
Institut für Parallele und Verteilte Systeme

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit Nr. 271

TOSCA4Mashups –
Provisionierung und Ausführung
von Data Mashups in der Cloud

Daniel Del Gaudio

Studiengang: Informatik

Prüfer/in: Prof. Dr.-Ing. habil. Bernhard Mitschang

Betreuer/in: Dipl.-Inf. Pascal Hirmer

Beginn am: 1. November 2015

Beendet am: 02. Mai 2016

CR-Nummer: K.1, K.6.4, D.2.12

Kurzfassung

Mit der stetig wachsenden Menge an Daten wird Datenintegration und Datenverarbeitung

zunehmend schwieriger. Domänen-Experten ohne IT-Hintergrund sollen aus großen Da-

tenmengen entsprechende Informationen gewinnen. Leicht zu bedienende Werkzeuge sind

nötig, um Daten aus heterogenen Datenmengen durch Domänen-Experten zu verarbeiten.

Data Mashups ermöglichen die Verarbeitung und Integration verschiedener, heterogener

Datenquellen. Dabei nutzen manche Data Mashup-Lösungen dynamische Ausführungsumge-

bungen. Die Cloud bietet sich für die Provisionierung solcher dynamisch zusammengesetzten

Ausführungsumgebungen an, da Rechenressourcen ebenso dynamisch bereitgestellt werden

können. Eine Möglichkeit, um Portabilität und Management von Cloud-Anwendungen zu er-

möglichen ist OASIS TOSCA. Um Anwendungen mit TOSCA automatisch zu provisionieren

werden alle notwendigen Komponenten in einer sogenannten Topologie modelliert und mit

allen notwendigen Informationen, um die Anwendung zu betreiben in ein selbst-enthaltenes

Dateiformat, sogenannte Cloud Service Archives verpackt. Die TOSCA Laufzeitumgebung

kann diese Archivdatei verarbeiten und die Anwendung automatisiert in der Cloud provisio-

nieren. Im Rahmen dieser Bachelorarbeit wird ein Konzept entwickelt, um Data Mashups

automatisiert in der Cloud zu Provisionieren und auszuführen. Um das Konzept zu testen

wurde ein Prototyp implementiert, der die TOSCA Laufzeitumgebung OpenTOSCA der

Universität Stuttgart verwendet.

3

Inhaltsverzeichnis

1. Einleitung und Motivation 9
1.1. Motivationsszenario . 10

1.2. Begriffserklärungen . 11

1.2.1. Abgrenzung Deployment und Provisionierung 11

1.2.2. Abgrenzung Mashup-Plan Workflow und Mashup 12

2. Grundlagen 15
2.1. Data Mashups . 15

2.2. Cloud Computing . 16

2.2.1. Service-Modelle . 17

2.2.2. Deployment-Modelle . 18

2.3. OASIS TOSCA . 19

2.3.1. TOSCA Sprachstandard . 20

2.3.2. Provisionierungsplan . 23

2.3.3. Cloud Service Archive (CSAR) . 24

2.3.4. TOSCA Laufzeitumgebung . 25

3. Verwandte Arbeiten 27
3.1. OpenTOSCA . 27

3.2. Alternativen zu TOSCA . 28

4. Konzept 31
4.1. Architektur . 31

4.1.1. Übersicht . 31

4.1.2. Komponenten . 32

4.2. Methode zur automatischen Provisionierung von Data Mashups 35

4.3. Schritt 1: CSAR erstellen . 35

4.3.1. Schritt 1.1: Topologie erstellen . 36

4.3.2. Schritt 1.2: Artefakte einfügen . 38

4.3.3. Schritt 1.3: Plan generieren . 38

4.3.4. Schritt 1.4: CSAR erstellen . 38

4.4. Schritt 2: CSAR deployen und Anwendung provisionieren 38

4.4.1. Schritt 2.1: CSAR deployen . 39

4.4.2. Schritt 2.2: Anwendung provisionieren 39

5

4.5. Schritt 3: Mashup ausführen . 41

4.5.1. Schritt 3.1: Mashup-Plan Deployment außerhalb der Topologie . . . 41

4.5.2. Schritt 3.2: Mashup-Plan ausführen 41

5. Implementierung 43
5.1. Entwurf . 44

5.1.1. OpenTOSCA . 44

5.1.2. Winery . 45

5.1.3. TOSCA4Mashups . 45

5.2. Umsetzung . 46

5.2.1. Technologien . 46

5.2.2. Ablauf . 47

5.3. Sonderfälle . 48

5.4. Evaluation . 49

6. Optimierungen 51
6.1. Wiederverwendung bereits generierter Services 51

6.2. Fehlerbehandlung . 51

6.2.1. Keine passenden Node Types . 52

6.2.2. Fehler beim Installieren der Anwendungskomponenten 52

6.3. Anpassung der Topologie . 52

6.4. Verwendung anderer Cloud-Anbieter . 53

6.4.1. Ausführung auf anderen Cloud-Architekturen 53

6.4.2. Anpassung an den Cloud-Provider 54

7. Zusammenfassung und Ausblick 57

A. Anhang 59

Literaturverzeichnis 65

6

Abbildungsverzeichnis

1.1. Beispiel einer graphischen Oberfläche zur Modellierung von Data Mashups

[HM16] . 10

1.2. Ablauf eines Data Mashups . 11

2.1. Allgemeiner Anwendungsstapel einer Cloud-Anwendung [FLR+14] 16

2.2. Beispiel für eine Anwendungstopologie [BBK+14] 20

4.1. Architektur des gesamten Systems . 32

4.2. Architektur der TOSCA4Mashups-Komponente 33

4.3. Architektur einer TOSCA Laufzeitumgebung [OASa] 34

4.4. Überblick der Methode . 35

4.5. Methode, um das Cloud Service Archive zu erstellen 36

4.6. Methode, um die Anwendung zu provisionieren 39

4.7. Anwendung provisionieren. Links der Provisionierungsplan, rechts die To-

pologie. 40

4.8. Mashup ausführen . 41

5.1. Beispieltopologie für Node-RED . 43

5.2. Entwurf TOSCA4Mashups . 44

6.1. Alternative Topologie zu Abbildung 2.2 . 53

Verzeichnis der Listings

2.1. Beispiel für eine TOSCA Node Type-Definition 21

2.2. Beispiel für ein TOSCA Topology Template 23

A.1. Resultierendes Service Template der Implementierung 1 59

A.2. Resultierendes Service Template der Implementierung 2 60

A.3. Resultierendes Service Template der Implementierung 3 61

7

A.4. Resultierendes Service Template der Implementierung 4 62

A.5. Resultierendes Service Template der Implementierung 5 63

A.6. Resultierendes Service Template der Implementierung 6 64

8

1. Einleitung und Motivation

Mit der immer stärker wachsenden Anzahl an verfügbaren Daten spielt Datenverarbeitung

und Datenintegration eine zunehmend wichtige Rolle [MCB+11]. Sogenannte Domänen-

Experten, Benutzer ohne IT-Hintergrund, sollen in der Lage sein aus großen heterogenen

Datenmengen relevante Informationen zu gewinnen. Probleme, die sich im Zusammenhang

mit sehr großen Datenmengen ergeben, werden unter dem Begriff Big Data [MBD+12] zu-

sammengefasst. Data Mashups [DM14] bieten eine Möglichkeit die komplexen Vorgänge der

Datenintegration hinter einer für nicht-technische Anwender bedienbaren graphischen Be-

nutzeroberfläche zu verbergen. Je nach Anwendungsfall können bei Mashups verschiedene

Aspekte bei der Ausführung priorisiert werden, wie zum Beispiel Effizienz oder Robust-

heit. Einen derartigen Ansatz unterstützt beispielsweise das an der Universität Stuttgart

entwickelte Data Mashup Tool FlexMash [HM16]. Auf Basis nicht-funktionaler Nutzeranfor-

derungen wird dabei die Ausführungsumgebung der Mashups dynamisch, Baukasten-artig

zusammengesetzt.

Cloud Computing[MG11] ermöglicht durch das Prinzip der Virtualisierung hochverfügbare

on-demand-Rechensysteme. An den Anwendungsfall angepasste virtuelle Maschinen können

bei Bedarf innerhalb von Sekunden verfügbar gemacht werden. Abrechnung der Kosten bei

Cloud-Anbietern geschieht nach dem pay-as-you-go-Prinzip [AG10], was bedeutet, dass ledig-
lich die verwendete Rechenleistung bezahlt werden muss. Die Vorteile des Cloud Computing

machen dieses besonders geeignet für ad-hoc auszuführende Data Mashups mit variabler

Ausführungsumgebung, wie zum Beispiel FlexMesh.

Eine Anwendungstopologie ist die Beschreibung der für eine Anwendung verwendeten

Softwarekomponenten und der Kommunikation zwischen diesen Komponenten. Im Zusam-

menhang mit einer Cloud-Umgebung gehört dazu beispielsweise die virtuelle Maschine,

das Betriebssystem und jede weitere installierte Software, von der die auszuführende Soft-

ware abhängt, wie zum Beispiel eine Datenbank. OASIS
1
TOSCA

2
ist ein Standard der die

Möglichkeit bietet solche Anwendungstopologien zu beschreiben und damit portierbar zu

machen. Die Anwendungstopologien der verschiedenen Mashup-Ausführungen können

unterschiedlich komplex sein, da jede Ausführung aus verschiedenen Anwendungen und

Anwendungskomponenten zusammengesetzt sein kann. Dementsprechend benötigt die

1
https://www.oasis-open.org/

2
https://www.oasis-open.org/committees/tosca/

9

1. Einleitung und Motivation

Abbildung 1.1.: Beispiel einer graphischen Oberfläche zur Modellierung von Data Mashups

[HM16]

ad-hoc Ausführung von Data Mashups durch Domänen-Experten eine vollautomatisierte

Provisionierung, ohne den Anwender mit den Komplikationen dieser zu konfrontieren. In

dieser Bachelorarbeit soll ein Konzept hierfür erarbeitet werden.

1.1. Motivationsszenario

In diesem Kapitel wird ein Anwendungsfall beschrieben, der für die Evaluation der Konzepte

dieser Arbeit dient.

Ein Produktionsmitarbeiter einer Firma möchte Fehlerfälle einer Fabrik basierend auf ver-

schiedenen Datenquellen automatisiert erkennen. Zu diesen Datenquellen gehören Sensoren,

Prozessdatenbanken, Metadatenbanken und textuelle Eingaben von Mitarbeitern. Um dies

zu realisieren verwendet er Data Mashups. Um die Zusammenhänge zwischen den einzelnen

Datenquellen und die Verarbeitungsschritte zu modellieren entwirft er einen sogenannten

Mashup-Plan [HRWM15]. Abbildung 1.1 zeigt eine beispielhafte graphische Benutzerober-

fläche, die dazu dient Data Mashups zu modellieren. Links in der Abbildung sind die zur

Auswahl stehenden Datenquellen und Datenoperationen, rechts der abstrakte Mashup-Plan.

Einen solchen Anwendungsfall, auf den sich diese Arbeit bezieht, beschreiben Kassner und

Mitschang [KM15]. Für die Ausführung solcher dynamisch erstellten Data Mashups bietet

sich eine Cloud-Umgebung an, da schnell eine angepasste virtuelle Maschine aufgesetzt

10

1.2. Begriffserklärungen

Mashup-Plan	
modellieren

Transformation	
in	ausführbaren	
Mashup-Plan

Provisionierung
des	Mashups in	

der	Cloud

Auswahl	der	
Ausführungs-
komponenten

Cloud-basierte
Mashup-
Ausführung

Abbildung 1.2.: Ablauf eines Data Mashups

werden kann. Um Zeit und Kosten zu sparen soll die Provisionierung automatisiert ablaufen,

da sonst ein IT-Experte nötig wäre. Da es sich bei dem Benutzer um einen Domänen-Experten,

und nicht um einen IT-Experten handelt, kann ihm jedoch auch keine Entscheidung über die

Provisionierung überlassen werden. Darum müssen auch alle Entscheidungen, die die Provi-

sionierung betreffen, wie zum Beispiel die Leistung und die Anzahl der virtuellen Maschinen,

automatisiert getroffen werden. Nach der Provisionierung soll der Mashup automatisch

ausgeführt und das Ergebnis zum Benutzer zurückgeführt werden. Die Verwendung der

Cloud-Umgebung soll für den Benutzer vollständig transparent erscheinen. Eine Cloud-

Umgebung bietet sich für die Ausführung solcher dynamisch erzeugter Mashups an, da in

der Cloud Ressourcen ebenso dynamisch bereitgestellt werden können. Dies birgt jedoch

Schwierigkeiten, da bisher keine Möglichkeit besteht, um Data Mashup vollautomatisch

in einer Cloud zu provisionieren und auszuführen. Dieses Problem wird in dieser Arbeit

gelöst.

Um den Anwendungsfall noch zu verdeutlichen, zeigt Abbildung 1.2 den allgemeinen Ab-

lauf eines dynamisch erstellten Data Mashups. Im ersten Schritt wird der Mashup-Plan

vom Anwender in einem nicht-ausführbaren Modell erstellt. Danach wird eine für den An-

wendungsfall spezifische Ausführungsumgebung ausgewählt, anhand von Kriterien die der

Anwender angibt. Im nächsten Schritt wird der Workflow in einen für die Mashup-Plattform

spezifischen ausführbaren Mashup-Plan übersetzt. Nach dem Provisionieren des Mashups in

der Cloud wird dieser dort ausgeführt.

1.2. Begriffserklärungen

Häufig in dieser Bachelorarbeit verwendete Begriffe werden in diesem Abschnitt erläutert

und ähnliche voneinander abgegrenzt.

1.2.1. Abgrenzung Deployment und Provisionierung

Als Provisionierung werden alle erforderlichen Arbeitsschritte bezeichnet die benötigt wer-

den, um eine Anwendung oder eine Anwendungskomponente in einer Cloud-Umgebung zu

installieren und einem oder mehreren Anwendern zur Verfügung zu stellen.

11

1. Einleitung und Motivation

Deployment bezeichnet das Einsetzen von Software in einem System. Bei der Software kann

es sich um Dateien und ausführbare Programme handeln. Eine Provisionierung beinhaltet

meistens mehrere Deployments.

1.2.2. Abgrenzung Mashup-Plan Workflow und Mashup

Da die Begriffe Workflow, Mashup und Mashup-Plan in dieser Arbeit in einem sehr ähnlichen

Kontext verwendet werden, werden diese hier voneinander abgegrenzt.

Ein Mashup-Plan ist eine abstrakte oder technische Beschreibung dessen, was der Benutzer

ausgeführen möchte. Dementsprechend können Mashup-Pläne sowohl ausführbar als auch

nicht-ausführbar sein. Bei nicht-ausführbaren Mashup-Plänen handelt es sich meist um ein

Modell nach dem Pipes und Filter-Pattern [Meu95], wie zum Beispiel der BPMN
3
-Notation.

Ausführbare Mashup-Pläne sind spezifisch für die jeweilige Ausführungsumgebung. Häufig

sind diese im BPEL
4
-Format oder in JSON

5
geschrieben. Im Kontext dieser Arbeit wird aus

einem nicht-ausführbaren Mashup-Plan ein ausführbarer Mashup-Plan generiert.

Ausführbare Mashup-Pläne werden ebenfalls als Workflows bezeichnet.

Mashup bezeichnet die gesamte Anwendung zur Ausführung desMashup-Planes. Imweiteren

Sinne bezeichnet Mashup die Menge der Ausführungskomponenten, die für die Ausführung

des jeweiligenWorkflows benötigt werden. Der Begriff Mashup-Plattformwird mit der selben

Bedeutung verwendet.

