werden Grundbegriffe, die fiir das Versténdnis der spéateren Kapitel ele-
mentar sind, eingefiihrt und gegebenenfalls voneinander abgegrenzt. Viele Begriffe werden
dabei bewusst auf Englisch verwendet, da der Gebrauch der englischen Begriffe iiblich ist

oder keine geeignete deutsche Ubersetzung existiert.

2.1 Topology and Orchestration Specification for Cloud Applications

Topology and Orchestration Specification for Cloud Applications (TOSCA) [10] ist ein
OASIS-Standard (dieser Standard wird im Weiteren als TOSCA-Standard bezeichnet).
Der TOSCA-Standard fiihrt ein Metamodell ein, das zur Beschreibung von Cloud-Anwen-
dungen genutzt werden kann. Das heifit, es wird beschrieben, wie ein Modell fiir eine
Cloud-Anwendung aussieht und welche Elemente dafiir verwendet werden. Der TOSCA-
Standard nutzt die XML-Syntax zur Beschreibung von Modellen und Elementen. Fiir
die Erstellung der Software zur Integration von Informations-Ressourcen ist der TOSCA-
Standard wichtig, weil er Portabilitdt, Automatisierung und Interoperabilitit der Software
gewihrleistet. Da der TOSCA-Standard sehr umfangreich ist, wird in diesem Abschnitt
lediglich die grobe Struktur eines Modells, ein sogenanntes Service Template, und an-
schlieend die fiir den Kontext der Arbeit wichtigen Definitions Documents, NodeTypes
und RelationshipTypes beschrieben. Weitere Informationen zu TOSCA finden sich zum
Beispiel im TOSCA-Standard [10] und in weiteren Veroffentlichungen zu TOSCA [11][12].

2.1.1 Service Template

Die Struktur eines Service Templates wird in Abb. 3 dargestellt. Die zwei Hauptbestand-
teile sind ein Topology Template und Pldne. Aulerdem beinhaltet es eine Menge von Node

Templates und Relationship Templates.

Das Topology Template beschreibt die Struktur der Anwendung, die mit dem Service
Template modelliert werden soll. Es enthélt dazu die verschiedenen Komponenten der
Anwendungen und stellt auflerdem die Beziehungen der Komponenten untereinander dar.
Zur Darstellung einer Komponente wird ein Node Template erzeugt und falls eine Rela-
tion zu einer anderen Komponente besteht, wird ein Relationship Template verwendet,
um die beiden Node Templates zu verbinden. Jedes Node und Relationship Template
referenziert einen NodeType bzw. RelationshipType. Die Types definieren Operationen,
Eigenschaften und Semantiken der zugehorigen Templates. Der Vorteil der Types ist die

leichte Wiederverwendbarkeit in anderen Topology Templates [10].

13

Service Template

/ Topology Template NodeTypes \

type for RelationshipTypes

Plans

. -

Abbildung 3: Aufbau eines Service Templates?

Eine Cloud-Anwendung kann zum Beispiel aus einem Online Warenhaus und einem Web
Server bestehen, wobei das Warenhaus auf dem Web Server gehostet wird. Ein Service
Template fiir diese Anwendung beinhaltet ein Topology Template mit jeweils einem Node
Template fiir das Warenhaus und den Web Server und einem Relationship Template
,hosted-on“. Das Relationship Template verbindet dabei die beiden Node Templates. Eine
graphische Darstellung des Topology Template fiir dieses Beispiel ist in Abb. 4 gegeben.

Topology Template

Online
Warenhaus Relationship Template

Node Templates

Abbildung 4: Beispiel ,, Topology Template*

4In Anlehnung an [10]

14

Die Pline hingegen beschreiben die Managementaspekte der Anwendung und werden
tiblicherweise als Workflow in einer Sprache wie BPMN [4] oder BPEL [5] definiert. Zu den
Managementaspekten gehoren das Erzeugen der Anwendung, das Management wahrend
der Lebenszeit und die Terminierung der Anwendung. Plédne sind fiir den Kontext dieser

Arbeit nicht relevant und werden deshalb nicht naher betrachtet.

2.1.2 Definitions Document

Ein TOSCA Definitions Document kann dazu verwendet werden, alle in einem bestimm-
ten Kontext bendtigen TOSCA Elemente in einem Dokument zu definieren. Der Inhalt
eines Definitions Documents ist deshalb je nach Anwendungszweck sehr unterschiedlich
und kann aus allen TOSCA Elementen wie zum Beispiel NodeTypes, RelationshipTypes,
RequirementTypes oder Service Templates bestehen [10]. Auflerdem kénnen Definitions
Documents Erweiterungen und Importe beinhalten. Uber eine Erweiterung konnen die
TOSCA Definitionen um zusétzliche doménenspezifische Informationen erweitert werden.
Importe kénnen dagegen zum Beispiel externe TOSCA Definitionen sein. Diese kénnen
dann im Definitions Document verwendet werden, ohne sie dort erneut definieren zu
miissen. Auflerdem kénnen XML-Dateien durch die Importe in ein Definitions Document

eingefiigt und dann zum Beispiel in einem NodeType referenziert werden.

2.1.3 NodeType

Ein TOSCA NodeType definiert den Type von einem oder mehreren Node Templates
[13]. Dazu beschreibt ein NodeType zum Beispiel die Struktur der Eigenschaften oder
die Schnittstellen, die zugehorige Node Templates besitzen [10]. Der Vorteil der Types ist
dabei, dass im NodeType definierte Eigenschaften fiir alle zugehorigen Node Templates
gelten und nicht bei jedem einzelnen Template definiert werden miissen. In NodeTypes
konnen viele verschiedene Elemente gesetzt werden, aber fiir den Kontext der Arbeit sind
lediglich der Name, der TargetNamespace und die PropertiesDefinition interessant. Der
Name und der TargetNamespace konnen verwendet werden, um einen NodeType eindeutig
zu identifizieren. Uber die PropertiesDefinition hingegen wird ein XML Element oder Type
identifiziert, das die Struktur der Eigenschaften des NodeTypes beschreibt.

In Listing 1 ist ein beispielhafter NodeType dargestellt. Dieser reprasentiert die Ressource
,EigeneDateien“. Uber den angegebenen Namen und TargetNamespace kann der Node-
Type eindeutig identifiziert und referenziert werden. Auflerdem ist eine PropertiesDefini-
tion vom Typ ,element“ angegeben. Dies bedeutet die Eigenschaften des NodeTypes sind

in einem XML-Element mit dem dort angegebenen ()Name (= qualified name) definiert.

15

1 <?7xml version="1.0" encoding="utf-8"7>
2 <NodeType name="EigeneDateien" targetNamespace="http://www.uni-
stuttgart/resources/data-resources/file">
3 <PropertiesDefinition element="http://www.uni-stuttgart/
resources/data-resources/xsd/file/FileProperties"/>

1+ </NodeType>

Listing 1: Beispiel ,NodeType XML*

Im Kontext der Arbeit werden TOSCA NodeTypes verwendet, um verfiighare Ressourcen,
also zum Beispiel Ordner oder Repositories, darzustellen. Wenn eine Ressource in einen
informellen Prozess eingebunden werden soll, wird ein Node Template vom Type der
gewiinschten Ressource erstellt. Durch die Initialisierung des Node Templates, wird eine
neue Instanz der Ressource des NodeTypes erzeugt. Das Node Template entspricht dann
genau einer Instanz der Ressource des NodeTypes. Dadurch ist es moglich, beliebig viele
Instanzen einer Ressource zu erstellen, indem Node Templates mit einem bestimmten

Type erzeugt und initialisiert werden.

Wenn also der NodeType , EigeneDateien“ einen bestimmten Ordner im lokalen Datei-
system als Ressource definiert, kénnen durch die Erzeugung und Initialisierung von Node
Templates des Types ,,EigeneDateien® beliebige Instanzen dieser Ressource fiir einen in-

formellen Prozess kreiert werden.

2.1.4 RelationshipType
TOSCA Relationship Types stehen im selben Verhéltnis zu Relationship Templates, wie

NodeTypes zu Node Templates. Sie werden genutzt, um Definitionen fiir mehrere Rela-
tionship Templates durch nur eine einzelne Definition durchzufithren. Im Gegensatz zu
NodeTypes, besitzen RelationshipTypes einige andere Elemente wie zum Beispiel Source-
Interfaces und TargetInterfaces. Weitere Informationen dazu kénnen im TOSCA-Standard
[10] nachgeschlagen werden. Fiir die Verwendung in der Software zur Integration von
Informations-Ressourcen sind jedoch nur die selben drei Elemente wie fiir NodeTypes

interessant. Dazu gehoren der Name, der TargetNamespace und die PropertiesDefinition.

Die RelationshipTypes werden im Kontext der Arbeit verwendet, um verfiighare Relatio-
nen zwischen Ressourcen darzustellen. Zur Erzeugung einer Relation kann ein Relation-
ship Template des gewiinschten Types erstellt und initialisiert werden. Das Relationship
Template steht damit fiir eine spezielle Instanz einer Relation. Die Relation kann dabei,
je nach Art, zwischen zwei beliebigen Ressourcen oder nur einer eingeschrankten Auswahl

erzeugt werden.

16

2.2 Docker

Bei Docker handelt es sich um eine open-source Plattform zur Entwicklung und Ausfiihrung
von Anwendungen [14]. Das Besondere an Docker ist, dass die Anwendungen in komplett
eigensténdigen Containern ausgefiihrt werden [15]. Das bedeutet, der Container beinhaltet
alles, was die Anwendung zur Ausfithrung benétigt. Diese spezielle Architektur ermoglicht

es, die Anwendung von der Infrastruktur zu trennen und unabhéngig zu betrachten [14].

Die Architektur von Docker ist in Abb. 5 dargestellt. Grundsétzlich unterteilt sich Docker
in drei verschiedene Komponenten. Der Docker Client, der Docker Daemon und die Docker

Registry.

Docker Client Docker Host Docker Registry

Q Docker Daemon \

| — Imagel Image2
Docker pull P -

Ve ‘ _5'- ~ Q

[Docker run]"I /ﬁ h

¢/ |create

[Docker commit] container O/
crea‘{e”“ B
\ image /

/ download image

Abbildung 5: Docker Architektur®

Beim Docker Client handelt es sich um eine Nutzerschnittstelle zu Docker. Der Docker
Client liegt lokal beim Nutzer vor. Er wird fiir die gesamte Kommunikation mit den Docker
Diensten verwendet. Der Nutzer gibt die Befehle in den Docker Client ein oder nutzt dazu
eine API und der Client leitet diese Befehle mittels eines REST-based Web Services an
den Docker Daemon bzw. die Docker Registry weiter [16].

Der Docker Daemon ist einer der wichtigsten Bestandteile von Docker und fiihrt die eigent-
lichen Anwendungen aus. Er kann sowohl lokal vorliegen, als auch remote genutzt werden.
Dies wird durch eine REST-based API ermoglicht, iiber welche vom Docker Client auf
den Docker Daemon zugegriffen werden kann [16]. Im Docker Daemon werden Images und

Container verwendet. Docker Container entsprechen den aktiven Anwendungen in einem

°In Anlehnung an [14]

17

Docker Daemon. Sie kénnen erzeugt, gestartet, gestoppt und geloscht werden [14]. Docker
Images hingegen sind passive Komponenten. Sie représentieren die Baupldne von Docker
Containern. Jeder Container wird aus einem bestimmten Image erzeugt. Ein Image kann
dazu verwendet werden, eine beliebige Anzahl an Containern zu erzeugen. Die Entwick-
lung von Anwendungen verschiebt sich damit zur Entwicklung von Images, die dann zur
Erzeugung von Instanzen der Anwendung genutzt werden konnen. Neben dem durch das
Image vorgegebene, grundsitzliche Verhalten eines Docker Containers, kénnen zusétzliche
Konfigurationsparameter, wie zum Beispiel welcher Port verwendet werden soll, bei der

Erzeugung eines Containers iibergeben werden.

Eine Docker Registry beinhaltet Docker Images. Es existieren viele verschiedene Registries,
darunter die offizielle Docker Registry und Registries von privaten Entwicklern [15]. In
einer Registry konnen Images gesucht und anschlieBend gedownloaded werden. Auflerdem
gibt es die Moglichkeit, eigene Images zu erstellen oder existierende Images zu bearbeiten
und anschliefend in eine Registry hochzuladen. Die Registry kann also dafiir verwendet
werden, Images bzw. Anwendungen, zum Beispiel innerhalb einer Firma, zu verteilen.
AuBlerdem ist es moglich Images von aktiven Containern zu erstellen und damit den
aktuellen Stand einer Anwendung zu speichern. Anschlieend kann der Container gestoppt
und geléscht werden um Ressourcen zu sparen. Durch das Image in der Registry kann

jederzeit eine Anwendung mit dem ezakt gleichen Zustand neu erstellt werden.

Der Ablauf der Docker Operationen ,,pull®, ,run“ und ,,commit* ist in Abb. 5 beispiel-
haft abgebildet. Die Operationen werden zunéchst alle im Docker Client eingegeben und
von diesem an den Docker Daemon weitergeleitet. Fiir die ,,pull® Operation (durchgezo-
gene Linie) kontaktiert der Docker Daemon die Registry und downloadet von dieser das
gewiinschte Image. Die anderen beiden Operationen werden direkt im Docker Daemon
ausgefiihrt. Die ,run“ Operation (gestrichelte Linie) wird genutzt um einen neuen Con-
tainer aus einem Image zu erzeugen. Die ,commit® Operation (gepunktete Linie) fiithrt
hingegen die gegengesetzte Operation aus und erstellt aus einem laufenden Container ein

Image.

18

2.3 Dependency Injection

Unter Dependency Injection (DI) versteht man ein Entwurfsmuster fir Software, bei dem
die Abhéngigkeiten der Objekte erst zur Laufzeit eingesetzt werden. Das Grundkonzept
der Dependency Injection ist die ,, Inversion of Control* [17], also die Umkehrung der
Steuerung. Das heifit, die Abhéngigkeiten eines Objekts werden nicht vom Objekt selbst
konfiguriert, sondern werden von einem externen Objekt eingefiigt. Der Vorteil der De-
pendency Injection ist, dass durch die Nutzung eine losere Kopplung der Komponenten
moglich ist. Damit sind Anderungen an Komponenten vornehmbar, ohne dabei andere
Komponenten dndern zu miissen. Auflerdem ist es moglich verschiedene Implementierun-
gen einer Funktionalitit auszutauschen. Fiir die Nutzung von Dependency Injection wird
iiblicherweise eine Dependency Injection Library verwendet. Diese stellt die Objekte zur

Verfiigung, welche die Abhéngigkeiten suchen und einsetzen.

