Institut fiir Softwaretechnologie

Universitdt Stuttgart
Universitatsstrafie 38
D-70569 Stuttgart

Bachelorarbeit Nr. 282

Entwicklung eines STPA-Verifiers
als Eclipse-Plug-in fiir die
Verifikation von Software-
Sicherheitsanforderungen

Lukas Balzer

Studiengang: Softwaretechnik
Priifer/in: Prof. Dr. Stefan Wagner
Betreuer/in: M. Sc. Asim Abdulkhaleq
Beginn am: 2015-10-20

Beendet am: 2016-04-20

CR-Nummer: D.24,164,F1.1,F4.1

Kurzfassung

Um die Sicherheit in kritischen Softwaresystemen zu gewdahrleisten ist immer haufiger eine
Verifikation der Software in einem Systemkontext notwendig. Hierfiir ist in den letzten
Jahren die Verifikation von Softwaresystemen durch Model Checking, bedingt durch die
wachsende Anzahl an dafiir zur Verfiigung stehenden Werkzeugen, eine bewahrte Methode
geworden. Diese Arbeit stellt auf Grundlage des in STPA SwISS [AWL15] vorgestellten
Konzeptes eine Software zur automatisierten Ausfiihrung von LTL und CTL Model Checking
mit den Werkzeugen Spin und NuSMV bietet. Dabei konnen die Sicherheitsanforderungen
sowohl manuell eingegeben werden, als auch aus einer STPA Analyse importiert werden.
Das Ergebnis dieser Arbeit soll ein Ansatz zur Kombination einer Gefahrenanalyse auf Sys-
temebene und einer Verifikation dieses Systems auf Implementierungsebene sein. Zu diesem
Zweck wird der STPA Verifier zur automatisierten Verifikation von Sicherheitsanforderungen
und Dokumentation der Ergebnisse vorgestellt.

Abstract

To verify the safety on a critical softwaresystem includes more and more often the task of
verifying Software in the context of the system. In the last years verifying software by using
formal model checking has become a more and more popular method due to the increasing
number of available tool support. This work presents a Software based on the concepts of
the STPA SwISS approach [AWL15] that provides a graphical user interface for performing
automated LTL and CTL model checking using the Spin or the NuSMV model checker.
The safety properties can be derived either manually or by importing the results of a STPA
hazard analysis. The result of this work are supposed to be an approach to combine a hazard
analysis on system level and a Softwareverification on implementation level. To provide
this the STPA Verifier for verfying safety constraints and creating a verification report is
presented.

Danksagung

Ich mochte mich vorab bei allen die mich bei der Durchfithrung meiner Bachelorarbeit und
der Entstehung dieses Dokuments unterstiitzt haben bedanken. Im besonderen mochte ich
mich bei Asim Abdulkhaleq bedanken der mich als Betreuer der Bachelorarbeit unterstiitzt
hat. Des weiteren geht mein Dank an Professor Dr. Stefan Wagner fiir die Betreuung
des Themas. Als letztes mochte ich mich noch bei allen Korrektoren dieses Dokuments

bedanken.

Inhaltsverzeichnis

1

Einleitung
1.1 Motivation L
1.2 Problemstellung
1.3 Zielsetzung
1.4 Gliederung
Grundlagen
21 STAMP e
22 STPA . . . e
2.3 Software Sicherheitsverifikationo o oL
2.3.1 Linear Temporal Logic
2.3.2 Computation Tree Logic
2.3.3 Spin Model Checker
23.4 Promela
2.3.5 NuSMV Model Checker
2.3.6 Die NuSMV Eingabesprache
2.3.7 Model Extraction o
2.4 STPA SwISS: STPA for Software-Intensive Systems Approach
2.5 Tool Unterstiitzung
25.1 XSTAMPP
252 A-STPA
253 XSTPA . . . e
Analyse und Entwurf
3.1 Architektur. L
3.2 Algorithmus
3.3 Klassendiagramme L L L Lo
3.4 GUIEntwurf. e
Implementierung
4.1 Funktionen
4.1.1 LTL Import von A-STPA Projekten
4.1.2 Verwalten der Sicherheitsanforderungen
4.1.3 Einrichten und konfigurieren der Model Checker
4.1.4 Promela Modell aus C-Code extrahieren
4.1.5 Ausfiihrung einer Verifikation
4.1.6 Logging

4.1.7 Darstellung der Ergebnisse einer Verifikation
4.1.8 Export der Ergebnisse

5 Anwendungsbeispiel

6 Setup
6.1 Installation

7 Zusammenfassung und Ausblick

7.1 Zusammenfassung
7.2 Ausblick

7.2.1 Limitierungen des Modex Werkzeugs

7.2.2 Future work

Literaturverzeichnis

4.2 Systemtest

55
55

57
57
57

57
58

59

Abbildungsverzeichnis

2.1
2.2

2.3
2.4

2.5
2.6

2.7

2.8
2.9

2.10

3.1
3.2

33
34

35
3.7
4.1
4.2
43
4.4

45

47

4.8

Schema einer STPA Analyse 10
Das Bild zeigt die Kontexttabelle fiir die open door Regelungsaktion in dem in

[Tho13] vorgefiihrten , Train”Beispiel 12
Visualisierung der LTL Formel G (—=(Action=close) U (Signal=free)) 14
Visualisierung der CTL Formel AG(—(Action=close) U (Signal=blocked)) . .. 16
Das "make_ pcSScript welches in den Modex 2.8 Quelldateien beigelegt ist . . 22
Ein Beispiel fiir die automatische Extraktion eines Promela Modells aus C-

Code durch Modex 2.8 23
Ansicht des in [AWL15] vorgeschlagenen Ansatzes zur STPA basierten Sicher-

heitsverifikation in Software intensiven Systemen 24
Die Architektur von XSTAMPP o oo 25
Die XSTAMPP Plattform 2.0.2 mit einem gedffneten A-STPA 2.0.5 Editor zur

Protokollierung unsicherer Regelungsaktionen 26
The XSTAMPP 2.0.2 Platform with XSTPA 1.02 27
Architektur des STPA Verifier Plug-in’s 29
Algorithmus des STPA Verifier Plug-ins basierend auf dem Konzept von STPA

SWISS[AWL15] o 30
Klassendiagramm des stpaVerifier.model und stpaVerifier.controller.model Pakets . 31

Darstellung des stpaVerifier.controller.preferences Pakets und den Beziehungen

mit den Ul Konfigurationsklassen und dem stpaVerifier.util.jobs Paket 32
Klassendiagramm des stpaVerifier.util.commands Pakets 33
Der finale GUI Entwurf des STPA Verifiers 34
Oberfldache der STPA Verifiers in der in dieser Arbeit vorgestellten Version 1.0.0 35
Die Toolbar fiir die Verwaltung der CTL/LTL Tabelle 36
Die LTL/CTL Formel Tabelle auf der STPA Verifier Oberflache 37
Die Konfigurationsoberfliche des STPA Verifier in Version 1.00 38
Die Konfigurationsoberflaiche zur Verlinkung und Ausfithrung von Modex

unter Windows(links) und unter Linux (rechts) 39
Die Toolbar fiir die Ausfithrung und Kontrolle einer Sicherheitsverifikation

wahrend einer Sicherheitsverifikation 40
Diagramm der Zustandstibergange der Sicherheitsanforderungen 42
Die STPA Verifier Konsole zeigt dem Benutzer simtliche Ausgaben der inter-

nen Programmaufrufe o oo L o 43
Darstellung eines Gegenbeispieles fiir die Anforderung G(counter<4) an einen

Modulo 6 Zdhler in der Counterexample Ul des STPA Verifiers 44

4.9 Darstellung des Resultats Diagramms fiir das in Kapitel 4.1 benutzte Beispiel
eines Modulo 6 Zdhlers L.

4.10 Die Struktur der STPA Verifier Export Funktionen (links) und Beispielhaft der
Wizard eines Verifikations Reports

4.11 Die fiir den Systemtest verwendeten Modelle in der NuSMV 2.6.0 Eingabe-
sprache(links) und in Promela(rechts)

5.1 Sicherheitsregelstruktur, des in ACC stop& go Systems, mit Prozess Modell
aus dem sich die LTL Formeln ableiten lassen
5.2 Ausschnitt aus der, aus XSTAMPP exportierten, Liste von verfeinerten Si-
cherheitsanforderungen, die mithilfe des XSTPA Plug-ins Version 1.0.2 und
A-STPA 205 erstelltwurden Lo
5.3 Ausschnitt aus der, aus XSTAMPP exportierten, Liste von LTL Sicherheitsan-
forderungen, die mithilfe des XSTPA Plug-ins Version 1.0.2 und A-STPA 2.0.5
erstellt wurden
5.4 Die Oberflache des STPA Verifiers im NuSMV Modus wihrend einer Sicher-
heitsverifikation des ACCSimulators
5.5 Beispielhafte Darstellung der Ergebnisse einer Sicherheitsverifikation des
Promela Modells des ACCSimulator mit Spin 6.4.5 von 70 Anforderungen als
Kuchendiagramm L L
5.6 Darstellung der Ergebnisse einer Sicherheitsverifikation des Promela Modells
des ACCSimulator mit Spin 6.4.5 von 70 Anforderungen mittels des Resultats

Diagramms welches ein Prozent/Zeit Diagramm der Verifikations Werte darstellt 53

5.7 Ausschnitt aus der Resultats-Tabelle einer Sicherheitsverifikation des Promela
Modells des ACCSimulator mit Spin 6.4.5 von 70 Anforderungen

5.8 Beispielhafte Darstellung eines von Spin 6.4.5 berechneten Gegenbeispieles im
STPA Verifier e

Tabellenverzeichnis

2.1
2.2

2.3

2.4

Definitionender
Tabelle der in Promela definierten Variablen Typen [Hol16]
Erweiterung der temporalen Operatoren fiir die Definition von CTL Spezifi-
kationenin NuSMV 2.6 L o
Erweiterung der temporalen Operatoren fiir die Definition von CTL Spezifi-
kationenin NuSMV 2.6 L o

Tabelle der Zustdande die eine Anforderung annehmen kann, und deren Re-
prasentation in der LTL/CTL Tabelle
Tabelle der LTL Tests mit erwartetem und angezeigtem Ergebnis der Verifika-
tHon . . . o e

Abkurzungsverzeichnis

A-STPA
BDD

BMC

CTL

LTL

NNF
NuSMV
Promela
SMV

Spin

STPA
STPA SwISS
STAMP
XSTAMPP
XSTPA

Automated STPA

Binary decision diagrams

Bounded Model Checking
Computation tree logic

Linear temporal logic

Negation Normal Form

A new symbolic model checker
Process Meta Language

Symbolic Model Checker

Simple Promela Interpreter

System Theoretic Process Analysis
STPA for Software-Intensive Systems
Systems-Theoretic Accident Model and Processes
An eXtensible STAMP Platform
eXtended STPA

1 Einleitung

1.1 Motivation

Software gewinnt immer an mehr Bedeutung in komplexen Systemen und iibernimmt
zunehmend vitale Funktionen des Systems. Aus diesem Grund ist es immer wichtiger
Software nicht nur auf Zuverlassigkeit sondern auch auf Sicherheit im Systemkontext zu
priifen [AW15a]. Viele Gefdhrdungen und Unfille in modernen Systemen entstehen oft trotz
tadellos funktionierender Software oder gerade auf Grund dieser. In den letzten Jahren
wurden die Moglichkeit der automatisierten Softwareverifikation mittels formaler Methoden
wie Model Checking immer attraktiver und effizienter durch Softwarelésungen wie den
Spin oder NuSMV Model Checker. Doch trotz der immer zuverldssigeren Methoden der
System Verifikation und zuverldssigen Gefdhrdungsanalysen wie STPA besteht immer noch
eine Liicke zwischen Sicherheitsanforderungen auf Systemebene die aus einer STPA Analyse
resultieren und der Verifikation dieser auf Implementierungsebene durch Formulierung
logischer Eigenschaften in einer temporalen Logik.

1.2 Problemstellung

Diese Arbeit nimmt als Grundlage die von Nancy G. Leveson vorgestellte STPA Analyse
[Levi1]. Mithilfe dieser Methode lassen sich Systeme auf Gefdhrdungen und Fehlverhalten
hin analysieren wodurch Sicherheitsanforderungen im Systemkontext abgeleitet werden kon-
nen. Diese Analyse bietet den Vorteil das sie zur Verfeinerung ihres Ergebnisses das Prozess
Model der Software ableitet wodurch sich durch Erweiterung des Prozesses [Tho13] schnell
konkrete Sicherheitsanforderungen an die Software ableiten lassen. Um diese, in natiirlicher
Sprache formulierten Sicherheitsanforderungen jedoch zur Verifikation der Software auf
Implementierungsebene zu nutzen sind weitere Schritte notwendig. In der Ausarbeitung
von Abdukhaleq et al.[AWL15] wird ein umfassender Ansatz zur Verifikation von Software
gegen die Ergebnisse einer STPA Gefdhrdungsanalyse vorgestellt. Dieser sieht den Einsatz
sogennanter Model Checker [McMg3, Holoy] vor um die zuvor in eine temporale Logik
[Mukgy] tiberfithrten Anforderungen auf Implementierungsebene zu verifizieren.

10

1.3 Zielsetzung

1.3 Zielsetzung

Ziel dieser Bachelorarbeit ist die Erstellung des STPA Verifiers als Plug-in zur Einbindung
formaler Softwareverifikation durch Modelliiberpriifung in die schon existierende XSTAMPP
Platform. Das Resultat dieser Arbeit soll eine effiziente Uberpriifung der Ergebnisse einer
STPA Analyse auf Softwareebene ermoglichen sowie die Formulierung und Verwaltung von
Sicherheitsanforderungen in LTL(Kapitel 2.3.1) sowie CTL(Kapitel 2.3.2) Syntax.

Eine weitere Anforderung an das Entwickelte Plug-in ist die automatisierte Nutzung des
Modex Werkzeugs(Kapitel 2.3.7) und damit die Ableitung von System Modellen auf Imple-
mentierungsebene.

Um eine effektive Nutzung des Werkzeugs zu ermdoglichen wird eine leicht zu bedienende
Oberfldache zur Einbindung und Nutzung der beiden Model Checker Spin (Kapitel 2.3.3)
und NuSMV (Kapitel 2.3.5) benotigt. Diese sollte iiber Komponenten zur Durchfithrung
automatisierter Verifikationssequenzen und Darstellung derer Ergebnisse verfiigen.

Als letztes sollte der STPA Verifier iiber eine Export Funktion verfiigen die es erlaubt die
Ergebnisse der Verifikation(-en) sowohl in PDF, PNG als auch als CSV Datei abzuspeichern.

1.4 Gliederung

Dieses Dokument ist wie folgt in sechs Kapitel aufgeteilt.

1. Kapitel 2 stellt die Grundlagen dieser Bachelorarbeit vor. Die Grundlagen sollen eine
Einfiihrung in die Terminologie dieser Arbeit geben.

2. Kapitel 3 zeigt die Analyse der vorgestellten Zielstellung. Im zweiten Teil des Kapitels
wird der Entwurf und die Konzeption der Implementierung vorgestellt.

3. Kapitel 4 prasentiert die Implementierung und die Funktionen des STPA Verifiers.

4. in Kapitel 5 stellt anhand einer konkreten Anwendung die Funktionsweise des Werk-
Zeugs Vor.

5. Kapitel 6 beinhaltet eine Installationsanleitung sowie eine Liste an Anforderungen
und Links um den STPA Verifier nutzen zu konnen.

6. Kapitel 7 fasst den Inhalt dieses Dokuments zusammen und schliefit dann mit einem
Ausblick auf weiterfithrende Ansatze.

11

2 Grundlagen

2.1 STAMP

STAMP ist ein von Leveson [Levo4] 2004 vorgestelltes Unfall Model welches Fehlverhalten
und dadurch resultierende Unfille mithilfe theoretischer Betrachtung des Systems analysiert
und so versucht einen Unfall auf Interaktionsfehler zwischen bzw. mit den Komponenten zu-
riickzufiihren, anstatt auf Ausfille. STAMP basiert auf der Betrachtung eines Systems durch
Betrachtung seiner Sicherheitsregelstruktur (engl.: controlstructure) und der Ableitung von
Sicherheitsanforderungen (engl.: safety constraints) die unsichere Regelungen unterbinden.
STAMP bietet eine generelle Grundlage fiir eine systemtheoretische Sicherheitsanalyse.

