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Abstract

Light fields present an alternate approach for producing images of a high degree of
realism, by capturing real world data in the form of images, or by traditional techniques
like raytracing a synthetic scene. In both cases, the produced data can be utilized to
render images from positions which were previously not recorded or with different
camera parameters and configurations. The resolution and spatial density, at which such
light fields are recorded, influence the mass of produced data that has to be handled.

This work focuses on densely recorded light fields and attempts to produce synthesized
images computed from the available data, defined by a camera moving through space.
Synthesized cameras are also able to change their aperture size and focus setting.
Rendered cameras behave according to the thin lens model. A method for extraction
of relevant light field images is proposed. For rendering of the data, two different
approaches are evaluated. The first approach collects rays which are present in the
light field in synthetic sensor plates. In an alternative approach, rays are collected
in a standard hash map, and rendered by constructing and querying a kd-tree. Both
approaches yield a set of properties which make them useful in different scenarios, and
can also be combined to an hybrid renderer. The proposed system is intended to run on
several machines in parallel.

Kurzfassung

Lichtfelder bieten einen alternativen Ansatz zur Erstellung von Bildern mit hohem
Realitätsgrad, indem Bilddaten durch echte Kameras aufgenommen, oder diese von
synthetischen Szenen erstellt werden. In beiden Fällen können diese Daten verwendet
werden, um neue Bilder aus völlig neuen Positionen oder geänderten Kameraparametern-
und Konfigurationen zu erstellen. Die Auflösung, und die räumliche Dichte, mit der das
Lichtfeld aufgenommen wurde, beeinflussen die Masse an produzierten Daten, die es zu
verarbeiten gilt.

Diese Arbeit konzentriert sich auf dichte Lichtfelder, und versucht synthetische Aufnah-
men aus den vorhanden Daten zu produzieren, definiert durch eine Kamera welche
sich durch den Raum bewegt. Synthetische Kameras sind auch in der Lage, ihre Blende
und Fokuseinstellung zu verändern. Diese Kameras verhalten sich nach dem Modell
dünner Linsen. Eine Methode zur Bestimmung von relevanten Bildern des Lichtfelds
wird vorgeschlagen. Zur Erstellung der neuen Bilder werden zwei verschiedene Ansätze
evaluiert. Der erste Ansatz sammelt Strahlen des Lichfelds in synthetischen Sensor-
platten. Alternativ werden Strahlen in einer Hash Map gesammelt, und nach Aufbau
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eines kd-Baums gewünschte Strahlen angefragt. Beide Ansätze haben Eigenschaften,
welche sie in verschiedenen Szenarien verwendbar machen, auch als kombinierter
Hybrid-Renderer. Das vorgeschlagene System ist darauf ausgelegt, parallel auf mehreren
Rechnern zu laufen.
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1 Introduction

Commonly, realistic renderings of scenes are produced by providing a geometric repre-
sentation of the scene, as well as material definitions of the surface of this geometry and
their reflective properties [GGSC96]. Afterwards, it is possible to simulate light traversal
through the scene to obtain a 2-dimensional synthetic image. However, modeling light
interacting with the scene’s surfaces becomes increasingly complex with the desired
level of realism. One may determine the color of a pixel of the desired image by casting
rays into the scene and determining the color of the object being hit first, essentially
traversing the path of a light ray in the opposite direction [Gla89]. Advanced effects like
reflection (diffuse and specular), refraction, shadows with a penumbra or depth of field
resulting from non-pinhole cameras can be approximated.

To acquire realistic results, a large number of rays have to be cast and therefore many
intersection test have to be performed, leading to long rendering times. Effects like
mat reflections caused by surfaces which are not reflecting incoming light in a single
direction, but scattering it instead lead to an exponential rise of necessary rays with
every intersected mat surface. However, Kajiya described an alternative ray tracing
algorithm called path tracing, which reduces this problem [Kaj86]. Still, his approach
of evaluating the rendering equation requires many samples, and therefore many rays
traversing a scene.

In the case of image sequences of moving cameras, the computational effort required
may rise even further.

In recent times, another approach in the form of light fields gained popularity. Concep-
tually, the radiance of all light rays in a scene is expressed as a 4-dimensional function
L, which can be evaluated via a position and direction (with some constraints on valid
positions). An image can be interpreted as a 2D slice of L, meaning that L can be
constructed by providing all corresponding slices [LH96]. In a later step, one may
evaluate this function to obtain radiance of an arbitrary ray, which contributes to a novel
image. This approach also enables the recording of light fields of real-world scenes- it
does not matter if the images are synthesized or captured by a real camera. Note that
depth information is not necessary to extract valid new views- In principle, one may
only evaluate L with the desired parameters.
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1 Introduction

The 4D function can be recorded by taking many images of the scene from viewpoints
located around it.

Note that if L is constructed from real world data (e.g. images taken with a camera),
global illumination effects resulting from many light bounces [Kaj86] are captured
too.

One of the main advantages of light fields is that fast rendering can be achieved, given
that evaluating L is not computationally expensive. The user is then able to explore
the light field from different vantage points, essentially moving around the captured
scene.

The light fields to be rendered in this approach have the property of being dense,
meaning that they consist of many more images than regular light fields, captured in a
spatially dense manner. Such a dense light field consists of millions of images resulting
in multiple TB of data [Sie15]. Dense light fields can not be fit into the random access
memory of typical render nodes. In this work it is attempted to exploit the light field’s
density to achieve high quality renderings of new views.

1.1 Motivation

In order to create new renderings, the light field has to be processed in some way.
However, the large amount of data also has to be limited to a subset of the data, and
may be additionally compressed in a lossy fashion, without compromising image quality
of produced renderings too much. The requirement of rendering camera movements
instead of still images introduces further complications.

This work builds on the light field capturing process described by Siedelmann [Sie15].
Dense light fields require specialized hardware for recording and storing, because of the
large amount of data that is to be processed per time unit. In turn, such light fields can
be used to synthesize new images of high quality, as shown by Siedelmann. However,
the large amount of data presents some drawbacks, since spatially small parts of the
light field already contain a large amount of data, which has to be processed.

1.2 Goals

Image Sequences
The rendering system should be capable of producing sequences of images defined
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1.3 Challenges

by a camera which moves through space arbitrarily, however constraint to areas
where light field data is available.

Synthetic Camera
Cameras should support finitely sized apertures. This is necessary to produce
realistic depth of field effects.

Parallelization
The system should be capable of distributing the required data and computational
effort among multiple nodes.

Progressive Results
Intermediate results should be returned periodically.

Data reduction
Optionally, data should be compressed by a lossy compression scheme to reduce
the amount of data that has to be passed to nodes.

1.3 Challenges

The main challenge is the size of the light field- for example, the light field presented
by Siedelmann [Sie15] has a total (lossless compressed) size of 11 TB, and twice the
uncompressed size. Even if only a fraction of this available data is used for rendering,
main memory requirements would still be infeasible. Data can be restricted to those
parts a camera movement requires for rendering, however this could still yield a large
amount of data. This data which is to be processed should be split up further to enable
parallelized processing. Depending on the required image quality, data may further be
reduced to some subset.

The available dataset is composed of a stream of images, as well as information about
their capture position and rotation in space, a representation that has both advantages
and disadvantages for rendering, depending on the synthetic camera’s attributes and
movement.

Geometric approximations of the scene may help with rendering [GGSC96], but are
not available for the given dataset, i.e. no depth information is available or computed
for rendering. If the dense light fields full resolution is used, this might not even be
necessary.

Many approaches for light fields enable real time rendering at interactive rates. Achieving
this is difficult for dense light fields, since the data requirement for full exploitation of
the available dataset is way higher than for usual light fields. The renderer presented by
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1 Introduction

Siedelmann [Sie15] already uses thousands of light field images to accomplish realistic
synthetic aperture rendering for a single new view. This makes dense light fields unsuited
for interactive rendering if their full resolution is to be exploited, however, it is still
possible to use the available data in offline rendering.
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2 Fundamentals

This chapter contains information regarding light fields, optics and cameras, as well as
some useful concepts applied in this work.

2.1 Light Fields

The plenoptic function is a function of seven dimensions, in explicit of position (3-
dimensional x, y, z), direction (spherical coordinates θ, ϕ), time t and wavelength λ,
denoted as P (θ, ϕ, λ, t, x, y, z), describing radiance at the given position, direction and
wavelength, at the given point in time. Evaluating P for a given set of parameters would
return every possible view acquirable by the human eye or a camera [AB91]. P can
be restricted to being temporally static by removing t. Similarly λ can be restricted
to some fixed wavelength(s), reducing P ’s dimensionality to five. Considering some
object in world space, light rays reflected of its surface can be assumed carrying con-
stant radiance, if such a ray is not intersecting anything along its path. By assuming
surrounding space around an object or scene being empty, and restricting positions
for evaluation of the dimensionally reduced version of P denoted as P ′, choosing an
alternate parameterization can further reduce the dimensions by one [GGSC96; LH96].
Query rays can be constructed against this parameterization, and used to evaluate the
function. This 4-dimensional function is called light field (Alternatively, Gortler et al.
termed this function lumigraph, although their work differs slightly in detail).

2.1.1 Parameterization

Consider the ray r:
r(λ) = o + λ · d

With o denoting the ray’s origin, and d its direction. Parameterizing in this context
corresponds to finding four variables that describe the ray. Note that a ray r′ with the
same (or opposite) direction, but different origin, is parameterized to the same variables.
Therefore those variables can be used to identify every ray in space.
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2 Fundamentals

Two-Plane Parameterization

The two-plane parameterization is commonly used, for example by Gortler et
al. [GGSC96], as well as Levoy and Hanrahan [LH96].

Two parallel planes are placed in space, see Figure 2.1. By placing two perpendicular
axes, points on the plane can be identified. Additionally, a ray intersecting both planes
can be parameterized by its intersection points with both planes (s, t), and (u, v) respec-
tively. Note that in this work, the front plane is denoted as the st-plane, and the back
plane as the uv-plane. This arrangement of planes is sometimes also called light slab.

Figure 2.1: The two-plane parameterization. The ray intersects both planes and is
parameterized by both intersection points.

Spherical Parameterization

Spherical Parameterizations of rays can be obtained by intersecting a bounding sphere
S, and describing the intersection as spherical coordinates (θ, ϕ). Additionally, the
direction of a ray is described by intersecting a second sphere S ′, having its origin at the
intersection (θ, ϕ). Spherical coordinates (θ′, ϕ′) then identify the ray’s intersection with
S ′ [Ihm97].

The ray r striking through a sphere S can also be parameterized by the two intersection
points where r enters and leaves the sphere volume. This parameterization is known as
sphere-sphere parameterization [TRK07].
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2.1 Light Fields

Alternatively, r can be parameterized by intersecting both a sphere S and the plane P

containing S’s center point and having r’s direction as its surface normal. This is known
as sphere-plane parameterization [TRK07].