Ein Beispiel fiir eine Dependency Injection Library fiir die Programmiersprache Java ist
Spring [18]. Mit Spring ist es moglich verschiedene Implementierungen eines Interfaces zur
Laufzeit zu laden. Dazu miissen lediglich alle Klassen, die das Interface implementieren
mit ,,@Service* annotiert werden. Damit wird den Spring Komponenten mitgeteilt, dass
es sich um eine Implementierung handelt, die von Spring verwaltet werden soll. In der
Klasse, welche die Implementierungen des Interfaces verwenden mdochte, konnen dann zur
Laufzeit alle verfiigbaren Implementierungen geladen werden. Dafiir muss nur der Name
des Interfaces und auflerdem alle Pakete, in denen Implementierungen liegen, bekannt

sein.

Eine weitere Depenedency Injection Library ist Guice®. Wihrend das Spring Framework
neben der Dependency Injection auch andere Aspekte, wie z.B. die aspektorientierte Pro-
grammierung, unterstiitzt, adressiert Guice hauptséichlich das Problem der Dependency
Injection. Fiir die Nutzung als Dependency Injection Library haben beide Frameworks
Vor- und Nachteile [19]. Guice hat eine bessere Performanz als Spring und nutzt zudem
keine String Bezeichner. Bei Spring werden die verschiedenen Komponenten iiber diese
String Bezeichner identifiziert, was es unmoglich macht zwei Objekte mit demselben Na-
men zu verwenden. Dies kann in groflen Systemen zu Problemen fiithren, wenn ein Name
aus Versehen doppelt genutzt wird. Spring dagegen hat den Vorteil gegeniiber Guice, dass
Klassen von fremden Parteien leichter eingebunden werden konnen. Fiir die vorliegende
Arbeit sind beide Frameworks gut geeignet, da es sich bei der entwickelten Software um
kein grofles System handelt und keine Klassen von fremden Parteien mittels Dependency
Injection eingebunden werden miissen. Aufgrund der groflen Bekanntheit wurde in der

Software Spring als Dependency Injection Library verwendet.

Shttps://github.com/google/guice

19

https://github.com/google/guice

2.4 InProXec Methode

Die InProXec Methode ist eine Methode zur Ausfiihrung von informellen Prozessen [7].
Die Methode unterteilt sich in drei Phasen. In der ersten Phase werden die Services ent-
wickelt, die Informationen iiber Ressourcen liefern und Operationen auf den Ressourcen
ausfithren. Zu den Operationen zihlen zum Beispiel das Erzeugen einer neuen Instanz ei-
ner Ressource oder das Freigeben einer existierenden Instanz. In der zweiten Phase werden
die informellen Prozesse modelliert. In dieser Phase entsteht ein sogenanntes Informal Pro-
cess Essentials Model (IPE Model). Das entstandene IPE Model wird in der letzten Phase
zunichst kompiliert, womit ein Deployable Informal Process Essentials Archive (DIPEA)
erzeugt wird. Anschliefend wird das DIPEA initialisiert und der informelle Prozess da-
mit ausgefithrt. Weitere Informationen zur InProXec Methode und den einzelnen Phasen

finden sich in Sungur et al. [7].

Die vorliegende Arbeit beschéftigt sich mit der Erzeugung der Services in der ersten Phase
der InProXec Methode. Die bendtigten Services sind zum einen Domain Managers (DM)
und zum anderen FEzecution Environment Integrators (EEI). Domain Managers werden
verwendet, um Informationen {iiber verschiedene Ressourcen in einer einheitlichen Art
und Weise zu liefern und damit Heterogenitét zu vermeiden. Diese Informationen kénnen
fiir die Modellierung von informellen Prozessen verwendet werden. Auflerdem konnen die
Informationen fiir EEIs bereitgestellt werden. Execution Environment Integrators werden
genutzt, um Operationen auf Ressourcen auszufiihren. Durch die Execution Environment
Integrators soll ebenfalls Heterogenitit vermieden werden und stattdessen ein einheitlicher

Service zur Ausfithrung von Operationen entstehen.

20

3 Analyse der Eigenschaften von

Informations-Ressourcen

In diesem Kapitel werden unterschiedliche Datenquellen, darin enthaltene Informations-
Ressourcen und Relationen zwischen Informations-Ressourcen und anderen Ressourcen
analysiert. Dazu wird in Abschnitt 3.1 eine Taxonomie fiir Datenquellen erstellt, welche
wichtige Eigenschaften enthélt und das Kategorisieren der Datenquellen im Kontext der
informellen Prozesse ermoglicht. In Abschnitt 3.2 werden zur Nutzung der Taxonomie drei
Beispiele gegeben. Abschliefend werden in Abschnitt 3.3 Relationen zwischen Ressourcen

analysiert, die im Rahmen der informellen Prozesse auftreten kénnen.

3.1 Taxonomie fiir Datenquellen im Kontext informeller Prozesse

In diesem Abschnitt wird eine Tazonomie fiir Datenquellen im Kontext informeller Pro-
zesse entworfen. Fiir den Entwurf der Taxonomie wurde eine Literaturrecherche durch-
gefithrt und analysiert, welche Eigenschaften von Datenquellen fiir eine spétere Integrati-
on interessant sind. Die Taxonomie ist nicht vollstédndig und beschrénkt sich zur besseren
Ubersicht und einfacheren Einordnung auf einige wenige wichtige Eigenschaften. Das Ziel
der Taxonomie ist es, durch die Einordnung verschiedener Datenquellen Gemeinsamkei-
ten und Unterschiede festzustellen. Anhand dieser Gemeinsamkeiten und Unterschiede
kann bewertet werden, ob die Erweiterung der Software zur Integration von Informations-
Ressourcen um eine bestimmte Datenquelle méglich ist und welche Komponenten dazu
in welcher Art erweitert werden miissen. Zum Beispiel ist eine Erweiterung sehr einfach,
wenn das Protokoll, das von der neuen Datenquelle verwendet wird, schon von einer an-
deren, bereits in der Software integrierten, Datenquelle genutzt wird. Handelt es sich um

ein neues Protokoll, ist die Erweiterung dagegen deutlich aufwendiger.

Abb. 6 zeigt die entworfene Taxonomie fiir Datenquellen als Baumstruktur. Dabei wurde
die Taxonomie fiir ,Data Grids“ von Venugopal et al. [20] fiir den Kontext der Daten-

quellen in informellen Prozesse angepasst.

Art der Ressourcen (E1):

Die erste Eigenschaft die betrachtet wird, ist die Art der Ressourcen, die von einer Da-
tenquelle angeboten werden. Dabei wird zwischen strukturierten Daten und unstruktu-
rierten Daten unterschieden. Bei strukturierten Daten handelt es sich um Daten, die ein
bestimmtes Schema zugrunde liegen haben und damit dieselbe Struktur aufweisen [21][22].

Strukturierte Daten werden hauptsichlich in Datenbanken wie zum Beispiel DB27 oder

"http://www-01.ibm.com/software/data/db2/

21

http://www-01.ibm.com/software/data/db2/

MySql® gespeichert. Unstrukturierte Daten hingegen sind alle anderen Arten von Daten
und entsprechen dem Grofteil der Daten. Dazu zéhlen zum Beispiel Dokumente, Grafiken
oder E-Mails. Diese Unterscheidung ist fiir das Integrieren der Datenquellen wichtig, da
die Verarbeitung der Daten innerhalb der Software unterschiedlich durchgefiihrt werden
muss. Zum Beispiel konnen unstrukturierte Daten nicht ohne Weiteres in Datenquellen
gespeichert werden, die ausschliefllich strukturierte Daten verwalten kénnen. Sie miissen
dafiir erst in ein strukturiertes Format gebracht werden. Auf der anderen Seite macht die
Darstellung von strukturierten Daten in Datenquellen fiir unstrukturierte Daten héufig

ebenfalls nur wenig Sinn, da diese fiir den Menschen sehr schwer lesbar sind.

—| strukturierte Daten |

—| Art der Ressourcen

unstrukturierte Daten |

http:/f

gie:ff

4' Protokolle |— fep:lf

filezff

—| Datentransport I— gopher:f/

T

|_| Passwort |

—‘ kryptographischer Schliissel |

Authentifizierung

Datenquelle

—| Sicherheit

Verschlisselung

Unwerschlusselt

| Grofe beschrinkt |

—| DateigriRe I—
L

Keine Beschriankung |

4| Acquire ‘

I Release ‘
Verflgbare Operationen —— |

_| Back-Up ‘

Abbildung 6: Taxonomie fiir Datenquellen

Datentransport (E2):

Die zweite Eigenschaft ist der Datentransport. Der Datentransport wird in Protokolle
und Sicherheit unterteilt. Unter der Protokoll-Eigenschaft sind verschiedene Protokolle,
wie zum Beispiel http:// oder ftp://, aufgelistet, die haufig verwendet werden. In der Liste

Shttps://www.mysql.de/

22

https://www.mysql.de/

konnten nur standardisierte Protokolle aufgenommen werden und sie ist nicht vollstandig.
Fiir die Verwendung anderer Protokolle kann die Taxonomie an dieser Stelle jedoch leicht
erweitert werden. Die Protokolle sind fiir die spéatere Integration von Datenquellen in-
teressant, da fiir jedes Protokoll ein neues Plugin fiir die Software erzeugt werden muss,
welches den Zugriff ermoglicht. Wird hingegen ein Protokoll mit bereits vorhandenem
Plugin verwendet, ist diese Erweiterung deutlich einfacher. Die Sicherheit teilt sich zum
einen in die Authentifizierung, welche per Passwort oder kryptographischen Schliissel
durchgefiihrt werden kann, und die Verschliisselung. Zur Verschliisselung verwenden die
meisten Datenquellen entweder Secure Sockets Layer (SSL) oder nutzen gar keine Ver-

schliisselung [20].

Dateigroie (E3):

Als néchste Eigenschaft wird die Dateigrofie von Daten betrachtet, die eine Datenquel-
le bereitstellt. Dabei gibt es die Moglichkeit, dass die Datenquelle die Grofle beschrinkt
oder beliebige Gréflen verwendet werden konnen. Die Groflie von Daten kann die Art, in
der die Daten bereitgestellt werden beeinflussen und sollte deshalb als gesonderte Eigen-
schaft betrachtet werden. Fiir sehr grofle Daten kann es zum Beispiel unmoglich bzw. sehr

ineffizient sein, eine Kopie der Daten zu erstellen.

Verfiigbare Operationen (E4):

Die letzte untersuchte Eigenschaft der Taxonomie ist die Verfiigbarkeit bestimmter Opera-
tionen. Diese Eigenschaft ist im Hinblick auf die Integration von Informations-Ressourcen
in informelle Prozesse von besonderem Interesse. Betrachtet werden dabei insbesonde-
re die Operationen ,, Acquire* (bereitstellen einer Kopie der Ressource zum Bearbeiten),
» Release* (freigeben der Ressource) und ,, Back-Up* (speichern der bearbeiteten Ressource).
Diese Operationen sind fiir das Integrieren der Ressourcen elementar. Datenquellen, wel-
che in der Taxonomie so eingeordnet sind, dass sie eine oder mehrere Operationen nicht
unterstiitzen, sind schwieriger zu integrieren. Fiir diese Datenquellen muss die Software
zur Integration von Informations-Ressourcen die vorhandenen Operationen nutzen, um
die notigen Operationen nachzubilden. Ist dies nicht moglich, kann die betreffende Da-
tenquelle nicht automatisch integriert werden. Die Taxonomie kann an dieser Stelle um

weitere Operationen erweitert werden, falls diese bei der Integration gewiinscht werden.

23

3.2 Einordnung von Datenquellen in die Taxonomie

Im folgenden Abschnitt soll die Einordnung in die erstellte Taxonomie exemplarisch fiir
die drei Beispiele Apache Webserver?, FileZilla Server'®und das Linux Dateisystem durch-
gefithrt werden, um die Verwendung der Taxonomie zu illustrieren. Neben der textuellen
Einordnung der Datenquellen zeigt Abb. 7 eine graphische Moglichkeit der Nutzung der

Taxonomie.

—{ strukturierte Daten | FileZilla Server, Linux Dateisystem, Apache Webserver

Art der Ressourcen

unstrukturierte Daten | FileZilla Server, Linux Dateisystem

htep/f Apache Webserver

it/

frp:ff FileZilla Server

—< Protokolle |—
file</f Linux Dateisystem
Datentransport gopher:f/

e

Authentifizierung

Datenguelle

—‘ kryptographischer Schlissel |

—‘ Sicherheit

FileZilla Server,

Apache Webserver
Werschlisselung

FileZilla Server,
Linux Dateisystem,
Apache Webserver

Unverschlisselt

FileZilla Server,
Apache Webserver

Dateigrife

GroBe beschrankt

Keine Beschrankung | Linux Dateisystem

Acquire | FileZilla Server, Linux Dateisystem

Release | FileZilla Server, Linux Dateisystem

~{ Werfigbare Operationen

Back-Up | FileZilla Server, Linux Dateisystem

Abbildung 7: Beispiel ,,Einordnung von Datenquellen

Apache Webserver:

Beim Apache Webserver handelt es sich iiblicherweise um eine Datenquelle fiir struk-
turierte Daten. Auf dem Webserver werden HTML bzw. XML Dateien gespeichert, die
beide ein strukturiertes Format besitzen. Als Protokoll zum Datentransfer wird http://
bzw. https:// verwendet. Bei Webservern ist der Zugriff auf viele Ressourcen hiufig ohne
Authentifizierung moglich. Bestimmte Ressourcen kénnen aber durch eine Kombination
von Benutzername und Passwort geschiitzt werden. Die Verschliisselung hangt beim Apa-

che Webserver von dem verwendeten Protokoll ab. Mit der Verwendung von http:// wird

“https://httpd.apache.org/
Onttps://filezilla-project.org/

24

FileZilla Server,
|_| Passwort Linux Dateisystem,
Apache Webserver

https://httpd.apache.org/
https://filezilla-project.org/

beim Datentransport keine Verschliisselung durchgefiihrt. Wird dagegen das Protokoll htt-
ps:// verwendet, findet eine Verschliisselung mittels SSL statt. Die maximale Dateigrofe,
welche auf den Server geladen werden darf, kann bei der Konfiguration des Webservers
eingestellt werden. Wenn der Nutzer des Webservers gleichzeitig der Administrator ist,
kann er die maximale Dateigrofle an die benotigte Gréfle anpassen und es existiert da-
mit praktisch keine Beschrinkung. Da dies aber haufig nicht der Fall ist, muss allgemein
von einer Beschrinkung ausgegangen werden. Die Operationen ,, Acquire, , Release“ und
,Back-Up*“ werden vom Apache Webserver nicht direkt implementiert und miissen des-
halb zur Verwendung in der Software zur Integration von Informations-Ressourcen mittels

vorhandener Operationen nachgebildet werden.

