Institut fiir Parallele und Verteilte Systeme
Universitat Stuttgart

UniversitatsstraBe 38
D-70569 Stuttgart

Bachelorarbeit Nr. 271

TOSCA4Mashups —
Provisionierung und Ausflihrung
von Data Mashups in der Cloud

Daniel Del Gaudio

Studiengang: Informatik

Prifer/in: Prof. Dr.-Ing. habil. Bernhard Mitschang
Betreuer/in: Dipl.-Inf. Pascal Hirmer

Beginn am: 1. November 2015

Beendet am: 02. Mai 2016

CR-Nummer: K.1,K.6.4,D.2.12

Kurzfassung

Mit der stetig wachsenden Menge an Daten wird Datenintegration und Datenverarbeitung
zunehmend schwieriger. Doménen-Experten ohne IT-Hintergrund sollen aus grofien Da-
tenmengen entsprechende Informationen gewinnen. Leicht zu bedienende Werkzeuge sind
noétig, um Daten aus heterogenen Datenmengen durch Doménen-Experten zu verarbeiten.
Data Mashups ermoglichen die Verarbeitung und Integration verschiedener, heterogener
Datenquellen. Dabei nutzen manche Data Mashup-Losungen dynamische Ausfithrungsumge-
bungen. Die Cloud bietet sich fiir die Provisionierung solcher dynamisch zusammengesetzten
Ausfihrungsumgebungen an, da Rechenressourcen ebenso dynamisch bereitgestellt werden
konnen. Eine Moglichkeit, um Portabilitat und Management von Cloud-Anwendungen zu er-
moglichen ist OASIS TOSCA. Um Anwendungen mit TOSCA automatisch zu provisionieren
werden alle notwendigen Komponenten in einer sogenannten Topologie modelliert und mit
allen notwendigen Informationen, um die Anwendung zu betreiben in ein selbst-enthaltenes
Dateiformat, sogenannte Cloud Service Archives verpackt. Die TOSCA Laufzeitumgebung
kann diese Archivdatei verarbeiten und die Anwendung automatisiert in der Cloud provisio-
nieren. Im Rahmen dieser Bachelorarbeit wird ein Konzept entwickelt, um Data Mashups
automatisiert in der Cloud zu Provisionieren und auszufithren. Um das Konzept zu testen
wurde ein Prototyp implementiert, der die TOSCA Laufzeitumgebung OpenTOSCA der
Universitat Stuttgart verwendet.

Inhaltsverzeichnis

1. Einleitung und Motivation
1.1. Motivationsszenario
1.2. Begriffserklarungen Lo
1.2.1. Abgrenzung Deployment und Provisionierung
1.2.2. Abgrenzung Mashup-Plan Workflow und Mashup
2. Grundlagen
21. DataMashups
22. CloudComputing
2.21. Service-Modelle L Lo
2.2.2. Deployment-Modelle
23. OASISTOSCA e
2.3.1. TOSCA Sprachstandard
2.3.2. Provisionierungsplan Lo oL
2.3.3. Cloud Service Archive (CSAR)
2.3.4. TOSCA Laufzeitumgebung
3. Verwandte Arbeiten
3.1. OpenTOSCA e
3.2. Alternativenzu TOSCA
4. Konzept
4.1. Architektur.
4.1.1. Ubersicht
4.1.2. Komponenten
4.2. Methode zur automatischen Provisionierung von Data Mashups
4.3. Schritt 1: CSARerstellen L
4.3.1. Schritt 1.1: Topologie erstellen
4.3.2. Schritt 1.2: Artefakte einfigen
43.3. Schritt 1.3: Plan generieren
434. Schritt 1.4: CSARerstellen
4.4. Schritt 2: CSAR deployen und Anwendung provisionieren
4.4.1. Schritt 2.1: CSARdeployen
4.4.2. Schritt 2.2: Anwendung provisionieren

10
11
11
12

15
15
16
17
18
19
20
23
24
25

27
27
28

31
31
31
32
35
35
36
38
38
38
38
39
39

4.5. Schritt 3: Mashup ausfihren 0L

4.5.1. Schritt 3.1: Mashup-Plan Deployment auflerhalb der Topologie
4.5.2. Schritt 3.2: Mashup-Plan ausfihren
5. Implementierung
51. Entwurf. . .. 0. L
5.1.1. OpenTOSCA e
5.1.2. WInery e
5.13. TOSCA4Mashups
52. Umsetzung L
5.2.1. Technologien
52.2. Ablauf
53. Sonderfdlle
54. Evaluation
6. Optimierungen
6.1. Wiederverwendung bereits generierter Services
6.2. Fehlerbehandlung
6.2.1. Keine passenden Node Types
6.2.2. Fehler beim Installieren der Anwendungskomponenten
6.3. Anpassung der Topologie L ..
6.4. Verwendung anderer Cloud-Anbieter
6.4.1. Ausfithrung auf anderen Cloud-Architekturen
6.4.2. Anpassung an den Cloud-Provider

7. Zusammenfassung und Ausblick
A. Anhang

Literaturverzeichnis

41
41

43
44
44
45
45
46
46
47
48
49

51
51
51
52
52
52
53
53
54

57

59

65

Abbildungsverzeichnis

1.1.

1.2.

2.1.
2.2.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.

4.8.

5.1.
5.2

6.1.

Beispiel einer graphischen Oberfliche zur Modellierung von Data Mashups

[HMIO] .« . oo oo e e e e e e 10
Ablauf eines Data Mashups oL 11
Allgemeiner Anwendungsstapel einer Cloud-Anwendung [FLR+14] 16
Beispiel fiir eine Anwendungstopologie [BBK+14] 20
Architektur des gesamten Systems oL Lo 32
Architektur der TOSCA4Mashups-Komponente 33
Architektur einer TOSCA Laufzeitumgebung [OASa] 34
Uberblick der Methode 35
Methode, um das Cloud Service Archive zuerstellen 36
Methode, um die Anwendung zu provisionieren 39
Anwendung provisionieren. Links der Provisionierungsplan, rechts die To-

pologie. 40
Mashup ausfihren 41
Beispieltopologie fiir Node-RED 43
Entwurf TOSCA4Mashups, 44
Alternative Topologie zu Abbildung 2.2 53

Verzeichnis der Listings

2.1.
2.2.

Al
A2
A3.

Beispiel fiir eine TOSCA Node Type-Definition 21
Beispiel fiir ein TOSCA Topology Template 23
Resultierendes Service Template der Implementierung 1. 59
Resultierendes Service Template der Implementierung 2. 60
Resultierendes Service Template der Implementierung 3. 61

A.4. Resultierendes Service Template der Implementierung 4
A.5. Resultierendes Service Template der Implementierung 5
A.6. Resultierendes Service Template der Implementierung 6

1. Einleitung und Motivation

Mit der immer starker wachsenden Anzahl an verfiigbaren Daten spielt Datenverarbeitung
und Datenintegration eine zunehmend wichtige Rolle [MCB+11]. Sogenannte Doménen-
Experten, Benutzer ohne IT-Hintergrund, sollen in der Lage sein aus grof3en heterogenen
Datenmengen relevante Informationen zu gewinnen. Probleme, die sich im Zusammenhang
mit sehr groflen Datenmengen ergeben, werden unter dem Begriff Big Data [MBD+12] zu-
sammengefasst. Data Mashups [DM14] bieten eine Mdoglichkeit die komplexen Vorgénge der
Datenintegration hinter einer fiir nicht-technische Anwender bedienbaren graphischen Be-
nutzeroberfliche zu verbergen. Je nach Anwendungsfall konnen bei Mashups verschiedene
Aspekte bei der Ausfithrung priorisiert werden, wie zum Beispiel Effizienz oder Robust-
heit. Einen derartigen Ansatz unterstiitzt beispielsweise das an der Universitat Stuttgart
entwickelte Data Mashup Tool FlexMash [HM16]. Auf Basis nicht-funktionaler Nutzeranfor-
derungen wird dabei die Ausfithrungsumgebung der Mashups dynamisch, Baukasten-artig
zusammengesetzt.

Cloud Computing[MG11] ermoglicht durch das Prinzip der Virtualisierung hochverfiigbare
on-demand-Rechensysteme. An den Anwendungsfall angepasste virtuelle Maschinen kénnen
bei Bedarf innerhalb von Sekunden verfiigbar gemacht werden. Abrechnung der Kosten bei
Cloud-Anbietern geschieht nach dem pay-as-you-go-Prinzip [AG10], was bedeutet, dass ledig-
lich die verwendete Rechenleistung bezahlt werden muss. Die Vorteile des Cloud Computing
machen dieses besonders geeignet fiir ad-hoc auszufithrende Data Mashups mit variabler
Ausfithrungsumgebung, wie zum Beispiel FlexMesh.

Eine Anwendungstopologie ist die Beschreibung der fiir eine Anwendung verwendeten
Softwarekomponenten und der Kommunikation zwischen diesen Komponenten. Im Zusam-
menhang mit einer Cloud-Umgebung gehort dazu beispielsweise die virtuelle Maschine,
das Betriebssystem und jede weitere installierte Software, von der die auszufithrende Soft-
ware abhingt, wie zum Beispiel eine Datenbank. OASIS! TOSCA? ist ein Standard der die
Moglichkeit bietet solche Anwendungstopologien zu beschreiben und damit portierbar zu
machen. Die Anwendungstopologien der verschiedenen Mashup-Ausfithrungen kénnen
unterschiedlich komplex sein, da jede Ausfithrung aus verschiedenen Anwendungen und
Anwendungskomponenten zusammengesetzt sein kann. Dementsprechend benoétigt die

Thttps://www.oasis-open.org/
Zhttps://www.oasis-open.org/committees/tosca/

1. Einleitung und Motivation

Pattern Selection Execute Data Mashup Save Template EWGTEREWETC Saved Templates Bsp
Add node Settings

Start End
A connector15628
Merge Analytics
Filter Twitter
(1: (2] & ponnector19747 " Heonnectortos2z ()
- connector4089)| [! ¢
NYT Google+ = B - End
g @ ———{connector7531|—3 — M? ?e Analytics
@ """ Filtars connector28798|
Facebook Custom *
i e
Hospital Visual Merge \ccﬂl‘ecmfz%zaP
x
& 2 ——{connector13393)—» 1
Visual Anal... Sensor ‘
Analytics2

—_— Textfile
=
fm—

Textfile Database

Abbildung 1.1.: Beispiel einer graphischen Oberflache zur Modellierung von Data Mashups
[HM16]

ad-hoc Ausfithrung von Data Mashups durch Doméanen-Experten eine vollautomatisierte
Provisionierung, ohne den Anwender mit den Komplikationen dieser zu konfrontieren. In
dieser Bachelorarbeit soll ein Konzept hierfiir erarbeitet werden.

1.1. Motivationsszenario

In diesem Kapitel wird ein Anwendungsfall beschrieben, der fiir die Evaluation der Konzepte
dieser Arbeit dient.

Ein Produktionsmitarbeiter einer Firma mochte Fehlerfalle einer Fabrik basierend auf ver-
schiedenen Datenquellen automatisiert erkennen. Zu diesen Datenquellen gehéren Sensoren,
Prozessdatenbanken, Metadatenbanken und textuelle Eingaben von Mitarbeitern. Um dies
zu realisieren verwendet er Data Mashups. Um die Zusammenhénge zwischen den einzelnen
Datenquellen und die Verarbeitungsschritte zu modellieren entwirft er einen sogenannten
Mashup-Plan [HRWM15]. Abbildung 1.1 zeigt eine beispielhafte graphische Benutzerober-
flache, die dazu dient Data Mashups zu modellieren. Links in der Abbildung sind die zur
Auswahl stehenden Datenquellen und Datenoperationen, rechts der abstrakte Mashup-Plan.
Einen solchen Anwendungsfall, auf den sich diese Arbeit bezieht, beschreiben Kassner und
Mitschang [KM15]. Fir die Ausfithrung solcher dynamisch erstellten Data Mashups bietet
sich eine Cloud-Umgebung an, da schnell eine angepasste virtuelle Maschine aufgesetzt

10

1.2. Begriffserklarungen

Auswahl der Transformation Provisionierung Cloud-basierte
Ausfiihrungs- in ausfihrbaren des Mashups in Mashup-
komponenten Mashup-Plan der Cloud Ausfihrung

Mashup-Plan

modellieren

Abbildung 1.2.: Ablauf eines Data Mashups

werden kann. Um Zeit und Kosten zu sparen soll die Provisionierung automatisiert ablaufen,
da sonst ein IT-Experte notig ware. Da es sich bei dem Benutzer um einen Doméanen-Experten,
und nicht um einen IT-Experten handelt, kann ihm jedoch auch keine Entscheidung tiber die
Provisionierung iiberlassen werden. Darum miissen auch alle Entscheidungen, die die Provi-
sionierung betreffen, wie zum Beispiel die Leistung und die Anzahl der virtuellen Maschinen,
automatisiert getroffen werden. Nach der Provisionierung soll der Mashup automatisch
ausgefiihrt und das Ergebnis zum Benutzer zuriickgefithrt werden. Die Verwendung der
Cloud-Umgebung soll fiir den Benutzer vollstindig transparent erscheinen. Eine Cloud-
Umgebung bietet sich fiir die Ausfithrung solcher dynamisch erzeugter Mashups an, da in
der Cloud Ressourcen ebenso dynamisch bereitgestellt werden konnen. Dies birgt jedoch
Schwierigkeiten, da bisher keine Moglichkeit besteht, um Data Mashup vollautomatisch
in einer Cloud zu provisionieren und auszufithren. Dieses Problem wird in dieser Arbeit
gelost.

Um den Anwendungsfall noch zu verdeutlichen, zeigt Abbildung 1.2 den allgemeinen Ab-
lauf eines dynamisch erstellten Data Mashups. Im ersten Schritt wird der Mashup-Plan
vom Anwender in einem nicht-ausfithrbaren Modell erstellt. Danach wird eine fiir den An-
wendungsfall spezifische Ausfihrungsumgebung ausgewahlt, anhand von Kriterien die der
Anwender angibt. Im nachsten Schritt wird der Workflow in einen fiir die Mashup-Plattform
spezifischen ausfithrbaren Mashup-Plan tibersetzt. Nach dem Provisionieren des Mashups in
der Cloud wird dieser dort ausgefiihrt.

1.2. Begriffserklarungen

Haufig in dieser Bachelorarbeit verwendete Begriffe werden in diesem Abschnitt erlautert
und dhnliche voneinander abgegrenzt.

1.2.1. Abgrenzung Deployment und Provisionierung

Als Provisionierung werden alle erforderlichen Arbeitsschritte bezeichnet die benotigt wer-
den, um eine Anwendung oder eine Anwendungskomponente in einer Cloud-Umgebung zu
installieren und einem oder mehreren Anwendern zur Verfiigung zu stellen.

11

1. Einleitung und Motivation

Deployment bezeichnet das Einsetzen von Software in einem System. Bei der Software kann
es sich um Dateien und ausfithrbare Programme handeln. Eine Provisionierung beinhaltet
meistens mehrere Deployments.

1.2.2. Abgrenzung Mashup-Plan Workflow und Mashup

Da die Begriffe Workflow, Mashup und Mashup-Plan in dieser Arbeit in einem sehr dhnlichen
Kontext verwendet werden, werden diese hier voneinander abgegrenzt.

Ein Mashup-Plan ist eine abstrakte oder technische Beschreibung dessen, was der Benutzer
ausgefithren mochte. Dementsprechend konnen Mashup-Plidne sowohl ausfithrbar als auch
nicht-ausfithrbar sein. Bei nicht-ausfithrbaren Mashup-Plédnen handelt es sich meist um ein
Modell nach dem Pipes und Filter-Pattern [Meu95], wie zum Beispiel der BPMN?-Notation.
Ausfiithrbare Mashup-Pléne sind spezifisch fiir die jeweilige Ausfithrungsumgebung. Haufig
sind diese im BPEL*-Format oder in JSON” geschrieben. Im Kontext dieser Arbeit wird aus
einem nicht-ausfithrbaren Mashup-Plan ein ausfithrbarer Mashup-Plan generiert.

