
Institut für Architektur von Anwendungssystemen

Universität Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Bachelorarbeit Nr. 283

Monitoring Frontend für
OpenTOSCA

Sebastian Bartenbach

Studiengang: Softwaretechnik

Prüfer/in: Prof. Dr. Dr. h. c. Leymann

Betreuer/in: Dipl.-Inf. Florian Haupt

Beginn am: 10.11.2015

Beendet am: 11.05.2016

CR-Nummer: C.2.4, H.3.5, H.5.2, H.5.4

Kurzfassung

Die Topology and Orchestration Specification for Cloud Applications
(TOSCA) [10] ist eine Sprache zur portablen und interoperablen
Beschreibung von Cloud-Anwendungen. Diese Beschreibung umfasst
deren Topologie, Verwaltung und Deployment. Sie ermöglicht es,
Anwendungen automatisiert bei verschiedenen Cloud-Anbietern zu
betreiben und zu managen.

OpenTOSCA [8] ist eine Open-Source Implementierung eines TOSCA
Containers, die in den letzten Jahren an der Universität Stuttgart
entwickelt wurde. Sie bietet eine Laufzeitumgebung für
TOSCA-Anwendungen. Die Provisionierungs- und
Verwaltungsprozesse, die von einem OpenTOSCA-Container
angestoßen werden, sind oftmals komplex und laufen über einen
längeren Zeitraum. In dieser Zeit werden Informationen über den
Ablauf und Zustand dieser Prozesse generiert, die dem Nutzer
allerdings aktuell nicht direkt angezeigt werden.

Während der Provisionierung einer Anwendung durch OpenTOSCA
werden Ereignisdaten generiert, in einem Monitoring System abgelegt
und über eine REST API [5] zur Verfügung gestellt. Diese
Bachelorarbeit untersucht die Erweiterung des Monitorings um eine
grafische Nutzerschnittstelle, die diese Informationen für den Nutzer
zugänglich macht. Die Besonderheit besteht hierbei darin, dass das
Monitoring Backend unterschiedliche Typen von Events verwaltet.
Diese unterliegen einer Typhierarchie, wobei sich alle Events von einem
Basistyp ableiten, der erweitert werden kann. Die Nutzerschnittstelle
soll diese Besonderheit ebenfalls sinnvoll unterstützen.

Der praktische Teil der Arbeit befasst sich dabei mit der
Implementierung zweier Benutzeroberflächen, sowohl für den Basistyp
dieser Events, als auch eine speziell auf OpenTOSCA zugeschnittene
Oberfläche. Eine prototypische Implementierung der OpenTOSCA
GUI existiert bereits und kann als Ausgangspunkt für diese Arbeit
verwendet werden.

Inhaltsverzeichnis

1 Einleitung 7
1.1 Ziel der Bachelorarbeit . 7
1.2 Aufbau der Bachelorarbeit . 7

2 Grundlagen 9
2.1 REST . 9
2.2 TOSCA . 12

2.2.1 Topology . 12
2.2.2 Orchestration . 12
2.2.3 OpenTOSCA . 13

3 Ist- und Soll-Zustand 15
3.1 Anforderungen . 15

3.1.1 Anforderungen an das generische Frontend 15
3.1.2 Anforderungen an das OpenTOSCA Frontend 16

3.2 Bisheriger Prototyp . 18
3.3 Analyse . 18

3.3.1 Generisches Frontend . 18
3.3.2 OpenTOSCA Frontend 18

4 Entwurf 21
4.1 Generisches Frontend . 21
4.2 OpenTOSCA Frontend . 22

5 Implementierung 23
5.1 Frameworks . 23

5.1.1 jQuery . 23
5.1.2 Bootstrap . 23

5.2 Generisches Frontend . 23
5.2.1 Darstellung . 24
5.2.2 Technische Umsetzung 25

5.3 OpenTOSCA Frontend . 28
5.3.1 Darstellung . 28
5.3.2 Technische Umsetzung 32

6 Zusammenfassung und Ausblick 37

Listings

Tabellenverzeichnis

1 Pflichtfelder für jeden Eventtyp 25

Abbildungsverzeichnis

2.1 Ableitung der REST Architektur [5] 10
5.1 Generisches Frontend mit einem „basic“ Event 24
5.2 Generisches Frontend mit gemischten Eventtypen 26
5.3 Architektur des generischen Frontends 27
5.4 OpenTOSCA Frontend mit zwei Node Instances 30
5.5 Überlappend gestapelte Node Instances 31
5.6 Node Instance mit darüber gelegtem Properties Pop-up 32

Listings

1 JSON Datenstruktur für generische Events 28
2 Initialisierung des DataTables Plugins 29
3 JSON Datenstruktur für OpenTOSCA Events 35
4 JSON Datenstruktur für eine Node Instance in OpenTOSCA . . 35

6

1 Einleitung

Dieses Kapitel beschreibt die Ziele dieser Arbeit und bietet eine kurze
Übersicht ihres Aufbaus.

1.1 Ziel der Bachelorarbeit

Das Ziel der Arbeit ist es, die bisherige Monitoring-GUI für
OpenTOSCA-Events zu ersetzen und zu erweitern. Dafür soll eine neue
Implementierung mit erweiterter Funktionalität umgesetzt werden. Diese
Implementierung soll übersichtlichen und wartbaren Code haben und nur
wenige, begründete externer Tools oder Frameworks verwenden. Zusätzlich
soll außerdem eine Variante der GUI realisiert werden, die generische Events
in vereinfachter Form darstellen kann.

Das Monitoring dieser Events spaltet sich in zwei Komponenten. Ein
bestehendes Backend, welches Events entgegen nimmt, persistent speichert
und mittels einer REST-API zur Verfügung stellt.
Diese Arbeit widmet sich der zweiten Komponente in Form der Abfrage

dieser Events und der sinnvollen Aufbereitung und Darstellung in Form einer
Benutzeroberfläche.

1.2 Aufbau der Bachelorarbeit

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Grundlagen: In diesem Kapitel werden die wichtigsten
Grundlagen erklärt, unter anderem zu OpenTOSCA und REST.

Kapitel 3 – Ist- und Soll-Zustand: Hier werden der bisherige Stand der
ehemaligen Monitoring-GUI erläutert sowie die Anforderungen an die
Neuimplementierung und Erweiterung aufgezählt.

Kapitel 4 – Entwurf: Behandelt die Entwurfsentscheidungen und
grundlegenden Überlegungen zur Entwicklung der neuen
Benutzeroberfläche

Kapitel 5 – Implementierung: Erklärt die detaillierte Umsetzung der
Implementierung der Monitoring-GUI für OpenTOSCA als auch der
Oberfläche für generische Events.

7

2 Grundlagen

Dieses Kapitel beschreibt die relevanten Grundlagen, die für das Verständnis
dieser Arbeit wichtig sind. Zunächst wird REST vorgestellt, da die
Kommunikation mit dem Monitoring Backend über eine REST-API
stattfindet. Darauf folgt eine Einführung in OpenTOSCA, da der zweite Teil
des zu implementierenden Frontends eine Benutzeroberfläche speziell für
OpenTOSCA Events ist.

2.1 REST

Representational State Transfer (kurz REST) ist ein Architekturstil für
verteilte Hypermedia Systeme, der im Jahre 2000 von Roy Fielding in seiner
Dissertation [5] eingeführt wurde. In dieser Arbeit analysiert er
unterschiedliche Architekturstile hinsichtlich gewisser Eigenschaften, unter
anderem ihrer Erweiterbarkeit, Einfachheit und Skalierbarkeit. Von diesen
netzwerk-basierten Architekturen leitet er REST als einen hybriden Stil ab.

Um REST zu definieren, beschreibt Fielding zuerst einen Null-Stil und fügt
diesem iterativ neue Einschränkungen hinzu, siehe Abbildung 2.1. Der
Null-Stil selbst enthält keine Einschränkungen und dient als Ausgangspunkt,
durch die Erweiterung der Einschränkungen gelangt Fielding letztendlich zu
einer vollständigen Ableitung und somit der Definition von REST.
Die erste Beschränkung des Null-Stils findet durch die Einschränkung von

REST auf den Client-Server-Architekturstil statt. Die Trennung in Client
und Server, und somit deren Zuständigkeiten, ist dessen Kernprinzip. Dies
erhöht die Skalierbarkeit und Portabilität, da der Client leichter auf ein
anderes Zielsystem portiert werden kann, wohingegen der Server einfacher
gestaltet werden kann und somit skalierbarer ist. Zusätzlich ermöglicht dies
die voneinander unabhängige Entwicklung der Client- und
Serverkomponenten.

