
Institut für Softwaretechnologie

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit Nr. 310

Bauhaus-Analysis Driver

Andreas Bauer

Studiengang: Informatik

Prüfer/in: Prof. Dr. rer. nat./Harvard Univ. Erhard
Plödereder

Betreuer/in: Timm Felden

Beginn am: 22. Februar 2016

Beendet am: 23. August 2016

CR-Nummer: D.m

Kurzfassung

Um die Programmanalyse mit Bauhaus zu vereinfachen, habe ich ein Steuerungs-Werkzeug

für Bauhaus entwickelt. Dieses Werkzeug ermöglicht die automatisierte Ausführung von

Bauhauswerkzeugen in Unkenntnis deren Abhängigkeiten. In dieser Ausarbeitung wird die

Funktionsweise dieses Werkzeuges, sowie seine Realisierung beschrieben, sowie eine Analyse

der für ein solches Werkzeug relevanten Eigenschaften von Bauhaus.

3

Inhaltsverzeichnis

1. Einleitung 7
1.1. Ziel der Arbeit . 7

1.2. Verwandte Arbeiten . 7

1.3. Anforderungen . 8

1.4. Was ist Bauhaus? . 8

1.5. Alternativen . 8

2. Analyse 9
2.1. Anwendungsfälle . 9

2.2. Abhängigkeiten . 10

2.3. Vorteile eines Steuerungs-Werkzeugs . 13

2.4. Annahmen . 14

2.5. Voraussetzungen für die Ausführung . 15

3. Methodik der Umsetzung 17
3.1. Kon�gurierbarkeit . 17

3.2. Automatisierte Analyse . 20

3.3. Wiederholbarkeit . 22

3.4. Präferenzmechanismus . 22

4. Realisierung 25
4.1. Architektur . 25

4.2. Designentscheidungen . 31

4.3. Bedienung des Werkzeugs . 37

4.4. Tests . 39

4.5. Laufzeit . 47

5. Zusammenfassung und Ausblick 49

Literaturverzeichnis 51

A. Vollständige Konfiguration 55

5

1. Einleitung

Bauhaus ist ein Projekt, welches von der Universität Stuttgart, in Kooperation mit der Uni-

versität Bremen und der Firma Axivion entwickelt wird. Bauhaus besteht momentan aus 128

Analysewerkzeugen, welche einzeln ausgeführt werden. Die hohe Anzahl an Werkzeugen, so-

wie die verzweigten Abhängigkeiten zwischen diesen, erschweren die Benutzung von Bauhaus.

Um die Nutzung zu erleichtern, soll ein Steuerungs-Werkzeug entwickelt werden, welches die

Ausführung der Werkzeuge automatisiert. In dieser Arbeit wird die Entwicklung eines solchen

Werkzeuges beschrieben.

1.1. Ziel der Arbeit

Das Ziel der Arbeit ist die Entwicklung eines Werkzeuges, welches die Analyse mit Bauhaus-

Werkzeugen steuern kann. Das Werkzeug soll in der Lage sein, die Abhängigkeiten zwischen

Bauhaus-Werkzeugen aufzulösen und es somit einem Anwender ermöglichen, Analysen mit

Bauhaus in Unkenntnis dieser Abhängigkeiten durchzuführen.

Es soll die Nutzung von Bauhaus erleichtern und den Aufwand, den ein Nutzer für eine Analyse

aufwänden muss verringern.

Das Steuerungs-Werkzeug muss eine korrekte Ausführung ermöglichen, sowie einfach zu

Bedienen sein. Zudem sollte es Funktionen bereitstellen, welche einem Anwender die korrekte

Nutzung erleichtern.

1.2. Verwandte Arbeiten

Es existiert zur Zeit ein make basiertes Skript zur Automatisierten Analyse[IST16b]. Dieser

Ansatz kann die Anforderungen an eine Automatisierte Analyse nicht vollständig abdecken.

Beispielsweise ist die Ausführung von manchen Werkzeugen, wie dem Werkzeug cobra

nicht möglich und die Parametrisierung der Werkzeuge kann nicht einfach verändert werden.

Um eine Analyse beispielsweise mit veränderten Parametern zu wiederholen ist make also

ungeeignet. Des weiteren muss der Analysepfad in den Dateinamen kodiert sein, damit die

Analyse ausgeführt werden kann.

7

1. Einleitung

1.3. Anforderungen

Laut Aufgabenstellung muss das im Rahmen dieser Arbeit entwickelte Steuerungs-Werkzeug

folgende Anforderungen erfüllen [16a]:

• Kon�gurierbarkeit das Steuerungs-Werkzeug muss leicht kon�guriert und erweitert

werden können. Diese Kon�guration muss es ermöglichen, die Abhängigkeiten zwischen

Werkzeugen global zu kon�gurieren.

• Automatisierte Analyse mit Hilfe des Steuerungs-Werkzeugs muss ein Anwender

Analysen in Unkenntnis der Abhängigkeiten ausführen können.

• Wiederholbarkeit ausgeführte Analysen müssen vollständig oder Teilweise wiederholt

werden können.

• Präferenzmechanismus es soll ein Präferenzmechanismus für Werkzeuge, die über

mehrere Abhängigkeitspfade erreichbar sind gescha�en werden. Des weiteren soll es

möglich sein, die Parametrisierung von Werkzeugen für unterschiedliche Pfade unter-

schiedlich zu wählen.

1.4. Was ist Bauhaus?

Wie man der Homepage des Bauhausprojekts [16c] entnehmen kann, handelt es sich bei

Bauhaus um eine Software zur Programmanalyse. Wie bereits erwähnt, ist das Projekt eine

Kooperation. Laut der Bauhaus Homepage ist die Verteilung der Aufgaben wie folgt:

Während in Stuttgart vor allem Analysen des Programmverhaltens erforscht

werden, widmet sich Bremen vorrangig den Architektur-bezogenen Themen. Axi-

vion vermarktet die entwickelten Analysewerkzeuge, die für den kommerziellen

Einsatz ausreichend ausgereift sind.

[16c]

Genauere Informationen über Bauhaus, wie beispielsweise über die Schwerpunktthemen oder

über vorhandene Funktionalitäten, können der Bauhaus Homepage [16c], der Bauhaus Demo

Website [16b] oder der Präsentation [pr\IeC {\"a}sent] entnommen werden.

1.5. Alternativen

Eine Alternative zu einem Steuerungs-Werkzeug ist der bereits erwähnte make basierte Ansatz.

Diese Alternative kann jedoch nicht alle Funktionen bereitstellen, die für eine korrekte und

einfache Steuerung von Bauhaus benötigt werden.

8

2. Analyse

2.1. Anwendungsfälle

Hauptsächlich lassen sich zwei Gruppen von Anwendern unterscheiden:

1. Entwickler

2. Reviewer

3. Bauhausentwickler

4. Bauhaus-Systemtest

Entwickler Ein Entwickler nutzt Bauhaus, um den von ihm geschriebenen Quellcode zu

analysieren und anschließend zu optimieren. Die Analyse kann entweder sehr spezi�sch

geplant sein und darauf ausgerichtet, wenige Kriterien genau zu prüfen, oder sie wird eher

breit angelegt, um möglichst viele Aspekte abzudecken.

Im ersten Fall wird der Entwickler eine bestimmte Analyse öfter wiederholen, und zwischen

den Ausführungen seinen Code optimieren. Das bedeutet, er muss eine Reihe von Werkzeu-

gen immer wieder in der richtigen Reihenfolge ausführen. Dafür muss der Anwender jedes

Werkzeug einzeln aufrufen. Durch die Teilweise sehr hohe Analysedauer mancher Werkzeuge

muss er oft lange warten, bevor er das nächste Werkzeug starten kann. Das bedeutet, er muss

immer wieder seine Arbeit unterbrechen, um nachzusehen, ob das zuletzt gestartete Werkzeug

bereits beendet ist, um danach das nächste Werkzeug zu starten, weshalb eine solche Analyse

seine sonstige Arbeit blockieren und seinen Durchsatz deutlich verringern würde.

Im zweiten Fall wird der Anwender viele verschiedene Werkzeuge ausführen. Da es momentan

über 100 Werkzeuge gibt, die häu�g über verschiedene Abhängigkeitspfade erreichbar sind,

kann man nicht davon ausgehen, dass der Anwender alle Abhängigkeiten zwischen Werkzeu-

gen kennt, weshalb dieser während dieses Vorgangs des öfteren die Dokumentation danach

durchsuchen muss. Des weiteren haben die Bauhaus Werkzeuge keine einheitliche Parame-

trisierung, sodass ein Anwender nicht nur die Abhängigkeiten zwischen den Werkzeugen,

sondern auch die für den Aufruf erforderlichen Parameter recherchieren muss.

9

2. Analyse

Reviewer Ein Reviewer hat das Ziel, ihm vorgelegten Code zu Analysieren, um zu ent-

scheiden, ob beispielsweise eine Software eingekauft werden soll, oder ein Softwareprodukt

so freigegeben werden kann. Dieser Anwendungsfall ist mit dem zweiten, im Abschnitt 2.1

beschriebenen Fall vergleichbar. Der Reviewer würde ebenfalls eine breit angelegte Analy-

se starten, bei der er viele verschiedene Werkzeuge ausführen muss, wobei er stets deren

Abhängigkeiten und erforderlichen Parameter ermitteln muss.

Bauhaus-Entwickler Ein Bauhausentwickler, der ein neues Werkzeug entwickelt, möchte

dieses im Zusammenhang mit den bereits existierenden Werkzeugen testen. Um die Funktiona-

lität seines Werkzeugs generell zu testen, muss er geeignete Eingabedateien erzeugen, welche

sein Werkzeug zur Analyse benötigt. Zusätzlich muss er sicherstellen, dass alle möglichen

Abhängigkeitspfade, über die sein Werkzeug erreichbar sein soll, auch zu einem Sinnvollen

Ergebnis führen.

Hierzu muss der Bauhaus-Entwickler zunächst sämtliche Abhängigkeiten zu seinem Werkzeug

au�ösen und danach jedes einzelne Werkzeug auf diesen Abhängigkeitspfaden ausführen.

Bauhaus-Systemtest Beim Bauhaus-Systemtest werden alle Werkzeuge getestet. Hierzu

müssen sämtliche Abhängigkeiten aufgelöst und Pfade gefunden werden, mit denen alle

Werkzeuge abgedeckt werden können.

2.2. Abhängigkeiten

Die einzelnen Bauhaus Werkzeuge haben untereinander Abhängigkeiten, insofern, dass ein

Werkzeug mit den Ergebnissen eines anderen Werkzeuges arbeitet, wodurch letzteres zwangs-

läu�g zuerst ausgeführt werden muss. Betrachtet man diese Abhängigkeiten global, so lässt

sich daraus ein Abhängigkeitsgraph konstruieren. Der so generierte Graph enthält nur direk-

te Abhängigkeiten. Für eine Analyse ist es jedoch häu�g sinnvoll, nicht nur die minimalen

Berechnungen durchzuführen, sondern weiterführende Analyseschritte dazwischen einzu-

schieben, weshalb es ratsam ist, einen Abhängigkeitsgraphen zu betrachten, der neben direkten

auch indirekte Abhängigkeiten enthält. Haben zwei Werkzeuge a und b die gleiche direkte

Abhängigkeit, können also beide die gleiche Eingabe verarbeiten, Werkzeug a kann jedoch

auch das Ergebnis, welches von b direkt, oder über beliebig viele andere Werkzeuge erzeugt

wurde verarbeiten, ist a indirekt von b abhängig, genauso wie von den anderen gegebenenfalls

verwendeten Werkzeugen.

Ein beispielhafter Abhängigkeitsgraph wurde mir in Form einer .dot Datei bereitgestellt. Siehe

Abbildung 2.1. Dieser Graph ist eine grobe Veranschaulichung der Abhängigkeiten in Bauhaus.

Die vollständigen Abhängigkeiten sind der Dokumentation zu entnehmen [IST16a].

10

2.2. Abhängigkeiten

C source

SourceCollector Java source

jafe(5)

iml object: *.iml / *.o

imllink

*.iml

imldump

iml2cg

iml2cfg

iml2dot iml2html imlstat ccdiml cobra

iml2rfg

ecr_tool das_tool anderson_tool

pta_tool

function_names

*.cg

*.cfg

generate_simple_locators
(compatible to ecr_tool only)

generate_pta_locators
???

imlrefpar cfg2ptf

*.pcfg
(obtained over the pta path)

thread_tool

*.ptf

iml_dead_functions ptf2mod

*.mod

closures mod2ssa

*.ssa

ssa2cg ssa_uninits slicer traces

*.pta

concurrency.config
+ nonconcurrency.config

*.tt

raceq statsdra_filter partition_tool

raceview

ssa_analysis

*.rfg

rfg2gxl

gravis

rfglink

.xxx.dot.xxx.gxl

cafeCC

giant
compiles but how to use it?

partitio

SymTA/S based
CC provider

Abbildung 2.1.: Graphische Repräsentation des bereitgestellten Abhängigkeitsgraphen

11

2. Analyse

In dieser Darstellung fehlen einige Knoten. Hier erscheint es so, dass manche Werkzeuge eine

Ausgabedatei erzeugen, andere jedoch direkt mit anderen Werkzeugen verbunden sind, ohne

dass eine Datei dazwischen generiert wird. Diese Fälle gibt es bei den dargestellten Werkzeugen

jedoch nicht. Jedes Werkzeug, welches in diesem Graph ausgehende Kanten besitzt, erzeugt eine

Datei als Ausgabe. Einige Werkzeuge erzeugen keine Dateien, sondern stellen eine graphische

Ober�äche bereit um ihre Ergebnisse anzuzeigen. Diese Werkzeuge besitzen in dem Graph

keine Ausgehenden Kanten. Es gibt jedoch auch Werkzeuge, die in diesem Graphen keine

ausgehenden Kanten besitzen, aber trotzdem eine Ausgabedatei erzeugen. Dies Bedeutet, dass

in einem vollständig de�nierten Abhängigkeitsgraphen für Bauhaus nur Kanten zwischen

Werkzeugen und Dateitypen existieren.

