Institut fiir Softwaretechnologie
Universitat Stuttgart

UniversitatsstraBe 38
D-70569 Stuttgart

Bachelorarbeit Nr. 310

Bauhaus-Analysis Driver

Studiengang:

Priifer/in:

Betreuer/in:

Beginn am:

Beendet am:

CR-Nummer:

Andreas Bauer

Informatik

Prof. Dr. rer. nat./Harvard Univ. Erhard
Plédereder

Timm Felden

22. Februar 2016

23. August 2016

D.m

Kurzfassung

Um die Programmanalyse mit Bauhaus zu vereinfachen, habe ich ein Steuerungs-Werkzeug
fir Bauhaus entwickelt. Dieses Werkzeug ermdglicht die automatisierte Ausfithrung von
Bauhauswerkzeugen in Unkenntnis deren Abhéngigkeiten. In dieser Ausarbeitung wird die
Funktionsweise dieses Werkzeuges, sowie seine Realisierung beschrieben, sowie eine Analyse
der fiir ein solches Werkzeug relevanten Eigenschaften von Bauhaus.

Inhaltsverzeichnis

1. Einleitung
1.1. Zielder Arbeit e
1.2. Verwandte Arbeiten
1.3. Anforderungen
1.4. Wasist Bauhaus?
1.5. Alternativen e

2. Analyse
2.1. Anwendungsfalle
2.2. Abhédngigkeiten
2.3. Vorteile eines Steuerungs-Werkzeugs Lo
24. Annahmen
2.5. Voraussetzungen fiir die Ausfihrung

3. Methodik der Umsetzung
3.1. Konfigurierbarkeit
3.2. Automatisierte Analyse
3.3. Wiederholbarkeit
3.4. Préaferenzmechanismus

4. Realisierung
4.1. Architektur.
4.2. Designentscheidungen
4.3. Bedienung des Werkzeugs oL
44. Tests e
4.5. Laufzeit

5. Zusammenfassung und Ausblick
Literaturverzeichnis

A. Vollstandige Konfiguration

ESEEN N

(o]

17
17
20
22
22

25
25
31
37
39
47

49

51

55

1. Einleitung

Bauhaus ist ein Projekt, welches von der Universitat Stuttgart, in Kooperation mit der Uni-
versitat Bremen und der Firma Axivion entwickelt wird. Bauhaus besteht momentan aus 128
Analysewerkzeugen, welche einzeln ausgefithrt werden. Die hohe Anzahl an Werkzeugen, so-
wie die verzweigten Abhangigkeiten zwischen diesen, erschweren die Benutzung von Bauhaus.
Um die Nutzung zu erleichtern, soll ein Steuerungs-Werkzeug entwickelt werden, welches die
Ausfithrung der Werkzeuge automatisiert. In dieser Arbeit wird die Entwicklung eines solchen
Werkzeuges beschrieben.

1.1. Ziel der Arbeit

Das Ziel der Arbeit ist die Entwicklung eines Werkzeuges, welches die Analyse mit Bauhaus-
Werkzeugen steuern kann. Das Werkzeug soll in der Lage sein, die Abhangigkeiten zwischen
Bauhaus-Werkzeugen aufzulosen und es somit einem Anwender ermoglichen, Analysen mit
Bauhaus in Unkenntnis dieser Abhangigkeiten durchzufithren.

Es soll die Nutzung von Bauhaus erleichtern und den Aufwand, den ein Nutzer fiir eine Analyse
aufwanden muss verringern.

Das Steuerungs-Werkzeug muss eine korrekte Ausfithrung erméglichen, sowie einfach zu
Bedienen sein. Zudem sollte es Funktionen bereitstellen, welche einem Anwender die korrekte
Nutzung erleichtern.

1.2. Verwandte Arbeiten

Es existiert zur Zeit ein make basiertes Skript zur Automatisierten Analyse[IST16b]. Dieser
Ansatz kann die Anforderungen an eine Automatisierte Analyse nicht vollstdndig abdecken.
Beispielsweise ist die Ausfithrung von manchen Werkzeugen, wie dem Werkzeug cobra
nicht méglich und die Parametrisierung der Werkzeuge kann nicht einfach verédndert werden.
Um eine Analyse beispielsweise mit verdnderten Parametern zu wiederholen ist make also
ungeeignet. Des weiteren muss der Analysepfad in den Dateinamen kodiert sein, damit die
Analyse ausgefiithrt werden kann.

1. Einleitung

1.3. Anforderungen

Laut Aufgabenstellung muss das im Rahmen dieser Arbeit entwickelte Steuerungs-Werkzeug
folgende Anforderungen erfiillen [16a]:

+ Konfigurierbarkeit das Steuerungs-Werkzeug muss leicht konfiguriert und erweitert
werden konnen. Diese Konfiguration muss es ermoglichen, die Abhéngigkeiten zwischen
Werkzeugen global zu konfigurieren.

« Automatisierte Analyse mit Hilfe des Steuerungs-Werkzeugs muss ein Anwender
Analysen in Unkenntnis der Abhangigkeiten ausfithren kénnen.

+ Wiederholbarkeit ausgefiihrte Analysen miissen vollstandig oder Teilweise wiederholt
werden konnen.

+ Priferenzmechanismus es soll ein Praferenzmechanismus fiir Werkzeuge, die iiber
mehrere Abhangigkeitspfade erreichbar sind geschaffen werden. Des weiteren soll es
moglich sein, die Parametrisierung von Werkzeugen fiir unterschiedliche Pfade unter-
schiedlich zu wiahlen.

1.4. Was ist Bauhaus?

Wie man der Homepage des Bauhausprojekts [16c] entnehmen kann, handelt es sich bei
Bauhaus um eine Software zur Programmanalyse. Wie bereits erwahnt, ist das Projekt eine
Kooperation. Laut der Bauhaus Homepage ist die Verteilung der Aufgaben wie folgt:

Wihrend in Stuttgart vor allem Analysen des Programmverhaltens erforscht
werden, widmet sich Bremen vorrangig den Architektur-bezogenen Themen. Axi-
vion vermarktet die entwickelten Analysewerkzeuge, die fiir den kommerziellen
Einsatz ausreichend ausgereift sind.

[16c]

Genauere Informationen iiber Bauhaus, wie beispielsweise iiber die Schwerpunktthemen oder
tiber vorhandene Funktionalititen, konnen der Bauhaus Homepage [16c], der Bauhaus Demo
Website [16b] oder der Prasentation [pr\IeC {\"a}sent] entnommen werden.

1.5. Alternativen

Eine Alternative zu einem Steuerungs-Werkzeug ist der bereits erwahnte make basierte Ansatz.
Diese Alternative kann jedoch nicht alle Funktionen bereitstellen, die fiir eine korrekte und
einfache Steuerung von Bauhaus benétigt werden.

2. Analyse

2.1. Anwendungsfalle

Hauptséchlich lassen sich zwei Gruppen von Anwendern unterscheiden:
1. Entwickler
2. Reviewer
3. Bauhausentwickler

4. Bauhaus-Systemtest

Entwickler Ein Entwickler nutzt Bauhaus, um den von ihm geschriebenen Quellcode zu
analysieren und anschlieffend zu optimieren. Die Analyse kann entweder sehr spezifisch
geplant sein und darauf ausgerichtet, wenige Kriterien genau zu priifen, oder sie wird eher
breit angelegt, um mdoglichst viele Aspekte abzudecken.

Im ersten Fall wird der Entwickler eine bestimmte Analyse 6fter wiederholen, und zwischen
den Ausfithrungen seinen Code optimieren. Das bedeutet, er muss eine Reihe von Werkzeu-
gen immer wieder in der richtigen Reihenfolge ausfiihren. Dafiir muss der Anwender jedes
Werkzeug einzeln aufrufen. Durch die Teilweise sehr hohe Analysedauer mancher Werkzeuge
muss er oft lange warten, bevor er das nachste Werkzeug starten kann. Das bedeutet, er muss
immer wieder seine Arbeit unterbrechen, um nachzusehen, ob das zuletzt gestartete Werkzeug
bereits beendet ist, um danach das nachste Werkzeug zu starten, weshalb eine solche Analyse
seine sonstige Arbeit blockieren und seinen Durchsatz deutlich verringern wiirde.

Im zweiten Fall wird der Anwender viele verschiedene Werkzeuge ausfithren. Da es momentan
iiber 100 Werkzeuge gibt, die haufig iiber verschiedene Abhangigkeitspfade erreichbar sind,
kann man nicht davon ausgehen, dass der Anwender alle Abhangigkeiten zwischen Werkzeu-
gen kennt, weshalb dieser wéahrend dieses Vorgangs des dfteren die Dokumentation danach
durchsuchen muss. Des weiteren haben die Bauhaus Werkzeuge keine einheitliche Parame-
trisierung, sodass ein Anwender nicht nur die Abhéngigkeiten zwischen den Werkzeugen,
sondern auch die fiir den Aufruf erforderlichen Parameter recherchieren muss.

2. Analyse

Reviewer Ein Reviewer hat das Ziel, ihm vorgelegten Code zu Analysieren, um zu ent-
scheiden, ob beispielsweise eine Software eingekauft werden soll, oder ein Softwareprodukt
so freigegeben werden kann. Dieser Anwendungsfall ist mit dem zweiten, im Abschnitt 2.1
beschriebenen Fall vergleichbar. Der Reviewer wiirde ebenfalls eine breit angelegte Analy-
se starten, bei der er viele verschiedene Werkzeuge ausfithren muss, wobei er stets deren
Abhéngigkeiten und erforderlichen Parameter ermitteln muss.

Bauhaus-Entwickler Ein Bauhausentwickler, der ein neues Werkzeug entwickelt, mochte
dieses im Zusammenhang mit den bereits existierenden Werkzeugen testen. Um die Funktiona-
litat seines Werkzeugs generell zu testen, muss er geeignete Eingabedateien erzeugen, welche
sein Werkzeug zur Analyse bendtigt. Zusatzlich muss er sicherstellen, dass alle moglichen
Abhéngigkeitspfade, iber die sein Werkzeug erreichbar sein soll, auch zu einem Sinnvollen
Ergebnis fithren.

Hierzu muss der Bauhaus-Entwickler zunichst sémtliche Abhéngigkeiten zu seinem Werkzeug
auflosen und danach jedes einzelne Werkzeug auf diesen Abhangigkeitspfaden ausfiithren.

Bauhaus-Systemtest Beim Bauhaus-Systemtest werden alle Werkzeuge getestet. Hierzu
mussen samtliche Abhingigkeiten aufgelost und Pfade gefunden werden, mit denen alle
Werkzeuge abgedeckt werden konnen.

2.2. Abhangigkeiten

Die einzelnen Bauhaus Werkzeuge haben untereinander Abhéangigkeiten, insofern, dass ein
Werkzeug mit den Ergebnissen eines anderen Werkzeuges arbeitet, wodurch letzteres zwangs-
laufig zuerst ausgefithrt werden muss. Betrachtet man diese Abhéngigkeiten global, so lasst
sich daraus ein Abhéngigkeitsgraph konstruieren. Der so generierte Graph enthalt nur direk-
te Abhangigkeiten. Fir eine Analyse ist es jedoch héufig sinnvoll, nicht nur die minimalen
Berechnungen durchzufithren, sondern weiterfithrende Analyseschritte dazwischen einzu-
schieben, weshalb es ratsam ist, einen Abhéngigkeitsgraphen zu betrachten, der neben direkten
auch indirekte Abhangigkeiten enthilt. Haben zwei Werkzeuge a und b die gleiche direkte
Abhangigkeit, konnen also beide die gleiche Eingabe verarbeiten, Werkzeug a kann jedoch
auch das Ergebnis, welches von b direkt, oder iiber beliebig viele andere Werkzeuge erzeugt
wurde verarbeiten, ist a indirekt von b abhéngig, genauso wie von den anderen gegebenenfalls
verwendeten Werkzeugen.

Ein beispielhafter Abhéngigkeitsgraph wurde mir in Form einer . dot Datei bereitgestellt. Siehe
Abbildung 2.1. Dieser Graph ist eine grobe Veranschaulichung der Abhangigkeiten in Bauhaus.
Die vollstandigen Abhéngigkeiten sind der Dokumentation zu entnehmen [IST16a].

10

2.2. Abhangigkeiten

giant
compiles but how to use it?

Java source

iml object: *.iml / *.0

concurrency.config
+ nonconcurrency.config

(obtained over the pta path)

generate_simple_locators generate_pta_locators
(compatible to ecr_tool only) m
P—

w

SICEEDIOICS.

Abbildung 2.1.: Graphische Reprasentation des bereitgestellten Abhangigkeitsgraphen

11

2. Analyse

In dieser Darstellung fehlen einige Knoten. Hier erscheint es so, dass manche Werkzeuge eine
Ausgabedatei erzeugen, andere jedoch direkt mit anderen Werkzeugen verbunden sind, ohne
dass eine Datei dazwischen generiert wird. Diese Falle gibt es bei den dargestellten Werkzeugen
jedoch nicht. Jedes Werkzeug, welches in diesem Graph ausgehende Kanten besitzt, erzeugt eine
Datei als Ausgabe. Einige Werkzeuge erzeugen keine Dateien, sondern stellen eine graphische
Oberflache bereit um ihre Ergebnisse anzuzeigen. Diese Werkzeuge besitzen in dem Graph
keine Ausgehenden Kanten. Es gibt jedoch auch Werkzeuge, die in diesem Graphen keine
ausgehenden Kanten besitzen, aber trotzdem eine Ausgabedatei erzeugen. Dies Bedeutet, dass
in einem vollstindig definierten Abhangigkeitsgraphen fiir Bauhaus nur Kanten zwischen
Werkzeugen und Dateitypen existieren.

Betrachtet man den Vollstindigen Abhangigkeitsgraphen genauer, so kann man folgendes
Feststellen:

Ein Werkzeug kann immer nur eine Datei als Ein- oder Ausgabe verwenden. Es ist in Bauhaus
nicht moéglich ein Werkzeug als Eingabe fiir ein anderes Werkzeug zu benutzen, oder als
Ergebnis eines anderen Werkzeugs zu erzeugen. Da eingehende Kanten in einen Knoten, der
ein Werkzeug reprasentiert eine mogliche Eingabe, und Ausgehende Kanten eine Ausgabe
darstellen, konnen keine Kanten zwischen zwei Werkzeugen vorkommen. Da Dateien keine Ein-
oder Ausgabe erzeugen konnen, sondern lediglich als solche dienen, kann auch keine Kante
zwischen zwei Dateitypen vorkommen. Demzufolge ist der Abhéngigkeitsgraph bipartit.

