
Institut für Architektur von

Anwendungssystemen

Universitätsstraße 38
D-70569 Stuttgart

Bachelorarbeit Nr. 266

Einbindung von
Informations-Ressourcen

in informelle Prozesse

Benjamin Weder

Studiengang: Informatik

Prüfer: Prof. Dr. Frank Leymann

Betreuer: M.Sc. C. Timurhan Sungur

Beginn am: 16.11.2015

Beendet am: 17.05.2016

CR-Nummer: H.4.1, H.5.3

Zusammenfassung
Informelle Prozesse sind Business Prozesse, bei denen der Großteil der Aktivitäten von

Menschen durchgeführt wird. Deshalb sind die Aktivitäten nur schwer vorhersehbar und

übliche Modellierungsmöglichkeiten für Business Prozesse können nicht eingesetzt werden.

Ein Ansatz ist es, die Aktivitäten implizit zu beschreiben. Dazu werden die im informellen

Prozess verwendeten Ressourcen modelliert. Weil zu den Ressourcen auch menschliche

Akteure gehören und diese die Aktivitäten durchführen, ist dies eine Möglichkeit einen

informellen Prozess indirekt zu beschreiben.

Da informelle Prozesse einen großen Teil der Prozesse in Unternehmen ausmachen, bringt

eine teilweise automatische Ausführung dieser Prozesse in vielen Fällen einen erheblichen

Gewinn. Um die teilweise automatische Ausführung zu ermöglichen, müssen die Ressour-

cen von informellen Prozessen automatisch initialisierbar sein. Die vorliegende Arbeit

beschäftigt sich mit der Integration von Informations-Ressourcen in informelle Prozesse.

Dazu werden Eigenschaften von Informations-Ressourcen analysiert und daraus Anfor-

derungen an eine Software zur Integration von Informations-Ressourcen abgeleitet. An-

schließend wird eine Integrations-Software konzeptuell ausgearbeitet, die besonders den

Aspekt der einfachen Erweiterbarkeit verfolgt. Diese Eigenschaft ist besonders wichtig, da

es sehr viele verschiedene Informations-Ressourcen gibt. So soll die Möglichkeit geschaffen

werden, die Software durch Erweiterungen an die Bedürfnisse eines informellen Prozesses

anzupassen. Das Resultat der Arbeit ist eine Integrations-Software für informelle Prozes-

se, die einen Teil der Informations-Ressourcen integrieren kann und zudem einfach um

weitere Ressourcen erweitert werden kann. Zur Funktionalität der Software gehört unter

anderem das Auflisten und Initialisieren von Ressourcen in informellen Prozessen.

Abstract
Informal processes are business processes in which the majority of activities is performed

by humans. Therefore, the activities are difficult to predict and activity centric modeling

approaches for business processes can not be used. One possible approach is to describe

the activities implicitly by modeling resources of informal processes. The resources mo-

deled in informal processes also include the human actors which carry out the activities

and, hence, this is a way to describe activities of an informal process indirectly.

Since informal processes constitute a major part of the processes in many companies, a

partial automated execution of these processes can bring a significant benefit. In order

to enable the partial automated execution, resources of informal processes must be au-

tomatically acquirable. This work deals with the integration of information resources in

informal processes. Therefore, characteristics of information resources are analyzed and

requirements on a software for the integration are derived. Then an integration software

is elaborated conceptually, which particularly heeds the aspect of easy extendability. This

property is important because of the large number of different information resources. So

the software can be adapted to different informal processes easily. The result of this work

is an integration software for informal processes that can integrate a part of the informa-

tion resources and which can easily be extended to other resources. The functionality of

the software includes listing and initializing resources of informal processes.

3

4

Inhaltsverzeichnis

1 Einleitung 7

1.1 Motivierendes Szenario . 9

1.1.1 Liste der verwendeten Ressourcen und Relationen 10

1.2 Ziel der Arbeit . 11

1.3 Aufbau der Arbeit . 12

2 Grundlagen und verwandte Arbeiten 13

2.1 Topology and Orchestration Specification for Cloud Applications 13

2.1.1 Service Template . 13

2.1.2 Definitions Document . 15

2.1.3 NodeType . 15

2.1.4 RelationshipType . 16

2.2 Docker . 17

2.3 Dependency Injection . 19

2.4 InProXec Methode . 20

3 Analyse der Eigenschaften von Informations-Ressourcen 21

3.1 Taxonomie für Datenquellen im Kontext informeller Prozesse 21

3.2 Einordnung von Datenquellen in die Taxonomie 24

3.3 Relationen zwischen Ressourcen . 26

4 Entwurf der Software zur Integration von Informations-Ressourcen 27

4.1 Anwendungsfälle der Software . 27

4.1.1 Anwendungsfälle des Administrators 28

4.1.2 Anwendungsfälle des Benutzers . 29

4.2 Klassendiagramm des umgebenden Systems 30

4.3 Klassendiagramm der Software . 34

4.3.1 Interfaces zur Erweiterung der Software 36

4.3.2 Ablauf der wichtigsten Methoden 38

5 Implementierung der Software zur Integration von

Informations-Ressourcen 43

5.1 Verwendete Technologien und Libraries . 43

5.2 Konfigurationsparameter der Software . 46

5.3 Fallstudie . 49

6 Zusammenfassung und Fazit 55

5

7 Ausblick 57

8 Abbildungsverzeichnis 58

9 Listingverzeichnis 58

10 Quellenverzeichnis 59

Abkürzungsverzeichnis
BPEL Business Process Execution Language

BPM Business Process Management

BPMN Business Process Model and Notation

DI Dependency Injection

DIPEA Deployable Informal Process Essentials Archive

DM Domain Manager

EEI Execution Environment Integrator

IPE Informal Process Essentials

JDBC Java Database Connectivity

QName Qualified Name

SSL Secure Sockets Layer

URI Uniform Resource Identifier

6

1 Einleitung
Unter einem Business Prozess versteht man einen Prozess, der in einer Firma oder einem

Unternehmen durchgeführt wird, um ein bestimmtes Ziel zu erreichen. Ein Business Pro-

zess besteht aus einer Menge von Aktivitäten, die nacheinander oder zum Teil parallel

ausgeführt werden. Zum Beispiel kann in einer Bank ein Business Prozess zur Vergabe von

Krediten definiert sein. Die Aktivitäten des Prozesses, sind das Annehmen eines Kreditan-

trags, das Überprüfen der Kreditwürdigkeit des Kunden und abschließend das Informieren

des Kunden über die Bewilligung oder Ablehnung des Antrags. Das Designen, Managen,

Ausführen, Analysieren und Verbessern von Business Prozessen wird als Business Pro-

cess Management (BPM) bezeichnet [1][2]. Ein wichtiger Bestandteil des Business Process

Managements ist das Modellieren von Business Prozessen [3]. Zur Modellierung werden

üblicherweise sogenannte Workflow Sprachen wie Business Process Model and Notation

(BPMN) [4] oder Business Process Execution Language (BPEL) [5] verwendet. Diese Spra-

chen werden genutzt, um die einzelnen Aktivitäten eines Business Prozesses und deren

Abfolge zu modellieren und damit den gesamten Prozess zu definieren. Durch die Mo-

dellierung von Business Prozessen ist es möglich, das Wissen über die Business Prozesse

wiederverwendbar zu machen und zu speichern. Durch das häufige Wiederverwenden der

Prozesse, können diese mit neuen Erkenntnissen ständig verbessert werden [1]. Außer-

dem wird eine komplette oder teilweise automatische Ausführung der Business Prozesse

ermöglicht.

Informelle Prozesse unterscheiden sich von anderen Business Prozessen darin, dass die

Aktivitäten innerhalb eines informellen Prozesses üblicherweise von Menschen ausgeführt

werden und damit schwer vorhersagbar sind [6]. Die Aktivitäten sind deshalb nicht vorde-

finiert, sondern beruhen auf Entscheidungen der involvierten Menschen [7]. Ein Beispiel

für einen informellen Prozess ist die Bearbeitung von Kundenpost in einer Bank. Die Post

muss zunächst gelesen werden und anschließend kann anhand des Inhalts entschieden

werden, welche Aktivitäten zur Bearbeitung durchgeführt werden müssen. Im Gegen-

satz zum Beispiel der Kreditvergabe ist es hier schwierig, alle möglichen Aktivitäten im

Voraus zu definieren, da der Kunde jede beliebige Anfrage stellen kann und sich die Bear-

beitung damit immer unterscheiden kann. Anstelle eines vordefinierten Workflows, hängt

die Ausführung bei diesem Beispiel deshalb von den Entscheidungen des Bearbeiters ab,

die sich nach seiner Erfahrung und seinem Wissen richten.

Aufgrund der Unvorhersehbarkeit und der häufigen Änderungen der Aktivitäten, sind

Aktivitätsorientierte Prozessmodellierungsverfahren wie BPMN oder BPEL zur Model-

lierung von informellen Prozessen meistens nicht geeignet. Flexiblere Ansätze, wie da-

tengetriebene [8] oder adaptive [9] Workflows, können zur Modellierung ebenfalls nicht

verwendet werden, da diese eine vordefinierte Business Logik benötigen, welche für infor-

melle Prozesse meistens nicht existiert [6].

7

Ohne die Möglichkeit informelle Prozesse modellieren zu können, kann erworbenes Wissen

nicht weitergegeben werden. Eine Wiederverwendung des Wissens ist damit nur von der

Person, die den Prozess durchgeführt hat, möglich und dies auch nur insoweit sie sich

das erhaltene Wissen merken kann. Da in vielen Organisationen informelle Prozesse einen

Großteil der Arbeit ausmachen, ist es jedoch wichtig, Wissen wiederverwendbar und ins-

besondere weiter verteilbar zu machen. Damit sollen Prozesse möglichst unabhängig von

der Verfügbarkeit bestimmter Personen mit dem benötigten Wissen gemacht werden.

Der
”
Informal Process Essentials“-Ansatz [6] versucht das Problem der fehlenden Mo-

dellierungsmöglichkeiten zu lösen und bietet ein Metamodell zur Beschreibung von infor-

mellen Prozessen. Da die Business Logik von informellen Prozessen wegen der Unvorher-

sehbarkeit nicht explizit definierbar ist, nutzt der Ansatz eine implizite Beschreibung der

Business Logik. Das heißt, es werden die menschlichen Akteure beschrieben, die durch ih-

re Entscheidungen die Business Logik definieren. Für informelle Prozesse sind Ressourcen

(zu denen auch die Akteure gehören) häufig von großer Bedeutung und deshalb wurde

ein Ressourcen-zentrierter Ansatz vorgeschlagen [6]. Der Fokus eines Modells liegt damit

auf den Ressourcen, die im jeweiligen informellen Prozess verwendet werden. Neben den

unterschiedlichen Ressourcen, sind der Kontext und die Intention wichtige Bestandteile

eines Informal Process Essentials Modells. In der Intention wird das Ziel des informellen

Prozesses definiert. Der Kontext wird einmal vor Beginn des informellen Prozesses und

einmal nach dem Ende beschrieben, um die Auswirkung des informellen Prozesses deut-

lich zu machen. Außerdem können unterschiedliche informelle Prozesse durch die Angabe

der Kontexte verbunden werden. Das heißt, der eine Prozess kann den Endkontext des

anderen Prozesses als Startkontext nutzen.

Die in informellen Prozessen verwendeten Ressourcen können in vier verschiedene Gruppen

unterteilt werden: IT-Ressourcen, Material-Ressourcen, Wissens-Ressourcen und mensch-

liche Ressourcen [7]. Zu den IT-Ressourcen zählen zum Beispiel verschiedene Programme

oder Dateien. Den Material-Ressourcen werden alle physischen Materialien eines Prozes-

ses, wie Bauteile oder Rohmaterial, zugeordnet. Wissens-Ressourcen umfassen das gesam-

te Wissen, welches innerhalb eines Prozesses verwendet wird. Die menschlichen Ressourcen

beinhalten alle am informellen Prozess beteiligten Personen, wie zum Beispiel Entwickler

oder Systemadministratoren. Für die teilweise automatische Ausführung von informel-

len Prozessen, müssen die Ressourcen automatisch initialisiert werden können [7]. Die

Ressourcen werden dann genutzt, um die Ziele des Prozesses zu erreichen

Die vorliegende Arbeit beschäftigt sich mit der automatischen Initialisierung von unter-

schiedlichen Informations-Ressourcen. Zu den Informations-Ressourcen zählen zum einen

die Wissens-Ressourcen und zum anderen die Daten-Ressourcen, die eine Untermenge der

IT-Ressourcen bilden.

8

1.1 Motivierendes Szenario

Im Folgenden wird ein motivierendes Szenario beschrieben, für das im Verlauf der Ar-

beit eine Software zur Integration von Informations-Ressourcen entworfen wird. Diese

soll das automatische Integrieren der im Szenario beinhalteten Informations-Ressourcen

ermöglichen. Abb. 1 listet die Schritte des Szenarios grafisch auf, in denen Ressourcen

oder Relationen erzeugt, gespeichert, gelöscht oder transferiert werden. Die Zahlenver-

weise in Klammern innerhalb des Szenarios beziehen sich auf diese Grafik. Die Grafik

beinhaltet aus Übersichtlichkeitsgründen nur zwei Beteiligte, ist aber für eine beliebige

Anzahl erweiterbar.

Als motivierendes Szenario wurde der Prozess der Wartung einer Software ausgewählt.

Die Wartung einer Software entspricht einem informellen Prozess, da die meisten Akti-

vitäten von Menschen ausgeführt werden müssen und die einzelnen Schritte nicht genau

vorhersagbar sind. Je nach Art des Wartungsauftrags werden unterschiedliche Fachleute,

wie zum Beispiel Datenbank- oder Netzwerkspezialisten, in den Prozess involviert.

Um das gewonnene Wissen während einer Durchführung des Prozesses teilbar zu machen

und für zukünftige Prozesse zu erhalten, werden die Erkenntnisse der Mitarbeiter während

des Prozesses in einem für alle Beteiligten zugänglichen MediaWiki1 gespeichert. Dazu

wird im ersten Schritt vom Administrator eine MediaWiki Instanz für den neu gestarteten

Prozess erstellt (1). Hierbei kann entweder eine leere Instanz erzeugt werden, falls ein

Prozess dieser Art zum ersten Mal ausgeführt wird, oder eine in einem anderen Prozess

gespeicherte Instanz neu erzeugt werden. Im zweiten Schritt erhalten alle Beteiligten des

Prozesses einen Account mit Administrator Rechten auf der erstellten MediaWiki Instanz,

um darüber ihre Erkenntnisse austauschen zu können (2).

Nach der erfolgreichen Erstellung der MediaWiki Instanz können alle Beteiligten mit der

Arbeit am Wartungsprozess beginnen. Dafür überträgt zunächst jeder Beteiligte das Code

Projekt aus einem globalen Git Repository in sein Dateisystem (3). Anschließend nimmt

jeder Beteiligte Änderungen an Komponenten vor, für die er zuständig ist und speichert

diese Änderungen in seinem Dateisystem. Nach der Fertigstellung der Änderungen testet

der Beteiligte, ob die gewünschte Funktionalität erreicht wurde. Dazu erzeugt er eine

MySql2 Datenbank (4) und fügt dort die für die Tests benötigten Tabellen ein (5). Wenn

die Tests fehlschlagen, überarbeitet der Beteiligte die Änderungen, bis die Tests erfolgreich

abgeschlossen wurden. Nach dem erfolgreichen Abschluss der Tests, lädt der Beteiligte die

von ihm bearbeiteten Komponenten in einen Ordner eines Repositories, in welchem alle

Änderungen gesammelt werden (6). Außerdem wird die erzeugte Datenbank mitsamt der

Tabellen gelöscht, um keine Ressourcen zu verschwenden (7).