Betrachtet man den Vollständigen Abhängigkeitsgraphen genauer, so kann man folgendes

Feststellen:

Ein Werkzeug kann immer nur eine Datei als Ein- oder Ausgabe verwenden. Es ist in Bauhaus

nicht möglich ein Werkzeug als Eingabe für ein anderes Werkzeug zu benutzen, oder als

Ergebnis eines anderen Werkzeugs zu erzeugen. Da eingehende Kanten in einen Knoten, der

ein Werkzeug repräsentiert eine mögliche Eingabe, und Ausgehende Kanten eine Ausgabe

darstellen, können keine Kanten zwischen zwei Werkzeugen vorkommen. Da Dateien keine Ein-

oder Ausgabe erzeugen können, sondern lediglich als solche dienen, kann auch keine Kante

zwischen zwei Dateitypen vorkommen. Demzufolge ist der Abhängigkeitsgraph bipartit.

Da eine Kante entweder Ein- oder Ausgabe darstellt, zeigt sie zwangsläu�g in eine Richtung.

Für eine Eingabe muss eine Datei in ein Werkzeug hineingegeben werden, für eine Ausgabe

gibt das Werkzeug die Datei heraus. Daraus folgt, dass der Graph gerichtet ist.

Rein theoretisch ist es keine zwingende Eigenschaft des Abhängigkeitsgraphen keine Zyklen

zu enthalten, da er nicht nur direkte, sondern auch indirekte Abhängigkeiten enthält. Würde

der Graph nur direkte Abhängigkeiten enthalten, so wären Zyklen ausgeschlossen, da ein

Werkzeug nie ausgeführt werden kann bevor es ausgeführt wird, es kann also nicht direkt von

sich selbst abhängen. Es spricht jedoch zunächst nichts dagegen, dass ein Werkzeug seine eigene

Ausgabedatei als Eingabe akzeptiert. Ich gehe trotzdem von der Annahme aus, dass der Graph

azyklisch ist, da es in der Praxis keinen Sinn ergibt, einem Werkzeug seine Eigene Ausgabedatei

als Eingabedatei zu übergeben. In diesem Fall steht dem Werkzeug keine neue Information

zur Verfügung, die bei der ersten Ausführung nicht vorhanden war. Ein weiterer Grund dafür

ist, dass Dateitypen in dem Abhängigkeitsgraphen den Informationsgehalt darstellen. Durch

weitere Analysen werden immer mehr Informationen gesammelt, welche in die jeweilige

Ausgabedatei geschrieben werden, was bedeutet, dass eine Datei mehr Informationen enthält,

je weiter ihr Dateityp im Abhängigkeitsgraphen von einer Quelle des Graphen entfernt ist.

Betrachtet man nun einen Fall, indem dem Ergebnis eines Werkzeuges von einem anderen

Werkzeug weitere Informationen hinzugefügt werden, mit denen das erste Werkzeug nun

ebenfalls neue Erkenntnisse sammeln kann, so macht es keinen Sinn den gleichen Dateityp für

die Ausgabe zu benutzen, da dieser für den geringeren Informationsgehalt steht. Erzeugt man

hier nun einen weiteren Dateityp, der dem ursprünglichen zwar ähnelt, jedoch verdeutlicht,

dass hier mehr Informationen enthalten sind, kann man das Werkzeug ein zweites Mal mit

12

2.3. Vorteile eines Steuerungs-Werkzeugs

diesem Dateityp als Eingabe und einer veränderten Ausgabe kon�gurieren. Nun kann das

gleiche Werkzeug an einer anderen Stelle im Graph eine andere Rolle einnehmen, und damit

auch indirekt seine eigene Ausgabe akzeptieren, jedoch nicht erneut die gleiche Ausgabe

erzeugen, wodurch hier kein Zyklus entsteht.

Zyklen im Graph zu vermeiden ist notwendig um zu gewährleisten, dass bei gleichem Aufruf

auch die gleichen Werkzeuge ausgeführt werden. Ein Zyklus im Graph kann beliebig oft

durchlaufen werden, sodass ein Pfad in dem Abhängigkeitsgraph nicht eindeutig identi�zierbar

ist, weshalb man bei der Ausführung entweder eine feste Anzahl an Durchläufen wählen, oder

den Zyklus ignorieren muss. Beides ist auf die oben genannte Weise machbar, ohne den Zyklus

wirklich in den Abhängigkeitsgraphen einzubauen.

Es ergibt sich also die Annahme, dass es sich bei dem Abhängigkeitsgraphen um einen bi-

partiten, gerichteten, azyklischen Graphen handelt, wobei sich die Annahme der Freiheit

von Zyklen, lediglich auf den für die automatische Analyse angepassten Graphen bezieht,

jedoch nicht zwangsläu�g so sein muss. Diese Annahme habe ich aus praktischen Grün-

den getro�en, um eine automatisierte Analyse, bei welcher der Ablauf durch den Aufruf des

Steuerungs-Werkzeugs vollständig de�niert ist, zu ermöglichen.

Ich betrachte in dieser Arbeit nur sinnvolle, also nicht alle möglichen Analysepfade. Es ist

Beispielsweise möglich, ein Werkzeug zu verwenden, welches bei jeder Ausführung zufällig

irgendeine Analyse ausführt. Ein solches Werkzeug wäre nach den oben genannten Bedingun-

gen nicht zu kon�gurieren, es wäre jedoch in keinem Anwendungsfall sinnvoll, ein solches

Werkzeug zu benutzen. Ich betrachte solche Werkzeuge, welche bei gleichem Aufruf, das heißt

bei gleicher Eingabedatei und gleicher Parametrisierung, auch jedes Mal die gleiche Analyse

durchführen, um selbst Konsistenz zu gewährleisten.

2.3. Vorteile eines Steuerungs-Werkzeugs

Der größte Vorteil eines Werkzeugs zu Steuerung von Bauhaus ist die Analyse in Unkenntnis

der Abhängigkeiten. Kennt das Steuerungs-Werkzeug sowohl die Abhängigkeiten zwischen

den Werkzeugen, als auch die nötigen Parameter um ein Werkzeug auszuführen, so muss

ein Anwender nur noch angeben was er Analysieren möchte und das Steuerungs-Werkzeug

übernimmt die Analyse für ihn.

Selbst wenn der Anwender alle Abhängigkeiten kennt, nimmt ihm das Werkzeug Arbeit ab, da

er für jeden Pfad des Abhängigkeitsgraphen, welchen er ausführen möchte, nur einen Aufruf

benötigt, anstatt für jedes Werkzeug einen Aufruf zu benötigen.

Ein weiterer Vorteil den ein solches Werkzeug bietet, ist die Möglichkeit eine Analyse zu

Wiederholen. Ohne so ein Werkzeug ist die Wiederholung einer Analyse genauso aufwendig,

wie die erste Analyse.

13

2. Analyse

Ein Vorteil eines Werkzeuges zur Steuerung gegenüber dem bereits existierenden Make basier-

ten Ansatz ([IST16b]) ist beispielsweise, dass der gewählte Analysepfad nicht in den Dateinamen

kodiert werden muss. Außerdem ist es mit diesem Ansatz nicht möglich Werkzeuge wie cobra

auszuführen, die keine Datei generieren, sondern eine graphische Ober�äche bereitstellen.

Das Steuerungs-Werkzeug ist nicht auf Bauhauswerkzeuge beschränkt. Man könnte beispiels-

weise einen Browser als Anzeigewerkzeug kon�gurieren, welches .html Dateien Anzeigen

kann oder aus generierten .dot-Dateien mit Hilfe der Anwendung dot eine .pdf-Datei erstel-

len.

2.4. Annahmen

In Kombination mit der Eingabe ist also nicht nur das Werkzeug, sondern auch die ausgeführte

Analyse eindeutig identi�zierbar. Der Name des Werkzeugs alleine reicht jedoch nicht aus, wie

man an dem Beispiel des Werkzeuges iml2cfg sieht. Wird diesem Werkzeug eine Datei vom Typ

.pta übergeben, so wird eine Datei von Typ .pcfg erzeugt, bei anderen Eingaben eine vom

Typ .cfg. Eine .pcfg Datei kann von anderen Werkzeugen benutzt werden als eine .cfg Datei.

Diese Variante wird genutzt um einen bestimmten Pfad zu bedingen. Für die Analysen, welche

mit einer .pcfg Datei weiterführend durchgeführt werden können, ist es notwendig zuerst die

Notwendigen Analysen durchzuführen um eine .pta Datei zu erstellen. Dies ist wichtig um

während der Ausführung stets das richtige Werkzeug zu verwenden. Dies bedeutet ebenfalls,

dass man bei bekannter Eingabe und Namen auf den genauen Aufruf des Werkzeuges schließen

kann, was wiederum bedeutet, dass die erzeugte Ausgabe eines Werkzeugs ebenfalls durch

die Eingabe und den Namen de�niert ist. Die erzeugte Ausgabe eines Werkzeuges eindeutig

der Eingabe zuzuordnen bedeutet, bei gleicher Eingabe auch die gleiche Ausgabe zu erzeugen.

Dies schränkt die Ausführung nicht ein, sondern lediglich die Variation an Dateiendungen, die

man einer Datei mit dem gleichen Informationsgehalt geben kann. In der Praxis ist es einem

Werkzeug oft egal, welche Endung die Datei hat, solange sie die richtigen Informationen enthält.

Dies erleichtert die Kon�guration, da man jedem Werkzeug einen eindeutigen Ausgabetyp

zuweisen kann, ohne dabei die Funktionalität oder die Kompatibilität zwischen Werkzeugen

zu beein�ussen.

Für jedes Werkzeug kann mit dem Parameter -config_dir der Pfad zu einer Werkzeugkon�-

guration angegeben werden. Dieser Parameter wird in Bauhaus–commandline.adb de�niert

und sollte daher in jedem Werkzeug vorhanden sein.

Jedes Werkzeug kann aus der eingegebenen Datei auslesen, mit welchen Parametern zuvor

ausgeführte Analysen gelaufen sind. Dies kann aus den Tool_Infos von Bauhaus ausgelesen

werden, welche jedes Werkzeug p�egen sollte.

14

2.5. Voraussetzungen für die Ausführung

2.5. Voraussetzungen für die Ausführung

Um eine korrekte Ausführung zu ermöglichen, müssen alle Werkzeuge, die verwendet werden

sollen gebaut und ausführbar sein. Ausführbar bedeutet hier, dass jedes Werkzeug in Unkennt-

nis des genauen Verzeichnisses in dem es liegt, aufgerufen werden kann, so als würde man das

Werkzeug über eine Konsole starten.

15

3. Methodik der Umsetzung

3.1. Konfigurierbarkeit

Die Kon�guration des Analyse-Werkzeugs muss einerseits die Abhängigkeiten zwischen den

Werkzeugen und andererseits die Parametrisierung für jedes einzelne Werkzeug beinhalten. Um

diese Anforderung der Kon�gurierbarkeit des Analyse-Werkzeugs abzudecken, habe ich mich

dafür Entschieden, für jedes zu Kon�gurierende Werkzeug eine eigene Kon�gurationsdatei zu

erstellen. Zusätzlich zu den Werkzeugkon�gurationen gibt es noch eine Basiskon�guration.

Mit einer Kon�gurationsdatei müssen verschiedene Arten von Werkzeugen abgedeckt werden.

Standard Analyse Werkzeuge, Anzeigewerkzeuge und Kon�gurationswerkzeuge.

Standard Analyse Werkzeuge sind die häu�gste und einfachste Form. Sie bekommen eine

Eingabedatei zur Analyse und generieren eine Ausgabedatei, die gesammelte Informationen

enthält. Die erzeugten Ausgabedateien können von anderen Werkzeugen weiter verwendet

werden.

Anzeigewerkzeuge bekommen ebenfalls eine Eingabedatei, die sie Analysieren, das Ergebnis

der Analyse wird jedoch nicht in eine weitere Analysedatei geschrieben, sondern so aufbereitet,

dass der Anwender diese Informationen sehen kann. Hierzu können entweder Dateien in einem

zur Anzeige geeigneten Format erstellt werden, wie Beispielsweise .dot oder .html, oder das

Werkzeug stellt selbst eine graphische Ober�äche bereit.

Die dritte Art Werkzeug, die Kon�gurationswerkzeuge, erstellen aus der eingegebenen Datei

eine Kon�gurationsdatei, die von anderen Tools benutzt wird. Diese Datei wird dann an einen

kon�gurierten Ort gespeichert, wo sie von dem zu kon�gurierenden Werkzeug genutzt werden

kann.

Abhängig von der Art des Werkzeugs, enthält die Kon�gurationsdatei andere Werte.

Für alle Arten von Werkzeugen enthält die Kon�gurationsdatei den Namen des Werkzeugs,

die kon�gurierten Parameter und die möglichen Eingabedateien. Des Weiteren können jedem

Werkzeug Prädikate hinzugefügt werden. Die Bedeutung der Prädikate wird im Abschnitt

3.4 erklärt. Der Name des Werkzeugs entspricht dabei dem Befehl um das Werkzeug in einer

Konsole auszuführen. Es ist auch möglich eine .sh-Datei anzugeben. Die Parameter entspre-

chen den Parametern eines Aufrufs in der Konsole, wobei Ein- und Ausgabedateien durch

Escapesequenzen dargestellt werden, die dann während der Ausführung durch die passenden

Dateinamen ersetzt werden. Für die möglichen Eingabedateien werden nur die Endungen,

17

3. Methodik der Umsetzung

beginnend mit einem Punkt de�niert. Eingabedateien bilden eingehende Kanten im Abhän-

gigkeitsgraphen ab, wobei der Abhängigkeitsgraph für den entsprechenden Dateityp einen

Knoten enthält, von dem dann eine Kante zu dem Kon�gurierten Werkzeug führt.

Für Standard Analyse Tools enthält die Kon�guration mögliche Ausgabedateien. Wie bei

den Eingabedateien werden für die Ausgabedateien lediglich die Endungen angegeben. Es

ist möglich, hier mehrere Werte anzugeben, was jedoch bedeutet, dass aus allen kon�gurier-

ten Eingabedateien alle möglichen Ausgabedateien erzeugt werden können, abhängig vom

entsprechenden Aufruf oder von nachfolgenden Werkzeugen.