Da eine Kante entweder Ein- oder Ausgabe darstellt, zeigt sie zwangslaufig in eine Richtung.
Fir eine Eingabe muss eine Datei in ein Werkzeug hineingegeben werden, fiir eine Ausgabe
gibt das Werkzeug die Datei heraus. Daraus folgt, dass der Graph gerichtet ist.

Rein theoretisch ist es keine zwingende Eigenschaft des Abhangigkeitsgraphen keine Zyklen
zu enthalten, da er nicht nur direkte, sondern auch indirekte Abhangigkeiten enthélt. Wiirde
der Graph nur direkte Abhangigkeiten enthalten, so wiren Zyklen ausgeschlossen, da ein
Werkzeug nie ausgefiithrt werden kann bevor es ausgefithrt wird, es kann also nicht direkt von
sich selbst abhdngen. Es spricht jedoch zunéchst nichts dagegen, dass ein Werkzeug seine eigene
Ausgabedatei als Eingabe akzeptiert. Ich gehe trotzdem von der Annahme aus, dass der Graph
azyklisch ist, da es in der Praxis keinen Sinn ergibt, einem Werkzeug seine Eigene Ausgabedatei
als Eingabedatei zu Uibergeben. In diesem Fall steht dem Werkzeug keine neue Information
zur Verfiigung, die bei der ersten Ausfithrung nicht vorhanden war. Ein weiterer Grund dafiir
ist, dass Dateitypen in dem Abhéngigkeitsgraphen den Informationsgehalt darstellen. Durch
weitere Analysen werden immer mehr Informationen gesammelt, welche in die jeweilige
Ausgabedatei geschrieben werden, was bedeutet, dass eine Datei mehr Informationen enthalt,
je weiter ihr Dateityp im Abhangigkeitsgraphen von einer Quelle des Graphen entfernt ist.
Betrachtet man nun einen Fall, indem dem Ergebnis eines Werkzeuges von einem anderen
Werkzeug weitere Informationen hinzugefiigt werden, mit denen das erste Werkzeug nun
ebenfalls neue Erkenntnisse sammeln kann, so macht es keinen Sinn den gleichen Dateityp fiir
die Ausgabe zu benutzen, da dieser fiir den geringeren Informationsgehalt steht. Erzeugt man
hier nun einen weiteren Dateityp, der dem urspriinglichen zwar &hnelt, jedoch verdeutlicht,
dass hier mehr Informationen enthalten sind, kann man das Werkzeug ein zweites Mal mit

12

2.3. Vorteile eines Steuerungs-Werkzeugs

diesem Dateityp als Eingabe und einer veranderten Ausgabe konfigurieren. Nun kann das
gleiche Werkzeug an einer anderen Stelle im Graph eine andere Rolle einnehmen, und damit
auch indirekt seine eigene Ausgabe akzeptieren, jedoch nicht erneut die gleiche Ausgabe
erzeugen, wodurch hier kein Zyklus entsteht.

Zyklen im Graph zu vermeiden ist notwendig um zu gewahrleisten, dass bei gleichem Aufruf
auch die gleichen Werkzeuge ausgefiithrt werden. Ein Zyklus im Graph kann beliebig oft
durchlaufen werden, sodass ein Pfad in dem Abhéngigkeitsgraph nicht eindeutig identifizierbar
ist, weshalb man bei der Ausfithrung entweder eine feste Anzahl an Durchlaufen wiahlen, oder
den Zyklus ignorieren muss. Beides ist auf die oben genannte Weise machbar, ohne den Zyklus
wirklich in den Abhéngigkeitsgraphen einzubauen.

Es ergibt sich also die Annahme, dass es sich bei dem Abhangigkeitsgraphen um einen bi-
partiten, gerichteten, azyklischen Graphen handelt, wobei sich die Annahme der Freiheit
von Zyklen, lediglich auf den fiir die automatische Analyse angepassten Graphen bezieht,
jedoch nicht zwangsldaufig so sein muss. Diese Annahme habe ich aus praktischen Griin-
den getroffen, um eine automatisierte Analyse, bei welcher der Ablauf durch den Aufruf des
Steuerungs-Werkzeugs vollstindig definiert ist, zu ermdoglichen.

Ich betrachte in dieser Arbeit nur sinnvolle, also nicht alle mdglichen Analysepfade. Es ist
Beispielsweise moglich, ein Werkzeug zu verwenden, welches bei jeder Ausfithrung zufillig
irgendeine Analyse ausfiihrt. Ein solches Werkzeug wiare nach den oben genannten Bedingun-
gen nicht zu konfigurieren, es wire jedoch in keinem Anwendungsfall sinnvoll, ein solches
Werkzeug zu benutzen. Ich betrachte solche Werkzeuge, welche bei gleichem Aufruf, das heif3t
bei gleicher Eingabedatei und gleicher Parametrisierung, auch jedes Mal die gleiche Analyse
durchfithren, um selbst Konsistenz zu gewahrleisten.

2.3. Vorteile eines Steuerungs-Werkzeugs

Der grofite Vorteil eines Werkzeugs zu Steuerung von Bauhaus ist die Analyse in Unkenntnis
der Abhangigkeiten. Kennt das Steuerungs-Werkzeug sowohl die Abhangigkeiten zwischen
den Werkzeugen, als auch die nétigen Parameter um ein Werkzeug auszufithren, so muss
ein Anwender nur noch angeben was er Analysieren mochte und das Steuerungs-Werkzeug
tbernimmt die Analyse fiir ihn.

Selbst wenn der Anwender alle Abhéngigkeiten kennt, nimmt ihm das Werkzeug Arbeit ab, da
er fiir jeden Pfad des Abhingigkeitsgraphen, welchen er ausfithren mochte, nur einen Aufruf
benotigt, anstatt fiir jedes Werkzeug einen Aufruf zu benétigen.

Ein weiterer Vorteil den ein solches Werkzeug bietet, ist die Moglichkeit eine Analyse zu
Wiederholen. Ohne so ein Werkzeug ist die Wiederholung einer Analyse genauso aufwendig,
wie die erste Analyse.

13

2. Analyse

Ein Vorteil eines Werkzeuges zur Steuerung gegeniiber dem bereits existierenden Make basier-
ten Ansatz ([IST16b]) ist beispielsweise, dass der gewéhlte Analysepfad nicht in den Dateinamen
kodiert werden muss. Auflerdem ist es mit diesem Ansatz nicht moglich Werkzeuge wie cobra
auszufiihren, die keine Datei generieren, sondern eine graphische Oberflache bereitstellen.

Das Steuerungs-Werkzeug ist nicht auf Bauhauswerkzeuge beschrankt. Man kénnte beispiels-
weise einen Browser als Anzeigewerkzeug konfigurieren, welches .html Dateien Anzeigen
kann oder aus generierten .dot-Dateien mit Hilfe der Anwendung dot eine . pdf-Datei erstel-
len.

2.4. Annahmen

In Kombination mit der Eingabe ist also nicht nur das Werkzeug, sondern auch die ausgefiihrte
Analyse eindeutig identifizierbar. Der Name des Werkzeugs alleine reicht jedoch nicht aus, wie
man an dem Beispiel des Werkzeuges iml2cfg sieht. Wird diesem Werkzeug eine Datei vom Typ
.pta tibergeben, so wird eine Datei von Typ .pcfg erzeugt, bei anderen Eingaben eine vom
Typ .cfg. Eine . pcfg Datei kann von anderen Werkzeugen benutzt werden als eine . cfg Datei.
Diese Variante wird genutzt um einen bestimmten Pfad zu bedingen. Fir die Analysen, welche
mit einer . pcfg Datei weiterfithrend durchgefiithrt werden konnen, ist es notwendig zuerst die
Notwendigen Analysen durchzufithren um eine .pta Datei zu erstellen. Dies ist wichtig um
wiahrend der Ausfithrung stets das richtige Werkzeug zu verwenden. Dies bedeutet ebenfalls,
dass man bei bekannter Eingabe und Namen auf den genauen Aufruf des Werkzeuges schlieflen
kann, was wiederum bedeutet, dass die erzeugte Ausgabe eines Werkzeugs ebenfalls durch
die Eingabe und den Namen definiert ist. Die erzeugte Ausgabe eines Werkzeuges eindeutig
der Eingabe zuzuordnen bedeutet, bei gleicher Eingabe auch die gleiche Ausgabe zu erzeugen.
Dies schrankt die Ausfithrung nicht ein, sondern lediglich die Variation an Dateiendungen, die
man einer Datei mit dem gleichen Informationsgehalt geben kann. In der Praxis ist es einem
Werkzeug oft egal, welche Endung die Datei hat, solange sie die richtigen Informationen enthalt.
Dies erleichtert die Konfiguration, da man jedem Werkzeug einen eindeutigen Ausgabetyp
zuweisen kann, ohne dabei die Funktionalitdt oder die Kompatibilitat zwischen Werkzeugen
zu beeinflussen.

Fiir jedes Werkzeug kann mit dem Parameter -config_dir der Pfad zu einer Werkzeugkonfi-
guration angegeben werden. Dieser Parameter wird in Bauhaus—commandline.adb definiert
und sollte daher in jedem Werkzeug vorhanden sein.

Jedes Werkzeug kann aus der eingegebenen Datei auslesen, mit welchen Parametern zuvor
ausgefithrte Analysen gelaufen sind. Dies kann aus den Tool_Infos von Bauhaus ausgelesen
werden, welche jedes Werkzeug pflegen sollte.

14

2.5. Voraussetzungen fur die Ausfuhrung

2.5. Voraussetzungen fir die Ausflihrung

Um eine korrekte Ausfithrung zu erméglichen, miissen alle Werkzeuge, die verwendet werden
sollen gebaut und ausfithrbar sein. Ausfithrbar bedeutet hier, dass jedes Werkzeug in Unkennt-
nis des genauen Verzeichnisses in dem es liegt, aufgerufen werden kann, so als wiirde man das
Werkzeug tiber eine Konsole starten.

15

3. Methodik der Umsetzung

3.1. Konfigurierbarkeit

Die Konfiguration des Analyse-Werkzeugs muss einerseits die Abhéngigkeiten zwischen den
Werkzeugen und andererseits die Parametrisierung fiir jedes einzelne Werkzeug beinhalten. Um
diese Anforderung der Konfigurierbarkeit des Analyse-Werkzeugs abzudecken, habe ich mich
daftir Entschieden, fiir jedes zu Konfigurierende Werkzeug eine eigene Konfigurationsdatei zu
erstellen. Zusatzlich zu den Werkzeugkonfigurationen gibt es noch eine Basiskonfiguration.

Mit einer Konfigurationsdatei miissen verschiedene Arten von Werkzeugen abgedeckt werden.
Standard Analyse Werkzeuge, Anzeigewerkzeuge und Konfigurationswerkzeuge.

Standard Analyse Werkzeuge sind die haufigste und einfachste Form. Sie bekommen eine
Eingabedatei zur Analyse und generieren eine Ausgabedatei, die gesammelte Informationen
enthélt. Die erzeugten Ausgabedateien konnen von anderen Werkzeugen weiter verwendet
werden.

Anzeigewerkzeuge bekommen ebenfalls eine Eingabedatei, die sie Analysieren, das Ergebnis
der Analyse wird jedoch nicht in eine weitere Analysedatei geschrieben, sondern so aufbereitet,
dass der Anwender diese Informationen sehen kann. Hierzu konnen entweder Dateien in einem
zur Anzeige geeigneten Format erstellt werden, wie Beispielsweise .dot oder .html, oder das
Werkzeug stellt selbst eine graphische Oberflache bereit.

Die dritte Art Werkzeug, die Konfigurationswerkzeuge, erstellen aus der eingegebenen Datei
eine Konfigurationsdatei, die von anderen Tools benutzt wird. Diese Datei wird dann an einen
konfigurierten Ort gespeichert, wo sie von dem zu konfigurierenden Werkzeug genutzt werden
kann.

Abhiéngig von der Art des Werkzeugs, enthélt die Konfigurationsdatei andere Werte.

Fir alle Arten von Werkzeugen enthilt die Konfigurationsdatei den Namen des Werkzeugs,
die konfigurierten Parameter und die méglichen Eingabedateien. Des Weiteren konnen jedem
Werkzeug Préadikate hinzugefiigt werden. Die Bedeutung der Pradikate wird im Abschnitt
3.4 erklart. Der Name des Werkzeugs entspricht dabei dem Befehl um das Werkzeug in einer
Konsole auszufiihren. Es ist auch moglich eine . sh-Datei anzugeben. Die Parameter entspre-
chen den Parametern eines Aufrufs in der Konsole, wobei Ein- und Ausgabedateien durch
Escapesequenzen dargestellt werden, die dann wahrend der Ausfithrung durch die passenden
Dateinamen ersetzt werden. Fiir die moglichen Eingabedateien werden nur die Endungen,

17

3. Methodik der Umsetzung

beginnend mit einem Punkt definiert. Eingabedateien bilden eingehende Kanten im Abhén-
gigkeitsgraphen ab, wobei der Abhangigkeitsgraph fiir den entsprechenden Dateityp einen
Knoten enthélt, von dem dann eine Kante zu dem Konfigurierten Werkzeug fiihrt.

Fir Standard Analyse Tools enthilt die Konfiguration mogliche Ausgabedateien. Wie bei
den Eingabedateien werden fiir die Ausgabedateien lediglich die Endungen angegeben. Es
ist moglich, hier mehrere Werte anzugeben, was jedoch bedeutet, dass aus allen konfigurier-
ten Eingabedateien alle moglichen Ausgabedateien erzeugt werden konnen, abhéngig vom
entsprechenden Aufruf oder von nachfolgenden Werkzeugen.

Ein Beispiel fiir ein Standard Werkzeug wire pta_tool. Der Name ist pta_tool, da das Werk-
zeug so aufgerufen wird. Als mogliche Eingabedateien kénnen beispielsweise .iml und . cfg
konfiguriert werden. Beide Eingaben erzeugen eine Datei vom Typ .pta als Ergebnis. Um
pta_tool auszufithren, gibt man zum Beispiel pta_tool -o bsp.pta bsp.iml in eine Kon-
sole ein, wobei bsp.pta das Ergebnis und bsp.iml die Eingabedatei ist. In der Konfiguration

wiirde fiir die Parameter also folgende Liste stehen: ["-0", "&o", "&i"]. &o steht fiir die
Ausgabe, also in diesem Fall bsp.pta und &i fiir die Eingabe, also bsp.iml.

