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Kurzfassung

Bei der Fabrikplanung gibt es den Bedarf der Reduzierung von spéteren Kosten. Dies kann durch
eine Optimierung des Fabriklayouts geschehen. Einer der Aspekte dieser Layout-Optimierung
sind die Werkerwege. Werkerwege sind die Wege die ein Arbeiter wahrend einer Fertigung
zuriicklegen muss, um beispielsweise andere Arbeitsflichen oder Materialien zu erreichen.
Die Optimierung dieser Wege gehort in den Bereich der Betriebsoptimierung und bedeutet
Kosteneinsparungen in der Produktion.

Man kann hierbei zwei Hauptoptimierungsziele ausmachen. So ist die Wegstrecke fiir den
Arbeiter moglichst gering zu halten, damit weniger Arbeitszeit dafiir aufgewendet werden
muss. Auflerdem ist darauf zu achten, dass sich nicht zu viele Werker gleichzeitig in einem
Bereich befinden, damit sie sich nicht gegenseitig behindern.

Diese Arbeit umschreibt die Entwicklung eines Konzepts und die Implementierung dessen in
einen Prototyp, mit welchem eine Visualisierung und interaktive Optimierung von Fabriklay-
outs, unter dem Gesichtspunkt der Werkerwege, stattfinden soll. Dazu werden die erwarteten
Werkerpfade in ein 2D-Layout eingezeichnet. Der Benutzer kann mit Interaktion das Layout
umstellen. Die verdnderten Wege werden dem Benutzer zur Bewertung visuell prasentiert. Der
Prototyp wird anhand einiger Use-Cases evaluiert.






Inhaltsverzeichnis

1 Einleitung

2 Grundlagen
2.1 Graphen . . . . . .
2.2 Wegsuchalgorithmus A-Stern . . . . . .. ... .. .. oL
23 Heatmap . . . .. . .. .. e

3 Aufgabenstellung und Lésungsansatz
3.1 Hintergrund . . . . . ...
3.2 Aufgabenstellung . . . .. ...

4 Verwandte Arbeiten
41 TPOPlan . . . . . . e
42 SmoothScroll . . . . . . ..
4.3 Die Visualisierung dynamischer Graphen als Small Multiples . . . . . . . . ..

5 Konzept
5.1 AnzeigendesLayouts . . . . . ... .. .. ...
5.2 Visualisierung der Wege innerhalb dieser Anzeige . . . . . . . ... ... ...
5.3 User-Interaktion . . . . . . ... ... L

6 Implementierung
6.1 Verwendete Programmeund Tools . . . . . . ... ... ... .. ... ...
6.2 Umsetzung des Konzepts . . . . . ... ... ... . ... .
6.3 Struktureller Aufbau der Eingangsdaten. . . . . .. ... ... ... ... ...

7 Evaluation
7.1 Beispielhaftes Layout . . . . . . ... ... ...
7.2 Optimierung des Fabriklayouts . . . . . . ... ... ... ... .........
7.3 Visualisierung der Werker innerhalb des Layouts . . . . ... ... ... ...

8 Zusammenfassung und Ausblick
8.1 Zusammenfassung . . . . . . . . ...
8.2 Ausblick . . . . . . ..

Literaturverzeichnis

11
11
13
15

19
19
19

21
21
21
22

25
25
27
30

31
31
31
36

39
39
40
42

43
43
43

45



Abbildungsverzeichnis

2.1

2.2
2.3
2.4
2.5

4.1
4.2
4.3

5.1
5.2
5.3

6.1
6.2
6.3
6.4

7.1
7.2
7.3
7.4
7.5

Abbildung jeweils eines ungerichteten, eines gerichteten und eines gerichteten

sowie gewichteten Graphen . . . . ... ... ... ... ... ... . ... .. 11
Suchgraph, der Vorteile einer Visited-Liste verdeutlicht . . . . ... ... ... 16
Einfache Heatmap mir griiner Farbung (Farben von [BH+]) . . . . . . ... .. 16
Heatmap unter Verwendung eines Gaufikernels (Farben von [BH+]) . . . . . . 17
A-Stern Beispiel . . . . ... 18
Screenshots aus dem Tool IPO.Log von der IPO.Plan Website [IPO] . . . . .. 22
Erklarende Bilder zu [WE13] . . . . . . . . . .. . ... ... .. ... ..... 22
Screenshots aus der Implementierung von [Lial4] . . . .. ... ... ... .. 23
Beispiel fiir das Phanomen der Verdeckung bei einer 3D-Visualisierung . . . . 26
Verschiebung eines Elements und die resultierenden Graphénderungen . . . . 29
Vorstellung des implementierten Verfahrens fiir den dynamischen Graph . . . 30
Die drei Bereiche der Benutzeroberflache . . . . . . ... ... ... ... ... 33
Beispielhafte Screenshots aus dem Prototyp . . . . ... ... ... ... ... 34
Interaktionsmoéglichkeiten mit dem Canvas-Bereich der Oberflaiche . . . . . . 34
Diagramm der Datenverbindungen . . ... ... ... ... ... ....... 37
UseCase-Diagramm . . . . . . . . ... ... L 39
3D-Layout und das daraus abgeleitete 2D Layout . . . . . . ... ... ... .. 40
Layout des ersten Use-Cases, vor der Anderung . . . . .. ... ........ 41
Verdndertes Layout des ersten Anwendungsfalles . . . . ... ... ... ... 41

Position eines Werkers, zum ausgewahlten Zeitpunkt, in der Nahe des Roboters,
hier rot markiert. (Abbildung entspricht nicht der genauen Darstellung des Tools) 42

Tabellenverzeichnis

6.1

LayoutElements.csv Spalten . . . . . ... ... ... . L L 38



6.2 Workerltems.csvSpalten . . . . ... .. ... ... .. 38

6.3 SimComponents.csvSpalten . . . . ... ... ... 38
6.4 WorkerActivities.csv Spalten . . . . . .. ... L 38
6.5 WorkerActivityWorkerLinks.csv Spalten . . . . . . .. ... ... ... .. .. 38

Verzeichnis der Algorithmen

2.1 Pseudo-Code zum A*-Algorithmus . . . . . . ... ... ... ... ... .... 14






1 Einleitung

In der industriellen Fertigung gibt es, bei den meist sehr komplexen Verarbeitung, viele Frei-
heitsgrade. Es herrscht das Bediirfnis nach Optimierung der Produktion. Der Komplexitat
und hinzukommenden Veranderungen an Produkt und Produktion geschuldet, kommt man
mit einer diskreten Optimierung oft nicht mehr nach und bedient sich immer 6fter einer
Simulation des Produktionsablaufes um dessen Effektivitat zu bewerten. Ein Teilaspekt einer
solchen Simulation sind die Werkerwege, welche auch Mdoglichkeiten zur Optimierung bieten.
Es konnen Mitarbeiterwege verkiirzt werden, damit die Arbeiterzeit des Arbeiters effektiver
genutzt werden kann. Zudem kann darauf geachtet werden, dass nicht zu viele Mitarbeiter
auf einmal in einem gewissen Bereich der Fabrik arbeiten, damit sie sich nicht gegenseitig
behindern.

Werkerwege werden vor allem durch das Fabriklayout bedingt, dessen Entwurf und Anderung
Teil jeder Fabrikplanung sind.

Diese Arbeit soll das Konzept einer visuellen Analyse fiir Arbeiterwege in Simulationsergeb-
nissen hervorbringen. Diese Visualisierung es einem Benutzer ermoglicht die besagten Wege
zu betrachten, sowie per Interaktion und damit Variationen des Fabriklayouts, zu verdndern.

Der endgiiltige Nutzen wire eine Optimierung des Produktionsvorganges fiir Mitarbeiter und
Fabrikbesitzer.

Gliederung

Die Arbeit ist in folgender Weise gegliedert:
Kapitel 2 — Grundlagen Hier werden Grundlagen dieser Arbeit beschrieben.

Kapitel 3 — Aufgabenstellung und Losungsansatz Hier wird die Aufgabenstellung an die-
se Arbeit vorgestellt.

Kapitel 4 — Verwandte Arbeiten Hier werden Projekte vorgestellt, die dieser Arbeit dhneln.
Kapitel 5 — Konzept Hier wird der begangene Arbeitsweg aufgezeigt der zum Konzept fiihrte.