Ein Beispiel für ein Standard Werkzeug wäre pta_tool. Der Name ist pta_tool, da das Werk-

zeug so aufgerufen wird. Als mögliche Eingabedateien können beispielsweise .iml und .cfg

kon�guriert werden. Beide Eingaben erzeugen eine Datei vom Typ .pta als Ergebnis. Um

pta_tool auszuführen, gibt man zum Beispiel pta_tool -o bsp.pta bsp.iml in eine Kon-

sole ein, wobei bsp.pta das Ergebnis und bsp.iml die Eingabedatei ist. In der Kon�guration

würde für die Parameter also folgende Liste stehen: ["-o", "&o", "&i"]. &o steht für die

Ausgabe, also in diesem Fall bsp.pta und &i für die Eingabe, also bsp.iml.

Hat ein Werkzeug eine Restriktion, in der Art, dass eine bestimmte Eingabe auch eine bestimm-

te Ausgabe erzeugt, während andere Eingaben andere Ausgaben erzeugen, so muss dieses

Werkzeug mehrmals kon�guriert werden.

Dies kann man am Beispiel des Werkzeuges iml2cfg sehen. Erhält dieses Werkzeug eine Datei

vom Type .pta als Eingabe, so wird eine Datei vom Typ .pcfg generiert, bei anderen Eingaben,

die beispielsweise vom Typ .iml, .cg oder .ecr sein können, wird jedoch eine Datei vom Typ

.cfg erzeugt.

Für iml2cfg gäbe es also zwei verschiedene Kon�gurationen: Beide hätten als Namen iml2cfg

da der Aufruf der gleiche bleibt. Aus diesem Grund kann man auch die Parameter gleich

kon�gurieren, beispielsweise ["&i", "&o"], oder auch für beide Fälle unterschiedlich. Bei

den Ein- und Ausgaben würden sich die Kon�gurationen de�nitiv unterscheiden. Für den

ersten Fall wären als mögliche Eingaben nur .pta kon�guriert und als Ausgaben nur .pcfg,

im zweiten Fall wären .iml, .cg und .ecr als mögliche Eingaben und .cfg als Ausgabe

kon�guriert. Beide Kon�gurationen werden wie zwei unterschiedliche Werkzeuge betrachtet

und auch so behandelt.

Kon�gurationen für Anzeige und Kon�gurationswerkzeuge enthalten jeweils einen entspre-

chenden booleschen Wert, der angibt, dass es sich um die jeweilige Art von Werkzeug handelt.

Kon�gurationen für Standard Analyse Werkzeuge können diese Beiden Parameter ebenfalls

enthalten, diese müssen dann aber auf false gesetzt werden.

Für Anzeige Werkzeuge können ebenfalls Ausgabedateien kon�guriert werden, wie bei Stan-

dard Analyse Tools, hier ist dieser Wert jedoch optional, da ein Anzeige Werkzeug zwar Dateien

generieren kann, es jedoch nicht muss.

Das Werkzeug cobra ist ein Beispiel für ein Werkzeug, welches eine graphische Ober�äche

bereitstellt und keine Ausgabedatei generiert. Die Kon�guration sähe wie folgt aus: Als Name

18

3.1. Konfigurierbarkeit

wäre cobra kon�guriert. Als Eingaben könnten Beispielsweise .iml, .tt und .cfg kon�guriert

sein, die Liste für die Ausgabedateien wäre leer. Als Parameter reicht folgende Liste: ["&i"],

denn cobra benötigt nur eine Eingabedatei. Um kenntlich zu machen, dass es sich um ein

Werkzeug zur Anzeige handelt, würde der Wert isToolForDisplay auf true gesetzt werden.

Kon�gurationen für Kon�gurationswerkzeuge enthalten zusätzlich zu den bereits genannten

Werten eine Liste an Werkzeugen, für welche sie eine Kon�guration bereitstellen. Zudem wird

bei dieser Art Werkzeug der Pfad für die generierte Kon�gurationsdatei als Ziel angegeben

anstatt nur die Dateiendung.

Als Beispiel hier das Werkzeug symta: Als Name des Werkzeuges wird hier symta.sh ange-

geben, da es sich hierbei um eine Java Applikation handelt, die als .jar-Datei zur Verfü-

gung steht. .jar-Dateien werden Momentan nicht unterstützt, weshalb ich hier den Aufruf

java -jar symta.jar in die Datei symta.sh gekapselt habe um das Werkzeug ausführen zu

können. symta erwartet zwei Dateien als Eingabe: Eine Datei vom Typ .func_name, welche die

Ausgabe des Werkzeuges function_names darstellt und eine .csv-Datei. Momentan wird nur

eine Eingabedatei unterstützt, weshalb hier die .csv-Datei in der Kon�guration fest angegeben

werden muss. Die Parameter für symta könnten beispielsweise ["&i", "bsp.symta.csv"]

lauten und als Zieldatei wäre Concurrency.config angegeben. Die angegebene Zieldatei wird

von dem Werkzeug in diesem Fall zwar nicht verwendet, es ist jedoch nicht vorgesehen für

Kon�gurationswerkzeuge keine Zieldatei anzugeben. Der Eingabetyp wäre [".func_name"]

und da es sich um ein Kon�gurationswerkzeug handelt, muss bei der Kon�guration der Wert

für isToolForCon�g auf true gesetzt werden.

Für jedes Werkzeug, egal von welchem Typ, kann zusätzlich eine Liste von Prädikaten angege-

ben werden. Die Bedeutung dieser Liste wird im Abschnitt 3.4 näher erläutert.

Die Basiskon�guration enthält lediglich eine Liste an Pfaden zu den einzelnen Kon�gurati-

onsdateien, sowie einen Quelldateityp. Die Angabe des Quelldateityps erleichtert den Aufbau

des Abhängigkeitsgraphen, da man diesen nicht erst ermitteln muss. Durch die Kon�guration

der Pfade zu Kon�gurationsdateien kann der Anwender mit geringem Aufwand verschiedene

Kon�gurationen, für verschiedene Sets von Werkzeugen p�egen, ohne jedes mal alle Dateien

austauschen zu müssen.

Für jedes Werkzeug kann eigener Code in der Kon�guration angegeben werden, welcher

nach der Ausführung des Werkzeuges ausgeführt wird. Hierfür wird der Pfad zu einer

.class-Datei in der Kon�guration eingetragen. Beispielsweise für das Werkzeug symta

mit dem Kon�gurationseintrag /home/baueras/resources/AfterSymta.class für den Wert

afterExecutionClass.

19

3. Methodik der Umsetzung

3.2. Automatisierte Analyse

Eine Analyse besteht aus zwei Teilen: dem Suchen des passenden Pfades im Abhängigkeitsgra-

phen und der Ausführung der Werkzeuge.

Da für die korrekte Funktionalität des Analyse-Werkzeuges vorausgesetzt wird, dass alle

Werkzeuge gebaut und auch Verfügbar sind, müssen die entsprechenden Werkzeuge nur

mit den jeweils kon�gurierten Parametern Aufgerufen werden. Durch die Annahme, dass

ein Pfad im Abhängigkeitsgraphen keine Verzweigung enthält, und somit auch nie zwei

Werkzeuge parallel ausgeführt werden können, da jedes Werkzeug genau das Ergebnis eines

vorangegangenen Werkzeuges benötigt, habe ich eine rein sequentielle Ausführung gewählt.

Für jedes Zwischenergebnis wird dabei eine Temporäre Datei erstellt.

Den richtigen Pfad für eine Analyse zu berechnen, ist hier der wesentlich höhere Aufwand. Un-

abhängig von dem Anwendungsfall, muss der Pfad immer mit dem Dateityp der Eingabedatei

beginnen und die Zieldatei zumindest enthalten. Außerdem muss der Pfad zusammenhängend

sein und darf keine Elemente mehr als einmal enthalten, oder Verzweigungen beinhalten. Für

den einfachsten Anwendungsfall hat der Pfad genau diese Eigenschaften, mit der Spezialisie-

rung, dass die Zieldatei das Ende des Pfades darstellt. Er beginnt mit der Eingabe- und endet mit

der Zieldatei. Ein so de�nierter Pfad ist in dem Graphen nicht eindeutig, also muss eine weitere

Einschränkung gewählt werden. Aus diesem Grund habe ich hier die Annahme getro�en, dass

eine so gestartete Analyse nur das Ziel hat eine Datei vom Typ der eingegebenen Zieldatei zu

erstellen, ohne dass dabei mehr Analysen als notwendig ausgeführt werden. Um diesen Fall

abzubilden, wird bei nicht näher spezi�zierten Eingabe lediglich der kürzeste Pfad zwischen

der Eingabe- und der Zieldatei ermittelt und ausgeführt. Zur Ermittlung des kürzesten Pfades

benutze ich eine Breitensuche, bei der Vorgängerknoten gespeichert werden. Dies ist möglich,

da der Abhängigkeitsgraph gerichtet und azyklisch ist.

Ein derart einfacher Aufruf schließt einige Werkzeuge zwangsläu�g aus, da diese keine Ausga-

bedateien generieren, sondern eine graphische Ober�äche bereitstellen. Solche Werkzeuge

müssen in einem Aufruf explizit genannt werden, um sie bei einer Analyse benutzen zu können.

Die explizite Nennung eines oder mehrerer Werkzeuge, beschreibt einen genaueren Pfad für

eine Analyse. Ein solcher Aufruf kann den Pfad einfach nur um ein entsprechendes Anzeige-

werkzeug erweitern, er kann allerdings auch einen längeren weg zwischen Ein- und Ausgabe

de�nieren. Zur Berechnung eines solchen Pfades, müssen die eingegebenen Werkzeuge und

die Zieldatei zunächst in eine Sinnvolle Reihenfolge gebracht werden. Hierzu wird zunächst

eine Liste bestehend aus der Zieldatei und jedem eingegebenen Werkzeug erstellt und jedem

Element dieser Liste eine Zahl aj zugeordnet, die angibt, wie viele der eingegebenen Werkzeuge

im Abhängigkeitsgraph von diesem Werkzeug aus erreicht werden können. Dies wird mittels

Breitensuche ermittelt. Diese Zahlen haben folgende Eigenschaften:

• 0 ≤ i ≤ n

• 0 ≤ ai ≤ n

20

3.2. Automatisierte Analyse

• Für alle ai, aj mit i 6= j gilt ai 6= aj

n ist hier die Anzahl der explizit eingegebenen Werkzeuge. Ist eine dieser Eigenschaften nicht

erfüllt, ist die Eingabe ungültig, da die Elemente der Liste nicht auf dem gleichen Pfad liegen.

Die erste Eigenschaft bedeutet, dass jedem Element eine eigene Zahl zugeordnet wird. Die zwei-

te Eigenschaft ist immer erfüllt, da eines der Elemente nicht mehr Nachfolger haben kann, als

Elemente existieren, die ein Nachfolger sein könnten. Die dritte Eigenschaft stellt sicher, dass

alle eingegebenen Elemente auf dem gleichen Pfad liegen, da in einem Pfad nie zwei Elemente

die gleiche Anzahl an Nachfolgern besitzen können. Sortiert man diese Liste nun absteigend

nach den ai, erhält man die korrekte Reihenfolge für die Ausführung. Zwischen den Werkzeu-

gen können durchaus noch weitere Werkzeuge liegen, die nicht explizit eingegeben wurden.

Aus diesem Grund wird nun jeweils der kürzeste Pfad zwischen zwei aufeinanderfolgenden

Elementen ermittelt. Anschließend werden diese Pfade in der entsprechenden Reihenfolge an-

einandergereiht, sodass ein valider Pfad entsteht. Die Zieldatei kann dabei an beliebiger Stelle

im Pfad stehen. Falls ein Anzeigewerkzeug angegeben wurde, muss es am Ende stehen, da es

keine Ausgabedatei erzeugt und somit keine weiterführende Analyse ermöglicht. Dabei erhält

dieses Werkzeug nicht zwangsläu�g die letzte erzeugte Datei, sondern die letztmögliche Datei,

die verarbeitet werden kann. Dies ermöglicht die Durchführung von Analysen, deren Ergebnis

nicht angezeigt werden kann, bei gleichzeitiger Anzeige eines Zwischenergebnisses.

Eine weitere Möglichkeit ist die Nutzung eines kon�gurierten Präferenzmechanismus. Diese

Variante wir im Abschnitt 3.4 genauer beschrieben.

Die beiden Möglichkeiten zur genaueren Spezi�kation des gewünschten Pfades sind kombi-

nierbar. Werden beide zusammen verwendet, so wird zwischen den angegebenen Werkzeugen

der durch den Präferenzmechanismus beschriebene Pfad gewählt, anstatt den kürzesten zu

nehmen.

Sämtliche Varianten dieser Berechnung werden nicht auf dem vollständigen Abhängigkeits-

graphen ausgeführt, sondern auf dem Subgraph, der von der eingegebenen Quelldatei aus

erreichbar ist. Jeder valide Pfad geht dadurch von der Wurzel dieses Subgraphen aus, sodass

keine unerreichbaren Werkzeuge berücksichtigt werden. Ist ein Werkzeug oder die Zieldatei

nicht in diesem Subgraph enthalten, so ist eine solche Analyse nicht möglich, beziehungsweise

nicht vorgesehen.

Bei der Automatisierten Analyse �ndet eine Linearisierung der Abhängigkeitspfade statt,

sodass kein Ausführungspfad eine Verzweigung besitzt. Dies bedeutet insbesondere, dass alle

Werkzeuge nur eine einzige Datei als Eingabe erhalten. Dies bildet die Realität nicht vollständig

ab, da manche Werkzeuge, wie beispielsweise iml2cfg mehrere Dateien als Eingabe akzeptie-

ren. Dies ermöglicht parallele Ausführungen von Werkzeugen. Zum Beispiel können ecr_tool

und das_tool beide Ausgeführt werden und die Ergebnisse gemeinsam an iml2cfg übergeben

werden. Diese Art von Analysen konnte ich aus Zeitgründen nicht mehr berücksichtigen, sie

könnten aber in einer Zukünftigen Arbeit behandelt werden.