Austithrbare Mashup-Plidne werden ebenfalls als Workflows bezeichnet.

Mashup bezeichnet die gesamte Anwendung zur Ausfithrung des Mashup-Planes. Im weiteren
Sinne bezeichnet Mashup die Menge der Ausfithrungskomponenten, die fiir die Ausfithrung
des jeweiligen Workflows benétigt werden. Der Begriff Mashup-Plattform wird mit der selben
Bedeutung verwendet.

*http://www.bpmn.org/
*https://www.oasis-open.org/committees/wsbpel/
>http://www.json.org/

12

1.2. Begriffserklarungen

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 — Grundlagen: In diesem Kapitel werden die nétigen Grundlagen fiir diese Arbeit

vermittelt. Dazu gehoren Kenntnisse zu Data Mashups, Cloud Computing und OASIS
TOSCA.

Kapitel 3 — Verwandte Arbeiten: Hier werden verschiedene, mit dieser Bachelorarbeit
verwandte Arbeiten vorgestellt. Dazu gehoren verschiedene Arbeiten, die im Rahmen
des Cloud Cycle-Projektes® der Universitit Stuttgart entstanden sind, auf welchen
diese Arbeit aufbaut. Des Weiteren werden verschiedene anderen Cloud-Technologien
vorgestellt, von denen sich diese Arbeit abgrenzt.

Kapitel 4 — Konzept: Kapitel 4 stellt den Kern dieser Arbeit dar. In diesem Kapitel wird ein
Konzept ausgearbeitet, um Data Mashups mithilfe von OASIS TOSCA automatisiert in
einer Cloud-Umgebung zu provisionieren und auszufiithren. Dieses Konzept wurde in
drei Schritte eingeteilt, nach denen sich die Gliederung des Kapitels richtet. Vorher
wird jedoch noch die Architektur des entwickelten Konzepts gezeigt und erlautert.

Kapitel 5 — Implementierung: Um die Funktionalitdt des Konzeptes zu zeigen wurde ein
Prototyp implementiert. Dessen Entwurf und Umsetzung wird in Kapitel 5 beschrieben.
Auflerdem werden Anwendungsfille gezeigt, die die Implementierung nicht abdeckt.
Zum Schluss wird der Entwurf des Prototypes evaluiert.

Kapitel 6 — Optimierungen: In diesem Kapitel werden verschiedene Moglichkeiten ausge-
arbeitet, um sowohl das Konzept als auch den Prototyp zu verbessern. Dazu gehort
die Wiederverwendung bereits ausgefithrter Data Mashups, der Umgang mit Feh-
lern bei der Provisionierung, die Anpassung der Data Mashups an den jeweiligen
Anwendungsfall und die Verwendung anderer Cloud-Provider.

Kapitel 7 — Zusammenfassung und Ausblick Das letzte Kapitel liefert eine Zusammen-
fassung dieser Arbeit und gibt einen Uberblick iiber mogliche zukiinftige Arbeiten, die
das Konzept erweitern.

Shttp://www.cloudcycle.org/

13

2. Grundlagen

In diesem Kapitel werden die fiir diese Arbeit nétigen Grundlagenkenntnisse vermittelt.
Dazu gehoren Data Mashups, Cloud Computing und OASIS TOSCA.

2.1. Data Mashups

Daniel und Matera [DM14] definieren Mashups als zusammengesetzte Anwendungen, wel-
che aus wiederverwendbaren Daten, Anwendungslogik und eventuell einer graphischen
Benutzeroberfliche entwickelt werden. Alle Daten, jede Anwendungslogik, sowie jede Be-
nutzeroberflache wird dabei als Mashup-Komponente bezeichnet. Mashup-Komponenten
werden in der Regel, jedoch nicht zwangsweise, aus dem Web bezogen. Die Mashup-Logik
legt die Zusammensetzung der einzelnen Komponenten, den Kontrollfluss, den Datenfluss,
die Datentransformationen sowie die externen Schnittstellen des Mashups fest. Das bedeutet,
dass Mashups als Anwendungen gesehen werden konnen, welche sich aus verschiedenen
anderen Anwendungen zusammensetzen und durch eine simple Sprache, wie zum Beispiel
tber eine graphische Oberflache, modelliert und entwickelt werden. Grundlegende Elemente
der Data Mashup-Modellierung sind Datenquellen und Datentransformationen, die durch
Kommunikationswege verbunden werden konnen. Diese Kommunikationswege entspre-
chen meist auch dem Kontrollfluss und Datenfluss der Data Mashup-Anwendung. Diese
graphischen Oberflachen sind meist nach dem Pipes und Filter-Pattern [Meu95] aufgebaut,
wobei die Pipes den Kommunikationswegen der Daten und die Filter den Datenquellen und
Datentransformationen entsprechen. Mashups konnen auf verschiedene Weise realisiert
werden, wie beispielsweise durch service-orientierte Architekturen [Erl05] oder durch Com-
plex Event Processing [Luc02]. Andere Arten von Mashups sind UI-Mashups aus der Web
2.0-Bewegung oder Logic-Mashups [DM14]. Mashup-Arten auf3er den Data Mashups werden
in dieser Arbeit nicht behandelt, weswegen sich der Begriff Mashup hier grundsétzlich auf
Data Mashups bezieht.

15

2. Grundlagen

4 N\
Geschaftsprozess
g J
s D Wt m
Anwendungssoftware
N J
4 D
Middleware
g J
s N
Betriebssystem - SaaS
\ J
P - - - PaaS
Virtuelle Hardware
> < - laaS
Physische Hardware
g A S I .

Abbildung 2.1.: Allgemeiner Anwendungsstapel einer Cloud-Anwendung [FLR+14]

2.2. Cloud Computing

Das ,National Institute of Standards and Technology“! definiert Cloud Computing als ,Modell
fiir ubiquitaren und komfortablen on-demand Netzwerkzugriff zu geteilten Rechnerressour-
cen, die schnell und ohne groflen Verwaltungsaufwand bereitgestellt und wieder freigegeben
werden konnen“ [MG11]. Dabei muss kaum Kommunikation mit dem Bereitsteller der Res-
sourcen stattfinden. Das bedeutet, dass Cloud Computing es ermdglicht, angepasste virtuelle
Maschinen bei Bedarf innerhalb von kiirzester Zeit bereitzustellen. Diese sind dann sofort
iber eine Netzwerkverbindung verfiigbar. Das macht es moglich hochverfiigbare und ska-
lierbare Rechensysteme zu schaffen. Da fiir die gewiinschte Rechenleistung keine Hardware
direkt bereitgestellt wird, sondern lediglich eine geteilte Nutzung der Hardware durch eine
virtuelle Maschine, fallen in der Regel nur Kosten bei der tatsachlichen Nutzung der Res-
sourcen an. Abbildung 2.1 zeigt auf der linken Seite den allgemeinen Anwendungsstapel
einer Cloud-Anwendung [FLR+14]. Als Cloud-Provider wird die Organisation bezeichnet, die
je nach Service-Modell entsprechende Software oder Rechenleistung dem Anwender oder
Kunden zur Verfiigung stellt. Als Cloud-Anwender wird diejenige Person oder Organisation

'http://www.nist.gov/

16

2.2. Cloud Computing

bezeichnet, welche die Software oder Rechenressourcen des Cloud-Providers in Anspruch
nimmt. Der Cloud-Provider verwaltet alle Komponenten des Cloud-Anwendungsstapels, der
nicht vom Anwender verwaltet wird.

Cloud Computing wird in verschiedene Charakteristika, Service-Modelle und Deployment-
Modelle unterteilt, die in den folgenden Abschnitten erlautert werden.

2.2.1. Service-Modelle

Die verschiedenen Service-Modelle unterscheiden sich darin, wie viel Verwaltungsaufwand
der Anwender hat, und wie viel Verantwortung dem Cloud-Provider iiberlassen wird. Auf
der rechten Seite von Abbildung 2.1 sind die Verantwortlichkeiten des Cloud-Providers bei
den verschiedenen Service-Modellen dargestellt, welche im Folgenden genauer erlautert
werden.

Software as a Service (SaaS)

Dem Benutzer wird Software zur Verfiigung gestellt, die auf einer Cloud-Infrastruktur lauft
[MG11]. Auf diese kann durch Web Browser oder Programmierschnittstellen zugegriffen
werden. Der Benutzer kann ohne grofien Aufwand verschiedene Softwarepakete, wie zum
Beispiel Datenbanken, aufsetzen und verwenden. Fiir ihn besteht kein Verwaltungsauf-
wand hinsichtlich dieser. Im Anwendungsstapel von Cloud-Anwendungen muss sich der
Benutzer lediglich darum kiimmern, dass mit der durch den Cloud-Provider bereitgestellte
Anwendungssoftware die eigenen Geschaftsprozesse korrekt durchgefithrt werden.

Platform as a Service (PaaS)

Der Benutzer hat die Moglichkeit eigenstidndig programmierte Anwendungen in der Cloud-
Infrastruktur zu deployen und auszufithren [MG11]. Der Vorteil fiir den Benutzer bei diesem
Service-Modell liegt darin, dass er sich lediglich um seine eigene Anwendungssoftware
und die durch diese ausgefithrten Geschéftsprozesse kiimmern muss. Die Teile des Cloud-
Anwendungsstapels von der physischen Hardware bis zur Middleware werden durch den
Cloud-Provider verwaltet.

Infrastructure as a Service (laaS)

In diesem Service-Modell werden dem Benutzer fundamentale Rechnerressourcen zur Ver-
fugung gestellt [MG11]. Er erhalt Zugang zu virtuellen Maschinen iiber ein Netzwerk. Der

17

2. Grundlagen

Verwaltungsaufwand des gesamten Teiles der Cloud-Anwendungsstapels von der virtuellen
Hardware bis zum Geschéftsprozess liegt bei dem Benutzer.

2.2.2. Deployment-Modelle

In diesem Abschnitt werden die vier verschiedenen Deployment Modelle des Cloud Com-
puting erlautert. Der Unterschied zwischen den verschiedenen Deployment-Modellen liegt
darin, mit welchen anderen Personen und Organisationen die Software und Rechenleistung
der Cloud geteilt wird.

Public Cloud

Bei einer Public Cloud-Umgebung werden die Rechenressourcen zur freien Benutzung
bereitgestellt. Hierbei wird oft nach dem pay-as-you-go-Prinzip abgerechnet. Das bedeutet,
dass der Benutzer nur die wirklich verwendete Rechenleistung bezahlen muss. Die Public
Cloud bietet die geringste Sicherheit, da der Cloud-Provider in der Lage ist auf alle Ressourcen
zuzugreifen. Die Sicherheit der Daten und Anwendungen ist durch das Vertrauen zum
Cloud-Provider beschréankt. Da eine Vielzahl unbekannter Dritter die selbe Cloud verwendet,
konnten Sicherheitsfehler schnell verheerend werden. Ein Beispiel fiir einen moglichen
Angriff auf eine virtuelle Maschine in einer Public Cloud ist das sogenannte VM Tunneling
[KV10].

Private Cloud

Bei einer Private Cloud stehen die Rechnerressourcen lediglich einer einzigen Organisation
zur Verfiigung. Sie kann jedoch einer anderen Organisation gehdren und auch durch diese
verwaltet werden. Eine Private Cloud bietet die sicherste Umgebung unter den Service-
Modellen, da niemand auf die virtuellen Maschinen oder auf die physikalische Hardware
zugreifen kann.

Hybrid Cloud

Beim Deployment Model Hybric Cloud werden eines oder mehrere der anderen Deploment-
Modelle verbunden. Bei einer Hybrid Cloud konnten beispielsweise sicherheitsrelevante
Daten auf den Private Cloud-Anteil, und weniger sicherheitsrelevante auf den Public Cloud-
Anteil gelegt werden.

18

2.3. OASIS TOSCA

Community Cloud

Bei dem Deploment-Modell der Community Cloud stehen alle Rechnerressourcen einer
bestimmten Gemeinschaft von Benutzern von Organisationen zur Verfiigung, die gemeinsame
Anliegen besitzen. Auch hier kann die Cloud durch Dritte betrieben und verwaltet werden.
Die Community Cloud bietet eine dhnliche Sicherheit wie eine Public Cloud, jedoch besteht
kein Risiko durch unbekannte Dritte.

2.3. OASIS TOSCA

sTopology and Orchestration Specification for Cloud Applications” von der ,,Organization
for the Advancement of Structured Information Standards® (OASIS) ist ein Standard zur
Beschreibung und Portierung von Cloud-Anwendungen.

Aufler einem Sprachstandard besteht die Topology and Orchestration Specification for Cloud
Applications noch aus der Definition von Cloud Service Archive Dateien und einer beispiel-
haften Architektur einer TOSCA Laufzeitumgebung.

Mehrere zusammenhingende Anwendungen werden mit TOSCA als Topologien in Form
von gerichteten Graphen beschrieben, wobei jeder Knoten eine Instanz einer Anwendung
und jede Kante eine Relation zwischen zwei Anwendungen symbolisiert. Abbildung 2.2
zeigt eine Anwendungstopologie mit zwei virtuellen Maschinen, auf denen jeweils ein
Linux Betriebssystem provisioniert ist. Auf dem einen ist ein Apache Web Server? installiert,
auf dem anderen eine MySQL-Datenbank®. In der Topologie existieren zwei Arten von
Relationen: ,hosted on®“ und ,connect to“. Erstere symbolisiert, dass die Anwendung von
der die Kante ausgeht auf der Anwendung zu der die Kante hinfithrt ausgefiihrt wird. Die
Kante zwischen den Anwendungen ,Web Shop“ und ,MySQL Database“ symbolisiert den
Zugriftf der Web-Anwendung auf die Datenbank. Die Knoten in einer Anwendungstopologie
werden in TOSCA als Node Templates, die Relationen als Relationship Templates bezeichnet.
Mehrere Anwendungen, von denen jede auf der darunter liegenden Anwendung aufbaut,
werden als Anwendungs-Stack bezeichnet. Die Topologie in Abbildung 2.2 besteht aus zwei
Anwendungs-Stacks. Die vier Anwendungen auf der linken Seite und die vier auf der rechten
Seite bilden jeweils einen Stack.

Zhttps://httpd.apache.org/
*https://www.mysql.de/

19

2. Grundlagen

connect to

Web Shop MySQL Database

hosted on hosted on

hosted on hosted on

Linux Operating System Linux Operating System

Apache Web Server [MySQL DBMS }

hosted on hosted on

OpenStack VM OpenStack VM

Abbildung 2.2.: Beispiel fiir eine Anwendungstopologie [BBK+14]

2.3.1. TOSCA Sprachstandard

TOSCA ist ein 2013 von OASIS definierter, auf XML-basierender®, Sprachstandard [OASb]
zur Beschreibung von Cloud-Anwendungen. Aus diesem Grund wird der Begriff ,Element”
in dieser Arbeit im Sinne der XML-Definition® verwendet. Die fiir diese Arbeit relevanten
TOSCA-Elemente werden in diesem Kapitel erldutert.

Node Types

Ein Node Type ist eine wiederverwendbare Einheit, die die Struktur eines oder mehrerer Node
Templates vorgibt [OASDb]. In den Node Types werden unter anderem Properties, Capabilities
und Requirements definiert. Properties sind Eigenschaften der modellierten Anwendung,
welche in den aus dem Node Type instanziierten Node Template angegeben werden miissen.
Requirements miissen durch Capabilities anderer Node Types erfiillt werden, indem zwischen
den Node Templates ein Relationship Type instaziiert wird. Listing 2.1 zeigt eine beispielhafte
Node Type-Definition, welche eine Node-RED-Umgebung modelliert.

