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Kurzfassung

Bei der Fabrikplanung gibt es den Bedarf der Reduzierung von späteren Kosten. Dies kann durch
eine Optimierung des Fabriklayouts geschehen. Einer der Aspekte dieser Layout-Optimierung
sind die Werkerwege. Werkerwege sind die Wege die ein Arbeiter während einer Fertigung
zurücklegen muss, um beispielsweise andere Arbeitsflächen oder Materialien zu erreichen.
Die Optimierung dieser Wege gehört in den Bereich der Betriebsoptimierung und bedeutet
Kosteneinsparungen in der Produktion.

Man kann hierbei zwei Hauptoptimierungsziele ausmachen. So ist die Wegstrecke für den
Arbeiter möglichst gering zu halten, damit weniger Arbeitszeit dafür aufgewendet werden
muss. Außerdem ist darauf zu achten, dass sich nicht zu viele Werker gleichzeitig in einem
Bereich befinden, damit sie sich nicht gegenseitig behindern.

Diese Arbeit umschreibt die Entwicklung eines Konzepts und die Implementierung dessen in
einen Prototyp, mit welchem eine Visualisierung und interaktive Optimierung von Fabriklay-
outs, unter dem Gesichtspunkt der Werkerwege, stattfinden soll. Dazu werden die erwarteten
Werkerpfade in ein 2D-Layout eingezeichnet. Der Benutzer kann mit Interaktion das Layout
umstellen. Die veränderten Wege werden dem Benutzer zur Bewertung visuell präsentiert. Der
Prototyp wird anhand einiger Use-Cases evaluiert.
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1 Einleitung

In der industriellen Fertigung gibt es, bei den meist sehr komplexen Verarbeitung, viele Frei-
heitsgrade. Es herrscht das Bedürfnis nach Optimierung der Produktion. Der Komplexität
und hinzukommenden Veränderungen an Produkt und Produktion geschuldet, kommt man
mit einer diskreten Optimierung oft nicht mehr nach und bedient sich immer öfter einer
Simulation des Produktionsablaufes um dessen Effektivität zu bewerten. Ein Teilaspekt einer
solchen Simulation sind die Werkerwege, welche auch Möglichkeiten zur Optimierung bieten.
Es können Mitarbeiterwege verkürzt werden, damit die Arbeiterzeit des Arbeiters effektiver
genutzt werden kann. Zudem kann darauf geachtet werden, dass nicht zu viele Mitarbeiter
auf einmal in einem gewissen Bereich der Fabrik arbeiten, damit sie sich nicht gegenseitig
behindern.

Werkerwege werden vor allem durch das Fabriklayout bedingt, dessen Entwurf und Änderung
Teil jeder Fabrikplanung sind.

Diese Arbeit soll das Konzept einer visuellen Analyse für Arbeiterwege in Simulationsergeb-
nissen hervorbringen. Diese Visualisierung es einem Benutzer ermöglicht die besagten Wege
zu betrachten, sowie per Interaktion und damit Variationen des Fabriklayouts, zu verändern.

Der endgültige Nutzen wäre eine Optimierung des Produktionsvorganges für Mitarbeiter und
Fabrikbesitzer.

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Grundlagen Hier werden Grundlagen dieser Arbeit beschrieben.

Kapitel 3 – Aufgabenstellung und Lösungsansatz Hierwird die Aufgabenstellung an die-
se Arbeit vorgestellt.

Kapitel 4 – Verwandte Arbeiten Hier werden Projekte vorgestellt, die dieser Arbeit ähneln.

Kapitel 5 – Konzept Hier wird der begangene Arbeitsweg aufgezeigt der zum Konzept führte.

Kapitel 6 – Implementierung Die Implementierung des Konzepts, so wie die Benutzerober-
fläche werden hier erklärt.
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1 Einleitung

Kapitel 7 – Evaluation Hier wird das erarbeitete Konzept anhand von Usecases evaluiert

Kapitel 8 – Zusammenfassung und Ausblick fasst die Ergebnisse der Arbeit zusammen
und stellt Anknüpfungspunkte vor.
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2 Grundlagen

In diesem Kapitel werden Grundlagen erklärt, die dem Leser nicht unbedingt vorliegen, aber
zum Verständnis der Arbeit unter Umständen hilfreich ist.

2.1 Graphen

Graphen eigenen sich besonders gut Zweidimensionale Wegenetze zu modellieren.

Sie sind die Grundlage der Graphentheorie, was eine Disziplin der Mathematik ist. [Die12]

Graphen bestehen aus Knotenpunkten und (un-)gerichteten, (un-)gewichteten Kanten die
zwischen je zwei Knotenpunkten verlaufen.

Zur Erklärung siehe Abbildung 2.1.

A
B

C

D
E

(a) Ein ungerichteter und ungewich-
teter Graph, hierbei sind Kanten
„nur “ Verbindungen zwischen
zwei Knotenpunkten

A
B

C

D
E

(b) Ein gerichteter Graph. ( mit einer
Kante deren Ziel und Startknoten
identisch sind)

A
B

C

D
E

3

2

3
5

-2

-4

(c) Ein gerichteter und gewichteter
Graph. Hierbei bekommt jede
Kante noch ein Gewicht zugeteilt,
welches Beispielsweise die Weg-
kosten dieser Kante angibt.

Abbildung 2.1: Abbildung jeweils eines ungerichteten, eines gerichteten und eines gerichteten
sowie gewichteten Graphen
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2 Grundlagen

2.1.1 Dynamische Graphen

Bei einem fest definierten Graphen, wie im letzten Kapitel beschrieben, spricht man von einem
statischen Graphen, da er sich, laut Definition, nicht verändern kann. Ein dynamischer Graph
dagegen, lässt sich, sehr gut, durch eine Folge an statischen Graphen verstehen. Die einzelnen
Teilschritte, können durch Algorithmen, Benutzerinteraktion oder andere Aktivitäten verändert
werden.

Diese Änderungen kann man in drei Arten unterteilen: (Unterteilung entnommen aus [Lia14]
S.13)

1. Knotenänderungen Das heißt es kommen Knoten zum Graphen hinzu, oder werden vom
Graphen (mitsamt ihren Kanten) entfernt.

2. Kantenänderungen Hier werden Kanten aus dem Graph genommen, oder neue Kanten
in den Graph eingefügt.

3. Änderung der Kantengewichte Hier werden nur von schon existierenden Kanten die
Kantengewichte geändert.

War der dynamische Graph vorher der Graph G, so repräsentiert ihn nun der Graph G1, der
aus Änderung von G resultiert.

Die Herangehensweise der Graphen-Folge, hilft auch darauf zu achten während Berechnungen
und Visualisierungen immer einen statischen Graphen zu nutzen, beziehungsweise anzuzeigen.
Damit beugt man ungewollten Anzeige Artefakten und falschen Ergebnissen vor. Wenn man
diese strikte Trennung zwischen den Graph-Zuständen nicht vollzieht, dann kann es, zum
Beispiel, zu falschen Wegberechnungen kommen (ein Beispiel für eine Wegberechnung auf
einem Graph kann man in Kapitel 2.2 sehen).

Werden, während der Berechnung des Weges, Kantengewichte verändert, so kann es sein, dass
der gefundene Weg kein Idealer mehr ist, da zur Berechnung noch die vorherigen Kantenge-
wichte hergenommen wurden.