FileZilla Server:

Der FileZilla Server gehort zur Kategorie der Datenquellen fiir strukturierte und unstruk-
turierte Daten. Der Server kann zum Beispiel Textdateien speichern, die zu den unstruktu-
rierten Daten zdhlen. Aulerdem konnen aber auch strukturierte Daten, wie zum Beispiel
XML Dateien, auf dem Server abgelegt werden. Zum Datentransport wird das ftp:// bzw.
sftp:// Protokoll verwendet. Wie beim Apache Webserver auch, hingt die Verschliisselung
von der Wahl des Protokolls ab. Wihrend beim Protokoll ftp:// keine Verschliisselung
genutzt wird, verwendet das sftp:// Protokoll eine SSL-Verschliisselung. Die Authentifi-
zierung wird iiblicherweise per Benutzername und Passwort durchgefiihrt. Es gibt jedoch
auch sogenannte anonyme FTP-Server, die den Zugriff ohne Authentifizierung zulassen.
Die maximale Dateigrofie kann dhnlich dem Apache Webserver vom Administrator des
Servers festgelegt werden und ist damit allgemein beschrankt. Die Operation ,, Acquire®
entspricht dem Anfordern einer Datei des FTP-Servers mit der ,,Get“-Methode, weil dabei
eine lokale Kopie der Datei erzeugt wird. Das Herunterladen der Datei ist aufgrund der
beschrinkten Grofle problemlos moglich. ,, Back-Up“ kann mittels ,,Put® realisiert werden,
da die bearbeitete Datei beim Ubertragen an den Server alte Vorkommen iiberschreibt.

Fiir die Operation ,Release muss lediglich die erzeugte Kopie geloscht werden.

Linux Dateisystem:

Das Linux Dateisystem ist eine Datenquelle fiir strukturierte und unstrukturierte Daten,
da dort alle Arten von Daten gespeichert werden konnen. Als Protokoll zum Zugriff auf
Ressourcen wird file:// verwendet. Eine Verschliisselung ist nicht notig, da der Daten-
transport nur innerhalb des lokalen Rechners stattfindet. Zur Authentifizierung kann ein
Benutzername und ein Passwort verwendet werden. Die Grofle der Dateien, die verwaltet
werden konnen, ist (abgesehen von der Festplattengrofie) tiblicherweise nicht beschrankt.
Die Operationen ,,Acquire®, ,Release® und ,,Back-Up* sind beim Linux Dateisystem nahe-
zu identisch vorhanden, da sie dem Erzeugen, Loschen und Speichern einer lokalen Kopie

entsprechen.

25

3.3 Relationen zwischen Ressourcen

Neben den Datenquellen und den zugehorigen Daten sind Relationen zwischen Ressour-
cen ein wichtiger Bestandteil zur Integration von Informations-Ressourcen. Eine Relation
verbindet dabei immer zwei verschiedene Entitédten. Die Relationen kénnen zum Beispiel
genutzt werden, um zu notieren, dass zur Integration einer bestimmten Informations-
Ressource eine andere Informations-Ressource ebenfalls benttigt wird. Betrachtet werden
Relationen zwischen Informations-Ressourcen und menschlichen Ressourcen, sowie IT-
Ressourcen. Relationen zwischen Informations-Ressourcen und menschlichen Ressourcen
sind von besonderer Bedeutung, da die menschlichen Akteure den informellen Prozess
ausfithren. Durch eine Relation kann eine Informations-Ressource so eingestellt werden,
dass der menschliche Akteur sie zum Erreichen des Ziels des Prozesses verwenden kann.
Die Relationen zwischen Informations-Ressourcen und IT-Ressourcen sind wichtig, da
durch sie die Beziehungen und Abhéngigkeiten zwischen verschiedenen Services dargestellt
werden kann. Relationen zu Material-Ressourcen sind dagegen im Kontext der Arbeit we-
niger interessant, da diese ebenfalls hauptséchlich Relationen zu menschlichen Ressourcen

besitzen, welche die Materialen verwenden.

Relationen zwischen Informations-Ressourcen und menschlichen Ressourcen:
Eine mogliche Relation zwischen einer menschlichen Ressource und einer Informations-
Ressource ist ,,uses“. Die Relation verbindet einen menschlichen Akteur mit einer Res-
source, wenn der Akteur die Ressource wihrend des informellen Prozesses verwendet.
Eine weitere Relation wére ,isAuthorized. Diese Relation verbindet einen Menschen mit
einer Ressource, falls er berechtigt ist diese zu lesen und zu bearbeiten. Eine Initialisie-
rung der Relation erteilt dem Menschen die Berechtigung zum Lesen bzw. Schreiben und
ermoglicht ihm dadurch die Ressource fiir den informellen Prozess zu verwenden. Die Re-
lation ,isResponsible” verbindet Akteure mit den Ressourcen, fiir die sie verantwortlich
sind. Eine Relation ,,isAdministrator” kénnte hingegen zwischen einem Akteur und einem

Service erstellt werden, wenn der Akteur Administrator Rechte fiir den Service besitzt.

Relationen zwischen Informations-Ressourcen und IT-Ressourcen:

Zwischen zwei Informations-Ressourcen stellt ,dependsOn* eine mogliche Relation dar.
Diese Relation stellt die temporale Ordnung zwischen den beiden Informations-Ressourcen
her. Durch die Relation kann also zum Beispiel eine Reihe verschiedene Dateiversionen
als Kette von Entitdten, die durch , dependsOn“-Relationen verbunden sind, dargestellt
werden. Die Relation ,uses“ kann eine Verbindung zwischen einer Softwarekomponente
und fiir die Software benotige Dateien herstellen. Eine weitere mogliche Relation wiére
,heeds“. Diese Relation kann eine Informations-Ressource mit einer Software-Ressource
verbinden, wenn die Informations-Ressource eine bestimmte Software bendtigt, um ge-
lesen werden zu konnen. Bei der Initialisierung der Informations-Ressource miissen alle

Software-Ressourcen initialisiert werden, zu denen sie eine ,,needs“ Relation besitzt.

26

4 Entwurf der Software zur Integration von
Informations-Ressourcen

In diesem Kapitel werden Anforderungen an die Software zur Integration von Informations-
Ressourcen definiert und die Software wird entworfen. In Abschnitt 4.1 werden zunéchst
Anforderungen mithilfe eines Use-Case-Diagramms dargestellt. Dazu werden gewonnene
Informationen aus der Taxonomie in Abschnitt 3 verwendet. AnschlieBend werden in Ab-
schnitt 4.2 die Schnittstellen des Systems, in das die Software eingebunden werden soll, als
Klassendiagramm beschrieben. Anhand dieser Schnittstellen wird definiert, welche Ope-
rationen die Software unterstiitzen soll, welche Parameter {ibergeben werden und welche
Riickgabe die Software liefern soll. In Abschnitt 4.3 werden schliellich die Klassendia-

gramme fiir die Komponenten der Software entworfen, welche die nétigen Operationen
realisieren.

4.1 Anwendungsfille der Software

In Abb. 8 werden verschiedene Anwendungsfille der zu implementierenden Software vor-
gestellt. Die Anwendungsfille beziehen sich zum einen auf die Nutzung der Software und

zum anderen auf die mogliche Erweiterung durch Administratoren.

E3 Software zur Integration von Informations-Ressourcen |

.. Domainfanager erstellen
-==77 aincludes
[R— Meue Datenguelle hinzufigen 2

L

T «include»‘ S ExecutionEnvironmentIntegrator erstellen

= dL
i g
.
"
- Release
. :
Daten Integrieren T

extension points
Ressourcen auflisten
Ressource zurlickschreiben <. wexende -7
Status abfragen

. .
«includen, <

Extension Point:
A Ressource
zuriickschreiben

%_

Benutzer

Extension Point:
Ressourcen
auflisten

-

‘ £
Extension Point: T~
Status abfragen

Abbildung 8: Use-Case-Diagramm der Software
27

In den beiden folgenden Abschnitten werden die verschiedenen Anwendungsfille des Ad-

ministrators bzw. des Benutzers genauer betrachtet und erlautert.

4.1.1 Anwendungsfille des Administrators

Neue Datenquelle hinzufiigen

Der Administrator erweitert die Software um eine zusétzliche Datenquelle, die zukiinftig
integrierbar sein soll. Um dies einfach zu ermdoglichen, soll die Software iiber eine so-
genannte Pluggable-Architektur verfiigen. Diese ermoglicht es Erweiterungen separat zu
schreiben und dann in die vorhandene Software ,einzustecken“. Dieser Anwendungsfall
schlieft die Anwendungsfélle ,Domain Manager erstellen® und , Execution Environment
Integrator erstellen” ein. Vor dem Durchfiihren dieser beiden Anwendungsfille, sollte der
Administrator die neue Datenquelle in die in Abschnitt 3.1 erstellte Taxonomie einord-
nen. Damit sind die wichtigsten Eigenschaften der Datenquelle explizit dargestellt und

das FErstellen der beiden Plugins wird erleichtert.

Domain Manager erstellen

Der Administrator erstellt einen Domain Manager (siehe Abschnitt 2.4) fiir die neue Da-
tenquelle. Dieser stellt dem System die nétigen Ressourcen- und Relationen-Definitionen
der neuen Datenquelle zur Verfiigung (ListResources Operation). AuBlerdem liefert der
Domain Manager die notigen Informationen, wie zum Beispiel Zugangsdaten einer Da-
tenquelle, die ein Execution Environment Integrator zum Ausfiithren der verschiedenen

Operationen benotigt.

Execution Environment Integrator erstellen

Der Administrator erstellt einen Execution Environment Integrator (siche Abschnitt 2.4)
fiir die neue Datenquelle. Der Execution Environment Integrator kann die Ressourcen und
Relationen der Datenquelle fiir menschenzentrierte Prozesse bereitstellen. Die Ausfithrung
aller Operationen, aufler ListResources, wird vom Execution Environment Integrator mit-

hilfe der von einem Domain Manager gelieferten Informationen durchgefiihrt.

28

4.1.2 Anwendungsfille des Benutzers

Daten Integrieren
Der Benutzer mochte mithilfe der Software zur Integration von Informations-Ressourcen
eine Ressource oder Relation in einen informellen Prozess integrieren. Der Anwendungsfall

beinhaltet die folgenden beiden Anwendungsfille:
e Acquire”
e Release”
Auflerdem kénnen die drei folgenden Anwendungsfélle erweitert werden:

e ListResources®, falls dem Benutzer zunéchst die verfiigharen Ressourcen angezeigt

werden sollen.
e . Back-up®, falls die bearbeiteten Ressourcen gespeichert werden sollen.
o GetStatus“, falls der Status einer Ressource abgefragt werden soll.

Diese Operationen miissen fiir jede verfiighare Datenquelle zur Verfiigung stehen. Fiir
Datenquellen, welche die Operationen nicht direkt ermoglichen, muss die Software die

Liicke zwischen den verfiigharen und benétigten Operationen schlieflen.

Acquire

Der Benutzer ruft die Funktion Acquire fiir eine bestimmte Ressource auf. Die Software
erzeugt darauthin eine neue Instanz von der Ressource und stellt diese dem Benutzer zur
Bearbeitung bereit. Fiir die Bereitstellung der Ressource ist die Grofle der Datei ein in-
teressanter Aspekt (siche Abschnitt 3.1 (E3)). Das heifit, fiir sehr grofie Ressourcen kann
die Bereitstellung anders durchgefiihrt werden, als fiir kleinere Ressourcen, da von den
groflen Ressourcen keine Kopie erstellt werden kann. Stattdessen muss dem Benutzer in
diesem Fall die vorhandene Kopie zugénglich gemacht werden. Da bei der Bearbeitung
damit jedoch die alte Ressource iiberschrieben wird, muss der Benutzer iiber diesen Um-
stand informiert werden oder die Bereitstellung dieser Ressource muss abgelehnt werden.
Die Funktion Acquire wird iiblicherweise zum Beginn eines informellen Prozesses fiir alle

benotigten Ressourcen aufgerufen.

Release

Der Benutzer ruft die Funktion Release fiir eine Ressource auf, die mit Acquire angefordert
wurde. Die Software gibt die Ressource frei und 16scht die erzeugte Instanz der Ressource.
Release kann nur bei Ressourcen ausgefiihrt werden, die zuvor mit Acquire angefordert
wurden. Die Release Funktion wird im Gegensatz zu Acquire am Ende eines informellen

Prozesses aufgerufen, um {iiberfliissige Ressourcen freizugeben.

29

Back-up

Der Benutzer mochte seine Anderungen an einer bestimmten Ressource speichern und
ruft dazu die Funktion Back-up auf. Die Software speichert die bearbeitete Instanz und
informiert den Benutzer {iber den Speicherort, um die zukiinftige Benutzung der Ressour-
ce zu ermoglichen. Die Instanz wird dabei nicht zwangslaufig in derselben Datenquelle
gespeichert wie die urspriingliche Ressource, da die Software auch das Verwenden von
Datenquellen ermoglichen soll, die nur Lesezugriff erlauben. Fiir die Back-up Operation
ist die Unterscheidung wichtig, ob es sich um strukturierte oder unstrukturierte Daten
handelt (sieche Abschnitt 3.1 (E1)), da dies die Auswahl einer Datenquelle zum Speichern

der Ressource beeinflusst.

GetStatus
Der Benutzer mochte den Status einer bestimmten Datenquelle oder Ressource abfragen.
Die Software ruft daraufhin bei der entsprechenden Datenquelle den Status ab und gibt

ithn dem Benutzer aus.

ListResources

Der Benutzer mochte sich einen Uberblick iiber verfiigbare Ressourcen und Relationen
verschaffen und ruft die Funktion ListResources auf. Die Software stellt dem Benutzer
dazu ein TOSCA Definitons Document (siche Abschnitt 2.1.2) zur Verfiigung, welches die
verfiigharen Ressourcen und Relationen als TOSCA NodeTypes bzw. RelationshipTypes
beinhaltet. Der Benutzer kann gewiinschte Ressourcen/Relationen aus dem Definitions
Document auswéhlen und anschliefend mit der Acquire Operation Instanzen der Res-

sourcen/Relationen erzeugen.