*https://www.w3.org/XML/
>https://www.w3.org/TR/REC-xml/

20

2.3. OASIS TOSCA

Listing 2.1 Beispiel fiir eine TOSCA Node Type-Definition

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<tosca:Definitions id="winery-defs-for_ns6-Node-RED"
targetNamespace="http://types.opentosca.org"
xmlns:tosca="http://docs.oasis-open.org/tosca/ns/2011/12"
xmlns:winery="http://www.opentosca.org/winery/extensions/tosca/2013/02/12"
xmlns:ns2="http://www.eclipse.org/winery/model/selfservice">
<tosca:NodeType name="NodeRED" abstract="no" final="no"
targetNamespace="http://types.opentosca.org" winery:bordercolor="#b8f246">
<tosca:DerivedFrom typeRef="nsl:RootNodeType"
xmlns:nsl="http://docs.oasis-open.org/tosca/ns/2011/12/ToscaBaseTypes"/>
<tosca:RequirementDefinitions>
<tosca:RequirementDefinition name="NodeJsContainer"
requirementType="ns0:NodeJsContainerRequirement" lowerBound="1"
upperBound="1" xmlns:nsO@="http://types.opentosca.org"/>
</tosca:RequirementDefinitions>
<tosca:CapabilityDefinitions>
<tosca:CapabilityDefinition name="HostNodeRedPlan"
capabilityType="ns0:NodeRedContainerCapability" lowerBound="0"
upperBound="unbounded" xmlns:nsO@="http://types.opentosca.org"/>
</tosca:CapabilityDefinitions>
<tosca:Interfaces/>
</tosca:NodeType>
</tosca:Definitions>

Node Templates

Node Templates sind instanziierte Node Types. Jedes Node Template modelliert genau eine
Instanz einer zu provisionierenden Anwendung. In Node Templates konnen die in den
Node Types definierten Properties mit Werten belegt werden. Node Templates miissen einen
eindeutigen Identifikator besitzen.

Relationship Types

Relationship Types definieren den Typ von einem oder mehrerer Relationship Templates
zwischen Node Templates [OASD]. Relationship Types modellieren mogliche Verbindungen
zwischen zwei Node Templates bestimmter Node Types. Beispiele dafiir sind ,hosted on®
und ,connect to” in Abbildung 2.2. In fast jeder Topologie wird eine Relation mit der selben
Semantik wie der von ,hosted on” verwendet. Diese symbolisiert, dass die Anwendung von
der die Relation ausgeht auf der Anwendung deployt ist, zu der die Relation hinfiihrt.

21

2. Grundlagen

Relationship Templates

Relationship Templates sind instanziierte Relationship Types. Sie modellieren eine Beziehung
zwischen zwei Node Templates. Sie enthalten ein Quell- und ein Zielelement, die jeweils mit
dem eindeutigen Identifikator der Quell- und Ziel-Node Templates belegt werden.

Artifact Types

Artifact Types sind wiederverwendbare Einheiten, welche den Typ eines oder mehrerer
Artifact Templates definieren [OASb]. Artefakte sind Dateien, die sich in der CSAR-Datei
befinden. Géngige Artifact Types sind zum Beispiel solche fiir WAR- oder ZIP-Dateien.

Artifact Templates

Artifact Templates referenzieren eine Datei innerhalb der CSAR-Datei. Dabei wird zwischen
Implementierungs- und Deployment-Artefakten unterschieden. Implementierungs-Artefakte
sind ausfithrbare Dateien, welche die Provisionierung einer bestimmten Anwendung durch-
fithren. Deployment-Artefakte sind Dateien, die fiir die Provisionierung verwendet werden,
wie zum Beispiel Archivdateien mit den ausfithrbaren Dateien einer Anwendung.

Node Type Implementation

Node Type Implementations reprasentieren ein Implementierungs-Artefakt fiir einen speziel-
len Node Type. Node Type Implementations bringen alle Node Templates eines bestimmten
Node Types mit einem bestimmten Artifact Template in Verbindung. Dadurch weif§ die
TOSCA Laufzeitumgebung, welche Artefakte fiir die Provisionierung der Node Templates
dieses bestimmten Node Types verwendet werden sollen.

Topology Template
Topology Templates bestehen aus Node Templates und Relationship Templates. Sie bilden das

Modell fiir die dargestellte Topologie. Listing 2.2 zeigt ein TOSCA Topology Template mit
einem Node Template, welches aus dem Node Type in Listing 2.1 instanziiert wurde.

22

2.3. OASIS TOSCA

Listing 2.2 Beispiel fiir ein TOSCA Topology Template

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<tosca:Definitions id="definitions" name="definitions"
targetNamespace="http://docs.oasis-open.org/tosca/ns/2011/12"
xmlns:tosca="http://docs.oasis-open.org/tosca/ns/2011/12"
xmlns:winery="http://www.opentosca.org/winery/extensions/tosca/2013/02/12"
xmlns:ns2="http://www.eclipse.org/winery/model/selfservice">
<tosca:ServiceTemplate id="InstallVMServTemplate"
targetNamespace="http://types.opentosca.org">
<tosca:TopologyTemplate>
<tosca:NodeTemplate name="NodeRED" minInstances="1" maxInstances="1"
id="NodeRED" type="ns0:NodeRED" winery:x="500" winery:y="250"
xmlns:nsO="http://types.opentosca.org">
<tosca:Capabilities>
<tosca:Capability name="NodeRedContainerCapability" id="apl4z70qp"
type="ns0:NodeRedContainerCapability"/>
</tosca:Capabilities>
</tosca:NodeTemplate>
</tosca:TopologyTemplate>
</tosca:ServiceTemplate>
</tosca:Definitions>

Service Template

Im Service Template wird das Topology Template, alle Artifact Templates, alle Node Ty-
pe Implementations und das Plans-Element zusammengefiigt. Das Plans-Element ist das
TOSCA-Element, dass die Schnittstelle zwischen dem Topology Template und dem Provisio-
nierungsplan definiert, welcher in Abschnitt 2.3.2 erlautert wird.

Definitions

Das Definitions-Element ist das Wurzelelement jeder TOSCA-Definition. Sowohl Node Type-
Definitionen als auch Service Templates miissen sich in einem Definitions-Element befinden.
Die Beispiele in den Abbildungen 2.1 und 2.2 veranschaulichen dies.

2.3.2. Provisionierungsplan

Eine TOSCA-Anwendung kann entweder durch eine deklarative oder durch eine imperative
Vorgehensweise provisioniert werden. Bei der deklarativen Provisionierung wird lediglich
anhand der Beschreibung der Topologie vorgegangen. Bei einer imperativen Provisionie-
rung benétigt es einen sogenannten Provisionierungsplan. Dieser kann in verschiedenen
Ausfithrungssprachen wie zum Beispiel BPEL geschrieben sein. Generell werden fiir die

23

2. Grundlagen

Provisionierung die Implementierungs-Artefakte jedes Knoten, beginnend mit dem in der un-
tersten Ebene aufgerufen. Mit der untersten Ebene werden alle Knoten im Topologiegraphen
bezeichnet, von denen keine Kanten ausgehen. Im Beispiel in Abbildung 2.2 entspricht das
den beiden virtuellen Machinen. Im néchsten Schritt werden alle Node Templates behandelt,
zu denen Relationship Templates von den eben behandelten Node Templates ausgehen. Die
Implementierungs-Artefakte dieser Node Templates werden aufgerufen, um die damit asso-
ziierten Anwendungen zu provisionieren. Dieser Prozess setzt sich sukzessive fort, bis die
behandelten Node Templates keine ausgehenden Relationship Templates mehr besitzen.

In Abschnitt 4.4.2 ,Schritt 2.2: Anwendung provisionieren” wird das Ausfithren des Provisio-
nierungsplanes genauer beschrieben.

Die Alternative zu einer sogenannte imperativen Provisionierung mit einem Provisionie-
rungsplan ist die deklarative Provisionierung. Bei dieser wird das Topology Template wahrend
der Provisionierung interpretiert und die Implementierungs-Artefakte entsprechend aufge-
rufen. Breitenbiicher et al. beschreiben in ,,Combining Declarative and Imperative Cloud
Application Provisioning based on TOSCA® [BBK+14] eine Moglichkeit aus der Beschreibung
der Topologie einer Anwendung einen Provisionierungsplan zu generieren, womit die beiden
Provisionierungsansitze verbunden werden.

2.3.3. Cloud Service Archive (CSAR)

Alle notigen Komponenten, um eine TOSCA Cloud-Anwendung aufsetzen zu konnen werden
in einer Cloud Service Archive-Datei, einer ZIP-Datei®, abgelegt. Dazu gehért das Service
Template, sowie alle verwendeten TOSCA Type Definitionen, Artefakte und Plane. Eine CSAR-
Datei muss mindestens die beiden Ordner ,TOSCA-Metadata®“ und ,Definitions® beinhalten
[OASD]. Dem Ersteller der Datei ist es freigestellt beliebige zusétzliche Ordner anzulegen. Der
Ordner ,TOSCA-Metadata“ muss die Datei ,TOSCA.meta“ enthalten, in welcher der restliche
Inhalt der CSAR-Datei beschrieben wird. Der ,Definitions“-Ordner enthilt alle verwendeten
TOSCA-Definitionen. Diese konnen in einer oder mehreren Dateien enthalten sein, welche
alle die Endung ,,.tosca” haben miissen. Eine dieser Dateien muss ein Definitions-Element
mit einem TOSCA Service Template enthalten, welches die Struktur der Cloud-Anwendung
beschreibt. Weitere Ordner konnen zum Beispiel fiir den Provisionierungsplan oder fir
Artefakte angelegt werden.

Shttps://pkware.cachefly.net/webdocs/casestudies/ APPNOTE.TXT

24

2.3. OASIS TOSCA

2.3.4. TOSCA Laufzeitumgebung

In dem Dokument , Tosca Primer” [OASa] wird auch eine sogenannte TOSCA Laufzeitum-
gebung beschrieben. Die TOSCA Laufzeitumgebung kann CSAR-Dateien und die in ihr
enthaltenen TOSCA Definitionen verstehen und die enthaltenen Dateien verarbeiten, um
Anwendungen automatisch zu provisionieren.

Die Architektur und die Funktionsweise der TOSCA Laufzeitumgebung wird in Kapitel 4.1.2
,4.1.2° genauer erlautert.

25

3. Verwandte Arbeiten

Die fiir diese Bachelorarbeit relevanten Arbeiten werden in diesem Kapitel beschrieben.

Die verwandte Arbeit, aus der diese Bachelorarbeit hervorgegangen ist, ist ,FlexMash -
Flexible Data Mashups Based on Pattern-Based Model Transformation® von Hirmer et. al
[HM16]. In der Arbeit wird ein Konzept beschrieben, bei welchem Data Mashup-Modelle auf
verschiedene Ausfithrungskomponenten abgebildet werden. Die Wahl der Ausfithrungskom-
ponenten hangt dabei von den Bediirfnissen des jeweiligen Benutzers ab. Die Arbeit liefert
das Verstandnis von dynamischen Data Mashups fiir diese Bachelorarbeit.

Alle weiteren verwandten Arbeiten werden in die beiden Kapitel 3.1 ,OpenTOSCA® und 3.2
JAlternativen zu TOSCA® unterteilt.

3.1. OpenTOSCA

OpenTOSCA' ist ein Projekt der Universitét Stuttgart, in dessen Rahmen verschiedene mit
dieser Arbeit verwandte Arbeiten verdffentlicht wurden, die in diesem Abschnitt vorgestellt
werden.

Binz et al. [BBH+13] beschreiben in ,,OpenTOSCA - A Runtime for TOSCA-based Cloud
Applications” eine TOSCA Laufzeitumgebung namens OpenTOSCA. Sie unterstiitzt eine
imperative und planbasierte Provisionierung von Anwendungen. Als Grundlage fiir die-
se werden die im Zuge von OASIS TOSCA definierten CSAR-Dateien unterstiitzt. In der
Implementierung dieser Bachelorarbeit wird OpenTOSCA als TOSCA-Laufzeitumgebung
verwendet. Zukiinftig soll OpenTOSCA noch um eine deklarative Provisionierung erweitert
werden. Im Rahmen von OpenTOSCA wurden auch die beiden Tools Winery und Vinothek
entwickelt, deren Veroffentlichungen im Folgenden vorgestellt werden.

In ,Vino4TOSCA: A Visual Notation for Application Topologies based on TOSCA® [BBK+12]
wird eine graphische Notation vorgestellt, die sich fiir die Modellierung von TOSCA Topology
Templates eignet.

Thttp://www.iaas.uni-stuttgart.de/OpenTOSCA/

27

3. Verwandte Arbeiten

Kopp et al. [KBBL13] beschreiben ein auf HTMLS5 basierendes Visualisierungstool namens
Winery, um Anwendungstopologien zu modellieren. Um die Topologien intern zu speichern,
zu importieren und zu exportieren verwendet es TOSCA. Neben dem Erstellen von TOSCA
Topology Templates mit einer einfach zu verwendenden, graphischen Benutzeroberflache
und einer graphischen Notation, bietet es die Moglichkeit TOSCA Typen zu definieren.
Die graphische Notation zur Modellierung der Topologien wird in [BBK+12] beschrieben.
Verschiedene Funktionen von Winery werden in der Implementierung zu dieser Bachelorar-
beit verwendet. Dazu gehort die Funktion Topologien zu vervollstdndigen, die von Hirmer
et al. [HBBL14] beschrieben wird, und ein Plangenerator, der von Breitenbiicher et al. in
»Combining Declarative and Imperative Cloud Application Provisioning based on TOSCA®
[BBK+14] ausgearbeitet wurde. Winery wird inzwischen als Open Source Projekt der Eclipse
Software Foundation? gefiihrt.

Der Artikel ,Vinothek - A Self-Service Portal for TOSCA® [BBKL14] handelt von einem
Selbstbedienungsportal fiir TOSCA-basierte Cloud Anwendungen, welches auf Java Server
Pages und HTMLS5 basiert. Ziel dabei ist es, Benutzern eine bedienungsfreundliche graphi-
sche Benutzeroberflache zu bieten, um Anwendungen in der Cloud zu provisionieren. Im
Gegensatz zur Vinothek wird bei dieser Bachelorarbeit ein Konzept erarbeitet, bei dem der
gesamte Provisionierungsvorgang sowie die Ausfithrung der Anwendung vor dem Benutzer
versteckt wird.

Alle Arbeiten zu OpenTOSCA liefern eine Grundlage fiir die Problemstellung dieser Ar-
beit, deren Konzepte sind jedoch nicht suffizient fiir eine vollautomatisierte Provisionie-
rung von Data Mashups. Um eine neue Anwendungstopologie zu provisionieren setzen sie
die Modellierung dieser mit TOSCA oder mithilfe des Tools Winery voraus. Dafiir bend-
tigt es jedoch Kenntnisse tiber die genauen Ausfithrungskomponenten, welche von einem
Domainen-Experten nicht erwartet werden konnen. Diese Arbeit 16st das Problem durch
einen vollautomatisierten Ansatz zur Provisionierung,.

3.2. Alternativen zu TOSCA

Aufler TOSCA existieren noch andere Standards, um Anwendungen automatisiert in einer
Cloud-Umgebung zu provisionieren.

Speziell fiir die Cloud-Umgebung Amazon Web Services® (AWS) existiert CloudFormation*.
Mit CloudFormation kénnen Vorlagen zur Beschreibung von AWS-Ressourcen erstellt werden,
um diese dann automatisch zu provisionieren und bereitzustellen.

*https://www.eclipse.org/proposals/soa.winery/
Shttps://aws.amazon.com/de/
*https://aws.amazon.com/de/cloudformation/

28

3.2. Alternativen zu TOSCA

Das Aquivalent zu CloudFormation fiir die Cloud-Umgebung OpenStack® ist Heat®. Mit Heat
koénnen in Form von sogennanten Heat Orchestration Templates Topologien von Cloud-
Anwendungen definiert werden.

Bei CloudFormation und Heat handelt es sich um deklarative Systeme. Das heifit, dass nur
solche Anwendungen provisioniert werden konnen, die von der jeweiligen Laufzeit- oder
Cloud-Umgebung erkannt werden. Aus diesem Grund konzentriert sich diese Arbeit auf
OASIS TOSCA anstelle von Heat oder CloudFormation. Bei TOSCA kénnen nicht nur vor-
gefertigte Templates verwendet, sondern Node Types fiir beliebige Anwendungen erstellt
werden. Zusammen mit einer imperativen Provisionierung anhand eines Provisionierungs-
planes macht dies TOSCA vollstindig generisch.