Hat ein Werkzeug eine Restriktion, in der Art, dass eine bestimmte Eingabe auch eine bestimm-
te Ausgabe erzeugt, wahrend andere Eingaben andere Ausgaben erzeugen, so muss dieses
Werkzeug mehrmals konfiguriert werden.

Dies kann man am Beispiel des Werkzeuges iml2cfg sehen. Erhalt dieses Werkzeug eine Datei
vom Type .pta als Eingabe, so wird eine Datei vom Typ . pcfg generiert, bei anderen Eingaben,
die beispielsweise vom Typ .iml, . cg oder .ecr sein konnen, wird jedoch eine Datei vom Typ
.cfg erzeugt.

Fiir iml2cfg gibe es also zwei verschiedene Konfigurationen: Beide hétten als Namen iml2cfg
da der Aufruf der gleiche bleibt. Aus diesem Grund kann man auch die Parameter gleich
konfigurieren, beispielsweise ["&1", "&0"], oder auch fiir beide Félle unterschiedlich. Bei
den Ein- und Ausgaben wiirden sich die Konfigurationen definitiv unterscheiden. Fiir den
ersten Fall waren als mogliche Eingaben nur . pta konfiguriert und als Ausgaben nur .pcfg,
im zweiten Fall waren .iml, .cg und .ecr als mogliche Eingaben und .cfg als Ausgabe
konfiguriert. Beide Konfigurationen werden wie zwei unterschiedliche Werkzeuge betrachtet
und auch so behandelt.

Konfigurationen fiir Anzeige und Konfigurationswerkzeuge enthalten jeweils einen entspre-
chenden booleschen Wert, der angibt, dass es sich um die jeweilige Art von Werkzeug handelt.
Konfigurationen fiir Standard Analyse Werkzeuge konnen diese Beiden Parameter ebenfalls
enthalten, diese miissen dann aber auf false gesetzt werden.

Fiir Anzeige Werkzeuge konnen ebenfalls Ausgabedateien konfiguriert werden, wie bei Stan-
dard Analyse Tools, hier ist dieser Wert jedoch optional, da ein Anzeige Werkzeug zwar Dateien
generieren kann, es jedoch nicht muss.

Das Werkzeug cobra ist ein Beispiel fiir ein Werkzeug, welches eine graphische Oberflache
bereitstellt und keine Ausgabedatei generiert. Die Konfiguration siahe wie folgt aus: Als Name

18

3.1. Konfigurierbarkeit

ware cobra konfiguriert. Als Eingaben konnten Beispielsweise . iml, . tt und . cfg konfiguriert
sein, die Liste fiir die Ausgabedateien ware leer. Als Parameter reicht folgende Liste: ["&i"],
denn cobra benétigt nur eine Eingabedatei. Um kenntlich zu machen, dass es sich um ein
Werkzeug zur Anzeige handelt, wiirde der Wert isToolForDisplay auf true gesetzt werden.

Konfigurationen fiir Konfigurationswerkzeuge enthalten zusétzlich zu den bereits genannten
Werten eine Liste an Werkzeugen, fiir welche sie eine Konfiguration bereitstellen. Zudem wird
bei dieser Art Werkzeug der Pfad fiir die generierte Konfigurationsdatei als Ziel angegeben
anstatt nur die Dateiendung.

Als Beispiel hier das Werkzeug symta: Als Name des Werkzeuges wird hier symta.sh ange-
geben, da es sich hierbei um eine Java Applikation handelt, die als . jar-Datei zur Verfii-
gung steht. . jar-Dateien werden Momentan nicht unterstiitzt, weshalb ich hier den Aufruf
java -jar symta.jar in die Datei symta.sh gekapselt habe um das Werkzeug ausfithren zu
konnen. symta erwartet zwei Dateien als Eingabe: Eine Datei vom Typ . func_name, welche die
Ausgabe des Werkzeuges function_names darstellt und eine . csv-Datei. Momentan wird nur
eine Eingabedatei unterstiitzt, weshalb hier die . csv-Datei in der Konfiguration fest angegeben
werden muss. Die Parameter fiir symta konnten beispielsweise ["&1", "bsp.symta.csv"]

lauten und als Zieldatei wire Concurrency.config angegeben. Die angegebene Zieldatei wird
von dem Werkzeug in diesem Fall zwar nicht verwendet, es ist jedoch nicht vorgesehen fiir
Konfigurationswerkzeuge keine Zieldatei anzugeben. Der Eingabetyp wére [". func_name"]

und da es sich um ein Konfigurationswerkzeug handelt, muss bei der Konfiguration der Wert
fiir isToolForConfig auf true gesetzt werden.

Fiir jedes Werkzeug, egal von welchem Typ, kann zusétzlich eine Liste von Pradikaten angege-
ben werden. Die Bedeutung dieser Liste wird im Abschnitt 3.4 naher erlautert.

Die Basiskonfiguration enthélt lediglich eine Liste an Pfaden zu den einzelnen Konfigurati-
onsdateien, sowie einen Quelldateityp. Die Angabe des Quelldateityps erleichtert den Aufbau
des Abhéngigkeitsgraphen, da man diesen nicht erst ermitteln muss. Durch die Konfiguration
der Pfade zu Konfigurationsdateien kann der Anwender mit geringem Aufwand verschiedene
Konfigurationen, fiir verschiedene Sets von Werkzeugen pflegen, ohne jedes mal alle Dateien
austauschen zu missen.

Fir jedes Werkzeug kann eigener Code in der Konfiguration angegeben werden, welcher
nach der Ausfilhrung des Werkzeuges ausgefithrt wird. Hierfiir wird der Pfad zu einer
.class-Datei in der Konfiguration eingetragen. Beispielsweise fiir das Werkzeug symta
mit dem Konfigurationseintrag /home/baueras/resources/AfterSymta.class fiir den Wert
afterExecutionClass.

19

3. Methodik der Umsetzung

3.2. Automatisierte Analyse

Eine Analyse besteht aus zwei Teilen: dem Suchen des passenden Pfades im Abhangigkeitsgra-
phen und der Ausfithrung der Werkzeuge.

Da fiir die korrekte Funktionalitiat des Analyse-Werkzeuges vorausgesetzt wird, dass alle
Werkzeuge gebaut und auch Verfiigbar sind, miissen die entsprechenden Werkzeuge nur
mit den jeweils konfigurierten Parametern Aufgerufen werden. Durch die Annahme, dass
ein Pfad im Abhangigkeitsgraphen keine Verzweigung enthilt, und somit auch nie zwei
Werkzeuge parallel ausgefithrt werden konnen, da jedes Werkzeug genau das Ergebnis eines
vorangegangenen Werkzeuges benétigt, habe ich eine rein sequentielle Ausfithrung gewahlt.
Fir jedes Zwischenergebnis wird dabei eine Temporare Datei erstellt.

Den richtigen Pfad fiir eine Analyse zu berechnen, ist hier der wesentlich hohere Aufwand. Un-
abhangig von dem Anwendungsfall, muss der Pfad immer mit dem Dateityp der Eingabedatei
beginnen und die Zieldatei zumindest enthalten. Aulerdem muss der Pfad zusammenhéngend
sein und darf keine Elemente mehr als einmal enthalten, oder Verzweigungen beinhalten. Fiir
den einfachsten Anwendungsfall hat der Pfad genau diese Eigenschaften, mit der Spezialisie-
rung, dass die Zieldatei das Ende des Pfades darstellt. Er beginnt mit der Eingabe- und endet mit
der Zieldatei. Ein so definierter Pfad ist in dem Graphen nicht eindeutig, also muss eine weitere
Einschrankung gew&hlt werden. Aus diesem Grund habe ich hier die Annahme getroffen, dass
eine so gestartete Analyse nur das Ziel hat eine Datei vom Typ der eingegebenen Zieldatei zu
erstellen, ohne dass dabei mehr Analysen als notwendig ausgefithrt werden. Um diesen Fall
abzubilden, wird bei nicht naher spezifizierten Eingabe lediglich der kiirzeste Pfad zwischen
der Eingabe- und der Zieldatei ermittelt und ausgefiithrt. Zur Ermittlung des kiirzesten Pfades
benutze ich eine Breitensuche, bei der Vorgangerknoten gespeichert werden. Dies ist moglich,
da der Abhangigkeitsgraph gerichtet und azyklisch ist.

Ein derart einfacher Aufruf schliefit einige Werkzeuge zwangslaufig aus, da diese keine Ausga-
bedateien generieren, sondern eine graphische Oberflache bereitstellen. Solche Werkzeuge
miissen in einem Aufruf explizit genannt werden, um sie bei einer Analyse benutzen zu kénnen.
Die explizite Nennung eines oder mehrerer Werkzeuge, beschreibt einen genaueren Pfad fiir
eine Analyse. Ein solcher Aufruf kann den Pfad einfach nur um ein entsprechendes Anzeige-
werkzeug erweitern, er kann allerdings auch einen langeren weg zwischen Ein- und Ausgabe
definieren. Zur Berechnung eines solchen Pfades, miissen die eingegebenen Werkzeuge und
die Zieldatei zunéchst in eine Sinnvolle Reihenfolge gebracht werden. Hierzu wird zunachst
eine Liste bestehend aus der Zieldatei und jedem eingegebenen Werkzeug erstellt und jedem
Element dieser Liste eine Zahl a; zugeordnet, die angibt, wie viele der eingegebenen Werkzeuge
im Abhéngigkeitsgraph von diesem Werkzeug aus erreicht werden konnen. Dies wird mittels
Breitensuche ermittelt. Diese Zahlen haben folgende Eigenschaften:

+0<i1<n

e 0<a;<n

20

3.2. Automatisierte Analyse

- Fir alle a;, a; mit ¢ # j gilt a; # a;

n ist hier die Anzahl der explizit eingegebenen Werkzeuge. Ist eine dieser Eigenschaften nicht
erfiillt, ist die Eingabe ungiiltig, da die Elemente der Liste nicht auf dem gleichen Pfad liegen.
Die erste Eigenschaft bedeutet, dass jedem Element eine eigene Zahl zugeordnet wird. Die zwei-
te Eigenschaft ist immer erfiillt, da eines der Elemente nicht mehr Nachfolger haben kann, als
Elemente existieren, die ein Nachfolger sein konnten. Die dritte Eigenschaft stellt sicher, dass
alle eingegebenen Elemente auf dem gleichen Pfad liegen, da in einem Pfad nie zwei Elemente
die gleiche Anzahl an Nachfolgern besitzen konnen. Sortiert man diese Liste nun absteigend
nach den a;, erhalt man die korrekte Reihenfolge fiir die Ausfihrung. Zwischen den Werkzeu-
gen konnen durchaus noch weitere Werkzeuge liegen, die nicht explizit eingegeben wurden.
Aus diesem Grund wird nun jeweils der kiirzeste Pfad zwischen zwei aufeinanderfolgenden
Elementen ermittelt. Anschlieflend werden diese Pfade in der entsprechenden Reihenfolge an-
einandergereiht, sodass ein valider Pfad entsteht. Die Zieldatei kann dabei an beliebiger Stelle
im Pfad stehen. Falls ein Anzeigewerkzeug angegeben wurde, muss es am Ende stehen, da es
keine Ausgabedatei erzeugt und somit keine weiterfithrende Analyse ermdglicht. Dabei erhalt
dieses Werkzeug nicht zwangslaufig die letzte erzeugte Datei, sondern die letztmogliche Datei,
die verarbeitet werden kann. Dies ermdglicht die Durchfithrung von Analysen, deren Ergebnis
nicht angezeigt werden kann, bei gleichzeitiger Anzeige eines Zwischenergebnisses.

Eine weitere Moglichkeit ist die Nutzung eines konfigurierten Praferenzmechanismus. Diese
Variante wir im Abschnitt 3.4 genauer beschrieben.

Die beiden Moglichkeiten zur genaueren Spezifikation des gewiinschten Pfades sind kombi-
nierbar. Werden beide zusammen verwendet, so wird zwischen den angegebenen Werkzeugen
der durch den Praferenzmechanismus beschriebene Pfad gewahlt, anstatt den kiirzesten zu
nehmen.

Samtliche Varianten dieser Berechnung werden nicht auf dem vollstdndigen Abhangigkeits-
graphen ausgefiihrt, sondern auf dem Subgraph, der von der eingegebenen Quelldatei aus
erreichbar ist. Jeder valide Pfad geht dadurch von der Wurzel dieses Subgraphen aus, sodass
keine unerreichbaren Werkzeuge beriicksichtigt werden. Ist ein Werkzeug oder die Zieldatei
nicht in diesem Subgraph enthalten, so ist eine solche Analyse nicht moglich, beziehungsweise
nicht vorgesehen.

Bei der Automatisierten Analyse findet eine Linearisierung der Abhéngigkeitspfade statt,
sodass kein Ausfithrungspfad eine Verzweigung besitzt. Dies bedeutet insbesondere, dass alle
Werkzeuge nur eine einzige Datei als Eingabe erhalten. Dies bildet die Realitat nicht vollstandig
ab, da manche Werkzeuge, wie beispielsweise iml2cfg mehrere Dateien als Eingabe akzeptie-
ren. Dies ermoglicht parallele Ausfithrungen von Werkzeugen. Zum Beispiel konnen ecr_tool
und das_tool beide Ausgefithrt werden und die Ergebnisse gemeinsam an iml2cfg iibergeben
werden. Diese Art von Analysen konnte ich aus Zeitgriinden nicht mehr beriicksichtigen, sie
konnten aber in einer Zukiinftigen Arbeit behandelt werden.

21

3. Methodik der Umsetzung

3.3. Wiederholbarkeit

Eine Analyse zu wiederholen bedeutet, die gleichen Werkzeuge mit der gleichen Eingabe ein
weiteres Mal auszufithren. Um dies zu erméglichen, muss der genaue Ablauf einer Analyse
gespeichert werden, sodass die selben Informationen bei einem zweiten Aufruf zur Verfiigung
stehen. Bei der nichsten Ausfithrung wird diese Information dann eingelesen und erneut
Ausgefiihrt.