Die zweite Einschränkung, die REST auferlegt wird, ist die Statuslosigkeit
sämtlicher Kommunikation. Dies erhöht nach Fieldings Ansicht die
Skalierbarkeit, Sichtbarkeit und Zuverlässigkeit. Da der Server keinen Status
speichern muss, vereinfacht das zum einen dessen Implementierung, und zum
anderen lässt sich problemlos ein skalierbares, verteiltes System umsetzen,
bei dem ankommende Anfragen von unterschiedlichen Servern beantwortet
werden können. Die Zuverlässigkeit wird erhöht, da Ausfälle zum Teil leichter
„behoben“ werden können, da es nicht passieren kann, dass ein gespeicherter
Zustand verloren geht. Ein defekter Server kann beispielsweise durch ein
Fallback ersetzt werden, ohne dass eine vorhergehende Synchronisierung
innerhalb dieses Systems stattfinden muss. Die Sichtbarkeit wird erhöht, da
ein Client sämtliche Informationen die nötig sind, damit der Server die
Anfrage verstehen und korrekt bearbeiten kann, in vollem Umfang in seiner
Anfrage mitschicken muss.

9

2 Grundlagen

Replicated Repository (RR)

Cache ($)

Client-Server (CS)

Layered System (LS)

Layered-Client-Server (LCS)

Uniform (U)

Client-Stateless-Server (CSS)

Client-Cache-Stateless-Server (C$SS)

Layered-Client-Cache-Stateless-Server (LC$SS)

Virtual Machine (VM)

Code on Demand (COD)

Layered-Code-on-Demand-Client-Cache-Stateless-Server (LCODC$SS)

RR

$

CS LS VM U

CSS LCS COD

C$SS LC$SS
LCOD

C$SS
REST

replicated

separated

on-demand

cacheable scalalbe

reliable shared

multi-org. reusable

extensible

simple visible

uniform interface

programmable
layered

intermediated

processing

stateless
mobile

Abbildung 2.1: Ableitung der REST Architektur [5]

Diese Einschränkung birgt jedoch auch einige Nachteile. Zum einen verliert
der Server die Kontrolle über die Konsistenz des Verhaltens der gesamten
Anwendung. Diese Verantwortung obliegt somit ausschließlich dem Client,
der dafür zuständig ist den Zustand zu halten. Zum anderen verringert sich
der Durchsatz innerhalb des Netzwerks, da insbesondere sukzessive Anfragen
einen Overhead erzeugen, weil gleiche Informationen mehrfach übermittelt
werden müssen.
Um einen Teil dieser Nachteile zu verringern, wird als dritte Einschränkung
ein Caching ermöglicht. Die Daten einer Antwort vom Server können damit
als cachable oder non-cachable markiert werden. Sofern die Antwort auf eine
Anfrage bereits im Cache eines Clients gespeichert ist, kann dieser verwendet
werden, statt eine erneute Anfrage zu stellen. Dies entlastet sowohl den
Server als auch das Netzwerk, dessen Durchsatz somit erhöht werden kann.
Ferner kann sich der deutlich schnellere Zugriff auf den Client-Cache im
Gegensatz zu der Verzögerung einer Serveranfrage positiv auf die
Nutzererfahrung auswirken.

Durch Caching entsteht allerdings der Nachteil, dass möglicherweise alte
Daten im Cache gehalten werden, wodurch sich signifikante Unterschiede im

10

2.1 REST

Vergleich zur Antwort einer aktuellen Serveranfrage ergeben könnten.

Die vierte Einschränkung ist eine Weiterentwicklung der
Client-Server-Einschränkung. Es handelt sich dabei um das Layered System,
welches zur Unterteilung einer Architektur in hierarchische Schichten
verpflichtet. Es beschränkt die Kommunikation aller Komponenten auf die
direkt anliegenden Schichten. Dies kann insbesondere in Verbindung mit
Caching zu einer erhöhten Performanz und somit besserer Skalierbarkeit
führen, da eine zwischenliegende Komponente Anfragen bei weiteren
Schichten vermeiden kann.

Die fünfte Einschränkung ist die der einheitlichen Schnittstelle. Sie ist die
deutlichste Abhebung von anderen netzwerk-basierten Architekturstilen und
laut Fielding das zentrale Feature von REST. Sie besagt, dass alle
Komponenten eine einheitliche Schnittstelle sowohl verwenden als auch
anbieten müssen. Durch diese Standardisierung soll die komplette
Architektur eines Systems stark vereinfacht werden können. Der Nachteil
hierbei ist, dass dies eine Verschlechterung der Effizienz nach sich ziehen
kann, da ein standardisierter Austausch suboptimal im Vergleich zu einer auf
die jeweilige Applikation zugeschnittene Kommunikation sein kann. Dies trifft
jedoch nicht auf das Einsatzgebiet und den Transfer von großen Hypermedia
Daten zu, wofür REST laut Fielding entworfen wurde.
Mit der einheitlichen Schnittstelle gehen weitere Einschränkungen einher,

namentlich die Identifikation von Ressourcen, die Manipulation von
Ressourcen durch Repräsentationen, selbst-beschreibende Nachrichten sowie
Hypermedia as the Engine of Application State (HATEOAS). Auf diese vier
Einschränkungen wird nun im Detail eingegangen.

Eine Ressource ist in REST eine abstrakte Bezeichnung für jegliche
Information, die benannt werden kann. Jeder Ressource muss nun eine
einmalige Bezeichnung zugeordnet werden, um der Identifikation von
Ressourcen zu entsprechen und mittels dieses Ressourcenbezeichners
eindeutig auf sie referenzieren zu können. Um dies zu gewährleisten können
beispielsweise Uniform Resource Identifier [9] verwendet werden.
Eine Ressource kann verschiedene Repräsentationen besitzen, um die

selben Informationen bspw. für mehrere Anwendungen auf unterschiedliche
Art zur Verfügung stellen zu können. Die Beschreibung des jeweiligen
Datenformats der Repräsentationen geschieht hierbei durch MIME Media
Types [7]. Eine Repräsentation zeigt den aktuellen Stand der zugehörigen
Ressource auf dem Server. Um die Ressource zu manipulieren, kann ein
Client die von ihm verwendete Repräsentation verändern und zurück an den
Server schicken. Dies ergibt die Einschränkung der Manipulation von
Ressourcen durch Repräsentationen.
Repräsentationen können Referenzen auf weiterführende Ressourcen

beinhalten. Diese Referenzen und Verknüpfungen beschreiben HATEOAS

11

2 Grundlagen

und ermöglichen einem Client auch ohne detailliertes Wissen, ihnen zu folgen.
Die selbst-beschreibenden Nachrichten sind eine direkte Folge der zuvor

beschriebenen Statuslosigkeit, die erfordert, dass in jeder Anfrage alle nötigen
Informationen mitgeschickt werden.

Als sechste und letzte Einschränkung ergänzt Fieldings noch das optionale
Code-on-demand. Dies soll es einem Client ermöglichen, zur Laufzeit Code zu
empfangen und ausführen zu können, um die eigene Funktionalität zu
erweitern.

Diese Einschränkungen führen nach Fielding insgesamt zu einer vollständigen
Definition von REST.

2.2 TOSCA

Die Topology and Orchestration Specification for Cloud Applications
(TOSCA) [10] beschreibt den strukturellen Aufbau von Cloud Applikationen.
Diese hat vier Hauptziele: die Automatisierung des Deployments und
Managements von Anwendungen, die Portabilität und die Interoperabilität
zwischen unterschiedlichen Cloud-Anbietern, sowie ein vom Hersteller
unabhängiges Ökosystem.

TOSCA beschäftigt sich sowohl mit der Topology (und der damit
verbundenen Service Structure) als auch mit der Orchestration, die das
Deployment und Management einer Topology umfasst.

Im Folgenden wird näher auf die Topology und Orchestration von TOSCA
eingegangen, sowie abschließend OpenTOSCA kurz erläutert.

2.2.1 Topology

Eine Topology besteht aus abstrakten Node Templates die einen konkreten
Node Type besitzen, sowie aus Relationship Templates mit zugehörigem
Relationship Type. Sowohl Node Types als auch Relationship Types können
darüber hinaus noch Properties, die diese näher beschreiben, besitzen. Einem
Node Type können außerdem Operations, die von ihm ausgeführt werden
können, zugeordnet sein. Die eigentliche Funktionalität dieser Operationen
wird von (potentiell mehreren) Artifacts zur Verfügung gestellt und
implementiert.

2.2.2 Orchestration

TOSCA benennt zwei Arten der Orchestration, declarative und die
imperative Orchestration.