Beim Graph der zur Wegberechnung innerhalb des hier vorgestellten Ansatzes benutzt wird,
handelt es sich um einen dynamischen, der durch Interaktion des Benutzers in allen drei Arten
verändert wird. (siehe Kapitel 5.2.1)

Ein großes Problem von umfangreichen, dynamischen Graphen ist ihre Rechenintensivität,
sprich der Aufwand für das Ausführen von Operationen auf/mit einem solchen Graphen, die
vor allem bei Echtzeitanwendungen, negativ, zum Vorschein kommt. Beispiel Kantengewichts-
änderung:

Es existiert durch einen Graphen ein eingezeichneter Idealen Weg zwischen zwei Knoten. Hat
nun der Benutzer die Möglichkeit, beispielsweise mit der Maus, durch verschieben von Kno-
tenpunkten die Kantengewichte zu ändern, so müsste ja in jedem Zustand, die der Bildschirm
anzeigt, der neue Ideale Weg berechnet werden.
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2.2 Wegsuchalgorithmus A-Stern

Um dem Benutzer eine Animation zu zeigen kann man zum Beispiel mal 24 Hz ansetzen, das
ist die normale Bildrate eines Films.

Wenn wir nun von einem A* Algorithmus (Kapitel 2.2) für die Wegsuche hernehmen, so
müssen wir 24 mal in der Sekunde eine Rechnung der Komplexität O(|K|2) ausführen, was
bei entsprechender Kontenanzahl zu sehr viel Rechenaufwand führen kann. (K ist hier die
Menge der Knoten im Graphen) Allein schon das häufige Zeichnen, sprich anzeigen, von vielen
Elementen kann schon, je nach Methode, zu Problemen führen.

2.2 Wegsuchalgorithmus A-Stern

Ganz Allgemein ist der Suchalgorithmus A-Stern, oder auch A*, ein deterministischer Weg-
suchalgorithmus auf einem Graphen mit positiven Kantengewichten. Um ihn anzuwenden
muss eine Abschätzung, bzw. Heuristik, der Wegkosten für jeden Knoten hin zum Zielknoten
gegeben sein. Beschrieben wird er unter anderem von Hart et al. [HNR68] Eingabe sind, die
oben beschriebene Kostenschätzung, der Graph auf dem die Suche stattfinden soll, sowie Start-
und Endknoten des gesuchten Pfades.

Knoten des Graphen: K = {A, B...}
Kanten des Graphen: L = {(C, D), ...} wobei C, D ∈ K

Startknoten: S ∈ K

Zielknoten: E ∈ K

Heuristik-Funktion: h(A)∀A ∈ K (geschätzte Kosten vom Knotenpunkt A zu E)
Real-Abstandskosten-Funktion: c(A, B)∀A, B ∈ K (reale Kosten des Weges zwischen A und B)
Realkosten-Funktion: r(A)∀A ∈ K(= c(A, E))
Pfadkosten-Funktion: gp(A)∀A ∈ K (Kosten im aktuellen Pfad von S nach A)
Prioritätsliste-Kosten: f(A) = gp(A) + h(A)∀A ∈ K

Um eine Lösung zu finden muss die Heuristik zulässig sein, das heißt sie darf niemals größer
als die realen Kosten des Weges sein. (Siehe Gleichung 2.1)

(2.1) h(A) ≤ r(A)∀A ∈ K

2.2.1 Funktionsweise

Im Pseudo-Code 2.1 wird die Funktionsweise des A* beschrieben.

Das Herzstück des Algorithmus ist eine „Priority-Queue“ P , also eine sortierte Liste aus
Knotenpunkten, welche nach dem Wert der Funktion f sortiert werden. Wenn ein Knoten
eingefügt wird, der schon in der Liste ist, so wird nur der mit dem kleineren f -Wert behalten.
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2 Grundlagen

Algorithmus 2.1 Pseudo-Code zum A*-Algorithmus
procedure A-Stern(Graph G, Heuristik-Funktion h, Startknoten S, Endknoten E)

Priority-Queue P
Visited-Queue V
P.Enqueue(S, 0, h(S))) // Knotenpunkt, Kosten bisher, erwartete Kosten
while P.HasItems() do

Knoten A, Kosten S bis A k = P.DequeueMinPathCostV ertex()
if A == E then

return A => Pfad gefunden
end if
V.EnList(A)
for all Nachbarn B von A do

if V.Contains(B) then
Continue

end if
knew = k + Kosten von A nach B
if P.HasSmalerV alueFor(B, knew) then

Continue
end if
P.Enqueue(B, knew, knew + h(B))
B.Predecessor = A

end for
end while
return NULL => Pfad nicht existent

end procedure

Des weiteren gibt es mit der „Visited-Queue“ V eine Liste der bereits untersuchten Knoten-
punkte. Verwendet wird sie um zu verhindern das Knotenpunkte öfters besucht werden. Diese
Liste ist nicht unbedingt nötig, kann aber die Laufzeit des Algorithmus erheblich verringern.
(Siehe Abbildung 2.2)

Wie im Pseudo-Code 2.1 beschrieben, wird zu Beginn der Startknoten in P eingefügt.

Jetzt wird immer der Knoten mit dem kleinsten f -Wert aus P entnommen. Wenn dieser der
Zielknoten ist, so hat man den Weg gefunden. Ansonsten wird der Knoten in V und Seine
Nachbarn in P eingefügt. (Sofern sie nicht schon in V sind). Jeder Knoten in P speichert seinen
Vorgänger, sprich den Knoten, durch den sie in P gesteckt wurden. Wenn P nun leer ist, das
heißt, dass alle von Startknoten aus erreichbaren Knoten besucht wurden, so existiert kein
Weg.
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2.3 Heatmap

2.2.2 Eigenschaften

Der Algorithmus A* ist vollständig. Das heißt, dass immer eine existente Lösung gefunden
wird.

Gilt über die Zulässigkeit noch das die Heuristik monoton ist, so gilt auch das A-Stern einen
optimalen Weg findet.

Monoton ist eine Heuristik, wenn die geschätzten Kosten von einem Knoten A zum Endknoten,
immer kleiner oder gleich sind wie die geschätzten Kosten eines Nachbarn B von A, addiert
mit den tatsächlichen Kosten für den Übergang von A nach B. (Siehe Gleichung 2.2),

(2.2) h(A) ≤ c(A, B) + h(B)∀A, B ∈ K : B ist Nachbar von A

Das kann auch, im Austausch gegen eine langsamere Performance durch leichte Umstellung des
Algorithmus (u.a. Weglassen der Visited-Liste) mit einer nur zulässigen, aber nicht monotonen,
Heuristik erreichte werden.

Eine monotonen Heuristik ist A-Stern auch optimal effizient, das heißt, dass kein anderer
Algorithmus mit den Informationen der Heuristik schneller eine optimale Lösung findet.

2.2.3 Beispiel

Als ein Beispiel ist in Abbildung 2.5, ein einfacher Durchlauf einer Wegsuche in einem Weg-
graph mithilfe des A-Stern Algorithmus aufgezeigt.

2.3 Heatmap

Eine Heatmap ist eine Methode um Daten innerhalb eines Datensatzes zu visualisieren. Hier
werden bei einer (1D-, 2D-, oder 3D-) Visualisierung des Datensatzes, Bereiche, nach Wer-
tigkeit einer betrachteten Eigenschaft, (Häufigkeit eines Elements, Temperatur), verschieden
eingefärbt.
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2 Grundlagen

S

E

N

Abbildung 2.2: Ein Beispiel für einen Suchgraph bei dem der Einsatz einer Visited-Liste zu
einer erheblichen Verringerung der Laufzeit führt.
Der gesuchte Pfad geht von S nach E, mit einer Heuristik, die den geometri-
schen Abstand der Knoten zum Endknoten als Schätzung nimmt.
Ohne Visited-Liste wird der Knoten N immer wieder untersucht, da er einen
kleinen Wert der Funktion f(x) hat.