21

3. Methodik der Umsetzung

3.3. Wiederholbarkeit

Eine Analyse zu wiederholen bedeutet, die gleichen Werkzeuge mit der gleichen Eingabe ein

weiteres Mal auszuführen. Um dies zu ermöglichen, muss der genaue Ablauf einer Analyse

gespeichert werden, sodass die selben Informationen bei einem zweiten Aufruf zur Verfügung

stehen. Bei der nächsten Ausführung wird diese Information dann eingelesen und erneut

Ausgeführt.

Es ist wichtig bei der Wiederholung sämtliche Informationen aus dem ursprünglichen Aufruf

zu Verfügung zu haben, sodass dieser genau nachvollzogen werden kann, deshalb habe ich

mich dafür entschieden, den genauen Aufruf mit sämtlichen Parametern als Identi�kator für

die gespeicherte Ausführung zu verwenden. Des weiteren wird eine Liste von verwendeten

Dateitypen gespeichert, wobei das erste Listenelement dem Typ der Eingabedatei entspricht

und das letzte Element dem Typ der Zieldatei.

Außerdem werden alle Ausgeführten Werkzeuge mit den Verwendeten Parametern gespei-

chert, wobei die Ein- und Ausgabedateien durch Escapesequenzen ersetzt werden, die bei der

Ausführung dann durch sinnvolle Dateinamen ersetzt werden können. Ein Aufruf wird in

genau einer Textdatei gespeichert, wodurch diese durch den Anwender angepasst werden

kann. Beim Einlesen der gespeicherten Datei wird überprüft, ob die verwendeten Dateiformate

zu den jeweiligen Werkzeugen passen, bevor diese Ausgeführt werden. Ansonsten wird die

Kon�guration bei der Wiederholung nicht berücksichtigt, sodass hier die Parametrisierung von

Werkzeugen einmalig verändert werden kann, ohne die Kon�guration anpassen zu müssen.

Des weiteren kann so ein Werkzeug ersetzt, entfernt, oder ein anderes eingefügt werden.

Die Wiederholung kann explizit Ausgeführt werden, wird jedoch auch implizit genutzt, wenn

der Aufruf mit dem Identi�kator des letzten Aufrufs übereinstimmt und es nicht explizit

gewünscht ist keine Wiederholung durchzuführen. Die Implizite Wiederholung wird immer

vollständig ausgeführt und unterscheidet sich daher nicht wesentlich vom ursprünglichen

Aufruf. Wird die Wiederholung jedoch explizit angestoßen, so kann der Anwender wählen,

ob er die Analyse vollständig, oder nur teilweise wiederholen will. Hierzu werden die bei der

letzten Ausführung verwendeten Dateitypen ausgegeben, sodass der Anwender wählen kann,

welchen Teil er davon wiederholen will.

3.4. Präferenzmechanismus

Der Präferenzmechanismus dient dazu, aus mehreren möglichen Pfaden einen bestimmten

auszuwählen, ohne diesen bei jeder Ausführung explizit angeben zu müssen. Um dies zu

ermöglichen, habe ich die Kon�guration von Prädikaten, die den entsprechenden Werkzeu-

gen zugeordnet werden können, hinzugefügt. Diese Prädikate werden in der Kon�guration

angegeben, wobei ein Werkzeug mehrere Prädikate haben kann. Beim Aufruf wird dann ein

gewünschtes Prädikat angegeben, und danach der entsprechende Pfad ermittelt. Hierbei wird

22

3.4. Präferenzmechanismus

vom eingegebenen Dateityp aus dem Pfad, der durch das eingegebene Prädikat beschrieben ist,

gefolgt, solange die Zieldatei noch erreichbar ist.

Der durch Prädikate markierte Pfad kann Werkzeuge enthalten, denen ein anderes oder gar kein

Prädikat zugeordnet ist, weshalb zwischen zwei markierten Werkzeugen immer der kürzeste

Pfad ermittelt wird. Um das nächstgelegene Werkzeug mit dem de�nierten Prädikat zu �nden,

wird eine Breitensuche ausgeführt, bei der ein Pfad nicht weiter verfolgt wird, wenn bereits ein

Werkzeug mit dem De�nierten Prädikat in diesem Pfad gefunden wurde. So erhält man alle vom

momentanen Knoten direkt erreichbaren Werkzeuge mit dem Prädikat. Wird in einem Schritt

mehr als ein Werkzeug gefunden, so wird, mit der gleichen Methode wie im Abschnitt 3.2

für explizit eingegebene Werkzeuge beschrieben, die Reihenfolge der gefundenen Werkzeuge

ermittelt. Es muss unter den gefundenen Werkzeugen immer genau ein erstes geben, da ein

Prädikat genau einen Pfad markieren soll. Gibt es mehr als ein erstes Werkzeug, so wurden

mehrere parallele Pfade mit dem gleichen Prädikat markiert, wodurch das Prädikat nicht mehr

genau einem Pfad zugeordnet werden kann und deshalb keine eindeutige Ausführung mehr

zulässt. Eine solche Kon�guration ist also ungültig. Bei korrekter Kon�guration wird das

gefundene erste Werkzeug nun genutzt, um von dort aus das nächste mit dem entsprechenden

Prädikat zu suchen.

Es kann immer nur ein gefundenes Werkzeug zum Pfad direkt hinzugefügt werden, da nicht

gewährleistet ist, dass das nächste Werkzeug im durch das Prädikat markierten Pfad von dem

momentan als Ausgangspunkt benutzten Werkzeug direkt erreichbar ist.

Der Pfad ist vollständig, wenn entweder die Zieldatei das Ergebnis eines mit dem Prädikat

markierten Werkzeuges ist, oder kein Pfad vom nächsten gefundenen Werkzeug zu dem

Zieldateityp existiert.

Dies wird am Beispiel in Abbildung 3.1 deutlich.

Der markierte Pfad sei abcdef und die Ausgabe von Werkzeug h die Zieldatei. Hier sind bis

auf c alle Knoten von a aus erreichbar, sodass die Reihenfolge ermittelt werden muss. Das

Ergebnis hiervon ist nun b als direktester Nachfolger as. Hier sieht man nun, dass das vorherige

Ergebnis nicht weiter benutzt werden kann, da es c nicht enthält, und c hier der direkteste

Nachfolger bs ist. Auf diese Weise wird der Pfad nun bis d verfolgt. Nun wäre der nächste

Knoten e, es führt jedoch kein Pfad von e zu h, sodass der Pfad nun noch um den kürzesten

Pfad von e zu h ergänzt wird und darauf das Ergebnis abcdgh lautet.

23

3. Methodik der Umsetzung

a

b

d

e

f

c

g

h

Abbildung 3.1.: Beispiel für die Pfadsuche mit Prädikat

24

4. Realisierung

In diesem Kapitel ist die Implementierung des Steuerungs-Werkzeugs beschrieben. Die Um-

setzung des Steuerungs-Werkzeuges erfolgte in Java. Für das Einlesen und Parsen der JSON

Dateien habe ich das Paket org.json (Siehe [16d]) verwendet.

4.1. Architektur

Das Werkzeug ist in fünf Pakete unterteilt:

• graph

• executionorder

• toolexecution

• settings

• main

Im Paket main be�ndet sich lediglich die Klasse Main, welche den Programmablauf steuert.

Im Paket settings be�ndet sich sämtliche Logik zum einlesen und verwerten der Kon�gurati-

on.

Das Paket executionorder enthält die Logik zum einlesen und erstellen der Datei

LastExecutionOrder.txt.

Sämtliche Logik zum Aufbau des Abhängigkeitsgraphen und zur Suche auf diesem, sowie

Klassen zur Repräsentation von Werkzeugen und Dateien be�nden sich im Paket graph

zusammen mit der Logik zum erstellen einer .dot Datei.

Im Paket toolexecution be�ndet sich die Logik um Werkzeuge auszuführen.

25

4. Realisierung

4.1.1. Programmablauf

Beim Aufruf des Werkzeugs müssen zunächst drei verschiedene Ausführungsarten berücksich-

tigt werden:

1. Start einer Analyse

2. Wiederholung einer Analyse

3. Hilfsfunktion zu Unterstützung des Anwenders

Zu Beginn einer Ausführung wird zunächst geprüft, ob die Datei LastExecutionOrder.txt

existiert und falls ja wird diese Eingelesen und der Identi�kator in der ersten Zeile mit den

übergebenen Parametern verglichen. Stimmen die Parameter mit dem Identi�kator überein, so

wird eine implizite Wiederholung gestartet. Ist dies nicht der Fall, oder ist der Parameter -f

beziehungsweise --force-new gesetzt, so wird eine neue Analyse gestartet.

Start einer Analyse Wird eine Analyse gestartet, so wird zunächst die Kon�guration ein-

gelesen und daraus der Abhängigkeitsgraph aufgebaut. Anschließend wird in diesem der

Pfad zur Ausführung, wie im Abschnitt 4.1.2 beschrieben, gesucht. Existiert für eines der im

gefundenen Pfad enthaltenen Werkzeuge eine Kon�gurationswerkzeug, welches für dieses

eine Kon�guration erzeugt, so wird ein Pfad von der Eingabedatei zu diesem Kon�gurations-

werkzeug gesucht und ausgeführt. Ist das Kon�gurationswerkzeug nicht erreichbar, wird die

Ausführung ohne dieses Werkzeug fortgesetzt. Wurde ein gültiger Pfad gefunden und für jedes

Werkzeug falls möglich eine Kon�guration erstellt, werden die darin enthaltenen Werkzeuge

sequentiell ausgeführt. Der gefundene Pfad wird während der Ausführung, wie in Abschnitt

4.2.4 beschrieben, in die Datei LastExecutionOrder.txt gespeichert.

Wie im Abschnitt 3.2 erwähnt, können derzeit nicht zwei Dateien zusammen an ein Werkzeug

übergeben werden. Wäre dies möglich, könnte es parallele Pfade geben, die in einem Werkzeug

mit zwei Eingabedateien wieder vereinigt werden. Ohne diese Variante, ist eine parallele Aus-

führung von Werkzeugen nicht möglich, weshalb momentan nur eine sequentielle Ausführung

statt�ndet.

Wiederholung einer Analyse Es gibt drei Möglichkeiten, eine Wiederholung der letzten

Analyse auszuführen:

1. Implizit

2. Explizit vollständig

3. Explizit teilweise

26

4.1. Architektur

Eine implizite Wiederholung wird ausgeführt, wenn die gleichen Parameter beim Start über-

geben werden, wie bei der letzten Analyse. Der Parameter -f beziehungsweise --force-new

wird dabei nicht berücksichtigt. Wird dieser Parameter angegeben, so wird keine implizite

Wiederholung gestartet.

Zu Beginn einer impliziten oder einer vollständigen expliziten Wiederholung wird die Datei

LastExecutionOrder.txt eingelesen und aus deren Inhalt die ausgeführte Analyse ermittelt.

Anschließend wird die Kon�guration eingelesen, um sicherstellen zu können, dass die eingele-

senen Werkzeuge zu den Dateiendungen passen. Die Parameter werden nicht überprüft, da

hier Änderungen möglich sein sollen. Wurden keine Fehler in der Datei festgestellt, so werden

die Werkzeuge mit den eingelesenen Parametern ausgeführt.

Bei einer teilweisen Wiederholung wird der Anwender nach dem Einlesen der gespeicherten

Analyse gefragt, welchen Teil davon er wiederholen möchte. Hierzu wird dem Anwender die

Liste an Dateiendungen jeweils mit einem Index versehen angezeigt, sodass dieser nun Wählen

kann, wo die Analyse starten und enden soll. Nun gibt der Anwender zwei Zahlen ein und

wenn diese sinnvoll sind, das heißt die Zahlen be�nden zwischen 0 und dem höchsten Index

und der Start-Index ist kleiner als der Ziel-Index, so wird dieser Teil der Analyse ausgeführt.

Bei dieser Auswahl werden Anzeigewerkzeuge noch nicht berücksichtigt. Wurde bei der

vorherigen Analyse ein solches Werkzeug ausgeführt, so wird der Anwender gefragt, ob er

dieses ebenfalls ausführen will.

Hilfsfunktionen Dem Anwender stehen verschiedene Hilfsfunktionen zur Verfügung, die

ihm die Bedienung des Werkzeugs erleichtern sollen:

• Ausgabe aller möglichen Eingabeparameter

• Erstellen einer .dot Datei aus dem kon�gurierten Abhängigkeitsgraphen

• Ausgabe aller Prädikate

Über den Parameter -h beziehungsweise --help wird die Anzeige aller möglichen Parameter

gestartet. Zu jedem Parameter wird eine kurze Beschreibung angezeigt, wozu dieser dient und

ob nach diesem Parameter noch eine oder mehrere Eingaben erwartet werden.

Das erstellen einer .dotDatei wird über den Parameter --dot gestartet. Nach diesem Parameter

muss der Name der zu erstellenden Datei angegeben werden. Diese Datei enthält sowohl den

Aufbau des Abhängigkeitsgraphen, als auch die Prädikate, die für ein Werkzeug angegeben

sind. Der durch diese Datei dargestellte Graph enthält für jede Kon�guration einen eigenen

Knoten, sodass Werkzeuge hier, wie auch in der Kon�guration, mehrmals vorkommen können.

In Werkzeugnamen, die einen . enthalten, wird dieser durch _ ersetzt, um korrekte .dot

Syntax zu gewährleisten.

Wird der Parameter --show-predicates angegeben, so wird eine Liste aller kon�gurierten

Prädikate angezeigt, ohne Informationen über die dazugehörigen Werkzeuge.

27

4. Realisierung

Ich habe diese Funktionen eingebaut, um es einem Anwender zu ermöglichen, Analysen

durchzuführen und den vollen Umfang dieses Steuerungs-Werkzeuges zu nutzen, ohne dass er

zusätzliche Informationen benötigt.

4.1.2. Pfadsuche

Grundlage der Pfadsuche in dieser Anwendung ist die Breitensuche. Eine Breitensuche kann

hier nur auf Grund der günstigen Eigenschaften des Abhängigkeitsgraphen, im speziellen,

dass es sich um einen azyklischen, gerichteten Graphen handelt, verwendet werden.