Die declarative Orchestration stellt die Frage, was genau realisiert werden
soll. Dabei interpretiert die Laufzeitumgebung die gegebene Topology und

12

2.2 TOSCA

führt das Deployment durch. Die dafür nötige Logik ist hierbei vollständig im
TOSCA-Container implementiert. Ein Beispiel wäre die Anweisung, einen
Tomcat Server aufzusetzen. Die Auflösung und Erfüllung der dafür nötigen
Abhängigkeiten, die zu diesem Server führen, obliegt der Laufzeitumgebung.

Die imperative Orchestration beschreibt den Weg, wie etwas realisiert
werden soll. Dabei werden explizit alle einzelnen Schritte genau beschrieben,
die notwendig sind, um das gewünschte Ziel zu erreichen. Das vorherige
Beispiel würde hier aus einem Management Plan bestehen, der die
Anweisungen enthält, eine virtuelle Maschine aufzusetzen, dort einem
Tomcat Server zu installieren und diesen daraufhin zu starten.

2.2.3 OpenTOSCA

OpenTOSCA [8] ist eine Open Source Implementierung eines TOSCA
Containers, die in den letzten Jahren an der Universität Stuttgart entwickelt
wurde. Sie bietet eine Laufzeitumgebung für TOSCA-Anwendungen.

Neben dem beschriebenen OpenTOSCA Container werden noch einige Tools
zur Verfügung gestellt. Dazu gehört ein „Self-Service UI“ für den Endnutzer
(Vinothek genannt) und ein Admin UI, beide benutzen die API des
Containers um mit ihm zu interagieren. Ferner existiert die Winery, welche
die Erstellung und Modellierung von TOSCA Anwendungen sowie deren
Topologie und Management-Plänen erlaubt. Sie dient der Arbeit mit Cloud
Service Archives (CSAR) und kann diese im- und exportieren.

13

3 Ist- und Soll-Zustand

Dieses Kapitel erläutert die Anforderungen an die Implementierung im
Rahmen dieser Bachelorarbeit. Ferner beschreibt es den bisherigen Stand des
existierenden Prototypen der OpenTOSCA Monitoring-GUI und analysiert
die notwendigen Schritte um die zuvor definierten Anforderungen zu erfüllen.

3.1 Anforderungen

Das Ziel ist ein Monitoring System, welches über eine REST API auf ein
bestehendes Backend zugreift, um verschiedene Arten von Eventtypen
abzufragen und darzustellen. Hierfür sollen zwei grafische
Nutzerschnittstellen realisiert werden. Eine dient der Übersicht über
allgemeine Events, die andere soll OpenTOSCA Events mit Informationen
über Provisionierung- und Verwaltungsprozesse grafisch darstellen.

Für diese beiden Schnittstellen existieren eine Reihe von Anforderungen, die
im Folgenden näher beschrieben werden.

3.1.1 Anforderungen an das generische Frontend

Nachfolgend werden die Anforderungen an das generische Frontend aufgezählt
und jeweils kurz beschrieben.

A1 - Nutzung der REST API Die Interaktion mit dem Backend soll durch
dessen REST API geschehen. Insbesondere werden darüber die gewünschten
Events abgefragt oder alle gespeicherten Events gelöscht.

A2 - Events löschen Es soll möglich sein, alle Events zu löschen. Dies betrifft
sowohl die persistente Speicherung im Backend als auch die aktuelle Anzeige
im Frontend.

A3 - Dynamische Updates Events sollen dynamisch nachgeladen werden
und so neu hinzugekommene Events in der Benutzeroberfläche angezeigt
werden.

A4 - Performantes Nachladen Die zuvor beschriebenen dynamischen
Updates sollen möglichst effizient sein. Insbesondere sollte sich die Anfrage
nach Events beim Backend explizit auf jene beschränken, die dem Frontend
bisher noch nicht bekannt sind.

A5 - Kontrolle über Datenabfrage Die Abfrage von Events soll vom Nutzer
kontrollierbar sein. Daher soll die Möglichkeit bestehen, die initiale Abfrage
sowie das dynamische Nachladen zu starten oder anzuhalten. Das Intervall
zwischen den Updates soll frei wählbar sein.

15

3 Ist- und Soll-Zustand

A6 - Tabellenlayout Die Darstellung der Events soll in tabellarischer Form
geschehen.

A7 - Daten sortieren Die Tabelle soll beliebig nach den Feldern der
angezeigten Events (id, source, datetime und message) sortiert werden
können.

A8 - Daten filtern Die Tabelle soll nach einigen Feldern gefiltert werden
können. Hierfür bieten sich insbesondere das Feld source und message an.

A9 - Auswahl der Eventquelle Es soll möglich sein, aus einer Liste aller
bekannten Quellen auszuwählen und nur Events anzuzeigen, die der gewählten
Source entsprechen.

A10 - Teilmenge der Daten Aufgrund der potentiell großen Anzahl an
Events soll auch ohne Filter die aktuelle Ansicht auf eine maximale Anzahl
an Events beschränkbar sein, um die Seite nicht zu überladen.

3.1.2 Anforderungen an das OpenTOSCA Frontend

Im Folgenden werden die Anforderungen an das OpenTOSCA Frontend
aufgezählt und jeweils kurz beschrieben. Aufgrund einer funktionalen
Überschneidung treffen einige Anforderungen an das generische Frontend
auch auf das OpenTOSCA Frontend zu. Dies betrifft insbesondere die
Anforderungen A1 bis A5, die deshalb hier nicht wiederholt aufgeführt
werden.

Das grundlegende Design soll sich am Aussehen des bisherigen Prototypen
orientieren. Einige spezifischeren Details diesbezüglich finden sich in den
nachfolgenden Anforderungen. Ferner sollen alle funktionalen Eigenschaften
des Prototypen im neuen Frontend ebenfalls vorhanden sein.

A11 - Verwaltung von Node Instances Sobald ein neues Event verarbeitet
wird, dessen zugehörige Node Instance dem Frontend noch nicht bekannt ist,
sollen die OpenTOSCA Informationen zu dieser Instance beim Backend erfragt
werden. Ferner muss sie in der Benutzeroberfläche hinzugefügt und angezeigt
werden.

A12 - Gruppierung nach Node Instances Alle Events sollen durch die
zugehörige Node Instance gruppiert werden. Jede Node Instance soll grafisch
klar getrennt sein, bspw. durch einen eigenen „Kasten“ pro Instance.

16

3.1 Anforderungen

A13 - Freie Anordnung der Node Instances Die Kästen der Node
Instances sollen sich per Drag’n’Drop vom Nutzer frei verschieben und
positionieren lassen.

A14 - OpenTOSCA Informationen Alle OpenTOSCA Informationen zu
einer Node Instance, die das Backend zur Verfügung stellt, sollen dieser
Instance zugeordnet sein und innerhalb ihres Kastens angezeigt werden.

A15 - Grafische Darstellung Sofern möglich sollten Informationen grafisch
sinnvoll und benutzerfreundlich präsentiert werden. Insbesondere soll der Node
Type durch ein passendes Icon und der State einer Node Instance farblich
dargestellt werden.

A16 - Events in Tabellenform Die zu einer Node Instance gehörigen Events
sollen in tabellarischer Form oder in Form einer Liste innerhalb des Kastens
der Instance angezeigt werden.

A17 - Events einklappen Die Tabelle oder Liste der Events soll
standardmäßig sichtbar sein, sich jedoch zur besseren Übersicht ein- und
ausklappen lassen.

A18 - Properties anzeigen Die Properties einer Node Instance sind ein
längerer XML-String und sollen leicht zugänglich einsehbar sein, bspw. durch
ein Pop-up.

A19 - Formatierung der Properties Das XML der Properties soll mittels
Syntax-Highlighting und korrekter Einrückung übersichtlich und lesbar
dargestellt werden.

A20 - Statusänderungen erkennen Neben den dynamischen Updates der
Events (siehe Anforderung A3) soll der State aller bekannten Node Instances
periodisch überprüft werden. Das Intervall soll hierbei vom Benutzer
festlegbar sein, kann jedoch an das Intervall des Updates neuer Events
gebunden sein. Bei einer Änderung muss die Anzeige (textuell und grafisch)
in der Benutzeroberfläche entsprechend angepasst werden.

A21 - Filterfunktionen Es soll möglich sein, nach allen dem Frontend
bekannten Service Instances sowie Node Types zu filtern und nur diejenigen
Node Instances anzuzeigen, die beiden Filtern entsprechen.

17

3 Ist- und Soll-Zustand

3.2 Bisheriger Prototyp

Der bisherige Prototyp der OpenTOSCA-GUI erfüllt bereits einen Teil dieser
Anforderungen. Auf die nicht oder nur unvollständig erfüllten Anforderungen
wird später in der Analyse eingegangen.