3
http://www.bpmn.org/

4
https://www.oasis-open.org/committees/wsbpel/

5
http://www.json.org/

12

1.2. Begriffserklärungen

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Grundlagen: In diesem Kapitel werden die nötigen Grundlagen für diese Arbeit

vermittelt. Dazu gehören Kenntnisse zu Data Mashups, Cloud Computing und OASIS

TOSCA.

Kapitel 3 – Verwandte Arbeiten: Hier werden verschiedene, mit dieser Bachelorarbeit

verwandte Arbeiten vorgestellt. Dazu gehören verschiedene Arbeiten, die im Rahmen

des Cloud Cycle-Projektes
6
der Universität Stuttgart entstanden sind, auf welchen

diese Arbeit aufbaut. Des Weiteren werden verschiedene anderen Cloud-Technologien

vorgestellt, von denen sich diese Arbeit abgrenzt.

Kapitel 4 – Konzept: Kapitel 4 stellt den Kern dieser Arbeit dar. In diesem Kapitel wird ein

Konzept ausgearbeitet, um Data Mashups mithilfe von OASIS TOSCA automatisiert in

einer Cloud-Umgebung zu provisionieren und auszuführen. Dieses Konzept wurde in

drei Schritte eingeteilt, nach denen sich die Gliederung des Kapitels richtet. Vorher

wird jedoch noch die Architektur des entwickelten Konzepts gezeigt und erläutert.

Kapitel 5 – Implementierung: Um die Funktionalität des Konzeptes zu zeigen wurde ein

Prototyp implementiert. Dessen Entwurf und Umsetzung wird in Kapitel 5 beschrieben.

Außerdem werden Anwendungsfälle gezeigt, die die Implementierung nicht abdeckt.

Zum Schluss wird der Entwurf des Prototypes evaluiert.

Kapitel 6 – Optimierungen: In diesem Kapitel werden verschiedene Möglichkeiten ausge-

arbeitet, um sowohl das Konzept als auch den Prototyp zu verbessern. Dazu gehört

die Wiederverwendung bereits ausgeführter Data Mashups, der Umgang mit Feh-

lern bei der Provisionierung, die Anpassung der Data Mashups an den jeweiligen

Anwendungsfall und die Verwendung anderer Cloud-Provider.

Kapitel 7 – Zusammenfassung und Ausblick Das letzte Kapitel liefert eine Zusammen-

fassung dieser Arbeit und gibt einen Überblick über mögliche zukünftige Arbeiten, die

das Konzept erweitern.

6
http://www.cloudcycle.org/

13

2. Grundlagen

In diesem Kapitel werden die für diese Arbeit nötigen Grundlagenkenntnisse vermittelt.

Dazu gehören Data Mashups, Cloud Computing und OASIS TOSCA.

2.1. Data Mashups

Daniel und Matera [DM14] definieren Mashups als zusammengesetzte Anwendungen, wel-

che aus wiederverwendbaren Daten, Anwendungslogik und eventuell einer graphischen

Benutzeroberfläche entwickelt werden. Alle Daten, jede Anwendungslogik, sowie jede Be-

nutzeroberfläche wird dabei als Mashup-Komponente bezeichnet. Mashup-Komponenten

werden in der Regel, jedoch nicht zwangsweise, aus dem Web bezogen. Die Mashup-Logik

legt die Zusammensetzung der einzelnen Komponenten, den Kontrollfluss, den Datenfluss,

die Datentransformationen sowie die externen Schnittstellen des Mashups fest. Das bedeutet,

dass Mashups als Anwendungen gesehen werden können, welche sich aus verschiedenen

anderen Anwendungen zusammensetzen und durch eine simple Sprache, wie zum Beispiel

über eine graphische Oberfläche, modelliert und entwickelt werden. Grundlegende Elemente

der Data Mashup-Modellierung sind Datenquellen und Datentransformationen, die durch

Kommunikationswege verbunden werden können. Diese Kommunikationswege entspre-

chen meist auch dem Kontrollfluss und Datenfluss der Data Mashup-Anwendung. Diese

graphischen Oberflächen sind meist nach dem Pipes und Filter-Pattern [Meu95] aufgebaut,

wobei die Pipes den Kommunikationswegen der Daten und die Filter den Datenquellen und

Datentransformationen entsprechen. Mashups können auf verschiedene Weise realisiert

werden, wie beispielsweise durch service-orientierte Architekturen [Erl05] oder durch Com-

plex Event Processing [Luc02]. Andere Arten von Mashups sind UI-Mashups aus der Web

2.0-Bewegung oder Logic-Mashups [DM14]. Mashup-Arten außer den Data Mashups werden

in dieser Arbeit nicht behandelt, weswegen sich der Begriff Mashup hier grundsätzlich auf

Data Mashups bezieht.

15

2. Grundlagen

Physische	Hardware

Virtuelle	Hardware

Betriebssystem

Middleware

Anwendungssoftware

Geschäftsprozess

IaaS

PaaS

SaaS

Abbildung 2.1.: Allgemeiner Anwendungsstapel einer Cloud-Anwendung [FLR+14]

2.2. Cloud Computing

Das „National Institute of Standards and Technology“
1
definiert Cloud Computing als „Modell

für ubiquitären und komfortablen on-demand Netzwerkzugriff zu geteilten Rechnerressour-

cen, die schnell und ohne großen Verwaltungsaufwand bereitgestellt und wieder freigegeben

werden können“ [MG11]. Dabei muss kaum Kommunikation mit dem Bereitsteller der Res-

sourcen stattfinden. Das bedeutet, dass Cloud Computing es ermöglicht, angepasste virtuelle

Maschinen bei Bedarf innerhalb von kürzester Zeit bereitzustellen. Diese sind dann sofort

über eine Netzwerkverbindung verfügbar. Das macht es möglich hochverfügbare und ska-

lierbare Rechensysteme zu schaffen. Da für die gewünschte Rechenleistung keine Hardware

direkt bereitgestellt wird, sondern lediglich eine geteilte Nutzung der Hardware durch eine

virtuelle Maschine, fallen in der Regel nur Kosten bei der tatsächlichen Nutzung der Res-

sourcen an. Abbildung 2.1 zeigt auf der linken Seite den allgemeinen Anwendungsstapel

einer Cloud-Anwendung [FLR+14]. Als Cloud-Provider wird die Organisation bezeichnet, die

je nach Service-Modell entsprechende Software oder Rechenleistung dem Anwender oder

Kunden zur Verfügung stellt. Als Cloud-Anwender wird diejenige Person oder Organisation

1
http://www.nist.gov/

16

2.2. Cloud Computing

bezeichnet, welche die Software oder Rechenressourcen des Cloud-Providers in Anspruch

nimmt. Der Cloud-Provider verwaltet alle Komponenten des Cloud-Anwendungsstapels, der

nicht vom Anwender verwaltet wird.

Cloud Computing wird in verschiedene Charakteristika, Service-Modelle und Deployment-

Modelle unterteilt, die in den folgenden Abschnitten erläutert werden.

2.2.1. Service-Modelle

Die verschiedenen Service-Modelle unterscheiden sich darin, wie viel Verwaltungsaufwand

der Anwender hat, und wie viel Verantwortung dem Cloud-Provider überlassen wird. Auf

der rechten Seite von Abbildung 2.1 sind die Verantwortlichkeiten des Cloud-Providers bei

den verschiedenen Service-Modellen dargestellt, welche im Folgenden genauer erläutert

werden.

Software as a Service (SaaS)

Dem Benutzer wird Software zur Verfügung gestellt, die auf einer Cloud-Infrastruktur läuft

[MG11]. Auf diese kann durch Web Browser oder Programmierschnittstellen zugegriffen

werden. Der Benutzer kann ohne großen Aufwand verschiedene Softwarepakete, wie zum

Beispiel Datenbanken, aufsetzen und verwenden. Für ihn besteht kein Verwaltungsauf-

wand hinsichtlich dieser. Im Anwendungsstapel von Cloud-Anwendungen muss sich der

Benutzer lediglich darum kümmern, dass mit der durch den Cloud-Provider bereitgestellte

Anwendungssoftware die eigenen Geschäftsprozesse korrekt durchgeführt werden.

Platform as a Service (PaaS)

Der Benutzer hat die Möglichkeit eigenständig programmierte Anwendungen in der Cloud-

Infrastruktur zu deployen und auszuführen [MG11]. Der Vorteil für den Benutzer bei diesem

Service-Modell liegt darin, dass er sich lediglich um seine eigene Anwendungssoftware

und die durch diese ausgeführten Geschäftsprozesse kümmern muss. Die Teile des Cloud-

Anwendungsstapels von der physischen Hardware bis zur Middleware werden durch den

Cloud-Provider verwaltet.

Infrastructure as a Service (IaaS)

In diesem Service-Modell werden dem Benutzer fundamentale Rechnerressourcen zur Ver-

fügung gestellt [MG11]. Er erhält Zugang zu virtuellen Maschinen über ein Netzwerk. Der

17

2. Grundlagen

Verwaltungsaufwand des gesamten Teiles der Cloud-Anwendungsstapels von der virtuellen

Hardware bis zum Geschäftsprozess liegt bei dem Benutzer.

2.2.2. Deployment-Modelle

In diesem Abschnitt werden die vier verschiedenen Deployment Modelle des Cloud Com-

puting erläutert. Der Unterschied zwischen den verschiedenen Deployment-Modellen liegt

darin, mit welchen anderen Personen und Organisationen die Software und Rechenleistung

der Cloud geteilt wird.

Public Cloud

Bei einer Public Cloud-Umgebung werden die Rechenressourcen zur freien Benutzung

bereitgestellt. Hierbei wird oft nach dem pay-as-you-go-Prinzip abgerechnet. Das bedeutet,

dass der Benutzer nur die wirklich verwendete Rechenleistung bezahlen muss. Die Public

Cloud bietet die geringste Sicherheit, da der Cloud-Provider in der Lage ist auf alle Ressourcen

zuzugreifen. Die Sicherheit der Daten und Anwendungen ist durch das Vertrauen zum

Cloud-Provider beschränkt. Da eine Vielzahl unbekannter Dritter die selbe Cloud verwendet,

könnten Sicherheitsfehler schnell verheerend werden. Ein Beispiel für einen möglichen

Angriff auf eine virtuelle Maschine in einer Public Cloud ist das sogenannte VM Tunneling

[KV10].

Private Cloud

Bei einer Private Cloud stehen die Rechnerressourcen lediglich einer einzigen Organisation

zur Verfügung. Sie kann jedoch einer anderen Organisation gehören und auch durch diese

verwaltet werden. Eine Private Cloud bietet die sicherste Umgebung unter den Service-

Modellen, da niemand auf die virtuellen Maschinen oder auf die physikalische Hardware

zugreifen kann.

Hybrid Cloud

Beim Deployment Model Hybric Cloud werden eines oder mehrere der anderen Deploment-

Modelle verbunden. Bei einer Hybrid Cloud könnten beispielsweise sicherheitsrelevante

Daten auf den Private Cloud-Anteil, und weniger sicherheitsrelevante auf den Public Cloud-

Anteil gelegt werden.

18

2.3. OASIS TOSCA

Community Cloud

Bei dem Deploment-Modell der Community Cloud stehen alle Rechnerressourcen einer

bestimmtenGemeinschaft von Benutzern vonOrganisationen zur Verfügung, die gemeinsame

Anliegen besitzen. Auch hier kann die Cloud durch Dritte betrieben und verwaltet werden.

Die Community Cloud bietet eine ähnliche Sicherheit wie eine Public Cloud, jedoch besteht

kein Risiko durch unbekannte Dritte.

2.3. OASIS TOSCA

„Topology and Orchestration Specification for Cloud Applications“ von der „Organization

for the Advancement of Structured Information Standards“ (OASIS) ist ein Standard zur

Beschreibung und Portierung von Cloud-Anwendungen.

Außer einem Sprachstandard besteht die Topology and Orchestration Specification for Cloud

Applications noch aus der Definition von Cloud Service Archive Dateien und einer beispiel-

haften Architektur einer TOSCA Laufzeitumgebung.

Mehrere zusammenhängende Anwendungen werden mit TOSCA als Topologien in Form

von gerichteten Graphen beschrieben, wobei jeder Knoten eine Instanz einer Anwendung

und jede Kante eine Relation zwischen zwei Anwendungen symbolisiert. Abbildung 2.2

zeigt eine Anwendungstopologie mit zwei virtuellen Maschinen, auf denen jeweils ein

Linux Betriebssystem provisioniert ist. Auf dem einen ist ein Apache Web Server
2
installiert,

auf dem anderen eine MySQL-Datenbank
3
. In der Topologie existieren zwei Arten von

Relationen: „hosted on“ und „connect to“. Erstere symbolisiert, dass die Anwendung von

der die Kante ausgeht auf der Anwendung zu der die Kante hinführt ausgeführt wird. Die

Kante zwischen den Anwendungen „Web Shop“ und „MySQL Database“ symbolisiert den

Zugriff der Web-Anwendung auf die Datenbank. Die Knoten in einer Anwendungstopologie

werden in TOSCA als Node Templates, die Relationen als Relationship Templates bezeichnet.
Mehrere Anwendungen, von denen jede auf der darunter liegenden Anwendung aufbaut,

werden als Anwendungs-Stack bezeichnet. Die Topologie in Abbildung 2.2 besteht aus zwei

Anwendungs-Stacks. Die vier Anwendungen auf der linken Seite und die vier auf der rechten

Seite bilden jeweils einen Stack.

2
https://httpd.apache.org/

3
https://www.mysql.de/

19

2. Grundlagen

Linux	Operating	System

Apache	Web	Server MySQL	DBMS

OpenStack VM

Web	Shop MySQL	Database

Linux	Operating	System

OpenStack VM

hosted on hosted on

hosted on

hosted on

hosted on

hosted on

connect to

Abbildung 2.2.: Beispiel für eine Anwendungstopologie [BBK+14]

2.3.1. TOSCA Sprachstandard

TOSCA ist ein 2013 von OASIS definierter, auf XML-basierender
4
, Sprachstandard [OASb]

zur Beschreibung von Cloud-Anwendungen. Aus diesem Grund wird der Begriff „Element“

in dieser Arbeit im Sinne der XML-Definition
5
verwendet. Die für diese Arbeit relevanten

TOSCA-Elemente werden in diesem Kapitel erläutert.

Node Types

Ein Node Type ist eine wiederverwendbare Einheit, die die Struktur eines oder mehrerer Node

Templates vorgibt [OASb]. In den Node Types werden unter anderem Properties, Capabilities
und Requirements definiert. Properties sind Eigenschaften der modellierten Anwendung,

welche in den aus dem Node Type instanziierten Node Template angegeben werden müssen.

Requirements müssen durch Capabilities anderer Node Types erfüllt werden, indem zwischen

den Node Templates ein Relationship Type instaziiert wird. Listing 2.1 zeigt eine beispielhafte
Node Type-Definition, welche eine Node-RED-Umgebung modelliert.