(a) Heatmap-Gitter über einer 2D Visualisie-
rung von Ameisen-Positionen

4 1

3 4

(b) Gitter aus 2.3a nach dem Einzeichnen der
Werte

Abbildung 2.3: Einfache Heatmap mir grüner Färbung (Farben von [BH+])

2.3.1 Vorgehensweise

Die Vorgehensweise soll im Folgenden anhand einer 2D Visualisierung von Ameisen, entlang
einer Ameisenspur, gezeigt werden.
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2.3 Heatmap

Man legt über den betrachteten Visualisierungs-Raum ein Gitter. Für jede der Gitterzellen wird
nun ein Wert festgestellt, z.B Wie viele Ameisen sich zum Zeitpunkt a in ihr befunden haben.
Anhand dieses Wertes wird die Zelle dann eingefärbt (siehe Figur 2.3).

Durch die Verfeinerung des Gitters kann man nun auch genauere Verteilungen visualisieren.
Eine intuitivere Visualisierung der Verteilung lässt sich in einem weiteren Schritt zum Beispiel
durch Verwendung eines Gauß-Kernels erstellen.
Ein Kernel ist eine Matrix aus Faktoren, welche für die Berechnung der Gitterwerte herange-
kommenen werden.
Im Beispiel wird für jede Ameise der eigentliche Heatmap-Zellenwert um vier und die der
Nachbarn links, rechts, über und unter der eigenen Zelle um jeweils eins erhöht. (Siehe Abbil-
dung 2.4)

1

1 4 1

1

(a) Beispiel eines Gaußker-
nels

0 2

0 2

0 0

1 0

0 3

0 0 0 0.5

2 1.5

(b) Heatmap ohne Gaußkernel

2 10

2 14

3 0

8 2.5

3 16

0 3 2.5 3.5

13.5 8.5

(c) Heatmap mit Gaußkernel aus 2.4a

Abbildung 2.4: Heatmap unter Verwendung eines Gaußkernels (Farben von [BH+])
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2 Grundlagen
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(c) Von D aus kann weder derWeg über B noch der über
C, verkürzt werden. Der Knoten F wird in P einge-
fügt, aber die zu erwartenden Kosten sind höher als
die von B und C
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(d) Vom Knoten B aus, wird der Knoten E eingefügt, der
aber größere Kosten erwarten lässt als C
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(e) VomKnoten C aus kann keinerlei weitere Erkenntnis
über den kürzesten Weg gewonnen werden
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58

B
65 / 95
46,5188

D
107 / 65
84,5931 G

170 / 55
179,2388

E
155 / 95
136,5188

F
120 / 25
126,6526

(f) Der Knoten E, denwir als nächstes ausP bekommen,
hat nun eine direkte Verbindung zu G, weshalb wir
nun den kürzesten Weg gefunden haben

Abbildung 2.5: Ablauf einer A-Stern Suche für den günstigsten Pfad von A nach G.
Auf den Knoten steht von oben nach unten der Name, die Koordinaten und
die Kosten von A bis zum jeweiligen Knoten
Dunkelgrün: Der gerade aktuell betrachtete Knoten
Gelb: Knoten in der Priority Queue
Rot: Knoten in der Visited Liste
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3 Aufgabenstellung und Lösungsansatz

3.1 Hintergrund

Bei der Fertigung in einer Fabrik, gibt es das Bedürfnis der Optimierung. Da die Realität zu
komplex für eine diskrete Optimierung wäre, bedient man sich in der Praxis öfters einer
Simulation des Produktionsablaufes um dessen Effektivität zu bewerten.

Ein Teil eines solchen simulationsgetrieben Optimierungsprozesses sind die Optimierungen
der Werkerwege.

Werkerwege werden vor allem durch das Fabriklayout bedingt, dessen Entwurf und Änderung
Teil jeder Fabrikplanung sind.

3.2 Aufgabenstellung

Als Ziel dieser Arbeit wurde die Erstellung eines Konzepts zur Visualisierung von Arbeitswegen
innerhalb eines Fabriklayouts, festgelegt. Dieses soll in einem Prototyp umgesetzt werden, der
es einem Benutzer ermöglicht durch Änderungen am simulierten Fabriklayout die Produktion
zu optimieren.

Die verlangten Leistungen lassen sich wie folgt zusammenfassen:

Es soll zu existierenden Ansätzen recherchiert werden. Des Weiteren soll ein Analysekonzept
für die visuelle Darstellung und implizite Veränderungen des Parameterraums einer Simulati-
on, erarbeitet werden. Dieses Konzept soll darauf in einen selbst implementierten Prototyp
einfließen, welcher durch das Beschreiben von Anwendungsfällen evaluiert werden soll.

19





4 Verwandte Arbeiten

Im folgenden Kapitel werden einige Arbeiten vorgestellt, welche in Zusammenhang mit meiner
Arbeit stehen, oder die als Grundlage für meine Arbeit geholfen haben diese zu erstellen.

4.1 IPO.Plan

Die Firma IPO.Plan vertreibt eine kommerzielle Software, „IPO.Log“, welche ihren Usern beim
Austakten und Logistikplanung, helfen soll. [Kel12] IPO.Plan hat sich hier auf die Fließband-
fertigung spezialisiert.

Es wird hier eine 3D-Visualisierung verwendet, in welche die User verschiedenste Schritte
einer Fabrikplanung einbringen.

Nun werden Gant-Auslastungs der Arbeiter und Taktungs-Edition zum Zwecke einer
Simulations-Optimierung zur Verfügung gestellt.

Die Ladungsträger werden initial anhand eines Algorithmus, am vom User geplanten Fließband
verteilt, können aber vom User verschoben werden, falls er dies wünscht. Wege welche die
Fabrikarbeiter während ihrer Tätigkeiten zurücklegen müssen, werden berechnet und auf dem
Boden eingezeichnet. Nun kann der Benutzer hingehen und die Arbeiter in einer Animati-
on, zum Leben erwecken und kann das Szenario in seinem Fabrikentwurf simulieren. Auch
Einzelarbeitsplätze können so Simuliert werden. Wenn er nun Änderungen hinsichtlich der
Ladungsträger- und/oder Station(s)-Positionen wünscht, dann kann er sich errechnen lassen,
welche Kosteneinsparungen sich hierdurch ergeben. Des weiteren können Werker-Aufgaben
und Tacktung verändert werden.

4.2 SmoothScroll

Ist ein Ansatz, welcher eine Lösung für das Problem des genauen Navigieren durch große
eindimensionale Datensätzen erlaubt. [WE13]

Wennman einen großen Datensatz hat, so wird es schwer durch eine Scrollbar innerhalb des Da-
tensatzes zu navigieren, da schon wenig Verschiebung der „Scroll-Box"(auch „Thumb"genannt)
große Parameteränderung innerhalb des Datensatzes bedeutet.(Siehe Abbildung 4.2a)
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4 Verwandte Arbeiten

Abbildung 4.1: Screenshots aus dem Tool IPO.Log von der IPO.Plan Website [IPO]

Um diesem Problem zu begegnen wurde in dieser Arbeit ein Controll entwickelt, das unter
Zuhilfenahme vieler Scrollbars eine detailliertere Filterung von Daten zulässt.