Die folgenden Anforderungen sind vollständig erfüllt:

• A11 - Verwaltung von Node Instances

• A12 - Gruppierung nach Node Instances

• A14 - OpenTOSCA Informationen

• A15 - Grafische Darstellung

• A16 - Events in Tabellenform

• A17 - Events einklappen

• A18 - Properties anzeigen

• A20 - Statusänderungen erkennen

3.3 Analyse

Im Folgenden wird analysiert, welche der zuvor beschriebenen Anforderungen
noch nicht erfüllt wurden, und die im Rahmen dieser Arbeit umgesetzt werden
sollen.

3.3.1 Generisches Frontend

Da bisher noch kein Prototyp einer Benutzerschnittstelle für generische
Events existiert, ist die erstmalige Umsetzung aller zuvor genannten
Anforderungen an dieses Frontend (A1 bis A10) erforderlich.

Hierfür wird entsprechend unabhängig vom bisherigen Prototypen oder der
Neuimplementierung des OpenTOSCA Frontends ein eigenständiges
Frontend zur Erfassung und Darstellung allgemeiner Events implementiert.

3.3.2 OpenTOSCA Frontend

Aufgrund der Existenz des bisherigen Prototypen ist es möglich, sich an der
Umsetzung der bereits von ihm erfüllten Anforderungen zu orientieren. Da
jedoch kein Refactoring des bisherigen Codes durchgeführt und der Prototyp
auch nicht erweitert wird, muss die Neuimplementierung des Frontends alle
bisher erfüllten Anforderungen vollständig umsetzen. Zusätzlich sind einige
Funktionen im Prototypen nicht oder nur teilweise vorhanden.

18

3.3 Analyse

Die folgenden Anforderungen implementierte der Prototyp nur teilweise:

• A13 - Freie Anordnung der Node Instances: Drag’n’Drop der Node
Instances ist möglich, jedoch nicht klar repräsentiert (das Logo des
Node Types einer Instance muss geklickt werden). Ferner lassen sich
Instances nicht problemlos überlappen, da die Reihenfolge
(Sichtbarkeit) nicht veränderlich ist.

• A19 - Formatierung der Properties: Der XML-String ist teilweise
eingerückt. Es existiert kein Syntax-Highlighting.

Die folgende Anforderung wurde nicht umgesetzt:

• A21 - Filterfunktionen

Zuallererst sollte das neue Frontend daher die Funktionalität des bisherigen
Prototypen nachbilden um die jeweiligen Anforderungen ebenfalls erfüllen zu
können. Darüber hinaus sind Verbesserungen in den beiden genannten
Bereichen nötig, um die Anforderung vollständig und korrekt umzusetzen.

Abschließend soll die Erweiterung der Implementierung um die
Filterfunktionen aus A21 stattfinden.

19

4 Entwurf

Dieses Kapitel behandelt den Entwurf der Monitoring Frontends. Es geht
dabei auf die Entwurfsentscheidungen und Überlegungen zur Umsetzung der
beiden Benutzeroberflächen ein.

Da bereits eine prototypische Implementierung der OpenTOSCA Monitoring
GUI existierte, die zwar nicht direkt erweitert, sich bei der
Neuimplementierung jedoch stark an ihr orientiert werden sollte, konnten
viele Entwurfsentscheidungen bereits davon abgeleitet werden.
Weder das Design noch die Funktionalität dieser GUI sind allerdings gut

für das generische Frontend geeignet. Deshalb ist davon auszugehen, dass
beide Frontends trotz einer ähnlichen Interaktion mit dem Backend, und der
Abfrage von Events mittels einer REST-API, nur im geringen Maße
Überschneidungen in ihrer Implementierung haben werden.

Daher werden das generische Frontend und das OpenTOSCA Frontend von
vorne herein als separate Projekte behandelt, die sich nur wenige, gemeinsam
verwendete Bibliotheken teilen. Im Folgenden wird näher auf beide Frontends
eingegangen.

4.1 Generisches Frontend

Das generische Frontend soll „basic“ Events darstellen. Da dies der
grundlegende Eventtyp ist, von dem alle spezialisierten oder erweiterten
Typen abgeleitet werden, entspricht dies der Anzeige aller im Backend
gespeicherten Events.

Da einerseits keine Kenntnis über die Art des jeweiligen Events zur
Verfügung steht, als auch Events aller Typen gleichzeitig dargestellt werden
sollen, muss die generische Oberfläche entsprechend sehr einfach gehalten
werden. Eine umfangreiche Aufbereitung, bspw. mit einer sinnvollen
Gruppierungen von Events, der Anzeige von Zusatzinformationen oder
weitere domänenspezifische Anpassungen sind nicht möglich.

Somit verbleibt die Darstellung aller verfügbaren Events als eine Aufzählung,
bei der jeder Eintrag die „Rohdaten“ des jeweiligen Events enthält, die den
Informationen aller Felder dieses Events entspricht. Hierfür bietet sich eine
tabellarische Darstellung an, in der jede Zeile einem Event entspricht, und
die Spalten der Tabelle die Felder des Basic-Typs darstellen. Dies liefert eine
schnelle Übersicht aller Events und ihrer Grundinformationen, wie sie vom
Backend geliefert werden.

Da zusätzliche Felder, die spezialisierte Typen einführen können, ohne das
benötigte Wissen über deren Bedeutung nicht interpretiert werden können,
würde die Anzeige dieser Felder in einem generischen Frontend wenig Sinn

21

4 Entwurf

ergeben. Es würde ferner das Design unnötig komplex machen, da eine
variable Anzahl an anzuzeigenden Feldern pro Eventtyp umgesetzt werden
müsste.

Um die gesamten Events des Monitoring Systems im Überblick behalten zu
können, bietet sich ein automatischer Abruf neuer Events an, um den Nutzer
über alle Aktivitäten informieren und diese von ihm überwachen lassen zu
können. Ferner sollte es dem Nutzer ermöglicht werden, die Anzahl an Events
auf eine für ihn interessante Teilmenge einzuschränken, indem verschiedene
Filtermethoden eingesetzt werden können, sowie einige oder alle Felder
durchsucht und sortiert werden können.

4.2 OpenTOSCA Frontend

Das OpenTOSCA Frontend orientiert sich sehr stark an dem bisherigen
Prototypen. Dieser hat sich in der Praxis bewährt und weist funktional nur
wenige Mängel auf, weshalb hierbei keine besonderen oder umfassenden
Entwurfsentscheidungen getroffen werden müssen, die vom Entwurf des
Prototypen abweichen.

Da der Prototyp jedoch historisch gewachsen ist, von unterschiedlichen
Personen ohne einheitlichen Stil entwickelt wurde, und viel Bloat in Form
von Drittanbieter-Bibliotheken oder Assets mit sich bringt, sollte er nicht
direkt erweitert werden. Ein Refactoring und die darauf folgende
Weiterentwicklung des Prototypen wäre eine mögliche Option.

Aufgrund des umfangreichen und teilweise komplexen Codes im Verhältnis
zu dem überschaubaren Umfang, den die realisierte Funktionalität bietet,
liegt eine komplette Neuimplementierung jedoch näher. Diese soll eine neue
Codebasis schaffen, sparsam mit der Verwendung von
Drittanbieter-Bibliotheken umgehen und dabei die bisher bestehenden
funktionalen Mängel ausbessert.

Das Design der Neuimplementierung soll eine Nachbildung des Prototypen
sein. Darauf hin soll die Wiederherstellung des bisherigen Funktionsumfangs
folgen. Zu diesem Zeitpunkt kann der Prototyp nun bereits durch die
wartbare, „entschlackte“ und code-technisch übersichtlichere Implementierung
ersetzt werden. Schlussendlich sollte die Erweiterung um die in Kapitel 3
verlangten Anforderungen erfolgen.

Bei der gesamten Entwicklung ist darauf zu achten, die zukünftige
Erweiterbarkeit der Implementierung bestmöglich zu gewährleisten. Ferner
soll eine „sparsame“ und begründete Verwendung von Bibliotheken und Tools
ebenfalls ein Hauptaugenmerk sein.

22

5 Implementierung

Dieses Kapitel beschreibt die konkrete Implementierung der
Monitoring-Frontends. Es unterteilt sich in das einfach gehaltene, generische
Frontend sowie das OpenTOSCA-Frontend.

Beide Varianten sind als Web-Interface umgesetzt, die eingesetzten
Technologien sind hierbei die in der Webentwicklung üblichen
Auszeichnungssprachen HTML [6] und CSS [2], die Programmiersprache
JavaScript [4] sowie einige Frameworks für diese Sprachen.