4
https://www.w3.org/XML/

5
https://www.w3.org/TR/REC-xml/

20

2.3. OASIS TOSCA

Listing 2.1 Beispiel für eine TOSCA Node Type-Definition

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<tosca:Definitions id="winery-defs-for_ns6-Node-RED"

targetNamespace="http://types.opentosca.org"
xmlns:tosca="http://docs.oasis-open.org/tosca/ns/2011/12"
xmlns:winery="http://www.opentosca.org/winery/extensions/tosca/2013/02/12"
xmlns:ns2="http://www.eclipse.org/winery/model/selfservice">

<tosca:NodeType name="NodeRED" abstract="no" final="no"
targetNamespace="http://types.opentosca.org" winery:bordercolor="#b8f246">

<tosca:DerivedFrom typeRef="ns1:RootNodeType"
xmlns:ns1="http://docs.oasis-open.org/tosca/ns/2011/12/ToscaBaseTypes"/>

<tosca:RequirementDefinitions>
<tosca:RequirementDefinition name="NodeJsContainer"

requirementType="ns0:NodeJsContainerRequirement" lowerBound="1"
upperBound="1" xmlns:ns0="http://types.opentosca.org"/>

</tosca:RequirementDefinitions>
<tosca:CapabilityDefinitions>

<tosca:CapabilityDefinition name="HostNodeRedPlan"
capabilityType="ns0:NodeRedContainerCapability" lowerBound="0"
upperBound="unbounded" xmlns:ns0="http://types.opentosca.org"/>

</tosca:CapabilityDefinitions>
<tosca:Interfaces/>

</tosca:NodeType>
</tosca:Definitions>

Node Templates

Node Templates sind instanziierte Node Types. Jedes Node Template modelliert genau eine

Instanz einer zu provisionierenden Anwendung. In Node Templates können die in den

Node Types definierten Properties mit Werten belegt werden. Node Templates müssen einen

eindeutigen Identifikator besitzen.

Relationship Types

Relationship Types definieren den Typ von einem oder mehrerer Relationship Templates

zwischen Node Templates [OASb]. Relationship Types modellieren mögliche Verbindungen

zwischen zwei Node Templates bestimmter Node Types. Beispiele dafür sind „hosted on“

und „connect to“ in Abbildung 2.2. In fast jeder Topologie wird eine Relation mit der selben

Semantik wie der von „hosted on“ verwendet. Diese symbolisiert, dass die Anwendung von

der die Relation ausgeht auf der Anwendung deployt ist, zu der die Relation hinführt.

21

2. Grundlagen

Relationship Templates

Relationship Templates sind instanziierte Relationship Types. Sie modellieren eine Beziehung

zwischen zwei Node Templates. Sie enthalten ein Quell- und ein Zielelement, die jeweils mit

dem eindeutigen Identifikator der Quell- und Ziel-Node Templates belegt werden.

Artifact Types

Artifact Types sind wiederverwendbare Einheiten, welche den Typ eines oder mehrerer

Artifact Templates definieren [OASb]. Artefakte sind Dateien, die sich in der CSAR-Datei

befinden. Gängige Artifact Types sind zum Beispiel solche für WAR- oder ZIP-Dateien.

Artifact Templates

Artifact Templates referenzieren eine Datei innerhalb der CSAR-Datei. Dabei wird zwischen

Implementierungs- und Deployment-Artefakten unterschieden. Implementierungs-Artefakte

sind ausführbare Dateien, welche die Provisionierung einer bestimmten Anwendung durch-

führen. Deployment-Artefakte sind Dateien, die für die Provisionierung verwendet werden,

wie zum Beispiel Archivdateien mit den ausführbaren Dateien einer Anwendung.

Node Type Implementation

Node Type Implementations repräsentieren ein Implementierungs-Artefakt für einen speziel-

len Node Type. Node Type Implementations bringen alle Node Templates eines bestimmten

Node Types mit einem bestimmten Artifact Template in Verbindung. Dadurch weiß die

TOSCA Laufzeitumgebung, welche Artefakte für die Provisionierung der Node Templates

dieses bestimmten Node Types verwendet werden sollen.

Topology Template

Topology Templates bestehen aus Node Templates und Relationship Templates. Sie bilden das

Modell für die dargestellte Topologie. Listing 2.2 zeigt ein TOSCA Topology Template mit

einem Node Template, welches aus dem Node Type in Listing 2.1 instanziiert wurde.

22

2.3. OASIS TOSCA

Listing 2.2 Beispiel für ein TOSCA Topology Template

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<tosca:Definitions id="definitions" name="definitions"

targetNamespace="http://docs.oasis-open.org/tosca/ns/2011/12"
xmlns:tosca="http://docs.oasis-open.org/tosca/ns/2011/12"
xmlns:winery="http://www.opentosca.org/winery/extensions/tosca/2013/02/12"
xmlns:ns2="http://www.eclipse.org/winery/model/selfservice">

<tosca:ServiceTemplate id="InstallVMServTemplate"
targetNamespace="http://types.opentosca.org">

<tosca:TopologyTemplate>
<tosca:NodeTemplate name="NodeRED" minInstances="1" maxInstances="1"

id="NodeRED" type="ns0:NodeRED" winery:x="500" winery:y="250"
xmlns:ns0="http://types.opentosca.org">

<tosca:Capabilities>
<tosca:Capability name="NodeRedContainerCapability" id="ap14z70qp"

type="ns0:NodeRedContainerCapability"/>
</tosca:Capabilities>

</tosca:NodeTemplate>
</tosca:TopologyTemplate>

</tosca:ServiceTemplate>
</tosca:Definitions>

Service Template

Im Service Template wird das Topology Template, alle Artifact Templates, alle Node Ty-

pe Implementations und das Plans-Element zusammengefügt. Das Plans-Element ist das

TOSCA-Element, dass die Schnittstelle zwischen dem Topology Template und dem Provisio-

nierungsplan definiert, welcher in Abschnitt 2.3.2 erläutert wird.

Definitions

Das Definitions-Element ist das Wurzelelement jeder TOSCA-Definition. Sowohl Node Type-

Definitionen als auch Service Templates müssen sich in einem Definitions-Element befinden.

Die Beispiele in den Abbildungen 2.1 und 2.2 veranschaulichen dies.

2.3.2. Provisionierungsplan

Eine TOSCA-Anwendung kann entweder durch eine deklarative oder durch eine imperative

Vorgehensweise provisioniert werden. Bei der deklarativen Provisionierung wird lediglich

anhand der Beschreibung der Topologie vorgegangen. Bei einer imperativen Provisionie-

rung benötigt es einen sogenannten Provisionierungsplan. Dieser kann in verschiedenen

Ausführungssprachen wie zum Beispiel BPEL geschrieben sein. Generell werden für die

23

2. Grundlagen

Provisionierung die Implementierungs-Artefakte jedes Knoten, beginnend mit dem in der un-

tersten Ebene aufgerufen. Mit der untersten Ebene werden alle Knoten im Topologiegraphen

bezeichnet, von denen keine Kanten ausgehen. Im Beispiel in Abbildung 2.2 entspricht das

den beiden virtuellen Machinen. Im nächsten Schritt werden alle Node Templates behandelt,

zu denen Relationship Templates von den eben behandelten Node Templates ausgehen. Die

Implementierungs-Artefakte dieser Node Templates werden aufgerufen, um die damit asso-

ziierten Anwendungen zu provisionieren. Dieser Prozess setzt sich sukzessive fort, bis die

behandelten Node Templates keine ausgehenden Relationship Templates mehr besitzen.

In Abschnitt 4.4.2 „Schritt 2.2: Anwendung provisionieren“ wird das Ausführen des Provisio-

nierungsplanes genauer beschrieben.

Die Alternative zu einer sogenannte imperativen Provisionierung mit einem Provisionie-

rungsplan ist die deklarative Provisionierung. Bei dieser wird das Topology Template während

der Provisionierung interpretiert und die Implementierungs-Artefakte entsprechend aufge-

rufen. Breitenbücher et al. beschreiben in „Combining Declarative and Imperative Cloud

Application Provisioning based on TOSCA“ [BBK+14] eine Möglichkeit aus der Beschreibung

der Topologie einer Anwendung einen Provisionierungsplan zu generieren, womit die beiden

Provisionierungsansätze verbunden werden.

2.3.3. Cloud Service Archive (CSAR)

Alle nötigen Komponenten, um eine TOSCA Cloud-Anwendung aufsetzen zu können werden

in einer Cloud Service Archive-Datei, einer ZIP-Datei
6
, abgelegt. Dazu gehört das Service

Template, sowie alle verwendeten TOSCATypeDefinitionen, Artefakte und Pläne. Eine CSAR-

Datei muss mindestens die beiden Ordner „TOSCA-Metadata“ und „Definitions“ beinhalten

[OASb]. Dem Ersteller der Datei ist es freigestellt beliebige zusätzliche Ordner anzulegen. Der

Ordner „TOSCA-Metadata“ muss die Datei „TOSCA.meta“ enthalten, in welcher der restliche

Inhalt der CSAR-Datei beschrieben wird. Der „Definitions“-Ordner enthält alle verwendeten

TOSCA-Definitionen. Diese können in einer oder mehreren Dateien enthalten sein, welche

alle die Endung „.tosca“ haben müssen. Eine dieser Dateien muss ein Definitions-Element

mit einem TOSCA Service Template enthalten, welches die Struktur der Cloud-Anwendung

beschreibt. Weitere Ordner können zum Beispiel für den Provisionierungsplan oder für

Artefakte angelegt werden.

6
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT

24

2.3. OASIS TOSCA

2.3.4. TOSCA Laufzeitumgebung

In dem Dokument „Tosca Primer“ [OASa] wird auch eine sogenannte TOSCA Laufzeitum-
gebung beschrieben. Die TOSCA Laufzeitumgebung kann CSAR-Dateien und die in ihr

enthaltenen TOSCA Definitionen verstehen und die enthaltenen Dateien verarbeiten, um

Anwendungen automatisch zu provisionieren.

Die Architektur und die Funktionsweise der TOSCA Laufzeitumgebung wird in Kapitel 4.1.2

„4.1.2“ genauer erläutert.

25

3. Verwandte Arbeiten

Die für diese Bachelorarbeit relevanten Arbeiten werden in diesem Kapitel beschrieben.

Die verwandte Arbeit, aus der diese Bachelorarbeit hervorgegangen ist, ist „FlexMash -

Flexible Data Mashups Based on Pattern-Based Model Transformation“ von Hirmer et. al

[HM16]. In der Arbeit wird ein Konzept beschrieben, bei welchem Data Mashup-Modelle auf

verschiedene Ausführungskomponenten abgebildet werden. Die Wahl der Ausführungskom-

ponenten hängt dabei von den Bedürfnissen des jeweiligen Benutzers ab. Die Arbeit liefert

das Verständnis von dynamischen Data Mashups für diese Bachelorarbeit.

Alle weiteren verwandten Arbeiten werden in die beiden Kapitel 3.1 „OpenTOSCA“ und 3.2

„Alternativen zu TOSCA“ unterteilt.

3.1. OpenTOSCA

OpenTOSCA
1
ist ein Projekt der Universität Stuttgart, in dessen Rahmen verschiedene mit

dieser Arbeit verwandte Arbeiten veröffentlicht wurden, die in diesem Abschnitt vorgestellt

werden.

Binz et al. [BBH+13] beschreiben in „OpenTOSCA – A Runtime for TOSCA-based Cloud

Applications“ eine TOSCA Laufzeitumgebung namens OpenTOSCA. Sie unterstützt eine

imperative und planbasierte Provisionierung von Anwendungen. Als Grundlage für die-

se werden die im Zuge von OASIS TOSCA definierten CSAR-Dateien unterstützt. In der

Implementierung dieser Bachelorarbeit wird OpenTOSCA als TOSCA-Laufzeitumgebung

verwendet. Zukünftig soll OpenTOSCA noch um eine deklarative Provisionierung erweitert

werden. Im Rahmen von OpenTOSCA wurden auch die beiden Tools Winery und Vinothek

entwickelt, deren Veröffentlichungen im Folgenden vorgestellt werden.

In „Vino4TOSCA: A Visual Notation for Application Topologies based on TOSCA“ [BBK+12]

wird eine graphische Notation vorgestellt, die sich für die Modellierung von TOSCA Topology

Templates eignet.

1
http://www.iaas.uni-stuttgart.de/OpenTOSCA/

27

3. Verwandte Arbeiten

Kopp et al. [KBBL13] beschreiben ein auf HTML5 basierendes Visualisierungstool namens

Winery, um Anwendungstopologien zu modellieren. Um die Topologien intern zu speichern,

zu importieren und zu exportieren verwendet es TOSCA. Neben dem Erstellen von TOSCA

Topology Templates mit einer einfach zu verwendenden, graphischen Benutzeroberfläche

und einer graphischen Notation, bietet es die Möglichkeit TOSCA Typen zu definieren.

Die graphische Notation zur Modellierung der Topologien wird in [BBK+12] beschrieben.

Verschiedene Funktionen von Winery werden in der Implementierung zu dieser Bachelorar-

beit verwendet. Dazu gehört die Funktion Topologien zu vervollständigen, die von Hirmer

et al. [HBBL14] beschrieben wird, und ein Plangenerator, der von Breitenbücher et al. in

„Combining Declarative and Imperative Cloud Application Provisioning based on TOSCA“

[BBK+14] ausgearbeitet wurde. Winery wird inzwischen als Open Source Projekt der Eclipse

Software Foundation
2
geführt.

Der Artikel „Vinothek - A Self-Service Portal for TOSCA“ [BBKL14] handelt von einem

Selbstbedienungsportal für TOSCA-basierte Cloud Anwendungen, welches auf Java Server

Pages und HTML5 basiert. Ziel dabei ist es, Benutzern eine bedienungsfreundliche graphi-

sche Benutzeroberfläche zu bieten, um Anwendungen in der Cloud zu provisionieren. Im

Gegensatz zur Vinothek wird bei dieser Bachelorarbeit ein Konzept erarbeitet, bei dem der

gesamte Provisionierungsvorgang sowie die Ausführung der Anwendung vor dem Benutzer

versteckt wird.

Alle Arbeiten zu OpenTOSCA liefern eine Grundlage für die Problemstellung dieser Ar-

beit, deren Konzepte sind jedoch nicht suffizient für eine vollautomatisierte Provisionie-

rung von Data Mashups. Um eine neue Anwendungstopologie zu provisionieren setzen sie

die Modellierung dieser mit TOSCA oder mithilfe des Tools Winery voraus. Dafür benö-

tigt es jedoch Kenntnisse über die genauen Ausführungskomponenten, welche von einem

Domänen-Experten nicht erwartet werden können. Diese Arbeit löst das Problem durch

einen vollautomatisierten Ansatz zur Provisionierung.

3.2. Alternativen zu TOSCA

Außer TOSCA existieren noch andere Standards, um Anwendungen automatisiert in einer

Cloud-Umgebung zu provisionieren.

Speziell für die Cloud-Umgebung Amazon Web Services
3
(AWS) existiert CloudFormation

4
.

Mit CloudFormation könnenVorlagen zur Beschreibung vonAWS-Ressourcen erstellt werden,

um diese dann automatisch zu provisionieren und bereitzustellen.

2
https://www.eclipse.org/proposals/soa.winery/

3
https://aws.amazon.com/de/

4
https://aws.amazon.com/de/cloudformation/

28

3.2. Alternativen zu TOSCA

Das Äquivalent zu CloudFormation für die Cloud-Umgebung OpenStack
5
ist Heat

6
. Mit Heat

können in Form von sogennanten Heat Orchestration Templates Topologien von Cloud-

Anwendungen definiert werden.

Bei CloudFormation und Heat handelt es sich um deklarative Systeme. Das heißt, dass nur

solche Anwendungen provisioniert werden können, die von der jeweiligen Laufzeit- oder

Cloud-Umgebung erkannt werden. Aus diesem Grund konzentriert sich diese Arbeit auf

OASIS TOSCA anstelle von Heat oder CloudFormation. Bei TOSCA können nicht nur vor-

gefertigte Templates verwendet, sondern Node Types für beliebige Anwendungen erstellt

werden. Zusammen mit einer imperativen Provisionierung anhand eines Provisionierungs-

planes macht dies TOSCA vollständig generisch.