1https://www.mediawiki.org/wiki/MediaWiki/de
2https://www.mysql.de/

9

https://www.mediawiki.org/wiki/MediaWiki/de
https://www.mysql.de/

Nachdem alle Mitarbeiter ihre Änderungen gespeichert haben, ist der informelle Prozess

beendet und die MediaWiki Instanz wird passiv gespeichert und gelöscht (8). Das bedeu-

tet, auf die Instanz kann nicht mehr zugegriffen werden, aber sie kann jederzeit im selben

Zustand neu erzeugt werden. Durch die passive Verwaltung werden Ressourcen gespart.

Neben dem Austausch von Wissen zwischen Beteiligten über die MediaWiki Instanz,

können andere Dokumente während des Prozesses über Dropbox ausgetauscht werden

(9). Dies ist jedoch optional und nur nötig, falls zusätzliche Dokumente vorhanden sind.

Abbildung 1: Motivierendes Szenario

1.1.1 Liste der verwendeten Ressourcen und Relationen

Nachfolgend werden alle Ressourcen und Relationen, die im motivierenden Szenario be-

nötigt werden und damit in der Software zur Integration von Informations-Ressourcen

initialisierbar sein sollen, aufgelistet:

- Ordner im lokalen Dateisystem

- Ordner in Git Repositories

- Ordner in Dropbox Accounts

- Git Repositories

- MySql Datenbanken

- Tabellen in MySql Datenbanken

- MediaWiki Instanzen

- Administrator Relation zwischen Nutzern und MediaWiki Instanzen

10

1.2 Ziel der Arbeit

Das Ziel dieser Arbeit ist es, unterschiedliche Informationsquellen, Operationen und Rela-

tionen im Kontext der informellen Prozesse zu untersuchen. Aufbauend auf dieser Analyse,

soll eine Software zur Integration von Informations-Ressourcen entworfen werden, die es

ermöglicht, Datenquellen automatisiert in informelle Prozesse zu integrieren. Diese Soft-

ware soll anschließend für die Datenquellen des motivierenden Szenarios implementiert

werden (siehe Abschnitt 1.1.1). Da die Integration von Informations-Ressourcen im Kon-

text der informellen Prozesse bisher nicht untersucht wurde, soll die Arbeit diese Lücke

schließen.

Abb. 2 zeigt das Vorgehen beim Integrieren von Ressourcen in informelle Prozesse [7].

Die für die Integration interessanten Ressourcen (I1) entsprechen den im motivierenden

Szenario aufgelisteten Ressourcen. Die verschiedenen Operationen, welche auf den Res-

sourcen ausführbar sein sollen (I3), wurden bereits im System, das die Software später als

Komponente verwenden soll, definiert. Eine Beschreibung dieser Operationen findet sich

in Abschnitt 4.2. Die Implementierung der Software zur Integration von Informations-

Ressourcen unterteilt sich in zwei Bereiche. Zum einen die Erstellung von Domain Mana-

gers (I4) für die verschiedenen Ressourcen, die dafür verwendet werden, alle verfügbaren

Ressourcen einer Domäne aufzulisten und alle Informationen zu liefern, welche für den

Zugriff auf die Ressourcen benötigt werden. Zum anderen die Realisierung von Executi-

on Environment Inegrators (I5). Die Execution Environment Integrators nutzen die von

den Domain Managers gelieferten Informationen, um die definierten Operationen auf den

Ressourcen auszuführen. Am Ende der Arbeit können die erstellen Domain Manager und

Execution Environment Integrator beim System registriert (I6) und verwendet werden.

Abbildung 2: Integration von Ressourcen in informelle Prozesse3

3Übernommen aus Sungur et al. [7]

11

1.3 Aufbau der Arbeit

Diese Arbeit ist folgendermaßen strukturiert:

Kapitel 2 - Grundlagen und verwandte Arbeiten: In diesem Kapitel werden zunächst

Grundlagen eingeführt, die für das Verständnis der weiteren Kapitel nötig sind.

Kapitel 3 - Analyse der Eigenschaften von Informations-Ressourcen: Hier wer-

den Datenquellen untersucht, die im Kontext der informellen Prozesse verwendbar sein

können. Es wird eine Taxonomie entworfen, durch welche sich die unterschiedlichen Daten-

quellen anhand interessanter Eigenschaften kategorisieren lassen. Außerdem werden Re-

lationen untersucht, die zwischen Ressourcen in informellen Prozessen existieren können.

Kapitel 4 - Entwurf der Software zur Integration von Informations-Ressourcen:

Die Software zur Integration von Informations-Ressourcen wird in diesem Kapitel kon-

zeptionell ausgearbeitet. Dazu werden zunächst die Anforderungen anhand eines Use-

Case-Diagramms analysiert. Anschließend werden die Schnittstellen des Systems, in das

die Software integriert werden soll, beschrieben. Am Ende des Kapitels werden die ver-

schiedenen Klassendiagramme der Software entworfen und die Abläufe der wichtigsten

Methoden erklärt.

Kapitel 5 - Implementierung der Software zur Integration von

Informations-Ressourcen: Dieses Kapitel beschäftigt sich mit der Implementierung der

Software zur Integration von Informations-Ressourcen. Hierfür werden zunächst die Tech-

nologien und Libraries beschrieben, die für die Implementierung der Software verwendet

wurden. Im darauffolgenden Abschnitt wird erklärt, mit Hilfe welcher Konfigurationsda-

ten die Software auf bestimmte Anwendungen und Datenquellen eingestellt werden kann.

Als Abschluss des Kapitels wird eine Fallstudie eingeführt, welche die Verwendung der

Software und die gelieferten Rückgaben verständlich darstellten soll.

Kapitel 6 - Zusammenfassung und Fazit: In diesem Kapitel werden die Kernthemen

der Arbeit kurz zusammengefasst und es wird ein Fazit gezogen, ob das Ziel der Arbeit

mit der implementierten Software zur Integration von Informations-Ressourcen erreicht

wurde.

Kapitel 7 - Ausblick: Im letzten Kapitel wird ein Ausblick gegeben, welche Erweiterun-

gen an der Software vorgenommen werden könnten und welche Schritte zur automatischen

Integration von Ressourcen in informelle Prozesse noch nötig sind.

12

2 Grundlagen und verwandte Arbeiten
In diesem Kapitel werden Grundbegriffe, die für das Verständnis der späteren Kapitel ele-

mentar sind, eingeführt und gegebenenfalls voneinander abgegrenzt. Viele Begriffe werden

dabei bewusst auf Englisch verwendet, da der Gebrauch der englischen Begriffe üblich ist

oder keine geeignete deutsche Übersetzung existiert.

2.1 Topology and Orchestration Specification for Cloud Applications

Topology and Orchestration Specification for Cloud Applications (TOSCA) [10] ist ein

OASIS-Standard (dieser Standard wird im Weiteren als TOSCA-Standard bezeichnet).

Der TOSCA-Standard führt ein Metamodell ein, das zur Beschreibung von Cloud-Anwen-

dungen genutzt werden kann. Das heißt, es wird beschrieben, wie ein Modell für eine

Cloud-Anwendung aussieht und welche Elemente dafür verwendet werden. Der TOSCA-

Standard nutzt die XML-Syntax zur Beschreibung von Modellen und Elementen. Für

die Erstellung der Software zur Integration von Informations-Ressourcen ist der TOSCA-

Standard wichtig, weil er Portabilität, Automatisierung und Interoperabilität der Software

gewährleistet. Da der TOSCA-Standard sehr umfangreich ist, wird in diesem Abschnitt

lediglich die grobe Struktur eines Modells, ein sogenanntes Service Template, und an-

schließend die für den Kontext der Arbeit wichtigen Definitions Documents, NodeTypes

und RelationshipTypes beschrieben. Weitere Informationen zu TOSCA finden sich zum

Beispiel im TOSCA-Standard [10] und in weiteren Veröffentlichungen zu TOSCA [11][12].

2.1.1 Service Template

Die Struktur eines Service Templates wird in Abb. 3 dargestellt. Die zwei Hauptbestand-

teile sind ein Topology Template und Pläne. Außerdem beinhaltet es eine Menge von Node

Templates und Relationship Templates.

Das Topology Template beschreibt die Struktur der Anwendung, die mit dem Service

Template modelliert werden soll. Es enthält dazu die verschiedenen Komponenten der

Anwendungen und stellt außerdem die Beziehungen der Komponenten untereinander dar.

Zur Darstellung einer Komponente wird ein Node Template erzeugt und falls eine Rela-

tion zu einer anderen Komponente besteht, wird ein Relationship Template verwendet,

um die beiden Node Templates zu verbinden. Jedes Node und Relationship Template

referenziert einen NodeType bzw. RelationshipType. Die Types definieren Operationen,

Eigenschaften und Semantiken der zugehörigen Templates. Der Vorteil der Types ist die

leichte Wiederverwendbarkeit in anderen Topology Templates [10].

13

Abbildung 3: Aufbau eines Service Templates4

Eine Cloud-Anwendung kann zum Beispiel aus einem Online Warenhaus und einem Web

Server bestehen, wobei das Warenhaus auf dem Web Server gehostet wird. Ein Service

Template für diese Anwendung beinhaltet ein Topology Template mit jeweils einem Node

Template für das Warenhaus und den Web Server und einem Relationship Template

”
hosted-on“. Das Relationship Template verbindet dabei die beiden Node Templates. Eine

graphische Darstellung des Topology Template für dieses Beispiel ist in Abb. 4 gegeben.

Abbildung 4: Beispiel
”
Topology Template“

4In Anlehnung an [10]

14

Die Pläne hingegen beschreiben die Managementaspekte der Anwendung und werden

üblicherweise als Workflow in einer Sprache wie BPMN [4] oder BPEL [5] definiert. Zu den

Managementaspekten gehören das Erzeugen der Anwendung, das Management während

der Lebenszeit und die Terminierung der Anwendung. Pläne sind für den Kontext dieser

Arbeit nicht relevant und werden deshalb nicht näher betrachtet.

2.1.2 Definitions Document

Ein TOSCA Definitions Document kann dazu verwendet werden, alle in einem bestimm-

ten Kontext benötigen TOSCA Elemente in einem Dokument zu definieren. Der Inhalt

eines Definitions Documents ist deshalb je nach Anwendungszweck sehr unterschiedlich

und kann aus allen TOSCA Elementen wie zum Beispiel NodeTypes, RelationshipTypes,

RequirementTypes oder Service Templates bestehen [10]. Außerdem können Definitions

Documents Erweiterungen und Importe beinhalten. Über eine Erweiterung können die

TOSCA Definitionen um zusätzliche domänenspezifische Informationen erweitert werden.

Importe können dagegen zum Beispiel externe TOSCA Definitionen sein. Diese können

dann im Definitions Document verwendet werden, ohne sie dort erneut definieren zu

müssen. Außerdem können XML-Dateien durch die Importe in ein Definitions Document

eingefügt und dann zum Beispiel in einem NodeType referenziert werden.

2.1.3 NodeType

Ein TOSCA NodeType definiert den Type von einem oder mehreren Node Templates

[13]. Dazu beschreibt ein NodeType zum Beispiel die Struktur der Eigenschaften oder

die Schnittstellen, die zugehörige Node Templates besitzen [10]. Der Vorteil der Types ist

dabei, dass im NodeType definierte Eigenschaften für alle zugehörigen Node Templates

gelten und nicht bei jedem einzelnen Template definiert werden müssen. In NodeTypes

können viele verschiedene Elemente gesetzt werden, aber für den Kontext der Arbeit sind

lediglich der Name, der TargetNamespace und die PropertiesDefinition interessant. Der

Name und der TargetNamespace können verwendet werden, um einen NodeType eindeutig

zu identifizieren. Über die PropertiesDefinition hingegen wird ein XML Element oder Type

identifiziert, das die Struktur der Eigenschaften des NodeTypes beschreibt.

In Listing 1 ist ein beispielhafter NodeType dargestellt. Dieser repräsentiert die Ressource

”
EigeneDateien“. Über den angegebenen Namen und TargetNamespace kann der Node-

Type eindeutig identifiziert und referenziert werden. Außerdem ist eine PropertiesDefini-

tion vom Typ
”
element“ angegeben. Dies bedeutet die Eigenschaften des NodeTypes sind

in einem XML-Element mit dem dort angegebenen QName (= qualified name) definiert.

15

1 <?xml version="1.0" encoding="utf-8"?>

2 <NodeType name="EigeneDateien" targetNamespace="http://www.uni-

stuttgart/resources/data-resources/file">

3 <PropertiesDefinition element="http://www.uni-stuttgart/

resources/data-resources/xsd/file/FileProperties"/>

4 </NodeType>

Listing 1: Beispiel
”
NodeType XML“

Im Kontext der Arbeit werden TOSCA NodeTypes verwendet, um verfügbare Ressourcen,

also zum Beispiel Ordner oder Repositories, darzustellen. Wenn eine Ressource in einen

informellen Prozess eingebunden werden soll, wird ein Node Template vom Type der

gewünschten Ressource erstellt. Durch die Initialisierung des Node Templates, wird eine

neue Instanz der Ressource des NodeTypes erzeugt. Das Node Template entspricht dann

genau einer Instanz der Ressource des NodeTypes. Dadurch ist es möglich, beliebig viele

Instanzen einer Ressource zu erstellen, indem Node Templates mit einem bestimmten

Type erzeugt und initialisiert werden.

Wenn also der NodeType
”
EigeneDateien“ einen bestimmten Ordner im lokalen Datei-

system als Ressource definiert, können durch die Erzeugung und Initialisierung von Node

Templates des Types
”
EigeneDateien“ beliebige Instanzen dieser Ressource für einen in-

formellen Prozess kreiert werden.

2.1.4 RelationshipType

TOSCA RelationshipTypes stehen im selben Verhältnis zu Relationship Templates, wie

NodeTypes zu Node Templates. Sie werden genutzt, um Definitionen für mehrere Rela-

tionship Templates durch nur eine einzelne Definition durchzuführen. Im Gegensatz zu

NodeTypes, besitzen RelationshipTypes einige andere Elemente wie zum Beispiel Source-

Interfaces und TargetInterfaces. Weitere Informationen dazu können im TOSCA-Standard

[10] nachgeschlagen werden. Für die Verwendung in der Software zur Integration von

Informations-Ressourcen sind jedoch nur die selben drei Elemente wie für NodeTypes

interessant. Dazu gehören der Name, der TargetNamespace und die PropertiesDefinition.

Die RelationshipTypes werden im Kontext der Arbeit verwendet, um verfügbare Relatio-

nen zwischen Ressourcen darzustellen. Zur Erzeugung einer Relation kann ein Relation-

ship Template des gewünschten Types erstellt und initialisiert werden. Das Relationship

Template steht damit für eine spezielle Instanz einer Relation. Die Relation kann dabei,

je nach Art, zwischen zwei beliebigen Ressourcen oder nur einer eingeschränkten Auswahl

erzeugt werden.

16

2.2 Docker

Bei Docker handelt es sich um eine open-source Plattform zur Entwicklung und Ausführung

von Anwendungen [14]. Das Besondere an Docker ist, dass die Anwendungen in komplett

eigenständigen Containern ausgeführt werden [15]. Das bedeutet, der Container beinhaltet

alles, was die Anwendung zur Ausführung benötigt. Diese spezielle Architektur ermöglicht

es, die Anwendung von der Infrastruktur zu trennen und unabhängig zu betrachten [14].

Die Architektur von Docker ist in Abb. 5 dargestellt. Grundsätzlich unterteilt sich Docker

in drei verschiedene Komponenten. Der Docker Client, der Docker Daemon und die Docker

Registry.

Abbildung 5: Docker Architektur5

Beim Docker Client handelt es sich um eine Nutzerschnittstelle zu Docker. Der Docker

Client liegt lokal beim Nutzer vor. Er wird für die gesamte Kommunikation mit den Docker

Diensten verwendet. Der Nutzer gibt die Befehle in den Docker Client ein oder nutzt dazu

eine API und der Client leitet diese Befehle mittels eines REST-based Web Services an

den Docker Daemon bzw. die Docker Registry weiter [16].

Der Docker Daemon ist einer der wichtigsten Bestandteile von Docker und führt die eigent-

lichen Anwendungen aus. Er kann sowohl lokal vorliegen, als auch remote genutzt werden.