Kapitel 6 — Implementierung Die Implementierung des Konzepts, so wie die Benutzerober-
fliche werden hier erklart.



1 Einleitung

Kapitel 7 — Evaluation Hier wird das erarbeitete Konzept anhand von Usecases evaluiert

Kapitel 8 - Zusammenfassung und Ausblick fasst die Ergebnisse der Arbeit zusammen
und stellt Ankniipfungspunkte vor.
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2 Grundlagen

In diesem Kapitel werden Grundlagen erklart, die dem Leser nicht unbedingt vorliegen, aber
zum Verstandnis der Arbeit unter Umstanden hilfreich ist.

2.1 Graphen

Graphen eigenen sich besonders gut Zweidimensionale Wegenetze zu modellieren.
Sie sind die Grundlage der Graphentheorie, was eine Disziplin der Mathematik ist. [Die12]

Graphen bestehen aus Knotenpunkten und (un-)gerichteten, (un-)gewichteten Kanten die
zwischen je zwei Knotenpunkten verlaufen.

Zur Erklarung siehe Abbildung 2.1.

O
s
O
O

?

(a) Ein ungerichteter und ungewich- (b) Ein gerichteter Graph. ( mit einer (c) Ein gerichteter und gewichteter
teter Graph, hierbei sind Kanten Kante deren Ziel und Startknoten Graph. Hierbei bekommt jede
Jnur “ Verbindungen zwischen identisch sind) Kante noch ein Gewicht zugeteilt,
zwei Knotenpunkten welches Beispielsweise die Weg-

kosten dieser Kante angibt.

Abbildung 2.1: Abbildung jeweils eines ungerichteten, eines gerichteten und eines gerichteten
sowie gewichteten Graphen
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2 Grundlagen

2.1.1 Dynamische Graphen

Bei einem fest definierten Graphen, wie im letzten Kapitel beschrieben, spricht man von einem
statischen Graphen, da er sich, laut Definition, nicht verandern kann. Ein dynamischer Graph
dagegen, lasst sich, sehr gut, durch eine Folge an statischen Graphen verstehen. Die einzelnen
Teilschritte, konnen durch Algorithmen, Benutzerinteraktion oder andere Aktivitaten verdndert
werden.

Diese Anderungen kann man in drei Arten unterteilen: (Unterteilung entnommen aus [Lia14]
S.13)

1. Knoteninderungen Das heifit es kommen Knoten zum Graphen hinzu, oder werden vom
Graphen (mitsamt ihren Kanten) entfernt.

2. Kanteninderungen Hier werden Kanten aus dem Graph genommen, oder neue Kanten
in den Graph eingefiigt.

3. Anderung der Kantengewichte Hier werden nur von schon existierenden Kanten die
Kantengewichte gedndert.

War der dynamische Graph vorher der Graph G, so reprasentiert ihn nun der Graph G, der
aus Anderung von G resultiert.

Die Herangehensweise der Graphen-Folge, hilft auch darauf zu achten wahrend Berechnungen
und Visualisierungen immer einen statischen Graphen zu nutzen, beziehungsweise anzuzeigen.
Damit beugt man ungewollten Anzeige Artefakten und falschen Ergebnissen vor. Wenn man
diese strikte Trennung zwischen den Graph-Zustdnden nicht vollzieht, dann kann es, zum
Beispiel, zu falschen Wegberechnungen kommen (ein Beispiel fiir eine Wegberechnung auf
einem Graph kann man in Kapitel 2.2 sehen).

Werden, wiahrend der Berechnung des Weges, Kantengewichte verandert, so kann es sein, dass
der gefundene Weg kein Idealer mehr ist, da zur Berechnung noch die vorherigen Kantenge-
wichte hergenommen wurden.

Beim Graph der zur Wegberechnung innerhalb des hier vorgestellten Ansatzes benutzt wird,
handelt es sich um einen dynamischen, der durch Interaktion des Benutzers in allen drei Arten
verandert wird. (siehe Kapitel 5.2.1)

Ein grofies Problem von umfangreichen, dynamischen Graphen ist ihre Rechenintensivitit,
sprich der Aufwand fiir das Ausfithren von Operationen auf/mit einem solchen Graphen, die
vor allem bei Echtzeitanwendungen, negativ, zum Vorschein kommt. Beispiel Kantengewichts-
anderung:

Es existiert durch einen Graphen ein eingezeichneter Idealen Weg zwischen zwei Knoten. Hat
nun der Benutzer die Moglichkeit, beispielsweise mit der Maus, durch verschieben von Kno-
tenpunkten die Kantengewichte zu dndern, so miisste ja in jedem Zustand, die der Bildschirm
anzeigt, der neue Ideale Weg berechnet werden.
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2.2 Wegsuchalgorithmus A-Stern

Um dem Benutzer eine Animation zu zeigen kann man zum Beispiel mal 24 Hz ansetzen, das
ist die normale Bildrate eines Films.

Wenn wir nun von einem A* Algorithmus (Kapitel 2.2) fiir die Wegsuche hernehmen, so
miissen wir 24 mal in der Sekunde eine Rechnung der Komplexitit O(| K'|?) ausfiihren, was
bei entsprechender Kontenanzahl zu sehr viel Rechenaufwand fithren kann. (K ist hier die
Menge der Knoten im Graphen) Allein schon das haufige Zeichnen, sprich anzeigen, von vielen
Elementen kann schon, je nach Methode, zu Problemen fithren.

2.2 Wegsuchalgorithmus A-Stern

Ganz Allgemein ist der Suchalgorithmus A-Stern, oder auch A", ein deterministischer Weg-
suchalgorithmus auf einem Graphen mit positiven Kantengewichten. Um ihn anzuwenden
muss eine Abschatzung, bzw. Heuristik, der Wegkosten fiir jeden Knoten hin zum Zielknoten
gegeben sein. Beschrieben wird er unter anderem von Hart et al. [HNR68] Eingabe sind, die
oben beschriebene Kostenschatzung, der Graph auf dem die Suche stattfinden soll, sowie Start-
und Endknoten des gesuchten Pfades.

Knoten des Graphen: K = {4, B...}

Kanten des Graphen: L = {(C, D), ...} wobei C, D € K

Startknoten: S € K

Zielknoten: £ € K

Heuristik-Funktion: h(A)VA € K (geschatzte Kosten vom Knotenpunkt A zu E)
Real-Abstandskosten-Funktion: ¢(A, B)VA, B € K (reale Kosten des Weges zwischen A und B)
Realkosten-Funktion: r(A)VA € K(= c¢(A, E))

Pfadkosten-Funktion: g,(A)VA € K (Kosten im aktuellen Pfad von S nach A)
Prioritatsliste-Kosten: f(A) = g,(A) + h(A)VA € K

Um eine Losung zu finden muss die Heuristik zuldssig sein, das heifit sie darf niemals grofier
als die realen Kosten des Weges sein. (Siehe Gleichung 2.1)

(2.1) h(A) <r(AVAe K

2.2.1 Funktionsweise

Im Pseudo-Code 2.1 wird die Funktionsweise des A* beschrieben.

Das Herzstiick des Algorithmus ist eine ,Priority-Queue® P, also eine sortierte Liste aus
Knotenpunkten, welche nach dem Wert der Funktion f sortiert werden. Wenn ein Knoten
eingefiigt wird, der schon in der Liste ist, so wird nur der mit dem kleineren f-Wert behalten.

13



2 Grundlagen

Algorithmus 2.1 Pseudo-Code zum A*-Algorithmus

procedure A-STERN(Graph G, Heuristik-Funktion h, Startknoten S, Endknoten F)
Priority-Queue P
Visited-Queue V
P.Enqueue(S,0,h(S))) // Knotenpunkt, Kosten bisher, erwartete Kosten
while P.Hasltems() do
Knoten A, Kosten S bis A k = P.DequeueMinPathCostV ertex()
if A ==L then
return A => Pfad gefunden
end if
V.EnList(A)
for all Nachbarn B von A do
if V.Contains(B) then
Continue
end if
knew = k + Kosten von A nach B
if P.HasSmalerV alueFor(B, kpe,) then
Continue
end if
P.Enqueue(B, knew, knew + h(B))
B.Predecessor = A
end for
end while
return NULL => Pfad nicht existent
end procedure

Des weiteren gibt es mit der ,Visited-Queue“ V' eine Liste der bereits untersuchten Knoten-
punkte. Verwendet wird sie um zu verhindern das Knotenpunkte ofters besucht werden. Diese
Liste ist nicht unbedingt notig, kann aber die Laufzeit des Algorithmus erheblich verringern.