2.2 STPA

STPA ist eine 2004 von Leveson [Levi1] verdffentlichte Gefahrdungsanalyse die eingesetzt
werden kann um nattirlichsprachliche Sicherheitsanforderungen fiir ein bestehendes Sys-
tem abzuleiten oder einen Entwicklungsprozess Sicherheitstechnisch zu optimieren. Die
Analyse orientiert sich dabei vor allem an den Interaktionen der im System existierenden
Komponenten wobei sowohl mechanische Bauteile, Software als auch Menschen als solche
betrachtet werden. Durch diese Betrachtungsweise gelingt es nicht nur Fehlfunktionen ein-
zelner Komponenten zu erkennen sondern auch jede Art von gefdhrdender Interaktion oder
Kommunikation.

» Systemanalysieren * Unsichere) * Prozess Modellaufbauen
» Gefahrdungen erkennen Regelungsaktionen » Kausale Faktoren pro
» Sicherheitsanforderungen analysieren [Systemkomponente
aufstellen « Sicherheitsanforderungen ableiten
» Sicherheitsregelstruktur verfeinern « Sicherheitsanforderungen
ableiten/aufbauen verfeinern
Schritt 0 Schritt 1 Schritt 2

Abbildung 2.1: Schema einer STPA Analyse

Wie bereits erwahnt kann STPA generell fiir zwei Szenarien eingesetzt werden, einen gefiihr-
ten Entwicklungsprozess oder die Uberpriifung/Optimierung eines bestehenden Systems.
In beiden Féllen muss vor Beginn der Analyse eine Liste der bestehenden oder gewiinschten
Systemanforderungen sowie moglichen bekannten Sicherheitsliicken oder Unfallszenarien

12

2.2 STPA

aufgestellt werden. Des weiteren benotigt STPA als Eingabe eine schematische Darstellung
der Sicherheitsregelstruktur des Systems die simtliche Komponenten sowie deren Kommu-
nikationskanéle untereinander beschreibt. Die darauf folgende eigentliche Analyse umfasst
im Wesentlichen zwei Schritte:

1. Im ersten Schritt von STPA werden alle im System moglichen Regelungsaktionen
analysiert. Bei Identifikation mdglicher unsicherer Regelungsaktionen unterscheidet
STPA zwischen vier moglichen Ursachen:

e Die Gefdhrdung entsteht durch ein Ausbleiben der Aktion
e Die Gefdhrdung entsteht durch die Ausfithrung der Aktion
e Die Gefdhrdung entsteht durch eine zeitlich versetzte Ausfithrung der Aktion

e Die Gefdhrdung entsteht durch eine zu lang oder zu kurz dauernde Ausfiihrung
der Aktion

Durch die Analyse, bezogen auf diese vier Punkte, ldsst sich eine Liste an potenziell
unsicheren Regelungsaktionen ableiten die sich mittels relativ einfacher grammatikali-
scher Umformungen in Sicherheitsanforderungen tibersetzten lassen.

2. Im zweiten Schritt werden die gerade aufgestellten unsicheren Regelungsaktionen
anhand des Softwarecontrollers des Systems betrachtet. Folglich muss die bestehende
Darstellung der Sicherheitsregelstruktur um die Prozessmodelle der dem System zu-
grunde liegenden Abldufe erweitert werden. Das Ziel dieses zweiten Schrittes ist mit
Hilfe dieser Erweiterungen die Giiltigkeit der abgeleiteten Sicherheitsanforderungen
im Systemkontext zu verifizieren und mogliche gefahrdenden Abldufe zu analysieren.
Dies gelingt durch eine Ursachenanalyse pro Komponente; d.h. eine genaue Untersu-
chung des bzw. der Prozessmodelle unter Voraussetzung der bis hierhin analysierten
Sicherheitsanforderungen.

Erweiterung durch John Thomas

2013 wurde in der Verdffentlichung [Tho13] eine Erweiterung von STPA prasentiert die die in
Schritt 2 durchgefiihrte Ursachenanalyse automatisiert und so versucht den Anteil der iden-
tifizierten Risiken im System deutlich zu erhohen. Dabei werden aus den Prozessmodellen
die Prozessvariablen und deren Belegungen ausgelesen und fiir jede, als sicherheitskri-
tisch befundener Regelungsaktion, in N * M Kontexttabellen mit N = Anzahl der fiir die
Regelungsaktion relevanten Prozessvariablen und N die Anzahl an Wertekombinationen
ist.

13

2.3 Software Sicherheitsverifikation

Hazardous control action?
Con_trol Train Motion Emergency Train Position le‘[.ﬂ-’]dl:‘.ﬂ [fpl'D‘-‘]dP:d Ir prm-'l[_led
Action i any time in | too earlyin | too late in
this context | this context | this context

Door open
command | Train is moving No emergency (doesn’t matter) Yes Yes Yes
provided
Door open
command | Tramis moving | Emergency exists | (doesn’t matter) Yes Yes Yes
provided
Door open
command | Train is stopped | Emergency exists | (doesn’t matter) No No Yes
provided
Door open -
command | Trainis stopped | No emergency Not aligned Yes Yes Yes

. = with platform
provided
Door open . .
command | Trainis stopped | No emergency Aligned with No No No

; s platform
provided

Abbildung 2.2: Das Bild zeigt die Kontexttabelle fiir die open door Regelungsaktion in dem
in [Tho13] vorgefiihrten , Train”Beispiel

2.3 Software Sicherheitsverifikation

Sicherheitsverifikation ist der Versuch eine Software von Sicherheitsrisiken zu befreien. Hier-
fiir unterscheidet man generell zwischen zwei Ansitzen. Der erste mit dem sich diese Arbeit
nicht tiefer gehend beschiftigen will ist die dynamische Verifikation, also die Verifikation
zur Laufzeit einer Software. Eine klassische dynamische Analyse besteht aus Erstellung und
Durchfiihrung von Testfallen.

Ein zweiter Ansatz ist die Verifikation mittels formaler Methoden. Diese teilen sich in drei
Unterkategorien:

1. Verifikation durch Beweis eines formalen Theorems
2. Durch Deduktion

3. Durch Model Checking
Der Ansatz des Model Checkings basiert im Wesentlichen auf der abstrakten Model-
lierung eines System und dem anschlieffenden Durchlaufen samtlicher erreichbarer
Systemzustdnde. Model Checking ist eine immer verbreitetere Methode um ein Softwa-
re intensives System auf formale Anforderungen an Sicherheit und Lebendigkeit zu
tiberpriifen. Um ein System mittels Model Checking zu tiberpriifen wird ein, in einer
passenden Modellsprache wie Promela oder der NuSMV Eingabesprache geschrie-
benes, Systemmodell benoétigt. Dieses wird entweder anhand des Softwaresystems
abgeleitet oder wie in Kapitel2.3.7 beschrieben aus einer Quellcode Datei extrahiert.

14

2.3 Software Sicherheitsverifikation

Abhédngig von der Implementierung des benutzten Model Checkers konnen zwei
mogliche Vorgehensweisen zum Einsatz kommen:

3.1. Explizites Model Checking transformiert zuerst das gegebene Systemmodell in
eine effizient zu durchlaufende Form. Ein Beispiel fiir ein solches System ist das
in Kapitel 2.3.3 vorgestellte Werkzeug Spin.

3.2. Symbolisches Model Checking basiert wie der Name schon sagt auf einer symbo-
lischen Reprasentation der Zustandstiberdnge. Die Idee des symbolischen Model
Checkings ist es statt wie im oberen Fall ein Transitionensystem zu entwickeln,
lediglich die Zustandsmenge sowie eine Ubergangsfunktion abzuspeichern. Der
Aufbau dieser Funktion ist vom Aufbau der zu iiberpriifenden Eigenschaft ab-
hédngig [Roz11]. Diese Arbeit beschrankt sich auf Formeln im LTL oder im CTL
Syntax. Beim symbolischen CTL Model Checking werden die Zustandsiibergédnge
und die Formeln selbst in bindren Entscheidungsdiagrammen (englisch BDD)
festgehalten.

2.3.1 Linear Temporal Logic
Sprache und Kalkiil um Eigenschaften von Zustandsfolgen auszudriicken, ohne die Zeit
explizit zu erwihnen.

H. Peter Gumm [Gumo7]

Die lineare temporale Logik kurz LTL ist eine temporale Logik mit deren Hilfe man logische
Ausdriicke und deren Giiltigkeit tiber die Zeit formulieren kann. Die Logik erweitert die
ihr zugrundeliegende Aussagenlogik durch die Betrachtung in einem zeitlichen Kontext.
Dadurch eignet sich die LTL gut um die Giiltigkeit von Sicherheitseigenschaften in einer
linearen Sequenz von Systemzustdnden zu iiberpriifen. Eine Formel in LTL ist eine Kombi-
nation aus logisch verkniipften aussagenlogischen Ausdriicken mit einem der temporalen
modalen Operatoren:

1. aUp (Until) um Auszusagen das eine Eigenschaft a gelten muss bis § eintritt

2. X a(neXt) wenn ein Ausdruck § gelten muss sobald ein anderer « unwahr wird
Wobei auch meistens die folgenden Kombinationen als gegeben angesehen werden.

1. Fa = truella wenn eine Eigenschaften auf jeden Fall irgendwann wahr werden muss

2. Ga = -F—a oder [] fiir global giiltige Eigenschaften wahr werden muss

3. aRB = —~(—alpB) wenn ein Ausdruck « giiltig sein muss bis einschlieflich dem ersten
Systemzustand in dem b gilt.

Mit diesen Definitionen lassen sich anspruchsvolle Eigenschaften wie Sicherheits- oder
Lebendigkeitsanforderungen {iiber die Laufzeit eines Programms nach folgenden Regeln
definieren[BKo8].

15

2.3 Software Sicherheitsverifikation

Abbildung 2.3: Visualisierung der LTL Formel G (—(Action=close) U (Signal=free))

Au=true|a| A AAy | 2A | XA | A UA,

Mit einer so definierten Regel kann eine Ausfithrungssequenz auf Giiltigkeit einer Eigen-
schaft, mit Bezug auf die Anderung des Zustandspfades iiber die Laufzeit, betrachtet werden.
Dabei ist mit “Anderung des Zustandspfades’ die Betrachtung von Zustandsiibergingen
gemeint, also die Anderung der Ausfithrungsattribute. Um die Formulierung von Eigen-
schaften in LTL Syntax zu demonstrieren stelle man sich eine Zugttir vor, diese darf sich
nicht schlieffen wenn jemand im Weg steht. Nun sei close der Befehl des Systems die Tiir
zu schlieflen und free das Signal das der Einstieg frei ist, dann driickt G (=(Action=close) U
(Signal=free)) aus dass die Tiir sich erst schliefSen darf wenn der Einstieg frei ist.

Darstellung als Biichi Automat Eine weitere sehr praktische Eigenschaft der LTL ist das
verschiedene Algorithmen [VWg4][KMMPg3] existieren um einen dquivalenten Biichi Auto-
maten zu konstruieren. Dieser bildet den Grundstein fiir die Verifikation einer Eigenschaft
mittels expliziter Model Checking.

NNF Jede LTL Formel kann in negative Normal Form tibersetzt werden, was unter anderem
tiir im BMC(siehe Kapitel 2.3.5) benétigt wird, indem Negationen nur direkt vor atomaren
Funktionen erlaubt werden [BCC*o03]. Negationen in einer LTL Formel kénnen mittels
Anwendung der Regeln nach De-Morgan und den Dualititen zwischen den temporalen
Operatoren verschoben werden;

ein Beispiel wire:

LTLy = ~G(pRq)
= F(pRq)
= F=(-pU—q)

Diese Arbeit konzentriert sich vor allem auf die von Abdulkhaleq und Wagner [AW15a] vor-
gestellte Methode, mittels derer die Ergebnisse einer STPA Analyse direkt in LTL ausgedriickt
werden.

16

2.3 Software Sicherheitsverifikation

2.3.2 Computation Tree Logic

CTL ist die zweite von zwei, hier vorgestellten, temporalen Logiken die im Bereich der
Modellpriifung zum Einsatz kommen. Anders als bei der im letzten Kapitel vorgestellten
LTL betrachtet die CTL eine Programmausfiihrung nicht als lineare Folge von Zustdnden
sondern als Baumstruktur d.h. das jeder Systemzustand mehrere mogliche Folgezustande
haben kann. Um diese mehrdimensionale Betrachtung zu realisieren beinhaltet die Definition
von CTL Formeln zwei Komponenten. Die Uberpriifung der Zustandsvariablen geschieht
durch Bildung von Zustandsformeln die nach folgenden Regeln aufgebaut sind:

Au=true|a| A AAy | -A | Ep | Ag
Wobei A und E genutzt werden um die Giiltigkeit auf den nachfolgenden Pfaden wie folgt
zu beschreiben:
1. A die Eigenschaft gilt auf allen ausgehenden Pfaden
2. E es Existiert mindestens ein Pfad auf dem die Eigenschaft gilt

Und ¢ die schon in LTL genutzten temporalen Operatoren X(next) und U(until) nutzt um
die, durch A oder E selektierten Pfade, in einem temporalen Kontext zu durchsuchen:

@ = XA | MUA,

Auch hier lassen sich wieder die Operatoren G(globally) und F(finally) wie bei LTL aus den
temporal Operatoren kombinieren. Allerdings dndern sich die Dualitdten da die Operatoren
immer von den Pfad Quantoren abhéngen:

e G

- [A|E]Gp=[A]E]({true Up)
o F

- [A|EJFp=-[A[E]G—p

17

2.3 Software Sicherheitsverifikation

Abbildung 2.4: Visualisierung der CTL Formel AG(—(Action=close) U (Signal=blocked))

EXp p gilt in mindestens einem nachsten Zustand
auf irgendeinem Pfad
EF p p gilt in einem Folgezustand

auf irgendeinem Pfad

EGp Es existiert ein Pfad auf dem p dauerhaft gilt
E(p U q) | Es gibt einen Pfad auf dem p aktuell

oder in einem Folgezustand gilt und auf dem p
bis (ein-/ausschliefllich) zu diesem Zustand gilt

AXp p gilt in mindestens einem néchsten Zustand
auf irgendeinem Pfad
AFp p gilt in einem Folgezustand

auf irgendeinem Pfad

AGp Es existiert ein Pfad auf dem p dauerhaft gilt
A(p U q) | Es gibt einen Pfad auf dem p aktuell

oder in einem Folgezustand gilt und auf dem p
bis (ein-/ausschlielich) zu diesem Zustand gilt

Tabelle 2.1: Definitionen der

18

2.3 Software Sicherheitsverifikation

2.3.3 Spin Model Checker

In diesem Abschnitt soll der von Gerard J. Holzmann [Holo4] Model Checker Spin vorgestellt
werden. Aufierdem wird auf die verschiedenen, in dieser Arbeit referenzierten Funktionen
von Spin sowie das ebenfalls von Holzmann vorgestellte Werkzeug Modex.

Spin ist ein Werkzeug zur Verifikation von Sicherheits- und Lebendigkeitsanforderungen
an ein System basierend auf Biichi Automaten [Holgy]. Um die Anforderungen effizient
in einem Systemkontext {iberpriifen zu konnen miissen diese in Form von LTL Formeln
(siehe Kapitel:2.3.1) vorliegen. Diese LTL Formeln kdénnen dann von Spin ,on-the-fly“in
Biichi Automaten [Thogo], also formell tiberpriifbare endliche Automaten, umgewandelt
werden. Spin geht davon aus das die Anforderungen als sogenannte , never claims”, also
Bedingungen die nie auftreten sollen, formuliert sind. Durch diesen Trick ist es moglich die
Giiltigkeit einer Sicherheitsanforderung zu zeigen indem man beweist das der zu Grunde
liegende Automat fiir keinen erreichbaren Systemzustand terminiert. Falls der Beweis schief
geht, zeichnet Spin den akzeptierten Systemzustand auf und speichert ihn als Gegenbeispiel
der iiberpriiften Anforderung ab.

Ein so modelliertes System kann dann von Spin , in fiir die betrachtete Problemstellung
optimierten C-Code, umgewandelt werden. Dadurch wird das eigentliche Model Checking
nicht von Spin sondern einem externen , Verifier Programm”durchgefiihrt.

2.3.4 Promela

Spin liefst Modelle in der Sprache Promela(Process Meta Language), einer prozessorientierten
Modellsprache, ein. In Promela kann die Ausfithrung eines Systems abgebildet und dessen
erreichbare Zustiande analysiert werden. Um dies zu erreichen bietet Promela die Mog-
lichkeit ein System als Zusammensetzung aus bis zu 256 Prozessen, 255 global oder lokal
definierten Kommunikationskandlen sowie beliebig vielen Prozess- oder Systemvariablen zu
modellieren.