Dies wird durch eine REST-based API ermöglicht, über welche vom Docker Client auf

den Docker Daemon zugegriffen werden kann [16]. Im Docker Daemon werden Images und

Container verwendet. Docker Container entsprechen den aktiven Anwendungen in einem

5In Anlehnung an [14]

17

Docker Daemon. Sie können erzeugt, gestartet, gestoppt und gelöscht werden [14]. Docker

Images hingegen sind passive Komponenten. Sie repräsentieren die Baupläne von Docker

Containern. Jeder Container wird aus einem bestimmten Image erzeugt. Ein Image kann

dazu verwendet werden, eine beliebige Anzahl an Containern zu erzeugen. Die Entwick-

lung von Anwendungen verschiebt sich damit zur Entwicklung von Images, die dann zur

Erzeugung von Instanzen der Anwendung genutzt werden können. Neben dem durch das

Image vorgegebene, grundsätzliche Verhalten eines Docker Containers, können zusätzliche

Konfigurationsparameter, wie zum Beispiel welcher Port verwendet werden soll, bei der

Erzeugung eines Containers übergeben werden.

Eine Docker Registry beinhaltet Docker Images. Es existieren viele verschiedene Registries,

darunter die offizielle Docker Registry und Registries von privaten Entwicklern [15]. In

einer Registry können Images gesucht und anschließend gedownloaded werden. Außerdem

gibt es die Möglichkeit, eigene Images zu erstellen oder existierende Images zu bearbeiten

und anschließend in eine Registry hochzuladen. Die Registry kann also dafür verwendet

werden, Images bzw. Anwendungen, zum Beispiel innerhalb einer Firma, zu verteilen.

Außerdem ist es möglich Images von aktiven Containern zu erstellen und damit den

aktuellen Stand einer Anwendung zu speichern. Anschließend kann der Container gestoppt

und gelöscht werden um Ressourcen zu sparen. Durch das Image in der Registry kann

jederzeit eine Anwendung mit dem exakt gleichen Zustand neu erstellt werden.

Der Ablauf der Docker Operationen
”
pull“,

”
run“ und

”
commit“ ist in Abb. 5 beispiel-

haft abgebildet. Die Operationen werden zunächst alle im Docker Client eingegeben und

von diesem an den Docker Daemon weitergeleitet. Für die
”
pull“ Operation (durchgezo-

gene Linie) kontaktiert der Docker Daemon die Registry und downloadet von dieser das

gewünschte Image. Die anderen beiden Operationen werden direkt im Docker Daemon

ausgeführt. Die
”
run“ Operation (gestrichelte Linie) wird genutzt um einen neuen Con-

tainer aus einem Image zu erzeugen. Die
”
commit“ Operation (gepunktete Linie) führt

hingegen die gegengesetzte Operation aus und erstellt aus einem laufenden Container ein

Image.

18

2.3 Dependency Injection

Unter Dependency Injection (DI) versteht man ein Entwurfsmuster für Software, bei dem

die Abhängigkeiten der Objekte erst zur Laufzeit eingesetzt werden. Das Grundkonzept

der Dependency Injection ist die
”
Inversion of Control“ [17], also die Umkehrung der

Steuerung. Das heißt, die Abhängigkeiten eines Objekts werden nicht vom Objekt selbst

konfiguriert, sondern werden von einem externen Objekt eingefügt. Der Vorteil der De-

pendency Injection ist, dass durch die Nutzung eine losere Kopplung der Komponenten

möglich ist. Damit sind Änderungen an Komponenten vornehmbar, ohne dabei andere

Komponenten ändern zu müssen. Außerdem ist es möglich verschiedene Implementierun-

gen einer Funktionalität auszutauschen. Für die Nutzung von Dependency Injection wird

üblicherweise eine Dependency Injection Library verwendet. Diese stellt die Objekte zur

Verfügung, welche die Abhängigkeiten suchen und einsetzen.

Ein Beispiel für eine Dependency Injection Library für die Programmiersprache Java ist

Spring [18]. Mit Spring ist es möglich verschiedene Implementierungen eines Interfaces zur

Laufzeit zu laden. Dazu müssen lediglich alle Klassen, die das Interface implementieren

mit
”
@Service“ annotiert werden. Damit wird den Spring Komponenten mitgeteilt, dass

es sich um eine Implementierung handelt, die von Spring verwaltet werden soll. In der

Klasse, welche die Implementierungen des Interfaces verwenden möchte, können dann zur

Laufzeit alle verfügbaren Implementierungen geladen werden. Dafür muss nur der Name

des Interfaces und außerdem alle Pakete, in denen Implementierungen liegen, bekannt

sein.

Eine weitere Depenedency Injection Library ist Guice6. Während das Spring Framework

neben der Dependency Injection auch andere Aspekte, wie z.B. die aspektorientierte Pro-

grammierung, unterstützt, adressiert Guice hauptsächlich das Problem der Dependency

Injection. Für die Nutzung als Dependency Injection Library haben beide Frameworks

Vor- und Nachteile [19]. Guice hat eine bessere Performanz als Spring und nutzt zudem

keine String Bezeichner. Bei Spring werden die verschiedenen Komponenten über diese

String Bezeichner identifiziert, was es unmöglich macht zwei Objekte mit demselben Na-

men zu verwenden. Dies kann in großen Systemen zu Problemen führen, wenn ein Name

aus Versehen doppelt genutzt wird. Spring dagegen hat den Vorteil gegenüber Guice, dass

Klassen von fremden Parteien leichter eingebunden werden können. Für die vorliegende

Arbeit sind beide Frameworks gut geeignet, da es sich bei der entwickelten Software um

kein großes System handelt und keine Klassen von fremden Parteien mittels Dependency

Injection eingebunden werden müssen. Aufgrund der großen Bekanntheit wurde in der

Software Spring als Dependency Injection Library verwendet.

6https://github.com/google/guice

19

https://github.com/google/guice

2.4 InProXec Methode

Die InProXec Methode ist eine Methode zur Ausführung von informellen Prozessen [7].

Die Methode unterteilt sich in drei Phasen. In der ersten Phase werden die Services ent-

wickelt, die Informationen über Ressourcen liefern und Operationen auf den Ressourcen

ausführen. Zu den Operationen zählen zum Beispiel das Erzeugen einer neuen Instanz ei-

ner Ressource oder das Freigeben einer existierenden Instanz. In der zweiten Phase werden

die informellen Prozesse modelliert. In dieser Phase entsteht ein sogenanntes Informal Pro-

cess Essentials Model (IPE Model). Das entstandene IPE Model wird in der letzten Phase

zunächst kompiliert, womit ein Deployable Informal Process Essentials Archive (DIPEA)

erzeugt wird. Anschließend wird das DIPEA initialisiert und der informelle Prozess da-

mit ausgeführt. Weitere Informationen zur InProXec Methode und den einzelnen Phasen

finden sich in Sungur et al. [7].

Die vorliegende Arbeit beschäftigt sich mit der Erzeugung der Services in der ersten Phase

der InProXec Methode. Die benötigten Services sind zum einen Domain Managers (DM)

und zum anderen Execution Environment Integrators (EEI). Domain Managers werden

verwendet, um Informationen über verschiedene Ressourcen in einer einheitlichen Art

und Weise zu liefern und damit Heterogenität zu vermeiden. Diese Informationen können

für die Modellierung von informellen Prozessen verwendet werden. Außerdem können die

Informationen für EEIs bereitgestellt werden. Execution Environment Integrators werden

genutzt, um Operationen auf Ressourcen auszuführen. Durch die Execution Environment

Integrators soll ebenfalls Heterogenität vermieden werden und stattdessen ein einheitlicher

Service zur Ausführung von Operationen entstehen.

20

3 Analyse der Eigenschaften von

Informations-Ressourcen
In diesem Kapitel werden unterschiedliche Datenquellen, darin enthaltene Informations-

Ressourcen und Relationen zwischen Informations-Ressourcen und anderen Ressourcen

analysiert. Dazu wird in Abschnitt 3.1 eine Taxonomie für Datenquellen erstellt, welche

wichtige Eigenschaften enthält und das Kategorisieren der Datenquellen im Kontext der

informellen Prozesse ermöglicht. In Abschnitt 3.2 werden zur Nutzung der Taxonomie drei

Beispiele gegeben. Abschließend werden in Abschnitt 3.3 Relationen zwischen Ressourcen

analysiert, die im Rahmen der informellen Prozesse auftreten können.

3.1 Taxonomie für Datenquellen im Kontext informeller Prozesse

In diesem Abschnitt wird eine Taxonomie für Datenquellen im Kontext informeller Pro-

zesse entworfen. Für den Entwurf der Taxonomie wurde eine Literaturrecherche durch-

geführt und analysiert, welche Eigenschaften von Datenquellen für eine spätere Integrati-

on interessant sind. Die Taxonomie ist nicht vollständig und beschränkt sich zur besseren

Übersicht und einfacheren Einordnung auf einige wenige wichtige Eigenschaften. Das Ziel

der Taxonomie ist es, durch die Einordnung verschiedener Datenquellen Gemeinsamkei-

ten und Unterschiede festzustellen. Anhand dieser Gemeinsamkeiten und Unterschiede

kann bewertet werden, ob die Erweiterung der Software zur Integration von Informations-

Ressourcen um eine bestimmte Datenquelle möglich ist und welche Komponenten dazu

in welcher Art erweitert werden müssen. Zum Beispiel ist eine Erweiterung sehr einfach,

wenn das Protokoll, das von der neuen Datenquelle verwendet wird, schon von einer an-

deren, bereits in der Software integrierten, Datenquelle genutzt wird. Handelt es sich um

ein neues Protokoll, ist die Erweiterung dagegen deutlich aufwendiger.

Abb. 6 zeigt die entworfene Taxonomie für Datenquellen als Baumstruktur. Dabei wurde

die Taxonomie für
”
Data Grids“ von Venugopal et al. [20] für den Kontext der Daten-

quellen in informellen Prozesse angepasst.

Art der Ressourcen (E1):

Die erste Eigenschaft die betrachtet wird, ist die Art der Ressourcen, die von einer Da-

tenquelle angeboten werden. Dabei wird zwischen strukturierten Daten und unstruktu-

rierten Daten unterschieden. Bei strukturierten Daten handelt es sich um Daten, die ein

bestimmtes Schema zugrunde liegen haben und damit dieselbe Struktur aufweisen [21][22].

Strukturierte Daten werden hauptsächlich in Datenbanken wie zum Beispiel DB27 oder

7http://www-01.ibm.com/software/data/db2/

21

http://www-01.ibm.com/software/data/db2/

MySql8 gespeichert. Unstrukturierte Daten hingegen sind alle anderen Arten von Daten

und entsprechen dem Großteil der Daten. Dazu zählen zum Beispiel Dokumente, Grafiken

oder E-Mails. Diese Unterscheidung ist für das Integrieren der Datenquellen wichtig, da

die Verarbeitung der Daten innerhalb der Software unterschiedlich durchgeführt werden

muss. Zum Beispiel können unstrukturierte Daten nicht ohne Weiteres in Datenquellen

gespeichert werden, die ausschließlich strukturierte Daten verwalten können. Sie müssen

dafür erst in ein strukturiertes Format gebracht werden. Auf der anderen Seite macht die

Darstellung von strukturierten Daten in Datenquellen für unstrukturierte Daten häufig

ebenfalls nur wenig Sinn, da diese für den Menschen sehr schwer lesbar sind.

Abbildung 6: Taxonomie für Datenquellen

Datentransport (E2):

Die zweite Eigenschaft ist der Datentransport. Der Datentransport wird in Protokolle

und Sicherheit unterteilt. Unter der Protokoll-Eigenschaft sind verschiedene Protokolle,

wie zum Beispiel http:// oder ftp://, aufgelistet, die häufig verwendet werden. In der Liste

8https://www.mysql.de/

22

https://www.mysql.de/

konnten nur standardisierte Protokolle aufgenommen werden und sie ist nicht vollständig.

Für die Verwendung anderer Protokolle kann die Taxonomie an dieser Stelle jedoch leicht

erweitert werden. Die Protokolle sind für die spätere Integration von Datenquellen in-

teressant, da für jedes Protokoll ein neues Plugin für die Software erzeugt werden muss,

welches den Zugriff ermöglicht. Wird hingegen ein Protokoll mit bereits vorhandenem

Plugin verwendet, ist diese Erweiterung deutlich einfacher. Die Sicherheit teilt sich zum

einen in die Authentifizierung, welche per Passwort oder kryptographischen Schlüssel

durchgeführt werden kann, und die Verschlüsselung. Zur Verschlüsselung verwenden die

meisten Datenquellen entweder Secure Sockets Layer (SSL) oder nutzen gar keine Ver-

schlüsselung [20].

Dateigröße (E3):

Als nächste Eigenschaft wird die Dateigröße von Daten betrachtet, die eine Datenquel-

le bereitstellt. Dabei gibt es die Möglichkeit, dass die Datenquelle die Größe beschränkt

oder beliebige Größen verwendet werden können. Die Größe von Daten kann die Art, in

der die Daten bereitgestellt werden beeinflussen und sollte deshalb als gesonderte Eigen-

schaft betrachtet werden. Für sehr große Daten kann es zum Beispiel unmöglich bzw. sehr

ineffizient sein, eine Kopie der Daten zu erstellen.

Verfügbare Operationen (E4):

Die letzte untersuchte Eigenschaft der Taxonomie ist die Verfügbarkeit bestimmter Opera-

tionen. Diese Eigenschaft ist im Hinblick auf die Integration von Informations-Ressourcen

in informelle Prozesse von besonderem Interesse. Betrachtet werden dabei insbesonde-

re die Operationen
”
Acquire“ (bereitstellen einer Kopie der Ressource zum Bearbeiten),

”
Release“ (freigeben der Ressource) und

”
Back-Up“ (speichern der bearbeiteten Ressource).

Diese Operationen sind für das Integrieren der Ressourcen elementar. Datenquellen, wel-

che in der Taxonomie so eingeordnet sind, dass sie eine oder mehrere Operationen nicht

unterstützen, sind schwieriger zu integrieren. Für diese Datenquellen muss die Software

zur Integration von Informations-Ressourcen die vorhandenen Operationen nutzen, um

die nötigen Operationen nachzubilden. Ist dies nicht möglich, kann die betreffende Da-

tenquelle nicht automatisch integriert werden. Die Taxonomie kann an dieser Stelle um

weitere Operationen erweitert werden, falls diese bei der Integration gewünscht werden.

23

3.2 Einordnung von Datenquellen in die Taxonomie

Im folgenden Abschnitt soll die Einordnung in die erstellte Taxonomie exemplarisch für

die drei Beispiele Apache Webserver9, FileZilla Server10und das Linux Dateisystem durch-

geführt werden, um die Verwendung der Taxonomie zu illustrieren. Neben der textuellen

Einordnung der Datenquellen zeigt Abb. 7 eine graphische Möglichkeit der Nutzung der

Taxonomie.

Abbildung 7: Beispiel
”
Einordnung von Datenquellen“

Apache Webserver:

Beim Apache Webserver handelt es sich üblicherweise um eine Datenquelle für struk-

turierte Daten. Auf dem Webserver werden HTML bzw. XML Dateien gespeichert, die

beide ein strukturiertes Format besitzen. Als Protokoll zum Datentransfer wird http://

bzw. https:// verwendet. Bei Webservern ist der Zugriff auf viele Ressourcen häufig ohne

Authentifizierung möglich. Bestimmte Ressourcen können aber durch eine Kombination

von Benutzername und Passwort geschützt werden. Die Verschlüsselung hängt beim Apa-

che Webserver von dem verwendeten Protokoll ab. Mit der Verwendung von http:// wird

9https://httpd.apache.org/
10https://filezilla-project.org/

24

https://httpd.apache.org/
https://filezilla-project.org/

beim Datentransport keine Verschlüsselung durchgeführt. Wird dagegen das Protokoll htt-

ps:// verwendet, findet eine Verschlüsselung mittels SSL statt. Die maximale Dateigröße,

welche auf den Server geladen werden darf, kann bei der Konfiguration des Webservers

eingestellt werden. Wenn der Nutzer des Webservers gleichzeitig der Administrator ist,

kann er die maximale Dateigröße an die benötigte Größe anpassen und es existiert da-

mit praktisch keine Beschränkung. Da dies aber häufig nicht der Fall ist, muss allgemein

von einer Beschränkung ausgegangen werden. Die Operationen
”
Acquire“,

”
Release“ und

”
Back-Up“ werden vom Apache Webserver nicht direkt implementiert und müssen des-

halb zur Verwendung in der Software zur Integration von Informations-Ressourcen mittels

vorhandener Operationen nachgebildet werden.