Mit Cloudify
7
wurde ebenfalls eine TOSCA Laufzeitumgebung implementiert. Für diese

Arbeit wurde jedoch OpenTOSCA aufgrund dessen Toolsupports verwendet. Dazu gehören

zum Beispiel Winery und der Plan Generator [BBK+14]. Zudem wurde OpenTOSCA an der

Universität Stuttgart entwickelt, was eine große Unterstützung für diese Arbeit gewährleis-

tet.

Cloud Foundry
8
ist ein Open Source PaaS-System, welches Container für Software in verschie-

denen Sprachen wie zum Beispiel Java, Ruby und Python bietet. Eine weitere PaaS-Software

ist OpenShift
9
. In dieser Bachelorarbeit wurde TOSCA anstelle von PaaS-Systemen verwen-

det, da mit TOSCA generisch jede Art von Software provisioniert werden kann, und nicht

nur vorgefertigte Container verwendet werden können.

Eine weitere Möglichkeit Anwendungen in einer Cloud automatisiert zu verwalten bieten

die Konfigurationswerkzeuge Puppet
10
und Chef

11
. Bei Puppet muss eine Maschine, der so-

genannte Puppet-Master, über sogenannte Puppet-Manifeste deklarativ konfiguriert werden.

In diesen Manifesten kann der gewollte Zustand eines Systems beschrieben werden, wie zum

Beispiel welche Anwendungen darauf installiert sein sollen. Alle mit dem Puppet-Master

verbundenen und entsprechend eingerichtete Maschinen passen sich dann diesem an. Da

es sich dabei um ein deklaratives System handelt, können nur Anwendungen provisioniert

werden, die dem Ausführungssystem von Puppet bekannt sind. Bei Chef müssen sogenannte

Rezepte geschrieben werden anhand welcher, ähnlich wie bei Puppet, ausgewählte Rechner

konfiguriert werden. Chef besitzt die selben Nachteile wie Puppet und dient deswegen auch

nicht für die Lösung der Problemstellung dieser Arbeit.

5
https://www.openstack.org/

6
https://wiki.openstack.org/wiki/Heat

7
http://getcloudify.org/

8
https://www.cloudfoundry.org/

9
https://www.openshift.com/

10
https://puppetlabs.com/

11
https://www.chef.io/chef/

29

4. Konzept

Um beliebige Mashups automatisiert auf einer Cloud-Umgebung zu provisionieren und

anschließend auszuführen wurde ein Konzept erarbeitet. Dieses stellt den Kern dieser Ba-

chelarbeit dar und wird in diesem Kapitel erläutert. Dieses Kapitel unterteilt sich in die

Abschnitte 4.1 Architektur, 4.2 Methode/Übersicht, 4.3 CSAR erstellen, 4.4 CSAR deployen

und Anwendung provisionieren und 4.5 Mashup ausführen. 4.1 gibt eine Übersicht über

die Architektur des Systems und stellt die verwendeten Komponenten vor. 4.2 zeigt die drei

Schritte, in welche die Methode unterteilt wurden. 4.3, 4.4 und 4.5 entsprechen jeweils einem

dieser drei Schritte.

4.1. Architektur

Die Architektur des gesamten Systems besteht aus sechs Komponenten. In diesem Kapitel

wird in Abschnitt 4.1.1 zunächst eine Übersicht über die Architektur vorgestellt. In Abschnitt

4.1.2 werden dann die einzelnen Komponenten der Architektur genauer erläutert.

4.1.1. Übersicht

Abbildung 4.1 zeigt eine schematische Übersicht über alle involvierten Komponenten. Bei den

beiden Komponenten Node Type Repository und Artifact Repository handelt es sich um zwei

Datenbanken, auf welche die beiden Komponenten Topology Completer und TOSCA4Mashups
lesend zugreifen. Topology Completer ist eine Komponente zur Vervollständigung von

TOSCA-Topologien. Die TOSCA4Mashups-Komponente generiert die CSAR-Datei mithilfe

der anderen Komponenten und übergibt diese an die TOSCA Runtime, bei der es sich um

eine TOSCA Laufzeitumgebung handelt. Die Kommunikation zwischen TOSCA4Mashups

und den beiden Komponenten Topology Completer und Plan Generator läuft nach dem

Anfrage-Antwort-Prinzip, wobei TOSCA4Mashups als der Anfragende fungiert. Bei Plan
Generator handelt es sich um einen Plangenerator im Sinne von Breitenbücher et al. [BBK+14].

TOSCA4Mashups kommuniziert mit der TOSCA Laufzeitumgebung auf nur einem Weg, da

lediglich die fertige CSAR-Datei zur Provisionierung übergeben wird.

31

4. Konzept

TOSCA	Runtime

TOSCA4Mashups Plan	GeneratorTopology Completer

Node Type	
Repository

Artifact
Repository

Abbildung 4.1.: Architektur des gesamten Systems

4.1.2. Komponenten

Im Folgenden werden die einzelnen Komponenten der Architektur genauer erläutert.

TOSCA4Mashups

Diese Komponente stellt die Schnittstelle zwischen allen anderen Komponenten dar. Au-

ßer dem eigentlichen Zusammenstellen der CSAR-Datei ruft sie den Topology Completer

auf, um die Topologie vervollständigen zu lassen, und den Plan Genererator, um den Plan

erstellen zu lassen. Zuletzt übergibt TOSCA4Mashups die fertige CSAR-Datei der TOSCA

Laufzeitumgebung, um die Anwendung automatisiert provisionieren zu lassen. Abbildung

4.2 zeigt die innere Struktur der TOSCA4Mashups Komponente. Der TOSCA Runtime Adap-

ter übernimmt die Kommunikation mit der jeweiligen TOSCA Laufzeitumgebung, der Plan

Generator Adapter die mit dem Plan Generator, der Topology Completer Adapter die mit dem

Topology Completer. Um auf die beiden Repositories für die Node Types und die Artefakte

zuzugreifen besteht der Repository Adapter. Der Sevice Generator ist in der Lage mit Hilfe

des Repository Adapters und der Topology Completer Adapters ein vollständiges TOSCA

32

4.1. Architektur

TOSCA4Mashups

CSAR	Generator

TOSCA	Runtime
Adapter

Plan	Generator	
Adapter

Topology Completer
Adapter Repository	Adapter

Service	GeneratorMashup Plan	
Deployer

Abbildung 4.2.: Architektur der TOSCA4Mashups-Komponente

Service Template zu erstellen. Der CSAR-Generator übernimmt das Zusammenfügen aller

Artefakte, der TOSCA Definitionen und des Provisionierungsplanes zu einer vollständigen,

selbst-enthaltenen CSAR-Datei. Der Mashup Plan Deployer ist eine optionale Komponente,

was in den Kapiteln 4.3.1 und 4.5.1 genauer erläutert wird. Dieser ist in der Lage einen

ausführbaren Mashup-Plan in eine passende Ausführungsumgebung zu deployen.

TOSCA Laufzeitumgebung

Die TOSCA Laufzeitumgebung führt die eigentliche Provisionierung der Anwendung aus.

Abbildung 4.3 zeigt ein reduziertes Modell einer TOSCA Laufzeitumgebung, das jedoch alle

für diese Anwendung nötigen Komponenten enthält. Dabei wurde auf die Möglichkeit einer

deklarativen Provisionierung verzichtet und lediglich die Komponenten für eine imperative

Provisionierung miteinbezogen. Dies ist ausreichend, da der Plangenerator generisch für jede

Topologie einen Provisionierungsplan generieren kann. Der sogenannte CSAR Processor führt
das Entpacken der CSAR-Datei durch. Der Definition Manager verwaltet die aus der CSAR
entnommenen TOSCA Definitionen, der Artifact Manager die entnommenen Artefakte. Die

Process Engine ist in der Lage Provisionierungspläne durchzuführen und wird vom Instance
Manager angestoßen. Davor deployt der Deploy Manager den Provisionierungsplan in der

Process Engine und alle Implementierungs-Artefakte in der Umgebung an entsprechender

Stelle.

33

4. Konzept

TOSCA	Laufzeitumgebung

TOSCA	Container

CSAR	Processor

Instance	
Manager

Definition	
Manager Artifact Manager Deploy Manager

Process Engine

Model	
Repository Artifact Store Instance	DB

Abbildung 4.3.: Architektur einer TOSCA Laufzeitumgebung [OASa]

Topology Completer

Der Topology Completer generiert aus einem Topology Template, das nur anwendungs-

spezifische Node Templates enthält, ein vollständige Topologie. Dafür verwendet er die

Node Types aus dem Node Type Repository. Grundlage für den Topology Completer bietet

die Arbeit von Hirmer et al. [HM16]. Die Methode, die angewendet wird, um eine Topo-

logie zu vervollständigen, wird in Abschnitt 4.3.1 „Topologie vervollständigen“ genauer

beschrieben.

Plan Generator

Der Plan Generator ist in der Lage aus einem TOSCA Topology Template einen Provisionie-

rungsplan zu generieren. Der Plan Generator ermöglicht eine imperative Provisionierung auf

Grundlage der deklarativen Beschreibung einer Topologie. In dem Artikel „Combining Decla-

rative and Imperative Cloud Application Provisioning based on TOSCA“ [BBK+14] wird ein

Konzept für einen Plangenerator vorgestellt, auf welchem die Plan Generator-Komponente

basiert. Dieses wird in Abschnitt 4.3.3 „Schritt 1.3: Plan generieren“ erläutert.

34

4.2. Methode zur automatischen Provisionierung von Data Mashups

CSAR	erstellen
CSAR	deployen
und	Anwendung	
provisionieren

Mashup
ausführen

1 2 3

Abbildung 4.4.: Überblick der Methode

Node Type Repository

Das Node Type Repository muss alle Node Types beinhalten, welche für die Topologie

benötigt werden. Die TOSCA4Mashups-Komponente sucht hier nach einem geeigneten

Node Type für den Mashup-Plan und der Topology Completer nach allen weiteren Node

Types, welche für die Topologie benötigt werden. Außerdem müssen alle anderen benötigten

TOSCA-Komponenten enthalten sein, wie die Relationship Types, Artifact Types und Node

Type Implementations.

Artifact Repository

Im Artifact Repository sind die Deployment- und Implementierungs-Artefakte für alle Node

Types im Node Type Repository abgelegt. Die TOSCA4Mashups-Komponente greift darauf

zu, um sie zu der CSAR-Datei hinzuzufügen.

4.2. Methode zur automatischen Provisionierung von
Data Mashups

Die Methode um eine Data Mashup-Anwendung in einer Cloud-Umgebung zu provisionieren

und auszuführen ist in drei Schritte aufgeteilt. Im ersten Schritt wird eine CSAR Datei erstellt,

im zweiten Schritt wird diese in der Cloud provisioniert und im dritten Schritt wird das

Mashup ausgeführt. Abbildung 4.4 zeigt die drei grundlegenden Schritte der Methode.

4.3. Schritt 1: CSAR erstellen

Der erste notwendige Schritt besteht darin eine vollständige CSAR-Datei zu erstellen. Diese

muss alle notwendigen Dateien enthalten, die für die Provisionierung notwendig sind. Die

Eingabe von TOSCA4Mashups besteht aus zwei Teilen:

35

4. Konzept

Topologie	
erstellen

Artefakte	
einfügen Plan	generieren CSAR	erstellen

1.1 1.3 1.41.2

Abbildung 4.5.:Methode, um das Cloud Service Archive zu erstellen

1. Eine Liste mit den Bezeichnern der für die Ausführung des Mashups benötigten Aus-

führungskomponenten.

2. Ein ausführbarer Mashup-Plan.

Auf Basis der Bezeichner der Ausführungskomponenten muss eine vollständige CSAR-Datei

generiert werden, die außer allen benötigten TOSCA-Beschreibungen und Artefakten auch

den Mashup-Plan enthält. Um eine CSAR-Datei auf dieser Grundlage zu generieren wurden

vier Teilschritte ausgearbeitet. Abbildung 4.5 zeigt eine schematische Übersicht über diese

vier Schritte. Die folgenden Abschnitte erläutern jeweils einen der vier Schritte.

4.3.1. Schritt 1.1: Topologie erstellen

Anhand der Ausführungskomponenten muss eine vollständige TOSCA-Topologie erstellt

werden. Als Grundlage dafür dienen die Node Types aus dem Node Type Repository. Die

Methode, um eine Topologie automatisiert zu generieren wurde in drei Schritte aufgeteilt:

1. Passende Node Types suchen und instanziieren

2. Topologie vervollständigen

3. Mashup-Plan Deployment innerhalb der Topologie

Diese werden im Folgenden ausführlich beschrieben. Auf den letzten Schritt kann auch

verzichtet werden, indem der Mashup-Plan durch die TOSCA4Mashups-Anwendung nach

der Provisionierung deployt wird, anstatt während dem Provisionierungsvorgang.

Passende Node Types suchen und instanziieren

Für die zu provisionierenden Anwendungskomponenten muss nun jeweils ein zugehöriger

Node Type aus dem Node Type Repository ausgesucht werden. Hierfür müssen die Node

Types entweder den selben Namen besitzen wie die möglichen Anwendungskomponenten

auf oberster Ebene, oder es muss eine injektive Abbildung zwischen beiden Namensräumen

bestehen. Eine weitere Möglichkeit wäre es semantisch äquivalente Node Types zu suchen.

Die gefundenen Node Types müssen als Node Templates instanziiert und in ein Topology

Template eingefügt werden. Für die Vervollständigung der Topologie ist es notwendig, dass

36

4.3. Schritt 1: CSAR erstellen

die Requirements aus den zu instanziierenden Node Types entnommen und in die Node

Templates eingefügt werden.

Topologie vervollständigen

Die Vervollständigung der Topologie wird durch die Komponente Topology Completer durch-
geführt. Dafür übergibt TOSCA4Mashups dem Topology Completer ein TOSCA Definitions-

Element, welches ein Topology Template mit den anwendungsspezifischen Node Templates

enthält. Um eine Topologie zu vervollständigen wird für jedes Requirement in jedem To-

pology Template nach einem Node Type mit einer Capability gesucht, die das jeweilige

Requirement erfüllt. Der Node Type wird dann zu einem Node Template instanziiert und in

die Topologie eingefügt, wobei hier wieder die Requirements aus den Node Types übernom-

men werden. Die beiden Node Templates werden durch ein Relationship Template verbunden

und das erfüllte Requirement wird gelöscht. Dadurch kann die Topologie sukzessive, durch

das rekursive Verfahren, vervollständigt werden, bis keine Requirements mehr vorhanden

sind. Hirmer et al. [HBBL14] zeigen eine Methode, um aus unvollständigen Topology Tem-

plates vollständige zu generieren. Das von Hirmer et al. vorgestellte Konzept wird durch

diese Arbeit insofern erweitert, als dass aus der vollständigen Topologie im Verlauf des

hier vorgestellten Konzeptes ein gesamtes Service Template mit entsprechenden Artefakten

generiert wird. DesWeiteren wird aus diesem Service Template eine vollständige CSAR-Datei

generiert.

Mashup-Plan Deployment innerhalb der Topologie

Zusätzlich den benötigten Anwendungskomponenten muss der ausführbare Mashup-Plan

deployt werden. Dies kann nur geschehen nachdem alle Anwendungskomponenten pro-

visioniert wurden. Eine Möglichkeit besteht darin, den Mashup-Plan ebenfalls durch ein

Deployment Artifact zu modellieren. Ist dies der Fall, wird in Schritt 4.3.1 „Passende Node

Types suchen und instanziieren“ nicht nach passenden Node Types für die Ausführungs-

komponenten, sondern nach dem Node Type für den entsprechenden Mashup-Plan gesucht.