Ein Prozess p kann als initial aktiv mit active proctype p() {...}

oder als Prozess Definitionen mit proctype p(argo, .., arg,) {...}

modelliert werden wobei im zweiten Fall eine Instanz erst durch run p(argy, .., arg,) erzeugt
wird. Durch diese Definition ist es moglich ein System entweder gleich mit mehreren aktiven
Prozessen zu starten oder mithilfe eines Initiierungsblocks (Init {...}) zu starten.

Prozessinstanzen werden dann asynchron ausgefiihrt und konnen untereinander mithilfe
global definierter Kommunikationskanéle Nachrichten austauschen. Der Syntax zur Dekla-
ration von Variablen ist analog zum C Syntax, dabei sind die zur Verfiigung stehenden
Typen:

19

2.3 Software Sicherheitsverifikation

Typ Werte Bsp. Definition

bool true,false bool var = true;

byte 0 ... 255 byte var = 2;

mtype 1...255 mtype = {on, off, error} (on =3, off = 2, error = 1)

pid 0 ... 255 pid var = run p() die Instanz Nummer eines Prozesses

short | —215 .. 215 —1 | short var = -3

int —2".2"—-1 |intvar=2 n ist abhdngig von der
Prozessorarchitektur

chan 1...255 chan var = [4] {mtype, int } eine Nachricht in var enthiilt
ein mtype und ein int

Tabelle 2.2: Tabelle der in Promela definierten Variablen Typen [Hol16]

2.3.5 NuSMV Model Checker

In diesem Abschnitt wird der in dieser Arbeit eingesetzte NuSMV Model Checker vorgestellt
und seine Funktionsweise grob dargestellt. NuSMV [McMg3] ist wie das im Kapitel 2.3.3 vor-
gestellte Werkzeug Spin ein Model Checker der eingesetzt wird um Zustandsspezifikationen
in einem System zu tiberpriifen. Anders als Spin setzt NuSMV hier allerdings auf BDD(Binary
Decision Diagram) und seit Version 2.0 auch auf ein SAT(satisfaction problem)[CGP"o2]
basierendes symbolisches Model Checking. Hierbei kann NuSMV ein System welches als
endlicher Automat, in der NuSMV Eingabesprache (siehe Kapitel 2.3.6) vorliegt, gegen
Anforderungen in LTL, CTL oder PSL sowie auch gegen Invarianten tiberpriifen.

Wie auch bei Spin ist NuSMV rein kommandozeilenbasiert wobei der Nutzer hier entscheiden
kann ob er eine Verifikation entweder durch Ausfithrung eines klassischen Batch-Befehls
oder durch Aufruf von NuSMV im interaktiven Modus durchfiihren will. Beide Modi bieten
die Moglichkeit sowohl SAT- als auch BDD-basiertes Model Checking durchzufiihren. Da
aber die Batch-Methode lediglich im Modell definierte Sicherheitsanforderungen bertick-
sichtigt und bei weitem nicht die Konfigurationen bietet, beschrankt sich dieses Dokument
auf den interaktiven Modus. Abhédngig von der gewtinschten Verifikationsmethode, wobei
zu beachten ist das die SAT Methode nur LTL Formeln akzeptiert, sind folgende Schritte
durchzufiihren:

e beim BDD Model Checking konstruiert NuSMV ein bindres Entscheidungsdiagramm
aus dem Systemmodell. Wenn ein so konstruiertes BDD vorliegt kann entweder eine
im Modell oder direkt in der Shell definierte Anforderung in CTL oder LTL tiiberpriift
werden. Hierzu sei erwdhnt dass das BDD Model Checking wie der Name schon sagt
auf Entscheidungen basiert und damit auf die Uberpriifung von CTL Anforderung
beschréinkt ist [CGP'o2]. Um BDD basiertes LTL Model Checking durchzufiihren
reduziert [EMCog] NuSMV das Problem auf die Verifikation einer CTL Anforderung
durch Konstruktion eines Tableaus(auch Kripke Struktur) welches alle Zustiande der
Potenzmenge der atomaren Funktionen der LTL Formel beinhaltet.

20

2.3 Software Sicherheitsverifikation

e beim BMC(Bounded Model Checking) wird ein Erfiillbarkeitsproblem aus dem vor-
liegenden Transitionen System M, in Form einer Kripke Struktur [Gum], und einer
zu tiberpriifenden LTL Eigenschaft ¢, in NNF, gebildet. Der Verifikationsprozess be-
steht darin fiir simtliche Pfade auf die Erfiillung von ¢ hin zu tiberpriifen. Wobei die
Suchtiefe durch einen gegebenen Umfang (‘bound’) beschrénkt wird (siehe [BCC*03].

2.3.6 Die NuSMV Eingabesprache

In diesem Kapitel wird eine generelle Ubersicht {iber die Eingabesprache des NuSMV Model
Checkers gegeben wie sie im Benutzerhandbuch zur der Anfang 2016 aktuellen Version
2.0.6 *. Dabei ist das Ziel dieses Kapitels nicht den genauen Aufbau eines NuSMV Modells
darzustellen; dafiir wird auf die Spezifikation der Sprache in der gewiinschten Version
verwiesen die auf der NuSMV Homepage® zu finden ist.

Fiir den NuSMV Model Checker definierte Modelle von endlichen Zustandsmaschinen be-
stehen aus einem oder mehreren Modulen. Dabei muss dhnlich wie in C ein ,,main“-Modul
existieren, welches den Einstiegspunkt definiert und jedes weitere Modul als Zustandsvaria-
ble enthilt. Jedes Modul stellt einen parallelen Prozess dar der im Wesentlichen aus einer
Menge von Zustandsvariablen und Zustandsiibergangsrestriktionen besteht. Optional kann
ein Modul, bis auf das ,main“-Modul, noch eine Menge an Aufrufparametern, in Klammern
hinter dem Bezeichner, definieren. Dabei beginnt die Definition einer Zustandsvariablen
mit dem Codewort VAR gefolgt von dem gewihlten Variablennamen gefolgt von einer oder
mehrerer Variablennamen und einem der Typenbezeichner:

1. boolean: fiir eine boolesche Variable

2. n.. m: fiir eine Integervariable mit dem die Werte aus dem Intervall [n,m] annehmen
kann, wobein > —231 und m < 23!

3. {no, ny,...,ny}: In NuSMV kann ein Enum durch Definition einer Folge, deren Glieder
Integer- oder String-Konstanten seien konnen.

4. [signed, unsigned] word[N| wobei ein Wort der Lange drei (N=3) ein drei stelliger Bit
Vektor zur Speicherung boolescher Werte ist.

5. modul,ame ein Modul kann durch Instanziierung der Ausfithrungssequenz hinzugeftigt
werden, hierbei miissen alle vom Modul verlangten Parameter , by-value“iibergeben
werden.

Ein simples Beispiel ist das hier gegebene Programm, welches einen einfachen ,Modulo Vier
Zéahler”definiert:

MODULE main
VAR

Thttp:/ /nusmv.fbk.eu/NuSMV /userman/v26/nusmv.pdf
http:/ /nusmv.fbk.eu/

21

2.3 Software Sicherheitsverifikation

counter : 0 .. 10;
ASSIGN
init(counter) := o;
next(counter) := (counter + 1) mod 4;

Hier wird nur das notwendige , main“-Modul benutzt welches die Zustandsvariable counter
mit dem Intervall [0,10] definiert. Durch das Schliisselwort ASSIGN wird counter erst auf
null initialisiert und dann durch next() in jedem weiteren Zustand auf (counter + 1) mod 4

gesetzt.

NuSMYV akzeptiert sowohl LTL als auch CTL, timed CTL, Invarianten und PSL Spezifikationen
die entweder dem Kommandozeilenbefehl oder der NuSMV Shell iibergeben wurden oder
direkt im Modell definiert sind. Aufgrund des Kontextes dieser Arbeit, die sich lediglich
auf die Spezifikation von CTL und LTL beschrédnkt, seien hier kurz die Eigenheiten der

Formulierungen aufgezeigt:

e LTL Spezifikationen

G [nm]p bounded wahr wenn p in allen Zustinden, die minimal n
gobally und maximal m Schritte in der Zukunft liegen, gilt
F [nm]p bounded wahr wenn p in allen Zustdnden, die minimal n
finally und maximal m Schritte in der Zukunft liegen, irgendwann gilt
Yp wahr wenn p im letzten Zustand galt
Zp wahr wenn der aktuelle Zustand der initiale ist
oder Y p gilt
Hp historically | wahr wenn p in allen vorausgegangenen
Zustanden wahr war (vgl. G)
H [nm]p bounded wahr wenn p in allen Zustdnden, die maximal n
historically | und minimal m Schritte zurtickliegen, galt
Op once wahr wenn p mindestens einmal in der
Vergangenheit wahr war (vgl. F)
O [nm] p | bounded once | wahr wenn p in allen Zustdnden die maximal n
und minimal m Schritte zurtickliegen mindestens einmal galt
pSq p since q wahr wenn p seit einem Zeitpunkt ¢,
t' nicht eingeschlossen, an dem q galt, gilt
pTq p triggered q | wahr wenn p zu einem Zeitpunkt galt

und q seit einschliefilich dieses Zeitpunktes gilt.
Wenn p nie galt dann H g

Tabelle 2.3: Erweiterung der temporalen Operatoren fiir die Definition von CTL

Spezifikationen in NuSMV 2.6

22

2.3 Software Sicherheitsverifikation

e CTL Spezifikationen

E[pUq]l | exists | wahr wenn es einen Pfad gibt so dass,
until | p auf dem gesamten Pfad gilt bis q wahr wird
AlpUql

forall | wahr wenn auf allen Pfaden gilt dass,
until | p auf dem gesamten Pfad gilt bis q wahr wird

Tabelle 2.4: Erweiterung der temporalen Operatoren fiir die Definition von CTL
Spezifikationen in NuSMV 2.6

2.3.7 Model Extraction

Um ein Softwaresystem in ein Modell fiir einen Model Checker zu iibersetzten gibt es
mehrere denkbare Moglichkeiten [AW15a]. Eine sehr elegante Losung bietet das von Bell
Laboratories verodffentlichte Werkzeug Modex [HHSo1]. Modex tibersetzt C-Code direkt in
Promela wodurch man in der Lage ist Systemmodelle direkt auf Implementierungsebene
abzuleiten. Modex ist lediglich als Quellcode verfiigbar und muss lokal kompiliert und
installiert werden. Modex ist fiir eine Unix/Linux Umgebung konzipiert, wodurch eine
Installation hier lediglich die auf der Homepage des Projektes3 beschriebenen Schritte
bendtigt 4.

Die Kompilierung auf Windows Rechnern benétigt eine Cygwin® Umgebung. Das innerhalb
der Cygwin Umgebung enthaltene Cygwin-Terminal kann Modex wie unter Linux mit
folgendem Aufruf installiert werden:

o $ make install
e $./make_pc

make_pc ist ein ‘'make” Script welches fiir die Kompilierung mittels des Visual Studio C++
Compilers geschrieben wurde,

3http:/ /www.spinroot.com/modex/
4http:/ /spinroot.com/modex/MANUAL.html
Shttp:/ /www.cygwin.com/

23

2.3 Software Sicherheitsverifikation

e

/bin/=h
make script for Windows PCs with Visual Studio C++ compiler
$ also reguired: bison, lex, rm, mv, grep (e.g., from cygwin)
bizon -v —d gram.y

wmv gram tab.c gram.c

mv gram tab.h gram.h |

"cI" ist der Visual C++ Compiler dieser |
kann beispielsweise durch einen Aufruf
des Apache GCC Compilers ersetzt
werden

flex lexer.l L —
v lex.yy.p“*:;d,,a~‘J’F HW

cﬂ ;nnlngu -DPC -0 modex 3
modex.c ®Xtract.c heap.c nmetab.c syvmtab.c
token.c tree.c treestk.c lexer.c gram.c dflow.c),
prottree.c modex pp.c ps_graph.c

rm —-f *.obj gram.output # lexser.c gram.

¥
I}
1
W
=
T

mv modex.exe Jusrflocal /bin
op defaults=.lut fusr/local/share/

Abbildung 2.5: Das "make_ pcSScript welches in den Modex 2.8 Quelldateien beigelegt ist

Auf diese Weise kann man beliebig komplexe und grofie Systeme, zu welchen der Quellcode
in C vorliegt, in Promela {ibersetzen. Hier muss man allerdings genau auf die Typenwahl der
definierten Zustandsvariablen, also der Variablen die man zur Verifikation benutzen mochte,
achten. Aufgrund der deutlich kleineren Auswahl an Typen in Promela die in Tabelle 2.2
dargestellt sind werden nur Variablen vom Typ Integer, Boolean, Short und Byte von Modex
direkt in das Promela Modell geschrieben. Simtliche anders definierten Variablen werden
mit dem Codewort c_ state als eingebetteter C Code hinzugefiigt.

24

2.4 STPA SwiISS: STPA for Software-Intensive Systems Approach

S/ Generated by MODEX Version 2.8 - 20 February 2015
/f Tue BApr 12 08:33:19 2016 from test.c

c_state "long res p main" "Global"™
bool lck p main ret;
bool lck p main;

int counter = 0:

#include <atdio.h>

int counter =

void main(){ chan ret_p_main =.[1] of { pid };
while (counter<d) { chan sxc cll p main = [0] of { pid }:
if (counter — chan req cll p main = [1] of { pid };
counter = active proctype p main()
lelseq {
counter++; pid 1ck id;
} L 0O:
} do
i it ¢ expr { (nov.counter<E) };
if
! ¢ expr { (now.counter==5)
¢ code { now.counter=0; };
it ¢ expr { !({nov.counter==5i)
c code { now.counter++; };
fi
goto L 07
it ¢ expr { ! (now.counter<E) }: -»> break
od;

Return: =skip;

Abbildung 2.6: Ein Beispiel fiir die automatische Extraktion eines Promela Modells aus
C-Code durch Modex 2.8

2.4 STPA SwISS: STPA for Software-Intensive Systems Approach

Der von Abdulkhaleq et al. [AWL15] vorgeschlagene Ansatz nutzt den in Kapitel 2.2 vor-
gestellten STPA Prozess um Sicherheitsanforderungen an ein System auf Systemebene
abzuleiten und mittels Model Checking zu verifizieren. STPA SwISS nutzt hierfiir einen
symbolischen oder expliziten Model Checker fiir die Verifikation auf Implementierungsebene.
In einem letzten Schritt werden aus den abgeleiteten Sicherheitsanforderungen Testfélle
generiert und ausgefiihrt.

Im Detail handelt es sich also um einen Prozess welcher die Ausfithrung folgender drei
Schritten erfordert:

1. Ableitung von Sicherheitsanforderungen auf Systemebene durch Anwendung des
STPA Prozesses inklusive den vorgeschlagenen Erganzungen von Thomas [Tho13] und
Abdulkhaleq.

2. Erstellung eines ,safe behavior models”

25

2.5 Tool Unterstiitzung

3. Dieser Schritt teilt sich in zwei Unteraufgaben wodurch versucht wird die Vorteile von
sowohl formaler als auch dynamischer Software Sicherheitsverifikation einzufangen.

3.1. Die gegebenen Anforderungen miissen zunichst, mithilfe des durch Abdulkhaleq
und Wagner in [AW15a] prédsentierten Algorithmus zur Ableitung formaler Soft-
ware Sicherheitsanforderungen, in die in Kapitel 2.3.1 vorgestellte LTL, {ibersetzt
werden. Diese werden dann mithilfe des in Kapitel 2.3 vorgestellten Ansatzes des
Model Checkings gegen ein vorher aus dem Code (siehe Kapitel 2.3.7) oder aus
dem im letzten Schritt erstellten ,safe behavior models”abgeleiteten Verifikations-
modells tiberpriift.

3.2. Den Abschluss des Prozesses bildet das Generieren und Ausfiihren von Testfallen.
Es wurden zwei Methoden vorgeschlagen um Testfélle zu erstellen: Entweder di-
rekt aus eventuellen Gegenbeispielen die wahrend des Model Checkings gefunden
wurden oder durch den Einsatz von Modell basierten Testwerkzeugen.

7y Ee
\ i System analyst &

designer

System Requirement

Software requirements

1
1
- | v
T]
!\ -i : STPA Safety

Analysis

STPA softwar; Specifications ~ Safety test
safety requirements Report

Design model

Safety requirements, context table,

A 4

control structure diagram

Software Safety Verification

Model

r

1

i
Safety d
analyst |
1

1

Traceability matrix Checking

Testing
Approach

Test Scripli

]

]

i Safety test
: engineer

Implementation
(coding)

Abbildung 2.7: Ansicht des in [AWL15] vorgeschlagenen Ansatzes zur STPA basierten
Sicherheitsverifikation in Software intensiven Systemen

2.5 Tool Unterstitzung

An der Universitdt Stuttgart wurde seit 2013 ein Reihe an Werkzeugen zur der von Leveson
vorgestellten Sicherheitstheorie [Lev11] in Form von Softwarelosungen unterstiitzt. Der aus
dieser Arbeit resultierende STPA Verifier soll ebenfalls als Erweiterung dieser Plattform zur
Verfiigung gestellt werden und als Erganzung der Funktionalitdt dienen.