Hier haben viele übereinander angeordnete Scrollbars verschiedene Scrollbereiche. Um nun
im Detail zu scrollen, so hat man nun die Möglichkeit seinen Bereich, den man betrachten
will, durch die verschiedenen Bars auszuwählen. Die weiter oben, hinten liegenden Scrollbars
haben hierbei einen größeren Scrollbereich, und die weiter unten, im Vordergrund, liegenden
Scrollbars erlauben eine genauere Auswahl. (Siehe Abbildung 4.2b)

(a) Scrollbar mit den dazugehörigen Elemen-
ten. Buttons für das Scrollen nach links und
rechts. Dazwischen eine Scrollbox, welche
die Auswahl repräsentiert, auf einer Fläche,
die den ganzen Scrollraum darstellt.

(b) Screenshot aus aus [WE13]. Hier kann ein
Namensverzeichnis mit dieser speziellen
Scrollbar durchforstet werden.

Abbildung 4.2: Erklärende Bilder zu [WE13]

4.3 Die Visualisierung dynamischer Graphen als Small
Multiples

Liang stellt in seiner Diplomarbeit Möglichkeiten vor und implementiert diese auch, um einem
User User, Daten eines dynamischen Graphen, graphisch anzuzeigen.[Lia14]

Es wird Edge Splatting [BVB+11] verwendet um für den Benutzer Bilder zu erzeugen, die ihm
einen Überblick über die Datenverbindungen im dynamischen Graph zu geben.
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4.3 Die Visualisierung dynamischer Graphen als Small Multiples

Zwei Arten der Anzeige werden vorgestellt.

Darstellungsform „Rechteck": Hier werden die Knotenpunkte des Graphen jeweils entlang
der linken und der rechten Kante eines Rechtecks gemappt. Für jede Datenverbindung
von Knoten A nach B wird nun einen Linie von der linken Repräsentation des Knoten A
zum Rechten Repräsentanten des Knoten B gezogen. Das Resultierende Bild wird per
Edge Splatting [BVB+11] für den User zu einer Art Heatmap zusammengefasst.

Darstellungsform „Kreis": Hier werden die Knotenpunkte durch Punkte entlang eines Kreises
modelliert. Die Verbindung A-B wird dann als Gerade die den Kreis schneidet visualisiert.
Mit dem resultierenden Bild wird gleich verfahren wie bei der Rechteckigen Variante.

(a) Darstellungsform ”Rechteck“ (b) Darstellungsform ”Kreis“

Abbildung 4.3: Screenshots aus der Implementierung von [Lia14]

Mit vielen solcher Plots in Serie kann der Benutzer gut nachverfolgen was sich am dynamischen
Graphen getan hat.
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5 Konzept

In diesem Kapitel soll erklärt werden, welcheWege, für die Umsetzung des Prototyps, begangen
wurden, und warum.

Es werden Methoden vorgestellt und argumentiert, weshalb bei der Implementierung ein
bestimmter Weg beschritten wurde.

Die aufgetretenen zu lösenden konzeptionellen Aufgaben lassen sich wie folgt gruppieren/zu-
sammenfassen:

1. Anzeigen des Layouts

2. Visualisierung der Werkerpfade innerhalb dieser Anzeige

3. User-Interaktion

5.1 Anzeigen des Layouts

Die erste Frage, die sich stellt, ist die Wahl einer Visualisierungsmethode für das Fabriklayout
und der Werkerwege.

5.1.1 Die Wahl der Dimensionalität

Die intuitiven Möglichkeiten, wären eine 1D Liste mit angegebenen Koordinaten, eine 2D-
Darstellung und eine 3D View. Die Wahl fiel am Ende auf die zweidimensionale Möglichkeit,
die Argumente für diese Entscheidung, sollen im folgenden Erwähnung finden.

Eindimensionale Listen Darstellung

Die 1D Liste, mag für ein wirklich kleines Expertenteam, deren Mitglieder das tatsächliche
Layout im Kopf haben, übersichtlicher und auch effizienter zu benutzen sein. Für den normalen
Planer eines Layouts ist sie aber in den meisten Fällen eher ungeeignet, da das Layout auch
anderen erklärt werden muss. Dagegen steht, dass die Fehleranfälligkeit sehr hoch ist, da
Elemente, oder deren Eigenschaften bei großer Anzahl an Einträgen gerne übersehen werden.
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5 Konzept

Des Weiteren kann das ganze Layout, bei entsprechender Komplexität nicht mehr kognitiv
erfasst werden.

Dreidimensionale Visualisierung

Die größte Immersion und einen höheren, möglichen Detailgrad kann man mit einer dreidi-
mensionalen Darstellung der Szene erreichen.
Allerdings sprechen auch hiergegen einige Punkte:

Technologieprobleme Zum jetzigen Zeitpunkt gibt es noch Probleme mit der Anzeigetech-
nologie. Es gibt zwar einige Ansätze, ein solches Anzeigegerät zu entwickeln, diese
sind aber zum heutigen Zeitpunkt entweder Qualitativ noch nicht ausgereift: z.B. Bei
Head-Mounted Displays mit zu geringer Auflösung und Bildwiederholungsrate. Oder
sie sind von ihrem Platz und Preisaufwand noch nicht mit ihrem Nutzen vereinbar z.B
bei Projektoren mit extrem hoher Bildwiederholungsrate zum Beispiel in Kombination
mit Shutter-, oder Polarisationsbrillen.

Falls man sich allerdings auf ein zweidimensionales Anzeigegerät, das dafür technisch
ausgereift und kostengünstig ist, beschränkt, so geht die Immersion verloren und auch
das Gefühl wo etwas im Raum steht. Auch kommt dann der zweite Punkt umso stärker
zum tragen.

Überdeckung Das zweite und größere Problem ist, das es bei einer dreidimensionalen Dar-
stellung immer wieder zu Überdeckungen kommt.
Das heißt, man übersieht Details, Objekte oder sogar ganze Komplexe, weil sie sich in
der aktuellen Ansicht hinter einem anderen Objekt befinden.

(a) Szene mit drei sichtbaren Elementen in einer 3D
Visualisierung

(b) Die selbe Szene aus einer anderen Perspektive,
mit nur 2 sichtbaren Elementen

Abbildung 5.1: Beispiel für das Phänomen der Verdeckung bei einer 3D-Visualisierung
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5.2 Visualisierung der Wege innerhalb dieser Anzeige

5.1.2 Farbwahl

Die Farbwahl für die Fabriklayout-Darstellung ist wichtig. Sie muss neutral sein, das möglichst
viel andere Informationen mit Farbe in die Darstellung eingefügt werden und zum anderen
muss sie für den Nutzer als angenehm empfunden werden, das er auch längere Zeit mit dem
Tool verbringen kann. In Anlehnung, an ein Schema des Tools Visual-Studio, welches ähnliche
Kriterien bei der Farbwahl erfüllen muss, fiel die initiale Wahl auf ein Farbschema von weißem
Vordergrund und Schwarzem Hintergrund, in einem Zukünftigen Produkt, sollte die Farbwahl
aber beim Benutzer liegen.

5.2 Visualisierung der Wege innerhalb dieser Anzeige

DieWege der Mitarbeiter sollen innerhalb des Layouts visualisiert werden. Doch zuerst müssen
die Wege festgelegt werden.

5.2.1 Wegefindung

Als Grundlage für die Werker-Simulation existiert deren Umgebung (das Fabriklayout) und
eine Liste ihrer Arbeitsschritte (Siehe auch Kapitel 6.3). Man kann annehmen, dass der Mensch,
während der Arbeit, immer versuchen wird den kürzesten Weg zu nehmen, es wird deshalb
ein optimaler Weg zwischen den Arbeitsstationen, welche wir aus der Simulation erhalten,
gesucht.

Benötigt wird hierfür ein Weggraph.