(Siehe Abbildung 2.2)
Wie im Pseudo-Code 2.1 beschrieben, wird zu Beginn der Startknoten in P eingefiigt.

Jetzt wird immer der Knoten mit dem kleinsten f-Wert aus P entnommen. Wenn dieser der
Zielknoten ist, so hat man den Weg gefunden. Ansonsten wird der Knoten in V' und Seine
Nachbarn in P eingefiigt. (Sofern sie nicht schon in V' sind). Jeder Knoten in P speichert seinen
Vorgianger, sprich den Knoten, durch den sie in P gesteckt wurden. Wenn P nun leer ist, das
heif3t, dass alle von Startknoten aus erreichbaren Knoten besucht wurden, so existiert kein
Weg.
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2.3 Heatmap

2.2.2 Eigenschaften
Der Algorithmus A* ist vollstandig. Das heifit, dass immer eine existente Losung gefunden
wird.

Gilt tber die Zuléssigkeit noch das die Heuristik monoton ist, so gilt auch das A-Stern einen
optimalen Weg findet.

Monoton ist eine Heuristik, wenn die geschétzten Kosten von einem Knoten A zum Endknoten,
immer kleiner oder gleich sind wie die geschatzten Kosten eines Nachbarn B von A, addiert
mit den tatsdchlichen Kosten fiir den Ubergang von A nach B. (Siehe Gleichung 2.2),

(2.2) h(A) < c¢(A,B)+ h(B)VA,B € K : B ist Nachbar von A

Das kann auch, im Austausch gegen eine langsamere Performance durch leichte Umstellung des
Algorithmus (u.a. Weglassen der Visited-Liste) mit einer nur zuldssigen, aber nicht monotonen,
Heuristik erreichte werden.

Eine monotonen Heuristik ist A-Stern auch optimal effizient, das heif3t, dass kein anderer
Algorithmus mit den Informationen der Heuristik schneller eine optimale Losung findet.

2.2.3 Beispiel

Als ein Beispiel ist in Abbildung 2.5, ein einfacher Durchlauf einer Wegsuche in einem Weg-
graph mithilfe des A-Stern Algorithmus aufgezeigt.

2.3 Heatmap

Eine Heatmap ist eine Methode um Daten innerhalb eines Datensatzes zu visualisieren. Hier
werden bei einer (1D-, 2D-, oder 3D-) Visualisierung des Datensatzes, Bereiche, nach Wer-
tigkeit einer betrachteten Eigenschaft, (Haufigkeit eines Elements, Temperatur), verschieden
eingefarbt.

15



2 Grundlagen

) O

Abbildung 2.2: Ein Beispiel fiir einen Suchgraph bei dem der Einsatz einer Visited-Liste zu
einer erheblichen Verringerung der Laufzeit fiithrt.
Der gesuchte Pfad geht von S nach E, mit einer Heuristik, die den geometri-
schen Abstand der Knoten zum Endknoten als Schatzung nimmt.
Ohne Visited-Liste wird der Knoten N immer wieder untersucht, da er einen
kleinen Wert der Funktion f(x) hat.

%

%

g g hS
[N

00
Y| e |
(a) Heatmap-Gitter iiber einer 2D Visualisie- (b) Gitter aus 2.3a nach dem Einzeichnen der
rung von Ameisen-Positionen Werte

Abbildung 2.3: Einfache Heatmap mir griiner Farbung (Farben von [BH+])

2.3.1 Vorgehensweise

Die Vorgehensweise soll im Folgenden anhand einer 2D Visualisierung von Ameisen, entlang
einer Ameisenspur, gezeigt werden.
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2.3 Heatmap

Man legt Giber den betrachteten Visualisierungs-Raum ein Gitter. Fiir jede der Gitterzellen wird
nun ein Wert festgestellt, z.B Wie viele Ameisen sich zum Zeitpunkt a in ihr befunden haben.
Anhand dieses Wertes wird die Zelle dann eingefarbt (siehe Figur 2.3).

Durch die Verfeinerung des Gitters kann man nun auch genauere Verteilungen visualisieren.
Eine intuitivere Visualisierung der Verteilung lasst sich in einem weiteren Schritt zum Beispiel
durch Verwendung eines Gauf3-Kernels erstellen.

Ein Kernel ist eine Matrix aus Faktoren, welche fiir die Berechnung der Gitterwerte herange-
kommenen werden.

Im Beispiel wird fiir jede Ameise der eigentliche Heatmap-Zellenwert um vier und die der

Nachbarn links, rechts, iber und unter der eigenen Zelle um jeweils eins erhoht. (Siehe Abbil-
dung 2.4)

0

[EEN

o o o
[N

w N N

1.5

1 O 0|0 05 'O

(a) Beispiel eines Gauf3ker- (b) Heatmap ohne Gaufikernel (c) Heatmap mit Gaufikernel aus 2.4a
nels

Abbildung 2.4: Heatmap unter Verwendung eines Gaufikernels (Farben von [BH+])
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2 Grundlagen
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(a) Wir starten mit dem Knoten A (b) Es werden alle Nachbarn von A mit ihren f () Kos-
ten in P eingefiigt. Falls geschétzten Kosten nicht
als reale Kante vorliegen, werden sie als gedachte,
rot-gestrichelte Linie eingezeichnet.
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(c) Von D aus kann weder der Weg tiber B noch der tiber  (d) Vom Knoten B aus, wird der Knoten E eingefiigt, der
C, verkiirzt werden. Der Knoten F wird in P einge- aber grofiere Kosten erwarten lésst als C
fiigt, aber die zu erwartenden Kosten sind héher als
die von B und C

E
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136,5188

E
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107 /65
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84,5931
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170 /55
179,2388

58, 58

51,614 51,614
42,0595 42,0595
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F
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(e) Vom Knoten C aus kann keinerlei weitere Erkenntnis  (f) Der Knoten E, den wir als nichstes aus P bekommen,
iiber den kiirzesten Weg gewonnen werden hat nun eine direkte Verbindung zu G, weshalb wir
nun den kirzesten Weg gefunden haben

Abbildung 2.5: Ablauf einer A-Stern Suche fiir den giinstigsten Pfad von A nach G.
Auf den Knoten steht von oben nach unten der Name, die Koordinaten und
die Kosten von A bis zum jeweiligen Knoten
Dunkelgriin: Der gerade aktuell betrachtete Knoten
: Knoten in der Priority Queue

18 Rot: Knoten in der Visited Liste



3 Aufgabenstellung und Losungsansatz

3.1 Hintergrund

Bei der Fertigung in einer Fabrik, gibt es das Bediirfnis der Optimierung. Da die Realitat zu
komplex fiir eine diskrete Optimierung wére, bedient man sich in der Praxis ofters einer
Simulation des Produktionsablaufes um dessen Effektivitit zu bewerten.

Ein Teil eines solchen simulationsgetrieben Optimierungsprozesses sind die Optimierungen
der Werkerwege.

Werkerwege werden vor allem durch das Fabriklayout bedingt, dessen Entwurf und Anderung
Teil jeder Fabrikplanung sind.

3.2 Aufgabenstellung

Als Ziel dieser Arbeit wurde die Erstellung eines Konzepts zur Visualisierung von Arbeitswegen
innerhalb eines Fabriklayouts, festgelegt. Dieses soll in einem Prototyp umgesetzt werden, der
es einem Benutzer ermoglicht durch Anderungen am simulierten Fabriklayout die Produktion
zu optimieren.

Die verlangten Leistungen lassen sich wie folgt zusammenfassen:

Es soll zu existierenden Ansatzen recherchiert werden. Des Weiteren soll ein Analysekonzept
fiir die visuelle Darstellung und implizite Verdnderungen des Parameterraums einer Simulati-
on, erarbeitet werden. Dieses Konzept soll darauf in einen selbst implementierten Prototyp
einflieen, welcher durch das Beschreiben von Anwendungsfillen evaluiert werden soll.
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4 Verwandte Arbeiten

Im folgenden Kapitel werden einige Arbeiten vorgestellt, welche in Zusammenhang mit meiner
Arbeit stehen, oder die als Grundlage fiir meine Arbeit geholfen haben diese zu erstellen.