Den einzelnen Benutzeroberflächen ist eine einfache HTML-Übersichtsseite
vorgeschaltet, die weiterführende Links beinhaltet. Dort kann der Nutzer
auswählen, welche GUI verwendet werden soll.

5.1 Frameworks

Beide Frontends benutzen sowohl jQuery als auch Bootstrap, sowie weitere
JavaScript-Bibliotheken. Im Folgenden wird ein kurzer Überblick über jQuery
und Bootstrap gegeben, soweit dies für diese Arbeit relevant ist.

5.1.1 jQuery

jQuery [11] ist eine weit verbreitete, umfangreiche JavaScript Bibliothek, die
insbesondere die Arbeit mit dynamisch generierten Inhalten, Events und die
Kommunikation mit einem Server erleichtert. Sie ist damit sehr gut für den
Anwendungszweck beider Frontends geeignet und wird extensiv genutzt. Der
JavaScript-Code für das OpenTOSCA-Frontend wird beispielsweise direkt als
„Plugin“ in jQuery verwendet, und auch die später näher erläuterten
Bibliotheken „DataTables„ und „ jQuery UI“ erweitern oder benötigen jQuery
als Framework.

5.1.2 Bootstrap

Bootstrap [1] ist ein CSS-Framework und Template-System, das ein einfaches
und elegantes Design vieler HTML-Elemente und oft verwendeter Muster
bereitstellt. Es wird in kleinen Teilen für die Tabelle des generischen
Frontends und für das Control Panel des OpenTOSCA-Frontends verwendet.
Es ermöglicht ein einheitliches Design und erspart den Aufwand, diese
Elemente händisch gestalten und anpassen zu müssen.

5.2 Generisches Frontend

Dieses Unterkapitel beschreibt die Umsetzung des generischen Frontends, das
sämtliche Events anzeigt.

23

5 Implementierung

5.2.1 Darstellung

Das generische Frontend verwendet eine tabellarische Darstellung ohne weitere
Aufbereitung der Daten. Dies liefert eine schnelle Übersicht der Rohdaten,
wie sie vom Backend geliefert werden, und erfüllt außerdem die in Kapitel 3
festgelegte Anforderung A6.

Abbildung 5.1: Generisches Frontend mit einem „basic“ Event

In Abbildung 5.1 ist diese Übersicht mit nur einem „basic“ Event als Beispiel
zu sehen. Die Anforderungen A1 bis A3 sowie A5 wurden durch die obere
Leiste erfüllt, in der die wichtigsten Funktionen zu finden sind. Mittels „Start“
wird begonnen, die Events via REST vom Backend in einem vom Benutzer
definierten Intervall zu erfragen und neue Events in die Tabelle einzufügen.
Ein Klick auf „Stop“ beendet die automatische Abfrage und belässt die Tabelle
im aktuellen Zustand, ohne weiter auf neue Events zu reagieren.

Insbesondere zu Testzwecken lässt sich auch das Löschen aller im Backend
persistierten Events anstoßen, indem die Funktion „Delete all events“
ausgewählt wird (Anforderung A2). Hierbei ist darauf zu achten, dass die
Aktion nicht rückgängig gemacht werden kann. Bei Bestätigung des
Löschvorgangs durch das Backend reagiert die Benutzeroberfläche ebenfalls
durch das Entfernen aller Events in der Tabelle, damit keine veralteten bzw.
gelöschten Events mehr angezeigt werden.

Die Tabelle repräsentiert alle Felder, die für jeden Eventtyp zwingen
vorgeschrieben sind. Mögliche Zusatzfelder eines speziellen Typs werden
jedoch nicht berücksichtigt und entsprechend auch nicht dargestellt. Die
notwendigen Felder sind in Tabelle 1 beschrieben.

Die Tabelle ermöglicht das Suchen und Filtern für einige dieser Felder.
Sortiert werden kann auf- und absteigend nach allen Feldern, womit die
Anforderung A7 erfüllt wird. Oberhalb der Tabelle befindet sich eine
Suchfunktion, die ebenfalls alle Felder durchsucht. Die Anforderung A8
wurde umgesetzt, in dem zusätzlich unterhalb der Tabelle noch speziell nur

24

5.2 Generisches Frontend

Feld Beschreibung
id Vom Backend automatisch vergebene ID

source Die „Quelle“ des Events (auch Source ID)
datetime Zeitstempel (bspw. an dem das Event erzeugt wurde)
message Textnachricht des Events (möglicherweise leer)

Tabelle 1: Pflichtfelder für jeden Eventtyp

„Source ID“ oder „Message“ durchsucht werden kann. Da davon auszugehen
ist, dass es nur eine geringe Zahl an Produzenten von Events gibt, besitzt die
„Source ID“ Spalte ferner noch eine Drop-down Liste, die alle Source IDs
aufzählt und per Klick nur Events der gewählten Quelle anzeigt
(Anforderung A9).

Anforderung A10 wurde umgesetzt, indem standardmäßig nur eine gewisse
Anzahl an Events gleichzeitig angezeigt werden (hier 25). Weitere Ergebnisse
werden durch eine Pagination in „Seiten“ der Tabelle aufgeteilt, die rechts
unten dargestellt und zwischen ihnen gewechselt werden kann. Links oben
kann ferner die Anzahl der Events pro Seite festgelegt werden, es ist ebenfalls
möglich, alle Events anzuzeigen (und die Pagination somit effektiv außer
Kraft zu setzen).

Die Anzahl der Ergebnisse nach dem Anwenden eines Filters, sowie die
aktuelle Teilansicht (aufgrund der Aufteilung auf Seiten) wird abschließend
links unten in einem Statustext zusammengefasst.

In Abbildung 5.2 ist abschließend noch eine Übersicht mit gemischten
Eventtypen und Quellen (Source IDs) zu sehen, die Source IDs und die
Anzeige des Datums wurden für dieses Beispiel jedoch gekürzt. Neben drei
„basic“ Events aus unterschiedlichen Quellen werden hier ebenfalls
OpenTOSCA Events angezeigt, die jedoch im Gegensatz zum speziellen
OpenTOSCA-Frontend nicht aufbereitet wurden.

5.2.2 Technische Umsetzung

Das generische Frontend besteht aus einer einzelnen HTML-Datei, die
ihrerseits nur das „Control Panel„ (Start/stop/delete) und den Header und
Footer der Tabelle definiert. Sie bindet außerdem einige weitere Styles und
Scripts ein. Siehe Abbildung 5.3 für eine Übersicht der Architektur.
DataTables [3] ist ein jQuery Plugin, das die gesamte Verwaltung von
Tabellenstrukturen und interaktiven Tabellen ermöglicht oder stark
erleichtert. Aufgrund der Wahl, die Events des generischen Frontends in
Tabellenform zu repräsentieren, bot sich das DataTables-Plugin für diesen
Zweck an.

25

5 Implementierung

Abbildung 5.2: Generisches Frontend mit gemischten Eventtypen

Datenstruktur

Die vom Backend gelieferte JSON-Datenstruktur bei der Abfrage von Events
ist in Listing 1 anhand von zwei beispielhaften Events zu sehen. Die Struktur
ist ein Array von Objekten, in der jedes Objekt ein Event repräsentiert. Ein
Objekt besteht wie auch in Tabelle 1 näher beschrieben aus vier Feldern: id,
message, source und datetime. Sofern keine zur Anfrage passenden Events
existieren, liefert das Backend ein leeres Array zurück.

Initialisierung

DataTables ermöglicht eine einfache Initialisierung auf jeder bestehenden
Tabelle und stellt direkt mehrere Sortier-, Filter- und Suchmethoden sowie
die dafür nötigen Eingabemasken zur Verfügung. Dabei muss darauf geachtet
werden, die verwendete Datenstruktur und das Mapping auf die Spalten der
Tabelle korrekt anzugeben.

Eine vereinfachte Übersicht der Initialisierung für das generische Frontend ist
in Listing 2 zu sehen. DataTables erwartet standardmäßig einen
JSON-Datensatz mit dem Feld data, welches die eigentliche Datenstruktur
enthält. Dies ist jedoch hier nicht der Fall, wie in Listing 1 zu sehen ist. Um
dem Plugin zu vermitteln, dass es sich bei den verwendeten Daten um ein flat
array handelt, musste der dataSrc Option ein Leerstring übergeben werden
(Zeile 4).