4.2 Klassendiagramm des umgebenden Systems

In diesem Abschnitt werden die Schnittstellen (Interfaces) des Systems, in das die Softwa-
re zur Integration von Informations-Ressourcen eingebunden werden soll, eingefithrt und
erldutert. Dazu zéhlen zum einen die Interfaces, welche direkt von Komponenten imple-
mentiert werden sollen und zum anderen Interfaces, die als Parameter oder Riickgabewert
verwendet werden. Abb. 9 zeigt den relevanten Ausschnitt des Systems als Klassendia-

gramm.

Unterteilt werden kann das System in zwei unterschiedliche Komponenten, die imple-
mentiert werden sollen (siehe auch Abschnitt 4.1). Die eine Komponente ist der Domain
Manager, der die verfiigharen Ressourcen und Relationen auflistet und Informationen fiir
den Zugriff bereitstellt und die andere Komponente ist der Execution Environment Inte-

grator, der die verfiigharen Operationen auf den Ressourcen bzw. Relationen ausfiihrt.

30

Domain Manager

Die Operationen des Domain Managers werden durch das DomainManagerOperations
Interface definiert. Die listDomain() Methode wird dazu verwendet, die verfiigbaren Res-
sourcen und Relationen aufzulisten. Der Riickgabeparameter Definitions entspricht einem
TOSCA Definitions Document (siehe Abschnitt 2.1.2), das alle verfiigbaren Ressourcen
und Relationen als NodeTypes bzw. RelationshipTypes beinhaltet. Mittels der Methode
getDeployable() gibt ein Domain Manager fiir zwei QNames (= qualified names) und eine
TIntention die notigen Informationen fiir den Zugriff auf eine Ressource oder Relation
mittels eines Deployable aus. Der erste QName definiert dabei den eindeutigen Namen
der Ressource oder Relation, der zweite QName den Typ des Deployables und die TIn-
tention das Ziel der Nutzung der Ressource bzw. Relation. Ein Deployable besteht aus
einem InputStream, der alle Informationen fiir den Zugriff auf eine Ressource beinhaltet
und einem Typ. Der InputStream wird mit der Methode getDeployable() geliefert und
der Typ ldsst sich mit der Methode getType() abrufen.

Die Methode listDeployablesOfResource() verwendet den QName einer Ressource als Pa-
rameter und wird dazu verwendet, alle Typen von Deployables fiir diese Ressource als Liste
von QNames auszugeben. Alle zuriickgelieferten QNames kénnen anschlieend, zusammen
mit dem QName der Ressource, in die Methode getDeployable() eingesetzt werden. Mit
der Methode getTargetNamespace() kann der Namespace, in dem der Domain Manager

verwendet wird, als URI ausgegeben werden.

Die letzte Methode des Interfaces ist getImports(), welche eine Liste von Import Objekten
zuriickliefert. Ein Import Objekt stellt eine importierte Datei in einem TOSCA Definitions
Document dar. Die Methoden liefern den Namespace, den ImportType bzw. die Datei als
InputStream zuriick. Die Import Liste, die ein Domain Manager zuriickliefert, entspricht
allen Importen des Definitions Document, das mit listDomain() ausgegeben wird. Diese
Liste von Importen wird benétigt, um die Software unabhéngig von externen Dateien zu
machen und dem Nutzer alle Informationen, die zur Verwendung des Definitions Docu-
ments bendtigt werden, direkt zur Verfiigung zu stellen. Dabei kénnen der Namespace
und der ImportType zur Identifizierung des richtigen Objekts genutzt werden und der
InputStream beinhaltet den tatsidchlichen Import als XML Datei.

31

==interface== =<interface==
CiperationCallback CiperationRealization
onSuccess{outputParameters | Ohjech getinterfaceMarmed : String
onError{outputParameters | Ohject) USES | getTypeDefinition(: InputStream

getTypeDefinitionsTargetMamespace - URI
getoperationDefinition(| TOperation
==interface== getRequiredDeployableTypesiresourceType - Gkame) : List=GMame=

RunnableCantainer executeOperation{containers : List=RunnableContainer= inputFarameters . Object callback : OperationCallback)
uses

getTargetModel) : TEntiyTemplate
getTyped : GMame
getDeployable() : InputStream

- ==interface==
=<interface==))) o
ResourceOperationRealization RelationshipOperationRealization
— getSupportedTargetRelationships() : List=URI=
etSupportedResources() : List=GMame=
HEtspe 0 getSupportedSaurceRelationships) : List<URI>
o s
trangformed in integration client : cerealizess |
I realize I ==realizes=
| |
1 1
BaselifecyciaResolrcelperation BaselifacycieRelationshinOpearation
getinterfaceMamed) : String getinterfaceMamed) : String
gefTypelefinition(: InputStream getTypelefinition() : InputStream
geiTypeDefinitionsTargetMamespace | URI getTypeDefinitionsTargetflamespace : URI
Acguire Rasourcelparation ReleaseRasourcelpearation Acquire ReiztionshipQperation
getOperationDefinition) - TOperatian getOperationDefinition : TOperation getOperationDefinition) : TOperatian
=<interface== StoreResourceCpearation
Deployable
getTargetRuntimed : String getQperationDefinition) : TOperatian
getType() : QMame
getDeployable() : InputStream
creates
=<interface==
DomainManagerdperations s=interface==
has Import
listDomaing) : Definitions
getDeployable{resourcetiname : Glame,deployvableType : Ghlame intention : Tintention) : Deployahle gethamespace(| URI
ligtDeployablesOfResource(resourceType | AName) © List=aMName= getimporTyped : URI
getTargetMamespace() . URI getlmparnts) © InputStream
getimports) : List=lmpart=

Abbildung 9: Klassendiagramm des Systems

Execution Environment Integrator

Ein Execution Environment Integrator besteht aus einer Menge von Operationen, die al-
le das Interface OperationRealization implementieren. Fiir die Software zur Integration
von Informations-Ressourcen werden die vier Operationen AcquireResourceOperationen,
StoreResourceOperation, ReleaseResourceOperation und AcquireRelationshipOperation
verwendet. Ein Execution Environment Integrator kann jedoch um zusétzliche Operatio-
nen, wie zum Beispiel eine Ressource schreibgeschiitzt zu machen oder einen Account in

einer Ressource zu erstellen, erweitert werden, wenn diese benotigt werden.

32

Das OperationRealization Interface definiert die grundlegenden Methoden einer Operati-
on. Die ersten drei Methoden sind fiir die Erstellung der Software uninteressant, da diese
bereits in den abstrakten Klassen BaseLifecycleResourceOperation bzw. BaseLifecycleRe-
lationshipOperation implementiert sind und lediglich allgemeine Informationen iiber den
Namespace bzw. das Interface liefern. Wichtig ist dagegen die Methode getOperation-
Definition(), die eine TOperation zuriickliefert. TOperation ist eine TOSCA Klasse und
beinhaltet alle Informationen zur betreffenden Operation, wie zum Beispiel die Parameter
oder Riickgabewerte. Implementiert wird diese Methode in den abstrakten Operations-

Klassen (z.B. StoreResourceOperation).

Die Methode getRequiredDeployableTypes() liefert fiir den QName einer Ressource eine
Liste von QNames an bendétigten Deployables zuriick. Diese miissen fiir die Ausfithrung
der Operation bei einem Domain Manager angefordert, in RunnableContainer umgewan-
delt und anschlieend als Parameter der executeOperation() Methode verwendet werden.
Die letzte Methode des Interfaces ist executeOperation(). Sie wird verwendet um die Ope-
ration, welche durch die Klasse implementiert wird, auszufithren. Als Parameter werden
der Methode eine Liste von RunnableContainers, ein Object und ein OperationCallback
iibergeben. Ein RunnableContainer beinhaltet, wie ein Deployable, alle Informationen,
um auf eine Ressource zugreifen zu konnen. Zusétzlich beinhaltet der RunnableContainer
aber auch ein TEntityTemplate. Das TEntityTemplate ist eine TOSCA Oberklasse, die
zum Beispiel Node Template und Relationship Template als Unterklasse besitzt. Durch
diesen Parameter wird bestimmt, welche Ressource durch die Operation bearbeitet wer-
den soll und es konnen Eigenschaften mittels des Properties Elements gesetzt werden.
Die Umwandlung von einem Deployable zu einem RunnableContainer findet innerhalb
des Systems im sogenannten Integrations Client statt. Der zweite Parameter der exe-
cuteOperation() Methode ist ein Object, das alle zusétzlichen Parameter der Operation
beinhaltet. Diese zusétzlichen Parameter sind fiir die Einbindung von anderen Ressourcen
Arten interessant. Fiir die Informations-Ressourcen werden sie hingegen nicht benotigt.
Der dritte Parameter ist vom Typ OperationCallback. Eine Klasse, die das Operation-
Callback Interface implementiert, verfiigt iiber die Methoden onSuccess() und onError().
Eine dieser beiden Methoden wird am Ende der Operation aufgerufen, um dem System

damit die Riickgabe der Operation zu liefern.

Neben den Methoden des OperationRealization Interfaces implementiert eine Operation,
je nachdem ob sie auf einer Ressource oder einer Relationship arbeitet, das Resource-
OperationRealization Interface bzw. das RelationshipOperationRealization Interface. Die
Methoden dieser Interfaces geben Listen aller in der Operation verwendbaren Ressourcen
bzw. Relationen aus. Bei den Operationen auf Ressourcen ist dies nur eine Liste, wohin-
gegen bei Operationen auf einer Relationship zwei Listen ausgegeben werden kénnen, da
eine Relationship immer zwischen zwei Ressourcen besteht.

33

4.3 Klassendiagramm der Software

In diesem Abschnitt werden die Klassen und Interfaces der Software zur Integration von
Informations-Ressourcen als Klassendiagramm dargestellt. Aulerdem wird fiir Teile der
realisierten Methoden ein grober Ablauf beschrieben, um deren Funktionsweise zu ver-
deutlichen. Abb. 10 und Abb. 11 beinhalten das Klassendiagramm der Software. In Ab-
schnitt 4.2 wurden bereits die Interfaces des Systems vorgestellt, die von der Softwa-
re implementiert werden sollen. Die abstrakten Operations-Klassen (z.B. StoreResource-
Operation) sind in diesem Abschnitt aufgrund der besseren Ubersicht nur ohne Methoden

und Vererbungshierarchie dargestellt, konnen aber in Abb. 9 nachgeschlagen werden.

=<interfaces=»
DomainManagerOperations

listDomain() : Definitions

getheployabledresaurcetame Ahame,deplavableType | Ghame intention : Tintention) : Deplayable
listDeployablesOfResource(resourceType : QRame) | List=QRame=

gefTargethlamespaced : URI

getimports : List=lmpart=

=<realize==

5

Comaintanagerdgaregatar

dataSources : List=|DataResourceDomainhManager=

listDomain() : Definitions

getheployabledresaurcetame Ahame,deplavableType | Ghame intention : Tintention) : Deplayable
listDeployablesOfResource(resourceType : QRame) | List=QRame=

gefTargethlamespaced : LRI

getimports : List=lmpart=

uses

=<interfaces=»
IDataResourceDomainianager

listEntities(: List=TExtensibleElements=

getSupportedaMames ; List=aMame=

getDeployahlefresourceCMame : QRame,deployableType | GName,intention : Tintention) : Deployable
listDeployvablesOfResourcedresourceType | Akame) List=aMame=

getimports : List=lmpart=

Abbildung 10: Klassendiagramm der Software (Teil 1)

Die Software zur Integration von Informations-Ressourcen beinhaltet zur Realisierung des
DomainManagerOperations Interfaces die Klasse DomainManagerAggregator. AuBerdem
existiert fiir jede Operation eine Klasse, welche von der abstrakten Operation-Klasse erbt
und die drei (bzw. bei Relationship-Operationen vier) noch nicht implementierten Metho-
den umsetzt. Zusitzlich wurden drei Interfaces (IDataResourceDomainManager, IData-
Storage, IDataLoader) entworfen, die fiir eine Datenquelle implementiert werden miissen,

wenn die Software um die Datenquelle erweitert werden soll.

34

ReleasgResowcelperation

|

ReleaselnformationResources

StoreResowrceOperation

datalLoader : List=IDataloaders

I

executeCperation{resources | List=RunnableCaontainer= parameters : Objectcallback : OperationCallback)
petSupportedResources() : List=CQName=
getRequiredDeplovableTypesiresourceType | GMame) : List=GMName=

StorelnformationResources

dataLoader: List=|Dataloader=
dataStorage : List=IDataStorage=

executeOperation{resources : List=RunnahleContainers parameters : Object,callback : OperationCallbhack)
getSupportedResources) : List=QName=
getRequiredDeplovableTypes{resourceType | @Mame) © List=@Name=

store data

release data

==interface==

IDataStarage access data

storeDataftype | GMame,data : List=FileQOhject= resourceEngager : RunnahleCaontainer) : String
getSupporteddamespace | URI

uses

store data =<interface==

IDataLoader

AcquireResourcelperation

releaseDataltype : GName resourceEngager : RunnahleContainer)
getSupportediamespace() | URI

getDataltype : GName,resourceEngager : RunnahleContainer) : List=FileObject=

Lr access data

AcguireinformationResources

dataloader: List=|Dataloader=
dataStorage : List=IDataStorage=

executeOperationiresources List=RunnableContainer= parameters ; Objectcallhack : OperationCallhack) uses
getSupporttedResources() : List=QName=
getRequiredDeplovableTypesiresourceType | @Name) : List=GName=

FileChject

name : String
localPath : String
size long

input : InputsStream

FileObjectiname ; String,localPath © String,size : long,input © InputStream)
gethamed : String

getLocalPath ; String

getSized : long

getlnputd : InputStream

Abbildung 11: Klassendiagramm der Software (Teil 2)

35

Die Klassen DomainManagerAggregator, AcquirelnformationResources, Releaselnforma-
tionResources und StorelnformationResources wurden nach dem GoF-Pattern [23] der
wfacade* entworfen. Unter einer ,facade” versteht man eine vereinfachte Schnittstelle zur
Benutzung eines System. Sie ermdoglicht es dem Benutzer, ausschliellich mit der Schnitt-
stelle zu kommunizieren und dabei keine Informationen iiber die Abhéngigkeiten und
Klassen innerhalb des Systems zu bendétigen. Die ,,facade” leitet vom Benutzer erhaltene
Anfragen an die Klassen und Schnittstellen weiter, die zum Bearbeiten bené6tigt wer-
den. Durch dieses Vorgehen wird die lose Kopplung innerhalb des Systems gefordert. Da-
mit wird vereinfacht, Komponenten auszutauschen bzw. neue Erweiterungen einzufiigen.
Insbesondere die Erweiterbarkeit ist fiir die Software zur Integration von Informations-
Ressourcen von grofler Bedeutung. Die ,facade“-Komponenten nutzen Dependency In-
jection (siehe Abschnitt 2.3), um die verschiedenen Implementierungen der Interfaces im

Konstruktor zu laden und in einer Liste zu speichern.