FileZilla Server:

Der FileZilla Server gehört zur Kategorie der Datenquellen für strukturierte und unstruk-

turierte Daten. Der Server kann zum Beispiel Textdateien speichern, die zu den unstruktu-

rierten Daten zählen. Außerdem können aber auch strukturierte Daten, wie zum Beispiel

XML Dateien, auf dem Server abgelegt werden. Zum Datentransport wird das ftp:// bzw.

sftp:// Protokoll verwendet. Wie beim Apache Webserver auch, hängt die Verschlüsselung

von der Wahl des Protokolls ab. Während beim Protokoll ftp:// keine Verschlüsselung

genutzt wird, verwendet das sftp:// Protokoll eine SSL-Verschlüsselung. Die Authentifi-

zierung wird üblicherweise per Benutzername und Passwort durchgeführt. Es gibt jedoch

auch sogenannte anonyme FTP-Server, die den Zugriff ohne Authentifizierung zulassen.

Die maximale Dateigröße kann ähnlich dem Apache Webserver vom Administrator des

Servers festgelegt werden und ist damit allgemein beschränkt. Die Operation
”
Acquire“

entspricht dem Anfordern einer Datei des FTP-Servers mit der
”
Get“-Methode, weil dabei

eine lokale Kopie der Datei erzeugt wird. Das Herunterladen der Datei ist aufgrund der

beschränkten Größe problemlos möglich.
”
Back-Up“ kann mittels

”
Put“ realisiert werden,

da die bearbeitete Datei beim Übertragen an den Server alte Vorkommen überschreibt.

Für die Operation
”
Release“ muss lediglich die erzeugte Kopie gelöscht werden.

Linux Dateisystem:

Das Linux Dateisystem ist eine Datenquelle für strukturierte und unstrukturierte Daten,

da dort alle Arten von Daten gespeichert werden können. Als Protokoll zum Zugriff auf

Ressourcen wird file:// verwendet. Eine Verschlüsselung ist nicht nötig, da der Daten-

transport nur innerhalb des lokalen Rechners stattfindet. Zur Authentifizierung kann ein

Benutzername und ein Passwort verwendet werden. Die Größe der Dateien, die verwaltet

werden können, ist (abgesehen von der Festplattengröße) üblicherweise nicht beschränkt.

Die Operationen
”
Acquire“,

”
Release“ und

”
Back-Up“ sind beim Linux Dateisystem nahe-

zu identisch vorhanden, da sie dem Erzeugen, Löschen und Speichern einer lokalen Kopie

entsprechen.

25

3.3 Relationen zwischen Ressourcen

Neben den Datenquellen und den zugehörigen Daten sind Relationen zwischen Ressour-

cen ein wichtiger Bestandteil zur Integration von Informations-Ressourcen. Eine Relation

verbindet dabei immer zwei verschiedene Entitäten. Die Relationen können zum Beispiel

genutzt werden, um zu notieren, dass zur Integration einer bestimmten Informations-

Ressource eine andere Informations-Ressource ebenfalls benötigt wird. Betrachtet werden

Relationen zwischen Informations-Ressourcen und menschlichen Ressourcen, sowie IT-

Ressourcen. Relationen zwischen Informations-Ressourcen und menschlichen Ressourcen

sind von besonderer Bedeutung, da die menschlichen Akteure den informellen Prozess

ausführen. Durch eine Relation kann eine Informations-Ressource so eingestellt werden,

dass der menschliche Akteur sie zum Erreichen des Ziels des Prozesses verwenden kann.

Die Relationen zwischen Informations-Ressourcen und IT-Ressourcen sind wichtig, da

durch sie die Beziehungen und Abhängigkeiten zwischen verschiedenen Services dargestellt

werden kann. Relationen zu Material-Ressourcen sind dagegen im Kontext der Arbeit we-

niger interessant, da diese ebenfalls hauptsächlich Relationen zu menschlichen Ressourcen

besitzen, welche die Materialen verwenden.

Relationen zwischen Informations-Ressourcen und menschlichen Ressourcen:

Eine mögliche Relation zwischen einer menschlichen Ressource und einer Informations-

Ressource ist
”
uses“. Die Relation verbindet einen menschlichen Akteur mit einer Res-

source, wenn der Akteur die Ressource während des informellen Prozesses verwendet.

Eine weitere Relation wäre
”
isAuthorized“. Diese Relation verbindet einen Menschen mit

einer Ressource, falls er berechtigt ist diese zu lesen und zu bearbeiten. Eine Initialisie-

rung der Relation erteilt dem Menschen die Berechtigung zum Lesen bzw. Schreiben und

ermöglicht ihm dadurch die Ressource für den informellen Prozess zu verwenden. Die Re-

lation
”
isResponsible“ verbindet Akteure mit den Ressourcen, für die sie verantwortlich

sind. Eine Relation
”
isAdministrator“ könnte hingegen zwischen einem Akteur und einem

Service erstellt werden, wenn der Akteur Administrator Rechte für den Service besitzt.

Relationen zwischen Informations-Ressourcen und IT-Ressourcen:

Zwischen zwei Informations-Ressourcen stellt
”
dependsOn“ eine mögliche Relation dar.

Diese Relation stellt die temporale Ordnung zwischen den beiden Informations-Ressourcen

her. Durch die Relation kann also zum Beispiel eine Reihe verschiedene Dateiversionen

als Kette von Entitäten, die durch
”
dependsOn“-Relationen verbunden sind, dargestellt

werden. Die Relation
”
uses“ kann eine Verbindung zwischen einer Softwarekomponente

und für die Software benötige Dateien herstellen. Eine weitere mögliche Relation wäre

”
needs“. Diese Relation kann eine Informations-Ressource mit einer Software-Ressource

verbinden, wenn die Informations-Ressource eine bestimmte Software benötigt, um ge-

lesen werden zu können. Bei der Initialisierung der Informations-Ressource müssen alle

Software-Ressourcen initialisiert werden, zu denen sie eine
”
needs“ Relation besitzt.

26

4 Entwurf der Software zur Integration von

Informations-Ressourcen
In diesem Kapitel werden Anforderungen an die Software zur Integration von Informations-

Ressourcen definiert und die Software wird entworfen. In Abschnitt 4.1 werden zunächst

Anforderungen mithilfe eines Use-Case-Diagramms dargestellt. Dazu werden gewonnene

Informationen aus der Taxonomie in Abschnitt 3 verwendet. Anschließend werden in Ab-

schnitt 4.2 die Schnittstellen des Systems, in das die Software eingebunden werden soll, als

Klassendiagramm beschrieben. Anhand dieser Schnittstellen wird definiert, welche Ope-

rationen die Software unterstützen soll, welche Parameter übergeben werden und welche

Rückgabe die Software liefern soll. In Abschnitt 4.3 werden schließlich die Klassendia-

gramme für die Komponenten der Software entworfen, welche die nötigen Operationen

realisieren.

4.1 Anwendungsfälle der Software

In Abb. 8 werden verschiedene Anwendungsfälle der zu implementierenden Software vor-

gestellt. Die Anwendungsfälle beziehen sich zum einen auf die Nutzung der Software und

zum anderen auf die mögliche Erweiterung durch Administratoren.

Abbildung 8: Use-Case-Diagramm der Software

27

In den beiden folgenden Abschnitten werden die verschiedenen Anwendungsfälle des Ad-

ministrators bzw. des Benutzers genauer betrachtet und erläutert.

4.1.1 Anwendungsfälle des Administrators

Neue Datenquelle hinzufügen

Der Administrator erweitert die Software um eine zusätzliche Datenquelle, die zukünftig

integrierbar sein soll. Um dies einfach zu ermöglichen, soll die Software über eine so-

genannte Pluggable-Architektur verfügen. Diese ermöglicht es Erweiterungen separat zu

schreiben und dann in die vorhandene Software
”
einzustecken“. Dieser Anwendungsfall

schließt die Anwendungsfälle
”
Domain Manager erstellen“ und

”
Execution Environment

Integrator erstellen“ ein. Vor dem Durchführen dieser beiden Anwendungsfälle, sollte der

Administrator die neue Datenquelle in die in Abschnitt 3.1 erstellte Taxonomie einord-

nen. Damit sind die wichtigsten Eigenschaften der Datenquelle explizit dargestellt und

das Erstellen der beiden Plugins wird erleichtert.

Domain Manager erstellen

Der Administrator erstellt einen Domain Manager (siehe Abschnitt 2.4) für die neue Da-

tenquelle. Dieser stellt dem System die nötigen Ressourcen- und Relationen-Definitionen

der neuen Datenquelle zur Verfügung (ListResources Operation). Außerdem liefert der

Domain Manager die nötigen Informationen, wie zum Beispiel Zugangsdaten einer Da-

tenquelle, die ein Execution Environment Integrator zum Ausführen der verschiedenen

Operationen benötigt.

Execution Environment Integrator erstellen

Der Administrator erstellt einen Execution Environment Integrator (siehe Abschnitt 2.4)

für die neue Datenquelle. Der Execution Environment Integrator kann die Ressourcen und

Relationen der Datenquelle für menschenzentrierte Prozesse bereitstellen. Die Ausführung

aller Operationen, außer ListResources, wird vom Execution Environment Integrator mit-

hilfe der von einem Domain Manager gelieferten Informationen durchgeführt.

28

4.1.2 Anwendungsfälle des Benutzers

Daten Integrieren

Der Benutzer möchte mithilfe der Software zur Integration von Informations-Ressourcen

eine Ressource oder Relation in einen informellen Prozess integrieren. Der Anwendungsfall

beinhaltet die folgenden beiden Anwendungsfälle:

•
”
Acquire“

•
”
Release“

Außerdem können die drei folgenden Anwendungsfälle erweitert werden:

•
”
ListResources“, falls dem Benutzer zunächst die verfügbaren Ressourcen angezeigt

werden sollen.

•
”
Back-up“, falls die bearbeiteten Ressourcen gespeichert werden sollen.

•
”
GetStatus“, falls der Status einer Ressource abgefragt werden soll.

Diese Operationen müssen für jede verfügbare Datenquelle zur Verfügung stehen. Für

Datenquellen, welche die Operationen nicht direkt ermöglichen, muss die Software die

Lücke zwischen den verfügbaren und benötigten Operationen schließen.

Acquire

Der Benutzer ruft die Funktion Acquire für eine bestimmte Ressource auf. Die Software

erzeugt daraufhin eine neue Instanz von der Ressource und stellt diese dem Benutzer zur

Bearbeitung bereit. Für die Bereitstellung der Ressource ist die Größe der Datei ein in-

teressanter Aspekt (siehe Abschnitt 3.1 (E3)). Das heißt, für sehr große Ressourcen kann

die Bereitstellung anders durchgeführt werden, als für kleinere Ressourcen, da von den

großen Ressourcen keine Kopie erstellt werden kann. Stattdessen muss dem Benutzer in

diesem Fall die vorhandene Kopie zugänglich gemacht werden. Da bei der Bearbeitung

damit jedoch die alte Ressource überschrieben wird, muss der Benutzer über diesen Um-

stand informiert werden oder die Bereitstellung dieser Ressource muss abgelehnt werden.

Die Funktion Acquire wird üblicherweise zum Beginn eines informellen Prozesses für alle

benötigten Ressourcen aufgerufen.

Release

Der Benutzer ruft die Funktion Release für eine Ressource auf, die mit Acquire angefordert

wurde. Die Software gibt die Ressource frei und löscht die erzeugte Instanz der Ressource.

Release kann nur bei Ressourcen ausgeführt werden, die zuvor mit Acquire angefordert

wurden. Die Release Funktion wird im Gegensatz zu Acquire am Ende eines informellen

Prozesses aufgerufen, um überflüssige Ressourcen freizugeben.

29

Back-up

Der Benutzer möchte seine Änderungen an einer bestimmten Ressource speichern und

ruft dazu die Funktion Back-up auf. Die Software speichert die bearbeitete Instanz und

informiert den Benutzer über den Speicherort, um die zukünftige Benutzung der Ressour-

ce zu ermöglichen. Die Instanz wird dabei nicht zwangsläufig in derselben Datenquelle

gespeichert wie die ursprüngliche Ressource, da die Software auch das Verwenden von

Datenquellen ermöglichen soll, die nur Lesezugriff erlauben. Für die Back-up Operation

ist die Unterscheidung wichtig, ob es sich um strukturierte oder unstrukturierte Daten

handelt (siehe Abschnitt 3.1 (E1)), da dies die Auswahl einer Datenquelle zum Speichern

der Ressource beeinflusst.

GetStatus

Der Benutzer möchte den Status einer bestimmten Datenquelle oder Ressource abfragen.

Die Software ruft daraufhin bei der entsprechenden Datenquelle den Status ab und gibt

ihn dem Benutzer aus.

ListResources

Der Benutzer möchte sich einen Überblick über verfügbare Ressourcen und Relationen

verschaffen und ruft die Funktion ListResources auf. Die Software stellt dem Benutzer

dazu ein TOSCA Definitons Document (siehe Abschnitt 2.1.2) zur Verfügung, welches die

verfügbaren Ressourcen und Relationen als TOSCA NodeTypes bzw. RelationshipTypes

beinhaltet. Der Benutzer kann gewünschte Ressourcen/Relationen aus dem Definitions

Document auswählen und anschließend mit der Acquire Operation Instanzen der Res-

sourcen/Relationen erzeugen.

4.2 Klassendiagramm des umgebenden Systems

In diesem Abschnitt werden die Schnittstellen (Interfaces) des Systems, in das die Softwa-

re zur Integration von Informations-Ressourcen eingebunden werden soll, eingeführt und

erläutert. Dazu zählen zum einen die Interfaces, welche direkt von Komponenten imple-

mentiert werden sollen und zum anderen Interfaces, die als Parameter oder Rückgabewert

verwendet werden. Abb. 9 zeigt den relevanten Ausschnitt des Systems als Klassendia-

gramm.

Unterteilt werden kann das System in zwei unterschiedliche Komponenten, die imple-

mentiert werden sollen (siehe auch Abschnitt 4.1). Die eine Komponente ist der Domain

Manager, der die verfügbaren Ressourcen und Relationen auflistet und Informationen für

den Zugriff bereitstellt und die andere Komponente ist der Execution Environment Inte-

grator, der die verfügbaren Operationen auf den Ressourcen bzw. Relationen ausführt.

30

Domain Manager

Die Operationen des Domain Managers werden durch das DomainManagerOperations

Interface definiert. Die listDomain() Methode wird dazu verwendet, die verfügbaren Res-

sourcen und Relationen aufzulisten. Der Rückgabeparameter Definitions entspricht einem

TOSCA Definitions Document (siehe Abschnitt 2.1.2), das alle verfügbaren Ressourcen

und Relationen als NodeTypes bzw. RelationshipTypes beinhaltet. Mittels der Methode

getDeployable() gibt ein Domain Manager für zwei QNames (= qualified names) und eine

TIntention die nötigen Informationen für den Zugriff auf eine Ressource oder Relation

mittels eines Deployable aus. Der erste QName definiert dabei den eindeutigen Namen

der Ressource oder Relation, der zweite QName den Typ des Deployables und die TIn-

tention das Ziel der Nutzung der Ressource bzw. Relation. Ein Deployable besteht aus

einem InputStream, der alle Informationen für den Zugriff auf eine Ressource beinhaltet

und einem Typ. Der InputStream wird mit der Methode getDeployable() geliefert und

der Typ lässt sich mit der Methode getType() abrufen.