Der Plan selbst kann als Deployment Artifact in einer Datei in der CSAR liegen und wird

im Service Template durch ein Artifact Template repräsentiert. Eine andere Möglichkeit

wäre es, den Mashup-Plan in einer externen Datenbank abzulegen. Für jeden Mashup Plan

Node Type besteht zusätzlich ein Implementation Artifact. Dieses muss für jede Art von

Ausführungskomponente angepasst werden. Es deployt den in dem Deployment Artifact

abgelegten Mashup Plan in der jeweiligen Ausführungskomponente.

Eine alternative Möglichkeit den Mashup-Plan zu deployen wird in Abschnitt 4.5.1 beschrie-

ben. Diese besteht darin, den Mashup-Plan nach der Provisionierung der Anwendung in der

Cloud durch TOSCA4Mashups zu deployen.

37

4. Konzept

4.3.2. Schritt 1.2: Artefakte einfügen

Nachdem die Topologie vervollständigt wurde können die entsprechenden Implementierungs-

und Deployment-Artefakte angefügt werden. Diese können aus dem Artifact Repository

entnommen und in die CSAR an entsprechender Stelle eingefügt werden. In den Artifact

Templates im Service Template wird durch das TOSCA-Element „ArtifactReference“ der Pfad

für das jeweilige Artefakt angegeben.

4.3.3. Schritt 1.3: Plan generieren

Die vollständige Topologie kann nun an den Plan Generator übergeben werden, welcher

in der Lage ist anhand eines Service Templates einen ausführbaren Provisionierungsplan

zu erstellen. Breitenbücher et al. [BBK+14] beschreiben einen Algorithmus, um aus einer

TOSCA-Topologie einen ausführbaren Provisionierungsplan zu generieren. Dabei wird aus

dem Topology Template ein gerichteter Provisionierungsgraph, und aus diesem ein Provi-

sionierungsplanskelett generiert. Anhand des Skelettes und der Informationen des Service

Teplates kann nun ein Provisionierungsplan in einer beliebigen Ausführungssprache auto-

matisiert generiert werden.

4.3.4. Schritt 1.4: CSAR erstellen

Alle von der TOSCA Ausführungsumgebung für die Provisionierung benötigten Komponen-

ten müssen in einer CSAR-Datei verpackt werden. Dazu gehört das Service Template, der

Provisionierungsplan, alle Typdefinitionen, sowie alle benötigten Artefakte aus dem Artifact

Repository. Diese werden alle in ein Dateisystem gelegt, das dem in Kapitel 2.3.3 „Cloud

Service Archive (CSAR)“ entspricht. Das Dateisystem wird dann zu einer ZIP-Datei verpackt,

die mit der Endung „.csar“ versehen wird.

4.4. Schritt 2: CSAR deployen und Anwendung
provisionieren

in Abschnitt 4.3 wurde gezeigt wie eine CSAR-Datei für jede Art von Mashup automatisiert

erstellt werden kann. Die TOSCA Laufzeitumgebung führt nun die eigentliche Provisionie-

rung des Data Mashups durch. Dieses Vorgehen kann in zwei Schritte eingeteilt werden,

welche im Folgenden erläutert werden. Abbildung 4.6 zeigt die beiden Teilschritte, um die

Anwendung in der Cloud zu provisionieren.

38

4.4. Schritt 2: CSAR deployen und Anwendung provisionieren

CSAR	deployen Anwendung	
provisionieren

2.1 2.2

Abbildung 4.6.: Methode, um die Anwendung zu provisionieren

4.4.1. Schritt 2.1: CSAR deployen

Die vollständige CSAR-Datei wird an die TOSCA Laufzeitumgebung übergeben. Hier wird sie

entpackt und der Provisionierungsplan sowie die Artefakte werden an entsprechenden Stellen

abgelegt. Der CSAR Processor entnimmt alle TOSCA Definitionen aus der CSAR-Datei und

übergibt diese dem Definition Manager. Der Definition Manager speichert alle Definitionen

im Model Repository, um spätere Zugriffe darauf zu gewährleisten. Des Weiteren entnimmt

der CSAR Processor alle Implementierungs- und Deployment-Artefakte aus der CSAR-Datei

und übergibt sie dem Artifact Manager. Dieser speichert alle Artefakte im Artifact Store.

Daraufhin deployt der Deploy Manager alle Implementierungs-Artefakte an der richtigen

Stelle in der Umgebung, sowie den Provisionierungsplan in der Process Engine. Der Instance

Manager führt die Erstellung von Instanzen der Cloud-Anwendung durch, indem er den

Process Manager aufruft, um den Provisionierungsplan auszuführen.

4.4.2. Schritt 2.2: Anwendung provisionieren

Um die virtuelle Maschine aufzusetzen und alle Anwendungskomponenten zu installie-

ren wird der Provisionierungsplan ausgeführt. Das führt die Process Engine der TOSCA

Laufzeitumgebung durch, indem sie die Implementierungs-Artefakte in entsprechender Rei-

henfolge und mit entsprechenden Eingaben ausführt. Der Deploy Manager der TOSCA

Laufzeitumgebung übergibt den Provisionierungsplan der Process Engine und deployt al-

le Implementierungs-Artefakte an entsprechender Stelle in der Umgebung. Der Instance

Manager stoßt die Process Engine an, damit diese den Provisionierungsplan ausführt. Der

Plan muss dabei mit den Node Templates beginnen, von denen keine Relationship Templates

ausgehen, da diese in der Topologie auf unterster Ebene liegen. Dies ist notwendig, da jede

Anwendung nur provisioniert werden kann, wenn die in der Topologie darunter liegende

Anwendung bereits provisioniert wurde. Mehrere Stacks einer Topologie können parallel

provisioniert werden, solange sie nicht voneinander abhängen. Abbildung 4.7 zeigt auf der

linken Seite eine schematische Darstellung des Provisionierungsplanes in BPMN-Notation

zu der Topologie auf der rechten Seite. Bei diesem Beispiel können die beiden Anwendungs-

Stacks parallel provisioniert werden, was sich im Provisionierungsplan widerspiegelt. Der

linke Strang des Planes provisioniert dabei den linken Anwendungs-Stack der Topologie, der

rechte den rechten Anwendungs-Stack. Es werden zuerst die beiden virtuellen Maschinen

39

4. Konzept

Linux	Operating	System

Apache	Web	Server MySQL	DBMS

OpenStack VM

Web	Shop MySQL	Database

Linux	Operating	System

OpenStack VM

hosted on hosted on

hosted on

hosted on

hosted on

hosted on

connect to

Install Linux	
Operating	
System

Provision	
VM

Deploy
Web	Shop

Create	
Database

Install
Apache	

Web	Server

Install Linux	
Operating	
System

Provision	
VM

Install
MySQL	
DBMS

Abbildung 4.7.: Anwendung provisionieren. Links der Provisionierungsplan, rechts die

Topologie.

in der Cloud aufgesetzt. Im Anschluss wird auf jeder Maschine ein Linux Betriebssystem

installiert. Diese beiden Schritte können je nach Cloud-Umgebung in einem Schritt im Plan

geschehen. Nun wird auf dem einen Betriebssystem ein Apache Web Server und auf dem

anderen eine MySQL-Datenbank installiert. Auf dem Webserver wird ein Web Shop aufge-

setzt, in dem Datenbanksystem eine Datenbank für den Webserver angelegt. Die Verbindung

mit der Beschriftung „connect to“ zwischen dem Web Shop und der MySQL Database spie-

gelt sich im Plan nicht wider, da sie durch die Web Shop-Anwendung durchgeführt wird.

Der Vorgang der Provisionierung wird von einer typischen TOSCA Laufzeitumgebung, ent-

sprechend dem TOSCA Primer [OASa], nicht automatisch ausgeführt. In diesem Fall muss

TOSCA4Mashups, nachdem die CSAR-Datei in der TOSCA Laufzeitumgebung deployt wurde,

den Provisionierungsprozess anstoßen.

40

4.5. Schritt 3: Mashup ausführen

Mashup-Plan	
deployen

Mashup-Plan	
ausführen

3.23.1

Abbildung 4.8.:Mashup ausführen

4.5. Schritt 3: Mashup ausführen

Bis zu diesem Zeitpunkt wurden alle Anwendungskomponenten in eine Cloud-Umgebung

provisioniert, die nötig sind, um den Mashup auszuführen. Eventuell wurde auch schon der

Mashup-Plan entsprechend deployt. Falls nicht, muss dies noch geschehen, außerdem muss

dieser noch ausgeführt werden. Dafür wurden zwei methodische Schritte ausgearbeitet, die

in diesem Abschnitt erläutert werden. Abbildung 4.8 zeigt zwei Schritte die nötig sind, um

den Mashup auszuführen. Auf den Schritt „Mashup-Plan deployen“ kann verzichtet werden

wenn der Schritt „Mashup-Plan Deployment innerhalb der Topologie“, der in Kapitel 4.3.1

erläutert wird, angewendet wurde.

4.5.1. Schritt 3.1: Mashup-Plan Deployment außerhalb der Topologie

Eine alternative Möglichkeit dazu den Mashup-Plan in die Topologie zu integrieren ist es

diesen nach Provisionierung der Anwendungskomponenten ohne Verwendung der TOSCA-

Laufzeitumgebung zu deployen. Dafür existiert in der Architektur von TOSCA4Mashups in

Abbildung 4.2 der Mashup Plan Deployer. Dieser muss jedoch für jede Art von zu provisionie-

renden Anwendungen um eine API-Anbindung erweitert werden. Des Weiteren müssen die

jeweiligen Mashup-Komponenten über eine API oder eine Möglichkeit verfügen Mashups in

Form von Dateien über das Dateisystem zu deployen.

Da das Erweitern von TOSCA4Mashups einen größeren Aufwand darstellt, als die für das

Deployen des Mashup-Planes nötigen Node Types mit zugehörigem Implementation Artifact

zu implementieren, wird die Methode in Abschnitt 4.3.1 empfohlen.

4.5.2. Schritt 3.2: Mashup-Plan ausführen

Der TOSCA-Standard enthält keine Möglichkeit die Ausführung von provisionierten An-

wendungen zu modellieren. Die Ausführung des Mashups kann durch zwei Möglichkeiten

durchgeführt werden. Entweder wird sie durch ein weiteres Node Template im Topology

Template modelliert und durch ein entsprechendes Implementierungs-Artefakt durchge-

führt, oder sie wird nach der Provisionierung durch die TOSCA4Mashups-Komponente

41

4. Konzept

durchgeführt. Hierfür müsste jedoch wieder TOSCA4Mashups für jede Art von Mashup

erweitert werden. Anstatt ein eigenes Node Template und Implementierungs-Artefakt für

das Anstoßen der Ausführung zu implementieren, könnte dies auch das Implementation

Artifact des Mashup-Planes übernehmen. Dieses könnte einfach nach dem Deployen des

Mashup-Planes dessen Ausführung starten.

Da dies den geringsten Aufwand hinsichtlich Erweiterbarkeit darstellt, wird dieseMöglichkeit

der Mashup-Ausführung empfohlen.

Der letzte Schritt des Mashup-Plans sollte es sein dem Benutzer das Ergebnis zurückzuführen.

Dies kann einfach dadurch geschehen, dass das Ergebnis in eine Datenbank geschrieben

wird oder dem Benutzer über HTTP visualisiert wird, indem es einem Webserver übergeben

wird.

42

5. Implementierung

Um die Funktionalität des Konzeptes in Kapitel 4 zu zeigen wurde ein Prototyp implementiert.

Als Grundlage für die Implementierung dient der Anwendungsfall aus Kapitel 1.1. Abbil-

dung 5.1 zeigt die Topologie, die für einen Node-RED Workflow provisioniert werden muss.

Der Knoten „NodeREDPlan“ modelliert dabei das Topology Template für einen ausführba-

ren Mashup-Plan für Node-RED. Dieser wird in JavaScript Object Notation (JSON) an die

TOSCA4Mashups-Komponente übergeben, womit der Ablauf der Implementierung beginnt.

Das resultierende TOSCA Service Template findet sich in Anhang A in den Listings A.1, A.2,

A.3, A.4, A.5 und A.6.

NodeREDPlan

NodeRED

NodeJs

Ubuntu

OpenStackVM

Abbildung 5.1.: Beispieltopologie für Node-RED

43

5. Implementierung

TOSCA4Mashups

OpenTOSCA
Adapter

Winery Adapter

OpenTOSCA

WineryService	Generator

CSAR	Generator

Selbst Implementierte Komponenten

Externe Implementierungen

Abbildung 5.2.: Entwurf TOSCA4Mashups

Um die Implementierung zu erläutern wird zunächst in Abschnitt 5.1 ein auf den Anwen-

dungsfall und die ausgewählten Komponenten zugeschnittener Entwurf gezeigt. In Abschnitt

5.2 wird die Umsetzung dieses Entwurfes erklärt. Abschnitt 5.3 beschäftigt sich mit Fällen,

welche nicht durch diese Implementierung abgedeckt werden, in Abschnitt 5.4 wird die

gesamte Implementierung bewertet.

5.1. Entwurf

Abbildung 5.2 zeigt einen Überblick über die Architektur der implementierten Anwendung.

TOSCA4Mashups und die darin enthaltenen Komponenten wurden im Zuge dieser Bachel-

orarbeit entworfen und implementiert. Im Folgenden werden die einzelnen Komponenten

genauer erläutert.

5.1.1. OpenTOSCA

Als TOSCA Laufzeitumgebung dient OpenTOSCA, eine Implementierung des Institutes für

Architektur von Anwendungssystemen der Universität Stuttgart. OpenTOSCA enthält unter

anderem einen Container für CSAR-Dateien und eine BPEL Engine für die Ausführung des

44

5.1. Entwurf

Provisionierungsplanes. Eine genaue Beschreibung der Architektur von OpenTOSCA findet

sich in [BBH+13].

5.1.2. Winery

Winery ist ein TOSCA Topology Modellierungs-Tool
1
. Außer einer graphischen Oberfläche

zur Modellierung der Topologien enthält es ein Node Type Repository, einen Topology

Completer und einen Plan Generator. Alle Komponenten lassen sich auch über eine REST API

ansprechen. Der Plan Generator generiert aus einer Topologie einen Provisionierungsplan

in BPEL.

5.1.3. TOSCA4Mashups

Die Komponente TOSCA4Mashups wurde im Zuge dieser Arbeit implementiert. Dafür

wurden die Programmiersprache Java und verschiedene Bibliotheken für HTTP und JSON

verwendet. TOSCA4Mashups ist die Implementierung für die gleichnamige Komponente im

Konzept in Kapitel 4.

OpenTOSCA Adapter

Der OpenTOSCA Adapter stellt eine Verbindung mit der OpenTOSCA API her, um die

generierte CSAR-Datei hochzuladen und die Provisionierung anzustoßen. Dabei handelt es

sich um eine REST-API die sich über HTTP ansprechen lässt.

Winery Adapter

Der Winery Adapter übernimmt die Kommunikation mit der Winery, die den größten Anteil

an Kommunikation zwischen den Komponenten einnimmt. Winery bietet ebenfalls die

Möglichkeit eine REST-API über HTTP zu bedienen. Dabei werden Metainformationen zu

den in der Winery gespeicherten Definitionen im JSON-Format übertragen.

Sowohl der Winery Adapter als auch der OpenTOSCA Adapter wurde eingeführt, um die

Verbindung zwischen TOSCA4Mashups, OpenTOSCA und Winery zu abstrahieren. Dies hat

den Vorteil, dass bei einem Austausch der TOSCA Laufzeitumgebung lediglich diese beiden

Komponenten neu implementiert werden müssen.

1
https://projects.eclipse.org/projects/soa.winery

45

5. Implementierung

Service Generator

Das Instanziieren der Node Types und das Zusammenfügen der Node Templates zu einem

Service Template übernimmt der Service Generator.

