
Institut für Softwaretechnologie

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit Nr. 282

Entwicklung eines STPA-Verifiers
als Eclipse-Plug-in für die
Verifikation von Software-
Sicherheitsanforderungen

Lukas Balzer

Studiengang: Softwaretechnik

Prüfer/in: Prof. Dr. Stefan Wagner

Betreuer/in: M. Sc. Asim Abdulkhaleq

Beginn am: 2015-10-20

Beendet am: 2016-04-20

CR-Nummer: D.2.4, I.6.4, F.1.1, F.4.1

Kurzfassung

Um die Sicherheit in kritischen Softwaresystemen zu gewährleisten ist immer häufiger eine
Verifikation der Software in einem Systemkontext notwendig. Hierfür ist in den letzten
Jahren die Verifikation von Softwaresystemen durch Model Checking, bedingt durch die
wachsende Anzahl an dafür zur Verfügung stehenden Werkzeugen, eine bewährte Methode
geworden. Diese Arbeit stellt auf Grundlage des in STPA SwISS [AWL15] vorgestellten
Konzeptes eine Software zur automatisierten Ausführung von LTL und CTL Model Checking
mit den Werkzeugen Spin und NuSMV bietet. Dabei können die Sicherheitsanforderungen
sowohl manuell eingegeben werden, als auch aus einer STPA Analyse importiert werden.
Das Ergebnis dieser Arbeit soll ein Ansatz zur Kombination einer Gefahrenanalyse auf Sys-
temebene und einer Verifikation dieses Systems auf Implementierungsebene sein. Zu diesem
Zweck wird der STPA Verifier zur automatisierten Verifikation von Sicherheitsanforderungen
und Dokumentation der Ergebnisse vorgestellt.

Abstract

To verify the safety on a critical softwaresystem includes more and more often the task of
verifying Software in the context of the system. In the last years verifying software by using
formal model checking has become a more and more popular method due to the increasing
number of available tool support. This work presents a Software based on the concepts of
the STPA SwISS approach [AWL15] that provides a graphical user interface for performing
automated LTL and CTL model checking using the Spin or the NuSMV model checker.
The safety properties can be derived either manually or by importing the results of a STPA
hazard analysis. The result of this work are supposed to be an approach to combine a hazard
analysis on system level and a Softwareverification on implementation level. To provide
this the STPA Verifier for verfying safety constraints and creating a verification report is
presented.

2

Danksagung

Ich möchte mich vorab bei allen die mich bei der Durchführung meiner Bachelorarbeit und
der Entstehung dieses Dokuments unterstützt haben bedanken. Im besonderen möchte ich
mich bei Asim Abdulkhaleq bedanken der mich als Betreuer der Bachelorarbeit unterstützt
hat. Des weiteren geht mein Dank an Professor Dr. Stefan Wagner für die Betreuung
des Themas. Als letztes möchte ich mich noch bei allen Korrektoren dieses Dokuments
bedanken.

3

Inhaltsverzeichnis

1 Einleitung 8
1.1 Motivation . 8

1.2 Problemstellung . 8

1.3 Zielsetzung . 9

1.4 Gliederung . 9

2 Grundlagen 10
2.1 STAMP . 10

2.2 STPA . 10

2.3 Software Sicherheitsverifikation . 12

2.3.1 Linear Temporal Logic . 13

2.3.2 Computation Tree Logic . 15

2.3.3 Spin Model Checker . 17

2.3.4 Promela . 17

2.3.5 NuSMV Model Checker . 18

2.3.6 Die NuSMV Eingabesprache . 19

2.3.7 Model Extraction . 21

2.4 STPA SwISS: STPA for Software-Intensive Systems Approach 23

2.5 Tool Unterstützung . 24

2.5.1 XSTAMPP . 25

2.5.2 A-STPA . 25

2.5.3 XSTPA . 26

3 Analyse und Entwurf 28
3.1 Architektur . 28

3.2 Algorithmus . 29

3.3 Klassendiagramme . 31

3.4 GUI Entwurf . 33

4 Implementierung 36
4.1 Funktionen . 36

4.1.1 LTL Import von A-STPA Projekten . 36

4.1.2 Verwalten der Sicherheitsanforderungen 36

4.1.3 Einrichten und konfigurieren der Model Checker 38

4.1.4 Promela Modell aus C-Code extrahieren 39

4.1.5 Ausführung einer Verifikation . 40

4.1.6 Logging . 42

4

4.1.7 Darstellung der Ergebnisse einer Verifikation 43

4.1.8 Export der Ergebnisse . 45

4.2 Systemtest . 45

5 Anwendungsbeispiel 47

6 Setup 55
6.1 Installation . 55

7 Zusammenfassung und Ausblick 57
7.1 Zusammenfassung . 57

7.2 Ausblick . 57

7.2.1 Limitierungen des Modex Werkzeugs . 57

7.2.2 Future work . 58

Literaturverzeichnis 59

5

Abbildungsverzeichnis

2.1 Schema einer STPA Analyse . 10

2.2 Das Bild zeigt die Kontexttabelle für die open door Regelungsaktion in dem in
[Tho13] vorgeführten „Train“Beispiel . 12

2.3 Visualisierung der LTL Formel G (¬(Action=close) U (Signal=free)) 14

2.4 Visualisierung der CTL Formel AG(¬(Action=close) U (Signal=blocked)) . . . 16

2.5 Das "make_ pcSScript welches in den Modex 2.8 Quelldateien beigelegt ist . . 22

2.6 Ein Beispiel für die automatische Extraktion eines Promela Modells aus C-
Code durch Modex 2.8 . 23

2.7 Ansicht des in [AWL15] vorgeschlagenen Ansatzes zur STPA basierten Sicher-
heitsverifikation in Software intensiven Systemen 24

2.8 Die Architektur von XSTAMPP . 25

2.9 Die XSTAMPP Plattform 2.0.2 mit einem geöffneten A-STPA 2.0.5 Editor zur
Protokollierung unsicherer Regelungsaktionen 26

2.10 The XSTAMPP 2.0.2 Platform with XSTPA 1.0.2 27

3.1 Architektur des STPA Verifier Plug-in’s . 29

3.2 Algorithmus des STPA Verifier Plug-ins basierend auf dem Konzept von STPA
SwISS [AWL15] . 30

3.3 Klassendiagramm des stpaVerifier.model und stpaVerifier.controller.model Pakets . 31

3.4 Darstellung des stpaVerifier.controller.preferences Pakets und den Beziehungen
mit den UI Konfigurationsklassen und dem stpaVerifier.util.jobs Paket 32

3.5 Klassendiagramm des stpaVerifier.util.commands Pakets 33

3.6 Der finale GUI Entwurf des STPA Verifiers . 34

3.7 Oberfläche der STPA Verifiers in der in dieser Arbeit vorgestellten Version 1.0.0 35

4.1 Die Toolbar für die Verwaltung der CTL/LTL Tabelle 36

4.2 Die LTL/CTL Formel Tabelle auf der STPA Verifier Oberfläche 37

4.3 Die Konfigurationsoberfläche des STPA Verifier in Version 1.0.0 38

4.4 Die Konfigurationsoberfläche zur Verlinkung und Ausführung von Modex
unter Windows(links) und unter Linux (rechts) 39

4.5 Die Toolbar für die Ausführung und Kontrolle einer Sicherheitsverifikation
während einer Sicherheitsverifikation . 40

4.6 Diagramm der Zustandsübergänge der Sicherheitsanforderungen 42

4.7 Die STPA Verifier Konsole zeigt dem Benutzer sämtliche Ausgaben der inter-
nen Programmaufrufe . 43

4.8 Darstellung eines Gegenbeispieles für die Anforderung G(counter<4) an einen
Modulo 6 Zähler in der Counterexample UI des STPA Verifiers 44

6

4.9 Darstellung des Resultats Diagramms für das in Kapitel 4.1 benutzte Beispiel
eines Modulo 6 Zählers . 44

4.10 Die Struktur der STPA Verifier Export Funktionen (links) und Beispielhaft der
Wizard eines Verifikations Reports . 45

4.11 Die für den Systemtest verwendeten Modelle in der NuSMV 2.6.0 Eingabe-
sprache(links) und in Promela(rechts) . 46

5.1 Sicherheitsregelstruktur, des in ACC stop& go Systems, mit Prozess Modell
aus dem sich die LTL Formeln ableiten lassen 48

5.2 Ausschnitt aus der, aus XSTAMPP exportierten, Liste von verfeinerten Si-
cherheitsanforderungen, die mithilfe des XSTPA Plug-ins Version 1.0.2 und
A-STPA 2.0.5 erstellt wurden . 49

5.3 Ausschnitt aus der, aus XSTAMPP exportierten, Liste von LTL Sicherheitsan-
forderungen, die mithilfe des XSTPA Plug-ins Version 1.0.2 und A-STPA 2.0.5
erstellt wurden . 50

5.4 Die Oberfläche des STPA Verifiers im NuSMV Modus während einer Sicher-
heitsverifikation des ACCSimulators . 51

5.5 Beispielhafte Darstellung der Ergebnisse einer Sicherheitsverifikation des
Promela Modells des ACCSimulator mit Spin 6.4.5 von 70 Anforderungen als
Kuchendiagramm . 52

5.6 Darstellung der Ergebnisse einer Sicherheitsverifikation des Promela Modells
des ACCSimulator mit Spin 6.4.5 von 70 Anforderungen mittels des Resultats
Diagramms welches ein Prozent/Zeit Diagramm der Verifikations Werte darstellt 53

5.7 Ausschnitt aus der Resultats-Tabelle einer Sicherheitsverifikation des Promela
Modells des ACCSimulator mit Spin 6.4.5 von 70 Anforderungen 54

5.8 Beispielhafte Darstellung eines von Spin 6.4.5 berechneten Gegenbeispieles im
STPA Verifier . 54

7

Tabellenverzeichnis

2.1 Definitionen der . 16

2.2 Tabelle der in Promela definierten Variablen Typen [Hol16] 18

2.3 Erweiterung der temporalen Operatoren für die Definition von CTL Spezifi-
kationen in NuSMV 2.6 . 20

2.4 Erweiterung der temporalen Operatoren für die Definition von CTL Spezifi-
kationen in NuSMV 2.6 . 21

4.1 Tabelle der Zustände die eine Anforderung annehmen kann, und deren Re-
präsentation in der LTL/CTL Tabelle . 41

4.2 Tabelle der LTL Tests mit erwartetem und angezeigtem Ergebnis der Verifika-
tion . 46

8

Abkürzungsverzeichnis

A-STPA Automated STPA
BDD Binary decision diagrams
BMC Bounded Model Checking
CTL Computation tree logic
LTL Linear temporal logic
NNF Negation Normal Form
NuSMV A new symbolic model checker
Promela Process Meta Language
SMV Symbolic Model Checker
Spin Simple Promela Interpreter
STPA System Theoretic Process Analysis
STPA SwISS STPA for Software-Intensive Systems
STAMP Systems-Theoretic Accident Model and Processes
XSTAMPP An eXtensible STAMP Platform
XSTPA eXtended STPA

9

1 Einleitung

1.1 Motivation

Software gewinnt immer an mehr Bedeutung in komplexen Systemen und übernimmt
zunehmend vitale Funktionen des Systems. Aus diesem Grund ist es immer wichtiger
Software nicht nur auf Zuverlässigkeit sondern auch auf Sicherheit im Systemkontext zu
prüfen [AW15a]. Viele Gefährdungen und Unfälle in modernen Systemen entstehen oft trotz
tadellos funktionierender Software oder gerade auf Grund dieser. In den letzten Jahren
wurden die Möglichkeit der automatisierten Softwareverifikation mittels formaler Methoden
wie Model Checking immer attraktiver und effizienter durch Softwarelösungen wie den
Spin oder NuSMV Model Checker. Doch trotz der immer zuverlässigeren Methoden der
System Verifikation und zuverlässigen Gefährdungsanalysen wie STPA besteht immer noch
eine Lücke zwischen Sicherheitsanforderungen auf Systemebene die aus einer STPA Analyse
resultieren und der Verifikation dieser auf Implementierungsebene durch Formulierung
logischer Eigenschaften in einer temporalen Logik.