Die Methode listDeployablesOfResource() verwendet den QName einer Ressource als Pa-

rameter und wird dazu verwendet, alle Typen von Deployables für diese Ressource als Liste

von QNames auszugeben. Alle zurückgelieferten QNames können anschließend, zusammen

mit dem QName der Ressource, in die Methode getDeployable() eingesetzt werden. Mit

der Methode getTargetNamespace() kann der Namespace, in dem der Domain Manager

verwendet wird, als URI ausgegeben werden.

Die letzte Methode des Interfaces ist getImports(), welche eine Liste von Import Objekten

zurückliefert. Ein Import Objekt stellt eine importierte Datei in einem TOSCA Definitions

Document dar. Die Methoden liefern den Namespace, den ImportType bzw. die Datei als

InputStream zurück. Die Import Liste, die ein Domain Manager zurückliefert, entspricht

allen Importen des Definitions Document, das mit listDomain() ausgegeben wird. Diese

Liste von Importen wird benötigt, um die Software unabhängig von externen Dateien zu

machen und dem Nutzer alle Informationen, die zur Verwendung des Definitions Docu-

ments benötigt werden, direkt zur Verfügung zu stellen. Dabei können der Namespace

und der ImportType zur Identifizierung des richtigen Objekts genutzt werden und der

InputStream beinhaltet den tatsächlichen Import als XML Datei.

31

Abbildung 9: Klassendiagramm des Systems

Execution Environment Integrator

Ein Execution Environment Integrator besteht aus einer Menge von Operationen, die al-

le das Interface OperationRealization implementieren. Für die Software zur Integration

von Informations-Ressourcen werden die vier Operationen AcquireResourceOperationen,

StoreResourceOperation, ReleaseResourceOperation und AcquireRelationshipOperation

verwendet. Ein Execution Environment Integrator kann jedoch um zusätzliche Operatio-

nen, wie zum Beispiel eine Ressource schreibgeschützt zu machen oder einen Account in

einer Ressource zu erstellen, erweitert werden, wenn diese benötigt werden.

32

Das OperationRealization Interface definiert die grundlegenden Methoden einer Operati-

on. Die ersten drei Methoden sind für die Erstellung der Software uninteressant, da diese

bereits in den abstrakten Klassen BaseLifecycleResourceOperation bzw. BaseLifecycleRe-

lationshipOperation implementiert sind und lediglich allgemeine Informationen über den

Namespace bzw. das Interface liefern. Wichtig ist dagegen die Methode getOperation-

Definition(), die eine TOperation zurückliefert. TOperation ist eine TOSCA Klasse und

beinhaltet alle Informationen zur betreffenden Operation, wie zum Beispiel die Parameter

oder Rückgabewerte. Implementiert wird diese Methode in den abstrakten Operations-

Klassen (z.B. StoreResourceOperation).

Die Methode getRequiredDeployableTypes() liefert für den QName einer Ressource eine

Liste von QNames an benötigten Deployables zurück. Diese müssen für die Ausführung

der Operation bei einem Domain Manager angefordert, in RunnableContainer umgewan-

delt und anschließend als Parameter der executeOperation() Methode verwendet werden.

Die letzte Methode des Interfaces ist executeOperation(). Sie wird verwendet um die Ope-

ration, welche durch die Klasse implementiert wird, auszuführen. Als Parameter werden

der Methode eine Liste von RunnableContainers, ein Object und ein OperationCallback

übergeben. Ein RunnableContainer beinhaltet, wie ein Deployable, alle Informationen,

um auf eine Ressource zugreifen zu können. Zusätzlich beinhaltet der RunnableContainer

aber auch ein TEntityTemplate. Das TEntityTemplate ist eine TOSCA Oberklasse, die

zum Beispiel Node Template und Relationship Template als Unterklasse besitzt. Durch

diesen Parameter wird bestimmt, welche Ressource durch die Operation bearbeitet wer-

den soll und es können Eigenschaften mittels des Properties Elements gesetzt werden.

Die Umwandlung von einem Deployable zu einem RunnableContainer findet innerhalb

des Systems im sogenannten Integrations Client statt. Der zweite Parameter der exe-

cuteOperation() Methode ist ein Object, das alle zusätzlichen Parameter der Operation

beinhaltet. Diese zusätzlichen Parameter sind für die Einbindung von anderen Ressourcen

Arten interessant. Für die Informations-Ressourcen werden sie hingegen nicht benötigt.

Der dritte Parameter ist vom Typ OperationCallback. Eine Klasse, die das Operation-

Callback Interface implementiert, verfügt über die Methoden onSuccess() und onError().

Eine dieser beiden Methoden wird am Ende der Operation aufgerufen, um dem System

damit die Rückgabe der Operation zu liefern.

Neben den Methoden des OperationRealization Interfaces implementiert eine Operation,

je nachdem ob sie auf einer Ressource oder einer Relationship arbeitet, das Resource-

OperationRealization Interface bzw. das RelationshipOperationRealization Interface. Die

Methoden dieser Interfaces geben Listen aller in der Operation verwendbaren Ressourcen

bzw. Relationen aus. Bei den Operationen auf Ressourcen ist dies nur eine Liste, wohin-

gegen bei Operationen auf einer Relationship zwei Listen ausgegeben werden können, da

eine Relationship immer zwischen zwei Ressourcen besteht.

33

4.3 Klassendiagramm der Software
In diesem Abschnitt werden die Klassen und Interfaces der Software zur Integration von

Informations-Ressourcen als Klassendiagramm dargestellt. Außerdem wird für Teile der

realisierten Methoden ein grober Ablauf beschrieben, um deren Funktionsweise zu ver-

deutlichen. Abb. 10 und Abb. 11 beinhalten das Klassendiagramm der Software. In Ab-

schnitt 4.2 wurden bereits die Interfaces des Systems vorgestellt, die von der Softwa-

re implementiert werden sollen. Die abstrakten Operations-Klassen (z.B. StoreResource-

Operation) sind in diesem Abschnitt aufgrund der besseren Übersicht nur ohne Methoden

und Vererbungshierarchie dargestellt, können aber in Abb. 9 nachgeschlagen werden.

Abbildung 10: Klassendiagramm der Software (Teil 1)

Die Software zur Integration von Informations-Ressourcen beinhaltet zur Realisierung des

DomainManagerOperations Interfaces die Klasse DomainManagerAggregator. Außerdem

existiert für jede Operation eine Klasse, welche von der abstrakten Operation-Klasse erbt

und die drei (bzw. bei Relationship-Operationen vier) noch nicht implementierten Metho-

den umsetzt. Zusätzlich wurden drei Interfaces (IDataResourceDomainManager, IData-

Storage, IDataLoader) entworfen, die für eine Datenquelle implementiert werden müssen,

wenn die Software um die Datenquelle erweitert werden soll.

34

Abbildung 11: Klassendiagramm der Software (Teil 2)

35

Die Klassen DomainManagerAggregator, AcquireInformationResources, ReleaseInforma-

tionResources und StoreInformationResources wurden nach dem GoF-Pattern [23] der

”
facade“ entworfen. Unter einer

”
facade“ versteht man eine vereinfachte Schnittstelle zur

Benutzung eines System. Sie ermöglicht es dem Benutzer, ausschließlich mit der Schnitt-

stelle zu kommunizieren und dabei keine Informationen über die Abhängigkeiten und

Klassen innerhalb des Systems zu benötigen. Die
”
facade“ leitet vom Benutzer erhaltene

Anfragen an die Klassen und Schnittstellen weiter, die zum Bearbeiten benötigt wer-

den. Durch dieses Vorgehen wird die lose Kopplung innerhalb des Systems gefordert. Da-

mit wird vereinfacht, Komponenten auszutauschen bzw. neue Erweiterungen einzufügen.

Insbesondere die Erweiterbarkeit ist für die Software zur Integration von Informations-

Ressourcen von großer Bedeutung. Die
”
facade“-Komponenten nutzen Dependency In-

jection (siehe Abschnitt 2.3), um die verschiedenen Implementierungen der Interfaces im

Konstruktor zu laden und in einer Liste zu speichern.

4.3.1 Interfaces zur Erweiterung der Software

Für jedes der drei entworfenen Interfaces wird im Folgenden beschrieben, was die einzelnen

Methoden leisten müssen, um damit die Erweiterung der Software zu ermöglichen.

IDataResourceDomainManager

Eine Implementierung des IDataResourceDomainManager Interfaces wird für eine neue

Datenquelle benötigt, um die beinhalteten Ressourcen und Relationen im DomainManager-

Aggregator auflisten zu können. Außerdem muss die Implementierung für alle von ihr auf-

gelisteten Ressourcen und Relationen die Informationen liefern, die zur Ausführung von

Operationen auf diesen Ressourcen bzw. Relationen benötigt werden. Für diese Funktiona-

litäten besitzt das Interface fünf verschiedene Methoden. Die getSupportedQNames() Me-

thode liefert die QNames aller Ressourcen und Relationen, die von dieser Implementierung

zur Zeit unterstützt werden. Diese Information wird vom DomainManagerAggregator ver-

wendet, um die richtige Implementierung für eine bestimmte Ressource bzw. Relation zu

finden. Dagegen liefert die listEntities() Methode die verfügbaren Ressourcen und Relatio-

nen als TOSCA NodeType bzw. RelationshipType, um dem DomainManagerAggregator

die Erstellung des Definitions Documents zu ermöglichen. Die getImports() Methode lie-

fert alle Imports, die von Ressourcen oder Relationen dieser Implementierung genutzt

werden. Außerdem besitzt das Interface die Methode listDeployablesOfResource(), die für

eine bestimmte Ressource oder Relation alle verfügbaren Deployables als Liste von QNa-

mes liefert. Die letzte Methode des Interfaces ist getDeployable() und diese wird dazu

verwendet, das tatsächliche Deployable als Objekt zu liefern, welches die Informationen

für den Zugriff auf die Ressource bzw. Relation beinhaltet. Diese Methode besitzt als Para-

meter zum einen den QName der Ressource bzw. Relation, für welche das Deployable aus-

36

gegeben werden soll und zum anderen einen QName, der von listDeployablesOfResource()

ausgegeben wird und womit das gewünschte Deployable ausgewählt wird. Die gelieferten

Informationen im Deployable müssen mit den benötigten Informationen der zugehörigen

Implementierungen von IDataStorage und IDataLoader übereinstimmen.

IDataStorage

Das IDataStorage Interface wird verwendet um Ressourcen zu speichern. Das Interface

besitzt zwei Methoden, die für eine neue Datenquelle implementiert werden müssen. Die

erste Methode ist getSupportedNamespace(). Diese Methode liefert eine URI zurück, wel-

che den Namespace der Ressourcen, die von der Implementierung unterstützt werden,

darstellt. Die URI muss eindeutig unter allen Implementierungen sein und wird dazu

verwendet, die richtige Implementierung für eine bestimmte Ressource zu finden. Die

zweite Methode des Interfaces ist storeData(). Diese Methode führt die Speicherung der

Ressource durch und hat drei Parameter. Der QName wird dazu verwendet, die Res-

source eindeutig zu identifizieren. Der zweite Parameter ist eine Liste von FileObjects.

Diese FileObjects werden sowohl von IDataStorage, als auch von IDataLoader verwendet

und entsprechen dem Übertragungsformat innerhalb der Software. Jedes FileObject re-

präsentiert eine einzelne Datei und enthält alle benötigten Informationen über sie. Diese

Informationen sind der Name, der lokale Pfad, die Größe der Datei und die Datei als

InputStream. Der Name und der lokale Pfad werden dazu verwendet, interne Strukturen

innerhalb einer Ressource zu erhalten. Der InputStream wird genutzt, um die Datei an

einem neuen Ort erstellen zu können und die Größe der Datei wird für die Verwendung

einiger Java Libraries benötigt. Der dritte Parameter ist ein RunnableContainer, der alle

Informationen beinhaltet, um auf den gewünschten Speicherplatz der Ressource zugreifen

und die Ressource dort erstellen zu können.

IDataLoader

Das IDataLoader Interface ist das Gegenstück zum IDataStorage Interface und ist für das

Laden und Freigeben von Ressourcen zuständig. Es verfügt ebenfalls über die getSup-

portedNamespace() Methode, die den Namespace der zugehörigen Ressourcen als URI

zurückliefert. Zusätzlich besitzt das Interface die Methoden releaseData() und getData().

Beide haben als Parameter einen QName, welcher die Ressource identifiziert, die für die

Operation verwendet werden soll. Außerdem verwenden beide Methoden einen Runnable-

Container als zweiten Parameter, der alle Informationen für den Zugriff auf die Ressource

beinhaltet. Mit der releaseData() Methode wird die gewünschte Ressource gelöscht und

kein Rückgabewert geliefert. Die getData() Methode hingegen lädt die Daten einer Res-

source und gibt sie als Liste von FileObjects (siehe IDataStorage) zurück, die anschließend

mit einer Implementierung von IDataStorage an einem anderen Platz gespeichert werden

können.

37

4.3.2 Ablauf der wichtigsten Methoden

Im Folgenden soll der Ablauf der Methoden listDomain(), listDeployablesOfResource(),

getDeployable(), getImports() des DomainManagerAggregators und für jede Operation

die executeOperation() Methode beschrieben werden, da diese den interessanten zu im-

plementierenden Methoden entsprechen. Neben den in Abb. 11 dargestellten Operatio-

nen Acquire, Store und Release für Ressourcen beinhaltet dies auch die AcquireAdmin-

RelationshipOperation, die einen Benutzer zum Administrator einer MediaWiki Instanz

macht. Diese Operation wurde im Klassendiagramm der Software nicht dargestellt, da sie

von der AcquireRelationshipOperation Klasse des Systems (siehe Abschnitt 4.2) erbt und

ansonsten keine Methoden oder Interfaces verwendet und keine weiteren Abhängigkeiten

besitzt. Die Methoden der Klasse entsprechen also genau den Methoden der abstrakten

Oberklasse.

Die weiteren Methoden, wie zum Beispiel getTargetNamespace() oder getSupported-

Resources(), werden hingegen nicht genauer betrachtet, da diese lediglich QNames von

Ressourcen oder Namespaces zurückliefern und deren Ablauf vergleichsweise simpel ist.

Zusätzliche Informationen zu den Methoden und die Implementierungen finden sich direkt

im Git Projekt11.

listDomain():

Das Ziel der listDomain() Methode des DomainManagerAggregators ist es, alle Ressour-

cen und Relationen, die von einem der IDataResourceDomainManager Implementierungen

zur Verfügung gestellt werden, in einem einzelnen TOSCA Definitions Document (siehe

Abschnitt 2.1.2) aufzulisten. Neben den NodeTypes bzw. RelationshipTypes, welche die

Ressourcen und Relationen repräsentieren, soll das Definitions Document auch alle ver-

wendeten Importe beinhalten. Der DomainManagerAggregator lädt im Konstruktor alle

verfügbaren Implementierungen des IDataResourceDomainManager Interfaces und hat

diese beim Aufruf von listDomain() als Liste vorliegen. Nach dem Aufruf der Metho-

de kontaktiert der DomainManagerAggregator alle vorhandenen Implementierungen und

ruft bei ihnen die Methode listEntities() auf. Die Implementierungen durchsuchen darauf-

hin ihre zugehörige Domäne und liefern die Ergebnisse als Liste von TExtensibleElements

zurück. TExtensibleElements ist eine TOSCA Oberklasse, die unter anderem NodeTypes,

RelationshipTypes und Imports als Unterklassen besitzt. Der DomainManagerAggregator

empfängt alle Ergebnisse und fügt sie nach einer Überprüfung, ob keine unerwünschten

Typen übergeben wurden, ins Definitions Document ein. Außerdem wird der Name, die

ID und der Namespace des Definitions Document gesetzt. Am Ende der Methode wird

das erzeugte Definitions Document zurückgegeben.