26

2.5 Tool Unterstiitzung

2.5.1 XSTAMPP

XSTAMPP [AW15b] ist eine Rich Client Platform die seit Anfang 2015 an der Universitdt
Stuttgart in Java entwickelt und bereitgestellt wird. Basierend auf dem Eclipse RCP Frame-
work bietet XSTAMPP eine Basis fiir die Entwicklung von schritt-basierten Plug-ins sowie
Schnittstellen und Grundimplementierungen um die Einbindung dieser Plug-ins einfach zu
gestalten. XSTAMPP ist aus dem A-STPA Werkzeug, welches ebenfalls an der Universitat
Stuttgart im Rahmen eines Studienprojektes 2013 entwickelt wurde, hervorgegangen. Im
Zuge dieser Migration wurde A-STPA als Plug-in, welches in Kapitel 2.5.2 noch genauer
vorgestellt wird, der Plattform hinzugefiigt. Abbildung 2.8 zeigt eine schematische Dar-
stellung der Architektur von XSTAMPP und der bis zur Veroffentlichung dieser Arbeit
verdffentlichten Plug-ins.

[Pluglns A-STPA | | A-CAST | | XSTPA]

Main XSTAMPP Main .
. Ul Editors
Components B EES Functions

XSTAMPP —
Workbench Ul Platform
Language & Plug-in Development Eclipse Rich Client
Tools Environment (PDE) Platform (RCP)

Abbildung 2.8: Die Architektur von XSTAMPP

2.5.2 A-STPA

A-STPA ist ein an der Universitdt Stuttgart entwickeltes Plug-in fiir XSTAMPP [AW14a]
welches eine Implementierung der in Kapitel 2.2 vorgestellten Gefdhrdungsanalyse bietet.
A-STPA Version 2.0.5 stellt dabei die von Leveson [Lev11] vorgeschlagenen Schritte in Form
benutzerfreundlicher Editoren, zur Verfiigung.

27

2.5 Tool Unterstiitzung

i YSTAMPP -STPA Project-> ACCSimulator-> Unsafe Control Actions-> UnsafeControlActions Table - a X
File Edit Window Help
™ By > 88 Open STPA Verifier - -
[~ Project Explorer = [+ Preferences = O || T Unsafe Control Actions Table &2 = 0
v [i2 ACCSimulator [hazx] S . ot ‘
ilter Categories | control action ~
~ C¢ Establish Fundamentals <
System Description Mot providing causes Wrong timing or order | Stopped too soonor - A~
& System Goals Control Action hazard Providing causes hazard | causes hazard Applied too long
* Accidents (inlgeior
" Hazards L
" Linking of Accidents and Hazards The ACC so.ftware The ACC software The ACC software
_) does not bring the stops the does not accelerate
Safety Constraints robot to fully stop at robot suddenly when the speed after the .
& Design Requirements standstill when the distance robot vehicle ahead is
Control Struct robot vehicle ahead is to the robot ahead is starting move again.
ontrof Structure fully stopped too close
v 1% Unsafe Control Actions [H-1] [H-3] E Mot Hazardous E Mot Hazardous E Add stopped too soorl
~ Control Actions
" UnsafeControlActions Table
* Corresponding Safety Constraints Add not given UCA Add given incorrectlyi Add wrong timing UCEI
v 2 Causal Analysis accelerate
~ 7 Control Structure With Process Mc UCA1.2 UCA13 UCA14
@ Context Tables The ACC software The ACC software The ACC software The ACC software
@ Refined Unsafe Control Actions does not accelerate accelerates the speed accelerates the speed accelerate the speed
, the speed when the of robot unintendedly before the robot too long so that it
Refined Safety Constraints robot vehicle ahead is when the time gap to vehicle ahead is exceeds the desired
Lzl (TL Formula Table so farin the robot starting move again. speed of the robot
% Causal Factors Table the lane. vehicle ahead is
smaller
] Carros [hazx] than desired time gap
¥ NewACCSimulator [hazx] Not Hazardous B -1 H-2 B M1 H-2 E -2 E
] PCA Pump [hazx]
£ obCounter [hazx]
Add not given UCA Add given incorrEctIyi Add wrong timing UCH Add stopped too soorl
decelerate
UCA15 UCAlE
The ACC software The ACC software The ACC software The ACC software ~
< > < >

Abbildung 2.9: Die XSTAMPP Plattform 2.0.2 mit einem geoffneten A-STPA 2.0.5 Editor zur
Protokollierung unsicherer Regelungsaktionen

2.5.3 XSTPA

XSTPA [AW16] ist eine Ergdnzung des A-STPA Plug-ins die dieses um die durch Thomas
und Abdulkhaleq vorgeschlagenen Erweiterungen des STPA Prozesses erweitert. XSTPA
kombiniert die in [Tho13] vorgeschlagene automatisierte Analyse von unsicheren Regelungs-
aktionen mit den von Abdulkhaleq und Wagner in [AW15a] aufgestellten Erweiterungen
der Kontexttabelle. Diese reduzieren die Grofse der Kontexttabelle durch den Einsatz von
kombinatorischen Tests. Hierzu nutzt XSTPA den ACTS [Div16] Algorithmus um aus den
in den Prozess Modellen definierten Variablen und deren Belegungen Kontexttabellen zu
generieren. Aus diesen Tabellen konnen dann gefdhrdende Belegungen analysiert und in
entsprechende Sicherheitsanforderungen [AW15a] umgewandelt werden.

28

2.5 Tool Unterstiitzung

i YSTAMPP -STPA Project-> ACCSimulator-> Causal Analysis-> Control Structure With Process Model-> Context Tables - a X
File Edit Window Help

CEHEo |[EB < > [= [1003 |+ 14> 88 open sTPA Verifier > 5 o
[Project Explorer = O ||[Control Structure with Process Model &3

—| [+| Preferences

. || Ultrasonic
v [AcCSimulator [hazx] 4 Sencor
~ 0= Establish Fundament:
System Descriptior Distance
& System Goals
* Accidents [ACC STOP & GO Simulater Software
Hazards Process Model 1
" Linking of Accident currentspeed
~ Safety Constraints ==0 standby
& Design Reguireme = minimumSpeed resume
Control Structure fullystop ==desiredspeed cruise
~ 1% Unsafe Control Action accelerate = desiredspeed follow
’ = desiredspeed stop M Speed
Control Actions decelerate [oiorforces Al
UnsafeControlActi
- - -
Corresponding Saf [Actuators: == '-\ Speed Sensor
v 28 Causal Analysis Motor 1 & Motor 2 = (deltaX + safetyTimeGap) Q
~ " Control Structure \ = (deltaX + safetyTimeGap) 'y
. Context Tables = safetyTimeGap
@ Refined Unsafe == safetyTimeGap
Refined Safety
= w
Lzl LTL Formula Tab

“1 Causal Factors Tabl Preferenes 91138 Synchronise with Step 0 100% < >

£ Carros [hazx]

|| Context Tables = O
E- NewACCSimulator [hazx
£ PCA Pump [hazx] Process Models e Control Action Provided | Control Action Mot Provided
.0 obCounter [hazx
[] ool A accelerate Show All -
ontrol 1ons fullystop .
ID states currentspeed timeGap Anﬁ;frd?;'%grﬁr“”dffm i 0
IgpavizvEE 1 standby > minimumSpeed == &2 -
2 standby ==-desiredspeed < (deltaX + safetyTimeGap) 2 r rd (<}
3 standby < desiredspeed > (deltaX + safetyTimeGap) ' r |
Rules Table 4 standby > desiredspeed » safetyTimeGap r - r =
5 standby ==0 <= safetyTimeGap r r Cl~ =
< >

There are 0 Conflicts!
< >

& There are unsaved changes

Abbildung 2.10: The XSTAMPP 2.0.2 Platform with XSTPA 1.0.2

29

3 Analyse und Entwurf

Dieses Kapitel beschiftigt sich mit der Analyse der Problemstellung und der Umsetzung in
Form einer konkreten Architektur des STPA Verifier Plug-ins. Ziel dieses Kapitels ist es einen
Einblick in die Grundkonzepte der in Kapitel 4 vorgestellten Implementierung zu geben.

3.1 Architektur

In diesem Abschnitt wird die Architektur des STPA Verifier Plug-ins sowie eine Ubersicht
tiber die wichtigsten Kommunikationswege zwischen den Hauptkomponenten beschrie-
ben.

Der STPA Verifier ist als MVC Architektur konzipiert, welche auf Grund der erwiinschten
logischen wie auch visuellen Einbindung in die XSTAMPP Plattform auf dem Eclipse RCP
Framework sowie der XSTAMPP Platform selbst aufgebaut ist.

30

3.2 Algorithmus

STPA Verifier
GUI

| Service Interface |
Model Controller

Model

Preference Handler Controller

ASTAMIFF XSTAMPP Platform ASTAMPE
Komponenten Model

Apache™ Fop

Preferences

Workbench

JFace Eclipse RCP Core Runtime

Eclipse Equinox (OSGI Laufzeitspezifikation)

EVE]

Abbildung 3.1: Architektur des STPA Verifier Plug-in’s

Die in Abbildung 3.1 zu sehende zweigliedrige Controller Komponente erlaubt den internen
Komponenten eine direkte Kommunikation mit dem Controller, wiahrend von extern lediglich
eine Serviceschnittstelle erlaubt Anfragen an den Hauptcontroller zu stellen. Des weiteren
ermoglicht dieses Design eine klare Trennung zwischen der Verwaltung der Verifikations-
und Konfigurationsdaten. Ebenfalls stiitzt sich der STPA Verifier Export auf die, schon durch
XSTAMPP referenzierten, Apache’™ FOP! und JAXB? Bibliotheken.

3.2 Algorithmus

Der STPA Verifier bietet im Wesentlichen folgende drei Grundfunktionen:

Thttps:/ /xmlgraphics.apache.org/fop/
https:/ /jaxb.java.net/

31

3.2 Algorithmus

1. Die Eingabe von Sicherheitsanforderungen als CTL oder LTL Spezifikationen bzw. den
Import aus einem vorhandenen A-STPA Project (siehe Kapitel 2.5.2)

2. Die Verifikation der eingegebenen Sicherheitsanforderungen mittels des Spin oder
NuSMYV Model Checkers gegen ein ausgewihltes Systemmodell.

3. Erzeugung eines Verifikations Reports.

Zu diesem Zweck ist der STPA Verifier sowohl Eingabemaske fiir LTL/CTL Spezifikationen
und Konfigurationsdaten als auch graphische Oberfldche zur tibersichtlichen Erstellung und
Dokumentation von Sicherheitsverifikationen.

A-STPA Project

Safety Analysis

Text Eingabe

Importieren

Promela Model ' LTL Verifikation

Verlinken/

Ergebnis Daten |
Editieren e ispi i

SMV Model

Verlinken

Software Code

Abbildung 3.2: Algorithmus des STPA Verifier Plug-ins basierend auf dem Konzept von
STPA SwISS [AWL15]

Abbildung 3.2 zeigt eine grobe Darstellung des implementierten Algorithmus, wobei die in
blau dargestellten Komponenten externe Dateien symbolisieren.

32

3.3 Klassendiagramme

3.3 Klassendiagramme

Das folgende Kapitel soll einen Eindruck iiber die Paketstruktur und den Aufbau der Pro-
grammlogik geben. Die dargestellten Klassendiagramme sind deshalb auf das Wesentlichste
beschrénkt. Die Klassenhierarchie kann gut in die drei Komponenten des zugrunde liegenden
,MVC Pattern”eingeteilt werden. Jedoch wurde hier die klassische Interpretation des Ent-
wurfsmusters, wie in den Abbildungen 3.3 und 3.4 zu sehen, insofern abgewandelt als dass
der Controller in zwei Teile aufgespalten ist. Dies hat sowohl praktische als auch designtech-
nische Griinde, da der STPA Verifier die Daten der Verfikationsldufe nicht iiber die Laufzeit
des Programmes hinweg speichert. Allerdings werden samtliche Konfigurationseingaben
wie Parameter fiir die Model Checker oder Programmpfade gespeichert.

————
Histpaverifier.model L -
@ VerificationResult [stpaverifier.controller.model
riicationResu @ STPAVerifierModel -
e @ WerifierController (@ STPAControllerService
-resultsfgtiits O & STRAVerfierkiodel) © removeFroperty({UUD) bodlean ST ControllerService()
GCSTFRVErmErI‘.‘Iud el STRAVerifierModel) o
@ removeChecked():boolean Controller{ STRAVerifier Contraller)-v oid
© addLTLFormuiar{AbstractLTL Frovider) vaid e — erifierContraler)-vai
- R ! © exscuteSTRAVerfier(soolean) boglean @ registerView (AModelContentView):void
(3 Exportinformation @ addL Tl Formutar{Siring, Siring)-void @ remaveAProperties() boolean I,
stpav erifier. model -exportinf ormation @ getSzeOfLTLLIst it © checkSyntax() boolean e A
': 0. @lada=ILEomuia Stiol-vod @ setUseAllProperties(boolean):void @ removeChecked():boolean
i @ getSizeOfCTLLisH):ink e .
\‘,r © getLtiList() List<LTLFormular> L i =<] @ executeSTRAVerifier{boolean).boolean
b @ resetProperties():boolean neckSyntax()-boal
(& AbstractCounterexample © getCHList{)List<CTL Formular= @ checkSyntax(j-boolean

§jpaicelcriicaliond) boolcan @ setUseAllProperties(boolean):void
@ cancelVerification():boolean

stpav erifier. model

& setProperty State(UUID,int)-boolean

@ addLTLFormular{String, String):void

© sefFraperty(UUD.String)-vaid @ resumeVerificafion():boolean @ resetProperties()-boolean
@ setUseAlProperties(boolean) v oid "y)
-counterexampld g1 T P . © getlog():Fie @ pauseVerification() boolean
~ctilLi * @ setUseProperty 1 Ean):v ok -
cilList Q. P —— p impartData(lSaf ety DatalModel) boolean @ resumeVerification().boglean
" ") B cancelVerification()-boalean
EEs p verlﬁer.rnodel.pmpel'h?/ @ removePraperty(UUD boolean):boolean & ° L Ei v
et):File
@CTLFormuIar @ getResults{):List<VerificationResult= @ getLag()
& resetResults()-vaid @ importData(lSaf etyDataModel)-boolean
& CTLFormular(Siring,Siring) @ addResult{VerificationResult) boolean -cclntr:pller 4 _service/ 0.1

@ prepareForExport():void

(9 STPAVerifierController

- [
(@ AbstractProperty>| p IPro:nlarty)
I———— T |stpaverifier model properties —cantroler 0
(9 STPAVerifier ServiceFactory
B getService():STPAConirollerService
ODSTFAVBrHierServiceFaclary()
(B LTLFormular @ create(Class, IServiceLocator, ServiceLocator):Object
-HList
& LTLFarmular(String String) = -modexCaontroller | 0.1

@ LTLFormular{Abstractl TL Frovider) 0.*

ModexController
@ getl tiProvider():AbstractLTL Provider G

& ModexCantralier()
@ setSourceFile{Siring):boolean
@ start{STRAVerifierController):String

—
£ stpaverifier.util jobs (®0bservable
-checklob [java.util W

(& CompoundJob (S AbstractServiceFactory

org.eclipse.ui.services

(}ECQquHdJQD(STFhVErm erConiroller, LoggerJob{], boolean)
@ cleanUR()-void

@ pauseJdob()-void

@ isPaused()-boolean

(fA bstractServiceFactory()
(f‘c.rea!e(cﬁass:J’SerwceLocarc(: ISenicelocafor) Object

Abbildung 3.3: Klassendiagramm des stpaVerifier.model und stpaVerifier.controller.model Pakets

Abbildung 3.3 zeigt den fiir die Ein- und Ausgabedaten der Verifikationen zustandigen
Controller. Wie aus dem Diagramm ersichtlich publiziert der STPAVerifierController samtli-

33

3.3 Klassendiagramme

che Anderungen am Daten Modell durch Implementierung des , Observer Patterns”. Die
Kommunikation mit dem STPAVerifierController ist iiber die Erweiterung und Zurverfiigung-
stellung der org.eclipse.ui.services. AbstractServiceFactory gelost wodurch die Klasse indirekt

tiber die IVerifierController Schnittstelle angesprochen werden kann.