Je nach Aufruf müssen zwei verschiedene Fälle berücksichtigt werden:

1. Einfacher Aufruf

2. Angegebenes Prädikat und explizite Werkzeugangabe

Einfacher Aufruf Bei einem Einfachen Aufruf genügt eine einzelne Breitensuche. Hierzu

wird ausgehend vom Dateityp der Eingabedatei eine Breitensuche ausgeführt, bei der zu jedem

Knoten der Vorgänger gespeichert wird, bis der Dateityp der Zieldatei erreicht ist, oder der

von dem Eingabedateityp erreichbare Teil des Abhängigkeitsgraphen vollständig durchsucht

wurde. War die Suche erfolgreich, so wurde der kürzeste Pfad von der Eingabe- zu Zieldatei

ermittelt.

Ein Beispiel für einen Einfachen Aufruf wäre -s bsp.iml -t bsp.rfg, also bsp.iml als Ein-

gabe und bsp.rfg als Zieldatei. Hier wird nun der kürzeste Pfad zwischen .iml und .rfg be-

rechnet, welcher lediglich das Werkzeug iml2rfg enthält. Es werden hier also keine Zwischen-

ergebnisse erzeugt. Der einzige Werkzeugaufruf lautet nun iml2rfg bsp.iml bsp.rfg.

Prädikat und Werkzeugangabe Es ist möglich, nur eine der beiden Eingaben zu machen,

also eine leere Menge an angegebenen Werkzeugen, oder eine leeres Prädikat zu benutzen.

Wurden Werkzeuge explizit angegeben, so müssen diese zunächst, wie im Abschnitt 3.2

angegeben, in die richtige Reihenfolge gebracht werden.

Nachdem die Eingabedatei, die Ausgabedatei und sämtliche Werkzeuge in die richtige Reihen-

folge gebracht wurden, wird nun schrittweise, der durch das angegebene Prädikat markierte

Pfad, zwischen den einzelnen Elementen ermittelt und anschließend alle gefundenen Pfade

aneinandergehängt, um einen Pfad für die Ausführung zu erhalten. Wurde kein Prädikat

angegeben, so wird stattdessen der kürzeste Pfad ermittelt.

Der durch ein Prädikat markierte Pfad wird wie im Abschnitt 3.4 beschrieben ermittelt.

Da es möglich ist, ein Werkzeug zweimal für unterschiedliche Eingaben zu kon�gurieren,

muss dies zunächst für jedes Werkzeug geprüft werden. Falls dies für eines der eingegebenen

Werkzeuge zutri�t, so wird diejenige Kon�guration genutzt, die von der Eingabedatei erreichbar

28

4.1. Architektur

A1

B1

A2

B2

DC

2

1

Abbildung 4.1.: Beispiel mit 2 verschiedenen Kon�gurationen pro Werkzeug

ist und von deren Ausgabe aus der Zieldateityp erreichbar ist. Es wird hier nicht geprüft,

ob mehrere Kon�gurationen möglicherweise zum Ziel führen. Stattdessen wird die erste

zutre�ende genutzt. Um diese Unterscheidung sinnvoller umzusetzen, hatte ich nicht mehr

genügend Zeit. Es wäre an dieser Stelle wünschenswert, diejenige Kon�guration zu wählen,

welche im Zusammenhang mit den übrigen Werkzeugen und dem eingegebenen Prädikat am

sinnvollsten erscheint, insofern dass möglichst alle Werkzeuge erreichbar sein sollten und der

durch das Prädikat markierte Pfad möglichst lange verfolgt werden sollte.

Nur zu prüfen, ob alle nachfolgenden Werkzeuge und der Zieldateityp von einer der Kon�gu-

rationen aus erreichbar sind, genügt jedoch nicht. Es muss zusätzlich geprüft werden, ob diese

auf dem selben Pfad liegen, wie das Beispiel in Abbildung 4.1 zeigt.

1 ist hier die Eingabedatei und 2 die Zieldatei. Es wurden hier die Werkzeuge A und B explizit

angegeben. B1 und B2 sind Kon�gurationen für B, A1 und A2 sind Kon�gurationen für A.

Betrachtet man nun die Kon�gurationen für A so stellt man fest, dass sowohl das Werkzeug B
als auch die Zieldatei 2 von beiden Kon�gurationen erreichbar ist, jedoch nur von Kon�guration

A1 aus ein Pfad zu 2 führt, der auch B enthält. Dies zeigt, dass stets der vollständige Pfad

berücksichtigt werden muss.

Um dem durch ein Prädikat markierten Pfad möglichst lange zu folgen, müsste jeder mögli-

che Pfad über unterschiedliche Kon�gurationen für eingegebene Werkzeuge ermittelt und

anschließend derjenige genutzt werden, welcher die größte Anzahlt an Werkzeugen mit dem

angegebenen Prädikat enthält.

29

4. Realisierung

Ein Beispiel für einen solchen Aufruf wäre -s bsp.iml -t bsp.rfg -p fast using-tools

iml2cg.

Das Prädikat fast markiert in diesem Beispiel das Werkzeug ecr_tool. Die eingegebenen

Werkzeuge werden sortiert, sodass sich die Reihenfolge iml2cg, .rfg ergibt.

Nun wird der Pfad mit Prädikat fast zwischen .iml und iml2cg ermittelt. Auf diesem Pfad

liegt das Werkzeug ecr_tool, das .iml als Eingabe akzeptiert und dessen Ausgabe .ecr von

iml2cg verarbeitet werden kann.

Danach wird der Pfad von iml2cg nach .rfg ermittelt. Auf diesem Pfad liegen die Werkzeuge

iml2cfg und iml2rfg

Der gefundene Pfad sieht nun folgendermaßen aus:

.iml→ ecr_tool→ .ecr→ iml2cg→ .cg→ iml2cfg→ .cfg→ iml2rfg→ .rfg.

Es werden also Zwischenergebnisse vom Typ .ecr, .cg und .cfg erzeugt.

Nun werden folgende Werkzeugaufrufe getätigt:

ecr_tool -iml .BAD/temp.ecr bsp.iml

iml2cg .BAD/temp.ecr .BAD/temp.cg

iml2cfg .BAD/temp.cg .BAD/temp.cfg

iml2rfg .BAD/temp.cfg bsp.rfg

4.1.3. Ordnerstruktur

Das Analyse-Werkzeug erwartet eine Bestimmte Ordnerstruktur. Die Ordnerstruktur sieht so

aus:

• .BAD - In diesem Ordner werden Zwischenergebnisse temporär gespeichert

• BADlog - Hier liegen erstellte Log Dateien. Der Name einer Log Datei besteht aus dem

Zeitstempel des Starts der Ausführung gefolgt von dem Namen der Eingabedatei. Die

von einem Werkzeug erzeugten Ausgaben werden während der Ausführung in eine

solche Datei geschrieben, zusammen mit Infomeldungen über den Aufruf der einzelnen

Werkzeuge

• resources - Hier ist die Basisdatei gespeichert, sowie eventuell Kon�gurationen, die von

Werkzeugen benötigt werden.

> BAD.jar - Die ausführbare Jar Datei, als die das Werkzeug bereitgestellt wird

> LastExecutionOrder.txt - In dieser Textdatei wird die letzte Ausführung gespeichert

30

4.2. Designentscheidungen

Die Ordner .BAD und BADlog werden bei der ersten Ausführung automatisch erzeugt. Der

Ordner resources muss für eine erfolgreiche Ausführung vorhanden sein, da er die Basiskon-

�guration erhält. Ist diese Kon�guration oder der Ordner bei der ersten Ausführung nicht vor-

handen, so wird der Ordner angelegt und eine leere Settings.json Datei an der Stelle erstellt,

an der sie von dem Steuerungs-Werkzeug erwartet wird. Die Datei LastExecutionOrder.txt

wird bei jeder Ausführung, mit Ausnahme von Wiederholungen, erzeugt.

4.2. Designentscheidungen

In diesem Abschnitt werden sämtliche Designentscheidungen, welche ich bei der Entwicklung

des Steuerungs-Werkzeugs getro�en habe beschrieben und begründet.

4.2.1. Factory Pattern

Alle Klassen sind entweder Singeltons, oder ihre Instanzen werden von einer Factory-Klasse

erstellt. Die erstellten Instanzen werden mit einem eindeutigen Schlüssel in einer Map gespei-

chert und falls diese Instanz ein zweites Mal benötigt wird, so wird sie erneut zurückgegeben

und keine neue Instanz der Klasse erstellt. So wird keine Instanz doppelt erstellt.

Dies hat vor allem im Bezug auf Objekte im Abhängigkeitsgraphen einen großen Vorteil: Die

Dateitypen und Werkzeuge müssen nicht im Graphen gesucht werden, sondern die entspre-

chende Instanz kann von der Factory-Klasse geholt werden. Die zurückgegebene Instanz ist

die gleiche, welche auch im Graphen selbst vorhanden ist, lediglich eine andere Referenz

darauf, sodass sämtliche Beziehungen im Graphen zur Verfügung stehen. Dies ist vor allem im

Hinblick auf die Laufzeit ein großer Vorteil.

4.2.2. Konfiguration

Als Format für das Erstellen der Kon�gurationsdateien habe ich mich für JSON entschieden.

JSON hat den Vorteil, dass sich sehr einfach key-value Paare mit verschiedenen Typen hinterle-

gen lassen. So kann einem Key ein unter anderem String oder auch ein Array ohne feste Größe

zugewiesen werden, was vor allem die Kon�guration einer variablen Anzahl an beispielsweise

Eingabedateien oder Parametern wesentlich erleichtert. Außerdem gibt es für JSON bereits

APIs für Java, um die Kon�gurationsdateien zu parsen. Dateien im JSON Format enthalten auch

keine header oder ähnliches, sodass die Kon�gurationsdateien sehr kompakt und übersichtlich

bleiben und sich auch Problemlos selbst erstellen lassen.

Hier noch ein paar Beispielhafte Kon�gurationsdateien, sowie ein Beispiel für die Basiskon�-

guration:

31

4. Realisierung

{
"name":"iml2rfg",
"source":[".iml",".cfg"],
"target":[".rfg"],
"params":["&i","&o"]
}

Listing 4.1: Kon�guration für iml2rfg

Die geschweiften Klammern in der ersten und letzten Zeile sind bei einem JSON Objekt

notwendig. Der Name des Werkzeugs ist iml2rfg, dies sieht zeigt der Wert hinter dem : in

der zweiten Zeile. In der dritten Zeile sieht man die Listendarstellung für mögliche Eingaben.

Dieses Werkzeug kann Dateien vom Typ .iml und .cfg verarbeiten. Das Ergebnis der Analyse

ist dann vom Typ .rfg wie man in der vierten Zeile sehen kann. Die Parameter für den Aufruf

des Werkzeuges stehen in der fünften Zeile, wieder als Listendarstellung. Dieses Werkzeug

bekommt lediglich den Namen, beziehungsweise den Pfad der Ein- und der Ausgabedatei

übergeben, wie man an den Platzhaltern sehen kann. &i steht hier für eine Eingabedatei, &o

für eine Ausgabedatei.

{
"name":"imldump",
"source":[".iml"],
"target":[".html"],
"params":["-html","&i",">>","&o"],
"isToolForDisplay" : true
}

Listing 4.2: Kon�guration für imldump

Hier sieht man eine Beispielhafte Kon�guration für das Werkzeug imldump. Wie beim vorheri-

gen Beispiel sieht man hier den Namen, die möglichen Eingaben, sowie die Ausgaben. Wie

oben werden auch hier die Platzhalter &i und &o für die Ein- beziehungsweise Ausgabedatei

verwendet. Der Parameter -html gibt an, dass hier eine .html-Datei generiert werden soll.

Das Werkzeug gibt den html-Code normalerweise einfach aus, da hier aber eine Ausgabedatei

gewünscht ist, muss diese Ausgabe in eine Datei umgeleitet werden. Dies geschieht durch die

Angabe von ».

Ich habe » als Parameter zur Umleitung der Ausgabe gewählt, weil dies einem Aufruf in einer

Konsole entspricht. Ähnlich wie bei einem Konsolen-Aufruf muss der Platzhalter für die Datei,

in welche die Ausgabe umgeleitet werden soll direkt danach angegeben werden.

Die Basiskon�guration kann zum Beispiel so aussehen:

{
"toolPaths":["resources/tools"],
"roots":[".c"]
}

Listing 4.3: Basiskon�guration

32

4.2. Designentscheidungen

Die umgebenden Klammern sind auch hier JSON Syntax. In der ersten Zeile stehen die angege-

benen Pfade für Werkzeugkon�gurationen. Hier ist nur ein Pfad angegeben, an dem sich alle

weiteren Werkzeuge be�nden. Als Quelle für den Abhängigkeitsgraphen ist hier .c angegeben,

wie man in der dritten Zeile sehen kann. Beide Werte sind als Liste mit nur einem Element

angegeben.

Die komplette Kon�guration, die ich im Rahmen dieser Bachelorarbeit erstellt habe be�ndet

sich im Anhang.

4.2.3. Analyse

Eine Analyse ist im Kontext dieses Steuerungs-Werkzeuges die Generierung einer de�nierten

Datei unter Verwendung einer variablen Anzahl sequentiell ausgeführter Werkzeuge, mit

optionaler, anschließender Ergebnisanzeige, beziehungsweise -aufbereitung.

4.2.4. Wiederholung

Wie bereits im Abschnitt 3.3 beschrieben, wird für jede Ausführung eine Textdatei mit den

genannten Werten gespeichert.

Eine solche Datei kann beispielsweise so aussehen:

LastCall: -s bsp.iml -t bsp.rfg --using-tools cobra --predicate fast
Used File Types: .iml, .ecr, .cg, .cfg, .rfg
ecr_tool -iml &o &i
iml2cg &i &o
iml2cfg &i &o
iml2rfg &i &o
cobra &i

Listing 4.4: Gespeicherte Ausführung

In der ersten Zeile, nach LastCall: stehen Parameter, die bei der letzten Ausführung verwendet

wurden. Hier wurde bsp.iml als Eingabe- und bsp.rfg als Zieldatei angegeben. Das Werkzeug

cobra wurde explizit angegeben und das Prädikat fast gewählt. In der zweiten Zeile stehen

nach Used File Types: alle verwendeten Dateiendungen. In allen folgenden Zeilen steht

jeweils ein Werkzeug Aufruf, wobei hier die Platzhalter &i und &o für Ein- beziehungsweise

Ausgabedateien stehen.