1.2 Problemstellung

Diese Arbeit nimmt als Grundlage die von Nancy G. Leveson vorgestellte STPA Analyse
[Lev11]. Mithilfe dieser Methode lassen sich Systeme auf Gefährdungen und Fehlverhalten
hin analysieren wodurch Sicherheitsanforderungen im Systemkontext abgeleitet werden kön-
nen. Diese Analyse bietet den Vorteil das sie zur Verfeinerung ihres Ergebnisses das Prozess
Model der Software ableitet wodurch sich durch Erweiterung des Prozesses [Tho13] schnell
konkrete Sicherheitsanforderungen an die Software ableiten lassen. Um diese, in natürlicher
Sprache formulierten Sicherheitsanforderungen jedoch zur Verifikation der Software auf
Implementierungsebene zu nutzen sind weitere Schritte notwendig. In der Ausarbeitung
von Abdukhaleq et al.[AWL15] wird ein umfassender Ansatz zur Verifikation von Software
gegen die Ergebnisse einer STPA Gefährdungsanalyse vorgestellt. Dieser sieht den Einsatz
sogennanter Model Checker [McM93, Hol07] vor um die zuvor in eine temporale Logik
[Muk97] überführten Anforderungen auf Implementierungsebene zu verifizieren.

10

1.3 Zielsetzung

1.3 Zielsetzung

Ziel dieser Bachelorarbeit ist die Erstellung des STPA Verifiers als Plug-in zur Einbindung
formaler Softwareverifikation durch Modellüberprüfung in die schon existierende XSTAMPP
Platform. Das Resultat dieser Arbeit soll eine effiziente Überprüfung der Ergebnisse einer
STPA Analyse auf Softwareebene ermöglichen sowie die Formulierung und Verwaltung von
Sicherheitsanforderungen in LTL(Kapitel 2.3.1) sowie CTL(Kapitel 2.3.2) Syntax.

Eine weitere Anforderung an das Entwickelte Plug-in ist die automatisierte Nutzung des
Modex Werkzeugs(Kapitel 2.3.7) und damit die Ableitung von System Modellen auf Imple-
mentierungsebene.

Um eine effektive Nutzung des Werkzeugs zu ermöglichen wird eine leicht zu bedienende
Oberfläche zur Einbindung und Nutzung der beiden Model Checker Spin (Kapitel 2.3.3)
und NuSMV (Kapitel 2.3.5) benötigt. Diese sollte über Komponenten zur Durchführung
automatisierter Verifikationssequenzen und Darstellung derer Ergebnisse verfügen.

Als letztes sollte der STPA Verifier über eine Export Funktion verfügen die es erlaubt die
Ergebnisse der Verifikation(-en) sowohl in PDF, PNG als auch als CSV Datei abzuspeichern.

1.4 Gliederung

Dieses Dokument ist wie folgt in sechs Kapitel aufgeteilt.

1. Kapitel 2 stellt die Grundlagen dieser Bachelorarbeit vor. Die Grundlagen sollen eine
Einführung in die Terminologie dieser Arbeit geben.

2. Kapitel 3 zeigt die Analyse der vorgestellten Zielstellung. Im zweiten Teil des Kapitels
wird der Entwurf und die Konzeption der Implementierung vorgestellt.

3. Kapitel 4 präsentiert die Implementierung und die Funktionen des STPA Verifiers.

4. in Kapitel 5 stellt anhand einer konkreten Anwendung die Funktionsweise des Werk-
zeugs vor.

5. Kapitel 6 beinhaltet eine Installationsanleitung sowie eine Liste an Anforderungen
und Links um den STPA Verifier nutzen zu können.

6. Kapitel 7 fasst den Inhalt dieses Dokuments zusammen und schließt dann mit einem
Ausblick auf weiterführende Ansätze.

11

2 Grundlagen

2.1 STAMP

STAMP ist ein von Leveson [Lev04] 2004 vorgestelltes Unfall Model welches Fehlverhalten
und dadurch resultierende Unfälle mithilfe theoretischer Betrachtung des Systems analysiert
und so versucht einen Unfall auf Interaktionsfehler zwischen bzw. mit den Komponenten zu-
rückzuführen, anstatt auf Ausfälle. STAMP basiert auf der Betrachtung eines Systems durch
Betrachtung seiner Sicherheitsregelstruktur (engl.: controlstructure) und der Ableitung von
Sicherheitsanforderungen (engl.: safety constraints) die unsichere Regelungen unterbinden.
STAMP bietet eine generelle Grundlage für eine systemtheoretische Sicherheitsanalyse.

2.2 STPA

STPA ist eine 2004 von Leveson [Lev11] veröffentlichte Gefährdungsanalyse die eingesetzt
werden kann um natürlichsprachliche Sicherheitsanforderungen für ein bestehendes Sys-
tem abzuleiten oder einen Entwicklungsprozess Sicherheitstechnisch zu optimieren. Die
Analyse orientiert sich dabei vor allem an den Interaktionen der im System existierenden
Komponenten wobei sowohl mechanische Bauteile, Software als auch Menschen als solche
betrachtet werden. Durch diese Betrachtungsweise gelingt es nicht nur Fehlfunktionen ein-
zelner Komponenten zu erkennen sondern auch jede Art von gefährdender Interaktion oder
Kommunikation.

Abbildung 2.1: Schema einer STPA Analyse

Wie bereits erwähnt kann STPA generell für zwei Szenarien eingesetzt werden, einen geführ-
ten Entwicklungsprozess oder die Überprüfung/Optimierung eines bestehenden Systems.
In beiden Fällen muss vor Beginn der Analyse eine Liste der bestehenden oder gewünschten
Systemanforderungen sowie möglichen bekannten Sicherheitslücken oder Unfallszenarien

12

2.2 STPA

aufgestellt werden. Des weiteren benötigt STPA als Eingabe eine schematische Darstellung
der Sicherheitsregelstruktur des Systems die sämtliche Komponenten sowie deren Kommu-
nikationskanäle untereinander beschreibt. Die darauf folgende eigentliche Analyse umfasst
im Wesentlichen zwei Schritte:

1. Im ersten Schritt von STPA werden alle im System möglichen Regelungsaktionen
analysiert. Bei Identifikation möglicher unsicherer Regelungsaktionen unterscheidet
STPA zwischen vier möglichen Ursachen:

• Die Gefährdung entsteht durch ein Ausbleiben der Aktion

• Die Gefährdung entsteht durch die Ausführung der Aktion

• Die Gefährdung entsteht durch eine zeitlich versetzte Ausführung der Aktion

• Die Gefährdung entsteht durch eine zu lang oder zu kurz dauernde Ausführung
der Aktion

Durch die Analyse, bezogen auf diese vier Punkte, lässt sich eine Liste an potenziell
unsicheren Regelungsaktionen ableiten die sich mittels relativ einfacher grammatikali-
scher Umformungen in Sicherheitsanforderungen übersetzten lassen.

2. Im zweiten Schritt werden die gerade aufgestellten unsicheren Regelungsaktionen
anhand des Softwarecontrollers des Systems betrachtet. Folglich muss die bestehende
Darstellung der Sicherheitsregelstruktur um die Prozessmodelle der dem System zu-
grunde liegenden Abläufe erweitert werden. Das Ziel dieses zweiten Schrittes ist mit
Hilfe dieser Erweiterungen die Gültigkeit der abgeleiteten Sicherheitsanforderungen
im Systemkontext zu verifizieren und mögliche gefährdenden Abläufe zu analysieren.
Dies gelingt durch eine Ursachenanalyse pro Komponente; d.h. eine genaue Untersu-
chung des bzw. der Prozessmodelle unter Voraussetzung der bis hierhin analysierten
Sicherheitsanforderungen.

Erweiterung durch John Thomas

2013 wurde in der Veröffentlichung [Tho13] eine Erweiterung von STPA präsentiert die die in
Schritt 2 durchgeführte Ursachenanalyse automatisiert und so versucht den Anteil der iden-
tifizierten Risiken im System deutlich zu erhöhen. Dabei werden aus den Prozessmodellen
die Prozessvariablen und deren Belegungen ausgelesen und für jede, als sicherheitskri-
tisch befundener Regelungsaktion, in N ∗M Kontexttabellen mit N = Anzahl der für die
Regelungsaktion relevanten Prozessvariablen und N die Anzahl an Wertekombinationen
ist.

13

2.3 Software Sicherheitsverifikation

Abbildung 2.2: Das Bild zeigt die Kontexttabelle für die open door Regelungsaktion in dem
in [Tho13] vorgeführten „Train“Beispiel

2.3 Software Sicherheitsverifikation

Sicherheitsverifikation ist der Versuch eine Software von Sicherheitsrisiken zu befreien. Hier-
für unterscheidet man generell zwischen zwei Ansätzen. Der erste mit dem sich diese Arbeit
nicht tiefer gehend beschäftigen will ist die dynamische Verifikation, also die Verifikation
zur Laufzeit einer Software. Eine klassische dynamische Analyse besteht aus Erstellung und
Durchführung von Testfällen.
Ein zweiter Ansatz ist die Verifikation mittels formaler Methoden. Diese teilen sich in drei
Unterkategorien:

1. Verifikation durch Beweis eines formalen Theorems

2. Durch Deduktion

3. Durch Model Checking
Der Ansatz des Model Checkings basiert im Wesentlichen auf der abstrakten Model-
lierung eines System und dem anschließenden Durchlaufen sämtlicher erreichbarer
Systemzustände. Model Checking ist eine immer verbreitetere Methode um ein Softwa-
re intensives System auf formale Anforderungen an Sicherheit und Lebendigkeit zu
überprüfen. Um ein System mittels Model Checking zu überprüfen wird ein, in einer
passenden Modellsprache wie Promela oder der NuSMV Eingabesprache geschrie-
benes, Systemmodell benötigt. Dieses wird entweder anhand des Softwaresystems
abgeleitet oder wie in Kapitel2.3.7 beschrieben aus einer Quellcode Datei extrahiert.

14

2.3 Software Sicherheitsverifikation

Abhängig von der Implementierung des benutzten Model Checkers können zwei
mögliche Vorgehensweisen zum Einsatz kommen:

3.1. Explizites Model Checking transformiert zuerst das gegebene Systemmodell in
eine effizient zu durchlaufende Form. Ein Beispiel für ein solches System ist das
in Kapitel 2.3.3 vorgestellte Werkzeug Spin.