Light fields represented in a spherical parameterization show lower amounts of arti-
facts due to the uniformity of spheres [CLF98; TRK07]. Note however, that spherical
coordinates result in denser parameterization at the poles.

2.1.2 Capture

In principle, light fields can be obtained by rendering many views of the scene from
different viewpoints [GGSC96; LH96]. For example, to obtain a two-plane parameterized
light field, view points are chosen on the discretized st-plane. The camera’s view
direction is perpendicular to the st-plane. To make sure the camera captures the uv-
plane, its viewing frustum is moved accordingly. A standard ray tracing program can be
used to obtain the light field’s radiance information.

Real world light fields are more difficult to acquire, since precise information about the
camera’s location and rotation (the extrinsic parameters) in each recorded image are
necessary. Illumination of the real world scene must be constant over time, since light
field capture usually takes some time. Additionally, the capturing camera’s aperture
should be small, to maximize depth of field such that the entire scene is in focus
[LH96].

Images can be obtained by a hand-held camera [GGSC96], as well as in a more organized
approach like a planar gantry [LH96]. Another method is the use of a camera array
[Vai07; WJV+05], making use of a high number of cameras placed in a rectangle. Since
light fields can be captured immediately this way (as opposed to a single camera moving
slowly over time), this enables the implementation of a real time system as proposed by
Yang et al. [YEBM02].

Light fields can also be captured by a single plenoptic camera as presented by Ng et al.
[NLB+05]. A microlens array is introduced between the camera system’s main lens and
the sensor plate. Rays focused by the main lens onto the array are scattered on the
array’s lenses, producing a sharp image of the rays originating on the main lens (i.e.
rays that are incoming from the outside, refracted by the main lens) on the sensor.

It is also possible to capture the entire scene by moving the camera around the scene (or,
moving the entire scene while keeping the camera static), as it is done by Siedelmann
[Sie15]. In his approach, the camera is mounted on an arm, looking at the center of the
scene. This arm can be moved vertically along the hemisphere whose radius is given by
the length of the arm. The scene is placed on a turntable, which moves at a steady rate
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2 Fundamentals

during capture. Note that this method is equivalent to moving the camera around the
scene.

Gortler et al. used markers visible in the scene to obtain the intrinsic and extrinsic camera
parameters [GGSC96]. Siedelmann used a similar approach, with a large number of
visible markers [Sie15].

Levoy and Hanrahan filtered their light fields to remove aliasing appearing during
rendering caused by high frequencies [LH96].

2.1.3 Compression

Light field compression is closely related to image compression. Therefore, many image
compression algorithms can be directly used or modified to work on light field data.
Compression rates are usually high, since light field data is highly redundant in each
of the four dimensions [LH96]. Since it is generally not possible to know which parts
of the light field dataset is accessed, random access to data is advantageous. Levoy
and Hanrahan proposed a vector quantization scheme to compress their light fields.
This lossy compression technique maps vectors of data to a set of vectors called the
codebook. The codebook vectors are chosen such that they represent the uncompressed
data as closely as possible. Compression is done by mapping data vectors to the index
addressing the vector in the codebook that is approximating the given data as closely
as possible. By indexing the codebook with a given index, the representing vector can
be obtained, enabling random access to the dataset. Gortler et al. propose to use a
compression technique similar to JPEG and MPEG [GGSC96]. Camahort et al. used
JPEG compression in their work [CLF98].

Many light field systems use wavelets as part their compression scheme, see Section 2.5
for an introduction. A 4D wavelet compression scheme was used by Magnor et al. to
compress the light field [MEG00]. Wavelet decomposition was applied in the image
dimensions and neighboring pictures. Peter and Straßer proposed a method to compress
and progressively obtain the compressed wavelet coefficients when needed [PS01].
Both approaches use a hierarchical tree structure to organize the coefficients, and allow
progressive decoding.

Note that most image compression algorithms are lossy, and compression usually takes
place after the light fields has been captured. The dense light field dataset used in
this work is compressed in a lossless fashion. Siedelmann’s proposed scheme works in
an online fashion, directly compressing recorded raw images at very high speeds, to
overcome bandwidth limits introduced by storage media [Sie15]. He also suggested that
the light field should be compressed via offline algorithms after the light field has been
recorded.
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2.2 Optics

2.2 Optics

Light field cameras have to be modeled before the radiance information recorded in
the light field’s images can be utilized to generate new views. Additionally, synthetic
cameras have to be defined by some suitable parameters, and should be able to simulate
certain effects and properties.

2.2.1 Homogeneous Coordinates

Homogeneous coordinates are an alternative representation of points, respectively vectors
[Sze10], and can be used to apply translation and rotation to a vector/point by applying
a single matrix multiplication [SM09].

Vectors in 3D are extended by one dimension

ṽ =


x̃

ỹ

z̃

w̃

 (2.1)

where w̃ denotes the new component. By dividing ṽ through w, one obtains the
augmented vector:

v̄ =


x̃/w̃

ỹ/w̃

z̃/w̃

w̃/w̃

 =


x

y

z

1

 . (2.2)

This can be used to obtain the inhomogeneous vector v = (x, y, z)T .

Homogeneous vectors ṽ which result in the same augmented vector v̄ (and therefore the
same v) are seen as equivalent. In the case of w̃ = 0, no inhomogeneous vector can be
obtained. These are called points at infinity [Sze10].

By augmenting the component w = 1 to any 3D vector, a transformation matrix

M =


a11 a12 a13 t1

a21 a22 a23 t2

a31 a32 a33 t3

0 0 0 1

 (2.3)

can be constructed, where ai,j describe the components of a rotation matrix and ti

describe the components of a translation vector. Multiplying the augmented vector with
M will rotate and translate the vector with a single matrix multiplication.
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2 Fundamentals

2.2.2 Pinhole Camera

Pinhole cameras are idealized cameras with an aperture size of zero. Incoming light
rays fall through the aperture and hit the film positioned behind it, resulting in a flipped
image of the observed scene [HSS97], see Figure 2.2. This produces images which are
entirely sharp.

Figure 2.2: Depiction of a pinhole camera. Note that the object is flipped in image
space.

2.2.3 Raytracing

It is easy to simulate a pinhole camera by constructing rays which pass through the
pinhole’s center point and hit the camera’s pixels [Gla89]. Typically, when rendering via
raytracing, the ray is cast in the opposite direction of the light path, i.e. the ray is cast
outwards toward the scene. By obtaining this ray’s radiance, images of the scene can be
created.

2.2.4 Perspective Projection

A pinhole camera can also be modeled as a perspective projection, mapping 3-
dimensional points in the scene to 2-dimensional points, which could correspond to
pixels in the image.

As seen in [Sze10], this can easily done by dividing a 3D point p by its z-component
i.e.

p′ =


x/z

y/z

1

 (2.4)
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after it has been transformed with the camera’s extrinsic parameters [R|t]. To obtain
a pixel coordinate, the point resulting from the perspective projection has to be trans-
formed using the camera’s sensor plate properties. The matrix K is called calibration
matrix, and also regarded as camera intrinsics. Following OpenCV’s [CV15] conventions,
K looks like

K =


fx s cx

0 fy cy

0 0 1

 (2.5)

with fx and fy describing focal lengths for their respective dimension, and cx, cy the
intersection of the optical axis with the sensor plate. The parameter s describes the
possible skew of the sensor plate, however, it is commonly zero [Sze10]. Note that
it is more practical to express all variables described above in pixel units instead of
millimeters, because this will map transformed points to pixel indices.

Multiplying the intrinsic and extrinsic matrix yields the camera matrix

P = K [R|t] . (2.6)

This matrix contains the world space to view space (camera space) transformation of
world space points via [R|t], and the subsequent transformation to image space. Note
that the resulting vector is expressed in homogeneous coordinates, so division by w

(respectively z) is necessary.

Summarizing, world space points pws = (x, y, z)T can be transformed to image space
pixels by multiplication with P , i.e.

pis = P ·


x

y

z

1

 =


x′

y′

w

 (2.7)

and subsequent division of pis by w.

Distortions Caused by Lenses

Unfortunately, lenses of real cameras introduce radial and tangential distortion to their
recorded images. This results in lines appearing curved in the recorded images, leading
to a slight “fisheye”-effect. Correction can be applied by remapping distorted pixels
(xd, yd) to pixels (x, y). For example, a model using low-order polynomials remaps pixels
by multiplying a polynomial

x = xd(1 + κ1r
2
c + κ2r

2
c )

y = yd(1 + κ1r
2
c + κ2r

2
c )
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where r2 = x2
d + y2

d describes the radial distance of a point, i.e. the distance from the
image center, and κ1, κ2 are the radial distortion parameters [Sze10]. Note that the
exemplary distortion model described above is applied before multiplication with the
intrinsic matrix K.

For example Farag et al. [EF03], describe a method for determining those coefficients.
OpenCV uses the approach described in [Zha00].

2.2.5 Thin Lens Model

To model properties of non-pinhole cameras, a more complex model than the pinhole
model can be used: The thin lens model [Sze10; ZZ09]. The lens has a diameter d, and is
positioned with distance b and g between image plane and focus plane. Points lying on
the focus plane are projected sharply onto the image plane. Note that in this model, the
lens is modeled as a single plane, meaning that it is infinitely thin. The lens’s properties
follow the lens law

1
f

= 1
g

+ 1
b
. (2.8)

Rays, that are parallel to the optical axis o will pass through the focal point pf on the
optical axis (after being refracted by the lens). pf is distanced f from the lens on the
image plane’s side. See Figure 2.3 for a depiction of the model. Note that f approaches
b when g is increased, leading to the angle between rays and the optical axis becoming
zero. If a ray happens to strike through the lens’s center point, it is not refracted, but
simply passes through [ZZ09].

Figure 2.3: The thin lens model. Depicted in blue are rays originating at infinity, being
refracted and intersecting the optical axis at the focal point pf
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2.2.6 Depth of Field

Points which lie beyond or in front of the focus plane cannot be imaged sharply. However,
since sensor plates (synthetic and real camera sensors) consist of pixels with a certain
resolution, points which are only offset away in a certain range ∆g from the focus plane
will appear perfectly sharp nonetheless. This range is called depth of field [ZZ09]. Let g̃

be the distance of a point placed in front of the lens, and ∆g the distance of this point
from the ideal focus plane. The circle of confusions’ diameter z is given by

z = d

b
· ∆x (2.9)

where ∆x describes the distance of the sensor plate to the ideal image plane [ZZ09].
See Figure 2.4 for a depiction. As long as the circle of confusion is smaller than the
spatial pixel resolution, the image will remain sharp. Let r be the diameter of a pixel on
the camera sensor (r therefore limits the sensor’s maximum resolution). The circle of
confusion is related to bokeh, which is the appearance of the circle of confusion in the
image [WZH+10]. Such effects are oftentimes desired as they allow photographers to
bring the attention of the viewer to certain objects in scenes (See Figure 2.5). The depth
of field range [ZZ09] is given by

∆g ≃ rfg2

df 2 , g ≫ f. (2.10)

Figure 2.4: Circle of confusion with diameter z occurring when the image plane is
moved forward. The ideal image is still imaged at distance b.