Mit Cloudify” wurde ebenfalls eine TOSCA Laufzeitumgebung implementiert. Fiir diese
Arbeit wurde jedoch OpenTOSCA aufgrund dessen Toolsupports verwendet. Dazu gehéren
zum Beispiel Winery und der Plan Generator [BBK+14]. Zudem wurde OpenTOSCA an der
Universitat Stuttgart entwickelt, was eine grofie Unterstiitzung fiir diese Arbeit gewahrleis-
tet.

Cloud Foundry?® ist ein Open Source PaaS-System, welches Container fiir Software in verschie-
denen Sprachen wie zum Beispiel Java, Ruby und Python bietet. Eine weitere PaaS-Software
ist OpenShift’. In dieser Bachelorarbeit wurde TOSCA anstelle von PaaS-Systemen verwen-
det, da mit TOSCA generisch jede Art von Software provisioniert werden kann, und nicht
nur vorgefertigte Container verwendet werden konnen.

Eine weitere Moglichkeit Anwendungen in einer Cloud automatisiert zu verwalten bieten
die Konfigurationswerkzeuge Puppet'® und Chef ''. Bei Puppet muss eine Maschine, der so-
genannte Puppet-Master, iiber sogenannte Puppet-Manifeste deklarativ konfiguriert werden.
In diesen Manifesten kann der gewollte Zustand eines Systems beschrieben werden, wie zum
Beispiel welche Anwendungen darauf installiert sein sollen. Alle mit dem Puppet-Master
verbundenen und entsprechend eingerichtete Maschinen passen sich dann diesem an. Da
es sich dabei um ein deklaratives System handelt, konnen nur Anwendungen provisioniert
werden, die dem Ausfithrungssystem von Puppet bekannt sind. Bei Chef miissen sogenannte
Rezepte geschrieben werden anhand welcher, dhnlich wie bei Puppet, ausgewahlte Rechner
konfiguriert werden. Chef besitzt die selben Nachteile wie Puppet und dient deswegen auch
nicht fiir die Losung der Problemstellung dieser Arbeit.

Shttps://www.openstack.org/
Shttps://wiki.openstack.org/wiki/Heat
"http://getcloudify.org/
8https://www.cloudfoundry.org/
*https://www.openshift.com/
https://puppetlabs.com/
Uhttps://www.chef.io/chef/

29

4. Konzept

Um beliebige Mashups automatisiert auf einer Cloud-Umgebung zu provisionieren und
anschlieffend auszufithren wurde ein Konzept erarbeitet. Dieses stellt den Kern dieser Ba-
chelarbeit dar und wird in diesem Kapitel erldutert. Dieses Kapitel unterteilt sich in die
Abschnitte 4.1 Architektur, 4.2 Methode/Ubersicht, 4.3 CSAR erstellen, 4.4 CSAR deployen
und Anwendung provisionieren und 4.5 Mashup ausfithren. 4.1 gibt eine Ubersicht tiber
die Architektur des Systems und stellt die verwendeten Komponenten vor. 4.2 zeigt die drei
Schritte, in welche die Methode unterteilt wurden. 4.3, 4.4 und 4.5 entsprechen jeweils einem
dieser drei Schritte.

4.1. Architektur

Die Architektur des gesamten Systems besteht aus sechs Komponenten. In diesem Kapitel
wird in Abschnitt 4.1.1 zunéchst eine Ubersicht iiber die Architektur vorgestellt. In Abschnitt
4.1.2 werden dann die einzelnen Komponenten der Architektur genauer erldutert.

4.1.1. Ubersicht

Abbildung 4.1 zeigt eine schematische Ubersicht iiber alle involvierten Komponenten. Bei den
beiden Komponenten Node Type Repository und Artifact Repository handelt es sich um zwei
Datenbanken, auf welche die beiden Komponenten Topology Completer und TOSCA4Mashups
lesend zugreifen. Topology Completer ist eine Komponente zur Vervollstindigung von
TOSCA-Topologien. Die TOSCA4Mashups-Komponente generiert die CSAR-Datei mithilfe
der anderen Komponenten und tibergibt diese an die TOSCA Runtime, bei der es sich um
eine TOSCA Laufzeitumgebung handelt. Die Kommunikation zwischen TOSCA4Mashups
und den beiden Komponenten Topology Completer und Plan Generator lauft nach dem
Anfrage-Antwort-Prinzip, wobei TOSCA4Mashups als der Anfragende fungiert. Bei Plan
Generator handelt es sich um einen Plangenerator im Sinne von Breitenbiicher et al. [BBK+14].
TOSCA4Mashups kommuniziert mit der TOSCA Laufzeitumgebung auf nur einem Weg, da
lediglich die fertige CSAR-Datei zur Provisionierung tibergeben wird.

31

4. Konzept

TOSCA Runtime

Topology Completer TOSCA4Mashups Plan Generator

-

Node Type

Artifact

Repository Repository

Abbildung 4.1.: Architektur des gesamten Systems

4.1.2. Komponenten

Im Folgenden werden die einzelnen Komponenten der Architektur genauer erlautert.

TOSCA4Mashups

Diese Komponente stellt die Schnittstelle zwischen allen anderen Komponenten dar. Au-
ler dem eigentlichen Zusammenstellen der CSAR-Datei ruft sie den Topology Completer
auf, um die Topologie vervollstindigen zu lassen, und den Plan Genererator, um den Plan
erstellen zu lassen. Zuletzt tibergibt TOSCA4Mashups die fertige CSAR-Datei der TOSCA
Laufzeitumgebung, um die Anwendung automatisiert provisionieren zu lassen. Abbildung
4.2 zeigt die innere Struktur der TOSCA4Mashups Komponente. Der TOSCA Runtime Adap-
ter ibernimmt die Kommunikation mit der jeweiligen TOSCA Laufzeitumgebung, der Plan
Generator Adapter die mit dem Plan Generator, der Topology Completer Adapter die mit dem
Topology Completer. Um auf die beiden Repositories fiir die Node Types und die Artefakte
zuzugreifen besteht der Repository Adapter. Der Sevice Generator ist in der Lage mit Hilfe
des Repository Adapters und der Topology Completer Adapters ein vollstaindiges TOSCA

32

4 1. Architektur

TOSCA4Mashups
Mashup Plan CSAR Generator Service Generator
Deployer
TOSCA Runtime Plan Generator Topology Completer .
Adapter Adapter Adapter Repository Adapter

Abbildung 4.2.: Architektur der TOSCA4Mashups-Komponente

Service Template zu erstellen. Der CSAR-Generator iibernimmt das Zusammenfiigen aller
Artefakte, der TOSCA Definitionen und des Provisionierungsplanes zu einer vollstandigen,
selbst-enthaltenen CSAR-Datei. Der Mashup Plan Deployer ist eine optionale Komponente,
was in den Kapiteln 4.3.1 und 4.5.1 genauer erlautert wird. Dieser ist in der Lage einen
ausfithrbaren Mashup-Plan in eine passende Ausfithrungsumgebung zu deployen.

TOSCA Laufzeitumgebung

Die TOSCA Laufzeitumgebung fiihrt die eigentliche Provisionierung der Anwendung aus.
Abbildung 4.3 zeigt ein reduziertes Modell einer TOSCA Laufzeitumgebung, das jedoch alle
fiir diese Anwendung nétigen Komponenten enthalt. Dabei wurde auf die Moglichkeit einer
deklarativen Provisionierung verzichtet und lediglich die Komponenten fiir eine imperative
Provisionierung miteinbezogen. Dies ist ausreichend, da der Plangenerator generisch fiir jede
Topologie einen Provisionierungsplan generieren kann. Der sogenannte CSAR Processor fithrt
das Entpacken der CSAR-Datei durch. Der Definition Manager verwaltet die aus der CSAR
entnommenen TOSCA Definitionen, der Artifact Manager die entnommenen Artefakte. Die
Process Engine ist in der Lage Provisionierungspldane durchzufithren und wird vom Instance
Manager angestofien. Davor deployt der Deploy Manager den Provisionierungsplan in der
Process Engine und alle Implementierungs-Artefakte in der Umgebung an entsprechender
Stelle.

33

4. Konzept

TOSCA Laufzeitumgebung

Process Engine

TOSCA Container

CSAR Processor

Definition . Instance
Artifact Manager
Manager & Deploy Manager Manager

Instance DB

Artifact Store

Model

Repository

Abbildung 4.3.: Architektur einer TOSCA Laufzeitumgebung [OASa]

Topology Completer

Der Topology Completer generiert aus einem Topology Template, das nur anwendungs-
spezifische Node Templates enthilt, ein vollstindige Topologie. Dafiir verwendet er die
Node Types aus dem Node Type Repository. Grundlage fiir den Topology Completer bietet
die Arbeit von Hirmer et al. [HM16]. Die Methode, die angewendet wird, um eine Topo-
logie zu vervollstandigen, wird in Abschnitt 4.3.1 ,Topologie vervollstindigen® genauer
beschrieben.

Plan Generator

Der Plan Generator ist in der Lage aus einem TOSCA Topology Template einen Provisionie-
rungsplan zu generieren. Der Plan Generator ermoglicht eine imperative Provisionierung auf
Grundlage der deklarativen Beschreibung einer Topologie. In dem Artikel ,,Combining Decla-
rative and Imperative Cloud Application Provisioning based on TOSCA® [BBK+14] wird ein
Konzept fiir einen Plangenerator vorgestellt, auf welchem die Plan Generator-Komponente
basiert. Dieses wird in Abschnitt 4.3.3 ,Schritt 1.3: Plan generieren® erlautert.

34

4.2. Methode zur automatischen Provisionierung von Data Mashups

CSAR deployen Mashup

ausfuhren

®

CSAR erstellen und Anwendung
provisionieren

Abbildung 4.4.: Uberblick der Methode

Node Type Repository

Das Node Type Repository muss alle Node Types beinhalten, welche fiir die Topologie
bendtigt werden. Die TOSCA4Mashups-Komponente sucht hier nach einem geeigneten
Node Type fiir den Mashup-Plan und der Topology Completer nach allen weiteren Node
Types, welche fiir die Topologie benétigt werden. Aulerdem miissen alle anderen benétigten
TOSCA-Komponenten enthalten sein, wie die Relationship Types, Artifact Types und Node
Type Implementations.

Artifact Repository

Im Artifact Repository sind die Deployment- und Implementierungs-Artefakte fiir alle Node
Types im Node Type Repository abgelegt. Die TOSCA4Mashups-Komponente greift darauf
zu, um sie zu der CSAR-Datei hinzuzufiigen.

4.2. Methode zur automatischen Provisionierung von
Data Mashups

Die Methode um eine Data Mashup-Anwendung in einer Cloud-Umgebung zu provisionieren
und auszufiithren ist in drei Schritte aufgeteilt. Im ersten Schritt wird eine CSAR Datei erstellt,
im zweiten Schritt wird diese in der Cloud provisioniert und im dritten Schritt wird das
Mashup ausgefiithrt. Abbildung 4.4 zeigt die drei grundlegenden Schritte der Methode.

4.3. Schritt 1: CSAR erstellen

Der erste notwendige Schritt besteht darin eine vollstandige CSAR-Datei zu erstellen. Diese
muss alle notwendigen Dateien enthalten, die fiir die Provisionierung notwendig sind. Die
Eingabe von TOSCA4Mashups besteht aus zwei Teilen:

35

4. Konzept

Topologie Artefakte
erstellen einfligen

&) &) &)

Abbildung 4.5.: Methode, um das Cloud Service Archive zu erstellen

Plan generieren CSAR erstellen

1. Eine Liste mit den Bezeichnern der fiir die Ausfithrung des Mashups benétigten Aus-
fithrungskomponenten.

2. Ein ausfithrbarer Mashup-Plan.

Auf Basis der Bezeichner der Ausfithrungskomponenten muss eine vollstandige CSAR-Datei
generiert werden, die auf8er allen bendtigten TOSCA-Beschreibungen und Artefakten auch
den Mashup-Plan enthélt. Um eine CSAR-Datei auf dieser Grundlage zu generieren wurden
vier Teilschritte ausgearbeitet. Abbildung 4.5 zeigt eine schematische Ubersicht iiber diese
vier Schritte. Die folgenden Abschnitte erlautern jeweils einen der vier Schritte.

4.3.1. Schritt 1.1: Topologie erstellen

Anhand der Ausfihrungskomponenten muss eine vollstindige TOSCA-Topologie erstellt
werden. Als Grundlage dafiir dienen die Node Types aus dem Node Type Repository. Die
Methode, um eine Topologie automatisiert zu generieren wurde in drei Schritte aufgeteilt:

1. Passende Node Types suchen und instanziieren
2. Topologie vervollstandigen
3. Mashup-Plan Deployment innerhalb der Topologie

Diese werden im Folgenden ausfiihrlich beschrieben. Auf den letzten Schritt kann auch
verzichtet werden, indem der Mashup-Plan durch die TOSCA4Mashups-Anwendung nach
der Provisionierung deployt wird, anstatt wahrend dem Provisionierungsvorgang.

Passende Node Types suchen und instanziieren

Fiir die zu provisionierenden Anwendungskomponenten muss nun jeweils ein zugehoriger
Node Type aus dem Node Type Repository ausgesucht werden. Hierfiir miissen die Node
Types entweder den selben Namen besitzen wie die moglichen Anwendungskomponenten
auf oberster Ebene, oder es muss eine injektive Abbildung zwischen beiden Namensraumen
bestehen. Eine weitere Moglichkeit wire es semantisch dquivalente Node Types zu suchen.
Die gefundenen Node Types miissen als Node Templates instanziiert und in ein Topology
Template eingefiigt werden. Fir die Vervollstaindigung der Topologie ist es notwendig, dass

36

4.3. Schritt 1: CSAR erstellen

die Requirements aus den zu instanziierenden Node Types entnommen und in die Node
Templates eingefiigt werden.

Topologie vervollstandigen

Die Vervollstandigung der Topologie wird durch die Komponente Topology Completer durch-
gefithrt. Dafiir iibergibt TOSCA4Mashups dem Topology Completer ein TOSCA Definitions-
Element, welches ein Topology Template mit den anwendungsspezifischen Node Templates
enthilt. Um eine Topologie zu vervollstandigen wird fiir jedes Requirement in jedem To-
pology Template nach einem Node Type mit einer Capability gesucht, die das jeweilige
Requirement erfiillt. Der Node Type wird dann zu einem Node Template instanziiert und in
die Topologie eingefiigt, wobei hier wieder die Requirements aus den Node Types iibernom-
men werden. Die beiden Node Templates werden durch ein Relationship Template verbunden
und das erfiillte Requirement wird geloscht. Dadurch kann die Topologie sukzessive, durch
das rekursive Verfahren, vervollstandigt werden, bis keine Requirements mehr vorhanden
sind. Hirmer et al. [HBBL14] zeigen eine Methode, um aus unvollstandigen Topology Tem-
plates vollstandige zu generieren. Das von Hirmer et al. vorgestellte Konzept wird durch
diese Arbeit insofern erweitert, als dass aus der vollstindigen Topologie im Verlauf des
hier vorgestellten Konzeptes ein gesamtes Service Template mit entsprechenden Artefakten
generiert wird. Des Weiteren wird aus diesem Service Template eine vollstandige CSAR-Datei
generiert.