3.2. Symbolisches Model Checking basiert wie der Name schon sagt auf einer symbo-
lischen Repräsentation der Zustandsüberänge. Die Idee des symbolischen Model
Checkings ist es statt wie im oberen Fall ein Transitionensystem zu entwickeln,
lediglich die Zustandsmenge sowie eine Übergangsfunktion abzuspeichern. Der
Aufbau dieser Funktion ist vom Aufbau der zu überprüfenden Eigenschaft ab-
hängig [Roz11]. Diese Arbeit beschränkt sich auf Formeln im LTL oder im CTL
Syntax. Beim symbolischen CTL Model Checking werden die Zustandsübergänge
und die Formeln selbst in binären Entscheidungsdiagrammen (englisch BDD)
festgehalten.

2.3.1 Linear Temporal Logic

Sprache und Kalkül um Eigenschaften von Zustandsfolgen auszudrücken, ohne die Zeit
explizit zu erwähnen.

H. Peter Gumm [Gum07]

Die lineare temporale Logik kurz LTL ist eine temporale Logik mit deren Hilfe man logische
Ausdrücke und deren Gültigkeit über die Zeit formulieren kann. Die Logik erweitert die
ihr zugrundeliegende Aussagenlogik durch die Betrachtung in einem zeitlichen Kontext.
Dadurch eignet sich die LTL gut um die Gültigkeit von Sicherheitseigenschaften in einer
linearen Sequenz von Systemzuständen zu überprüfen. Eine Formel in LTL ist eine Kombi-
nation aus logisch verknüpften aussagenlogischen Ausdrücken mit einem der temporalen
modalen Operatoren:

1. αUβ (Until) um Auszusagen das eine Eigenschaft α gelten muss bis β eintritt

2. X α(neXt) wenn ein Ausdruck β gelten muss sobald ein anderer α unwahr wird

Wobei auch meistens die folgenden Kombinationen als gegeben angesehen werden.

1. Fα = trueUα wenn eine Eigenschaften auf jeden Fall irgendwann wahr werden muss

2. Gα = ¬F¬α oder [] für global gültige Eigenschaften wahr werden muss

3. αRβ = ¬(¬αUβ) wenn ein Ausdruck α gültig sein muss bis einschließlich dem ersten
Systemzustand in dem b gilt.

Mit diesen Definitionen lassen sich anspruchsvolle Eigenschaften wie Sicherheits- oder
Lebendigkeitsanforderungen über die Laufzeit eines Programms nach folgenden Regeln
definieren[BK08].

15

2.3 Software Sicherheitsverifikation

Abbildung 2.3: Visualisierung der LTL Formel G (¬(Action=close) U (Signal=free))

λ ::= true | a | λ1 ∧ λ2 | ¬λ | Xλ | λ1Uλ2

Mit einer so definierten Regel kann eine Ausführungssequenz auf Gültigkeit einer Eigen-
schaft, mit Bezug auf die Änderung des Zustandspfades über die Laufzeit, betrachtet werden.
Dabei ist mit ’Änderung des Zustandspfades’ die Betrachtung von Zustandsübergängen
gemeint, also die Änderung der Ausführungsattribute. Um die Formulierung von Eigen-
schaften in LTL Syntax zu demonstrieren stelle man sich eine Zugtür vor, diese darf sich
nicht schließen wenn jemand im Weg steht. Nun sei close der Befehl des Systems die Tür
zu schließen und free das Signal das der Einstieg frei ist, dann drückt G (¬(Action=close) U
(Signal=free)) aus dass die Tür sich erst schließen darf wenn der Einstieg frei ist.

Darstellung als Büchi Automat Eine weitere sehr praktische Eigenschaft der LTL ist das
verschiedene Algorithmen [VW94][KMMP93] existieren um einen äquivalenten Büchi Auto-
maten zu konstruieren. Dieser bildet den Grundstein für die Verifikation einer Eigenschaft
mittels expliziter Model Checking.

NNF Jede LTL Formel kann in negative Normal Form übersetzt werden, was unter anderem
für im BMC(siehe Kapitel 2.3.5) benötigt wird, indem Negationen nur direkt vor atomaren
Funktionen erlaubt werden [BCC+

03]. Negationen in einer LTL Formel können mittels
Anwendung der Regeln nach De-Morgan und den Dualitäten zwischen den temporalen
Operatoren verschoben werden;
ein Beispiel wäre:

LTL0 = ¬G(pRq)

≡ F¬(pRq)

≡ F¬(¬pU¬q)

Diese Arbeit konzentriert sich vor allem auf die von Abdulkhaleq und Wagner [AW15a] vor-
gestellte Methode, mittels derer die Ergebnisse einer STPA Analyse direkt in LTL ausgedrückt
werden.

16

2.3 Software Sicherheitsverifikation

2.3.2 Computation Tree Logic

CTL ist die zweite von zwei, hier vorgestellten, temporalen Logiken die im Bereich der
Modellprüfung zum Einsatz kommen. Anders als bei der im letzten Kapitel vorgestellten
LTL betrachtet die CTL eine Programmausführung nicht als lineare Folge von Zuständen
sondern als Baumstruktur d.h. das jeder Systemzustand mehrere mögliche Folgezustände
haben kann. Um diese mehrdimensionale Betrachtung zu realisieren beinhaltet die Definition
von CTL Formeln zwei Komponenten. Die Überprüfung der Zustandsvariablen geschieht
durch Bildung von Zustandsformeln die nach folgenden Regeln aufgebaut sind:

λ ::= true | a | λ1 ∧ λ2 | ¬λ | Eϕ | Aϕ

Wobei A und E genutzt werden um die Gültigkeit auf den nachfolgenden Pfaden wie folgt
zu beschreiben:

1. A die Eigenschaft gilt auf allen ausgehenden Pfaden

2. E es Existiert mindestens ein Pfad auf dem die Eigenschaft gilt

Und ϕ die schon in LTL genutzten temporalen Operatoren X(next) und U(until) nutzt um
die, durch A oder E selektierten Pfade, in einem temporalen Kontext zu durchsuchen:

ϕ ::= Xλ | λ1Uλ2

Auch hier lassen sich wieder die Operatoren G(globally) und F(finally) wie bei LTL aus den
temporal Operatoren kombinieren. Allerdings ändern sich die Dualitäten da die Operatoren
immer von den Pfad Quantoren abhängen:

• G

– [A | E] G p ≡ [A | E](true U p)

• F

– [A | E] F p ≡ ¬[A | E] G ¬p

17

2.3 Software Sicherheitsverifikation

Abbildung 2.4: Visualisierung der CTL Formel AG(¬(Action=close) U (Signal=blocked))

EX p p gilt in mindestens einem nächsten Zustand
auf irgendeinem Pfad

EF p p gilt in einem Folgezustand
auf irgendeinem Pfad

EG p Es existiert ein Pfad auf dem p dauerhaft gilt
E(p U q) Es gibt einen Pfad auf dem p aktuell

oder in einem Folgezustand gilt und auf dem p
bis (ein-/ausschließlich) zu diesem Zustand gilt

AX p p gilt in mindestens einem nächsten Zustand
auf irgendeinem Pfad

AF p p gilt in einem Folgezustand
auf irgendeinem Pfad

AG p Es existiert ein Pfad auf dem p dauerhaft gilt
A(p U q) Es gibt einen Pfad auf dem p aktuell

oder in einem Folgezustand gilt und auf dem p
bis (ein-/ausschließlich) zu diesem Zustand gilt

Tabelle 2.1: Definitionen der

18

2.3 Software Sicherheitsverifikation

2.3.3 Spin Model Checker

In diesem Abschnitt soll der von Gerard J. Holzmann [Hol04] Model Checker Spin vorgestellt
werden. Außerdem wird auf die verschiedenen, in dieser Arbeit referenzierten Funktionen
von Spin sowie das ebenfalls von Holzmann vorgestellte Werkzeug Modex.

Spin ist ein Werkzeug zur Verifikation von Sicherheits- und Lebendigkeitsanforderungen
an ein System basierend auf Büchi Automaten [Hol97]. Um die Anforderungen effizient
in einem Systemkontext überprüfen zu können müssen diese in Form von LTL Formeln
(siehe Kapitel:2.3.1) vorliegen. Diese LTL Formeln können dann von Spin „on-the-fly“in
Büchi Automaten [Tho90], also formell überprüfbare endliche Automaten, umgewandelt
werden. Spin geht davon aus das die Anforderungen als sogenannte „never claims“, also
Bedingungen die nie auftreten sollen, formuliert sind. Durch diesen Trick ist es möglich die
Gültigkeit einer Sicherheitsanforderung zu zeigen indem man beweist das der zu Grunde
liegende Automat für keinen erreichbaren Systemzustand terminiert. Falls der Beweis schief
geht, zeichnet Spin den akzeptierten Systemzustand auf und speichert ihn als Gegenbeispiel
der überprüften Anforderung ab.

Ein so modelliertes System kann dann von Spin , in für die betrachtete Problemstellung
optimierten C-Code, umgewandelt werden. Dadurch wird das eigentliche Model Checking
nicht von Spin sondern einem externen „Verifier Programm“durchgeführt.

2.3.4 Promela

Spin ließt Modelle in der Sprache Promela(Process Meta Language), einer prozessorientierten
Modellsprache, ein. In Promela kann die Ausführung eines Systems abgebildet und dessen
erreichbare Zustände analysiert werden. Um dies zu erreichen bietet Promela die Mög-
lichkeit ein System als Zusammensetzung aus bis zu 256 Prozessen, 255 global oder lokal
definierten Kommunikationskanälen sowie beliebig vielen Prozess- oder Systemvariablen zu
modellieren.
Ein Prozess p kann als initial aktiv mit active proctype p() {...}
oder als Prozess Definitionen mit proctype p(arg0, .., argn) {...}
modelliert werden wobei im zweiten Fall eine Instanz erst durch run p(arg0, .., argn) erzeugt
wird. Durch diese Definition ist es möglich ein System entweder gleich mit mehreren aktiven
Prozessen zu starten oder mithilfe eines Initiierungsblocks (Init {...}) zu starten.

Prozessinstanzen werden dann asynchron ausgeführt und können untereinander mithilfe
global definierter Kommunikationskanäle Nachrichten austauschen. Der Syntax zur Dekla-
ration von Variablen ist analog zum C Syntax, dabei sind die zur Verfügung stehenden
Typen:

19

2.3 Software Sicherheitsverifikation

Typ Werte Bsp. Definition
bool true,false bool var = true;
byte 0 ... 255 byte var = 2;
mtype 1 ... 255 mtype = {on, off, error} (on = 3, off = 2, error = 1)
pid 0 ... 255 pid var = run p() die Instanz Nummer eines Prozesses
short −215 .. 215 − 1 short var = -3
int −2n .. 2n − 1 int var = 2 n ist abhängig von der

Prozessorarchitektur
chan 1 ... 255 chan var = [4] {mtype, int } eine Nachricht in var enthält

ein mtype und ein int

Tabelle 2.2: Tabelle der in Promela definierten Variablen Typen [Hol16]

2.3.5 NuSMV Model Checker

In diesem Abschnitt wird der in dieser Arbeit eingesetzte NuSMV Model Checker vorgestellt
und seine Funktionsweise grob dargestellt. NuSMV [McM93] ist wie das im Kapitel 2.3.3 vor-
gestellte Werkzeug Spin ein Model Checker der eingesetzt wird um Zustandsspezifikationen
in einem System zu überprüfen. Anders als Spin setzt NuSMV hier allerdings auf BDD(Binary
Decision Diagram) und seit Version 2.0 auch auf ein SAT(satisfaction problem)[CGP+

02]
basierendes symbolisches Model Checking. Hierbei kann NuSMV ein System welches als
endlicher Automat, in der NuSMV Eingabesprache (siehe Kapitel 2.3.6) vorliegt, gegen
Anforderungen in LTL, CTL oder PSL sowie auch gegen Invarianten überprüfen.