The f -number is defined as [Sze10; ZZ09]

N = f/d. (2.11)
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(a) Guitar (b) Spoons

(c) Flower 1 (d) Flower 2

Figure 2.5: Images taken with a Canon EOS 450D with large aperture setting. Figure a
shows a guitar’s head with tuning pegs. Sharpness decreases rapidly as ob-
jects are more distanced to the focus plane. Figure b shows an arrangement
of spoons. Highlights are imaged as uniformly blurred circles. This becomes
even more apparent in Figure c: Objects very far away appear as blurry
circles. In Figure d, the focus plane is placed at the sharply imaged flower.
Objects in front and behind the focus plane appear out of focus.

Usually, the f -number is expressed as “f/N”. Given a lens’s focal length f , the aperture’s
diameter d can be obtained from a f -number setting. The f -number sequence commonly
found on real cameras decreases image brightness by a factor of 1

2 with increasing N in
the sequence [ZZ09].

2.3 Rendering Techniques

In the context of computer graphics, different approaches for synthesizing a novel image
from some input data exist, be it a description of geometry, or a set of images. In contrast
to some light field rendering methods, usually some kind of 3D information has to be
present in addition to the images (e.g. depth information).

24



2.3 Rendering Techniques

Another well established approach are raytracing methods, however these techniques
are usually applied to synthetic scenes. The light field renderer presented in this work
should support finitely sized lenses. Distributed raytracing is one method to obtain the
resulting depth of field effect.

2.3.1 Image-Based Rendering

Since the light field dataset used in this work consists of images with camera extrinsics,
image-based rendering techniques could be used to obtain new views.

One popular approach for rendering novel views from present images is view interpolation
as proposed by Chen and Williams [CW93]. The first step corresponds to computing
two morph map, one for each image in a pair. These mappings describe the offset of a
pixel’s position in image space to the other image. Pixels in novel views are computed
by computing an interpolated offset vector and moving the source image’s pixels by the
interpolated vectors. To interpolate views from multiple images, a graph is constructed
and images are assigned to nodes. Edges are bidirectional and are associated with
the morph maps between their images. From the location of the desired camera, it
is possible to interpolate the morph maps and image pixels. Holes may appear since
applying the offset may map multiple pixels to a single pixel. Additionally, for each pixel,
the depth values have to be available such that the morph map can be computed, in
case of real world camera images, they have to be acquired before view interpolation is
possible, for example via stereo matching algorithms [Sze10].

An alternative to view interpolation was presented by Seitz and Dyer: view morphing
[SD96]. Their methods consists of prewraping both input images, such that they become
parallel to the line connecting the cameras that took the images. Afterwards pixels
are interpolated, and the resulting image projected to the desired image plane. Some
correspondence information (given some pixel in image A, locate where this point is
imaged in some image B [SS; Sze10]) in both images is necessary, but no information
about the geometry of the viewed scene. Correspondence can be obtained by letting
users mark corresponding features in the input images. Note that depth information can
help with visibility determination of projected pixels in the rendered image, similar as in
the view interpolation approach.

2.3.2 Distributed Raytracing

Cook et al. proposed distributed raytracing to simulate effects like smooth shadows,
motion blur, diffuse reflections and depth of field [CPC84]. Standard raytracing simulates

25



2 Fundamentals

a pinhole camera by casting rays from image plane points through the camera’s center
point towards the scene. In distributed raytracing, instead of casting single primary
and secondary rays, multiple rays are cast, with their direction (and possible origin in
case of lens sampling) distributed such that some desired effect is simulated. Spatial
oversampling is commonly used to minimize aliasing, these extra rays can also be used
to accomplish new effects.

From this works perspective, it is relevant how depth of field effects are rendered. In
the first step, a ray is cast from the sensor plane through the center of the lens towards
the focus plane, where it is intersected in some point p. Then, a point pl is selected on
the lens, and the color for ray r(λ) = pl + λ(p − pl) is computed [CPC84; PH10]. The
pixel’s color value is the averaged color of all sampled rays [HSS97], approximating
the integral which describes the pixels color value. See Figure 2.6 for a synthetic view
obtained by this technique.

Figure 2.6: A simple synthetic scene consisting of spheres, rendered with distributed
raytracing. The red sphere was focused, everything in front and beyond is
blurred.

2.4 Filtering

Filtering can be used to remove aliasing from a function when sampling it (for example,
by some low pass filter). Consider two functions, f : R → R and g : R → R. Following
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notation in [SM09], convolution corresponds to integrating over the product of both
functions

(f ⋆ g)(x) =
∞∫

−∞

f(t)g(x − t)dt (2.12)

where g is the original function and f the applied filter. Note that during integration, g

is evaluated at x − t to center the filter f on x. The definition described above is easily
adapted to work on discrete domains, i.e.

(a ⋆ b)[i] =
∑

j

a[j]b[i − j] (2.13)

where a and b are discrete functions (interpreted as sequences of values), a corresponds
to the continuous filter f . This is just the sum of samples taken around i, weighted with
b. 2D function, such as images, can be filtered this way, too. In this case, both a and b

have to be two-dimensional functions:

(a ⋆ b)[i, j] =
∑
i′

∑
j′

a[i′, j′]b[i − i′][j − j′]. (2.14)

Note that in practice, filter function are ̸= 0 only on some finite range around 0.
Therefore, the corresponding sums (and the integral in the continues version) of the
convolution definition can be bounded, since all other values of b (g) are weighted
with zero anyway. See [SM09] for more details on the theoretical properties of filters.
Images are typically filtered by centering a kernel on every pixel in the input image, and
weighting the neighboring pixels with the coefficients saved in it [Sze10].

2.4.1 Gaussian Filter

The 1D Gaussian function is defined as [YGV98]

g1D(x) = 1√
2πσ

e
−x2
2σ2 . (2.15)

The 2D version of this filter is obtained by multiplying two 1D Gaussian functions, each
evaluated in their respective dimension, yielding [Sze10; YGV98]

g2D(x, y) = g1D(x) · g1D(y) = 1
2πσ2 e− x2+y2

2σ2 . (2.16)

The Gaussian filter is commonly used to produce smoothly blurred images. It can be
used to remove aliasing such as moire patterns [SM09].
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2.4.2 Laplace Filter

The Laplacian operator [Sze10; YGV98] is defined as

∇2I = ∂2I

∂x2 + ∂2I

∂y2 (2.17)

where I is some 2D image. Since the second derivative reacts strongly to high frequencies,
this filter can be interpreted as a high pass filter. Usually the Laplacian of Gaussian is
applied, i.e. the image is first smoothed with a Gaussian filter, and subsequently the
Laplace operator is applied, leading to a bandpass filter. Taking the Laplacian of an
image can also be used in edge detection problems.

2.5 Wavelets

Wavelets can be used to decompose a function f into several basis functions which de-
scribe various levels of detail via their corresponding coefficients. f can be reconstructed
by combining the basis functions multiplied with their respective coefficient [SDS95].
By neglecting coefficients (i.e. setting them to zero) which describe high-frequency
components of f , the resulting reconstruction loses some information. However, this
can be used when lossy compression is acceptable [TH10]. The wavelet transformation
scheme is used in JPEG2000 [CSE00].

2.5.1 Haar-Wavelets

A 1-dimensional image can be interpreted as a function defined on [0, 1). According
to [TH10], a vector space notation can be used to describe those functions: Let V 0

describes all images with only one pixel, therefore V 0 contains only constant functions,
V 1 describes all images consisting of two pixels (i.e. two piecewise constant functions),
and so on. Consequently, V j describes all images constructed of 2j pixels. Note that V j

divides [0, 1) in equally sized intervals, each containing a piecewise function describing
the corresponding pixel. V j can be though of as a vector space, since every image
of size 2j can be expressed as a vector v ∈ V j, with 2j components. It holds that
V 0 ⊂ V 1 ⊂ ... ⊂ V j, since a piecewise function defined on some interval can be
described by two piecewise function defined on the intervals obtained when splitting
the larger interval in the middle.
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The basis for V j is constructed as follows [SDS95; TH10]:

ϕj
i (x) := ϕ(2j · x − i) for i = 0, ..., 2j − 1 with

ϕ(x) :=

1 for 0 ≤ x < 1
0 otherwise

(2.18)

The Haar-Wavelet basis is defined as [SDS95; TH10]:

Ψj
i (x) := Ψ(2j · x − i) for i = 0, ..., 2j − 1 with

Ψ(x) :=


1 for 0 ≤ x < 0.5
−1 for 0.5 ≤ x < 1
0 otherwise

(2.19)

These basis functions are a basis for the vector space W j. Interestingly, the basis of V j

and the Haar-Wavelet basis for W j can be used to describe all vectors in V j+1 [SDS95].
It is now possible to describe some image from V j with basis functions from V j−1 and
W j−1 with corresponding coefficients. To obtain the original image, the basis functions
are multiplied by their coefficients, and linearly combined. Note that coefficients for
V j−1 can be interpreted as an image with 2j−1 pixels, so this image can be expressed
similarly via the basis’s of V j−2 and W j−2, indicating the recursive nature of the wavelet
transformation.

The coefficients of V j can be interpreted as describing the average of two pixels (approx-
imation), while the coefficients for W j−1 represents the finer details in both pixels (also
called detail coefficients) [SDS95]. In fact, images are wavelet-transformed in 1D by
averaging neighboring pixels, and constructing the detail coefficients as the difference
of the pixel from the average i.e. given two pixels [ x y ], the pixels are averaged to
a = (x + y)/2, the detail coefficient is obtained as d = (x − y)/2. From [ a d ], x and y

can be obtained via
a + d = (x + y)/2 + (x − y)/2 = x (2.20)

and
a − d = (x + y)/2 − (x − y)/2 = y. (2.21)

To wavelet-transform a 2D-image, two approaches exist: standard decomposition and
nonstandard decomposition [SDS95]. In the first approach, one transforms all rows of the
image until the desired depth of recursion is reached. Afterwards the same procedure is
applied to the columns of the row-transformed image. The second approach consists
of alternating between row and column transformation: First one transforms the rows
of the input image. Then one uses this one-time row-transformed resulting image for
column-wise transformation. These steps are repeated to the desired depth.
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2.5.2 Compression

Applying wavelet-transformation to a 2D image yields an resulting image of the same
size as the input [Sze10]. Also, this transformation is lossless [TH10]- applying the
inverse transformations in an recursive manner will transform the image back to its
original state. However in the case of coherence in the image data, detail coefficients
could be zero or very small, since averaged pixels are very similar. This provides an
opportunity for compression by introducing a cutoff value ϵ ≥ 0 [PS01; TH10] The
simplest method consists of setting every (absolute) detail coefficient < ϵ to zero (hard
thresholding). Clearly, some details are lost in this step- the inverse transform will only
yield the averaged pixels if detail coefficients are zero. Depending on the selected ϵ, this
could be almost visually indistinguishable from the original image. Then quantization
can be performed, mapping values to values which require less bits, but are also less
precise. In a subsequent step, a lossless compression method like Huffman-encoding
or run-length encoding could be applied to the transformed and thresholded image to
further reduce the image’s size [TH10]. The last two steps are part of many lossy image
compression algorithms.