Mashup-Plan Deployment innerhalb der Topologie

Zusétzlich den benétigten Anwendungskomponenten muss der ausfithrbare Mashup-Plan
deployt werden. Dies kann nur geschehen nachdem alle Anwendungskomponenten pro-
visioniert wurden. Eine Moglichkeit besteht darin, den Mashup-Plan ebenfalls durch ein
Deployment Artifact zu modellieren. Ist dies der Fall, wird in Schritt 4.3.1 ,Passende Node
Types suchen und instanziieren® nicht nach passenden Node Types fiir die Ausfithrungs-
komponenten, sondern nach dem Node Type fiir den entsprechenden Mashup-Plan gesucht.
Der Plan selbst kann als Deployment Artifact in einer Datei in der CSAR liegen und wird
im Service Template durch ein Artifact Template repréasentiert. Eine andere Moglichkeit
wire es, den Mashup-Plan in einer externen Datenbank abzulegen. Fiir jeden Mashup Plan
Node Type besteht zusatzlich ein Implementation Artifact. Dieses muss fiir jede Art von
Ausfithrungskomponente angepasst werden. Es deployt den in dem Deployment Artifact
abgelegten Mashup Plan in der jeweiligen Ausfithrungskomponente.

Eine alternative Moglichkeit den Mashup-Plan zu deployen wird in Abschnitt 4.5.1 beschrie-
ben. Diese besteht darin, den Mashup-Plan nach der Provisionierung der Anwendung in der
Cloud durch TOSCA4Mashups zu deployen.

37

4. Konzept

4.3.2. Schritt 1.2: Artefakte einfligen

Nachdem die Topologie vervollstandigt wurde kénnen die entsprechenden Implementierungs-
und Deployment-Artefakte angefiigt werden. Diese konnen aus dem Artifact Repository
entnommen und in die CSAR an entsprechender Stelle eingefiigt werden. In den Artifact
Templates im Service Template wird durch das TOSCA-Element ,ArtifactReference” der Pfad
fiir das jeweilige Artefakt angegeben.

4.3.3. Schritt 1.3: Plan generieren

Die vollstandige Topologie kann nun an den Plan Generator iibergeben werden, welcher
in der Lage ist anhand eines Service Templates einen ausfithrbaren Provisionierungsplan
zu erstellen. Breitenbiicher et al. [BBK+14] beschreiben einen Algorithmus, um aus einer
TOSCA-Topologie einen ausfithrbaren Provisionierungsplan zu generieren. Dabei wird aus
dem Topology Template ein gerichteter Provisionierungsgraph, und aus diesem ein Provi-
sionierungsplanskelett generiert. Anhand des Skelettes und der Informationen des Service
Teplates kann nun ein Provisionierungsplan in einer beliebigen Ausfithrungssprache auto-
matisiert generiert werden.

4.3.4. Schritt 1.4: CSAR erstellen

Alle von der TOSCA Ausfithrungsumgebung fiir die Provisionierung benétigten Komponen-
ten miissen in einer CSAR-Datei verpackt werden. Dazu gehort das Service Template, der
Provisionierungsplan, alle Typdefinitionen, sowie alle benotigten Artefakte aus dem Artifact
Repository. Diese werden alle in ein Dateisystem gelegt, das dem in Kapitel 2.3.3 ,,Cloud
Service Archive (CSAR)" entspricht. Das Dateisystem wird dann zu einer ZIP-Datei verpackt,
die mit der Endung ,..csar” versehen wird.

4.4. Schritt 2: CSAR deployen und Anwendung
provisionieren

in Abschnitt 4.3 wurde gezeigt wie eine CSAR-Datei fiir jede Art von Mashup automatisiert
erstellt werden kann. Die TOSCA Laufzeitumgebung fithrt nun die eigentliche Provisionie-
rung des Data Mashups durch. Dieses Vorgehen kann in zwei Schritte eingeteilt werden,
welche im Folgenden erlautert werden. Abbildung 4.6 zeigt die beiden Teilschritte, um die
Anwendung in der Cloud zu provisionieren.

38

4.4. Schritt 2: CSAR deployen und Anwendung provisionieren

Anwendung
provisionieren

e @3

Abbildung 4.6.: Methode, um die Anwendung zu provisionieren

CSAR deployen

4.4.1. Schritt 2.1: CSAR deployen

Die vollstandige CSAR-Datei wird an die TOSCA Laufzeitumgebung iibergeben. Hier wird sie
entpackt und der Provisionierungsplan sowie die Artefakte werden an entsprechenden Stellen
abgelegt. Der CSAR Processor entnimmt alle TOSCA Definitionen aus der CSAR-Datei und
tibergibt diese dem Definition Manager. Der Definition Manager speichert alle Definitionen
im Model Repository, um spatere Zugriffe darauf zu gewiahrleisten. Des Weiteren entnimmt
der CSAR Processor alle Implementierungs- und Deployment-Artefakte aus der CSAR-Datei
und tibergibt sie dem Artifact Manager. Dieser speichert alle Artefakte im Artifact Store.
Daraufhin deployt der Deploy Manager alle Implementierungs-Artefakte an der richtigen
Stelle in der Umgebung, sowie den Provisionierungsplan in der Process Engine. Der Instance
Manager fiihrt die Erstellung von Instanzen der Cloud-Anwendung durch, indem er den
Process Manager aufruft, um den Provisionierungsplan auszufiihren.

4.4.2. Schritt 2.2: Anwendung provisionieren

Um die virtuelle Maschine aufzusetzen und alle Anwendungskomponenten zu installie-
ren wird der Provisionierungsplan ausgefiihrt. Das fiithrt die Process Engine der TOSCA
Laufzeitumgebung durch, indem sie die Implementierungs-Artefakte in entsprechender Rei-
henfolge und mit entsprechenden Eingaben ausfithrt. Der Deploy Manager der TOSCA
Laufzeitumgebung iibergibt den Provisionierungsplan der Process Engine und deployt al-
le Implementierungs-Artefakte an entsprechender Stelle in der Umgebung. Der Instance
Manager stoft die Process Engine an, damit diese den Provisionierungsplan ausfiihrt. Der
Plan muss dabei mit den Node Templates beginnen, von denen keine Relationship Templates
ausgehen, da diese in der Topologie auf unterster Ebene liegen. Dies ist notwendig, da jede
Anwendung nur provisioniert werden kann, wenn die in der Topologie darunter liegende
Anwendung bereits provisioniert wurde. Mehrere Stacks einer Topologie konnen parallel
provisioniert werden, solange sie nicht voneinander abhangen. Abbildung 4.7 zeigt auf der
linken Seite eine schematische Darstellung des Provisionierungsplanes in BPMN-Notation
zu der Topologie auf der rechten Seite. Bei diesem Beispiel konnen die beiden Anwendungs-
Stacks parallel provisioniert werden, was sich im Provisionierungsplan widerspiegelt. Der
linke Strang des Planes provisioniert dabei den linken Anwendungs-Stack der Topologie, der
rechte den rechten Anwendungs-Stack. Es werden zuerst die beiden virtuellen Maschinen

39

4. Konzept

R e N e N e
t to
Deploy Create connec
Web Shop Database Web Shop MySQL Database
- \ J N J N
hosted on hosted on
TR e e N e
Install Install
Apache MysQL Apache Web Server MySQL DBMS
Web Server DBMS)
hosted on hosted on
RTTR - N
Install Linux Install Linux
Operating Operating Linux Operating System Linux Operating System
System L System) L) L
hosted on hosted on
R e N e N e
Provision Provision
VM VM OpenStack VM OpenStack VM
— \ J N J N

Abbildung 4.7.: Anwendung provisionieren. Links der Provisionierungsplan, rechts die
Topologie.

in der Cloud aufgesetzt. Im Anschluss wird auf jeder Maschine ein Linux Betriebssystem
installiert. Diese beiden Schritte konnen je nach Cloud-Umgebung in einem Schritt im Plan
geschehen. Nun wird auf dem einen Betriebssystem ein Apache Web Server und auf dem
anderen eine MySQL-Datenbank installiert. Auf dem Webserver wird ein Web Shop aufge-
setzt, in dem Datenbanksystem eine Datenbank fiir den Webserver angelegt. Die Verbindung
mit der Beschriftung ,connect to“ zwischen dem Web Shop und der MySQL Database spie-
gelt sich im Plan nicht wider, da sie durch die Web Shop-Anwendung durchgefithrt wird.
Der Vorgang der Provisionierung wird von einer typischen TOSCA Laufzeitumgebung, ent-
sprechend dem TOSCA Primer [OASa], nicht automatisch ausgefiithrt. In diesem Fall muss
TOSCA4Mashups, nachdem die CSAR-Datei in der TOSCA Laufzeitumgebung deployt wurde,
den Provisionierungsprozess anstofien.

40

4.5. Schritt 3: Mashup ausflihren

Mashup-Plan Mashup-Plan
deployen ausfihren

6D &)

Abbildung 4.8.: Mashup ausfithren

4.5. Schritt 3: Mashup ausfiuhren

Bis zu diesem Zeitpunkt wurden alle Anwendungskomponenten in eine Cloud-Umgebung
provisioniert, die notig sind, um den Mashup auszufiihren. Eventuell wurde auch schon der
Mashup-Plan entsprechend deployt. Falls nicht, muss dies noch geschehen, auflerdem muss
dieser noch ausgefiithrt werden. Dafiir wurden zwei methodische Schritte ausgearbeitet, die
in diesem Abschnitt erlautert werden. Abbildung 4.8 zeigt zwei Schritte die notig sind, um
den Mashup auszufithren. Auf den Schritt ,Mashup-Plan deployen® kann verzichtet werden
wenn der Schritt ,Mashup-Plan Deployment innerhalb der Topologie®, der in Kapitel 4.3.1
erlautert wird, angewendet wurde.

4.5.1. Schritt 3.1: Mashup-Plan Deployment auBerhalb der Topologie

Eine alternative Moglichkeit dazu den Mashup-Plan in die Topologie zu integrieren ist es
diesen nach Provisionierung der Anwendungskomponenten ohne Verwendung der TOSCA-
Laufzeitumgebung zu deployen. Dafiir existiert in der Architektur von TOSCA4Mashups in
Abbildung 4.2 der Mashup Plan Deployer. Dieser muss jedoch fiir jede Art von zu provisionie-
renden Anwendungen um eine API-Anbindung erweitert werden. Des Weiteren miissen die
jeweiligen Mashup-Komponenten iiber eine API oder eine Moglichkeit verfiigen Mashups in
Form von Dateien tiber das Dateisystem zu deployen.

Da das Erweitern von TOSCA4Mashups einen grofieren Aufwand darstellt, als die fir das
Deployen des Mashup-Planes notigen Node Types mit zugehdrigem Implementation Artifact
zu implementieren, wird die Methode in Abschnitt 4.3.1 empfohlen.

4.5.2. Schritt 3.2: Mashup-Plan ausfihren

Der TOSCA-Standard enthalt keine Moglichkeit die Ausfithrung von provisionierten An-
wendungen zu modellieren. Die Ausfithrung des Mashups kann durch zwei Moglichkeiten
durchgefiihrt werden. Entweder wird sie durch ein weiteres Node Template im Topology
Template modelliert und durch ein entsprechendes Implementierungs-Artefakt durchge-
fihrt, oder sie wird nach der Provisionierung durch die TOSCA4Mashups-Komponente

41

4. Konzept

durchgefithrt. Hierfiir misste jedoch wieder TOSCA4Mashups fiir jede Art von Mashup
erweitert werden. Anstatt ein eigenes Node Template und Implementierungs-Artefakt fiir
das Anstoflen der Ausfithrung zu implementieren, konnte dies auch das Implementation
Artifact des Mashup-Planes tibernehmen. Dieses konnte einfach nach dem Deployen des
Mashup-Planes dessen Ausfithrung starten.

Da dies den geringsten Aufwand hinsichtlich Erweiterbarkeit darstellt, wird diese Moglichkeit
der Mashup-Ausfithrung empfohlen.

Der letzte Schritt des Mashup-Plans sollte es sein dem Benutzer das Ergebnis zuriickzufiithren.
Dies kann einfach dadurch geschehen, dass das Ergebnis in eine Datenbank geschrieben
wird oder dem Benutzer tiber HTTP visualisiert wird, indem es einem Webserver tibergeben
wird.

42

5. Implementierung

Um die Funktionalitit des Konzeptes in Kapitel 4 zu zeigen wurde ein Prototyp implementiert.
Als Grundlage fiir die Implementierung dient der Anwendungsfall aus Kapitel 1.1. Abbil-
dung 5.1 zeigt die Topologie, die fiir einen Node-RED Workflow provisioniert werden muss.
Der Knoten ,NodeREDPlan® modelliert dabei das Topology Template fiir einen ausfiithrba-
ren Mashup-Plan fiir Node-RED. Dieser wird in JavaScript Object Notation (JSON) an die
TOSCA4Mashups-Komponente iibergeben, womit der Ablauf der Implementierung beginnt.
Das resultierende TOSCA Service Template findet sich in Anhang A in den Listings A.1, A.2,
A3, A4, A5und A6.

[NodeREDPIlan

NodeRED

|
|
o
|
|

Ubuntu

OpenStackVM

E
=
|
(e

Abbildung 5.1.: Beispieltopologie fiir Node-RED

43

5. Implementierung

TOSCA4Mashups
CSAR Generator OpenTOSCA . OpenTOSCA |
Adapter : |
Service Generator Winery Adapter Winery

Selbst Implementierte Komponenten

————— Externe Implementierungen

Abbildung 5.2.: Entwurf TOSCA4Mashups

Um die Implementierung zu erldutern wird zunéchst in Abschnitt 5.1 ein auf den Anwen-
dungsfall und die ausgewéhlten Komponenten zugeschnittener Entwurf gezeigt. In Abschnitt
5.2 wird die Umsetzung dieses Entwurfes erklart. Abschnitt 5.3 beschaftigt sich mit Fallen,
welche nicht durch diese Implementierung abgedeckt werden, in Abschnitt 5.4 wird die
gesamte Implementierung bewertet.

5.1. Entwurf

Abbildung 5.2 zeigt einen Uberblick tiber die Architektur der implementierten Anwendung.
TOSCA4Mashups und die darin enthaltenen Komponenten wurden im Zuge dieser Bachel-
orarbeit entworfen und implementiert. Im Folgenden werden die einzelnen Komponenten
genauer erlautert.

5.1.1. OpenTOSCA

Als TOSCA Laufzeitumgebung dient OpenTOSCA, eine Implementierung des Institutes fiir
Architektur von Anwendungssystemen der Universitat Stuttgart. OpenTOSCA enthélt unter
anderem einen Container fiir CSAR-Dateien und eine BPEL Engine fiir die Ausfiihrung des

44

5.1. Entwurf

Provisionierungsplanes. Eine genaue Beschreibung der Architektur von OpenTOSCA findet
sich in [BBH+13].

5.1.2. Winery

Winery ist ein TOSCA Topology Modellierungs-Tool'. Aufler einer graphischen Oberflache
zur Modellierung der Topologien enthélt es ein Node Type Repository, einen Topology
Completer und einen Plan Generator. Alle Komponenten lassen sich auch iiber eine REST API
ansprechen. Der Plan Generator generiert aus einer Topologie einen Provisionierungsplan
in BPEL.

5.1.3. TOSCA4Mashups

Die Komponente TOSCA4Mashups wurde im Zuge dieser Arbeit implementiert. Dafiir
wurden die Programmiersprache Java und verschiedene Bibliotheken fiir HTTP und JSON
verwendet. TOSCA4Mashups ist die Implementierung fiir die gleichnamige Komponente im
Konzept in Kapitel 4.

OpenTOSCA Adapter

Der OpenTOSCA Adapter stellt eine Verbindung mit der OpenTOSCA API her, um die
generierte CSAR-Datei hochzuladen und die Provisionierung anzustofen. Dabei handelt es
sich um eine REST-API die sich iiber HTTP ansprechen lasst.

Winery Adapter

Der Winery Adapter ibernimmt die Kommunikation mit der Winery, die den gréften Anteil
an Kommunikation zwischen den Komponenten einnimmt. Winery bietet ebenfalls die
Moglichkeit eine REST-API iiber HTTP zu bedienen. Dabei werden Metainformationen zu
den in der Winery gespeicherten Definitionen im JSON-Format tibertragen.