Es ist wichtig bei der Wiederholung sé@mtliche Informationen aus dem urspriinglichen Aufruf
zu Verfiigung zu haben, sodass dieser genau nachvollzogen werden kann, deshalb habe ich
mich dafiir entschieden, den genauen Aufruf mit samtlichen Parametern als Identifikator fiir
die gespeicherte Ausfithrung zu verwenden. Des weiteren wird eine Liste von verwendeten
Dateitypen gespeichert, wobei das erste Listenelement dem Typ der Eingabedatei entspricht
und das letzte Element dem Typ der Zieldatei.

Auflerdem werden alle Ausgefithrten Werkzeuge mit den Verwendeten Parametern gespei-
chert, wobei die Ein- und Ausgabedateien durch Escapesequenzen ersetzt werden, die bei der
Ausfithrung dann durch sinnvolle Dateinamen ersetzt werden konnen. Ein Aufruf wird in
genau einer Textdatei gespeichert, wodurch diese durch den Anwender angepasst werden
kann. Beim Einlesen der gespeicherten Datei wird tiberpriift, ob die verwendeten Dateiformate
zu den jeweiligen Werkzeugen passen, bevor diese Ausgefithrt werden. Ansonsten wird die
Konfiguration bei der Wiederholung nicht beriicksichtigt, sodass hier die Parametrisierung von
Werkzeugen einmalig verdndert werden kann, ohne die Konfiguration anpassen zu miissen.
Des weiteren kann so ein Werkzeug ersetzt, entfernt, oder ein anderes eingefiigt werden.

Die Wiederholung kann explizit Ausgefiihrt werden, wird jedoch auch implizit genutzt, wenn
der Aufruf mit dem Identifikator des letzten Aufrufs ibereinstimmt und es nicht explizit
gewlnscht ist keine Wiederholung durchzufithren. Die Implizite Wiederholung wird immer
vollstandig ausgefithrt und unterscheidet sich daher nicht wesentlich vom urspriinglichen
Aufruf. Wird die Wiederholung jedoch explizit angestoflen, so kann der Anwender wihlen,
ob er die Analyse vollstandig, oder nur teilweise wiederholen will. Hierzu werden die bei der
letzten Ausfithrung verwendeten Dateitypen ausgegeben, sodass der Anwender wéhlen kann,
welchen Teil er davon wiederholen will.

3.4. Praferenzmechanismus

Der Praferenzmechanismus dient dazu, aus mehreren moéglichen Pfaden einen bestimmten
auszuwahlen, ohne diesen bei jeder Ausfithrung explizit angeben zu miissen. Um dies zu
ermoglichen, habe ich die Konfiguration von Pradikaten, die den entsprechenden Werkzeu-
gen zugeordnet werden konnen, hinzugefiigt. Diese Pradikate werden in der Konfiguration
angegeben, wobei ein Werkzeug mehrere Pradikate haben kann. Beim Aufruf wird dann ein
gewiinschtes Pradikat angegeben, und danach der entsprechende Pfad ermittelt. Hierbei wird

22

3.4. Praferenzmechanismus

vom eingegebenen Dateityp aus dem Pfad, der durch das eingegebene Pradikat beschrieben ist,
gefolgt, solange die Zieldatei noch erreichbar ist.

Der durch Préadikate markierte Pfad kann Werkzeuge enthalten, denen ein anderes oder gar kein
Pradikat zugeordnet ist, weshalb zwischen zwei markierten Werkzeugen immer der kiirzeste
Pfad ermittelt wird. Um das nachstgelegene Werkzeug mit dem definierten Pradikat zu finden,
wird eine Breitensuche ausgefiihrt, bei der ein Pfad nicht weiter verfolgt wird, wenn bereits ein
Werkzeug mit dem Definierten Pradikat in diesem Pfad gefunden wurde. So erhilt man alle vom
momentanen Knoten direkt erreichbaren Werkzeuge mit dem Pradikat. Wird in einem Schritt
mehr als ein Werkzeug gefunden, so wird, mit der gleichen Methode wie im Abschnitt 3.2
fiir explizit eingegebene Werkzeuge beschrieben, die Reihenfolge der gefundenen Werkzeuge
ermittelt. Es muss unter den gefundenen Werkzeugen immer genau ein erstes geben, da ein
Pradikat genau einen Pfad markieren soll. Gibt es mehr als ein erstes Werkzeug, so wurden
mehrere parallele Pfade mit dem gleichen Pradikat markiert, wodurch das Pradikat nicht mehr
genau einem Pfad zugeordnet werden kann und deshalb keine eindeutige Ausfithrung mehr
zuldsst. Eine solche Konfiguration ist also ungiiltig. Bei korrekter Konfiguration wird das
gefundene erste Werkzeug nun genutzt, um von dort aus das nichste mit dem entsprechenden
Pradikat zu suchen.

Es kann immer nur ein gefundenes Werkzeug zum Pfad direkt hinzugefiigt werden, da nicht
gewihrleistet ist, dass das nachste Werkzeug im durch das Pradikat markierten Pfad von dem
momentan als Ausgangspunkt benutzten Werkzeug direkt erreichbar ist.

Der Pfad ist vollstandig, wenn entweder die Zieldatei das Ergebnis eines mit dem Pradikat
markierten Werkzeuges ist, oder kein Pfad vom nachsten gefundenen Werkzeug zu dem
Zieldateityp existiert.

Dies wird am Beispiel in Abbildung 3.1 deutlich.

Der markierte Pfad sei abcde f und die Ausgabe von Werkzeug h die Zieldatei. Hier sind bis
auf c alle Knoten von a aus erreichbar, sodass die Reihenfolge ermittelt werden muss. Das
Ergebnis hiervon ist nun b als direktester Nachfolger as. Hier sieht man nun, dass das vorherige
Ergebnis nicht weiter benutzt werden kann, da es c nicht enthélt, und c hier der direkteste
Nachfolger bs ist. Auf diese Weise wird der Pfad nun bis d verfolgt. Nun ware der nachste
Knoten e, es fiihrt jedoch kein Pfad von e zu h, sodass der Pfad nun noch um den kiirzesten
Pfad von e zu h erginzt wird und darauf das Ergebnis abedgh lautet.

23

3. Methodik der Umsetzung

Abbildung 3.1.: Beispiel fur die Pfadsuche mit Pradikat

24

4. Realisierung

In diesem Kapitel ist die Implementierung des Steuerungs-Werkzeugs beschrieben. Die Um-
setzung des Steuerungs-Werkzeuges erfolgte in Java. Fiir das Einlesen und Parsen der JSON
Dateien habe ich das Paket org. json (Siehe [16d]) verwendet.

4.1. Architektur

Das Werkzeug ist in fiinf Pakete unterteilt:
« graph
« executionorder
« toolexecution
+ settings
« main
Im Paket main befindet sich lediglich die Klasse Main, welche den Programmablauf steuert.

Im Paket settings befindet sich samtliche Logik zum einlesen und verwerten der Konfigurati-
on.

Das Paket executionorder enthilt die Logik zum einlesen und erstellen der Datei
LastExecutionOrder. txt.

Samtliche Logik zum Aufbau des Abhédngigkeitsgraphen und zur Suche auf diesem, sowie
Klassen zur Reprasentation von Werkzeugen und Dateien befinden sich im Paket graph
zusammen mit der Logik zum erstellen einer .dot Datei.

Im Paket toolexecution befindet sich die Logik um Werkzeuge auszufiihren.

25

4. Realisierung

4.1.1. Programmablauf

Beim Aufruf des Werkzeugs miissen zunichst drei verschiedene Ausfithrungsarten beriicksich-
tigt werden:

1. Start einer Analyse
2. Wiederholung einer Analyse

3. Hilfsfunktion zu Unterstiitzung des Anwenders

Zu Beginn einer Ausfithrung wird zunachst gepriift, ob die Datei LastExecutionOrder.txt
existiert und falls ja wird diese Eingelesen und der Identifikator in der ersten Zeile mit den
tibergebenen Parametern verglichen. Stimmen die Parameter mit dem Identifikator tiberein, so
wird eine implizite Wiederholung gestartet. Ist dies nicht der Fall, oder ist der Parameter - f
beziehungsweise - - force-new gesetzt, so wird eine neue Analyse gestartet.

Start einer Analyse Wird eine Analyse gestartet, so wird zunachst die Konfiguration ein-
gelesen und daraus der Abhingigkeitsgraph aufgebaut. Anschlieend wird in diesem der
Pfad zur Ausfithrung, wie im Abschnitt 4.1.2 beschrieben, gesucht. Existiert fiir eines der im
gefundenen Pfad enthaltenen Werkzeuge eine Konfigurationswerkzeug, welches fiir dieses
eine Konfiguration erzeugt, so wird ein Pfad von der Eingabedatei zu diesem Konfigurations-
werkzeug gesucht und ausgefiihrt. Ist das Konfigurationswerkzeug nicht erreichbar, wird die
Ausfiithrung ohne dieses Werkzeug fortgesetzt. Wurde ein giiltiger Pfad gefunden und fiir jedes
Werkzeug falls moglich eine Konfiguration erstellt, werden die darin enthaltenen Werkzeuge
sequentiell ausgefiihrt. Der gefundene Pfad wird wéahrend der Ausfithrung, wie in Abschnitt
4.2.4 beschrieben, in die Datei LastExecutionOrder.txt gespeichert.

Wie im Abschnitt 3.2 erwahnt, konnen derzeit nicht zwei Dateien zusammen an ein Werkzeug
iibergeben werden. Wire dies moglich, konnte es parallele Pfade geben, die in einem Werkzeug
mit zwei Eingabedateien wieder vereinigt werden. Ohne diese Variante, ist eine parallele Aus-
fithrung von Werkzeugen nicht moglich, weshalb momentan nur eine sequentielle Ausfithrung
stattfindet.

Wiederholung einer Analyse Es gibt drei Moglichkeiten, eine Wiederholung der letzten
Analyse auszufiihren:

1. Implizit
2. Explizit vollstandig

3. Explizit teilweise

26

4.1. Architektur

Eine implizite Wiederholung wird ausgefiihrt, wenn die gleichen Parameter beim Start iiber-
geben werden, wie bei der letzten Analyse. Der Parameter - f beziehungsweise - - force-new
wird dabei nicht beriicksichtigt. Wird dieser Parameter angegeben, so wird keine implizite
Wiederholung gestartet.

Zu Beginn einer impliziten oder einer vollstdndigen expliziten Wiederholung wird die Datei
LastExecutionOrder. txt eingelesen und aus deren Inhalt die ausgefiithrte Analyse ermittelt.
Anschlieffend wird die Konfiguration eingelesen, um sicherstellen zu kénnen, dass die eingele-
senen Werkzeuge zu den Dateiendungen passen. Die Parameter werden nicht tiberpriift, da
hier Anderungen moglich sein sollen. Wurden keine Fehler in der Datei festgestellt, so werden
die Werkzeuge mit den eingelesenen Parametern ausgefiihrt.

Bei einer teilweisen Wiederholung wird der Anwender nach dem Einlesen der gespeicherten
Analyse gefragt, welchen Teil davon er wiederholen mochte. Hierzu wird dem Anwender die
Liste an Dateiendungen jeweils mit einem Index versehen angezeigt, sodass dieser nun Wéhlen
kann, wo die Analyse starten und enden soll. Nun gibt der Anwender zwei Zahlen ein und
wenn diese sinnvoll sind, das heif3t die Zahlen befinden zwischen 0 und dem hochsten Index
und der Start-Index ist kleiner als der Ziel-Index, so wird dieser Teil der Analyse ausgefiihrt.

Bei dieser Auswahl werden Anzeigewerkzeuge noch nicht beriicksichtigt. Wurde bei der
vorherigen Analyse ein solches Werkzeug ausgefiihrt, so wird der Anwender gefragt, ob er
dieses ebenfalls ausfiithren will.

Hilfsfunktionen Dem Anwender stehen verschiedene Hilfsfunktionen zur Verfiigung, die
ihm die Bedienung des Werkzeugs erleichtern sollen:

« Ausgabe aller méglichen Eingabeparameter
« Erstellen einer .dot Datei aus dem konfigurierten Abhingigkeitsgraphen
« Ausgabe aller Pradikate

Uber den Parameter -h beziehungsweise - -help wird die Anzeige aller moglichen Parameter
gestartet. Zu jedem Parameter wird eine kurze Beschreibung angezeigt, wozu dieser dient und
ob nach diesem Parameter noch eine oder mehrere Eingaben erwartet werden.

Das erstellen einer .dot Datei wird iiber den Parameter - -dot gestartet. Nach diesem Parameter
muss der Name der zu erstellenden Datei angegeben werden. Diese Datei enthalt sowohl den
Aufbau des Abhangigkeitsgraphen, als auch die Pradikate, die fiir ein Werkzeug angegeben
sind. Der durch diese Datei dargestellte Graph enthilt fiir jede Konfiguration einen eigenen
Knoten, sodass Werkzeuge hier, wie auch in der Konfiguration, mehrmals vorkommen kénnen.
In Werkzeugnamen, die einen . enthalten, wird dieser durch _ ersetzt, um korrekte .dot
Syntax zu gewahrleisten.

Wird der Parameter - -show-predicates angegeben, so wird eine Liste aller konfigurierten
Pradikate angezeigt, ohne Informationen iiber die dazugehorigen Werkzeuge.

27

4. Realisierung

Ich habe diese Funktionen eingebaut, um es einem Anwender zu erméglichen, Analysen
durchzufithren und den vollen Umfang dieses Steuerungs-Werkzeuges zu nutzen, ohne dass er
zusatzliche Informationen benétigt.

4.1.2. Pfadsuche

Grundlage der Pfadsuche in dieser Anwendung ist die Breitensuche. Eine Breitensuche kann
hier nur auf Grund der giinstigen Eigenschaften des Abhangigkeitsgraphen, im speziellen,
dass es sich um einen azyklischen, gerichteten Graphen handelt, verwendet werden.

Je nach Aufruf miissen zwei verschiedene Falle beriicksichtigt werden:

1. Einfacher Aufruf

2. Angegebenes Pradikat und explizite Werkzeugangabe

Einfacher Aufruf Bei einem Einfachen Aufruf geniigt eine einzelne Breitensuche. Hierzu
wird ausgehend vom Dateityp der Eingabedatei eine Breitensuche ausgefiihrt, bei der zu jedem
Knoten der Vorganger gespeichert wird, bis der Dateityp der Zieldatei erreicht ist, oder der
von dem Eingabedateityp erreichbare Teil des Abhéngigkeitsgraphen vollstandig durchsucht
wurde. War die Suche erfolgreich, so wurde der kiirzeste Pfad von der Eingabe- zu Zieldatei
ermittelt.