Die restlichen (für diese Übersicht gekürzten) Optionen sind unter anderem

26

5.2 Generisches Frontend

CSS

basic.css

datatables.css

dataTables.bootstrap.min.css

Zw. beiden Frontends geteilt

bootstrap.min.css

Javascript

jquery.dataTables.min.js

basic.js

Zw. beiden Frontends geteilt

jquery-2.2.3.min.js

Single HTML page

Stylesheets

Scripts

Dynamischer
Inhalt

Backend
REST API Polling

(neue Events)

Hinzufügen
von Events
zur Tabelle

Abbildung 5.3: Architektur des generischen Frontends

eine URL, von der die initialen Daten für die Tabelle abgerufen werden (Zeile
3), ein Mapping zwischen den Feldern aus dem erhaltenen Datensatz und den
Spalten der Tabelle (Zeile 7-14), als auch eine abschließende Funktion die
aufgerufen wird, sobald der Aufbau der Tabelle durch das Plugin
abgeschlossen wurde (Zeile 16).

Nach erfolgreicher Initialisierung der Tabelle wird sich die höchste bekannte
ID eines Events gespeichert, um in weiteren Aufrufen nur neuere Events beim
Backend zu erfragen.
Ferner werden die Funktionen addSearchSelect() und

addSearchInput() aufgerufen, die Auswahl- und Suchfelder unterhalb der
Tabelle für ausgewählte Spalten erzeugen. Die entsprechenden Spalten
können definiert werden, indem in der Grundstruktur der index.html die
CSS-Klasse selectable für ein Auswahlfeld und die Klasse searchable für
ein Freitextfeld gesetzt werden. Im generischen Frontend wurde für die Spalte
Message eine Textsuche verwendet, für die Source ID hingegen sowohl eine
Textsuche als auch ein Auswahlfeld, da die Anzahl an verschiedenen
Eventquellen in der Praxis beschränkt ist.

Abschließend wird ein Polling im vom Nutzer festgelegten Intervall gestartet.

27

5 Implementierung

1 [
2 {
3 "id": 1,
4 "message": "Some event happened!",
5 "source": "Generic Event Source",
6 "datetime": 1462372421337
7 },
8 {
9 "id": 2,

10 "message": "setFile ./ sixcms_tmp/tmpscript.sh",
11 "source": "nodeInstances /20",
12 "datetime": 1462372450000
13 }
14]

Listing 1 JSON Datenstruktur für generische Events

Workflow

Die Anforderung A4 wurde umgesetzt, indem das Polling mittels eines GET
Requests alle Events beim Backend erfragt, die eine höhere ID als die zuletzt
bekannte ID haben. Diese Anfrage geht an die Ressource
/monitoring/eventstorages/basic/eventlist?afterEventID={id}.

Bei Erfolg wird vom Server eine Response wie in Listing 1 erhalten. Sofern
seit der letzten Anfrage keine neue Events erzeugt wurden, ist das erhaltene
JSON-Array leer und an dieser Stelle wird abgebrochen. Anderenfalls wird die
neue höchste Event ID gespeichert und im Anschluss über das Array iteriert.

DataTables bietet eine umfangreiche API, die unter anderem das
Hinzufügen neuer Daten durch den Aufruf datatable.row.add(rowData)
ermöglicht, mittels datatable.draw() kann die Anzeige der Tabelle
aktualisiert werden, um die neu eingepflegten Daten sichtbar zu machen.

Abschließend werden alle Auswahlfelder durch addSearchSelect()
aktualisiert, sofern bspw. neue Event Sources hinzugekommen sind.

5.3 OpenTOSCA Frontend

Dieses Unterkapitel beschreibt die Umsetzung des OpenTOSCA Frontends, das
domänenspezifisches Wissen über OpenTOSCA-Events verwendet um diese
sinnvoll zu gliedern und darzustellen, sowie zusätzliche Informationen zu ihnen
zu beziehen.

5.3.1 Darstellung

Das Layout des OpenTOSCA Frontends orientiert sich sehr stark an der
bisherigen Implementierung der Monitoring GUIs.

28

5.3 OpenTOSCA Frontend

1 DataTable ({
2 "ajax" : {
3 u r l : "/monitoring/eventstorages/basic/eventlist" ,
4 dataSrc : "" // Die JSON Daten sind ein flat array
5 } ,
6

7 "columns" : [
8 // Die Felder eines Events werden in der Reihenfolge
9 // der Spalten der Tabellen zugeordnet

10 { data : "id" } , // Erste Spalte
11 { data : "source" } ,
12 { data : "datetime" } ,
13 { data : "message" } // Letzte Spalte
14] ,
15

16 "initComplete" : function () { onTableInitComplete () ; }
17 }) ;

Listing 2 Initialisierung des DataTables Plugins

Allgemein

Jedes Event hat genau eine Source, die in diesem Fall einer Node Instance
entspricht. Im Gegensatz zu generischen Events, deren Sources sehr
verschieden und insbesondere unbekannt sind, stehen zu jeder Node Instance
allerdings weiterführende Informationen zur Verfügung, die abgefragt und
entsprechend dargestellt werden können. Daher bietet sich eine Gruppierung
der Events nach ihrer jeweiligen Node Instance an, wobei dort die
gesammelten Informationen zusammengeführt werden können. Abbildung 5.4
zeigt das OpenTOSCA Frontend mit zwei beispielhaften Node Instances, die
Events der ersten Instance sind ausgeblendet.

Control Panel und Filter

Ähnlich dem generischen Frontend gibt es ebenfalls ein Control Panel am
Beginn der Seite, von dem aus die Abfrage von neuen Events begonnen oder
angehalten werden sowie das Intervall festgelegt werden kann (Anforderung
A5). Mittels des Buttons „Delete all events“ lassen sich alle OpenTOSCA
Events löschen (Anforderung A2), insbesondere betrifft dies jedoch keine
Events eines anderen Eventtyps.

Weiterhin befinden sich unterhalb dieser Buttons zwei OpenTOSCA
spezifische Filter, die bei ihrer Aktivierung nur Node Instances einer
ausgewählten Service Instance oder eines Node Types anzeigen (Anforderung
A21). Die Service Instance ist hierbei eine TOSCA-spezifische ID, der
mehrere Node Instances untergeordnet sind. Der entsprechende Filter listet

29

5 Implementierung

Abbildung 5.4: OpenTOSCA Frontend mit zwei Node Instances

alle Instance IDs, die bisher bei der Abfrage von Node Instance Daten
aufgetreten sind.

Selbiges gilt auch für den Filter für Node Types, dieser kann ebenfalls nach
beliebigen Typen filtern. Die korrekte grafische Darstellung durch ein
entsprechendes Icon ist jedoch derzeit nur für folgende Typen vorgesehen.
Diese wurden aus dem bisherigen GUI-Prototypen abgeleitet:

• UbuntuNodeType

• EC2NodeType

• VMWareNodeType

• MySQLNodeType

• ApacheWSNodeType

• SixCMSNodeType

Davon abweichende Typen erhalten keine grafische Kennzeichnung
innerhalb einer Node Instance. Die Erweiterung dieser Liste ist jedoch sowohl

30

5.3 OpenTOSCA Frontend

Abbildung 5.5: Überlappend gestapelte Node Instances

im Code als auch im Design vorgesehen und einfach umzusetzen. In der
Funktion insertNodeInstance() existiert ein switch-Statement, das für
jeden bekannten Typen eine CSS-Klasse vergibt. Das Hinzufügen einer
weiteren case-Unterscheidung und einem zugehörigen Icon via CSS ist
ausreichend, um einen neuen Typen zu unterstützen.

Standardmäßig sind keine Filter gesetzt, beide Auswahlfelder stehen auf „all“.
Sobald einer der Filter geändert wird, werden alle Node Instances, auf die
das gewählte Kriterium nicht zutrifft, ausgeblendet. Die verbleibenden oder
jetzt ausgewählten Instances werden angezeigt und neu nebeneinander
sortiert, um zu verhindern, dass sich zuvor vom Nutzer verschobene Instances
außerhalb des sichtbaren Bereichs befinden. Werden beide Filter gemeinsam
eingesetzt, so müssen alle Kriterien gleichzeitig erfüllt werden.

Node Instances

Die Anforderung A12 wurde umgesetzt, indem jede Node Instance durch
einen eigenen Kasten in der Benutzeroberfläche repräsentiert wird. Er enthält
nahezu alle Informationen, die OpenTOSCA zu einer Node Instance zur
Verfügung stellt, und gruppiert diese in sinnvolle Teile (Anforderung A14).