2.6 Spatial Data Structures

Spatial data structures are a class of preprocessing schemes which allow fast access to
spatially distributed data such as points or geometry [SM09].

2.6.1 kd-Trees

kd-Trees are a variant of Binary Space Partitioning Trees [PH10], suited for low di-
mensionality nearest neighbor search [ML09]. The data structure’s expected memory
requirements is in O(n), queries can be answered expectedly in O(log n), with n being
the total number of points. The requirement for low dimensionally d of the points
arises from the hidden constant factors which increases runtime of queries by at least 2d

[AMN+98]. Arya et al. propose to reduce this problem by approximating the optimal
result, i.e. the returned nearest neighbor point of a query point is at most 1 + ϵ times
further away than the optimal neighbor.

The tree is constructed by splitting the input points in some dimension, and then
recursively dividing the resulting halved point sets [ML09; PH10]. Note that this
will lead to the splitting planes dividing the points being perpendicular to the split
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dimension’s axis. Figure 2.7 shows an example for a 2D point set. Several methods for
determination of the split dimension exist, including randomized selection [ML09].

After construction of the data structure, it can be queried by traversing the tree.

Figure 2.7: Depiction of a 2D point set on the left, and a possible space partitioning by
the colored planes. On the right, the resulting kd-tree. The cell numbers
correspond to the child nodes.

2.6.2 Octrees

Octrees [SSF05] are very similar to kd-trees, but they have two distinct differences:
They only operate on 3-dimensional spaces, and spatial subdivision is done by regularly
subdividing space in eight smaller cubes . This means, that a parent node has either
eight children, and is therefore internal, or none, and therefore a leaf. Leaf nodes contain
the data, similar to kd-trees.
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Numerous light field rendering approaches have been proposed in the past. Depending
on the light field’s size and the requirements on image quality, rendering can even
be achieved at interactive frame rates. The following section describe various aspects
of light rendering, as they were explored in recent times. See Section 2.1.2 for an
introduction to capture and compression of light fields.

3.1 Light Field Datasets

Current light fields are usually not very large in comparison to the light fields used in this
work. For example, the light fields found in the Standford Light Field Archive usually
consist of about 300 images [Com]. For example, the treasure chest dataset consists
of 289 images with an resolution of 1536 × 1280. Another publicly available light field
database is [Wet]. Again, those light fields are small in size and consist of 25 to 49
synthetic images. The low number of views limits movements and aperture settings.
Birklbauer et al. utilized light field data which is already multiple GB large, however the
data still fits in random access memory of typical machines [BOB13]. The digital scan
of Michelangelo’s David statue done by Levoy et al. [LPC+00] consists of 7000 color
images, which were compressed in a lossless fashion. This amount of data is already
enough to not fit in main memory, however this dataset is still way smaller than the light
fields used in this work, which may exceed TBs in size.

3.2 Rendering of Light Field Data

Levoy and Hanrahan implemented an interactive renderer for their light fields [LH96].
Since they used light slabs for parameterization, both quadrilateral defining the slab can
be constructed from polygonal primitives such as triangles. Similar to texture mapping,
the s, t coordinates as well as the u, v coordinates can be obtained by interpolation from
the quadrilateral’s corner points. Afterwards, the 4D light field may be queried with
s, t, u, v to obtain the correct radiance of the desired rays. Levoy and Hanrahan just
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used the nearest available sample points to interpolate the radiance via quadralinear
interpolation.

Gortler et al. [GGSC96] proposed the use of texture mapping in a very similar fashion
as Levoy and Hanrahan. In addition, they used a rough geometric estimate of the light
field’s geometry. For real world scenes, they estimated the geometry by a set of voxels
engulfing objects in the scene. This geometric approximation can be used to select ray
samples which are more likely to represent the object’s reflected radiance for a desired
ray.

Both rendering approaches described above assume the light field to be available in the
form of light slabs. Buehler et al. introduced a rendering technique which works on
light fields available as a stream of images [BBM+01].

These approaches let the user view the light field with a pinhole camera- depth of field
effects were not considered.

Isaksen et al. [IMG00] proposed, in a addition to a dynamic reparameterization method
depending on a user-selected focus plane, a synthetic aperture rendering technique. The
st-plane contains regularly distributed data cameras indexed with (s, t). Each camera’s
pixel (and therefore the corresponding ray) can be address via (u, v). For some arbitrarily
defined focus plane F , a ray parameterized by (s, t, u, v) can be parameterized with
(s, t, f, g), with (f, g) being the ray intersection point on F , and (s, t) the index for
the camera on th st-plane which recorded the ray. Rendering is done by intersecting
a desired ray with the st-plane, say at (s0, t0), and determining the cameras on the
st-plane located around the intersection point (s0, t0). Additionally, the focus plane
F is intersected by the ray at (f0, g0). Then ray samples are taken from each camera
(indexed via (s′, t′)) by sampling the image at the pixel corresponding to (s′, t′, f0, g0)
and combined with an additional filter to the desired ray. Note that the range at which
data cameras are regarded can be interpreted as the aperture size which determines the
resulting depth of field effect. Isaksen et al. indicated that this method will keep the
aperture parallel to the st-plane for the sake of interactive performance.

Birklbauer et al. [BOB13] presented an approach which enables interactive viewing of
gigaray light fields, utilizing the rendering approach described by Isaksen et al. Light field
data is cached in GPU-memory and replaced by new data according to the probability of
future usage of already cached data.

The renderer already available for the dense data sets was implemented by Siedelmann
[Sie15]. It simulates a synthetic aperture by reprojecting light field images to the user-
selected focus plane, and averaging the resulting color values. With sufficiently many
images, the synthesized image appears highly realistic, especially when the depth of
field is small. The renderer could be interpreted as being semi-interactive, since users
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are able to change camera parameters on the fly. The focus plane can be rotated freely,
however the camera position is restricted to the light field’s capture hemisphere.
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4 System

This chapter contains a description of all applied methods which contribute to the
final rendering system. Note that “light field camera” refers to a light fields’ single
captured image together with their extrinsic parameters. Strictly speaking, a single
camera recorded the light field, but this is equivalent to multiple cameras recording the
images at the same time. In principle, an entire light field of n images could have been
recorded in a single go with n cameras.

4.1 Overview

Rendering of camera movements is accelerated if multiple nodes work on processing the
data simultaneously. It is however necessary to extract information about the required
data first- not all light field images have to be considered. This information can than be
assigned to render nodes which independently process their relevant data.

The proposed system consists of two major phases: In the preprocessing phase, all
relevant camera positions which will contribute with recorded radiance to the rendered
sequence of images are collected and (optionally) additionally compressed in a lossy
fashion. Collecting those cameras, as well as bounding the contributing region in image
space will yield an implicitly given approximation of the envelope of contributing rays.

In the second phase, the images gathered in the first step are sequentially processed to
obtain the synthetic images. Nodes always process a temporally connected section of
the camera movement.

Nodes running the second phase will independently return their current state periodically,
leading to a progressively improved result.

Users may stop the processing of individual nodes at any time, if their corresponding
section was rendered in the sufficient quality. Figure 4.1 shows the system’s concept.
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Figure 4.1: Overview of the proposed pipeline. The preprocessor selects the relevant
light field images. Multiple packages are generated which serve as input for
the renderer, together with a light field. This light field can be available in
lossless or lossy format. Since the preprocessing package contains the rele-
vant frames, they can be additionally compressed. This makes distribution
of a partial light field possible. The renderer is then executed on multiple
machines and will process the selected light field images. Periodically, the
current state is returned.

4.2 Preprocessing

Recall that dense light field recordings require multiple TB of space and consist of
potentially millions of images- integrating over all those images is infeasible. Most
camera movements require only a small subset of light field images to render new views.
These images have to be determined first. This step is intended to be fast, such that it
can easily be done on a single computer. From this preprocessing step it is possible to
assign rendered cameras and the necessary light field images that have to be processes
to individual nodes.

4.2.1 Relevant Camera Extraction

The following subsection describe how light field cameras and therefore relevant images
in the dataset can be obtained. Additionally, the approach described attempts to bound
the rays that have to be checked for contribution for every synthetic camera in the
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sequence. This is done by constructing an axis-aligned bounding rectangle in image
space which bounds the pixels that contribute with their recorded radiance.

Approximative Finite Camera Frustum

Consider rendering pinhole cameras. When rendering such a pinhole camera C in
traditional raytracing, for every pixel in the image plane, a ray r can be constructed.
If r passes through the projection center of a second pinhole camera C ′, this camera
might have recorded a ray r′ very close to the requested ray, since r passes through its
center point, (e.g. in Figure 4.2). If such a ray was indeed recorded, by looking up the
radiance of ray r′ in the image of C ′, one finds the valid radiance value for a pixel in the
image of C. By constructing a frustum consisting of planes for C, relevant cameras can
be gathered by checking if their projection center resides inside the frustum.

The approach described could be used to select relevant cameras of a light field dataset.

Figure 4.2: Reconstruction of a desired ray from another camera. The gray rays depict
rays which are needed to construct the view defined by the upper camera
C. The blue ray depicts some correct ray from the lower camera C ′ which
should be used by C.

The rendering system described in this work should be capable of supporting cameras
with finite aperture sizes. Therefore, a modified approach is necessary to cover relevant
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cameras. For this, a modified frustum is constructed, which will contain all points that
lie on rays which are potentially contributing to the rendered image. If a required ray
was recorded by a light field camera, its position must lie on the ray itself. Therefore, if
all points on the ray are covered by the frustum, all contributing light field cameras are
covered, too.