Ein Beispiel fiir einen Einfachen Aufruf wére -s bsp.iml -t bsp.rfg, also bsp.iml als Ein-
gabe und bsp. rfg als Zieldatei. Hier wird nun der kiirzeste Pfad zwischen .iml und . rfg be-
rechnet, welcher lediglich das Werkzeug im12rfg enthélt. Es werden hier also keine Zwischen-
ergebnisse erzeugt. Der einzige Werkzeugaufruf lautet nun iml2rfg bsp.iml bsp.rfg.

Pradikat und Werkzeugangabe Es ist moglich, nur eine der beiden Eingaben zu machen,
also eine leere Menge an angegebenen Werkzeugen, oder eine leeres Pradikat zu benutzen.
Wurden Werkzeuge explizit angegeben, so miissen diese zunichst, wie im Abschnitt 3.2
angegeben, in die richtige Reihenfolge gebracht werden.

Nachdem die Eingabedatei, die Ausgabedatei und samtliche Werkzeuge in die richtige Reihen-
folge gebracht wurden, wird nun schrittweise, der durch das angegebene Pradikat markierte
Pfad, zwischen den einzelnen Elementen ermittelt und anschlieffend alle gefundenen Pfade
aneinandergehidngt, um einen Pfad fiir die Ausfithrung zu erhalten. Wurde kein Préadikat
angegeben, so wird stattdessen der kiirzeste Pfad ermittelt.

Der durch ein Priadikat markierte Pfad wird wie im Abschnitt 3.4 beschrieben ermittelt.

Da es moglich ist, ein Werkzeug zweimal fiir unterschiedliche Eingaben zu konfigurieren,
muss dies zunachst fiir jedes Werkzeug geprift werden. Falls dies fiir eines der eingegebenen
Werkzeuge zutrifft, so wird diejenige Konfiguration genutzt, die von der Eingabedatei erreichbar

28

4.1. Architektur

/ \

Al A2
Bl B2

\C D
\/

2

Abbildung 4.1.: Beispiel mit 2 verschiedenen Konfigurationen pro Werkzeug

ist und von deren Ausgabe aus der Zieldateityp erreichbar ist. Es wird hier nicht gepriift,
ob mehrere Konfigurationen moéglicherweise zum Ziel fithren. Stattdessen wird die erste
zutreffende genutzt. Um diese Unterscheidung sinnvoller umzusetzen, hatte ich nicht mehr
geniigend Zeit. Es wire an dieser Stelle wiinschenswert, diejenige Konfiguration zu wéhlen,
welche im Zusammenhang mit den iibrigen Werkzeugen und dem eingegebenen Pradikat am
sinnvollsten erscheint, insofern dass moglichst alle Werkzeuge erreichbar sein sollten und der
durch das Pradikat markierte Pfad moglichst lange verfolgt werden sollte.

Nur zu priifen, ob alle nachfolgenden Werkzeuge und der Zieldateityp von einer der Konfigu-
rationen aus erreichbar sind, geniigt jedoch nicht. Es muss zusétzlich gepriift werden, ob diese
auf dem selben Pfad liegen, wie das Beispiel in Abbildung 4.1 zeigt.

1 ist hier die Eingabedatei und 2 die Zieldatei. Es wurden hier die Werkzeuge A und B explizit
angegeben. B1 und B2 sind Konfigurationen fiir B, A1 und A2 sind Konfigurationen fur A.
Betrachtet man nun die Konfigurationen fiir A so stellt man fest, dass sowohl das Werkzeug B
als auch die Zieldatei 2 von beiden Konfigurationen erreichbar ist, jedoch nur von Konfiguration
Al aus ein Pfad zu 2 fiihrt, der auch B enthalt. Dies zeigt, dass stets der vollstandige Pfad
beriicksichtigt werden muss.

Um dem durch ein Pradikat markierten Pfad moglichst lange zu folgen, miisste jeder mogli-
che Pfad tiber unterschiedliche Konfigurationen fiir eingegebene Werkzeuge ermittelt und
anschlieffend derjenige genutzt werden, welcher die grof3te Anzahlt an Werkzeugen mit dem
angegebenen Pradikat enthalt.

29

4. Realisierung

Ein Beispiel fiir einen solchen Aufruf wire -s bsp.iml -t bsp.rfg -p fast using-tools
iml2cgq.

Das Pradikat fast markiert in diesem Beispiel das Werkzeug ecr_tool. Die eingegebenen
Werkzeuge werden sortiert, sodass sich die Reihenfolge iml2cg, . rfg ergibt.

Nun wird der Pfad mit Priadikat fast zwischen .iml und iml2cg ermittelt. Auf diesem Pfad
liegt das Werkzeug ecr_tool, das .iml als Eingabe akzeptiert und dessen Ausgabe .ecr von
iml2cg verarbeitet werden kann.

Danach wird der Pfad von iml2cg nach . rfg ermittelt. Auf diesem Pfad liegen die Werkzeuge
iml2cfg und iml2rfg

Der gefundene Pfad sieht nun folgendermaflen aus:
.iml — ecr_tool — .ecr — iml2cg — .cg — iml2cfg — .cfg — iml2rfg — .rfg.

Es werden also Zwischenergebnisse vom Typ .ecr, .cg und . cfg erzeugt.
Nun werden folgende Werkzeugaufrufe getatigt:

ecr_tool -iml .BAD/temp.ecr bsp.iml
iml2cg .BAD/temp.ecr .BAD/temp.cg
iml2cfg .BAD/temp.cg .BAD/temp.cfg
iml2rfg .BAD/temp.cfg bsp.rfg

4.1.3. Ordnerstruktur

Das Analyse-Werkzeug erwartet eine Bestimmte Ordnerstruktur. Die Ordnerstruktur sieht so
aus:

« .BAD - In diesem Ordner werden Zwischenergebnisse temporar gespeichert

« BADlog - Hier liegen erstellte Log Dateien. Der Name einer Log Datei besteht aus dem
Zeitstempel des Starts der Ausfiihrung gefolgt von dem Namen der Eingabedatei. Die
von einem Werkzeug erzeugten Ausgaben werden wahrend der Ausfithrung in eine
solche Datei geschrieben, zusammen mit Infomeldungen iiber den Aufruf der einzelnen
Werkzeuge

« resources - Hier ist die Basisdatei gespeichert, sowie eventuell Konfigurationen, die von
Werkzeugen benoétigt werden.

> BAD.jar - Die ausfiihrbare Jar Datei, als die das Werkzeug bereitgestellt wird

> LastExecutionOrder.txt - In dieser Textdatei wird die letzte Ausfithrung gespeichert

30

4.2. Designentscheidungen

Die Ordner .BAD und BADlog werden bei der ersten Ausfithrung automatisch erzeugt. Der
Ordner resources muss fiir eine erfolgreiche Ausfithrung vorhanden sein, da er die Basiskon-
figuration erhilt. Ist diese Konfiguration oder der Ordner bei der ersten Ausfithrung nicht vor-
handen, so wird der Ordner angelegt und eine leere Settings. json Datei an der Stelle erstellt,
an der sie von dem Steuerungs-Werkzeug erwartet wird. Die Datei LastExecutionOrder. txt
wird bei jeder Ausfithrung, mit Ausnahme von Wiederholungen, erzeugt.

4.2. Designentscheidungen

In diesem Abschnitt werden sdmtliche Designentscheidungen, welche ich bei der Entwicklung
des Steuerungs-Werkzeugs getroffen habe beschrieben und begriindet.

4.2.1. Factory Pattern

Alle Klassen sind entweder Singeltons, oder ihre Instanzen werden von einer Factory-Klasse
erstellt. Die erstellten Instanzen werden mit einem eindeutigen Schliissel in einer Map gespei-
chert und falls diese Instanz ein zweites Mal benétigt wird, so wird sie erneut zuriickgegeben
und keine neue Instanz der Klasse erstellt. So wird keine Instanz doppelt erstellt.

Dies hat vor allem im Bezug auf Objekte im Abhéngigkeitsgraphen einen grofien Vorteil: Die
Dateitypen und Werkzeuge miissen nicht im Graphen gesucht werden, sondern die entspre-
chende Instanz kann von der Factory-Klasse geholt werden. Die zuriickgegebene Instanz ist
die gleiche, welche auch im Graphen selbst vorhanden ist, lediglich eine andere Referenz
darauf, sodass samtliche Beziehungen im Graphen zur Verfiigung stehen. Dies ist vor allem im
Hinblick auf die Laufzeit ein grofler Vorteil.

4.2.2. Konfiguration

Als Format fiir das Erstellen der Konfigurationsdateien habe ich mich fiir JSON entschieden.
JSON hat den Vorteil, dass sich sehr einfach key-value Paare mit verschiedenen Typen hinterle-
gen lassen. So kann einem Key ein unter anderem String oder auch ein Array ohne feste Grofle
zugewiesen werden, was vor allem die Konfiguration einer variablen Anzahl an beispielsweise
Eingabedateien oder Parametern wesentlich erleichtert. Aulerdem gibt es fiir JSON bereits
APIs fiir Java, um die Konfigurationsdateien zu parsen. Dateien im JSON Format enthalten auch
keine header oder dhnliches, sodass die Konfigurationsdateien sehr kompakt und iibersichtlich
bleiben und sich auch Problemlos selbst erstellen lassen.

Hier noch ein paar Beispielhafte Konfigurationsdateien, sowie ein Beispiel fiir die Basiskonfi-
guration:

31

4. Realisierung

{

"name":"iml2rfg",
"source":[".iml",".cfg"],
"target":[".rfg"],
"params":["&1","&0"]

}

Listing 4.1: Konfiguration fiir iml2rfg

Die geschweiften Klammern in der ersten und letzten Zeile sind bei einem JSON Objekt
notwendig. Der Name des Werkzeugs ist iml2rfg, dies sieht zeigt der Wert hinter dem : in
der zweiten Zeile. In der dritten Zeile sieht man die Listendarstellung fiir mogliche Eingaben.
Dieses Werkzeug kann Dateien vom Typ .iml und . cfg verarbeiten. Das Ergebnis der Analyse
ist dann vom Typ . rfg wie man in der vierten Zeile sehen kann. Die Parameter fiir den Aufruf
des Werkzeuges stehen in der fiinften Zeile, wieder als Listendarstellung. Dieses Werkzeug
bekommt lediglich den Namen, beziehungsweise den Pfad der Ein- und der Ausgabedatei
iibergeben, wie man an den Platzhaltern sehen kann. &i steht hier fiir eine Eingabedatei, &o
fir eine Ausgabedatei.

{

"name":"imldump",
"source":[".iml"],
"target":[".html"],
"params":["-html", "&i",">>","&0"],
"isToolForDisplay" : true

}

Listing 4.2: Konfiguration fiir imldump

Hier sieht man eine Beispielhafte Konfiguration fiir das Werkzeug imldump. Wie beim vorheri-
gen Beispiel sieht man hier den Namen, die mdglichen Eingaben, sowie die Ausgaben. Wie
oben werden auch hier die Platzhalter &i und &o fiir die Ein- beziehungsweise Ausgabedatei
verwendet. Der Parameter -html gibt an, dass hier eine .html-Datei generiert werden soll.
Das Werkzeug gibt den html-Code normalerweise einfach aus, da hier aber eine Ausgabedatei
gewinscht ist, muss diese Ausgabe in eine Datei umgeleitet werden. Dies geschieht durch die
Angabe von ».

Ich habe » als Parameter zur Umleitung der Ausgabe gewahlt, weil dies einem Aufruf in einer
Konsole entspricht. Ahnlich wie bei einem Konsolen-Aufruf muss der Platzhalter fiir die Datei,
in welche die Ausgabe umgeleitet werden soll direkt danach angegeben werden.

Die Basiskonfiguration kann zum Beispiel so aussehen:

{

"toolPaths":["resources/tools"],
"roots":[".c"]

}
Listing 4.3: Basiskonfiguration

32

4.2. Designentscheidungen

Die umgebenden Klammern sind auch hier JSON Syntax. In der ersten Zeile stehen die angege-
benen Pfade fiir Werkzeugkonfigurationen. Hier ist nur ein Pfad angegeben, an dem sich alle
weiteren Werkzeuge befinden. Als Quelle fiir den Abhéangigkeitsgraphen ist hier . c angegeben,
wie man in der dritten Zeile sehen kann. Beide Werte sind als Liste mit nur einem Element
angegeben.

Die komplette Konfiguration, die ich im Rahmen dieser Bachelorarbeit erstellt habe befindet
sich im Anhang.

4.2.3. Analyse

Eine Analyse ist im Kontext dieses Steuerungs-Werkzeuges die Generierung einer definierten
Datei unter Verwendung einer variablen Anzahl sequentiell ausgefithrter Werkzeuge, mit
optionaler, anschlieSender Ergebnisanzeige, beziehungsweise -aufbereitung.

4.2.4. Wiederholung

Wie bereits im Abschnitt 3.3 beschrieben, wird fiir jede Ausfithrung eine Textdatei mit den
genannten Werten gespeichert.

Eine solche Datei kann beispielsweise so aussehen:

LastCall: -s bsp.iml -t bsp.rfg --using-tools cobra --predicate fast
Used File Types: .iml, .ecr, .cg, .cfg, .rfg

ecr_tool -iml &o &i

iml2cg &i &o

iml2cfg &i &o

iml2rfg &i &o

cobra &i

Listing 4.4: Gespeicherte Ausfithrung

In der ersten Zeile, nach LastCall: stehen Parameter, die bei der letzten Ausfithrung verwendet
wurden. Hier wurde bsp.iml als Eingabe- und bsp. rfg als Zieldatei angegeben. Das Werkzeug
cobra wurde explizit angegeben und das Pradikat fast gewahlt. In der zweiten Zeile stehen
nach Used File Types: alle verwendeten Dateiendungen. In allen folgenden Zeilen steht
jeweils ein Werkzeug Aufruf, wobei hier die Platzhalter &i und &o fiir Ein- beziehungsweise
Ausgabedateien stehen.