4.1 IPO.Plan

Die Firma IPO.Plan vertreibt eine kommerzielle Software, ,JPO.Log", welche ihren Usern beim
Austakten und Logistikplanung, helfen soll. [Kel12] IPO.Plan hat sich hier auf die FlieBband-
fertigung spezialisiert.

Es wird hier eine 3D-Visualisierung verwendet, in welche die User verschiedenste Schritte
einer Fabrikplanung einbringen.

Nun werden Gant-Auslastungs der Arbeiter und Taktungs-Edition zum Zwecke einer
Simulations-Optimierung zur Verfiigung gestellt.

Die Ladungstriager werden initial anhand eines Algorithmus, am vom User geplanten Flie8band
verteilt, konnen aber vom User verschoben werden, falls er dies wiinscht. Wege welche die
Fabrikarbeiter wihrend ihrer Tétigkeiten zuriicklegen miissen, werden berechnet und auf dem
Boden eingezeichnet. Nun kann der Benutzer hingehen und die Arbeiter in einer Animati-
on, zum Leben erwecken und kann das Szenario in seinem Fabrikentwurf simulieren. Auch
Einzelarbeitsplitze konnen so Simuliert werden. Wenn er nun Anderungen hinsichtlich der
Ladungstrager- und/oder Station(s)-Positionen wiinscht, dann kann er sich errechnen lassen,
welche Kosteneinsparungen sich hierdurch ergeben. Des weiteren konnen Werker-Aufgaben
und Tacktung verandert werden.

4.2 SmoothScroll

Ist ein Ansatz, welcher eine Losung fiir das Problem des genauen Navigieren durch grofle
eindimensionale Datensétzen erlaubt. [WE13]

Wenn man einen groffen Datensatz hat, so wird es schwer durch eine Scrollbar innerhalb des Da-
tensatzes zu navigieren, da schon wenig Verschiebung der ,Scroll-Box"(auch ,Thumb"genannt)
grof3e Parameteranderung innerhalb des Datensatzes bedeutet.(Siehe Abbildung 4.2a)
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4 Verwandte Arbeiten

Abbildung 4.1: Screenshots aus dem Tool IPO.Log von der IPO.Plan Website [IPO]

Um diesem Problem zu begegnen wurde in dieser Arbeit ein Controll entwickelt, das unter
Zuhilfenahme vieler Scrollbars eine detailliertere Filterung von Daten zulasst.

Hier haben viele ibereinander angeordnete Scrollbars verschiedene Scrollbereiche. Um nun
im Detail zu scrollen, so hat man nun die Moglichkeit seinen Bereich, den man betrachten
will, durch die verschiedenen Bars auszuwéhlen. Die weiter oben, hinten liegenden Scrollbars
haben hierbei einen grofleren Scrollbereich, und die weiter unten, im Vordergrund, liegenden
Scrollbars erlauben eine genauere Auswahl. (Siehe Abbildung 4.2b)

< ! I |

(a) Scrollbar mit den dazugehorigen Elemen- (b) Screenshot aus aus [WE13]. Hier kann ein
ten. Buttons fiir das Scrollen nach links und Namensverzeichnis mit dieser speziellen
rechts. Dazwischen eine Scrollbox, welche Scrollbar durchforstet werden.

die Auswabhl reprasentiert, auf einer Flache,
die den ganzen Scrollraum darstellt.

Abbildung 4.2: Erklarende Bilder zu [WE13]

4.3 Die Visualisierung dynamischer Graphen als Small
Multiples

Liang stellt in seiner Diplomarbeit Moglichkeiten vor und implementiert diese auch, um einem
User User, Daten eines dynamischen Graphen, graphisch anzuzeigen.[Lia14]

Es wird Edge Splatting [BVB+11] verwendet um fiir den Benutzer Bilder zu erzeugen, die ihm
einen Uberblick tiber die Datenverbindungen im dynamischen Graph zu geben.
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4.3 Die Visualisierung dynamischer Graphen als Small Multiples

Zwei Arten der Anzeige werden vorgestellt.

Darstellungsform ,Rechteck”: Hier werden die Knotenpunkte des Graphen jeweils entlang
der linken und der rechten Kante eines Rechtecks gemappt. Fiir jede Datenverbindung
von Knoten A nach B wird nun einen Linie von der linken Reprasentation des Knoten A
zum Rechten Repriasentanten des Knoten B gezogen. Das Resultierende Bild wird per
Edge Splatting [BVB+11] fiir den User zu einer Art Heatmap zusammengefasst.

Darstellungsform ,Kreis": Hier werden die Knotenpunkte durch Punkte entlang eines Kreises
modelliert. Die Verbindung A-B wird dann als Gerade die den Kreis schneidet visualisiert.
Mit dem resultierenden Bild wird gleich verfahren wie bei der Rechteckigen Variante.

Elsl © e v

= PP PPPYYYIlE
= —
=
(a) Darstellungsform "Rechteck® (b) Darstellungsform “Kreis®

Abbildung 4.3: Screenshots aus der Implementierung von [Lia14]

Mit vielen solcher Plots in Serie kann der Benutzer gut nachverfolgen was sich am dynamischen
Graphen getan hat.
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5 Konzept

In diesem Kapitel soll erklart werden, welche Wege, fiir die Umsetzung des Prototyps, begangen
wurden, und warum.

Es werden Methoden vorgestellt und argumentiert, weshalb bei der Implementierung ein
bestimmter Weg beschritten wurde.

Die aufgetretenen zu l6senden konzeptionellen Aufgaben lassen sich wie folgt gruppieren/zu-
sammenfassen:

1. Anzeigen des Layouts
2. Visualisierung der Werkerpfade innerhalb dieser Anzeige

3. User-Interaktion

5.1 Anzeigen des Layouts

Die erste Frage, die sich stellt, ist die Wahl einer Visualisierungsmethode fiir das Fabriklayout
und der Werkerwege.

5.1.1 Die Wahl der Dimensionalitat

Die intuitiven Moglichkeiten, wéren eine 1D Liste mit angegebenen Koordinaten, eine 2D-
Darstellung und eine 3D View. Die Wahl fiel am Ende auf die zweidimensionale Méglichkeit,
die Argumente fiir diese Entscheidung, sollen im folgenden Erwéahnung finden.

Eindimensionale Listen Darstellung

Die 1D Liste, mag fiir ein wirklich kleines Expertenteam, deren Mitglieder das tatsachliche
Layout im Kopf haben, tibersichtlicher und auch effizienter zu benutzen sein. Fiir den normalen
Planer eines Layouts ist sie aber in den meisten Féllen eher ungeeignet, da das Layout auch
anderen erklart werden muss. Dagegen steht, dass die Fehleranfilligkeit sehr hoch ist, da
Elemente, oder deren Eigenschaften bei grofler Anzahl an Eintragen gerne iibersehen werden.

25



5 Konzept

Des Weiteren kann das ganze Layout, bei entsprechender Komplexitat nicht mehr kognitiv
erfasst werden.

Dreidimensionale Visualisierung

Die grofite Immersion und einen hoheren, moglichen Detailgrad kann man mit einer dreidi-
mensionalen Darstellung der Szene erreichen.
Allerdings sprechen auch hiergegen einige Punkte:

Technologieprobleme Zum jetzigen Zeitpunkt gibt es noch Probleme mit der Anzeigetech-
nologie. Es gibt zwar einige Ansétze, ein solches Anzeigegerit zu entwickeln, diese
sind aber zum heutigen Zeitpunkt entweder Qualitativ noch nicht ausgereift: z.B. Bei
Head-Mounted Displays mit zu geringer Auflésung und Bildwiederholungsrate. Oder
sie sind von ihrem Platz und Preisaufwand noch nicht mit ihrem Nutzen vereinbar z.B
bei Projektoren mit extrem hoher Bildwiederholungsrate zum Beispiel in Kombination
mit Shutter-, oder Polarisationsbrillen.

Falls man sich allerdings auf ein zweidimensionales Anzeigegerat, das dafiir technisch
ausgereift und kostengiinstig ist, beschrankt, so geht die Immersion verloren und auch
das Gefiihl wo etwas im Raum steht. Auch kommt dann der zweite Punkt umso starker
zum tragen.