Das Prädikat fast markiert hier die beiden Werkzeuge ecr_tool und iml2cg. Die Werkzeuge

iml2cfg sowie iml2rfg sind nicht markiert, müssen aber ausgeführt werden, um eine .rfg-

Datei aus einer .cg-Datei zu erzeugen.

Es ist nicht erkennbar, welche Datei als Eingabe für cobra verwendet wurde. Auch bei einer

Wiederholung wird neu berechnet, welche Datei sich als Eingabe eignet.

33

4. Realisierung

Ich habe mich für eine einfach strukturierte Textdatei entschieden, um dem Anwender die

Möglichkeit zu bieten, die Wiederholung zu beein�ussen. Dies kann in Form einer Veränderten

Parametrisierung, oder auch einer Anpassung der verwendeten Werkzeuge geschehen. Um

die Parametrisierung anzupassen genügt es, die gewünschte Veränderung in der Zeile für

das entsprechende Werkzeug vorzunehmen. Möchte man jedoch die verwendeten Werkzeuge

anpassen, so muss man darauf achten, dass die Zeile mit den erzeugten Dateitypen zu den ver-

wendeten Werkzeugen passt, da diese beiden Komponenten vor der Wiederholung verglichen

und dadurch validiert werden.

Beim Einlesen der Datei wird aus der ersten Zeile die Eingabe- und die Zieldatei herausgelesen.

Danach werden zwei Listen gespeichert. Eine enthält die in der zweiten Zeile der Textdatei

gespeicherten Dateiendungen, die andere enthält sämtliche Werkzeugaufrufe. Für die Ausfüh-

rung werden die gespeicherten Werkzeuge mit entsprechender Parametrisierung von oben

nach unten Ausgeführt. Dabei wird bei der Ausführung, dem Werkzeug an stelle i in der Liste,

eine Datei mit der Endung an Stelle i als Eingabe- und eine Datei mit der Endung an Stelle

i + 1 als Zieldatei zugeordnet. Nun wird die Kon�guration für dieses Werkzeug überprüft, ob

die Endung an Stelle i in den Kon�gurierten Eingaben und die Endung an Stelle i + 1 in den

kon�gurierten Ausgaben enthalten ist. Handelt es sich bei einer Dateiendung um die Ein- oder

Ausgabedatei des Aufrufs, so wird die entsprechende Datei, ansonsten der Dateiname für eine

Temporäre Datei verwendet.

4.2.5. Prädikate

Für die Umsetzung des geforderten Präferenzmechanismus habe ich mich für die Verwendung

von Prädikaten entschieden, da diese einfach zu kon�gurieren und bei der Ausführung leicht zu

benutzten sind. Da der Name eines Prädikats frei gewählt werden kann, ist es auch möglich hier

kurze Beschreibungen des markierten Pfades anzugeben, sodass ein Anwender aus dem Namen

eines Prädikats gegebenenfalls auch Eigenschaften des Pfades ablesen kann und dadurch weiß,

welches Prädikat er für seine Zwecke nutzen kann.

Sind an einer Stelle im Graphen viele verschiedene Pfade möglich, so kann es zu einer hohen

Anzahl an Prädikaten kommen, sodass dies für einen Anwender sehr unübersichtlich wird.

Um dem vorzubeugen, habe ich die Möglichkeit eingebaut Werkzeuge explizit anzugeben,

sodass ein bestimmter Pfad gewählt werden kann, ohne dafür ein Prädikat kon�gurieren zu

müssen.

4.2.6. Werkzeuge zur Anzeige

Werkzeuge, deren Funktion es ist Informationen für den Anwender aufzubereiten und entweder

selbst Anzuzeigen, oder zu speichern, müssen in der Ausführung speziell behandelt werden.

Zwar könnten diese Werkzeuge genauso behandelt werden wie andere, es ist jedoch, im

Hinblick auf ihre Funktionalität sinnvoller, diese gesondert zu betrachten. Es muss bei der

34

4.2. Designentscheidungen

Ausführung explizit angegeben werden, welches Werkzeug zur Anzeige genutzt wird, um diese

Sonderstellung zu ermöglichen.

Ist ein solches Werkzeug angegeben, so wird zunächst die Analyse durchgeführt, als ob keines

angegeben wurde. Ist diese abgeschlossen, so wird die Eingabe für das gewählte Anzeigewerk-

zeug aus allen erzeugten Ausgaben gewählt, indem der Ausgeführte Pfad zurückverfolgt wird

und für jede erzeugte Datei geprüft wird, ob diese eine gültige Eingabe für das Anzeigewerkzeug

ist.

Es ist derzeit nur möglich ein einzelnes Anzeigewerkzeug pro Aufruf zu verwenden. Die

Verwendung von zwei solchen Werkzeugen würde bei Werkzeugen mit graphischer Ober�äche

zu Komplikationen führen, da das zweite, auf Grund der sequentiellen Ausführung, erst dann

gestartet wird, wenn das erste geschlossen wird. Dies würde nur für Verwirrung sorgen,

sodass ich die Anzahl der verwendeten Anzeigewerkzeuge auf eines begrenzt habe. In einer

weiterführenden Entwicklung könnte diese Begrenzung entfernt werden, indem für jedes

gefundene Anzeigewerkzeug ein eigener Thread gestartet wird.

Die explizite Angabe ist auf Grund der De�nition im Abschnitt 4.2.3 notwendig. Eine Mög-

lichkeit die explizite Angabe zu umgehen wäre, das Verständnis einer Analyse zu variieren,

sodass sowohl ein Angegebenes Werkzeug, als auch eine Zieldatei als gültiges Ziel der Analyse

gewährtet wird. Da die Anzeigewerkzeuge jedoch meist mehrere Dateitypen als Eingabe ak-

zeptieren, müsste der gewünschte Typ in diesem Fall meist explizit angegeben werden, sodass

hierdurch kein Vorteil entsteht. Des Weiteren könnten so Werkzeuge angegeben werden, die

abhängig von der Eingabe eine andere Ausgabe erzeugen, wodurch das Ergebnis der Analyse

nicht eindeutig genannt werden kann.

Wiederholung mit Anzeigewerkzeugen Nicht nur bei der ersten Ausführung, sondern

auch bei jeder Wiederholung muss ein Anzeigewerkzeug besonders berücksichtigt werden. Ist

in der vorherigen Ausführung ein solches Werkzeug ausgeführt worden, sieht man das daran,

dass die beiden im Abschnitt 3.3 erwähnten Listen für Dateiendungen und Werkzeugaufrufe

die gleiche Größe haben. Wurde kein Anzeigewerkzeug ausgeführt, so enthält die Liste mit

Werkzeugaufrufen ein Element weniger, als die Liste mit Dateiendungen. Dies liegt daran,

dass für jedes Standard Werkzeug zwei Dateiendungen, nämlich Ein- und Ausgabe, existieren,

die Ausgabe des einen Werkzeugs jedoch gleichzeitig die Eingabe des anderen darstellt. So

existiert pro Werkzeug eine Eingabedatei, plus eine nicht wiederverwendete Ausgabedatei

für das letzte Werkzeug. Ist das letzte Werkzeug der Liste zur Anzeige gedacht, so wird keine

Ausgabe erstellt, wodurch beide Listen die gleiche Länge haben.

Wurde festgestellt, dass ein Anzeigewerkzeug enthalten ist, wird das letzte Element der Liste

gesichert und anschließend der Teil der Liste ermittelt, der wiederholt werden soll. Im Anschluss

daran muss der Anwender angeben, ob er das zuvor ausgeführte Anzeigewerkzeug ebenfalls

erneut Ausführen will. Dabei wird hier aus dem Wiederholten teil das am weitesten unten

stehende Ergebnis, welches von dem Anzeigewerkzeug ermittelt werden kann, als Eingabe

gewählt.

35

4. Realisierung

4.2.7. Konfigurationswerkzeuge

Kon�gurationen werden vor der eigentlichen Analyse erstellt. Obwohl hier eine Paralleli-

sierung möglich wäre, habe ich diese jedoch aus Zeitmangel nicht implementiert, da der

Synchronisationsaufwand zu hoch war.

Die eigentliche Analyse könnte so lange parallel zu der Erzeugung von Kon�gurationen

ausgeführt werden, bis ein Werkzeug ausgeführt werden soll, welches eine der Kon�guratio-

nen benötigt, die Ausführung müsste in diesem Fall pausiert werden, bis die Kon�guration

vorliegt.

Bei einer Wiederholung werden die entsprechenden Kon�gurationen nicht neu erzeugt, son-

dern wiederverwendet.

4.2.8. Anwenderspezifischer Quellcode

Wie bereits im Abschnitt 3.1 erwähnt, kann für jedes Werkzeug eine JAVA-Klasse angegeben

werden, die Code enthält, welcher im Anschluss an die Ausführung des Werkzeuges ausgeführt

wird.

Die entsprechende Klasse muss das Interface IAfterExecution implementieren, welches im Paket

de.uni.stuttgart.bauhaus.toolexecution liegt. Dieses Interface enthält eine Methode execute

welche von dem Steuerungswerkzeug aufgerufen wird.

Die Klasse muss als .class-Datei vorliegen. Da ein Interface aus dem Steuerungs-Werkzeug

benötigt wird, muss beim kompilieren der Klasse die jar-Datei, als welche das Steuerungs-

Werkzeug vorliegt, als Bibliothek angegeben werden.

Am Beispiel des Werkzeuges symta, welches Concurrency.config und Non-Concurrency.config

Dateien erstellt, erkennt man den Grund für diese Funktion.

Das Werkzeug symta erhält eine Datei vom typ .func_names und eine .csv-Datei, woraus sie

die beiden Zieldateien erstellt. Für diese Dateien kann jedoch kein Zielpfad gesetzt werden und

es kann nicht angegeben werden, ob nur eine der Dateien erstellt werden soll. Beide Dateien

werden immer im Verzeichnis, in dem symta ausgeführt wird erzeugt.

Durch Anwenderspezi�schen Code kann nun beispielsweise die Datei Concurrency.config

in den Ordner .bauhaus im home Verzeichnis des Nutzers kopiert werden und dort sinnvoll

verwendet werden. Zusätzlich kann die Datei Non-Concurrency.config gelöscht werden,

falls diese nicht benötigt wird.

Ohne diese Funktionalität wäre es in solchen Fällen nicht möglich, eine automatisierte Analyse

durchzuführen.

36

4.3. Bedienung des Werkzeugs

4.3. Bedienung des Werkzeugs

Ich habe das Steuerungs-Werkzeug als Konsolen-Anwendung entwickelt.

Beim Aufruf des Werkzeugs können verschiedene Parameter mitgegeben werden. Wird kein

Parameter mitgegeben, so wird eine Liste aller möglichen Parameter ausgegeben.

Diese Parameter können dem Werkzeug mitgegeben werden:

• -h, --help oder --usage

• -s oder \verbsource|

• -t oder \verbtarget|

• -r oder \verbrepeat|

• -ra oder \verbrepeat-all|

• -f oder \verbforce-new|

• -p oder \verbpredicate|

• --dot

• --using-tools

• --show-predicates

Für einige Parameter gibt es mehrere verschiedene Varianten. Diese haben alle dieselbe Funk-

tionalität und dienen nur zum besseren Verständnis beziehungsweise zur besseren Übersicht.

Im folgenden werde ich nur die Kurzform der Parameter benutzen.

Die Parameter -h, -r, -ra und --show-predicates können nur einzeln benutzt werden, wäh-

rend alle anderen Parameter beliebig kombiniert werden können, wobei nicht jede Kombination

zu einem Sinnvollen Ergebnis führt.

Der Parameter -h dient zur Ausgabe aller möglichen Parameter.

Die Parameter -r und -ra dienen zur Wiederholung der letzten Analyse, wobei der Parameter

-ra eine vollständige Wiederholung startet, während der Anwender bei -r den Abschnitt,

welcher wiederholt werden soll angeben kann.

Bei --show-predicates werden alle kon�gurierten Prädikate ausgegeben.

Gibt man den Parameter --dot gefolgt von einem Dateinamen, der die Endung .dot haben

sollte, an, so wird der kon�gurierte Abhängigkeitsgraph im .dot-Format in die angegebene

Datei gespeichert.

37

4. Realisierung

-s und -t führen nur wenn beide Angegeben sind zu einer Sinnvollen Ausführung. -s gefolgt

von einem Dateinamen beziehungsweise einem Pfad zu einer Datei, gibt die Eingabedatei für

die Analyse an. -t gefolgt von einem Dateinamen gibt die Zieldatei für die Analyse an.

Die Parameter -p, --using-tools und -f führen nur dann zu einer Sinnvollen Ausführung,

wenn die Parameter -s und -t beide gesetzt sind. Auf -p folgt das Prädikat, welches bei

der Analyse verwendet werden soll und auf --using-tools folgt eine Liste an Werkzeugen,

welche bei der Analyse ausgeführt werden sollen.

Der Parameter -f gibt an, dass keine Wiederholung statt�nden soll, stattdessen soll der Pfad neu

berechnet werden. Dies ist sinnvoll, falls der Anwender etwas an der Kon�guration geändert

hat oder falls die Datei LastExecutionOrder.txt verändert wurde, diese Änderung aber

nicht berücksichtigt werden soll. Diese Datei zu löschen oder die erste Zeile nach LastCall: zu

verändern, sodass diese nicht mehr zu den eingegebenen Parametern passt, hätte den gleichen

E�ekt.

38

4.4. Tests

4.4. Tests

Die Validität dieses Ansatzes und der Umsetzung soll an mindestens zwanzig Bauhaus Werk-

zeugen gezeigt werden.