Consider the lens l of the rendered camera C, modeled as a circle, and the focus plane
fc, as well as the image plane ic. The sensor plate sc is modeled as a rectangle, and
placed at ic. Now the four rays which originate at the corners of sc and pass through the
center of the lens are constructed. Let tk, k ∈ {1, 2, 3, 4} be the intersection points of the
four rays with fc. Rays that are contributing to the rendered image must intersect the
rectangle defined by corner points t1, t2, t3, t4. A ray might hit such a point p, but will
only be refracted by the lens l and hit the sensor plate sc if this ray also passes through
the lens l. Therefore rays must intersect both the lens and the focus plane rectangle
if they contribute to the image. A frustum can now be constructed such that it covers
every point on every possible contributing ray. To achieve this, a widened frustum is
constructed from four planes. Figure 4.3 shows the construction in 2D. The axis-aligned
bounding rectangle rl of the lens l is constructed. A frustum plane must be constructed
such that it contains the ray with largest angle to the optical axis (dotted blue rays in
Figure 4.3). Then this plane is shifted by the diameter of the lens l (blue rays, shift
indicated by gray arrows). Note that this frustum will cover all points lying on the most
“extreme” rays relative to the optical axis of the rendered camera, i.e. the rays grazing
one side of the focus plane, and similarly striking through the edge of the bounding
rectangle rl on the opposite side. However, the constructed frustum overestimates
the set of contributing rays slightly. Figure 4.4 shows how cameras are collected and
discarded. Note that the frustum should also be constructed for the backside of the
rendered camera, as light field cameras might be positioned behind the rendered camera.

Frustum-based Octree Traversal

With the frustum described above, relevant cameras of light field datasets can be
collected. To accelerate the collection process, light field camera positions are inserted
into an octree. It is now possible to intersect the frustum with the octree’s voxels,
beginning with the tree’s root. If the corresponding voxel of an inner node is intersected
or completely contained in the query frustum, this node has to be further traversed.
Otherwise traversal can be stopped for this node. If a leaf is intersected or inside the
frustum, camera positions being stored at this leaf must be individually checked to
determine if they are inside the frustum. Note that this will not work very well if the
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Figure 4.3: Depiction of the frustum construction in 2D. The gray lines correspond to
the pinhole camera’s equivalent frustum. The dotted blue lines show the
frustum planes before shifting. The blue lines depict the final frustum’s
planes.

frustum contains large parts of the root voxel, or engulfs it completely. In this case, all
nodes might have to be traversed.

Another issue is, that light field cameras looking towards the desired camera are collected
too, if their position lies inside the frustum. However those cameras can be easily
discarded by only considering light field cameras where the difference between the light
field and desired camera’s forward vector does not exceed a certain angle.

Extraction of Relevant Area in Image Space

Light field cameras which likely recorded contributing rays can now be retrieved. How-
ever, it is possible that those cameras are not actually contributing with any rays. In
addition to the steps described above, the image space area of light field cameras which
implicitly estimates the set of rays can be computed.
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Figure 4.4: Depiction of the frustum. The green rays belong to a relevant camera.
The red rays belong to a camera which will not contribute with radiance
information. Some of those rays intersect the focus plane rectangle, but not
the lens.

Consider a light field camera Clf and a camera Cfa which has a finitely sized aperture.
Again, let rl be the bounding rectangle of Cfa’s lens, and let rf be the bounding rectangle
on the focus plane, obtained as described in Section 4.2.1. Both rl and rf are projected
into the image plane of Clf . Rays striking through one of the rectangles will have
their intersected pixel covered by the corresponding projected rectangle. Relevant rays
must intersect both rectangles if they contribute to the rendered image. Therefore, by
computing the overlapping area R of both projected rectangles, one obtains the area of
pixels describing contributing rays.

If there is no overlap, Clf can be discarded, since there is no relevant ray hitting both
rectangles.

Note that it is possible to approximate the lens geometry by not just an bounding
rectangle, but other (convex) polygons. Different aperture shapes can be modeled and
considered this way, see Section 4.3.3.
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Figure 4.5: Projection of the lens and focus plane into the light field camera’s image
space. Note that relevant rays must pass through both rectangles, otherwise
they won’t contribute with radiance. The relevant region R in image space
is marked in red.

The complete preprocessing process determines relevant image space areas for a se-
quence of cameras to be rendered. Since it is now known which light field camera is
contributing to which rendered image, the sequence in which frames are processed by
the renderer can be defined beforehand. A simple strategy is just shuffling the collected
frames in an uniform fashion, to obtain an more even result among all rendered frames,
even before all selected frames have been processed. Alternatively, one might reorder
the sequence such that sensor plates of rendered cameras are hit with rays equally
densely, by defining the ordering in a round-robin fashion. Preferring light field cameras
with larger covered areas is possible, but might lead to biased results until all frames are
processed by the renderer. This happens because in dense light fields, many cameras
vary only slightly in their extrinsic parameters as the recording positions are packed very
densely. Many very similar images are processed first, leading to less uniform depth of
field effects until all frames are processed.
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4.2.2 2D-Wavelet Compression

To reduce the amount of needed data, one may just discard a subset of required frames.
Often this is feasible, decent rendering results are still possible. It is also possible to
compress the individual frames in as lossy fashion, to further reduce the amount of data
shipped to nodes. The light field’s images are available as raw Bayer Pattern images.
Cameras typically record with color filters placed above the individual sensor elements,
resulting in the pattern in the raw image [Sze10]. Since the human eye is most sensitive
to green color, green filters cover twice as many sensor elements as the other two
channels.

A 2D Wavelet compression scheme as described in Section 2.5 was implemented. The
raw light field image’s raw channels are reordered to different areas in the image, to
obtain better correspondence between neighboring pixels, see Figure 4.6. Afterwards,
they are Wavelet-transformed in both image dimensions (Figure 4.7) and then addition-
ally compressed with a standard lossless compression scheme. Rendering nodes then
uncompress the compressed frames and reconstruct the image by applying the inverse
wavelet transformation. The original raw image is obtained by reordering the pixels
to the original pattern. Peter and Straßer proposed mapping the range determined
by the minimum and maximum coefficient to a single byte [PS01], essentially saving
coefficients as fixed floating point numbers limited to some range. A similar approach
was used for every compressed image.

After the relevant light field frames have been determined, only those images are
required for rendering. Those frames can be compressed and shipped to nodes. This
makes distribution of partial light fields possible.

While compressing the light field only in two dimensions is not ideal, a compression
ratio of 15 or more is achievable without too much loss in image quality.

Figure 4.6: Reordering of the Bayer Pattern. (a) shows the initial pattern, (b) the
reordered pattern.
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Figure 4.7: A raw light field frame is shown in (a). The reordered image is shown in (b).
The wavelet transformed image is shown in (c). One transformation step
was applied in each image dimension. No thresholding was applied. The
averaged image is located in the lower left, the detail coefficients occupy the
rest of the image. To increase perception of the detail coefficients, contrast
and brightness were slightly modified. Large areas contain the same value,
indicating coherence in the data.

4.3 Rendering of Light Field Data

Preprocessing returns a set of cameras, as well as the image space area of relevant pixels
for each rendered camera in the sequence. Depending on the camera movement and
parameters, this approach has one significant advantage: A single frame often contains
rays contributing to multiple rendered cameras at once. In the ideal case, a camera with
large aperture size and slow movement speed will lead to all rays recorded by a light
field camera contributing in some sequence frame. The two implemented approaches
for rendering will be described in the following sections. The ray collection approach
considers individual light field rays and places their radiance information in the rendered
cameras sensor plates. Sparse on the fly rebinning serves as a backup mechanism to the
first approach. A sparse representation of L is build from loaded light field data and can
be queried for interpolated ray information. Note that both approaches use the camera
selection process described in Section 4.2.1 to obtain a sequence of frames to process.

4.3.1 Ray Collection Approach

In this approach, light field frames are processed sequentially. The described method
was chosen since it is not feasible to keep all required light field data in memory. Instead,
light field images are fetched and discarded after their contributing radiance values have
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been extracted. For each rendered camera, the rays of the relevant area in image space
are constructed.

Let C be a pinhole camera, e.g. a camera from the light field dataset. Points on some ray
r are all projected to the image space point p = (x, y). To obtain r, (x, y, 1) is multiplied
by the inverse intrinsic matrix, i.e.:

pcamera = K−1 · p (4.1)

which will yield a point on r in camera coordinates. By multiplying the inverse extrinsic
matrix, this point is transformed to world space:

p̃world =
(

R t

0T 1

)−1

· p̃camera (4.2)

where p̃camera is the homogeneous version of pcamera, augmented with an additional com-
ponent being 1. Now the world space point is obtained from the first three components
of p̃world. By casting a ray from the camera’s position towards the obtained point (or the
opposite direction), the corresponding ray is constructed.

Every ray captured by light field cameras and considered relevant is constructed as
described above. Then those rays are refracted by the cameras lens of a rendered
camera, and collected in a synthetic sensor plate, mimicking a real camera’s sensor
plate (however, without being multiplexed like the Bayer pattern). Be S a matrix of
size w × h × 6 representing such a sensor plate, with w and h being the width and
height in pixels. Since the light field dataset’s frames are available in raw format as
they were recorded by the camera, sensor plates have to be present for each color
channel. Rays therefore only ever contribute with radiance in a single channel. Be
p = (rsum, gsum, bsum, rcnt, gcnt, bcnt)T the vector representing the data collected in a single
sensor element of S. Whenever a ray hits p, the radiance carried by this ray is added to
the corresponding sum and the counter incremented.

Refracting a ray is straightforward: One just computes the intersection with the rendered
camera’s focus plane. Then one casts a ray from this point towards the center of the lens.
Finally the intersection of this ray and the image plane can be computed, resulting in the
sensor element which is hit. This corresponds to the approach described in Section 2.3.2,
however in the opposite direction. An alternative approach is treating the rendered
camera as a pinhole camera (with the aperture at the center of the lens) and projecting
the focus planes’ intersection point into the cameras’ image space, which will similarly
determine the corresponding pixel. To discard rays which do not hit the lens of the
rendered camera, the intersection between the lens’ plane and the original rays are
computed. If the distance intersection/lens-center is larger than the radius of the lens,
the ray has to be discarded as it does not hit and pass through the lens. This corresponds
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to the thin lens model’s properties for circular lenses. The final image can be computed
by averaging the collected data, i.e. (r, g, b)T = (rsum/rcnt, gsum/gcnt, bsum/bcnt)T .

This however, might lead to noisy images, especially if not enough rays were collected
over the course of the process. To obtain a smoother image, inverse distance weight-
ing [She68] can be used to take radiance collected in surrounding pixels into account.
This weighting was chosen because of the rapid falloff with increasing distance of the
weight 1/d, where d is the distance to another pixel, keeping the amount of introduced
blur low. A positive side effect is that interpolation of collected radiance from the
neighboring pixels becomes possible if a sensor element did not collect any radiance in
its corresponding channel.

As more and more frames of the light field are processed, the data collected in the
synthetic sensor plates converges towards the optimum image result achievable without
interpolation between rays. Note that this approach is very accurate.

This approach works best when rendering a camera movement close to the original light
field camera positions, and/or with large aperture sizes. Only the rays stored in the
dataset are utilized, and used to compute the desired camera movement’s images. More
diverse camera movements require more light field images to produce acceptable results.
Another limitation is that rendered cameras require a certain minimum aperture size
for this approach to work well, otherwise only a small number of rays is contributing
to the rendered images with every processed light field frame. Consider rendering
a single camera with an aperture size smaller than the distance between the camera
positions of the dataset. If such a camera is placed between the original recording
positions, no ray can possibly hit the aperture, since no ray was recorded at that position.
The approach described below attempts to circumvent this problem by augmenting the
rendered images with interpolated rays. Tilted focus planes can be rendered too, one
just modifies the focus plane’s normal vector and intersects a light field ray with this
plane.