1

£ stpaverifier.ui.views

(3 ConfigureGeneralsFolder

stpaverifier. ui. views

OcCunﬂgureGeneralsFulder(}

@ createPartControl{Composite):void

@ setFocus()void

@ update{Observable, Object):void

@ =setdModel[STRAVerifierController):void
@ activate():void

(3 ConfigureModexFolder

stpaverifier. ui. views.

OcCclnﬂgurer.mdexFulder(}

@ createPartControl{Composite):void

@ =etFocus()void

@ setdModel(STPAVerifierController):void
@ update(Observable, Object)void

@ activate():void

I

i stpaverifier.controller.preferences

(9 STPAVerifierPreferenceRegistry

stpaverifier. controller preferences

OCSTPAVeriﬂerPreferenceRegistry(}
B e = @ registerintegerinput(Text, String):void

@ registerStringlnput{Text, String):void
@ registerBooleaninput{Button, String):void
E @ loadDefaults():void

1

1 stpaverifier.util.jobs

(3 NuSMVRunJob

Oc NuSMVRunJob(String, STPAVerifierController, IProperty)

(®CheckNuSMVLTLJob

" (®NuSMVArgumentHandler

stpaverifier. controller preferences

& NuSMVArgumentHandier()
OsgetNuSr.‘\.-'Argsgstring}:string

OsgetNuSMV CHECK_SYNTAX_Args(boolean String):String
OSgetNUSMV CHECK_FILE_Args(boolean String}:String
OsgetNuSMV INIT_Args(String, String): String

OsgetNuSMV MODEL_Args(String):String

& CheckNuSMVLTLIo b{String, STPAVerifierCo...

(®CheckSMV.Job

& CheckSMVJob(String, STRAVerifierControlier)
@ =scanLine(String,int):int

(& ModexJob

& Mod lob(String, String, String, String, ISa fetyDataModel)

(3 SpinArgumentHandler

stpaverifier. controller. preferences

@ scanLine(String,int)int

Osg etSpinArguments(String, String}: String

Osg etReplayArguments(String):String
& getintegerArg(String)int
& setintegerPref{String, String):void

o getBooleanArg(String):boolean
0853150U|EEI'IPI'Ef[StI’iI'Ig.Stl'il'lg‘!.\{l]id

-store| 0.1

@ getModexResutt():IFile
OcSpinArgumentHandler(}
OsluadDefaunsg‘g:vuid (® SpinRunJob

OsgEtCUITIE"EFAFQLIITIEI‘HS[‘!.Stril'lg [
OsgetRunArguments[String‘f:string lez-.. (3 CheckPROMELAJob

+store

3 IPreference Store

org.eclipse jface preference

o Oc SpinRunJob(String, STRAVerifierController, Property)

Oc CheckPROMELAJob(String, STPAVerifierController)
@ scanLine(String,int)yint

(3 CheckSpinLTLJob

Oc CheckSpinLTLlob(String, STR&VerifierController, Property)

Abbildung 3.4: Darstellung des stpaVerifier.controller.preferences Pakets und den Beziehungen
mit den UI Konfigurationsklassen und dem stpaVerifier.util.jobs Paket

34

3.4 GUI Entwurf

@ verificationPauseHandler

OcVermcat\unF‘ausar-hndI er()

@ execute(ExecutionEvent):Object

(5 0penLTLProjectHandler

& OpenLTLPrajectHandier()
@ execute(ExecutionEvent)-Object

HHstpaverifier.uti.commands.

(0OpenConsolelog

(3 VerficationStartHandler

..| @ execute{ExecutionEvent):Object

{}cVerficatimStanHand\er()

(9 OpenClose STPAVerifier

& OpenCloseSTRAVerifier()
@ execute(ExecufionEvent).Object

(3 SETUseAllProperties (B AddLTLPropertyHandler
& openCansoleLag() F3ETUseA IProperties() @ AddLTL PropertyHandler()
O CEEE e E & exscuts{BxecutionEy ent) Otject @ execute(BxecutionEvent)-Object

(3 Clear StatesHandler

@VeriﬁcationResumeHandleg |+

& ClearStatesHandler()

\". @ execute(ExeculiunEvent):Omeqi

()c\feri‘hcalionREsu meHandler()-)
@ execute{ExecutionEv an.u'ébjecl

{9 RemovePropertyHandler

OCRE mav ePropertyHandler()
@ execute{ExecutionEvent): Object

.| & CheckPropertySyntaxHandler

Ocmecbﬂoperanyntax)—hndler()
@ execute(ExecutionEvent):Object

® verificationCancelHandler

--1 @ execute(ExecutionEvent):Object

{}CVBrmcaucmGanc eHandler()

£ IVerifierController
stpav erifier controller
vy v
(9 STPAControllerService
stpav erifier controller

-controller

(9 STPAVerifierController
stpaverifier.controller

Abbildung 3.5: Klassendiagramm des stpaVerifier.util.commands Pakets

3.4 GUI Entwurf

Als Abschluss von Kapitel 3 werden in diesem Abschnitt der Entstehungsprozess und die
Konzepte der STPA Verifier Oberfliche sowie deren Umsetzung und Anpassung im Laufe

des Projektes vorgestellt.

Die Oberfldche des STPA Verifiers orientiert sich an den Anforderungen einen moglichst
tibersichtlichen und schnellen Zugriff auf die in Abschnitt 3.2 dargestellten Funktionen zu
bieten. Dadurch bedingt wurde im Entwurf bereits eine , Ein-Fenster”Losung angestrebt.
Die Idee hinter diesem Konzept liegt darin alles vor Augen zu haben um die Anzahl an
Maus-Klicks um eine Einstellung zu dndern, eine Formel anzupassen oder das Modell

einzusehen so gering wie mdoglich zu halten.

35

3.4 GUI Entwurf

& XSTAMPP
File Edit Window Help
DE@~ 5 v 5 v O nF
LTL/CTL = 8 |TM3 one by One
inta; -
Check Syntax | Add | Remove | |Import Form XSTP, Run Check :‘;:I '~ Normal
bool
IDs LTUCTL Formular Run
[J PO control==an && trigger == set verifying. [| tipl {(](2<4)}
[J P! control==an && trigger == set verifying. [|
[J P2 control==an && trigger == set verifying.. m inline incB({
O e control==an && trigger == set verified -
O p4 control=zan & trigger == set view counterexample ibbig->b=b +1

uelse->b=b-1
)

b > 2 -> b_big = true
b < 2-> b_big = false
zelse skip

i
printf("b_big = %d,b=%d\n",b_big,b)
}
inline incAQ{
i

i la_big->a=a+1
nelse->a=a-1

fi;

if

13> 5-> a_big = true
< 2-> a_big = false
uelse skip

fi;

i
printf(*a_big = %d,a=%d\n",3_big,a)
}

proctype act({
do

big -> incB(
big -> incAQ)

“ O Konfiguration = 8]

. Choose Model

(® Promela Model
O SMV Model

L]
Extract Model

: 3_big &8& b== 0->b_big=1;
od
Check Syntax| | Add| |Remove | Import Form XSTPA | |Edit| |Select All| [Deselectan| | } General Settings
init{ Ml Advanced Settings
Log I counterexample = I
Sspin ...

Abbildung 3.6: Der finale GUI Entwurf des STPA Verifiers

Die oben zu sehende Abbildung zeigt den so entstandenen Entwurf der Oberfliche. Wenn
man diesen theoretischen Entwurf mit der entstandenen Oberfliche vergleicht fallt vor
allem auf das die Integration in die vorhandene XSTAMPP Oberfldche deutlich zugenom-
men hat. Grund hierfiir ist das die direkte Interaktion mit dem A-STPA Projektbaum eine
deutlich intuitivere Moglichkeit des Datenimports bietet und durch das Hinzukommen
der Offnen/Schliefen-Buttons eine gleichzeitige Nutzung anderer in XSTAMPP integrierter

Funktionen moglich ist.

3.4 GUI Entwurf

i YSTAMPP - [m} X
File Edit Window Help
TR o
#8 Close STPA Verifier [Fesumne [Pause Cancel @ Verify v) Select All Deselect All E,"f Check Syntax X Remove <+ AddLTL + Add CTL |@ Reset
5 - 5] - w
= | LTL.."CTL] ks e por = O = O || Model Checker = 0
O IDs LTL/CTL Form.. Status NuSMV General Configuration
() Promela Model
(® SMV Model
Choose | Check Model
NuSMV Path: | NuSMY Choose Path
Counterexample plugin | BASIC TRACE EXPLAINER - shows changes ¢ ~
(0 Use BDD model checking
(®) Use BMC
Load defaults
Extract Model
onscle esults ocunterexample esults Pie esults Diagramm
Bc | Resul C I Results Pi Results Di = 0O
[Hdepth
mtime
Btransitions
mmemory
0%

Abbildung 3.7: Oberfliche der STPA Verifiers in der in dieser Arbeit vorgestellten Version
1.0.0

37

4 Implementierung

4.1 Funktionen

Dieses Kapitel gibt eine theoretische Ubersicht iiber die Funktionen und Fenster des STPA
Verifiers, in Version 1.0.0 bieten welche in Kapitel 5 in Form eines praktischen Anwendungs-
beispieles vorgefiihrt werden. Weiter wird ein Eindruck dariiber vermittelt werden wie
diese eine Software Verifikation unterstiitzen und damit den, mit herkommlichen Methoden
verbundenen, Aufwand reduzieren konnen.

4.1.1 LTL Import von A-STPA Projekten

Eines der Hauptziele dieser Arbeit ist auf Grundlage der STPA Gefahrenanalyse, die eine
automatisierte Analyse von LTL Sicherheitsanforderungen durch die Erweiterungen von
Thomas und Abdulkhaleq ermoglicht, Model Checking zu betreiben. Diese Funktion bietet
der STPA Verifier durch eine direkte Kommunikation mit dem A-STPA Plug-in ab Version
2.0.5 tiber die von XSTAMPP gestellte Schnittstelle ISafetyDataModel. So existiert bei gleich-
zeitiger Ausfithrung von A-STPA 2.0.5 und dem STPA Verifier ein Mentieintrag , Import LTL”
wenn man im Projekt Explorer mit der rechten Maustaste auf ein STPA Projekt klickt. Diese
Funktion importiert alle LTL Formeln, die zuvor in XSTPA ab Version 2.0.2 erstellt werden
konnen, in die dafiir vorgesehene Tabelle in der STPA Verifier Perspektive.

Wichtig: Das Entfernen/Editieren von Sicherheitsanforderungen die von einem STPA Projekt impor-
tiert wurden hat keinen Einfluss auf das zu Grunde liegenden Projekt

4.1.2 Verwalten der Sicherheitsanforderungen

@ Select All L—__h Deselect All | % Check Syntax X Remove + AddLTL + Add CTL @ Reset

Abbildung 4.1: Die Toolbar fiir die Verwaltung der CTL/LTL Tabelle

Die obenstehende Abbildung zeigt die Toolbar die alle Befehle beinhaltet die dem Nutzer
bereitgestellt werden um die in Abbildung 4.2 dargestellte Tabelle aller LTL und CTL Formeln
zu verwalten.

38

4.1 Funktionen

Select All markiert alle Sicherheitsanforderungen, was durch einen Haken in der
Check Box in der ersten Spalte des jeweiligen Tabelleneintrages zu erkennen ist. Eine
durch diesen Befehl oder durch manuelle Markierung der Check Box gekennzeichnete
Sicherheitsanforderung wird in Verifikationssequenzen, Syntaxiiberpriifungen und
dem Entfernen Befehl beriicksichtigt bzw. mit eingebunden.

Deselect All entfernt alle Haken in den Check Boxen der Tabelle bzw. entfernt die
Markierungen aller Sicherheitsanforderungen.

Check Syntax startet eine Syntaxiiberpriifung aller markierten Sicherheitsanforderun-
gen. Die Art der Syntaxiiberpriifung ist abhdngig davon ob im Konfigurationsmenii
Spin oder NuSMV aktiv geschaltet wurde.

Remove entfernt alle markierten Sicherheitsanforderungen aus dem STPA Verifier.

Add LTL fiigt einen neuen Eintrag mit einer automatisch generierten Formel ID hinzu.
Die so hinzugefiigte Sicherheitsanforderung muss in LTL definiert werden.

Add CTL fiigt einen neuen Eintrag mit einer automatisch generierten Formel ID hinzu.
Die so hinzugeftigte Sicherheitsanforderung muss in CTL definiert werden.

Reset setzt den Verifikationsstatus aller Sicherheitsanforderungen zurtick auf ,un-
checked”und entfernt alle Gegenbeispiele, bisherige Verifikationsergebnisse und leert
die Verifier Konsole.

™ LTLACTL Esv ne For = [

D= LTL/CTL Formular Status

Abbildung 4.2: Die LTL/CTL Formel Tabelle auf der STPA Verifier Oberfldche

39

4.1 Funktionen

4.1.3 Einrichten und konfigurieren der Model Checker
] Model Checker = O
Spin General Configuration

(® Promela Model
() SMV Model

E:\Programme\newWsTest\ACCSimulator\ ACCSimulator.pml o

Choose | | Check Maodel

Spin Path: | spin | Choose Path

Path to the C Compiler: |gcc | Choose Path

Lirnit for state space: | 1520 |

Limit for memory allocation: | 1024 |

[] Optimize for Safety Properties
Dizable x[rs] assertions

Use state space compressicn

Mernory (in bytes) used for state vector: | 2048 |

Maximum search depth: | 500000 |

Load defaults

Extract Model

Abbildung 4.3: Die Konfigurationsoberflache des STPA Verifier in Version 1.0.0

Der Kern des STPA Verifiers ist die Konfiguration und Verlinkung der lokalen Kopien der
Model Checker und des zu tiberpriifenden System Modells. Diese Einstellungen konnen in
dem in Abbildung 4.3 gezeigten View vorgenommen werden. Die so eingegebenen Konfigu-
rationsdaten sind die einzigen in Version 1.0.0 abgespeicherten Daten da diese, anders als
die anderen im STPA Verifier vorhandenen Daten, mit dem vom Eclipse RCP Framework
zur Verfligung gestellten , preferences”Paket verwaltet werden. So wird erreicht das jedwede
Einstellung die vom Benutzer vorgenommen wird dauerhaft im momentan benutzten , Eclip-
se Workspace”abgespeichert wird. Die einzige Ausnahme von dieser Speicherung bildet die

40

4.1 Funktionen

Angabe der Modelldatei bei der eine solche Speicherung aufgrund der 1..n Beziehung zwi-
schen Workspace und Modell keinen Sinn ergibt. Stattdessen 6ffnet die Wahl einer passenden
Modell Datei(.smv/.pml) diese in einem Promela oder SMV Editor, der eine Bearbeitung
und Abspeicherung des Modells erlaubt. Zwischen Platform und Modell Editor existiert
eine 1..1 Beziehung was heifst das maximal ein Modell Editor geoffnet ist der immer das
aktuell gewdhlte Modell anzeigt.

4.1.4 Promela Modell aus C-Code extrahieren

Liegt zu einem Softwarecontroller der Quellcode in ANSI C vor so kann dieser wie in Kapitel
2.3.7 beschrieben mit Hilfe von Modex direkt in ein Promela Modell tibersetzt werden. Um
eine moglichst schnelle und einfache Nutzung dieses Tools direkt von der Oberflache des
STPA Verifiers zu ermoglichen ist die Ausfithrung von Modex direkt iiber den "Extract Model’
Abschnitt im Konfigurationsmenii moglich. Damit das Plug-in auf Modex zugreifen kann
muss die Datei wie in Kapitel 2.3.7 beschrieben auf dem Computer installiert sein und
der Link zu der ausfiithrbaren Datei im Eingabefeld ,,Modex Path”eingetragen oder Modex
dem System iiber die PATH Umgebungsvariable oder eine Installation unter Linux/Mac OS
bekannt sein.

™ Model Checker = 0

NuSMV General Configuration

' Extract Model 1
Maodex Path: | Diveygwiniusilocal\bin\modex.exe | Choose Path
Cygwin dll Path: | D:\cygwin'bin | Choose Directory

Source File: | | Cheoose Path

Generate Model

Load defaults

Abbildung 4.4: Die Konfigurationsoberfldche zur Verlinkung und Ausfiithrung von Modex
unter Windows(links) und unter Linux (rechts)

41

4.1 Funktionen

4.1.5 Ausfiihrung einer Verifikation

Die Hauptfunktion des STPA Verifiers liegt in der Erstellung und Verifikation von Sicher-
heitsanforderungen. Wahrend Kapitel 5 die praktische Durchfithrung einer Verifikation
prasentiert, konzentriert sich dieser Abschnitt vor allem auf die internen Prozesse. Um eine
Verifikation aller markierten (siehe.: Verwalten der Sicherheitsanforderungen) Sicherheitsanfor-
derungen zu starten kann der Benutzer zwischen zwei Optionen wihlen:

1. One by One(Standard): Jede einzelne Verifikation einer Sicherheitsanforderung kann
wiéhrend der Laufzeit abgebrochen werden wobei die Ausfithrungssequenz bei der
néchsten Sicherheitsanforderung fortgesetzt wird.