Sowohl der Winery Adapter als auch der OpenTOSCA Adapter wurde eingefiihrt, um die
Verbindung zwischen TOSCA4Mashups, OpenTOSCA und Winery zu abstrahieren. Dies hat
den Vorteil, dass bei einem Austausch der TOSCA Laufzeitumgebung lediglich diese beiden
Komponenten neu implementiert werden miissen.

https://projects.eclipse.org/projects/soa.winery

45

5. Implementierung

Service Generator

Das Instanziieren der Node Types und das Zusammenfiigen der Node Templates zu einem
Service Template tibernimmt der Service Generator.

CSAR Generator

Nach der Generierung des Service Templates erstellt der CSAR Generator eine vollstindige
CSAR-Datei.

5.2. Umsetzung

Wie die TOSCA4Mashups-Komponente des Entwurfs umgesetzt und implementiert wurde
wird in diesem Abschnitt erlautert. Zunachst werden die fiir die Implementierung verwende-
ten Technologien erlautert, im Anschluss wird der Ablauf einer automatischen Provisionie-
rung eines Node-RED-basierten Data Mashups dargestellt.

5.2.1. Technologien

Als Programmiersprache fiir die Implementierung von TOSCA4Mashups wurde Java gewéhlt.
Die Kommunikation zwischen TOSCA4Mashups, OpenTOSCA und der Winery funktioniert
mit HTTP, wodurch diese auf unterschiedlichen Maschinen ausgefiihrt werden konnen. So
kann zum Beispiel OpenTOSCA in der Cloud-Umgebung selbst, und Winery mit dem Node
Type Repository auf einer lokalen Machine ausgefithrt werden. OpenTOSCA basiert auf
einem Tomcat-Server, einem Jetty-Server fiir den Container und einer WSO2BPS? Workflow
Engine fir die Ausfithrung der Provisionierungspléne. Als Implementierungs-Artefakte die-
nen zwei WAR-Dateien. Die eine fithrt die Provisionierung einer virtuellen Maschine auf
einer OpenStack-Umgebung aus, die andere ist in der Lage beliebige Skripte auf einem Linux
Betriebssystem auszufithren. Auch diese wurden im Rahmen von OpenTOSCA von der Uni-
versitat Stuttgart entwickelt. Zur Verarbeitung von TOSCA wurden die beiden Bibliotheken
JAXB® und W3C DOM* verwendet. Als Cloud-Umgebung wird fiir die Implementierung
OpenStack verwendet.

*http://wso2.com/products/business-process-server/
Shttps://jaxb.java.net/
*https://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html

46

5.2. Umsetzung

5.2.2. Ablauf

Im Folgenden wird der Ablauf einer Provisionierung beschrieben:
1. Node Types von Winery abfragen:

Fiir jede benétigte Anwendungskomponente wird der entsprechende Node Type von
der Winery benétigt. Dafiir miissen erst die Namen aller Node Types mit ihren zugeho-
rigen Namespaces abgefragt werden. Wird fiir jede benétigte Anwendungskomponente
ein gleichnamiger Node Type gefunden, konnen deren TOSCA-Definitionen von der
Winery abgefragt werden.

2. Node Templates bauen und in Topology Template einfiigen:

Im néchsten Schritt werden alle Node Types zu Node Templates instanziiert. Dafiir wird
fiir jeden benoétigten Node Type ein Node Template-Element erstellt und die Attribute
,1d“ und ,name” entsprechend dem Namen des Node Types gesetzt. Auflerdem miissen
alle Requirements und Capabilities aus dem Node Type entnommen und in das Node
Template eingebaut werden. Die fertigen Node Templates werden in ein Topology
Template eingefiigt.

3. Topologie an Winery schicken und vervollstandigen lassen:

Bis hier besteht das Topology Template nur aus den anwendungsspezifischen Node
Templates. Um die Topologie zu vervollstindigen wird die Unvollstindige an den
Topology Completer der Winery geschickt. Dieser verwendet die im Node Type Repo-
sitory der Winery liegenden Node Types, um die Topologie zu vervollstindigen und
speichert sie danach innerhalb eines Service Templates ab. Uber die REST-API kann
dieses Service Template wieder abgerufen werden.

4. Node Type Implementations und Artifacts einfiigen:

Nachdem die Topologie vervollstandigt wurde, miissen nun alle notigen Artifact Tem-
plates und Node Type Implementations in das Service Template eingefiigt werden.
Dafiir werden wieder alle Namen und Namespaces der in der Winery abgelegten Ar-
tifact Types abgefragt. Aus diesen werden die ausgesucht, die den bendtigten Node
Templates entsprechen. Jetzt konnen deren Definitionen der Winery entnommen wer-
den. Aus diesen Artifact Types konnen dann die Artifact Templates und Node Type
Implementations erstellt und in das Service Template eingefiigt werden.

5. Plan einfigen:

Ein weiteres wichtiges Element in einem Service Template ist das TOSCA Plan-Element.
Dieses enthalt eine Referenz auf den in der CSAR-Datei liegenden Provisionierungsplan,
damit die TOSCA-Laufzeitumgebung darauf zugreifen kann.

47

5. Implementierung

6. Properties einfiigen:

Die Node Templates miissen noch mit entsprechenden Properties bestiickt wer-
den. In dem Anwendungsfall handelt es sich dabei zum Beispiel um die OpenStack-
Zugangsdaten im OpenStackVM Node Template. Auflerdem wurde das gesamte Skript,
um Node-RED zu installieren und den Mashup-Plan zu deployen als Property in das
Node Template, das das Betriebssystem reprasentiert eingefiigt, was lediglich der
Einfachheit dient. Dieses Skript entnimmt OpenTOSCA dann bei der Provisionie-
rung, ibergibt es der WSO2BPS, welche dieses dann dem Implementierungs-Artefakt
tibergibt, das es auf dem Betriebssystem der virtuellen Maschine ausfiihrt.

7. Service Template in Winery ablegen:

Nachdem alle weiteren notigen TOSCA-Elemente eingefiigt wurden kann das
Definitions-Element wieder in der Winery gespeichert werden. Dies geschieht wieder
tiber die REST-API der Winery.

8. Provisionierungsplan generieren:

Der Plan sollte durch den Plan Generator der Winery erstellt werden. Da dieser jedoch
noch nicht funktioniert, muss er der Provisionierungsplan vorher von Hand erstellt
und in die Winery geladen werden. Dann wird der Plan mit allen nétigen Dateien an
der entsprechenden Stelle in der CSAR-Datei abgelegt.

9. CSAR an OpenTOSCA schicken:

OpenTOSCA bietet die Moglichkeit eine CSAR-Datei direkt aus der Winery zu la-
den. Dafiir muss ein entsprechender Aufruf an die API von OpenTOSCA durch den
OpenTOSCA Adapter durchgefithrt werden.

10. Anwendung provisionieren:

Zum Schluss muss OpenTOSCA noch dazu aufgefordert werden die Anwendung auf
Grundlage der CSAR-Datei zu provisionieren.

5.3. Sonderfalle

Bisher kénnen mit der Implementierung nur Anwendungen provisioniert werden, die sich
durch einen einzigen Shell Shell-Skript-Befehl installieren lassen. Anwendungen die zu-
satzliche Implementierungs-Artefakte benétigen werden nicht unterstiitzt. Da auch nur der
Shell-Skript-Befehl zur Installation von Node-RED implementiert wurde, lassen sich nur
solche Mashups provisionieren, die auf Node-RED basieren.

Da der Plan Generator der Winery nur beschrankt funktioniert, muss der Provisionierungs-
plan bisher im Voraus erstellt und in Winery importiert werden. Deswegen kénnen auch

48

5.4. Evaluation

lediglich Anwendungen mit der selben Topologie wie in Abbildung 5.1 provisioniert wer-
den.

5.4. Evaluation

Aufgrund der starken Einschrankung auf Node-RED-Mashups ist die Implementierung nicht
sehr brauchbar. Allerdings beweist sie die Funktionalitat des Konzeptes, da der Entwurf auf
alle Arten von Mashups erweiterbar ist.

OpenTOSCA hat sich als gute Wahl fiir eine TOSCA Laufzeitumgebung herausgestellt, da es
sehr gut mit der Winery harmoniert. Diese ist wiederum fiir diese Implementierung dank
des Topology Completers und des Plan Generators von groflem Vorteil.

Da die meiste Zeit beim gesamten Provisionierungsvorgang die Kommunikation zwischen
den Komponenten und die Ausfithrung des Provisionierungsplanes in Anspruch nimmt,
wurden keine Zeitmessungen der reinen CSAR-Generierung gemacht.

49

6. Optimierungen

Sowohl fiir das Konzept als auch fiir die Implementierung, die in dieser Arbeit vorgestellt
wurden, ergeben sich viele Moglichkeiten diese zu verbessern. In diesem Kapitel werden
Moglichkeiten erortert das Konzept oder die Implementierung zu verbessern. Dazu gehort
die Wiederverwendung bereits generierter Services, der Umgang mit auftretenden Feh-
lern, Anpassungen der Topologie an den jeweiligen Anwendungsfall sowie Anpassung an
verschiedene Cloud-Provider.

6.1. Wiederverwendung bereits generierter Services

Je nach Umfeld des Anwendungsfalles kann es sein, dass oft verschiedene Mashup-Pléne auf
den gleichen Ausfithrungskomponenten ausgefiithrt werden sollen. In diesem Falle macht
es wenig Sinn bei jeder neuen Provisionierung alle Schritte zur Generierung von CSAR-
Dateien durchzufithren. Bereits fertige Data Mashup-CSARs konnten fiir Weitere mit den
selben Komponenten wiederverwendet werden. Wenn nur der Workflow aber nicht die
Ausfihrungskomponenten geindert werden, muss nur der Workflow deployt werden. In
diesem Fall bietet sich die Moglichkeit aus Abschnitt 4.5.1 des Mashup-Plan Deployens an,
bei der dieser nach Provisionierung der Anwendung deployt wird. Auf diese Weise kann die
gesamte CSAR-Datei wiederverwendet werden, und lediglich ein anderer Mashup-Plan nach
der Provisionierung deployt werden.

6.2. Fehlerbehandlung

Eine weitere Moglichkeit die Anwendung zu optimieren ist es, einen robusten Umgang in
Bezug auf moégliche Fehlerquellen einzubauen. Dies ist insbesondere in der Hinsicht relevant,
da es sich bei den Benutzern nicht um IT-Experten handelt. Einige Moglichkeiten werden im
Folgenden behandelt.

51

6. Optimierungen

6.2.1. Keine passenden Node Types

Der erste Fehler, welcher bei der Ausfithrung auftreten kann ist, dass fiir den zu provisionie-
renden Mashup kein passender Node Type im Node Type Repository gefunden wird. Um
dies zu verhindern ist es sinnvoll das Mapping auf die Anwendungskomponenten den im
Node Type Repository vorhandenen Node Types anzupassen. Wenn der Benutzer die Wahl
zwischen verschiedenen Ausfithrungsmustern bekommt, sollten nur solche zur Verfiigung
stehen, die auch im Node Type Repository durch Node Types hinterlegt sind.

6.2.2. Fehler beim Installieren der Anwendungskomponenten

Die schwerwiegendste Fehlerquelle liegt in der Installation der Ausfithrungskomponenten.
Hier auftretende Fehler sind fiir den Benutzer kaum erkennbar, da sie sich eventuell nur in
den Log-Dateien der TOSCA-Laufzeitumgebung zeigen. Solche Fehler wéaren durch einen
Domain-Experten aber auch nicht behebbar. Aus diesem Grunde wire es eine wichtige
Optimierung solche Fehler zu erkennen, und im Zweifelsfall die Provisionierung mit einer
Fehlermeldung abzubrechen.

6.3. Anpassung der Topologie

Beim Aufsetzen einer virtuellen Maschine in einer Cloud-Umgebung bestehen meistens
verschiedene Wahlmoglichkeiten beziiglich der Leistung und der Speicherkapazitit. Bei
Mashups die aus mehreren Anwendungskomponenten, wie zum Beispiel einem Webser-
ver und einer Datenbank, bestehen, gibt es auflerdem die Moglichkeit diese auf einer oder
mehrerer virtuellen Maschinen zu provisionieren. Diese Entscheidungen sind kosten- und
leistungsrelevant, und sollten deshalb dem Betreiber des Mashups iiberlassen werden. Da
es sich bei dem Benutzer jedoch um einen Domain-Experten handelt, und nicht um einen
IT-Spezialisten, konnen diesem solche Entscheidungen nicht iiberlassen werden. Eine Mog-
lichkeit wére es den Benutzer bei der Modellierung des Mashups zwischen einer kosten-
oder leistungseffizienten Ausfithrung wiahlen zu lassen. Abbildung 6.1 zeigt eine alternative
Topologie zu der in Abbildung 2.2, bei welcher der Webserver und die MySQL-Datenbank
auf einer gemeinsamen virtuellen Maschine angesiedelt sind. Diese Art der Provisionierung
kann je nach Cloud-Provider giinstiger ausfallen, jedoch auch weniger leistungseffizient und
weniger skalierbar sein.

Aufler der Topologie selbst kann auch die Wahl der virtuellen Maschine an den Anwen-
dungsfall angepasst werden. Dabei konnten ebenso verschiedene Kriterien wie zum Beispiel
der Grad an benétigter Effizienz und der Durchsatz der anfallenden Daten auf eine virtuelle
Machine mit einer bestimmten Rechenleistung abgebildet werden.

52

6.4. Verwendung anderer Cloud-Anbieter

connect to
Web Shop MySQL Database

hosted on hosted on

[Apache Web Server } [MySQL DBMS }
hosted on /stedon

[Linux Operating System }

hosted on

OpenStack VM }

Abbildung 6.1.: Alternative Topologie zu Abbildung 2.2

6.4. Verwendung anderer Cloud-Anbieter

Die Optimierungsmdglichkeit in Abschnitt 6.4.1 in diesem Kapitel bezieht sich speziell auf die
Implementierung, da die Anwendung konzeptionell auf allen méglichen Cloud-Architekturen
mit entsprechenden Anbindungsmdéglichkeiten funktioniert.

6.4.1. Ausfuhrung auf anderen Cloud-Architekturen

Auf3er der in der Implementierung verwendeten Cloud-Architektur OpenStack ist es noch
moglich andere wie zum Beispiel Amazon EC2! oder Google Cloud Platform? zu verwenden.
Dafiir miisste lediglich OpenTOSCA um eine Anbindung an die jeweils andere Cloud Archi-
tektur erweitert werden, wobei speziell Amazon EC2 schon von OpenTOSCA unterstiitzt
wird. Eventuell miissen auch nur die Implementierungs-Artefakte an die andere Architektur
angepasst werden, die die Provisionierung der virtuellen Maschine und des Betriebssystems
ausfithren.

Thttps://aws.amazon.com/de/ec2/
Zhttps://cloud.google.com/

53

6. Optimierungen

6.4.2. Anpassung an den Cloud-Provider

Cloud-Anbieter wie Amazon Web Services und IBM Bluemix® bieten neben IaaS-Angeboten
auch verschiedene PaaS- und SaaS-Angebote, wie zum Beispiel Webserver und Datenbanken.
Unter Verwendung solcher Cloud-Anbieter wire es vorteilhaft bestehende Angebote zu ver-
wenden, anstatt diese selbst aufzusetzen, da diese durch den Anbieter verwaltet werden und
somit eine hohere Robustheit besitzen. Um solche Anwendungen verwenden zu konnen, wére
es moglich spezielle TOSCA Node Types mit entsprechenden Implementierungs-Artefakten
zu entwerfen. Die Implementierungs-Artefakte miissten dann lediglich auf die API des jewei-
ligen Cloud-Providers zugreifen, um entsprechende Anwendungen zu provisionieren.

In den nichsten beiden Abschnitten wird untersucht, wie sich TOSCA4Mashups an die
beiden Cloud-Provider IBM Bluemix und Amazon Web Services anpassen lasst, um innerhalb
dieser Cloud-Umgebungen Mashups effizienter und robuster zu provisionieren.