Wie auch bei Spin ist NuSMV rein kommandozeilenbasiert wobei der Nutzer hier entscheiden
kann ob er eine Verifikation entweder durch Ausführung eines klassischen Batch-Befehls
oder durch Aufruf von NuSMV im interaktiven Modus durchführen will. Beide Modi bieten
die Möglichkeit sowohl SAT- als auch BDD-basiertes Model Checking durchzuführen. Da
aber die Batch-Methode lediglich im Modell definierte Sicherheitsanforderungen berück-
sichtigt und bei weitem nicht die Konfigurationen bietet, beschränkt sich dieses Dokument
auf den interaktiven Modus. Abhängig von der gewünschten Verifikationsmethode, wobei
zu beachten ist das die SAT Methode nur LTL Formeln akzeptiert, sind folgende Schritte
durchzuführen:

• beim BDD Model Checking konstruiert NuSMV ein binäres Entscheidungsdiagramm
aus dem Systemmodell. Wenn ein so konstruiertes BDD vorliegt kann entweder eine
im Modell oder direkt in der Shell definierte Anforderung in CTL oder LTL überprüft
werden. Hierzu sei erwähnt dass das BDD Model Checking wie der Name schon sagt
auf Entscheidungen basiert und damit auf die Überprüfung von CTL Anforderung
beschränkt ist [CGP+

02]. Um BDD basiertes LTL Model Checking durchzuführen
reduziert [EMC09] NuSMV das Problem auf die Verifikation einer CTL Anforderung
durch Konstruktion eines Tableaus(auch Kripke Struktur) welches alle Zustände der
Potenzmenge der atomaren Funktionen der LTL Formel beinhaltet.

20

2.3 Software Sicherheitsverifikation

• beim BMC(Bounded Model Checking) wird ein Erfüllbarkeitsproblem aus dem vor-
liegenden Transitionen System M, in Form einer Kripke Struktur [Gum], und einer
zu überprüfenden LTL Eigenschaft φ, in NNF, gebildet. Der Verifikationsprozess be-
steht darin für sämtliche Pfade auf die Erfüllung von φ hin zu überprüfen. Wobei die
Suchtiefe durch einen gegebenen Umfang (’bound’) beschränkt wird (siehe [BCC+

03].

2.3.6 Die NuSMV Eingabesprache

In diesem Kapitel wird eine generelle Übersicht über die Eingabesprache des NuSMV Model
Checkers gegeben wie sie im Benutzerhandbuch zur der Anfang 2016 aktuellen Version
2.0.6 1. Dabei ist das Ziel dieses Kapitels nicht den genauen Aufbau eines NuSMV Modells
darzustellen; dafür wird auf die Spezifikation der Sprache in der gewünschten Version
verwiesen die auf der NuSMV Homepage2 zu finden ist.
Für den NuSMV Model Checker definierte Modelle von endlichen Zustandsmaschinen be-
stehen aus einem oder mehreren Modulen. Dabei muss ähnlich wie in C ein „main“-Modul
existieren, welches den Einstiegspunkt definiert und jedes weitere Modul als Zustandsvaria-
ble enthält. Jedes Modul stellt einen parallelen Prozess dar der im Wesentlichen aus einer
Menge von Zustandsvariablen und Zustandsübergangsrestriktionen besteht. Optional kann
ein Modul, bis auf das „main“-Modul, noch eine Menge an Aufrufparametern, in Klammern
hinter dem Bezeichner, definieren. Dabei beginnt die Definition einer Zustandsvariablen
mit dem Codewort VAR gefolgt von dem gewählten Variablennamen gefolgt von einer oder
mehrerer Variablennamen und einem der Typenbezeichner:

1. boolean: für eine boolesche Variable

2. n .. m: für eine Integervariable mit dem die Werte aus dem Intervall [n,m] annehmen
kann, wobein > −231 und m < 231

3. {n0, n1, ..., nm}: In NuSMV kann ein Enum durch Definition einer Folge, deren Glieder
Integer- oder String-Konstanten seien können.

4. [signed, unsigned] word[N] wobei ein Wort der Länge drei (N=3) ein drei stelliger Bit
Vektor zur Speicherung boolescher Werte ist.

5. modulname ein Modul kann durch Instanziierung der Ausführungssequenz hinzugefügt
werden, hierbei müssen alle vom Modul verlangten Parameter „by-value“übergeben
werden.

Ein simples Beispiel ist das hier gegebene Programm, welches einen einfachen „Modulo Vier
Zähler“definiert:

MODULE main
VAR

1http://nusmv.fbk.eu/NuSMV/userman/v26/nusmv.pdf
2http://nusmv.fbk.eu/

21

2.3 Software Sicherheitsverifikation

counter : 0 .. 10;
ASSIGN
init(counter) := 0;
next(counter) := (counter + 1) mod 4;

Hier wird nur das notwendige „main“-Modul benutzt welches die Zustandsvariable counter
mit dem Intervall [0,10] definiert. Durch das Schlüsselwort ASSIGN wird counter erst auf
null initialisiert und dann durch next() in jedem weiteren Zustand auf (counter + 1) mod 4
gesetzt.
NuSMV akzeptiert sowohl LTL als auch CTL, timed CTL, Invarianten und PSL Spezifikationen
die entweder dem Kommandozeilenbefehl oder der NuSMV Shell übergeben wurden oder
direkt im Modell definiert sind. Aufgrund des Kontextes dieser Arbeit, die sich lediglich
auf die Spezifikation von CTL und LTL beschränkt, seien hier kurz die Eigenheiten der
Formulierungen aufgezeigt:

• LTL Spezifikationen

G [n,m] p bounded wahr wenn p in allen Zuständen, die minimal n
gobally und maximal m Schritte in der Zukunft liegen, gilt

F [n,m] p bounded wahr wenn p in allen Zuständen, die minimal n
finally und maximal m Schritte in der Zukunft liegen, irgendwann gilt

Y p wahr wenn p im letzten Zustand galt
Z p wahr wenn der aktuelle Zustand der initiale ist

oder Y p gilt
H p historically wahr wenn p in allen vorausgegangenen

Zuständen wahr war (vgl. G)
H [n,m] p bounded wahr wenn p in allen Zuständen, die maximal n

historically und minimal m Schritte zurückliegen, galt
O p once wahr wenn p mindestens einmal in der

Vergangenheit wahr war (vgl. F)
O [n,m] p bounded once wahr wenn p in allen Zuständen die maximal n

und minimal m Schritte zurückliegen mindestens einmal galt
p S q p since q wahr wenn p seit einem Zeitpunkt t

′
,

t
′

nicht eingeschlossen, an dem q galt, gilt
p T q p triggered q wahr wenn p zu einem Zeitpunkt t

′
galt

und q seit einschließlich dieses Zeitpunktes gilt.
Wenn p nie galt dann H q

Tabelle 2.3: Erweiterung der temporalen Operatoren für die Definition von CTL
Spezifikationen in NuSMV 2.6

22

2.3 Software Sicherheitsverifikation

• CTL Spezifikationen

E [pU q] exists wahr wenn es einen Pfad gibt so dass,
until p auf dem gesamten Pfad gilt bis q wahr wird

A [pU q] forall wahr wenn auf allen Pfaden gilt dass,
until p auf dem gesamten Pfad gilt bis q wahr wird

Tabelle 2.4: Erweiterung der temporalen Operatoren für die Definition von CTL
Spezifikationen in NuSMV 2.6

2.3.7 Model Extraction

Um ein Softwaresystem in ein Modell für einen Model Checker zu übersetzten gibt es
mehrere denkbare Möglichkeiten [AW15a]. Eine sehr elegante Lösung bietet das von Bell
Laboratories veröffentlichte Werkzeug Modex [HHS01]. Modex übersetzt C-Code direkt in
Promela wodurch man in der Lage ist Systemmodelle direkt auf Implementierungsebene
abzuleiten. Modex ist lediglich als Quellcode verfügbar und muss lokal kompiliert und
installiert werden. Modex ist für eine Unix/Linux Umgebung konzipiert, wodurch eine
Installation hier lediglich die auf der Homepage des Projektes3 beschriebenen Schritte
benötigt 4.
Die Kompilierung auf Windows Rechnern benötigt eine Cygwin5 Umgebung. Das innerhalb
der Cygwin Umgebung enthaltene Cygwin-Terminal kann Modex wie unter Linux mit
folgendem Aufruf installiert werden:

• $ make install

• $./make_pc

make_pc ist ein ’make’ Script welches für die Kompilierung mittels des Visual Studio C++
Compilers geschrieben wurde,

3http://www.spinroot.com/modex/
4http://spinroot.com/modex/MANUAL.html
5http://www.cygwin.com/

23

2.3 Software Sicherheitsverifikation

Abbildung 2.5: Das "make_ pcSScript welches in den Modex 2.8 Quelldateien beigelegt ist

Auf diese Weise kann man beliebig komplexe und große Systeme, zu welchen der Quellcode
in C vorliegt, in Promela übersetzen. Hier muss man allerdings genau auf die Typenwahl der
definierten Zustandsvariablen, also der Variablen die man zur Verifikation benutzen möchte,
achten. Aufgrund der deutlich kleineren Auswahl an Typen in Promela die in Tabelle 2.2
dargestellt sind werden nur Variablen vom Typ Integer, Boolean, Short und Byte von Modex
direkt in das Promela Modell geschrieben. Sämtliche anders definierten Variablen werden
mit dem Codewort c_ state als eingebetteter C Code hinzugefügt.

24

2.4 STPA SwISS: STPA for Software-Intensive Systems Approach

Abbildung 2.6: Ein Beispiel für die automatische Extraktion eines Promela Modells aus
C-Code durch Modex 2.8

2.4 STPA SwISS: STPA for Software-Intensive Systems Approach

Der von Abdulkhaleq et al. [AWL15] vorgeschlagene Ansatz nutzt den in Kapitel 2.2 vor-
gestellten STPA Prozess um Sicherheitsanforderungen an ein System auf Systemebene
abzuleiten und mittels Model Checking zu verifizieren. STPA SwISS nutzt hierfür einen
symbolischen oder expliziten Model Checker für die Verifikation auf Implementierungsebene.
In einem letzten Schritt werden aus den abgeleiteten Sicherheitsanforderungen Testfälle
generiert und ausgeführt.
Im Detail handelt es sich also um einen Prozess welcher die Ausführung folgender drei
Schritten erfordert:

1. Ableitung von Sicherheitsanforderungen auf Systemebene durch Anwendung des
STPA Prozesses inklusive den vorgeschlagenen Ergänzungen von Thomas [Tho13] und
Abdulkhaleq.

2. Erstellung eines „safe behavior models“

25

2.5 Tool Unterstützung

3. Dieser Schritt teilt sich in zwei Unteraufgaben wodurch versucht wird die Vorteile von
sowohl formaler als auch dynamischer Software Sicherheitsverifikation einzufangen.