2. Normal: Durch Abbruch einer einzelnen Sicherheitsverifikation wird der gesamte
Ausfiihrungssequenz gestoppt

[0 Pause [@ Cancel () Verify ~ ehect A

bow &) One by One verification

&) Normal verification

Abbildung 4.5: Die Toolbar fiir die Ausfithrung und Kontrolle einer Sicherheitsverifikation
wiahrend einer Sicherheitsverifikation

Nach Wahl des gewiinschten Ausfithrungstyps erstellt das Programm eine individuelle
Ausfiithrungssequenz die immer mit einer Verifikation des Modells beginnt und dann einen
Aufruf des gewdhlten Model Checkers fiir jede markierte Sicherheitsanforderung anhangt.
Waihrend der gesamten Verifikation wird der aktuelle Status der einzelnen Sicherheitsanforde-
rungen in der LTL/CTL Tabelle nach den in Abbildung 4.6 definierten Regeln aktualisiert.

42

4.1 Funktionen

Zustand Zustandsbeschreibung Zustandsdarstellungin
der LTL/CTL Tabelle
0 Ungepraft Der Initialzustand
unchecked
1 Syntax korrekt Die Formel ist durch den momentan aktive
Model Checkerals syntaktisch korrekt Y syntax correct
befunden worden '
2 Syntax Fehler Der aktive Model Checker bei der Syntax
Uberprifung einen Fehler gefunden,
Fehlerdetailswerden bei Positionierungdes
Mauszeigers iber der Zustandsanzeige
angezeigt
3 Warte auf Ausflihrung Eine Verifikation der Sicherheitsanforderung
ist geplant, in diesem Zustand kann die waiting
Formel nicht Editiert werden
4 Verifikation wird Momentan lduft eine Verifikation der
durchgefihrt Galtigkeitder Anforderungin dem @ processing...
ausgewihlten System Modell
5 Verifikation wurde Der geplante Verifikationslauf wurdean
pausiert dieser Sicherheitsanforderung, durch
Betitigungvon [l Pause pausiert. Ul paused
6 Die Verifikation wurde TempordrerZustand der den Nutzer Gber
abgebrochen den Abbruch informiert, esgibt drei

verschiedene Maglichkeiten in diesen

Zustand zu gelangen:

1.: Durch selektieren derZustandsanzeige canceled
wahrend der Ausfihrung

2.: Durch driicken g cancel inder Toolbar

desSTPA Verifiers

3.: Durch abbrechen der Verifikation Gber

den Eclipse ,Process View"

7 Verifiziert Die Glltigkeit der Sicherheitsanforderung
wurde durchden @ alidated
Model Checkerverifiziert

i) Gegenbeispielgefunden Der Model Checker hat bei der Verifikation
einen Gegenbeispiel fur die
Sicherheitsanforderung gefunden, welches
durch Selektierung derZustandsanzeige
angezeigtwerden kann |

@ failed with Counterexample

Tabelle 4.1: Tabelle der Zustédnde die eine Anforderung annehmen kann, und deren
Repréasentation in der LTL/CTL Tabelle

Um eine solche Ausfiihrungssequenz so effektiv wie moglich gestalten zu konnen besitzt das
Menii zum Starten der Verifikation auch drei Knopfe die eine Manipulation der Ausfithrung
erlauben:

43

4.1 Funktionen

Reset/

\
Manuelle Korrektur |
Check syntax
/|
|

Warte auf
Ausfihrung

Verifikation
wurde
abgebrochen

Verifikation " Verifikation
wird wurde
durchgefuhrt pausiert

Resume

i Gegenbeispiel
~ gefunden

Abbildung 4.6: Diagramm der Zustandsiibergdnge der Sicherheitsanforderungen

o Cancel bricht die Ausfithrungssequenz unabhéngig vom Typ der Ausfiihrung sofort
ab (die gleiche Funktion wie die Verifikation einer einzelnen Anforderung im Modus
,Normal“abzubrechen)

o Pause pausiert die Ausfithrung und bricht die momentane Verifikation im Bedarfsfall
ab.

o Resume setzt eine pausierte Ausfithrung mit der Verifikation, der pausierten Anforde-
rung, fort.

Diese drei Aktionen sind abhéngig vom Status der Ausfiihrung und werden, um Fehlbedie-
nung zu vermeiden, ausgegraut wenn sie sie nicht zur Verfiigung stehen.

4.1.6 Logging

Der STPA Verifier verfiigt iiber eine eigene Konsole die simtliche Ausgaben der externen
Programmaufrufe in einer Eclipse typischen Konsole anzeigt. Zusatzlich zu der Darstellung

44

4.1 Funktionen

der Informationen zur Laufzeit schreibt der STPA Verifier den Log in eine Log-Datei die in
einem pro Modell Datei erstellten Projekt abgelegt ist.

& Console [Results | [] Counterexample | [7] Results Pie| 7] Results Diagram =% 0 | = *[Cl- |'—i = 0
STPA Verifier Console

goc -DMEMLIM=1024 -02 -DXUSAFE -DMA=1520 -DCCLLAPSE -DVECTCRS5Z=2048 -w —o pan pan.c -1lm -~
spin -f '([] ({{({({({{states==standby)&& (currentspeed==desiredspeed) && (timeGap==0)))->((controlBAction==5

Der Befehl "gcc-4" ist entweder falsch geschrieben oder

konnte nicht gefunden werden.

Der Befehl "gco-3" ist entweder falsch geschrieben oder

konnte nicht gefunden werden.

goc -DMEMLIM=1024 -02 -DXUSAFE -DMA=1520 -DCCLLAPSE -DVECTCRS5Z=2048 -w —o pan pan.c -1lm

E:\Programme‘newWsTest3\ACCSimulatoripan -a -n -m500000

warning: for p.o. reduction to be wvalid the never claim must be stutter-invariant
(never claim= generated from LTL formulae are stutter-inwvariant)
pan:l: assertion vioclated !{({ !{(({comntrolAction==3))&&(((states=2)&& (currentspecd=—desiredspeed))&&(

pan: wrote E:\Programme‘\newWsTest3\ACCSimulator\ACCSimulator.pml.trail v

< >

Abbildung 4.7: Die STPA Verifier Konsole zeigt dem Benutzer samtliche Ausgaben der
internen Programmaufrufe

4.1.7 Darstellung der Ergebnisse einer Verifikation

Eine Verifikation von einer oder mehrerer Eigenschaften wird im STPA Verifier durch
mehrere Ansichten abhingig vom benutzten Model Checker visualisiert. Hierfiir stehen dem
Benutzer fiinf Komponenten zur Verfiigung:

e Die bereits vorgestellte Statusanzeige

e Die Results Table implementiert die von Abdulkhaleq und Wagner [AW15a] vorge-
schlagene Darstellung der Verifikationsergebnisse.

e Der Counterexample View bietet eine Darstellung eines gefundenen Gegenbeispiels.
Die Art der Darstellung variiert zwischen Spin und NuSMV bzw. den verschiedenen
Counterexample Plug-ins die in NuSMV enthalten sind. Das zu benutzende Plug-in
kann tiber die Konfigurationsoberfldche ausgewdhlt werden.

45

4.1 Funktionen

El Console | [Results | [Counterexample | [~ Results Pie | [™] Results Diagram = 8

o e For

Counterexample of 55R1.1

cpin: trail ends after 68 steps L
w global variables
int r 73
int safetyTimeGap: 1
int temp: 0
int timeGap: 73
int minimum5Speed: 1
int deltaX: 9
int desiredspeed: 20
int initialspeed: 1
int accelerationratio: 4
int decelerationratio: 2
int controlAction: 5 W

Abbildung 4.8: Darstellung eines Gegenbeispieles fiir die Anforderung G(counter<4) an
einen Modulo 6 Zahler in der Counterexample UI des STPA Verifiers

e Der Results Pie stellt das Ergebnis einer Verifikation als Kuchendiagramm dar.

e Das Results Diagram stellt die Entwicklung der Suchtiefe, der gebrauchten Zeit, den
durchlaufenen Transitionen und des genutzten Speicherplatzes auf einer prozentua-
len Skala tiber die tiber der Zeit dar. Dabei ist ein Zeitschritt auf der Y-Achse eine
abgeschlossene Verifikation.

1 Bdepth

90% mtime

80% Btransitions

70% memory
60%
50%
40%
30%
20%

10%

0%

Abbildung 4.9: Darstellung des Resultats Diagramms fiir das in Kapitel 4.1 benutzte
Beispiel eines Modulo 6 Zahlers

46

4.2 Systemtest

4.1.8 Export der Ergebnisse

& Export a x & Export Final Report o x

Select A Export
g J 5 Set values for the export file,

Company: MusterFirma

Select an export destination:

type filter text Loge: C:\Users\Lukas Balzer\Desktop\muster con,jpg |

~ [= STPA Verifier ~ Background Color: A [RGB (192 192, 192] ‘
STPA Verifier Report — L =
v = G5V Font Color: A [RGB{0,0,0} ‘
EsV Counterexample Export)
Es¥ LTL/CTL Properties Destination: Ci\Users\Lukas Balzer\Desktop\StpaVerifierReport_pcf | EI
v Results Export
~ [Images
ime Counterexample Image O dLandscape @24
e LTL/CTL Table Image .
e Results Image Title size: | 14 | Header size: 12 | Teat size: 10 hd
~ (= PDF c
ror Counterexample Prewew_
For LTL/CTL Table New Project
For Results Table terd

-]

< Back Next > Finish Cancel

Next > F Cancel

Abbildung 4.10: Die Struktur der STPA Verifier Export Funktionen (links) und Beispielhaft
der Wizard eines Verifikations Reports

4.2 Systemtest

In diesem Abschnitt wird der Systemtest fiir die Zustandsiibergangsfunktion und der
Kommunikation mit den Model Checkern vorgestellt. Fiir die Tests wurde das schon im
Verlauf dieses Dokuments benutzte Modell einer Modulo 6 Zahlerschleife benutzt. Das
NuSMV Modell wurde mittels, der vorhandenen Modulo Funktion mit der das Programm in
einer Endlosschleife zahlt, in der NuSMV Eingabesprache geschrieben. Das Promela Modell
wurde aus einem C-Programm, wie schon in Kapitel 2 Abschnitt 2.3.7 als Beispiel angefiihrt,
abgeleitet. Die Funktion und die Zustandsdnderungen sind in beiden Modellen trivial.
Fiir den Test wurden die Formeln in Tabelle 4.2 in die LTL/CTL Tabelle eingetragen und
nacheinander durch Spin 6.4.5 und dann durch NuSMYV 2.6.0 in den jeweiligen Modellen
verifiziert. Die Ubersetzung der Formeln in den jeweiligen Syntax wurde automatisch durch
die Programm Logik vorgenommen:

e [| <> (counter ==5) = GF(counter =5)
o [| <> (counter == 6) = GF(counter = 6)
o true = TRUE

o false = FALSE

47

4.2 Systemtest

MODULE main

VAR
counter : 0 .. 10;

ASSIGN
init ({counter)
next (counter)

a:
(counter + 1)

mod &;

// Generated by MODEX Version 2.8 - 20 February 2015
S/ Tue Apr 12 08:33:139 2016 from test.c

c_state "long res_p main" "Glokbal"
bool lck p main ret;

bool 1sk_p_rr.ein;

int counter = 0:

chan re‘:_p_rr.ein = [1] of { pid }:
chan 11 p main = [0] of { pid }:
chan re-q_sii_p_mein = [1] of { pid }:
active proctype p_main()

{
pid 1ck id;
L 0:

i ¢ _expr { (now.counter<éd) };

t ¢ expr { !{nowv.counter<é) }: -> break
od;
Return: =skip;

Abbildung 4.11: Die fiir den Systemtest verwendeten Modelle in der NuSMV 2.6.0

Eingabesprache(links) und in Promela(rechts)

LTL Formel Erwartetes Ergebnis Ergebnis

[| <> (counter ==5) | Verifikation ist erfolgreich "validated"

[| <> (counter == 6) | Es existiert ein Gegenbeispiel | "failed with Counterexample"
true muss per Definition wahr sein | "validated"

false muss per Definition falsch sein | "failed with Counterexample"

Falsch Formel wird nicht erkannt ,syntax error”

leere Formel produziert einen | ,syntax error”
Syntax Fehler

[| <> (zaehler < 6) Syntax Fehler da zaehler nicht | ,syntax error”

Tabelle 4.2: Tabelle der LTL Tests mit erwartetem und angezeigtem Ergebnis der

e Falsche = Falsch

° =

definiert ist

Verifikation

o [| <> (zaehler < 6) = GF(zaehler < 6)

48

5 Anwendungsbeispiel

Um die Funktionen des STPA Verifiers zu testen wurde 2015 an der Universitadt Stuttgart
ein ACC(,,Automatic Cruise Control”) mit Start/Stop Simulator'? durch Dennis Maseluk
und Asim Abdulkhaleq entwickelt. Hierfiir wurde ein Lego MINDSTORM EV3 Roboter mit
einer, in ANSI-C erstellten, Simulationssoftware ausgestattet. Das ACC System wurde dann
mittels eines EV3 Ultrasonic Sensors in einer Simulation einer Fahrtsituation hinter einem
zweiten EV3 Roboter getestet.

Es wurde eine STPA Gefahrenanalyse des Simulators durch Asim Abdulkhaleq mittels der in
Kapitel 2.5.1 vorgestellten XSTAMPP Platform durchgefiihrt, wodurch die Grundlagen einer
Sicherheitsverifikation auf Basis des in Kapitel 2.4 vorgestellten Prozesses aufgestellt wurden.
Abbildung 5.1 zeigt die fiir den ACCSimulator aufgestellte Sicherheitsregelstruktur mit allen
fur die Sicherheitsverifikation benotigten Systemvariablen, die als Basis der Ableitung von
formalen Sicherheitsanforderungen benétigt wird.

Thttp:/ /www.iste.uni-stuttgart.de/en/se/forschung/werkzeuge /acc-simulator.html
https:/ /sourceforge.net/projects/acc-with-stop-and-go-simulator/

49

5 Anwendungsbeispiel

Ultrasonic Sensor

Distance
y
JACC STOP & GO Simulator Software
Process Model 1
currentspeed states
==0 standby
>minimumSpeed resume
fullystop ==desiredspeed cruise
accelerate < desiredspeed follow
decelerate > desiredspeed stop ¢ Speed
motor forces
L imeGap
IActuators: ==0 Speed Sensor
Motor 1 & Motor 2 < (deltaX + safetyTimeGap)
> (deltaX + safetyTimeGap) ~
> safetyTimeGap
<= safetyTimeGap

‘Lego mindstorm robot
L4

current speed

Abbildung 5.1: Sicherheitsregelstruktur, des in ACC stop& go Systems, mit Prozess Modell
aus dem sich die LTL Formeln ableiten lassen

In einem zweiten Schritt wurden aus der oben gezeigten Sicherheitsregelstruktur verfeinerte
Sicherheitsanforderungen erstellt. Hierzu kam die von Thomas[Tho13] vorgestellte syste-
matische Ableitung von gefdhrdenden Regelungsaktionen mit den von Asim Abdulkhaleq
vorgeschlagenen Verfeinerung der Ergebnisse zum Einsatz.