Uberdeckung Das zweite und groflere Problem ist, das es bei einer dreidimensionalen Dar-
stellung immer wieder zu Uberdeckungen kommt.
Das heif3t, man tibersieht Details, Objekte oder sogar ganze Komplexe, weil sie sich in
der aktuellen Ansicht hinter einem anderen Objekt befinden.

—

(a) Szene mit drei sichtbaren Elementen in einer 3D (b) Die selbe Szene aus einer anderen Perspektive,
Visualisierung mit nur 2 sichtbaren Elementen

Abbildung 5.1: Beispiel fiir das Phanomen der Verdeckung bei einer 3D-Visualisierung
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5.2 Visualisierung der Wege innerhalb dieser Anzeige

5.1.2 Farbwahl

Die Farbwahl fiir die Fabriklayout-Darstellung ist wichtig. Sie muss neutral sein, das moglichst
viel andere Informationen mit Farbe in die Darstellung eingefiigt werden und zum anderen
muss sie fiir den Nutzer als angenehm empfunden werden, das er auch langere Zeit mit dem
Tool verbringen kann. In Anlehnung, an ein Schema des Tools Visual-Studio, welches dhnliche
Kriterien bei der Farbwahl erfullen muss, fiel die initiale Wahl auf ein Farbschema von weif3em
Vordergrund und Schwarzem Hintergrund, in einem Zukiinftigen Produkt, sollte die Farbwahl
aber beim Benutzer liegen.

5.2 Visualisierung der Wege innerhalb dieser Anzeige

Die Wege der Mitarbeiter sollen innerhalb des Layouts visualisiert werden. Doch zuerst miissen
die Wege festgelegt werden.

5.2.1 Wegefindung

Als Grundlage fiir die Werker-Simulation existiert deren Umgebung (das Fabriklayout) und
eine Liste ihrer Arbeitsschritte (Siehe auch Kapitel 6.3). Man kann annehmen, dass der Mensch,
wahrend der Arbeit, immer versuchen wird den kiirzesten Weg zu nehmen, es wird deshalb
ein optimaler Weg zwischen den Arbeitsstationen, welche wir aus der Simulation erhalten,
gesucht.

Benotigt wird hierfiir ein Weggraph.

Weggraph

Eine Moglichkeit den Weggraph zu definieren, ist auf Grundlage der Ecken der Elemente des
Layouts. (Mit Elementen, sind Objekte gemeint, die in der Lage sind Wege zu versperren, wie
Maschinen, Arbeitstische, Sdulen etc.) Sie sind die Knotenpunkte des Graphen.

In einem ersten Schritt wird, fiir alle Ecken der eingelesenen Objekte des Layouts, gepriift
welche anderen Ecken fiir sie erreichbar, sprich nicht durch andere Elemente versperrt, sind.
Anhand dieser Information werden als Folge Kanten in den Graphen eingefigt.

Das Kantengewicht entsprecht der Kantenlénge.

Wie schon im Grundlagenkapitel (siehe Kapitel 2) erwahnt handelt es sich beim Weggraphen
um einen dynamischen. Der User kann spater Elemente des Fabriklayouts mit der Maus beliebig
verschieben und drehen, was dazu fithrt, dass der Wegegraph sich veréndert.
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5 Konzept

Wie schon Kapitel 2 beschrieben, kann bei dynamischen Graphen oft die Laufzeit der Opera-
tionen problematisch sein.

Im Folgenden wird davon ausgegangen, dass die Anzahl an Ecken pro Layout-Element nach
oben begrenzt ist. Beispielsweise konnte man ein Objekt in einem Layout mit einer Recht-
eckigen Boundingbox approximieren. Schon beim initialen Einlesen der Daten muss fiir n-
Knotenpunkte eine Operation in Q(n?) ausgefithrt werden:

Fiir jeden Knoten muss gepriift wird, ob er eine Kante zu den anderen Knotenpunkten hat. Um
die Existenz der Kante zu verifizieren muss sie mit allen Elementen des Layouts geschnitten
werden.

Wenn man dem Benutzer eines Echtzeittools nun die Moglichkeit einrdumt den Graph zu
verandern, so muss nach jeder relevanten User-Interaktion diese Operation (von nun an auch
Methode I genannt) von neuem ausgefithrt werden.

Um dieses Problem zu umgehen speichert jedes Element, schon beim initialen Erstellen des Gra-
phen, welche Kanten es verhindert hat. Hierbei wird jede Kante nur in einem Element eingetra-
gen (dessen Blockade beim Errechnen zuerst auftritt). Wird es nun durch eine User-Interaktion
verschoben, oder gedreht, so kann man auf meist weniger aufwendige Rechenoperationen
zuriickgreifen:

1. Alle denkbaren Kanten die am verschobenen Element anliegen miissen neu tiberpriift

werden. (O(n?))

2. Alle bisher existierenden Kanten, miissen mit dem verschobenen Element geschnitten
werden um ihren Fortbestand zu Gberpriifen und sie eventuell als blockiert im Element
zu speichern. (worst Case O(n?))

3. Die gesammelten Kanten, welche durch das Element verhindert wurden, miissen neu
tiberpriift werden. (worst Case O(n?))

Das alternative Verfahren (von nun an auch Methode II genannt) ist insofern besser, als das es
nur im schlimmsten Fall eine Komplexitit in O(n?) bei der Berechnung braucht. Meist blockiert
ein Element nicht alle moglichen Verbindungen, aulerdem wird die erneute Uberpriifung einer
blockierten Kante immer nur von einem Element ausgelést, was es noch unwahrscheinlicher
macht, dass die Berechnung dhnlich viel Zeit benétigt wie eine neue, komplette Uberpriifung
aller Kanten.

Wenn nach der Veranderung Ecken von Elementen innerhalb anderer Elemente liegen, so
sind diese Knotenpunkte dem Weggraphen entnommen, da sie fiir einen Arbeiter nicht mehr
erreicht werden kénnen.

In der konkreten Fabrik kann dies auch vorkommen, wenn zum Beispiel ein FlieSband durch
eine Maschine verlauft und beide als einzelne Elemente im Layout verzeichnet sind.

Falls nach der Veranderung ein Element einen bisher moglichen Weg versperrt, und/oder einen
anderen im Vorhinein nicht moglichen Weg freigemacht hat, so werden Kanten entfernt und
andere hinzugefiigt.
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5.2 Visualisierung der Wege innerhalb dieser Anzeige

Auch werden durch Verschiebung von Elementen auf neue Positionen die Kantenldngen
gedndert, was in diesem Fall einer Kantengewichtsanderung entspricht.

Beispiele solcher Anderungen kann man in Abbildung 5.2 sehen.

= >

(a) Grundstellung der beiden Ele- (b) Durch Verschiebung desrechten  (c) Bei dieser Stellung der Elemen-

mente, mit allen méglichen Kan- Elements nach oben kommt eine te fallen zwei Knotenpunkte aus
ten neue Kante hinzu (griin) und 4 dem Graphen. (Und es entste-
werden aus dem Wegegraph ent- hen zwei neue Knotenpunkte die
fernt (schwarz unterbrochen) Kanten zu diesen ,Ecken® sind

gestrichelt eingezeichnet)

Abbildung 5.2: Verschiebung eines Elements und die resultierenden Graphanderungen

Spontaner Weggraph

Eine Idee um die komplizierten Berechnungen einzusparen konnte die ,,spontane"Wegberechnung
sein, demnach den Graphen nirgends vollstandig zu speichern, sondern immer nur fiir je-
den Schritt der Wegfindung alle méglichen Nachbarn zu errechnen. Das Problem ist, dass
ein so konzipiertes Tool nicht skalierbar wire fiir viele Datensétze. Fiir wenige zu findende
Pfade mag diese Herangehensweise Vorteile bringen, jedoch kénnen Simulationen manchmal
mehrere Monate/Jahre abdecken und sehr viele Arbeiter enthalten, hier ware die spontane
Berechnungin der Masse viel teurer als die statische, einmalige, komplette Generierung des
Weggraphen.

Ein Mittelweg wire die Ergebnisse der spontanen Nachbarknotensuche zu speichern, und
damit den relevanten Teilgraphen komplett zu errechnen und jede Suche maximal einmal
durchzufithren. Dadurch konnte man eine Reduktion der Laufzeit erreichen.