3.1. Die gegebenen Anforderungen müssen zunächst, mithilfe des durch Abdulkhaleq
und Wagner in [AW15a] präsentierten Algorithmus zur Ableitung formaler Soft-
ware Sicherheitsanforderungen, in die in Kapitel 2.3.1 vorgestellte LTL, übersetzt
werden. Diese werden dann mithilfe des in Kapitel 2.3 vorgestellten Ansatzes des
Model Checkings gegen ein vorher aus dem Code (siehe Kapitel 2.3.7) oder aus
dem im letzten Schritt erstellten „safe behavior models“abgeleiteten Verifikations-
modells überprüft.

3.2. Den Abschluss des Prozesses bildet das Generieren und Ausführen von Testfällen.
Es wurden zwei Methoden vorgeschlagen um Testfälle zu erstellen: Entweder di-
rekt aus eventuellen Gegenbeispielen die während des Model Checkings gefunden
wurden oder durch den Einsatz von Modell basierten Testwerkzeugen.

Abbildung 2.7: Ansicht des in [AWL15] vorgeschlagenen Ansatzes zur STPA basierten
Sicherheitsverifikation in Software intensiven Systemen

2.5 Tool Unterstützung

An der Universität Stuttgart wurde seit 2013 ein Reihe an Werkzeugen zur der von Leveson
vorgestellten Sicherheitstheorie [Lev11] in Form von Softwarelösungen unterstützt. Der aus
dieser Arbeit resultierende STPA Verifier soll ebenfalls als Erweiterung dieser Plattform zur
Verfügung gestellt werden und als Ergänzung der Funktionalität dienen.

26

2.5 Tool Unterstützung

2.5.1 XSTAMPP

XSTAMPP [AW15b] ist eine Rich Client Platform die seit Anfang 2015 an der Universität
Stuttgart in Java entwickelt und bereitgestellt wird. Basierend auf dem Eclipse RCP Frame-
work bietet XSTAMPP eine Basis für die Entwicklung von schritt-basierten Plug-ins sowie
Schnittstellen und Grundimplementierungen um die Einbindung dieser Plug-ins einfach zu
gestalten. XSTAMPP ist aus dem A-STPA Werkzeug, welches ebenfalls an der Universität
Stuttgart im Rahmen eines Studienprojektes 2013 entwickelt wurde, hervorgegangen. Im
Zuge dieser Migration wurde A-STPA als Plug-in, welches in Kapitel 2.5.2 noch genauer
vorgestellt wird, der Plattform hinzugefügt. Abbildung 2.8 zeigt eine schematische Dar-
stellung der Architektur von XSTAMPP und der bis zur Veröffentlichung dieser Arbeit
veröffentlichten Plug-ins.

Abbildung 2.8: Die Architektur von XSTAMPP

2.5.2 A-STPA

A-STPA ist ein an der Universität Stuttgart entwickeltes Plug-in für XSTAMPP [AW14a]
welches eine Implementierung der in Kapitel 2.2 vorgestellten Gefährdungsanalyse bietet.
A-STPA Version 2.0.5 stellt dabei die von Leveson [Lev11] vorgeschlagenen Schritte in Form
benutzerfreundlicher Editoren, zur Verfügung.

27

2.5 Tool Unterstützung

Abbildung 2.9: Die XSTAMPP Plattform 2.0.2 mit einem geöffneten A-STPA 2.0.5 Editor zur
Protokollierung unsicherer Regelungsaktionen

2.5.3 XSTPA

XSTPA [AW16] ist eine Ergänzung des A-STPA Plug-ins die dieses um die durch Thomas
und Abdulkhaleq vorgeschlagenen Erweiterungen des STPA Prozesses erweitert. XSTPA
kombiniert die in [Tho13] vorgeschlagene automatisierte Analyse von unsicheren Regelungs-
aktionen mit den von Abdulkhaleq und Wagner in [AW15a] aufgestellten Erweiterungen
der Kontexttabelle. Diese reduzieren die Größe der Kontexttabelle durch den Einsatz von
kombinatorischen Tests. Hierzu nutzt XSTPA den ACTS [Div16] Algorithmus um aus den
in den Prozess Modellen definierten Variablen und deren Belegungen Kontexttabellen zu
generieren. Aus diesen Tabellen können dann gefährdende Belegungen analysiert und in
entsprechende Sicherheitsanforderungen [AW15a] umgewandelt werden.

28

2.5 Tool Unterstützung

Abbildung 2.10: The XSTAMPP 2.0.2 Platform with XSTPA 1.0.2

29

3 Analyse und Entwurf

Dieses Kapitel beschäftigt sich mit der Analyse der Problemstellung und der Umsetzung in
Form einer konkreten Architektur des STPA Verifier Plug-ins. Ziel dieses Kapitels ist es einen
Einblick in die Grundkonzepte der in Kapitel 4 vorgestellten Implementierung zu geben.

3.1 Architektur

In diesem Abschnitt wird die Architektur des STPA Verifier Plug-ins sowie eine Übersicht
über die wichtigsten Kommunikationswege zwischen den Hauptkomponenten beschrie-
ben.

Der STPA Verifier ist als MVC Architektur konzipiert, welche auf Grund der erwünschten
logischen wie auch visuellen Einbindung in die XSTAMPP Plattform auf dem Eclipse RCP
Framework sowie der XSTAMPP Platform selbst aufgebaut ist.

30

3.2 Algorithmus

Abbildung 3.1: Architektur des STPA Verifier Plug-in’s

Die in Abbildung 3.1 zu sehende zweigliedrige Controller Komponente erlaubt den internen
Komponenten eine direkte Kommunikation mit dem Controller, während von extern lediglich
eine Serviceschnittstelle erlaubt Anfragen an den Hauptcontroller zu stellen. Des weiteren
ermöglicht dieses Design eine klare Trennung zwischen der Verwaltung der Verifikations-
und Konfigurationsdaten. Ebenfalls stützt sich der STPA Verifier Export auf die, schon durch
XSTAMPP referenzierten, ApacheTM FOP1 und JAXB2 Bibliotheken.

3.2 Algorithmus

Der STPA Verifier bietet im Wesentlichen folgende drei Grundfunktionen:

1https://xmlgraphics.apache.org/fop/
2https://jaxb.java.net/

31

3.2 Algorithmus

1. Die Eingabe von Sicherheitsanforderungen als CTL oder LTL Spezifikationen bzw. den
Import aus einem vorhandenen A-STPA Project (siehe Kapitel 2.5.2)

2. Die Verifikation der eingegebenen Sicherheitsanforderungen mittels des Spin oder
NuSMV Model Checkers gegen ein ausgewähltes Systemmodell.

3. Erzeugung eines Verifikations Reports.

Zu diesem Zweck ist der STPA Verifier sowohl Eingabemaske für LTL/CTL Spezifikationen
und Konfigurationsdaten als auch graphische Oberfläche zur übersichtlichen Erstellung und
Dokumentation von Sicherheitsverifikationen.

Abbildung 3.2: Algorithmus des STPA Verifier Plug-ins basierend auf dem Konzept von
STPA SwISS [AWL15]

Abbildung 3.2 zeigt eine grobe Darstellung des implementierten Algorithmus, wobei die in
blau dargestellten Komponenten externe Dateien symbolisieren.

32

3.3 Klassendiagramme

3.3 Klassendiagramme

Das folgende Kapitel soll einen Eindruck über die Paketstruktur und den Aufbau der Pro-
grammlogik geben. Die dargestellten Klassendiagramme sind deshalb auf das Wesentlichste
beschränkt. Die Klassenhierarchie kann gut in die drei Komponenten des zugrunde liegenden
„MVC Pattern“eingeteilt werden. Jedoch wurde hier die klassische Interpretation des Ent-
wurfsmusters, wie in den Abbildungen 3.3 und 3.4 zu sehen, insofern abgewandelt als dass
der Controller in zwei Teile aufgespalten ist. Dies hat sowohl praktische als auch designtech-
nische Gründe, da der STPA Verifier die Daten der Verfikationsläufe nicht über die Laufzeit
des Programmes hinweg speichert. Allerdings werden sämtliche Konfigurationseingaben
wie Parameter für die Model Checker oder Programmpfade gespeichert.

Abbildung 3.3: Klassendiagramm des stpaVerifier.model und stpaVerifier.controller.model Pakets

Abbildung 3.3 zeigt den für die Ein- und Ausgabedaten der Verifikationen zuständigen
Controller. Wie aus dem Diagramm ersichtlich publiziert der STPAVerifierController sämtli-

33

3.3 Klassendiagramme

che Änderungen am Daten Modell durch Implementierung des „Observer Patterns“. Die
Kommunikation mit dem STPAVerifierController ist über die Erweiterung und Zurverfügung-
stellung der org.eclipse.ui.services.AbstractServiceFactory gelöst wodurch die Klasse indirekt
über die IVerifierController Schnittstelle angesprochen werden kann.

Abbildung 3.4: Darstellung des stpaVerifier.controller.preferences Pakets und den Beziehungen
mit den UI Konfigurationsklassen und dem stpaVerifier.util.jobs Paket

34

3.4 GUI Entwurf

Abbildung 3.5: Klassendiagramm des stpaVerifier.util.commands Pakets

3.4 GUI Entwurf

Als Abschluss von Kapitel 3 werden in diesem Abschnitt der Entstehungsprozess und die
Konzepte der STPA Verifier Oberfläche sowie deren Umsetzung und Anpassung im Laufe
des Projektes vorgestellt.

Die Oberfläche des STPA Verifiers orientiert sich an den Anforderungen einen möglichst
übersichtlichen und schnellen Zugriff auf die in Abschnitt 3.2 dargestellten Funktionen zu
bieten. Dadurch bedingt wurde im Entwurf bereits eine „Ein-Fenster“Lösung angestrebt.
Die Idee hinter diesem Konzept liegt darin alles vor Augen zu haben um die Anzahl an
Maus-Klicks um eine Einstellung zu ändern, eine Formel anzupassen oder das Modell
einzusehen so gering wie möglich zu halten.

35

3.4 GUI Entwurf

Abbildung 3.6: Der finale GUI Entwurf des STPA Verifiers

Die oben zu sehende Abbildung zeigt den so entstandenen Entwurf der Oberfläche. Wenn
man diesen theoretischen Entwurf mit der entstandenen Oberfläche vergleicht fällt vor
allem auf das die Integration in die vorhandene XSTAMPP Oberfläche deutlich zugenom-
men hat. Grund hierfür ist das die direkte Interaktion mit dem A-STPA Projektbaum eine
deutlich intuitivere Möglichkeit des Datenimports bietet und durch das Hinzukommen
der Öffnen/Schließen-Buttons eine gleichzeitige Nutzung anderer in XSTAMPP integrierter
Funktionen möglich ist.

36

3.4 GUI Entwurf

Abbildung 3.7: Oberfläche der STPA Verifiers in der in dieser Arbeit vorgestellten Version
1.0.0

37

4 Implementierung

4.1 Funktionen

Dieses Kapitel gibt eine theoretische Übersicht über die Funktionen und Fenster des STPA
Verifiers, in Version 1.0.0 bieten welche in Kapitel 5 in Form eines praktischen Anwendungs-
beispieles vorgeführt werden. Weiter wird ein Eindruck darüber vermittelt werden wie
diese eine Software Verifikation unterstützen und damit den, mit herkömmlichen Methoden
verbundenen, Aufwand reduzieren können.