Ich habe folgende Werkzeuge für die Tests kon�guriert:

1. anderson_tool

2. ccdiml

3. cobra

4. das_tool

5. dump_cg

6. ecr_tool

7. function_names

8. iml2cfg

9. iml2cg

10. iml2dot

11. iml2html

12. iml2rfg

13. imldump

14. imlstat

15. kcg_stats

16. partition_tool

17. pta_tool

18. raceq

19. rfg2gxl

20. stats

21. symta

22. thread_tool

39

4. Realisierung

Name Größe

mksyntax.iml 62kiB

mkeyes.iml 117,1 kiB

aget.iml 280,4 kiB

uuname.iml 787,4 kiB

nano.iml 1.8 miB

cu.iml 3,1 miB

Tabelle 4.1.: Verwendete Dateien für die Tests

Die folgenden Testfälle habe ich mit diesen Werkzeugen abgedeckt:

• Positivtests:

– Suche nach dem kürzesten Pfad zwischen Ein- und Ausgabedatei

– Suche nach dem kürzesten Pfad mit anschließender Anzeige

– Pfadsuche mit Prädikat

– Pfadsuche mit Prädikat und anschließender Anzeige

– Angabe eines expliziten Werkzeuges zwischen Ein- und Ausgabedatei

– Explizite Angabe eines Werkzeuges, welches nach der Ausgabedatei ausgeführt

werden soll

– Ausführung einer Analyse mit Kon�gurationswerkzeug

– Kombination aus expliziter Werkzeugangabe und Prädikat

– Wiederholung

– Wiederholung mit Anzeige

• Negativtests:

– Unmöglicher Pfad (Ein- und Ausgabedatei sind nicht durch einen Pfad im Abhän-

gigkeitsgraphen verbunden)

– Korrekter Pfad plus expliziter Angabe eines so nicht Ausführbaren Werkzeuges

– Eingabe einer nicht unterstützten Datei

– Verwendung eines nicht existenten Prädikats

– Angabe eines nicht nutzbaren Prädikats

40

4.4. Tests

Eingabetyp Zieldateityp Ausgeführte Werkzeuge

.iml .rfg iml2rfg

.iml .tt pta_tool, iml2cfg, thread_tool

.iml .html iml2html

.iml .gxl iml2rfg, rfg2gxl

Tabelle 4.2.: Tests für kürzesten Pfad

Eingabetyp Zieldateityp Typ der angezeigten Datei Ausgeführte Werk-
zeuge

.iml .rfg .rfg iml2rfg

.iml .tt .race pta_tool, iml2cfg,

thread_tool, raceq

.iml .html .iml iml2html

.iml .gxl .rfg iml2rfg, rfg2gxl

Tabelle 4.3.: Tests für kürzesten Pfad mit Anzeige

Die für die Tests benutzten Dateien stehen in Tabelle 4.1

Die Dateien sind alle vom Typ .iml es gehen also sämtliche Ausführungspfade von diesem

Dateityp aus. Die unten aufgeführten Tests wurden jeder mit allen Eingabedateien durchge-

führt.

Positivtests Sinn der Positivtests ist, die Funktionalität des Steuerungs-Werkzeuges bei

korrekter Anwendung zu prüfen.

Kürzester Pfad Tests und Ergebnisse stehen in Tabelle 4.2.

Alle Werkzeuge wurden Ausgeführt und sämtliche Ergebnisse und Zwischenergebnisse erzeugt

und gespeichert.

Einfacher Pfad plus Anzeige Als Anzeigewerkzeug wurde hier cobra verwendet. Tests

und Ergebnisse stehen in Tabelle 4.3.

Alle Werkzeuge wurden Ausgeführt und sämtliche Ergebnisse und Zwischenergebnisse erzeugt

und gespeichert. Das Anzeigewerkzeug wurde stets mit der angegebenen Datei ausgeführt,

beziehungsweise gar nicht für die Erzeugung von .html-Dateien.

41

4. Realisierung

Eingabetyp Zieldateityp Verwendetes Prädi-
kat

Ausgeführte Werk-
zeuge

.iml .rfg fast ecr_tool, iml2cg,

iml2cfg, iml2rfg

.iml .rfg exact anderson_tool,

iml2cg, iml2cfg,

iml2rfg

.iml .race execute_red pta_tool, iml2cfg,

red, thread_tool, red,

raceq

.iml .html dump imldump

.iml .gxl fast ecr_tool, iml2cg,

iml2cfg, iml2rfg,

rfg2gxl

.iml .gxl exact anderson_tool,

iml2cg, iml2cfg,

iml2rfg, rfg2gxl

Tabelle 4.4.: Tests für Pfad mit Prädikat

Pfad mit Prädikat Tests und Ergebnisse stehen in Tabelle 4.4.

Alle Werkzeuge wurden Ausgeführt und sämtliche Ergebnisse und Zwischenergebnisse er-

zeugt und gespeichert, abgesehen von der Zieldatei vom Typ .race. Bei dieser wurden zwar

alle Werkzeuge ausgeführt, die Zieldatei jedoch nicht erzeugt. Beim Versuch das Werkzeug

raceq unabhängig von dem Steuerungs-Werkzeug auszuführen wurde jedoch ebenfalls keine

Ausgabedatei erzeugt und auch keine Fehlermeldung angezeigt. Die Ausgeführten Werkzeuge,

die nicht auf dem kürzesten Weg liegen, waren alle mit dem entsprechenden Prädikat versehen

oder notwendig um Lücken zwischen Werkzeugen zu schließen.

Pfad mit Prädikat und Anzeige Tests und Ergebnisse stehen in Tabelle 4.5. Es wurden zwei

Durchläufe durchgeführt, einmal mit cobra und einmal mit imldump als Anzeigewerkzeug.

Auch diese Tests verliefen erfolgreich. Sämtliche Werkzeuge wurden ausgeführt und die

entsprechenden Dateien wurden angezeigt. Beim zweiten Durchlauf wurde für jede Zieldatei

die Datei temp.html im Ordner .BAD erstellt.

Explizite Werkzeugangabe Hier werden die Tests für Werkzeuge zwischen Ein- und Aus-

gabedatei, sowie solche für Werkzeuge nach er Ausgabedatei beschrieben. Tests und Ergebnisse

stehen in Tabelle 4.6. Die Tabelle enthält zwei Testfälle, bei denen der Dateityp von Ein- und

Ausgabedatei der gleiche ist, der ausgeführte Pfad also nur durch explizite Werkzeugangabe

42

4.4. Tests

Eingabetyp Zieldateityp Verwendetes
Prädikat

Angezeigter Da-
teityp

Ausgeführte
Werkzeuge

.iml .rfg fast .rfg ecr_tool, iml2cg,

iml2cfg, iml2rfg

.iml .rfg exact .rfg anderson_tool,

iml2cg, iml2cfg,

iml2rfg

.iml .race execute_red .rett pta_tool,

iml2cfg, red,

thread_tool, red,

raceq

.iml .html dump .iml imldump

.iml .gxl fast .rfg ecr_tool, iml2cg,

iml2cfg, iml2rfg,

rfg2gxl

.iml .gxl exact .rfg anderson_tool,

iml2cg, iml2cfg,

iml2rfg, rfg2gxl

Tabelle 4.5.: Tests für Pfad mit Prädikat mit Anzeige

beschrieben ist. Dies ist keine falsche Eingabe, sondern soll ermöglichen, ein bestimmtes Werk-

zeug auch ohne Kenntnis des kon�gurierten Ausgabeformats auszuführen, da der gefundene

Pfad vollständig durch die Eingabedatei und die Angegebenen Werkzeuge de�niert ist.

Analyse mit Konfigurationswerkzeug Unter den mir zur Verfügung gestellten Werkzeu-

gen war lediglich symta als Kon�gurationswerkzeug. Deshalb habe ich hierfür nur zwei Pfade

getestet: Von .iml nach .tt als einfacher Aufruf und von .iml nach .stat mit Prädikat

execute_red.

Im ersten Fall wurden zunächst folgende Werkzeuge ausgeführt: function_names und symta,

wodurch eine Concurrency.config erstellt und anschließend nach .bauhaus kopiert wurde.

Danach wurden die Werkzeuge pte_tool, iml2cfg und thread_tool ausgeführt, wobei die

erstellte Concurrency.config genutzt wurde.

Beim zweiten Fall wurden ebenfalls die Werkzeuge function_names und symta ausgeführt und

die erstellte Concurrency.config nach .bauhaus kopiert. Hier wurden daraufhin folgende

Werkzeuge ausgeführt: pta_tool, iml2cfg, red, thread_tool, red und stats.

Die Tests verliefen erfolgreich und die Kon�gurationsdateien sowie die Ergebnisse wurden

erstellt.

43

4. Realisierung

Eingabetyp Zieldateityp Explizit angegebene
Werkzeuge

Ausgeführte Werk-
zeuge

.iml .rfg das_tool das_tool, iml2cfg,

iml2rfg

.iml .rfg iml2cg iml2cg, iml2cfg,

iml2rfg

.iml .tt ecr_tool, red ecr_tool, iml2cg,

pta_tool, iml2cfg,

red, thread_tool

.iml .cg_dump ecr_tool ecr_tool, iml2cg,

dump_cg

.iml .gxl iml2cfg iml2cfg, iml2rfg,

rfg2gxl

.iml .iml imlstat imlstat

.iml .cfg iml2cg, rfg2gxl iml2cg, iml2cfg,

iml2rfg, rfg2gxl

.iml .iml stats pta_tool, iml2cfg,

thread_tool, stats

Tabelle 4.6.: Tests für Pfad mit expliziter Werkzeugangabe

Kombination aus expliziter Werkzeugangabe und Prädikat Die Ergebnisse für diese

Tests stehen in der Tabelle 4.7.

Wiederholung Um die Wiederholungsfunktion zu testen habe ich zwei Pfade ausgeführt

und diese einmal vollständig und drei mal teilweise, die erste Hälfte, die zweite Hälfte und

einen Abschnitt aus der Mitte des Pfades, wiederholt.

Die beiden Pfade waren:

• pta_tool, iml2cfg, red, thread_tool und red

• erc_tool, iml2cg, iml2cfg, iml2rfg und rfg2gxl

Die Teilweisen Wiederholungen waren für die erste Analyse:

• pta_tool, iml2cfg, red, thread_tool und red

• pta_tool, iml2cfg und red

• red, thread_tool und red

• iml2cfg, red und thread_tool

Für die zweite Analyse wurden folgende Pfade ausgeführt:

44

4.4. Tests

Eingabetyp Zieldateityp Verwendetes
Prädikat

Angegebene
Werkzeuge

Ausgeführte
Werkzeuge

.iml .rfg fast rfg2gxl ecr_tool,

iml2cg,

iml2cfg,

iml2rfg,

rfg2gxl

.iml .cfg exact iml2dot anderson_tool,

iml2cg,

iml2cfg,

iml2dot

.iml .tt execute_red stats pta_tool,

iml2cfg, red,

thread_tool,

red, stats

.iml .tt execute_red ccdiml pta_tool,

iml2cfg, red,

thread_tool,

ccdiml

Tabelle 4.7.: Tests für Pfad mit Prädikat und Expliziter Werkzeugangabe

• erc_tool, iml2cg, iml2cfg, iml2rfg und rfg2gxl

• erc_tool, iml2cg und iml2cfg

• iml2cfg, iml2rfg und rfg2gxl

• iml2cg, iml2cfg und iml2rfg

Sämtliche Pfade wurden vollständig ausgeführt und die entsprechenden Ergebnisse neu er-

zeugt.

Wiederholung mit Anzeige Für die Tests der Wiederholung mit Anzeige wurden die glei-

chen Analysen, die im Abschnitt 4.4 beschrieben wurden. Als Anzeigewerkzeug wurde cobra

benutzt. Jeder der wiederholten Abschnitte wurde einmal mit und einmal ohne Wiederholung

des Anzeigewerkzeugs ausgeführt.

Die folgenden Dateitypen wurden für die getesteten Pfade ausgeführt:

• pta_tool, iml2cfg, red, thread_tool und red→ .rett

• pta_tool, iml2cfg und red→ .re

• red, thread_tool und red→ .rett

45

4. Realisierung

• iml2cfg, red und thread_tool→ .tt

• erc_tool, iml2cg, iml2cfg, iml2rfg und rfg2gxl→ .rfg

• erc_tool, iml2cg und iml2cfg→ .cfg

• iml2cfg, iml2rfg und rfg2gxl→ .rfg

• iml2cg, iml2cfg und iml2rfg→ .rfg

Negativtests Ich habe die folgenden Negativtests durchgeführt, um die Robustheit des

Steuerungs-Werkzeugs zu prüfen.

Nicht existenter Pfad Ich habe folgende Pfade getestet: .rfg→ .tt und .ecr→ .race. In

beiden Fällen wurde keine Analyse ausgeführt und die Meldung Could not compute execution
order ausgegeben.

Nicht existentes Werkzeug Bei diesem Test habe ich zu den beiden möglichen Pfaden

.iml→ .tt und .iml→ .stat jeweils no_real_tool als Werkzeug explizit angegeben. Das

falsche Werkzeug wurde bei sämtlichen Ausführungen ignoriert und stattdessen der kürzeste

Pfad berechnet.

Zusätzlich habe ich die gleichen Pfade mit zusätzlicher expliziter Angabe von cobra durch-

geführt. Auch hier wurde das falsche Werkzeug ignoriert und stattdessen der kürzeste Pfad

gefolgt von cobra Ausgeführt.

Nicht unterstützte Datei Hierfür habe ich eine Datei mit der Endung .nothing, welche

nicht in der Kon�guration existiert, einmal als Eingabe- und einmal als Zieldatei angegeben.

Es wurde keine Analyse ausgeführt und die Meldung Could not compute execution order
ausgegeben

Nicht existierendes Prädikat Wurde ein nicht existentes Prädikat bei der Ausführung

angegeben, so wurde der kürzeste Weg zwischen Eingabe- und Zieldatei, beziehungsweise der

Weg über explizit angegebene Werkzeuge ausgeführt.

Für angegebenen Pfad nicht nutzbares Prädikat Das Verhalten in diesem Fall war gleich,

wie das Verhalten bei einem nicht existierenden Prädikat.