Weggraph

Eine Möglichkeit den Weggraph zu definieren, ist auf Grundlage der Ecken der Elemente des
Layouts. (Mit Elementen, sind Objekte gemeint, die in der Lage sind Wege zu versperren, wie
Maschinen, Arbeitstische, Säulen etc.) Sie sind die Knotenpunkte des Graphen.

In einem ersten Schritt wird, für alle Ecken der eingelesenen Objekte des Layouts, geprüft
welche anderen Ecken für sie erreichbar, sprich nicht durch andere Elemente versperrt, sind.
Anhand dieser Information werden als Folge Kanten in den Graphen eingefügt.

Das Kantengewicht entsprecht der Kantenlänge.

Wie schon im Grundlagenkapitel (siehe Kapitel 2) erwähnt handelt es sich beim Weggraphen
um einen dynamischen. Der User kann später Elemente des Fabriklayouts mit der Maus beliebig
verschieben und drehen, was dazu führt, dass der Wegegraph sich verändert.
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5 Konzept

Wie schon Kapitel 2 beschrieben, kann bei dynamischen Graphen oft die Laufzeit der Opera-
tionen problematisch sein.

Im Folgenden wird davon ausgegangen, dass die Anzahl an Ecken pro Layout-Element nach
oben begrenzt ist. Beispielsweise könnte man ein Objekt in einem Layout mit einer Recht-
eckigen Boundingbox approximieren. Schon beim initialen Einlesen der Daten muss für n-
Knotenpunkte eine Operation in Ω(n3) ausgeführt werden:
Für jeden Knoten muss geprüft wird, ob er eine Kante zu den anderen Knotenpunkten hat. Um
die Existenz der Kante zu verifizieren muss sie mit allen Elementen des Layouts geschnitten
werden.

Wenn man dem Benutzer eines Echtzeittools nun die Möglichkeit einräumt den Graph zu
verändern, so muss nach jeder relevanten User-Interaktion diese Operation (von nun an auch
Methode I genannt) von neuem ausgeführt werden.

Um dieses Problem zu umgehen speichert jedes Element, schon beim initialen Erstellen des Gra-
phen, welche Kanten es verhindert hat. Hierbei wird jede Kante nur in einem Element eingetra-
gen (dessen Blockade beim Errechnen zuerst auftritt). Wird es nun durch eine User-Interaktion
verschoben, oder gedreht, so kann man auf meist weniger aufwendige Rechenoperationen
zurückgreifen:

1. Alle denkbaren Kanten die am verschobenen Element anliegen müssen neu überprüft
werden. (O(n2))

2. Alle bisher existierenden Kanten, müssen mit dem verschobenen Element geschnitten
werden um ihren Fortbestand zu überprüfen und sie eventuell als blockiert im Element
zu speichern. (worst Case O(n2))

3. Die gesammelten Kanten, welche durch das Element verhindert wurden, müssen neu
überprüft werden. (worst Case O(n3))

Das alternative Verfahren (von nun an auch Methode II genannt) ist insofern besser, als das es
nur im schlimmsten Fall eine Komplexität in O(n3) bei der Berechnung braucht. Meist blockiert
ein Element nicht alle möglichen Verbindungen, außerdem wird die erneute Überprüfung einer
blockierten Kante immer nur von einem Element ausgelöst, was es noch unwahrscheinlicher
macht, dass die Berechnung ähnlich viel Zeit benötigt wie eine neue, komplette Überprüfung
aller Kanten.

Wenn nach der Veränderung Ecken von Elementen innerhalb anderer Elemente liegen, so
sind diese Knotenpunkte dem Weggraphen entnommen, da sie für einen Arbeiter nicht mehr
erreicht werden können.

In der konkreten Fabrik kann dies auch vorkommen, wenn zum Beispiel ein Fließband durch
eine Maschine verläuft und beide als einzelne Elemente im Layout verzeichnet sind.

Falls nach der Veränderung ein Element einen bisher möglichen Weg versperrt, und/oder einen
anderen im Vorhinein nicht möglichen Weg freigemacht hat, so werden Kanten entfernt und
andere hinzugefügt.
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5.2 Visualisierung der Wege innerhalb dieser Anzeige

Auch werden durch Verschiebung von Elementen auf neue Positionen die Kantenlängen
geändert, was in diesem Fall einer Kantengewichtsänderung entspricht.

Beispiele solcher Änderungen kann man in Abbildung 5.2 sehen.

(a) Grundstellung der beiden Ele-
mente, mit allen möglichen Kan-
ten

(b) Durch Verschiebung des rechten
Elements nach oben kommt eine
neue Kante hinzu (grün) und 4
werden aus demWegegraph ent-
fernt (schwarz unterbrochen)

(c) Bei dieser Stellung der Elemen-
te fallen zwei Knotenpunkte aus
dem Graphen. (Und es entste-
hen zwei neue Knotenpunkte die
Kanten zu diesen „Ecken“ sind
gestrichelt eingezeichnet)

Abbildung 5.2: Verschiebung eines Elements und die resultierenden Graphänderungen

Spontaner Weggraph

Eine Idee umdie komplizierten Berechnungen einzusparen könnte die „spontane"Wegberechnung
sein, demnach den Graphen nirgends vollständig zu speichern, sondern immer nur für je-
den Schritt der Wegfindung alle möglichen Nachbarn zu errechnen. Das Problem ist, dass
ein so konzipiertes Tool nicht skalierbar wäre für viele Datensätze. Für wenige zu findende
Pfade mag diese Herangehensweise Vorteile bringen, jedoch können Simulationen manchmal
mehrere Monate/Jahre abdecken und sehr viele Arbeiter enthalten, hier wäre die spontane
Berechnungïn der Masse viel teurer als die statische, einmalige, komplette Generierung des
Weggraphen.

Ein Mittelweg wäre die Ergebnisse der spontanen Nachbarknotensuche zu speichern, und
damit den relevanten Teilgraphen komplett zu errechnen und jede Suche maximal einmal
durchzuführen. Dadurch könnte man eine Reduktion der Laufzeit erreichen.
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5 Konzept

(a) Grundstellung der Elemente.
Die grün gestrichelt dargestell-
ten Kanten werden vom zu ver-
schiebenden Element, rot, als
blockiert gespeichert.

(b)Während nach Methode I beim
Übergang von (a) nach (b) al-
le Kanten neu geprüft werden:
Fakultät aus 8 Kanten (8! =
40320) + die Kanten des ver-
schobenen Elements, müssen
nach Methode II nur die in (a)
grün, gestichelt markierten Kan-
ten neu geprüft werden: 8 + die
Kanten des verschobenen Ele-
ments.

(c) Beim Übergang von (b) nach (c)
müssen nach Methode I wieder
40320 Kanten + die Kanten des
verschobenen Elements über-
prüft werden, während nach Me-
thode II nur noch 4 + die Kanten
des verschobenen Elements ge-
prüft werden müssen. Man sieht
auch, das es nun weniger Grü-
ne, gedachte Kanten gibt, da ei-
nige Kanten nun in einem ande-
ren Element, als geblockt gespei-
chert sind.

Abbildung 5.3: Vergleich der beiden Herangehensweisen I und II. Es wurde angenommen,
dass die Kollisionsprüfung bei Kanten immer von Links nach Rechts geschieht.
Die Kanten des zu verschiebenden Elements wurden aus Gründen der Über-
sichtlichkeit nicht eingezeichnet.

5.3 User-Interaktion

Der Benutzer soll mit dem Anzeigegerät interagieren können. Auf diese Weise sollen die
visualisierten Layout-Daten manipuliert werden. Die veränderten Daten müssen in einer
ähnlichen Form wie sie eingelesen wurden Speicherbar sein.