4.1.1 LTL Import von A-STPA Projekten

Eines der Hauptziele dieser Arbeit ist auf Grundlage der STPA Gefahrenanalyse, die eine
automatisierte Analyse von LTL Sicherheitsanforderungen durch die Erweiterungen von
Thomas und Abdulkhaleq ermöglicht, Model Checking zu betreiben. Diese Funktion bietet
der STPA Verifier durch eine direkte Kommunikation mit dem A-STPA Plug-in ab Version
2.0.5 über die von XSTAMPP gestellte Schnittstelle ISafetyDataModel. So existiert bei gleich-
zeitiger Ausführung von A-STPA 2.0.5 und dem STPA Verifier ein Menüeintrag „Import LTL“
wenn man im Projekt Explorer mit der rechten Maustaste auf ein STPA Projekt klickt. Diese
Funktion importiert alle LTL Formeln, die zuvor in XSTPA ab Version 2.0.2 erstellt werden
können, in die dafür vorgesehene Tabelle in der STPA Verifier Perspektive.
Wichtig: Das Entfernen/Editieren von Sicherheitsanforderungen die von einem STPA Projekt impor-
tiert wurden hat keinen Einfluss auf das zu Grunde liegenden Projekt

4.1.2 Verwalten der Sicherheitsanforderungen

Abbildung 4.1: Die Toolbar für die Verwaltung der CTL/LTL Tabelle

Die obenstehende Abbildung zeigt die Toolbar die alle Befehle beinhaltet die dem Nutzer
bereitgestellt werden um die in Abbildung 4.2 dargestellte Tabelle aller LTL und CTL Formeln
zu verwalten.

38

4.1 Funktionen

• Select All markiert alle Sicherheitsanforderungen, was durch einen Haken in der
Check Box in der ersten Spalte des jeweiligen Tabelleneintrages zu erkennen ist. Eine
durch diesen Befehl oder durch manuelle Markierung der Check Box gekennzeichnete
Sicherheitsanforderung wird in Verifikationssequenzen, Syntaxüberprüfungen und
dem Entfernen Befehl berücksichtigt bzw. mit eingebunden.

• Deselect All entfernt alle Haken in den Check Boxen der Tabelle bzw. entfernt die
Markierungen aller Sicherheitsanforderungen.

• Check Syntax startet eine Syntaxüberprüfung aller markierten Sicherheitsanforderun-
gen. Die Art der Syntaxüberprüfung ist abhängig davon ob im Konfigurationsmenü
Spin oder NuSMV aktiv geschaltet wurde.

• Remove entfernt alle markierten Sicherheitsanforderungen aus dem STPA Verifier.

• Add LTL fügt einen neuen Eintrag mit einer automatisch generierten Formel ID hinzu.
Die so hinzugefügte Sicherheitsanforderung muss in LTL definiert werden.

• Add CTL fügt einen neuen Eintrag mit einer automatisch generierten Formel ID hinzu.
Die so hinzugefügte Sicherheitsanforderung muss in CTL definiert werden.

• Reset setzt den Verifikationsstatus aller Sicherheitsanforderungen zurück auf „un-
checked“und entfernt alle Gegenbeispiele, bisherige Verifikationsergebnisse und leert
die Verifier Konsole.

Abbildung 4.2: Die LTL/CTL Formel Tabelle auf der STPA Verifier Oberfläche

39

4.1 Funktionen

4.1.3 Einrichten und konfigurieren der Model Checker

Abbildung 4.3: Die Konfigurationsoberfläche des STPA Verifier in Version 1.0.0

Der Kern des STPA Verifiers ist die Konfiguration und Verlinkung der lokalen Kopien der
Model Checker und des zu überprüfenden System Modells. Diese Einstellungen können in
dem in Abbildung 4.3 gezeigten View vorgenommen werden. Die so eingegebenen Konfigu-
rationsdaten sind die einzigen in Version 1.0.0 abgespeicherten Daten da diese, anders als
die anderen im STPA Verifier vorhandenen Daten, mit dem vom Eclipse RCP Framework
zur Verfügung gestellten „preferences“Paket verwaltet werden. So wird erreicht das jedwede
Einstellung die vom Benutzer vorgenommen wird dauerhaft im momentan benutzten „Eclip-
se Workspace“abgespeichert wird. Die einzige Ausnahme von dieser Speicherung bildet die

40

4.1 Funktionen

Angabe der Modelldatei bei der eine solche Speicherung aufgrund der 1..n Beziehung zwi-
schen Workspace und Modell keinen Sinn ergibt. Stattdessen öffnet die Wahl einer passenden
Modell Datei(.smv/.pml) diese in einem Promela oder SMV Editor, der eine Bearbeitung
und Abspeicherung des Modells erlaubt. Zwischen Platform und Modell Editor existiert
eine 1..1 Beziehung was heißt das maximal ein Modell Editor geöffnet ist der immer das
aktuell gewählte Modell anzeigt.

4.1.4 Promela Modell aus C-Code extrahieren

Liegt zu einem Softwarecontroller der Quellcode in ANSI C vor so kann dieser wie in Kapitel
2.3.7 beschrieben mit Hilfe von Modex direkt in ein Promela Modell übersetzt werden. Um
eine möglichst schnelle und einfache Nutzung dieses Tools direkt von der Oberfläche des
STPA Verifiers zu ermöglichen ist die Ausführung von Modex direkt über den ’Extract Model’
Abschnitt im Konfigurationsmenü möglich. Damit das Plug-in auf Modex zugreifen kann
muss die Datei wie in Kapitel 2.3.7 beschrieben auf dem Computer installiert sein und
der Link zu der ausführbaren Datei im Eingabefeld „Modex Path“eingetragen oder Modex
dem System über die PATH Umgebungsvariable oder eine Installation unter Linux/Mac OS
bekannt sein.

Abbildung 4.4: Die Konfigurationsoberfläche zur Verlinkung und Ausführung von Modex
unter Windows(links) und unter Linux (rechts)

41

4.1 Funktionen

4.1.5 Ausführung einer Verifikation

Die Hauptfunktion des STPA Verifiers liegt in der Erstellung und Verifikation von Sicher-
heitsanforderungen. Während Kapitel 5 die praktische Durchführung einer Verifikation
präsentiert, konzentriert sich dieser Abschnitt vor allem auf die internen Prozesse. Um eine
Verifikation aller markierten (siehe.: Verwalten der Sicherheitsanforderungen) Sicherheitsanfor-
derungen zu starten kann der Benutzer zwischen zwei Optionen wählen:

1. One by One(Standard): Jede einzelne Verifikation einer Sicherheitsanforderung kann
während der Laufzeit abgebrochen werden wobei die Ausführungssequenz bei der
nächsten Sicherheitsanforderung fortgesetzt wird.

2. Normal: Durch Abbruch einer einzelnen Sicherheitsverifikation wird der gesamte
Ausführungssequenz gestoppt

Abbildung 4.5: Die Toolbar für die Ausführung und Kontrolle einer Sicherheitsverifikation
während einer Sicherheitsverifikation

Nach Wahl des gewünschten Ausführungstyps erstellt das Programm eine individuelle
Ausführungssequenz die immer mit einer Verifikation des Modells beginnt und dann einen
Aufruf des gewählten Model Checkers für jede markierte Sicherheitsanforderung anhängt.
Während der gesamten Verifikation wird der aktuelle Status der einzelnen Sicherheitsanforde-
rungen in der LTL/CTL Tabelle nach den in Abbildung 4.6 definierten Regeln aktualisiert.

42

4.1 Funktionen

Tabelle 4.1: Tabelle der Zustände die eine Anforderung annehmen kann, und deren
Repräsentation in der LTL/CTL Tabelle

Um eine solche Ausführungssequenz so effektiv wie möglich gestalten zu können besitzt das
Menü zum Starten der Verifikation auch drei Knöpfe die eine Manipulation der Ausführung
erlauben:

43

4.1 Funktionen

Abbildung 4.6: Diagramm der Zustandsübergänge der Sicherheitsanforderungen

• Cancel bricht die Ausführungssequenz unabhängig vom Typ der Ausführung sofort
ab (die gleiche Funktion wie die Verifikation einer einzelnen Anforderung im Modus
„Normal“abzubrechen)

• Pause pausiert die Ausführung und bricht die momentane Verifikation im Bedarfsfall
ab.

• Resume setzt eine pausierte Ausführung mit der Verifikation, der pausierten Anforde-
rung, fort.

Diese drei Aktionen sind abhängig vom Status der Ausführung und werden, um Fehlbedie-
nung zu vermeiden, ausgegraut wenn sie sie nicht zur Verfügung stehen.

4.1.6 Logging

Der STPA Verifier verfügt über eine eigene Konsole die sämtliche Ausgaben der externen
Programmaufrufe in einer Eclipse typischen Konsole anzeigt. Zusätzlich zu der Darstellung

44

4.1 Funktionen

der Informationen zur Laufzeit schreibt der STPA Verifier den Log in eine Log-Datei die in
einem pro Modell Datei erstellten Projekt abgelegt ist.

Abbildung 4.7: Die STPA Verifier Konsole zeigt dem Benutzer sämtliche Ausgaben der
internen Programmaufrufe

4.1.7 Darstellung der Ergebnisse einer Verifikation

Eine Verifikation von einer oder mehrerer Eigenschaften wird im STPA Verifier durch
mehrere Ansichten abhängig vom benutzten Model Checker visualisiert. Hierfür stehen dem
Benutzer fünf Komponenten zur Verfügung:

• Die bereits vorgestellte Statusanzeige

• Die Results Table implementiert die von Abdulkhaleq und Wagner [AW15a] vorge-
schlagene Darstellung der Verifikationsergebnisse.

• Der Counterexample View bietet eine Darstellung eines gefundenen Gegenbeispiels.
Die Art der Darstellung variiert zwischen Spin und NuSMV bzw. den verschiedenen
Counterexample Plug-ins die in NuSMV enthalten sind. Das zu benutzende Plug-in
kann über die Konfigurationsoberfläche ausgewählt werden.

45

4.1 Funktionen

Abbildung 4.8: Darstellung eines Gegenbeispieles für die Anforderung G(counter<4) an
einen Modulo 6 Zähler in der Counterexample UI des STPA Verifiers

• Der Results Pie stellt das Ergebnis einer Verifikation als Kuchendiagramm dar.

• Das Results Diagram stellt die Entwicklung der Suchtiefe, der gebrauchten Zeit, den
durchlaufenen Transitionen und des genutzten Speicherplatzes auf einer prozentua-
len Skala über die über der Zeit dar. Dabei ist ein Zeitschritt auf der Y-Achse eine
abgeschlossene Verifikation.

