Institut fir Architektur von Anwendungssystemen

Universitat Stuttgart
Universitatsstrale 38
D-70569 Stuttgart

Bachelorarbeit Nr. 283

Monitoring Frontend fiir
OpenTOSCA

Sebastian Bartenbach

Studiengang: Softwaretechnik

Priifer/in: Prof. Dr. Dr. h. c. Leymann
Betreuer/in: Dipl.-Inf. Florian Haupt
Beginn am: 10.11.2015

Beendet am: 11.05.2016

CR-Nummer: C.2.4, H.35 H52 H5.4

Kurzfassung

Die Topology and Orchestration Specification for Cloud Applications
(TOSCA) [10] ist eine Sprache zur portablen und interoperablen
Beschreibung von Cloud-Anwendungen. Diese Beschreibung umfasst
deren Topologie, Verwaltung und Deployment. Sie ermoglicht es,
Anwendungen automatisiert bei verschiedenen Cloud-Anbietern zu
betreiben und zu managen.

OpenTOSCA [8] ist eine Open-Source Implementierung eines TOSCA
Containers, die in den letzten Jahren an der Universitiat Stuttgart
entwickelt ~ wurde. Sie bietet eine Laufzeitumgebung fiir
TOSCA-Anwendungen. Die Provisionierungs- und
Verwaltungsprozesse, die von einem OpenTOSCA-Container
angestofen werden, sind oftmals komplex und laufen iiber einen
lingeren Zeitraum. In dieser Zeit werden Informationen iiber den
Ablauf und Zustand dieser Prozesse generiert, die dem Nutzer
allerdings aktuell nicht direkt angezeigt werden.

Waéhrend der Provisionierung einer Anwendung durch OpenTOSCA
werden Ereignisdaten generiert, in einem Monitoring System abgelegt
und iiber eine REST API [5| zur Verfiigung gestellt. Diese
Bachelorarbeit untersucht die Erweiterung des Monitorings um eine
grafische Nutzerschnittstelle, die diese Informationen fiir den Nutzer
zuganglich macht. Die Besonderheit besteht hierbei darin, dass das
Monitoring Backend unterschiedliche Typen von Events verwaltet.
Diese unterliegen einer Typhierarchie, wobei sich alle Events von einem
Basistyp ableiten, der erweitert werden kann. Die Nutzerschnittstelle
soll diese Besonderheit ebenfalls sinnvoll unterstiitzen.

Der praktische Teil der Arbeit befasst sich dabei mit der
Implementierung zweier Benutzeroberflachen, sowohl fiir den Basistyp
dieser Events, als auch eine speziell auf OpenTOSCA zugeschnittene
Oberflache. FEine prototypische Implementierung der OpenTOSCA
GUI existiert bereits und kann als Ausgangspunkt fiir diese Arbeit
verwendet werden.

Inhaltsverzeichnis

1 Einleitung

1.1

Ziel der Bachelorarbeit
1.2 Aufbau der Bachelorarbeit

2 Grundlagen

2.1
2.2

REST
TOSCA
2.2.1 Topology
2.2.2 Orchestration
2.2.3 OpenTOSCA

3 lIst- und Soll-Zustand

3.1 Anforderungen
3.1.1 Anforderungen an das generische Frontend
3.1.2 Anforderungen an das OpenTOSCA Frontend
3.2 Bisheriger Prototyp oo
3.3 Analyse
3.3.1 Generisches Frontend
3.3.2 OpenTOSCA Frontend
4 Entwurf
4.1 Generisches Frontend oL
4.2 OpenTOSCA Frontend
5 Implementierung
5.1 Frameworks
5.1.1 jQuery
5.1.2 Bootstrap oL
5.2 Generisches Frontendo
5.2.1 Darstellungo
5.2.2 Technische Umsetzung
5.3 OpenTOSCA Frontend
5.3.1 Darstellung oo

5.3.2 Technische Umsetzung

6 Zusammenfassung und Ausblick

Listings

Tabellenverzeichnis

1 Pflichtfelder fir jeden Eventtyp 25

Abbildungsverzeichnis

2.1 Ableitung der REST Architektur [5] 10
5.1 Generisches Frontend mit einem ,basic Event 24
5.2 Generisches Frontend mit gemischten Eventtypen 26
5.3 Architektur des generischen Frontends 27
5.4 OpenTOSCA Frontend mit zwei Node Instances 30
5.5 Uberlappend gestapelte Node Instances 31
5.6 Node Instance mit dariiber gelegtem Properties Pop-up 32
Listings
1 JSON Datenstruktur fiir generische Events 28
2 Initialisierung des DataTables Plugins 29
3 JSON Datenstruktur fiir OpenTOSCA Events 35
4 JSON Datenstruktur fiir eine Node Instance in OpenTOSCA . . 35

1 Einleitung

Dieses Kapitel beschreibt die Ziele dieser Arbeit und bietet eine kurze
Ubersicht ihres Aufbaus.

1.1 Ziel der Bachelorarbeit

Das Ziel der Arbeit ist es, die bisherige Monitoring-GUI fiir
OpenTOSCA-Events zu ersetzen und zu erweitern. Dafiir soll eine neue
Implementierung mit erweiterter Funktionalitdt umgesetzt werden. Diese
Implementierung soll iibersichtlichen und wartbaren Code haben und nur
wenige, begriindete externer Tools oder Frameworks verwenden. Zusatzlich
soll aukerdem eine Variante der GUI realisiert werden, die generische Events
in vereinfachter Form darstellen kann.

Das Monitoring dieser Events spaltet sich in zwei Komponenten. Ein
bestehendes Backend, welches Events entgegen nimmt, persistent speichert
und mittels einer REST-API zur Verfiigung stellt.

Diese Arbeit widmet sich der zweiten Komponente in Form der Abfrage
dieser Events und der sinnvollen Aufbereitung und Darstellung in Form einer
Benutzeroberflache.

1.2 Aufbau der Bachelorarbeit
Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 — Grundlagen: In diesem Kapitel werden die wichtigsten
Grundlagen erklért, unter anderem zu OpenTOSCA und REST.

Kapitel 3 — Ist- und Soll-Zustand: Hier werden der bisherige Stand der
ehemaligen Monitoring-GUI erldutert sowie die Anforderungen an die
Neuimplementierung und Erweiterung aufgezahlt.

Kapitel 4 — Entwurf: Behandelt die Entwurfsentscheidungen und
grundlegenden Uberlegungen zur Entwicklung der neuen
Benutzeroberfliche

Kapitel 5 — Implementierung: Erklart die detaillierte Umsetzung der
Implementierung der Monitoring-GUI fiir OpenTOSCA als auch der
Oberflache fiir generische Events.

2 Grundlagen

Dieses Kapitel beschreibt die relevanten Grundlagen, die fiir das Verstdndnis
dieser Arbeit wichtig sind. Zunédchst wird REST vorgestellt, da die
Kommunikation mit dem Monitoring Backend iiber eine REST-API
stattfindet. Darauf folgt eine Einfiihrung in OpenTOSCA, da der zweite Teil
des zu implementierenden Frontends eine Benutzeroberfliche speziell fiir
OpenTOSCA Events ist.

2.1 REST

Representational State Transfer (kurz REST) ist ein Architekturstil fiir
verteilte Hypermedia Systeme, der im Jahre 2000 von Roy Fielding in seiner
Dissertation [5] eingefiihrt wurde. In dieser Arbeit analysiert er
unterschiedliche Architekturstile hinsichtlich gewisser Eigenschaften, unter
anderem ihrer Erweiterbarkeit, Einfachheit und Skalierbarkeit. Von diesen
netzwerk-basierten Architekturen leitet er REST als einen hybriden Stil ab.

Um REST zu definieren, beschreibt Fielding zuerst einen Null-Stil und fligt
diesem iterativ neue Einschrinkungen hinzu, siehe Abbildung 2.1. Der
Null-Stil selbst enthélt keine Einschrénkungen und dient als Ausgangspunkt,
durch die Erweiterung der Einschrankungen gelangt Fielding letztendlich zu
einer vollstandigen Ableitung und somit der Definition von REST.

Die erste Beschréankung des Null-Stils findet durch die Einschrankung von
REST auf den Client-Server-Architekturstil statt. Die Trennung in Client
und Server, und somit deren Zustdndigkeiten, ist dessen Kernprinzip. Dies
erhoht die Skalierbarkeit und Portabilitdt, da der Client leichter auf ein
anderes Zielsystem portiert werden kann, wohingegen der Server einfacher
gestaltet werden kann und somit skalierbarer ist. Zusatzlich ermoglicht dies
die voneinander unabhéngige Entwicklung der Client- und
Serverkomponenten.