4.3.2 Sparse On The Fly Rebinning

The second approach copes better with less restricted camera movements, and works
with small aperture sizes. This method attempts to rebin high frequency regions of
L(s, t, u, v), while keeping low frequency areas more sparse. Levoy and Hanrahan stated
that the light field’s rays should be distributed uniformly, since every ray is equally likely
to be used to construct a new view [LH96]. This assumption is dropped in favor of better
memory efficiency. Hash maps are utilized to keep memory requirements acceptable-
instead of initializing a potentially large 4D-array, a subset of discretized rays is kept
in the hash map. Again the preprocessing as done before is applied in the first step.
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Afterwards a primary slab ps is constructed, consisting of two planes. The slab’s st-plane
is positioned roughly among the camera positions of the movement path, facing roughly
in the same direction as the rendered cameras. This slab will be used to parameterize
4D-Cubes. Light field rays are parameterized against this slab as well. Consider the
st-plane, and the point ost which is used to define this plane, together with its normal
vector. Two axes being perpendicular to each other can be placed in the plane. It is
now easily possible to discretize the plane in equally long segments of length r in both
dimension, resulting in a 2D grid structure. The same is applied to the uv-plane. Rays
intersecting the two slabs at (s, t, u, v)T are then assigned the indices (sd, td, ud, vd)T ∈ Z4,
by determining the two grids the ray traverses when it intersects the two planes, by
computing: 

sd

td

ud

vd

 =


⌊s/r⌋
⌊t/r⌋
⌊u/r⌋
⌊v/r⌋

 . (4.3)

Rays whose intersection points fall into the same grid rectangles are discretized to the
same index. r therefore controls how finely the resulting discretization is. This is similar
to the discretization applied by Gortler et al. [GGSC96]. By parameterizing a subset
of the rays required for rendering a camera, a 4-dimensional bounding box can be
computed, which can serve as a rough estimate of its ray envelope parameterized by a
single slab. However this approach could potentially cover a large amount of rays not
required if a camera movement contains sharp changes in view direction, position or
aperture size. As an example for such a case, just consider a camera path parallel to the
slab, with changing aperture size, and resulting smaller frustums. A possible solution
for a more fine-grained approach would be computing bounding boxes for subsequent
frames of the camera movement, each with their own slab.

The method proposed here is utilizing a rough discretization to build a set of 4-
dimensional hypercubes: If a ray is to be covered, it is parameterized against the
slab and discretized. This will yield the indices of the intersected grids on their respec-
tive planes, and therefore a 4D cube. The cube’s indices are then hashed and saved into
a hash map. By constructing the corresponding key for a desired (discretized) ray, the
hash map can be queried for it. It is now possible to associate information like radiance
with a discrete ray, while keeping memory requirements low by constraining the map’s
number of elements.

Rebinning is done by parameterizing the rays of light field images. Since there is a high
level of coherence in the light field L, not every ray in L is mandatory to construct a
new view. Keeping every ray recorded by every light field loaded by the renderer would
easily overflow available memory on nodes. However, high frequency sections of L

should be represented by a denser collection of rays. These areas in the image are more
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interesting for rebinning, low frequencies areas can be interpolated more easily. This
requirement can be obtained by some common image processing techniques combined
with probabilistically selection of rays.

First, the light field image Ilf is smoothed by a Gaussian filter, which will remove noise
in the image. Then the Laplacian operator is applied to the smoothed image, yielding
the Laplacian of Gaussian of the image. Let ILoG be that image. High (absolute) values
in ILoG are an indicator for high frequencies in Ilf . Finally, the probability map Ip is
computed from ILoG by interpreting pixels as probability thresholds. Every pixel in ILoG

is mapped to Ip by

Ip(x, y) =

min(1, |ILoG(x, y)| · α + ξ) if |ILoG(x, y)| ≥ β

0 otherwise
(4.4)

where α scales the absolute values of ILoG and β applies some threshold which has to be
passed. ξ ∈ [0, 1) controls the minimum expected amount of rebinned rays per image.
Ideally, ξ and β should be zero, but both parameters offer some flexibility since light
field data might be compromised by noise. The probability map Ip now directly controls
the likeliness of rebinning the recorded rays, i.e. for every pixel, a random number is
drawn uniformly from [0, 1], the ray is rebinned if this number is smaller than the value
in the probability map at this pixel. If the (discretized) ray is already present in the map,
the radiance values are averaged. Note that applying another Gaussian filter on Ip will
smooth out the probability map. Figure 4.8 shows a depiction of the process.

Note that high frequency regions in 2D slices of L usually correspond to high frequency
regions in L itself. However, the opposite direction is not always true, e.g. consider a
highly reflective material in the scene. Changing the viewing direction only slightly could
lead to strong changes in observed reflected radiance, something that is not apparent in
single light field images.

To further reduce the amount of rays in the hash map, a coverage map can be computed.
A second hash map is initialized with the same primary slab, but with discretization
interval > r. For all cameras, rays are constructed by spawning them originating on the
lens, as it is done in distributed raytracing. These rays are parameterized against the
primary slab, and inserted into the hash map. Assuming the amount of rays constructed
this way is high enough, the hash map will contain the hypercubes which bound relevant
rays for the rendered cameras. Parameterized rays not covered by the map are not
relevant for the rendered cameras. It is now possible to restrict rebinned rays to those
covered by the coverage map, further reducing memory requirements.
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Figure 4.8: Side view of the sparse rebinning process. The st- and uv-plane define the
light slab. The red ray (s, t, u, v)T was selected for rebinning and is placed
in its appropriate hypercube (sd, td, ud, vd)T . As depicted, high frequency
areas in L are rebinned more densely. Desired rays are interpolated from
their nearest neighbors, e.g. the blue query ray (sq, tq, uq, vq)T is combined
from the weighted green rays (s′, t′, u′, v′)T and (s′′, t′′, u′′, v′′)T .

Rendering Phase

The hash map could be queried for discretized rays, however depending on r, this will
most likely not lead to sufficient results: Lots of queries will fail since ray distribution is
sparse. Instead, a number of images of the dataset are processed as described above.
Periodically, or when the amount of hypercubes in the hash map reaches some threshold,
a 4D kd-Tree is build, containing the center points (And therefore centered rays) of all
hypercubes present in the map. An arbitrary ray can be parameterized and the kd-tree
queried with a nearest neighbor or radius search. Similar to Wender et al. [WIG+15],
who also used a (2D) kd-tree to represent their ray collection, 2D-Gaussian weighting is
applied in each plane:

wi = 1
4π2σ2

stσ2
uv

e
− (s−s′)2+(t−t′)2

2σ2
st · e

− (u−u′)2+(v−v′)2

2σ2
uv (4.5)
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where s, t, u, v denote the query ray’s parameterization and s′, t′, u′, v′ the parameteriza-
tion of a ray i which is used for interpolation. Note that in [WIG+15], the σ controlling
the weighting of the front plane variables was directly used to control the size of the
aperture. This is not the case in this work, the aperture is sampled by ray spawning. A
4D weighting of some kind (e.g. also Gaussian) could be used too, but the weighting
described in Equation 4.5 gives greater control over the weighting. Usually, the sample
spacing on the st-plane is more dense, if the camera movement is moving close to the
light field capture positions, therefore σst could be chosen smaller than σuv.

The resulting interpolated radiance is determined by summing up all radiances Li =
L(s′, t′, u′, v′) multiplied by their respective weights and normalizing by all n weights,
with n being the amount of rays to interpolate over:

L̃(s, tu, v) =
n∑

i=1

wi · Li∑n
i=1 wi

. (4.6)

Images are then synthesized by applying distributed raytracing. Rays are spawned on the
lens, parameterized against the slabs, and used as a 4D query point for the kd-tree. Since
the rendered camera moves between subsequent frames, reparameterization similar to
[IMG00] can be applied if the current camera plane (defined by position and forward
vector) and focus plane differ too much from the current reparameterization slab. Isaken
et al. directly used this as a means to render depth of field effects. It was found that
applying reparameterization tends to help with ray selection, detailed objects are imaged
more precisely and less smoothed. However this may not be desired in all cases, some
artifacts in the form of “jitter” may come apparent during camera movement, which is
harder to detect in still images.

Since four dimensions can still be qualified as low-dimensional, querying such a kd-
tree is somewhat efficient, but performance degrades as more rays are present in the
collection. On the other hand, interpolation of ray radiance is straightforward, which
makes applying this approach possible directly from light field images.

Note that rendering images produced by pinhole cameras becomes possible by this
approach, unlike the first described technique.

4.3.3 Combining both Approaches

The first approach can be interpreted as being passive: Synthetic camera sensors collect
radiance information as more and more light field images are processed. The second
approach attempts to build a sparse section of L(s, t, u, v) by considering the desired
rays of a camera path. The first approach works well with large apertures, since those
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are able to collect more rays of the dataset, on the other hand, time until a meaningful
result is obtained may be long if small apertures sizes are selected. It is possible to
run both approaches in parallel: Images are fetched from the dataset, the rendered
cameras collect the radiance of rays, and simultaneously build the sparsely rebinned
and constraint version of L(s, t, u, v). Periodically, a dump of the current state of the
synthetic sensor plates can be done. Beforehand, the kd-tree containing rebinned rays is
build and can be queried to augment the result with additional rays. If a sensor element
has collected only a insufficiently amount of rays, additional rays can be constructed and
interpolated by spawning them on the camera’s lens. Then the kd-tree can be queried
and the result combined with the collected rays. A possible optimization is the removal
of rebinned rays due to them not being used in any query anymore, by keeping an
array of flags indexed by the hash map’s rays. Rays are flagged if they were used in
some interpolation query. After all ray queries are done, those rays which were not
flagged are removed. During the dumping stage, rays may be used for interpolation to
augment the current result. Since it is likely that sensors collect a sufficient amount
of ray samples, the need for such queries decreases. Eventually, a large subset of all
rendered pixels could have collected enough rays from the dataset images, which means
that the collection of rebinned rays can be reduced. Similarly, the coverage map can be
shrunken.

This has positive two effects:

• Rays which are deemed suitable for interpolation are never removed until more
desirable rays are present, since they were queried at some point, and will be in
the future (with high probability).

• As the coverage map containing hypercubes is reduced, the remaining ones can
be filled more densely, since memory gets freed, thus increasing the amount of
available rays for interpolation.

Both approaches attempt to complement each other, by keeping memory requirements
low while increasing image quality of results.