Abbildung 4.9: Darstellung des Resultats Diagramms für das in Kapitel 4.1 benutzte
Beispiel eines Modulo 6 Zählers

46

4.2 Systemtest

4.1.8 Export der Ergebnisse

Abbildung 4.10: Die Struktur der STPA Verifier Export Funktionen (links) und Beispielhaft
der Wizard eines Verifikations Reports

4.2 Systemtest

In diesem Abschnitt wird der Systemtest für die Zustandsübergangsfunktion und der
Kommunikation mit den Model Checkern vorgestellt. Für die Tests wurde das schon im
Verlauf dieses Dokuments benutzte Modell einer Modulo 6 Zählerschleife benutzt. Das
NuSMV Modell wurde mittels, der vorhandenen Modulo Funktion mit der das Programm in
einer Endlosschleife zählt, in der NuSMV Eingabesprache geschrieben. Das Promela Modell
wurde aus einem C-Programm, wie schon in Kapitel 2 Abschnitt 2.3.7 als Beispiel angeführt,
abgeleitet. Die Funktion und die Zustandsänderungen sind in beiden Modellen trivial.
Für den Test wurden die Formeln in Tabelle 4.2 in die LTL/CTL Tabelle eingetragen und
nacheinander durch Spin 6.4.5 und dann durch NuSMV 2.6.0 in den jeweiligen Modellen
verifiziert. Die Übersetzung der Formeln in den jeweiligen Syntax wurde automatisch durch
die Programm Logik vorgenommen:

• [] <> (counter == 5)⇒ GF(counter = 5)

• [] <> (counter == 6)⇒ GF(counter = 6)

• true⇒ TRUE

• f alse⇒ FALSE

47

4.2 Systemtest

Abbildung 4.11: Die für den Systemtest verwendeten Modelle in der NuSMV 2.6.0
Eingabesprache(links) und in Promela(rechts)

LTL Formel Erwartetes Ergebnis Ergebnis
[] <> (counter == 5) Verifikation ist erfolgreich "validated"
[] <> (counter == 6) Es existiert ein Gegenbeispiel "failed with Counterexample"
true muss per Definition wahr sein "validated"
f alse muss per Definition falsch sein "failed with Counterexample"
Falsch Formel wird nicht erkannt „syntax error“

leere Formel produziert einen „syntax error“
Syntax Fehler

[] <> (zaehler < 6) Syntax Fehler da zaehler nicht „syntax error“
definiert ist

Tabelle 4.2: Tabelle der LTL Tests mit erwartetem und angezeigtem Ergebnis der
Verifikation

• Falsche⇒ Falsch

• ⇒

• [] <> (zaehler < 6)⇒ GF(zaehler < 6)

48

5 Anwendungsbeispiel

Um die Funktionen des STPA Verifiers zu testen wurde 2015 an der Universität Stuttgart
ein ACC(„Automatic Cruise Control“) mit Start/Stop Simulator1,2 durch Dennis Maseluk
und Asim Abdulkhaleq entwickelt. Hierfür wurde ein Lego MINDSTORM EV3 Roboter mit
einer, in ANSI-C erstellten, Simulationssoftware ausgestattet. Das ACC System wurde dann
mittels eines EV3 Ultrasonic Sensors in einer Simulation einer Fahrtsituation hinter einem
zweiten EV3 Roboter getestet.

Es wurde eine STPA Gefahrenanalyse des Simulators durch Asim Abdulkhaleq mittels der in
Kapitel 2.5.1 vorgestellten XSTAMPP Platform durchgeführt, wodurch die Grundlagen einer
Sicherheitsverifikation auf Basis des in Kapitel 2.4 vorgestellten Prozesses aufgestellt wurden.
Abbildung 5.1 zeigt die für den ACCSimulator aufgestellte Sicherheitsregelstruktur mit allen
für die Sicherheitsverifikation benötigten Systemvariablen, die als Basis der Ableitung von
formalen Sicherheitsanforderungen benötigt wird.

1http://www.iste.uni-stuttgart.de/en/se/forschung/werkzeuge/acc-simulator.html
2https://sourceforge.net/projects/acc-with-stop-and-go-simulator/

49

5 Anwendungsbeispiel

Abbildung 5.1: Sicherheitsregelstruktur, des in ACC stop& go Systems, mit Prozess Modell
aus dem sich die LTL Formeln ableiten lassen

In einem zweiten Schritt wurden aus der oben gezeigten Sicherheitsregelstruktur verfeinerte
Sicherheitsanforderungen erstellt. Hierzu kam die von Thomas[Tho13] vorgestellte syste-
matische Ableitung von gefährdenden Regelungsaktionen mit den von Asim Abdulkhaleq
vorgeschlagenen Verfeinerung der Ergebnisse zum Einsatz.

50

5 Anwendungsbeispiel

Abbildung 5.2: Ausschnitt aus der, aus XSTAMPP exportierten, Liste von verfeinerten
Sicherheitsanforderungen, die mithilfe des XSTPA Plug-ins Version 1.0.2

und A-STPA 2.0.5 erstellt wurden
51

5 Anwendungsbeispiel

XSTPA 1.0.2 leitet außerdem aus den analysierten Variablenbelegungen automatisch formel-
le Sicherheitsspezifikationen in LTL ab. Dieser Schritt bildet, innerhalb des in Kapitel 2.4
vorgestellten Prozesses, den Übergang von der Gefährdungsanalyse hin zur Sicherheitsverifi-
kation.

Abbildung 5.3: Ausschnitt aus der, aus XSTAMPP exportierten, Liste von LTL
Sicherheitsanforderungen, die mithilfe des XSTPA Plug-ins Version 1.0.2

und A-STPA 2.0.5 erstellt wurden

Zur Durchführung der Sicherheitsverifikation mittels Model Checking wurde ein System
Modell für den NuSMV Model Checker auf Basis der Sicherheitsregelstruktur, mit dem von
Asim Abdulkhaleq entwickelten STPASTGenerator3 erstellt. Ferner wurde auch ein Promela
Modell mittels Modex aus dem ANSI-C Quellcode der Simulationssoftware abgeleitet. Für
die Ableitung des Promela Modells wurden die in den STPA Verifier eingebauten Funktion
zur Nutzung von Modex benutzt. In Kapitel 2.3.3 und 2.3.5 wurden mit Spin und NuSMV
zwei häufig eingesetzte Model Checker vorgestellt die, durch den STPA Verifier, in einer
automatisierten Verifikation der abgeleiteten STPA Sicherheitsanforderungen gegen die
jeweiligen Modelle eingesetzt wurden. Hierzu wurden die in dem oben beschriebenen
Prozess entstandenen LTL Spezifikationen, durch den Befehl ’Import LTL’ im Kontext Menü
des ACCSimulator Projektbaumes im Projekt Explorer der XSTAMPP Oberfläche, in den
STPA Verifier übertragen.

3https://sourceforge.net/projects/stpastgenerator/

52

5 Anwendungsbeispiel

Abbildung 5.4: Die Oberfläche des STPA Verifiers im NuSMV Modus während einer
Sicherheitsverifikation des ACCSimulators

Die Modelle wurden jeweils durch Ausführen einer automatisierten Verifikation mit dem
STPA Verifier auf sämtliche Sicherheitsanforderungen überprüft wobei die Ergebnisse in
Form einer Resultats-Tabelle wie sie in [AW15a] vorgeschlagen wurde und eines Kuchen-
diagramms sowie einer Darstellung aller ermittelter Werte in einem Prozent/Verifikations-
Diagramm dokumentiert.

53

5 Anwendungsbeispiel

Abbildung 5.5: Beispielhafte Darstellung der Ergebnisse einer Sicherheitsverifikation des
Promela Modells des ACCSimulator mit Spin 6.4.5 von 70 Anforderungen

als Kuchendiagramm

Abbildung 5.5 zeigt die Ergebnisse der Verifikation aller in STPA erfassten Sicherheitsan-
forderungen. Durch die Darstellung als Kuchendiagramm lässt sich in Echtzeit der Trend
der Verifikationen erkennen, der hier sehr schnell erkennen lässt das fast die Hälfte aller
Verifikationen des Promela Modells ein Gegenbeispiel hervorgebracht haben.

54

5 Anwendungsbeispiel

Abbildung 5.6: Darstellung der Ergebnisse einer Sicherheitsverifikation des Promela
Modells des ACCSimulator mit Spin 6.4.5 von 70 Anforderungen mittels

des Resultats Diagramms welches ein Prozent/Zeit Diagramm der
Verifikations Werte darstellt

55

5 Anwendungsbeispiel

Abbildung 5.7: Ausschnitt aus der Resultats-Tabelle einer Sicherheitsverifikation des
Promela Modells des ACCSimulator mit Spin 6.4.5 von 70 Anforderungen

Abbildung 5.8: Beispielhafte Darstellung eines von Spin 6.4.5 berechneten Gegenbeispieles
im STPA Verifier

56

6 Setup

In diesem Kapitel sollen die Systemvoraussetzungen und die Einrichtung des STPA Verifiers
dargestellt werden.

6.1 Installation

Der STPA Verifier stellt folgende Anforderungen an das System:

• mindestens 1 GB RAM(empfohlen werden 2)

• 200 MB Festplattenspeicher (für XSTAMPP + STPA Verifier)

• empfohlen wird mindestens ein Zweikern-Prozessor (z.B. Intel Core i3)

Des weiteren werden, um alle Funkionen des STPA Verifiers nutzen zu können, müssen die
folgenden zusätzlichen Programme auf dem Rechner installiert sein:

• Java 7 Runtime 1

• C Compiler (optional) (im Rahmen dieser Arbeit wurde der GCC2 benutzt, es sind
allerdings auch andere C Compiler möglich)

• NuSMV (optional) Es wird die zu diesem Zeitpunkt aktuelle Version 2.6.0 empfohlen,
es wird allerdings mindestens NuSMV 2.0 benötigt da noch ältere Versionen kein BMC
unterstützen.3

• Spin (optional) In dieser Arbeit wurde Version 6.4.5 des Model Checkers eingesetzt4

• Modex (optional) Um die Modex Einbindung in den STPA Verifier nutzen zu können
muss Modex von5 nach der auf der Seite vorhandenen Anleitung und den in Kapitel
refchap:extraction gegebenen Anweisungen installiert werden.

• XSTAMPP Der STPA Verifier kommt als Plug-in für die XSTAMPP Platform Version
2.0.2 die von 6 bezogen werden.

1http://www.oracle.com/technetwork/java/javase/downloads/index.html
2https://gcc.gnu.org/
3Der NuSMV Model Checker kann unter http://nusmv.fbk.eu/NuSMV gedownloaded werden
4Der Spin Model Checker kann auf https://spinroot.org gedownloaded werden
5https://spinroot.org/extraction
6http://www.xstampp.de/Download.html

57

6.1 Installation

Das STPA Verifier Plug-in selber wird nach Beendigung dieser Arbeit mit auf der XSTAMPP
Homepage unter dem Reiter Tools→ STPA Verifier zum download bereitstehen. Zur Installa-
tion des STPA Verifiers müssen folgende Schritte durchgeführt werden:

1. XSTAMPP Installieren Hierfür muss die entsprechende Archiv Datei gedownloaded
und dem gewünschten Installationsverzeichnis entpackt werden.

2. Installation des STPA Verifiers

2.1. Download des STPA Verifier Update Archivs von7

2.2. Installation des Plug-in’s in XSTAMPP

7http://www.xstampp.de/Download.html

58

7 Zusammenfassung und Ausblick

7.1 Zusammenfassung

Die Intention dieser Bachelorarbeit war es den Prozess der formalen Verifikation auf Softwa-
reebene mit der Analyse von Sicherheitsanforderungen, durch STPA, auf Systemebene zu
verbinden.
Zu diesem Zweck wurde im Fortgang dieser Arbeit der STPA Verifier implementiert und
vorgestellt. Der STPA Verifier bietet eine grafische Oberfläche zur Konfiguration und Ausfüh-
rung eines Model Checkers. Es wurde sowohl der Ansatz des symbolischen Model Checkings
durch NuSMV als auch des expliziten Model Checkings durch Spin integriert, wodurch
Anforderungen sowohl in LTL als auch CTL in einer geleiteten Verifikation geprüft werden
können.