Der erste Teil innerhalb des Kastens enthält ein dem nodeType
entsprechendes Logo, sofern der Typ bekannt ist (siehe obige Liste) und
entspricht somit der Anforderung A15. Es folgen die nodeTemplateID und
der Namen der Node Instance. In der rechten oberen Ecke befindet sich
außerdem ein Move-Icon, an dem der Kasten mittels Drag’n’Drop beliebig
neu positioniert werden kann, siehe Abbildung 5.5. Dies erfüllt somit die
Anforderung A13. Die Position bleibt bis zum Neuladen der Seite oder dem
Anwenden bzw. Deaktivieren eines Filters bestehen und ermöglicht die
komfortable Anordnung oder Gruppierung von für den Nutzer wichtigen
Node Instances.

Der zweite Teil beginnt mit einem Icon, das den aktuellen state der

31

5 Implementierung

Abbildung 5.6: Node Instance mit darüber gelegtem Properties Pop-up

Instance repräsentiert (Anforderung A15). Bekannte States sind running
(grün) und installed (blau), anderenfalls wird das Icon schwarz dargestellt.
Darauf folgt eine Liste weiterer Eigenschaften: Die csarID, die
serviceInstanceId (nach welcher gefiltert werden kann), eine textuelle
Repräsentation des state, die serviceTemplateID, sowie der Zeitstempel
des frühesten Events dieser Instance im created Feld.

Die Anforderungen A18 und A19 wurden umgesetzt, indem ein Klick auf
das nebenstehende Icon ein Pop-up öffnet, in dem die Properties der
Instance dargestellt werden, siehe Abbildung 5.6. Diese werden zusätzlich mit
XML Syntax-Highlighting hervorgehoben. Das Pop-up lässt sich ebenfalls
verschieben und mit einem Klick auf das Icon rechts oben schließen.

Der dritte Teil des Kastens besteht aus einer Tabelle mit allen bisher
erhaltenen Events, die zu der aktuellen Node Instance gehören (Anforderung
A16). Die Tabelle wird standardmäßig angezeigt, kann jedoch über einen
Klick auf das Minus-Symbol aus- und eingeblendet werden um die
Anforderung A17 zu erfüllen, siehe bspw. Abbildung 5.4.

5.3.2 Technische Umsetzung

Das OpenTOSCA Frontend besteht ebenfalls aus einer einzelnen HTML-Datei,
die das Control Panel und die Auswahlfelder der Filter definiert, sowie die
folgenden Dateien einbindet:

opentosca.css Das gesamte, OpenTOSCA spezifische Layout dieses
Frontends

jquery-ui.min.css Design-Anpassungen für Elemente der jQuery UI
Erweiterung

highlight.css Der „Original“-Style für highlight.js

32

5.3 OpenTOSCA Frontend

jquery-2.2.3.min.js Die aktuelle Version von jQuery

jquery-ui.min.js Die aktuelle Version von jQuery UI

highlight.js Eine JavaScript Bibliothek für Syntax-Highlighting

opentosca.js Die eigentliche Implementierung und der gesamte Workflow des
Frontends

Abgesehen von der eben aufgelisteten, genauen Auswahl und Benennung der
referenzierten Dateien unterscheidet sich die Architektur des OpenTOSCA
Frontends nicht signifikant von der des generischen Frontends, wie sie in
Abbildung 5.3 zu sehen ist.

Aufbau

Das Frontend ist als direkte Erweiterung von jQuery selbst implementiert
und in der Funktion OpenTosca innerhalb von jQuery definiert. Es wird in
der index.html mittels new $.OpenTosca(); initialisiert.

Der bisherige Prototyp des Monitoring GUIs hat einen Model View
Controller (MVC) Ansatz gewählt. Die Implementierung dieser
Bachelorarbeit verwendet jedoch keine derartige Struktur, sondern
beschränkt sich auf eine einzelne „Klasse“ bzw. Memberfunktion des jQuery
Objekts, sowie innerhalb des Objekts globale Variablen und weitere
Unterfunktionen. Der gesamte Umfang des Codes beschränkt sich somit trotz
eines größeren Funktionsumfangs auf nur 600 Zeilen, wohin gegen die
bisherige Implementierung knapp 1500 Codezeilen benötigte. Hinzu kommen
noch weitere JavaScript-Frameworks sowie Assets, die nicht länger benötigt
werden und den Umfang in weiterem Maße reduzieren.

Initialisierung

Bei der Instanziierung des Frontends werden nur wenige Variablen und
Objekte initialisiert. Unter anderem wird, ähnlich dem generischen Frontend,
die höchste bekannte Event ID in lastEventId gespeichert, das Objekt
nodeInstances hält hingegen alle bekannten Node Instances sowie die von
OpenTOSCA dazu gelieferten Daten.
Die Filterfunktionen benötigen außerdem eine Liste aller bekannten Service

Instances sowie der verschiedenen Node Types, die jeweils in den Objekten
serviceInstanceIds und nodeTypes gespeichert und beim Erstellen neuer
Node Instances aktualisiert werden.

Abschließend werden einige Event-Handler gebunden, um die Funktionen des
Control Panels zu ermöglichen. Hierzu gehören der „Start“-Button, der die
Abfrage der Events im angegebenen Intervall anstößt, sowie der
„Stop“-Button, der dieses Polling unterbricht. Ferner werden die Handler für

33

5 Implementierung

das Löschen aller OpenTOSCA Events, das Ein- und Ausklappen von
Eventlisten pro Node Instance und die Änderung der Filterauswahl
gebunden.

Workflow

Beim Klick auf den „Start“-Button wird die Funktion refreshStart()
aufgerufen. Diese liest und überprüft zunächst das aktuell vom Benutzer
gesetzte Polling-Intervall. Ist es ungültig wird die Eingabe farblich markiert
und an dieser Stelle abgebrochen. Anderenfalls wird ein möglicherweise
gesetzter alter Timer deaktiviert, und das übergebene Intervall verwendet,
um in diesem Abstand die Funktion refresh() aufzurufen (Anforderung
A3). Damit der Ablauf des Timers nicht abgewartet werden muss, wird
refresh() außerdem direkt aufgerufen.

Eine spätere Verwendung des „Stop“-Buttons deaktiviert den zuvor
gesetzten Timer und behält den aktuellen Zustand der Benutzeroberfläche
bei.

Die Funktion refresh() iteriert zuerst über alle bereits bekannten Node
Instances, und erfragt mittels eines GET Requests im Backend an der
Ressource
/monitoring/eventstorages/opentosca/nodeinstancelist/{id}/state
den aktuellen Zustand jeder Instance. Die Response ist ein einfacher String
(insbesondere kein JSON). Dieser wird mit dem zuletzt bekannten Zustand
abgeglichen und bei einer Änderung wird die grafische und textuelle
Repräsentation in der Benutzeroberfläche entsprechend angepasst
(Anforderung A20).

Hiernach wird ein weiterer GET Request an die Eventlist unter der Ressource
/monitoring/eventstorages/opentosca/eventlist&afterEventID={id}
gestellt, die Response enthält alle seit der letzten Anfrage neu
hinzugekommenen Events und wird weiter an insertNewEvents()
übergeben. Da explizit nur neuere Events beim Backend erfragt werden, ist
somit die Anforderung A4 erfüllt.

Verarbeitung neuer Events und Node Instances

Die Funktion insertNewEvents() erhält neu empfangene Events als JSON
Objekt. Die Datenstruktur ist eine Obermenge der generischen Events, bei
OpenTOSCA wurde ausschließlich das Feld nodeInstanceId hinzugefügt, es
entspricht inhaltlich jedoch der source. Ein Beispieldatensatz des JSON
Objekts ist in Listing 3 zu sehen.

Nun wird über jedes dieser ankommenden Events iteriert und die Node
Instance, zu der es gehört, aus dem Cache abgerufen. Sofern diese bereits
vorhanden ist, kann das Event direkt zur Event-Tabelle hinzugefügt werden
und erscheint in der Benutzeroberfläche.

34

5.3 OpenTOSCA Frontend

1 [
2 {
3 "id": 1,
4 "message": "start install",
5 "datetime": 1462372442552,
6 "source": "http :// localhost :1337/ containerapi/

instancedata/nodeInstances /20",
7 "nodeInstanceId": "http :// localhost :1337/

containerapi/instancedata/nodeInstances /20"
8 }
9]

Listing 3 JSON Datenstruktur für OpenTOSCA Events

Ist die zugehörige Node Instance bisher noch unbekannt, erfolgt ein GET
Request mit der nodeInstanceId des Events an die Ressource
/monitoring/eventstorages/opentosca/nodeinstancelist/{id}. Die
Response ist ebenfalls ein JSON-Objekt, das alle OpenTOSCA Informationen
zu dieser Node Instance enthält. Ein Beispiel hierfür ist in Listing 4 zu sehen.