Deklarative OpenStack-Implementierung

Neben der imperativen OpenStack-Implementierung, die in der Implementierung dieser
Arbeit verwendet wird, existiert noch die deklarative OpenStack Implementierung. Um
Anwendungen in dieser automatisiert zu provisionieren kann OpenStack Heat verwendet
werden. Die Anpassung des in dieser Bachelorarbeit vorgestellten Konzeptes an die deklarati-
ve OpenStack-Implementierung wire zum Beispiel moglich, indem man das TOSCA Service
Template in Heat tibersetzt. Fir diesen Zweck existiert ein OpenStack-Projekt?*, welches
unter der Apache 2-Lizenz’ steht. Dieses Tool ist in der Lage TOSCA Templates in Heat
Orchestration Templates umzuwandeln. Daraus ergeben sich jedoch wieder die Nachteile
einer deklarativen Beschreibung; es sind nur solche Anwendungen verwendbar, die von Heat
erkannt werden. Wenn die von TOSCA4Mashups generierten Topology Templates nur zum
Teil in ein Heat Orchestration Template ibersetzt werden, ist es moglich von den Vorteilen
beider Moglichkeiten der Provisionierung zu profitieren.

Amazon Web Services

Ein weiteres Beispiel fiir einen Cloud-Provider ist Amazon Web Services. Um Anwendun-
gen automatisiert in der AWS Cloud-Umgebung zu provisionieren existiert CloudForma-
tion. Beim Schreiben dieser Bachelorarbeit konnte keine Arbeit zu einer Ubersetzung von
TOSCA in eine CloudFormation-Beschreibung gefunden werden. Eine andere Moglichkeit,

*https://www.ibm.com/cloud-computing/bluemix/
*https://pypi.python.org/pypi/heat-translator
>https://www.apache.org/licenses/LICENSE-2.0

54

6.4. Verwendung anderer Cloud-Anbieter

die Provisionierung von Anwendungen an einen speziellen Cloud-Provider, wie zum Bei-
spiel AWS, anzupassen, ist es spezielle Implementierungs-Artefakte fiir diesen zu schreiben.
Die Implementierungs-Artefakte konnen tiber die API des Providers die bendtigten SaaS-
Angebote provisionieren lassen.

IBM Bluemix

In der Cloud-Umgebung Bluemix von IBM wird Cloud Foundry als PaaS-Plattform verwendet.
Fiir die automatisierte Provisionierung mit Cloud Foundry konnen sogenannte Application
Manifest-Dateien® erstellt werden. Uber eine Transformierung zwischen TOSCA Templates
und Application Manifest-Dateien wurde ebenfalls nichts gefunden. Diese wére dennoch

denkbar.

Shttps://docs.cloudfoundry.org/devguide/deploy-apps/manifest.html

55

7. Zusammenfassung und Ausblick

In dieser Arbeit wurde ein Konzept vorgestellt, das es ermoglicht Data Mashups automatisiert
in einer Cloud-Umgebung zu provisionieren und auszufithren. Dieses Konzept wurde in drei
Schritte unterteilt, welche selbst in weitere Einzelschritte aufgeteilt wurden. Im Anschluss
wurde eine Implementierung des Konzeptes vorgestellt, das die von der Universitat Stutt-
gart entwickelte TOSCA-Laufzeitumgebung OpenTOSCA verwendet. OpenTOSCA wurde
unter anderem wegen des grofen Toolsupportes gewéhlt. Dazu gehort auch Winery, eine
graphische Oberflache zur Modellierung von TOSCA-Topologien, welche aufler einem Node
Type Repository auch einen Plan Generator und einen Topology Completer enthélt. Die
Funktionalitat des Konzeptes wurde durch die Implementierung eines Prototypen gezeigt.
Desweiteren wurden mehrere Moglichkeiten erortert um sowohl das Konzept, als auch die
Implementierung zu verbessern. Dazu gehort unter anderem die Anpassung der Topolo-
gie an den jeweiligen Anwendungsfall und die Anpassung des Konzeptes an verschiedene
Cloud-Provider.

Ausblick

Durch eine Verbindung zwischen TOSCA und bestehenden SaaS- und PaaS-Angebote konn-
ten Data Mashups in Cloud-Umgebungen, deren Provider solche Dienste anbieten schneller
und einfach provisioniert werden. Es miissen keine Implementierungs-Artefakte fiir die
Installation von bestimmten Anwendungen wie zum Beispiel Datenbanken oder Web Con-
tainern erstellt werden. Stattdessen konnten generische Implementierungs-Artefakte fiir die
jeweiligen Cloud-Provider erstellt werden, welche die gewiinschten Anwendungen aus dem
Repertoire der Cloud-Provider instanziieren. Zukiinftig ware es moglich das Konzept auf
alle Arten von verteilten Anwendungen zu erweitern, und nicht nur auf Data Mashups zu
beschranken. Diese Problemstellung bietet sich fiir eine Masterarbeit an.

57

A. Anhang

Listing A.1 Resultierendes Service Template der Implementierung 1

<tosca:Definitions xmlns:tosca="http://docs.oasis-open.org/tosca/ns/2011/12"
xmlns:winery="http://www.opentosca.org/winery/extensions/tosca/2013/02/12"
xmlns:ns2="http://www.eclipse.org/winery/model/selfservice" id="definitions"
name="definitions" targetNamespace="http://docs.oasis-open.org/tosca/ns/2011/12">

<tosca:Import namespace="http://types.opentosca.org"
location="http://localhost:8080/winery/relationshiptypes/http%253A%252F%252Ftypes.

opentosca.org/NodeRedPlanHostedOnNodeRed/?definitions"
importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

<tosca:Import namespace="http://types.opentosca.org"
location="http://localhost:8080/winery/relationshiptypes/http%253A%252F%252Ftypes.

opentosca.org/OperatingSystemHostedOnOpenStack/?definitions"
importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

<tosca:Import namespace="http://types.opentosca.org"
location="http://localhost:8080/winery/nodetypes/http%253A%252F%252Ftypes.

opentosca.org/InstallOpenStackVM/?definitions"
importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

<tosca:Import namespace="http://types.opentosca.org"
location="http://localhost:8080/winery/nodetypes/http%253A%252F%252Ftypes.

opentosca.org/NodeREDPlan/?definitions"
importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

<tosca:Import namespace="http://types.opentosca.org"
location="http://localhost:8080/winery/capabilitytypes/http%s253A%252F%252Ftypes.

opentosca.org/OperatingSystemContainerCapability/?definitions"
importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

<tosca:Import namespace="http://types.opentosca.org"
location="http://localhost:8080/winery/nodetypes/http%253A%252F%252Ftypes.

opentosca.org/NodeRED/?definitions"
importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

<tosca:Import namespace="http://types.opentosca.org"
location="http://localhost:8080/winery/nodetypes/http%253A%252F%252Ftypes.

opentosca.org/Nodels/?definitions"
importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

<tosca:Import namespace="http://types.opentosca.org"
location="http://localhost:8080/winery/capabilitytypes/http%253A%252F%252Ftypes.

opentosca.org/NodeRedContainerCapability/?definitions"
importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

A. Anhang

Listing A.2 Resultierendes Service Template der Implementierung 2

<tosca:Import namespace="http://docs.oasis-open.org/tosca/ns/2011/12/ToscaBaseTypes"
location="http://localhost:8080/winery/nodetypes/http%253A%252F%252Fdocs.

0asis-open.org%252Ftosca%s252Fns%252F2011%252F12%252FToscaBaseTypes/0OperatingSystem/

?definitions" importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

<tosca:Import namespace="http://types.opentosca.org"
location="http://localhost:8080/winery/relationshiptypes/http%253A%252F%252Ftypes.

opentosca.org/NodeRedHostedOnNodels/?definitions"
importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

<tosca:Import namespace="http://types.

opentosca.org"
location="http://localhost:8080/winery/capabilitytypes/http%253A%252F%252Ftypes.

opentosca.org/VirtualMachineContainerCapability/?definitions"
importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

<tosca:Import namespace="http://types.opentosca.org"
location="http://localhost:8080/winery/capabilitytypes/http%s253A%252F%252Ftypes.

opentosca.org/NodeJsContainerCapability/?definitions"
importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

<tosca:Import namespace="http://types.opentosca.org"
location="http://localhost:8080/winery/relationshiptypes/http%253A%252F%252Ftypes.

opentosca.org/NodelsHostedOnOperatingSystem/?definitions"
importType="http://docs.oasis-open.org/tosca/ns/2011/12"/>

<tosca:ServiceTemplate id="InstallVMServTemplate"
targetNamespace="http://types.opentosca.org">

<tosca:TopologyTemplate>

<tosca:NodeTemplate xmlns:nsO@="http://types.opentosca.org" name="NodeREDPlan"
minInstances="1" maxInstances="1" id="NodeREDPlan" type="ns0:NodeREDPlan"
winery:x="500" winery:y="100">

<tosca:Properties>

<Properties:Properties
xmlns:Properties="http://types.opentosca.org/propertiesdefinition/winery"
xmlns="http://types.opentosca.org/propertiesdefinition/winery"
xmlns:ns3="http://www.opentosca.org/winery/extensions/tosca/2013/02/12"
xmlns:ns6="http://types.opentosca.org"/>

</tosca:Properties>

</tosca:NodeTemplate>

<tosca:NodeTemplate xmlns:nsO@="http://types.opentosca.org" name="NodeRED"
minInstances="1" maxInstances="1" id="NodeRED" type="ns0:NodeRED" winery:x="500"
winery:y="250">

<tosca:Properties>

<Properties:Properties
xmlns:Properties="http://types.opentosca.org/propertiesdefinition/winery"
xmlns="http://types.opentosca.org/propertiesdefinition/winery"
xmlns:ns2="http://types.opentosca.org"
xmlns:ns3="http://www.opentosca.org/winery/extensions/tosca/2013/02/12"/>

</tosca:Properties>

<tosca:Capabilities>

<tosca:Capability name="NodeRedContainerCapability" id="apl4z70qp"
type="ns0:NodeRedContainerCapability"/>

</tosca:Capabilities>

</tosca:NodeTemplate>

60

Listing A.3 Resultierendes Service Template der Implementierung 3

<tosca:RelationshipTemplate xmlns:ns@="http://types.opentosca.org"
name="NodeRedPlanHostedOnNodeRed" id="NodeRedPlanHostedOnNodeRed"
type="ns0:NodeRedPlanHostedOnNodeRed">

<tosca:SourceElement ref="NodeREDPlan"/>

<tosca:TargetElement ref="NodeRED"/>

</tosca:RelationshipTemplate>

<tosca:NodeTemplate xmlns:ns@="http://types.opentosca.org" name="NodeJs"
minInstances="1" maxInstances="1" id="NodeJs" type="ns0:Nodels" winery:x="500"
winery:y="400">

<tosca:Properties>

<Properties:Properties
xmlns:Properties="http://types.opentosca.org/propertiesdefinition/winery"
xmlns="http://types.opentosca.org/propertiesdefinition/winery"
xmlns:ns2="http://types.opentosca.org"
xmlns:ns3="http://www.opentosca.org/winery/extensions/tosca/2013/02/12"/>

</tosca:Properties>

<tosca:Capabilities>

<tosca:Capability name="NodeJsContainerCapability" id="avlf03cab"
type="ns0:NodeJsContainerCapability"/>

</tosca:Capabilities>

</tosca:NodeTemplate>

<tosca:RelationshipTemplate xmlns:ns0="http://types.opentosca.org"
name="NodeRedHostedOnNodeJs" id="NodeRedHostedOnNodeJs"
type="ns0:NodeRedHostedOnNodels">

<tosca:SourceElement ref="NodeRED"/>

<tosca:TargetElement ref="Nodels"/>

</tosca:RelationshipTemplate>

<tosca:NodeTemplate
xmlns:nsl="http://docs.oasis-open.org/tosca/ns/2011/12/ToscaBaseTypes"

name="0OperatingSystem" minInstances="1" maxInstances="1" id="LinuxOperatingSystem"

type="nsl:0peratingSystem" winery:x="500" winery:y="550">

<tosca:Properties>

<Properties:Properties
xmlns:Properties="http://types.opentosca.org/propertiesdefinition/winery"
xmlns="http://types.opentosca.org/propertiesdefinition/winery"
xmlns:ns2="http://docs.oasis-open.org/tosca/ns/2011/12/ToscaBaseTypes"
xmlns:ns3="http://www.opentosca.org/winery/extensions/tosca/2013/02/12">

<hostname/>

<sshUser>ubuntu</sshUser>

<sshKey/>

61

A. Anhang

Listing A.4 Resultierendes Service Template der Implementierung 4

<script>

curl -sL https://deb.nodesource.com/setup_5.x | sudo -E bash - && sudo apt-get install
-y nodejs && sudo npm install -g --unsafe-perm node-red && sudo npm install -g pm2
&& pm2 start node-red > /dev/null && sleep 10 && touch
~/.node-red/flows_‘hostname‘.json && echo
"[{\"id\":\"58ffae9d.a7005\",\"type\":\"debug\",\"name\":\"\",\"active\":true,

\"complete\":false,\"x\":640,\"y\":200,\"wires\":[1},{\"id\":\"17626462.e89d9c\",

\"type\":\"inject\",\"name\" :\"\",\"topic\":\"\",\"payload\":\"\",\"repeat\":\"\",

\"once\":false,\"x\":240,\"y\":200,\"wires\":[[\"2921667d.d6de9a\"11},

{\"id\":\"2921667d.d6de9a\",\"type\":\"function\",\"name\":\"Format timestamp\",

\"func\":\" var date = new Date(msg.payload);msg.payload = date.toString();return
msg;\",\"outputs\":1,\"x\":440,\"y\":200,\"wires\":[[\"58ffae9d.a7005\"]1]1}]" >
~/.node-red/flows_‘hostname‘.json && sleep 5 && pm2 restart all > /dev/null

</script>

</Properties:Properties>

</tosca:Properties>

<tosca:Capabilities>

<tosca:Capability xmlns:ns0="http://types.opentosca.org"
name="0OperatingSystemContainerCapability" id="atlqlOtzr"
type="ns0:0peratingSystemContainerCapability"/>

</tosca:Capabilities>

</tosca:NodeTemplate>

<tosca:RelationshipTemplate xmlns:ns@="http://types.opentosca.org"
name="NodeJsHostedOnOperatingSystem" id="NodeJsHostedOnOperatingSystem"
type="ns0:NodeJsHostedOnOperatingSystem">

<tosca:SourceElement ref="Nodels"/>

<tosca:TargetElement ref="LinuxOperatingSystem"/>

</tosca:RelationshipTemplate>

<tosca:NodeTemplate xmlns:nsO="http://types.opentosca.org" name="InstallOpenStackVM"
minInstances="1" maxInstances="1" id="InstallOpenStackVMTemplate"
type="ns0:InstallOpenStackVM" winery:x="500" winery:y="700">

<tosca:Properties>

<Properties:Properties
xmlns:Properties="http://types.opentosca.org/propertiesdefinition/winery"
xmlns="http://types.opentosca.org/propertiesdefinition/winery"
xmlns:ns2="http://types.opentosca.org"
xmlns:ns3="http://www.opentosca.org/winery/extensions/tosca/2013/02/12">

<credentials>

{"auth":{"tenantId":"81313f66325f427d9907b1le2674a3834", "passwordCredentials":

{"username":"daniel.del.gaudio", "password":"hfduhfdfg"}}}

</credentials>

<endpointsAPI>

{"os-identity-api":"http:\/\/129.69.209.127:5000\/v2.0",

"os-tenantId":"81313f66325f427d9907b1le2674a3834"}

</endpointsAPI>

<flavorId>3</flavorld>

<keypair/>

<imageld/>

<imageName>ubuntu-12.04-server-cloudimg-amd64</imageName>

62

Listing A.5 Resultierendes Service Template der Implementierung 5

<minDisk/>

<minRAM/>

<floatingIp/>

<serverId/>

<privKey/>

</Properties:Properties>

</tosca:Properties>

<tosca:Capabilities>

<tosca:Capability name="VirtualMachineContainerCapability" id="a815vlr7w"
type="ns0:VirtualMachineContainerCapability"/>