Die zweite Einschrankung, die REST auferlegt wird, ist die Statuslosigkeit
samtlicher Kommunikation. Dies erhcht nach Fieldings Ansicht die
Skalierbarkeit, Sichtbarkeit und Zuverldssigkeit. Da der Server keinen Status
speichern muss, vereinfacht das zum einen dessen Implementierung, und zum
anderen ldasst sich problemlos ein skalierbares, verteiltes System umsetzen,
bei dem ankommende Anfragen von unterschiedlichen Servern beantwortet
werden kénnen. Die Zuverléssigkeit wird erhoht, da Ausfille zum Teil leichter
,behoben® werden konnen, da es nicht passieren kann, dass ein gespeicherter
Zustand verloren geht. Ein defekter Server kann beispielsweise durch ein
Fallback ersetzt werden, ohne dass eine vorhergehende Synchronisierung
innerhalb dieses Systems stattfinden muss. Die Sichtbarkeit wird erhoht, da
ein Client sdmtliche Informationen die notig sind, damit der Server die
Anfrage verstehen und korrekt bearbeiten kann, in vollem Umfang in seiner
Anfrage mitschicken muss.

2 Grundlagen

s

replicated ‘ , ‘ uniform interface:
separated layered programmable:
mobile
on-demand stateless jntermediated
processing
>

oo

simple visible
reliable shared extensible
A,
. LCOD
cacheabl scalalbe multi-org. C$SS reusable REST
Replicated Repository (RR) Client-Stateless-Server (CSS)
Cache ($) Client-Cache-Stateless-Server (C$SS)
Client-Server (CS) Layered-Client-Cache-Stateless-Server (LC$SS)
Layered System (LS) Virtual Machine (VM)
Layered-Client-Server (LCS) Code on Demand (COD)
Uniform (U) Layered-Code-on-Demand-Client-Cache-Stateless-Server (LCODCS$SS)

Abbildung 2.1: Ableitung der REST Architektur [5]

Diese Einschrankung birgt jedoch auch einige Nachteile. Zum einen verliert

der Server die Kontrolle iiber die Konsistenz des Verhaltens der gesamten
Anwendung. Diese Verantwortung obliegt somit ausschliefslich dem Client,
der dafiir zusténdig ist den Zustand zu halten. Zum anderen verringert sich
der Durchsatz innerhalb des Netzwerks, da insbesondere sukzessive Anfragen
einen Overhead erzeugen, weil gleiche Informationen mehrfach tibermittelt
werden miissen.
Um einen Teil dieser Nachteile zu verringern, wird als dritte Einschrénkung
ein Caching ermoglicht. Die Daten einer Antwort vom Server konnen damit
als cachable oder non-cachable markiert werden. Sofern die Antwort auf eine
Anfrage bereits im Cache eines Clients gespeichert ist, kann dieser verwendet
werden, statt eine erneute Anfrage zu stellen. Dies entlastet sowohl den
Server als auch das Netzwerk, dessen Durchsatz somit erhoht werden kann.
Ferner kann sich der deutlich schnellere Zugriff auf den Client-Cache im
Gegensatz zu der Verzogerung einer Serveranfrage positiv auf die
Nutzererfahrung auswirken.

Durch Caching entsteht allerdings der Nachteil, dass moglicherweise alte
Daten im Cache gehalten werden, wodurch sich signifikante Unterschiede im

10

2.1 REST

Vergleich zur Antwort einer aktuellen Serveranfrage ergeben kénnten.

Die vierte Einschriankung ist eine Weiterentwicklung der
Client-Server-Einschrankung. Es handelt sich dabei um das Layered System,
welches zur Unterteilung einer Architektur in hierarchische Schichten
verpflichtet. Es beschriankt die Kommunikation aller Komponenten auf die
direkt anliegenden Schichten. Dies kann insbesondere in Verbindung mit
Caching zu einer erhéhten Performanz und somit besserer Skalierbarkeit
fiihren, da eine zwischenliegende Komponente Anfragen bei weiteren
Schichten vermeiden kann.

Die fiinfte Einschrinkung ist die der einheitlichen Schnittstelle. Sie ist die
deutlichste Abhebung von anderen netzwerk-basierten Architekturstilen und
laut Fielding das zentrale Feature von REST. Sie besagt, dass alle
Komponenten eine einheitliche Schnittstelle sowohl verwenden als auch
anbieten miissen. Durch diese Standardisierung soll die komplette
Architektur eines Systems stark vereinfacht werden konnen. Der Nachteil
hierbei ist, dass dies eine Verschlechterung der Effizienz nach sich ziehen
kann, da ein standardisierter Austausch suboptimal im Vergleich zu einer auf
die jeweilige Applikation zugeschnittene Kommunikation sein kann. Dies trifft
jedoch nicht auf das Einsatzgebiet und den Transfer von grofsen Hypermedia
Daten zu, wofiir REST laut Fielding entworfen wurde.

Mit der einheitlichen Schnittstelle gehen weitere Einschrénkungen einher,
namentlich die Identifikation wvon Ressourcen, die Manipulation von
Ressourcen durch Reprdsentationen, selbst-beschreibende Nachrichten sowie
Hypermedia as the Engine of Application State (HATEOAS). Auf diese vier
Einschrinkungen wird nun im Detail eingegangen.

Eine Ressource ist in REST eine abstrakte Bezeichnung fiir jegliche
Information, die benannt werden kann. Jeder Ressource muss nun eine
einmalige Bezeichnung zugeordnet werden, um der Identifikation wvon
Ressourcen zu entsprechen und mittels dieses Ressourcenbezeichners
eindeutig auf sie referenzieren zu kénnen. Um dies zu gewéhrleisten konnen
beispielsweise Uniform Resource Identifier |9] verwendet werden.

Eine Ressource kann verschiedene Repréasentationen besitzen, um die
selben Informationen bspw. fiir mehrere Anwendungen auf unterschiedliche
Art zur Verfiigung stellen zu koénnen. Die Beschreibung des jeweiligen
Datenformats der Représentationen geschieht hierbei durch MIME Media
Types [7]. Eine Représentation zeigt den aktuellen Stand der zugehorigen
Ressource auf dem Server. Um die Ressource zu manipulieren, kann ein
Client die von ihm verwendete Reprasentation verdndern und zuriick an den
Server schicken. Dies ergibt die Einschrankung der Manipulation wvon
Ressourcen durch Reprisentationen.

Repréasentationen konnen Referenzen auf weiterfiihrende Ressourcen
beinhalten. Diese Referenzen und Verkniipfungen beschreiben HATEOAS

11

2 Grundlagen

und ermoglichen einem Client auch ohne detailliertes Wissen, ihnen zu folgen.

Die selbst-beschreibenden Nachrichten sind eine direkte Folge der zuvor
beschriebenen Statuslosigkeit, die erfordert, dass in jeder Anfrage alle notigen
Informationen mitgeschickt werden.

Als sechste und letzte Einschrinkung ergénzt Fieldings noch das optionale
Code-on-demand. Dies soll es einem Client ermdglichen, zur Laufzeit Code zu
empfangen und ausfithren zu koénnen, um die eigene Funktionalitdt zu
erweitern.

Diese Einschrankungen fiihren nach Fielding insgesamt zu einer vollstandigen
Definition von REST.

2.2 TOSCA

Die Topology and Orchestration Specification for Cloud Applications
(TOSCA) [10] beschreibt den strukturellen Aufbau von Cloud Applikationen.
Diese hat vier Hauptziele: die Automatisierung des Deployments und
Managements von Anwendungen, die Portabilitidt und die Interoperabilitét
zwischen unterschiedlichen Cloud-Anbietern, sowie ein vom Hersteller
unabhingiges Okosystem.

TOSCA Dbeschéftigt sich sowohl mit der Topology (und der damit
verbundenen Service Structure) als auch mit der Orchestration, die das
Deployment und Management einer Topology umfasst.

Im Folgenden wird néher auf die Topology und Orchestration von TOSCA
eingegangen, sowie abschlieftend OpenTOSCA kurz erldutert.

2.2.1 Topology

Eine Topology besteht aus abstrakten Node Templates die einen konkreten
Node Type besitzen, sowie aus Relationship Templates mit zugehdrigem
Relationship Type. Sowohl Node Types als auch Relationship Types kénnen
dariiber hinaus noch Properties, die diese ndher beschreiben, besitzen. Einem
Node Type konnen aufserdem Operations, die von ihm ausgefiihrt werden
konnen, zugeordnet sein. Die eigentliche Funktionalitit dieser Operationen
wird von (potentiell mehreren) Artifacts zur Verfiigung gestellt und
implementiert.

2.2.2 Orchestration

TOSCA benennt zwei Arten der Orchestration, declarative und die
imperative Orchestration.

Die declarative Orchestration stellt die Frage, was genau realisiert werden
soll. Dabei interpretiert die Laufzeitumgebung die gegebene Topology und

12

2.2 TOSCA

fithrt das Deployment durch. Die dafiir nétige Logik ist hierbei vollstandig im
TOSCA-Container implementiert. Ein Beispiel wére die Anweisung, einen
Tomcat Server aufzusetzen. Die Auflosung und Erfiillung der dafiir nétigen
Abhéngigkeiten, die zu diesem Server fiihren, obliegt der Laufzeitumgebung.

Die imperative Orchestration beschreibt den Weg, wie etwas realisiert
werden soll. Dabei werden explizit alle einzelnen Schritte genau beschrieben,
die notwendig sind, um das gewiinschte Ziel zu erreichen. Das vorherige
Beispiel wiirde hier aus einem Management Plan bestehen, der die
Anweisungen enthélt, eine virtuelle Maschine aufzusetzen, dort einem
Tomcat Server zu installieren und diesen darauthin zu starten.