50

5 Anwendungsbeispiel

Refined Safety Constraints Table

ID
RSR1.1

RSR1.2

RSR1.3

RSR1.4

RSR1.5

RSR1.6

RSR1.7

RSR1.8

RSR1.9

Refined Unsafe Control Actions

The fullystop command is provided
too late when states is standby and
currentspeed is desiredspeed and
timeGap is 0

The fullystop command is provided
too late when states is resume

and currentspeed is less than
desiredspeed and timeGap is 0

The fullystop command is provided
too late when states is cruise

and currentspeed is greater than
desiredspeed and timeGap is 0

The fullystop command is provided
too late when states is follow

and currentspeed is greater than
minimumSpeed and timeGap is 0

The fullystop command is provided
too late when states is stop and
currentspeed is desiredspeed and
timeGap is 0

The fullystop command is not
provided when states is standby
and currentspeed is greater than
minimumSpeed and timeGap is 0

The fullystop command is not
provided when states is standby
and currentspeed is desiredspeed
and timeGap is less than (deltaX +
safetyTimeGap)

The fullystop command is not
provided when states is resume
and currentspeed is less than
desiredspeed and timeGap is less
than (deltaX + safetyTimeGap)

The fullystop command is not
provided when states is cruise
and currentspeed is less than
desiredspeed and timeGap is 0

SC2.1

SC2.2

SC2.3

SC2.4

SC2.5

SC2.6

SC2.7

SC2.8

SC2.9

Refined Safety Constraints
fullystop command must not be
provided too late when states
is standby and currentspeed is
desiredspeed and timeGap is 0

fullystop command must not be
provided too late when states is
resume and currentspeed is less
than desiredspeed and timeGap is 0

fullystop command must not be
provided too late when states is
cruise and currentspeed is greater
than desiredspeed and timeGap is 0

fullystop command must not be
provided too late when states is
follow and currentspeed is greater
than minimumSpeed and timeGap
is0

fullystop command must not be
provided too late when states

is stop and currentspeed is
desiredspeed and timeGap is 0

fullystop command must be
provided when states is standby
and currentspeed is greater than
minimumSpeed and timeGap is 0

fullystop command must be
provided when states is standby
and currentspeed is desiredspeed
and timeGap is less than (deltaX +
safetyTimeGap)

fullystop command must be
provided when states is resume
and currentspeed is less than
desiredspeed and timeGap is less
than (deltaX + safetyTimeGap)

fullystop command must be
provided when states is cruise
and currentspeed is less than
desiredspeed and timeGap is 0

Abbildung 5.2: Ausschnitt aus der, aus XSTAMPP exportierten, Liste von verfeinerten
Sicherheitsanforderungen, die mithilfe des XSTPA Plug-ins Version 1.0.2
und A-STPA 2.0.5 erstellt wurden

51

5 Anwendungsbeispiel

XSTPA 1.0.2 leitet auflerdem aus den analysierten Variablenbelegungen automatisch formel-
le Sicherheitsspezifikationen in LTL ab. Dieser Schritt bildet, innerhalb des in Kapitel 2.4
vorgestellten Prozesses, den Ubergang von der Gefihrdungsanalyse hin zur Sicherheitsverifi-
kation.

LTL Formulas Table

ID LTL Formulas

SR1.1 [1 (((((((states==standby)&&(currentspeed==desiredspeed)&& (timeGap==0)))->((controlAction==fullystop)))) &&(!
(((((states==standby)&&(currentspeed==desiredspeed)&&(timeGap==0)))U((controlAction==fullystop)))))))

SR1.2 [1 (((((((states==resume)&&(currentspeed=<desiredspeed)&& (timeGap==0)))->((controlAction==fullystop)))) &&(!
(((((states==resume)&&(currentspeed=<desiredspeed)&&(timeGap==0)))U((controlAction==fullystop)))))))

SR1.3 [1 (((({((states==cruise)&&(currentspeed>desiredspeed)&&(timeGap==0)))->((control Action==fullystop)))) &&(!
(((((states==cruise)&&(currentspeed>desiredspeed)&&(timeGap==0)))U((control Action==fullystop)))))))

SR1.4 [1 (((((((states==follow)&&(currentspeed>minimumSpeed)&&(timeGap==0)))->((controlAction==fullystop))))&&(!
(((((states==follow)&& (currentspeed>minimumSpeed)&&(timeGap==0)))U((controlAction==fullystop)))))))

SR1.5 [1 (((({((states==stop)&&(currentspeed==desiredspeed)&&(timeGap==0)))->((controlAction==fullystop)))) &&(!
(((((states==stop)&&(currentspeed==desiredspeed)&&(timeGap==0)))U((control Action==fullystop)))))))

SR1.6 [1 (((((states==standby)&&(currentspeed>minimumSpeed)&&(timeGap==0)))->((controlAction==fullystop))))

SR1.7 [1 (((((states==standby)&&(currentspeed==desiredspeed)&&(timeGap<(deltaX + safetyTimeGap))))-
>((controlAction==fullystop))))

SR1.8 [1 (((((states==resume)&&(currentspeed<desiredspeed)&&(timeGap<(deltaX + safetyTimeGap))))-
>((controlAction==fullystop))))

SR1.9 [1 (((((states==cruise)&&(currentspeed<desiredspeed)&&(timeGap==0)))->((controlAction==fullystop))))

Abbildung 5.3: Ausschnitt aus der, aus XSTAMPP exportierten, Liste von LTL
Sicherheitsanforderungen, die mithilfe des XSTPA Plug-ins Version 1.0.2
und A-STPA 2.0.5 erstellt wurden

Zur Durchfithrung der Sicherheitsverifikation mittels Model Checking wurde ein System
Modell fiir den NuSMV Model Checker auf Basis der Sicherheitsregelstruktur, mit dem von
Asim Abdulkhaleq entwickelten STPASTGenerator3 erstellt. Ferner wurde auch ein Promela
Modell mittels Modex aus dem ANSI-C Quellcode der Simulationssoftware abgeleitet. Fiir
die Ableitung des Promela Modells wurden die in den STPA Verifier eingebauten Funktion
zur Nutzung von Modex benutzt. In Kapitel 2.3.3 und 2.3.5 wurden mit Spin und NuSMV
zwei hdufig eingesetzte Model Checker vorgestellt die, durch den STPA Verifier, in einer
automatisierten Verifikation der abgeleiteten STPA Sicherheitsanforderungen gegen die
jeweiligen Modelle eingesetzt wurden. Hierzu wurden die in dem oben beschriebenen
Prozess entstandenen LTL Spezifikationen, durch den Befehl 'Import LTL im Kontext Menii
des ACCSimulator Projektbaumes im Projekt Explorer der XSTAMPP Oberfldche, in den
STPA Verifier tibertragen.

3https:/ /sourceforge.net/ projects/stpastgenerator/

52

5 Anwendungsbeispiel

4 XSTAMPP -STPA Project-» ACCSimulator

File Edit Window Help
] i

#8 Close STPA Verifier 00 Pause [@ Cancel @ Verify = [Select All Deselect All | Check Syntax X Remove + AddLTL + AddCTL /@ Reset
2 | LTLCTL Esd e por = 0 || 2 SMYModel10104smy 52 = 8 || Model Checker = g
] 13 ASS1IGN
- IDs LTL/CTL Formular Status = 14 ~ MNuSMV General Configuration
SSR1.1 G ({(((((states=standb... @ failed with Count... 15init (states):=resume;
SSR1.2 G (((((({states=resum... @ failed with Count... 16 () Promela Model
SSR13 G (((((((states=cruise)... @ failed with Count... 17 ® SMV Model
SSR14 G ((([(((states=follow... @ failed with Count... 18 next (states):=case
19 . ume? E:\P; A\ newWsTest3\SMVModel 101044 5MVE
SSR15 G [({({((states=stop).. @ failed with Count.. Ao Tans: (resumels (. fegmmmEanerTE e -
_ : 20 states=resume currentsp
SSR1.E G ((([(states=standby... ®. 21 states=cruise & (timeGap > Choose | | Check Model
S5R17 G (((((states=standby... . 22 states=cruise & (currentsp
SSR1.8 G (((({states=resume)... @ validated 23 states=resume & (currentsp NuSMV Path: | NuSMV Choose Path
55R1.8 G (({((states=cruise).. @ processing... 24 states=follow & (timeGap >
o S5R1.. G tates= iti 25 states=crui & (timeG <
((states=cruise)... walting 25 states—cruise & (timeGap Counterexarnple plugin BASIC TRACE EXPLAINI ~
SSR1.. G ({([(states=follow).. waiting Z6 states=stop & (timeGap > =
5SR1.. G (((((states=stop)&(.. waiting 27 states=resume & (timeGap =
SSRI.. G (((((states=stop)&(.. waiting 2% states=resume & (rimeGap < @® Use BDD model checking
L. 2% states=follow & ((timeGap
S5R1.. G (({[(states=standby.. waiting S0 TRUE: {resume ,cruise ,fol () Use BMC
S5R1.. G (({{(states=follow).. waiting 31 esac:
S5R1.. G (({((states=stop)&(.. waiting 32
55R1.. G ({(((states=standby.. waiting 33MODULE Sub_ ACCActive (Power Load defaults
S5R1.. G (({{(states=standby.. waiting 34 VAR
S5R1.. G (((((states=resume)... waiting ~ == a o M Extract Model
onscle | [7] Results | [7] Counterexample | [T Results Pie| [T Results Diagramm
Bc le | [Results |7 C le | [Results Pie| [7] Results Di = 0O
[3(37.59%) - satisfied
B 5(62.5%) - failed
{0.0%) - Interrupted
NuSMV one by one run Rl

Abbildung 5.4: Die Oberfldche des STPA Verifiers im NuSMV Modus wéhrend einer
Sicherheitsverifikation des ACCSimulators

Die Modelle wurden jeweils durch Ausfiihren einer automatisierten Verifikation mit dem
STPA Verifier auf sémtliche Sicherheitsanforderungen tiberpriift wobei die Ergebnisse in
Form einer Resultats-Tabelle wie sie in [AW15a] vorgeschlagen wurde und eines Kuchen-
diagramms sowie einer Darstellung aller ermittelter Werte in einem Prozent/ Verifikations-
Diagramm dokumentiert.

53

5 Anwendungsbeispiel

i YSTAMPP -STPA Project-> ACCSimulator-> Causal Analysis-> Control Structure With Process Model-> Context Tables - a X
File Edit Window Help
O E @i
W8 Close STPA Verifier @) Verify = [Select Al Deselect All | Check Syntax X Remove <+ AddLTL © Reset
- - ¥
2 | LTLCTL Esd e por = O || 2] ACCSimulatorpml 5 = B || Model Checker = g
O IDs LTL/CTL Formular Status = : ::i gene;a‘t’Eisbi’SMgDEx;’EISioglz": ~ General Configuration
2 t :02:2 2]
SSR1.. (] (((((states==sto... @ ae ses ='e <
SSR1.. [1((({(states==sta.. @ 4 #define accoff (1) (®) Promela Model
o states==res... 2d=Ffine 2 odel
SSRT... [T ((((¢ #define standby (2) O SMV Model
SSRI.. []((({(states==cru.. @ #dsfins resume (3)
' EANP WsTestNACCSimulator\ ACC ~
SSR1.. [1(((((states==foll... @ validated #define cruise (4) TS T R i i
] states==sta... ailed with Co... E cose eck Model
S5R1 [e @ failed with C follow (5) Ch Check Model
SSR1.. [1(((((states==res... @ s stop (6) .
= accelerate (1)
SSR1.. [({(((states==cru... . e, decelerate (2) Spin Path: LITBTER)
SSR1.. [1(((((states==foll.. @ failed with Co... 2 #define fullystop (3)
12 #define
S5R1.. [](i{((states==foll... ® failed with Co... al Briafs
SR 11 [((((states==sto . " - ¢dE¢_|..r.e keiiSFEEC:SJHJ Path to the C Compiler: Choose Path
==sto... unknown
SSR1.. [1({{listates==sto... @ 15
SSR1.. [](((({(states==sta.. @ d 16 Limit for state space: | 1520
SSR1.. [(((((((states==st... W failed with Co... 17 e_state "long res p main" "Globa.
SSR1.. [1(((((states==sta.. @ validated 12 bool isk_p_ma_l:n_ret; (Limitfnrmemnrv allocation: | 1024 s ©
SSR1... .. @ failed with Co... 12bool Ick p main;
20 "lor r T
SSRI.. [] ({{[{states==res.. . o c_st?te 1oﬁg~res_p_G?t?DﬁarRaw\ Load defaults
Z1bool lck p GetSonarRawvValue ret;
SRL. [(((stetes==cru.. @ d s 3 et e em T s v ot Mo
[SSR1.. [(ifl(i(states==c... @ failed with Co.. ¥ < > ract Vode
B Console | [Results | 7] Counterexample | [Results Pie| [™] Results Diagram = O

[35(55.714287%) - satisfied
[31(24.285713%) - failed
0{0.0%) - Interrupted

& There are unsaved changes

Abbildung 5.5: Beispielhafte Darstellung der Ergebnisse einer Sicherheitsverifikation des
Promela Modells des ACCSimulator mit Spin 6.4.5 von 70 Anforderungen
als Kuchendiagramm

Abbildung 5.5 zeigt die Ergebnisse der Verifikation aller in STPA erfassten Sicherheitsan-
forderungen. Durch die Darstellung als Kuchendiagramm lasst sich in Echtzeit der Trend
der Verifikationen erkennen, der hier sehr schnell erkennen lasst das fast die Halfte aller
Verifikationen des Promela Modells ein Gegenbeispiel hervorgebracht haben.

54

5 Anwendungsbeispiel

i YSTAMPP -STPA Project-> ACCSimulator-> Causal Analysis-> Control Structure With Process Model-> Context Tables - a X
File Edit Window Help
RS o
#8 Close STPA Verifier [Fesumne [Pause Cancel @ Verify v) Select All Deselect All E,"f Check Syntax X Remove <+ AddLTL + Add CTL @ Reset
5 - 5 v %
& | [LTLACTL ks e ror = O || £ ACCSimulator,pml 2@] = O || Model Checker = 0
O IDs LTL/CTL Formular Status = : ::i gene;ateisbiSHgDExg\’Ersioglz : ~ General Configuration
2 t :02:2 2]
SSR1.. [](({((states==sto... @ validated < ae ses ='e <
SSR1.. [1(((((states==sta.. @ validated 4 #define accoff (1) (®) Promela Model
SSR1.. []({{{{states==res.. @ validated S #define standby (2) O SMV Model
SS5R1... [1(({((states==cru... ralidated € #define resume (3)
EANP newWsTestNACCSimulator\ ACC ~
SSR1.. [1(((((states==foll.. @ validated 7 #dsfine cruise (4) e muater
SSR1.. [1(((((states==sta.. @ failed with Co.. g #define follow (5) Choose | Check Model
SSR1.. [](((((states==res... @ validated ¢ #defins stop (€) R
__ . 10 #define accelerate (1)
SSRL.. 1] (((ltates==cru.. @ validated 11 #define decelerate (2) Spin Path: LITBTER)
SSR1.. [1(({((states==foll.. @ failed with Co... 5ol .
SSR1... [](((((states==foll.. @ failed with Co 12 #dafine fullystep {3)
o 13 #define keepspeed (4)
SSRT.. [(({{(states==sto... . validated FHFAIFR unrnewm (5) Path to the C Compiler: Choose Path
SSR1.. [1(((((states==sto.. @ validated 15
SSR1.. [1(((((states==sta.. @ validated 16 Limit for state space: | 1520
SSR1.. [1((({({(states==st... @ failed with Co... 17 e_state "long res p main" "Globa.
SSR1.. [](((((states==sta.. @ validated 12 bool lck_p_ma:%n_ret; (leltfor memory allocation: | 1024 s £
SSR1... [1((((((states==st.. @ failed with Co... 1obool lck p main?
T — 20 ST s e p Sersonarin
21 ;
SSR1.. (] ((tates==cru.. @ validarcd B iy i eeract Madl
7l SSR1.. [l((fll((states==c.. @ failed with Co.. ™ < > et Moge
onsole esults ounterexample esults Pie esults Diagram
Bc | Resul C I Results Pi Results Di = O
19%0926 Bdepth
80% mtime
70%
60% Btransitions
ﬁ? =memory
30%
20%
10%
0%

A There are unsaved changes

Abbildung 5.6: Darstellung der Ergebnisse einer Sicherheitsverifikation des Promela
Modells des ACCSimulator mit Spin 6.4.5 von 70 Anforderungen mittels
des Resultats Diagramms welches ein Prozent/Zeit Diagramm der
Verifikations Werte darstellt

55

5 Anwendungsbeispiel

Results Table

SSR #Depth #Stored #Transitions#Time #Memory |Result
States Usage
SSR1.1 419430.0 9.95997E13 |1.70086E8 |0.02 1.389624E7 [failed
SSR1.2 419430.0 9.95997E13 | 1.70086E8 |0.01 1.389624E7 [failed
SSR1.3 419430.0 9.95997E13 |1.70086E8 |0.02 1.389624E7 [failed
SSR1.4 419430.0 9.95997E13 | 1.70086E8 |0.02 1.389624E7 [failed
SSR1.5 419430.0 9.95997E13 |1.70086E8 |0.02 1.389624E7 [failed
SSR1.6 419430.0 9.95997E13 | 1.70086E8 |0.01 1.3707184E7 |satisfied
SSR1.7 419430.0 9.95997E13 |1.70086E8 |0.01 1.3707184E7 |satisfied
SSR1.8 419430.0 9.95997E13 | 1.70086E8 |0.01 1.3707184E7 |satisfied
SSR1.9 419430.0 9.95997E13 |1.70086E8 |0.01 1.3707184E7 |satisfied

Abbildung 5.7: Ausschnitt aus der Resultats-Tabelle einer Sicherheitsverifikation des

Promela Modells des ACCSimulator mit Spin 6.4.5 von 70 Anforderungen

E] Consele | [Results | [Counterexample | [~ Results Pie | [™] Results Diagram

Counterexample of 55R1.1

o e For

cpin: trail ends after 68 steps

w global variables
int r 75
int safetyTimeGap: 1
int temp: 0
int timeGap: 73
int minimum5Speed: 1
int deltaX: 9
int desiredspeed: 20
int initialspeed: 1

int decelerationratio:
int controlfction: 5

int accelerationratio: 4

2

Abbildung 5.8: Beispielhafte Darstellung eines von Spin 6.4.5 berechneten Gegenbeispieles

im STPA Verifier

56

6 Setup

In diesem Kapitel sollen die Systemvoraussetzungen und die Einrichtung des STPA Verifiers
dargestellt werden.