Die erhaltenen Informationen werden dem Cache hinzugefügt und die neue

1 {
2 "nodeInstanceID": "http :// localhost :1337/

containerapi/instancedata/nodeInstances /20",
3 "name": "20",
4 "created": 1462372442552,
5 "nodeType": "UbuntuNodeType",
6 "csarID": "Maerker.csar",
7 "nodeTemplateID": "UbuntuNodeTemplate",
8 "serviceInstanceID": "4",
9 "serviceTemplateID": "Maerker",

10 "properties": "(...)",
11 "state": "running"
12 }

Listing 4 JSON Datenstruktur für eine Node Instance in OpenTOSCA

Node Instance wird als HTML Element in die Benutzeroberfläche eingefügt
(Anforderung A11). Dabei werden einige Felder entsprechend formatiert und
angepasst, bspw. eine nutzerfreundliche Darstellung von Datum und Uhrzeit
oder das Syntax-Highlighting der XML-Properties mittels highlight.js. Ferner
wird das Pop-up für die Anzeige der Properties vorbereitet und die

35

5 Implementierung

Positionierung mittels Drag’n’Drop ermöglicht, beide Funktionen werden von
jQuery UI zur Verfügung gestellt.

Abschließend werden die Auswahlfelder für den Service Instance- und Node
Type-Filter aktualisiert, sofern dies nötig ist.

Filter

Bei der Änderung von einer der beiden Filter über die Eingabemasken wird
die Funktion filterNodes() aufgerufen. Da durch das Filtern
möglicherweise nur noch eine Teilmenge der bisher angezeigten Node
Instances verbleibt, werden zu Beginn des Vorgangs die Positionen aller
Instances zurückgesetzt, wodurch diese nebeneinander aufgereiht werden.
Dieses Verhalten verhindert, dass eine durch Drag’n’Drop manuell platzierte
Instance plötzlich außerhalb des direkt sichtbaren Bereichs der
Benutzeroberfläche gerät.

Darauf hin wird über alle bekannten Node Instances iteriert und dabei
überprüft, ob beide gewählten Filter zutreffen. Entsprechend der
Überprüfung wird das aktuelle Element ein- oder ausgeblendet.

Löschen von Events

Um alle OpenTOSCA Events zu löschen, wird ein POST Request an die
Ressource /monitoring/eventstorages/opentosca/eventdropper des
Backends geschickt. Bei erfolgreicher Durchführung wird dem Nutzer ein
grafisches Feedback angezeigt, der Cache aller bekannten Node Instances
gelöscht und selbige in der Benutzeroberfläche entfernt. Abschließend werden
alle Filter zurückgesetzt, sowie die davon verwendeten Listen der Service
Instances und Node Types geleert.

36

6 Zusammenfassung und Ausblick

Der Ablauf langlaufender Prozesse ohne direkten Einblick kann sich aus
Nutzersicht oft schlecht auf die Nutzererfahrung auswirken. Ebenfalls
erschwert dies, im Hintergrund laufende Prozesse verstehen und
nachvollziehen zu können.
Insbesondere die Provisionierung oder Verwaltung einer mit TOSCA

beschriebenen Cloud Anwendung besteht in der Regel aus komplexen
Prozessen, die längere Zeit bis zu ihrer Fertigstellung benötigen können. Diese
werden durch den OpenTOSCA Container angestoßen und erzeugen teilweise
Events, die mitunter ihren Ablauf und den Fortschritt repräsentieren. Diese
sind für den Nutzer allerdings nicht sichtbar oder nachverfolgbar.
Durch das im Rahmen dieser Arbeit entwickelte Monitoring System

können die Events, die im Laufe der Prozesse erzeugt werden, graphisch
dargestellt werden, um dem Nutzer Einsicht in aktuelle oder vergangene
Abläufe zu geben. Dies ermöglicht zum einen, den Fortschritt der Prozesse zu
betrachten oder einschätzen zu können, und bietet zum anderen eine
Übersicht mit zusätzlichen Informationen über die Vielzahl möglicherweise
gleichzeitig ablaufender Prozesse.

Die Grenzen von allgemeinen Monitoring Events, wie sie im generischen
Frontend dargestellt werden, zeigen sich hierbei jedoch schnell. Ohne
domänenspezifisches Wissen lassen sich die angezeigten Informationen nur
schlecht zuordnen oder verwerten und bieten dem Nutzer nur eine geringe
Übersicht und eingeschränkte Handlungsmöglichkeiten.

Ähnlich dem implementierten Generischen- und OpenTOSCA-Frontend
lassen sich jedoch aufgrund der REST-API des Backends einfach weitere,
spezialisierte Benutzeroberflächen realisieren. Diese könnten für
verschiedenste Anwendungsfälle eingesetzt werden. Die Benutzeroberfläche
kann dabei entsprechend eine gewünschte, an die Anwendung angepasste
Logik verwenden, sowie eine zugeschnittene Darstellungsform umsetzen.

Auch die beiden realisierten Frontends bieten einige Möglichkeiten zur
Erweiterung. Insbesondere weitere Filterfunktionen oder Einschränkungen,
welche Events dem Nutzer präsentiert werden, sind denkbar. Ein Beispiel
hierfür wäre die Option, Events speziell nach ihrem Datum zu filtern. So
könnten nur Events aus einem benutzerdefinierten Zeitraum angezeigt
werden, oder einzelne Ober- und Untergrenzen für das Datum gesetzt
werden.

37

Literatur

Literatur

[1] Bootstrap. url: http://getbootstrap.com/ (besucht am 30. 04. 2016).

[2] CSS Specification. url: https://www.w3.org/Style/CSS/ (besucht am
30. 04. 2016).

[3] DataTables. url: https : / / www . datatables . net/ (besucht am
30. 04. 2016).

[4] ECMAScript Language. url: http://www.ecmascript.org/ (besucht
am 30. 04. 2016).

[5] Roy Thomas Fielding. „Architectural Styles and the Design of
Network-based Software Architectures“. Dissertation. University of
California, Irvine, 2000.

[6] HTML5 Specification. url: https://www.w3.org/TR/2014/REC-
html5-20141028/ (besucht am 30. 04. 2016).

[7] N. Borenstein N. Freed. Multipurpose Internet Mail Extensions. 1996.
url: http : / / www . ietf . org / rfc / rfc2046 . txt (besucht am
08. 05. 2016).

[8] OpenTOSCA. url: http://opentosca.org/ (besucht am 30. 04. 2016).

[9] L. Masinter R. Fielding T. Berners-Lee. Uniform Resource Identifier.
2005. url: http://www.ietf.org/rfc/rfc3986.txt (besucht am
08. 05. 2016).

[10] TOSCA Spezifikation. Topology and Orchestration Specification for
Cloud Applications Version 1.0. url:
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
(besucht am 30. 04. 2016).

[11] jQuery. url: http://jquery.com/ (besucht am 30. 04. 2016).

39

http://getbootstrap.com/
https://www.w3.org/Style/CSS/
https://www.datatables.net/
http://www.ecmascript.org/
https://www.w3.org/TR/2014/REC-html5-20141028/
https://www.w3.org/TR/2014/REC-html5-20141028/
http://www.ietf.org/rfc/rfc2046.txt
http://opentosca.org/
http://www.ietf.org/rfc/rfc3986.txt
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://jquery.com/

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu
haben. Ich habe keine anderen als die angegebenen
Quellen benutzt und alle wörtlich oder sinngemäß aus
anderen Werken übernommene Aussagen als solche
gekennzeichnet. Weder diese Arbeit noch wesentliche
Teile daraus waren bisher Gegenstand eines anderen
Prüfungsverfahrens. Ich habe diese Arbeit bisher
weder teilweise noch vollständig veröffentlicht. Das
elektronische Exemplar stimmt mit allen eingereichten
Exemplaren überein.

Ort, Datum, Unterschrift

	Einleitung
	Ziel der Bachelorarbeit
	Aufbau der Bachelorarbeit

	Grundlagen
	REST
	TOSCA
	Topology
	Orchestration
	OpenTOSCA

	Ist- und Soll-Zustand
	Anforderungen
	Anforderungen an das generische Frontend
	Anforderungen an das OpenTOSCA Frontend

	Bisheriger Prototyp
	Analyse
	Generisches Frontend
	OpenTOSCA Frontend

	Entwurf
	Generisches Frontend
	OpenTOSCA Frontend

	Implementierung
	Frameworks
	jQuery
	Bootstrap

	Generisches Frontend
	Darstellung
	Technische Umsetzung

	OpenTOSCA Frontend
	Darstellung
	Technische Umsetzung

	Zusammenfassung und Ausblick