2.2.3 OpenTOSCA

OpenTOSCA [8] ist eine Open Source Implementierung eines TOSCA
Containers, die in den letzten Jahren an der Universitdt Stuttgart entwickelt
wurde. Sie bietet eine Laufzeitumgebung fiir TOSCA-Anwendungen.

Neben dem beschriebenen OpenTOSCA Container werden noch einige Tools
zur Verfiigung gestellt. Dazu gehort ein ,Self-Service UI“ fiir den Endnutzer
(Vinothek genannt) und ein Admin UI, beide benutzen die API des
Containers um mit ihm zu interagieren. Ferner existiert die Winery, welche
die Erstellung und Modellierung von TOSCA Anwendungen sowie deren
Topologie und Management-Plénen erlaubt. Sie dient der Arbeit mit Cloud
Service Archives (CSAR) und kann diese im- und exportieren.

13

3 Ist- und Soll-Zustand

Dieses Kapitel erlautert die Anforderungen an die Implementierung im
Rahmen dieser Bachelorarbeit. Ferner beschreibt es den bisherigen Stand des
existierenden Prototypen der OpenTOSCA Monitoring-GUI und analysiert
die notwendigen Schritte um die zuvor definierten Anforderungen zu erfiillen.

3.1 Anforderungen

Das Ziel ist ein Monitoring System, welches iiber eine REST API auf ein
bestehendes Backend zugreift, um verschiedene Arten von Eventtypen
abzufragen und darzustellen. Hierfiir sollen zwei grafische
Nutzerschnittstellen realisiert werden. Eine dient der Ubersicht iiber
allgemeine Events, die andere soll OpenTOSCA Events mit Informationen
iiber Provisionierung- und Verwaltungsprozesse grafisch darstellen.

Fiir diese beiden Schnittstellen existieren eine Reihe von Anforderungen, die
im Folgenden naher beschrieben werden.

3.1.1 Anforderungen an das generische Frontend

Nachfolgend werden die Anforderungen an das generische Frontend aufgezahlt
und jeweils kurz beschrieben.

A1l - Nutzung der REST API Die Interaktion mit dem Backend soll durch
dessen REST API geschehen. Insbesondere werden dariiber die gewiinschten
Events abgefragt oder alle gespeicherten Events geloscht.

A2 - Events l6schen Es soll moglich sein, alle Events zu 16schen. Dies betrifft
sowohl die persistente Speicherung im Backend als auch die aktuelle Anzeige
im Frontend.

A3 - Dynamische Updates Events sollen dynamisch nachgeladen werden
und so neu hinzugekommene Events in der Benutzeroberfliche angezeigt
werden.

A4 - Performantes Nachladen Die zuvor beschriebenen dynamischen
Updates sollen moglichst effizient sein. Insbesondere sollte sich die Anfrage
nach Events beim Backend explizit auf jene beschrinken, die dem Frontend
bisher noch nicht bekannt sind.

A5 - Kontrolle iiber Datenabfrage Die Abfrage von Events soll vom Nutzer
kontrollierbar sein. Daher soll die Moglichkeit bestehen, die initiale Abfrage
sowie das dynamische Nachladen zu starten oder anzuhalten. Das Intervall
zwischen den Updates soll frei wihlbar sein.

15

3 Ist- und Soll-Zustand

A6 - Tabellenlayout Die Darstellung der Events soll in tabellarischer Form
geschehen.

A7 - Daten sortieren Die Tabelle soll beliebig nach den Feldern der
angezeigten Events (id, source, datetime und message) sortiert werden
koénnen.

A8 - Daten filtern Die Tabelle soll nach einigen Feldern gefiltert werden
konnen. Hierfiir bieten sich insbesondere das Feld source und message an.

A9 - Auswahl der Eventquelle Es soll moglich sein, aus einer Liste aller
bekannten Quellen auszuwéahlen und nur Events anzuzeigen, die der gewahlten
Source entsprechen.

A10 - Teilmenge der Daten Aufgrund der potentiell grofen Anzahl an
Events soll auch ohne Filter die aktuelle Ansicht auf eine maximale Anzahl
an Events beschrankbar sein, um die Seite nicht zu iiberladen.

3.1.2 Anforderungen an das OpenTOSCA Frontend

Im Folgenden werden die Anforderungen an das OpenTOSCA Frontend
aufgezahlt und jeweils kurz beschrieben. Aufgrund einer funktionalen
Uberschneidung treffen einige Anforderungen an das generische Frontend
auch auf das OpenTOSCA Frontend zu. Dies betrifft insbesondere die
Anforderungen A1 bis A5, die deshalb hier nicht wiederholt aufgefiihrt
werden.

Das grundlegende Design soll sich am Aussehen des bisherigen Prototypen
orientieren. Einige spezifischeren Details diesbeziiglich finden sich in den
nachfolgenden Anforderungen. Ferner sollen alle funktionalen Eigenschaften
des Prototypen im neuen Frontend ebenfalls vorhanden sein.

A1l - Verwaltung von Node Instances Sobald ein neues Event verarbeitet
wird, dessen zugehorige Node Instance dem Frontend noch nicht bekannt ist,
sollen die OpenTOSCA Informationen zu dieser Instance beim Backend erfragt
werden. Ferner muss sie in der Benutzeroberflache hinzugefiigt und angezeigt
werden.

A12 - Gruppierung nach Node Instances Alle Events sollen durch die
zugehorige Node Instance gruppiert werden. Jede Node Instance soll grafisch
klar getrennt sein, bspw. durch einen eigenen ,Kasten“ pro Instance.

16

3.1 Anforderungen

A13 - Freie Anordnung der Node Instances Die Késten der Node
Instances sollen sich per Drag'n’Drop vom Nutzer frei verschieben und
positionieren lassen.

A14 - OpenTOSCA Informationen Alle OpenTOSCA Informationen zu
einer Node Instance, die das Backend zur Verfiigung stellt, sollen dieser
Instance zugeordnet sein und innerhalb ihres Kastens angezeigt werden.

A15 - Grafische Darstellung Sofern moglich sollten Informationen grafisch
sinnvoll und benutzerfreundlich prasentiert werden. Insbesondere soll der Node
Type durch ein passendes Icon und der State einer Node Instance farblich
dargestellt werden.

A16 - Events in Tabellenform Die zu einer Node Instance gehorigen Events
sollen in tabellarischer Form oder in Form einer Liste innerhalb des Kastens
der Instance angezeigt werden.

Al17 - Events einklappen Die Tabelle oder Liste der Events soll
standardméfsig sichtbar sein, sich jedoch zur besseren Ubersicht ein- und
ausklappen lassen.

A18 - Properties anzeigen Die Properties einer Node Instance sind ein
langerer XML-String und sollen leicht zugénglich einsehbar sein, bspw. durch
ein Pop-up.

A19 - Formatierung der Properties Das XML der Properties soll mittels
Syntax-Highlighting und korrekter Einriickung {ibersichtlich und lesbar
dargestellt werden.

A20 - Statusdnderungen erkennen Neben den dynamischen Updates der
Events (siche Anforderung A3) soll der State aller bekannten Node Instances
periodisch tiberpriift werden. Das Intervall soll hierbei vom Benutzer
festlegbar sein, kann jedoch an das Intervall des Updates neuer Events
gebunden sein. Bei einer Anderung muss die Anzeige (textuell und grafisch)
in der Benutzeroberflache entsprechend angepasst werden.

A21 - Filterfunktionen Es soll moglich sein, nach allen dem Frontend
bekannten Service Instances sowie Node Types zu filtern und nur diejenigen
Node Instances anzuzeigen, die beiden Filtern entsprechen.

17

3 Ist- und Soll-Zustand

3.2 Bisheriger Prototyp

Der bisherige Prototyp der OpenTOSCA-GUI erfiillt bereits einen Teil dieser
Anforderungen. Auf die nicht oder nur unvollstédndig erfiillten Anforderungen
wird spater in der Analyse eingegangen.

Die folgenden Anforderungen sind vollstandig erfiillt:
e A1l - Verwaltung von Node Instances

e A12 - Gruppierung nach Node Instances

A14 - OpenTOSCA Informationen

A15 - Grafische Darstellung
e A16 - Events in Tabellenform

e A17 - Events einklappen

A18 - Properties anzeigen

A20 - Statusdnderungen erkennen

3.3 Analyse

Im Folgenden wird analysiert, welche der zuvor beschriebenen Anforderungen
noch nicht erfiillt wurden, und die im Rahmen dieser Arbeit umgesetzt werden
sollen.

3.3.1 Generisches Frontend

Da bisher noch kein Prototyp einer Benutzerschnittstelle fiir generische
Events existiert, ist die erstmalige Umsetzung aller zuvor genannten
Anforderungen an dieses Frontend (A1 bis A10) erforderlich.

Hierfiir wird entsprechend unabhéngig vom bisherigen Prototypen oder der
Neuimplementierung des OpenTOSCA Frontends ein eigenstédndiges
Frontend zur Erfassung und Darstellung allgemeiner Events implementiert.