Die hervorgerufenen Änderungen der Manipulation sollen dem Benutzer in der Visualisierung
und durch Kennzahlen rückgemeldet werden. Dadurch hat er die Möglichkeit die Verände-
rungen zu bewerten und kann erkennen ob eine Optimierung seines Produktionslayouts
stattgefunden hat.
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6 Implementierung

Ein großer Teil dieser Arbeit ist die Umsetzung des Konzepts in einem Prototyp.

6.1 Verwendete Programme und Tools

Das Konzept wurde in der Programmiersprache C# implementiert.
Als Programmierumgebung diente hierbei Visual Studio, in den Versionen 2013 und 2015 mit
dem auf dem .NET Framework 4.5 aufbauenden Framework WPF (Windows Presentation
Foundation [Mic06])).

Die komplette Arbeit wurde auf Computern entwickelt die unter Windows in den Versionen
8.1 bzw. 10 liefen. Der Prototyp wurde auch auf diesen Plattformen getestet, er sollte allerdings
auf allen Windows Versionen, die das .Net Framework 4.5 unterstützen, laufen.

Für die Erstellung der Grafiken dieser Ausarbeitung wurde, falls nicht anders angegeben, das
Microsoft ProgrammMicrosoft Visio benutzt.

Zum editieren, sowie öffnen der CSV-Dateien, wurde Notepad++ [Ho+08] verwendet.

Bei den genutzten Eingangsdaten für den Prototyp handelt es sich um Simulationsexport-
Daten des kommerziellen Tools IMV (IntegratedManufacturing Validation) der Firma iFAKT
GmbH [iGmbb], die für die Arbeit zur Verfügung gestellt wurden.

6.2 Umsetzung des Konzepts

Folgend soll aufgezeigt werden, welche Aspekte des Konzepts umgesetzt wurden, und in
welcher Art.
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6 Implementierung

6.2.1 Suchalgorithmus

Beim Algorithmus der die Wegsuche innerhalb des Weggraphen vornimmt, fiel die Wahl auf
den A* Algorithmus (Abschnitt 2.2). Hauptargument für diese Wahl, war dessen Eigenschaft,
in kürzester Zeit, den garantiert schnellsten Weg zu finden.

Bei der Wegsuche verwendet der A* Algorithmus eine Heuristik um den Weg zu suchen.
Wenn diese auf dem euklidischen Abstand der Knotenpunkte basiert, so erscheint mit die
Herangehensweise der eines Menschen sehr ähnlich, was auch zur Wahl beigetragen hat.

Ein großer Nachteil, der durch einen deterministischen Algorithmus entsteht, sind extrem
lange Berechnungszeiten, falls der gesuchte Weg in einem komplexen Layout nicht existiert
und erst alle erreichbaren Wege erforscht werden müssen.

Sinnvolle Abbruchkriterien, lassen sich, ohne erheblichen Mehraufwand bei der Grapherstel-
lung, welche, wie oben beschrieben, eh schon lange dauern kann, nicht formulieren. Allerdings
ist hier wohl noch Verbesserungspotential vorhanden.

6.2.2 Heatmap

Wegen der schlechten Skalierbarkeit beim Rendern von Elementen in WPF (Windows
Presentation Foundation [Mic06])) Probleme mit der Heatmap.

Leider kommen viele Renderprozesse nur mit einer begrenzten Menge (Halb-)Transparenter
Elemente zurecht. Diese künstliche Schranke hat durchaus ihre Berechtigung, da die Laufzeit
des Renderprozesses sonst für deren Anwendungsgebiet nicht mehr verhältnismäßig wäre.
Es wurden, für diese Arbeit, einige Ansätze für eine CPU basierte Renderung der Heatmap
überprüft, von denen allerdings keine den Anforderungen genügt, und so wurde letztendlich
ein auf einem Shader basierter Lösungsansatz nach [Dar10] eingeführt.

Der Vorteil eines Shaders ist, das die Heatmap auf der GPU berechnet wird, was zu einer
deutlich schnellerem Renderprozess führt.

Die gerenderte Heatmap wird der Oberfläche als statische Bitmap zugefügt.

6.2.3 Oberfläche und Funktionen

Die graphische Benutzeroberfläche teilt sich in drei Bereiche (siehe Abbildung 6.1), die im
folgenden genauer beschrieben werden:
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6.2 Umsetzung des Konzepts

Abbildung 6.1: Die drei Bereiche der Benutzeroberfläche:
1. Das Canvas-Element mit der 2D-Repräsentation des Fabriklayouts
2. Der Side-Bereich mit Einstellungsmöglichkeiten für den User
3. Die Timeline oder auch Zeitstrahl

Canvas-Element

Der erste Bereich, des Canvas-Elements, zeigt auf schwarzem Hintergrund in weißen Polygo-
nen die Konturen der Elemente des 2D-Layouts an.

Die einzelnen Layout-Elemente lassen sich mit der linken Maustaste per Drag and Drop
verschieben und mit der rechten drehen. Die graphische Rückmeldung des Programmes ist
Abbildung 6.3 zu sehen.

Neben den Layout Elementen werden in diesem Bereich der Oberfläche auch die Werkerwe-
ge als Linien, eine Heatmap, und Mitarbeiter als kleine Punkte eingezeichnet (siehe Abbil-
dung 6.2).

Durch die oben beschriebenen Interaktionsmöglichkeiten kann der User sein Layout verändern.
Die Änderungen veranlassen eine Neuberechnung der Werkerwege, der Heatmap und der
Werkerposition. Diese Visualisierungen, so wie die Kennziffern im Side-Bereich (siehe weiter
unten) sollen dem Benutzer Rückmeldung über die Auswirkungen der Änderung geben.
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6 Implementierung

(a) Screenshot der Heatmapvisualisierung des
Prototyps

(b) Screenshot aus dem Prototyp der einenWer-
kerpfad mit eingezeichneter Werkerpositi-
on zeigt

Abbildung 6.2: Beispielhafte Screenshots aus dem Prototyp

(a) Ein Element wird durch Drag and Drop mit
der linken Maustaste verschoben, und färbt
sichwährend des Verschiebe-Vorgangs Blau.

(b) Durch Ziehen mit gedrückter rechter Maustaste wird
ein Element um seinen Mittelpunkt gedreht. Die gel-
be Linie zeigt die Ausgangsstellung (0°) während die
grüne Linie den gerade ausgewählten Drehwinkel an-
gibt, welcher auch als Zahl im Element angezeigt wird.
Durch drücken von Alt bzw. Leertaste kann der User
eine Rasterisierung auf ganze Gradzahlen, bzw. auf ein
45 Grad Raster, erwirken.

Abbildung 6.3: Interaktionsmöglichkeiten mit dem Canvas-Bereich der Oberfläche
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6.2 Umsetzung des Konzepts

Side-Bereich

Im Side-Bereich hat der Nutzer die Möglichkeit die Informationen die ihm im Canvas-Element
angezeigt werden sollen zu variieren. Von oben nach unten sind das:

Graph Diese Einstellung ermöglicht es den kompletten Wegegraphen einzeichnen zu lassen.
Diese Option ist vor allem dann von Vorteil, wenn die "Wege-Wahl"der Werker dem User
nicht schlüssig erscheint, da man in dieser Ansicht erkennen kann, welcher Weggraph
für die Berechnung benutzt wurde.

Path Diese Option blendet die errechneten Werkerwege ein und aus.

Elements Mit dieser Option lassen sich die Layout-Elemente aus und einblenden.