29



5 Konzept

(a) Grundstellung der Elemente.

Die griin gestrichelt dargestell-
ten Kanten werden vom zu ver-
schiebenden Element, rot, als
blockiert gespeichert.

(b) Wahrend nach Methode I beim

Ubergang von (a) nach (b) al-
le Kanten neu gepriift werden:
Fakultit aus 8 Kanten (8! =
40320) + die Kanten des ver-
schobenen Elements, miissen
nach Methode II nur die in (a)
griin, gestichelt markierten Kan-
ten neu geprift werden: 8 + die
Kanten des verschobenen Ele-
ments.

(c) Beim Ubergang von (b) nach (c)

miissen nach Methode I wieder
40320 Kanten + die Kanten des
verschobenen Elements iiber-
priift werden, wihrend nach Me-
thode Il nur noch 4 + die Kanten
des verschobenen Elements ge-
priift werden miissen. Man sieht
auch, das es nun weniger Grii-
ne, gedachte Kanten gibt, da ei-
nige Kanten nun in einem ande-
ren Element, als geblockt gespei-
chert sind.

Abbildung 5.3: Vergleich der beiden Herangehensweisen I und II. Es wurde angenommen,
dass die Kollisionspriifung bei Kanten immer von Links nach Rechts geschieht.
Die Kanten des zu verschiebenden Elements wurden aus Griinden der Uber-
sichtlichkeit nicht eingezeichnet.

5.3 User-Interaktion

Der Benutzer soll mit dem Anzeigegerit interagieren konnen. Auf diese Weise sollen die
visualisierten Layout-Daten manipuliert werden. Die veranderten Daten missen in einer
ahnlichen Form wie sie eingelesen wurden Speicherbar sein.

Die hervorgerufenen Anderungen der Manipulation sollen dem Benutzer in der Visualisierung
und durch Kennzahlen riickgemeldet werden. Dadurch hat er die Moglichkeit die Verande-
rungen zu bewerten und kann erkennen ob eine Optimierung seines Produktionslayouts
stattgefunden hat.
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6 Implementierung

Ein grofler Teil dieser Arbeit ist die Umsetzung des Konzepts in einem Prototyp.

6.1 Verwendete Programme und Tools

Das Konzept wurde in der Programmiersprache C# implementiert.

Als Programmierumgebung diente hierbei Visual Studio, in den Versionen 2013 und 2015 mit
dem auf dem .NET Framework 4.5 aufbauenden Framework WPF (Windows Presentation
Foundation [Mic06])).

Die komplette Arbeit wurde auf Computern entwickelt die unter Windows in den Versionen
8.1 bzw. 10 liefen. Der Prototyp wurde auch auf diesen Plattformen getestet, er sollte allerdings
auf allen Windows Versionen, die das .Net Framework 4.5 unterstutzen, laufen.

Fir die Erstellung der Grafiken dieser Ausarbeitung wurde, falls nicht anders angegeben, das
Microsoft Programm Microsoft Visio benutzt.

Zum editieren, sowie 6ffnen der CSV-Dateien, wurde Notepad++ [Ho+08] verwendet.

Bei den genutzten Eingangsdaten fiir den Prototyp handelt es sich um Simulationsexport-
Daten des kommerziellen Tools IMV (Integrated Manufacturing Validation) der Firma iFAKT
GmbH [iGmbb], die fiir die Arbeit zur Verfiigung gestellt wurden.

6.2 Umsetzung des Konzepts

Folgend soll aufgezeigt werden, welche Aspekte des Konzepts umgesetzt wurden, und in
welcher Art.
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6 Implementierung

6.2.1 Suchalgorithmus

Beim Algorithmus der die Wegsuche innerhalb des Weggraphen vornimmt, fiel die Wahl auf
den A* Algorithmus (Abschnitt 2.2). Hauptargument fiir diese Wahl, war dessen Eigenschaft,
in kiirzester Zeit, den garantiert schnellsten Weg zu finden.

Bei der Wegsuche verwendet der A* Algorithmus eine Heuristik um den Weg zu suchen.
Wenn diese auf dem euklidischen Abstand der Knotenpunkte basiert, so erscheint mit die
Herangehensweise der eines Menschen sehr dhnlich, was auch zur Wahl beigetragen hat.

Ein grofler Nachteil, der durch einen deterministischen Algorithmus entsteht, sind extrem
lange Berechnungszeiten, falls der gesuchte Weg in einem komplexen Layout nicht existiert
und erst alle erreichbaren Wege erforscht werden miissen.

Sinnvolle Abbruchkriterien, lassen sich, ohne erheblichen Mehraufwand bei der Grapherstel-
lung, welche, wie oben beschrieben, eh schon lange dauern kann, nicht formulieren. Allerdings
ist hier wohl noch Verbesserungspotential vorhanden.

6.2.2 Heatmap

Wegen der schlechten Skalierbarkeit beim Rendern von Elementen in WPF (Windows
Presentation Foundation [Mic06])) Probleme mit der Heatmap.

Leider kommen viele Renderprozesse nur mit einer begrenzten Menge (Halb-)Transparenter
Elemente zurecht. Diese kiinstliche Schranke hat durchaus ihre Berechtigung, da die Laufzeit
des Renderprozesses sonst fiir deren Anwendungsgebiet nicht mehr verhéltnismaflig ware.
Es wurden, fiir diese Arbeit, einige Ansétze fiir eine CPU basierte Renderung der Heatmap
iiberpriift, von denen allerdings keine den Anforderungen gentigt, und so wurde letztendlich
ein auf einem Shader basierter Losungsansatz nach [Dar10] eingefiihrt.

Der Vorteil eines Shaders ist, das die Heatmap auf der GPU berechnet wird, was zu einer
deutlich schnellerem Renderprozess fiihrt.

Die gerenderte Heatmap wird der Oberflache als statische Bitmap zugefiigt.

6.2.3 Oberflache und Funktionen

Die graphische Benutzeroberfliache teilt sich in drei Bereiche (siehe Abbildung 6.1), die im
folgenden genauer beschrieben werden:
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6.2 Umsetzung des Konzepts

= ]
I

Abbildung 6.1: Die drei Bereiche der Benutzeroberflache:
1. Das Canvas-Element mit der 2D-Reprasentation des Fabriklayouts
2. Der Side-Bereich mit Einstellungsmoglichkeiten fiir den User
3. Die Timeline oder auch Zeitstrahl

Canvas-Element

Der erste Bereich, des Canvas-Elements, zeigt auf schwarzem Hintergrund in weif3en Polygo-
nen die Konturen der Elemente des 2D-Layouts an.

Die einzelnen Layout-Elemente lassen sich mit der linken Maustaste per Drag and Drop
verschieben und mit der rechten drehen. Die graphische Riickmeldung des Programmes ist
Abbildung 6.3 zu sehen.

Neben den Layout Elementen werden in diesem Bereich der Oberfliche auch die Werkerwe-
ge als Linien, eine Heatmap, und Mitarbeiter als kleine Punkte eingezeichnet (siehe Abbil-
dung 6.2).

Durch die oben beschriebenen Interaktionsmoglichkeiten kann der User sein Layout verédndern.
Die Anderungen veranlassen eine Neuberechnung der Werkerwege, der Heatmap und der
Werkerposition. Diese Visualisierungen, so wie die Kennziffern im Side-Bereich (siehe weiter
unten) sollen dem Benutzer Riickmeldung iiber die Auswirkungen der Anderung geben.
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6 Implementierung
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(a) Screenshot der Heatmapvisualisierung des (b) Screenshot aus dem Prototyp der einen Wer-
Prototyps kerpfad mit eingezeichneter Werkerpositi-
on zeigt

Abbildung 6.2: Beispielhafte Screenshots aus dem Prototyp

(a) Ein Element wird durch Drag and Drop mit (b) Durch Ziehen mit gedriickter rechter Maustaste wird
der linken Maustaste verschoben, und farbt ein Element um seinen Mittelpunkt gedreht. Die gel-
sich wahrend des Verschiebe-Vorgangs Blau. be Linie zeigt die Ausgangsstellung (0°) wahrend die

griine Linie den gerade ausgewéhlten Drehwinkel an-
gibt, welcher auch als Zahl im Element angezeigt wird.
Durch driicken von Alt bzw. Leertaste kann der User
eine Rasterisierung auf ganze Gradzahlen, bzw. auf ein
45 Grad Raster, erwirken.