3.3.2 OpenTOSCA Frontend

Aufgrund der Existenz des bisherigen Prototypen ist es moglich, sich an der
Umsetzung der bereits von ihm erfiillten Anforderungen zu orientieren. Da
jedoch kein Refactoring des bisherigen Codes durchgefiihrt und der Prototyp
auch nicht erweitert wird, muss die Neuimplementierung des Frontends alle
bisher erfiillten Anforderungen vollstindig umsetzen. Zusétzlich sind einige
Funktionen im Prototypen nicht oder nur teilweise vorhanden.

18

3.3 Analyse

Die folgenden Anforderungen implementierte der Prototyp nur teilweise:

e A13 - Freie Anordnung der Node Instances: Drag'n’Drop der Node
Instances ist moglich, jedoch nicht klar représentiert (das Logo des
Node Types einer Instance muss geklickt werden). Ferner lassen sich
Instances nicht problemlos iiberlappen, da die Reihenfolge
(Sichtbarkeit) nicht verénderlich ist.

e A19 - Formatierung der Properties: Der XML-String ist teilweise
eingeriickt. Es existiert kein Syntax-Highlighting.

Die folgende Anforderung wurde nicht umgesetzt:
e A21 - Filterfunktionen

Zuallererst sollte das neue Frontend daher die Funktionalitdt des bisherigen
Prototypen nachbilden um die jeweiligen Anforderungen ebenfalls erfiillen zu
konnen. Dariiber hinaus sind Verbesserungen in den beiden genannten
Bereichen notig, um die Anforderung vollstdndig und korrekt umzusetzen.

Abschliefsend soll die Erweiterung der Implementierung um die
Filterfunktionen aus A21 stattfinden.

19

4 Entwurf

Dieses Kapitel behandelt den Entwurf der Monitoring Frontends. Es geht
dabei auf die Entwurfsentscheidungen und Uberlegungen zur Umsetzung der
beiden Benutzeroberflichen ein.

Da bereits eine prototypische Implementierung der OpenTOSCA Monitoring
GUI existierte, die zwar nicht direkt erweitert, sich bei der
Neuimplementierung jedoch stark an ihr orientiert werden sollte, konnten
viele Entwurfsentscheidungen bereits davon abgeleitet werden.

Weder das Design noch die Funktionalitdt dieser GUI sind allerdings gut
fiir das generische Frontend geeignet. Deshalb ist davon auszugehen, dass
beide Frontends trotz einer dhnlichen Interaktion mit dem Backend, und der
Abfrage von Events mittels einer REST-API, nur im geringen Mafe
Uberschneidungen in ihrer Implementierung haben werden.

Daher werden das generische Frontend und das OpenTOSCA Frontend von
vorne herein als separate Projekte behandelt, die sich nur wenige, gemeinsam
verwendete Bibliotheken teilen. Im Folgenden wird néher auf beide Frontends
eingegangen.

4.1 Generisches Frontend

Das generische Frontend soll ,basic® Events darstellen. Da dies der
grundlegende Eventtyp ist, von dem alle spezialisierten oder erweiterten
Typen abgeleitet werden, entspricht dies der Anzeige aller im Backend
gespeicherten Events.

Da einerseits keine Kenntnis iiber die Art des jeweiligen Events zur
Verfiigung steht, als auch Events aller Typen gleichzeitig dargestellt werden
sollen, muss die generische Oberfliche entsprechend sehr einfach gehalten
werden. Eine umfangreiche Aufbereitung, bspw. mit einer sinnvollen
Gruppierungen von FEvents, der Anzeige von Zusatzinformationen oder
weitere doméanenspezifische Anpassungen sind nicht moglich.

Somit verbleibt die Darstellung aller verfiigharen Events als eine Aufzéhlung,
bei der jeder Eintrag die ,Rohdaten des jeweiligen Events enthilt, die den
Informationen aller Felder dieses Events entspricht. Hierfiir bietet sich eine
tabellarische Darstellung an, in der jede Zeile einem Event entspricht, und
die Spalten der Tabelle die Felder des Basic-Typs darstellen. Dies liefert eine
schnelle Ubersicht aller Events und ihrer Grundinformationen, wie sie vom
Backend geliefert werden.

Da zuséatzliche Felder, die spezialisierte Typen einfiihren kénnen, ohne das

bendtigte Wissen iiber deren Bedeutung nicht interpretiert werden kénnen,
wiirde die Anzeige dieser Felder in einem generischen Frontend wenig Sinn

21

4 Entwurf

ergeben. Es wiirde ferner das Design unnétig komplex machen, da eine
variable Anzahl an anzuzeigenden Feldern pro Eventtyp umgesetzt werden
miisste.

Um die gesamten Events des Monitoring Systems im Uberblick behalten zu
konnen, bietet sich ein automatischer Abruf neuer Events an, um den Nutzer
iiber alle Aktivitdten informieren und diese von ihm iiberwachen lassen zu
konnen. Ferner sollte es dem Nutzer ermdglicht werden, die Anzahl an Events
auf eine fiir ihn interessante Teilmenge einzuschrinken, indem verschiedene
Filtermethoden eingesetzt werden konnen, sowie einige oder alle Felder
durchsucht und sortiert werden koénnen.

4.2 OpenTOSCA Frontend

Das OpenTOSCA Frontend orientiert sich sehr stark an dem bisherigen
Prototypen. Dieser hat sich in der Praxis bewahrt und weist funktional nur
wenige Maéngel auf, weshalb hierbei keine besonderen oder umfassenden
Entwurfsentscheidungen getroffen werden miissen, die vom Entwurf des
Prototypen abweichen.

Da der Prototyp jedoch historisch gewachsen ist, von unterschiedlichen
Personen ohne einheitlichen Stil entwickelt wurde, und viel Bloat in Form
von Drittanbieter-Bibliotheken oder Assets mit sich bringt, sollte er nicht
direkt erweitert werden. Ein Refactoring und die darauf folgende
Weiterentwicklung des Prototypen ware eine mogliche Option.

Aufgrund des umfangreichen und teilweise komplexen Codes im Verhéltnis
zu dem iiberschaubaren Umfang, den die realisierte Funktionalitit bietet,
liegt eine komplette Neuimplementierung jedoch naher. Diese soll eine neue
Codebasis schaffen, sparsam mit der Verwendung von
Drittanbieter-Bibliotheken umgehen und dabei die bisher bestehenden
funktionalen Méangel ausbessert.

Das Design der Neuimplementierung soll eine Nachbildung des Prototypen
sein. Darauf hin soll die Wiederherstellung des bisherigen Funktionsumfangs
folgen. Zu diesem Zeitpunkt kann der Prototyp nun bereits durch die
wartbare, ,entschlackte und code-technisch tibersichtlichere Implementierung
ersetzt werden. Schlussendlich sollte die Erweiterung um die in Kapitel 3
verlangten Anforderungen erfolgen.

Bei der gesamten Entwicklung ist darauf zu achten, die zukiinftige
Erweiterbarkeit der Implementierung bestmoglich zu gewéhrleisten. Ferner
soll eine ,sparsame’ und begriindete Verwendung von Bibliotheken und Tools
ebenfalls ein Hauptaugenmerk sein.

22

5 Implementierung

Dieses Kapitel beschreibt die konkrete Implementierung der
Monitoring-Frontends. Es unterteilt sich in das einfach gehaltene, generische
Frontend sowie das OpenTOSCA-Frontend.

Beide Varianten sind als Web-Interface umgesetzt, die eingesetzten
Technologien sind hierbei die in der Webentwicklung iiblichen
Auszeichnungssprachen HTML [6] und CSS [2], die Programmiersprache
JavaScript [4] sowie einige Frameworks fiir diese Sprachen.

Den einzelnen Benutzeroberflichen ist eine einfache HTML-Ubersichtsseite
vorgeschaltet, die weiterfiihrende Links beinhaltet. Dort kann der Nutzer
auswahlen, welche GUI verwendet werden soll.

5.1 Frameworks

Beide Frontends benutzen sowohl jQuery als auch Bootstrap, sowie weitere
JavaScript-Bibliotheken. Im Folgenden wird ein kurzer Uberblick iiber jQuery
und Bootstrap gegeben, soweit dies fiir diese Arbeit relevant ist.

5.1.1 jQuery

jQuery [11] ist eine weit verbreitete, umfangreiche JavaScript Bibliothek, die
insbesondere die Arbeit mit dynamisch generierten Inhalten, Events und die
Kommunikation mit einem Server erleichtert. Sie ist damit sehr gut fiir den
Anwendungszweck beider Frontends geeignet und wird extensiv genutzt. Der
JavaScript-Code fiir das OpenTOSCA-Frontend wird beispielsweise direkt als
,Plugin® in jQuery verwendet, und auch die spéter néher erlduterten
Bibliotheken ,DataTables, und ,,jQuery UI“ erweitern oder benttigen jQuery
als Framework.

5.1.2 Bootstrap

Bootstrap [1] ist ein CSS-Framework und Template-System, das ein einfaches
und elegantes Design vieler HTML-Elemente und oft verwendeter Muster
bereitstellt. Es wird in kleinen Teilen fiir die Tabelle des generischen
Frontends und fiir das Control Panel des OpenTOSCA-Frontends verwendet.
Es ermoglicht ein einheitliches Design und erspart den Aufwand, diese
Elemente hdandisch gestalten und anpassen zu miissen.