7.2 Ausblick

Dieser Abschnitt soll das Resümee dieser Arbeit aufzeigen und auf einige Eigenheiten
und Limitierungen der einzelnen vorgestellten Methoden hinweisen und diese diskutieren.
Außerdem soll ein Ausblick auf mögliche Erweiterungen und Verbesserungen gegeben
werden.

7.2.1 Limitierungen des Modex Werkzeugs

Wie bereits im Anwendungsbeispiel erwähnt traten einige Eigenheiten und Limitierungen
von Modex bei der Anwendung auf den ACCSimulator auf. Die größten Schwierigkeiten mit
dem durch Modex abgeleiteten Promela Modell war das Modex Promela fremde Variablen
(Double,Float,usw.) nicht in regulär definierte Promela Variablen übersetzt. Stattdessen
werden diese Variablen mit dem Codewort c_ state direkt in das Modell übernommen,
wodurch sie zwar von dem durch Spin erzeugten Verifikationsprogramm aber nicht von
Spin selber lesbar sind. Durch diese Einschränkung ist eine Verifikation dieser Variablen
durch die Übergabe einer LTL Formel nicht direkt möglich.
Es werden zwei Lösungsansätze vorgeschlagen:

59

7.2 Ausblick

• Das in Kapitel 5 vorgestellte Beispiel wurde mittels einer modifizierten Version des
ACCSimulator.c Programms durchgeführt, bei der für jede Promela fremde Variable
ein Integer hinzugefügt wurde welches den Wert der Orginalvariable mit Integer-
Genauigkeit mitschreibt. Ein solcher Ansatz ist in sofern praktikabel als das Integer
problemlos durch Modex in Promela Integer übersetzt werden. Allerdings ist eine
solche Manipulation des Quellcodes, gerade bei großen Systemen, extrem aufwändig
und fehleranfällig.

• Abdulkhaleq und Wagner haben eine LTL Verifikation vorgestellt1 die mittels logischer
Aussagen, welche in Promela mit dem Codewort c_ expr definiert wurden, die c_ state
Variablen auswertet:

#de f ine pc_expr{PpcontrolSpeed− > f rontDistance <= now.sa f eDistance}
#de f ine qc_expr{now.accOperation == accelerate}

Diese Aussagen können dann in der LTL Formel [](p→ q) verifiziert werden.

7.2.2 Future work

In dieser Arbeit wurde eine Oberfläche zur geführten Verifikation von Sicherheitsanforderun-
gen vorgestellt welche die Model Checker Spin und NuSMV nutzt. Dabei wurde lediglich
der für diese Arbeit definierte Leistungsumfang berücksichtigt. Beide Model Checker bieten
allerdings noch zusätzliche Funktionen die in zukünftigen Arbeiten in den STPA Verifier
integriert werden könnten. Vor allem Spin bietet mannigfaltige Möglichkeiten sowohl den
Spin Prozessor als auch dem C Compiler oder dem ausführbaren Verifikationsprogramm sehr
viele Spezialisierungen und Optimierungen beim Aufruf zu übergeben. Auch bieten beide
beide Model Checker die Möglichkeit einer geführten Simulation des Zustandsraumes.

1https://github.com/asimabdulkhaleq/STPA-and-Software-Model-Checking

60

Literaturverzeichnis

[AW14a] A. Abdulkhaleq, S. Wagner. A-STPA: An Open Tool Support for System-Theoretic
Process Analysis. 2014 STAMP Conference at Massachusetts Institute of Technology
(MIT), 27 March 2014, Boston, USA., 2014. (Zitiert auf Seite 25)

[AW14b] A. Abdulkhaleq, S. Wagner. A Software Safety Verification Method Based on
System-Theoretic Process Analysis. In Computer Safety, Reliability, and Security, S.
401–412. Springer, 2014.

[AW15a] A. Abdulkhaleq, S. Wagner. Integrated safety analysis using systems-theoretic
process analysis and software model checking. In Computer Safety, Reliability, and
Security, S. 121–134. Springer, 2015. (Zitiert auf den Seiten 8, 14, 21, 24, 26, 43

und 51)

[AW15b] A. Abdulkhaleq, S. Wagner. XSTAMPP: An eXtensible STAMP Platform As Tool
Support for Safety Engineering. 2015 STAMP Conference at Massachusetts Institute
of Technology (MIT), 26 March 2015, Boston, USA, 2015. (Zitiert auf Seite 25)

[AW16] A. Abdulkhaleq, S. Wagner. XSTAMPP 2.0: New Improvements to XSTAMPP
Including CAST Accident Analysis and an Extended Approach to STPA. 2016
STAMP Conference at Massachusetts Institute of Technology (MIT), 21 March 2016,
Boston, USA, 2016. (Zitiert auf Seite 26)

[AWL15] A. Abdulkhaleq, S. Wagner, N. Leveson. A Comprehensive Safety Engineering
Approach for Software-Intensive Systems Based on STPA. Procedia Engineering,
128:2–11, 2015. (Zitiert auf den Seiten 2, 8, 23, 24 und 30)

[BCC+
03] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, Y. Zhu. Bounded model

checking. Advances in computers, 58:117–148, 2003. (Zitiert auf den Seiten 14

und 19)

[BK08] C. Baier, J. KATOEN. Principles of Model Checking (Representation and Mind
Series).[Sl], 2008. (Zitiert auf Seite 13)

[CC10] P. Cousot, R. Cousot. A gentle introduction to formal verification of computer
systems by abstract interpretation. Logics and Languages for Reliability and Security,
25:1–29, 2010.

[CCGR00] A. Cimatti, E. Clarke, F. Giunchiglia, M. Roveri. NuSMV: a new symbolic model
checker. International Journal on Software Tools for Technology Transfer, 2(4):410–425,
2000.

61

Literaturverzeichnis

[CGP+
02] A. Cimatti, E. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, A. Tacchella.

Integrating BDD-based and SAT-based symbolic model checking. In Frontiers of
Combining Systems, S. 49–56. Springer, 2002. (Zitiert auf Seite 18)

[Div16] N. C. S. Division. Automated Combinatorial Testing for Software (ACTS),
2016. URL http://csrc.nist.gov/groups/SNS/acts/index.html. (Zitiert auf
Seite 26)

[EMC09] J. Edmund M. Clarke. Model Checking VI Linear-Time Temporal Logic, 2009.
URL http://www.cs.cmu.edu/~emc/15817-f09/lecture6.pdf. (Zitiert auf Sei-
te 18)

[Gum] H. P. Gumm. Model Checking. (Zitiert auf Seite 19)

[Gum07] H. P. Gumm. Lineare Temporale Logik, 2007. (Zitiert auf Seite 13)

[HHS01] G. J. Holzmann, M. H Smith. Software model checking: extracting verification
models from source code†. Software Testing, Verification and Reliability, 11(2):65–79,
2001. (Zitiert auf Seite 21)

[Hol97] G. J. Holzmann. The model checker SPIN. IEEE Transactions on software enginee-
ring, 23(5):279, 1997. (Zitiert auf Seite 17)

[Hol04] G. J. Holzmann. The SPIN model checker: Primer and reference manual, Band 1003.
Addison-Wesley Reading, 2004. (Zitiert auf Seite 17)

[Hol07] G. J. Holzmann. Design and Validation of Computer Protocols. Computer
Protocols, 2007. (Zitiert auf Seite 8)

[Hol16] G. J. Holzmann. Spin - Formal Verification, 2016. URL spinroot.com. (Zitiert
auf Seite 18)

[Jia14] Y. Jia. Resilient and Efficient Delivery over Message Oriented Middleware. Dissertation,
Queen Mary University of London, 2014.

[KMMP93] Y. Kesten, Z. Manna, H. McGuire, A. Pnueli. A decision algorithm for full
propositional temporal logic. In Computer Aided Verification, S. 97–109. Springer,
1993. (Zitiert auf Seite 14)

[Lev04] N. Leveson. A new accident model for engineering safer systems. Safety science,
42(4):237–270, 2004. (Zitiert auf Seite 10)

[Lev11] N. G. Leveson. Engineering a Safer World - Systems Thinking Applied to Safety.
Massachusetts Institute of Technologie, 2011. (Zitiert auf den Seiten 8, 10, 24

und 25)

[McM93] K. L. McMillan. Symbolic model checking. Springer, 1993. (Zitiert auf den Seiten 8

und 18)

[Muk97] M. Mukund. Linear-time temporal logic and Büchi automata. Tutorial talk,
Winter School on Logic and Computer Science, Indian Statistical Institute, Calcutta,
1997. (Zitiert auf Seite 8)

62

http://csrc.nist.gov/groups/SNS/acts/index.html
http://www.cs.cmu.edu/~emc/15817-f09/lecture6.pdf
spinroot.com

[Roz11] K. Y. Rozier. Linear temporal logic symbolic model checking. Computer Science
Review, 5(2):163–203, 2011. (Zitiert auf Seite 13)

[Tho90] W. Thomas. Automata on infinite objects. Handbook of theoretical computer science,
Volume B, S. 133–191, 1990. (Zitiert auf Seite 17)

[Tho13] J. Thomas. Extending and automating a systems-theoretic hazard analysis for require-
ments generation and analysis. Dissertation, Massachusetts Institute of Technology,
2013. (Zitiert auf den Seiten 8, 11, 12, 23, 26 und 48)

[VW86] M. Y. Vardi, P. Wolper. An automata-theoretic approach to automatic program
verification. In Proceedings of the First Symposium on Logic in Computer Science, S.
322–331. IEEE Computer Society, 1986.

[VW94] M. Y. Vardi, P. Wolper. Reasoning about infinite computations. Information and
computation, 115(1):1–37, 1994. (Zitiert auf Seite 14)

Alle URLs wurden zuletzt am 18. 04. 2016 geprüft.

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wörtlich oder sinngemäß aus anderen Wer-
ken übernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Prüfungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollständig
veröffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Motivation
	1.2 Problemstellung
	1.3 Zielsetzung
	1.4 Gliederung

	2 Grundlagen
	2.1 STAMP
	2.2 STPA
	2.3 Software Sicherheitsverifikation
	2.3.1 Linear Temporal Logic
	2.3.2 Computation Tree Logic
	2.3.3 Spin Model Checker
	2.3.4 Promela
	2.3.5 NuSMV Model Checker
	2.3.6 Die NuSMV Eingabesprache
	2.3.7 Model Extraction

	2.4 STPA SwISS: STPA for Software-Intensive Systems Approach
	2.5 Tool Unterstützung
	2.5.1 XSTAMPP
	2.5.2 A-STPA
	2.5.3 XSTPA

	3 Analyse und Entwurf
	3.1 Architektur
	3.2 Algorithmus
	3.3 Klassendiagramme
	3.4 GUI Entwurf

	4 Implementierung
	4.1 Funktionen
	4.1.1 LTL Import von A-STPA Projekten
	4.1.2 Verwalten der Sicherheitsanforderungen
	4.1.3 Einrichten und konfigurieren der Model Checker
	4.1.4 Promela Modell aus C-Code extrahieren
	4.1.5 Ausführung einer Verifikation
	4.1.6 Logging
	4.1.7 Darstellung der Ergebnisse einer Verifikation
	4.1.8 Export der Ergebnisse

	4.2 Systemtest

	5 Anwendungsbeispiel
	6 Setup
	6.1 Installation

	7 Zusammenfassung und Ausblick
	7.1 Zusammenfassung
	7.2 Ausblick
	7.2.1 Limitierungen des Modex Werkzeugs
	7.2.2 Future work

	Literaturverzeichnis