4.3.1 Interfaces zur Erweiterung der Software
Fiir jedes der drei entworfenen Interfaces wird im Folgenden beschrieben, was die einzelnen

Methoden leisten miissen, um damit die Erweiterung der Software zu erméglichen.

IDataResourceDomainManager

Eine Implementierung des IDataResourceDomainManager Interfaces wird fiir eine neue
Datenquelle bendtigt, um die beinhalteten Ressourcen und Relationen im DomainManager-
Aggregator auflisten zu kénnen. Auflerdem muss die Implementierung fiir alle von ihr auf-
gelisteten Ressourcen und Relationen die Informationen liefern, die zur Ausfithrung von
Operationen auf diesen Ressourcen bzw. Relationen benotigt werden. Fiir diese Funktiona-
litdten besitzt das Interface fiinf verschiedene Methoden. Die getSupportedQNames() Me-
thode liefert die QNames aller Ressourcen und Relationen, die von dieser Implementierung
zur Zeit unterstiitzt werden. Diese Information wird vom DomainManagerAggregator ver-
wendet, um die richtige Implementierung fiir eine bestimmte Ressource bzw. Relation zu
finden. Dagegen liefert die listEntities() Methode die verfiigbaren Ressourcen und Relatio-
nen als TOSCA NodeType bzw. RelationshipType, um dem DomainManagerAggregator
die Erstellung des Definitions Documents zu erméglichen. Die getImports() Methode lie-
fert alle Imports, die von Ressourcen oder Relationen dieser Implementierung genutzt
werden. Auflerdem besitzt das Interface die Methode listDeployablesOfResource(), die fiir
eine bestimmte Ressource oder Relation alle verfiigharen Deployables als Liste von QNa-
mes liefert. Die letzte Methode des Interfaces ist getDeployable() und diese wird dazu
verwendet, das tatséchliche Deployable als Objekt zu liefern, welches die Informationen
fiir den Zugriff auf die Ressource bzw. Relation beinhaltet. Diese Methode besitzt als Para-

meter zum einen den QName der Ressource bzw. Relation, fiir welche das Deployable aus-

36

gegeben werden soll und zum anderen einen QName, der von listDeployablesOfResource()
ausgegeben wird und womit das gewiinschte Deployable ausgewéahlt wird. Die gelieferten
Informationen im Deployable miissen mit den benétigten Informationen der zugehorigen

Implementierungen von IDataStorage und IDatal.oader {ibereinstimmen.

IDataStorage

Das IDataStorage Interface wird verwendet um Ressourcen zu speichern. Das Interface
besitzt zwei Methoden, die fiir eine neue Datenquelle implementiert werden miissen. Die
erste Methode ist getSupportedNamespace(). Diese Methode liefert eine URI zuriick, wel-
che den Namespace der Ressourcen, die von der Implementierung unterstiitzt werden,
darstellt. Die URI muss eindeutig unter allen Implementierungen sein und wird dazu
verwendet, die richtige Implementierung fiir eine bestimmte Ressource zu finden. Die
zweite Methode des Interfaces ist storeData(). Diese Methode fiihrt die Speicherung der
Ressource durch und hat drei Parameter. Der QName wird dazu verwendet, die Res-
source eindeutig zu identifizieren. Der zweite Parameter ist eine Liste von FileObjects.
Diese FileObjects werden sowohl von IDataStorage, als auch von IDataloader verwendet
und entsprechen dem Ubertragungsformat innerhalb der Software. Jedes FileObject re-
présentiert eine einzelne Datei und enthélt alle benotigten Informationen iiber sie. Diese
Informationen sind der Name, der lokale Pfad, die Groflie der Datei und die Datei als
InputStream. Der Name und der lokale Pfad werden dazu verwendet, interne Strukturen
innerhalb einer Ressource zu erhalten. Der InputStream wird genutzt, um die Datei an
einem neuen Ort erstellen zu kénnen und die Gréfle der Datei wird fiir die Verwendung
einiger Java Libraries benotigt. Der dritte Parameter ist ein RunnableContainer, der alle
Informationen beinhaltet, um auf den gewiinschten Speicherplatz der Ressource zugreifen

und die Ressource dort erstellen zu konnen.

IDataLoader

Das [Datal.oader Interface ist das Gegenstiick zum IDataStorage Interface und ist fiir das
Laden und Freigeben von Ressourcen zustindig. Es verfiigt ebenfalls {iber die getSup-
portedNamespace() Methode, die den Namespace der zugehorigen Ressourcen als URI
zuriickliefert. Zusétzlich besitzt das Interface die Methoden releaseData() und getData().
Beide haben als Parameter einen QName, welcher die Ressource identifiziert, die fiir die
Operation verwendet werden soll. Auflerdem verwenden beide Methoden einen Runnable-
Container als zweiten Parameter, der alle Informationen fiir den Zugriff auf die Ressource
beinhaltet. Mit der releaseData() Methode wird die gewiinschte Ressource geloscht und
kein Riickgabewert geliefert. Die getData() Methode hingegen 14dt die Daten einer Res-
source und gibt sie als Liste von FileObjects (siehe IDataStorage) zuriick, die anschliefSend
mit einer Implementierung von IDataStorage an einem anderen Platz gespeichert werden

konnen.

37

4.3.2 Ablauf der wichtigsten Methoden

Im Folgenden soll der Ablauf der Methoden listDomain(), listDeployablesOfResource(),
getDeployable(), getImports() des DomainManagerAggregators und fiir jede Operation
die executeOperation() Methode beschrieben werden, da diese den interessanten zu im-
plementierenden Methoden entsprechen. Neben den in Abb. 11 dargestellten Operatio-
nen Acquire, Store und Release fiir Ressourcen beinhaltet dies auch die AcquireAdmin-
RelationshipOperation, die einen Benutzer zum Administrator einer MediaWiki Instanz
macht. Diese Operation wurde im Klassendiagramm der Software nicht dargestellt, da sie
von der AcquireRelationshipOperation Klasse des Systems (siche Abschnitt 4.2) erbt und
ansonsten keine Methoden oder Interfaces verwendet und keine weiteren Abhéngigkeiten

besitzt. Die Methoden der Klasse entsprechen also genau den Methoden der abstrakten
Oberklasse.

Die weiteren Methoden, wie zum Beispiel getTargetNamespace() oder getSupported-
Resources(), werden hingegen nicht genauer betrachtet, da diese lediglich QNames von
Ressourcen oder Namespaces zuriickliefern und deren Ablauf vergleichsweise simpel ist.
Zusétzliche Informationen zu den Methoden und die Implementierungen finden sich direkt
im Git Projekt!!.

listDomain():

Das Ziel der listDomain() Methode des DomainManager Aggregators ist es, alle Ressour-
cen und Relationen, die von einem der IDataResourceDomainManager Implementierungen
zur Verfiigung gestellt werden, in einem einzelnen TOSCA Definitions Document (siehe
Abschnitt 2.1.2) aufzulisten. Neben den NodeTypes bzw. RelationshipTypes, welche die
Ressourcen und Relationen représentieren, soll das Definitions Document auch alle ver-
wendeten Importe beinhalten. Der DomainManagerAggregator lddt im Konstruktor alle
verfiigbaren Implementierungen des IDataResourceDomainManager Interfaces und hat
diese beim Aufruf von listDomain() als Liste vorliegen. Nach dem Aufruf der Metho-
de kontaktiert der DomainManagerAggregator alle vorhandenen Implementierungen und
ruft bei ihnen die Methode listEntities() auf. Die Implementierungen durchsuchen darauf-
hin ihre zugehorige Doméne und liefern die Ergebnisse als Liste von TExtensibleElements
zuriick. TExtensibleElements ist eine TOSCA Oberklasse, die unter anderem NodeTypes,
RelationshipTypes und Imports als Unterklassen besitzt. Der DomainManagerAggregator
empfingt alle Ergebnisse und fiigt sie nach einer Uberpriifung, ob keine unerwiinschten
Typen iibergeben wurden, ins Definitions Document ein. Auflerdem wird der Name, die
ID und der Namespace des Definitions Document gesetzt. Am Ende der Methode wird

das erzeugte Definitions Document zuriickgegeben.

Uhttps://gitlab.com/timur87/integrating-data-resources

38

https://gitlab.com/timur87/integrating-data-resources

listDeployablesOfResource():

Mit der listDeployablesOfResource() Methode sollen alle méglichen Deployables fiir eine
bestimmte Ressource bzw. Relation als Liste von QNames ausgegeben werden. Mehrere
Deployables fiir eine Ressource sind zum Beispiel sinnvoll, wenn mehrere Speicherorte
verfiigbar sind, an denen die Ressource dem Nutzer bereitgestellt werden kann. Damit
kann der Nutzer entweder ein Deployable auswéhlen oder die Software eine zufillige Wahl
treffen lassen. Der Vorteil der Auswahl aus mehreren Deployables ist, dass der Nutzer
damit mehr Konfigurationsmoglichkeiten besitzt. Fiir eine Ordner Ressource im lokalen
Dateisystem konnte zum Beispiel ein Deployable zur Verfiigung stehen, das den Ordner
in einem Git Repository liefert und ein Deployable, das Dropbox als Speicherort ver-
wendet. Die Auswahl der Ressource bzw. Relation, fiir welche die Deployables gesucht
werden sollen, wird durch einen QName als Parameter durchgefithrt. Nach dem Aufruf
der listDeployablesOfResource() Methode sucht der DomainManagerAggregator die Im-
plementierung des IDataResourceDomainManager Interfaces, die fiir die Ressource bzw.
Relation zusténdig ist. Dazu wird iiber die Liste der verfiigharen Implementierungen ite-
riert und getestet, ob der QName der Ressource in der Riickgabe der Methode getSup-
ported@QNames() vorhanden ist. Wenn die Implementierung gefunden wurde, wird die

Anfrage an sie weitergegeben und ansonsten wird null zuriickgegeben.

getDeployable():

Die getDeployable() Methode wird in der Software verwendet, um das Deployable einer
bestimmten Ressource oder Relation zu erhalten. Die gewiinschte Ressource bzw. Relation
wird dabei durch den ersten QName , resourceQName* identifiziert. Anhand dieses QNa-
mes ermittelt der DomainManagerAggregator die zusténdige Implementierung des IData-
ResourceDomainManager Interfaces und leitet die Anfrage an diese mit beiden QNames
und der Intention weiter. Wird keine passende Implementierung gefunden, liefert die Me-
thode null zuriick. Die Implementierung bestimmt zunéchst die Informationen, die fiir den
Zugriff auf die Ressource bendtigt werden. Anschlieend wird anhand des zweiten QNames
,deployableType® identifiziert, welches Deployable fiir die Ressource zur Verfiigung ge-
stellt werden soll. Der QName muss dabei in der von listDeployablesOfResource() geliefer-
ten Liste sein. Je nach Art der Speicherung, welche das gewéhlte Deployable repréasentiert,
sammelt die Implementierung die Informationen, die fiir die Speicherung der Ressource
benotigt werden. Anschliefend werden die Informationen zum Laden und Speichern der
Ressource in einen InputStream eingefiigt und damit das benétigt Deployable erzeugt.
Das Deployable wird an den DomainManagerAggregator zuriickgegeben und von diesem

als Riickgabe der Methode verwendet.

39

getImports():

Mit der getImports() Methode wird es ermdéglicht, dem Benutzer der Software alle Im-
ports im durch listDomain() gelieferten Definitions Document direkt zur Verfiigung zu
stellen. Damit wird das Definitions Document von Abhéngigkeiten nach auflen bereinigt.
Die zuriickgegebene Liste der Methode bezieht sich immer auf den letzten Aufruf der list-
Domain() Methode. Der DomainManager Aggregator fragt beim Aufruf der getImports()
Methode bei allen Implementierungen des IDataResourceDomainManager Interfaces die
aktuellen Imports ab. Innerhalb der Implementierungen wird die Liste bei jedem Aufruf
von listEntities() aktualisiert. Nach dem Erhalt aller Import Listen der Implementierun-

gen, werden diese auf mehrfache Vorkommen eines Imports iiberpriift und vereinigt.

executeOperation() AcquireInformationResources:

Die executeOperation() Methode besitzt fiir alle Operationen drei Parameter. Der ers-
te Parameter ist eine Liste von RunnableContainer Objekten. In diesen Objekten be-
finden sich alle Informationen iiber die Ressource, die zur Ausfithrung der Operation
bendtigt werden. Je nach Operation kann die Liste nur einen oder mehrere Runnable-
Container beinhalten. Die Anzahl und der Typ der benétigten RunnableContainer wird
durch die Methode getRequiredDeployableTypes() der Operation definiert. Zur Verwen-
dung der Operation miissen diese RunnableContainer von einem Domain Manager geladen
und anschlieBend an die Methode {ibergeben werden. Der zweite Parameter ist ein Ob-
ject, welches fiir weitere Parameter verwendet werden kann, aber fiir den Kontext der
Informations-Ressourcen nicht bendtigt wird. Der letzte Parameter ist ein Operation-
Callback Objekt (siehe Abschnitt 4.2). Dieses Objekt bekommt die Riickgabe der Opera-

tion iibergeben und behandelt diese mit den Methoden onSuccess() bzw. onError().