5.2 Generisches Frontend

Dieses Unterkapitel beschreibt die Umsetzung des generischen Frontends, das
samtliche Events anzeigt.

23

5 Implementierung

5.2.1 Darstellung

Das generische Frontend verwendet eine tabellarische Darstellung ohne weitere
Aufbereitung der Daten. Dies liefert eine schnelle Ubersicht der Rohdaten,
wie sie vom Backend geliefert werden, und erfiillt auerdem die in Kapitel 3
festgelegte Anforderung A6.

Basic Event GUI
M or M refreshing all ’? seconds. Delete all events

Show 25 ¥ | entries Search:

ID Source ID Date Message

1 basicEventSource Thu Jan 01 1970 01:00:00 GMT+0100 (CET) this is an example for an event
message

D Search Source ID Date Search Message

basicEventSource |~

Showing 1 to 1 of 1 entries (filtered from 74 total entries) Previous 1 Next
Abbildung 5.1: Generisches Frontend mit einem ,basic“ Event

In Abbildung 5.1 ist diese Ubersicht mit nur einem ,basic* Event als Beispiel
zu sehen. Die Anforderungen A1l bis A3 sowie A5 wurden durch die obere
Leiste erfiillt, in der die wichtigsten Funktionen zu finden sind. Mittels ,Start®
wird begonnen, die Events via REST vom Backend in einem vom Benutzer
definierten Intervall zu erfragen und neue Events in die Tabelle einzufiigen.
Ein Klick auf ,,Stop” beendet die automatische Abfrage und belésst die Tabelle
im aktuellen Zustand, ohne weiter auf neue Events zu reagieren.

Insbesondere zu Testzwecken lasst sich auch das Loschen aller im Backend
persistierten Events anstoffen, indem die Funktion ,Delete all events®
ausgewahlt wird (Anforderung A2). Hierbei ist darauf zu achten, dass die
Aktion mnicht riickgdngig gemacht werden kann. Bei Bestitigung des
Loschvorgangs durch das Backend reagiert die Benutzeroberfliche ebenfalls
durch das Entfernen aller Events in der Tabelle, damit keine veralteten bzw.
geloschten Events mehr angezeigt werden.

Die Tabelle reprasentiert alle Felder, die fiir jeden Eventtyp zwingen
vorgeschrieben sind. Mogliche Zusatzfelder eines speziellen Typs werden
jedoch nicht berticksichtigt und entsprechend auch nicht dargestellt. Die
notwendigen Felder sind in Tabelle 1 beschrieben.

Die Tabelle ermoglicht das Suchen und Filtern fiir einige dieser Felder.
Sortiert werden kann auf- und absteigend nach allen Feldern, womit die
Anforderung A7 erfillt wird. Oberhalb der Tabelle befindet sich eine
Suchfunktion, die ebenfalls alle Felder durchsucht. Die Anforderung A8
wurde umgesetzt, in dem zusétzlich unterhalb der Tabelle noch speziell nur

24

5.2 Generisches Frontend

Feld Beschreibung
id Vom Backend automatisch vergebene ID
source Die ,Quelle” des Events (auch Source ID)
datetime | Zeitstempel (bspw. an dem das Event erzeugt wurde)
message Textnachricht des Events (moglicherweise leer)

Tabelle 1: Pflichtfelder fiir jeden Eventtyp

,Source ID“ oder ,Message” durchsucht werden kann. Da davon auszugehen
ist, dass es nur eine geringe Zahl an Produzenten von Events gibt, besitzt die
Source ID“ Spalte ferner noch eine Drop-down Liste, die alle Source IDs
aufzahlt und per Klick nur Events der gewdhlten Quelle anzeigt

(Anforderung A9).

Anforderung A10 wurde umgesetzt, indem standardméfig nur eine gewisse
Anzahl an Events gleichzeitig angezeigt werden (hier 25). Weitere Ergebnisse
werden durch eine Pagination in ,Seiten” der Tabelle aufgeteilt, die rechts
unten dargestellt und zwischen ihnen gewechselt werden kann. Links oben
kann ferner die Anzahl der Events pro Seite festgelegt werden, es ist ebenfalls
moglich, alle Events anzuzeigen (und die Pagination somit effektiv aufer
Kraft zu setzen).

Die Anzahl der Ergebnisse nach dem Anwenden eines Filters, sowie die
aktuelle Teilansicht (aufgrund der Aufteilung auf Seiten) wird abschliefend
links unten in einem Statustext zusammengefasst.

In Abbildung 5.2 ist abschliekend noch eine Ubersicht mit gemischten
Eventtypen und Quellen (Source IDs) zu sehen, die Source IDs und die
Anzeige des Datums wurden fiir dieses Beispiel jedoch gekiirzt. Neben drei
,basic Events aus unterschiedlichen Quellen werden hier ebenfalls
OpenTOSCA Events angezeigt, die jedoch im Gegensatz zum speziellen
OpenTOSCA-Frontend nicht aufbereitet wurden.

5.2.2 Technische Umsetzung

Das generische Frontend besteht aus einer einzelnen HTML-Datei, die
ihrerseits nur das ,Control Panel, (Start/stop/delete) und den Header und
Footer der Tabelle definiert. Sie bindet aufserdem einige weitere Styles und
Scripts ein. Siehe Abbildung 5.3 fiir eine Ubersicht der Architektur.
DataTables [3] ist ein jQuery Plugin, das die gesamte Verwaltung von
Tabellenstrukturen und interaktiven Tabellen ermoglicht oder stark
erleichtert. Aufgrund der Wahl, die Events des generischen Frontends in
Tabellenform zu représentieren, bot sich das DataTables-Plugin fiir diesen
Zweck an.

25

5 Implementierung

Showu entries Search:

1D Source ID Date MESSEQE

1 basicEventSource Thu Jan 01 1870 this is an example for an event message

2 hauptfn Thu Jan 01 1970 test message

3 hauptfn Thu Jan 01 1870 test message 2

953 nodelnstances/20 Wed May 04 2016 start install

954 nodelnstances/18 Wed May 04 2016 start creating VM

955 nodelnstances/18 Wed May 04 2016 create folder for 14t _c5f8828d-45ch-40bf-8888-2ac2

956 nodelnstances/18 Wed May 04 2016 copy VMDK /VMRepo/Ubuntu Server 12.04

(64Bit).vmdk

957 nodelnstances/18 Wed May 04 2016 configure VM

958 nodelnstances/18 Wed May 04 2016 power on

959 nodelnstances/18 Wed May 04 2016 determine IP address

960 nodelnstances/20 Wed May 04 2016 install finished

Abbildung 5.2: Generisches Frontend mit gemischten Eventtypen

Datenstruktur

Die vom Backend gelieferte JSON-Datenstruktur bei der Abfrage von Events
ist in Listing 1 anhand von zwei beispielhaften Events zu sehen. Die Struktur
ist ein Array von Objekten, in der jedes Objekt ein Event représentiert. Ein
Objekt besteht wie auch in Tabelle 1 ndher beschrieben aus vier Feldern: id,
message, source und datetime. Sofern keine zur Anfrage passenden Events
existieren, liefert das Backend ein leeres Array zuriick.

Initialisierung

DataTables ermoglicht eine einfache Initialisierung auf jeder bestehenden
Tabelle und stellt direkt mehrere Sortier-, Filter- und Suchmethoden sowie
die dafiir notigen Eingabemasken zur Verfiigung. Dabei muss darauf geachtet
werden, die verwendete Datenstruktur und das Mapping auf die Spalten der
Tabelle korrekt anzugeben.

Eine vereinfachte Ubersicht der Initialisierung fiir das generische Frontend ist
in Listing 2 zu sehen. DataTables erwartet standardméfig einen
JSON-Datensatz mit dem Feld data, welches die eigentliche Datenstruktur
enthélt. Dies ist jedoch hier nicht der Fall, wie in Listing 1 zu sehen ist. Um
dem Plugin zu vermitteln, dass es sich bei den verwendeten Daten um ein flat
array handelt, musste der dataSrc Option ein Leerstring iibergeben werden
(Zeile 4).

Die restlichen (fiir diese Ubersicht gekiirzten) Optionen sind unter anderem

26

5.2 Generisches Frontend

Single HTML page

Stylesheets basic.css
Scripts datatables.css
dataTables.bootstrap.min.css

Zw. beiden Frontends geteilt

bootstrap.min.css

Hinzufligen

von Events Javascript
zur Tabelle

(jquery.dataTabIes.min.js)

s basic.js)
Backend ¢ Zw. beiden Frontends geteilt

REST API Polling . .
(neve Events) (jquery-2.2.3.min.js)

Abbildung 5.3: Architektur des generischen Frontends

eine URL, von der die initialen Daten fiir die Tabelle abgerufen werden (Zeile
3), ein Mapping zwischen den Feldern aus dem erhaltenen Datensatz und den
Spalten der Tabelle (Zeile 7-14), als auch eine abschliefende Funktion die
aufgerufen wird, sobald der Aufbau der Tabelle durch das Plugin
abgeschlossen wurde (Zeile 16).