6.1 Installation

Der STPA Verifier stellt folgende Anforderungen an das System:
e mindestens 1 GB RAM(empfohlen werden 2)
e 200 MB Festplattenspeicher (fiir XSTAMPP + STPA Verifier)
e empfohlen wird mindestens ein Zweikern-Prozessor (z.B. Intel Core i3)

Des weiteren werden, um alle Funkionen des STPA Verifiers nutzen zu konnen, miissen die
folgenden zusétzlichen Programme auf dem Rechner installiert sein:

e Java 7 Runtime *

e C Compiler (optional) (im Rahmen dieser Arbeit wurde der GCC? benutzt, es sind
allerdings auch andere C Compiler moglich)

e NuSMYV (optional) Es wird die zu diesem Zeitpunkt aktuelle Version 2.6.0 empfohlen,
es wird allerdings mindestens NuSMV 2.0 benétigt da noch éltere Versionen kein BMC
unterstiitzen.3

e Spin (optional) In dieser Arbeit wurde Version 6.4.5 des Model Checkers eingesetzt*

e Modex (optional) Um die Modex Einbindung in den STPA Verifier nutzen zu kénnen
muss Modex von® nach der auf der Seite vorhandenen Anleitung und den in Kapitel
refchap:extraction gegebenen Anweisungen installiert werden.

e XSTAMPP Der STPA Verifier kommt als Plug-in fiir die XSTAMPP Platform Version
2.0.2 die von ¢ bezogen werden.

Thttp:/ /www.oracle.com/technetwork/java/javase /downloads/index.html

*https:/ /gcc.gnu.org/

3Der NuSMV Model Checker kann unter http://nusmv.fbk.eu/NuSMV gedownloaded werden
4Der Spin Model Checker kann auf https:/ /spinroot.org gedownloaded werden

Shttps:/ /spinroot.org/extraction

Ohttp:/ /www.xstampp.de/Download.html

57

6.1 Installation

Das STPA Verifier Plug-in selber wird nach Beendigung dieser Arbeit mit auf der XSTAMPP
Homepage unter dem Reiter Tools — STPA Verifier zum download bereitstehen. Zur Installa-
tion des STPA Verifiers miissen folgende Schritte durchgefiihrt werden:

1. XSTAMPP Installieren Hierfiir muss die entsprechende Archiv Datei gedownloaded
und dem gewtinschten Installationsverzeichnis entpackt werden.

2. Installation des STPA Verifiers
2.1. Download des STPA Verifier Update Archivs von?”
2.2. Installation des Plug-in’s in XSTAMPP

- Pfad zu der Lokalen Kopie der STPA Verifier Archiv
Datei
.
Work with g|\ = - Add...
Find more software by working with the *Available Software Sites" preferences.
XSTAMPP type filter text
File Edit Window | Help
Name Version
Welcome
~, . [4 STPA Verifier Feature 1.0.0.201603311652
Update
(@) Help Contents
Open Log Path
Install New Software..
Check for Updates
e Ser BEED Select Al Deselect All 1 item selected
Details
Show only the latest versions of available software [Hide items that are already installed
[Group items by category What is slready installed?
[Show only software applicable to target environment
[/ Contact all update sites during install to find required software
< Back Next > Finish Cancel

http:/ /www.xstampp.de/Download.html

58

7 Zusammenfassung und Ausblick

7.1 Zusammenfassung

Die Intention dieser Bachelorarbeit war es den Prozess der formalen Verifikation auf Softwa-
reebene mit der Analyse von Sicherheitsanforderungen, durch STPA, auf Systemebene zu
verbinden.

Zu diesem Zweck wurde im Fortgang dieser Arbeit der STPA Verifier implementiert und
vorgestellt. Der STPA Verifier bietet eine grafische Oberflache zur Konfiguration und Ausfiih-
rung eines Model Checkers. Es wurde sowohl der Ansatz des symbolischen Model Checkings
durch NuSMV als auch des expliziten Model Checkings durch Spin integriert, wodurch
Anforderungen sowohl in LTL als auch CTL in einer geleiteten Verifikation gepriift werden
konnen.

7.2 Ausblick

Dieser Abschnitt soll das Resiimee dieser Arbeit aufzeigen und auf einige Eigenheiten
und Limitierungen der einzelnen vorgestellten Methoden hinweisen und diese diskutieren.
Auflerdem soll ein Ausblick auf mogliche Erweiterungen und Verbesserungen gegeben
werden.

7.2.1 Limitierungen des Modex Werkzeugs

Wie bereits im Anwendungsbeispiel erwdhnt traten einige Eigenheiten und Limitierungen
von Modex bei der Anwendung auf den ACCSimulator auf. Die grofiten Schwierigkeiten mit
dem durch Modex abgeleiteten Promela Modell war das Modex Promela fremde Variablen
(Double,Float,usw.) nicht in reguldr definierte Promela Variablen tibersetzt. Stattdessen
werden diese Variablen mit dem Codewort c_ state direkt in das Modell {ibernommen,
wodurch sie zwar von dem durch Spin erzeugten Verifikationsprogramm aber nicht von
Spin selber lesbar sind. Durch diese Einschrankung ist eine Verifikation dieser Variablen
durch die Ubergabe einer LTL Formel nicht direkt moglich.

Es werden zwei Losungsansétze vorgeschlagen:

59

7.2 Ausblick

e Das in Kapitel 5 vorgestellte Beispiel wurde mittels einer modifizierten Version des
ACCSimulator.c Programms durchgefiihrt, bei der fiir jede Promela fremde Variable
ein Integer hinzugefiigt wurde welches den Wert der Orginalvariable mit Integer-
Genauigkeit mitschreibt. Ein solcher Ansatz ist in sofern praktikabel als das Integer
problemlos durch Modex in Promela Integer iibersetzt werden. Allerdings ist eine
solche Manipulation des Quellcodes, gerade bei grofien Systemen, extrem aufwandig
und fehleranfallig.

e Abdulkhaleq und Wagner haben eine LTL Verifikation vorgestellt' die mittels logischer
Aussagen, welche in Promela mit dem Codewort c_ expr definiert wurden, die c_ state
Variablen auswertet:

#define pc_expr{PpcontrolSpeed— > frontDistance <= now.safeDistance}
#define qc_expr{now.accOperation == accelerate}

Diese Aussagen konnen dann in der LTL Formel [|(p — q) verifiziert werden.

7.2.2 Future work

In dieser Arbeit wurde eine Oberfldche zur gefiihrten Verifikation von Sicherheitsanforderun-
gen vorgestellt welche die Model Checker Spin und NuSMV nutzt. Dabei wurde lediglich
der fiir diese Arbeit definierte Leistungsumfang berticksichtigt. Beide Model Checker bieten
allerdings noch zusitzliche Funktionen die in zukiinftigen Arbeiten in den STPA Verifier
integriert werden konnten. Vor allem Spin bietet mannigfaltige Moglichkeiten sowohl den
Spin Prozessor als auch dem C Compiler oder dem ausfiihrbaren Verifikationsprogramm sehr
viele Spezialisierungen und Optimierungen beim Aufruf zu tibergeben. Auch bieten beide
beide Model Checker die Moglichkeit einer gefiihrten Simulation des Zustandsraumes.

Thttps:/ / github.com/asimabdulkhaleq/STPA-and-Software-Model-Checking

60

Literaturverzeichnis

[AW14a]

[AW14b]

[AW15a]

[AW15b]

[AW16]

[AWL15]

[BCCTo3]

[BKo8]

[CC10]

[CCGRoo0]

A. Abdulkhaleq, S. Wagner. A-STPA: An Open Tool Support for System-Theoretic
Process Analysis. 2014 STAMP Conference at Massachusetts Institute of Technology
(MIT), 27 March 2014, Boston, USA., 2014. (Zitiert auf Seite 25)

A. Abdulkhaleq, S. Wagner. A Software Safety Verification Method Based on
System-Theoretic Process Analysis. In Computer Safety, Reliability, and Security, S.
401—412. Springet, 2014.

A. Abdulkhaleq, S. Wagner. Integrated safety analysis using systems-theoretic
process analysis and software model checking. In Computer Safety, Reliability, and
Security, S. 121-134. Springer, 2015. (Zitiert auf den Seiten 8, 14, 21, 24, 26, 43
und 51)

A. Abdulkhaleq, S. Wagner. XSTAMPP: An eXtensible STAMP Platform As Tool
Support for Safety Engineering. 2015 STAMP Conference at Massachusetts Institute
of Technology (MIT), 26 March 2015, Boston, USA, 2015. (Zitiert auf Seite 25)

A. Abdulkhaleq, S. Wagner. XSTAMPP 2.0: New Improvements to XSTAMPP
Including CAST Accident Analysis and an Extended Approach to STPA. 2016
STAMP Conference at Massachusetts Institute of Technology (MIT), 21 March 2016,
Boston, USA, 2016. (Zitiert auf Seite 26)

A. Abdulkhaleq, S. Wagner, N. Leveson. A Comprehensive Safety Engineering
Approach for Software-Intensive Systems Based on STPA. Procedia Engineering,
128:2-11, 2015. (Zitiert auf den Seiten 2, 8, 23, 24 und 30)

A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, Y. Zhu. Bounded model
checking. Advances in computers, 58:117-148, 2003. (Zitiert auf den Seiten 14
und 19)

C. Baier,]. KATOEN. Principles of Model Checking (Representation and Mind
Series).[S]], 2008. (Zitiert auf Seite 13)

P. Cousot, R. Cousot. A gentle introduction to formal verification of computer
systems by abstract interpretation. Logics and Languages for Reliability and Security,
25:1-29, 2010.

A. Cimatti, E. Clarke, F. Giunchiglia, M. Roveri. NuSMV: a new symbolic model
checker. International Journal on Software Tools for Technology Transfer, 2(4):410—425,
2000.

61

Literaturverzeichnis

[CGPTo2]

[Divi6]

[EMCog]

[Gum)]
[Gumo7y]
[HHSo1]

[Holg7]

[Holog]

[Holo7]

[Hol16]

[Jia14]

[KMMPg3]

[Levo4]

[Levii]

[McMo3]

[Mukg7]

A. Cimatti, E. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, A. Tacchella.
Integrating BDD-based and SAT-based symbolic model checking. In Frontiers of
Combining Systems, S. 49—56. Springer, 2002. (Zitiert auf Seite 18)

N. C. S. Division. Automated Combinatorial Testing for Software (ACTS),
2016. URL http://csrc.nist.gov/groups/SNS/acts/index.html. (Zitiert auf
Seite 26)

J. Edmund M. Clarke. Model Checking VI Linear-Time Temporal Logic, 2009.
URL http://www.cs.cmu.edu/"emc/156817-£09/1lecture6.pdf. (Zitiert auf Sei-
te 18)

H. P. Gumm. Model Checking. (Zitiert auf Seite 19)
H. P. Gumm. Lineare Temporale Logik, 2007. (Zitiert auf Seite 13)

G. J. Holzmann, M. H Smith. Software model checking: extracting verification
models from source codet. Software Testing, Verification and Reliability, 11(2):65-79,
2001. (Zitiert auf Seite 21)

G. J. Holzmann. The model checker SPIN. IEEE Transactions on software enginee-
ring, 23(5):279, 1997. (Zitiert auf Seite 17)

G. J. Holzmann. The SPIN model checker: Primer and reference manual, Band 1003.
Addison-Wesley Reading, 2004. (Zitiert auf Seite 17)

G. J. Holzmann. Design and Validation of Computer Protocols. Computer
Protocols, 2007. (Zitiert auf Seite 8)

G.]J. Holzmann. Spin - Formal Verification, 2016. URL spinroot.com. (Zitiert
auf Seite 18)

Y. Jia. Resilient and Efficient Delivery over Message Oriented Middleware. Dissertation,
Queen Mary University of London, 2014.

Y. Kesten, Z. Manna, H. McGuire, A. Pnueli. A decision algorithm for full
propositional temporal logic. In Computer Aided Verification, S. 97—109. Springer,
1993. (Zitiert auf Seite 14)

N. Leveson. A new accident model for engineering safer systems. Safety science,
42(4):237—270, 2004. (Zitiert auf Seite 10)

N. G. Leveson. Engineering a Safer World - Systems Thinking Applied to Safety.
Massachusetts Institute of Technologie, 2011. (Zitiert auf den Seiten 8, 10, 24
und 25)

K. L. McMillan. Symbolic model checking. Springer, 1993. (Zitiert auf den Seiten 8
und 18)

M. Mukund. Linear-time temporal logic and Biichi automata. Tutorial talk,
Winter School on Logic and Computer Science, Indian Statistical Institute, Calcutta,
1997. (Zitiert auf Seite 8)

62

http://csrc.nist.gov/groups/SNS/acts/index.html
http://www.cs.cmu.edu/~emc/15817-f09/lecture6.pdf
spinroot.com

[Roz11]

[Thogo]

[Tho13]

[VW86]

[VWo4]

K. Y. Rozier. Linear temporal logic symbolic model checking. Computer Science
Review, 5(2):163—203, 2011. (Zitiert auf Seite 13)

W. Thomas. Automata on infinite objects. Handbook of theoretical computer science,
Volume B, S. 133-191, 1990. (Zitiert auf Seite 17)

J. Thomas. Extending and automating a systems-theoretic hazard analysis for require-
ments generation and analysis. Dissertation, Massachusetts Institute of Technology,
2013. (Zitiert auf den Seiten 8, 11, 12, 23, 26 und 48)

M. Y. Vardi, P. Wolper. An automata-theoretic approach to automatic program
verification. In Proceedings of the First Symposium on Logic in Computer Science, S.
322—331. IEEE Computer Society, 1986.

M. Y. Vardi, P. Wolper. Reasoning about infinite computations. Information and
computation, 115(1):1-37, 1994. (Zitiert auf Seite 14)

Alle URLs wurden zuletzt am 18. 04.2016 gepriift.

Erkliarung

Ich versichere, diese Arbeit selbststandig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wortlich oder sinngemaf$ aus anderen Wer-
ken {ibernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Priifungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollstandig
verdffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Motivation
	1.2 Problemstellung
	1.3 Zielsetzung
	1.4 Gliederung

	2 Grundlagen
	2.1 STAMP
	2.2 STPA
	2.3 Software Sicherheitsverifikation
	2.3.1 Linear Temporal Logic
	2.3.2 Computation Tree Logic
	2.3.3 Spin Model Checker
	2.3.4 Promela
	2.3.5 NuSMV Model Checker
	2.3.6 Die NuSMV Eingabesprache
	2.3.7 Model Extraction

	2.4 STPA SwISS: STPA for Software-Intensive Systems Approach
	2.5 Tool Unterstützung
	2.5.1 XSTAMPP
	2.5.2 A-STPA
	2.5.3 XSTPA

	3 Analyse und Entwurf
	3.1 Architektur
	3.2 Algorithmus
	3.3 Klassendiagramme
	3.4 GUI Entwurf

	4 Implementierung
	4.1 Funktionen
	4.1.1 LTL Import von A-STPA Projekten
	4.1.2 Verwalten der Sicherheitsanforderungen
	4.1.3 Einrichten und konfigurieren der Model Checker
	4.1.4 Promela Modell aus C-Code extrahieren
	4.1.5 Ausführung einer Verifikation
	4.1.6 Logging
	4.1.7 Darstellung der Ergebnisse einer Verifikation
	4.1.8 Export der Ergebnisse

	4.2 Systemtest

	5 Anwendungsbeispiel
	6 Setup
	6.1 Installation

	7 Zusammenfassung und Ausblick
	7.1 Zusammenfassung
	7.2 Ausblick
	7.2.1 Limitierungen des Modex Werkzeugs
	7.2.2 Future work

	Literaturverzeichnis