Nach dem Aufruf der Methode wird zunéchst der QName der Ressource aus den Runnable-
Container Objekten ausgelesen. Anhand dieses QNames kann bestimmt werden, welche
Implementierungen des IDatal.oader und IDataStorage Interfaces fiir die Ressource ver-
wendet werden miissen. Die Implementierungen des IDatal.oader bzw. IDataStorage In-
terfaces werden dabei von der Operations Klasse im Konstruktor geladen. Nachdem die
Implementierung des IDataloader Interfaces bestimmt wurde, wird die getData() Me-
thode von dieser aufgerufen. Die Riickgabe der Methode ist eine Liste von FileObjects,
die den Inhalt der Ressource reprisentieren. Anschliefend wird mit dieser Liste die store-
Data() Methode der IDataStorage Implementierung aufgerufen und die Ressource damit
an einer gewiinschten Position bereitgestellt. Durch das Node Template, das im Runnable-
Container beinhaltet ist, konnen mittels Properties zusétzliche Konfigurationsparameter
fiir die Bereitstellung iibermittelt werden. Dazu kann ein XML Element in das Node

Template eingefiigt werden, das alle Attribute enthélt, die im zugehorigen NodeType

40

definiert wurden (siehe Abschnitt 2.1.3). Die storeData() Methode liefert am Ende der
Ausfithrungen alle interessanten Informationen iiber die bereitgestellte Instanz zuriick,
die dann an das OperationCallback Objekt iibergeben werden. Die Informationen bein-
halten fiir jede Ressource die URI, iiber welche auf die Instanz zugegriffen werden kann.
AuBerdem konnen noch zusétzliche Informationen, wie zum Beispiel Benutzername und

Passwort, ausgegeben werden, falls diese fiir den Zugriff benttigt werden.

executeOperation() StoreInformationResources:

Die executeOperation() Methode der StorelnformationResources Operation lauft fast gleich
ab, wie die Methode der AcquirelnformationResources Operation. Die Unterschiede zwi-
schen den Operationen sind jedoch zum einen die Bedeutung innerhalb eines informellen
Prozesses und zum anderen die unterschiedlichen Ressourcen, auf welche die Operatio-
nen angewendet werden kénnen. Die Acquire Operation wird iiblicherweise am Anfang
eines informellen Prozesses ausgefiihrt, um die Ressourcen fiir den Prozess zu initiali-
sieren. Die Store Operation hingegen wird verwendet, um eine wéhrend des Prozesses
verdnderte Ressource am Ende zu speichern und damit fiir nachfolgende Prozesse zu
erhalten. Die Store Operation ist auflerdem nur optional innerhalb eines informellen Pro-
zesses. Die Bedeutung der Operationen spiegelt sich auch in den verwendeten Ressourcen
wieder. Dies lasst sich am Beispiel einer MediaWiki Ressource verdeutlichen, die mit Do-
cker (siehe Abschnitt 2.2) integriert wird. Die Acquire Operation lasst sich lediglich auf
Docker Images anwenden, die passive Komponenten darstellen und erzeugt daraus eine
aktive Instanz fiir den Prozess. Die Store Operation hingegen ldsst sich nur auf aktive
Container anwenden, welche durch die Operation als passives Image gespeichert werden

und damit jederzeit wieder in neuen Prozessen erstellt werden konnen.

executeOperation() ReleaseInformationResources:

Mit der executeOperation() Methode der ReleaselnformationResources Operation kénnen
mit Acquire erstellte Ressourcen freigegeben werden. Dafiir verwendet die Operation Im-
plementierungen des IDatal.oader Interfaces. Fiir die iibergebenen RunnableContainer
wird auf diesen Implementierungen die Methode releaseData() aufgerufen. Nach dem Ab-
schluss der Operation wird dem OperationCallback Objekt durch den Aufruf der richtigen
Methode mitgeteilt, ob die Freigabe der Ressourcen erfolgreich war oder ein Fehler auf-

getreten ist.

executeOperation() AcquireAdminRelationshipOperation:

Diese Methode wird verwendet, um einen Benutzer zum Administrator einer MediaWiki
Instanz zu machen. Dazu benotigt die Methode einen RunnableContainer in den Parame-
tern, der die Informationen beinhaltet, um auf die MediaWiki Instanz zugreifen zu konnen.

AuBerdem muss das Relationship Template im RunnableContainer unter den Properties

41

ein XML Element mit den Attributen ,userName“ und , password“ besitzen. Die unter
diesen Attributen angegebenen Werte werden spéter als Benutzername und Passwort des
Accounts in der MediaWiki Instanz verwendet. Um die Relation zu erzeugen, liest die Me-
thode zunéchst die Parameter aus. Anschliefend fithrt sie mit den Parametern ein PHP
Skript auf der MediaWiki Instanz aus, das den benétigten Account erzeugt. Abschlieend
wird dem OperationCallback Objekt die Information iiber die Location der MediaWiki

Instanz und der Benutzername und das Passwort des erzeugten Accounts iibergeben.

42

5 Implementierung der Software zur Integration von

Informations-Ressourcen

In diesem Kapitel werden Details zur Implementierung und Nutzung der in Abschnitt 4
entworfenen Software zur Integration von Informations-Ressourcen dargestellt. Dazu wer-
den zunéchst in Abschnitt 5.1 die zur Implementierung genutzten Technologien und Li-
braries beschrieben. AnschlieBend wird in Abschnitt 5.2 zusammengefasst, iiber welche
Parameter die Software an die Bediirfnisse des Nutzers bzw. die zur Verfiigung stehenden
Datenquellen angepasst werden kann. In Abschnitt 5.3 wird die konkrete Verwendung der
Software anhand eines Beispiels erklédrt. Dazu werden Code Ausschnitte und Riickgaben

der Software zur besseren Verstiandlichkeit verwendet.

5.1 Verwendete Technologien und Libraries

Fiir die Implementierung der Software zur Integration von Informations-Ressourcen wur-
den viele verschiedene Technologien und Libraries verwendet, da der Zugriff auf jede
Datenquellen auf eine andere Weise durchgefiihrt werden muss. Zudem wurden fiir die
Implementierung der allgemeinen Logik der Software einige Technologien und Libraries
benotigt. In diesem Abschnitt sollen die wichtigsten von ihnen eingefiihrt und ihre An-

wendung in der Software erklart werden.

Neben den hier aufgefithrten Technologien und Libraries ist die objektorientierte Pro-
grammiersprache Java, in der die Umsetzung der Software erfolgte, von Bedeutung. Auf
diese wird wegen der grofien Bekanntheit jedoch nicht genauer eingegangen. Docker und
Spring, als Dependency Injection Library, sind ebenfalls wichtige Technologien fiir die Im-
plementierung. Diese wurden bereits in Abschnitt 2 eingefiihrt. Docker wird innerhalb der
Software zur Integration von MediaWiki und von MySql Datenbanken verwendet. Spring
hingegen wird in der Software genutzt, um eine méglichst lose Kopplung der Komponen-

ten zu erreichen und alle Implementierungen von Interfaces zur Laufzeit zu laden.

EGit und JGit:

EGit'? und JGit'3 sind zwei Java Libraries zur Verwendung von Git. Mit der JGit Library
ist es moglich, Lese- und Schreiboperationen auf einem Git Repository auszufiithren. Dazu
zéhlen zum Beispiel die Operationen ,,pull, jadd“, ,commit® und ,push“. Die Library
wurde in der Software verwendet, um Ordner in Git Repositories als Ressourcen zu in-
tegrieren. Die EGit Library hingegen ermdglicht den Zugriff auf die GitHub API*. Uber
diese API lassen sich Repositories l6schen und neu erstellen. Mit EGit und der Moglichkeit
die Daten eines Repository mittels JGit zu lesen und schreiben, konnten GitHub Reposi-

tories als Datenquelle eingefiigt werden.

2http://www.eclipse.org/egit/
Bhttp://www.eclipse.org/jgit/
“https://developer.github.com/v3/

43

http://www.eclipse.org/egit/
http://www.eclipse.org/jgit/
https://developer.github.com/v3/

Dropbox Core SDK:

Das Dropbox Core SDK ist eine Library, die es erméglicht, aus Java Anwendungen auf die
Dropbox Core APIY zugreifen zu kénnen. Die Dropbox Core API bietet unter anderem
die Funktionen, alle Ordner innerhalb eines Dropbox Accounts aufzulisten und Dateien
oder Ordner hochzuladen, zu loschen oder zu downloaden. Mittels des Dropbox Core SDK

wurden Ordner in Dropbox Accounts in die Software integriert.

JDBC:

Java Database Connectivity (JDBC) ist eine Datenbankschnittstelle fiir die Programmier-
sprache Java. Uber diese Schnittstelle ist es mdglich, eine Verbindung zu verschiedenen
Arten von Datenbanken herzustellen. Zudem koénnen SQL-Anfragen an die Datenbank
gestellt werden und damit Tabellen eingefiigt, geupdated oder geléscht werden. Die Er-
stellung neuer Datenbanken ist mit der Schnittstelle jedoch nicht moéglich. Mit ihr kann
nur auf bereits existierende Datenbanken zugegriffen werden. In der Software wurde die
Schnittstelle verwendet, um Verbindungen zu MySql Datenbanken zu ermdéglichen und
Daten aus Tabellen zu lesen bzw. in Tabellen einzufiigen. Damit ist es moglich, Tabellen
in MySql Datenbanken als Ressourcen in der Software zu verwenden. JDBC kann fiir die
Nutzung anderer Datenbanken als Ressourcen ebenfalls verwendet werden, wenn die Soft-
ware um diese erweitert werden soll. Dafiir muss lediglich der zur Datenbank passende

Treiber an die JDBC Komponenten iibergeben werden.

Docker-Java und Docker-Client:

Docker-Java'® und Docker-Client'” sind zwei Libraries, die den Zugriff auf einen Docker
Daemon (sieche Abschnitt 2.2) iiber die Docker Remote API erméglichen. Damit kann eine
Java Anwendung als Docker Client fungieren und Befehle, wie zum Beispiel das Erstellen
eines Containers, auf dem Docker Daemon ausfithren. Die zwei unterschiedlichen Libraries
werden benotigt, da beide aktuell nur einen Teil der Funktionalitét von der Docker Remote
APT abdecken. Mit Docker-Client ist zum Beispiel die Erstellung eines Images aus einem
laufenden Container nicht moglich. Diese Funktionalitéit wird jedoch zum Speichern des
Zustandes einer Ressource, die mit Docker initialisiert wurde, benotigt. Docker-Java eignet
sich dagegen nicht gut um einen Befehl in einem laufenden Container auszufiihren. Fiir
die Initialisierung einer MediaWiki Instanz wird dies benétigt, da dort ein PHP Skript im
Container ausgefithrt werden muss. Die Kombination beider Libraries bietet alle Docker

Funktionen, die fiir die Software benotigt werden.

https://www.dropbox.com/developers-v1/core
https://github.com/docker-java/docker-java
https://github.com/spotify/docker-client

44

https://www.dropbox.com/developers-v1/core
https://github.com/docker-java/docker-java
https://github.com/spotify/docker-client

Apache Commons Configuration:

Die Apache Commons Configuration Library® wurde entworfen, um Konfigurationspara-
meter aus verschiedenen Quellen zur Laufzeit zu laden. Durch die Nutzung der Library
miissen die Konfigurationsparameter nicht iiber den Konstruktor eines Objekts eingefiigt
werden, sondern kénnen dynamisch geladen werden. In der Software wurde eine Pro-
perties Datei als Quelle der Konfigurationsparameter verwendet. Die Verwendung der
Properties Datei und welche Parameter dort gesetzt werden konnen, wird im néchsten
Abschnitt erklédrt. Innerhalb der Software wurde diese Library verwendet, da damit die
Konfiguration der Software auch durch Personen méglich ist, die keine Kenntnisse iiber
die Implementierung der Software besitzen und dies die Anwendungsmoglichkeiten der

Software erweitert.

8https://commons . apache.org/proper/commons-configuration/

45

https://commons.apache.org/proper/commons-configuration/

5.2 Konfigurationsparameter der Software

Um die Komponenten der Software einfach verwenden zu kénnen und keine Informationen
im Konstruktor iibergeben zu miissen, wird in der Software eine Properties Datei genutzt,
welche die notigen Konfigurationsparameter beinhaltet. Damit ist es moglich, dass alle
Komponenten einen Konstruktor ohne Argumente besitzen. Zum Laden der Konfigurati-
onsdaten, muss eine Datei mit dem Namen , data.properties® im Projektordner existieren.
In diesem Abschnitt wird anhand des Beispiels in Listing 2 gezeigt, welche Parameter in

dieser Datei eingesetzt werden kénnen und welche Auswirkung dies auf die Software hat.

1 # Meta data of the definitions document
2 definitions.name = InformationResources
3 definitions.namespace = http://www.uni-stuttgart.de/

5 # Meta data about the locations of implementations

6 IDataResourceDomainManager.locations =
uni_stuttgart.integration.domain_manager.implementations

7 IDataloader.locations = uni_stuttgart.integration.eei.implementations

s IDataStorage.locations = uni_stuttgart.integration.eei.implementations

10 # Meta data about Git
11 GitDataResourceDomainManager.githubUsernamelist = accountName

12 GitDataResourceDomainManager.githubPasswordlList = testpass
13 GitDataResourceDomainManager.urllList = https://gitlab.com/user/repo

14 GitDataResourceDomainManager.repositoryUsernamelist = testUser

15 GitDataResourceDomainManager.repositoryPasswordList testpass
16

17 # Meta data about local file resources

18 FileDataResourceDomainManager.sourcePaths = C:\Users\Userl\Data
19

20 # Meta data about docker clients

21 Docker.uri = tcp://192.168.99.100:2376

22 Docker.certs = /Users/Userl/.docker/machine/certs/

23

24 # Meta data about dropbox accounts

25 Dropbox.accessToken = qXPJ(Qq4y8JAAAAAAAAAACWNE3E7Z8Q91T6861VFmQ9cuT6
26 Dropbox.username = account@ueb.de

27 Dropbox.password = testpass

Listing 2: ,,data.properties® Datei

Die ersten beiden Eigenschaften betreffen das Definitions Document, das vom Domain-
ManagerAggregator dem Nutzer zur Verfiigung gestellt wird. Der hier gesetzte Name und

Namespace werden als Name bzw. Namespace des Definitions Documents verwendet.

46

Die néchsten drei Eigenschaften (Zeile 6-8) werden fiir die Dependency Injection mit-
tels Spring genutzt. Damit Spring die Implementierungen der Interfaces laden kann,
benotigt es die Java Package Namen, in denen die Implementierungen liegen. Die drei
Eigenschaften werden dabei alle als kommaseparierte Liste verwendet. Das bedeutet, es
konnen mehrere Package Namen angegeben werden, die dann alle von Spring nach Imple-
mentierungen durchsucht werden. Mit der konkreten Properties Datei in Listing 2 wer-
den zum Beispiel alle Implementierungen des IDataLoader Interfaces aus dem Package

,uni_stuttgart.integration.eei.implementations® geladen.