Nach erfolgreicher Initialisierung der Tabelle wird sich die hochste bekannte
ID eines Events gespeichert, um in weiteren Aufrufen nur neuere Events beim
Backend zu erfragen.

Ferner werden die Funktionen addSearchSelect () und
addSearchInput () aufgerufen, die Auswahl- und Suchfelder unterhalb der
Tabelle fiir ausgewéhlte Spalten erzeugen. Die entsprechenden Spalten
kénnen definiert werden, indem in der Grundstruktur der index.html die
CSS-Klasse selectable fiir ein Auswahlfeld und die Klasse searchable fiir
ein Freitextfeld gesetzt werden. Im generischen Frontend wurde fiir die Spalte
Message eine Textsuche verwendet, fiir die Source ID hingegen sowohl eine
Textsuche als auch ein Auswahlfeld, da die Anzahl an verschiedenen
Eventquellen in der Praxis beschrankt ist.

Abschliefsend wird ein Polling im vom Nutzer festgelegten Intervall gestartet.

27

© 00 N O Ut ke W N =

e e
w N o= O

14

5 Implementierung

I
{
"id": 1,
"message": "Some event happened!",
"source": "Generic Event Source",
"datetime": 1462372421337
Iy
{
"id": 2,
"message": "setFile ./sixcms_tmp/tmpscript.sh",
"source": "nodeInstances/20",
"datetime": 1462372450000
b
]

Listing 1 JSON Datenstruktur fiir generische Events

Workflow

Die Anforderung A4 wurde umgesetzt, indem das Polling mittels eines GET
Requests alle Events beim Backend erfragt, die eine hohere 1D als die zuletzt
bekannte ID haben. Diese Anfrage geht an die Ressource
/monitoring/eventstorages/basic/eventlist?afterEventID={id}

Bei Erfolg wird vom Server eine Response wie in Listing 1 erhalten. Sofern
seit der letzten Anfrage keine neue Events erzeugt wurden, ist das erhaltene
JSON-Array leer und an dieser Stelle wird abgebrochen. Anderenfalls wird die
neue hochste Event ID gespeichert und im Anschluss iiber das Array iteriert.

DataTables bietet eine umfangreiche API, die unter anderem das
Hinzufligen neuer Daten durch den Aufruf datatable.row.add(rowData)
ermoglicht, mittels datatable.draw() kann die Anzeige der Tabelle
aktualisiert werden, um die neu eingepflegten Daten sichtbar zu machen.

Abschliefend werden alle Auswahlfelder durch addSearchSelect()
aktualisiert, sofern bspw. neue Fvent Sources hinzugekommen sind.

5.3 OpenTOSCA Frontend

Dieses Unterkapitel beschreibt die Umsetzung des OpenTOSCA Frontends, das
doménenspezifisches Wissen iiber OpenTOSCA-Events verwendet um diese
sinnvoll zu gliedern und darzustellen, sowie zuséitzliche Informationen zu ihnen
zu beziehen.

5.3.1 Darstellung

Das Layout des OpenTOSCA Frontends orientiert sich sehr stark an der
bisherigen Implementierung der Monitoring GUIs.

28

1

5.3 OpenTOSCA Frontend

DataTable ({

"ajax": {
url: "/monitoring/eventstorages/basic/eventlist",
dataSrc: "" // Die JSON Daten sind ein flat array

b

"columns": |
// Die Felder eines Events werden in der Reihenfolge
// der Spalten der Tabellen zugeordnet
{ data: "id" }, // Erste Spalte
{ data: "source" },
{ data: "datetime" },
{ data: "message" } // Letzte Spalte

I

"initComplete": function () { onTableInitComplete(); }

1)

Listing 2 Initialisierung des DataTables Plugins

Allgemein

Jedes Event hat genau eine Source, die in diesem Fall einer Node Instance
entspricht. Im Gegensatz zu generischen FEvents, deren Sources sehr
verschieden und insbesondere unbekannt sind, stehen zu jeder Node Instance
allerdings weiterfithrende Informationen zur Verfiigung, die abgefragt und
entsprechend dargestellt werden kénnen. Daher bietet sich eine Gruppierung
der Events nach ihrer jeweiligen Node Instance an, wobei dort die
gesammelten Informationen zusammengefiihrt werden koénnen. Abbildung 5.4
zeigt das OpenTOSCA Frontend mit zwei beispielhaften Node Instances, die
Events der ersten Instance sind ausgeblendet.

Control Panel und Filter

Ahnlich dem generischen Frontend gibt es ebenfalls ein Control Panel am
Beginn der Seite, von dem aus die Abfrage von neuen Events begonnen oder
angehalten werden sowie das Intervall festgelegt werden kann (Anforderung
Ab). Mittels des Buttons ,Delete all events* lassen sich alle OpenTOSCA
Events loschen (Anforderung A2), insbesondere betrifft dies jedoch keine
Events eines anderen Eventtyps.

Weiterhin befinden sich unterhalb dieser Buttons zwei OpenTOSCA
spezifische Filter, die bei ihrer Aktivierung nur Node Instances einer
ausgewdhlten Service Instance oder eines Node Types anzeigen (Anforderung
A21). Die Service Instance ist hierbei eine TOSCA-spezifische 1D, der
mehrere Node Instances untergeordnet sind. Der entsprechende Filter listet

29

5 Implementierung

OpenTOSCA Event GUI

Start Stop Delete all events Refresh interval:| s seconds.
Filter by service instance all|~|and by node type all -

_J] VMWareNodeTemplate (18) L

CSAR: Maerker.csar Service Template: Maerker
Service Instance: 4 Created: 2016-04-04 16:34:03 |:Z]
State: running

Events =

sIX SixCMSNodeTemplate (19) +

CSAR: Maerker.csar Service Template: Maerker
Service Instance: 4 Created: 2015-04-04 16:34:04
State: unknown

Events =

start installation 2016-04-04 16:34:04
install needed software 2016-04-04 16:534:04
install PHPS 2016-04-04 16:34:08
install PHPE additions 2016-04-04 16:34:08
create & prepare DE 2016-04-04 16:34:07
install SCMS basic application 2018-04-04 15:34:08
add SixCMS module to PHP 2018-04-04 16:34:10

Abbildung 5.4: OpenTOSCA Frontend mit zwei Node Instances

alle Instance IDs, die bisher bei der Abfrage von Node Instance Daten
aufgetreten sind.

Selbiges gilt auch fiir den Filter fiir Node Types, dieser kann ebenfalls nach
beliebigen Typen filtern. Die korrekte grafische Darstellung durch ein
entsprechendes Icon ist jedoch derzeit nur fiir folgende Typen vorgesehen.
Diese wurden aus dem bisherigen GUI-Prototypen abgeleitet:

e UbuntuNodeType

e EC2NodeType

VMWareNodeType

MySQLNodeType

ApacheWSNodeType

SixCMSNodeType

Davon abweichende Typen erhalten keine grafische Kennzeichnung
innerhalb einer Node Instance. Die Erweiterung dieser Liste ist jedoch sowohl

30

5.3 OpenTOSCA Frontend

-‘] VMWareNodeTemplate (18) +

SIX SixCMSNodeTemplate (19) +

Event . @ UbuntuNodeTemplate (20) ‘*,

CSAR: Maerker.csar Service Template: Maerker
Service [nstance: 4 Created: 2015-04-04 15:34:03
State: running

Events =

Abbildung 5.5: Uberlappend gestapelte Node Instances

Event

im Code als auch im Design vorgesehen und einfach umzusetzen. In der
Funktion insertNodeInstance() existiert ein switch-Statement, das fiir
jeden bekannten Typen eine CSS-Klasse vergibt. Das Hinzufiigen einer
weiteren case-Unterscheidung und einem zugehorigen Icon via CSS ist
ausreichend, um einen neuen Typen zu unterstiitzen.

Standardméfig sind keine Filter gesetzt, beide Auswahlfelder stehen auf ,all”.
Sobald einer der Filter gedndert wird, werden alle Node Instances, auf die
das gewéahlte Kriterium nicht zutrifft, ausgeblendet. Die verbleibenden oder
jetzt ausgewdhlten Instances werden angezeigt und neu nebeneinander
sortiert, um zu verhindern, dass sich zuvor vom Nutzer verschobene Instances
aufserhalb des sichtbaren Bereichs befinden. Werden beide Filter gemeinsam
eingesetzt, so miissen alle Kriterien gleichzeitig erfiillt werden.

Node Instances

Die Anforderung A12 wurde umgesetzt, indem jede Node Instance durch
einen eigenen Kasten in der Benutzeroberfliche représentiert wird. Er enthélt
nahezu alle Informationen, die OpenTOSCA zu einer Node Instance zur
Verfiigung stellt, und gruppiert diese in sinnvolle Teile (Anforderung A14).

Der erste Teil innerhalb des Kastens enthélt ein dem nodeType
entsprechendes Logo, sofern der Typ bekannt ist (siehe obige Liste) und
entspricht somit der Anforderung A15. Es folgen die nodeTemplateID und
der Namen der Node Instance. In der rechten oberen Ecke befindet sich
aufserdem ein Mowve-Icon, an dem der Kasten mittels Drag'n’Drop beliebig
neu positioniert werden kann, siehe Abbildung 5.5. Dies erfiillt somit die
Anforderung A13. Die Position bleibt bis zum Neuladen der Seite oder dem
Anwenden bzw. Deaktivieren eines Filters bestehen und ermdglicht die
komfortable Anordnung oder Gruppierung von fiir den Nutzer wichtigen
Node Instances.