CSAR Generator

Nach der Generierung des Service Templates erstellt der CSAR Generator eine vollständige

CSAR-Datei.

5.2. Umsetzung

Wie die TOSCA4Mashups-Komponente des Entwurfs umgesetzt und implementiert wurde

wird in diesem Abschnitt erläutert. Zunächst werden die für die Implementierung verwende-

ten Technologien erläutert, im Anschluss wird der Ablauf einer automatischen Provisionie-

rung eines Node-RED-basierten Data Mashups dargestellt.

5.2.1. Technologien

Als Programmiersprache für die Implementierung von TOSCA4Mashups wurde Java gewählt.

Die Kommunikation zwischen TOSCA4Mashups, OpenTOSCA und der Winery funktioniert

mit HTTP, wodurch diese auf unterschiedlichen Maschinen ausgeführt werden können. So

kann zum Beispiel OpenTOSCA in der Cloud-Umgebung selbst, und Winery mit dem Node

Type Repository auf einer lokalen Machine ausgeführt werden. OpenTOSCA basiert auf

einem Tomcat-Server, einem Jetty-Server für den Container und einer WSO2BPS
2
Workflow

Engine für die Ausführung der Provisionierungspläne. Als Implementierungs-Artefakte die-

nen zwei WAR-Dateien. Die eine führt die Provisionierung einer virtuellen Maschine auf

einer OpenStack-Umgebung aus, die andere ist in der Lage beliebige Skripte auf einem Linux

Betriebssystem auszuführen. Auch diese wurden im Rahmen von OpenTOSCA von der Uni-

versität Stuttgart entwickelt. Zur Verarbeitung von TOSCA wurden die beiden Bibliotheken

JAXB
3
und W3C DOM

4
verwendet. Als Cloud-Umgebung wird für die Implementierung

OpenStack verwendet.

2
http://wso2.com/products/business-process-server/

3
https://jaxb.java.net/

4
https://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html

46

5.2. Umsetzung

5.2.2. Ablauf

Im Folgenden wird der Ablauf einer Provisionierung beschrieben:

1. Node Types von Winery abfragen:

Für jede benötigte Anwendungskomponente wird der entsprechende Node Type von

der Winery benötigt. Dafür müssen erst die Namen aller Node Types mit ihren zugehö-

rigen Namespaces abgefragt werden. Wird für jede benötigte Anwendungskomponente

ein gleichnamiger Node Type gefunden, können deren TOSCA-Definitionen von der

Winery abgefragt werden.

2. Node Templates bauen und in Topology Template einfügen:

Im nächsten Schritt werden alle Node Types zu Node Templates instanziiert. Dafür wird

für jeden benötigten Node Type ein Node Template-Element erstellt und die Attribute

„id“ und „name“ entsprechend dem Namen des Node Types gesetzt. Außerdem müssen

alle Requirements und Capabilities aus dem Node Type entnommen und in das Node

Template eingebaut werden. Die fertigen Node Templates werden in ein Topology

Template eingefügt.

3. Topologie an Winery schicken und vervollständigen lassen:

Bis hier besteht das Topology Template nur aus den anwendungsspezifischen Node

Templates. Um die Topologie zu vervollständigen wird die Unvollständige an den

Topology Completer der Winery geschickt. Dieser verwendet die im Node Type Repo-

sitory der Winery liegenden Node Types, um die Topologie zu vervollständigen und

speichert sie danach innerhalb eines Service Templates ab. Über die REST-API kann

dieses Service Template wieder abgerufen werden.

4. Node Type Implementations und Artifacts einfügen:

Nachdem die Topologie vervollständigt wurde, müssen nun alle nötigen Artifact Tem-

plates und Node Type Implementations in das Service Template eingefügt werden.

Dafür werden wieder alle Namen und Namespaces der in der Winery abgelegten Ar-

tifact Types abgefragt. Aus diesen werden die ausgesucht, die den benötigten Node

Templates entsprechen. Jetzt können deren Definitionen der Winery entnommen wer-

den. Aus diesen Artifact Types können dann die Artifact Templates und Node Type

Implementations erstellt und in das Service Template eingefügt werden.

5. Plan einfügen:

Ein weiteres wichtiges Element in einem Service Template ist das TOSCA Plan-Element.

Dieses enthält eine Referenz auf den in der CSAR-Datei liegenden Provisionierungsplan,

damit die TOSCA-Laufzeitumgebung darauf zugreifen kann.

47

5. Implementierung

6. Properties einfügen:

Die Node Templates müssen noch mit entsprechenden Properties bestückt wer-

den. In dem Anwendungsfall handelt es sich dabei zum Beispiel um die OpenStack-

Zugangsdaten im OpenStackVM Node Template. Außerdem wurde das gesamte Skript,

um Node-RED zu installieren und den Mashup-Plan zu deployen als Property in das

Node Template, das das Betriebssystem repräsentiert eingefügt, was lediglich der

Einfachheit dient. Dieses Skript entnimmt OpenTOSCA dann bei der Provisionie-

rung, übergibt es der WSO2BPS, welche dieses dann dem Implementierungs-Artefakt

übergibt, das es auf dem Betriebssystem der virtuellen Maschine ausführt.

7. Service Template in Winery ablegen:

Nachdem alle weiteren nötigen TOSCA-Elemente eingefügt wurden kann das

Definitions-Element wieder in der Winery gespeichert werden. Dies geschieht wieder

über die REST-API der Winery.

8. Provisionierungsplan generieren:

Der Plan sollte durch den Plan Generator der Winery erstellt werden. Da dieser jedoch

noch nicht funktioniert, muss er der Provisionierungsplan vorher von Hand erstellt

und in die Winery geladen werden. Dann wird der Plan mit allen nötigen Dateien an

der entsprechenden Stelle in der CSAR-Datei abgelegt.

9. CSAR an OpenTOSCA schicken:

OpenTOSCA bietet die Möglichkeit eine CSAR-Datei direkt aus der Winery zu la-

den. Dafür muss ein entsprechender Aufruf an die API von OpenTOSCA durch den

OpenTOSCA Adapter durchgeführt werden.

10. Anwendung provisionieren:

Zum Schluss muss OpenTOSCA noch dazu aufgefordert werden die Anwendung auf

Grundlage der CSAR-Datei zu provisionieren.

5.3. Sonderfälle

Bisher können mit der Implementierung nur Anwendungen provisioniert werden, die sich

durch einen einzigen Shell Shell-Skript-Befehl installieren lassen. Anwendungen die zu-

sätzliche Implementierungs-Artefakte benötigen werden nicht unterstützt. Da auch nur der

Shell-Skript-Befehl zur Installation von Node-RED implementiert wurde, lassen sich nur

solche Mashups provisionieren, die auf Node-RED basieren.

Da der Plan Generator der Winery nur beschränkt funktioniert, muss der Provisionierungs-

plan bisher im Voraus erstellt und in Winery importiert werden. Deswegen können auch

48

5.4. Evaluation

lediglich Anwendungen mit der selben Topologie wie in Abbildung 5.1 provisioniert wer-

den.

5.4. Evaluation

Aufgrund der starken Einschränkung auf Node-RED-Mashups ist die Implementierung nicht

sehr brauchbar. Allerdings beweist sie die Funktionalität des Konzeptes, da der Entwurf auf

alle Arten von Mashups erweiterbar ist.

OpenTOSCA hat sich als gute Wahl für eine TOSCA Laufzeitumgebung herausgestellt, da es

sehr gut mit der Winery harmoniert. Diese ist wiederum für diese Implementierung dank

des Topology Completers und des Plan Generators von großem Vorteil.

Da die meiste Zeit beim gesamten Provisionierungsvorgang die Kommunikation zwischen

den Komponenten und die Ausführung des Provisionierungsplanes in Anspruch nimmt,

wurden keine Zeitmessungen der reinen CSAR-Generierung gemacht.

49

6. Optimierungen

Sowohl für das Konzept als auch für die Implementierung, die in dieser Arbeit vorgestellt

wurden, ergeben sich viele Möglichkeiten diese zu verbessern. In diesem Kapitel werden

Möglichkeiten erörtert das Konzept oder die Implementierung zu verbessern. Dazu gehört

die Wiederverwendung bereits generierter Services, der Umgang mit auftretenden Feh-

lern, Anpassungen der Topologie an den jeweiligen Anwendungsfall sowie Anpassung an

verschiedene Cloud-Provider.

6.1. Wiederverwendung bereits generierter Services

Je nach Umfeld des Anwendungsfalles kann es sein, dass oft verschiedene Mashup-Pläne auf

den gleichen Ausführungskomponenten ausgeführt werden sollen. In diesem Falle macht

es wenig Sinn bei jeder neuen Provisionierung alle Schritte zur Generierung von CSAR-

Dateien durchzuführen. Bereits fertige Data Mashup-CSARs könnten für Weitere mit den

selben Komponenten wiederverwendet werden. Wenn nur der Workflow aber nicht die

Ausführungskomponenten geändert werden, muss nur der Workflow deployt werden. In

diesem Fall bietet sich die Möglichkeit aus Abschnitt 4.5.1 des Mashup-Plan Deployens an,

bei der dieser nach Provisionierung der Anwendung deployt wird. Auf diese Weise kann die

gesamte CSAR-Datei wiederverwendet werden, und lediglich ein anderer Mashup-Plan nach

der Provisionierung deployt werden.

6.2. Fehlerbehandlung

Eine weitere Möglichkeit die Anwendung zu optimieren ist es, einen robusten Umgang in

Bezug auf mögliche Fehlerquellen einzubauen. Dies ist insbesondere in der Hinsicht relevant,

da es sich bei den Benutzern nicht um IT-Experten handelt. Einige Möglichkeiten werden im

Folgenden behandelt.

51

6. Optimierungen

6.2.1. Keine passenden Node Types

Der erste Fehler, welcher bei der Ausführung auftreten kann ist, dass für den zu provisionie-

renden Mashup kein passender Node Type im Node Type Repository gefunden wird. Um

dies zu verhindern ist es sinnvoll das Mapping auf die Anwendungskomponenten den im

Node Type Repository vorhandenen Node Types anzupassen. Wenn der Benutzer die Wahl

zwischen verschiedenen Ausführungsmustern bekommt, sollten nur solche zur Verfügung

stehen, die auch im Node Type Repository durch Node Types hinterlegt sind.

6.2.2. Fehler beim Installieren der Anwendungskomponenten

Die schwerwiegendste Fehlerquelle liegt in der Installation der Ausführungskomponenten.

Hier auftretende Fehler sind für den Benutzer kaum erkennbar, da sie sich eventuell nur in

den Log-Dateien der TOSCA-Laufzeitumgebung zeigen. Solche Fehler wären durch einen

Domain-Experten aber auch nicht behebbar. Aus diesem Grunde wäre es eine wichtige

Optimierung solche Fehler zu erkennen, und im Zweifelsfall die Provisionierung mit einer

Fehlermeldung abzubrechen.

6.3. Anpassung der Topologie

Beim Aufsetzen einer virtuellen Maschine in einer Cloud-Umgebung bestehen meistens

verschiedene Wahlmöglichkeiten bezüglich der Leistung und der Speicherkapazität. Bei

Mashups die aus mehreren Anwendungskomponenten, wie zum Beispiel einem Webser-

ver und einer Datenbank, bestehen, gibt es außerdem die Möglichkeit diese auf einer oder

mehrerer virtuellen Maschinen zu provisionieren. Diese Entscheidungen sind kosten- und

leistungsrelevant, und sollten deshalb dem Betreiber des Mashups überlassen werden. Da

es sich bei dem Benutzer jedoch um einen Domain-Experten handelt, und nicht um einen

IT-Spezialisten, können diesem solche Entscheidungen nicht überlassen werden. Eine Mög-

lichkeit wäre es den Benutzer bei der Modellierung des Mashups zwischen einer kosten-

oder leistungseffizienten Ausführung wählen zu lassen. Abbildung 6.1 zeigt eine alternative

Topologie zu der in Abbildung 2.2, bei welcher der Webserver und die MySQL-Datenbank

auf einer gemeinsamen virtuellen Maschine angesiedelt sind. Diese Art der Provisionierung

kann je nach Cloud-Provider günstiger ausfallen, jedoch auch weniger leistungseffizient und

weniger skalierbar sein.

Außer der Topologie selbst kann auch die Wahl der virtuellen Maschine an den Anwen-

dungsfall angepasst werden. Dabei könnten ebenso verschiedene Kriterien wie zum Beispiel

der Grad an benötigter Effizienz und der Durchsatz der anfallenden Daten auf eine virtuelle

Machine mit einer bestimmten Rechenleistung abgebildet werden.

52

6.4. Verwendung anderer Cloud-Anbieter

Linux	Operating	System

Apache	Web	Server MySQL	DBMS

OpenStack VM

Web	Shop MySQL	Database

hosted on hosted on

hosted on

hosted on hosted on

connect to

Abbildung 6.1.: Alternative Topologie zu Abbildung 2.2

6.4. Verwendung anderer Cloud-Anbieter

Die Optimierungsmöglichkeit in Abschnitt 6.4.1 in diesem Kapitel bezieht sich speziell auf die

Implementierung, da die Anwendung konzeptionell auf allen möglichen Cloud-Architekturen

mit entsprechenden Anbindungsmöglichkeiten funktioniert.

6.4.1. Ausführung auf anderen Cloud-Architekturen

Außer der in der Implementierung verwendeten Cloud-Architektur OpenStack ist es noch

möglich andere wie zum Beispiel Amazon EC2
1
oder Google Cloud Platform

2
zu verwenden.

Dafür müsste lediglich OpenTOSCA um eine Anbindung an die jeweils andere Cloud Archi-

tektur erweitert werden, wobei speziell Amazon EC2 schon von OpenTOSCA unterstützt

wird. Eventuell müssen auch nur die Implementierungs-Artefakte an die andere Architektur

angepasst werden, die die Provisionierung der virtuellen Maschine und des Betriebssystems

ausführen.

1
https://aws.amazon.com/de/ec2/

2
https://cloud.google.com/

53

6. Optimierungen

6.4.2. Anpassung an den Cloud-Provider

Cloud-Anbieter wie Amazon Web Services und IBM Bluemix
3
bieten neben IaaS-Angeboten

auch verschiedene PaaS- und SaaS-Angebote, wie zum Beispiel Webserver und Datenbanken.

Unter Verwendung solcher Cloud-Anbieter wäre es vorteilhaft bestehende Angebote zu ver-

wenden, anstatt diese selbst aufzusetzen, da diese durch den Anbieter verwaltet werden und

somit eine höhere Robustheit besitzen. Um solche Anwendungen verwenden zu können, wäre

es möglich spezielle TOSCA Node Types mit entsprechenden Implementierungs-Artefakten

zu entwerfen. Die Implementierungs-Artefakte müssten dann lediglich auf die API des jewei-

ligen Cloud-Providers zugreifen, um entsprechende Anwendungen zu provisionieren.

In den nächsten beiden Abschnitten wird untersucht, wie sich TOSCA4Mashups an die

beiden Cloud-Provider IBM Bluemix und Amazon Web Services anpassen lässt, um innerhalb

dieser Cloud-Umgebungen Mashups effizienter und robuster zu provisionieren.