Simulating Aperture Shapes

By computing the distance between the intersection point of a ray hitting the lens plane
and the lens’ center point, rays which do not pass through a circular-shaped lens can
be discarded easily if the distance is greater than the lens’ radius. This will result in
a circular bokeh effect. Aperture stops block light rays from hitting the lens, and will
result in a bokeh effect shaped just as the aperture stop [WZHX13]. In the light field
rendering system, aperture stops modeled as regular polygons can be used to create
similar effects. Rays intersecting the lens plane are blocked if they do not lie inside the
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polygon. OpenCV’s pointPolygonTest function is used for this check. A small performance
optimization is employed to cut done on the runtime of this check: Two bounding circles
are created, one bounding the polygon’s outside, and one bounding the polygon’s inside
area. if a ray intersection point lies outside the outer circle, it can be discarded instantly.
Similarly, if it lies inside the inner circle, the ray will pass through. The polygon test has
to be done only in the area between the outer and inner circle. By rotating the polygon
depending on the aperture size, the effect of closing aperture blades can be modeled.

This setup can be used for both approaches described in this work, but the approach
seen in Section 4.3.2 requires the selection of uniformly selected points on the lens, such
that query rays can be spawned. To obtain such a point (x, y) on the unit disk, it can
be chosen by selecting r uniformly at random from [0, 1] and θ from [0, 2π). Then, the
coordinates are computed as [BEL+06; Wei]

x =
√

r cos θ, y =
√

r sin θ. (4.7)

4.4 Implementation

The system was implemented in C++, utilizing some of the code developed by
Siedelmann [Sie15]. Eigen3 [Eig16] is used for vector arithmetic. Google’s
sparsehash [Goo10] hash map implementation is used for the sparse rebinning ap-
proach described in Section 4.3.2, as well as the FLANN [ML14] kd-tree implementation
which provides the means to construct and query such trees. The implementation makes
heavy use of the OpenCV [CV15] library for image processing. The Squash [Squ15]
library is used for compression of the wavelet-transformed images. Polygon clipping
used in the preprocessing step to compute the relevant image space region as described
in Section 4.2.1 is provided by the Clipper [Joh14] library.

Parallelization of the ray collection approach is straightforward by assigning sections
of the rendered camera movement to individual threads, which all work on the same
light field frame. Since threads do not work on the same camera movement frame
simultaneously, data races are not possible, and no synchronization is necessary. A set of
loader threads constantly buffers light field frames into a queue, which is then accessed
by the renderer. This ensures that there is no bottleneck induced by IO-operations. In
case of long camera sequences being worked on by the renderer, this works well since
processing a light field frame for all rendered camera positions usually takes longer then
loading a single light field frame, which will keep the buffer queue full at all times.
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4.5 Software

This section contains information about the produced software. The naming scheme
(lf...) from Siedelmann’s work was kept to keep naming consistent. The main programs
are lfpreprocessor, lfcompressor and lfrenderer. Auxiliary tools are lfcammvminfo,
lfvisualizer and the lfrendertools library. lfcammvminfo can be used to display in-
formation about individual frames of the camera movement definition, e.g. current
aperture size, position of the camera etc. lfvisualizer outputs light field camera po-
sitions, rendered camera positions and collected light field cameras into a plain-text
format which can be piped into a python script providing some interactive visualizations.
lfexample produces an exemplary camera movement definition with the camera being
initially placed at a given light field camera’s position. lfrendertools contains most
utility classes which are used by the other programs. This structure was chosen such
that development of new tools based on already present code can be done more easily.

4.5.1 Camera Movement Definition

The camera movement is defined inside a .yaml [Yaml02] file. It is possible to set initial
position, lookat position, inital speed, as well as the camera and lens parameters. The
movement is given by acceleration periods starting at given time steps. Aperture and
focus distance changes are given in a similar fashion. Additionally, the focus plane can
be tilted vertically and horizontally.

4.5.2 Preprocessor

lfpreprocessor extracts the needed frames from the light field as seen in Section 4.2.1.
Necessary input are light field calibration data (camera positions and rotation, as well as
the intrinsic matrix) and the camera movement definition. The given camera movement
is split in equally sized packets, which will serve as the input of the renderer. The
output will consist of a list of frames and their bounded region in image space for every
rendered camera. Note that knowledge about the renderer’s main memory is necessary
beforehand, since every camera movement frame has to be initialized.

4.5.3 Compressor

lfcompressor also takes the preprocessor’s output, as well as the light field as input, and
compresses all light field frames contained in it via wavelet compression, see Section 2.5
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and Section 4.2.2. Additionally, lfcompressor is also able to compress the entire light
field.

4.5.4 Renderer

lfrenderer accepts the preprocessing packages, as well as the compressed frames or the
original light field. All approaches described above, include the combined method, can
be used as render modes. Periodically, the renderer will dump its current state.
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5 Results and Discussion

This chapter contains the results obtained by the renderer. All rendering test were
done on four machines with an i5-6500 with 3.20 GHz. Table 5.1 shows some of the
parameters used in the evaluation. Table 5.2 shows the rendering times.

The used light field has a lossless compressed size of about 1.6 TB with 999127 calibrated
light field images. The capture positions form more of a band (band height less than
1 cm) than a hemisphere, which restricts the possible largest aperture size, as well
as feasible movement. Originally, it was planned to run this pipeline in a cluster.
Due to technical difficulties with the provided cluster, this was not possible until now.
However, running the produced code in the cluster should be straightforward, since
there is no communication necessary between render nodes- one merely runs instances
of lfrenderer as individual jobs.

Camera movement stack short sharp long bokeh

Time 1 s 2 s 1 s 16 s 30 s
Frames 30 60 30 480 900
Fps 30 30 30 30 30
Aperture diameter 4 mm 4 mm 2 mm 2 mm 0.1 - 2 mm
Focus distance 20 - 100 cm 10 - 50 cm 80 cm 15 - 100 cm 15 - 100 cm
Light field images 827 5621 1914 27173 67502

Table 5.1: Selection of the camera movements that where used for evaluation. Both long
and bokeh indicate the difficulty of rendering camera movements, the amount
of relevant data increases significantly with longer movements. Stationary
renderings such as the focal stack stack require less light field data.

5.1 Relevant Camera Extraction

Extraction of the relevant cameras, together with their contributing image space region
is quite fast- reading in all camera extrinsic parameters often takes longer than the
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extraction itself. Interestingly, if rendered cameras are placed between the original light
field capture positions with a shaped aperture (e.g. a triangle), the collected light field
cameras positions tend to form the aperture’s shape, see Figure 5.1. Recall that the
extended frustum does not model the aperture shape in any way, so this effect is caused
entirely by the projection and overlapping of the focus plane and lens approximation.
This approach is also effective for discarding non-contributing light field images, see
Figure 5.5.

(a) Camera selection (b) Rendered view

Figure 5.1: Selection of cameras from the light field (purple) and resulting rendering.
The rendered camera (white) has a triangle-shaped aperture, which is
reflected in the selection of cameras (green).

5.2 Ray Collection Approach

The ray collection technique performs quite well if the used light field is dense- enough
ray samples hit the sensor and a very smooth and clear image is obtained. This approach
is not applicable for general light fields since those might by sparsely sampled. In the
case of a larger aperture, depth of field effects and bokeh in out-of-focus areas can be
observed very clearly, see Figure 5.2. Light field density affects the obtainable image
quality, see Figure 5.4. Noise has low impact due to many ray samples being averaged.

It is possible that bokeh effects are “cut off”, an effect caused by missing data. For
example, if the camera is placed among the light field cameras, and the aperture is
larger than the light fields spatial resolution, radiance information will be missing for
parts of the aperture, an effect also described by [IMG00].

While the preprocessing step helps immensely, see Figure 5.5, performance is still an
issue with this approach. Consider rendering a focal stack consisting of n frames, i.e. the
camera is standing still while modifying the focus distance in n frames. Also assume this
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Figure 5.2: Frame from the bokeh movement. With the provided light field, bokeh
effects are obtainable by selecting low focus distance and large aperture
settings. Also note how the approach described in Section 4.3.3 enables
shaped bokeh effects, in this case a pentagon.

camera is placed among the light field cameras and n′ light field frames were selected.
It is now highly likely that all light field images that are to be processed are contributing
with radiance in all rendered images. The required effort is therefore n′ × n. Note that
in this case, likely most light field images are completely relevant, i.e. all recorded
rays are useful and contribute in the rendered frames. Profiling with gprof [GKM82]
revealed that most CPU time is spend doing linear algebra operations, e.g. matrix-vector
multiplication, as well as intersection tests. About 90% of computational effort was
spend on such operations. A GPU implementation might help with performance.

Processing takes long if a large number of rendered images use rays of the currently
processed light field frame, e.g. for the focal stack rendering in Figure 5.3, almost every
light field image contributed with radiance in every rendered image. This has to be
accepted if dense light field data is to be exploited. The main advantage of this approach
is the easily controllable memory requirements- the synthetic sensor plates have the
largest memory footprint with width × height × 6 × 4 B for a single rendered frame, but
do not change in size over the rendering process.
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Figure 5.3: Selection of frames from stack. From left to right, top to bottom: Decrease
of the focus distance. A smooth depth of field effect becomes visible. 827
light field frames contributed with their captured radiance. The aperture’s
diameter was chosen as 4 mm.

5.3 Sparse On the Fly Rebinning

The rebinning technique is not able to construct images as clean as the ray collected
ones. Ideally rebinning is turned off if the ray collection approach gathered enough data,
this approach should only serve as a backup solution. Naturally, discretization levels
have high impact on the image sharpness, however lower discretization resolution leads
to less noise. Another effect is that missing data is easily interpolated from present rays,
e.g. if the camera’s aperture is larger than the light field’s captured positions, round
bokeh effects are still obtainable. Figure 5.6 shows how interpolated ray information is
used to fill gaps. This also serves as a preview of the attainable image to the user. Sparse
rebinning also leads to noise appearing in light field images having stronger impact
on the rendered result, because sparse ray samples from noisy regions in L will have
stronger impact on rendered images- less samples are available to suppress resulting
noise effects. If image values are linearized via the inverse response curve first, this
problem amplifies. This is especially apparent in darker regions of rendered images. Low
pass filtering the image before utilizing any rays reduces this problem, e.g. by a simple
box filter. Kernel size should be chosen small to preserve details. This could also be
solved by a slight modification of the randomized ray selection: Every ray sample present
in the image is considered for rebinning, but only those that are randomly selected are
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Figure 5.4: Rendering from a different light field that is about twice as dense. The focus
plane was tilted along the vertical axis. The bottom right image shows a
magnified view of one of the frames. The bokeh effects are smoother than
in Figure 5.2.

able to create a new discretized ray. Those rejected are still used for radiance averaging
if their corresponding rebinning hypercube is already present. However, this requires
parameterizing every single ray in the image and testing for possible rebinning- an
operation deemed to expensive for the designated augmenting nature of the technique.
See Table 5.2 how sparse rebinning affects performance. Another problem are mis-
calibrated light field images, i.e. camera positions that the calibration placed in the
wrong positions. Rebinned rays from such cameras could potentially have strong impact
in low-frequency regions, since those wrongly placed rays are more likely used for
interpolation and assigned bigger importance.