Der zweite Teil beginnt mit einem Icon, das den aktuellen state der

31

5 Implementierung

_'] VMWareNodeTemplate (18) +

M2AR: WMaarkar rear Qarmzrira Tamnlata: Maarlkar

Properties of VMWareNodeTemplate (18) x| ?

<l4ttypes:VHWareProperties xmlns:l4ttypes="http://www.laas uni-
stuttgart.de/LeGO4TOSCA/VMWare" xmlns="http://www.laas uni-
stuttgart.de/LeGOATOSCA/VMNare" xmlns:policy="http://www.example.com :34:03

Jfopentosca/Policles/GreenPolicy” xmlns:xsi="http://www . w3.0rg :34:03
/2001 /¥MLSchema-1instance” =<region=USTUTT_VCl</region= :34:03
<disksizeinkb=1048576</disksizeinkb=<numberofcpus=1</nunberofcpus- .34:03
=memoryinmb>2048</memoryinmb><vmname=14t_84cf2alc-2304-4c892-813c- :34:03

eBaa</vmname><user>legodtosca</user-<pass=14tld</pass=
<ipaddress=129, 89, 214, 236</ipaddress></14ttypes: VHWareProperties>

:34:03

Abbildung 5.6: Node Instance mit dariiber gelegtem Properties Pop-up

Instance représentiert (Anforderung A15). Bekannte States sind running
(griin) und installed (blau), anderenfalls wird das Icon schwarz dargestellt.
Darauf folgt eine Liste weiterer Eigenschaften: Die csarID, die
serviceInstanceld (nach welcher gefiltert werden kann), eine textuelle
Repréasentation des state, die serviceTemplateID, sowie der Zeitstempel
des frithesten Events dieser Instance im created Feld.

Die Anforderungen A18 und A19 wurden umgesetzt, indem ein Klick auf
das nebenstehende Icon ein Pop-up oOffnet, in dem die Properties der
Instance dargestellt werden, siche Abbildung 5.6. Diese werden zusétzlich mit
XML Syntax-Highlighting hervorgehoben. Das Pop-up lédsst sich ebenfalls
verschieben und mit einem Klick auf das Icon rechts oben schliefien.

Der dritte Teil des Kastens besteht aus einer Tabelle mit allen bisher
erhaltenen Events, die zu der aktuellen Node Instance gehoren (Anforderung
A16). Die Tabelle wird standardméfig angezeigt, kann jedoch {iber einen
Klick auf das Minus-Symbol aus- und eingeblendet werden um die
Anforderung A17 zu erfiillen, sieche bspw. Abbildung 5.4.

5.3.2 Technische Umsetzung

Das OpenTOSCA Frontend besteht ebenfalls aus einer einzelnen HTML-Datei,
die das Control Panel und die Auswahlfelder der Filter definiert, sowie die
folgenden Dateien einbindet:

opentosca.css Das gesamte, OpenTOSCA spezifische Layout dieses
Frontends

jquery-ui.min.css Design-Anpassungen fiir Elemente der jQuery UI
Erweiterung

highlight.css Der ,Original‘-Style fiir highlight.js

32

5.3 OpenTOSCA Frontend

jquery-2.2.3.min.js Die aktuelle Version von jQuery
jquery-ui.min.js Die aktuelle Version von jQuery Ul
highlight.js Eine JavaScript Bibliothek fiir Syntax-Highlighting

opentosca.js Die eigentliche Implementierung und der gesamte Workflow des
Frontends

Abgesehen von der eben aufgelisteten, genauen Auswahl und Benennung der
referenzierten Dateien unterscheidet sich die Architektur des OpenTOSCA
Frontends nicht signifikant von der des generischen Frontends, wie sie in
Abbildung 5.3 zu sehen ist.

Aufbau

Das Frontend ist als direkte Erweiterung von jQuery selbst implementiert
und in der Funktion OpenTosca innerhalb von jQuery definiert. Es wird in
der index.html mittels new $.0penTosca() ; initialisiert.

Der bisherige Prototyp des Monitoring GUIs hat einen Model View
Controller ~ (MVC) Ansatz gewdhlt. Die Implementierung dieser
Bachelorarbeit verwendet jedoch keine derartige Struktur, sondern
beschrankt sich auf eine einzelne ,Klasse bzw. Memberfunktion des jQuery
Objekts, sowie innerhalb des Objekts globale Variablen und weitere
Unterfunktionen. Der gesamte Umfang des Codes beschrankt sich somit trotz
eines grofseren Funktionsumfangs auf nur 600 Zeilen, wohin gegen die
bisherige Implementierung knapp 1500 Codezeilen benétigte. Hinzu kommen
noch weitere JavaScript-Frameworks sowie Assets, die nicht ldnger benétigt
werden und den Umfang in weiterem Mafle reduzieren.

Initialisierung

Bei der Instanziierung des Frontends werden nur wenige Variablen und
Objekte initialisiert. Unter anderem wird, dhnlich dem generischen Frontend,
die hochste bekannte Event ID in lastEventId gespeichert, das Objekt
nodeInstances hélt hingegen alle bekannten Node Instances sowie die von
OpenTOSCA dazu gelieferten Daten.

Die Filterfunktionen benétigen aufserdem eine Liste aller bekannten Service
Instances sowie der verschiedenen Node Types, die jeweils in den Objekten
serviceInstancelds und nodeTypes gespeichert und beim Erstellen neuer
Node Instances aktualisiert werden.

Abschliefsend werden einige Event-Handler gebunden, um die Funktionen des
Control Panels zu ermoglichen. Hierzu gehoren der ,Start“-Button, der die
Abfrage der Events im angegebenen Intervall anstofit, sowie der
,Stop“-Button, der dieses Polling unterbricht. Ferner werden die Handler fiir

33

5 Implementierung

das Loschen aller OpenTOSCA Events, das Ein- und Ausklappen von
Eventlisten pro Node Instance und die Anderung der Filterauswahl
gebunden.

Workflow

Beim Klick auf den ,Start“-Button wird die Funktion refreshStart()
aufgerufen. Diese liest und tberpriift zunédchst das aktuell vom Benutzer
gesetzte Polling-Intervall. Ist es ungiiltig wird die Eingabe farblich markiert
und an dieser Stelle abgebrochen. Anderenfalls wird ein moglicherweise
gesetzter alter Timer deaktiviert, und das iibergebene Intervall verwendet,
um in diesem Abstand die Funktion refresh() aufzurufen (Anforderung
A3). Damit der Ablauf des Timers nicht abgewartet werden muss, wird
refresh() aufserdem direkt aufgerufen.

Eine spétere Verwendung des ,Stop“Buttons deaktiviert den zuvor
gesetzten Timer und behélt den aktuellen Zustand der Benutzeroberfliche

bei.

Die Funktion refresh() iteriert zuerst iiber alle bereits bekannten Node
Instances, und erfragt mittels eines GET Requests im Backend an der
Ressource
/monitoring/eventstorages/opentosca/nodeinstancelist/{id}/state
den aktuellen Zustand jeder Instance. Die Response ist ein einfacher String
(insbesondere kein JSON). Dieser wird mit dem zuletzt bekannten Zustand
abgeglichen und bei einer Anderung wird die grafische und textuelle
Repréasentation in der Benutzeroberfliche entsprechend angepasst

(Anforderung A20).

Hiernach wird ein weiterer GET Request an die Eventlist unter der Ressource
/monitoring/eventstorages/opentosca/eventlist&afterEventID={id}
gestellt, die Response enthdlt alle seit der letzten Anfrage neu
hinzugekommenen Events und wird weiter an insertNewEvents()
iibergeben. Da explizit nur neuere Events beim Backend erfragt werden, ist
somit die Anforderung A4 erfiillt.

Verarbeitung neuer Events und Node Instances

Die Funktion insertNewEvents() erhélt neu empfangene Events als JSON
Objekt. Die Datenstruktur ist eine Obermenge der generischen Events, bei
OpenTOSCA wurde ausschlieflich das Feld nodeInstanceId hinzugefiigt, es
entspricht inhaltlich jedoch der source. Ein Beispieldatensatz des JSON
Objekts ist in Listing 3 zu sehen.

Nun wird iiber jedes dieser ankommenden Events iteriert und die Node
Instance, zu der es gehort, aus dem Cache abgerufen. Sofern diese bereits
vorhanden ist, kann das Event direkt zur Event-Tabelle hinzugefiigt werden
und erscheint in der Benutzeroberfliche.

34

S Ut s W N

© 00 N O Ut ok W

10
11
12

5.3 OpenTOSCA Frontend

[
{
"id": 1,
"message": "start install",
"datetime": 1462372442552,
"source": "http://localhost:1337/containerapi/
instancedata/nodeInstances /20",
"nodeInstanceId": "http://localhost:1337/

containerapi/instancedata/nodeInstances /20"

Listing 3 JSON Datenstruktur fiir OpenTOSCA Events

Ist die zugehorige Node Instance bisher noch unbekannt, erfolgt ein GET
Request mit der nodeInstanceld des Events an die Ressource
/monitoring/eventstorages/opentosca/nodeinstancelist/{id}. Die
Response ist ebenfalls ein JSON-Objekt, das alle OpenTOSCA Informationen
zu dieser Node Instance enthélt. Ein Beispiel hierfiir ist in Listing 4 zu sehen.