Deklarative OpenStack-Implementierung

Neben der imperativen OpenStack-Implementierung, die in der Implementierung dieser

Arbeit verwendet wird, existiert noch die deklarative OpenStack Implementierung. Um

Anwendungen in dieser automatisiert zu provisionieren kann OpenStack Heat verwendet

werden. Die Anpassung des in dieser Bachelorarbeit vorgestellten Konzeptes an die deklarati-

ve OpenStack-Implementierung wäre zum Beispiel möglich, indem man das TOSCA Service

Template in Heat übersetzt. Für diesen Zweck existiert ein OpenStack-Projekt
4
, welches

unter der Apache 2-Lizenz
5
steht. Dieses Tool ist in der Lage TOSCA Templates in Heat

Orchestration Templates umzuwandeln. Daraus ergeben sich jedoch wieder die Nachteile

einer deklarativen Beschreibung; es sind nur solche Anwendungen verwendbar, die von Heat

erkannt werden. Wenn die von TOSCA4Mashups generierten Topology Templates nur zum

Teil in ein Heat Orchestration Template übersetzt werden, ist es möglich von den Vorteilen

beider Möglichkeiten der Provisionierung zu profitieren.

Amazon Web Services

Ein weiteres Beispiel für einen Cloud-Provider ist Amazon Web Services. Um Anwendun-

gen automatisiert in der AWS Cloud-Umgebung zu provisionieren existiert CloudForma-

tion. Beim Schreiben dieser Bachelorarbeit konnte keine Arbeit zu einer Übersetzung von

TOSCA in eine CloudFormation-Beschreibung gefunden werden. Eine andere Möglichkeit,

3
https://www.ibm.com/cloud-computing/bluemix/

4
https://pypi.python.org/pypi/heat-translator

5
https://www.apache.org/licenses/LICENSE-2.0

54

6.4. Verwendung anderer Cloud-Anbieter

die Provisionierung von Anwendungen an einen speziellen Cloud-Provider, wie zum Bei-

spiel AWS, anzupassen, ist es spezielle Implementierungs-Artefakte für diesen zu schreiben.

Die Implementierungs-Artefakte können über die API des Providers die benötigten SaaS-

Angebote provisionieren lassen.

IBM Bluemix

In der Cloud-Umgebung Bluemix von IBMwird Cloud Foundry als PaaS-Plattform verwendet.

Für die automatisierte Provisionierung mit Cloud Foundry können sogenannte Application
Manifest-Dateien6 erstellt werden. Über eine Transformierung zwischen TOSCA Templates

und Application Manifest-Dateien wurde ebenfalls nichts gefunden. Diese wäre dennoch

denkbar.

6
https://docs.cloudfoundry.org/devguide/deploy-apps/manifest.html

55

7. Zusammenfassung und Ausblick

In dieser Arbeit wurde ein Konzept vorgestellt, das es ermöglicht Data Mashups automatisiert

in einer Cloud-Umgebung zu provisionieren und auszuführen. Dieses Konzept wurde in drei

Schritte unterteilt, welche selbst in weitere Einzelschritte aufgeteilt wurden. Im Anschluss

wurde eine Implementierung des Konzeptes vorgestellt, das die von der Universität Stutt-

gart entwickelte TOSCA-Laufzeitumgebung OpenTOSCA verwendet. OpenTOSCA wurde

unter anderem wegen des großen Toolsupportes gewählt. Dazu gehört auch Winery, eine

graphische Oberfläche zur Modellierung von TOSCA-Topologien, welche außer einem Node

Type Repository auch einen Plan Generator und einen Topology Completer enthält. Die

Funktionalität des Konzeptes wurde durch die Implementierung eines Prototypen gezeigt.

Desweiteren wurden mehrere Möglichkeiten erörtert um sowohl das Konzept, als auch die

Implementierung zu verbessern. Dazu gehört unter anderem die Anpassung der Topolo-

gie an den jeweiligen Anwendungsfall und die Anpassung des Konzeptes an verschiedene

Cloud-Provider.

Ausblick

Durch eine Verbindung zwischen TOSCA und bestehenden SaaS- und PaaS-Angebote könn-

ten Data Mashups in Cloud-Umgebungen, deren Provider solche Dienste anbieten schneller

und einfach provisioniert werden. Es müssen keine Implementierungs-Artefakte für die

Installation von bestimmten Anwendungen wie zum Beispiel Datenbanken oder Web Con-

tainern erstellt werden. Stattdessen könnten generische Implementierungs-Artefakte für die

jeweiligen Cloud-Provider erstellt werden, welche die gewünschten Anwendungen aus dem

Repertoire der Cloud-Provider instanziieren. Zukünftig wäre es möglich das Konzept auf

alle Arten von verteilten Anwendungen zu erweitern, und nicht nur auf Data Mashups zu

beschränken. Diese Problemstellung bietet sich für eine Masterarbeit an.

57

A. Anhang

Listing A.1 Resultierendes Service Template der Implementierung 1

<tosca:Definitions xmlns:tosca="http://docs.oasis-open.org/tosca/ns/2011/12"
xmlns:winery="http://www.opentosca.org/winery/extensions/tosca/2013/02/12"
xmlns:ns2="http://www.eclipse.org/winery/model/selfservice" id="definitions"
name="definitions" targetNamespace="http://docs.oasis-open.org/tosca/ns/2011/12">

<tosca:Import namespace="http://types.opentosca.org"
location="http://localhost:8080/winery/relationshiptypes/http%253A%252F%252Ftypes.

opentosca.org/NodeRedPlanHostedOnNodeRed/?definitions"
importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

<tosca:Import namespace="http://types.opentosca.org"
location="http://localhost:8080/winery/relationshiptypes/http%253A%252F%252Ftypes.

opentosca.org/OperatingSystemHostedOnOpenStack/?definitions"
importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

<tosca:Import namespace="http://types.opentosca.org"
location="http://localhost:8080/winery/nodetypes/http%253A%252F%252Ftypes.

opentosca.org/InstallOpenStackVM/?definitions"
importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

<tosca:Import namespace="http://types.opentosca.org"
location="http://localhost:8080/winery/nodetypes/http%253A%252F%252Ftypes.

opentosca.org/NodeREDPlan/?definitions"
importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

<tosca:Import namespace="http://types.opentosca.org"
location="http://localhost:8080/winery/capabilitytypes/http%253A%252F%252Ftypes.

opentosca.org/OperatingSystemContainerCapability/?definitions"
importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

<tosca:Import namespace="http://types.opentosca.org"
location="http://localhost:8080/winery/nodetypes/http%253A%252F%252Ftypes.

opentosca.org/NodeRED/?definitions"
importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

<tosca:Import namespace="http://types.opentosca.org"
location="http://localhost:8080/winery/nodetypes/http%253A%252F%252Ftypes.

opentosca.org/NodeJs/?definitions"
importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

<tosca:Import namespace="http://types.opentosca.org"
location="http://localhost:8080/winery/capabilitytypes/http%253A%252F%252Ftypes.

opentosca.org/NodeRedContainerCapability/?definitions"
importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

59

A. Anhang

Listing A.2 Resultierendes Service Template der Implementierung 2

<tosca:Import namespace="http://docs.oasis-open.org/tosca/ns/2011/12/ToscaBaseTypes"
location="http://localhost:8080/winery/nodetypes/http%253A%252F%252Fdocs.

oasis-open.org%252Ftosca%252Fns%252F2011%252F12%252FToscaBaseTypes/OperatingSystem/
?definitions" importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>
<tosca:Import namespace="http://types.opentosca.org"

location="http://localhost:8080/winery/relationshiptypes/http%253A%252F%252Ftypes.
opentosca.org/NodeRedHostedOnNodeJs/?definitions"

importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>
<tosca:Import namespace="http://types.
opentosca.org"

location="http://localhost:8080/winery/capabilitytypes/http%253A%252F%252Ftypes.
opentosca.org/VirtualMachineContainerCapability/?definitions"

importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>
<tosca:Import namespace="http://types.opentosca.org"

location="http://localhost:8080/winery/capabilitytypes/http%253A%252F%252Ftypes.
opentosca.org/NodeJsContainerCapability/?definitions"

importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>
<tosca:Import namespace="http://types.opentosca.org"

location="http://localhost:8080/winery/relationshiptypes/http%253A%252F%252Ftypes.
opentosca.org/NodeJsHostedOnOperatingSystem/?definitions"

importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>
<tosca:ServiceTemplate id="InstallVMServTemplate"

targetNamespace="http://types.opentosca.org">
<tosca:TopologyTemplate>
<tosca:NodeTemplate xmlns:ns0="http://types.opentosca.org" name="NodeREDPlan"

minInstances="1" maxInstances="1" id="NodeREDPlan" type="ns0:NodeREDPlan"
winery:x="500" winery:y="100">

<tosca:Properties>
<Properties:Properties

xmlns:Properties="http://types.opentosca.org/propertiesdefinition/winery"
xmlns="http://types.opentosca.org/propertiesdefinition/winery"
xmlns:ns3="http://www.opentosca.org/winery/extensions/tosca/2013/02/12"
xmlns:ns6="http://types.opentosca.org"/>

</tosca:Properties>
</tosca:NodeTemplate>
<tosca:NodeTemplate xmlns:ns0="http://types.opentosca.org" name="NodeRED"

minInstances="1" maxInstances="1" id="NodeRED" type="ns0:NodeRED" winery:x="500"
winery:y="250">

<tosca:Properties>
<Properties:Properties

xmlns:Properties="http://types.opentosca.org/propertiesdefinition/winery"
xmlns="http://types.opentosca.org/propertiesdefinition/winery"
xmlns:ns2="http://types.opentosca.org"
xmlns:ns3="http://www.opentosca.org/winery/extensions/tosca/2013/02/12"/>

</tosca:Properties>
<tosca:Capabilities>
<tosca:Capability name="NodeRedContainerCapability" id="ap14z70qp"

type="ns0:NodeRedContainerCapability"/>
</tosca:Capabilities>
</tosca:NodeTemplate>

60

Listing A.3 Resultierendes Service Template der Implementierung 3

<tosca:RelationshipTemplate xmlns:ns0="http://types.opentosca.org"
name="NodeRedPlanHostedOnNodeRed" id="NodeRedPlanHostedOnNodeRed"
type="ns0:NodeRedPlanHostedOnNodeRed">

<tosca:SourceElement ref="NodeREDPlan"/>
<tosca:TargetElement ref="NodeRED"/>
</tosca:RelationshipTemplate>
<tosca:NodeTemplate xmlns:ns0="http://types.opentosca.org" name="NodeJs"

minInstances="1" maxInstances="1" id="NodeJs" type="ns0:NodeJs" winery:x="500"
winery:y="400">

<tosca:Properties>
<Properties:Properties

xmlns:Properties="http://types.opentosca.org/propertiesdefinition/winery"
xmlns="http://types.opentosca.org/propertiesdefinition/winery"
xmlns:ns2="http://types.opentosca.org"
xmlns:ns3="http://www.opentosca.org/winery/extensions/tosca/2013/02/12"/>

</tosca:Properties>
<tosca:Capabilities>
<tosca:Capability name="NodeJsContainerCapability" id="avlf03cab"

type="ns0:NodeJsContainerCapability"/>
</tosca:Capabilities>
</tosca:NodeTemplate>
<tosca:RelationshipTemplate xmlns:ns0="http://types.opentosca.org"

name="NodeRedHostedOnNodeJs" id="NodeRedHostedOnNodeJs"
type="ns0:NodeRedHostedOnNodeJs">

<tosca:SourceElement ref="NodeRED"/>
<tosca:TargetElement ref="NodeJs"/>
</tosca:RelationshipTemplate>
<tosca:NodeTemplate

xmlns:ns1="http://docs.oasis-open.org/tosca/ns/2011/12/ToscaBaseTypes"
name="OperatingSystem" minInstances="1" maxInstances="1" id="LinuxOperatingSystem"
type="ns1:OperatingSystem" winery:x="500" winery:y="550">

<tosca:Properties>
<Properties:Properties

xmlns:Properties="http://types.opentosca.org/propertiesdefinition/winery"
xmlns="http://types.opentosca.org/propertiesdefinition/winery"
xmlns:ns2="http://docs.oasis-open.org/tosca/ns/2011/12/ToscaBaseTypes"
xmlns:ns3="http://www.opentosca.org/winery/extensions/tosca/2013/02/12">

<hostname/>
<sshUser>ubuntu</sshUser>
<sshKey/>

61

A. Anhang

Listing A.4 Resultierendes Service Template der Implementierung 4

<script>
curl -sL https://deb.nodesource.com/setup_5.x | sudo -E bash - && sudo apt-get install

-y nodejs && sudo npm install -g --unsafe-perm node-red && sudo npm install -g pm2
&& pm2 start node-red > /dev/null && sleep 10 && touch
~/.node-red/flows_‘hostname‘.json && echo
"[{\"id\":\"58ffae9d.a7005\",\"type\":\"debug\",\"name\":\"\",\"active\":true,

\"complete\":false,\"x\":640,\"y\":200,\"wires\":[]},{\"id\":\"17626462.e89d9c\",
\"type\":\"inject\",\"name\":\"\",\"topic\":\"\",\"payload\":\"\",\"repeat\":\"\",
\"once\":false,\"x\":240,\"y\":200,\"wires\":[[\"2921667d.d6de9a\"]]},
{\"id\":\"2921667d.d6de9a\",\"type\":\"function\",\"name\":\"Format timestamp\",
\"func\":\" var date = new Date(msg.payload);msg.payload = date.toString();return

msg;\",\"outputs\":1,\"x\":440,\"y\":200,\"wires\":[[\"58ffae9d.a7005\"]]}]" >
~/.node-red/flows_‘hostname‘.json && sleep 5 && pm2 restart all > /dev/null

</script>
</Properties:Properties>
</tosca:Properties>
<tosca:Capabilities>
<tosca:Capability xmlns:ns0="http://types.opentosca.org"

name="OperatingSystemContainerCapability" id="at1q10tzr"
type="ns0:OperatingSystemContainerCapability"/>

</tosca:Capabilities>
</tosca:NodeTemplate>
<tosca:RelationshipTemplate xmlns:ns0="http://types.opentosca.org"

name="NodeJsHostedOnOperatingSystem" id="NodeJsHostedOnOperatingSystem"
type="ns0:NodeJsHostedOnOperatingSystem">

<tosca:SourceElement ref="NodeJs"/>
<tosca:TargetElement ref="LinuxOperatingSystem"/>
</tosca:RelationshipTemplate>
<tosca:NodeTemplate xmlns:ns0="http://types.opentosca.org" name="InstallOpenStackVM"

minInstances="1" maxInstances="1" id="InstallOpenStackVMTemplate"
type="ns0:InstallOpenStackVM" winery:x="500" winery:y="700">

<tosca:Properties>
<Properties:Properties

xmlns:Properties="http://types.opentosca.org/propertiesdefinition/winery"
xmlns="http://types.opentosca.org/propertiesdefinition/winery"
xmlns:ns2="http://types.opentosca.org"
xmlns:ns3="http://www.opentosca.org/winery/extensions/tosca/2013/02/12">

<credentials>
{"auth":{"tenantId":"81313f66325f427d9907b1e2674a3834","passwordCredentials":
{"username":"daniel.del.gaudio","password":"hfduhfdfg"}}}
</credentials>
<endpointsAPI>
{"os-identity-api":"http:\/\/129.69.209.127:5000\/v2.0",
"os-tenantId":"81313f66325f427d9907b1e2674a3834"}
</endpointsAPI>
<flavorId>3</flavorId>
<keypair/>
<imageId/>
<imageName>ubuntu-12.04-server-cloudimg-amd64</imageName>

62

Listing A.5 Resultierendes Service Template der Implementierung 5

<minDisk/>
<minRAM/>
<floatingIp/>
<serverId/>
<privKey/>
</Properties:Properties>
</tosca:Properties>
<tosca:Capabilities>
<tosca:Capability name="VirtualMachineContainerCapability" id="a8l5vlr7w"

type="ns0:VirtualMachineContainerCapability"/>
</tosca:Capabilities>
</tosca:NodeTemplate>
<tosca:RelationshipTemplate xmlns:ns0="http://types.opentosca.org"

name="OperatingSystemHostedOnOpenStack" id="OperatingSystemHostedOnOpenStack"
type="ns0:OperatingSystemHostedOnOpenStack">