Alle weiteren Eigenschaften beziehen sich auf die Verwendung bestimmter Ressourcen
Arten. Fiir jede Ressourcen Art werden sogenannte ,, Quellinformationen® angegeben. Die
Quellinformationen bestimmen, von welchem Punkt aus die Software nach Ressourcen
suchen soll. Sollte eine Datenquelle zum Beispiel mit einem Passwort geschiitzt sein, muss
dieses hier ebenfalls angegeben werden. Der Domain Manager nutzt diese Informationen
um ein Deployable fiir eine Ressource zu erzeugen und dieses muss alle Informationen

beinhalten um auf die Ressource zugreifen zu kénnen.

Git als Datenquelle unterteilt sich fiir die Nutzung in der Software zum einen in Ordner
und zum anderen in Repositories als Ressourcen. Fiir Git Repositories miissen die beiden
Eigenschaften ,,githubUsernameList® und ,,githubPasswordList“ angegeben werden. Die
Listen kénnen eine beliebige Anzahl an GitHub Accounts und zugehorige Passworter bein-
halten. Die Software listet damit alle Repositories als Ressourcen, die innerhalb dieser Ac-
counts existieren. Fiir Ordner in Git Repositories gibt es zum einen dieselbe Moglichkeit,
durch die alle Ordner in allen Repositories eines Accounts aufgelistet werden. Zusétzlich
ist es noch moglich, einzelne Repositories anzugeben, von denen dann alle beinhalteten
Ordner als Ressourcen verwendet werden. Hierfiir konnen die Eigenschaften in den Zei-
len 13-15 verwendet werden, in denen die URL des Repositories der Username und das

Passwort angegeben werden miissen.

Fiir Ordner im lokalen Dateisystem wird lediglich ein Ordner benétigt, von welchem alle
beinhalteten Ordner aufgelistet werden sollen (Zeile 18). Dabei kann eine beliebige An-
zahl an Ordnern angegeben werden. Im Beispiel werden also alle Ordner, die sich inner-
halb des Ordners ,,C:\Users\Userl\Data“ befinden, vom Domain Manager als Ressourcen

aufgelistet.

Docker wird in der Software zur Integration von Informations-Ressourcen verwendet, um
MediaWiki und MySql Instanzen zu erzeugen und zu speichern. Es kénnen zum einen
laufende MediaWiki bzw. MySql Container verwendet werden und damit neue Images
erzeugt werden. Aulerdem konnen gespeicherte Images verwendet werden, um damit neue
Container zu erstellen. Dabei existiert fiir MediaWiki und MySql ein Image fiir eine leere

Instanz, das aus der Docker Registry heruntergeladen und in jedem Client verwendet

47

werden kann. Alle anderen Images werden lokal in den zu den Docker Clients gehérenden
Docker Daemons gespeichert. Die laufenden Container sind ebenfalls von dem Docker
Daemon abhéngig, in dem sie erstellt wurden. Deshalb sind die vorhandenen Docker
Clients fiir die Software wichtig, um aktive und passiv gespeicherte Instanzen auflisten
und verwalten zu kénnen (siehe Abschnitt 2.2). Als Informationen, um auf einen Docker
Client zugreifen zu kénnen, benétigt die Software die URI und den Pfad zu den Zertifikaten
des Client. Die URI besteht aus einem Protokoll, der IP-Adresse und dem Port des Clients.
Der Pfad zu den Zertifikaten eines Clients wird benotigt, da nur damit der Zugriff auf ihn

erlaubt ist.

Fiir die Verwendung der Ordner eines Dropbox Accounts als Ressourcen, miissen drei
Eigenschaften in der Properties Datei gesetzt werden (Zeile 25-27). Die erste Informa-
tion, die benotigt wird, ist ein sogenanntes Access Token. Das Access Token kann iiber
die Dropbox Website!? fiir einen Dropbox Account erstellt werden. Die beiden anderen
benotigten Informationen sind der Benutzername und das Passwort des Accounts. Auf
diese Weise kann eine beliebige Anzahl an Dropbox Accounts zur Verwendung in der

Software hinzugefiigt werden.

Yhttps://www.dropbox.com/

48

https://www.dropbox.com/

5.3 Fallstudie

In diesem Abschnitt wird die mogliche Verwendung der Software am Beispiel der Be-
reitstellung einer Ressource in einem informellen Prozess illustriert. Das Beispiel umfasst
den kompletten Ablauf vom Auswéhlen einer Ressource bis zur Durchfiithrung einer Ope-
ration. Als Ressource wurde eine MediaWiki Instanz ausgewéhlt. Die Verwendung aller
anderen Ressourcen ist jedoch auf dieselbe Art moglich. Dabei unterscheiden sich lediglich
die moglichen Attribute im Node Template und die Informationen zur Bereitstellung der
Ressource, die von der Software am Ende geliefert werden. Genutzt wird auflerdem die
AcquirelnformationResources Operation, diese kann aber leicht durch jede andere Opera-
tion ersetzt werden. Neben den Code Ausschnitten, die zu den einzelnen Schritten gehoren,
werden auch die Riickgaben der Software beispielhaft angegeben, um zu verdeutlichen wie

diese aussehen konnen.

Im ersten Schritt muss zunéchst ein DomainManagerAggregator Objekt erzeugt werden.
Anschlieend wird mit der Methode listDomain() das aktuelle Definitions Document abge-
rufen, das alle verfiigharen Ressourcen und Relationen beinhaltet und dem Nutzer damit

eine Auswahl anbietet. Der zugehorige Code wurde in Listing 3 abgebildet.

1 DomainManagerAggregator dm = new DomainManagerAggregator() ;
2 Definitions definitions = dm.listDomain();

Listing 3: Fallstudie: Code Teil 1

Als Riickgabe liefert die Software dem Benutzer das Definitions Document in Listing 4.
Das Definitions Document verfiigt iiber die Attribute id, name und targetNamespace.
Die Werte fiir name und targetNamespace werden aus der data.properties Datei (siehe
Abschnitt 5.2) geladen. Die id wird dafiir verwendet, um das Definitions Document klar
von fritheren Versionen abzugrenzen. Deswegen wird in dieses Attribut neben dem Namen
die aktuelle Zeit bei der Erstellung des Documents angegeben. Auflerdem beinhaltet das
Definitions Document insgesamt vier Elemente, wobei zwei vom Typ Import und zwei

vom Typ NodeType sind.

Die beiden Import Elemente werden genutzt, um zwei externe Dateien in das Definiti-
ons Document einzubinden. Da fiir beide Elemente unter dem Attribut ,,importType*
der Wert , http://www.w3.0org/2001 /XMLSchema“ angegeben wurde, représentieren sie
XML Schema Dateien. Der Namespace der Importe stimmt mit dem Namespace der
Dateien iiberein, die mittels getlmports() von einem Domain Manager geliefert werden.
Diese kénnen genutzt werden, um die richtige Datei zu identifizieren. Deshalb benétigen

die Importe kein ,location“ Attribut, sondern kénnen direkt vom Domain Manager ange-

49

fordert werden. Die zwei NodeTypes innerhalb des Documents zeigen dem Nutzer, dass
derzeit zwei verschiedene Ressourcen zur Initialisierung in einem informellen Prozess zur
Verfiigung stehen. Die Eigenschaften ,,name®“ und ,targetNamespace* sind fiir jede Res-
source eindeutig. Aulerdem besitzen die NodeTypes ein Element PropertiesDefinition. In
diesem Element wird unter der Eigenschaft ,,element” ein XML Element definiert, das die
Eigenschaften des NodeTypes definiert. Im vorliegenden Definitions Document sind die
XML Elemente in den importierten XML Schema Dateien beinhaltet und konnen iiber

diese zugegriffen werden.

1 <Definitions id="InformationResources - 2016/04/15 16:32:50"
2 name="InformationResources"
3 targetNamespace="http://www.uni-stuttgart.de/"

4 xmlns:mysql="http://www.uni-stuttgart.de/resources/data-resources/xsd/
mysql"
5 xmlns:media="http://www.uni-stuttgart.de/resources/knowledge-resources/

xsd/mediawiki">

7 <Import importType="http://www.w3.org/2001/XMLSchema"
8 namespace="http://www.uni-stuttgart.de/resources/data-resources/xsd/
mysql">

10 <Import importType="http://www.w3.org/2001/XMLSchema"

11 namespace="http://www.uni-stuttgart.de/resources/knowledge-resources/
xsd/mediawiki">

12

13 <NodeType name="newMySql"

14 targetNamespace="http://www.uni-stuttgart.de/resources/data-resources/
mysql" />
15 <PropertiesDefinition element="mysql:MySqlProperties" />

16 </NodeType>

17

18 <NodeType name="newMediawiki"

19 targetNamespace="http://www.uni-stuttgart.de/resources/knowledge-
resources/mediawiki" />

20 <PropertiesDefinition element="media:MediawikiProperties" />

21 </NodeType>

22

23 </Definitions>

Listing 4: Fallstudie: Definitions Document

50

Der Nutzer entscheidet sich im Beispiel dafiir, eine MediaWiki Instanz mit der Acquire-
InformationResources Operation zu erzeugen. Dazu miissen im néchsten Schritt die Eigen-
schaften des ,,newMediawiki“ NodeTypes ausgelesen werden. Der dazu notwendige Code
ist in Listing 5 abgebildet.

1 TEntityType resource = (TEntityType) definitionms.
getServiceTemplateOrNodeTypeOrNodeTypeImplementation() .get(1);
2 InputStream xsdFile = null;

4 // read related namespace
5 String xsdNamespace = resource.getPropertiesDefinition().getElement().

getNamespaceURI();
6 for(Import importFile : dm.getImports()){
7 // search import with same namespace and use InputStream
s if (importFile.getNamespace().toString().equals(xsdNamespace)){
9 xsdFile = importFile.getImport();
10 break;
11 }
12}

Listing 5: Fallstudie: Code Teil 2

Zunichst wird der TEntityType aus dem Definitions Document ausgegeben. Der Index
»1% der get() Methode steht fiir die Position des ,newMediawiki“ NodeTypes im Docu-
ment. Fir den ,newMySql“ NodeType miisste an dieser Stelle der Index ,,0* verwendet
werden. Anschliefend wird der Namespace des Elements in der PropertiesDefinition des
NodeTypes angefordert. Dieser Namespace kann genutzt werden, um das richtige Import
Objekt des DomainManagerAggregators zu identifizieren. Dazu wird iiber alle Imports
iteriert, die mittels der getImports() Methode geliefert werden. Sobald das Import Objekt
gefunden wird, das denselben Namespace besitzt, wird der InputStream in einer Variable

gespeichert und die Suche beendet.

Der vorliegende InputStream kann zum Beispiel dafiir genutzt werden, die XML Sche-
ma Datei dem Nutzer auf der Konsole auszugeben. Eine XML Schema Datei fiir den
y,hewMediawiki“ NodeType ist in Listing 6 dargestellt. Die Schema Datei enthélt das
Element ,,MediawikiProperties®, auf das vom NodeType im Definitions Document ver-
wiesen wird. Das Element beinhaltet drei Attribute, die fiir ein NodeTemplate des Types
gesetzt werden konnen. Dabei entspricht ,,mediawikiName® dem Namen der MediaWiki
Instanz, die durch das NodeTemplate erzeugt werden soll. Wenn das Attribut nicht ge-
setzt wird, nutzt die Software einen zufdlligen Namen. Die Attribute ,,mediawikiAdmin“
und ,, mediawikiAdminPass“ konnen dagegen dafiir verwendet werden, einen initialen Ad-

ministrator Account fiir die MediaWiki Instanz zu erstellen.

o1

1 <?xml version="1.0" encoding="UTF-8" 7>
2 <x:schema xmlns:x="http://www.w3.o0rg/2001/XMLSchema" targetNamespace="http
://www.uni-stuttgart.de/resources/knowledge-resources/xsd/mediawiki">

3 <x:element name="MediawikiProperties">

4 <x:complexType>

5 <x:attribute name="mediawikiName" type="xs:string"/>

6 <x:attribute name="mediawikiAdmin" type="xs:string"/>

7 <x:attribute name="mediawikiAdminPass" type="xs:string"/>
8 </x:complexType>

9 </x:element>
10 </x:schema>

Listing 6: Fallstudie: XML Schema Datei

Nachdem dem Nutzer durch das XML Schema angezeigt wurde, welche Einstellungs-
moglichkeiten er zusétzlich zum RunnableContainer fiir die Ressource besitzt, kann die
Operation als néichstes ausgefiihrt werden. Der Code findet sich in Listing 7. Fiir die An-
forderung der Deployables vom DomainManagerAggregator, muss zunéchst der QName
der Ressource aus dem NodeType ausgelesen werden. Danach kann das NodeTemplate
fiir die RunnableContainer erzeugt werden und mit dem Properties Element versehen
werden. Das XML Element wird mittels DOM?° erstellt. Dazu wird ein Document und
Element erstellt und anschlieBend werden die drei Attribute aus der XML Schema Datei
im Element gesetzt. Die angegebenen Attribute sorgen dafiir, dass die erzeugte Instanz den
Namen ,, InformalProcessWiki“ tragt und ein Administrator Account erstellt wird, der mit
dem Benutzername ,,admin® und dem Password ,,password“ versehen wird. Im néchsten
Schritt wird ein Objekt der Operation, in diesem Fall AcquirelnformationResources, er-
stellt. Von der Operation kann fiir den QName der Ressource abgefragt werden, wie viele
und welche Deployables ben6tigt werden. Jedes geforderte Deployable wird vom Domain-
ManagaerAggregator abgerufen und zusammen mit dem erstellten Template zu einem
RunnableContainer umgewandelt. Alle erstellten RunnableContainer werden in eine Liste
eingefiigt. Mit dieser Liste kann schliefilich die Operation mittels der executeOperation()
Methode gestartet werden.