Die erhaltenen Informationen werden dem Cache hinzugefiigt und die neue

{
"nodeInstanceID": "http://localhost:1337/
containerapi/instancedata/nodeInstances /20",
"name": "20",
"created": 1462372442552,
"nodeType": "UbuntuNodeType",
"csarID": "Maerker.csar",
"nodeTemplateID": "UbuntuNodeTemplate",
"servicelnstanceID": "4",
"serviceTemplateID": "Maerker",
"properties": "(...)",
"state": "running"

Listing 4 JSON Datenstruktur fiir eine Node Instance in OpenTOSCA

Node Instance wird als HTML Element in die Benutzeroberfliche eingefiigt
(Anforderung A11). Dabei werden einige Felder entsprechend formatiert und
angepasst, bspw. eine nutzerfreundliche Darstellung von Datum und Uhrzeit
oder das Syntax-Highlighting der XML-Properties mittels highlight.js. Ferner
wird das Pop-up fiir die Anzeige der Properties vorbereitet und die

35

5 Implementierung

Positionierung mittels Drag'n’Drop ermoglicht, beide Funktionen werden von
jQuery UI zur Verfiigung gestellt.

Abschlieflend werden die Auswahlfelder fiir den Service Instance- und Node
Type-Filter aktualisiert, sofern dies notig ist.

Filter

Bei der Anderung von einer der beiden Filter iiber die Eingabemasken wird
die Funktion filterNodes() aufgerufen. Da durch das Filtern
moglicherweise nur noch eine Teilmenge der bisher angezeigten Node
Instances verbleibt, werden zu Beginn des Vorgangs die Positionen aller
Instances zuriickgesetzt, wodurch diese nebeneinander aufgereiht werden.
Dieses Verhalten verhindert, dass eine durch Drag’n’Drop manuell platzierte
Instance plotzlich auflerhalb des direkt sichtbaren Bereichs der
Benutzeroberfliche gerit.

Darauf hin wird tber alle bekannten Node Instances iteriert und dabei
i}berpriift, ob beide gewédhlten Filter zutreffen. Entsprechend der
Uberpriifung wird das aktuelle Element ein- oder ausgeblendet.

Loschen von Events

Um alle OpenTOSCA Events zu loschen, wird ein POST Request an die
Ressource /monitoring/eventstorages/opentosca/eventdropper des
Backends geschickt. Bei erfolgreicher Durchfithrung wird dem Nutzer ein
grafisches Feedback angezeigt, der Cache aller bekannten Node Instances
geloscht und selbige in der Benutzeroberflache entfernt. Abschliefsend werden
alle Filter zuriickgesetzt, sowie die davon verwendeten Listen der Service
Instances und Node Types geleert.

36

6 Zusammenfassung und Ausblick

Der Ablauf langlaufender Prozesse ohne direkten Einblick kann sich aus
Nutzersicht oft schlecht auf die Nutzererfahrung auswirken. Ebenfalls
erschwert dies, im Hintergrund laufende Prozesse verstehen und
nachvollziehen zu koénnen.

Insbesondere die Provisionierung oder Verwaltung einer mit TOSCA
beschriebenen Cloud Anwendung besteht in der Regel aus komplexen
Prozessen, die langere Zeit bis zu ihrer Fertigstellung benotigen kénnen. Diese
werden durch den OpenTOSCA Container angestofen und erzeugen teilweise
Events, die mitunter ihren Ablauf und den Fortschritt représentieren. Diese
sind fiir den Nutzer allerdings nicht sichtbar oder nachverfolgbar.

Durch das im Rahmen dieser Arbeit entwickelte Monitoring System
kénnen die Events, die im Laufe der Prozesse erzeugt werden, graphisch
dargestellt werden, um dem Nutzer Einsicht in aktuelle oder vergangene
Ablaufe zu geben. Dies ermdglicht zum einen, den Fortschritt der Prozesse zu
betrachten oder einschatzen zu konnen, und bietet zum anderen eine
Ubersicht mit zusétzlichen Informationen iiber die Vielzahl moglicherweise
gleichzeitig ablaufender Prozesse.

Die Grenzen von allgemeinen Monitoring Events, wie sie im generischen
Frontend dargestellt werden, zeigen sich hierbei jedoch schnell. Ohne
doménenspezifisches Wissen lassen sich die angezeigten Informationen nur
schlecht zuordnen oder verwerten und bieten dem Nutzer nur eine geringe
Ubersicht und eingeschrinkte Handlungsmoglichkeiten.

Ahnlich dem implementierten Generischen- und OpenTOSCA-Frontend
lassen sich jedoch aufgrund der REST-API des Backends einfach weitere,
spezialisierte ~ Benutzeroberflichen realisieren. Diese konnten fiir
verschiedenste Anwendungsfille eingesetzt werden. Die Benutzeroberflache
kann dabei entsprechend eine gewilinschte, an die Anwendung angepasste
Logik verwenden, sowie eine zugeschnittene Darstellungsform umsetzen.

Auch die beiden realisierten Frontends bieten einige Mdoglichkeiten zur
Erweiterung. Insbesondere weitere Filterfunktionen oder Einschrinkungen,
welche Events dem Nutzer prasentiert werden, sind denkbar. Ein Beispiel
hierfiir ware die Option, Events speziell nach ihrem Datum zu filtern. So
konnten nur Events aus einem benutzerdefinierten Zeitraum angezeigt
werden, oder einzelne Ober- und Untergrenzen fiir das Datum gesetzt
werden.

37

Literatur

Literatur

[1] Bootstrap. URL: http://getbootstrap.com/ (besucht am 30.04.2016).

[2] CSS Specification. URL: https://www.w3.org/Style/CSS/ (besucht am
30.04.2016).

[3] DataTables. URL: https : / / www . datatables . net/ (besucht am
30.04.2016).

[4] ECMAScript Language. URL: http://www.ecmascript.org/ (besucht
am 30.04.2016).

[5] Roy Thomas Fielding. ,Architectural Styles and the Design of
Network-based Software Architectures*. Dissertation. University of
California, Irvine, 2000.

[6] HTMLS5 Specification. URL: https ://www . w3 .org/TR/2014 /REC -
htm15-20141028/ (besucht am 30.04.2016).

[7] N. Borenstein N. Freed. Multipurpose Internet Mail Extensions. 1996.
URL: http : / /www . ietf . org / rfc / rfc2046 . txt (besucht am
08.05.2016).

[8] OpenTOSCA. URL: http://opentosca.org/ (besucht am 30.04.2016).

[9] L. Masinter R. Fielding T. Berners-Lee. Uniform Resource Identifier.
2005. URL: http://www.ietf .org/rfc/rfc3986 . txt (besucht am
08.05.2016).

[10] TOSCA Spezifikation. Topology and Orchestration Specification for
Cloud Applications Version 1.0. URL:
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
(besucht am 30. 04.2016).

[11] jQuery. URL: http://jquery.com/ (besucht am 30.04.2016).

39

http://getbootstrap.com/
https://www.w3.org/Style/CSS/
https://www.datatables.net/
http://www.ecmascript.org/
https://www.w3.org/TR/2014/REC-html5-20141028/
https://www.w3.org/TR/2014/REC-html5-20141028/
http://www.ietf.org/rfc/rfc2046.txt
http://opentosca.org/
http://www.ietf.org/rfc/rfc3986.txt
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://jquery.com/

Erklarung

Ich versichere, diese Arbeit selbststédndig verfasst zu
haben. Ich habe keine anderen als die angegebenen
Quellen benutzt und alle wortlich oder sinngeméfs aus
anderen Werken iibernommene Aussagen als solche
gekennzeichnet. Weder diese Arbeit noch wesentliche
Teile daraus waren bisher Gegenstand eines anderen
Priifungsverfahrens. Ich habe diese Arbeit bisher
weder teilweise noch vollstdndig verdffentlicht. Das
elektronische Exemplar stimmt mit allen eingereichten
Exemplaren iiberein.

Ort, Datum, Unterschrift

	Einleitung
	Ziel der Bachelorarbeit
	Aufbau der Bachelorarbeit

	Grundlagen
	REST
	TOSCA
	Topology
	Orchestration
	OpenTOSCA

	Ist- und Soll-Zustand
	Anforderungen
	Anforderungen an das generische Frontend
	Anforderungen an das OpenTOSCA Frontend

	Bisheriger Prototyp
	Analyse
	Generisches Frontend
	OpenTOSCA Frontend

	Entwurf
	Generisches Frontend
	OpenTOSCA Frontend

	Implementierung
	Frameworks
	jQuery
	Bootstrap

	Generisches Frontend
	Darstellung
	Technische Umsetzung

	OpenTOSCA Frontend
	Darstellung
	Technische Umsetzung

	Zusammenfassung und Ausblick