Since only a fraction of rays is actually considered for rebinning, processing of light field
images is way faster than in the first approach. Noise as it is typically associated with
distributed raytracing occurs if the sample count per pixel is not high enough. Another
issue is the constantly increasing size of the ray collection. Capping the total amount
of rebinned rays, as well as removal of unused rays, is absolutely necessary. The main
advantage of this technique is its flexibility. It is possible to acquire decent depth of
field effect from a low number of light field frames, which is generally not possible with
the ray collection approach, see Figure 5.8. Therefore sparse rebinning could also be
applicable in less dense light fields.

Another problem is the monotonically increasing amount of collected rays. If the
discretization interval is chosen too small, the user-given ray limit is reached fast despite
all described countermeasures.
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(a) Ray usage with preprocessing (b) Ray usage without preprocessing

Figure 5.5: Depicted here is the effectiveness of the preprocessing step on rendering
effort. The frames were ordered according to their ray usage used rays

estimated rays . On
the left hand side, ray usage for the camera movement shown in Figure 5.9.
5621 light field frames where processed, but only the predetermined regions
in image space. On the right, ray usage when the whole image is considered.
5920 Frames were selected, there was no filtering based on ray contribution
happening. With preprocessing, rendering of the camera movement took
36 minutes (See Table 5.2), while considering the entire image took 133
minutes, an increase in render time of factor 3.7. Without preprocessing,
lots of rays are rejected because they do not contribute to the rendered
images. About 300 image did not contribute any radiance or close to
nothing. Note that those images do not appear in Figure a, as those are
discarded beforehand.

5.4 Effects of Wavelet Compression

Naturally, lossy compression downgrades image quality in exchange for smaller size of a
light field image. Also note that using the Squash library might not be the best choice for
compression of the quantized and thresholded wavelet-transformed images. Still, the
light field’s size can be reduced significantly, see Table 5.3. Transforming only once in
each image dimension works best. Otherwise, quantization artifacts resulting from the
mapping of the whole detail coefficients range to only one byte appear. Error is further
reinforced by higher threshold values. Also, decompression is faster as only one inverse
transformation step has to be done per image dimension.

Using 16-bit integers works better if more than one transformation step is done in
each image dimension. By providing an additional parameter q, the mapping can be
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(a) No rebinning

(b) With rebinning

Figure 5.6: Example frame from the bokeh camera movement. The aperture size was
reduced so far that the ray collection approach was not able to achieve a
sufficient result. Gaps appear and the aperture shape becomes apparent.
The missing information is interpolated from the sparse data in Figure b.

forced to only use q many values. E.g. q = 1024 allows mapping to 1024 different
values. This also gives the user more control over the achievable compression ratio. Less
quantization artifacts will appear if q is chosen high enough. However, compression
ratio will naturally suffer from this, since twice the amount of bytes are used for the
(uncompressed) transformed image. Figure 5.10 shows the effect of Wavelet compression
when rendering with such data.
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Figure 5.7: Sparse rebinning leads to lower image quality. As seen in (a), the back-
ground is slightly out of focus. Distributed raytracing leads to the appear-
ance of noise. Additionally, some artifacts might appear as seen on the
bottles’ metal cap in (b).

Summarizing, the current implementation reduces light field size, but could be improved
further. Decent results are obtainable if the amount of transformation steps is set to one,
and thresholding is applied at about 8. Simple hard thresholding seems to not work well
if more transformation steps are applied. A more sophisticated adaptive thresholding
strategy could be used.
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Figure 5.8: In this frame, raytracing was used to sample the sparsely rebinned light
field. To acquire strong depth of field, the focus distance was chosen as
20 cm. 21 ray samples were taken per pixel. Distributed raytracing noise
becomes visible. Note however, that bokeh effects are not cut off as it can
be observed in Figure 5.4, missing data is interpolated.

stack short sharp long bokeh

total total total total longest section total longest section
Ray Collect: 22 min 33 s 36 min 30 s 5 min 25 s 244 min 42 s 114 min 10 s 310 min 21 s 102 min 42 s
Ray Collect & Rebinning: 23 min 38 s 41 min 17 s 6 min 53 s 271 min 35 s 128 min 6 s 438 min 18 s 129 min 20 s

Table 5.2: Performance results for some camera movements in the light field. Given
are the total times for rendering. The long and the bokeh movement could
not be rendered on a single node in one go. For those movements, also the
longest section is given. Ray collection was relatively fast for bokeh, since the
aperture was reduced close to zero in parts of the movement, yielding fewer
rays to process in large parts of the movements. Render time is reduced by a
factor of about two to three if up to four machines are processing in parallel.
The section that takes the longest time zu process determines the bottleneck.
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Figure 5.9: Selection of frames from the short movement. The camera was moved by
about 2 cm, the focus distance was decreased over time. The render times
can be found in Table 5.2.

transf. steps threshold compr. time avg compr. ratio size

1 2.0 1 min 45 s 11.7 694 MB
1 4.0 1 min 44 s 13.7 596 MB
1 8.0 1 min 41 s 15.1 542 MB
2 0.5 2 min 5 s 7.5 1.1 GB
2 2.0 1 min 56 s 21.1 391 MB
2 4.0 1 min 54 s 30.6 275 MB
3 4.0 1 min 56 s 44.6 192 MB

Table 5.3: Compression performance on the raw light field images. The 1914 required
light field images of the sharp camera movement were compressed. The
threshold column refers to the coefficient dropping threshold. For subse-
quent compression of the transformed image, the compress algorithm pro-
vided by Squash was used. Compression takes longer if more transformation
steps are done.
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Figure 5.10: Compression artifacts occurring from Wavelet compression also appear in
renderings. (a) shows the image transformed one time in each dimension,
and thresholded with 8.0. (b) shows the same frame but light field images
were transformed two times and thresholded with 4.0.
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6 Future Work

The proposed system enables rendering of camera movements in densely recorded light
fields on multiple nodes. Additionally, it also offers capabilities for lossy compression
of the light field data. However, the system could be extended to support additional
features which might be advantageous when processing dense light fields.

6.1 Progressive Rendering with Wavelet Coefficients

The compression scheme using Haar-Wavelets (See Section 2.5) could be used for the
ray collection approach described in Section 4.3.1 to achieve progressive rendering
similar to [PS01]. Instead of radiance, rays could carry wavelet coefficients. Recall that
reconstruction of a wavelet-transformed image is achieved by adding detail coefficients
to approximation coefficients. Reordering coefficients according to their importance (e.g.
approximation coefficients before detail coefficients) enables render nodes to process
those first. In a first steps, all averaged coefficients could be loaded and processed. This
would yield the rendering achievable by downsampling by simple averaging of pixels.
In subsequent steps, the detail coefficients for each light field image could be loaded
and added to the results. To achieve this, one could compute which light field rays are
influenced by the coefficients. Those rays are then just recollected in the synthetic sensor
plates by addition to the total collected ray information, but without incrementation of
the ray counter.

The wavelet compression scheme implemented in this work could be extended to support
arbitrary ordering of coefficients, e.g. similar to the SPIHT method [SP96].

Note that as long as individual rays are considered, required computational effort will
increase, since ray collection must occur in multiple rounds as more and more coefficients
are loaded. However, coefficients that are zero can be discarded right away, since those
have no influence on any rendered pixels anyway. To compress the data, it could be
organized in coefficient packages (e.g. as parts of the wavelet transformed image) which
are compressed in a lossless fashion. This would increase required runtime further, since
decompression needs additional time.
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It remains a question how beneficial progressive loading of wavelet coefficient is in gen-
eral. If camera movements are to be rendered, processing time might be slightly longer
than loading a single light field image in a background thread, since computational
effort is increased in comparison to single image rendering.

6.2 Resampling the Dataset

Resampling a single image usually consist of filtering the input image with some filter
function to obtain a differently sampled image- e.g. one with higher or lower resolu-
tion [SM09]. This concept could be applied on entire light fields, too. Currently, the
light field is represented as a stream of images. This is not ideal if one wants to directly
evaluate L(s, t, u, v), since the current representation does not enable such operations
on the light field. If the light field was represented as a 4D-Matrix, it could be evaluated
directly. Resampling L from the light field images into a 4D matrix would yield such a
representation. However, several problems have to be additionally considered:

1. Some suitable parameterization has to be found. In case of light slabs, multiple
ones are required since the light field was captured from a hemisphere.

2. To apply resampling operations, one needs to know which light field ray samples
from all light field images are closest to a ray that is to be resampled- this is
computationally not trivial.

3. A renderer should be able to access the resampled data efficiently. This includes
that resampled data should be loaded in packages, i.e. relevant data that is
accessed should be loaded at once to increase network throughput. In the current
representation, unnecessary data is being loaded if the rendered camera’s aperture
is small, or the position is too far away from the original capture positions, as only
few rays of an image contributed with radiance. This problem does not necessarily
vanish if the light field is resampled. Data must be organized in such a way that
random access is possible and multiple samples are loaded at once. For example, if
one always loads the surrounding rays around a requested ray, and the rendered
camera is far away from the resampled light field slab, those rays might differ too
much from required rays to be of any use in the novel view.

4. In case of dense light field, this resampling process could take a long time. Consider
a light field consisting of 2048 × 2048 sized images. If the light field consists of 106

images, at least 4 · 1012 rays have to be considered.

5. Additionally, the resampled data should be compressed. 4D-Wavelet compression
could be used in this case.
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Note that the approach described in Section 4.3.2 tries to accomplish something similar
to this, but without a sophisticated resampling filter.
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7 Conclusion

Rendering in dense light fields is a difficult task as the high amount of available data
has to be processed. The requirement for camera movement rendering makes this
even more difficult, as required data increases quite drastically. This work presents
a technique allowing the extraction of relevant light field images, given a predefined
camera movement of some thin lens camera. Additionally, it is estimated which rays
are likely refracted onto the synthetic sensor, reducing required computational effort.
Rendering simulates a thin lens camera by considering images as sets of rays, and
simulating their refraction by the rendered camera’s lens. Additionally, a sparse rebinning
technique based on hash maps and kd-trees was developed. While the first approach
works quite good and produces decent results, the second approach should be considered
to be in a supporting role since this technique is able to interpolate missing data, but is
less accurate. On the other hand, the approach is computationally relatively inexpensive
and requires low amounts of memory. It also tries to adapt by only keeping data that is
likely needed for interpolation. Still, both approaches work best if the rendered camera
movement stays close to the original light field capture positions. Utilizing multiple
nodes to process the data is necessary to obtain results in a reasonable amount of time,
see Table 5.2. To augment the lossless compression scheme introduced by Siedelmann,
simple 2D-Wavelet compression is employed.
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