Das Pradikat fast markiert hier die beiden Werkzeuge ecr_tool und iml2cg. Die Werkzeuge
iml2cfg sowie iml2rfg sind nicht markiert, miissen aber ausgefiihrt werden, um eine . rfg-
Datei aus einer . cg-Datei zu erzeugen.

Es ist nicht erkennbar, welche Datei als Eingabe fiir cobra verwendet wurde. Auch bei einer
Wiederholung wird neu berechnet, welche Datei sich als Eingabe eignet.

33

4. Realisierung

Ich habe mich fiir eine einfach strukturierte Textdatei entschieden, um dem Anwender die
Moglichkeit zu bieten, die Wiederholung zu beeinflussen. Dies kann in Form einer Veranderten
Parametrisierung, oder auch einer Anpassung der verwendeten Werkzeuge geschehen. Um
die Parametrisierung anzupassen geniigt es, die gewiinschte Veranderung in der Zeile fiir
das entsprechende Werkzeug vorzunehmen. Mochte man jedoch die verwendeten Werkzeuge
anpassen, so muss man darauf achten, dass die Zeile mit den erzeugten Dateitypen zu den ver-
wendeten Werkzeugen passt, da diese beiden Komponenten vor der Wiederholung verglichen
und dadurch validiert werden.

Beim Einlesen der Datei wird aus der ersten Zeile die Eingabe- und die Zieldatei herausgelesen.
Danach werden zwei Listen gespeichert. Eine enthilt die in der zweiten Zeile der Textdatei
gespeicherten Dateiendungen, die andere enthalt samtliche Werkzeugaufrufe. Fiir die Ausfiih-
rung werden die gespeicherten Werkzeuge mit entsprechender Parametrisierung von oben
nach unten Ausgefiihrt. Dabei wird bei der Ausfithrung, dem Werkzeug an stelle 7 in der Liste,
eine Datei mit der Endung an Stelle ¢ als Eingabe- und eine Datei mit der Endung an Stelle
i + 1 als Zieldatei zugeordnet. Nun wird die Konfiguration fiir dieses Werkzeug tiberpriift, ob
die Endung an Stelle 7 in den Konfigurierten Eingaben und die Endung an Stelle ¢ + 1 in den
konfigurierten Ausgaben enthalten ist. Handelt es sich bei einer Dateiendung um die Ein- oder
Ausgabedatei des Aufrufs, so wird die entsprechende Datei, ansonsten der Dateiname fiir eine
Temporire Datei verwendet.

4.2.5. Pradikate

Fiir die Umsetzung des geforderten Praferenzmechanismus habe ich mich fiir die Verwendung
von Pradikaten entschieden, da diese einfach zu konfigurieren und bei der Ausfithrung leicht zu
benutzten sind. Da der Name eines Pradikats frei gewéhlt werden kann, ist es auch moglich hier
kurze Beschreibungen des markierten Pfades anzugeben, sodass ein Anwender aus dem Namen
eines Pradikats gegebenenfalls auch Eigenschaften des Pfades ablesen kann und dadurch weif3,
welches Pradikat er fiir seine Zwecke nutzen kann.

Sind an einer Stelle im Graphen viele verschiedene Pfade méoglich, so kann es zu einer hohen
Anzahl an Pradikaten kommen, sodass dies fur einen Anwender sehr untiibersichtlich wird.
Um dem vorzubeugen, habe ich die Moglichkeit eingebaut Werkzeuge explizit anzugeben,
sodass ein bestimmter Pfad gewahlt werden kann, ohne dafiir ein Pradikat konfigurieren zu
missen.

4.2.6. Werkzeuge zur Anzeige

Werkzeuge, deren Funktion es ist Informationen fiir den Anwender aufzubereiten und entweder
selbst Anzuzeigen, oder zu speichern, miissen in der Ausfithrung speziell behandelt werden.
Zwar konnten diese Werkzeuge genauso behandelt werden wie andere, es ist jedoch, im
Hinblick auf ihre Funktionalitiat sinnvoller, diese gesondert zu betrachten. Es muss bei der

34

4.2. Designentscheidungen

Ausfiihrung explizit angegeben werden, welches Werkzeug zur Anzeige genutzt wird, um diese
Sonderstellung zu ermdglichen.

Ist ein solches Werkzeug angegeben, so wird zunéchst die Analyse durchgefiihrt, als ob keines
angegeben wurde. Ist diese abgeschlossen, so wird die Eingabe fiir das gewahlte Anzeigewerk-
zeug aus allen erzeugten Ausgaben gewihlt, indem der Ausgefiithrte Pfad zuriickverfolgt wird
und fir jede erzeugte Datei gepriift wird, ob diese eine giiltige Eingabe fiir das Anzeigewerkzeug
ist.

Es ist derzeit nur moglich ein einzelnes Anzeigewerkzeug pro Aufruf zu verwenden. Die
Verwendung von zwei solchen Werkzeugen wiirde bei Werkzeugen mit graphischer Oberflache
zu Komplikationen fiihren, da das zweite, auf Grund der sequentiellen Ausfithrung, erst dann
gestartet wird, wenn das erste geschlossen wird. Dies wiirde nur fiir Verwirrung sorgen,
sodass ich die Anzahl der verwendeten Anzeigewerkzeuge auf eines begrenzt habe. In einer
weiterfithrenden Entwicklung konnte diese Begrenzung entfernt werden, indem fiir jedes
gefundene Anzeigewerkzeug ein eigener Thread gestartet wird.

Die explizite Angabe ist auf Grund der Definition im Abschnitt 4.2.3 notwendig. Eine Mog-
lichkeit die explizite Angabe zu umgehen ware, das Verstandnis einer Analyse zu variieren,
sodass sowohl ein Angegebenes Werkzeug, als auch eine Zieldatei als giiltiges Ziel der Analyse
gewdhrtet wird. Da die Anzeigewerkzeuge jedoch meist mehrere Dateitypen als Eingabe ak-
zeptieren, miisste der gewiinschte Typ in diesem Fall meist explizit angegeben werden, sodass
hierdurch kein Vorteil entsteht. Des Weiteren konnten so Werkzeuge angegeben werden, die
abhéngig von der Eingabe eine andere Ausgabe erzeugen, wodurch das Ergebnis der Analyse
nicht eindeutig genannt werden kann.

Wiederholung mit Anzeigewerkzeugen Nicht nur bei der ersten Ausfithrung, sondern
auch bei jeder Wiederholung muss ein Anzeigewerkzeug besonders beriicksichtigt werden. Ist
in der vorherigen Ausfithrung ein solches Werkzeug ausgefiihrt worden, sieht man das daran,
dass die beiden im Abschnitt 3.3 erwahnten Listen fiir Dateiendungen und Werkzeugaufrufe
die gleiche Grofie haben. Wurde kein Anzeigewerkzeug ausgefiihrt, so enthalt die Liste mit
Werkzeugaufrufen ein Element weniger, als die Liste mit Dateiendungen. Dies liegt daran,
dass fiir jedes Standard Werkzeug zwei Dateiendungen, namlich Ein- und Ausgabe, existieren,
die Ausgabe des einen Werkzeugs jedoch gleichzeitig die Eingabe des anderen darstellt. So
existiert pro Werkzeug eine Eingabedatei, plus eine nicht wiederverwendete Ausgabedatei
fiir das letzte Werkzeug. Ist das letzte Werkzeug der Liste zur Anzeige gedacht, so wird keine
Ausgabe erstellt, wodurch beide Listen die gleiche Lange haben.

Wurde festgestellt, dass ein Anzeigewerkzeug enthalten ist, wird das letzte Element der Liste
gesichert und anschlieend der Teil der Liste ermittelt, der wiederholt werden soll. Im Anschluss
daran muss der Anwender angeben, ob er das zuvor ausgefithrte Anzeigewerkzeug ebenfalls
erneut Ausfithren will. Dabei wird hier aus dem Wiederholten teil das am weitesten unten
stehende Ergebnis, welches von dem Anzeigewerkzeug ermittelt werden kann, als Eingabe
gewahlt.

35

4. Realisierung

4.2.7. Konfigurationswerkzeuge

Konfigurationen werden vor der eigentlichen Analyse erstellt. Obwohl hier eine Paralleli-
sierung moglich wire, habe ich diese jedoch aus Zeitmangel nicht implementiert, da der
Synchronisationsaufwand zu hoch war.

Die eigentliche Analyse konnte so lange parallel zu der Erzeugung von Konfigurationen
ausgefithrt werden, bis ein Werkzeug ausgefiihrt werden soll, welches eine der Konfiguratio-
nen benotigt, die Ausfithrung miisste in diesem Fall pausiert werden, bis die Konfiguration
vorliegt.

Bei einer Wiederholung werden die entsprechenden Konfigurationen nicht neu erzeugt, son-
dern wiederverwendet.

4.2.8. Anwenderspezifischer Quellcode

Wie bereits im Abschnitt 3.1 erwahnt, kann fiir jedes Werkzeug eine JAVA-Klasse angegeben
werden, die Code enthalt, welcher im Anschluss an die Ausfithrung des Werkzeuges ausgefiihrt
wird.

Die entsprechende Klasse muss das Interface IAfterExecution implementieren, welches im Paket
de.uni.stuttgart.bauhaus.toolexecution liegt. Dieses Interface enthalt eine Methode execute
welche von dem Steuerungswerkzeug aufgerufen wird.

Die Klasse muss als . class-Datei vorliegen. Da ein Interface aus dem Steuerungs-Werkzeug
benotigt wird, muss beim kompilieren der Klasse die jar-Datei, als welche das Steuerungs-
Werkzeug vorliegt, als Bibliothek angegeben werden.

Am Beispiel des Werkzeuges symta, welches Concurrency.configund Non-Concurrency.config
Dateien erstellt, erkennt man den Grund fiir diese Funktion.

Das Werkzeug symta erhélt eine Datei vom typ . func_names und eine . csv-Datei, woraus sie
die beiden Zieldateien erstellt. Fiir diese Dateien kann jedoch kein Zielpfad gesetzt werden und
es kann nicht angegeben werden, ob nur eine der Dateien erstellt werden soll. Beide Dateien
werden immer im Verzeichnis, in dem symta ausgefiihrt wird erzeugt.

Durch Anwenderspezifischen Code kann nun beispielsweise die Datei Concurrency.config
in den Ordner .bauhaus im home Verzeichnis des Nutzers kopiert werden und dort sinnvoll
verwendet werden. Zusitzlich kann die Datei Non-Concurrency.config geloscht werden,
falls diese nicht benétigt wird.

Ohne diese Funktionalitat wére es in solchen Féllen nicht méglich, eine automatisierte Analyse
durchzufithren.

36

4.3. Bedienung des Werkzeugs

4.3. Bedienung des Werkzeugs

Ich habe das Steuerungs-Werkzeug als Konsolen-Anwendung entwickelt.

Beim Aufruf des Werkzeugs konnen verschiedene Parameter mitgegeben werden. Wird kein
Parameter mitgegeben, so wird eine Liste aller moglichen Parameter ausgegeben.

Diese Parameter konnen dem Werkzeug mitgegeben werden:
e -h, --help oder - -usage

« -s oder \verbsource|

-t oder \verbtarget|

-r oder \verbrepeat|

« -ra oder \verbrepeat-all|

-f oder \verbforce-new|

-p oder \verbpredicate|
« --dot
« --using-tools

o --show-predicates

Fiir einige Parameter gibt es mehrere verschiedene Varianten. Diese haben alle dieselbe Funk-
tionalitit und dienen nur zum besseren Verstidndnis beziehungsweise zur besseren Ubersicht.
Im folgenden werde ich nur die Kurzform der Parameter benutzen.

Die Parameter -h, -r, -ra und - -show-predicates konnen nur einzeln benutzt werden, wih-
rend alle anderen Parameter beliebig kombiniert werden kénnen, wobei nicht jede Kombination
zu einem Sinnvollen Ergebnis fiihrt.

Der Parameter -h dient zur Ausgabe aller moglichen Parameter.

Die Parameter - r und - ra dienen zur Wiederholung der letzten Analyse, wobei der Parameter
-ra eine vollstindige Wiederholung startet, wahrend der Anwender bei - r den Abschnitt,
welcher wiederholt werden soll angeben kann.

Bei - -show-predicates werden alle konfigurierten Pradikate ausgegeben.

Gibt man den Parameter --dot gefolgt von einem Dateinamen, der die Endung .dot haben
sollte, an, so wird der konfigurierte Abhangigkeitsgraph im .dot-Format in die angegebene
Datei gespeichert.

37

4. Realisierung

-s und -t fithren nur wenn beide Angegeben sind zu einer Sinnvollen Ausfithrung. -s gefolgt
von einem Dateinamen beziehungsweise einem Pfad zu einer Datei, gibt die Eingabedatei fiir
die Analyse an. -t gefolgt von einem Dateinamen gibt die Zieldatei fiir die Analyse an.

Die Parameter -p, --using-tools und - f fithren nur dann zu einer Sinnvollen Ausfithrung,
wenn die Parameter -s und -t beide gesetzt sind. Auf -p folgt das Pradikat, welches bei
der Analyse verwendet werden soll und auf - -using-tools folgt eine Liste an Werkzeugen,
welche bei der Analyse ausgefithrt werden sollen.

Der Parameter - f gibt an, dass keine Wiederholung stattfinden soll, stattdessen soll der Pfad neu
berechnet werden. Dies ist sinnvoll, falls der Anwender etwas an der Konfiguration geandert
hat oder falls die Datei LastExecutionOrder.txt verdndert wurde, diese Anderung aber
nicht beriicksichtigt werden soll. Diese Datei zu 16schen oder die erste Zeile nach LastCall: zu
verdndern, sodass diese nicht mehr zu den eingegebenen Parametern passt, hiatte den gleichen

Effekt.

38

4.4. Tests

4.4. Tests

Die Validitit dieses Ansatzes und der Umsetzung soll an mindestens zwanzig Bauhaus Werk-
zeugen gezeigt werden.