Abbildung 6.3: Interaktionsmoglichkeiten mit dem Canvas-Bereich der Oberfliche
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6.2 Umsetzung des Konzepts

Side-Bereich

Im Side-Bereich hat der Nutzer die Moglichkeit die Informationen die ihm im Canvas-Element
angezeigt werden sollen zu variieren. Von oben nach unten sind das:

Graph Diese Einstellung erméglicht es den kompletten Wegegraphen einzeichnen zu lassen.
Diese Option ist vor allem dann von Vorteil, wenn die "Wege-Wahl"der Werker dem User
nicht schliissig erscheint, da man in dieser Ansicht erkennen kann, welcher Weggraph
fiir die Berechnung benutzt wurde.

Path Diese Option blendet die errechneten Werkerwege ein und aus.
Elements Mit dieser Option lassen sich die Layout-Elemente aus und einblenden.

Heatmap Mit dieser Option kann der User sich eine Heatmap der ausgewahlen Werkerwege in
den Canvas-Bereich einzeichnen lassen um so Bereiche zu erkennen an denen besonders
oft Werker laufen.

DatenInput Mit der Dropdown-Liste lasst sich aus den verschiedenen Eingangsdatensatzen
wihlen.

KPIs Mit den Key Performance Indicators (auch Leistungskennzahlen) kann der User schnell
erkennen, welche Effekte seine Anderungen haben. Ihm werden hier zwei Kennzahlen
angezeigt:

a) Die Wegstrecke der ausgewéhlten Werker, welche er zum Optimieren moglichst
verkleinern will.

b) Eine Bewertung dariiber, wie dicht die Werker aufeinander stehen. Auch diesen
Wert sollte fiir eine Optimierung, klein gehalten werden.

Wihrend der erste Wert noch intuitiv verstandlich ist, so ergibt sich der zweite Wert aus
den Berechnungen der Heatmap und ist das Maximum der Werkerverteilung auf einer
engmaschige Rasterisierung, unter Zuhilfenahme eines Gaufikernels. (siehe Kapitel 2.3)

Workerliste In dieser Liste werden alle Werker die im Datensatz vorliegen aufgelistet und
der Benutzer kann sich, auch unter Zuhilfenahme der beiden Buttons, auswahlen, welche
Werker fiir die Anzeige im Canvas, bzw. fiir die Errechnung der Werkerwege-KPI relevant
sein sollen.

Timeline

Im dritten Bereich befindet sich von links nach rechts, von oben nach unten:
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6 Implementierung

Time-Span Picker Hier kann der Benutzer die angezeigten Daten filtern. Dies geschieht
durch Auswahl eines Zeitraums auf dem Zeitstrahl, der den kompletten Simulationszeit-
raum abdeckt, mit den beiden schwarzen Datepickern. Die Rosa eingezeichneten Linien
verdeutlichen den Beginn eines neuen Tages.

Zeitstempel Hier wird der visualisierte Zeitpunkt angezeigt.

Timeline Das namensgebende Element ermoglicht es dem User per verschieben des Reglers
einen Zeitpunkt auszuwéhlen. Der Bereich, welcher zur Auswahl steht, wird durch den
Time-Span Picker bestimmt. Die Positionen, der Arbeiter zum ausgewahlten Zeitpunkt,
werden im Canvas-Bereich, durch Punkte visualisiert. Je nachdem wie grof3 der Zeitraum
ist, der gerade durch Timeline auswahlbar ist, sind die Tage, Stunden und Minuten, durch
rosa, silberne und graue Linien, zur besseren Orientierung des Users eingezeichnet.

Auf dem oberen Rand der Timeline sind, falls vorhanden, die Arbeitsschritte der ausge-
wahlten Werker, als kleine Rauten eingezeichnet. Diese Rauten geben bei iiberfahren mit
dem Cursor Auskunft iiber den Zeitpunkt des Events und den Werker, den es betrifft.

Play-Break Button Fiir eine animierte Simulation kann der Benutzer hier ein Fortlaufen des
visualisierten Zeitpunktes erreichen. Dies ist in beide Richtungen mdglich, sprich in
die Vergangenheit und in die Zukunft. Durch mehrfaches Klicken auf einen der Pfeile
beschleunigt sich die Animation. Der Button mit den beiden parallelen Balken, halt die
Animation an.

Save Diese Operation dient dazu das, durch Interaktion veranderte, Fabriklayout als CSV-Datei
zu exportieren. Diese Exportdateien konnen spater als neue Eingangsdaten verwendet
werden (siehe Kapitel 6.3).

6.3 Struktureller Aufbau der Eingangsdaten

Die Eingangsdaten fiir das Tool, entsprechen den Exportdaten eines Simulationsdurchlaufes
durch das Tool IMV der Firma IFakt GmbH [iGmbb] und liegen in mehreren CSV-Dateien vor.
In diesem Kapitel soll erklart werden, was CSV-Dateien sind und welche Daten, in welcher
Struktur, nétig sind um den Prototyp zu verwenden.

6.3.1 CSV-Dateien

CSV (Comma Separated Value) Dateien, sind eine effiziente Moglichkeiten Datentabellen zu
speichern.

Es sind Text-Dateien, welche in der ersten Zeile die Spaltenheader und in jeder weiteren Zeile
die Daten der Tabelle, jeweils per Semikolon getrennt, beinhalten.
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6.3 Struktureller Aufbau der Eingangsdaten

Der Vorteil gegentiber den, meist benutzen, Excel-Dateien ist, das CSV-Dateien sich schneller
einlesen lassen, weniger Speicher verbrauchen und man keine kommerzielle Software erwerben
muss um sie zu editieren.

6.3.2 Struktur

Damit der Prototyp auch ohne die Simulationssoftware verwendet werden kann, wird hier die
Datenstruktur spezifiziert, welche von der Software erzeugt wird. Durch die Offenlegung des
Formats, liefSen sich verwendbare Daten auch von einem anderen Tool generieren.

Das Tool bendtigt nicht den vollen Umfang der urspriinglich bereitgestellten Simulationsdaten.
Die Anforderungen beschrinken sich auf folgende Tabellen und Tabellenwerte.

LayoutElements.csv Enthalt die Layout Elemente mit Positionsdaten (siehe Tabelle 6.1).
Workerltems.csv Liste der in der Simulation vorhandenen Werker (siehe Tabelle 6.2).

SimComponents.csv Enthalt Verbindungsdaten zwischen, in der Simulation benutzten Ob-

jekten und deren geometrischen Eigenschaften in der LayoutElements Tabelle (siehe
Tabelle 6.3).

WorkerActivities.csv Hier sind die Simulationsevents, mit Start und Endzeitpunkt, aufgelis-
tet, sowie an welchem Simulationsobject diese stattfinden (siehe Tabelle 6.4).

WorkerActivityWorkerLinks.csv Enthilt die Information welcher Werker welchem Simu-
lationevent zugeordnet ist (siehe Tabelle 6.5).

Die Verbindungen der Datentabellen kann man noch einmal in Abbildung 6.4 sehen.