</tosca:Capabilities>

</tosca:NodeTemplate>

<tosca:RelationshipTemplate xmlns:ns@="http://types.opentosca.org"
name="0peratingSystemHostedOnOpenStack" id="OperatingSystemHostedOnOpenStack"
type="ns0:0peratingSystemHostedOnOpenStack">

<tosca:SourceElement ref="LinuxOperatingSystem"/>

<tosca:TargetElement ref="InstallOpenStackVMTemplate"/>

</tosca:RelationshipTemplate>

</tosca:TopologyTemplate>

<tosca:Plans>

<tosca:Plan id="InstallVMServTemplateBuildPlan" name="InstallVMServTemplateBuildPlan"
planType="http://docs.oasis-open.org/tosca/ns/2011/12/PlanTypes/BuildPlan"
planLanguage="http://docs.oasis-open.org/wsbpel/2.0/process/executable">

<tosca:PlanModelReference
reference="../servicetemplates/http%253A%252F%252Ftypes.opentosca.org/

InstallVMServTemplate/plans/InstallVMServTemplateBuildPlan/

InstallVMServTemplateBuildPlan.zip"/>

</tosca:Plan>

</tosca:Plans>

</tosca:ServiceTemplate>

<tosca:ArtifactTemplate xmlns:ns6="http://www.example.com/ToscaTypes"
id="InstallOpenStackVM_IA" type="ns6:WAR">

<tosca:Properties>

<ns6:WSProperties xmlns:ns6="http://www.uni-stuttgart.de/opentosca"
xmlns="http://www.uni-stuttgart.de/opentosca"
xmlns:ns@="http://www.eclipse.org/winery/model/selfservice"
xmlns:ns2="http://www.example.com/ToscaTypes"
xmlns:ns31="http://www.eclipse.org/winery/model/selfservice"
xmlns:ns4="http://www.example.com/ToscaTypes">

<ServiceEndpoint>/services/InstallOpenStackVM_Custom_InstallVMPort</ServiceEndpoint>

<PortType>

{http://types.opentosca.org}InstallOpenStackVM_Custom_InstallVM

</PortType>

<InvocationType>SOAP/HTTP</InvocationType>

</ns6:WSProperties>

</tosca:Properties>

63

A. Anhang

Listing A.6 Resultierendes Service Template der Implementierung 6

<tosca:ArtifactReferences>

<tosca:ArtifactReference
reference="artifacttemplates/http%253A%252F%252Ftypes.opentosca.org/

InstallOpenStackVM_IA/files/InstallOpenStackVM_Custom_InstallVM.war"/>

</tosca:ArtifactReferences>

</tosca:ArtifactTemplate>

<tosca:NodeTypeImplementation xmlns:nsO@="http://types.opentosca.org"
name="InstallOpenStackVM_impl" targetNamespace="http://types.opentosca.org"
nodeType="ns0:InstallOpenStackVM" abstract="no" final="no">

<tosca:ImplementationArtifacts>

<tosca:ImplementationArtifact xmlns:ns6="http://www.example.com/ToscaTypes"
name="InstallOpenStackVM_IA" interfaceName="Custom_InstallVM"
artifactType="ns6:WAR" artifactRef="ns0:InstallOpenStackVM_IA"/>

</tosca:ImplementationArtifacts>

</tosca:NodeTypeImplementation>

</tosca:Definitions>

64

Literaturverzeichnis

[AG10]

[BBH+13]

[BBK+12]

[BBK+14]

[BBKL14]

N. Antonopoulos und L. Gillam. Cloud Computing: Principles, Systems and
Applications. Computer Communications and Networks. Springer London,
2010. 1SBN: 9781849962414. URL: https://books.google.de/books?id=
SbSbdkqibwIC (Zitiert auf S. 9).

T. Binz, U. Breitenbiicher, F. Haupt, O. Kopp, F. Leymann, A. Nowak und S.
Wagner. ,,OpenTOSCA - A Runtime for TOSCA-based Cloud Applications®.
English. In: Proceedings of 11th International Conference on Service-Oriented
Computing (ICSOC’13). Bd. 8274. LNCS. Springer Berlin Heidelberg, Dez. 2013,
S. 692-695. por1: 10.1007 /978 - 3-642-45005-1_62. URL: http://www2 .
informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=
INPROC-2013-45&engl=1 (Zitiert auf S. 27, 45).

U. Breitenbiicher, T. Binz, O. Kopp, F. Leymann und D. Schumm. ,,Vino4TOSCA:
A Visual Notation for Application Topologies based on TOSCA®. Englisch. In:
Proceedings of the 20th International Conference on Cooperative Information
Systems (CooplS 2012). Lecture Notes in Computer Science. Springer-Verlag,
Sep. 2012. por: 10 . 1007 /978 - 3- 642 - 33606 - 5_25. URL: http://www2 .
informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=
INPROC-2012-33&eng1=0 (Zitiert auf S. 27, 28).

U. Breitenbiicher, T. Binz, K. Képes, O. Kopp, F. Leymann und J. Wettinger.
,Combining Declarative and Imperative Cloud Application Provisioning based
on TOSCA®. Englisch. In: Proceedings of the IEEE International Conference on
Cloud Engineering (IC2E). IEEE Computer Society, Marz 2014, S. 87-96. por:
10.1109/IC2E.2014.56. URL: http://www2.informatik.uni-stuttgart.
de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-21&engl=0
(Zitiert auf S. 20, 24, 28, 29, 31, 34, 38).

U. Breitenbiicher, T. Binz, O. Kopp und F. Leymann. ,,Vinothek - A Self-Service
Portal for TOSCA®. Englisch. In: Proceedings of the 6th Central-European Work-
shop on Services and their Composition (ZEUS 2014). Hrsg. von N. Herzberg
und M. Kunze. Bd. 1140. CEUR Workshop Proceedings. CEUR-WS.org, Mérz
2014, S. 69-72. URL: http://www2.informatik.uni- stuttgart.de/cgi-
bin/NCSTRL/NCSTRL_view.pl?id=INPROC- 2014 - 25&engl=0 (Zitiert auf
S. 28).

65

https://books.google.de/books?id=SbSbdkqibwIC
https://books.google.de/books?id=SbSbdkqibwIC
http://dx.doi.org/10.1007/978-3-642-45005-1_62
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2013-45&engl=1
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2013-45&engl=1
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2013-45&engl=1
http://dx.doi.org/10.1007/978-3-642-33606-5_25
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2012-33&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2012-33&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2012-33&engl=0
http://dx.doi.org/10.1109/IC2E.2014.56
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-21&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-21&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-25&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-25&engl=0

Literaturverzeichnis

[DM14]

[Erl05]

[FLR+14]

[HBBL14]

[HM16]

[HRWM15]

[KBBL13]

[KM15]

66

F. Daniel und M. Matera. Mashups - Concepts, Models and Architectures. Data-
Centric Systems und Applications. Springer., 2014 (Zitiert auf S. 9, 15).

T. as Erl. ,Service-Oriented Architecture (SOA) Concepts, Technology and
Design®. In: (2005) (Zitiert auf S. 15).

C.Fehling, F. Leymann, R. Retter, W. Schupeck und P. Arbitter. Cloud Computing
Patterns: Fundamentals to Design, Build, and Manage Cloud Applications. Sprin-
ger Publishing Company, Incorporated, 2014. 1sBN: 3709115671, 9783709115671
(Zitiert auf S. 16).

P. Hirmer, U. Breitenbiicher, T. Binz und F. Leymann. ,Automatic Topology
Completion of TOSCA-based Cloud Applications®. English. In: Proceedings des
CloudCycle14 Workshops auf der 44. Jahrestagung der Gesellschaft fiir Informatik
e.V. (GI). Bd. 232. LNIL Bonn: Gesellschaft fiir Informatik e.V. (GI), Sep. 2014,
S. 247-258. 1SBN: 978-3-88579-626-8. URL: http://www2.informatik.uni-
stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC - 2014 -
66&engl=1 (Zitiert auf S. 28, 37).

P. Hirmer und B. Mitschang. ,FlexMash - Flexible Data Mashups Based on
Pattern-Based Model Transformation®. English. In: Rapid Mashup Develop-
ment Tools. Hrsg. von F. Daniel und C. Pautasso. Bd. 591. Communications in
Computer and Information Science. Springer International Publishing, 2016,
S. 12-30. 1sBN: 978-3-319-28726-3. por1: 10.1007/978-3-319-28727-0_2. URL:
http://dx.doi.org/10.1007/978-3-319-28727-0_2 (Zitiert auf S. 9, 10,
27, 34).

P. Hirmer, P. Reimann, M. Wieland und B. Mitschang. ,Extended Techniques
for Flexible Modeling and Execution of Data Mashups®. In: DATA 2015 - Pro-
ceedings of 4th International Conference on Data Management Technologies
and Applications, Colmar, Alsace, France, 20-22 July, 2015. 2015, S. 111-122.
DoI: 10.5220/0005558201110122. URL: http://dx.doi.org/10.5220/
0005558201110122 (Zitiert auf S. 10).

O. Kopp, T. Binz, U. Breitenbiicher und F. Leymann. ,Winery - A Modeling
Tool for TOSCA-based Cloud Applications®. English. In: Proceedings of 11th
International Conference on Service-Oriented Computing (ICSOC’13). Bd. 8274.
LNCS. Springer Berlin Heidelberg, Dez. 2013, S. 700-704. po1: 10.1007/978-3-
642-45005-1_64. URL: http://www2.informatik.uni-stuttgart.de/cgi-
bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2013-46&engl=1 (Zitiert auf
S. 28).

L. B. Kassner und B. Mitschang. ,MaXCept-Decision Support in Exception
Handling through Unstructured Data Integration in the Production Context.
An Integral Part of the Smart Factory.” In: In Proceedings of the 48th Hawaii
International Conference on System Sciences (2015) (Zitiert auf S. 10).

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-66&engl=1
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-66&engl=1
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-66&engl=1
http://dx.doi.org/10.1007/978-3-319-28727-0_2
http://dx.doi.org/10.1007/978-3-319-28727-0_2
http://dx.doi.org/10.5220/0005558201110122
http://dx.doi.org/10.5220/0005558201110122
http://dx.doi.org/10.5220/0005558201110122
http://dx.doi.org/10.1007/978-3-642-45005-1_64
http://dx.doi.org/10.1007/978-3-642-45005-1_64
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2013-46&engl=1
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2013-46&engl=1

[KV10] R. L. Krutz und R. D. Vines. Cloud Security: A Comprehensive Guide to Secure
Cloud Computing. Wiley Publishing, 2010. 1sBN: 0470589876, 9780470589878
(Zitiert auf S. 18).

[Luc02] D. Luckham. The power of events. Bd. 204. Addison-Wesley Reading, 2002
(Zitiert auf S. 15).

[MBD+12] A. McAfee, E. Brynjolfsson, T. H. Davenport, D. Patil und D. Barton. ,Big data®.
In: The management revolution. Harvard Bus Rev 90.10 (2012), S. 61-67 (Zitiert
auf S. 9).

[MCB+11] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh und A. H.
Byers. Big data: The next frontier for innovation, competition, and productivity.
McKinsey Global Institute, Mai 2011. URL: http: //www . mckinsey . com/
Insights/MGI/Research/Technology%5C_and%5C_Innovation/Big%5C_
data%5C_The%5C_next%5C_frontier%s5C_for%5C_innovation (Zitiert auf
S.9).

[Meu95] R. Meunier. ,Pattern Languages of Program Design®. In: Hrsg. von J. O. Coplien
und D. C. Schmidt. New York, NY, USA: ACM Press/Addison-Wesley Publishing
Co., 1995. Kap. The Pipes and Filters Architecture, S. 427-440. 1SBN: 0-201-
60734-4. URL: http://dl.acm.org/citation.cfm?id=218662.218694
(Zitiert auf S. 12, 15).

[MG11] P. M. Mell und T. Grance. SP 800-145. The NIST Definition of Cloud Computing.
Techn. Ber. Gaithersburg, MD, United States, 2011 (Zitiert auf S. 9, 16, 17).
[OASa] OASIS. Topology and Orchestration Specification for Cloud Applications (TOS-

CA) Primer Version 1.0. 31 January 2013. OASIS Committee Note Draft
01. http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-
cnd01.html. (Zitiert auf S. 25, 34, 40).

[OASD] OASIS. Topology and Orchestration Specification for Cloud Applications Version
1.0. 25 November 2013. OASIS Standard. http://docs.oasis-open.org/tosca/TOSCA/v1.0/0s/TOSCA-
v1.0-0s.html. (Zitiert auf S. 20-22, 24).

Alle URLs wurden zuletzt am 11.04. 2016 gepriift.

http://www.mckinsey.com/Insights/MGI/Research/Technology%5C_and%5C_Innovation/Big%5C_data%5C_The%5C_next%5C_frontier%5C_for%5C_innovation
http://www.mckinsey.com/Insights/MGI/Research/Technology%5C_and%5C_Innovation/Big%5C_data%5C_The%5C_next%5C_frontier%5C_for%5C_innovation
http://www.mckinsey.com/Insights/MGI/Research/Technology%5C_and%5C_Innovation/Big%5C_data%5C_The%5C_next%5C_frontier%5C_for%5C_innovation
http://dl.acm.org/citation.cfm?id=218662.218694

Erklarung

Ich versichere, diese Arbeit selbststindig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wortlich oder sinngeméf} aus anderen Wer-
ken tibernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Priifungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollstandig
verdffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einleitung und Motivation
	1.1 Motivationsszenario
	1.2 Begriffserklärungen
	1.2.1 Abgrenzung Deployment und Provisionierung
	1.2.2 Abgrenzung Mashup-Plan Workflow und Mashup

	2 Grundlagen
	2.1 Data Mashups
	2.2 Cloud Computing
	2.2.1 Service-Modelle
	2.2.2 Deployment-Modelle

	2.3 OASIS TOSCA
	2.3.1 TOSCA Sprachstandard
	2.3.2 Provisionierungsplan
	2.3.3 Cloud Service Archive (CSAR)
	2.3.4 TOSCA Laufzeitumgebung

	3 Verwandte Arbeiten
	3.1 OpenTOSCA
	3.2 Alternativen zu TOSCA

	4 Konzept
	4.1 Architektur
	4.1.1 Übersicht
	4.1.2 Komponenten

	4.2 Methode zur automatischen Provisionierung von Data Mashups
	4.3 Schritt 1: CSAR erstellen
	4.3.1 Schritt 1.1: Topologie erstellen
	4.3.2 Schritt 1.2: Artefakte einfügen
	4.3.3 Schritt 1.3: Plan generieren
	4.3.4 Schritt 1.4: CSAR erstellen

	4.4 Schritt 2: CSAR deployen und Anwendung provisionieren
	4.4.1 Schritt 2.1: CSAR deployen
	4.4.2 Schritt 2.2: Anwendung provisionieren

	4.5 Schritt 3: Mashup ausführen
	4.5.1 Schritt 3.1: Mashup-Plan Deployment außerhalb der Topologie
	4.5.2 Schritt 3.2: Mashup-Plan ausführen

	5 Implementierung
	5.1 Entwurf
	5.1.1 OpenTOSCA
	5.1.2 Winery
	5.1.3 TOSCA4Mashups

	5.2 Umsetzung
	5.2.1 Technologien
	5.2.2 Ablauf

	5.3 Sonderfälle
	5.4 Evaluation

	6 Optimierungen
	6.1 Wiederverwendung bereits generierter Services
	6.2 Fehlerbehandlung
	6.2.1 Keine passenden Node Types
	6.2.2 Fehler beim Installieren der Anwendungskomponenten

	6.3 Anpassung der Topologie
	6.4 Verwendung anderer Cloud-Anbieter
	6.4.1 Ausführung auf anderen Cloud-Architekturen
	6.4.2 Anpassung an den Cloud-Provider

	7 Zusammenfassung und Ausblick
	A Anhang
	Literaturverzeichnis