Ich habe folgende Werkzeuge fiir die Tests konfiguriert:

1. anderson_tool
2. ccdiml

3. cobra

4. das_tool

5. dump_cg
ecr_tool

function _names

el B

iml2cfg

9. iml2cg

10. iml2dot

11. iml2html
12. iml2rfg

13. imldump
14. imlstat

15. kecg_stats
16. partition_tool
17. pta_tool
18. raceq

19. rfg2gxl

20. stats

21. symta

22. thread_tool

39

4. Realisierung

Name Grofle

mksyntax.iml 62kiB
mkeyes.iml 117,1 kiB
aget.iml 280,4 kiB
uuname.iml 787,4 kiB
nano.iml 1.8 miB
cu.iml 3,1 miB

Tabelle 4.1.: Verwendete Dateien fiir die Tests

Die folgenden Testfille habe ich mit diesen Werkzeugen abgedeckt:

« Positivtests:
— Suche nach dem kiirzesten Pfad zwischen Ein- und Ausgabedatei
— Suche nach dem kiirzesten Pfad mit anschlieender Anzeige
- Pfadsuche mit Pradikat
— Pfadsuche mit Pradikat und anschliefender Anzeige
- Angabe eines expliziten Werkzeuges zwischen Ein- und Ausgabedatei

- Explizite Angabe eines Werkzeuges, welches nach der Ausgabedatei ausgefiithrt
werden soll

— Ausfithrung einer Analyse mit Konfigurationswerkzeug

- Kombination aus expliziter Werkzeugangabe und Pradikat
- Wiederholung

— Wiederholung mit Anzeige

» Negativtests:

Unmoglicher Pfad (Ein- und Ausgabedatei sind nicht durch einen Pfad im Abhén-
gigkeitsgraphen verbunden)

Korrekter Pfad plus expliziter Angabe eines so nicht Ausfithrbaren Werkzeuges

Eingabe einer nicht unterstiitzten Datei

Verwendung eines nicht existenten Pradikats

Angabe eines nicht nutzbaren Pradikats

40

4.4. Tests

Eingabetyp Zieldateityp Ausgefiithrte Werkzeuge

.iml .rfg iml2rfg

.iml Lttt pta_tool, iml2cfg, thread_tool
.iml .html iml2html

.iml .gx1 iml2rfg, rfg2gxl

Tabelle 4.2.: Tests fur kiirzesten Pfad

Eingabetyp Zieldateityp Typ der angezeigten Datei Ausgefiihrte Werk-

zeuge
.iml .rfg .rfg iml2rfg
.iml Ltt .race pta_tool, iml2cfgq,
thread_tool, raceq
.iml .html .iml iml2html
.iml .gx1 .rfg iml2rfg, rfg2gxl

Tabelle 4.3.: Tests fiir kiirzesten Pfad mit Anzeige

Die fur die Tests benutzten Dateien stehen in Tabelle 4.1

Die Dateien sind alle vom Typ .iml es gehen also samtliche Ausfithrungspfade von diesem
Dateityp aus. Die unten aufgefiithrten Tests wurden jeder mit allen Eingabedateien durchge-
fithrt.

Positivtests Sinn der Positivtests ist, die Funktionalitdt des Steuerungs-Werkzeuges bei
korrekter Anwendung zu priifen.

Kirzester Pfad Tests und Ergebnisse stehen in Tabelle 4.2.

Alle Werkzeuge wurden Ausgefithrt und simtliche Ergebnisse und Zwischenergebnisse erzeugt
und gespeichert.

Einfacher Pfad plus Anzeige Als Anzeigewerkzeug wurde hier cobra verwendet. Tests
und Ergebnisse stehen in Tabelle 4.3.

Alle Werkzeuge wurden Ausgefiihrt und samtliche Ergebnisse und Zwischenergebnisse erzeugt
und gespeichert. Das Anzeigewerkzeug wurde stets mit der angegebenen Datei ausgefiihrt,
beziehungsweise gar nicht fiir die Erzeugung von . html-Dateien.

41

4. Realisierung

Eingabetyp Zieldateityp Verwendetes Priadi- Ausgefithrte Werk-
kat Zeuge

.iml .rfg fast ecr_tool, iml2caq,
iml2cfg, iml2rfg

.iml .rfg exact anderson_tool,
iml2cgq, iml2cfg,
iml2rfg

.iml .race execute_red pta_tool, iml2cfgq,
red, thread_tool, red,
raceq

.iml .html dump imldump

.iml .gxl fast ecr_tool, iml2cgq,
iml2cfg, iml2rfg,
rfg2gxl

.iml .gx1 exact anderson_tool,
iml2cgq, iml2cfg,

iml2rfg, rfg2gxl

Tabelle 4.4.: Tests fur Pfad mit Pradikat

Pfad mit Pradikat Tests und Ergebnisse stehen in Tabelle 4.4.

Alle Werkzeuge wurden Ausgefithrt und samtliche Ergebnisse und Zwischenergebnisse er-
zeugt und gespeichert, abgesehen von der Zieldatei vom Typ . race. Bei dieser wurden zwar
alle Werkzeuge ausgefiihrt, die Zieldatei jedoch nicht erzeugt. Beim Versuch das Werkzeug
raceq unabhéngig von dem Steuerungs-Werkzeug auszufithren wurde jedoch ebenfalls keine
Ausgabedatei erzeugt und auch keine Fehlermeldung angezeigt. Die Ausgefithrten Werkzeuge,
die nicht auf dem kiirzesten Weg liegen, waren alle mit dem entsprechenden Pradikat versehen
oder notwendig um Liicken zwischen Werkzeugen zu schlief3en.

Pfad mit Pradikat und Anzeige Tests und Ergebnisse stehen in Tabelle 4.5. Es wurden zwei
Durchldufe durchgefiihrt, einmal mit cobra und einmal mit imldump als Anzeigewerkzeug.

Auch diese Tests verliefen erfolgreich. Sdmtliche Werkzeuge wurden ausgefithrt und die
entsprechenden Dateien wurden angezeigt. Beim zweiten Durchlauf wurde fiir jede Zieldatei
die Datei temp.html im Ordner .BAD erstellt.

Explizite Werkzeugangabe Hier werden die Tests fiir Werkzeuge zwischen Ein- und Aus-
gabedatei, sowie solche fiir Werkzeuge nach er Ausgabedatei beschrieben. Tests und Ergebnisse
stehen in Tabelle 4.6. Die Tabelle enthalt zwei Testflle, bei denen der Dateityp von Ein- und
Ausgabedatei der gleiche ist, der ausgefiihrte Pfad also nur durch explizite Werkzeugangabe

42

4.4. Tests

Eingabetyp Zieldateityp Verwendetes Angezeigter Da- Ausgefiihrte
Pradikat teityp Werkzeuge

.iml .rfg fast .rfg ecr_tool, iml2cgq,
iml2cfg, iml2rfg

.iml .rfg exact .rfg anderson_tool,
iml2cg, iml2cfg,
iml2rfg

.iml .race execute_red .rett pta_tool,
iml2cfq, red,
thread_tool, red,
raceq

.iml .html dump .iml imldump

.iml .gx1l fast .rfg ecr_tool, iml2cgq,
iml2cfg, iml2rfg,
rfg2gxl

.iml .gx1 exact .rfg anderson_tool,

iml2cg, iml2cfg,
iml2rfg, rfg2gxl

Tabelle 4.5.: Tests fiir Pfad mit Pradikat mit Anzeige

beschrieben ist. Dies ist keine falsche Eingabe, sondern soll erméglichen, ein bestimmtes Werk-
zeug auch ohne Kenntnis des konfigurierten Ausgabeformats auszufithren, da der gefundene
Pfad vollstandig durch die Eingabedatei und die Angegebenen Werkzeuge definiert ist.

Analyse mit Konfigurationswerkzeug Unter den mir zur Verfiigung gestellten Werkzeu-
gen war lediglich symta als Konfigurationswerkzeug. Deshalb habe ich hierfiir nur zwei Pfade
getestet: Von .iml nach .tt als einfacher Aufruf und von .iml nach .stat mit Pradikat
execute_red.

Im ersten Fall wurden zunachst folgende Werkzeuge ausgefiihrt: function_names und symta,
wodurch eine Concurrency.config erstellt und anschlieSend nach .bauhaus kopiert wurde.
Danach wurden die Werkzeuge pte_tool, iml2cfg und thread_tool ausgefiihrt, wobei die
erstellte Concurrency.config genutzt wurde.

Beim zweiten Fall wurden ebenfalls die Werkzeuge function_names und symta ausgefithrt und
die erstellte Concurrency.config nach .bauhaus kopiert. Hier wurden daraufthin folgende
Werkzeuge ausgefiithrt: pta_tool, iml2cfg, red, thread_tool, red und stats.

Die Tests verliefen erfolgreich und die Konfigurationsdateien sowie die Ergebnisse wurden
erstellt.

43

4. Realisierung

Eingabetyp Zieldateityp Explizit angegebene Ausgefiihrte Werk-
Werkzeuge zeuge
.iml .rfg das_tool das_tool, iml2cfg,
iml2rfg
.iml .rfg iml2cg iml2cgq, iml2cfq,
iml2rfg
.iml L1t ecr_tool, red ecr_tool, iml2cgq,

pta_tool, iml2cfg,
red, thread_tool

.iml .cg_dump ecr_tool ecr_tool, 1iml2caq,
dump_cg

.iml .gx1 iml2cfg iml2cfg, iml2rfg,
rfg2gxl

.iml .iml imlstat imlstat

.iml .cfg iml2cg, rfg2gxl iml2caq, iml2cfg,
iml2rfg, rfg2gxl

.iml .iml stats pta_tool, iml2cfg,

thread_tool, stats

Tabelle 4.6.: Tests fiir Pfad mit expliziter Werkzeugangabe

Kombination aus expliziter Werkzeugangabe und Pradikat Die Ergebnisse fiir diese
Tests stehen in der Tabelle 4.7.

Wiederholung Um die Wiederholungsfunktion zu testen habe ich zwei Pfade ausgefiihrt
und diese einmal vollstandig und drei mal teilweise, die erste Halfte, die zweite Halfte und
einen Abschnitt aus der Mitte des Pfades, wiederholt.

Die beiden Pfade waren:

o pta_tool, iml2cfg, red, thread_tool und red

« erc_tool, iml2cg, iml2cfg, iml2rfg und rfg2gxl
Die Teilweisen Wiederholungen waren fiir die erste Analyse:

« pta_tool, iml2cfg, red, thread_tool und red

« pta_tool, iml2cfg und red

« red, thread_tool und red

« iml2cfg, red und thread_tool

Fir die zweite Analyse wurden folgende Pfade ausgefiihrt:

44

4.4. Tests

Eingabetyp

Zieldateityp

Verwendetes
Pradikat

Angegebene
Werkzeuge

Ausgefiihrte
Werkzeuge

.iml

.iml

.iml

.iml

.rfg

.cfg

LTt

LTt

fast

exact

execute_red

execute_red

rfg2gxl

iml2dot

stats

ccdiml

ecr_tool,
iml2caq,
iml2cfg,
iml2rfg,
rfg2gxl
anderson_tool,
iml2cgq,
iml2cfg,
iml2dot
pta_tool,
iml2cfg, red,
thread_tool,
red, stats
pta_tool,
iml2cfgq, red,
thread_tool,
ccdiml

Tabelle 4.7.: Tests fiir Pfad mit Pradikat und Expliziter Werkzeugangabe

o erc_tool, iml2cg, iml2cfg, im12rfg und rfg2gxl

« erc_tool, iml2cg und iml2cfg

« iml2cfg, iml2rfg und rfg2gx1l

e iml2cg, im12cfg und iml2rfg

Samtliche Pfade wurden vollstandig ausgefiithrt und die entsprechenden Ergebnisse neu er-

zeugt.

Wiederholung mit Anzeige Fiir die Tests der Wiederholung mit Anzeige wurden die glei-
chen Analysen, die im Abschnitt 4.4 beschrieben wurden. Als Anzeigewerkzeug wurde cobra
benutzt. Jeder der wiederholten Abschnitte wurde einmal mit und einmal ohne Wiederholung

des Anzeigewerkzeugs ausgefiihrt.

Die folgenden Dateitypen wurden fiir die getesteten Pfade ausgefiihrt:

. pta_tool, iml2cfg, red, thread_tool und red — .rett

« pta_tool, iml2cfgund red — .re

« red, thread_tool und red — .rett

45

4. Realisierung

« iml2cfg, red und thread_tool — .tt

« erc_tool, iml2cg, iml2cfg, iml2rfg und rfg2gx1l — .rfg
o erc_tool, iml2cg und iml2cfg — .cfg

o iml2cfg, iml2rfg und rfg2gxl — .rfg

o iml2cg, iml2cfg und iml2rfg — .rfg

Negativtests Ich habe die folgenden Negativtests durchgefithrt, um die Robustheit des
Steuerungs-Werkzeugs zu priifen.

Nicht existenter Pfad Ich habe folgende Pfade getestet: . rfg — .tt und .ecr — .race.In
beiden Fillen wurde keine Analyse ausgefiihrt und die Meldung Could not compute execution
order ausgegeben.

Nicht existentes Werkzeug Bei diesem Test habe ich zu den beiden moglichen Pfaden
.iml — .ttund .iml — .stat jeweils no_real tool als Werkzeug explizit angegeben. Das
falsche Werkzeug wurde bei simtlichen Ausfithrungen ignoriert und stattdessen der kiirzeste
Pfad berechnet.

Zusétzlich habe ich die gleichen Pfade mit zusétzlicher expliziter Angabe von cobra durch-
gefiihrt. Auch hier wurde das falsche Werkzeug ignoriert und stattdessen der kiirzeste Pfad
gefolgt von cobra Ausgefiihrt.

Nicht unterstitzte Datei Hierfiir habe ich eine Datei mit der Endung .nothing, welche
nicht in der Konfiguration existiert, einmal als Eingabe- und einmal als Zieldatei angegeben.

Es wurde keine Analyse ausgefithrt und die Meldung Could not compute execution order
ausgegeben

Nicht existierendes Pradikat Wurde ein nicht existentes Pradikat bei der Ausfithrung
angegeben, so wurde der kiirzeste Weg zwischen Eingabe- und Zieldatei, beziehungsweise der
Weg iiber explizit angegebene Werkzeuge ausgefiihrt.

Fir angegebenen Pfad nicht nutzbares Pradikat Das Verhalten in diesem Fall war gleich,
wie das Verhalten bei einem nicht existierenden Pradikat.