11https://gitlab.com/timur87/integrating-data-resources

38

https://gitlab.com/timur87/integrating-data-resources

listDeployablesOfResource():

Mit der listDeployablesOfResource() Methode sollen alle möglichen Deployables für eine

bestimmte Ressource bzw. Relation als Liste von QNames ausgegeben werden. Mehrere

Deployables für eine Ressource sind zum Beispiel sinnvoll, wenn mehrere Speicherorte

verfügbar sind, an denen die Ressource dem Nutzer bereitgestellt werden kann. Damit

kann der Nutzer entweder ein Deployable auswählen oder die Software eine zufällige Wahl

treffen lassen. Der Vorteil der Auswahl aus mehreren Deployables ist, dass der Nutzer

damit mehr Konfigurationsmöglichkeiten besitzt. Für eine Ordner Ressource im lokalen

Dateisystem könnte zum Beispiel ein Deployable zur Verfügung stehen, das den Ordner

in einem Git Repository liefert und ein Deployable, das Dropbox als Speicherort ver-

wendet. Die Auswahl der Ressource bzw. Relation, für welche die Deployables gesucht

werden sollen, wird durch einen QName als Parameter durchgeführt. Nach dem Aufruf

der listDeployablesOfResource() Methode sucht der DomainManagerAggregator die Im-

plementierung des IDataResourceDomainManager Interfaces, die für die Ressource bzw.

Relation zuständig ist. Dazu wird über die Liste der verfügbaren Implementierungen ite-

riert und getestet, ob der QName der Ressource in der Rückgabe der Methode getSup-

portedQNames() vorhanden ist. Wenn die Implementierung gefunden wurde, wird die

Anfrage an sie weitergegeben und ansonsten wird null zurückgegeben.

getDeployable():

Die getDeployable() Methode wird in der Software verwendet, um das Deployable einer

bestimmten Ressource oder Relation zu erhalten. Die gewünschte Ressource bzw. Relation

wird dabei durch den ersten QName
”
resourceQName“ identifiziert. Anhand dieses QNa-

mes ermittelt der DomainManagerAggregator die zuständige Implementierung des IData-

ResourceDomainManager Interfaces und leitet die Anfrage an diese mit beiden QNames

und der Intention weiter. Wird keine passende Implementierung gefunden, liefert die Me-

thode null zurück. Die Implementierung bestimmt zunächst die Informationen, die für den

Zugriff auf die Ressource benötigt werden. Anschließend wird anhand des zweiten QNames

”
deployableType“ identifiziert, welches Deployable für die Ressource zur Verfügung ge-

stellt werden soll. Der QName muss dabei in der von listDeployablesOfResource() geliefer-

ten Liste sein. Je nach Art der Speicherung, welche das gewählte Deployable repräsentiert,

sammelt die Implementierung die Informationen, die für die Speicherung der Ressource

benötigt werden. Anschließend werden die Informationen zum Laden und Speichern der

Ressource in einen InputStream eingefügt und damit das benötigt Deployable erzeugt.

Das Deployable wird an den DomainManagerAggregator zurückgegeben und von diesem

als Rückgabe der Methode verwendet.

39

getImports():

Mit der getImports() Methode wird es ermöglicht, dem Benutzer der Software alle Im-

ports im durch listDomain() gelieferten Definitions Document direkt zur Verfügung zu

stellen. Damit wird das Definitions Document von Abhängigkeiten nach außen bereinigt.

Die zurückgegebene Liste der Methode bezieht sich immer auf den letzten Aufruf der list-

Domain() Methode. Der DomainManagerAggregator fragt beim Aufruf der getImports()

Methode bei allen Implementierungen des IDataResourceDomainManager Interfaces die

aktuellen Imports ab. Innerhalb der Implementierungen wird die Liste bei jedem Aufruf

von listEntities() aktualisiert. Nach dem Erhalt aller Import Listen der Implementierun-

gen, werden diese auf mehrfache Vorkommen eines Imports überprüft und vereinigt.

executeOperation() AcquireInformationResources:

Die executeOperation() Methode besitzt für alle Operationen drei Parameter. Der ers-

te Parameter ist eine Liste von RunnableContainer Objekten. In diesen Objekten be-

finden sich alle Informationen über die Ressource, die zur Ausführung der Operation

benötigt werden. Je nach Operation kann die Liste nur einen oder mehrere Runnable-

Container beinhalten. Die Anzahl und der Typ der benötigten RunnableContainer wird

durch die Methode getRequiredDeployableTypes() der Operation definiert. Zur Verwen-

dung der Operation müssen diese RunnableContainer von einem Domain Manager geladen

und anschließend an die Methode übergeben werden. Der zweite Parameter ist ein Ob-

ject, welches für weitere Parameter verwendet werden kann, aber für den Kontext der

Informations-Ressourcen nicht benötigt wird. Der letzte Parameter ist ein Operation-

Callback Objekt (siehe Abschnitt 4.2). Dieses Objekt bekommt die Rückgabe der Opera-

tion übergeben und behandelt diese mit den Methoden onSuccess() bzw. onError().

Nach dem Aufruf der Methode wird zunächst der QName der Ressource aus den Runnable-

Container Objekten ausgelesen. Anhand dieses QNames kann bestimmt werden, welche

Implementierungen des IDataLoader und IDataStorage Interfaces für die Ressource ver-

wendet werden müssen. Die Implementierungen des IDataLoader bzw. IDataStorage In-

terfaces werden dabei von der Operations Klasse im Konstruktor geladen. Nachdem die

Implementierung des IDataLoader Interfaces bestimmt wurde, wird die getData() Me-

thode von dieser aufgerufen. Die Rückgabe der Methode ist eine Liste von FileObjects,

die den Inhalt der Ressource repräsentieren. Anschließend wird mit dieser Liste die store-

Data() Methode der IDataStorage Implementierung aufgerufen und die Ressource damit

an einer gewünschten Position bereitgestellt. Durch das Node Template, das im Runnable-

Container beinhaltet ist, können mittels Properties zusätzliche Konfigurationsparameter

für die Bereitstellung übermittelt werden. Dazu kann ein XML Element in das Node

Template eingefügt werden, das alle Attribute enthält, die im zugehörigen NodeType

40

definiert wurden (siehe Abschnitt 2.1.3). Die storeData() Methode liefert am Ende der

Ausführungen alle interessanten Informationen über die bereitgestellte Instanz zurück,

die dann an das OperationCallback Objekt übergeben werden. Die Informationen bein-

halten für jede Ressource die URI, über welche auf die Instanz zugegriffen werden kann.

Außerdem können noch zusätzliche Informationen, wie zum Beispiel Benutzername und

Passwort, ausgegeben werden, falls diese für den Zugriff benötigt werden.

executeOperation() StoreInformationResources:

Die executeOperation() Methode der StoreInformationResources Operation läuft fast gleich

ab, wie die Methode der AcquireInformationResources Operation. Die Unterschiede zwi-

schen den Operationen sind jedoch zum einen die Bedeutung innerhalb eines informellen

Prozesses und zum anderen die unterschiedlichen Ressourcen, auf welche die Operatio-

nen angewendet werden können. Die Acquire Operation wird üblicherweise am Anfang

eines informellen Prozesses ausgeführt, um die Ressourcen für den Prozess zu initiali-

sieren. Die Store Operation hingegen wird verwendet, um eine während des Prozesses

veränderte Ressource am Ende zu speichern und damit für nachfolgende Prozesse zu

erhalten. Die Store Operation ist außerdem nur optional innerhalb eines informellen Pro-

zesses. Die Bedeutung der Operationen spiegelt sich auch in den verwendeten Ressourcen

wieder. Dies lässt sich am Beispiel einer MediaWiki Ressource verdeutlichen, die mit Do-

cker (siehe Abschnitt 2.2) integriert wird. Die Acquire Operation lässt sich lediglich auf

Docker Images anwenden, die passive Komponenten darstellen und erzeugt daraus eine

aktive Instanz für den Prozess. Die Store Operation hingegen lässt sich nur auf aktive

Container anwenden, welche durch die Operation als passives Image gespeichert werden

und damit jederzeit wieder in neuen Prozessen erstellt werden können.

executeOperation() ReleaseInformationResources:

Mit der executeOperation() Methode der ReleaseInformationResources Operation können

mit Acquire erstellte Ressourcen freigegeben werden. Dafür verwendet die Operation Im-

plementierungen des IDataLoader Interfaces. Für die übergebenen RunnableContainer

wird auf diesen Implementierungen die Methode releaseData() aufgerufen. Nach dem Ab-

schluss der Operation wird dem OperationCallback Objekt durch den Aufruf der richtigen

Methode mitgeteilt, ob die Freigabe der Ressourcen erfolgreich war oder ein Fehler auf-

getreten ist.

executeOperation() AcquireAdminRelationshipOperation:

Diese Methode wird verwendet, um einen Benutzer zum Administrator einer MediaWiki

Instanz zu machen. Dazu benötigt die Methode einen RunnableContainer in den Parame-

tern, der die Informationen beinhaltet, um auf die MediaWiki Instanz zugreifen zu können.

Außerdem muss das Relationship Template im RunnableContainer unter den Properties

41

ein XML Element mit den Attributen
”
userName“ und

”
password“ besitzen. Die unter

diesen Attributen angegebenen Werte werden später als Benutzername und Passwort des

Accounts in der MediaWiki Instanz verwendet. Um die Relation zu erzeugen, liest die Me-

thode zunächst die Parameter aus. Anschließend führt sie mit den Parametern ein PHP

Skript auf der MediaWiki Instanz aus, das den benötigten Account erzeugt. Abschließend

wird dem OperationCallback Objekt die Information über die Location der MediaWiki

Instanz und der Benutzername und das Passwort des erzeugten Accounts übergeben.

42

5 Implementierung der Software zur Integration von

Informations-Ressourcen
In diesem Kapitel werden Details zur Implementierung und Nutzung der in Abschnitt 4

entworfenen Software zur Integration von Informations-Ressourcen dargestellt. Dazu wer-

den zunächst in Abschnitt 5.1 die zur Implementierung genutzten Technologien und Li-

braries beschrieben. Anschließend wird in Abschnitt 5.2 zusammengefasst, über welche

Parameter die Software an die Bedürfnisse des Nutzers bzw. die zur Verfügung stehenden

Datenquellen angepasst werden kann. In Abschnitt 5.3 wird die konkrete Verwendung der

Software anhand eines Beispiels erklärt. Dazu werden Code Ausschnitte und Rückgaben

der Software zur besseren Verständlichkeit verwendet.

5.1 Verwendete Technologien und Libraries

Für die Implementierung der Software zur Integration von Informations-Ressourcen wur-

den viele verschiedene Technologien und Libraries verwendet, da der Zugriff auf jede

Datenquellen auf eine andere Weise durchgeführt werden muss. Zudem wurden für die

Implementierung der allgemeinen Logik der Software einige Technologien und Libraries

benötigt. In diesem Abschnitt sollen die wichtigsten von ihnen eingeführt und ihre An-

wendung in der Software erklärt werden.

Neben den hier aufgeführten Technologien und Libraries ist die objektorientierte Pro-

grammiersprache Java, in der die Umsetzung der Software erfolgte, von Bedeutung. Auf

diese wird wegen der großen Bekanntheit jedoch nicht genauer eingegangen. Docker und

Spring, als Dependency Injection Library, sind ebenfalls wichtige Technologien für die Im-

plementierung. Diese wurden bereits in Abschnitt 2 eingeführt. Docker wird innerhalb der

Software zur Integration von MediaWiki und von MySql Datenbanken verwendet. Spring

hingegen wird in der Software genutzt, um eine möglichst lose Kopplung der Komponen-

ten zu erreichen und alle Implementierungen von Interfaces zur Laufzeit zu laden.

EGit und JGit:

EGit12 und JGit13 sind zwei Java Libraries zur Verwendung von Git. Mit der JGit Library

ist es möglich, Lese- und Schreiboperationen auf einem Git Repository auszuführen. Dazu

zählen zum Beispiel die Operationen
”
pull“,

”
add“,

”
commit“ und

”
push“. Die Library

wurde in der Software verwendet, um Ordner in Git Repositories als Ressourcen zu in-

tegrieren. Die EGit Library hingegen ermöglicht den Zugriff auf die GitHub API14. Über

diese API lassen sich Repositories löschen und neu erstellen. Mit EGit und der Möglichkeit

die Daten eines Repository mittels JGit zu lesen und schreiben, konnten GitHub Reposi-

tories als Datenquelle eingefügt werden.

12http://www.eclipse.org/egit/
13http://www.eclipse.org/jgit/
14https://developer.github.com/v3/

43

http://www.eclipse.org/egit/
http://www.eclipse.org/jgit/
https://developer.github.com/v3/

Dropbox Core SDK:

Das Dropbox Core SDK ist eine Library, die es ermöglicht, aus Java Anwendungen auf die

Dropbox Core API15 zugreifen zu können. Die Dropbox Core API bietet unter anderem

die Funktionen, alle Ordner innerhalb eines Dropbox Accounts aufzulisten und Dateien

oder Ordner hochzuladen, zu löschen oder zu downloaden. Mittels des Dropbox Core SDK

wurden Ordner in Dropbox Accounts in die Software integriert.

JDBC:

Java Database Connectivity (JDBC) ist eine Datenbankschnittstelle für die Programmier-

sprache Java. Über diese Schnittstelle ist es möglich, eine Verbindung zu verschiedenen

Arten von Datenbanken herzustellen. Zudem können SQL-Anfragen an die Datenbank

gestellt werden und damit Tabellen eingefügt, geupdated oder gelöscht werden. Die Er-

stellung neuer Datenbanken ist mit der Schnittstelle jedoch nicht möglich. Mit ihr kann

nur auf bereits existierende Datenbanken zugegriffen werden. In der Software wurde die

Schnittstelle verwendet, um Verbindungen zu MySql Datenbanken zu ermöglichen und

Daten aus Tabellen zu lesen bzw. in Tabellen einzufügen. Damit ist es möglich, Tabellen

in MySql Datenbanken als Ressourcen in der Software zu verwenden. JDBC kann für die

Nutzung anderer Datenbanken als Ressourcen ebenfalls verwendet werden, wenn die Soft-

ware um diese erweitert werden soll. Dafür muss lediglich der zur Datenbank passende

Treiber an die JDBC Komponenten übergeben werden.

Docker-Java und Docker-Client:

Docker-Java16 und Docker-Client17 sind zwei Libraries, die den Zugriff auf einen Docker

Daemon (siehe Abschnitt 2.2) über die Docker Remote API ermöglichen. Damit kann eine

Java Anwendung als Docker Client fungieren und Befehle, wie zum Beispiel das Erstellen

eines Containers, auf dem Docker Daemon ausführen. Die zwei unterschiedlichen Libraries

werden benötigt, da beide aktuell nur einen Teil der Funktionalität von der Docker Remote

API abdecken. Mit Docker-Client ist zum Beispiel die Erstellung eines Images aus einem

laufenden Container nicht möglich. Diese Funktionalität wird jedoch zum Speichern des

Zustandes einer Ressource, die mit Docker initialisiert wurde, benötigt. Docker-Java eignet

sich dagegen nicht gut um einen Befehl in einem laufenden Container auszuführen. Für

die Initialisierung einer MediaWiki Instanz wird dies benötigt, da dort ein PHP Skript im

Container ausgeführt werden muss. Die Kombination beider Libraries bietet alle Docker

Funktionen, die für die Software benötigt werden.

15https://www.dropbox.com/developers-v1/core
16https://github.com/docker-java/docker-java
17https://github.com/spotify/docker-client

44

https://www.dropbox.com/developers-v1/core
https://github.com/docker-java/docker-java
https://github.com/spotify/docker-client

Apache Commons Configuration:

Die Apache Commons Configuration Library18 wurde entworfen, um Konfigurationspara-

meter aus verschiedenen Quellen zur Laufzeit zu laden. Durch die Nutzung der Library

müssen die Konfigurationsparameter nicht über den Konstruktor eines Objekts eingefügt

werden, sondern können dynamisch geladen werden. In der Software wurde eine Pro-

perties Datei als Quelle der Konfigurationsparameter verwendet. Die Verwendung der

Properties Datei und welche Parameter dort gesetzt werden können, wird im nächsten

Abschnitt erklärt. Innerhalb der Software wurde diese Library verwendet, da damit die

Konfiguration der Software auch durch Personen möglich ist, die keine Kenntnisse über

die Implementierung der Software besitzen und dies die Anwendungsmöglichkeiten der

Software erweitert.