Heatmap Mit dieser Option kann der User sich eine Heatmap der ausgewählenWerkerwege in
den Canvas-Bereich einzeichnen lassen um so Bereiche zu erkennen an denen besonders
oft Werker laufen.

DatenInput Mit der Dropdown-Liste lässt sich aus den verschiedenen Eingangsdatensätzen
wählen.

KPIs Mit den Key Performance Indicators (auch Leistungskennzahlen) kann der User schnell
erkennen, welche Effekte seine Änderungen haben. Ihm werden hier zwei Kennzahlen
angezeigt:

a) Die Wegstrecke der ausgewählten Werker, welche er zum Optimieren möglichst
verkleinern will.

b) Eine Bewertung darüber, wie dicht die Werker aufeinander stehen. Auch diesen
Wert sollte für eine Optimierung, klein gehalten werden.

Während der erste Wert noch intuitiv verständlich ist, so ergibt sich der zweite Wert aus
den Berechnungen der Heatmap und ist das Maximum der Werkerverteilung auf einer
engmaschige Rasterisierung, unter Zuhilfenahme eines Gaußkernels. (siehe Kapitel 2.3)

Workerliste In dieser Liste werden alle Werker die im Datensatz vorliegen aufgelistet und
der Benutzer kann sich, auch unter Zuhilfenahme der beiden Buttons, auswählen, welche
Werker für die Anzeige im Canvas, bzw. für die Errechnung derWerkerwege-KPI relevant
sein sollen.

Timeline

Im dritten Bereich befindet sich von links nach rechts, von oben nach unten:
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6 Implementierung

Time-Span Picker Hier kann der Benutzer die angezeigten Daten filtern. Dies geschieht
durch Auswahl eines Zeitraums auf dem Zeitstrahl, der den kompletten Simulationszeit-
raum abdeckt, mit den beiden schwarzen Datepickern. Die Rosa eingezeichneten Linien
verdeutlichen den Beginn eines neuen Tages.

Zeitstempel Hier wird der visualisierte Zeitpunkt angezeigt.

Timeline Das namensgebende Element ermöglicht es dem User per verschieben des Reglers
einen Zeitpunkt auszuwählen. Der Bereich, welcher zur Auswahl steht, wird durch den
Time-Span Picker bestimmt. Die Positionen, der Arbeiter zum ausgewählten Zeitpunkt,
werden im Canvas-Bereich, durch Punkte visualisiert. Je nachdem wie groß der Zeitraum
ist, der gerade durch Timeline auswählbar ist, sind die Tage, Stunden und Minuten, durch
rosa, silberne und graue Linien, zur besseren Orientierung des Users eingezeichnet.

Auf dem oberen Rand der Timeline sind, falls vorhanden, die Arbeitsschritte der ausge-
wählten Werker, als kleine Rauten eingezeichnet. Diese Rauten geben bei überfahren mit
dem Cursor Auskunft über den Zeitpunkt des Events und den Werker, den es betrifft.

Play-Break Button Für eine animierte Simulation kann der Benutzer hier ein Fortlaufen des
visualisierten Zeitpunktes erreichen. Dies ist in beide Richtungen möglich, sprich in
die Vergangenheit und in die Zukunft. Durch mehrfaches Klicken auf einen der Pfeile
beschleunigt sich die Animation. Der Button mit den beiden parallelen Balken, hält die
Animation an.

Save Diese Operation dient dazu das, durch Interaktion veränderte, Fabriklayout als CSV-Datei
zu exportieren. Diese Exportdateien können später als neue Eingangsdaten verwendet
werden (siehe Kapitel 6.3).

6.3 Struktureller Aufbau der Eingangsdaten

Die Eingangsdaten für das Tool, entsprechen den Exportdaten eines Simulationsdurchlaufes
durch das Tool IMV der Firma IFakt GmbH [iGmbb] und liegen in mehreren CSV-Dateien vor.
In diesem Kapitel soll erklärt werden, was CSV-Dateien sind und welche Daten, in welcher
Struktur, nötig sind um den Prototyp zu verwenden.

6.3.1 CSV-Dateien

CSV (Comma Separated Value) Dateien, sind eine effiziente Möglichkeiten Datentabellen zu
speichern.

Es sind Text-Dateien, welche in der ersten Zeile die Spaltenheader und in jeder weiteren Zeile
die Daten der Tabelle, jeweils per Semikolon getrennt, beinhalten.
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6.3 Struktureller Aufbau der Eingangsdaten

Der Vorteil gegenüber den, meist benutzen, Excel-Dateien ist, das CSV-Dateien sich schneller
einlesen lassen, weniger Speicher verbrauchen undman keine kommerzielle Software erwerben
muss um sie zu editieren.

6.3.2 Struktur

Damit der Prototyp auch ohne die Simulationssoftware verwendet werden kann, wird hier die
Datenstruktur spezifiziert, welche von der Software erzeugt wird. Durch die Offenlegung des
Formats, ließen sich verwendbare Daten auch von einem anderen Tool generieren.

Das Tool benötigt nicht den vollen Umfang der ursprünglich bereitgestellten Simulationsdaten.
Die Anforderungen beschränken sich auf folgende Tabellen und Tabellenwerte.

LayoutElements.csv Enthält die Layout Elemente mit Positionsdaten (siehe Tabelle 6.1).

WorkerItems.csv Liste der in der Simulation vorhandenen Werker (siehe Tabelle 6.2).

SimComponents.csv Enthält Verbindungsdaten zwischen, in der Simulation benutzten Ob-
jekten und deren geometrischen Eigenschaften in der LayoutElements Tabelle (siehe
Tabelle 6.3).

WorkerActivities.csv Hier sind die Simulationsevents, mit Start und Endzeitpunkt, aufgelis-
tet, sowie an welchem Simulationsobject diese stattfinden (siehe Tabelle 6.4).

WorkerActivityWorkerLinks.csv Enthält die Information welcher Werker welchem Simu-
lationevent zugeordnet ist (siehe Tabelle 6.5).

Die Verbindungen der Datentabellen kann man noch einmal in Abbildung 6.4 sehen.

WorkerActivityWorkerLinks

WorkerItems

WorkerActivities SimComponents

LayoutElements

WorkerItemID

WorkerActivityID

IDPS

IDPS

ComponentID

IDPS

LayoutElementID

IDPS

Abbildung 6.4: Diagramm der Datenverbindungen
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6 Implementierung

Header Typ Beschreibung
ID guid ElementID-Wert, zum Binden an andere Tabellen
Name string Der Name des Elements, kann auch leer sein
LocationX double X Wert der Position des Elements innerhalb des Fabriklayouts
LocationY double Y Wert der Position des Elements innerhalb des Fabriklayouts
BoundsX double Ausdehnung des Elements in X Richtung
BoundsY double Ausdehnung des Elements in Y Richtung
RotationZ double Der Winke der Rotation (im Uhrzeigersinn) des Elements

Tabelle 6.1: LayoutElements.csv Spalten

Header Typ Beschreibung
ID guid WorkerID-Wert, zum Binden an andere Tabellen
WorkerItem string Bezeichnung des Werkers, dient zur Identifikation

Tabelle 6.2: WorkerItems.csv Spalten

Header Typ Beschreibung
ID guid ComponentID-Wert zum Binden an andere Tabellen
LayoutElementID guid LayoutElementID-Wert zum Binden (Tabelle 6.1)

Tabelle 6.3: SimComponents.csv Spalten

Header Typ Beschreibung
ID guid WorkerActivityID-Wert zum Binden an andere Tabellen
ComponentID guid ComponentID-Wert zum Binden (Tabelle 6.3)
StartDate datetime StartDate of the Activity
endDate datetime EndDate of the Activity