46

4.5. Laufzeit

4.5. Laufzeit

Aus Zeitmangel konnte ich keine ausführliche Messung der Laufzeit durchführen. Ich habe

jedoch, um das Verhältnis zwischen Berechnung des Analysepfades, also vom Start des Werk-

zeuges bis zum Beginn der ersten Analyse, und Ausführung der gefundenen Werkzeuge, also

die Zeit vom Aufruf des ersten Werkzeuges bis zum Beenden des letzten Werkzeugs, abschätzen

zu können, einige Ausführungen vermessen. Unter den gemessenen Ausführungen waren

unter anderem Eingaben von nicht existenten Werkzeugen, da in diesen Fällen der gesamte

Abhängigkeitsgraph durchsucht werden muss.

Das Testsystem, auf welchem ich diese Messung durchgeführt habe, ist der Rechner pslx0 vom

Institut ISTE an der Universität Stuttgart. Die Verbaute CPU ist ein AMD Opteron 6174. Die

Größe des Arbeitsspeichers, der mir zur Verfügung stand war 252 Gigabyte. Das Folgende

Betriebssystem war hier installiert: Debian 3.16.7-ckt25-2+deb8u3.

Für die Messungen habe ich die Eingabedateien mkeyes.iml und uuname.iml verwendet.

Für die Analysen mit mkeyes.iml lag die durchschnittliche Zeit für die Pfadsuche bei 257, 25
Millisekunden. Die durchschnittliche Zeit für die Ausführung lag bei 1800, 625 Millisekunden.

Die Zeit für die Ausführung ist deutlich höher.

Die Messung mit uuname.iml konnte ich nicht abschließen, da die Analyse dieser Datei bei

einigen Werkzeugen, wie zum Beispiel pta_tool dazu geführt hat, dass die SSH Verbindung

unterbrochen wurde, bevor die Analyse beendet war.

Diese Messungen zeigen, dass die Ausführungszeit des von mir entwickelten Steuerungs-

Werkzeuges im Vergleich mit der Analysedauer keine Rolle spielt und vor allem bei großen

Dateien vernachlässigt werden kann.

47

5. Zusammenfassung und Ausblick

Ziel dieser Arbeit war es, eine Steuerung für Analysen mit Bauhaus zu entwerfen und zu

implementieren. Es wurden Anwendungsfälle eines Steuerungs-Werkzeugs und Bauhaus’

erstellt und Eigenschaften von Bauhaus analysiert. Darunter die Abhängigkeiten zwischen

den einzelnen Werkzeugen, wie aus diesen Abhängigkeiten ein Graph erstellt werden kann

und die Eigenschaften dieses Graphen. Anschließend wurde erklärt, wie dieser Graph für die

Automatisierung angepasst werden kann und wieso die Eigenschaft der Zyklenfreiheit im

Rahmen dieser Arbeit und der automatisierten Analyse hinzugefügt wurde. Anschließend

wurde eine Möglichkeit vorgestellt, wie ein solches Werkzeug gestaltet werden kann, um

sämtliche Anforderungen abzudecken, sowie möglichst einfach und benutzerfreundlich zu

gestalten. Die Kon�gurierbarkeit des Werkzeugs, sowie der Ablauf einer automatisierten

Analyse, deren Wiederholung und ein Ansatz zur Verwendung eines Präferenzmechanismus

zur Markierung von Pfaden im Abhängigkeitsgraphen werden durch den in dieser Arbeit

beschriebenen Ansatz abgedeckt.

Anschließend wurde beschrieben, wie dieser Ansatz realisiert wurde, welche Probleme dabei

aufgetreten sind und wie diese gelöst wurden. Zuletzt wurden die Testfälle und -Ergebnisse be-

schrieben, durch welche gezeigt wurde, dass der Ansatz valide und praktikabel ist und sämtliche

Anforderungen an die Funktionalität eines Steuerungs-Werkzeugs abgedeckt wurden.

Das Ziel der Arbeit wurde erreicht.

Ausblick

Das im Rahmen dieser Arbeit implementierte Steuerungs-Werkzeug deckt zwar alle gestellten

Anforderungen ab, es gibt jedoch noch einige Punkte, die verbessert oder hinzugefügt werden

können.

Beispielsweise die Unterstützung von mehreren Eingabedateien oder die Parallele Ausfüh-

rung von Analysepfaden. Eine Funktion zur Prüfung, ob eine Analyse durchgeführt werden

muss, oder ob Dateien aus einer älteren Analyse wiederverwendet werden können, sowie

eine erweiterte Fehlerbehandlung, mit der im Fehlerfall automatisch alternative Pfade im

Abhängigkeitsgraph gesucht und ausgeführt werden.

Für den Anwendungsfall des Bauhaus-Systemtests könnte eine Funktion ergänzt werden,

welche diesen Test mit einem einzelnen Aufruf durchführt.

49

Literaturverzeichnis

[16a] Aufgabenstellung. 2016 (zitiert auf S. 8).

[16b] Bauhaus Demonstration. 2016. url: http://www2.informatik.uni-stuttgart.de/iste/

ps/bauhaus/demo/index.html (zitiert auf S. 8).

[16c] Bauhaus website. 2016. url: http://www.iste.uni-stuttgart.de/ps/projekt-bauhaus.

html (zitiert auf S. 8).

[16d] JSON Api for Java. 2016. url: https://github.com/stleary/JSON-java (zitiert auf

S. 25).

[IST16a] ISTE. „Bauhaus Dokumentation“. 2016 (zitiert auf S. 10).

[IST16b] ISTE. „Make�le zur Ausführung von Analysen“. 2016 (zitiert auf S. 7, 14).

Alle URLs wurden zuletzt am 10. 08. 2016 geprüft.

http://www2.informatik.uni-stuttgart.de/iste/ps/bauhaus/demo/index.html
http://www2.informatik.uni-stuttgart.de/iste/ps/bauhaus/demo/index.html
http://www.iste.uni-stuttgart.de/ps/projekt-bauhaus.html
http://www.iste.uni-stuttgart.de/ps/projekt-bauhaus.html
https://github.com/stleary/JSON-java

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu ha-

ben. Ich habe keine anderen als die angegebenen Quellen

benutzt und alle wörtlich oder sinngemäß aus anderen Wer-

ken übernommene Aussagen als solche gekennzeichnet.

Weder diese Arbeit noch wesentliche Teile daraus waren

bisher Gegenstand eines anderen Prüfungsverfahrens. Ich

habe diese Arbeit bisher weder teilweise noch vollständig

verö�entlicht. Das elektronische Exemplar stimmt mit allen

eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

A. Vollständige Konfiguration

{
"name" : "andersen_tool",
"source" : [".iml"],
"target" : [".anderson"],
"predicates" : ["exact"],
"params" : ["\&i", "\&o"],
"isToolForDisplay" : false
}

Listing A.1: Kon�guration für andersen_tool

{
"name" : "cafeCC",
"source" : [".c"],
"target" : [".iml"],
"predicates" : [],
"params" : ["-o", "\&o", "\&i"],
"isToolForDisplay" : false
}

Listing A.2: Kon�guration für cafeCC

{
"name" : "ccdiml",
"source" : [".iml"],
"target" : [],
"predicates" : [],
"params" : ["\&i", "\&o"],
"isToolForDisplay" : false
}

Listing A.3: Kon�guration für ccdiml

{
"name" : "cobra",
"source" : [".iml", ".cfg", ".cg", ".tt", ".kcg", ".re"],
"target" : [],
"predicates" : [],
"params" : ["\&i"],
"isToolForDisplay" : true
}

Listing A.4: Kon�guration für cobra

{
"name" : "das_tool" ,
"source" : [".iml"],
"target" : [".das"],
"predicates" : ["precise"],
"params" : ["\&i", "\&o"],
"isToolForDisplay" : false
}

Listing A.5: Kon�guration für das_tool

{
"name" : "dra_filter",
"source" : [".tt"],
"target" : [".dra"],
"predicates" : [],
"params" : ["\&i", "\&o"],
"isToolForDisplay" : false
}

Listing A.6: Kon�guration für dra_�lter

{
"name" : "dump_cg",
"source" : [".iml", ".cg", ".cfg"],
"target" : [".cg_dump"],
"params" : ["-o", "\&o", "\&i"],
"isToolForDisplay" : true
}

Listing A.7: Kon�guration für dump_cg

{
"name" : "ecr_tool",
"source" : [".iml"],
"target" : [".ecr"],
"predicates" : ["fast"],
"params" : ["-iml", "\&o", "\&i"]

}

Listing A.8: Kon�guration für ecr_tool

{
"name" : "function_names",
"source" : [".iml"],
"target" : [".func_name"],
"predicates" : [],
"params" : ["\&i", ">>", "\&o"],
"isToolForDisplay" : false
}

Listing A.9: Kon�guration für function_names

{
"name" : "iml2cfg",
"source" : [".iml", ".cg", ".das", ".anderson"],
"target" : [".cfg"],
"predicates" : ["exact"],
"params" : ["\&i", "\&o"],
"isToolForDisplay" : false
}

Listing A.10: Kon�guration für iml2cfg

{
"name" : "iml2cfg",
"source" : [".pta"],
"target" : [".pcfg"],
"predicates" : [],
"params" : ["\&i", "\&o"],
"isToolForDisplay" : false
}

Listing A.11: Kon�guration für iml2cfg

{
"name" : "iml2cg",
"source" : [".iml", ".anderson", ".das", ".ecr"],
"target" : [".cg"],
"params" : ["\&i", "\&o"],
"predicates" : ["exact", "precise"],
"isToolForDisplay" : false
}

Listing A.12: Kon�guration für iml2cg

{
"name" : "iml2dot",
"source" : [".iml"],
"target" : [".dot"],
"predicates" : [],
"params" : ["\&i", "\&o"],
"isToolForDisplay" : true
}

Listing A.13: Kon�guration für iml2dot

{
"name" : "iml2html",
"source" : [".iml"],
"target" : [".html"],
"predicates" : [],
"params" : ["\&i", "\&o"],
"isToolForDisplay" : true
}

Listing A.14: Kon�guration für iml2html

{
"name" : "iml2rfg",
"source" : [".iml",".cfg"],
"target" : [".rfg"],
"predicates" : [],
"params" : ["\&i", "\&o"],
"isToolForDisplay" : false
}

Listing A.15: Kon�guration für iml2rfg

{
"name" : "imldump",
"source" : [".iml", ".cfg", ".cg", ".tt", ".kcg", ".re", "rett"],
"target" : [".html"],
"predicates" : ["dump"],
"params" : ["-html", "\&i", ">>", "\&o"],
"isToolForDisplay" : true
}

Listing A.16: Kon�guration für imldump

{
"name" : "imlstat",
"source" : [".iml"],
"target" : [".stats"],
"predicates" : [],
"params" : ["\&i", "\&o"],
"isToolForDisplay" : false
}

Listing A.17: Kon�guration für imlstat

{
"name" : "kcg_stats",
"source" : [".pta", ".tt"],
"target" : [".kcg"],
"params" : ["-o", "\&o", "\&i"]
}

Listing A.18: Kon�guration für kcg_stats

{
"name" : "partition_tool",
"source" : [".tt"],
"target" : [".dot"],
"predicates" : [],
"params" : ["-o", "\&o", "\&i"],
"isToolForDisplay" : true
}

Listing A.19: Kon�guration für partition_tool

{
"name" : "pta_tool",
"source" : [".iml", ".cg"],
"target" : [".pta"],
"predicates" : [],
"params" : ["-o", "\&o", "\&i"],
"isToolForDisplay" : false
}

Listing A.20: Kon�guration für pta_tool

{
"name" : "raceq",
"source" : [".tt", ".rett"],
"target" : [".race"],
"predicates" : [],
"params" : ["-o", "\&o", "\&i"],
"isToolForDisplay" : false
}

Listing A.21: Kon�guration für raceq

{
"name" : "red",
"source" : [".tt"],
"target" : [".rett"],
"params" : ["-o", "\&o", "\&i"],
"predicates" : ["execute_red"]
}

Listing A.22: Kon�guration für red

{
"name" : "red",
"source" : [".pcfg"],
"target" : [".re"],
"params" : ["-o", "\&o", "\&i"],
"predicates" : ["execute_red"]
}

Listing A.23: Kon�guration für red

{
"name" : "rfg2gxl",
"source" : [".rfg"],
"target" : [".gxl"],
"predicates" : [],
"params" : ["\&i", "\&o"],
"isToolForDisplay" : false
}

Listing A.24: Kon�guration für rfg2gxl

{
"name" : "stats",
"source" : [".tt", ".rett"],
"target" : [".stat"],
"predicates" : ["exact"],
"params" : ["-o", "\&o", "\&i"],
"isToolForDisplay" : false
}

Listing A.25: Kon�guration für stats

{
"name" : "symta.sh",
"source" : [".func_name"],
"target" : ["Concurrency.config"],
"isToolForConfig" : true,
"toolsToConfigure" : ["pta_tool", "thread_tool"],
"params" : ["\&i", "/home/baueras/mockup.symta.csv"],
"afterExecutionClass" : "resources/AfterSymta.class"
}

Listing A.26: Kon�guration für symta

{
"name" : "thread_tool",
"source" : [".pcfg", ".re"],
"target" : [".tt"],
"predicates" : [],
"params" : ["-o", "\&o", "\&i"],
"isToolForDisplay" : false
}

Listing A.27: Kon�guration für thread_tool

	1 Einleitung
	1.1 Ziel der Arbeit
	1.2 Verwandte Arbeiten
	1.3 Anforderungen
	1.4 Was ist Bauhaus?
	1.5 Alternativen

	2 Analyse
	2.1 Anwendungsfälle
	2.2 Abhängigkeiten
	2.3 Vorteile eines Steuerungs-Werkzeugs
	2.4 Annahmen
	2.5 Voraussetzungen für die Ausführung

	3 Methodik der Umsetzung
	3.1 Konfigurierbarkeit
	3.2 Automatisierte Analyse
	3.3 Wiederholbarkeit
	3.4 Präferenzmechanismus

	4 Realisierung
	4.1 Architektur
	4.2 Designentscheidungen
	4.3 Bedienung des Werkzeugs
	4.4 Tests
	4.5 Laufzeit

	5 Zusammenfassung und Ausblick
	Literaturverzeichnis
	A Vollständige Konfiguration