2Onttps://docs.oracle.com/javase/tutorial/jaxp/dom/index.html

52

https://docs.oracle.com/javase/tutorial/jaxp/dom/index.html

1 QName resourceName = new QName(resource.getTargetNamespace(), resource.
getName());
2> TNodeTemplate template = new TNodeTemplate();

4 // add attributes to the element

5 DOMImplementation impl = DOMImplementationImpl.getDOMImplementation() ;

6 Document doc = impl.createDocument(null, "testDoc", null);

7 Element element = doc.createElement ("Element");

s element.setAttribute("mediawikiName", "InformalProcessWiki");

o element.setAttribute("mediawikiAdmin", "admin");

10 element.setAttribute("mediawikiAdminPass", "password");

11

12 // add Properties to template

13 Properties prop = new Properties();

14 prop.setAny(element);

15 template.setProperties(prop);

16

17 // create RunnableContainers and execute the operation

13 List<RunnableContainer> list = new ArrayList<RunnableContainer>();

19 AcquireInformationResources operation = new AcquireInformationResources();

20 for(QName depl : operation.getRequiredDeployableTypes(resourceName)){

21 Deployable deployable = dm.getDeployable(resourceName, depl, new
TIntention());

22 list.add(new RunnableContainerObject(template, deployable.getDeployable()
, deployable.getType()));

23

24 operation.executeOperation(list, null, new OperationCallbackObject());

Listing 7: Fallstudie: Code Teil 3

Zusitzlich zur Liste mit RunnableContainer Objekten, muss der executeOperation() Me-
thode ein Objekt iibergeben werden, welches das OperationCallback Interface implemen-
tiert. Nachdem die Operation beendet ist, wird auf diesem Objekt die onSuccess() bzw.
onError() Methode mit den Riickgabewerten aufgerufen. Die aufgerufene Methode ist
dann dafiir zusténdig, die Ergebnisse zu verarbeiten. Fiir die Fallstudie wurde eine Im-
plementierung des Interfaces erzeugt, die lediglich die Riickgabe auf der Konsole ausgibt.
Die Ausgabe findet sich in Listing 8. Sie beinhaltet den Status der Operation (,,Success*®).
Auflerdem wird die Location ausgegeben, welche einer URI entspricht, iiber die auf die
erzeugte MediaWiki Instanz zugegriffen werden kann. Der dritte Riickgabeparameter ent-
spricht zusétzlichen Informationen iiber die erzeugte Instanz. Im Fall von MediaWiki
sind dies der Nutzername und das Passwort des Administrator Accounts, sofern die zu-

gehorigen Attribute im NodeTemplate gesetzt wurden.

33

1 Success
2 Location: http://192.168.99.100:32771
3 Username: admin Password: password

Listing 8: Fallstudie: Ausgabe

Damit ist die Bereitstellung der MediaWiki Ressource fiir einen informellen Prozess abge-
schlossen. Bei der tatséchlichen Anwendung der Software werden Ressourcen in ein grofles
System integriert. Dabei werden die einzelnen Schritte, die in der Fallstudie dargestellt
wurden, automatisch vom umgebenden System veranlasst und benétigen keinen Eingriff
vom Benutzer. Zudem werden die von der Software erstellten Riickgaben von diesem
System verarbeitet und es ist damit moglich, alle Ressourcen, die fiir einen informellen

Prozess benotigt werden, automatisch zu initialisieren.

o4

6 Zusammenfassung und Fazit

Um erworbenes Wissen innerhalb eines informellen Prozesses wiederverwendbar zu ma-
chen, muss eine Moglichkeit gefunden werden, die Prozesse zu modellieren. Das Problem
bei der Modellierung informeller Prozesse liegt darin, dass sie im Gegensatz zu Business
Prozessen hauptsichlich von menschlichen Akteuren durchgefithrt werden. Durch die da-
mit entstehende Unvorhersehbarkeit der Aktivitdten des Prozesses, konnen iibliche Mo-
dellierungsverfahren fiir informelle Prozesse nicht angewandt werden. Stattdessen ist es
moglich, die Business Logik eines informellen Prozesses implizit zu beschreiben, indem die
Ressourcen modelliert werden, die im informellen Prozess verwendet werden. Damit neben
der Modellierung auch die teilweise automatische Ausfithrung eines informellen Prozesses
ermoglicht werden kann, miissen alle Ressourcen des Prozesses automatisch initialisierbar
gemacht werden. Da die Integration von Informations-Ressourcen im Kontext der infor-

mellen Prozesse bisher nicht untersucht wurde, soll die Arbeit diese Liicke schlieflen.

Das Ziel der vorliegenden Arbeit war es deshalb, eine Software zu erstellen, welche die au-
tomatische Integration von Informations-Ressourcen in informelle Prozesse durchfiihren
kann. Dazu wurde zunéchst eine Taxonomie entworfen, die das Einordnen von Datenquel-
len, anhand interessanter Eigenschaften fiir die Integration, erméglicht. Bei der Erstellung
der Taxonomie wurde festgestellt, dass unter anderem die Art und die Grofle der Ressour-
cen interessant sind. Die Art der Ressourcen unterteilt sich in strukturierte Daten und
unstrukturierte Daten. Da eine Darstellung einer Ressource in einer Datenquelle einer
anderen Art iiblicherweise keinen Sinn macht, muss dies in der Software beachtet werden.
Die Grofle einer Ressource spielt dagegen eine Rolle, da extrem grofie Ressourcen nicht
ohne groflere Verzogerungen iibertragen werden konnen und diese deshalb nur lokal ko-

piert werden sollten.

Nach der Analyse der interessanten Eigenschaften von Datenquellen wurde die Software
konzeptuell ausgearbeitet. Dazu wurde ein Use-Case Diagramm mit moglichen Anwen-
dungsfillen fiir die Software und ein Klassendiagramm erstellt. Die Software wurde so
entworfen, dass sie einfach um neue Datenquellen erweitert werden kann, indem nur eini-
ge Interfaces implementiert werden miissen. Anschliefend wurde die grundlegende Logik
der Software in der Programmiersprache Java umgesetzt und die Interfaces fiir alle Res-
sourcen des motivierenden Szenarios implementiert.

Durch die Erstellung der Software zur Integration von Informations-Ressourcen wurde
das Ziel, Informations-Ressourcen automatisch in informelle Prozesse zu integrieren, um
damit eine teilweise automatische Ausfithrung der Prozesse zu erméglichen, erreicht. Die
Software ermoglicht es, alle in Abschnitt 1.1.1 definierten Ressourcen und Relationen
in informelle Prozesse zu integrieren. Da fiir allgemeine informelle Prozesse jedoch viele
verschiedene Informations-Ressourcen verwendet werden konnen, ist an dieser Stelle eine
Erweiterung der Software fiir Prozesse mit anderen Ressourcen notig.

5%)

56

7 Ausblick

Die im Laufe der Arbeit entwickelte Software wird fiir die Integration von Informations-
Ressourcen in informelle Prozesse verwendet. Hierbei konnte von den verschiedenen Da-
tenquellen jedoch nur ein kleiner Teil bereits in die Software aufgenommen werden. Der
einfachste Weg, die Integration von Ressourcen fortzufiihren, ist, die vorhandene Softwa-
re um weitere Datenquellen mit Informations-Ressourcen, wie zum Beispiel Google Docs

oder Redmine, zu erweitern.

Neben der Integration neuer Datenquellen ist auch die Erweiterung der Software um
zusétzliche Operationen denkbar. Bisher werden lediglich die sogenannten Lifecycle Opera-
tionen (Aquire, Store, Release) unterstiitzt. Weitere doménenspezifische Operationen kénn-

ten jedoch einen zusétzlichen Mehrwert zur Nutzung in informellen Prozessen darstellen.

Das Ziel der Integration von Ressourcen ist es, informelle Prozesse teilweise automatisiert
ausfithren zu konnen, indem die Initialisierung der Ressourcen automatisch durchfiithrbar
wird. Um dieses Ziel zu erreichen, miissen jedoch alle vier verschiedenen Arten von Res-
sourcen integriert werden. Die Wissens-Ressourcen und ein Teil der IT-Ressourcen werden
bereits durch den Ansatz der Software abgedeckt. Noch offen sind dabei aber die Material-
Ressourcen und die menschlichen Ressourcen. Material-Ressourcen spielen in informellen
Prozessen im IT Umfeld héufig keine grofle Rolle. Menschliche Ressourcen sind jedoch
elementar fiir jeden informellen Prozess. Aufgrund dessen ist es ein wichtiger Schritt die

Integration von menschlichen Ressourcen in Zukunft genauer zu betrachten.

o7

8 Abbildungsverzeichnis
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.

1 Motivierendes Szenario 10
2 Integration von Ressourcen in informelle Prozesse [7] 11
3 Aufbau eines Service Templates [10] 14
4 Beispiel , Topology Template® 14
5 Docker Architektur 17
6 Taxonomie fiir Datenquellen 22
7 Beispiel ,Einordnung von Datenquellen* 24
8 Use-Case-Diagramm der Software 27
9 Klassendiagramm des Systems 32
10 Klassendiagramm der Software (Teil 1) 34
11 Klassendiagramm der Software (Teil 2) 35

9 Listingverzeichnis

Lst.
Lst.
Lst.
Lst.
Lst.
Lst.
Lst.
Lst.

1

0 3 O Ot B~ W N

Beispiel ,NodeType XML®“ 16
y,data.properties Datei oo 46
Fallstudie: Code Teil 1 49
Fallstudie: Definitions Document 50
Fallstudie: Code Teil 2 51
Fallstudie: XML Schema Datei 52
Fallstudie: Code Teil 3 53
Fallstudie: Ausgabe 54

58

10 Quellenverzeichnis

1]

2]

[10]

[11]

[12]

[13]

W. v. d. Aalst, A. t. Hofstede, and M. Weske. Business process management: A

survey. In Business process management. Springer, 2003.

F. Leymann and D. Roller. Production Work Flow: Concepts and Techniques. Pren-
tice Hall PTR, 2000.

M. Weske. Business Process Management: Concepts, Languages, Architectures.
Springer New York, Inc., 2007.

Object Management Group. Business process model and notation (BPMN) version

2.0. Technical report, Object Management Group, 2011.
OASIS Standard. Web services business process execution language version 2.0, 2007.

C. T. Sungur, T. Binz, U. Breitenbiicher, and F. Leymann. Informal process essen-
tials. In Proceedings of the 18th IEEE Enterprise Distributed Object Conderence,
2014.

C. T. Sungur, U. Breitenbiicher, F. Leymann, and J. Wettinger. Executing infor-
mal processes. In Proceedings of the 17th International Conference on Information

Integration and Web-based Applications € Services, 2015.

W. v. d. Aalst, M. Weske, and D.Griinbauer. Case handling: a new paradigm for
business process support. Data & Knowledge Engineering, 2005.

P. Dadam and M. Reichert. The adept project: A decade of research and development
for robust and flexible process support - challenges and achievements. Computer

Science - Research and Development, 2009.

OASIS Standard. Topology and Orchestration Specification for Cloud Applications
Version 1.0, 2013.

T. Binz, G. Breiter, F. Leyman, and T. Spatzier. Portable cloud services using tosca.
IEEE Internet Computing, 2012.

T. Binz, U. Breitenbiicher, O. Kopp, and F. Leymann. Tosca: portable automa-
ted deployment and management of cloud applications. In Advanced Web Services.

Springer, 2014.

O. Kopp, T. Binz, U. Breitenbiicher, and F. Leymann. Winery — modeling tool
for TOSCA-based cloud applications. In 11" International Conference on Service-
Oriented Computing, 2013.

29

[14]

[15]

[18]

[19]

[20]

[21]

[22]

Docker. Docker Webseite. https://www.docker.com/, 2016. [Stand 29. April 2016].

J. Turnbull. The Docker Book: Containerization is the new virtualization. J. Turnbull,
2014.

D. Merkel. Docker: Lightweight linux containers for consistent development and

deployment. Linux Journal, 2014.

M. Fowler. Inversion of control containers and the dependency injection pattern.
http://www.martinfowler.com/articles/injection.html, 2004. [Stand 03. Mai
2016].

J. Arthur and S. Azadegan. Spring framework for rapid open source j2ee web app-
lication development: a case study. In Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing, 2005.

C. Walls. Guice vs. Spring JavaConfig: A comparison of DI styles. http://www.
jroller.com/habuma/entry/guice_vs_spring_javaconfig_a, 2007. [Stand 3. Mai
2016].

S. Venugopal, R. Buyya, and K. Ramamohanarao. A taxonomy of data grids for

distributed data sharing, management and processing. Technical Report, 2005.

A. Arasu and H. Garcia-Molina. Extracting structured data from web pages. In
Proceedings of the 2003 ACM SIGMOD international conference on Management of
data, 2003.

L. Kassner and B. Mitschang. MaXCept — Decision Support in Exception Handling
through Unstructured Data Integration in the Production Context. An Integral Part
of the Smart Factory. In Proceedings of the 48th Hawaii International Conference on

System Sciences, 2015.

J. Vlissides, R. Helm, R. Johnson, and E. Gamma. Design patterns: Elements of
reusable object-oriented software. Addison- Wesley, 1995.

60

https://www.docker.com/
http://www.martinfowler.com/articles/injection.html
http://www.jroller.com/habuma/entry/guice_vs_spring_javaconfig_a
http://www.jroller.com/habuma/entry/guice_vs_spring_javaconfig_a

Erklirung

Ich versichere, diese Arbeit selbststindig verfasst zu haben. Ich habe keine anderen als
die angegebenen Quellen benutzt und alle wortlich oder sinngeméf aus anderen Werken
iibernommene Aussagen als solche gekennzeichnet. Weder diese Arbeit noch wesentliche
Teile daraus waren bisher Gegenstand eines anderen Priifungsverfahrens. Ich habe diese
Arbeit bisher weder teilweise noch vollstindig veroffentlicht. Das elektronische Exemplar

stimmt mit allen eingereichten Exemplaren iiberein.

Datum:
(Unterschrift)

	Einleitung
	Motivierendes Szenario
	Liste der verwendeten Ressourcen und Relationen

	Ziel der Arbeit
	Aufbau der Arbeit

	Grundlagen und verwandte Arbeiten
	Topology and Orchestration Specification for Cloud Applications
	Service Template
	Definitions Document
	NodeType
	RelationshipType

	Docker
	Dependency Injection
	InProXec Methode

	Analyse der Eigenschaften von Informations-Ressourcen
	Taxonomie für Datenquellen im Kontext informeller Prozesse
	Einordnung von Datenquellen in die Taxonomie
	Relationen zwischen Ressourcen

	Entwurf der Software zur Integration von Informations-Ressourcen
	Anwendungsfälle der Software
	Anwendungsfälle des Administrators
	Anwendungsfälle des Benutzers

	Klassendiagramm des umgebenden Systems
	Klassendiagramm der Software
	Interfaces zur Erweiterung der Software
	Ablauf der wichtigsten Methoden

	Implementierung der Software zur Integration von Informations-Ressourcen
	Verwendete Technologien und Libraries
	Konfigurationsparameter der Software
	Fallstudie

	Zusammenfassung und Fazit
	Ausblick
	Abbildungsverzeichnis
	Listingverzeichnis
	Quellenverzeichnis