Tabelle 6.4: WorkerActivities.csv Spalten

Header Typ Beschreibung
WorkerItemID guid WorkerItemID-Wert zum Binden (Tabelle 6.2)
WorkerActivityID guid WorkerActivityID-Wert zum Binden (Tabelle 6.4)

Tabelle 6.5:WorkerActivityWorkerLinks.csv Spalten
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7 Evaluation

In diesem Kapitel werden Anwendungsfälle für das im Rahmen der Arbeit erstellte Tool
vorgestellt. Dazu ist erst einmal festzustellen, welche Anwendungsfälle vorliegen können.
(Abbildung 7.1)

Fabrikbesitzer

Optimierung des Fabriklayouts

Visualisierung der Werker

 innerhalb des Layouts

Fabrikmitarbeiter

Schulung

Abbildung 7.1: UseCase-Diagramm

7.1 Beispielhaftes Layout

Die folgenden Anwendungsfälle verwenden dasselbe Ausgangslayout, welches von der Firma
iFAKT zur Verfügung gestellt wurde.
Das Layout leitet sich aus einem beispielhaften 3D Modell für den, öffentlich verfügbaren,
Demo-Simulationsdatensatz [iGmba] ab. Es wurden allerdings Änderungen am Datensatz
vorgenommen, so sind Elemente weggelassen, oder verschoben worden.
Wichtig für die Use-cases ist, das es sich um ein Layout handelt, welches in der realen Produk-
tion genau so vorkommen könnte.
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7 Evaluation

Das 3D Modell ist in Abbildung 7.2 zu sehen.

(a) 3D-Modell zum Demo-Produktionsdatensatz [iGmba] (b) 2D-Layout, welches für die Use-Cases
verwendet wurde

Abbildung 7.2: 3D-Layout und das daraus abgeleitete 2D Layout

7.2 Optimierung des Fabriklayouts

Dieser Anwendungsfall ergibt sich vor allem für Fabrikplaner, die Unterstützung bei der
Planung neuer Werkhallen bzw. ganzer Fabrikkomplexe benötigen.

Bevor eine Fabrikhalle gebaut/eingerichtet wird, erfolgt eine Simulation der späteren Fertigung
simuliert. Mit den Ergebnissen der Simulation arbeitet nun der Prototyp und es besteht die
Möglichkeit das anfänglich erstellte, für die Simulation verwendete, Layout zu verändern. Ziel
ist eine Optimierung der Arbeiterwege.

Der weitere Arbeitsablauf wird anhand der Abbildung 7.3 und 7.4 beschrieben.

Da ein Fabrikplaner die real-Räumlichen Gegebenheiten kennt, achtet er darauf das die Elemen-
te nur an Stellen verschoben werden, welche sinnvoll sind. Dies ist wichtig, da Beschränkungen
wie, zum Beispiel, Kabelanbindungen u.Ä. im Prototyp nicht abgebildet werden.

Durch die visuelle Darstellung und die Änderungen der KPIs kann der Benutzer abschätzen ob
seine Änderungen eine Optimierung für sein Layout darstellen.

Als Fazit kann man sehen, dass durch das Verwenden des Tool, eine Änderung am Planungslay-
out vorgenommen wurde, welche dazu führt, dass die Arbeit in der realen Produktion später
effizienter, da weniger Zeit auf der Strecke bleibt, und für die Mitarbeiter angenehmer sein
wird.
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7.2 Optimierung des Fabriklayouts

(a) Anfängliches Layout, der Simu-
lationsdaten

(b) Das selbe Layout mit eingezeich-
neten Werkerwegen. Man sieht
das die Werkerwege sich für die
simulierten Produktionsschritte
auf einen Teilbereich des Lay-
outs beschränken, und das sie
unnötig weit sind.

(c) Ein Blick auf die Heatmap ver-
rät dem Betrachter, dass die lan-
gen Werkerwege sogar relativ
häufig benutzt werden, weshalb
sich eine Änderung des Lay-
outs höchstwahrscheinlich loh-
nen würde.

Abbildung 7.3: Layout des ersten Use-Cases, vor der Änderung

(a) Durch Verschiebung der, für die
betrachteten Produktionsschrit-
te, nötigen Layout-Elemente
konnte eine Verringerung der
Mitarbeiterwege erreicht wer-
den.

(b) Auch die Heatmap zeigt eine
Verkleinerung des durch die We-
ge betroffenen Bereichs inner-
halb des Layouts

(c) Das veränderte Layout. Durch
den Speicherbutton lässt sich
es sich im bekannten CSV-
Format exportieren (Siehe Ab-
schnitt 6.3.1)

Abbildung 7.4: Verändertes Layout des ersten Anwendungsfalles
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7 Evaluation

7.3 Visualisierung der Werker innerhalb des Layouts

Angenommen, der Fabrikplaner möchte einen neuen Roboter in seine Fabrik integrieren, der
einen qualifizierten Mitarbeiter in der Umgebung braucht, der dessen Fehlerprotokoll einmal
am Tag auf Einträge überprüft. Als Erstes muss er darauf achten, wo der Roboter am besten
im Fabriklayout untergebracht werden kann, möglichst ohne Werkerwege zu versperren, oder
zu verlängern. Hierbei kann das Tool, durch die Visualisierung dieser hilfreich sein.
Nun allerdings, muss er darauf achten, dass ein dafür ausgebildeter Mitarbeiter einmal am Tag
dieWartung vornehmen kann. Dazu kann er sich nun mit dem Tool, und der Timeline, anzeigen
lassen, welcher Mitarbeiter sich in der Fertigung zum fraglichen Zeitraum in der Nähe des im
ersten Schritt gefundenen Platzes aufhält und kann daraufhin mit dieser Zusatzinformation
entscheiden, wer die Fortbildung zur Wartung bekommt. (Siehe Abbildung 7.5)

Abbildung 7.5: Position eines Werkers, zum ausgewählten Zeitpunkt, in der Nähe des Robo-
ters, hier rot markiert. (Abbildung entspricht nicht der genauen Darstellung
des Tools)
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8 Zusammenfassung und Ausblick

8.1 Zusammenfassung

In der Arbeit wurde Konzept entwickelt und in einem Prototyp umgesetzt, welches in imple-
mentierter Weise einem Anwender helfen soll, die Werkerwege innerhalb seines Fabriklayouts
zu analysieren und zu optimieren.

8.2 Ausblick

Bei dem in dieser Arbeit entwickelten Konzept, und dessen Umsetzung im Prototyp, gibt es
viele Aspekte die verbessert werden können, oder Ansätze die besser geeignet sind.

Die Art der Visualisierung könnte sich mit der Weiterentwicklung der dreidimensionalen Dar-
stellungsmöglichkeiten verändern, so sind begehbare Plots des Layouts in eine leere Fabrikhalle
für den Planer, mit Augmented-Reality-Technologien denkbar.

Auch bisherigen Rechenleistungsprobleme könnten durch andere/optimierte Algorithmen, vor
allem in der Grapherstellung und er Wegfindung, besser begegnet werden.

Auch eine bessere Rückmeldung an den Benutzer über Optimierungen durch seine Aktionen
wären wünschenswert.

Das ganze Konzept sollte auch im Planungsprozess eine Fabrik immer in Verbindung mit einer
Simulation der restlichen Fertigung ablaufen, um zu validieren, dass die Optimierungen der
Werkerwege nicht größere negative Folgen für den restlichen Produktionsablauf hat.
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