18https://commons.apache.org/proper/commons-configuration/

45

https://commons.apache.org/proper/commons-configuration/

5.2 Konfigurationsparameter der Software

Um die Komponenten der Software einfach verwenden zu können und keine Informationen

im Konstruktor übergeben zu müssen, wird in der Software eine Properties Datei genutzt,

welche die nötigen Konfigurationsparameter beinhaltet. Damit ist es möglich, dass alle

Komponenten einen Konstruktor ohne Argumente besitzen. Zum Laden der Konfigurati-

onsdaten, muss eine Datei mit dem Namen
”
data.properties“ im Projektordner existieren.

In diesem Abschnitt wird anhand des Beispiels in Listing 2 gezeigt, welche Parameter in

dieser Datei eingesetzt werden können und welche Auswirkung dies auf die Software hat.

1 # Meta data of the definitions document

2 definitions.name = InformationResources

3 definitions.namespace = http://www.uni-stuttgart.de/

4

5 # Meta data about the locations of implementations

6 IDataResourceDomainManager.locations =

uni_stuttgart.integration.domain_manager.implementations

7 IDataLoader.locations = uni_stuttgart.integration.eei.implementations

8 IDataStorage.locations = uni_stuttgart.integration.eei.implementations

9

10 # Meta data about Git

11 GitDataResourceDomainManager.githubUsernameList = accountName

12 GitDataResourceDomainManager.githubPasswordList = testpass

13 GitDataResourceDomainManager.urlList = https://gitlab.com/user/repo

14 GitDataResourceDomainManager.repositoryUsernameList = testUser

15 GitDataResourceDomainManager.repositoryPasswordList = testpass

16

17 # Meta data about local file resources

18 FileDataResourceDomainManager.sourcePaths = C:\Users\User1\Data

19

20 # Meta data about docker clients

21 Docker.uri = tcp://192.168.99.100:2376

22 Docker.certs = /Users/User1/.docker/machine/certs/

23

24 # Meta data about dropbox accounts

25 Dropbox.accessToken = qXPJQq4y8JAAAAAAAAAACwNE3f7Z8Q9lT686lVFmQ9cuQT6

26 Dropbox.username = account@web.de

27 Dropbox.password = testpass

Listing 2:
”
data.properties“ Datei

Die ersten beiden Eigenschaften betreffen das Definitions Document, das vom Domain-

ManagerAggregator dem Nutzer zur Verfügung gestellt wird. Der hier gesetzte Name und

Namespace werden als Name bzw. Namespace des Definitions Documents verwendet.

46

Die nächsten drei Eigenschaften (Zeile 6-8) werden für die Dependency Injection mit-

tels Spring genutzt. Damit Spring die Implementierungen der Interfaces laden kann,

benötigt es die Java Package Namen, in denen die Implementierungen liegen. Die drei

Eigenschaften werden dabei alle als kommaseparierte Liste verwendet. Das bedeutet, es

können mehrere Package Namen angegeben werden, die dann alle von Spring nach Imple-

mentierungen durchsucht werden. Mit der konkreten Properties Datei in Listing 2 wer-

den zum Beispiel alle Implementierungen des IDataLoader Interfaces aus dem Package

”
uni stuttgart.integration.eei.implementations“ geladen.

Alle weiteren Eigenschaften beziehen sich auf die Verwendung bestimmter Ressourcen

Arten. Für jede Ressourcen Art werden sogenannte
”
Quellinformationen“ angegeben. Die

Quellinformationen bestimmen, von welchem Punkt aus die Software nach Ressourcen

suchen soll. Sollte eine Datenquelle zum Beispiel mit einem Passwort geschützt sein, muss

dieses hier ebenfalls angegeben werden. Der Domain Manager nutzt diese Informationen

um ein Deployable für eine Ressource zu erzeugen und dieses muss alle Informationen

beinhalten um auf die Ressource zugreifen zu können.

Git als Datenquelle unterteilt sich für die Nutzung in der Software zum einen in Ordner

und zum anderen in Repositories als Ressourcen. Für Git Repositories müssen die beiden

Eigenschaften
”
githubUsernameList“ und

”
githubPasswordList“ angegeben werden. Die

Listen können eine beliebige Anzahl an GitHub Accounts und zugehörige Passwörter bein-

halten. Die Software listet damit alle Repositories als Ressourcen, die innerhalb dieser Ac-

counts existieren. Für Ordner in Git Repositories gibt es zum einen dieselbe Möglichkeit,

durch die alle Ordner in allen Repositories eines Accounts aufgelistet werden. Zusätzlich

ist es noch möglich, einzelne Repositories anzugeben, von denen dann alle beinhalteten

Ordner als Ressourcen verwendet werden. Hierfür können die Eigenschaften in den Zei-

len 13-15 verwendet werden, in denen die URL des Repositories der Username und das

Passwort angegeben werden müssen.

Für Ordner im lokalen Dateisystem wird lediglich ein Ordner benötigt, von welchem alle

beinhalteten Ordner aufgelistet werden sollen (Zeile 18). Dabei kann eine beliebige An-

zahl an Ordnern angegeben werden. Im Beispiel werden also alle Ordner, die sich inner-

halb des Ordners
”
C:\Users\User1\Data“ befinden, vom Domain Manager als Ressourcen

aufgelistet.

Docker wird in der Software zur Integration von Informations-Ressourcen verwendet, um

MediaWiki und MySql Instanzen zu erzeugen und zu speichern. Es können zum einen

laufende MediaWiki bzw. MySql Container verwendet werden und damit neue Images

erzeugt werden. Außerdem können gespeicherte Images verwendet werden, um damit neue

Container zu erstellen. Dabei existiert für MediaWiki und MySql ein Image für eine leere

Instanz, das aus der Docker Registry heruntergeladen und in jedem Client verwendet

47

werden kann. Alle anderen Images werden lokal in den zu den Docker Clients gehörenden

Docker Daemons gespeichert. Die laufenden Container sind ebenfalls von dem Docker

Daemon abhängig, in dem sie erstellt wurden. Deshalb sind die vorhandenen Docker

Clients für die Software wichtig, um aktive und passiv gespeicherte Instanzen auflisten

und verwalten zu können (siehe Abschnitt 2.2). Als Informationen, um auf einen Docker

Client zugreifen zu können, benötigt die Software die URI und den Pfad zu den Zertifikaten

des Client. Die URI besteht aus einem Protokoll, der IP-Adresse und dem Port des Clients.

Der Pfad zu den Zertifikaten eines Clients wird benötigt, da nur damit der Zugriff auf ihn

erlaubt ist.

Für die Verwendung der Ordner eines Dropbox Accounts als Ressourcen, müssen drei

Eigenschaften in der Properties Datei gesetzt werden (Zeile 25-27). Die erste Informa-

tion, die benötigt wird, ist ein sogenanntes Access Token. Das Access Token kann über

die Dropbox Website19 für einen Dropbox Account erstellt werden. Die beiden anderen

benötigten Informationen sind der Benutzername und das Passwort des Accounts. Auf

diese Weise kann eine beliebige Anzahl an Dropbox Accounts zur Verwendung in der

Software hinzugefügt werden.

19https://www.dropbox.com/

48

https://www.dropbox.com/

5.3 Fallstudie

In diesem Abschnitt wird die mögliche Verwendung der Software am Beispiel der Be-

reitstellung einer Ressource in einem informellen Prozess illustriert. Das Beispiel umfasst

den kompletten Ablauf vom Auswählen einer Ressource bis zur Durchführung einer Ope-

ration. Als Ressource wurde eine MediaWiki Instanz ausgewählt. Die Verwendung aller

anderen Ressourcen ist jedoch auf dieselbe Art möglich. Dabei unterscheiden sich lediglich

die möglichen Attribute im Node Template und die Informationen zur Bereitstellung der

Ressource, die von der Software am Ende geliefert werden. Genutzt wird außerdem die

AcquireInformationResources Operation, diese kann aber leicht durch jede andere Opera-

tion ersetzt werden. Neben den Code Ausschnitten, die zu den einzelnen Schritten gehören,

werden auch die Rückgaben der Software beispielhaft angegeben, um zu verdeutlichen wie

diese aussehen können.

Im ersten Schritt muss zunächst ein DomainManagerAggregator Objekt erzeugt werden.

Anschließend wird mit der Methode listDomain() das aktuelle Definitions Document abge-

rufen, das alle verfügbaren Ressourcen und Relationen beinhaltet und dem Nutzer damit

eine Auswahl anbietet. Der zugehörige Code wurde in Listing 3 abgebildet.

1 DomainManagerAggregator dm = new DomainManagerAggregator();

2 Definitions definitions = dm.listDomain();

Listing 3: Fallstudie: Code Teil 1

Als Rückgabe liefert die Software dem Benutzer das Definitions Document in Listing 4.

Das Definitions Document verfügt über die Attribute id, name und targetNamespace.

Die Werte für name und targetNamespace werden aus der data.properties Datei (siehe

Abschnitt 5.2) geladen. Die id wird dafür verwendet, um das Definitions Document klar

von früheren Versionen abzugrenzen. Deswegen wird in dieses Attribut neben dem Namen

die aktuelle Zeit bei der Erstellung des Documents angegeben. Außerdem beinhaltet das

Definitions Document insgesamt vier Elemente, wobei zwei vom Typ Import und zwei

vom Typ NodeType sind.

Die beiden Import Elemente werden genutzt, um zwei externe Dateien in das Definiti-

ons Document einzubinden. Da für beide Elemente unter dem Attribut
”
importType“

der Wert
”
http://www.w3.org/2001/XMLSchema“ angegeben wurde, repräsentieren sie

XML Schema Dateien. Der Namespace der Importe stimmt mit dem Namespace der

Dateien überein, die mittels getImports() von einem Domain Manager geliefert werden.

Diese können genutzt werden, um die richtige Datei zu identifizieren. Deshalb benötigen

die Importe kein
”
location“ Attribut, sondern können direkt vom Domain Manager ange-

49

fordert werden. Die zwei NodeTypes innerhalb des Documents zeigen dem Nutzer, dass

derzeit zwei verschiedene Ressourcen zur Initialisierung in einem informellen Prozess zur

Verfügung stehen. Die Eigenschaften
”
name“ und

”
targetNamespace“ sind für jede Res-

source eindeutig. Außerdem besitzen die NodeTypes ein Element PropertiesDefinition. In

diesem Element wird unter der Eigenschaft
”
element“ ein XML Element definiert, das die

Eigenschaften des NodeTypes definiert. Im vorliegenden Definitions Document sind die

XML Elemente in den importierten XML Schema Dateien beinhaltet und können über

diese zugegriffen werden.

1 <Definitions id="InformationResources - 2016/04/15 16:32:50"

2 name="InformationResources"

3 targetNamespace="http://www.uni-stuttgart.de/"

4 xmlns:mysql="http://www.uni-stuttgart.de/resources/data-resources/xsd/

mysql"

5 xmlns:media="http://www.uni-stuttgart.de/resources/knowledge-resources/

xsd/mediawiki">

6

7 <Import importType="http://www.w3.org/2001/XMLSchema"

8 namespace="http://www.uni-stuttgart.de/resources/data-resources/xsd/

mysql">

9

10 <Import importType="http://www.w3.org/2001/XMLSchema"

11 namespace="http://www.uni-stuttgart.de/resources/knowledge-resources/

xsd/mediawiki">

12

13 <NodeType name="newMySql"

14 targetNamespace="http://www.uni-stuttgart.de/resources/data-resources/

mysql" />

15 <PropertiesDefinition element="mysql:MySqlProperties" />

16 </NodeType>

17

18 <NodeType name="newMediawiki"

19 targetNamespace="http://www.uni-stuttgart.de/resources/knowledge-

resources/mediawiki" />

20 <PropertiesDefinition element="media:MediawikiProperties" />

21 </NodeType>

22

23 </Definitions>

Listing 4: Fallstudie: Definitions Document

50

Der Nutzer entscheidet sich im Beispiel dafür, eine MediaWiki Instanz mit der Acquire-

InformationResources Operation zu erzeugen. Dazu müssen im nächsten Schritt die Eigen-

schaften des
”
newMediawiki“ NodeTypes ausgelesen werden. Der dazu notwendige Code

ist in Listing 5 abgebildet.

1 TEntityType resource = (TEntityType) definitions.

getServiceTemplateOrNodeTypeOrNodeTypeImplementation().get(1);

2 InputStream xsdFile = null;

3

4 // read related namespace

5 String xsdNamespace = resource.getPropertiesDefinition().getElement().

getNamespaceURI();

6 for(Import importFile : dm.getImports()){

7 // search import with same namespace and use InputStream

8 if(importFile.getNamespace().toString().equals(xsdNamespace)){

9 xsdFile = importFile.getImport();

10 break;

11 }

12 }

Listing 5: Fallstudie: Code Teil 2

Zunächst wird der TEntityType aus dem Definitions Document ausgegeben. Der Index

”
1“ der get() Methode steht für die Position des

”
newMediawiki“ NodeTypes im Docu-

ment. Für den
”
newMySql“ NodeType müsste an dieser Stelle der Index

”
0“ verwendet

werden. Anschließend wird der Namespace des Elements in der PropertiesDefinition des

NodeTypes angefordert. Dieser Namespace kann genutzt werden, um das richtige Import

Objekt des DomainManagerAggregators zu identifizieren. Dazu wird über alle Imports

iteriert, die mittels der getImports() Methode geliefert werden. Sobald das Import Objekt

gefunden wird, das denselben Namespace besitzt, wird der InputStream in einer Variable

gespeichert und die Suche beendet.

Der vorliegende InputStream kann zum Beispiel dafür genutzt werden, die XML Sche-

ma Datei dem Nutzer auf der Konsole auszugeben. Eine XML Schema Datei für den

”
newMediawiki“ NodeType ist in Listing 6 dargestellt. Die Schema Datei enthält das

Element
”
MediawikiProperties“, auf das vom NodeType im Definitions Document ver-

wiesen wird. Das Element beinhaltet drei Attribute, die für ein NodeTemplate des Types

gesetzt werden können. Dabei entspricht
”
mediawikiName“ dem Namen der MediaWiki

Instanz, die durch das NodeTemplate erzeugt werden soll. Wenn das Attribut nicht ge-

setzt wird, nutzt die Software einen zufälligen Namen. Die Attribute
”
mediawikiAdmin“

und
”
mediawikiAdminPass“ können dagegen dafür verwendet werden, einen initialen Ad-

ministrator Account für die MediaWiki Instanz zu erstellen.

51

1 <?xml version="1.0" encoding="UTF-8" ?>

2 <x:schema xmlns:x="http://www.w3.org/2001/XMLSchema" targetNamespace="http

://www.uni-stuttgart.de/resources/knowledge-resources/xsd/mediawiki">

3 <x:element name="MediawikiProperties">

4 <x:complexType>

5 <x:attribute name="mediawikiName" type="xs:string"/>

6 <x:attribute name="mediawikiAdmin" type="xs:string"/>

7 <x:attribute name="mediawikiAdminPass" type="xs:string"/>

8 </x:complexType>

9 </x:element>

10 </x:schema>

Listing 6: Fallstudie: XML Schema Datei

Nachdem dem Nutzer durch das XML Schema angezeigt wurde, welche Einstellungs-

möglichkeiten er zusätzlich zum RunnableContainer für die Ressource besitzt, kann die

Operation als nächstes ausgeführt werden. Der Code findet sich in Listing 7. Für die An-

forderung der Deployables vom DomainManagerAggregator, muss zunächst der QName

der Ressource aus dem NodeType ausgelesen werden. Danach kann das NodeTemplate

für die RunnableContainer erzeugt werden und mit dem Properties Element versehen

werden. Das XML Element wird mittels DOM20 erstellt. Dazu wird ein Document und

Element erstellt und anschließend werden die drei Attribute aus der XML Schema Datei

im Element gesetzt. Die angegebenen Attribute sorgen dafür, dass die erzeugte Instanz den

Namen
”
InformalProcessWiki“ trägt und ein Administrator Account erstellt wird, der mit

dem Benutzername
”
admin“ und dem Password

”
password“ versehen wird. Im nächsten

Schritt wird ein Objekt der Operation, in diesem Fall AcquireInformationResources, er-

stellt. Von der Operation kann für den QName der Ressource abgefragt werden, wie viele

und welche Deployables benötigt werden. Jedes geforderte Deployable wird vom Domain-

ManagaerAggregator abgerufen und zusammen mit dem erstellten Template zu einem

RunnableContainer umgewandelt. Alle erstellten RunnableContainer werden in eine Liste

eingefügt. Mit dieser Liste kann schließlich die Operation mittels der executeOperation()

Methode gestartet werden.