WorkerActivities SimComponents

WorkerActivityWorkerLinks 4,—< ’r\ D ?:& D
WorkerActivitylD o

ComponentID L LayoutElementID

WorkerltemID
Workerltems LayoutElements
—_— ’r ID ,r‘% D

Abbildung 6.4: Diagramm der Datenverbindungen
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6 Implementierung

Header Typ  Beschreibung
ID guid  ElementID-Wert, zum Binden an andere Tabellen
Name string  Der Name des Elements, kann auch leer sein

LocationX double X Wert der Position des Elements innerhalb des Fabriklayouts
LocationY double Y Wert der Position des Elements innerhalb des Fabriklayouts
BoundsX  double Ausdehnung des Elements in X Richtung

BoundsY  double Ausdehnung des Elements in Y Richtung

RotationZ double Der Winke der Rotation (im Uhrzeigersinn) des Elements

Tabelle 6.1: LayoutElements.csv Spalten

Header Typ  Beschreibung
ID guid  WorkerID-Wert, zum Binden an andere Tabellen
WorkerItem string Bezeichnung des Werkers, dient zur Identifikation

Tabelle 6.2: WorkerItems.csv Spalten

Header Typ Beschreibung
ID guid ComponentID-Wert zum Binden an andere Tabellen
LayoutElementID guid LayoutElementID-Wert zum Binden (Tabelle 6.1)

Tabelle 6.3: SimComponents.csv Spalten

Header Typ Beschreibung

ID guid ~ WorkerActivityID-Wert zum Binden an andere Tabellen
ComponentID  guid  ComponentID-Wert zum Binden (Tabelle 6.3)
StartDate datetime StartDate of the Activity

endDate datetime EndDate of the Activity

Tabelle 6.4: WorkerActivities.csv Spalten

Header Typ Beschreibung
WorkerltemID guid WorkerltemID-Wert zum Binden (Tabelle 6.2)
WorkerActivityID guid WorkerActivityID-Wert zum Binden (Tabelle 6.4)

Tabelle 6.5: WorkerActivityWorkerLinks.csv Spalten
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7 Evaluation

In diesem Kapitel werden Anwendungsfalle fiir das im Rahmen der Arbeit erstellte Tool
vorgestellt. Dazu ist erst einmal festzustellen, welche Anwendungsfille vorliegen konnen.

(Abbildung 7.1)

Prototyp
Optimierung des Fabriklayouts
Fabrikbesitzer
Visualisierung der Werker
innerhalb des Layouts

Fabrikmitarbeiter

Abbildung 7.1: UseCase-Diagramm

7.1 Beispielhaftes Layout

Die folgenden Anwendungsfalle verwenden dasselbe Ausgangslayout, welches von der Firma
iFAKT zur Verfiigung gestellt wurde.

Das Layout leitet sich aus einem beispielhaften 3D Modell fiir den, 6ffentlich verfiigbaren,
Demo-Simulationsdatensatz [iGmba] ab. Es wurden allerdings Anderungen am Datensatz
vorgenommen, so sind Elemente weggelassen, oder verschoben worden.

Wichtig fiir die Use-cases ist, das es sich um ein Layout handelt, welches in der realen Produk-
tion genau so vorkommen konnte.
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7 Evaluation

Das 3D Modell ist in Abbildung 7.2 zu sehen.

(a) 3D-Modell zum Demo-Produktionsdatensatz [iGmba] (b) 2D-Layout, welches fiir die Use-Cases
verwendet wurde

Abbildung 7.2: 3D-Layout und das daraus abgeleitete 2D Layout

7.2 Optimierung des Fabriklayouts

Dieser Anwendungsfall ergibt sich vor allem fiir Fabrikplaner, die Unterstiitzung bei der
Planung neuer Werkhallen bzw. ganzer Fabrikkomplexe benoétigen.

Bevor eine Fabrikhalle gebaut/eingerichtet wird, erfolgt eine Simulation der spateren Fertigung
simuliert. Mit den Ergebnissen der Simulation arbeitet nun der Prototyp und es besteht die
Moglichkeit das anfanglich erstellte, fir die Simulation verwendete, Layout zu verandern. Ziel
ist eine Optimierung der Arbeiterwege.

Der weitere Arbeitsablauf wird anhand der Abbildung 7.3 und 7.4 beschrieben.

Da ein Fabrikplaner die real-Rdumlichen Gegebenheiten kennt, achtet er darauf das die Elemen-
te nur an Stellen verschoben werden, welche sinnvoll sind. Dies ist wichtig, da Beschrankungen
wie, zum Beispiel, Kabelanbindungen u.A. im Prototyp nicht abgebildet werden.

Durch die visuelle Darstellung und die Anderungen der KPIs kann der Benutzer abschitzen ob
seine Anderungen eine Optimierung fiir sein Layout darstellen.

Als Fazit kann man sehen, dass durch das Verwenden des Tool, eine Anderung am Planungslay-
out vorgenommen wurde, welche dazu fithrt, dass die Arbeit in der realen Produktion spéter
effizienter, da weniger Zeit auf der Strecke bleibt, und fiir die Mitarbeiter angenehmer sein
wird.
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7.2 Optimierung des Fabriklayouts

I I
S

(a) Anfingliches Layout, der Simu-

lationsdaten

(b) Das selbe Layout mit eingezeich-

neten Werkerwegen. Man sieht
das die Werkerwege sich fiir die
simulierten Produktionsschritte
auf einen Teilbereich des Lay-
outs beschrianken, und das sie
unnotig weit sind.

(c) Ein Blick auf die Heatmap ver-

rat dem Betrachter, dass die lan-
gen Werkerwege sogar relativ
haufig benutzt werden, weshalb
sich eine Anderung des Lay-
outs hochstwahrscheinlich loh-
nen wiirde.

Abbildung 7.3: Layout des ersten Use-Cases, vor der Anderung

(a) Durch Verschiebung der, fiir die

betrachteten Produktionsschrit-
te, notigen Layout-Elemente
konnte eine Verringerung der
Mitarbeiterwege erreicht wer-
den.

(b) Auch die Heatmap zeigt eine
Verkleinerung des durch die We-
ge betroffenen Bereichs inner-
halb des Layouts

(c) Das verianderte Layout. Durch

den Speicherbutton lasst sich
es sich im bekannten CSV-
Format exportieren (Siehe Ab-
schnitt 6.3.1)

Abbildung 7.4: Verdndertes Layout des ersten Anwendungsfalles
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7 Evaluation

7.3 Visualisierung der Werker innerhalb des Layouts

Angenommen, der Fabrikplaner mochte einen neuen Roboter in seine Fabrik integrieren, der
einen qualifizierten Mitarbeiter in der Umgebung braucht, der dessen Fehlerprotokoll einmal
am Tag auf Eintrage tiberpriift. Als Erstes muss er darauf achten, wo der Roboter am besten
im Fabriklayout untergebracht werden kann, moglichst ohne Werkerwege zu versperren, oder
zu verlangern. Hierbei kann das Tool, durch die Visualisierung dieser hilfreich sein.

Nun allerdings, muss er darauf achten, dass ein dafiir ausgebildeter Mitarbeiter einmal am Tag
die Wartung vornehmen kann. Dazu kann er sich nun mit dem Tool, und der Timeline, anzeigen
lassen, welcher Mitarbeiter sich in der Fertigung zum fraglichen Zeitraum in der Ndhe des im
ersten Schritt gefundenen Platzes aufhalt und kann daraufhin mit dieser Zusatzinformation
entscheiden, wer die Fortbildung zur Wartung bekommt. (Siehe Abbildung 7.5)

1 09.02.15 00
10.02.15 00:00:00

T
] [ << 1

Abbildung 7.5: Position eines Werkers, zum ausgewahlten Zeitpunkt, in der Nahe des Robo-
ters, hier rot markiert. (Abbildung entspricht nicht der genauen Darstellung
des Tools)
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8 Zusammenfassung und Ausblick

8.1 Zusammenfassung

In der Arbeit wurde Konzept entwickelt und in einem Prototyp umgesetzt, welches in imple-
mentierter Weise einem Anwender helfen soll, die Werkerwege innerhalb seines Fabriklayouts
zu analysieren und zu optimieren.

8.2 Ausblick

Bei dem in dieser Arbeit entwickelten Konzept, und dessen Umsetzung im Prototyp, gibt es
viele Aspekte die verbessert werden konnen, oder Ansétze die besser geeignet sind.

Die Art der Visualisierung konnte sich mit der Weiterentwicklung der dreidimensionalen Dar-
stellungsmoglichkeiten verandern, so sind begehbare Plots des Layouts in eine leere Fabrikhalle
fiir den Planer, mit Augmented-Reality-Technologien denkbar.

Auch bisherigen Rechenleistungsprobleme konnten durch andere/optimierte Algorithmen, vor
allem in der Grapherstellung und er Wegfindung, besser begegnet werden.

Auch eine bessere Riickmeldung an den Benutzer iiber Optimierungen durch seine Aktionen
wiaren winschenswert.

Das ganze Konzept sollte auch im Planungsprozess eine Fabrik immer in Verbindung mit einer
Simulation der restlichen Fertigung ablaufen, um zu validieren, dass die Optimierungen der
Werkerwege nicht groflere negative Folgen fiir den restlichen Produktionsablauf hat.
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