46

4.5. Laufzeit

4.5. Laufzeit

Aus Zeitmangel konnte ich keine ausfithrliche Messung der Laufzeit durchfithren. Ich habe
jedoch, um das Verhiltnis zwischen Berechnung des Analysepfades, also vom Start des Werk-
zeuges bis zum Beginn der ersten Analyse, und Ausfithrung der gefundenen Werkzeuge, also
die Zeit vom Aufruf des ersten Werkzeuges bis zum Beenden des letzten Werkzeugs, abschatzen
zu konnen, einige Ausfithrungen vermessen. Unter den gemessenen Ausfithrungen waren
unter anderem Eingaben von nicht existenten Werkzeugen, da in diesen Fillen der gesamte
Abhiangigkeitsgraph durchsucht werden muss.

Das Testsystem, auf welchem ich diese Messung durchgefiihrt habe, ist der Rechner psix0 vom
Institut ISTE an der Universitat Stuttgart. Die Verbaute CPU ist ein AMD Opteron 6174. Die
Grofe des Arbeitsspeichers, der mir zur Verfigung stand war 252 Gigabyte. Das Folgende
Betriebssystem war hier installiert: Debian 3.16.7-ckt25-2+deb8u3.

Fiir die Messungen habe ich die Eingabedateien mkeyes.iml und uuname. iml verwendet.

Fiir die Analysen mit mkeyes.iml lag die durchschnittliche Zeit fiir die Pfadsuche bei 257, 25
Millisekunden. Die durchschnittliche Zeit fiir die Ausfithrung lag bei 1800, 625 Millisekunden.
Die Zeit fiir die Ausfithrung ist deutlich hoher.

Die Messung mit uuname.iml konnte ich nicht abschlielen, da die Analyse dieser Datei bei
einigen Werkzeugen, wie zum Beispiel pta_tool dazu gefiihrt hat, dass die SSH Verbindung
unterbrochen wurde, bevor die Analyse beendet war.

Diese Messungen zeigen, dass die Ausfithrungszeit des von mir entwickelten Steuerungs-
Werkzeuges im Vergleich mit der Analysedauer keine Rolle spielt und vor allem bei grof3en
Dateien vernachlassigt werden kann.

47

5. Zusammenfassung und Ausblick

Ziel dieser Arbeit war es, eine Steuerung fiir Analysen mit Bauhaus zu entwerfen und zu
implementieren. Es wurden Anwendungsfille eines Steuerungs-Werkzeugs und Bauhaus’
erstellt und Eigenschaften von Bauhaus analysiert. Darunter die Abhéngigkeiten zwischen
den einzelnen Werkzeugen, wie aus diesen Abhédngigkeiten ein Graph erstellt werden kann
und die Eigenschaften dieses Graphen. AnschlieBend wurde erklért, wie dieser Graph fiir die
Automatisierung angepasst werden kann und wieso die Eigenschaft der Zyklenfreiheit im
Rahmen dieser Arbeit und der automatisierten Analyse hinzugefiigt wurde. Anschlieflend
wurde eine Moglichkeit vorgestellt, wie ein solches Werkzeug gestaltet werden kann, um
samtliche Anforderungen abzudecken, sowie moglichst einfach und benutzerfreundlich zu
gestalten. Die Konfigurierbarkeit des Werkzeugs, sowie der Ablauf einer automatisierten
Analyse, deren Wiederholung und ein Ansatz zur Verwendung eines Praferenzmechanismus
zur Markierung von Pfaden im Abhéngigkeitsgraphen werden durch den in dieser Arbeit
beschriebenen Ansatz abgedeckt.

Anschlielend wurde beschrieben, wie dieser Ansatz realisiert wurde, welche Probleme dabei
aufgetreten sind und wie diese gelost wurden. Zuletzt wurden die Testfalle und -Ergebnisse be-
schrieben, durch welche gezeigt wurde, dass der Ansatz valide und praktikabel ist und samtliche
Anforderungen an die Funktionalitét eines Steuerungs-Werkzeugs abgedeckt wurden.

Das Ziel der Arbeit wurde erreicht.

Ausblick

Das im Rahmen dieser Arbeit implementierte Steuerungs-Werkzeug deckt zwar alle gestellten
Anforderungen ab, es gibt jedoch noch einige Punkte, die verbessert oder hinzugefiigt werden
konnen.

Beispielsweise die Unterstiitzung von mehreren Eingabedateien oder die Parallele Ausfiih-
rung von Analysepfaden. Eine Funktion zur Priifung, ob eine Analyse durchgefiithrt werden
muss, oder ob Dateien aus einer alteren Analyse wiederverwendet werden konnen, sowie
eine erweiterte Fehlerbehandlung, mit der im Fehlerfall automatisch alternative Pfade im
Abhiangigkeitsgraph gesucht und ausgefithrt werden.

Fir den Anwendungsfall des Bauhaus-Systemtests konnte eine Funktion erganzt werden,
welche diesen Test mit einem einzelnen Aufruf durchfihrt.

49

Literaturverzeichnis

[16a] Aufgabenstellung. 2016 (zitiert auf S. 8).

[16b] Bauhaus Demonstration. 2016. URL: http://www2.informatik.uni-stuttgart.de/iste/
ps/bauhaus/demo/index.html (zitiert auf S. 8).

[16c] Bauhaus website. 2016. URL: http://www.iste.uni-stuttgart.de/ps/projekt-bauhaus.
html (zitiert auf S. 8).

[16d] JSON Api for Java. 2016. URL: https://github.com/stleary/JSON-java (zitiert auf
S. 25).

[IST16a] ISTE. ,Bauhaus Dokumentation®. 2016 (zitiert auf S. 10).
[IST16b] ISTE. ,Makefile zur Ausfithrung von Analysen®. 2016 (zitiert auf S. 7, 14).

Alle URLs wurden zuletzt am 10. 08. 2016 gepriift.

http://www2.informatik.uni-stuttgart.de/iste/ps/bauhaus/demo/index.html
http://www2.informatik.uni-stuttgart.de/iste/ps/bauhaus/demo/index.html
http://www.iste.uni-stuttgart.de/ps/projekt-bauhaus.html
http://www.iste.uni-stuttgart.de/ps/projekt-bauhaus.html
https://github.com/stleary/JSON-java

Erklirung

Ich versichere, diese Arbeit selbststandig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wortlich oder sinngemaf3 aus anderen Wer-
ken tibernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Priiffungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollstandig
verdffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

A. Volistandige Konfiguration

{

"name" : "andersen_tool",
"source" : [".iml"],
"target" : [".anderson"],
"predicates" : ["exact"],

Ilparamsll : [II\&iII’ II\&OII]’
"isToolForDisplay" : false

}
Listing A.1: Konfiguration fiir andersen_tool
{
"name" : "cafeCC",
"source" : [".c"],
"target" : [".iml"],
"predicates" : [1,

Ilparamsll : ["'0", "\&O", II\&iII]'
"isToolForDisplay" : false

}
Listing A.2: Konfiguration fiir cafeCC
{
"name" : "ccdiml",
"source" : [".iml"],
"target" : [1,
"predicates" : [1,

"pal"amS" : ["\&i", ||\&0||],
"isToolForDisplay" : false

}
Listing A.3: Konfiguration fiir ccdiml

{

"name" : "cobra",
"source" : [".iml", ".cfg", ".cg", ".tt", ".kcg", ".re"],
"target" : [1],
"predicates" : [1],
"params" : ["\&i"],
"isToolForDisplay" : true
}
Listing A.4: Konfiguration fiir cobra
{
"name" : "das_tool" ,
"source" : [".iml"],
"target" : [".das"],
"predicates" : ["precise"l,

||paramsu . ["\&i", "\&0"],
"isToolForDisplay" : false

}
Listing A.5: Konfiguration fiir das_tool
{
"name" : "dra_filter",
"source" : [".tt"],
"target" : [".dra"],
"predicates" : [],

Ilparamsll : [II\&iII' II\&OII],
"isToolForDisplay" : false

}
Listing A.6: Konfiguration fiir dra_filter
{
"name" : "dump_cg",
Ilsourcell : [Illim'Lll' ".Cg"' ".Cfg"]’

"target" : [".cg_dump"],
Ilparamsll : [II_OII’ ”\&O”, II\&iII]’

"isToolForDisplay" : true
}
Listing A.7: Konfiguration fiir dump_cg
{
"name" : "ecr_tool",
"source" : [".iml"],
"target" : [".ecr"],
"predicates" : ["fast"],

||paramsu : [Il'imlll, ||\&0||’ "\&i"]

}
Listing A.8: Konfiguration fiir ecr_tool

{

"name" : "function_names",
"source" : [".iml"],
"target" : [".func_name"],
"predicates" : [],

Ilparamsll : [II\&iII’ II>>II, "\&0"],
"isToolForDisplay" : false

}
Listing A.9: Konfiguration fiir function_names
{
"name" : "iml2cfg",
"source" : [".iml", ".cg", ".das", ".anderson"],
"target" : [".cfg"l,
"predicates" : ["exact"],

uparamsu . [”\&i“, ”\&0”],
"isToolForDisplay" : false

}
Listing A.10: Konfiguration fiir iml2cfg
{
"name" : "iml2cfg",
"source" : [".pta"l],
"target" : [".pcfg"],
"predicates" : [],

Ilparamsll : [II\&iII’ ”\&0”],
"isToolForDisplay" : false

}
Listing A.11: Konfiguration fiir iml2cfg
{
"name" : "iml2cg",
"source" : [".iml", ".anderson", ".das", ".ecr"],

"target" : [".cg"],
nparamsu : [“\&i“, ”\&0”],

"predicates" : ["exact", "precise"],
"isToolForDisplay" : false
}
Listing A.12: Konfiguration fir iml2cg
{
"name" : "iml2dot",
"source" : [".iml"],
"target" : [".dot"],
"predicates" : [],
"params" : ["\&i", "\&0"],
"isToolForDisplay" : true
}

Listing A.13: Konfiguration fiir iml2dot

{

"name" : "iml2html",
"source" : [".iml"],
"target" : [".html"],
"predicates" : [1],
"params" : ["\&i", "\&o0"],
"isToolForDisplay" : true
}

Listing A.14: Konfiguration fiir iml2html

{

"name" : "iml2rfg",
"source" : [".iml",".cfg"1,
"target" : [".rfg"],
"predicates" : [1],

||paramsu . [II\&iII' "\&0"],
"isToolForDisplay" : false

}
Listing A.15: Konfiguration fiir iml2rfg
{
"name" : "imldump",
"source" : [".iml", ".cfg", ".cg", ".tt", ".kcg", ".re",
"target" : [".html"],
"predicates" : ["dump"],
"params" : ["-html", "\&i", ">>", "\&o0"],
"isToolForDisplay" : true
}
Listing A.16: Konfiguration fiir imldump
{
"name" : "imlstat",
"source" : [".iml"],
"target" : [".stats"],
"predicates" : [],

||paramsu . ["\&i", "\&0"],
"isToolForDisplay" : false

}
Listing A.17: Konfiguration fiir imlstat
{
"name" : "kcg_stats",
"source" : [".pta", ".tt"l,

"target" : [".kcg"],
Ilparamsll : [Il_oll’ ”\&O“, II\&iII]

}
Listing A.18: Konfiguration fiir kcg_stats

"rett"],

{

"name" "partition_tool",
"source" : [".tt"],
"target" : [".dot"],
"predicates" : [],
"params" : ["-0", "\&0", "\&i"],
"isToolForDisplay" : true
}
Listing A.19: Konfiguration fiir partition_tool
{
"name" "pta_tool",
"source" : [".iml", ".cg"l,
"target" : [".pta"],
"predicates" : [],
"params" : ["-0", "\&0", "\&i"],
"isToolForDisplay" : false
}
Listing A.20: Konfiguration fiir pta_tool
{
"name" "raceq",
"source" : [".tt", ".rett"],
"target" : [".race"],
"predicates" : [],
"params" : ["-0", "\&0", "\&i"],
"isToolForDisplay" : false
}
Listing A.21: Konfiguration fiir raceq
{
"name" "red",
"source" : [".tt"],
"target" : [".rett"],
"params" : ["-0", "\&0", "\&i"],
"predicates" : ["execute_red"]
}
Listing A.22: Konfiguration fiir red
{
"name" "red",
"source" : [".pcfg"],
"target" : [".re"],
"params" : ["-0", "\&0", "\&i"],
"predicates" : ["execute_red"]
}

Listing A.23: Konfiguration fiir red

{

"name" : "rfg2gxl",
"source" : [".rfg"l],
"target" : [".gx1"],
"predicates" : [1],

||par.amsu . [II\&iII' ||\&°||]'
"isToolForDisplay" : false

}
Listing A.24: Konfiguration fir rfg2gxl
{
"name" : "stats",
“source" : [".tt", ".rett"],
"target" : [".stat"],
"predicates" : ["exact"],

Ilparamsll : [II_OII’ II\&OII’ II\&iII]’
"isToolForDisplay" : false

}

Listing A.25: Konfiguration fir stats
{
"name" : "symta.sh",
"source" : [".func_name"],
"target" : ["Concurrency.config"],
"isToolForConfig" : true,
"toolsToConfigure" : ["pta_tool", "thread_tool"],
"params" : ["\&i", "/home/baueras/mockup.symta.csv"],
"afterExecutionClass" : "resources/AfterSymta.class"
}

Listing A.26: Konfiguration fiir symta
{
"name" : "“thread_tool",
"source" : [".pcfg", ".re"l,
"target" : [".tt"],
"predicates" : [],

Ilparamsll : [Il_oll, II\&OII’ II\&iII]’
"isToolForDisplay" : false
}

Listing A.27: Konfiguration fiir thread_tool

	1 Einleitung
	1.1 Ziel der Arbeit
	1.2 Verwandte Arbeiten
	1.3 Anforderungen
	1.4 Was ist Bauhaus?
	1.5 Alternativen

	2 Analyse
	2.1 Anwendungsfälle
	2.2 Abhängigkeiten
	2.3 Vorteile eines Steuerungs-Werkzeugs
	2.4 Annahmen
	2.5 Voraussetzungen für die Ausführung

	3 Methodik der Umsetzung
	3.1 Konfigurierbarkeit
	3.2 Automatisierte Analyse
	3.3 Wiederholbarkeit
	3.4 Präferenzmechanismus

	4 Realisierung
	4.1 Architektur
	4.2 Designentscheidungen
	4.3 Bedienung des Werkzeugs
	4.4 Tests
	4.5 Laufzeit

	5 Zusammenfassung und Ausblick
	Literaturverzeichnis
	A Vollständige Konfiguration