20https://docs.oracle.com/javase/tutorial/jaxp/dom/index.html

52

https://docs.oracle.com/javase/tutorial/jaxp/dom/index.html

1 QName resourceName = new QName(resource.getTargetNamespace(), resource.

getName());

2 TNodeTemplate template = new TNodeTemplate();

3

4 // add attributes to the element

5 DOMImplementation impl = DOMImplementationImpl.getDOMImplementation();

6 Document doc = impl.createDocument(null, "testDoc", null);

7 Element element = doc.createElement("Element");

8 element.setAttribute("mediawikiName", "InformalProcessWiki");

9 element.setAttribute("mediawikiAdmin", "admin");

10 element.setAttribute("mediawikiAdminPass", "password");

11

12 // add Properties to template

13 Properties prop = new Properties();

14 prop.setAny(element);

15 template.setProperties(prop);

16

17 // create RunnableContainers and execute the operation

18 List<RunnableContainer> list = new ArrayList<RunnableContainer>();

19 AcquireInformationResources operation = new AcquireInformationResources();

20 for(QName depl : operation.getRequiredDeployableTypes(resourceName)){

21 Deployable deployable = dm.getDeployable(resourceName, depl, new

TIntention());

22 list.add(new RunnableContainerObject(template, deployable.getDeployable()

, deployable.getType()));

23 }

24 operation.executeOperation(list, null, new OperationCallbackObject());

Listing 7: Fallstudie: Code Teil 3

Zusätzlich zur Liste mit RunnableContainer Objekten, muss der executeOperation() Me-

thode ein Objekt übergeben werden, welches das OperationCallback Interface implemen-

tiert. Nachdem die Operation beendet ist, wird auf diesem Objekt die onSuccess() bzw.

onError() Methode mit den Rückgabewerten aufgerufen. Die aufgerufene Methode ist

dann dafür zuständig, die Ergebnisse zu verarbeiten. Für die Fallstudie wurde eine Im-

plementierung des Interfaces erzeugt, die lediglich die Rückgabe auf der Konsole ausgibt.

Die Ausgabe findet sich in Listing 8. Sie beinhaltet den Status der Operation (
”
Success“).

Außerdem wird die Location ausgegeben, welche einer URI entspricht, über die auf die

erzeugte MediaWiki Instanz zugegriffen werden kann. Der dritte Rückgabeparameter ent-

spricht zusätzlichen Informationen über die erzeugte Instanz. Im Fall von MediaWiki

sind dies der Nutzername und das Passwort des Administrator Accounts, sofern die zu-

gehörigen Attribute im NodeTemplate gesetzt wurden.

53

1 Success

2 Location: http://192.168.99.100:32771

3 Username: admin Password: password

Listing 8: Fallstudie: Ausgabe

Damit ist die Bereitstellung der MediaWiki Ressource für einen informellen Prozess abge-

schlossen. Bei der tatsächlichen Anwendung der Software werden Ressourcen in ein großes

System integriert. Dabei werden die einzelnen Schritte, die in der Fallstudie dargestellt

wurden, automatisch vom umgebenden System veranlasst und benötigen keinen Eingriff

vom Benutzer. Zudem werden die von der Software erstellten Rückgaben von diesem

System verarbeitet und es ist damit möglich, alle Ressourcen, die für einen informellen

Prozess benötigt werden, automatisch zu initialisieren.

54

6 Zusammenfassung und Fazit
Um erworbenes Wissen innerhalb eines informellen Prozesses wiederverwendbar zu ma-

chen, muss eine Möglichkeit gefunden werden, die Prozesse zu modellieren. Das Problem

bei der Modellierung informeller Prozesse liegt darin, dass sie im Gegensatz zu Business

Prozessen hauptsächlich von menschlichen Akteuren durchgeführt werden. Durch die da-

mit entstehende Unvorhersehbarkeit der Aktivitäten des Prozesses, können übliche Mo-

dellierungsverfahren für informelle Prozesse nicht angewandt werden. Stattdessen ist es

möglich, die Business Logik eines informellen Prozesses implizit zu beschreiben, indem die

Ressourcen modelliert werden, die im informellen Prozess verwendet werden. Damit neben

der Modellierung auch die teilweise automatische Ausführung eines informellen Prozesses

ermöglicht werden kann, müssen alle Ressourcen des Prozesses automatisch initialisierbar

gemacht werden. Da die Integration von Informations-Ressourcen im Kontext der infor-

mellen Prozesse bisher nicht untersucht wurde, soll die Arbeit diese Lücke schließen.

Das Ziel der vorliegenden Arbeit war es deshalb, eine Software zu erstellen, welche die au-

tomatische Integration von Informations-Ressourcen in informelle Prozesse durchführen

kann. Dazu wurde zunächst eine Taxonomie entworfen, die das Einordnen von Datenquel-

len, anhand interessanter Eigenschaften für die Integration, ermöglicht. Bei der Erstellung

der Taxonomie wurde festgestellt, dass unter anderem die Art und die Größe der Ressour-

cen interessant sind. Die Art der Ressourcen unterteilt sich in strukturierte Daten und

unstrukturierte Daten. Da eine Darstellung einer Ressource in einer Datenquelle einer

anderen Art üblicherweise keinen Sinn macht, muss dies in der Software beachtet werden.

Die Größe einer Ressource spielt dagegen eine Rolle, da extrem große Ressourcen nicht

ohne größere Verzögerungen übertragen werden können und diese deshalb nur lokal ko-

piert werden sollten.

Nach der Analyse der interessanten Eigenschaften von Datenquellen wurde die Software

konzeptuell ausgearbeitet. Dazu wurde ein Use-Case Diagramm mit möglichen Anwen-

dungsfällen für die Software und ein Klassendiagramm erstellt. Die Software wurde so

entworfen, dass sie einfach um neue Datenquellen erweitert werden kann, indem nur eini-

ge Interfaces implementiert werden müssen. Anschließend wurde die grundlegende Logik

der Software in der Programmiersprache Java umgesetzt und die Interfaces für alle Res-

sourcen des motivierenden Szenarios implementiert.

Durch die Erstellung der Software zur Integration von Informations-Ressourcen wurde

das Ziel, Informations-Ressourcen automatisch in informelle Prozesse zu integrieren, um

damit eine teilweise automatische Ausführung der Prozesse zu ermöglichen, erreicht. Die

Software ermöglicht es, alle in Abschnitt 1.1.1 definierten Ressourcen und Relationen

in informelle Prozesse zu integrieren. Da für allgemeine informelle Prozesse jedoch viele

verschiedene Informations-Ressourcen verwendet werden können, ist an dieser Stelle eine

Erweiterung der Software für Prozesse mit anderen Ressourcen nötig.

55

56

7 Ausblick
Die im Laufe der Arbeit entwickelte Software wird für die Integration von Informations-

Ressourcen in informelle Prozesse verwendet. Hierbei konnte von den verschiedenen Da-

tenquellen jedoch nur ein kleiner Teil bereits in die Software aufgenommen werden. Der

einfachste Weg, die Integration von Ressourcen fortzuführen, ist, die vorhandene Softwa-

re um weitere Datenquellen mit Informations-Ressourcen, wie zum Beispiel Google Docs

oder Redmine, zu erweitern.

Neben der Integration neuer Datenquellen ist auch die Erweiterung der Software um

zusätzliche Operationen denkbar. Bisher werden lediglich die sogenannten Lifecycle Opera-

tionen (Aquire, Store, Release) unterstützt. Weitere domänenspezifische Operationen könn-

ten jedoch einen zusätzlichen Mehrwert zur Nutzung in informellen Prozessen darstellen.

Das Ziel der Integration von Ressourcen ist es, informelle Prozesse teilweise automatisiert

ausführen zu können, indem die Initialisierung der Ressourcen automatisch durchführbar

wird. Um dieses Ziel zu erreichen, müssen jedoch alle vier verschiedenen Arten von Res-

sourcen integriert werden. Die Wissens-Ressourcen und ein Teil der IT-Ressourcen werden

bereits durch den Ansatz der Software abgedeckt. Noch offen sind dabei aber die Material-

Ressourcen und die menschlichen Ressourcen. Material-Ressourcen spielen in informellen

Prozessen im IT Umfeld häufig keine große Rolle. Menschliche Ressourcen sind jedoch

elementar für jeden informellen Prozess. Aufgrund dessen ist es ein wichtiger Schritt die

Integration von menschlichen Ressourcen in Zukunft genauer zu betrachten.

57

8 Abbildungsverzeichnis
Abb. 1 Motivierendes Szenario . 10

Abb. 2 Integration von Ressourcen in informelle Prozesse [7] 11

Abb. 3 Aufbau eines Service Templates [10] . 14

Abb. 4 Beispiel
”
Topology Template“ . 14

Abb. 5 Docker Architektur . 17

Abb. 6 Taxonomie für Datenquellen . 22

Abb. 7 Beispiel
”
Einordnung von Datenquellen“ 24

Abb. 8 Use-Case-Diagramm der Software . 27

Abb. 9 Klassendiagramm des Systems . 32

Abb. 10 Klassendiagramm der Software (Teil 1) 34

Abb. 11 Klassendiagramm der Software (Teil 2) 35

9 Listingverzeichnis
Lst. 1 Beispiel

”
NodeType XML“ . 16

Lst. 2
”
data.properties“ Datei . 46

Lst. 3 Fallstudie: Code Teil 1 . 49

Lst. 4 Fallstudie: Definitions Document . 50

Lst. 5 Fallstudie: Code Teil 2 . 51

Lst. 6 Fallstudie: XML Schema Datei . 52

Lst. 7 Fallstudie: Code Teil 3 . 53

Lst. 8 Fallstudie: Ausgabe . 54

58

10 Quellenverzeichnis
[1] W. v. d. Aalst, A. t. Hofstede, and M. Weske. Business process management: A

survey. In Business process management. Springer, 2003.

[2] F. Leymann and D. Roller. Production Work Flow: Concepts and Techniques. Pren-

tice Hall PTR, 2000.

[3] M. Weske. Business Process Management: Concepts, Languages, Architectures.

Springer New York, Inc., 2007.

[4] Object Management Group. Business process model and notation (BPMN) version

2.0. Technical report, Object Management Group, 2011.

[5] OASIS Standard. Web services business process execution language version 2.0, 2007.

[6] C. T. Sungur, T. Binz, U. Breitenbücher, and F. Leymann. Informal process essen-

tials. In Proceedings of the 18th IEEE Enterprise Distributed Object Conderence,

2014.

[7] C. T. Sungur, U. Breitenbücher, F. Leymann, and J. Wettinger. Executing infor-

mal processes. In Proceedings of the 17th International Conference on Information

Integration and Web-based Applications & Services, 2015.

[8] W. v. d. Aalst, M. Weske, and D.Grünbauer. Case handling: a new paradigm for

business process support. Data & Knowledge Engineering, 2005.

[9] P. Dadam and M. Reichert. The adept project: A decade of research and development

for robust and flexible process support - challenges and achievements. Computer

Science - Research and Development, 2009.

[10] OASIS Standard. Topology and Orchestration Specification for Cloud Applications

Version 1.0, 2013.

[11] T. Binz, G. Breiter, F. Leyman, and T. Spatzier. Portable cloud services using tosca.

IEEE Internet Computing, 2012.

[12] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann. Tosca: portable automa-

ted deployment and management of cloud applications. In Advanced Web Services.

Springer, 2014.

[13] O. Kopp, T. Binz, U. Breitenbücher, and F. Leymann. Winery – modeling tool

for TOSCA-based cloud applications. In 11th International Conference on Service-

Oriented Computing, 2013.

59

[14] Docker. Docker Webseite. https://www.docker.com/, 2016. [Stand 29. April 2016].

[15] J. Turnbull. The Docker Book: Containerization is the new virtualization. J. Turnbull,

2014.

[16] D. Merkel. Docker: Lightweight linux containers for consistent development and

deployment. Linux Journal, 2014.

[17] M. Fowler. Inversion of control containers and the dependency injection pattern.

http://www.martinfowler.com/articles/injection.html, 2004. [Stand 03. Mai

2016].

[18] J. Arthur and S. Azadegan. Spring framework for rapid open source j2ee web app-

lication development: a case study. In Software Engineering, Artificial Intelligence,

Networking and Parallel/Distributed Computing, 2005.

[19] C. Walls. Guice vs. Spring JavaConfig: A comparison of DI styles. http://www.

jroller.com/habuma/entry/guice_vs_spring_javaconfig_a, 2007. [Stand 3. Mai

2016].

[20] S. Venugopal, R. Buyya, and K. Ramamohanarao. A taxonomy of data grids for

distributed data sharing, management and processing. Technical Report, 2005.

[21] A. Arasu and H. Garcia-Molina. Extracting structured data from web pages. In

Proceedings of the 2003 ACM SIGMOD international conference on Management of

data, 2003.

[22] L. Kassner and B. Mitschang. MaXCept – Decision Support in Exception Handling

through Unstructured Data Integration in the Production Context. An Integral Part

of the Smart Factory. In Proceedings of the 48th Hawaii International Conference on

System Sciences, 2015.

[23] J. Vlissides, R. Helm, R. Johnson, and E. Gamma. Design patterns: Elements of

reusable object-oriented software. Addison-Wesley, 1995.

60

https://www.docker.com/
http://www.martinfowler.com/articles/injection.html
http://www.jroller.com/habuma/entry/guice_vs_spring_javaconfig_a
http://www.jroller.com/habuma/entry/guice_vs_spring_javaconfig_a

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich habe keine anderen als

die angegebenen Quellen benutzt und alle wörtlich oder sinngemäß aus anderen Werken

übernommene Aussagen als solche gekennzeichnet. Weder diese Arbeit noch wesentliche

Teile daraus waren bisher Gegenstand eines anderen Prüfungsverfahrens. Ich habe diese

Arbeit bisher weder teilweise noch vollständig veröffentlicht. Das elektronische Exemplar

stimmt mit allen eingereichten Exemplaren überein.

Datum: ...

(Unterschrift)

	Einleitung
	Motivierendes Szenario
	Liste der verwendeten Ressourcen und Relationen

	Ziel der Arbeit
	Aufbau der Arbeit

	Grundlagen und verwandte Arbeiten
	Topology and Orchestration Specification for Cloud Applications
	Service Template
	Definitions Document
	NodeType
	RelationshipType

	Docker
	Dependency Injection
	InProXec Methode

	Analyse der Eigenschaften von Informations-Ressourcen
	Taxonomie für Datenquellen im Kontext informeller Prozesse
	Einordnung von Datenquellen in die Taxonomie
	Relationen zwischen Ressourcen

	Entwurf der Software zur Integration von Informations-Ressourcen
	Anwendungsfälle der Software
	Anwendungsfälle des Administrators
	Anwendungsfälle des Benutzers

	Klassendiagramm des umgebenden Systems
	Klassendiagramm der Software
	Interfaces zur Erweiterung der Software
	Ablauf der wichtigsten Methoden

	Implementierung der Software zur Integration von Informations-Ressourcen
	Verwendete Technologien und Libraries
	Konfigurationsparameter der Software
	Fallstudie

	Zusammenfassung und Fazit
	Ausblick
	Abbildungsverzeichnis
	Listingverzeichnis
	Quellenverzeichnis