<tosca:SourceElement ref="LinuxOperatingSystem"/>
<tosca:TargetElement ref="InstallOpenStackVMTemplate"/>
</tosca:RelationshipTemplate>
</tosca:TopologyTemplate>
<tosca:Plans>
<tosca:Plan id="InstallVMServTemplateBuildPlan" name="InstallVMServTemplateBuildPlan"

planType="http://docs.oasis-open.org/tosca/ns/2011/12/PlanTypes/BuildPlan"
planLanguage="http://docs.oasis-open.org/wsbpel/2.0/process/executable">

<tosca:PlanModelReference
reference="../servicetemplates/http%253A%252F%252Ftypes.opentosca.org/

InstallVMServTemplate/plans/InstallVMServTemplateBuildPlan/
InstallVMServTemplateBuildPlan.zip"/>
</tosca:Plan>
</tosca:Plans>
</tosca:ServiceTemplate>
<tosca:ArtifactTemplate xmlns:ns6="http://www.example.com/ToscaTypes"

id="InstallOpenStackVM_IA" type="ns6:WAR">
<tosca:Properties>
<ns6:WSProperties xmlns:ns6="http://www.uni-stuttgart.de/opentosca"

xmlns="http://www.uni-stuttgart.de/opentosca"
xmlns:ns0="http://www.eclipse.org/winery/model/selfservice"
xmlns:ns2="http://www.example.com/ToscaTypes"
xmlns:ns31="http://www.eclipse.org/winery/model/selfservice"
xmlns:ns4="http://www.example.com/ToscaTypes">

<ServiceEndpoint>/services/InstallOpenStackVM_Custom_InstallVMPort</ServiceEndpoint>
<PortType>
{http://types.opentosca.org}InstallOpenStackVM_Custom_InstallVM
</PortType>
<InvocationType>SOAP/HTTP</InvocationType>
</ns6:WSProperties>
</tosca:Properties>

63

A. Anhang

Listing A.6 Resultierendes Service Template der Implementierung 6

<tosca:ArtifactReferences>
<tosca:ArtifactReference

reference="artifacttemplates/http%253A%252F%252Ftypes.opentosca.org/
InstallOpenStackVM_IA/files/InstallOpenStackVM_Custom_InstallVM.war"/>
</tosca:ArtifactReferences>
</tosca:ArtifactTemplate>
<tosca:NodeTypeImplementation xmlns:ns0="http://types.opentosca.org"

name="InstallOpenStackVM_impl" targetNamespace="http://types.opentosca.org"
nodeType="ns0:InstallOpenStackVM" abstract="no" final="no">

<tosca:ImplementationArtifacts>
<tosca:ImplementationArtifact xmlns:ns6="http://www.example.com/ToscaTypes"

name="InstallOpenStackVM_IA" interfaceName="Custom_InstallVM"
artifactType="ns6:WAR" artifactRef="ns0:InstallOpenStackVM_IA"/>

</tosca:ImplementationArtifacts>
</tosca:NodeTypeImplementation>
</tosca:Definitions>

64

Literaturverzeichnis

[AG10] N. Antonopoulos und L. Gillam. Cloud Computing: Principles, Systems and
Applications. Computer Communications and Networks. Springer London,

2010. isbn: 9781849962414. url: https://books.google.de/books?id=

SbSbdkqibwIC (Zitiert auf S. 9).

[BBH+13] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak und S.

Wagner. „OpenTOSCA - A Runtime for TOSCA-based Cloud Applications“.

English. In: Proceedings of 11th International Conference on Service-Oriented
Computing (ICSOC’13). Bd. 8274. LNCS. Springer Berlin Heidelberg, Dez. 2013,

S. 692–695. doi: 10.1007/978-3-642-45005-1_62. url: http://www2.

informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=

INPROC-2013-45&engl=1 (Zitiert auf S. 27, 45).

[BBK+12] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann und D. Schumm. „Vino4TOSCA:

A Visual Notation for Application Topologies based on TOSCA“. Englisch. In:

Proceedings of the 20th International Conference on Cooperative Information
Systems (CoopIS 2012). Lecture Notes in Computer Science. Springer-Verlag,

Sep. 2012. doi: 10.1007/978- 3- 642- 33606- 5_25. url: http://www2.

informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=

INPROC-2012-33&engl=0 (Zitiert auf S. 27, 28).

[BBK+14] U. Breitenbücher, T. Binz, K. Képes, O. Kopp, F. Leymann und J. Wettinger.

„Combining Declarative and Imperative Cloud Application Provisioning based

on TOSCA“. Englisch. In: Proceedings of the IEEE International Conference on
Cloud Engineering (IC2E). IEEE Computer Society, März 2014, S. 87–96. doi:

10.1109/IC2E.2014.56. url: http://www2.informatik.uni-stuttgart.

de/cgi- bin/NCSTRL/NCSTRL_view.pl?id=INPROC- 2014- 21&engl=0

(Zitiert auf S. 20, 24, 28, 29, 31, 34, 38).

[BBKL14] U. Breitenbücher, T. Binz, O. Kopp und F. Leymann. „Vinothek - A Self-Service

Portal for TOSCA“. Englisch. In: Proceedings of the 6th Central-European Work-
shop on Services and their Composition (ZEUS 2014). Hrsg. von N. Herzberg

und M. Kunze. Bd. 1140. CEUR Workshop Proceedings. CEUR-WS.org, März

2014, S. 69–72. url: http://www2.informatik.uni-stuttgart.de/cgi-

bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-25&engl=0 (Zitiert auf

S. 28).

65

https://books.google.de/books?id=SbSbdkqibwIC
https://books.google.de/books?id=SbSbdkqibwIC
http://dx.doi.org/10.1007/978-3-642-45005-1_62
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2013-45&engl=1
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2013-45&engl=1
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2013-45&engl=1
http://dx.doi.org/10.1007/978-3-642-33606-5_25
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2012-33&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2012-33&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2012-33&engl=0
http://dx.doi.org/10.1109/IC2E.2014.56
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-21&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-21&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-25&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-25&engl=0

Literaturverzeichnis

[DM14] F. Daniel und M. Matera. Mashups - Concepts, Models and Architectures. Data-
Centric Systems und Applications. Springer., 2014 (Zitiert auf S. 9, 15).

[Erl05] T. as Erl. „Service-Oriented Architecture (SOA) Concepts, Technology and

Design“. In: (2005) (Zitiert auf S. 15).

[FLR+14] C. Fehling, F. Leymann, R. Retter,W. Schupeck und P. Arbitter.Cloud Computing
Patterns: Fundamentals to Design, Build, and Manage Cloud Applications. Sprin-
ger Publishing Company, Incorporated, 2014. isbn: 3709115671, 9783709115671

(Zitiert auf S. 16).

[HBBL14] P. Hirmer, U. Breitenbücher, T. Binz und F. Leymann. „Automatic Topology

Completion of TOSCA-based Cloud Applications“. English. In: Proceedings des
CloudCycle14 Workshops auf der 44. Jahrestagung der Gesellschaft für Informatik
e.V. (GI). Bd. 232. LNI. Bonn: Gesellschaft für Informatik e.V. (GI), Sep. 2014,

S. 247–258. isbn: 978-3-88579-626-8. url: http://www2.informatik.uni-

stuttgart.de/cgi- bin/NCSTRL/NCSTRL_view.pl?id=INPROC- 2014-

66&engl=1 (Zitiert auf S. 28, 37).

[HM16] P. Hirmer und B. Mitschang. „FlexMash - Flexible Data Mashups Based on

Pattern-Based Model Transformation“. English. In: Rapid Mashup Develop-
ment Tools. Hrsg. von F. Daniel und C. Pautasso. Bd. 591. Communications in

Computer and Information Science. Springer International Publishing, 2016,

S. 12–30. isbn: 978-3-319-28726-3. doi: 10.1007/978-3-319-28727-0_2. url:

http://dx.doi.org/10.1007/978-3-319-28727-0_2 (Zitiert auf S. 9, 10,

27, 34).

[HRWM15] P. Hirmer, P. Reimann, M. Wieland und B. Mitschang. „Extended Techniques

for Flexible Modeling and Execution of Data Mashups“. In: DATA 2015 - Pro-
ceedings of 4th International Conference on Data Management Technologies
and Applications, Colmar, Alsace, France, 20-22 July, 2015. 2015, S. 111–122.
doi: 10.5220/0005558201110122. url: http://dx.doi.org/10.5220/

0005558201110122 (Zitiert auf S. 10).

[KBBL13] O. Kopp, T. Binz, U. Breitenbücher und F. Leymann. „Winery - A Modeling

Tool for TOSCA-based Cloud Applications“. English. In: Proceedings of 11th
International Conference on Service-Oriented Computing (ICSOC’13). Bd. 8274.
LNCS. Springer Berlin Heidelberg, Dez. 2013, S. 700–704. doi: 10.1007/978-3-

642-45005-1_64. url: http://www2.informatik.uni-stuttgart.de/cgi-

bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2013-46&engl=1 (Zitiert auf

S. 28).

[KM15] L. B. Kassner und B. Mitschang. „MaXCept–Decision Support in Exception

Handling through Unstructured Data Integration in the Production Context.

An Integral Part of the Smart Factory.“ In: In Proceedings of the 48th Hawaii
International Conference on System Sciences (2015) (Zitiert auf S. 10).

66

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-66&engl=1
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-66&engl=1
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-66&engl=1
http://dx.doi.org/10.1007/978-3-319-28727-0_2
http://dx.doi.org/10.1007/978-3-319-28727-0_2
http://dx.doi.org/10.5220/0005558201110122
http://dx.doi.org/10.5220/0005558201110122
http://dx.doi.org/10.5220/0005558201110122
http://dx.doi.org/10.1007/978-3-642-45005-1_64
http://dx.doi.org/10.1007/978-3-642-45005-1_64
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2013-46&engl=1
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2013-46&engl=1

[KV10] R. L. Krutz und R. D. Vines. Cloud Security: A Comprehensive Guide to Secure
Cloud Computing. Wiley Publishing, 2010. isbn: 0470589876, 9780470589878

(Zitiert auf S. 18).

[Luc02] D. Luckham. The power of events. Bd. 204. Addison-Wesley Reading, 2002

(Zitiert auf S. 15).

[MBD+12] A. McAfee, E. Brynjolfsson, T. H. Davenport, D. Patil und D. Barton. „Big data“.

In: The management revolution. Harvard Bus Rev 90.10 (2012), S. 61–67 (Zitiert

auf S. 9).

[MCB+11] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh und A. H.

Byers. Big data: The next frontier for innovation, competition, and productivity.
McKinsey Global Institute, Mai 2011. url: http://www.mckinsey.com/

Insights/MGI/Research/Technology%5C_and%5C_Innovation/Big%5C_

data%5C_The%5C_next%5C_frontier%5C_for%5C_innovation (Zitiert auf

S. 9).

[Meu95] R. Meunier. „Pattern Languages of Program Design“. In: Hrsg. von J. O. Coplien

und D. C. Schmidt. New York, NY, USA: ACM Press/Addison-Wesley Publishing

Co., 1995. Kap. The Pipes and Filters Architecture, S. 427–440. isbn: 0-201-

60734-4. url: http://dl.acm.org/citation.cfm?id=218662.218694

(Zitiert auf S. 12, 15).

[MG11] P. M. Mell und T. Grance. SP 800-145. The NIST Definition of Cloud Computing.
Techn. Ber. Gaithersburg, MD, United States, 2011 (Zitiert auf S. 9, 16, 17).

[OASa] OASIS. Topology and Orchestration Specification for Cloud Applications (TOS-
CA) Primer Version 1.0. 31 January 2013. OASIS Committee Note Draft
01. http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-
cnd01.html. (Zitiert auf S. 25, 34, 40).

[OASb] OASIS. Topology and Orchestration Specification for Cloud Applications Version
1.0. 25 November 2013. OASIS Standard. http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-
v1.0-os.html. (Zitiert auf S. 20–22, 24).

Alle URLs wurden zuletzt am 11. 04. 2016 geprüft.

http://www.mckinsey.com/Insights/MGI/Research/Technology%5C_and%5C_Innovation/Big%5C_data%5C_The%5C_next%5C_frontier%5C_for%5C_innovation
http://www.mckinsey.com/Insights/MGI/Research/Technology%5C_and%5C_Innovation/Big%5C_data%5C_The%5C_next%5C_frontier%5C_for%5C_innovation
http://www.mckinsey.com/Insights/MGI/Research/Technology%5C_and%5C_Innovation/Big%5C_data%5C_The%5C_next%5C_frontier%5C_for%5C_innovation
http://dl.acm.org/citation.cfm?id=218662.218694

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu ha-

ben. Ich habe keine anderen als die angegebenen Quellen

benutzt und alle wörtlich oder sinngemäß aus anderen Wer-

ken übernommene Aussagen als solche gekennzeichnet.

Weder diese Arbeit noch wesentliche Teile daraus waren

bisher Gegenstand eines anderen Prüfungsverfahrens. Ich

habe diese Arbeit bisher weder teilweise noch vollständig

veröffentlicht. Das elektronische Exemplar stimmt mit allen

eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

	1 Einleitung und Motivation
	1.1 Motivationsszenario
	1.2 Begriffserklärungen
	1.2.1 Abgrenzung Deployment und Provisionierung
	1.2.2 Abgrenzung Mashup-Plan Workflow und Mashup

	2 Grundlagen
	2.1 Data Mashups
	2.2 Cloud Computing
	2.2.1 Service-Modelle
	2.2.2 Deployment-Modelle

	2.3 OASIS TOSCA
	2.3.1 TOSCA Sprachstandard
	2.3.2 Provisionierungsplan
	2.3.3 Cloud Service Archive (CSAR)
	2.3.4 TOSCA Laufzeitumgebung

	3 Verwandte Arbeiten
	3.1 OpenTOSCA
	3.2 Alternativen zu TOSCA

	4 Konzept
	4.1 Architektur
	4.1.1 Übersicht
	4.1.2 Komponenten

	4.2 Methode zur automatischen Provisionierung von Data Mashups
	4.3 Schritt 1: CSAR erstellen
	4.3.1 Schritt 1.1: Topologie erstellen
	4.3.2 Schritt 1.2: Artefakte einfügen
	4.3.3 Schritt 1.3: Plan generieren
	4.3.4 Schritt 1.4: CSAR erstellen

	4.4 Schritt 2: CSAR deployen und Anwendung provisionieren
	4.4.1 Schritt 2.1: CSAR deployen
	4.4.2 Schritt 2.2: Anwendung provisionieren

	4.5 Schritt 3: Mashup ausführen
	4.5.1 Schritt 3.1: Mashup-Plan Deployment außerhalb der Topologie
	4.5.2 Schritt 3.2: Mashup-Plan ausführen

	5 Implementierung
	5.1 Entwurf
	5.1.1 OpenTOSCA
	5.1.2 Winery
	5.1.3 TOSCA4Mashups

	5.2 Umsetzung
	5.2.1 Technologien
	5.2.2 Ablauf

	5.3 Sonderfälle
	5.4 Evaluation

	6 Optimierungen
	6.1 Wiederverwendung bereits generierter Services
	6.2 Fehlerbehandlung
	6.2.1 Keine passenden Node Types
	6.2.2 Fehler beim Installieren der Anwendungskomponenten

	6.3 Anpassung der Topologie
	6.4 Verwendung anderer Cloud-Anbieter
	6.4.1 Ausführung auf anderen Cloud-Architekturen
	6.4.2 Anpassung an den Cloud-Provider

	7 Zusammenfassung und Ausblick
	A Anhang
	Literaturverzeichnis

